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ABSTRACT

In September 2015, the Advanced LIGO detectors made the �rst direct detection

of gravitational waves from a binary black hole merger [1]. Since then, around

�fty total gravitational wave detections have been reported by Advanced LIGO

and Advanced Virgo over three dedicated gravitational wave observation times,

known as observing runs.

Observing run three (O3) ran from April 2019 to March 2020, with higher sensi-

tivity and more stable operation of the Advanced LIGO detectors [2]. In the �rst

half of O3, thirty-nine gravitational wave events were detected [3], as opposed

to eleven in all of observing runs one (O1) and two (O2) [4]. The higher rate of

detections is due primarily to the increased detector sensitivity to gravitational

waves.

Although the Advanced LIGO detectors are more sensitive to gravitational waves

than any detector in history, they have not yet achieved design sensitivity. Work

continues to push the detectors to their fundamental limit of sensitivity. The work

in this thesis partially covers the e�ort to improve the sensitivity of the LIGO

Hanford detector prior to O3.

Calibration of the Advanced LIGO interferometer is the conversion of raw detector

data into gravitational wave strain data. This process is crucial to an accurate

and precise understanding of astrophysical sources of gravitational waves. The

calibration uncertainty pipeline for characterizing the strain uncertainty during

O1 and O2 is discussed in detail [5].

This thesis covers topics in long-baseline interferometric gravitational wave de-

tector technology, including an overview of the performance of the detector in O3,

commissioning tasks done to increase the sensitivity of the detector for O3, over-

all calibration uncertainty in the gravitational wave data, and methods for robust

estimation of spectral quantities from LIGO data.
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C h a p t e r 1

INTRODUCTION

In the early 20
th

century, Albert Einstein revolutionized physics with the theories

of special and general relativity. Einstein cut ideas like absolute universal length,

absolute universal time, and simultaneity in favor of a universal speed of light.

Relativity uni�ed space and time into a singular “spacetime.” Travel through space

and time is was no longer independent, and observers traveling through space

relative to one another must experience di�erent passage of time.

General relativity rede�ned gravity as curvature in spacetime arising from the pres-

ence of mass and energy within that spacetime. The “force” of gravity between two

bodies was not a force at all, but two objects following a “straight line”, or geodesic,
through a curved spacetime. General relativity resolved issues with Newtonian

gravity, including correctly predicting the precession of Mercury’s orbit and grav-

itational lensing by the sun. The development of general relativity revolutionized

physics and astrophysics, provided a new framework for understanding the uni-

verse on a large scale, and kicked o� the �eld of cosmology.

One key prediction of general relativity was the existence of waves in spacetime,

known as gravitational waves. Gravitational waves were a natural consequence of

Einstein’s equations describing spacetime curvature, but Einstein predicted these

waves were far too weak to ever be detected by humanity.

In 2015, Advanced LIGO made the �rst-ever detection of gravitational waves from

a binary black hole merger [1]. Since then, Advanced LIGO’s sensitivity to grav-

itational waves has increased even further, resulting in 39 detections in the most

recent observing run [3].

This thesis will focus on the e�orts to characterize and improve the sensitivity of

the LIGO Hanford Observatory leading up to its third observing run (O3), with

topics in precision detector calibration, noise mitigation, and novel detector mea-

surement techniques.

1.1 What is a gravitational wave?

Gravitational waves are the propagating wave manifestation of a fundamental

force of nature. The “electric charge” of gravity is mass, which can only be pos-
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itive, not both positive and negative. However, gravity is a much weaker force

than electromagnetism, and can only emit quadrupole radiation, as opposed to

electromagnetism’s dipole radiation.

A gravitational wave is often described as a “ripple” in spacetime. As heavy objects

move through the universe, they interact with spacetime, creating curvature such

that the motions of nearby objects through spacetime appear distorted.

If two extremely heavy objects begin orbiting one another very quickly, spacetime

curvature near this orbit becomes extremely strong and changes rapidly. A signif-

icant amount of energy in the �uctuating spacetime propagates away to in�nity

in the form of oscillating spacetime.

In general relativity, Einstein’s �eld equations relate spacetime curvature to the

energy and matter residing within that spacetime:

Gµν − Λgµν = κTµν (1.1)

where Gµν is the Einstein tensor describing spacetime curvature, Λ is the cos-

mological constant, gµν is the local spacetime metric, κ = 8πG/c4
is the Einstein

gravitational constant governing energy coupling to spacetime curvature, and Tµν

is the stress-energy tensor describing the matter and energy within a spacetime.

In the weak-�eld limit, where there is no matter or energy, the stress-energy ten-

sor Tµν = 0. Then the Einstein equations can be reduced to a wave equation and

solved for small perturbations in spacetime. These solutions to Einstein’s equa-

tions are known as gravitational waves.

For a wave traveling transverse to the z direction, the gravitational wave tensor

hµν is

hµν =




0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0



. (1.2)

The coe�cients h+ and h× correspond to the two polarizations of gravitational

waves, and refer to the way they a�ect spacetime.

The e�ect of a gravitational wave can be seen in the way it a�ects the distances of

two objects resting in spacetime. In the lab frame, a gravitational wave can be said

to create a length change between any two points in space, with the sign of the
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Figure 1.1: E�ect of a passing linearly polarized h+ gravitational wave traveling in

the z direction on two test masses on the x- and y-axis. In the lab frame, one axis

is “stretched”, the other is “squeezed”, producing an e�ective di�erential length

change.

change depending on the polarization and orientation relative to the wave. For

two points a distance L apart, the length change ∆L is

∆L = hL (1.3)

where h is the gravitational wave strain. Figure 1.1 shows the di�erential length

change e�ect of a gravitational wave with strain h ∼ 0.5 on two tests masses. This

is the principle upon which gravitational wave detectors are based.

Gravitational waves are produced when any masses accelerate through spacetime,

like in the orbit between two objects. In reality, spacetime is a “sti�” medium, or

gravity is a “weak” force: only the most massive objects in the universe can make

an appreciable dent in spacetime, and only the most massive, most energetic orbits

can create signi�cant gravitational waves.

Gravitational waves spread from their source over all space, losing amplitude in-

versely proportional to their distance from their source. The strongest gravita-

tional waves that reach Earth are all from extremely distant, rare, ultra-powerful

astrophysical collisions.
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For these reasons, the strongest gravitational waves reaching Earth have a strain

on the order of h ∼ 10−21
. For reference, a human cell is 10−4 m, the size of

an atom 10−10 m, the size of the nucleus of that atom is 10−15 m. Gravitational

waves incident on our L = 4 km long detectors will be hL ∼ 10−18
. This is why

the sensitivity of the Advanced LIGO detectors to gravitational waves are huge

technological feat of engineering, and the gravitational wave data a valuable new

font of information on the depths of the universe.

1.2 Sources of gravitational waves

Gravitational waves provide a new unique source of information about the darkest,

most massive objects, and most energetic events in the universe. Events normally

inaccessible through light, such as binary black hole mergers, supernovae core

bounce, or the Big Bang, can be directly observed via GWs.

Mergers of black hole and neutron star binaries are some of the most powerful

events in the universe, but are completely invisible to observers on Earth except

through the gravitational wave signature they produce [1, 6, 7]. The detections

of binary black hole mergers are the �rst direct observational insights into the

physics of massive binary systems. The formation rates of stellar-mass black holes

have been more accurately estimated than ever before, as well as the spin param-

eters of both the inspiraling and �nal black holes .

Binary neutron stars also o�er insight into extreme events of spacetime, including

the in�uence of matter on GW emission [8–10]. Tidal disruption breaks apart the

neutron star pair prior to merger, causing irregularly in the inspiral and merger

than can provide useful information on the type of matter that makes up a neutron

star. For binary neutron stars, multimessenger astronomy has already begun with

the detection of prompt electromagnetic followup to a GW merger, which proved

GWs travel very near to the speed of light.

Unequal-mass binaries consisting of a neutron star and black hole are also possible,

and candidates have already been detected [11]. These are especially interesting

because of the orbital precession physics possible, the higher-order multipoles of

the GWs detected, and the rates of formation of small black holes and large neutron

stars near the so-called “mass-gap”.

Supernovae are the explosive death of stars about 10× more massive than the

sun, and the birth of neutron stars or black holes, but the mechanism that powers

the explosion is not well-understood. Light from the supernovae comes from the
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exploding surface of the star, but the gravitational waves from the supernovae

would come from the core, and with it valuable information about the formation

of the core and the nature of the explosion.

The stochastic gravitational wave background is the random noise of the universe.

The stochastic background is formed from the sum of all unresolved binary in-

spirals in the distant universe. Cosmic gravitational wave backgrounds have the

potential to provide information directly from the Big Bang, shortly after the era

of in�ation when the universe expanded exponentially. The current limit to the di-

rect observations from the early universe come from the cosmic microwave back-

ground, which occurred during a era called recombination when the universe

cooled enough so the �rst atoms could form, around 370000 years after the Big

Bang.

Some of these phenomena cannot be detected with light, or have questions that

observation via light cannot answer. Gravitational waves o�er a new way of ob-

serving the universe, of listening to the universe by measuring spacetime rever-

berating with the echoes of unimaginably powerful events from billions of years

ago.

1.3 Detectors

The future of gravitational wave astronomy and astrophysics relies on the contin-

ued improvement of the sensitivity of gravitational wave detectors. Detector sci-

entists, known as commissioners, at the Advanced LIGO detectors are working to

achieve the maximum sensitivity possible with the current detectors. Figure 1.2 il-

Table 1.1: Signal-to-noise ratio (SNR) the �rst gravitational wave detection,

GW150914, would have had in current and future GW detectors. Figure 1.2 shows

the current and future noise curves beside the characteristic strain of GW150914.

Future detector noise curves are reported from gwinc [12].

Detector SNR SNR ratio / Observing Run 1

Advanced LIGO Observing Run 1 23 1.0

Advanced LIGO Observing Run 3 34 1.5

Advanced LIGO design 53 2.4

Advanced LIGO A+ upgrade 101 4.5

LIGO Voyager 250 11.1

Cosmic Explorer 1 1232 54.5

Cosmic Explorer 2 2273 100.5
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Figure 1.2: Noise curves of current and future gravitational wave detectors, com-

pared with the characteristic strain of the �rst GW detection, GW150914. The �rst

GW signal measured is shown as the black curve, while each of the colored noise

curves represent the measured noise of a current detector or projected noise of a

future detector. The lower the noise, the more sensitive the detector is to GWs.

By lowering the noise of the detector, a loud signal like GW150914 can be better

resolved, and more precise information can be learned from the signal. Table 1.1

calculates the signal-to-noise ratio (SNR) that a signal like GW150914 would have

in each detector. Estimated future noise curves from this plot are produced by

pygwinc as of January 2021 [12].

lustrates the projected improvement of sensitivity for ground-based long-baseline

interferometers in the United States.

As sensitivity of detectors is improved, both the rate of detections will increase,

and the signal from current detections will be better resolved. From the increased

number of detections, we can learn about black hole and neutron star astronomy,

including binary formation rates, and galaxy formation.

From the clearer signals, we can better resolve the physical parameters of the

mergers like the masses, spins, distance, orbital plane inclination, and sky loca-

tion. Also, we can better test general relativity in the most extreme regions of
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spacetime where two black holes are merging into one, where extremely powerful

spacetime curvature itself causes further curvature. Precision measurements of

the Hubble constant are also possible.

With a more sensitive detector, weaker sources of gravitational waves could be

detected, including gravitational waves from a single, rapidly spinning neutron

stars, gravitational waves from exploding supernovae, or the random background

of gravitational waves from binary black holes and neutron stars too far away to

resolve individually.

This thesis will focus on e�orts to achieve the sensitivity acquired by Advanced

LIGO for observing run three (O3), with topics in precision calibration of the Ad-

vanced LIGO detectors’ response to gravitational waves, characterization of noise

sources, and new techniques for measurements of fundamental quantities of the

interferometer.
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C h a p t e r 2

ADVANCED LIGO DETECTOR DESIGN AND O3 UPGRADES

The design of the Advanced LIGO detectors is the culmination of decades of grav-

itational wave (GW) detector research [13–18]. The Advanced LIGO detector de-

sign was �nalized in 2010, with several major upgrades compared to the initial

LIGO design [19, 20]. The biggest upgrades from initial LIGO to advanced LIGO

are the addition of the signal-recycling mirror [21, 22], the introduction of folded

recycling cavities for better laser beam geometry stability [23], a novel seismic iso-

lation and quadruple pendulum suspension for the heavier main optics [24–27],

lower optical coatings thermal noise [28–32], higher input laser power [33–37],

the addition of auxiliary green lasers for achieving detector operation [38–40],

and the implementation of DC readout [41] and an output mode cleaner [42].

The success of these upgrades made Advanced LIGO the most sensitive gravita-

tional wave detectors in history [43]. Since then, many upgrades have further

increased the astrophysical range of the instrument [2].

In this chapter we will brie�y review the basics of Advanced LIGO gravitational

wave detection, including the fundamentals of GW detection, the detector topol-

ogy, optic design, and seismic isolation. We also review some of the hardware

upgrades implemented between prior to the start of O3 relevant to this thesis, in-

cluding increased laser power, squeezed light injection, and replaced core optics.

2.1 Detector topology

The core of the Advanced LIGO detector is dual-recycled Fabry-Perot Michelson

interferometer. The arms of the interferometer are formed by 4 km long Fabry-

Perot cavities, featuring an input test mass (ITM) and end test mass (ETM). The

power recycling cavity (PRC) is formed between the power recycling mirror (PRM)

and ITMs. The signal recycling cavity (SRC) is formed between the signal recycling

mirror (SRM) and the ITMs. The Michelson is the formed by the beamsplitter

and the ITMs. Figure 2.1 shows the simpli�ed layout of the major interferometer

components.

A gravitational wave incident on the detector interacts primarily with the high

power laser light inside the 4 km long arms. The GW induces a tiny phase shift
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Figure 2.1: Simpli�ed diagram of the optical layout of LIGO Hanford for O3 [2].

The core optics that form the interferometer itself are the end test masses (ETMs),

the input test masses (ITMs), the beamsplitter (BS), the power-recycling mirror

(PRM), and signal-recycling mirror (SRM). The pre-stabilized laser (PSL) injects

laser light with radio-frequency (RF) sidebands at 9 MHz, 45 MHz, and 118 MHz

to be used for sensing length changes inside the interferometer. The photodetec-

tor sensors REFL, POP, AS, and DCPDs detect power �uctuations due to interfero-

metric length changes. The input mode cleaner (IMC) transmits only carrier laser

light and stabilizes the laser frequency to a suspended cavity. The output mode

cleaner (OMC) transmits only light carrying the gravitational wave signal, and re-

�ects away all other light. The output Faraday isolator (OFI) keeps light re�ected

from the OMC from re-entering the interferometer. The optical parametric oscil-

lator (OPO) injects squeezed quantum vacuum into the antisymmetric port of the

interferometer.

on the laser light as it propagates down the arms. The tiny phase shift is ampli�ed
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by three factors:

1. high input laser power,

2. multiple re�ections inside the arms,

3. the length of the arm cavities.

The high input laser power increases the light that is available to be scattered

into the GW signal. The multiple re�ections inside the arm cavities increases the

interaction time of the laser with the GW. The length of the arm increases the

e�ective displacement of the arm length due to GWs (Eq. 1.3).

The X-arm and Y-arm are separate cavities, but the Michelson interferometer spe-

cializes in discriminating between common and di�erential arm motion (see Sec-

tion B.3). Because the common arm motion (CARM) light is re�ected back to

the symmetric port where the laser entered the beamsplitter, and the di�eren-

tial arm motion (DARM) light is transmitted to the antisymmetric port through

the beamsplitter, CARM and DARM are most natural length degrees of freedom

eigenmodes.

The power recycling mirror increases the e�ective input power of the laser by

constructively interfering the laser coming back from the beamsplitter with the

new input light. The PRC forms a coupled-cavity with the arms. A coupled-cavity

is two Fabry-Perot cavities in series, where the end mirror of one cavity is the input

mirror for the second. The coupled-cavity formed by the PRC and arms is called

the common-arm length, or CARM cavity. The formation of the CARM coupled-

cavity enables the ultra-stable, high resonating laser power inside the Advanced

LIGO detectors.

The signal recycling mirror broadens the bandwidth of the detector. The SRC

also forms a coupled cavity with the arms, called the di�erential-arm length, or

DARM. Any di�erential motion in the arms will scatter some light into the DARM

coupled-cavity, and therefore the SRC. The SRC is tuned to be antiresonant for

the main carrier light, so the GW audio sidebands in the SRC are preferentially

transmitted through the cavity to the GW signal photodetectors. This setup is

known as resonant sideband extraction, and is discussed in detail in Section 3.6.

Advanced LIGO is run in DC readout con�guration [20, 41]. DC readout employs

a small intentional di�erential o�set in the arm lengths to provide DC power on
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the DCPDs to beat with the gravitational wave signal. Appendix B derives the

basics of a simple Michelson operating with DC readout.

The input and output mode cleaners (IMC and OMC) are both in place to “clean”

the laser light of higher-order modes, which are di�erent spatial modes of the main

carrier laser beam. The interferometer geometry, i.e. the radii of curvature of the

mirrors and the lengths of the cavities, is designed to contain solely main carrier

light. Higher-order modes are created from imperfections in the geometry, carry

no signal, but contribute noise. A mode cleaner is a cavity designed to transmit

the main carrier laser mode of the interferometer, and re�ect all other modes away

from the signal photodetectors.

Finally, the optical parameter oscillator (OPO) is a bowtie cavity designed to gen-

erated squeezed quantum vacuum for injection into the antisymmetric port of the

interferometer [44]. The key component to the OPO is the nonlinear crystal in-

side the cavity converts the green “pump” photons into two entangled infrared

photons. The entangled photons are equivalent to squeezed light. The arrival

times of the entangled photons on the photodetector are correlated, lowering the

variance of the Poissonian process which describes shot noise. The phase of the

squeezed light is controlled such that the quantum shot noise is minimized.

2.2 Gravitational wave signal

The �rst consideration for detector design is the response to incident gravitational

waves. A passing gravitational wave modulates the spacetime metric between any

two free masses. Gravitational radiation has quadrupole polarization, and can be

broken down into its plus h+ and cross h× orthogonal components.

Figure 1.1 shows the “L-shape” Michelson interferometer response to h+ GW ra-

diation. A laser is re�ected o� the test masses to detect their di�erential motion.

Section B.3.2 derives a simple Michelson’s response to gravitational waves.

The L-shape interferometer is sensitive only to one polarization of GWs, which

we usually de�ne as h+. A triangle-shaped set of three interferometers is another

fundamental design that is sensitive to both polarizations h+ and h×. The triangle-

shaped detector is employed in future detector designs like Einstein Telescope [45]

and space-based interferometers like LISA [46].

The Advanced LIGO detector design is based on the simple Michelson [22, 47].

Both detectors preferentially transmit only di�erential arm motion, including the
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GW signal, out of the antisymmetric port. Most laser power is re�ected by the

interferometer, keeping the antisymmetric port relatively clean.

The GW signal out of the Advanced LIGO interferometer is ampli�ed due to the

high laser power resonating in the Fabry-Perot arms (see Section B.4). The sig-

nal bandwidth is broadened by the placement of the signal recycling mirror. Sec-

tion 2.1 will discuss Advanced LIGO’s topology in more detail.

From our derivation of the simple Michelson response in Section B.3.2, Eq. B.45,

the response of the interferometer to gravitational waves is proportional to

1. the input power Pin,

2. the laser frequency ω0,

3. the arm length L.

Increasing any, naively, will increase the fundamental sensitivity limit of the de-

tector. However, GW signal response is not the only consideration for a sensitive

detector design.

2.3 Noise

The second consideration for detector design is the quanti�cation of noises which

can mask the gravitational wave signal. Fundamental noise sources are those which

de�ne the limits of sensitivity to GWs, based on the detector design. Technical
noise sources are those assumed to be negligible in the detector design, but can be

di�cult to mitigate in reality.

2.3.1 Quantum noise

Fluctuations of the vacuum electric �eld at the interferometer readout port impose

a fundamental limit to the interferometer sensitivity [22, 48–50]. Quantum noise

appears as shot noise and quantum radiation pressure noise.

2.3.1.1 Shot noise

Shot noise arises from Poisson �uctuations in the arrival time of photons at the

interferometer output. The power detected on the photodetector is made up of

a �nite number of photons which arrive randomly and independently of one an-

other, leading to a detected white noise proportional to the total power Pdc on the
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photodetector:

√
SP,shot(f) =

√
2~ω0Pdc

[
W√
Hz

]
. (2.1)

The quantum nature of the shot noise arises from the fact that the power detected

at an audio frequency ω is the result of the main electric �eld carrier frequency

of the laser
~E0 beating with electric �eld �uctuations at an audio frequency away

~e(ω). Even with a perfectly stable laser
~E0, the quantum vacuum �uctuations at

~e(ω) would produce power �uctuations from the
~E∗0~e(ω) terms.

Shot noise shows up as a sensing noise in all photodetectors in Advanced LIGO,

and dominates the high-frequency region of the DARM spectrum. As the input

power is increased, the DARM signal-to-shot-noise ratio increases ∝
√
Pinput.

2.3.1.2 Quantum radiation pressure noise

Quantum radiation pressure noise (QRPN) is displacement noise arising from am-

plitude �uctuations of the electric �eld in the arms. These amplitude �uctuations

produce a �uctuating momentum on the optics via radiation pressure, inducing

displacement noise.

The amplitude �uctuations are quantum in nature due to the quantum vacuum

at the antisymmetric port of the interferometer beamsplitter [48]. The quantum

vacuum conspires to create anti-correlated intensity �uctuations entering each

arm by interfering with the main laser power.

Intensity �uctuations in the arms would not a�ect the phase-quadrature interfer-

ometer readout of gravitational waves, except for the coupling of radiation pres-

sure. The intensity �uctuations create a “back-action” force on the mirror, which

is displaced according to the compliance of mirror pendulum.

The coupling of quantum amplitude �uctuations to phase �uctuations K is de-

scribed

K =
8Pbsω0

mL2ω2(ω2
c + ω2)

(2.2)

where Pbs is power on the beamsplitter, m is the mirror mass, L is the arm length,

ω0 is the laser frequency, ωc is the arm pole describing the number of re�ections

inside the Fabry-Perot cavity, and ω is the signal frequency. For a conventional
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interferometer, the displacement due to QRPN can be described [47]

√
Sx,QRPN =

√
L2h2

SQL

2
K (2.3)

=
1

mLω2

√
32Pbs~ω0

ω2
c + ω2

(2.4)

where hSQL is the standard quantum limit of conventional interferometer strain

sensitivity.

From Eq. 2.3 we see that as input power Pbs is increased, QRPN also increases.

QRPN is attenuated by the compliance of the mirror pendulums, and so is more

important at low frequencies. In Advanced LIGO during O3, QRPN never dom-

inates the gravitational-wave spectrum, as angular and length controls noise is

much higher.

2.3.2 Thermal noise

Thermal noise refers to the actual displacement in the mirrors induced by ther-

mal �uctuations in the atoms making up the test mass suspension, substrate, and

optical coating cause displacement noise in DARM [28–30, 51]. Generally thermal

noise increases with mechanical loss or loss angle, as related by the �uctuation-

dissipation theorem [52–54].

The �uctuation-dissipation theorem is a general result showing that thermal �uc-

tuations are equivalent to power dissipated in a mechanical or electrical system.

For some observable q of a system with admittance Y (ω) and temperature T , the

power spectral density Sq is

Sq(ω) =
4kBT

ω2
|Re[Y (ω)]| (2.5)

where ω is the frequency and kB is Boltzmann’s constant. Eq. 2.5 may be used to

characterize a wide variety of systems, from Johnson-Nyquist voltage noise in a

resistor [55, 56] to optical coatings Brownian displacement noise on the Advanced

LIGO core optics [51].

If a �uctuation F = F0 cos(ωt) is applied to a lossy oscillating system, the system

coordinate q = q0 cos(ωt + φ(ω)) will respond with a phase lag φ(ω). The coor-

dinate will have some velocity q̇ = q̇0 sin(ωt + φ(ω)). The admittance transfer

function Y (ω) can be written in terms of the driven force and coordinate velocity:

Y (ω) =
q̇

F
. (2.6)
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The real part of the admittance is called the conductance, and can be expressed

Re[Y (ω)] =
〈F q̇〉
〈F 2〉 =

2Wdiss

F 2
0

. (2.7)

where the extra factor of two comes from the time average of 〈F0 cos(ωt)2〉. Eq. 2.7

gives the second expression for the �uctuation-dissipation theorem [31, 51]:

Sq(ω) =
8kBT

ω2

Wdiss

F 2
0

(2.8)

The phase lag φ(ω) is related to the power dissipated per driven oscillation Wdiss

[54, 57]:

Wdiss = 〈F q̇〉 (2.9)

= F0q̇0〈cos(ωt) sin(ωt+ φ(ω))〉
= F0q̇0〈cos(ωt)[sin(ωt) cos(φ(ω)) + cos(ωt) sin(φ(ω))]〉

=
1

2
F0q̇0 sin(φ(ω))

Wdiss ≈
1

2
F0q̇0φ(ω) (2.10)

where in the last line we assume φ(ω)� 1. The quality factor Q = 1/φ is another

common measure of the loss in an oscillator.

For LIGO test masses, the �uctuating observable we care about is the optic dis-

placement x. The dominant cause of displacement �uctuations is due to mechan-

ical loss in the optic coatings. For a single coating with thickness d, the dissipated

power and coating displacement noise Sx(ω) due to thermal �uctuations can be

calculated [31, 58, 59]:

Wdiss =
F 2

0 (1 + σ)(1− 2σ)d

πw2E
φω (2.11)

Sx(ω) =
8kBT (1 + σ)(1− 2σ)d

πw2E

φ

ω
(2.12)

where σ is the coating Poisson ratio, E is the Young’s modulus, w is the beam

radius, and φ is the mechanical loss angle of the coating.

Because of the direct dependence of the thermal noise on mechanical loss angle

φ, and the fact that this noise is expected to dominate Advanced LIGO design

sensitivity around 50 Hz, much coatings research and development is put into

designing and measuring low-loss coatings for future detectors. The actual optical
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coatings in LIGO are multilayered, switching between two coatings to achieve both

high re�ectivity and low thermal noise [30].

The test mass quadruple suspension system has been designed to limit thermal

noise in the measurement band [27]. The fused silica substrate material is chosen

for low mechanical loss and has a small contribution to the thermal noise. A minor

contribution to the thermal noise is due to the addition of acoustic mode dampers

[60]. The thermal noise contribution from these dampers is estimated to degrade

interferometer sensitivity by less than 1%.

Brownian motion of the optic dielectric coatings is the dominant noise in the Ad-

vanced LIGO design noise budget from 40 to 100 Hz. Advanced LIGO test masses

have titania-doped tantala/silica coatings (TiO2-doped Ta2O5/SiO2), with 25% ti-

tania in the tantala layers and varying layer thicknesses to reduce thermal noise

[61, 62]. The coating thermal noise contribution is estimated based on optical mea-

surements of aLIGO end test mass witness samples [32]. The correlated noise mea-

surements in Chapter 5 approach the thermal noise limit as the dominant known

noise source around 200 Hz. The coating thermal noise can be reduced with im-

proved low-loss optical coatings or cryogenic optics [63].

Future detectors’ design curves rely on improved coatings technology for lower

thermal noise. Current research and development is focused on �nding and testing

better, lower-loss coatings materials. Cryogenically-cooled detectors, such as the

Japanese detector KAGRA, employ cooled sapphire optics to reduce thermal noise.

Changing the frequency of the laser from 1064 nm to 1550 nm or 2 µm may also

provide paths to lower coatings thermal noise.

2.3.3 Seismic noise

Seismic noise is the displacement of the core optics due to the motion of the Earth.

The vibrations of the Earth are much larger than LIGO optics can tolerate. There-

fore, enormous e�ort is put into isolating the core optics from the ground vibra-

tions, particularly in the GW sensitive range.

First, the LIGO test masses are suspended from a quadruple stage pendulum chain

[27]. The test masses form the bottom stage of the chain. These pendulums are

suspended from seismic isolation platforms [64] which themselves are supported

by hydraulically actuated pre-isolation structures [65].

This arrangement ensures that the seismic noise contribution at the bottom of the

chain sits far below the DARM noise curve. However this seismic noise contribu-
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tion only accounts for linear coupling to the DARM degree of freedom. Coupling

can become nonlinear when low-frequency motion is large, up-converting into the

gravitational-wave band. There are circuitous paths by which seismic motion can

couple to the interferometer output, such as through angular and length degrees

of freedom, or via scattered light. Earthquakes, high microseism, and windy con-

ditions can confuse isolation systems by tilting building �oors near wind-driven

walls, injecting seismic controls motion that can increase scattered light coupling,

cause lock loss, and hinder lock reacquisition.

Improvements to the seismic control scheme granted higher robustness to earth-

quakes in O3, and helped contribute to the highest overall duty cycle the detectors

have had in any observing run [66].

2.3.4 Newtonian noise

Newtonian noise is produced by direct gravitational coupling of test masses to �uc-

tuating mass density �elds, such as produced by seismicity and atmospheric pres-

sure �uctuations [67–70]. Newtonian noise, dominated by seismic surface waves

called Rayleigh waves, is predicted to limit the design sensitivity of the Advanced

LIGO detectors from 10 to 20 Hz [71, 72]. Newtonian noise has not been detected

in Advanced LIGO, and is predicted to be below O3 sensitivity levels [73].

2.4 Length sensing and control

In order to achieve sensitivity to gravitational waves, each of the �ve major length

degrees of freedom the interferometer must be constantly sensed and controlled

[20]. Pound-Drever-Hall (PDH) locking via radio-frequency (RF) laser sensing pro-

vides a robust way resonate laser light inside an optical cavity [74].

PDH locking requires a beatnote between a carrier and sideband which carries the

information about that cavity length. PDH locking provides a strong error signal

when a cavity is near resonance. A control loop is built around a PDH error signal

for each of the degrees of freedom to maintain resonance.

To accomplish this length control of the �ve degrees of freedom, a double RF mod-

ulation scheme is employed. Two RF sidebands at f1 = 9 MHz and f2 = 45 MHz

enter the interferometer alongside the carrier. The macroscopic lengths of the

cavities are carefully chosen such that the carrier and RF sidebands are resonant

where they are required, and antiresonant elsewhere to act as references for the

phase changes due to length changes.
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In this section we’ll overview the detector design considerations for the length

sensing and control of Advanced LIGO.

2.4.1 Degrees of freedom

ETMY

Ly

ITMY

ly
PR 3 ITMX ETMX

lp

lx

Lx
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5133
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Figure 2.2: Diagram of the Advanced LIGO length degrees of freedom. Lx and

Ly are the lengths of the arm cavities, equal to ∼ 4 km long. lx and ly forms the

inner Michelson. lp includes the entire beam length from PRM to the beamsplitter,

and forms part the PRCL length according to Eq. 2.16. ls includes the entire beam

length from SRM to the beamsplitter, and forms part the SRCL length according

to Eq. 2.17.

There are �ve main degrees of freedom that must be controlled to allow LIGO to

be sensitive to gravitational waves The �ve main Advanced LIGO interferometric

length degrees of freedom are

L− = Lx − Ly (2.13)

L+ =
Lx + Ly

2
(2.14)

lMICH = lx − ly (2.15)

lPRCL = lp +
lx + ly

2
(2.16)

lSRCL = ls +
lx + ly

2
(2.17)

Figure 2.2 illustrates these degrees of freedom. There are other degrees of freedom
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Arm cavities Power recycling cavity Signal recycling cavity

Carrier resonant resonant antiresonant

9 MHz antiresonant resonant antiresonant

45 MHz antiresonant resonant resonant

Table 2.1: Resonance conditions of the carrier and RF sidebands, copied from

[76]. No RF sidebands resonate in the arms, since their purpose is to sense length

changes in the corner degrees of freedom PRCL, SRCL, and MICH. The carrier laser

frequency is antiresonant in the SRC to broaden the detector bandwidth, operat-

ing in the resonant sideband extraction scheme (see Section 3.6). 9 MHz resonates

in the PRC and is used to detect PRCL. 45 MHz resonates in both the PRC and

SRC, and is used to detect SRCL and MICH, SRCL in the I-phase and MICH in the

Q-phase (see Table 2.2).

of the interferometer that are unimportant for control, like overall displacement

of the entire interferometer.

2.4.2 Macroscopic cavity lengths

The control scheme revolves around setting up robust PDH error signals for each

of the �ve degrees of freedom. The designed cavity lengths enables the con-

trol scheme by resonating carrier and sidebands in the correct cavities. A good

overview of this process is presented in [20] for the Advanced LIGO length choices,

and [75] for the Caltech 40m length choices. Table 2.1 overviews where the carrier

and RF sidebands are resonant in Advanced LIGO.

Brie�y, the lengths are chosen by �rst assuming the carrier ω0 is resonant in the

CARM cavity. Then, the PRC length is chosen such that f1 = 9.1 MHz and f2 =

45.5 MHz both resonate alongside the carrier:

lPRCL =

(
n+

1

2

)
c

2f1

(2.18)

where n is an integer. Because f2 = 5f1 via phase lock, if f1 resonates in a cavity

then so will f2. The factor of 1/2 arises because of the π phase �ip accrued by the

sidebands upon re�ection from the arms.

The SRC length is chosen such that f2 resonants but f1 does not:

lSRCL = m
c

2f2

, lSRCL 6= k
c

2f1

(2.19)

where m and k are integers. The factor of 1/2 for the sideband arm cavity re�ec-

tion still exists, but because LIGO is running in resonant sideband extraction with
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Degree of freedom Sensor

CARM REFL 9 I

DARM DCPDs

PRCL POP 9 I

SRCL POP 45 I

MICH POP 45 Q

Table 2.2: Sensors for each length degree of freedom. The DARM degree of free-

dom uses DC readout, whereas all others use PDH locking RF readout. The RF

sensor names come from (1) location, (2) 9 or 45 MHz beatnote, and (3) readout

quadrature. Figure 2.1 shows the location of each sensor.

SRC tuning φ = π/2, the carrier and sideband phase both accrue an additional

π/2 one-way phase while traveling in the SRC.

Finally, a Schnupp length asymmetry lSchnupp = lx − ly in the inner Michelson is

selected. The Schnupp asymmetry is chosen such that the 45 MHz sideband f2 is

preferentially transmitted into the SRC. It also enables the PDH sensing of MICH

in the Q-phase of 45 MHz sensors.

For Advanced LIGO, the design parameters for the above lengths are [20, 76]

Larm = 3994.5 m (2.20)

lPRCL = 57.6557 m (2.21)

lSRCL = 56.0084 m (2.22)

lSchnupp = 0.08 m (2.23)

2.4.3 Length sensors

The length sensors detect power �uctuations which correspond to length changes

in the interferometer. The DARM sensor, the DCPDs, uses DC readout to measure

length changes. All other degrees of freedom use Pound-Drever-Hall locking, or

RF readout, for length control. Table 2.2 overviews which sensors are used to

detect length changes of each degree of freedom for O3.

A PDH signal from the re�ection of a cavity is typically sensed in the I-phase, or

cosine quadrature. A PDH signal from a length o�set, like with MICH and DARM,

is typically sensed in the Q-phase, or sine quadrature. Chapter 2 of Martynov [77]

and Appendix C of Hall [57] provide good derivations of the heterodyned PDH

signal.

DARM is sensed via homodyne of the GW signal with the DARM DC o�set light.
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The power in the antisymmetric port increases quadratically with the DARM o�-

set:

∆L− ∝ P 2
as. (2.24)

The DARM o�set is servoed to maintain Pas ≈ 20 mA on the DCPDs. This lin-

earizes DARM motion δL− such that

Pas
δL−

(ω) ∝ Pas (2.25)

We note here that one cannot improve sensitivity by increasing the DARM o�set.

The signal from Eq. 2.25 does increase linearly with a DARM o�set increase, but

the shot noise also increases linearly, as can be seen from Eqs. 2.1 and 2.24.

CARM is sensed from the beatnote between the carrier, which carries the arm

length information, and the 9 MHz sideband, which acts as a stable reference.

CARM is detected in the REFL port in the I-phase. CARM is technically stabilized

to the coupled-cavity consisting of the PRC and arm cavities, and so is sensitive

to PRCL as well. The CARM loop servos both to zero indiscriminately. See Sec-

tion 2.4.4 for a discussion of CARM and PRCL gain hierarchy.

PRCL is sensed from the beatnote between the 9 MHz sideband, which carries the

PRCL information, and the carrier, which acts as the stable reference. PRCL is

detected in the POP port in the I-phase. As stated before, carrier resonates in the

PRC and does carry PRCL information, but this is already sensed and stabilized by

CARM.

SRCL is sensed from the beatnote between the 45 MHz sideband, which carries

the SRCL information, and the carrier, which acts as the stable reference. SRCL is

detected in the POP port in the I-phase. 45 MHz is the only light that resonates

in the SRC, and so is most sensitive to SRCL motion. However, 45 MHz is also

resonant in the PRC, and carries PRCL information as well. In practice, the PRCL

error signal from the 9 MHz is feedforward to SRCL to cancel the PRCL motion in

the SRCL loop.

MICH is sensed from the beatnote between the 45 MHz sideband, which carries

the MICH information, and the carrier, which acts as the stable reference. MICH

is detected in the POP port in the Q-phase. MICH operates on a perfect dark

fringe for carrier, so there is no linear response of carrier to MICH motion in the

POP port. The Schnupp asymmetry is an e�ective MICH o�set for the 45 MHz

sidebands, however, so 45 MHz signal sidebands do appear in the symmetric port.
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Degree of freedom Unity gain frequency

CARM 20 kHz

DARM 60 Hz

PRCL 50 Hz

SRCL 25 Hz

MICH 10 Hz

Table 2.3: Bandwidths of the main LIGO length control loops for O3. The unity

gain frequency is the frequency at which the open loop gain magnitude equals one.

These values are approximate, as the true values �uctuate as the thermalization of

the interferometer changes the optical plant.

2.4.4 Gain hierarchy

The gain hierarchy of the length control loops is also important. For example, the

PRCL error signal is made from the 9 MHz beatnote, which senses both CARM

motion and PRCL motion. The CARM response to length changes is far more sen-

sitive than PRCL, which would make sensing low frequency PRCL motion di�cult

in principle. The huge CARM control loop gain relative to the PRCL gain stabilizes

carrier to be used as a static reference for the PRCL loop [76, 78].

The control loop gain hierarchy goes CARM, DARM, PRCL, SRCL, and MICH.

Other than the CARM loop, the control bandwidths are kept as low as possible to

avoid injecting excessive length sensing noise while still controlling displacement

noise. Table 2.3 shows the approximate unity gain frequencies of the LIGO control

loops in O3.

2.4.5 Feedforward

Controls noise considerations are an important contribution to the �nal DARM

noise. The length sensing noise of SRCL and MICH, and to a lesser extent PRCL,

still show up in DARM.

However, these sensing noises are well-monitored via the SRCL, MICH, and PRCL

control signals. The control signals are summed into the DARM control signals

to preemptively cancel their induced noise. This process is known as feedforward
[57, 79].

2.5 Lock acquisition

Lock acquisition is the process of bringing the detector into a regime where maxi-

mum power buildup is achieved in the arm cavities and all interferometer degrees

of freedom are controlled [77, 80]. The locking begins with only 2 W of infrared



23

input power.

First, green lasers at each end station are locked to each arm cavity length. Then,

the green transmission beams through each arm are combined with main carrier

light to stabilize the PSL to the common arm cavity length and control the di�er-

ential arm length. The common arm length is moved such that the main infrared

laser is antiresonant in the arms to avoid arm �ashes during corner locking.

Next, PRCL, SRCL, and MICH are locked to the infrared laser via Pound-Drever-

Hall error signals in the dual-recycled Michelson (DRMI) con�guration. This pro-

cess involves waiting for “�ashes” of resonance in DRMI, then quickly triggering

the corner controls. DRMI locking is stochastic, but happens relatively quickly (<

30 seconds) for a well-tuned interferometer settings. The problem is tuning the

interferometer settings, including alignment and triggering, to reliable catch the

lock.

With DRMI locked, all main degrees of freedom are controlled but there is no

infrared light in the arm cavities. To transition to full infrared control, �rst the

PRCL, SRCL and MICH error signals are transitioned from using the �rst-order

radio-frequency sidebands to using the third-order sidebands [81]. This is done

because the �rst-order sideband error signals become zero as the arms are brought

from antiresonance to resonance.

Then, the CARM o�set reduction stage begins. The green common arm length is

brought from infrared antiresonance to the side of an CARM infrared fringe. Here,

CARM control is handed o� to infrared transmission through the arms.

Next, the infrared light is brought to resonance, where both DARM and CARM are

transferred to PDH error signals. The arm angular controls are engaged, and we

wait a few minutes here to allow convergence of the slow angular control loops

and adjustment of the interferometer to the �rst stage of thermalization. For the

DC readout scheme, a 10 pm DARM o�set is applied to allow some carrier light

to leave the antisymmetric port and act as a local oscillator for light carrying the

gravitational wave signal. The output mode cleaner is locked to this local oscillator

beam, further cleaning the mode of the beam to allow only GW signal light onto

the output photodetectors.

At this stage the entire interferometer is totally “locked”, i.e. it is on resonance and

controlled via the main infrared light. Here, the input power is slowly increased

from 2 W to 35 W, in steps of 5 W, to avoid rapid changes to the angular optical
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plants.

Now the interferometer is locked at high power in the “high-noise” state. Here

the transition to “low-noise” begins. Low-noise angular and length controls are

engaged, feedforward �lters are engaged, frequency and intensity noise are sup-

pressed, and squeezed light is injected to achieve maximum sensitivity to gravita-

tional waves. At this point the locking process is complete and the interferometer

is ready for observing.

The steps taken to acquire lock are done automatically using a state machine called

Guardian [82]. Because the locking sequence is not deterministic and can be hin-

dered by poor environmental conditions, there is some variability of the lock ac-

quisition time. The locking sequence takes approximately 30 minutes in good en-

vironmental conditions and with good initial alignment. Much of this time is used

to allow various slow drift control loops to settle, allow optics to thermalize, and

smoothly and reliably move between di�erent control and actuation con�gura-

tions.

A “lockloss" occurs when the detector falls out of the sensitive linear regime. Lock-

losses are caused by strong earthquakes, controls and sensor saturations, drifting

misalignment, control loop instabilities, and large glitches of known and unknown

origin. The cause of lock losses are monitored, and if possible mitigated, to im-

prove detector duty cycle.

2.6 O3 detector upgrades

This section will discuss the instrument upgrades that facilitated the increase in

sensitivity and duty cycle for O3, focusing on hardware upgrades to the interfer-

ometers. Not all upgrades that were performed will be covered, only those that

are immediately relevant to topics in this thesis. See [2] for a full list of upgrades.

2.6.1 Laser power increase

Increasing the laser power reduces instrument noise at high frequency where the

sensitivity is shot-noise-limited but comes with operational challenges. Hardware

upgrades to the pre-stabilized laser and core optics allowed for an increase in av-

erage circulating power in the arm cavities to 201 kW at LHO and 239 kW at LLO

for O3 (see Table 3.3). The major technical challenges of operating a high-power

interferometer are caused by radiation pressure inducing instabilities in core optic

control and absorption of the test masses.
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The original aLIGO pre-stabilized laser (PSL) design [36] took the output of a

Nd:YAG non-planar ring oscillator (NPRO) operating at 1064 nm and successively

ampli�ed the output to above 150 W. The original ampli�er chain consisted of a

35 W solid-state ampli�er (“front end") followed by a high-power injection-locked

ring oscillator. In addition to operational challenges, the high-power oscillator

and its high coolant �ow produced signi�cant �uctuations of the beam size and

pointing angle [83], and thus was never used during an observing run.

For O3 the high-power oscillator was replaced at both observatories with a smaller

single-pass solid-state ampli�er (neoLASE neoVAN-4S) that requires less coolant

�ow. The new ampli�er produces roughly 70 W of stable output power during the

run. After input optics and mode-cleaning cavities, this provides up to 50 W at the

power-recycling mirror.

The reduced coolant �ow and damping and tuning of problematic optic mounts has

reduced the amplitude of angular beam jitter. The higher input power, in addition

to the squeezer (Section 2.6.2), lead to improved sensitivity above 100 Hz.

2.6.2 Squeezer

For O3 an in-vacuum squeezer was installed at each site to inject squeezed vac-

uum into the interferometers and reduce shot noise. A full description of the new

squeezer can be found in [44]. In contrast to previous squeezers for gravitational-

wave detection [84–86], the squeezed vacuum source (an optical parametric oscil-

lator) is placed inside the vacuum envelope on a separate suspended platform [87].

This reduces squeezing ellipse phase noise and backscattered light noise [88]. The

squeezer has been fully integrated into the automated lock acquisition sequence.

Section 2.6.1 discussed increasing the input power to the interferometer, which

increases interferometer sensitivity by enhancing the gravitational-wave signal.

Injecting squeezed vacuum improves the signal-to-noise ratio by directly decreas-

ing sensing noise. For an entirely shot-noise limited detector,∼3 dB of squeezing is

equivalent to doubling the arm cavity power to∼450 kW. With squeezing, the de-

tector sensitivity is brought closer to the Advanced LIGO design sensitivity, which

did not include squeezing but speci�ed 750 kW arm cavity power, three times what

was achieved in O3. The design vs measured quantum noise in O3 (dashed black

line and purple line in Figure 3.1) illustrate the extreme bene�t of squeezing.

Above 50 Hz the interferometer sensitivity is increased by 2.0 dB and 2.7 dB at LHO

and LLO, respectively. This provides a 12% and 14% increase in binary neutron star
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inspiral range at each respective site.

Below 50 Hz, injecting frequency-independent squeezed vacuum, as is done dur-

ing O3, increases the quantum radiation pressure noise. The low-frequency noise

at LLO is small enough that this increase in quantum radiation pressure noise

is detrimental to sensitivity and binary neutron star inspiral range. The current

squeezing level at LLO cannot be further increased without causing a reduction

in range [44]. The squeezing angle is set to 7◦ from the optimal high-frequency

con�guration. This increases range by reducing low-frequency radiation pressure

noise at the expense of a 0.5 dB increase in shot noise at high frequencies. This

e�ect is more fully explored in [89].

Detuning of the signal recycling cavity also produces frequency-dependent squeez-

ing. This e�ect was used to identify and correct a 2–3 nm detuning in the signal-

recycling cavity length locking point at LLO.

2.6.3 Core optic replacement

Several of the core optics were replaced before O3 to improve detector sensitiv-

ity, stability, and lock acquisition performance. The motivation and performance

bene�t of each replacement is presented here.

At both sites the two end test masses were replaced. To improve the lock acquisi-

tion sequence via the auxiliary laser system (ALS), the test mass optical coatings

re�ectivity for green (532 nm) laser light were increased. The green arm cavity

�nesse increased from 15 to 70 at LHO and to 100 at LLO, providing �ner beam

quality for locking ALS. This improves the reliability of the early stages of lock ac-

quisition, where control of each arm length is transitioned from green to infrared

error signals [80].

The primary reason for replacing the end test masses was to reduce the scatter

loss and increase the circulating power. The ∼10 ppm reduction in scatter loss

has resulted in improved power-recycling gain at both sites. However when in-

creasing the circulating power in the arm cavities, the power-recycling gain has

not increased as expected due to nonuniform absorption on the optics increasing

scatter losses in the arm cavities. These so-called “point absorbers” stunt the full

capabilities of the interferometer to achieve maximum power, instead absorbing

high amounts of power and distorting the cavity geometry.

The X-arm input test mass at LHO was replaced before O3 following the iden-

ti�cation of a point absorber in the coating. The presence of the point absorber
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limited high-power operation and coupled jitter noise from the pre-stabilized laser

to DARM. The new input test mass shows no signi�cant absorbers. Similar defects

have been found on several other test masses currently installed.

The signal-recycling mirror (SRM) at both sites was replaced. The previous SRM

was an aluminum and fused-silica composite with a 2" diameter optic that allowed

for easy mirror replacement. The composite SRM introduced thermal noise due

to internal modes of the composite system with high mechanical loss. The re-

placement SRM is monolithic fused silica, 150 mm diameter, with no measurable

thermal noise contribution to DARM. To maximize the binary neutron star inspiral

range, the SRM transmission should be reduced with increasing circulating optical

power. For O3, the SRM transmission was reduced from 37% to 32%. The design

SRM transmission is 20%.

The reaction masses, which are suspended in a separate pendulum chain behind

the end test masses, provide high-frequency actuation via the electrostatic drive

[27]. The proximity of the reaction mass to the end test masses can increase the

damping noise due to residual gas bouncing between the test mass and reaction

mass. This noise is known as squeezed �lm damping [90]. Before O3 the reaction

masses were replaced with annular reaction masses with cored out centers that

retained the original electrode pattern. These annular end reaction masses are

expected to have reduced the squeezed �lm damping noise by a factor of 2.5 below

100 Hz [91].
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C h a p t e r 3

SENSITIVITY OF THE ADVANCED LIGO INTERFEROMETERS

DURING OBSERVING RUN THREE

In this chapter, we will review the sensitivity achieved by the Advanced LIGO

Hanford detector during observing run three (O3). First we overview the overall

noise performance of the detector. Then we will dive into the technical details

of projects the author was focused on, including novel arm power measurement

techniques, frequency stabilization improvements and noise budget, intensity sta-

bilization noise budget, auxiliary length control improvements and noise charac-

terization, and feedforward transfer functions from corner degrees of freedom to

DARM.

Part of the above is covered in the O3 commissioning paper [2]. Chapter 5 covers

related content on the correlated noise measurement.

3.1 O3 overview

3.1.1 Advanced LIGO noise budget

The LIGO detectors are sensitive to gravitational waves via the di�erential arm

(DARM) motion they induce in the interferometer. The sensitivity of a detector is

limited by the collection of noises coupled to the gravitational-wave readout. The

detector noise is low enough to detect GWs across a broad frequency band from

20 Hz to 5 kHz. To improve the sensitivity of a detector, a source of noise or noise

coupling must be identi�ed and mitigated. The noise budget is a tool used in this

process.

Figure 3.1 shows the LIGO Hanford DARM noise budget for O3. The main mea-

sured DARM noise is the blue trace on Figure 3.1. This represents the achieved

sensitivity of the detector to gravitational waves. The noise budget collects all

known and quanti�ed noise terms onto a single plot. Also included are the DARM

noise for O1 and O2, and the Advanced LIGO design sensitivity representing the

ultimate sensitivity possible.

There are two overall types of known noises. The �rst are fundamental noise

sources. Fundamental noises are the known expected limits of the performance

of an interferometer designed like Advanced LIGO. These include noises such as
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Figure 3.1: Di�erential arm noise budget for LIGO Hanford in O3 [2]. Also included

are the instrument noise �oors for previous observing runs, as originally presented

in [43] and [92], and the Advanced LIGO design sensitivity [20].

quantum noise, thermal noise, seismic noise, newtonian noise, and residual gas

noise. Fundamental noise contribution to DARM are estimated, but typically do

not have an independent sensor other than DARM itself. Fundamental noises are

plotted as straight lines in Figure 3.1. The sum of fundamental noises is the Ad-

vanced LIGO design sensitivity, plotted as the dashed black line in Figure 3.1.

The other type of known noise is technical noise. Technical noises are the known,

measured limits to DARM from auxiliary aspects of the interferometer These in-

clude noises such as length control, angular control, beam jitter, scattered light,

laser intensity, laser frequency, photodetector dark noise, and coil driver actuator

noise. Technical noise contribution to DARM can be directly estimated by in-

jecting excess noise, measuring the coupling transfer function, and projecting the

usual auxiliary noise into DARM. Technical noises should not in principle limit the

sensitivity of the detector, but for practical purposes cannot be lowered without

additional research. Technical noises are plotted as dots lines in Figure 3.1.

There are some known-unknown noises. These noises often are hard to quantify
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due to the lack of a independent sensor. Some examples include excess scattered

light, higher-order-mode light co-propagating with DARM light, radio-frequency

sideband amplitude and phase noise, nonlinear up-conversion from large seismic

or angular motion at low frequencies, and charge noise from excess charge on the

test masses. Some only periodically appear making projections into DARM even

more di�cult. Such known-unknown noises are hard to quantify for all times, but

are independently checked and mitigated if some excess noise appears in DARM

without explanation. Examples of known-unknown noise mitigation are the dis-

charging of the Hanford test masses after a strong nearby earthquake, and the

thermal compensation system heating important optics to minimize higher-order-

mode content in the interferometer.

Finally, there are some unknown-unknown noises, or “mystery” noise. Mystery

noise represents the noise we don’t understand that limits DARM. At Hanford

around 40 Hz on Figure 3.1 there is a gap between the measured DARM noise in

blue and the expected DARM noise in black. This gap represents most of the sen-

sitivity di�erence between Hanford and Livingston detectors, seen in Figures 3.2

and 3.3. Livingston enjoys lower controls noise at low frequency, higher circulat-

ing power, and better observed squeezing, but also observes some mystery noise.

Identifying and mitigating mystery noise remains the most important long term

task of commissioners.

For Hanford in O3, DARM is largely limited by fundamental quantum shot noise

in the 100 Hz to 5 kHz region. Below 30 Hz, the angular controls noise dominates

DARM, followed closely by auxiliary length control. The most dramatic improve-

ments made for O3 are due to the injection of squeezed light into the antisymmetric

port and the increase of resonating laser power inside the interferometer, both of

which lower the quantum shot noise and improve the high-frequency sensitivity

to the level seen in Figure 3.1.

Other artifacts include strong lines at various frequencies [93]. The 60 Hz line

and harmonics comes from mains power. The 500 Hz line and its harmonics are a

combination of all main optic suspension violin modes. The 20 Hz set of lines are

alignment dither lines used to hold the beam spots on the optics steady. At 15 Hz,

410 Hz, and 1084 Hz, calibration lines are injected to continuously measure the

detector response [94]. O�ine subtraction of some of the known lines and noise

in DARM help improve o�ine data analysis [92].

This thesis will focus on the frequency noise (Section 3.4) and intensity noise con-
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tribution to DARM (Section 3.5).

3.1.2 Astrophysical range

A useful metric for understanding the sensitivity of a detector is the binary neu-
tron star inspiral range, or simply range. The range reported is the luminosity dis-

tance at which a detector is sensitive to an angle-averaged merger of two 1.4 M�

neutron stars for a canonical SNR of 8 [95–97]. The angle average is over the

orientation of binary systems and position relative to the detector antenna pat-

terns. The range does not represent a strict maximum distance at which a binary

neutron star merger can produce a signi�cant signal. The LIGO Livingston Obser-

vatory (LLO) has achieved a binary neutron star range of around 134 Mpc, while

the LIGO Hanford Observatory (LHO) has achieved a range of around 111 Mpc.

The detector sensitivity to heavier binary black holes extends much further than

binary neutron stars.

The range is calculated every minute from the online calibrated strain power spec-

tral density. Figure 3.2 shows the range of each observatory during O3. Figure 3.3

shows two histograms of the binary neutron star range during O3.

3.1.3 Duty cycle

During O3 both detectors were operational a greater percentage of the time com-

pared to the past two observing runs, with LHO and LLO achieving observation

duty cycles of 74.6% and 77.0%, respectively, with coincident observation 62.2% of

the time. Time not observing is spent either acquiring lock, unlocked and under-

going maintenance, unlocked due to unfavorable environmental conditions (earth-

quakes, wind, storms), or locked and in a state of commissioning, where improve-

ments are made to the detectors.

“Locking” the detector is the process of achieving laser resonance in every part

of the interferometer simultaneously, so the detector is sensitive to gravitational

waves. The locking process is automated via Guardian, a state machine whose

states are programmed by detector scientists to transfer the interferometer from

down to sensitive to GWs [82]. While some states of lock acquisition are faster,

the overall the lock acquisition time has not changed signi�cantly from run to run.

The rate-limiting steps to lock acquisition are the slow power-up to accommodate

thermal changes to the interferometer geometry, and the dual-recycled Michelson

lock acquisition time.
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Figure 3.2: Binary neutron star inspiral range of the Hanford and Livingston detec-

tors during O3 [2]. The break in the horizontal axis corresponds to the month-long

observing break in October 2019. Brief but signi�cant drops in the range at both

sites are caused by instrumental glitches of unknown origin.

Once lock is acquired, the detectors in O3 are more likely to remain locked that

in previous observing runs due to improvements in the seismic isolation system,

earthquake warnings, and robust detector controls. Table 3.1 quanti�es the im-

provement in average and median lock length and duty cycle over the di�erent

observing runs.

Figure 3.4 shows the integrated time-volume sensitivity to binary neutron stars

for both sites over the three observing runs. The increase in sensitivity combined

with the higher duty factor have resulted in a dramatic increase in the observed

time-volume integral, and a roughly proportional increase in gravitational-wave

event candidates [98, 99].

3.1.4 Table of O3 Parameters

The remaining sections in this chapter will overview topics in commissioning the

Hanford detector undertaken with the goal of understanding and improving the
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Livingston detectors during O3 [2]. Large brief glitches report a low detector

range, skewing the distribution lower. Livingston also experienced daily scattering

shelves due to anthropogenic noise, further skewing their range.

detector performance.
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Observatory O1 O2 O3a O3b

LHO
Mean (hr) 9.8 9.4 12.4 14.9

Median (hr) 7.2 4.7 8.8 8.9

Duty cycle (%) 62.6 70.6 71.2 78.8

LLO
Mean (hr) 5.7 5.5 10.2 14.5

Median (hr) 1.9 2.9 6.5 9.3

Duty cycle (%) 55.3 65.8 75.7 78.6

Table 3.1: Mean and median times of low-noise lock segments for each observing

run and overall observing run duty factor. Large glitches or unfavorable weather

and seismic conditions can knock the interferometers out of lock, reducing the

total observing time. In addition to improved sensitivity, both detectors have im-

proved resistance to large disturbances.
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Figure 3.4: Integrated observation time-volume sensitivity over all three observing

runs [2]. The observed volume is a sphere with radius equal to the binary neutron

star range. The observed time is when the detector was locked and sensitive to

gravitational waves. The sharp increase in integrated time-volume is due to the

much greater sensitive volume during O3 relative to O1 and O2.
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Parameter Symbol LHO Value LLO Value Units

Squeezing Levels dBSQZ 2.0 2.7 dB

1st Modulation Sideband Frequency f9 9.100230 9.099055 MHz

2nd Modulation Sideband Frequency f45 45.501150 45.496925 MHz

3rd Modulation Sideband Frequency f118 118.302990 118.287715 MHz

1st Modulation Depth Γ9 0.135 0.14 rads

2nd Modulation Depth Γ45 0.177 0.16 rads

3rd Modulation Depth Γ118 0.012 0.019 rads

ETMX Transmission TETMX 3.9 4.0 ppm

ETMY Transmission TETMY 3.8 3.9 ppm

ITMX Transmission TITMX 1.50 1.48 %

ITMY Transmission TITMY 1.42 1.48 %

PRM Transmission TPRM 3.1 3.1 %

SRM Transmission TSRM 32.34 32.40 %

Arm Length L 3994.5 3994.5 m

Power-Recycling Cavity Length lP 57.7 57.7 m

Signal-Recycling Cavity Length lS 56.0 56.0 m

Schnupp Asymmetry lschnupp = lx − ly 0.08 0.08 m

Arm Free Spectral Range fFSR 37.5 37.5 kHz

X Arm Cavity Pole fX 45.1 44.5 Hz

Y Arm Cavity Pole fY 42.7 44.5 Hz

CARM Cavity Pole fCARM 0.6 0.4 Hz

DARM Cavity Pole fDARM 411 455 Hz

X Arm Finesse FX 415.6 421.3 -

Y Arm Finesse FY 439.2 421.3 -

ETMX Green Transmission T gETMX 7.9 4.8 %

ETMY Green Transmission T gETMY 7.9 5.0 %

ITMX Green Transmission T gITMX 0.96 0.95 %

ITMY Green Transmission T gITMY 1.10 1.11 %

X Arm Green Cavity Pole f gX 274.6 175.4 Hz

Y Arm Green Cavity Pole f gY 278.8 186.5 Hz

Input Mode Cleaner Modulation Frequency f24 24.1 24.1 MHz

Input Mode Cleaner Modulation Depth Γ24 13 16 mrads

Input Mode Cleaner Round Trip Length LIMC 32.9434 32.9465 m

Input Mode Cleaner Cavity Pole fIMC 8625.2 8919.4 Hz

Input Mode Cleaner Finesse FIMC 527.5 510.1 -

Table 3.2: Summary optical and physical parameters of the Advanced LIGO in-

terferometers during O3. Measured O3 arm powers and power recycling gain are

reported in Table 3.3.



36

3.2 Arm power measurement

The circulating laser power in the arm cavities governs the optical gain of the

interferometer response to gravitational-wave signals. The arm power is di�cult

to estimate precisely due to large uncertainty in the power on the beamsplitter

and optical gain of the arm cavities. Uncertainties are dominated by photodetector

calibration and varying interferometer optical losses.

The arm powers in a power-recycled interferometer with a 50:50 beamsplitter

should follow

Parm =
1

2
Ping

2
pg

2
arm, (3.1)

whereParm is the power in an arm,Pin is the input power, g2
p is the power-recycling

gain, and g2
arm is the arm power gain.

The input power Pin is the power incident on the power-recycling mirror, and is

estimated from a pick-o� just before entering the interferometer. The power on

the beamsplitter Pbs is estimated directly from a pick-o� of the power-recycling

cavity. The power-recycling gain is estimated from the ratio of the power incident

on the beamsplitter over the input power: g2
p = Pbs/Pin. Finally, the arm power

gain g2
arm is estimated from the input and end mirror transmissions, as well as the

round-trip loss.

Photodetector power uncertainty originates from uncertainty in calibration, losses

along beam path combined with beam size mismatch and misalignment. We have

assumed a total uncertainty of 5% in power estimated from pick-o� photodetectors,

Pin and Pbs. The arm gain g2
arm at Livingston is assumed to be 265 with uncertainty

of 5%. The Hanford X-arm gain is 262, while the Y-arm gain is 276; the 5% gain

di�erence is due to the slightly di�erent transmissions of the input test masses at

Hanford. Results are shown in Table 3.3.

A new technique to measure the arm powers using radiation pressure was devel-

oped prior to O3 [100]. The length of the signal-recycling cavity (SRCL) is modu-

lated, creating audio sidebands on the carrier laser in the signal-recycling cavity.

The audio sidebands enter the arm cavities producing a light power modulation

that has opposite sign in each arm cavity, causing a strong signal to appear in

DARM via radiation pressure.

The following subsections will overview the fundamental physics of the measure-

ment, the details of the method, and the measurement results.

3.2.1 Fundamentals
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Figure 3.5: Diagram of the signal-recycling cavity length dither to arm power mea-

surement. The SRCL length dither ∆ls modulates the light returning to the arms

~Es + ~es, creating a di�erential arm power modulation due to the phase �ip from

the beamsplitter re�ection.
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Here we overview how the SRC length dither causes strong di�erential power

�uctuations in the arms [101]. The measurement technique in subsection 3.2.2

depends on this fundamental physics. Figure 3.5 highlights the important aspects

of the measurement.

First, we review the Advanced LIGO interferometer con�guration in DC readout.

The arms are o�set from exact resonance by around ∆LDC ≈ 10 pm. This leaks

a small amount of carrier light out of the arms, out the antisymmetric port of

the beamsplitter into the signal-recycling cavity. This DARM o�set light is in the

phase-quadrature (see Appendix B).

Some carrier light is re�ected o� the SRM back toward the beamsplitter. The main

carrier light returning to the beamsplitter
~Es is still in the phase quadrature.

Now, we introduce the SRCL audio sideband dither ∆ls(ω) which phase-modulates

the carrier
~Es. This creates the audio sidebands ~es in the amplitude quadrature.

The modulated light from the SRM
~Es + ~es returns the beamsplitter, where half

is transmitted and half is re�ected with phase �ip. The phase �ip is key to this

measurement, as it causes the di�erential arm power modulation: ~ey = −~ex.

The SRC light combines with the input light
~Ebs which is also in the amplitude

quadrature, and together enter and are enhanced by the arms. The arm power �uc-

tuations are di�erential, δPy = −δPx, which causes a di�erential length change

due to radiation pressure. Figure 3.6 shows the phasors of the light in the SRC and

the arms.

The next subsection covers how the arm power can be inferred from this process.

3.2.2 Arm power inference technique

Using radiation pressure coupling to DARM, we can extract the power in the arms

by dithering SRCL. This is an overview of the coupling mechanism, reported in

[100] and inspired by [101].

3.2.2.1 De�nitions

From [101], Equation (14) and (15) report the X-arm power response to a SRCL

length dither:

Px
ls

(f) =
8g2

srsr
′
aεk

t2s(1 + srse)
Px (3.2)

= γPx (3.3)
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Figure 3.6: Phasors of the signal-recycling cavity length dither to arm power mea-

surement for light in the SRC (top) and the arms (bottom). The top phasor shows

the SRCL length dither ∆ls modulates the phase-quadrature carrier light
~Es, cre-

ating the audio sidebands ~es in the amplitude quadrature. The bottom left phasor

is the light in the X-arm, and the bottom right phasor is the light in Y-arm. Due to

the phase �ip from the re�ection o� the back of the beamsplitter −rbs, the same

audio sidebands in each arm ~ex, ~ey has a di�erent sign. The sidebands modulate

the main carrier in the amplitude quadrature
~Ebs.

where Px is the power in the X arm, ls is the signal recycling cavity length, f =

ω/(2π) is the audio signal frequency in Hz, gs is the amplitude signal recycling

cavity gain, rs is the SRM amplitude re�ectivity, r′a is the arm re�ectivity derivative

with respect to phase, ε = kLoffset is the DARM o�set phase in radians, k is the

laser wavenumber, ts is the SRM amplitude transmission, and srse = iω/ωrse is

the resonant signal extraction (rse) DARM cavity pole.

For this measurement, we gather the optical response of the SRCL dither into a

factor γ which has units m−1
. The power in the Y-arm is the same except for an
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overall sign �ip:

Py
ls

(f) = − 8g2
srsr

′
aεk

t2s(1 + srse)
Py (3.4)

= −γPy (3.5)

Compliance of the SRM suspension:

ls
Fs

(f) = − 1

mω2
(3.6)

the compliance of the SRM, where Fs is the force applied to the SRM and m is the

SRM mass.

SRCL control signal calibration:

Fs
cs

(f) = β

[
N

cts

]
(3.7)

where cs is the SRCL control signal in counts and β is some calibration constant

in [N/cts].

Transmitted power:

Ptxa
Px

(f) = Texηxa (3.8)

where Ptxa is the transmitted power through the X arm falling on the TRX_A pho-

todiode, Tex is the power transmission through ETMX, and ηxa is the loss/respon-

se/calibration error of the TRX_A photodetector. Each of the four photodetectors

(TRX_A, TRX_B, TRY_A, TRY_B) will have slightly di�erent losses (ηxa, ηxb, ηya,

ηyb).

Finally, we have relative intensity:

RIN(f) =
P (f)

P
(3.9)

where P is the average power.

3.2.2.2 Constructing the SRCL control to transmitted arm power TFs

We measure the transfer functions from the SRCL control signal cs(f) to the end

station transmitted power Ptxa, Ptxb:

Ptx1

cs
(f) =

Fs
cs

(f)× ls
Fs

(f)× Px
ls

(f)× Ptx1

Px
(f) (3.10)

= β ×− 1

mω2
× γPx × Texηx1 (3.11)

= −βγTexηxa
mω2

Px (3.12)
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We may divide by the average power on the photodetector to get the RIN TF and

eliminate dependence on the photodetector calibration, ETM transmission, and

arm power:

RINtxa

cs
(f) =

(
Ptxa
cs

(f)

)

Ptxa
= − βγ

mω2
(3.13)

This does not help for losses which are di�erent between DC and AC signals e.g.

photodetector saturation.

3.2.2.3 Radiation pressure coupling to DARM

From Eqs. 3.2 and 3.4 we see the arm power change from the SRCL dither is dif-

ferential. The change in arm power will change the radiation pressure force, and

arm lengths.

DARM:

LDARM = Lx − Ly (3.14)

where Lx and Ly are the X and Y arm lengths.

Radiation pressure force:

Fi(f) =
2P (f)

c
(3.15)

where Fi(f) is the force on a single optic, and P (f) is the power in the arm.

Quadruple pendulum compliance (force to length):

Li(f) = −Fi(f)

Mω2
(3.16)

where Li(f) is the displacement of a single optic, and M is the mass of the �nal

stage of the quadruple pendulum.

Combining Eqs. 3.15 and 3.16, and multiplying by two for both the ETM and ITM:

Lx(f) = −4Px(f)

Mcω2
(3.17)

Ly(f) = −4Py(f)

Mcω2
(3.18)
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Now we �nd the SRCL to DARM radiation pressure coupling, we combine Eqs. 3.2,

3.4, 3.17, and 3.18:

LDARM
ls

(f) = −8γParm
Mcω2

(3.19)

where Parm is the static average power in each arm.

Multiplying by the SRM compliance and control signal calibration Eqs. 3.6 and 3.7:

LDARM
cs

(f) = −8βγParm
Mmcω4

(3.20)

3.2.2.4 Inferring the arm power

The arm power is inferred by taking the transfer function from the transmitted

arm RIN to DARM while injecting a strong SRCL dither. Combining Eqs. 3.13 and

3.20:

LDARM
cs

(f)

RINtxa

cs
(f)

=
−8βγParm
Mmcω4

− βγ

mω2

(3.21)

LDARM
RINtxa

(f) =
2Parm
Mcπ2f 2

(3.22)

LDARM
RINtxa

(f) =
α

f 2
. (3.23)

where α = 2Parm/Mcπ2
is some constant �tting parameter. Solving for the static

arm power Parm:

Parm =
1

2
απ2Mc (3.24)

This is the most precise arm power measurement yet devised. Most complexities

divide out of this measurement. The uncertainties on input measurement and

losses from Eq. 3.1 are avoided.

The uncertainty in the arm power Parm depends entirely on the uncertainty in α,

plus the systematics of the measurement itself like biasing from saturated pho-

todetectors, or slow drift of the arm power itself as the interferometer thermalizes

during the measurement. The mass of the quadruple pendulum M = 40 kg is

known to very good precision. This technique also takes advantage of the highly

accurate DARM calibration, which is good to ∼ 2%.
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3.2.3 Measurement Details

Here we list some practical considerations for the arm power measurement.

1. Turn o� the SRCL to DARM feedforward before measuring. Feedforward is

designed to cancel exactly this kind of radiation pressure signal.

2. Make sure the beams are well-aligned on the transmission quadrant pho-

todetectors. The transmission platforms are known to drift signi�cantly,

saturating one of the photodetector quadrants. When a photodetector quad-

rant is saturated, the AC response is suppressed, causing an overestimate of

the arm power. A good indicator of this issue is when the SRCL line shows

up strongly in DARM, but you struggle to maintain coherence on the trans-

fer function.

3. Take the measurement a least an hour after the interferometer has locked at

full power. The arm power tends to slowly drift after locking from thermal-

ization and spot position changes.

4. Measure in the frequency region where the SRCL to DARM coupling is

radiation-pressure dominated, but high enough such that the free mass pen-

dula compliance approximation is valid. Between 10 to 100 Hz is usually

su�cient.

5. Avoid measuring on the calibration lines, the alignment-dither lines, and the

mains 60 Hz line.

6. When �tting the arm RIN to DARM transfer function, �rst �atten the TF by

multiplying by f 2
. This will improve uncertainty and avoid biasing. Typi-

cally, measurement systematics will far outweigh �t uncertainty.

3.2.4 Results

Figure 3.7 plots the arm RIN to DARM transfer functions from Eq. 3.21. The trans-

fer function is “�attened” by multiplying by f 2
, then �t to the high-coherence

points in the radiation pressure regime. Table 3.3 reports the measured arm pow-

ers during O3. Measurements derived from signal-recycling cavity length modula-

tion are consistent and more precise compared with measurements inferred from

the input power and test mass re�ectivity.

The arm powers at Hanford are signi�cantly lopsided: there is a measured 6.7%

di�erence in the arm powers. This was because the two input test masses installed
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Figure 3.7: Arm power measurements at Hanford via the arm RIN to DARM trans-

fer functions (Eq. 3.21). The magnitude falls like 1/f 2
, as predicted for a radiation

pressure regime. Table 3.3 lists the results from this measurement.

at Hanford were not “twins”, i.e. they were not made at the same time. ITMX was

replaced because of a very large point absorber detected during O2. The new ITMX

has a transmission of 1.5%, whereas ITMY has a transmission of 1.42%. This yields

an X-arm �nesse Fx = 416 and a Y-arm �nesse Fy = 439, or an 5.6% di�erence.

This di�erence in ITM transmission also a�ected the frequency noise coupling to

DARM, see Section 3.4.5.
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Power Symbol LHO LLO Units

Input P0 34 ± 2 38 ± 2 W

Power-Recycling Gain g2
p 44 ± 3 47 ± 3 W/W

X-arm via Eq. 3.1 Px 190 ± 14 240 ± 18 kW

X-arm via Eq. 3.24 Px 194 ± 2 232 ± 15 kW

Y-arm via Eq. 3.1 Py 200 ± 15 240 ± 18 kW

Y-arm via Eq. 3.24 Py 207 ± 2 245 ± 5 kW

Table 3.3: Highest measured laser power levels during O3. Input power is esti-

mated via a pick-o� from the light incident on the power-recycling mirror. Power-

recycling gain is estimated from the pick-o� of the power-recycling cavity, using

a ratio of power on the beamsplitter and input power. Arm powers are estimated

in two ways. The �rst method is via input power and gain estimates, Eq. 3.1.

Arm power uncertainties for Eq. 3.1 are propagated from uncertainty in the in-

put power, power-recycling gain, and loss in the arms. The second method is via

radiation-pressure relative intensity noise to DARM transfer function, Eq. 3.24.

Arm power uncertainties for Eq. 3.24 are derived from the coherence of the mea-

sured transfer function. Typical arm power levels at LLO were about 5% lower

over the course of the run.

3.3 Auxiliary length control improvements

The auxiliary length sensing and control (ALS) is integral to the rapid locking

of Advanced LIGO [40, 80]. ALS employs two green lasers at each end station,

injected onto the back of the ETMs.

Originally, the locking scheme for Advanced LIGO was supposed to hand o� laser

frequency control from ALS COMM directly to CARM. However, the noise of the

as-built ALS system was far larger than requirements largely due to an error in

the ETM coatings green transmission. This prevented direct hando� from ALS

COMM to CARM, since the ALS COMM noise far exceeded the CARM linewidth

of ∼ 1 Hz.

The ETM green coatings were �xed on replacement ETMs installed prior to O3.

This section overviews the ALS control scheme and the method used to check the

performance of the ALS COMM system.

3.3.1 ALS control scheme

The auxiliary length sensing and control (ALS) is integral to the rapid locking

of Advanced LIGO [40, 80]. ALS employs two green lasers at each end station,

injected onto the back of the ETMs. Each laser is phase-locked to the main pre-

stabilized laser (PSL) via two pick-o� �bers running from the PSL to each end-
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Figure 3.8: Simpli�ed auxiliary length sensing control scheme. The X-arm ALS

controls are highlighted here, but the Y-arm employs the same control scheme. The

dual-color end-station laser on the right emits both 1064 nm (infrared) and 532 nm

(green) light. The green light is locked to the arm cavity, and the transmitted beams

are mixed together. The mixed beams beatnotes are sensed and used to control

the PSL frequency (ALS COMM) and di�erential arm length (ALS DIFF). The ALS

COMM and DIFF phase-locked loops and VCOs for control are not shown here.

station. Then, each green laser is PDH-locked to its arm cavity.

The green beams transmitted through both arms are routed to an in-air optical

table. There, the beams from each arm are combined to form the ALS DIFF signal.

The green beam from the X-arm is combined with green PSL light to form the ALS

COMM signal.

The ALS COMM signal detects frequency �uctuations between the PSL and the

green X-arm. The green X-arm PDH signal follows the arm length, while the PSL

is stabilized to the IMC at this point. We lock the PSL to the ALS COMM error

signal so the PSL frequency follows the green X-arm length. ALS COMM has a

unity gain frequency of around 650 Hz [102].

Then a large∼ 1 kHz o�set is placed on the PSL light, so the infrared does not yet

resonate in the arms. This is done so the dual-recycled Michelson can be locked

without “arm �ashes”, i.e. moments of spurious resonance in the arms which spoil

the PRCL, SRCL, and MICH error signals.



47

The ALS DIFF signal yields information on the di�erential arm length. This is fed

back to one of the ETM suspensions, actuating on the di�erential arm length itself.

3.3.2 ALS upgrades for O3

Prior O3, the ETMs were replaced to lower scatter losses for infrared. Another

improvement of the new ETMs a dramatically increased green re�ectivity.

The old ETMs at Hanford had green transmission of 37% for ETMX and 32% for

ETMY [103]. The new ETMs both have green transmission of 7.9%. ITMX was also

replaced at Hanford, its green transmission went from 1.1% to 0.96%.

The new core optics a�ected the ALS cavity parameters: the green cavity �nesse

increased from 15 to 70, green arm poles decreased from 1.3 kHz to 280 Hz.

The core optics coatings upgrades make the green PDH lock more stable, partic-

ularly avoiding mode hopping. They also improve the noise performance of the

ALS controls by improving the green PDH noise.

Additionally, major e�orts to improve the acoustic noise coupling in the PSL have

been undertaken. The bene�ts of this work can be seen in the lowered peaks

apparent in Figure 3.10.

3.3.3 ALS COMM frequency noise measurement

To measure the improvements to the green ALS system, the infrared (IR) light

re�ected o� the X-arm is used as an out-of-loop witness of ALS COMM frequency

noise [104–106]. We take advantage of the fact the IR light is stabilized to the X-

arm length via the green PDH, the arm cavity is a high-quality cavity, and the RF

sidebands and RFPD are already set up for low-noise frequency discrimination.

The procedure for the ALS COMM frequency noise measurement is as follows:

1. Lock the IMC and X-end phase-locked loop.

2. Misalign the Y-arm, beamsplitter, and PRM.

3. Lock the X-arm green PDH signal.

4. Align the cavity for maximum green circulating power.

5. Separately lock the IR light to the X-arm.

6. Align the input optics for maximum IR in the X-arm.
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7. Break the IR lock.

8. Lock ALS COMM.

9. Use ALS COMM phase-locked loop o�set to �nd an IR X-arm peak.

10. Sweep the COMM o�set over the fringe to calibrate your out-of-loop IR

RFPD response.

11. Return to the IR fringe and take a spectrum of the out-of-loop IR RFPD.

The PSL frequency o�set from IR resonance in the X-arm is set to be o�-resonance

by ∼ 300 Hz, then moved slowly over the resonance peak. The out-of-loop sen-

sor used in this experiment is REFL A 9I. The calibration procedure relies on our

knowledge of PDH error signals. We write the PDH error signal for a simple Fabry-

Perot cavity, VI ,

V (f) = 2ηGpd(E
∗
ωEΩ − E0E

∗
−Ω−ω) (3.25)

where η is all the optical losses, andGpd is the gain of the RF photodetector in V/W.

We write the re�ection of the carrier E0, Eω and 9 MHz sidebands EΩ, E−Ω−ω like

E0 = r0Ein, Eω =

(
r0 −

if/fz
1 + if/fp

)
Ein, EΩ = irΩ

Γ

2
Ein, E−Ω−ω = ir−Ω

Γ

2
Ein

(3.26)

where f is the incident carrier laser frequency, fp is the arm pole, fz is the arm

zero Ein is the input �eld, and r0, rΩ, r−Ω are the arm re�ectivities for the carrier

and sidebands. Since carrier is on resonance but the sidebands are o�-resonance,

we can write these as

r0 =
−ri + re
1− rire

, rΩ = r−Ω =
−ri − re
1 + rire

(3.27)

where ri is the ITMX re�ectivity and re is the ETMX re�ectivity.

The audio re�ection zero fz is merely a scale factor for the zero at DC. It scales the

re�ected carrier light o�set from resonance by a frequency such that the re�ected

light beyond the cavity pole is near one. The arm pole fp is derived in Appendix B

Section B.4:

fz =
FSR

2πr′0
=

c(1− rire)2

4πL(1− r2
i )re

, fp =
FSR

2π
log(

1

rire
) (3.28)
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Figure 3.9: Pound-Drever-Hall infrared error signal sweep of the REFL A 9I pho-

todetector while ALS COMM is locked. The slight deviation of the measurement

from the model is likely due to the drift of the arm cavity during the sweep time.

The model of the PDH is Eq. 3.30, and the slope is from Eq. 3.31.

The signal from Eq. 3.25 is in the I-phase. We substitute Eqs. 3.26 into Eq. 3.25 and

take the real part to the RFPD I-phase response:

V (f) = −ηGpdrΩΓPin
2ir0fpfz + f(fp − 2r0fz)

(fp − if)fz
(3.29)

VI(f) = <(V (f)) = −ηGpdrΩΓPin
f

1 + f 2/f 2
p

. (3.30)

For small f � fp, i.e. close to resonance, the slope of VI(f) de�nes the PDH

discriminant in V/Hz:

VI(f) ≈ −ηGpdrΩΓPin

fz
(3.31)

Figure 3.9 shows the measured REFL A 9I response to our frequency sweep, along-

side the model PDH signal Eq. 3.30 and PDH discriminant Eq. 3.31.

To calibrate the error signal to the arm pole, the peak-to-peak response to the

sweep is measured. Eq. 3.30 gives a peak response at f = ±fp, with value VI,pp =
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Figure 3.10: ALS COMM out-of-loop error signal, plus cumulative RMS between

0.01 and 1000 Hz. The out-of-loop sensor used is REFL A 9I, with 10 W requested

input power Pin. The resulting RMS of 1.5 Hz is around an order of magnitude

better than in O1 (Figure 4 of [40]).

ηGpdrΩΓPinfp/fz . This gathers all the complexity of the calibration into this peak

to peak value. The X-arm IR cavity pole is known to be 45.1 Hz, so the discriminant

Eq. 3.31 gives our calibration to the arm pole frequency.

Figure 3.10 shows the results of the ALS COMM frequency noise measurement,

with the X-arm IR pole fp undone and the X-arm calibration applied. ALS COMM

is susceptible to many noises, including laser frequency noise, green PDH sensing

noise, �ber noise, in-air optics table phase-wrapping noise, acoustic peaks from

optics table, and PLL controls noise. Also, the out-of-loop IR sensor has sensing

noise as well, which we suppressed by turning up the input power Pin to 10 W

to increase signal on REFL A 9I.

The �nal measured RMS of the ALS COMM frequency noise is 1.5 Hz, about 10

times lower than the measurement performed before O1 (Figure 4 of [40]). This is a

result of the enhanced green cavity �nesse, and improvements to acoustic coupling

on the PSL optics table. With some further improvements, the ALS COMM noise
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may be reduced to the point where direct CARM hando� is possible, although this

is not the rate-limiting step of the locking process.

3.4 Frequency stabilization

Control of the laser frequency is crucial to the optimal performance of the Ad-

vanced LIGO interferometer. The laser frequency is just one aspect of the inter-

ferometric length sensing and control, and is degenerate with the common-arm

(CARM) length via the relation

∆L

L
= −δν

ν0

(3.32)

where ν0 is the carrier frequency, δν is the frequency noise, and L = (Lx +Ly)/2

is the common-arm length.

An interferometer enjoys a natural frequency noise mitigation in its commonmode
rejection: motion that is common to both arms tends to be re�ected back toward the

input laser, whereas motion that is di�erential preferentially transmitted thought

to the antisymmetric port. Changes in the laser frequency must be common to

both arms, so to �rst order most frequency noise is promptly re�ected by the in-

terferometer and does not mask gravitational wave signal.

However, to second order imperfections cause contrast defect light carrying fre-

quency noise to appear at the antisymmetric port. Worse, frequency noise on

contrast defect light appears in the phase quadrature in the antisymmetric port as

the gravitational wave signal (see Section B.3.3).

Another natural factor aiding the suppression of frequency noise is the excep-

tionally low linewidth of the interferometer cavities. The interferometer can be

thought of as a highly selective phase-sensitive sieve which only accepts light of

the correct frequency. Unacceptable light is promptly re�ected and does not make

it into the interferometer, making the laser light inside the interferometer incred-

ibly stable: the main laser frequency ν0 ≈ 281× 1012 Hz must be stabilized to the

interferometer linewidth of around 1 Hz.

The laser frequency stabilization scheme in Advanced LIGO serves two purposes.

First, to incrementally stabilize the interferometer length degrees of freedom and

achieve resonance in an interferometer with an extremely low linewidth. Second,

to suppress frequency noise so that it does not limit sensitivity to gravitational

waves. The requirements for stability of the frequency is around 8 orders of mag-
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nitude lower than the freerunning NPRO in the detection band (NPRO freerunning

noise is 100 Hz/
√

Hz at 100 Hz, requirement is ∼ 10× 10−6 Hz/
√

Hz).

In this section, we overview the performance of the Advanced LIGO frequency

stabilization servo at Hanford for O3, with focus on the frequency noise budget

and the frequency noise coupling to DARM.

3.4.1 Control scheme

EOM

NPRO

IMC

PMC

EOM

Reference
cavity

AOM Refl

24 MHz

9 MHz

Interferometer

To NPRO
PZT

EOM

Figure 3.11: Laser frequency stabilization optical diagram. Laser beams are shown

in red, electronics are shown in black, blue and green. Reference cavity electronics

are shown in black, input mode cleaner electronics are shown in blue, and common

mode electronics are shown in green.

There are three hierarchal control loops in the frequency stabilization servo. The

�rst is the reference cavity loop, the second is the input mode cleaner (IMC) loop,

and the third to the common-arm (CARM) loop. Because the loop bandwidth re-

quired is higher than the data acquisition rate of 16384 Hz, the frequency control

loops are mostly analog, with the exception of the slow feedback to the MC2 sus-

pension. Figure 3.11 shows the optical layout of the Advanced LIGO frequency

stabilization servo.

3.4.1.1 Pre-stabilized laser and reference cavity

A non-planar ring oscillator (NPRO) solid-state Nd:YAG laser with wavelength

λ = 1064 nm is used to generate the initial seed light due to its exceptional

freerunning frequency stability ((1 kHz/f)(10 Hz/
√

Hz)) with high power out-

put [107]. The NPRO laser is ampli�ed to 80 watts, then locked to a four-mirror

pre-mode cleaner (PMC) [36]. In transmission of one of the highly-re�ective PMC
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mirrors, a beam is double passed through an acousto-optic modulator (AOM).

The beam is then locked to a �xed-spacer reference cavity with high bandwidth

(∼ 300 kHz).

Next the beam is phase modulated by an electro-optic modulator (EOM) at 9.1 MHz,

24.1 MHz, 45.5 MHz, and 118.3 MHz [108]. The 9, 45, and 118 MHz sidebands are

to be used for main interferometer control, and are the 1st, 5th, and 13th harmon-

ics of each other. The 24 MHz sidebands are used for locking to the input mode

cleaner.

3.4.1.2 Input mode cleaner

The beam is then locked to the suspended 16 m input mode cleaner (IMC) with

bandwidth ∼ 80 kHz [37]. The IMC cleans the main beam of higher-order modes

and beam jitter from the main laser, and stabilizes the laser frequency. The free

spectral range (FSR) of the IMC is designed to be 9.1 MHz in order to pass the three

RF sidebands for main interferometer control. The feedback from the IMC goes to

the IMC voltage-controlled oscillator (IMC VCO) which controls the double-passed

AOM before the reference cavity.

3.4.1.3 Common-arm cavity

Finally, the beam proceeds to the main interferometer. The power recycling cavity

and the arm cavities together form the CARM coupled cavity. The laser is stabi-

lized to CARM with a bandwidth of 20 kHz. The CARM bandwidth cannot be

increased past the FSR of the coupled cavity FSR = c/(2L) ≈ 37 kHz because of

the dynamics of the optical plant: the re�ection of the carrier goes through a sec-

ond resonance and loses 180 degrees of phase, making higher-bandwidth control

impossible.

The carrier and 9 MHz sidebands beatnote are used for sensing the CARM degree

of freedom [33]. The carrier enters both the power recycling cavity and the arm

cavities, returning information on the length of both. The 9 MHz resonates in the

power recycling cavity, but not the arm cavities, returning information only on

the power recycling cavity length. The beatnote between the carrier and 9 MHz

carries the arm length information, which is detected on the REFL photodetectors

in re�ection of the interferometer.

Figure 3.12 shows the open loop gain measurements of the three hierarchal fre-
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quency stabilization loops. The three loops together suppress the NPRO laser fre-

quency noise down to the CARM shot noise level, as characterized in Section 3.4.4.
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Figure 3.12: Frequency control loop open loop gain measurements. The half free

spectral range (FSR) is highlighted because there we see the 9 MHz sidebands

plus the audio signal resonate in the arms, a�ecting the common-arm optical gain

around 19 kHz.

The 9 MHz sidebands cause a small dip at around half the free spectral range (FSR).

This is because the 9 MHz sidebands are purposefully set to be anti-resonant in

the arms, while the carrier frequency is resonant. This places the 9 MHz side-

bands nearest resonance in the arm around half of an FSR away from the car-

rier frequency. If we modulate the main laser frequency at an audio frequency

f ≈ FSR/2 Hz, then the audio sidebands on the 9 MHz sidebands will resonate in

the arms, producing a small e�ect on the CARM optical gain seen in Figure 3.12.

This can be more easily seen if we think about the Pound-Drever-Hall error sig-

nal. The power re�ected o� the CARM coupled cavity Prefl, demodulated at radio-

frequency Ω/2π can be written

Prefl,Ω(ω) = 2[−E0E
∗
Ω(ω) + EΩE

∗
0(ω)] (3.33)
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where E0 is carrier light re�ected o� the CARM coupled cavity, EΩ is re�ected

RF sideband light, in this case Ω/2π ≈ 9MHz, E0(ω) is the audio sidebands on the

carrier, and EΩ(ω) is the audio sidebands on the RF sidebands.

Normally, when shaking the laser frequency in the audio bandω � FSR,EΩ(ω) ≈
const, so the term at−E0E

∗
Ω(ω) is entirely at DC while the error signal atω is dom-

inated by changes to the carrier EΩE
∗
0(ω). However, if ω ≈ FSR/2, the terms at

Ω± ω from EΩ(ω) start to resonate in the arms, and −E0E
∗
Ω(ω) becomes signi�-

cant enough to appear in the measured CARM OLG.

3.4.1.4 Mode cleaner length control
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Figure 3.13: Input mode cleaner length to VCO controls crossover measurement.

The unity gain frequency at 90 Hz corresponds to the hando� from MCL to VCO

controls

The CARM length is the ultimate reference we would like the laser frequency

to follow. However, the IMC lies in the path of the laser to clean the beam and

stabilize the laser frequency. The beam must be transmitted through the IMC with

high e�ciency, but to achieve its main tasks the IMC must have a high �nesse (F ≈
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528). The IMC pole fpole ≈ 8.6 kHz, which is not wide enough to accommodate

all expected CARM length drifts due to e.g. tides.

The solution is to feed the CARM error signal not only to the VCO, but also to

the mode cleaner length (MCL). The MCL loop handles the low frequency CARM

feedback by adjusting the mode cleaner length to match the CARM length. Be-

cause the compliance of the suspension falls o� like 1/f 2
, the MCL loop cannot

handle high frequency stabilization, so the VCO is relied upon for fast frequency

control. The MCL loop is sometimes called the slow control and the VCO fast con-
trol. Figure 3.13 shows the crossover measurement of the slow controls over fast

controls hierarchy. Here the unity gain frequency of the crossover at about 90 Hz

corresponds to the hando� from MCL to VCO controls.

3.4.2 O3 frequency control upgrades

A few upgrades were performed on the frequency control scheme described above

for O3. The �rst was the addition of the REFL B photodetector during the Novem-

ber 2018 vent. The second was the increase of incident power on the IMC REFL

photodetector in May 2019 [109].

3.4.2.1 REFL B photodetector

The REFL B photodetector was added in the re�ection path from the main interfer-

ometer, on the same path as the usual frequency sensor REFL A. REFL B was added

because it was suspected that the slewing of the radio-frequency voltage was too

fast for the REFL A photodetector electronics, leading to nonlinear response and

so-called “fast locklosses”. Fast locklosses were when the interferometer would

lose lock without an apparent reason in the digital readback signals, prompting

suspicion of the analog frequency sensors and controls of malfunction.

To resolve the REFL A fast-slewing problem, the power on REFL A was halved

from ∼ 10 mW to ∼ 5 mW, and the remaining power was directed to a second,

identical photodetector REFL B. This halved the slew of the REFL A and B op-amps.

Fast locklosses persisted after this change.

But the addition of the REFL B photodetector provides and out-of-loop incident

frequency noise sensor. As seen in the frequency noise budget in Figure 3.17,

this sensor con�rms that frequency noise is CARM shot noise limited in the GW-

sensitive band. While locked in low-noise, both REFL A and B are used in-loop to

lower the shot noise limit.
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3.4.2.2 IMC REFL incident power increase

The IMC REFL photodetector is the sensor used to detect the frequency in re�ec-

tion of the IMC. Because IMC sensing noise was found to be limiting frequency

noise in the∼kHz region, the IMC REFL optical path was reworked to allow more

light on the photodiode.

IMC REFL was found to be dark noise-limited, not shot noise-limited, even during

high-power operation. “Dark noise” refers to the natural electronics thermal noise,

e.g. Johnson noise, which causes voltage noise in otherwise quiescent electronics.

Ideally, the fundamental limit of the sensitivity achievable for an optical cavity is

the shot noise limit, where all light on the photodetector contributes to the signal

as RF local oscillator for PDH locking, or as the re�ected carrier signal from the

actual cavity length changes.

In reality, cavity visibility is not perfectly one, and “junk light” carrying no signal,

such as higher-order modes, are re�ected onto the photodetector. In some cases,

the junk light re�ected is too high and saturates the photodiode. To solve this,

black glass power dumps are placed before the photodiode, and some optical signal

is sacri�ced for a functional photodiode.

In the case of IMC REFL, only ∼ 1.4 mW was reaching the photodetector at full

35 W input power. This level was increased to ∼ 9 mW, allowing more signal on

IMC REFL and moving from the dark noise-limited regime to the shot noise-limited

regime. Coupled with increased CARM loop gain, this reduced IMC sensing-

induced frequency noise incident on the interferometer to below CARM sensing

noise levels for the entire bandwidth (see Figure 3.17).

3.4.3 CARM calibration

CARM is calibrated to the IMC VCO which controls the double-passed AOM. The

VCO control signal is calibrated into units of Hz, which serves as the ultimate

reference for the laser frequency [110].

The sensors for CARM are the photodetectors in re�ection of the interferometer,

REFL A and B. These are RF photodetectors demodulated at 9 MHz to sense the

CARM length changes and feed back to the laser frequency.

The usual way we calibrate a control loop is to inject some known quantity, such

as a known frequency change in Hz with a VCO, and measure the response in the
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sensor we care about, such as the volts on the REFL PDs. However, the calibration

of CARM is not so straightforward.

This is because of the massive suppression and the hierarchal nature of the full

CARM loop. The VCO control signal is made from the sum of the CARM and IMC

error signals. The IMC error signal dominates the control signal, because IMC

shot noise is much higher than CARM shot noise. The CARM loop gain dominates

above 20 kHz, suppressing IMC shot noise down to the level of CARM shot noise

level. To do this, the CARM loop inverts the sign of the IMC shot noise it sees and

injects that as the VCO control signal.

In short, the VCO control signal is totally dominated by IMC sensing noise, so

an injection into the CARM loop would have to be extremely loud to produce an

appreciable CARM signal in the VCO control signal. Direct length injections into

CARM by, for example, the photon calibrator, make real common length changes

in the arms, but do not appear in the REFL error signal because of the huge CARM

loop suppression.

I calibrated CARM using the CARM OLG combined with an IMC OLG taken with-

out the CARM feedback. Figure 3.14 shows the full frequency stabilization servo

block diagram. We would like to calibrate the CARM plant C in W/Hz.

First, for readability of the following equations I’ll make the following consolida-

tions of the block diagram:

PCA→ C (3.34)

IK → I (3.35)

HV → V (3.36)

SM →M (3.37)

Second, we assume that the reference cavity innermost loop perfectly follows the

VCO control signal. In other words, the reference cavity loop bandwidth� 1 for

all frequencies we care about (see Figure 3.12)

The CARM OLG Gcarm is taken by injecting an excitation xc at the CARM error

signal ec. Assuming xc is strong enough to drown out all noise in the loop, we

calculate the CARM OLG using Figure 3.14

Gcarm =
CFV + CMIV

1− IV . (3.38)
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Symbol Description Units ZPK Values

P IMC transmission pole Hz/Hz [], [8.6e103
], 1.0

C CARM plant W/Hz [], [0.6], 3.4× 10−3

A REFL PD sensing chain V/W -

InGaAs photodiode responsivity A/W [], [], 0.77 [111]

Transimpedance V/A [], [], 449 [112]

Demod gain V/V [], [], 5.4
F Fast servo analog board V/V -

Sum node gain V/V [], [], +8 dB
REFL IN1 gain V/V [], [], +12 dB
REFL Boost 1 V/V [500], [10], 50
REFL Compensation V/V [4000], [40], 100
REFL Fast high pass �lters V/V [0, 0], [5, 5], 1/25
REFL FAST gain V/V [], [], +16 dB
IMC IN2 gain V/V [], [], −22 dB

I IMC plant W/Hz [], [8.6e3], 4.6× 10−8

K IMC REFL PD sensing chain V/W -

InGaAs photodiode responsivity A/W [], [], 0.77 [111]

Transimpedance V/A [], [], 378 [112]

Demod gain V/V [], [], 5.4
IMC IN1 gain V/V [], [], +2 dB

H Common servo analog board V/V -

IMC Boost 1 V/V [20e3], [1e3], 20
IMC Boost 2 V/V [20e3], [1e3], 20
IMC Compensation V/V [4e3], [4e1], 100
IMC FAST gain V/V [], [], −18 dB
IMC Fast daughter board V/V [70e3], [140e3, 200e3], 2.3 [113]

V Voltage-controlled oscillator Hz/V [40], [1.6], 537e3

Table 3.4: CARM model values for calibrating the CARM path gain via Eq. 3.43.

Values are those typical for LIGO Hanford during O3, locked in low noise with

input power on the PRM Pin = 34 W. The CARM and IMC plants C and I in-

clude both the intrinsic optical gain of the cavity and all optical losses, including

beam dumps. The responsivity of the InGaAs photodiodes includes the quantum

e�ciency of ∼ 0.9. The measured transimpedance of REFL B was 448 V/A [112].

The calibration of the photodetector signal chains is described in Section C.1. All

poles and zeros are listed in Hz. Figures 3.15 and 3.16 shows the CARM path model

and IMC path model compared to measurements.
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Figure 3.14: Frequency control loop block diagram. The laser L and reference

cavity R form the innermost frequency stabilization loop in the bottom left. The

input mode cleaner I forms the second loop. The common arm cavity C forms the

third loop. The quantity we ultimately care about is the residual frequency noise r
incident on the interferometer. The CARM OLG Gcarm is measured at the CARM

excitation point xc, The IMC OLG Gimc is measured at the IMC excitation point

xi, and the MCL crossover Gmc2 is measured at the MCL excitation xm.

The denominator represents the IMC loop suppression. The numerator represents

the fast and slow paths of the CARM feedback. This quantity is shown in green in

Figure 3.12.

Next we measure the IMC loop without CARM feedback:

Gimc = IV. (3.39)

(This measurement is taken in the same con�guration as in full lock, e.g. high

input power, same analog �lters engaged, etc.)

Now we calculate the CARM path gain Gcarm:

Gcarm = Gcarm(1−Gimc) (3.40)

= CFV + CMIV (3.41)

The measurementsGcarm andGimc are done in the frequency range of 1 to 100 kHz.

Looking at the MCL crossover in Figure 3.13, in this frequency range the crossover
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Figure 3.15: CARM path model and measurement comparison. The model of the

CARM path gain is computed in Eq. 3.43. The bump at 18 kHz is due to an un-

modeled resonance of the 9 MHz sidebands in the arms. This occurs because the

9 MHz carrier is designed to be nearly anti-resonant in the arms, i.e. to resonate

in the PRC at a half-FSR frequency. When we shake the laser frequency with an

audio frequency near f = FSR/2 = 18.7 kHz, the audio sideband on the 9 MHz

will resonate in the arms, increasing the optical gain of the CARM loop near the

half-FSR. Table 3.4 shows the values that informed the CARM path gain model.

magnitude is negligible, so we let M → 0 and

Gcarm = CFV. (3.42)

So we’ve completely eliminated the e�ect of the IMC on our CARM OLG measure-

ment. Now we must remove the control �lters and VCO actuator. This was done

with a model of the analog �lters.

Expanding our consolidated notation back out:

Gcarm = PCAFHV (3.43)

Table 3.4 shows the values of the CARM model. All are well-known except for the

CARM plant C . Therefore we have an overall scale factor in C that we can use to

�t our model to the measurement, and measure the CARM plant in this way.
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Figure 3.16: IMC path model and measurement comparison. The model of the IMC

path gain is computed in Eq. 3.39. Also included here is the measured reference

cavity closed loop gain, CLGrefcav. Table 3.4 shows the values that informed the

IMC path gain model.

Using this method, we �nd the DC CARM plant gain to be around 3.4 mW/Hz.

We also model the DC IMC plant gain to be around 4.6 × 10−8 W/Hz. These

plants include the intrinsic optical gain of the cavity plus all optical losses, includ-

ing excess power beam dumps. Figures 3.15 and 3.16 show the model versus the

measurement of these paths.

3.4.4 Frequency noise budget

The frequency noise budget is the characterizes the limit of the CARM stabiliza-

tion. A couple of main noise sources for frequency noise are the VCO actuator

noise, IMC sensing noise, and CARM sensing noise. Figure 3.17 shows the fre-

quency noise budget.

Using the block diagram Figure 3.17, we project noises onto the laser frequency

incident on the interferometer r:

r =
(AFHV P + ASMIKHV P )nc +KHV Pni + Pnv

1− IKHV − CAFHV P − CASMIKHV P
(3.44)
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Figure 3.17: Frequency noise budget for LIGO Hanford in O3. In the GW-sensitive

frequency band between 10 and 1000 Hz, measured frequency noise is entirely

CARM shot noise limited. Improvements to the input mode cleaner sensing noise

have rendered its contribution to frequency noise negligible. In low-noise opera-

tion, REFL A and B are summed to control CARM, reducing the shot noise limit

seen here by a factor of 2.

where nc is the CARM sensing noise, ni is the IMC sensing noise, and nv is the

noise of the VCO.

Every individual part of Eq 3.44 is hard to measure and model, so instead we use

the components we can easily measure to simplify the algebra. First, the CARM

closed loop gain CLGcarm can be written

CLGcarm =
Gcarm

1−Gcarm

(3.45)

=
CAFHV P + CASMIKHV P

1− IKHV − CAFHV P − CASMIKHV P
(3.46)

Second, the MC2 crossover suppression SUPmc2 is written

SUPmc2 =
1

1−Gmc2

(3.47)

=
1− IKHV − CAFHV P

1− IKHV − CAFHV P − CASMIKHV P
(3.48)
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We can use the measured CLGcarm to signi�cantly simplify the projection of CARM

sensing noise nc:

r =
nc
C

CLGcarm. (3.49)

Since CLGcarm = 1 everywhere below 20 kHz, the entire CARM shot noise pro-

jection comes to the inverse CARM plant C−1
.

We can use the measured SUPmc2 to remove the e�ect of the slow MC2 o�oading

from the IMC sensing ni

r =
HKPV ni

1− IKHV − CAFHV P SUPmc2 (3.50)

and VCO noise nv projections

r =
Pnv

1− IKHV − CAFHV P SUPmc2. (3.51)

Eqs. 3.50 and 3.51 leave us with only the suppression from the fast feedback from

the IMC and CARM. Eqs. 3.49, 3.50 and 3.51 are all plotted in Figure 3.17.

Other noises not shown in Figure 3.17 include CARM, PRCL, and IMC displace-

ment noise, all of which should be lower than the detected frequency noise. At

and below ∼ 10 Hz, fringe-wrapping occurs due to relative motion between the

interferometer and the REFL photodetectors.

The RMS incident frequency noise is ∼ 6 Hz for a bandwidth of 5 to 1 × 105
Hz.

The RMS is entirely dominated by noise above 5 kHz, including a 14 kHz peak

which may be from the reference cavity �rst longitudinal mode. The broad hump

at ∼ 20 kHz is likely due to the odd dynamics of 9 MHz sidebands resonating in

the arms leading to a loss of suppression. Unknown are the sources of the forest

of peaks above 30 kHz, or the peaks around 7.5 kHz.

3.4.5 Frequency to DARM coupling budget

The �nal consideration for frequency noise masking GW signals is the measured

coupling level from frequency noise to DARM. Frequency noise is common to both

arms, and so is largely re�ected back toward the input at the beamsplitter. Asym-

metries in the interferometer allows frequency noise into the antisymmetric port

where DARM is measured. Figure 3.18 shows the frequency noise to DARM trans-

fer function budget.

The asymmetries considered by Izumi [101] and Somiya [114] are straightforward

to calculate given the full transfer function from the input to antisymmetric port.
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Figure 3.18: Frequency to DARM transfer function budget for LIGO Hanford in

O3. From 40 to 400 Hz, the di�erential arm pole term δωc dominates frequency

noise coupling to DARM. Below 40 Hz is not well understood, but is likely due

to radiation-pressure based coupling through excess frequency noise spoiling the

length and angular control loops. Above 400 Hz, there is a variable term is also not

well understood, but is commonly attributed to higher-order mode coupling. The

content of higher-order modes in the interferometer depends on interferometer

geometry, which changes with the thermal state.

Reproducing Eq. 30 of [101] for the frequency noise to DARM coupling:

∆L−
δν

(f) =
πc

2ωcω0

1 + ra
r′a

1

1 + scc

×
[
−δra −

δωc
ωc

(1 + ra) +
lschraωc

c

(
1− sc

ra

)
(1 + sc)

]

− 16πPag
2
sr
′
aω0∆LDC

c2ωrses2
µ(1 + scc)(1 + srse)

+ kHOM (3.52)

where ωc is the arm pole frequency, ω0 is the carrier frequency, ra is the arm

re�ectivity, r′a is the phase derivative of the arm re�ectivity, δra is the di�erential

arm re�ectivity, δωc is the di�erential arm pole, lsch is the Schnupp asymmetry, Pa

is the arm power, g2
s is the gain of the signal-recycling cavity, ∆LDC is the DARM

DC o�set, ωrse is the DARM coupled cavity pole, and kHOM is a general higher
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order mode coupling term. Table 3.5 in the intensity coupling section de�ne and

evaluate these expressions. The frequency-dependence of Eq. 3.52 is contained in

the s-terms:

sc = i
ω

ωc
, scc = i

ω

ωcc
, srse = i

ω

ωrse
, s2

µ = −µω2. (3.53)

Summarizing Eq. 3.52, the couplings in the brackets are the three straightforward

ways to produce contrast defect in the antisymmetric port. First, the re�ectivity

di�erence between the arms δra. Second, the arm pole di�erence between the arms

δωc, sometimes called the arm storage time di�erence. Third, the Schnupp asym-

metry lsch gives a static di�erence in the inner Michelson length, which produces

a very tiny di�erence in the light travel time. The fourth term is the radiation

pressure term due to the frequency noise modulating the phase-quadrature light

in the arms due to DARM o�set ∆LDC . The �fth term is the least understood and

most variable: the coupling due to higher order modes kHOM .

The arm pole term δωc dominates at around 100 Hz for Hanford during O3. This

was because the two input test masses installed at Hanford were not “twins”, i.e.

they were not made at the same time. ITMX was replaced because of a very large

point absorber detected during O2. The new ITMX has a transmission of 1.5%,

whereas ITMY has a transmission of 1.42%. This yields an X-arm pole ωcx/(2π) =

45.1 Hz and a Y-arm pole ωcy/(2π) = 42.6 Hz, or di�erential δωc/(2π) ≈ 1.2 Hz.

This di�erence in ITM transmission also a�ected the arm powers, see Section 3.2.

3.4.5.1 Radiation pressure

The radiation pressure coupling below 30 Hz is not well-understood. The coher-

ence of the measurement dips to around 0.6 to 0.7 as it becomes harder to drive the

frequency noise above the DARM noise due to the CARM suppression. Stronger

injections were tried, but cause massive upconversion from the many orders of

magnitude the injection must cover, which was a problem (see Subsection 3.4.6).

Swept sine injections validated the coupling levels measured in Figure 3.18.

The radiation pressure noise due to frequency noise cannot be explained solely by

interaction with the quadrature light in the arms. The most likely explanation is

the true DARM noise is caused through another path that the excess frequency

noise causes, in particular the SRCL path. SRCL is especially capable of creating

radiation pressure noise in the arms, a fact we took advantage of in the arm power

measurement (Section 3.2). The light in the SRC is all in the quadrature phase,
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meaning that incident frequency noise will have a strong modulation e�ect on

SRC light.

Working against this is the fact that inside the interferometer the carrier is cleaned

of frequency noise by the CARM pole, and the feedforward of the SRCL control

signal to DARM compensates for SRCL noise in the DARM spectrum. However,

feedforward is tuned to prevent SRCL sensing noise from entering DARM, not

displacement noise, and injection of excess frequency noise can spoil the quiescent

SRCL state.

This excess frequency to DARM radiation pressure noise may be real at the time

of the measurement, but it is possible that the quiescent coupling state is better

than what is possible to measure with a strong injection.

3.4.5.2 Higher order modes

Higher order modes (HOMs) of the laser refer to the spatial eigenmodes a laser

may have when resonating in a cavity. All LIGO cavities are designed to accept

the same TEM00 mode, or main carrier light. HOMs are rejected from cavities they

are not designed to resonate in. However, HOMs still spawn from the carrier due to

mode mismatch, misalignments, and cavity imperfections inside the dual-recycled

Michelson. Worse, “point absorbers” on the optics heat the optics irregularly at

high power, spoiling the cavity geometry and scattering carrier light into HOMs.

We know from the DARM optical spring detuning that there is likely signi�cant

HOM content in the SRC, see Subsection 3.6.4. However, we don’t have a sensor

or a good model for the level of HOMs in the interferometer.

HOMs can carry frequency noise, and do not experience the usual cleaning e�ect

from the CARM and DARM coupled cavities. Ideally, the output mode cleaner

will re�ect away most low-order HOMs, but it is possible some high-order HOMs

transmit easily through the output mode cleaner, or that there is very large low-

order HOM content incident on the output mode cleaner. Another possibility is

signi�cant “mode healing” happening in the signal recycling cavity, which is when

HOMs are scattered back into the main carrier light by the signal recycling cavity

mirrors. This light would not be cleaned by the CARM coupled cavity, but transmit

directly through the output mode cleaner.

These di�erent coupling paths will have a di�erent frequency dependence in their

coupling to DARM. This is based on the fact that HOMs do not resonate in the
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arms. Therefore, the frequency and intensity noise the HOMs carry are not sup-

pressed by the interferometer’s coupled cavity poles scc and srse.

Finesse simulation of simple Michelson suggests that frequency noise on HOMs

couple to the antisymmetric port with a �at frequency dependence in W/Hz, same

as the carrier frequency noise coupling explored in Subsection B.3.3. If we assume

the coupling path is some large HOMs created inside the dual-recycled Michelson,

which are then transmitted through the output mode cleaner, this coupling would

be �at in W/Hz. Referring watts in the antisymmetric port back to DARM meters,

as in Eq. 3.52, would give a frequency dependent coupling kHOM ∝ κHOM(1 +

srse), with a �at DC coupling and an f -like coupling above the DARM pole.

However, the “mode healing in the SRC” coupling path would be cleaned by the

DARM pole, because the HOM light returns to carrier light inside the DARM cou-

pled cavity. The antisymmetric port coupling in W/Hz ∝ κHOM/(1 + srse). Re-

ferring back to DARM meters would undo the DARM pole, making the coupling

�at in m/Hz ∝ kHOM .

Finesse simulation of the whole interferometer suggests that the “mode healing”

path is most likely. This is the coupling chosen for Eq. 3.52, since it is consistent

with measurement and simulation. In the plot, kHOM ≈ (8− 60)× 10−17 m/Hz.

However, some measurements have an unexplained uptick at very high frequen-

cies > 5 kHz, which suggests there may be multiple coupling paths of frequency

noise through HOMs, or possibly another mechanism entirely.

HOM content in the interferometer can be partially controlled by adjusting the

cavity geometry. This is done in Advanced LIGO through the thermal compen-

sation system, which can heat the optics to increase or decrease their radius of

curvature. Thermal tuning can be performed on the input and end test masses,

and the SR3 mirror.

Through many measurements, we have seen a large variation in the level of fre-

quency noise to DARM coupling at high frequency. Figure 3.18 highlights two

extremes of this coupling level, one taken in April 2019 and the other in Novem-

ber 2019. A factor of 10 lowering in the coupling was achieved between these two

times through tuning of the thermal state of the interferometer to repair the inter-

ferometer geometry, a strong sign that it truly is HOMs causing excess frequency

noise coupling at high frequencies. The couplings where monitored via injected

frequency noise lines. Other monitor lines were injected for intensity noise, which
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is also dominated by HOM coupling at high frequency (Section 3.5.3). However,

we found that the HOMs coupling frequency noise and intensity noise must be dif-

ferent, i.e. as one coupling increased, the other decreased [115]. A middle-ground

thermal setting was found that minimized both couplings as well as possible.

RF sidebands have similar corner-centric coupling mechanisms as HOMs. How-

ever, tests where the modulation depth was changed during the injection did not

change frequency noise coupling levels [116].

3.4.6 Output mode cleaner dither line

The output mode cleaner (OMC) is a bow-tie cavity on the antisymmetric port of

the interferometer. Its main purpose is to reject RF sidebands and HOMs, while

passing only carrier light and GW signal.

To accomplish this, the OMC must be locked to carrier. This is done by injecting

a dither line at 4.1 kHz on one of the OMC’s piezoelectric transducers, then de-

modulating that line in the OMC DCPD sum to get an error signal for locking the

OMC to carrier.

We mention the OMC dither line here because the frequency noise level at the

antisymmetric port at 4.1 kHz is now much more important. Excess frequency

noise will be downconverted to DC by the OMC dither line if the line is not strong

enough.

This was discovered while measuring the CARM loop open loop gain, and was a

problem for measuring frequency transfer functions to DARM at low frequency,

where upconversion of the frequency noise injection caused downconversion from

the OMC dither.

The solution is to ensure the OMC dither line is strong enough for normal low-

noise operation such that it is stronger than the frequency noise, and ensure the

frequency noise injections at HF are not so strong they upconvert and drown out

the OMC dither line. Carefully-chosen swept sine measurements are better for

quantifying low-frequency frequency noise coupling.

3.5 Intensity stabilization

The intensity stabilization servo (ISS) is required to limit laser noise masking the

gravitational wave signal. Intensity �uctuations from the laser masks the gravita-

tional wave signal via contrast defect and directly through the DARM o�set used



70

for DC readout. Section B.3.3, Eq. B.61 shows the intensity coupling for a simple

Michelson from �rst principles.

Intensity �uctuations bene�t from the common mode rejection of the interferom-

eter, since any input beam �uctuations will be common to both arms. Intensity

noise on the carrier will also be cleaned by the CARM and DARM coupled cavity

poles of the interferometer. However, running in DC readout couples intensity

noise directly to the antisymmetric port were DARM is sensed.

An analog, two-loop hierarchal intensity stabilization servo is used to suppress

the laser intensity incident on the interferometer. The suppressed intensity noise

is further cleaned by the coupled cavities of the interferometer such that inten-

sity noise does not mask GW signals. The ISS is DC-coupled in full lock, so the

overall laser power entering the interferometer is stabilized. Previous experiments

informed the ultra-stable DC-coupled laser intensity control scheme used in Ad-

vanced LIGO [34, 35].

This section will overview the Hanford O3 performance of the ISS, discuss the

intensity noise budget, and the intensity transfer function to DARM budget.

3.5.1 Intensity control scheme

The freerunning NPRO relative intensity noise (RIN) is measured to be 10−5 Hz−1/2

at 100 Hz, with around 1/f dependence [36]. The requirement for RIN incident

on the power recycling mirror is 2 × 10−8 Hz−1/2
at 100 Hz, rising like f [117].

Figure 3.19 shows a diagram of the laser intensity stabilization servo.

The high power laser is �rst incident on an acousto-optic modulator (AOM), which

defracts power based on the input voltage. The beam is then locked to the pre-

mode cleaner (PMC), which is on the optical table and passes most intensity noise

through the short bow-tie cavity. Transmission through one of the ports of the

PMC is then split on two PDs, ISS PDA and ISS PDB. ISS PDB senses intensity

noise, which is fed back to the AOM, completing the ISS �rst loop. ISS PDA serves

as an out-of-loop sensor for the ISS �rst loop.

The main beam propagates forward from the PMC, through the IMC, through the

input optics toward the interferometer. A picko� beam then heads toward an

eight-photodetector “ISS array”, where ∼ 60 mW is detected. Four of the PDs

on the detector form the “ISS inner” signal, which senses intensity noise heading

to the interferometer and feeds back to the AOM, completing the ISS second loop.
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Figure 3.19: Laser intensity stabilization servo diagram. The laser in the top left

passes through the AOM, then is locked to the PMC. The ISS �rst loop is formed

from the transmission through one port of the PMC, and intensity noise is sensed

by a single photodetector, ISS PDB. The ISS second loop is formed by the beam

transmitted through the IMC, picked o� on the path to the interferometer, and

sent to the eight-photodetector ISS array. Finally, the ISS QPD detects beam jitter

heading to the interferometer, which can be misinterpreted as intensity noise.

The other four PDs form the “ISS outer” signal, which serves as the out-of-loop

intensity noise sensor. The

The ISS �rst and second loops are summed together, with the second loop being

added into the �rst loop as an additive o�set. Thus the �rst loop follows the second

loop error signal, and both loops suppress the intensity noise sensed by the ISS

array. Figure 3.20 shows the open loop gains of the �rst and second loops of the

laser intensity stabilization servo.

The intensity stabilization described here focuses on the audio-frequency intensity

noise. However, the ISS is also DC coupled to keep the overall light levels in the

interferometer robust to slow drift in the laser output.

One pitfall of the current con�guration is the relative polarizations between the

transmission ports of the PMC [118]. Figure 3.19 emphasizes that the �rst and

second ISS loops are stabilized to di�erent outputs of the PMC, but these ports

have been found to have di�erent polarizations on the PSL optics table. This means
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Figure 3.20: Intensity stabilization servo open loop gain measurements. The �rst

and second ISS loops form a hierarchal stabilization scheme, so the second loop

may never have a higher unity gain frequency (UGF) than the �rst loop in the

current con�guration.

the �rst and second loops may be sensing and stabilizing slightly di�erent light,

which can lead to intensity controls �ghting one another.

3.5.2 Intensity noise budget

Figure 3.21 shows the intensity noise budget. The total RIN RMS ≈ 6.5 × 10−6
.

The ISS second loop shot noise limit for intensity noise is achieved for most of

the GW detection band. Shot noise is unusually low because of the ∼ 30 mW of

in-loop light detected. The actual in-loop shot noise will be

√
2 lower than the red

trace in Figure 3.21.

The IMC angular controls peaks at 1.1 Hz and 3.4 Hz dominate the intensity noise

RMS. Changes in transmitted power due to IMC misalignment are most likely re-

sponsible for the registered peaks.

Post-IMC beam jitter measured at the ISS QPD is coherent with the ISS out-of-loop

noise in the 10 Hz region. This could be due to jitter in the HAM2 input optics.
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Figure 3.21: Relative intensity noise budget for laser intensity incident on the in-

terferometer for LIGO Hanford in O3. The ISS second loop shot noise limit is

achieved between 30 and 1000 Hz. Above 1 kHz the ISS is gain-limited. Between 5

and 30 Hz intensity is coherent with beam jitter detected on the ISS QPD. Angular

motion in the IMC dominates the total RMS from peaks around 1.1 Hz and 3.4 Hz.

Another possibility is the ISS QPD and ISS out-of-loop signal are both registering

some upconversion from the strong IMC angular peak at 3.4 Hz.

The ISS loop is gain-limited at high frequency. This noise comes close limiting

DARM, as seen in the green dots in the DARM noise budget (Figure 3.1). It’s not so

simple to increase the ISS suppression, as evidenced by the ISS OLGs in Figure 3.20,

with unity gain frequencies of∼ 50 kHz and∼ 25 kHz, each with phase margins

of around 30◦. Higher intensity stabilization unity gain frequencies of ∼ 100 kHz

where achieved in [34] and [35], but those servos did not have to contend with

being DC-coupled to a suspended IMC. The ultimate limit of the ISS stabilization

is the AOM actuator. The AOM was measured to have a �at power modulation out

to 200 kHz, with a phase lag of 45◦ at 120 kHz [36].

The gain-limited intensity noise will become more important as squeezing is im-

proved and higher arm powers are achieved, lowering DARM shot noise. More
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work on the ISS control scheme is required so intensity noise will not limit DARM

at frequencies above 1 kHz.

3.5.3 Intensity to DARM coupling budget
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Figure 3.22: Relative intensity to DARM transfer function budget for LIGO Hanford

in O3.

The coupling of intensity noise to DARM depends on the level of contrast defect,

di�erential radiation pressure, and RF sidebands and higher order modes (HOMs)

through the OMC. Figure 3.22 shows the input relative intensity noise to DARM

transfer function budget.

Izumi [101] and Somiya [114] considered the appearance of intensity noise from

contrast defect and di�erential radiation pressure. Reproducing Eq. 26 of [101],
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but calibrating AS watts into DARM ∆L− and RAN into RIN gives:

∆L−
δP/P

(f) =
c2(1 + ra)

2∆LDC
4ω2

0

1

1 + scc

+
δra

4r′2a ∆LDC

1

1 + scc

[
δra(1 + sc) +

δωc
ωc

sc(1 + ra)−
lschraωc

c
sc

(
1− sc

ra

)
(1 + sc)

]

+ Tomc
Γ2

45

4

g2
sbt

2
sm

2g2
pg

2
sr
′2
a ∆LDC

(1 + srse)

+
2Pa
cs2
µ

1

1 + scc

[
δPa
2Pa
− 2

δµ

µ
+
δωc
ωc

gssc(2 + srse)

ts(1 + srse)
− δra

gsrs(2 + srse)

ts(1 + srse)

]

+
qHOM

2g2
pg

2
sr
′2
a ∆LDC

(1 + srse) (3.54)

Table 3.5 de�nes the expressions and values in Eq. 3.54. The frequency-dependence

of Eq. 3.52 is contained in the s-terms:

sc = i
ω

ωc
, scc = i

ω

ωcc
, srse = i

ω

ωrse
, s2

µ = −µω2. (3.55)

To get Eq. 3.54 we had to account for a factor of two from di�erent DARM de�-

nitions ∆LIzumi
− → ∆L−/2 and a factor of two going from RAN to RIN RAN =

RIN/2, which cancel in the end. We have also written the di�erential arm power

gain δgarm/g in Eq. 26 of [101] in terms of di�erential arm power δPa,

δgarm
garm

=
δPa
2Pa

(3.56)

since Pa ∝ g2
arm.

Summarizing Eq. 3.54, there are nine di�erent expressions for how intensity noise

couples to DARM in Eq. 3.54. These are each plotted as a separate line in Fig-

ure 3.22. We will go through them line by line.

First, the �rst line of Eq. 3.54 de�nes the direct coupling due to the DARM DC o�set

∆LDC . Second, the second line de�nes the coupling due to asymmetries, like arm

re�ectivity δra, arm poles δωc, and Schnupp asymmetry lsch. Third is the coupling

of 45 MHz sidebands directly through the OMC. Fourth are the radiation pressure

terms, due to di�erential arm powers δPa, optic masses δµ, arm re�ectivity δra,

arm poles δωc. Fifth is the coupling due to higher order modes.

In this case, the di�erential arm powers that arise from the di�erent �nesses in

each arm readily explain the intensity noise coupling below 100 Hz. Above 100 Hz,

the only plausible explanation is some phenomenological HOM coupling. 45 MHz
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Description Symbol Value

Carrier frequency ω0/(2π) 2.82× 1014 Hz

Arm re�ectivity ra =
−ri + re
1− rire

0.986

Di�erential arm re�ectivity δra = (rax − ray)/2 2.5× 10−3

Arm re�ectivity round-trip phase derivative r′a =
t2i re

(1− rire)2
268

Arm cavity pole ωc/(2π) 44.0 Hz

Di�erential arm cavity pole δωc = (ωcx − ωcy)/(4π) 1.5 Hz

CARM coupled cavity pole ωcc/(2π) 0.65 Hz

DARM coupled cavity pole ωrse/(2π) 411 Hz

Schnupp asymmetry lsch = lx − ly 0.08 m

Power recycling gain g2
p 43 W/W

Signal recycling gain g2
s 0.1 W/W

Arm power Pa 201 kW

Di�erential arm power δPa = (Pax − Pay)/2 −6.5 kW

DARM DC o�set ∆LDC 10 pm

45 MHz modulation depth Γ45 0.177 rad

45 MHz sideband PRC gain g2
sb 1.9 W/W

45 MHz sideband SRC transmission t2sm 0.21

45 MHz OMC transmission Tomc 100 ppm

Reduced mass of the arm µ = M/2 20 kg

Higher order mode input RIN to AS watts qHOM (1.3− 2.0)× 10−5 W/RIN

Higher order mode input Hz to DARM meters kHOM (8− 60)× 10−17 m/Hz

Table 3.5: Intensity and frequency noise coupling to DARM parameters from

Eq. 3.54 and Eq. 3.52. All di�erential parameters are divided by two, e.g. δPa =
(Pax−Pay)/2. Round-trip loss in the arms was assumed to be 100 ppm. The same

values are used for the frequency noise coupling in Figure 3.18. kHOM is the pink

band in that plot.
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coupling has the same shape, but even the pessimistic parameters used to estimate

this coupling could not come close to the measured coupling (Tomc = 100 ppm is

fairly high).

The coupling mechanisms for HOMs were discussed in Subsection 3.4.5.2. In this

case the mechanism is most likely corner HOMs coupling directly through the

output mode cleaner, with no DARM pole cleaning. The coupling of intensity

noise to the antisymmetric port is �at in W/RIN. Referring back to DARM gives

the DARM zero seen in the �fth line of Eq. 3.54.

Similar to frequency coupling, intensity noise coupling was found to vary with the

interferometer thermal state. Measurements from April and November of 2019 are

plotted in Figure 3.22 showing the ∼ 50% di�erence in coupling above 100 Hz.

We reiterate here that the HOMs carrying intensity noise are not necessarily the

same as those carrying frequency noise. This is known because, for some ther-

mal changes in the interferometer, the intensity and frequency couplings are anti-

correlated.

3.6 DARM optical plant

The DARM response to gravitational waves sets the ultimate limit for interferom-

eter sensitivity. An enormous response to di�erential arm motion is necessary to

amplify the extraordinarily weak GW signal to a detectable level. The most basic

principle of Advanced LIGO interferometer design is maximizing GW response.

These are the reasons for the 4 km long arms, the high-�nesse arm cavities, the

high input laser power, the dual-recycling cavities, and DC readout. All other aux-

iliary systems are there to enable the interferometer to be maximally sensitive to

DARM motion.

The DARM coupled-cavity is formed by the two interferometer arms and the signal-

recycling mirror (SRM). The arm cavities resonate the incident carrier light, build-

ing up the light in the CARM coupled-cavity to a high level. Then, when DARM

motion occurs, light is phase-shifted out of CARM into DARM, showing up at the

antisymmetric port of the beamsplitter heading toward the SRM.

The signal-recycling cavity (SRC) is held o�-resonance for carrier to shape the

overall DARM pole dynamics, so carrier light is preferentially transmitted through

the SRC out of the interferometer. This light carries with is the DARM, and GW,

signal. The setup where the SRC is held o�-resonance for carrier light, i.e. φSRC =

π/2 for carrier, is known as resonant sideband extraction, or RSE, and references
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the broadening of the bandwidth of the detector at the expense of DC gain. Hold-

ing the SRC o�-resonance, coupled with the fact that the SRC is a low-�nesse cav-

ity, makes the SRCL degree of freedom the most di�cult to control in Advanced

LIGO.

Buonanno and Chen �rst derived the DARM response and quantum-limited sen-

sitivity of Fabry Perot dual-recycled Michelson interferometers [22]. Later, Ward

[119] and Hall [57] modeled and measured the DARM plant dynamics at the Cal-

tech 40 m and LIGO Hanford, respectively.

During O1 and O2, LIGO Hanford operated with signi�cant detuning in the signal-

recycling cavity, which produced a DARM optical anti-spring response [5, 120].

The cause of the detuning was not well-understood, nor was is possible to remove

completely with SRCL o�sets without losing lock. Additionally, the DARM pole

value at Hanford was measured to be ∼ 10 Hz lower compared to Livingston in

O1: Hanford’s DARM pole was consistently around∼ 360 Hz, where Livingston’s

was ∼ 370 Hz, much closer to the design DARM pole of ∼ 372 Hz [5]. Finally,

in O1 the SRC exhibited “mode-hopping” issues, where the SRC would be locked

to the correct TEM00 carrier mode, then spontaneously switch to a nearby mode,

causing locklosses [121]. This was mitigated by aligning the SRC sooner after

locking DRMI.

In O3, the SRM transmission was lowered from 37% to 32%, increasing the �nesse

of the SRC and DARM cavities. During O3, DARM was observed to exhibit both

an optical spring and anti-spring. The DARM spring was observed to change sign

with the increase of input power, from spring to anti-spring [122], and with the o�-

on-o� test on the SR3 disk heater, from anti-spring to spring to anti-spring again

[123]. Again, the DARM pole at Hanford in O3 was low compared to Livingston

and design: Hanford DARM pole was 411 Hz [94], Livingston’s was 450 Hz, and

design was 456 Hz.

This section will report on the latest understanding of the DARM plant at LIGO

Hanford in O3. We will also explore the e�ect of the SR3 disk heater on the

DARM plant, and Finesse simulations undertaken to model the e�ect of higher

order modes on DARM detuning.

3.6.1 DARMmodel

To solve for the �elds in a DARM coupled-cavity, one might try initially to write

the usual systems of equations for classical plane wave �elds. This would get you
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most of the way to understanding the DARM cavity �eld dynamics under ideal cir-

cumstances. However, for detuned, high-power interferometer the full response

becomes more complicated. This is due to the cavity frequency eigenmodes chang-

ing from detuning and radiation pressure e�ects.

The lossless DARM response to GWs is derived from Eqs. (2.20)-(2.24) in Buo-

nanno and Chen [22]. Ward compiled this equation into a convenient expression

in Eq. (3.83) of [119]. We will slightly modify the Ward model to give the lossless

DARM response in antisymmetric watts per DARM meters:

Pas
L−

(f) =

√
2PLO
L

√
2Pbsω

2
0

ω2
c + ω2

tse
iβ
[
(1− rsei2β) cosφ cos ζ − (1 + rse

i2β) sinφ sin ζ
]

1 + r2
se
i4β − 2rsei2β

[
cos (2φ) + κ

2
sin (2φ)

]

(3.57)

where PLO is the local oscillator due to the DARM o�set, L is the arm length, Pbs

is the power incident on the beamsplitter, ω0 is the carrier frequency, ωc is the arm

pole, ω = 2πf is the signal frequency, rs is the SRM amplitude re�ectivity, ts is

the SRM amplitude transmission, β = − arctan(ω/ωc) is the phase delay of the

arm travel time, φ is the SRC detuning angle, ζ is the homodyne angle, and κ is the

radiation pressure term for coupling amplitude quadrature �uctuations to phase

quadrature inside the arm cavity [47]:

κ =
8Pbs
ML2

ω0

ω2(ω2
c + ω2)

(3.58)

Table 3.6 lists the parameters values relevant for Eq. 3.57. We note here that as L

changes, Pas/L− remains �at: there is a hidden factor of 1/L in the arm pole ωc.

We have modi�ed Eq. 3.57 vs Ward Eq. (3.83) by adding the prefactor

√
2PLO/L.

The factor L comes from converting to DARM meters since L− = hL, PLO is the

local oscillator from the DARM o�set that beats with the GW signal on the PD,

and the factor of

√
2 comes from the quadrature de�nition, which can be seen

in the di�erence in the prefactor between e.g. Eqs. (2.1) and (2.10) in [22] (see

Subsection A.3).

We can see from Eq. 3.57 the importance of the detuning angleφ and the homodyne

angle ζ . To operate in resonant sideband extraction, φ = π/2. This puts the GW

signal entirely in the amplitude quadrature upon exiting the interferometer. To

detect the GW signal, the homodyne angle ζ = π/2. The level of contrast defect

in the interferometer sets the homodyne angle, which is hard to estimate in full

lock where it matters [124].
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In perfect RSE, the κ dependence in the denominator goes to zero, keeping the

DARM plant resonance exactly at DC. However, detuning in the SRC will create a

DARM optical spring for φ < 90◦, or an anti-spring for φ > 90◦ [125].

By itself, the DARM spring does not harm the response, and design papers ad-

vocate for locking with intentional detuning to increase SNR to binary neutron

stars. However, Advanced LIGO is designed to lock with no spring, meaning our

SRCL error signal zero-point is detuned from perfect resonance for the carrier for

unknown reasons, and must be compensated for with an o�set in the SRCL con-

trol. The strong, unintentional optical spring, coupled with the low DARM pole,

indicates a serious problem with the Hanford SRC, especially when compared to

Livingston’s consistent DARM plant.

One possibility is excessive losses harm the DARM response. No losses are consid-

ered in Eq. 3.57. In the next section we include losses in the arms, SRC, and after

exiting the interferometer.

3.6.2 DARMmodel with losses

Buonanno and Chen also derived the DARM response including loss. Reproducing

the DARM response from Eq. (5.6) of [22] here:

(
bL1

bL2

)
=

1

ML

[
√

2κtse
iβ

(
DL

1

DL
2

)
h

hSQL

]
(3.59)

where bL1 , b
L
2 are the amplitude and phase quadratures of the output light from the

interferometer, h is the GW signal, hSQL is the standard quantum limit for GW

detection:

hSQL(ω) =

√
8~

mω2L2
(3.60)
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Description Symbol Value

Arm length L 4 km

Carrier frequency ω0/(2π) 2.82× 1014 Hz

Mass of test masses M 40 kg

End test mass transmission Te 4 ppm

Input test mass transmission Ti 1.46%

Signal recycling mirror transmission Ts 32%

Arm cavity pole ωc/(2π) 44.0 Hz

Input power Pin 34 W

Power recycling gain g2
p 44

Power on the beamsplitter Pbs = Ping
2
p 1.4 kW

Local oscillator power PLO 23.8 mW

SRC detuning φ 90± 0.5 degs

Homodyne angle ζ 89.3± 2 degs

Round-trip arm loss Lrt 100 ppm

SRC loss λsr 3%

Post-SRM path loss λpd 25%

Table 3.6: Typical DARM model parameters for Hanford in O3 from Eq. 3.57.

These are known to change with improved interferometer thermal compensation

and beam spot positions on the optics. Spot position changes can also a�ect the

angle-to-length coupling in the interferometer [126]. The homodyne angle esti-

mate comes from contrast defect measurements at 2 W input, scaled up to 34 W

[124]. The squeezing loss budget for the post-SRM path is documented in [127],

which totals 17% loss from the back of the SRM to DCPDs. We need around 25%
loss for λpd for typical DARM measurement �ts.
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Figure 3.23: DARM model with losses vs LIGO Hanford measurement in August

2019. The DARM measurement represents an extreme DARM plant for illustrative

purposes, not the typical response. Here, DARM exhibits a strong, high-frequency

DARM spring at 7.5 Hz, and a low DARM pole of 400 Hz. The �t parameters for

the model in Eq. 3.66 are φ = 89.37◦, Lrt = 100 ppm, λsr = 6.8%, and λpd = 25%.

All others are the same as Table 3.6.

The expressions for ML, DL
1 , D

L
2 are from Eqs. (5.7) and (5.9) of [22]:

ML = 1 + r2
se

4iβ − 2rse
2iβ
(

cos (2φ) +
κ

2
sin 2φ

)

+ λsrrse
2iβ
(
−rse2iβ + cos 2φ+

κ

2
sin 2φ

)

+ εrse
2iβ
(

2 cos2 β(cos 2φ− rse2iβ) +
κ

2
(3 + e2iβ) sin 2φ

)
(3.61)

DL
1 =

√
1− λpd

(
− (1 + rse

2iβ) sinφ+
λsr
2
e2iβrs sinφ (3.62)

+
ε

4
(3 + rs + 2rse

4iβ + (5rs + 1)e2iβ) sinφ

)
(3.63)

DL
2 =

√
1− λpd

(
− (−1 + rse

2iβ) cosφ+
λsr
2
e2iβrs cosφ (3.64)

+
ε

4
(−3 + rs + 2rse

4iβ + (5rs − 1)e2iβ) cosφ

)
(3.65)
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where λsr is the signal recycling cavity losses, λpd is the post-SRM losses on the

path to the photodetectors, and ε = 2Lrt/Ti is the fractional round-trip loss in the

arms where Lrt is the total round-trip loss in the arms.

Taking the dot product of Eq. 3.59 by the homodyne PLO with angle ζ yields the

DARM model with losses

Pas
L−

(f) =

√
2PLO
L

√
2Pbsω

2
0

ω2
c + ω2

tse
iβ
(
DL

1 sin ζ +DL
2 cos ζ

)

ML
(3.66)

=

√
2PLO
L

√
2Pbsω

2
0

ω2
c + ω2

tse
iβ

ML

×
√

1− λpd
4

[
− (−4 + (3 + e2iβ)ε) cos (ζ + φ)

+
(
−4e2iβ +

(
5e2iβ + 2e4iβ + 1

)
ε+ 2e2iβλsr

)
rs cos (ζ − φ)

]
(3.67)

Eq. 3.66 is the DARM model with losses used in 3.23. The losses in the path to

the PD λpd represent an overall scale factor. The losses in the arms ε have a very

strong e�ect on the optical gain, and can a�ect the frequency of the optical spring

by reducing the resonant power in the arms. Overall, arm losses act similarly to

overall reduction of power on the beamsplitter.

The losses in the SRC λsr are the most interesting, because they have a frequency-

dependent e�ect on the DARM gain. Increasing the SRC losses lowers the optical

spring quality factor, broadening the resonant peak of the optical spring, Increas-

ing the SRC losses also lowers the DARM pole frequency. Because of the frequency

dependent nature of the SRC losses, these are the best-known losses. We will ex-

plore the SRC losses and DARM pole frequency in the next section.

In the end, the DARM model in Eq. 3.66 is unable to completely model the DARM

plant measured at Hanford. The modeled DARM optical spring is always larger

than the measured spring. Finesse simulation agrees very well with the DARM

model presented, and also overestimates the DARM quality factor. Losses cannot

compensate the broad spring and produce a realistic interferometer.

New e�orts to model the DARM loop are underway, including exploring how

angle-to-length coupling can a�ect the DARM plant at low frequencies [126].
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Figure 3.24: DARM pole vs signal recycling loss for LIGO Hanford in O3. Plotted

in blue are the roots of setting Eq. 3.61 equal to zero, then solving for the DARM

pole frequency. Livingston’s DARM pole is consistent with < 1% losses in the

SRC, but Hanford’s SRC losses were closer to 3.5% typically.

3.6.3 DARM pole and SRC loss

The DARM pole quanti�es the bandwidth of the detector sensitivity to GWs. The

denominator ML
of the DARM response in Eq. 3.66 de�nes the DARM pole. By

setting Eq. 3.61 equal to zero, we can calculate the DARM pole in response to

changes in losses in the arms and SRC.

SRC losses λsr have a strong e�ect on the DARM pole, with excessive losses rapidly

lowering the detector bandwidth. Figure 3.24 shows the DARM pole vs SRC losses,

including measured DARM poles for both Hanford and Livingston. The Livingston

DARM pole was 450 Hz, where the Hanford DARM pole varied between the typical

411 Hz down to 400 Hz at bad times. The corresponding Hanford losses in the SRC

were from 4.5− 5.5%.

Thermal compensation changes on the ITMs and SR3 were observed to have a

strong e�ect on the DARM pole [128]. Increases in power also changed the DARM
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pole, which should not a�ect the DARM pole strongly. Heating due to power-up

from 2 W to 35 W of input power reduced the DARM pole from 420 to 411 Hz

over about 40 minutes [129]. This indicates mode mismatch between the arms

and SRC is the most likely culprit for initial SRC losses of around 3.5%, which get

exacerbated by high power operation spoiling the interferometer geometry.

Arm losses Lrt did not a�ect the DARM pole much, about 1 Hz of change for

1000 ppm arm losses. The detuning φ does a�ect the DARM pole, but for the

levels of detuning measured (< 1◦ from 90◦) this will not change the DARM pole

signi�cantly.

3.6.4 SR3 heater and the DARM optical spring
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Figure 3.25: Signal recycling cavity optical diagram. The orange boxes are the

thermal compensation heating elements. The ITMs have ring heaters surrounding

them which can decrease their radius of curvature. SR3 has a disk heater behind it,

which also decreases the radius of curvature [130]. CPX and CPY are the transpar-

ent compensation plates immediately behind the ITMs, which can lens the beam

with the help of the CO2 laser.



86

Because the SRC is such a problematic cavity, many e�orts have been taken to

understand its geometry better [131–133]. However, the di�culty is the geometry

di�erence between low and high power. The SRC itself is anti-resonant to carrier

by RSE design: therefore it does not have a huge thermal load on any of its optics.

The mode matching between the arms changes in lock with di�erent arm powers,

producing di�erential HOMs that combine at the beamsplitter and enter the SRC. If

the arm modes become poorly matched to the SRC modes, it can induce excessive

scattering from the carrier into HOMs.

The thermal compensation system works to combat the degradation of the opti-

cal mode matching inside the interferometer. Figure 3.25 illustrates some of the

thermal compensation components. The ITM ring heaters surround the ITMs and

adjust the arm mode matching by adjusting the ITM radius of curvature. The SR3

disk heater is capable to adjusting the signal recycling cavity geometry, by directly

altering the radius of curvature of SR3 [130]. Not shown are the ETM ring heaters

and the CO2 laser heaters incident on the compensation plates CPX and CPY.

3.6.4.1 SR3 heater on-o� measurement

Prior to O3, the SR3 heater was engaged to try to improve interferometer sensi-

tivity. The heater was turned on to maximum power of 5 W for three hours, then

turned back down to 0 W, while the state of the interferometer was measured.

During this time, we took 18 DARM plant measurements. Figure 3.26 shows three

of these measurements illustrating the e�ect on the DARM plant. Essentially, the

DARM optical spring �ipped sign from anti-spring, to spring, and back again with

the SR3 heater o�-on-o� test. A small optical gain improvement is also apparent

in Figure 3.26.

The optical spring �ip indicates the SR3 heater is controlling the detuning φ of the

SRC. This is interesting because, from Eq. 3.66, the DARM optical spring frequency

should not depend on SRC losses. A lossy SRC due to e.g. high absorption, will only

lower the quality factor of the spring. Therefore, something more complicated is

happening due to the HOMs being created in the SRC.

3.6.4.2 Simulation of the SR3 heater

To understand how the SR3 heater changes the detuning of the SRC, we set up a

Finesse/pykat simulation of Hanford which changes the SR3 radius of curvature
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Figure 3.26: DARM optical spring during SR3 heater test in full lock at Han-

ford. The optical spring begins in the anti-spring state, with weak anti-springs

of roughly ∼ −2 Hz (blue). Flipping on the SR3 heater generated a spring of

around 4 Hz after one hour of thermalization (orange). After turning o� the SR3

heater, the anti-spring returned (green).

by a realistic amount in lock [134, 135].

First, we lock our simulated interferometer with similar parameters as Hanford.

Next, we change the SR3 radius of curvature within the simulation while moni-

toring light levels everywhere in the interferometer (Figure 3.27). Then, we freeze

the lock at several intervals of the radius of curvature change to sweep the length

error signals (Figure 3.28). Finally, we measure the DARM plant transfer function

in W/m at the same intervals of the radius of curvature change (Figure 3.29).

Brie�y put, the HOMs simulated in this interferometer con�guration allow for ex-

cessive HOMs to pollute the corner degrees of freedom, particularly MICH and

SRCL, such that they lock with signi�cant o�sets. All corner degrees of freedom

are detected at a picko� port of the PRC (POP port). HOMs on the carrier actually

reaching the POP sensor are relatively small, but HOMs on the ±45 MHz side-

bands, which carry the MICH and SRCL length info, are not small and beat with
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Figure 3.27: Simulation of carrier higher order modes in the signal recycling cavity

with an SR3 radius of curvature change. As the SR3 radius of curvature changes,

the HOMs in the cavity rise. In the case of extreme curvature, the HOMs approach

the levels of the carrier, before reaching a region of lockloss. Plots for the HOMs

on the 45 MHz sidebands show a similar e�ect. The thin dashed vertical lines

represent the SR3 curvature change used for the error signal sweeps and DARM

plants in Figures 3.28 and 3.29.

the HOMs on the carrier. The HOM e�ect on the error signal is small relative to the

main beatnote signal, but the amount of o�set required to induce a strong e�ect

is not large.

When HOMs become signi�cant enough that they a�ect the SRCL lock o�set, the

DARM cavity is detuned and an optical spring is exhibited. Figure 3.29 shows how

the simulated spring varies with changed SR3 radius of curvature. A measured

Hanford DARM plant is plotted for comparison to the simulation results.

This is one likely mechanism for the e�ect of the SR3 disk heater on the DARM

optical spring. The simulation is not perfect: it can be di�cult to correctly lock

the interferometer and change the parameters “in-lock” while maintaining sensi-

ble length signals, we ignore the e�ect of astigmatism and not all parameters are

exactly as measured for LIGO Hanford, for instance the arm powers are slightly

low (190 kW), and the radius of curvature change induced on the SR3 in the sim-

ulation is the wrong sign compared to what actually occurs in the interferometer.

However, it is extremely di�cult to properly model the levels of HOMs in all inter-

ferometer cavities, and the above results support the idea that the high SRC losses

are due to mode mismatch, and can be related to the issues we experience with

uncontrolled detuning in the DARM cavity.
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Figure 3.28: Simulation of interferometer error signals with SR3 radius of curva-

ture change. The excessive HOMs in the SRC seen in Figure 3.27 strongly a�ect

the SRCL error signal. The SRCL error signal is made from the 45 MHz sidebands,

which carry the SRC length signal, beating with the carrier, which acts as the static

reference. The HOMs on the 45 MHz and carrier also reach the sensor, and in high

enough levels, spoil the error signal and induce an optical o�set.
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Figure 3.29: Simulation of DARM optical spring with SR3 radius of curvature

change. The changing SR3 radius of curvature produces a changing DARM op-

tical spring due to HOMs in the SRCL error signal. Also plotted is a measured

Hanford DARM plant for comparison to the simulation.
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C h a p t e r 4

CALIBRATION OF THE ADVANCED LIGO DETECTORS

Calibration is the quanti�cation of the Advanced LIGO detectors’ response to grav-

itational waves. Calibration is the �nal step connecting detector data to true as-

trophysical strain, and in�uences all science done with the LIGO detectors.

Gravitational waves incident on the detectors cause phase shifts in the interferom-

eter laser light which are read out as intensity �uctuations at the detector output.

Measuring and modeling the detector response to gravitational waves is crucial to

producing accurate and precise gravitational wave strain data.

The Advanced LIGO calibration group is responsible for the timely production

of accurate strain data for low-latency detection, and quantifying the uncertainty

in the calibrated data. The author was responsible for producing calibration un-

certainty budgets for O1 and O2, including the �rst gravitational wave detection,

GW150914 [5, 136]. The calibration uncertainty pipeline was improved with the

introduction of Markov Chain Monte Carlo (MCMC) methods for �tting calibra-

tion models and Gaussian Process Regression (GPR) for quantifying unmodeled

deviations. The uncertainty budget method has remained largely unchanged for

O3 [94].

In this chapter, we will introduce the calibration process, motivate an accurate and

precise calibration, overview the methods currently used to calibrate GW detec-

tors, explore the calibration uncertainty pipeline, and consider future methods for

even more precise and accurate calibration.

4.1 Motivation

GW signals are extremely rich sources of information from previously unexplored

astrophysical phenomena. Detections from the �rst three observing runs have

vastly altered our understanding of astrophysical binary systems [3, 4].

A miscalibration will produce biased strain data, which biases all downstream

products of the data, including astrophysical parameter estimates, tests of gen-

eral relativity, merger rates and GW backgrounds. Accuracy and precision in GW

data is crucial for maximizing the information extracted from GW detections.
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4.1.1 E�ect of calibration errors on SNR

Calibration errors only e�ect the SNR of detectors to second order [137, 138]. Thus

the likelihood of missed detections due to calibration errors is small. However,

calibration error will dramatically a�ect astrophysics done with the detections.

4.1.2 Optimal calibration

The “optimal” calibration is accurate enough that detected GW data is not biased

or limited by calibration uncertainty [138]. Any deeper accuracy of the calibra-

tion will be rendered irrelevant by the dominant source of GW data uncertainty,

detector noise.

4.1.3 Astrophysical parameter estimation

Calibration model parameters and astrophysical parameters are correlated. The

clearest example of this is the positive correlation of the optical gain of the interfer-

ometer and the luminosity distance of the source of the gravitational waves: given

some GW signal, the larger we believe the optical gain is, the larger the luminosity

distance to the GW source. Calibration parameters are considered “nuisance pa-

rameters” in the astrophysical parameter estimation process, and are marginalized

over, increasing the overall uncertainty of the astrophysical parameters.

For compact binary coalescence GW signals, estimates of the progenitor masses,

spins, luminosity distance, orbital plane inclination, �nal mass, and sky location

are derived from the detected waveforms, and each are potentially limited by cal-

ibration accuracy [6, 139]. Hall et. al. explored the Cramér-Rao bounds for as-

trophysical parameter errors due to detector noise, and found requirements for

calibration parameters’ accuracy such that detector noise dominates astrophysi-

cal parameter errors [140]. Vitale et. al. have investigated the potential impact

of general calibration errors on parameter estimation pipelines [141, 142]. Vitale

et. al. have incorporated physical calibration parameters into the astrophysical

parameter estimation pipeline [143].

For Advanced LIGO detections so far with SNRs < 100, detector noise, not cali-

bration uncertainty, limits information from GW detections [144, 145]. As future

detectors’ noise decreases, for aLIGO design, Einstein Telescope [45], and Cosmic

Explorer [146], some very high SNR detections will be made, revolutionizing the

science possible [145]. Such high SNR detections may be limited by calibration

uncertainty.
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4.1.4 New astrophysics

New astrophysics is also being done with O3 detections. A recent neutron-star

black-hole candidate merger emitted signature higher multipoles GWs which were

detected and �t to high con�dence [11]. Higher multipoles are emitted at higher

frequencies than the main quadrupole moment. They are also emitted at di�erent

angles, o�ering another way (other than quadrupole polarization) to break the

distance-inclination degeneracy problem (see Section 4.2).

The neutron star equation of state describes the properties of the matter in extreme

environments like a neutron star. The equation of state a�ects the high frequency

GW signature during merger due to the tidal deformations. Limits on the neutron

star equation of state were imposed by the GW170817 BNS detection [9].

Supernovae are theorized to be powered by a “core-bounce” mechanism, which

is not well-understood with theory and simulation [147]. GWs o�er a way of di-

rectly observing the signature of the core-bounce, which could help inform the

mechanism by which supernovae explode.

4.1.5 Other astrophysics and cosmology

The rate at which such systems form in the universe can be drawn from detected

coalescence events [148–150]. Rate estimates depend on the astrophysical range of

the detectors [96]. Rate estimates are particularly vulnerable to calibration errors,

since rates are in units of events per time-volume, so any calibration amplitude

error gets cubed. As the number of observations increases, rate estimates will

become limited by strain amplitude uncertainty.

Testing general relativity has begun with the �rst detections [7, 151–153]. As

the detectors’ sensitivity improves and there are more high signal-to-noise ratio

events, calibration uncertainty will limit our test results, and calibration error will

bias our test results [154, 155].

Upper limits and observations of sources of continuous gravitational waves, such

as rapidly rotating neutron stars, depend on calibration uncertainty [156–158].

Upper limits and observations of the GW stochastic background of unresolvable

sources, including the Big Bang, depend on the amplitude calibration uncertainty

[159–161].

Using many GW detections to re�ne estimates of the Hubble constant will be fun-

damentally limited by calibration uncertainty [162, 163]. There is tension in the
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Hubble constant measurement from near- and far-�eld electromagnetic measure-

ment techniques [164–166]. GWs are useful for measuring the Hubble constant

because the luminosity distance can be directly extracted from the detected data.

If the GW is a neutron start binary coalescence accompanied by a gamma-ray burst

like GW170817, then the host galaxy, and recessional velocity, can be accurately

found, making “standard-siren” method of estimating the Hubble constant possi-

ble [10]. Methods of estimating the recessional velocity of GW sources using the

estimated sky location and galaxy catalogs yield a so-called “dark Hubble” mea-

surement, which requires no electromagnetic follow-up [167]. Spinning neutron

start black hole coalescences may also be particularly well-suited for high accuracy

distance measurements [168].

4.2 Parameter estimation, self-calibrating signals, and the standard siren
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Figure 4.1: Estimated GW150914 strain time series, i.e. waveform, produced using

the PhenomD waveforms calculated via PyCBC [169, 170].

A GW signal has a distinctive expected waveform. This can be used to estimate the

astrophysical parameters of the binary. Figure 4.1 shows the inspiral and merger

waveform detected for GW150914.

A binary merger occurs when two massive objects in orbit inspiral together, reach-

ing relativistic velocities, and violently merge into a single massive object. The

binary system emits stronger and stronger GWs as the massive objects move to-

gether, orbiting each other more and more rapidly. The increasing frequency and
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amplitude of the signal produce a distinctive “chirp” characteristic of binary merg-

ers.

The key observation that GW signals are “self-calibrating” was made by Schutz

[171]. From the detected GW frequency and amplitude by a network of at least

three detectors, Schutz argued that the GW source parameters could be found,

and the Hubble constant estimated from them, depending on the accuracy of the

detector amplitude and phase measurement.

The “self-calibration” process for a simple, non-spinning GW source goes roughly

as follows [172]:

1. The chirp massM is found from the inspiral frequency derivative

dfGW
dt

.

2. The GW amplitude depends on the chirp massM, sky location (θ, φ), orbital

plane inclination angle ι, and luminosity distance dL.

3. With good phase information from the detector network, the sky location

θ, φ can be determined via triangulation.

4. With polarization information from the detector network, the inclination

angle ι may be determined.

5. The last parameter, luminosity distance dL, is a simple overall scaler to the

measured GW amplitude.

From this process, the luminosity distance naturally falls out of the detection pa-

rameters without any astrophysical distance calibration. The term standard siren
refers to binary inspiral’s consistent frequency and amplitude dependence on the

chirp massM.

The above process does depend on the detector network calibration for accurate

GW phase and amplitude information. A phase miscalibration will throw o� the

sky location triangulation. An amplitude miscalibration will throw o� the lumi-

nosity distance estimate. This makes an accurate detector calibration imperative

for parameter estimation.

In reality, parameter estimation is much more complicated than the picture given

above, especially for spinning, precessing binary systems with unequal masses

[139, 173]. However, the detector calibration will always represent a fundamental

limit to the accuracy of astrophysical parameter estimation.
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4.3 Detector calibration fundamentals
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Figure 4.2: Simpli�ed calibration process following the conversion of astrophysical

strain h(t) into strain data h′(t).

Figure 4.2 shows the fundamental calibration process. A binary merger produces

strong gravitational waves with strain h(t). The detector responds to the incident

gravitational wave with response R−1
, producing a raw signal e(t). The calibra-

tion pipeline takes the raw signal and calibrates it into strain data h′(t), using a

measured response function R.

Calibration is the process of measuring the response function R as accurately as

possible. Because we cannot generate known terrestrial gravitational waves to

calibrate the detector, we use DARM motion according to the relation

L− = hL (4.1)

where L− is DARM motion, h is incident GW strain, and L is the length of the

arms. Subsection B.3.2 derives the GW to DARM transfer function for a simple

Michelson.

4.3.1 DARM control loop

DARM is one of the principle degrees of freedom of the interferometer, and must

be held on resonance to produce useful data DARM is unstable without a feedback

control loop, which suppresses all DARM motion sensed on the DCPDs, include

those from GWs. The feedback is routed through the quadruple pendulum posi-

tion actuators, both the magnetic coil drivers on the upper stages, and the electro-
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static drive on the lowest stage. Figure 4.3 shows the interferometer layout and a

quadruple pendulum.
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Figure 4.3: Simpli�ed interferometer layout and one of the quadruple pendulum

suspension systems for the core optics. For the upper stages of the pendulum, elec-

tromagnetic coil drivers are used for length and angular control. An electrostatic

drive (ESD) is used to control the test mass position itself [26]. Only one ETM ESD

is turned on to control DARM in low-noise lock.

We de�ne three independently quanti�able transfer functions of the DARM con-

trol loop, shown schematically in Figure 4.4. The sensing function C = derr/∆Lres

de�nes the measured laser power response to DARM displacement, as well as

the data acquisition process, to form the digital error signal derr. Digital �lters

D = dctrl/derr invert the suspension compliance and shape the loop control signal.

The actuation function A = ∆Lctrl/dctrl moves the optic to cancel any detected

DARM displacement within the DARM loop bandwidth.

All transfer functions are complex-valued functions of frequency, with quanti�-

able magnitude and phase. The digital �lters D shape the DARM loop frequency
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response and are known to negligible uncertainty. The DARM loop transfer func-

tions C andAmust be measured and modeled in the frequency domain between 5

and 5000 Hz. Both C and A contribute to the total calibration uncertainty budget.

4.3.2 Calibration pipeline

The error and control signals derr, dctrl are digitally �ltered to form a time-series

estimate of the GW strain h(t) used for astrophysical searches. The digital �lters

applied to derr and dctrl are constructed from models of the sensing functionC(model)

and actuation function A(model)
:

h =
1

L

[
1

C(model)
∗ derr + A(model) ∗ dctrl

]
, (4.2)

where ∗ indicates convolution in the time domain. The accuracy and precision of

the models C(model)
and A(model)

de�ne the systematic error and statistical uncer-

tainty in the estimated time series h(t).

4.3.3 Response function

We de�ne a transfer function called the response function R,

h = R ∗ derr =
1

L

(
1 +G

C

)
derr (4.3)

where the DARM open loop gain G = C ∗ D ∗ A. Eq. 4.3 illustrates that in the

frequency domain, response function error δR is equivalent to the GW strain data

error δh and response function uncertainty σR is equivalent to the GW strain

data uncertainty σh. The response error and uncertainty relative to the calibra-

tion pipeline model R(model)
are quanti�ed as a function of frequency f with time

dependence t:

δR(f, t)

R(model)
=
δh(f, t)

h
,

σR(f, t)

R(model)
=
σh(f, t)

h
. (4.4)

4.3.4 Systematic errors

The values of C and A can drift slowly over time, giving functions of frequency

that vary in time C(f, t) and A(f, t). However, our online calibration pipeline

digital �lters 1/C(model)
and A(model)

are not perfect representations of our under-

standing of the interferometer. This leads to known systematic errors in our h(t)

reconstruction, governed by the sensing and actuation systematic errors δC(f, t)

and δA(f, t). The systematic errors relative to C(model)
and A(model)

are quanti�ed

as

δC(f, t)

C(model)
=
C(f, t)

C(model)
− 1,

δA(f, t)

A(model)
=
A(f, t)

A(model)
− 1, (4.5)
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Digital
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1/L
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1/C(model)
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Figure 4.4: The DARM control loop is shown in the grey box on the left. The

sensing plant C produces the error signal derr in linear response to residual dif-

ferential arm motion ∆Lres. The digital �lters D shape the error signal derr into a

control signal dctrl. Displacement noise from any external source enters the loop as

∆Lfree. The test mass excitation via the photon calibrator x
(PC)
T displaces the test

mass above the DARM noise by a precisely known amount. The actuation plant

A takes the control signal dctrl and actuates on the optics by ∆Lctrl to maintain

DARM resonance. The pink box on the right shows the calibration pipeline, con-

sisting of an inverse sensing model 1/C (model)
and actuation model A(model)

. The

output of the calibration pipeline is GW strain data h(t).

where C(f, t) and A(f, t) represent the measured sensing and actuation transfer

functions.

Systematic errors δC and δA propagate forward to the relative response function

systematic error δR/R(model)
:

δR(f, t)

R(model)
=
R(f, t)

R(model)
− 1 =

(
1 +G(f, t)

C(f, t)

)/(
1 +G(model)

C(model)

)
− 1

=

(
G(model) δA(f, t)

A(model)
− δC(f, t)/C(model)

1 + δC(f, t)/C(model)

)

1 +G(model)
. (4.6)

4.3.5 Uncertainty

In general, any Gaussian-noise based transfer function follows a joint 2D probabil-

ity distribution (see Section D.8, Eq. D.32). Eq. D.32 is not necessarily a Gaussian

itself, but approaches one in a certain regime of high coherence γ2
and high num-
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ber of averaged n.

All calibration transfer functions are swept-sines taken with very high coherence

γ2 > 0.95, usually γ2 > 0.99 over most of the bandwidth, with plenty of averages

n ≈ 25 to ensure the uncertainty of the measurement is squarely Gaussian.

Therefore we can safely use the transfer function uncertainty from Bendat and

Piersol Table 9.6 for relative magnitude uncertainty σ2
|Ĥ|/|H| and absolute phase

uncertainty σ2
φĤ

: [174]

σ2
|Ĥ|
|H|

(f) = σ2
φĤ

=
1− γ2(f)

2nγ2(f)
(4.7)

4.4 Models

In this section we will overview the models used in the calibration procedure and

uncertainty budget creation.

4.4.1 Calibration group DARMmodel

The calibration group sensing functionC �nds its basis in the Buonanno and Chen

DARM optical plant explored in Section 3.6, Eq. 3.57. However, this function is

complex to fully model in real time, and can be simpli�ed to a poles and zeros

model without sacri�cing much accuracy. The algebra of this simpli�cation cal-

culated in [57] Appendix D, and summarized in [140] Eq. (6), reproduced here:

C(f) =

ge−2πifL/c

(
1 + i

f

z

)

1 + i
f

Qp|p|
− f 2

|p|2 −
ξ2

f 2

(4.8)

where g is the optical gain in W/m, z is the homodyne zero, p is the complex

DARM pole with magnitude |p| and quality factorQp, and ξ is the spring frequency,

related to the phase to amplitude factor κ from Eq. 3.58:

z = fc
cos(φ+ ζ)− rs cos(φ− ζ)

cos(φ+ ζ) + rs cos(φ− ζ)
(4.9)

p = fc
1− rse2iφ

1 + rse2iφ
(4.10)

ξ2 = f 2
c

Pbsc

2π3λ0f 4
cmL

2

2rs sin(2φ)

1− 2rs cos(2φ) + r2
s

(4.11)

where fc = ωc/(2π) is the arm pole in Hz.

In the end, we can put Eq. (6) of [140] into a simple poles and zeros form by using

the known resonant sideband extraction parameters of the homodyne angle ζ =
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Figure 4.5: Sensing measurements vs sensing model C(f, t, ~λC) in Eq. 4.13, and

their residuals δC(f, t)/C(model)(f, t, ~λC). The Hanford sensing reference mea-

surement from January 4th, 2017 is shown in the four panels in red. The Livingston

sensing reference measurement from November 26th, 2016 is in the four panels in

blue. The model parameters
~λC were found via an MCMC. Physically, the mag-

nitude Bode plots represent how many milliamps of current are generated at our

transimpedance photodetector per picometer of di�erential arm motion from 5 to

5000 Hz. The drop in sensitivity at low frequencies shows the e�ect of anti-spring

detuning at both detectors. The 180 degree phase di�erence between Hanford and

Livingston is a sign convention di�erence between the detectors, most likely from

the DARM o�set sign.
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π/2 and detuning φ ≈ π/2, which sets |p| ≈ z and Qp ≈ 1/2. This cancels the

homodyne zero z with one of the DARM poles p, leaving only a factor of 1+if/frse

in the denominator.

The above approximation is known as the single pole approximation, and refers to

the fact that the DARM pole frse is enough to describe the high-frequency DARM

plant dynamics in our current operating scheme. The single pole approximation

also ignores the repeating resonances associated with the FSR at extremely high

frequencies f > 10 kHz, which is outside the detection bandwidth of the detector.

The spring frequency ξ2
is strongly dependent on the detuning φ. If φ = π/2

exactly, then ξ2 = 0. If φ > π/2, then ξ2 < 0 and DARM exhibits the optical anti-

spring. If φ < π/2, then ξ2 > 0 and DARM exhibits the optical spring. We note

that this tuning is the opposite sign of the usual two-mirror cavity optical spring

tuning [175]: the longer cavity in the SRC φ > π/2 produces an anti-spring, not a

spring. This is because the SRC is anti-resonant.

In the approximation that ξ2 � |p|2, the terms in the denominator of Eq. 4.8 with

|p| become zero. This approximation leaves

C ≈ f 2

f 2 − ξ2
, (4.12)

which can be described as two zeros at 0 Hz and two poles at |ξ|. The poles are

purely real if ξ2 < 0, and complex if ξ2 > 0.

From these approximations, we simplify Eq. 4.8 further to the calibration group

sensing model:

C(model)(f, t, ~λC) = κC(t)
HCe

−2πifτC

(
1 + i

f

frse

) f 2/f 2
s(

1− f 2

f 2
s

+ i
f

fsQs

) (4.13)

where HC is the optical gain in cts/m, τC is the delay constant dominated by the

light propagation in the arms, frse is the single DARM pole, fs is the DARM spring

frequency (equal to ξ), Qs is the DARM spring quality factor, and κC(t) is the time

dependent optical gain factor monitored via calibration lines. frse, fs, and Qs are

also monitored. Both f 2
s and fs have the same sign, and can be positive or negative

according to 4.11.

These parameters are collected into the sensing function parameter vector
~λC :

~λC =
(
HC frse δτC fs Q−1

s

)T
(4.14)
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Table 4.1: Hanford (left) and Livingston (right) sensing function model parame-

ters
~λC MCMC �t values and uncertainties for O2. The �ts were performed on

Hanford’s January 4th, 2017 reference measurement and Livingston’s November

26th, 2016 reference measurement. The model corresponding to these parameters

can be seen in Figure 4.5. The corner plot showing the MCMC results from the

Hanford reference measurement is shown in Figure 4.7.

Hanford Parameters Variable Value
+1σ
−1σ Units

Optical Gain HC 3.834+0.003
−0.003 mA/pm

Coupled Cavity Pole fCC 360+2
−2 Hz

Time Delay δτC 0.6+1.3
−1.3 µs

Optical Spring Frequency fS 6.87+0.03
−0.03 Hz

Optical Spring Inverse Q Q−1
S 0.034+0.004

−0.004 -

Livingston Parameters Variable Value
+1σ
−1σ Units

Optical Gain HC 3.288+0.007
−0.007 mA/pm

Coupled Cavity Pole fCC 369.5+1.0
−0.9 Hz

Time Delay δτC 0.84+0.13
−0.13 µs

Optical Spring Frequency fS 2.6+0.2
−0.2 Hz

Optical Spring Inverse Q Q−1
S 0.005+0.009

−0.004 -

Figure 4.5 shows the results of the �t of the model in Eq. 4.13 to the reference

measurement in O2. Table 4.1 shows the parameters used in Figure 4.5.

4.4.1.1 Sensing systematic errors

Our model of the sensing function C(model)(f, t, ~λC) is an approximation. The true

detector sensing function changes over time and deviates from the sensing model

at high frequencies. The sensing model dynamically corrects for κC(t) with real-

time measurement. However, frse, fs, andQ−1
s are also changing in time, but were

not corrected for in the model in O1 or O2.

The time dependence in frse was included in the calibration uncertainty budget

as a known systematic error, since it was tracked via real-time measurement but

could not yet be dynamically corrected for in the model. The time dependence in

fs andQ−1
s results in expanded uncertainty at low frequency. The total systematic
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error in the sensing function for O1 and O2, δC(f, t), was

δC(f, t)

C(model)
=

(
1 + if/frse

1 + if/frse(t)

)
δCGP (f)

C(model)
e−2πifδτC . (4.15)

The �rst term is the explicit correction for time dependence of the coupled cavity

pole, frse(t). A correction time delay factor δτC modi�es the original time delay

τC included in the model.

Further systematic errors originate from the uncorrected time dependence of fs

and Q−1
s or additional unknown systematic errors. Any remaining frequency de-

pendent systematic errors are covered by a Gaussian Process regression δCGP (f).

Quantifying errors δCGP (f) is explained further in Section 4.7.

4.4.2 Long wavelength approximation

Implicit in the DARM modeling everywhere in this thesis is the long-wavelength
approximation. The long-wavelength approximation assumes that the size of the

detector is much less than size of the GW wavelength, L � λGW . This assump-

tion implies that the GW is “in-phase” across the entire detector, with no complex

dynamics due to di�erent phases of GW being incident on di�erent parts of the

detector. The long-wavelength approximation is good for low frequency GWs, but

at very high frequencies the wavelength approaches the size of the detector and

the full treatment is required [176–178].

The total response of the interferometer to GWs is sky location dependent. The

systematic errors from the long-wavelength approximation tend to be partially

canceled out by the systematic errors from the simple-pole approximation for

sensitive sky locations [178]. For a Fabry-Perot Michelson, [178] �nds that the

approximated response di�ers from the full response by around 2-3% at 1.2 kHz

for reasonable sky locations.

4.4.3 Actuation Model

The Advanced LIGO test masses are suspended via quadruple cascaded pendula

[26]. Each suspension stage has independent actuators, as shown in Figure 4.3.

The control signal, dctrl, is digitally distributed as a function of frequency to each

stage’s actuators via a digital-to-analog converter and signal processing electronics

to create the control displacement, ∆Lctrl.

The distribution �lters are designed taking into account all actuators’ authority

to displace the test mass. On the upper intermediate and penultimate stage, the
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Figure 4.6: Actuation stage measurements and models [HiAi(f, ~λi)]
(model)

. Each

index i is one of the actuation stages U , P , or T . The Hanford actuation reference

measurements from January 4th, 2017 are shown in the two left plots in red. The

Livingston actuation reference measurements from November 26th, 2016 are in the

two right panels in blue. The model parameters
~λA for Ai(f, ~λi) have been found

via MCMC. The actuation strength magnitude is in units of meters per dctrl count.

Notches seen in the magnitude plot are purposefully placed to avoid ringing up

suspension violin modes at speci�c frequencies. Each stage’s phase is stable for

frequencies at which that actuation stage dominates, but then rolls rapidly as it

loses authority at high frequencies. For this reason, the UIM and PUM stage phase

plots are cut o� at 300 Hz and 400 Hz respectively.
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digital-to-analog converter drives electromagnets on the reaction stage creating

a force on magnets attached to the suspended stage. On the test mass stage, the

digital-to-analog converter drives an electrostatic system which creates a force,

quadratic in the applied potential, via dipole-dipole interactions between the test

mass and a pattern of electrodes on the reaction mass (see Figure 4.3). With a

large bias voltage and low control voltage, the requested actuation forces on the

electrostatic system are in the linear regime.

The sum of the paths the digital control signal, dctrl, takes through each stage to

displace the test mass, ∆Lctrl, makes up our total actuation model:

A(model)(f, t, ~λA) =

[
κT (t)FT (f)HT AT (f)

+ κPU(t)
(
FP (f)HP AP (f)

+ FU(f)HU AU(f)
)]

e−2πifτA
(4.16)

whereU ,P , andT represent the three stages used for control; the upper-intermediate,

penultimate, and test mass stages, respectively. Each stage is composed of the nor-

malized electro-mechanical frequency response of the pendulum and its actuators,

Ai(f), the digital distribution �lter, Fi(f), a scale factor, Hi, and an overall digital

delay, τA, de�ned by the common computational delay from each stage. The model

time delay τA is 45 µs for Livingston and 61 µs for Hanford. κPU(t) is the time

dependence of the penultimate and upper intermediate scale factor, and κT (t) is

the time dependence of the test mass scale factor, as calculated in [179].

The penultimate and upper intermediate scale factor κPU(t) is not expected to vary

much over time, as it represents the change in the electromagnetic coil actuators’

strength. The test mass scale factor κT (t) does vary signi�cantly over time as the

electric charge on the test mass builds up, changing the actuation strength of the

electrostatic drive.

The reference scale factor for each stage, Hi, collects scale factors from that of the

digital-to-analog converter in V/cts, each stage’s drive electronics in A/V or V/V,

the actuator itself in N/A or N/V depending on the stage, and the compliance of the

suspension in m/N. Time delay correction factors for each stage δτi are extracted

from measurements as stage-speci�c corrections to the overall actuation delay τA.

The electro-mechanical transfer functions, Ai, for each stage are independently

measured and included in the model with negligible uncertainty. Remaining scale
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Table 4.2: Hanford (left) and Livingston (right) actuation function model param-

eters
~λA MCMC �t values and uncertainties for O2. The �ts were performed on

Hanford’s January 4th, 2017 reference measurements and Livingston’s November

26th, 2016 reference measurement. The models corresponding to these parameters

can be see in Figure 4.6. To get from Newtons/count units in this table to meter-

s/count in Figure 4.6, we multiply by the suspension models which have units of

m/N and are known to negligible uncertainty.

Hanford Parameters Variable Value
+1σ
−1σ Units

Upper Intermediate Gain HU 8.205+0.004
−0.004 × 10−8

N/cts

Upper Intermediate Delay δτU 57+45
−46 µs

Penultimate Gain HP 6.768+0.002
−0.002 × 10−10

N/cts

Penultimate Delay δτP 0.4+0.6
−0.6 µs

Test Mass Gain HT 4.3573+0.0008
−0.0008 × 10−12

N/cts

Test Mass Delay δτT 2.8+0.4
−0.4 µs

Livingston Parameters Variable Value
+1σ
−1σ Units

Upper Intermediate Gain HU 7.24+0.03
−0.03 × 10−8

N/cts

Upper Intermediate Delay δτU 102+56
−56 µs

Penultimate Gain HP 6.41+0.02
−0.02 × 10−10

N/cts

Penultimate Delay δτP −8.7+6.2
−6.1 µs

Test Mass Gain HT 2.513+0.004
−0.004 × 10−12

N/cts

Test Mass Delay δτT −4.5+1.4
−1.4 µs

factor and delay parameters dominate the actuation function uncertainty, and are

thus collected in the set of actuation parameters:

~λA =
(
HU δτU HP δτP HT δτT

)T
. (4.17)

The values of these reference parameters λA are found in Table 4.2.

Figure 4.6 plots the measured vs modeled actuation functions for every stage of

the quad pendulum used for control. Table 4.2 gives the MCMC �t parameters

used in Figure 4.6.
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4.4.3.1 Actuation systematic errors

The digital �lters, Fi, are known a priori, and time-dependent corrections κPU

and κT are dynamically corrected for when estimating h(t). The remaining com-

ponents of the actuation stage model, [HiAi]
(model)(f, ~λi), may contain systematic

errors. We allow for and quantify systematic errors in each actuation stage as

δAi(f)

A
(model)
i

=
δAGPi (f)

A
(model)
i

e−2πifδτi
(4.18)

where δτi is a time delay phase error on each stage, and δAGPi (f) is the system-

atic error in scale or frequency dependence from the Gaussian process regression

done on each stage’s measurement residuals. Systematic error calculations are

explained fully in Section 4.7.

4.4.4 Calibration lines and time-dependent factors

The detector is known to vary with time, as losses, alignment, and thermalization

of the interferometer a�ect the response. To capture the time dependence of the

calibration during a run, calibration lines are applied to the detectors during all ob-

servation times. A calibration line is a single-frequency excitation applied to the

detector via the photon calibrator and suspension actuators. Using four calibra-

tion lines, we are able to capture changes in the detector calibration and partially

correct for them in real time.

The calibration lines’ response to the applied excitation is recorded in the detector

readout derr. These transfer functions are recast into each time dependent param-

eter, κT , κPU , κC , frse, fs, and Qs. The calibration lines are driven with high SNR

such that the time-dependent parameter uncertainties are small relative to the pa-

rameter values. The calculation of the time-dependent parameters from calibration

lines is derived in [179].

4.5 Photon calibrator

The photon calibrator (PCAL) is the ultimate reference for strain data in the inter-

ferometer [180, 181]. The laser from two 1047 nm auxiliary lasers are re�ected o�

the end test masses at both sites. The laser intensity is modulated at audio signal

frequencies using an AOM, creating a �uctuating radiation pressure force. Radi-

ation pressure pushes on the test masses, creating a true displacement far above

DARM sensitivity.
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The power incident on the test masses is recorded via two photodiodes calibrated

to integrating spheres, one after the AOM before transmission onto the test mass,

the other upon re�ection o� of the test mass. Each photodiode’s readout is then

digitally recast as a displacement, x
(PC)
T , which is the amount of PCAL-induced

displacement contributing to ∆Lfree. The full suspension dynamics are incorpo-

rated into the transfer function from the PCAL power modulation to the test mass

length modulation, giving an accurate frequency response at and below the sus-

pension resonant frequency.

The relative PCAL actuation strength correction factor, HPCAL(t), tracks the ac-

tuation strength of the PCAL over time. HPCAL(t) has a value of 1 during times

of no clipping, and a value less than 1 during times of clipping. HPCAL(t) has a

relative uncertainty of 0.79% over all time. This will a�ect our total calibration

uncertainty budget directly in Section 4.7.

4.5.1 Systematic errors

The e�ect of the photon calibrator on the test mass is ultimately dead-reckoned

from the intensity measurement via integration sphere. The intensity measure-

ments are as accurate and precise as its possible for a laser intensity measure-

ment to be, with precision of around 0.5%. The entire setup also adds uncertainty,

yielding a total uncertainty on the PCAL of 0.79% for O1 and O2 [180]. For O3,

this number was reduced to 0.41%, largely due to a reduction in the claimed laser

power measurement uncertainty from NIST and measured temperature correction

factors [181]

The problem with achieving better precision with the photon calibrator is the setup

is prone to small systematic �uctuations. Many �uctuations in the photon calibra-

tor are possible. Clipping on the input or output beam is the most serious and

common, torquing the test mass instead of longitudinal displacement from PCAL

misalignment, temperature changes on the laser change the output laser power,

shaking of the PCAL laser or steering mirrors, saturated PCAL intensity servo

loops, and drifting alignment onto the test mass are possible. All a�ect the ulti-

mate calibration of this reference, and some are monitored and corrected for in

real time.

Some errors are not possible to know. Moving the integrating spheres between labs

is known to change their responsivity ratio [181]. The PCAL laser can introduce

elastic deformations on the test mass, which can a�ect the calibration accuracy
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above 1 kHz. Dead-reckoning the laser power incident on the test mass is di�cult

to do with the accuracy and precision required.

A photon calibration team at Hanford monitors the photon calibrator closely to

ensure the accuracy of the strain data. Regular maintenance is performed on the

photon calibrator, including small alignment adjustments. Any noticeable changes

are corrected quickly, times of the change are noted and incorporated into the

uncertainty budget.

4.5.2 Other calibration methods

Checks of gross systematic errors in the photon calibrator system have been per-

formed using the free-swinging Michelson and VCO calibration methods in O1

and O2. These found agreement with the photon calibrator to within 10% [136].

A Newtonian calibrator (NCAL) prototype was installed at Hanford prior to O3.

The NCAL is a heavy wheel with weights arranged in a quadrupole and hexapole,

which spins at 20 Hz near the test mass. This creates a �uctuating gravitational

potential with di�erent distance dependence (the quadrupole falls like 1/d2
, the

hexapole like 1/d3
). This may provide another check of the photon calibrator

accuracy.

4.6 Measurements

In this section, we explore how the DARM loop components C and Ai are mea-

sured.

The DARM model functions C(f, t) and A(f, t) are measured from swept sine

transfer functions of the DARM control loop. A swept sine transfer function is

a collection of single frequency excitations applied in successive steps across the

relevant frequency band of the detector.

The swept sine transfer functions have the closed loop DARM gain removed to

give transfer function measurements of each of the actuation stages and the sens-

ing function. Measurements of the detectors’ DARM control loops require the

detectors to be running at low-noise observation sensitivity. Once a full suite of

reference measurements is taken, the complete response of the detector to GWs

can be estimated.

To measure the PCAL to DARM transfer function, a known photon calibrator sine

wave excitation x
(PC)
T is applied to the detector while the DARM error signal derr

is recorded. This excitation is suppressed by the DARM control loop, forming the
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transfer function

derr(f)

x
(PC)
T (f)

=
C(f)

1 +G(f)
. (4.19)

The measurement suite is a collection of discrete sine waves swept over the fre-

quency range 5 Hz < f < 1 kHz. The closed loop gain, 1/[1 + G(f)], is then

measured independently with the standard in-loop suspension actuators at the

same frequencies as Equation 4.19. During times of clipping, we underestimate

the excitation x
(PC)
T by the relative actuation strength HPCAL(t), and must divide

x
(PC)
T by HPCAL(t) to correct for this. The measured sensing function is then

constructed as a function of frequency:

C(meas)(f) = HPCAL(t) [1 +G(f)]
derr(f)

x
(PC)
T (f)

. (4.20)

Above 1 kHz, the photon calibrator’s signal-to-noise ratio and actuation strength

are low. In this region, the open loop gain G(f) is negligible, so

derr(f)

x
(PC)
T (f)

≈ C(meas)(f)

HPCAL(t)
, f > 1 kHz (4.21)

We obtain the sensing function at high frequency by performing a long-duration

swept sine transfer function measurement. Each single frequency is driven for

many hours, and the response is compensated for time dependence using κC(t).

To measure the three actuation stages, similar swept sine excitations, xi(f), are

applied to each stage at points upstream of the known distribution �lters, Fi(f),

such that the detector readout measures

derr(f)

xi(f)
=
HiAi(f)C(f)

1 +G(f)
(4.22)

where the index i indicates either the upper intermediate U , penultimate P , or

test mass T stages. These excitations are then compared to an excitation from the

photon calibrator to isolate each actuation plant, as in Eq. 4.19, to form

[HiAi(f)](meas) =
1

HPCAL(t)

x
(PC)
T (f)

derr(f)

derr(f)

xi(f)
. (4.23)

The relative magnitude uncertainty and absolute phase uncertainty in a transfer

function swept sine measurement point is calculated by Bendat and Piersol Eq. 4.7.

The statistical uncertainty in a time-dependent parameter σκi(t), at any given time,

t, is derived from the measured coherence of the calibration lines used to form

them (see Equation 4.7, propagated as in [179]). These are used as part of the

MCMC and Gaussian process regressions in Section 4.7.
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4.7 Calibration error and uncertainty budget

The total calibration uncertainty budget consists of statistical uncertainty and sys-

tematic error. Statistical uncertainty is the intrinsic randomness associated with

measurements. Systematic error is the bias quantifying the di�erence between

model and measurement.

Our uncertainty budget is numerically evaluated by producing a large number

of realizations of the response function. To do this, we �rst estimate the DARM

model parameters using a Markov Chain Monte Carlo (MCMC) method. Next, we

stack all measurement residuals and estimate any deviations from the model using

a Gaussian process regression (GPR). Then, we sample our MCMC and regression

results to form ten thousand resultant response functions. These stacked response

functions form the calibration error and uncertainty budget.

4.7.1 DARMmodel parameter estimation

First, a measurement
~d = C(meas)(f) or A(meas)(f) is obtained as described in Sec-

tion 4.6. Next, the models
~M = C(model)(f, t, ~λC) or A(model)(f, t, ~λA) are �t to the

measurement by varying the model parameters
~λ = ~λC or

~λA via a Markov Chain

Monte Carlo (MCMC).

An MCMC algorithm can quickly approximate the posterior probability distribu-

tions on the values of the model parameters given a log likelihood function and

assumed prior distribution. The log likelihood, logL( ~M |~λ, ~d), is a simple least

squares comparison between the model values
~M(~λ) given model parameters

~λ

and measurement data
~d (as described in Section 4.6). All initial parameter esti-

mates in
~λC and

~λA were assumed to have �at prior distributions. The maximum

a posteriori (MAP) values of the posterior distributions are taken as the best �t

values. The ensemble of MCMC distributions are saved to be sampled for the total

uncertainty budget in subsection 4.7.3.

The MCMC posteriors are found for both detector’s frequency dependent models:

C(model)(f, t, ~λC) and A
(model)
i (f, t, ~λi). The best �t values are reported in Tables

4.1 and 4.2. The plots of the model �ts can be seen in Figures 4.5 and 4.6. The

one- and two-dimensional posterior distributions for the Hanford sensing model

parameters
~λC are shown in Figure 4.7. The MCMCs were performed using the

python emcee toolbox [182, 183]. The plot was produced with the corner
python plotting package [184].
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Figure 4.7: Posterior distribution on the Hanford sensing parameters
~λC . Each

column represents one of the �ve sensing parameters: optical gain HC , coupled

cavity pole fCC , time delay correction δτC , optical spring fS , and optical spring

inverse quality factor Q−1
S . Each point represents a sample in �ve dimensional

parameter space. The diagonal plots represent the variance on each parameter,

while the o�-diagonal plots show the covariance of each parameter with another.

The dashed vertical lines on the diagonal plots represent the median and 1σ values

for each parameter.
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4.7.2 Quantifying frequency dependent error and uncertainty

Throughout observing runs, collections of detector measurements are taken reg-

ularly. Every measurement taken is run through the MCMC method as detailed in

subsection 4.7.1. The measurement is then divided by its best �t DARM model to

produce a residual, as seen in Equation 4.5.

All of the residuals are gathered together into a collection of all measurements

taken over the observing run. These residuals have model-based systematic errors

removed, but still contain information about unknown systematic errors. We cre-

ate a distribution of functions that could describe this residual systematic error,

then we incorporate this distribution into the calibration uncertainty budget. To

accomplish this, we use a Gaussian process regression [185, 186].

A Gaussian process is a method of producing distributions over random functions.

The Gaussian process regression takes in data and a user-de�ned covariance ker-

nel. The kernel is an estimation of the similarity between any two points in the

domain, in our case the log frequency domain log(f). The regression then trains

on the provided data, tunes the covariance kernel hyperparameters to �t the given

data, and outputs a Gaussian posterior of potential function �ts to the data. This

allows an uncertainty budget to be produced for arbitrary frequencies, creating a

continuous posterior distribution from discrete data.

From the resulting posterior distribution, we can extract a most probable �t func-

tion, known as the mean function. The mean function becomes the systematic

error δCGP (f) and δAGPi (f) in Equations 4.15 and 4.18. We can also draw fre-

quency dependent uncertainties σGPδC and σGPδAi on the systematic error. Posteriors

representing σGPδC and σGPδAi will be sampled for the total uncertainty budget in sub-

section 4.7.3.

The main assumptions here are that residual unknown systematic errors in our

measurements are Gaussian in nature, and nearby points in the frequency domain

have related systematic errors.

The O1 and O2 Gaussian process regression trains on the residual data with the
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following covariance kernel

k(log(f), log(f ′)) = γ2
1 + log(f) · log(f ′)

+
(
γ2

2 + log(f) · log(f ′)
)2

+ γ2
3 exp

(
−(log(f)− log(f ′))2

2`2

)
(4.24)

where {γ1, γ2, γ3, `} are the hyperparameters of the covariance kernel. O3 used

a slightly di�erent covariance kernel, but yielded largely similar posteriors [94].

The hyperparameters are tuned by the Gaussian process via gradient descent to

best match the training data. This kernel assumes the detector plants’ systematic

error should be characterized in the log frequency domain, and that the error is

relatively smooth and can be captured by a squared exponential and quadratic

kernel.

An example collection of measurement residuals for the Livingston detector’s sens-

ing function and the resulting Gaussian process regression is shown in Figure 4.8.

Here we show the same data from Figure 4.5, but with additional measurements

from the entire observation run.

4.7.3 Total calibration uncertainty budget

The total calibration uncertainty budget for any given time is constructed from

many sampled response functions R(f, t) from Eq. 4.3. Each sample response

function is constructed by sampling from the posteriors of the response function

components. The response function components are:

1. The sensing DARM model parameters:
~λC =

{
HC , fCC , δτC , fS, Q

−1
S

}

2. The actuation DARM model parameters:
~λA = {HU , δτU , HP , δτP , HT , δτT}

3. The sensing Gaussian process systematic error: δCGP (f)

4. The actuation Gaussian process systematic errors: δAGPU (f), δAGPP (f), δAGPT (f)

5. The time dependent parameters: κT (t), κPU(t), κC(t), fCC(t)

6. The photon calibrator radiation pressure strength: HPCAL(t)

Each of these components to the response have had posterior distributions con-

structed previously: (1) and (2) from the MCMC ensemble results on the reference
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Figure 4.8: Gaussian process regression of Livingston’s sensing systematic er-

ror δCGP (f). The dark blue points are all the sensing measurement residuals,

δC/C(model)(f, t, ~λC), taken over the entire observation run. This includes the

residuals from the Livingston reference measurement in the far right plots of Fig-

ure 4.5. The light blue line is the mean function representing systematic error. The

light orange envelope is the 1σ uncertainty on the systematic error.

measurements, (3) and (4) from the Gaussian process regressions on the residuals

to incorporate unknown systematic errors, (5) from the calibration line measure-

ments and coherence, and (6) from the 0.79% uncertainty in HPCAL(t) from the

photon calibrator paper [180].

Ten thousand samples are drawn from each of these posterior distributions. These

samples are used to compute ten thousand sample response functions Ri(f, t) ac-

cording to Equation 4.3. Each of these response functions is then divided by the

nominal response function, R(model)(f, t), which is constructed from the sensing

modelC(model)(f, t, ~λC) and actuation modelA(model)(f, t, ~λA). This gives ten thou-

sand relative response functions Ri(f, t)/R
(model)(f, t), each of which is plotted in

Figure 4.9. The median of this relative response function distribution constitutes

the overall systematic error, and the 68th percentile upper and lower contours are

the statistical uncertainty, both a function of frequency.
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Figure 4.9 shows the calibration uncertainty at the time of the most recent detec-

tion, GW170104. Table 4.3 reports the “extreme uncertainty” for calibration be-

tween 20-1024 Hz during GW170104. Extreme uncertainty refers to the maximum

and minimum of the systematic error±1σ uncertainty within a certain frequency

band. This quantity is useful for searches requiring single number calibration un-

certainty values, and ignore calibration systematic errors or frequency-dependent

calibration uncertainty.

4.7.4 Calibration uncertainty for entire observing runs

Calibration error and uncertainty evolves over observing runs, a�ecting the results

of continuous and stochastic gravitational wave searches [156, 157, 159, 160]. To

assess the uncertainty of the detectors throughout an observing run, a total cali-

bration uncertainty budget is made for every hour of observing data.

Collapsing the uncertainty budgets along the time axis, the 68th, 95th, and 99th

percentile (1σ, 2σ and 3σ) limits are reported. The entire run’s calibration error

and uncertainty is often reduced to a single statement such as “over the course

of an observing run, the 1σ uncertainty is no larger than XX % in magnitude and

YY degrees in phase.” To do so, the extreme uncertainty is taken in magnitude

(XX%) and phase (YY degrees) using the 68th percentile contour over the relevant

frequency band.

4.8 Results

The �nal calibration uncertainty budget for GW170104 is shown in Figure 4.9. The

“extreme uncertainties”, or the maximum and minimum of error±1σ uncertainty,

are reported in Table 4.3.

The O1 uncertainty quanti�cation method from [136] reported 10% and 10 de-

grees uncertainties for GW150914. The O1 calibration uncertainties for all three

O1 events are in Table III in [187]. The uncertainty quanti�cation method used for

GW170104 was repeated on the O1 events, reported in Appendix A of [5].

Systematic errors are known discrepancies between the detector model and mea-

surement. At low frequency, the systematic error is dominated by the Gaussian

process regression on the actuation function residuals. At high frequency, �uctu-

ations in the coupled cavity pole fCC(t), which are not corrected for in the cali-

bration procedure, dominate the error budget.

Uncertainty everywhere is dominated by the Gaussian process regression on both



118

functions. The uncertainty from the MCMC parameter �ts on
~λC and

~λA, and the

uncertainty in the time dependent parameters κT (t), κPU(t), κC(t), and fCC(t)

tend to be about an order of magnitude smaller than the Gaussian process regres-

sion results. The 0.79% uncertainty in the photon calibration strength HPCAL(t)

contributes only to magnitude uncertainty.

The uncertainty and error for O2 strain data from November 19 through June 19

is shown in Figure 4.10. This percentile plot was created by taking all observing

time, producing an uncertainty budget for each hour, then compiling each budget

into the percentiles shown. Overall, the detector calibration is stable over time.

This consistency is largely due to the correction of the scale factors κT (t), κPU(t),

and κC(t) in the calibration pipeline models. Uncorrected systematic errors in the

cavity pole fCC(t) are particularly visible at Livingston at high frequency.

During some parts of the second observing run, we have found that the re�ection

photodetector of the PCAL system at the Hanford detector had su�ered from clip-

ping. Clipping means that the PCAL laser light incident on the photodetector was

slightly o�, giving a false low reading of how much power the PCAL was emitting.

This means any measurement taken using the re�ection photodiode as reference

had a systematic error in scale. This includes the scale of any continuously mea-

sured time-dependent model parameters which are applied as correction factors

for the estimated detector output, h(t). We have quanti�ed this systematic error

using the same system’s transmission photodiode, and included it as systematic

error in the overall response. The systematic error was on the order of a few per-

cent, and can be seen re�ected in the upper percentiles of the Hanford uncertainty

in Figure 4.10.
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Figure 4.9: Total calibration error and uncertainty budget at the time of GW170104.

The uncertainty in the calibrated response function for the Hanford detector is on

the top, and for Livingston is on the bottom. The y axis is relative response er-

ror δR/R(model)
and uncertainty σR/R

(model)
, with magnitude on top and phase on

the bottom. The solid line is the median relative response, interpreted as the fre-

quency dependent systematic error on the model response R(model)
. The dashed

lines represent the 1σ uncertainty on this error. Stacking ten thousand drawn re-

sponse function samples produces the numerical uncertainty budget shown here.

The extreme 1σ uncertainties are presented in Table 4.3.
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Figure 4.10: Total calibration uncertainty percentiles for observing run two. The

percentiles are created for all of O2 data from November 30, 2016 to August 25th,

2017. Hanford’s uncertainty plots are the red on the top, and Livingston’s are the

blue on the bottom. The y axis is relative response δR/R(model)
magnitude (top)

or phase (bottom), stacked for all times in the observing run. The dashed white

line is the median relative response, while the colors represent the 1σ calibration

uncertainty for 68%, 95%, and 99% of the run’s time. The largest changes in the

calibration at Hanford were due to clipping of the photon calibrator laser misre-

porting the strength of our response. The largest calibration changes at Livingston

were due to �uctuations in the coupled cavity pole, which changes in time but is

not yet corrected for in our calibrated data.
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Table 4.3: Below are the extreme calibration uncertainty values for Hanford and

Livingston at the time of GW170104 in the 20-1024 Hz frequency range. “Extreme

uncertainty” refers to the maximum and minimum of error ±1σ uncertainty. The

plots informing this table can be seen at Figure 4.9

GW170104 Uncertainty Hanford Livingston

+1σ Magnitude [%] 4.6 % 3.7 %

−1σ Magnitude [%] -1.0 % -3.7 %

+1σ Phase [degrees] 1.8
◦

1.9
◦

−1σ Phase [degrees] -0.9
◦

-1.4
◦

4.9 Fundamental uncertainty limit

In O1 and O2, the relative uncertainty in the photon calibrator actuation strength

HPCAL(t) was 0.79% [180]. This has been reduced to 0.41% in O3 [181]. This is

the fundamental limit on our uncertainty in the response R and therefore the GW

strain data h. The uncertainty in HPCAL(t) is dominated by uncertainty in the

laser power and test mass rotation [180]. To push this fundamental limit lower,

better measurements of the photon calibrator laser power and test mass rotation

must be made, or more precise methods of calibration outside of the photon cali-

brator may need to be considered.

In the end, the best way to strengthen our con�dence in the systematics of the

dead-reckoned photon calibrator measurement is to compare other calibration

methods to its �nal results. The Newtonian calibrator is probably the best currently-

existing competitor with the photon calibrator [188, 189]. The NCAL has its own

share of systematic errors, and is less well-characterized than the photon calibra-

tor. But if these methods agree to some extent, with mostly uncorrelated system-

atics, we can have far greater con�dence that the overall calibration is accurate.

Other methods of calibration were used in initial LIGO prior to the photon cali-

brator. The free-swinging Michelson is the most familiar, which calibrates DARM

to the wavelength of the laser frequency by allowing the end test mass to swing

and produce dark �ashes in the Michelson.

The VCO calibration calibrates DARM to the green ALS DIFF control signal which

is in units of Hz. These Hz are related to meters of DARM motion by δνg/νg =

−δL−/L.
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Figure 4.11: Simplistic control scheme for the simultaneous oscillator calibration.

A strong calibration signal at fcal is input into DARM, in this case represented as a

dither on the X-arm ∆Lx. Both CARM and the green arm PDH feedback the signal

to their respective laser frequencies fPSL and fAUX . The calibration signal comes

from the frequency beatnote fbeat between the PSL fPSL and AUX fAUX lasers.

Both the free-swinging Michelson and VCO calibration su�er from the fact that

true DARM displacement cannot be directly injected into a fully locked interfer-

ometer. Instead, the quad suspension actuation must be calibrated into meters of

motion, which is then used as the calibration injection itself. The suspension can

only be calibrated in a high-noise state of the interferometer as well, leading to

less precision. This two-step transfer function calibration will incorporate more

uncertainty from more measurements than the single-step photon calibration.

4.9.1 SoCal: Simultaneous oscillator calibration

Requirements on the calibration accuracy may become extremely low, near 0.1%,

for astrophysical parameter estimation in future detectors such as Einstein Tele-

scope and Cosmic Explorer, where some detection SNRs will be > 100. Another

calibration method is under development at the Caltech 40m, colloquially known

as SoCal (for “simultaneous oscillator calibration”).

Figure 4.11 gives a diagram overview of the system. In short, SoCal uses the in-

frared laser to sense CARM motion, a green laser to sense a single arm’s motion,
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Figure 4.12: DARM, CARM, ALS COMM measured noises, as well as the current

ALS X green PDH shot noise limit. The ALS parameters and measurement are

taken from Section 3.3 and Figure 3.10, the DARM noise from 3.1, and the CARM

noise from 3.17. Currently, the huge dynamic range between ALS performance and

DARM renders a scheme like SoCal impossible: DARM is 107
times more sensitive

that ALS.

and then recovers DARM motion from the beatnote from those signals mixed to-

gether. The infrared PSL and auxiliary laser frequencies fPSL and fAUX are locked

to the CARM and X-arm interferometer cavity lengths:

fPSL ∝
Lx + Ly

2
, fAUX ∝ Lx. (4.25)

The green fringe 2fAUX is adjusted such that fAUX is within one FSR of fPSL,

then the two beats are mixed on a beatnote sensor and low-passed to produce

fbeat such that

fbeat = |fPSL − fAUX | ∝
Lx − Ly

2
(4.26)

which is proportional to the DARM signal in Hz.

If a strong calibration line ∆Lx is injected at a frequency fcal, this will modulate

the beatnote fbeat with sidebands fbeat±fcal. The usual DARM sensor, the DCPDs,
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will detect the signal at fcal as well. The DCPDs can then be calibrated into Hz

and meters using the output fbeat ± fcal.

In reality, we will be detecting the modulated power on the beatnote sensor Pbeat

which comes from the laser �elds
~EPSL and

~EAUX . Both laser �elds will be fre-

quency modulated by the change in arm length ∆Lx at frequency ωc, but the PSL

signal will be modulated by the CARM signal ∆L+ ≈ ∆Lx/2:

~EPSL = Epe
iωpt
(
1 + ik∆L+e

iωct + ik∆L+e
−iωct)

(4.27)

~EAUX = Eae
iωat
(
1 + ik∆Lxe

iωct + ik∆Lxe
−iωct)

(4.28)

The modulated power in the beatnote Pbeat that is proportional to DARM will

come from the cross terms between the �elds. Ignoring small terms proportional

to ∆Lx∆Lc yields

Pbeat = ~E∗PSL ~EAUX + ~EPSL ~E
∗
AUX (4.29)

Pbeat = 2EpEa(cos((ωp − ωa)t) + 2k(∆Lx −∆L+) cos(ωct) sin((ωp − ωa)t)).
(4.30)

Here we explicitly see the DARM term ∆L− = ∆Lx −∆L+ at a frequency ωc in

the sine quadrature of the beat frequency ωbeat = ωp − ωa.

4.9.1.1 Advantages

The advantage of this technique is, to zeroth order, the systematic error is domi-

nated by knowledge the length of the arms and the wavelength of the laser, both

of which are known to 1 ppm. The uncertainty can be made negligible compared

to the systematic uncertainty by increasing the drive signal or the integration time

to achieve a suitable SNR.

Another advantage is the beatnote sensor can be relatively narrow audio-band

due to the length of the LIGO arms. Because the FSR = 37.5 kHz, the beatnote

frequency fbeat can always be made to be within FSR/2 by changing the fringe

the green is locked on.

The demodulation of the audio-band calibration line can be done digitally. This

removes the noise complexity of an RF detection scheme with crystal oscillator

noise.

The SoCal frequency calibration needs only to be performed once, and can be

used to more accurately calibrate the more versatile photon calibrator or electro-

static drives. If very large calibration lines are not possible, required SNRs may be
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achieved by integrating a line at frequency fi for long times T :

SNR(fi) =
√
T

∆νcal(fi)√
Sν,dof(fi)

(4.31)

where ∆Lcal(fi) is the modulation line with units of meters, and

√
SL,dof(fi) is the

ASD of the noise in the degree of freedom in units of m/
√

Hz.

Translating SNRs to uncertainty is done in Appendix E, Eq. E.25. To achieve a rel-

ative uncertainty

√
Var[∆νcal(fi)]/∆νcal(fi) of 0.1% with an SNR = 10, around

n = 50000 averages are required. This translates to roughly T = n/fb seconds,

where fb is the frequency binwidth. If we place our calibration line at frequency

fcal = 50 Hz, then a frequency binwidth fb = 10 Hz is reasonable, and the cali-

bration can be accomplished in nT = 5000 seconds.

However, with a short ASD time of T = 0.1 seconds there is a tradeo� with SNR.

The signal of the photon calibrator and electrostatic drive for T = 10 s is plotted in

Figure 4.12 [180]. Appendix E explores the line height estimate in depth, including

the bias and uncertainty.

4.9.1.2 Challenges

Figure 4.12 shows the noise levels relevant for SoCal. The biggest issues with this

scheme are the infrastructure required to make it feasible, and the huge calibration

line required to ensure the signal shows up above the CARM noise and green PDH

shot noise.

The infrastructure changes would be overall improvements to the ALS subsys-

tem to make it possible to reach the green shot noise limit. Current ALS limits

are the VCO which drives the laser frequency control and phase-wrapping from

relative motion between the suspended in-vacuum and in-air tables. Putting ALS

sensors in-vacuum at the vertex and developing a better green frequency stabiliza-

tion scheme is required. Also, choosing green re�ection parameters with SoCal in

mind could push down the green shot noise limit.

Another limit is the beatnote sensor shot noise. The level of light on the beatnote

sensor will need to be extremely high to achieve an appreciable SNR, even with an

extremely strong calibration signal. Figure 4.12 shows the shot noise for a phase-

sensitive PD with 30 mW.

The very large calibration line must make up the factor 10000 di�erence between

DARM and the green shot noise. Also, the line must clear the IMC sensing noise
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to show up in CARM. Achieving these lines with the current low noise actuators,

the photon calibrator and low-noise electrostatic drive, is feasible, but may require

switching to the high-noise electrostatic drive setting or coil drivers on the upper

stages, which is not the low-noise state we want to calibrate DARM in.

Very large drives cause massive upconversion as sensors and controls saturate.

These can not only pollute the spectrum, but cause a nonlinear response in the

sensors we are trying to calibrate. Noise must be reduced to the point where the

calibration input required is feasible for the interferometer to handle without los-

ing lock. This can be achieved with a lower calibration line amplitude, but a longer

integration time.

Systematic errors may arise from auxiliary controls in the interferometer. For in-

stance, angle-to-length coupling will be a problem if the co-alignment of the two

beams in the arm is bad. Torque is known to couple to length, and could couple

to the two beam di�erently. For this type of calibration, angle-to-length coupling

to DARM, CARM, and ALS will have to be monitored and minimized, so the ALS

and CARM signals are following the true lengths of the cavities accurately.

Another source of systematic error is the fact that CARM is stabilized to the sum

of common arm length and the PRC. The huge length drive required for this cali-

bration method will show up in the PRCL control. PRCL will have to be notched

at the frequency of the drive prior to calibrating there.

Finally, the interferometer is known to change over time, with thermalization and

realignment and glitches slightly changing the interferometer response. If long

integration times are required, systematics from interferometer �uctuations in op-

tical gain will need to be incorporated into the �nal uncertainty budget.

4.10 Future Work

As we reduce the calibration uncertainty, properly characterizing systematic er-

rors becomes much more important for precision astrophysics. Any systematic

errors left unaccounted for in the calibrated data can result in systematic errors

in binary black hole source parameters, compact binary merger rates, or tests of

general relativity. Our direct measurements of our detector control loop plants

combined with the physics-motivated response function model provide a sanity

check that our understanding of the interferometer is close to correct.
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4.10.1 Other sources of calibration systematic error

The uncertainty budget does not include error from test mass elastic deformation

due to the PCAL laser exciting test mass vibrational modes. Preliminary evidence

suggests that above around 3 kHz, elastic deformation has a signi�cant e�ect on

the calibration accuracy. Elastic deformation due to the PCAL must be further

understood, monitored, and included in the uncertainty budget directly.

There is a di�erence between the quadruple pendulum response to an actual grav-

itational wave versus its response to the photon calibrator. A gravitational wave

displaces the entire quad pendulum in the lab frame, whereas the photon calibra-

tor only pushes on the test mass. The e�ect of this di�erence on calibrated GW

data is on the order of about 1% at 10 Hz, and increases at lower frequencies. This

now must be considered quantitatively as uncertainties approach this level.

4.10.2 Conclusions

The uncertainty and systematic error estimates reported in this chapter represent

a comprehensive characterization of our Hanford and Livingston detector calibra-

tions for observing run two. In Advanced LIGO’s lowest noise region, from about

20 Hz to 1 kHz, the uncertainty in the calibrated data has been reduced from what

was previously reported in [136]. The uncertainty estimates for O2 give more re-

�ned results, with uncertainty growing at extreme frequency regions below 20 Hz

and above 1 kHz, and reduced uncertainty in the low noise frequency region.

Interesting astrophysics exists at high GW frequencies. The equation of state of the

neutron star, higher multipoles of GW emission near merger (already detected in

[11]), GW “echoes”, supernova cores bounces, and unexpected GW detections are

all potential exotic phenomena that high frequency GWs carry information about.

Calibration accuracy at high frequency will be important for learning about each

of these extreme GW regimes.

GW170104’s detection and parameter estimation are primarily limited by noise,

and not by calibration uncertainty. As Advanced LIGO becomes more and more

sensitive, the signal-to-noise ratio of some detections will become quite large (as

high as 100 or more), and calibration uncertainty will begin contributing signif-

icantly to source parameter estimation uncertainty. With more observing time

comes more detections, enabling new tests of general relativity which will be lim-

ited by the precision of our detector data. Precision astrophysics demands the

best understanding of our calibrated data possible. The methods described in this
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paper were developed primarily to enable the best science possible from LIGO’s

gravitational wave detections.
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C h a p t e r 5

CORRELATED NOISE

Advanced LIGO operates in DC-readout con�guration, with two DC photodetec-

tors (DCPDs) at the antisymmetric port [41, 190]. The signal from di�erential arm

motion (DARM), and therefore gravitational waves (GWs), appears in the sum of

these two DCPDs. Noise from the interferometer, known as correlated noise, is

measured identically in both DCPDs. Sensing noises, like shot noise and photode-

tector dark noise, are incoherent between each DCPD.

Quantum shot noise tends to dominate the DARM spectrum over most of the GW

detection band [22, 47]. It is possible to measure the correlated noise by measuring

the cross spectral density (CSD) between the two DCPDs [191, 192]. Correlated

noise measurements are useful because they expose noise sources under the quan-

tum shot noise.

5.1 Introduction

There are a number of complications that must be considered for the correlated

noise measurement:

1. the DARM loop must be measured and removed,

2. injecting squeezed light correlates the shot noise in the DCPDs,

3. a large number of averages must be taken to integrate away the shot noise

to reach the true correlated noise �oor, and

4. detector glitches which inject large transients into DARM must be avoided.

The correlated noise measurement requires hours of data to integrate away shot

noise. However, large glitches occur on the order of one every �fteen minutes,

spoiling the mean-averaged power spectral densities (PSDs) of the DCDPs. Large

glitches can be “gated” by removing the glitchy data by hand, but the measurement

is still susceptible to small glitches that do not meet our gating criteria.

To mitigate having undetected glitches in the DARM data, it is often useful to

use median-averaging for estimating PSDs and CSDs. Median-averaging has an
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intrinsic bias as opposed to mean-averaging. For PSDs the bias factor is understood

to asymptote to log(2) [57, 193]. For CSDs, the result is covered in Chapter 6.

Another useful technique for removing CSDs containing glitches while still using

mean-averaging is “PSD rejection”, covered in Appendix F.

In this chapter, we �rst review the DARM control loop, review the method for

extracting the correlated noise from the DCPD data, and show results from the

correlated noise �oor estimation of the LIGO Hanford interferometer during Ob-

serving Run 3.

5.2 Method

Here we overview the method of extracting the correlated noise spectrum, assum-

ing there is no squeezing injected into the antisymmetric port. This section follows

the procedure in [192].

"⇒

Figure 5.1: Simpli�ed DARM control loop diagram, including the two-

photodetector sensing scheme. A and B are the transfer functions of the two

DCPDs, plus the photodetector analog electronics and ADCs, with units of

[cts/W]. Y is the actuator with units [m/cts]. Z is the interferometer response to

di�erential arm motion, in [W/m]. A 50:50 beamsplitter splits the light from the

interferometer onto the two photodetectors. The signals from DCPD A and B, da
and db, are summed to form the DARM error signal, d+, and subtracted to form

the null channel, d−. The shot noises na and nb are uncorrelated sensing noises

added to da and db, respectively. The correlated noise nc is here simpli�ed as being

entirely displacement noise causing actual motion of the interferometer optics.

5.2.1 Correlated noise without squeezing

Figure 5.1 shows a simpli�ed DARM loop. We would like to measure the corre-

lated noise coming from the interferometer, 〈nc, nc〉. However, shot noises 〈na, na〉
and 〈nb, nb〉 drown out the correlated noise for most of the bandwidth. Addition-
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ally, the DARM control loop that keeps the interferometer on resonance correlates

sensing noise by injecting it into the loop as mirror motion. This is how shot noise

on DCPD A can appear on DCPD B, only in the bandwidth of the DARM loop

(< 50 Hz). By cross-correlating the DCPDs 〈da, db〉 and removing the DARM

loop, the correlated noise can be extracted.

The open loop gainG of the DARM loop is just the product of all the loop transfer

functions, while the DARM sensing function C is usually calculated from photon

calibrator displacement to DARM error signal in units [cts/m]:

G =
1

2
Y Z(A+B) (5.1)

C =
1

2
Z(A+B) (5.2)

Solving the loop in Figure 5.1 for the DARM error signal, aka the sum channel d+,

and the null channel d−:

d+ =
1

1−G(C nc + na + nb) (5.3)

d− = na − nb (5.4)

Taking the power spectral density of the sum and null channels yields

〈d+, d+〉 =
1

|1−G|2
(
|C|2 〈nc, nc〉+ 〈na, na〉+ 〈nb, nb〉

)
(5.5)

〈d−, d−〉 = 〈na, na〉+ 〈nb, nb〉 (5.6)

assuming that nc, na, and nb are all independent, so e.g. 〈na, nb〉 = 0. If we cali-

brate the DARM error PSD into meters by multiplying 〈d+, d+〉 by |1−G|2/|C|2,

the shot noise terms 〈na, na〉 and 〈nb, nb〉 still appear.

Solving the diagram in Figure 5.1 for split DARM error signals da and db yields

da =
1

2(1−G)
((2−G)na +Gnb + Cnc) (5.7)

db =
1

2(1−G)
(Gna + (2−G)nb + Cnc) (5.8)

If we look at the power spectral densities of each individual 〈da, da〉 and 〈db, db〉
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and the cross spectral density 〈da, db〉, we get

〈da, da〉 =
1

4|1−G|2
(
|2−G|2〈na, na〉+ |G|2〈nb, nb〉+ |C|2〈nc, nc〉

)
(5.9)

〈db, db〉 =
1

4|1−G|2
(
|G|2〈na, na〉+ |2−G|2〈nb, nb〉+ |C|2〈nc, nc〉

)
(5.10)

〈da, db〉 =
1

4|1−G|2
(
G(2−G∗)〈na, na〉+G∗(2−G)〈nb, nb〉+ |C|2〈nc, nc〉

)
.

(5.11)

Using Eqs. 5.9, 5.10, and 5.11, we can solve for the correlated noise 〈nc, nc〉. Re-

calling that 〈db, da〉 = 〈da, db〉∗, the correlated noise is

|C|2〈nc, nc〉 =

(
|2−G|2〈da, db〉+ |G|2〈db, da〉

−G(2−G∗)〈da, da〉 −G∗(2−G)〈db, db〉
)

(5.12)

By measuring the individual DCPD signals da and db and applying the DARM loop

gain G and sensing function C , the correlated noise from the interferometer can

be directly estimated.

Figure 5.3 shows the O3 correlated noise budget for 〈nc, nc〉.

5.2.2 DC readout with squeezing

Now suppose that squeezed light is injected into the antisymmetric port of the

interferometer. This correlates the noise on each DCPD, i.e. 〈na, nb〉 6= 0 [195].

Here we review the DC readout detection scheme, how squeezing correlates the

shot noise appearing on each photodetector, and calculate the squeezed shot noise

cross spectral density 〈na, nb〉 for a DC readout interferometer.

To calculate 〈na, nb〉 we brie�y review shot noise in a DC readout interferometer

with split photodetection, as shown in Figure 5.2. This will follow the derivation

and notation in [194].

From Figure 5.2,
~L is the local oscillator,

~̀
is the quantum vacuum,

~S is the DARM

o�set light, and ~s is the gravitational wave signal plus the output squeezed vac-

uum.

The capital letters refer to the carrier, while the lowercase letters refer to the audio

sidebands that beat with the carrier. DC readout operates with no local oscillator
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Figure 5.2: Diagram of the DC readout detection scheme with split photodetection

[194]. The beamsplitter is 50:50 with the re�ection convention designated by the

plus and minus signs. The DCPD sum n+ = na+nb contains the information from

the interferometer, including squeezed vacuum and gravitational wave signal. The

DCPD null n− = na − nb contains the information from the quantum vacuum.

~L = 0, and a homodyne angle ζ = π/2, which puts the gravitational wave signal

entirely in the amplitude quadrature upon exit from the interferometer.
~S is set

to some non-zero value to beat against the squeezed vacuum ~s. For the shot noise

derivation, we assume that the GW signal and interferometer correlated noise is

zero.

The light incident on each DCPD
~A+ ~a and

~B +~b is

~A+ ~a =
1√
2

(
~S + ~s+ ~L+ ~̀

)
(5.13)

~B +~b =
1√
2

(
~S + ~s− ~L− ~̀

)
(5.14)

First, recall that the local oscillator
~L = 0. Second, the homodyne angle de�nition

from [22] for the signal ~s is:

sζ = s1 sin(ζ) + s2 cos(ζ). (5.15)
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The Advanced LIGO interferometers are dual-recycled resonant-sideband extrac-

tion in DC readout con�guration, meaning the signal-recycling cavity is tuned to

φ = π/2. This puts the GW signal, upon exit from the interferometer, in the ampli-
tude quadrature s1. It also places the static DARM o�set light

~S, in the amplitude

quadrature.

For now, we ignore contrast defect and set the homodyne angle ζ = π/2 using

Eq. 5.15, so

~S =

(
S

0

)
(5.16)

picks out the output amplitude quadratures s1 = s and `1 = `. The light is con-

verted into current on the DCPDs, represented by Na + na and Nb + nb.

Na + na = | ~A+ ~a|2 =
1

2
S2 + Ss+ S` (5.17)

Nb + nb = | ~B +~b|2 =
1

2
S2 + Ss− S` (5.18)

where terms proportional to s2
, s`, and `2

are small enough to be negligible. Na =

Nb = S2/2 represents the DARM o�set light being split in half by the beamsplitter,

nominally Na = Nb ≈ 20 mW in Advanced LIGO.

Removing DC components represented by the capital letters from Eqs. 5.17 and

5.18, we can calculate the shot noise sum n+ and null n−:

n+ = 2Ss (5.19)

n− = 2S`. (5.20)

This illustrates how, with the DC readout scheme, the sum signal picks out the

squeezed vacuum signal from the interferometer s and the null signal picks out

the unsqueezed vacuum `.

The squeeze parameter r is used to quantify how quantum measurement uncer-

tainty increases and decreases between quadratures [196]. The output squeezed

vacuum in s is phased such that the maximum squeezing e−r occurs in the am-

plitude quadrature at the output. The quantum vacuum in ` has no squeezing.

Calculating the power spectral densities of the sum and null signals:

〈n+, n+〉 = 4S2〈s, s〉 = 4S2e−2r
(5.21)

〈n−, n−〉 = 4S2〈`, `〉 = 4S2. (5.22)
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Here we have assumed that the unsqueezed quantum vacuum shot noise 〈`, `〉 = 1,

which follows from our de�nition of quadratures in Section A.3. The sum shot

noise PSD is reduced by the squeeze factor e−2r
, which is often expressed in dB by

setting e−2r = 10−
dBsqz

10 .

The shot noise cross spectral density 〈na, nb〉 is the important quantity that arises

when calculating the correlated noise between DCPDs. From Eqs. 5.17 and 5.18,

the cross spectral density is found:

〈na, nb〉 = S2〈s+ `, s− `〉
= S2(〈s, s〉 − 〈`, `〉+ 〈s, `〉 − 〈`, s〉)

〈na, nb〉 = S2
(
e−2r − 1

)
(5.23)

where we have no correlation between our squeezed and unsqueezed vacuum, so

〈s, `〉 = 〈`, s〉 = 0, and we have used the de�nitions from Eqs. 5.21 and 5.22 and

written 〈s, s〉 = e−2r
and 〈`, `〉 = 1.

A key observation here is that, for true squeezing where r > 0, 〈na, nb〉 is real and

negative. This implies that

1. when detecting squeezed light, the power measured on each DCPD is anti-
correlated,

2. because 〈na, nb〉 is real, 〈nb, na〉 = 〈na, nb〉,

3. correlated noise due to squeezing will have an opposite sign to correlated

noise coming from the interferometer 〈nc, nc〉, which must be positive.

Figure 5.5 plots the measured correlated noise with squeezing, illustrating how in

the shot noise dominated frequency band the phase is 180◦.



136

5.2.3 Correlated noise with squeezing

Recalculating the DCPD spectral densities including 〈na, nb〉 terms yields

〈da, da〉 =
1

4|1−G|2

(
|2−G|2〈na, na〉+ |G|2〈nb, nb〉+ |C|2〈nc, nc〉

+ 2(G+G∗ − |G|2)〈na, nb〉
)

(5.24)

〈db, db〉 =
1

4|1−G|2

(
|G|2〈na, na〉+ |2−G|2〈nb, nb〉+ |C|2〈nc, nc〉

+ 2(G+G∗ − |G|2)〈na, nb〉
)

(5.25)

〈da, db〉 =
1

4|1−G|2

(
G(2−G∗)〈na, na〉+G∗(2−G)〈nb, nb〉+ |C|2〈nc, nc〉

+ 2(2−G−G∗ + 2|G|2)〈na, nb〉
)
. (5.26)

If we compute the correlated noise using the RHS of Eq. 5.12 with Eqs. 5.24, 5.25,

and 5.26, we get

|C|2〈nc, nc〉+ 4〈na, nb〉 =

(
|2−G|2〈da, db〉+ |G|2〈db, da〉

−G(2−G∗)〈da, da〉 −G∗(2−G)〈db, db〉
)

(5.27)

Figure 5.4 plots this expression as the correlated noise with squeezing trace.

5.2.4 Squeezing level estimate from correlated noise

If we have already estimated the correlated noise 〈nc, nc〉 during a time without

squeezing, then it’s possible to estimate the squeezing level. This can be especially

useful if the squeezing is frequency dependent, as it was at LIGO Hanford during

O3.

We assume here that the correlated noise is the same for both squeezing and non-

squeezing times. This is not true where quantum radiation pressure noise (QRPN)

is signi�cant, as anti-squeezing will enhance the QRPN contribution to correlated

noise [89].
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First, we write the new expressions for the DCPD sum and null PSDs including

squeezing:

〈d+, d+〉 =
1

|1−G|2
(
〈na, na〉+ 〈nb, nb〉+ 2〈na, nb〉+ |C|2〈nc, nc〉

)

〈d+, d+〉 =
1

|1−G|2
(
〈n+, n+〉+ |C|2〈nc, nc〉

)

〈d+, d+〉 =
1

|1−G|2
(
4S2e−2r + |C|2〈nc, nc〉

)
(5.28)

〈d−, d−〉 = 〈na, na〉+ 〈nb, nb〉 − 2〈na, nb〉
〈d−, d−〉 = 〈n−, n−〉
〈d−, d−〉 = 4S2

(5.29)

where we used Eqs. 5.21 and 5.22 to simplify to the �nal expressions.

Then, solving for the squeeze ratio e−2r
using Eqs. 5.28, 5.29, and the correlated

noise 〈nc, nc〉 calculated via Eq. 5.12:

e−2r =
|1−G|2〈d+, d+〉 − |C|2〈nc, nc〉

〈d−, d−〉
(5.30)

Figure 5.6 plots the squeezing levels estimated via Eq. 5.30.

5.3 Results

All spectral densities in this section were taken using median-averaging to avoid

the frequent glitches, with phase compensated and mean-to-median biasing cor-

rected according to Chapter 6. They were also veri�ed using the “PSD rejection”

technique for removing glitches described in Appendix F.

The unsqueezed correlated spectrum in Figure 5.3 gives a broader picture of the

“mystery noise” limiting LIGO sensitivity at 30 Hz and below. Above 3 kHz, the

correlated noise is consistent with the laser intensity noise coupling to DARM.

Around 300 Hz the correlated noise approaches the coatings thermal noise limit.

Below 300 Hz, conventional “mystery noise” which limits DARM also limits the

correlated noise. Around 1 kHz, there is a large gap between the measured corre-

lated noise and the expected sum that is also not understood.

The remaining plots compare correlated noise results from a single �fteen hour

lock stretch, where squeezing was injected for six hours, then the squeezer was

turned o� for nine hours. Figures 5.4 and 5.5 plot the amplitude and phase of the

correlated noise as calculated for both the no squeezing time (Eq. 5.12) and the
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Figure 5.3: LIGO Hanford correlated noise budget during nine hours without

squeezing in August 2020. The correlated noise from the interferometer, seen here

in orange, is calculated via Eq. 5.12. This can be directly compared to the sum of

correlated noise budget traces, seen in black.

squeezing time (Eq. 5.27). Also plotted in Figure 5.4 is the unsqueezed DCPD sum

PSD (Eq. 5.5), the squeezed DCPD sum PSD (Eq. 5.28), and the DCPD null (Eq. 5.29).

Eq. 5.27 shows how classical and quantum correlated noise both show up in the �-

nal expression. Recall from Eq. 5.23 that the quantum correlated noise is negative.

This causes the classical and quantum correlated noise to cancel each other out,

leading to classical and quantum correlated noise dominated regimes. In Figure 5.4,

the crossing of the squeezed sum PSD in green and the null PSD in brown, corre-

sponds to the dips in the correlated noise, signifying the change from classical- to

quantum-dominated correlated noise.

In Figure 5.5, the measured phase of the squeezed correlated noise is shown to

be 180◦ in the quantum-dominated regime. The unsqueezed spectrum does not

exhibit this phase change.

Because we have the squeezed DCPD sum, null, and the classical correlated noise

estimates all from the same lock stretch, we can better estimate the squeezing lev-
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Figure 5.4: LIGO Hanford correlated noise during six hours with squeezing and

nine hours without squeezing on September 16, 2020. Squeezed light correlates

the shot noise detected on each DCPD, as calculated in Eq. 5.27. The dip at 150 Hz

and 5 kHz comes from the interaction of squeezed shot noise and classical noise

canceling each other out. Figure 5.5 plots the phase of the correlated noise traces

shown here. This plot mirrors a similar study done at LIGO Livingston [197].

els using Eq. 5.30. Expressing the squeeze ratio in terms of dB such that e−2r =

10−
dBsqz

10 yields the estimate shown in Figure 5.6. The squeezing exhibited by

the LIGO Hanford detector is frequency-dependent, with the largest squeezing

of ∼ 2.5 dB in the 100 to 300 Hz region, up to 1 dB above 1 kHz. Hanford’s O3

unintentional frequency-dependent squeezing is currently under further investi-

gation.
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Figure 5.5: Phase of the correlated noise with and without squeezing. The sign �ip

at at 150 Hz corresponds to the transition from classical correlated noise 〈nc, nc〉
dominating the spectrum to squeezed shot noise 〈na, nb〉 dominating. Figure 5.4

plots the amplitude of the correlated noise traces shown here.
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Figure 5.6: Squeezing levels estimated by removing correlated noise from the

squeezed DCPD sum, according to Eq. 5.30. This estimate is good in the region

where shot noise and correlated noise are about equivalent, or everywhere below

∼ 70 Hz.
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5.4 Future Work

The correlated noise budget is useful for verifying the DARM noise budget traces,

and determining where the classical noise is under the quantum shot noise. The

broad range of unexplained noise in the correlated noise, from familiar “mystery

noise” at low frequency, to the “correlated mystery noise” between 1 and 3 kHz

which is only a factor of 3 below squeezed DARM, means there is much important

work remaining to be done understanding what lies below the shot noise. If they

can be improved, correlated noise spectra could verify the Advanced LIGO thermal

noise �oor estimated from the coating Brownian noise for the titania-doped silica

tantala optic coatings [32].

The correlated noise could potentially be used to improve sensitivity to continu-

ous gravitational wave signals, such as the stochastic background or continuous

waves from spinning neutron stars. The injection of squeezing can confuse such

an analysis if the quantum or classical correlated noise is not stable.

Future detectors, including A+, are expected to use balanced homodyne detection,

rather than DC readout detection [198]. Balanced homodyne uses a local oscillator

to beat with the GW signal rather than light from the interferometer via a DC o�-

set in the DARM loop. The usual two-photodetector detection scheme would not

allow for the correlated noise spectrum to be measured, since the amplitude noise

on the local oscillator would dominate that spectrum [194]. To recover the corre-

lated noise spectrum a four-photodetector scheme would need to be employed.
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C h a p t e r 6

PROBABILITY DISTRIBUTIONS FOR SPECTRAL DENSITIES

Below we review the probability distributions relevant for analyzing noise in the

frequency domain. The methods explored below are used in the analysis in Chap-

ter 5.

The goal of this chapter is to derive the probability distributions for power and

cross spectral density estimators, and provide convenient formulae and examples

for proper statistical treatment of these estimators. Additionally, we discuss the

pros and cons of mean-averaging and median-averaging using Welch’s method,

and explicitly calculate the expected mean-to-median bias for both power and

cross spectral densities.

Often, the jitter in an estimate of a power spectral density or transfer function is

called “noise”, when in fact it is just the manifestation of statistical uncertainty in

the estimate. True noise in a gravitational-wave detector is any power measured

in the gravitational-wave signal channel which is not gravitational-wave signal.

Shot noise, thermal noise, seismic noise are all sources of true noise that obfuscate

signal. True noise can never be “averaged away”, but statistical uncertainty can be

reduced by taking additional averages.

For precision interferometry, it is imperative to understand uncertainty in our esti-

mators. Blackman and Tukey provide a practical understanding of the statistics of

power spectra derived from Gaussian noise [199]. Goodman derived the general

probability distributions for spectral matrices as complex Wishart distributions,

and extended this understanding to the distributions describing multiple coher-

ence functions and transfer functions [200–203]. Bendat and Piersol summarize

the statistics of spectral densities and transfer functions, and derive approxima-

tions that are good in the limit that the number of averages n→∞ and coherence

γ2 → 1 [174].

In this chapter, we start from Gaussian noise and derive the distributions associ-

ated with a single-input single-output linear system. Also provided are numerical

veri�cations of the derived formula.



144

6.1 Random variables and probability functions

The fundamentals of noise are couched in random variables and their associated

probability distributions. A noise process, or random process, is the set of all pos-

sible data that could be generated from a random variable x(t) [174]. Although it

is impossible to exactly predict an observation from a random variable, the results

can characterized via probability density functions (PDFs).

We de�ne fX (x) to be the probability density function of a stationary, ergodic

random variable X such that fX (x) ≥ 0 ∀x and

Prob[a < x < b] =

∫ b

a

fX (x)dx. (6.1)

In words, the probability that x falls between the values of a and b is the integral

of the PDF from a to b. As the name suggests, the PDF can be thought to have

units of [probability/units of x].

If we let a→ −∞ we arrive at the de�nition of the cumulative distribution func-

tion (CDF) FX (x):

FX (x) =

∫ x

−∞
fX (y)dy (6.2)

If we let x→∞ then FX (x)→ 1.

The expected value, or mean, µ is a weighted integral over all possible values of x:

〈x〉 = µ =

∫ ∞

−∞
xfX (x)dx. (6.3)

The median ρ is the value of x such that FX (ρ) = 1/2.

The variance σ2
is the mean square value about the mean of the data:

σ2 =
〈
(x− 〈x〉)2

〉
=
〈
x2
〉
− 〈x〉2 =

∫ ∞

−∞
(x− µ)2fX (x)dx. (6.4)

Variance in the time domain will often be synonymous with power in the fre-

quency domain.

The characteristic function ϕX (t) is the Fourier transform of a probability density

function:

ϕX (t) =
〈
eitX

〉
=

∫

R
fX (x)eitxdx. (6.5)

Characteristic functions are another way of describing the random variableX , and

are useful tools for deriving relationships between probability density functions,

as we will use in Sections 6.10 and 6.11.
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6.2 Spectral analysis

The fundamental building block of spectral analysis is the Fourier transform:

F [x(t)] = X(f) =

∫ ∞

−∞
x(t)e−i2πftdt (6.6)

A Fourier transform breaks down a signal in the time domain x(t) into its periodic

components in the frequency-domain X(f).

In general, the frequency domain extends from negative frequencies to positive

frequencies: f ∈ (−∞,∞). If x(t) is real-valued, then its Fourier transform is

Hermitian symmetric: X(f) = X∗(−f). Thus all frequency information in x(t)

is contained in the positive frequency domain of X(f).

Parseval’s theorem for Fourier transforms conserves energy in both the time and

frequency domains:

∫ ∞

−∞
|x(t)|2dt =

∫ ∞

−∞
|X(f)|2df. (6.7)

The autocorrelation function Rx(τ) and cross correlation function Rxy(τ) are mea-

sures of how related a signal x(t) is with itself or another signal y(t) over some

time lag τ :

Rx(τ) = 〈x(t)x(t+ τ)〉 (6.8)

Rxy(τ) = 〈x(t)y(t+ τ)〉 (6.9)

The double-sided power spectral density and double-sided cross spectral density, Ξx(f)

and Ξxy(f), are the Fourier transforms of the correlation functions Rx(τ) and

Rxy(τ):

Ξx(f) =

∫ ∞

−∞
Rx(τ)e−i2πfτdτ =

∫ ∞

−∞
〈x(t)x(t+ τ)〉e−i2πfτdτ (6.10)

Ξxy(f) =

∫ ∞

−∞
Rxy(τ)e−i2πfτdτ =

∫ ∞

−∞
〈x(t)y(t+ τ)〉e−i2πfτdτ (6.11)

on the interval f ∈ (−∞,∞). The spectral densities Ξx(f) and Ξxy(f) can also

be expressed as the product of Fourier transforms:

Ξx(f) =

∫ ∞

−∞
〈X∗(f)X(g)〉e−i2π(g−f)tdg (6.12)

Ξxy(f) =

∫ ∞

−∞
〈X∗(f)Y (g)〉e−i2π(g−f)tdg (6.13)
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Since we cannot measure negative frequencies in reality, and we measure real-

valued signals x(t) and y(t), we de�ne the single-sided power spectral density and

single-sided cross spectral density

Sx(f) = 〈x, x〉 = 2Ξx(f) (6.14)

Sxy(f) = 〈x, y〉 = 2Ξxy(f) (6.15)

on the interval f ∈ [0,∞).

Finally, we de�ne the coherence of two signals x(t) and y(t)

γ2
xy(f) =

|Sxy(f)|2
Sx(f)Sy(f)

(6.16)

6.3 Estimators

Once the PDF of a random variable is known, its future behavior is as well-known

as possible. The above de�nitions are good if in�nite samples are taken over in-

�nite time. The di�culty lies in estimating the PDF from �nite data, as well as

estimating the con�dence of our estimate.

6.3.1 Properties

For this section, we will take Φ to be some statistic we want to know, such as the

true mean, and Φ̂ is its estimator, such as the sample mean.

The estimator bias b is the expected value of the di�erence between an estimator

and its true value:

bΦ̂ =
〈

Φ̂− Φ
〉
. (6.17)

If b = 0, the estimator Φ̂ is unbiased. If b 6= 0, the estimator is biased, meaning the

expected value of the estimator does not equal the true value.

The quality of an estimator can change with the number of samples n. An estima-

tor is consistent if, as the number of samples n increases, the estimator converges

to the true value. That is, for any positive real ε,

lim
n→∞

Prob[|Φ̂− Φ| < ε] = 1 (6.18)

i.e. the probability that the di�erence in the estimate and true value is less than

arbitrary ε is one.

We will �nd that several estimators of important spectral quantities, including

the sample coherence, sample median PSD and CSD, are biased but consistent

quantities (Sections D.7, D.4, and D.6).
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6.3.2 Example estimators

Suppose we have a data set xi of N samples. The sample mean µ̂ is

µ̂ =
1

N

N−1∑

i=0

xi (6.19)

The sample median ρ̂ is the middle value of the sorted xi. In other words, if xi are

sorted, then ρ̂ = xN/2. The sample median tends to be more robust to outliers than

the sample mean, as we will see in Section 6.14.

The sample variance σ̂2
is

σ̂2 =
1

N − 1

N−1∑

i=0

(xi − µ̂)2
(6.20)

In reality, signals have a �nite length T and have an �nite sampling frequency fs.

To approximate the Fourier transform for a real signal x[n] , x(t = n/fs) with

integer N = Tfs total samples and integer n ∈ [0, N − 1], the discrete Fourier

transform is

X̂[k] =
N−1∑

n=0

x[n]e−i2πkn/N . (6.21)

Here k , Nf/fs is a integer proxy for frequency. The lowest non-zero fre-

quency measurable is the resolution frequency or binwidth and occurs for k = 1,

or fb = fs/N = 1/T . The highest frequency measurable is the Nyquist frequency,

fNyquist = fs/2, and occurs when k = N/2.

Note that Eq. 6.21 does not preserve power normalization. In section 6.14 we will

introduce a prefactor of

√
1/Nfs, motivated by Parseval’s theorem, to conserve

power. If x[n] has units of volts V, this will give X[k] units of V/
√

Hz. Addition-

ally, if a window is used, the power loss from the windowing function must be

accounted for in the prefactor as well.

The estimated power spectral density Ŝx and estimated cross spectral density Ŝxy are

Ŝx[k] = 〈x, x〉 =
2

Nfs
|X[k]|2 (6.22)

Ŝxy[k] = 〈x, y〉 =
2

Nfs
X∗[k]Y [k]. (6.23)

Ŝx[k] and Ŝxy[k] have units of V2/Hz. The factor of 2 comes from the fact these

are single-sided spectral densities.
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The advantage of spectral densities is, no matter the length of the signal, the noise

level will remain constant. This is due to the normalization by the sampling fre-

quency fs, which adjusts for the fact that longer signals will have a �ner binwidth

fb, so the same noise power is divided among more bins. The disadvantage is sig-

nals are not constant for spectral densities: they grow like the number of samples

N . If a signal has in�nite �delity, all of its power will appear in a single bin no

matter the binwidth fb.

These functions include the power normalization constant assuming no window-

ing. Windows reduce spectral leakage due to aliasing by enforcing periodicity on

the signal x[n]. If a window w[n] is applied to each data point x[n] before tak-

ing the discrete Fourier transform, there will be power loss associated with the

window. To preserve power in each bin, replace N in the equations above with

S2 =
∑N−1

n=1 w[n]2. For a rectangular window where w[n] = 1 for all n, S2 = N

and we recover Eqs. 6.22 and 6.23 [204].

6.4 Welch’s method

Welch’s method is a method of estimating a power spectral density by averaging

together many power spectral densities. The variance associated with a single PSD

estimate is relatively high, and equals the value of the PSD itself squared, as we

will derive in 6.8. Welch’s method builds a distribution of M PSDs and �nds the

mean of each frequency bin k.

Welch’s method takes advantage of the data windowing to add more PSD segments

by allowing segments to overlap. This method reuses data points, so care must be

taken that the overlap is not too high, which falsely correlates the PSD segments.

Welch’s method proceeds as follows:

1. Select three of the following four:

• The total number of samples N

• The overlap ratio p, i.e. ratio of samples to share between segments.

• The number of segments, or averages, M

• The binwidth or frequency resolution fb

These are related by the equation M =
Nfb/fs − 1

1− p + 1, where fs is the

sampling frequency.
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2. Split theN data samples intoM equal segments, each segment having sam-

ples n =
N

(M − 1)(1− p) + 1
.

3. Apply a window to each data segment, if desired.

4. Estimate the PSD Ŝx,i[k] of each segment i ∈ [1,M ] using Eq. 6.22 and the

desired window function.

5. For each frequency bin k, average all Ŝx,i[k] such that Ŝx[k] =
1

M

M∑

i=1

Ŝx,i[k].

Thus Ŝx[k] is the mean-averaged PSD estimate.

In the �nal step, we might take the sample median
˜̂Sx[k] of Ŝx,i[k] rather than the

mean. For Gaussian noise, this asymptotes for large M to a factor of log(2) bias

in the median estimate vs the mean estimate: Ŝx[k] =
˜̂Sx[k]

log(2)
.

6.5 Probability distribution formulae

y Cn ]

×[n]→¥→z[n]
Figure 6.1: Independent Gaussian signals x and y summed into third Gaussian sig-

nal z with no delay. These signals will form the basis of the power, amplitude, and

cross spectral density probability densities in Sections 6.8, 6.9 and 6.11. Table 6.1

reports the PDFs associated with these signals as derived in this chapter.

In this following sections we will derive the probability distributions of several

random variables relevant to signal processing and spectral estimation, introduced

in Sections 6.1 and 6.2. Figure 6.1 diagrams the simple Gaussian signals used in

this section. Table 6.1 lists the probability distributions investigated here.

We will attempt to chain together the relations of the probability distributions such

that the relationship of power in the time and frequency domain is clear. This will

motivate why the mean-value of the PSD is a natural estimator of power in the
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time-domain, so median-value PSD estimators are “biased” and must be corrected

back to mean-values.

Through this section we will use the change of variables formula for probability

densities. Suppose we know the probability distribution fX (x) of a random vari-

able X , and we have an n-valued function g(x). Then we know the probability

density of G ∼ g(x) [174]:

fG(g) = nfX (x)

∣∣∣∣∣

(
dg

dx

)−1
∣∣∣∣∣ (6.24)

One important example of the change of variables formula is the scaler formula:

g = cx =⇒ fG(g) =
1

c
fX
(g
c

)
. (6.25)

For this example n = 1 as g has one-to-one mapping with x. In Section 6.10, we

use the two-dimensional verison of the above formula.

The convolution theorem states that a Fourier transform of the convolution of two

functionsF(f ∗g) in the time domain is equal to a multiplication in the frequency

domain F(f)F(g):

F(f ∗ g) = F(f)F(g). (6.26)

Finally, a sum of random variablesZ = X+Y can be expressed as the convolution

of PDFs:

fZ(z) = fX (x) ∗ fY(y) =

∫ ∞

−∞
fX (x)fY(z − x)dx. (6.27)

The characteristic function ofZ , ϕZ , becomes a product of the characteristic func-

tions of X and Y :

ϕZ(t) =
〈
eitZ
〉

=
〈
eit(X+Y)

〉
=
〈
eitX

〉〈
eitY
〉

= ϕX (t)ϕY(t). (6.28)

This property of characteristic functions can be extended for the sum of n inde-

pendent, identically distributed random variables, such as for the sample mean

µ̂ = 1
n

∑n
i=1 xi drawn from random variable X :

ϕµ̂(t) =
〈
eitµ̂
〉

=
〈
e
it
n
X
〉n

= ϕX

(
t

n

)n
. (6.29)

This property will come in handy when calculating the sample means of the PSDs

and CSDs in Appendix D.
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Table 6.1: Summary of probability density functions derived for spectral estimators

in this chapter. Power is conserved for every probablility transform. Two indepen-

dent, white noise time-domain signals x[n] ∼ N (0, σx) and y[n] ∼ N (0, σy) with

N total samples and sampling frequency fs form the base signals. Another white

noise signal z[n] = x[n]+y[n] gives a signal correlated with x[n], as shown in Fig-

ure 6.1. The Fourier transforms of x[n], y[n] are X̂[k] = A+iB, Ŷ [k] = C+iD. By

linearity, Ẑ[k] = (A+C) + i(B+D). A and B both follow Gaussian distributions

N (0, σa) where σa = σx
√
N/2, as shown by Eq. 6.31. Similarly, C,D ∼ N (0, σc)

where σc = σy
√
N/2. The PSD prefactor 2/(Nfs) alters the variance of the result-

ing exponential distribution, as shown in Eq. 6.39. The CSD of correlated signals

〈x, z〉 ∝ A2 +AC + B2 + BD + i(AD − BC).

Estimator Symbol Probability Distribution Expression

White time-domain signal x[n] Gaussian N (0, σx)

Discrete Fourier transform A Gaussian N (0, σa)

Squared Gaussian A2
Scaled chi-squared, n = 1 χ2

1(σa)

Power spectral density 〈x, x〉 Exponential Exp

(
2σ2

x

fs

)

Amplitude spectral density

√
〈x, x〉 Rayleigh Rayleigh

(
σx√
fs

)

Product of two Gaussians AC Modi�ed Bessel of the 2nd
kind

1

πσaσc
K0

( |z|
σaσc

)

Dependent Gaussian product A(A+ C) Modi�ed Bessel of the 2nd
kind

es/σ
2
c

πσaσc
K0

(
|s|
√
σ2
a + σ2

c

σaσ2
c

)

Cross spectral density (minor) 〈x, z〉 Laplace Laplace

(
0,
σxσy
fs

)

Cross spectral density (major) 〈x, z〉 Asymmetric Laplace AL

(
0,
σxσy
fs

,−σx
σy

(
1−

√
1 +

σ2
y

σ2
x

))

Cross spectral density (joint) 〈x, z〉 Modi�ed Bessel of the 2nd
kind

e
u cos(φ)+v sin(φ)

σ2y/fs

2πσ2
xσ

2
y/f

2
s

K0




√
(u2+v2)

(
1+

σ2y

σ2x

)
σ2
y/fs



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6.6 Gaussian distribution and the Fourier transform

A random variableA follows a Gaussian, or normal distributionN (µ, σ) if its sam-

ples come from

N (µ, σ) = fA(a|µ, σ) =
1√

2πσ2
e−

(a−µ)2

2σ2 (6.30)

where µ is the mean, σ2
is the variance, and σ is the standard deviation. Gaus-

sian distributions describe a great many physical processes, including white noise

processes like shot noise and Johnson noise. From the central limit theorem, a

Gaussian describes the mean of many independent, identically distributed random

variables, no matter what the distribution of the random variables is.

One crucial proof is the Fourier transform of a Gaussian is another Gaussian with

inverted variance: F [N (0, σ)] = N (0, 1/σ).

Using this, along with Eqs. 6.25, 6.26, and 6.27, we prove that for Gaussian white

noise x[n] ∼ N (0, σx), the PDF of the real part of the discrete Fourier transform

is another Gaussian with variance σ2
xN/2.
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If A ∼ <
(
X̂[k]

)
=

N−1∑

n=0

x[n] cos

(
2πkn

N

)
, then

fA(a) = Prob

[
N−1∑

n=0

x[n] cos

(
2πkn

N

)]

fA(a) = Prob

[
x[0] cos

(
2πk0

N

)]
∗ · · · ∗ Prob

[
x[n] cos

(
2πk(N − 1)

N

)]

fA(a) ∝ N (0, σx cos(2πk0/N)) ∗ · · · ∗ N (0, σx cos(2πk(N − 1)/N))

F [fA] ∝
N−1∏

n=0

F [N (0, σx cos(2πk0/N))]

F [fA] ∝
N−1∏

n=0

N
(

0,
1

σx cos(2πkn/N)

)

F [fA](ξ) ∝
N−1∏

n=0

exp

(
−ξ

2

2
σ2
x cos2(2πkn/N)

)

F [fA](ξ) ∝ exp

(
−ξ

2

2
σ2
x

N−1∑

n=0

cos2(2πkn/N)

)

F [fA](ξ) ∝ exp

(
−ξ

2

2
σ2
x

N

2

)

fA(a) ∝ exp

(
−a

2

2

2

σ2
xN

)

fA(a) ∝ N
(

0, σx

√
N

2

)
(6.31)

A similar argument with sin(2πkn/N) gives =
(
X̂[k]

)
∼ N

(
0, σx

√
N

2

)
. Since

sin and cos are orthogonal, <
(
X̂[k]

)
and =

(
X̂[k]

)
are independent. This gives

the result reported in Table 6.1.

For the remainder of this section, we de�ne the Fourier transform of x[n] as X̂[k] =

A + iB, and the Fourier transform of y[n] as Ŷ [k] = C + iD. As proven above,

A,B, C,D are all independent Gaussian variables. We de�ne σa = σx
√
N/2 and

σc = σy
√
N/2 so that A,B ∼ N (0, σa) and C,D ∼ N (0, σc).
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Figure 6.2: Histogram of Gaussian random variables A and C. Gaussian random

variables describe the real and imaginary part of the Fourier transform of Gaussian

noise. Equation 6.30 is plotted as the green and red dashed curves. In this example,

σa = 6 and σc = 4.

6.7 Chi-squared distribution

A chi-squared distribution describes a random variable Z =
∑n

i=1X 2
i where each

Xi is a standard normal random variable N (0, 1). The distribution follows

χ2
n = f(z|n) =

z
n
2 e−

z
2

2
n
2 Γ
(
n
2

) z ∈ [0,∞) (6.32)

where n is the number of degrees of freedom, or random variables in the sum, and

Γ is the gamma function.

A chi-squared with one degree of freedom χ2
1 is equivalent to the product of a

standard Gaussian N (0, 1) with itself: Z = N 2
. For a scaled χ2

1(σ) coming from

a zero-mean, nonstandard Gaussian N (0, σ), we can use change of variables. Let
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z = g(x) = x2
. From Eq. 6.24, n = 2,

dg

dx
= 2x = 2

√
g, and,

fG(g) = 2fX (
√
g)

∣∣∣∣
1

2
√
g

∣∣∣∣ (6.33)

χ2
1(σ) =

1√
2πσ2g

e−
g

2σ2 g ∈ [0,∞) (6.34)

This gives the result reported in Table 6.1.
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Figure 6.3: Histogram of scaled chi-squared random variables Ga and Gc. The

random variables Ga = A2
and Gc = C2

, where Gaussian random variables

A ∼ N (0, σa) and C ∼ N (0, σc). Equation 6.33 is plotted as the green and red

dashed curves. In this example, σa = 6 and σc = 4.

6.8 Exponential distribution and the power spectral density

One special case of the chi-squared distribution is when n = 2, we recover the

exponential distribution:

Exp(λ) = f(z|λ) =
1

λ
e−

z
λ z ∈ [0,∞) (6.35)

where λ is the mean.
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The exponential distribution median m is found by

1

2
=

∫ m

0

1

λ
e−

z
λdz = 1− e−mλ

m = λ log(2) (6.36)

The mean-to-median bias factor b is the ratio of two statistics:

b =
m

λ
= log(2) (6.37)

This gives the factor of log(2) di�erence in the mean- and median-averaging meth-

ods for Welch’s method for PSD estimation.

The exponential distribution variance σ2
is found by

σ2 =
〈
z2
〉
− 〈z〉2 =

∫ ∞

0

z2 1

λ
e−

z
λdz −

(∫ ∞

0

z
1

λ
e−

z
λdz

)2

= 2λ2 − λ2

σ2 = λ2. (6.38)

Therefore the variance of a PSD estimate Var
(
Ŝx[k]

)
is equal to its mean squared.

6.8.1 Power spectral densities

The exponential distribution describes estimated PSDs Ŝx[k] = 〈x, x〉 of Gaussian

random noise with units V2/Hz. The estimated PSD is the sum of the squares of

our Fourier transform real and imaginary components A,B:

Ŝx[k] = 〈x, x〉 =
2

Nfs

∣∣∣X̂[k]
∣∣∣
2

Ŝx[k] = 〈x, x〉 =
2

Nfs
(A2 + B2). (6.39)

If A and B are zero-mean Gaussians with the same distribution N (0, σ), then A2

and B2
are both scaled chi-squared random variables as in Eq. 6.33. We can show

the random variable Z ∼ A2 + B2 ∼ Exp(2σ2) via convolution:

fZ(z) =

∫ ∞

−∞
fA2(a)fB2(z − a)da

fZ(z) =

∫ z

0

χ2
1(σ)χ2

1(σ)da

fZ(z) =
1

2πσ2
e−

z
2σ2

∫ z

0

1√
a
√
z − ada

fZ(z) =
1

2σ2
e−

z
2σ2 = Exp(2σ2) (6.40)
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If A2,B2 ∼ χ2
1

(
σx

√
N

2

)
as in Table 6.1, then A2 + B2 ∼ Exp(σ2

xN).

Then, by scaling random variables (Eq. 6.25), we can recover the PSD 〈x, x〉 distri-

bution in Table 6.1:

2

Nfs
Exp(σ2

xN) ∼ Exp

(
2σ2

x

fs

)
. (6.41)
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Figure 6.4: Histograms of exponential random variables Za and Zc. The random

variables Za = A2 + B2
and Zc = C2 + D2

, where Gaussian random variables

A,B ∼ N (0, σa) and C,D ∼ N (0, σc). The random variable Za ∝ 〈x, x〉, the

PSD estimate of x, and Zc ∝ 〈y, y〉. Equation 6.40 is plotted as the green and red

dashed curves. In this example, σa = 6 and σc = 4, which gives us the mean of

each distribution 2σ2
a = 72 and 2σ2

c = 32. Both medians are a factor of log(2)
below the mean.

6.9 Rayleigh distribution and the amplitude spectral density

A random variable Z =
√
X which is the square root of a exponential random

variable X follows a Rayleigh distribution. A Rayleigh distribution follows

Rayleigh(υ) = f(z|υ) =
z

υ2
e−

z2

2υ2 z ∈ [0,∞) (6.42)
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where υ is the mode of the distribution.

The Rayleigh distribution mean µ is found by

µ =

∫ ∞

0

z
z

υ2
e−

z2

2υ2 dz

µ = υ

√
π

2
(6.43)

The Rayleigh distribution median m is found by

1

2
=

∫ m

0

z

υ2
e−

z2

2υ2 dz = 1− e−m2

2υ2

m = υ
√

2 log(2) (6.44)

The Rayleigh distribution root mean square r is found by

r =
√
〈z2〉

r =

√∫ ∞

0

z2
z

υ2
e−

z2

2υ2 dz

r = υ
√

2 (6.45)

The ratio of m/r =
√

log(2) is the mean vs median bias factor for amplitude

spectral densities. The root mean square is used because Welch’s method estimates

PSDs, takes their average, then the root is taken to calculate the ASD.

The Rayleigh distribution variance σ2
is found by combining the mean square r2

and mean µ above

σ2 =
〈
z2
〉
− 〈z〉2

σ2 =
4− π

2
υ2

(6.46)

6.9.1 Amplitude spectral densities

The Rayleigh distribution describes estimated amplitude spectral densities

√
Ŝx[k]

with units V/
√

Hz. Amplitude spectral densities are how nearly all of noise spec-

tra in LIGO are displayed. The root mean square r is often what is reported for am-

plitude spectral density estimates, as Welch’s method does mean-averaging with

PSDs, and that result is square-rooted.

If X ∼ Exp(λ), then Z =
√
X ∼ Rayleigh

(√
λ/2
)

can also be derived via

change of variables. Let z = g(x) =
√
x. Then, using Eq. 6.24, we have n = 1,
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dg

dx
=

1

2
√
x

=
1

2g
, and

fG(g) = fX (g2)|2g| (6.47)

fG(g) =
2g

λ
e−

g2

λ = Rayleigh
(√

λ/2
)

g ∈ [0,∞). (6.48)

If X ∼ Exp

(
2σ2

x

fs

)
as in Table 6.1, then

√
X ∼ Rayleigh

(
σx√
fs

)
. (6.49)
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Figure 6.5: Histograms of Rayleigh random variables

√Za and

√Zc. The random

variables

√Za =
√
A2 + B2

and

√Zc =
√
C2 +D2

, where Gaussian random

variables A,B ∼ N (0, σa) and C,D ∼ N (0, σc). The random variable

√Za ∝√
〈x, x〉, the amplitude spectral density estimate of x, and

√Zc ∝
√
〈y, y〉. Equa-

tion 6.42 is plotted as the green and red dashed curves. In this example, σa = 6
and σc = 4.

6.10 Modi�ed Bessel function of the second kind

We brie�y introduce the zeroth modi�ed Bessel function of the second kind K0, as it

describes the probability density of product of two di�erent Gaussians AC. First,
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the de�nition of the modi�ed Bessel Kν with ν = 0 from Eq. 10.32.10 of [205] is

K0(z) =
1

2

∫ ∞

0

exp

(
−t− z2

4t

)
dt

t
. (6.50)

which is valid for complex z such that arg(z) < π/4.

6.10.1 Product of two Gaussians AC
If we take the convolution of the product of random variables Z = AC, and let

A ∼ N (0, σa) and C ∼ N (0, σc) be independent, then

fZ(z) =

∫ ∞

−∞
fA(a)fC

(z
a

) 1

|a|da

fZ(z) =
1

2πσaσc

∫ ∞

−∞
exp

(
− a2

2σ2
a

)
exp

(
− z2

2a2σ2
c

)
da

|a|

fZ(z) =
1

πσaσc

∫ ∞

0

exp

(
− a2

2σ2
a

− z2

2a2σ2
c

)
da

a
(6.51)

Let t =
a2

2σ2
a

and

dt

da
=

a

σ2
a

, then a =
√

2σ2
at and da =

√
σ2
a

2t
dt:

fZ(z) =
1

2πσaσc

∫ ∞

0

exp

(
−t− z2

4tσ2
aσ

2
c

)
dt

t

fZ(z) =
1

πσaσc
K0

( |z|
σaσc

)
(6.52)

We introduce the |z| since z is real, z ∈ (−∞,∞), and is symmetric in the inte-

grand.

Setting σa = σx
√
N/2 and σc = σy

√
N/2 gives the result reported in Table 6.1.

Note that the characteristic function of the PDF described in Eq. 6.52 is [206]

ϕZ(t) =

∫ ∞

−∞
fZ(z)eiztdz =

1√
σ2
aσ

2
c t

2 + 1
(6.53)

6.10.2 Product of Gaussian with itself and another Gaussian A(A+ C)
In the next section, it will be important that we know the PDF of a random variable

S = A(A+ C). The di�culty here is the GaussianA is used to multiply itself and

another Gaussian C, so we must consider the joint PDF.

In the proof we will start with the joint probability distribution of fA+C(a, c),

which is easy because A and C are independent, use change of variables with
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A → A2
and C → AC to form the cumulative distribution function FS(s), then

take the derivative of FS(s) to get the PDF fS(s).

fA+C(a, c) = fA(a)fC(c)

=
1

2πσaσc
exp

(
−1

2

(
a

σa

)2

− 1

2

(
c

σc

)2
)

(6.54)

To do change of variables from (x1, x2) = (a, c) to (y1, y2) = (a2, ac), we calcu-

late the determinant of the Jacobian |J | =
∣∣∣∣
dx1

dy1

dx2

dy2

− dx2

dy1

dx1

dy2

∣∣∣∣ to scale the joint

distribution:

x1 =
√
y1 x2 =

y2√
y1

(6.55)

dx1

dy1

=
1

2
√
y1

dx2

dy2

=
1√
y1

dx2

dy1

= − y2

2(y1)3/2

dx1

dy2

= 0 (6.56)

|J | = 1

2y1

(6.57)

Now we can write the new joint probability distribution fS(y1, y2) by making sub-

stitutions into Eq 6.54. Recall that n = 2 for changing variables of a double-valued

function y1 = x2
1.

fS(y1, y2) = n|J |fA+C(a, c)

= 2
1

2y1

1

2πσaσc
exp

(
− y1

2σ2
a

− y2
2

2y1σ2
c

)
(6.58)

The cumulative distribution function FS(S < s) = Prob(Y1 + Y2 < s) =

Prob(Y2 < s − Y1) can be written as the double integral over y1 ∈ [0,∞) and

y2 ∈ (−∞, s− y1):

FS(S < s) =
1

2πσaσc

∫ ∞

0

dy1

∫ s−y1

−∞
dy2

1

y1

exp

(
− y1

2σ2
a

− y2
2

2y1σ2
c

)
(6.59)

Recall that the PDF is the derivative of the CDF:

fS(s) =
dFS
ds

=
1

2πσaσc

∫ ∞

0

dy1
d

ds

(∫ s−y1

−∞
dy2

1

y1

exp

(
− y1

2σ2
a

− y2
2

2y1σ2
c

))

=
1

2πσaσc

∫ ∞

0

dy1
1

y1

exp

(
− y1

2σ2
a

− (s− y1)2

2y1σ2
c

)

=
1

2πσaσc
exp

(
s

σ2
c

)∫ ∞

0

dy1
1

y1

exp

(
y1(σ2

a + σ2
c )

2σ2
aσ

2
c

− s2

2y1σ2
c

)
(6.60)
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Let u =
y1(σ2

a + σ2
c )

2σ2
aσ

2
c

, then

du

dy1

=
σ2
a + σ2

c

2σ2
aσ

2
c

, and using Eq. 6.50 gives

fS(s) =
1

2πσaσc
exp

(
s

σ2
c

)∫ ∞

0

du
1

u
exp

(
−u− s2(σ2

a + σ2
c )

4σ2
aσ

4
cu

)

fS(s) =
1

πσaσc
exp

(
s

σ2
c

)
K0

(
|s|
√
σ2
a + σ2

c

σaσ2
c

)
(6.61)

This probability density function is plotted versus numerical samples in Figure 6.6.

Note that the characteristic function of the PDF described in Eq. 6.61 is

ϕS(t) =

∫ ∞

−∞
fS(s)e−istds =

1√
1− i2σ2

at+ σ2
aσ

2
c t

2
(6.62)
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Figure 6.6: Histograms of a random variable S which follows a distribution de-

scribed by a modi�ed Bessel function of the second kind. The random vari-

able S = A(A + C), where Gaussian random variables A ∼ N (0, σa) and

C ∼ N (0, σc). Equation 6.61 is plotted as the orange dashed curve. In this ex-

ample, σa = 7 and σc = 3.
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6.11 Laplace, asymmetric Laplace, and the cross spectral density

The Laplace distribution, or double exponential distribution, is de�ned as

Laplace(µ, γ) = f(x|µ, γ) =
1

2γ
exp

(
−|x− µ|

γ

)
(6.63)

where µ is the mean and γ is the scale parameter.

The asymmetric Laplace distribution is de�ned as

AL(m,λ, κ) = f(x|m,λ, κ) =
1

λ

(
κ+

1

κ

)





exp

(
x−m
κλ

)
x ≤ m

exp

(
−κ(x−m)

λ

)
x > m

(6.64)

where m is the location of the peak, λ is the scale parameter, and κ is the asym-

metry parameter. When κ = 1, the asymmetric Laplace becomes the Laplace:

AL(m,λ, 1) = Laplace(m,λ).

The asymmetric Laplace distribution mean µ is found by

µ =

∫ m

−∞
x

1

λ
(
κ+ 1

κ

) exp

(
x−m
κλ

)
dx+

∫ ∞

m

x
1

λ
(
κ+ 1

κ

) exp

(
−κ(x−m)

λ

)
dx

µ = m+ λ
1− κ2

κ
(6.65)

The asymmetric Laplace distribution median ρ has two solutions depending on

whether κ < 1 or κ > 1. If κ < 1, then the distribution is skewed right and

the median is greater than m. Otherwise, the distribution is skewed left and the

median is less than m. The median is found by

1

2
=





∫ ∞

ρ

1

λ
(
κ+ 1

κ

) exp

(
−κ(x−m)

λ

)
dx, κ < 1

∫ ρ

−∞

1

λ
(
κ+ 1

κ

) exp

(
x−m
κλ

)
dx, κ > 1

ρ =





m− λ

κ
log

(
1 + κ2

2

)
, κ < 1

m+ κλ log

(
1 + κ2

2κ2

)
, κ > 1

(6.66)

The asymmetric Laplace distribution variance σ2
is

σ2 =
λ2(1 + κ4)

κ2
(6.67)
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The mean to median bias b for the asymmetric Laplace distribution has di�erent

results depending on κ, as seen from Eq. 6.66. The physically relevant case is where

m = 0, yielding

b =
ρ

µ
=





−
log

(
κ2 + 1

2

)

1− κ2
κ < 1

κ2 log

(
κ2 + 1

2κ2

)

1− κ2
κ > 1

(6.68)

This result will be important for mean- vs median-averaging for CSD estimates.

The characteristic function of the Laplace distribution is

ϕLaplace(t) =
eiµt

1 + γ2t2
(6.69)

and the characteristic function of the asymmetric Laplace distribution is

ϕAL(t) =
eimt

1 + λ2t2 + itλ

(
κ− 1

κ

) (6.70)

6.11.1 Cross spectral densities

The statistics of cross spectral densities of white noise are known to follow a

Laplace distribution [201]. The asymmetric Laplace distribution describes esti-

mated CSDs Ŝxz[k] = 〈x, z〉 with units V2/Hz. Consider the case where x[n] and

y[n] are uncorrelated Gaussian noise, and z[n] = x[n] + y[n]. De�ne the Fourier

transforms components X̂[k] = A+ iB and Ŷ [k] = C+ iD. As shown in Eq. 6.31,

A and B are independent and follow the same Gaussian distribution N (0, σa).

Similarly, C,D ∼ N (0, σc). Then, by linearity in Eq. 6.22,

〈x, z〉 = 〈x, x〉+ 〈x, y〉

=
2

Nfs

(∣∣∣X̂[k]
∣∣∣
2

+ X̂∗[k]Ŷ [k]

)

=
2

Nfs

(
A2 + B2 +AC + BD + i(AD − BC)

)

=
2

Nfs
(U + iV) (6.71)
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Figure 6.7: Histograms of random variables U and V which follow asymmetric

Laplace and Laplace distributions, respectively. The random variables U = A(A+
C) + B(B + D) and V = AD − BC, where that A,B ∼ N (0, σa) and C,D ∼
N (0, σc). U and V describe the real and imaginary parts of a CSD 〈x, z〉 = 〈x, x〉+
〈x, y〉 where x and y are uncorrelated Gaussian noise. Equation 6.76 is plotted as

the green dashed curve, while equation 6.73 is plotted as the red dashed curve. In

this example, σa = 6 and σc = 4, so the Laplace scale factors λ = γ = 24, the

asymmetry parameter κ = 0.30, and the median/mean bias b = ρ/µ = 0.67.

6.11.1.1 Minor axis PDF of the cross spectral density

First, we show that the minor (transverse) axis of Eq. 6.71 with random variable

V = AD − BC follows a Laplace distribution. In the case from Figure 6.1, the

imaginary axis and minor axis are the same.

First, recall from Eq. 6.52 that AD and BC both independently follow the same

modi�ed Bessel distribution. Note that the distribution is symmetric about zero,
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so −BC ∼ BC. Using Eqs. 6.26, 6.27, 6.53, we can write

fV(v) = fAD−BC(v)

= fAD ∗ f−BC
ϕV(t) = F [fAD ∗ f−BC]

= F [fAD]F [f−BC]

= ϕAD(t)ϕ−BC(t)

=
1√

σ2
aσ

2
c t

2 + 1

1√
σ2
aσ

2
c t

2 + 1

ϕV(t) =
1

σ2
aσ

2
c t

2 + 1
(6.72)

fV(v) =
1

2σaσc
exp

(
− |v|
σaσc

)
. (6.73)

In the last step we observe from Eq. 6.69 the characteristic function of a Laplace

distribution with µ = 0 and γ = σaσc. Therefore, the random variable V that

characterizes the imaginary part of the CSD 〈x, z〉 follows a Laplace distribution

[207].

It can similarly be shown that for a completely uncorrelated CSD 〈x, y〉, the real

part T = AC + BD follows the same Laplace distribution as the imaginary part.

If we let σa → σx
√
N/2 and σc → σy

√
N/2, then γ → Nσxσy/2. If we then scale

the distribution by 2/(Nfs) from the de�nition of the CSD Eq. 6.23, then

f=(〈x,z〉) = Laplace

(
0,
σxσy
fs

)
(6.74)

This gives the result from Table 6.1. The distribution in Eq. 6.77 are plotted on the

imaginary axis projection of Figure 6.8.

6.11.1.2 Major axis PDF of the cross spectral density

For cross spectral densities with correlated noise 〈x, z〉, the major (radial) axis has

a random variable U = A2 + B2 + AC + BD = A(A + C) + B(B + D). In the

case from Figure 6.1, z[n] = x[n] + [y] has no relative delay between the x and z

signals, so the real axis and major axis of 〈x, z〉 are the same.

By a similar argument as used for Eq. 6.73, just replacing Eq. 6.53 with Eq. 6.62 and
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using Eq. 6.70 we can write

fU(u) = fA(A+C) ∗ fB(B+D)

ϕU(t) = ϕA(A+C)(t)ϕB(B+D)(t)

ϕU(t) =
1

1− i2σ2
at+ σ2

aσ
2
c t

2
(6.75)

fU(u) =
1

2σa
√
σ2
a + σ2

c





exp

(
u

σa
√
σ2
a + σ2

c − σ2
a

)
u ≤ 0

exp

(
− u

σa
√
σ2
a + σ2

c + σ2
a

)
u > 0

(6.76)

where, in the last step we recover an asymmetric Laplace distribution withm = 0,

λ = σaσc, and κ = −σa
σc

(
1−

√
1 +

σ2
c

σ2
a

)
.

If we let σa → σx
√
N/2 and σc → σy

√
N/2, then λ → Nσxσy/2 and κ =

−(σx/σy)
(

1−
√

1 + σ2
y/σ

2
x

)
. If we then scale the distribution by 2/(Nfs) then

f<(〈x,z〉) = AL


0,

σxσy
fs

,−σx
σy


1−

√
1 +

σ2
y

σ2
x




 (6.77)

This gives the result from Table 6.1. The distribution in Eq. 6.77 are plotted on the

real axis projection of Figure 6.8.

6.11.1.3 Joint probability distribution of the cross spectral density

In general, the CSD is a complex quantity. Here we’ll derive the two-dimensional

probability distribution function of the CSD, starting from our simple case as de-

�ned in Figure 6.1, then generalizing our �nal result.

We begin with a joint distribution of our four independent Gaussian random vari-

ables A,B, C,D:

fA,B,C,D(a, b, c, d) =
1

4π2σ2
aσ

2
c

e
− a2

2σ2a
− b2

2σ2a
− c2

2σ2c
− d2

2σ2c (6.78)

Here we derive the joint characteristic function of the CSD. We take the Fourier

transform of fA,B,C,D(a, b, c, d) with respect to the random variables U and V as
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de�ned in Eq. 6.71:

ϕU ,V(s, t) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
da db dc dd eisu+itvfA,B,C,D(a, b, c, d)

ϕU ,V(s, t) =
1

4π2σ2
aσ

2
c

∫ ∫ ∫ ∫ ∞

−∞
da db dc dd eis(a

2+ac+b2+bd)+it(ad−bc)e
− a2

2σ2a
− b2

2σ2a
− c2

2σ2c
− d2

2σ2c

ϕU ,V(s, t) =
1

1− 2iσ2
as+ σ2

aσ
2
c (s

2 + t2)
(6.79)

where s and t are the Fourier variables.

Next we Fourier transform back to the joint distribution of the CSD:

fU ,V(u, v) =
1

2π

∫ ∫ ∞

−∞
ds dt eisu+itvϕU ,V(s, t) (6.80)

Let q = s − i/σ2
c . Then we can recover circular symmetry to take the double

integral easily:

fU ,V(u, v) =
1

2πσ2
aσ

2
c

∫ ∫ ∞

−∞
dq dt

e−iqu−itv+u/σ2
c

1
σ2
aσ

2
c

(
1 + σ2

a

σ2
c

)
+ q2 + v2

fU ,V(u, v) =
eu/σ

2
c

2πσ2
aσ

2
c

K0

(
1

σ2
c

√
(u2 + v2)

(
1 +

σ2
c

σ2
a

))
(6.81)

Finally, we scale the distribution Eq. 6.81 to match the �nal result of CSDs in prac-

tice. First, we generalize the angle of the CSD φ, by allowing the variable in the

exponent u → u cos(φ) + v sin(φ). Second, from Eq. 6.71, let x = 2u/(Nfs)

and y = 2v/(Nfs) for changing variables, and make the substitutions for σa =

σx
√
N/2 and σc = σy

√
N/2:

f〈x,z〉(x, y) =
e
x cos(φ)+y sin(φ)

σ2y/fs

2πσ2
xσ

2
y/f

2
s

K0


 fs
σ2
y

√
(x2 + y2)

(
1 +

σ2
y

σ2
x

)
 (6.82)

This gives the result from Table 6.1. The contours of Eq. 6.82 are plotted in Figure

6.8.

6.11.1.4 Mean-to-median bias in the cross spectral density

Here we calculate the bias that results from using median-averaging to estimate

a cross spectral density. We focus on the probability distribution describing the

major axis of the CSD, Eq. 6.76, since the minor axis of the CSD must always
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Figure 6.8: Two-dimensional histogram of 100000 samples from a CSD 〈x, z〉 at

a single frequency bin, with contours from the joint distribution f〈x,z〉(x, y) in

Eq. 6.82. Above and to the right are plotted one-dimensional histograms of the real

and imaginary axes, with the marginal distributions f<(〈x,z〉)(x) and f=(〈x,z〉)(y)
from Eqs. 6.77 and 6.74. In this example, the correlated power σ2

x/fs = 3.5 ×
10−4 V2/Hz, the uncorrelated power σ2

y/fs = 5×10−4 V2/Hz, the true coherence

γ2 = 0.412, the asymmetric Laplace skew parameter for the real axis κ = 0.467,

and the phase φ = 0.

follow a Laplace distribution, which has both mean and median zero and should

not contribute to the �nal CSD signi�cantly. The validity of this assumption is

explored in Appendix D.

If we calculate the mean of the asymmetric Laplace from Eq. 6.76 using Eq. 6.65,

we recover

µ = 2σ2
a (6.83)

The mean of the CSD depends only on the correlated noise. This is the same as
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the mean recovered for the exponential distribution in Eqs. 6.40. The invariance

of the mean is demonstrated in Figure 6.9.

The median from Eq. 6.76 is more complex, and depends on both the uncorrelated

and correlated noise. Using Eq. 6.66:

ρ =





−σa
(√

σ2
a + σ2

c + σa

)
log

(
−σa

√
σ2
a + σ2

c + σ2
a + σ2

c

σ2
c

)
, κ < 1

σa

(√
σ2
a + σ2

c − σa
)

log

(
−

√
σ2
a + σ2

c

σa −
√
σ2
a + σ2

c

)
, κ > 1

(6.84)

If we let the correlated noise dominate the uncorrelated noise, σ2
a � σ2

c , then the

median

ρ→ 2σ2
a log(2), κ < 1. (6.85)

This is the same as the median recovered for the exponential distribution in Eq. 6.36.

The median changing with di�erent levels of uncorrelated noise is demonstrated

in Figure 6.9.

The bias from Eq. 6.76, using Eq. 6.68, is

b =
ρ

µ
=

ε

2
(
1−
√
ε+ 1

) log

(
ε−
√
ε+ 1 + 1

ε

)
, κ < 1 (6.86)

where we have de�ned the uncorrelated power ratio ε = σ2
c/σ

2
a. Figure 6.10 shows

the limits of CSD mean-to-median bias varies between log(2) for ε� 1 to 1/2 for

ε� 1.

In general, the distribution of the CSD 〈x, z〉 is a two-dimensional asymmetric

Laplace describing the real and imaginary components of the CSD. A phase delay

in the correlated signal z[n] = y[n] + x[n −m] where m is a time delay, yields a

rotation in the 2D asymmetric Laplace. Section 6.14 explores an example with a

phase delay.

For the above derivations, the phase is zero. The derivation is true without loss

of generality as long as an appropriate phase rotation is applied to the general 2D

asymmetric Laplace. The bias will always depend on the power ratio ε, but could

also depend on the phase of the CSD φ, explored in Section 6.13.

In the limit κ→ 0, the asymmetric Laplace becomes the exponential distribution.

For the CSD, this is equivalent to having the correlated noise much greater than the
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Figure 6.9: Histograms demonstrating the invariance of the mean of an asymmetric

Laplace distribution with changing uncorrelated noise σc. Equation 6.83 states

that the mean of the asymmetric Laplace depends only on the correlated noise σa.
In this example, correlated noise σa = 5 for all curves. The sample mean of all

�ve curves is shown as the black line, µ̂ ≈ 50. Equation 6.64 �ts are plotted as

the dashed curves, while the sample medians are plotted as the solid vertical lines.

While the mean is invariant, the medians change based on the level of uncorrelated

power in the signal. This means that a CSD 〈x, z〉 estimated via mean-averaging

would yield the same result for all of these curves, but di�erent results if estimated

via median-averaging.

uncorrelated noise: σa � σc, so the CSD is approaching the PSD: 〈x, z〉 → 〈x, x〉.
The asymmetric Laplace mean to median bias from Eq. 6.68 ρ/µ → log(2), the

same bias as the exponential distribution.

We have shown that CSD estimate 〈x, z〉 follows 2D asymmetric Laplace distri-

butions in general. From Eqs. 6.68 and 6.76, the bias between mean- and median-
averaged CSD estimates depends on the relative power of correlated and uncorrelated
noise.
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Figure 6.10: Mean-to-median bias factor b = ρ/µ associated with CSDs as a func-

tion of relative power ε = σ2
c/σ

2
a, where σ2

c is the uncorrelated power and σ2
a is

the correlated power. The bias factor plotted is from Eq. 6.86.

6.12 Coherence

Coherence is a method of computing the correlation of two signals. The de�nition

from Eq. 6.16 is good for in�nite signals, but for realistic signals x and z = x + y

the mean-averaged PSD and CSD estimates are usually used:

γ2 =
|〈x, z〉|2
〈x, x〉〈z, z〉 (6.87)

Our mean-averaged estimates for the power and cross spectral densities come from

Eqs. 6.40 and 6.83, yielding the mean-averaged coherence γ2
:

〈x, x〉 = 2σ2
a 〈z, z〉 = 2(σ2

a + σ2
c ) |〈x, z〉| = 2σ2

a (6.88)

γ2 =
σ2
a

σ2
a + σ2

c

=
1

1 + ε
(6.89)

where ε = σ2
c/σ

2
a is the power ratio of uncorrelated over correlated noise. As

the signals x and z becomes completely correlated, σ2
a � σ2

c and ε → 0, so the

coherence γ2 → 1. As the signals become uncorrelated, σ2
a � σ2

c and ε � 1, so

the coherence γ2 → 1/ε.
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Using the expression for κ below Eq. 6.76, we express the power ratio ε = σ2
c/σ

2
a

in terms of κ:

ε =
4κ2

(1− κ2)2
(6.90)

Then the mean-averaged coherence is related to the asymmetric Laplace parame-

ter κ by

γ2 =

(
1− κ2

1 + κ2

)2

(6.91)

This relates the underlying distribution to coherence, which is often used to quan-

tify the quality of the CSD estimate.

The median-averaged PSD and CSD estimates come from Eqs. 6.36 and 6.84 and

give the median-averaged coherence γ̃2
:

〈̃x, x〉 = 2σ2
a log(2) 〈̃z, z〉 = 2(σ2

a + σ2
c ) log(2) (6.92)

˜|〈x, z〉| = −σa
(√

σ2
a + σ2

c + σa

)
log

(
−σa

√
σ2
a + σ2

c + σ2
a + σ2

c

σ2
c

)
(6.93)

γ̃2 =

[
−σa

(√
σ2
a + σ2

c + σa

)
log

(
−σa

√
σ2
a + σ2

c + σ2
a + σ2

c

σ2
c

)]2

[2σ2
a log(2)][2(σ2

a + σ2
c ) log(2)]

=

σ4
c log2

(
−σa

√
σ2
a + σ2

c + σ2
a + σ2

c

σ2
c

)

4 log2(2)(σ2
a + σ2

c )
(
−2σa

√
σ2
a + σ2

c + 2σ2
a + σ2

c

)

γ̃2 =

ε2 log2

(
1√
ε+ 1

+ 1

)

4(ε+ 1)
(
ε− 2

√
ε+ 1 + 2

)
log2(2)

(6.94)

Again, as the signals x and z become completely correlated, σ2
a � σ2

c , ε→ 0, and

γ̃2 → 1. As the signals become uncorrelated, σ2
a � σ2

c , γ̃2 → 1/
(
4ε log2(2)

)
. Both

the mean- and median-averaged coherences are plotted in Figure 6.11.

Expressing the median-averaged coherence in terms of the mean-averaged coher-

ence yields

γ̃2 =
(1 + γ)2 log2(1 + γ)

4 log2(2)
(6.95)

Coherence provides a one-to-one mapping to the uncorrelated over correlated

power ratio ε. This is key because we can use coherence to �nd the mean-to-median
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Figure 6.11: Comparison of the coherence estimated with mean-averaging γ2
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median-averaging γ̃2
.

bias for the CSD. From Eqs. 6.86 and 6.94, we can write the mean-to-median bias

in terms of the median-averaged coherence:

b = log(2)

√
(1 + ε) γ̃2

(6.96)

The coherence γ̃2
can be used to solve for ε numerically using Eq. 6.94. If γ̃2 ≈ 1,

then ε� 1 and the bias b ≈ log(2).

Expressing the CSD mean-to-median bias b in terms of mean-averaged coherence

yields

b =
(1 + γ) log(1 + γ)

2γ
(6.97)

The CSD mean µ and CSD median ρ in terms of mean-averaged coherence are

µ =
2λγ√
1− γ2

(6.98)

ρ =
λ(1 + γ) log(1 + γ)√

1− γ2

(6.99)
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The correlated-to-uncorrelated power ratio ε = σ2
c/σ

2
a in this derivation refers to

the speci�c case of estimating the CSD 〈x, z〉 where z = x + y. More generally,

ε can refer to a uncorrelated/correlated power ratio of many Gaussian noises to-

gether. In this general case, Eqs. 6.94 and 6.96 are still valid. Section 6.14 explores

the case of three Gaussian noises.

6.13 Phase

In the sections above, we have assumed that the phase of the CSD φ = 0. This was

because in the CSD 〈x, z〉 where z[n] = x[n] + y[n], there is no phase di�erence

because x appears in z identically.

In general, there may be a phase di�erence in our signals. This will rotate our CSD

major and minor axes away from the real and imaginary axes.

A phase rotation should not a�ect the �nal magnitude of the CSD. Using mean-

averaging, this is true. Using median-averaging, because of the logarithm appear-

ing in the median expression Eq. 6.84, the �nal magnitude can change anywhere

from 0% to 4%, depending on the coherence of the signals.

In this section, the relationship of mean and median magnitude and phase is de-

rived, assuming the user is naively taking these statistics along the real and imag-

inary axes.

6.13.1 General real and imaginary axis distributions

First, we generalize Eq. 6.82 by

f〈x,y〉(u, v) =
e

γ√
1−γ2λ

(u cos(φ)+v sinφ)

2πλ2
K0


1

λ

√
u2 + v2

1− γ2


 (6.100)

where u is the real axis, v is the imaginary axis, γ2 = 1/(1 + σ2
y/σ

2
x) is the mean-

averaged coherence, and λ = σxσy/fs is a cross-power scaler. The expressions

used here for γ2
and λ are illustrative for converting from Eq. 6.82, but Eq. 6.100

is good for any γ2
and λ.

Second, we specify the probability density functions along the real and imaginary
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axes u and v for any phase φ, by marginalizing along each axis:

f<(〈x,y〉)(u) =
1

2λ
√

1−γ2 sin2(φ)
1−γ2

exp

(
uγ cos(φ)− |u|

√
1− γ2 sin2(φ)

λ
√

1− γ2

)
(6.101)

f=(〈x,y〉)(v) =
1

2λ
√

1−γ2 cos2(φ)
1−γ2

exp

(
vγ sin(φ)− |v|

√
1− γ2 cos2(φ)

λ
√

1− γ2

)
. (6.102)

These distributions are both asymmetric Laplace distributions, related by the com-

mon parameters γ2, λ, φ.

6.13.2 Mean of the general CSD distributions

If we calculate the mean of Eqs. 6.101 and 6.102, we get

µ<(〈x,y〉) =
2γλ cos(φ)√

1− γ2
(6.103)

µ=(〈x,y〉) =
2γλ sin(φ)√

1− γ2
. (6.104)

Finding the overall mean magnitude µ〈x,y〉,

µ〈x,y〉 =
√
µ2
<(〈x,y〉) + µ2

=(〈x,y〉)

µ〈x,y〉 =
2γλ√
1− γ2

(6.105)

Therefore the magnitude of the CSD mean has circular symmetry, and is not af-

fected in general by the phase φ.

6.13.3 Median of the general CSD distributions

Calculating the median of Eqs. 6.101 and 6.102 yields

ρ<(〈x,y〉) =

λ
√

1− γ2 log

(
1−γ2+γ2 cos2(φ)−γ|cos(φ)|

√
1−γ2+γ2 cos2(φ)

1−γ2

)

γ cos(φ)− sign(cos(φ))
√

1− γ2 + γ2 cos2(φ)
(6.106)

ρ=(〈x,y〉) =

λ
√

1− γ2 log

(
1−γ2+γ2 sin2(φ)−γ|sin(φ)|

√
1−γ2+γ2 sin2(φ)

1−γ2

)

γ sin(φ)− sign(sin(φ))
√

1− γ2 + γ2 sin2(φ)
(6.107)

From Eqs. 6.106 and 6.107, it is clear that the magnitude of the median ρ〈x,y〉 =√
ρ2
<(〈x,y〉) + ρ2

=(〈x,y〉) must be a�ected by the phase.



177

6.13.4 Phase overview

We’ve calculated that while phase has no e�ect on mean-averaged CSD calcula-

tions, it does a�ect the results of median-averaged CSDs, assuming those medians

are taken individually along the real and imaginary axes.

Phase also must a�ect the median-averaged coherence, rendering Eq. 6.94 incor-

rect in general. The simplest solution is to apply a phase-rotation to every CSDs

to set all phases φ = 0 while performing Welch’s median-averaging method.

Figure 6.12 illustrates how the CSD median is related to the phase at di�erent levels

of coherence. Figure 6.13 shows how the coherence a�ects the �nal CSD median

result for the phase φ = π/4, representing one of the largest possible biases in the

median due to phase.

The white noise example in Section 6.14 demonstrates the e�ect phase can have

on an uncorrected median-averaged CSD. Figure 6.15 shows both the uncorrected

and “phase-corrected” median-averaged CSDs together.
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Figure 6.12: Plot of how the phase of a CSD φ a�ects the median-averaged CSD

magnitude ρ at di�erent levels of coherence γ2
. The median ρ is normalized against

the maximum possible ρ at φ = 0, removing dependance on λ. Ideally, the median

would not be a�ected by the phase φ, but this is not true due to the complex

expressions for the median (Eqs. 6.106 and 6.107). The median is at a minimum

when the phase is π/4 from the real and imaginary axes. The radial axis of this

plot goes from 0.9 to 1.0 to emphasize the small e�ect of the phase bias (max 4%).

Figure 6.13 shows the worst case bias in the median-averaging as a function of

coherence.
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Figure 6.13: Plot of coherence γ2
vs the median-averaged CSD magnitude ρ, at the

minimum possible median at phase φ = π/4. Note that the median ρ is normal-

ized against the maximum possible ρ at φ = 0, removing dependance on λ. This

plot shows the largest possible phase-based bias we can have from using median-

averaging for the CSD, as a function of mean-averaged coherence. The minimum

occurs at around γ2 = 0.3, shown as the orange line in Figure 6.12.
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6.14 White noise example

6.14.1 Problem statement

Suppose we have three uncorrelated white noise signals, a, b, c. We are interested

in the noise power in c. Suppose further we only have access to two signals

x[n] = a[n] + c[n], y[n] = b[n] + c[n− 2] (6.108)

so c is correlated in x and y, with a two-cycle delay in y. The sampling frequency

fs is 10 kHz, so this corresponds to a delay of 0.2 milliseconds.

Unfortunately, the signals x and y are glitchy, i.e. they have short periods of non-

Gaussian behavior. Is it possible to estimate the correlated power in x and y?

cc In - 2]

a → xcn, ban → yen,

Figure 6.14: Independent Gaussian signals a, b, and c form the signals x and y.

These signals will form the basis of the CSD 〈x, y〉 derivations in this section. c is

the correlated signal in both x and y. a is the noise on the input. b is the noise on

the output. z−1
is a single-cycle delay.

6.14.2 Solution setup

The correlated power can be estimated by taking the CSD 〈x, y〉, using median-

averaging to accommodate glitches, and correcting for the mean-to-median bias,

which is estimated from the median-calculated coherence.

The derivation of the probability density function for each frequency bin in 〈x, y〉
is close to that in Section 6.10. We �nd the coherence γ2

, power ratio ε, and cross-

power scaler λ for our noise diagram in Figure 6.14, and relate this back to our

derived equations in the previous sections.
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Using the de�nition of mean-averaged coherence, Eq. 6.89:

γ2 =
|〈x, y〉|2
〈x, x〉〈y, y〉

=
(2σ2

c )
2

(2(σ2
a + σ2

c ))(2(σ2
b + σ2

c ))

γ2 =
1

1 +
σ2
aσ

2
b+σ2

aσ
2
c+σ2

bσ
2
c

σ4
c

(6.109)

Using the de�nition for the correlated-to-uncorrelated power ratio ε in Eq. 6.89,

we get

ε =
σ2
aσ

2
b + σ2

aσ
2
c + σ2

bσ
2
c

σ4
c

, (6.110)

then the mean-to-median bias b simpli�es to Eq. 6.86.

Finally, the cross-power scaler λ from Eq. 6.64 is

λ =
√
σ2
aσ

2
b + σ2

aσ
2
c + σ2

bσ
2
c . (6.111)

With the above de�nitions, Eq. 6.100 describes the distribution of 〈x, y〉 for every

frequency bin. Figure 6.16 shows a 2d histogram of 100000 individual cross spectral

densities at f = 500 Hz, along with the contours of Eq. 6.100.

Figure 6.15 shows the results of several stages of the CSD estimation process de-

scribed in Section 6.15. The �rst is the mean-averaged CSD, which arrives at the

�nal answer with little di�culty. The second is the naive median-averaged CSD,

which is biased away from the �nal answer by two e�ects: the usual mean-to-

median bias calculated in Eq. 6.86, and the phase-e�ect from not taking the me-

dian of the CSD along its major axis. The third is the “phase-corrected” median-

averaged CSD, which simply rotates the axis along which the median-averaging

is done, removing the ∼ 4% bias in the median estimate.
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Figure 6.15: Cross spectral densities with 100000 averages for the white noise ex-

ample shown in Figure 6.14. The e�ect the phase has on the median-averaged

CSD and coherence is seen in the orange lines, also demonstrated in Figure 6.12.

The “phase-corrected” median-averaged CSD and coherence are in green. The

phase-corrected densities were rotated such that their major axis aligned with

the real axis before the median was taken. The power density in the uncor-

related noise 2σ2
a/fs = 2σ2

b/fs = 1 × 10−3 V2/Hz, while correlated noise

2σ2
c/fs = 8 × 10−4 V2/Hz. The maximum bias due to phase in the CSD me-

dian seen here is 3.8%. The uncorrelated over correlated power ratio ε ≈ 4.1. The

mean-averaged coherence γ2 ≈ 0.20. The median-averaged coherence γ̃2 ≈ 0.15.

The mean-to-median bias b ≈ 0.60.
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Figure 6.16: 2D histogram of a CSD 〈x, y〉 at f = 500 Hz of white noise processes

x(t) and y(t). There is a time delay τ of 0.2 milliseconds between x and y, yielding

a phase φ = 2πfτ = 0.63 radians. The correlated noise falls along the major axis,

also called the radial axis.
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6.15 Discussion

Suppose we have some glitchy data for which mean-averaging is not feasible. The

steps of the median-averaged CSD estimate process are:

1. Estimate the PSDs 〈̃x, x〉, 〈̃z, z〉, and CSD 〈̃x, z〉. (For now we assume the

densities are well-sampled, i.e. the sample median ρ̂ has converged to the

actual median ρ for every frequency bin.)

2. Re-estimate the CSD median 〈̃x, z〉 after rotating all of the individual den-

sities by the opposite of the CSD phase −φ. This rotates the CSDs so the

median-averaging is done along its major axis, removing the e�ect phase

has on the �nal magnitude estimate.

3. Estimate the median-averaged coherence γ̃2 = |〈̃x, z〉|2/(〈̃x, x〉〈̃z, z〉).

4. Numerically solve for the power ratio ε using the coherence γ̃2
and Eq. 6.94.

5. Calculate the mean-to-median bias from the median-averaged coherence us-

ing Eq. 6.96.

6. Apply the bias to the CSD 〈x, z〉 to recover the mean-averaged CSD.

Here we summarize the main results from the previous sections, and their impli-

cations on spectral analysis.

• Power spectral densities 〈x, x〉 are commonly reported as mean-averaged

results from Welch’s method in section 6.4. Mean-averaging is useful be-

cause the �nal PSD estimate obeys Parseval’s theorem (Eq. 6.7), also known

as signal processing conservation of energy. Each frequency bin of a PSD

follows an exponential distribution with mean λ = 2σ2
x/fs, as reported in

Eq. 6.41.

• Median-averaging the PSD can gracefully handle glitchy data, as long as

the glitches are infrequent. However, the �nal PSD estimate does not obey

Parseval’s theorem. To correct for this, the mean-to-median bias must be

applied. For a su�ciently large number of averages, this bias is log(2), as

seen from Eq. 6.37.

• Amplitude spectral densities

√
〈x, x〉 are commonly reported as root-mean-

squared averaged results, or just the root of the result of Welch’s method.
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Each frequency bin of the amplitude spectral density follows a Rayleigh dis-

tribution, and from Eq. 6.45 the root mean square of the Rayleigh is equal

to the root of the power divided by the Nyquist frequency: r = υ
√

2 =√
2σ2

x/fs, as reported in 6.49.

• Cross spectral densities 〈x, z〉 are more complicated because they have both

real and imaginary parts, there are correlated and uncorrelated noises, and

the correlated phase is unknown. However, with su�cient averages, mean-

averaging “averages away” the uncorrelated noise, yielding only the cor-

related signal divided by the Nyquist µ = 2σ2
x/fs. This ful�lls Parseval’s

theorem, recovering only the correlated power in the two signals. The same

is not true for median-averaging, where the level of the uncorrelated signal

a�ects the �nal result, as seen in Eq. 6.84. This is demonstrated in Figure 6.9.

• In the limit of large correlated noise relative to uncorrelated noise ε � 1,

the CSD approaches the PSD of the correlated noise, because the asymmetric

Laplace distribution approaches the exponential distribution. This is can be

seen by the blue curve in Figure 6.9.

• The mean-to-median bias for PSDs is b =
m

λ
= log(2) for a large number of

averages M , as calculated for the exponential distribution in Eq. 6.37.

• The mean-to-median bias for CSDs can be calculated from the median-averaged

coherence: b = log(2)

√
(1 + ε)γ̃2

(Eq. 6.96). ε is the uncorrelated/correlated

power ratio, and can be solved numerically from coherence using Eq. 6.94.

• The mean-to-median bias for CSDs ranges from log(2) for highly correlated

CSDs to 1/2 for totally uncorrelated CSDs, as seen in Figure 6.10.

• The phase of the CSD φ can have an small e�ect on the resulting median-

averaged magnitude. The median of the CSD must always be taken along

the major axis of the CSD to avoid phase-based biasing in the median calcu-

lation.
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C h a p t e r 7

FUTURE WORK

This thesis overviewed topics in advanced interferometry and spectral statistics

for the purpose of increasing the sensitivity of the Advanced LIGO detectors for

observing run three. With the successful introduction of squeezing and high laser

power, and the suppression of the technical laser noises that would limit the ad-

vantage of those upgrades, Advanced LIGO achieved the lowest quantum noise

ever in long-baseline interferometers, and the best sensitivity yet to gravitational

waves.

7.1 Noise considerations

The biggest challenge for O4 and beyond is the achievement of design sensitivity.

Figure 7.1 shows the di�erence in DARM sensitivity between sites in O3. Overall,

Livingston enjoys a better sensitivity across the entire GW detection band. Liv-

ingston’s better sensitivity is due to a number of reasons:

1. Better squeezing overall, including less frequency-dependent loss (see Fig-

ure 5.6),

2. Higher arm power (see Table 3.3),

3. Much lower length and angular controls noise,

4. Higher detector bandwidth, likely due to lower SRC losses (see Figure 3.24)

The most important frequency region for astrophysical range is the low-frequency

region, where binary inspirals spend more time orbiting (∼seconds rather than

∼milliseconds at merger). Thus the most critcal region for Hanford to improve

sensitivity to GWs is the 30 to 70 Hz region. However, some new astrophysics is

being done with high frequency gravitational waves near merger, including higher

multipole GW detection [11] and neutron star equation of state measurements [9].

The biggest obstacle to achieving design sensitivity is the “mystery noise” limiting

GW sensitivity around 30 Hz. Mystery noise is not coherent with any other wit-

nesses in Advanced LIGO, so mitigation is not straightforward. However, there is
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Figure 7.1: DARM sensitivity between Hanford and Livingston during O3a, plus

Advanced LIGO design sensitivity (125 W input power, no squeezing).

less mystery noise at Livingston than Hanford, which accounts for most of their

increased range compared to Hanford in O3. This suggests some di�erence be-

tween the detectors is causing the excess mystery noise at Hanford. The most

likely culprit for mystery noise is excess low frequency motion due to angular

and length sensing and control upconverting to higher frequencies, polluting the

DARM spectrum.

Angular controls noise is the next biggest obstacle to achieving design sensitivity.

This is the dominant noise everywhere below 30 Hz. Angular motion must be sup-

pressed to keep the interferometer locked. Residual angular motion will couple to

length degrees of freedom both linearly and nonlinearly, from beam miscentering

to spontaneous power �uctuations from poor alignment causing radiation pres-

sure �uctuations.

Sensing the residual angular motion above 10 Hz is limited by the wavefront sensor

noise. To �lter this noise, aggressive low-pass �lters in the angular control loops

are engaged. This reduces the angular control gain above 10Hz, and drastically

reduces angular control noise coupling to DARM. However, this also reduces the
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phase margin of the loops to close to few tens of degrees.

With increasing power in the arm cavities, the optical plant of the angular degrees

of freedom dynamically change due to increasing radiation pressure torque, which

must be compensated. Additionally, the cross-coupling of the loops with length

degrees of freedom and other angular degrees of freedom is relatively high with the

purposeful beam spot miscentering due to the point absorbers. If cross-coupling

is high, then controls noise from one degree of freedom pollutes another degree

of freedom, causing additional noise.

Because of the nonlinearity of angular motion coupling to DARM, its very likely

controls noise goes hand-in-hand with mystery noise at both sites. Improvements

here will either directly mitigate mystery noise, or reveal more of the underlying

noise.

Finally, the source of frequency-dependent squeezing must be found and mitigated

to achieve the full bene�ts of injected squeezing. This will be more important with

the addition of the �lter cavity for O4.

7.2 O4 upgrades

Currently upgrades for observing run four are underway at both Hanford and

Livingston.

The biggest upgrade is the addition of the �lter cavity, a 300 m long cavity for the

injection of frequency-dependent squeezing [208, 209]. This will allow reduction

in both quantum shot noise and quantum radiation pressure noise at the DARM

readout. Quantum radiation pressure noise has been measured to limit DARM at

Livingston [89], and to a lesser extent Hanford. Work on low-frequency controls

is required to see the full advantage of the �lter cavity.

Next, at Hanford ITMY has been replaced. ITMY had a large point absorber dur-

ing O3, requiring beam spot moves to mitigate some of its impact. The inten-

tional beam miscentering which adversely a�ects the angular control loops will

no longer be necessary. Additionally, the new ITMY transmission is 1.50%, which

matches ITMX and should balance the arm powers and arm poles at Hanford.

7.3 Future projects

Work on building the �lter cavity and improving the performance of the squeezer

are already underway at the site. Commissioning the �lter cavity and achieving

higher circulating power in the arms must happen prior to O4.
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Other projects may yield signi�cant insight into Hanford’s performance. Some

future projects for understanding detector noise include

1. Create MIMO control models for interferometer angular and length controls

using pytickle [210].

2. Create MIMO control models for angle to length couplings [126].

3. Thoroughly test and model the e�ects of thermal compensation on DARM

and the SRC together.

4. Create a plausible power budget for the interferometer carrier and side-

bands.

5. Create plausible RF phase and amplitude noise projections to DARM.

6. Develop infrastructure for long-term median-averaged coherence measure-

ments for “quiescent” transfer functions.

7. Investigation of calibration error requirement for future detectors.

8. Development of sub-percent calibration precision schemes.

7.4 Conclusions

Observing run three by Advanced LIGO and Advanced Virgo was the most suc-

cessful search for gravitational waves in history, with 39 con�rmed detections in

only the �rst half of the run [3]. It was also only the third successful search for

gravitational waves. Our sensitivity to these extreme astrophysical phenomena is

only in its infancy.

In gravitational wave detector science, a small improvement in DARM sensitivity

can have a tremendous impact on astrophysics. Now we push our current detec-

tors to their sensitivity limits, to further expand the horizons of the new �eld of

gravitational wave astronomy.
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A p p e n d i x A

MODULATION, QUADRATURES, AND ELECTRIC FIELD UNITS

Here we will derive the expected gravitational wave signal from a simple Michel-

son interferometer, alongside the expected laser frequency and intensity noise cou-

plings, as has been done before [78, 114, 211–213].

In other chapters we explored the frequency and intensity stabilization schemes,

as well are the full detector response to GWs for accurate calibration. The purpose

of this chapter is to introduce the technical origins of concepts important to this

thesis, including the sideband representation, amplitude and phase quadratures,

homodyne angle, optical gain, contrast defect, and DC o�set.

This appendix helps draw the connection between the theoretical representation

and the instrumental results. Often, random scale factors are applied to help data

match up with theory. If losses are a parameter we care about, which they are in

Advanced LIGO for O3, random scale factors are degenerate with those parame-

ters.

The overview facilitates a direct comparison of analytic results like those in [22,

114], to numerical results like those calculated from Finesse [134, 135], to actual

measurements taken at LIGO Hanford.

A.1 Modulation

First we review the physics of modulation in the sideband picture [214]. The mod-

ulation picture emphasizes the di�erent frequencies of light that are created by

di�erent interactions. GWs are detected as in�nitesimal modulations applied to

highly stabilized laser light. Noise in the laser light, whether quantum or classical,

is modulations not caused by GWs.

A perfectly noiseless electric �eld E is known as the carrier :

E = E0e
iω0t

(A.1)

where ω0 is the carrier frequency, E0 is the carrier amplitude, and t is time.
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A.1.1 Phase modulation

A phase modulation of amplitude δφ at frequency ω can be applied to the carrier

light:

Eδφ = E0e
iφ

Eδφ = E0e
i(ω0t+δφ cos(ωt))

(A.2)

This can be thought of as splitting the carrier power, which is always a sine wave

at ω0, o� into sidebands at frequencies ω0 ± ω. Using the Jacobi-Anger expansion

on Eq. A.2 yields:

Eδφ = E0e
iω0t

∞∑

n=−∞
inJn(δφ) exp(inωt) (A.3)

where Jn is the nth Bessel function of the �rst kind.

If we assume δφ is small, then we can ignore the higher-order sidebands n ≥ 2,

and write Eq. A.3 as

Eδφ = E0e
iω0t
[
J0(δφ) + iJ1(δφ)eiωt − iJ−1(δφ)e−iωt

]
(A.4)

Finally, using J−1(δφ) = −J1(δφ), J0(δφ) ≈ 1, and J1(δφ) ≈ δφ/2, we write the

�nal phase modulation in terms of the carrier ω0, upper sideband ω0 +ω and lower

sideband ω0 − ω:

Eδφ = E0e
iω0t

(
1 + i

δφ

2
E0e

iωt + i
δφ

2
E0e

−iωt
)

(A.5)

The key observation of Eq. A.5 is the relative phase of the sidebands compared with

the carrier. The sidebands are aligned with one another when they are orthogonal

to the carrier. Calculating the power in the �eld,

Pδφ = |Eδφ|2

= |E0|2
(

1 +
(δφ)2

4

(
ei2ωt + e−i2ωt

))

Pδφ ≈ |E0|2. (A.6)

The sidebands push and pull the phase of the carrier by δφ, but to �rst order do not

alter the amplitude. Figure A.1b illustrates the sideband and quadrature picture of

phase modulation.
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A.1.2 Frequency noise

Frequency noise is mathematically equivalent to a phase modulation. Using the

de�nition of frequency as the time derivative of phase, dφ/dt, and the phase φ

from Eq. A.2, we calculate the relationship between frequency noise and phase

modulation [215]:

dφ

dt
=

d

dt
(ω0t+ δφ cos(ωt))

dφ

dt
= ω0 − ωδφ sin(ωt) (A.7)

The frequency can be broken down into the carrier term ω0 and the noise term δν,

where

2πδν

ω
= δφ (A.8)

where δν is the amplitude of the frequency swing.

We can substitute Eq. A.8 into Eq. A.5 with no change in the �nal result (except

an arbitrary phase advance of π/2 for both sidebands):

Eδν = E0e
iω0t

(
1− πδν

ω
eiωt +

πδν

ω
e−iωt

)
(A.9)

Here we recall the distinction between ω0, ω, and δω. The carrier frequency is ω0,

this is a constant, ω0 = 2πc/λ = 1.77 × 1015 rad/s (The Advanced LIGO laser

wavelength λ = 1064 nm). The modulation frequency itself is ω, this is how fast

the carrier frequency changes. The frequency modulation amplitude δν is how

much the carrier frequency changes.

A.1.3 Amplitude modulation

An amplitude modulation of amplitude δE at frequency ω can be applied to the

carrier light:

EδE = E0e
iω0t

(
1 +

δE

E0

cos(ωt)

)

EδE = E0e
iω0t

(
1 +

δE

2E0

eiωt +
δE

2E0

e−iωt
)

(A.10)

Again, the key observation of Eq. A.10 is the relative phase of the sidebands com-

pared with the carrier. This time, the sidebands are aligned with one another when
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they are also aligned with the carrier. Calculating the power in the �eld,

PδE = |EδE|2

= |E0|2
(

1 +
2δE

E0

cos(ωt) +
(δE)2

E2
0

cos(ωt)2

)

PδE ≈ P0

(
1 +

2δE

E0

cos(ωt)

)
. (A.11)

The sidebands push and pull the amplitude of the carrier by δE, but do not alter

the phase. Figure A.1a illustrates the sideband and quadrature picture of amplitude

modulation.

A.1.4 Intensity noise

Relative intensity noise (RIN) is mathematically equivalent to amplitude modula-

tion. From Eq. A.11, we can relate relative intensity noise to relative amplitude

noise (RAN). Dividing Eq. A.11 by P0, we de�ne the relative intensity noise in

terms of amplitude modulation:

δP

P0

=
2δE

E0

(A.12)

Going back to the expression for amplitude modulation EδE Eq. A.10, we can ex-

press the electric �eld EδP and power PδE in terms of relative intensity noise

δP/P :

EδP = E0e
iω0t

(
1 +

δP

4P0

eiωt +
δP

4P0

e−iωt
)

(A.13)

PδE = P0

(
1 +

δP

P0

cos(ωt)

)
(A.14)
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Figure A.1: Diagram (1) illustrates the sideband picture, with the x-axis represent-

ing frequency and the y- and z-axes representing phase. Diagram (2) is a phasor

diagram, looking along the frequency axis. The static carrier
~E0 oscillates at the

carrier frequency ω0, the upper sideband
~Eusb at the frequency ω0 + ω, and the

lower sideband
~Elsb at the frequency ω0 − ω.

~Eusb and
~Elsb rotate relative to the

carrier
~E0 in opposite directions.

A.2 General sideband power

The above sections focused on special cases of modulation. Here we derive a gen-

eral expression for power for some arbitrary modulation at signal frequency ω.

We write the modulated carrier as In the sideband picture, the total electric �eld
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can be written

~Etot = E0e
iω0t
[
1 + δ+e

iωt + δ−e
−iωt]

(A.15)

= ~E0 + ~E+e
iωt + ~E−e

−iωt
(A.16)

Looking for the power components at DC, ω, and 2ω:

Ptot = | ~Etot|2 (A.17)

= | ~E0 + ~E+e
iωt + ~E−e

−iωt|2 (A.18)

P0 = | ~E0|2 + | ~E+|2 + | ~E−|2 (A.19)

Pω = ( ~E∗0 ~E+ + ~E0
~E∗−)eiωt + ( ~E0

~E∗+ + ~E∗0 ~E−)e−iωt (A.20)

P2ω = ~E+
~E∗−e

i2ωt + ~E∗+ ~E−e
−i2ωt

(A.21)

Pω carries the linear audio signal we care about. The two components of the sum

making up Pω are complex conjugates of one another, so we can write

Pω = 2<(( ~E∗0 ~E+ + ~E0
~E∗−)eiωt) (A.22)

or, leaving Pω as a complex quantity,

P̃ω = 2( ~E∗0 ~E+ + ~E0
~E∗−) (A.23)

A.3 Quadratures

Amplitude and phase quadratures o�er a convenient way of representing light.

Instead of upper and lower sidebands, modulations are broken down into how

they a�ect the carrier.

Using the two-photon formalism of Caves and Schumaker [216, 217], the quan-

tum annihilation and creation operators for photons of frequency ω, aω and a†ω,

are abused to describe the modulation process as annihilating a photon at one

frequency and creating another photon at a di�erent, nearby frequency.

Following [22, 114], the upper sideband annihilation operator a+ and the lower

sideband annihilation operator a− are de�ned as

a+ = aω0+ω

√
ω0 + ω

ω0

a− = aω0−ω

√
ω0 − ω
ω0

. (A.24)

Because the carrier frequency ω0 is much larger than the signal frequencies we

care about ω, we can safely ignore the term in the root.



196

The amplitude and phase quadrature operators a1 and a2 are now de�ned as

a1 = a+ + a†− a2 = i(a+ − a†−). (A.25)

a1 and a2 do not commute with each other, but do commute with themselves,

unlike a+ and a−. We use the de�nition in Eq. A.25 to make shot noise units equal

to one (Subsection A.3.1), and make taking the dot product between static and

modulated sidebands straightforward (Subsection A.3.2).

The quadrature operators can be written as a vector ~a representing the modula-

tions of the total electric �eld:

~a =

(
a1

a2

)
. (A.26)

Figure A.1 illustrates the amplitude and phase quadratures on the phasor diagrams.

A.3.1 Quadrature units to electric �eld units

The quadrature operators a1 and a2 are general quantum operators representing

�eld amplitudes oscillating 90◦ out of phase we each other. a1 and a2 do not com-

mute [196]:

[a1, a2] = 2i (A.27)

as long as a1 and a2 represent the same signal frequency ω0 ± ω.

The Heisenberg uncertainty for these non-commuting operators is

σ2
a1
σ2
a2
≥ 1

4
|〈[a1, a2]〉|2 (A.28)

σ2
a1
σ2
a2

= 1 (A.29)

For unsqueezed vacuum, we have

〈a1〉 = 〈a2〉 = 0 (A.30)

σ2
a1

= σ2
a2

= 1. (A.31)

We say that a1 and a2 have “units of shot noise” such that their variance is equal

to one. This is used in Eq. 5.22.

To return to units of electric �eld, we �rst note that LIGO literature scales electric

�elds to have units of

√
W so the power in watts can be calculated like

P = |E|2. (A.32)
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In electricity and magnetism, power in an electric �eld is expressed like

P = AI =
Acε0|E|2

2
(A.33)

whereA is the surface area of the beam, I is the beam intensity in W/m2
, and ε0 is

the vacuum permeability. Here,E has units V/m, ε0 has units N/V2
,A has m2

, and

c has m/s Because the entire beam is assumed to be captured by the photodetector,

we incorporate the prefactor Acε0/2 into our electric �eld for simplicity.

Finally, we relate the quadrature operators a1 and a2 to their equivalent electric

�elds E1 and E2 by

a1 =
√

~ω0E1 a2 =
√
~ω0E2. (A.34)

This converts units of shot noise to the LIGO units of

√
W . (The real units of ~ω0

are joules, but the time average has been incorporated into our LIGO electric �eld

units).

A.3.2 Modulations in quadrature representation

We can express the sideband amplitude and phase modulations from Eqs.A.13 and

A.9 in quadrature representation using A.25.

We break up the total electric �eld
~Etot = ~E + ~e(ω) into a “static” component

~E

centered around the carrier frequency ω0 and a modulation, or Fourier, component

~e(ω) at the relative signal frequencies ω0 ± ω. Expressing an electric �eld mod-

ulated in both intensity and frequency
~Etot from Eqs. A.13 and A.9 in quadrature

representation yields

~Etot = ~E + ~e(ω) (A.35)

~E = E0e
iω0t

(
1

0

)
(A.36)

~e(ω) = E0e
iω0teiωt

[
2πδν

ω

(
0

1

)
+
δP

2P

(
1

0

)]
(A.37)

Eq. A.37 is equivalent to Eq. 10 in [114], except for a factor of

√
2 from di�erent

quadrature de�nitions (Eq. A.25 vs Eq. 6 in [114]).

For example, we recover intensity noise from Eq. A.14. Let δν → 0 for ~e(ω) in
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Eq. A.37, and take the dot product of
~Etot with itself to get power PδP :

PδP =
∣∣∣ ~E + ~e(ω)

∣∣∣
2

=
∣∣∣ ~E
∣∣∣
2

+ ~E∗ · ~e(ω) + ~E · ~e∗(ω) + |~e(ω)|2

≈ E2
0

(
1 +

δP

2P
eiωt +

δP

2P
e−iωt

)(
1 0

)
·
(

1

0

)

PδP = P0

(
1 +

δP

P
cos(ωt)

)
(A.38)

The result from Eq. A.38 matches Eq. A.14.

The same is not true for de�nitions like Eq. 6 in [114] or Eq. 2.7 in [22] or Eqs. 2.53

and 2.54 in [196]: attention must be paid to the quadrature de�nition to ensure

theory agrees with instrumental results.

A.4 Homodyne angle

The homodyne angle ζ is the static angle between the carrier phase and the sig-

nal sideband basis. The homodyne angle controls what mixed quadrature aζ is

measured on the photodetector [47, 196, 218, 219]:

aζ = a1 cos ζ + a2 sin ζ (A.39)

In the sideband picture, the total electric �eld can be written

Etot = E0e
iω0t

[
eiζ +

δ+

2
eiωt +

δ−
2
e−iωt

]
(A.40)

where δ+, δ− is some arbitrary complex modulation.

Figure A.2 shows a basic example of homodyne detection, with local oscillator car-

rier
~L and sidebands~a. The local oscillator phase can be adjusted by the homodyne

angle

~L = E0e
iω0teiζ (A.41)

In terms of the total electric �eld and total power oscillations, using the quadrature
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Q2

[

a

is ④ a
.

(a) ( b )

Figure A.2: Diagram (a) illustrates a local oscillator
~L beating with a signal side-

band ~a with homodyne angle ζ . Diagram (b) is a phasor diagram illustrating the

homodyne angle. In this diagram, ~a is entirely in a2, so the homodyne angle must

be adjusted to ζ = π/2 or ζ = 3π/2.

representation,

~Etot =
1√
2

(
~L+ ~a

)
(A.42)

Ptot =
1

2

∣∣∣~L+ ~a
∣∣∣
2

Ptot =
1

2

∣∣∣~L
∣∣∣
2

+ ~L · ~a

Ptot =
1

2

∣∣∣~L
∣∣∣
2

+ E0

(
cos ζ sin ζ

)(a1

a2

)

Ptot =
1

2
E2

0 + E0aζ

Ptot =
1

2
P0 + Pζ (A.43)

Suppose that ~a is in a2, as in Figure A.2. Then the detected power oscillations at

Pζ is:

Pζ = E0a2 sin ζ (A.44)

and we can detect the phase modulation when the homodyne angle ζ = π/2.

A.4.1 Con�icting homodyne angle de�nition

In Buonanno and Chen’s series of landmark Advanced LIGO quantum noise papers

[22, 125, 220], the new homodyne angle ζbnc is de�ned di�erently than in Eq. A.39.
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For these results, Buonanno and Chen used the homodyne angle de�nition

aζ = a1 sin ζbnc + a2 cos ζbnc. (A.45)

In this case, ζbnc = 0 yields a2, while ζbnc = π/2 yields a1. The relationship

between ζbnc and ζ is

ζbnc =
π

2
− ζ (A.46)

Because the results of [22] were so in�uential, Advanced LIGO literature uses this

de�nition [20, 57, 114, 119, 140, 213]. Advanced LIGO is said to run with a homo-

dyne angle of ζbnc = π/2, as the interferometer is con�gured such that the signal

comes out in the amplitude quadrature b1 of the input electric �eld [20, 22].

For consistency with Advanced LIGO literature, this thesis also uses the Buonanno

and Chen homodyne angle ζbnc, (see Chapters 4, 5).
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A p p e n d i x B

BASIC INTERFEROMETER CONFIGURATIONS

Here we will derive the expected gravitational wave signal from a simple Michel-

son interferometer, alongside the expected laser frequency and intensity noise cou-

plings, as has been done before [78, 114, 211–213].

In other chapters we explored the frequency and intensity stabilization schemes,

as well are the full detector response to GWs for accurate calibration. The purpose

of this chapter is to introduce the technical origins of concepts important to this

thesis, including optical gain, contrast defect, and DC o�set.

This appendix helps draw the connection between the theoretical representation

and the instrumental results. Often, random scale factors are applied to help data

match up with theory. If losses are a parameter we care about, which they are in

Advanced LIGO for O3, random scale factors are degenerate with those parame-

ters.

The overview facilitates a direct comparison of analytic results like those in [22,

114], to numerical results like those calculated from Finesse [134, 135], to actual

measurements taken at LIGO Hanford.

B.1 Propagation through space

An electric �eld propagating through free space only a�ect its phase. For an input

electric �eld Ein propagating a length L to Eout through a medium with index of

refraction n:

~Eout = einkL ~Ein (B.1)

where k = ω0/c is the wavenumber. We will exclusively be working with n = 1

in this thesis.

In the quadrature representation, it can be convenient to represent spatial propa-

gation as a rotation matrix. This is because if we combine two beams with di�er-

ent quadrature bases, we must �rst rotate one basis to align with the other before

combining the beams:

~Eout =

[
cos(nkL) − sin(nkL)

sin(nkL) cos(nkL)

]
~Ein. (B.2)
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This is used for combining beams at the beamsplitter in Eq. B.25.

B.2 Re�ection from an oscillating mirror

The re�ection from oscillating mirror imposes phase modulated sidebands on the

incident carrier. Figure B.1 illustrates this basic setup, with a perfectly coherent

laser incident on a vibrating mirror.

X

l

E
.

E. + e
.

/ n

LL J

Figure B.1: A noiseless laser
~E0 is incident on a mirror with re�ectivity r oscillating

at amplitude ∆x. The main re�ected wave
~Er carries a phase shift φD = 2k∆L,

while the sideband re�ected wave ~er holds the information of the oscillation ∆x
in the phase quadrature.

The incident wave
~E0 travels some distance L+ ∆L. L is a distance such that the

round-trip phase would be zero:

2kL = 2πn (B.3)

L =
λ

2
n (B.4)

where k = 2π/λ is the wavenumber, and n is some integer. ∆L is a static o�set

less than λ/2.

The total re�ected wave can be broken up as
~Er + ~er:

~Er + ~er = E0e
iω0teiφDei2k∆x cos(ωt)

~Er + ~er = E0e
iω0teiφD

[
1 + ik∆xeiωt + ik∆xe−iωt

]
(B.5)
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or in quadrature representation,

~Er + ~er = E0e
iω0teiφD

[(
1

0

)
+ k∆x

(
0

1

)]
. (B.6)

B.3 Simple Michelson

L
N
y

DX cos(wt) t

Eyzv

Ly

Ey ,
-

Nos Rx

-IEo C- refl Lx
> a > e

+
Ex ,

Ex 2

AL →

Ax cos(wt)

v Eas

Figure B.2: Diagram of a simple Michelson interferometer with DC readout. A

small static o�set ∆L allows light to exit the antisymmetric port. A di�erential

audio-band oscillation ∆x cos(ωt) creates a transmitted power oscillation ∆Pas.

Figure B.2 shows a simple Michelson with input light
~E0 and light transmitted to

the antisymmetric port
~Eas. Here we derive the transfer function for light from

the input port to the antisymmetric, or transmitted, port. We assume plane waves

and thin mirrors with no losses, and use the “+/-” mirror re�ection convention

as opposed to the “90◦ transmission” convention t → it used in Finesse [134,

215]. For the thin mirrors, we will be working with “amplitude re�ectivity” r and

“amplitude transmission” t such that r2 + t2 = R + T = 1, were R and T are the

usual re�ectivity and transmission of power incident on the mirror.

The input carrier
~E0 is split into the two �elds in the arms by the 50:50 beamsplit-
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ter, so rbs = tbs = 1/
√

2:

~Ex1 =
1√
2
E0e

iω0t
(B.7)

~Ey1 =
1√
2
E0e

iω0t. (B.8)

Fields
~Ex1 and

~Ey1 travel the length of the arms and are re�ected back to the

beamsplitter. Setting the oscillation ∆x = 0 for now, but keeping the di�erential

static o�set ∆L yields

~Ex2 =
rx√

2
E0e

iω0tei2k(Lx+∆L)
(B.9)

~Ey2 =
ry√

2
E0e

iω0tei2k(Ly−∆L)
(B.10)

The �eld “re�ected” from the beamsplitter
~Erefl returns to the laser, but the �eld

“transmitted”
~Eas exits the Michelson through the antisymmetric port. The beam

from the X-arm gets a sign �ip from our re�ection convention. Assuming that

Lx = Ly = L is some nominal common length, we write the re�ected and trans-

mitted �elds as

~Erefl =
1√
2

(Ey2 + Ex2) (B.11)

~Eas =
1√
2

(Ey2 − Ex2) (B.12)

~Erefl =
1

2
E0e

iω0tei2kL
(
rye
−i2k∆L + rxe

i2k∆L
)

(B.13)

~Eas =
1

2
E0e

iω0tei2kL
(
rye
−i2k∆L − rxei2k∆L

)
. (B.14)

The �eld
~Eas as written here is correct, but we can write it in a more useful basis

by de�ning

r =
rx + ry

2
δr =

rx − ry
2

. (B.15)

Here r represents the common, or average, re�ectivity of the mirrors, while δr is

the contrast defect due to re�ectivity mismatch.

Using this basis on Eqs. B.13 and B.14 yields

~Erefl = E0e
iω0tei2kL(r cosφD + iδr sinφD) (B.16)

~Eas = −E0e
iω0tei2kL(δr cosφD + ir sinφD). (B.17)
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where we have written the static di�erential phase φD = 2k∆L. In the quadrature

picture,

~Erefl = E0e
iω0tei2kL

(
r cosφD

δr sinφD

)
(B.18)

~Eas = −E0e
iω0tei2kL

(
δr cosφD

r sinφD

)
. (B.19)

Eqs. B.18 and B.19 clearly show what quadrature the carrier light is in. Both ex-

perience a phase rotation due to the round-trip length of the arms of φL = 2kL

mod 2π, which can be ignored in this case as a change of quadrature basis. We set

φL = 0 for simplicity.

Az

refl
-

O

a
,

trans

Figure B.3: Simple Michelson phasor diagram for the re�ected and transmit-

ted beams from Eqs. B.18 and B.19. The input light
~E0 is along the amplitude

quadrature. In an ideal Michelson with no contrast defect and no static o�set

δr = ∆L = 0,
~Erefl = ~E0 and

~Eas = 0. However, a small length o�set transmits

light along the phase quadrature, shortening
~Erefl along the amplitude quadra-

ture. Contrast defect light pushes o� the basis vectors, represented by the purple

arrows, by transmitting light in the amplitude quadrature and re�ecting light in

the phase quadrature. Here we have set r ≈ 0.95 and contrast defect δr ≈ 0.05,

with small length o�set φD = 2k∆L ≈ 0.4.

For the transmitted light
~Eas, the light due to contrast defect δr is in the amplitude

quadrature, but the light due to a static length o�set ∆L is in the phase quadrature.

Figure B.3 illustrates an example phasor diagram with nonzero contrast defect and

a static o�set.
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Calculating the power in the re�ected and transmitted �elds yields

Prefl = | ~Erefl|2 = Pin

(
r2 cos(φD)2 + δr2 sin(φD)2

)
(B.20)

Pas = | ~Eas|2 = Pin

(
δr2 cos(φD)2 + r2 sin(φD)2

)
(B.21)

If we approximate the transmitted power assuming ∆L � 1, then cos(φD) → 1

and sin(φD)→ φD:

Pas ≈ 4Pinr
2k2∆L2. (B.22)

Directly on the Michelson dark fringe, i.e. when Pas = 0, Pas is quadratic in ∆L.

Figure B.4 plots this approximation alongside the full expressions for re�ected and

transmitted power.

180900−90−180
Differential phase tuning φD = 2k∆L [degs]

0

2

4

6

8

10

P
ow

er
P

0
[W

]

reflected power
transmitted power
transmitted power approximation
X-arm power
Y-arm power

Figure B.4: Simple Michelson di�erential tuning φD vs re�ected and transmit-

ted power, as derived in Eqs. B.20 and B.21. Here, Pin = 10W, r = 0.95, and

δr = 0.025. The power in the arms is unequal because there is signi�cant con-

trast defect, rx = 0.975, ry = 0.925. The transmitted power approximation from

Eq. B.22 is plotted as the dashed line.

B.3.1 Response to di�erential motion

Up until now all of the laser light has been at a single carrier frequency ω0. Now

we inject an oscillating di�erential mirror motion±∆x cos(ωt), which will scatter

light from ω0 to ω0 ± ω, as described in section B.2 Eq. B.6.

Going back to Eqs. B.9 and B.10 and applying the oscillation yields signal sidebands
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~ex2 and ~ey2:

~Ex2 + ~ex2 =
rx√

2
E0e

iω0teiφD

[(
1

0

)
+ k∆x

(
0

1

)]
(B.23)

~Ey2 + ~ey2 =
ry√

2
E0e

iω0te−iφD

[(
1

0

)
− k∆x

(
0

1

)]
. (B.24)

Now
~Eas will also have a signal sideband ~eas. Rotating

~Ex2 by φD and
~Ey2 by−φD

using Eq. B.2 so their quadrature bases align, then multiplying yields:

~Eas + ~eas = E0e
iω0tei2kL

[(
−δr cosφD

−r sinφD

)
+ k∆x

(
δr sinφD

−r cosφD

)]
. (B.25)

Calculating the total power Pas yields a static component at DC Ptrans,0 equal to

Eq. B.21 and an oscillating component at the signal frequencyω, Pas(ω). We ignore

(∆x)2
terms which are extremely small:

Pas = | ~Eas + ~eas|2 (B.26)

Pas = Ptrans,0 + Ptrans,ω(ω) (B.27)

Ptrans,0 = Pin

(
δr2 cos(φD)2 + r2 sin(φD)2

)
(B.28)

Pas(ω) = Pink∆x(r2 − δr2) sin(2φD) (B.29)

If we divide the �nal term Eq. B.29 by the di�erential mirror motion ∆x, we get

the transfer function from meters to watts for a simple Michelson.

Pas

∆x
(ω) = Pink(r2 − δr2) sin(2φD)e−

iωL
c . (B.30)

Figure B.5 plots Eq. B.30 for an example 4 km Michelson with di�erent static o�-

sets. We have added a speed-of-light travel delay τ = L/c for the time it takes

the light to travel from the mirror the beamsplitter. This amounts only to a phase

shift, and emphasizes that Pas/∆x is a complex, frequency-dependent quantity.

Subsection B.3.2 derives where this light travel time delay comes from.

Di�erential arm motion is called DARM in Advanced LIGO. The transfer function

Pas/∆x is the DARM optical plant, and in general can be frequency-dependent.

The magnitude of the optical plant in units of watts per meters is often called the

optical gain, although in reality the interferometer is acting as a transducer from

mirror motion to power.
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We note that high contrast defect δr reduces the optical gain in Eq. B.30. Also,

large ∆L such that φD = π/4 yields the maximum possible optical gain. This is

known as half-fringe Michelson operation, and while it does increase the signal,

it also allows excess laser noise into the antisymmetric port, reducing the SNR

overall. We will explore this in the following subsections.
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Figure B.5: Simple Michelson DARM transfer functions Pas/∆x for several DC

o�sets φD, as derived in Eqs. B.30 and plotted via Finesse simulation [134, 135].

The closer to φD = ±90◦, the higher the optical gain of the transfer function.

Also, φD = 105◦ has the same optical gain as φD = 75◦, but opposite sign. Here,

Pin = 10 W, r = 0.95, δr = 0.025, and L = 4 km.

B.3.2 Gravitational waves to di�erential motion transfer function

From section B.3.1 we understand how an interferometer responds to DARM mo-

tion. However, a gravitational wave modulates the spacetime that the laser is

traveling through, not the mirrors’ position. The view that the mirrors or any

two points in spacetime do not change coordinates when a gravitational wave is

incident is a consequence of the transverse traceless gauge [221].

Saulson [211] derives the phase shift a perfectly aligned h+ = he−iωt gravitational

wave would generate in a simple Michelson by calculating the round-trip time for
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light in both arms. Recalling with the spacetime interval for light:

ds2 = 0 (B.31)

we can break up the spacetime interval into the spatial and temporal components

of the light beam traveling in the X-arm, assuming a �at spacetime:

0 = −c2dt2 + (1 + he−iωt)dx2
(B.32)

Moving c2dt2 to the LHS, taking the root of both sides, and integrating yields

c

∫ τout

0

dt =

∫ L

0

√
1 + he−iωtdx. (B.33)

We’ve taken the integral over the time it takes for the light wave to propagate out

to the X-end mirror τout, and over the length that the light wave propagates L.

Since h � 1, we can approximate

√
1 + h ≈ 1 + h/2, substitute t = x/c on the

RHS, and solve both integrals for the outbound time

τout =
L

c
+ h

e
−iωL
c − 1

i2ω
(B.34)

For the inbound trip, we substitute in t = (2L− x)/c instead:

τin =
L

c
+ h

e
−iωL
c

(
e
−iωL
c − 1

)

i2ω
(B.35)

The total round-trip time τrt = τout + τin for the light in the X-arm:

τrt =
2L

c
+ h

(
e
−i2ωL
c − 1

)

i2ω
(B.36)

Converting this round-trip time to the phase of the X-arm:

φx = kcτrt (B.37)

φx = kc


2L

c
+ h

(
e
−i2ωL
c − 1

)

i2ω


 (B.38)

The phase of the Y-arm φy will have nearly the same phase, but h → −h in the

round-trip time from Eq. B.36. Therefore the di�erential phase ∆φ is

∆φ = φx − φy (B.39)

∆φ = h
kc

iω

(
1− e−i2ωLc

)
(B.40)

∆φ = 2kLh sinc

(
ωL

c

)
e
−iωL
c (B.41)
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or, in transfer function form,

∆φ

h
(ω) = 2kL sinc

(
ωL

c

)
e
−iωL
c . (B.42)

Finally, we cannot directly measure di�erential phase ∆φ, but we can measure

antisymmetric power. Relating the transfer functions from Eqs. B.30 and B.42

Pas

h
(ω) =

∆φ

h
(ω)× ∆x

∆φ
(ω)× Pas

∆x
(ω) (B.43)

Pas

h
(ω) =

[
2kL sinc

(
ωL

c

)
e
−iωL
c

]
×
[

1

2k

]
×
[
Pink(r2 − δr2) sin(2φD)

]
(B.44)

Pas

h
(ω) = PinkL(r2 − δr2) sin(2φD) sinc

(
ωL

c

)
e
−iωL
c (B.45)

Figure B.6 plots the transfer function in Eq. B.45. We note that when the signal

frequency fGW = ω/2π equals the free spectral range FSR = c/2L, there is a

dip to nothing in the response. This is a result of the laser integrating over exactly

one period of the GW oscillation, yielding no phase change relative to a Michelson

with no GW incident. Beyond the FSR, the response is reduced as the light travel

time is expanded and contracted multiple times during one pass through the arm.

Eq. B.45 represents the response of a simple Michelson to a gravitational wave.

The largest strain detected by Advanced LIGO is h ≈ 10−21
at around f ≈ 30 Hz.

For an Advanced LIGO-like simple Michelson operating at the half-fringe, with

φD = π/4, L = 4 km, k = 2π/(1064 nm), P = 100 W, r = 0.99, and δr = 0.01,

the simple Michelson has a response Pas(ω) ≈ 2 nW. The shot noise limit for the

same interferometer is

√
SP =

√
2~ω0Ptrans,0 (B.46)

≈ 4
nW√

Hz
(B.47)

Because the gravitational wave signal only lasts for a few milliseconds, we are

going to have to do better to achieve a meaningful detection.

B.3.3 Laser noise

From subsection B.3.2 we understand our detector response to gravitational waves.

The signature of gravitational waves on the detected antisymmetric port powerPas

is called the signal.

Noise is anything in the antisymmetric power data which is not signal. There are

several sources of noise we could include for our simple Michelson. Shot noise
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Figure B.6: Simple Michelson strain to antisymmetric power Pas/h transfer func-

tion for several DC o�sets φD, as derived in Eqs. B.45 and plotted via Finesse

simulation. Compared to the DARM transfer function Pas/∆x from Eq. B.30 and

Figure B.5, Pas/h is multiplied by the length of the Michelson L, and the sinc func-

tion causing dips at the FSR and a reduced response beyond Here, Pin = 10 W,

r = 0.95, δr = 0.025, L = 4 km, k = 2π/(1064 nm).

from the power on the photodetector was explored with Eq. B.46. Seismic noise

makes the mirrors move by some ∆xseismic will couple to antisymmetric power

with the same e�ciency as Eq. B.30.

This subsection, and this thesis, will focus on laser noise. This is the natural noise

that occurs when a laser emits light at the carrier frequency ω0. Frequency noise

is a measure of how much the carrier frequency moves around its central value,

while intensity noise is how much the intensity �uctuates. Appendix A explores

how these noises can be expressed as modulated electric �elds.

We wish to understand how laser noise couples to the antisymmetric port and

obscures the gravitational wave signal. Laser noise is mathematically represented

by modulations on the input laser. Recalling Eqs. A.35, we express the input noise
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~e0(ω) as

~e0(ω) = E0e
iω0teiωt

[
2πδν

ω

(
0

1

)
+
δP

2P

(
1

0

)]
. (B.48)

We want to estimate the frequency noise transfer function Pas/δν and the relative

intensity noise transfer function Pas/(δP/Pin).

Following the example in [114], we �rst de�ne the transfer function from the

bright port to the dark port T (ω) using Eq. B.17. We also fully express the wavenum-

ber k = (ω0 + ω)/c to capture the suppressed frequency-dependence, write the

di�erential DC o�set explicitly in terms of the carrier ∆L = cφD/(2ω0), and di-

vide out the delay factor ei2kL for simplicity:

T (ω) =
~Eas

~E0

= −δr cos

(
φD(ω + ω0)

ω0

)
− ir sin

(
φD(ω + ω0)

ω0

)
(B.49)

Then, using Appendix A Eq. (A9) of [220], the quadrature transfer matrix T (ω) is

T (ω) =
1

2

[
T (ω) + T ∗(−ω) i(T (ω)− T ∗(−ω))

−i(T (ω)− T ∗(−ω)) T (ω) + T ∗(−ω)

]
(B.50)

Substituting in Eq. B.49:

T (ω) =



− cos(φD)

(
δr cos

(
φDω

ω0

)
+ ir sin

(
φDω

ω0

))
sin(φD)

(
−ir cos

(
φDω

ω0

)
+ δr sin

(
φDω

ω0

))

− sin(φD)

(
−ir cos

(
φDω

ω0

)
+ δr sin

(
φDω

ω0

))
− cos(φD)

(
δr cos

(
φDω

ω0

)
+ ir sin

(
φDω

ω0

))




(B.51)

The transfer matrix T (ω), when applied to the input electric �eld sidebands ~e0(ω),

converts them into the transmitted sidebands ~eas(ω) we would expect at the anti-

symmetric port:

~eas(ω) = T (ω)~e0(ω) (B.52)

~eas(ω) =




2πδν

ω
E0 sin(φD)

(
r cos

(
ωφD
ω0

)
+ iδr sin

(
ωφD
ω0

))
− δP

2Pin

E0 cos(φD)

(
δr cos

(
ωφD
ω0

)
+ ir sin

(
ωφD
ω0

))

− δP

2Pin

E0 sin(φD)

(
r cos

(
ωφD
ω0

)
+ iδr sin

(
ωφD
ω0

))
− 2πδν

ω
E0 cos(φD)

(
δr cos

(
ωφD
ω0

)
+ ir sin

(
ωφD
ω0

))




(B.53)
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We also need the static carrier at the antisymmetric port
~Eas from Eq. B.19. This

time we set k = ω0/c since we are dealing on with carrier light, and again we cut

the phase factors in front for simplicity:

~Eas = −E0

(
δr cosφD

r sinφD

)
. (B.54)

Calculating the power �uctuations at the antisymmetric port due to laser noise:

Pas(ω) = 2 ~Eas · ~eas(ω) (B.55)

=
δP

Pin

E2
0

(
cos

(
ωφD
ω0

)(
r2 sin2(φD) + δr2 cos2(φD)

)
+ irδr sin

(
ωφD
ω0

))

(B.56)

+ i
2πδν

ω
E2

0(r2 − δr2) sin(2φD) sin

(
ωφD
ω0

)
(B.57)

Writing Eq. B.56 in terms of transfer functions from laser frequency and laser in-

tensity to antisymmetric power, and multiplying back in the round-trip phase de-

lay e−i2ωL/c:

Pas

δν
(ω) = i

2πE2
0

ω
(r2 − δr2) sin(2φD) sin

(
ωφD
ω0

)
e−

i2ωL
c (B.58)

Pas

δP/Pin

(ω) = E2
0

(
cos

(
ωφD
ω0

)(
r2 sin2(φD) + δr2 cos2(φD)

)
+ irδr sin

(
ωφD
ω0

))
e−

i2ωL
c

(B.59)

Using the small angle approximation on Eqs. B.58 and B.59 by letting sin(ωφD/ω0)→
ωφD/ω0 and cos(ωφD/ω0)→ 1, and dropping the small imaginary part of the in-

tensity transfer function gives

Pas

δν
(ω) ≈ i

2πφDPin

ω0

(r2 − δr2) sin(2φD)e−
i2ωL
c (B.60)

Pas

δP/Pin

(ω) ≈ Pin

(
r2 sin2(φD) + δr2 cos2(φD)

)
e−

i2ωL
c (B.61)

Eqs. B.60 and B.61 are the full expressions for frequency and intensity transfer

functions to antisymmetric power with a non-negligible di�erential DC o�set φD.

Both are �at in frequency-dependence, except for the delay due to the round-trip

of the audio signal. Figures B.7 and B.8 plot the transfer functions for frequency

noise and intensity noise appearing in the antisymmetric port.
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Figure B.7: Simple Michelson frequency noise to antisymmetric power transfer

function Pas/δν for several DC o�sets φD, as derived in Eqs. B.60 and plotted via

Finesse simulation. Here, Pin = 10 W, r = 0.95, δr = 0.025, L = 4 km.

Examining the frequency noise transfer function Eq. B.60, we see primary coupling

mechanism is through the static DC o�set φD, the same as the gravitational wave

transfer function from Eq. B.42. Frequency noise is especially diabolical because

of this fact: excess frequency noise will directly mask a gravitational wave signal

because it propagates in the same quadrature as the GW signal.

The primary coupling for the relative intensity transfer function Eq. B.61 depends

on the value of φD. If φD is not close to zero, then intensity noise couples through

the large DC o�set power directly. This can be circumvented by limiting the power

leaking to the antisymmetric port.

If we let φD � 1, then Eqs. B.60 and B.61 simplify further:

Pas

δν
(ω) ≈ i

4πφ2
DPin

ω0

(r2 − δr2)e−
i2ωL
c (B.62)

Pas

δP/Pin

(ω) ≈ Pin

(
r2φ2

D + δr2
)
e−

i2ωL
c (B.63)

Now both frequency and intensity coupling to the antisymmetric port can be made
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Figure B.8: Simple Michelson relative intensity noise to antisymmetric power

transfer function Pas/(δP/Pin) for several DC o�sets φD, as derived in Eqs. B.61

and plotted via Finesse simulation. Here, Pin = 10 W, r = 0.95, δr = 0.025,

L = 4 km.

small, up to the contrast defect limit from δr2
for intensity coupling. Using radio-

frequency (RF) Pound-Drever-Hall locking, the simple Michelson can be operated

exactly on the dark port φD = 0, at the expense of added RF sidebands in the dark

port.

A useful expression is the signal-referred transfer function. The signal-referred TF

is the relationship between the transfer function from a gravitational wave to some

signal, and the transfer function from some noise source to the same signal. The

GW signal-referred frequency noise at the antisymmetric port is calculated:

Pas

δν
(ω)

Pas

h
(ω)

=
i
2πφDPin

ω0

(r2 − δr2) sin(2φD)e−
i2ωL
c

PinkL(r2 − δr2) sin(2φD) sinc

(
ωL

c

)
e−

iωL
c

(B.64)

h

δν
(ω) =

i2πce−
iωL
c

Lω2
0 sinc(ωL/c)

(B.65)

where we have let k = ω0/c in the second expression. Eq. B.64 quanti�es how
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frequency noise δν will look like GW strain h when we measure antisymmetric

powerPas. Eq. B.64 emphasizes that the only parameters we can change to improve

the simple Michelson’s resilience to frequency noise are the carrier frequency of

the laser ω0 and the length of the interferometer L.

B.4 Fabry-Perot cavity

In this section we will very brie�y overview the Fabry-Perot cavity interferome-

ter, also known as a two-mirror resonator. Then we will review basics of cavity

geometry, Gouy phase, and higher order modes [222–224]. These discussion will

be relevant for the frequency and intensity noise discussions in Sections 3.4.5 and

3.5.3.

The beam trace math shown here is used in Section C.2 for modeling the arm and

SRC cavity beam pro�les.

B.4.1 Basics
- E

.

-

Eo Et
, I

- -

Er
i

Es Te

L

Figure B.9: A laser
~E0 is incident on the input mirror with transmission Ti. Part

of the laser is promptly re�ected
~Er, and part is transmitted into the cavity

~Ec.
The cavity �eld propagates to the end mirror with transmission Te, where part is

transmitted
~Et and part is re�ected in the cavity again

~Ec2.

The Fabry Perot cavity is formed by placing two mirrors facing one another. As-

suming we use lossless thin mirrors and use the plane-wave approximation for

electric �elds, and we know the input light carrier frequency ω0, the Fabry-Perot

cavity �eld dynamics are completely solved with only three parameters:

1. the input mirror transmission Ti,

2. the end mirror transmission Te,

3. the length of the cavity L.

Figure B.9 shows the Fabry Perot cavity parameters and �elds.
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The Fabry Perot works by storing light of the correct frequency in the cavity for

many re�ections. The “correct frequency” here means the light is constructively

interfering with itself inside the cavity, building up to higher levels than were

input. The higher the mirror re�ectivities, the more light builds up in the cavity.

The buildup of light power is known as the cavity gain, or �nesse of the cavity.

To quantify these properties, we will solve the Fabry-Perot transfer functions.

From Figure B.9 we can set up the following system of equations:

Er = −riE0 + tiEc2 (B.66)

Ec = tie
ikLE0 + rie

ikLEc2 (B.67)

Ec2 = ree
ikLEc (B.68)

Et = teEc2 (B.69)

(B.70)

where eikL represents the space propagation inside the cavity, k = ω0/c is the

wave number, and ri, re, ti, and te are the amplitude re�ectivity and transmission

of the input and end mirrors. Solving for Ec, Er, Et yields the transfer functions

Ec
E0

(f) =
tie

ikL

1− rireei2kL
(B.71)

Er
E0

(f) =
−ri + re(r

2
i + t2i )e

i2kL

1− rireei2kL
(B.72)

Et
E0

(f) =
titee

ikL

1− rireei2kL
. (B.73)

The frequency dependence of these transfer functions is hidden in k.

First, we set the resonance condition to be when there is a maximum amount of

light in the cavity. This is when the denominator of Ec/E0 is as small as possible,

or equivalently when ei2kL = 1. This is achieved when

φrt = 2kL =
4πL

λ
= 2πn (B.74)

L =
λ

2
n (B.75)

where n is some huge integer.

The free spectral range, or FSR, is the frequency spacing between cavity reso-

nances. This is associated with each consecutive n from Eq. B.74 if we changed λ
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instead of L, and can be written

L =
c

2ν1

n, L =
c

2ν2

(n+ 1) (B.76)

FSR = ν2 − ν1 =
c

2L
. (B.77)

One-way cavities use the more general expression FSR = c/Lrt for round-trip

length.

The cavity amplitude gain g is the level of enhanced electric �eld in the resonant

cavity, and the cavity power gain G = g2
is the enhanced power levels:

g =
ti

1− rire
(B.78)

A cavity can be undercoupled, critically-coupled, or overcoupled based on the input

and end mirror re�ectivities:

Undercoupled : ri < re (B.79)

Critically coupled : ri = re (B.80)

Overcoupled : ri > re (B.81)

A resonant cavity that is critically-coupled will transmit all incident light, as can

be seen from Eq. B.73. Most Advanced LIGO cavities are overcoupled: the end

mirrors are made as re�ective as possible to avoid transmission losses. We note

here that for beams re�ected from a cavity (Eq. B.72), if the beam is not resonant

in that cavity, it will experience a 180◦ phase �ip. If the beam is resonant, it will

experience no phase �ip.

Now we know the location of the resonances, but the cavity dynamics around

resonance determine how sensitive the cavity is to changes in length or frequency.

A good proxy for the cavity linewidth is the cavity pole. Setting the denominator

to zero, and setting the wavenumber k = 2πfp/c and solving for fp yields:

0 = 1− riree
i2(2πfp)L

c (B.82)

→ ifp = − c

4πL
log(rire) (B.83)

The �nesse of a cavity is the ratio of the cavity linewidth to its free spectral range.

The cavity linewidth is the full-width half-maximum power from a frequency
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sweep given from the cavity power gain G. In the high-�nesse limit, twice the

cavity pole is approximately equal to the cavity linewidth:

F =
FSR

fFWHM

(B.84)

≈ FSR

2fp
(B.85)

=
−π

log(rire)
(B.86)

This approximation is very good above F ≈ 10, which describes all cavities in

LIGO.

B.4.2 Cavity geometry

The frequency of a laser incident on a cavity is not the only aspect that governs

how well the laser will resonate. The spatial distribution, or transverse modes, of

the propagating laser is also important.

The cavity geometry refers to the Gaussian beam eigenmodes de�ned by a res-

onator’s parameters. A two-mirror resonator with mirrors of radii of curvature

R1 and R2, spaced a length L apart, fully de�nes the eigenmodes of a Fabry-Perot

cavity. Incident light in the transverse beam eigenmodes will be resonantly en-

hanced inside the cavity. Incident light not in the cavity modes will attenuate and

be preferentially re�ected, and is sometimes referred to as “junk” light

First, we discuss the basics of ABCD beam propagation, as covered in depth by

Siegman [223], overviewed by Kogelnik and Li [222], and employed for Advanced

LIGO cavities by Arai [42, 225]. Next, we discuss cavity stability and the calcula-

tion of transverse eigenmodes of a general cavity. Finally, we discuss Gouy phase,

transverse mode spacing, and the capabilities and limitations of a cavity to act as

a frequency and spatial mode sieve.

B.4.2.1 Beam spatial eigenmodes

A laser beam’s intensity can be decomposed into spatial modes transverse to their

direction of propagation. One usual decomposition employed is the Hermite-

Gauss (HG) modes, corresponding to a Cartesian coordinate eigenmode represen-

tation (see e.g. Kogelnik and Li Section 3.3a [222]). The other is the cylindrical

coordinate eigenmodes, Laguerre-Gauss (LG) modes (see Kogelnik and Li Section

3.3b).
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The lowest order intensity mode is the Gaussian mode (Chapter 17, Eq. 6 of [223]):

I(r, z) =
2P

πw(z)2
exp

(
−2

r2

w(z)2

)
(B.87)

where I is the intensity pro�le in W/m2
, z is the cavity axis de�ned by the point

of maximum beam intensity, r =
√
x2 + y2

is the radial distance from the cavity

axis z, P is the total power in watts, and w(z) is the beam radius de�ned at any

point along the cavity axis.

In Figures B.10 and C.3, the lowest order TEM00 beam waist pro�les are repre-

sented by the red lines. Quantitatively, the beam waist represents the radial point

where the beam intensity falls o� by e−2
, or equivalently, where the laser ampli-

tude falls by e−1
, or where r = w(z) in Eq. B.87. This gives an impression of the

changing intensity pro�le of the beam as it propagates along the cavity axis. A

real beam is not perfectly Gaussian, and can be astigmatic, meaning the beam has

di�erent pro�les for the x and y plane intensity projections.

Higher order modes (HOMs) correspond to all other modes, e.g. TEMnm where

either n 6= 0 or m 6= 0. HOMs have a di�erent intensity pro�le and faster Gouy

phase accumulation. This faster phase velocity of HOMs leads to di�erent reso-

nance frequencies for di�erent modes incident on the same cavity (Sections 3.3

and 3.5 [222]). This is the fundamental principle behind mode cleaners, which

LIGO employs both in input and output to remove HOMs from the main beam.

B.4.2.2 Beam propagation and ABCD matrices

A laser beam ~w can be de�ned by its beam radius w and ray angle with respect

to the cavity axis θ. A laser beam propagating through a series of mirrors, lenses,

and spaces de�nes a ray transfer matrix, also known as an ABCD matrix, which

transforms an input beam ~w1 to an output beam ~w2. as shown in Figure B.10:

[
w2

θ2

]
=

[
A B

C D

][
w1

θ1

]
. (B.88)

An ABCD matrix must be unitary:

AD −BC = 1 (B.89)
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Figure B.10: An example input and output beam pro�le with a thin lens and space

to propagate. The main beam propagates along the cavity axis z, with the point

of maximum intensity always directly on the z-axis. The red line represents the

beam waist, which is usually de�ned as the point in the x-y plane with e−2
of the

maximum intensity.

A �nal ABCD matrix is made up of several individual matrices multiplied in order.

Some component ABCD matrices are

Space propagation of length L : S(L) =

[
1 L

0 1

]
(B.90)

Thin lens with focal length f : L(f) =




1 0

− 1

f
1


 (B.91)

Spherical mirror with radius of curvature R :M(R) =


 1 0

− 2

R
1


. (B.92)

For propagation through a medium with index of refraction n, replace Lwith L/n

in Eq. B.90.

Returning to the fundamental Gaussian beam pro�le from Eq. B.87, we de�ne the

complex beam parameter q in terms of two real parameters, beam radius w(z) and

the wavefront radius of curvature R(z):

1

q
=

1

R(z)
− i λ

πw(z)2
(B.93)

where λ is the wavelength of the laser. We can see immediately that the real

and imaginary components of the inverse complex beam parameter 1/q separately

represent the radius of curvature and beam radius.
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Finally, we write the relationship between the q parameter and ABCD matrices,

sometimes called the ABCD law (Chapter 20 [223]):

q2 =
Aq1 +B

Cq1 +D
(B.94)

where q2 is the output beam parameter, and q1 is an input beam parameter.

From Eq. B.94 and Eqs. B.90, B.91, and B.92, we can take any input beam q1 and a

set of spherical optics in its path, and easily model the output beam we expect.

B.4.2.3 Cavity resonance

Now we move on to understanding resonance in a cavity for transverse beam

modes. We will focus on the fundamental Gaussian beam to begin.

A cavity can be resonant for any transverse mode if a set of optics allows for the

input beam q1 to equal the output beam q2 at the same point along the cavity axis

z. By combining Eqs. B.89 and B.94, it is possible to show a cavity is stable if its

round-trip ABCD matrix obeys

−1 <
A+D

2
< 1 (B.95)

0 <
A+D + 2

4
< 1 (B.96)

For example, if we calculate a simple two-mirror Fabry-Perot cavity’s ABCD ma-

trix with length between mirrors L and mirror radii of curvature R1, R2, we get

MFP (L,R1, R2) =M(R1) S(L)M(R2) S(L) (B.97)

=




1− 2L

R2

2L

(
1− L

R2

)

− 2

R1

− 2

R2

+
4L

R1R2

1− 2L

R2

− 4L

R1

+
4L2

R1R2


 (B.98)

then for the Fabry-Perot to be geometrically stable we must satisfy Eq. B.96:

0 <

(
1− L

R1

)(
1− L

R2

)
< 1 (B.99)

0 < g1g2 < 1. (B.100)

Here in Eq. B.100 we have introduced the g-factor: g = 1 − L/R. The g-factor is

a convenient parameter for characterizing the stability of a Fabry-Perot.
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From Eq. B.100, both g-factors must have the same sign for a stable cavity. If both

g-factors are positive, then R > L and the cavity is said to be a planar resonator.

If both g-factors are negative, then R < L and the cavity is said to be a concentric
resonator. If one mirror is �at, then R1 →∞ and g1 = 1 implies that 0 < g2 < 1,

and the cavity is half-symmetric. If one or both mirrors have R = L, then g = 0

and the cavity is confocal. If one mirror is convex, then R1 < 0 and g1 > 1 implies

that 0 < g2 < 1/g1, and the cavity is convex-concave. Figure B.11 plots example

beam waists of each type of cavity.

B.4.2.4 Gouy phase

This section follows Siegman Chapter 19.3 [223] and Arai [225].

Gouy phase is the additional phase ϕ(z) acquired by a Gaussian laser beam, as op-

posed to a plane wave, traveling along its cavity axis from some reference location

z0 to z:

ϕ(z)− ϕ(z0) = arctan

(
λz

πw2
0

)
(B.101)

ϕ(z)− ϕ(z0) = arctan

(
z

zR

)
(B.102)

where z is the cavity axis, z0 is a reference beam location on the cavity axis, λ is

the laser wavelength, w0 is the beam waist, i.e. the minimum beam radius, and

zR = πw2
0/λ is the Rayleigh range. We will suppress z0 in remaining equations,

but fundamentally the Gouy phase is the di�erence in accumulated phase between

two locations by the Gaussian beam.

Higher order modes acquire Gouy phase faster than the fundamental. For Hermite-

Gauss transverse modes TEMnm:

ϕ(z|n,m) = (n+m+ 1) arctan

(
λz

πw2
0

)
(B.103)

The value de�ned in Eq. B.101 is sometimes called the Gouy phase shift, or accu-
mulated Gouy phase, and represents the di�erence in phase accumulated between

the fundamental mode TEM00 and the �rst order modes TEM01 or TEM10.

The round-trip Gouy phase accumulation inside a cavity of lengthL can be written

in multiple ways. Siegman and Kogelnik and Li write it in terms of the g-factors:

ϕ(2L) = 2 arccos(±√g1g2) (B.104)
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Figure B.11: Beam pro�les exemplary of some possible resonant cavities. The con-

focal cavity has the smallest possible average beam over the entire cavity length,

including at the mirrors. The concentric cavity has a sharply focused beam, and a

very small beam waist. This plot was made using the python3-basedbeamtrace
library.

where the plus sign applies for positive g-factors g1 > 0, g2 > 0, and the minus

sign for negative g-factors. The z = 2L argument to the Gouy phase emphasizes

the round-trip, but for a resonant cavity ϕ(2L) = 2ϕ(L).

Arai expresses the cavity round-trip Gouy phase accumulation more generally, in

https://pypi.org/project/beamtrace/
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terms of the ABCD matrix:

ϕ(2L) = sign(B) arccos

(
A+D

2

)
(B.105)

= 2 arccos

(
sign(B)

√
A+D + 2

4

)
(B.106)

Equation B.106 expression works for any resonating series of mirrors and lens.

Figure B.12 plots the accumulated Gouy phase for a single pass through a resonant

cavity.

B.4.2.5 Transverse mode spacing

For a resonant cavity, the total round-trip phase shift must be equal to 2π times

some (large) number q. We have the usual round-trip plane wave phase contribu-

tion φ from the laser frequency ν and the length of the cavity L, φ = 2kL. But we

also must remove the additional round-trip accumulated Gouy phase 2ϕ(L|n,m)

for our TEMnm mode.

From these factors we can calculate the transverse mode spacing νTMS of the cavity.

Recall that the free spectral range νFSR = c/(2L). The transverse mode spacing is

the frequency spacing between higher order modes resonant in the cavity:

2πq =
4πLν

c
− (n+m+ 1)ϕ(2L) (B.107)

=
2πν

νFSR

− (n+m+ 1)ϕ(2L) (B.108)

νnm = νFSR

[
q + (n+m+ 1)

ϕ(2L)

2π

]
(B.109)

⇒ νTMS = νFSR
ϕ(2L)

2π
. (B.110)

q is some (large) integer corresponding to the number of wavelengths a plane wave

would take to make a round-trip in the cavity. νnm are the frequencies at which

the TEMnm mode resonates.

Figure B.13 illustrates the resonant frequencies for some example transverse modes.

One key observation from Eq. B.110 is the spacing of the transverse mode reso-

nances is determined by their round-trip accumulated Gouy phase. This means its

possible to control what modes are resonant, or near resonance, by managing the

cavity geometry.
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Figure B.12: Single-pass accumulated Gouy phase (half of Eq. B.106) for some pos-

sible resonant cavities. The confocal cavity has a single-pass Gouy phase equal

to exactly 90 degrees, which will be important for its transverse mode spacing.

The concentric cavity quickly accumulates Gouy phase when passing through its

shape beam waist. This plot was made using the python3-based beamtrace
library.

https://pypi.org/project/beamtrace/
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In Advanced LIGO, mode cleaner cavity geometry is managed such that the early

higher order modes (n+m < 10) do not come close to resonance with the TEM00.

However, uncertainty in the cavity length and mirror radii of curvature due to

thermal e�ects must be considered so small perturbations do not hurt the cavity

performance.
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Figure B.13: Resonant frequencies (Eq. B.109) for some possible resonant cavities,

around three free spectral ranges for TEM00. The free spectral range for each one

meter cavity νFSR = 150 MHz. The transverse mode spacing νTMS from Eq. B.110

is shown in the title of each plot. The convex concave cavity and the planar cavity

have small transverse mode spacings, so the main TEM00 mode and TEM10 mode

resonate at nearby frequencies. The confocal cavity has perfect mode overlap for

even modes, due to its 180 degree round-trip Gouy phase. This means TEM00,

TEM20, TEM40, . . . , all resonate at the same frequency in a confocal cavity. The

concentric cavity has a high transverse modes spacing relative to the free spectral

range, so the q TEM10 resonant mode is near to the q + 1 TEM00 mode.
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A p p e n d i x C

TOPICS IN ADVANCED INTERFEROMETRY

This appendix will overview assorted small studies done prior to O3. They are col-

lected here because they represent relatively small, technically detailed techniques

required for advanced interferometry.

C.1 Calibration of radio-frequency photodetector response

~r

Prf ( w )
Irf Vrf Vaf

w . •

o

[w ] LAI Iv] Iv]

Figure C.1: Radio-frequency photodetector signal chain.

Understanding the signal-chain response of the radio-frequency photodetectors

(RFPDs) is important to an accurate calibration of the length error signals in Ad-

vanced LIGO. The CARM, PRCL, SRCL, and MICH lengths all rely on Pound-

Drever-Hall (PDH) locking, which detects the radio-frequency beatnote between

the carrier and RF sidebands. Good overviews of PDH locking are found in [226]

and [57]. The results here were used in the CARM calibration in Section 3.4.3.

C.1.1 RF signal chain diagram

Figure C.1 shows a simpli�ed schematic of the radio-frequency sensing chain elec-

tronics. The full schematic is shown in [227].

The incoming light power has both an RF Prf and DC Pdc component. The RFPD

senses and records both in two separate signal paths.

The power is converted to current by the photodiode, in this case wide-area In-

GaAs diodes [111]. The responsivity R of the photodiode to light is

R =
eλ

hc
(C.1)

where e is the electron charge, λ is the laser wavelength, and h is Planck’s constant.

This assumes that each incident photon with energy hc/λ excites a single electron
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in the biased semiconducting surface of the photodiode. In reality, not all power

incident on the photodiode is perfectly absorbed. This is captured by the quantum

e�ciency η, so that the DC current Idc produced by the incident power Pdc is

Idc = η
eλ

hc
Pdc (C.2)

Next, the RF current is converted to voltage early by a transimpedance circuit. The

gain of this circuit is referred to as a the transimpedance T .

Finally, the output is sent to an demodulation electronics board to bring the voltage

signal down from RF to audio frequency [228]. Usually demodulation has a factor

of 1/2 associated with it as half of the signal goes to DC and the other half goes

to twice the RF frequency 2Ω. However, the demod board has other gain factors

associated with it, yielding a total demod gain of D = 5.4.

This yields the �nal audio frequency voltage Vaf carrying the signal at radio fre-

quency Ω. The signal chain be written as the product of all of the above compo-

nents.

C.1.2 RFPD shot noise

Shot noise can be used to measure the sensing chain. First, we must think about

the how the shot noise will appear on for the RFPD [229]. Shot noise is white

over the full bandwidth of the detector. For a DC current Idc, the shot noise power

spectral density is

SI(ω) = 2eIdc

[
A2

Hz

]
(C.3)

If the current is dominated by RF sidebands, then we have cyclostationary shot
noise [230–232], where shot noise is increased in one quadrature readout due to the

cyclic nature of the RF power on the photodetector. We will assume that the power

on the RFPDs are roughly constant, i.e. that DC carrier “junk light” dominates the

light incident on the detector.

The same level of shot noise from Eq. C.3 appears at both audio sidebands on the

RF sideband, i.e SIΩ−ω) and SI(Ω+ω). When we demodulate at Ω, we “fold” the

noise from negative frequency−ω on top of the noise at ω, leading to an additional

factor of two of shot noise:

SΩ
I (ω) = 4eIdc

[
A2

Hz

]
(C.4)
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Now, propagating the shot noise ASD

√
Sshot,ΩV (ω) through the sensing chain

block diagram in Figure C.1 to the output audio frequency, and then substituting

in DC power from Eq. C.2 yields

√
SΩ
V (ω) = 2TD

√
eIdc (C.5)

= 2TD

√
η
e2λ

hc
Pdc

[
V√
Hz

]
(C.6)

C.1.3 RFPD dark noise

The electronics that make up the photodetector and demod board have fundamen-

tal thermal noise associated their components as well, like Johnson noise. This is

known as “dark noise”, because it is noise intrinsic to the photodetector even with

no like on the photodiode.

In our case, the most likely source of noise is the current induced on the photodiode

due to thermal noise. This noise will also be �at in frequency, but will not depend

on the incident power Pdc, only the temperature and electronics of the photodiode.

Because the dark noise is always there, it is equivalent to some constant level of

light always incident on the photodiode producing shot noise. We de�ne this light

level as Pdark, and add it to our RFPD shot noise equation:

√
SΩ
V (ω) = 2TD

√
η
e2λ

hc
(Pdc + Pdark)

[
V√
Hz

]
(C.7)

C.1.4 Shot noise calibration

We can use shot noise from Eq. C.7 to calibrate the RFPD sensing chain. First,

we measure the dark noise voltage output of an RFPD by shutting o� the laser.

Then, we increase the laser power on the RFPD until the noise starts increasing,

and measure the �at ASD at several light levels Pdc. Finally, we �t Eq. C.7 to our

measured ASD levels.

For the �t, we assume we know the demod gainD = 5.4, and collect all unknowns

in the e�ective transimpedance T . Also �t is the Pdark parameter, which is entirely

determined by the dark noise measurement.

Figure C.2 shows the shot noise calibration results for the 9 MHz REFL A and

B PDs, and the 24 MHz IMC REFL PD. These numbers were important for the

calibration of CARM, see Section 3.4.3.



232

10−7

A
S

D
[V
/√

H
z]

IMC REFL I

PD noise model fit
T = 378 V/A
shot noise
Pdark = 1.6 mW
dark noise
measurement

IMC REFL Q

PD noise model fit
T = 375 V/A
shot noise
Pdark = 1.6 mW
dark noise
measurement

10−7

A
S

D
[V
/√

H
z]

REFL A 9I

PD noise model fit
T = 449 V/A
shot noise
Pdark = 2.0 mW
dark noise
measurement

REFL A 9Q

PD noise model fit
T = 442 V/A
shot noise
Pdark = 2.4 mW
dark noise
measurement

10−3 10−2 10−1 100 101 102

DC power on PD [mW]

10−7

A
S

D
[V
/√

H
z]

REFL B 9I

PD noise model fit
T = 448 V/A
shot noise
Pdark = 2.1 mW
dark noise
measurement

10−3 10−2 10−1 100 101 102

DC power on PD [mW]

REFL B 9Q

PD noise model fit
T = 447 V/A
shot noise
Pdark = 2.0 mW
dark noise
measurement

Figure C.2: Measured Hanford RFPD responses for dark noise and shot noise [112].

The dark noise equivalent power Pdark is the amount of power on the PD required

such that shot noise and dark noise contributions are equal.

IMC REFL previously had only 1 mW of light on it in full lock, which was less than

the equivalent dark noise power, meaning the IMC sensing noise was dominated

by dark noise. This was increased to around 9 mW, putting IMC REFL squarely in

the shot-noise limited regime.

C.2 DARM cavity beam pro�le

In O3, the DARM optical plant exhibited an unexpectedly low DARM cavity pole

(411 Hz) compared to design (457 Hz), see Figure 3.24. In O1, the SRC exhibited

some higher order mode-hopping when locking the dual-recycled Michelson in-

terferometer [121]. Also in O1, SRCL detuning was �rst measured via the DARM

optical spring, and has been a problem in all runs since [5, 57, 94].

A low DARM pole is indicative of excessive SRC losses. Excess SRC losses could

be caused by mode mismatch between the arms cavity beams and the SRC beam.

The DARM cavity is made up of two coupled cavities, the 4 km arm cavity and

the 56 m signal recycling cavity. As the arm cavities achieve high power, thermal
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e�ects cause the cavity geometry to change. In a case with high point absorbers

on the ITMs, the cavity geometry can change signi�cantly.

Below are the modeling e�orts showing the high sensitivity of the SRC Gouy phase

accumulation to the input beam parameter. It quanti�es how the SRC is particu-

larly vulnerable to position and mirror radius of curvature changes.

A python3 based beam pro�le library, beamtrace, was used for these simula-

tions. A general overview of beam pro�le tracing is provided in Section B.4.2.

C.2.1 Arm cavity geometric parameters

The design of the Advanced LIGO arm cavity geometry is a balancing act of several

considerations.

The biggest concern for the arm cavity geometry design is the mirror size. LIGO

mirrors are 34 cm in diameter, so the beam radius at the mirror is set to be 6 cm to

avoid excessive scatter losses. The beam must be large to mitigate excessively high

power density and absorption, and to minimize thermal noise as well. However, a

large beam radius w also dramatically increases the hard mode radiation-pressure

based torque on the test masses [233].

The second concern for arm cavity geometry design is angular controls. In initial

LIGO, the arm cavity geometry was planar, with RITM = 7.4 km and RETM =

14.6 km. In Advanced LIGO, the arm cavity geometry is concentric, with RITM =

1.940 km, and the ETM RETM = 2.247 km. This change was largely due to help

handle the higher expected radiation-pressure based torque from the higher circu-

lating arm power. Although an statically unstable torsional mode is always present

in the interferometer at high resonating power, there is a choice of which mode

is unstable via the cavity geometry. For Advanced LIGO, the hard mode degrees

of freedom were chosen to be stable due to its much larger torsional constant κ,

while the soft mode degrees of freedom were chosen to be unstable [233].

When a mirror in a concentric resonator is misaligned, the cavity axis will mostly

tilt, i.e. displace in the hard mode. When a mirror in a planar resonator is mis-

aligned, the cavity axis will most shift, i.e. displace in the soft mode. Because soft

modes are statically unstable for high arm power, it is preferable to have concentric

cavities where misalignment causes self-restoring hard mode motion.

Table C.1 shows the arm cavity geometric parameters. Figure C.3 plots the ex-

pected fundamental Gaussian beam pro�le inside the arm cavity.

https://pypi.org/project/beamtrace/
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Table C.1: Table of the Advanced LIGO arm cavity geometric parameters. The arm

cavity beam pro�le is plotted in Figure C.3.

Parameters Variable Value Units

Arm length L 3.9944 km

ITM radius of curvature RITM 1.940 km

ETM radius of curvature RETM 2.247 km

ITM g-factor g1 −1.06 -

ETM g-factor g2 −0.78 -

Cavity g-factor g1g2 0.82 -

Beam waist location z0 1.833 km

Beam waist w0 1.22 cm

ITM beam radius w1 5.25 cm

ETM beam radius w2 6.12 cm

Round-trip Gouy phase ϕ 310 deg

Free spectral range νFSR 37.5 kHz

Transverse mode spacing νTMS 32.3 kHz

ABCD matrix


A B

C D





 −2.56 −6.21× 103

1.74× 10−3 3.85


 -

C.2.2 Signal recycling cavity geometric parameters

The signal recycling cavity (SRC) is a folded convex-concave cavity, with three

convex mirrors (ITMY, SR2, SRM), and one strongly concave mirror (SR3).

The SRC is folded to bring the large arm cavity beam down to a manageable size

(2 mm) at the antisymmetric port. The designed SRC Gouy phase accumulation is

19 degrees [234]. The model de�ned here gives a 18 degree Gouy phase accumu-

lation. Measurements at LIGO Hanford suggest a much higher SRC Gouy phase,

25 degrees [131, 132].

The SRC is designed to accept the beam from the arm cavities. If the cavity Gouy

phase is badly o�, its possible the arm to SRC mode mismatch was high.

The Gouy phase discrepancy between measurement and model is likely due to

small perturbations in the as-built cavity geometry versus the design. Figure C.4



235

0 1000 2000 3000 4000

−50

0

50

B
ea

m
R

ad
iu

s
[m

m
]

Beam waist 1
Loc = 1833.13 m

Waist = 12.17 mm

Arm cavity beam trace
ITMY
ETMY

0 1000 2000 3000 4000
Cavity Axis z [m]

0

45

90

135

180

G
ou

y
P

h
as

e
[d

eg
]

Figure C.3: The Advanced LIGO arm cavity transverse beam pro�le. The top plot

shows the beam waist at any given point along the cavity axis z. The bottom plot

shows the single-pass accumulated Gouy phase along the cavity axis. The arrows

denote the beam waist, the region of highest beam intensity. Table C.1 shows the

arm cavity geometric parameters. This plot was made using the python-based

beamtrace library.

plots the expected fundamental Gaussian beam pro�le inside the signal recycling

cavity. The Gouy phase is very dynamic at the end of the single-pass of the beam.

This is due to the fact that the cavity eigenmode beam waist occurs very near

the SRM re�ective face. Gouy phase accumulates very fast near the beam waist,

leading to the high uncertainty in overall SRC Gouy phase.

Table C.2 reports the signal recycling cavity geometric parameters.

Figures C.5 and C.6 show how the SRC Gouy phase model changes with small

changes to the nominal parameters de�ned in Table C.2. Also plotted are the actual

measurements of the SRC Gouy phase from [131, 132].

Most likely, the cavity lengths are built very slightly di�erent than designed. Fig-

ure C.5 illustrates the e�ect of optic moves on the Gouy phase. Displacement of

SR2 and SR3 by around 7 mm backward along the cavity axis would approximately

https://pypi.org/project/beamtrace/
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Table C.2: Table of the Advanced LIGO signal recycling cavity geometric param-

eters. The path from ITMY to SRM is used because it doesn’t require two trans-

missions through the beamsplitter substrate. The beam waist occurs very near the

SRM surface. This leads to to a highly variable Gouy phase under cavity parameter

uncertainty. The signal recycling cavity beam pro�le is plotted in Figure C.4.

Parameters Variable Value Units

Optic index of refraction n 1.45 -

Lengths

ITMY thickness tITMY 0.2 m

ITMYAR to BS LITMYAR−BS 5.013 m

BS substrate tBS 0.069 m

BSAR to SR3 LBSAR−SR3 19.37 m

SR3 to SR2 LSR3−SR2 15.46 m

SR2 to SRM LSR2−SRM 15.74 m

Radii of curvature

ITM RITM −1940 m

BS RBS ∞ m

SR3 RSR3 36.013 m

SR2 RSR2 −6.424 m

SRM RSRM −5.678 m

ITMY lens fITMY 34.5 km

Beam waist w0 2.0 mm

ITM beam radius w1 51.75 mm

SRM beam radius w2 2.0 mm

Round-trip Gouy phase ϕ 40.4 deg

Free spectral range νFSR 2.683 MHz

Transverse mode spacing νTMS 0.301 MHz

ABCD matrix


A B

C D





 −3.07 5.13× 103

−2.95× 10−3 4.59


 -



237

0 10 20 30 40 50
−50

0

50

B
ea

m
R

ad
iu

s
[m

m
]

0 10 20 30 40 50
Cavity Axis z [m]

0

5

10

15

20

G
ou

y
P

h
as

e
[d

eg
]

SRC beam trace
ITMY HR
ITMY AR
BS HR
BS AR
SR3
SR2
SRM

Figure C.4: The Advanced LIGO signal recycling cavity transverse beam pro�le.

The top plot shows the beam waist at any given point along the cavity axis z.

The bottom plot shows the single-pass accumulated Gouy phase along the cav-

ity axis. The beam waist occurs very near the SRM face. Therefore, the Gouy

phase accumulation rate there is high. This makes the SRC Gouy phase very sen-

sitive to cavity parameter uncertainty. This plot was made using the python-based

beamtrace library.

match the measured Gouy phase from [132]. Displacement of ITMY or SRM does

not signi�cantly impact the beam parameter.

There are two measurements of the SRC Gouy phase, one with the SR3 disk heater

o� (25.3 degs) and one with it on at 4 W (29.0 degs). The SR3 disk heater is

designed to heat the SR3 mirror to adjust the beam parameter resonant in the SRC,

such that it is better matched with the beam parameter coming in from the arms.

The SR3 disk heater is has been measured to move the SR3 radius of curvature by

−3.05± 0.15 mm/Watt [130]. Thus, the SR3 radius of curvature should move by

around −12 mm when on at 4 W. These measurements are consistent with the

analysis in Figure C.6.

https://pypi.org/project/beamtrace/
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Figure C.5: Single-pass SRC Gouy phase ϕ when displacing SRC optics along the

cavity axis z.
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A p p e n d i x D

TRANSFER FUNCTION ESTIMATES

In cases where data is limited, it can be di�cult to properly estimate spectral den-

sities and transfer functions. Transfer functions are best estimated with a large,

known excitation applied to a system, to increase coherence between the excita-

tion input and the output. However, in some systems such as the LIGO angular

controls or seismic isolation, large excitations are not possible, either because they

are physically infeasible (seismic waves cannot be duplicated), or will cause lock-

losses.

When calibrating the interferometer, precision and accuracy in the transfer func-

tion measurement is key to a good understanding of the astrophysical strain data.

However, at frequencies below 10 Hz where seismic noise is high, and frequencies

above 1 kHz where the photon calibrators have low actuation authority over the

shot noise, it can be di�cult to achieve high coherence with many averages. As

the SNR of gravitational-wave detections approaches in�nity, the accuracy and

precision of the calibrated data will be the dominant source of uncertainty in as-

trophysics done with the data, including parameter estimates and tests of general

relativity.

In these systems where low frequency information is valuable, only a few num-

ber of averages can be achieved for Welch’s method. If true coherence is low,

then cross spectral density, transfer function, and coherence estimates become

dominated by noise and are rendered useless without su�cient sampling. Addi-

tionally, if there is signi�cant noise on the input, then transfer function estimates

can become biased. Under these circumstances, understanding the biases and un-

certainty in estimates of spectral densities, coherence, and transfer functions is

crucial to making accurate measurements. The full expression of the probability

distribution functions gives us the best understanding possible of the estimates of

spectral quantities.

The �rst part of this chapter derives the Cramér-Rao bound for cross spectral den-

sity estimates, and Bayes factor expression for determining at what number of

samples we have “resolved” the cross spectral density, depending on the coher-

ence.
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The later part of this chapter will reproduce some important spectral estimators’

probability distributions, �rst derived by N. R. Goodman [200, 202]. Goodman de-

scribes a joint distribution the spectral matrix of two zero-mean Gaussian signals

as a complex Wishart distribution. From this joint distribution, Goodman changes

variables and marginalizes over others to yield exact probability distribution func-

tions of spectral densities, sample coherence, and transfer function gain and phase.

Approximations are useful in certain limits, and their origin lies in the full prob-

ability distribution converging with a large number of samples n. Bendat and

Piersol have derived the variance in the transfer function estimate Ĥ = |Ĥ|eiφ̂ of

the true transfer function H = |H|eiφ [174]:

σ2
|Ĥ|/|H| = σ2

φ̂
=

1− γ2

2nγ2
(D.1)

where γ2
is the true coherence and n is the number of averages. This result is valid

in the regime n → ∞, coherence γ2 → 1, and noise on the input is negligible so

the transfer function bias goes to zero. Equation D.1 will be compared to the full

distributions.

D.1 Maximum likelihood estimators of asymmetric Laplace parameters

The asymmetric Laplace distribution describes the distribution of samples from a

cross spectral density, as derived in section 6.11. Maximum likelihood estimates

for the asymmetric Laplace are known [235, 236]. The covariance matrix is asymp-

totically normal for large samples n. We focus on the case where the peak location

parameterm is known to be zero, as it is for cross-spectral density estimates. Equa-

tion (17) from [235] and Table 1 Case 5 from [236] are reproduced here. I assume

the peak location parameter m = 0, as this is the relevant case for cross spectral

densities.

First, the likelihood function of the asymmetric Laplace for n independent samples

[x1, . . . , xn] is

L(λ, κ|xi) =
1

λn
(
κ+ 1

κ

)n exp

(
−n
λ

(
κα +

β

κ

))
(D.2)

where α = 1
n

∑n
i=0 x

+
i and β = 1

n

∑n
i=0 x

−
i , and x+

i = max(0, xi) and x−i =

max(0,−xi). α and β are the averages of the positive and negative samples xi,

respectively. Note that, as de�ned here, β is a positive number.

The maximum likelihood estimators λ̂ and κ̂ come from setting the derivative of

the log likelihood
∂ log(L)
∂λ

and
∂ log(L)
∂κ

to zero and solving. This yields the following
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estimators:

λ̂ = (αβ)1/4
(
α1/2 + β1/2

)
(D.3)

κ̂ =

(
β

α

)1/4

(D.4)

We de�ne the mean estimator vector
~θ = [λ̂, κ̂]T .

The Fisher information matrix I(λ, κ) is the expected value of the product of

derivatives of the log likelihood

〈
∂ log(L)
∂θi

∂ log(L)
∂θj

〉
. The Fisher information matrix

for the asymmetric Laplace with known m is

I(λ, κ) =




1

λ2

κ2 − 1

(κ3 + κ)λ
κ2 − 1

(κ3 + κ)λ

κ4 + 6κ2 + 1

(κ3 + κ)2


 (D.5)

Inverting the Fisher information matrix yields the Cramér-Rao bound, the covari-

ance matrix Σ(λ, κ):

Σ(λ, κ) =
1√
n




(κ4 + 6κ2 + 1)λ2

8κ2

λ− κ4λ

8κ
λ− κ4λ

8κ

1

8
(κ2 + 1)

2


 (D.6)

The maximum likelihood estimators in this section rely on partial sample means

α and β, and so are susceptible to glitches. If sample means are not useable, partial

sample medians could be substituted, with bias corrections if needed (biases will

divide out for κ̂, but not for λ̂). Fitting routines robust to outliers can also be used.
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Figure D.1: Maximum likelihood estimates and associated covariance ellipses.

Plotted are examples of Eqs. D.3, D.4, and D.6.

D.2 Bayes factor for cross spectral density model comparison

We have explored the usefulness of median-averaging for cross spectral density

estimation in this chapter. However, the results above depend on the underly-

ing asymmetric Laplace distribution being well-sampled. Well-sampled means that

su�cient samples n have been taken of our distribution such that its parameters

have been accurately determined.

Practically, we would like to know how many cross spectral density averages nwe

must take until we achieve convergence upon the correlated noise. If the correlated

noise is far below the uncorrelated noise, many samples are required. It can be

di�cult to acquire enough samples, as samples require time and stationary data.

The cross spectral density at some frequency bin is well-sampled if, for some num-

ber of samples n, the log Bayes factor comparing the symmetric Laplace to asym-

metric Laplace is greater than log(100).

A symmetric Laplace distribution is simply an asymmetric Laplace where κ =
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1. If the signals in the cross spectral density were completely uncorrelated, the

symmetric Laplace distribution would describe the samples of each frequency bin,

as proven in Section 6.11. By determining the cross spectral density distribution

is asymmetric Laplace, we also determine that that the two signals are correlated.

The Bayes factorBF is a ratio of the evidence for the two models given the sample

data. The larger the Bayes factor, the more support for the model in the numerator,

in this case the asymmetric Laplace. The asymmetric Laplace has two parameters,

λ and κ, while the symmetric Laplace has only λ. We assume �at priors across

all of the parameter space for both models: P (λ) = 1 ∀ λ ∈ [0,∞) and P (κ) =

1 ∀ κ ∈ [0,∞). The Bayes factor marginalizes over the entire extra parameter

space κ of the asymmetric Laplace, preferring the model with fewer parameters if

possible, the manifestation of Occam’s razor in Bayes factor calculations.

The calculation of the Bayes factor model comparison can be done analytically, for

n samples ~x:

BF =

∫
P (~x|~θ,AsymmetricLaplace)P (~θ)d~θ
∫
P (~x|~θ,Laplace)P (~θ)d~θ

=

∫ ∞

0

∫ ∞

0

L(λ, κ|~x)dλdκ
∫ ∞

0

L(λ, κ = 1|~x)dλ

=

∫ ∞

0

∫ ∞

0

1

λn
(
κ+ 1

κ

)n e−
n
λ(κα+ 1

κ
β)dλdκ

∫ ∞

0

1

(2λ)n
e
−n(α+β)

λ dλ

=
1
2
α(αn)−nΓ(n− 1)2Γ(n+ 1) 2F1

(
n− 1, n− 1; 2n− 1; 1− β

α

)

2−nΓ(n− 1)(n(α + β))1−n

BF = 2n−1Γ(n− 1)Γ(n)

(
1 +

β

α

)n−1

2F̃1

(
n− 1, n− 1; 2n− 1; 1− β

α

)
(D.7)

where 2F̃1 is the regularized hypergeometric function and Γ is the gamma func-

tion. We’ve used Eq. D.2 for the likelihood L(λ, κ|~x), and α and β are the positive

and negative averages, de�ned below D.2.

The log Bayes factor is plotted in Figure D.2. The negative and positive mean

ratio β/α determines at what n the Bayes factor will swing toward supporting

the asymmetric Laplace model. The further β/α is from 1, the fewer samples n
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Table D.1: Numbers of samples required to con�dently resolve a cross spectral den-

sity with levels of coherence γ2
. Also listed are the four equivalent ways of quanti-

fying the skewness of a cross spectral density estimate: mean-averaged coherence

and power ratio from Eq. 6.89, asymmetric Laplace parameter κ from Eqs. 6.90

and 6.91, and the negative over positive mean ratio from Eq. D.4. These results

are plotted in Figure D.2. The number of required samples approximately equals

8(1/γ2 − 1), as seen in Figure D.3.

Samples n Coherence γ2
Power ratio ε κ Mean ratio β/α

23 0.333 2 0.518 0.072

69 0.100 9 0.721 0.270

212 0.033 29 0.831 0.478

749 0.010 99 0.905 0.669

2400 0.003 299 0.944 0.794

8600 0.001 999 0.969 0.881

required to achieve a decisive Bayes factor of 100. If β/α = 1, the distribution

is symmetric, and the Bayes factor will only support the symmetric Laplace more

and more with additional samples. Setting β/α = 1 yields

BF =

√
π Γ(n− 1)

Γ
(
n− 1

2

) (D.8)

BF ≈
√
π

n
(D.9)

The log of D.9 is plotted as the dashed line in Figure D.2.

A table of required samples n to resolve a mean-averaged coherence γ2
is provided

in Table D.1. The number of required samples to reach the decisive log Bayes

factor of log(100) approximately equals 8(1/γ2− 1), as shown in Figure D.3. This

approximation is only good for a log Bayes factor of log(100), the line may move

up or down if we raise or lower the decisive log Bayes factor level.

Blackman and Tukey found that for a true coherence γ2 = 0, the mean-averaged

sample coherence γ̂2 = 1/n [199]. This is plotted in Figure D.3 to illustrate the

zero-coherence case. This study is also important to the sample coherence in Sec-

tion D.7.



246

101 102 103 104

Number of samples n

−5

0

5

10

15

20

L
og

B
ay

es
F

ac
to

r
lo

g(
B
F

)

Decisive log(100)

γ2 = 0.333
n = 23
γ2 = 0.100
n = 69
γ2 = 0.033
n = 212
γ2 = 0.010
n = 749
γ2 = 0.003
n = 2400
γ2 = 0.001
n = 8600

log(
√
πn−1/2)

Figure D.2: Log Bayes factor vs number of samples n. The decision point in favor

of the asymmetric Laplace model is BF ≥ 100, the blue line. This is the number

of samples n when a cross spectral density measurement can be said to be con-

verged to the correlated noise level. Plotted are log versions of Eq. D.7 for di�erent

coherences γ2
. The dashed grey line is Eq. D.9, the maximum support possible for

the symmetric Laplace model. Table D.1 records the minimum samples required

to resolve a given coherence.
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Figure D.3: Mean-averaged sample coherence γ̂2
vs number of samples required

to con�dently resolve coherence level. The green dots are calculated directly from

the log Bayes factor Eq. D.7. The dashed red line is a convenient approximation for

determining the number of samples required up to the decisive log Bayes factor of

log(100). The dotted blue line is the sample coherence expected from two signals

with true coherence γ2 = 0 after n averages, according to Tukey [199].
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D.3 Sample mean for power spectral densities
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Figure D.4: Probability distributions of the sample mean for power spectral densi-

ties fµ̂ for di�erent numbers of samples n. Plotted from Eq. D.10.

The probability density of the PSD sample mean µ̂ = 1
n

∑n−1
i=0 xi of the exponential

distribution is reported here. Each xi is a power spectral density estimate at some

frequency bin used in Welch’s method.

The PSD sample mean distribution is derived by taking a convolution of the expo-

nential with itself n times. The probability distribution function of the PSD sam-

ple mean of the exponential distribution fµ̂ on the power spectral density sample

space x is

fµ̂(x) = n
(nx)n−1

λnΓ(n)
e−

nx
λ (D.10)

where n is the number of samples, λ is the mean of the exponential, and Γ is the

gamma function. This is equivalent to a chi-squared distribution with 2n degrees

of freedom, scaled by 2n/λ: fµ̂(x|n) ∼ χ2
2n(2nx/λ).

Using Eq. D.10, the expected value of the sample PSD

〈µ̂〉 = λ (D.11)
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making µ̂ an unbiased estimator.

The variance of Eq. D.10 is

σ2
µ̂ =

λ2

n
, (D.12)

meaning the variance in a sample PSD is equal to itself squared divided by the

number of samples.

The probability density in Eq. D.10 and their mean are plotted in Figure D.4.

D.4 Sample median for power spectral densities
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Figure D.5: Probability distributions of the sample median for power spectral den-

sities fρ̂ for di�erent numbers of samples n (Eq. D.14). The mean of each sample

median distribution 〈ρ̂〉 is plotted as a solid vertical line (Eq. D.15). Gaussian ap-

proximations to each distribution are plotted as dashed lines, and converge as n
increases.

The probability density of the PSD sample median ρ̂ = x1/2 of the exponential

distribution is reported here. These distributions describe a power spectral density

at some frequency bin estimated via Welch’s method using median-averaging.

This derivation closely follows that of Appendix B in [193], which derives the bias

in the sample median estimator for low numbers of samples for power spectral
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densities. Methods from section 28.5 of [237] are employed here. A similar calcu-

lation for the Laplace distribution has also been performed [238].

First, we must know the cumulative distribution function F (x) of the exponential.

This is found from Eq. 6.2 to be

F (x) = 1− e− xλ (D.13)

The probability distribution of the sample median fρ̂(x) comes from calculating

the probability that half of all samples will be less than the median times the prob-

ability that half will be greater. The probability that half of all samples will be less

than the median is F (x)(n−1)/2
, while the probability of half of all samples greater

is (1− F (x))(n−1)/2
. This yields the sample median PDF fρ̂(x):

fρ̂(x|n) = F (x)
n−1
2 (1− F (x))

n−1
2 f(x)

fρ̂(x|n) =

(
e−

x
λ

)n+1
2
(
1− e− xλ

)n−1
2

λB
(
n+1

2
, n+1

2

) (D.14)

where B(x, y) is the Beta function and f(x) is the parent exponential distribution

from which all samples are drawn.

Unlike the sample mean, the sample median ρ̂ is a biased estimator, as 〈ρ̂〉 6= ρ. It

is a consistent estimator, however. The expected value of the sample median 〈ρ̂〉
for a small number of samples n, assuming that n is odd, is [193]

〈ρ̂〉 = λ
n∑

k=1

(−1)k+1

k
(D.15)

As n → ∞, 〈ρ̂〉 → ρ, and the sample median variance σ2
ρ̂ → 1/(4nf(ρ)2) [237].

Figure D.5 plots the normal approximations to the sample median probability den-

sity functions with mean 〈ρ̂〉 and variance 1/(4nf(ρ)2) as a dashed line.

D.5 Sample mean for cross spectral densities

The joint probability density of the sample mean µ̂ for cross spectral densities is

reported here.

The sample mean distribution can be found by using the characteristic function

theorem for summing n independent, identically distributed random variables,

Eq. 6.29. The characteristic function of the CSD joint distribution is found in
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Eq. 6.79. Taken as the base characteristic function in Eq. 6.29, we �nd the charac-

teristic function of the CSD sample mean ϕµ̂:

ϕµ̂(s, t) = ϕU ,V

(
s

n
,
t

n

)n

ϕµ̂(s, t) =

(
n2

n2 − 2iσ2
ans+ σ2

aσ
2
c (s

2 + t2)

)n
(D.16)

Then the joint distribution fµ̂ of the sample mean for n samples is

fµ̂(u, v) =
1

2π

∫ ∫ ∞

−∞
ds dt eisu+itvϕµ̂(s, t)

fµ̂(u, v) =
nn+1((1− γ2)(u2 + v2))

n−1
2 e

nγ

λ
√

1−γ2
(u cos(φ)+v sin(φ))

π2nλn+1Γ(n)
Kn−1


n
λ

√
u2 + v2

1− γ2




(D.17)

Using Eq. D.17, we �nd the expected value of the sample mean

〈µ̂〉 =
2γλ√
1− γ2

(D.18)

for all n, making µ̂ an unbiased estimator.

The probability density in Eq. D.17 and the mean in Eq. D.18 are plotted in Fig-

ure D.6.

Now we marginalize the joint sample mean distribution to recover the sample

distribution along the major and minor axes. From Chapter 6 section 6.11, we

know the major axis distribution is an asymmetric Laplace, while the minor axis

has a Laplace distribution.

The sample mean probability distribution along the major axis u and minor axis v

are

fµ̂(u) =
nn+ 1

2 (1− γ2)
1
2

(n− 1
2

)|u|n− 1
2 e

nγu

λ
√

1−γ2

2n−
1
2λn+ 1

2
√
π Γ(n)

Kn− 1
2

(
n

λ

|u|√
1− γ2

)
(D.19)

fµ̂(v) =
nn+ 1

2 |v|n− 1
2

2n−
1
2λn+ 1

2
√
π Γ(n)

Kn− 1
2

(n
λ
|v|
)

(D.20)

The expected value of the major axis sample mean (Eq. D.19) is equal to Eq. D.18.

The expected value of the minor axis sample mean (Eq. D.20) is equal to zero.
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The variance of the major axis sample mean σ2
µ̂ = 〈µ̂2〉 − 〈µ̂〉2 is equal to

σ2
µ̂ =

2λ2(1 + γ2)

n(1− γ2)
(D.21)

The variance of the minor axis sample mean is equal to

σ2
µ̂ =

2λ2

n
(D.22)

The probability density in Eq. D.19 and the mean in Eq. D.18 are plotted in Fig-

ure D.7.



253

0

1

2

=(
〈x
,y
〉)

sa
m

p
le

s
[V

2
/H

z] n = 1
〈x, y〉 1σ contour
〈x, y〉 2σ contour
f〈x,y〉 1σ contour
f〈x,y〉 2σ contour

mean vector

0

1

2

=(
〈x
,y
〉)

sa
m

p
le

s
[V

2
/H

z] n = 10
〈x, y〉 1σ contour
〈x, y〉 2σ contour
f〈x,y〉 1σ contour
f〈x,y〉 2σ contour

mean vector

0 2
<(〈x, y〉) samples [V2/Hz]

0

1

2

=(
〈x
,y
〉)

sa
m

p
le

s
[V

2
/H

z] n = 50
〈x, y〉 1σ contour
〈x, y〉 2σ contour
f〈x,y〉 1σ contour
f〈x,y〉 2σ contour

mean vector

Figure D.6: Cross spectral density sample mean joint probability distributions, 2d

histograms, and data contours for di�erent numbers of averages n. Each data point

of the histogram represents a CSD average. For instance, for the center plot with

n = 10, each data point represents an average of ten CSDs. Each plot features

100000 averages. Every point in the histogram represents a potential result for

a measurement of a CSD. This plot illustrates how the mean vector, represented

by the blue arrow, always remains the same: µ = 0.8 V2/Hz (cf. Eq. D.18). It

also shows how quickly the results converge around the mean, with the 1σ and

2σ data contours decreasing rapidly with increasing averages. Finally, the data

contours are matched to the contours drawn from the joint probability distribution

Eq. D.17. In this example, the coherence γ2 = 0.198, the cross power scaler λ =
0.806 V2/Hz, and the phase φ = 45 degs.
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Figure D.7: Probability distributions of the sample mean along the major axis of a

cross spectral density for di�erent numbers of samples n. The major axis sample

mean distribution fµ̂ is plotted from Eq. D.19. This plot illustrates how the range

of potential CSD sample means converge to the true mean with increasing samples

n. The mean of all distributions is always equal to µ = 0.8 V2/Hz, making the

sample mean µ̂ an unbiased estimator. In this example, the coherence γ2 = 0.198
and the cross power scaler λ = 0.806 V2/Hz.
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D.6 Sample median for cross spectral densities
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Figure D.8: Probability distributions of the sample median of cross spectral densi-

ties for di�erent numbers of samples n. The major axis sample median distribu-

tion fρ̂ is plotted from Eq. D.24. This plot illustrates how the range of potential

CSD sample medians converge to the true median with increasing samples n. The

sample median ρ̂ is a biased, but consistent, estimator, as illustrated by the asymp-

totic convergence of the expected value of the sample median to the true median,

ρ = 0.478 V2/Hz. In this example, the coherence γ2 = 0.198 and the cross power

scaler λ = 0.806 V2/Hz.

The probability density of the sample median ρ̂ for cross spectral densities is re-

ported here.

The full CSD probability distribution is a 2d joint distribution. The median of a

joint distribution is ill-de�ned. Instead, this section will focus on the median of

the 1d CSD distributions.

The cumulative distribution function F (u) of the asymmetric Laplace is

F (u) =





1− γ
2

e
u(1+γ)

λ
√

1−γ2 u ≤ 0

1− 1 + γ

2
e
−u(1−γ)
λ
√

1−γ2 u > 0
(D.23)
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The sample median distribution is calculated similarly to Section D.4. The sample

median probability distribution along the major axis of the CSD fρ̂ is:

fρ̂(u) = F (u)
n−1
2 (1− F (u))

n−1
2 f(u)

fρ̂(u) =





√
1− γ2e

u
λ

√
1+γ
1−γ

2nλB
(
n+1

2
, n+1

2

)
(

(1− γ)e
u
λ

√
1+γ
1−γ

(
2− (1− γ)e

u
λ

√
1+γ
1−γ

))n−1
2

u ≤ 0

√
1− γ2e

−u
λ

√
1−γ
1+γ

2nλB
(
n+1

2
, n+1

2

)
(

(1 + γ)e
−u
λ

√
1−γ
1+γ

(
2− (1 + γ)e

−u
λ

√
1−γ
1+γ

))n−1
2

u > 0

(D.24)

where B(x, y) is the Beta function and f(u) is the parent asymmetric Laplace

distribution from which all samples are drawn.

Unlike the sample mean, the sample median ρ̂ is a biased estimator, as 〈ρ̂〉 6= ρ. It

is a consistent estimator, however. The expected value of the sample median for a

small number of samples n is

〈ρ̂〉 =
λ(γ + 1)

n
2 Γ(n+ 1)

2
n+1
2
√

1− γ

(
(1 + γ) 3F̃2

(
1− n

2
,
n+ 1

2
,
n+ 1

2
;
n+ 3

2
,
n+ 3

2
;
1 + γ

2

)

−(1− γ)

(
1− γ
1 + γ

)n+1
2

3F̃2

(
1− n

2
,
n+ 1

2
,
n+ 1

2
;
n+ 3

2
,
n+ 3

2
;
1− γ

2

))

(D.25)

where 3F̃2 is the regularized hypergeometric function and Γ is the gamma func-

tion.

As n→∞, 〈ρ̂〉 → ρ = λ(1 + γ) log(1 + γ)/
√

1− γ2
, where ρ is the true mean of

the asymmetric Laplace describing the major axis of the CSD, as seen from Eq 6.99.

As n → ∞, 〈ρ̂〉 → ρ, and the sample median variance σ2
ρ̂ → 1/(4nf(ρ)2) [237].

Figure D.8 plots the sample median distribution Eq. D.24 alongside each PDF’s

associated mean from Eq. D.25. This plot shows the importance of having a suf-

�ciently sampled CSD before correcting for any mean-to-median biasing: an in-

su�ciently sampled CSD will not have converged to the true median. A good

heuristic for su�cient sampling is whether the coherence γ2
is greater than 1/n,

this is explored in depth in Section D.2.

D.7 Sample coherence distribution

The probability density of the sample coherence γ̂2
is reported here. Estimating

the coherence well, and understanding its variance, is crucial for accurate transfer

function and cross spectral density estimation.
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Figure D.9: Probability distributions of the sample coherence for di�erent numbers

of samples n. This plot illustrates how the range of potential sample coherences

converge to the true coherence with increasing samples n. The sample coherence

ρ̂ is a biased, but consistent, estimator, as illustrated by the asymptotic conver-

gence of the expected value of the sample coherence to the true coherence. In this

example, the true coherence γ2 = 0.205 and is plotted as the black line.

When estimating the true coherence γ2
between two signals, the sample coherence

starts equal to exactly one for only one sample, as the relationship between the

two signals is unknown. As more samples are taken, the sample coherence falls

approximately like 1/n to its true value, making the sample coherence γ̂2
a biased,

consistent estimator.

The sample coherence probability density is derived from a complex Wishart dis-

tribution by Goodman [200, 202]. Setting the variable z = γ̂2
for ease of notation,

the sample coherence probability density is

f(z) = (n− 1)(1− γ2)n(1− z)n−2
2F1

(
n, n; 1; zγ2

)
(D.26)

where 2F1 is the hypergeometric function and n is the number of samples.
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The mean of the sample coherence

〈
γ̂2
〉

is found from Eq. D.26:

〈
γ̂2
〉

= (1− γ2)nΓ(n) 3F̃2

(
2, n, n; 1, n+ 1; γ2

)
(D.27)

where 3F̃2 is the regularized hypergeometric function, and Γ is the gamma func-

tion. When n� 1/γ2
, the sample coherence mean

〈
γ̂2
〉
≈ 1/n. When n & 1/γ2

,

〈
γ̂2
〉

asymptotes to γ2
.
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Figure D.10: Expected values of the sample coherence

〈
γ̂2
〉

vs number of samples

n, for several levels of true coherence γ2
(Eq. D.27). This plot illustrates how the

sample coherence falls like 1/n before converging to the true coherence. Accurate

coherence estimates are necessary for accurate estimates of transfer functions and

cross spectral densities.

The variance of the sample coherence σ2

γ̂2
is found from Eq. D.26:

σ2

γ̂2
= 2
(
1− γ2

)n
Γ(n)

(
3F̃2

(
3, n, n; 1, n+ 2; γ2

)

− 1

2

(
1− γ2

)n
Γ(n) 3F̃2

(
2, n, n; 1, n+ 1; γ2

)2

)
(D.28)

Here, when n & 1/γ2
, σ2

γ̂2
≈ 2γ2(1− γ2)2/n.
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Figure D.11: Expected values of the sample coherence σ2

γ̂2
vs number of samples n,

for several levels of true coherence γ2
(Eq. D.28). This plot illustrates how the sam-

ple coherence variance falls like 1/n2
at �rst, then once the sample coherence ex-

pected value approaches the true coherence

〈
γ̂2
〉
→ γ2

, the variance approaches

2γ2(1− γ2)2/n.

D.8 Sample transfer function

c. [n]# d[ n ]

acn] → xcn] ban → yen]

Figure D.12: Independent Gaussian noises a, b, c, and d sum to form the measurable

signals x and y. A single-input single-output linear systemH transforms the signal

c. These signals will form the basis of the derivations in this section.

In this section we explore the sample transfer function (TF) Ĥ , an estimator for

the true transfer function H , reporting the explicit probability density functions,

common approximations for the mean and variance, and sources of potential bias

in TF estimates.
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Transfer functions, or frequency response functions, measure how an input sig-

nal at some frequency f is linearly transformed by a system H . The diagram in

Figure D.12 illustrates the input signal c[n] being transformed by the system H

into the output signal d[n], with the measured input x[n] = a[n] + c[n] and the

measured output y[n] = b[n] + d[n].

The sample TF Ĥ is an estimate of the true TF based on the sample power and

cross spectral densities of our measurable signals x and y:

Ĥ = |Ĥ|eiφ =
〈x, y〉
〈x, x〉 (D.29)

where |Ĥ| is the magnitude of the sample TF, φ is the phase of the sample TF,

〈x, x〉 is the mean PSD of x, and 〈x, y〉 is the mean CSD between x and y.

The true transfer function H represents how a sinusoid input at frequency f into

a linear system produces a sinusoid output at the same frequency f . From Fig-

ure D.12, the true TF is

H = |H|eiφ0 =
〈c, d〉
〈c, c〉 (D.30)

where |H| is the magnitude of the sample TF, and φ0 is the phase of the sample

TF.

Expressing the sample TF in Eq. D.29 in terms of a, b, c, and d illustrates where bias

creeps into the measurement. Assuming that only signals c and d are correlated

with each other, and all others are independent such that e.g. 〈a, b〉 → 0 as the

number of samples n→∞, we can write the sample TF as

Ĥ =
〈a+ c, b+ d〉
〈a+ c, a+ c〉

Ĥ =
〈a, b〉+ 〈a, d〉+ 〈c, b〉+ 〈c, d〉
〈a, a〉+ 〈a, c〉+ 〈c, a〉+ 〈c, c〉

Ĥ =
〈c, d〉

〈a, a〉+ 〈c, c〉

Ĥ = H

(
1

1 + 〈a,a〉
〈c,c〉

)
. (D.31)

The term in parentheses in Eq. D.31 is the bias term in TF estimation that arises

when there is noise a on the measured input x. For the rest of this section, we

will assume noise on the input is negligible, that is, 〈a, a〉 � 〈c, c〉 so Ĥ → H .

This is a reasonable assumption when large excitation inputs are possible for TF
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measurement. Figure D.13 illustrates a case where signi�cant bias is present due

to high noise on the input.

The joint probability density function for the sample TF to true TF ratio Ĥ/H =

rei(φ−φ0)
is reported from Goodman [200], Eq. 4.81:

f(r, φ) =
nγ(1− γ2)nr

π(1− 2γ2r cos(φ− φ0) + γ2r2)n+1
(D.32)

The probability function for the sample TF gain ratio r = |Ĥ/H| is found by

marginalizing over the sample phase φ (Goodman Eq. 4.97):

f(r) =
2nγ2Γ

(
n+ 1

2

)
(1− γ2)

n
r

√
π Γ(n+ 1)(1 + 2γ2r + γ2r2)(1− 2γ2r + γ2r2)n+ 1

2

(D.33)

× 2F1

(
1

2
,−n;

1

2
− n;

1− 2γ2r + γ2r2

1 + 2γ2r + γ2r2

)
(D.34)

The probability function for the sample TF phase φ is found by marginalizing over

the sample phase φ (Goodman Eq. 4.104):

f(φ) =
(1− γ2)

n

π

(
1 +

nγ cos(φ− φ0)

(1− γ2 cos2(φ− φ0))n+ 1
2

(D.35)

×
(√

π Γ
(
n+ 1

2

)

Γ(n+ 1)
+B1−γ2 cos2(φ−φ0)

(
n+

1

2
,
1

2

)))
(D.36)

where B is the Incomplete Beta function and |φ− φ0| < π/2.

The expected values and variances of Eqs. D.33 and D.35 are not calculable analyt-

ically for low sample numbers n, but in certain limits they can be derived from the

expected values and variances of the PSD and CSD from which the sample TF is

built. These estimates are valid in the regime where the sample coherence has con-

verged to the true coherence, as explored in Section D.7 and shown in Figure D.10.

In this regime, the sample PSD, CSD and TF estimates are all “normalized” via the

central limit theorem.

Assuming no biases exist and the sample coherence has converged to the true

coherence, the expected values for the sample TF gain ratio and phase are

〈∣∣∣∣∣
Ĥ

H

∣∣∣∣∣

〉
= 1 (D.37)

〈φ〉 = φ0. (D.38)
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2 <(Ĥ) mean = 0.37
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Figure D.13: Histogram of the joint sample transfer function Ĥ , with projections

along the real and imaginary axis. This plot illustrates a case where signi�cant

uncorrelated noise exists on the measured input x, biasing the sample TF away

from its true value H . Equation D.32 describes the contours of the sample TF

shown. Referring to Figure D.12, in this example, the true TF H = 2eiπ/3, the

coherence γ2 = 0.205, the input noise PSD 〈a, a〉 = 1.0 V2/Hz, the input signal

PSD 〈c, c〉 = 0.6 V2/Hz, making the sample TF bias 0.375. The output noise PSD

〈b, b〉 = 2.0 V2/Hz.

The variances for the sample TF gain ratio and phase, using Eqs. D.11, D.12, D.18
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and D.21, are

σ2

|Ĥ/H| = σ2
φ =

σ2
〈x,y〉

|〈x, y〉|2 −
σ2
〈x,x〉

|〈x, x〉|2

=
1 + γ2

2nγ2
− 1

n

σ2

|Ĥ/H| = σ2
φ =

1− γ2

2nγ2
(D.39)

Eq. D.39 is the oft-cited result for sample TF uncertainty found in Bendat and

Piersol, Eq. 9.89 [174]. Figure D.14 illustrates the convergence of the sample TF to

the true TF
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Figure D.14: Probability distributions of the sample transfer function gain |Ĥ| and

phase φ̂H for di�erent numbers of samples n. When the number of samples for

the TF estimate is too low, in this case n = 5, the sample TF expected value

〈
Ĥ
〉

is overestimated and the variance is large. When the number of samples is suf-

�cient, in this case n = 100, the sample TF distributions resemble normal dis-

tributions with expected values and variances described in Eqs. D.37 and D.38.

Equations D.33 and D.35 are the dashed lines for the sample TF shown. In this

example, the coherence γ2 = 0.205.
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A p p e n d i x E

LINE INJECTION UNCERTAINTY

Calibration lines are used in LIGO to monitor the DARM response over time, and

swept sine transfer functions employ a series of lines to measure the relation be-

tween two signals. There are some circumstances where a line lies near or below

the the spectral density we want to calibrate, like driving the photon calibrator

above DARM at high frequencies f > 1 kHz. The SoCal technique may require

low lines, and we want to achieve record low uncertainty and bias with those lines.

This appendix will brie�y derive and present the Rice distribution which describes

a continuous sine wave injection in the presence of Gaussian noise. Relevant re-

sults, including the intrinsic uncertainty and bias of an injection, are presented.

This appendix will rely on derivations from the distributions in Chapter 6. The

results here are used for the line uncertainty and bias calculated for the SoCal

calibration lines in Section 4.9.1.

E.1 Basics

When injecting a calibration line into a spectral density, there are multiple impor-

tant considerations that must be made for the accuracy and precision of the mea-

surement. The �rst is the injection power. We want the line to be large enough

that it quickly dominates the noise of the spectral density and achieves an accept-

able SNR, but not so large that the response to the line becomes nonlinear, the

line starts exhibiting signi�cant spectral leakage, or the actuation range runs out

and the interferometer loses lock. Therefore, some middle ground in the injec-

tion power must be found such that the uncertainty and bias levels required are

achieved in a timely manner with as low an injection as possible.

First, an important quantity is the signal-to-noise ratio, or SNR, of the line with

power Pcal in the power spectral density SP (f):

SNR =
Psignal
Pnoise

=
Pcal

fbSP (f)
(E.1)

where fb is the frequency binwidth, or frequency resolution. fb is the minimum

measurable frequency with the data segment given, and for a single average, is
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equal to

fb =
1

T
(E.2)

where T is the total time of the signal.

The SNR in Eq. E.1 can be increased in three ways:

1. increase the line power Pcal,

2. lower the noise SP (f),

3. lower the frequency binwidth fb by increasing the measurement time T

A power spectral density of Gaussian noise like SP (f) has units V2/Hz, and re-

mains constant no matter the measurement time length. A power spectrum fbSP (f),

on the other hand, has units V2
, and the measurement noise decreases as the same

noise power is divided amongst more bins. The calibration line, however, has in-

�nite frequency precision, or at least is assumed to in Eq. E.1. So as the power

spectrum fbSP (f) of noise decreases with more time T , the calibration line power

Pcal at exactly the calibration line frequency fcal will remain constant.

For real spectral densities, a window must be used to enforce periodicity of our

data. The scale factor between spectrum and spectral density depends on this win-

dow, because the window throws away some of the power in the signal. The real

scale factor is the equivalent noise bandwidth, which depends on the frequency bin-

width fb. For the derivation in Section E.4, we assume a boxcar window function,

which is no window, so the equivalent noise bandwidth = fb. Heinzel Chapter 8

[204] discusses windows and the equivalent noise bandwidth.

E.2 Problem setup

We would like to know the uncertainty and bias associated with calibration lines.

When we measured a calibration line in a spectral density, the Gaussian noise

power of the density sums with the power in the line:

Pmeas = Pcal + fbSP (fcal). (E.3)

If the SNR is high, thenPmeas ≈ Pcal and the e�ect of noise is negligible. If the SNR

is low, then noise contributes signi�cantly to the calibration line, and produces a

bias. Figure E.1 illustrates both the high and low SNR case.
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Figure E.1: Four calibration lines f1, f2, f3, f4 summed into an amplitude spectral

density

√
SP (f). The high SNR line f1 shows in the sum spectral density with

negligible noise. The SNR ∼ 1 line f3 shows weakly in the sum spectrum, with a

signi�cant bias between the line peak and sum peak and noise causing �uctuations

on the peak height. To produce this plot, 100000 ASDs were taken using a boxcar

window function and averaged together. The frequency binwidth fb = 10 Hz.

E.3 Bias

The bias between the measured peak height and the actual calibration line peak

falls out of Eq. E.3:

Pmeas
Pcal

= 1 +
fbSP (fcal)

Pcal
= 1 +

1

SNR
(E.4)

→ b =
1

SNR
(E.5)

So even with an SNR of 100, you will expect a 1% bias in the calibration line.

The best way to accurately calculate the SNR and bias is to take a long spectral

density measurement with no line to measure SP (fcal) very accurately (see Sec-

tion D.3 and D.4). Then turn on the line, and measure for a time T = 1/fb seconds

such that the minimum acceptable bias is achieved. Note that if you take several

averages n, you will have to measure the line for nT seconds.
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Figure E.2: Diagram of a moderate SNR calibration line Vcal with Gaussian noise

in the Fourier domain. The noise along the vector will have more of an e�ect than

the noise orthogonal to the line. The Gaussian noise is the same as that derived in

Section 6.6.

The uncertainty in the line height depends on the ratio of Gaussian noise relative

to the line amplitude, i.e. the SNR. Figure E.2 shows the Fourier domain for the

calibration line amplitude Vcal with Gaussian noise. We will start the derivation

with Figure E.2, and rotate our frame by −θ so the vector is entirely along with

the real axis.

First, we recall our independent Gaussian random variablesA,B from Section 6.6

to describe the noise:

A,B ∼ N (0, σ) (E.6)

where σ is the standard deviation.

Next, we write the distribution ofA+Vcal. We assume that the line itself is noise-

less, yielding

A+ Vcal ∼ N (µ, σ) (E.7)

where µ is the amplitude of Vcal.

We care about the measured power Pmeas calculated from these signals, so we

de�ne a random variable Z such that

Z ∼ (A+ Vcal)
2 + B2

(E.8)

We recall the zero-mean Gaussian squared B2
is a general chi-squared distribution

with one degree of freedom (Section 6.7):

B2 ∼ χ2
1 =

1√
2πσ2b

e−
b

2σ2 b ∈ [0,∞) (E.9)
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The nonzero-mean Gaussian squared follows a noncentral chi-squared distribu-

tion with one degree of freedom:

(A+ Vcal)
2 ∼ χ′21 =

1√
2πσ2a

cosh

(
µ
√
a

σ2

)
e−

(a+µ2)

2σ2 a ∈ [0,∞) (E.10)

E.4.1 Power spectral density with line

Now we �nd the distribution for the power spectral density with a line 〈z, z〉cal,
which follows Z . To �nd the distribution of Z , we convolve Eqs. E.9 and E.10:

〈z, z〉cal ∼ p(z) =

∫ ∞

−∞
χ′21 (x)χ2

1(z − x)dx (E.11)

=
1

2πσ2
e−

(z+µ2)

2σ2

∫ z

0

1√
x(z − x)

cosh

(
µ
√
x

σ2

)
dx (E.12)

p(z) =
1

2σ2
e−

(z+µ2)

2σ2 I0

(
µ
√
z

σ2

)
(E.13)

where I0 is the modi�ed Bessel function of the �rst kind. Eq. E.13 is the probability

distribution for how a line with mean power Pcal = µ2fb appears in a power spec-

tral density bin with mean noise power density 2σ2
. If we let µ → 0, we recover

the usual exponential distribution of the power spectral density from Eq. 6.40.

Note that the units here are still V2/Hz. We recall here that σ2 = σ2
x/fs where fs

is the sampling frequency and σ2
x is the measured power in V 2

of a white noise

time-domain signal. In Eq. E.13, µ2 = Pmean/fb is the line power divided by the

equivalent noise bandwidth, which in our case is just fb.

The SNR from Eq. E.1 can be expressed here as

SNR =
µ2

2σ2
. (E.14)

E.4.2 Amplitude spectral density with line

Finally, we also derive the distribution for the amplitude spectral density with a

line

√
〈z, z〉cal, which follows

√
Z . This can be done with change of variables

r =
√
z, similar to Section 6.9.1, and yields the distribution

√
〈z, z〉cal ∼ p(r) =

r

σ2
e−

(r2+µ2)

2σ2 I0

(µr
σ2

)
(E.15)

Eq.E.15 is the Rice distribution. The units here are V/
√

Hz.

If we let µ→ 0, we recover the usual Rayleigh distribution amplitude spectral den-

sity from Eq. 6.49. If we let SNR > 5, the Rice distribution is well-approximated
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Figure E.3: Histograms of amplitude spectral densities at calibration line frequen-

cies vs estimated rice distributions. 100000 ASDs of the calibration lines plus Gaus-

sian noise from Figure E.1 are plotted as the histograms. The Rice distributions are

calculated via Eq. E.15.

by a Gaussian distribution with mean µ and variance σ2
. Figure E.3 shows the Rice

distributions of the calibration lines from Figure E.1.

The mean of the Rice distribution in Eq.E.15 is

λ =

√
π

2

1

2σ
e−

µ2

4σ2

[
(µ2 + 2σ2)I0

(
µ2

4σ2

)
+ µ2I1

(
µ2

4σ2

)]
(E.16)

The variance is

s2 = µ2 + 2σ2 − λ2
(E.17)

where λ is the mean from E.16.

The root mean square is

ψ =
√
µ2 + 2σ2

(E.18)
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The noncentral fourth-order moment is

µ4 =

∫ ∞

0

r4p(r)dr = µ4 + 8µ2σ2 + 8σ4
(E.19)

E.4.3 Line height estimation and uncertainty

There are a couple of ways to estimate the true calibration line height

√
fbµ, in-

cluding the method of moments and numerical maximum likelihood estimation. If

the SNR > 5, the Rice distribution approximates to a Gaussian, and the method of

moments works well to quickly estimate the line height and its uncertainty from

the data.

However, some of these techniques fall apart in the regime of low SNR, where the

uncertainty would allow unphysical estimates like negative line amplitudes. In

those low SNR cases, it will be best to implement a model estimate which allows

priors to be incorporated.

E.4.3.1 Estimation via mean squared error

The �rst and most straightforward way to estimate the line amplitude µ is to take

the measured line height and subtract the measured noise.

Quantitatively, we �nd the sample noncentral second order moment ψ̂2
, also known

as the mean squared error, from the ASDs. The root mean square ψ̂ is the value

naturally returned by Welch’s method of ASD estimation. Then combine ψ̂2
with

a “quiescent” measurement taken with the line o� to estimate the average noise

ŜP (f) = 2σ̂2
:

µ̂ =

√
ψ̂2 − 2σ̂2. (E.20)

To �nd the uncertainty in the estimate in Eq. E.20, we combine the uncertainty in

the mean squared error estimate with the uncertainty in the noise estimate. The

variance in the noncentral second order sample moment ψ̂2
estimate is

Var
[
ψ̂2
]

=
1

n

(
µ4 − ψ4

)
(E.21)

wheren is the number of ASDs taken, andµ4 is the noncentral fourth-order sample

moment. Eq. E.21 is similar to the expression for variance on the sample variance

Var[ŝ2] [239].
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The variance in the noise comes from the pure noise measurement with the line

o�. The variance in the power spectral density estimate 2σ̂2
comes from Eq. D.12:

Var
[
ŜP (f)

]
= Var

[
2σ̂2
]

=
4σ4

n
(E.22)

Propagating these uncertainties forward to µ via the usual Taylor series expansion

method:

Var[µ̂] =
σ2(µ2 + 2σ2)

µ2n
(E.23)

=
σ2

n

(
1 +

1

SNR

)
(E.24)

Expressing Eq. E.24 in terms of relative uncertainty using Eqs. E.14:

Var[µ̂]

µ̂2
=

σ2

n

(
1 +

1

SNR

)

2σ2SNR

=
1

2nSNR

(
1 +

1

SNR

)
(E.25)

The variance of our estimate of µ̂ decreases linearly with the number of averages

n. The absolute variance in Eq. E.24 also �attens out starting at around SNR = 1:

absolute uncertainty does not improve much above SNR = 5, but gets much worse

for SNR < 1. This suggests that above an SNR of around 5, the experimenter may

be better o� using data to achieve more averages n rather than increasing the SNR

by integrating over more time to reduce the frequency binwidth fb. Figure E.4

plots the variance of the line estimate as a function of SNR.

Brie�y, we overview the regime of unphysical uncertainty. An unphysical result

is when the uncertainty of the line height is greater than the line height itself,

potentially yielding negative line heights. We can always take more ASDs n to

reduce uncertainty to a physical regime, but increasing the SNR helps faster. This

can be described in terms of SNR using Eqs. E.14 and E.23

0 < µ̂−
√

Var[µ̂] (E.26)

0 <
√

2σ2SNR−
√
σ2

n

(
1 +

1

SNR

)
(E.27)

→ n >
SNR + 1

2SNR2 (E.28)
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Figure E.4: Variance of the calibration line height estimate Var[µ̂] via the method

of moments in Eq E.24. The variance in the line height estimate �attens out at high

SNR as more line power does not help resolve versus the Gaussian noise further.

In this plot, n = 100 and SP (f) = 2σ2 = 1 V2/Hz.

If SNR ≥ 1, then n > 1 is su�cient for a physical 1σ uncertainty. If SNR < 1,

then n > 1/(2SNR2) is required.

This method is simple, works well with high SNR lines, and the uncertainties easily

calculated and propagated from the noncentral sample moments. However, this

method requires two measurements, one each for the line on and o�. The state

of the interferometer cannot be changing much during this time. Also, the uncer-

tainties are not guaranteed to yield physical results in the very low SNR regime.

More samples may be taken to reduce uncertainty in the line height to be physical.

The sample moment estimates are not robust to glitches and non-Gaussian noise.

E.4.3.2 Estimation via fourth order moment

If one does not want to perform a “noise-only” measurement with the calibration

line o�, the noncentral fourth-order sample moment µ̂4 may be used to estimate

the line amplitude µ̂:

µ̂ =
(
µ̂4 − 2ψ̂4

) 1
4

(E.29)

The uncertainties in Eq. E.29 can be propagated similarly to the previous section.

The variances associated with Eq. E.29 depend on the noncentral eighth-order
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sample moments. Analysis suggests the �nal variance in µ̂ from Eq. E.29 is∼ 100×
higher than Eq. E.23. Again, the uncertainties are not guaranteed to yield physi-

cal results in the very low SNR regime, and the sample moment estimates are still

susceptible to glitches.

E.5 Future work

The above estimation of calibration line height and uncertainty in the presence of

Gaussian noise is useful for quantifying the levels SNR and number of averages

required for reasonable uncertainty. For situations where high SNR lines may

not be feasible, an MCMC which incorporates priors about the Rice distribution

parameters may be necessary.

Future work in this area include examining the uncertainty statistics using me-

dians rather than mean moments. Another useful tool would be code to perform

rigorous Bayesian model selection between Rayleigh and Rice distributions to de-

cide whether a line is present or not given the data.
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A p p e n d i x F

POWER SPECTRAL DENSITY REJECTION FOR GLITCH GATING

Loud, transient glitches in Advanced LIGO data is a problem for spectral analysis.

The worst e�ect glitches can have is when they occur during gravitational wave

events, spoiling astrophysical data, although the e�ects can be partially mitigated

[240, 241]. Other issues glitches include causing locklosses, spoiling detector back-

grounds [242, 243], interfering with search pipelines and astrophysical parameter

estimation [244–246], and spoiling spectral density estimates [247]. This chap-

ter will focus on improving spectral density and transfer function estimates by

throwing out glitchy data using the statistics of PSDs.

F.1 Method

Here, we will brie�y examine “PSD rejection” which avoids the di�culties associ-

ated with median-averaging while still removing glitches from the PSD estimation

process. The procedure is

1. Compute all PSDs as normal for Welch’s method, say we have n samples

2. Choose a frequency bin f0 that is sensitive to glitches (in LIGO this is the

20-40 Hz range),

3. Calculate the median ρ of all the PSDs in frequency bin f0,

4. Choose a rejection threshold r,

5. Reject the PSDs with values higher than the threshold,

6. Use mean-averaging on the rest.

When we calculate the median, we completely characterize the Gaussian noise

distribution we care about. We know that a PSD follows an exponential distribu-

tion, with a median ρ = log(2)λ. By using the cumulative distribution function of

the exponential

F (x) = 1− e− xλ , (F.1)
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we can known exactly how many PSDs we might expect to reject given our rejec-

tion threshold r.

For instance, suppose we have n = 1000 PSDs. If we choose r = 10ρ, then

F (r) = 0.9990, so we might expect to reject n(1 − F (r)) ≈ 1 PSD, if there were

no glitchy PSDs in the sample. If we reject much more than one, we can safely

assume at least some of those PSDs were taken during a glitch.

F.2 Discussion

One might ask, “if I’ve already characterized my Gaussian noise using the the me-

dian, why bother with the rejection?” Indeed, if the PSD is the sole result one cares

about, the analysis can stop there, simply correcting from the mean-to-median

PSD bias. The above process is most useful for CSD and TF rejection. The indi-

vidual signals comprising the CSDs may have their PSDs estimated �rst, and the

CSDs associated with the glitchy PSDs can be removed from the analysis before

computing the �nal mean-averaged CSD.

This method works very well for the short-duration, loud, and frequent glitches

seen in LIGO data. It avoids the di�culties of median-averaging for CSDs and

TFs, and avoids the di�culties of time-domain glitch gating, including data storage

costs and spectral leakage due to gating.

This method requires the median to be a decent characterization of the PSD dis-

tribution, and so needs a large amount of data, and can miss some quiet glitches

that do not exceed the rejection threshold in the bin we’ve chosen, and can bias

the mean-averaged result down if the rejection threshold is too low, cutting o� the

upper tail of the distribution.

F.3 Example

PSD rejection was used to simplify the analysis of correlated noise in the interfer-

ometer, as explored in Chapter 5. For the correlated noise measurement, very long

stretches of glitchy data is required to resolve the correlated noise. In the example

from Chapter 5, more than 9 hours of data was taken, yielding 67156 sample PSDs

and CSDs. At frequency f0 = 40 Hz, I chose a rejection threshold r = 14ρ, which

should have rejected 67156(1 − F (r)) ≈ 4 CSDs. In fact, 53 CSDs were rejected,

meaning about 49 glitches were removed from the analysis.
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