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ABSTRACT

In September 2015, the Advanced LIGO detectors made the first direct detection
of gravitational waves from a binary black hole merger [1]. Since then, around
fifty total gravitational wave detections have been reported by Advanced LIGO
and Advanced Virgo over three dedicated gravitational wave observation times,

known as observing runs.

Observing run three (O3) ran from April 2019 to March 2020, with higher sensi-
tivity and more stable operation of the Advanced LIGO detectors [2]. In the first
half of O3, thirty-nine gravitational wave events were detected [3], as opposed
to eleven in all of observing runs one (O1) and two (O2) [4]. The higher rate of
detections is due primarily to the increased detector sensitivity to gravitational

waves.

Although the Advanced LIGO detectors are more sensitive to gravitational waves
than any detector in history, they have not yet achieved design sensitivity. Work
continues to push the detectors to their fundamental limit of sensitivity. The work
in this thesis partially covers the effort to improve the sensitivity of the LIGO
Hanford detector prior to O3.

Calibration of the Advanced LIGO interferometer is the conversion of raw detector
data into gravitational wave strain data. This process is crucial to an accurate
and precise understanding of astrophysical sources of gravitational waves. The
calibration uncertainty pipeline for characterizing the strain uncertainty during
01 and O2 is discussed in detail [5].

This thesis covers topics in long-baseline interferometric gravitational wave de-
tector technology, including an overview of the performance of the detector in O3,
commissioning tasks done to increase the sensitivity of the detector for O3, over-
all calibration uncertainty in the gravitational wave data, and methods for robust

estimation of spectral quantities from LIGO data.



v

ACKNOWLEDGEMENTS

My path through grad school was anything but straightforward. I thank everyone
who helped me along the way:.

Thank you Alan for giving me the opportunity to work in LIGO from O1 to O3, for
your hands-on mentorship in the the early years, and your patience and counsel

in the later years.

Thank you Rana for the opportunity to join your group halfway through grad

school, for showing us how to control ASC, and for the stories about the old days.

Thank you Max, Tom, and Surabhi for your companionship throughout grad school
and for making the third floor of West Bridge fun. Thank you Darkhan and Su-
darshan for inviting me into the calibration group at Hanford my first time there.
Thank you Evan and Kiwamu for mentoring a young grad student and showing

me the path I eventually took for myself.

Thank you Andrew for making the coffee lobster, buying all those boxes, and for
teaching me how to take a transfer function. Thank you Johannes, Aaron, and
Brittany for bringing light to the basement. Thank you Kevin for holding me to a

higher academic standard.

Thank you Daniel for reading my baffling alogs, creating a positive commissioning
environment, and steering me on the right course. Thank you Keita for letting me
fix frequency noise during run time. Thank you Jeff for talking about calibration
with me. Thank you Sheila and Jenne for your incredible mentorship, patience,
and friendship. Thank you to the visiting scientists who took interest in my work

and invited me into theirs, including Peter, Stefan, Robert, Rich, and Calum.

Thank you Aidan, Anchal, and Jaime for getting coffee in the park. Thank you
Gabriele for sharing an office, your data, and your knowledge with me. Thank
you Koji for for all the black glass beam dumps, late night OMC measurements,

and for teaching me about intensity noise and HOMs.

Thank you Dan for the late night commissioning times and inviting me into the Fi-
nesse group. Thank you Anna, Paul, and Andreas for providing valuable feedback

on the interferometer simulation inner workings.

Thank you TJ and Mary for letting me sleep in your house for a month. Thank

you Gautam for being my go-to friend for all interferometer ideas, co-captaining



the Strong Fielders softball team, and for living with me through a pandemic.

Thank you to my mom and dad, Susan and Mark, for the many packages of socks
and years of support. Thank you to my brother Dennis who has mentored me and
always been my friend. Thank you to Georgia who I met along the way. I love

you.



(2]

(6]

vi

PUBLISHED CONTENT AND CONTRIBUTIONS

Craig Cahillane, G. Mansell, et al. “Laser frequency noise requirements
for next generation gravitational-wave detectors”. Optics Express (in prep).
C.C. produced the frequency noise budget and coupling function. Some of
this work is reproduced in Chapter III of this thesis.

A. Buikema, Cahillane, C., et al. “Sensitivity and performance of the Ad-
vanced LIGO detectors in the third observing run”. Physical Review D (2020).
doi: 10.1103/PhysRevD.102.062003

C.C. was a member of the four-person paper writing team for this Ad-
vanced LIGO colloboration-reviewed paper. C.C. produced several of the
results presented, including the intensity, frequency, and H1 correlated
noise budgets, as well as the arm power measurement. This work is re-
produced in Chapter III of this thesis. 1SsN: 24700029.

Craig Cahillane. “Median averaging for cross spectral densities”. (in prep)
(2020).

C.C. derived analytic results for median-averaged CSDs for use with glitchy
long-term LIGO data. This work facilitated Chapter V of this thesis, and is
reproduced in Chapter VI of this thesis.

Craig Cahillane. “beamtrace: python3 Gaussian laser beam ABCD matrix
propagator” (2019).

PyPi library: https://pypi.org/project/beamtrace/

C.C. wrote this python library for Gaussian beam propogation for research
at the LIGO Hanford detector. This library is used for Appendix B.4.2 and
Appendix C.2 of this thesis.

Craig Cahillane. “nds2utils: convenient user interface for the python nds2
LIGO data-acquisition client” (2019).

PyPi library: https://pypi.org/project/nds2utils/

C.C. wrote this python library to facilitate data collection for research at
the LIGO Hanford detector.

E. D. Hall, Craig Cahillane, et al. “Systematic calibration error require-
ments for gravitational-wave detectors via the Cramér—Rao bound”. Clas-
sical and Quantum Gravity 36.20 (2019).

doi: 10.1088/1361-6382/ab368c

C.C. verified the Jacobian numerical results of this paper analytically.

B. P. Abbott et. al. (LIGO Scientific Collaboration). “Calibration of the Ad-
vanced LIGO detectors for the discovery of the binary black-hole merger
GW150914”. Phys. Rev. D 95 (6 2017).

doi: 10.1103/PhysRevD.95.062003

C.C. produced the calibration uncertainty budgets for Advanced LIGO’s
first detection of gravitational waves, GW150914.


10.1103/PhysRevD.102.062003
https://pypi.org/project/beamtrace/
https://pypi.org/project/nds2utils/
10.1103/PhysRevD.95.062003

8]

vil

Cahillane, Craig, J. Betzwieser, et al. “Calibration uncertainty for Ad-
vanced LIGO’s first and second observing runs”. Phys. Rev. D 96 (10 2017).
doi: 10.1103/PhysRevD.96.102001

C.C. conceived of the calibration uncertainty pipeline, produced calibra-
tion uncertainty budgets for Advanced LIGO’s first and second observing
runs, and wrote the manuscript. This work is reproduced in Chapter IV of
this thesis.


10.1103/PhysRevD.96.102001

viii

TABLE OF CONTENTS

Abstract . . . . . . . L iii
Acknowledgements . . . ... ... . Lo L L iv
Published Content and Contributions . . . . . ... ... ... ... .... vi
Table of Contents . . . .. ... ... .. ... .. ... . ... vii
List of llustrations . . . . . . .. ... ... . ... xiii
Listof Tables . . . . . . . . . . . . xvii
Chapter I: Introduction . . . . ... ... ... ... L L L 1
1.1 What is a gravitational wave? . . . . ... ... ... ... ..... 1
1.2 Sources of gravitational waves . . . ... ... ... ... .. 4
1.3 Detectors . . . ... ... e 5
Chapter II: Advanced LIGO detector design and O3 upgrades . . . . . . . . 8
2.1 Detector topology . . . ... ... . ... 8
2.2 Gravitational wavesignal . . . ... ... .. ... ... . ... 11
23 Noise. . .. ... e 12
23.1 Quantummnoise . . . . . . ... e 12
23.2 Thermalnoise . . . . ... ... ... ... ... ... ... 14
233  Seismicnoise . .. ... ... ... 16
23.4 Newtoniannoise . . ... ... ... ... ......... 17
2.4 Length sensingandcontrol . . .. ... ... ............ 17
241 Degreesoffreedom . ... ... ... ... ... ..... 18
2.4.2 Macroscopic cavity lengths . . . . ... ... .00 19
243 Lengthsensors . . ...................... 20
244 Gainhierarchy . . ... ... ... ... .. o L. 22
245 Feedforward . . . ... ... .. ... ... .. .. 22
2.5 Lockacquisition . ... ... ... ... .. ... 22
2.6 O3detectorupgrades . . . . . ... ... ... ... ..., 24
2.6.1 Laser power inCrease . . . . . . . . . .« o v v v v v o 24
262  SQUEEZET . . . . . ..o 25
2.6.3 Coreopticreplacement . . . . . ... ... ... .. ..., 26

Chapter III: Sensitivity of the Advanced LIGO interferometers during ob-
servingrunthree . . . . . ... ..o oo oL oL oo 28
31 O30VervIewW . . . . . . o o it e 28
3.1.1 Advanced LIGO noise budget . . . ... .......... 28
3.1.2 Astrophysicalrange . . . . . . ... ... ... ... 31
3.1.3 Dutycycle . . .. ... 31
3.14 Tableof O3 Parameters . . . . . ... ... ......... 32
3.2 Arm power measurement . . . . . . ... ... .o 36
321 Fundamentals . . ... ... ........ ... ..., 36

3.2.2  Arm power inference technique . . . . . . ... ... ... 38



3.23 Measurement Details . . . ... ... ... ... ... 43

324 Results . .. ... .. L 43

3.3 Auxiliary length control improvements. . . . . ... ... ... .. 45
33.1 ALScontrolscheme . ... ... ............... 45

332 ALSupgradesforO3 ... ... ............... 47

3.3.3 ALS COMM frequency noise measurement . . . . . . . .. 47

3.4 Frequency stabilization. . . . .. ... ... .. ... ... ... .. 51
34.1 Controlscheme . ... ... ... .. ... ... ...... 52

3.4.2 O3 frequency control upgrades . ... ........... 56

343 CARMcalibration . . . .. ... ... ... ... ... 57

3.4.4 Frequency noise budget . .. ... ... ... .. ..., 62

3.4.5 Frequency to DARM coupling budget . . . . .. ... ... 64

3.4.6  Output mode cleaner ditherline . . . . ... ... ... .. 69

3.5 Intensity stabilization . ... ... ... ... ... .. ... ... . 69
3.5.1 Intensity control scheme . . . ... ... ... ... .... 70

3.5.2 Intensity noise budget . . ... ... ... ... .. .. .. 72

3.5.3 Intensity to DARM coupling budget . . . . ... ... ... 74

3.6 DARMopticalplant . . . . ... ... ... ... ... ... ... 77
361 DARMmodel ... ...... . ... . ... . ... 78

3.6.2 DARM model withlosses . . . ... ... .......... 80

3.63 DARMpoleandSRCloss . . . . ... ... .. ....... 84

3.6.4 SR3 heater and the DARM optical spring . . . . ... ... 85
Chapter IV: Calibration of the Advanced LIGO detectors . . . . . ... ... 91
4.1 Motivation . . . ... ... ... e 91
4.1.1 Effect of calibration errorson SNR . . . . ... ... ... 92

41.2 Optimal calibration . . . ... ... ... .......... 92

4.1.3 Astrophysical parameter estimation . . . . . ... ... .. 92

414 New astrophysics . . . . ... ... .. ... ... ... .. 93

4.1.5 Other astrophysics and cosmology . . ... ... ... .. 93

4.2 Parameter estimation, self-calibrating signals, and the standard siren 94
4.3 Detector calibration fundamentals . . ... ... ... .. ..... 96
43.1 DARMcontrolloop . . . ... ... ... ... .. 96

4.3.2 Calibrationpipeline . . . . ... ... ... ... ..... 98

433 Responsefunction. . .. ... ... ... .......... 98

43.4 Systematicerrors . . . . . .. . . ... ... ... 98

435 Uncertainty . ... ... ... ... ... . ... 99

44 Models. . . . . ... 100
441 Calibration group DARMmodel . . . . .. ... ... ... 100

4.4.2 Long wavelength approximation . . ... ... ...... 104

443 ActuationModel . . ... ... Lo o oL 104

444 Calibration lines and time-dependent factors . . . . . . . . 108

4.5 Photoncalibrator . . . . . . ... ... ... Lo 108
45.1 Systematicerrors . . . . ... ... ... ... ... 109

4.5.2  Other calibration methods . . . ... ... ... ...... 110

46 Measurements . . ... ... ... . oo 110



4.7 Calibration error and uncertainty budget . . . . . .. ... ... .. 112

471 DARM model parameter estimation . . . . . ... ... .. 112

4.7.2  Quantifying frequency dependent error and uncertainty . 114

4.7.3  Total calibration uncertainty budget . . . . . . .. ... .. 115

4.7.4 Calibration uncertainty for entire observing runs . . . . . 117

48 Results . . . . . ... 117

4.9 Fundamental uncertainty limit . . .. ... ... ... ....... 121

4.9.1 SoCal: Simultaneous oscillator calibration . .. ... ... 122

410 Future Work . . . . .. .. Lo 126

4.10.1 Other sources of calibration systematic error . . . . . . . . 127

4.10.2 Conclusions . . . . .. ... ... ... 127

Chapter V: Correlated Noise . . . . ... ... ... ... ......... 129

51 Introduction. . ... ... ... ... . ... .. ... 129

52 Method . .. ... ... . . ... 130

5.2.1 Correlated noise without squeezing . . . . . ... ... .. 130

5.2.2 DCreadout with squeezing . ... ... .......... 132

5.2.3  Correlated noise with squeezing . . . . . . ... ... ... 136

5.24 Squeezing level estimate from correlated noise . . . . . . . 136

53 Results . . . . . ... 137

54 FutureWork. .. ... ... ... . ... o o 142

Chapter VI: Probability distributions for spectral densities . . . . . . . . .. 143

6.1 Random variables and probability functions . . . .. ... ... .. 144

6.2 Spectralanalysis . ... ... ... .. ... o L. 145

6.3 Estimators . . .. ... ... ... .. ... e 146

6.3.1 Properties . ... ... ... ... 146

6.3.2 Example estimators . . . . ... ... ... L. 147

6.4 Welch’smethod . . . . ... ... .. ... . ... ..... 148

6.5 Probability distribution formulae . . . ... ... ... ... .. .. 149

6.6 Gaussian distribution and the Fourier transform. . . . . . ... .. 152

6.7 Chi-squared distribution . . . . ... ... ... oo oL 154

6.8 Exponential distribution and the power spectral density . . . . . . 155

6.8.1 Power spectral densities . . . ... ... ... .. ..... 156

6.9 Rayleigh distribution and the amplitude spectral density . . . . . . 157

6.9.1  Amplitude spectral densities . . . . . ... ... ... ... 158

6.10 Modified Bessel function of the second kind . . . . ... ... ... 159

6.10.1 Product of two Gaussians AC . . . .. ... ... ..... 160
6.10.2 Product of Gaussian with itself and another Gaussian A(.A+

C) oo e 160

6.11 Laplace, asymmetric Laplace, and the cross spectral density . . . . 163

6.11.1 Cross spectral densities . . . . . .. ... ... .. ..... 164

6.12 Coherence . . . . . .. . .. ... 172

6.13 Phase . ... ... ... 175

6.13.1 General real and imaginary axis distributions . . . . . .. 175

6.13.2 Mean of the general CSD distributions . . . . ... .. .. 176

6.13.3 Median of the general CSD distributions . . ... ... .. 176



6.13.4 Phaseoverview . . ... ... ... ... .. ... ... 177

6.14 White noiseexample . . . . ... ... ... L. L L. 180
6.14.1 Problem statement . .. ... ... ... ...... . ... 180

6.14.2 Solutionsetup . . . .. ... ... ... L. 180

6.15 DiSCuSSion . . . . . . .. ... 184
Chapter VII: Future work . . . . . . ... ... ... ... ... ..., 186
7.1 Noise considerations . . . . ... ... ... .. .. .. 186

7.2 Odupgrades . . . . . . ... 188

7.3 Future projects . . . . . . . ... . e 188

74 Conclusions . . . . . . ... L 189
Chapter A: Modulation, quadratures, and electric field units . . . . . . . .. 190
A1 Modulation . . . ... ... 190
A11 Phasemodulation . . ... ... ... L oL 191

A.1.2 Frequencynoise . . . . . . ... ... .. 192

A.13 Amplitude modulation . . ... ... ... 192

A.14 Intensitynoise. . . . ... ... ... ... ... ..., 193

A.2 General sidebandpower . . . ... ... ... ... ... ... ... 194
A3 Quadratures . . . . . . ... 195
A.3.1 Quadrature units to electric field units . . . . .. ... .. 196

A.3.2 Modulations in quadrature representation . . .. ... .. 197

A4 Homodyneangle . . . ... ... ... ... . ... ... ... ... 198
A4.1 Conflicting homodyne angle definition . . . . ... .. .. 199
Appendix B: Basic interferometer configurations . . . . .. ... ... ... 201
B.1 Propagation throughspace . ... .................. 201
B.2 Reflection from an oscillating mirror . . . . ... ... ... .. .. 202
B.3 Simple Michelson . . . . . ... .. .. 203
B.3.1 Response to differential motion . . . ... ... ... ... 206

B.3.2 Gravitational waves to differential motion transfer function 208

B33 Lasernoise. ... ................ . ... ... 210

B.4 Fabry-Perotcavity . ... ... ... ... ... ... . .... 216
B4l Basics . ... ... e 216

B.42 Cavitygeometry . ... ..... ... ... . ... ... 219
Appendix C: Topics in advanced interferometry . . . ... ... ... ... 229
C.1 Calibration of radio-frequency photodetector response . . . . . . . 229
C.1.1 RFsignal chaindiagram . . ... ... ... ........ 229

C.1.2 RFPDshotnoise . . . ... ... ............... 230

C.13 RFPDdarknoise. . . ... .. ... .. .. ......... 231

C.1.4 Shotnoise calibration . . . . . ... ... ... ....... 231

C.2 DARM cavity beamprofile . . . . . ... ... ... ... . ... 232
C.2.1 Arm cavity geometric parameters . . . . . ... ... ... 233

C.2.2 Signal recycling cavity geometric parameters . . .. ... 234
Appendix D: Transfer function estimates . . . . . ... ... ... ..... 240
D.1 Maximum likelihood estimators of asymmetric Laplace parameters 241
D.2 Bayes factor for cross spectral density model comparison . . . . . 243

D.3 Sample mean for power spectral densities . . . .. ... ... ... 248



D.4 Sample median for power spectral densities . . . . ... ... ... 249
D.5 Sample mean for cross spectral densities . . . . .. ... ... ... 250
D.6 Sample median for cross spectral densities . . . . . ... ... ... 255
D.7 Sample coherence distribution. . . . . ... ... ..o 0oL 256
D.8 Sample transfer function . . . . . . ... ..o 259
Appendix E: Line injection uncertainty . . . . ... ... ... ... .... 264
E1 Basics . . ... ... . . . e 264
E.2 Problemsetup . . . ... ... ... . ... 265
E3 Bias . . ... .. . e 266
E.4 Distribution . . . . ... .. Lo o 267
E.4.1 Power spectral density withline . . . . .. ... ... ... 268

E.4.2 Amplitude spectral density withline . ... ..... ... 268

E.43 Line height estimation and uncertainty . . . . . ... ... 270

E5 Futurework . . . .. ... ... 273
Appendix F: Power spectral density rejection for glitch gating . . . . . . .. 274
F1 Method ... ... ... .. .. 274

F2 Discussion. . . . . ... ... e 275

F3 Example . . . . .. ... 275

Bibliography . . . . . . .. ... 276



Number
1.1
1.2
2.1
2.2
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27

xiii

LIST OF ILLUSTRATIONS

Page
Gravitational wave effect on testmasses . . . . ... ... ... .. 3
Noise curves of future gravitational wave detectors . . . . . . . .. 6
Advanced LIGO O3 interferometer layout . . . ... ... ... .. 9
Advanced LIGO degrees of freedom . . . . . ... ... ... .... 18
LIGO Hanford O3 DARM noise budget . . . . . ... ... ... .. 29
O3 binary neutron starrange . . . . . . . ... ... ... 32
O3 binary neutron star range histogram . . . ... ... ... ... 33
Integrated time-volume sensitivity . . . . ... ... ... ... .. 34
Arm power measurement diagram . . . . ... ... ... 37
Arm power measurement phasors . . . . . ... ..., 39
Arm power measurements . . . . . .. ... Lol e . 44
ALS control scheme . . . . . . . ... ... ... oL, 46
REFL A 91 error signal sweep with ALS COMM locked . . . . . .. 49
ALS COMM out-of-loop error signal . . . . ... ... ....... 50
Frequency stabilization optical diagram . . . . . ... ... ... .. 52
Frequency controls openloop gains . . . . . ... .. ... ... .. 54
Frequency controls openloopgains . . . . ... ... .. ...... 55
Frequency control loop diagram . . . . .. ... ........... 60
CARM path model and measurement . . . . . . ... ... ..... 61
IMC path model and measurement . . . . ... ... ........ 62
Frequency noise budget . . ... .. ... ... ... . ..... 63
Frequency to DARM transfer function budget . . . . ... ... .. 65
Intensity stabilization servo diagram . . . ... ... ... ... .. 71
Intensity controls openloopgains. . . . . ... ... ... ... .. 72
Intensity noise budget . . . . . ... ... o oo oL 73
Intensity to DARM transfer function budget . . . .. ... ... .. 74
DARM model with losses vs measurement . . . . ... ....... 82
DARMpolevs SRCloss . . . ... ... ... ... ... ...... 84
Signal recycling cavity diagram . . . ... ... ... ........ 85
DARM optical spring during SR3 heatertest . . . . . ... ... .. 87

Simulation of HOMs in the SRC with SR3 radius of curvature change 88



3.28
3.29

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
5.1
5.2
53
54
5.5
5.6
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15

xiv
Simulation of error signals with SR3 radius of curvature change . . 89

Simulation of DARM optical spring with SR3 radius of curvature

change . . . . . . . 90
GW150914 waveform . . . . . ... ... L L oL 94
Calibration process diagram . . . . . . ... ... ... .. ..... 96
Simplified interferometer layout and quadruple pendulum . . . . . 97
DARM control loop diagram . . . . . ... ... . ... ... ... . 99
DARM sensing function measurement vs model . . . . . . ... .. 101
Actuation function measurements vs models . . . . . ... ... .. 105
Hanford sensing function MCMC posteriors . . . .. ... ... .. 113
Livingston Gaussian process regression sensing systematic error . 116

Total calibration error and uncertainty budget at the time of GW170104 119

Total calibration uncertainty percentiles for observing run two . . 120
SoCaldiagram . . . . . ... ... ... ... ... ... . ..., . 122
SoCalrelevantnoises . . . . . ... ... ... .. ... .. ... 123
Simplified DARMloop . . . ... ... .. ... .. ... ... 130
DC readout shot noise with split photodetection. . . . . . ... .. 133
Correlated noise budget . . .. ... ... ... ... ........ 138
Correlated noise budget with squeezing . .. ... ... ... ... 139
Squeezing levels estimated from the correlated noise . . . ... .. 140
Squeezing levels estimated from the correlated noise . . . ... .. 141
Signal diagram for spectral density PDF derivations . . . . . .. .. 149
Gaussian histograms . . . . ... ... .. o oo L. 154
Scaled chi-squared histograms . . . . ... ... ... . ... ... . 155
Exponential histograms . . . ... ... ... ... ... ... 157
Rayleigh histograms . . . . .. ... ... ... ... .. ... .. 159
Modified Bessel function of the 2nd kind histogram . . . . . .. .. 162
Laplace and asymmetric Laplace histograms . . . . . . ... .. .. 165
2D cross spectral density probability distribution . . . .. ... .. 169
Invariant mean of cross spectral densities . . . ... .. ... ... 171
Mean-to-median bias factor for cross spectral densities . . . . . . . 172
Mean- and median-averaged coherence . . . . . ... ... ... .. 174
Median cross spectral density vsphase . . . . . ... ... ... .. 178
Minimum median cross spectral density vs coherence . . . . . . . . 179
Signal diagram for white noise example . . . ... ... ... ... 180

Mean- and median-averaged power and cross spectral densities . . 182



6.16
7.1
Al
A2
B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9
B.10
B.11
B.12
B.13
C.1
C.2
C3
C4
C5
C.6
D.1
D.2
D.3
D4
D.5
D.6
D.7
D.8
D.9
D.10
D.11
D.12
D.13

2D cross spectral density . . . . .. ... Lo L. 183
DARM comparison . . . . . . . ... oot i i 187
Amplitude and phase modulation diagrams . . . ... ... .. .. 194
Homodyne angle diagram . . . ... ... ... ........... 199
Reflection from an oscillating mirror . . . . . ... ... ... ... 202
Simple Michelson diagram . . . . .. ... ... ... ........ 203
Simple Michelson phasor diagram . . . . . ... ... ........ 205
Simple Michelson transmitted and reflected power . ... ... .. 206
Simple Michelson DARM transfer function . . . . .. ... ... .. 208
Simple Michelson strain response . . . . .. ... ... ....... 211
Simple Michelson frequency transfer function . . . . . . ... ... 214
Simple Michelson intensity transfer function. . . . . .. ... ... 215
Fabry Perot cavity diagram . . ... ... ... .. ......... 216
General ABCD beam profile . . . . ... ... ............ 221
Example resonators beamradii . . . ... .... ... ....... 224
Example resonators Gouy phase . . . . . ... ... ... ...... 226
Example resonators transverse mode resonant frequencies . . . . . 228
Radio-frequency photodetector signal chain . . . . ... ... ... 229
Measured Hanford RFPD response . . . . . . ... ... ... ... 232
Advanced LIGO arm cavity beam profile . . . . ... ... ... .. 235
Advanced LIGO signal recycling cavity beam profile . . ... ... 237
Displaced SRC optics vs SRC Gouy phase . . . . ... ... ... .. 238
SRC optics radius of curvature vs SRC Gouy phase . . .. ... .. 239

Maximum likelihood estimates of asymmetric Laplace parameters . 243

Log Bayes factor comparing Laplace and asymmetric Laplace models 246

Mean-averaged sample coherence vs number of samples . . . . . . 247
Sample mean for power spectral densities . . . ... ... .. ... 248
Sample median for power spectral densities . . . ... ... .. .. 249
2D sample mean for cross spectral densities . . ... ... ... .. 253
Major axis sample mean for cross spectral densities . . . . . .. .. 254
Sample median for cross spectral densities . . . . .. ... ... .. 255
Sample coherence . . . . . . ... Lo 257
Sample coherence expected values . . . ... ... ... .. .... 258
Sample coherence variance . . . . .. ... ... L L. 259
Signal diagram for transfer function estimation . . ... ... ... 259

Sample transfer function joint distribution . . . . .. ... ... .. 262



D.14
E.1
E.2
E3
E4

Sample transfer function gain and phase . . . . ... ... ... .. 263
Calibration lines in a spectral density . . . . . ... ... ... ... 266
Calibration line amplitude vs Gaussiannoise . . . . . ... ... .. 267
Rice distributions of ASDs for different lineSNRs . . . . . ... .. 269
Method of moments line height estimate variance . . . . . . . . .. 272



Number

1.1
2.1
2.2
2.3
3.1
3.2
3.3
34
3.5
3.6
4.1
4.2
4.3
6.1
Ci1
C.2
D.1

LIST OF TABLES

SNR of the first gravitational wave detection in future detectors . .
Carrier and RF sidebands resonance conditions . . ... ... ..
Lengthsensors . . .. ... ... ... ... ... ... ......
Length controls bandwidth . . . . ... ... ... ... ... ...
Lock times for all observingruns . . . . . ... ... ... ....
Advanced LIGO optical and physical parametersin O3 . . . . . .
Measured armpowersinO3 . . . ... ... ... ... ... ...
CARMmodelvalues . . ... ... ....... ... . .....
Intensity and frequency noise parameters . ... ... ... ...
DARM model parameters . . . ... ... ... ... ... ..
O2 DARM sensing parameters . . . . . . ... ... ... ... ..
O2 DARM actuation parameters . . . . . . .. ... ... ... ..
GW170104 Extreme Uncertainty . . . . . ... ... ... .....
Probability densities of spectral estimators . . . . . ... ... ..
Arm cavity geometric parameters . . . . . ... ... ...

Signal recycling cavity geometric parameters . . . .. ... ...

Number of samples required to resolve a cross spectral density

xvii

Page

19
20
22
34
35
45
59
76
81
103
107
121
151
234
236
245



Chapter 1

INTRODUCTION

In the early 20'" century, Albert Einstein revolutionized physics with the theories
of special and general relativity. Einstein cut ideas like absolute universal length,
absolute universal time, and simultaneity in favor of a universal speed of light.
Relativity unified space and time into a singular “spacetime.” Travel through space
and time is was no longer independent, and observers traveling through space

relative to one another must experience different passage of time.

General relativity redefined gravity as curvature in spacetime arising from the pres-
ence of mass and energy within that spacetime. The “force” of gravity between two
bodies was not a force at all, but two objects following a “straight line”, or geodesic,
through a curved spacetime. General relativity resolved issues with Newtonian
gravity, including correctly predicting the precession of Mercury’s orbit and grav-
itational lensing by the sun. The development of general relativity revolutionized
physics and astrophysics, provided a new framework for understanding the uni-

verse on a large scale, and kicked off the field of cosmology.

One key prediction of general relativity was the existence of waves in spacetime,
known as gravitational waves. Gravitational waves were a natural consequence of
Einstein’s equations describing spacetime curvature, but Einstein predicted these

waves were far too weak to ever be detected by humanity.

In 2015, Advanced LIGO made the first-ever detection of gravitational waves from
a binary black hole merger [1]. Since then, Advanced LIGO’s sensitivity to grav-
itational waves has increased even further, resulting in 39 detections in the most

recent observing run [3].

This thesis will focus on the efforts to characterize and improve the sensitivity of
the LIGO Hanford Observatory leading up to its third observing run (03), with
topics in precision detector calibration, noise mitigation, and novel detector mea-

surement techniques.

1.1 Whatis a gravitational wave?
Gravitational waves are the propagating wave manifestation of a fundamental

force of nature. The “electric charge” of gravity is mass, which can only be pos-
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itive, not both positive and negative. However, gravity is a much weaker force
than electromagnetism, and can only emit quadrupole radiation, as opposed to

electromagnetism’s dipole radiation.

A gravitational wave is often described as a “ripple” in spacetime. As heavy objects
move through the universe, they interact with spacetime, creating curvature such

that the motions of nearby objects through spacetime appear distorted.

If two extremely heavy objects begin orbiting one another very quickly, spacetime
curvature near this orbit becomes extremely strong and changes rapidly. A signif-
icant amount of energy in the fluctuating spacetime propagates away to infinity

in the form of oscillating spacetime.

In general relativity, Einstein’s field equations relate spacetime curvature to the

energy and matter residing within that spacetime:
G — Ngw = KT}, (1.1)

where G, is the Einstein tensor describing spacetime curvature, A is the cos-
mological constant, g, is the local spacetime metric, Kk = 871G / ¢* is the Einstein
gravitational constant governing energy coupling to spacetime curvature, and 7},

is the stress-energy tensor describing the matter and energy within a spacetime.

In the weak-field limit, where there is no matter or energy, the stress-energy ten-
sor T}, = 0. Then the Einstein equations can be reduced to a wave equation and
solved for small perturbations in spacetime. These solutions to Einstein’s equa-

tions are known as gravitational waves.

For a wave traveling transverse to the z direction, the gravitational wave tensor

Py is
00 0 0
0 he hy O
By = A (1.2)
00 0 0

The coefficients hy and hy correspond to the two polarizations of gravitational

waves, and refer to the way they affect spacetime.

The effect of a gravitational wave can be seen in the way it affects the distances of
two objects resting in spacetime. In the lab frame, a gravitational wave can be said

to create a length change between any two points in space, with the sign of the
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Figure 1.1: Effect of a passing linearly polarized i, gravitational wave traveling in
the z direction on two test masses on the z- and y-axis. In the lab frame, one axis
is “stretched”, the other is “squeezed”, producing an effective differential length
change.

change depending on the polarization and orientation relative to the wave. For

two points a distance L apart, the length change AL is
AL =hL (1.3)

where h is the gravitational wave strain. Figure 1.1 shows the differential length
change effect of a gravitational wave with strain 2 ~ 0.5 on two tests masses. This

is the principle upon which gravitational wave detectors are based.

Gravitational waves are produced when any masses accelerate through spacetime,
like in the orbit between two objects. In reality, spacetime is a “stiff” medium, or
gravity is a “weak” force: only the most massive objects in the universe can make
an appreciable dent in spacetime, and only the most massive, most energetic orbits

can create significant gravitational waves.

Gravitational waves spread from their source over all space, losing amplitude in-
versely proportional to their distance from their source. The strongest gravita-
tional waves that reach Earth are all from extremely distant, rare, ultra-powerful

astrophysical collisions.
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For these reasons, the strongest gravitational waves reaching Earth have a strain
on the order of h ~ 1072'. For reference, a human cell is 10™* m, the size of
an atom 107! m, the size of the nucleus of that atom is 10~'° m. Gravitational
waves incident on our L = 4 km long detectors will be hL ~ 107'%. This is why
the sensitivity of the Advanced LIGO detectors to gravitational waves are huge
technological feat of engineering, and the gravitational wave data a valuable new

font of information on the depths of the universe.

1.2 Sources of gravitational waves

Gravitational waves provide a new unique source of information about the darkest,
most massive objects, and most energetic events in the universe. Events normally
inaccessible through light, such as binary black hole mergers, supernovae core

bounce, or the Big Bang, can be directly observed via GWs.

Mergers of black hole and neutron star binaries are some of the most powerful
events in the universe, but are completely invisible to observers on Earth except
through the gravitational wave signature they produce [1, 6, 7]. The detections
of binary black hole mergers are the first direct observational insights into the
physics of massive binary systems. The formation rates of stellar-mass black holes
have been more accurately estimated than ever before, as well as the spin param-

eters of both the inspiraling and final black holes .

Binary neutron stars also offer insight into extreme events of spacetime, including
the influence of matter on GW emission [8-10]. Tidal disruption breaks apart the
neutron star pair prior to merger, causing irregularly in the inspiral and merger
than can provide useful information on the type of matter that makes up a neutron
star. For binary neutron stars, multimessenger astronomy has already begun with
the detection of prompt electromagnetic followup to a GW merger, which proved

GWs travel very near to the speed of light.

Unequal-mass binaries consisting of a neutron star and black hole are also possible,
and candidates have already been detected [11]. These are especially interesting
because of the orbital precession physics possible, the higher-order multipoles of
the GWs detected, and the rates of formation of small black holes and large neutron

stars near the so-called “mass-gap”.

Supernovae are the explosive death of stars about 10x more massive than the
sun, and the birth of neutron stars or black holes, but the mechanism that powers

the explosion is not well-understood. Light from the supernovae comes from the
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exploding surface of the star, but the gravitational waves from the supernovae
would come from the core, and with it valuable information about the formation

of the core and the nature of the explosion.

The stochastic gravitational wave background is the random noise of the universe.
The stochastic background is formed from the sum of all unresolved binary in-
spirals in the distant universe. Cosmic gravitational wave backgrounds have the
potential to provide information directly from the Big Bang, shortly after the era
of inflation when the universe expanded exponentially. The current limit to the di-
rect observations from the early universe come from the cosmic microwave back-
ground, which occurred during a era called recombination when the universe
cooled enough so the first atoms could form, around 370000 years after the Big

Bang.

Some of these phenomena cannot be detected with light, or have questions that
observation via light cannot answer. Gravitational waves offer a new way of ob-
serving the universe, of listening to the universe by measuring spacetime rever-
berating with the echoes of unimaginably powerful events from billions of years

ago.

1.3 Detectors

The future of gravitational wave astronomy and astrophysics relies on the contin-
ued improvement of the sensitivity of gravitational wave detectors. Detector sci-
entists, known as commissioners, at the Advanced LIGO detectors are working to

achieve the maximum sensitivity possible with the current detectors. Figure 1.2 il-

Table 1.1: Signal-to-noise ratio (SNR) the first gravitational wave detection,
GW150914, would have had in current and future GW detectors. Figure 1.2 shows
the current and future noise curves beside the characteristic strain of GW150914.
Future detector noise curves are reported from gwinc [12].

Detector SNR SNR ratio / Observing Run 1
Advanced LIGO Observing Run 1 23 1.0
Advanced LIGO Observing Run 3 34 1.5
Advanced LIGO design 53 24
Advanced LIGO A+ upgrade 101 4.5
LIGO Voyager 250 111
Cosmic Explorer 1 1232 54.5

Cosmic Explorer 2 2273 100.5
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Figure 1.2: Noise curves of current and future gravitational wave detectors, com-
pared with the characteristic strain of the first GW detection, GW150914. The first
GW signal measured is shown as the black curve, while each of the colored noise
curves represent the measured noise of a current detector or projected noise of a
future detector. The lower the noise, the more sensitive the detector is to GWs.
By lowering the noise of the detector, a loud signal like GW150914 can be better
resolved, and more precise information can be learned from the signal. Table 1.1
calculates the signal-to-noise ratio (SNR) that a signal like GW150914 would have
in each detector. Estimated future noise curves from this plot are produced by
pygwinc as of January 2021 [12].

lustrates the projected improvement of sensitivity for ground-based long-baseline

interferometers in the United States.

As sensitivity of detectors is improved, both the rate of detections will increase,
and the signal from current detections will be better resolved. From the increased
number of detections, we can learn about black hole and neutron star astronomy;,

including binary formation rates, and galaxy formation.

From the clearer signals, we can better resolve the physical parameters of the
mergers like the masses, spins, distance, orbital plane inclination, and sky loca-

tion. Also, we can better test general relativity in the most extreme regions of
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spacetime where two black holes are merging into one, where extremely powerful
spacetime curvature itself causes further curvature. Precision measurements of

the Hubble constant are also possible.

With a more sensitive detector, weaker sources of gravitational waves could be
detected, including gravitational waves from a single, rapidly spinning neutron
stars, gravitational waves from exploding supernovae, or the random background
of gravitational waves from binary black holes and neutron stars too far away to

resolve individually.

This thesis will focus on efforts to achieve the sensitivity acquired by Advanced
LIGO for observing run three (O3), with topics in precision calibration of the Ad-
vanced LIGO detectors’ response to gravitational waves, characterization of noise
sources, and new techniques for measurements of fundamental quantities of the

interferometer.



Chapter 2
ADVANCED LIGO DETECTOR DESIGN AND O3 UPGRADES

The design of the Advanced LIGO detectors is the culmination of decades of grav-
itational wave (GW) detector research [13-18]. The Advanced LIGO detector de-
sign was finalized in 2010, with several major upgrades compared to the initial
LIGO design [19, 20]. The biggest upgrades from initial LIGO to advanced LIGO
are the addition of the signal-recycling mirror [21, 22], the introduction of folded
recycling cavities for better laser beam geometry stability [23], a novel seismic iso-
lation and quadruple pendulum suspension for the heavier main optics [24-27],
[33-37],
[38-40],

and the implementation of DC readout [41] and an output mode cleaner [42].

lower optical coatings thermal noise [28-32], higher input laser power

the addition of auxiliary green lasers for achieving detector operation

The success of these upgrades made Advanced LIGO the most sensitive gravita-
tional wave detectors in history [43]. Since then, many upgrades have further

increased the astrophysical range of the instrument [2].

In this chapter we will briefly review the basics of Advanced LIGO gravitational
wave detection, including the fundamentals of GW detection, the detector topol-
ogy, optic design, and seismic isolation. We also review some of the hardware
upgrades implemented between prior to the start of O3 relevant to this thesis, in-

cluding increased laser power, squeezed light injection, and replaced core optics.

2.1 Detector topology

The core of the Advanced LIGO detector is dual-recycled Fabry-Perot Michelson
interferometer. The arms of the interferometer are formed by 4 km long Fabry-
Perot cavities, featuring an input test mass (ITM) and end test mass (ETM). The
power recycling cavity (PRC) is formed between the power recycling mirror (PRM)
and ITMs. The signal recycling cavity (SRC) is formed between the signal recycling
mirror (SRM) and the ITMs. The Michelson is the formed by the beamsplitter
and the ITMs. Figure 2.1 shows the simplified layout of the major interferometer

components.

A gravitational wave incident on the detector interacts primarily with the high

power laser light inside the 4 km long arms. The GW induces a tiny phase shift
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Figure 2.1: Simplified diagram of the optical layout of LIGO Hanford for O3 [2].
The core optics that form the interferometer itself are the end test masses (ETMs),
the input test masses (ITMs), the beamsplitter (BS), the power-recycling mirror
(PRM), and signal-recycling mirror (SRM). The pre-stabilized laser (PSL) injects
laser light with radio-frequency (RF) sidebands at 9 MHz, 45 MHz, and 118 MHz
to be used for sensing length changes inside the interferometer. The photodetec-
tor sensors REFL, POP, AS, and DCPDs detect power fluctuations due to interfero-
metric length changes. The input mode cleaner (IMC) transmits only carrier laser
light and stabilizes the laser frequency to a suspended cavity. The output mode
cleaner (OMC) transmits only light carrying the gravitational wave signal, and re-
flects away all other light. The output Faraday isolator (OFI) keeps light reflected
from the OMC from re-entering the interferometer. The optical parametric oscil-
lator (OPO) injects squeezed quantum vacuum into the antisymmetric port of the
interferometer.

on the laser light as it propagates down the arms. The tiny phase shift is amplified
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by three factors:

1. high input laser power,
2. multiple reflections inside the arms,

3. the length of the arm cavities.

The high input laser power increases the light that is available to be scattered
into the GW signal. The multiple reflections inside the arm cavities increases the
interaction time of the laser with the GW. The length of the arm increases the

effective displacement of the arm length due to GWs (Eq. 1.3).

The X-arm and Y-arm are separate cavities, but the Michelson interferometer spe-
cializes in discriminating between common and differential arm motion (see Sec-
tion B.3). Because the common arm motion (CARM) light is reflected back to
the symmetric port where the laser entered the beamsplitter, and the differen-
tial arm motion (DARM) light is transmitted to the antisymmetric port through
the beamsplitter, CARM and DARM are most natural length degrees of freedom

eigenmodes.

The power recycling mirror increases the effective input power of the laser by
constructively interfering the laser coming back from the beamsplitter with the
new input light. The PRC forms a coupled-cavity with the arms. A coupled-cavity
is two Fabry-Perot cavities in series, where the end mirror of one cavity is the input
mirror for the second. The coupled-cavity formed by the PRC and arms is called
the common-arm length, or CARM cavity. The formation of the CARM coupled-
cavity enables the ultra-stable, high resonating laser power inside the Advanced
LIGO detectors.

The signal recycling mirror broadens the bandwidth of the detector. The SRC
also forms a coupled cavity with the arms, called the differential-arm length, or
DARM. Any differential motion in the arms will scatter some light into the DARM
coupled-cavity, and therefore the SRC. The SRC is tuned to be antiresonant for
the main carrier light, so the GW audio sidebands in the SRC are preferentially
transmitted through the cavity to the GW signal photodetectors. This setup is

known as resonant sideband extraction, and is discussed in detail in Section 3.6.

Advanced LIGO is run in DC readout configuration [20, 41]. DC readout employs

a small intentional differential offset in the arm lengths to provide DC power on
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the DCPDs to beat with the gravitational wave signal. Appendix B derives the

basics of a simple Michelson operating with DC readout.

The input and output mode cleaners (IMC and OMC) are both in place to “clean”
the laser light of higher-order modes, which are different spatial modes of the main
carrier laser beam. The interferometer geometry, i.e. the radii of curvature of the
mirrors and the lengths of the cavities, is designed to contain solely main carrier
light. Higher-order modes are created from imperfections in the geometry, carry
no signal, but contribute noise. A mode cleaner is a cavity designed to transmit
the main carrier laser mode of the interferometer, and reflect all other modes away

from the signal photodetectors.

Finally, the optical parameter oscillator (OPO) is a bowtie cavity designed to gen-
erated squeezed quantum vacuum for injection into the antisymmetric port of the
interferometer [44]. The key component to the OPO is the nonlinear crystal in-
side the cavity converts the green “pump” photons into two entangled infrared
photons. The entangled photons are equivalent to squeezed light. The arrival
times of the entangled photons on the photodetector are correlated, lowering the
variance of the Poissonian process which describes shot noise. The phase of the

squeezed light is controlled such that the quantum shot noise is minimized.

2.2 Gravitational wave signal

The first consideration for detector design is the response to incident gravitational
waves. A passing gravitational wave modulates the spacetime metric between any
two free masses. Gravitational radiation has quadrupole polarization, and can be

broken down into its plus i, and cross i, orthogonal components.

Figure 1.1 shows the “L-shape” Michelson interferometer response to h, GW ra-
diation. A laser is reflected off the test masses to detect their differential motion.

Section B.3.2 derives a simple Michelson’s response to gravitational waves.

The L-shape interferometer is sensitive only to one polarization of GWs, which
we usually define as /. A triangle-shaped set of three interferometers is another
fundamental design that is sensitive to both polarizations i, and h. The triangle-
shaped detector is employed in future detector designs like Einstein Telescope [45]

and space-based interferometers like LISA [46].

The Advanced LIGO detector design is based on the simple Michelson [22, 47].

Both detectors preferentially transmit only differential arm motion, including the
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GW signal, out of the antisymmetric port. Most laser power is reflected by the

interferometer, keeping the antisymmetric port relatively clean.

The GW signal out of the Advanced LIGO interferometer is amplified due to the
high laser power resonating in the Fabry-Perot arms (see Section B.4). The sig-
nal bandwidth is broadened by the placement of the signal recycling mirror. Sec-

tion 2.1 will discuss Advanced LIGO’s topology in more detail.

From our derivation of the simple Michelson response in Section B.3.2, Eq. B.45,

the response of the interferometer to gravitational waves is proportional to

1. the input power P,
2. the laser frequency wy,

3. the arm length L.

Increasing any, naively, will increase the fundamental sensitivity limit of the de-
tector. However, GW signal response is not the only consideration for a sensitive

detector design.

2.3 Noise

The second consideration for detector design is the quantification of noises which
can mask the gravitational wave signal. Fundamental noise sources are those which
define the limits of sensitivity to GWs, based on the detector design. Technical
noise sources are those assumed to be negligible in the detector design, but can be

difficult to mitigate in reality.

2.3.1 Quantum noise
Fluctuations of the vacuum electric field at the interferometer readout port impose
a fundamental limit to the interferometer sensitivity [22, 48-50]. Quantum noise

appears as shot noise and quantum radiation pressure noise.

2.3.1.1 Shot noise

Shot noise arises from Poisson fluctuations in the arrival time of photons at the
interferometer output. The power detected on the photodetector is made up of
a finite number of photons which arrive randomly and independently of one an-

other, leading to a detected white noise proportional to the total power P,. on the
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photodetector:

\/ SP,ShoL‘(f) =V 2h’w0Pdc |:\/VI\‘I/_2:| . (21)

The quantum nature of the shot noise arises from the fact that the power detected
at an audio frequency w is the result of the main electric field carrier frequency
of the laser E beating with electric field fluctuations at an audio frequency away
é(w). Even with a perfectly stable laser Ej, the quantum vacuum fluctuations at

&(w) would produce power fluctuations from the £} é(w) terms.

Shot noise shows up as a sensing noise in all photodetectors in Advanced LIGO,
and dominates the high-frequency region of the DARM spectrum. As the input
power is increased, the DARM signal-to-shot-noise ratio increases o< y/ Pipput-

2.3.1.2 Quantum radiation pressure noise

Quantum radiation pressure noise (QRPN) is displacement noise arising from am-
plitude fluctuations of the electric field in the arms. These amplitude fluctuations
produce a fluctuating momentum on the optics via radiation pressure, inducing

displacement noise.

The amplitude fluctuations are quantum in nature due to the quantum vacuum
at the antisymmetric port of the interferometer beamsplitter [48]. The quantum
vacuum conspires to create anti-correlated intensity fluctuations entering each

arm by interfering with the main laser power.

Intensity fluctuations in the arms would not affect the phase-quadrature interfer-
ometer readout of gravitational waves, except for the coupling of radiation pres-
sure. The intensity fluctuations create a “back-action” force on the mirror, which

is displaced according to the compliance of mirror pendulum.

The coupling of quantum amplitude fluctuations to phase fluctuations K is de-

scribed

KC = 8Pbsw0
 mL2w?(w? + w?)

(2.2)

where Py, is power on the beamsplitter, m is the mirror mass, L is the arm length,
wy is the laser frequency, w, is the arm pole describing the number of reflections

inside the Fabry-Perot cavity, and w is the signal frequency. For a conventional
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interferometer, the displacement due to QRPN can be described [47]

L*hiqr,

V/ Sz,QRPN = 5 K (2.3)

1 32 Pyshwy
= 24
m Lw? \/ w? 4+ w? @4

where hgqy, is the standard quantum limit of conventional interferometer strain

sensitivity.

From Eq. 2.3 we see that as input power P, is increased, QRPN also increases.
ORPN is attenuated by the compliance of the mirror pendulums, and so is more
important at low frequencies. In Advanced LIGO during O3, QRPN never dom-
inates the gravitational-wave spectrum, as angular and length controls noise is

much higher.

2.3.2 Thermal noise

Thermal noise refers to the actual displacement in the mirrors induced by ther-
mal fluctuations in the atoms making up the test mass suspension, substrate, and
optical coating cause displacement noise in DARM [28-30, 51]. Generally thermal
noise increases with mechanical loss or loss angle, as related by the fluctuation-

dissipation theorem [52-54].

The fluctuation-dissipation theorem is a general result showing that thermal fluc-

tuations are equivalent to power dissipated in a mechanical or electrical system.

For some observable g of a system with admittance Y (w) and temperature 7', the

power spectral density S, is

_ 4kpT
w2

Sq(w) [Re[Y (w)]| (2.5)

where w is the frequency and kp is Boltzmann’s constant. Eq. 2.5 may be used to
characterize a wide variety of systems, from Johnson-Nyquist voltage noise in a
resistor [55, 56] to optical coatings Brownian displacement noise on the Advanced
LIGO core optics [51].

If a fluctuation F' = Fj cos(wt) is applied to a lossy oscillating system, the system
coordinate ¢ = ¢g cos(wt + ¢(w)) will respond with a phase lag ¢(w). The coor-
dinate will have some velocity ¢ = ¢osin(wt + ¢(w)). The admittance transfer

function Y (w) can be written in terms of the driven force and coordinate velocity:

Y(w)=—=. (2.6)
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The real part of the admittance is called the conductance, and can be expressed

<FQ> _ 2Wdiss
(F2)  Fg

RelY (w)] = (2.7)
where the extra factor of two comes from the time average of (Fjy cos(wt)?). Eq. 2.7

gives the second expression for the fluctuation-dissipation theorem [31, 51]:

_ 8kpT Wiiss

2 2
w* Iy

Sy(w)

(2.8)

The phase lag ¢(w) is related to the power dissipated per driven oscillation Wi;ss
[54, 57]:

Wdiss = <FQ> (29)
= Fygo{cos(wt) sin(wt + ¢(w)))
= Fyqo(cos(wt)[sin(wt) cos(p(w)) + cos(wt) sin(p(w))])

= 3 Forosin(6(w))

1

Wdiss ~ §F0q0¢<w) (210)

where in the last line we assume ¢(w) < 1. The quality factor () = 1/¢ is another

common measure of the loss in an oscillator.

For LIGO test masses, the fluctuating observable we care about is the optic dis-
placement x. The dominant cause of displacement fluctuations is due to mechan-
ical loss in the optic coatings. For a single coating with thickness d, the dissipated
power and coating displacement noise S, (w) due to thermal fluctuations can be
calculated [31, 58, 59]:

Wdiss - F02(1 +7To’l-1))§_1E'_ 20)d¢w (211)
kgT — d
Se(w) = Sk “;UJQ)S 20) % (2.12)

where o is the coating Poisson ratio, E is the Young’s modulus, w is the beam

radius, and ¢ is the mechanical loss angle of the coating.

Because of the direct dependence of the thermal noise on mechanical loss angle
¢, and the fact that this noise is expected to dominate Advanced LIGO design
sensitivity around 50 Hz, much coatings research and development is put into

designing and measuring low-loss coatings for future detectors. The actual optical
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coatings in LIGO are multilayered, switching between two coatings to achieve both

high reflectivity and low thermal noise [30].

The test mass quadruple suspension system has been designed to limit thermal
noise in the measurement band [27]. The fused silica substrate material is chosen
for low mechanical loss and has a small contribution to the thermal noise. A minor
contribution to the thermal noise is due to the addition of acoustic mode dampers
[60]. The thermal noise contribution from these dampers is estimated to degrade

interferometer sensitivity by less than 1%.

Brownian motion of the optic dielectric coatings is the dominant noise in the Ad-
vanced LIGO design noise budget from 40 to 100 Hz. Advanced LIGO test masses
have titania-doped tantala/silica coatings (TiO5-doped TayO5/Si0Os), with 25% ti-
tania in the tantala layers and varying layer thicknesses to reduce thermal noise
[61, 62]. The coating thermal noise contribution is estimated based on optical mea-
surements of aLIGO end test mass witness samples [32]. The correlated noise mea-
surements in Chapter 5 approach the thermal noise limit as the dominant known
noise source around 200 Hz. The coating thermal noise can be reduced with im-

proved low-loss optical coatings or cryogenic optics [63].

Future detectors’ design curves rely on improved coatings technology for lower
thermal noise. Current research and development is focused on finding and testing
better, lower-loss coatings materials. Cryogenically-cooled detectors, such as the
Japanese detector KAGRA, employ cooled sapphire optics to reduce thermal noise.
Changing the frequency of the laser from 1064 nm to 1550 nm or 2 pm may also

provide paths to lower coatings thermal noise.

2.3.3 Seismic noise

Seismic noise is the displacement of the core optics due to the motion of the Earth.
The vibrations of the Earth are much larger than LIGO optics can tolerate. There-
fore, enormous effort is put into isolating the core optics from the ground vibra-

tions, particularly in the GW sensitive range.

First, the LIGO test masses are suspended from a quadruple stage pendulum chain
[27]. The test masses form the bottom stage of the chain. These pendulums are
suspended from seismic isolation platforms [64] which themselves are supported

by hydraulically actuated pre-isolation structures [65].

This arrangement ensures that the seismic noise contribution at the bottom of the

chain sits far below the DARM noise curve. However this seismic noise contribu-
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tion only accounts for linear coupling to the DARM degree of freedom. Coupling
can become nonlinear when low-frequency motion is large, up-converting into the
gravitational-wave band. There are circuitous paths by which seismic motion can
couple to the interferometer output, such as through angular and length degrees
of freedom, or via scattered light. Earthquakes, high microseism, and windy con-
ditions can confuse isolation systems by tilting building floors near wind-driven
walls, injecting seismic controls motion that can increase scattered light coupling,

cause lock loss, and hinder lock reacquisition.

Improvements to the seismic control scheme granted higher robustness to earth-
quakes in O3, and helped contribute to the highest overall duty cycle the detectors

have had in any observing run [66].

2.3.4 Newtonian noise

Newtonian noise is produced by direct gravitational coupling of test masses to fluc-
tuating mass density fields, such as produced by seismicity and atmospheric pres-
sure fluctuations [67-70]. Newtonian noise, dominated by seismic surface waves
called Rayleigh waves, is predicted to limit the design sensitivity of the Advanced
LIGO detectors from 10 to 20 Hz [71, 72]. Newtonian noise has not been detected
in Advanced LIGO, and is predicted to be below O3 sensitivity levels [73].

2.4 Length sensing and control

In order to achieve sensitivity to gravitational waves, each of the five major length
degrees of freedom the interferometer must be constantly sensed and controlled
[20]. Pound-Drever-Hall (PDH) locking via radio-frequency (RF) laser sensing pro-

vides a robust way resonate laser light inside an optical cavity [74].

PDH locking requires a beatnote between a carrier and sideband which carries the
information about that cavity length. PDH locking provides a strong error signal
when a cavity is near resonance. A control loop is built around a PDH error signal

for each of the degrees of freedom to maintain resonance.

To accomplish this length control of the five degrees of freedom, a double RF mod-
ulation scheme is employed. Two RF sidebands at f; = 9 MHz and f, = 45 MHz
enter the interferometer alongside the carrier. The macroscopic lengths of the
cavities are carefully chosen such that the carrier and RF sidebands are resonant
where they are required, and antiresonant elsewhere to act as references for the

phase changes due to length changes.
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In this section we’ll overview the detector design considerations for the length

sensing and control of Advanced LIGO.

2.4.1 Degrees of freedom

ETMY

ITny

PR3

ETMX

Ls

ik S

PRM PR

SRM

Figure 2.2: Diagram of the Advanced LIGO length degrees of freedom. L, and
L, are the lengths of the arm cavities, equal to ~ 4 km long. [, and [, forms the
inner Michelson. [, includes the entire beam length from PRM to the beamsplitter,
and forms part the PRCL length according to Eq. 2.16. [, includes the entire beam
length from SRM to the beamsplitter, and forms part the SRCL length according

to Eq. 2.17.

There are five main degrees of freedom that must be controlled to allow LIGO to

be sensitive to gravitational waves The five main Advanced LIGO interferometric

length degrees of freedom are

L. =L,—L,
L,+L
L=
+ 2
ZMIC’H:lx_ly
o + 1,
lpror =1, + 5
I, +1
lsrer = s + 5 Y

(2.13)
(2.14)
(2.15)

(2.16)

(2.17)

Figure 2.2 illustrates these degrees of freedom. There are other degrees of freedom
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Arm cavities Power recycling cavity Signal recycling cavity

Carrier resonant resonant antiresonant
9 MHz antiresonant resonant antiresonant
45 MHz | antiresonant resonant resonant

Table 2.1: Resonance conditions of the carrier and RF sidebands, copied from
[76]. No RF sidebands resonate in the arms, since their purpose is to sense length
changes in the corner degrees of freedom PRCL, SRCL, and MICH. The carrier laser
frequency is antiresonant in the SRC to broaden the detector bandwidth, operat-
ing in the resonant sideband extraction scheme (see Section 3.6). 9 MHz resonates
in the PRC and is used to detect PRCL. 45 MHz resonates in both the PRC and
SRC, and is used to detect SRCL and MICH, SRCL in the I-phase and MICH in the
Q-phase (see Table 2.2).

of the interferometer that are unimportant for control, like overall displacement

of the entire interferometer.

2.4.2 Macroscopic cavity lengths

The control scheme revolves around setting up robust PDH error signals for each
of the five degrees of freedom. The designed cavity lengths enables the con-
trol scheme by resonating carrier and sidebands in the correct cavities. A good
overview of this process is presented in [20] for the Advanced LIGO length choices,
and [75] for the Caltech 40m length choices. Table 2.1 overviews where the carrier
and RF sidebands are resonant in Advanced LIGO.

Briefly, the lengths are chosen by first assuming the carrier wy is resonant in the
CARM cavity. Then, the PRC length is chosen such that f; = 9.1 MHz and f> =
45.5 MHz both resonate alongside the carrier:

Ipnor = (n+ 2 )5 (2.18)
PRCL = | T 2 )20, .

where n is an integer. Because f> = 5 f; via phase lock, if f; resonates in a cavity
then so will f5. The factor of 1/2 arises because of the 7 phase flip accrued by the

sidebands upon reflection from the arms.

The SRC length is chosen such that f; resonants but f; does not:
c c

— [ k
2f2’ SRCL 7£ 2f1

where m and k are integers. The factor of 1/2 for the sideband arm cavity reflec-

lsrer =m (2.19)

tion still exists, but because LIGO is running in resonant sideband extraction with
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Degree of freedom  Sensor

CARM REFL 91
DARM DCPDs
PRCL POP 91
SRCL POP 451
MICH POP 45 Q

Table 2.2: Sensors for each length degree of freedom. The DARM degree of free-
dom uses DC readout, whereas all others use PDH locking RF readout. The RF
sensor names come from (1) location, (2) 9 or 45 MHz beatnote, and (3) readout
quadrature. Figure 2.1 shows the location of each sensor.

SRC tuning ¢ = /2, the carrier and sideband phase both accrue an additional
7 /2 one-way phase while traveling in the SRC.

Finally, a Schnupp length asymmetry lschnupp = l» — [, in the inner Michelson is
selected. The Schnupp asymmetry is chosen such that the 45 MHz sideband f5 is
preferentially transmitted into the SRC. It also enables the PDH sensing of MICH
in the Q-phase of 45 MHz sensors.

For Advanced LIGO, the design parameters for the above lengths are [20, 76]

Larm = 3994.5 m (2.20)
lprer = 57.6557 m (2.21)
lsror = 56.0084 m (2.22)

ISechmupp = 0.08 m (2.23)

2.4.3 Length sensors

The length sensors detect power fluctuations which correspond to length changes
in the interferometer. The DARM sensor, the DCPDs, uses DC readout to measure
length changes. All other degrees of freedom use Pound-Drever-Hall locking, or
RF readout, for length control. Table 2.2 overviews which sensors are used to

detect length changes of each degree of freedom for O3.

A PDH signal from the reflection of a cavity is typically sensed in the I-phase, or
cosine quadrature. A PDH signal from a length offset, like with MICH and DARM,
is typically sensed in the Q-phase, or sine quadrature. Chapter 2 of Martynov [77]
and Appendix C of Hall [57] provide good derivations of the heterodyned PDH

signal.

DARM is sensed via homodyne of the GW signal with the DARM DC offset light.
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The power in the antisymmetric port increases quadratically with the DARM off-
set:

AL_ o« P2. (2.24)

The DARM offset is servoed to maintain P,; ~ 20 mA on the DCPDs. This lin-
earizes DARM motion 0 L_ such that

PCLS
oL_

We note here that one cannot improve sensitivity by increasing the DARM offset.

(W) o< Py (2.25)

The signal from Eq. 2.25 does increase linearly with a DARM offset increase, but

the shot noise also increases linearly, as can be seen from Eqgs. 2.1 and 2.24.

CARM is sensed from the beatnote between the carrier, which carries the arm
length information, and the 9 MHz sideband, which acts as a stable reference.
CARM is detected in the REFL port in the I-phase. CARM is technically stabilized
to the coupled-cavity consisting of the PRC and arm cavities, and so is sensitive
to PRCL as well. The CARM loop servos both to zero indiscriminately. See Sec-
tion 2.4.4 for a discussion of CARM and PRCL gain hierarchy.

PRCL is sensed from the beatnote between the 9 MHz sideband, which carries the
PRCL information, and the carrier, which acts as the stable reference. PRCL is
detected in the POP port in the I-phase. As stated before, carrier resonates in the
PRC and does carry PRCL information, but this is already sensed and stabilized by
CARM.

SRCL is sensed from the beatnote between the 45 MHz sideband, which carries
the SRCL information, and the carrier, which acts as the stable reference. SRCL is
detected in the POP port in the I-phase. 45 MHz is the only light that resonates
in the SRC, and so is most sensitive to SRCL motion. However, 45 MHz is also
resonant in the PRC, and carries PRCL information as well. In practice, the PRCL
error signal from the 9 MHz is feedforward to SRCL to cancel the PRCL motion in
the SRCL loop.

MICH is sensed from the beatnote between the 45 MHz sideband, which carries
the MICH information, and the carrier, which acts as the stable reference. MICH
is detected in the POP port in the Q-phase. MICH operates on a perfect dark
fringe for carrier, so there is no linear response of carrier to MICH motion in the
POP port. The Schnupp asymmetry is an effective MICH offset for the 45 MHz

sidebands, however, so 45 MHz signal sidebands do appear in the symmetric port.
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Degree of freedom  Unity gain frequency

CARM 20 kHz
DARM 60 Hz
PRCL 50 Hz
SRCL 25 Hz
MICH 10 Hz

Table 2.3: Bandwidths of the main LIGO length control loops for O3. The unity
gain frequency is the frequency at which the open loop gain magnitude equals one.
These values are approximate, as the true values fluctuate as the thermalization of
the interferometer changes the optical plant.

2.4.4 Gain hierarchy

The gain hierarchy of the length control loops is also important. For example, the
PRCL error signal is made from the 9 MHz beatnote, which senses both CARM
motion and PRCL motion. The CARM response to length changes is far more sen-
sitive than PRCL, which would make sensing low frequency PRCL motion difficult
in principle. The huge CARM control loop gain relative to the PRCL gain stabilizes

carrier to be used as a static reference for the PRCL loop [76, 78].

The control loop gain hierarchy goes CARM, DARM, PRCL, SRCL, and MICH.
Other than the CARM loop, the control bandwidths are kept as low as possible to
avoid injecting excessive length sensing noise while still controlling displacement
noise. Table 2.3 shows the approximate unity gain frequencies of the LIGO control

loops in O3.

2.4.5 Feedforward

Controls noise considerations are an important contribution to the final DARM
noise. The length sensing noise of SRCL and MICH, and to a lesser extent PRCL,
still show up in DARM.

However, these sensing noises are well-monitored via the SRCL, MICH, and PRCL
control signals. The control signals are summed into the DARM control signals
to preemptively cancel their induced noise. This process is known as feedforward
[57, 79].

2.5 Lock acquisition
Lock acquisition is the process of bringing the detector into a regime where maxi-
mum power buildup is achieved in the arm cavities and all interferometer degrees

of freedom are controlled [77, 80]. The locking begins with only 2 W of infrared
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input power.

First, green lasers at each end station are locked to each arm cavity length. Then,
the green transmission beams through each arm are combined with main carrier
light to stabilize the PSL to the common arm cavity length and control the differ-
ential arm length. The common arm length is moved such that the main infrared

laser is antiresonant in the arms to avoid arm flashes during corner locking.

Next, PRCL, SRCL, and MICH are locked to the infrared laser via Pound-Drever-
Hall error signals in the dual-recycled Michelson (DRMI) configuration. This pro-
cess involves waiting for “flashes” of resonance in DRM]I, then quickly triggering
the corner controls. DRMI locking is stochastic, but happens relatively quickly (<
30 seconds) for a well-tuned interferometer settings. The problem is tuning the

interferometer settings, including alignment and triggering, to reliable catch the

lock.

With DRMI locked, all main degrees of freedom are controlled but there is no
infrared light in the arm cavities. To transition to full infrared control, first the
PRCL, SRCL and MICH error signals are transitioned from using the first-order
radio-frequency sidebands to using the third-order sidebands [81]. This is done
because the first-order sideband error signals become zero as the arms are brought

from antiresonance to resonance.

Then, the CARM offset reduction stage begins. The green common arm length is
brought from infrared antiresonance to the side of an CARM infrared fringe. Here,

CARM control is handed off to infrared transmission through the arms.

Next, the infrared light is brought to resonance, where both DARM and CARM are
transferred to PDH error signals. The arm angular controls are engaged, and we
wait a few minutes here to allow convergence of the slow angular control loops
and adjustment of the interferometer to the first stage of thermalization. For the
DC readout scheme, a 10 pm DARM offset is applied to allow some carrier light
to leave the antisymmetric port and act as a local oscillator for light carrying the
gravitational wave signal. The output mode cleaner is locked to this local oscillator
beam, further cleaning the mode of the beam to allow only GW signal light onto
the output photodetectors.

At this stage the entire interferometer is totally “locked”, i.e. it is on resonance and
controlled via the main infrared light. Here, the input power is slowly increased

from 2 W to 35 W, in steps of 5 W, to avoid rapid changes to the angular optical
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plants.

Now the interferometer is locked at high power in the “high-noise” state. Here
the transition to “low-noise” begins. Low-noise angular and length controls are
engaged, feedforward filters are engaged, frequency and intensity noise are sup-
pressed, and squeezed light is injected to achieve maximum sensitivity to gravita-
tional waves. At this point the locking process is complete and the interferometer

is ready for observing,.

The steps taken to acquire lock are done automatically using a state machine called
Guardian [82]. Because the locking sequence is not deterministic and can be hin-
dered by poor environmental conditions, there is some variability of the lock ac-
quisition time. The locking sequence takes approximately 30 minutes in good en-
vironmental conditions and with good initial alignment. Much of this time is used
to allow various slow drift control loops to settle, allow optics to thermalize, and
smoothly and reliably move between different control and actuation configura-

tions.

A “lockloss" occurs when the detector falls out of the sensitive linear regime. Lock-
losses are caused by strong earthquakes, controls and sensor saturations, drifting
misalignment, control loop instabilities, and large glitches of known and unknown
origin. The cause of lock losses are monitored, and if possible mitigated, to im-

prove detector duty cycle.

2.6 03 detector upgrades

This section will discuss the instrument upgrades that facilitated the increase in
sensitivity and duty cycle for O3, focusing on hardware upgrades to the interfer-
ometers. Not all upgrades that were performed will be covered, only those that

are immediately relevant to topics in this thesis. See [2] for a full list of upgrades.

2.6.1 Laser power increase

Increasing the laser power reduces instrument noise at high frequency where the
sensitivity is shot-noise-limited but comes with operational challenges. Hardware
upgrades to the pre-stabilized laser and core optics allowed for an increase in av-
erage circulating power in the arm cavities to 201 kW at LHO and 239 kW at LLO
for O3 (see Table 3.3). The major technical challenges of operating a high-power
interferometer are caused by radiation pressure inducing instabilities in core optic

control and absorption of the test masses.
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The original aLIGO pre-stabilized laser (PSL) design [36] took the output of a
Nd:YAG non-planar ring oscillator (NPRO) operating at 1064 nm and successively
amplified the output to above 150 W. The original amplifier chain consisted of a
35 W solid-state amplifier (“front end") followed by a high-power injection-locked
ring oscillator. In addition to operational challenges, the high-power oscillator
and its high coolant flow produced significant fluctuations of the beam size and

pointing angle [83], and thus was never used during an observing run.

For O3 the high-power oscillator was replaced at both observatories with a smaller
single-pass solid-state amplifier (neoLASE neoVAN-4S) that requires less coolant
flow. The new amplifier produces roughly 70 W of stable output power during the
run. After input optics and mode-cleaning cavities, this provides up to 50 W at the

power-recycling mirror.

The reduced coolant flow and damping and tuning of problematic optic mounts has
reduced the amplitude of angular beam jitter. The higher input power, in addition

to the squeezer (Section 2.6.2), lead to improved sensitivity above 100 Hz.

2.6.2 Squeezer

For O3 an in-vacuum squeezer was installed at each site to inject squeezed vac-
uum into the interferometers and reduce shot noise. A full description of the new
squeezer can be found in [44]. In contrast to previous squeezers for gravitational-
wave detection [84-86], the squeezed vacuum source (an optical parametric oscil-
lator) is placed inside the vacuum envelope on a separate suspended platform [87].
This reduces squeezing ellipse phase noise and backscattered light noise [88]. The

squeezer has been fully integrated into the automated lock acquisition sequence.

Section 2.6.1 discussed increasing the input power to the interferometer, which
increases interferometer sensitivity by enhancing the gravitational-wave signal.
Injecting squeezed vacuum improves the signal-to-noise ratio by directly decreas-
ing sensing noise. For an entirely shot-noise limited detector, ~3 dB of squeezing is
equivalent to doubling the arm cavity power to ~450 kW. With squeezing, the de-
tector sensitivity is brought closer to the Advanced LIGO design sensitivity, which
did not include squeezing but specified 750 kW arm cavity power, three times what
was achieved in O3. The design vs measured quantum noise in O3 (dashed black

line and purple line in Figure 3.1) illustrate the extreme benefit of squeezing.

Above 50 Hz the interferometer sensitivity is increased by 2.0 dB and 2.7 dB at LHO

and LLO, respectively. This provides a 12% and 14% increase in binary neutron star
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inspiral range at each respective site.

Below 50 Hz, injecting frequency-independent squeezed vacuum, as is done dur-
ing O3, increases the quantum radiation pressure noise. The low-frequency noise
at LLO is small enough that this increase in quantum radiation pressure noise
is detrimental to sensitivity and binary neutron star inspiral range. The current
squeezing level at LLO cannot be further increased without causing a reduction
in range [44]. The squeezing angle is set to 7° from the optimal high-frequency
configuration. This increases range by reducing low-frequency radiation pressure
noise at the expense of a 0.5 dB increase in shot noise at high frequencies. This

effect is more fully explored in [89].

Detuning of the signal recycling cavity also produces frequency-dependent squeez-
ing. This effect was used to identify and correct a 2-3 nm detuning in the signal-

recycling cavity length locking point at LLO.

2.6.3 Core optic replacement
Several of the core optics were replaced before O3 to improve detector sensitiv-
ity, stability, and lock acquisition performance. The motivation and performance

benefit of each replacement is presented here.

At both sites the two end test masses were replaced. To improve the lock acquisi-
tion sequence via the auxiliary laser system (ALS), the test mass optical coatings
reflectivity for green (532 nm) laser light were increased. The green arm cavity
finesse increased from 15 to 70 at LHO and to 100 at LLO, providing finer beam
quality for locking ALS. This improves the reliability of the early stages of lock ac-
quisition, where control of each arm length is transitioned from green to infrared

error signals [80].

The primary reason for replacing the end test masses was to reduce the scatter
loss and increase the circulating power. The ~10 ppm reduction in scatter loss
has resulted in improved power-recycling gain at both sites. However when in-
creasing the circulating power in the arm cavities, the power-recycling gain has
not increased as expected due to nonuniform absorption on the optics increasing
scatter losses in the arm cavities. These so-called “point absorbers” stunt the full
capabilities of the interferometer to achieve maximum power, instead absorbing

high amounts of power and distorting the cavity geometry.

The X-arm input test mass at LHO was replaced before O3 following the iden-

tification of a point absorber in the coating. The presence of the point absorber
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limited high-power operation and coupled jitter noise from the pre-stabilized laser
to DARM. The new input test mass shows no significant absorbers. Similar defects

have been found on several other test masses currently installed.

The signal-recycling mirror (SRM) at both sites was replaced. The previous SRM
was an aluminum and fused-silica composite with a 2" diameter optic that allowed
for easy mirror replacement. The composite SRM introduced thermal noise due
to internal modes of the composite system with high mechanical loss. The re-
placement SRM is monolithic fused silica, 150 mm diameter, with no measurable
thermal noise contribution to DARM. To maximize the binary neutron star inspiral
range, the SRM transmission should be reduced with increasing circulating optical
power. For O3, the SRM transmission was reduced from 37% to 32%. The design

SRM transmission is 20%.

The reaction masses, which are suspended in a separate pendulum chain behind
the end test masses, provide high-frequency actuation via the electrostatic drive
[27]. The proximity of the reaction mass to the end test masses can increase the
damping noise due to residual gas bouncing between the test mass and reaction
mass. This noise is known as squeezed film damping [90]. Before O3 the reaction
masses were replaced with annular reaction masses with cored out centers that
retained the original electrode pattern. These annular end reaction masses are
expected to have reduced the squeezed film damping noise by a factor of 2.5 below
100 Hz [91].
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Chapter 3

SENSITIVITY OF THE ADVANCED LIGO INTERFEROMETERS
DURING OBSERVING RUN THREE

In this chapter, we will review the sensitivity achieved by the Advanced LIGO
Hanford detector during observing run three (O3). First we overview the overall
noise performance of the detector. Then we will dive into the technical details
of projects the author was focused on, including novel arm power measurement
techniques, frequency stabilization improvements and noise budget, intensity sta-
bilization noise budget, auxiliary length control improvements and noise charac-
terization, and feedforward transfer functions from corner degrees of freedom to
DARM.

Part of the above is covered in the O3 commissioning paper [2]. Chapter 5 covers

related content on the correlated noise measurement.

3.1 O3 overview

3.1.1 Advanced LIGO noise budget

The LIGO detectors are sensitive to gravitational waves via the differential arm
(DARM) motion they induce in the interferometer. The sensitivity of a detector is
limited by the collection of noises coupled to the gravitational-wave readout. The
detector noise is low enough to detect GWs across a broad frequency band from
20 Hz to 5 kHz. To improve the sensitivity of a detector, a source of noise or noise
coupling must be identified and mitigated. The noise budget is a tool used in this

process.

Figure 3.1 shows the LIGO Hanford DARM noise budget for O3. The main mea-
sured DARM noise is the blue trace on Figure 3.1. This represents the achieved
sensitivity of the detector to gravitational waves. The noise budget collects all
known and quantified noise terms onto a single plot. Also included are the DARM
noise for O1 and 02, and the Advanced LIGO design sensitivity representing the

ultimate sensitivity possible.

There are two overall types of known noises. The first are fundamental noise
sources. Fundamental noises are the known expected limits of the performance

of an interferometer designed like Advanced LIGO. These include noises such as
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Figure 3.1: Differential arm noise budget for LIGO Hanford in O3 [2]. Also included
are the instrument noise floors for previous observing runs, as originally presented
in [43] and [92], and the Advanced LIGO design sensitivity [20].

quantum noise, thermal noise, seismic noise, newtonian noise, and residual gas
noise. Fundamental noise contribution to DARM are estimated, but typically do
not have an independent sensor other than DARM itself. Fundamental noises are
plotted as straight lines in Figure 3.1. The sum of fundamental noises is the Ad-

vanced LIGO design sensitivity, plotted as the dashed black line in Figure 3.1.

The other type of known noise is technical noise. Technical noises are the known,
measured limits to DARM from auxiliary aspects of the interferometer These in-
clude noises such as length control, angular control, beam jitter, scattered light,
laser intensity, laser frequency, photodetector dark noise, and coil driver actuator
noise. Technical noise contribution to DARM can be directly estimated by in-
jecting excess noise, measuring the coupling transfer function, and projecting the
usual auxiliary noise into DARM. Technical noises should not in principle limit the
sensitivity of the detector, but for practical purposes cannot be lowered without

additional research. Technical noises are plotted as dots lines in Figure 3.1.

There are some known-unknown noises. These noises often are hard to quantify
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due to the lack of a independent sensor. Some examples include excess scattered
light, higher-order-mode light co-propagating with DARM light, radio-frequency
sideband amplitude and phase noise, nonlinear up-conversion from large seismic
or angular motion at low frequencies, and charge noise from excess charge on the
test masses. Some only periodically appear making projections into DARM even
more difficult. Such known-unknown noises are hard to quantify for all times, but
are independently checked and mitigated if some excess noise appears in DARM
without explanation. Examples of known-unknown noise mitigation are the dis-
charging of the Hanford test masses after a strong nearby earthquake, and the
thermal compensation system heating important optics to minimize higher-order-

mode content in the interferometer.

Finally, there are some unknown-unknown noises, or “mystery” noise. Mystery
noise represents the noise we don’t understand that limits DARM. At Hanford
around 40 Hz on Figure 3.1 there is a gap between the measured DARM noise in
blue and the expected DARM noise in black. This gap represents most of the sen-
sitivity difference between Hanford and Livingston detectors, seen in Figures 3.2
and 3.3. Livingston enjoys lower controls noise at low frequency, higher circulat-
ing power, and better observed squeezing, but also observes some mystery noise.
Identifying and mitigating mystery noise remains the most important long term

task of commissioners.

For Hanford in O3, DARM is largely limited by fundamental quantum shot noise
in the 100 Hz to 5 kHz region. Below 30 Hz, the angular controls noise dominates
DARM, followed closely by auxiliary length control. The most dramatic improve-
ments made for O3 are due to the injection of squeezed light into the antisymmetric
port and the increase of resonating laser power inside the interferometer, both of
which lower the quantum shot noise and improve the high-frequency sensitivity

to the level seen in Figure 3.1.

Other artifacts include strong lines at various frequencies [93]. The 60 Hz line
and harmonics comes from mains power. The 500 Hz line and its harmonics are a
combination of all main optic suspension violin modes. The 20 Hz set of lines are
alignment dither lines used to hold the beam spots on the optics steady. At 15 Hz,
410 Hz, and 1084 Hz, calibration lines are injected to continuously measure the
detector response [94]. Offline subtraction of some of the known lines and noise

in DARM help improve offline data analysis [92].

This thesis will focus on the frequency noise (Section 3.4) and intensity noise con-
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tribution to DARM (Section 3.5).

3.1.2 Astrophysical range

A useful metric for understanding the sensitivity of a detector is the binary neu-
tron star inspiral range, or simply range. The range reported is the luminosity dis-
tance at which a detector is sensitive to an angle-averaged merger of two 1.4 M,
neutron stars for a canonical SNR of 8 [95-97]. The angle average is over the
orientation of binary systems and position relative to the detector antenna pat-
terns. The range does not represent a strict maximum distance at which a binary
neutron star merger can produce a significant signal. The LIGO Livingston Obser-
vatory (LLO) has achieved a binary neutron star range of around 134 Mpc, while
the LIGO Hanford Observatory (LHO) has achieved a range of around 111 Mpc.
The detector sensitivity to heavier binary black holes extends much further than

binary neutron stars.

The range is calculated every minute from the online calibrated strain power spec-
tral density. Figure 3.2 shows the range of each observatory during O3. Figure 3.3

shows two histograms of the binary neutron star range during O3.

3.1.3 Duty cycle

During O3 both detectors were operational a greater percentage of the time com-
pared to the past two observing runs, with LHO and LLO achieving observation
duty cycles of 74.6% and 77.0%, respectively, with coincident observation 62.2% of
the time. Time not observing is spent either acquiring lock, unlocked and under-
going maintenance, unlocked due to unfavorable environmental conditions (earth-
quakes, wind, storms), or locked and in a state of commissioning, where improve-

ments are made to the detectors.

“Locking” the detector is the process of achieving laser resonance in every part
of the interferometer simultaneously, so the detector is sensitive to gravitational
waves. The locking process is automated via Guardian, a state machine whose
states are programmed by detector scientists to transfer the interferometer from
down to sensitive to GWs [82]. While some states of lock acquisition are faster,
the overall the lock acquisition time has not changed significantly from run to run.
The rate-limiting steps to lock acquisition are the slow power-up to accommodate
thermal changes to the interferometer geometry, and the dual-recycled Michelson

lock acquisition time.
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Figure 3.2: Binary neutron star inspiral range of the Hanford and Livingston detec-
tors during O3 [2]. The break in the horizontal axis corresponds to the month-long
observing break in October 2019. Brief but significant drops in the range at both
sites are caused by instrumental glitches of unknown origin.

Once lock is acquired, the detectors in O3 are more likely to remain locked that
in previous observing runs due to improvements in the seismic isolation system,
earthquake warnings, and robust detector controls. Table 3.1 quantifies the im-
provement in average and median lock length and duty cycle over the different

observing runs.

Figure 3.4 shows the integrated time-volume sensitivity to binary neutron stars
for both sites over the three observing runs. The increase in sensitivity combined
with the higher duty factor have resulted in a dramatic increase in the observed
time-volume integral, and a roughly proportional increase in gravitational-wave
event candidates [98, 99].

3.1.4 Table of O3 Parameters
The remaining sections in this chapter will overview topics in commissioning the

Hanford detector undertaken with the goal of understanding and improving the
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Figure 3.3: Binary neutron star inspiral range histogram of the Hanford and
Livingston detectors during O3 [2]. Large brief glitches report a low detector
range, skewing the distribution lower. Livingston also experienced daily scattering
shelves due to anthropogenic noise, further skewing their range.

detector performance.



Observatory 01 02 O03a O3b
LHO

Mean (hr) 9.8 94 124 149
Median (hr) 7.2 47 88 8.9
Duty cycle (%) | 62.6 70.6 71.2 78.8
LLO

Mean (hr) 57 5.5 102 145
Median (hr) 19 29 65 93
Duty cycle (%) | 55.3 65.8 75.7 78.6
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Table 3.1: Mean and median times of low-noise lock segments for each observing
run and overall observing run duty factor. Large glitches or unfavorable weather
and seismic conditions can knock the interferometers out of lock, reducing the
total observing time. In addition to improved sensitivity, both detectors have im-
proved resistance to large disturbances.

s | H O
0.0101 LLO

01

e
o
S
o7

=]
()
o
=

Cumulative time-volume [Gpc? yr]

0.0021

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0.006 ;
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

O.OOOO 50

40 60

80 100

Scheduled time observing since beginning of O1 [weeks]

Figure 3.4: Integrated observation time-volume sensitivity over all three observing
runs [2]. The observed volume is a sphere with radius equal to the binary neutron
star range. The observed time is when the detector was locked and sensitive to
gravitational waves. The sharp increase in integrated time-volume is due to the
much greater sensitive volume during O3 relative to O1 and O2.
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Parameter Symbol LHO Value LLO Value Units
Squeezing Levels dBsqz 2.0 2.7 dB
1st Modulation Sideband Frequency fo 9.100230 9.099055  MHz
2nd Modulation Sideband Frequency fas 45.501150  45.496925 MHz
3rd Modulation Sideband Frequency fi1s 118.302990 118.287715 MHz
1st Modulation Depth [y 0.135 0.14 rads
2nd Modulation Depth [y5 0.177 0.16 rads
3rd Modulation Depth '8 0.012 0.019 rads
ETMX Transmission TETMX 3.9 4.0 ppm
ETMY Transmission TeTMmy 3.8 3.9 ppm
ITMX Transmission TrTmx 1.50 1.48 %
ITMY Transmission Titmy 1.42 1.48 %
PRM Transmission TrrM 3.1 3.1 %
SRM Transmission Tsrwm 32.34 32.40 %
Arm Length L 3994.5 3994.5 m
Power-Recycling Cavity Length lp 57.7 57.7 m
Signal-Recycling Cavity Length ls 56.0 56.0 m
Schnupp Asymmetry lschnupp = lx — Iy 0.08 0.08 m
Arm Free Spectral Range frsr 37.5 37.5 kHz
X Arm Cavity Pole fx 45.1 44.5 Hz
Y Arm Cavity Pole fy 42.7 44.5 Hz
CARM Cavity Pole fearMm 0.6 0.4 Hz
DARM Cavity Pole foArRM 411 455 Hz
X Arm Finesse Fx 415.6 421.3 -
Y Arm Finesse Fy 439.2 421.3 -
ETMX Green Transmission Tirnix 7.9 4.8 %
ETMY Green Transmission Ty 7.9 5.0 %
ITMX Green Transmission T ix 0.96 0.95 %
ITMY Green Transmission Ty 1.10 1.11 %
X Arm Green Cavity Pole 12 274.6 175.4 Hz
Y Arm Green Cavity Pole 15 278.8 186.5 Hz
Input Mode Cleaner Modulation Frequency foa 24.1 241 MHz
Input Mode Cleaner Modulation Depth Doy 13 16 mrads
Input Mode Cleaner Round Trip Length Lyvic 32.9434 32.9465 m
Input Mode Cleaner Cavity Pole fime 8625.2 8919.4 Hz
Input Mode Cleaner Finesse Fvc 527.5 510.1 -

Table 3.2: Summary optical and physical parameters of the Advanced LIGO in-
terferometers during O3. Measured O3 arm powers and power recycling gain are

reported in Table 3.3.
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3.2 Arm power measurement

The circulating laser power in the arm cavities governs the optical gain of the
interferometer response to gravitational-wave signals. The arm power is difficult
to estimate precisely due to large uncertainty in the power on the beamsplitter
and optical gain of the arm cavities. Uncertainties are dominated by photodetector

calibration and varying interferometer optical losses.

The arm powers in a power-recycled interferometer with a 50:50 beamsplitter
should follow

1
Parm = EHnggggrmv (3-1)

where P, is the power in an arm, P, is the input power, gg is the power-recycling

gain, and g2 is the arm power gain.

The input power P, is the power incident on the power-recycling mirror, and is
estimated from a pick-off just before entering the interferometer. The power on
the beamsplitter P is estimated directly from a pick-off of the power-recycling
cavity. The power-recycling gain is estimated from the ratio of the power incident
on the beamsplitter over the input power: gg = B,s/ P, Finally, the arm power
gain g2, is estimated from the input and end mirror transmissions, as well as the

round-trip loss.

Photodetector power uncertainty originates from uncertainty in calibration, losses
along beam path combined with beam size mismatch and misalignment. We have
assumed a total uncertainty of 5% in power estimated from pick-off photodetectors,
P, and Py,. The arm gain g2, at Livingston is assumed to be 265 with uncertainty
of 5%. The Hanford X-arm gain is 262, while the Y-arm gain is 276; the 5% gain
difference is due to the slightly different transmissions of the input test masses at

Hanford. Results are shown in Table 3.3.

A new technique to measure the arm powers using radiation pressure was devel-
oped prior to O3 [100]. The length of the signal-recycling cavity (SRCL) is modu-
lated, creating audio sidebands on the carrier laser in the signal-recycling cavity.
The audio sidebands enter the arm cavities producing a light power modulation
that has opposite sign in each arm cavity, causing a strong signal to appear in

DARM via radiation pressure.

The following subsections will overview the fundamental physics of the measure-

ment, the details of the method, and the measurement results.

3.2.1 Fundamentals
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Figure 3.5: Diagram of the signal-recycling cavity length dither to arm power mea-
surement. The SRCL length dither Al; modulates the light returning to the arms
E, +é, creating a differential arm power modulation due to the phase flip from
the beamsplitter reflection.
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Here we overview how the SRC length dither causes strong differential power
fluctuations in the arms [101]. The measurement technique in subsection 3.2.2
depends on this fundamental physics. Figure 3.5 highlights the important aspects

of the measurement.

First, we review the Advanced LIGO interferometer configuration in DC readout.
The arms are offset from exact resonance by around ALpc ~ 10 pm. This leaks
a small amount of carrier light out of the arms, out the antisymmetric port of
the beamsplitter into the signal-recycling cavity. This DARM offset light is in the
phase-quadrature (see Appendix B).

Some carrier light is reflected off the SRM back toward the beamsplitter. The main

carrier light returning to the beamsplitter E, is still in the phase quadrature.

Now, we introduce the SRCL audio sideband dither Al,(w) which phase-modulates

the carrier E,. This creates the audio sidebands €, in the amplitude quadrature.

The modulated light from the SRM E, + &, returns the beamsplitter, where half
is transmitted and half is reflected with phase flip. The phase flip is key to this

measurement, as it causes the differential arm power modulation: €;, = —¢;,.

The SRC light combines with the input light E}, which is also in the amplitude
quadrature, and together enter and are enhanced by the arms. The arm power fluc-
tuations are differential, P, = —0P,, which causes a differential length change
due to radiation pressure. Figure 3.6 shows the phasors of the light in the SRC and

the arms.

The next subsection covers how the arm power can be inferred from this process.

3.2.2 Arm power inference technique

Using radiation pressure coupling to DARM, we can extract the power in the arms
by dithering SRCL. This is an overview of the coupling mechanism, reported in
[100] and inspired by [101].

3.2.2.1 Definitions

From [101], Equation (14) and (15) report the X-arm power response to a SRCL
length dither:

8g2rr! ek
t2(1 4+ Spse)
=P, (33)

—(f) =

l P, (3.2)
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Figure 3.6: Phasors of the signal-recycling cavity length dither to arm power mea-
surement for light in the SRC (top) and the arms (bottom). The top phasor shows
the SRCL length dither Al; modulates the phase-quadrature carrier light E,, cre-
ating the audio sidebands €, in the amplitude quadrature. The bottom left phasor
is the light in the X-arm, and the bottom right phasor is the light in Y-arm. Due to
the phase flip from the reflection off the back of the beamsplitter —r,, the same
audio sidebands in each arm ¢&,, €, has a different sign. The sidebands modulate

the main carrier in the amplitude quadrature Es.

where P, is the power in the X arm, [, is the signal recycling cavity length, f =
w/(2m) is the audio signal frequency in Hz, g is the amplitude signal recycling
cavity gain, 7, is the SRM amplitude reflectivity, 7/, is the arm reflectivity derivative
with respect to phase, € = kLt is the DARM offset phase in radians, k is the
laser wavenumber, ¢, is the SRM amplitude transmission, and $,5. = iw/wyse is

the resonant signal extraction (rse) DARM cavity pole.

For this measurement, we gather the optical response of the SRCL dither into a

factor v which has units m~!. The power in the Y-arm is the same except for an
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overall sign flip:

P, 8g2ryr! ek
() T (3.4)
= —vP, (3.5)
Compliance of the SRM suspension:
ls 1
s - — 3.6
E = (5:6)

the compliance of the SRM, where F7 is the force applied to the SRM and m is the
SRM mass.

SRCL control signal calibration:

F N
il = [ — 3.7
=53] (3.)
where c;, is the SRCL control signal in counts and /3 is some calibration constant

in [N/cts].

Transmitted power:

Ptxa
P, (f) = Teara (3.8)

where P, is the transmitted power through the X arm falling on the TRX_A pho-

todiode, T, is the power transmission through ETMX, and 7,,, is the loss/respon-
se/calibration error of the TRX_A photodetector. Each of the four photodetectors
(TRX_A, TRX_B, TRY_A, TRY_B) will have slightly different losses (134, 7zb> 7yas
nyb)'

Finally, we have relative intensity:

RIN(f) = P) (3.9)

P

where P is the average power.

3.2.2.2 Constructing the SRCL control to transmitted arm power TFs

We measure the transfer functions from the SRCL control signal c,( f) to the end

station transmitted power P;.q, Py

Ptxl FS ls Px Ptxl
- (f)zc—s(f)xfs(f)xz(f)x 2} (f) (3.10)
= 6 X _LQ X ,}/PJ) X Te:vn:vl (311)
mw
_ _B")/Te:cn:ca Pm (312)

mw?
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We may divide by the average power on the photodetector to get the RIN TF and
eliminate dependence on the photodetector calibration, ETM transmission, and

arm power:

(f) = =— (3.13)

This does not help for losses which are different between DC and AC signals e.g.
photodetector saturation.
3.2.2.3 Radiation pressure coupling to DARM

From Egs. 3.2 and 3.4 we see the arm power change from the SRCL dither is dif-
ferential. The change in arm power will change the radiation pressure force, and

arm lengths.

DARM:
Lparm = Ly — Ly (3.14)

where L, and L, are the X and Y arm lengths.

Radiation pressure force:

Fi(f) = (3.15)

where F;(f) is the force on a single optic, and P(f) is the power in the arm.

Quadruple pendulum compliance (force to length):

R
Muw?

Li(f) = (3.16)

where L;(f) is the displacement of a single optic, and M is the mass of the final
stage of the quadruple pendulum.

Combining Egs. 3.15 and 3.16, and multiplying by two for both the ETM and ITM:

L.(f) = —A;\?CCEU];) (3.17)
Ly(f) = _4AL) (3.18)

M cw?
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Now we find the SRCL to DARM radiation pressure coupling, we combine Egs. 3.2,
3.4,3.17, and 3.18:

LDARM 87Parm

= — 3.19

s (f) M cw? (3.19)
where F,,,, is the static average power in each arm.

Multiplying by the SRM compliance and control signal calibration Eqs. 3.6 and 3.7:

Lparm o 8087 Parm
Cs (F) = Mmew* (3:20)

3.2.2.4 Inferring the arm power

The arm power is inferred by taking the transfer function from the transmitted
arm RIN to DARM while injecting a strong SRCL dither. Combining Eqs. 3.13 and
3.20:

Lparm (f) B 86 Purm

Cs _ Mmecw*
RN .~ b7 (3:21)
. (f) o
LDARM 2Pa7‘m
RINyo ) = Nen 2 -2
Lparm o
= —. 3.23

where a = 2P,,,,/Mcm? is some constant fitting parameter. Solving for the static

arm power F,,.,:

1
P = §a7T2M c (3.24)
This is the most precise arm power measurement yet devised. Most complexities

divide out of this measurement. The uncertainties on input measurement and

losses from Eq. 3.1 are avoided.

The uncertainty in the arm power F,,,,, depends entirely on the uncertainty in «,
plus the systematics of the measurement itself like biasing from saturated pho-
todetectors, or slow drift of the arm power itself as the interferometer thermalizes
during the measurement. The mass of the quadruple pendulum M = 40 kg is
known to very good precision. This technique also takes advantage of the highly

accurate DARM calibration, which is good to ~ 2%.
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3.2.3 Measurement Details

Here we list some practical considerations for the arm power measurement.

1. Turn off the SRCL to DARM feedforward before measuring. Feedforward is

designed to cancel exactly this kind of radiation pressure signal.

2. Make sure the beams are well-aligned on the transmission quadrant pho-
todetectors. The transmission platforms are known to drift significantly,
saturating one of the photodetector quadrants. When a photodetector quad-
rant is saturated, the AC response is suppressed, causing an overestimate of
the arm power. A good indicator of this issue is when the SRCL line shows
up strongly in DARM, but you struggle to maintain coherence on the trans-

fer function.

3. Take the measurement a least an hour after the interferometer has locked at
full power. The arm power tends to slowly drift after locking from thermal-

ization and spot position changes.

4. Measure in the frequency region where the SRCL to DARM coupling is
radiation-pressure dominated, but high enough such that the free mass pen-
dula compliance approximation is valid. Between 10 to 100 Hz is usually

sufficient.

5. Avoid measuring on the calibration lines, the alignment-dither lines, and the

mains 60 Hz line.

6. When fitting the arm RIN to DARM transfer function, first flatten the TF by
multiplying by f2. This will improve uncertainty and avoid biasing. Typi-

cally, measurement systematics will far outweigh fit uncertainty.

3.2.4 Results

Figure 3.7 plots the arm RIN to DARM transfer functions from Eq. 3.21. The trans-
fer function is “flattened” by multiplying by f?, then fit to the high-coherence
points in the radiation pressure regime. Table 3.3 reports the measured arm pow-
ers during O3. Measurements derived from signal-recycling cavity length modula-
tion are consistent and more precise compared with measurements inferred from

the input power and test mass reflectivity:.

The arm powers at Hanford are significantly lopsided: there is a measured 6.7%

difference in the arm powers. This was because the two input test masses installed
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Figure 3.7: Arm power measurements at Hanford via the arm RIN to DARM trans-
fer functions (Eq. 3.21). The magnitude falls like 1/f?, as predicted for a radiation
pressure regime. Table 3.3 lists the results from this measurement.

at Hanford were not “twins”, i.e. they were not made at the same time. ITMX was
replaced because of a very large point absorber detected during O2. The new ITMX
has a transmission of 1.5%, whereas ITMY has a transmission of 1.42%. This yields
an X-arm finesse F, = 416 and a Y-arm finesse F,, = 439, or an 5.6% difference.
This difference in ITM transmission also affected the frequency noise coupling to
DARM, see Section 3.4.5.



45

Power Symbol ~ LHO LLO Units
Input R 34 £2 38 £ 2 W
Power-Recycling Gain 9; 44+3  47+3 W/W
X-arm via Eq. 3.1 P, 190 £ 14 240 +18 kW
X-arm via Eq. 3.24 P, 194+2 232+£15 kW
Y-arm via Eq. 3.1 P, 200 =15 240+ 18 kW
Y-arm via Eq. 3.24 P, 207+2 245+5 kW

Table 3.3: Highest measured laser power levels during O3. Input power is esti-
mated via a pick-off from the light incident on the power-recycling mirror. Power-
recycling gain is estimated from the pick-off of the power-recycling cavity, using
a ratio of power on the beamsplitter and input power. Arm powers are estimated
in two ways. The first method is via input power and gain estimates, Eq. 3.1.
Arm power uncertainties for Eq. 3.1 are propagated from uncertainty in the in-
put power, power-recycling gain, and loss in the arms. The second method is via
radiation-pressure relative intensity noise to DARM transfer function, Eq. 3.24.
Arm power uncertainties for Eq. 3.24 are derived from the coherence of the mea-
sured transfer function. Typical arm power levels at LLO were about 5% lower
over the course of the run.

3.3 Auxiliary length control improvements

The auxiliary length sensing and control (ALS) is integral to the rapid locking
of Advanced LIGO [40, 80]. ALS employs two green lasers at each end station,
injected onto the back of the ETMs.

Originally, the locking scheme for Advanced LIGO was supposed to hand off laser
frequency control from ALS COMM directly to CARM. However, the noise of the
as-built ALS system was far larger than requirements largely due to an error in
the ETM coatings green transmission. This prevented direct handoff from ALS
COMM to CARM, since the ALS COMM noise far exceeded the CARM linewidth
of ~ 1 Hz.

The ETM green coatings were fixed on replacement ETMs installed prior to O3.
This section overviews the ALS control scheme and the method used to check the
performance of the ALS COMM system.

3.3.1 ALS control scheme

The auxiliary length sensing and control (ALS) is integral to the rapid locking
of Advanced LIGO [40, 80]. ALS employs two green lasers at each end station,
injected onto the back of the ETMs. Each laser is phase-locked to the main pre-
stabilized laser (PSL) via two pick-off fibers running from the PSL to each end-
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Figure 3.8: Simplified auxiliary length sensing control scheme. The X-arm ALS
controls are highlighted here, but the Y-arm employs the same control scheme. The
dual-color end-station laser on the right emits both 1064 nm (infrared) and 532 nm
(green) light. The green light is locked to the arm cavity, and the transmitted beams
are mixed together. The mixed beams beatnotes are sensed and used to control
the PSL frequency (ALS COMM) and differential arm length (ALS DIFF). The ALS
COMM and DIFF phase-locked loops and VCOs for control are not shown here.

station. Then, each green laser is PDH-locked to its arm cavity.

The green beams transmitted through both arms are routed to an in-air optical
table. There, the beams from each arm are combined to form the ALS DIFF signal.
The green beam from the X-arm is combined with green PSL light to form the ALS
COMM signal.

The ALS COMM signal detects frequency fluctuations between the PSL and the
green X-arm. The green X-arm PDH signal follows the arm length, while the PSL
is stabilized to the IMC at this point. We lock the PSL to the ALS COMM error
signal so the PSL frequency follows the green X-arm length. ALS COMM has a
unity gain frequency of around 650 Hz [102].

Then a large ~ 1 kHz offset is placed on the PSL light, so the infrared does not yet
resonate in the arms. This is done so the dual-recycled Michelson can be locked
without “arm flashes”, i.e. moments of spurious resonance in the arms which spoil
the PRCL, SRCL, and MICH error signals.
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The ALS DIFF signal yields information on the differential arm length. This is fed

back to one of the ETM suspensions, actuating on the differential arm length itself.

3.3.2 ALS upgrades for O3
Prior O3, the ETMs were replaced to lower scatter losses for infrared. Another

improvement of the new ETMs a dramatically increased green reflectivity.

The old ETMs at Hanford had green transmission of 37% for ETMX and 32% for
ETMY [103]. The new ETMs both have green transmission of 7.9%. ITMX was also

replaced at Hanford, its green transmission went from 1.1% to 0.96%.

The new core optics affected the ALS cavity parameters: the green cavity finesse

increased from 15 to 70, green arm poles decreased from 1.3 kHz to 280 Hz.

The core optics coatings upgrades make the green PDH lock more stable, partic-
ularly avoiding mode hopping. They also improve the noise performance of the

ALS controls by improving the green PDH noise.

Additionally, major efforts to improve the acoustic noise coupling in the PSL have
been undertaken. The benefits of this work can be seen in the lowered peaks

apparent in Figure 3.10.

3.3.3 ALS COMM frequency noise measurement

To measure the improvements to the green ALS system, the infrared (IR) light
reflected off the X-arm is used as an out-of-loop witness of ALS COMM frequency
noise [104-106]. We take advantage of the fact the IR light is stabilized to the X-
arm length via the green PDH, the arm cavity is a high-quality cavity, and the RF

sidebands and RFPD are already set up for low-noise frequency discrimination.

The procedure for the ALS COMM frequency noise measurement is as follows:

1. Lock the IMC and X-end phase-locked loop.

2. Misalign the Y-arm, beamsplitter, and PRM.

3. Lock the X-arm green PDH signal.

4. Align the cavity for maximum green circulating power.
5. Separately lock the IR light to the X-arm.

6. Align the input optics for maximum IR in the X-arm.
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7. Break the IR lock.

8. Lock ALS COMM.
9. Use ALS COMM phase-locked loop offset to find an IR X-arm peak.

10. Sweep the COMM offset over the fringe to calibrate your out-of-loop IR
RFPD response.

11. Return to the IR fringe and take a spectrum of the out-of-loop IR RFPD.

The PSL frequency offset from IR resonance in the X-arm is set to be off-resonance
by ~ 300 Hz, then moved slowly over the resonance peak. The out-of-loop sen-
sor used in this experiment is REFL A 91. The calibration procedure relies on our
knowledge of PDH error signals. We write the PDH error signal for a simple Fabry-
Perot cavity, V7,

V(f) =2nG(E Eq — EE*_,) (3.25)

where 7 is all the optical losses, and G4 is the gain of the RF photodetector in V/W.
We write the reflection of the carrier £y, F, and 9 MHz sidebands Eq, E_q_,, like

_if/k
1+if/fp 2

(3.26)

r I
EO = TOEina Ew = (TO )Eina EQ = Z-TﬂgEina Efow = Z.7479_E’in

where f is the incident carrier laser frequency, f, is the arm pole, f, is the arm
zero Iy, is the input field, and ry, rq, r_q are the arm reflectivities for the carrier
and sidebands. Since carrier is on resonance but the sidebands are off-resonance,

we can write these as

Tt e ro=r_g=—1 ¢ (3.27)

To =
1—rr.’ 14+ 7.

where 7; is the ITMX reflectivity and 7. is the ETMX reflectivity.

The audio reflection zero f, is merely a scale factor for the zero at DC. It scales the
reflected carrier light offset from resonance by a frequency such that the reflected
light beyond the cavity pole is near one. The arm pole f, is derived in Appendix B
Section B.4:

FSR 1
fp = log(

2 TiTe

£ = FSR c(1 —rire)?

= = 3.28
2rry  AnL(1 —rd)r.’ ) (3.28)
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Figure 3.9: Pound-Drever-Hall infrared error signal sweep of the REFL A 9I pho-
todetector while ALS COMM is locked. The slight deviation of the measurement
from the model is likely due to the drift of the arm cavity during the sweep time.
The model of the PDH is Eq. 3.30, and the slope is from Eq. 3.31.

The signal from Eq. 3.25 is in the I-phase. We substitute Egs. 3.26 into Eq. 3.25 and
take the real part to the RFPD I-phase response:

ZiTofpfz + f(fp - 2T0fz)
(fp - Zf)fz

Vi(f) = R(V(f)) = =nGparal P

V(f) = _nGpdTQFPin

(3.29)

f
1+ f2/f2

For small f < f,, ie. close to resonance, the slope of V;(f) defines the PDH

(3.30)

discriminant in V/Hz:

~ _nGpdTQFPin

Vi(f) 7.

(3.31)

Figure 3.9 shows the measured REFL A 9 response to our frequency sweep, along-
side the model PDH signal Eq. 3.30 and PDH discriminant Eq. 3.31.

To calibrate the error signal to the arm pole, the peak-to-peak response to the

sweep is measured. Eq. 3.30 gives a peak response at f = +£f,,, with value V7, =
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Figure 3.10: ALS COMM out-of-loop error signal, plus cumulative RMS between
0.01 and 1000 Hz. The out-of-loop sensor used is REFL A 91, with 10 W requested
input power P,,. The resulting RMS of 1.5 Hz is around an order of magnitude
better than in O1 (Figure 4 of [40]).

NGparal P fp/ f- This gathers all the complexity of the calibration into this peak
to peak value. The X-arm IR cavity pole is known to be 45.1 Hz, so the discriminant

Eq. 3.31 gives our calibration to the arm pole frequency.

Figure 3.10 shows the results of the ALS COMM frequency noise measurement,
with the X-arm IR pole f, undone and the X-arm calibration applied. ALS COMM
is susceptible to many noises, including laser frequency noise, green PDH sensing
noise, fiber noise, in-air optics table phase-wrapping noise, acoustic peaks from
optics table, and PLL controls noise. Also, the out-of-loop IR sensor has sensing
noise as well, which we suppressed by turning up the input power P;n to 10 W

to increase signal on REFL A 9L

The final measured RMS of the ALS COMM frequency noise is 1.5 Hz, about 10
times lower than the measurement performed before O1 (Figure 4 of [40]). This is a
result of the enhanced green cavity finesse, and improvements to acoustic coupling
on the PSL optics table. With some further improvements, the ALS COMM noise
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may be reduced to the point where direct CARM handoft is possible, although this

is not the rate-limiting step of the locking process.

3.4 Frequency stabilization
Control of the laser frequency is crucial to the optimal performance of the Ad-
vanced LIGO interferometer. The laser frequency is just one aspect of the inter-
ferometric length sensing and control, and is degenerate with the common-arm
(CARM) length via the relation

AL_ v 55
L N 140 ’

where 1 is the carrier frequency, dv is the frequency noise, and L = (L, + L,,)/2

is the common-arm length.

An interferometer enjoys a natural frequency noise mitigation in its common mode
rejection: motion that is common to both arms tends to be reflected back toward the
input laser, whereas motion that is differential preferentially transmitted thought
to the antisymmetric port. Changes in the laser frequency must be common to
both arms, so to first order most frequency noise is promptly reflected by the in-

terferometer and does not mask gravitational wave signal.

However, to second order imperfections cause contrast defect light carrying fre-
quency noise to appear at the antisymmetric port. Worse, frequency noise on
contrast defect light appears in the phase quadrature in the antisymmetric port as

the gravitational wave signal (see Section B.3.3).

Another natural factor aiding the suppression of frequency noise is the excep-
tionally low linewidth of the interferometer cavities. The interferometer can be
thought of as a highly selective phase-sensitive sieve which only accepts light of
the correct frequency. Unacceptable light is promptly reflected and does not make
it into the interferometer, making the laser light inside the interferometer incred-
ibly stable: the main laser frequency v ~ 281 x 10'2 Hz must be stabilized to the

interferometer linewidth of around 1 Hz.

The laser frequency stabilization scheme in Advanced LIGO serves two purposes.
First, to incrementally stabilize the interferometer length degrees of freedom and
achieve resonance in an interferometer with an extremely low linewidth. Second,
to suppress frequency noise so that it does not limit sensitivity to gravitational

waves. The requirements for stability of the frequency is around 8 orders of mag-
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nitude lower than the freerunning NPRO in the detection band (NPRO freerunning
noise is 100 Hz/+v/Hz at 100 Hz, requirement is ~ 10 x 1075 Hz/+/Hz).

In this section, we overview the performance of the Advanced LIGO frequency
stabilization servo at Hanford for O3, with focus on the frequency noise budget

and the frequency noise coupling to DARM.

3.4.1 Control scheme

+
NPRO EOM PMC 24 MHz Z& <\Interferometer
= C— 4
EOM IMC
To NPRO AOM Refl
Pt 9 MHz () v
|EOM

%K H%—&<

Reference
cavity

Figure 3.11: Laser frequency stabilization optical diagram. Laser beams are shown
in red, electronics are shown in black, blue and green. Reference cavity electronics
are shown in black, input mode cleaner electronics are shown in blue, and common
mode electronics are shown in green.

There are three hierarchal control loops in the frequency stabilization servo. The
first is the reference cavity loop, the second is the input mode cleaner (IMC) loop,
and the third to the common-arm (CARM) loop. Because the loop bandwidth re-
quired is higher than the data acquisition rate of 16384 Hz, the frequency control
loops are mostly analog, with the exception of the slow feedback to the MC2 sus-
pension. Figure 3.11 shows the optical layout of the Advanced LIGO frequency

stabilization servo.

3.4.1.1 Pre-stabilized laser and reference cavity

A non-planar ring oscillator (NPRO) solid-state Nd:YAG laser with wavelength
A = 1064 nm is used to generate the initial seed light due to its exceptional

freerunning frequency stability ((1 kHz/f)(10 Hz/v/Hz)) with high power out-
put [107]. The NPRO laser is amplified to 80 watts, then locked to a four-mirror
pre-mode cleaner (PMC) [36]. In transmission of one of the highly-reflective PMC
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mirrors, a beam is double passed through an acousto-optic modulator (AOM).
The beam is then locked to a fixed-spacer reference cavity with high bandwidth
(~ 300 kHz).

Next the beam is phase modulated by an electro-optic modulator (EOM) at 9.1 MHz,
24.1 MHz, 45.5 MHz, and 118.3 MHz [108]. The 9, 45, and 118 MHz sidebands are
to be used for main interferometer control, and are the 1st, 5th, and 13th harmon-
ics of each other. The 24 MHz sidebands are used for locking to the input mode

cleaner.

3.4.1.2 Input mode cleaner

The beam is then locked to the suspended 16 m input mode cleaner (IMC) with
bandwidth ~ 80 kHz [37]. The IMC cleans the main beam of higher-order modes
and beam jitter from the main laser, and stabilizes the laser frequency. The free
spectral range (FSR) of the IMC is designed to be 9.1 MHz in order to pass the three
RF sidebands for main interferometer control. The feedback from the IMC goes to
the IMC voltage-controlled oscillator (IMC VCO) which controls the double-passed
AOM before the reference cavity.

3.4.1.3 Common-arm cavity

Finally, the beam proceeds to the main interferometer. The power recycling cavity
and the arm cavities together form the CARM coupled cavity. The laser is stabi-
lized to CARM with a bandwidth of 20 kHz. The CARM bandwidth cannot be
increased past the FSR of the coupled cavity FSR = ¢/(2L) ~ 37 kHz because of
the dynamics of the optical plant: the reflection of the carrier goes through a sec-
ond resonance and loses 180 degrees of phase, making higher-bandwidth control

impossible.

The carrier and 9 MHz sidebands beatnote are used for sensing the CARM degree
of freedom [33]. The carrier enters both the power recycling cavity and the arm
cavities, returning information on the length of both. The 9 MHz resonates in the
power recycling cavity, but not the arm cavities, returning information only on
the power recycling cavity length. The beatnote between the carrier and 9 MHz
carries the arm length information, which is detected on the REFL photodetectors

in reflection of the interferometer.

Figure 3.12 shows the open loop gain measurements of the three hierarchal fre-
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quency stabilization loops. The three loops together suppress the NPRO laser fre-

quency noise down to the CARM shot noise level, as characterized in Section 3.4.4.

102
Reference cavity
Input mode cleaner
o 101 1 Common arm
= -==FSR /2=187kHz
-
1004
5
10—1 i
1072
180
— 904
j=19)
&)
o,
) 0
z
&
— 90 J
—180—— — - |
10° 10 10° 10°

Frequency [Hz|

Figure 3.12: Frequency control loop open loop gain measurements. The half free
spectral range (FSR) is highlighted because there we see the 9 MHz sidebands
plus the audio signal resonate in the arms, affecting the common-arm optical gain
around 19 kHz.

The 9 MHz sidebands cause a small dip at around half the free spectral range (FSR).
This is because the 9 MHz sidebands are purposefully set to be anti-resonant in
the arms, while the carrier frequency is resonant. This places the 9 MHz side-
bands nearest resonance in the arm around half of an FSR away from the car-
rier frequency. If we modulate the main laser frequency at an audio frequency
f =~ FSR/2 Hz, then the audio sidebands on the 9 MHz sidebands will resonate in
the arms, producing a small effect on the CARM optical gain seen in Figure 3.12.

This can be more easily seen if we think about the Pound-Drever-Hall error sig-
nal. The power reflected off the CARM coupled cavity P53, demodulated at radio-

frequency §2/27 can be written

Pesia(w) =2[—EyES(w) + EqEj(w)] (3.33)
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where Ej is carrier light reflected off the CARM coupled cavity, E, is reflected
RF sideband light, in this case Q2/27 ~ 9y, Fo(w) is the audio sidebands on the

carrier, and Eq(w) is the audio sidebands on the RF sidebands.

Normally, when shaking the laser frequency in the audio band w < FSR, Fq(w) &~
const, so the term at — Fjy £ (w) is entirely at DC while the error signal at w is dom-
inated by changes to the carrier Eo Ej(w). However, if w &~ FSR/2, the terms at
1 + w from Eq(w) start to resonate in the arms, and — Ey £ (w) becomes signifi-

cant enough to appear in the measured CARM OLG.

3.4.1.4 Mode cleaner length control
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Figure 3.13: Input mode cleaner length to VCO controls crossover measurement.
The unity gain frequency at 90 Hz corresponds to the handoff from MCL to VCO
controls

The CARM length is the ultimate reference we would like the laser frequency
to follow. However, the IMC lies in the path of the laser to clean the beam and
stabilize the laser frequency. The beam must be transmitted through the IMC with
high efficiency, but to achieve its main tasks the IMC must have a high finesse (F ~
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528). The IMC pole fp,. ~ 8.6 kHz, which is not wide enough to accommodate
all expected CARM length drifts due to e.g. tides.

The solution is to feed the CARM error signal not only to the VCO, but also to
the mode cleaner length (MCL). The MCL loop handles the low frequency CARM
feedback by adjusting the mode cleaner length to match the CARM length. Be-
cause the compliance of the suspension falls off like 1/f2, the MCL loop cannot
handle high frequency stabilization, so the VCO is relied upon for fast frequency
control. The MCL loop is sometimes called the slow control and the VCO fast con-
trol. Figure 3.13 shows the crossover measurement of the slow controls over fast
controls hierarchy. Here the unity gain frequency of the crossover at about 90 Hz
corresponds to the handoff from MCL to VCO controls.

3.4.2 O3 frequency control upgrades

A few upgrades were performed on the frequency control scheme described above
for O3. The first was the addition of the REFL B photodetector during the Novem-
ber 2018 vent. The second was the increase of incident power on the IMC REFL
photodetector in May 2019 [109].

3.4.2.1 REFL B photodetector

The REFL B photodetector was added in the reflection path from the main interfer-
ometer, on the same path as the usual frequency sensor REFL A. REFL B was added
because it was suspected that the slewing of the radio-frequency voltage was too
fast for the REFL A photodetector electronics, leading to nonlinear response and
so-called “fast locklosses”. Fast locklosses were when the interferometer would
lose lock without an apparent reason in the digital readback signals, prompting

suspicion of the analog frequency sensors and controls of malfunction.

To resolve the REFL A fast-slewing problem, the power on REFL A was halved
from ~ 10 mW to ~ 5 mW, and the remaining power was directed to a second,
identical photodetector REFL B. This halved the slew of the REFL A and B op-amps.

Fast locklosses persisted after this change.

But the addition of the REFL B photodetector provides and out-of-loop incident
frequency noise sensor. As seen in the frequency noise budget in Figure 3.17,
this sensor confirms that frequency noise is CARM shot noise limited in the GW-
sensitive band. While locked in low-noise, both REFL A and B are used in-loop to

lower the shot noise limit.
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3.4.2.2 IMC REFL incident power increase

The IMC REFL photodetector is the sensor used to detect the frequency in reflec-
tion of the IMC. Because IMC sensing noise was found to be limiting frequency
noise in the ~kHz region, the IMC REFL optical path was reworked to allow more
light on the photodiode.

IMC REFL was found to be dark noise-limited, not shot noise-limited, even during
high-power operation. “Dark noise” refers to the natural electronics thermal noise,

e.g. Johnson noise, which causes voltage noise in otherwise quiescent electronics.

Ideally, the fundamental limit of the sensitivity achievable for an optical cavity is
the shot noise limit, where all light on the photodetector contributes to the signal
as RF local oscillator for PDH locking, or as the reflected carrier signal from the

actual cavity length changes.

In reality, cavity visibility is not perfectly one, and “junk light” carrying no signal,
such as higher-order modes, are reflected onto the photodetector. In some cases,
the junk light reflected is too high and saturates the photodiode. To solve this,
black glass power dumps are placed before the photodiode, and some optical signal

is sacrificed for a functional photodiode.

In the case of IMC REFL, only ~ 1.4 mW was reaching the photodetector at full
35 W input power. This level was increased to ~ 9 mW, allowing more signal on
IMC REFL and moving from the dark noise-limited regime to the shot noise-limited
regime. Coupled with increased CARM loop gain, this reduced IMC sensing-
induced frequency noise incident on the interferometer to below CARM sensing

noise levels for the entire bandwidth (see Figure 3.17).

3.4.3 CARM calibration
CARM is calibrated to the IMC VCO which controls the double-passed AOM. The
VCO control signal is calibrated into units of Hz, which serves as the ultimate

reference for the laser frequency [110].

The sensors for CARM are the photodetectors in reflection of the interferometer,
REFL A and B. These are RF photodetectors demodulated at 9 MHz to sense the
CARM length changes and feed back to the laser frequency.

The usual way we calibrate a control loop is to inject some known quantity, such

as a known frequency change in Hz with a VCO, and measure the response in the
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sensor we care about, such as the volts on the REFL PDs. However, the calibration

of CARM is not so straightforward.

This is because of the massive suppression and the hierarchal nature of the full
CARM loop. The VCO control signal is made from the sum of the CARM and IMC
error signals. The IMC error signal dominates the control signal, because IMC
shot noise is much higher than CARM shot noise. The CARM loop gain dominates
above 20 kHz, suppressing IMC shot noise down to the level of CARM shot noise
level. To do this, the CARM loop inverts the sign of the IMC shot noise it sees and
injects that as the VCO control signal.

In short, the VCO control signal is totally dominated by IMC sensing noise, so
an injection into the CARM loop would have to be extremely loud to produce an
appreciable CARM signal in the VCO control signal. Direct length injections into
CARM by, for example, the photon calibrator, make real common length changes
in the arms, but do not appear in the REFL error signal because of the huge CARM

loop suppression.

I calibrated CARM using the CARM OLG combined with an IMC OLG taken with-
out the CARM feedback. Figure 3.14 shows the full frequency stabilization servo
block diagram. We would like to calibrate the CARM plant C' in W/Hz.

First, for readability of the following equations I'll make the following consolida-

tions of the block diagram:

PCA — C (3.34)
IK =1 (3.35)
HV -V (3.36)
SM — M (3.37)

Second, we assume that the reference cavity innermost loop perfectly follows the
VCO control signal. In other words, the reference cavity loop bandwidth > 1 for

all frequencies we care about (see Figure 3.12)

The CARM OLG G 4, is taken by injecting an excitation x. at the CARM error
signal e.. Assuming z. is strong enough to drown out all noise in the loop, we
calculate the CARM OLG using Figure 3.14

CFV +CMIV
Gearm = v (3.38)
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Symbol Description Units  ZPK Values
P IMC transmission pole Hz/Hz [], [8.6e10%], 1.0
C CARM plant W/Hz [],[0.6],3.4 x 1073
A REFL PD sensing chain VIW -
InGaAs photodiode responsivity A/W  [], [], 0.77 [111]
Transimpedance V/A (1, [], 449 [112]
Demod gain V/V [1,[], 5.4
F Fast servo analog board \24% -
Sum node gain V/V (], [], +8 dB
REFL IN1 gain VIV (], [], +12dB
REFL Boost 1 V/V [500], [10], 50
REFL Compensation V/V [4000], [40], 100
REFL Fast high pass filters \2AY% [0,0], [5,5],1/25
REFL FAST gain V/V [, [ +16 dB
IMC IN2 gain \74% (1, [], —22 dB
I IMC plant W/Hz [], [8.6e3], 4.6 x 1078
K IMC REFL PD sensing chain Viw -
InGaAs photodiode responsivity A/W  [], [], 0.77 [111]
Transimpedance V/A (1, [1, 378 [112]
Demod gain V/V [1,[], 5.4
IMC IN1 gain VIV (1. [, +2dB
H Common servo analog board VIV -
IMC Boost 1 V/V [20e3], [1e3], 20
IMC Boost 2 \74% [20e3], [1e3], 20
IMC Compensation V/V [4e3], [4el], 100
IMC FAST gain \74% [1,[], —18 dB
IMC Fast daughter board V/V [70e3], [140e3, 200e3], 2.3 [113]
Vv Voltage-controlled oscillator Hz/V  [40], [1.6], 537¢e3

Table 3.4: CARM model values for calibrating the CARM path gain via Eq. 3.43.
Values are those typical for LIGO Hanford during O3, locked in low noise with
input power on the PRM B,, = 34 W. The CARM and IMC plants C' and [ in-
clude both the intrinsic optical gain of the cavity and all optical losses, including
beam dumps. The responsivity of the InGaAs photodiodes includes the quantum
efficiency of ~ 0.9. The measured transimpedance of REFL B was 448 V /A [112].
The calibration of the photodetector signal chains is described in Section C.1. All
poles and zeros are listed in Hz. Figures 3.15 and 3.16 shows the CARM path model
and IMC path model compared to measurements.
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Figure 3.14: Frequency control loop block diagram. The laser L and reference
cavity R form the innermost frequency stabilization loop in the bottom left. The
input mode cleaner / forms the second loop. The common arm cavity C' forms the
third loop. The quantity we ultimately care about is the residual frequency noise r
incident on the interferometer. The CARM OLG G4, is measured at the CARM
excitation point z., The IMC OLG G, is measured at the IMC excitation point
x;, and the MCL crossover (5,2 is measured at the MCL excitation x,,,.

The denominator represents the IMC loop suppression. The numerator represents
the fast and slow paths of the CARM feedback. This quantity is shown in green in
Figure 3.12.

Next we measure the IMC loop without CARM feedback:

Gime = IV (3.39)

(This measurement is taken in the same configuration as in full lock, e.g. high

input power, same analog filters engaged, etc.)
Now we calculate the CARM path gain G.qm:

gcarm == Gcarm(l - szc)
=CFV+CMIV

(3.40)
(3.41)

The measurements Gy, and G, are done in the frequency range of 1 to 100 kHz.

Looking at the MCL crossover in Figure 3.13, in this frequency range the crossover
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Figure 3.15: CARM path model and measurement comparison. The model of the
CARM path gain is computed in Eq. 3.43. The bump at 18 kHz is due to an un-
modeled resonance of the 9 MHz sidebands in the arms. This occurs because the
9 MHz carrier is designed to be nearly anti-resonant in the arms, i.e. to resonate
in the PRC at a half-FSR frequency. When we shake the laser frequency with an
audio frequency near f = FSR/2 = 18.7 kHz, the audio sideband on the 9 MHz
will resonate in the arms, increasing the optical gain of the CARM loop near the
half-FSR. Table 3.4 shows the values that informed the CARM path gain model.

magnitude is negligible, so we let M — 0 and
Gearm = CFV. (3.42)
So we’ve completely eliminated the effect of the IMC on our CARM OLG measure-

ment. Now we must remove the control filters and VCO actuator. This was done

with a model of the analog filters.
Expanding our consolidated notation back out:

Gearm = PCAFHV (3.43)
Table 3.4 shows the values of the CARM model. All are well-known except for the

CARM plant C. Therefore we have an overall scale factor in C' that we can use to

fit our model to the measurement, and measure the CARM plant in this way.
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Figure 3.16: IMC path model and measurement comparison. The model of the IMC
path gain is computed in Eq. 3.39. Also included here is the measured reference
cavity closed loop gain, CLGyfcq,. Table 3.4 shows the values that informed the
IMC path gain model.

Using this method, we find the DC CARM plant gain to be around 3.4 mW /Hz.
We also model the DC IMC plant gain to be around 4.6 x 10~® W /Hz. These
plants include the intrinsic optical gain of the cavity plus all optical losses, includ-
ing excess power beam dumps. Figures 3.15 and 3.16 show the model versus the

measurement of these paths.

3.4.4 Frequency noise budget

The frequency noise budget is the characterizes the limit of the CARM stabiliza-
tion. A couple of main noise sources for frequency noise are the VCO actuator
noise, IMC sensing noise, and CARM sensing noise. Figure 3.17 shows the fre-

quency noise budget.

Using the block diagram Figure 3.17, we project noises onto the laser frequency

incident on the interferometer 7:

_ (AFHVP + ASMIKHV P)n, + KHV Pn; + Pn, 5.44)
"T T 1_IKHV - CAFHVP — CASMIKHVP '
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Figure 3.17: Frequency noise budget for LIGO Hanford in O3. In the GW-sensitive
frequency band between 10 and 1000 Hz, measured frequency noise is entirely
CARM shot noise limited. Improvements to the input mode cleaner sensing noise
have rendered its contribution to frequency noise negligible. In low-noise opera-
tion, REFL A and B are summed to control CARM, reducing the shot noise limit

seen here by a factor of 2.

where 7. is the CARM sensing noise, n; is the IMC sensing noise, and n, is the

noise of the VCO.

Every individual part of Eq 3.44 is hard to measure and model, so instead we use

the components we can easily measure to simplify the algebra. First, the CARM

closed loop gain CLG.,;,, can be written

Gcarm
1_Gcarm
B CAFHVP+CASMIKHVP
" 1—-IKHV —CAFHVP — CASMIKHV P

Second, the MC2 crossover suppression SUP,,,.o is written

1
1_Gm02
1-IKHV —CAFHVP

CLGcarm =

SUPmCQ =

" 1-IKHV — CAFHVP — CASMIKHVP

(3.45)

(3.46)

(3.47)

(3.48)
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We can use the measured CLG,,,, to significantly simplify the projection of CARM

sensing noise n.:

n
— ZCCLG oy 3.49
r OC G (3.49)

Since CLGym = 1 everywhere below 20 kHz, the entire CARM shot noise pro-

jection comes to the inverse CARM plant C~L.

We can use the measured SUP,,,. to remove the effect of the slow MC2 offloading
from the IMC sensing n;

B HKPVn,;
 1—-IKHV —CAFHVP

and VCO noise n, projections

r

SUP e (3.50)

Pn,
" 1-IKHV — CAFHVP
Egs. 3.50 and 3.51 leave us with only the suppression from the fast feedback from
the IMC and CARM. Egs. 3.49, 3.50 and 3.51 are all plotted in Figure 3.17.

r

SUP eo. (3.51)

Other noises not shown in Figure 3.17 include CARM, PRCL, and IMC displace-
ment noise, all of which should be lower than the detected frequency noise. At
and below ~ 10 Hz, fringe-wrapping occurs due to relative motion between the

interferometer and the REFL photodetectors.

The RMS incident frequency noise is ~ 6 Hz for a bandwidth of 5 to 1 x 10° Hz.
The RMS is entirely dominated by noise above 5 kHz, including a 14 kHz peak
which may be from the reference cavity first longitudinal mode. The broad hump
at ~ 20 kHz is likely due to the odd dynamics of 9 MHz sidebands resonating in
the arms leading to a loss of suppression. Unknown are the sources of the forest
of peaks above 30 kHz, or the peaks around 7.5 kHz.

3.4.5 Frequency to DARM coupling budget

The final consideration for frequency noise masking GW signals is the measured
coupling level from frequency noise to DARM. Frequency noise is common to both
arms, and so is largely reflected back toward the input at the beamsplitter. Asym-
metries in the interferometer allows frequency noise into the antisymmetric port
where DARM is measured. Figure 3.18 shows the frequency noise to DARM trans-

fer function budget.

The asymmetries considered by Izumi [101] and Somiya [114] are straightforward

to calculate given the full transfer function from the input to antisymmetric port.
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Figure 3.18: Frequency to DARM transfer function budget for LIGO Hanford in
0O3. From 40 to 400 Hz, the differential arm pole term dw,. dominates frequency
noise coupling to DARM. Below 40 Hz is not well understood, but is likely due
to radiation-pressure based coupling through excess frequency noise spoiling the
length and angular control loops. Above 400 Hz, there is a variable term is also not
well understood, but is commonly attributed to higher-order mode coupling. The
content of higher-order modes in the interferometer depends on interferometer
geometry, which changes with the thermal state.

Reproducing Eq. 30 of [101] for the frequency noise to DARM coupling:

AL_ mc 14+r, 1
(f) =

ov 2wy T 14 Se
0 c lsc aWc c
x| —ory — & (1+ra)+ﬂ(1 - S—)(1+sc)]
We & Ta
167 P,g%r" woALpc
— £ @ k 3.52
Cwroess(1+ 5ee) (1 + 5rsc) T hnom (3:52)

where w, is the arm pole frequency, wy is the carrier frequency, r, is the arm
reflectivity, 7/, is the phase derivative of the arm reflectivity, Jr, is the differential
arm reflectivity, dw, is the differential arm pole, [, is the Schnupp asymmetry, P,
is the arm power, g2 is the gain of the signal-recycling cavity, ALp¢ is the DARM
DC offset, w;s is the DARM coupled cavity pole, and kyons is a general higher
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order mode coupling term. Table 3.5 in the intensity coupling section define and
evaluate these expressions. The frequency-dependence of Eq. 3.52 is contained in
the s-terms:

w LW LW 9 9

Se = 1—, See = 1—, Spse = 1 , Sy, = —Hw". (3.53)
wC wCC wrse

Summarizing Eq. 3.52, the couplings in the brackets are the three straightforward
ways to produce contrast defect in the antisymmetric port. First, the reflectivity
difference between the arms d7,. Second, the arm pole difference between the arms
dw,, sometimes called the arm storage time difference. Third, the Schnupp asym-
metry l,., gives a static difference in the inner Michelson length, which produces
a very tiny difference in the light travel time. The fourth term is the radiation
pressure term due to the frequency noise modulating the phase-quadrature light
in the arms due to DARM offset AL pc. The fifth term is the least understood and

most variable: the coupling due to higher order modes kroa;.

The arm pole term dw,. dominates at around 100 Hz for Hanford during O3. This
was because the two input test masses installed at Hanford were not “twins”, i.e.
they were not made at the same time. ITMX was replaced because of a very large
point absorber detected during O2. The new ITMX has a transmission of 1.5%,
whereas ITMY has a transmission of 1.42%. This yields an X-arm pole w,,./(27) =
45.1 Hz and a Y-arm pole w,,/(27) = 42.6 Hz, or differential dw./(27) ~ 1.2 Hz.

This difference in ITM transmission also affected the arm powers, see Section 3.2.

3.4.5.1 Radiation pressure

The radiation pressure coupling below 30 Hz is not well-understood. The coher-
ence of the measurement dips to around 0.6 to 0.7 as it becomes harder to drive the
frequency noise above the DARM noise due to the CARM suppression. Stronger
injections were tried, but cause massive upconversion from the many orders of
magnitude the injection must cover, which was a problem (see Subsection 3.4.6).

Swept sine injections validated the coupling levels measured in Figure 3.18.

The radiation pressure noise due to frequency noise cannot be explained solely by
interaction with the quadrature light in the arms. The most likely explanation is
the true DARM noise is caused through another path that the excess frequency
noise causes, in particular the SRCL path. SRCL is especially capable of creating
radiation pressure noise in the arms, a fact we took advantage of in the arm power

measurement (Section 3.2). The light in the SRC is all in the quadrature phase,
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meaning that incident frequency noise will have a strong modulation effect on
SRC light.

Working against this is the fact that inside the interferometer the carrier is cleaned
of frequency noise by the CARM pole, and the feedforward of the SRCL control
signal to DARM compensates for SRCL noise in the DARM spectrum. However,
feedforward is tuned to prevent SRCL sensing noise from entering DARM, not
displacement noise, and injection of excess frequency noise can spoil the quiescent
SRCL state.

This excess frequency to DARM radiation pressure noise may be real at the time
of the measurement, but it is possible that the quiescent coupling state is better

than what is possible to measure with a strong injection.

3.4.5.2 Higher order modes

Higher order modes (HOMs) of the laser refer to the spatial eigenmodes a laser
may have when resonating in a cavity. All LIGO cavities are designed to accept
the same TEM, mode, or main carrier light. HOMs are rejected from cavities they
are not designed to resonate in. However, HOMs still spawn from the carrier due to
mode mismatch, misalignments, and cavity imperfections inside the dual-recycled
Michelson. Worse, “point absorbers” on the optics heat the optics irregularly at
high power, spoiling the cavity geometry and scattering carrier light into HOMs.
We know from the DARM optical spring detuning that there is likely significant
HOM content in the SRC, see Subsection 3.6.4. However, we don’t have a sensor

or a good model for the level of HOMs in the interferometer.

HOMs can carry frequency noise, and do not experience the usual cleaning effect
from the CARM and DARM coupled cavities. Ideally, the output mode cleaner
will reflect away most low-order HOMs, but it is possible some high-order HOMs
transmit easily through the output mode cleaner, or that there is very large low-
order HOM content incident on the output mode cleaner. Another possibility is
significant “mode healing” happening in the signal recycling cavity, which is when
HOMs are scattered back into the main carrier light by the signal recycling cavity
mirrors. This light would not be cleaned by the CARM coupled cavity, but transmit
directly through the output mode cleaner.

These different coupling paths will have a different frequency dependence in their
coupling to DARM. This is based on the fact that HOMs do not resonate in the
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arms. Therefore, the frequency and intensity noise the HOMs carry are not sup-

pressed by the interferometer’s coupled cavity poles s.. and ;.

Finesse simulation of simple Michelson suggests that frequency noise on HOMs
couple to the antisymmetric port with a flat frequency dependence in W/Hz, same
as the carrier frequency noise coupling explored in Subsection B.3.3. If we assume
the coupling path is some large HOMs created inside the dual-recycled Michelson,
which are then transmitted through the output mode cleaner, this coupling would
be flat in W/Hz. Referring watts in the antisymmetric port back to DARM meters,
as in Eq. 3.52, would give a frequency dependent coupling kyon x £ponm (1l +

Srse ), with a flat DC coupling and an f-like coupling above the DARM pole.

However, the “mode healing in the SRC” coupling path would be cleaned by the
DARM pole, because the HOM light returns to carrier light inside the DARM cou-
pled cavity. The antisymmetric port coupling in W/Hz « kgona /(1 + Srse). Re-
ferring back to DARM meters would undo the DARM pole, making the coupling

flat in m/Hz < kgou-

Finesse simulation of the whole interferometer suggests that the “mode healing”
path is most likely. This is the coupling chosen for Eq. 3.52, since it is consistent
with measurement and simulation. In the plot, kxon ~ (8 — 60) x 1077 m/Hz.
However, some measurements have an unexplained uptick at very high frequen-
cies > 5 kHz, which suggests there may be multiple coupling paths of frequency

noise through HOMs, or possibly another mechanism entirely.

HOM content in the interferometer can be partially controlled by adjusting the
cavity geometry. This is done in Advanced LIGO through the thermal compen-
sation system, which can heat the optics to increase or decrease their radius of
curvature. Thermal tuning can be performed on the input and end test masses,

and the SR3 mirror.

Through many measurements, we have seen a large variation in the level of fre-
quency noise to DARM coupling at high frequency. Figure 3.18 highlights two
extremes of this coupling level, one taken in April 2019 and the other in Novem-
ber 2019. A factor of 10 lowering in the coupling was achieved between these two
times through tuning of the thermal state of the interferometer to repair the inter-
ferometer geometry, a strong sign that it truly is HOMs causing excess frequency
noise coupling at high frequencies. The couplings where monitored via injected

frequency noise lines. Other monitor lines were injected for intensity noise, which
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is also dominated by HOM coupling at high frequency (Section 3.5.3). However,
we found that the HOMs coupling frequency noise and intensity noise must be dif-
ferent, i.e. as one coupling increased, the other decreased [115]. A middle-ground

thermal setting was found that minimized both couplings as well as possible.

RF sidebands have similar corner-centric coupling mechanisms as HOMs. How-
ever, tests where the modulation depth was changed during the injection did not

change frequency noise coupling levels [116].

3.4.6 Output mode cleaner dither line
The output mode cleaner (OMC) is a bow-tie cavity on the antisymmetric port of
the interferometer. Its main purpose is to reject RF sidebands and HOMs, while

passing only carrier light and GW signal.

To accomplish this, the OMC must be locked to carrier. This is done by injecting
a dither line at 4.1 kHz on one of the OMC'’s piezoelectric transducers, then de-
modulating that line in the OMC DCPD sum to get an error signal for locking the
OMC to carrier.

We mention the OMC dither line here because the frequency noise level at the
antisymmetric port at 4.1 kHz is now much more important. Excess frequency
noise will be downconverted to DC by the OMC dither line if the line is not strong

enough.

This was discovered while measuring the CARM loop open loop gain, and was a
problem for measuring frequency transfer functions to DARM at low frequency,
where upconversion of the frequency noise injection caused downconversion from
the OMC dither.

The solution is to ensure the OMC dither line is strong enough for normal low-
noise operation such that it is stronger than the frequency noise, and ensure the
frequency noise injections at HF are not so strong they upconvert and drown out
the OMC dither line. Carefully-chosen swept sine measurements are better for

quantifying low-frequency frequency noise coupling.

3.5 Intensity stabilization
The intensity stabilization servo (ISS) is required to limit laser noise masking the
gravitational wave signal. Intensity fluctuations from the laser masks the gravita-

tional wave signal via contrast defect and directly through the DARM offset used
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for DC readout. Section B.3.3, Eq. B.61 shows the intensity coupling for a simple

Michelson from first principles.

Intensity fluctuations benefit from the common mode rejection of the interferom-
eter, since any input beam fluctuations will be common to both arms. Intensity
noise on the carrier will also be cleaned by the CARM and DARM coupled cavity
poles of the interferometer. However, running in DC readout couples intensity

noise directly to the antisymmetric port were DARM is sensed.

An analog, two-loop hierarchal intensity stabilization servo is used to suppress
the laser intensity incident on the interferometer. The suppressed intensity noise
is further cleaned by the coupled cavities of the interferometer such that inten-
sity noise does not mask GW signals. The ISS is DC-coupled in full lock, so the
overall laser power entering the interferometer is stabilized. Previous experiments
informed the ultra-stable DC-coupled laser intensity control scheme used in Ad-
vanced LIGO [34, 35].

This section will overview the Hanford O3 performance of the ISS, discuss the

intensity noise budget, and the intensity transfer function to DARM budget.

3.5.1 Intensity control scheme

The freerunning NPRO relative intensity noise (RIN) is measured to be 10> Hz~1/2
at 100 Hz, with around 1/ f dependence [36]. The requirement for RIN incident
on the power recycling mirror is 2 x 10~® Hz /2 at 100 Hz, rising like f [117].

Figure 3.19 shows a diagram of the laser intensity stabilization servo.

The high power laser is first incident on an acousto-optic modulator (AOM), which
defracts power based on the input voltage. The beam is then locked to the pre-
mode cleaner (PMC), which is on the optical table and passes most intensity noise
through the short bow-tie cavity. Transmission through one of the ports of the
PMC is then split on two PDs, ISS PDA and ISS PDB. ISS PDB senses intensity
noise, which is fed back to the AOM, completing the ISS first loop. ISS PDA serves

as an out-of-loop sensor for the ISS first loop.

The main beam propagates forward from the PMC, through the IMC, through the
input optics toward the interferometer. A pickoff beam then heads toward an
eight-photodetector “ISS array”, where ~ 60 mW is detected. Four of the PDs
on the detector form the “ISS inner” signal, which senses intensity noise heading

to the interferometer and feeds back to the AOM, completing the ISS second loop.
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Figure 3.19: Laser intensity stabilization servo diagram. The laser in the top left
passes through the AOM, then is locked to the PMC. The ISS first loop is formed
from the transmission through one port of the PMC, and intensity noise is sensed
by a single photodetector, ISS PDB. The ISS second loop is formed by the beam
transmitted through the IMC, picked off on the path to the interferometer, and
sent to the eight-photodetector ISS array. Finally, the ISS QPD detects beam jitter
heading to the interferometer, which can be misinterpreted as intensity noise.

The other four PDs form the “ISS outer” signal, which serves as the out-of-loop

intensity noise sensor. The

The ISS first and second loops are summed together, with the second loop being
added into the first loop as an additive offset. Thus the first loop follows the second
loop error signal, and both loops suppress the intensity noise sensed by the ISS
array. Figure 3.20 shows the open loop gains of the first and second loops of the

laser intensity stabilization servo.

The intensity stabilization described here focuses on the audio-frequency intensity
noise. However, the ISS is also DC coupled to keep the overall light levels in the

interferometer robust to slow drift in the laser output.

One pitfall of the current configuration is the relative polarizations between the
transmission ports of the PMC [118]. Figure 3.19 emphasizes that the first and
second ISS loops are stabilized to different outputs of the PMC, but these ports

have been found to have different polarizations on the PSL optics table. This means
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Figure 3.20: Intensity stabilization servo open loop gain measurements. The first
and second ISS loops form a hierarchal stabilization scheme, so the second loop
may never have a higher unity gain frequency (UGF) than the first loop in the
current configuration.

the first and second loops may be sensing and stabilizing slightly different light,

which can lead to intensity controls fighting one another.

3.5.2 Intensity noise budget

Figure 3.21 shows the intensity noise budget. The total RIN RMS ~ 6.5 x 107,
The ISS second loop shot noise limit for intensity noise is achieved for most of
the GW detection band. Shot noise is unusually low because of the ~ 30 mW of
in-loop light detected. The actual in-loop shot noise will be v/2 lower than the red

trace in Figure 3.21.

The IMC angular controls peaks at 1.1 Hz and 3.4 Hz dominate the intensity noise
RMS. Changes in transmitted power due to IMC misalignment are most likely re-

sponsible for the registered peaks.

Post-IMC beam jitter measured at the ISS QPD is coherent with the ISS out-of-loop
noise in the 10 Hz region. This could be due to jitter in the HAM2 input optics.
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Figure 3.21: Relative intensity noise budget for laser intensity incident on the in-
terferometer for LIGO Hanford in O3. The ISS second loop shot noise limit is
achieved between 30 and 1000 Hz. Above 1 kHz the ISS is gain-limited. Between 5
and 30 Hz intensity is coherent with beam jitter detected on the ISS QPD. Angular
motion in the IMC dominates the total RMS from peaks around 1.1 Hz and 3.4 Hz.

Another possibility is the ISS QPD and ISS out-of-loop signal are both registering

some upconversion from the strong IMC angular peak at 3.4 Hz.

The ISS loop is gain-limited at high frequency. This noise comes close limiting
DARM, as seen in the green dots in the DARM noise budget (Figure 3.1). It’s not so
simple to increase the ISS suppression, as evidenced by the ISS OLGs in Figure 3.20,
with unity gain frequencies of ~ 50 kHz and ~ 25 kHz, each with phase margins
of around 30°. Higher intensity stabilization unity gain frequencies of ~ 100 kHz
where achieved in [34] and [35], but those servos did not have to contend with
being DC-coupled to a suspended IMC. The ultimate limit of the ISS stabilization
is the AOM actuator. The AOM was measured to have a flat power modulation out
to 200 kHz, with a phase lag of 45° at 120 kHz [36].

The gain-limited intensity noise will become more important as squeezing is im-

proved and higher arm powers are achieved, lowering DARM shot noise. More
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work on the ISS control scheme is required so intensity noise will not limit DARM

at frequencies above 1 kHz.

3.5.3 Intensity to DARM coupling budget

1071
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Figure 3.22: Relative intensity to DARM transfer function budget for LIGO Hanford
in O3.

The coupling of intensity noise to DARM depends on the level of contrast defect,
differential radiation pressure, and RF sidebands and higher order modes (HOM:s)
through the OMC. Figure 3.22 shows the input relative intensity noise to DARM

transfer function budget.

Izumi [101] and Somiya [114] considered the appearance of intensity noise from

contrast defect and differential radiation pressure. Reproducing Eq. 26 of [101],
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but calibrating AS watts into DARM AL_ and RAN into RIN gives:
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Table 3.5 defines the expressions and values in Eq. 3.54. The frequency-dependence

of Eq. 3.52 is contained in the s-terms:

LW LW . W 2 2
Se =1—, See = 1—, Spse = 1 , S, = —Hw". (3.55)
wC wCC wrse

To get Eq. 3.54 we had to account for a factor of two from different DARM defi-
nitions AL — A[L,_ /2 and a factor of two going from RAN to RIN RAN =
RIN/2, which cancel in the end. We have also written the differential arm power

gain 0¢gym /g in Eq. 26 of [101] in terms of differential arm power § P,,

590,7"771 6Pa
= 7P (3.56)

since P, o< g2,,,-

Summarizing Eq. 3.54, there are nine different expressions for how intensity noise
couples to DARM in Eq. 3.54. These are each plotted as a separate line in Fig-
ure 3.22. We will go through them line by line.

First, the first line of Eq. 3.54 defines the direct coupling due to the DARM DC offset
ALpc. Second, the second line defines the coupling due to asymmetries, like arm
reflectivity dr,, arm poles dw., and Schnupp asymmetry [.,. Third is the coupling
of 45 MHz sidebands directly through the OMC. Fourth are the radiation pressure
terms, due to differential arm powers ¢ P,, optic masses du, arm reflectivity dr,,

arm poles dw,. Fifth is the coupling due to higher order modes.

In this case, the differential arm powers that arise from the different finesses in
each arm readily explain the intensity noise coupling below 100 Hz. Above 100 Hz,

the only plausible explanation is some phenomenological HOM coupling. 45 MHz

)(1 + Sc):|
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Description Symbol Value
Carrier frequency wo/(27) 2.82 x 1014 Hz
Arm reflectivity T = Ii —:Z:: 0.986
Differential arm reflectivity 0ra = (Taz — Tay)/2 2.5 x 1073
Arm reflectivity round-trip phase derivative rl = a —t?;::re)2 268

Arm cavity pole we/(2m) 44.0 Hz
Differential arm cavity pole dwe = (Weg — wey)/ (4m) 1.5 Hz
CARM coupled cavity pole Wee/ (2) 0.65 Hz
DARM coupled cavity pole Wrse/ (27) 411 Hz
Schnupp asymmetry lsen = 1o — 1, 0.08 m
Power recycling gain gf, 43 W /W
Signal recycling gain g2 0.1 W/W
Arm power P, 201 kW
Differential arm power 0P, = (Puy — Pay)/2 —6.5 kW
DARM DC offset ALpc 10 pm

45 MHz modulation depth [ys 0.177 rad
45 MHz sideband PRC gain g% 1.9 W/W
45 MHz sideband SRC transmission 2 0.21

45 MHz OMC transmission Tome 100 ppm
Reduced mass of the arm p=DM/2 20 kg
Higher order mode input RIN to AS watts quom (1.3 —2.0) x 107° W/RIN
Higher order mode input Hz to DARM meters krowm (8 —60) x 107" m/Hz

Table 3.5: Intensity and frequency noise coupling to DARM parameters from
Eq. 3.54 and Eq. 3.52. All differential parameters are divided by two, e.g. 6P, =
(Pay — Pay)/2. Round-trip loss in the arms was assumed to be 100 ppm. The same
values are used for the frequency noise coupling in Figure 3.18. ko) is the pink

band in that plot.
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coupling has the same shape, but even the pessimistic parameters used to estimate

this coupling could not come close to the measured coupling (75, = 100 ppm is

fairly high).

The coupling mechanisms for HOMs were discussed in Subsection 3.4.5.2. In this
case the mechanism is most likely corner HOMs coupling directly through the
output mode cleaner, with no DARM pole cleaning. The coupling of intensity
noise to the antisymmetric port is flat in W/RIN. Referring back to DARM gives
the DARM zero seen in the fifth line of Eq. 3.54.

Similar to frequency coupling, intensity noise coupling was found to vary with the
interferometer thermal state. Measurements from April and November of 2019 are

plotted in Figure 3.22 showing the ~ 50% difference in coupling above 100 Hz.

We reiterate here that the HOMs carrying intensity noise are not necessarily the
same as those carrying frequency noise. This is known because, for some ther-
mal changes in the interferometer, the intensity and frequency couplings are anti-

correlated.

3.6 DARM optical plant

The DARM response to gravitational waves sets the ultimate limit for interferom-
eter sensitivity. An enormous response to differential arm motion is necessary to
amplify the extraordinarily weak GW signal to a detectable level. The most basic
principle of Advanced LIGO interferometer design is maximizing GW response.
These are the reasons for the 4 km long arms, the high-finesse arm cavities, the
high input laser power, the dual-recycling cavities, and DC readout. All other aux-
iliary systems are there to enable the interferometer to be maximally sensitive to
DARM motion.

The DARM coupled-cavity is formed by the two interferometer arms and the signal-
recycling mirror (SRM). The arm cavities resonate the incident carrier light, build-
ing up the light in the CARM coupled-cavity to a high level. Then, when DARM
motion occurs, light is phase-shifted out of CARM into DARM, showing up at the
antisymmetric port of the beamsplitter heading toward the SRM.

The signal-recycling cavity (SRC) is held off-resonance for carrier to shape the
overall DARM pole dynamics, so carrier light is preferentially transmitted through
the SRC out of the interferometer. This light carries with is the DARM, and GW,
signal. The setup where the SRC is held off-resonance for carrier light, i.e. ¢src =

7/2 for carrier, is known as resonant sideband extraction, or RSE, and references
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the broadening of the bandwidth of the detector at the expense of DC gain. Hold-
ing the SRC off-resonance, coupled with the fact that the SRC is a low-finesse cav-
ity, makes the SRCL degree of freedom the most difficult to control in Advanced
LIGO.

Buonanno and Chen first derived the DARM response and quantum-limited sen-
sitivity of Fabry Perot dual-recycled Michelson interferometers [22]. Later, Ward
[119] and Hall [57] modeled and measured the DARM plant dynamics at the Cal-
tech 40 m and LIGO Hanford, respectively.

During O1 and 02, LIGO Hanford operated with significant detuning in the signal-
recycling cavity, which produced a DARM optical anti-spring response [5, 120].
The cause of the detuning was not well-understood, nor was is possible to remove
completely with SRCL offsets without losing lock. Additionally, the DARM pole
value at Hanford was measured to be ~ 10 Hz lower compared to Livingston in
O1: Hanford’s DARM pole was consistently around ~ 360 Hz, where Livingston’s
was ~ 370 Hz, much closer to the design DARM pole of ~ 372 Hz [5]. Finally,
in O1 the SRC exhibited “mode-hopping” issues, where the SRC would be locked
to the correct TEMy carrier mode, then spontaneously switch to a nearby mode,
causing locklosses [121]. This was mitigated by aligning the SRC sooner after
locking DRMIL

In O3, the SRM transmission was lowered from 37% to 32%, increasing the finesse
of the SRC and DARM cavities. During O3, DARM was observed to exhibit both
an optical spring and anti-spring. The DARM spring was observed to change sign
with the increase of input power, from spring to anti-spring [122], and with the off-
on-off test on the SR3 disk heater, from anti-spring to spring to anti-spring again
[123]. Again, the DARM pole at Hanford in O3 was low compared to Livingston
and design: Hanford DARM pole was 411 Hz [94], Livingston’s was 450 Hz, and
design was 456 Hz.

This section will report on the latest understanding of the DARM plant at LIGO
Hanford in O3. We will also explore the effect of the SR3 disk heater on the
DARM plant, and Finesse simulations undertaken to model the effect of higher
order modes on DARM detuning.

3.6.1 DARM model
To solve for the fields in a DARM coupled-cavity, one might try initially to write

the usual systems of equations for classical plane wave fields. This would get you
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most of the way to understanding the DARM cavity field dynamics under ideal cir-
cumstances. However, for detuned, high-power interferometer the full response
becomes more complicated. This is due to the cavity frequency eigenmodes chang-

ing from detuning and radiation pressure effects.

The lossless DARM response to GWs is derived from Egs. (2.20)-(2.24) in Buo-
nanno and Chen [22]. Ward compiled this equation into a convenient expression
in Eq. (3.83) of [119]. We will slightly modify the Ward model to give the lossless

DARM response in antisymmetric watts per DARM meters:

P (f) = V2P0 | 2Py} e [(1 — rye™P) cos ¢ cos ¢ — (1 + r,e?) sin ¢ sin (]
L. L w2 + w? 1+ r2eif — 21,78 cos (2¢) + % sin (2¢)]
(3.57)

where P;¢ is the local oscillator due to the DARM offset, L is the arm length, P,
is the power incident on the beamsplitter, wy is the carrier frequency, w. is the arm
pole, w = 27 f is the signal frequency, r is the SRM amplitude reflectivity, ¢, is
the SRM amplitude transmission, 5 = — arctan(w/w,) is the phase delay of the
arm travel time, ¢ is the SRC detuning angle, ( is the homodyne angle, and & is the
radiation pressure term for coupling amplitude quadrature fluctuations to phase
quadrature inside the arm cavity [47]:
8Pys Wo
T ML w?(w? + w?)

(3.58)

Table 3.6 lists the parameters values relevant for Eq. 3.57. We note here that as L
changes, P,s/L_ remains flat: there is a hidden factor of 1/L in the arm pole w...

We have modified Eq. 3.57 vs Ward Eq. (3.83) by adding the prefactor /2P /L.
The factor L comes from converting to DARM meters since L_ = hL, P is the
local oscillator from the DARM offset that beats with the GW signal on the PD,
and the factor of v/2 comes from the quadrature definition, which can be seen
in the difference in the prefactor between e.g. Egs. (2.1) and (2.10) in [22] (see
Subsection A.3).

We can see from Eq. 3.57 the importance of the detuning angle ¢ and the homodyne
angle (. To operate in resonant sideband extraction, ¢ = 7/2. This puts the GW
signal entirely in the amplitude quadrature upon exiting the interferometer. To
detect the GW signal, the homodyne angle ( = 7/2. The level of contrast defect
in the interferometer sets the homodyne angle, which is hard to estimate in full

lock where it matters [124].
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In perfect RSE, the x dependence in the denominator goes to zero, keeping the
DARM plant resonance exactly at DC. However, detuning in the SRC will create a
DARM optical spring for ¢ < 90°, or an anti-spring for ¢ > 90° [125].

By itself, the DARM spring does not harm the response, and design papers ad-
vocate for locking with intentional detuning to increase SNR to binary neutron
stars. However, Advanced LIGO is designed to lock with no spring, meaning our
SRCL error signal zero-point is detuned from perfect resonance for the carrier for
unknown reasons, and must be compensated for with an offset in the SRCL con-
trol. The strong, unintentional optical spring, coupled with the low DARM pole,
indicates a serious problem with the Hanford SRC, especially when compared to

Livingston’s consistent DARM plant.

One possibility is excessive losses harm the DARM response. No losses are consid-
ered in Eq. 3.57. In the next section we include losses in the arms, SRC, and after

exiting the interferometer.

3.6.2 DARM model with losses
Buonanno and Chen also derived the DARM response including loss. Reproducing
the DARM response from Eq. (5.6) of [22] here:

bl 1 s DE\ A
= — [V2tge? [ Tt | — 3.59
(b%) M*E [ D¥ | hsqr (2.59)

where b, bL are the amplitude and phase quadratures of the output light from the
interferometer, h is the GW signal, hgqr, is the standard quantum limit for GW

detection:

8h

hsqr(w) = YE) (3.60)
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Description Symbol Value
Arm length L 4 km
Carrier frequency wo/(2m)  2.82 x 10 Hz
Mass of test masses M 40 kg
End test mass transmission T, 4 ppm
Input test mass transmission T; 1.46%
Signal recycling mirror transmission T 32%
Arm cavity pole we/(2m) 44.0 Hz
Input power Py 34 W
Power recycling gain gf, 44
Power on the beamsplitter Py =P, gg 1.4 kW
Local oscillator power Pro 23.8 mW
SRC detuning ) 90 4 0.5 degs
Homodyne angle ¢ 89.3 £ 2 degs
Round-trip arm loss L 100 ppm
SRC loss Asr 3%
Post-SRM path loss Apd 25%

Table 3.6: Typical DARM model parameters for Hanford in O3 from Eq. 3.57.
These are known to change with improved interferometer thermal compensation
and beam spot positions on the optics. Spot position changes can also affect the
angle-to-length coupling in the interferometer [126]. The homodyne angle esti-
mate comes from contrast defect measurements at 2 W input, scaled up to 34 W
[124]. The squeezing loss budget for the post-SRM path is documented in [127],
which totals 17% loss from the back of the SRM to DCPDs. We need around 25%
loss for A\, for typical DARM measurement fits.
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Figure 3.23: DARM model with losses vs LIGO Hanford measurement in August
2019. The DARM measurement represents an extreme DARM plant for illustrative
purposes, not the typical response. Here, DARM exhibits a strong, high-frequency
DARM spring at 7.5 Hz, and a low DARM pole of 400 Hz. The fit parameters for
the model in Eq. 3.66 are ¢ = 89.37°, £,; = 100 ppm, Ay, = 6.8%, and \,; = 25%.
All others are the same as Table 3.6.

The expressions for ML, D¥ D are from Egs. (5.7) and (5.9) of [22]:
MY =14 720 — 2 P (cos (2¢) + gsin 2¢>

4+ Ngree?P (—TSG%B + cos2¢ + g sin 2¢>

+ er e’ (2 cos? B(cos 2¢ — r,e2P) + g(?) + e*P) sin 2qz5> (3.61)
L 2B\ Asr 2ig .
Dy =+/1—=Xa| — (14 re™”)sing + - ¢ sin ¢ (3.62)
+ 2(3 + 75 + 2r e + (5r, + 1)e?) sin qb) (3.63)
L 2i3 Asr 2ip
Dy = /1= x| — (=1 +re*”)cos¢p+ €T cos ¢ (3.64)

+ i(_3 ‘l’ Ts + 2rs€4iﬁ + (57"5 - 1)621ﬁ> COs ¢) (365)
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where ), is the signal recycling cavity losses, A,q is the post-SRM losses on the
path to the photodetectors, and € = 2£,,/7T; is the fractional round-trip loss in the

arms where £,; is the total round-trip loss in the arms.

Taking the dot product of Eq. 3.59 by the homodyne P; with angle ( yields the
DARM model with losses

P (f) = V2P0 | 2Py tse (DY sin¢ + Df cos() (5.6
L.’ L w? + w? Mt '

- \V 2PLO 2Pbsw8 tsew
L w2 +w? ME

X 1;)\,%1[_ (=44 (3 + €*P)e) cos (¢ + @)

4

+ (—4e* + (5e* + 2e*7 + 1)e + 2¢*7 N, )rscos (( — @) | (3.67)

Eq. 3.66 is the DARM model with losses used in 3.23. The losses in the path to
the PD \,q represent an overall scale factor. The losses in the arms € have a very
strong effect on the optical gain, and can affect the frequency of the optical spring
by reducing the resonant power in the arms. Overall, arm losses act similarly to

overall reduction of power on the beamsplitter.

The losses in the SRC ), are the most interesting, because they have a frequency-
dependent effect on the DARM gain. Increasing the SRC losses lowers the optical
spring quality factor, broadening the resonant peak of the optical spring, Increas-
ing the SRC losses also lowers the DARM pole frequency. Because of the frequency
dependent nature of the SRC losses, these are the best-known losses. We will ex-

plore the SRC losses and DARM pole frequency in the next section.

In the end, the DARM model in Eq. 3.66 is unable to completely model the DARM
plant measured at Hanford. The modeled DARM optical spring is always larger
than the measured spring. Finesse simulation agrees very well with the DARM
model presented, and also overestimates the DARM quality factor. Losses cannot

compensate the broad spring and produce a realistic interferometer.

New efforts to model the DARM loop are underway, including exploring how
angle-to-length coupling can affect the DARM plant at low frequencies [126].
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Figure 3.24: DARM pole vs signal recycling loss for LIGO Hanford in O3. Plotted
in blue are the roots of setting Eq. 3.61 equal to zero, then solving for the DARM
pole frequency. Livingston’s DARM pole is consistent with < 1% losses in the
SRC, but Hanford’s SRC losses were closer to 3.5% typically.

3.6.3 DARM pole and SRC loss

The DARM pole quantifies the bandwidth of the detector sensitivity to GWs. The
denominator M’ of the DARM response in Eq. 3.66 defines the DARM pole. By
setting Eq. 3.61 equal to zero, we can calculate the DARM pole in response to

changes in losses in the arms and SRC.

SRC losses A, have a strong effect on the DARM pole, with excessive losses rapidly
lowering the detector bandwidth. Figure 3.24 shows the DARM pole vs SRC losses,
including measured DARM poles for both Hanford and Livingston. The Livingston
DARM pole was 450 Hz, where the Hanford DARM pole varied between the typical
411 Hz down to 400 Hz at bad times. The corresponding Hanford losses in the SRC
were from 4.5 — 5.5%.

Thermal compensation changes on the ITMs and SR3 were observed to have a

strong effect on the DARM pole [128]. Increases in power also changed the DARM
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pole, which should not affect the DARM pole strongly. Heating due to power-up
from 2 W to 35 W of input power reduced the DARM pole from 420 to 411 Hz
over about 40 minutes [129]. This indicates mode mismatch between the arms
and SRC is the most likely culprit for initial SRC losses of around 3.5%, which get

exacerbated by high power operation spoiling the interferometer geometry.

Arm losses L,; did not affect the DARM pole much, about 1 Hz of change for
1000 ppm arm losses. The detuning ¢ does affect the DARM pole, but for the
levels of detuning measured (< 1° from 90°) this will not change the DARM pole
significantly.

3.6.4 SR3 heater and the DARM optical spring

ITMAY —
Rin [ ] LT TMY
Heater
[ _]¢PY
cpx L THX
Pre— ﬂ
BS\/ U _&
ITMX
SR2 Revn
Hea.éef
SRS SRM
SR3 Disk ——— K
HC&-Ler Po.s

Figure 3.25: Signal recycling cavity optical diagram. The orange boxes are the
thermal compensation heating elements. The ITMs have ring heaters surrounding
them which can decrease their radius of curvature. SR3 has a disk heater behind it,
which also decreases the radius of curvature [130]. CPX and CPY are the transpar-
ent compensation plates immediately behind the ITMs, which can lens the beam
with the help of the CO2 laser.
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Because the SRC is such a problematic cavity, many efforts have been taken to
understand its geometry better [131-133]. However, the difficulty is the geometry
difference between low and high power. The SRC itself is anti-resonant to carrier
by RSE design: therefore it does not have a huge thermal load on any of its optics.
The mode matching between the arms changes in lock with different arm powers,
producing differential HOMs that combine at the beamsplitter and enter the SRC. If
the arm modes become poorly matched to the SRC modes, it can induce excessive

scattering from the carrier into HOMs.

The thermal compensation system works to combat the degradation of the opti-
cal mode matching inside the interferometer. Figure 3.25 illustrates some of the
thermal compensation components. The ITM ring heaters surround the ITMs and
adjust the arm mode matching by adjusting the ITM radius of curvature. The SR3
disk heater is capable to adjusting the signal recycling cavity geometry, by directly
altering the radius of curvature of SR3 [130]. Not shown are the ETM ring heaters
and the CO2 laser heaters incident on the compensation plates CPX and CPY.

3.6.4.1 SR3 heater on-off measurement

Prior to O3, the SR3 heater was engaged to try to improve interferometer sensi-
tivity. The heater was turned on to maximum power of 5 W for three hours, then

turned back down to 0 W, while the state of the interferometer was measured.

During this time, we took 18 DARM plant measurements. Figure 3.26 shows three
of these measurements illustrating the effect on the DARM plant. Essentially, the
DARM optical spring flipped sign from anti-spring, to spring, and back again with
the SR3 heater off-on-off test. A small optical gain improvement is also apparent

in Figure 3.26.

The optical spring flip indicates the SR3 heater is controlling the detuning ¢ of the
SRC. This is interesting because, from Eq. 3.66, the DARM optical spring frequency
should not depend on SRC losses. A lossy SRC due to e.g. high absorption, will only
lower the quality factor of the spring. Therefore, something more complicated is

happening due to the HOMs being created in the SRC.

3.6.4.2 Simulation of the SR3 heater

To understand how the SR3 heater changes the detuning of the SRC, we set up a

Finesse/pykat simulation of Hanford which changes the SR3 radius of curvature
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Figure 3.26: DARM optical spring during SR3 heater test in full lock at Han-
ford. The optical spring begins in the anti-spring state, with weak anti-springs
of roughly ~ —2 Hz (blue). Flipping on the SR3 heater generated a spring of
around 4 Hz after one hour of thermalization (orange). After turning off the SR3
heater, the anti-spring returned (green).

by a realistic amount in lock [134, 135].

First, we lock our simulated interferometer with similar parameters as Hanford.
Next, we change the SR3 radius of curvature within the simulation while moni-
toring light levels everywhere in the interferometer (Figure 3.27). Then, we freeze
the lock at several intervals of the radius of curvature change to sweep the length
error signals (Figure 3.28). Finally, we measure the DARM plant transfer function

in W/m at the same intervals of the radius of curvature change (Figure 3.29).

Briefly put, the HOMs simulated in this interferometer configuration allow for ex-
cessive HOMs to pollute the corner degrees of freedom, particularly MICH and
SRCL, such that they lock with significant offsets. All corner degrees of freedom
are detected at a pickoff port of the PRC (POP port). HOMs on the carrier actually
reaching the POP sensor are relatively small, but HOMs on the +45 MHz side-
bands, which carry the MICH and SRCL length info, are not small and beat with
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Figure 3.27: Simulation of carrier higher order modes in the signal recycling cavity
with an SR3 radius of curvature change. As the SR3 radius of curvature changes,
the HOMs in the cavity rise. In the case of extreme curvature, the HOMs approach
the levels of the carrier, before reaching a region of lockloss. Plots for the HOMs
on the 45 MHz sidebands show a similar effect. The thin dashed vertical lines
represent the SR3 curvature change used for the error signal sweeps and DARM
plants in Figures 3.28 and 3.29.

the HOMs on the carrier. The HOM effect on the error signal is small relative to the
main beatnote signal, but the amount of offset required to induce a strong effect

is not large.

When HOMs become significant enough that they affect the SRCL lock offset, the
DARM cavity is detuned and an optical spring is exhibited. Figure 3.29 shows how
the simulated spring varies with changed SR3 radius of curvature. A measured

Hanford DARM plant is plotted for comparison to the simulation results.

This is one likely mechanism for the effect of the SR3 disk heater on the DARM
optical spring. The simulation is not perfect: it can be difficult to correctly lock
the interferometer and change the parameters “in-lock” while maintaining sensi-
ble length signals, we ignore the effect of astigmatism and not all parameters are
exactly as measured for LIGO Hanford, for instance the arm powers are slightly
low (190 kW), and the radius of curvature change induced on the SR3 in the sim-
ulation is the wrong sign compared to what actually occurs in the interferometer.
However, it is extremely difficult to properly model the levels of HOMs in all inter-
ferometer cavities, and the above results support the idea that the high SRC losses
are due to mode mismatch, and can be related to the issues we experience with

uncontrolled detuning in the DARM cavity.
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Figure 3.28: Simulation of interferometer error signals with SR3 radius of curva-
ture change. The excessive HOMs in the SRC seen in Figure 3.27 strongly affect
the SRCL error signal. The SRCL error signal is made from the 45 MHz sidebands,
which carry the SRC length signal, beating with the carrier, which acts as the static
reference. The HOMs on the 45 MHz and carrier also reach the sensor, and in high
enough levels, spoil the error signal and induce an optical offset.
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change. The changing SR3 radius of curvature produces a changing DARM op-
tical spring due to HOMs in the SRCL error signal. Also plotted is a measured

Hanford DARM plant for comparison to the simulation.
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Chapter 4

CALIBRATION OF THE ADVANCED LIGO DETECTORS

Calibration is the quantification of the Advanced LIGO detectors’ response to grav-
itational waves. Calibration is the final step connecting detector data to true as-

trophysical strain, and influences all science done with the LIGO detectors.

Gravitational waves incident on the detectors cause phase shifts in the interferom-
eter laser light which are read out as intensity fluctuations at the detector output.
Measuring and modeling the detector response to gravitational waves is crucial to

producing accurate and precise gravitational wave strain data.

The Advanced LIGO calibration group is responsible for the timely production
of accurate strain data for low-latency detection, and quantifying the uncertainty
in the calibrated data. The author was responsible for producing calibration un-
certainty budgets for O1 and O2, including the first gravitational wave detection,
GW150914 [5, 136]. The calibration uncertainty pipeline was improved with the
introduction of Markov Chain Monte Carlo (MCMC) methods for fitting calibra-
tion models and Gaussian Process Regression (GPR) for quantifying unmodeled
deviations. The uncertainty budget method has remained largely unchanged for
03 [94].

In this chapter, we will introduce the calibration process, motivate an accurate and
precise calibration, overview the methods currently used to calibrate GW detec-
tors, explore the calibration uncertainty pipeline, and consider future methods for

even more precise and accurate calibration.

4.1 Motivation
GW signals are extremely rich sources of information from previously unexplored
astrophysical phenomena. Detections from the first three observing runs have

vastly altered our understanding of astrophysical binary systems [3, 4].

A miscalibration will produce biased strain data, which biases all downstream
products of the data, including astrophysical parameter estimates, tests of gen-
eral relativity, merger rates and GW backgrounds. Accuracy and precision in GW

data is crucial for maximizing the information extracted from GW detections.
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4.1.1 Effect of calibration errors on SNR
Calibration errors only effect the SNR of detectors to second order [137, 138]. Thus
the likelihood of missed detections due to calibration errors is small. However,

calibration error will dramatically affect astrophysics done with the detections.

4.1.2 Optimal calibration

The “optimal” calibration is accurate enough that detected GW data is not biased
or limited by calibration uncertainty [138]. Any deeper accuracy of the calibra-
tion will be rendered irrelevant by the dominant source of GW data uncertainty,

detector noise.

4.1.3 Astrophysical parameter estimation

Calibration model parameters and astrophysical parameters are correlated. The
clearest example of this is the positive correlation of the optical gain of the interfer-
ometer and the luminosity distance of the source of the gravitational waves: given
some GW signal, the larger we believe the optical gain is, the larger the luminosity
distance to the GW source. Calibration parameters are considered “nuisance pa-
rameters” in the astrophysical parameter estimation process, and are marginalized

over, increasing the overall uncertainty of the astrophysical parameters.

For compact binary coalescence GW signals, estimates of the progenitor masses,
spins, luminosity distance, orbital plane inclination, final mass, and sky location
are derived from the detected waveforms, and each are potentially limited by cal-
ibration accuracy [6, 139]. Hall et. al. explored the Cramér-Rao bounds for as-
trophysical parameter errors due to detector noise, and found requirements for
calibration parameters’ accuracy such that detector noise dominates astrophysi-
cal parameter errors [140]. Vitale et. al. have investigated the potential impact
of general calibration errors on parameter estimation pipelines [141, 142]. Vitale
et. al. have incorporated physical calibration parameters into the astrophysical

parameter estimation pipeline [143].

For Advanced LIGO detections so far with SNRs < 100, detector noise, not cali-
bration uncertainty, limits information from GW detections [144, 145]. As future
detectors’ noise decreases, for aLIGO design, Einstein Telescope [45], and Cosmic
Explorer [146], some very high SNR detections will be made, revolutionizing the
science possible [145]. Such high SNR detections may be limited by calibration

uncertainty.
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4.1.4 New astrophysics

New astrophysics is also being done with O3 detections. A recent neutron-star
black-hole candidate merger emitted signature higher multipoles GWs which were
detected and fit to high confidence [11]. Higher multipoles are emitted at higher
frequencies than the main quadrupole moment. They are also emitted at different
angles, offering another way (other than quadrupole polarization) to break the

distance-inclination degeneracy problem (see Section 4.2).

The neutron star equation of state describes the properties of the matter in extreme
environments like a neutron star. The equation of state affects the high frequency
GW signature during merger due to the tidal deformations. Limits on the neutron
star equation of state were imposed by the GW170817 BNS detection [9].

Supernovae are theorized to be powered by a “core-bounce” mechanism, which
is not well-understood with theory and simulation [147]. GWs offer a way of di-
rectly observing the signature of the core-bounce, which could help inform the

mechanism by which supernovae explode.

4.1.5 Other astrophysics and cosmology

The rate at which such systems form in the universe can be drawn from detected
coalescence events [148—150]. Rate estimates depend on the astrophysical range of
the detectors [96]. Rate estimates are particularly vulnerable to calibration errors,
since rates are in units of events per time-volume, so any calibration amplitude
error gets cubed. As the number of observations increases, rate estimates will

become limited by strain amplitude uncertainty.

Testing general relativity has begun with the first detections [7, 151-153]. As
the detectors’ sensitivity improves and there are more high signal-to-noise ratio
events, calibration uncertainty will limit our test results, and calibration error will
bias our test results [154, 155].

Upper limits and observations of sources of continuous gravitational waves, such
as rapidly rotating neutron stars, depend on calibration uncertainty [156—158].
Upper limits and observations of the GW stochastic background of unresolvable
sources, including the Big Bang, depend on the amplitude calibration uncertainty
[159-161].

Using many GW detections to refine estimates of the Hubble constant will be fun-

damentally limited by calibration uncertainty [162, 163]. There is tension in the
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Hubble constant measurement from near- and far-field electromagnetic measure-
ment techniques [164-166]. GWs are useful for measuring the Hubble constant
because the luminosity distance can be directly extracted from the detected data.
If the GW is a neutron start binary coalescence accompanied by a gamma-ray burst
like GW170817, then the host galaxy, and recessional velocity, can be accurately
found, making “standard-siren” method of estimating the Hubble constant possi-
ble [10]. Methods of estimating the recessional velocity of GW sources using the
estimated sky location and galaxy catalogs yield a so-called “dark Hubble” mea-
surement, which requires no electromagnetic follow-up [167]. Spinning neutron
start black hole coalescences may also be particularly well-suited for high accuracy

distance measurements [168].

4.2 Parameter estimation, self-calibrating signals, and the standard siren
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Figure 4.1: Estimated GW 150914 strain time series, i.e. waveform, produced using
the PhenomD waveforms calculated via PyCBC [169, 170].

A GW signal has a distinctive expected waveform. This can be used to estimate the
astrophysical parameters of the binary. Figure 4.1 shows the inspiral and merger
waveform detected for GW150914.

A binary merger occurs when two massive objects in orbit inspiral together, reach-
ing relativistic velocities, and violently merge into a single massive object. The
binary system emits stronger and stronger GWs as the massive objects move to-

gether, orbiting each other more and more rapidly. The increasing frequency and
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amplitude of the signal produce a distinctive “chirp” characteristic of binary merg-

€rs.

The key observation that GW signals are “self-calibrating” was made by Schutz
[171]. From the detected GW frequency and amplitude by a network of at least
three detectors, Schutz argued that the GW source parameters could be found,
and the Hubble constant estimated from them, depending on the accuracy of the

detector amplitude and phase measurement.

The “self-calibration” process for a simple, non-spinning GW source goes roughly
as follows [172]:

d
1. The chirp mass M is found from the inspiral frequency derivative faw

2. The GW amplitude depends on the chirp mass M, sky location (0, ¢), orbital

plane inclination angle ¢, and luminosity distance d;,.

3. With good phase information from the detector network, the sky location

0, ¢ can be determined via triangulation.

4. With polarization information from the detector network, the inclination

angle ¢ may be determined.

5. The last parameter, luminosity distance d;, is a simple overall scaler to the

measured GW amplitude.

From this process, the luminosity distance naturally falls out of the detection pa-
rameters without any astrophysical distance calibration. The term standard siren
refers to binary inspiral’s consistent frequency and amplitude dependence on the

chirp mass M.

The above process does depend on the detector network calibration for accurate
GW phase and amplitude information. A phase miscalibration will throw off the
sky location triangulation. An amplitude miscalibration will throw off the lumi-
nosity distance estimate. This makes an accurate detector calibration imperative

for parameter estimation.

In reality, parameter estimation is much more complicated than the picture given
above, especially for spinning, precessing binary systems with unequal masses
[139, 173]. However, the detector calibration will always represent a fundamental

limit to the accuracy of astrophysical parameter estimation.
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4.3 Detector calibration fundamentals
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Figure 4.2: Simplified calibration process following the conversion of astrophysical
strain h(t) into strain data h'(t).

Figure 4.2 shows the fundamental calibration process. A binary merger produces
strong gravitational waves with strain h(¢). The detector responds to the incident
gravitational wave with response R™!, producing a raw signal e(#). The calibra-
tion pipeline takes the raw signal and calibrates it into strain data h/(¢), using a

measured response function R.

Calibration is the process of measuring the response function R as accurately as
possible. Because we cannot generate known terrestrial gravitational waves to

calibrate the detector, we use DARM motion according to the relation
L_=hL (4.1)

where L_ is DARM motion, A is incident GW strain, and L is the length of the
arms. Subsection B.3.2 derives the GW to DARM transfer function for a simple
Michelson.

4.3.1 DARM control loop

DARM is one of the principle degrees of freedom of the interferometer, and must
be held on resonance to produce useful data DARM is unstable without a feedback
control loop, which suppresses all DARM motion sensed on the DCPDs, include
those from GWs. The feedback is routed through the quadruple pendulum posi-

tion actuators, both the magnetic coil drivers on the upper stages, and the electro-
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static drive on the lowest stage. Figure 4.3 shows the interferometer layout and a

quadruple pendulum.
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Figure 4.3: Simplified interferometer layout and one of the quadruple pendulum
suspension systems for the core optics. For the upper stages of the pendulum, elec-
tromagnetic coil drivers are used for length and angular control. An electrostatic
drive (ESD) is used to control the test mass position itself [26]. Only one ETM ESD
is turned on to control DARM in low-noise lock.

We define three independently quantifiable transfer functions of the DARM con-
trol loop, shown schematically in Figure 4.4. The sensing function C' = dey; /A Lyes
defines the measured laser power response to DARM displacement, as well as
the data acquisition process, to form the digital error signal d.,,. Digital filters
D = dun/der invert the suspension compliance and shape the loop control signal.
The actuation function A = ALy /dey moves the optic to cancel any detected
DARM displacement within the DARM loop bandwidth.

All transfer functions are complex-valued functions of frequency, with quantifi-

able magnitude and phase. The digital filters D shape the DARM loop frequency
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response and are known to negligible uncertainty. The DARM loop transfer func-
tions C' and A must be measured and modeled in the frequency domain between 5
and 5000 Hz. Both C' and A contribute to the total calibration uncertainty budget.

4.3.2 Calibration pipeline
The error and control signals de,, d.; are digitally filtered to form a time-series
estimate of the GW strain h(t) used for astrophysical searches. The digital filters

applied to de; and d.,; are constructed from models of the sensing function C' (model)

and actuation function A(medeD).
1 1
h= | Gmoaay * e + AT s ey (4.2)

where * indicates convolution in the time domain. The accuracy and precision of
the models C'™4) and A(mdel) define the systematic error and statistical uncer-

tainty in the estimated time series h(t).

4.3.3 Response function
We define a transfer function called the response function R,
1/1+G

h=R%dy = 17 (T) Aerr (4.3)
where the DARM open loop gain G = C x D % A. Eq. 4.3 illustrates that in the
frequency domain, response function error ) R is equivalent to the GW strain data
error 0h and response function uncertainty op is equivalent to the GW strain
data uncertainty o,. The response error and uncertainty relative to the calibra-
tion pipeline model R(™%) are quantified as a function of frequency f with time
dependence t:

6R(f7 t) _ 6h(f> t) UR(f7 t) _ O-h(fv t)
R(model) - h ’ R (model) - h ’

(4.4)

4.3.4 Systematic errors

The values of C' and A can drift slowly over time, giving functions of frequency
that vary in time C(f,t) and A(f,t). However, our online calibration pipeline
digital filters 1/C(Md) and A(mdel) are not perfect representations of our under-
standing of the interferometer. This leads to known systematic errors in our h(t)
reconstruction, governed by the sensing and actuation systematic errors 6C( f, t)
and 6 A(f,t). The systematic errors relative to C'™°d) and A(mode) are quantified

as

(' (model) o (/(model) ’ A (model) T A (model) ’ ’
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Figure 4.4: The DARM control loop is shown in the grey box on the left. The
sensing plant C' produces the error signal d.,, in linear response to residual dif-
ferential arm motion A L. The digital filters D shape the error signal d,,, into a
control signal d,;. Displacement noise from any external source enters the loop as
A Lfee. The test mass excitation via the photon calibrator :I;(TPC) displaces the test
mass above the DARM noise by a precisely known amount. The actuation plant
A takes the control signal d.; and actuates on the optics by AL, to maintain
DARM resonance. The pink box on the right shows the calibration pipeline, con-
sisting of an inverse sensing model 1/C™°4) and actuation model A®@°4), The

output of the calibration pipeline is GW strain data A(t).

where C'(f,t) and A(f,t) represent the measured sensing and actuation transfer

functions.

Systematic errors dC' and 6 A propagate forward to the relative response function
model)

systematic error R/ R

OR(f,t) _ R(ft) | _ (1+G(f1) L4 Gls
R (model) o R(model) I W W _

(;/(model) GA(f,1) B C(f, t)/C(model)
Almodel) 1 4 5C(f,t)/C/(model)
N 1 - (5/(model) . (4.6)

4.3.5 Uncertainty
In general, any Gaussian-noise based transfer function follows a joint 2D probabil-
ity distribution (see Section D.8, Eq. D.32). Eq. D.32 is not necessarily a Gaussian

itself, but approaches one in a certain regime of high coherence «? and high num-
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ber of averaged n.

All calibration transfer functions are swept-sines taken with very high coherence
7?2 > 0.95, usually 42 > 0.99 over most of the bandwidth, with plenty of averages

n ~ 25 to ensure the uncertainty of the measurement is squarely Gaussian.

Therefore we can safely use the transfer function uncertainty from Bendat and

2

11| and absolute phase

Piersol Table 9.6 for relative magnitude uncertainty o

uncertainty aéﬁ: [174]

U?m(f):%% _—1_7 )

Tl a - 2ny2(f) ®7)

4.4 Models

In this section we will overview the models used in the calibration procedure and

uncertainty budget creation.

4.4.1 Calibration group DARM model

The calibration group sensing function C' finds its basis in the Buonanno and Chen
DARM optical plant explored in Section 3.6, Eq. 3.57. However, this function is
complex to fully model in real time, and can be simplified to a poles and zeros
model without sacrificing much accuracy. The algebra of this simplification cal-

culated in [57] Appendix D, and summarized in [140] Eq. (6), reproduced here:

g€2ﬂifL/c(1 —|—Zi)
f e

Qplpl  [p* f?

where ¢ is the optical gain in W/m, z is the homodyne zero, p is the complex

c(f) = (4.8)

141

DARM pole with magnitude |p| and quality factor (), and £ is the spring frequency,
related to the phase to amplitude factor s from Eq. 3.58:

cos(¢ + ¢) —rscos(¢ — ¢)

o7 fccos(gb+§) + 75 cos(¢ — C) (4.9)
_ o 4.10
b= cm (4.10)
€2 2 Pysc 21 sin(2¢) (4.11)

23N fAML2 1 — 2r, cos(2¢) + r2

s

where f. = w./(27) is the arm pole in Hz.

In the end, we can put Eq. (6) of [140] into a simple poles and zeros form by using

the known resonant sideband extraction parameters of the homodyne angle ¢ =
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Figure 4.5: Sensing measurements vs sensing model C'(f,¢, Xc) in Eq. 4.13, and
their residuals 6C(f,t)/C™)(f ¢ X.). The Hanford sensing reference mea-
surement from January 4th, 2017 is shown in the four panels in red. The Livingston
sensing reference measurement from November 26th, 2016 is in the four panels in

blue. The model parameters Xc were found via an MCMC. Physically, the mag-
nitude Bode plots represent how many milliamps of current are generated at our
transimpedance photodetector per picometer of differential arm motion from 5 to
5000 Hz. The drop in sensitivity at low frequencies shows the effect of anti-spring
detuning at both detectors. The 180 degree phase difference between Hanford and
Livingston is a sign convention difference between the detectors, most likely from
the DARM offset sign.
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7/2 and detuning ¢ ~ /2, which sets |p| ~ z and @), ~ 1/2. This cancels the
homodyne zero z with one of the DARM poles p, leaving only a factor of 1+if/ f,.s.

in the denominator.

The above approximation is known as the single pole approximation, and refers to
the fact that the DARM pole f, . is enough to describe the high-frequency DARM
plant dynamics in our current operating scheme. The single pole approximation
also ignores the repeating resonances associated with the FSR at extremely high
frequencies f > 10 kH z, which is outside the detection bandwidth of the detector.

The spring frequency £? is strongly dependent on the detuning ¢. If ¢ = 7/2
exactly, then €2 = 0. If ¢ > 7/2, then £ < 0 and DARM exhibits the optical anti-
spring. If ¢ < 7/2, then £2 > 0 and DARM exhibits the optical spring. We note
that this tuning is the opposite sign of the usual two-mirror cavity optical spring
tuning [175]: the longer cavity in the SRC ¢ > 7/2 produces an anti-spring, not a

spring. This is because the SRC is anti-resonant.

2 the terms in the denominator of Eq. 4.8 with

In the approximation that £2 < |p
|p| become zero. This approximation leaves

f2
which can be described as two zeros at 0 Hz and two poles at |£|. The poles are

purely real if £ < 0, and complex if £2 > 0.

From these approximations, we simplify Eq. 4.8 further to the calibration group

sensing model:

Hpe=2mifme f?/f2

7 E
(”me) (1_ Iz “fsczs)

where H( is the optical gain in cts/m, 7¢ is the delay constant dominated by the

C(mOdel) (f7 ta XC) = KC'(t)

(4.13)

light propagation in the arms, f, . is the single DARM pole, f, is the DARM spring
frequency (equal to £), Q) is the DARM spring quality factor, and r¢(t) is the time
dependent optical gain factor monitored via calibration lines. f,., fs, and (), are
also monitored. Both f? and f, have the same sign, and can be positive or negative

according to 4.11.

These parameters are collected into the sensing function parameter vector Ve

So=(He fue 07 £ Q) (419
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Table 4.1: Hanford (left) and Livingston (right) sensing function model parame-
ters A\c MCMC fit values and uncertainties for O2. The fits were performed on
Hanford’s January 4th, 2017 reference measurement and Livingston’s November
26th, 2016 reference measurement. The model corresponding to these parameters
can be seen in Figure 4.5. The corner plot showing the MCMC results from the
Hanford reference measurement is shown in Figure 4.7.

Hanford Parameters Variable Value®'}?  Units
Optical Gain Ho o 3.834%550%  mA/pm
Coupled Cavity Pole Jec 36013 Hz
Time Delay 01C 0.6773 IS
Optical Spring Frequency fs 6.871508 Hz

Optical Spring Inverse Q Qs'  0.03475004 -

Livingston Parameters ~ Variable = Value™{7 Units

—1o
Optical Gain He o 328870507 mA/pm
Coupled Cavity Pole fec 369.5759 Hz
Time Delay e 0.841013 I
Optical Spring Frequency fs 2.6703 Hz

Optical Spring Inverse Q Qs'  0.005%5 50 -

Figure 4.5 shows the results of the fit of the model in Eq. 4.13 to the reference

measurement in O2. Table 4.1 shows the parameters used in Figure 4.5.

4.4.1.1 Sensing systematic errors

Our model of the sensing function C'(™4D( f ¢, Xc) is an approximation. The true
detector sensing function changes over time and deviates from the sensing model
at high frequencies. The sensing model dynamically corrects for k() with real-
time measurement. However, f,.., fs, and Q! are also changing in time, but were

not corrected for in the model in O1 or O2.

The time dependence in f,,. was included in the calibration uncertainty budget
as a known systematic error, since it was tracked via real-time measurement but
could not yet be dynamically corrected for in the model. The time dependence in

fs and Q; ! results in expanded uncertainty at low frequency. The total systematic
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error in the sensing function for O1 and 02, 6C/(f,t), was

5C<f, t) . ( 1 "‘if/frse > 5OGP(f> 67271'if67'c
(' (model) - 14+ if/frse (t) (' (model) ’

The first term is the explicit correction for time dependence of the coupled cavity

(4.15)

pole, f,s(t). A correction time delay factor 07¢ modifies the original time delay

Tc included in the model.

Further systematic errors originate from the uncorrected time dependence of f
and ;' or additional unknown systematic errors. Any remaining frequency de-
pendent systematic errors are covered by a Gaussian Process regression 6C“F( f).

Quantifying errors SC“?(f) is explained further in Section 4.7.

4.4.2 Long wavelength approximation

Implicit in the DARM modeling everywhere in this thesis is the long-wavelength
approximation. The long-wavelength approximation assumes that the size of the
detector is much less than size of the GW wavelength, L. < Agw . This assump-
tion implies that the GW is “in-phase” across the entire detector, with no complex
dynamics due to different phases of GW being incident on different parts of the
detector. The long-wavelength approximation is good for low frequency GWs, but
at very high frequencies the wavelength approaches the size of the detector and

the full treatment is required [176-178].

The total response of the interferometer to GWs is sky location dependent. The
systematic errors from the long-wavelength approximation tend to be partially
canceled out by the systematic errors from the simple-pole approximation for
sensitive sky locations [178]. For a Fabry-Perot Michelson, [178] finds that the
approximated response differs from the full response by around 2-3% at 1.2 kHz

for reasonable sky locations.

4.4.3 Actuation Model

The Advanced LIGO test masses are suspended via quadruple cascaded pendula
[26]. Each suspension stage has independent actuators, as shown in Figure 4.3.
The control signal, d.,, is digitally distributed as a function of frequency to each
stage’s actuators via a digital-to-analog converter and signal processing electronics

to create the control displacement, A L.

The distribution filters are designed taking into account all actuators’ authority

to displace the test mass. On the upper intermediate and penultimate stage, the



1071 ‘ ‘
E —15 }|
%10 ‘ ‘ 6o LEPS T S .
T Wl 11T
] bl [[*a 0Teee .
Z10719 UIM Model ¥ UIM Meas e
;o 10-2] PUM Model 4 PUM Meas
= TST Model ¢  TST Meas ‘ ‘ ‘
10723 LTI | | I | ‘ | ‘
5 10 20 50 100 200 500 1000 2000 5000
180 I I I T } \é I I I I
W“A““AA‘A e .io..\' ]
= 90 l .
¥ Ay
= A L]
- 0 A [ ]
A 290 7%“"*;' . A‘ g
L]
dsol | e | L
5 10 20 50 100 200 500 1000 2000 5000
Frequency [Hz
1079
- s \L“
g 0*107 ‘ﬁ .“L‘_”{x.‘ A
-
fl(r17 | N = "T{‘ e
1,_, ‘ ‘ I ‘ ‘ A\ "'.h.‘.‘
210719+ UIM Model # UM Meas N —
§0 10-2] PUM Model 4 PUM Meas [ ™
= s TST Model ¢  TST Meas ‘
10723 LTI | | L NI | |
5 10 20 50 100 200 500 1000 2000 5000
[ I
180 e el
T O VA
=, [ aa amaad -y . \. I\[\A
Qﬁ 0 i p v
o ~TTAT
~ -90 AL |
A i \J
-180 o |
5 10 20 50 100 200 500 1000 2000 5000

105
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Figure 4.6: Actuation stage measurements and models [H; A;(f, X;)]™%). Each
index ¢ is one of the actuation stages U, P, or T'. The Hanford actuation reference
measurements from January 4th, 2017 are shown in the two left plots in red. The
Livingston actuation reference measurements from November 26th, 2016 are in the
two right panels in blue. The model parameters X4 for Ai(f, XZ) have been found
via MCMC. The actuation strength magnitude is in units of meters per d; count.
Notches seen in the magnitude plot are purposefully placed to avoid ringing up
suspension violin modes at specific frequencies. Each stage’s phase is stable for
frequencies at which that actuation stage dominates, but then rolls rapidly as it
loses authority at high frequencies. For this reason, the UIM and PUM stage phase
plots are cut off at 300 Hz and 400 Hz respectively.
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digital-to-analog converter drives electromagnets on the reaction stage creating
a force on magnets attached to the suspended stage. On the test mass stage, the
digital-to-analog converter drives an electrostatic system which creates a force,
quadratic in the applied potential, via dipole-dipole interactions between the test
mass and a pattern of electrodes on the reaction mass (see Figure 4.3). With a
large bias voltage and low control voltage, the requested actuation forces on the

electrostatic system are in the linear regime.

The sum of the paths the digital control signal, d,, takes through each stage to

displace the test mass, A L1, makes up our total actuation model:

A(model) (f7 t, XA) = |:/<;T(t) FT(f) Hy AT(f)
+ rpu(t) (Fp(f) Hp Ap(f)

+ Fu(f) Hu AU(f))} e~ 2mifTa (4.16)

where U, P, and T represent the three stages used for control; the upper-intermediate,
penultimate, and test mass stages, respectively. Each stage is composed of the nor-
malized electro-mechanical frequency response of the pendulum and its actuators,
A;(f), the digital distribution filter, F;( f), a scale factor, H;, and an overall digital
delay, 74, defined by the common computational delay from each stage. The model
time delay 7,4 is 45 us for Livingston and 61 us for Hanford. rxpy () is the time
dependence of the penultimate and upper intermediate scale factor, and xr(t) is

the time dependence of the test mass scale factor, as calculated in [179].

The penultimate and upper intermediate scale factor x py () is not expected to vary
much over time, as it represents the change in the electromagnetic coil actuators’
strength. The test mass scale factor xr(t) does vary significantly over time as the
electric charge on the test mass builds up, changing the actuation strength of the

electrostatic drive.

The reference scale factor for each stage, H;, collects scale factors from that of the
digital-to-analog converter in V/cts, each stage’s drive electronics in A/V or V/V,
the actuator itself in N/A or N/V depending on the stage, and the compliance of the
suspension in m/N. Time delay correction factors for each stage 7; are extracted
from measurements as stage-specific corrections to the overall actuation delay 74.
The electro-mechanical transfer functions, A;, for each stage are independently

measured and included in the model with negligible uncertainty. Remaining scale
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Table 4.2: Hanford (left) and Livingston (right) actuation function model param-
eters A4 MCMC fit values and uncertainties for O2. The fits were performed on
Hanford’s January 4th, 2017 reference measurements and Livingston’s November
26th, 2016 reference measurement. The models corresponding to these parameters
can be see in Figure 4.6. To get from Newtons/count units in this table to meter-
s/count in Figure 4.6, we multiply by the suspension models which have units of
m/N and are known to negligible uncertainty.

Hanford Parameters Variable Valuet}? Units
Upper Intermediate Gain Hy 8.20570:00% x 107®  Nicts

Upper Intermediate Delay 0Ty 57 JIES
Penultimate Gain Hp 6.768 0005 x 10710 Nycts

Penultimate Delay 6Tp 04108 s
Test Mass Gain Hy 4357300008 x 10712 Nicts

Test Mass Delay dTr 2.8704 I
Livingston Parameters  Variable Valuet1? Units
Upper Intermediate Gain Hy 7.241003 x 1078 N/cts

Upper Intermediate Delay 0Ty 102758 JIES
Penultimate Gain Hp 6.417002 x 10719 Nicts

Penultimate Delay OTp —8.71%%2 I
Test Mass Gain Hy 2.51370001 x 10712 Nyets

Test Mass Delay S7p —4.5111 s

factor and delay parameters dominate the actuation function uncertainty, and are

thus collected in the set of actuation parameters:

N T
Ny = (HU 5ty Hp orp Hp 5TT) . (4.17)

The values of these reference parameters )4 are found in Table 4.2.

Figure 4.6 plots the measured vs modeled actuation functions for every stage of
the quad pendulum used for control. Table 4.2 gives the MCMC fit parameters

used in Figure 4.6.
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4.4.3.1 Actuation systematic errors

The digital filters, F;, are known a priori, and time-dependent corrections xpy
and k7 are dynamically corrected for when estimating h(t). The remaining com-
ponents of the actuation stage model, [H; A;]™ode) (£, );), may contain systematic

errors. We allow for and quantify systematic errors in each actuation stage as

SALD) _ DAT(D) e
A('model) o A(model)

7

(4.18)

where 67; is a time delay phase error on each stage, and  AS?(f) is the system-
atic error in scale or frequency dependence from the Gaussian process regression
done on each stage’s measurement residuals. Systematic error calculations are

explained fully in Section 4.7.

4.4.4 Calibration lines and time-dependent factors

The detector is known to vary with time, as losses, alignment, and thermalization
of the interferometer affect the response. To capture the time dependence of the
calibration during a run, calibration lines are applied to the detectors during all ob-
servation times. A calibration line is a single-frequency excitation applied to the
detector via the photon calibrator and suspension actuators. Using four calibra-
tion lines, we are able to capture changes in the detector calibration and partially

correct for them in real time.

The calibration lines’ response to the applied excitation is recorded in the detector
readout d.,,. These transfer functions are recast into each time dependent param-
eter, K, Kpu, Ko, frses fs» and (. The calibration lines are driven with high SNR
such that the time-dependent parameter uncertainties are small relative to the pa-
rameter values. The calculation of the time-dependent parameters from calibration

lines is derived in [179].

4.5 Photon calibrator

The photon calibrator (PCAL) is the ultimate reference for strain data in the inter-
ferometer [180, 181]. The laser from two 1047 nm auxiliary lasers are reflected off
the end test masses at both sites. The laser intensity is modulated at audio signal
frequencies using an AOM, creating a fluctuating radiation pressure force. Radi-
ation pressure pushes on the test masses, creating a true displacement far above
DARM sensitivity.
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The power incident on the test masses is recorded via two photodiodes calibrated
to integrating spheres, one after the AOM before transmission onto the test mass,
the other upon reflection off of the test mass. Each photodiode’s readout is then
digitally recast as a displacement, xgﬂpc), which is the amount of PCAL-induced
displacement contributing to A Lge.. The full suspension dynamics are incorpo-
rated into the transfer function from the PCAL power modulation to the test mass
length modulation, giving an accurate frequency response at and below the sus-

pension resonant frequency:.

The relative PCAL actuation strength correction factor, Hpcay(t), tracks the ac-
tuation strength of the PCAL over time. Hpcar(t) has a value of 1 during times
of no clipping, and a value less than 1 during times of clipping. Hpcar(t) has a
relative uncertainty of 0.79% over all time. This will affect our total calibration

uncertainty budget directly in Section 4.7.

4.5.1 Systematic errors

The effect of the photon calibrator on the test mass is ultimately dead-reckoned
from the intensity measurement via integration sphere. The intensity measure-
ments are as accurate and precise as its possible for a laser intensity measure-
ment to be, with precision of around 0.5%. The entire setup also adds uncertainty,
yielding a total uncertainty on the PCAL of 0.79% for O1 and O2 [180]. For O3,
this number was reduced to 0.41%, largely due to a reduction in the claimed laser
power measurement uncertainty from NIST and measured temperature correction
factors [181]

The problem with achieving better precision with the photon calibrator is the setup
is prone to small systematic fluctuations. Many fluctuations in the photon calibra-
tor are possible. Clipping on the input or output beam is the most serious and
common, torquing the test mass instead of longitudinal displacement from PCAL
misalignment, temperature changes on the laser change the output laser power,
shaking of the PCAL laser or steering mirrors, saturated PCAL intensity servo
loops, and drifting alignment onto the test mass are possible. All affect the ulti-
mate calibration of this reference, and some are monitored and corrected for in

real time.

Some errors are not possible to know. Moving the integrating spheres between labs
is known to change their responsivity ratio [181]. The PCAL laser can introduce

elastic deformations on the test mass, which can affect the calibration accuracy
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above 1 kHz. Dead-reckoning the laser power incident on the test mass is difficult

to do with the accuracy and precision required.

A photon calibration team at Hanford monitors the photon calibrator closely to
ensure the accuracy of the strain data. Regular maintenance is performed on the
photon calibrator, including small alighment adjustments. Any noticeable changes
are corrected quickly, times of the change are noted and incorporated into the

uncertainty budget.

4.5.2 Other calibration methods
Checks of gross systematic errors in the photon calibrator system have been per-
formed using the free-swinging Michelson and VCO calibration methods in O1

and O2. These found agreement with the photon calibrator to within 10% [136].

A Newtonian calibrator (NCAL) prototype was installed at Hanford prior to O3.
The NCAL is a heavy wheel with weights arranged in a quadrupole and hexapole,
which spins at 20 Hz near the test mass. This creates a fluctuating gravitational
potential with different distance dependence (the quadrupole falls like 1/d?, the
hexapole like 1/d?). This may provide another check of the photon calibrator

accuracy.

4.6 Measurements

In this section, we explore how the DARM loop components C' and A; are mea-

sured.

The DARM model functions C(f,t) and A(f,t) are measured from swept sine
transfer functions of the DARM control loop. A swept sine transfer function is
a collection of single frequency excitations applied in successive steps across the

relevant frequency band of the detector.

The swept sine transfer functions have the closed loop DARM gain removed to
give transfer function measurements of each of the actuation stages and the sens-
ing function. Measurements of the detectors’ DARM control loops require the
detectors to be running at low-noise observation sensitivity. Once a full suite of
reference measurements is taken, the complete response of the detector to GWs
can be estimated.

To measure the PCAL to DARM transfer function, a known photon calibrator sine
wave excitation x(TPC) is applied to the detector while the DARM error signal d,,,

is recorded. This excitation is suppressed by the DARM control loop, forming the
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transfer function

dealf) _ C()
27 () 1+G()
The measurement suite is a collection of discrete sine waves swept over the fre-

quency range 5 Hz < f < 1 kHz. The closed loop gain, 1/[1 + G(f)], is then

(4.19)

measured independently with the standard in-loop suspension actuators at the
same frequencies as Equation 4.19. During times of clipping, we underestimate

the excitation x(TPC)

by the relative actuation strength Hpcar(t), and must divide
x(TPC) by Hpcar(t) to correct for this. The measured sensing function is then

constructed as a function of frequency:

derr(f)
o f)

Above 1 kHz, the photon calibrator’s signal-to-noise ratio and actuation strength

C)(f) = Hpear(t) [1+ G(f)] (4.20)

are low. In this region, the open loop gain G( f) is negligible, so

deu(f) _ C™=(f)
gy O(f)  Hpear(®)’

We obtain the sensing function at high frequency by performing a long-duration

f > 1kHz (4.21)

swept sine transfer function measurement. Each single frequency is driven for

many hours, and the response is compensated for time dependence using r¢(t).

To measure the three actuation stages, similar swept sine excitations, z;(f), are
applied to each stage at points upstream of the known distribution filters, F;(f),

such that the detector readout measures
derr(f) _ Hz Al(f) O(f)
zi(f) 1+ G(f)

where the index ¢ indicates either the upper intermediate U, penultimate P, or

(4.22)

test mass 7' stages. These excitations are then compared to an excitation from the

photon calibrator to isolate each actuation plant, as in Eq. 4.19, to form

(PC)
A (meas) __ 1 L (f) derr(f)
[H; Ai(f)] Hrons® dalh) of) (4.23)

The relative magnitude uncertainty and absolute phase uncertainty in a transfer

function swept sine measurement point is calculated by Bendat and Piersol Eq. 4.7.
The statistical uncertainty in a time-dependent parameter o, (¢), at any given time,
t, is derived from the measured coherence of the calibration lines used to form
them (see Equation 4.7, propagated as in [179]). These are used as part of the

MCMC and Gaussian process regressions in Section 4.7.
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4.7 Calibration error and uncertainty budget

The total calibration uncertainty budget consists of statistical uncertainty and sys-
tematic error. Statistical uncertainty is the intrinsic randomness associated with
measurements. Systematic error is the bias quantifying the difference between

model and measurement.

Our uncertainty budget is numerically evaluated by producing a large number
of realizations of the response function. To do this, we first estimate the DARM
model parameters using a Markov Chain Monte Carlo (MCMC) method. Next, we
stack all measurement residuals and estimate any deviations from the model using
a Gaussian process regression (GPR). Then, we sample our MCMC and regression
results to form ten thousand resultant response functions. These stacked response

functions form the calibration error and uncertainty budget.

4.7.1 DARM model parameter estimation

First, a measurement d = C'™)(f) or A(™es)( f) is obtained as described in Sec-
tion 4.6. Next, the models M = C/(model) (£ ¢ Xc) or Almodel)(f ¢, XA) are fit to the
measurement by varying the model parameters X = A¢ or A4 via a Markov Chain
Monte Carlo (MCMC).

An MCMC algorithm can quickly approximate the posterior probability distribu-
tions on the values of the model parameters given a log likelihood function and
assumed prior distribution. The log likelihood, log ,C(]\Zf | X, Jj, is a simple least
squares comparison between the model values M (X) given model parameters X
and measurement data d (as described in Section 4.6). All initial parameter esti-
mates in Ac and X4 were assumed to have flat prior distributions. The maximum
a posteriori (MAP) values of the posterior distributions are taken as the best fit
values. The ensemble of MCMC distributions are saved to be sampled for the total

uncertainty budget in subsection 4.7.3.

The MCMC posteriors are found for both detector’s frequency dependent models:
Cmodel (¢ ¢ Xo) and A™(f, ¢, X;). The best fit values are reported in Tables
4.1 and 4.2. The plots of the model fits can be seen in Figures 4.5 and 4.6. The
one- and two-dimensional posterior distributions for the Hanford sensing model
parameters Xc are shown in Figure 4.7. The MCMCs were performed using the
python emcee toolbox [182, 183]. The plot was produced with the corner
python plotting package [184].
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Figure 4.7: Posterior distribution on the Hanford sensing parameters Xc. Each
column represents one of the five sensing parameters: optical gain H¢, coupled
cavity pole foc, time delay correction d07¢, optical spring fg, and optical spring
inverse quality factor Q5'. Each point represents a sample in five dimensional
parameter space. The diagonal plots represent the variance on each parameter,
while the off-diagonal plots show the covariance of each parameter with another.
The dashed vertical lines on the diagonal plots represent the median and 1o values
for each parameter.
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4.7.2 Quantifying frequency dependent error and uncertainty

Throughout observing runs, collections of detector measurements are taken reg-
ularly. Every measurement taken is run through the MCMC method as detailed in
subsection 4.7.1. The measurement is then divided by its best fit DARM model to

produce a residual, as seen in Equation 4.5.

All of the residuals are gathered together into a collection of all measurements
taken over the observing run. These residuals have model-based systematic errors
removed, but still contain information about unknown systematic errors. We cre-
ate a distribution of functions that could describe this residual systematic error,
then we incorporate this distribution into the calibration uncertainty budget. To

accomplish this, we use a Gaussian process regression [185, 186].

A Gaussian process is a method of producing distributions over random functions.
The Gaussian process regression takes in data and a user-defined covariance ker-
nel. The kernel is an estimation of the similarity between any two points in the
domain, in our case the log frequency domain log( f). The regression then trains
on the provided data, tunes the covariance kernel hyperparameters to fit the given
data, and outputs a Gaussian posterior of potential function fits to the data. This
allows an uncertainty budget to be produced for arbitrary frequencies, creating a

continuous posterior distribution from discrete data.

From the resulting posterior distribution, we can extract a most probable fit func-
tion, known as the mean function. The mean function becomes the systematic
error 6CST(f) and AST(f) in Equations 4.15 and 4.18. We can also draw fre-
quency dependent uncertainties o§;: and 0§’ on the systematic error. Posteriors
representing o and og;Alj will be sampled for the total uncertainty budget in sub-

section 4.7.3.

The main assumptions here are that residual unknown systematic errors in our
measurements are Gaussian in nature, and nearby points in the frequency domain

have related systematic errors.

The O1 and O2 Gaussian process regression trains on the residual data with the
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following covariance kernel

k(log(f),log(f")) = 71 +log(f) - log(f")
+ (72 + log(f) - log(f"))”

N\ 2
+ 73 exp (— (log(/) gglog(f ) > (4.24)

where {71, 72,73, {} are the hyperparameters of the covariance kernel. O3 used
a slightly different covariance kernel, but yielded largely similar posteriors [94].
The hyperparameters are tuned by the Gaussian process via gradient descent to
best match the training data. This kernel assumes the detector plants’ systematic
error should be characterized in the log frequency domain, and that the error is
relatively smooth and can be captured by a squared exponential and quadratic

kernel.

An example collection of measurement residuals for the Livingston detector’s sens-
ing function and the resulting Gaussian process regression is shown in Figure 4.8.
Here we show the same data from Figure 4.5, but with additional measurements

from the entire observation run.

4.7.3 Total calibration uncertainty budget

The total calibration uncertainty budget for any given time is constructed from
many sampled response functions R(f,t) from Eq. 4.3. Each sample response
function is constructed by sampling from the posteriors of the response function

components. The response function components are:

1. The sensing DARM model parameters: Xo = {HC, feo,07c, fs, le}

2. The actuation DARM model parameters: XA ={Hy,éty,Hp,oTp, Hy,d771}

3. The sensing Gaussian process systematic error: §C“F(f)

4. The actuation Gaussian process systematic errors: S ASY (), SAGE (f), SASE (f)
5. The time dependent parameters: rr(t), kpy(t), ko (t), foo(t)

6. The photon calibrator radiation pressure strength: Hpcay (t)

Each of these components to the response have had posterior distributions con-

structed previously: (1) and (2) from the MCMC ensemble results on the reference
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Figure 4.8: Gaussian process regression of Livingston’s sensing systematic er-
ror 0CYT(f). The dark blue points are all the sensing measurement residuals,
§C/Cmodel(f ¢ Xc), taken over the entire observation run. This includes the
residuals from the Livingston reference measurement in the far right plots of Fig-
ure 4.5. The light blue line is the mean function representing systematic error. The
light orange envelope is the 10 uncertainty on the systematic error.

measurements, (3) and (4) from the Gaussian process regressions on the residuals
to incorporate unknown systematic errors, (5) from the calibration line measure-
ments and coherence, and (6) from the 0.79% uncertainty in Hpcar(t) from the

photon calibrator paper [180].

Ten thousand samples are drawn from each of these posterior distributions. These
samples are used to compute ten thousand sample response functions R;(f,t) ac-
cording to Equation 4.3. Each of these response functions is then divided by the
nominal response function, R (f ¢), which is constructed from the sensing
model C(™4) (f ¢ X)) and actuation model A4 (f ¢ X ). This gives ten thou-
sand relative response functions R;(f,t)/R™°dD( f t), each of which is plotted in
Figure 4.9. The median of this relative response function distribution constitutes
the overall systematic error, and the 68th percentile upper and lower contours are

the statistical uncertainty, both a function of frequency.
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Figure 4.9 shows the calibration uncertainty at the time of the most recent detec-
tion, GW170104. Table 4.3 reports the “extreme uncertainty” for calibration be-
tween 20-1024 Hz during GW170104. Extreme uncertainty refers to the maximum
and minimum of the systematic error £10 uncertainty within a certain frequency
band. This quantity is useful for searches requiring single number calibration un-
certainty values, and ignore calibration systematic errors or frequency-dependent

calibration uncertainty.

4.7.4 Calibration uncertainty for entire observing runs

Calibration error and uncertainty evolves over observing runs, affecting the results
of continuous and stochastic gravitational wave searches [156, 157, 159, 160]. To
assess the uncertainty of the detectors throughout an observing run, a total cali-

bration uncertainty budget is made for every hour of observing data.

Collapsing the uncertainty budgets along the time axis, the 68th, 95th, and 99th
percentile (1o, 20 and 30) limits are reported. The entire run’s calibration error
and uncertainty is often reduced to a single statement such as “over the course
of an observing run, the 1o uncertainty is no larger than XX % in magnitude and
YY degrees in phase” To do so, the extreme uncertainty is taken in magnitude
(XX%) and phase (YY degrees) using the 68th percentile contour over the relevant
frequency band.

4.8 Results
The final calibration uncertainty budget for GW170104 is shown in Figure 4.9. The
“extreme uncertainties”, or the maximum and minimum of error +1¢ uncertainty,

are reported in Table 4.3.

The O1 uncertainty quantification method from [136] reported 10% and 10 de-
grees uncertainties for GW150914. The O1 calibration uncertainties for all three
O1 events are in Table IIT in [187]. The uncertainty quantification method used for
GW170104 was repeated on the O1 events, reported in Appendix A of [5].

Systematic errors are known discrepancies between the detector model and mea-
surement. At low frequency, the systematic error is dominated by the Gaussian
process regression on the actuation function residuals. At high frequency, fluctu-
ations in the coupled cavity pole foc(t), which are not corrected for in the cali-

bration procedure, dominate the error budget.

Uncertainty everywhere is dominated by the Gaussian process regression on both
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functions. The uncertainty from the MCMC parameter fits on Xc and X 4, and the
uncertainty in the time dependent parameters rr(t), kpy(t), ko(t), and foo(t)
tend to be about an order of magnitude smaller than the Gaussian process regres-
sion results. The 0.79% uncertainty in the photon calibration strength Hpcaz (%)

contributes only to magnitude uncertainty.

The uncertainty and error for O2 strain data from November 19 through June 19
is shown in Figure 4.10. This percentile plot was created by taking all observing
time, producing an uncertainty budget for each hour, then compiling each budget
into the percentiles shown. Overall, the detector calibration is stable over time.
This consistency is largely due to the correction of the scale factors k7 (), kpy(t),
and k¢ () in the calibration pipeline models. Uncorrected systematic errors in the

cavity pole foc(t) are particularly visible at Livingston at high frequency.

During some parts of the second observing run, we have found that the reflection
photodetector of the PCAL system at the Hanford detector had suffered from clip-
ping. Clipping means that the PCAL laser light incident on the photodetector was
slightly off, giving a false low reading of how much power the PCAL was emitting.
This means any measurement taken using the reflection photodiode as reference
had a systematic error in scale. This includes the scale of any continuously mea-
sured time-dependent model parameters which are applied as correction factors
for the estimated detector output, h(t). We have quantified this systematic error
using the same system’s transmission photodiode, and included it as systematic
error in the overall response. The systematic error was on the order of a few per-
cent, and can be seen reflected in the upper percentiles of the Hanford uncertainty

in Figure 4.10.
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Figure 4.9: Total calibration error and uncertainty budget at the time of GW170104.
The uncertainty in the calibrated response function for the Hanford detector is on
the top, and for Livingston is on the bottom. The y axis is relative response er-
ror § R/ R4 and uncertainty o/ R™%), with magnitude on top and phase on
the bottom. The solid line is the median relative response, interpreted as the fre-
quency dependent systematic error on the model response R4V, The dashed
lines represent the 1o uncertainty on this error. Stacking ten thousand drawn re-
sponse function samples produces the numerical uncertainty budget shown here.
The extreme 1o uncertainties are presented in Table 4.3.
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Figure 4.10: Total calibration uncertainty percentiles for observing run two. The
percentiles are created for all of O2 data from November 30, 2016 to August 25th,
2017. Hanford’s uncertainty plots are the red on the top, and Livingston’s are the
blue on the bottom. The ¥ axis is relative response § R/ R™°) magnitude (top)
or phase (bottom), stacked for all times in the observing run. The dashed white
line is the median relative response, while the colors represent the 1o calibration
uncertainty for 68%, 95%, and 99% of the run’s time. The largest changes in the
calibration at Hanford were due to clipping of the photon calibrator laser misre-
porting the strength of our response. The largest calibration changes at Livingston
were due to fluctuations in the coupled cavity pole, which changes in time but is
not yet corrected for in our calibrated data.
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Table 4.3: Below are the extreme calibration uncertainty values for Hanford and
Livingston at the time of GW170104 in the 20-1024 Hz frequency range. “Extreme
uncertainty” refers to the maximum and minimum of error 10 uncertainty. The
plots informing this table can be seen at Figure 4.9

GW170104 Uncertainty Hanford Livingston

+10 Magnitude [%] 4.6 % 3.7 %
—1o Magnitude [%] -1.0 % -3.7 %
+10 Phase [degrees] 1.8° 1.9°

—1o0 Phase [degrees] -0.9° -1.4°

4.9 Fundamental uncertainty limit

In O1 and O2, the relative uncertainty in the photon calibrator actuation strength
Hpoap(t) was 0.79% [180]. This has been reduced to 0.41% in O3 [181]. This is
the fundamental limit on our uncertainty in the response R and therefore the GW
strain data h. The uncertainty in Hpcar(t) is dominated by uncertainty in the
laser power and test mass rotation [180]. To push this fundamental limit lower,
better measurements of the photon calibrator laser power and test mass rotation
must be made, or more precise methods of calibration outside of the photon cali-

brator may need to be considered.

In the end, the best way to strengthen our confidence in the systematics of the
dead-reckoned photon calibrator measurement is to compare other calibration
methods to its final results. The Newtonian calibrator is probably the best currently-
existing competitor with the photon calibrator [188, 189]. The NCAL has its own
share of systematic errors, and is less well-characterized than the photon calibra-
tor. But if these methods agree to some extent, with mostly uncorrelated system-

atics, we can have far greater confidence that the overall calibration is accurate.

Other methods of calibration were used in initial LIGO prior to the photon cali-
brator. The free-swinging Michelson is the most familiar, which calibrates DARM
to the wavelength of the laser frequency by allowing the end test mass to swing

and produce dark flashes in the Michelson.

The VCO calibration calibrates DARM to the green ALS DIFF control signal which
is in units of Hz. These Hz are related to meters of DARM motion by v, /v, =
—0L_/L.
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Both the free-swinging Michelson and VCO calibration suffer from the fact that
true DARM displacement cannot be directly injected into a fully locked interfer-
ometer. Instead, the quad suspension actuation must be calibrated into meters of
motion, which is then used as the calibration injection itself. The suspension can
only be calibrated in a high-noise state of the interferometer as well, leading to
less precision. This two-step transfer function calibration will incorporate more

uncertainty from more measurements than the single-step photon calibration.

4.9.1 SoCal: Simultaneous oscillator calibration

Requirements on the calibration accuracy may become extremely low, near 0.1%,
for astrophysical parameter estimation in future detectors such as Einstein Tele-
scope and Cosmic Explorer, where some detection SNRs will be > 100. Another
calibration method is under development at the Caltech 40m, colloquially known

as SoCal (for “simultaneous oscillator calibration”).

Figure 4.11 gives a diagram overview of the system. In short, SoCal uses the in-

frared laser to sense CARM motion, a green laser to sense a single arm’s motion,



123

10
—— DARM
—— CARM
1071 —— ALS COMM
03 green PDH
shot noise limit
10—2 Beat sensor shot noise
Prear = 30 mW
~ Photon calibrator
j 10_3 | Electrostatic drive
~
T
~10™*
[
Z
= 107° I
O
=
g 6
g 10 -
(&
1077
1078 |
10~ 2 -
10t 102

Frequency [Hz]

Figure 4.12: DARM, CARM, ALS COMM measured noises, as well as the current
ALS X green PDH shot noise limit. The ALS parameters and measurement are
taken from Section 3.3 and Figure 3.10, the DARM noise from 3.1, and the CARM
noise from 3.17. Currently, the huge dynamic range between ALS performance and
DARM renders a scheme like SoCal impossible: DARM is 107 times more sensitive
that ALS.

and then recovers DARM motion from the beatnote from those signals mixed to-
gether. The infrared PSL and auxiliary laser frequencies fpg and f4y x are locked
to the CARM and X-arm interferometer cavity lengths:

L,+L,
5
The green fringe 2f 4y x is adjusted such that f4yx is within one FSR of fpgy,

frsL o favx o< Ly. (4.25)

then the two beats are mixed on a beatnote sensor and low-passed to produce

freat such that
~L,

foeat = | frst — favx| x ———2

5 (4.26)

which is proportional to the DARM signal in Hz.

If a strong calibration line AL, is injected at a frequency f.4, this will modulate
the beatnote fy.,; with sidebands fyeq; + f.e;. The usual DARM sensor, the DCPDs,
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will detect the signal at f.,; as well. The DCPDs can then be calibrated into Hz

and meters using the output fpeq: £ fear-

In reality, we will be detecting the modulated power on the beatnote sensor Ppeg;
which comes from the laser fields E pgr, and E v x. Both laser fields will be fre-
quency modulated by the change in arm length AL, at frequency w,, but the PSL
signal will be modulated by the CARM signal AL, ~ AL, /2:

Epsp = Epet (1 + ikALy e + ik AL e~ ") (4.27)
Eavx = Eoe™! (14 ikALye™" 4+ ikALe ™) (4.28)
The modulated power in the beatnote P, that is proportional to DARM will

come from the cross terms between the fields. Ignoring small terms proportional

to AL, AL, yields

Poeat = Epg Eavx + EpstEyx (4.29)
Poeat = 2E,E,(cos((wp — wa)t) + 2k(AL, — AL, ) cos(wet) sin((wp, — wy)t)).
(4.30)

Here we explicitly see the DARM term AL_ = AL, — AL, at a frequency w, in

the sine quadrature of the beat frequency wyeq: = wp — W

4.9.1.1 Advantages

The advantage of this technique is, to zeroth order, the systematic error is domi-
nated by knowledge the length of the arms and the wavelength of the laser, both
of which are known to 1 ppm. The uncertainty can be made negligible compared
to the systematic uncertainty by increasing the drive signal or the integration time
to achieve a suitable SNR.

Another advantage is the beatnote sensor can be relatively narrow audio-band
due to the length of the LIGO arms. Because the FSR = 37.5 kHz, the beatnote
frequency fpeq: can always be made to be within FSR/2 by changing the fringe

the green is locked on.

The demodulation of the audio-band calibration line can be done digitally. This
removes the noise complexity of an RF detection scheme with crystal oscillator

noise.

The SoCal frequency calibration needs only to be performed once, and can be
used to more accurately calibrate the more versatile photon calibrator or electro-

static drives. If very large calibration lines are not possible, required SNRs may be



125

achieved by integrating a line at frequency f; for long times 7":
A cal\J1
SNR(f;) = ﬁy—l(f) (4.31)
Su,dof(fi)

where AL, ( f;) is the modulation line with units of meters, and /S, qot(s,) is the
ASD of the noise in the degree of freedom in units of m/v/Hz.

Translating SNRs to uncertainty is done in Appendix E, Eq. E.25. To achieve a rel-
ative uncertainty \/ Var[Avea(fi)]/Avea(fi) of 0.1% with an SNR, = 10, around

n = 50000 averages are required. This translates to roughly 7" = n/ f, seconds,

where f; is the frequency binwidth. If we place our calibration line at frequency
feas = 50 Hz, then a frequency binwidth f, = 10 Hz is reasonable, and the cali-

bration can be accomplished in n7" = 5000 seconds.

However, with a short ASD time of T = 0.1 seconds there is a tradeoff with SNR.
The signal of the photon calibrator and electrostatic drive for 7" = 10 s is plotted in
Figure 4.12 [180]. Appendix E explores the line height estimate in depth, including

the bias and uncertainty.

4.9.1.2 Challenges

Figure 4.12 shows the noise levels relevant for SoCal. The biggest issues with this
scheme are the infrastructure required to make it feasible, and the huge calibration
line required to ensure the signal shows up above the CARM noise and green PDH

shot noise.

The infrastructure changes would be overall improvements to the ALS subsys-
tem to make it possible to reach the green shot noise limit. Current ALS limits
are the VCO which drives the laser frequency control and phase-wrapping from
relative motion between the suspended in-vacuum and in-air tables. Putting ALS
sensors in-vacuum at the vertex and developing a better green frequency stabiliza-
tion scheme is required. Also, choosing green reflection parameters with SoCal in

mind could push down the green shot noise limit.

Another limit is the beatnote sensor shot noise. The level of light on the beatnote
sensor will need to be extremely high to achieve an appreciable SNR, even with an
extremely strong calibration signal. Figure 4.12 shows the shot noise for a phase-
sensitive PD with 30 mW.

The very large calibration line must make up the factor 10000 difference between

DARM and the green shot noise. Also, the line must clear the IMC sensing noise
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to show up in CARM. Achieving these lines with the current low noise actuators,
the photon calibrator and low-noise electrostatic drive, is feasible, but may require
switching to the high-noise electrostatic drive setting or coil drivers on the upper

stages, which is not the low-noise state we want to calibrate DARM in.

Very large drives cause massive upconversion as sensors and controls saturate.
These can not only pollute the spectrum, but cause a nonlinear response in the
sensors we are trying to calibrate. Noise must be reduced to the point where the
calibration input required is feasible for the interferometer to handle without los-
ing lock. This can be achieved with a lower calibration line amplitude, but a longer

integration time.

Systematic errors may arise from auxiliary controls in the interferometer. For in-
stance, angle-to-length coupling will be a problem if the co-alignment of the two
beams in the arm is bad. Torque is known to couple to length, and could couple
to the two beam differently. For this type of calibration, angle-to-length coupling
to DARM, CARM, and ALS will have to be monitored and minimized, so the ALS
and CARM signals are following the true lengths of the cavities accurately.

Another source of systematic error is the fact that CARM is stabilized to the sum
of common arm length and the PRC. The huge length drive required for this cali-
bration method will show up in the PRCL control. PRCL will have to be notched

at the frequency of the drive prior to calibrating there.

Finally, the interferometer is known to change over time, with thermalization and
realignment and glitches slightly changing the interferometer response. If long
integration times are required, systematics from interferometer fluctuations in op-

tical gain will need to be incorporated into the final uncertainty budget.

4.10 Future Work

As we reduce the calibration uncertainty, properly characterizing systematic er-
rors becomes much more important for precision astrophysics. Any systematic
errors left unaccounted for in the calibrated data can result in systematic errors
in binary black hole source parameters, compact binary merger rates, or tests of
general relativity. Our direct measurements of our detector control loop plants
combined with the physics-motivated response function model provide a sanity

check that our understanding of the interferometer is close to correct.
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4.10.1 Other sources of calibration systematic error

The uncertainty budget does not include error from test mass elastic deformation
due to the PCAL laser exciting test mass vibrational modes. Preliminary evidence
suggests that above around 3 kHz, elastic deformation has a significant effect on
the calibration accuracy. Elastic deformation due to the PCAL must be further

understood, monitored, and included in the uncertainty budget directly.

There is a difference between the quadruple pendulum response to an actual grav-
itational wave versus its response to the photon calibrator. A gravitational wave
displaces the entire quad pendulum in the lab frame, whereas the photon calibra-
tor only pushes on the test mass. The effect of this difference on calibrated GW
data is on the order of about 1% at 10 Hz, and increases at lower frequencies. This

now must be considered quantitatively as uncertainties approach this level.

4.10.2 Conclusions

The uncertainty and systematic error estimates reported in this chapter represent
a comprehensive characterization of our Hanford and Livingston detector calibra-
tions for observing run two. In Advanced LIGO’s lowest noise region, from about
20 Hz to 1 kHz, the uncertainty in the calibrated data has been reduced from what
was previously reported in [136]. The uncertainty estimates for O2 give more re-
fined results, with uncertainty growing at extreme frequency regions below 20 Hz

and above 1 kHz, and reduced uncertainty in the low noise frequency region.

Interesting astrophysics exists at high GW frequencies. The equation of state of the
neutron star, higher multipoles of GW emission near merger (already detected in
[11]), GW “echoes”, supernova cores bounces, and unexpected GW detections are
all potential exotic phenomena that high frequency GWs carry information about.
Calibration accuracy at high frequency will be important for learning about each

of these extreme GW regimes.

GW170104’s detection and parameter estimation are primarily limited by noise,
and not by calibration uncertainty. As Advanced LIGO becomes more and more
sensitive, the signal-to-noise ratio of some detections will become quite large (as
high as 100 or more), and calibration uncertainty will begin contributing signif-
icantly to source parameter estimation uncertainty. With more observing time
comes more detections, enabling new tests of general relativity which will be lim-
ited by the precision of our detector data. Precision astrophysics demands the

best understanding of our calibrated data possible. The methods described in this
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paper were developed primarily to enable the best science possible from LIGO’s

gravitational wave detections.
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Chapter 5

CORRELATED NOISE

Advanced LIGO operates in DC-readout configuration, with two DC photodetec-
tors (DCPDs) at the antisymmetric port [41, 190]. The signal from differential arm
motion (DARM), and therefore gravitational waves (GWs), appears in the sum of
these two DCPDs. Noise from the interferometer, known as correlated noise, is
measured identically in both DCPDs. Sensing noises, like shot noise and photode-

tector dark noise, are incoherent between each DCPD.

Quantum shot noise tends to dominate the DARM spectrum over most of the GW
detection band [22, 47]. It is possible to measure the correlated noise by measuring
the cross spectral density (CSD) between the two DCPDs [191, 192]. Correlated
noise measurements are useful because they expose noise sources under the quan-

tum shot noise.

5.1 Introduction
There are a number of complications that must be considered for the correlated

noise measurement:

1. the DARM loop must be measured and removed,
2. injecting squeezed light correlates the shot noise in the DCPDs,

3. alarge number of averages must be taken to integrate away the shot noise

to reach the true correlated noise floor, and

4. detector glitches which inject large transients into DARM must be avoided.

The correlated noise measurement requires hours of data to integrate away shot
noise. However, large glitches occur on the order of one every fifteen minutes,
spoiling the mean-averaged power spectral densities (PSDs) of the DCDPs. Large
glitches can be “gated” by removing the glitchy data by hand, but the measurement

is still susceptible to small glitches that do not meet our gating criteria.

To mitigate having undetected glitches in the DARM data, it is often useful to

use median-averaging for estimating PSDs and CSDs. Median-averaging has an
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intrinsic bias as opposed to mean-averaging. For PSDs the bias factor is understood
to asymptote to log(2) [57, 193]. For CSDs, the result is covered in Chapter 6.
Another useful technique for removing CSDs containing glitches while still using

mean-averaging is “PSD rejection”, covered in Appendix F.

In this chapter, we first review the DARM control loop, review the method for
extracting the correlated noise from the DCPD data, and show results from the
correlated noise floor estimation of the LIGO Hanford interferometer during Ob-

serving Run 3.

5.2 Method
Here we overview the method of extracting the correlated noise spectrum, assum-

ing there is no squeezing injected into the antisymmetric port. This section follows

) l —
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Figure 5.1: Simplified DARM control loop diagram, including the two-
photodetector sensing scheme. A and B are the transfer functions of the two
DCPDs, plus the photodetector analog electronics and ADCs, with units of
[cts/W]. Y is the actuator with units [m/cts]. Z is the interferometer response to
differential arm motion, in [W/m]. A 50:50 beamsplitter splits the light from the
interferometer onto the two photodetectors. The signals from DCPD A and B, d,
and d;, are summed to form the DARM error signal, d., and subtracted to form
the null channel, d_. The shot noises n, and n; are uncorrelated sensing noises
added to d,, and dy, respectively. The correlated noise n. is here simplified as being
entirely displacement noise causing actual motion of the interferometer optics.

5.2.1 Correlated noise without squeezing
Figure 5.1 shows a simplified DARM loop. We would like to measure the corre-
lated noise coming from the interferometer, (n., n.). However, shot noises (ny, n,)

and (n;, ny) drown out the correlated noise for most of the bandwidth. Addition-
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ally, the DARM control loop that keeps the interferometer on resonance correlates
sensing noise by injecting it into the loop as mirror motion. This is how shot noise
on DCPD A can appear on DCPD B, only in the bandwidth of the DARM loop
(< 50 Hz). By cross-correlating the DCPDs (d,, d) and removing the DARM

loop, the correlated noise can be extracted.

The open loop gain G of the DARM loop is just the product of all the loop transfer
functions, while the DARM sensing function C' is usually calculated from photon

calibrator displacement to DARM error signal in units [cts/m]:

G = %YZ(A + B) (5.1)

C= %Z(A + B) (5.2)

Solving the loop in Figure 5.1 for the DARM error signal, aka the sum channel d,
and the null channel d_:

dy (C'ne+ng +mp) (5.3)

T1-G
d_=ng,—my (5.4)

Taking the power spectral density of the sum and null channels yields

(dyrdy) = ﬁ(w (1ies 1) + {1y 1) + (1)) (5.5)

<d*7 d*> = <na7 na> + <nb7 nb> (5.6)

assuming that n., n,, and n,, are all independent, so e.g. (n,,ny) = 0. If we cali-
brate the DARM error PSD into meters by multiplying (d, ,d. ) by [1 — G|?/|C|?,

the shot noise terms (n,, n,) and (n;, ny) still appear.

Solving the diagram in Figure 5.1 for split DARM error signals d, and d, yields

1
2(1 — G)<<

Gng + (2 — G)np + Cn,.) (5.8)

d, = 2 — G)ng + Gny + Cne) (5.7)

b=50-a)

If we look at the power spectral densities of each individual (d,, d,) and (d,, dy)
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and the cross spectral density (d,, dy), we get

1

<daa da) = M(p - G|2<naana> + |G|2<nb>nb> + |C|2<n07nc>) (5-9)

() = =g (G mema) +12 = GRGmm) +[CP{nend)  (5.10)
1

(da, dy) = m(G@ = G")(nayna) + G (2 = G)(np, ) + |C(ne, ne)).

(5.11)

Using Egs. 5.9, 5.10, and 5.11, we can solve for the correlated noise (n.,n.). Re-
calling that (dy, d,) = (d,, dy)", the correlated noise is

IC)? (ne, ne) = <\2 — G*{dq, dy) + |G[*{dy, d,)
—G@—GW@@@—@@—GW%%O (5.12)

By measuring the individual DCPD signals d,, and d;, and applying the DARM loop
gain G and sensing function C, the correlated noise from the interferometer can

be directly estimated.

Figure 5.3 shows the O3 correlated noise budget for (n., n.).

5.2.2 DC readout with squeezing

Now suppose that squeezed light is injected into the antisymmetric port of the
interferometer. This correlates the noise on each DCPD, i.e. (n,,n,) # 0 [195].
Here we review the DC readout detection scheme, how squeezing correlates the
shot noise appearing on each photodetector, and calculate the squeezed shot noise

cross spectral density (n,, n,) for a DC readout interferometer.

To calculate (n,, ny) we briefly review shot noise in a DC readout interferometer
with split photodetection, as shown in Figure 5.2. This will follow the derivation

and notation in [194].

From Figure 5.2, L is the local oscillator, ('is the quantum vacuum, S is the DARM
offset light, and s is the gravitational wave signal plus the output squeezed vac-

uum.

The capital letters refer to the carrier, while the lowercase letters refer to the audio

sidebands that beat with the carrier. DC readout operates with no local oscillator
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Figure 5.2: Diagram of the DC readout detection scheme with split photodetection
[194]. The beamsplitter is 50:50 with the reflection convention designated by the
plus and minus signs. The DCPD sum n = n,+n; contains the information from
the interferometer, including squeezed vacuum and gravitational wave signal. The
DCPD null n_ = n, — n; contains the information from the quantum vacuum.

L=0,anda homodyne angle ( = /2, which puts the gravitational wave signal
entirely in the amplitude quadrature upon exit from the interferometer. S is set
to some non-zero value to beat against the squeezed vacuum 3. For the shot noise
derivation, we assume that the GW signal and interferometer correlated noise is

Z€rO0.

The light incident on each DCPD A+ dand B +bis

(

(§+

Uy

oy

A+ -

Sl
I

+E+@ (5.13)

»y

S

I
G-l
[\] (\]

B+ —E—@ (5.14)

First, recall that the local oscillator L =0. Second, the homodyne angle definition

from [22] for the signal 5'is:

s¢ = s1s8in(¢) + s2 cos((). (5.15)
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The Advanced LIGO interferometers are dual-recycled resonant-sideband extrac-
tion in DC readout configuration, meaning the signal-recycling cavity is tuned to
¢ = m /2. This puts the GW signal, upon exit from the interferometer, in the ampli-
tude quadrature s;. It also places the static DARM offset light S, in the amplitude

quadrature.

For now, we ignore contrast defect and set the homodyne angle { = 7/2 using

Eq. 5.15, so
- S
S = 5.16
() 510

picks out the output amplitude quadratures s; = s and ¢; = ¢. The light is con-
verted into current on the DCPDs, represented by N, + n, and Ny, + ny.

1

Ny +n,=|A+al*= 5S2+Ss+S€ (5.17)
1

Ny +ny = |B+b]* = 552+Ss—512 (5.18)

where terms proportional to s?, s/, and ¢? are small enough to be negligible. N, =
N, = S?/2 represents the DARM offset light being split in half by the beamsplitter,
nominally N, = N, ~ 20 mW in Advanced LIGO.

Removing DC components represented by the capital letters from Eqs. 5.17 and

5.18, we can calculate the shot noise sum n, and null n_:

ny =25s (5.19)
n_ = 25¢. (5.20)

This illustrates how, with the DC readout scheme, the sum signal picks out the
squeezed vacuum signal from the interferometer s and the null signal picks out

the unsqueezed vacuum /.

The squeeze parameter r is used to quantify how quantum measurement uncer-
tainty increases and decreases between quadratures [196]. The output squeezed
vacuum in s is phased such that the maximum squeezing e~" occurs in the am-
plitude quadrature at the output. The quantum vacuum in ¢ has no squeezing.

Calculating the power spectral densities of the sum and null signals:

(ny,ny) =45(s,s) = 45%™*" (5.21)
(n_,n_) =4S*{,() = 45*. (5.22)
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Here we have assumed that the unsqueezed quantum vacuum shot noise (¢, () = 1,

which follows from our definition of quadratures in Section A.3. The sum shot

noise PSD is reduced by the squeeze factor e 2
dBsqz
setting e = 10~ 0

", which is often expressed in dB by

The shot noise cross spectral density (n,, ny) is the important quantity that arises
when calculating the correlated noise between DCPDs. From Egs. 5.17 and 5.18,

the cross spectral density is found:
(ng,np) = S*(s +{,5 — ()
= 52(<S78> - <€7€> + <8’€> - <€7 S>)
(ng,mp) = S*(e™* — 1) (5.23)
where we have no correlation between our squeezed and unsqueezed vacuum, so

(s,0) = (¢, s) = 0, and we have used the definitions from Egs. 5.21 and 5.22 and
written (s, s) = e * and ((, () = 1.

A key observation here is that, for true squeezing where r > 0, (n,, ny) is real and

negative. This implies that

1. when detecting squeezed light, the power measured on each DCPD is anti-

correlated,
2. because (n,, ny) is real, (ny, n,) = (ng, np),

3. correlated noise due to squeezing will have an opposite sign to correlated

noise coming from the interferometer (n., n.), which must be positive.

Figure 5.5 plots the measured correlated noise with squeezing, illustrating how in

the shot noise dominated frequency band the phase is 180°.
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5.2.3 Correlated noise with squeezing

Recalculating the DCPD spectral densities including (n,, n,) terms yields

(da, do) = m (\2 = G*(na, na) + |G*(np, mp) + |C*(ne, )

+2(G + G* —|G*)(n,, nb)> (5.24)
(do, dy) = m <\G|2(na, na) + 12 = G*(ny, ) + [C1* (e, me)

+2(G + G* — |G]*) (g, nb)> (5.25)
(da, dy) = m (G@ = G"){na, na) + G*(2 = G) (ny, mp) + [C* (e, )

+2(2—G—G*+2|G|2)<na,nb>>. (5.26)

If we compute the correlated noise using the RHS of Eq. 5.12 with Eqgs. 5.24, 5.25,
and 5.26, we get

|C2 (ne, ) + 4(ng, mp) = <|2 — G {dq, dy) + |G*(dy, d,)
- G2 -G ){da,da) — G*(2 = G){ds, db>> (5.27)

Figure 5.4 plots this expression as the correlated noise with squeezing trace.

5.2.4 Squeezing level estimate from correlated noise

If we have already estimated the correlated noise (n.,n.) during a time without
squeezing, then it’s possible to estimate the squeezing level. This can be especially
useful if the squeezing is frequency dependent, as it was at LIGO Hanford during
03.

We assume here that the correlated noise is the same for both squeezing and non-
squeezing times. This is not true where quantum radiation pressure noise (QRPN)
is significant, as anti-squeezing will enhance the QRPN contribution to correlated
noise [89].
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First, we write the new expressions for the DCPD sum and null PSDs including

squeezing:
() = _1G|2 (0, 1) + (1, 1) + 20, 10 + |C (e, )
1 2
(dy,dy) = m(<”+a”+> +|C(ne, ne))
(dy,dy) = i 1G|2( 458%™ + |C*(ne, ne)) (5.28)
< > <na7 na) <nb’ nb) - 2<na7 nb>
<d7, ) =(n_,n_)
(d_,d_) = 45* (5.29)

where we used Egs. 5.21 and 5.22 to simplify to the final expressions.

2r

Then, solving for the squeeze ratio e*" using Eqs. 5.28, 5.29, and the correlated

noise (n., n.) calculated via Eq. 5.12:

-2 _ 1= GI{dy, dy) — O] (ne, me)

) (5.30)

Figure 5.6 plots the squeezing levels estimated via Eq. 5.30.

5.3 Results

All spectral densities in this section were taken using median-averaging to avoid
the frequent glitches, with phase compensated and mean-to-median biasing cor-
rected according to Chapter 6. They were also verified using the “PSD rejection”

technique for removing glitches described in Appendix F.

The unsqueezed correlated spectrum in Figure 5.3 gives a broader picture of the
“mystery noise” limiting LIGO sensitivity at 30 Hz and below. Above 3 kHz, the
correlated noise is consistent with the laser intensity noise coupling to DARM.
Around 300 Hz the correlated noise approaches the coatings thermal noise limit.
Below 300 Hz, conventional “mystery noise” which limits DARM also limits the
correlated noise. Around 1 kHz, there is a large gap between the measured corre-

lated noise and the expected sum that is also not understood.

The remaining plots compare correlated noise results from a single fifteen hour
lock stretch, where squeezing was injected for six hours, then the squeezer was
turned off for nine hours. Figures 5.4 and 5.5 plot the amplitude and phase of the

correlated noise as calculated for both the no squeezing time (Eq. 5.12) and the
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Figure 5.3: LIGO Hanford correlated noise budget during nine hours without
squeezing in August 2020. The correlated noise from the interferometer, seen here
in orange, is calculated via Eq. 5.12. This can be directly compared to the sum of
correlated noise budget traces, seen in black.

squeezing time (Eq. 5.27). Also plotted in Figure 5.4 is the unsqueezed DCPD sum
PSD (Eq. 5.5), the squeezed DCPD sum PSD (Eq. 5.28), and the DCPD null (Eq. 5.29).

Eq. 5.27 shows how classical and quantum correlated noise both show up in the fi-
nal expression. Recall from Eq. 5.23 that the quantum correlated noise is negative.
This causes the classical and quantum correlated noise to cancel each other out,
leading to classical and quantum correlated noise dominated regimes. In Figure 5.4,
the crossing of the squeezed sum PSD in green and the null PSD in brown, corre-
sponds to the dips in the correlated noise, signifying the change from classical- to

quantum-dominated correlated noise.

In Figure 5.5, the measured phase of the squeezed correlated noise is shown to
be 180° in the quantum-dominated regime. The unsqueezed spectrum does not

exhibit this phase change.

Because we have the squeezed DCPD sum, null, and the classical correlated noise

estimates all from the same lock stretch, we can better estimate the squeezing lev-
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Figure 5.4: LIGO Hanford correlated noise during six hours with squeezing and
nine hours without squeezing on September 16, 2020. Squeezed light correlates
the shot noise detected on each DCPD, as calculated in Eq. 5.27. The dip at 150 Hz
and 5 kHz comes from the interaction of squeezed shot noise and classical noise
canceling each other out. Figure 5.5 plots the phase of the correlated noise traces
shown here. This plot mirrors a similar study done at LIGO Livingston [197].

els using Eq. 5.30. Expressing the squeeze ratio in terms of dB such that e~ =

sqz

10-°% yields the estimate shown in Figure 5.6. The squeezing exhibited by
the LIGO Hanford detector is frequency-dependent, with the largest squeezing
of ~ 2.5 dB in the 100 to 300 Hz region, up to 1 dB above 1 kHz. Hanford’s O3
unintentional frequency-dependent squeezing is currently under further investi-

gation.
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Figure 5.5: Phase of the correlated noise with and without squeezing. The sign flip
at at 150 Hz corresponds to the transition from classical correlated noise (n., n.)
dominating the spectrum to squeezed shot noise (n,,n;) dominating. Figure 5.4
plots the amplitude of the correlated noise traces shown here.
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Figure 5.6: Squeezing levels estimated by removing correlated noise from the

squeezed DCPD sum, according to Eq. 5.30. This estimate is good in the region

where shot noise and correlated noise are about equivalent, or everywhere below
~ 70 Hz.
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5.4 Future Work

The correlated noise budget is useful for verifying the DARM noise budget traces,
and determining where the classical noise is under the quantum shot noise. The
broad range of unexplained noise in the correlated noise, from familiar “mystery
noise” at low frequency, to the “correlated mystery noise” between 1 and 3 kHz
which is only a factor of 3 below squeezed DARM, means there is much important
work remaining to be done understanding what lies below the shot noise. If they
can be improved, correlated noise spectra could verify the Advanced LIGO thermal
noise floor estimated from the coating Brownian noise for the titania-doped silica

tantala optic coatings [32].

The correlated noise could potentially be used to improve sensitivity to continu-
ous gravitational wave signals, such as the stochastic background or continuous
waves from spinning neutron stars. The injection of squeezing can confuse such

an analysis if the quantum or classical correlated noise is not stable.

Future detectors, including A+, are expected to use balanced homodyne detection,
rather than DC readout detection [198]. Balanced homodyne uses a local oscillator
to beat with the GW signal rather than light from the interferometer via a DC off-
set in the DARM loop. The usual two-photodetector detection scheme would not
allow for the correlated noise spectrum to be measured, since the amplitude noise
on the local oscillator would dominate that spectrum [194]. To recover the corre-

lated noise spectrum a four-photodetector scheme would need to be employed.
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Chapter 6

PROBABILITY DISTRIBUTIONS FOR SPECTRAL DENSITIES

Below we review the probability distributions relevant for analyzing noise in the
frequency domain. The methods explored below are used in the analysis in Chap-
ter 5.

The goal of this chapter is to derive the probability distributions for power and
cross spectral density estimators, and provide convenient formulae and examples
for proper statistical treatment of these estimators. Additionally, we discuss the
pros and cons of mean-averaging and median-averaging using Welch’s method,
and explicitly calculate the expected mean-to-median bias for both power and

cross spectral densities.

Often, the jitter in an estimate of a power spectral density or transfer function is
called “noise”, when in fact it is just the manifestation of statistical uncertainty in
the estimate. True noise in a gravitational-wave detector is any power measured
in the gravitational-wave signal channel which is not gravitational-wave signal.
Shot noise, thermal noise, seismic noise are all sources of true noise that obfuscate
signal. True noise can never be “averaged away”, but statistical uncertainty can be

reduced by taking additional averages.

For precision interferometry, it is imperative to understand uncertainty in our esti-
mators. Blackman and Tukey provide a practical understanding of the statistics of
power spectra derived from Gaussian noise [199]. Goodman derived the general
probability distributions for spectral matrices as complex Wishart distributions,
and extended this understanding to the distributions describing multiple coher-
ence functions and transfer functions [200-203]. Bendat and Piersol summarize
the statistics of spectral densities and transfer functions, and derive approxima-
tions that are good in the limit that the number of averages n — oo and coherence
2 — 1[174].

In this chapter, we start from Gaussian noise and derive the distributions associ-
ated with a single-input single-output linear system. Also provided are numerical

verifications of the derived formula.
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6.1 Random variables and probability functions

The fundamentals of noise are couched in random variables and their associated
probability distributions. A noise process, or random process, is the set of all pos-
sible data that could be generated from a random variable z(¢) [174]. Although it
is impossible to exactly predict an observation from a random variable, the results

can characterized via probability density functions (PDFs).

We define fy(z) to be the probability density function of a stationary, ergodic
random variable X such that fy(z) > 0 Vz and

b
Probla <z < b] = / fx(x)dx. (6.1)

In words, the probability that x falls between the values of a and b is the integral
of the PDF from a to b. As the name suggests, the PDF can be thought to have
units of [probability /units of x].

If we let @ — —o0 we arrive at the definition of the cumulative distribution func-
tion (CDF) Fix(x):

Fe(e) = [ fuu)dy (62)
If we let © — oo then Fy(x) — 1.

The expected value, or mean, p is a weighted integral over all possible values of x:

(2) = j = / " efla)d. (63)

o0

The median p is the value of = such that Fy(p) = 1/2.

The variance o2 is the mean square value about the mean of the data:

o0

7= (= @) = () = @ = [ @ pPhe@dn 6

—00
Variance in the time domain will often be synonymous with power in the fre-

quency domain.

The characteristic function px(t) is the Fourier transform of a probability density

function:
on(t) = (M) = / Frl(z)e®dg. (65)
R

Characteristic functions are another way of describing the random variable X', and
are useful tools for deriving relationships between probability density functions,

as we will use in Sections 6.10 and 6.11.
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6.2 Spectral analysis
The fundamental building block of spectral analysis is the Fourier transform:

Flz(t)] = X(f) = /_00 x(t)e’””ftdt (6.6)

[e.9]

A Fourier transform breaks down a signal in the time domain x(t) into its periodic

components in the frequency-domain X ( f).

In general, the frequency domain extends from negative frequencies to positive
frequencies: f € (—o00,00). If 2(t) is real-valued, then its Fourier transform is
Hermitian symmetric: X (f) = X*(—f). Thus all frequency information in z(t)

is contained in the positive frequency domain of X (f).

Parseval’s theorem for Fourier transforms conserves energy in both the time and

frequency domains:

/ (o)t = / CIX()1r. (67)

—00 oo

The autocorrelation function R, (7) and cross correlation function R, (7) are mea-
sures of how related a signal x(t) is with itself or another signal y(¢) over some

time lag 7:
R.(7) = (x(t)x(t + 7)) (6.8)
Ray (1) = (z(@)y(t + 7)) (6.9)

The double-sided power spectral density and double-sided cross spectral density, =, ( f)
and Z,,(f), are the Fourier transforms of the correlation functions R,(7) and

Ry (T):

=:(f) = /OO Ry (T)e ™7 dr = /OO (x(t)z(t +7))e 2 Tdr (6.10)

Eay(f) = /OO ny(T)e’ﬂ”deT = /OO (x(t)y(t + T)>e’i2“f7dr (6.11)

on the interval f € (—o0, 00). The spectral densities =,(f) and =,,(f) can also

be expressed as the product of Fourier transforms:

=(f) = / (X ()X (g))e~ 20Dt (6.12)
=0 (f) = / (X (F)Y (g))e " 0-Dtdg (6.13)
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Since we cannot measure negative frequencies in reality, and we measure real-
valued signals z(t) and y(t), we define the single-sided power spectral density and

single-sided cross spectral density

Se(f) = (2, 2) = 22:(f) (6.14)
Sﬂﬁy(f) = <ZL’, y> = 2Eacy(f> (6.15)

on the interval f € [0, 00).

Finally, we define the coherence of two signals x(¢) and y(t)

EMeals

") = 580

(6.16)

6.3 Estimators

Once the PDF of a random variable is known, its future behavior is as well-known
as possible. The above definitions are good if infinite samples are taken over in-
finite time. The difficulty lies in estimating the PDF from finite data, as well as

estimating the confidence of our estimate.

6.3.1 Properties
For this section, we will take ® to be some statistic we want to know, such as the

true mean, and @ is its estimator, such as the sample mean.

The estimator bias b is the expected value of the difference between an estimator

and its true value:
bg = <<i> — <I>>. (6.17)

If b = 0, the estimator ® is unbiased. If b # 0, the estimator is biased, meaning the

expected value of the estimator does not equal the true value.

The quality of an estimator can change with the number of samples n. An estima-
tor is consistent if, as the number of samples n increases, the estimator converges
to the true value. That is, for any positive real e,
lim Prob[|® — ®| < ¢ =1 (6.18)
n—o0
i.e. the probability that the difference in the estimate and true value is less than

arbitrary € is one.

We will find that several estimators of important spectral quantities, including
the sample coherence, sample median PSD and CSD, are biased but consistent
quantities (Sections D.7, D.4, and D.6).
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6.3.2 Example estimators

Suppose we have a data set z; of N samples. The sample mean i is
| Nl
h= ; z; (6.19)

The sample median p is the middle value of the sorted x;. In other words, if x; are
sorted, then p = x /5. The sample median tends to be more robust to outliers than

the sample mean, as we will see in Section 6.14.

The sample variance 62 is

o? = ) (& —p)’ (6.20)

In reality, signals have a finite length 7" and have an finite sampling frequency fs.
To approximate the Fourier transform for a real signal z[n] £ z(t = n/f,) with
integer N = T'f, total samples and integer n € [0, N — 1], the discrete Fourier

transform is

X[k] = x[n]e~2mkn/N. (6.21)

Here k = Nf/f, is a integer proxy for frequency. The lowest non-zero fre-
quency measurable is the resolution frequency or binwidth and occurs for k = 1,
or f, = fs/N = 1/T. The highest frequency measurable is the Nyquist frequency,
INyquist = fs/2, and occurs when k = N/2.

Note that Eq. 6.21 does not preserve power normalization. In section 6.14 we will
introduce a prefactor of \/m, motivated by Parseval’s theorem, to conserve
power. If 2[n] has units of volts V, this will give X [k] units of V /v/Hz. Addition-
ally, if a window is used, the power loss from the windowing function must be

accounted for in the prefactor as well.

The estimated power spectral density S, and estimated cross spectral density Sxy are

2

1K) = (o) = 5 XA (6.22)
Sulk] = (2.9) = 5 X BV IHL (6.23)

S,[k] and S, k] have units of V?/Hz. The factor of 2 comes from the fact these

are single-sided spectral densities.
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The advantage of spectral densities is, no matter the length of the signal, the noise
level will remain constant. This is due to the normalization by the sampling fre-
quency fs, which adjusts for the fact that longer signals will have a finer binwidth
fp, so the same noise power is divided among more bins. The disadvantage is sig-
nals are not constant for spectral densities: they grow like the number of samples
N. If a signal has infinite fidelity, all of its power will appear in a single bin no
matter the binwidth f;.

These functions include the power normalization constant assuming no window-
ing. Windows reduce spectral leakage due to aliasing by enforcing periodicity on
the signal z[n]. If a window w(n] is applied to each data point x[n| before tak-
ing the discrete Fourier transform, there will be power loss associated with the
window. To preserve power in each bin, replace N in the equations above with
Sy = SN wn]?. For a rectangular window where w[n] = 1 for all n, Sy = N
and we recover Egs. 6.22 and 6.23 [204].

6.4 Welch’s method

Welch’s method is a method of estimating a power spectral density by averaging
together many power spectral densities. The variance associated with a single PSD
estimate is relatively high, and equals the value of the PSD itself squared, as we
will derive in 6.8. Welch’s method builds a distribution of M PSDs and finds the

mean of each frequency bin £.

Welch’s method takes advantage of the data windowing to add more PSD segments
by allowing segments to overlap. This method reuses data points, so care must be

taken that the overlap is not too high, which falsely correlates the PSD segments.

Welch’s method proceeds as follows:

1. Select three of the following four:

« The total number of samples N
+ The overlap ratio p, i.e. ratio of samples to share between segments.
+ The number of segments, or averages, M

« The binwidth or frequency resolution f;,

Nfb/fs_l

+ 1, where f, is the
I-p

These are related by the equation M =

sampling frequency.
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2. Split the N data samples into M equal segments, each segment having sam-

N
(M—-1)(1—p)+1

plesn =

3. Apply a window to each data segment, if desired.

4. Estimate the PSD S, ;[k] of each segment i € [1, M] using Eq. 6.22 and the

desired window function.

M
~ = 1 A
5. For each frequency bin k, average all S, ;[k] such that S, [k] = i E Se.ilk].
i=1

Thus S,[k] is the mean-averaged PSD estimate.

In the final step, we might take the sample median S, [k] of S, ;[k] rather than the

mean. For Gaussian noise, this asymptotes for large M to a factor of log(2) bias

in the median estimate vs the mean estimate: S, [k] = log(2)’
0g

6.5 Probability distribution formulae

yen]
X En]ﬁéé Z [m]

Figure 6.1: Independent Gaussian signals  and y summed into third Gaussian sig-
nal z with no delay. These signals will form the basis of the power, amplitude, and
cross spectral density probability densities in Sections 6.8, 6.9 and 6.11. Table 6.1
reports the PDFs associated with these signals as derived in this chapter.

In this following sections we will derive the probability distributions of several
random variables relevant to signal processing and spectral estimation, introduced
in Sections 6.1 and 6.2. Figure 6.1 diagrams the simple Gaussian signals used in

this section. Table 6.1 lists the probability distributions investigated here.

We will attempt to chain together the relations of the probability distributions such
that the relationship of power in the time and frequency domain is clear. This will

motivate why the mean-value of the PSD is a natural estimator of power in the
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time-domain, so median-value PSD estimators are “biased” and must be corrected

back to mean-values.

Through this section we will use the change of variables formula for probability
densities. Suppose we know the probability distribution fx(z) of a random vari-

able X, and we have an n-valued function g(x). Then we know the probability

density of G ~ g(x) [174]:
dg -1
dzx

One important example of the change of variables formula is the scaler formula:

fo(g) =nfx(z) (6.24)

g=cx = fg(g) = %fx (%) (6.25)

For this example n = 1 as g has one-to-one mapping with x. In Section 6.10, we

use the two-dimensional verison of the above formula.

The convolution theorem states that a Fourier transform of the convolution of two

functions F( f * g) in the time domain is equal to a multiplication in the frequency
domain F(f)F(g):

F(fxg)=F(f)F(g) (6.26)

Finally, a sum of random variables Z = X' 4 ) can be expressed as the convolution
of PDFs:

F2(2) = fale) * fuly) = / " (@) fylz — 2. (6.27)

The characteristic function of Z, ¢z, becomes a product of the characteristic func-
tions of X and V:

p2(t) = (%) = (M) = (V) = pa(Bpplt).  (628)

This property of characteristic functions can be extended for the sum of n inde-
pendent, identically distributed random variables, such as for the sample mean

fo=1>"" x; drawn from random variable X

S it n t\"
ou(t) = <eltu> = <e;?f> = Py (E) . (6.29)
This property will come in handy when calculating the sample means of the PSDs
and CSDs in Appendix D.
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Table 6.1: Summary of probability density functions derived for spectral estimators
in this chapter. Power is conserved for every probablility transform. Two indepen-
dent, white noise time-domain signals x[n] ~ N(0, 0,) and y[n] ~ N (0, o)) with
N total samples and sampling frequency f; form the base signals. Another white
noise signal z[n| = z[n]+y[n| gives a signal correlated with z[n], as shown in Fig-
ure 6.1. The Fourier transforms of z[n], y[n] are X [k] = A+iB, Y [k] = C+iD. By
linearity, Z[k] = (A+C) +i(B+ D). A and B both follow Gaussian distributions
N(0,0,) where 0, = 0,4/ N/2, as shown by Eq. 6.31. Similarly, C,D ~ N (0, o.)
where o, = 0,1/ N/2. The PSD prefactor 2/(N f) alters the variance of the result-
ing exponential distribution, as shown in Eq. 6.39. The CSD of correlated signals

(z,2) o< A2+ AC + B? + BD + i(AD — BC).

Estimator Symbol Probability Distribution Expression
White time-domain signal x[n] Gaussian N(0,0,)
Discrete Fourier transform A Gaussian N(0,0,)
Squared Gaussian A? Scaled chi-squared, n = 1 X3 (04)
. . 202
Power spectral density (x,x) Exponential Exp 7
Amplitude spectral density (x,x) Rayleigh Rayleigh( Ou )
Vs
1
Product of two Gaussians AC Modified Bessel of the 2" kind K ( 2 >
TO.0c oo
sja? sl\/o2 + o2
Dependent Gaussian product A(A +C) Modified Bessel of the 2" kind — <| Vi S
MO0 0402
. . 050y
Cross spectral density (minor) (x, 2) Laplace Laplace| 0, 7
. . . 0.0y Oy o
Cross spectral density (major) (x, 2) Asymmetric Laplace AL1 0, 7 —— | 1—y/1+=
S Oy 0%
. u cos(jé«;;):in(¢) (u2+v2) (1+%>

. .. . nd 1,;
Cross spectral density (joint) (x, 2) Modified Bessel of the 2"¢ kind 270202 f2 0 27
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6.6 Gaussian distribution and the Fourier transform
A random variable A follows a Gaussian, or normal distribution N (., o) if its sam-

ples come from

1 _(a—w)?

e 202 6.30
vV 2mo? (6.30)

where 1 is the mean, o2 is the variance, and ¢ is the standard deviation. Gaus-

N, o) = falalp, o) =

sian distributions describe a great many physical processes, including white noise
processes like shot noise and Johnson noise. From the central limit theorem, a
Gaussian describes the mean of many independent, identically distributed random

variables, no matter what the distribution of the random variables is.

One crucial proof is the Fourier transform of a Gaussian is another Gaussian with

inverted variance: F[N(0,0)] = N(0,1/0).

Using this, along with Eqgs. 6.25, 6.26, and 6.27, we prove that for Gaussian white
noise x[n] ~ N (0, 0,), the PDF of the real part of the discrete Fourier transform

is another Gaussian with variance 02N /2.
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If A~ R(X[K]) = Nzlx cos(

kn) , then
n=0

1
2
= Prob [ x[n] cos 7rl~m>]

— Prob |z cos(%k())] %+ % Prob [a:[n] COS(W)]
fala) o< 2 €08(2mk0/N)) # - - % N'(0, 7 cos(2nk(N — 1)/N))

Ffa] x ]:[N(O,ax cos(27k0/N))]

Flfa o< [NV (0> o cos(217rkn/N))

FIfAE) o NO exp (—%205 cos2<2vrkn/zv>)

Ffal(€) x exp <—%03 0052(27rk:n/N)>

fala) N(Q% E) (6.31)

. N
A similar argument with sin(27kn/N) gives %(X[k]) ~ N<O, Py ?) . Since

~

sin and cos are orthogonal, ER(X [k]) and %(X [k]) are independent. This gives
the result reported in Table 6.1.

For the remainder of this section, we define the Fourier transform of z[n] as X [k] =
A + iB, and the Fourier transform of y[n] as Y'[k] = C + ¢D. As proven above,
A, B,C, D are all independent Gaussian variables. We define o, = JI\/N_/Q and
0. = 0,y/N/2so that A, B ~ N'(0,0,) and C,D ~ N(0,0,).
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0.101 = eXp(_—“,z)
—— e \2ro? 207
1 -
——— /2702 CXp(Zf’c2>
[ A samples

C samples

0.081

0.061

Normalized Occurances

0.021

00073 —10 _5 0

Sample values

Figure 6.2: Histogram of Gaussian random variables .A and C. Gaussian random
variables describe the real and imaginary part of the Fourier transform of Gaussian
noise. Equation 6.30 is plotted as the green and red dashed curves. In this example,
0, =6and o, = 4.

6.7 Chi-squared distribution
A chi-squared distribution describes a random variable Z = " | X? where each

X, is a standard normal random variable N (0, 1). The distribution follows
z € [0,00) (6.32)
where n is the number of degrees of freedom, or random variables in the sum, and

I' is the gamma function.

A chi-squared with one degree of freedom X? is equivalent to the product of a
standard Gaussian N (0, 1) with itself: Z = N For a scaled x}(c) coming from

a zero-mean, nonstandard Gaussian N (0, o), we can use change of variables. Let
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d
z = g(x) = z*. From Eq. 6.24, n = 2, d_g = 2z = 2,/g, and,
T

1
folo) = 204V 5| (639)
V9)|3 NG
2 1 —52
V(o) = ———eF  ge0,00) (634
\/2mo?g
This gives the result reported in Table 6.1.
0.200
——= X}(o,) PDF
--- Xi(o) PDF
0.175 [ G, = A% samples
G. = C? samples
0.1501
£ 01251
= 0.100;
£ 0.0751
.
0.050
0.0251
0.000 ' ' ' ' '
0 5) 10 15 20 25 30

Sample values

Figure 6.3: Histogram of scaled chi-squared random variables G, and G.. The
random variables G, = A? and G. = C?, where Gaussian random variables
A ~ N(0,0,) and C ~ N(0,0.). Equation 6.33 is plotted as the green and red
dashed curves. In this example, 0, = 6 and 0. = 4.

6.8 Exponential distribution and the power spectral density
One special case of the chi-squared distribution is when n = 2, we recover the

exponential distribution:
Exp(\) = f(z|]\) = —e% z € [0, 00) (6.35)

where ) is the mean.
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The exponential distribution median m is found by
1 ™1l . m
3= /0 Xefidz =1—ex

m = Alog(2) (6.36)

The mean-to-median bias factor b is the ratio of two statistics:

b= % = log(2) (6.37)

This gives the factor of log(2) difference in the mean- and median-averaging meth-
ods for Welch’s method for PSD estimation.

The exponential distribution variance o2 is found by

© L1 . © 1 .\
o® = (2*) — (z)? = / e dz — / z—e ndz | =2M\ —\?
o A o A

o2 =\ (6.38)
Therefore the variance of a PSD estimate Var (5’1 [k]) is equal to its mean squared.

6.8.1 Power spectral densities
The exponential distribution describes estimated PSDs S, [k] = (z, ) of Gaussian
random noise with units V?/Hz. The estimated PSD is the sum of the squares of

our Fourier transform real and imaginary components A, :

a1 = (o) = | X0
Sl = (2, ) sz (A + BY). (6.39)

If A and B are zero-mean Gaussians with the same distribution N'(0, ), then .A?
and B? are both scaled chi-squared random variables as in Eq. 6.33. We can show

the random variable Z ~ A* + B> ~ Exp(20?) via convolution:
fol2) = | fala) (s - a)da
fo(2) = [ iond(o)da

0

f2l0) = gz ™ [ e
Z)=—=e€ % ———da
? 2102 0o Vavz—a

1 z

fz(z) = 27‘26_272 = Exp(20?) (6.40)
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N
If A% B? ~ x? (Jﬂ / 5) as in Table 6.1, then A% + B* ~ Exp(c2N).

Then, by scaling random variables (Eq. 6.25), we can recover the PSD (x, x) distri-
bution in Table 6.1:

Exp(02N) ~ E (2”9%) (6.41)
xp(o ~ Exp . )
N ! Js
0.035
— —— Exp(202)
‘ ——— Exp(202)
A Z, mean = 72.0
0.030 Z, median = 49.9
Z. mean = 32.0
Z, median = 22.2
0.0251 [ 2. = A%+ B? samples
% Z.=C?+ D? samples
=
= 0.020
= 0.0151
5
.
0.010+
8
\\
-
0.0051 . e
0.000 | | | | E— —
0 20 40 60 80 100 120 140

Sample values

Figure 6.4: Histograms of exponential random variables Z, and Z.. The random
variables Z, = A% + B? and Z. = C? + D?, where Gaussian random variables
A, B ~ N(0,0,) and C,D ~ N(0,0.). The random variable Z, o (z,x), the
PSD estimate of z, and Z,  (y, y). Equation 6.40 is plotted as the green and red
dashed curves. In this example, 0, = 6 and 0. = 4, which gives us the mean of
each distribution 202 = 72 and 206? = 32. Both medians are a factor of log(2)
below the mean.

6.9 Rayleigh distribution and the amplitude spectral density
A random variable Z = /X which is the square root of a exponential random
variable X" follows a Rayleigh distribution. A Rayleigh distribution follows

22

Rayleigh(v) = f(z|v) = %e_ﬁ z € [0, 00) (6.42)
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where v is the mode of the distribution.
The Rayleigh distribution mean p is found by
oo 22
= / 2%67272612
0 U
T

—u. ]t 6.43
p=uy/5 (6.43)

The Rayleigh distribution median m is found by

1 ™ oz 22 m?
- = —e 22dz=1—¢e 22
2 g U2

m = vy/2log(2) (6.44)

The Rayleigh distribution root mean square r is found by

2

(z
r= \// —e 2v2dz

r=uvv?2 (6.45)

The ratio of m/r = 4/log(2) is the mean vs median bias factor for amplitude
spectral densities. The root mean square is used because Welch’s method estimates

PSDs, takes their average, then the root is taken to calculate the ASD.

The Rayleigh distribution variance o? is found by combining the mean square 72

and mean y above

i <22> — (z>2

4 —
o? = 5 T2 (6.46)

6.9.1 Amplitude spectral densities

The Rayleigh distribution describes estimated amplitude spectral densities S, k]
with units V/v/Hz. Amplitude spectral densities are how nearly all of noise spec-
tra in LIGO are displayed. The root mean square r is often what is reported for am-
plitude spectral density estimates, as Welch’s method does mean-averaging with

PSDs, and that result is square-rooted.

If ¥ ~ Exp(\), then Z = VX ~ Rayleigh<\/)\/2> can also be derived via
change of variables. Let 2 = g(x) = /z. Then, using Eq. 6.24, we have n = 1,



159
dg 1 1

dr =2z 29
fa(9) = fx(9%) 129 (6.47)
folg) = 2796_5&2 = Rayleigh( )\/2> g € [0, 00). (6.48)

202 )
If X ~ Exp 7 as in Table 6.1, then

s

VX ~ Rayleigh < \j;_) . (6.49)

0.200
- —— Rayleigh(a,)
— == Rayleigh(o,)
0.1751 VZ, mean = 7.5
V2, median = 7.1
VZ,rms =85
\/Z mean = 5.0
\/Z median = 4.7
\/Z; rms = 5.7
1 VZ. = VA2 + B2 samples
VZ. = V/C? + D? samples

Normalized Occurances
< <
— —
o DO
o (@3

.
)
~J
t

0.0501
0.0251

0.000 , , , T [
0.0 2.5 5.0 75 100 125 150 175 200

Sample values

Figure 6.5: Histograms of Rayleigh random variables v/ Z, and v/ Z.. The random

variables v/Z, = VA2 + B? and VZ. = v/C? + D2, where Gaussian random
variables A, B ~ N(0,0,) and C,D ~ N (0, 0.). The random variable /Z,

\/{x, z), the amplitude spectral density estimate of z, and v/ Z. &< /(y, y). Equa-
tion 6.42 is plotted as the green and red dashed curves. In this example, 0, = 6

and o, = 4.

6.10 Modified Bessel function of the second kind
We briefly introduce the zeroth modified Bessel function of the second kind Ky, as it
describes the probability density of product of two different Gaussians AC. First,
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the definition of the modified Bessel K, with v = 0 from Eq. 10.32.10 of [205] is

Ko(z) = %/0 exp (—t - E) it. (6.50)

which is valid for complex z such that arg(z) < 7 /4.

6.10.1 Product of two Gaussians AC

If we take the convolution of the product of random variables Z = AC, and let
A~ N(0,0,) and C ~ N(0,0.) be independent, then

e 1
9= [t fe(Z) o
1 e a? 22 da
fz(2) = 2T 0,0, /_OO eXP <_27f2) exp (_ 2a202)m

1 > a’ 2> \da
_ I e 6.51
J2(2) 7TO'aO'C/O exp< 202 2‘12‘702) a (6.51)

2
Lett = % and% = %, then a = /20?%t and da = \/%dt:

a

1 > 22\ dt
J2(2) = 270,40, /0 P (_t B 4tagac2) T
fz(z) = ! Ko( i ) (6.52)

MO L0, Oo0c

We introduce the |z| since z is real, z € (—00, 00), and is symmetric in the inte-

grand.
Setting 0, = 0,4/ N/2 and 0. = 0,+/N/2 gives the result reported in Table 6.1.

Note that the characteristic function of the PDF described in Eq. 6.52 is [206]

1
/ fz(2)e"dz = (6.53)
02252 +1
6.10.2 Product of Gaussian with itself and another Gaussian A(A + C)
In the next section, it will be important that we know the PDF of a random variable
S = A(A+C). The difficulty here is the Gaussian A is used to multiply itself and

another Gaussian C, so we must consider the joint PDF.

In the proof we will start with the joint probability distribution of f4.¢(a,c),

which is easy because A and C are independent, use change of variables with
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A — A* and C — AC to form the cumulative distribution function Fjs(s), then
take the derivative of Fs(s) to get the PDF fs(s).

farela,c) = fala)fe(c)

1 1/a\® 1(/c)’ (650
= exp|—=|— | —=z|— .
2m0o,0, P 2\ o, 2\ o,
To do change of variables from (71, z2) = (a,c) to (y1,y2) = (a?, ac), we calcu-

%@ — @% to scale the joint
dyy dy>  dyy dy»

late the determinant of the Jacobian |J| =

distribution:
T = \/E To = 2 (655)
Vil

doy _ 1 deg _ 1 dm - o (656)

dy 2\/?1 dyo \/?I dy: 2(y1> / dyo

1

Jl = — 6.57
1= 5, (6:57)

Now we can write the new joint probability distribution fs(y, y2) by making sub-
stitutions into Eq 6.54. Recall that n = 2 for changing variables of a double-valued

: _ .2
function y; = 7.

fs(y1,y2) = n|J| faicl(a,c)
= QL L exp (—£ — s > (6.58)

2y, 270,40, 202 2y,0?

The cumulative distribution function Fs(S < s) = Prob()) + Yy < s) =
Prob(), < s — Y1) can be written as the double integral over y; € [0,00) and

Yz € (—00,8 —y1):

Fs(S < s) ! /Ood /S_yld ! Yo (6.59)
s) = —exp | -2 — )

s 27T0aac 0 h —00 b2 U1 P 202 2y10(2:

Recall that the PDF is the derivative of the CDF:

fs(s) = %

1 /°° o /Syl . v Y
= — —exp | —=— —
21,0 Jo 4 ds \ J_ Y2 U1 P 202 2y,0?
(I — )2
= / dy;—exp | — B (s —u1)
2104.0. Jo Y1 20?2 2y102

1 oo 1 2 2 2
= exp 2 / dy; — exp n(oq +00) _ (6.60)
2M0,0, a2 ) Jo Y1 20202 2y,02

c
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2 2 2 2
y1(o; 4+ 02) du o;+0 , ,

Let u = & ¢’ then — 2 ¢ and using Eq. 6.50 gives
20202 dy, 20202 &5 &

1 s > 1 s*(02 + 02)
— 2 du—~ gy — 2 e Te)
Js(s) 270,40, P (ag) /0 Yu P ( N do20tu )

/ 72 2
fs(s) - ; exp (5)]{0 <M) (6.61)

MO0
This probability density function is plotted versus numerical samples in Figure 6.6.

Note that the characteristic function of the PDF described in Eq. 6.61 is

[e.e]
, 1
s(t) = fs(s)e ds = ‘ (6.62)
#s(t) /oo ) V1 —1i202t + 020212
0.06
1 ﬁes/a?K(] (%1 / a%f + J%Z)
1 S = A(A +C) samples
|

0.051

o
o
=

Normalized Occurances

0.031 i
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| |
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! ‘\\
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0.00 ' ":i | | | | r"'w = _»,<_,' e
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Sample values

Figure 6.6: Histograms of a random variable S which follows a distribution de-
scribed by a modified Bessel function of the second kind. The random vari-
able S = A(A + C), where Gaussian random variables A ~ N(0,0,) and
C ~ N(0,0.). Equation 6.61 is plotted as the orange dashed curve. In this ex-
ample, 0, = 7Tand 0. = 3.
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6.11 Laplace, asymmetric Laplace, and the cross spectral density

The Laplace distribution, or double exponential distribution, is defined as

Laplace(j7) = (sl 7) = - exp (— = “') (6.63)

where p is the mean and 7 is the scale parameter.
The asymmetric Laplace distribution is defined as

r—m <
1 exp 5y r<m

( 1) /{(x—m))
MK+ — exp | ———— T >m
K A

(6.64)

AL(m, A\, k) = f(z|m, A\, k) =

where m is the location of the peak, A is the scale parameter, and « is the asym-

metry parameter. When x = 1, the asymmetric Laplace becomes the Laplace:
AL(m, A, 1) = Laplace(m, ).

The asymmetric Laplace distribution mean x is found by

_/’“ — e (u)dﬁ/%;ex <_M)dx
P+ D) TP TR w AL P A

1— k2

K

w=m-+ A (6.65)
The asymmetric Laplace distribution median p has two solutions depending on
whether kK < 1 or Kk > 1. If Kk < 1, then the distribution is skewed right and
the median is greater than m. Otherwise, the distribution is skewed left and the

median is less than m. The median is found by

’/°° 1 k(z —m) g <1
———exp | — |dx, K
L)L A+ )T
2 P 1 r—m
d > 1

\/_OO)\</{+%)exp( Y )az, K

( A 1+ K2

m — — log 5 , k<1

K

p= .y (6.66)

m + kAlog , k>1

\ 2K2

The asymmetric Laplace distribution variance o2 is
AN (1+ kY
2 _
o° = e (6.67)
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The mean to median bias b for the asymmetric Laplace distribution has different
results depending on k, as seen from Eq. 6.66. The physically relevant case is where

m = 0, yielding

(m2+1>
log 5
_ 7 k<1
i K —|—1
2 log
22 Kk>1
\ 1 —/{/2

This result will be important for mean- vs median-averaging for CSD estimates.

The characteristic function of the Laplace distribution is

eiut
aplace(t) = 6.69
YL pl ( ) 1 + 72t2 ( )
and the characteristic function of the asymmetric Laplace distribution is
eimt
eaL(t) = 1 (6.70)
14+ A2t2 4t (/4; — —>
K

6.11.1 Cross spectral densities

The statistics of cross spectral densities of white noise are known to follow a
Laplace distribution [201]. The asymmetric Laplace distribution describes esti-
mated CSDs S,.[k] = (x, z) with units V2/Hz. Consider the case where x[n] and
y[n] are uncorrelated Gaussian noise, and z[n] = z[n| + y[n]. Define the Fourier
transforms components X [k] = A+ iB and Y [k] = C 4 iD. As shown in Eq. 6.31,
A and B are independent and follow the same Gaussian distribution N(0,,).
Similarly, C, D ~ N (0, 0..). Then, by linearity in Eq. 6.22,

<J},Z> = <ZL’,ZL‘> + <$,y>

2
-7

— NQf (A* + B> 4+ AC + BD + i(AD — BC))

~

me+Xﬂm?m)

= N7 U +1iV) (6.71)
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U mean = 71.9
U median = 48.1
VY mean = 0.1
VY median = 0.0
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Figure 6.7: Histograms of random variables ¢/ and V which follow asymmetric
Laplace and Laplace distributions, respectively. The random variablest/ = A(A+
C) + B(B + D) and V = AD — BC, where that A,B ~ N(0,0,) and C,D ~
N(0,0.). U and V describe the real and imaginary parts of a CSD (z, z) = (z, z) +
(x,y) where x and y are uncorrelated Gaussian noise. Equation 6.76 is plotted as
the green dashed curve, while equation 6.73 is plotted as the red dashed curve. In
this example, 0, = 6 and 0. = 4, so the Laplace scale factors A = v = 24, the
asymmetry parameter £ = 0.30, and the median/mean bias b = p/u = 0.67.

6.11.1.1 Minor axis PDF of the cross spectral density

First, we show that the minor (transverse) axis of Eq. 6.71 with random variable
V = AD — BC follows a Laplace distribution. In the case from Figure 6.1, the

imaginary axis and minor axis are the same.

First, recall from Eq. 6.52 that AD and BC both independently follow the same

modified Bessel distribution. Note that the distribution is symmetric about zero,
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so —BC ~ BC. Using Egs. 6.26, 6.27, 6.53, we can write

fv(v) = fap-pc(v)
= fap * f-5c
wy(t) = Flfap * f-5c]
= F[faplF[f-sc]

= pap(t)p_pe(t)
1 1

N Vo222 + 1 /o202t2 + 1
1

t) = ——7—— 6.72
ev(t) o202t? + 1 (6.72)
1 v
fr(v) = 5 exp (— [ ) (6.73)
O-ao-c O-G/JC

In the last step we observe from Eq. 6.69 the characteristic function of a Laplace
distribution with ¢ = 0 and v = o,0.. Therefore, the random variable ) that
characterizes the imaginary part of the CSD (z, z) follows a Laplace distribution
[207].

It can similarly be shown that for a completely uncorrelated CSD (z, y), the real

part 7 = AC + BD follows the same Laplace distribution as the imaginary part.

Ifweleto, — 0,y/N/2and 0. — 0,4/ N/2,theny — No,0,/2. If we then scale
the distribution by 2/(N f;) from the definition of the CSD Eq. 6.23, then

fa((e.2 = Laplace (0, U}%) (6.74)

s

This gives the result from Table 6.1. The distribution in Eq. 6.77 are plotted on the

imaginary axis projection of Figure 6.8.

6.11.1.2 Major axis PDF of the cross spectral density

For cross spectral densities with correlated noise (x, z), the major (radial) axis has
a random variable Y = A? + B* + AC + BD = A(A+C) + B(B + D). In the
case from Figure 6.1, z[n] = x[n] + [y]| has no relative delay between the x and =

signals, so the real axis and major axis of (z, z) are the same.

By a similar argument as used for Eq. 6.73, just replacing Eq. 6.53 with Eq. 6.62 and
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using Eq. 6.70 we can write

fu(w) = facare) * faB+D)
eu(t) = vauare)(t)essrn)(t)
1
t) = 6.75
(t) 1 — 4202t + 02022 (6.75)

u
exp u <0
1 (Ta\/0'2+0'3—0'3>

fulu) = ————— (6.76)

20,4/02 + 02 u
Oar/02 + 02 4 02
where, in the last step we recover an asymmetric Laplace distribution with m = 0,

/ 2
Azaaac,andﬁ:—ﬁ<1— 1+O—;>.
O o2

If we let 0, — 0,/N/2 and 0. — 0,y/N/2, then A\ - No,0,/2 and k =
—(0z/0y) (1 —/1+ 05/0320). If we then scale the distribution by 2/(N f;) then

exp | — u >0

2

0.0 g g
.oy =AL[0, = —Z[1—4/14+ <L 6.77
fr((z,2)) A +U% (6.77)

This gives the result from Table 6.1. The distribution in Eq. 6.77 are plotted on the

real axis projection of Figure 6.8.

6.11.1.3 Joint probability distribution of the cross spectral density

In general, the CSD is a complex quantity. Here we’ll derive the two-dimensional
probability distribution function of the CSD, starting from our simple case as de-

fined in Figure 6.1, then generalizing our final result.

We begin with a joint distribution of our four independent Gaussian random vari-
ables A, B,C, D:

fA,B,C,D(aa b7 ¢, d) = —5—F55€ %% 20 202

= 207 6.78
420202 (6.78)

Here we derive the joint characteristic function of the CSD. We take the Fourier

transform of f45cp(a,b, c,d) with respect to the random variables I/ and V as
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defined in Eq. 6.71:

wuy(s,t) = / / / / dadbdcdd e "™ f 4 e p(a,b,c,d)
b2 2 d2

CL2 77777
pup(s1) = 47r202<72/ / / / da db de dd (@ +act¥+bd+itlad—b) ;™ 507 207 " 2,7 307

t 6.79
pup(st) = 1 —2io2s + Jaag(sz +12) (6.79)
where s and ¢ are the Fourier variables.

Next we Fourier transform back to the joint distribution of the CSD:
Juy(u,v) // ds dt e "y (s, 1) (6.80)

Let ¢ = s — i/o?. Then we can recover circular symmetry to take the double

integral easily:

e—iqu tvtu/o
fuy(u,v) =52 // dq dt
7TO' o; ) + q2 + V2

u/a 1 0_2
Juy(u,v) = 2707 UQKo o (u? + v?) (1 + a_g) (6.81)

Finally, we scale the distribution Eq. 6.81 to match the final result of CSDs in prac-

tice. First, we generalize the angle of the CSD ¢, by allowing the variable in the
exponent u — wucos(¢) + vsin(¢). Second, from Eq. 6.71, let x = 2u/(N f;)
and y = 2v/(N f;) for changing variables, and make the substitutions for o, =

0.\/N/2and 0. = o,/ N/2:

ICOS(¢)+y sin(¢)

y/fs 2
flaz (2, y) = W f \/(:lﬁ2 +y )(1 + %) (6.82)

Y T
This gives the result from Table 6.1. The contours of Eq. 6.82 are plotted in Figure
6.8.
6.11.1.4 Mean-to-median bias in the cross spectral density

Here we calculate the bias that results from using median-averaging to estimate
a cross spectral density. We focus on the probability distribution describing the

major axis of the CSD, Eq. 6.76, since the minor axis of the CSD must always
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Figure 6.8: Two-dimensional histogram of 100000 samples from a CSD (z, z) at
a single frequency bin, with contours from the joint distribution f, .)(z,y) in
Eq. 6.82. Above and to the right are plotted one-dimensional histograms of the real
and imaginary axes, with the marginal distributions fy((z.y) (%) and fo((z,2))(¥)
from Eqs. 6.77 and 6.74. In this example, the correlated power 02/f, = 3.5 x
10~* V?/Hz, the uncorrelated power o,/ f, = 5 x 10~* V? /Hz, the true coherence
7? = 0.412, the asymmetric Laplace skew parameter for the real axis x = 0.467,
and the phase ¢ = 0.

follow a Laplace distribution, which has both mean and median zero and should
not contribute to the final CSD significantly. The validity of this assumption is
explored in Appendix D.

If we calculate the mean of the asymmetric Laplace from Eq. 6.76 using Eq. 6.65,

we recover
p =202 (6.83)

The mean of the CSD depends only on the correlated noise. This is the same as
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the mean recovered for the exponential distribution in Eqgs. 6.40. The invariance

of the mean is demonstrated in Figure 6.9.

The median from Eq. 6.76 is more complex, and depends on both the uncorrelated

and correlated noise. Using Eq. 6.66:

—04\/02 + 02+ 0% + 52
_ga<1/gg+a§+aa>log< |, k<1

2
O¢

oI+ o2
. 2 2 _ 5.1 — a < , 1
o (\/aa—l—ac o*) og( O-a_\/m K >

p:

(6.84)

If we let the correlated noise dominate the uncorrelated noise, 02 > o2, then the

median
p — 202log(2), k< 1. (6.85)

This is the same as the median recovered for the exponential distribution in Eq. 6.36.
The median changing with different levels of uncorrelated noise is demonstrated

in Figure 6.9.
The bias from Eq. 6.76, using Eq. 6.68, is

p € (6—\/6+1+1)
6 7

_? 1
0o 21—ver1)

where we have defined the uncorrelated power ratio ¢ = 0 /02. Figure 6.10 shows

k<1 (6.86)

the limits of CSD mean-to-median bias varies between log(2) for ¢ < 1 to 1/2 for
e> 1.

In general, the distribution of the CSD (z, z) is a two-dimensional asymmetric
Laplace describing the real and imaginary components of the CSD. A phase delay
in the correlated signal z[n| = y[n| + z[n — m| where m is a time delay, yields a
rotation in the 2D asymmetric Laplace. Section 6.14 explores an example with a

phase delay.

For the above derivations, the phase is zero. The derivation is true without loss
of generality as long as an appropriate phase rotation is applied to the general 2D
asymmetric Laplace. The bias will always depend on the power ratio ¢, but could

also depend on the phase of the CSD ¢, explored in Section 6.13.

In the limit x — 0, the asymmetric Laplace becomes the exponential distribution.

For the CSD, this is equivalent to having the correlated noise much greater than the
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Figure 6.9: Histograms demonstrating the invariance of the mean of an asymmetric
Laplace distribution with changing uncorrelated noise o.. Equation 6.83 states
that the mean of the asymmetric Laplace depends only on the correlated noise o,.
In this example, correlated noise o, = 5 for all curves. The sample mean of all
five curves is shown as the black line, fi ~ 50. Equation 6.64 fits are plotted as
the dashed curves, while the sample medians are plotted as the solid vertical lines.
While the mean is invariant, the medians change based on the level of uncorrelated
power in the signal. This means that a CSD (z, z) estimated via mean-averaging
would yield the same result for all of these curves, but different results if estimated
via median-averaging.

uncorrelated noise: o, > o, so the CSD is approaching the PSD: (z, z) — (z, z).
The asymmetric Laplace mean to median bias from Eq. 6.68 p/u — log(2), the

same bias as the exponential distribution.

We have shown that CSD estimate (z, z) follows 2D asymmetric Laplace distri-
butions in general. From Egs. 6.68 and 6.76, the bias between mean- and median-
averaged CSD estimates depends on the relative power of correlated and uncorrelated

noise.
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Figure 6.10: Mean-to-median bias factor b = p/p associated with CSDs as a func-
tion of relative power ¢ = 02/02, where o2 is the uncorrelated power and o2 is
the correlated power. The bias factor plotted is from Eq. 6.86.

6.12 Coherence
Coherence is a method of computing the correlation of two signals. The definition
from Eq. 6.16 is good for infinite signals, but for realistic signals z and z = = + y

the mean-averaged PSD and CSD estimates are usually used:

2
o 2] 65)

(x,z)(z, 2)

Our mean-averaged estimates for the power and cross spectral densities come from

Egs. 6.40 and 6.83, yielding the mean-averaged coherence 2:

(w,2) =207 (z,2) =2002+07)  [(x,2)] =20, (6.38)

W __ 1 (6.89)
o2 +02 1+e¢ '

ol

v

where ¢ = 02/02 is the power ratio of uncorrelated over correlated noise. As
the signals = and z becomes completely correlated, 02 > ¢? and ¢ — 0, so the
coherence 72 — 1. As the signals become uncorrelated, 0> < ¢2 and € > 1, so

the coherence 72 — 1/e.
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Using the expression for x below Eq. 6.76, we express the power ratio € = 02 /5>
in terms of x:

2

Then the mean-averaged coherence is related to the asymmetric Laplace parame-

— 1—k2\?
2 = 6.91
g (1+H2) (6.91)

ter k by

This relates the underlying distribution to coherence, which is often used to quan-

tify the quality of the CSD estimate.

The median-averaged PSD and CSD estimates come from Eqgs. 6.36 and 6.84 and

give the median-averaged coherence ~y?:

P —_~—

(z,7) =202 log(2) (z,2) = 2(02 + 02) log(2) (6.92)
- _ 2 2 2 2
(z,2)| = —aa(\/ag + 02+ aa> log( 7aV % +;2C 9 UC) (6.93)

2

2
O¢

[—aa<\/02+03+0a>10g( 7V 9T % T % T e

207 log(2)][2(0F + 02) log(2)]

2 2 2 2
4 2 —0a 0a+o-c+o-a+o-c
o, log
2
Oc

410g2(2)(02-+-Ug)(——20a«/agiﬁj;g4—20§ +.gg)

€ 1og2( ! + 1)
Jo o Ve+1
4(e+1)(e — 2ve+1+2)log*(2)

Again, as the signals x and z become completely correlated, 02 > af, e — 0,and

(6.94)

72 — 1. As the signals become uncorrelated, 02 L o2, 21/ (4¢log?(2)). Both

the mean- and median-averaged coherences are plotted in Figure 6.11.

Expressing the median-averaged coherence in terms of the mean-averaged coher-

ence yields

~ _ (1+7)*log*(1+7)

41022 (6.95)

Coherence provides a one-to-one mapping to the uncorrelated over correlated

power ratio €. This is key because we can use coherence to find the mean-to-median
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Figure 6.11: Comparison of the coherence estimated with mean-averaging 72 and
median-averaging 2.

bias for the CSD. From Eqgs. 6.86 and 6.94, we can write the mean-to-median bias

in terms of the median-averaged coherence:

b=1log(2)y/ (1 +€)72 (6.96)

The coherence ')72 can be used to solve for e numerically using Eq. 6.94. If ;2 ~ 1,
then € < 1 and the bias b ~ log(2).

Expressing the CSD mean-to-median bias b in terms of mean-averaged coherence
yields

(1+7)log(1+7)
2y

b= (6.97)

The CSD mean ;o and CSD median p in terms of mean-averaged coherence are
20

H=—"F—
\/1—72
. A1 +7)log(1+7) (6.99)

1—~2

(6.98)
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The correlated-to-uncorrelated power ratio ¢ = 02 /02 in this derivation refers to
the specific case of estimating the CSD (z, z) where z = = + y. More generally,
€ can refer to a uncorrelated/correlated power ratio of many Gaussian noises to-
gether. In this general case, Eqs. 6.94 and 6.96 are still valid. Section 6.14 explores

the case of three Gaussian noises.

6.13 Phase
In the sections above, we have assumed that the phase of the CSD ¢ = 0. This was
because in the CSD (z, z) where z[n| = z[n] + y[n|, there is no phase difference

because = appears in z identically.

In general, there may be a phase difference in our signals. This will rotate our CSD

major and minor axes away from the real and imaginary axes.

A phase rotation should not affect the final magnitude of the CSD. Using mean-
averaging, this is true. Using median-averaging, because of the logarithm appear-
ing in the median expression Eq. 6.84, the final magnitude can change anywhere

from 0% to 4%, depending on the coherence of the signals.

In this section, the relationship of mean and median magnitude and phase is de-
rived, assuming the user is naively taking these statistics along the real and imag-

inary axes.

6.13.1 General real and imaginary axis distributions

First, we generalize Eq. 6.82 by

6\/1:{?)‘ (ucos(¢)+vsin ¢) 1 (2 n 2

2mA? 1 A 1—~2

fay (u,v) = (6.100)

where w is the real axis, v is the imaginary axis, 7> = 1/(1 + 0, /07) is the mean-
averaged coherence, and A = 0,0,/ fs is a cross-power scaler. The expressions
used here for 72 and )\ are illustrative for converting from Eq. 6.82, but Eq. 6.100
is good for any v2 and ).

Second, we specify the probability density functions along the real and imaginary
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axes u and v for any phase ¢, by marginalizing along each axis:

1 . uy cos(¢ |u|\/ 1-— 7 sin? (6.101)
Xp
2\ 1*728in;(¢) )\\/1 —

1—y

1 vysin(@) — |v[y/1 — y2 cos?(¢
() = ox . (6.102
Ss(@ap (V) W= p( MW= 2 )

1—v2
These distributions are both asymmetric Laplace distributions, related by the com-

TRy (v) =

mon parameters 72, \, ¢.

6.13.2 Mean of the general CSD distributions
If we calculate the mean of Egs. 6.101 and 6.102, we get

29 cos(¢)
gy = D) (6.103)
HR((zy)) 1 — 2 3
29\ sin(¢)
HS((z,y) = Ny (6.104)
-7
Finding the overall mean magnitude /., ),
_ 2 2
H(zy) = \/r“éR((:v,y)) )
27
i (6.105)

Pay) = \/1—_772

Therefore the magnitude of the CSD mean has circular symmetry, and is not af-

fected in general by the phase ¢.

6.13.3 Median of the general CSD distributions
Calculating the median of Egs. 6.101 and 6.102 yields

—~724~2 cos?(p)—~|cos \/7
A1 =2 10g<1 72472 cos?(9) v|1_<j;>| e 2(¢)>