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ABSTRACT

Possibly one of the most significant innovations of the past decade is the hybrid
zero dynamics (HZD) framework, which formally and rigorously designs a control
algorithm for robotic walking. In this methodology, Lyapunov stability, which
is often used to certificate a dynamical system’s stability, was introduced to the
control law design for a hybrid control system. However, the prerequisites of
precise modeling to apply the HZD methodology can often be too restrictive to
design controllers for uncertain and complex real-world hardware experiments.
This thesis addresses the problem raised by noisy measurements and the intricate
hybrid structure of locomotion dynamics.

First, the HZD methodology’s construction is based on the full-order, hybrid dy-
namics of legged locomotion, which can be intractable for control synthesis for
high-dimensional systems. This thesis studies the general structure of hybrid control
systems for walking systems, ranging from 1D hopping, 2D walking, 2D running,
and 3D quadrupedal locomotion on rough terrains. Further, we characterize a walk-
ing behavior—gait—as a solution (execution) to a hybrid control system. To find
these solutions, which represent a “gait,” we employed advanced numerical methods
such as collocation methods to parse the solution-finding problem into the open-
and closed-loop trajectory optimization problems. The result is that we can find
versatile gaits for ten different robotic platforms efficiently. This includes bipedal
running, bipedal walking on slippery surfaces, and quadrupedal robots walking on
sloped terrains. The numerous solution-finding examples expand the applicability
of the HZD framework towards more complex dynamical systems.

Further, for the uncertain and noisy real-world implementation, the exponential sta-
bility of the continuous dynamics is an ideal but restrictive condition for hybrid
stability. This condition is especially challenging to satisfy for highly dynamical
behaviors such as bipedal running, which loses ground support for a short pe-
riod. This thesis observes the destabilizing effect of the noisy measurements of
the phasing variable. By reformulating the traditional input-to-state stability (ISS)
concept into phase-uncertainty to state stability, we are able to synthesize a robust
controller for bipedal running on DURUS-2D. This time+state-based controller for-
mally guarantees stability under noisy measurements and stabilizes the 1.75 m/s
running experiments.
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Lastly, robotic dynamics have long been characterized as the interconnection of
rigid-body dynamics. We take this perspective one step further and incorporate
controller design into the formulation of coupled control systems (CCS). We first
view a quadrupedal robot as two bipedal robots connected via some holonomic
constraints. In a dimensional reduction manner, we develop a novel optimization
framework, and the computational performance is reduced to a few seconds for gait
generation. Furthermore, we can design local controllers for each bipedal subsystem
and still guarantee the overall system’s stability. This is done by combining the HZD
framework and the ISS properties to contain the disturbance induced by the other
subsystems’ inputs. Utilizing the proposed CCS methods, we will experimentally
realize quadrupedal walking on various outdoor rough terrains.
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C h a p t e r 1

INTRODUCTION

1.1 Background
Legged locomotion has been long described as “controlled falling.” This charac-
terization reveals the key challenge of legged systems — stability. To accomplish
stable walking on various terrains, many modelling and control strategies have been
proposed and explored since the 1980s. Meanwhile, the majority of control methods
are built to provide stability guarantees for certain, linear, or rather simple dynamical
systems (Aëšström and Kumar, 2014). Therefore, most work within legged loco-
motion involves some form of model simplification before designing a stabilizing
controller.

Themost fundamentalmodeling technique used in robotics are rigid-body dynamics,
which is defined as “the movement of systems of interconnected bodies under the
action of external forces” (Tsai, 1999). While a robot (modeled by rigid-body
dynamics) appears to be the central component of legged locomotion, numerous
other subcomponents are coupledwith the robot itself through interconnections, such
as terrain dynamics, compliant dynamics, impact dynamics, etc. The complexity
of controlling such systems grows exponentially as the mathematical model details.
There is a famous observation in statistics (Box, 1976): “Since all models are wrong
the scientist cannot obtain a "correct" one by excessive elaboration,” which also
captures this challenge of robotics. Therefore, a multi-link rigid-body system, with
compliant components that are no more complicated than linear coil springs, and
rigid contact/impact model is widely accepted as the “correct” model for robotics.
We refer to this system as the full-order system in this thesis.

Among the approaches used in legged locomotion, a significant subset of the work
lies in viewing walking dynamics as a reduction problem, wherein the complex
real-world dynamics are assumed to be governed by the evolution of some reduced
system. The linear invert pendulum model (LIPM) (S. Kajita, Kanehiro, et al.,
2001; S. Kajita, Tani, and Kobayashi, 1990) assumes a bipedal system behaves as
an invert pendulum with massless limbs. For high-performance behaviors such
as running and hopping, a spring-loaded invert pendulum (SLIP) model is broadly
applied to bipedal locomotion (Reinhard Blickhan and Full, 1993; R. Blickhan, n.d.;
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Rezazadeh et al., 2015). It is also extended to the asymmetric-SLIPmodel to account
for the heavy torso (Ioannis Poulakakis and Jessy W Grizzle, 2009). The centroidal
dynamics (D. E.Orin, Goswami, and S.-H. Lee, 2013) captures the dominating effect
of center of mass and angular momentum to control legged locomotion, including
quadrupedal locomotion (Di Carlo et al., 2018). A prominent result of using simple
models is the seminal work of Raibert’s hoppers and quadrupedal robots (M. Raibert
and Tello, 1986). To maintain balance (an intuitive description of stability) and
capture points, (Koolen et al., 2012) utilized a region to stabilize the LIPM-based
systems, and the well-known Zero Moment Point (ZMP) method (Vukobratovic and
Branislav Borovac, 2004) gives a robust but restrictive condition to prevent foot-
rolling and further avoid falling. Yet these methods lack guarantees with respect to
the full-order dynamics, and to mitigate erratic experimental performance, intensive
parameter tuning is required.

Other works investigate this dimensional reduction by performing design of loco-
motion on the passive dynamics of the system. This can improve model fidelity
and represent more physical details of the system; relevent methods include hybrid
zero dynamics (HZD) methods (E. R. Westervelt, J. W. Grizzle, Chevallereau,
et al., 2007; A. Ames, 2014) and other optimization-based approaches (Dalibard
et al., 2013). By considering the rigid-body dynamics as a continuous-time system
and the rigid impact with the ground as a discrete-time system, walking can be
modelled as a hybrid system (Barton and C. K. Lee, 2002). Correspondingly, the
HZD framework was then invented as a means to reduce the stability problem of the
high-dimensional walking dynamics to the lower-dimensional zero dynamics on the
hybrid zero dynamics manifold. From the perspective of Lyapunov, stability of the
overall hybrid system is formally guaranteed in (A. Ames, Galloway, et al., 2014b).
Many hardware results have been accomplished in the domain of legged locomotion,
such as walking (J. Reher et al., 2016; Sreenath, H.-W. Park, I. Poulakakis, and J. W.
Grizzle, 2011) and running (Sreenath, H.-W. Park, I. Poulakakis, and J.W. Grizzle,
2013).

1.2 Contribution
The contribution of this thesis is twofold.

First, it enriches the application of HZD framework in the domains of 2D walking
(Ambrose, W. Ma, C. Hubicki, et al., 2017), running (Wen-Loong Ma, Ayonga
Hereid, et al., 2016; Wen-Loong Ma, Shishir Kolathaya, et al., 2017), monopedal
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hopping (Ambrose, W. Ma, and A. D. Ames, 2021), walking with compliance (Jake
Reher, Wen-Loong Ma, and Aaron D. Ames, 2019), and quadrupedal locomotion
(W. Ma, K. A. Hamed, and A. D. Ames, 2019). Although the full-body hybrid
dynamics of walking is believed to be “good enough” to represent the real-world
hardware dynamics, we still face many uncertainties that can easily destroy stability,
such as sensor noise, low-bandwidth compliant dynamics, etc. Therefore, (Wen-
Loong Ma, Ayonga Hereid, et al., 2016) utilized direct-collocation methods to
fast-finding periodic running gaits and formulated input-to-to state stability (ISS)
analysis for the end result of robust running on DURUS-2D. See Fig. 1.1 for the
development of the robots.

Secondly, when solving the control problem of quadrupedal locomotion from the
hybrid control perspective (W. Ma, K. A. Hamed, and A. D. Ames, 2019), the com-
putational complexity and experimental robustness is not effective in comparison
with state-of-art simple model-based approaches. Therefore, we take inspirations
from the seminal work of Raibert’s virtual leg principle (M. Raibert, Blankespoor,
et al., 2008), and characterize quadrupedal locomotion as a collection of two con-
nected bipedal subsystems. Through dynamics decomposition (Wen-LoongMa and
Aaron D. Ames, 2020), we were able to efficiently solve for quadrupedal gaits within
a few seconds. It is also applied to sloped terrain walking (W. -L. Ma, Csomay-
Shanklin, and A. D. Ames, 2020). These results are theoretically justified using the
notion of coupled control systems (CCS) in (W. Ma, Csomay-Shanklin, and A. D.
Ames, 2021), and Lyapunov stability analysis was used to synthesize local optimal
controllers in (W. -L. Ma, Csomay-Shanklin, S. Kolathaya, et al., 2021) for each
decoupled bipedal systems.

The goal of this thesis is to provide theoretical analysis for locomotion from Lya-
punov’s perspective, and serve as a comprehensive introduction for experimental
design of various robotic platforms (see Fig. 1.1 with a few examples).

1.3 Organization of Dissertation
This section provides a brief overview of the contents of each chapter.

Chapter 2: Constrained Rigid-Body Dynamics. This chapter details the modelling
techniques and layout of the notations used for constructing the hybrid dynamics
of legged locomotion. Using the conventional rigid-body dynamics and holonomic
constraints, we can obtain the continuous-time equations of motion for the walking
systems. Further we use plastic impact to describe the ground contact as a sim-
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Figure 1.1: Robots developed to control in this thesis. From left to right: AMBER2
(2012-2014), AMBER3 (2015), AMBER3M (2016-2020), DURUS-2D (2015-
2016), DURUS (2016), Cassie (2017-now), Vision60 v3.2 & v3.9 (2018-2020).

ple discrete-time dynamics. An alternating sequence of continuous and discrete
dynamics is then regarded as a hybrid system, which is then represented by a set
of differential algebra equations (DAEs). These concepts will be explained using
multiple robots including underactuated, fully-actuated, and overactuated systems.
We will finish this chapter with an optimization formulation that is used throughout
this thesis to find a desired gait for a simple hopping robot, which is defined as the
(numerical) solutions to the hybrid system.

Chapter 3: Controller Design for Bipedal Running. After formulating the dynamic
equations for these legged systems, we are in place to control them. In this section,
we introduce some key concepts to control legged locomotion from Lyapunov’s
perspective. This includes the virtual constraints, desired outputs, tracking control
and Lyapunov stability. We first formally pose the control problem as a trajectory
optimization problem, where a closed-loop system can be defined and a solution
(gait) to the closed-loop system is found. These will be detailed using DURUS, a
3D underactuated humanoid robot, as an example. We will also use AMBER3M
walking on slippery surface as an example the show the scalability of the opti-
mization for high-performance locomotion. Ideally, tracking these solutions on the
system with the pre-defined controller equates controlling the system as desired,
which is true as we verified in simulation. However, the real-world suffers from
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uncertainty such as inaccurate measurement. We then utilize the concept of input
to state stability to analyze the tracking noise from the phasing variable for bipedal
running on DURUS-2D. With the formally provn improved robustness, we can then
realize bipedal running experimentally.

Chapter 4: Coupled Control System and Quadrupedal Applications.The aforemen-
tioned methods and application all build on full-order dynamics of these legged
systems. While this is beneficial to realize high-performance robotics, it is not
completely necessary. For example, multiple simplified models have been shown
effective for quadrupedal locomotion. In this chapter we first show how to use off-
line trajectory optimization to generate closed-loop trajectory for complex systems
such as the quadrupedal robots of interest. Then we construct the concept of cou-
pled control systems, which focuses on the control and optimization problem from
a perspective of viewing the system as a set of subsystems coupled through control.
In a concrete example, a quadrupedal robot can be viewed as two connected bipedal
robots coupled through holonomic constraints. In the construction, we provide the
stability conditions in the sense of Lyapunov and synthesize two algorithms. First,
we proposed an optimization framework to rapidly generate gaits for the bipedal
subsystem that can be reconstructed to quadrupedal gaits. Then we used coupled
control Lyapunov functions to control each subsystem to achieve the stability of the
full-order system. The result is Vision 60, version 3.2 and 3.9, two robots of different
size and weight that can walk robustly indoor and outdoor on rough terrains.
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C h a p t e r 2

CONSTRAINED RIGID-BODY DYNAMICS

To formally construct the control problem of legged locomotion, we first convert
the general differential geometry equations (DAE) formulation used in rigid-body
dynamics into a control-friendly formulation — the ordinary differential equation
(ODE) form ¤G = 5 (G) + 6(G)D — in this chapter. For this purpose, all internal
variables need to be explicitly and uniquely determined by the state variables and
control variables. Further, we employ the trajectory optimization technique to
define and find numerical solutions to such systems. These solutions, i.e., gaits, are
essentially what the controller is designed to drive the dynamics to in the content
that follows.

2.1 Coordinates and Notations

Figure 2.1: Configuration coordinates of AMBER robots, DURUS-2D running
robot, DURUS, Cassie, and Vision 60, the quadrupedal robots.

The target of this section is to define the state coordinates for robotic systems such as
those in Fig. 1.1. As shown in Fig. 2.1, we model each robot as a multi-link system.
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The configuration coordinate is denoted by @ ∈ Q ⊂ R=, where = is the number
of degrees of freedom (DOF) without considering any other constraints (refereed
to as states-DOF). Following (Jessy W. Grizzle et al., 2014), we use the floating-
base convention for robotic systems. Each system starts from a body linage as the
base (normally picked as the torso link, or the ground for manipulation problems),
with b ∈ R3 × SO(3) as the global Cartesian position and orientation of a frame
attached to the body linkage. Then :-limbs are connected to the body, each of
which has a few children links. These limbs are associated with local coordinates \,
including both prismatic joint length and revolute joint angles. Additionally, each
robot is assumed to have< actuated joints and< ≤ =. Here, “actuation” specifically
refers to those joints included in the configuration coordinates that are driven by
actuator modules, which are normally composed of a Brushless (BL) DC motor and
a reduction gearbox. Concretely, we denote the input variable as D ∈ U ∈ R<.

In summary, we use the following convention:

• @ = (b>, \>)> ∈ R= is used exclusively for a robot’s configuration coordi-
nates, where b is the floating-base coordinates, \ is the “shape” coordinates
representing the rotaional and prismatic joints’ displacement, and their time-
derivative is denoted as ¤@, ¤b, ¤\.

• H is for system-level outputs, and [> = (H>, ¤H>).

• Normal form coordinates: ([>, I>)>, where I is the zero dynamics coordi-
nates.

Notations. In this thesis, we denote that the set of natural numbers as N; the set
of = by 1 real vectors as R=, the set of non-negative real numbers as R+, the set of
< by = matrices as R<×=, an = by 1 vector whose elements are 1 as 1=, a proper
dimensional vector whose elements are 0s as 0, an = by = identity matrix as �=, and
an < by = zero matrix as 0<×=. The Lie derivative of a function 5 (G) along the
vector field 6(·) is defined as

!6(·) 5 (G) ,
m 5 (G)
mG

6(·). (2.1)

Plus, some norm operators need to be defined. The Euclidean norm of a vector of
proper dimension is |·|, and we take

‖3‖∞ , sup
C≥0
( |3 (C) |) . (2.2)
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The matrix norm induced by the Euclidean vector norm is ‖·‖2, and the distance
from a point (G, I) to a periodic orbit O is defined as:

‖(G, I)‖O , inf
(G ′,I′)∈O

| (G, I) − (G′, I′) | . (2.3)

2.2 Holonomic Constraints and System-Level Degrees of Freedom
We are interested in scenarios when the robots are shown in Fig. 1.1 interact with
the world through rigid contacts, which are modeled as some form of holonomic
constraints (for example, unilateral constraints, see (R. M. Murray et al., 1994)).
In classical mechanics, holonomic constraints are defined relations between the
position variables (Arnold, 1989). In this thesis, we denote a holonomic constraint
as a function in the form of

ℎ(@) ≡ c, (2.4)

where c ∈ R=ℎ is a constant, ℎ : R= → R=ℎ , and the operator “≡”, identical equality
of functions, means that ℎ(@) = 0 is true for all C ∈ I that @(C) is defined on.

Figure 2.2: Three fundamental contact problems modelled by holonomic con-
straints: a) point contact, ℎ(@) ∈ R3 denotes the three-dimensional Cartesian posi-
tion fixed to the world; b) line contact, ℎ(@) ∈ R3+2 fixed one point of the contact
line and the pitch, yaw angles of the body-fixed frame to the world; c) plane contact,
ℎ(@) ∈ R6 fixed the 6-dimensional body-fixed frame to the world.

There are three fundamental contact problems in rigid-body dynamics: line contact,
point contact, and plane contact. See Fig. 2.2. However, many complicated scenarios
exist in reality, such as multiple contact points. Moving forward, we require that
there be no redundancy when picking the representation of holonomic constraints.
Mathematically, this means the Contact Jacobian,

�ℎ (@) ,
mℎ(@)
m@

∈ R=ℎ×=, (2.5)

is full rank. That is, Rank(�ℎ) = min(=ℎ, =). A simple example of redundancy is
that in the line-contact problem shown in Fig. 2.2(b), either (G�, H�, I�, \H, \I) ≡
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0, or (G�, H�, I�, G�, H�, I�) ≡ 0 can represent the contact condition. But the
second formulation has one degree of redundancy, which is the result of rigid-body
formulation: the distance between point A and B is a constant. Hence, we call
Rank(�ℎ) the degree of contact constraint. Recall the states-DOF = in Sec. 2.1,
these holonomic contact constraints obviously change the system-level degrees of
freedom (abbreviated as system-DOF). We then denote the total degrees of freedom
as

system-DOF , = − Rank(�ℎ). (2.6)

In consistence with this definition, we have = ≥ =ℎ, and thus Rank(�ℎ) = =ℎ.
Furthermore, this equality constraint ℎ(@) is enforced via contact forces (also known
as constraint wrench) _ ∈ R=ℎ .

2.3 Continuous-Time Dynamics
The continuous-time dynamics of a robotic system will be expressed as a set of dif-
ferential algebra equations (DAEs), which is composed of two parts: the equations
of motion (EOMs), and some algebraic equations. Concretely,

� (@) ¥@ + � (@, ¤@) + 6(@) = �D + �>ℎ (@)_, (2.7)

s.t. ℎ(@) ≡ 0. (2.8)

We can obtain the EOMs in (2.7) by using the Euler–Lagrange equation, see (R. M.
Murray et al., 1994; M.W. Spong, 1989; R. Featherstone, 2008). Here, � (@) ∈ R=×=

represents the mass-inertia matrix, and is symmetric positive-definite; � (@, ¤@) ∈
R=×= is the Coriolis matrix, and 6(@) ∈ R= contains the gravity terms. For the sake
of notational simplicity, we denote

� (@, ¤@) , � (@, ¤@) + 6(@)

throughout this thesis; the actuation matrix �(@) ∈ R=×< maps the motor input D
from the control spaceU to the configuration space Q, which is a constant matrix;
and �ℎ ∈ R=ℎ×= is the contact Jacobian, with _ ∈ Rℎℎ the contact force.

Remark 1. We note a special property of the mass-inertia matrix � (@) when using
the floating-base coordinate — the branch-induced sparsity. As detailed in (Roy
Featherstone, 2010), there is a sparse structure for a multi-limbs robotic system such
as a humanoid, or a quadrupedal robot. For example, as shown in Fig. 2.3, the
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Figure 2.3: Branched chain structure of a bipedal system—AMBER-3M, and a
quadrupedal system—Vision 60.

inertia matrix for a bipedal system and a quadrupedal system has the structure of

�biped =


�b �1l �1r

�>
1l

�left 0
�>
1r

0 �right

 , �quad =



�b �10 �11 �12 �13

�>
10

�!0 0 0 0
�>
11

0 �!1 0 0
�>
11

0 0 �!2 0
�>
13

0 0 0 �!3


. (2.9)

This is particularly usefulwhen formulating the coupled control problemof quadrupedal
locomotion in Chapter 4.

2.4 Underactuated System
To eventually convert the DAEs given by (2.7)-(2.8) to an ODE form, we need to ex-
plicitly solve the internal variable _ with @, ¤@, D. But first, we need to systematically
define the notion of underactuated, fully-actuated, and overactuated mechanical
systems and their degrees.

Similar to how the contact force enters the EOMs of (2.7), � (@)>_, the joint torque
(or linear actuator’s force) enters the system in the same way, �D. Indeed, both
are obtained via the principle of virtual work (Lanczos, 1986) (formally extended
to dynamical systems as the Lagrange–d’Alembert principle, see (Arnold, 1989)),
which is a specific application of the method of Lagrange multiplier (R. M. Murray
et al., 1994, Chapter 6). Therefore, just as a complicated contact situation can cause
redundancy among the contacts, the joint torque D could also “fight” with the contact
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force _ (see Fig. 2.4(c) where the control variable D fights with the ground reaction
force), which is the overactuation problem.

Figure 2.4: Simple examples of overactuation in the presence of holonomic con-
straints: (a,b) sliding on a track; (c) pushing against a wall; (d) a quadrupedal robot
standing on two feet.

Define the following matrix as the Actuation Jacobian:

�A ,

[
�>

�ℎ

]
∈ R(<+=ℎ)×=. (2.10)

Note that Rank(�A) ≤ =.

Definition 1. If Rank(�A) < =, we say the full system is under-actuated, and

=U = = − Rank(�A) (2.11)

is defined as the degrees of under-actuation for the full system.

Definition 2. If Rank(�A) = =, and < + =ℎ > =, the system is overactuated, and

=O = < + =ℎ − Rank(�A) (2.12)

is defined as the degrees of overactuation for the full system.

Example.

• The system in Fig. 2.4 (a) has dynamics:
< ¥G = D2 + _

< ¥H = D1 − _

¥G − ¥H = 0

⇒ �A =


1 −1
1 0
0 1

 ⇒ =O = 2 + 1 − 2 = 1.

• The system in Fig. 2.4 (b) has dynamics:
< ¥G = D2

< ¥H = D1 − _

¥H = 0

⇒ �A =


1 0
1 0
0 1

 ⇒ =O = 2 + 1 − 2 = 1.
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Full system overactuation can be interpreted as:

• Control inputs fight with each other (Fig. 2.4(a));

• Control inputs fight with constraint force _ (Fig. 2.4(b,c)).

Definition 3. A system that is neither underactuated nor overactuated is said to be
fully actuated.

Definition 4. If the actuationmatrix �A is not full rank (degenerate), i.e., Rank(�A) <
min(< + :, =), the system is internally overactuated. The degree of internal over-
actuation is defined as

=IO = min(< + =ℎ, =) − '0=: (�A).

The internally overactuation is often caused by some closed-chain structure, such as
the double-support scenario of the quadrupedal locomotion with two-point contacts
on the toes. As shown in Fig. 2.4(d), the red line indicates the closed-chain inside
the system. Also, as shown in Fig. 2.4(e), right after an impact, the nonstance foot’s
spring needs some time to recover to the normal length while the stance spring is
compressing itself. This results in a double-support domain, which also creates an
internal chained structure and internal overactuation.

To uniquely determine _ with @, ¤@, D, we require the dynamics given by (2.7)-(2.8)
have no overactuation or internally overactuation. In other words, �ℎ, �, and �A are
all full-rank, and =O, =IO = 0. This can be achieved by enforcing additional algebraic
equations, such as setting some motor inputs to be 0. The reason is that a violation
of this requirement will result in an underdetermined problem when solving for _.
This will be seen in the next section. In summary, we demand our problem to be
either underactuated or fully-actuated.

Remark 2. It is unnecessary to have �ℎ, �, and the actuationmatrix full-rank in real-
world applications. For example, an all-wheel-drive (AWD) vehicle is apparently
overactuated. Although it has no mathematical difference from a rear-wheel-drive
vehicle in terms of rigid-body dynamics, the control robustness differs significantly.
Further, a degenerate matrix formulation will make the stability analysis later using
the traditional control language over complicated. This is beyond the scope of
this thesis, but interested readers can find the optimization-based analysis for such
problems in the literature of control allocation such as (Johansen and Fossen, 2013).
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2.5 The ODE Form of Control-Affine Systems.
We now convert a DAE system given by (2.7)-(2.8) into a ODE system. We first
note that (2.8) is an equality constraint placed on @(C) ∀ C ∈ I. To explicitly solve _,
we take the derivatives of (2.8) to get:

�ℎ (@) ¤@ = 0; (2.13)
¤�ℎ (@, ¤@) ¤@ + �ℎ (@) ¥@ = 0. (2.14)

Therefore, (2.7)-(2.8) became
� (@) ¥@ + � (@, ¤@) = �D + �>

ℎ
_

¤�ℎ (@, ¤@) ¤@ + �ℎ (@) ¥@ = 0
. (2.15)

When compute the constraint wrench in (2.7), we can easily derive the following

(�ℎ�−1�>ℎ )_ = �ℎ�
−1� − �ℎ�−1�D − ¤�ℎ ¤@

⇒ _ = (�ℎ�−1�>ℎ )
−1

(
�ℎ�

−1� − �ℎ�−1�D − ¤�ℎ ¤@
)
, (2.16)

where we suppressed the arguments of � (@), � (@, ¤@), �ℎ (@) and ¤�ℎ (@, ¤@). Note that
if �ℎ is not full rank, �ℎ�−1�)

ℎ
becomes a singular matrix, in which case we cannot

uniquely determine _.

Plugging (2.16) into (2.7), we have

� ¥@ + � = �D + �>ℎ (�ℎ�
−1�>ℎ )

−1
(
�ℎ�

−1� − �ℎ�−1�D − ¤�ℎ ¤@
)

⇒ ¥@ = −�−1� + �−1�>ℎ (�ℎ�
−1�>ℎ )

−1
(
�ℎ�

−1� − ¤�ℎ ¤@
)

︸                                                           ︷︷                                                           ︸
drift vector

+

(
�= − �−1�>ℎ (�ℎ�

−1�>ℎ )
−1�ℎ

)
�−1�D. (2.17)

Another form often used in the control + robotics literature is the manipulator
dynamics:

� ¥@ + � − �>ℎ (�ℎ�
−1�>ℎ )

−1
(
�ℎ�

−1� − ¤�ℎ ¤@
)

︸                                             ︷︷                                             ︸
,�̄ (@, ¤@)

=

(
�= − �>ℎ (�ℎ�

−1�>ℎ )
−1�ℎ�

−1
)
�︸                                    ︷︷                                    ︸

,�̄(@)

D.

(2.18)

Further, we define the state space X = )Q ⊆ R2= with the state vector:

G ,

[
@

¤@

]
,
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where )Q is the tangent bundle of the configuration space Q. Finally, we have the
dynamical system that we wish to design controllers for:

¤G(C) = 5 (G(C)) + 6(G(C))D,

which will be abbreviated as

¤G = 5 (G) + 6(G)D (2.19)

with

5 (G) ,
[

¤@
−�−1� + �−1�>

ℎ
(�ℎ�−1�>

ℎ
)−1 (

�ℎ�
−1� − ¤�ℎ ¤@

) ] ,
6(G) ,

[
0(

�= − �−1�>
ℎ
(�ℎ�−1�>

ℎ
)−1�ℎ

)
�−1�

]
. (2.20)

2.6 Hybrid System
Having established the continuous-time dynamics for a particular contact scenario,
we are in the position to define the hybrid model for walking. The motivation of
using hybrid dynamics is straightforward: for legged locomotion, when the contact
condition changes— such as adding or removing some contacts— the input (contact
force, motor torque) changes, hence the dynamics change. The combination of these
“domains”1 of dynamics results in a hybrid automata (Barton and C. K. Lee, 2002),
which is given by the following definition.

Definition 5. A hybrid control system is defined to be the tuple:

HC = (Γ,D,S,Δ, F), (2.21)

where,

• Γ , {V,E} is a directed graph (or digraph) (see (Mesbahi and Egerstedt,
2010)), with V the set of domain indices and E the set of edges between two
domains. Their elements are denoted as E ∈ V, 4 ∈ E, where 4 , (E → F)
with E, F ∈ V;

• D , {DE}E∈V is a set of admissible domains, where the state space is defined
on;

1“Domain” is interchangeably used with “phase” in this thesis.
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• S , {S[4]}4∈E is a set of guards (or switching surfaces), whereS ⊂ DE∩DF,
with E, F ∈ V ;

• Δ , {Δ[4]}4∈E is a set of reset maps that maps the pre-edge states to the
post-edge states. This will be detailed in the next section;

• F , {FE}E∈V is a set of control systems that determine the continuous-time
dynamics on a domain DE.

Discussion. In application, we denote a specific contact condition as ℎE (@) ≡ 2E for
each domain DE with E ∈ V. Moreover, the satisfaction of this constraint defines
the state space, i.e., the continuous dynamics on domain DE is given by

¤G = 5E (G) + 6E (G)D, G ∈ DE . (2.22)

The guard S4 associated an edge 4 , (E → F) with E, F ∈ V is normally defined
by the change of states from G ∈ DE to G ∈ DF. The control law {��E}E∈V will be
the main topic of the next chapter.

Figure 2.5: Directed graph for two robotic systems.

We now give two examples of formulating the hybrid model for low-dimensional
legged systems.

A hopping machine. A canonical example of the hybrid dynamical system is hop-
ping robots. In the simplified vertical hopping machine shown in Fig. 2.5(a), the
robot hops up and down only. It then has two dynamic domains, the stance domain
Ds, where the foot (bottom link) stays on the ground, and the flight domainDf when
the foot left the ground. Formally, this is defined as

Ds , {G ∈ )Q | Ifoot = ¤Ifoot = 0}, (2.23)

Df , {G ∈ )Q | Ifoot ≥ 0}, (2.24)
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where Ifoot is the height of the foot. We then denote _foot as the ground reaction
force exerting on the foot. Note that _foot can be explicitly solved with G, D using
(2.16). Therefore, we have the domain indices V , {s, f}, and the set of edges as

E , { 4s→f︸︷︷︸
“lift”

, 4f→s︸︷︷︸
“impact”

}, (2.25)

where 4s→f marks the event that foot leaves from the ground, and 4f→s is the event
that foot touch the ground from the air. Thus, we can use the boundary condition of
each domain to define the guard conditions as:

S[4s→f] , {(G, D) ∈ Ds | _foot(G, D) = 0}, (2.26)

S[4f→s] , {G ∈ Df | Ifoot = 0, ¤Ifoot < 0}. (2.27)

The transition dynamics for each edge 4 ∈ E, are called lift dynamics Δ[4s→f], and
the impact dynamics Δ[4f→s] will be detailed in the next section.

AMBER-3M walks on slippery surfaces. The cyclic directed graph of the multi-
domain hybrid system for walking on a slippery surface is shown in Fig. 2.5(b). The
solid lines are for transitions without non-stance foot impact events, and dashed lines
are for transitions with impact events. The subscript s is for walking with slippage,
0 is walking without slippage, and the superscript � marks that the edge is equipped
with an impact event. As shown, we have two types of dynamic domains: the stick
domain D0, where the contact foot stands on the ground without slippage, and the
slip domain Ds, where the contact foot slides the ground. Formally, this is given as

D0 = {(G, D) ∈ )Q ×U | IB = ¤IB = ¤GB = 0, I=B ≥ 0, |_0
G | ≥ `_0

I }, (2.28)

Ds = {(G, D) ∈ )Q ×U | IB = ¤IB = 0, ¤GB ≠ 0, I=B ≥ 0, _BI ≥ 0}, (2.29)

where GB, IB represent the Cartesian position of the stance foot along the horizontal
and vertical axes, accordingly; and I=B is the height of the nonstance foot, _G , _I are
the ground reaction forces along the horizontal and vertical axes. Hence, we have
the domain indices V = {0, s}. Correspondingly, we have the set of edges

E = {40→s, 4s→0, 4s→s, 4
�
0→0, 4

�
0→s, 4

�
s→0, 4

�
s→s}. (2.30)

The superscript “�” denotes transition via impact, whereas its absence denotes stick
↔ slip transitions. We now define the guards, which are switching surfaces or
conditions for transition between domains. The first guards are associated with the
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smooth transitions between sticking and slipping domains:

S[40→s] = {(G, D) ∈ D0 | |_0
G | = `_0

I },

S[4s→0] = {(G, D) ∈ Ds | ¤GB = 0, |_0
G | ≤ `_0

I },

S[4s→s] = {(G, D) ∈ Ds | ¤GB = 0, |_0
G | > `_0

I }.

Note that the last transition above associated with 4s→s is reversal of slip direction
(cf. (Gamus and Yizhar Or, 2015)). The guards corresponding to transitions that
involve sticking or slipping impacts are defined as:

S[4�0→0] = {(G, D) ∈ D0 | I=B = 0, ¤I=B < 0, |Λ0
G | ≤ `Λ0

I },

S[4�s→0] = {(G, D) ∈ Ds | I=B = 0, ¤I=B < 0, |Λ0
G | ≤ `Λ0

I },

S[4�0→s] = {(G, D) ∈ D0 | I=B = 0, ¤I=B < 0, |Λ0
G | > `Λ0

I },

S[4�s→s] = {(G, D) ∈ Ds | I=B = 0, ¤I=B < 0, |Λ0
G | > `Λ0

I },

where ΛG ,ΛI are the impact impulses along the horizontal and vertical axes. These
guards represent the conditions for sticking or slipping impacts as described above.
Note that the overall non-smooth frictional dynamics may have special degenerate
cases where the solution is inconsistent, indeterminate, or singular. These rare cases
are know as Painlevé paradox (Champneys and Várkonyi, 2016; Yizhar Or, 2014),
and lie beyond the scope of this work.

We remark that the sequence of motion in Fig. 2.5 that is marked by red color, has
been controlled (see Sec. 3.3) and realized on the robot AMBER-3M, in (Wen-Loong
Ma, 2019a).

2.7 Discrete Transitions
For legged locomotion, a change of contact condition2 will result in either an event
of lift or impact, or simultaneously both. We can characterize this “jump” between
domains as discrete transitional events, which will be detailed in this section.

Impact-transition dynamics. Legged locomotion inevitably includes foot-impacts
with the ground. This process can bemodeled through complicated terrain dynamics
such as the impact on granular media (Li, Zhang, and Goldman, 2013; A. H. Chang
et al., 2017) and elastic or inelastic collisions. In this work, for the mathematical

2 This not only includes foot impacts with the ground but also whenever a constraint ((2.8))
changes. For example, a hard stop of the spring vibration.
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consistency with the assumption that the robots stand on the rigid ground — based
on which the holonomic constraints can be defined — we model the foot impact
as the perfect inelastic collision (also regarded as plastic impact in this thesis).
Therefore, it obeys the conservation of momentum. And the positional variable
remains unchanged through the event of an impact, and the velocity terms jump
from the pre-impact quantity to the post-impact state. Formally, we model the
impact dynamics from domainDF to domainDE — the transition dynamics on the
edge 4F→E with E, F ∈ V— as:

@+4 = @
−
4

¤@+4 = Δ[4F→E] (@−4 ) ¤@−4
, (2.31)

where @+4 , ¤@+4 are the pre-event states of the edge 4 , 4E→F, i.e., these are the initial
conditions of domainDE; @−4 , ¤@−4 are the post-event states of the edge 4 = 4E→F, i.e.,
these are the final conditions of domain DF. Note that we shorted the notation of
4F→E to 4 for simplicity in this section.

We now detail the transitional map Δ[4F→E]. This map is obtained first via the law
of momentum conservation:

� (@−4 ) ( ¤@+4 − ¤@−4 ) = �ℎE (@−4 )>Λ4, (2.32)

where Λ4 ∈ R=ℎE is the impact impulse exerted on the contact surface. Entering
domainDE means that the post-impact holonomic condition ℎE (@+4 ) ≡ 2E also holds.
This yields:

�ℎE (@+4 ) ¤@+4 = 0. (2.33)

Combining (2.31)-(2.33), we have the impact map as:[
¤@+4
Λ4

]
=

[
� (@−4 ) −�ℎE (@−4 )>

�ℎE (@−4 ) 0

]−1 [
� (@−) ¤@−

0

]
, (2.34)

which simultaneously gives the impulse and post-impact states, and this is referred
to as the impact dynamics. As can be seen, this jump of states from ¤@−4 to ¤@+4 results in
a discrete transition. Additionally, removing some subset of the constraints defined
on the previous domain, i.e., lifting, does not result in any impulse. Hence from
(2.32), we then have the lift transition dynamics as:

@+4 = @
−
4

¤@+4 = ¤@−4
. (2.35)
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We now unify (2.32) and (2.35) as the transition dynamics using state vectors. This
is given as

G+E = Δ[4F→E] (G−F). (2.36)

Themore general transition dynamics that involve impact with the slippery condition
can be found in (W. Ma, Y. Or, and A D. Ames, 2019).

2.8 Solution to Hybrid Dynamics
Having established the multi-domain hybrid dynamics of a legged system as:

H ,

¤G = 5E (G) + 6E (G)D G ∈ DE, ∀E ∈ V

G+ = Δ[4] (G−) G− ∈ S[4], ∀4 ∈ E
, (2.37)

we hereby define the solutions to a multi-domain hybrid system and provide an
optimization method to find the numerical solution. This section is an extension of
the single-domain hybrid system given by (Aaron D. Ames et al., 2017).

Definition 6. A solution (execution) to the hybrid systemH is a tuple:

j = (V,I, C), (2.38)

where,

• V = (E1, E2, . . .) with E8 ∈ V and 8 ∈ N+, is a finite or countably infinite
domain sequence3 , and we denote its cardinality as # .

• I = (�1, �2, . . .) is a sequence of the time interval �8 with 8 ∈ N+, for each
executed domain E8. For each E8 ∈ V, �8 is defined as:

– �1 = [0, )1], if )1 ≠ ∞, otherwise �8 = [0,∞),

– �8 = [)8−1, )8], if E8−1, E8 ∈ V and )8 ≠ ∞,

– �# = [)#−1, )8), if 8 > 1 and )8 = ∞

• C = ({G1(C), D1(C)}, {G2(C), D2(C)}, . . .) is a sequence of continuous trajecto-
ries for the states G8 (C) and control inputs D8 (C) that satisfies

¤G8 (C) = 5E8 (G8 (C)) + 6E8 (G8 (C))D8 (C), ∀ C ∈ �8 .

We additionally require that for each E8 ∈ V,
3Note that unlike a set, E8 and E 9 with 8 ≠ 9 can be the same, i.e., the same domain can appear

more than once in the solution’s domain sequence. Further, note the sequence of domains V is
different from the set of domains V from Def. 5.
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– G8 (C) ∈ DE8 , ∀ C ∈ �8,

– G8 ()8) ∈ S[4E8→E8+1] and Δ[4E8→E8+1] (G8 ()8)) = G8+1()8) if E8+1 ∈ V.

We regard G0 , G1(0) the initial condition of j. A mixed sequence of walking
tasks of a bipedal robot can serve as a good example of this definition. As shown
in Fig. 2.6, we can define four types of domain: D0 for standing still, D 5 for
walking on a flat surface, DD for walking uphill, D3 for walking downhill. Hence
we have the set of domain as D = {D 5 ,DD,D3}, and the set of guards S =

{S[4 5→ 5 ],S[4 5→D],S[4D→ 5 ],S[4D→D],S[4 5→3],S[43→ 5 ],S[43→3]}. We now
assume there exists a solution to this hybrid system such that the robot starts from
standing still, then walk two steps on flat ground, two steps uphill, two steps on the
hill, then keeps walking on the flat ground. Therefore according to Def. 6, we have
domain sequence as V = (D 5 ,D 5 ,DD,DD,D 5 ,D 5 ,D3 ,D3 ,D 5 ,D 5 ,D 5 , . . .).
Correspondingly, we can obtain the sequence of smooth trajectories C.

Figure 2.6: A mixed sequence of walking tasks of a bipedal robot: flat ground
walking, uphill walking, downhill walking, flat ground walking. On the right is the
directed graph, where the arrows represent the corresponding edges. Each edge is
associated with transition dynamics.

2.9 Numerical Optimization
As given in (2.38), a solution to the hybrid dynamics is not necessarily a physically
realizable trajectory. For example, the trajectory for the torque input D(C) ∀C may
violate the actuator’s physical limitation. This section introduces the numerical
optimization formulation of finding the solution to a nonlinear system in (2.37) that
respects some inequality constraints. We will apply this formulation throughout
this thesis. The history of finding solutions to nonlinear dynamics using numerical
optimization is rich in all engineering areas. An exhaustive review of numerical
optimization can be found in (Betts, 1998). We want to find a solution as (2.38) that
also satisfies some inequality constraints in this section. In particular, we employ
direct collocation method (Kelly, 2017; Ayonga Hereid, Shishir Kolathaya, et al.,
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2014) to accomplish this goal. This method essentially transcribes the solution-
finding problem into a set of algebraic equations via collocation schemes. This is an
implicit Runge-Kutta method to solve the system dynamics simultaneously. There
are many types of collocation schemes, but we will focus on a specific method: the
local direct collocation method.

Unlike the single shootingmethod for the initial value problems (IVP) (Kiehl, 1994),
where the solution G(C) ∀C is obtained explicitly by integrating the dynamics from
C = C0, direct collocation formulation approximates the solution G(C) implicitly by
piecewise polynomials along the evolution of the nonlinear dynamics.

We first present the algorithm to find the solution G(C) ∀ C ∈ �8 using defect con-
straints. The basic procedures are:

Step1. We begin by defining a sequence of  + 1 discrete nodes along the time span
of the trajectory:

)8−1 = C0 < C1 < C2 < · · · < C = )8, (2.39)

which forms the basis of our discrete representation of the continuous dy-
namics, and we denote XC: = C:+1 − C: , where : ∈ (0, 1, . . . ,  8). Note that
 8 depends on the domain E8, but we will omit the subscript 8 for the ease of
notation.

Step2. We use a piecewise Hermite interpolation (cubic) polynomial to approxi-
mate the solution over each subinterval [C: , C:+1] using the following cubic
polynomial:

G(C) = �0 + �1B + �2B
2 + �3B

3 (2.40)

B =
C−C:
C:+1−C: ∈ [0, 1] is the normalized time within the subinterval. The four

coefficients�0, �1, �2, �3 are determined by the two boundary values G: , G:+1,
which are given as decision variables of the optimization algorithm. Their
derivatives ¤G8 and ¤G8+1 are computed by the continuous dynamics in (2.37).

Step3. Using these coefficients, we can compute the interpolated value of G at the
center of the subinterval, i.e., the collocation point, as

Ḡ:2 = (G: + G:+1)/2 + XC: ( ¤G: − ¤G:+1)/8. (2.41)

Similarly, the slope of the cubic polynomial at the center point is

¤̄G:2 = −3(G: − G:+1)/2XC: − ( ¤G: + ¤G:+1)/4. (2.42)
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Step4. The defect constraint at the center of the subinterval is defined as the difference
between the interpolated slope and the first-order derivatives of states at the
center of the subinterval computed by the system dynamics, i.e.,

Z : = 5 (Ḡ:2 ) + 6(Ḡ:2 )D:2 − ¤̄G:2 . (2.43)

We now have the most important statement in this section: (Ḡ:2 , ¤̄G:2 )) satisfies
the dynamic constraints (C1) if and only if Z : = 0. In fact, (2.43) is a nonlinear
equality constraint posed on the nodes C: and C:+1.

Step5. Stack these defect constraints into a vector as

/8 ,


Z0

...

Z −1

 , (2.44)

in which / becomes a function of the discretized states

x8 , (G0, G1, . . . , G ),

and control inputs

u8 , (D0, D0
2, D

1, D1
2, D

2, . . . , D ).

Then the goal is to “find” a set of discretized states x8 so that the defect Δ8 = 0
for domain E8 ∈ V. As a result, the interpolated piecewise polynomials are an
valid approximation of the solution G(C) ∀ C ∈ �8. Note that there are two ways
to improve the smoothness of control inputs: D:2 ≡ D: and D:2 ≡ (D: +D:+1)/2,
but these additional constraints are not required.

To find a solution to the hybrid system (2.38), we then encode the defect constraint
(2.44) into a nonlinear program as follows:

min
X

� (X) (2.45)

s.t. (C1) /8 (x8, u8) = 0 ∀8 ∈ (1, 2, . . . #)
(C2) G1

8+1 = Δ[4] (G
 8
8
) ∀4 ∈ E

(C3) ?(X) � 0

(C4) 1(X) = 0
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where, � (X) is a user-defined cost function; G1
8
and G 8

8
are the first and last value of

domain E8 and E8+1, who are connected through edge 4; ?(·) and 1(·) are user-defined
inequality and equality constraints. Further, the decision variable is given as

X = (x1, . . . , x# , u1, . . . , u# , )1, . . . , )# ).

We can then solve this optimization problem using nonlinear solvers such as SNOPT
(Gill,W.Murray, and Saunders, 2005), IPOPT (Wächter andBiegler, 2006), GPOPS
(Hager et al., 2019), PSOPT (Becerra, 2010),s and FROST (Ayonga Hereid and
Aaron D. Ames, 2017). The collocation constraint /8 (X) = 0 is a stage-3, implicit
Runge-Kutta method to solve dynamical systems. When the number of subinterval
increases, the approximated solution becomes closer to the exact solution of the
continuous dynamics. On the contrary, a shooting method finds a solution to the
dynamical system by solving

G(C) =
∫ C 5

C0

5 (G(B)) + 6(G(B))D(B) 3B + G(0)

using explicit Runge-Kutta methods. The implementation of this methodology
on simple and rigid systems is acceptable, see (Shishir Kolathaya, Wen-Loong
Ma, and Aaron D Ames, 2015; H.-H. Zhao et al., 2014). However, it suffers
from computational cost to maintain numerical stability when it comes to a high-
dimensional problem. The collocation method instead simulates the dynamics
implicitly because the solution at each sample time is picked by the optimization
solver simultaneously. This made it expandable to high-dimensional and non-
stiff systems. We will use a simple hopping robot example below to show this
implementation.

Example. We now present a simple example, where we find the solution to a 1D
hopping system using a nonlinear programming (NLP) toolbox —PSOPT(Becerra,
2010). In particular, we will utilize the local discretization methods to parse our
problem.

The robot of interest is shown at Fig. 2.7, we write the equations of motion as
¥I< = D

<<
− 6

¥IA = − D
<A
− �B
<A
− 6

¥I 5 = �B
< 5
− 6

∀ G ∈ Df (2.46)
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Figure 2.7: Left: the configuration coordinate of the 1D hopper. Right: The
optimized trajectory from (2.51).

for the flight phase; and 
¥I< = D

<<
− 6

¥IA = − D
<A
− �B
<A
− 6

¥I 5 = 0

∀ G ∈ Ds (2.47)

for the stance phase. The directed graph is given in Fig. 2.5 (a), and the domain
definitions are given in (2.23). The other notation is explained as: the state variable
is G> = (@>, ¤@>); the configuration coordinate is @> = (I<, IA , I 5 ); << = 1.5, <A =
3.5, < 5 = 0.4; is the mass of the motor, the body, and the foot, respectively; �B =
:B (IA − I 5 − !0) + 2B ( ¤IA − ¤I 5 ) is the spring force, with :B = 8000, 2B = 4, !0 = 0.09
the stiffness, damping and the natural length of the coil spring, respectively.

We wish to generate a motion that can hop above 0.3 m with minimal motor force
inputs. Therefore, we first parse the continuous dynamics given by (2.46) and
(2.47) into the collocation (equality) constraints as given by (2.44). Because of the
simplicity, the discrete dynamics that is shown abstractly in (2.31) is formulated into
the following boundary conditions:

G1
f − G

 s
s = 0

@1
s − @

 f
f = 0

( ¤I<)1s − ( ¤I<)
 f
f = 0

( ¤IA)1s − ( ¤IA)
 f
f = 0

( ¤I 5 )1s = 0

.) (2.48)
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We then constrain the ending time of each domain as
0.1 ≤ C s

s ≤ 1,

0.1 ≤ C f
f ≤ 3,

C
 s
s − C0f = 0.

(2.49)

To hop higher than 0.3 m, we utilized the following path constraints:
(I 5 )0s = ( ¤I 5 )0s = 0

ℎmax exp(−1
2 (

g−2
f
)2) − 0.01 − I8

5
≤ 0 ∀8 ∈ (0, 1, . . . ,  f)

(2.50)

where ℎ<0G = 0.3, and 2 is where we wish the highest hopping point to appear, and

g =
C8 − C0f
C
 f
f − C

0
f

is a parameterization of the time. We now have the open-loop trajectory optimization
posed as

argmin
X

∑
8

��D8��2 (2.51)

s.t. (2.44)(2.48)(2.49)(2.50).

After 1.98 second, we obtained an optimal solution, i.e. the trajectory of the states
xs, xf and the inputs us, uf. We show the result in Fig. 2.7.

Note that benefit from the simplicity of this EOM in (2.46) and (2.47), we can use
automatic differentiation (AD) solvers such as ADOL-C (Griewank, Juedes, and
Utke, 1996) to get the Jacobians of the constraints. However, this simple structure
is very rare in multi-body dynamics; obtaining the Jacobians using AD for the full-
order dynamics of a humanoid robot demands much more computational resources.
Therefore, we will not give the dynamics explicitly, and we will use Wolfram
Mathematica to obtain the Jacobians from now on. Additionally, there are many
software that can parse a multi-body structure such as the URDF4 into the general
rigid-body dynamics format in (2.7), such as the Screws package in (R. M. Murray
et al., 1994).

4http://wiki.ros.org/urdf
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C h a p t e r 3

CONTROLLER DESIGN FOR BIPEDAL RUNNING

In this chapter, we design controllers and trajectories (gaits) for bipedal locomo-
tion using the full-order hybrid dynamics. In particular, we study the gait design,
Lyapunov stability, and input-to-state stability analysis for nonlinear control sys-
tems and apply them to a high-dynamic behavior, bipedal running, on two bipedal
robots—DURUS-2D and DURUS.

3.1 Running Dynamics (Open-Loop)

Figure 3.1: (a) The simulated running of the humanoid robot, DURUS, as a result of
large-scale HZD optimization. (b) The directed cycle structure of the multi-domain
hybrid system model for flat-footed humanoid running.

This section details the multi-domain hybrid dynamic model of 3D running on the
DURUS robot.

Robot Model of 3D Humanoid—DURUS
A popular approach for robotic running is to utilize the Spring-Loaded Inverted
Pendulum (SLIP) model (R. Blickhan, n.d.; Collins et al., 2005b; Rezazadeh et
al., 2015), since the springs can be of assistance to improve energy efficiency and
absorb the high-speed plastic impacts to protect the hardware. Inspired by the SLIP
model, the three-dimensional DURUS robot (Fig. 2.1 (d)) is designed and built by
SRI International for the study of high-efficiency multi-domain bipedal locomotion
(Ayonga Hereid, Eric. Cousineau, et al., 2016; Jacob Reher et al., 2016). DURUS
is an 80 kg, 23 degrees-of-freedom (DOFs) underactuated humanoid robot with 15
actuated joints and two passive linear springs attached to the end of each ankle joint
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that compress perpendicular to the foot. The robot’s upper body, which is used to
balance the dynamics and better resemble human locomotion, is controlled by three
orthogonal waist joints.

For the running model of DURUS, we use the generalized floating-base coordinates,
@ = [?1, q1, \]> ∈ Q, of the robot, where ?1 ∈ R3 is the Cartesian position and
q1 ∈ SO(3) is the orientation of the body base frame '1, which is attached to the
center of the pelvis link, with respect to the world frame; and as shown in Fig. 2.1
(d), the local joints are represented by

\ = [kF, qF, \F, k;ℎ, q;ℎ, \;ℎ, \;: , \;0, q;0, A;B, kAℎ, qAℎ, \Aℎ, \A: , \A0, qA0, AAB]>,

with the coordinates corresponding to the waist yaw, roll, pitch angles, left hip yaw,
hip roll, hip pitch, knee pitch, ankle pitch, ankle roll angles and spring deflection,
and the right hip yaw, hip roll, hip pitch, knee pitch, ankle pitch, ankle roll angles
and spring deflection.

Hybrid Dynamics for Running
Due to the existence of both continuous and discrete dynamics, bipedal robot running
is naturally modeled as a hybrid control system. The flat-footed running of DURUS
is composed of two continuous domains: a stance domain, where the nonstance
foot swings in the air while the stance foot stays on the ground, and a flight domain,
where both feet are in the air (see Fig. 3.1 (b)). Therefore, as discussed in (5), the
hybrid control system of DURUS running is defined as a tuple:

HC = (Γ,D,U,S,Δ, FG), (3.1)

where,

• Γ = {V,E} is a directed cycle with vertices V = {s, f}, where s represents the
stance domain and f represents the flight domain, and the edges E = {s →
f, f→ s},

• D = {Ds,Df} is a set of admissible domains of continuous dynamics,

• U = {Us,Uf} is a set of admissible controls,

• S = {Ss ⊂ Ds,Sf ⊂ Df} is a set of guards,

• Δ = {Δs→f,Δf→s} is a set of smooth reset maps representing the discrete
dynamics,
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• FG = {( 5s, 6s), ( 5f, 6f)} is a set of affine control systems

¤G = 5E (G) + 6E (G)D,

defined on DE for all E ∈ V, with G = (@, ¤@) being the system states.

The directed cycle Γ is depicted in the Fig. 3.1 (b). The construction of individual
elements of (3.1) will be presented in the remainder of this section.

Stance Domain.During the stance domain, the stance foot remains flat on the ground.
Often we use holonomic constraints to model the foot contact with the ground (Jessy
W. Grizzle et al., 2014). Here, we define the holonomic constraints of the stance
domain as

ℎs(@) ,
[
?B 5 (@)
qB 5 (@)

]
∈ R6, (3.2)

with ?B 5 the position and qB 5 the orientation of the stance foot. Given the physical
properties of each link, the unconstrained dynamics of the stance domain Ds is
given by

� (@) ¥@ + � (@, ¤@) = �D + �>s (@)�, (3.3)

where, � (@) is the inertia matrix, � (@, ¤@) contains the Coriolis, gravity, and spring
forces terms, �s(@) is the Jacobian of the holonomic constraints, and � is a wrench
containing the ground constraint forces and moments. The holonomic constraints
are guaranteed via enforcing the second-order derivative of ℎs to be zero:

�s(@) ¥@ + ¤�s(@, ¤@) ¤@ = 0. (3.4)

Thus the affine control system ( 5s, 6s) can be determined by combining (3.3) and
(3.4). The manifold of the stance domain is determined by unilateral constraints,
which could be formulated as a vector of admissible conditions, �s(@, ¤@, D). These
conditions include positive non-stance foot height, positive normal ground force,
etc. In other words, we have

Ds = {(@, ¤@, D) ∈ )Q ×Us | �s(@, ¤@, D) ≥ 0}. (3.5)

Further, the guard condition of the stance domain is defined as the normal ground
force crosses zero, i.e.,

Ss→f = {(@, ¤@, D) ∈ )Q ×*s | �I (@, ¤@, D) = 0}. (3.6)
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Because there is no impact involved during the transition, the reset map from the
stance domain to flight domain, Δs→f, is an identity map.

Flight Domain. Since there is no ground contact during the flight domain, the
continuous dynamics of the domain is determined by the unconstrained Euler-
Lagrangian equation:

� (@) ¥@ + � (@, ¤@) = �(@)D. (3.7)

The admissible conditions of the flight domain are defined so that both feet are above
the ground, i.e., �f(@) = (ℎB 5 (@), ℎ=B 5 (@)). Therefore, we have

Df = {(@, ¤@, D) ∈ )Q ×Uf | �f(@) ≥ 0}. (3.8)

Accordingly, the transition from the flight to stance domain occurs when the non-
stance foot strikes the ground, i.e.,

Sf→s = {(@, ¤@, D) ∈ )Q ×Uf | ℎ=B 5 (@) = 0, ¤ℎ=B 5 (@, ¤@) < 0}. (3.9)

Both dynamics in (3.3) and (3.7) can be converted to the following form:

¤G = 5E (G) + 6E (G)D, (3.10)

and the derivation was given in (2.20).

Transition Map. The reset map from the flight to the stance domain incorporates
the impact dynamics when the non-stance foot hits the ground, during which the
joint velocities undergo discrete changes due to new contact constraints. Given
the pre-impact states (@−, ¤@−), the post-impact states (@+, ¤@+) = Δf→s(@−, ¤@−) are
determined by assuming a perfectly plastic impact of the rigid body. Since the
position terms do not change through the impact, we have the impact equation,
which determines the discrete changes of velocities as[

� (@−) −�>s (@−)
�s(@−) 0

] [
¤@+

X�

]
=

[
� (@−) ¤@−

0

]
(3.11)

where X� is a vector of impulsive contact wrenches.

3.2 Virtual Constraint and Zero Dynamics
Given the running model, this section introduces the basic concepts used in this
chapter, including virtual constraints, phasing variables, and zero dynamics. Wewill
use DURUS-3D running (Fig. 3.1) as an example to concretize these constructions.
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Desired behavior. To achieve stable locomotion, we first need to decide what to
control, which is the feature (actual output, H0) thatwe intend to drive to some desired
behavior (desired output, H3) that we will design through trajectory optimization.
The actual output is a function of the system’s states, given as

H0 = H0 (G); (3.12)

and the desired behavior is represented by a Bézier polynomial

H3 = V(g, U), (3.13)

where U is the (constant) coefficients for the polynomial, and this trajectory is
parameterized by a phasing variable g, and it monotonically increases over time.

Phasing variable. Locomotion gaits, viewed as a set of desired trajectories, are often
modulated as functions of a phase variable to eliminate the dependence on the time-
based (Villarreal and R. D. Gregg, 2014). We will discuss two types of phasing
variables in this manuscript, one is a time-based phasing variable

gC = g(C). (3.14)

Correspondingly, the desired output (3.13) will be a function of time. We also define
a state-based phasing variable as

gB = g(@). (3.15)

Correspondingly, the desired output (3.13) will be a function of states. In the content
that follows, we will omit the state-based subscript B since we will not talk about
time-based setting until Sec. 3.4.

Virtual constraint. To achieve stable locomotion, we first need to establish the fol-
lowing goal

H3 → H0 as time C →∞, (3.16)

which is further described as driving the output (virtual constraint):

H = H0 (G) − H3 (g, U) (3.17)

to 0 as C →∞.

Since U is a set of constant parameters, we will suppress this argument from H3 (g, U)
to have H3 (g).
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Output dynamics. The dynamic relation between the output H, and an input D, is
referred as output dynamics. For the robotic systems considered in this dissertation,
we are particularly interested in two types of outputs, the relative degree 1 output:

¤H = 3H
3C
=
mH

mG
¤G

=
mH

mG
5 (G)︸   ︷︷   ︸
,! 5 H

+ mH
mG
6(G)︸   ︷︷   ︸
,!6H

D, (3.18)

and the relative degree 2 output when !6H = 0:

¥H = 3
2H

3C2
=
m! 5 H(G)
mG

¤G

=
m! 5 H(G)
mG

5 (G)︸           ︷︷           ︸
,!2

5
H

+
m! 5 H(G)
mG

6(G)︸           ︷︷           ︸
,!6! 5 H

D. (3.19)

where 5 , 6 is given in (3.10). Rigid-body dynamics have no more than a relative-
degree two outputs. All systems of interest in this thesis only have less than two
relative degrees. In particular, any output that is only a function of the configuration
coordinate H(@), is relative-degree two. Note that when compliance such as series-
elastic actuator is involved, some of the global coordinates (w.r.t. world frame) can
have more than two relative degrees.

The goal is to design a control scheme D to drive the difference between the actual
output and the desired output to zero. Before doing so, let us take the bipedal
running as an example.

Example. For DURUS running Fig. 3.1(a), we first pick the actual outputs H0 (@, ¤@).
In the stance domainDs, the forward velocity of the center of mass (COM) is chosen
as the relative degree one output

H01,s = E
G
2>< (@, ¤@)

to regulate the forward velocity of the robot, and the (vector) relative degree two
outputs are defined as

H02,s(@) = (\B: , qB;A , \Bℎ, kBℎ, qB0, qF, \F, kF, \=B: , q=Bℎ, \=Bℎ, q=B 5 , \=B 5 , k=B 5 )
>.

In the flight domainDf, actual outputs consist of only the relative degree two outputs

H02,f(@) = (\B: , qB;A , \Bℎ, qB 5 , \B 5 , kB 5 , qF, \F, kF, \=B: , q=Bℎ, \=Bℎ, q=B 5 , \=B 5 , k=B 5 )
>.
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In particular, qB;A = qBℎ − q=Bℎ is the stance leg roll angle, qB 5 , \B 5 , kB 5 and
q=B 5 , \=B 5 , k=B 5 are the orientations (Euler angles) of the stance and non-stance
foot, respectively. Other outputs are simply joint angles, as shown in Fig. 2.1 (d).

We want to design a running motion with constant forward velocity, hence the
desired velocity of COM is a constant E3 , i.e.,

H1,s(@, ¤@, E3) = H01,s(@, ¤@) − E3 . (3.20)

And the desired relative degree two outputs H32,E (g(@), UE) are represented by
seventh-order Bézier polynomials parameterized by a set of parameters UE with
E ∈ {s, f}. The virtual constraints on DE became:

H2,E (@, UE) = H02,E (@) − H
3
2,E (g(@), UE) , (3.21)

where g(@) is a monotonic state-based parameterization of time, defined as

g(@) =
?G
1
− ?0

?1 − ?0
, (3.22)

where ?G
1
is the G-position of the floating base’s frame '1, and the parameters ?1

and ?0 are the corresponding values, by design, at the beginning and the end of each
(cyclic) step. This setting allows the phasing variable to paramertize the desired
trajectory over one step from 0 to 1, i.e., g ∈ [0, 1]. In particular, the desired outputs
of the stance and non-stance foot orientations are set to be zero respectively to keep
the feet being flat throughout the step. Note that if an output is defined for both
domains, the coefficients of the corresponding desired Bézier polynomials must be
the same.

As given in (3.18) and (3.19), we can summarize (3.20) and (3.21) as[
¤H1,E

¥H2,E

]
=

[
! 5 H1,E

!2
5
H2,E

]
︸    ︷︷    ︸
LE (@, ¤@)

+
[
!2
5
H1,E

!6! 5 H2,E

]
︸        ︷︷        ︸
AE (@)

D (3.23)

where we call AE (@) the decoupling matrix.

Feedback Linearization-Based Control
As often practiced for nonlinear control systems, we can construct a feedback
linearization-based control law for bipedal locomotion. To drive the output:

HE =

[
H1,E

H2,E

]
→ 0
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for each DE with E ∈ {s, f}, we can utilize the input-output feedback linearization
control law

DYE = −A−1
E

(
LE + `YE

)
, (3.24)

which is often shorted as IO controller. The control structure is illustrated in Fig. 3.2.

For running dynamics, we have the decoupling matrix AE as:

As =

[
!6sH1,s(@, ¤@)
!6s! 5sH2,s(@)

]
, Af = !6f! 5fH2,f(@)

respectively, and

Ls =

[
0

! 5s! 5sH2,s(@)

]
, Lf = ! 5f! 5fH2,f(@).

With the given control law, we have the output dynamics become[
¤H1,s

¥H2,s

]
= −`Ys , ¥H2,f = −`Yf (3.25)

for the stance and flight domain respectively, where `YE can be chosen so that the
outputs converge to zero exponentially at a rate of Y > 0. In particular, we define

`Ys =

[
YH1,s(@, ¤@, E3)

2Y ¤H2,s(@, ¤@, Us) + Y2H2,s(@, Us)

]
, (3.26)

`Yf = 2Y ¤H2,f(@, ¤@, Uf) + Y2H2,f(@, Uf)). (3.27)

Denote some new coordinates as

[s ,


H1,s

H2,s

¤H2,s

 , [f ,

[
H2,f

¤H2,f

]
,

and [ = ([s, [f)>, we can see the exponential stabilizing effect of the [-dynamics
according to the following definition.

Definition 7. A smooth function + : R= → R+ is an exponentially stabilizing
control Lyapunov function (ES-CLF) for

¤[ = 5 ([) + 6([)D,
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if there exists constants 21, 22, 23 > 0 such that

21 |[ |2 ≤ + ([) ≤ 22 |[ |2 (3.28)

inf
D

(
! 5+ ([) + !6+ ([)D + 23+ ([)

)
≤ 0

for all G ∈ X. If there further exists a constant Y ∈ (0, 1) such that

21 |[ |2 ≤ + ([) ≤
22

Y2 |[ |
2 (3.29)

inf
D

(
! 5+ ([) + !6+ ([)D +

23
Y
+ ([)

)
≤ 0

for all [ ∈ Y, then + ([) is a rapidly exponentially stabilizing control Lyapunov
function (RES-CLF).

and we can pick a Lyapunov candidate as

+ ([) = [>%[

for the dynamics in (3.25) under control input (3.26) and (3.27). Remark that these
controllers only stabilize the [−dynamics, with : < =. For the underactuated full-
order system, we need some other conditions to establish its stability property, which
is introduced below.

Figure 3.2: A block diagram showing the state-based feedback control structure.

Hybrid Zero Dynamics Invariance
The fundamental theorem gives the condition of the overall system’s stability in the
sense of Lyapunov in the HZD condition, (A. Ames, Galloway, et al., 2014a), which
will be a basis for the development of the methods in this thesis. We will briefly
introduce it here.
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Any admissible state-based feedback controller, such as (3.24), that has been applied
to the control system, FG, yields the following closed-loop continuous system:

¤G = 5 clE (G) = 5E (G) + 6E (G)DE (G, UE)

forward invariant on the (partial) zero dynamics surface:

ZE , {(@, ¤@) ∈ DE | H2,E (@) = ¤H2,E (@, ¤@) = 0}. (3.30)

But due to the impact dynamics, the invariance of the zero dynamics surface is not
necessarily guaranteed by the controller. Particularly, it is impossible to enforce the
relative degree one output to be invariant through impact due to the changes in the
velocity at the impact event.

Therefore, a submanifoldZE is impact-invariant if

Δ4 (G) ∈ ZE+ , ∀G ∈ S4 ∩ZE (3.31)

for each 4 , (E → E+) ∈ E. The resulting hybrid invariant submanifold is referred
as a hybrid zero dynamics (HZD),ℋ |Z. Further,Z =

⋃
E∈VZE is hybrid invariant

if it is invariant over all domains of continuous dynamics and discrete dynamics. In
fact, the restricted reduced dimensional dynamics are independent of control input.

According to (A. Ames, Galloway, et al., 2014a, Thm.2) if there exists a RES-CLF
for the output dynamics in (3.25), which drives the actual output to the desired
trajectory exponentially, then there exists an exponentially stable periodic orbit of
the hybrid zero dynamics manifold given in (3.30). We can have an exponentially
stable orbit for the full-order system. With the feedback controller defined, as given
in (3.24), (3.26), and (3.27), the mission is to find the parameter set U that H0 (@)
converges to H3 (U, g) exponentially. In other words, the goal of designing a gait is to
find a set of parameters U = {E3 , Us, Uf} that ensures the existence of a periodic orbit
for the system (3.1) and the (partial) hybrid zero dynamics surface, ZE is invariant
through the discrete impact dynamics.

The process of finding U is then formulated as a nonlinearly constrained optimization
problem in Sec. 3.3 subject to the HZD condition.

3.3 Gait Design via Closed-Loop Optimization
We can now use optimization tools to design a gait (periodic trajectory), a periodic
solution to the closed-loop system. In this section, we first use bipedal running as
an example to present the details of closed-loop optimization, including the equality
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and inequality constraints. Then we study the energy efficiency of these generated
running behaviors. We will lastly use the tool developed to realize bipedal walking
on slippery surfaces.

Closed-Loop Optimization for Running
Building on top of (2.45), we first define the dynamic constraints for hybrid systems
for the purpose of finding periodic solution to the open-loop dynamics (3.10) as
follows.

1. Continuous Dynamic Constraint.
We first need the optimization algorithm to find a trajectory of the states and
inputs for all time. Follow the setting in Sec. 3.10 and notations from (3.1),
we have # = 2 for the two-domain running, and pick  1 =  2 = 15 for
the discretization of horizon. We then have the first equality constraint for
continuous dynamics (as in (2.45)):

/E (xE, uE) = 0 ∀E ∈ V , (s, f) . (C.1)

2. Discrete Dynamic Continuity.
To guarantee the trajectories CE , {xE, uE} of the neighbor domains belong to
the same flow, we have the following equality constraint for discrete dynamic
continuity

G0
f − Δ[4s→f] (G 1

s ) = 0 (C.2)

In essence, (C.1) and (C.2) pose the hybrid dynamics
¤G = 5E (G) + 6E (G)D G ∈ DE
G+ = Δ[4E8→E8+1] (G−)

,

where E ∈ V , (s, f), into a set of equality constraints. The advantage is that we
can pre-compute the symbolic Jacobians of these constraints and hence accelerate
the evaluation time, and the problem is made robust against stiff systems (see (Kiehl,
1994; Ascher and Petzold, 1998)).

3. Periodic Continuity.
To find a periodic solution, we need to make sure the final condition is
“stitched” to the initial condition. Still, since there is a jump in the velocity
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terms due to the impact, as in (3.11), we will need to relate them through
the impact map. But before doing so, a key concept needs to be introduced,
the relabelling matrix R : Q → Q. Since all of the legs’ configuration
coordinates are labelled as stance “′′B and nonstance “′′=B, and after the impact,
the nonstance leg will become a stance leg, we need to mirror (relabel) the
states accordingly. For example, the pitch angles of the stance and nonstance
joints need to be flipped, and the roll and yaw angles of stance and nonstance
legs need to be flipped with a negative sign. We then modify (3.11) with the
notation from (C.2) to have an equality constraint for periodic continuity:[

� (@ f
f ) −�>s (R@

 f
f )

�s(R@ f
f ) 0

] [
¤@1
s

X�

]
=

[
� (R@ f

f ) ¤@
 f
f

0

]
, (C.3)

or simply,

G0
s − Δ[f→ s]RG f

f = 0. (3.32)

To establish Lyapunov stability analysis, we need to have the system in the closed-
loop form, which is open-loop dynamics with a parameterized feedback controller
such as in (3.24). We now present the closed-loop dynamics in the optimization
setting for the control problem of interest.

4. Output Dynamics.
Since the controller in (3.24) yields output dynamics in (3.25), we can equiv-
alently enforce the output dynamics as

¤H1,E ( ¤G, G) + YH1,E (G, E3) = 0

¥H2,E ( ¤G, G) + 2Y ¤H2,E (G) + Y2H2,E (G, UE) = 0
(C.4)

according to (3.26) and (3.27), where 8 = 0, 1, . . . ,  E, with E ∈ (s, f). Remark
the here we have introduced the most essential parameter UE that represents
the desired output (trajectory) of the solution, as given in (3.20) and (3.21).

5. Hybrid Invariance.
As established in (3.31), we need the HZD condition to reduce the complexity
of stability analysis from the full-order system to the passive dynamics on the
hybrid zero dynamics manifoldZE. Formally,

H2,E (G0
E , UE) = ¤H2,E (G0

E , ¤G0
E , UE) = 0

H2,E (G EE , UE) = ¤H2,E (G EE , ¤G EE , UE) = 0 ∀ E ∈ V (C.5)

which is a boundary condition.
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We now introduce constraints that are essential to robotics and legged locomotion.

6. Feasibility Conditions.
We can use some optimization algorithm, such as direct collocation with
(C.1)—(C.5), to find a solution to a dynamical system. However, these
solutions might not be feasibly realizable on hardware. For example, although
a solution G(C), C ∈ [0, )] satisfies ¤G(C) = 5 (G(C)), there is no guarantee that
this trajectory will not penetrate an obstacle on in the way. We can use a
set of feasibility conditions (also known as path constraint) to enforce these
conditions. These conditions include the electric motors’ torque saturation,
each joint’s feasible workspace that is specified by the hardware limitation,
given by

−umax � D8 � umax,

qmin � @8 � qmax,

−vmax � ¤@8 � vmax.

We also need to enforce the friction pyramid condition1 to prevent the stance
feet from slipping on the ground. Then, these conditions can be configured in
the following condition:

D8 ∈ U, G8 ∈ X

`�I (G8, D8) − |�G (G8, D8) | ≥ 0

`�I (G8, D8) − |�H (G8, D8) | ≥ 0

∀8 ∈ (0, 1, . . . ,  E), ∀E ∈ V (C.6)

where ` is the static friction coefficient, and �(·) is the ground reaction force
along certain axis.

Remark that for experimental success, these conditions can often be manually
tuned to be more restrictive, for example, a smaller friction constant and a
smaller torque bound can give the actuator more “freedom to save” the robot
from failures under disturbance and uncertainty.

7. Foot clearance.
For legged locomotion, ground clearance for the nonstance foot is necessary.
This is a heuristic constraint that users normally need to tune to get a “natural-
looking” gait eventually. Denote the height of the nonstance foot (or feet,

1 A computationally efficient but more restrictive version of the friction cone condition.
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sometime there can be two feet in the air, such as the flight phase) as ℎnsf,I (@),
we can specify a lower bound ℎ;E (C) for E ∈ V. The foot clearance conditions
become:

ℎ;E (C8) − ℎnsf,I (@8) � 0, ∀8 ∈ (0, 1, . . . ,  E), ∀E ∈ V . (C.7)

We now have completed the optimization formulation for finding a solution to the
closed-loop dynamics of a running bipedal robot. Formally,

argmin
X

� (X) (3.33)

s.t. (C.1) /E (xE, uE) = 0 ∀E ∈ V
(C.2) G0

f − Δ[4s→f] (G 1
s ) = 0

(C.3) G0
s − Δ[f→ s]RG f

f = 0

(C.4)

¤H1,E ( ¤G, G) + YH1,E (G, E3) = 0

¥H2,E ( ¤G, G) + 2Y ¤H2,E (G) + Y2H2,E (G, UE) = 0

(C.5) H0
2,E = H

 E
2,E = ¤H

0
2,E = ¤H

 E
2,E = 0 ∀ E ∈ V

(C.6)


D8 ∈ U, G8 ∈ X

`�I (G8 , D8) − |�G (G8 , D8) | ≥ 0

`�I (G8 , D8) − |�H (G8 , D8) | ≥ 0

∀8 ∈ (0, 1, . . . ,  E), ∀E ∈ V

(C.7) ℎ;E (C8) − ℎnsf,I (@8) � 0, ∀8 ∈ (0, 1, . . . ,  E), ∀E ∈ V

where � (X) is the cost function. A common choice is the total energy consumption,
given as

∑#
8=0

〈
�D8, ¤@8

〉
. With this formulation, we can employ some optimization

tools such as IPOPT (Wächter and Biegler, 2006) to solve the gait parameters UE
and initial condition G(0).

We now apply this gait generation method to two behaviors: studying the energy
efficiency of running motion and realizing bipedal walking on slippery surfaces.

Towards High-Energy Efficiency of Running
Marc Raibert’s technical report “Dynamically Stable Legged Locomotion, 1989”
(M. H. Raibert et al., n.d.) summarized that “the running speed of a legged system
depends upon the frequency and length of its steps” based on the study of his
legendary hopper. To better understand this phenomenon in 3D bipedal-legged
systems, this section documents a statistical result based on the stable running
gaits obtained from an optimization-based gait generation framework, i.e., how the
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optimizer should respond when asked to generate faster gaits to maximize its energy
efficiency. Bipedal running is an essential benchmark for humanoid control for
many mathematical and practical reasons. Unlike walking, running is an inherently
underactuated control problem (M. Spong, 1998). Whenever the robot leaves the
ground, it fundamentally loses its ability to actuate all degrees of freedom and is at
the mercy of its ballistic trajectory. It is also a multi-domain hybrid control problem
(H. Zhao et al., 2016). Further, the high power demands push the practical limits
of humanoid actuators. This section presents 3D running via hybrid zero dynamics
(HZD) (A. D. Ames, 2014; E. R. Westervelt, J. W. Grizzle, C. Chevallereau, et al.,
2007) on a simulated underactuated model of the humanoid robot, DURUS. The
running gaits emerge from a large-scale gait optimization of the full-order system
dynamics, a previously developed tool for 3D walking with the DURUS hardware
(Ayonga Hereid, Eric. Cousineau, et al., 2016). We report the success of this toolset
as a milestone toward 3D running.

The earliest example of running controllers was developed using a set of highly
successful heuristics. Examples include the Raibert hoppers (M. H. Raibert et
al., n.d.) and the ARL-Monopod II (Ahmadi and Buehler, 2006). Decades later,
Honda’s humanoid robot, ASIMO (Sakagami et al., 2002), claims running speeds up
to 2.5 m/s without revealing its control method. Other methods have been employed
to achieve stable running in simulation by constraining the robot’s dynamics to a
reduced-order model (W. C. Martin, Wu, and Geyer, 2015) and even achieving
simulated high-speed turning (Wensing and D. Orin, 2014). Researchers have
also generated running gaits for simulated robots with various degrees of freedom.
From simple point-mass models (Srinivasan and Ruina, 2006) to planar hopping
models (Xi, Yesilevskiy, and Remy, 2015) to planar humanoid models (Mombaur,
2009) (which even certify stability inside the optimization). Recent work optimized
an ATLAS model for 3D locomotion by reasoning about the centroidal dynamics
(Hongkai Dai, Valenzuela, and Russ Tedrake, 2014). Graphics researchers even
successfully created 3D running controllers after running an extensive evolutionary
algorithm (Geĳtenbeek, Panne, and Stappen, 2013). Here, we seek a method that
generates optimal running gaits within the hybrid zero dynamics framework to
leverage its formal guarantees regarding stability.

In an effort to embrace underactuation in locomotion with formal control methods,
hybrid zero dynamics (HZD) was developed on multiple successful robotic walking
implementations (H. Park et al., 2012; A. D. Ames, 2014). It was ultimately imple-
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mented to produce planar running on the spring-legged robot, MABEL (Sreenath,
H.-W. Park, I. Poulakakis, and J. Grizzle, 2013), and is being extended to non-planar
cases (Kaveh Akbari Hamed and Jessy W. Grizzle, 2013). While there are formal
mathematical underpinnings to HZD, practical implementation requires a gait op-
timization which considers the full-order dynamics of the system. Traditionally,
these gait optimizations have become increasingly unreliable with robots as com-
plex as humanoids. In prior work, the authors presented a collocation-based HZD
optimization formulation to produce stable 3D humanoid walking (Ayonga Hereid,
Eric. Cousineau, et al., 2016). Here, we further extend this approach to 3D running
on DURUS. Moreover, we show that the optimization is sufficiently reliable that
we generated 25 gaits at various running speeds. This library of 3D gaits allows
us, for the first time, to observe trends in energy costs and running strategies in
humanoid running. Prior work has given physical insight into mechanisms of speed
adjustment, such as step length and step frequency (M. H. Raibert et al., n.d.).
Here, we can assess whether these strategies manifest when optimizing 3D running
with humanoid complexity. We also present a cost-of-transport vs. speed curve for
3D running, commonly reported in animal locomotion studies, which we can now
tractably generate for humanoid running.

With the proposed optimization method, we generated multiple stable 3D running
gaits for DURUS with velocities varying from 1.5 m/s to 3.0 m/s. This section will
focus on one of the simulated running gaits in detail first, then the statistical analysis
of the NLP performance, and all of the running gaits will be summarized.

Figure 3.3: Limit cycle of running at 2.0 m/s over 20 steps.

Running at 2 m/s. With the constraints configured as explained in (3.33) and the
large-scale IPOPT NLP solver developed by COIN-OR, a 3D running gait is solved
after 722 iterations and 374 seconds of computation, with dual infeasibility con-
verged to 9.0 × 10−4, and constraints violation 1.8 × 10−7. This particular gait runs
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at 2.0 m/s. Note that we categorize each running gait based on the G component of
the COM velocity during the flight domain. The specific cost of transport (SCOT)
(Collins et al., 2005b) is calculated in simulation as 0.90, the maximum angular
velocity of all joints is 4.4 rad/s, peak torque is 446 N m, and peak power is 1.1
kW. A running tile is shown in Fig. 3.4, the limit cycle of each joint is also shown
in Fig. 3.3. Only one leg is shown because of the symmetric motion. We have
verified the stability of this running gait by numerically computing the eigenval-
ues of the linearization of the Poincarémap that is restricted to the zero dynamics
about the Poincarésection where ?G

1
= 0. The magnitude of its eigenvalues are

[0.414, 0.083, 0.031, 0.006, 0.000]. All values smaller than 1 indicate asymptotic
stability obtained from this running framework (see (Morris and J. W. Grizzle,
2005) for details).

Figure 3.4: Snapshots of the DURUS running at 2.0 m/s.

Efficient 3D Running Gaits Generation. We now present a working framework to
generate stable running gaits for 3D bipedal robots reliably and efficiently (see
(Wen-Loong Ma, 2016b) for the simulated running). For the 25 gaits that the
optimization found, we documented the computation time and iterations it needs
(see Fig. 3.5). As a result, it takes 609 iterations and 323 seconds on average for the
optimizer to find a feasible solution2. Note that the threshold of the dual infeasibility
of the NLP is set to be 10−3. The number of grid points is chosen to be 15 for both
the stance and flight domains. All constraints and physical limitations are configured
based on the hardware capability, and the constraint violation converged below 10−6.

A significant benefit of this method’s computational efficiency is that it offers the
flexibility to refine the running behavior and adjust the model parameters in practice,
paving the way to actual experimental realizations. In practice, however, generating
candidate gaits reliably will requires some minor heuristic tweaks to the constraints.
For instance, by simply modifying the forward velocity constraint and fine-tuning

2 This algorithm runs on a Ubuntu14.04 machine, equipped with an Intelr Xeonr processor
E3-1246 V3 and 32 GB of RAM.



43

1.5 2 2.5 3
Vcom(m/s)

0

200

400

600

800

1000

1200

It
er
a
ti
o
n

200

300

400

500

600

700

800

C
om

p
u
ta
ti
o
n
T
im

e(
s)

Iteration Computation Time

Figure 3.5: The computation performance for generating gaits at each running
velocity.

a few constraints to adjust the running appearance, the suggested gait generation
method can find running gaits that satisfy all the physical limitations reliably.

Once a reliably solvable formulation is engineered, we can solve for many gaits and
inspect the solutions for trends in energy-efficient locomotion. The Specific Cost of
Transport, which quantifies the energy efficiency of transportation, is embedded as
the objective by the optimizer. Notably, as shown in Fig. 3.6 (a), for a faster running
gait, the optimization tended to generate gaits with higher SCOT, which aligns with
the sense that for a particular running pattern, faster locomotion requires greater
energy cost. Further, as shown in Fig. 3.6 (c) and Fig. 3.6 (b), when the optimizer
is commanded to find incrementally faster gaits (while still minimizing SCOT), the
optimizer increases both the running frequency and step length to achieve a faster
running speed, which agrees with Raibert’s hypothesis and indicates that both are
key factors to fast running (M. H. Raibert et al., n.d.).
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Figure 3.6: Multiple running gaits with forward velocity from 1.5 m/s to 3.0 m/s.

Dynamic Walking with Planned Slippage
Tremendous progress in realizing robust bipedal robot locomotion has been achieved
in the last decade. This is in part due to the successful combination of theoretical
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modeling and analysis using the framework of hybrid systems (A. Ames, 2014;
Jessy W. Grizzle et al., 2014), application of advanced methods of nonlinear control
(Khalil, 2002; E. R. Westervelt, J. W. Grizzle, Chevallereau, et al., 2007), as well as
careful mechanical design and hardware implementation on various experimental
platforms such as AMBER-3M (Ambrose, W.Ma, C. Hubicki, et al., 2017), DURUS
(J. P. Reher et al., 2016), and Cassie (Da et al., 2016). Underlying these results, along
with the successes for robots using other paradigms such as ZMP (Vulobratocić and
B. Borovac, 2004; R. Tedrake et al., 2015) and spring-loaded inverted pendulum
(SLIP) based models (Ioannis Poulakakis and Grizzle, 2007; Vejdani et al., 2015),
is the assumption that the foot does not slip. Thus, in all of these cases, the
foot acts as a stationary pivot point. While this assumption may easily hold in
sterile laboratory environments where the floors can be chosen with sufficiently
high friction, it becomes impractical on natural outdoor terrains; wherein there is a
plethora of slippery or slightly granulated irregular surfaces. Success in challenging
the stationary contact point assumption includes multi-contact walking (H.-H. Zhao
et al., 2014) and bipedal running (Wen-Loong Ma, Shishir Kolathaya, et al., 2017;
Sreenath, H.-W. Park, I. Poulakakis, and J. Grizzle, 2013).

Figure 3.7: Slippage in the beginning of a step: pre-slip on the left and post-slip on
the right.

The section aims to address this fundamental assumption of no slippage by em-
bracing its violation while still demonstrating the ability to achieve stable walking
experimentally. In legged robots, foot slippage is often treated as an external dis-
turbance which should be avoided at the gait planning stage (T.-H. Chang and
Hurmuzlu, 1993; Shuuji Kajita et al., 2004), or detected and recovered in real-time
by feedback control at the experimental implementation stage (Kaneko et al., 2005;
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Vázquez and Velasco-Villa, 2013). Some of the most famous examples are Boston
Dynamics’ robots BigDog (Big Dog Walking 2010) and SpotMini (Spotmini Walk-
ing 2016) successfully recovering from slippage. Conversely, legged animals across
a wide range of scales show impressive adaptability to slippery surfaces on natural
terrains. Stick insects when confronted with a slippery surface modulate their motor
outputs to produce normal walking gaits, despite a drastic change in the loads that
these limbs experience (Gruhn, Zehl, and Büschges, 2009). Slippage in the bipedal
running of Guinea fowl has been studied in (Clark and Higham, 2011), showing that
falling on slippery surfaces is a strong function of both speed and limb posture at
touchdown. Several works in human biomechanics literature study the conditions
that cause slipping (Moyer et al., 2006), its consequences (Tinetti and Williams,
1997) and dynamics (Strandberg and Lanshammar, 1981). Finally, (Spence et al.,
2007) has measured feet motion in galloping gaits of horses on outdoor racing
terrains and found a significant phase of hoof slippage.

Recent theoretical work has incorporated slippage into classic simple planar models
of legged locomotion both in passive dynamics and actuated walking — the rimless
wheel (Gamus and Yizhar Or, 2015), compass biped (Gamus and Yizhar Or, 2015;
Gamus and Yizhar Or, 2013), and SLIP (Yizhar Or and Moravia, 2016). The
models use Coulomb’s friction law and account for stick-slip transitions and friction-
bounded inelastic impacts, which add complexity to the system’s multi-domain
hybrid dynamics. By investigating the influence of friction on both passive dynamics
down a slope and open-loop actuated walking, it has been found in (Gamus and
Yizhar Or, 2015; Gamus and Yizhar Or, 2013) that upon decreasing the friction
coefficient, periodic solutions with stick-slip transitions begin to evolve while their
orbital stability decreases until reaching stability loss when the friction is too low.
Nonetheless, stability can be recovered when adding simple PD control to track a
reference trajectory. In addition, it has been found in (Gamus and Yizhar Or, 2015;
Gamus and Yizhar Or, 2013; Yizhar Or and Moravia, 2016) that periodic solutions
with slipping impact showed a significant reduction in the energetic cost of transport
compared to their no-slip counterparts. Yet, these promising theoretical results have
never been tested and implemented experimentally on legged robots.

In this section, we bridge this gap by presenting an experimental realization of stable
planar bipedal robotic walking on a slippery surface.

About the Robot. For the bipedal robot AMBER3-PF (PF is short for point foot,
see Fig. 3.8), the configuration space is chosen as @ ∈ Q ⊆ R=, where = is the
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number of unconstrained degrees of freedom (DOF), i.e. without considering
contact constraints. Using the floating base convention, we have @ = (@1, @;),
where @1 ∈ R3 is the global coordinate of the body-fixed frame attached to the
base linkage (torso), and @; ∈ R4 is the local coordinate representing rotational
joint angles. For planar walking on AMBER3-PF, it is chosen as @1 = (?G , ?H, \H),
where ?G , ?H are the Cartesian positions of the torso and \H is the angle between
the torso and world. The local coordinates are chosen as @; = (@B: , @Bℎ, @=Bℎ, @=B: ),
each representing the stance knee, stance hip, non-stance hip, and non-stance knee
joint angle. Further, the continuous-time state spaceX = )Q ⊆ R2= has coordinates
G = (@>, ¤@>)>. The control inputs D ∈ U ⊆ R< represents the actuator torques, with
< the total number of motors. For AMBER3-PF, we have 4 motors on both knee
and hip joints. This indicates under-actuated dynamics for AMBER-3M walking.

Figure 3.8: On the left: The AMBER-3Mwith point foot, constrained to a planar rail
to walk in a 2D environment on a treadmill. On the right: the model’s configuration
coordinates, with 3 global coordinates and 4 local coordinates.

Continuous-time Dynamics for Stick/Slip Domains.The kinematic constraint of zero
normal displacement of the stance foot reads as IB (@) = 0. An additional no-slip
constraint in tangential direction occurs only in the stick domain, and is given by
GB (@) = G0. For a particular continuous domain (@, ¤@) ∈ DE, as introduced in
Sec. 2.6 and Fig. 2.5 (b), the dynamics is formulated as

� (@) ¥@ + � (@, ¤@) = �D + �>G (@)_G + �>I (@)_I (3.34)
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where � (@), � (@, ¤@), �(@) are given by the physical parameters of the robot and
thus remain the same across all continuous domains. In addition, the Jacobian
matrices (constraint gradient vectors) in (3.3) are defined as

�G (@) =
mGB (@)
m@

and �I (@) =
mIB (@)
m@

,

and _G , _I are the tangential and normal forces enforcing the contact constraints. In
the domain of sticking contact, expressions for the contact forces can be obtained
by augmenting the second time-derivative of the holonomic constraints:

¤� (@, ¤@) ¤@ + � (@) ¥@ = 0, where � (@) =
(
�G (@)
�I (@)

)
. (3.35)

Eliminating ¥@ from (3.34) and substituting into (3.35), one can solve for the constraint
forces under sticking contact (cf. (R. M. Murray et al., 1994; Gamus and Yizhar Or,
2015)): (

_0
G

_0
I

)
=

(
��−1�>

)−1 (
��−1(� − �D) − ¤� ¤@

)
, (3.36)

where the dependencies on @, ¤@, D in (3.36) are suppressed for brevity. The forces
must satisfy Coulomb’s inequality of dry friction:

|_0
G (@, ¤@, D) | ≤ `_0

I (@, ¤@, D), (3.37)

where ` is the coefficient of friction. When ` is too low (` ≤ 0.1 is assumed in
this section), slippage of the stance foot in tangential direction begins to evolve,
¤GB = �G ¤@ ≠ 0. In this case, the equation of motion (3.34) still holds while the
tangential constraint in (3.35) is no longer valid. Instead, the following two equations
should be augmented with (3.34):

¤�I (@, ¤@) ¤@ + �I (@) ¥@ = 0, (3.38)

_G = −sgn( ¤GB)`_I . (3.39)

The tangential force during slippage reaches its maximal magnitude while oppos-
ing the slip direction. Note that we do not distinguish here between static and
dynamic friction coefficients for simplicity. Combining (3.34) and (3.38) to obtain
expressions for the constraint forces during slippage (Gamus and Yizhar Or, 2015):

_BI (@, ¤@, D) =
(
�I�

−1(�I − sgn( ¤GB)`�G)>
)−1 (

��−1(� − �D) − ¤�I ¤@
)
, (3.40)

_BG (@, ¤@, D) = − sgn( ¤GB)`_I . (3.41)
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The inequality constraints for slippage are _I ≥ 0 and ¤GB ≠ 0. Finally, in both
domains the non-stance foot must stay above the ground, I=B (@) ≥ 0. Additionally,
for a particular domain E ∈ {0, s}, we can convert the dynamics (3.34) and constraint
forces in (3.36) or (3.40) into an affine control system in the state space as:

¤G = 5E (G) + 6E (G)D ∀G ∈ DE . (3.42)

Discrete Dynamics.The resetmaps associatedwith non-impacting transitionsΔ[40→s],
Δ[4s→0],Δ[4s→s] are simply an identity matrix: G+ = G−, where G−, G+ are the pre-
event and post-event states. This means that the transition is smooth in state space.
In the case of collision of the non-stance foot, the transition involves impact which
induces an instantaneous velocity jump ¤@+ = Δ[4] ¤@−. The impulse-momentum
balance reads as follows

� (@2) ( ¤@+ − ¤@−) = � (@2)Λ = �G (@2)>ΛG + �I (@2)>ΛI, (3.43)

where @2 is the robot’s configuration at collision and Λ = (ΛG ,ΛI)> are tangential
and normal impulses at the colliding foot. (Note that one has to interchange the
stance and non-stance variables right before impact, so that �G , �I are associated
with velocities of the colliding foot.) The commonly used model is that of perfectly
inelastic impact. Assuming zero tangential and normal contact velocities at the
post-impact state gives � (@2) ¤@+ = 0. Combining this with (3.43), one obtains the
contact impulse and post-impact velocity as:

Λ0 =

(
Λ0
G

Λ0
I

)
= −(��−1�>)−1� ¤@−

¤@+ =
(
I − �−1�>(��−1�>)−1�

)
¤@−

where I is the identity matrix and �, � are evaluated at @ = @2. This is the sticking
impact law, associated with reset maps Δ[4] for transition edges 4�0→0, 4

�
s→0. This

solution holds only if the impulses satisfy the frictional inequality |Λ0
G | ≤ `Λ0

I .
Otherwise, a slipping impact occurs where �I ¤@+ = 0 while �G ¤@+ ≠ 0. The impulses
are thus related as ΛG = −sgn(�G (@2) ¤@+)`ΛI. Combining this with (3.43), one
obtains:

ΛBI = −(�I�−1 �̃>)−1�I ¤@−

¤@+ =
(
� − �−1 �̃>(�I�−1 �̃>)−1�I

)
¤@−
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where �̃ = �I − sgn(�G (@2) ¤@+)`�G . This slipping impact law is associated with reset
maps Δ[4] for transition edges 4�0→s, 4

�
s→s.

Trajectory Optimization. To generate a slippery walking gait, we formulate this
control problem as an implicit trajectory optimization problem. As was done in
(3.33), we have

min
U,G8 , ¤G8D8

∑
D>8 D8 8 = 0, 1, 2, ... (3.44)

s.t. (C.1)-(C.7)

C.8 slipping feasibility

with  the total number of collocation points, and the target is to minimize torque
inputs. To yield a slipping gait, we additionally include feasibility constraints (C.8)
from definitions in (2.28). In our formulation, we pre-specified a specific ordered
sequence of transitions, indicated by the red line in Fig. 3.6 (b). Additionally, since
a smoother state trajectory is preferred for experiment robustness, we further forced
the static parameters to be the same across all domains. It is worthwhile to mention,
this constraint is feasible if and only if the transition between domains within one
step does not involve any jump in states. This yields a uniform trajectory for the
multi-domain walking dynamics.

Optimal Gaits. Solving the optimization problem (3.44), we obtained a two-domain
slippery walking gait with slippage on the stance foot 3 cm, shown with snapshots
in Fig. 3.7. The "�$)+ from optimization is given as 0.001. The positive only
mechanical cost of transport is calculated using

"�$)+ =
%̄+

<6E
(3.45)

with < the total mass, 6 the gravitational acceleration, E the average walking speed,
and %̄+ is the mean value of %+ = {%+

8
}#
8=1 with 8 ∈ {1, 2, 3...#} and # is the total

number of sample points. The positive only power at sample time C8 is computed by
%+
8
=

∑4
:=1 max

(
D8 (:) · ¤@8 (:), 0

)
, with D8 ∈ R4 and @8 ∈ R4 torques and velocities

of the actuated joints at time C8.

For a fair comparison against sticky walking, we simulate the slippery gait-based
controller in a sticky environment, i.e., the ground has a much higher friction
coefficient so that no slipping can happen. After 20 ∼ 30 steps, the walking
converged into a new stable patten. with "�$)+ being 0.0024. which is 140% less
energy efficient than walking on a slippery surface. Further at its steady state, the
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non-stance foot’s velocities changed from (0.563,−0.359)m/s to (0, 0)m/s through
the sticky impact. The body kinetic energy changed from 6.87J to 5.84J. However,
the original optimal slippery gait has a non-stance foot impact velocity changing
from (0.371,−0.237)m/s to (0.251, 0)m/s, and kinetic energy changing from 3.00J
to 2.63J. This agrees with the theories on energy efficiency in (Gamus and Yizhar
Or, 2015).

Experiment. AMBER-3M is a modular testbed to study planar bipedal locomotions.
Its robustness and durability were validated in multiple experiments (Ambrose, W.
Ma, C. Hubicki, et al., 2017; Tabuada et al., 2017). In this section, we particularly
studied the slippery walking behavior on the point foot version (with total mass
21.6kg). As detailed in (Ambrose, W. Ma, C. Hubicki, et al., 2017), planar walking
is achieved by constraining the robot on a planar rail structure and walking on a
treadmill (Fig. 3.7). Further experimental details will be presented in this section.

To begin, we placed a demonstration walking gait designed for a sticky surface
on a slippery surface covered by some lubricant. This gait has been shown to be
robust over countless trials via public demonstrations, and it seldom fell, i.e., loss
of stability. However, a few drops of lubricant easily disabled its walking capability.
To clarify, we consider falling and hitting the mechanical limits of the testbed both
as failures. Later, we conducted four different experimental setups. For experiment
1, 2, and 3, we increased the amount of lubricant on the treadmill to induce different
slippery walking behaviors and completely removed the lubricant for experiment 0.
For each fixed environmental setup, we manually increased the treadmill speed to
trigger different walking speeds on the slippery surface. We logged 50 seconds’
data (sampling period 3 ms) for each experiment to calculate the energy economy.
Fig. 3.10 shows the phase portrait for experiment 3 which has the most slippery
surface. The result is AMBER-3M is capable of walking stably on different slipping
conditions, including on a sticky surface, proving its robustness and adaptability
to uncertainties induced by differences between simulation and experiment. See
(Wen-Loong Ma, 2019a) for the walking on slippery surfaces.

Energy Economy. Previous research (Ambrose, W. Ma, C. Hubicki, et al., 2017) on
AMBER-3Mwith a circular boom has benchmarked the energy economy of walking
controllers. In this research, due to the slippage of stance foot, it became too noisy
to measure the movement of the center of mass. In this work, we used the measure
(3.45) for "�$)+. See Fig. 3.11 for the energy results. Note that we only provide
positive only power because AMBER-3M’s hardware cannot do power-regeneration
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Figure 3.9: Snapshots of one slippery walking step from Experiment 3. In the
first three pictures, the left foot (stance foot) is slipping smoothly on the lubricated
treadmill.

Figure 3.10: Phase portrait of 50 seconds’ experimental data from Experiment 3,
with walking speed (from left to right): 0.26m/s, 0.3m/s, 0.38m/s, 0.42m/s. Solid
lines are for the desired values and dashed lines are for the actual measurements.

of the negative work.

While the energy efficiency Fig. 3.11 seems better than (Ambrose, W. Ma, C.
Hubicki, et al., 2017), our measure shows experiment energy efficiency is∼ 10 times
worse than simulation, and the efficiency on different surfaces does not vary as much
as simulation data. This is not only caused by different external environments such
as inconsistency of the lubricated treadmill and real-world uncertainties, but we posit
the dominance of the "�$)+ by nominal energy usage of the robot. That is, due to
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Figure 3.11: "�$)+ of the experiments on AMEBR-3M. Those not included for
certain speeds are failed experiments.

Figure 3.12: The spring-legged planar running biped, DURUS-2D, during take off
(left) and while airborne (right).

the order of magnitude difference in the simulation and experimental "�$)+, the
comparatively small fluctuations in the MCOT between different walking cannot be
observed with the current experimental setup. Therefore, it is necessary to study
differences in the "�$)+ between slipping and nominal gaits wherein changes
in energy usage can be isolated from nominal energy usage and the effects of the
environment on the cost of transport.

3.4 Bipedal Running with Input to State Stability
The task of controlling the bipedal robots is often a precarious balance between
maintaining formal stability guarantees and expanding control capabilities. This
duality has been present since the genesis of bipedal control. Beginning in the
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1960’s, Zero Moment Point (Vukobratovic and Branislav Borovac, 2004) methods
were the original foundation of formal biped control. Still, its validity required
significant restrictions on the dynamics of the robot (fully-actuated flat-footed con-
tact). In contrast, the Raibert hoppers (M. Raibert and Tello, 1986) exhibited agile
bounces and flips that remain impressive today. But their control was built without
the a priori confidence of formal methods. Research over the following decades
has considerably narrowed this formality gap, with formal approaches rising to the
challenge of underactuation (Manchester et al., 2011; H. Park et al., 2012; Sreenath,
H.-W. Park, I. Poulakakis, and J. Grizzle, 2013; Ayonga Hereid, Eric. Cousineau,
et al., 2016) and highly dynamic robots incorporating formal analysis in their control
(Bhounsule et al., 2014; Rezazadeh et al., 2015).

Bipedal robotic running, despite the decades that have passed since Raibert’s hopper,
remains an extremely difficult control problem. Very few control methodologies
have been presented that lead to experimental success with prominent aerial phases
(Tamada et al., 2014; Sreenath, H.-W. Park, I. Poulakakis, and J. Grizzle, 2013).
With an eye toward viewing bipedal running as a hybrid dynamical system: an
alternating sequence of stance and flight domains with instantaneous impacts in
between, the notion of hybrid zero dynamics (HZD) was used (J W Grizzle, Abba,
and Plestan, 2001; A. Ames, 2014; A. E. Martin, Post, and Schmiedeler, 2014a).

HZD, as previously introduced, operates on a principle of dimensional reduction,
aimed at simplifying the numerous degrees of freedom present in legged machines
while also allowing for underactuation. This framework was used to enable bipedal
running on MABEL (Sreenath, H.-W. Park, I. Poulakakis, and J. Grizzle, 2013), a
pivotal demonstration showing the intersection of theory and experiment. However,
on top of the HZD framework used on MABEL, there are also important expert-
driven adjustments to the implementation, like the tuning of control loops, adding
feedforward trajectories, and online parameter update routines. One way to interpret
this is: the gap between the assumedmodel and the experimental testbed necessitated
modifications in the control implementation needed to realize stable robotic running.
We seek to reduce further the need for this expert adjustment with formal stabilizing
controllers.

In this section, we will study this methodology on the DURUS-2D running robot.
First, using the optimization algorithmmentioned in Sec. 3.3, we find some periodic
solution to the closed-loop dynamics of running, which is stable in the sense of Lya-
punov. However, the resulting gait that was built upon an ideal model and precise
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sensing cannot guarantee experimental realization. Unlike theoretical simulation,
where most variables are either measurable or exclusively solvable, real-world ex-
periments suffer from a wide array of uncertainties. Indeed, uncertainties like
unmodeled dynamics, nonlinear stiffness properties, damping effects and actuators,
poor signal-to-noise ratio, and even deformations due to impacts are often observed.
Therefore, we not only seek a fast optimization approach that yields feasible solu-
tions under the assumedmodel but also a controller formally guaranteeing robustness
under real-world constraints. In this section, we use the notion of input to state sta-
bility (ISS) that captures the practical limitations of the actuator inputs in an elegant
manner. Specifically, we address the phase-based uncertainty that is typically a
high deterrence in tracking parameterized functions. Similar problems involving
inaccurate phase determinations were solved (Shishir Kolathaya, Ayonga Hereid,
and Aaron D Ames, 2016), where pure time-based parameterizations were used.
But this paper will construct time+state-based parameterizations to yield stronger
stability conditions. Note that, in order to realize running, a variety of uncertainties
need to be considered. So we will use the solutions from (Shishir Kolathaya and
D. A. Ames, 2016; Angeli, 1999) to account for the remaining uncertainties.
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Figure 3.13: (a) The model of DURUS-2D with two linear springs; (b) the directed
cycle structure of the multi-domain hybrid system model for DURUS-2D running.

Robot and Hybrid Dynamics. Similar to the setup in Sec. 3.3, we have a hybrid
model for DURUS-2D running. As shown in Fig. 3.13a, the configuration space
Q ⊂ R=, = = 9, of DURUS-2D is defined as

@ = (B 5G , B 5I, \B 5 , AB?, \B: , \Bℎ, \=Bℎ, \=B: , A=B?)> ∈ Q,
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where B 5G and B 5I are the positions of the end points of the stance foot along G
and I directions, AB?, A=B? are the deflections of the springs on stance and non-
stance legs, \� are the joint angles of the stance foot, stance knee, stance hip,
nonstance hip, and nonstance knee. In addition, the control inputs are defined as
D = (DB: , DBℎ, D=Bℎ, D=B: )> ∈ R: , : = 4, which represent the torque applied at knee
and hip joints.

We have the same hybrid setting as those presented in (3.1) with a small modification
of the continuous dynamics. The Equation of Motion (EOM) over a continuous
domainDE, with E ∈ V , (s, f), is determined by the Euler-Lagrange equation and
holonomic constraints

� (@) ¥@ + � (@, ¤@) = �D + �>E (@)�E,
�E (@) ¥@ + ¤�E (@, ¤@) ¤@ = 0, (3.46)

where �E (@) ∈ R=×< is the Jacobian of the holonomic constraints ℎE (@), and �E ∈ R<

is a wrench containing the constraint forces or moments, which can be explicitly
solved as a function of system states and inputs. The holonomic constraints for each
domain are defined as

ℎs(@) ,
(
B 5G , B 5I, A=B?

)> ≡ 0,

ℎf(@) ,
(
AB?, A=B?

)> ≡ 0, (3.47)

meaning, the stance foot must remain on the ground during the stance domain, and
stance and nonstance springs must be locked during the flight domain. Further, by
defining the state vector G = (@, ¤@) ∈ R2=, the EOM can be converted to an affine
control system, as given in (3.10).

We define the outputs (virtual constraint) of the system on a domain DE, E ∈ V as

HE (@) = H0 (@) − H3E (gE), (3.48)

where the actual output is chosen as the four actuated joint angles:

H0 (@) , (\B: , \Bℎ, \=Bℎ, \=B: )>; (3.49)

and H3E is the desired output represented by a set of fifth-order Bézier curves

H3E = B(UE, gE).

Therefore, the output has relative degree two with respect to inputs.
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The phase variable gE is used tomodulates the desired outputs H3E . Normally, in order
to make the outputs purely state-based, we can have the phase variable gE : Q → R+,
purely a function of the robot configuration:

gE (@) =
\B 5 − ?+E
?−E − ?+E

, (3.50)

with ?−E , ?+E the (desired) initial and final position of \B 5 for DE. Although, it must
be noted that state-based modulation has implementation difficulties due to noisy
sensing of underactuated degrees of freedom of DURUS-2D. This motivates the use
of a time-based phase variable gE : R+ → R+,

gE (C) =
5∑
8=0

?8C
8, (3.51)

where ?8 is a set of power series polynomial coefficients obtained by a curve fitting
from gE (@) w.r.t. time C. This has desirable stability properties under sensory
perturbations, which will be discussed later.

The method of finding some optimal gait parameter UE is then formulated as an
optimization problem subject to the multi-domain hybrid system model. As was
done in Sec. 3.3, we can produce some natural-looking running gaits for the bipedal
robot, DURUS-2D (Fig. 3.12), in 43 seconds from a zero initial guess. See Fig. 3.17.

State-Based Feedback Controller and Zero Dynamics.Todrive the virtual constraints
(outputs) HE → 0 exponentially for each domainDE, E ∈ V, we utilize the feedback
linearization control law:

DE =
(
!6! 5 HE

)−1
(
−!2

5 HE + `E
)
, (3.52)

with ! the Lie derivative. Applying this control law yields the output dynamics
¥HE = `E. Further, by picking `E as

`E = −
2
Y
¤HE −

1
Y2 HE, 0 < Y < 1, (3.53)

the virtual constraints will converge to zero exponentially at the rate 1/Y > 0. Since
the number of virtual constraints is less than the degrees of freedom of the robot,
the uncontrolled states evolve according to the zero dynamics. In other words, we
have a set of states defined by the vector:

[E ,

[
HE

¤HE

]
∈ R2:
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that are controllable, and the set of states defined by IE, that are uncontrollable and
normal to [E for each domain DE. We can then reformulate (3.46) to the following
form:

¤[E =
[
0:×: 1:×:
0:×: 0:×:

]
︸           ︷︷           ︸

�

[E +
[
0:×:
1:×:

]
︸ ︷︷ ︸

�

`E

¤IE = lE ([E, IE), (3.54)

where lE is assumed Lipschitz continuous. The convergence of the outputs [E can
be shown in terms of Lyapunov functions:

+Y ([E) = [>E %Y[E, (3.55)

where %Y is the solution to the continuous time algebraic Riccati equation (CARE).
See (A. Ames, Galloway, et al., 2014a, eq(23)). By choosing `E ([) from (3.53), we
have

¤+Y ≤ −
W

Y
+Y

with W > 0 the constant obtained from the CARE.

Given the control law (3.53), the controllable states [E are driven exponentially
to zero. In other words, the control law (3.52) renders the zero dynamics surface
exponentially stable and invariant over both continuous domains. However, due to
the impact dynamics at the end of each domain, the zero dynamics invariance is not
guaranteed. Therefore, the goal is to find a set of parameters U = {Us, Uf}, which
defines the desired outputs (3.48), to ensure there exists a periodic orbit and the zero
dynamics surface:

ZE = {(@, ¤@) ∈ DE | HE (@) = 0, ¤HE (@, ¤@) = 0}, E ∈ V,

is invariant through impacts, i.e., hybrid invariant. Mathematically, hybrid invari-
ance is represented as

Δ(Zs ∩ Ss) ⊂ Zf, Δ(Zf ∩ Sf) ⊂ Zs. (3.56)

Feedback Linearization for Time-Based Outputs
By using the feedback control law given by (3.24) and (3.53), it can be shown
that with sufficiently small Y, the output dynamics are exponentially driven to
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zero. In fact, (A. Ames, Galloway, et al., 2014a) shows that by picking a rapidly
exponentially stable control Lyapunov function (RES-CLF), locally exponentially
stable hybrid periodic orbits can be realized. However, in reality, due to the difficulty
in estimating the phase variable (3.50) (which depends on the un-actuated degrees
of freedom), a more robust controller is required that is less susceptible to the
noisy state feedback. Motivated by the time-based implementation of the tracking
controller in (Shishir Kolathaya, Ayonga Hereid, and Aaron D Ames, 2016; Jake
Reher, Wen-Loong Ma, and Aaron D. Ames, 2019), the goal of this section is to
construct a controller that uses a time-based instead of state-based desired trajectory
for robotic running.

For the ease of notations, we will omit the domain representations (the subscripts E)
in this section. If the state-based desired relative degree two outputs are functions
of @, H3 : Q → R: , then the time-based desired outputs are functions of time
HC,3 : R+ → R: .

Following (3.51), we define the time-based output representation as follows:

H(C, @) = H0 (@) − HC,3 (g(C)) . (3.57)

Taking the derivative of (3.57) twice, we have

¥H(C, @) = !2
5 H
0 + !6! 5 H0D − ¥HC,3 , (3.58)

which is different from (3.23). Similar to the construction of state-based controller
(3.24), we would drive H → 0 exponentially. Therefore, the feedback controller that
linearizes the time-based output is given as

DC =
(
!6! 5 H

0
)−1

(
−!2

5 H
0 + ¥HC,3 + `C

)
, (3.59)

where `C is the linear feedback applied after the feedback linearization. We can
either pick `C via a simple PD law:

`C = −
2
Y
¤H − 1

Y2 H, (3.60)

for some 0 < Y < 1, or via an optimal control law through control Lyapunov
functions (CLFs). Nevertheless, using the time-based feedback linearizing controller
(3.59) reduces the nonlinear system ¤G = 5 (G) + 6(G)D to the normal form:

¤[C =
[

0:×: 1:×:
0:×: 0:×:

]
︸             ︷︷             ︸

�

[C +
[

0:×:
1:×:

]
︸    ︷︷    ︸

�

`C

¤IC = lC ([C , IC), (3.61)
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which is similar to (3.54), but with the use of time-based outputs:

[C ,

[
H

¤H

]
∈ R2: .

Note that the zero dynamics coordinates, IC , evolve-based on time due to the depen-
dency on [C . Accordingly, if the time-based transverse dynamics [C are 0, we have
the zero dynamics ¤IC = lC (0, IC). Convergence of the time-based outputs can be
ensured by picking an appropriate time-based control law (3.60). But this controller
does not necessarily ensure the convergence of the state-based outputs. We are in-
terested in the stability of the state-based transverse dynamics ¤[ = �[C +�`C , given
that the time-based control law is implemented on the robot. This implementation
can be seen in Fig. 3.14, which is different from Fig. 3.2.

Figure 3.14: A block diagram showing the time-based feedback control structure.

State-Based vs. Time-Based Control Laws. Given the controller (3.60) that drives
the time-based outputs [C → 0, we will study the evolution of the state-based
outputs [ in (3.54). By the assumption of Theorem 1 in (A. Ames, Galloway,
et al., 2014a), the controller yields an exponentially stable periodic orbit for hybrid
dynamics. Therefore, we will obtain conditions for the stability of this hybrid
periodic orbit when a time-based control law is applied. Picking the input (3.59) on
the dynamics of state-based output H, we have

¥H =!2
5 H + !6! 5 HDC ,

¥H = !2
5 H + !6! 5 HD︸            ︷︷            ︸

,`

+ !6! 5 H(DC − D)︸            ︷︷            ︸
,3

,

¥H =` + !6! 5 H
[
(!6! 5 H0)−1(−!2

5 H0 + ¥H
>
3 + `C) − (!6! 5 H)

−1(−!2
5 H + `)

]
¥H =` + 3, (3.62)
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where we can see that

3 = !6! 5 H(!6! 5 H0)−1(−!2
5 H
0 + ¥HC,3 + `C) − ` + !2

5 H, (3.63)

is obtained by substituting for DC , D from (3.24) and (3.59). We can interpret (3.62)
as that, the stabilizing control input `([) (which is state-based) should have been
applied, but instead, the time-based input ` + 3 was applied to the state-based
output dynamics of H. Applying a time-based feedback control law completely
eliminated the dependency on the noisy phase variable g(@), but the consequence
is the appearance of the disturbance input 3. The expression for 3 can be further
simplified to

3 (C, @, ¤@, ¥@, `C , `) = (`C − `) + ( ¥HC,3 − ¥H3). (3.64)

We know that, H3 = H3 (g(@)) (for bipedal robots), and it can be observed that 3
becomes small by minimizing the error ¥HC,3 (g(C)) − ¥H3 (g(@)). Therefore 3 can be
termed time-phase uncertainty, or just phase uncertainty.

In the context of linear systems, it is important to have bounded state-based output
dynamics if 3 is bounded. Of course, the time-based outputs [C → 0. Denoting
the supremum of the uncertainty over time as ‖3‖∞, we can easily establish that a
bounded 3 results in bounded outputs H, ¤H (or just [), for the continuous dynamics.
However, due to the impact dynamics that are not just nonlinear but also extremely
destabilizing (the noisy impacts can be observed in the video (Wen-Loong Ma,
2016c)), output boundedness cannot be guaranteed for the hybrid dynamics. This
motivates using the notion of input to state stability to establish boundedness on the
state-based outputs for bipedal robotic running on DURUS-2D.

Going back to (3.62), we can substitute this formulation in (3.54), which results in
the following representation:

¤[ = �[ + �` + �3

¤I = l([, I)
. (3.65)

As mentioned before, we are free to pick `([) (say (3.53)), since the actual control
input applied is time-based `C ([C) (from (3.60)) which is implicit in 3. From the
point of view of the state-based outputs [, we have the following representation
dynamics of the Lyapunov function, which is given in (3.55):

¤+Y = [>(�>%Y + %Y�)[ + 2[>%Y�` + 2[>%Y�3. (3.66)
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This is obtained by substituting (3.65) for ¤[. Using the linear feedback law `([)
from (3.53), the following is obtained:

¤+Y ≤ −
W

Y
+Y + 2[>%Y�3. (3.67)

It should be noted that even though the time-based controller leads to convergence of
time-based outputs H → 0, (3.67) extends it to state-based outputs H that are driven
exponentially to an ultimate bound; and this ultimate exponential bound is explicitly
derived from 3, which is established via the notion of input to state stability (ISS),
which is given below.

Input-to-State Stability (ISS)
We will first introduce the basic definitions and results related to ISS for a general
nonlinear system and then focus on the running dynamics. See (Eduardo D Sontag,
2008) for a detailed survey on ISS.

Assume we have a general nonlinear system, represented in the following fashion:

¤G = 5 (G, 3), (3.68)

with G taking values in Euclidean space R=, the input 3 ∈ R< for some positive
integers =, <. The mapping 5 : R= × R< → R= is considered Lipschitz continuous
and

0 = 5 (0, 0).

It should be noted that in this system, we considered general dynamics 5 and general
inputs 3. In the context of the robotic problem in this thesis, the construction is such
that a stabilizing controller D(G) has been applied (such as (3.24)), which results in a
closed-loop system 5 . Any deviation from this stabilizing controller can be viewed
as D(G) + 3, with 3 being a new disturbance input. In the example of the linearized
system (3.65), a suitable stabilizing controller `([) is applied and the effect of the
disturbance input 3 is analyzed. We assume that 3 takes values in the space of
all Lebesgue measurable functions: ‖3‖∞ = ess. supC≥0‖3 (C)‖ < ∞, which can be
denoted as 3 ∈ L∞.

Class K∞ and KL functions.A classK∞ function is a function U : R+ → R+ which
is continuous, strictly increasing, unbounded, and satisfies U(0) = 0. And a class
KL function is a function V : R+ × R+ → R+ such that V(A, .) ∈ K∞ for each C and
V(., C) → 0 as C →∞.
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We can now define ISS for the system (3.68).

Definition 8. The system (3.68) is input to state stable (ISS) if there exists V ∈ KL,
] ∈ K∞ such that

|G(C, G0) | ≤ V( |G0 |, C) + ](‖3‖∞), ∀G0,∀C ≥ 0, (3.69)

and considered locally ISS, if this inequality is valid for an open ball of radius A,
G0 ∈ BA (0).

Definition 9. The system (3.68) is exponentially input to state stable (e-ISS) if
there exists V ∈ KL, ] ∈ K∞ and a positive constant _ > 0 such that

|G(C, G0) | ≤ V( |G0 |, C)4−_C + ](‖3‖∞), ∀G0,∀C ≥ 0, (3.70)

and considered locally e-ISS, if the inequality (3.70) is valid for an open ball of
radius A, G0 ∈ �A (0).

Definition 10. The system is said to hold the asymptotic gain (AG) property if there
exists ] ∈ K∞ such that

limC→∞ |G(C, G0) | ≤ ](‖3‖∞), ∀G0, 3. (3.71)

Definition 11. The system is said to be zero stable if there exists V ∈ KL such that:

|G(C, G0) | ≤ V( |G0 | , C), ∀G0,∀C ≥ 0. (3.72)

ISS-Lyapunov functions. We can develop Lyapunov functions that satisfy the ISS
conditions and achieve the stability property.

Definition 12. A smooth function + : R= → R+ is an ISS-Lyapunov function for
(3.68) if there exist functions U, Ū, U, ] ∈ K∞ such that

U( |G |) ≤ + (G) ≤ Ū( |G |)
¤+ (G, 3) ≤ −U( |G |) for |G | ≥ ](‖3‖∞). (3.73)

The following lemma establishes the relationship between the ISS-Lyapunov func-
tion and the ISS of (3.68).

Lemma 1. The system (3.68) is ISS if and only if it admits a smooth ISS-Lyapunov
function.
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The proof of was given in (Eduardo D Sontag, 2008). In fact, the inequality can be
made stricter by using the exponential estimate:

¤+ (G, 3) ≤ −2+ (G) + ](‖3‖∞), ∀G, 3. (3.74)

which is then called the e-ISS Lyapunov function.

Phase Uncertainty to State Stability (PSS)
Coming back to our discussion in (3.67), we now define the notion of phase to
state stability (PSS). Without loss of generality, we denote ([, I) = ([E, IE), and the
subscript E will be specified when a specific domain (s or f) is considered.

Definition 13. Assume a ball of radius A centered at the origin 0. The system given
by (3.65) is locally phase to [ stable, if there exists V ∈ KL, ] ∈ K∞ such that

|[(C) | ≤ V( |[(0) | , C) + ](‖3‖∞), ∀[(0) ∈ BA (0),∀C ≥ 0, (3.75)

and it is locally PSS if

| ([(C), I(C)) | ≤ V( | ([(0), I(0)) | , C) + ](‖3‖∞), ∀[(0) ∈ BA (0),∀C ≥ 0. (3.76)

Based on the asymptotic gain and zero stability property of the system (3.65) w.r.t.
the phase uncertainty 3, we have the following lemma.

Lemma 2. Given the controller `([) in (3.53), the system (3.65) is phase to [ stable.

Proof. Based on the constructions of the Lyapunov function +Y in (3.66), we have
the dynamics of the from (3.67):

¤+Y ≤ −
W

Y
+Y + 2[>%Y�3

≤ −W
Y
+Y + 2 |[ | ‖%Y‖2 ‖3‖∞

≤ − W
2Y
+Y for |[ | ≥ 422

W21Y
‖3‖∞ , (3.77)

which is thus an ISS-Lyapunov function, as defined in (3.73). �

Time+state-based Control Law. We can also realize exponentially ultimate bound-
edness of the entire dynamics by appending a state-based linear feedback law to the
time-based feedback controller in (3.60):

D) = DC + ¯̀, (3.78)
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which results in the following output dynamics in the place of (3.62):

¥H = ` + 3 + !6! 5 H ¯̀. (3.79)

!6! 5 H can be explicitly computed as !6! 5 H = J�−1�̄, where� and �̄ are obtained
from the generalized manipulator dynamics in (2.18), and

J , m

m@
H(@)

is the Jacobian of the outputs. Since � is invertible, it can be easily shown that
J�−1�̄ is invertible. By applying the controller (3.78), the full-order system (3.65)
will have an extra input ¯̀ that yields:

¤[ = �[ + �` + �3 + �J�−1�̄ ¯̀

¤I = l([, I)
, (3.80)

then (3.67) gets reformulated as

¤+Y ≤ −
W

Y
+Y + 2[>%Y�3 + 2[>%Y�J�−1�̄ ¯̀. (3.81)

By picking a control law for the auxiliary input:

¯̀ = − 1
2Ȳ
(J�−1�̄)−1�>%Y[, (3.82)

we have the following simplification of (3.81):

¤+Y ≤ −
W

Y
+Y + 2[>%Y�3 −

1
Ȳ
[>%Y��

>%Y[. (3.83)

Therefore, by defining the positive semi-definite function

+̄Y ([) = [>%Y��>%Y[,

we can pick Ȳ small enough to cancel the effect of phase uncertainty on the dynamics.
Lemma 2 can now be redefined to obtain exponential ultimate boundedness for the
new control input (3.78).

Lemma 3. Given the controllers `([) in (3.53), and ¯̀([) in (3.82), the system
(3.80) is exponentially phase to [ stable w.r.t. the input disturbance 3 ∈ L∞.

Proof. We again pick the derivative of the Lyapunov function +Y resulting in

¤+Y ≤ −
W

Y
+Y −

1
Ȳ
[>%Y��

>%Y[ + 2[>%Y�3

≤ −W
Y
+Y for |[ | ≥ 2Ȳ22

22
1Y

2
‖3‖∞ , (3.84)

which satisfies the exponential estimate given by (3.74). �
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Periodic Orbit. Now Lemma 3 can be extended to include the uncontrolled states I
given that they are stable on the zero dynamicsmanifold. LetY ⊂ R2: ,Z ⊂ R2(=−:) ,
and qC ([, I) be the flow of the dynamics in (3.80) with the initial condition:

([, I) ∈ Y ×Z;

And let the flow qC be periodic with the period )∗ > 0, and a fixed point ([∗, I∗) if

q)∗ ([∗, I∗) = ([∗, I∗).

Associated with the periodic flow is the periodic orbit defined as

O , {qC ([∗, I∗) ∈ Y ×Z | 0 ≤ C ≤ )∗}. (3.85)

Similarly, we denote the flow of the zero dynamics

¤I = l(0, I) (3.86)

from (3.80) by qC |I, and for a periodic flow we denote the corresponding periodic
orbit by OI = O|I. Due to the invariance of the zero dynamics (guaranteed by the
HZD condition in Sec. 3.3), we have the mapping O = ]0(OI), where

]0 : Z ↩→ Y ×Z

is the canonical embedding. For any ([, I), we can denote the distance from O as
‖([, I)‖O . We now have the following theorem to establish phase-to-state stability
of the periodic orbit O.

Theorem 1. Assume that the periodic orbit OI ⊂ Z is exponentially stable in
the zero dynamics. Given the controllers `([) in (3.53), ¯̀([) in (3.82) applied on
(3.80), that render the outputs exponential phase to [ stable, then the periodic orbit
O obtained from the canonical embedding is exponentially phase to state stable.

Proof. By the converse Lyapunov theorems, we can construct a quadratic Lya-
punov function for the zero dynamics, +I (I) that satisfies the exponential inequality
constraints:

A1‖I‖2OI ≤ +I ≤ A2‖I‖2OI ,
¤+I ≤ −A3+I,����m+ImI ���� ≤ A4 ‖I‖OI , (3.87)
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where ‖I‖OI = ‖(0, I)‖O . We consider the following Lyapunov candidate for the
full-order dynamics

+ ([, I) = f+I (I) ++Y ([). (3.88)

This Lyapunov function is quadratic and satisfies the boundedness properties. De-
note !@ as the Lipschitz constant of l(·, I). We can take the derivative

¤+ = fm+I
mI

l(0, I) + ¤+Y

= f
m+I

mI
l(0, I) + fm+I

mI
(l([, I) − l(0, I)) + ¤+Y

≤ −fA3+I + fA4!@ ‖I‖OI ‖[‖ −
W

Y
+Y, for |[ | ≥ 2Ȳ22

22
1Y

2
‖3‖∞. (3.89)

The rest of the derivation follows (A. Ames, Galloway, et al., 2014a, Appendix
A.B), and the bounds on [ are obtained from (3.84). By picking a suitable f, we
can render ¤+Y negative definite, which satisfies Lemma 1. �

This theorem has powerful implications due to the elimination of the noisy phase
variable estimation. This elimination affects tracking, which yields lower errors than
that for the noisy phase-based modulation. The time-based phase modulation is a
smooth and better candidate to replicate the unknown actual phase of the robot. This
methodology can be easily extended to all kinds of additive uncertainties observed
in hybrid systems in general. See (Shishir Kolathaya and D. A. Ames, 2016) for
the analysis on parameter uncertainty. Fig. 3.15 depicts the periodic orbit O and
the tube, which is defined by the bound X3 . This theorem means that by using a
time+state-based RES-CLF, any trajectory starting close to the tube will ultimately
enter the tube defined by X3 as long as ‖3‖∞ < X3 . This is also illustrated in
Fig. 3.16.

Simulation and Experimental Realization of Bipedal Running
With the optimal running gait generated (introduced in Sec. 3.3) and time-dependent
RES-CLF controller defined, we achieved sustainable robotic running. The goal of
this section is to describe the experimental setup and the control methods adopted
to realize stable running on DURUS-2D.

DURUS-2D Hardware. A popular approach for robotic running is to utilize the
spring-loaded inverted pendulum (SLIP) model (R. Blickhan, n.d.; Rezazadeh et
al., 2015), where the presence of springs allows for storing energy during high-speed
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a( ) b( ) c( )

Figure 3.15: Limit cycles of (a) simulation where time-based IO + state-based PD
controller was applied for 100 steps; (b) Simulation where white noise was added
to gE (@); (c) Experimental data. Note the solid lines are the designated gait from
optimization.

impacts, thereby improving energy efficiency and torque performance. The previous
version of DURUS-2D (E. Cousineau and A. D. Ames, 2015), had rigid carbon
fiber calves, unlike the current version, which has a linear spring at the end of each
aluminum calf. The spring has a stiffness of 20000 N m and damping constant of
100 N s/m. In addition, an 11.5 kg torso is installed to resemble the human weight
distribution. The positions and velocities of the torso, knee, and hip joints are
measured by the attached incremental encoders. Further, the actuated joints, knees
and hips, are powered by BLDCmotors via cycloidal gear reduction, which provides
a maximum continuous torque of 200 N·m. With the new legs, DURUS-2D weights
41.7 kg. EtherLAB software with MATLAB Simulink is built into DURUS-2D
to guarantee a hard real-time environment. Other details about the electrical and
software system can be found in (E. Cousineau and A. D. Ames, 2015).

Figure 3.16: Bounded tube around the designed periodic orbit.
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0 ms 70 ms 140 ms 210 ms 280 ms 350 ms 420 ms

Figure 3.17: Running tiles of simulation (top) vs. experiment (bottom) for one step.

Experimental Setup. As shown in Fig. 3.18, DURUS-2D is mounted on a carbon
fiber boom structure which is attached to a cage frame via a fixed one-dimensional
track. This setup is used to isolate the lateral motions, leaving DURUS-2D to move
freely in the sagittal plane. Moreover, the treadmill speed is measured by an encoder
wheel and fed to the robot as environment feedback.

Figure 3.18: Experimental setup for DURUS-2D running: 1) control station com-
puter, 2) emergency stop, 3) four Li-Po batteries, 4) tripping harness, 5) treadmill
control panel, 6) encoder wheel to measure treadmill speed, 7) treadmill.

Switching logic. Guard condition is used to switch the controller to the subsequent
domain (stance or flight). In simulation, the guard condition is triggered when
non-stance spring returns to the neutral position for stance domain, i.e., AB? = 0.
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And when the nonstance foot lands on the ground, i.e., =B 5I = 0, the flight domain
ends. However, due to a lack of an effective sensing mechanism, we developed a
time+state-based switching logic for experiments. For a particular domain DE, the
maximum value of time C<0GE and phase variable g<0GE can be obtained from the gait
design process. Then the guard condition is triggered when C > 1.2Cmax

E . But if
C < 1.2Cmax

E , the guard will be triggered if gE (@) > gmax
E . This way, the controller

can respond to the feedback similarly to simulation while allowing for sensing noise
of the phase variable.

Experimental Controller. Motivated by the results on ISS properties of PD con-
trolled robotic systems in (Angeli, 1999), we can replace the time-based IO with a
time-based PD control law, and claim that the resulting system still retains desirable
stability properties. For a robot like DURUS-2D , the inertia of the motor (pro-
portional to the square of the gear ratio) coupled with relatively light legs results
in stronger ISS conditions for model-based uncertainty (see Shishir Kolathaya and
D. A. Ames, 2016; Angeli, 1999). We therefore pick a time+state based PD control
law as follows

D� = − C?HCE −  C3 ¤H
C
E −  ?HE −  3 ¤HE, (3.90)

where  C?,  C3 ,  ?,  3 are constant gain matrices with appropriately tuned values.

Results. We first validate the proposed control law in simulation. As explained in
Sec. 3.3, a HZD running gait was first generated that meets all physical limitations,
which assumed a feedback linearization controller (3.24). Then we utilized the
time-based feedback linearization + state-based PD control law given by (3.78) in
simulation; stable trajectory tracking is achieved that is ultimately bounded to the
periodic orbit (see Fig. 3.21b for the evolution of virtual constraints, i.e., output
errors, for 100 steps, and Fig. 3.15a for phase portrait that is also bounded around
the desired gait) when the phase uncertainty is bounded (Fig. 3.21a).

However, in experiments, noisy sensing often occurs around impact dynamics.
Therefore to simulate an unideal case, we added a noise signal with amplitude 0.1
to gs(@) before and after impacts (see Fig. 3.21c). By applying the same controller,
ultimate boundless was also achieved (see Fig. 3.21d and Fig. 3.15b) and a stable
bipedal running is accomplished. The running tiles are shown in Fig. 3.17. These
simulated results, as a proof of concept, aligned with Theorem 1.
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Figure 3.19: Left and right foot height (ground
clearance).

In reality, neither state-based
phase measurements gE (@), nor
time-based phase calculation
gE (C) is capable of producing suc-
cessful bipedal running (watch
(Wen-Loong Ma, 2016c) for the
failed running when the pure
time-based controller was used).
However, by applying a variant
of time + state-based feedback
as shown by (3.90), a sustainable
running on DURUS-2D is imme-
diately shown in real-world experiments. Multiple views in (Wen-LoongMa, 2016a)
show that the running is repeatable for over 150 steps. The phase portrait for 30
steps is shown in Fig. 3.15c, and the output errors are shown in Fig. 3.21f, both of
which have shown ultimate boundedness. Further, the time-based and state-based
phase variables are shown in Fig. 3.21e. Experimental running tiles are compared to
simulation at Fig. 3.17. The most distinguishable feature of running, foot clearance,
is shown in Fig. 3.19, with the maximum clearance 13 cm, and the flight domain
takes 60% of one step. The average running speed is 1.75 m/s, and the measured
average mechanical cost of transport (MCOT) for 100 steps is 0.5287.
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Figure 3.20: The actual vs. desired joint angles from the experiment.
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Figure 3.21: The left column is the phase variables which are used to calculate time-
and state-based outputs: H3,C (C) = H3E (gE (C)), H3 (@) = H3E (gE (@)); the right column
is output errors (virtual constraints) showing ultimate boundedness. (a, b, c, d) are
from two simulations with controller given by (3.78). And (c, d) has a sinusoidal
disturbance with 10% amplitude added to gE (@); (e, f) are from experiments.
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C h a p t e r 4

COUPLED CONTROL SYSTEM AND QUADRUPEDAL
APPLICATIONS

This chapter studies the control problem of quadrupedal locomotion. We first state
our problem from the aforementioned HZDmethodology in Chapter 3 to quadruped,
enabling versatile gait generation and experimental realization. However, when
it comes to real-world implementation, this methodology lacks implementation
robustness and is thus not practical for field testing and iterative engineering. We then
develop a framework, coupled control system (CCS), to design gaits and controllers
for quadrupedal locomotion. The result is that we are able to apply this framework
to two different quadrupedal robots (see Fig. 4.1) walking on various rough and
sloped terrains.

Figure 4.1: (a) Vision 60 V3.2, 26 kg, 0.45m tall; (b) Vision 60 V3.9, 44 kg, 0.55m
tall; (c) Configuration coordinates of both quadrupedal robots. Both robots were
manufactured by Ghost Robotics.

4.1 HZD, from Bipedal to Quadrupedal Robots
Quadrupedal locomotion has a long and rich history of outstanding agility and dy-
namic stability without formal analysis, thanks to the multi-support nature of such
systems. Some famous quadrupedal examples include, but are not limited to, theBig-
Dog (M. Raibert, Blankespoor, et al., 2008), Minitaur (De andDaniel E. Koditschek,
2018), ANYmal (M. Hutter et al., 2016), and Cheetah robot (Boussema et al.,
2019a). State-of-the-art approaches for the controls and planning of quadrupeds
mainly utilize model reduction to partly mitigate the computational complexity of
the full-order techniques arising from nonlinearity and hybrid nature of models. For
instance, massless legs, the linear inverted pendulum model (S. Kajita, Tani, and
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Kobayashi, 1990; Hof, Gazendam, and Sinke, 2005) and planar motion planning are
often utilized assumptions. While they do have many implementation advantages,
one needs to design controllers that overcome the uncertainty induced by the differ-
ence between modeling and reality. For examples, the legs’ total mass accounts for
44% of the mass of the whole body for the robot studied here in Fig. 4.15. Further,
formal guarantees on stability are rarely studied in quadrupedal research.

On the other hand, the hybrid system approaches have become a powerful tool for
modeling the dynamics of bipedal locomotion, in which, steady state locomotion
corresponds to periodic solutions of these hybrid dynamical systems. One of the
hybrid control approaches is the hybrid zero dynamics (HZD) framework (E.Wester-
velt et al., 2007). HZD is an extension of the notion of Byrnes-Isidori zero dynamics
(Isidori, 1995) to hybridmodels of locomotion for which the resultant zero dynamics
manifolds are invariant under the continuous- and discrete-time dynamics. HZD has
been successful for designing gaits for bipedal locomotion and provides experiment-
level controllers, see e.g., (J.W. Grizzle, G. Abba, and F. Plestan, 2001; A. Ames,
Galloway, et al., 2014a; C. Chevallereau, J.W. Grizzle, and Shih, 2009; Sreenath,
H.-W. Park, I. Poulakakis, and J. W. Grizzle, 2011; H.-W. Park, Ramezani, and
J.W. Grizzle, 2013; Akbari Hamed, Buss, and J.W. Grizzle, 2016; R. Gregg and
Righetti, 2013; A. E. Martin, Post, and Schmiedeler, 2014b; H. Dai and R. Tedrake,
2012; I. Poulakakis and J.W. Grizzle, 2009; Johnson, Burden, and D. E. Koditschek,
2016), but has not yet been applied to the control of quadrupeds. The challenge
in computation and controls mainly arises from the increased degrees of freedom
(DOF) and richer contact scenarios of quadrupeds over bipeds.

In this section, instead of building a controller based on the aforementioned em-
pirically simplified models, we follow the HZD approach to design gaits for the
full-order rigid-body dynamics of quadrupedal robots. In particular, we model
their dynamics as a hybrid system, optimize trajectories via a HZD optimization
algorithm, analyze the dynamic stability via the Poincaré return map and then vali-
date the theoretically stable controller with experiments on a quadrupedal behavior,
ambling on the Vision 60 robot (Fig. 4.1 (a)).

The Robot and Dynamics
Following the abstract construction of Sec. 2.1, we give more details of the con-
figuration coordinates here. As shown in Fig. 4.1 (c), we model the quadruped as
a 13-link system: one body link and four legs, each of which has three children
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links —the hip, upper, and lower links. The configuration variables of Vision 60
are denoted by @ ∈ Q ⊂ R= where = = 18 is the total number of degrees of free-
dom (DOF) without considering any contact constraints. Utilizing the floating base
convention (Jessy W. Grizzle et al., 2014), we can have @> = (b>, \>), in which
b ∈ R3 × SO(3) represents the global Cartesian position and orientation of a frame
attached to the body linkage, and the local coordinates \ ∈ R<, with < = 12, denote
the 12 joint variables: hip roll, hip pitch, and knee angles. These angles are denoted
by \ℎA 9 , \ℎ? 9 , \: 9 for the 9-th leg, all of which are actuated by Brushless DC electric
(BLDC) motors. This yields the system’s total DOF (without considering any con-
straints, see Sec. 2.2) to be 18 and control inputs D ∈ R12. With different scenarios
of foot contacts with the ground, we have a mixture of overactuated, fully-actuated,
and underactuated domains (i.e., phases) for the dynamics. We can define the state
space X = )Q ⊆ R2= with the state vector G> = (@>, ¤@>).

We consider the nonlinear model of quadrupedal locomotion as a hybrid dynamical
system, which is an alternating sequence of continuous- and discrete-time dynam-
ics. The order of the sequence is dictated by contact events. In comparison with
bipedal walking, the increased number of contact points of quadrupeds increased
the complexity of the hybrid model substantially. In this section, we introduce a
unified model for quadrupedal behaviors including walking, ambling, and trotting,
based onwhichwe design full-model-based optimal controllers as well as simulation
validation.

The Continuous-Time Domain, Constrained Dynamics
Given the floating base coordinates, we can derive the unconstrained dynamics, i.e.
without any contact constraints, by the Euler-Lagrange equations as:

� (@) ¥@ + � (@, ¤@) = �D

where the notations follows Sec. 2.3. Note that here the actuation matrix � ∈ R=×<

only contains 0, 1 as its entries.

Because quadrupedal systems’ numerous contact scenarios, we consider then : ∈
{1, 2, 3, 4} feet standing on the ground, which means :̄ = 4 − : feet are swinging
in the air. This creates a variety of contact situations, which defines different types
of quadrupedal behaviors (see Fig. 4.2). For each contact situation, we associate a
continuous domain:

DE , {(G, D) | ℎE (@) = ¤ℎE (@, ¤@) = 0, #E � 0, ℎs,E (@) � 0} (4.1)
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where E ∈ {1, 2, 3...} is the domain index and ℎE (@) ∈ R: is the height of all
standing feet with ground reaction force #E (G, D) ∈ R: . The height of the other feet,
referred as the swing feet, is given by ℎs,E (@) ∈ R:̄ . We then have the constrained
dynamics for DE as: 

� (@) ¥@ + � (@, ¤@) = �E D + �)E (@) _E
�E (@) ¥@ + ¤�E (@, ¤@) ¤@ = 0

(4.2)

where �E (@) = m?E (@)/m@ represents the Jacobian matrix of the Cartesian position
of the standing feet ?E (@) ∈ R3: , with the corresponding constraintwrench_E ∈ R3: .
The first equation is considering ground forces as inputs and the second equation is
treating the contacting as a holonomic constraint. Note that the actuationmatrix �E is
domain-dependent. This is because the double and triple support phases (Fig. 4.2)
create closed-chain structures that induce redundancy in control and constraints
(internal overactuation). As detailed in Sec. 2.4, this is an underdetermined problem
which often appears in multi-contact locomotion that could yield nonunique control
value D. Therefore, we manually turn off the rear standing leg’s hip pitch motor
in the double support domain and turn off the diagonal standing legs’ hip pitch
motors and the other standing leg’s hip roll motors for triple supporting phase. This
implementation in return yields underactauted dynamics for the system. Now we
can convert the constrained EOM (4.2) in domain E into the following form:

¤G = 5E (G) + 6E (G)D. (4.3)

To track a given set of time-based trajectories BE (C), which will be detailed in later,
we deployed an input-output feedback linearization controller:

Dio(G, C) = A(G)
(
L(G, C) − 2YH(@, C) − Y2 ¤H(@, ¤@, C)

)
, (4.4)

with the outputs H(@, C) = H0 (@) − BE (C) and Y > 0. In this formulation, we chose
the actual outputs H0 (@) as all of the actuated joints. The notations follow directly
from Sec. 3.2. As a result, (4.4) forces the system to converge to a desired gait
exponentially, that is, H0 (@) → BE (C). The output dynamics become

¥H = −2Y ¤H − Y2H (4.5)

for which (H, ¤H) = (0, 0) is exponentially stable.

Prior to introducing the edges and the discrete dynamics, some assumptions are
necessary to construct a feasible model both for computation and experiment:
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Figure 4.2: The cyclic directed graph for the multi-domain hybrid dynamics of
walking, ambling, and trotting gaits. The dashed lines represent a relabeling map
(as given in (3.32)) that flips the left and right legs’ contact attributes. We took these
nomenclature from (Muybridge, n.d.).

• There is no ground slippage. This is partially guaranteed by enforcing a
friction cone condition. However, it is worthwhile to mention that slipping
locomotion has been observed on quadrupedal animals for energy efficiency,
see (Gamus and Yizhar Or, 2013; W. Ma, Y. Or, and A D. Ames, 2019).

• The zoology studies (Muybridge, n.d.) have observed a pattern of 4 × 2-
domain1 locomotion on quadrupedal animals. We refer interested readers
to (Akbari Hamed, Wen-Loong. Ma, and Aaron. D. Ames, 2019) for the
corresponding model. In this chapter, we assume the stance leg transition
domains—one leg strikes while another leg lifts—are instantaneous and pas-
sive for walking and ambling. Hence s1 and s2 in Fig. 4.2 become edges, and
we can have a 2× 2-domain behavior for walk and amble. But a 4× 2-domain
model is still used for trotting.

The Discrete-Time Domain: Impact and Lift-Off
On the edge of DE in (4.1), one of the conditions reaches its bound. Thus we have
two switching mechanisms:

1The term : × 2 denotes a gait with :-domain. See Fig. 4.2 for the directed graph of the gaits
with : domains. The second half of the motion is directly a left-right mirror (i.e., symmetry) of the
gait through the relabeling map. See Fig. 4.3 for the full motion with < × 2 domains.
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• Lift off : a standing foot of leg ;∗ lifts off from the ground, meaning # ;∗E (G, D) =
0.

• Impact: a swing foot of leg ;∗ impacts the ground, meaning ℎ;∗B,E (@) = 0,
¤ℎ;∗B,E (@, ¤@) < 0.

For lift off, an identity map G+
E+1 = G

−
E is sufficient to represent the transition from

current to the next domain, where G−E is the state at the end of the domain DE and
G+
E+1 is the state at the beginning of DE+1. However, the impact shall cause a jump
in the velocity terms, the dynamics are given by[

� −�)
E+1

�E+1 0

] [
¤@+
E+1
Λ

]
=

[
� ¤@−E

0

]
(4.6)

which follows Sec. 2.7.

Figure 4.3: On the top left is the snapshot for a 2 × 2-domain walking gait; on the
top right is a 2×2-domain ambling gait; and on the bottom is a 4×2-domain trotting
gait. The symbol �′ is a left-right mirror of the contact attributes for domain �. The
orange-colored legs are the left-side legs whose contact points are highlighted by
triangles; the blue-colored legs are the right-side legs with contact points highlighted
by inverted triangles.

Gait Design for Full-Order Dynamics
An alternating sequence of the continuous dynamics (2.19) and the discrete dynam-
ics (2.31) composites a hybrid control system. Since this nonlinear hybrid model
has captured abundant details of the dynamics, its complexity challenges the con-
troller design and motion planning. We hereby employ an optimization toolbox
FROST (Ayonga Hereid, C. M. Hubicki, et al., 2018) that parses hybrid system
control problems into a nonlinear programming (NLP) based on direct collocation.
As introduced in (3.44), to generate a feasible #-domain motion such as walking,
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ambling, and trotting as shown in Fig. 4.2, the NLP is formulated as:

min
UE ,G8 , ¤G8D8

∑
8

‖D8‖22 8 = 1, 2, ...
#∑
E=1

"E (4.7)

s.t. C1. closed-loop dynamics

C2. hybrid & periodic continuity

C3. physical feasibility

where "E is the number of collocation points and UE is the decision variable
paramterizing the desired trajectory for domainDE. The cost function is tominimize
the torque so that experiment implementation is achievable. The constraint C1 is
from (2.19) and (4.5), and the constraint C2 is referring to the state continuity
through each edge, which could be equipped with a discrete jump in states. C3
enforces conditions including ‖D8‖∞ ≤ 50, (@8, ¤@8) ∈ X, foot clearance and the
friction pyramid conditions, so that the optimal solution is experimentally feasible.

Remark 3. Due to many types of aleatoric uncertainty in the model, not every
solution of the NLP can be robust enough to lead to experimental success. Further-
more, some constraint setup can be ill-posed that the NLP converges poorly. Thus in
experiments, “fine tuning” on the constraint setup are often needed. Using machine
learning to automate the tuning process is presented in (). To present a complete
and scientific report, the following heuristics were used:

1. Efficiently producing closed-loop controllers is the core innovation of FROST,
but it also boosts the complexity of the problem. Thus using an open-loop
setup (optimization without a feedback controller) to warm start a closed-loop
problem is effective.

2. Tuning constraints on the acceleration (force) terms are normally more ef-
fective than tuning positions (“effective” is both referring to the converging
speed and experimental robustness.) It is indeed intuitive to tune the con-
straints about the positional terms to change the appearance of a behavior, but
it can often be too restrictive for the optimization to converge fast enough. A
natural-looking gait should be the result of forces, not that of human-expertise
refinement.

Optimal Gaits
Under the umbrella of the HZD framework (see Sec. 3.3), the sole difference among
these behaviors in Fig. 4.2 is nothing but the ordered sequence of contact events,
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which can be predefined by specifying the stance foot clearance as 0 and swing foot
clearance as nonzero values. Therefore, in the HZD optimization (4.7), by changing
the foot clearance constraints in C3, multiple quadrupedal behaviors such as walk,
amble, and trot can be produced efficiently. We show the simulated behaviors in
Fig. 4.3 and their phase portraits in Fig. 4.4. With some initial guesses supplied,
the computation time for the presented gaits are 262.13 s for walking, 42.69 s for
ambling, and 116.05 s for trotting on aUbuntu 16.04machinewith Intel Core i7-6820
HQ CPU @ 2.7 GHz with 16 GB RAM. In a loose comparison, the reinforcement
learning methods take hours to find a feasible solution (Tan et al., 2018).

0 0.5 1 1.5

position (rad)

-2

-1

0

1

2

3

v
e
lo

c
it
y
 (

ra
d
/s

)

HR0 HP0 K0 HR1 HP1 K1

HR2 HP2 K2 HR3 HP3 K3

0 0.5 1 1.5

position (rad)

-3

-2

-1

0

1

2
v
e
lo

c
it
y
 (

ra
d
/s

)

HR0 HP0 K0 HR1 HP1 K1

HR2 HP2 K2 HR3 HP3 K3

0 0.5 1 1.5

position (rad)

-5

0

5

v
e
lo

c
it
y
 (

ra
d
/s

)

HR0 HP0 K0 HR1 HP1 K1

HR2 HP2 K2 HR3 HP3 K3

Figure 4.4: The periodic trajectories designed by NLP (4.7): walk (left), amble
(middle), and trot (right).

Simulation and Experiment
With these stabilized quadrupedal dynamic gaits in simulation and optimization,
we conduct an experiment with the ambling gait on Vision 60. The implemented
controller is a PD approximation of the input-output linearizing controllers to track
the time-based trajectories given by the optimization (4.7). That is, for a continuous
domain DE, we have

D(@0, ¤@0, C) = − ?
(
@0 − BE (C)

)
−  3

(
¤@0 − ¤BE (C)

)
(4.8)

as the motor torque commands sent to each joint. This time-based PD implemen-
tation has been shown to have exceptional robustness for bipedal locomotion (S.
Kolathaya, A. Hereid, and A. D. Ames, 2016). In addition, the domain switching
method is also time-basedwith the event function given by the optimized trajectories.

The result is that Vision 60 ambles stably with the desired speed of 0.3 m/s. See
(Wen-Loong Ma, 2019b) for Vision 60 ambling in an outdoor tennis court, and the
snapshots are shown in Fig. 4.5. We logged 20 seconds of data and compared it with
the simulated ambling controller in Fig. 4.6. Additionally, the average torque inputs
(absolute value) are 7.73 N·m on the hip roll joints, 9.46 N·m on the hip pitch joints,
and 16.17 N·m on the knee joints. It is worth mentioning that the consistent drifting
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Figure 4.5: Snapshots of the Vision 60 ambling in an outdoor environment, showing
a full step of 2 × 2 domains of the amble gait.

aside is expected, as there is no feedback information for the uneven terrain and that
some manufacturing defects could cause asymmetric weight distribution. Some
common solutions to avoid the drift is to use a joystick to manually offset the hip
roll joints or Raibert-type regulators (see (Marc H. Raibert, Brown, and Chepponis,
1984)). The robot that keeps ambling without falling supports the feasibility of the
full model-based HZD methods for quadrupedal locomotion.
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Figure 4.6: The designed gaits (in red) from optimization/simulation vs. the exper-
imental data (in cyan) in the form of phase portrait for amble. HR is short for hip
roll, HP is for hip pitch, and k is for knee.

Even though we can produce gaits and nominal controllers that lead to experimental
success on hardware, the computational time around 2-4 minutes is not ideal for
real-world implementation. The robustness against model uncertainty and rough
terrain is also not practical compared to many simplified model-based approaches
(Bledt et al., 2018; Boussema et al., 2019b). We next take the inspiration from
Raibert’s virtual leg principle (M. Raibert and Tello, 1986) and combine it with the
HZD methodology. That is, the coupled control system (CCS) framework, where
instead of empirically assuming a quadrupedal robot is equivalent to a low-DOF
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bipedal robot, we consider it as a “collaboration” between two bipedal subsystems.

4.2 Coupled Control System and Its Solutions
To achieve dynamic walking on high-dimensional robotic systems, methods that
assume simplified models have been applied, such as embedding the central pattern
generators to multi-legged locomotion (Danner et al., 2017). Through another
methodology, dimension reduction, hybrid zero dynamics (HZD) has proven to be
an effective methodology. as a result of its ability to make theoretic guarantees
(E. R. Westervelt, J. W. Grizzle, Chevallereau, et al., 2007) and yield walking for
complex humanoids (Sreenath, 2011; Jacob Reher et al., 2016) without assuming
model simplifications. The main idea behind this approach is that the full-order
dynamics of the robot can be reduced to a lower-dimensional surface on which the
system evolves. The system can then be studied via the low-dimensional dynamic
representation and, importantly, guarantees made can be translated back to the
full-order dynamics, i.e., periodic orbits (or walking gaits) in the low-dimensional
system imply corresponding periodic orbits in the full-order system. The goal of
this section is to capture this dimension reduction in a more general context—that of
coupled control systems, which captures the ability to decompose a complex system
into low-dimensional subsystems.

Another means of dimension reduction for robotic systems comes from isolating
subsystems and coupling these subsystems at the level of reaction forces, i.e., La-
grange multipliers that enforce holonomic constraints. This is the idea underlying
the highly efficient method for calculating the dynamics of robotic systems: spatial
vector algebra (R. Featherstone, 2008). For example, a double pendulum can be
decomposed into two single pendula connected via a holonomic constraint at the
pivot joint (Ganesh, AaronDAmes, and Bajcsy, 2007). More generally, for a robotic
system, one can consider two equivalent ways of expressing the dynamics of this
system (R. M. Murray et al., 1994; R. Featherstone, 2008):

� (@) ¥@ + � (@, ¤@) = D︸                     ︷︷                     ︸
Full-Order Dynamics

⇔
{
�8 (@8) ¥@8 + �8 (@8, ¤@8) = D8 + �>ℎ8_

s.t. ℎ(@) ≡ 0︸                                       ︷︷                                       ︸
Reduced-Order Coupled Dynamics

for 8 = 1, 2, where here ℎ is a coupling (holonomic) constraint that is enforced via
the Lagrange multiplier _ allowing for the higher-dimensional @ to be decomposed
into lower-dimensional components @8, i.e., @ = (@1, @2). For example, a quadruped
can be decomposed into two bipeds as in Fig. 4.7. Therefore, if one can make
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guarantees on the reduced-order coupled systems, they can be translated into full-
order dynamics. This idea has also, again, proven successful in robotic walking
when dealing with what is referred to as the “pinned” and “unpinned” models—
this success has been especially prevalent in the context of constructing efficient
nonlinear constrained optimization problems, especially for bipedal walking robots
that utilize hybrid zero dynamics (A. Hereid et al., 2018).

Figure 4.7: Conceptual illustration of the full-body dynamics decomposition, where
the 3Dquadruped—theVision 60—is decomposed into two constrained 3Dbipedal
robots.

The study of coupled dynamical and control systems has a long and rich history
from which the method presented in this thesis has taken inspiration. First, from the
computational perspective, the highly efficient method for calculating the dynamics
of robotic systems— spatial vector algebra (R. Featherstone, 2008)— uses a similar
concept: Lagrangemultipliers that enforce holonomic constraints. Second, focusing
on the coupled dynamics, the interconnected systems (Antonelli, 2013) have studied
the synchronization of coupled oscillators (Dörfler and Bullo, 2014; Fujisaka and
Yamada, 1983). Further, the passivity-based control (Hatanaka et al., 2015) has
been proposed to design coupled controllers for multi-agent systems. The input-
to-state stability analysis (Jiang, Mareels, and Wang, 1995) studied the Lyapunov
stability of decoupled control laws. Third, in the control community, the most
relevant examples are the multi-agent networks (Mesbahi and Egerstedt, 2010), the
consensus problem (Ren, Beard, and Atkins, 2005) and the cooperative control
problem (Mellinger et al., 2013; Chung and Slotine, 2009). These methods have
been successfully demonstrated on a wide range of robotic applications, especially
on drones. However, the problems considered in these frameworks are often coupled
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on the control level — shared feedback information — but not the dynamics level,
such as the general formulation considered in (Sloth, 2016). This allows the designer
to utilize the built-in stabilizing controller of each subsystem to achieve some add-on
optimality. In other words, each subsystem’s stability does not critically rely on the
other subsystems’. In related work, the coordination of multiple quadrupedal robots
via reaction forces has recently been studied (Kaveh Akbari Hamed, Kamidi, et al.,
2020).

This section generalizes the aforementioned methods — zero dynamics and system
decomposition through coupling constraints — and unifies them through a novel
formulation: coupled control systems. We then utilize zero dynamics to reduce to a
subsystem dependent on coupling constraints which are then eliminated via coupling
relations to yield the final isolated subsystem. The main result of this paper is that
solutions to the isolated subsystem are solutions to the full-order system. Thus
periodic orbits on the subsystem yield periodic orbits on the full-order system. This
result is leveraged to construct a nonlinear optimization problemutilizing collocation
methods to generate these periodic solutions.

Coupled Control Systems. To define coupled control systems, we will consider a
graph on which each node represents a control system, and each edge represents
a coupling condition between these control systems. First, we briefly establish the
notation related to graphs.

A bidirected graph (also termed a symmetric directed graph) is a tuple G = (N , E),
with V = {1, 2, . . . ℓ} ⊂ Z a set of vertices (representing the indices of all subsys-
tems) and E ⊂ {(8, 9) | (8, 9) ∈ N × V, 8 ≠ 9} is a set of edges (these represent
the connection relation between two subsystems, hence the bidirectionality—if a
subsystem is connected to another subsystem, then the same holds in reverse). The
bidirectionality of the graph implies that if 4 = (8, 9) ∈ E then 4 = ( 9 , 8) ∈ E,
i.e., every direct edge connects each vertex symmetrically. All of the edges of a
sub-system 8 form a set, G8 = {4 ∈ E | 4 = (8, 9) ∈ E} with |G8 | the number of
neighbor systems. By bidirectionality, if 4 ∈ G8 then 4 ∈ G9 .

We can now define the main object of interest:

Definition 14. A coupled control system (CCS) is defined to be a tuple:

CC = (G,X,Z,U,Λ, ��, %&,�) (4.9)

consisting of the following components:
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• G = (N , E) is a bidirected graph,

• X = {X8}8∈N , where G8 ∈ X8 is a set of internal states,

• Z = {Z8}8∈N , where I8 ∈ Z8 is a set of coupled states,

• U = {U8}8∈N , where D8 ∈ U8 is a set of admissible inputs,

• Λ = {_4}4∈E , is a set of coupling inputs that enforce dynamic coupling,

• �� = {( 58, 68, 6̆4)}8∈N ,4∈G8 are the internal state dynamics where each sys-
tems’ internal states evolve according to:

¤G8 = 58 (G8, I8) + 68 (G8, I8)D8 +
∑
4∈G8

6̆4 (G8, I8, I 9 )_4, (4.10)

• %& = {(?8, @8, @̆4)}8∈N ,4∈G8 is the set of coupled state dynamics where the
coupled states evolve according to:

¤I8 = ?8 (G8, I8) + @8 (G8, I8)D8 +
∑
4∈G8

@̆4 (G8, I8, I 9 )_4, (4.11)

• � = {24}4∈E is a set of coupling constraints:2

24 (I8, I 9 ) ≡ 0, ∀ 4 = (8, 9) ∈ E . (4.12)

Note that it is often convenient to write a CCS in a more compact form. More
concretely, with the objects defined above in mind, we can denote a CCS in the
following form of semi-explicit differential-algebraic equation (DAEs):

CC ,



¤G8 = 58 (G8, I8) + 68 (G8, I8)D8 +
∑
4∈G8

6̆4 (G8, I8, I 9 )_4

¤I8 = ?8 (G8, I8) + @8 (G8, I8)D8 +
∑
4∈G8

@̆4 (G8, I8, I 9 )_4

s.t. 24 (I8, I 9 ) ≡ 0 ∀ 4 = (8, 9) ∈ G8

(4.13)

wherein the systems in (4.13) are defined for each 8 ∈ N , and implicit in the definition
for the corresponding bidirected graph G = (N , E) and the fact that G8 ∈ X8, I8 ∈ Z8
and D8 ∈ U8 as defined above.

2As used in (2.8), the operator ≡ (“identical equality” of functions) is defined as, 5 ≡ 6 for
functions 5 , 6 meaning 5 (G) = 6(G) for all G defined. For example, 24 (I8 , I 9 ) ≡ 0 implies that
24 (I8 (C), I 9 (C)) = 0 for all C ∈ R for which I8 (C) and I 9 (C) are defined.
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For a CCS CC we will denote the total internal state by G = {G8}8∈N ∈
∏
8∈N X8

and the total coupled state by I = {I8}8∈N ∈
∏
8∈N Z8. By slight abuse of notation,

we may denote function evaluations on the total states such that the corresponding
functions are evaluated system by system. For example, we can write 2(I) ,
{24 (I8, I 9 )}4=(8, 9)∈E for the coupling constraint.

Solutions. We can define solutions to coupled control systems by assuming the ex-
istence of a collection of feedback control laws: D(G, I) , {D8 (G8, I)}8∈N . Applying
these controllers to (4.13) yields a coupled dynamical system (CDS):

DC ,



¤G8 = 58 (G8, I8) + 68 (G8, I8)D8 (G8, I)︸                              ︷︷                              ︸
5 cl
8
(G8 ,I)

+
∑
4∈G8

6̆4 (G8, I8, I 9 )_4

¤I8 = ?8 (G8, I8) + @8 (G8, I8)D8 (G8, I)︸                               ︷︷                               ︸
?cl
8
(G8 ,I)

+
∑
4∈G8

@̆4 (G8, I8, I 9 )_4

s.t. 24 (I8, I 9 ) ≡ 0 ∀ 4 = (8, 9) ∈ G8

(4.14)

again defined for all 8 ∈ N . The solution to the coupled dynamic system, DC , is a
set of solutions:

{(G8 (C), I8 (C), _4 (C))}8∈N ,4∈G8 s.t. (4.14) ∀C ∈ I ⊂ R

with initial condition: {(G8 (0), I8 (0), _4 (0))}8∈N ,4∈G8 . Per the above notation, we
will sometimes denote the solutions by (G(C), I(C), _(C)) with initial condition
(G(0), I(0), _(0)). Note that solutions must satisfy the coupling constraints (4.12)
at all time. Therefore,

¤2(G, I) ≡ 0 ⇒ ¤24 (G, I8, I 9 , ¤I8, ¤I 9 ) ≡ 0 ∀ 4 ∈ E (4.15)

⇒ ¤24 (G, I, ¤I) =
m24 (I8, I 9 )

mI8︸       ︷︷       ︸
,�
(8, 9)
4 (I)

¤I8 +
m24 (I8, I 9 )

mI 9︸       ︷︷       ︸
,�
( 9 ,8)
4 (I)

¤I 9 ≡ 0.

Since ¤I8 (C) and ¤I 9 (C) both depend on _4 (C), for 4 = (8, 9), it is this derivative
condition that _(C) must satisfy for all systems and all coupling constraints in order
to be a solution. Concretely, and utilizing (4.15), this implies that the following
condition must hold:

¤24 (G, I) = � (8, 9)4 (I) ©«?cl
8 (G8, I) +

∑
4=(8,:)∈G8

@̆4 (G8, I8, I: )_4
ª®¬

+ � ( 9 ,8)4 (I) ©«?cl
9 (G 9 , I) +

∑
4′=( 9 ,;)∈G 9

@̆4′ (G 9 , I 9 , I;)_4′
ª®¬ ≡ 0. (4.16)
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Therefore, to solve for coupling inputs _4 that satisfy the coupling constraints, it is
necessary to solve an equation that depends on the states of all systems connected to
the 8th system via G8. To address this, we present a method for isolating a subsystem
via conditions on the controllers of all other systems.

Isolating Control Subsystems
The main idea in approaching the analysis and design of controllers for CCSs is to
isolate subsystems that encode the behavior of the overall CCS. This section outlines
the procedure for isolating these subsystems through a two-step approach: restricting
systems to the zero dynamics surface and leveraging this to calculate the coupling
conditions explicitly. These can be combined to reduce the full-order CCS to a
subsystem that no longer depends on the internal states of the other subsystems. We
establish the main result of the paper encapsulating these constructions: solutions
of the subsystem yield solutions of the full-order dynamics.

Zero Dynamics Manifolds. In addition to restricting the dynamics to the constraint
manifold, we are also interested in understanding on controllers that restrict the
system to invariant surfaces can be utilized to further isolate subsystems of the CCS
in a way amenable to analysis.

Consider a CCS CC . The zero dynamics manifold is given for each subsystem, i.e.,
for each 8 ∈ N , by:

Z8 , {(G, I) ∈ X × Z | G8 ≡ 0}. (4.17)

where, by abuse of notation (although clear from context), X , ∏
8∈N X8 and

Z , ∏
8∈N Z8. Thus, the zero dynamics manifold consists of internal states that are

zero, i.e., the system evolves only according to the coupled states.

Definition 15. Consider a coupled control system CC . For 8 ∈ N , a controller for the
subsystem, DZ,_

8
(G8, I), renders the zero dynamics manifold invariant if it satisfies

the following algebraic condition:

0 ≡ 58 (0, I8) + 68 (0, I8)DZ,_
8
(0, I) +

∑
4∈G8

6̆4 (0, I8, I 9 )_4 (4.18)

where DZ,_
8

implicitly depends on _4 for 4 ∈ G8. We call DZ,_
8

the nominal controller
for the 8thsubsystem.

Zero Dynamics. Consider the controller DZ
8
that renders the zero dynamics manifold

Z8 invariant. By applying this controller, the coupled dynamics evolve according to
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the zero dynamics:

¤I8 = ?8 (0, I) + @8 (0, I)DZ,_
8
(0, I) +

∑
4∈G8

@̆4 (0, I8, I 9 )_4

, ?Z,_
8,4
(I). (4.19)

Note that ?Z,_
8,4

depends on _4 for 4 ∈ G8.

Inmany cases, one can explicitly solve for a controller that satisfies this condition (via
a relative degree type condition)—often through the proper choice of internal states.
This will be the case for mechanical systems, and especially those representing
quadrupedal robots. Specifically, if for all 8 ∈ N , the matrix 68 (0, I) is invertible for
all I ∈ Z then we can explicitly solve for the condition on DZ

8
that renders the zero

dynamics invariant:

D
Z,_
8
(0, I) = −68 (0, I8)−1

(
58 (0, I8) +

∑
4∈G8

6̆4 (0, I8, I 9 )_4

)
(4.20)

which now explicitly depends on _4 for 4 ∈ G8.

_-Coupled Subsystems. The key idea underlying the analysis of CCSs is to reduce
the entire coupled system into the behavior of a single subsystem. This is achieved
through the above constructions related to the zero dynamics.

For a CCS CC , assume that there exist DZ
9
that render the zero dynamics manifold Z 9

invariant for all 9 ∈ N \ {8} with 8 ∈ N . Consider the following _-coupled control
subsystem (_-CCSub):

CZ,_
8
,



¤G8 = 58 (G8, I8) + 68 (G8, I8)D8 +
∑
4∈G8

6̆4 (G8, I8, I 9 )_4

¤I8 = ?8 (G8, I8) + @8 (G8, I8)D8 +
∑
4∈G8

@̆4 (G8, I8, I 9 )_4

¤I 9 = ?Z,_
9 ,4′ (I) ∀ 9 ∈ N \ {8}s.t. 24 (I8, I 9 ) = 0 ∀ 4 ∈ E

, (4.21)

Thus, the subsystem evolves according to the dynamics of the system 8 and the zero
dynamics of all remaining systems—all of which are coupled via the coupling inputs
_ = {_4}4∈E .

When a feedback controller D8 (G8, I) is applied to CZ,_
8

, the result is a dynamical sub-
system, denoted by: DZ,_

8
. Solutions of this system are denoted by (G8 (C), I(C), _(C)).

The fact that the 8thsubsystem yields behavior of the entire system is summarized
in the following lemma. Before stating this result, we need some notation. Let
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(G8, I) ∈ X8 ×Z, and consider the canonical embedding ] : X8 ×Z ↩→ X×Z given
by ](G8, I) = (G, I) where G = {G 9 } 9∈N with G 9 = 0 if 9 ∈ N \ {8} and G 9 = G8 if 9 = 8.

Lemma 4. Let CC be a CCS and CZ,_
8

the corresponding _-CCSub for some 8 ∈
N obtained by applying DZ,_

9
, for 9 ∈ N \ {8}, that render the zero dynamics

manifoldZ9 invariant. Let D8 (G8, I) be a feedback controller applied toCZ,_
8

resulting
in the corresponding dynamical subsystem DZ,_

8
with solution (G8 (C), I(C), _(C)).

Then (](G8 (C), I(C)), _(C)) is a solution to DC—the CDS obtained by applying these
controllers.

Proof. The proof follows trivially from the fact that the zero dynamics are invariant
for all 9 ∈ N \ {8}, i.e.,

](G8 (C), I(C)) ∈
⋂

9∈N\{8}
Z 9 ∀ C ∈ � ⊂ R

for � the interval of existence of (G8 (C), I(C)). �

Explicit Coupling Conditions
The coupling between the control systems (4.13) is enforced via _4 and the coupling
constraints of the form (4.16). Similarly, even in the reduction to a subsystem (4.21),
the coupling was still achieved through _4. We wish to generalize this to remove the
coupling, i.e., isolate subsystems, while still preserving the overall behavior of the
full system.

Coupling Relations.Consider (4.15) but now for the case of a _-CCSub, as in (4.21),
yielding:

¤2Z,_
4 (G8, I, D8) = �

(8, 9)
4 (I)

(
?8 (G8, I8) + @8 (G8, I8)D8 +

∑
4∈G8

@̆4 (G8, I8, I: )_4

)
+

�
( 9 ,8)
4 (I) ©«? 9 (0, I 9 ) + @ 9 (0, I 9 )DZ,_

9
(0, I) +

∑
4′∈G 9

@̆4′ (0, I 9 , I;)_4′
ª®¬

≡ 0 (4.22)

Thus _4 with 4 = (8, 9) ∈ G8, implicitly depends on D8—while the use of the
controllers DZ,_

9
eliminates the dependence on the controllers and internal states of

the other systems. This motivates the following formulation:
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Definition 16. For a _-coupled control subsystem CZ,_
8

(8 ∈ N ), a coupling relation
is a functional relationship on the coupling inputs:

_Z
4 (G8, I; D8) = �Z

4 (G8, I)D8 + 1Z
4 (G8, I), (4.23)

for all 4 = (8, 9) ∈ E, that satisfies the coupling constraint (4.22).

Note that _4 only depends on D8 and G8 for all 4 ∈ E. Specifically, given another
edge 4′ = ( 9 , ;) ∈ E we have _Z

4′ (G8, I; D8) = �Z
4′ (G8, I)D8 + 1Z

4′ (G8, I). In this case, it
may happen that �Z

4′ = 0, meaning that the relation is simply a constant relation for
that edge.

Leveraging Coupling Relations. Given a coupling relation _Z we can remove the
dependence on _ throughout CZ,_

8
and leave only a dependence on D8.

Zero dynamics controllers: Recall that the controller DZ,_ that renders the zero dy-
namics surface invariant implicitly depends on _4 via (4.18). Given a coupling
relation, the dependence of _4 is removed, and as a result we say that DZ renders the
zero dynamics manifold Z 9 invariant if:

0 ≡ 5 Z
9 (0, I) + 6Z

9 (0, I)D8 + 6 9 (0, I 9 )
(
DZ
9 (0, I; D8) − D8

)
(4.24)

where DZ
9
is now a function of D8 and

5 Z
9 (G 9 , I) , 5 9 (G 9 , I 9 ) +

∑
4′∈G 9

6̆4′ (G 9 , I 9 , I;)1Z
4′ (G8, I), (4.25)

6Z
9 (G 9 , I) , 6 9 (G 9 , I 9 ) +

∑
4′∈G 9

6̆4′ (G 9 , I 9 , I;)�Z
4′ (G8, I). (4.26)

Coupling conditions: Returning to (4.22), given a coupling relation we can rewrite
this coupling constraint as:

¤24 (G8, I, ¤I) = � (8, 9)4 (I)
(
?Z
8 (G8, I) + @Z

8 (G8, I)D8
)

+ � ( 9 ,8)4 (I)
(
?Z
9 (G8, I) + @Z

9 (G8, I)D8
)
≡ 0 (4.27)

where for 8 ∈ N the 8 associated with the subsystem CZ,_
8

:

?Z
8 (G8, I) , ?8 (G8, I8) +

∑
4∈G8

@̆4 (G8, I8, I 9 )1Z
4 (G8, I) (4.28)

@Z
8 (G8, I) , @8 (G8, I8) +

∑
4∈G8

@̆4 (G8, I8, I 9 )�Z
4 (G8, I) (4.29)
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and for 9 ∈ N \ {8}, we have:

?Z
9 (G8, I) , ? 9 (0, I 9 ) + @ 9 (0, I 9 )DZ

9 (0, I) +
∑
4′∈G 9

@̆4′ (0, I 9 , I;)1Z
4′ (G8, I) (4.30)

@Z
9 (G8, I) ,

∑
4′∈G 9

@̆4′ (0, I 9 , I;)�Z
4′ (G8, I). (4.31)

Isolating Subsystems
We now arrive at the key concept for which all of the previous constructions have
built: reducing a CCS to a single subsystem that can be used to give guarantees
about the entire CCS. This is achieved using the above coupling relation.

Definition 17. For a CCS CC , for 8 ∈ N , assume a coupling relation _Z that there
exist DZ

9
that render the zero dynamics manifold Z 9 invariant for 9 ∈ N \ {8}. Then

the 8thcontrol subsystem (CSub) associated with the CCS CC is given by:

CZ
8 ,


¤G8 = 5 Z

8 (G8, I) + 6Z
8 (G8, I)D8

¤I8 = ?Z
8 (G8, I) + @Z

8 (G8, I)D8
¤I 9 = ?Z

9 (G8, I) + @Z
9 (G8, I)D8 ∀ 9 ∈ N \ {8}

(4.32)

where 5 Z
8
and 6Z

8
are given in (4.25) and (4.26) and ?Z

8
, @Z

8
, ?Z

9
, and @Z

9
are given in

(4.28)—(4.31). For the sake of definiteness, we note that:

5 Z
8 (G8, I) , 58 (G8, I8) +

∑
4∈G8

6̆4 (G8, I8, I 9 )1Z
4 (G8, I), (4.33)

6Z
8 (G8, I) , 68 (G8, I8) +

∑
4∈G8

6̆4 (G8, I8, I 9 )�Z
4 (G8, I). (4.34)

Given a feedback controller D8 (G8, I) the corresponding dynamical subsystem is
denoted by DZ

8
.

Constrained Dynamics. Note that the coupling constraint (4.27) was not explicitly
stated in the CSub CZ

8
. This was because it was solved for via the coupling relation

_Z. That is, the system naturally evolves on the constraint manifold:

C , {(G, I) ∈ X × Z : 24 (I) ≡ 0, ∀ 4 ∈ E}. (4.35)

This is made formal in the following result which is the ultimate result of all the
constructions presented in this paper. Additionally, it will be seen that solutions of
the 8thsubsystem can be used to construct solutions of the full-order CCS. In this
context, recall that in Lemma 4 we utilized the embedded ] : X8 ×Z → X ×Z.
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Theorem 2. Let CC be a CCS, and for 8 ∈ N assume that there exist DZ
9
, 9 ∈ N \ {8}

that render the zero dynamics manifold Z 9 invariant. Let CZ
8
be the corresponding

8thsubsystem. Given a feedback controller D8 (G8, I) for the CSub with corresponding
dynamical subsystem DZ

8
with solution (G8 (C), I(C)) with C ∈ � ⊂ R. If

](G8 (0), I(0)) ∈ C ⇒ ](G8 (C), I(C)) ∈ C ∀ C ∈ � ⊂ R

and (](G8 (C), I(C)), _Z(C)), with

_Z(C) = {_Z
4 (G8 (C), I(C); D8 (G8 (C), I(C)))}4∈E ,

is a solution to DC , the CDS obtained by applying D8 and DZ
9
, 9 ∈ N \ {8}.

Proof. The condition that (G(0), I(0)) ∈ C is equivalent to 24 (I(0)) = 0. Con-
cretely, 24 (I8 (0), I 9 (0)) = 0. Since _Z

4 is a coupling relation it satisfies (4.22)
and more explicitly (4.27); therefore, and being explicit about the arguments,
¤24 (G(C), I(C)) = 0 for all C ∈ � and all 4 ∈ E. It follows that 24 (I(C)) = 0 for
all C ∈ � and 4 ∈ E.

The fact that (](G8 (C), I(C)), _Z(C)) is a solution to DC assuming that (G8 (C), I(C)) is
a solution to DZ

8
follows Lemma 4 together with the construction of DZ

8
. �

Periodic Orbits. In the context of quadrupeds, we will be interested in generating
periodic motions, i.e., walking. A solution to a CDSDC is periodic of period ) > 0
if for some initial condition (G(0), I(0), _(0)):

(G(C + )), I(C + )), _(C + ))) = (G(C), I(C), _(C))

with the resulting periodic orbit:

O = {(G(C), I(C)) ∈ X × Z | 0 ≤ C ≤ )}.

As a result of Theorem 2, periodic orbits in a subsystem correspond to periodic
orbits in the full-order dynamics.

Corollary 1. Under the conditions of Theorem 2, assume that (G8 (C), I(C)) is a peri-
odic solution ofDZ

8
with period) > 0 and corresponding orbit O8 = {(G8 (C), I(C)) ∈

X8 ×Z | 0 ≤ C ≤ )}then (](G(C), I(C), _Z(C)) is a periodic solution of the CDS with
period ) > 0 and corresponding periodic orbit O = ](O8).
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4.3 CCS Optimization and Application to Quadrupedal Gaits
With the construction of coupled control systems in the graph in the previous
section, we present a general optimization framework to solve for the solution to
the 8thcontrol subsystem (CSub) associated with the CCS CC , while synthesising
the corresponding nominal controllers that render forward invariance of the zero
dynamics manifolds. The application of these ideas to periodic orbit generation
will be discussed. The approach we will take is a locally direct collocation (Rao,
2009) based optimization method, which has been detailed in Sec. 2.9 and Sec. 3.3.
In this section, we build on this method to solve for the solution and controllers to
coupled control systems, while optimizing some metrics. The target is that through
the proposed control decoupling framework, the computation of numerical solutions
(including control synthesis) to a coupled control system can be achieved efficiently
and robustly.

Coupled System Optimization
Wefirst pose the previous formulations as a series of equality constraints to represent
the controlled dynamics of CZ

8
for system 8 ∈ V. In particular, assume a coupling

relation as given in Def. 16 of the form: _Z
4 (G8, I; D8) = �Z

4 (G8, I)D8 + 1Z
4 (G8, I), as in

(4.23).

To define the decision variables, we first discretized time evenly C ∈ [0, )], with grid
index ^ = 0, 1, ...K, i.e., C^ = ^

K) . Consequently, we have the initial time C0 = 0, final
time C" = ) and step size ΔC = )/K. To formulate direct collocation constraints,
we referred the even nodes (grid index that is an even number) as cardinal nodes
and the other grids as interior nodes. In addition, we abbreviated the dependency
on time C as �^ , �(C^) for notation simplicity.

Decision Variables. To introduce the other constructions, decision variable for op-
timization is denoted as

X ,
{
o^

}
^=0,1,..." , with o

^ , {G^8 , ¤G^8 , I^8 , ¤I^8 , I^9 , ¤I^9 , D^8 , D
Z,^
9
} 9∈N\{8} .

Thus we have decision variables associated with the 8th control subsystem CZ
8
. Note

that we will use I^ = {I^
8
, I^
9
} 9∈N\{8} to denote all of the coupled coordinates.

Zero Dynamics Constraints.Recall that given a coupling relation, we had associated
zero dynamics invariance conditions given by (4.58). We will enforce these condi-
tions in the optimization to ensure that DZ,^

9
renders the zero dynamics Z 9 invariant.
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Specifically, we have the constraint:

�zero(o^) , 5 Z
9 (0, I^) + 6Z

9 (0, I^)D^8 + 6 9 (0, I^9 )
(
D

Z,^
9
− D^8

)
, ∀ 9 ∈ N \ {8} (C.1)

where 5 Z
9
and 6Z

9
are given as in (4.25) and (4.26), respectively.

Subsystem Dynamics Constraints. Following from the constructions in Sec. 4.2, we
wish to define constraints corresponding to dynamics of the 8thcontrol subsystem
CZ
8
(as obtained from the coupling relation). By denoting j^ = (G^

8
, I^
8
, I^
9
), and

� (j^) ,


5 Z
8 (G^8 , I^) + 6Z

8 (G^8 , I^)D^8
?Z
8 (G^8 , I^) + @Z

8 (G^8 , I^)D^8
?Z
9 (G^8 , I^) + @Z

9 (G8, I)D^8 ∀ 9 ∈ N \ {8}

;

we hence obtain the dynamic constraints as:

�dyn(o^) , ¤j^ − � (j^) = 0. (C.2)

Here these dynamics are given as in Def. 17, i.e., 5 Z
8

and 6Z
8
are given in (4.25)

and (4.26) and ?Z
8
, @Z

8
, ?Z

9
, and @Z

9
are given in (4.28)-(4.31). The end result is an

equality constraint imposed on the cardinal nodes to enforce all of the states and
controllers satisfy the dynamic system (17).

Direct Collocation. To enforce that those solutions on cardinal nodes stay on the
same vector flow, i.e., belong to one unique solution to the dynamic system (17),
we employ an implicit stage-3 Runge-Kutta method for formulating this condition
as equality constraints. We first use a piecewise Hermite interpolation (cubic)
polynomial to compute the interpolated value of j2 and its slope ¤j2 at the center of
the subinterval [C^, C^+1], i.e., the collocation point, as:

j̄2 = (j^ + j^+1)/2 + XC ( ¤j^ − ¤j^+1)/8
¤̄j2 = −3(j^ − j^+1)/2XC − ( ¤j^ + ¤j^+1)/4.

Then the collocation constraints is formed as:

3 (X) , ¤̄j2 − � ( j̄2) = 0. (C.3)

Physical Constraints. Additionally, the path constraints: ?(·) ≥ 0, which are a
set of nonequality constraints, are always used to enforce conditions along the
time horizon. Examples include obstacle avoidance constraints for a robot arm
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manipulation task, or some feasibility conditions on the solution to the dynamic
equation, for which some real-world physics is represented. A set of equality
constraints 1(·) = 0 that are imposed on the decision variables at C = 0, ) are often
utilized to connect the initial and final condition:

1(o^) ,
[
j0 − jK

¤j0 − ¤jK

]
= 0 (4.36)

to force the optimization to only search for a solution to the dynamic system that is
a periodic orbit.

Optimization problem. To find the solution to dynamical system in (4.32), we parse
the decoupled control problem of the isolating subsystem 8 ∈ V as a mathematical
programming:

argmin
X

� (X) (CCS-OPT)

s.t. �zero(o^) = 0 ^ = 0, 1, . . . ,K (C.1)

�dyn(o^) = 0 ^ = 0, 2, 4, . . . (C.2)

3 (X) = 0 (C.3)

o^ ∈ X ×Z ×U ^ = 0, 1, . . . ,K (C.4)

?(o^) ≥ 0 ^ = 0, 1, . . . ,K (C.5)

1(o^) = 0 ^ = 0, 1, . . . ,K (C.6)

where � (·) ∈ R is the cost function, often picked as the total energy consumption.
Here (C.4) defines the upper and lower bounds of the decision variables, i.e., that
they live in the admissible space of values. The other constraints are as stated above.

Solutions. As a result, the optimization (CCS-OPT) can simultaneously output
trajectories (solutions) of the states {G8 (C), I(C)}, DZ

9
(C) that renders the zero dynamics

manifold Z 9 invariant and the open-loop controller D8 (C), with C = [0, )] for which
these solutions are defined. Note that one can also enforce the dynamics ¤G^

8
+YG^

8
= 0

with Y > 0 to guarantee the converging attribute of the isolating subsystem 8, inwhich
case the controller D8 (G8, I) is equivalently an input-output feedback linearization
controller. Per Theorem 2, given DZ

9
that renders invariant Z 9 and the feedback

controller D8 (G8, I), we can compute _Z(C) using (4.23), hence (](G8 (C), I(C)), _Z(C))
is then a solution to the original CDS.

If we further impose a periodic condition on the solution’s boundary such as (4.36),
the optimization shall produce a periodic solution of period) to the CCS. Therefore,
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according to Corollary 1, (](G8 (C), I(C), _Z(C)) is a periodic solution to the CDS with
period ) .

Quadrupedal Locomotion as Symmetric Coupled Systems
A special case of CCSs that is of particular interest to our study of quadrupedal
robots is CCSs that are symmetric, i.e., Symmetric Coupled Control Systems. In
this case, we consider a CCS with only two systems that have identical (symmetric)
coupling constraints—hence the use of the term “symmetric.” We will demonstrate
this with an example consisting of a quadrupedal robot as two connected bipedal
systems.

Definition 18. A symmetric coupled control system (SCCS) is given by a graph

G = (N = {1, 2}, E = {4 = (1, 2), 4 = (2, 1)}) , (4.37)

together with a tuple represented by the following conditional expression:

+CC ,



¤G8 = 58 (G8, I8) + 68 (G8, I8)D8 + 6̆4 (G8, I8, I 9 )_4
¤I8 = ?8 (G8, I8) + @8 (G8, I8)D8 + @̆4 (G8, I8, I 9 )_4
s.t. 24 (I8, I 9 ) = I8 − I 9 ≡ 0

_4 = −_4

(4.38)

for 8, 9 = 1, 2 with 8 ≠ 9 . Note that G8 ∈ X8 and I8 ∈ Z8 and we let X = X1 × X2 and
Z = Z1 ×Z2, i.e., G = (G1, G2) and I = (I1, I2).

Solutions. We define solutions to coupled control systems by assuming the exis-
tence of feedback control laws: D(G, I) , {D1(G1, I), D2(G2, I)}. Applying these
controllers to (4.38) yields a symmetric coupled dynamical system (+DC):

+DC ,


¤G8 = 5 cl

8
(G8, I) + 6̆4 (G8, I)_4

¤I8 = ?cl
8
(G8, I) + @̆4 (G8, I)_4

s.t. 24 (I) ≡ 0, _4 = −_4̄

(4.39)

where,

5 cl
8 , 58 (G8, I8) + 68 (G8, I8)D8 (G8, I)
?cl
8 , ?8 (G8, I8) + @8 (G8, I8)D8 (G8, I).

Then the solution of the coupled dynamic system, +DC , is a set of solutions:{(
G1(C), I1(C), _4 (C)

)
,
(
G2(C), I2(C), _4̄ (C)

)}
s.t. (4.39) ∀C ∈ I ⊂ R
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Figure 4.8: A conceptual illustration of the full-body dynamics decomposition,
where the 3D quadruped — the Vision 60 — is decomposed into two constrained
3D bipedal robots.

with initial condition: {(G1(0), I1(0), _4 (0)), (G2(0), I2(0), _4̄ (0))}, and I ⊂ R is
the time interval of their existence. Per the above notation, we will sometimes
denote the solutions by (G(C), I(C), _(C)) with initial condition (G(0), I(0), _(0)).

Coupling constraints. Importantly, the solutions must satisfy the coupling con-
straints at all time. Therefore,

24 (I) ≡ 0 ⇒ ¤24 (I, ¤I) ≡ 0 (4.40)

⇒
m24 (I8, I 9 )

mI8︸       ︷︷       ︸
,�
(8, 9)
4 (I)

¤I8 +
m24 (I8, I 9 )

mI 9︸       ︷︷       ︸
,�
( 9 ,8)
4 (I)

¤I 9 ≡ 0

⇒ ¤24 (G, I) = � (8, 9)4 (I)
(
?cl
8 (G8, I) + @̆4 (G8, I)_4

)
+ � ( 9 ,8)4 (I)

(
?cl
9 (G 9 , I) + @̆ 4̄ (G 9 , I)_4̄

)
≡ 0. (4.41)

Hence, to solve for the coupling inputs _4 that satisfy the coupling constraints, it is
necessary to solve an equation that depends on the states of both subsystems. To
address this, we present a method for isolating a subsystem via conditions on the
controllers of the other systems in the next section. Before doing this, we utilize the
following example to illustrate the concepts of coupled control systems.

Decompose a Quadruped into Bipeds
The motivating application considered here is to compute periodic solutions to
the quadrupedal dynamics. As Fig. 4.1 shows, we decompose this quadruped
into two bipeds, whose dynamics are on a CCS graph (according to Def. 18):
G ,

(
N = {f, r}, E = {4 = (f, r), 4̄ = (r, f)}

)
, where f, r label the front and rear

bipedal systems, correspondingly. We pick the coordinates for these two subsystems
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as @f = (b>f , \
>
L2
, \>L0
)>, @r = (b>r , \>L1

, \>L3
)> with b8 ∈ R3 × SO(3) and the leg joints

\!∗ ∈ R3. Since all leg joints are actuated, the inputs are D8 ∈ U ⊂ R6. The
continuous-time dynamics in Fig. 4.2, when toe1 and toe2 are on the ground, are
modeled as constrained dynamics:

� (@) ¥@ + � (@, ¤@) = �D + �>f (@)�1 + �>r (@) �2

�f (@) ¥@ + ¤�f (@, ¤@) ¤@ = 0

�r(@) ¥@ + ¤�r(@, ¤@) ¤@ = 0

, (4.42)

with the domain D , {G ∈ X : ¤ℎ1(@, ¤@) = ¤ℎ2(@, ¤@) = 0, ℎI1 (@) = ℎI2 (@) = 0}. In
this formulation, we utilize the following notation: � (@) ∈ R=×= is the inertia-mass
matrix; � (@, ¤@) ∈ R= contains Coriolis forces and gravity terms; ℎ1(@), ℎ2(@) ∈ R3

are the Cartesian positions of toe1 and toe2, their Jacobians are �∗ = mℎ∗/m@;
ℎI1 (@), ℎI2 (@) are these toes’ height; �f , �r ∈ R3 are the ground reaction forces
on toe1 and toe2; � ∈ R=×< is the actuation matrix. Essentially, we use a set of
differential algebra equations (DAEs) to describe the dynamics of the quadrupedal
robot that is subject to two holonomic constraints on toe1 and toe2.

We now decompose the quadrupedal full-body dynamics into two bipedal robots.
First, as shown in Fig. 4.8, the open-loop dynamics can be equivalently written as:

OL-Dyn ,



�f ¥@f + �f = �
>
f �f + �fDf − �>4 _4 (4.43)

�f ¥@f + ¤�f ¤@f = 0 (4.44)

�r ¥@r + �r = �
>
r �r + �rDr + �>4 _4 (4.45)

�r ¥@r + ¤�r ¤@r = 0 (4.46)
¥bf − ¥br = 0 (4.47)

wherein we utilized the following notation: �f (@f), �r(@r) ∈ R12×12 are the inertia-
mass matrices of the front and rear bipedal robots; the Jacobians �f = mℎf/m@f , �r1 =

mℎr/m@r with the Cartesian positions of toe2 as ℎf (@f) and toe1 as ℎr(@r); the
Jacobian matrix for the connection constraint (4.47) is �4 = m (bf − bf)/m@f; D>f =
(D>0 , D

>
2 ) and D

>
r = (D>1 , D

>
3 ). Note that the Cartesian position of toe2 only depends

on @f , which is due to the floating base coordinate convention.

Proposition 1. The dynamical system (OL-Dyn) is equivalent to the system (4.42).
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Proof. We can write (4.43) and (4.45) as:
�1f �10 �12

�>
10

�0 0
�>
12

0 �2



¥bf
¥\0
¥\2

 +

�1f

�0

�2

 = �fDf + �>f �f − �>2 _4


�1r �11 �13

�>
11

�1 0
�>
13

0 �3



¥br
¥\1
¥\3

 +

�1r

�1

�3

 = �rDr + �>r �r + �>4 _4

where each entry has a proper dimension to make the equations consistent. Expand-
ing them yields:

�1f �10 0 �12 0
�>
10

�0 0 0 0
0 0 0 0 0
�>
12

0 0 �2 0
0 0 0 0 0





¥bf
¥\0
¥\1
¥\2
¥\3


+



�1f

�0

0
�2

0


=



−_4
D0

0
D2

0


+ �>r �r,



�1r 0 �11 0 �13

0 0 0 0 0
�>
11

0 �1 0 0
0 0 0 0 0
�>
13

0 0 0 �3





¥br
¥\0
¥\1
¥\2
¥\3


+



�1r

0
�1

0
�3


=



_4

0
D1

0
D3


+ �>f �f .

Combining these two equations, and using the fact that bf − br ≡ 0 (holonomic
constraint) yields the dynamics given in (2.7). It is worthwhile to note that all the
terms that appear in these equations can be verified using traditional rigid body
dynamics, and the corresponding details of the structure and necessary properties
of the inertia-mass matrices can be found from the branch-induced sparsity, see
(R. Featherstone, 2008). �

Quadruped as CCS. Return to the symmetric CCS, we further abstract (OL-Dyn)
into a set of Differential Algebraic Equations (DAEs):

ℛ& ,


�8 ¥@8 + �8 = �>8 �8 + �8D8 + �>4 _4 (4.48)

�8 ¥@8 + ¤�8 ¤@8 = 0 (4.49)

s.t. 24 (b8, b 9 ) = b8 − b 9 ≡ 0 (4.50)

_4 = −_4̄ (4.51)
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with �8 (@8) ∈ R=×= the mass-inertia matrix, �8 (@8, ¤@8) ∈ R= the drift vector, and
�8 =

[
06×6 �6×6

]
the actuationmatrix. The contact (holonomic) constraint ℎ8 (@8) ≡

0 is enforced via ground reaction forces �8 ∈ R3, whose second derivative is given
in (4.49). More details of these notations can be found in (Wen-Loong Ma and
Aaron D. Ames, 2020). Note that �8 can be eliminated by the solving (4.48)-(4.49)
to have a shorter form: �8 ¥@8 + �̄8 = �̄8D8 + �̄>4 _4. The derivation is similar to (2.17)
hence omitted.

To obtain a CCS as in Def. 18, we pick “normal form” type coordinates (see Sastry,
1999), with the “output” that we wish to zero, given by

H8 (@8, U8) = H0 (@8) − H3 (b8, U8), (4.52)

where H0, H3 are the actual and desired outputs, b8 represents a parameterization
of time and U8 ∈ R6×6 are the coefficients for six fifth-order Beźier polynomials
that are designed by the optimization algorithm in (CCS-OPT). Since our goal is
to find a symmetric ambling gait for quadrupeds, we chose Ur = MUf , with the
matrix M representing a mirroring relation. We can then construct our internal
states G8 = (H>8 , ¤H>8 )>, leaving the coupled states as I8 = (b>8 , ¤b>8 )>. The end result
is a CCS of the form given in (4.38) for this mechanical system:

¤G8 =
[

¤H8
¤�H8 ¤@8 − �H8�−1

8
�̄8

]
︸                   ︷︷                   ︸

58 (G8 ,I8)

+
[

0
�H8�

−1
8
�̄8

]
︸        ︷︷        ︸

68 (G8 ,I8)

D8 +
[

0
�H8�

−1
8
�̄>4

]
︸         ︷︷         ︸
6̆4 (G8 ,I8 ,I 9 )

_4

¤I8 =
[

¤b8
−�b�−1

8
�̄8

]
︸          ︷︷          ︸

?8 (G8 ,I8)

+
[

0
�b�

−1
8
�̄8

]
︸       ︷︷       ︸
@8 (G8 ,I8)

D8 +
[

0
�b�

−1
8
�̄>4

]
︸        ︷︷        ︸
@̆4 (G8 ,I8 ,I 9 )

_4

s.t. 24 (I8, I 9 ) = I8 − I 9 ≡ 0, _4 = −_4̄,

where �H8 = mH8 (@8)/m@8, �b = mb/m@ =

[
�6×6 06×6

]
, and we suppressed the

dependency on G8, I8 for all entries.

_-Coupled Subsystem. Given a CCS CC , we define the zero dynamics manifold for
each subsystem 8 ∈ N as:

Z8 , {(G, I) ∈ X × Z | G8 ≡ 0}. (4.53)

Thus, the zero dynamics manifold for 8thsubsystem consists of the internal states, G8,
being zero, i.e., the system evolves only according to the coupled states I.



100

The key idea underlying the analysis of CCSs is to reduce the entire coupled system
into the behavior of a single subsystem. This is achieved through the above con-
structions related to the zero dynamics. We start by designing controllers for the
overall CCS on the zero dynamics of subsystem 9 ∈ N . A controller DZ,_

9
(G 9 , I) is

said to render the zero dynamics manifold Z 9 invariant if it satisfies:

0 ≡ 5 9 (0, I 9 ) + 6 9 (0, I 9 )DZ,_
9
(0, I) + 6̆4̄ (0, I)_4̄ (4.54)

where DZ,_
9

implicitly depends on _4̄ for 4̄ = ( 9 , 8) ∈ E. By applying DZ,_
9

, we obtain
a _-coupled control subsystem (_-CCSub) for the 8thsubsystem:

+CZ,_
8
,



¤G8 = 58 (G8, I8) + 68 (G8, I8)D8 + 6̆4 (G8, I)_4
¤I8 = ?8 (G8, I8) + @8 (G8, I8)D8 + @̆4 (G8, I)_4
¤I 9 = ? 9 (0, I 9 ) + @ 9 (0, I 9 )DZ,_

9
(0, I) + @̆ 4̄ (0, I)_4̄

s.t. 24 (I) ≡ 0, _4 = −_4̄

. (4.55)

Thus, the 8th subsystem evolves according to its own dynamics and the zero dynamics
of all remaining systems—all of which are coupled via the coupling inputs _ =
{_4, _4̄}.

Explicit coupling conditions. The coupling between the control systems (4.38) is
enforced via _ and the coupling constraints of the form (4.16). Similarly, even in
the reduction to a subsystem (4.55), the coupling is still achieved through _. We
wish to generalize this so as to remove the coupling, i.e., isolate subsystems, while
still preserving the overall behavior of the full system. We first define the coupling
relation that allows the use of the controllers DZ,_

9
to eliminate the dependence on

the controllers and internal states of the other subsystem.

Definition 19. For a _-CCSub CZ,_
8

and 8 ∈ N , a coupling relation is a functional
relationship on the coupling inputs

_Z
4 (G8, I; D8) = �Z

4 (G8, I)D8 + 1Z
4 (G8, I), (4.56)

that satisfies the coupling constraint (4.15) for all 4 = (8, 9) ∈ E.

The coupling relation is then summarized in the following:

Lemma 5. For a CCS CC , if we have

&̆(G8, I) ,
[

6 9 (0, I 9 ) −6̆4̄ (0, I)
�
( 9 ,8)
2 @ 9 (0, I 9 ) �

(8, 9)
2 @̆4 (G8, I) − � ( 9 ,8)2 @̆ 4̄ (0, I)

]
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invertible, there exists a controller DZ
9
that renders Z 9 invariant and a coupling

relation in (4.23), given by:[
DZ
9
(0, I; D8)

_Z
4 (G8, I; D8)

]
= &̆−1

( [
0

−� (8, 9)2 @8 (G8, I8)

]
D8+ (4.57)[

− 5 9 (0, I 9 )
−� (8, 9)2 ?8 (G8, I8) − � ( 9 ,8)2 ? 9 (0, I 9 )

] )
.

Proof. Evaluating (4.15) along the zero dynamics manifold Z 9 , i.e., G 9 ≡ 0, yields:

�
(8, 9)
4 (I) (?8 (G8, I) + @8 (G8, I)D8 + @̆4 (G8, I)_4)+
�
( 9 ,8)
4̄
(I) (? 9 (0, I) + @ 9 (0, I)D8 + @̆ 4̄ (0, I)_4) = 0.

Combining this with (4.18) and simultaneously solving for DZ
9
and _Z

4 yields the
desired result. �

Recall that the controller DZ,_
9

that renders the zero dynamics surface invariant
implicitly depends on _4̄ via (4.18). Now with a coupling relation, the dependence
of _4̄ is removed, and as a result we say that DZ

9
renders the zero dynamics manifold

Z 9 invariant if:

0 ≡ 5 Z
9 (0, I) + 6Z

9 (0, I)D8 + 6 9 (0, I 9 )
(
DZ
9 (0, I; D8) − D8

)
(4.58)

where DZ
9
is now a function of D8 and

5 Z
9
(G 9 , I) , 5 9 (G 9 , I 9 ) − 6̆4̄ (G 9 , I)1Z

4 (G8, I),

6Z
9
(G 9 , I) , 6 9 (G 9 , I 9 ) − 6̆4̄ (G 9 , I)�Z

4 (G8, I).
(4.59)

Returning to (4.16), given a coupling relation we can rewrite this coupling constraint
as:

¤24 (G8, I) = � (8, 9)4 (I)
(
?Z
8 (G8, I) + @Z

8 (G8, I)D8
)
+ � ( 9 ,8)4 (I)

(
?Z
9 (G8, I) + @Z

9 (G8, I)D8
)

= 0, (4.60)

where for the subsystem CZ,_
8

we have

?Z
8
(G8, I) , ?8 (G8, I8) + @̆4 (G8, I)1Z

4 (G8, I)

@Z
8
(G8, I) , @8 (G8, I8) + @̆4 (G8, I)�Z

4 (G8, I)

?Z
9
(G8, I) , ? 9 (0, I 9 ) + @ 9 (0, I 9 )DZ

9
(0, I) − @̆ 4̄ (0, I)1Z

4 (G8, I)

@Z
9
(G8, I) , −@̆ 4̄ (0, I)�Z

4 (G8, I)

. (4.61)
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Isolating subsystems.We now arrive at the key concept for which all of the previous
constructions have built: reducing a CCS to a single subsystem that can be used to
give guarantees about the entire CCS. This is based on the following definition.

Definition 20. For a CCS CC , and 8 ≠ 9 ∈ N , assume a coupling relation _Z
4 such

that there exist DZ
9
rendering the zero dynamics manifold Z 9 invariant. Then the

8thcontrol subsystem (CSub) associated with the CCS CC is given by:

CZ
8 ,


¤G8 = 5 Z

8 (G8, I) + 6Z
8 (G8, I)D8

¤I8 = ?Z
8 (G8, I) + @Z

8 (G8, I)D8
¤I 9 = ?Z

9 (G8, I) + @Z
9 (G8, I)D8

(4.62)

where 5 Z
8
(G8, I) , 58 (G8, I8)+6̆4 (G8, I)1Z

4 (G8, I), 6Z
8
(G8, I) , 68 (G8, I8)+6̆4 (G8, I)�Z

4 (G8, I),
and ?Z

8
, @Z
8
, ?Z

9
, @Z

9
are given in (4.61). Furthermore, when a feedback controller

D8 (G8, I) is applied to CZ
8
, the result is a dynamical system, denoted by DZ

8
.

Apply to Quadrupedal Walking
For the quadrupedal dynamics ℛ& , since the output (4.52) has (vector) relative
degree 2 with respect to D8 (see (E. R. Westervelt, J. W. Grizzle, Chevallereau, et al.,
2007)), we can explicitly design the controller DZ,_

9
that renders Z 9 invariant:

D
Z,_
9
= (�H8�−1

9 �̄ 9 )−1 (�H 9�−1
9 �̄ 9 − ¤�H 9 ¤@ 9 − �H8�−1

9 �̄
>
4 _4

)
,

as given by Lemma 5. Hence, this controller satisfies (4.18) and renders a _-coupled
CSub, as in (4.55).

For robotic systems, we take these ideas one step further to obtain “bipeds” that
are the isolated subsystems associated with quadrupeds, and include slack variables
that are beneficial for gait generation. Operating on the invariant zero dynamics
manifold Z 9 yields H 9 (@ 9 , U 9 ) ≡ 0, hence

⇒ \0 ≡ �−1
0 H

3 (b 9 , U 9 ),
⇒ @Z

9 (b 9 ) ≡
(
b>9 , (�−1

0 H
3 (b 9 , U 9 ))>

)>
⇒ ¥@Z

9 (b 9 , ¤b 9 , ¥b 9 ) = �z(b 9 ) ¥b 9 + ¤�z(b 9 , ¤b 9 ) ¤b 9 ,

where �z = m@
Z
9
(b 9 )/mb 9 . In other words, if DZ,_

9
exists and is applied to 9 th sub-

system, the 9 th bipedal dynamics given by in (4.48)-(4.49) are equivalent to:{
� 9 ¥@Z

9 (b 9 , ¤b 9 , ¥b 9 ) + � 9 = �
>
9 �9 + � 9DZ

9 + �>4 _4 (4.63)

� 9 ¥@Z
9 (b 9 , ¤b 9 , ¥b 9 ) + ¤� 9 ¤@Z

9 (b 9 , ¤b 9 ) = 0 (4.64)
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where for simplicitywehave suppressed the dependencies of� 9 (@ 9 (b 9 )), � 9 (@ 9 (b 9 ))
and � 9 (@ 9 (b 9 ), ¤@ 9 (b 9 , ¤b 9 )). We then leverage a specific structure of rigid-body dy-
namicswhen using the floating base convention: � 9D 9+�>4̄ _4 = (_>4̄ , D>9 )>. Utilizing
this, (4.64) and the first 6 rows of (4.63) yield the following “bipedal” dynamics:

ℛ
Z 9

�
,


�Z
9
¥b 9 + �Z

9
= �̂>

9
�9 + _4

�Z
9
¥b 9 + FZ

9
= 0

(4.65)

with �Z
9
= �̂ 9 �z, �

Z
9
= �̂ 9

¤�z ¤b 9 + �̂ 9 , �
Z
9
= � 9 �z, and FZ

9
= � 9 ¤�z ¤b 9 + ¤� 9 ¤�z ¤b8. Here,

we denote �̂ as the first 6 rows (block) of the a variable. Hence,ℛZ 9

�
represents the

dynamics of a subsystem 9 on Z 9 , i.e., (4.65) evolves according to (4.18) where �9
can be uniquely determined.

Coupling Relations for Robotic Systems. Following the previous construction, we
can also have the explicit form of the controller DZ

9
that renders zero dynamics

manifold Z 9 invariant and the coupling condition in (4.23) as[
DZ
9
(G8, I; D8; C)

_Z
4 (G8, I; D8; C)

]
=

[
�H 9�

−1
9
�̄ 9 −�H 9�−1

9
�̄>4̄

�b 9�
−1
9
�̄ 9 −�b 9�−1

9
�̄>4̄ − �b8�−1

8
�̄>4

]−1

( [
¥H3 − ¤�H 9 ¤@ 9 − �H 9�−1

8
�̄ 9

−�b8�−1
8
�̄8 + �b 9�−1

9
�̄ 9

]
+

[
0

�b8�
−1
8
�̄8

]
D8

)
(4.66)

where �H8 = mH8/m@8, �b8 = m@8/mb8. Note that we suppressed the the dependence on
G8, I, C for notation simplicity. From this, we can obtain the CSub CZ

8
, as in (4.62).

Gait Generation for flat-ground ambling. Finally, we can apply the optimization in
(CCS-OPT) to simultaneously produce trajectories (solutions) of the states {G8 (C), I(C)},
DZ
9
(C) that renders the zero dynamics manifold Z 9 invariant and the open-loop con-

troller D8 (C), ∀C ∈ [0, )] for which these solutions are defined. Note that one can also
enforce the dynamics ¤G^

8
+YG^

8
= 0 with Y > 0 to guarantee the convergence attribute

of the 8th isolating subsystem, in which case the controller D8 (G8, I) is equivalently
an input-output feedback linearization controller.

When posing the control problem of quadrupeds, we leverage the subsystems repre-
senting the front and rear bipeds: ℛZf

�
and ℛ

Zr
�
, as given in (4.65). Note that these

subsystems are still coupled through _—while this could be explicitly solved for via
Lemma 5, we keep it implicit due to the complexity of inverting the mass-inertia
matrix for this particular robotic application. The 8thsubsystem yield (C.1), (C.2),
and (C.3) for (CCS-OPT). Specifically for all of the grid indices ^ = 0, 1, ...5, we
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Figure 4.9: Top: Snapshots showing a full step of the ambling gait on an outdoor
lawn. Bottom: The periodic trajectory produced by optimization (CCS-OPT) (in
red) vs. the experimental tracking data (in cyan) vs. RaiSim simulation data (in
green) in the form of phase portrait (limit cycle) using 18 seconds’ data.

have the decision variables: o^ = {@^f , ¤@
^
f , b

^
r , ¤b^r , D^f , �

^
f , �

^
r , Uf , _

^
4}. Finally, the

optimization converges to a periodic solution to the isolated bipedal system, which
can then be composed to obtain the ambling motion of the quadruped (shown in
Fig. 4.9) according to Theorem 1. We report that the optimization took 17.6s and
295 iterations of searching, which is over 58% faster than the full-model based
approach in Sec. 4.1 (see (W. Ma, K. A. Hamed, and A. D. Ames, 2019). The
computational complexity is mitigated mainly due to the dimension reduction of the
state space which is enabled by the representation of the quadrupedal dynamics as
bipedal subsystems. For validation purposes, both simulations in the physics engine
RaiSim and hardware experiments were conducted with a unified, time-based PD
approximation of input-output linearizing controllers to track the the desired outputs
(represented by Uf , Ur =MUf):

D8 (@8, ¤@8, C) = −: ?
(
¤H0 (@8) − H3C (C, U8)

)
− :3

(
H0 (@8) − ¤H3C (C, U8)

)
(4.67)

with : ?, :3 the PD gains. In addition, the switching detection and the event functions
are also given by the optimized trajectories, meaning the walking controller will
switch to next step when C = ) . The result is successful ambling in simulation, and
experimentally walking on flat and outdoor uneven terrains (see the video (Wen-
Loong Ma, 2020c)). See Fig. 4.9 for walking tiles and the tracking performance.
Remark that the averaged absolute torque inputs are 11.16 N·m, which are well
within the hardware limits.

Time-based stepping in place. To benchmark the computational performance, we
also generate stepping-in-place motion for the quadruped and demonstrate them on
hardware. For this behavior, our desired output H3 will be a function of time instead



105

of states. We express the algorithm in a different way from (CCS-OPT) as:

min
X

2#+1∑
9=1

 ¤bf
2

2 (4.68)

s.t. C1. isolating bipedal dynamicsℛZ 9

�
in (4.65) 9 = 1, 3, ...2# + 1

C2. collocation constraints 9 = 2, 4, ...2#

C3. impact dynamics in(4.6) 9 = 2# + 1

C4. periodic continuity 9 = 1, 2# + 1

C5. physical feasibility 9 = 1, 2, ...2# + 1

with the following notation: 2# + 1 = 11 is the total number of collocation grids;
U ∈ R36 are the coefficients for the Beźier polynomial that defines the desired
trajectory H3 (C); and � 9 is the corresponding quantities at time C 9 with C2#+1 = ) .
The cost function is to minimize the body’s vibration rate to achieve a more static
torsomovement. The constraintsC1-C3 solve the hybrid dynamics of bipedal robots
subject to external forces. Details regarding the numerical optimization can be found
in Sec. 2.9. Here, the periodic continuity constraint C4 enforces state continuity
through an edge, i.e., the post-impact states @+, ¤@+, are equivalent to the initial
states @1, ¤@1. Therefore, the resultant trajectory is a periodic solution to the bipedal
dynamics. C5 imposed some feasibility conditions on the dynamics, including
torque limits ‖D8‖∞ ≤ 50, joint feasible space (@8, ¤@8) ∈ X, foot clearance, and the
friction pyramid conditions. Note that we posed these constraints conservatively to
reduce the difficulties implementing the optimized trajectories in experiments.

To validate that the CCS-based optimization’s solutions are same as those of the
full-order quadrupedal dynamics, we simulated an ambling step of the quadrupedal
dynamics using the composed bipedal gaits. As shown in Fig. 4.10, we have the
joint angles and constraint wrench (ground reaction force) on toe1 �1,I, and toe2 �2,I

of the quadruped matched with those corresponding external force to the bipedal
dynamics.

The result of the methods presented is the ability to generate quadrupedal gaits
rapidly. We benchmark the performance by considering computing speed for each
of the quadrupedal locomotion patterns generated, as is shown in Table 4.1. In
summary, with the objective tolerance and equality constraint tolerance configured
as 10−8 and 10−5 respectively, we have the average computation time as 3.96 second,
and time per iteration averages 0.039 second. For simulation, we first validated the
dynamic stability of the gaits produced by the decomposition-based optimization
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Figure 4.10: A comparison between the solution of bipedal walking dynamics
obtained from the decomposition-based optimization and a simulated step of the
full-order quadrupedal dynamics using the composed bipedal gaits; here MATLAB
ODE45 was used.

problem using a third party physics engine, MuJoCo. These gaits include a diago-
nally symmetric ambling and four stepping-in-place behaviors. Then we conducted
experiments, walking on a a outdoor tennis court, using the same control law as that
in simulation in outdoor environments. We report that for all given optimal gaits,
the PD gains are picked as : ? = 230, 230, 300, :3 = 5 for the hip roll, hip pitch,
and knee joints, respectively. The averaged absolute joint torque inputs are logged
in Table 4.2, all of which are well within the hardware limitations. See (Wen-Loong
Ma, 2020a) for the video of Vision 60 stepping in place in both simulation and
experiments.

Table 4.1: Computing performance of gait generation. This is performed on a Linux
machine with an i7-6820HQ CPU @2.70 GHz and 16 GB RAM.

Behaviors gait1 gait2 gait3 gait4 amble
frequency (Hz) 2.5 2.3 2.2 2.6 2.83
clearance (cm) 11 12 15 13 13
# of iterations 96 122 98 46 147

time of IPOPT (s) 1.60 2.10 1.62 0.81 2.59
time of evaluation (s) 1.94 3.24 2.10 0.94 2.86

NLP time(s) 3.54 5.34 3.72 1.75 5.45

Table 4.2: Average torque inputs in experiments and simulations.

Experiments gait1 gait2 gait3 gait4 amble
D̄HR(N·m) 5.04, 4.83 4.16 5.14 7.11
D̄HP(N·m) 3.65 5.24 5.26 3.77 6.28
D̄K(N·m) 16.45 16.50 16.86 16.95 18.36
MuJoCo
D̄HR(N·m) 7.80 9.23 10.27 8.68 8.06
D̄HP(N·m) 6.78 9.14 10.71 6.64 7.27
D̄K(N·m) 18.49 18.38 18.45 18.61 19.03
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Figure 4.11: Comparison betweenMuJoCo simulation (animated) and experiments.
The upper two are for stepping in place, gait4; the lower two are logged for a full
step of the ambling gait.

Walking on Sloped Terrains
We now make a few changes to the dynamics and the optimization algorithm to
generate walking motion on slopped terrains.

Guard condition and discrete dynamics on slopes. For the symmetric ambling mo-
tion, the diagonal toes of the quadrupedal robot stay on the ground while the other
two toes are swing in the air. This means each bipedal robot has one toe-foot in
contact with the ground. Concretely, the Cartesian position of the stance toe remains
zero, i.e. ℎB (@8) ≡ 0. This contact constraint is enforced by a ground reaction force
�8 ∈ R3, where 8 ∈ {f, r}. We additionally denote the Cartesian position of the
nonstance toe along G, I directions as ℎG=B (@f), ℎI=B (@f) ∈ R. The nonstance foot’s
height on the slope is then given by

ℎ̂=B (@8) = ℎI=B (@8) sin q − ℎG=B (@8) cos q.

Hence we can define the single-support domain for bipedal dynamics (4.65) as:

D8 , {(@8, ¤@8) ∈ Q8×)Q8 | ℎB (@8) = 0, ℎ̂=B (@8) ≥ 0}.

The guard is then defined on the edge of the domain D8 as S8 , {(@8, ¤@8) ∈
Q8 ×)Q8 | ℎB (@8) = ℎ̂=B (@8) = 0, ¤̂ℎ=B (@8, ¤@8) < 0}, on which we define the discrete
dynamics that represents plastic impacts (see equation (20) in (Wen-Loong Ma and
Aaron D. Ames, 2020)) at the event that nonstance toe touches down on the slopped
terrain.
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Figure 4.12: (a) The cyclic directed graph for the multi-domain hybrid dynamics on
sloped terrain; (b) friction cone (pyramid) condition on some sloped terrain.

The friction cone condition on slopes. The feasibility conditions A8 (�8) ≥ 0 are
enforced to guarantee the solutions to the dynamics is physically realizable. In
particular, we have the friction pyramid condition on sloped terrains as:

A8 (�8) ,


�I
8

cos q − �G
8

sin q

`(�I
8

sin q + �G
8

cos q) − |�I
8

cos q − �G
8

sin q |

`(�I
8

sin q + �G
8

cos q) − |�H
8
|

(4.69)

where ` is the coefficient of dynamic friction of the ground. It is worth noting the
feasibility formulation (4.69) is more restrictive for walking on sloped terrains than
walking on stairs or level ground.

Optimization constraints. In practice, path constraints (inequality constraints) are
often used to “fine-tune” the optimal results according to human intuition and
physical limitations. Evaluating the optimality of an optimization solution based
on experimental performance is rather empirical, and intensive constraint tuning is
often needed for field testing. The ultimate target of this paper is to present a method
that can be seamlessly used to produce periodic gaits for hardware experiments on
sloped terrains. Hence, we explicitly list our path constraints as follows:

• Joint angles do not exceed physical limits;

• Absolute joint velocities below 4 rad/s;

• Absolute acceleration less than 120 rad/s2;

• Absolute joint torque less than 50 N·m;

• Stepping period CK ∈ [0.29, 0.37];
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Figure 4.13: Phase portraits of the designed gaits (solid lines) vs. experimental data
(transparent overlay) for quadrupedal walking on 13◦ (red) and 20◦ ∼ 25◦ (blue)
slopes. HR, HP, K are short for hip roll, hip pitch, and knee, respectively.

• Nonstance toe’s height ℎ̂8 (@^8 ) ≥ 0.1 at ^ = K/2;

• Nonstance toe’s absolute velocities (parallel to the sloped ground) slower than
1.3 m/s;

• Ground impact velocity ¤̂ℎ=B (@8, ¤@8) ∈ [−2,−0.2].

Remark that these constraints setup are not modified throughout the optimization
for all of the gaits that are experimentally tested.

Results. By only changing the slope angles to q = 0◦, 13◦, 15◦, 20◦, 25◦ in the
optimization problem (4.68), wewere able to generated periodic solutions efficiently.
These solutions are further used to obtain quadrupedal gaits for experiments. We
hereby report the average computational time for all five gaits are 9.7 seconds and 271
searching iterations on a Ubuntu 16.04 machine with Intel Core i7-6820 HQCPU@
2.7 GHz with 16 GB RAM. The phase portrait of the gaits on the 13◦ and 20◦ ∼ 25◦

sloped terrains are shown in solid lines in Fig. 4.13. Before directly enabling these
sloped walking gaits optimized by the CCS optimization framework on the actual
hardware — a 44 kg, 56 cm-wide robot (Fig. 1.1) — we first validate their physical
feasibility and dynamic stability under a feedback control law in a physics engine,
RaiSim (Hwangbo, J. Lee, and Marco Hutter, 2018). The quadrupedal robot was
first tested on a consistently graded 13◦ grassy slope with minimal surface variation,
which was replicated in RaiSim by creating a plane of constant incline. In order to
truly test this methodology, the quadruped was next asked to traverse a grassy slope
just after it had rained with inclination ranging from 20◦ to 25◦. In order to emulate
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Figure 4.14: Full steps of gait tiles for the Vision 60 ambling in outdoor grasslands.
The top two is comparison between simulation and experiments for a 13◦ slope. The
bottom two are for walking on a ramp with varying slopes of 20◦ ∼ 25◦.

the varying slopes in RaiSim, a terrain was created with a sinusoidally oscillating
height varying between 20◦ and 25◦ with a frequency that approximated that of the
outdoor environment. As a baseline, both a level-ground gait-based controller and
the stock controller were tested on the 20◦ ∼ 25◦ slope. We report that neither were
able to navigate on the sloped terrain successfully. As shown in the gait tiles in
Fig. 4.14, our proposed method allows the robot to successfully amble across both
the 13◦ slope and the 20◦ and 25◦ slope despite the unmodeled variation in slope
and lowered friction effects. See Wen-Loong Ma, 2020b for a video demonstration
of the experimental validation of the quadruped, in which we also showed all five
gaits walking on slopes of 0◦, 13◦, 15◦, 20◦, 25◦ in RaiSim. This result demonstrates
the necessity of designing optimal trajectories and controllers based on the specific
terrain types using full-body dynamics. Additionally, we remark that the PD gains
and ground friction coefficient are the same across all simulation and experimental
implementations.

In addition, we logged 20 seconds of experimental data and compared them with
the desired ambling gait designed by the optimization, as seen in Fig. 4.13 with
phase portraits. Note the difference in the desired behavior for the two terrains.
This diversity of behavior further motivates the use of unique gaits conditioned on
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the terrain to ensure the stability of the robotic system. An important metric to
quantify control performance for locomotion is the mechanical cost of transport
(MCOT), which was calculated using equation (16) of (W. Ma, Y. Or, and A
D. Ames, 2019). Unlike the traditional formulation where the distance term only
accounts for the horizontal displacement (Collins et al., 2005a), we used the averaged
three-dimensional velocity on the sloped terrain, which also considers the vertical
displacement. We report that in simulation, theMCOT for 13◦ and 20◦ ∼ 25◦ sloped
ambling are 2.01 and 2.86, accordingly.

4.4 Coupled Control Lyapunov Functions
After introducing the coupled control system-based optimization for generating
physically feasible gaits for the high-dimensional quadrupedal dynamics, we still
need to formally define the control law for driving the local subsystem to the
designated stable behaviors.

In this section, we will accomplish two targets. First, through the formulation of
coupled control Lyapunov functions, we formally define the stability criteria of each
subsystem while they are dynamically coupled with the rest of the system due to the
shared zero dynamics. We can then utilize these Lyapunov functions to synthesize
local optimal control laws for each subsystem to guarantee the overall coupled
control system’s stability, hence the full-order dynamics. Second, when applying
to rigid-body dynamics, we incorporate quadratic programming formulations with
two types of Lyapunov functions for controller design. First, feedback linearization-
based Control Lyapunov Functions (CLFs) are synthesized and demonstrated on a
cart-pole example showing stability. Second, PD-inspired Lyapunov functions are
used to synthesize model-free CLFs for experimental robustness. These CLFs are
applied to stabilizing the continuous dynamics of quadrupedal locomotion. This
stabilization is demonstrated in simulation with regard to hopping and running.
Finally, we present this framework on hardware, specifically the Vision 60 robot
v3.9 (see Fig. 4.15). We empirically show that it is able to walk stably and robustly
in outdoor environments.

Recall some CLF definitions from Sec. 3.4,

Definition 21. A smooth function + : R= → R+ is an exponentially stabilizing
control Lyapunov function (ES-CLF) for

¤G = 5 (G) + 6(G)D,
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if there exists constants 21, 22, 23 > 0 such that

21 |G |2 ≤ + (G) ≤ 22 |G |2 (4.70)

inf
D

(
! 5+ (G) + !6+ (G)D + 23+ (G)

)
≤ 0

for all G ∈ X. If there further exists a constant Y ∈ (0, 1) such that

21 |G |2 ≤ + (G) ≤
22

Y2 |G |
2 (4.71)

inf
D

(
! 5+ (G) + !6+ (G)D +

23
Y
+ (G)

)
≤ 0

for all G ∈ X, then + (G) is a rapidly exponentially stabilizing control Lyapunov
function (RES-CLF).

Definition 22. A smooth function + : R= → R+ is an input-to-state stabilizing
control Lyapunov function (ISS-CLF) for

¤G = 5 (G) + 6(G) (D + 3),

if there exist functions U, U, U, ] ∈ K∞ as such that ∀ G, 3

U( |G |) ≤ + (G) ≤ U( |G |)
¤+ (G, 3) ≤ −U( |G |) + ](‖3‖∞),

and the exponential estimate is:

¤+ (G, 3) ≤ −2+ (G) + ](‖3‖∞).

CLF from the Viewpoint of ISS
We first consider an affine control system in the form of

C ,

¤G1 = 51(G1, G2) + 61(G1, G2) (D1 + 31)

¤G2 = 52(G1, G2) + 62(G1, G2) (D2 + 32)
(4.72)

⇔ ¤G =
[
51(G)
52(G)

]
︸  ︷︷  ︸

5 (G)

+
[
61(G) 0

0 52(G)

]
︸             ︷︷             ︸

6(G)

(D + 3)

where D = (D>1 , D
>
2 )
> ∈ U ⊂ R< are the inputs, and 3 = (3>1 , 3

>
2 )
> ∈ R< are termed

as the disturbance inputs with 38 the subsystem disturbance. Equivalently, we can
write the 8th subsystem C8 as

¤G8 = 58 (G) + 68 (G) (D8 + 38), ∀8 ∈ N (4.73)
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for a set of nodes N = {1, 2}, where G , (G>1 , G
>
2 )
>, G8 ∈ X8 ⊂ R=8 , D8 ∈ U8 ⊂ R<8 .

Using the same notations from Sec. 4.2, we first present the following definitions
that are the foundation of the main theorem in this section.

Definition 23. A smooth function + : R=8 → R+ is a rapidly exponential input-to-
state stabilizing control Lyapunov function (Re-ISS-CLF) for

¤G8 = 5 (G, I) + 6(G, I) (D8 + 34)

with G8 ∈ R=8 , if there exists constants 21, 22, 23 > 0, Y ∈ (0, 1), Ȳ > 0 such that
∀ G, I, 3,

21 |G8 |2 ≤ +8 (G8) ≤
22

Y2 |G8 |
2 (4.74)

inf
D8∈U8

(
! 5+8 (G, I) + !6+8 (G, I)D8 +

23
Y
+8 (G8) +

1
Ȳ

��!6+8��2) ≤ 0.

The construction of Def. 23 is motivated by the rapidly exponentially stabilizing
control Lyapunov function (RES-CLF) from (A. Ames, Galloway, et al., 2014b).
Based on Def. 23, we can form a class of control laws directly:

 8 (G, I) ,
{
D8 ∈ U8 : ! 58+8 + !68+8D8 +

23,8

Y8
+8 +

1
Ȳ8

��!68+8��2 ≤ 0
}
, (4.75)

which yields the set of control values which satisfy the desired convergence prop-
erty for each subsystem 8 ∈ N . The (constant) parameters 21,8, 22,8, 23,8, Y8, Ȳ8 are
associated with each subsystem with 8 ∈ N .

We then prove that the combination of these stabilizing controllers also yields
stability for the full-order system in the following theorem.

Theorem 3. Assume there exists a ISS-stabilizing controllers D8 (G) ∈  8 (G) for each
subsystem 8 ∈ N given by (4.73). Given a collection of such controllers {D8 (G)}8∈N ,
the solution to the full-order dynamics in (4.72) is e-ISSable.

Proof. We consider an Re-ISS-CLF candidate for the full-order system:

+ (G) = +1(G1) ++2(G2). (4.76)

It can be seen that

min
8
(21,8) |G |2 = min

8
(21,8) ( |G1 |2 + |G2 |2) ≤ + (G)

+ (G) ≤ max
8
( 22,8

Y2
8

) ( |G1 |2 + |G2 |2) = max
8
( 22,8

Y2
8

) |G |2 .
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Note that we use the notation ‖38‖∞ , supC≥0{|38 |}, which yields some properties
that will be used later:

|3 | ≥ max
8
( |38 |) ≥ |38 |

‖3‖∞ = sup
C≥0
{|3 |} ≥ sup

C≥0
{|38 |} = ‖38‖∞ .

Then,

¤+ (G, D, 3) = ¤+1( ) + ¤+2( )
=

∑
! 58+8 + !68+8D8 + !68+838

≤
∑
−23,8

Y8
+8 −

1
Ȳ8
!68+8!68+

>
8 + !68+838

≤
∑
−23,8

Y8
+8 −

1
Ȳ8
!68+8!68+

>
8 +

��!68+8�� |38 |
≤

∑
−23,8

Y8
+8 −

1
Ȳ8

��!68+8��2 + ��!68+8�� |3 |
≤

∑
−23,8

Y8
+8 −

( 1
√
Ȳ8

��!68+8�� − √Ȳ8 ‖3‖∞2

)2
+ Ȳ8
‖3‖2∞

4

≤
∑
−23,8

Y8
+8 (G8) + Ȳ8

‖3‖2∞
4

≤ −2 min
8
( 23,8

Y8
)+ (G) + max8 (Ȳ8)

2
‖3‖2∞ ,

which satisfies Def. 22, in which case ](‖3‖∞) =
max8 (Ȳ8)

2 ‖3‖2∞. �

Remark that an effective way to reduce the effect of overall disturbance ‖3‖∞ is to
decrease all Ȳ8.

Exponential stability. Note that the Lyapunov function given by Def. 23 is also a
RES-CLF for the system:

¤G8 = 58 (G) + 68 (G)D8 ∀8 ∈ N

with 58, 68 the same as (4.72). Concretely, there exists constants 21, 22, 23 > 0 and
0 < Y < 1 such that

21,8 |G8 |2 ≤ +8 (G8) ≤
22,8

Y2
8

|G8 |2

inf
D

(
! 58+8 + !68+8D8 +

23,8

Y8
+8

)
≤ 0.

Under certain conditions, we can establish exponential stability for system (4.72),
which are summarized as follows.
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Corollary 2. In addition to the conditions given by Theorem 3, if we further have

|3 (C) | ≤ 24 |G(C) | and
��!6+ (G)�� ≤ 25 |G | ∀ G. (4.77)

The solution to the full-order dynamics in (4.72) is exponentially stable provided
that 2 min8 ( 23,8

Y8
) > 2425 min8 (21,8).

Proof. We first have 21, 22 given by the proof of Thm. 3. Then

¤+ =
∑
¤+8 =

∑
! 58+8 + !68+8 (D8 + 38)

≤
∑
−23,8

Y8
+8 + !68+838

≤ −2 min
8
( 23,8

Y8
)+ +

∑
!68+8 · 38

≤ −2 min
8
( 23,8

Y8
)+ + !6+ · 3

= −2 min
8
( 23,8

Y8
)+ +

��!6+ �� |3 |
≤ −2 min

8
( 23,8

Y8
)+ + 2425 |G |2

≤ −2 min
8
( 23,8

Y8
)+ + 2425 min

8
(21,8)+.

Therefore, if 2 min8 ( 23,8
Y8
) > 2425 min8 (21,8), ¤+ is negative definite which implies

exponential stability of the full-order system, according to Def. 21. �

Note that for a general situation when the disturbance does not completely vanish on
the zero dynamics surface, i.e., |3 (C) | ≤ 24 |[ | + 26 |I | + 27, the system exponentially
converges to a ultimate bound for robotic dynamics.

Shared zero dynamics. For interconnected systems, we often need to consider the
shared dynamics among subsystems. We consider such systems in normal form as:

CI ,


¤G1 = 51(G, I) + 61(G, I) (D1 + 31)

¤G2 = 52(G, I) + 62(G, I) (D2 + 32)

¤I = l(G, I)

(4.78)

where, the I-dynamics I = l(G, I) are regarded as the passive dynamics, and we
call ¤I = l(0, I) the zero dynamics. We assume l(G, I) is locally Lipschitz. Built on
Theorem 3, we have the following theorem to characterize the full-order system’s
stability.

We now present the main theorem of this section that guarantees the stability of the
full-order system by taking values from  8 (G, I), ∀ 8 ∈ N .
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Theorem 4. For a dynamical system given by (4.78), let OI be an exponentially
stable periodic orbit of the zero dynamics ¤I = l(0, I). If there exists an ISS-CLF
+8 (G8) for each subsystem 8 ∈ N , then for all locally Lipschitz continuous feedbacks
D8 (G) ∈  8 (G) given by (4.75), the full-order periodic orbit O , ](OI) is ultimately
bounded, with the bounds tending to zero as |31 | , |32 | → 0.

Proof. First, we use the converse Lyapunov theorem from (Hauser and Chung Choo
Chung, 1994) to construct the following Lyapunov function for the zero dynamics.
Given OI is an exponentially stable periodic orbit of Z, there exists a Lyapunov
function +I : Z → R+ such that in a neighborhood �X (OI) of OI,

A1 ‖I‖2OI ≤ +I (I) ≤ A2 ‖I‖2OI ,
¤+I (I) ≤ −A3 ‖I‖2OI ,����m+ImI ���� ≤ A4 ‖I‖OI .

Next we have the following Lyapunov function candidate for the full-order system:

+ (G, I) =
∑
8

+8 (G8) + f+I (I).

It is clear that + (G, I) satisfies the first inequality in Def. 23 (the definition of
Lyapunov functions for an invariant set, such as periodic orbits, can be found
in (E. D. Sontag and Yuan Wang, 1996).) We first take the derivative of the
subsystems’ Lyapunov functions to get:∑

8

¤+8 =
∑
8

! 58+8 + !68+8D8 + !68+838

≤
∑
8

−23,8

Y8
+8 −

1
Ȳ8

��!68+8��2 + ��!68+8�� |38 |
≤

∑
8

−23,8

Y8
+8 −

( 1
√
Ȳ8

��!68+8�� − √Ȳ8 ‖3‖∞2

)2
+ Ȳ8
‖3‖2∞

4

≤ −min
8
( 23,8

Y8
21,8) |G |2 +

max8 (Ȳ8)
2

‖3‖2∞ .
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Then the total derivative of the Lyapunov function + (G, I) becomes:

¤+ = fm+I
mI

F(0, I) + fm+I
mI

(
F(G, I) − F(0, I)

)
+

∑
8

¤+8

≤ −fA3 ‖I‖2OI + fA4 ‖I‖OI |F(G, I) − F(0, I) | +
∑
8

¤+8

≤ −fA3 ‖I‖2OI + fA4 ‖I‖OI !I |G | +
∑
8

¤+8

≤ −fA3 ‖I‖2OI + fA4!I ‖I‖OI |G | −min
8
( 23,8

Y8
21,8)︸          ︷︷          ︸

A6

|G |2 + max8 (Ȳ8)
2

‖3‖2∞ ,

= −
[
‖I‖OI |G |

]
�

[
‖I‖OI
|G |

]
+ max8 (Ȳ8)

2
‖3‖2∞ ,

with !I the Lipschitz constant for l(G, I) and

� =

[
fA3 −1

2fA4!I

−1
2fA4!I A6

]
,

which satisfies Def. 22. We then can pick f such that � is positive definite, i.e., +
is a Lyapunov function for the periodic orbit O = ](OI). �

The proof is inspired by the construction of (A. Ames, Galloway, et al., 2014b,
Appx.B). We note that an effective way to reduce the effect of the disturbance is to
decrease Ȳ8. Further, since ISS-CLF is one robust type of CLFs, we will continue to
use the terminology CLFs for clarity. Note that for the class of robotic systems of
interest (such as the quadruped in Fig. 4.18), it can be shown that any CLF qualifies
as an ISS-CLF (see (Angeli, 1999)). In other words, the set given by (4.75) needs
not have !68+8.

Stability condition. As the theorem suggested, we can thus construct the local
control Lyapunov functions for a coupled control system. Following the construction
of (4.75), we have a class of controllers using a linear constraint of the input:

d8 ([, I) + k8 ([, I)D8 +
1
Ȳ8
|k8 ([, I) |2 ≤ 0 (4.79)

where d8 ([, I) = ! 58+8 ([, I) +
W

Y8
+8 ([8) and k8 ([, I) = !68+8. A practical control law

that satisfies (4.79) is a minimum-norm in  8 ([, I), given by

<8 ([, I) = argmin{ |D8 |2 : D8 ∈  8 ([, I)}, (4.80)

which can be solved by some quadratic programming (QP) algorithm.
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Figure 4.15: The quadrupedal robot, Vision 60 v3.9.

4.5 Coupled Mechanical Systems
In this section, we apply the coupled control Lyapunov function to rigid-order
dynamics. Given a system that is composed of multiple interconnected rigid-
bodies, the equations of motion (EOMs) of the full-order dynamics (also referred to
as full-order dynamics) can be obtained through Euler–Lagrange equations:

� (@) ¥@ + � (@, ¤@) = �(@)D, (4.81)

The notation is consistent with Sec. 2.3. In this section, we are interested in the
dynamical systems that can be considered as a collection of two subsystems with
index 8 ∈ {1, 2} , N . We first define subsystem configurations as @8 ∈ Q8 ⊂ R=8
such that ∪8∈N ]8 (Q8) = Q with ]8 : Q8 → R= as a canonical embedding. Since
the goal is to control each subsystem individually, the subsystem inputs are defined
as components of the full-system inputs D> = (D>1 , D

>
2 ) with D8 ∈ U8 ∈ R

<8 and∑
8∈N <8 = <. We also define a set of edges E , {(1, 2), (2, 1)} representing the

subsystems’ connection.

For a dynamical system that is composed of two subsystems (coupled via con-
straints), such as the coupled mechanical systems considered in Fig. 4.16, we have

ℛ& ,


�1(@1) ¥@1 + �1(@1, ¤@1) = �1(@1)D1 + �>4 (@1, @2)_4
�2(@2) ¥@2 + �2(@2, ¤@2) = �2(@2)D2 + �>4̄ (@1, @2)_4̄
s.t. 24,@ (@1, @2) ≡ 0, _4 + _4̄ = 0

(4.82)



119

where _4, _4̄ ∈ Λ8 ∈ R;8 are the coupling forces and 24,@ is the coupling constraint.
We can solve the connection force explicitly to reach the form in (4.81) using

_4 = −_4̄ =
(
�4�

−1
1 �4 − �4̄�−1

2 �4̄
)−1 [

�4�
−1
1 (�1 − �1D1)

+ �4̄�−1
2 (�2 − �2D2) − ¤�4 ¤@1 − ¤�4̄ ¤@2

]
(4.83)

where �4 (@1, @2) = m24,@/m@8 and 4 , (8, 9), 4̄ , ( 9 , 8) ∈ E.

Figure 4.16: A cart-pole system with two inverted pendula, each is directly actuated
by a motor. The mass of the cart and pendula are 2" and <, correspondingly. The
length of both pendulum is ;. We have the configuration coordinates as (b, \1, \2)>.

Subsystem Dynamics
After defining the subsystem with an index set N , we can pick the outputs (the
features that we are interested in controlling) of each 8th subsystem as

H8 (@8) = H08 (@8) − H38 (@8) (4.84)

where H3
8
, H0
8
∈ R<8 are the desired outputs and the actual outputs, respectively.

Since H8 is a function of the “positional states” @8, it has a relative degree two with
respect to the control inputs. We then have the 8th subsystem dynamics in output
coordinates as

¥H8 = L8 (@, ¤@) + A8 (@)D8 + A 98 (@)D 9 (4.85)

for all 8 ∈ N . Note that A 98 (@) ∈ R<8×< 9 maps D 9 with 9 ≠ 8 to the configuration
space of the 8th subsystem.

Depending on the given EOMs, there are different ways to obtain the expressions
efficiently in (4.85). One direct method from (4.81) is given as[ L1(@, ¤@)

L2(@, ¤@)

]
= ¤�H ¤@2 − �H�−1� , L(@, ¤@)

[ A1(@) A21(@)
A12(@) A2(@)

]
= �H�

−1� , A(@), (4.86)
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where �H = mH/m@ with the full-system outputs are denoted as H = (H>1 , H
>
2 )
>.

For underactuated systemswhere< < =, zero dynamicswill showup in the transition
to output coordinates (see (Isidori, 2011)). As discussed in Sec. 3.2, there exists a
change of coordinates via a diffeomorphism:

@1

¤@1

@2

¤@2


↦→


[1

[2

I


which yields a set of dynamic equations representing the coupled control system:

CC ,


¥H1 = L1([, I) + A1([, I)D1 + A21([, I)D2

¥H2 = L2([, I) + A2([, I)D2 + A12([, I)D1

¤I = l([, I)

(4.87)

where [ = ([>1 , [
>
2 )
> ∈ X are the “controlled states,” and [8 = (H>8 , ¤H>8 )>. Note that

bothL andA nowdepend on the new coordinates [, I. The I-dynamics, ¤I = l([, I),
are regarded as the internal dynamics with I ∈ Z, and we call ¤I = l(0, I) the zero
dynamics, i.e., the dynamics on the zero dynamics manifold:

Z = {([, I) ∈ X × Z : [8 = 0, ∀ 8 ∈ N}. (4.88)

We assume l([, I) is locally Lipschitz in [. Note that we can also convert the
formulation given by W. Ma, Csomay-Shanklin, and A. D. Ames, 2021, Eq.1 into
the form of (4.87) again by using (4.83). In this form, not only are the dynamics
of each subsystem coupled through the shared zero dynamics coordinates, but the
inputs are also coupled, i.e., D 9 (8 ≠ 9) appears in the 8th subsystem dynamics.

Disturbed Subsystem.
To design local controllers for the 8th subsystem that are independent of the “distur-
bance” caused by the other subsystems’ inputs, we first introduce the nominal inputs
that are built using the zero dynamics. We then introduce the main result of this
paper, a theorem that leads to the synthesis of the networked control architecture. It
is this controller that later enables us to control each sub-bipedal system individually
with stability guarantees.

Before designing the control law D(G) , {D8 (G)}8∈N , we first give the concept of a
nominal control input in the following definition.
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Definition 24. The control input that renders the zero dynamics surface Z ,
{(@, ¤@) : H8 = ¤H8 = 0, ∀ 8 ∈ N} forward-invariant is the nominal input for a coupled
control system (4.87), i.e.,

0 = L8 (0, I) + A8 (0, I)DZ
8 + A 98 (0, I)DZ

9 (4.89)

for all 8 ∈ N . We further define DZ(I) , {DZ
8
(I)}8∈N .

For the rigid-body dynamics of interest, the decouplingmatrixA(0, I) is assumed to
be invertible. Hence, the unique controller that satisfies (4.89) would be as follows:

DZ(I) = −A−1(0, I)L(0, I) ,
[
DZ

1
DZ

2

]
. (4.90)

By considering the nominal control input DZ
9
of the 9 th subsystem ( 9 ≠ 8), we can

reformulate the subsystem dynamics (4.85) to remove the dependence on the other
interconnected (coupled) subsystem’s control input. Concretely, we have

¥H8 = L8 ([, I) + A8 ([, I)D8 + A 98 ([, I) (D 9 + DZ
9 (I) − DZ

9 (I))
= L8 ([, I) + A 98 ([, I)DZ

9 (I) + A8 ([, I)D8 + A 98 ([, I) (D 9 − DZ
9 (I))︸                      ︷︷                      ︸

, 34

(4.91)

where we denote

34 ([, I, D 9 ) , A 98 ([, I) (D 9 − DZ
9 (I)), 4 , ( 9 , 8) (4.92)

as the disturbance induced by the 9 th subsystem’s inputs to the 8th subsystem.
Having established the disturbed subsystem dynamics as in (4.91), the coupled
control system in (4.87) becomes a disturbed coupled control system, as:

C3C ,


¥H1 = L1([, I) + A21([, I)DZ

2 (I) + A1([, I)D1 + 34
¥H2 = L2([, I) + A12([, I)DZ

1 (I) + A2([, I)D2 + 34̄
¤I = l([, I)

(4.93)

where each subsystem is only subject to local controller and a disturbance term.
This is where we can utilize input-to-state stabilizing control Lyapunov functions to
reject the disturbance while stabilizing each subsystem.

Remark 4. Note that the overall disturbance vanishes on the invariant zero dynamics
manifold Z, i.e., 3 (0, I, DZ

8
) = {34 (0, I, DZ

8
)}∀4∈E = 0. This can be seen by plugging

D8 (0, I) = DZ
8
from (4.89) into (4.91), whereby

0 = L8 (0, I) + A 98 (0, I)DZ
9 + A8 (0, I)DZ

8 + 34 = 0 + 34,

which yields 34 = 0 and further 3 = 0.
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After posing the dynamics of regular rigid-body dynamics (4.81) into the coupled
mechanical system form in (4.93), we are ready to design local controllers to stabilize
each subsystem, further stabilizing the full-order system. To do so, we explain the
controller design procedures with two concrete examples: a cart-pole system with
two invert pendula and a quadrupedal robot that is decoupled into two bipedal
systems.

4.6 Example 1. Feedback Linearization-Based CLFs
For the cart-pole system shown in Fig. 4.16. We use Lagrangian method to get:

! = " ¤b2 + 1
2
<E2

1 +
1
2
<E2

2 − <6; cos \1 − <6; cos \2

E2
8 = ( ¤b − ; cos \8 ¤\8)2 + (; sin \8 ¤\8)2

⇒ � =


2" + 2< −<; cos \1 −<; cos \2

−<; cos \1 <;2 0
−<; cos \2 0 <;2

 ,
� =


<; ¤\1 sin \1 + <; ¤\2 sin \2

−<6; sin \1

−<6; sin \2

 +

−� (b, ¤b)

0
0

 .
The forcing function � (b, ¤b) can be one the following:

2(< + ") (−b + ¤b (1 − b2 − ¤b2)) (F1)

2(< + ") (−b + ¤b (1 − b2)) (F2)

2(< + ") (−100b − 10 ¤b) (F3)

which will yield (a variation of) the von der Pol oscillation, or an exponentially
stable equilibrium point for the zero dynamics. (Powell and Aaron D Ames, 2014)
has used a similar setup. We will study the case with a globally stable orbit on zero
dynamics, which is given by (F1), denoted by OI.

Separated by the dashed line as Fig. 4.16, we can view each pendulum-cart system
as a subsystem with index 8 ∈ N , {1, 2}. Let the subsystem configuration be
@8 = (b, \8). With a target to control the outputs (a.k.a. the virtual constraint (Jessy
W. Grizzle et al., 2014)), we define the subsystem output (virtual constraint) as

H8 (@8) = \8

for the 8th subsystem, i.e. the goal is to drive both pendula upright as C → ∞. With
the output Jacobian obtained by



123

H(@) =
[
H1(@1)
H2(@2)

]
⇒ �H ,

mH

m@
=

[
0 1 0
0 0 1

]
,

we can use (4.86) to obtain the dynamics in the form of coupled control systems, as
in (4.87). Note that the zero dynamics ¤I = l(0, I) — when \8 = ¤\8 = 0, ∀8 ∈ N —
become a Van der Pol oscillator due to the force function: ¥b = � (b, ¤b)/(2< + 2").

For rigid-body dynamics with invertible decoupling matrices A�, we can apply an
input-output feedback-linearization:

D8 ([, I) = A−1
8 ([, I)

(
− L8 ([, I) − A 98 ([, I)DZ

9 (I) + `8
)

(4.94)

with `8 the auxiliary input for each subsystem 8 ∈ N . The nominal control input DZ
9

with 9 ≠ 8 is then given by (4.90). The subsystem output dynamics now become:

¥H8 = `8 + 34 . (4.95)

If we define [8 = (H>8 , ¤H>8 )>, we can obtain the linearized subsystem dynamics as

¤[8 =
[
0 �

0 0

]
︸ ︷︷ ︸

�

[8 +
[
0
�

]
︸︷︷︸
�

(`8 + 34), (4.96)

which is in the form of (4.78). Therefore, we can define the coupled control
Lyapunov functions according to Theorem 4. Concretely, for each subsystem 8, we
have

+8 ([8) = [>8 %8[8, with %8 ,
[

1
Y8
� 0

0 �

]
%

[
1
Y8
� 0

0 �

]
. (4.97)

with Y8 ∈ (0, 1) a constant and % ∈ R2×2 the solution to the continuous time algebraic
Riccati equation (CARE). More details can be found in A. Ames, Galloway, et al.,
2014b, Sec.3.

Remark 5. Based on the CLF chosen, an appropriate control can be constructed
that yields control robustness. For example, using the feedback linearization of the
form (4.94) we can choose the control law as:

D8 = A−1
8

(
− L8 − A 98D

Z
9 −

1
Y2
8

 ?H8 −
1
Y8
 3 ¤H8 −

1
Ȳ8
!�+

>
8

)
(4.98)

where  ?,  3 � 0. This controller, inspired by (Eduardo D. Sontag, 1999), is a
specific example that belongs to the set  8 ([, I).
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CLF-QP. We now present the QP formulation that calculates control values using
the chosen CLFs. Note that `8 is only an auxiliary input instead of the actual
system-level input. We will replace it with D8 for better numerical conditioning for
the optimal control problem. Based on (4.94) we have `8 as a function of D8:

`8 = L8 + A 98D
Z
9 + A8D8 .

Then the stability condition (4.79) can be re-written as:

d8 + k8 (A8D8 + L8 + A 98D
Z
9 ) +

1
Ȳ8
|k8 |2 ≤ 0, (4.99)

with d8 = !�+8 +
W

Y8
+8 = [

>
8 (�>%8 + %8�)[8 +

W

Y8
+8,

k8 = !�+8 = 2[>8 %8�.

Finally, we have the following QP formulation that encodes the CLF for subsystem
8 ∈ N :

D∗8 = argmin
D8∈U8

���L8 + A 98D
Z
9 + A8D8

���2 (4.100)

s.t. (C1) d8 + k8 (A8D8 + L8 + A 98D
Z
9 ) +

1
Ȳ8
|k8 |2 ≤ 0

(C2) − Dmax � D8 � Dmax

where, (C1) is the stability constraint, and (C2) is added according to the actual
torque bounds from the physical actuators to guarantee the realizability. We regarded
(4.100) the CLF-QP for coupled mechanical systems.

Remark 6. With both subsystems taking values from  8 ([, I), we have the distur-
bance as

34 ([, I) = A 98 ([, I) (D 9 ([, I) − DZ
9 (I)).

Assuming 3 ([, I) to be locally Lipschitz in [ yields

|3 ([, I) − 3 (0, I) | ≤ 24 |[ − 0| ⇒ |3 | ≤ 24 |[ |

with 24 the Lipschitz constant. An effective way to reduce 24 is to form an
optimization problem inside a tube around the given desired trajectory O, i.e.
minmax([,I)∈tube near O |3 ([, I) | /|[ | . Additionally, we have���∑ !�+8

��� = ���2 ∑
[>8 %8�

��� ≤ 2 |[ |
∑
‖%8�‖2 .
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Hence, if we pick 25 = 2
∑ ‖%8�‖2, we can obtain exponential stability for the

periodic solution to the full-order system according to Corollary 2. This is also
reflected in the simulation data that will be shown next.

Simulation. We present two simulation results (see Fig. 4.17 and video (Wen-
Loong Ma, 2021)) to demonstrate this stability result. As shown in Fig. 4.16, we
pick the model as ; = 0.5, " = 15, < = 5. Given an initial condition G(0) =
(0, 0.1,−0.1, 0.1, 0, 0)>, we first simulate the specific control law given by (4.98)
with  ? = 5,  3 = 0.1, Y8 = 0.5, Ȳ8 = 0.5. Then we simulate the decentralized
optimal controller given by (4.100) with Y8 = 0.5, Ȳ8 = 0.5 The data is shown in
Fig. 4.17. As Corollary 2 suggests, both simulations show exponentially stability,
and the disturbance vanishes on the zero dynamics surface.

Figure 4.17: The cart-pole simulation. data labeled FL (red) used the feedback lin-
earization controller (4.98); data labeled CLF-QP (blue) used the controller (4.100);
dark and light variants of the colors are used to distinguish between the first and
second pendula. Both simulations show stability.

4.7 Example 2. Quadrupedal Walking with Model-Free CLFs
We can also use local CLFs to stabilize the overall system for more complicated
robots, such as quadrupedal locomotion. In this section, we will apply the local
control laws to an 18-DOF quadrupedal robot (see Fig. 4.15) by viewing it as two
connected bipedal robots (see Fig. 4.18). The advantage is that we simultane-
ously consider each subsystem’s stability through the local CLFs and the feasibility
conditions such as the motor torque saturation.

Note that for the gaits of interest, walking, running, and hopping, we have a diagonal
double-support phase, and a flight phase. In the flight phase, where none of the toes
touch the ground, the holonomic constraints are not required. The detailed model
of multi-domain behaviors for quadrupedal robots is discussed in Sec. 4.1, and we
omitted domain index for the ease of notations in this section. Note that in the
hybrid system setting, it was previously shown that RES-CLFs provably stabilize
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Figure 4.18: (a) The decomposition of a quadrupedal robot into two bipedal systems
with toe indices labeled and (b) the configuration of the quadruped; each leg has a
point contact toe and three rotational joints with motors.

the continuous dynamics in such a way that the hybrid dynamics are also stabilized
under the assumption of HZD (A. Ames, Galloway, et al., 2014b, Thm. 2). This
result has been extended to the ISS-CLFs in (S. Kolathaya, J. Reher, et al., 2018).

Recall the quadruped dynamics ℛ& that were posed as coupled bipedal dynamics
in (4.48)—(4.51). We then write the coordinates for these two subsystems as
@8 = (b>, \>8,st, \>8,nst)> ∈ Q8, where the subscript st marks the joints of the leg that
are in contact with the ground, and nst for the swing legs. We then define outputs
for each subsystem, the bipeds, as

H8 (C, @8) = H08 (C) − H38 (@8) 8 ∈ N (4.101)

where the desired outputs (trajectory) H3
8
(C) ∈ R6 are given by a set of Bézier

polynomials generated by the CCS optimization in Sec. 4.3. The actual outputs are
picked as

H08 (@8) = Y8@8 =



\st,hr

\st, hp − \st,k
2

\st,k

\nst,hr

\nst, hp − \nst,k
2

\nst,k


, (4.102)

where the subscript ℎA, ℎ?, : are short for the hip-roll, hip-pitch, and knee joints.
This output structure represents the roll angle, pitch angle, and leg length of the
virtual leg, which is the virtual linkage connecting the hip and the toe. Note that if
the quadrupedal robot has nonidentical legs for the front and rear subsystems, we
will have a different output structure, i.e., Yf ≠ Yr. This will be an interesting future
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direction for understanding how to cooperate asymmetric quadrupeds. Next, given
the full-system output Jacobian �H = mH/m@, we can use (4.86) to obtain the CCS
dynamics as in (4.85).

On the zero dynamics surface where both subsystems’ output coordinates remain
zero, we have the configuration coordinates and their velocity terms satisfying:

(@Z, ¤@Z) = {(@, ¤@) | H8 (@) = ¤H8 (@, ¤@) = 0, ∀ 8 ∈ N}.

The nominal inputs that satisfy the invariant condition (4.89) can therefore be
obtained by

DZ(@Z, ¤@Z, C) = −A(@Z)−1L(@Z, ¤@Z) ,
[
DZ

1
DZ

2

]
. (4.103)

We then can have the disturbed subsystem dynamics as given in (4.93), after which
we can control each bipedal system using the coupled control Lyapunov functions.

Model-free CLF-QP. For the quadruped chosen in this study, any CLF qualifies as
an ISS-CLF (Angeli, 1999). Hence, we can choose a specific form of the CLF,
which is motivated by the Proportional-Derivative control law-inspired Lyapunov
function S. Kolathaya and Veer, 2019, eq(24), and use it for the underactuated
bipedal systems. The advantage with this class of CLFs is that the corresponding
stability constraint can be expressed in amodel-free fashion. Therefore, an improved
experimental robustness against model uncertainty can be obtained. Formally, we
have the following model-free stability constraint:

(U8 (H8)H>8 + ¤H>8 ) ( ?H8 +  3 ¤H8) + (U8 (H8)H>8 + ¤H>8 )�−>H8AD8 ≤ 0 (4.104)

for subsystem 8 ∈ N , where, U8 (H8) = :0
1+|H8 | with a constant :0 > 0. Concretely, in

comparison with (4.75), (U8 (H8)H>8 + ¤H>8 )�−1
H8

is in the place of !68+8 terms, and the
remaining terms are in place of ! 58+8 terms.  ?,  3 � 0 are the diagonal matrices
that form the PD gains. The Jacobian matrix of the actual output with respect to the
actuated joints for the 8th subsystem is given by �H8A = mH8/m@A8 , where @A8 are the
actuated joints of the 8th bipedal system. We then have the QP formulation utilizing
the model-free CLFs as:

argmin
D8∈R6,X∈R

��D8 − Dref8 ��2 + 1000X2 (4.105)

s.t.
(
U8 (H8)H>8 + ¤H>8

) [
( ?H8 +  3 ¤H8) + �−>H8AD8

]
≤ X

− Dmax � D8 � Dmax
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for the 8th subsystem, where X ≥ 0 is a relaxation for better numerical stability given
a high penalty weight of 1000. To formulate a model-free QP problem, we also
modify the nominal inputs DZ

8
to a output-feedback PD control law,

Dref8 = −�>
H8

A ( ?H8 +  3 ¤H8).

Simulation. Before enabling the proposed method on hardware, we first validated
the CCLF-QP in simulation using the physics engine RaiSim (Hwangbo, J. Lee, and
Marco Hutter, 2018). In particular, we wish to control this quadrupedal robot as
two connected bipedal robots performing quadrupedal behaviors such as walking,
hopping, and running. These behaviors can be generated as single-domain or multi-
domain periodic solutions to the coupled control system using the optimization
method introduced in Sec. 4.2. The specific controller we put to the test to achieve
stable tracking of the desinated periodic gaits is given in (4.105). The PD gains
 ?,  3 � 0 are diagonal matrices and are picked as the same value across all
three simulation tests. As a result, the local controller utilizing CCLFs renders
stabilization of the given periodic gaits for walking, hopping, and running on Vision
60 in RaiSim. An animation is provided in (Wen-Loong Ma, 2021). We show the
gait tiles in Fig. 4.19, and the phase portraits of the simulation data in Fig. 4.20.

Figure 4.19: Top: Snapshots showing a two full steps of the walking gait on an
outdoor lawn. Bottom: Running gait in the RaiSim simulation environment.

Hardware. The robot we studied in this paper is the Vision 60 v3.9 quadrupedal
robot fromGhost Robotics. As show in Fig. 4.15, this robot is 44 kg, 54 cmwide and
50∼60 cm tall. It uses a hierarchical computation structure to perform various tasks.
In our experiments, we implement the optimal controller with a QP solverOSQP on
the onboard Jetson AGXXavier computer fromNVIDIA. Furthermore, a 1kHz hard
real-time operating system enforces the communication between the mainboard and
motor drivers to realize the torque commands from the control algorithm (4.105).

Experiments and Data Analysis. As a first step towards controlling complex sys-
tems such as quadrupedal robots to achieve various dynamical behaviors using the
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Figure 4.20: Left three: Experimental (dashed transparent) and simulated (solid
transparent) phase portraits for walking plotted against the desired values (solid).
Right three: Simulated (transparent) vs. desired (solid) phase portraits for walking
(red), hopping (green), and running (blue) behaviors.

local control laws, we conducted some walking experiments on the Vision 60 robot.
To avoid robustness challenges caused by model uncertainties, especially unpre-
dictable uncertainties introduced by the terrain dynamics, we applied the model-free
QPs in (4.105). As the supplementary video (Wen-Loong Ma, 2021) shows, we are
able to achieve robust walking with the Vision 60 on rough outdoor terrains with
moderate slope variation and surface roots. We show the gait tiles of the walking
experiments in Fig. 4.19. We also provide a comparison between experimental data,
simulation data, and the desired trajectory in Fig. 4.20. We note that the tracking
is ultimately bounded by a tube around the desired trajectory in the continuous
domains, which provides empirical evidence for future works formally establishing
hybrid stability.
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C h a p t e r 5

CONCLUSION AND FUTURE WORK

A complete procedure of modeling, optimizing, controller design, and experiments
of complex legged robots was shown in this work. Themethodologywas generalized
around the concept of Lyapunov stability. To conclude, we will summarize the main
contributions and discuss some interesting future directions.

5.1 Summary

Trajectory optimization for complex locomotion. Trajectory optimization was orig-
inally widely used in computational fluid dynamics and often was used with inverse
kinematics and searching algorithms when it was first introduced to robotics. From
a dynamics perspective, off-line trajectory optimization is used to find solutions
to dynamical systems. In this dissertation, we first formally define the solution
to a hybrid system, which represents the dynamics of the legged systems ranging
from bipedal to quadrupedal systems. We then formulated the solution-finding
problem into open-loop and closed-loop trajectory optimization problems. In vari-
ous applications, these methods have been scaled from simple motions to multiple
dynamic locomotions on over ten robotic systems, including monopedal, bipedal,
and quadrupedal systems, and we have shown high-performance behaviors such as
bipedal running, rough terrain locomotion, and high-energy efficiency walking. The
applicability has been successfully validated.

Robust high-performance locomotion. In a perfect world, the off-line planning with
a predefined feedback controller should drive the system to the desired behavior since
we possess the principal information of the dynamics. But this is not true. Even with
a slight difference in the measurement or the modeling, a carefully crafted controller
could fail. While there are many types of uncertainty, and each has a different
worst-case scenario to destroy stability, we used experimental research to find the
most critical uncertainty, phase-time uncertainty, to bipedal running. Building on
the top of the hybrid zero dynamics framework, we used the concept of input-to-state
stability to describe the phase uncertainty to state stability for bipedal locomotion.
This new characterization of stability has provided some slack space for parameter
tuning while guaranteeing dynamic stability formally. Eventually, the synthesized
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control laws yield bipedal running on a human-size robot, and it is repeatable and
robust.

Coupled Control System. Because of bipedal systems’ highly dynamic nature and
instability from underactuation, understanding and controlling the full-order dy-
namics appears necessary. When we carry this philosophy from bipedal systems to
quadrupedal robots, the computational cost has increased due to the more compli-
cated contact scenario and hybrid system structure. We considered a quadruped as
two connected bipedal systems, and design motion and controller using those meth-
ods applied to the bipedal system to address this problem. This intuitive approach
was then formally characterized as the framework of the coupled control system. In
this methodology, we can design trajectory and controller for each subsystem while
also formally guaranteeing the original system’s stability and preserving its solu-
tions. This new way of controlling robotic systems drove two quadrupedal robots to
walk on multiple outdoor terrains.

5.2 Future Work
The development of this thesis originates from the methodology:

�1 offline prediction/planning/optimization + �2 online/real-time control/tracking,

where �1 searches for a plan that is globally or locally optimal, and �2 executes the
tracking problem in implementation and rejects unplanned problems. For example,
we put all of the details (motor, compliance) of the running robot, DURUS, into
our model, which has made the dynamical system high-dimensional, stiff, and hard
to solve. But because of this, we can confidently derive a plan from it that can
represent “most” of the reality. The HZD framework and CCS methods both are
to reduce the stability analysis for this complex problem so that it is feasible for
field implementation. Then we can use the control Lyapunov functions based QP to
reject small perturbation with the smallest necessary control effort.

An important future direction is to merge these two components. This can be from
a model predictive control (MPC) perspective. We can use more advanced compu-
tational tools to accelerate trajectory optimization in both algorithmic software and
hardware. The optimal control component can “look further” into the future with
a more precise model. We can also rigorously synthesize a computationally cheap
model for a well-defined task (the SLIP model for lightweight legs on flat ground is
a good example). Besides, many theorems in nonlinear control assume a given Lya-
punov function. While this is a restrictive assumption, many unexplored Lyapunov
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candidates in existing robotic literature and computational Lyapunov functions are
also compelling. Understanding these methods of control Lyapunov functions for
locomotion will be an important future direction. Additionally, the coupled control
system framework looks at the distributed/decentralized/parallel/networked com-
putation/control problem from a dynamics perspective. New directions include
expanding these methods to more physically connected agents collaboration and
incorporating more biped-related control methods in subsystem design. Lastly,
collaboratively carrying a payload that is more than each subsystem’s capacity is
becoming necessary for disaster response and extreme environment autonomy. Fur-
ther development of CCS can bridge this gap between high-performance single robot
maneuver and multi-agent collaboration.
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