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ABSTRACT

Possibly one of the most significant innovations of the past decade is the hybrid
zero dynamics (HZD) framework, which formally and rigorously designs a control
algorithm for robotic walking. In this methodology, Lyapunov stability, which
is often used to certificate a dynamical system’s stability, was introduced to the
control law design for a hybrid control system. However, the prerequisites of
precise modeling to apply the HZD methodology can often be too restrictive to
design controllers for uncertain and complex real-world hardware experiments.
This thesis addresses the problem raised by noisy measurements and the intricate

hybrid structure of locomotion dynamics.

First, the HZD methodology’s construction is based on the full-order, hybrid dy-
namics of legged locomotion, which can be intractable for control synthesis for
high-dimensional systems. This thesis studies the general structure of hybrid control
systems for walking systems, ranging from 1D hopping, 2D walking, 2D running,
and 3D quadrupedal locomotion on rough terrains. Further, we characterize a walk-
ing behavior—gait—as a solution (execution) to a hybrid control system. To find
these solutions, which represent a “gait,” we employed advanced numerical methods
such as collocation methods to parse the solution-finding problem into the open-
and closed-loop trajectory optimization problems. The result is that we can find
versatile gaits for ten different robotic platforms efficiently. This includes bipedal
running, bipedal walking on slippery surfaces, and quadrupedal robots walking on
sloped terrains. The numerous solution-finding examples expand the applicability

of the HZD framework towards more complex dynamical systems.

Further, for the uncertain and noisy real-world implementation, the exponential sta-
bility of the continuous dynamics is an ideal but restrictive condition for hybrid
stability. This condition is especially challenging to satisfy for highly dynamical
behaviors such as bipedal running, which loses ground support for a short pe-
riod. This thesis observes the destabilizing effect of the noisy measurements of
the phasing variable. By reformulating the traditional input-to-state stability (ISS)
concept into phase-uncertainty to state stability, we are able to synthesize a robust
controller for bipedal running on DURUS-2D. This time+state-based controller for-
mally guarantees stability under noisy measurements and stabilizes the 1.75 m/s

running experiments.



vi

Lastly, robotic dynamics have long been characterized as the interconnection of
rigid-body dynamics. We take this perspective one step further and incorporate
controller design into the formulation of coupled control systems (CCS). We first
view a quadrupedal robot as two bipedal robots connected via some holonomic
constraints. In a dimensional reduction manner, we develop a novel optimization
framework, and the computational performance is reduced to a few seconds for gait
generation. Furthermore, we can design local controllers for each bipedal subsystem
and still guarantee the overall system’s stability. This is done by combining the HZD
framework and the ISS properties to contain the disturbance induced by the other
subsystems’ inputs. Utilizing the proposed CCS methods, we will experimentally

realize quadrupedal walking on various outdoor rough terrains.
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Chapter 1

INTRODUCTION

1.1 Background

Legged locomotion has been long described as “controlled falling.” This charac-
terization reveals the key challenge of legged systems — stability. To accomplish
stable walking on various terrains, many modelling and control strategies have been
proposed and explored since the 1980s. Meanwhile, the majority of control methods
are built to provide stability guarantees for certain, linear, or rather simple dynamical
systems (A&Sstrom and Kumar, 2014). Therefore, most work within legged loco-
motion involves some form of model simplification before designing a stabilizing

controller.

The most fundamental modeling technique used in robotics are rigid-body dynamics,
which is defined as “the movement of systems of interconnected bodies under the
action of external forces” (Tsai, 1999). While a robot (modeled by rigid-body
dynamics) appears to be the central component of legged locomotion, numerous
other subcomponents are coupled with the robot itself through interconnections, such
as terrain dynamics, compliant dynamics, impact dynamics, etc. The complexity
of controlling such systems grows exponentially as the mathematical model details.
There is a famous observation in statistics (Box, 1976): “Since all models are wrong
the scientist cannot obtain a "correct” one by excessive elaboration,” which also
captures this challenge of robotics. Therefore, a multi-link rigid-body system, with
compliant components that are no more complicated than linear coil springs, and
rigid contact/impact model is widely accepted as the “correct” model for robotics.

We refer to this system as the full-order system in this thesis.

Among the approaches used in legged locomotion, a significant subset of the work
lies in viewing walking dynamics as a reduction problem, wherein the complex
real-world dynamics are assumed to be governed by the evolution of some reduced
system. The linear invert pendulum model (LIPM) (S. Kajita, Kanehiro, et al.,
2001; S. Kajita, Tani, and Kobayashi, 1990) assumes a bipedal system behaves as
an invert pendulum with massless limbs. For high-performance behaviors such
as running and hopping, a spring-loaded invert pendulum (SLIP) model is broadly
applied to bipedal locomotion (Reinhard Blickhan and Full, 1993; R. Blickhan, n.d.;
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Rezazadehetal., 2015). Itis also extended to the asymmetric-SLIP model to account
for the heavy torso (Ioannis Poulakakis and Jessy W Grizzle, 2009). The centroidal
dynamics (D. E. Orin, Goswami, and S.-H. Lee, 2013) captures the dominating effect
of center of mass and angular momentum to control legged locomotion, including
quadrupedal locomotion (Di Carlo et al., 2018). A prominent result of using simple
models is the seminal work of Raibert’s hoppers and quadrupedal robots (M. Raibert
and Tello, 1986). To maintain balance (an intuitive description of stability) and
capture points, (Koolen et al., 2012) utilized a region to stabilize the LIPM-based
systems, and the well-known Zero Moment Point (ZMP) method (Vukobratovic and
Branislav Borovac, 2004) gives a robust but restrictive condition to prevent foot-
rolling and further avoid falling. Yet these methods lack guarantees with respect to
the full-order dynamics, and to mitigate erratic experimental performance, intensive

parameter tuning is required.

Other works investigate this dimensional reduction by performing design of loco-
motion on the passive dynamics of the system. This can improve model fidelity
and represent more physical details of the system; relevent methods include hybrid
zero dynamics (HZD) methods (E. R. Westervelt, J. W. Grizzle, Chevallereau,
et al., 2007; A. Ames, 2014) and other optimization-based approaches (Dalibard
et al., 2013). By considering the rigid-body dynamics as a continuous-time system
and the rigid impact with the ground as a discrete-time system, walking can be
modelled as a hybrid system (Barton and C. K. Lee, 2002). Correspondingly, the
HZD framework was then invented as a means to reduce the stability problem of the
high-dimensional walking dynamics to the lower-dimensional zero dynamics on the
hybrid zero dynamics manifold. From the perspective of Lyapunov, stability of the
overall hybrid system is formally guaranteed in (A. Ames, Galloway, et al., 2014b).
Many hardware results have been accomplished in the domain of legged locomotion,
such as walking (J. Reher et al., 2016; Sreenath, H.-W. Park, I. Poulakakis, and J. W.
Grizzle, 2011) and running (Sreenath, H.-W. Park, 1. Poulakakis, and J.W. Grizzle,
2013).

1.2 Contribution

The contribution of this thesis is twofold.

First, it enriches the application of HZD framework in the domains of 2D walking
(Ambrose, W. Ma, C. Hubicki, et al., 2017), running (Wen-Loong Ma, Ayonga
Hereid, et al., 2016; Wen-Loong Ma, Shishir Kolathaya, et al., 2017), monopedal
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hopping (Ambrose, W. Ma, and A. D. Ames, 2021), walking with compliance (Jake
Reher, Wen-Loong Ma, and Aaron D. Ames, 2019), and quadrupedal locomotion
(W. Ma, K. A. Hamed, and A. D. Ames, 2019). Although the full-body hybrid
dynamics of walking is believed to be “good enough” to represent the real-world
hardware dynamics, we still face many uncertainties that can easily destroy stability,
such as sensor noise, low-bandwidth compliant dynamics, etc. Therefore, (Wen-
Loong Ma, Ayonga Hereid, et al., 2016) utilized direct-collocation methods to
fast-finding periodic running gaits and formulated input-to-to state stability (ISS)
analysis for the end result of robust running on DURUS-2D. See Fig. 1.1 for the

development of the robots.

Secondly, when solving the control problem of quadrupedal locomotion from the
hybrid control perspective (W. Ma, K. A. Hamed, and A. D. Ames, 2019), the com-
putational complexity and experimental robustness is not effective in comparison
with state-of-art simple model-based approaches. Therefore, we take inspirations
from the seminal work of Raibert’s virtual leg principle (M. Raibert, Blankespoor,
et al., 2008), and characterize quadrupedal locomotion as a collection of two con-
nected bipedal subsystems. Through dynamics decomposition (Wen-Loong Ma and
Aaron D. Ames, 2020), we were able to efficiently solve for quadrupedal gaits within
a few seconds. It is also applied to sloped terrain walking (W. -L. Ma, Csomay-
Shanklin, and A. D. Ames, 2020). These results are theoretically justified using the
notion of coupled control systems (CCS) in (W. Ma, Csomay-Shanklin, and A. D.
Ames, 2021), and Lyapunov stability analysis was used to synthesize local optimal
controllers in (W. -L. Ma, Csomay-Shanklin, S. Kolathaya, et al., 2021) for each
decoupled bipedal systems.

The goal of this thesis is to provide theoretical analysis for locomotion from Lya-
punov’s perspective, and serve as a comprehensive introduction for experimental

design of various robotic platforms (see Fig. 1.1 with a few examples).

1.3 Organization of Dissertation

This section provides a brief overview of the contents of each chapter.

Chapter 2: Constrained Rigid-Body Dynamics. This chapter details the modelling

techniques and layout of the notations used for constructing the hybrid dynamics
of legged locomotion. Using the conventional rigid-body dynamics and holonomic
constraints, we can obtain the continuous-time equations of motion for the walking

systems. Further we use plastic impact to describe the ground contact as a sim-



Figure 1.1: Robots developed to control in this thesis. From left to right: AMBER?2
(2012-2014), AMBER3 (2015), AMBER3M (2016-2020), DURUS-2D (2015-
2016), DURUS (2016), Cassie (2017-now), Vision60 v3.2 & v3.9 (2018-2020).

ple discrete-time dynamics. An alternating sequence of continuous and discrete
dynamics is then regarded as a hybrid system, which is then represented by a set
of differential algebra equations (DAEs). These concepts will be explained using
multiple robots including underactuated, fully-actuated, and overactuated systems.
We will finish this chapter with an optimization formulation that is used throughout
this thesis to find a desired gait for a simple hopping robot, which is defined as the

(numerical) solutions to the hybrid system.

Chapter 3: Controller Design for Bipedal Running. After formulating the dynamic

equations for these legged systems, we are in place to control them. In this section,
we introduce some key concepts to control legged locomotion from Lyapunov’s
perspective. This includes the virtual constraints, desired outputs, tracking control
and Lyapunov stability. We first formally pose the control problem as a trajectory
optimization problem, where a closed-loop system can be defined and a solution
(gait) to the closed-loop system is found. These will be detailed using DURUS, a
3D underactuated humanoid robot, as an example. We will also use AMBER3M
walking on slippery surface as an example the show the scalability of the opti-
mization for high-performance locomotion. Ideally, tracking these solutions on the
system with the pre-defined controller equates controlling the system as desired,

which is true as we verified in simulation. However, the real-world suffers from
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uncertainty such as inaccurate measurement. We then utilize the concept of input
to state stability to analyze the tracking noise from the phasing variable for bipedal
running on DURUS-2D. With the formally provn improved robustness, we can then

realize bipedal running experimentally.

Chapter 4: Coupled Control System and Quadrupedal Applications. The aforemen-

tioned methods and application all build on full-order dynamics of these legged
systems. While this is beneficial to realize high-performance robotics, it is not
completely necessary. For example, multiple simplified models have been shown
effective for quadrupedal locomotion. In this chapter we first show how to use off-
line trajectory optimization to generate closed-loop trajectory for complex systems
such as the quadrupedal robots of interest. Then we construct the concept of cou-
pled control systems, which focuses on the control and optimization problem from
a perspective of viewing the system as a set of subsystems coupled through control.
In a concrete example, a quadrupedal robot can be viewed as two connected bipedal
robots coupled through holonomic constraints. In the construction, we provide the
stability conditions in the sense of Lyapunov and synthesize two algorithms. First,
we proposed an optimization framework to rapidly generate gaits for the bipedal
subsystem that can be reconstructed to quadrupedal gaits. Then we used coupled
control Lyapunov functions to control each subsystem to achieve the stability of the
full-order system. The resultis Vision 60, version 3.2 and 3.9, two robots of different

size and weight that can walk robustly indoor and outdoor on rough terrains.



Chapter 2

CONSTRAINED RIGID-BODY DYNAMICS

To formally construct the control problem of legged locomotion, we first convert
the general differential geometry equations (DAE) formulation used in rigid-body
dynamics into a control-friendly formulation — the ordinary differential equation
(ODE) form x = f(x) + g(x)u — in this chapter. For this purpose, all internal
variables need to be explicitly and uniquely determined by the state variables and
control variables. Further, we employ the trajectory optimization technique to
define and find numerical solutions to such systems. These solutions, i.e., gaits, are
essentially what the controller is designed to drive the dynamics to in the content
that follows.

2.1 Coordinates and Notations

AMBER-FF  AMBER-PF

@- motorized b
@- compliant
(b, ¢b)I—x

hip yaw (0hy)
©- passive y(I} hip roll (6y,)

hip pitch (0y;,)

knee (6y)

heel-$pring () —hin spring (6,)

tarsus (6;)

ankle (0,)

Cassie Vision 60
Figure 2.1: Configuration coordinates of AMBER robots, DURUS-2D running
robot, DURUS, Cassie, and Vision 60, the quadrupedal robots.

The target of this section is to define the state coordinates for robotic systems such as

those in Fig. 1.1. As shown in Fig. 2.1, we model each robot as a multi-link system.



7

The configuration coordinate is denoted by ¢ € Q c R”, where n is the number
of degrees of freedom (DOF) without considering any other constraints (refereed
to as states-DOF). Following (Jessy W. Grizzle et al., 2014), we use the floating-
base convention for robotic systems. Each system starts from a body linage as the
base (normally picked as the torso link, or the ground for manipulation problems),
with £ € R? x SO(3) as the global Cartesian position and orientation of a frame
attached to the body linkage. Then k-limbs are connected to the body, each of
which has a few children links. These limbs are associated with local coordinates 0,
including both prismatic joint length and revolute joint angles. Additionally, each
robot is assumed to have m actuated joints and m < n. Here, “actuation” specifically
refers to those joints included in the configuration coordinates that are driven by
actuator modules, which are normally composed of a Brushless (BL) DC motor and

a reduction gearbox. Concretely, we denote the input variable as u € U € R™.

In summary, we use the following convention:

e g =(£7,0T)T € R" is used exclusively for a robot’s configuration coordi-
nates, where ¢ is the floating-base coordinates, 6 is the “shape” coordinates
representing the rotaional and prismatic joints’ displacement, and their time-

derivative is denoted as ¢, &, 6.

* y is for system-level outputs, and n™ = (y",y").

¢ Normal form coordinates: (n7,z")", where z is the zero dynamics coordi-

nates.

Notations. In this thesis, we denote that the set of natural numbers as N; the set
of n by 1 real vectors as R", the set of non-negative real numbers as R, the set of
m by n matrices as R”*", an n by 1 vector whose elements are 1 as 1,, a proper
dimensional vector whose elements are Os as 0, an n by n identity matrix as /,,, and
an m by n zero matrix as 0,,x,. The Lie derivative of a function f(x) along the
vector field g(-) is defined as

df(x)

0x

Plus, some norm operators need to be defined. The Euclidean norm of a vector of

Loy f(x) = g(). 2.1)

proper dimension is |-|, and we take

lldllo = sup (ld(2)]) . (2.2)

>0
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The matrix norm induced by the Euclidean vector norm is ||-||,, and the distance

from a point (x, z) to a periodic orbit O is defined as:

II()C,Z)lloé lnf ol 2) = (", ). (2.3)

2.2 Holonomic Constraints and System-Level Degrees of Freedom

We are interested in scenarios when the robots are shown in Fig. 1.1 interact with
the world through rigid contacts, which are modeled as some form of holonomic
constraints (for example, unilateral constraints, see (R. M. Murray et al., 1994)).
In classical mechanics, holonomic constraints are defined relations between the
position variables (Arnold, 1989). In this thesis, we denote a holonomic constraint

as a function in the form of

h(q) = c, (2.4)

6‘ 2

where ¢ € R™ is a constant, & : R" — R, and the operator “=", identical equality

of functions, means that 2(q) = 0 is true for all ¢ € I that ¢(¢) is defined on.

(@ (b) (©

Figure 2.2: Three fundamental contact problems modelled by holonomic con-
straints: a) point contact, 1(g) € R denotes the three-dimensional Cartesian posi-
tion fixed to the world; b) line contact, h(q) € R3*2 fixed one point of the contact
line and the pitch, yaw angles of the body-fixed frame to the world; c¢) plane contact,
h(q) € RS fixed the 6-dimensional body-fixed frame to the world.

There are three fundamental contact problems in rigid-body dynamics: line contact,
point contact, and plane contact. See Fig.2.2. However, many complicated scenarios
exist in reality, such as multiple contact points. Moving forward, we require that
there be no redundancy when picking the representation of holonomic constraints.

Mathematically, this means the Contact Jacobian,

0h(q) c g

Jn(q) = , (2.5)

is full rank. That is, Rank(J,) = min(nj,n). A simple example of redundancy is
that in the line-contact problem shown in Fig. 2.2(b), either (x4, ya, za,6y,0;) =
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0, or (xa,ya,24,XB,YB,2B) = 0 can represent the contact condition. But the
second formulation has one degree of redundancy, which is the result of rigid-body
formulation: the distance between point A and B is a constant. Hence, we call
Rank(Jy,) the degree of contact constraint. Recall the states-DOF n in Sec. 2.1,
these holonomic contact constraints obviously change the system-level degrees of
freedom (abbreviated as system-DOF). We then denote the total degrees of freedom
as

system-DOF = n — Rank(J;,). (2.6)

In consistence with this definition, we have n > nj, and thus Rank(J,) = ny.

Furthermore, this equality constraint /(g) is enforced via contact forces (also known

as constraint wrench) A € R,

2.3 Continuous-Time Dynamics
The continuous-time dynamics of a robotic system will be expressed as a set of dif-
ferential algebra equations (DAEs), which is composed of two parts: the equations

of motion (EOMs), and some algebraic equations. Concretely,

D(q)§+C(q,q4) +g(q) = Bu+J; (q)A, (2.7)
st.  h(q)=0. (2.8)

We can obtain the EOMs in (2.7) by using the Euler-Lagrange equation, see (R. M.
Murray et al., 1994; M. W. Spong, 1989; R. Featherstone, 2008). Here, D(g) € R™"
represents the mass-inertia matrix, and is symmetric positive-definite; C(q, q) €
R™" is the Coriolis matrix, and g(g) € R" contains the gravity terms. For the sake

of notational simplicity, we denote

H(q,q) = C(q,q) +g(q)

throughout this thesis; the actuation matrix B(g) € R™ maps the motor input u
from the control space U to the configuration space @, which is a constant matrix;

and J;, € R™*" is the contact Jacobian, with A € R the contact force.

Remark 1. We note a special property of the mass-inertia matrix D (g) when using
the floating-base coordinate — the branch-induced sparsity. As detailed in (Roy
Featherstone, 2010), there is a sparse structure for a multi-limbs robotic system such

as a humanoid, or a quadrupedal robot. For example, as shown in Fig. 2.3, the
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Torso (base) Leg 2

Leg 3

Figure 2.3: Branched chain structure of a bipedal system—AMBER-3M, and a
quadrupedal system—Vision 60.

inertia matrix for a bipedal system and a quadrupedal system has the structure of

[D; Dy, Dy, Dy, Dy,

D; Dy Dy, D] Dy, 0 0 0
Dbiped = DZ] Dieft 0 s unad = DZI 0 DL1 0 0. (29
DI 0 Drg D] 0 0 Dy 0

D 0 0 0 D

This is particularly useful when formulating the coupled control problem of quadrupedal

locomotion in Chapter 4.

2.4 Underactuated System

To eventually convert the DAEs given by (2.7)-(2.8) to an ODE form, we need to ex-
plicitly solve the internal variable A with ¢, ¢, u. But first, we need to systematically
define the notion of underactuated, fully-actuated, and overactuated mechanical

systems and their degrees.

Similar to how the contact force enters the EOMs of (2.7), J(q) " A, the joint torque
(or linear actuator’s force) enters the system in the same way, Bu. Indeed, both
are obtained via the principle of virtual work (Lanczos, 1986) (formally extended
to dynamical systems as the Lagrange—d’Alembert principle, see (Arnold, 1989)),
which is a specific application of the method of Lagrange multiplier (R. M. Murray
etal., 1994, Chapter 6). Therefore, just as a complicated contact situation can cause

redundancy among the contacts, the joint torque u could also “fight” with the contact
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force A (see Fig. 2.4(c) where the control variable u fights with the ground reaction

force), which is the overactuation problem.

U

y

T_m U — T ........

U

(@ (®) © @ (e

Figure 2.4: Simple examples of overactuation in the presence of holonomic con-
straints: (a,b) sliding on a track; (c) pushing against a wall; (d) a quadrupedal robot
standing on two feet.

Define the following matrix as the Actuation Jacobian:
BT

e R(m+nn)xn, (2.10)
h

N

Note that Rank(Bja) < n.
Definition 1. If Rank(Ba) < n, we say the full system is under-actuated, and
ny = n — Rank(By) (2.11)
is defined as the degrees of under-actuation for the full system.
Definition 2. If Rank(B4) = n, and m + nj, > n, the system is overactuated, and
no =m +ny, — Rank(By) (2.12)

is defined as the degrees of overactuation for the full system.

Example.

* The system in Fig. 2.4 (a) has dynamics:

mi=uy+A4 1 =1
my=u—-A1 = Ba=|1 0| > no=2+1-2=1.

£-5=0 0 1

* The system in Fig. 2.4 (b) has dynamics:
mx = uy 1 0

my=u; -1 = Ba=|1 0| > no=2+1-2=1.

50 0 1
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Full system overactuation can be interpreted as:

* Control inputs fight with each other (Fig. 2.4(a));
* Control inputs fight with constraint force A (Fig. 2.4(b,c)).

Definition 3. A system that is neither underactuated nor overactuated is said to be

fully actuated.

Definition 4. If the actuation matrix By is not full rank (degenerate), i.e., Rank(B4) <
min(m + k, n), the system is internally overactuated. The degree of internal over-

actuation is defined as

nio = min(m + ny,n) — Rank(Bp).

The internally overactuation is often caused by some closed-chain structure, such as
the double-support scenario of the quadrupedal locomotion with two-point contacts
on the toes. As shown in Fig. 2.4(d), the red line indicates the closed-chain inside
the system. Also, as shown in Fig. 2.4(e), right after an impact, the nonstance foot’s
spring needs some time to recover to the normal length while the stance spring is
compressing itself. This results in a double-support domain, which also creates an

internal chained structure and internal overactuation.

To uniquely determine A with g, ¢, u, we require the dynamics given by (2.7)-(2.8)
have no overactuation or internally overactuation. In other words, J h B, and B are
all full-rank, and no, nio = 0. This can be achieved by enforcing additional algebraic
equations, such as setting some motor inputs to be 0. The reason is that a violation
of this requirement will result in an underdetermined problem when solving for A.
This will be seen in the next section. In summary, we demand our problem to be

either underactuated or fully-actuated.

Remark 2. Itis unnecessary to have Jj, B, and the actuation matrix full-rank in real-
world applications. For example, an all-wheel-drive (AWD) vehicle is apparently
overactuated. Although it has no mathematical difference from a rear-wheel-drive
vehicle in terms of rigid-body dynamics, the control robustness differs significantly.
Further, a degenerate matrix formulation will make the stability analysis later using
the traditional control language over complicated. This is beyond the scope of
this thesis, but interested readers can find the optimization-based analysis for such

problems in the literature of control allocation such as (Johansen and Fossen, 2013).
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2.5 The ODE Form of Control-Affine Systems.

We now convert a DAE system given by (2.7)-(2.8) into a ODE system. We first
note that (2.8) is an equality constraint placed on ¢(z) V ¢ € I. To explicitly solve A,
we take the derivatives of (2.8) to get:

Jn(q)g =0; (2.13)
Jn(q,4)g +Jn(q)G = 0. (2.14)

Therefore, (2.7)-(2.8) became

P(q)d+H(q’d)=Bu+J;/l 2.15)
In(q,4)g +JIn(q)G =0
When compute the constraint wrench in (2.7), we can easily derive the following
(DI = D™ H — JyD ™' Bu — Jyg
= A= (D7) (JhD_lH—JhD_IBu —th'), (2.16)
where we suppressed the arguments of D(g), H(q, ), Jx(q) and J4(g, ¢). Note that

if Jj, is not full rank, J hD‘IJZ becomes a singular matrix, in which case we cannot

uniquely determine A.
Plugging (2.16) into (2.7), we have
Di+H = Bu+J] (D JT)"! (JhD‘lH — J,D"'Bu - th)

= G=-D'H+D'J] (J,D7J])"! (JhD_lH - J'm) +

drift vector

(In - D—IJ;(JhD—lJ;)—IJh) D' Bu. 2.17)

Another form often used in the control + robotics literature is the manipulator

dynamics:

D+ H—-JT (D) (JhD—lH - th) - (In - J;(JhD—lJ;)—IJhD—l) Bu.

£H(q.4) 2B(q)
(2.18)

Further, we define the state space X = TQ C R?" with the state vector:

. |4
X =1.
[6]

2




14

where TQ is the tangent bundle of the configuration space Q. Finally, we have the

dynamical system that we wish to design controllers for:

x(1) = f(x(1)) + g(x(1)u,

which will be abbreviated as

X=f(x)+gx)u (2.19)
with
. q

X) = . .
f -D'H+ D7 (D7) (JuDT'H — Jiug)

(x) = | 0 (2.20)

X) = . .
8 (1, — DY (1D y),) DB

2.6 Hybrid System

Having established the continuous-time dynamics for a particular contact scenario,
we are in the position to define the hybrid model for walking. The motivation of
using hybrid dynamics is straightforward: for legged locomotion, when the contact
condition changes — such as adding or removing some contacts — the input (contact
force, motor torque) changes, hence the dynamics change. The combination of these
“domains”! of dynamics results in a hybrid automata (Barton and C. K. Lee, 2002),

which is given by the following definition.

Definition 5. A hybrid control system is defined to be the tuple:
HC=T,D,8,AF), (2.21)

where,

o I' 2 {V,E} is a directed graph (or digraph) (see (Mesbahi and Egerstedt,
2010)), with V the set of domain indices and E the set of edges between two
domains. Their elements are denoted as v € V,e € E, where e = (v — w)

withv,w € V;

* D = {D,},ev is a set of admissible domains, where the state space is defined

on;

'“Domain” is interchangeably used with “phase” in this thesis.
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* S = {S]e]}ecr is asetof guards (or switching surfaces), where S ¢ D,ND,,,
withv,w € ¥V ;

* A 2 {Ale]}eer is a set of reset maps that maps the pre-edge states to the

post-edge states. This will be detailed in the next section;

* F = {F,},ev is a set of control systems that determine the continuous-time

dynamics on a domain D,,.

Discussion. In application, we denote a specific contact condition as 4, (g) = ¢, for
each domain 9, with v € V. Moreover, the satisfaction of this constraint defines

the state space, i.e., the continuous dynamics on domain 9, is given by
x=fi(x)+g,(x)u, x€eD,. (2.22)

The guard S, associated an edge e = (v — w) with v, w € V is normally defined
by the change of states from x € D, to x € D,,. The control law {FG, },cy will be

the main topic of the next chapter.

Stance Dg sof Flight D¢
el
€s—s, = T (’6 0
LT T T ’ VU=
’/ . \I
4 e ,‘
® s—0 | -
L
.
v’ €0—s
\ v#£0 v=0
I, ———
€55~ S s g
I
raeset N €t
e,
fos
(a) Hopping (b) AMBER-3M walks on slippery surface

Figure 2.5: Directed graph for two robotic systems.

We now give two examples of formulating the hybrid model for low-dimensional

legged systems.

A hopping machine. A canonical example of the hybrid dynamical system is hop-

ping robots. In the simplified vertical hopping machine shown in Fig. 2.5(a), the
robot hops up and down only. It then has two dynamic domains, the stance domain
Dy, where the foot (bottom link) stays on the ground, and the flight domain D¢ when
the foot left the ground. Formally, this is defined as

D = {X eTQ | Zfoot = Zfoot = O}» (2.23)
D ={xeTQ | zfoor = 0}, (2.24)
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where zgo 1S the height of the foot. We then denote Ag, as the ground reaction
force exerting on the foot. Note that As can be explicitly solved with x, u using

(2.16). Therefore, we have the domain indices V = {s, f}, and the set of edges as

E = { €s—f, €fs }a (2.25)
N~—— Y—
“lift>  “impact”

where e, marks the event that foot leaves from the ground, and es_, is the event
that foot touch the ground from the air. Thus, we can use the boundary condition of

each domain to define the guard conditions as:

S[es—>f] = {(X, u) € Dy | /lfoot(x’ u) = O}, (2.26)
Sler—s] = {x € Dx | Zfoot = 0, Zfoor < O}- (2.27)

The transition dynamics for each edge e € E, are called lift dynamics Ales—¢], and

the impact dynamics Al es—] will be detailed in the next section.

AMBER-3M walks on slippery surfaces. The cyclic directed graph of the multi-

domain hybrid system for walking on a slippery surface is shown in Fig. 2.5(b). The
solid lines are for transitions without non-stance foot impact events, and dashed lines
are for transitions with impact events. The subscript s is for walking with slippage,
0 is walking without slippage, and the superscript I marks that the edge is equipped
with an impact event. As shown, we have two types of dynamic domains: the stick
domain Dy, where the contact foot stands on the ground without slippage, and the

slip domain Dy, where the contact foot slides the ground. Formally, this is given as

Do={(x,u) €ETAXU| zy=2=%=0,25 20, || 2 p2},  (2.28)
Ds={(x,u) eTAXU| z3=2,=0,%#0, 245 20, 2 > 0}, (2.29)

where x;, z; represent the Cartesian position of the stance foot along the horizontal
and vertical axes, accordingly; and z,,, is the height of the nonstance foot, A, A, are
the ground reaction forces along the horizontal and vertical axes. Hence, we have

the domain indices V = {0, s}. Correspondingly, we have the set of edges
E = {eo—s, €50, €50, eé_>0, e{)_)s, e£_>0, eg_>s}. (2.30)

The superscript “I”” denotes transition via impact, whereas its absence denotes stick
<> slip transitions. We now define the guards, which are switching surfaces or

conditions for transition between domains. The first guards are associated with the
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smooth transitions between sticking and slipping domains:

Sleos] = {(x,u) € Dy [ 4] = uad},
Slecol = {(x,u) € Dy | &, =0, |A7] < pAl},

Slesos] = {(x,u) € Dy | 15 =0, [22] > ua%}.

Note that the last transition above associated with ey, is reversal of slip direction
(cf. (Gamus and Yizhar Or, 2015)). The guards corresponding to transitions that

involve sticking or slipping impacts are defined as:

Sled_ol = {(x,1) € Do | s = 0,255 < 0, |AY] < uAY},
Slel ol ={(x,u) € Dy | 245 =0, 2,5 < 0, [AY] < pA?},
Slel 0 ={(x,u) € Do | zns =0, 2ns < 0, |A] > uA’},
S

[el ] = {(x.1) € Dy | 20y = 0,205 < 0, |AY] > uA?},

where Ay, A, are the impact impulses along the horizontal and vertical axes. These
guards represent the conditions for sticking or slipping impacts as described above.
Note that the overall non-smooth frictional dynamics may have special degenerate
cases where the solution is inconsistent, indeterminate, or singular. These rare cases
are know as Painlevé paradox (Champneys and Varkonyi, 2016; Yizhar Or, 2014),

and lie beyond the scope of this work.

We remark that the sequence of motion in Fig. 2.5 that is marked by red color, has
been controlled (see Sec. 3.3) and realized on the robot AMBER-3M, in (Wen-Loong
Ma, 2019a).

2.7 Discrete Transitions
For legged locomotion, a change of contact condition? will result in either an event
of lift or impact, or simultaneously both. We can characterize this “jump” between

domains as discrete transitional events, which will be detailed in this section.

Impact-transition dynamics. Legged locomotion inevitably includes foot-impacts

with the ground. This process can be modeled through complicated terrain dynamics
such as the impact on granular media (Li, Zhang, and Goldman, 2013; A. H. Chang

et al., 2017) and elastic or inelastic collisions. In this work, for the mathematical

2 This not only includes foot impacts with the ground but also whenever a constraint ((2.8))
changes. For example, a hard stop of the spring vibration.
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consistency with the assumption that the robots stand on the rigid ground — based
on which the holonomic constraints can be defined — we model the foot impact
as the perfect inelastic collision (also regarded as plastic impact in this thesis).
Therefore, it obeys the conservation of momentum. And the positional variable
remains unchanged through the event of an impact, and the velocity terms jump
from the pre-impact quantity to the post-impact state. Formally, we model the
impact dynamics from domain 9,, to domain O, — the transition dynamics on the
edge ey, withv,w € V —as:

qe =4, 231)

gz = Alew—v1(92)4,
where g7, ¢} are the pre-event states of the edge e = e,_,,,, i.e., these are the initial
conditions of domain D,; g, g, are the post-event states of the edge e = e,_,,, 1.€.,
these are the final conditions of domain 9,,. Note that we shorted the notation of

e—y to e for simplicity in this section.

We now detail the transitional map A[e,,—,]. This map is obtained first via the law

of momentum conservation:

D(q,)(4e = 42) = Jn, (q;) A, (2.32)

where A, € R" is the impact impulse exerted on the contact surface. Entering
domain 9, means that the post-impact holonomic condition 4, (g}) = ¢, also holds.
This yields:

In, (g0)dz = 0. (2.33)

Combining (2.31)-(2.33), we have the impact map as:

-1
-+

de
Ae

D(q;) —Jn(g)7
In, (q7) 0

which simultaneously gives the impulse and post-impact states, and this is referred

2.34
0 (2.34)

D(q-m-]

to as the impact dynamics. As can be seen, this jump of states from ¢, to ¢} results in
a discrete transition. Additionally, removing some subset of the constraints defined
on the previous domain, i.e., lifting, does not result in any impulse. Hence from
(2.32), we then have the lift transition dynamics as:

.
q; =4, (2.35)

qi=d;
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We now unify (2.32) and (2.35) as the transition dynamics using state vectors. This

is given as
xi = Alew—y](xy,). (2.36)
The more general transition dynamics that involve impact with the slippery condition

can be found in (W. Ma, Y. Or, and A D. Ames, 2019).

2.8 Solution to Hybrid Dynamics

Having established the multi-domain hybrid dynamics of a legged system as:

3 2 x=fi(x)+g,(x)u xeD,, VveV ’ (237)
xt=Ale](x7) x~ €S8Jle], Ve e E

we hereby define the solutions to a multi-domain hybrid system and provide an
optimization method to find the numerical solution. This section is an extension of

the single-domain hybrid system given by (Aaron D. Ames et al., 2017).
Definition 6. A solution (execution) to the hybrid system 7 is a tuple:
x=(V,1,0), (2.38)

where,

eV = (vi,v2,...) with v; € Vand i € N*, is a finite or countably infinite

domain sequence? , and we denote its cardinality as N.

e I = (I}, 1,...) is a sequence of the time interval I; with i € N*, for each

executed domain v,. For each v; € V, [; is defined as:
- I, =[0,T1],if T} # oo, otherwise I; = [0, =),
- ;= [T, T, if vio1,vi € V and T; # oo,
- Iy =[Ty-1,T;),ifi > 1and T; = oo

* C = ({x1(t),u1(2)}, {x2(1),uz(t)},...) is a sequence of continuous trajecto-

ries for the states x;(¢) and control inputs u;(z) that satisfies

xi(t) = fo,(xi(2) + g, (x;(£))u; (1), Vtel.

We additionally require that for each v; € V,

3Note that unlike a set, v; and v j with i # j can be the same, i.e., the same domain can appear
more than once in the solution’s domain sequence. Further, note the sequence of domains V is
different from the set of domains V from Def. 5.
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- xi(t) € D,,, Vtel,
- X,‘(Ti) € S[ev,-—wm] and A[evi—win] (xl(Tl)) = xi+1(Ti) if Vitl € V.

We regard xo = x;(0) the initial condition of y. A mixed sequence of walking
tasks of a bipedal robot can serve as a good example of this definition. As shown
in Fig. 2.6, we can define four types of domain: 9Dy for standing still, D, for
walking on a flat surface, 9, for walking uphill, D, for walking downhill. Hence
we have the set of domain as D = {Z)f,Z)u,Z)d}, and the set of guards & =
{Sler—rl. Sler—ul, Sleu—rl, Sleu—ul, Sler—al, Slea—yl, Slea—al}. We now
assume there exists a solution to this hybrid system such that the robot starts from
standing still, then walk two steps on flat ground, two steps uphill, two steps on the
hill, then keeps walking on the flat ground. Therefore according to Def. 6, we have
domain sequence as V = (D¢, Dy, Dy, Dy, Dy, Dy, Dy, Da, Dy, Dy, Dy, .. ).
Correspondingly, we can obtain the sequence of smooth trajectories C.

Figure 2.6: A mixed sequence of walking tasks of a bipedal robot: flat ground
walking, uphill walking, downhill walking, flat ground walking. On the right is the
directed graph, where the arrows represent the corresponding edges. Each edge is
associated with transition dynamics.

2.9 Numerical Optimization

As given in (2.38), a solution to the hybrid dynamics is not necessarily a physically
realizable trajectory. For example, the trajectory for the torque input u(¢) V¢ may
violate the actuator’s physical limitation. This section introduces the numerical
optimization formulation of finding the solution to a nonlinear system in (2.37) that
respects some inequality constraints. We will apply this formulation throughout
this thesis. The history of finding solutions to nonlinear dynamics using numerical
optimization is rich in all engineering areas. An exhaustive review of numerical
optimization can be found in (Betts, 1998). We want to find a solution as (2.38) that
also satisfies some inequality constraints in this section. In particular, we employ
direct collocation method (Kelly, 2017; Ayonga Hereid, Shishir Kolathaya, et al.,
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2014) to accomplish this goal. This method essentially transcribes the solution-
finding problem into a set of algebraic equations via collocation schemes. This is an
implicit Runge-Kutta method to solve the system dynamics simultaneously. There
are many types of collocation schemes, but we will focus on a specific method: the

local direct collocation method.

Unlike the single shooting method for the initial value problems (IVP) (Kiehl, 1994),
where the solution x(#) V¢ is obtained explicitly by integrating the dynamics from
t = tg, direct collocation formulation approximates the solution x(#) implicitly by

piecewise polynomials along the evolution of the nonlinear dynamics.

We first present the algorithm to find the solution x(7) V ¢t € I; using defect con-

straints. The basic procedures are:

Stepl. We begin by defining a sequence of K + 1 discrete nodes along the time span
of the trajectory:

Ti_1=ty<ti<th<---<tg=T;, (2.39)

which forms the basis of our discrete representation of the continuous dy-
namics, and we denote 61X = 14, — t, where k € (0,1,...,K;). Note that
K; depends on the domain v;, but we will omit the subscript ; for the ease of

notation.

Step2. We use a piecewise Hermite interpolation (cubic) polynomial to approxi-
mate the solution over each subinterval [#;, fx+1] using the following cubic

polynomial:

x(t) = Co + Cys + Cas” + Czs° (2.40)

s = =l ¢ [0, 1] is the normalized time within the subinterval. The four

Lr+1— Tk
coeflicients Cy, C1, Cy, C3 are determined by the two boundary values xk, xk+l
which are given as decision variables of the optimization algorithm. Their

derivatives X and x"*! are computed by the continuous dynamics in (2.37).

Step3. Using these coefficients, we can compute the interpolated value of x at the

center of the subinterval, i.e., the collocation point, as
5= (R xRy 2 4 sF (R - xR 8. (2.41)
Similarly, the slope of the cubic polynomial at the center point is

x5 = 23k = XM 26k — (R 4+ Y /4. (2.42)
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The defect constraint at the center of the subinterval is defined as the difference
between the interpolated slope and the first-order derivatives of states at the

center of the subinterval computed by the system dynamics, i.e.,
= [0 + g (T ug — X (2.43)

We now have the most important statement in this section: (¥*, ¥X)7 satisfies
the dynamic constraints (C1) if and only if ¢* = 0. In fact, (2.43) is a nonlinear

equality constraint posed on the nodes #* and r**!.

Stack these defect constraints into a vector as

zs| |, (2.44)

and control inputs

a0 0 1 1 2 K
W= (w0 ue,u e U, ).

Then the goal is to “find” a set of discretized states x; so that the defect A; = 0
for domain v; € V. As aresult, the interpolated piecewise polynomials are an
valid approximation of the solution x(¢) V ¢ € I;. Note that there are two ways
to improve the smoothness of control inputs: u* = u* and u* = (u* +u**1)/2,

but these additional constraints are not required.

To find a solution to the hybrid system (2.38), we then encode the defect constraint

(2.44) into a nonlinear program as follows:

r%(in J(X) (2.45)
s.t. (Cl) Z,'(Xi,lll') =0 Vi € (1,2,N)
(C2) xi]+1 = A[e](xiK") Ve € E

(C3) p(X) <0
(C4) b(X) =0
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where, J(X) is a user-defined cost function; xl.1 and xl.Ki are the first and last value of
domain v; and v;41, who are connected through edge ¢; p(-) and b(-) are user-defined

inequality and equality constraints. Further, the decision variable is given as
X = (X],. . .,XN,lll,...,llN,Tl,...,TN).

We can then solve this optimization problem using nonlinear solvers such as SNOPT
(Gill, W. Murray, and Saunders, 2005), IPOPT (Wichter and Biegler, 2006), GPOPS
(Hager et al., 2019), PSOPT (Becerra, 2010),s and FROST (Ayonga Hereid and
Aaron D. Ames, 2017). The collocation constraint Z;(X) = 0 is a stage-3, implicit
Runge-Kutta method to solve dynamical systems. When the number of subinterval
increases, the approximated solution becomes closer to the exact solution of the
continuous dynamics. On the contrary, a shooting method finds a solution to the

dynamical system by solving

x(1) = / " (x(9)) + g (x(s)uls) ds +x(0)

using explicit Runge-Kutta methods. The implementation of this methodology
on simple and rigid systems is acceptable, see (Shishir Kolathaya, Wen-Loong
Ma, and Aaron D Ames, 2015; H.-H. Zhao et al., 2014). However, it suffers
from computational cost to maintain numerical stability when it comes to a high-
dimensional problem. The collocation method instead simulates the dynamics
implicitly because the solution at each sample time is picked by the optimization
solver simultaneously. This made it expandable to high-dimensional and non-
stiff systems. We will use a simple hopping robot example below to show this

implementation.

Example. We now present a simple example, where we find the solution to a 1D
hopping system using a nonlinear programming (NLP) toolbox —PSOPT(Becerra,
2010). In particular, we will utilize the local discretization methods to parse our

problem.

The robot of interest is shown at Fig. 2.7, we write the equations of motion as

=L Vxeny (2.46)
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—Z,, —%, —Z;--clearance

Zf -0.05

time

Figure 2.7: Left: the configuration coordinate of the 1D hopper. Right: The
optimized trajectory from (2.51).

for the flight phase; and

u

.Z.m:mm_g
Z’r:—%—i—i—g Vx e D 2.47)
Zr=0

for the stance phase. The directed graph is given in Fig. 2.5 (a), and the domain
definitions are given in (2.23). The other notation is explained as: the state variable
isx" =(gq",q"); the configuration coordinate is ¢ " = (2, zr, 2f); My = 1.5,m, =
3.5,my = 0.4; is the mass of the motor, the body, and the foot, respectively; F; =
ks(z, —zy — Lo) + ¢5(2, — Zy) is the spring force, with ky = 8000, ¢, =4, Lo = 0.09
the stiffness, damping and the natural length of the coil spring, respectively.

We wish to generate a motion that can hop above 0.3 m with minimal motor force
inputs. Therefore, we first parse the continuous dynamics given by (2.46) and
(2.47) into the collocation (equality) constraints as given by (2.44). Because of the
simplicity, the discrete dynamics that is shown abstractly in (2.31) is formulated into

the following boundary conditions:

x} —xfs =0
4 ~q;" =0
1 @) = EE=0 T (2.48)

(z)e = (2)f7 =0

(2p)s =0
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We then constrain the ending time of each domain as

0.1 <X <1,
0.1 <1 <3, (2.49)

-0 =0.

To hop higher than 0.3 m, we utilized the following path constraints:

(2= (£0)2=0

. (2.50)
max €xp(—3(=£)?) - 0.01 — 2y <0 Vie(0,1,....Kp)

where h,,,, = 0.3, and ¢ is where we wish the highest hopping point to appear, and

i 0
L= t—lf
K¢ 0
lpm =1

is a parameterization of the time. We now have the open-loop trajectory optimization

posed as

. 2
! 2.51
arg)t(mn Z |u | ( )

i

s.t.  (2.44)(2.48)(2.49)(2.50).

After 1.98 second, we obtained an optimal solution, i.e. the trajectory of the states

X, Xr and the inputs ug, ug. We show the result in Fig. 2.7.

Note that benefit from the simplicity of this EOM in (2.46) and (2.47), we can use
automatic differentiation (AD) solvers such as ADOL-C (Griewank, Juedes, and
Utke, 1996) to get the Jacobians of the constraints. However, this simple structure
is very rare in multi-body dynamics; obtaining the Jacobians using AD for the full-
order dynamics of a humanoid robot demands much more computational resources.
Therefore, we will not give the dynamics explicitly, and we will use Wolfram
Mathematica to obtain the Jacobians from now on. Additionally, there are many
software that can parse a multi-body structure such as the URDF# into the general
rigid-body dynamics format in (2.7), such as the Screws package in (R. M. Murray
et al., 1994).

“http://wiki.ros.org/urdf
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Chapter 3

CONTROLLER DESIGN FOR BIPEDAL RUNNING

In this chapter, we design controllers and trajectories (gaits) for bipedal locomo-
tion using the full-order hybrid dynamics. In particular, we study the gait design,
Lyapunov stability, and input-to-state stability analysis for nonlinear control sys-
tems and apply them to a high-dynamic behavior, bipedal running, on two bipedal
robots—DURUS-2D and DURUS.

3.1 Running Dynamics (Open-Loop)

/\
Foot Strike
N
(a) (b)

Figure 3.1: (a) The simulated running of the humanoid robot, DURUS, as a result of
large-scale HZD optimization. (b) The directed cycle structure of the multi-domain
hybrid system model for flat-footed humanoid running.

This section details the multi-domain hybrid dynamic model of 3D running on the
DURUS robot.

Robot Model of 3D Humanoid—DURUS

A popular approach for robotic running is to utilize the Spring-Loaded Inverted
Pendulum (SLIP) model (R. Blickhan, n.d.; Collins et al., 2005b; Rezazadeh et
al., 2015), since the springs can be of assistance to improve energy efficiency and
absorb the high-speed plastic impacts to protect the hardware. Inspired by the SLIP
model, the three-dimensional DURUS robot (Fig. 2.1 (d)) is designed and built by
SRI International for the study of high-efficiency multi-domain bipedal locomotion
(Ayonga Hereid, Eric. Cousineau, et al., 2016; Jacob Reher et al., 2016). DURUS
is an 80 kg, 23 degrees-of-freedom (DOFs) underactuated humanoid robot with 15
actuated joints and two passive linear springs attached to the end of each ankle joint
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that compress perpendicular to the foot. The robot’s upper body, which is used to
balance the dynamics and better resemble human locomotion, is controlled by three

orthogonal waist joints.

For the running model of DURUS, we use the generalized floating-base coordinates,

q = [po: ¢p.0]
¢p € SO(3) is the orientation of the body base frame R, which is attached to the

T € Q, of the robot, where p, € R? is the Cartesian position and

center of the pelvis link, with respect to the world frame; and as shown in Fig. 2.1

(d), the local joints are represented by

0 = [WW, ¢Wa QW, Wlh, ¢lh’ th’ Hlk’ Qla, ¢l(la rls’ wrh, ¢rh, 9}’/’1, Qrk, Hra, ¢ra’ rrS]T,

with the coordinates corresponding to the waist yaw, roll, pitch angles, left hip yaw,
hip roll, hip pitch, knee pitch, ankle pitch, ankle roll angles and spring deflection,
and the right hip yaw, hip roll, hip pitch, knee pitch, ankle pitch, ankle roll angles

and spring deflection.

Hybrid Dynamics for Running

Due to the existence of both continuous and discrete dynamics, bipedal robot running
is naturally modeled as a hybrid control system. The flat-footed running of DURUS
is composed of two continuous domains: a stance domain, where the nonstance
foot swings in the air while the stance foot stays on the ground, and a flight domain,
where both feet are in the air (see Fig. 3.1 (b)). Therefore, as discussed in (5), the
hybrid control system of DURUS running is defined as a tuple:

HC = (T, D,U,S,AFG), 3.1)

where,

o I'={V,E} is a directed cycle with vertices V = {s, f}, where s represents the
stance domain and f represents the flight domain, and the edges E = {s —
f,f — s},

* D ={Dy, Dr} is a set of admissible domains of continuous dynamics,
* U = {Us, Us} is a set of admissible controls,
e 8 ={S8; C D, St C Dy} is a set of guards,

* A = {As—f, Af—s} is a set of smooth reset maps representing the discrete

dynamics,



28

* FG = {(fs, gs), (f, g¢)} s a set of affine control systems

x=fy(x) + g (X)u,

defined on D, for all v € V, with x = (q, ¢) being the system states.

The directed cycle I is depicted in the Fig. 3.1 (b). The construction of individual

elements of (3.1) will be presented in the remainder of this section.

Stance Domain. During the stance domain, the stance foot remains flat on the ground.

Often we use holonomic constraints to model the foot contact with the ground (Jessy
W. Grizzle et al., 2014). Here, we define the holonomic constraints of the stance

domain as

psf(q)] € RS, (3.2)

with p s the position and ¢, the orientation of the stance foot. Given the physical
properties of each link, the unconstrained dynamics of the stance domain Dy is

given by
D(q)g +H(q,q) = Bu+J; (¢)F, (3.3)

where, D(q) is the inertia matrix, H(q, ¢) contains the Coriolis, gravity, and spring
forces terms, J5(g) is the Jacobian of the holonomic constraints, and F' is a wrench
containing the ground constraint forces and moments. The holonomic constraints

are guaranteed via enforcing the second-order derivative of &g to be zero:

Js(q)G + Js(q,4)¢ = 0. (3.4)

Thus the affine control system ( f;, gs) can be determined by combining (3.3) and
(3.4). The manifold of the stance domain is determined by unilateral constraints,
which could be formulated as a vector of admissible conditions, As(q, ¢, u). These
conditions include positive non-stance foot height, positive normal ground force,

etc. In other words, we have
Dy ={(q,q,u) e TQ x Us | As(q, ¢,u) > 0}. 3.5

Further, the guard condition of the stance domain is defined as the normal ground

force crosses zero, i.e.,

Ssr={(q,q,u) e TQ X Uy | F*(q, q,u) = 0}. (3.6)
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Because there is no impact involved during the transition, the reset map from the

stance domain to flight domain, As_,y, is an identity map.

Flight Domain. Since there is no ground contact during the flight domain, the

continuous dynamics of the domain is determined by the unconstrained Euler-

Lagrangian equation:

D(q)4 +H(q,q) = B(q)u. (3.7

The admissible conditions of the flight domain are defined so that both feet are above

the ground, i.e., A¢(q) = (hsr(q), hnsr(q)). Therefore, we have
Dr={(q,q,u) e TQ X Us | A¢(q) = 0}. (3.8)

Accordingly, the transition from the flight to stance domain occurs when the non-

stance foot strikes the ground, i.e.,

Sf—>s = {((], (],u) eTQ x 7/{f | hnsf(‘]) =0, l;lnsf(qa Q) < 0} (39)

Both dynamics in (3.3) and (3.7) can be converted to the following form:
X = fu(x) +gv(x)u, (3.10)
and the derivation was given in (2.20).

Transition Map. The reset map from the flight to the stance domain incorporates

the impact dynamics when the non-stance foot hits the ground, during which the
joint velocities undergo discrete changes due to new contact constraints. Given
the pre-impact states (¢g~, ¢~ ), the post-impact states (¢*,¢") = Ars(¢~,¢~) are
determined by assuming a perfectly plastic impact of the rigid body. Since the
position terms do not change through the impact, we have the impact equation,

which determines the discrete changes of velocities as

D(q™) -J{(q7) D(q7)q~
Js(q_) 0 0

where J F is a vector of impulsive contact wrenches.

q'+

A1
oF G-

3.2 Virtual Constraint and Zero Dynamics
Given the running model, this section introduces the basic concepts used in this
chapter, including virtual constraints, phasing variables, and zero dynamics. We will

use DURUS-3D running (Fig. 3.1) as an example to concretize these constructions.
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Desired behavior. To achieve stable locomotion, we first need to decide what to

control, which s the feature (actual output, y) that we intend to drive to some desired
behavior (desired output, y?) that we will design through trajectory optimization.

The actual output is a function of the system’s states, given as

¥y =y4(x); (3.12)
and the desired behavior is represented by a Bézier polynomial

v =p(r, ). (3.13)

where « is the (constant) coefficients for the polynomial, and this trajectory is

parameterized by a phasing variable T, and it monotonically increases over time.

Phasing variable. Locomotion gaits, viewed as a set of desired trajectories, are often

modulated as functions of a phase variable to eliminate the dependence on the time-
based (Villarreal and R. D. Gregg, 2014). We will discuss two types of phasing
variables in this manuscript, one is a time-based phasing variable

7, =1(1). (3.14)

Correspondingly, the desired output (3.13) will be a function of time. We also define

a state-based phasing variable as

7, =1(q). (3.15)

Correspondingly, the desired output (3.13) will be a function of states. In the content
that follows, we will omit the state-based subscript ; since we will not talk about

time-based setting until Sec. 3.4.

Virtual constraint. To achieve stable locomotion, we first need to establish the fol-

lowing goal

y? > y9 as timet — oo, (3.16)

which is further described as driving the output (virtual constraint):
y=y"(x) = y'(r,) (3.17)
toOast — oo.

Since « is a set of constant parameters, we will suppress this argument from y?(r, )

to have y?(7).
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Output dynamics. The dynamic relation between the output y, and an input u, is

referred as output dynamics. For the robotic systems considered in this dissertation,

we are particularly interested in two types of outputs, the relative degree I output:

oD _0y,
Y= U T ox
) d
= 2 f) + g (x) u, (3.18)
ox ox
——— N——
=Lyy ZLgy

and the relative degree 2 output when L,y = 0:

d’y B aLfy(x)x

Y52 T ox
OL¢y(x) OL¢y(x)
= f—f(x) +f—g(x) u. (3.19)
0x o0x
éLzy éLgLfy

2
where f, g is given in (3.10). Rigid-body dynamics have no more than a relative-
degree two outputs. All systems of interest in this thesis only have less than two
relative degrees. In particular, any output that is only a function of the configuration
coordinate y(q), is relative-degree two. Note that when compliance such as series-
elastic actuator is involved, some of the global coordinates (w.r.t. world frame) can

have more than two relative degrees.

The goal is to design a control scheme u to drive the difference between the actual
output and the desired output to zero. Before doing so, let us take the bipedal

running as an example.

Example. For DURUS running Fig. 3.1(a), we first pick the actual outputs y*(qg, §).
In the stance domain D, the forward velocity of the center of mass (COM) is chosen

as the relative degree one output

a

y]’s = Vﬁam(q’ q)

to regulate the forward velocity of the robot, and the (vector) relative degree two

outputs are defined as

yis(CI) = (st, ¢slr, Oshs Ush, ¢saa ¢W’ O, Yw, Onsks ¢nsh, Onshs ¢nsf’ Hnsf’ l//nsf)T-

In the flight domain Dy, actual outputs consist of only the relative degree two outputs

yg,f(CI) = (Gsk’ ¢slr’ Hsh’ ¢Sf’ esf, '//sfa ¢w, 0W$ ww, Hnsk, ¢nsh, Hnsh, ¢nsf’ ensf, wnsf)—r-
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In particular, @5, = ¢sn — ¢nsn is the stance leg roll angle, ¢,r, 057, and
Gnsf>Onsf>Wnsy are the orientations (Euler angles) of the stance and non-stance

foot, respectively. Other outputs are simply joint angles, as shown in Fig. 2.1 (d).
We want to design a running motion with constant forward velocity, hence the
desired velocity of COM is a constant vy, i.e.,

)’1,5((], q,Vd) = )’is(q, Q) —Vd. (320)

And the desired relative degree two outputs yg,v (7(q),a,) are represented by
seventh-order Bézier polynomials parameterized by a set of parameters a, with

v € {s, f}. The virtual constraints on 9, became:
yaulg. @) =¥5,(0) = ¥4, (T(q). ), (3.21)

where 7(g) is a monotonic state-based parameterization of time, defined as

P, — Po

P1—DPo

where p; is the x-position of the floating base’s frame Rj, and the parameters p

7(q) = (3.22)

and pg are the corresponding values, by design, at the beginning and the end of each
(cyclic) step. This setting allows the phasing variable to paramertize the desired
trajectory over one step from O to 1,1i.e., 7 € [0, 1]. In particular, the desired outputs
of the stance and non-stance foot orientations are set to be zero respectively to keep
the feet being flat throughout the step. Note that if an output is defined for both
domains, the coeflicients of the corresponding desired Bézier polynomials must be

the same.

As given in (3.18) and (3.19), we can summarize (3.20) and (3.21) as

. 2
Yiy _ L;‘yl,v + Lfyl,v (323)
j}Z,v Lfy2,v LgLfy2,v
—_— —-— —
Ly (g.9) A (q)

where we call A, (q) the decoupling matrix.

Feedback Linearization-Based Control
As often practiced for nonlinear control systems, we can construct a feedback

linearization-based control law for bipedal locomotion. To drive the output:

Yv = . -0
Yo
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for each D, with v € {s, f}, we can utilize the input-output feedback linearization

control law
uf = AN (L, + 1), (3.24)

which is often shorted as IO controller. The control structure is illustrated in Fig. 3.2.

For running dynamics, we have the decoupling matrix A, as:

L yl S(q’ C])
A= &7 , Ar=LgLgyri(q)
) LgstgyZ,s(Q) s
respectively, and
i ’ Li= LiLgyae(9)
= , f=LiLgY2f(q).
T |LiLyas(q) e

With the given control law, we have the output dynamics become

yl,s
)'52,3

for the stance and flight domain respectively, where uf can be chosen so that the

&

= —/ls . j}z’f = —M? (3.25)

outputs converge to zero exponentially at a rate of & > 0. In particular, we define

e _ . S)il,s(q, q, \;d) , (3.26)
2‘9y2,s(q’ q, a’s) te& yZ,S(Qa as)
1 = 2ey25(q, 4, ar) + £2y25(q, ar)). (3.27)

Denote some new coordinates as

Yi,s
A A y2,f
Ns = |Y2s] > nr=1. 4
. Yaf
Y25

and n = (n5,m¢) T, we can see the exponential stabilizing effect of the n-dynamics

according to the following definition.

Definition 7. A smooth function V : R" — R, is an exponentially stabilizing
control Lyapunov function (ES-CLF) for

n=fmn+gmu,
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if there exists constants ¢y, ca, c3 > 0 such that

cilnl? <v(n) < ealnl? (3.28)
inf (LyV(n) + LgV(mu+c3V(n) <0

for all x € X. If there further exists a constant € € (0, 1) such that
2
cilnf* < Vi) < = Il (3.29)
inf (L V() + LoV () + c—3V(n)) <0
u ’ E

for all n € Y, then V(n) is a rapidly exponentially stabilizing control Lyapunov
Junction (RES-CLF).

and we can pick a Lyapunov candidate as

V(n)=n'Pn

for the dynamics in (3.25) under control input (3.26) and (3.27). Remark that these
controllers only stabilize the n—dynamics, with k& < n. For the underactuated full-
order system, we need some other conditions to establish its stability property, which

is introduced below.

2V
fOD) ’ {“ = “»Q’_I(x)(s-?’+/f(x))]—> Running Biped |—

Plant]

y a(x ) y d(T) Measufement
(%) ¥z, 9) 9.9

7(q)

Figure 3.2: A block diagram showing the state-based feedback control structure.

Hybrid Zero Dynamics Invariance

The fundamental theorem gives the condition of the overall system’s stability in the
sense of Lyapunov in the HZD condition, (A. Ames, Galloway, et al., 2014a), which
will be a basis for the development of the methods in this thesis. We will briefly

introduce it here.
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Any admissible state-based feedback controller, such as (3.24), that has been applied

to the control system, FG, yields the following closed-loop continuous system:

e = £ = ) + gy (v, @)

forward invariant on the (partial) zero dynamics surface:

Z ={(q.9) € D, | 2. (q) = ¥2,(q.4) = 0}. (3.30)

But due to the impact dynamics, the invariance of the zero dynamics surface is not
necessarily guaranteed by the controller. Particularly, it is impossible to enforce the
relative degree one output to be invariant through impact due to the changes in the

velocity at the impact event.

Therefore, a submanifold Z, is impact-invariant if
Ac(x) e Zy+, Yxe8S. NI, (3.31)

for each e 2 (v — v*) € E. The resulting hybrid invariant submanifold is referred
as a hybrid zero dynamics (HZD), Z|z. Further, Z = |,y Z, is hybrid invariant
if it is invariant over all domains of continuous dynamics and discrete dynamics. In

fact, the restricted reduced dimensional dynamics are independent of control input.

According to (A. Ames, Galloway, et al., 2014a, Thm.2) if there exists a RES-CLF
for the output dynamics in (3.25), which drives the actual output to the desired
trajectory exponentially, then there exists an exponentially stable periodic orbit of
the hybrid zero dynamics manifold given in (3.30). We can have an exponentially
stable orbit for the full-order system. With the feedback controller defined, as given
in (3.24), (3.26), and (3.27), the mission is to find the parameter set « that y*(q)
converges to y¢(a, ) exponentially. In other words, the goal of designing a gait is to
find a set of parameters @ = {v,, @, @} that ensures the existence of a periodic orbit
for the system (3.1) and the (partial) hybrid zero dynamics surface, Z, is invariant

through the discrete impact dynamics.

The process of finding « is then formulated as a nonlinearly constrained optimization

problem in Sec. 3.3 subject to the HZD condition.

3.3 Gait Design via Closed-Loop Optimization
We can now use optimization tools to design a gait (periodic trajectory), a periodic
solution to the closed-loop system. In this section, we first use bipedal running as

an example to present the details of closed-loop optimization, including the equality
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and inequality constraints. Then we study the energy efficiency of these generated
running behaviors. We will lastly use the tool developed to realize bipedal walking

on slippery surfaces.

Closed-Loop Optimization for Running
Building on top of (2.45), we first define the dynamic constraints for hybrid systems
for the purpose of finding periodic solution to the open-loop dynamics (3.10) as

follows.

1. Continuous Dynamic Constraint.
We first need the optimization algorithm to find a trajectory of the states and
inputs for all time. Follow the setting in Sec. 3.10 and notations from (3.1),
we have N = 2 for the two-domain running, and pick K; = K, = 15 for
the discretization of horizon. We then have the first equality constraint for

continuous dynamics (as in (2.45)):

Zo(X,m) =0  VveV 2 (sf). (C.1)

2. Discrete Dynamic Continuity.
To guarantee the trajectories C, = {X,, u, } of the neighbor domains belong to
the same flow, we have the following equality constraint for discrete dynamic

continuity

x{ = Alesil (x5) =0 (C2)

In essence, (C.1) and (C.2) pose the hybrid dynamics

X = fi(x) +gv(X)u x €D,

'x+ = A[evi—>v,~+1 ] ('x_)

where v € V £ (s,f), into a set of equality constraints. The advantage is that we
can pre-compute the symbolic Jacobians of these constraints and hence accelerate
the evaluation time, and the problem is made robust against stiff systems (see (Kiehl,
1994; Ascher and Petzold, 1998)).

3. Periodic Continuity.
To find a periodic solution, we need to make sure the final condition is

“stitched” to the initial condition. Still, since there is a jump in the velocity
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terms due to the impact, as in (3.11), we will need to relate them through
the impact map. But before doing so, a key concept needs to be introduced,

the relabelling matrix R : Q — Q. Since all of the legs’ configuration

13324
N

13774

and nonstance *)/,

coordinates are labelled as stance and after the impact,
the nonstance leg will become a stance leg, we need to mirror (relabel) the
states accordingly. For example, the pitch angles of the stance and nonstance
joints need to be flipped, and the roll and yaw angles of stance and nonstance
legs need to be flipped with a negative sign. We then modify (3.11) with the

notation from (C.2) to have an equality constraint for periodic continuity:

D(gi")  =JT(Ragh||dy| _ |D(RagNdr' ©3)
Js(Rqf") 0 a 0 ’ '
or simply,
x) = A[f - s]Rxf = 0. (3.32)

To establish Lyapunov stability analysis, we need to have the system in the closed-
loop form, which is open-loop dynamics with a parameterized feedback controller
such as in (3.24). We now present the closed-loop dynamics in the optimization

setting for the control problem of interest.

4. Output Dynamics.
Since the controller in (3.24) yields output dynamics in (3.25), we can equiv-
alently enforce the output dynamics as
Vi (X,x) +& x,vq) =0
yl,v( ) yl,v( d) (C.4)
yZ,v (fC, X) + 28y2,v (X) + 82y2,v (X, a'v) =0
according to (3.26) and (3.27), wherei = 0, 1, ..., K,, withv € (s, f). Remark
the here we have introduced the most essential parameter a, that represents
the desired output (trajectory) of the solution, as given in (3.20) and (3.21).

5. Hybrid Invariance.
As established in (3.31), we need the HZD condition to reduce the complexity
of stability analysis from the full-order system to the passive dynamics on the

hybrid zero dynamics manifold Z,. Formally,

y2,v(x1(;)a a’v) = )"2,V(X(V), 568, a’v) =0

Yo, (f, @) = Yo, (i @) =0 Vvev (C.5)

which is a boundary condition.
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We now introduce constraints that are essential to robotics and legged locomotion.

6. Feasibility Conditions.
We can use some optimization algorithm, such as direct collocation with
(C.1)—(C.5), to find a solution to a dynamical system. However, these
solutions might not be feasibly realizable on hardware. For example, although
a solution x(z), t € [0, T] satisfies x(#) = f(x(t)), there is no guarantee that
this trajectory will not penetrate an obstacle on in the way. We can use a
set of feasibility conditions (also known as path constraint) to enforce these
conditions. These conditions include the electric motors’ torque saturation,
each joint’s feasible workspace that is specified by the hardware limitation,

given by

ui

IA
IA

—Umax Umax,

IA
IA

Amin Amax>

g
—Vmax = ql =< Vmax-
We also need to enforce the friction pyramid condition! to prevent the stance

feet from slipping on the ground. Then, these conditions can be configured in

the following condition:

Wwel, xeX
uF.(x',u’) = |Fe(x',u’)| > 0 Vie (0,1,...,K,), YveV (C.6)
IUFZ(xi’ ui) - |Fy(xi’ ul)l 2 0

where p is the static friction coeflicient, and F{.) is the ground reaction force

along certain axis.

Remark that for experimental success, these conditions can often be manually
tuned to be more restrictive, for example, a smaller friction constant and a
smaller torque bound can give the actuator more “freedom to save” the robot

from failures under disturbance and uncertainty.

7. Foot clearance.
For legged locomotion, ground clearance for the nonstance foot is necessary.
This is a heuristic constraint that users normally need to tune to get a “natural-

looking” gait eventually. Denote the height of the nonstance foot (or feet,

' A computationally efficient but more restrictive version of the friction cone condition.
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sometime there can be two feet in the air, such as the flight phase) as /gt . (g),
we can specify a lower bound /! () for v € V. The foot clearance conditions

become:

RL(t1) = hust 2 (¢) <0, Vie (0,1,...,K,), Vv eV. (C.7)

We now have completed the optimization formulation for finding a solution to the

closed-loop dynamics of a running bipedal robot. Formally,
argmin J(X) (3.33)
X

st. (C.1) Z,(x,u,)=0 Yv eV
(C2) x{ = Alesi](x") =0
(C3) x!—A[f > s]Rx =0

viv(X,x)+& x,vg) =0
4 V1w (X, %) + ey (x,va)

o (%, %) + 2832, (x) + £2y2,(x, @) = 0

(C5) ¥, =y, =35,=¥5.=0 VYveV
uel, x'eX

(C.6) 3 uF,(x',u’) —|Fe(xi,u’)] >0  Vie(0,1,...,K,), VveV
pF, (X uf) = |Fy(x', u’)| = 0

(C.7) RL(1) = hugt2(¢") <0, Vie(0,1,...,K,), Vv eV

where J(X) is the cost function. A common choice is the total energy consumption,
given as Zf\; 0 <Bui .q' > With this formulation, we can employ some optimization
tools such as TPOPT (Wichter and Biegler, 2006) to solve the gait parameters «,

and initial condition x(0).

We now apply this gait generation method to two behaviors: studying the energy

efficiency of running motion and realizing bipedal walking on slippery surfaces.

Towards High-Energy Efficiency of Running

Marc Raibert’s technical report “Dynamically Stable Legged Locomotion, 1989”
(M. H. Raibert et al., n.d.) summarized that “the running speed of a legged system
depends upon the frequency and length of its steps” based on the study of his
legendary hopper. To better understand this phenomenon in 3D bipedal-legged
systems, this section documents a statistical result based on the stable running

gaits obtained from an optimization-based gait generation framework, i.e., how the
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optimizer should respond when asked to generate faster gaits to maximize its energy
efficiency. Bipedal running is an essential benchmark for humanoid control for
many mathematical and practical reasons. Unlike walking, running is an inherently
underactuated control problem (M. Spong, 1998). Whenever the robot leaves the
ground, it fundamentally loses its ability to actuate all degrees of freedom and is at
the mercy of its ballistic trajectory. It is also a multi-domain hybrid control problem
(H. Zhao et al., 2016). Further, the high power demands push the practical limits
of humanoid actuators. This section presents 3D running via hybrid zero dynamics
(HZD) (A. D. Ames, 2014; E. R. Westervelt, J. W. Grizzle, C. Chevallereau, et al.,
2007) on a simulated underactuated model of the humanoid robot, DURUS. The
running gaits emerge from a large-scale gait optimization of the full-order system
dynamics, a previously developed tool for 3D walking with the DURUS hardware
(Ayonga Hereid, Eric. Cousineau, et al., 2016). We report the success of this toolset

as a milestone toward 3D running.

The earliest example of running controllers was developed using a set of highly
successful heuristics. Examples include the Raibert hoppers (M. H. Raibert et
al., n.d.) and the ARL-Monopod II (Ahmadi and Buehler, 2006). Decades later,
Honda’s humanoid robot, ASIMO (Sakagami et al., 2002), claims running speeds up
to 2.5 m/s without revealing its control method. Other methods have been employed
to achieve stable running in simulation by constraining the robot’s dynamics to a
reduced-order model (W. C. Martin, Wu, and Geyer, 2015) and even achieving
simulated high-speed turning (Wensing and D. Orin, 2014). Researchers have
also generated running gaits for simulated robots with various degrees of freedom.
From simple point-mass models (Srinivasan and Ruina, 2006) to planar hopping
models (Xi, Yesilevskiy, and Remy, 2015) to planar humanoid models (Mombaur,
2009) (which even certify stability inside the optimization). Recent work optimized
an ATLAS model for 3D locomotion by reasoning about the centroidal dynamics
(Hongkai Dai, Valenzuela, and Russ Tedrake, 2014). Graphics researchers even
successfully created 3D running controllers after running an extensive evolutionary
algorithm (Geijtenbeek, Panne, and Stappen, 2013). Here, we seek a method that
generates optimal running gaits within the hybrid zero dynamics framework to

leverage its formal guarantees regarding stability.

In an effort to embrace underactuation in locomotion with formal control methods,
hybrid zero dynamics (HZD) was developed on multiple successful robotic walking
implementations (H. Park et al., 2012; A. D. Ames, 2014). It was ultimately imple-
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mented to produce planar running on the spring-legged robot, MABEL (Sreenath,
H.-W. Park, I. Poulakakis, and J. Grizzle, 2013), and is being extended to non-planar
cases (Kaveh Akbari Hamed and Jessy W. Grizzle, 2013). While there are formal
mathematical underpinnings to HZD, practical implementation requires a gait op-
timization which considers the full-order dynamics of the system. Traditionally,
these gait optimizations have become increasingly unreliable with robots as com-
plex as humanoids. In prior work, the authors presented a collocation-based HZD
optimization formulation to produce stable 3D humanoid walking (Ayonga Hereid,
Eric. Cousineau, et al., 2016). Here, we further extend this approach to 3D running
on DURUS. Moreover, we show that the optimization is sufficiently reliable that
we generated 25 gaits at various running speeds. This library of 3D gaits allows
us, for the first time, to observe trends in energy costs and running strategies in
humanoid running. Prior work has given physical insight into mechanisms of speed
adjustment, such as step length and step frequency (M. H. Raibert et al., n.d.).
Here, we can assess whether these strategies manifest when optimizing 3D running
with humanoid complexity. We also present a cost-of-transport vs. speed curve for
3D running, commonly reported in animal locomotion studies, which we can now

tractably generate for humanoid running.

With the proposed optimization method, we generated multiple stable 3D running
gaits for DURUS with velocities varying from 1.5 m/s to 3.0 m/s. This section will
focus on one of the simulated running gaits in detail first, then the statistical analysis

of the NLP performance, and all of the running gaits will be summarized.

G(rad/s)

O
G(rad/s)
=

-0.4 -0.2 0 0.2 -1 -0.5 0 0.5 1
q(rad) q(rad)
— b — ¢ o3 — % — b Oun
— Y buw O — O 01 bla —Tis

Figure 3.3: Limit cycle of running at 2.0 m/s over 20 steps.

Running at 2 m/s. With the constraints configured as explained in (3.33) and the
large-scale IPOPT NLP solver developed by COIN-OR, a 3D running gait is solved
after 722 iterations and 374 seconds of computation, with dual infeasibility con-

verged to 9.0 x 107*, and constraints violation 1.8 x 10~7. This particular gait runs



42

at 2.0 m/s. Note that we categorize each running gait based on the x component of
the COM velocity during the flight domain. The specific cost of transport (SCOT)
(Collins et al., 2005b) is calculated in simulation as 0.90, the maximum angular
velocity of all joints is 4.4 rad/s, peak torque is 446 N m, and peak power is 1.1
kW. A running tile is shown in Fig. 3.4, the limit cycle of each joint is also shown
in Fig. 3.3. Only one leg is shown because of the symmetric motion. We have
verified the stability of this running gait by numerically computing the eigenval-
ues of the linearization of the Poincarémap that is restricted to the zero dynamics
about the Poincarésection where p; = 0. The magnitude of its eigenvalues are
[0.414,0.083,0.031,0.006,0.000]. All values smaller than 1 indicate asymptotic
stability obtained from this running framework (see (Morris and J. W. Grizzle,
2005) for details).

Figure 3.4: Snapshots of the DURUS running at 2.0 m/s.

Efficient 3D Running Gaits Generation. We now present a working framework to

generate stable running gaits for 3D bipedal robots reliably and efficiently (see
(Wen-Loong Ma, 2016b) for the simulated running). For the 25 gaits that the
optimization found, we documented the computation time and iterations it needs
(see Fig. 3.5). As aresult, it takes 609 iterations and 323 seconds on average for the
optimizer to find a feasible solution?. Note that the threshold of the dual infeasibility
of the NLP is set to be 1072. The number of grid points is chosen to be 15 for both
the stance and flight domains. All constraints and physical limitations are configured

based on the hardware capability, and the constraint violation converged below 107°.

A significant benefit of this method’s computational efficiency is that it offers the
flexibility to refine the running behavior and adjust the model parameters in practice,
paving the way to actual experimental realizations. In practice, however, generating
candidate gaits reliably will requires some minor heuristic tweaks to the constraints.

For instance, by simply modifying the forward velocity constraint and fine-tuning

2 This algorithm runs on a Ubuntu14.04 machine, equipped with an Intel® Xeon® processor
E3-1246 V3 and 32 GB of RAM.
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Figure 3.5: The computation performance for generating gaits at each running
velocity.

a few constraints to adjust the running appearance, the suggested gait generation

method can find running gaits that satisfy all the physical limitations reliably.

Once a reliably solvable formulation is engineered, we can solve for many gaits and
inspect the solutions for trends in energy-efficient locomotion. The Specific Cost of
Transport, which quantifies the energy efficiency of transportation, is embedded as
the objective by the optimizer. Notably, as shown in Fig. 3.6 (a), for a faster running
gait, the optimization tended to generate gaits with higher SCOT, which aligns with
the sense that for a particular running pattern, faster locomotion requires greater
energy cost. Further, as shown in Fig. 3.6 (c) and Fig. 3.6 (b), when the optimizer
is commanded to find incrementally faster gaits (while still minimizing SCOT), the
optimizer increases both the running frequency and step length to achieve a faster
running speed, which agrees with Raibert’s hypothesis and indicates that both are

key factors to fast running (M. H. Raibert et al., n.d.).
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Figure 3.6: Multiple running gaits with forward velocity from 1.5 m/s to 3.0 m/s.

Dynamic Walking with Planned Slippage
Tremendous progress in realizing robust bipedal robot locomotion has been achieved

in the last decade. This is in part due to the successful combination of theoretical
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modeling and analysis using the framework of hybrid systems (A. Ames, 2014;
Jessy W. Grizzle et al., 2014), application of advanced methods of nonlinear control
(Khalil, 2002; E. R. Westervelt, J. W. Grizzle, Chevallereau, et al., 2007), as well as
careful mechanical design and hardware implementation on various experimental
platforms such as AMBER-3M (Ambrose, W. Ma, C. Hubicki, et al., 2017), DURUS
(J.P.Reheretal., 2016), and Cassie (Daet al., 2016). Underlying these results, along
with the successes for robots using other paradigms such as ZMP (Vulobratoci¢ and
B. Borovac, 2004; R. Tedrake et al., 2015) and spring-loaded inverted pendulum
(SLIP) based models (Ioannis Poulakakis and Grizzle, 2007; Vejdani et al., 2015),
is the assumption that the foot does not slip. Thus, in all of these cases, the
foot acts as a stationary pivot point. While this assumption may easily hold in
sterile laboratory environments where the floors can be chosen with sufficiently
high friction, it becomes impractical on natural outdoor terrains; wherein there is a
plethora of slippery or slightly granulated irregular surfaces. Success in challenging
the stationary contact point assumption includes multi-contact walking (H.-H. Zhao
et al., 2014) and bipedal running (Wen-Loong Ma, Shishir Kolathaya, et al., 2017;
Sreenath, H.-W. Park, 1. Poulakakis, and J. Grizzle, 2013).

Figure 3.7: Slippage in the beginning of a step: pre-slip on the left and post-slip on
the right.

The section aims to address this fundamental assumption of no slippage by em-
bracing its violation while still demonstrating the ability to achieve stable walking
experimentally. In legged robots, foot slippage is often treated as an external dis-
turbance which should be avoided at the gait planning stage (T.-H. Chang and
Hurmuzlu, 1993; Shuuji Kajita et al., 2004), or detected and recovered in real-time

by feedback control at the experimental implementation stage (Kaneko et al., 2005;
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Viazquez and Velasco-Villa, 2013). Some of the most famous examples are Boston
Dynamics’ robots BigDog (Big Dog Walking 2010) and SpotMini (Spotmini Walk-
ing 2016) successfully recovering from slippage. Conversely, legged animals across
a wide range of scales show impressive adaptability to slippery surfaces on natural
terrains. Stick insects when confronted with a slippery surface modulate their motor
outputs to produce normal walking gaits, despite a drastic change in the loads that
these limbs experience (Gruhn, Zehl, and Biischges, 2009). Slippage in the bipedal
running of Guinea fowl has been studied in (Clark and Higham, 2011), showing that
falling on slippery surfaces is a strong function of both speed and limb posture at
touchdown. Several works in human biomechanics literature study the conditions
that cause slipping (Moyer et al., 2006), its consequences (Tinetti and Williams,
1997) and dynamics (Strandberg and Lanshammar, 1981). Finally, (Spence et al.,
2007) has measured feet motion in galloping gaits of horses on outdoor racing

terrains and found a significant phase of hoof slippage.

Recent theoretical work has incorporated slippage into classic simple planar models
of legged locomotion both in passive dynamics and actuated walking — the rimless
wheel (Gamus and Yizhar Or, 2015), compass biped (Gamus and Yizhar Or, 2015;
Gamus and Yizhar Or, 2013), and SLIP (Yizhar Or and Moravia, 2016). The
models use Coulomb’s friction law and account for stick-slip transitions and friction-
bounded inelastic impacts, which add complexity to the system’s multi-domain
hybrid dynamics. By investigating the influence of friction on both passive dynamics
down a slope and open-loop actuated walking, it has been found in (Gamus and
Yizhar Or, 2015; Gamus and Yizhar Or, 2013) that upon decreasing the friction
coeflicient, periodic solutions with stick-slip transitions begin to evolve while their
orbital stability decreases until reaching stability loss when the friction is too low.
Nonetheless, stability can be recovered when adding simple PD control to track a
reference trajectory. In addition, it has been found in (Gamus and Yizhar Or, 2015;
Gamus and Yizhar Or, 2013; Yizhar Or and Moravia, 2016) that periodic solutions
with slipping impact showed a significant reduction in the energetic cost of transport
compared to their no-slip counterparts. Yet, these promising theoretical results have

never been tested and implemented experimentally on legged robots.

In this section, we bridge this gap by presenting an experimental realization of stable

planar bipedal robotic walking on a slippery surface.

About the Robot. For the bipedal robot AMBER3-PF (PF is short for point foot,

see Fig. 3.8), the configuration space is chosen as ¢ € Q C R", where n is the
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number of unconstrained degrees of freedom (DOF), i.e. without considering
contact constraints. Using the floating base convention, we have g = (qp,q;),
where ¢, € R? is the global coordinate of the body-fixed frame attached to the
base linkage (torso), and ¢; € R* is the local coordinate representing rotational
joint angles. For planar walking on AMBER3-PF, it is chosen as g, = (px, py, 6,),
where py, p, are the Cartesian positions of the torso and 6, is the angle between
the torso and world. The local coordinates are chosen as q; = (gsk, Gshs Gnsh> Gnsk)
each representing the stance knee, stance hip, non-stance hip, and non-stance knee
joint angle. Further, the continuous-time state space X = TQ C R?" has coordinates
x=1(q",¢")". The controlinputs u € U C R represents the actuator torques, with
m the total number of motors. For AMBER3-PF, we have 4 motors on both knee
and hip joints. This indicates under-actuated dynamics for AMBER-3M walking.

[Pz, D2, 0y)
S

Figure 3.8: On the left: The AMBER-3M with point foot, constrained to a planar rail
to walk in a 2D environment on a treadmill. On the right: the model’s configuration
coordinates, with 3 global coordinates and 4 local coordinates.

Continuous-time Dynamics for Stick/Slip Domains. The kinematic constraint of zero

normal displacement of the stance foot reads as z;(¢) = 0. An additional no-slip
constraint in tangential direction occurs only in the stick domain, and is given by
xs(q) = xo. For a particular continuous domain (q,q) € D,, as introduced in

Sec. 2.6 and Fig. 2.5 (b), the dynamics is formulated as

D(q)G+H(q,q) = Bu+J] (@), +J] (q)4; (3.34)
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where D(q), H(q, q), B(g) are given by the physical parameters of the robot and
thus remain the same across all continuous domains. In addition, the Jacobian

matrices (constraint gradient vectors) in (3.3) are defined as

dx4(q) dz5(q)

JX = )
(q) 94 94

and J,(q) =

and A,, A, are the tangential and normal forces enforcing the contact constraints. In
the domain of sticking contact, expressions for the contact forces can be obtained

by augmenting the second time-derivative of the holonomic constraints:

Jo(q) )
Jz(‘]) .

Eliminating § from (3.34) and substituting into (3.35), one can solve for the constraint

J(q,9)g+J(q)§ =0, whereJ(q) = ( (3.35)

forces under sticking contact (cf. (R. M. Murray et al., 1994; Gamus and Yizhar Or,
2015)):
( ¢
A2

where the dependencies on ¢, ¢, u in (3.36) are suppressed for brevity. The forces

= (JD_l.IT)_I (JD‘l(H — Bu) — J'q) , (3.36)

must satisfy Coulomb’s inequality of dry friction:

12%(q, ¢, u)| < u%q, 4, u), (3.37)

where u is the coefficient of friction. When u is too low (u < 0.1 is assumed in
this section), slippage of the stance foot in tangential direction begins to evolve,
Xs = Jxg # 0. In this case, the equation of motion (3.34) still holds while the
tangential constraint in (3.35) is no longer valid. Instead, the following two equations
should be augmented with (3.34):

J:(q,9)¢ +J.(q)d =0, (3.38)
Ay = —sgn(Xs)ud;. (3.39)

The tangential force during slippage reaches its maximal magnitude while oppos-
ing the slip direction. Note that we do not distinguish here between static and
dynamic friction coefficients for simplicity. Combining (3.34) and (3.38) to obtain

expressions for the constraint forces during slippage (Gamus and Yizhar Or, 2015):

124,40 = (107 (0 ~sgn(i)ud)T) (1070 - By~ Jed), (3.40)

A3(q, g, u) = —sgn(xy)uA;. (3.41)
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The inequality constraints for slippage are 4, > 0 and x; # 0. Finally, in both
domains the non-stance foot must stay above the ground, z,;(g) > 0. Additionally,
for a particular domain v € {0, s}, we can convert the dynamics (3.34) and constraint

forces in (3.36) or (3.40) into an affine control system in the state space as:

x=f(x)+g,(x)u Vx € D,. (3.42)

Discrete Dynamics. The reset maps associated with non-impacting transitions A[eg—s],

Ales—o], Ales—s] are simply an identity matrix: x* = x~, where x~, x* are the pre-
event and post-event states. This means that the transition is smooth in state space.
In the case of collision of the non-stance foot, the transition involves impact which
induces an instantaneous velocity jump ¢* = A[e]¢~. The impulse-momentum

balance reads as follows

D(qo)(§" = 47) =J(qe)A = Jx(qe) "Ax +J2(qe) T A, (3.43)

where ¢, is the robot’s configuration at collision and A = (A,, A;)" are tangential
and normal impulses at the colliding foot. (Note that one has to interchange the
stance and non-stance variables right before impact, so that J,, J, are associated
with velocities of the colliding foot.) The commonly used model is that of perfectly
inelastic impact. Assuming zero tangential and normal contact velocities at the
post-impact state gives J(g.)g* = 0. Combining this with (3.43), one obtains the

contact impulse and post-impact velocity as:

AV =

Ag -1 37\-17.—
o | =D
Z

gt = (I - D—1JT(JD‘1JT)—1J) i

where I is the identity matrix and D, J are evaluated at ¢ = g.. This is the sticking
impact law, associated with reset maps A[e] for transition edges e(’)_)o, e§—>0' This
solution holds only if the impulses satisfy the frictional inequality |A?| < ,uAg.
Otherwise, a slipping impact occurs where J,g* = 0 while J,4* # 0. The impulses
are thus related as A, = —sgn(Jy(g.)g")uA,. Combining this with (3.43), one

obtains:
A=~ DTN g

gt = (1 - D‘lfr(JZD‘lfT)‘lJZ) g
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where J = J, —sgn(J,(q.)¢")uJy. This slipping impact law is associated with reset

1 1

maps A[e] for transition edges e, , , €.

Trajectory Optimization. To generate a slippery walking gait, we formulate this

control problem as an implicit trajectory optimization problem. As was done in
(3.33), we have

i Tu; =0,1,2,..K 44
i Zulu i=0,1,2, (3.44)

s.t.  (C.1)-(C.7)
C.8 slipping feasibility

with K the total number of collocation points, and the target is to minimize torque
inputs. To yield a slipping gait, we additionally include feasibility constraints (C.8)
from definitions in (2.28). In our formulation, we pre-specified a specific ordered
sequence of transitions, indicated by the red line in Fig. 3.6 (b). Additionally, since
a smoother state trajectory is preferred for experiment robustness, we further forced
the static parameters to be the same across all domains. It is worthwhile to mention,
this constraint is feasible if and only if the transition between domains within one
step does not involve any jump in states. This yields a uniform trajectory for the

multi-domain walking dynamics.

Optimal Gaits. Solving the optimization problem (3.44), we obtained a two-domain
slippery walking gait with slippage on the stance foot 3 cm, shown with snapshots
in Fig. 3.7. The MCOT" from optimization is given as 0.001. The positive only
mechanical cost of transport is calculated using

pt

mgv

MCOT* =

(3.45)

with m the total mass, g the gravitational acceleration, v the average walking speed,
and P* is the mean value of P™ = {P;r}f.il with i € {1,2,3...N} and N is the total
number of sample points. The positive only power at sample time #; is computed by
P = 2:1 max (u;(k) - ¢;(k),0), with u; € R* and ¢; € R* torques and velocities

of the actuated joints at time ¢;.

For a fair comparison against sticky walking, we simulate the slippery gait-based
controller in a sticky environment, i.e., the ground has a much higher friction
coefficient so that no slipping can happen. After 20 ~ 30 steps, the walking
converged into a new stable patten. with MCOT™ being 0.0024. which is 140% less

energy efficient than walking on a slippery surface. Further at its steady state, the
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non-stance foot’s velocities changed from (0.563, —0.359)m/s to (0, 0)m/s through
the sticky impact. The body kinetic energy changed from 6.87J to 5.84J. However,
the original optimal slippery gait has a non-stance foot impact velocity changing
from (0.371, -0.237)m/s to (0.251, 0)m/s, and kinetic energy changing from 3.00J
to 2.63J. This agrees with the theories on energy efficiency in (Gamus and Yizhar
Or, 2015).

Experiment. AMBER-3M is a modular testbed to study planar bipedal locomotions.
Its robustness and durability were validated in multiple experiments (Ambrose, W.
Ma, C. Hubicki, et al., 2017; Tabuada et al., 2017). In this section, we particularly
studied the slippery walking behavior on the point foot version (with total mass
21.6kg). As detailed in (Ambrose, W. Ma, C. Hubicki, et al., 2017), planar walking
is achieved by constraining the robot on a planar rail structure and walking on a

treadmill (Fig. 3.7). Further experimental details will be presented in this section.

To begin, we placed a demonstration walking gait designed for a sticky surface
on a slippery surface covered by some lubricant. This gait has been shown to be
robust over countless trials via public demonstrations, and it seldom fell, i.e., loss
of stability. However, a few drops of lubricant easily disabled its walking capability.
To clarify, we consider falling and hitting the mechanical limits of the testbed both
as failures. Later, we conducted four different experimental setups. For experiment
1,2, and 3, we increased the amount of lubricant on the treadmill to induce different
slippery walking behaviors and completely removed the lubricant for experiment Q.
For each fixed environmental setup, we manually increased the treadmill speed to
trigger different walking speeds on the slippery surface. We logged 50 seconds’
data (sampling period 3 ms) for each experiment to calculate the energy economy.
Fig. 3.10 shows the phase portrait for experiment 3 which has the most slippery
surface. The resultis AMBER-3M is capable of walking stably on different slipping
conditions, including on a sticky surface, proving its robustness and adaptability
to uncertainties induced by differences between simulation and experiment. See

(Wen-Loong Ma, 2019a) for the walking on slippery surfaces.

Energy Economy. Previous research (Ambrose, W. Ma, C. Hubicki, et al., 2017) on

AMBER-3M with a circular boom has benchmarked the energy economy of walking
controllers. In this research, due to the slippage of stance foot, it became too noisy
to measure the movement of the center of mass. In this work, we used the measure
(3.45) for MCOT™. See Fig. 3.11 for the energy results. Note that we only provide

positive only power because AMBER-3M’s hardware cannot do power-regeneration
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Figure 3.9: Snapshots of one slippery walking step from Experiment 3. In the
first three pictures, the left foot (stance foot) is slipping smoothly on the lubricated
treadmill.

—sk —sh —nsh —nsk

2

(rad/s)
?(rad/s)

-04  -0.2 0 0.2 0.4 0.6
O(rad)

—sk —sh —nsh —nsk

(rad/s)
é(rad/s)

-2
-0.4  -0.2 0 0.2 0.4 0.6
O(rad)

Figure 3.10: Phase portrait of 50 seconds’ experimental data from Experiment 3,
with walking speed (from left to right): 0.26m/s, 0.3m/s, 0.38m/s, 0.42m/s. Solid
lines are for the desired values and dashed lines are for the actual measurements.

of the negative work.

While the energy efficiency Fig. 3.11 seems better than (Ambrose, W. Ma, C.
Hubicki, et al., 2017), our measure shows experiment energy efficiency is ~ 10 times
worse than simulation, and the efficiency on different surfaces does not vary as much
as simulation data. This is not only caused by different external environments such
as inconsistency of the lubricated treadmill and real-world uncertainties, but we posit

the dominance of the M COT™* by nominal energy usage of the robot. That is, due to
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Figure 3.11: MCOT™ of the experiments on AMEBR-3M. Those not included for
certain speeds are failed experiments.

Figure 3.12: The spring-legged planar running biped, DURUS-2D, during take off
(left) and while airborne (right).

the order of magnitude difference in the simulation and experimental MCOT?, the
comparatively small fluctuations in the MCOT between different walking cannot be
observed with the current experimental setup. Therefore, it is necessary to study
differences in the MCOT™ between slipping and nominal gaits wherein changes
in energy usage can be isolated from nominal energy usage and the effects of the

environment on the cost of transport.

3.4 Bipedal Running with Input to State Stability
The task of controlling the bipedal robots is often a precarious balance between
maintaining formal stability guarantees and expanding control capabilities. This

duality has been present since the genesis of bipedal control. Beginning in the
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1960’s, Zero Moment Point (Vukobratovic and Branislav Borovac, 2004) methods
were the original foundation of formal biped control. Still, its validity required
significant restrictions on the dynamics of the robot (fully-actuated flat-footed con-
tact). In contrast, the Raibert hoppers (M. Raibert and Tello, 1986) exhibited agile
bounces and flips that remain impressive today. But their control was built without
the a priori confidence of formal methods. Research over the following decades
has considerably narrowed this formality gap, with formal approaches rising to the
challenge of underactuation (Manchester et al., 2011; H. Park et al., 2012; Sreenath,
H.-W. Park, 1. Poulakakis, and J. Grizzle, 2013; Ayonga Hereid, Eric. Cousineau,
etal., 2016) and highly dynamic robots incorporating formal analysis in their control
(Bhounsule et al., 2014; Rezazadeh et al., 2015).

Bipedal robotic running, despite the decades that have passed since Raibert’s hopper,
remains an extremely difficult control problem. Very few control methodologies
have been presented that lead to experimental success with prominent aerial phases
(Tamada et al., 2014; Sreenath, H.-W. Park, 1. Poulakakis, and J. Grizzle, 2013).
With an eye toward viewing bipedal running as a hybrid dynamical system: an
alternating sequence of stance and flight domains with instantaneous impacts in
between, the notion of hybrid zero dynamics (HZD) was used (J W Grizzle, Abba,
and Plestan, 2001; A. Ames, 2014; A. E. Martin, Post, and Schmiedeler, 2014a).

HZD, as previously introduced, operates on a principle of dimensional reduction,
aimed at simplifying the numerous degrees of freedom present in legged machines
while also allowing for underactuation. This framework was used to enable bipedal
running on MABEL (Sreenath, H.-W. Park, 1. Poulakakis, and J. Grizzle, 2013), a
pivotal demonstration showing the intersection of theory and experiment. However,
on top of the HZD framework used on MABEL, there are also important expert-
driven adjustments to the implementation, like the tuning of control loops, adding
feedforward trajectories, and online parameter update routines. One way to interpret
thisis: the gap between the assumed model and the experimental testbed necessitated
modifications in the control implementation needed to realize stable robotic running.
We seek to reduce further the need for this expert adjustment with formal stabilizing

controllers.

In this section, we will study this methodology on the DURUS-2D running robot.
First, using the optimization algorithm mentioned in Sec. 3.3, we find some periodic
solution to the closed-loop dynamics of running, which is stable in the sense of Lya-

punov. However, the resulting gait that was built upon an ideal model and precise
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sensing cannot guarantee experimental realization. Unlike theoretical simulation,
where most variables are either measurable or exclusively solvable, real-world ex-
periments suffer from a wide array of uncertainties. Indeed, uncertainties like
unmodeled dynamics, nonlinear stiffness properties, damping effects and actuators,
poor signal-to-noise ratio, and even deformations due to impacts are often observed.
Therefore, we not only seek a fast optimization approach that yields feasible solu-
tions under the assumed model but also a controller formally guaranteeing robustness
under real-world constraints. In this section, we use the notion of input to state sta-
bility (ISS) that captures the practical limitations of the actuator inputs in an elegant
manner. Specifically, we address the phase-based uncertainty that is typically a
high deterrence in tracking parameterized functions. Similar problems involving
inaccurate phase determinations were solved (Shishir Kolathaya, Ayonga Hereid,
and Aaron D Ames, 2016), where pure time-based parameterizations were used.
But this paper will construct time+state-based parameterizations to yield stronger
stability conditions. Note that, in order to realize running, a variety of uncertainties
need to be considered. So we will use the solutions from (Shishir Kolathaya and

D. A. Ames, 2016; Angeli, 1999) to account for the remaining uncertainties.

Figure 3.13: (a) The model of DURUS-2D with two linear springs; (b) the directed
cycle structure of the multi-domain hybrid system model for DURUS-2D running.

Robot and Hybrid Dynamics. Similar to the setup in Sec. 3.3, we have a hybrid

model for DURUS-2D running. As shown in Fig. 3.13a, the configuration space
Q c R", n =9, of DURUS-2D is defined as

q=(sfe,sfe esf, Tsp, Osis Oshs Onshs Onsic rnsp)T €Q,
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where sf, and sf, are the positions of the end points of the stance foot along x
and z directions, ry,, 7, are the deflections of the springs on stance and non-
stance legs, 65 are the joint angles of the stance foot, stance knee, stance hip,
nonstance hip, and nonstance knee. In addition, the control inputs are defined as
u = (Ugk, Ugh, Unshs Unsk) " € R¥, k = 4, which represent the torque applied at knee
and hip joints.

We have the same hybrid setting as those presented in (3.1) with a small modification
of the continuous dynamics. The Equation of Motion (EOM) over a continuous
domain D,, withv € V = (s, f), is determined by the Euler-Lagrange equation and

holonomic constraints

D(q)§+H(q,q) = Bu+J] (q)F,,
J(@)d +Jv(q,4)g =0, (3.46)

where J,,(¢) € R™™ is the Jacobian of the holonomic constraints 4,(g), and F,, € R™
i1s a wrench containing the constraint forces or moments, which can be explicitly
solved as a function of system states and inputs. The holonomic constraints for each

domain are defined as

hs(q) = (Sf;c’sfz’rnsp)—r =0,
he(q) 2 (FspsTasp) | =0, (3.47)

meaning, the stance foot must remain on the ground during the stance domain, and
stance and nonstance springs must be locked during the flight domain. Further, by
defining the state vector x = (g,¢) € R*", the EOM can be converted to an affine

control system, as given in (3.10).

We define the outputs (virtual constraint) of the system on a domain D,, v € V as

i) =y"(q) = y4(1), (3.48)

where the actual output is chosen as the four actuated joint angles:

ya(Q) = (gsk’ Oshs Onshs ensk)—r; (349)

and y? is the desired output represented by a set of fifth-order Bézier curves
yle = B(ay, 7).

Therefore, the output has relative degree two with respect to inputs.
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The phase variable 7, is used to modulates the desired outputs y¢. Normally, in order
to make the outputs purely state-based, we can have the phase variable 7, : Q — R,

purely a function of the robot configuration:

Osr — pt
7(q) = —L—, (3.50)
v v

with p7, p} the (desired) initial and final position of 6,y for O,. Although, it must
be noted that state-based modulation has implementation difficulties due to noisy
sensing of underactuated degrees of freedom of DURUS-2D. This motivates the use

of a time-based phase variable T, : Ry — R,

5
n() =) pit, (3.51)
i=0

where p; is a set of power series polynomial coefficients obtained by a curve fitting
from 7,(g) w.r.t. time ¢t. This has desirable stability properties under sensory

perturbations, which will be discussed later.

The method of finding some optimal gait parameter «, is then formulated as an
optimization problem subject to the multi-domain hybrid system model. As was
done in Sec. 3.3, we can produce some natural-looking running gaits for the bipedal
robot, DURUS-2D (Fig. 3.12), in 43 seconds from a zero initial guess. See Fig. 3.17.

State-Based Feedback Controller and Zero Dynamics. To drive the virtual constraints

(outputs) y,, — 0 exponentially for each domain D,,,v € V, we utilize the feedback

linearization control law:
-1 2
uy = (LgLsyv) (—L v+ uv) , (3.52)

with L the Lie derivative. Applying this control law yields the output dynamics
¥y = . Further, by picking u, as

Uy = —%yv - éyv, 0<ex<l, (3.53)
the virtual constraints will converge to zero exponentially at the rate 1/& > 0. Since
the number of virtual constraints is less than the degrees of freedom of the robot,
the uncontrolled states evolve according to the zero dynamics. In other words, we

have a set of states defined by the vector:

A y\/
ny =1.
|:yV

€ RZI(
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that are controllable, and the set of states defined by z,, that are uncontrollable and

normal to 7, for each domain D,. We can then reformulate (3.46) to the following

7y = Ok Lixk n + Okxk p
0k Ok | | Lk |

form:

— ~—
F G
2y = wy(y, 20), (3.54)

where w, is assumed Lipschitz continuous. The convergence of the outputs 1, can

be shown in terms of Lyapunov functions:

Vs(nv) = UIPEUV, (3.55)

where P, is the solution to the continuous time algebraic Riccati equation (CARE).
See (A. Ames, Galloway, et al., 2014a, eq(23)). By choosing u, (r7) from (3.53), we

have

VE < _ZVE
&

with y > 0 the constant obtained from the CARE.

Given the control law (3.53), the controllable states 7, are driven exponentially
to zero. In other words, the control law (3.52) renders the zero dynamics surface
exponentially stable and invariant over both continuous domains. However, due to
the impact dynamics at the end of each domain, the zero dynamics invariance is not
guaranteed. Therefore, the goal is to find a set of parameters @ = {as, ¢}, which
defines the desired outputs (3.48), to ensure there exists a periodic orbit and the zero

dynamics surface:

Zy=1{(q.9) € Dy | y,(q) =0,¥,(q,.q) =0}, veV,

is invariant through impacts, i.e., hybrid invariant. Mathematically, hybrid invari-

ance is represented as
ANZnS)cZi  MZinSy) c Zs. (3.56)

Feedback Linearization for Time-Based Outputs
By using the feedback control law given by (3.24) and (3.53), it can be shown
that with sufficiently small &, the output dynamics are exponentially driven to
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zero. In fact, (A. Ames, Galloway, et al., 2014a) shows that by picking a rapidly
exponentially stable control Lyapunov function (RES-CLF), locally exponentially
stable hybrid periodic orbits can be realized. However, in reality, due to the difficulty
in estimating the phase variable (3.50) (which depends on the un-actuated degrees
of freedom), a more robust controller is required that is less susceptible to the
noisy state feedback. Motivated by the time-based implementation of the tracking
controller in (Shishir Kolathaya, Ayonga Hereid, and Aaron D Ames, 2016; Jake
Reher, Wen-Loong Ma, and Aaron D. Ames, 2019), the goal of this section is to
construct a controller that uses a time-based instead of state-based desired trajectory

for robotic running.

For the ease of notations, we will omit the domain representations (the subscripts v)
in this section. If the state-based desired relative degree two outputs are functions
of g, y* : Q — RK, then the time-based desired outputs are functions of time
yh4 R, — Rk,

Following (3.51), we define the time-based output representation as follows:
(t,q) =y (q) =y (1)) . (3.57)
Taking the derivative of (3.57) twice, we have
(1,q) = L3y + LgLyy“u — 5, (3.58)

which is different from (3.23). Similar to the construction of state-based controller
(3.24), we would drive y — 0 exponentially. Therefore, the feedback controller that

linearizes the time-based output is given as
-1 .
ur = (LgLsy?) (—L;ya + 309+ ,Ll,) , (3.59)
where y; is the linear feedback applied after the feedback linearization. We can

either pick y; via a simple PD law:

2 1
M = __.).} - 2y7 (3'60)
& &

for some 0 < & < 1, or via an optimal control law through control Lyapunov
functions (CLFs). Nevertheless, using the time-based feedback linearizing controller

(3.59) reduces the nonlinear system X = f(x) + g(x)u to the normal form:

) [ Orxk  Lixk ] [ Ok
N = n: +

Mt
Okxk  Okxk Lixk
~— —— [ —
F G

Zr = wi(Mr, 21), (3.61)



59

which is similar to (3.54), but with the use of time-based outputs:
L |V
n:=1.
L’

Note that the zero dynamics coordinates, z;, evolve-based on time due to the depen-

e R%*,

dency on 7;. Accordingly, if the time-based transverse dynamics 7, are 0, we have
the zero dynamics z; = w;(0, z;). Convergence of the time-based outputs can be
ensured by picking an appropriate time-based control law (3.60). But this controller
does not necessarily ensure the convergence of the state-based outputs. We are in-
terested in the stability of the state-based transverse dynamics 17 = Fn; + Gu;, given
that the time-based control law is implemented on the robot. This implementation

can be seen in Fig. 3.14, which is different from Fig. 3.2.

yi(x(r)
3
¥ (1), 1)

- ¥ [y,3]
! ) iu,=(LRL/y")_1(~Lf2y"+'y""+;4,)]_' Running Biped |—

Plant

y4(x) Measufement
E’(x) (24 ]

//// Noise@impacts '—

Figure 3.14: A block diagram showing the time-based feedback control structure.

State-Based vs. Time-Based Control Laws. Given the controller (3.60) that drives

the time-based outputs 77, — 0, we will study the evolution of the state-based
outputs 1 in (3.54). By the assumption of Theorem 1 in (A. Ames, Galloway,
et al., 2014a), the controller yields an exponentially stable periodic orbit for hybrid
dynamics. Therefore, we will obtain conditions for the stability of this hybrid
periodic orbit when a time-based control law is applied. Picking the input (3.59) on

the dynamics of state-based output y, we have
¥ =L}y + LgLyyus,

V= L?y +LoLyyu+LgLyy(u; —u),
—_— —
é# 2d

¥=p+LeLpy |(LeLpy") ™ (=Liya+ 3 +p) = (LgLpy) ™ (=L + 1)
§=u+d, (3.62)
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where we can see that
d = LeLyy(LLpy") ™ (~L7y* + 5" + ) — p + L7y, (3.63)

is obtained by substituting for u,, u from (3.24) and (3.59). We can interpret (3.62)
as that, the stabilizing control input u(r) (which is state-based) should have been
applied, but instead, the time-based input u + d was applied to the state-based
output dynamics of y. Applying a time-based feedback control law completely
eliminated the dependency on the noisy phase variable 7(g), but the consequence
is the appearance of the disturbance input d. The expression for d can be further

simplified to

d(t, 4,4, G e, 1) = (pr — p) + (34 = 59). (3.64)

We know that, y¢ = y¢(7(q)) (for bipedal robots), and it can be observed that d
becomes small by minimizing the error #¢(7(¢)) — ¥(7(q)). Therefore d can be

termed time-phase uncertainty, or just phase uncertainty.

In the context of linear systems, it is important to have bounded state-based output
dynamics if d is bounded. Of course, the time-based outputs ; — 0. Denoting
the supremum of the uncertainty over time as ||d||.,, we can easily establish that a
bounded d results in bounded outputs y, y (or just 1), for the continuous dynamics.
However, due to the impact dynamics that are not just nonlinear but also extremely
destabilizing (the noisy impacts can be observed in the video (Wen-Loong Ma,
2016c¢)), output boundedness cannot be guaranteed for the hybrid dynamics. This
motivates using the notion of input to state stability to establish boundedness on the

state-based outputs for bipedal robotic running on DURUS-2D.

Going back to (3.62), we can substitute this formulation in (3.54), which results in
the following representation:
1=Fn+Gu+Gd
h=snT s (3.65)
t=w(n,z)
As mentioned before, we are free to pick u(n) (say (3.53)), since the actual control
input applied is time-based w;(n;) (from (3.60)) which is implicit in d. From the
point of view of the state-based outputs 77, we have the following representation

dynamics of the Lyapunov function, which is given in (3.55):

Ve=n"(F"Py+P.,F)n+2n" P.Gu+2n"P.Gd. (3.66)
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This is obtained by substituting (3.65) for 7. Using the linear feedback law u(n)
from (3.53), the following is obtained:

V. < —Lv, 42" P.Gd. (3.67)
E

It should be noted that even though the time-based controller leads to convergence of
time-based outputs y — 0, (3.67) extends it to state-based outputs y that are driven
exponentially to an ultimate bound; and this ultimate exponential bound is explicitly
derived from d, which is established via the notion of input to state stability (ISS),

which is given below.

Input-to-State Stability (ISS)
We will first introduce the basic definitions and results related to ISS for a general

nonlinear system and then focus on the running dynamics. See (Eduardo D Sontag,
2008) for a detailed survey on ISS.

Assume we have a general nonlinear system, represented in the following fashion:
X = f(x,d), (3.68)

with x taking values in Euclidean space R", the input d € R™ for some positive
integers n, m. The mapping f : R" X R”™ — R" is considered Lipschitz continuous

and
0=£(0,0).

It should be noted that in this system, we considered general dynamics f and general
inputs d. In the context of the robotic problem in this thesis, the construction is such
that a stabilizing controller u(x) has been applied (such as (3.24)), which results in a
closed-loop system f. Any deviation from this stabilizing controller can be viewed
as u(x) + d, with d being a new disturbance input. In the example of the linearized
system (3.65), a suitable stabilizing controller u(n) is applied and the effect of the
disturbance input d is analyzed. We assume that d takes values in the space of
all Lebesgue measurable functions: ||d||,, = ess. sup;solld(?)]| < oo, which can be
denoted as d € L.

Class Ko and K L functions. A class K function is a function @ : R, — R, which

is continuous, strictly increasing, unbounded, and satisfies @(0) = 0. And a class
K L function is a function 8 : Ry X R, — R, such that B(r,.) € K for each ¢ and
B(.,t) > 0ast — oo.
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We can now define ISS for the system (3.68).

Definition 8. The system (3.68) is input to state stable (ISS) if there exists 5 € KL,
t € K such that

lx(2, x0)| < B(lxol. 2) +¢(lldlloo),  Vx0, V1 20, (3.69)

and considered locally ISS, if this inequality is valid for an open ball of radius r,
X0 € Br(()).

Definition 9. The system (3.68) is exponentially input to state stable (e-1SS) if
there exists 8 € KL, 1 € K and a positive constant 4 > 0 such that

lx(,x0)| < B(|xol, £)e™ +1(lld|lo), Vo, Ve >0, (3.70)

and considered locally e-ISS, if the inequality (3.70) is valid for an open ball of
radius r, xg € B-(0).

Definition 10. The system is said to hold the asymptotic gain (AG) property if there

exists ¢ € K such that

lim; e [x(2, x0)| < e(|ld|l),  Vxo,d. (3.71)

Definition 11. The system is said to be zero stable if there exists 8 € KL such that:

lx(,x0)| < B(lxol,2),  Vxo,Vz > 0. (3.72)

ISS-Lyapunov functions. We can develop Lyapunov functions that satisfy the ISS

conditions and achieve the stability property.

Definition 12. A smooth function V : R" — R, is an ISS-Lyapunov function for
(3.68) if there exist functions a, @, @, t € K such that

a(lx]) < V(x) < a(lx])

V(x,d) < —a(lx]) for|x| = e(|ld]l)- (3.73)

The following lemma establishes the relationship between the ISS-Lyapunov func-
tion and the ISS of (3.68).

Lemma 1. The system (3.68) is ISS if and only if it admits a smooth ISS-Lyapunov

function.
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The proof of was given in (Eduardo D Sontag, 2008). In fact, the inequality can be

made stricter by using the exponential estimate:
V(x,d) < —cV(x) +u(||ld]ls), Vx,d. (3.74)

which is then called the e-ISS Lyapunov function.

Phase Uncertainty to State Stability (PSS)

Coming back to our discussion in (3.67), we now define the notion of phase to
state stability (PSS). Without loss of generality, we denote (7, z) = (1, 2,), and the
subscript v will be specified when a specific domain (s or f) is considered.

Definition 13. Assume a ball of radius r centered at the origin 0. The system given
by (3.65) is locally phase to n stable, if there exists 8 € KL, t € K such that

()] < B(nO)], 1) +(lldlle),  Yn(0) € B,(0),Vr 20, (3.75)

and it is locally PSS if

|(n(2), 2(1))] < B(I(n(0),2(0)], 1) + (lldll ), ¥n(0) € B,(0),Vz 2 0. (3.76)

Based on the asymptotic gain and zero stability property of the system (3.65) w.r.t.

the phase uncertainty d, we have the following lemma.
Lemma 2. Given the controller u(n) in (3.53), the system (3.65) is phase to n stable.

Proof. Based on the constructions of the Lyapunov function V; in (3.66), we have
the dynamics of the from (3.67):
V., <-Yv.+2"P.Gd
£

Y
< =ZVetZlnllIPell2 4]l

4
<-2Ve  for gl z —=ld]. (3.77)
g ycie
which is thus an ISS-Lyapunov function, as defined in (3.73). O

Time+state-based Control Law. We can also realize exponentially ultimate bound-

edness of the entire dynamics by appending a state-based linear feedback law to the
time-based feedback controller in (3.60):

ur = u; + (i, (3.78)
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which results in the following output dynamics in the place of (3.62):
V=p+d+LgLyyf. (3.79)

L, L ¢y canbe explicitly computed as Ly L ry = J D~ B, where D and B are obtained

from the generalized manipulator dynamics in (2.18), and

.
J = @y(q)

is the Jacobian of the outputs. Since D is invertible, it can be easily shown that
J D' Bis invertible. By applying the controller (3.78), the full-order system (3.65)
will have an extra input # that yields:

n=Fn+Gu+Gd+GJID 'Bji

) (3.80)
Z=w(n,z)
then (3.67) gets reformulated as
V. < —%vg + 20T P.Gd + 27" P.GID B (3.81)
By picking a control law for the auxiliary input:
fi= —%é(JD_lé)_lGTPsn, (3.82)
we have the following simplification of (3.81):
V, < —%vg + 20" P.Gd - énTPgGGTPgn. (3.83)

Therefore, by defining the positive semi-definite function
Voe(n) =n"P.GG" P.n,

we can pick € small enough to cancel the effect of phase uncertainty on the dynamics.
Lemma 2 can now be redefined to obtain exponential ultimate boundedness for the

new control input (3.78).

Lemma 3. Given the controllers u(n) in (3.53), and i(n) in (3.82), the system
(3.80) is exponentially phase to n stable w.r.t. the input disturbance d € L™.

Proof. We again pick the derivative of the Lyapunov function V, resulting in

. 1
V. <-Yv, - 2y"P.GG P.n+21"P.Gd
E E
.
<Yy, forinl =z Z2dl, (3.84)
< 22

1
which satisfies the exponential estimate given by (3.74). O
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Periodic Orbit. Now Lemma 3 can be extended to include the uncontrolled states z

given that they are stable on the zero dynamics manifold. LetY c R, Z c R2("5),
and ¢,(n, z) be the flow of the dynamics in (3.80) with the initial condition:

(n.2) €Y x Z;
And let the flow ¢, be periodic with the period T, > 0, and a fixed point (n*, z*) if
¢r.(n".2") = (0", 2").
Associated with the periodic flow is the periodic orbit defined as
O={¢:(n",2")eYxZZ|0<t<T.}. (3.85)
Similarly, we denote the flow of the zero dynamics
z=w(0,z) (3.86)

from (3.80) by ¢:|., and for a periodic flow we denote the corresponding periodic
orbit by O, = O|;. Due to the invariance of the zero dynamics (guaranteed by the

HZD condition in Sec. 3.3), we have the mapping O = 1((O,), where
w:Z—>YxZ

is the canonical embedding. For any (1, z), we can denote the distance from O as
II(n,2)|lo. We now have the following theorem to establish phase-to-state stability
of the periodic orbit O.

Theorem 1. Assume that the periodic orbit O, C Z is exponentially stable in
the zero dynamics. Given the controllers u(n) in (3.53), f(n) in (3.82) applied on
(3.80), that render the outputs exponential phase to n stable, then the periodic orbit

O obtained from the canonical embedding is exponentially phase to state stable.

Proof. By the converse Lyapunov theorems, we can construct a quadratic Lya-
punov function for the zero dynamics, V,(z) that satisfies the exponential inequality

constraints:

2 2
rillzll}, < Ve < rallzl..

Vz < -riV,,
ov.
2l < , 3.87
52| =7 llzllo, (3.87)
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where ||z|lp, = [1(0,2)]lp. We consider the following Lyapunov candidate for the

full-order dynamics
V(n,z) =oV:(2) +Ve(n). (3.88)

This Lyapunov function is quadratic and satisfies the boundedness properties. De-

note L, as the Lipschitz constant of w(-, z). We can take the derivative

. aV. .
V = O'—Z(J)(O, Z) + VS
0z
oV, avV. :
= O'—Z(,L)(O, Z) + O-_Z (U)(U, Z) - C()(O, Z)) + Vg
0z dz
2&cH

0%82

< —or3V +orsLgllzllo, lInll - %Vg, for [n| > lld]]co. (3.89)
The rest of the derivation follows (A. Ames, Galloway, et al., 2014a, Appendix
A.B), and the bounds on 7 are obtained from (3.84). By picking a suitable o, we

can render V, negative definite, which satisfies Lemma 1. O

This theorem has powerful implications due to the elimination of the noisy phase
variable estimation. This elimination affects tracking, which yields lower errors than
that for the noisy phase-based modulation. The time-based phase modulation is a
smooth and better candidate to replicate the unknown actual phase of the robot. This
methodology can be easily extended to all kinds of additive uncertainties observed
in hybrid systems in general. See (Shishir Kolathaya and D. A. Ames, 2016) for
the analysis on parameter uncertainty. Fig. 3.15 depicts the periodic orbit O and
the tube, which is defined by the bound 6,. This theorem means that by using a
time+state-based RES-CLF, any trajectory starting close to the tube will ultimately
enter the tube defined by &4 as long as ||d||,, < 4. This is also illustrated in
Fig. 3.16.

Simulation and Experimental Realization of Bipedal Running

With the optimal running gait generated (introduced in Sec. 3.3) and time-dependent
RES-CLF controller defined, we achieved sustainable robotic running. The goal of
this section is to describe the experimental setup and the control methods adopted
to realize stable running on DURUS-2D.

DURUS-2D Hardware. A popular approach for robotic running is to utilize the
spring-loaded inverted pendulum (SLIP) model (R. Blickhan, n.d.; Rezazadeh et

al., 2015), where the presence of springs allows for storing energy during high-speed
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Figure 3.15: Limit cycles of (a) simulation where time-based IO + state-based PD
controller was applied for 100 steps; (b) Simulation where white noise was added
to 7,(q); (c) Experimental data. Note the solid lines are the designated gait from
