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ABSTRACT

In crystals, atoms are arranged in a periodic manner in space. However in reality,
imperfections and instabilities exist and this repeated arrangement is never perfect.
The coupling between crystal defects, lattice instabilities, other defects like domain
walls and domain patterns, and material properties generates interesting phenomena
that can be leveraged on for future materials design. Nevertheless, the coupling
of different scales and processes also makes the modeling and understanding of
these materials an open challenge. This thesis examines these various aspects of
crystalline solids through the development of both physics-based and data-driven
computational models at the appropriate length scales.

Above-bandgap photovoltaic (PV) effect has been observed experimentally in multi-
domain ferroelectric perovskites, but the underlying working mechanisms are not
well understood. The first part of the thesis presents a device model to study the
role of ferroelectric domain walls in the observed PV effect. The model accounts
for the intricate interplay between ferroelectric polarization, space charges, photo-
generation, and electronic transport. When applied to bismuth ferrite, results show
a significant electric potential step across both 71° and 109° domain walls, which in
turn contributes to the PV effect. The domain-wall-driven PV effect is further shown
to be additive in nature, allowing for the possibility of generating the above-bandgap
voltage.

In the second part, we present a lattice model incorporating random fields and
long-range interactions where a frustrated state emerges at a specific composition,
but is suppressed elsewhere. The model is motivated by perovskite solid solutions,
and explains the phase diagram in such materials including the morphotropic phase
boundary (MPB) that plays a critical role in applications for its enhanced dielectric,
piezoelectric, and optical properties. Further, the model also suggests the possibility
of entirely new phenomena by exploiting MPBs.

The final part of the thesis focuses on constructing data-driven models from first
principles calculations, particularly density functional theory (DFT) for studying
crystalline materials. Specifically we propose an approach that exploits machine
learning to approximate electronic fields in crystalline solids subjected to defor-
mation. When demonstrated on magnesium—a promising light weight structural
material—ourmodel predicts the energy and electronic fields to the level of chemical
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accuracy, and it even captures lattice instabilities. This DFT-based machine learning
approach can be very useful in methods that require repeated DFT calculations of
unit cell subjected to strain, especially multi-resolution studies of crystal defects
and strain engineering that is emerging as a widely used method for tuning material
properties.
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C h a p t e r 1

INTRODUCTION

1.1 Imperfections and instabilities in crystals
Crystals are never perfect: imperfections and instabilities exist in crystalline solids.
Their presence not only results in distortions from the ideal and periodic arrangement
of atoms, but also defines various crystal properties.

Imperfections in crystals typicallymanifest as crystallographic defectswhich include
vacancies, dislocations, and grain boundaries. In ferroelectric (FE) or ferromagnetic
(FM) materials, there can further be two-dimensional defects called domain walls
that separate different FE or FM domains. These defects or imperfections occa-
sionally form characteristic patterns (Figure 1.1), but can also give rise to intriguing
mechanical, electrical, optical, and thermal properties in crystallline solids. For
example, grain orientations, sizes, and boundaries have a profound impact on ferro-
electric domain switching and electromechanical response of ferroelectric materials
[5–7]. Domain structures strongly influence the piezoelectric response and effec-
tive thermal conductivity of ferroelectrics, and are therefore engineered to improve
these properties [8–11]. Vacancies may interact with and pin domain walls, leading
to fatigue in ferroelectrics [12]. Vacancies also play a part in steady-state creep
and govern various other mechanical properties of metals including ductility, yield
strength, and hardness [13–15]. Similarly, dislocations govern the plastic deforma-
tions of materials [16]. In fact a recent article by Li and Lu discusses how a broad
range of mechanical properties can be realized in metals through defect engineering
– the careful manipulation and organization of these imperfections [17].

Certain defects like domain walls arise as a result of instabilities like phase trans-
formations. Ferroelectricity itself is driven by a structural instability of the high-
symmetry paraelectric phase that leads to the breaking of inversion symmetry and
hence a spontaneous polarization [18]. The complex ferroelectric domain pattern
of lead zirconate titanate in Figure 1.1(b) can also be viewed as the result of a
chemically-induced instability [19]. While these instabilities are inherent charac-
teristics of some materials, they can also be induced by other factors. For example,
ferroelectric instability can be induced in strontium titanate using epitaxial strain
[20] as well as in another perovskite oxide with the presence of oxygen vacancies
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(f)

(e)

Figure 1.1: Bright field transmission electron microscopy images of domain struc-
tures of PbZrxTi1−xO3 at varying compositions of (a) x = 0.4, (b) x = 0.5, (c)
x = 0.6, and (d) x = 0.95. (e) Optical microscope observation of a sixfold vortex-
antivortex domain structure of hexagonal rare-earth manganites. (f) Labyrinth
dislocation structure of fatigued copper single crystals. All figures are adapted
(with permission) from [1–3].

[19]. Metals can experience instabilities and undergo crystal structural transforma-
tion under various loading conditions or temperature change [21].

Understanding imperfections and instabilities in crystals as well as their relations
with materials properties allows us to ultimately control and exploit them to develop
novel materials with tantalizing properties.

1.2 Methods and challenges in modeling and simulation
For centuries, materials had been discovered and developed in a mostly serendipi-
tous manner. With advances in high-performance computing architecture in terms
of speed and storage, modeling and simulation offer a promising, systematic, and
convenient pathway to understanding, predicting, and designing materials. In par-
ticular, materials modeling allows us to access the atomic or nanoscale features and
isolate different mechanisms contributing to the behavior of materials, which can
prove challenging through experimental means.

Quantum mechanical methods such as density functional theory (DFT) allow us
to approximate solutions to the Schrödinger equation that governs the binding of
atoms or ions in different material systems, and hence predict various material
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properties [22]. In particular the DFT formulation that adopts plane wave basis and
pseudopotentials is very efficient in unit cell or supercell calculations and has been
widely used in the study of crystalline solids.

DFT calculations may not be computationally tractable in certain cases. This is
especially applicable to the study of crystal imperfections or inhomogeneities which
can no longer fit inside the unit cell or small supercell computational framework.
Other methods suitable for the larger scale may be more appropriate. For instance,
molecular dynamics (MD) and Monte Carlo (MC) methods can be very useful in
simulating and understanding microstructural phenomena at the atomic scale as well
as the dynamics of the systems [23]. Phase field methods offer a thermodynamically
consistent platform to incorporating interfaces, kinetics, and processes such as
diffusion and mass transport [24]. On the other hand, when other properties related
to constructions at the much larger continuum scale (e.g. mechanical properties) are
of interest, finite elementmethods (FEM) are typically adopted. In all thesemethods,
generating predictions with reasonable accuracy requires good input. These inputs
can come in the forms of interatomic potentials for MD, and atomistically informed
or empirically obtained constitutive relations for phase field and other models at
continuum level.

Some distinct phenomena of interest involve multiple processes or span across dif-
ferent spatial and temporal scales. Established models may be tailored to specific
aspects, but neglect other important features, or they may not be computationally
feasible for the larger-scale complex systems. This neccessitates the development of
newmodels with either different theoretical bases ormore efficient numerical formu-
lation and implementation. For example, one research work that will be discussed in
this thesis explores the effect of ferroelectric domain walls on the photovoltaic effect
– a seemingly unrelated phenomenon. Here we have to first identify the appropriate
processes or variables such as polarization, space charge, and photo-generation,
and then determine how we can integrate them in a thermodynamically consistent
manner instead of simply doing so with unfounded assumptions. Take the study of
defects in crystals as another example. Defects couple the quantum mechanics of
the defect core to the long-range elastic and electrostatic fields. It will be too costly
computationally to directly employ traditional DFT methods in this problem since
an enormous supercell will be needed for the slow decay of the electronic and elastic
fields around the defect core. On the other hand, simple finite element methods will
not be able to capture the quantum mechanical or atomistic effect. Methods such
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as coarse-graining quasicontinuum (QC) and MacroDFT have been developed to
bridge the different length scales [25–27]. We are motivated to investigate the possi-
bility of incorporating machine learning methods to further enable these large-scale
calculations.

1.3 Research objectives and organization of thesis
This thesis presents three distinct research studies in which computational models
are developed to understand domain walls, domain patterns, lattice instabilities,
crystal defects, and their effects in crystalline materials.

The first two studies focus on understanding interesting aspects of ferroelectric per-
ovskite oxides that have not had clear concensus amongst the scientific community
for years. In the first work, we are intrigued by the photovoltaic effect demonstrated
in multi-domain ferroelectric perovskites [28]. However since the experimental
discovery, there has been a long-standing debate on whether the effect should be
attributed to the ferroelectric domain walls or the bulk photovoltaic effect inherent
in noncentrosymmetric materials. We probe into the role of the domain walls in the
photovoltaic effect by developing a devicemodel at the continuum level that properly
accounts for the intricate interplay between ferroelectric polarization, space charges,
photo-generation, and electronic transport.

In the second work, we study perovskite solutions and the phase diagram in such
materials including the morphotropic phase boundary (MPB) that plays a criti-
cal role in applications for its enhanced dielectric, piezoelectric, and ferroelectric
properties. There has been great interest in understanding the underlying crystal
structure at the MPB, but no clear agreement has been reached so far among the
different research groups [29–33]. Another interesting and closely related aspect
of the subject concerns the complex domain pattern that is observed at a narrow
compositional range near the MPB (Figure 1.1(b)), but quickly disappears at other
compositions (Figure 1.1(a,c)). It is worth exploring how this phenomenon can be
related to the performance of the materials. To gain these understandings and in
particular the competition between local chemical disorder and long-range inter-
actions, we propose a new approach based on the random-field Ising model with
long-range interactions that incorporates the basic elements of the physics at the
meso-scale. The new insights gained from the model can be useful in the search for
new piezoelectrics (e.g. lead-free piezoelectrics that are non-toxic as opposed to the
widely available lead-based piezoelectrics) and in creating entirely new phenomena
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by exploiting MPBs.

The final work concentrates on studying crystals based on density functional theory
(DFT) calculations – a first principles approach – which can be a very powerful and
predictive tool in materials modeling. However examining problems such as crystal
defects and strain-induced instabilities directly using DFT requires very large com-
putational domains or repeated unit cell calculations with varying strains, which can
become computationally expensive. Methods such as DFT-based quasicontinuum
and macroDFT have been developed to address the issue of large computational
regions, but they still require repeated solutions of the unit cell subject to different
distortions. Motivated by the success of machine learning in image recognition,
natural language processing, and many other areas, we examine the possiblity of
incorporating machine learning techniques to assist in such calculations.

Following this introduction, the remainder of the dissertation is organized as follows:

Chapter 2 provides an overview of perovskite oxides as ferroelectrics and wide-
bandgap semiconductors, which serves as useful background information that will
be relevant to Chapters 3 and 4.

Chapter 3 introduces the device model at the continuum scale that elucidates the
role of ferroelectric domain walls in the photovoltaic effect of perovskite oxides.
The model is applied to a specific perovskite oxide known as bismuth ferrite to
investigate the occurence of electrostatic potential step across domain walls and
the corresponding photovoltaic response in such films with different domain wall
configurations including the different types (71°, 109°, and 180°) and separation
widths of domain walls.

Chapter 4 discusses the development of the lattice model incorporating random
fields and long-range interactions where a frustrated state emerges at a specific
composition, but is suppressed elsewhere. This model is implemented and demon-
strated on perovskite solid solutions such as lead zirconate titanate that have a
morphotropic phase boundary along with enhanced ferroelectric and other material
properties at the compostion. The same chapter illustrates how the model can be
adapted to explore the possibility of creating newmaterials with strong ferroelectric-
ferromagnetic coupling using such phase boundary.

Chapter 5 presents a machine learning model that combines model reduction with
neural networks to approximate the energy and electronic fields of a crystalline unit
cell subject to strain. We illustrate themodel on amagnesium unit cell as an example,
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and quantify the chemical accuracy of the prediction results to understand the
efficacy of the model in larger DFT-based multiscale calculations. We also explore
the possiblity of accurately extracting the constitutive response of the materials from
the learning model.

Finally, the thesis is concluded in Chapter 6 with a summary of results and contri-
butions, followed by some suggestions and opportunities for further enhancements.
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C h a p t e r 2

AN OVERVIEW OF FERROELECTRIC PEROVSKITES

This chapter provides a brief overview of perovskites and related properties such as
ferroelectricity, as background information for Chapters 3 and 4.

2.1 Perovskites as ferroelectrics
Perovskites, or perovskite oxides, belong to the class of materials with a chemical
structure of ABO3, where A and B are typically transition metals that have a crystal
structure similar to that of the mineral perovskite, CaTiO3 (Pm3m), Figure 2.1(a)
(e.g. References [34, 35]). A number of these perovskites undergo a displacive
phase transition upon cooling to transform from the high temperature perovskite
structure to a low temperature structure that has lower crystallographic symmetry
and no centrosymmetry, thus displaying ferroelectricity. Some examples include
lead titanate (PbTiO3 or PT) and bismuth ferrite (BiFeO3 or BFO)1. Therefore these
materials are widely used in capacitor, ultrasonic, optical, sensor, actuator, and
storage applications.

Domains, which are regions of aligned dipoles, are commonly formed in ferroelectric
materials. By symmetry, there are multiple energetically degenerate variants of the
ferroelectric states. For instance, PT has six ferroelectric tetragonal states (Figure
2.1(b)) while BFO has eight ferroelectric rhombohedral states. These different states
coexist in the crystal as domains. As neighboring domains are generally free to take
any of the states by random, the net polarization is zero in the materials. This is
indicated by point A in Figure 2.1(c). The dipoles of all the domains can be aligned
through a process called poling in which they are exposed to a strong electric field
for a period of time (point B). A remanent polarization can exist even upon the
removal of the electric field (point C). The remanent polarization can be switched to
the opposite direction (point E) by applying an electric field in that direction. The
same figure also shows a typical hysteresis response of a ferroelectric material.

Ferroelectric perovskites also show measurable piezoelectricity. That is, when the
material is subjected to a mechanical stress, electric charges build up on its surfaces.
The reverse process – an internal generation of mechanical strain in response to an

1BFO is essentially a multiferroic material since it exhibits several ferroic orders including
ferroelectricity and antiferromagnetism.
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Figure 2.1: Key characteristics of ferroelectric perovskites. (a) Perovskite structure
of ABO3 in both cubic and tetragonal phases. (b) Six energetically degenerate
variants of the tetragonal phase with the red arrows represent polarization directions.
(c) A typical feroelectric hysteresis curve. (d) 90° and 180° domain walls present in
the tetragonal phase of ferroelectrics.

applied electric field – also holds and it is known as the inverse piezoelectric effect.
This piezoelectric property underlies many applications of ferroelectric perovskites
including actuators, sensors, and ultrasonic transducers.

It is possible to form perovskite solid solutions where the A or B site of perovskites
are substitutionally occupied by two or more species. One such example is lead zir-
conate titanate (PbZrxTi1−xO3 or PZT). PZT has a rhombohedral phase at its PZ-rich
compositions and a tetragonal phase at its PT-rich compositions. The boundary that
separates the two phases occurs at a composition of around x = 0.52 and is called
themorphotropic phase boundary (MPB). In fact, this composition is widely used in
many applications due to its notably enhanced ferroelectric and piezoelectric prop-
erties [36]. In Chapter 4, we attempt to unravel the seeming coincidence between
MPB and its enhanced properties by simulating and examining the domain patterns
at various compositions. It is noteworthy that perovskite solid solutions have also
been explored as a design strategy to tune other material properties such as ther-
mochemical redox behavior [37], pigments [38], luminosity, and the corresponding
wavelength [39].
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Ferroelectric domains and domain walls
We have mentioned earlier that ferroelectric crystals can form domains. The bound-
aries that separate them are commonly known as domainwalls. Ferroelectric domain
walls have a typical width of a unit cell and are observed to be oriented in specific
directions [40, 41]. In tetragonal phase, there can be 180° and 90° domain walls
where the direction of polarization changes by the specified angle when traversing
from one domain to another across the domain wall (Figure 2.1(d)). On the other
hand, 71°, 109°, and 180° domain walls are found in the rhombohedral phase. These
are also confirmed to be the only types of domain walls present in the respective
phases by a theoretical analysis based on energy minimization [42]. To understand
this in a simple manner, consider Gauss’ equation in (2.1). In the bulk of the crystal,
the space charge ρ is zero so ∇ · p = 0 when there is no applied electric field
E. Therefore domain walls are generally orientated in directions that satisfy this
condition of divergence-free polarization. Later in Chapter 3, we will see that the
polarization within a domain wall may be perturbed slightly and not necessarily
satisfy the divergence-free condition.

∇ · (ε0E + p) = ρ (2.1)

As 2D defects, ferroelectric domain walls present many exciting functionalities and
opportunities. They are dynamic in that they are mobile and can even be controlled
to move in one single direction similar to diodes [43]. They can also be pinned or
stabilized, for example by space charge [44]. More recently their ability to conduct
electricity has motivated hopeful prospects of transforming these walls into atomic-
scale electronics [45]. The domain walls can also interact with light in intricate
ways [46]. In Chapter 3 of this thesis, we investigate the role of the domain walls in
the photovoltaic effect in perovskites.

A closely related property of ferroelectric materials is the polarization domain pat-
tern, which is essentially defined by the orientations and locations of the domain
walls. Domain structures can have a profound impact on the performance (for ex-
ample, in terms of electromechanical coupling in microelectromechanical systems),
stability, and lifetime of ferroelectrics [2]. Specifically in Chapter 4, we investigate
the origin of the highly composition-dependent domain structures of perovskite solid
solutions to better understand the relation between solid solution compositions and
ferroelectric properties.
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2.2 Perovskites as wide bandgap semiconductors
Ferroelectric perovskites are typically considered as ideal dielectrics. Compared to
the commonly used semiconductors such as silicon and germanium with bandgaps
of 1.14 eV and 0.67 eV, respectively [47], these perovskites have wider bandgaps.
For instance, BFO has a bandgap of 2.5-2.8 eV [48, 49]. However, impurities or
defects such as oxygen vacancies are inevitable in these perovskites. They can act as
donors or acceptors, causing the materials to behave more like semiconductors in-
stead. Therefore, perovskites should be more appropriately known as wide bandgap
semiconductors [50]. Modeling perovskites in this notion has been done in previous
works [12, 44, 51]; it is also the cornerstone of the work on understanding the
photovoltaic effect in perovskites in Chapter 3.
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C h a p t e r 3

PHOTOVOLTAIC EFFECT IN MULTI-DOMAIN
FERROELECTRIC PEROVSKITE OXIDES

The work presented in this chapter has been adapted from the following publication:

Y. S. Teh, K. Bhattacharya. Photovoltaic effect in multi-domain ferroelectric
perovskite oxides. Journal of Applied Physics, 125(6):064103, 2019. doi:
10.1063/1.5083632. URL https://aip.scitation.org/doi/10.1063/
1.5083632.

3.1 Introduction
In conventional photovoltaics, electron-hole pairs are created by the absorption of
photons that are then separated by an internal field in the form of heterogeneous
junctions such as p-n junctions. Less than a decade ago, Yang et al. [28] reported
large photovoltages generated in thin films of multi-domain bismuth ferrite (BFO),
and suggested a new mechanism where electrostatic potential steps across the fer-
roelectric domain walls drive the photocurrent. This discovery has since revitalized
the field of photoferroics. Among many ferroelectric oxides, BFO has particularly
attracted considerable interest due to its high ferroelectric polarization and relatively
small bandgap.

Many novel experiments were subsequently devised to investigate the role of domain
walls in the observed photovoltaic (PV) effect in ferroelectric perovskites. Alexe and
Hesse [52] performed measurements of the local photoelectric effect using atomic
force microscopy (AFM). They found that the photocurrent is essentially constant
across the entire scanned area, hence indicating the absence of the domainwall (DW)
effect. The nanoscale mapping of generation and recombination lifetime using a
method combining photoinduced transient spectroscopy (PITS) with scanning probe
microscopy (SPM) points to a similar conclusion [53]. This led to the hypothesis
that the bulk photovoltaic (BPV) effect, which arises from the noncentrosymmetry
of perovskites, is the key mechanism instead [54, 55]. However further recent
studies focused on characterizing both the BPV and DW effects show that the latter
effect is much more dominant [56, 57]. The lack of clear concensus among the

https://aip.scitation.org/doi/10.1063/1.5083632
https://aip.scitation.org/doi/10.1063/1.5083632
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scientific community on the key mechanism in the PV effect in perovskites as well
as on the role of domain walls could be understood from the inherent difficulties
in the experimental techniques. The nanoscale order of ferroelectric domain walls
makes it difficult to probe into and separate the effects from the bulk domains and
the domain walls. Other issues such as defect formation and grain boundaries in
perovskite crystals further complicate the analysis.

First-principles calculations have provided a detailed understanding of the structure
of domain walls [58–60], and have established the drop in electrostatic potential
across it. However, they are limited to a few nanometers, and cannot examine
the interaction of domain walls with other features. On the other hand, models
at the device scale provide understanding at the scale [61], but assume a priori
the polarization and other aspects of the domain wall. Finally, various phase field
models provide understanding of the domain pattern [62, 63], but in the absence of
space charge and photocurrent. Thus, there is a gap in our modeling of the intricate
interplay between space charge, ferroelectric polarization, and electronic transport.

This work seeks to fill this gap by building on prior work of Xiao et al. [12, 51]
and Suryanarayana and Bhattacharya [64] who developed a continuum theory of
semiconducting ferroelectrics including electron and hole transport. We extend
their work to include photogeneration due to illumination and study photovoltaic
effect in ferroelectric perovskite oxides. We investigate the photovoltaic response
of BFO films with different domain wall configurations by solving the model at the
device scale. At a 71° or 109° domain wall, we observe a change in the component
of polarization perpendicular to the domain wall. This in turn results in a relatively
large electrostatic potential step across the wall which allows for separation of
photogenerated electron-hole pairs. Thus this model supports the hypothesis of
domain walls contributing to the photovoltaic effect.

We emphasize that this model does not a priori assume the domain wall structure
or the electrostatic potential step across it. Instead, this is a prediction of the model
that is based on well-established Devonshire-Landau models of ferroelectrics and
lumped band models of semiconductors.

The rest of the chapter is organized as follows: In Section 3.2, we briefly review
the structure of BFO and discuss the classifications of ferroelectric domain walls
in BFO. We develop the theoretical framework in Section 3.3 along with an outline
of the mathematical derivation in Section 3.4. We address some numerical issues
faced in the implementation of the model in Section 3.5, and apply the model to
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examine PV effect in ferroelectrics with domain walls in Section 3.6. Finally in
Section 3.7, we conclude with a brief discussion.

3.2 Bismuth Ferrite
In this work, we focus on bismuth ferrite (BFO), though we note that the same
framework can be applied to other ferroelectrics and the results are expected to be
similar qualitatively.

At room temperature, BFO has a rhombohedral phase with space group R3c (Figure
3.1a). The displacements of the atoms from the ideal cubic structure in this phase
lead to a spontaneous polarization pointing in the 〈111〉 pseudocubic direction.
Another distintive feature is the network of O6 octahedra surrounding the Fe ions
that rotate or tilt out-of-phase about the polarization axis. This is also commonly
known as the antiferrodistortive (AFD)mode and has been found to play an important
role in the ferroelectric phase of the material [60].

Electric polarization in rhombohedral BFO can take one of the eight variants of
the 〈111〉 pseudocubic direction which gives possible domain wall orientations
of 71°, 109°, and 180° (Figure 3.1(b,c)). On each domain, there can be two
possible orientations of oxygen octahedra. We follow Lubk et al.’s method of
classifying oxygen octahedra tilts (OTs) across domain walls as either continuous
or discontinuous [59]. In the continuous case, the direction of oxygen octahedra tilt
remains the same along the polarization vector field. In the discontinuous case, the
direction reverses across the domain wall.

Bi
Fe
O

(a)

109ᵒ DW71ᵒ DW

(b) (c)

Figure 3.1: BFO crystal. (a) Crystal structure of bulk BFO. At rhombohedral phase,
the two O6 octahedra rotate out-of-phase about the polarization axis marked by
the dotted line. (b) and (c) show domain walls with orientations of 71° and 109°,
respectively. The red arrow in each domain points in the direction of polarization.
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3.3 Theory
We consider a metal-perovskite-metal (MPM) structure that is connected to an
external voltage source to form a closed electrical circuit (see Figure 3.2). The
multi-domain ferroelectric perovskite film occupying the space Ω is subjected to
light illumination. The two metal-perovskite interfaces are denoted by ∂Ω1, ∂Ω2

∈ ∂Ω. All the processes are assumed to occur at constant temperatureT . We present
the equations and their physical meanings here. Readers may refer to Section 3.4
for the thermodynamically consistent derivation.

𝑉(𝑡)

Ω
𝜕Ω1 𝜕Ω2

Figure 3.2: Schematic of a device model in a metal-perovskite-metal configuration.

Charge and electrostatic potential
The total charge density (x ∈ Ω) is given by

ρ = q(pv − nc + zd N+d − zaN−a ), (3.1)

where q is the electronic charge, nc is the density of electrons in the conduction
band, pv is the density of holes in the valence band, N+d is the density of ionized
donors, N−a is the density of ionized acceptors, zd is the valency number of donors,
and za is the valency number of acceptors. The polarization and space charge in
the ferroelectrics together generate an electrostatic potential. This is determined by
Gauss’ equation

∇ · (−ε0∇φ + p) = ρ, (3.2)

where ε0 is the permittivity of free space, subject to appropriate boundary conditions.

Transport equations
In the presence of light illumination, an incident photon may be absorbed in the
semiconductor to promote an electron from the valence band to the conduction band,
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thus generating an electron-hole pair in the process of photogeneration. The reverse
may also occur such that an electron and a hole recombine. Electrons and holes
may also move from one point to another point, as represented by the electron and
hole density flux terms, Jn and Jp. With conservation of electrons and holes, we can
relate the time derivatives of densities of electrons and holes to the aforementioned
processes via the following transport equations,

Ûnc = −∇ · Jn + G − R, (3.3)

Ûpv = −∇ · Jp + G − R, (3.4)

where G is the rate of photogeneration which can be taken to be proportional to
the intensity of light illumination, while R is the recombination rate. Here we
assume that the only form of recombination present is radiative recombination,
which involves the transition of an electron from the conduction band to the valence
band along with the emission of a photon. R takes the form of B(ncpv − N2

i ) with
the intrinsic carrier density being given by Ni =

√
NcNv exp(−Ec−Ev

2kBT ) [65]. The
radiative recombination coefficient B is a material property, independent of the
carrier density.

The electron and hole fluxes Jn, Jp are taken to be proportional to the gradient in its
electro-chemical potential [65] via

Jn = −
1
q
νnnc∇µn, (3.5)

Jp = −
1
q
νppv∇µp, (3.6)

where νn and νp are the electron and hole mobilities, respectively.

In this work, the diffusion of donors and acceptors are neglected.

Free energy
The free energy of the ferroelectric is postulated to be of the form

W =WDL(p, θ) +WG(∇p,∇θ) +Wnc (nc) +Wpv (pv) +WNd
(N+d ) +WNa(N

−
a ).

(3.7)

The various terms are currently explained.

WDL refers to the Devonshire-Landau free energy of bulk ferroelectrics. In addition
to the typical primary order parameter of electric polarization p, we include a second
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order parameter—oxygen octahedral tilts θ. We adopt the following energy form for
BFO [62]. The corresponding coefficients can be found in Table 3.1.
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+ c44(p1p2θ1θ2 + p1p3θ1θ3 + p2p3θ2θ3). (3.8)

The energy stored in the ferroelectric domain walls is accounted for through the
gradient or Ginzburg energy term WG which includes the energy cost associated
with rapid change in polarization and octahedral tilts.

WG(∇p,∇θ) = 1
2

a0 |∇p|2 + 1
2

b0 |∇θ |
2. (3.9)

Here we assume that the gradient terms are isotropic for simplicity, but can easily
be modified.

Wnc,Wpv,WNd
,WNa in equation (3.7) are the free energies of electrons in the con-

duction band, holes in the valence band, donors, and acceptors, respectively. The
explicit expressions of these energies can be determined by considering each system
as a canonical ensemble in the framework of statistical mechanics [64]

Wnc (nc) = ncEc + kBT[−Nc log Nc + nc log nc + (Nc − nc) log(Nc − nc)],

(3.10)
Wpv (pv) = (Nv − pv)Ev + kBT[−Nv log Nv + pv log pv

+ (Nv − pv) log(Nv − pv)], (3.11)

WNd
(N+d ) = (Nd − N+d )Ed − (Nd − N+d )kBT log(2zd)

+ kBT[−Nd log Nd + N+d log N+d + (Nd − N+d ) log(Nd − N+d )],

(3.12)
WNa(N

−
a ) = N−a Ea − (Na − N−a )kBT log(2za)

+ kBT[−Na log Na + N−a log N−a + (Na − N−a ) log(Na − N−a )].

(3.13)

Polarization and tilt equations
The polarization and tilt evolve according to the (time-dependent) Landau-Ginzburg
equations

1
νp
Ûp = ∇ · ∂WG

∂∇p −
∂WDL

∂p − ∇φ, (3.14)
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1
νθ
Ûθ = ∇ ·

∂WG

∂∇θ
−

WDL

∂θ
. (3.15)

where νp, νθ are the respective mobilities. They are subject to natural boundary
conditions

n̂ · ∂WG

∂∇p = 0, (3.16)

n̂ · ∂WG

∂∇θ
= 0. (3.17)

Electrochemical potentials
The electrochemical potentials are obtained from the energy to be

µn =
∂Wnc

∂nc
− qφ, (3.18)

µp =
∂Wpv

∂pv
+ qφ, (3.19)

µN+
d
=
∂WNd

∂N+d
+ qzdφ, (3.20)

µN−a =
∂WNa

∂N−a
− qzaφ. (3.21)

At thermal equilibrium, µn = −µp = −µN+
d
= µN−a = E fm where the magnitude of

E fm is the workfunction of the metal electrode. Further, using equations (3.10) to
(3.13), we can invert the relations to obtain

nc =
Nc

1 + exp(Ec−E fm−qφ
kBT )

, (3.22)

pv =
Nv

1 + exp(EFm−Ev+qφ

kBT )
, (3.23)

N+d = Nd

1 −
1

1 + 1
2zd

exp(−E fm+Ed−qφzd
kBT )

 , (3.24)

N−a = Na

[
1 + 2za exp(

−E fm + Ea − qφza

kBT
)

]−1
, (3.25)
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consistent with Fermi-Dirac distribution [66]. Finally, assuming Nc >> nc and
Nv >> pv, equations (3.5) and (3.6) become

Jn = −
νnkBT

q
∇nc + νnnc∇φ, (3.26)

Jp = −
νpkBT

q
∇pv − νppv∇φ. (3.27)

Equations (3.26) and (3.27) show that each of Jn and Jp can be resolved into
two contributions: (1) a diffusion current, driven by the concentration gradient of
carriers, and (2) a drift current, driven by an electric field. By applying the Einstein
relation which relates diffusion constant D to mobility ν via D = νkBT/q, we
recover the equations that are typically written to describe the flow of electrons and
holes in solar cells.

Ohmic boundary conditions
We prescribe ohmic boundary conditions at the contacts with metal electrodes
following [67] for convenience. We have

nc = Nce−(Ec−E fm )/kBT

pv = Nve−(E fm−Ev)/kBT

}
on ∂Ω1 ∪ ∂Ω2. (3.28)

This is equivalent to assuming that the Fermi level in the semiconductor aligns with
that of themetal, hence giving rise to electron and hole densities that are independent
of the applied voltage.

Steady-state model
At steady state, all the fields of interest do not vary with respect to time. Further,
we are interested in domain walls, and therefore can assume that things are invariant
parallel to the domain wall. This means that we have one independent space
variable which we denote r . We denote the components of polarization and tilt
parallel (respectively perpendicular) to the domain wall to be ps, θs (respectively
pr, θr). With zd = za = 1, we have a coupled system of differential equations for
region x ∈ (0, L), where L is the length of the film.

a0
d2pr

dr2 −
∂WDL

∂pr
−

dφ
dr
= 0, (3.29)

a0
d2ps

dr2 −
∂WDL

∂ps
= 0, (3.30)
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b0
d2θr

dr2 −
∂WDL

∂θr
= 0, (3.31)

b0
d2θs

dr2 −
∂WDL

∂θs
= 0, (3.32)

−ε0
d2φ

dr2 +
dpr

dr
= q(pv − nc + N+d − N−a ), (3.33)

−
dJn

dr
+ G − B(ncpv − N2

i ) = 0, (3.34)

−
dJp

dr
+ G − B(ncpv − N2

i ) = 0, (3.35)

Jn = −
νnkBT

q
dnc

dr
+ νnnc

dφ
dr
, (3.36)

Jp = −
νpkBT

q
dpv
dr
− νppv

dφ
dr
, (3.37)

where

N+d = Nd

1 −
1

1 + 1
2 exp(−E fm+Ed−qφ

kBT )

 ,
N−a = Na

[
1 + 2 exp(

−E fm + Ea − qφ
kBT

)

]−1
,

Ni =
√

NcNv exp(−
Ec − Ev

2kBT
),

with boundary conditions

dpr

dr
(r = 0) =

dpr

dr
(r = L) = 0,

dps

dr
(r = 0) =

dps

dr
(r = L) = 0,

dθr

dr
(r = 0) =

dθr

dr
(r = L) = 0,

dθs

dr
(r = 0) =

dθs

dr
(r = L) = 0,

φ(r = 0) = V, φ(r = L) = 0,

nc(r = 0) = nc(r = L) = Nce−(Ec−E fm )/kBT,

pv(r = 0) = pv(r = L) = Nve−(E fm−Ev)/kBT .
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3.4 Derivation of a thermodynamically consistent theory
We outline a derivation of the model in Section 3.3, and show that it is thermody-
namically consistent. Since we consider only isothermal processes, the second law
of thermodynamics (Clausius-Duhem inequality) requires the rate of dissipation to
be non-negative. This rate of dissipation is given by

D = F −
dE
dt
, (3.38)

where F is the rate of external work done on the system

F =

∫
Ω

µnGnetdV +
∫
Ω

µpGnetdV +
d
dt

∫
∂Ω1∪∂Ω2

φσ dS −
∫
∂Ω

µnJn · n̂ dS

−

∫
∂Ω

µpJp · n̂ dS −
∫
∂Ω
µN+

d
JN+

d
· n̂ dS −

∫
∂Ω

µN−a JN−a · n̂ dS, (3.39)

and E is the energy stored in the system

E =

∫
Ω

(
W +

ε0
2
|∇φ|2

)
dV . (3.40)

The first two terms in equation (3.39) denote the rate of work done by incident
photons in generating electron-hole pairs. Here Gnet = G − R denotes the net rate
of photogeneration. The third term refers to the work done by the external voltage
and σ = n−ε0∇φ + χpo · n̂ is the surface charge density where n·o indicates a jump
in the respective quantity (·) and n̂ is a unit vector normal to the surface. The final
four terms are the energy carried into the systems by the fluxes of electrons, holes,
donors, and acceptors at the boundary. The total energy consists of the free energy
and the electrostatic energy stored in the electrostatic field.

Applying the divergence theorem and transport equations (3.3), (3.4), we rewrite
equation (3.39) as

F =
d
dt

∫
∂Ω1∪∂Ω2

φσdS −
∫
Ω

∇µn · Jn dV −
∫
Ω

∇µp · Jp dV

−

∫
Ω

∇µN+
d
· JN+

d
dV −

∫
Ω

∇µN−a · JN−a dV +
∫
Ω

µn Ûnc dV +
∫
Ω

µp Ûpv dV

+

∫
Ω

µN+
d

ÛN+d dV +
∫
Ω

µN−a
ÛN−a dV . (3.41)

From equations (3.40) and (3.7), the rate of change of the total energy of the system
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can be expressed as

dE
dt
=

∫
Ω

(
− ∇ ·

∂WG

∂∇p +
∂WDL

∂p

)
· Ûp dV

+

∫
Ω

(
− ∇ ·

∂WG

∂∇θ
+

WDL

∂θ

)
· Ûθ dV +

d
dt

(
ε0
2

∫
R3

|∇φ|2dV
)

+

∫
Ω

(
∂Wpv

∂pv
Ûpv +

∂Wnc

∂nc
Ûnc +

∂WNd

∂N+d
ÛN+d +

∂WNa

∂N−a
ÛN−a

)
dV

+

∫
∂Ω

(
n̂ · ∂WG

∂∇p

)
· δp dS +

∫
∂Ω

(
n̂ · ∂WG

∂∇θ

)
· δθ dS. (3.42)

Following [64], we can show (see Appendix A.1 for details)

d
dt

(
ε0
2

∫
Ω

|∇φ|2dV
)
=

∫
∂Ω1∪∂Ω2

φ Ûσ dS +
∫
Ω

∇φ · Ûp dV

+

∫
Ω

φ q (zd
ÛN+d − za ÛN−a − Ûnc + Ûpv)dV . (3.43)

Therefore,

D =

∫
Ω

[(
∇ ·

∂WG

∂∇p −
∂WDL

∂p − ∇φ

)
· Ûp +

(
∇ ·

∂WG

∂∇θ
−

WDL

∂θ

)
· Ûθ

+

(
µn −

∂Wnc

∂nc
+ qφ

)
Ûnc +

(
µp −

∂Wpv

∂pv
− qφ

)
Ûpv

+

(
µN+

d
−
∂WNd

∂N+d
− qzdφ

)
ÛN+d +

(
µN−a −

∂WNa

∂N−a
+ qzaφ

)
ÛN−a

− ∇µn · Jn − ∇µp · Jp − ∇µN+
d
· JN+

d
− ∇µN−a · JN−a

]
dV

+

∫
∂Ω

[(
n̂ · ∂WG

∂∇p

)
· Ûp +

(
n̂ · ∂WG

∂∇θ

)
· Ûθ

]
dS. (3.44)

Each of the above terms is a non-negative product of a generalized force and a
generalized velocity or rate. Assuming either over-damped dynamics or equilibrium
gives rise to the equations in Section 3.3.

3.5 Numerical issues
The model derived above comprises of differential equations that are nonlinear and
coupled, which can prove troublesome numerically. See equations (3.29-3.37). So
we non-dimensionalize the problem as in Appendix A.2. Further, we notice that
the coupling between the first five governing equations and the rest of the model
is weak. This is especially so when the length of the simulated device is much
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smaller than the Debye length, or when the dimensionless quantity δ is small, which
is generally the case in the simulations in this work. Therefore we treat them as two
subproblems, that are then solved self-consistently until convergence occurs. Each
subproblem is constructed within the finite difference framework, and the resulting
system of nonlinear equations is solved using the trust-region dogleg method.

3.6 Application to Bismuth Ferrite
Material constants
The coefficients of the Devonshire-Landau energy for BFO in equation (3.8) are
presented in Table 3.1. They are derived to match the values of spontaneous polar-
ization, tilt angles, and dielectric constant [60, 68, 69]. Other material parameters
including band structure information [49] and carrier mobility values [70] are listed
in Table 3.2. The values of a0 and b0 are chosen to match a ferroelectric domain
wall width of 2 nm. Typically BFO exists as an n-type semiconductor due to oxygen
vacancies. It can also become p-type with Bi deficiency. Here we restrict our
simulations to n-type semiconductors.

Symbols Values Units
a1 −1.19 × 109 VmC−1

a11 9.93 × 108 Vm5 C−3

a12 3.93 × 108 Vm5 C−3

b1 −1.79 × 1010 Vm−3 C
b11 1.14 × 1011 Vm−3 C
b12 2.25 × 1011 Vm−3 C
c11 1.50 × 1010 VmC−1

c12 7.50 × 109 VmC−1

c44 −1.60 × 101− VmC−1

Table 3.1: Coefficients of Laudau-Devonshire energy for BFO

Two-domain ferroelectrics
(i) 71° and 109° domain walls

We consider a device comprising of a BFO film with two ferroelectric domains
separated by either a 71° or 109° domain wall, with continuous or discontinuous
oxygen octahedra rotations across the domainwall. This gives a total of four different
cases, as illustrated in Table 3.3.

Figures 3.3 and 3.4 show the variation of various field quantities when the perovskite
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Parameters Symbols Values Units
Electron mobility µn 2 × 10−5 m2 V−1 s−1

Hole mobility µp 1 × 10−5 m2 V−1 s−1

Energy of conduction band Ec −3.3 eV
Energy of valence band Ev −6.1 eV
Donor level Ed −3.7 eV
Acceptor level Ea −5.8 eV
Effective density of states for conduction
band

Nc 1 × 1024 m−3

Effective density of states for valence band Nv 1 × 1024 m−3

Donor concentration Nd 1 × 1020 m−3

Acceptor concentration Na 0 m−3

Polarization gradient coefficient a0 9 × 10−10 Vm3 C−1

AFD gradient coefficient b0 2 × 10−9 Vm−1 C
Rate of photogeneration G 1 × 1027 m−3 s−1

Radiative recombination coefficient B 1 × 10−9 m3 s−1

Thickness of film L 100 nm
Temperature T 300 K
Work function of Pt −E fm 5.3 eV

Table 3.2: Material and simulation parameters

71°domain wall 109°domain wall
Polarization: 〈111〉 −→ 〈111〉 Polarization: 〈111〉 −→ 〈111〉

(a) (b) (c) (d)
Continuous OT Discontinuous OT Continuous OT Discontinuous OT
[111] −→ [111] [111] −→ [111] [111] −→ [111] [111] −→ [111]

EDW = 0.53 Jm−2 EDW = 0.63 Jm−2 EDW = 0.53 Jm−2 EDW = 0.45 Jm−2

Jsc = −0.22 Am−2 Jsc = −0.84 Am−2 Jsc = 0.98 Am−2 Jsc = −1.0 Am−2

Voc = 6.8 mV Voc = 29 mV Voc = −70 mV Voc = 38 mV

Table 3.3: Device models with different types of domain walls. Note that 〈·〉 −→ 〈·〉
and [·] −→ [·] denote the directions of electric polarization and oxygen octahedra
tilt (OT), respectively, on two neighboring domains. Jsc and Voc are the short-
circuit current density and open-circuit voltage obtained from our device model
simulations. EDW refers to the domain wall energy calculated at thermal equilibrium
in the absence of light illumination.

film is exposed to light illumination and shorted. Notice that in all cases, the
perpendicular component of the polarization pr is not constant in the vicinity of the
domain wall. In other words, the polarization is not divergence free, and we see a
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voltage drop across the domain wall. The polarization profile (i.e. pr) of 71° and
109° domain walls with continuous OT are qualitatively similar to those obtained
from first-principles calculations [59]. This voltage drop across the domain wall
leads to charge separation of photogenerated electron-hole pairs, and a non-zero
photocurrent. This is evident in the current-voltage plots shown in Figure 3.5 and
is consistent with the mechanism proposed by Yang et al. [28].

Figure 3.5 shows that the magnitude and direction of photocurrent due to the domain
wall effect hinge greatly upon the changes in the crystallographic structure across
the domain wall. The case with 109° DW and continuous OT gives a positive short-
circuit current, which is in the same direction as net polarization in the filmwhile the
rest show negative currents. Importantly, this DW-based photovoltaic effect shows
that the direction of current flow does not necessarily correlates with the direction
of net polarization consistent with experimental observations [56].

Furthermore, we observe strong coupling between polarization and oxygen octahe-
dra tilt (OT). This is evident from the vastly different results (including the change
in current direction) obtained when changing the OT profiles without changing the
type of domain walls. In actual experiments, we may only observe one type of
oxygen octahedra rotation for each domain wall type. We compute the domain wall
energy for each case as in Table 3.3, and find that it is energetically more favorable to
have 71° domain wall with continuous OT and 109° domain wall with discontinous
OT. This is consistent with previous first-principles calculations [60, 62].

As the perovskite film is first exposed to light illumination, which is simulated in
terms of an increase in the photogeneration rate of electron-hole pairs, themagnitude
of the short-circuit current density generated increases rapidly initially as shown in
Figure 3.6. The increase slows down at higher illumination (or photogeneration
rate) due to recombination of the excited electrons and holes.

Finally we consider changing the order of the domains in a two-domain device.
Figure 3.7 shows that doing so does not pose any difference to the profiles of other
quantities such as pr and φ. This implies that current flows in a single direction
irrespective of the order of the domains. If we were to stack the different domains
to form a device with periodic domain pattern (i.e. alternating domains), the
photovoltaic effect would be additive and would not cancel out. This is exactly what
we observe later in the section.
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(ii) 180° domain walls

In the case of the 180° domain walls, with either continuous or discontinuous OTs,
there is no visible disturbance to the polarization component normal to the domain
wall at the domain wall. With a lack of symmetry breaking, the photovoltaic effect
fails to be generated. The figures are omitted for brevity.

0 50 100

0.813

0.8132

0.8134

p
r (

C
m

-2
)

c. OT

d. OT

0 50 100
-1

0

1

p
s
 (

C
m

-2
)

0 50 100
-0.4

-0.2

0

0.2

r (
ra

d
)

0 50 100
-0.4

-0.2

0

0.2

s
 (

ra
d
)

0 50 100

r (nm)

-0.1

0

0.1

 (
V

)

0 50 100

r (nm)

0

2

4

6

c
a
rr

ie
r 

d
e
n
s
it
y
 (

m
-3

)

10
18

n
c
 (c. OT)

p
v
 (c. OT)

n
c
 (d. OT)

p
v
 (d. OT)

Figure 3.3: Spatial variation of field quantities (polarization components, OT tilt
angles, electric potential, and carrier densities) along the 71° DW device with either
continuous or discontinuous OT at short circuit under light illumination.
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either continuous or discontinuous OT at short circuit under light illumination.
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Ferroelectrics with multiple domain walls
We now examine the case with multiple domain walls. We keep the width of the
perovskite film constant and uniformly place a number of domain walls parallel
to the metal electrodes within the film. The distribution of polarization, oxygen
octahedra tilts (OTs), and other field quantities for a shorted device with ten 71°
domain walls are presented in Figure 3.8. Polarization and OTs are periodic and
electric potential varies in a zig-zag manner but with a slope.

Figure 3.9 shows that the magnitudes of both short-circuit current and open-circuit
voltage increase with the density of domain walls in the device. The additive effect
becomes smaller at higher domain wall number as it is influenced by the boundary.
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Figure 3.8: Spatial variation of field quantities for ferroelectrics with ten 71° DWs
and continuous OTs at short circuit.
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Effect of varying doping and width of ferroelectric film
Next, we investigate the effect of doping and width on the ferroelectric response
using a two-domain example. All the previous simulations are run using a small
donor doping density of Nd = 1020 m−3 and a width of 100 nm, which corresponds
to the state of complete depletion. Typically a depletion layer forms at a metal-
semiconductor interface and the width of the depletion layer is related to the Debye
length which is dependent on the dopant density and dielectric constant. Complete
depletion occurs when the Debye length of the material is much larger than the
width of the device. Otherwise there is partial or local depletion. Figure 3.10 shows
the short-circuit distributions for two different perovskite widths of 100 nm and 500
nm at a low dopant density level of Nd = 1020 m−3 and a high dopant density of
Nd = 1022 m−3. At a small width of 100 nm, changing the doping level from low to
high does minimal changes to the field profiles and the photovoltaic response, with
its short-circuit current density staying almost constant at -0.22Am−2. On the other
hand, at a larger width of 500 nm, increasing the doping level changes the state of
the perovskite film from complete depletion to partial depletion, and at the same
time, raises the short-circuit current density from -0.011Am−2 to -0.033Am−2.
The resulting electric potential profile can be viewed as the superposition of two
contributions: domain walls and depletion. This illustrates the feature of the model
in combining the ferroelectric and semiconductor behavior of the material.
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Figure 3.10: Spatial variation of field quantities along two-domain devices (71°
DW, continuous OT) of (a) width 100 nm and (b) width 500 nm, with low dopant
level of Nd = 1020 m−3 and high dopant level of Nd = 1022 m−3, at short circuit.
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3.7 Conclusions and discussion
We have proposed a thermodynamically consistent continuum device model to study
photovoltaic effect in multi-domain ferroelectric perovskites accounting systemati-
cally for the interactions among space charge, polarization, and oxygen octahedra
tilts. The model has been successfully implemented numerically. Our results show
that there is an electric potential step across each 71° or 109° domain wall, and that
this produces a PV effect. There is no electric potential step across a 180° domain
wall, and correspondingly no PV effect. Further, the model shows that the direction
of current depends on the nature of the domain wall and not the orientation of
domains. Therefore, the PV effect becomes additive across multiple domain walls
with alternating domains.

We note that the presence of electric potential step across non-180° or the lack
of such a step for a 180° domain wall is a generic feature. Consider a generic
Devonshire-Landau energy landscape shown in Figure 3.11. Further, consider a non-
180° domain wall that separates two ferroelectric domains, one with polarization
L and the other with polarization R, as marked in the same figure. These two
polarization vectors are spontaneous polarizations, and are thus energy minima of
the Devonshire-Landau energy. Now, as the polarization changes from the value
L to the value R or vice versa across the domain wall, it will do so along the low
energy valley as shown by the red dashed line. This path necessarily involves a
change in the component of polarization normal to the domain wall. Therefore,
there will indeed be an electric potential step across this domain wall. Note that the
electric potential step depends on the path connecting the two polarizations, and this
is unchanged if the domains are swapped. This argument is generic because there
is no reason in symmetry for the low energy valley to go in a straight line between
L and R. A similar argument shows that the lack of such a step for a 180° domain
wall is also a generic feature. While the presence or absence of the step is a generic
feature, its magnitude and direction depend on the specific energy landscape.

The model and results presented here support the hypothesis that non-180° domain
walls contribute to the photovoltaic effect. Importantly, this model does not a priori
assume the domain wall structure or the electrostatic potential step across it. Instead,
this is a prediction of the model that is based onwell-established Devonshire-Landau
models of ferroelectrics and lumped band models of semiconductors. This model is
agnostic about the bulk photovoltaic effect. We could modify our model to include
it by coupling the photogeneration to the polarization, but we chose not to do so
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Figure 3.11: The energy landscape of a non-180° domain wall.

since this would not be predictive.

We note that it remains an open question as to why Alexe and Hesse [52] do not see
any difference in photocurrent in their AFM-based measurement. One possibility
is that the AFM-tip created a depletion zone around it which dominated over the
potential step across the domain wall. This can be investigated further by the
proposed model, but it requires a multi-dimensional numerical implementation that
is a topic of future work.

Finally, we hope that the model presented here as well as the multi-dimensional
numerical implementation of it will prove useful for future device designs.
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C h a p t e r 4

UNDERSTANDING THE MORPHOTROPIC PHASE
BOUNDARY OF PEROVSKITE SOLID SOLUTIONS AS A

FRUSTRATED STATE

The work presented in this chapter has been adapted from the following publication:

Y. S. Teh, J. Li, K. Bhattacharya. Understanding the morphotropic phase
boundary of perovskite solid solutions as a frustrated state. Physical Re-
view B 103:144201, 2021. doi: 10.1103/PhysRevB.103.144201. https:
//link.aps.org/doi/10.1103/PhysRevB.103.144201.

4.1 Introduction
Perovskites are materials with a chemical composition ABO3 (Figure 4.1(a)). Some
of these materials undergo a displacive phase transition on cooling from the high
temperature perovskite structure to a low temperature low symmetry structure that is
not centrosymmetric and thus displays ferroelectricity or ferromagnetism. Therefore
these materials are widely used in capacitor, ultrasonic, optical, sensor, actuator, and
storage applications for their dielectric, piezoelectric, and ferroelectric properties.

The basic structure is extremely stable, and it is possible to have solid solutions
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Figure 4.1: PZT and the proposed lattice model. (a) Perovskite structure. (b) Phase
diagram of PZT adapted from Cross [4]. FR, FT and PC denote ferroelectric rhom-
bohedral, tetragonal, and paraelectric phases respectively. (c) Schematic illustration
of the lattice model proposed in this work.
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A(CxD1−x)O3 where two metallic species C and D substitutionally occupy the B
site of the lattice. The low temperature structure in these compounds depends on
composition and changes across the morphotropic phase boundary (MPB) which
is largely independent of temperature. Figure 4.1(b) shows the phase diagram of
the widely used piezoelectric lead zirconate titanate (PbZrxTi1−xO3 or PZT) that
has a MPB at x = 0.52 with a ferroelectric rhombohedral (R3m) structure in the
Zr-rich compositions1 and ferroelectric tetragonal (P4mm) structure in the Ti-rich
compositions. The dielectric and piezoelectric properties aswell as the ability to pole
a ceramic increase dramatically at the MPB [4, 71, 72], and therefore PZT is widely
used close to this composition. The search for lead-free dielectric and piezoelectric
materials has also focused on solid solutions with MPBs (e.g. Reference [73]).

The nature of theMPB has been extensively studied since the discovery of a bridging
monoclinic phase (Cm) at the MPB by Noheda et al. [29] using x-ray powder
diffraction. It has been suggested that the presence of a bridging phase enables a
larger intrinsic [71, 74, 75] and extrinsic [72] piezoelectric effect at the MPB. Since
then, various structures have been observed: the combination of two monoclinic
phases (Cm and Ic [30] or Cm and Pm [31]), combination of tetragonal (P4mm) and
monoclinic (Cm) [32], and combination of rhombohedral (R3m) and monoclinic
(Cm) [33]. This uncertainty has been attributed to the disorder in the composition
which further results in a disorder in the structure and the difficulty of resolving local
structures [76]. This role of disorder is also supported by first principles calculations
[77, 78]. This, however, raises the question as to why the disorder does not affect the
structure away from the MPB. Another interesting observation concerns the domain
patterns. Classical well-defined domain patterns are observed away from the MPB,
but highly fragmented domain patterns are observed near the MPB [1]. It has been
argued that this fragmented domain pattern also contributes to the high piezoelectric
response [79].

In short, critical questions remain open. Why is the effect of compositional disorder
suppressed to form an unambiguous structure away from the MPB, but suddenly
revealed at the MPB? Is there a definitive crystal structure at the MPB? Why do
domain patterns become fragmented near the MPB? Does compositional disorder
play a role in the ease of poling at the MPB? Can the MPB be exploited to create
new phenomena? These questions have proved to be challenging. The disordered
nature of the solid solution requires a large ensemble that takes it beyond the scope

1PZT shows a second rhombohedral (R3c) phase at low temperature at high Zr compositions,
but we focus on the compositions near the MPB.
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of first principles calculations without the introduction of a composition-dependent
hybrid pseudopotential [80] that does not include randomness. On the other hand,
phase-field Landau-Ginzburg methods can provide insight into domain patterns, but
require a phenomenological model of the phase transition.

In this work, we propose a model based on the random-field Ising model with long-
range interactions that incorporates the basic elements of the underlying physics.
The B sites of a perovskite form a reference cubic lattice that is occupied randomly
by atoms of either C or D species. The local quantummechanical interactions create
a propensity for the unit cell to break cubic symmetry depending on the species at
the B site. The ferroelectric, ferromagnetic, and ferroelastic polarizations lead to
long-range interactions. We create an effective Hamiltonian with these physics.

Our model shows the emergence of a frustrated state. This frustrated state bears
resemblance to the spin glass – a magnetic state characterized by randomness – that
has been widely studied in the past decades. One of the earliest spin glass models
is the Edwards-Anderson model [81]. It contains only nearest neighbor exchange
interactions similar to the classical Ising model, but the exchange constants are
randomly selected according to a probability distribution to depict the randomly
mixed ferromagnetic and antiferromagnetic bonds. The infinite-range version of
this model with two-spin interactions is the Sherrington-Kirkpatrick model [82].
The model can be solved using the mean field approach and has also been used in
understanding other phenomena including tweed formation in martensitic transfor-
mations [83]. Aside from these bond-disordered models, site-disorder models such
as the Mattis model and its variants [84] have also been proposed. Another related
work is the Coulomb glass model that comprises of both disorder and long-range
Coulomb interactions between electrons [85]. This model is used to study the gap in
the density of states of doped crystalline semiconductors, as well as the underlying
glasslike order, phase transition, and critical exponents [86, 87]. In our model,
the frustrated state emerges only at a narrow range of composition and therefore
manifests itself as the MPB. We study how this arises from the competition between
different energy terms.

Specifically, we present ourmodel and its implementation in the context ferroelectric
solid solutions in Sections 4.2 and 4.3. In Section 4.4, we show that our model
provides insights to the questions concerning theMPBof ferroelectric solid solutions
like PZT. In particular, the long-range interactions overwhelm the local disorder in
the C-rich and D-rich compositions with the exchange of stability taking place at
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a specific composition corresponding to the MPB where the material is frustrated.
The frustrated state also enables easy poling as observed. In Sections 4.5 and 4.6,
we adapt our model and its implementation to explore the possibility of obtaining
a strongly coupled multiferroic material system (Section 4.7) using the insights
obtained from Section 4.4. Finally, we conclude in Section 4.8.

4.2 Model for ferroelectric materials
Consider a d-dimensional periodic lattice (d = 2 or 3) with N lattice points as shown
in Figure 4.1(c). Each lattice point i is characterized by fixed (quenched) chemical
composition (ci) of either type C (ci = 0 indicated by a red open circle in Figure
4.1(c)) or type D (ci = 1 indicated by a blue closed circle). Each lattice point carries
a dipole state (pi indicated by the arrows in Figure 4.1(c)) that can take one of a
number of orientations C ∪ D determined by the Hamiltonian

W({pi}; {ci}) =

N∑
i=1

hi −
1
2

∑
<i, j>

Jei jpi · p j +We. (4.1)

The first term encodes the information that lattice site of type C (respectively,
D) energetically prefers the set of dipole states C indicated by the red arrows
(respectively, D indicated by the blue arrows), though they can take states in D
(respectively, C) with an energetic cost hCD > 0 (respectively, hDC > 0):

hi =


hCD ci = 0 & pi ∈ D,

hDC ci = 1 & pi ∈ C,

0 otherwise.

(4.2)

The second term, where the sum is limited to nearest neighbors, is the exchange
energy. Ferroelectricity requires noncentrosymmetric displacements of ions which
arise from a delicate balance between short-range repulsions of electron clouds
and the short-range portion of the Coulomb interaction with a range of the lattice
constant [88]. The exchange term captures this net ferroelectric effect as it promotes
like neighbors when the exchange constant Jei j > 0. The exchange constant in this
model is composition-dependent and takes the form of

Jei j =
1
2
[Je(ci) + Je(c j)], Je(c) =


JC

e c = 0,

JD
e c = 1.

(4.3)

The third term represents the electrostatic contribution that includes the long-range
dipole-dipole interaction scaled by De (which incorporates the dipole strength, lattice
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constant, and electromagnetic constants) and the influence of the applied external
electric field E. As the dipole-dipole term for the two-dimensional case is not found
in the literature, we derive it in Appendix C.1 and show the final expression obtained
here.

We = Wem({pi},De,E)

:= De


1

(d − 1)

N∑
i, j=1

,∑
R

1
xd

i j

[
pi · p j −

d(pi · xi j)(p j · xi j)

x2
i j

]
︸                                                             ︷︷                                                             ︸

W0
dip

+
2π
d

N∑
i=1
|pi |

2

︸        ︷︷        ︸
W sel f

dip


− E ·

N∑
i

pi . (4.4)

Given a lattice where the composition of each site is randomly assigned subject to a
fixed average, we use aMarkov chainMonte Carlo (MCMC) method with cooling to
obtain the equilibrium distribution at a given temperature. The state is initialized by
randomly assigning a polarization from C ∪ D. Adapting the Metropolis-Hastings
algorithm to our multistate setting, a site is chosen at random, and its dipole state is
updated to one of the Ns states according to the transition probability

Ps =
exp(−βW (s))∑Ns

r=1 exp(−βW (r))
, s = 1, ..., Ns (4.5)

where β is the inverse temperature and Ns is the cardinality of C∪D. We choose the
transition probability of the form (4.5) so as to satisfy the detailed balance condition
which is a sufficient condition for an equilibrium distribution. More details can be
found in Appendix B. Further, we avoid the system getting trapped in local minima
at low temperatures by starting at a high temperature (β = 0) and slowly cooling
(increasing β) to the temperature of interest, while performing enoughMCMC steps
to reach equilibrium at each temperature. Algorithm 1 provides a summary of the
method.
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Algorithm 1Markov chain Monte Carlo with cooling
1: Initialize dipole states {pi}

N
i=1

2: Initialize β = 0
3: while β < βmax do
4: for iteration = 1, . . . , θmax do
5: Select lattice point i at random
6: Compute energy ∆W (s) for s = 1, . . . , Nstates
7: Update pi according to transition probabilities Ps
8: end for
9: β← β + ∆β
10: end while

4.3 Implementation for ferroelectric materials
We note that the dipole-dipole energy term in (4.4) is only conditionally convergent;
it is not feasible to compute the term as it is. Hence we take two important steps as
detailed below to ensure an accurate and efficient computation of the dipole-dipole
energy.

First, we adopt Ewald summation [89–91] to separate the first term (W0
dip) of ex-

pression (4.4) into a short-range contribution that converges rapidly in real space
(Wr

dip), a long-range contribution that converges rapidly in Fourier space (W k
dip),

a self energy (W k_sel f
dip ), and a surface term (W sur f

dip ) that depends on the boundary
condition. In other words, we rewrite the first term as

W0
dip :=

1
(d − 1)

N∑
i, j=1

,∑
R

1
xd

i j

[
pi · p j −

d(pi · xi j)(p j · xi j)

x2
i j

]
= Wr

dip +W k
dip −W k_sel f

dip +W sur f
dip , (4.6)

where

Wr
dip = −

1
2

N∑
i, j=1

,∑
R
(∇xi · pi)(∇xj · p j)Gr(|xi − x j − R|), (4.7)

W k
dip = −

1
2V

∑
k,0

k∈Kd

|p̃(k) · ik|2G̃σ(k), (4.8)

W k_sel f
dip =

1
d(2π)d/2−1σd

N∑
i=1
|pi |

2, (4.9)

W sur f
dip =

2d−1π

d(d − 1)V

����� N∑
i=1
pi

�����2 , (4.10)
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with

Gr(r) =

Ei

(
− r2

2σ2

)
, d = 2

−1
r erfc

(
r√
2σ

)
, d = 3

,

G̃σ(k) = −
4π
k2 exp(−k2σ2/2),

p̃(k) the discrete Fourier transform of p, Kd the Brillouin zone, and σ a parameter
chosen to be sufficiently large to keep the calculation of W k

dip tractable but small
enough such that the Wr

dip term is negligible and can be simply disregarded. A
vacuum boundary condition is selected in the surface term above so that the forma-
tion of domains can be observed. In the context of a periodic system like our case,
this would be the boundary condition at infinity. Interested readers may refer to
Appendix C.2 for the full derivation.

Second, notice that for any flip, ∆W0
dip ≈ −Edip

i · ∆pi where Edip
i = −∇piW

0
dip is the

electric field. While the long-range nature of the dipole-dipole interaction means
that Edip

i has to be recomputed after each flip, the error is small for individual flips.
Therefore we update Edip

i only every
√

N flips where N is the size of the supercell
lattice. We can then perform

√
N flips independently and in parallel thereby enabling

acceleration on a graphical processing unit (GPU). Further, Edip
i is readily computed

using fast Fourier transforms (FFT) which can also be implemented on GPUs.

Specifically, the electric field at lattice point xi due to other dipoles is

Edip
i = −∇piW

0
dip = Ek

i − Ek_sel f
i + Esur f

i . (4.11)

The difficult term is Ek
i . Due to the exponential decay in G̃σ(k), we may limit the

summation over all m ∈ Zd to {m ∈ Zd,−Mcut/2 ≤ mi < Mcut/2} and

Ek
i =

4π
V

∑
k∈M̃d

p̃(k) ·
( ∑
m∈Zd

g(k + 2πm)
)

︸                  ︷︷                  ︸
A(k)

exp(ik · xi), (4.12)

g(km) =


0 if km = 0,
km ⊗ kmG̃σ(km) otherwise.

Note that we can precomputeA(k) and exploit FFT to obtain an efficient algorithm:
(i) FFT to compute p̃(k), (ii) multiplication with pre-computedA, and (iii) inverse
FFT to obtain Ek

i in real space. See Algorithm 2. We use the highly parallelized
cufft and curand libraries in CUDA-based GPU programming to perform FFT
and generate random numbers.
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Algorithm 2 GPU-accelerated computational method
1: Initialize dipole states {pi}

N
i=1

2: Initialize β = 0
3: while β < βmax do
4: for iteration = 1, . . . , θmax do
5: Construct {pi}

N
i=1

6: Perform FFT of {pi}
N
i=1 to obtain p̃(k)

7: Perform pointwise multiplication withA tensor
8: Perform inverse FFT to obtain {Ek

i }
N
i=1

9: Determine {Esur f
i }Ni=1 using parallel sum reduction, and compute the net

electric field
Ei = Edip

i + E
10: Generate

√
N number of lattice points at random and perform MC updates

on these points in parallel with ∆W = −Ei · ∆pi + ∆W sel f
dip + ∆Wlocal +

∆Wexchange
11: end for
12: β← β + ∆β
13: end while

Performance on GPU
We evaluate the performance of our proposed algorithm (Algorithm 2) on GPU and
compare it to that on CPU. This is done using the example of PZT and the details
will be specified in the beginning of Section 4.4.

Figure 4.2 shows the performance of the algorithm when running on one GPU
(Nvidia P100) as compared to when running the sequential version on one CPU
core on Intel Xeon (2.4Hz). The speedup measured is much more significant for
larger lattice sizes. At a lattice size of 256 by 256, we measure a speedup of 16.5X.
When considering the run times task-by-task, FFT and inverse FFT– the two most
computationally expensive tasks in the algorithm– experience a reduction in run time
by at least 20 folds (Figure 4.2c). The reduction is less significant for task 6 (i.e.
step 10 in Algorithm 2) as the Monte Carlo update at lattice points is comparatively
less amenable to parallelism. Nonetheless, there is still considerable speedup that
can be reaped overall using a GPU implementation.

4.4 Results for ferroelectric materials
We study an example motivated by PZT though the results are generic. Here,
the C and D lattice points represent lead zirconate (PZ) and lead titanate (PT)
unit cells containing Zr and Ti atoms, respectively. Recall that the former prefers
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Figure 4.2: Performance of Algorithm 2 on one GPU versus on one CPU core. (a)
Time taken for one MCMC iteration (which comprises of steps 5 to 10 in Algorithm
2) on different 2D lattice sizes. (b) A replot of (a) showing the speedup obtained
when running the algorithm on one GPU relative to one CPU core. (c) Comparison
of run time for each of tasks 1 to 6, corresponding to each step in one MCMC
iteration.

rhombohedral or 〈111〉 polarization states while the latter prefers tetragonal or
〈100〉 polarization states. We consider two dimensions d = 2 so that C =
(pCo /
√

2){[1, 1], [1,−1], [−1, 1], [−1,−1]}whileD = pDo {[1, 0], [0, 1], [−1, 0], [0,−1]}.
Unless otherwise specified, we set pC0 = pD0 = hCD = hDC = JC

e = JD
e = De = 1,

unit lattice distance between any two nearest neighboring sites, Ewald parameters
σ = 0.157 and Mcut = 16, and conduct our simulations on a 2562 lattice. The lattice
size is chosen to be sufficiently large upon convergence studies to depict randomness
in composition as well as for us to visualize domain formation. More details will
be presented later in this section. In each simulation, we begin with an inverse
temperature of β = 0, and repeatedly increase its value with a small step size of
∆β = 0.05 until we reach β = 5. At each temperature value, at least 2000 Monte
Carlo (MC) sweeps (each sweep consists of N = 2562 steps) are performed with a
total of approximately 2 × 105 sweeps.

Main results
Figure 4.3 shows the results of these simulations. Figure 4.3(a) shows the evolution
of the order parameter (ξ = 1

κmax

∑κmax

κ=1 κC(κ)whereC(κ) = 〈pi ·p j〉 is the correlation
function over any two sites i and j that satisfy κ − 1 < |xi − x j | ≤ κ) in a series
of simulations with varying average composition. The material is disordered at
high temperature, but becomes ordered at low temperatures. The phase transition is
somewhat diffuse due to the compositional disorder. Figure 4.3(b) shows the nature
of the ordered phase. Remarkably, we find that all dipoles are in the rhombohedral
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Figure 4.3: Emergence of a morphotropic phase transition (MPB) as a competition
between short-range (compositional) disorder and long-range (exchange and elec-
trostatic) interactions. (a) Order parameter versus inverse temperature for various
compositions. (b) Dipole orientation in the ordered phase at various compositions.
(c) Phase diagram showing the MPB. (d) Domain patterns at various composition.
(e) Experimentally observed domain patterns at various compositions (reprinted
with permission from Woodward, Knudsen, and Reaney [1]). (f) Average domain
size versus composition (average (red) and ten realizations (gray)). Domain size
is computed using breadth first search, and domains with width or length of not
more than 2 units (which are typically domain walls) are excluded. (g) Small-scale
oscillations in terms of the finest Haar wavelet horizontal (H), vertical (V), and
diagonal (D) detail coefficients versus composition.

(C) states until a critical composition of about 50% beyond which all dipoles are
in the tetragonal (D) states. Indeed, at a composition of 33.3%, a third of the
sites would prefer tetragonal dipoles. However, the exchange and electrostatic
interaction with the neighbors overwhelm this preference and instead force it into
the rhombohedral state. The opposite happens at a composition of 66.7%. The
exchange of stability between the rhombohedral and tetragonal states takes place at
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a well-defined critical composition. This observation is extremely robust: Figure
4.3(b) includes results from 10 realizations. In short, we see the emergence of
the morphotropic phase boundary (MPB). Remarkably, the disorder is completely
suppressed at all compositions except the MPB.

The resulting phase diagram is shown in Figure 4.3(c) (where the order-disorder
transition temperature is taken to be that of the maximum curvature of the ξ − β
curve). It is structurally consistent with experimental observations with the para-
electric phase at high temperature and different ordered phase at low temperatures
depending on composition. The details depend on the parameters as we shall show
later.

The resulting domain patterns are also interesting. Figure 4.3(d) shows the typical
domain patterns at three different compositions. We see the 2D analogs of 71◦ or
109◦ domain walls with (10) normals at a composition of 40%, and we see the 2D
analog of 90◦ domain walls with (11) normals at a composition of 60%. However, at
the MPB (composition 50%), we see a mixture of rhombohedral (C) and tetragonal
(D) states with a highly fragmented and frustrated domain pattern.

Figure 4.3(f) shows that the average domain size falls precipitously at the MPB
compared to that at all other compositions. Figure 4.3(g) shows that the oscillations
in polarization in the horizontal, vertical, and diagonal directions are also magnified
at the MPB. Specifically, we take the Haar wavelet transform of each domain pat-
tern, which is represented in terms of a two-dimensional matrix X using different
numbers from 1 to 8 to denote different dipole states. Figure 4.4 shows an example
of the results obtained from the Haar wavelet decomposition at level one (the finest
level), in which the horizontal (H1), vertical (V1), and diagonal (D1) detail coeffi-
cients trace the domain walls of the corresponding orientations. Since the relation
| |X| |2 = | |A1 | |

2 + | |H1 | |
2 + | |V1 | |

2 + | |D1 | |
2 holds with A1 being the approximation

coefficients [92], it is natural to consider the normalized sum of squares of the detail
coefficients (i.e. | |H1 | |

2/| |X| |2, | |V1 | |
2/| |X| |2 and | |D1 | |

2/| |X| |2) as a method to
quantify the proportion of the domain walls in different orientations. Figure 4.3(g)
shows these normalized quantities averaged over 10 realizations. The Haar wavelet
decomposition can also be employed to approximate the average domain size similar
to Figure 4.3(f), which we will show in Appendix D.

All these observations are consistent with experimental observations. Figure 4.3(e)
reproduces the experimental observations of Woodward, Knudsen, and Reaney [1]:
classical well-defined domain patterns are observed away from the MPB, but highly



46

Figure 4.4: Level one Haar wavelet decomposition results. (a) Simulated dipole
orientation (reproduced from Figure 4.3(d)). (b), (c), and (d) show the absolute
values of the horizontal, vertical, and diagonal detail coefficients obtained from the
wavelet decomposition of the dipole states in (a).

fragmented domain patterns are observed near theMPB as in our simulations (Figure
4.3(d)). We note that the fragmented patterns in our simulations at the MPB are
found to be angled at around 22.5◦ to accommodate the divergence-free rotation
of dipole states across the boundary when changing from a tetragonal state to a
rhombohedral state or vice versa. Such domain walls typically do not exist in three
dimensions leading to further fragmentation [42].

Verification of convergence with respect to lattice size
As we use a periodic lattice to represent a solid solution and its compositional dis-
order, one may wonder if a periodic lattice size of 2562 is sufficient for convergence
of results. Figure 4.5 shows the dipole orientations obtained when different lattice
sizes are used for the simulations. We find that a small lattice size of 642 fails
to capture the complex phase structure at the MPB. The phase structure starts to
stabilize and small-sized domains become visible when increasing the lattice size
to 1282. At a large lattice size of 5122 (Figure 4.5(c)), the microstructure at the
MPB looks similar and is of the same scale as those of 2562 in Figure 4.3(d). This
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justifies our choice of 2562.

Figure 4.5: Dipole orientations at various compositions when lattice sizes of (a)
642, (b) 1282, and (c) 5122 are used. Due to the slow computational time for (c), the
dipole states are relaxed up to an inverse temperature of β = 2.5 instead of β = 5.

Importance of disorder and long-range interaction
Examining our simulation results more closely, we identify that both the long-range
interaction and the disorder in composition are necessary for the emergence of the
MPB.

In the absence of the long-range dipole-dipole interaction (i.e., when De = 0),
the average number of dipoles track the composition as shown in Figure 4.6(a).
Recall that the lower critical dimension of a two-state random-field Ising model is
two, that is, the lattice remains disordered even at low temperatures [93–95]. We
follow a scaling-type argument to confirm that the statement also applies to our
multistate model (see below). This is consistent with the observations in the first
row of Figure 3b where the material remains disordered. We see some domains,
with C−rich states and D−rich states and meandering domain walls. However, the
microstructure is still disordered with all states present, and domains with C−rich
and D−rich states co-exist. This is why the average number of dipoles track the
composition. Crystallographically distinguished domain walls arise with small De

and become sharper as it increases (Figure 4.6(b)) alongwith a complete suppression
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Figure 4.6: The effect of different dipole-dipole interaction strength De. (a) and
(b) show the dipole orientation and domain patterns in the ordered phase at various
compositions and De values. JC

e = JD
e = 1 in (b).

of the disorder within the domains. Finally, at large De, we see less fragmented
domains at the MPB because the role of disorder becomes comparably smaller.

The complex domain patterns at the MPB also do not appear when the composition
is not random. This can be seen in the two examples in Figure 4.7 where the
compositions comprise of 50% PZ and 50% PT, but are void of randomness.
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Claim: There is a lack of long-range order in a multistate random-field Ising
model when the dimension is d ≤ 2.

Proof by scaling-type argument.

Following the simple scaling-type argument in [93], it can be shown that there
is a lack of long-range ordering for dimension d ≤ 2 in the absence of the
dipole-dipole interaction term. Here we adapt the argument to show that the
same statement applies to our PZT model when De = 0. For convenience, we
denote h = hCD = hDC and Je = JC

e = JD
e .

Consider neighboring domains of linear size∼L in lattice unit. The domainwall
energy or the so-called surface energy is kLd−1Jep2

0 cos θ, i.e. O(Ld−1Je), where
k is a constant associated with the shape of the domain, p0 is the magnitude of
the dipole state, and θ is the change in angle of the dipoles across the domain
wall. Let H =

∑
i∈Ld hi denote the sum of local energy within each domain.

This is also called the bulk energy. It can be shown that the value of H fluctuates
from one domain to another with 〈∆H2〉 ∼ h2Ld . To show this, note that the
overall system size is much larger than the domain size Ld . Therefore it can be
assumed that the probability of each lattice site having composition PT (type D)
is the same as the fraction of PT sites in the overall system. Let us denote this
fraction as λ. With this assumption, the distribution of the values of H/h for
different domains then follows a binomial distribution with probability λ and
number of selections Ld . It is known that the variance of the distribution is
given by Ldλ(1 − λ), hence 〈∆H2〉 ∼ Ld h2.

By splitting into domains of linear size L, the system will gain a bulk energy
of O(Ld/2h) and lose a surface energy of O(Ld−1)Je per domain. When d ≤

2, there exists a sufficiently large L such that it is energetically favorable to
decompose the system into domains of that size (in other words, to become
disordered) even for relatively small random field h compared to the exchange
field Je.

More parameter studies
Figure 4.8 shows how the phase diagram changes as we change the relative magni-
tudes of hCD, hDC and JC

e , JD
e , while keeping their averages the same. The columns

show that the order-disorder transformation temperature becomes composition de-
pendent when JC

e , JD
e with the slope of the transition temperature dependent on the

relative magnitudes of JC
e and JD

e , while the rows show that the MPB composition
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Figure 4.7: Domain patterns obtained when (a) the composition is separated with PZ
(C) sites on the left side and PT (D) sites on the right side, and (b) the composition
is regularly alternating (that is, it has a checkerboard pattern). Note that complex
domain patterns do not appear in these two cases.

Figure 4.8: The effect of different energetic penalties and exchange constants for
different composition types of phase diagram. hCD and JC

e are varied with both
(hCD + hDC)/2 and (JC

e + JD
e )/2 kept constant at 1.

depends critically on the relative magnitude of hCD and hDC . Figure 4.9 shows
that the MPB composition also depends sensitively on the relative polarization
magnitudes pC

0 and pD
0 .

An explicit solution of this problem remains open, but we can understand various
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Figure 4.9: The effects of dipole magnitude (pC0 , pD0 ). pC0 is varied with (pC0 +pD0 )/2
kept constant at 1.

aspects qualitatively. We first consider the order-disorder phase transition tempera-
ture Tc. Recall that according to the Onsager solution to the (two-state) Ising model
on a square lattice, Tc = 2Je/ln(1 +

√
2) = 2.27 for Je = 1. At the two pure end

states, there is no disorder, but we differ from the Ising model in two important
ways. First, we have eight allowable states and we expect this to depress Tc. Second,
we have dipole-dipole interactions; the energy due to this is high in the disordered
state, but is driven to almost zero by the formation of domains in the ordered states.
Consequently, we expect the Tc to increase with De. We have confirmed this: For
JC

e = JD
e = 1, we find Tc to be 1.3, 2.0, 2.3, 2.9 for De = 0, 0.5, 1, 2, respectively, for

the end states. In any case, for De fixed, we expect Tc to be proportional to Je as
we see in Figure 4.8 for the end states. In fact, this is also true in the intermediate
compositions since the disorder in chemical composition has little effect on Tc. The
average Je is (1 − λ)JC

e + λJD
e for a disordered lattice with volume fraction λ of D

sites. Consequently, we expect Tc to be proportional to λ as we see in Figure 4.8.

We now turn to the MPB composition λc. We consider a very low temperature
where the entropy can be neglected. Since the dipole-dipole energy suppresses the
disorder, we simply need to compare the energy between the configuration where
every lattice point is in a C state with one where every lattice point is in a D state.
Further, the formation of domains can reduce the dipole-dipole energy. Therefore,
to leading order, the energy in these configurations is

WC = λhDC − 2[(1 − λ)JC
e + λJD

e ](p
C
0 )

2,

WD = (1 − λ)hCD − 2[(1 − λ)JC
e + λJD

e ](p
D
0 )

2.
(4.13)
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Equating the two, we obtain

λc =
hCD + 2JC

e [(p
C
0 )

2 − (pD0 )
2]

hCD + hDC + 2(JC
e − JD

e )[(pC0 )
2 − (pD0 )

2]
. (4.14)

This is consistent with the results in Figures 4.8 and 4.9. For example, in the middle
column of Figure 4.8 where JC

e = JD
e = pC0 = pD0 = 1, λc = hCD/(hCD + hDC) =

hCD/2 which is 0.35, 0.5, 0.65 in the three rows. In Figure 4.9, hCD = hDC = JC
e =

JD
e = 1, so λc = 1/2 + 2(pC0 − pD0 ) which is 0.42, 1, 0.58 in the three cases.

Some results in 3D

Figure 4.10: Domain patterns at various compositions for 3D simulations (hCD =

hDC = 1, JC
e = JD

e = 0.5,De = 1). Due to the much higher computational costs of
the 3D simulations, these are performed using a small lattice size of 323.

The situation is largely similar with some difference in detail in three dimensions.
Similarly to the 2D simulations, rhombohedral dipole states dominate at 40% PT
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Figure 4.11: Domain patterns at various compositions for 3D simulations in the
absence of dipole-dipole interactions (hCD = hDC = 1, JC

e = JD
e = 1,De = 0).

composition while tetragonal dipole states dominate at 60% PT composition as
shown in Figure 4.10. At a composition of 48%, we see the emergence of the
morphotropic phase boundary (MPB). The smaller-scale domain patterns at the
MPB are less obvious in this case and this may be attributed to the smaller lattice size
limit imposed by the significantly higher computational costs of the 3D simulations.
On the other hand, we observe that the MPB emerges with local and exchange
energies even in the absence of long-range dipole-dipole interactions (De = 0)
(Figure 4.11). This is consistent with the fact that the local critical dimension of a
random-field Ising model is two. In a random-field Ising model with two states and
positive exchange constant, the lattice is disordered in two dimensions (i.e., does
not undergo the order-disorder transition) while the lattice can be ordered in three
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dimensions under a small random field at sufficiently low temperature [94, 95]. We
have also proven that this is true in our multistate setting. However, the domain
patterns look more like those shown in the first row of Figure 4.6(b) than actual
ferroelectric domains in the absence of long-range interactions. Our results are also
consistent with the observation that dipolar interactions in an Ising model with two
states leads to stripe domains in two dimensions [96].

Effect of external electric field
Finally, we consider the effect of an applied external electric field in Figure 4.12.
Under [1 0] field that makes the tetragonal (D) dipoles energetically more favor-
able, we still see that the tetragonal dipoles continue to be suppressed for small
Ti (D) concentrations. However, tetragonal dipoles emerge gradually at a compo-
sition smaller than the MPB, increasing with composition until they become all
tetragonal at a composition slightly larger than the MPB. So, there is a transition
with composition, but transition is gradual and not sharp as in the case of the zero
electric field. There is a corresponding behavior when an electric field is applied
in the [1 1] direction. This shows that materials close to the MPB can undergo an
electric-field-imposed rhombohedral/tetragonal transition close to the MPB but not
at other compositions. This is consistent with experimental observations [97]. The
corresponding microstructures are shown in Figure 4.13.

Figure 4.12: The effects of the external electric field (E(0) = [0 0], E(1) = [6 0],
E(2) = [ 6√

2
6√
2
]). There is superior ability to pole at the MPB.

4.5 Model for multiferroic materials
We now seek to apply the insights offered by the model to explore new phenomena.
A number of perovskites are known to be ferromagnetic [98]. We explore the possi-
bility of creating a multiferroic material (one that shows a strong coupling between
electric and magnetic polarization) by exploiting the insight that the competition
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Figure 4.13: Domain patterns at various compositions under applied electric fields
(a) E(1) = [6 0] and (b) E(2) = [ 6√

2
6√
2
].

between short-range disorder and long-range interaction can lead to unique order-
ing behavior. Such multiferroic coupling is limited in single materials [99], and is
typically realized using composite media.

Consider a solid solution of twomaterials, Cwhich prefers the C states that are ferro-
electrically polarized in one crystallographic direction but with no ferromagnetism,
and a material D that prefers the D states that are ferromagnetically polarized in a
different crystallographic direction but with no ferroelectricity. The states are also
mechanically distorted with the spontaneous strain corresponding to their ferroelec-
tric/ferromagnetic directions. Since perovskites readily form solid solutions, and
since perovskites can be both ferroelectric and ferromagnetic, it is natural to look
for such systems in this class of materials.

As before, consider a d-dimensional periodic lattice (d = 2 or 3) with N lattice points
where each lattice point has a fixed (quenched) chemical composition (ci ∈ {0, 1}).
The state si at the ith lattice point is characterized by an electrical dipolepi, magnetic
dipolemi, and an elastic strain ei, and governed by the Hamiltonian

W({si}; {ci}) =

N∑
i=1

hi −
Je

2

∑
<i, j>

pi · p j −
Jm

2

∑
<i, j>

mi ·m j +We +Wm +Ws,

(4.15)

where

hi =


0 ci = 0 & si ∈ C, or, ci = 1 & si ∈ D

h otherwise
(4.16)
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describes the local preference,We is the electrostatic interaction as in (4.4),Wm is the
magnetostatic interaction under an appliedmagnetic fieldH (Wm = Wem({mi},Dm,H)),
and Ws is the strain energy. The strain energy is scaled by the parameter Ds. The
details regarding the strain energy term can be found in Section 4.6. We find the
equilibrium states at low temperatures using an MCMC method with cooling as
before.

4.6 Implementation for multiferroic materials
We implement the model in a similar manner as Section 4.3 except that we will also
need to determine the expression of strain energy.

Strain energy
The strain energy Ws in (4.15) is taken to be the strain energy of a continuum region
with transformation strain ε∗(x) and uniform isotropic elastic modulus characterized

by Lamé constants λ and µ. We set ε∗(x) =
[
ε∗1(x) ε∗2(x)
ε∗2(x) −ε∗1(x)

]
and assume that ε∗(x)

is pixelated with ε∗ = εi in the pixel containing the ith lattice point. We will show

Ws = W k
s +W sel f

s , (4.17)

where

W k
s =

Ds

2V

∑
k,0

(
B11(k)|ε̃∗1(k)|2 + B22(k)|ε̃∗2(k)|2 + 2B12(k)Re

(
ε̃∗1(k)ε̃

∗
2(k)

))
,

W sel f
s =

Ds

2V

(
D11

N∑
α=1
|ε∗1

α
|2 + D22

N∑
α=1
|ε∗2

α
|2 + 2D12

N∑
α=1

ε∗1
αε∗2

α

)
,

Ds =
2µ

1 − ν
,

B11(k) =
(k2

1 − k2
2)

2

k4 exp(−k2σ2),

B12(k) =
2k1k2(k2

1 − k2
2)

k4 exp(−k2σ2),

B22(k) =
4k2

1 k2
2

k4 exp(−k2σ2),

and ε̃∗(k) is the discrete Fourier transform of ε∗. The constants D11, D22, and D12 in
the term are determined such that the total strain energy is zero for the homogeneous
case.

To obtain these formulae, consider an infinite elastic body with a periodic volume
V that undergoes a field of transformation strain ε∗i j(x). The transformation strain
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field is also periodic with V , i.e. ε∗i j(x) = ε∗i j(x + R) for any translation vector R.
Using Einstein notation, the elastic strain energy stored in the periodic volume V is
given by

Ws =
1
2

∫
V

Ci j kl

(
εi j(x) − ε∗i j(x)

) (
εkl(x) − ε∗kl(x)

)
dx. (4.18)

Next, we assume 2D plane strain, stress-free boundary condition in the infinity,
and homogeneous isotropic linear elastic material, i.e. Ci j kl = λδi jδkl + µ(δikδ jl +

δilδ j k), where λ and µ are the Lamé constants. By solving the equilibrium equation
Ci j kl

∂
∂xj
(εkl(x) − ε∗kl(x)) = 0 in Fourier space and converting equation (4.18) into a

similar form using Parseval’s theorem, we conclude [100]

Ws = W1 +W2 +W3, (4.19)

W1 = −
1

2µV

∑
k,0

k∈K2

M̃i j(k)M̃kl(k)
[

k j kl

k2 δik −
1

2(1 − ν)
ki k j kk kl

k4

]
, (4.20)

W2 =
1
2

∫
V

Ci j klε
∗
i j(x)ε∗kl(x)dx, (4.21)

W3 = −
V
2

Ci j kl 〈ε
∗
i j(x)〉〈ε∗kl(x)〉, (4.22)

where Mi j(x) = Ci j klε
∗
kl(x) and M̃ refers to the Fourier transform of M .

For our problem, it suffices to write ε∗(x) as

ε∗(x) =
[
ε∗1(x) ε∗2(x)
ε∗2(x) −ε∗1(x)

]
. (4.23)

Then,

M̃∗(x) = 2µ

[
ε̃∗1(k) ε̃∗2(k)
ε̃∗2(k) −ε̃∗1(k)

]
(4.24)

and

W1 = −
2µ
V

∑
k,0

k∈K2

[
|ε̃∗1(k)|2 + |ε̃∗2(k)|2

]
+

µ

V(1 − ν)

∑
k,0

k∈K2

[
(k2

1 − k2
2)

2

k4 |ε̃∗1(k)|2 +
4k2

1 k2
2

k4 |ε̃
∗
2(k)|2

+
4k1k2(k2

1 − k2
2)

k4 Re
(
ε̃∗1(k)ε̃

∗
2(k)

) ]
. (4.25)
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The first term above cancels out with W2 +W3 since

W2 +W3 = 2µV
[〈
(ε∗1)

2〉 + 〈
(ε∗2)

2〉] − 2µV
[
〈ε∗1〉

2 + 〈ε∗2〉
2]

=
2µ
V

∑
k

[
|ε̃∗1 |

2 + |ε̃∗2 |
2
]
− 2µV

[
〈ε∗1〉 + 〈ε

∗
2〉

]
=

2µ
V

∑
k,0

[
|ε̃∗1 |

2 + |ε̃∗2 |
2
]
.

Considering N point inclusions, the field of transformation strain in the periodic
volume V is

ε∗(x) =
N∑
α=1

ε∗αδ(|x − xα |). (4.26)

However, the Dirac delta function above introduces an issue when computing the
self-energy. It alsomakes the sum in the Fourier space only conditionally convergent.
Instead, we replace the delta function by a Gaussian function gσ(r). We then add
a self-energy correction term W sel f

s , similarly to the case of electrostatic energy or
magnetostatic energy. The constants D11 and D22 in the term are determined such
that the total strain energy is zero for the homogeneous case, that is when all the
elastic dipoles are equal (ε∗1 = ε∗2 = · · · = ε∗N ).

With these, we obtain (4.17).

For easy computation of the change in energy due to the change in strain states, we
introduce the corresponding generalized stress values.

σα
1 =

∂(W k
s −W k_sel f

s )

∂ε∗1
α

=
2µ

V(1 − ν)

∑
k,0

Re
{[

B11(k)ε̃∗1(k) + B12(k)ε̃∗2(k)
]

exp(ik · xα)
}

−
2µ

V(1 − ν)
(C11ε

∗
1
α
+ C12ε

∗
2
α
)

σα
2 =

∂(W k
s −W k_sel f

s )

∂ε∗2
α

=
2µ

V(1 − ν)

∑
k,0

Re
{[

B12(k)ε̃∗1(k) + B22(k)ε̃∗2(k)
]

exp(ik · xα)
}

−
2µ

V(1 − ν)
(C12ε

∗
1
α
+ C22ε

∗
2
α
).
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The change in strain energy due to the change in the elastic dipole at lattice point α
can then be approximated as

∆Ws ≈ (σ
α
1 ∆ε

∗
1
α
+ σα

2 ∆ε
∗
2
α
) + ∆W k_sel f

s + ∆W sel f
s . (4.27)

4.7 Results for multiferroic materials

Figure 4.14: Morphotropic phase boundary as means of creating a multiferroic ma-
terial. (a) The ordered phase in a random lattice of a ferroelectric and ferromagnetic
material shows a MPB between a ferroelectric phase and a ferromagnetic phase. (b)
Domain patterns at various compositions. (c) The effect of applied field (E = [2 0]
or H = [

√
2
√

2]) and a ferromagnetic/ferroelectric transformation.

We consider two dimensions and assume that each lattice point can take one of nine
states: four ferroelectricC stateswith s1 = {p1 = [1, 0],m1 = 0, ε1 = [[1, 0], [0,−1]]}
and states s2 through s4 related to s1 by symmetry; one zero state s5 = {p5 = 0,m5 = 0, ε5 = 0};
and four ferromagneticD stateswith s6 =

{
p6 = 0,m6 = 1/

√
2[1,−1], ε6 = [[0, 1], [1, 0]]

}
and states s7 through s9 related by symmetry. The different states are clearly listed
in Table 4.1.

Figure 4.14 shows the results when h = 2, Je = Jm = De = Dm = Ds = 1. Once
again, we have an order-disorder phase transition, and we observe the emergence
of a MPB in the form of a sharp transition at 49% from a ferromagnetic phase at
low C compositions to a ferroelectric phase at high C compositions in the absence
of any external fields. In particular, all ferroelectric C states are suppressed at low
C compositions, and all ferromagnetic D are suppressed at high C compositions
as shown in Figure 4.14(a). Further, the zero state is always suppressed except



60

State p m ε

s1

[
1
0

] [
0
0

] [
1 0
0 −1

]
s2

[
−1
0

] [
0
0

] [
1 0
0 −1

]
s3

[
0
1

] [
0
0

] [
−1 0
0 1

]
s4

[
0
−1

] [
0
0

] [
−1 0
0 1

]
s5

[
0
0

] [
0
0

] [
0 0
0 0

]
s6

[
0
0

]
1√
2

[
1
1

] [
0 1
1 0

]
s7

[
0
0

]
1√
2

[
−1
−1

] [
0 1
1 0

]
s8

[
0
0

]
1√
2

[
1
−1

] [
0 −1
−1 0

]
s9

[
0
0

]
1√
2

[
−1
1

] [
0 −1
−1 0

]
Table 4.1: All possible dipole states (normalized)

at some domain walls. Thus, there are no multiferroic states, except at the MPB.
Furthermore, as shown in Figure 4.14(b), we have classical domain walls at low and
high compositions, but fragmented nonclassical domain walls at the MPB.

Figure 4.14(c) shows the effect of external electric and magnetic fields. The ap-
plication of external magnetic field leads to a ferroelectric-to-ferromagnetic phase
transition while the application of an external electric field leads to a ferromagnetic-
to-ferroelectric phase transition at compositions close to the MPB. In other words,
we have a strongly coupled multiferroic material close to the MPB. In fact, recent
experiments have shown the capability of chemically engineering a related type
of MPB called multiferroic MPB (which is the MPB between multiferroic phases)
[101, 102]. Multiferroic characteristics are also found to be enhanced at the MPB
of bismuth ferrite-based systems [103].

In Figure 4.15, we also explore the effects of the different energy contributions in the
model. Removing the strain energy (i.e. setting Ds = 0) does little effect in the case
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Figure 4.15: The effect of local (h), magnetic (Dm), and elastic (Ds) contributions on
ferromagnetic/ferroelectric transformation with and without applied field (E = [2 0]
orH = [

√
2
√

2]).

of the parameters used in Figure 4.14. However with a stronger local field (e.g., by
increasing h from 2 to 4), we find that a stronger elastic field helps to further suppress
compositional disorder, leading to a sharper MPB that occurs over a narrower range
of composition. This in turn results in a stronger response to external fields at
the MPB and hence a more strongly coupled multiferroic system. The figure also
shows the effect of reducing the magnetic contribution (Dm) relative to the electric
contribution. We observe that the magneto-electric coupling becomes asymmetric
with the material being more sensitive to the applied electric field compared to the
applied magnetic field.

All of these show that the origin of the ME coupling at the MPB is a ferroelectric-
ferromagnetic phase transition. The material is ferromagnetic at low concentrations
and ferroelectric at high concentrations with an exchange of stability at the MPB.
The application of an electric or magnetic field changes the balance leading to the
magnetoelectric coupling. Strain coupling is not necessary but can magnify the
coupling.
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4.8 Conclusion
In this work, we have proposed a model based on the random field Ising model with
long-range interactions motivated by perovskite solid solutions. We have used the
model to study themorphotropic phase boundary, and themodel provides qualitative
answers to the critical open questions raised in the introduction. Specifically, the
results show that both the long-range dipole-dipole interaction as well as the short-
range chemical disorder are necessary for an MPB. The long-range dipole-dipole
interaction overwhelms and suppresses the chemical disorder leading to a well-
defined phase (crystal structure) at all compositions except the MPB. This is the
reason we see distinct crystal structures away from the MPB. At the MPB, there
is a change of stability from one phase to another. This balance in the other
energies enables the chemical disorder to reveal itself at the MPB. This in turn
leads to a frustrated and fragmented domain pattern as the disorder leads to a local
preference of one structure over the other. In particular, no stable and well-defined
phase emerges from this disorder. Further, the disorder also leads to a number of
metastable states at the MPB and these aid in domain switching and the ability to
pole the material. In contrast, away from the MPB, the stable structure suppresses
domain switching and the ability to pole the material.

The parameters of the model also provide various trends that can be used to tune
material behavior. The paraelectric-to-ferroelectric phase transition temperature is
controlled by the short-range exchange energy that manifests the balance between
the short-range repulsions of electron clouds and the short-range portion of the
Coulomb interaction with a range of the lattice constant. Since the exchange energy
depends on the average concentration, so does the transition temperature. The
composition of the MPB on the other hand is controlled by the relative stability of
the two phases and the relative magnitude of the polarization of the two phases.

Finally, the insights gained from the model suggest a new multiferroic material
where the magnetoelastic coupling is a result of an MPB-enabled phase transition
from a ferroelectric state to a ferromagnetic state.

In short, the model is able to describe a whole range of complex phenomenology
and provide qualitative answers to the questions raised in the introduction. In order
to make these quantitative, it would be necessary to link the model quantitatively to
first principles calculations through multi-scale modeling. This remains a task for
the future. Further, we have largely studied themodel through numerical simulations
and mean-field arguments. It would be useful to conduct more detailed theoretical
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studies of the model. Finally, it would be exciting to search for new multiferroic
materials based on the insights here. All of these remain open issues for the future.
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C h a p t e r 5

MACHINE-LEARNED PREDICTION OF THE ELECTRONIC
FIELDS IN A CRYSTAL

The work presented in this chapter has been adapted from the following publication:

Y. S. Teh, S. Ghosh, K. Bhattacharya. Machine-learned prediction of the
electronic fields in a crystal. In submission. 2021.

5.1 Introduction
A number of studies over the recent years have shown that the electronic structure
of crystalline solids depends sensitively on the deformation, and therefore straining
a lattice from its equilibrium structure can lead to new properties. For example,
the perovskite SrTiO3 which is usually paraelectric becomes ferroelectric when
subjected to a lattice strain [104]. Silicon becomes electrically polarized under
strain, and the role of strain on various functional materials has been extensively
studied [105]. In metals, strain can lead to deformation twinning [106]. Strain-
induced martensitic phase transitions are widely observed and exploited in shape-
memory alloys and steels [107–109]. Finally, strain engineering is emerging as an
important tool in 2D materials [110].

Density functional theory (DFT) [111] is a powerful tool to understand the electronic
structure of matter, and thus has been instrumental to the understanding, design, and
optimization of materials. Examples include the predictions of energy materials
[112], the geometric design of polar metals [113], and the screening for high-
performance piezoelectrics [114]. Strain-induced phenomena can also be studied
using DFT but it requires the repeated electronic structure calculation of a crystalline
lattice unit cell subject to various strains. Consequently, a systematic exploration
of the strain space can be computationally expensive. In this work, we study if a
neural network approximation can assist in this exploration. We are motivated by the
success of machine learning, particularly deep neural networks in image recognition
[115, 116] and natural language processing tasks [117, 118]. There is also a growing
literature on the use of these methods in materials science [119].
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Another motivation for our work comes from the study of defects in crystalline
solids that play a critical role in determining mechanical and other properties of
various solids: for example, vacancies are critical for creep and dislocations for
plasticity. The perturbations caused by these defects decay very slowly, and therefore
their direct study requires very large computational domains. Solving the DFT
equations is prohibitive on such large computational domains, and a variety of
approaches have been proposed (e.g., quantum mechanics/molecular mechanics
[120–124] and embedded DFT [125]). Fago et al. [25] introduced a “local” DFT-
based quasicontinuum method where the deformation of the atoms is assumed to
follow a piece-wise affine deformation, and the energy density of each region is
computed using a unit cell DFT calculation. A new approach was introduced by
Suryanarayana et al. [26] that solves the DFT equations by introducing a numerical
basis that exploits the decay. Specifically, the electronic fields are taken to be a sum
of a piece-wise periodic ‘predictor’ and a slowly decaying ‘corrector.’ The approach
leads to accurate solutions over millions of atoms. It can resolve the core, the far
field, as well as the interactions between far-field stress and core of defects including
dislocations [27, 126]. The implementation of these approaches also requires the
repeated solution of the unit cell subject to distortion.

Here, we study a deep neural network approximation for the energy and the under-
lying electronic fields in a unit cell of magnesium subjected to strain. We generate
data by repeatedly solving the unit cell problem and use it to train a deep neu-
ral network. An important challenge is the representation of the electronic fields:
these are elements of infinite dimensional function spaces whereas neural networks
typically approximate maps between finite dimensional spaces. Therefore, we use
the approach that combines model reduction and neural networks for high-fidelity
approximations of maps between function spaces [127]. We show excellent, specif-
ically chemical, accuracy of the trained neural network approximation over a range
of strain. In fact, the approximation is able to learn the onset of an instability.

Some recent works have focused on approximating electronic structure quantities,
mainly electronic density, using machine learning as a means to bypassing DFT
calculations. Chandrasekaran et al. [128] used a representation that encodes the
atomic arrangement around any grid point and mapped it to electron charge den-
sity and local density of states (LDOS) spectrum at the corresponding grid point.
This grid point method allows the quantities at each grid point to be evaluated in-
dependently and hence in parallelization. It can also be highly dependent on the
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discretization used and quickly become intractable as the system size grows. Grisafi
and co-workers [129] expanded the electronic charge densities of different hydro-
carbons as sums of atom-centered basis functions and machine-learned them using
symmetry-adapted Gaussian process regression. The use of such localized basis set
allows for transferability across different molecular systems, but is not applicable to
metals. A work by Brockherde et al. [130] explores the mappings from potential to
ground-state density represented in Fourier basis. One interesting finding was that
learning energy indirectly – from potential to electron density followed by electron
density to energy – yields better predictions than the direct map from potential to
energy. It is noteworthy that all these methods use the atomic environment typically
within some cutoff radius as the input of the learning maps, and this requires careful
selection of descriptors. Our work focuses on crystals or solids and uses strain as its
input. Its simplicity allows for highly accurate predictions of electronic fields along
with the combination of data-based model reduction and neural networks. It also
offers a convenient way to relate to constitutive response of materials at the larger
continuum level.

The remainder of the chapter is organized as follows. Section 5.2 provides some
background information on density functional theory and in particular the electronic
fields that will be used for machine learning. Section 5.3 discusses the machine
learning approach, which is subsequently applied to magnesium – a promising light
weight structural material – as an example in Section 5.4. Finally, Section 5.5
concludes our findings.

5.2 Background
Density functional theory
Given atomic positions {RI}, density functional theory seeks to find the total elec-
tronic free energy system F ({RI}), the electronic charge density ρ(x), and other
electronic functions of interest. To do so, we solve the Kohn-Sham equation for
energy states Ei and orbitals ψi(x) (ignoring spins for simplicity of presentation and
assuming a non-local pseudo-potential in the Kleinman-Bylander form),

Hψi = Eiψi, H = −
1
2
∇2 + Vnl

ps + Vxc + VH + Vext (5.1)

where Vnl
ps (x, x′; {RI}) is the non-local portion of the psuedopotential and depends

on the atomic positions {RI}, andVxc,VH,Vext are the exchange-correlation, Hartree,
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and external potential due to ions given by

Vxc =
∂exc
∂ρ

, −
1

4π
∇2VH = ρ, −

1
4π
∇2Vext = b, (5.2)

with valence electron density ρ, charge density b = b(x; {RI}) describing the local
part of the pseudopotential, and exchange-correlation density exc(ρ). It is convenient
to write the HamiltonianH in operator form, and introduce the corresponding (one-
point) density operator whose diagonal component gives the electron density

H =
∑

i

Eiψi(x)ψi(x′), (5.3)

γ(x, x′) =
∑

i

f (Ei)ψi(x)ψi(x′), ρ(x) = γ(x, x), (5.4)

where f describes the occupancy and satisfies
∑

i f (Ei) = n with n being the total
number of electrons in the system. The total electronic free energy of the system
may be written as

F ({RI}) = Tr (Hγ)+
∫ (

exc − Vxcρ −
1
2

VHρ +
1
2

Vextb
)

dx−Tr(S(γ))/β, (5.5)

where β = 1/(kBT),T is the fictitious electronic temperature, and S is the generalized
entropy that determines the occupancy f . We label the first term of (5.5) the band
structure energy ( U = Tr(Hγ)) and note that its density is

u(x) =
∑

i

Ei f (Ei)|ψi(x)|2. (5.6)

Ifwe viewF as a functional on γ, then theKohn-Shamequation (5.1) and an equation
for f are the Euler-Lagrange equation associated with the variational problem. Note
that the Kohn-Sham equation is non-linear because the exchange-correlation and the
Hartree potential depend on the electron density, so it is usually solved by a fixed
point iteration approach (also known as the self-consistent field approach).

We specifically consider the entropy associated with theMarzari cold smearing with
broadening [131]

1
β

f ′(E) =
2
√
π

(
κt3 − t2 −

3
2
κt +

3
2

)
e−t2

, t = β(E − E f ). (5.7)

κ = −0.5634 and E f is the Fermi energy or the Lagrange multiplier that enforces
the constraint

∑
i f (Ei) = n1. The volumetric entropy (i.e. entropy per unit volume)

1We have also repeated our work with the entropy of mixing S( f ) = − f log f
2 + (2−

f
2 ) log(1− f

2 )

that gives f
2 to be the Fermi-Dirac function.
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is

s(x) = − 1
√
π

∑
i

|ψi(x)|2e−t2
(κt3 + t2 −

1
2
). (5.8)

Putting all these together, we view density functional theory as a map,

ΦDFT : {RI} → {ρ(x), φ(x), u(x), s(x), F }, (5.9)

where φ = VH + Vext is the Coulomb potential.

Crystals
Acrystal is a periodic arrangement of N atoms described by a unit cellU bounded by
three lattice vectors {a, b, c} and N atomic positions or basis vectorsRI, I = 1, . . . , N .
It is customary to introduce fractional coordinates R̄I with respect to the lattice
vectors.

Using the Bloch theorem, the electronic orbitals may be written as ψi,k = exp(ik ·
x)Ψi,k(x) where Ψi,k is periodic and k is a vector in the Brillouin zone associated
withU. The formulas above can be naturally extended (see Appendix E.1) and we
obtain ρ(x), φ(x), u(x), s(x), to be periodic functions while the free energy F is now
interpreted as energy per unit cell.

We are interested in the deformations of the crystal, so we choose a reference crystal
structure with lattice vectors {a0, b0, c0} and atomic coordinates {R̄0

I }. We can then
describe the deformation (up to rotations) in terms of

D = {λa, λb, λc, θa, θb, θc} where λa =
|a|
|a0 |

, θa = arcsin
(
b × c
|b| |c|

)
, etc. (5.10)

Now, given any deformed crystal and any set of atomic coordinates, we can find the
electronic states by solving the electronic states as described above. Further, we can
find the equilibrium states of the atoms {R̄e

I } by solving
∂F
∂R̄I
= 0, I = 1, . . . N − 1.

Finally, the electronic quantities are functions defined on the deformed unit cell or
a domain that depends on the strain. It is convenient to define them on a fixed
domain, so we map them back to the reference lattice with a change of variables
ρ̄(F−1x) = ρ(x),φ̄(F−1x) = φ(x), etc., where F is a tensor that maps the reference
unit cell to the deformed unit cell a = Fa0, b = Fb0, c = Fc0.

In summary, the deformation behavior of a crystal is described by the map

Φ : D→ {{R̄e
I }, ρ̄(x), φ̄(x), ū(x), s̄(x), F }, (5.11)
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where the electronic states are computed for the deformed crystal with the atoms in
their equilibrium positions.

Implementation
The density functional theory calculations to evaluate themapΦ are conducted using
the software ABINIT [132]. We use a plane-wave basis set with a kinetic energy
cut-off of 24 Ha (Hartree), a Troullier-Martins norm-conserving pseudopotential
with local channel l = 1, and local density approximation (LDA) in the Perdew-
Wang 92 functional form as the exchange-correlation energy. Cold smearing of
magnitude 0.01 Ha is used [131] and the Brillouin zone integration is performed
using a 12×12×12 k-point sampling. Furthermore, the atomic positions are relaxed
using the Broyden-Fletcher-Goldfarb-Shanno minimization.

5.3 Approach
We seek to learn an approximation for the map Φ for a given material. We first
generate data by evaluating the map using DFT and seek to use this data to learn
an approximation. However, note that the quantities ρ, φ, u, s are functions and
thus elements of infinite-dimensional linear spaces. In practice, these are evaluated
on a finite-dimensional discretization, but still we want our approximation to be
independent of the particular discretization. Therefore we use an approach by
Bhattacharya et al. [127] that combines model reduction with a deep neural net to
learn the map Φ. The idea is to use model reduction to find a finite dimensional
representation for each function and then use a deep neural net to learn the map.
Specifically, we find maps pρ : ρ̄ → {ρα}

dρ
α=1, pφ : φ̄ → {φα}

dφ
α=1, etc. that

reduce (project) the infinite-dimensional spaces to a dρ-dimensional space, and
maps `ρ : {ρα}

dρ
α=1 → ρ̄, `φ : {φα}

dφ
α=1 → φ̄, etc. that lift (reconstruct) the dρ-

dimensional space to the infinite dimensional space. We then find an approximate
map

Φml : D→ {{R̄e
I }, {ρα}, {φα}, {uα}, {sα}, F } (5.12)

such that Φ ≈ ` ◦ Φml. In this work, we use principal component approximation
(PCA) for model reduction p, ` and a deep neural net for Φml.

5.4 Demonstration on Magnesium
Magnesium
Magnesium is a hexagonal close-packed (HCP) material. It is the lightest of all
structural materials, and of significant interest as a light-weight structural material
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Figure 5.1: A 4-atom magnesium unit cell in both undeformed and deformed
configurations.

for bio-medical, automotive, and protective applications [133–135]. We consider the
four-atom unit cell shown in Figure 5.1where a0, b0, and c0 directions are the [101̄0],
[0, 1̄, 1, 0], and [0001] directions, respectively, in the HCP crystallographic notation.
The atoms in the reference unit cell are located at fractional coordinates {0, 0, 0},
{1/2, 1/2, 0}, {0, 2/3, 1/2}, and {1/2, 1/6, 1/2} in the reference configuration. The
a0-b0 plane perpendicular to the c0-axis or (0001) plane is the basal plane. We
have observed in our calculations that the basal planes deform uniformly, but slide
relative to each other. After eliminating free translation of the unit cell, the fractional
coordinates in the deformed configuration can be taken as {R̄e

1, R̄e
2, R̄e

3}, {1/2 +
R̄e

1, 1/2 + R̄e
2, R̄e

3}, {−R̄e
1, 2/3 − R̄e

2, 1/2 − R̄e
3}, {1/2 − R̄e

1, 1/6 − R̄e
2, 1/2 − R̄e

3}.

Architecture and training
We use PCA dimensions of dρ= dφ= du= ds=50 and the following neural network
architecture: (1) a two-layer dense network with hidden layer widths of 500 and
the hyperbolic tangent activation function for each of Φρml,Φ

φ
ml,Φ

u
ml and Φ

s
ml; (2) a

three-layer dense network with hidden layer widths of 50, 100, 50, respectively, and
the same type of activation function for ΦR

ml and Φ
F
ml. These hyperparameters are

selected based on four-fold cross-validation results.

Wegenerate a total of 3000 data, with each input sample D drawn independently from
a normal distribution truncated to two standard deviations satisfying λa, λb, λc ∈

[0.9, 1.1] and θa, θb, θc ∈ [84°, 96°]. Such a distribution reflects the fact that smaller
deformations are more likely to be encountered in real materials. Out of all the data
generated, 2000 of them are reserved for training and validation, while the rest are
used for testing.
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Using the training data, we first identify the map p via PCA. This is followed by
standardizing both the input and output ofΦml to zeromean and unit variance, before
we train the neural network parameters using the Adam optimization algorithm at
a training rate of 0.001, a small l2 regularization of 0.0001 on the weights, and a
batch size of 128 for a total of 4000 epochs. Subsequently, given any deformation in
the testing data, we generate predictions by applying the map ` ◦ Φml and compare
them with the true values.

Computational costs
There are two elements to the computational cost. The first is the online cost of
evaluation. This takes fractions of a second (0.002 second) on an Intel Skylake (2.1
GHz) core compared to 30 minutes on 14 cores for a full DFT evaluation. Thus,
learned approximations provide significant savings. The second is the one-time
offline cost of generating the data and training. As noted, each data set takes 30
minutes on 14 cores Intel Skylake (2.1 GHz) and we generate 2000 data sets for
training. This is comparable to a single evaluation in a MacroDFT calculation.
However, since each data set is independent, it is is trivially parallelizable. The cost
of training is about 5 minutes on a single core.

Results: Electronic fields and energy
A typical result is shown in Figure 5.2. We observe that our approach is able to
capture the main features of the electronic fields, with very small errors. Figure 5.3
compares the predicted and actual energies (band structure energy, entropic energy,
and total free energy). The mean errors are 0.15 mHa, 0.014 mHa, and 0.10 mHa
while the maximum errors are 2.4 mHa, 0.13 mHa, and 1.5 mHa for Figure 5.3 (a),
(b), and (c), respectively. Importantly, since there are four atoms in this unit cell,
all the errors are significantly smaller than 1.6 mHa/atom (or 1 kcal/mol) which is
widely accepted as the accuracy required for chemical accuracy [136].

We now turn to understanding the training and the actual distribution of errors. We
introduce a normalized root-mean-square error (NRMSE), defined as root-mean-
square error divided by the range of the data (evaluated on a discretized grid of size
Nd for field quantities)

NRMSE =

√
1

Nd

∑Nd

j=1(y
pred
j − ytrue

j )
2

ytrue
max − ytrue

min
. (5.13)

Figure 5.4 shows how the normalized root-mean-square error (evaluated on a Nd =



72

0 5
0

5
x

2
(B

oh
r)

(a)
Electron density

(10−3 a.u.)

5

10

15

20

0 5
0

5

x
2

(B
oh

r)

5

10

15

20

0 5
x1 (Bohr)

0

5

x
2

(B
oh

r)

−0.02

0.00

0.02

0.04

0 5
0

5

(b)
Coulomb potential

(10−3 a.u.)

−60

−30

0

30

60

0 5
0

5

−60

−30

0

30

60

0 5
x1 (Bohr)

0

5

−0.5

0.0

0.5

0 5
0

5

(c)
Band structure energy

density (10−3 a.u.)

−1.6

−1.2

−0.8

0 5
0

5

−1.6

−1.2

−0.8

0 5
x1 (Bohr)

0

5

−0.004

−0.002

0.000

0.002

0 5
0

5

(d)
Volumetric entropy

(10−6 a.u.)

−20

−10

0

10

0 5
0

5

−20

−10

0

10

0 5
x1 (Bohr)

0

5

0

5

10

G
ro

u
n

d
tr

u
th

M
L

p
re

d
ic

ti
on

E
rr

or

Figure 5.2: Typical results. (a) Electron density, (b) Coulomb potential, (c) band
structure energy density, and (d) volumetric entropy in atomic unit (a.u.) along
the x3 = 0 plane for λa = 0.9696, λb = 0.9237, λc = 0.9906, θa = 92.1598°, θb =

85.6196°, θc = 87.3824°. Notice that the scale used to display the error is signifi-
cantly smaller than the scale used to display the quantities except for entropy, which
is small.

36× 64× 60 grid for field quantities) averaged over the 1000 test samples decreases
with an increasing number of training samples. We see that the error has stabilized
at 2000 training samples for this set of test samples. The figure also shows the
error due to PCA, i.e., the error associated with the model reduction from an infinite
dimensional function space to a finite dimensional representation of the electronic
fields. We see that the overall error is about ten times the PCA error. Figure 5.5
shows how the NRMSE changes with volumetric strain for these 1000 test samples.
We notice that the error in electron density, Coulomb potential, and band structure
energy density is extremely small (∼0.1%) in almost all cases with a maximum error
of ∼8% in isolated cases. Indeed, the five points with the largest error in all these
plots all correspond to the same five test data points and are associatedwith very large
distortions in the unit cell that were poorly represented in the normal distribution
used to sample the training data. The error is larger in volumetric entropy averaging
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Figure 5.3: Comparisons between predicted and true values for (a) band structure
energy (U =

∫
u(x)dx), (b) entropic energy (−S/β = −

∫
s(x)dx/β), and (c) total

free energy (F ). Predictions are perfectly accurate if all the data points lie on the
black solid line of y = x. The mean errors are 0.15 mHa, 0.014 mHa, and 0.10 mHa
while the maximum errors are 2.4 mHa, 0.13 mHa, and 1.5 mHa for (a), (b) and (c),
respectively.
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Figure 5.4: Training error. Variation of test error (NRMSE, equation (5.13)) marked
as ML with training size for the four scalar field quantities. The NRMSE shown in
the plot is averaged over all 1000 test samples. The figure also shows the PCA error.

∼11% mainly because this is a very small number. Finally, the error displacement
of the basis atoms is 0.0035 Bohr which is much smaller than the maximum and
average atomic displacements of 0.66 Bohr and 0.097 Bohr, respectively. Again,
the five points with the largest error here correspond to the same data points with
large error in Figure 5.5.

An intended goal of this work is the use of the electronic fields as pre-conditioners or
predictor fields in larger multiscale calculations. To evaluate their efficacy in doing
so, we calculate the total free energy in four ways. First, in the direct approach, we
learn the map from the deformation to the total energy (ΦFml). In the second sum
approach, we evaluate the total energy using equation (5.5) from the learned electron
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Figure 5.5: Distributions of normalized root-mean-square errors (NRMSE) between
predicted and true values evaluated on a 36× 64× 60 grid across 1000 test samples.
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Figure 5.6: Test errors for reduced coordinates of magnesium atoms in terms of
absolute displacement errors. (a) shows the distribution of errors for 1000 test
samples. (b) shows how the mean error varies with training size.

density, band structure energy and entropy fields, and atomic coordinates. Third, in
the orbital approach, we use the learned electron density and atomic coordinates to
construct the Hamiltonian, find the electronic orbitals, and then use the combination
of the learned electron density and atomic coordinates with the computed orbitals
(to compute the kinetic energy). Note that in the third approach, we do not use the
band structure energy, but effectively recompute it by computing the orbitals. So, the
difference between the direct and orbital energies is a measure of the inconsistency
between the learned band structure energy and the learned energy density. Finally, in
the SCF approach, we perform one SCF iteration starting from the learned electron
density and atomic coordinates before computing the energy. Note that we do not
directly use the learned electron density, but recompute it using a SCF iteration. So,
the difference between orbital and SCF values indicates whether the learned electron
density is close to convergence, or to use this electron density as a precursor.

Figure 5.7 shows how closely the free energy predicted from the four approaches
match to their true values. The sum approach leads to a very low average error of
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Figure 5.7: Comparisons between predicted and true total free energy values for a
4-atom magnesium unit cell where the prediction is made using four separate ML
approaches: (a) direct (same as Figure 5.3(c)), (b) sum, (c) orbital, and (d) SCF. The
average absolute error changes from 0.10 mHa, 0.16 mHa, 0.087 mHa, to 0.0015
mHa, going from cases (a) to (d). Similarly, the maximum absolute error changes
from 1.5 mHa, 2.3 mHa, 1.2 mHa, to 0.37 mHa.

0.15 mHa across all 1000 test data with the maximum error standing at 2.4 mHa.
These errors are consistent with those of the band structure energy in Figure 5.3,
emphasizing the contribution of this band structure energy to the total energy. The
orbital and SCF approaches lead to further reductions, and they even outperform the
direct approach. All of these signify that our proposed approach not only learns the
energy but also the fields extremely accurately, and thus can be used as predictors
in larger calculations.
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Figure 5.8: Comparison of prediction errors when a linear regression (LR) is used
in place of a neural network (NN) for each mapΦml. The NN results are reproduced
from Figure 5.5.

Finally, we compare our approximation with linear regression in Figure 5.8. It shows
that the error due to linear regression (LR) is significantly higher than that due to
our nonlinear approximation using neural networks (NN), thus demonstrating the
efficacy of our architecture (NN).
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Results: Stresses and instability
In order to further assess the accuracy of the learned electronic fields and energy,
and to understand its efficacy in practice, we study the derivative quantities (i.e.
stresses), in the crystal subjected to deformation. According to the Cauchy-Born
rule [137], the macroscopic deformation gradient in any macroscopic deformation
is equal to the matrix F that maps the reference lattice to the current lattice. The
corresponding nonlinear strain measure E = 1/2(FTF − I) where I is the identity.
The Cauchy or true stress in the material is given by

σ =
1
V

F∂F
∂E FT, (5.14)

where V is the volume of the deformed unit cell and F is the free energy of the
unit cell. It is common [138, 139] to approximate this using a small distortion
approximation

σ =
1

V(ε)
∂F

∂ε
or σi j =

1
V(ε)

∂F

∂εi j
, (5.15)

where ε = 1/2(F + FT − I) ≈ E is the linear strain measure. We use this ex-
pression in our work, though the results can easily be adapted to the nonlinear
counterpart. The linear strain is related to the variables we use to describe the lattice
(λa, λb, λc, θa, θb, θc) through the relation

λ2
a = (1 + ε11)

2 + ε2
12 + ε

2
13,

λ2
b = ε

2
12 + (1 + ε22)

2 + ε2
23, (5.16)

λ2
c = ε

2
13 + ε

2
23 + (1 + ε33)

2,

π

2
− θa = 2ε23,

π

2
− θb = 2ε13,

π

2
− θc = 2ε12, (5.17)

and we may obtain ∂F/∂εi j using the chain rule (see Appendix E.2 for details).

We focus specifically on the state of uniaxial stress where σii (for i =1, 2 or 3) is
non-zero, but all the other components are zero. We therefore prescribe εii, and
solve (5.15) to obtain the other components of strain. The solution to this equation
is equivalent to minimizing the energy, and we use gradient descent with the step
size chosen according to the Barzilai-Borwein method [140].

The results are shown in Figure 5.9 for the stress in the x1, x2, and x3 directions as
well as the corresponding transverse strains2. Figure 5.9(a) compares the ground

2 The use of cold smearing in our DFT calculations requires a pre-stress or residual stress to
stabilize the HCP configuration. We have subtracted the uniaxial residual stress in (a) and the
corresponding residual strains in the other two transverse directions in (b–d) of this figure.
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Figure 5.9: Uniaxial test results. The results obtained from our machine learning
model are marked as ’ML’, while the results obtained directly fromDFT calculations
with stress relaxation are marked as ’true.’ (a) Stress-strain curves for uniaxial stress
in the x1, x2, and x3 directions. (b–d) Corresponding transverse strain.

truth stress to that of the ML approach, where the free energy is computed using the
direct approach described earlier3. We see that the ML approach predicts the stress
extremely well except for high compression in the x2 direction where there is an
instability. Still, the approach captures the onset of this instability. Figures 5.9(b–d)
show the corresponding transverse strains. We see that this is not linear in any case.
Further, there is a dramatic expansion in the x1 direction (a-axis) as we reach the
instability during severe compression in the x2 direction.

Figure 5.10(a) shows the corresponding electronic fields and positions of the internal
atoms. Specifically, given the value of ε22, we find the other components of strain
and the corresponding deformation variables. We then interrogate our learned map
to find the electronic fields and atomic positions. The figure also compares the
learned and ground truth atomic positions, and we see good agreement except at the
instability. We observe that in most cases, the atoms in the unit cell lie very near

3In Appendix F, we also present the uniaxial stress results obtained using the sum approach.
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Figure 5.10: Uniaxial test results in the x2 direction obtained from our machine
learning models. (a) Snapshots of a magnesium unit cell undergoing uniaxial test.
The color gradient shows the electron density distribution, while the red crosses (×)
mark the atomic positions. The dashed lines on the plots correspond to x̄2 = 1/2
on the basal plane x̄3 = 0, as well as x̄2 = 1/6 and x̄2 = 2/3 on the basal plane
x̄3 = 1/2. The actual atomic positions obtained from DFT calculations are shown
as pink plusses (+) for reference. (b) An illustration of the deformed face-centered
cubic (FCC) structure exhibited by the unit cell under uniaxial compression with
ε22 = −0.1.

to the dashed lines, thus exhibiting a stretched HCP structure. However the atomic
positions change very abruptly under high compression in the x2 direction. The
learned atomic positions capture this abrupt change to some extent.

Together, Figures 5.9 and 5.10 show that as the crystal is compressed in the x2

direction and reaches its instability, it elongates dramatically along the x1 direction.
Consequently, the lengths of a, b, and c edges become similar. This is accompanied
by the relative sliding of the basal planes (see Figure 5.10(a) where the atoms in the
x̄3 = 0 plane move in the positive x2 direction whereas the atoms in the x̄3 = 1/2
basal planemove in the negative x2 direction), bringing the atoms on themiddle basal
plane to the face centers of the 4-atom unit cell. Thus, the structure approaches
that of a face-centered cubic (FCC) lattice as shown in Figure 5.10(b). In other
words, we see a HCP to FCC phase transition. This has been observed under high
hydrostatic confinement [141], but is generally overshadowed by the (101̄2) tension
twin mode at lower confinements4.

4Magnesium has a soft “tension” twinning mode with a (101̄2) twin plane and a [1̄011] shear
direction [106]. This twin causes a compression along the [101̄0] or x2 direction. The observed
instability is associated with this soft twinning mode.
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5.5 Conclusion
In this chapter, we have presented a machine learning approximation for the change
in the electronic structure as a crystal is deformed. We have demonstrated the
approach on magnesium and shown that the machine-learned predictions reach the
level of chemical accuracy. In particular, we not only learn energy values accurately,
but also predict electronic fields with minimal error. These show that the models
can indeed be sufficiently accurate to be useful as predictors or pre-conditioners
for large-scale DFT methods. Finally, we have computed derivative quantities such
as stresses under specific loading conditions from the learning models and found
that they match very well with the ground truth DFT results. The model can even
capture the onset of strain-induced phase transformation. All these further indicate
another future direction of extending the learning model to one that can extract
DFT-informed constitutive relations that can be easily incorporated in continuum
level calculations.
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C h a p t e r 6

SUMMARY AND CONCLUSIONS

Imperfections and instabilities are inevitable in crystals, but can lead to unique and
useful material properties if they are properly understood and exploited. This thesis
presents the development of three computational models at appropriate length scales
to study these aspects of crystalline solids.

Chapter 3 details a device model that sheds light on the key mechanisms of the pho-
tovoltaic (PV) effect observed in multi-domain perovskite oxides and in particular
the role of domain walls. Importantly the model takes into account the complex
interactions among ferroelectric polarization, space charges, photo-generation, and
electronic transport. It predicts a significant electric potential step across both 71°
and 109° domain walls, which in turn contributes to the PV effect. This result is
found to be generic for non-180° domain walls, which experience a change in the
polarization component normal to the domain wall. There is also a strong correla-
tion between polarization and oxygen octahedra tilts, indicating the nontrivial role
of the latter in the PV effect. The domain wall-based PV effect is further shown
to be additive in nature, allowing for the possibility of generating above-bandgap
voltage.

In the next study on the morphotropic phase boundary (MPB) of perovskite solid
solutions in Chapter 4, we propose a lattice model based on the random field Ising
model with long-range interactions. With the efficient mathematical formulation
and implementation of the long-range interactions, we successfully simulate a suf-
ficiently large lattice size. This allows us to capture the local chemical disorder
and randomness at the lattice level and understand its competition with long-range
interactions. The model shows that the MPB arises as an instability in the form of
a frustrated state in a narrow composition range while the disorder is suppressed
elsewhere. Both randomness in compositions and long-range interactions are found
to be crucial for the emergence of this phenomenon. The model also enables us to
demonstrate the possiblity of creating new materials with strong magnetoelectric
coupling by exploiting MPBs.

The final work presented in this thesis focuses on more predictive models based
on first principles calculations such as density functional theory (DFT), rather than
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models constructed at the continuum or lattice level of the former two. In particular,
we explore howmachine learning techniques can assist in such calculations. Chapter
5 discusses the machine learning framework we have developed to approximate
electronic fields in crystalline solids subjected to deformation using data from DFT
calculations. We demonstrate the approach on magnesium and show that we can
predict the energy and electronic fields to the level of chemical accuracy and even
capture lattice instabilities. This DFT-based machine learning approach can be
very valuable in tuning material properties using strain engineering and the multi-
resolution studies of defects in crystalline solids, which in both cases require repeated
DFT calculations of a unit cell subjected to different strains.

6.1 Future opportunities and outlook
This thesis presents both physics-based and data-driven computational models to
study various aspects of crystalline materials. However there still exist areas for
continued development.

The device model developed in Chapter 3 has currently been implemented numer-
ically in the one-dimensional setting. It is briefly mentioned at the end of the
chapter that a two- or three-dimensional numerical implementation would be very
useful for future device designs. Indeed such implementation will allow us to
more quantitatively investigate how the domain-wall-driven photovoltaic response
in perovskite oxides can be affected by numerous factors including the different
substrates on which the perovskite film is grown on, the formation of depletion
layers around the different conducting electrodes, as well as the amounts of oxygen
vacancies and other dopants. We can also incorporate other details to make the
model more comprehensive and predictive. One element is the higher conductivity
at the domain walls compared to the bulk domains [142]; the current model simply
assumes uniform electrical conductivity. Another consideration is to integrate the
bulk photovoltaic effect (BPVE) into the model. It has been suggested that the
domain-wall-driven photovoltaic response observed in [28] is partially canceled out
by the BPVE [143]. We can consider a way to include the BPVE in a consistent
manner through the bulk photovoltaic response tensor that can be obtained from first
principles calculations [143]. If so, then we will be able to systematically compare
the contributions from the BPVE and the domain wall effect. Subsequently we can
modify the device design accordingly to allow cooperative existence of both effects,
hence further enhancing the overall photovoltaic performance. All these additional
considerations can render the device model more robust and useful for future device
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design.

With regards to the lattice model in Chapter 4, it would be useful to perform a
more thorough theoretical analysis of the model since we have mainly only studied
it using numerical simulations and mean field approach. It will also be helpful to
check if the proposed multiferroic system can be realized experimentally, as well as
if our model can be adapted to describe relaxor ferroelectrics, which are ferroelectric
materials with high electrostriction and are currently a subject of active research.
Moreover we mention at the end of the chapter about extending the model and
linking it to first principles calculations like DFT. Such extension can be similar
to the first-principles-based effective Hamiltonian construction in [80], but it needs
to also exhibit the important feature of compositional disorder and randomness in
solid solutions analogous to our model that uses a sufficiently large lattice size. Even
though this extension can be very challenging, the resulting model will prove to be
very valuable in materials design of perovskite solid solutions. In particular, the
model can assist experimentalists in tuning the differentmaterial properties including
piezoelectric, dielectric, ferroelectric, magnetic, and photovoltaic properties by
modifying chemical compositions. Currently such process has been done manually
in experiments [37, 103, 144] and can be very tedious, but it can be greatly sped up
by taking advantage of computational resources.

As for the final work on machine learning approximation of electronic fields, we
have so far demonstrated its possible efficacy in larger DFT-based multiscale cal-
culations. The next step is to integrate these learning models into the multiscale
implementations, thus allowing these methods to be much more computationally
viable for the study of crystal defects that often involves the coupling of the quantum
mechanics of local defect core with long-range fields at the continuum level. For
instance, instead of solving unit cell DFT problems for different deformations in
order to obtain the ’predictor’ component of the electronic fields in the macroDFT
method [27], we can replace it with our learnt models of electron density, Coulomb
potential, band structure energy density, and volumetric entropy. Similarly the unit
cell DFT calculations embedded at each quadrature point of the DFT-based local
quasicontinuum method can be replaced with our learning model that maps defor-
mation to total electronic energy and its derivatives as stresses. Furthermore we
can use the same framework to explore different crystalline material systems and
different deformation ranges. In general, we do not expect the machine learning
models to be able to extrapolate results out of the deformation range of the train-
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ing set since the electronic fields can vary remarkably at large deformations. In
the case of macroDFT, the ’corrector’ component is meant to compensate for the
inaccurate results of the ’predictor’ component at limited grid points, and therefore
extrapolation is not a concern here. In other cases where highly accurate predictions
are vital, one may elect to revert back to full unit cell DFT calculations whenever
encountering very large deformations. One may also enlarge the deformation range
of the training set, but that may require more training data. Finally, we find that
the architecture that combines principle component analysis and neural networks
yields the best predictions for magnesium. Nonetheless continual explorations of
other machine learning representations or techniques can be very helpful and may
potentially lead to better approximations and even more applications.

As a note, the first two studies on the domain-wall-driven photovoltaic effect and
the morphotrophic phase boundary of perovskite solid solutions essentially involve
perturbing perovskites at the unit cell lattice level. Therefore, a similar machine
learning framework as in the final work can be constructed and applied to perovskite
crystals to enable these studies at the DFT level. In this case, we may also need to
consider polarization or electric dipole moment of each unit cell as an additional
component of the learning framework.

Ultimately the computational models we have developed in this thesis improve our
understanding of different aspects of crystalline materials. It is possible to turn them
into more quantitative models with the incorporation of first principles calculations
and machine learning approximations that enable the simulation of larger and more
realistic systems. All these enhancements will further contribute to the prediction,
design, and manufacturing of useful materials.
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A p p e n d i x A

DERIVATION OF DEVICE MODEL FOR INVESTIGATING
PHOTOVOLTAIC EFFECT

We show some details regarding the derivation and implementation of the device
model proposed in Chapter 3.

A.1 Derivation involved in the thermodynamically consistent theory
We prove equation (3.43) in Chapter 3.4 below.

Consider the right hand side of (3.43)

d
dt

(
ε0
2

∫
R3

|∇φ|2dV
)
= ε0

∫
R3

∇φ · ∇ Ûφ dV

= ε0

∫
R3

∇ ·

(
φ∇ Ûφ

)
dV − ε0

∫
R3

φ

(
∇ · ∇ Ûφ

)
dV

= ε0

∫
R3\Ω
∇ ·

(
φ∇ Ûφ

)
dV + ε0

∫
Ω

∇ ·

(
φ∇ Ûφ

)
dV

− ε0

∫
R3

φ

(
∇ · ∇ Ûφ

)
dV

= ε0

∫
∂R3

(
φ∇ Ûφ

)
· n̂ dS + ε0

∫
∂Ω+

(
φ∇ Ûφ

)
· (−n̂) dS

+ ε0

∫
∂Ω−

(
φ∇ Ûφ

)
· n̂ dS − ε0

∫
R3

φ

(
∇ · ∇ Ûφ

)
dV

= −ε0

∫
∂Ω
φn∇ Ûφo · n̂ dS − ε0

∫
R3

φ

(
∇ · ∇ Ûφ

)
dV . (A.1)

Due to the discontinuity of the quantity ∇ Ûφ at the boundary ∂Ω, we have to sep-
arate the regions R3\Ω and Ω before applying the divergence theorem. From the
boundary condition φ→ 0 as |x| → ∞, the first term in the fourth line of the above
equation is zero. It is noteworthy that material deformation is not considered in the
above formulation, which allows us to easily switch the sequence of time derivative
and spatial derivative, therefore simplifying the derivations.

Using the time derivative forms of Gauss’s equation and surface charge density

∇ · (−ε0∇ Ûφ + Ûp) = χq(zd
ÛN+d − za ÛN−a − Ûnc + Ûpv), (A.2)
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Ûσ = n−ε0∇ Ûφ + χ Ûpo · n̂, (A.3)

we have

d
dt

(
ε0
2

∫
R3

|∇φ|2dV
)
= −ε0

∫
∂Ω
φn∇ Ûφo · n̂ dS −

∫
Ω

φ∇ · Ûp dV

+

∫
Ω

φ q (zd
ÛN+d − za ÛN−a − Ûnc + Ûpv)dV

=

∫
∂Ω
φn−ε0∇ Ûφ + χ Ûpo · n̂ dS +

∫
Ω

∇φ · Ûp dV

+

∫
Ω

φ q (zd
ÛN+d − za ÛN−a − Ûnc + Ûpv)dV

=

∫
∂Ω1∪∂Ω2

φ Ûσ dS +
∫
Ω

∇φ · Ûp dV

+

∫
Ω

φ q (zd
ÛN+d − za ÛN−a − Ûnc + Ûpv)dV, (A.4)

recovering (3.43). The last equality is attained by using the fact that σ = 0 on
∂Ω\(∂Ω1 ∪ ∂Ω2).
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A.2 Non-dimensionalization and scaling
As mentioned in Chapter 3.5, before solving for the device model numerically, we
introduce dimensionless variables through appropriate scalings as follows:

pr = p0pr

ps = p0ps

θr = θ0θr

θs = θ0θs

r = L0r

WDL = W0W DL

φ = φ0φ

nc = N0nc

pv = N0pv

N+d = N0N
+

d

N−a = N0N
−

a

Ni = N0N i

Jn = J0Jn

Jp = J0Jp

Jtotal = qJ0J total

G = G0G,

where

{p0, θ0} = arg min
p,θ
(WDL ||p1 |=|p2 |=|p3 |=p,|θ1 |=|θ2 |=|θ3 |=θ)

N0 = 1 × 1021 m−3

L0 = p0

√
a0
W0
= 3.9609 × 10−8 m

J0 = G0L0

φ0 =
a0p0
L0

,

and W0 is taken to be the energy barrier across the corresponding type of domain
wall. The steady-state non-dimensionalized equations are

d2pr

dr2 −
∂W DL

∂pr
−

dφ
dr
= 0 (A.5)
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d2ps

dr2 −
∂W DL

∂ps
= 0 (A.6)

b0
d2θr

dr2 −
∂W DL

∂θr
= 0 (A.7)

b0
d2θs

dr2 −
∂W DL

∂θs
= 0 (A.8)

ε0
d2φ

dr2 −
dpr

dr
+ δ(−nc + pv + N

+

d − N
−

a ) = 0 (A.9)

Jn = −Kn(
dnc

dr
− βφ0nc

dφ
dr
) (A.10)

Jp = −Kp(
dpv
dr
+ βφ0pv

dφ
dr
) (A.11)

−
d
dr

Jn + G − B(ncpv − N
2
i ) = 0 (A.12)

−
d
dr

Jp + G − B(ncpv − N
2
i ) = 0, (A.13)

where

b0 =
b0θ

2
0

W0L2
0

ε0 =
ε0φ0
L0p0

δ =
qN0L0

p0

Kn =
νnN0

qβL0J0

Kp =
νpN0

qβL0J0

B =
BN2

0
G0

.
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A p p e n d i x B

TRANSITION PROBABILITY IN MARKOV CHAIN MONTE
CARLO METHOD

Following [145], a Markov chain of configurations can be obtained by constructing
a random walk through the configurational space using fictitious kinetics in terms of
Monte Carlo (MC) time. Let P(Xt = r) be the probability of being in configuration
r at MC time t, and P(Xt+1 = s | Xt = r) be the probability of transiting from state
r to state s per unit time. It follows that

P(Xt+1 = r) = P(Xt = r) +
∑

s

[
P(Xt+1 = r | Xt = s)P(Xt = s)

− P(Xt+1 = s | Xt = r)P(Xt = r)
]
. (B.1)

At large t, equilibrium is reached and we have P(Xt+1 = r) = P(Xt = r). A sufficient
condition for attaining an equilibrium probability distribution is the detailed balance
condition, given by

P(Xt+1 = r | Xt = s)P(Xt = s) = P(Xt+1 = s | Xt = r)P(Xt = r). (B.2)

With the Boltzmann distribution being the probability distribution, the detailed
balance condition becomes

P(Xt+1 = s | Xt = r)
P(Xt+1 = r | Xt = s)

=
P(Xt = s)
P(Xt = r)

= exp
[
−β(W (s) −W (r))

]
. (B.3)

In the context of our multi-state Ising model, we may interprete state r or s above
as one possible distribution of all dipole states on a periodic lattice. Since there are
N number of lattice sites and Nstates states at each lattice point, we have a total of
(Nstates)

N possible distributions (i.e. (Nstates)
N possible r or s states). However at

eachMC step, we only attempt to update the dipole state at one randomly chosen site
i. Therefore the current state r differs from the next state s only by the dipole state
at site i while the dipole states at other sites remain the same. To satisfy the above
condition (B.3), we choose to update the dipole state at each lattice site i to one of
the Nstates possible dipole states according to the following transition probability

P(Xt+1 = s | Xt = r) =
exp

(
−βW (s)

)
∑Nstates

r=1 exp
(
−βW (r)

) . (B.4)
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A p p e n d i x C

DERIVATION OF DIPOLE-DIPOLE ENERGY

We derive the electrostatic energy due to dipole-dipole interaction that is applicable
to both two- and three-dimensional cases. In the first part (Appendix C.1), we
present the derivation that leads to equation (4.4) in Section 4.2. In the second part
(Appendix C.2), we decompose this term following the Ewald summation to obtain
equation (4.6) in Section 4.3.

C.1 Derivation of dipole-dipole interaction energy in direct summation form
Consider an infinite field of polarization, p(x), in the d-dimensional space with a
periodicity of V ∈ Rd . Mathematically, p(x + R) = p(x) for any translation vector
R. The polarization field, also known as the density of dipole moment, generates
an electrostatic potential φ(x) following Gauss’ law

∇2φ(x) = 1
ε0
∇ · p. (C.1)

The electrostatic energy stored in the periodic supercell V is given by

Wdip = −
1
2
ε0

∫
V
φ∇2φ dx

= −
1
2

∫
V
φ∇ · p dx,

where Gauss’ equation is used in the last line. The electrostatic energy can be
interpreted as the energy induced by a distributed charge with density −∇ · p, or the
dipole-dipole Coulombic interaction energy.

The electrostatic potential φ(x) in equation (C.1) can be solved using the Green’s
function as

φ(x) =
∫
Rd

G(x, x′) 1
ε0
∇x′ · p(x′) dx′ (C.2)

where the Green’s function G(x, x′) satisfies

∇2G(x, x′) = δ(x − x′) (C.3)

and has the solutions of

G(x, x′) =


1
2π

ln |x − x′|, d = 2

−
1

4π
1

|x − x′| , d = 3
(C.4)
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when solved in polar coordinates and spherical cases for the 2D and 3D cases,
respectively.

Writing equation (C.2) in terms of the periodic volumeV and applying the divergence
theorem give

φ(x) = 1
ε0

∑
R

∫
V

G(x, x′ + R)∇x′ · p(x′) dx′

=
1
ε0

∑
R

[∫
∂V

G(x − R, x′)p(x′) · n dS −
∫

V
(p(x′) · ∇x′)G(x − R, x′) dx′

]
= −

1
ε0

∫
V
(p(x′) · ∇x′)

∑
R

G(x − R, x′) dx′. (C.5)

The first term in the second line vanishes due to the summation over the surface of
the periodic volume. Similarly, applying the divergence theorem to the energy gives

Wdip =
1
2

∫
V

p(x) · ∇φ(x) dx. (C.6)

Substituting equation (C.5) into equation (C.6) gives

Wdip = −
1

2ε0

∫
V
(p(x) · ∇x)

∫
V
(p(x′) · ∇x′)

∑
R

G(x − R, x′) dx′ dx. (C.7)

For convenience later, we introduce the dipole density function p(r) such that it is
equal to the periodic part of the polarization function. This function can be used to
replace the function p(x) in the previous equation.

p(x) =


p(x), x ∈ V

0, otherwise.
(C.8)

With N dipoles at discrete points xi in the supercell, we have

p(x) =
N∑

i=1
pi δ(x − xi). (C.9)

Substituting equations (C.4) and (C.9), the electrostatic energy becomes

Wdip =
1

4πε0

N∑
i, j=1

,∑
R

1
x2

i j

[
pi · p j −

2(pi · xi j)(p j · xi j)

x2
i j

]
+W sel f

dip (C.10)

for the 2D case, and

Wdip =
1

8πε0

N∑
i, j=1

,∑
R

1
x3

i j

[
pi · p j −

3(pi · xi j)(p j · xi j)

x2
i j

]
+W sel f

dip (C.11)
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for the 3D case, where xi j = xi − x j − R. Following [90], the symbol (,) above
the summation sign denotes the omission of the term R = 0 during summation
when i = j to prevent the inclusion of the self-interaction term. Otherwise, this
first term would not be finite. This term is also equal to the total interaction energy
between any two idealized point dipoles. However, in actual, an electric dipole
corresponds a localized distribution of charges, and it takes energy to assemble a
dipole from infinitesimal parts. We call this the corrected self-energy which has
an expression as in equation (C.12). This self-energy term is needed to ensure that
the electric field is curl-free everywhere and can be derived in a similar manner as
[146]. In the continuum formulation that we begin with, there is no need for such
consideration since a continuous distribution of electric dipoles is used, and hence
the energy of interaction of each infinitesimal dipole with all other infinitesimal
dipoles is included. Note that this self-energy term can be omitted when all the
electric dipoles considered have the same magnitudes, so the change in energy due
to the change in dipole states in each Monte Carlo step would not be affected by that
term.

W sel f
dip =

1
2dε0

N∑
i=1
|pi |

2, d = 2, 3. (C.12)

In summary, we have

Wdip =
1

4πε0(d − 1)

N∑
i, j=1

,∑
R

1
x2

i j

[
pi · p j −

d(pi · xi j)(p j · xi j)

x2
i j

]
+

1
2dε0

N∑
i=1
|pi |

2, (C.13)

which is the same as equation (4.4) with De =
1

4πε0
.

C.2 Derivation of dipole-dipole interaction energy following Ewald summa-
tion

Since the summation in equation (C.10) for the dipole-dipole interaction energy is
only conditionally convergent, we attempt to rewrite it using Ewald decomposition.

Reciprocal-space term (W k
dip)

Using Parseval’s theorem and the convolution theorem for Fourier series, as well as
the fact that the Fourier series of the following periodic functions are related to the
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Fourier transforms p̃(k) and G̃(k),

FS[p(x)] = 1
V
p̃(k)

FS[
∑
R

G(x − R)] =
∫

V

∑
R

G(x − R) exp(−ik · x) dx

=

∫
Rd

G(x) exp(−ik · x) dx

= G̃(k),

the dipole-dipole interaction energy can be expressed in the Fourier space as

Wdip −W sel f
dip = −

1
2ε0

1
V

∑
k∈Kd

|p̃(k) · ik|2G̃(k)

where p̃(k) = ∑N
i=1 pi exp−ik·xi , G̃(k) = −1/k2, and Kd is the reciprocal lattice. The

series is again not convergent as it includes the fictitious self-interaction terms that
contribute to the high frequency components. Following [147], this problem can
be solved by regularizing the Dirac delta function in Eqn (C.3) with a Gaussian
function gσ(x) = (2πσ2)−d/2 exp

(
− x2

2σ2

)
where limσ→0 gσ(x) = δ(x). Then we

introduce the decomposition

G(x, x′) = Gσ(x, x′) + Gr(x, x′)

with the modified Green’s function Gσ(x, x′) that satisfies

∇2Gσ(x, x′) = gσ(|x − x′|). (C.14)

Now, converting equation (C.14) to Fourier space gives

−k2G̃σ(k) =
∫
Rd

1
(2πσ2)d/2

exp
(
−

x2

2σ2

)
exp(−ik · x)dx

=
1

(2πσ2)d/2

d∏
i=1

[∫ ∞

−∞

exp

(
−

x2
i

2σ2

)
exp(−iki xi)dri

]
= exp(−k2σ2/2).

The last line is obtained using the identity
∫ ∞
−∞

exp(−bx2) exp(iax)dx =
√
π
b exp

(
− a2

4b

)
.

Finally,

G̃σ(k) = −
1
k2 exp(−k2σ2/2). (C.15)
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The remaining term Gr(x, x′) will be determined later.

Now, we have

Wdip −W sel f
dip = W k

dip +Wr
dip −W k_sel f

dip +W sur f
dip

with

W k
dip = −

1
2ε0

1
V

∑
k,0

k∈Kd

|p̃(k) · ik|2G̃σ(k). (C.16)

Real-space term (Wr
dip)

To find Wr
dip, we observe that

−G̃(k) = 1
k2

=

∫ ∞

0
exp(−k2t)dt

=

∫ η

0
exp(−k2t)dt +

∫ ∞

η
exp(−k2t)dt

=

∫ η

0
exp(−k2t)dt +

1
k2 exp(−k2η).

The last term is equal to −G̃σ(k) if we set η = σ2/2. It follows that

G̃r(k) = −
∫ σ2/2

0
exp(−k2t)dt .

The expression of Gr can be obtained by taking the inverse Fourier transform. In
the 2D case, we have

Gr(x) = −
1
(2π)2

∫
R2

G̃r(k) exp(ik · x) dk

= −
1

4π2

∫ σ2/2

0

∫
R2

exp(−k2t) exp(ik · x) dk dt

= −
1

4π2

∫ σ2/2

0

π

t
exp

(
−

x2

4t

)
dt

=
1

4π
Ei

(
−

x2

2σ2

)
.

Notice that Gr rapidly decays as r2 increases. Therefore,

Wr
dip = −

1
2ε0

N∑
i, j=1

,∑
R
(pi · ∇xi )(p j · ∇xj )Gr(|xi − x j − R|) (C.17)
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represents the short-range interaction and can be computed in real space. Further
the parameter σ can be selected to be suffciently small such that Wr

dip becomes
negligible and yet the computation of W k

dip is kept tractable. The same procedure

can be applied to the 3D case to give Gr(x) = − 1
4πx

[
erfc( x√

2σ
)

]
. Alternatively,

equation (C.14) can be directly solved using spherical coordinates to obtain the
expression of Gr(x) for the 3D case.

Reciprocal-space self-interaction term (W k_sel f
dip )

Next, we determine the self-interaction term W k_sel f
dip which is a fictitious term that

has been included in W k
dip. In the 2D case,

Gσ(x, x′) = G(x, x′) − Gr(x, x′)

=
1

2π
ln(|x − x′|) − 1

4π
Ei

(
−

x2

2σ2

)
.

This expression is difficult to be differentiated. Instead, using series expansion about
t = − |x−x′ |2

2σ2 = 0, i.e. Ei(t) = γ + ln |t | + t + t2

2·2! +
t3

3·3! + . . . , we obtain

Gσ(x, x′) = −
γ

4π
+

1
4π

ln(2σ2) +
1

8πσ2 |x − x′|2 + O(|x − x′|4)

Then,

W k_sel f
dip = −

1
2ε0

lim
xi→xj

N∑
i=1
(pi · ∇xi )(pi · ∇xj )Gσ(xi, x j)

=
1

8πσ2ε0

N∑
i=1
|pi |

2. (C.18)

In the 3D case,

W k_sel f
dip =

1
12
√

2π3/2σ3ε0

N∑
i=1
|pi |

2. (C.19)

Surface term (W sur f
dip )

Finally, we derive the surface term W sur f
dip following [148]. Consider a system

comprising of two concentric circular (spherical for 3D) dielectrics with dielectric
constants ε and ε′, and radii of a and b respectively with a < b. The entire system
is placed in a vacuum in the 2D or 3D space with an electric field E applied. In
the limit of a → ∞, b → ∞, and a/b → 0, the electric field in region I (the inner
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region) is given by

EI =


4ε′

(ε′ + 1)(ε′ + ε)
E, d = 2

9ε′

(ε′ + 2)(2ε′ + ε)
E, d = 3

(C.20)

and the polarization p is

p = ε0(ε − 1)EI .

The electrostatic fieldE′I that would be present in region I if it were empty is obtained
by setting ε = 1 in equation (C.20,) and hence

E′I =


4ε′

(ε′ + 1)2
E , d = 2

9ε′

(ε′ + 2)(2ε′ + 1)
E , d = 3.

The total dipole moment M of the unit cell of area V gives rise to a surface charge
at the boundary of the circle (sphere for 3D), which generates a homogeneous
depolarizing field

Edepolarizing = EI − E′I =


−

1
ε0(ε′ + 1)

p, d = 2

−
1

ε0(2ε′ + 1)
p, d = 3

where p = M/V . The reversible work per unit volume needed to be done against
the depolarizing field to create the net polarization p is dw = −Edepolarizingdp, and
the total work needed to polarize the system is hence

W sur f
dip =


2

ε0(ε′ + 1)
|p|2V =

1
2V

1
ε0(ε′ + 1)

����� N∑
i=1
pi

�����2 , d = 2

2
ε0(2ε′ + 1)

|p|2V =
1

2V
1

ε0(2ε′ + 1)

����� N∑
i=1
pi

�����2 , d = 3.

(C.21)

In the context of the periodic lattice, this term is dependent on the dielectric constant
at the boundary at infinity ε′ and is therefore called the surface term. This term
can also be interpreted as the contribution from the k = 0 component that has been
omitted in W k

dip. ε′ is set to 1 in all simulations to represent vacuum boundary
conditions so that the formation of ferroelectric domains can be observed. Using
this value of ε′ gives the same value of Wdip as obtained by following a spherical
order of summation in the direct sum calculation in equation (C.10). If ε′ is infinity
which corresponds to a metallic boundary condition, then the surface term vanishes.
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Combining all terms
Combining the results (C.15,C.16,C.17,C.18,C.19,C.21) gives equation (4.6) in Sec-
tion 4.3. In the 3D case, these energy expressions are also consistent with literature
[90, 91].
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A p p e n d i x D

ALTERNATIVE APPROACH TO ANALYZING DOMAIN SIZE
USING HAAR WAVELET DECOMPOSITION

In Section 4.4, we present a simple way to evaluate the average domain size of
a domain pattern using breadth first search. Here we show similar results using
wavelet decomposition.

We perform a 2D Haar wavelet trasformation on a dipole pattern represented by
matrix X the same way as in Section 4.4, except that now we do so not only at the
finest level ( j = 1), but also at every level j to obtain the corresponding horizontal
(H j), vertical (V j), and diagonal (D j) detail coefficients, where j = 1, 2, ..., J,
J = log2 L, and L is the linear size of the periodic lattice. Note that the filters of the
Haar wavelets used are normalized in the same way as [92].

We can partition data variance by scale. Given

var(X) =
J∑

j=1

[
var(H j) + var(V j) + var(D j)

]
, (D.1)

we can examine the sum of the variances corresponding to horizontal, vertical, and
diagonal detail coefficients of the simulated dipole states at each level j which is the
quantity in the square brackets of the above equation. This provides information on
the proportion in which the wavelet variance at the scale τj = 2 j−1 accounts for the
variability in the data. Disregarding the finest scale which captures details of the
domain walls as well as abnormalities, we can compute the expectation of level 〈 j〉,
and hence estimate the average scale of domains as

〈
τj

〉
= 2〈 j〉−1 for each domain

pattern. As seen in Figure D.1, the expected values for different realizations span
across a range for each PZT composition. However, there is clearly a dip in the
length scale of domain structure at the MPB. This is consistent with Figure 4.3(f)
which computes the average domain size via breadth first search and shows a smaller
average domain size there.
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Figure D.1: Average scale of domains estimated using level-by-level variance de-
composition. The grey circles show all ten realizations for each percentage of PT,
while the red lines show the average values.
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A p p e n d i x E

USEFUL EQUATIONS FOR MACHINE LEARNING MODELS

Here we provide more details regarding the machine learning models constructed
in Chapter 5. Section E.1 presents the expressions of band structure energy density,
volumetric entropy, and total free energy in a crystal that are used in data collection
for both training and testing of the machine learning models. On the other hand,
Section E.2 details the backpropagation method involving the neural networks for
obtaining energy derivatives as needed in Chapter 5.4.

E.1 Band structure energy density, volumetric entropy, and total free energy
in a crystal

In the context of a crystal that has electronic orbital ψi,k and energy state Ei,k

associated with each k point in the Brillouin zone of the unit cell U, the band
structure energy density and volumetric generalized entropy are given by

u(x) =
∑

k∈IBZ

Nband∑
i=1

wkEi,k f (Ei,k)|ψi,k(x)|2, (E.1)

s(x) = − 1
√
π

∑
k∈IBZ

Nband∑
i=1

wk |ψi,k(x)|2e−t2
(κt3 + t2 −

1
2
), t = β(Ei,k − E f ). (E.2)

Here we restrict k to the irreducible Brillouin zone (IBZ) ofU and add appropriate
weights wk satisfying

∑
k∈IBZ wk = 1. The energy eigenstates have also been

normalized such that
∫
|ψi,k(x)|2dx = 1 for all i, k.

Finally, we consider the total energy expression. The Kohn-Sham ground state
energy is

EKS[{ψi,k}, {RI}] =

Nband∑
i=1

∑
k∈IBZ

−
1
2
wk f (Ei,k)

∫
ψ∗i,k(x)∇2ψi,k(x)dx

+ EH[ρ(x)] +
∫

ρ(x)Vext(x)dx +
∫

exc[ρ(x)]dx

+ Eion[{RI}] + Ecore, (E.3)

where the first term of the expression is the independent-particle kinetic energy,
ρ(x) = ∑Nband

i=1
∑

k∈IBZ wk f (Ei,k)|ψi,k |2 is the valence electronic density, EH is the
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Hartree energy (or in other words, the classical Coulomb interaction energy of the
electron density interacting with itself), and Eion is the Coulomb energy associated
with interactions among the ions at positions {RI} which is computed using the
Ewald summation method. There is also an additional energy contribution known
as Ecore arising from the fact that the ion is not a point charge. Its exact expression
can be found in [149].

Using theKohn-Sham equationHKSψi,k = Ei,kψi,k withHKS = −
1
2∇

2+VH+Vext+Vxc

and orthonormality condition
∫
ψ∗i,k(x)ψi,k(x)dx = δi,i′δk,k′, we may rewrite the

ground state energy in terms of the band structure energy U analogous to equation
(5.5) as follows:

EKS[{ψi,k}, {RI}] =

Nband∑
i=1

∑
k∈IBZ

wk f (Ei,k)Ei,k︸                         ︷︷                         ︸
U

−EH[ρ(x)] −
∫

Vxc[ρ(x)]ρ(x)

+

∫
exc[ρ(x)]dx + Eion[{RI}] + Ecore. (E.4)

Then, the total Helmholtz free energy of the system is simply

F = EKS − S/β. (E.5)

E.2 Backpropagation method in obtaining energy derivatives
The machine learning model that maps deformation D = {λa, λb, λc, θa, θb, θc} to
the total free energy F has the following mathematical structure:

h(0) =W(0)−1 (
h(−1) − b(0)

)
, h(−1)= [λa λb λc θa θb θc]

T, W (0)i j = 0 if i , j,

h(k) = g
(
W(k)Thk−1 + b(k)

)
, k = 1, 2, 3,

h(4) =W(4)Th(3) + b(4),

F = h(5) = W (5)h(4) + b(5).

The first and the fourth lines represent the preprocessing steps that remove the mean
and variance from the data, where b(0),W(0), b(5),W(5) are the mean and standard
deviation of the input D and output F of the model. The second and third lines
indicate the dense neural network with three hidden layers, hyperbolic tangent
activation function g(x) = tanh(x), and fitted weights b(k),W(k) with k = 1, 2, 3.
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The derivatives of F with respect to h(−1) can be computed as follows:

∂F

∂h(3)i

= W (5)W (4)i1 ,

∂F

∂h(k−1)
i

=
∑

j

∂F

∂h(k)j

g′((W(k)Th(k−1) + b(k)) j)W (k)i j , k = 3, 2, 1,

∂F

∂h(−1)
i

=
∂F

∂h(0)i

1
W (0)ii

.

Subsequently, applying the chain rule gives

∂F

∂εkl
=

6∑
i=1

∂F

∂h(−1)
i

∂h(−1)
i

∂εkl
.
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A p p e n d i x F

UNIAXIAL STRESS AND TRANVERSE STRAIN FROM
DIFFERENT MACHINE LEARNING APPROACHES

Figure F.1 compares the ground truth uniaxial stress and transverse strain to those of
the two ML approach, where the free energy is computed using the direct and sum
approaches, respectively. In the case of the sum approach, there is not an analytical
expression of ∂F

∂εi j
, the derivative is therefore computed numerically. It is observed

that the sum approach is able to better track the response of lattice instability under
high compression in the x2 direction, therefore demonstrating the robustness of
computing the energy with the learned fields.

Figure F.1: Uniaxial test results. The results obtained from our machine learning
models aremarked as ’direct’ and ’sum’, while the results obtained directly fromDFT
calculations with stress relaxation are marked as ’true.’ Note that the ’direct’ and
’true’ results are the ’ML’ and ’true’ results reproduced from Figure 5.9. (a) Stress-
strain curves for uniaxial stress in the x1, x2, and x3 directions. (b–d) Corresponding
transverse strain.
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