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ABSTRACT 

Many bacteria secrete natural antibiotics—toxic small molecules that can kill or inhibit the 

growth of other microorganisms. Several of these compounds have been commercialized as 

antimicrobial drugs, and the mechanisms and public health consequences of bacterial resistance to 

clinically-used antibiotics are well understood. By contrast, the role of bacterially-produced 

antibiotics in natural environments, where they have existed for millions of years, remains an open 

question. Besides potentially serving as tools of warfare between competing microbes, natural 

antibiotics have been proposed to serve less antagonistic functions ranging from the acquisition of 

nutrients to the transmission of signals between cells. Indeed, despite evidence that natural antibiotics 

can suppress sensitive microbes in environments such as the soil surrounding plant roots, the 

ecological significance of the toxicity of these molecules has sometimes been questioned. At the 

same time, for most natural antibiotics, the mechanisms and prevalence of resistance are either 

poorly characterized or entirely unknown.  

This thesis addresses the molecular mechanisms and consequences of bacterial resistance to 

a particular class of redox-active natural antibiotics called phenazines. Phenazines are produced by 

a major opportunistic human pathogen, Pseudomonas aeruginosa, during infections, as well as by 

several bacterial species that associate with the roots of crops such as wheat, where they serve to 

protect their plant hosts against fungal pathogens. Resistance to this family of natural antibiotics is 

therefore potentially relevant to multiple sectors of human society. I begin by investigating the 

intrinsic phenazine resistance of a common soil bacterium, Agrobacterium tumefaciens, that does 

not itself produce phenazines. Using a functional genetics approach, I find that the composition of 

the respiratory electron transport chain plays a critical role in mitigating phenazine toxicity, one that 

cannot be compensated by increased expression of efflux pumps that transport phenazines out of the 

cell or oxidative stress responses that neutralize the toxic byproducts of phenazine redox-cycling. 

Subsequently, we turn to P. aeruginosa, the phenazine-producing opportunistic pathogen, and 

demonstrate that the defenses it activates against its own toxic phenazine, pyocyanin, collaterally 

accelerate the acquisition of resistance to certain clinical antibiotics. Other bacteria known to form 

multispecies infections with P. aeruginosa can also benefit from exposure to pyocyanin in the 

presence of these clinical antibiotics; we show that in at least one strain isolated from a patient, the 
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effect of pyocyanin on the frequency of spontaneous antibiotic-resistant mutants rivals that of 

disruptions in DNA repair machinery. Importantly, a growing body of reports suggests that, besides 

pyocyanin, other metabolites produced by bacterial pathogens can also affect the efficacy of clinical 

antibiotics. We review the evidence for which types of bacterial metabolites alter susceptibility to 

antimicrobial drugs, as well as the mechanisms underlying this phenomenon. Finally, I examine the 

prevalence of bacterial resistance to an agriculturally-relevant phenazine in a wheat field where the 

use of native phenazine producers to control crop diseases has been studied for decades. I discover 

that while Gram-positive bacteria are generally more susceptible to this phenazine compared to 

Gram-negative bacteria, the sharpness of this distinction is pH-dependent; moreover, I uncover 

surprising heterogeneity in phenazine resistance within certain taxonomic groups. Taken together, 

these findings illuminate recurring themes in mechanisms of phenazine resistance and point to an 

underappreciated role for natural antibiotics in the resilience of opportunistic pathogens to clinical 

antibiotics. This thesis also lays the groundwork for developing a predictive model of phenazine 

resistance across diverse bacteria, with potential implications for optimizing the use of clinical 

antibiotics and improving agricultural sustainability.     
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C h a p t e r  1  

INTRODUCTION 

A brief history of natural antibiotics 

For most people, the word “antibiotic” likely evokes doctors, prescriptions, and pills 

manufactured by pharmaceutical companies. Indeed, since the commercialization of penicillin in the 

1940s, antibiotics—that is, organic molecules that kill or inhibit the growth of microorganisms—

have become arguably the greatest “wonder drugs” of modern medicine, having extended the 

average human lifespan by 23 years and enabled the development of procedures ranging from cancer 

treatments to organ transplants (Hutchings et al., 2019). Unfortunately, concomitantly with the rise 

in antibiotic use over the past century, antibiotic resistance—that is, the ability to grow in the 

presence of an antibiotic—has also been observed with increasing and alarming frequency in both 

clinical and environmental isolates of bacteria, leading to serious concerns about the future utility of 

antibiotics in medicine (Davies and Davies, 2010; Aminov, 2010). Yet the history of antibiotics and 

antibiotic resistance dates back long before the adoption of these compounds for human purposes. 

Phylogenetic evidence indicates that microbes have been making antibiotics and evolving resistance 

for hundreds of millions of years (Waglechner et al., 2019). In fact, the term “antibiotic” was 

originally proposed to refer specifically to microbially-produced antimicrobial substances, as 

opposed to synthetic chemicals (Waksman, 1947). The meaning has since broadened in common 

parlance, but antibiotics derived from soil-dwelling microbes—including penicillin—still represent 

the majority of antimicrobial drugs used in clinics today (Hutchings et al., 2019).  

Though widespread therapeutic use of antibiotics did not come to fruition until the mid-20th 

century, the fact that microbes compete with each other and can hinder the growth and survival of 

their competitors has been recognized since at least 1874, when William Roberts of Manchester 

described how cultures of Penicillium fungi in liquid media “held in check” the growth of bacteria, 

and conversely, how cultures densely populated with bacteria were difficult to infect with 

Penicillium (Roberts, 1874; Foster and Raoult, 1974). Roberts also noticed that certain “races of 

bacteria” seemed to be antagonistic towards certain others. On the basis of these observations, he 

presciently wrote:  
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[I]t may be assumed that, what takes place when an organic liquid is exposed to the 

contamination of air or water, is this: a considerable variety of germinal particles are 

introduced into it, and it depends on a number of conditions (composition of the 

liquid, its reaction, precedence, and abundance of the several germs) which of these 

shall grow and take a lead, and which shall partially or wholly lie dormant and 

unproductive. There is probably in such a case a struggle for existence and a survival 

of the fittest. And it would be hazardous to conclude because a particular organism 

was not found growing in a fertile infusion, that the germs of the organism were really 

absent from the contaminating media. (Roberts, 1874) 

Roberts was followed soon after by John Tyndall of London. In 1875, approximately a 

decade after Louis Pasteur’s seminal experiments on spontaneous generation, fermentation, and the 

germ theory of disease (Berche, 2012), Tyndall set up an experiment consisting of numerous test 

tubes containing infusions of different types of meat, fish, or vegetables, which he exposed to the 

air. Tyndall observed that the infusions differed in the rate at which “putrefaction” (i.e. bacterial 

growth) set in, and moreover, that certain types of putrid infusions were more likely to be overtaken 

by the growth of Penicillium, while others seemed to repel the fungus (Tyndall, 1876). That the latter 

phenomenon might be related to chemical substances produced by the bacteria was hinted at by the 

following: 

Another difference, pointing to differences in the life of the air, was shown by these 

tubes. The turbidity of the two mould-crowned ones was colourless, exhibiting a grey 

hue. The third tube, the middle one of the three, contained a bright yellow-green 

pigment, and on its surface no trace of mould was to be seen. It never cleared, but 

maintained its turbidity and its Bacterial life for months after the other tubes had 

ceased to show either. It cannot be doubted that the mould-spores fell into this tube 

also, but in the fight for existence the colour-producing Bacteria had the upper hand 

[emphasis added]. (Tyndall, 1876)  

Tyndall repeatedly saw the appearance of such pigmented bacteria among his cultures, and 

noted that they “frequently show[ed] a singular power in preventing the development of mould” 

(Tyndall, 1876). It has since become widely appreciated by microbiologists that diverse bacteria 
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have evolved means of engaging in microbial warfare, often through the secretion of toxic small 

molecules (Tyc et al., 2017; Granato et al., 2019). Moreover, the chemical and biological diversity 

of these compounds extends far beyond those that have been coopted for use in human medicine 

(Bérdy, 2012). Interestingly, as Tyndall noticed, these natural antibiotics are often strikingly colored 

(Price-Whelan et al., 2006; Charkoudian et al., 2010; Glasser et al., 2017).  

Despite the obvious fitness benefits of suppressing one’s competitors, the toxicity of natural 

antibiotics may sometimes represent a side effect rather than their primary purpose. Additional 

functions that have been demonstrated for specific natural antibiotics include nutrient acquisition 

(Wang et al., 2011; McRose and Newman, 2021), cell-cell signaling (Dietrich et al., 2006; Linares 

et al., 2006), and conservation of energy in the absence of oxygen (Glasser et al., 2014). 

Nevertheless, evidence accumulated over the past few decades suggests that natural antibiotics can 

and do also function in an inhibitory capacity in nature, and that the pressure to evolve resistance 

against these molecules may therefore be pervasive. For example, antibiotic production plays an 

essential role in the suppression of plant pathogens by certain bacteria in the rhizosphere (i.e. the 

region of soil immediately surrounding plant roots) (Thomashow and Weller, 1988; Handelsman 

and Stabb, 1996; Chin-A-Woeng et al., 2003). Moreover, in many soil bacteria, antibiotic production 

is triggered by the presence of specific competitors (Garbeva and de Boer, 2009; Onaka et al., 2011; 

Pérez et al., 2011; Garbeva et al., 2011; Traxler et al., 2013; Tyc et al., 2014).  

As a result of their varied biological activities, even natural antibiotics that lack utility as 

therapeutic drugs can be highly relevant to human health and agriculture. One such class of natural 

antibiotics is the phenazines, a family of bacterially-produced pigments characterized by a three-

ringed heterocyclic structure containing two central nitrogen atoms (Turner and Messenger, 1986). 

Different phenazines are distinguished by different functional groups at various positions around the 

rings. These chemical variations contribute to a variety of traits, including brilliant colors spanning 

the full spectrum of the rainbow (Turner and Messenger, 1986; Price-Whelan et al., 2006). However, 

a key shared property is that most naturally-occurring phenazines are redox-active under 

physiological conditions, meaning that they can gain electrons from cellular reductants, such as 

NADH, and subsequently donate them to oxidants, such as molecular oxygen (Hassan and Fridovich, 

1980; Price-Whelan et al., 2006; Wang and Newman, 2008). It is this property that is thought to 

underpin their broad-spectrum antimicrobial activity, as the redox-cycling of phenazines can 
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generate reactive oxygen species (ROS) (Hassan and Fridovich, 1980) and interfere with 

components of the respiratory electron transport chain (Baron and Rowe, 1981; Voggu et al., 2006).  

At least four phenazines are produced by the opportunistic human pathogen Pseudomonas 

aeruginosa, which can cause serious chronic infections in immunocompromised patients 

(Villavicencio, 1998; Price-Whelan et al., 2006). One of these phenazines, pyocyanin, confers P. 

aeruginosa with its eponymous blue-green color (the Latin “aerugo” refers to the color of copper 

rust) (Price-Whelan et al., 2006).  The antimicrobial activity of pyocyanin was recognized as far 

back as the 19th century, and in fact, after being isolated and named in 1859 by M. J. Fordos (Fordos, 

1859), pyocyanin eventually became what was likely the first antibiotic to be used in a hospital, in 

the 1890s (Emmerich and Löw, 1899; Aminov, 2010). Unfortunately, the toxicity of pyocyanin also 

extends to humans, and pyocyanin is now considered to be a virulence factor that damages host tissue 

and enhances the severity of P. aeruginosa infections (Lau et al., 2004). Yet while phenazines are 

harmful to humans in the context of infections, these natural antibiotics can be beneficial in 

agriculture: several rhizosphere-dwelling Pseudomonas species produce phenazines that efficiently 

suppress the growth of fungal crop pathogens. As a result, certain strains of Pseudomonas have 

received attention as potential “biocontrol” agents that might more sustainably protect crops from 

disease compared to synthetic fungicides (Handelsman and Stabb, 1996).  

Despite these multifaceted roles of phenazines and their relevance to human interests, our 

understanding of how Pseudomonas species and certain other bacteria resist these toxins is relatively 

rudimentary compared to our detailed understanding of resistance to clinical antibiotics 

(Handelsman and Stabb, 1996; Blair et al., 2015). A handful of studies have suggested that efflux 

(i.e. the transport of small molecules out of cells), oxidative stress responses, and/or variations in the 

components of the respiratory electron transport chain may help counteract the toxicity of pyocyanin 

(Hassan and Fridovich, 1980; Voggu et al., 2006; Khare and Tavazoie, 2015; Noto et al., 2017), 

while a comparison of 14 phylogenetically diverse bacterial species suggested that as a group, Gram-

negative bacteria tend to be more resistant to pyocyanin than Gram-positive bacteria (Baron and 

Rowe, 1981). Additionally, a few soil bacteria have been found to possess phenazine-degrading 

enzymes (Yang et al., 2007; Costa et al., 2015; Costa et al., 2018). Nevertheless, major gaps remain 

in our ability to predict which bacteria can resist phenazines, and our knowledge of how they do 

so—especially for phenazines other than pyocyanin. A deeper understanding of the molecular 
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mechanisms that drive phenazine resistance could inspire new approaches for the treatment of 

chronic P. aeruginosa infections, which are notoriously difficult to eradicate with traditional 

antibiotics (Rice, 2006; Hurley et al., 2012). Furthermore, characterizing the prevalence of phenazine 

resistance in agricultural soils could help predict the effects of biocontrol agents on native 

rhizosphere bacterial communities, as well as the likelihood of phenazine resistance acquisition in 

target crop pathogens (Handelsman and Stabb, 1996). This thesis represents a first step towards these 

goals.   

Overview  

In Chapter 2, I investigate the molecular mechanisms of resistance to pyocyanin in a common 

soil bacterium and plant pathogen, Agrobacterium tumefaciens. Based on a phenotypic screen of 

~5000 transposon insertion mutants, I find that the cellular processes involved in pyocyanin 

resistance fall into four general categories: 1) transcriptional regulation of stress responses, 2) central 

metabolism and maintenance of the proton-motive force, 3) cell wall biosynthesis and modification, 

and 4) transport of small molecules. I then dive deeper into the mechanisms underlying the loss-of-

function phenotypes of two transcriptional regulators identified in this screen, ActR and SoxR. I 

show that at low concentrations of pyocyanin, appropriate preemptive regulation of the respiratory 

electron transport is more important for tolerance of pyocyanin toxicity than the induction of 

oxidative stress responses and efflux pumps.  

In Chapter 3, I turn to the producer of pyocyanin, P. aeruginosa, and address how its ability 

to tolerate pyocyanin toxicity affects the acquisition of heritable antibiotic resistance. This work was 

done in collaboration with another graduate student in the Newman lab, Lucas Meirelles, who began 

by performing a genetic screen to reveal molecular mechanisms of pyocyanin tolerance in P. 

aeruginosa. Several findings from this screen overlap with those described in Chapter 2, suggesting 

that diverse pyocyanin-resistant bacteria may share fundamentally similar mechanisms of resistance. 

We reveal that a specific efflux pump induced by pyocyanin in P. aeruginosa confers cross-tolerance 

to structurally similar clinical antibiotics, such as fluoroquinolones. We then demonstrate that 

exposure to pyocyanin significantly increases the rate at which spontaneous antibiotic resistant 

mutants are detected in growing populations of P. aeruginosa. Lastly, we extend these findings to 

other opportunistic pathogens that can form multispecies infections together with P. aeruginosa.   
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In Chapter 4, together with Lucas, I review the evidence that, beyond pyocyanin, other so-

called secondary metabolites (i.e. small molecules that are not directly involved in central 

metabolism) produced by opportunistic and enteric pathogens can affect the efficacy of clinical 

antibiotics. In particular, we focus on secondary metabolites that upregulate efflux pump expression 

and those that generate ROS, induce oxidative stress responses, or directly detoxify harmful free 

radicals. We posit that as a result of these interactions between diverse secondary metabolites and 

clinical antibiotics, the evolutionary history and ecological roots of microbial antagonism may have 

important consequences for how one ought to approach the diagnosis of antibiotic resistance and the 

optimal use of antibiotics for human benefit.  

In Chapter 5, I return to the context of soil and the rhizosphere, where phenazines contribute 

to the suppression of crop pathogens. I describe the development of an assay that enables 

comparisons of phenazine susceptibility across diverse bacteria isolated from a dryland wheat field 

in Washington state, where the role of phenazine producers in natural suppression of crop disease 

has been studied for decades (Weller and Cook, 1983; Thomashow and Weller, 1988; Thomashow 

et al., 1990). I also discuss preliminary results from this assay, including the discovery that at acidic 

pH, susceptibility to an agriculturally-relevant phenazine may broadly correlate with high-level 

phylogeny, whereas at circumneutral pH, susceptibility can vary even within the same genus. 

Finally, in Chapter 6, I provide concluding remarks, including a summary of our current 

understanding of phenazine resistance and a few suggestions for future research directions that would 

build on the findings of this thesis. 
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C h a p t e r  2  

MOLECULAR MECHANISMS OF PHENAZINE RESISTANCE IN 
AGROBACTERIUM TUMEFACIENS 

This chapter is adapted from: 

Perry, E.K., and Newman, D.K. (2019) The transcription factors ActR and SoxR differentially affect 

the phenazine tolerance of Agrobacterium tumefaciens. Mol Microbiol 112: 199-218. 

Abstract 

Bacteria in soils encounter redox-active compounds, such as phenazines, that can generate 

oxidative stress, but the mechanisms by which different species tolerate these compounds are not 

fully understood. Here, we identify two transcription factors, ActR and SoxR, that play contrasting 

yet complementary roles in the tolerance of the soil bacterium Agrobacterium tumefaciens to 

phenazines. We show that ActR promotes phenazine tolerance by proactively driving expression 

of a more energy-efficient terminal oxidase at the expense of a less-efficient alternative, which 

may affect the rate at which phenazines abstract electrons from the electron transport chain and 

thereby generate reactive oxygen species. SoxR, on the other hand, responds to phenazines by 

inducing expression of several efflux pumps and redox-related genes, including one of three copies 

of superoxide dismutase and five novel members of its regulon that could not be computationally 

predicted. Notably, loss of ActR is far more detrimental than loss of SoxR at low concentrations 

of phenazines, and also increases dependence on the otherwise functionally redundant SoxR-

regulated superoxide dismutase. Our results thus raise the intriguing possibility that the 

composition of an organism’s electron transport chain may be the driving factor in determining 

sensitivity or tolerance to redox-active compounds.  

 

Introduction 

Soil-dwelling bacteria commonly secrete redox-active secondary metabolites, including a 

variety of phenazine derivatives (Turner and Messenger, 1986; Mavrodi et al., 2010). Such 

metabolites can reversibly accept electrons from and donate electrons to a variety of substrates in 



 

 

11 

a process known as redox cycling. This property enables them to benefit their producers by 

promoting iron acquisition (Hernandez et al., 2004; Wang et al., 2011), anaerobic survival (Wang 

et al., 2010; Glasser et al., 2014), and biofilm development (Ramos et al., 2010). At the same time, 

because of their ability to abstract electrons from redox enzymes (such as those in the respiratory 

electron transport chain (ETC)), reduced quinones, and other cellular reductants, and subsequently 

to transfer those electrons to oxygen, these metabolites can also suppress competing microbes by 

generating reactive oxygen species (ROS) or interfering with respiration (Hassan and Fridovich, 

1980; Baron and Rowe, 1981; Baron et al., 1989; Hassett et al., 1992). Phenazine producers can 

promote crop productivity in a phenazine-dependent manner, in part by suppressing fungal plant 

pathogens (Audenaert et al., 2002; Chin-A-Woeng et al., 2003; Khare and Arora, 2011), and 

phenazine biosynthesis has been observed on plant roots colonized by these bacteria (Chin-A-

Woeng et al., 1998; Séveno et al., 2001; LeTourneau et al., 2018). Phenazines have also been 

shown to accumulate in dryland agricultural soils and the rhizosphere of cereal crops (Mavrodi et 

al., 2012). These observations imply that tolerance of phenazines may be an important fitness 

determinant in certain soils and plant-associated environments. Yet aside from their producers, 

little is known about whether and how other soil bacteria tolerate these compounds.  

Previous studies on phenazine toxicity and tolerance in bacteria have largely focused on 

the effects of the phenazine pyocyanin (PYO) on either generic model organisms like Escherichia 

coli or opportunistic human pathogens like Staphylococcus aureus. The latter frequently co-infects 

chronic wounds and cystic fibrosis patients along with the PYO producer Pseudomonas 

aeruginosa (Noto et al., 2017), which is itself an opportunistic human pathogen found in soils and 

aquatic environments (Green et al., 1974; Römling et al., 1994; Alonso et al., 1999). PYO is the 

most toxic among the phenazines commonly secreted by P. aeruginosa, presumably because of its 

high reactivity with oxygen (Meirelles and Newman, 2018). A comparative study of E. coli and P. 

aeruginosa suggested that antioxidant defenses and slower redox cycling of PYO in P. aeruginosa 

contribute to its resistance to PYO, whereas PYO-sensitive E. coli experiences higher levels of 

ROS due to faster redox cycling (Hassett et al., 1992). In addition, a study based on co-evolution 

with P. aeruginosa revealed that mutations in an efflux pump regulator, a porin, and a flavodoxin 

NADP+ reductase enzyme can modulate PYO tolerance in E. coli (Khare and Tavazoie, 2015). S. 

aureus, on the other hand, can escape PYO toxicity to some extent by adopting a non-respiring 
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phenotype, as well as by expressing genes involved in quinone detoxification (Noto et al., 2017), 

while certain non-pathogenic staphylococci are inherently resistant to PYO due to expression of a 

PYO-insensitive variant of cytochrome bd oxidase (Voggu et al., 2006). However, whether these 

mechanisms are at work in other bacteria that naturally tolerate phenazines is unknown, making it 

difficult to predict how these molecules may shape bacterial communities in soil.  

To address this question, we set out to identify genes that are necessary for phenazine 

tolerance in Agrobacterium tumefaciens, a common gram-negative soil bacterium and plant 

pathogen. We chose A. tumefaciens because it is relatively tolerant of phenazines, compared to 

several other genetically tractable bacterial species (An et al., 2006; Costa et al., 2015). We 

employed PYO as our primary model compound because it is the most toxic among the phenazines 

that have been used to enhance crop productivity (Audenaert et al., 2002; Chin-A-Woeng et al., 

2003; Khare and Arora, 2011; Meirelles and Newman, 2018). Using a forward genetic screen, we 

found two transcriptional regulators that both play crucial roles in tolerance of PYO, but at 

different concentrations and through contrasting yet complementary mechanisms. Our results 

point toward possible broader themes underlying tolerance of phenazines and other redox-active 

secondary metabolites, such as the importance of controlling their interactions with the respiratory 

ETC, which could have important consequences for understanding and predicting ecological 

impacts of these widely-produced molecules.  

Results 

Transposon mutagenesis reveals genes necessary for PYO tolerance 

To identify genes necessary for wild-type (WT) levels of PYO tolerance, we performed 

random transposon insertion mutagenesis in A. tumefaciens NT1 using a mariner-based transposon 

that confers kanamycin resistance (Chiang and Rubin, 2002). Kanamycin-resistant mutants were 

screened for PYO sensitivity using a colorimetric 96-well plate assay. As WT or PYO-tolerant 

mutants grow to a high cell density in static liquid cultures containing 100 µM PYO, they consume 

the oxygen in the medium and concurrently reduce PYO from its blue oxidized form to its colorless 

reduced form. Conversely, PYO-sensitive mutants are unable to grow to a high enough density to 

fully effect the color change from blue to clear within 48 hrs (Fig. 1A). Putative PYO-sensitive 
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mutants were verified by comparing their growth in liquid cultures to WT across a range of PYO 

concentrations, from 0 to 200 µM. From roughly 5000 screened mutants, 12 (~0.2%) proved to be 

disproportionately sensitive to PYO; that is, while a few of these mutants exhibited growth defects 

even without PYO, the ratio of their growth (i.e. optical density after 24 hrs) with PYO to their 

growth without PYO was much lower than it was for WT (Fig. 1B).  

The locus of the transposon insertion for each of the 12 verified PYO-sensitive mutants 

was determined using arbitrary PCR. Three of the insertions were in genes encoding transcriptional 

regulators, three were in genes putatively related to carbon metabolism or maintenance of 

protonmotive force, four were likely related to cell wall modification, and the remaining two were 

in a single gene, Atu2577, encoding an ABC transporter (Table S1). This list of genes important 

Figure 1: Transposon mutagenesis reveals genes necessary for tolerance of PYO.  
A. An example 96-well plate demonstrating the colorimetric strategy used to identify PYO-sensitive transposon 
mutants. As WT or PYO-tolerant mutants grow to a high density over 48 hrs in static cultures, cellular reductants 
transform PYO from its blue oxidized form to its colorless reduced form. Wells containing PYO-sensitive mutants 
that cannot grow to a high density remain blue.  
B. Growth of WT and the 12 PYO-sensitive transposon mutants after 24 hrs in the presence of 200 µM PYO. 
Cultures were either in or approaching stationary phase at this time point, and growth was normalized to growth in 
parallel cultures without PYO. Differences between WT and mutants were generally greater at 200 µM PYO than 
at lower concentrations. Mutants are named by the gene containing the transposon insertion and categorized by 
predicted function (see Table S1 for further details). Error bars represent standard deviations of biological replicates 
(n = 3).  
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for PYO tolerance is not comprehensive, as in A. tumefaciens NT1, approximately 24,000 

transposon insertion mutants would need to be screened to achieve 99% confidence of having 

disrupted every gene in the genome. Nevertheless, we were particularly interested in following up 

on the transcriptional regulators identified in our screen, as the genes they regulate could reveal 

broader insights about mechanisms that are important for PYO tolerance. Specifically, we focused 

on the mutants with insertions in actS, the sensor in the actSR two-component sensor-response 

system, and soxR, which has previously been implicated in the oxidative stress response of A. 

tumefaciens (Eiamphungporn et al., 2006) and as a sensor of redox-active antibiotics in P. 

aeruginosa and Streptomyces coelicolor (Dietrich et al., 2006; Dietrich et al., 2008; Singh et al., 

2013). We did not pursue the third transcriptional regulator, rpoH, as the transposon mutant 

exhibited a growth defect without PYO (Fig. S1A).  

∆actR and ∆soxR mutants are differentially sensitive to diverse redox-active small molecules 

To characterize the roles of actSR and soxR in protecting against PYO, we first generated 

in-frame deletions of actS, actR, and soxR via allelic replacement (Morton and Fuqua, 2012a). 

Both ∆actS and ∆actR were similarly sensitive to PYO (Fig. S1B); thus, we used ∆actR for all 

further experiments as ActR is the transcriptional regulator in this two-component system. 

Intriguingly, ∆actR and ∆soxR displayed strikingly different profiles of sensitivity to PYO. ∆actR 

is significantly more sensitive to PYO than WT at concentrations as low as 10 µM; conversely, 

∆soxR is no more sensitive to PYO than WT up to at least 100 µM, and in fact grows better than 

WT at up to 50 µM PYO, yet its growth is severely inhibited by 200 µM PYO (Fig. 2A). 

Complementation by inducing expression of actR or soxR in ∆actR or ∆soxR, respectively, from a 

plasmid rescued PYO tolerance in each mutant (Fig. S1C).  

Extending beyond PYO, we also investigated the relative sensitivity of ∆actR and ∆soxR 

to diverse redox-active molecules spanning a range of standard reduction potentials (Eo’ vs. that 

of the normal hydrogen electrode) from -446 mV (paraquat) to +11 mV (methylene blue) (Fig. S2) 

(Wang et al., 2010). For each molecule, we tested increasing concentrations until we found a dose 

at which the growth of either ∆actR or ∆soxR was statistically significantly different from WT. 

Similar to the results with PYO (Eo’ -40 mV), ∆actR was more sensitive than either WT or ∆soxR 

to anthraquinone-2,6-disulfonate (AQDS, Eo’ -184 mV), phenazine-1-carboxylic acid (PCA, Eo’ -
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114 mV), and methylene blue, whereas ∆soxR was no more sensitive than WT to these molecules 

at the tested concentrations (Fig. 2B). However, ∆soxR was more sensitive than ∆actR to paraquat. 

Finally, to determine whether actR and soxR specifically affect sensitivity to redox-active 

molecules, we tested whether these mutants were more sensitive than WT to a variety of other 

stresses, including detergents (SDS or bile salts), low pH (HCl), hydrogen peroxide, the membrane 

stressor EDTA, and osmotic stressors (myo-inositol or NaCl). Neither ∆actR nor ∆soxR was 

Figure 2: ∆actR and ∆soxR mutants exhibit differential sensitivity to redox-active small molecules.  
A. Growth of WT, ∆actR, and ∆soxR after 24 hrs in the presence of different concentrations of PYO, measured 
by optical density at 500 nm (n = 3).  
B. Growth of WT, ∆actR, and ∆soxR after 24 hrs in the presence of 20 mM paraquat, 10 mM AQDS, 500 µM 
PCA, or 200 µM methylene blue (n = 3). For each molecule, the chosen concentration was the lowest tested dose 
at which growth of either ∆actR or ∆soxR was statistically significantly different from WT.  
C. Diameter of growth inhibition zone around a disk infused with 10% SDS, 2 M HCl, or 5.5 M H2O2 (n ³ 6). 
The measurements represent the diameter of the zone of clearing minus the diameter of the disk itself.  
D. Growth of WT, ∆actR, and ∆soxR on agar plates containing either plain LB or a concentration gradient (low-
high, left to right) of bile salts (up to 2%). Images are representative of eight biological replicates. In A and B, 
cultures were in stationary phase at the reported time point. In B and C, * p < 0.05, ** p < 0.01, *** p < 0.001 (in 
B, linear regression with dummy variable coding using WT as the reference group; in C, Kruskal-Wallis test 
followed by pairwise Wilcox rank sum test with the Benjamini-Hochberg procedure for controlling the false 
discovery rate). Error bars in A-C represent standard deviations of biological replicates. 
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noticeably more sensitive than WT to any of these stresses (Fig. 2C and Fig. S3), with the exception 

that ∆actR was more sensitive to detergents (Fig. 2C, D).  

SoxR regulates multiple previously overlooked genes 

To understand why ActR and SoxR differentially affect sensitivity to phenazines, we began 

to characterize the genetic mechanisms by which SoxR contributes to PYO tolerance. It is known 

from studies in other bacteria that redox-cycling drugs activate SoxR by directly oxidizing its [2Fe-

2S] cluster (Dietrich and Kiley, 2011; Gu and Imlay, 2011; Singh et al., 2013), and that oxidized 

SoxR binds to a conserved “SoxR box” sequence in the promoter regions of target genes (Dietrich 

et al., 2008). Using this sequence, SoxR in A. tumefaciens has variously been predicted to regulate 

up to four putative major facilitator superfamily transporters (Atu0942, Atu2361, Atu4895, and 

Atu5152) along with an operon containing a superoxide dismutase (Atu4583, a.k.a. sodBII), 

ferredoxin (Atu4582), and a putative flavin reductase (Atu4581) (Eiamphungporn et al., 2006; 

Dietrich et al., 2008; Novichkov et al., 2013). However, of these computationally predicted 

members of the SoxR regulon, SoxR-dependent expression has previously only been confirmed 

for Atu5152 (Eiamphungporn et al., 2006) and sodBII (Saenkham et al., 2007). SoxR has also 

been shown to autoregulate by binding to a SoxR box in its own promoter (Eiamphungporn et al., 

2006). To validate the other computationally predicted members of the SoxR regulon, we 

performed quantitative reverse-transcription PCR (qRT-PCR) on WT and ∆soxR cultures treated 

with either 100 µM PYO or a solvent control for 20 minutes. We expected true SoxR-regulated 

genes to be highly expressed only in PYO-treated WT. This was indeed the case for all but one of 

the genes computationally predicted to be SoxR-regulated based on the presence of a SoxR box-

containing promoter (Fig. 3A, non-bolded genes). Atu4895 alone was not upregulated by PYO, 

suggesting that it is not in fact regulated by SoxR (Fig. S4A).  

The discrepancy between the presence of a SoxR box upstream of Atu4895 and its lack of 

response to PYO led us to ask whether there might conversely be “cryptic” members of the SoxR 

regulon that lack a SoxR box but exhibit a SoxR-dependent response to PYO. Given that all of the 

qRT-PCR-validated, SoxR box-containing members of the SoxR regulon exhibited large fold 

changes in WT upon PYO treatment (Fig. 3A, non-bolded genes), we expected that any cryptic 

member(s) of the SoxR regulon would exhibit a similarly strong response to PYO. We therefore 
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performed an RNA-seq experiment to identify genes that are highly induced by PYO in WT. Based 

on the fold changes of soxR itself and the already-validated members of the SoxR regulon, we 

defined candidate cryptic members of the SoxR regulon as those genes with a log2 fold change > 

4 in PYO-treated cultures relative to the solvent-treated control (Table S2). We then tested the 

resulting seven candidates for a SoxR-dependent transcriptional response by performing qRT-PCR 

under the four conditions described above (WT + PYO, WT – PYO, ∆soxR + PYO, and ∆soxR – 

PYO). Remarkably, we found that the PYO-mediated induction of three of the seven candidates 

(Atu4741, Atu4742, and Atu5305) was completely abolished in the absence of SoxR, while the 

PYO-mediated induction of two others (Atu2482 and Atu2483, annotated as mexE and mexF, 

respectively) appeared to partially depend on SoxR (Fig. 3A, bolded genes). Using the motif 

scanning program FIMO (Grant et al., 2011), we confirmed the lack of a typical SoxR box 

upstream of these genes. Thus, we have expanded the known set of genes with SoxR-dependent 

regulation in A. tumefaciens to include five genes that could not have been found with previously 

applied computational methods.  

Among the five identified cryptic members of the SoxR regulon, Atu4741 is particularly 

interesting as it is a s54-dependent Fis family transcriptional regulator, and hence could potentially 

be involved in regulating the other cryptic members. Although Atu4741 is annotated as acoR due 

to its similarity to the acoR gene in Bacillus subtilis, A. tumefaciens does not possess annotated 

homologs of the acetoin catabolism genes that are regulated by AcoR in B. subtilis, suggesting that 

Atu4741 plays a different regulatory role in A. tumefaciens. Atu4742, located just upstream of 

Atu4741, is predicted to encode a small (108 amino acid) hypothetical protein containing 

tetratricopeptide repeats, which often mediate protein-protein interactions (Zeytuni and Zarivach, 

2012); this, along with its proximity to Atu4741, suggests that the two may interact. Atu5305 is 

annotated as a permease belonging to the major facilitator family of transporters, and thus could 

be involved in transporting PYO out of the cell. Finally, mexE and mexF encode homologs of the 

cytoplasmic membrane protein and membrane fusion protein components, respectively, of the 

MexEF-OprN efflux pump originally discovered in P. aeruginosa. In the latter, MexEF-OprN has 

been shown to transport chloramphenicol, fluoroquinolones, and a precursor to a quorum sensing 

signal (Köhler et al., 1997; Lamarche and Déziel, 2011; Llanes et al., 2011); it is also known to be 

induced by nitrosative (Fetar et al., 2011) or disulfide stress (Fargier et al., 2012). To our 
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knowledge, SoxR-dependent expression of mexEF has not previously been reported in other 

organisms;  rather, in P. aeruginosa, mexEF is regulated at least in part by MexT, a LysR family 

transcriptional activator (Köhler et al., 1999).  

Functional redundancy rationalizes the ∆soxR phenotype 

Altogether, the SoxR regulon in A. tumefaciens contains five putative efflux pumps 

(Atu0942, Atu2361, mexEF, Atu5152, and Atu5305), a putative flavin reductase (Atu4581), 

ferredoxin (Atu4582), superoxide dismutase (sodBII), an uncharacterized transcriptional regulator 

(Atu4741), and a hypothetical protein (Atu4742). To investigate the contributions of each of these 

genes to PYO tolerance, we generated in-frame deletions and challenged the resulting mutants 

with 200 µM PYO. Only five mutants were significantly more sensitive to 200 µM PYO than WT, 

and no single mutant was as sensitive as ∆soxR itself, suggesting considerable functional 

redundancy among the SoxR regulon (Fig. 3B). Surprisingly, ∆sodBII was actually less sensitive 

to PYO than WT. This was counterintuitive, given that superoxide has been proposed to be a toxic 

byproduct of PYO treatment (Hassan and Fridovich, 1980; Hassett et al., 1992; Rada and Leto, 

2013; Managò et al., 2015).  

We wondered whether functional redundancy might explain both the surprising phenotype 

of ∆sodBII and the fact that ∆soxR only becomes sensitive to PYO at a relatively high dose. First, 

we confirmed via qRT-PCR that SoxR strongly induces expression of its regulon even at 10 µM 

PYO, using soxR itself and sodBII as representative examples (Fig. 3C). Thus, the tolerance of 

∆soxR to low levels of PYO is in spite of considerable transcriptional differences between WT and 

∆soxR under these conditions, suggesting that loss of SoxR may be compensated by functionally 

redundant genes outside of its regulon. Indeed, besides SoxR-regulated SodBII, A. tumefaciens 

possesses two other superoxide dismutases, SodBI and SodBIII (Saenkham et al., 2007). SodBI is 

constitutively highly expressed at all stages of growth, whereas SodBIII is primarily expressed 

during stationary phase (Saenkham et al., 2007). We therefore asked whether loss of SodBI would 

sensitize ∆sodBII or ∆soxR to lower concentrations of PYO. Indeed, while ∆sodBI itself was not 

sensitive to PYO, ∆sodBII/∆sodBI and ∆soxR/∆sodBI were significantly more sensitive than WT 

not only to high doses of PYO, but also to low doses, unlike the ∆sodBII and ∆soxR single mutants 

(Fig. 3D). Thus, the functions of SodBI and SodBII appear to be largely redundant at the tested 
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concentrations of PYO, and this functional redundancy is a key factor in the tolerance of ∆soxR to 

low concentrations of PYO.  

Figure 3: SoxR protects A. tumefaciens against PYO by upregulating functionally redundant superoxide 
dismutase, transporters, and redox-related genes. 
A. qRT-PCR validation of putative members of the SoxR regulon, showing that induction of these genes upon a 
20 min exposure to 100 µM PYO was partially or fully abrogated in the ∆SoxR mutant (n = 3). Bolded genes lack 
a SoxR box and thus could not be identified as SoxR-regulated by computational approaches in earlier studies. 
qRT-PCR validation was not performed for Atu4581 and Atu4582, as these genes are predicted to be co-transcribed 
with sodBII (Mao et al., 2009). Expression levels were normalized to the housekeeping gene rpoD, and induction 
was calculated as the expression in the presence of PYO divided by the expression without PYO.  
B. Growth of single knockout mutants for members of the SoxR regulon after 24 hrs in the presence of 200 µM 
PYO, normalized to growth of parallel cultures without PYO. ** p < 0.01, *** p < 0.001 (n = 3, linear regression 
with dummy variable coding using WT as the reference group).  
C. Normalized expression levels of sodBII and soxR in WT after 20 min exposure to different concentrations of 
PYO (n  = 3). Expression levels were determined by qRT-PCR and normalized to rpoD.  
D. Growth of WT, ∆sodBI,  ∆sodBII, ∆soxR, and the ∆sodBI/∆sodBII and ∆soxR/∆sodBI mutants after 24 hrs in 
the presence of different concentrations of PYO (n ³ 3). Error bars in all panels represent standard deviations of 
biological replicates. In B and D, cultures were in stationary phase at the reported time point.  
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Loss of ActR causes constitutive dysregulation of the cytochrome o and d ubiquinol oxidases 

Having rationalized why SoxR only becomes essential at high concentrations of PYO, we 

next sought to understand why the ∆actR mutant is hypersensitive to PYO. ActR homologs (known 

as ArcA, PrrA, RegA, or RoxR) are present in diverse proteobacteria and have been well-studied 

in several species (Elsen et al., 2004; Gralnick et al., 2005; Wong et al., 2007; Fernández-Piñar et 

al., 2008; Gao et al., 2008; Park et al., 2013; Lunak and Noel, 2015). In general, they regulate 

elements of the respiratory ETC in response to changes in cellular redox balance (for example, 

during transitions from aerobiosis to anaerobiosis), although the specific elements and 

directionality of regulation vary across species (Tseng et al., 1996; Swem and Bauer, 2002; Elsen 

et al., 2004; Fernández-Piñar et al., 2008; Gao et al., 2008). In Sinorhizobium medicae, which 

belongs to the same taxonomic order as A. tumefaciens, ActR regulates a glutathione S-transferase, 

cytochrome oxidase components, and an assimilatory nitrate reductase (Fenner et al., 2004), while 

in A. tumefaciens, ActR is known to co-regulate expression of nitrite reductase and pseudoazurin, 

Figure 4: Expression of cytochrome o oxidase and cytochrome d oxidase is dysregulated in ∆actR. 
A. Plot of the absolute values of log2 fold changes in gene expression upon 100 µM PYO treatment in WT against 
absolute values of log2 fold changes in gene expression upon 100 µM PYO treatment in ∆actR. Only genes that 
were statistically significantly differentially expressed (adjusted p-value < 0.01) upon PYO treatment in at least one 
strain are plotted. Each point represents a single gene. The black line is y = x.  
B. Volcano plots of RNA-seq data comparing gene expression levels in ∆actR to WT, with either 0 µM PYO or 
100 µM PYO. The vertical dashed lines mark a log2 fold change of -2 or 2, and the horizontal dashed line marks 
an adjusted p-value of 0.01. Only genes with statistical significance below the adjusted p-value cutoff are plotted.  
C. qRT-PCR data confirming the expression patterns of the cyo and cyd operons in ∆actR vs. WT. The + PYO 
condition represents treatment with 100 µM PYO. Only cyoA and cydA are shown for brevity, as they are co-
transcribed with other members of these operons. Expression levels were normalized to the housekeeping gene 
rpoD. ** p < 0.01 (Welch’s t-test followed by the Benjamini-Hochberg procedure for controlling the false discovery 
rate; n = 3). Error bars represent standard deviations of biological replicates. 
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an electron donor to the denitrification pathway, during anaerobic growth (Baek et al., 2008). 

However, to our knowledge, the ActR regulon has not been comprehensively defined in A. 

tumefaciens. Thus, to investigate how ActR contributes to PYO tolerance during aerobic growth, 

we performed RNA-seq to compare the transcriptomes of WT and ∆actR both with and without 

100 µM PYO treatment. Among the genes that were up- or downregulated by PYO in each strain 

(comparing WT + PYO vs. WT – PYO, or ∆actR + PYO vs. ∆actR - PYO), there was a strong 

correlation between the fold changes in WT and ∆actR; in fact, there were no genes that were 

strongly up- or downregulated by PYO in WT but not in ∆actR (Fig. 4A). This suggested that ActR 

does not regulate a specific transcriptional response to PYO. However, we noted that among the 

genes that were up- or downregulated by PYO, the magnitude of the fold changes was often greater 

in ∆actR than in WT (such genes lie above the y = x line in Fig. 4A), possibly indicating that ∆actR 

was experiencing more stress than WT.  

We then compared the transcriptomic profile of ∆actR to WT either with or without PYO 

(i.e. ∆actR + PYO vs. WT + PYO, or ∆actR - PYO vs. WT - PYO). Interestingly, several genes 

related to oxidative stress were upregulated in ∆actR relative to WT only upon PYO treatment, 

including catalase, ferredoxin I, a putative DNA oxidation protective protein, and genes involved 

in amino acid metabolism (Table S3). Similar to our above observation, this could imply that PYO 

exerts greater toxicity in ∆actR. We also found that two sets of genes are strongly dysregulated in 

∆actR regardless of PYO treatment: the cyo operon that encodes cytochrome o ubiquinol oxidase 

(Cyo) is downregulated > 4 fold, while the cyd operon that encodes cytochrome d ubiquinol 

oxidase (Cyd) is upregulated > 2 fold, with the latter being exaggerated upon PYO treatment (Fig. 

4B). These expression patterns were confirmed with qRT-PCR (Fig. 4C). Other elements of the 

ETC or central metabolism that were upregulated in ∆actR regardless of PYO treatment included 

succinate dehydrogenase, ubiquinol-cytochrome c reductase, and cbb3 cytochrome c oxidase, 

along with several genes involved in sugar transport/metabolism, amino acid metabolism, fatty 

acid metabolism, carbon oxidation, or the tricarboxylic acid (TCA) cycle (Table S4). On the other 

hand, caa3 cytochrome c oxidase, pseudoazurin, and biosynthetic genes for cytochrome c and 

heme were downregulated in ∆actR (Table S5). While the fold changes for these genes were not 

as dramatic as for cyo and cyd, the overall pattern suggests that ActR is broadly involved in 

regulating flux through central metabolic pathways in A. tumefaciens, as it is in E. coli, Salmonella 
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enterica, Pseudomonas putida, and other species (Fernández-Piñar et al., 2008; Evans et al., 2011; 

Morales et al., 2013; Park et al., 2013). 

Downregulation of cytochrome o ubiquinol oxidase sensitizes cells to PYO 

Given that the fold changes were most striking for the terminal ubiquinol oxidases, we next 

asked whether the dysregulation of these genes in ∆actR is causally related to PYO sensitivity. 

Indeed, a mutant lacking the cyo operon grew similarly to ∆actR during exponential phase across 

all tested concentrations of PYO (Fig. 5A, left), although it achieved a higher optical density in 

Figure 5: Loss of cytochrome o oxidase, but not overexpression of cytochrome d oxidase, increases sensitivity 
to PYO. 
A. Growth of WT, ∆actR, ∆cyo, and ∆actR/∆cyo after 8 hrs (left) or 24 hrs (right) in the presence of different 
concentrations of PYO. 8 hrs corresponds to late exponential phase while 24 hrs corresponds to stationary phase. 
B. Growth of WT pLacZ (vector control for overexpression constructs), ∆actR pLacZ, ∆actR pCyo (overexpression 
construct for the cyo operon), and ∆actR pCyd (overexpression construct for the cyd operon). Overexpression was 
induced by adding 1 mM IPTG at the start of the experiment. Growth of ∆actR pCyo is statistically significantly 
higher than growth of ∆actR pLacZ at both time points and across all concentrations of PYO, except for 0 µM and 
200 µM PYO after 8 hrs (p < 0.05, Welch’s t-test followed by the Benjamini-Hochberg procedure for controlling 
the false discovery rate). All data points are plotted with error bars representing standard deviations of biological 
replicates (n = 3). 
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stationary phase (Fig. 5A, right), possibly due to compensatory upregulation of the cyd operon to 

levels considerably higher than that in ∆actR itself (Fig. S4B). Interestingly, the ∆actR/∆cyo 

double mutant is more sensitive to PYO than either ∆actR or ∆cyo alone (Fig. 5A). This result 

likely arises from a combination of two factors: 1) total loss of cyo is presumably more severe than 

the downregulation imposed by loss of ActR; and 2) without ActR, expression of genes to 

compensate for total loss of cyo may be impaired. Conversely, overexpression of the cyo operon 

in the ∆actR background partially rescued tolerance to PYO, with a greater effect at the lower 

doses of PYO (Fig. 5B). On the other hand, increased overexpression of the cyd operon from an 

inducible plasmid-borne promoter in ∆actR did not further sensitize ∆actR to PYO, and in fact 

conferred a mild benefit at low doses of PYO (Fig. 5B). We therefore hypothesized that cyd may  

play a compensatory role upon abnormal downregulation of cyo. To further test this hypothesis, 

we attempted to determine whether a ∆actR/∆cyd double mutant would be more sensitive to PYO 

than ∆actR alone, but were unable to perform this experiment due to the severe growth defect of 

this double mutant in liquid culture even without PYO (data not shown). Nevertheless, the cyd 

overexpression results suggest that the natural upregulation of cyd in ∆actR does not augment its 

PYO sensitivity, but rather is a compensatory response or else a passive side effect of losing actR 

(ActR might normally repress cyd during aerobic growth). Overall, ActR-mediated regulation of 

cyo appears to be important for PYO tolerance, although the fact that overexpressing cyo in ∆actR 

only partially rescued PYO tolerance suggests that other ActR-regulated genes likely also 

contribute to the ∆actR phenotype.   

In considering candidates for other genes besides cyo that might contribute to the ∆actR 

phenotype, we were particularly intrigued by the upregulation of multiple dehydrogenases 

involved in carbon oxidation and the TCA cycle (Table S4). These enzymes oxidize various 

substrates while concomitantly reducing NAD+ to NADH. Thus, upregulation of these genes could 

lead to a higher NADH/NAD+ ratio in the cell. However, upon measuring the NADH/NAD+ ratios 

in exponentially growing cultures of WT and ∆actR, we found only a slight trend towards a higher 

ratio in ∆actR, which was not statistically significant (Fig. S5A). We also asked whether ∆actR 

exhibits increased redox cycling of PYO independently of the action of the terminal oxidases in 

the ETC. Specifically, we measured the rate of PYO-dependent oxygen consumption by WT and 

∆actR in the presence of cyanide, which inhibits the terminal oxidases. This rate has previously 
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been correlated both with the rate of redox cycling of PYO and with PYO toxicity (Hassett et al., 

1992), as the apparent oxygen consumption under this condition results from reduced PYO 

donating electrons to oxygen and thereby generating ROS. Interestingly, we found that WT and 

∆actR cultures treated with PYO and cyanide consumed oxygen at nearly identical rates (Fig. S5B), 

implying similar rates of PYO redox cycling in the two strains. However, this result does not 

exclude the possibility that the terminal oxidases themselves might influence the rate of PYO redox 

cycling.  

Cellular ATP levels correlate with Cyo expression but not necessarily with PYO sensitivity  

To rationalize the link between Cyo levels and phenazine tolerance, we first asked whether 

loss of ActR alters the rate of aerobic respiration, as Cyd possesses a much higher affinity for 

oxygen than Cyo (Matsushita et al., 1984; D’mello et al., 1996; Borisov et al., 2011). We measured 

oxygen consumption rates in exponential-phase cultures of WT and ∆actR using a Clark-type 

electrode. These measurements revealed that WT and ∆actR actually consume oxygen at similar 

rates, both with and without PYO treatment (Fig. 6A). However, besides differing in their affinities 

for oxygen, Cyo and Cyd have different coupling ratios for proton translocation (2 H+/e- vs. 1 H+/e-, 

respectively) (Calhoun et al., 1993) (Fig. 6B). Hence, given similar rates of oxygen consumption, 

∆actR should be less efficient at generating protonmotive force (PMF) than WT. This would be 

expected to impair PMF-dependent processes, such as ATP synthesis via FoF1-ATP synthase. 

Indeed, we found that both ∆actR and ∆cyo possess less ATP than WT during exponential growth, 

supporting the hypothesis that the electron transport chain (ETC) is less efficient without Cyo (Fig. 

6C). This difference could potentially explain why ∆actR is also more sensitive to detergents: 

tolerance of SDS and bile salts typically involves energy-intensive processes like efflux and DNA 

repair (Nickerson and Aspedon, 1992; Begley et al., 2005). Interestingly, the ATP pools of all 

three strains decreased upon treatment with PYO, but this difference was only statistically 

significant in ∆actR. This could suggest that PYO decouples oxidative phosphorylation more 

effectively in ∆actR, and/or that ∆actR spends more ATP on defenses against PYO toxicity.  

To test whether the rate of oxidative phosphorylation modulates PYO sensitivity, we 

treated WT and ∆actR with DCCD (N,N'-dicyclohexylcarbodiimide), a classical inhibitor of FoF1-

ATP synthase. Both strains compensated for inhibited ATP synthesis by growing more slowly in 
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the presence of DCCD (Fig. S6A), and consequently the bulk ATP levels decreased only slightly 

(Fig. S6B). Nevertheless, we were intrigued to note that while the DCCD treatment increased 

sensitivity to PYO in ∆actR, DCCD actually improved tolerance to 10 µM PYO in WT (Fig. S6C). 

Thus, the link between lower rates of ATP synthesis, smaller ATP pools, and increased PYO 

sensitivity seems to be specific to the ∆actR genetic background, although it is also possible that 

ATP only becomes a limiting factor in PYO tolerance below a certain level.  

Loss of ActR increases dependence on SodBII-mediated protection against PYO 

Taken together, the above evidence suggested that PYO might exert toxic effects more 

readily in ∆actR than in WT, rather than ∆actR simply being deficient in responding to PYO-

induced toxicity. This would be consistent with the fact that i) PYO treatment affected the ATP 

pool of ∆actR more severely, ii) inhibiting ATP synthesis decreased PYO tolerance in ∆actR but 

not in WT, and iii) several genes related to oxidative stress were more strongly transcriptionally 

induced by PYO in ∆actR than in WT. To test this hypothesis directly, we first attempted to 

measure whether PYO generates ROS more rapidly in ∆actR compared to WT, as superoxide and 

hydroxyl radical have previously been identified as toxic byproducts of PYO redox cycling 

(Hassett et al., 1992; Noto et al., 2017). However, we found that technical limitations prevented 

reliable quantification of intracellular ROS in suspensions of PYO-treated A. tumefaciens (see 

Experimental Procedures and Fig. S7). We therefore turned instead to a genetic approach to infer 

the relative toxicity of PYO in ∆actR compared to WT. Specifically, we asked whether the SoxR-

regulated, functionally redundant superoxide dismutase SodBII is more important for damage 

control in ∆actR compared to WT, which could imply greater production of superoxide by PYO 

in ∆actR. Indeed, while loss of SodBII actually increased growth at all tested concentrations of 

PYO in the WT genetic background, loss of SodBII further sensitized ∆actR to PYO at 

concentrations above 10 µM (Fig. 6D). The trend was similar, though weaker, when comparing 

the effects of losing SodBII in WT versus ∆cyo: the growth advantage conferred by loss of SodBII 

was smaller for ∆cyo than for WT at PYO concentrations above 10 µM, suggesting increased 

dependency on SodBII in ∆cyo, albeit to a lesser extent than in ∆actR (Fig. S1D). Thus, the 

downregulation of cyo in ∆actR may contribute to its increased dependence on SodBII, though 

other genes are likely also involved. These findings are particularly notable given the evidence 

that ∆actR and ∆cyo conserve energy less efficiently than WT. Induction of SodBII, along with 
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the rest of the SoxR regulon, may incur significant energy costs associated with protein synthesis, 

especially considering that SodBII is the second-most highly expressed non-ribosomal gene in the 

entire A. tumefaciens transcriptome under PYO treatment (Table S6).  Given the functional 

redundancy of SodBII, this cost could be gratuitous at low concentrations of PYO, which would 

explain why loss of either SoxR or SodBII benefits WT under those conditions. If PYO were 

similarly toxic in WT, ∆actR, and ∆cyo, we would have expected the comparatively energy-limited 

Figure 6: Loss of ActR decreases cellular ATP levels and increases dependence on SoxR-regulated SodBII. 
A. Oxygen consumption rates of exponential-phase WT and ∆actR with and without 10 µM PYO (n = 3).  
B. Simplified cartoon showing the relationship between Cyo, Cyd, and ATP synthase, as well as the different 
coupling constants of Cyo and Cyd (2H+/e- vs. 1H+/e-, respectively). QH2 = ubiquinol (reduced), Q = ubiquinone 
(oxidized).  
C. Bulk ATP levels in exponential phase cultures of WT, ∆actR, and ∆cyoABCD, with and without 10 µM PYO. 
* p < 0.05, * p < 0.01 (Welch’s t-test followed by the Benjamini-Hochberg procedure for controlling the false 
discovery rate; n = 3).  
D. Growth of WT, ∆sodBII, ∆actR, and ∆actR/∆sodBII after 24 hrs in the presence of different concentrations of 
PYO, showing the increased dependency of ∆actR on SodBII (n ³ 3). Cultures were in stationary phase at this 
time point. Data for WT and ∆actR are from Fig. 2A. Error bars in A, B, and D represent standard deviations of 
biological replicates. 
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∆actR and ∆cyo mutants to benefit even more than WT from the energy savings associated with 

avoiding gratuitous induction of SodBII. For this not to be the case suggests that PYO may behave 

differently in WT compared to ∆actR and ∆cyo, likely with increased superoxide-related toxicity 

in the latter two. 

Discussion 

Here we have identified two transcription factors in A. tumefaciens that contribute to 

tolerance of PYO and other redox-active molecules in markedly different fashions: SoxR responds 

to oxidative stressors by upregulating expression of transporters and redox-related genes, whereas 

ActR exerts its protective effect at least in part by proactively regulating a key component of the 

aerobic respiratory ETC. While SoxR has previously been established as an oxidative stress 

response regulator in A. tumefaciens, we have expanded its known regulon to include genes that 

were hidden to computational approaches—a result that should encourage caution when predicting 

the SoxR regulons of other bacteria. In addition, the SoxR regulon we have identified in A. 

tumefaciens exhibits considerable functional overlap with genes that also modulate PYO tolerance 

in E. coli (Hassan and Fridovich, 1980; Khare and Tavazoie, 2015), suggesting that these 

functional classes—efflux pumps, superoxide dismutase, and electron transfer proteins such as 

flavodoxin and ferredoxin—are likely to be important for PYO tolerance in diverse bacteria. Yet 

the finding that ActR affects phenazine tolerance is perhaps more notable, for two reasons. First, 

∆actR is susceptible to a wide range of redox-active molecules at lower concentrations than ∆soxR, 

bringing to mind the old adage, “An ounce of prevention is worth a pound of cure.” This is in 

contrast to the historical emphasis on studying inducible, rather than intrinsic, bacterial defenses 

against oxidative stress (Farr and Kogoma, 1991; Scandalios, 2002; Imlay, 2008; Chiang and 

Schellhorn, 2012; Imlay, 2013). Second, the correlation between the ∆actR phenotype and 

dysregulation of the ETC recalls prior studies in which phenazines appeared to directly interfere 

with the flow of electrons through the ETC, suggesting that phenazine toxicity and ETC 

composition may be intimately linked (Hassan and Fridovich, 1980; Baron and Rowe, 1981; Baron 

et al., 1989; Voggu et al., 2006; Biswas et al., 2009).  

ActR belongs to a family of transcription factors including ArcA, PrrA, RegA, and RoxR, 

which are known for their ability to respond to the redox state of the cell, and to drive or repress 
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the expression of different genes accordingly (Elsen et al., 2004; Fenner et al., 2004). Thus, in A. 

tumefaciens, it is possible that ActR not only activates cyo and represses cyd during aerobic growth, 

but also represses cyo and/or activates cyd under microoxic or reducing conditions. If true, this 

could help explain why our ∆cyo mutant more closely resembles ∆actR during exponential growth 

than during stationary phase: all of our RNA-seq and qPCR experiments were performed during 

exponential growth, when cyo appears to be the dominant terminal oxidase in WT, but during 

stationary phase, it is possible that ActR normally promotes expression of cyd at the expense of 

cyo as oxygen tensions drop due to high cell density. This would be beneficial as cyd possesses a 

much higher affinity for oxygen than cyo, and hence is generally the preferred terminal oxidase 

under oxygen-limited conditions (Borisov et al., 2011). Under this model, A. tumefaciens would 

require ActR in order to efficiently couple oxygen respiration to oxidative phosphorylation 

regardless of growth phase, as without ActR, it would neither be able to fully activate cyo under 

the well-oxygenated conditions that prevail during exponential growth, nor would it be able to 

fully activate cyd under the microoxic conditions that may arise during stationary phase. In both 

scenarios, failure to optimize the ETC could result in energy limitation and an excess of cellular 

reductants, which in turn could decrease the cell’s capacity to respond to oxidative damage while 

simultaneously promoting toxic redox cycling of PYO.  

Notably, the actR homolog arcA in E. coli was originally named dye because mutations in 

this gene increase sensitivity to redox-active dyes such as toluidine blue O and methylene blue 

(Buxton et al., 1983; Alvarez et al., 2010). An investigation into the molecular basis of this 

phenotype found that overexpression of ROS-scavenging enzymes could not restore tolerance to 

these dyes, but that ∆arcA displayed normal tolerance to these dyes during respiration-independent 

growth (Alvarez et al., 2010). The authors consequently inferred that the dominant mode of 

toxicity of these dyes in ∆arcA is not ROS production, but rather the diversion of electrons from 

the ETC to the redox cycling of the dye, resulting in uncoupling of oxidative phosphorylation. By 

contrast, superoxide production appears to be an important mechanism of toxicity for PYO, given 

that superoxide dismutase is required for tolerance to PYO in A. tumefaciens, and that loss of ActR 

increases dependence on the SoxR-regulated superoxide dismutase; however, redox cycling of 

PYO may also uncouple oxidative phosphorylation. In addition, although ArcA in E. coli is not 

known to regulate the terminal oxidases during aerobic growth (Tseng et al., 1996; Park et al., 
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2013), ectopic overexpression of cyd in the E. coli ∆arcA mutant restores tolerance to redox-active 

dyes, while ectopic overexpression of cyo does not (Alvarez et al., 2010). This is again in contrast 

to our finding that overexpression of cyo in the A. tumefaciens ∆actR mutant restores tolerance to 

PYO to a greater extent than overexpression of cyd. Separately, Cyo itself has also previously been 

linked to oxidative stress tolerance in E. coli (Lindqvist et al., 2000), with at least one study 

suggesting that loss of Cyo potentiates oxidant toxicity by increasing basal endogenous ROS 

production in E. coli (Brynildsen et al., 2013). However, our study appears to be the first to 

explicitly link ActR-mediated regulation of cyo to intrinsic tolerance of redox-active molecules. 

To our knowledge, our findings are also the first to suggest that the preemptive protection 

conferred by ActR may be even more important than inducible SoxR-regulated mechanisms when 

challenged by certain redox-active molecules; these differing mechanisms of tolerance have 

previously been studied separately rather than comparatively in other organisms. Nevertheless, a 

preemptive role for ActR homologs in oxidative stress tolerance has also been found in 

Haemophilus influenzae (Wong et al., 2007) and Shewanella oneidensis (Wan et al., 2015). In H. 

influenzae, the ActR homolog ArcA confers protection against hydrogen peroxide during low to 

high oxygen transitions, partially through preemptive upregulation of a putative iron storage 

protein (Wong et al., 2007), while in S. oneidensis, ArcA may promote hydrogen peroxide 

resistance by regulating cell envelope permeability (Wan et al., 2015). In A. tumefaciens, on the 

other hand, no iron-related genes are downregulated in ∆actR to the extent seen by Wong et al. in 

H. influenzae, although we have not ruled out the possibility that the few mildly downregulated 

iron-related genes we found (negative fold change < 2.5) might contribute to the ∆actR phenotype. 

We have also found no evidence that ActR in A. tumefaciens regulates homologs of the putative 

cell envelope-related genes identified in S. oneidensis by Wan et al. Interestingly, unlike in S. 

oneidensis, our ∆actR mutant was no more sensitive than WT to hydrogen peroxide in a disk 

diffusion assay (Fig. 2C); instead, the putative link between ActR and oxidative stress tolerance in 

A. tumefaciens seems to be specific to redox-active molecules.  

Although we found that ActR does not regulate a response to PYO in A. tumefaciens, the 

ActR homolog ArcA does appear to regulate a transcriptional response to hydrogen peroxide in 

other organisms such as E. coli and S. enterica (Loui et al., 2009; Morales et al., 2013). In 

hydrogen peroxide-treated E. coli, ArcA represses flagellin (fliC) and stimulates expression of two 
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genes involved in amino acid transport and metabolism, gltI and oppA (Loui et al., 2009). In S. 

enterica, ArcA responds to hydrogen peroxide treatment by downregulating several PEP-PTS and 

ABC transporters, while upregulating genes involved in glutathione and glycerolipid metabolism 

and nucleotide transport (Morales et al., 2013). Consequently, hydrogen peroxide treatment 

oxidizes the glutathione pool to a greater extent in ∆arcA compared to the WT strain (Morales et 

al., 2013). The same study also indicated that loss of ArcA leads to an approximately ten-fold 

increase in the NADH/NAD+ ratio during aerobic growth, with concomitantly increased ROS 

production (Morales et al., 2013). However, loss of ActR does not appear to have this effect in A. 

tumefaciens, implying that a different mechanism underpins the PYO sensitivity of our ∆actR 

mutant. Our RNA-seq data set also provides no indication that ActR regulates glutathione 

reductases in A. tumefaciens, unlike in S. enterica or even the more closely related S. medicae 

(Fenner et al., 2004; Morales et al., 2013). 

The genetic evidence linking ActR and Cyo to phenazine tolerance is particularly 

interesting in light of other evidence suggesting that phenazines directly interact with and accept 

electrons from the respiratory ETC (Hassan and Fridovich, 1980; Baron and Rowe, 1981; Baron 

et al., 1989; Voggu et al., 2006; Biswas et al., 2009). Perhaps most relevant are the observations 

that specific sequence variants in a subunit of cytochrome bd oxidase confer PYO tolerance in 

staphylococci (Voggu et al., 2006), and that cbb3-type terminal oxidases are necessary and 

sufficient for normal phenazine reduction in P. aeruginosa (Jo et al., 2017). While technical 

limitations prevented us from quantitatively comparing intracellular ROS formation in WT and 

∆actR, multiple observations from our ∆actR mutant—such as the fact that SodBII-mediated 

protection is more important in the ∆actR background—hint that the composition of the ETC, and 

in particular the pool of terminal oxidases, may influence how readily phenazines can “steal” 

electrons and thereby exert toxic effects.  Importantly, as alluded to above, the toxic effects of 

stealing electrons from the ETC may not be limited to the generation of ROS, as redox cycling of 

phenazines may subvert the coupling of electron transfer to proton pumping and hence inhibit 

oxidative phosphorylation. This possibility is suggested by the fact that the ATP pool in ∆actR 

shrinks upon PYO treatment. At the same time, loss of Cyo might also increase basal ROS 

production to levels that do not affect growth under non-stressful conditions, but that nevertheless 

compromise the cell’s ability to cope with exogenous oxidative stress, as has been observed in E. 
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coli (Brynildsen et al., 2013). To further add insult to injury, the effects of any increase in ROS 

production—whether basal or PYO-mediated—would be compounded by the less-efficient 

coupling of the ETC to oxidative phosphorylation in ∆actR, as many oxidative damage repair 

systems require ATP (Selby and Sancar, 1995; Galletto et al., 2006; Heinze et al., 2009; Dahl et 

al., 2015), not to mention the energy that is presumably required to synthesize the proteins in the 

SoxR regulon.  

Overall, we propose a model in which ActR-mediated regulation of the ETC in A. 

tumefaciens helps to preemptively mitigate PYO toxicity, likely by minimizing the ability of PYO 

to decouple oxidative phosphorylation and generate ROS, while also promoting efficient energy 

conservation to power energy-dependent defense mechanisms such as the activation of the SoxR 

regulon (Fig. 7). Notably, loss of ActR has also been linked to downregulation of cyo in Rhizobium 

etli, a fellow member of the Rhizobiaceae (Lunak and Noel, 2015). Moreover, in the much more 

distantly related betaproteobacterium Burkholderia cenocepacia, a transposon insertion in an ActR 

homolog (BCAL0499) dramatically increased sensitivity to PYO and PCA (Bernier et al., 2018), 

Figure 7: Proposed model for regulation of phenazine tolerance in A. tumefaciens. 
Phenazine tolerance is regulated in both a constitutive (ActR-mediated) and inducible (SoxR-mediated) manner. 
ActR promotes phenazine tolerance in part by upregulating expression of cytochrome o oxidase (Cyo) at the 
expense of cytochrome d oxidase (Cyd) during aerobic growth. Cyo is more efficient at powering ATP synthesis 
and thereby supports energy-dependent defense and repair mechanisms. Levels of Cyo and Cyd may also affect 
how readily phenazines “steal” electrons from the electron transport chain and generate toxic superoxide radicals. 
Phenazines can directly oxidize and thereby activate SoxR. Activation of the SoxR regulon is likely energy 
dependent due to massive upregulation of several proteins, including superoxide dismutase (Sod), at least five efflux 
pumps, redox-related proteins such as ferredoxin, and other proteins that are as yet uncharacterized. The SoxR-
regulated Sod becomes more important in the absence of ActR. Phzox = oxidized phenazines, Phzred = reduced 
phenazines.  
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although this gene was not recognized as an ActR homolog in that study, nor was it further 

characterized; instead, we recognized this connection after performing a BLAST-P search with the 

BCAL0499 sequence against the A. tumefaciens genome. Together, these observations suggest 

that the role we have found for ActR in A. tumefaciens may extend to diverse organisms. Our 

results also raise the intriguing possibility that the composition of an organism’s ETC may be a 

key determinant of its sensitivity to phenazines and other redox-active compounds. Future 

comparative studies will shed light on the usefulness of this principle for understanding and 

predicting ecological impacts of this important class of bacterial secondary metabolites.  

Methods 

Strains and media 

All experiments with A. tumefaciens were performed with strain NT1, a derivative of strain 

C58 that lacks the pathogenicity-conferring Ti plasmid (Watson et al., 1975). A. tumefaciens was 

routinely grown at 30 °C, with shaking at 250 rpm for liquid cultures. Unless otherwise stated, the 

medium for liquid cultures was Luria-Bertani (LB) Miller broth (Difco) buffered with 50 mM 

MOPS (pH 7), while solid plates were made with LB containing 1.5% agar. Kanamycin was added 

where appropriate at 50 µg/mL to make LB-Kan. LB was chosen as it is a commonly used rich 

medium and because we found that A. tumefaciens is highly sensitive to PYO in minimal glucose 

media such as AT medium (Morton and Fuqua, 2012b), possibly due to the harmful effects of 

superoxide on amino acid biosynthetic enzymes (Carlioz and Touati, 1986). The donor strain for 

transposon mutagenesis was E. coli b2155 pSC189, which was grown at 37 °C in LB containing 

300 µM diaminopimelic acid (DAP) and 100 µg/mL carbenicillin. Molecular cloning was carried 

out in E. coli DH10b using restriction enzyme-based standard protocols, except for pCyo, which 

was constructed by Gibson assembly (Gibson et al., 2009). Plasmids (except for pSC189) were 

transferred to A. tumefaciens by electroporation. All restriction enzymes and Gibson assembly 

reagents were purchased from New England Biolabs (NEB). PYO was synthesized and purified as 

previously described (Cheluvappa, 2014), and PCA was purchased from Princeton Biomolecular 

Research, Inc. For all experiments involving PYO, a 50x stock solution was made in 20 mM HCl, 

and the latter was used as a solvent control (2% of final culture volume) in 0 µM PYO conditions. 

Paraquat and AQDS were directly dissolved in MOPS-buffered LB at the desired final 
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concentration. Stock solutions (50x) of methylene blue and PCA were made in water, with the 

latter dissolved by adding an equimolar amount of NaOH.  

Transposon mutagenesis screen and identification of transposon insertion loci  

To generate random transposon insertion mutants, we conjugated A. tumefaciens with the 

donor strain for pSC189 as follows. First, A. tumefaciens and E. coli b2155 pSC189 were grown 

overnight to early stationary phase, then a 1 mL aliquot of E. coli was centrifuged and washed 

twice with LB to avoid carryover of carbenicillin and DAP. A 1 mL aliquot of A. tumefaciens was 

then added to the same microcentrifuge tube and centrifuged to generate a mixed cell pellet. The 

pellet was resuspended in 20 µL of LB, spotted directly on LB agar, incubated for 24 hr at 30 °C, 

and resuspended in 1 mL of LB by scraping and pipetting. This procedure was repeated 

approximately 25 times to generate independent libraries of transposon mutants. The libraries were 

diluted by a factor of 2 x 10-4 and 100 µL was spread on LB-Kan plates. After two days at 30 °C, 

colonies were picked directly into 96-well microtiter plates containing 100 µL of LB-Kan in each 

well. The 96-well plates were wrapped in plastic film and incubated at 30 °C for 24 hrs without 

shaking, in plastic containers containing damp paper towels for humidity. Subsequently, using a 

48-pronged replicator flame-sterilized with ethanol, a small aliquot (1-2 µL) of each culture was 

transferred to a fresh 96-well plate containing 200 µL aliquots of LB-Kan + 100 µM PYO and 

incubated as above. After two days, the plates were assessed for the color change from blue to 

clear. Mutants in wells that remained blue were recovered from the original 96-well plates (that 

were grown without PYO) and stored at -80 °C in 15% glycerol until further analysis. 

The transposon insertion location in each mutant of interest was determined using arbitrary 

PCR. Genomic DNA was extracted from overnight cultures of the mutants using the QIAamp 

DNA Mini Kit (Qiagen) and PCR-amplified in 50 µL reactions with the primers Mar4 and SS9arb1 

(Table S7). 5 µL of the PCR product was treated with ExoSAP-IT (Applied Biosystems) and 1 µL 

of cleaned-up product was re-amplified using the nested primers Mar4-2 and arb3 (Table S7). 

Following gel electrophoresis in 1% agarose, 1-2 distinct bands per mutant were gel extracted with 

the QIAquick Gel Extraction Kit (Qiagen) and submitted for Sanger sequencing (Laragen). The 

resulting sequences were aligned with BLAST against the A. tumefaciens C58 genome on the 

MicroScope platform (Vallenet et al., 2017).  
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In-frame deletion, complementation, and overexpression experiments 

In-frame deletion mutants were generated via allelic replacement according to a previously 

published protocol (Morton and Fuqua, 2012a), using the plasmid pNPTS138 (M. R. K. Alley, 

unpublished), except that plating steps were done on LB agar containing 5% sucrose and/or 50 

µg/mL kanamycin as appropriate. Complementation and overexpression experiments were 

performed by cloning the coding sequence(s) of the relevant gene(s) into the plasmid pSRKKm in 

place of lacZa, such that expression of the gene(s) of interest would be driven by the lacIq-lac 

promoter-operator complex (Khan et al., 2008). Expression from these plasmids in A. tumefaciens 

was induced by adding 1 mM isopropyl b-D-thiogalactopyranoside (IPTG) to the culture medium 

at the beginning of the experiment. All plasmids used in this study are described in Table S8. 

Bacterial growth-based assays 

To assess sensitivity to PYO or other redox-active molecules in liquid cultures, stationary-

phase overnight cultures of A. tumefaciens were diluted to an OD500 of 1 in fresh medium and 

inoculated 1:10 (initial OD500 = 0.1) into 200 µL aliquots of medium containing different 

concentrations of the redox-active molecules in 96-well flat-bottom tissue culture plates. Each 

plate was then transferred to a small humidity cassette (Tecan) containing 4 mL of water and 

incubated in a Spark 10M plate reader (Tecan) with shaking at 30 °C for 24 hr, monitoring OD500 

as a proxy for growth. OD500 measurements were corrected by subtracting the OD500 of “blank” 

wells containing the respective treatment without cells. Each strain was assessed with at least three 

biological replicates (derived from independent overnight cultures). Throughout this study, 

differences in growth after 24 hrs approximately correspond to differences in maximum achievable 

cell density, as cultures were either in or approaching stationary phase at this time point.  

Sensitivity to acid, hydrogen peroxide, or SDS was assessed with a disk diffusion assay. 

Stationary-phase overnight cultures were diluted to an OD500 of 1, mixed 1:50 with 42 °C pre-

warmed LB soft agar (0.8% agar), and evenly pipetted in 5 mL aliquots onto solid LB agar plates. 

Disks of Whatman #1 filter paper (7 mm diameter) were soaked in 2 M HCl, 5.5 M H2O2, or 10% 

SDS and placed in the center of the plates. Diameters of growth inhibition zones were measured 

after two days of incubation at room temperature.  
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Sensitivity to bile salts, EDTA, and osmotic stresses was assessed using a gradient plate 

assay. To prepare the gradient plates, 25 mL of molten LB agar containing 2% bile salts (HiMedia 

Laboratories), 1 mM EDTA, 0.4 M NaCl (total concentration including the salt already present in 

LB), or 1 M myo-inositol was poured into square grid plates (Fisherbrand) tilted by propping 

against their lids. Once this layer had set, the plates were topped with 30 mL of plain LB agar and 

left at room temperature to equilibrate for at least 24 hrs. LB-only agar plates were prepared in the 

same manner as a control. Exponential-phase cultures were diluted to an OD500 of 0.5, then diluted 

again 10-4, and 5 µL aliquots of the suspension were spotted on the gradient plates. The plates were 

incubated at 30 °C for 2-3 days before imaging with an Epson Perfection V550 Photo flatbed 

scanner. For both the disk diffusion and gradient plate experiments, each strain was tested in 

duplicate at least three independent times.  

RNA extraction, RNA-seq, and qRT-PCR 

To obtain RNA for RNA-seq or qRT-PCR, overnight cultures (duplicate for RNA-seq, 

triplicate for qRT-PCR) were diluted to an OD500 of 0.1 and grown to exponential phase (OD500 

~0.5-0.7), then treated with PYO or 20 mM HCl (solvent control) for 20 min before collecting 1 

mL aliquots. Cell pellets obtained by centrifuging the aliquots were flash-frozen in liquid nitrogen 

and stored at -80 °C until RNA extraction. RNA was extracted from the pellets using the RNeasy 

Mini Kit (Qiagen) with a modified protocol. Briefly, the cell pellets were resuspended in 200 µL 

of TE buffer (30 mM Tris-HCl, 1 mM EDTA, pH 8) containing 15 mg/mL lysozyme, plus 15 µL 

of 20 mg/mL proteinase K (Qiagen). After 10 min at 37 °C with occasional mixing, 700 µL of 

Buffer RLT containing 1% b-mercaptoethanol was added, vortexing to mix, followed by 500 µL 

of absolute ethanol. The manufacturer’s protocol for bacteria was then followed starting at step 7 

(loading the lysate onto the spin column), including the optional on-column digestion with DNase 

I (Qiagen). After eluting the RNA in RNase-free water, residual genomic DNA was removed with 

the TURBO DNA-free Kit (Invitrogen), following the manufacturer’s protocol.  

For RNA-seq, rRNA was depleted by treatment with the Ribo-Zero rRNA Removal Kit for 

Bacteria (Illumina). The remaining RNA was then fragmented to an average size of 200 bp by 

incubation at 94 °C for exactly 60 s with the RNA Fragmentation Buffer from the NEBNext 

mRNA Library Prep Master Mix Set for Illumina (NEB). Fragmentation was halted by placing the 
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samples on ice and adding the RNA Fragmentation Stop Buffer. The concentrations and average 

sizes of the fragmented RNA samples were determined using the Agilent RNA 6000 Pico Kit on 

an Agilent 2100 Bioanalyzer. Subsequent library preparation steps were carried out with the 

NEBNext Ultra II Directional RNA Library Prep Kit for Illumina (NEB), following the 

manufacturer’s protocol for rRNA-depleted FFPE RNA. Sequencing was performed at the Millard 

and Muriel Jacobs Genetics and Genomics Laboratory at the California Institute of Technology to 

a depth of 10-15 million reads on an Illumina HiSeq2500 and processed using the Illumina HiSeq 

control software (HCS version 2.0). Low-quality bases were removed using Trimmomatic 

(LEADING:27 TRAILING:27 SLIDINGWINDOW:4:20 MINLEN:35) (Bolger et al., 2014). 

Alignment to the A. tumefaciens C58 genome and calculation of the number of reads per gene was 

performed with Rockhopper 2 (Tjaden, 2015), with 0.04 allowed mismatches and a minimum seed 

length of 0.33. Differential gene expression analysis was performed using DESeq2 (Love et al., 

2014). Sequence data were submitted to the NCBI Sequence Read Archive under the accession 

number PRJNA521160. 

For qRT-PCR, cDNA was synthesized from TURBO DNase-treated RNA using the iScript 

cDNA Synthesis Kit (Bio-Rad). The PCR reactions were set up in a 20 µL volume with iTaq 

Universal SYBR Green Supermix (Bio-Rad) (10 µL of the supermix, 4 µL of a 1:10 dilution of 

cDNA [~10 ng], 0.4 µL each of 10 µM forward and reverse primers, and 5.2 µL of water). Primers 

for qRT-PCR were designed using Primer-BLAST (Ye et al., 2012) and are listed in Table S7. 

Reactions were run using a Fast 7500 Real-Time PCR System machine (Applied Biosystems). A 

standard curve for each primer pair was generated using known concentrations of A. tumefaciens 

genomic DNA, enabling calculation of the relative concentrations of cDNA for each gene of 

interest. The expression levels (relative concentrations) for each gene were normalized to the 

expression of the housekeeping gene rpoD. 

Oxygen consumption rate measurements 

To measure oxygen consumption rates, each overnight culture was diluted to an OD500 of 

0.1 in four 5 mL cultures (total 20 mL) and grown to exponential phase (OD500 ~0.5-0.7). 

Meanwhile, 19 mL of MOPS-buffered LB per sample was aliquoted into autoclaved scintillation 

vials and pre-equilibrated by stirring with a magnetic stir bar at 500 rpm for at least 1 hr. Once the 
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cultures had reached exponential phase, all 20 mL of each sample was centrifuged in a 50 mL 

conical tube. The cell pellet was resuspended in 1 mL of MOPS-buffered LB and adjusted to an 

OD500 of 5, then 1 mL of the suspension was added to 19 mL of pre-equilibrated medium with 

continued stirring at 500 rpm. The concentration of oxygen in the medium was recorded over time 

at 1 s intervals using an OX-500 microsensor (Unisense), which was submerged to a fixed depth 

below the surface. After 7 min, the cultures were spiked with 10 µM PYO and the oxygen 

concentration was recorded for another 7 min. The measurements were calibrated by using a 

solution of 0.1 M sodium ascorbate + 0.1 M NaOH as the zero-oxygen reference, and MOPS-

buffered LB that had equilibrated with stirring at 500 rpm for several hours as the saturated 

reference. The microsensor response was converted to dissolved oxygen concentration using the 

salinity-temperature-solubility tables provided by the manufacturer. Oxygen consumption rates 

were calculated using an approach similar to a previously published method (Riedel et al., 2013), 

except that we treated only the first 2 min of each 7 min recording period as an equilibration period 

due to the rapid response of the microsensor, and that we fitted separate linear regressions for each 

10 µM interval of oxygen concentration.  

To measure PYO-mediated oxygen consumption rates in the presence of cyanide, 

experiments were performed as above except that 5 mM potassium cyanide (KCN) was added to 

the cell suspensions after the first 7 min (to ensure that cells were respiring normally prior to 

cyanide addition). Upon addition of cyanide, oxygen consumption halted within 10 s, and oxygen 

concentrations steadily rose over time due to leakage of oxygen back into the system. After 5 min 

of cyanide treatment, 10 µM PYO was added to the cell suspensions. As this led to no visible 

change in the rate of oxygen leakage/consumption, after another 5 min more PYO was added to a 

final concentration of 100 µM. Plating for CFUs before and after the experiments confirmed that 

5 mM KCN did not kill the cells (data not shown).  

NADH and NAD+ extraction and measurement 

To determine the NADH/NAD+ ratios of WT and ∆actR, overnight cultures were diluted 

to an OD500 of 0.1 and grown to exponential phase (5 hrs) in 5 mL MOPS-buffered LB. NADH 

and NAD+ were then extracted and quantified according to a previously published protocol (Kern 

et al., 2014). To monitor the progress of the enzyme-mediated colorimetric reaction, absorbance 
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at 570 nm was tracked in a Spark 10M plate reader (Tecan) over a period of 20 min, with the 

minimum possible time between readings (~45 s).  

ATP measurements and ATP synthesis inhibition 

To measure ATP levels, overnight cultures were diluted to an OD500 of 0.1 and grown to 

exponential phase (5 hrs) in 5 mL MOPS-buffered LB with or without 10 µM PYO. The ATP 

measurements were then performed using BacTiter-Glo Reagent (Promega) in opaque white 96-

well plates, according to the manufacturer’s instructions. Luminescence readings were taken at      

30 °C using a Spark 10M plate reader (Tecan). ATP concentrations were calculated using a 

standard curve generated with known quantities of pure ATP dissolved in water, and were 

normalized to the OD500 of each culture. To test whether inhibiting ATP synthesis can increase 

sensitivity to PYO, the experiment was performed in the same manner except that the cultures 

were treated with 0 or 100 µM N,N-dicyclohexylcarbodiimide (DCCD), in combination with 0 or 

10 µM PYO. These experiments were performed in triplicate.  

Measurement of ROS production  

We first measured ROS production by using electron paramagnetic resonance (EPR) 

spectroscopy in conjunction with the spin trap 5-tert-butoxycarbonyl-5-methyl-1-pyrroline-N-

oxide (BMPO), which reacts with superoxide and hydroxyl radical to form relatively stable radical 

adducts (BMPO/•OOH and BMPO/•OH, respectively) (Zhao et al., 2001). However, we found that 

this approach could only detect extracellular ROS in suspensions of A. tumefaciens (Fig. S7A), 

consistent with a previous study that used a similar spin trap to detect superoxide formation in 

PYO-treated E. coli (Hassett et al., 1992). To perform these measurements, overnight cultures 

were first grown in AT minimal medium modified to contain 50 mM phosphate buffer and no 

added iron (Morton and Fuqua, 2012b). The cultures reached mid-exponential phase after 

approximately 20-24 hrs, at which point the cells were pelleted by centrifugation and washed twice 

with Chelex 100 (Bio-Rad)-treated 0.1 M phosphate buffer (pH 7.4) containing 25 µM 

diethylenetriaminepentaacetic acid (DTPA). The cells were then resuspended in the buffer to an 

OD500 of 1. For each sample, 176 µL of cell suspension was combined with 20 µL of 250 mM 

BMPO (dissolved in the phosphate buffer), 2 µL of 50% glucose (Chelex 100-treated), and 2 µL 
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of 10 mM PYO, and mixed by vortexing for 5 s every minute for three minutes. The sample was 

then loaded into a flat quartz EPR spectroscopy cuvette and the spectrum was recorded on a Bruker 

EMX X-band CW-EPR spectrometer starting at 10 min 30 s after the addition of PYO. The 

instrument settings were as follows: microwave power, 5.08 mW; microwave frequency, 9.836 

GHz; modulation frequency, 100 kHz; modulation amplitude, 1 G; time constant, 81.92 msec; 

receiver gain, 5.02 x 104; sweep time, 83.89 s. Spectra shown in Fig. S6A are averages of 6 

consecutive scans from single samples that are representative of at least three biological replicates, 

except for the cell-free and exogenous SOD control samples, for which only the initial spectrum 

was recorded.  

To measure intracellular superoxide formation, we considered using dihydroethidium 

(DHE), a cell-permeable dye that reacts with superoxide to form the fluorescent derivative 2-

hydroxyethidium, although it can also be nonspecifically oxidized to similarly fluorescent 

ethidium (Zielonka et al., 2007). Unfortunately, we found that addition of PYO to DHE in cell-

free phosphate buffer was sufficient to increase fluorescence, suggesting that PYO can abiotically 

oxidize DHE and that DHE oxidation would therefore not be a reliable reporter for intracellular 

superoxide (Fig. S7B). To test DHE for oxidation upon exposure to PYO, 1.5 µL of 5 mM DHE 

(Invitrogen) was combined in a microcentrifuge tube with 5 µL of 1 mM PYO or 5 µL of 20 mM 

HCl (solvent control) in 493.5 µL of Chelex 100-treated 0.1 M phosphate buffer (pH 7.4) 

containing 100 µM DTPA. The samples were incubated at 30 °C with shaking at 250 rpm for 1 hr. 

Subsequently, 200 µL of each sample was transferred to a black plastic flat transparent-bottomed 

96-well plate and fluorescence (excitation at 510 nm, emission at 580 nm) was recorded in a Spark 

10M plate reader (Tecan). All steps were performed in the dark or under dim lighting to minimize 

photooxidation of DHE.  

Statistical analysis 

All statistical analyses were performed using R (R Core Team, 2018). In all cases involving 

multiple pairwise comparisons within an experiment, the Benjamini-Hochberg procedure was used 

to control the false discovery rate. For Figs. 2B and 3B, statistical significance was calculated by 

generalized linear regression with dummy variable coding, using WT as the reference group within 

each treatment. The function ‘ncvTest’ from the package ‘car’ (Fox and Weisberg, 2011) was used 
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to verify the homoscedasticity of the residuals, while the Shapiro-Wilk normality test was used to 

verify the normality of the residuals. For Fig. 2C, the Shapiro-Wilk test revealed non-normality of 

the residuals following linear regression, so instead the Kruskal-Wallis test was performed within 

each treatment, followed by pairwise comparisons using the Wilcox rank sum test. For Fig. 4C, 

Welch’s t-test was used to make pairwise comparisons between WT and ∆actR within each 

condition (i.e. + PYO or – PYO). For Fig. 6C, Welch’s t-test was used to make pairwise 

comparisons between strains within each condition (i.e. + PYO or – PYO), as well as within strains 

but between conditions. For Fig. S6B, ncvTest revealed heteroscedasticity of the residuals 

following linear regression, so instead samples were grouped by strain and PYO treatment and 

Welch’s t-test was then used to make pairwise comparisons between 0 µM and 100 µM DCCD 

treatments within each group. For Fig. S6C, the assumptions of linear regression were met, so 

linear regression was performed with a custom contrast matrix to specify comparisons between 0 

µM and 100 µM DCCD treatments within each strain.  
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Supplementary Tables and Figures 

Table S1: PYO-sensitive transposon insertion mutants identified in this study. 

Mutant  Transposon Insertion 
Site Gene Product 

soxR soxR, bp 6-7 transcriptional regulator 

actS actS, bp 1007-1008 two-component sensor kinase 

rpoH rpoH, bp 87-88 RNA polymerase factor sigma-32 

Atu1426 Atu1426, bp 170-171 enolase/phosphoenolpyruvate hydratase 

Atu3738 Atu3738, bp 11-12 potassium/proton antiporter 

pykA pykA, bp 1129-1130 pyruvate kinase 

Atu2584 Atu2584, bp 548-549 hypothetical protein with high sequence similarity to rhizobial 
NodB-like proteins that modify cell wall polysaccharides 

Atu2590 Atu2590, bp 35-36 putative glycosyltransferase belonging to the MurG superfamily 

Atu2591  Atu2591, bp 42-43 putative glycosyltransferase belonging to the RfaB superfamily 
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Atu2592 Atu2592, bp 878-879 putative glycosyltransferase belonging to the MurG superfamily 

Atu2577-1 Atu2577, bp 2288-2289 ABC transporter, nucleotide binding/ATPase protein 

Atu2577-2 Atu2577, bp 1010-1011  ABC transporter, nucleotide binding/ATPase protein 
 
Table S2: Top 15 genes (by fold change) upregulated by PYO in WT. The fold change is for PYO-treated 
cultures relative to cultures treated with the solvent control. Base Mean = mean of normalized transcript counts 
across all replicates and conditions. Bolded genes were previously computationally predicted to be regulated by 
SoxR on the basis of a SoxR box-containing promoter. Genes that were confirmed to be regulated by SoxR are 
highlighted in green.  
 

Gene Base Mean Log2 Fold Change Adjusted p-value Product 

Atu4582  8108 11.30 2.22E-170 ferredoxin 

Atu4581 3644 10.51 1.89E-114 putative flavin reductase 
Atu4583 
(sodBII) 106513 10.35 0 superoxide dismutase 

Atu5305 1548 8.08 9.83E-149 hypothetical protein 

Atu2361 10590 7.74 0 MFS permease 

Atu5152 932 7.41 1.60E-117 hypothetical protein 

Atu4742 4465 7.38 0 hypothetical protein 
Atu3915 
(soxR) 8621 7.27 0 MerR family transcriptional regulator 

Atu0942 29490 7.19 0 MFS permease 

Atu4316 2029 4.98 0 ABC transporter permease 
Atu2482 
(mexE) 34410 4.42 0 AcrB/AcrD/AcrF family protein 

Atu2483 
(mexF) 19007 4.39 0 HlyD family secretion protein 

Atu1475 1784 4.08 0 hypothetical protein 

Atu4741 6479 4.06 0 putative transcriptional regulator 

Atu4366 343 3.86 3.24E-82 short chain dehydrogenase 
 
Table S3: Genes that were expressed at least 2-fold more highly in ∆actR than in WT only upon PYO 
treatment. The fold change is for ∆actR relative to WT. Base Mean = mean of normalized transcript counts 
across all replicates and conditions. 
 

Gene Base Mean Log2 Fold Change Adjusted p-value Product 

Atu3298 542 2.95 9.59E-89 C4-dicarboxylate transporter DctA 

Atu4080 1096 2.31 2.21E-104 glutamine amidotransferase 

Atu2511 1697 2.17 5.82E-133 D-alanine aminotransferase 

Atu4311 90 1.85 6.14E-10 sarcosine oxidase delta subunit 

Atu4642 24522 1.60 3.41E-201 catalase 

Atu2510 1005 1.54 5.97E-55 aminopeptidase 

Atu3180 179 1.51 1.61E-12 ABC transporter permease 

Atu2733 132 1.50 1.79E-09 hypothetical protein 

Atu3329 2939 1.35 2.48E-79 beta alanine-pyruvate transaminase 
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Atu4732 324 1.25 2.32E-15 fimbrial chaperone 

Atu8166 341 1.21 4.54E-12 hypothetical protein 

Atu4073 1211 1.18 6.68E-38 glycogen debranching protein 

Atu4709 36 1.16 4.10E-03 NAD-dependent formate dehydrogenase subunit 
delta 

Atu2248 985 1.16 2.90E-30 hypothetical protein 

Atu3790 151 1.13 3.70E-07 potassium-transporting ATPase subunit A 

Atu3340 250 1.12 2.74E-10 trehalose/maltose ABC transporter permease 

Atu3472 87 1.10 1.04E-04 2-oxoisovalerate dehydrogenase subunit beta 

Atu0727 2186 1.09 3.92E-45 ferredoxin I 

Atu3038 169 1.08 2.87E-07 dipeptide ABC transporter ATPase 

Atu0236 373 1.08 8.07E-13 hypothetical protein 

Atu0496 363 1.06 6.67E-12 putative universal stress protein 

Atu4077 4410 1.05 8.76E-59 glycogen branching protein 

Atu4076 1716 1.04 6.31E-38 glucose-1-phosphate adenylyltransferase 

Atu4074 4597 1.02 3.87E-56 phosphoglucomutase 

Atu3039 358 1.02 1.32E-11 hydantoinase beta subunit-like protein 

Atu3037 136 1.01 1.68E-05 dipeptide ABC transporter permease 

Atu2477 1029 1.00 1.01E-23 DNA oxidation protective protein 
 
Table S4: Genes that were statistically significantly upregulated in ∆actR vs. WT regardless of PYO 
treatment. Values listed in the table are for PYO-treated ∆actR relative to PYO-treated WT. Base Mean = mean 
of normalized transcript counts across all replicates and conditions. Genes are ordered by decreasing magnitude 
of fold change between ∆actR and WT, and are highlighted with colors according to their function. Pink = genes 
related to the respiratory ETC; green = genes related to amino acid metabolism, including proteases; blue = genes 
related to sugar transport/metabolism; purple = genes related to fatty acid metabolism; orange = genes related to 
carbon oxidation, glycolysis, and the TCA cycle. 
 

Gene Base Mean Log2 Fold Change Adjusted p-value Product 

Atu4090 2240 4.63 0.00E+00 ABC transporter permease 

Atu4089 1925 3.75 0.00E+00 ABC transporter permease 

Atu8036 554 2.92 1.07E-91 protein YBGT-like protein 

Atu4092 2595 2.89 5.99E-246 cytochrome d oxidase subunit II 

Atu4081 2514 2.07 1.36E-120 aspartate racemase 

Atu4314 552 2.05 7.30E-55 serine hydroxymethyltransferase 

Atu4091 3678 2.02 1.44E-124 cytochrome d oxidase 

Atu4088 837 1.93 4.88E-70 transcriptional regulator 

Atu0143 1520 1.92 9.53E-100 MFS permease 

Atu4310 380 1.90 4.97E-36 sarcosine oxidase beta subunit 

Atu4313 180 1.83 1.29E-17 sarcosine oxidase gamma subunit 

Atu4447 306 1.73 5.54E-19 sorbitol ABC transporter substrate-binding protein 

Atu4312 1016 1.67 5.02E-62 sarcosine oxidase alpha subunit 
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Atu2249 567 1.62 8.95E-37 hypothetical protein 

Atu3342 695 1.59 2.95E-41 trehalose utilization-like protein 

Atu4315 114 1.47 1.95E-08 formyltetrahydrofolate deformylase 

Atu3343 1005 1.35 3.64E-39 trehalose utilization-like protein 

Atu3341 325 1.34 1.06E-16 trehalose/maltose ABC transporter ATPase 

Atu0649 1691 1.33 8.93E-59 cyclopropane-fatty-acyl-phospholipid synthase 

Atu4660 582 1.28 1.07E-25 alpha-galactosidase 

Atu0543 7394 1.27 1.19E-104 flaB 

Atu3338 1077 1.21 2.33E-37 trehalose/maltose ABC transporter substrate-binding 
protein 

Atu0726 4368 1.15 2.40E-75 ring hydroxylating dioxygenase, alpha-subunit 

Atu3471 350 1.15 3.85E-13 branched-chain alpha-keto acid dehydrogenase 
subunit E2 

Atu3339 338 1.13 5.35E-13 trehalose/maltose ABC transporter permease 

Atu1338 2909 1.10 1.28E-09 3-oxoacyl-(acyl carrier protein) reductase 

Atu4078 7728 1.01 4.18E-68 glycogen phosphorylase 

Atu4661 277 0.99 4.95E-09 alpha-galactoside ABC transporter substrate-binding 
protein 

Atu2200 11449 0.98 6.88E-63 cold shock protein 

Atu8170 9043 0.97 2.35E-60 hypothetical protein 

Atu1567 1372 0.95 7.00E-25 glutathione-independent formaldehyde 
dehydrogenase 

Atu1865 3965 0.93 1.17E-28 hypothetical protein 

Atu5489 783 0.92 2.16E-13 hypothetical protein 

Atu2631 2010 0.91 1.34E-30 hypothetical protein 

Atu1632 9825 0.90 1.39E-52 dimethylglycine dehydrogenase 

Atu3894 180 0.87 3.03E-05 sugar ABC transporter permease 

Atu3506 2431 0.86 1.60E-27 hypothetical protein 

Atu4442 496 0.84 9.55E-11 hypothetical protein 

Atu0063 2389 0.83 6.24E-25 ABC transporter, substrate binding protein (sugar) 

Atu0542 682 0.82 1.81E-12 flagellin 

Atu3474 279 0.82 9.90E-07 acyl-CoA dehydrogenase 

Atu1174 1835 0.81 6.36E-24 H+ translocating pyrophosphate synthase 

Atu1805 4548 0.81 3.79E-36 hypothetical protein 

Atu4708 534 0.78 5.77E-10 formate dehydrogenase alpha subunit 

Atu4727 756 0.75 2.47E-11 hypothetical protein 

Atu5450 5849 0.73 5.59E-34 hypothetical protein 

Atu3893 106 0.73 3.34E-03 sugar ABC transporter permease 

Atu5270 77 0.72 9.36E-03 permease component of C4 dicarboxylate transporter 

Atu3336 1843 0.72 1.05E-19 hypothetical protein 

Atu1864 4280 0.71 1.63E-18 putative homoserine/homoserine lactone efflux 
protein 
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Atu1777 6119 0.71 6.67E-30 hypothetical protein 

Atu4728 8613 0.71 1.63E-05 ABC transporter permease 

Atu5449 13865 0.71 7.79E-39 heat-shock protein 

Atu0373 471 0.69 2.46E-07 methyl-accepting chemotaxis protein 

Atu3891 286 0.69 2.57E-05 hypothetical protein 

Atu0738 1062 0.67 1.41E-10 chemotaxis methyl-accepting protein 

Atu4014 16149 0.67 2.87E-32 transcriptional regulator 

Atu0591 12637 0.64 1.76E-29 ABC transporter, substrate binding protein (alpha-
glucoside) 

Atu4061 732 0.63 1.99E-08 exopolysaccharide production repressor protein 

Atu3895 170 0.62 2.91E-03 sugar ABC transporter ATPase 

Atu1832 926 0.62 2.40E-09 membrane protein associated metalloendopeptidase 

Atu0545 4409 0.61 1.79E-21 flagella associated protein 

Atu0108 4839 0.60 1.98E-21 putative metalloprotease M20 family 

Atu0590 1735 0.60 6.22E-14 transcriptional regulator repressor 

Atu0064 549 0.60 1.70E-06 ABC transporter, membrane spanning protein 
(sugar) 

Atu4062 736 0.60 8.80E-08 hypothetical protein 

Atu0476 1401 0.59 1.48E-11 aquaporin 

Atu0517 1013 0.58 3.63E-09 Chemotaxis protein histidine kinase 

Atu2768 1085 0.58 7.83E-09 hypothetical protein 

Atu0871 5443 0.57 1.06E-20 branched-chain-amino-acid aminotransferase 

Atu0984 1007 0.57 3.09E-08 aminopeptidase N 

Atu5052 22384 0.55 9.03E-20 small heat shock protein 

Atu1661 1362 0.54 4.06E-09 soluble pyridine nucleotide transhydrogenase 

Atu5053 3354 0.53 6.22E-14 hypothetical protein 

Atu3185 795 0.51 2.31E-06 glycerol-3-phosphate ABC transporter substrate-
binding protein 

Atu1392 15199 0.47 6.00E-19 citrate synthase 

Atu2617 1342 0.46 1.85E-07 chemotaxis protein 

Atu3896 234 0.46 8.13E-03 sugar ABC transporter ATPase 

Atu2644 2277 0.46 3.55E-09 succinate dehydrogenase hydrophobic membrane 
anchor 

Atu8094 1653 0.44 8.99E-08 hypothetical protein 

Atu2827 819 0.43 1.50E-04 hypothetical protein 

Atu1405 617 0.43 3.02E-04 transcriptional regulator, GntR family 

Atu0526 2120 0.42 1.58E-07 methyl-accepting chemotaxis protein 

Atu1210 1939 0.42 3.05E-07 putative 2,3-cyclic nucleotide 2-
phosphodiesterase/3-nucleotidase 

Atu3898 763 0.41 3.72E-04 DeoR family transcriptional regulator 

Atu0573 1619 0.40 5.35E-05 transcriptional regulator 

Atu3596 5621 0.39 3.82E-10 electron transfer flavoprotein alpha subunit 
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Atu2645 2303 0.36 3.61E-06 succinate dehydrogenase cytochrome B-556 subunit 

Atu2643 6452 0.36 1.25E-08 succinate dehydrogenase flavoprotein subunit 

Atu3595 3695 0.36 2.03E-07 electron transfer flavoprotein subunit beta 

Atu4319 2386 0.35 1.06E-05 AraC family transcriptional regulator 

Atu2196 5340 0.35 1.41E-08 aspartate aminotransferase A 

Atu3695 4263 0.34 1.35E-07 hypothetical protein 

Atu1616 9523 0.34 2.67E-09 fumarate hydratase 

Atu0767 4159 0.33 1.20E-06 cytochrome c oxidase subunit II 

Atu2239 1761 0.32 3.00E-04 ubiquinol-cytochrome C reductase iron-sulfur 
subunit 

Atu2223 802 0.31 5.77E-03 methyl-accepting chemotaxis protein 

Atu2642 3397 0.31 1.61E-05 succinate dehydrogenase iron-sulfur 

Atu1717 869 0.29 5.89E-03 long-chain fatty acid transport protein 

Atu0594 3253 0.29 2.91E-05 alpha-glucosidase 

Atu1870 14872 0.28 2.98E-07 isocitrate dehydrogenase 

Atu0768 5078 0.27 1.81E-04 cytochrome-c oxidase chain I 

Atu2675 4519 0.26 5.78E-04 hypothetical protein 

Atu3706 2778 0.26 1.00E-03 D-3-phosphoglycerate dehydrogenase 

Atu2685 14712 0.25 1.77E-05 aconitate hydratase 

Atu1426 7399 0.24 1.01E-04 enolase 

Atu2238 2861 0.22 3.24E-03 ubiquinol-cytochrome c reductase cytochrome b 
subunit 

Atu1307 1977 0.22 7.56E-03 dihydroorotase 

Atu0592 2054 0.21 8.63E-03 ABC transporter, membrane spanning protein 

Atu2348 6953 0.21 8.02E-04 sugar binding protein 

Atu0977 51857 0.20 1.05E-03 serine protease DO-like protease 

Atu2682 17487 0.19 8.74E-04 hypothetical protein 

 
Table S5: Genes that were statistically significantly downregulated in ∆actR vs. WT regardless of PYO 
treatment. Values listed in the table are for PYO-treated ∆actR relative to PYO-treated WT. Base Mean = mean 
of normalized transcript counts across all replicates and conditions. Genes are ordered by decreasing magnitude 
of fold change between ∆actR and WT. Genes mentioned in the main text because of their relevance to the 
respiratory ETC are highlighted in pink. 
 

Gene Base Mean Log2 Fold Change Adjusted p-value Product 

Atu0142 2962 -2.88 1.43E-295 cytochrome o ubiquinol oxidase subunit II 

Atu0141 3309 -2.53 8.03E-253 cytochrome O ubiquinol oxidase subunit I 

Atu0140 874 -2.46 5.49E-97 cytochrome o ubiquinol oxidase subunit III 

Atu0138 89 -2.36 6.03E-13 surfeit 1 

Atu0139 645 -2.27 5.64E-71 cytochrome o ubiquinol oxidase subunit IV 

Atu4171 1181 -1.70 4.77E-63 cold-shock dead-box protein A 

Atu4096 142 -1.43 1.03E-08 nicotinate-nucleotide pyrophosphorylase 
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Atu1528 731 -1.38 2.85E-27 nitrogen fixation protein FixI 

Atu2333 2854 -1.37 9.58E-78 ATP-dependent RNA helicase 

Atu1529 238 -1.36 3.00E-13 nitrogen fixation protein FixH 

Atu1155 400 -1.32 1.98E-19 hypothetical protein 

Atu3122 576 -1.30 3.51E-21 cold shock protein 

Atu4097 474 -1.29 1.58E-21 L-aspartate oxidase 

Atu1798 155 -1.27 1.99E-08 ankyrin repeat protein 

Atu3124 434 -1.25 6.16E-17 hypothetical protein 

Atu1221 984 -1.23 3.30E-29 hypothetical protein 

Atu1536 268 -1.21 1.36E-11 cytochrome C oxidase, FixO chain 

Atu2112 168 -1.20 3.81E-08 soluble lytic transglycosylase 

Atu1530 1171 -1.17 2.85E-29 nitrogen fixation protein FixG 

Atu5384 640 -1.15 4.16E-21 hypothetical protein 

Atu4372 247 -1.08 9.70E-09 ribose ABC transporter permease 

Atu1537 1510 -1.04 8.66E-07 cytochrome-c oxidase, FixN chain 

Atu5126 740 -1.03 1.10E-19 
ABC transporter nucleotide 
binding/ATPase(putrescine) 

Atu3998 220 -1.00 1.62E-07 8-amino-7-oxononanoate synthase 

Atu1535 58 -0.99 3.28E-03 cytochrome c oxidase, FixQ chain 

Atu4695 595 -0.99 4.94E-14 
oligopeptide ABC transporter substrate-binding 
protein 

Atu3771 431 -0.97 1.35E-11 ferrochelatase 

Atu0895 7152 -0.95 9.15E-58 ABC transporter, substrate binding protein 

Atu1956 22144 -0.94 1.01E-68 DNA-directed RNA polymerase beta chain 

Atu2273 651 -0.93 1.92E-15 hypothetical protein 

Atu3817 403 -0.92 1.78E-10 dehydratase 

Atu2833 4918 -0.92 1.04E-45 transcription termination factor Rho 

Atu1601 1118 -0.91 1.03E-05 oxygen-independent coproporphyrinogen III oxidase 

Atu5108 287 -0.91 2.25E-07 conjugal transfer coupling protein TraG 

Atu2806 489 -0.91 1.09E-11 hypothetical protein 

Atu2804 2183 -0.90 3.68E-31 cobaltochelatase subunit 

Atu2805 1465 -0.90 9.38E-26 cobalamin synthesis protein 

Atu2283 816 -0.88 1.60E-04 pseudoazurin 

Atu0885 176 -0.88 1.96E-05 hypothetical protein 

Atu1923 14379 -0.87 3.51E-54 DNA-directed RNA polymerase alpha subunit 

Atu2803 698 -0.84 2.56E-13 Cobalamin biosynthesis associated protein 

Atu2673 2180 -0.83 1.25E-25 hypothetical protein 

Atu4609 3074 -0.82 1.15E-31 glycosyltransferase 

Atu1771 286 -0.81 1.27E-06 hypothetical protein 

Atu5516 1337 -0.81 6.38E-18 hypothetical protein 
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Atu3191 768 -0.81 2.30E-10 outer membrane protein 

Atu5162 590 -0.80 1.34E-08 type IV secretion protein AvhB1 

Atu1955 33189 -0.79 1.03E-43 DNA-directed RNA polymerase beta' chain 

Atu0663 385 -0.78 2.00E-07 hypothetical protein 

Atu3121 8101 -0.77 1.01E-39 cold shock protein 

Atu1654 117 -0.77 1.47E-03 nitroreductase 

Atu2183 2132 -0.76 9.49E-23 
lipopolysaccharide core biosynthesis 
mannosyltransferase 

Atu2801 780 -0.76 9.76E-12 precorrin-2 C20 methyltransferase 

Atu2835 1143 -0.76 1.37E-14 uroporphyrinogen decarboxylase 

Atu2834 285 -0.76 4.89E-06 hypothetical protein 

Atu0107 369 -0.75 1.61E-06 hypothetical protein 

Atu1534 460 -0.75 3.76E-07 cytochrome-c oxidase, FixP chain 

Atu2085 5294 -0.73 7.85E-32 
UDP-3-0-(3-hydroxymyristoyl) N-
acetylglucosamine deacetylase 

Atu5127 414 -0.70 7.90E-07 
ABC transporter membrane spanning protein 
(mannopine) 

Atu0033 2568 -0.69 3.74E-22 two component sensor kinase 

Atu2824 935 -0.69 9.89E-12 hypothetical protein 

Atu0070 1714 -0.69 4.02E-17 ribonucleoside-diphosphate reductase 2 alpha chain 

Atu2394 3017 -0.68 2.43E-03 Regulator of Biofilm formation, Fnr Family 

Atu2792 184 -0.68 8.38E-04 hypothetical protein 

Atu5110 109 -0.68 5.43E-03 conjugal transfer protein 

Atu0983 225 -0.68 2.84E-04 hypothetical protein 

Atu3230 375 -0.67 8.05E-06 hypothetical protein 

Atu0769 848 -0.67 2.03E-10 protoheme IX farnesyltransferase 

Atu5161 800 -0.66 1.14E-07 hypothetical protein 

Atu2073 1393 -0.66 1.39E-13 membrane protein 

Atu0365 744 -0.66 3.21E-09 hypothetical protein 

Atu2710 1129 -0.65 7.82E-11 hypothetical protein 

Atu4667 534 -0.64 4.78E-07 ABC transporter permease 

Atu0250 344 -0.64 2.61E-05 hypothetical protein 

Atu4608 4774 -0.64 3.10E-24 hypothetical protein 

Atu4098 778 -0.64 1.90E-08 quinolinate synthetase 

Atu2026 1377 -0.64 1.39E-12 exodeoxyribonuclease V 

Atu8135 2663 -0.64 5.43E-16 hypothetical protein 

Atu2800 556 -0.63 4.80E-07 precorrin-3B C17-methyltransferase 

Atu2471 136 -0.61 6.53E-03 hypothetical protein 

Atu0106 11129 -0.60 2.10E-23 cold shock protein 

Atu0345 1829 -0.60 8.82E-14 DNA mismatch repair protein, MutS family 

Atu0034 4246 -0.60 5.26E-21 two component response regulator 
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Atu0071 839 -0.59 2.42E-08 ribonucleoside-diphosphate reductase 2 beta chain 

Atu2287 144 -0.59 6.48E-03 outer membrane heme receptor 

Atu3203 2501 -0.58 4.53E-15 RND multidrug efflux membrane permease 

Atu5130 355 -0.58 9.65E-05 attachment protein 

Atu0012 7125 -0.58 1.20E-21 DNA gyrase subunit B 

Atu0032 266 -0.58 6.08E-04 hypothetical protein 

Atu2730 7718 -0.56 3.48E-21 beta (1-->2) glucan biosynthesis protein 

Atu5129 1722 -0.56 5.08E-12 
ABC transporter substrate binding protein 
(mannopine) 

Atu5001 1437 -0.56 1.90E-10 replication protein B 

Atu4666 677 -0.56 2.11E-05 HlyD family secretion protein 

Atu5128 444 -0.55 8.22E-05 
ABC transporter membrane spanning protein 
(mannopine) 

Atu1447 3047 -0.55 7.51E-15 two component sensor kinase 

Atu3229 259 -0.54 1.86E-03 hypothetical protein 

Atu1658 1096 -0.53 5.86E-08 
conserved protein involved in phosphoglycerol 
modification of cyclic glucan 

Atu0973 1235 -0.53 6.64E-09 cycH protein 

Atu2303 694 -0.53 3.47E-06 hypothetical protein 

Atu2494 443 -0.52 1.39E-04 NAD(P)+ transhydrogenase beta chain 

Atu1445 863 -0.51 1.25E-06 two component sensor kinase 

Atu2129 380 -0.51 4.90E-04 hypothetical protein 

Atu3704 2031 -0.51 1.03E-10 hypothetical protein 

Atu0721 2154 -0.50 1.95E-10 hypothetical protein 

Atu3202 3935 -0.49 5.04E-14 RND multidrug efflux transporter 

Atu4491 1679 -0.49 3.73E-09 hypothetical protein 

Atu2380 583 -0.49 6.13E-05 hypothetical protein 

Atu4619 1063 -0.49 3.67E-07 ATP-dependent DNA helicase 

Atu2320 487 -0.49 2.30E-04 transcriptional regulator, TetR family 

Atu5469 562 -0.48 1.03E-04 DNA polymerase IV 

Atu3325 756 -0.48 1.69E-05 exopolysaccharide production protein 

Atu2057 2428 -0.48 9.28E-11 DNA helicase II 

Atu5000 1652 -0.48 6.13E-08 replication protein A 

Atu1262 16332 -0.47 7.08E-14 histone-like protein 

Atu8200 3772 -0.47 1.07E-10 hypothetical protein 

Atu1074 606 -0.47 1.33E-04 NAD/NADP dependent oxidoreductase 

Atu5170 283 -0.47 7.31E-03 type IV secretion protein AvhB9 

Atu0900 620 -0.46 1.05E-04 hypothetical protein 

Atu5165 1769 -0.46 5.78E-06 type IV secretion protein AvhB4 

Atu1131 43210 -0.46 3.23E-15 outer membrane protein 

Atu1683 1453 -0.45 2.26E-07 hypothetical protein 
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Atu0933 729 -0.45 9.93E-05 beta-lactamase class D 

Atu1877 4170 -0.45 4.18E-10 OmpA family protein 

Atu1242 1157 -0.44 6.58E-06 cytochrome oxidase assembly factor 

Atu2692 2234 -0.44 1.19E-07 intracellular septation protein 

Atu2728 4808 -0.43 1.78E-09 beta (1-->2) glucan export ATP-binding protein 

Atu1602 891 -0.43 9.86E-05 transcriptional activator, Crp family 

Atu3396 4110 -0.43 1.31E-09 ABC transporter substrate-binding protein 

Atu1825 1610 -0.43 5.53E-06 cysteine desulfurase 

Atu1467 436 -0.42 2.00E-03 hypothetical protein 

Atu8142 743 -0.42 4.95E-04 hypothetical protein 

Atu4026 14058 -0.42 5.49E-13 hypothetical protein 

Atu5167 485 -0.42 4.41E-03 type IV secretion protein AvhB6 

Atu2163 6391 -0.41 7.59E-12 hypothetical protein 

Atu2521 1143 -0.41 2.85E-05 Protein regulated by acid pH 

Atu5122 806 -0.41 1.92E-04 3-ketoacyl-ACP reductase 

Atu2463 740 -0.41 2.50E-04 hypothetical protein 

Atu2181 1052 -0.41 2.85E-05 hypothetical protein 

Atu1077 1260 -0.39 3.73E-05 DNA repair protein 

Atu3326 1373 -0.39 5.38E-05 exopolysaccharide production protein 

Atu0898 602 -0.39 1.72E-03 hypothetical protein 

Atu3295 803 -0.39 5.08E-04 hypothetical protein 

Atu2653 450 -0.39 5.00E-03 Uroporphyrinogen III synthase HEM4 

Atu1874 11481 -0.38 5.09E-09 RecA protein 

Atu3507 2784 -0.38 3.23E-07 hypothetical protein 

Atu2779 1792 -0.36 8.78E-06 gamma-glutamyl phosphate reductase 

Atu2652 1401 -0.36 9.33E-05 porphobilinogen deaminase 

Atu5124 1920 -0.35 1.17E-05 glutamate-1-semialdehyde aminotransferase 

Atu0720 2876 -0.35 5.42E-06 ribonuclease HII 

Atu2168 2744 -0.35 1.69E-05 DNA primase 

Atu2522 696 -0.34 3.11E-03 agrobacterium chromosomal virulence protein B 

Atu2780 1666 -0.34 7.80E-05 gamma-glutamyl kinase 

Atu4499 683 -0.33 3.99E-03 hypothetical protein 

Atu2001 7332 -0.33 3.74E-07 excinuclease ABC subunit B 

Atu0974 639 -0.32 7.84E-03 cytochrome-c biosynthesis heme-carrier protein cycJ 

Atu1780 1051 -0.31 1.66E-03 ATP-dependent DNA helicase 

Atu1032 905 -0.31 5.48E-03 hypothetical protein 

Atu0975 1765 -0.30 4.18E-04 cytochrome c-type synthesis protein 

Atu1395 2869 -0.30 6.47E-05 LexA repressor 
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Atu0998 1891 -0.30 5.05E-04 
undecaprenyl pyrophosphate phosphatase, possible 
bacitracin resistance protein 

Atu4498 1078 -0.29 3.11E-03 hypothetical protein 

Atu4178 2418 -0.29 2.60E-04 hypothetical protein 

Atu5123 2497 -0.28 2.42E-04 acetolactate synthase catalytic subunit 

Atu1433 4200 -0.28 7.83E-05 arylesterase 

Atu1300 1132 -0.26 7.31E-03 MFS permease 

Atu1446 1385 -0.26 3.78E-03 two component response regulator 

Atu1028 6244 -0.24 1.13E-04 hypothetical protein 

Atu1715 2517 -0.20 9.33E-03 exopolysaccharide production negative regulator 
 
Table S6: Top six most highly expressed non-ribosomal genes in A. tumefaciens NT1 WT upon treatment 
with 100 µM PYO. Expression values were calculated in a manner similar to RPKM (reads per kilobase per 
million mapped reads) values except that they were normalized to the upper quartile of gene expression instead 
of total mapped reads (Tjaden, 2015). 
  

Gene Product Expression 

rnpB RNase P RNA 53179 

sodBII superoxide dismutase 25726 

hspL small heat shock protein 15130 

Atu1020 outer membrane protein 14239 

groEL GroEL chaperonin 13833 

groES co-chaperonin GroES 12884 
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Figure S1: Supplemental data from growth-based PYO sensitivity assays. 
A. Growth of WT and PYO-sensitive transposon mutants after 24 hrs without PYO treatment.  
B. Growth of ∆actS and ∆actR after 24 hrs in the presence of different concentrations of PYO.  
C. Growth of WT pLacZ (vector control for overexpression constructs), ∆actR pLacZ, ∆actR pActR 
(overexpression vector for ActR), ∆soxR pLacZ, and ∆soxR pSoxR (overexpression vector for SoxR) after 24 
hrs in the presence of different concentrations of PYO, showing complementation of the ∆actR and ∆soxR clean 
deletion mutants. Expression from the vectors was induced by adding 1 mM IPTG at the start of the experiment.  
D. Growth of WT, ∆sodBII, ∆cyo, and ∆cyo/∆sodBII after 24 hrs in the presence of different concentrations of 
PYO, showing that ∆cyo is slightly more dependent on SodBII than WT (i.e. it does not gain as large of a growth 
advantage upon loss of SodBII). Error bars in all panels represent standard deviations of biological replicates    
(n = 3).  
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Figure S2: Structures and standard reduction potentials (E0’) of the redox-active molecules tested in this 
study.  
Reduction potentials are versus that of the normal hydrogen electrode (NHE).  

 
 
Figure S3: Supplemental gradient plate assays.  
Growth of WT, ∆actR, and ∆soxR on agar plates containing either plain LB or a concentration gradient (low-
high, left to right) of EDTA (up to 1 mM), myo-inositol (up to 1 M), or NaCl (up to 0.4 M). Images are 
representative of eight biological replicates. 
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Figure S4: Supplemental qRT-PCR data for SoxR regulon candidates and cydA.  
A. Relative induction by 100 µM PYO of Atu1475, Atu4316, and Atu4895 in WT and ∆soxR, showing that these 
three genes are not regulated by SoxR. 
B. Relative expression of cydA in WT, ∆actR, and ∆cyo without PYO treatment. Expression was normalized to 
the housekeeping gene rpoD. 

 
 
Figure S5: Loss of ActR does not significantly alter the NADH/NAD+ ratio or PYO-mediated cyanide-
insensitive oxygen consumption rate.  
A. NADH and NAD+ were extracted and quantified from exponential phase cultures of WT and ∆actR. The 
slight increase in the mean NADH/NAD+ ratio in ∆actR is not statistically significant (p > 0.05, Welch’s t-test, 
n = 4).  
B. Exponential phase cultures of WT or ∆actR in LB were treated with 5 mM potassium cyanide for 5 min to 
inhibit terminal oxidase activity; this concentration was sufficient to fully inhibit respiration. After 5 min, 10 
µM PYO was added, and after another 5 min, an additional 90 µM PYO was added. The concentration of oxygen 
over time is plotted such that t = 0 is approximately the time of the second PYO addition. The concentration of 
oxygen over time was also plotted for a blank sample (cell-free) with a similar starting concentration of oxygen. 
Each sample was fitted with a linear regression. The positive slope of the blank reference represents the rate of 
oxygen leakage into the system. The slope for the culture samples is a function of the leak rate minus the 
consumption rate. Hence, PYO-mediated oxygen consumption resulted in shallower slopes for the culture 
samples compared to the blank sample, although their rates of oxygen consumption were slower than the rate of 
oxygen leakage back into the system (resulting in a net positive slope). Two biological replicates are plotted for 
each strain.  
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Figure S6: Inhibition of ATP synthesis does not necessarily correlate with PYO sensitivity. Data in all 
panels is from the same experiment (n = 3).  
A. Growth of WT and ∆actR after 5 hrs of treatment with +/- 100 µM DCCD combined with +/- 10 µM PYO. 
The difference between the OD500 at 5 hrs and initial OD500 was taken as a proxy for growth.  
B. ATP levels after 5 hrs of treatment.  
C. Percent growth of each strain in 10 µM PYO relative to its growth in 0 µM PYO, with or without 100 µM 
DCCD, after 5 hrs. * p < 0.05, ** p < 0.01, *** p < 0.001 (in B, Welch’s t-test followed by the Benjamini-
Hochberg procedure to control the false discovery rate; in C, linear regression with custom contrast matrix to 
specify comparisons between 0 µM and 100 µM DCCD conditions). Legend on the right applies to all panels. 
 
 

 
 
Figure S7: EPR spectra and DHE oxidation in the presence of PYO.  
A. EPR spectra of 1) a cell-free sample containing 100 µM PYO + 0.5% glucose (light gray); 2) WT + 100 µM 
PYO + 0.5% glucose + exogenous superoxide dismutase (SOD) (100 units) (dark gray); 3) ∆actR + 100 µM 
PYO + 0.5% glucose (pink); 4) WT + 100 µM PYO + 0.5% glucose (black). G  = Gauss. EPR signal intensity 
is directly proportional to the quantity of radicals in a sample (Eaton et al., 2010). All spectra were collected 
using 25 mM BMPO as the spin trap for superoxide and hydroxyl radical. The cell-free and SOD control spectra 
are single scans while the other two spectra are averages of six consecutive scans and are representative of at 
least three biological replicates. The complete loss of signal upon addition of cell-impermeable SOD indicates 
that the signal from PYO-treated cell suspensions represents only extracellular superoxide.  
B. Fluorescence (510ex/580em) of 15 µM dihydroethidium (DHE) after 1 hr of incubation with 0 µM or 10 µM 
PYO in cell-free phosphate buffer. Increased fluorescence in the PYO-treated sample indicates abiotic DHE 
oxidation, suggesting that DHE oxidation would not be a reliable reporter for intracellular superoxide.               
RFU = relative fluorescence units.  
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Table S7: Primers used in this study. Primers with “us” or “ds” were used to amplify the upstream or 
downstream flanking regions of the given gene, respectively, which were subsequently joined by overlap 
extension PCR and cloned into pNPTS138.   
 

Primer Sequence Cut site 

SS9arb1 GACCACGAGACGCCACACTNNNNNNNNNNCATGC  

Mar4 TAGGGTTGAGTGTTGTTCCAGTT  

arb3 GACCACGAGACGCCACACT  

Mar4-2 TCACCGTCATGGTCTTTGTAGTC  

soxR-us-F GTAAAAATT-GAATTC-CACCGAAGAGCTGACCATCAAG EcoRI 

soxR-us-R GAATAAGGGGCGGCTCAGCCGC-TCTGGCTCCTGCTTCCG   

soxR-ds-F CGGAAGCAGGAGCCAGA-GCGGCTGAGCCGCCCCTTATTC  

soxR-ds-R GTAAAAATT-ACTAGT-CCGACCGAAGACGGCATATTCCG SpeI 

actS-us-F CTTGGTGCCATCATTCTCGAC EcoRI 
(downstream) 

actS-us-R CGCTTCAACGTGGATGGTAAAG-CGTCTTCTCCTTTACCCTTTTC  

actS-ds-F GAAAAGGGTAAAGGAGAAGACG-CTTTACCATCCACGTTGAAGCG  

actS-ds-R GTAAAAATT-ACTAGT-TGCGCCGATGCATGTTG SpeI 

actR-us-F GTAAAAATT-GGATCC-GCGTCGTCGCCAAGGAAATG BamHI 

actR-usR CGCACTTTTACTGGAAATGCT-GTTTCCGGCCTTCCGGCAAC  

actR-ds-F GTTGCCGGAAGGCCGGAAAC-AGCATTTCCAGTAAAAGTGCG  

actR-ds-R GTAAAAATT-ACTAGT-CGCCAAATTGTGCGAAGGAG SpeI 

sodBI-us-F GTAAAAATT-GGATCC-AATGGCTGAATACGGTGC BamHI 

sodBI-us-R GAAAAATTCCGTTCGCCAAGCC-GGTTTTTACTCCTTTTTGCAGC  

sodBI-ds-F GGCTTGGCGAACGGAATTTTTC  

sodBI-ds-R GTAAAAATT-ACTAGT-GAATTGCTTGTCACTGAGTG SpeI 

sodBII-us-F GTAAAAATT-GGATCC-TCGAAACCGTGCTTCTGCGC BamHI 

sodBII-us-R GGGTCGGTGGGGCTCAAA-GGGGTATTCCTTTGTCAACTGTT  

sodBII-ds-F AACAGTTGACAAAGGAATACCCC-TTTGAGCCCCACCGACCC  

sodBII-ds-R GTAAAAATT-ACTAGT-ACGCGGCGAGATCGTCGG SpeI 

Atu0942-us-F GTAAAAATT-GAATTC-CAAGGACGAACATCGCTGTG EcoRI 

Atu0942-us-R GGTTCACTTTTTCTGGAAATGCT-GCGGGCTTTTTTATCCGATG  

Atu0942-ds-F AGCATTTCCAGAAAAAGTGAACC  

Atu0942-ds-R GTAAAAATT-ACTAGT-GATCGAACTTGCCTCGTCAG SpeI 

Atu2361-us-F GTAAAAATT-GGATCC-CTACGAGCCGCAGAATTTCG BamHI 

Atu2361-us-R CCCACCCCACGCTGCGCC-GGAACGTCCTTCGATAGTGT  

Atu2361-ds-F ACACTATCGAAGGACGTTCC-GGCGCAGCGTGGGGTGGG  

Atu2361-ds-R GTAAAAATT-ACTAGT-GGAATAGAGTGCATCGGATTCC SpeI 

mexF-us-F GTAAAAATT-GAATTC-TCAACCCGATCTATGCAAGC EcoRI 

mexF-us-R GCGGTGGATGGGGTGCGGCG-ATCCAGTCCCTCTCCGGG  
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mexF-ds-F CGCCGCACCCCATCCACCGC  

mexF-ds-R GTAAAAATT-ACTAGT-GTTTTCCGTCCAACCTGCC SpeI 

Atu5152-us-F GTAAAAATT-GGATCC-AGCCATTGGGATTGATGTCG BamHI 

Atu5152-us-R CCACGTCAAAGGAGGGCGTC-ATTCCCGACCGCACTTGGTG  

Atu5152-ds-F CACCAAGTGCGGTCGGGAAT-GACGCCCTCCTTTGACGTGG  

Atu5152-ds-R GTAAAAATT-ACTAGT-CGTAGTGGTCATTGAGCTTGG SpeI 

Atu5305-us-F TGCAGACCAATGTCGAATTC EcoRI 

Atu5305-us-R GCATCCAACGGATCCACAT-GAGCCGCGACCGTCTTGC  

Atu5305-ds-F ATGTGGATCCGTTGGATGC  

Atu5305-ds-R GTAAAAATT-ACTAGT-GTAACGGTTGCGGCACATAG SpeI 

Atu4581-us-F GTAAAAATT-GGATCC-CACGGAAAACGGCGTCAAC BamHI 

Atu4581-us-R GGGAGAGAAAATCCCTAGTTGAG-ACCGCCATCGATCAGCCTG  

Atu4581-ds-F CTCAACTAGGGATTTTCTCTCCC  

Atu4581-ds-R GTAAAAATT-ACTAGT-CCCGCGCCACAATATTTTC SpeI 

Atu4582-us-F GTAAAAATT-GGATCC-TGTCCGAGGAGACGCTGAAG BamHI 

Atu4582-us-R ATGAGACATGCAGTGCCGGG-GGGGATGCTCAAATGGAGTTG  

Atu4582-ds-F CCCGGCACTGCATGTCTCAT  

Atu4582-ds-R GTAAAAATT-ACTAGT-GCCGCCTTTCTAAATGTCCG SpeI 

Atu4741-us-F GTAAAAATT-GGATCC-GAACTGCTGGAAGAAAACCG BamHI 

Atu4741-us-R CTGTGGCATATGCCTCACCT-AAACCACCGGCTCTAGACAG  

Atu4741-ds-F AGGTGAGGCATATGCCACAG  

Atu4741-ds-R GTAAAAATT-ACTAGT-CACAGGCATAAACGGCAACG SpeI 

Atu4742-us-F GTAAAAATT-GAATTC-ATTTCCAACAACAGGCACGG EcoRI 

Atu4742-us-R CGACTGAACTTCCGCTGCCA-CGTTATTCCGTTGCAATGG  

Atu4742-ds-F TGGCAGCGGAAGTTCAGTCG  

Atu4742-ds-R GTAAAAATT-ACTAGT-CATGTTCTGGCTCGTCTTCAG SpeI 

CyoABCD-us-F GTAAAAATT-GGATCC-CGATCTGGAGGAAGATCAGC BamHI 

CyoABCD-us-R GCCGCTGATTTATCGCTGC-GACGACCAGATTGCAGCCGC  

CyoABCD-ds-F GCAGCGATAAATCAGCGGC  

CyoABCD-ds-R GTAAAAATT-ACTAGT-GGTTCTAAGGAAAAGCCCACC SpeI 

pSRK-actR-F GTAAAAATT-CAT-ATGAAGATTGAAGACCAGACCC NdeI 

pSRK-actR-R GTAAAAATT-GCTAGC-TCACTTCGGAGCGCGTTTC NheI 

pSRK-soxR-F GTAAAAATT-CAT-ATGGAAAATACCATCTTCAAACAC NdeI 

pSRK-soxR-R GTAAAAATT-GCTAGC-TTATTCAGCGGAGACGAGG NheI 

Cyo-pSRK-Gib-F GAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCATATGAACCCTT
CGGGCGAC 

Used with 
NdeI/NheI-
cut pSRKKm 

surf1-pSRK-Gib-R CCTGAACCGACGACCGGGTCGAATTTGCTTTCGAATTGTCAATCAGCATCC
CGTTTCG 

Used with 
NdeI/NheI-
cut pSRKKm 

pSRK-Cyd-F GTAAAAATT-CAT-ATGCTGCCGGCGCTGCTCTG NdeI 
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pSRK-Atu8036-R GTAAAAATT-GCTAGC-TCATTTTTCCGGCTTCGCTTCG NheI 

soxR-qpcr-F CTGTCGGTGGGGGATGTTG  

soxR-qpcr-R GATGATAACGACGCTGGTTGC  

sodBII-qpcr-F CTTCTGGGAGATCATGGGGC  

sodBII-qpcr-R CGAGGGCGAAATTCTGCTTG  

Atu0942-qpcr-F GCGGGTTTTTATAGCTGGGC  

Atu0942-qpcr-R AGATGAGGCAGCACAGAAGC  

Atu2361-qpcr-F TTTTACACCATCCCCTCGCA  

Atu2361-qpcr-R CTGCCAGATTGAAGATGCCG  

mexE-qpcr-F CGCTGGTGAAGGAAGGTGAC  

mexE-qpcr-R CACGGTCGAGTTCCGTCTTT  

mexF-qpcr-F ACCGACGCCTATGACATCAC  

mexF-qpcr-R TAATCACCTGCGCCGAAGAC  

Atu5152-qpcr-F GGTTGGAGCCGTATTGTTGC  

Atu5152-qpcr-R CCACAGAATGAAACCCAGCG  

Atu5305-qpcr-F CCATAGCGAGCCCAAATCCA  

Atu5305-qpcr-R AGTCACCTCAGTCTCGTTGC  

Atu4741-qpcr-F GAAGCCACGGAAAATCGTCG  

Atu4741-qpcr-R CATCTCACCGTCCCCTGAAC  

Atu4742-qpcr-F CCATCAGGCAGAATCCCGAC  

Atu4742-qpcr-R CACTGCCACGCCTTCTATCC  

CyoA-qpcr-F GAGATGCCGTCGTAGACACC  

CyoA-qpcr-R AACTCCTTCTTCGTTCCCGC  

CydA-qpcr-F CGAAGCAATGTGGGAAACCG  

CydA-qpcr-R TTTGCGTATCAAGCGAACGG  

Atu4316-qpcr-F TGGCATAAACGCCGATGACT  

Atu4316-qpcr-R CCAGATCATCACGCTCTCCC  

Atu1475-qpcr-F AACGCCTGAACCCGATTTTG  

Atu1475-qpcr-R GTCCGTATGGAACGTCGTGA  

Atu4895-qpcr-F GGGCTCACTGCAAAACCAAC  

Atu4895-qpcr-R TCCCAAATGCCAAGAGCGAC  

 
Table S8: Strains and plasmids used in this study. All A. tumefaciens mutants were constructed from the NT1 
parent strain. 
 

Strain/Plasmid Notes Reference/Source 

E. coli   

DH10b Cloning strain Invitrogen 

b2155 ∆dapA::erm (Ermr) pir::RP4 [::kan (Kmr) from SM10] (Dehio and Meyer, 
1997) 
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A. tumefaciens   

NT1 non-pathogenic derivative of strain C58; carries pDCI41E33 
(plasmid with traG::lacZ fusion) 

(Watson et al., 1975; 
Shaw et al., 1997) 

soxR mariner transposon insertion in soxR This study 

actS mariner transposon insertion in actS This study 

rpoH mariner transposon insertion in rpoH This study 

Atu1426 mariner transposon insertion in Atu1426 This study 

Atu3738 mariner transposon insertion in Atu3738 This study 

pykA mariner transposon insertion in pykA This study 

Atu2584 mariner transposon insertion in Atu2584 This study 

Atu2590 mariner transposon insertion in Atu2590 This study 

Atu2591 mariner transposon insertion in Atu2591  This study 

Atu2592 mariner transposon insertion in Atu2592  This study 

Atu2577-1 mariner transposon insertion in Atu2577  This study 

Atu2577-2 mariner transposon insertion in Atu2577 This study 

∆soxR clean deletion of soxR coding sequence This study 

∆actS clean deletion of actS coding sequence This study 

∆actR clean deletion of actR coding sequence This study 

∆actR/∆soxR clean deletion of actR and soxR coding sequences This study 

∆sodBI clean deletion of sodBI coding sequence This study 

∆sodBII clean deletion of sodBII coding sequence This study 

∆sodBI/∆sodBII clean deletion of sodBI and sodBII coding sequences This study 

∆soxR/∆sodBI clean deletion of soxR and sodBI coding sequences This study 

∆Atu0942 clean deletion of Atu0942 coding sequence This study 

∆Atu2361 clean deletion of Atu2361 coding sequence This study 

∆mexF clean deletion of mexF coding sequence This study 

∆Atu5152 clean deletion of Atu5152 coding sequence This study 

∆Atu5305 clean deletion of Atu5305 coding sequence This study 

∆Atu4581 clean deletion of Atu4581 coding sequence This study 

∆Atu4582 clean deletion of Atu4582 coding sequence This study 

∆Atu4741 clean deletion of Atu4741 coding sequence This study 

∆Atu4742 clean deletion of Atu4742 coding sequence This study 

∆cyo clean deletion of cytochrome o oxidase biosynthesis operon This study 

Plasmid   

pSC189 R6K suicide plasmid carrying mariner transposon with hyperactive 
transposase; ApR KmR 

(Chiang and Rubin, 
2002) 

pNPTS138 ColE1 suicide plasmid; sacB; KmR Constructed by M.R.K. 
Alley; gift of C. Fuqua 

pNPTS138::soxRdel pNPTS138 carrying flanking regions of soxR for clean deletion  This study 

pNPTS138::actSdel pNPTS138 carrying flanking regions of actS for clean deletion  This study 

pNPTS138::actRdel pNPTS138 carrying flanking regions of actR for clean deletion  This study 
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pNPTS138::sodBIdel pNPTS138 carrying flanking regions of sodBI for clean deletion  This study 

pNPTS138::sodBIIdel pNPTS138 carrying flanking regions of sodBII for clean deletion  This study 

pNPTS138::Atu0942del pNPTS138 carrying flanking regions of Atu0942 for clean deletion  This study 

pNPTS138::Atu2361del pNPTS138 carrying flanking regions of Atu2361 for clean deletion  This study 

pNPTS138::mexFdel pNPTS138 carrying flanking regions of mexF for clean deletion  This study 

pNPTS138::Atu5152del pNPTS138 carrying flanking regions of Atu5152 for clean deletion  This study 

pNPTS138::Atu5305del pNPTS138 carrying flanking regions of Atu5305 for clean deletion  This study 

pNPTS138::Atu4581del pNPTS138 carrying flanking regions of Atu4581 for clean deletion  This study 

pNPTS138::Atu4582del pNPTS138 carrying flanking regions of Atu4582 for clean deletion  This study 

pNPTS138::Atu4741del pNPTS138 carrying flanking regions of Atu4741 for clean deletion  This study 

pNPTS138::Atu4742del pNPTS138 carrying flanking regions of Atu4742 for clean deletion  This study 

pNPTS138::cyoABCDdel pNPTS138 carrying flanking regions of cyoABCD for clean deletion  This study 

pLacZ alias for pSRKKm; broad host range Plac vector; lacIQ; KmR (Khan et al., 2008) 

pActR pSRKKm carrying Plac-actR This study 

pSoxR pSRKKm carrying Plac-soxR This study 

pCyo pSRKKm carrying Plac-cyoABCD-surf1 (surf1 is co-transcribed with 
the other cyo genes) This study 

pCyd pSRKKm carrying Plac-cydDCAB-Atu8036 (Atu8036 is co-
transcribed with the other cyd genes) This study 
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C h a p t e r  3  

PHENAZINE-MEDIATED COLLATERAL RESILIENCE TO CLINICAL 
ANTIBIOTICS IN OPPORTUNISTIC PATHOGENS 

This chapter is adapted from: 

Meirelles, L.A.*, Perry, E.K.*, Bergkessel, M, and Newman, DK. (2021) Bacterial defenses against 

a natural antibiotic promote collateral resilience to clinical antibiotics. PLoS Biol 19: e300193. 

Abstract 

Bacterial opportunistic human pathogens frequently exhibit intrinsic antibiotic tolerance and 

resistance, resulting in infections that can be nearly impossible to eradicate. We asked whether this 

recalcitrance could be driven by these organisms’ evolutionary history as environmental microbes 

that engage in chemical warfare. Using Pseudomonas aeruginosa as a model, we demonstrate that 

the self-produced antibiotic pyocyanin activates defenses that confer collateral tolerance specifically 

to structurally-similar synthetic clinical antibiotics. Non-pyocyanin-producing opportunistic 

pathogens, such as members of the Burkholderia cepacia complex, likewise display elevated 

antibiotic tolerance when co-cultured with pyocyanin-producing strains. Furthermore, by widening 

the population bottleneck that occurs during antibiotic selection and promoting the establishment of 

a more diverse range of mutant lineages, pyocyanin increases apparent rates of mutation to antibiotic 

resistance to a degree that can rival clinically-relevant hypermutator strains. Together, these results 

reveal an overlooked mechanism by which opportunistic pathogens that produce natural toxins can 

dramatically modulate the efficacy of clinical antibiotics and the evolution of antibiotic resistance, 

both for themselves and other members of clinically-relevant polymicrobial communities. 

Introduction 

The emergence and spread of bacterial resistance to clinical antibiotics is a growing public 

health concern worldwide (Fair and Tor, 2014). Moreover, it is increasingly appreciated that 

antibiotic tolerance can also contribute to the failure of treatments for infections (Brauner et al., 

2016) and that tolerance can lead to the evolution of resistance (Levin-Reisman et al., 2017; Windels 
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et al., 2019). Yet bacterial resilience to antibiotics is anything but new: microbes in environments 

like soil have been producing natural antibiotics and evolving mechanisms of tolerance and 

resistance for millions of years (Martinez, 2009; Davies and Davies, 2010). Here, we define tolerance 

as the ability to survive a transient exposure to an otherwise lethal antibiotic concentration, and 

resistance as the ability to grow in the presence of an antibiotic, similar to recent recommendations 

(Kester and Fortune, 2014; Brauner et al., 2016; Balaban et al., 2019).  

Considering that most of the antibiotics used today are derived from microbially-produced 

molecules, we hypothesized that molecular defenses that originally evolved to protect cells from a 

natural antibiotic in the environment might also promote tolerance and/or resistance to structurally- 

or mechanistically-similar clinical drugs. Indeed, several clinical antibiotic resistance genes are 

thought to have originated in non-pathogenic soil bacteria, but it has often been assumed that 

intermediate steps of horizontal gene transfer are necessary in order for such genes to be acquired by 

human pathogens (Davies and Davies, 2010). In this study, we asked whether there could be a direct 

link between production of natural antibiotics by an opportunistic human pathogen and its 

recalcitrance to clinical antibiotic treatment due to shared protective mechanisms. In addition, we 

sought to determine whether in the presence of such a natural antibiotic producer, recalcitrance to 

clinical antibiotics could also be observed in other opportunistic pathogens found together with it in 

polymicrobial infections. Given that many opportunistic pathogens share their natural environment 

(e.g. soil), we posited that the evolutionary legacy of natural-antibiotic-mediated ecological 

interactions between these microbial species could have important implications for antibiotic 

tolerance and resistance in the clinical context. 

One organism that is well-suited to testing these hypotheses is the opportunistic pathogen 

Pseudomonas aeruginosa, which is notorious for causing chronic lung infections in cystic fibrosis 

(CF) patients, as well as other types of infections in immunocompromised hosts (Driscoll et al., 

2007). P. aeruginosa produces several redox-active, heterocyclic compounds known as phenazines 

(Laursen and Nielsen, 2004). Phenazines have been shown to provide multiple benefits for their 

producers, including by:  (i) serving as an alternative electron acceptor in the absence of oxygen, 

thereby promoting redox homeostasis and anaerobic survival (Glasser et al., 2014), which is 

particularly relevant for oxidant-limited biofilms (Saunders et al., 2020); (ii) acting as signaling 

molecules (Dietrich et al., 2006); (iii) promoting iron acquisition (Wang et al., 2011); and (iv) killing 
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competitor species (Korgaonkar et al., 2013). In addition, despite possessing broad-spectrum 

antimicrobial activity (Laursen and Nielsen, 2004), including against P. aeruginosa itself (Meirelles 

and Newman, 2018), phenazines have recently been shown to promote tolerance to clinical 

antibiotics under some circumstances, via mechanisms that have yet to be characterized (Schiessl et 

al., 2019; Zhu et al., 2019). Here, we sought to assess potential broader implications of this 

phenomenon by investigating whether phenazine-mediated tolerance to clinical antibiotics in P. 

aeruginosa is driven by cellular defenses that evolved to mitigate self-induced toxicity. We also 

tested whether phenazine production by P. aeruginosa could promote antibiotic tolerance in other 

clinically-relevant opportunistic pathogens from the Burkholderia and Stenotrophomonas genera. 

Finally, we explored the ramifications of phenazine-induced tolerance for the evolution of heritable 

antibiotic resistance, both in P. aeruginosa and in a clinical isolate from the Burkholderia cepacia 

complex. 

Results 

Mechanisms of tolerance to the self-produced natural antibiotic PYO in P. aeruginosa 

We started by characterizing the defense mechanisms P. aeruginosa has evolved to tolerate 

its most toxic self-produced phenazine, pyocyanin (PYO) (Laursen and Nielsen, 2004; Meirelles and 

Newman, 2018). To do so in an unbiased fashion, we performed a genome-wide transposon 

sequencing (Tn-seq) screen in which the mutant library was exposed to PYO under starvation to 

maximize PYO toxicity (Meirelles and Newman, 2018), and tolerance of the pooled mutants to PYO 

was assessed following re-growth (Fig. 1A). This revealed five broad categories of genes that 

significantly affect tolerance to PYO: (i) efflux system repressors, (ii) protein damage responses, (iii) 

membrane or cell wall biosynthesis, (iv) oxidative stress responses, and (v) carbon metabolism and 

transport (Fig. 1B). We validated the screen results by constructing and testing chromosomal clean 

deletion mutants for four of these genes (Fig. 1C). 

The fitness effects of different transposon insertions largely aligned with what is thought to 

be the primary mode of PYO toxicity, which is the generation of reactive oxygen species (ROS)  
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(Muller, 2002; Rada and Leto, 2013). For example, the fact that transposon insertions in different 

genes within the “carbon metabolism and transport” category had opposite effects on fitness likely 

reflects conflicting priorities for cells challenged with ROS-generating toxins: on one hand, limiting 

flux through the electron transport chain decreases the potential for ROS generation, but on the other 

Figure 1 (see next page for legend). 
A. Genome-wide transposon sequencing (Tn-seq) experimental design. Cells were incubated with and 
without PYO under nutrient starvation for maximum PYO toxicity (Meirelles and Newman, 2018) (see 
Methods for details). Bar graphs shown are hypothetical representations of the expected results for genes 
with different fitness effects and are not derived from the obtained data.  
B. Statistically-significant fitness effects of transposon insertions in different representative genes under 
conditions that maximize PYO toxicity (for full dataset, see S1 Table). (continued on next page)  
See Methods for details on calculation of fitness. Asterisks show genes for which chromosomal clean deletion 
mutants were constructed and validated.  
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hand, proton-motive force is required to pump the toxin out, and NADH is needed to power 

reductases involved in repair of oxidative damage. The need to counteract oxidative stress would 

also explain why transposon insertions in genes related to protein damage repair and glutathione 

synthesis or reduction led to decreased fitness in the presence of PYO (Fig. 1B). Finally, for genes 

related to cell wall/membrane synthesis, the transposon insertions may have altered cellular 

permeability and thereby either increased or decreased PYO influx. 

However, the strongest hits in our Tn-seq were transposon insertions in transcriptional 

repressors of resistance-nodulation-division (RND) efflux system genes (Fig. 1B, S1 Table), which 

would cause overexpression of the downstream efflux pumps. These insertions dramatically 

increased fitness in the presence of PYO, suggesting that one of the most effective defenses against 

PYO toxicity is to decrease the intracellular concentration of the toxin. While transposon insertions 

in the genes encoding the efflux pump proteins themselves did not have strong effects in our screen 

(S1 Table), this is likely due to partial functional redundancy among the various efflux systems 

(Lister et al., 2009). Indeed, when we challenged starved P. aeruginosa with PYO in the presence 

of the broad-spectrum RND efflux inhibitor phenylalanine-arginine β-naphthylamide (PAβN), cell 

death was accelerated, confirming that efflux pumps are necessary for minimizing PYO toxicity 

(Fig. 1D).  

Figure 1: Mechanisms of tolerance to the self-produced natural antibiotic PYO in P. aeruginosa.  
A. Genome-wide transposon sequencing (Tn-seq) experimental design. Cells were incubated with and 
without PYO under nutrient starvation for maximum PYO toxicity (Meirelles and Newman, 2018) (see 
Methods for details). Bar graphs shown are hypothetical representations of the expected results for genes 
with different fitness effects and are not derived from the obtained data.  
B. Statistically-significant fitness effects of transposon insertions in different representative genes under 
conditions that maximize PYO toxicity (for full dataset, see S1 Table).  
See Methods for details on calculation of fitness. Asterisks show genes for which chromosomal clean deletion 
mutants were constructed and validated.  
C. Tn-seq validations. Chromosomal clean deletion mutants were exposed to PYO under carbon starvation, 
similar to the conditions used for the Tn-seq experiment. Survival of each strain was measured by colony 
forming units (CFUs) and compared to the survival of the parent ∆phz strain for fitness calculation (see 
Methods for details). Statistical significance was calculated using one-way ANOVA with Tukey’s HSD 
multiple-comparison test, with asterisks showing significant differences relative to ∆phz (*** p < 0.001). 
Data points represent independent replicates and black horizontal lines mark the mean fitness for each strain. 
D. Tolerance to PYO toxicity in the presence and absence of the efflux inhibitor PAβN. Each data point 
represents an independent biological replicate (n = 4), and the horizontal black lines mark the mean survival 
for each condition and time point.  
E. Fitness correlation analysis between PYO tolerance Tn-seq (this study) and CIP persistence Tn-seq 
(Cameron et al., 2018). Efflux repressors present in both datasets are highlighted in green. For full analysis, 
see S1 Table.  
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Mutations in the efflux system repressors identified in our Tn-seq screen are commonly 

found in clinical isolates that are resistant to synthetic fluoroquinolone antibiotics, as the efflux 

systems regulated by these repressors efficiently export this class of drugs (Llanes et al., 2004; Sobel 

et al., 2005). We therefore asked whether the mechanisms used by P. aeruginosa to tolerate PYO 

toxicity might overlap more broadly with those that confer tolerance to fluoroquinolones. To address 

this question, we compared our dataset to a recent Tn-seq study that screened for genes that affect 

P. aeruginosa survival in the presence of the broad-spectrum fluoroquinolone ciprofloxacin 

(Cameron et al., 2018). Across the two datasets, we observed similar fitness effects for insertions in 

a small number of genes within the “protein damage response,” “membrane/cell wall,” and 

“oxidative stress response” categories, but the most dramatic fitness increases in both experiments 

were caused by insertions in a shared set of efflux system repressors (Fig. 1E, S1 Table). These 

results highlighted the potential for a conserved molecular route to increased tolerance against both 

a natural antibiotic, PYO, and a synthetic clinical antibiotic, ciprofloxacin.  

PYO induces expression of specific efflux systems, conferring cross-tolerance to fluoroquinolones 

Given that cellular processes involved in PYO tolerance have also been implicated in 

ciprofloxacin tolerance, we asked whether exposure to PYO could promote an increase in tolerance 

to ciprofloxacin and related clinical antibiotics, including other synthetic fluoroquinolones. 

Importantly, such an effect would require that PYO induces the expression of shared defense 

mechanisms. We have previously established that PYO upregulates expression of not only the 

oxidative stress response genes ahpB (a thiol-specific peroxidase) and katB (a catalase) (Meirelles 

and Newman, 2018), but also at least two efflux systems known to pump fluoroquinolones, mexEF-

oprN and mexGHI-opmD (Dietrich et al., 2006; Meirelles and Newman, 2018). We confirmed these 

expression patterns by performing qRT-PCR on the WT strain that produces PYO, a ∆phz mutant 

that does not produce PYO, and ∆phz treated with exogenous PYO (S1, S2 and S3 Figs). Notably, 

phenazines and fluoroquinolones both contain at least one aromatic ring, unlike other antibiotics that 

are not thought to be pumped by mexEF-oprN and mexGHI-opmD, such as aminoglycosides (Lister 

et al., 2009) (Fig. 2A). Thus, structural similarities could account for why efflux pumps that likely 

evolved to export natural antibiotics such as PYO can also transport certain classes of synthetic 

antibiotics. To determine whether PYO also induces other efflux systems known to pump clinical 

antibiotics besides fluoroquinolones, we performed qRT-PCR on representative genes from all 11 
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major RND efflux systems in the P. aeruginosa genome. These measurements confirmed that 

mexEF-oprN and mexGHI-opmD are the only two efflux systems significantly induced by PYO, and 

that the induction is PYO dose-dependent (Fig. 2B, S2 and S3 Fig). The mexGHI-opmD system in 

Figure 2 (see next page for legend). 
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particular reached expression levels comparable to the constitutively-expressed mexAB-oprM efflux 

system (Fig. 2B, S2 Fig), which plays an important role in the intrinsic antibiotic tolerance and 

resistance of P. aeruginosa (Lister et al., 2009). 

To assess whether the induction of efflux pumps and oxidative stress responses by PYO 

could increase the tolerance of P. aeruginosa to clinical drugs such as ciprofloxacin, we grew 

cultures with or without clinically-relevant concentrations of PYO (Wilson et al., 1988) and 

performed a survival assay following treatment with different antibiotics. Importantly, we 

hypothesized that PYO would not be a universal antagonist to all clinical antibiotics. Instead, we 

Figure 2: PYO induces expression of specific efflux systems, conferring cross-tolerance to 
fluoroquinolones.  
A. Structures of PYO, two representative fluoroquinolones (CIP = ciprofloxacin, LVX = levofloxacin) and two 
representative aminoglycosides (GEN = gentamicin, TOB = tobramycin). PYO and fluoroquinolones are 
pumped by MexEF-OprN and MexGHI-OpmD, while aminoglycosides are not (Llanes et al., 2004; Lister et al., 
2009). Rings with an aromatic character are highlighted in red.  
B. Normalized cDNA levels for genes within operons coding for the 11 main RND efflux systems in                           
P. aeruginosa (left; n = 3), and PYO-dose-dependent changes in expression of mexEF-oprN and mexGHI-opmD 
systems (right; n = 3). For full qRT-PCR dataset, see S1, S2 and S3 Figs.  
C. Effect of PYO on tolerance to CIP (1 µg/mL), LVX (1 µg/mL) and CST (colistin, 16 µg/mL) in glucose 
minimal medium (n = 4).  
D. Effect of PYO on tolerance to CIP (1 µg/mL) and TOB (40 µg/mL) in SCFM (n = 4). PYO itself was not 
toxic under the experimental conditions (Meirelles and Newman, 2018) (S4C Fig). WT made 50-80 µM PYO 
as measured by absorbance of the culture supernatant at 691 nm. See S5A Fig. for experimental design. (E) 
Effect on tolerance to CIP (1 µg/mL) caused by the presence of the four main phenazines produced by                     
P. aeruginosa (PYO = pyocyanin, PCA = phenazine-1-carboxylic acid, PCN = phenazine-1-carboxamide and 
1-OH-PHZ = 1-hydroxyphenazine) (n = 4). For this experiment, a ∆phz* strain that cannot produce or modify 
any phenazine was used (see Methods).  
F-G. Effect of PYO on lag during outgrowth after exposure to CIP. A representative field of view over different 
time points (F; magenta = WT::mApple, green = ∆phz::GFP) is shown together with the quantification of growth 
area on the agarose pads at time 0 hrs and 15 hrs (G). For these experiments, a culture of each strain tested was 
grown and exposed to CIP (10 µg/mL) separately, then cells of both cultures were washed, mixed and placed 
together on a pad and imaged during outgrowth. The pads did not contain any PYO or CIP (see Methods and 
S5D Fig. for details). White arrows in the displayed images point to regions with faster recovery of WT growth. 
The field of view displayed is marked with a black arrow in the quantification plot. The results for the experiment 
with swapped fluorescent proteins are shown in S4E Fig. See S4C Fig. for complementary data about effects of 
PYO on lag. Scale bar: 20 µm.  
H. Tolerance of ∆phz to CIP (1 µg/mL) in stationary phase in the presence of different concentrations of PYO           
(n = 4).  
I. Tolerance of ∆phz to CIP (1 µg/mL) upon artificial induction of the mexGHI-opmD operon with arabinose                
(n = 4). The dashed green line marks the average survival of PYO-producing WT under similar conditions 
(without arabinose).  
Statistics: C, D, E, H – One-way ANOVA with Tukey’s HSD multiple-comparison test, with asterisks showing 
significant differences relative to untreated ∆phz (no PYO); G, I – Welch’s unpaired t-test (* p < 0.05,                      
** p < 0.01, *** p < 0.001, n.s. p > 0.05). In all panels with quantitative data, black horizontal lines mark the 
mean value for each condition. Individual data points represent independent biological replicates, except for in 
panel G, where the data points represent different fields of view. 
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expected tolerance to increase only for drugs affected by the defense mechanisms induced by PYO 

in the cells. Indeed, compared to the non-PYO-producing ∆phz mutant, the PYO-producing WT 

strain and PYO-treated ∆phz were more tolerant to both ciprofloxacin and another fluoroquinolone, 

levofloxacin (Fig. 2C). On the other hand, PYO did not confer increased tolerance to: (i) 

aminoglycosides (Fig. 2D, S4B Fig), which are not substrates for the efflux pumps upregulated by 

PYO (Lister et al., 2009); or (ii) colistin (polymyxin E) (Fig. 2C), an antimicrobial peptide that 

permeabilizes the outer membrane of the cell by interacting with the lipopolysaccharide and causing 

displacement of divalent cations (Fair and Tor, 2014). Similar to aminoglycosides, colistin is not 

known to be pumped by the PYO-induced efflux systems (Lister et al., 2009); moreover, efflux 

rarely impacts polymyxin efficacy (Olaitan et al., 2014). PYO itself was not toxic under the 

experimental conditions used in our tolerance assays (Meirelles and Newman, 2018) (S4C Fig). 

Aside from PYO, 1-hydroxyphenazine was the only other phenazine made by P. aeruginosa that 

increased tolerance to ciprofloxacin under our conditions, albeit to a lesser extent than PYO (Fig. 

2E). We also tested whether the presence of PYO could affect the minimum inhibitory concentration 

(MIC) for ciprofloxacin, as the classical definition of antibiotic tolerance also stipulates that 

increased survival in the presence of an antibiotic is not accompanied by an increase in MIC (Brauner 

et al., 2016; Balaban et al., 2019). When we determined the MIC for ciprofloxacin according to 

standard clinical protocols (Determination of minimum inhibitory concentrations (MICs) of 

antibacterial agents by broth dilution, 2003) for our P. aeruginosa strain in the presence or absence 

of PYO, we saw no consistent difference at a detection limit of a two-fold increase in MIC (S7 

Table), supporting the interpretation that the effect of PYO on P. aeruginosa is primarily an increase 

in antibiotic tolerance (i.e. survival without the ability to grow) rather than phenotypic resistance. 

Importantly, PYO also induced ciprofloxacin tolerance when P. aeruginosa was grown in synthetic 

cystic fibrosis sputum medium (SCFM) (Fig. 2D), suggesting that PYO production could contribute 

to antibiotic tolerance of this bacterium in CF patients. Together, these results indicate that PYO 

preferentially induces tolerance to fluoroquinolones. 

Under in vitro conditions, PYO is typically produced in early stationary phase (Dietrich et 

al., 2006). However, the heterogeneous nature of physiological conditions in infections (Kopf et al., 

2016; Winstanley et al., 2016) could lead to intermixing of PYO-producing and -non-producing cells 

in vivo. We therefore tested whether exogenous PYO could increase the fluoroquinolone tolerance 
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of cells harvested during log phase, which did not make PYO. To limit the growth of the no-antibiotic 

control, we exposed these cells to the antibiotics under nitrogen depletion. PYO still increased 

tolerance to both ciprofloxacin and levofloxacin under these conditions, suggesting that the induced 

tolerance phenotype does not depend on the previous growth phase of growth-arrested cells 

(Meirelles and Newman, 2018) (S4B Fig). Next, to visualize the recovery of cell growth after a 

transient exposure to ciprofloxacin, we performed a time-lapse microscopy assay (S4D Fig). 

Interestingly, WT P. aeruginosa and PYO-treated ∆phz exhibited a shorter lag phase compared to 

non-PYO-treated ∆phz following ciprofloxacin treatment (Fig. 2F-G and S4E-F Fig), suggesting that 

PYO-induced defenses may help minimize cellular damage during the antibiotic treatment. We also 

found that addition of PYO to ∆phz increased ciprofloxacin tolerance in a dose-dependent manner 

(Fig. 2H), mirroring the dose-dependent induction of mexEF-oprN and mexGHI-opmD (Fig. 2B). 

Given that PYO-induced efflux pumps transport specific substrates (Lister et al., 2009), we 

asked if increased drug efflux could be the primary mechanism underlying PYO-mediated tolerance 

to fluoroquinolones. At high concentrations of ciprofloxacin, addition of the efflux inhibitor PAβN 

eliminated the survival advantage of PYO-treated cells, indicating that efflux pump activity is 

necessary for the PYO-mediated increase in antibiotic tolerance (S4G Fig). Next, we constructed a 

∆phz strain with the mexGHI-opmD operon under the control of an arabinose-inducible promoter 

(Para:mexGHI-opmD). We verified that the transcription levels of mexGHI-opmD under arabinose 

induction were comparable to when PYO is present (S5 Fig). Indeed, arabinose induction of 

mexGHI-opmD expression increased ciprofloxacin tolerance to near-WT levels (Fig. 2I), suggesting 

that induction of this efflux system is sufficient to confer the PYO-mediated increase in tolerance. 

On the other hand, arabinose induction of the oxidative stress response genes ahpB or katB did not 

significantly increase tolerance of ∆phz to ciprofloxacin (S6A-B Fig); however, the levels of 

induction achieved for these two genes with arabinose were lower than those observed in the 

presence of PYO (S1 and S5 Figs). Importantly, the clinical relevance of mexGHI-opmD was 

previously not well known, as to our knowledge, there have been no reports of clinical mutants with 

constitutive overexpression of this efflux system. Taken together, our results demonstrate that PYO-

mediated regulation of mexGHI-opmD expression modulates tolerance to a particular class of 

clinically used antibiotics in P. aeruginosa. 
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PYO promotes the evolution of antibiotic resistance in P. aeruginosa 

Previous studies have demonstrated that mutations conferring antibiotic tolerance or 

persistence promote the evolution of antibiotic resistance (Levin-Reisman et al., 2017; Windels et 

al., 2019). Moreover, tolerance mutations can (i) interact synergistically with resistance mutations 

to increase bacterial survival during antibiotic treatment (Levin-Reisman et al., 2019) and (ii) 

promote the establishment of resistance mutations during combination drug therapy (Liu et al., 

2020). To assess whether antibiotic tolerance induced by PYO could similarly promote the 

establishment of resistance mutations in populations of P. aeruginosa undergoing extended exposure 

to a clinical antibiotic, we next performed a series of fluctuation tests (Fig. 3A). In clinical settings, 

antibiotic resistance is likely to result in treatment failure if a pathogen can grow at antibiotic 

concentrations above a threshold commonly referred to as a “breakpoint.” We adopted this criterion 

by selecting mutants on antibiotic concentrations equal to or higher than the breakpoints defined by 

the European Committee on Antimicrobial Susceptibility Testing (EUCAST) (EUCAST, 2020). 

Furthermore, we added PYO to our cultures either prior to the antibiotic selection step and/or 

concurrently with the antibiotic selection, in order to distinguish between the effects of preemptive 

versus continuous induction of PYO-regulated cellular defenses. Finally, while mutation rates 

inferred from fluctuation tests have sometimes been assumed to correlate with the per-base mutation 

rate across the genome (Bridges, 1980; Kohanski et al., 2010), the results from these assays are also 

affected by the number of unique possible mutations that permit growth under the selection condition 

(Luria and Delbrück, 1943). To encompass both possibilities in this study, we use the term µapp 

(apparent rate of mutation) as a proxy for the likelihood of evolving antibiotic resistance. We 

calculated this parameter using standard methods for fluctuation test analysis (see Methods).  

Regardless of whether PYO was added prior to or concurrently with the antibiotic selection, 

PYO significantly increased µapp for resistance to ciprofloxacin in log-phase cultures (Fig. 3B, S2 

and S3 Table). The same trends were also observed in stationary-phase cultures, albeit with smaller 

effect sizes (S7A Fig). These results indicate that pre-treatment with PYO is sufficient but not 

necessary to increase µapp for ciprofloxacin resistance. Adding PYO at both stages of the fluctuation 

test generally resulted in an even greater increase in µapp (Fig. 3B, S7A Fig), and the increase in µapp 

when PYO was added prior to antibiotic selection was dose-dependent (Fig. 3C). Cultures that were 

selected on levofloxacin similarly displayed an increased µapp upon PYO treatment, though the 
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impact of pre-treatment vs. co-treatment with PYO varied across biological replicates (Fig. 3B, S2 

and S3 Table). More importantly, PYO significantly increased µapp for cultures that were grown in 

liquid SCFM and selected on SCFM plates containing ciprofloxacin (Fig. 3D, S3 Table), suggesting 

that PYO produced by P. aeruginosa could promote mutation to antibiotic resistance in chronically 

infected lungs of CF patients (Palmer et al., 2007).  

Because PYO did not increase tolerance to aminoglycosides (Fig. 2D, S4B Fig), we 

hypothesized that PYO would not promote mutation to aminoglycoside resistance if the induction 

of shared defense mechanisms was required for the observed increases in µapp. On the other hand, if 

PYO affected µapp primarily by acting as a mutagen, pre-treatment with PYO before antibiotic 

selection would be expected to increase µapp by a similar proportion for resistance to all classes of 

antibiotics. To differentiate between these modes of action, we repeated the fluctuation tests using 

gentamicin and tobramycin, representative members of the aminoglycoside class that disrupt protein 

translation (Fair and Tor, 2014). Cultures that were pre-exposed to PYO consistently exhibited 

significant increases in µapp for gentamicin resistance (Fig. 3E, S2 and S3 Table). For tobramycin 

resistance, on the other hand, pre-treatment with PYO only significantly increased µapp in one out of 

four biological replicates (Fig. 3E, S2 and S3 Table). In addition, for both aminoglycosides, adding 

PYO to the antibiotic selection plates had no effect on µapp in most replicates (Fig. 3E, S2 and S3 

Table). These differing responses to PYO depending on the choice of clinical antibiotic suggested 

that the observed changes in µapp were related to PYO-induced cellular defenses more so than a 

mutagenic effect of PYO. In fact, previous studies have suggested that gentamicin generates ROS 

more readily than tobramycin (Smith et al., 1980; Prayle et al., 2010). This could account for why 

the effect of pre-exposure to PYO on µapp for resistance was greater for gentamicin than for 

tobramycin, given that PYO primes cells to detoxify ROS by inducing oxidative stress responses (S1 

Fig). For resistance to fluoroquinolones, on the other hand, simultaneous induction of multiple 

defenses is likely necessary to recapitulate the increases in µapp upon exposure to PYO. 

Overexpression of individual oxidative stress genes induced by PYO did not increase µapp for 

ciprofloxacin resistance, while overexpression of the mexGHI-opmD efflux system only mildly 

increased µapp in a subset of biological replicates (S7B Fig). Interestingly, the latter result contrasted 

with our finding that induction of mexGHI-opmD was sufficient to recapitulate PYO-mediated 

increases in fluoroquinolone tolerance. Together, our data suggest that while tolerance and resistance 
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can be mechanistically interrelated, overcoming the barrier to growing in the presence of an 

antibiotic in some cases requires a different or broader set of defenses than is required for temporary 

Figure 3 (see next page for legend). 
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survival under growth-arrested conditions. Nevertheless, PYO-induced defense mechanisms appear 

to contribute to both types of resilience to antibiotic treatment. 

We envisioned at least three ways in which, under antibiotic selection, PYO-induced defense 

mechanisms could lead to the apparent increases in mutation rates: A) by enhancing the growth of 

pre-existing “partially-resistant” mutants during exposure to the antibiotic; B) by increasing the 

proportion of cells that survive and subsequently mutate to resistance while still in the presence of 

the antibiotic; or C) by a combination of A and B. To distinguish between these scenarios, we 

implemented a two-pronged approach. First, to explore the possibility of scenario A, we isolated and 

characterized several mutants from the fluctuation test plates containing ciprofloxacin. We re-grew 

the isolates under non-selective conditions both with and without PYO treatment and calculated the 

percentage of CFUs that could subsequently be recovered on ciprofloxacin plates relative to non-

selective plates, as a metric for each isolate’s level of resistance. We defined as “partially-resistant” 

those isolates for which only a subset of the population could grow under the antibiotic selection 

without PYO treatment, as evidenced by lower CFU counts on antibiotic plates compared to non-

selective plates. Second, to determine the relative likelihoods of scenario A and scenario B, we 

examined the fit of our fluctuation test data to different formulations of the theoretical Luria-

Figure 3: PYO increases the apparent rate of mutation to antibiotic resistance in P. aeruginosa.  
A. Experimental design for fluctuation tests to determine the effect of PYO (100 µM unless otherwise noted) on 
apparent mutation rates. For panels B-E, mutation rates were calculated using an established maximum 
likelihood-based method that accounts for the effects of plating a small proportion of the total culture volume 
(see Methods for details). Each data point in those panels represents a single biological replicate comprising 44 
parallel cultures, and the vertical lines represent the 84% confidence intervals. Lack of overlap in these 
confidence intervals corresponds to statistical significance at the p < 0.05 threshold (Zheng, 2017). For statistical 
significance as determined by a likelihood ratio test, see S2 Table. In B, D, and E, the PYO treatments correspond 
to the following: -/- denotes no PYO pre-treatment (in the liquid culture stage) or co-treatment (in the antibiotic 
agar plates), +/- denotes PYO pre-treatment but no co-treatment, -/+ denotes PYO co-treatment without pre-
treatment, and +/+ denotes both PYO pre-treatment and co-treatment.  
B. Apparent mutation rates of log-phase ∆phz grown in glucose minimal medium and plated on MH agar 
containing ciprofloxacin (CIP, 0.5 µg/mL; n = 4) or levofloxacin (LVX, 1 µg/mL; n = 5), with or without pre- 
and/or co-exposure to PYO relative to the antibiotic selection step.  
C. The apparent rate of mutation to resistance for ∆phz cells that were pre-treated with different concentrations 
of PYO and plated onto CIP (0.5 µg/mL).  
D. Apparent mutation rates of log-phase ∆phz grown in SCFM and plated on SCFM agar containing CIP (1 
µg/mL; n = 4) with or without pre- and/or co-exposure to PYO.  
E. Apparent mutation rates of log-phase ∆phz grown in glucose minimal medium and plated during onto MH 
agar containing gentamicin (GEN, 16 µg/mL; n = 4) or tobramycin (TOB, 4 µg/mL; n = 4), with or without pre- 
and/or co-exposure to PYO.  
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Delbrück (LD) distribution. Specifically, we compared mathematical models that make different 

assumptions regarding whether mutants arise prior to or during the antibiotic selection.  

Figure 4. PYO promotes the growth of partially-resistant mutants and the occurrence of post-plating 
mutations.  
A. Putative ciprofloxacin-resistant mutants of P. aeruginosa (P.a.) isolated from fluctuation test plates were 
grown to mid-log phase in liquid glucose minimal medium with or without 100 µM PYO, before plating for 
CFUs on non-selective agar plates, plates containing ciprofloxacin alone (0.5 µg/mL), and plates containing 
ciprofloxacin and PYO. Plotted values represent the percentage of CFUs recovered on the ciprofloxacin plates, 
calculated relative to total CFUs counted on non-selective plates. On the x-axis, “pre” denotes the presence of 
PYO in the liquid cultures and “co” denotes the presence of PYO in the agar plates. Data points represent 
independent biological cultures (n = 4). Black horizontal lines mark the mean values for each condition.  
B. Goodness-of-fit of different mathematical models for P. aeruginosa ∆phz fluctuation test data. Data from the 
fluctuation tests performed on ciprofloxacin are plotted for different combinations of PYO in liquid (pre-
treatment) and PYO in agar (co-exposure to antibiotic selection). The empirical cumulative distribution functions 
of the data (black) are plotted against 1) a variation of the Luria-Delbrück model fit with two parameters, m (the 
expected number of mutations per culture) and w (the relative fitness of mutant cells vs. WT), as implemented 
by Hamon and Ycart  (2012) (pink); 2) a mixed Luria-Delbrück and Poisson distribution fit with two parameters, 
m and d (the number of generations that occur post-plating), allowing for the possibility of post-plating 
mutations, as implemented by Lang and Murray (2008) (blue); 3) the basic Luria-Delbrück distribution model 
fit only with m, as implemented by Lang and Murray (2008) (gray). In each condition, the plotted experimental 
data represent the biological replicate with the lowest chi-square goodness-of-fit p-value (i.e. least-good fit) for 
the Hamon & Ycart model, demonstrating that this model was still a reasonable fit for these samples.  
Statistics: A – Welch’s unpaired t-tests with Benjamini-Hochberg correction for controlling false discovery rate 
(* p < 0.05, ** p < 0.01, *** p < 0.001, n.s. p > 0.05).  
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We identified multiple partially-resistant mutants for which the percentage of CFUs 

recovered on ciprofloxacin plates following growth under non-selective conditions increased when 

the isolate was either pre-exposed or co-exposed to PYO (Fig. 4A), although the trends were not 

always statistically significant. Importantly, CFUs for the ∆phz parent strain were below the level of 

detection on the ciprofloxacin plates even in the presence of PYO, confirming that PYO-induced 

defenses alone, in the absence of a resistance mutation, were insufficient to enable growth under the 

selection condition used for the fluctuation tests (Fig. 4A). In addition, for all characterized partially-

resistant mutants, the MIC for ciprofloxacin was higher than for the parent strain (S7 Table). For 

some of these mutants, the MIC determined according to standard clinical protocols (Determination 

of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution, 2003) 

matched the ciprofloxacin concentration originally used for selection, even in the presence of PYO, 

but this is not surprising, as the relatively dilute inoculum (5 x 105 CFU/mL) and short incubation 

time (18 hrs) used for standard MIC assays can preclude detection of weak growth at a given 

antibiotic concentration. As a further validation of our assay for detection of partially-resistant 

mutants, we also tested isolates with distinct colony morphologies that were not enriched on the 

PYO-containing antibiotic plates relative to PYO-free antibiotic plates in the original fluctuation 

tests. As expected, these mutants were fully resistant to ciprofloxacin at the original selection 

concentration (S8A Fig), meaning that the same number of CFUs grew on both antibiotic plates and 

non-selective plates even in the absence of PYO. Interestingly, the effect of PYO on ciprofloxacin 

resistance varied across different partially-resistant isolates (Fig. 4A). This suggests that PYO does 

not universally raise the level of resistance of the entire population, but rather interacts synergistically 

with specific types of mutations conferring partial resistance. Such heterogeneity could account for 

why the effect of PYO in the fluctuation tests varied across biological replicates, as the degree of 

benefit conferred by PYO would depend on the specific mutations that randomly occurred in each 

replicate. We also repeated the stationary phase ciprofloxacin tolerance assay with the partially-

resistant isolates and found that tolerance was likewise differentially affected by PYO (S8B Fig). 

Interestingly, the tolerance and resistance phenotypes shared no obvious underlying pattern, again 

suggesting that cellular processes that affect resistance do not always equally effect tolerance, and 

vice versa. Nevertheless, our results demonstrate that under antibiotic selection, a subset of partially-

resistant mutants benefits from exposure to PYO. 
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Whole-genome sequencing revealed that the partially-resistant isolates contained mutations 

either in the efflux pump repressors nfxB or mexS, or in genes that affected growth rate, such as a 

ribosomal protein, a C4-dicarboxylate transporter, and a cell-wall synthesis gene (S4 Table). 

Mutations in nfxB or mexS were also found in the fully-resistant isolates (S4 Table), albeit at different 

loci compared to the partially-resistant isolates. Notably, nfxB is considered a “pathoadaptive gene” 

in which mutations tend to accumulate during chronic infections (Marvig, Sommer, et al., 2015; 

Marvig, Dolce, et al., 2015). Mutations in mexS are less common, but have also been detected in 

clinical isolates (Richardot et al., 2016). Slow-growing small colony variant mutants of P. 

aeruginosa have likewise been isolated from patients (Häussler et al., 1999; Malone et al., 2010). 

Thus, the growth benefits conferred by PYO-induced defenses during antibiotic selection could be 

relevant to a variety of clinically-adapted strains.  

That PYO increases µapp at least in part by promoting the growth of pre-existing partially-

resistant mutants was further supported by the alternative approach of evaluating the fit of our data 

to different mathematical models. Specifically, Pearson’s chi-square test indicated that our data 

closely fit the Hamon and Ycart model (Hamon and Ycart, 2012) (Fig. 4B, S9 Fig, S3 Table), which 

allows for differential fitness of mutants compared to WT cells, but assumes that all mutants arise 

pre-plating. However, we could not unequivocally rule out the possibility that post-plating mutations 

contributed to the increases in µapp, as a subset of our data also fit a mixed LD-Poisson model that 

assumes some mutations occurred during the antibiotic selection step (Lang and Murray, 2008) (Fig. 

4B, S9 Fig, S3 Table). We also performed growth curves under the culture conditions used in our 

fluctuation tests prior to the antibiotic selection step, with the addition of the live-cell-impermeable 

DNA-binding dye propidium iodide as a marker for cell death. As expected from a previous study 

on PYO toxicity (Meirelles and Newman, 2018), cell death was undetectable prior to the sampling 

time point used in most of the fluctuation tests (S8D-E Fig). Thus, while increased population 

turnover due to stress can also lead to increases in µapp (Frenoy and Bonhoeffer, 2018), this is unlikely 

to underlie the effect of PYO on µapp. Together, these results suggest that the most probable 

explanation for the PYO-mediated increases in apparent mutation rates is a combined effect of 

increased detection of partially-resistant mutants (the proposed scenario A) and increased occurrence 

of post-plating mutations resulting from elevated survival on the antibiotic plates (the proposed 

scenario B).  
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Importantly, previous studies based on in vitro evolution experiments have demonstrated that 

even modest increases in mutation rates, in the range of two- to five-fold, significantly affect the 

maximum achievable level of antibiotic resistance for diverse bacterial pathogens (Orlén and 

Hughes, 2006; Ragheb et al., 2019). Moreover, it is well-established that partial resistance can 

rapidly lead to acquisition of full resistance via secondary mutations (Toprak et al., 2011; Baym et 

al., 2016). Indeed, several putative mutants appeared fully resistant to ciprofloxacin in our CFU-

recovery assay despite having been enriched by exposure to PYO in the fluctuation tests (S8C Fig). 

This discrepancy could be a result of acquiring secondary mutations either during growth on the 

original fluctuation test plates or during the pre-growth for the CFU-recovery assay. Thus, our results 

suggest that PYO may significantly affect the rate at which high-level resistance emerges in 

populations of P. aeruginosa undergoing long-term antibiotic exposure. 

PYO promotes antibiotic tolerance in other opportunistic pathogens 

While the above experiments were performed with single-species cultures, P. aeruginosa is 

found in polymicrobial communities in both natural environments (e.g. soil) and clinical contexts 

(e.g. chronic infections) (Green et al., 1974; Fierer and Jackson, 2006; Lipuma, 2010; Stressmann et 

al., 2012). We hypothesized that microbes that frequently interact with P. aeruginosa would have 

evolved inducible defense mechanisms against PYO toxicity, and that production of PYO by P. 

aeruginosa might therefore also increase tolerance and resistance to clinical antibiotics in these 

community members. To test this hypothesis, we focused on the genera Burkholderia and 

Stenotrophomonas, both of which are (i) soil-born gram-negative opportunistic pathogens that are 

frequently refractory to clinical antibiotic treatments (Berg et al., 2005; Rhodes and Schweizer, 

2016; Adegoke et al., 2017), and (ii) found in co-infections with P. aeruginosa, e.g. in CF patients 

(Chmiel et al., 2014). Specifically, we tested a soil-derived strain, Burkholderia cepacia ATCC 

25416; a non-CF clinical isolate of Stenotrophomonas, S. maltophilia ATCC 13637; and several 

clinical isolates of the three most prevalent Burkholderia species found in CF patients (Lipuma, 

2010): B. cenocepacia, B. multivorans, and B. gladioli (for descriptions of these strains, see S5 

Table).  

We first assessed each strain’s intrinsic resistance to PYO (Fig. 5A), as we expected that 

strong defenses against PYO toxicity would be required in order to benefit from exposure to this 
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natural antibiotic. Indeed, for S. maltophilia, which was sensitive to PYO (Fig. 5A), the effects of 

PYO on antibiotic tolerance were complex: the presence of PYO was only beneficial when 

ciprofloxacin levels were low (1 µg/mL) (Fig. 5B). At a higher concentration of ciprofloxacin (10 

µg/mL), PYO was detrimental in a dose-dependent manner (Fig. 5B), suggesting that the additional 

stress conferred by PYO outweighed any induction of defense mechanisms against ciprofloxacin.    

Figure 5  (see next page for legend). 
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S. maltophilia also struggled to grow with P. aeruginosa in co-cultures (Fig. 5C-D), indicating that 

the conditions under which this species could potentially benefit from PYO are very limited.  

B. cepacia, B. cenocepacia, and B. multivorans, on the other hand, were highly resistant to 

PYO (Fig. 5A). For these three species, exogenously-added PYO increased tolerance to 

ciprofloxacin (Fig. 5E). Furthermore, for B. cepacia, we confirmed that this effect was PYO dose-

dependent (Fig. 5E). We therefore tested whether P. aeruginosa could induce tolerance to 

ciprofloxacin in co-cultures with these Burkholderia strains. Using liquid culture plates in which the 

two species were separated by a permeable membrane (Fig. 5C), we found that PYO-producing P. 

aeruginosa strongly induced tolerance to ciprofloxacin in the Burkholderia species, and that the 

observed tolerance phenotypes were recapitulated by addition of exogenous PYO to co-cultures of 

Burkholderia and the P. aeruginosa ∆phz mutant, or to control cultures with Burkholderia alone in 

the same setup (Fig. 5F). Notably, for B. cenocepacia and B. multivorans, increased ciprofloxacin 

tolerance was also observed in co-cultures with a PYO-producing strain isolated from a CF patient, 

P. aeruginosa PA 76-11 (Fig. 5F). In addition, even when co-cultured with Burkholderia, the P. 

Figure 5: PYO promotes antibiotic tolerance in other opportunistic pathogens.  
A. Growth of several strains in the presence of different concentrations of PYO. Plotted lines represent averages 
of four to six replicates and shaded areas in gray represent the standard deviation. Burkholderia multivorans 1 = 
B. multivorans AU42096. For complete information on strains, see S5 Table.  
B. Tolerance of S. maltophilia to different concentrations of ciprofloxacin (CIP; 1 or 10 µg/mL) after growth in 
the presence of different concentrations of PYO (0, 10 or 50 µM) (n = 4).  
C. Schematic depicting the experimental design for co-culture antibiotic tolerance assays (see Methods for 
details).  
D. CFUs recovered from co-cultures of P. aeruginosa (PA14 WT and ∆phz) and S. maltophilia (n = 3), showing 
that the latter struggled to grow in the presence of P. aeruginosa.  
E. Effect of PYO on the tolerance to ciprofloxacin (10 µg/mL) of multiple Burkholderia species isolated from 
environmental and clinical samples (n = 4).  
F. Effect of PYO produced by P. aeruginosa in co-cultures on the tolerance of different Burkholderia species to 
ciprofloxacin (10 µg/mL). PA14 is our model laboratory strain of P. aeruginosa, while PA 76-11 is a PYO-
producing strain of P. aeruginosa isolated from a CF patient. The Burkholderia strains were plated separately 
for CFUs to assess survival following treatment with ciprofloxacin in the co-cultures (n = 3).  
G. Tolerance of P. aeruginosa PA14 WT and ∆phz to ciprofloxacin (1 µg/mL) when grown in co-cultures with 
B. multivorans 1 (n = 3).  
H. Effect of PYO on the tolerance to ciprofloxacin (10 µg/mL) of B. multivorans 1 in SCFM    (n = 4).  
I. Tolerance to ciprofloxacin (1 µg/mL) of B. multivorans 1 grown in co-cultures with P. aeruginosa PA14 WT, 
∆phz or alone with 100 µM PYO added exogenously (n = 3).  
Statistics: B, E, F, G, H, I – One-way ANOVA with Tukey’s HSD multiple-comparison test for comparisons of 
three conditions or Welch’s unpaired t-test for comparison of two conditions, with asterisks showing the 
statistical significance of comparisons with the untreated (no PYO or ∆phz) condition (* p < 0.05, ** p  < 0.01, 
*** p < 0.001). In all panels, data points represent independent biological replicates, and black horizontal bars 
mark the mean values for each condition. 
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aeruginosa WT strain still showed elevated ciprofloxacin tolerance when compared to the non-PYO-

producing ∆phz mutant (Fig. 5G). This indicates that the presence of Burkholderia did not alter P. 

aeruginosa tolerance patterns under our conditions. Finally, similar results were obtained for 

experiments performed in SCFM, where either the addition of exogenous PYO (Fig. 5H) or co-

culture with P. aeruginosa (Fig. 5I) led to increased tolerance levels in Burkholderia. Together, these 

results suggest that PYO produced by P. aeruginosa in CF patients may decrease the efficacy of 

ciprofloxacin as a treatment for multispecies infections. 

PYO promotes the evolution of antibiotic resistance in a co-occurring opportunistic pathogen 

We next asked whether PYO could mediate an increase in apparent mutation rate for 

ciprofloxacin resistance in Burkholderia species. We chose B. multivorans AU42096 (B. 

multivorans 1 in Fig. 5) as our model strain for these experiments because, among the clinical 

isolates, it displayed the strongest response to PYO in the ciprofloxacin tolerance assays. 

Remarkably, when selecting B. multivorans mutants on ciprofloxacin, we observed PYO-mediated 

increases in µapp that were far more dramatic than for P. aeruginosa: pre-treatment with PYO 

increased µapp for B. multivorans approximately 10-fold, while co-exposure to PYO in the antibiotic 

plate without pre-exposure increased µapp approximately 40-fold, and the combination of pre- and 

co-exposure to PYO increased µapp by 230-fold (Fig. 6A, S3 Table). Notably, the magnitude of the 

latter effect is on par with observed differences between hypermutators, such as mutants deficient in 

the mismatch repair pathway, and their respective parent strains (Lee et al., 2012; Martina et al., 

2014; Nunvar et al., 2017). Moreover, hypermutators of Burkholderia isolated from CF infections 

are associated with clinical ciprofloxacin resistance (Martina et al., 2014). In light of these 

observations, our results suggest that PYO could significantly affect clinical outcomes for co-

infections of P. aeruginosa and B. multivorans treated with ciprofloxacin. 

To verify that the B. multivorans colonies growing on ciprofloxacin in the presence of PYO 

were mutants, and to assess their responses to PYO, we isolated several putative mutants from the 

fluctuation test antibiotic plates and tested three in our CFU-recovery assay. All three displayed 

unique profiles of ciprofloxacin resistance in response to PYO treatment, as well as different 

maximal levels of resistance. However, all were more resistant than the WT parent strain in the 

presence of PYO, and none were noticeably resistant to ciprofloxacin in this assay without exposure 
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to PYO (Fig. 6B). MIC tests performed according to clinical standards revealed that the MIC of 

CipR-1 was indistinguishable from that of the parent strain, while the MIC of CipR-2 was two-fold 

higher than that of the parent strain in the absence of PYO but identical in the presence of PYO (S7 

Table), reflecting the limitations of standard two-fold antibiotic dilution series for revealing mild 

increases in resistance. The MIC of CipR-7, on the other hand, was eight-fold higher than that of the 

parent strain, though in the absence of PYO, the MIC of this mutant was still below the ciprofloxacin 

concentration used in the fluctuation tests. Notably, for all tested B. multivorans isolates, including 

the WT parent, the addition of PYO to the standard MIC tests increased the MIC for ciprofloxacin 

by four- to eight-fold (S7 Table); however, even in the presence of PYO, the MIC for the parent 

strain was less than half of the ciprofloxacin concentration used in the tolerance assays, indicating 

that the observed tolerance phenotype for this strain cannot be fully explained by phenotypic 

Figure 6. PYO promotes antibiotic resistance in B. multivorans.  
A. The apparent rate of mutation to resistance when log-phase B. multivorans 1 cells were plated on MH agar 
containing ciprofloxacin (8 µg/mL), with or without pre- and/or co-exposure to 100 µM PYO relative to the 
antibiotic selection step. Each data point represents a biological replicate comprising 44 parallel cultures (n = 4). 
The vertical lines represent 84% confidence intervals, in which lack of overlap corresponds to statistical 
significance at the p < 0.05 level (Zheng, 2017). The PYO treatments correspond to the following: -/- denotes 
no PYO pre-treatment (in the liquid culture stage) or co-treatment (in the antibiotic agar plates), +/- denotes PYO 
pre-treatment but no co-treatment, -/+ denotes PYO co-treatment without pre-treatment, and +/+ denotes both 
PYO pre-treatment and co-treatment. (continued on next page) 
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resistance. Interestingly, the percentage of the parent strain population that could grow on 

ciprofloxacin in the presence of PYO (Fig. 6B) was approximately equal to what would have been 

expected from the frequency of colonies detected in the fluctuation tests; moreover, when the CFU 

recovery assay was performed for the parent strain, the colonies that grew on ciprofloxacin in the 

presence of PYO exhibited diverse morphologies. This suggests that much of the parent strain 

growth on ciprofloxacin in the presence of PYO may have in fact reflected the growth of high-

frequency spontaneous mutants, rather than background growth of the parent strain itself.   

Whole-genome sequencing of the fluctuation test isolates revealed that B. multivorans CipR-

1 possessed mutations in three uncharacterized regulatory genes (S6 Table). B. multivorans CipR-2 

possessed mutations in two different homologs of the SpoT/RelA (p)ppGpp synthetase gene, which 

is known to affect antibiotic tolerance and resistance (Hobbs and Boraston, 2019). Finally, B. 

multivorans CipR-7 possessed a point mutation in DNA gyrase A (S83R), along with a point 

mutation in a malto-oligosyltrehalose synthase. Given that DNA gyrase A is the target of 

ciprofloxacin and that the specific mutated residue is likely homologous to the T83 residue that was 

mutated in a study of fluoroquinolone-resistant mutants in B. cepacia (Pope et al., 2008), it is 

intriguing that this mutant was not able to grow on the original selection concentration of 

ciprofloxacin in the absence of PYO; however, the specific amino acid substitution in this strain may 

have resulted in only a mild disruption of ciprofloxacin binding.   

B. The percentage of CFUs recovered on ciprofloxacin plates either with or without PYO in the agar, for 
exponential phase cultures of different partially-resistant B. multivorans 1 (B.m.) mutants that were pre-grown 
with or without PYO in liquid cultures. Plotted values represent the percentage of CFUs recovered on the 
ciprofloxacin plates, calculated relative to total CFUs counted on non-selective plates. On the x-axis, “pre” 
denotes the presence of PYO in the liquid cultures and “co” denotes the presence of PYO in the agar plates. Data 
points represent independent biological replicates (n =  4), and black horizontal bars mark the mean values for 
each condition.  
C. Goodness-of-fit of different mathematical models for B. multivorans 1 fluctuation test data. Data are plotted 
for different combinations of PYO in liquid (pre-treatment) and PYO in agar (co-exposure to antibiotic 
selection). The empirical cumulative distribution functions of the data (black) are plotted against 1) a variation 
of the Luria-Delbrück model fit with two parameters, m (the expected number of mutations per culture) and w 
(the relative fitness of mutant cells vs. WT), as implemented by Hamon and Ycart (2012) (pink); 2) a mixed 
Luria-Delbrück and Poisson distribution fit with two parameters, m and d (the number of generations that occur 
post-plating), allowing for the possibility of post-plating mutations, as implemented by Lang and Murray (2008) 
(blue); 3) the basic Luria-Delbrück distribution model fit only with m, as implemented by Lang and Murray 
(2008) (gray). In each condition, the plotted experimental data represent the biological replicate with the lowest 
chi-square goodness-of-fit p-value (i.e. least-good fit) for the Hamon & Ycart model.  
Statistics: B – Welch’s unpaired t-tests with Benjamini-Hochberg correction for controlling false discovery rate 
(* p < 0.05, ** p  < 0.01, *** p < 0.001). 
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Lastly, we asked whether the B. multivorans mutants we detected primarily arose prior to or 

during the antibiotic selection. In all cases, the distribution of mutants closely matched the Hamon 

and Ycart formulation of the theoretical LD distribution, suggesting that the detected mutants arose 

prior to the antibiotic exposure (Fig. 6C, S3 Table). Interestingly, the Hamon and Ycart model also 

predicted the average relative fitness of mutants detected in PYO-treated samples to be significantly 

lower compared to mutants detected in non-PYO treated samples (S3 Table; p < 0.05 for all three 

comparisons between non-PYO-treated and PYO-treated sample groups, using Welch’s paired t-test 

with Benjamini-Hochberg corrections for controlling the false discovery rate). In addition, unlike for 

P. aeruginosa, the mixed LD-Poisson distribution that allows for post-plating mutations was a poorer 

fit than the Hamon and Ycart model for all PYO-treated B. multivorans samples (Fig. 6C, S3 Table). 

Together, these results suggest that in B. multivorans, PYO increases µapp by promoting growth of a 

wider range of mutants that arise prior to antibiotic selection, including those with slower growth 

rates.   

Discussion 

Many clinical antibiotic resistance genes are thought to have originated in environmental 

microorganisms as responses to microbial chemical warfare, with subsequent mobilization into 

human pathogens via horizontal gene transfer (Martinez, 2009; Davies and Davies, 2010; Granato 

et al., 2019). Here, we have demonstrated that tolerance and resistance to clinically relevant 

concentrations of synthetic antibiotics can also arise as a collateral benefit of natural antibiotic 

production by an opportunistic pathogen. P. aeruginosa is a particularly relevant example of an 

opportunistic pathogen whose self-produced natural antibiotics can promote resilience to clinical 

antibiotics, given the large number of chronic infections caused by this bacterium worldwide 

(Driscoll et al., 2007) and the fact that PYO has been detected at concentrations up to 130 µM in 

lung infection sputum samples (Wilson et al., 1988) and 0.31 mg/g in infected wound exudate 

(Cruickshank and Lowbury, 1953). Notably, treatments for infections caused by P. aeruginosa and 

other opportunistic pathogens often fail even when in vitro MIC tests indicate susceptibility to the 

chosen antibiotic (Chmiel et al., 2014). Previous studies have attributed this discrepancy to metabolic 

and physiological changes within biofilms (Walters et al., 2003; Olsen, 2015), which represent a 

major form of bacterial life within infections (Costerton et al., 1999). Our results suggest that cellular 

defenses induced by bacterially-produced natural antibiotics may also contribute to in vitro versus 
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in vivo differences in antibiotic susceptibility, as standard MIC tests are inoculated at a low cell 

density (The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for 

interpretation of MICs and zone diameters. Version 10.0, 2020), but P. aeruginosa typically does 

not make PYO in vitro until reaching a relatively high cell density (Dietrich et al., 2006). 

Furthermore, the observation that PYO produced by P. aeruginosa strongly promotes antibiotic 

tolerance and resistance in Burkholderia species could hold important ramifications for the treatment 

of co-infections of these organisms in CF patients, for which clear best practices have yet to be 

established (Chmiel et al., 2014). In particular, it could be prudent to avoid treating such infections 

with antibiotics for which PYO is likely to promote increased tolerance and resistance, such as 

fluoroquinolones, chloramphenicol, and trimethoprim/sulfamethoxazole—the latter two also being 

known substrates for efflux pumps that we have shown are upregulated by PYO (Driscoll et al., 

2007; Lister et al., 2009).  

Interestingly, our finding that PYO does not increase tolerance to aminoglycosides (Fig. 2D 

and S4B Fig) contrasts with the conclusions of two previous studies on phenazine-mediated 

antibiotic tolerance, which claimed that phenazines broadly increase tolerance to all classes of 

antibiotics except cationic peptides (Schiessl et al., 2019; Zhu et al., 2019). Importantly, however, 

these studies did not explore whether or which molecular defense mechanisms are induced by the 

phenazines and how these defenses might interact with clinical antibiotics. Moreover, the studies 

were performed under very different experimental setups, including different media, which can 

profoundly impact the outcomes of antibiotic susceptibility assays. One study focused on colony 

biofilms of P. aeruginosa that produced only phenazine-1-carboxylic acid and phenazine-1-

carboxamide (Schiessl et al., 2019), which are less toxic than PYO (Meirelles and Newman, 2018) 

and consequently may induce a different set of cellular responses. Alternatively, the observed 

increased tolerance to tobramycin in that study might not be related to molecular defenses induced 

by phenazines, but rather phenazine-mediated physiological differences under the studied conditions 

(Schiessl et al., 2019). Phenazines are redox-active molecules that can promote metabolic activity 

under oxygen limitation, which occurs within biofilms (Dietrich et al., 2013; Schiessl et al., 2019; 

Saunders et al., 2020); the specific details of how such metabolic activity might affect antibiotic 

tolerance merit further attention. The other previous study found that PYO increased planktonic 

culture cell densities in the presence of various antibiotics (Zhu et al., 2019), but these experiments 
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did not directly demonstrate an effect on antibiotic tolerance (i.e. the ability to survive an otherwise 

lethal antibiotic treatment) (Brauner et al., 2016). Notably, both studies found that phenazines 

actually increase sensitivity to cationic peptides, consistent with our observation that WT                      

P. aeruginosa is less tolerant to colistin than the ∆phz strain. The mechanism of this synergistic 

lethality warrants further investigation. Our results highlight that identifying the cellular defenses 

induced by natural antibiotics, not only in the case of P. aeruginosa and phenazines, but also 

potentially other opportunistic pathogens and their endogenously-produced natural antibiotics, is 

essential for accurately predicting clinical antibiotic efficacy.  

Figure 7: Proposed model for how natural antibiotics increase bacterial tolerance and resistance to clinical 
drugs.  
In the first scenario (tolerance), cells are exposed to the clinical drug (pink dots) for a short period of time. 
Surviving cells will eventually re-start growth after the drug is removed. The presence of the natural antibiotic 
(bottom) increases tolerance of both WT and partially-resistant mutants. In the second scenario (resistance), cells 
are constantly exposed to the drug for an extended period of time, and only mutants are maintained in the 
population. The presence of the natural antibiotic (bottom) widens the population bottleneck and allows partially-
resistant mutants to grow under drug selection, preserving a greater range of genetic diversity in the population. 
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Our results furthermore suggest that by inducing cellular defenses against specific clinical 

antibiotics, PYO widens the population bottleneck that occurs during antibiotic selection. This effect 

occurs via a two-pronged mechanism (Fig. 7). First, PYO increases the proportion of cells that 

survive short-term antibiotic treatments, which would inherently tend to preserve a greater range of 

genetic variation in the post-selection population. Second, PYO promotes the establishment of a 

broader range of resistant mutant lineages, which are likely primed to acquire further step-wise 

mutations to high-level resistance, yet may otherwise be lost during extended antibiotic treatment. 

Interestingly, a recent study demonstrated that lineages of spontaneous resistant mutants can be lost 

through stochastic cell death even at antibiotic concentrations well below the mutants’ MICs 

(Alexander and MacLean, 2020). Thus, besides boosting the growth of partially-resistant mutants 

whose MICs failed to exceed the antibiotic concentrations used in our fluctuation tests, it is possible 

that PYO-induced defenses (e.g. enhanced efflux and oxidative stress responses) also increased 

apparent mutation rates by decreasing the stochastic loss of individual spontaneous mutants with 

higher MICs. In addition, a recent study in Staphylococcus aureus highlighted the important role that 

pre-existing genetic diversity in the population can play in shaping the evolution of antibiotic 

resistance (Papkou et al., 2020). In particular, even small variations in efflux-mediated intrinsic 

resistance of parent strains significantly affected the probability that a population would evolve 

resistance under ciprofloxacin selection at the clinical breakpoint concentration (Papkou et al., 

2020). Multiple studies have also demonstrated additive or synergistic interactions between 

increased drug efflux and classical ciprofloxacin resistance mutations (Oethinger et al., 2000; 

Bruchmann et al., 2013; Papkou et al., 2020). We observed a similar phenomenon in our                        

B. multivorans CipR-7 strain, which had acquired a mutation in the cellular target of ciprofloxacin 

(i.e. DNA gyrase A), yet still required exposure to PYO in order to grow at the ciprofloxacin 

concentration on which it was originally selected (Fig. 6B). Together, these findings suggest that 

microbial production of natural antibiotics in the context of an infection could dynamically, and in 

some cases dramatically, affect the evolvability of opportunistic pathogens challenged with clinical 

drugs.  

Beyond P. aeruginosa and PYO, our proposed model for collateral benefits of exposure to 

natural antibiotics (Fig. 7) potentially represents a broader phenomenon among human pathogens 

than has previously been appreciated. Many opportunistic pathogens originate in environments like 
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soil (LiPuma et al., 2002; Berg et al., 2005), where they have evolved in the presence of diverse 

natural antibiotics (Martinez, 2009; Davies and Davies, 2010), and P. aeruginosa is not the only 

pathogen with the capacity to synthesize its own antibiotics. For example, Burkholderia species 

possess the biosynthetic capability to produce a variety of compounds with antibacterial activity, 

whose potential clinical significance has not been explored (Depoorter et al., 2016). If a given natural 

antibiotic induces expression of a molecular defense, the only requirement for a consequent increase 

in tolerance to a clinically-relevant drug would be that the induced defense has some efficacy against 

the drug—e.g. due to structural similarities like those shared by PYO and fluoroquinolones. This 

inference is supported by recent evidence that certain food additives and synthetic drugs antagonize 

the efficacy of specific clinical antibiotics by triggering stress responses in cells, including the 

induction of efflux pumps (Brochado et al., 2018), and that exposure to a clinical drug to which a 

strain is already resistant can collaterally affect its development of tolerance and resistance to other 

drugs (Imamovic et al., 2018). In fact, bacterially-produced toxic metabolites that promote antibiotic 

tolerance and resistance in human pathogens need not be limited to the types of molecules 

traditionally thought of as natural antibiotics. For example, indole secretion by highly antibiotic-

resistant spontaneous mutants of Escherichia coli enables partially-resistant mutants within the same 

species to grow at drug concentrations above their own MICs, in part by stimulating efflux pump 

expression (Lee et al., 2010). Unlike PYO, indole is generally thought of as a signaling molecule 

rather than a natural antibiotic (Kumar and Sperandio, 2019), though it can likewise be toxic to 

bacteria at high concentrations (Garbe et al., 2000; Kumar and Sperandio, 2019). Efforts to identify 

and characterize additional examples of such metabolites produced by opportunistic human 

pathogens could lead to an improved understanding of the modes of antibiotic treatment failure in 

clinics, and ultimately inform the design of more effective and longer-lived therapies.  

Methods 

Culture media and incubation conditions 

Different culture media were used for different experiments as indicated throughout the 

Methods. Succinate minimal medium (SMM) composition was: 40 mM sodium succinate (or 20 

mM, if specified), 50 mM KH2PO4/K2HPO4 (pH 7), 42.8 mM NaCl, 1 mM MgSO4, 9.35 mM NH4Cl, 

and a trace elements solution (Widdel and Pfennig, 1981). Glucose minimal medium (GMM) was 



 

 

94 

identical to SMM, except with 10 or 20 mM glucose (as specified for different experiments) instead 

of succinate. SMM and GMM were prepared by autoclaving all components together for 20 min at 

121 °C, except for the carbon source and the 1000x trace elements stock solution, which were filter-

sterilized and added separately; interestingly, we found that autoclaving MgSO4 with the other 

components was crucial for consistent PYO production by WT Pseudomonas aeruginosa UCBPP-

PA14 in GMM. Luria-Bertani (LB) Miller broth (BD Biosciences) and BBL Cation-Adjusted 

Mueller-Hinton II (MH) broth (BD Biosciences) were prepared according to the manufacturer’s 

instructions (notably with only a 10 min autoclave step for MH medium), with the addition of 1.5% 

Bacto agar (BD Biosciences) to make solid media. Synthetic cystic fibrosis sputum medium (SCFM) 

composition was prepared as described previously (Palmer et al., 2007), with 1.355mM K2SO4 and 

no nitrate. In addition, 3.6 µM FeSO4.7H2O and 0.3 mM N-acetyl-glucosamine were added (Turner 

et al., 2015). All components except for the latter two were dissolved together, sterilized by filtration 

through a 0.22 µm membrane, and stored for up to two weeks; FeSO4.7H2O and N-acetyl-

glucosamine solutions were prepared fresh each time or stored at -20 ºC, respectively, and added to 

SCFM on the day of use. For SCFM agar, a 2x solution of the medium components was prepared 

and added to a separately autoclaved 3% molten agar solution, for a final concentration of 1x SCFM 

and 1.5% agar.  

Antibiotics were prepared in concentrated stock solutions (100x or greater) and stored at          

-20 ºC. Ciprofloxacin was dissolved in 0.1 M or 20 mM HCl, while levofloxacin, gentamicin, 

tobramycin, and colistin were dissolved in sterile deionized water. Phenylalanine-arginine                     

β-naphthylamide (PAbN) dihydrochloride (MedChemExpress) was dissolved in sterile deionized 

water (50 mg/mL). Pyocyanin (PYO) was synthesized and purified as previously described 

(Cheluvappa, 2014; Costa et al., 2017) and dissolved in 20 mM HCl to make 10 mM stock solutions. 

Experiments involving exogenous PYO always included negative controls to which an equivalent 

volume of 20 mM HCl was added. In addition, MH agar plates were buffered to pH 7 with 10 mM 

morpholinepropanesulfonic acid (MOPS) to avoid any pH changes upon addition of PYO or HCl; 

all other media used with exogenous PYO were already inherently buffered. Incubations were 

always done at 37 ºC, with shaking for liquid cultures (250 rpm), unless mentioned otherwise.  
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Strain construction 

In this study, we use PA14 as an abbreviation for UCBPP-PA14. P. aeruginosa PA14 was 

used for all experiments unless otherwise noted. For a full list of strains made in this study, see S5 

Table. Three types of strains were made in different P. aeruginosa PA14 backgrounds: (i) unmarked 

deletions, used for Tn-seq validation experiments; (ii) fluorescent strains for time-lapse microscopy 

experiments; and (iii) strains overexpressing one of the following three systems: mexGHI-opmD, 

ahpB, and katB. Established protocols were used for all these procedures (Babin et al., 2016).  

Briefly, for unmarked deletions, ~1kb fragments immediately upstream and downstream of 

the target locus were cloned using Gibson assembly into the pMQ30 suicide vector (Shanks et al., 

2006; Gibson et al., 2009). Fragments amplified from P. aeruginosa PA14 genomic DNA (gDNA) 

and cleaned up using the Monarch PCR Purification kit (New England Biolabs) were used for Gibson 

assembly together with pMQ30 cut with SacI and HindIII. The assembled construct was then 

transformed into Escherichia coli DH10B, with transformants being selected in LB with 20 µg/mL 

gentamicin. All correctly-assembled plasmids were identified by colony PCR and verified by Sanger 

sequencing (Laragen). Next, for the insertion of the constructs into P. aeruginosa PA14 genome, tri-

parental conjugation was performed following Choi and Schweizer (Choi and Schweizer, 2006). All 

unmarked deletions were done in the P. aeruginosa PA14 ∆phz background (both phzA-G1 and 

phzA-G2 operons are deleted in this strain (Dietrich et al., 2006)), allowing clean experiments by 

addition of exogenous phenazines. Merodiploids containing the construct integrated into their 

genomes were selected on VBMM medium (3 g/L trisodium citrate, 2 g/L citric acid, 10 g/L 

K2HPO4, 3.5 g/L NaNH4HPO4·4H2O, 1 mM MgSO4, 100 µM CaCl2, pH 7) with 100 µg/mL 

gentamicin following Choi and Schweizer (Choi and Schweizer, 2006). Finally, merodiploids were 

then plated on LB lacking NaCl and containing 10% sucrose to select for colonies resulting from 

homologous recombination. Colonies missing the target locus (unmarked deletions) were identified 

by PCR. For all primers used, see S5 Table.  

Fluorescent strains used in time-lapse microscopy were made using previously published 

plasmids (Babin et al., 2016; Basta et al., 2017). Constructs containing GFP and mApple florescent 

proteins under the control of the ribosomal rpsG gene were inserted in the attTn7 site of                          
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P. aeruginosa PA14 ∆phz chromosome by tetra-parental conjugation, followed with selection on 

VBMM with 100 µg/mL gentamicin (Choi and Schweizer, 2006).   

Finally, overexpressing strains were made as previously described (Babin et al., 2016). The 

previously-made overexpression construct (pUC18T-miniTn7T-GmR vector containing the 

arabinose-inducible promoter Para (Babin et al., 2016)) and the three different targets (mexGHI-

opmD, ahpB and katB) were all amplified by PCR. Next, using Gibson assembly, the targets were 

cloned downstream of Para in the pUC18T-miniTn7T-GmR vector, resulting in the three different 

overexpression constructs: Para:mexGHI-opmD, Para:ahpB, and  Para:katB. The final constructs were 

introduced into the attTn7 of the P. aeruginosa PA14 ∆phz background strain by tetraparental 

conjugation (Choi and Schweizer, 2006). 

Transposon-sequencing (Tn-seq) experiment  

The Tn-seq experiment was performed following the design presented in Fig. 1A. Two 

aliquots of the P. aeruginosa PA14 transposon library previously prepared (Basta et al., 2017) were 

thawed on ice for 15 min, diluted to a starting optical density (OD500) of 0.05 in 50 mL of SMM, and 

grown aerobically under shaking conditions (250 rpm) at 37 ºC for ~ 4-5 generations to an OD500  of 

0.8-1. These growing conditions were used for all the stages of the experiment. After growth in 

SMM, each aliquot was considered an independent replicate. Cells from each replicate were pelleted, 

washed, and resuspended (5 mL in 18 x 150 mm glass tubes, OD500 = 2) in minimal phosphate buffer 

(MPB - 50 mM KH2PO4/ K2HPO4[pH 7], 42.8 mM NaCl) with and without 100 µM PYO. Cells 

were then incubated for 26 hrs under shaking conditions at 37 ºC. Therefore, the experiment 

consisted of four different samples that were later sequenced: (i) “R1 No PYO,” (ii) “R1 + PYO,” 

(iii) “R2 No PYO,” and (iv) “R2 + PYO”. After the incubation, cultures from all treatments were 

pelleted, washed again to remove PYO, and resuspended in fresh SMM. Immediately, an aliquot of 

each sample was diluted to a starting OD500 of ~0.05 in 25 mL SMM, followed by outgrowth for ~4-

5 generations to an OD500 of 0.8-1. After outgrowth, 2.5 mL of each sample was pelleted and stored 

at -80 ºC.  

Genomic DNA was extracted from the pelleted samples using the DNeasy Blood & Tissue 

kit (Qiagen). All the steps for sequencing library preparation followed exactly the protocol used by 
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Basta et al. (2017), including (i) DNA shearing by sonication (to produce 200-500 bp fragments), 

(ii) end-repair, (iii) addition of poly(C) tail, and (iv) enrichment of transposon-genome junctions and 

addition of adapter for Illumina sequencing by PCR (van Opijnen et al., 2014; Basta et al., 2017). 

The resulting amplified DNA samples were sequenced using 100 bp single-end reads on the Illumina 

HiSeq 2500 platform at the Millard and Muriel Jacobs Genetics and Genomics Laboratory at 

Caltech. Data analysis also followed Basta et al. (2017). In summary, sequences were mapped to the 

P. aeruginosa UCBPP-PA14 genome sequence using Bowtie 2 (Langmead and Salzberg, 2012) and 

were analyzed in MATLAB using the ARTIST Tn-seq analysis pipeline (Pritchard et al., 2014), with 

non-overlapping windows of 100 bp across the genome (Pritchard et al., 2014; Basta et al., 2017). 

Using the Mann-Whitney U statistical test, the total reads mapping for each gene in the “+PYO” 

samples were compared to the corresponding reads in the “No PYO” control for each replicate 

independently (Pritchard et al., 2014; Basta et al., 2017). Next, the read ratio for each replicate was 

calculated within ARTIST for each gene and then log2-transformed. Finally, the p-values for both 

replicates were combined using the Fisher’s combined probability test as done in Basta et al. (2017), 

and the average of the log2-ratios of the two replicates are also shown. For the log2-ratios and p-

values for all PA14 genes, see S1 Table. For heatmaps shown in Fig. 1A, the average log2-ratios 

(fitness) for the selected genes were plotted using the geom_tile() function from the ggplot2 package 

in R (R Core Team, 2018; Wickham, 2016). 

Tn-seq datasets correlation analysis 

To compare the results of this Tn-seq analysis with a previously published study (Cameron 

et al., 2018) analyzing fitness determinants for survival during ciprofloxacin treatment in the               

P. aeruginosa PAO1 strain background (Fig. 1E and S1 Table), the data from that study’s 

supplemental Table S1 were used. The normalized average ratio of reads in the treated sample 

compared to reads in the input sample for each gene (geometric mean of 3 replicates) was log2-

transformed for comparison to the Tn-seq data described above. The list of genes was filtered to 

include only genes for which ratios were reported in both our PYO Tn-seq experiment and the 

ciprofloxacin Tn-seq study, and for which there are clear orthologs in both strains (n = 4209 genes). 

Orthologs were determined using the “pseudomonas.com” database (Winsor et al., 2016). 
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Tn-seq validation experiments 

To validate the Tn-seq results (Fig. 1C), experiments were performed by comparing the 

survival of four different mutants (∆phz∆ackA∆pta, ∆phz∆lptA, ∆phz∆mexS, and ∆phz∆dctBD) to 

the survival of the ∆phz strain upon exposure to PYO. The experimental design was very similar to 

the one used for the Tn-seq, with minor adaptations. An overnight culture (5 mL) of each strain was 

grown in SMM (40 mM succinate) from LB plates. Cells were washed and re-suspended at an OD500 

of 0.1 (or 0.25 for ∆phz∆dctBD) in the same medium to start the new cultures (5 mL), which were 

grown to OD500 ~0.8-1, pelleted, washed, and re-suspended in the same minimal medium without 

succinate (no carbon source) at OD500 of 1. For each strain, the culture was split across 8-12 wells 

(150 µL cultures) in a 96-well plate, with 100 µM PYO added to half of the cultures. 70 µL of 

mineral oil was added to the top of the wells to prevent evaporation. Propidium iodide (PI) at 5 µM 

was also added to the cultures to monitor cell death (Meirelles and Newman, 2018). The plate was 

then moved to a BioTek Synergy 4 plate reader and incubated under shaking conditions at 37 ºC for 

24 hrs. After incubation, cultures were serially diluted in buffer and plated for colony forming units 

(CFUs) on LB agar, and survival in the presence of PYO was compared to the no-PYO control. 

Plates were incubated at room temperature (RT) and CFUs were counted after 36-48 hrs. In this 

study, a stereoscope was always used to count the CFUs. Survival levels were calculated for each 

mutant (i.e. for each replicate, the % survival for “+PYO” was calculated based on CFUs for “No 

PYO”). Then, the survival levels for each mutant were normalized by the survival levels of the ∆phz 

parent strain (i.e. % survival for “+PYO” for each mutant was divided by the average % survival for 

“+PYO” of the ∆phz strain); these “fitness” values were log2-transformed for plotting. 

PYO tolerance with efflux inhibitor  

Survival assays with efflux inhibition were performed to test the importance of efflux 

systems in P. aeruginosa for tolerance against PYO toxicity. From a ∆phz overnight culture pre-

grown in SMM (20 mM succinate), a new 7 mL culture was started in fresh SMM at an OD500 of 

0.05 and was incubated for around 10 hrs (enough to reach stationary phase). Cells were then 

pelleted, washed, and re-suspended in MPB at an OD500 of 1 (10 mL of culture was prepared). The 

culture was then split into four different treatments: (i) no PYO, no PAβN; (ii) 100 µM PYO, no 

PAβN; (iii) no PYO, with PAβN (50 µg/mL), and (iv) 100 µM PYO, with PAβN. Each of the 
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treatments were split across 12 wells containing 150 µL of culture + 70 µL of mineral oil in a 96-

well plate. The plate was incubated at 37 ºC under shaking conditions using a BioTek Synergy 4 

plate reader. Samples were serially diluted in MPB and plated for CFUs on LB agar after 12, 24, and 

48 hrs. Survival for treatments containing PYO were calculated based on the CFUs counted for the 

negative control without PYO (Fig. 1D). At each time point, four wells were sampled, with each 

well considered an independent replicate. The experiment was repeated twice with similar results. 

Antibiotic tolerance experiments using P. aeruginosa 

Tolerance assay for WT, ∆phz, and ∆phz + PYO. For most antibiotic tolerance assays (except 

for tolerance using cells harvested during log-phase, see below), the experimental design shown in 

S4A Fig. was followed. WT and ∆phz cells were grown from a plate into overnight cultures in GMM 

with 20 mM glucose. Next, WT and ∆phz cells were pelleted, washed, and re-suspended at an OD500 

of 0.05 in four independent new cultures (replicates) in GMM (10 mM glucose) per treatment. Three 

treatments were prepared: WT, ∆phz (no PYO), and ∆phz + 100 µM PYO, with four independent 

biological replicates for each. Each of the four individual cultures (replicates) were incubated for 

around 20 hrs, reaching stationary phase, in 7 mL cultures (18 x 150 mm glass tubes). Each 

individual culture (replicate) was then split into a negative control (no antibiotic) or antibiotic 

treatment (2 mL of culture per each treatment, using plastic Falcon tubes, VWR Cat. No. 352059). 

After addition of the antibiotic from concentrated stocks, cultures were incubated for four hours, 

serially diluted in MPB, and then plated for CFUs on LB agar. Unless stated otherwise, cells were 

not washed before plating. We observed that washing the cells did not make any difference in the 

outcome of the experiments. In addition, washing was not feasible for the tolerance assays using 

smaller volumes (i.e. in 96-well plates). The only two experiments where washing was performed 

are described below (“Tolerance assay with PAβN” and “Tolerance assay to measure the lag in CFUs 

appearance”). In these cases, cells were washed because (i) the ciprofloxacin concentrations were 

higher (10 µg/mL) and more likely to affect P. aeruginosa cells on the plate, and (ii) for the case of 

the PAβN experiment, we wanted to avoid having cells be in contact with the inhibitor while growing 

on the plate. Antibiotics were used at the concentrations mentioned in figure legends. Plates were 

incubated at RT and CFUs were counted after 36-48 hrs. Plates were always checked again after 

seven days to count any late-arising CFUs. Importantly, for all tolerance experiments performed in 
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this study (including this and all experiments described below), each experiment was repeated at 

least twice on different days, with similar results. 

The same protocol was followed for the experiment testing different concentrations of PYO 

(Fig. 2H) and for the experiment testing how PYO impacts tolerance of different P. aeruginosa 

mutants with partial resistance to ciprofloxacin (CipR-21, 25, 33, and 40, S7E Fig). For the 

experiment testing tolerance after exposure to different phenazines (Fig. 2E), all the phenazines were 

dissolved in a common solvent (DMSO), which was used as the negative control; these experiments 

were performed in a ∆phz* mutant lacking not only the phzA-G1 and phzA-G2 operons, but also all 

phenazine modification genes, to prevent the transformation of phenazine 1-carboxylic acid (PCA) 

into the other phenazines (see S5 Table). For experiments performed in synthetic cystic fibrosis 

sputum medium SCFM (Fig. 2D), the same experimental design was followed, with the exception 

that SCFM was used instead of GMM.  

Tolerance assay for strains with arabinose-inducible constructs. For these experiments (Fig. 

2I and S6B Fig), the 20 hr cultures of each strain (∆phz Para:mexGHI-opmD, ∆phz Para:ahpB and 

∆phz Para:katB) were grown with and without 20 mM arabinose for induction of the controlled 

systems, and then exposed to ciprofloxacin the same way described above. To rule out any non-

specific interference of the inducer, negative controls with and without 20 mM arabinose using the 

parent ∆phz strain (without the insertions in the attTn7 site) were also done. Adding arabinose to the 

∆phz strain did not impact tolerance levels (S6 Fig).  

Tolerance assay with PAβN. Experiments using the efflux inhibitor PAβN (S4G Fig) were 

also performed similarly to the way as described above. The only differences were that after the 20 

hrs incubation and before the addition of the antibiotic, PAβN was added to the cultures at a final 

concentration of 50 µg/mL. Cultures were incubated for 15 min and then ciprofloxacin was added, 

followed by a four-hour incubation. For these experiments, instead of plating cells directly on LB, 1 

mL of culture of each replicate/treatment was pelleted (12500 rpm for 2 min), washed in MPB for 

removal of ciprofloxacin and PAβN, and only then serially diluted in MPB and plated on LB for 

CFU counting.  
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Tolerance assay to measure the lag in CFU appearance. This experiment (S4F Fig) followed 

the same general protocol described above (using 10 µg/mL of ciprofloxacin). The difference was 

that the reported CFUs were counted after incubation of LB plates for two days and seven days, 

whereas otherwise only the final counts from the seventh day were reported. This was done to 

quantify lag in the CFUs’ growth under the studied conditions. Similarly to the tolerance assays with 

PAβN and ciprofloxacin described above, cells were pelleted and washed before plating on LB for 

CFU counting. 

Tolerance assay for cells harvested during log-phase. ∆phz cells were grown in overnight 

cultures in GMM (20 mM glucose). Next, cells were pelleted, washed, and re-suspended into two 

new cultures, one with PYO (100 µM) and one without PYO, at an OD500 of 0.05 in GMM (10 mM 

glucose, 7 mL cultures). Cultures were grown until OD500 = 0.5 (around 5-6 hrs). Cells were then 

washed and re-suspended in the same medium at an OD500 of 0.5, but without the nitrogen source 

(i.e. no NH4Cl). PYO was re-added after washes to the culture that was pre-grown with PYO. The 

cultures, one with and one without PYO, were then split into different treatments: negative control 

(no antibiotic), ciprofloxacin (0.5 µg/mL), levofloxacin (1 µg/mL), gentamicin (16 µg/mL), and 

tobramycin (4 µg/mL). Then, they were all transferred to wells in a 96-well plate (three to four wells 

per treatment, with each well being considered an independent replicate). Cultures within wells 

contained 150 µL with an additional 70 µL of mineral oil on top to prevent evaporation. The 

depletion of nitrogen prevented growth in the negative control, which limited overestimation of the 

antibiotic killing effect (because survival rates were calculated relative to the negative control). The 

plates were incubated for four hours at 37 ºC under shaking conditions (175 rpm) using a benchtop 

incubator (VWR incubator orbital shaker). The 96-well plate was kept inside an airtight plastic 

container with several wet paper towels to maintain high humidity attached to the shaker. After 

incubation, cells were serially diluted and plated on LB agar for CFU counting (S4B Fig). A similar 

experiment was also performed with the strains containing arabinose-inducible constructs (∆phz 

Para:mexGHI-opmD, ∆phz Para:ahpB and ∆phz Para:katB) and the ∆phz background control (S6A Fig), 

for which tolerance to ciprofloxacin (0.5 µg/mL) was tested. The experiment followed the same 

protocol described above, with the difference that, instead of presence or absence of PYO, strains 

were incubated in the presence or absence of 20 mM arabinose.  
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Time-lapse microscopy experiment and quantification 

Fluorescently tagged strains of WT or ∆phz were grown in GMM and tolerance experiments 

were performed as shown in S4D Fig. using ciprofloxacin (10 µg/mL). After the four-hour 

incubation with the antibiotic, cells were washed and re-suspended in GMM. The two different 

strains were then mixed and placed on an agarose pad containing GMM (no ciprofloxacin or PYO 

was added to the pad). Agarose pads were placed into a PELCO Clear Wall Glass Bottom Dish (Cat. 

No. 14023-20), and the dish was used for imaging within the microscope incubation chamber. 

Outgrowth was visualized using a Nikon Ti2E microscope with Perfect Focus System 4. Incubation 

proceeded for 12.5 to 15 hrs at 37 ºC, with imaging every 15 min in bright field (phase contrast), 

green and red fluorescence channels (50 ms exposure with 470 nm LED lamp and a green-FITC 

filter [ex = 465-495nm, em = 515-555nm] for GFP; 50 ms exposure with 555 nm LED lamp and a 

quad band filter [red ex = 543-566nm, red em = 580-611nm] for mApple).  

For image analysis, a Fiji macro was used. Briefly, fluorescent channels (GFP/mApple) of 

the first and last time points were segmented using the “Auto Threshold” function and “Default” 

setting. The area of the segmented cells was then recorded using the “Analyze Particles” function in 

Fiji (Schindelin et al., 2012). This allowed for quantification of the total area covered by cells within 

each channel, with each field of view being processed separately. After that, for each field of view, 

the total area covered by WT cells (or ∆phz + 100 µM PYO, depending on the experiment) was 

divided by the area covered by ∆phz cells to obtain the relative “growth area ratios.” This was done 

for first and last time points. Three experiments were performed, with different fluorescent 

protein/strain combinations: (i) WT::mApple/∆phz::GFP (n = 13 fields of view, Fig. 2F-G); (ii) 

∆phz::GFP+PYO /∆phz::mApple (n = 19, Fig. 2G); and (iii) WT::GFP/∆phz::mApple (n = 16, S4E 

Fig). GFP/mApple were controlled by the rpsG promoter for all of the strains (S5 Table).  

RNA extraction and quantitative reverse transcriptase PCR (qRT-PCR) 

Experiment 1 – measurement of PYO-induced gene expression. Six different treatments were 

prepared for this qRT-PCR experiment: (i) WT PA14, (ii) ∆phz, (iii) ∆phz + 1 µM PYO, (iv) ∆phz 

+ 10 µM PYO, (v) ∆phz + 100 µM PYO, and (vi) ∆phz + 200 µM PYO. Cultures of WT or ∆phz 

were grown overnight in GMM (20 mM glucose), then cells were washed and resuspended at an 
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OD500 of 0.05 (three replicates) in fresh GMM (5 mL in culture tubes). Different concentrations of 

PYO were added to ∆phz cultures as mentioned and all cultures were incubated for around 8.5 hrs 

(until early stationary phase). This was enough time for WT to make PYO (around 50-70 µM, 

measured by absorbance at OD691 (Reszka et al., 2004)). After incubation, cells were pelleted, 

immediately frozen using liquid nitrogen, and stored at -80 ºC. 

Experiment 2 – measuring arabinose induction of mexGHI-opmD, ahpB, and katB. Eight 

different treatments were prepared for this qRT-PCR experiment, in which each of the four tested 

strains (∆phz, ∆phz Para:mexGHI-opmD, ∆phz Para:ahpB, and ∆phz Para:katB) were incubated with 

and without 20 mM arabinose for artificial induction of the constructs. Cultures of the four strains 

were grown overnight in GMM (20 mM glucose), then cells were washed and resuspended at an 

OD500 of 0.05 (three replicates) in the same medium (5 mL in culture tubes), with and without 20 

mM arabinose (for conditions without arabinose, the respective amount of water was added). 

Cultures were incubated for around 8.5 hrs, then pelleted, immediately frozen using liquid nitrogen, 

and stored at -80 ºC. 

For RNA extraction, previously published protocols were followed (Babin et al., 2016; 

Meirelles and Newman, 2018). Briefly, samples were thawed on ice for 10 min and re-suspended in 

215 µL of TE buffer (30 mM Tris HCl, 1 mM EDTA, pH 8.0) containing 15 mg/mL of lysozyme + 

15 µL of proteinase K solution (20 mg/mL, Qiagen), and then incubated for 8–10 min. For lysis steps 

and RNA extraction, the RNeasy kit (Qiagen) was used. Samples were then treated with TURBO 

DNA-free kit (Invitrogen) for removal of any contaminant gDNA. Next, cDNA was synthesized 

using iScript cDNA Synthesis kit (Bio-Rad) (1 µg of total RNA was used). For these kits, the 

manufacturer’s instructions were followed. qRT-PCR reactions were performed using iTaq 

Universal SYBR Green Supermix (Bio-Rad) in 20 µL reactions using a 7500 Fast Real-Time PCR 

System machine (Applied Biosystems) following published protocols (Meirelles and Newman, 

2018). Standard curves for each primer pair were prepared using P. aeruginosa gDNA and were 

used for calculation of cDNA for each gene studied. The house-keeping gene oprI was used as a 

control gene for normalizations (Babin et al., 2016). 

Data showing total oprI-normalized cDNA levels (i.e. cDNA measured for a certain gene in 

a certain sample, divided by the respective cDNA measured for oprI in the same sample) and the 
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log2-fold change in expression are shown in Fig. 2B and S1, S2, S3, and S5 Figs. Fold changes were 

calculated relative to the mean value for ∆phz samples without added PYO (Fig. 2B and S1B and S3 

Figs) or the mean value of samples from the same strain without added arabinose (S5B Fig). cDNA 

values for replicates within each efflux gene/treatment (shown in S2 Fig) were averaged and used 

with the geom_tile() function in R (R Core Team, 2018; Wickham, 2016) for generation of the 

heatmap shown in Fig. 2B. 

Stenotrophomonas and Burkholderia growth curves and antibiotic tolerance assays 

Stenotrophomonas maltophilia ATCC 13637, Burkholderia cepacia ATCC 25416, B. 

cenocepacia AU42085, B. multivorans AU42096 (B. multivorans 1), and B. gladioli AU42104 were 

used in the growth experiments shown in Fig. 5A (for strain details, see S5 Table). Each strain was 

grown overnight in GMM (20 mM glucose, 5 mL culture tubes) supplemented with 1x MEM amino 

acids (AA) (Sigma, Cat. No. M5550). Cells were pelleted, washed, and re-suspended in new cultures 

at an OD500 of 0.05 in the same medium. Cultures were then split, different concentrations of PYO 

were added (0, 10, 50 or 100 µM for S. maltophilia; 0, 10 or 100 µM for all others), and moved to a 

96-well plate (4 to 6 wells per treatment, with each well being considered an independent replicate). 

Cultures within wells contained 150 µL with an additional 70 µL of mineral oil on top to prevent 

evaporation. The plates were incubated at 37 ºC under shaking conditions using a BioTek Synergy 

4 plate reader with OD500 measurements every 15 min for 24 hrs to measure growth. Assays for 

tolerance to ciprofloxacin with or without exogenous PYO were performed for S. maltophilia 

(sensitive to PYO) and for four Burkholderia strains (all resistant to PYO): B. cepacia, B. 

cenocepacia, B. multivorans 1, and B. multivorans AU18358 (B. multivorans 4). The experiments 

followed exactly what was done for P. aeruginosa (S4A Fig), except that cultures were grown in 

GMM + AA, and are shown in Figs 4B and 4E. Finally, a tolerance assay in SCFM with and without 

PYO was performed for B. multivorans 1 (Fig. 5H) and followed what was described for the SCFM 

experiments in P. aeruginosa (with the only difference being the ciprofloxacin concentrations, 

always mentioned in the legends). 

 

Co-culture antibiotic tolerance experiments 
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To test how PYO produced by P. aeruginosa impacts tolerance to ciprofloxacin in other 

species, co-culture experiments were performed using membrane-separated 12-well tissue culture 

plates containing 0.1 µm pore PET membranes (VWR Cat. No. 10769-226). Briefly, overnight 

cultures of the P. aeruginosa strain (WT/∆phz PA14 or PA 76-11) and the respective other species 

tested (S. maltophilia, B. cepacia, B. cenocepacia or B. multivorans 1) were prepared in GMM         

(20 mM glucose) + AA. Cells were pelleted, washed, and re-suspended to different ODs as follows: 

(i) for any P. aeruginosa-Burkholderia assay, P. aeruginosa starting OD500 = 0.05 and Burkholderia 

starting OD500 = 0.025; (ii) for the P. aeruginosa-S. maltophilia assay, P. aeruginosa starting OD500 

= 0.01 and S. maltophilia starting OD500 = 0.1. P. aeruginosa was cultured in the bottom part of the 

well (600 µL), while the other species was cultured in the upper part of the well (100 µL), as shown 

in Fig. 5C. B. cepacia and S. maltophilia were cultured either with WT or ∆phz P. aeruginosa PA14 

(with and without 100 µM PYO exogenously added).  

B. cenocepacia and B. multivorans 1 were cultured either with PA 76-11 (a P. aeruginosa 

strain isolated from CF sputum that produced 50-100 µM PYO in these assays) or alone in the 

presence or absence of 100 µM PYO. For cases where Burkholderia was grown alone, the strain 

tested was grown in both the bottom and top parts of the membrane-separated wells. In all 

experiments, co-cultures were grown for around 20 hrs at 37 ºC under shaking conditions (175 rpm) 

using a benchtop incubator, followed by addition of ciprofloxacin (concentrations were either 1 or 

10 µg/mL, as specified in the figure legends) and incubation for four hours. The membrane-separated 

plates were kept inside an airtight plastic container with several wet paper towels to maintain high 

humidity attached to the shaker. For every co-culture combination in the membrane-separated plate, 

three wells were used as a negative control (no antibiotic) and three wells were used for ciprofloxacin 

treatment; each well was considered an independent replicate. After incubation with ciprofloxacin, 

cells were serially diluted in MPB and plated for CFUs on LB. In most cases, only Burkholderia 

cells were plated (Fig. 5F). However, to test if our P. aeruginosa WT strain was still more tolerant 

than the ∆phz strain when both were grown in the presence of a Burkholderia species, we performed 

an experiment with P. aeruginosa PA14 and Burkholderia multivorans 1 where we treated the co-

cultures with ciprofloxacin 1 µg/mL and plated P. aeruginosa (Fig. 5G). Finally, we also performed 

a co-culture experiment in SCFM (P. aeruginosa PA14 WT/∆phz with B. multivorans 1) to test if 

PYO produced by PA14 WT increases tolerance in Burkholderia in this medium (Fig. 5I). This 
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experiment in SCFM followed the same overall experimental design used before, except for using 

SCFM instead of GMM in all steps.  

Determination of minimum inhibitory concentrations  

The antibiotic concentrations used for selecting de novo antibiotic-resistant mutants in the 

fluctuation tests were chosen based on the results of a modified agar dilution MIC assay. Overnight 

cultures were grown for each strain in GMM (with 10 mM glucose) or GMM (10 mM glucose) + 

AA, respectively, then diluted to an OD500 of 0.5, from which 3 µL was spotted onto MH agar 

containing a 2-fold dilution series of the antibiotic. After the spots dried, the antibiotic plates were 

incubated upside down for 48 hrs at 37 ºC before assessing the spots for growth. We considered the 

MIC to be the first concentration at which there was neither a lawn of background growth, nor dozens 

of overlapping colonies visible without magnification. We generally used 2x this MIC as the 

selection condition for fluctuation tests; for P. aeruginosa, this corresponded to the EUCAST 

(EUCAST, 2003) resistance breakpoints for ciprofloxacin and levofloxacin, while our chosen 

concentrations of gentamicin and tobramycin were two-fold higher than the EUCAST breakpoints 

(EUCAST, 2020). EUCAST breakpoints are not available for Stenotrophomonas spp. or the 

Burkholderia cepacia complex. The appropriateness of the selection condition was additionally 

verified by performing a fluctuation test, as described below, and choosing the antibiotic 

concentration that reliably yielded a countable number of colonies (zero to several dozen, with at 

least several non-zero counts per 44 parallel cultures) in each well.    

Ciprofloxacin MICs for parent strains and isolated mutants from the fluctuation tests were 

determined according to standard clinical methods for broth microdilution assays (Determination of 

minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution, 2003). In brief, 

cells from either overnight cultures in MH broth or fresh streaks on LB agar (14-16 hrs old) were 

resuspended to a density of 3-7 x 105 CFUs/mL in a two-fold dilution series of ciprofloxacin in MH 

broth, with or without 100 µM PYO. The dilution series were set up in a final volume of 100 µL per 

well in 96-well microtiter plates, with appropriate no-antibiotic and cell-free controls. Three 

biological replicates (independent overnight cultures or cell suspensions) were prepared for each 

tested strain. Following inoculation, the microtiter plates were sealed with a plastic film to prevent 
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evaporation and incubated in a single layer at 37 ºC, without shaking. The wells were assessed for 

growth (turbidity) visible to the naked eye after 18 hrs of incubation.    

Fluctuation tests, calculation of mutation rates, and model fitting 

For all tested strains and conditions, fluctuation tests were performed by inoculating 200 µL 

cultures in parallel in a flat-bottomed 96-well plate. All reported fluctuation test data for P. 

aeruginosa are from experiments using the ∆phz strain. We also performed fluctuation tests using 

the P. aeruginosa PA14 WT strain, and performed phenotypic and genotypic characterization of 

partially-resistant mutants detected in those experiments (see below); however, the effect of PYO on 

apparent mutation rates in WT was difficult to interpret due to inconsistent PYO production in the 

96-well plates. For cultures that were grown with PYO (or arabinose in the case of strains with 

arabinose-inducible constructs), the PYO (or 20 mM arabinose) was added to the medium before 

inoculation. The cultures were inoculated with a 10-6 dilution of a single overnight culture 

(representing a biological replicate) that had first been diluted to a standard OD500 of 1.0, 

corresponding to an initial cell density of approximately 2000-2500 CFUs/mL (400-500 

cells/culture). Each treatment condition consisted of 44 such parallel cultures.  

The 96-well plates were placed inside an airtight plastic container with several wet paper 

towels to maintain high humidity, then incubated at 37 ºC with shaking at 250 rpm. For plating 

during log-phase, the cultures were incubated until reaching approximately half-maximal density 

(OD500 of 0.4-0.7 for P. aeruginosa in GMM with 10 mM glucose, or 0.9-1.2 for P. aeruginosa in 

SCFM or B. multivorans in GMM + AA). For plating during stationary phase, the cultures were 

incubated for 24 hrs. The cultures were then plated by spotting 40-50 µL per culture into single wells 

of 24-well plates (for any given experiment, the same volume was spotted for all parallel cultures); 

each well contained 1 mL of MH agar or SFCM agar plus an antibiotic, with or without 100 µM 

PYO (or 20 mM arabinose for strains with arabinose-inducible constructs). In the case of B. 

multivorans cultures that were spotted onto antibiotic plates containing 100 µM PYO, the cultures 

were first diluted 1:10 (if not pre-treated with 100 µM PYO) or 1:100 (if pre-treated with 100 µM 

PYO).  
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At the same time as plating onto the antibiotic plates, six representative cultures from each 

treatment were serially diluted and plated on LB agar plates to assess total CFUs. The antibiotic 

plates were incubated upside down, in stacks of no more than eight, at 37 ºC for 16-24 hrs for P. 

aeruginosa (except for gentamicin plates, which were incubated for 40-48 hrs) or 40-48 hrs for B. 

multivorans. Subsequently, colonies were counted under a stereoscope at the highest magnification 

for which the field of view still encompassed an entire well; occasionally, a well contained too many 

colonies to count (a so-called “jackpot” culture (Rosche and Foster, 2000)), in which case that culture 

was discarded from further analysis. The LB agar plates for total CFU counts were incubated for 30-

36 hrs at RT before counting colonies at the same magnification.   

Mutation rates reported in the figures were calculated using the function newton.LD.plating 

from the R package rSalvador (Zheng, 2017) to estimate m, the expected number of mutations per 

culture. This is a maximum likelihood-based method for inferring mutation rates from fluctuation 

test colony counts, based on the classic Luria-Delbrück (LD) distribution with a correction to account 

for the effects of partial plating (i.e. plating a portion of each culture rather than the total volume) 

(Zheng, 2017). We chose this method because it has been shown to be the most accurate estimator 

of m when partial plating is involved (Zheng, 2015; Zheng, 2017). To get µapp (apparent mutation 

rate per generation) from m, we divided m by the total number of cells per parallel culture (Zheng, 

2017), as estimated from the mean number of CFUs counted for the six representative cultures.  

To compare the fits of different formulations of the LD distribution to our data, we generated 

theoretical cumulative distributions using the parameter values estimated for our data. Specifically, 

for the Hamon and Ycart version of the LD model (Hamon and Ycart, 2012), we estimated m and w 

(relative fitness of mutants compared to the parent strain in the non-selective pre-plating liquid 

growth medium) using the function GF.est from the R script available at 

http://ljk.imag.fr/membres/Bernard.Ycart/LD/ (version 1.0; note that in the script, m is called alpha 

and 1/w is called rho); then, we used the function pLD from the same script to generate the theoretical 

distribution. For the mixed LD-Poisson and basic LD models, we wrote and used an R translation of 

the MATLAB code written by Lang and Murray (2008); the original code is available at 

https://github.com/AWMurrayLab/FluctuationTest_GregLang. The basic LD model used by Lang 

and Murray (2008) is equivalent to that available in the rSalvador package (using the function 

newton.LD), except without the correction for partial plating; the latter is only important when using 
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the estimate of m to infer the mutation rate, not when comparing the fits of different models to the 

empirical cumulative distribution of the raw colony counts.  

Plots of the empirical cumulative distributions of our data against the theoretical models 

showed that the Hamon and Ycart model was a visually good fit in all cases (see Figs. 4B, 6C, and 

S9 Fig. for examples). To further assess goodness-of-fit of the Hamon and Ycart model, we 

performed Pearson’s chi-square test in R after binning the data and theoretical distribution such that 

the expected number of cultures in each bin of mutant counts was at least five (Boe et al., 1994). To 

compare the goodness-of-fit of the Hamon and Ycart model to the basic LD model, we calculated 

the negative log-likelihood for each model and performed the likelihood ratio test. To compare the 

Hamon and Ycart model to the mixed LD-Poisson model, we simply compared the negative log-

likelihoods (smaller values indicate a better fit); the likelihood ratio test was not applicable as these 

two models contain the same number of parameters. Note that although the Hamon and Ycart (or in 

some cases, LD-Poisson) models were often better fits than the basic LD model, we still used the 

basic LD model for statistical comparison of mutation rates between conditions, because an accurate 

method to account for partial plating has not yet been developed for the cases of post-plating 

mutations or differential fitness between mutants and parent strains (Zheng, 2017). Nevertheless, 

similar patterns in mutation rates were observed when using an older method of accounting for partial 

plating to derive µapp from the Hamon and Ycart model (Gillet-Markowska et al., 2015); the Pearson 

correlation coefficient was 0.98 for mutation rates calculated with the newton.LD.plating function 

in rSalvador versus the partial-plating-corrected Hamon and Ycart method (S3 Table). We also 

separately performed non-parametric statistical analysis of the raw mutant frequencies (i.e. mutant 

colony counts divided by the number of cells per parallel culture), as such analysis is agnostic to any 

assumptions about the biological processes underlying the data. The statistical significance of this 

analysis generally corresponded with the statistical significance of a likelihood ratio test based on 

the newton.LD.plating model of mutation rates, indicating that the effects of PYO were robust to 

different mathematical approaches to analyzing the fluctuation test data (S2 Table). 

Characterization of antibiotic resistance phenotypes 

We defined putative ciprofloxacin-resistant mutants as “enriched” by PYO in the fluctuation 

tests if colonies with a given morphology were at least 2x more numerous on the PYO-containing 



 

 

110 

ciprofloxacin plate than the respective non-PYO-containing ciprofloxacin plate derived from the 

same 200 µL culture. These putative mutants could be either from the PYO pre-treated or non-PYO 

pre-treated branches of the fluctuation test. Putative mutants that were seemingly enriched by PYO 

were restreaked for purity on PYO-containing agar plates at the same ciprofloxacin concentration on 

which they were selected in the fluctuation test (0.5 µg/mL for PA, 8 µg/mL for B. multivorans). 

Putative mutants that were not enriched by PYO were restreaked on ciprofloxacin agar plates without 

PYO. Frozen stocks of each restreaked, visually pure isolate were prepared by inoculating cultures 

with single colonies in 5 mL of liquid LB, incubating to stationary phase, mixing 1:1 with 50% 

glycerol, and storing at -80 ºC.  

 The levels of ciprofloxacin resistance of selected isolates, as well as the parent strains, were 

assessed using a CFU recovery assay as follows. For each isolate, four 5 mL cultures in GMM (for 

P. aeruginosa) or GMM + AA (for B. multivorans) were inoculated directly from the frozen stock, 

to minimize the number of generations in which secondary mutations could be acquired. The cultures 

were grown to stationary phase overnight, then subcultured to an OD500 of 0.05 in 5 mL of fresh 

GMM (for P. aeruginosa) or GMM + AA (for B. multivorans), with or without 100 µM PYO. The 

new cultures were grown to mid log-phase, then serially diluted in GMM or GMM + AA (+/- 100 

µM PYO as appropriate) and plated for CFUs (10 µL per dilution step) on 1) plain MH agar, 2) MH 

agar + ciprofloxacin, and 3) MH agar + ciprofloxacin + 100 µM PYO. The lowest plated dilution 

was 10-1, making the limit of detection approximately 1000 CFUs/mL.  

Identification of mutations by whole-genome sequencing 

 Genomic DNA was isolated from selected putative mutants and the parent strains using the 

DNeasy Blood & Tissue kit (Qiagen). Library preparation and 2x150 bp paired-end Illumina 

sequencing was performed by the Microbial Genome Sequencing Center (Pittsburgh, PA), with a 

minimum of 300 Mb sequencing output per sample (~50x coverage). Forward and reverse 

sequencing reads were concatenated into a single file for each isolate and quality control was 

performed using Trimmomatic (version 0.39) (Bolger et al., 2014) with the following settings: 

LEADING:27 TRAILING:27 SLIDINGWINDOW:4:27 MINLEN:35. Mutations were then 

identified using breseq (version 0.34.1) (Deatherage and Barrick, 2014). The annotated reference 

genome for P. aeruginosa UCBPP-PA14 was obtained from BioProject accession number 
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PRJNA38507. For B. multivorans AU42096, no reference genome was available from NCBI. 

Therefore, a genome scaffold was assembled from the paired-end sequencing data for the parent 

strain using SPAdes (version 3.14.0) with default parameters (Bankevich et al., 2012). This 

scaffold was then used as the reference for breseq. Differences between the parent strain and 

isolates were identified using the gdtools utility that comes with breseq to compare the respective 

breseq outputs. All sequenced P. aeruginosa mutants were derived from the ∆phz strain except for 

CipR-33 and CipR-40, which were derived from the WT strain. In the case of B. multivorans, 

several dozen putative mutations were identified that were common to all three sequenced putative 

mutants. We assumed that these represented assembly errors in the parent strain genome scaffold, 

but even if they were genuine mutations, these would not account for the phenotypic differences 

between the isolates; therefore, S6 Table reports only mutations that were unique to each isolate. 

The genomic loci containing each putative mutation for the B. multivorans isolates were identified 

by retrieving the surrounding 200 bp from the parent genome scaffold and using the nucleotide 

BLAST tool on the MicroScope platform (Vallenet et al., 2020) to find the closest match in the B. 

multivorans ATCC 17616 genome.   

Growth curves with propidium iodide 

 To verify that PYO did not increase the population turnover rate (i.e. cell death) in our log-

phase fluctuation tests prior to the antibiotic selection step, we performed growth curves in the 

presence of different concentrations of PYO, with the addition of propidium iodide (PI) as a 

fluorescent marker for cell death. The use of PI as a marker for PYO-induced cell death has 

previously been validated under similar conditions (Meirelles and Newman, 2018). The growth 

curves were performed in GMM and SCFM for P. aeruginosa ∆phz, and GMM + AA for B. 

multivorans 1. The cultures were prepared and incubated in the same manner as the fluctuation 

tests, except that 5 µM PI was added at the beginning of the experiment, and measurements for 

OD500 and PI fluorescence (ex = 535 nm, em = 617 nm) were taken periodically using a Spark 

10M plate reader (Tecan). Importantly, PI stock concentration (5 mM, 1000x) was prepared in 

DMSO, and the final concentration of DMSO in the cultures did not exceed 0.1%. In addition, 

black 96-well plates with clear bottoms were used to minimize the effects of adjacent wells on 

fluorescence readings. 
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Statistical analyses 

All statistical analyses were performed using R (R Core Team, 2018). Welch’s unpaired t-

tests or one-way ANOVA with post-hoc Tukey’s HSD test for multiple comparisons were used for 

tolerance assay data. The likelihood ratio test as implemented by the rSalvador function 

LRT.LD.plating was used to compare mutation rates, alongside the alternative criterion of non-

overlapping 84% confidence intervals as a proxy for the p < 0.05 threshold for statistical significance. 

The Mann-Whitney U test was used to compare the distributions of mutant frequencies. Welch’s 

unpaired t-tests were used for comparisons of CFU recovery on ciprofloxacin plates under different 

PYO treatments. Benjamini-Hochberg corrections were used in all cases to control false discovery 

rates, except where Tukey’s HSD test was performed. For all antibiotic tolerance assays measured 

by CFUs, survival data were log10-transformed before statistical analyses. 
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Supplementary Tables and Figures 

 

S1 Figure: Effects of different concentrations of PYO on the expression of the P. aeruginosa oxidative stress 
response genes ahpB and katB.  
A. Normalized cDNA levels measured by qRT-PCR. cDNA measurements were normalized by levels of the 
housekeeping gene oprI (see Methods).  
B. Fold change in expression upon PYO treatment, relative to the measurements in untreated ∆phz. ahpB: alkyl 
hydroperoxide reductase B; katB: catalase B. Black horizontal lines mark the mean value for independent biological 
cultures (n = 3).  
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S2 Figure: Effects of PYO on the expression of P. aeruginosa RND efflux systems (normalized cDNA levels).  
The normalized cDNA levels for genes within operons coding for the 11 main RND efflux systems in P. aeruginosa 
are shown. cDNA levels for each gene were measured by qRT-PCR during early stationary phase and normalized 
by the levels of the housekeeping gene oprI (see Methods). This dataset was used to make the heatmap presented 
in Fig. 2B. Black horizontal lines mark the mean value for independent biological cultures (n = 3).  

  



 

 

121 

 

S3 Figure: Effects of PYO on the expression of P. aeruginosa RND efflux systems (fold change).  
The PYO-induced changes in expression for genes within operons coding for the 11 main RND efflux systems in                         
P. aeruginosa are shown. These plots are derived from the normalized cDNA dataset shown in S2 Fig. Here, the 
values for ∆phz were used as the basis for calculation of changes of expression (shown as log2 fold change). Black 
horizontal lines mark the mean value for independent biological cultures (n = 3).   
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S4 Figure: Effects of PYO on P. aeruginosa tolerance to different antibiotics.  
A. Experimental design for survival assay to measure tolerance to clinical antibiotics. In conditions with exogenous 
PYO, the PYO was added when cultures were inoculated. PYO itself was not lethal under these experimental 
conditions (see panel C in this Fig).  
B. Tolerance levels of ∆phz cells harvested in log phase, following growth in the presence or absence of PYO (100 
µM), to different aminoglycosides and fluoroquinolones (GEN = gentamicin, TOB = tobramycin, CIP = 
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ciprofloxacin, and LVX = levofloxacin). Data points represent replicates (n = 4 for all except tobramycin, for which 
n = 3). Stationary phase tolerance experiments are not shown for the aminoglycosides (gentamicin and tobramycin), 
as treatment with tobramycin in stationary phase under our conditions at this clinically-relevant concentration 
(EUCAST, 2020) did not result in cell death, regardless of the presence of PYO. However, for experiments 
performed with stationary phase cells in SCFM, killing did happen (see Fig. 2D).  
C. Representative data showing CFUs counted for ∆phz grown for 20 hrs (glucose minimal medium, see Methods) 
in the presence and absence of PYO in our tolerance assays, showing that PYO itself was not toxic under the studied 
conditions (n = 4). These are the CFUs for the negative control (no antibiotic) for the experiment performed with 
CIP in Fig. 2C.  
D. Experimental design for time-lapse microscopy experiments, in which cells were grown on agarose pads after 
exposure to CIP (10 µg/mL). The strain/fluorescent protein examples shown (i.e. WT::mApple, ∆phz::GFP) are 
the ones used in the images of Fig. 2F.  
E. Quantification of microscopy data as done in Fig. 2G, but for the experiment with swapped fluorescent proteins.  
F. Experiment quantifying how PYO affects lag for CFUs appearing after treatment with CIP (10 µg/mL, see 
Methods). Treating P. aeruginosa cells with 10 µg/mL resulted in high killing levels (see panel G), and we observed 
an increased lag in the absence of PYO (this supports microscopy data presented in Figs 2F-G and S4E Fig). The 
survival levels were calculated for CFUs counted after two days (too early, since more CFUs appeared later, 
changing the calculated survival levels) and seven days (no CFUs appeared after this time point; correct survival 
rate) of the LB plates incubation. Few new CFUs arose for WT and ∆phz+PYO treatments after two days, while 
several appeared for ∆phz. Numbers represent the mean survival ratio of WT/∆phz and ∆phz+PYO/∆phz. For 
survival calculated after two days, PYO's presence gave the impression of a ~10-fold higher survival rate. However, 
this was mostly due to lag of ∆phz, and the real survival difference was around ~2-3-fold (calculated after seven 
days) (n = 4).  
G. Effects of the efflux inhibitor PAβN on tolerance levels to CIP of ∆phz cells grown in the presence or absence 
of PYO (100 µM). Cultures were treated with low (left) and high (right) CIP concentrations. Experiments for all 
the conditions were done in parallel (see Methods for full protocol) (n = 4).  
Statistics: B, C, E, G – Welch’s unpaired t-tests. F – One-way ANOVA with Tukey’s HSD multiple-comparison 
test, with asterisks showing the statistical significance of comparisons with the ∆phz (no PYO) (* p < 0.05,                 
** p < 0.01, *** p < 0.001, n.s. p > 0.05). Black horizontal lines mark the mean value for independent cultures (or 
fields of view, for E).  
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S5 Figure: Artificial induction of mexGHI-opmD, ahpB and katB.  
A. Normalized cDNA levels measured by qRT-PCR. cDNA levels were normalized by the housekeeping gene 
oprI.  
B. Fold change in expression upon arabinose induction. This dataset can be compared to the PYO-mediated 
induction of the same genes as shown in Figs. 2B, and S1, S2 and S3 Figs. The four strains shown are: 1) the parent 
∆phz (white background), 2) ∆phz Para:mexGHI-opmD (magenta background), 3) ∆phz Para:ahpB (green 
background) and 4) ∆phz Para:katB (blue background). +/- represent addition or not of 20 mM arabinose to the 
cultures for the artificial induction of expression. For additional experimental details and strain information, see 
Methods and S5 Table. Black horizontal lines mark the mean value for independent biological cultures (n = 3).   
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S6 Figure: Effect of artificial induction of PYO-induced genes on tolerance to ciprofloxacin.  
Survival relative to the no-antibiotic control is shown for the parent ∆phz strain and the three arabinose-inducible 
strains (in which the PYO-inducible genes mexGHI-opmD, ahpB, or katB are under control of an arabinose-
inducible promoter) grown in the presence or absence of 20 mM arabinose, without exposure to PYO. The tolerance 
experiments were performed for cultures in both log phase (A, n = 3) and stationary phase (B, n = 4). In B, the 
experiment for mexGHI-opmD is the same as in Fig. 2I, but is also shown here for ease of comparison. Statistics: 
Welch’s unpaired t-tests (* p < 0.05, ** p < 0.01, *** p < 0.001, n.s. p > 0.05). Black horizontal lines mark the 
mean value for independent cultures.  
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S7 Figure: Effect of PYO or PYO-induced genes on apparent mutation rates in P. aeruginosa.  
A. Apparent mutation rates of stationary-phase ∆phz grown in liquid minimal medium and plated onto MH agar 
containing ciprofloxacin (CIP, 0.5 µg/mL), with or without pre- and/or co-exposure to 100 µM PYO relative to the 
antibiotic selection step (n = 8).  
B. Apparent mutation rates of log-phase cells grown in glucose minimal medium and plated onto MH agar 
containing CIP (0.5 µg/mL), with or without pre- and/or co-exposure to 20 mM arabinose relative to the antibiotic 
selection step. Data are shown for ∆phz Para:mexGHI-opmD, ∆phz Para:katB and ∆phz Para:ahpB (n = 4). In all panels, 
each data point represents 44 parallel cultures from a single biological replicate, and the vertical lines represent 
84% confidence intervals, for which lack of overlap corresponds to statistical significance at the p < 0.05 level 
(Zheng, 2017). The PYO treatments correspond to the following: -/- denotes no PYO pre-treatment (in the liquid 
culture stage) or co-treatment (in the antibiotic agar plates), +/- denotes PYO pre-treatment but no co-treatment,        
-/+ denotes PYO co-treatment without pre-treatment, and +/+ denotes both PYO pre-treatment and co-treatment.  
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S8 Figure: Effect of PYO on resistance phenotypes and antibiotic tolerance of P. aeruginosa mutants.  
A. The percentage of CFUs recovered on CIP (0.5 µg/mL) either with or without 100 µM PYO in the agar, for log-
phase cultures of representative resistant mutants of P. aeruginosa (P.a.) that were not enriched by exposure to 
PYO in the fluctuation tests. The mutants were pre-grown with or without 100 µM PYO in glucose minimal 
medium before plating. On the x-axis, “pre” denotes the presence of PYO in the liquid cultures and “co” denotes 
the presence of PYO in the agar plates. Percentage recovery was calculated relative to total CFUs counted on non-
selective plates (n = 4). B. Tolerance to CIP (1 µg/mL) of partially-resistant mutants grown in glucose minimal 
medium to stationary phase with or without 100 µM PYO (n = 4). Experiments were performed as shown in S5A 
Fig.  
C. The percentage of CFUs recovered on CIP (0.5 µg/mL) for log-phase cultures of representative resistant mutants 
that were enriched by exposure to PYO in the fluctuation tests (n = 4). Experiments were performed in the same 
way as in panel A.  
D-E. Growth curves performed for P. aeruginosa ∆phz (P.a.) and B. multivorans 1 (B.m.) in glucose minimal 
medium (with the addition of amino acids for B. multivorans; see Methods) or SCFM, with different concentrations 
of PYO in the presence of 5 µM propidium iodide (PI), which is a fluorescent marker for cell death. OD500 (cell 
density) is plotted in G, while PI fluorescence is plotted in H. Gray shaded regions represent the standard deviation 
of four biological replicates. In G, the dashed horizontal lines mark the cell density at which P. aeruginosa (lower 
line in left panel) or B. multivorans (upper line in left panel) would have been plated in our fluctuation tests. Note 
that these OD500 values differ from those reported in the Methods section for fluctuation tests due to the use of a 
microtiter plate reader in this experiment, whereas a different spectrophotometer was used in the fluctuation tests. 
In H, the vertical dashed lines mark the time at which the cultures would have been plated in the fluctuation tests 
(in the left panel, left line = B.m. sampling time, right line  = P.a. sampling time). The increase in fluorescence seen 
for B. multivorans prior to stationary phase likely reflects the production of a fluorescent metabolite rather than 
early cell death, as fluorescence was initially higher for the cultures not treated with PYO and the exponential phase 
growth rates were identical regardless of PYO treatment.  
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Statistics: A-C – Welch’s unpaired t-tests (* p < 0.05, ** p < 0.01, *** p < 0.001, n.s. p > 0.05). Unless indicated 
otherwise with brackets, statistical significance is shown for the comparison with the untreated (no PYO) condition. 
In A-C, data points represent independent biological cultures, with horizontal black lines marking the mean value 
for each condition.  
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S9 Figure: Goodness-of-fit of different mathematical models for P. aeruginosa ∆phz fluctuation test data.  
Data are plotted for different combinations of PYO in liquid (pre-treatment) and PYO in agar (co-exposure to 
antibiotic selection). LVX = levofloxacin, GEN = gentamicin, and TOB = tobramycin. The empirical cumulative 
distribution functions of the data (black) are plotted against 1) a variation of the Luria-Delbrück model fit with two 
parameters, m (the expected number of mutations per culture) and w (the relative fitness of mutant cells vs. WT), 
as implemented by Hamon and Ycart (2012) (pink); 2) a mixed Luria-Delbrück and Poisson distribution fit with 
two parameters, m and d (the number of generations that occur post-plating), allowing for the possibility of post-
plating mutations, as implemented by Lang and Murray (2008) (blue); 3) the basic Luria-Delbrück distribution 
model fit only with m, as implemented by Lang and Murray (2008) (gray). In each condition, the plotted data 
represent the biological replicate with the lowest chi-square goodness-of-fit p-value (i.e. least-good fit) for the 
Hamon & Ycart model.  

S1 Table: Read ratios for each gene (PA14 genome) in the PYO tolerance Tn-seq experiment.  
Analysis was done using ARTIST software (see Methods). Ratios = reads + PYO conditions / reads no PYO 
condition (log2-transformed), where high ratio values = increased fitness, and low ratio values = decreased 
fitness. Ciprofloxacin Tn-seq values are from: Cameron et al. (2018) (see Methods). NA = not applicable. NR = 
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not reported, meaning that there were no reads from the gene/locus within the replicate (or in at least one of the 
replicates, when displayed in the “average log2-tranformed ratio” column).  

S2 Table: Statistical significance of comparisons of mutation rates and mutant frequencies. Mutation rates 
reported in this table were calculated using the rSalvador function newton.LD.plating and were compared using the 
LRT.LD.plating function to determine statistical significance. Mutant frequencies were compared using the Mann-
Whitney U test. Reported p-values were adjusted with the Benjamini-Hochberg correction to control the false 
discovery rate. 

S3 Table: Fluctuation test analysis results for all log-phase experiments conducted in minimal medium. 
Model parameters: µ = apparent mutation rate per generation; m = expected number of mutational events per 
cultures; w = fitness ratio of mutants/WT; d = number of post-plating generations. Abbreviations: HY = Hamon 
& Ycart; LD = Luria-Delbrück; score = negative log likelihood; LRT = likelihood ratio test; CIP = ciprofloxacin; 
LVX = levofloxacin; GEN = gentamicin; TOB = tobramycin. See Methods for details on the different 
mathematical models. 

S4 Table: Mutations detected in ciprofloxacin-resistant isolates of Pseudomonas aeruginosa PA14. 
Mutations were detected using breseq, with the reference set as the P. aeruginosa UCBPPPA14 genome obtained 
from BioProject accession number PRJNA38507. Pseudogenes and synonymous substitution mutations were 
omitted from the table. 

S5 Table: Strains, plasmids, and primers used in this study. 

S6 Table: Mutations detected in partially ciprofloxacin-resistant isolates of Burkholderia multivorans 
AU42096.  
Mutations were detected using breseq, with a draft assembly of the genome for B. multivorans AU42096 as the 
reference. Only mutations unique to each isolate are included. 

S7 Table: Ciprofloxacin MICs for fluctuation test isolates and parent strains. MICs were determined in a 
microbroth dilution assay according to standard clinical methods (see Methods). Where a range of values is 
presented, this indicates that the observed MIC sometimes varied depending on the initial cell density of the 
inoculum, even within the clinically-acceptable range of 3-7 x 105 CFUs/mL. 
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C h a p t e r  4  

IMPACTS OF BACTERIAL SECONDARY METABOLITES ON ANTIBIOTIC 
TOLERANCE AND RESISTANCE 

This chapter has been submitted for publication as: 

Perry, E.K.*, Meirelles, L.A.*, and Newman, D.K. From the soil to the clinic: the impact of microbial 
secondary metabolites on antibiotic tolerance and resistance. (Submitted) 

Abstract 

Secondary metabolites profoundly impact microbial physiology, metabolism, and stress 

responses. While these molecules can modulate microbial susceptibility to commonly used 

antibiotics, secondary metabolites are typically excluded from standard antimicrobial susceptibility 

assays. This longstanding oversight may in part account for why infections by diverse opportunistic 

bacteria that produce secondary metabolites often exhibit discrepancies between clinical 

antimicrobial susceptibility testing results and clinical treatment outcomes. Here, we synthesize the 

evidence for which types of secondary metabolites alter antimicrobial susceptibility, as well as how 

and why this phenomenon occurs. We discuss examples of molecules that opportunistic and enteric 

pathogens either make themselves or are exposed to from their neighbors, and the nuanced impacts 

these molecules can have on tolerance and resistance to certain antibiotics. Notably, many 

opportunists hail from the soil, where secondary metabolites have been used for millennia to wage 

microbial chemical warfare. That numerous secondary metabolites interact with known routes of 

antibiotic tolerance and resistance suggests that the ecological history of opportunistic pathogens 

underpins their notoriously high intrinsic antibiotic resilience. Considering the worldwide need to 

optimize antibiotic treatment strategies to mitigate the growing antibiotic resistance crisis, we hope 

this review will stimulate further research on how secondary metabolites impact antibiotic resilience. 

Introduction 

A vast number of organisms produce a wide range of molecules classified as “secondary 

metabolites” (Maplestone et al., 1992; Demain and Fang, 2000). Usually defined as organic 
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compounds that are not directly involved in the producer’s growth and development, secondary 

metabolites can be made by Eukarya (e.g. plants and fungi), Bacteria, and Archaea (Keller et al., 

2005; Tyc et al., 2017; Wang and Lu, 2017). In microbial planktonic cultures, they are typically 

produced during stationary phase, once doubling times have slowed (Price-Whelan et al., 2006; 

Davies, 2013). As a result, these compounds were for many years assumed to be waste products of 

metabolism (Haslam, 1986). However, a more nuanced view of the biological functions of microbial 

secondary metabolites has emerged over the past two decades. Indeed, the moniker “secondary” is 

something of a misnomer, as these molecules have been shown to play key roles in multiple 

physiological processes that are critical for microbial survival (Price-Whelan et al., 2006; Davies, 

2013), including but not limited to the acquisition of nutrients (such as iron or phosphate), cell-cell 

signaling, and energy conservation in the absence of oxygen (Demain and Fang, 2000; Dietrich et 

al., 2006; Wang et al., 2011; Glasser et al., 2014; McRose and Newman, 2021).  

In addition to conferring such pleiotropic benefits, many microbial secondary metabolites 

are also toxic, both to their producers and to neighboring organisms (Haslam, 1986; Maplestone et 

al., 1992; Demain and Fang, 2000). It is therefore not surprising that antibiotic development 

pipelines have driven the majority of secondary metabolite characterization and purification efforts, 

dating back to the discoveries of penicillin and streptomycin in the early 20th century. Most modern 

clinical antibiotics are the synthetic descendants of natural products that originated from soil 

microbes, and even today, environmental microbes are still being exploited productively as a source 

of novel molecules with potent antimicrobial properties (Ling et al., 2015; Tortorella et al., 2018; 

Chevrette et al., 2019; Fukuda et al., 2021). Yet while the soil-to-clinic axis continues to inspire 

natural product chemists in their search for and design of new drugs, microbiologists have ironically 

neglected to consider the potential for unintended consequences of this pipeline, particularly with 

respect to antibiotic efficacy against opportunistic pathogens that evolved in the same environment. 

Microbes are rarely, if ever, found in isolation, and therefore the presence of secondary metabolites 

in a microbial community puts a strong evolutionary pressure both on secondary-metabolite-

producing and non-producing members to develop means to withstand them. These defenses can in 

turn have collateral activity against clinical antibiotics.  

In this Review, we highlight the growing body of evidence connecting bacterial secondary 

metabolites to the problem of clinical antibiotic tolerance (i.e. ability to survive transient antibiotic 
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exposure) and resistance (i.e. ability to grow in the presence of antibiotics) (Kester and Fortune, 

2014; Brauner et al., 2016; Balaban et al., 2019). Emphasizing examples of secondary metabolites 

produced by opportunistic or enteric pathogens (Table 1), we discuss common modes of action 

through which these molecules can alter clinical antibiotic efficacy in both single-species and 

polymicrobial communities. Specifically, we draw attention to secondary metabolites that regulate 

multidrug resistance efflux systems, secondary metabolites that modulate the toxicity of antibiotics 

through interactions with reactive oxygen species, and the potential for secondary-metabolite-

induced antibiotic tolerance to provide an overlooked route for the evolution of antibiotic resistance 

in bacterial infections. We offer suggestions for future experiments to explore the breadth of 

relevance of these observations (Box 1) and discuss the implications that secondary metabolite 

production can have for the diagnosis of antibiotic resistance (Box 2). Finally, we consider how 

knowledge of interactions between secondary metabolites and antibiotic efficacy could be applied 

to optimize the use of existing antimicrobial drugs and generate targets for novel therapeutic 

strategies.    

Secondary-metabolite-mediated regulation of multidrug resistance efflux pumps  

Activation of efflux pumps that export toxins out of the cell is a powerful mechanism used 

by diverse bacteria to thrive during clinical antibiotic treatment (Piddock, 2006b; Li et al., 2015). 

However, efflux pumps long predate human use of synthetic antibiotics, and therefore are presumed 

to have originally evolved to transport other, naturally-occurring substrates (Piddock, 2006a; 

Martinez et al., 2009). Indeed, efflux transport systems can help bacterial cells tolerate stress caused 

by toxic secondary metabolites produced by themselves (Tahlan et al., 2007; Sakhtah et al., 2016; 

Wolloscheck et al., 2018; Meirelles and Newman, 2018), by competitor species (including other 

bacteria) (Benomar et al., 2019), or by a host (e.g. plant or animal (Shafer et al., 1998; Bina and 

Mekalanos, 2001; Burse et al., 2004; Buckley et al., 2006)), directly impacting fitness (Piddock, 

2006a). Efflux pumps also play a key role in the export of metabolites, such as siderophores or 

signaling molecules, that are not toxic at normal physiological concentrations, but must be secreted 

in order to confer benefits to their producers (Martinez et al., 2009; Imperi et al., 2009). Extensive 

details about the types and components of efflux pumps can be found in other recent reviews (Mousa 
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and Bruner, 2016; Du et al., 2018). Here, we focus instead on how the induction of efflux systems 

as a response to self-produced secondary metabolites can impact antibiotic tolerance and resistance 

in pathogenic bacteria (Fig. 1A). The examples we discuss fall mostly within the resistance-

nodulation-division (RND) efflux systems, which use the proton-motive force to power substrate 

transport by working as H+-coupled antiporters (Li et al., 2015). However, the same principles are, 

Figure 1: Secondary-metabolite-mediated regulation of multidrug resistance efflux pumps.  
A. Schematic showing how secondary metabolites, through the induction of efflux systems used to transport 
the metabolite, can provide collateral resilience to antibiotics used in the clinic.  
B. Structures of known efflux-regulating secondary metabolites and selected clinical antibiotics, showing the 
shared prevalence of aromatic and/or heterocyclic ring motifs. C. SoxR-regulated efflux systems in E. coli and 
P. aeruginosa. Each SoxR monomer contains a Fe-S cluster that can be directly oxidized by redox-active 
molecules, leading to its activation and transcriptional induction of efflux systems (Dietrich et al., 2008; Imlay, 
2013). In E. coli (top), several molecules can induce transcription of the efflux system AcrAB-TolC through 
SoxR activation (Gu and Imlay, 2011; Imlay, 2013; Singh et al., 2013). In P. aeruginosa (bottom), SoxR 
activation is mediated by two endogenous phenazines, 5-Me-PCA and PYO, and leads to the induction of the 
efflux system MexGHI-OpmD (Dietrich et al., 2006; Dietrich et al., 2008; Sakhtah et al., 2016; Meirelles and 
Perry et al., 2021). PYO, Pyocyanin; PHZ, phenazine; RAM, redox-active molecule.  
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in theory, applicable to other types of efflux systems, as long as they are regulated by secondary 

metabolites. Importantly, efflux pumps vary in their specificity, with regard to both their regulation 

and their substrate affinity (Du et al., 2018). Therefore, to predict whether a secondary metabolite 

will increase antibiotic resilience in its producer through the induction of a particular efflux system, 

it is essential to understand how the secondary metabolite interacts with the transcriptional regulation 

of the system, as well as which classes of drugs the system can transport. More broadly, many known 

efflux-regulating secondary metabolites have at least one aromatic or heterocyclic ring (Fig. 1B), 

possibly suggesting that secondary metabolites with this structural motif are particularly likely to 

affect antibiotic resilience through the induction of multidrug efflux systems.   

In the enteric bacterium Escherichia coli, one of the best-studied multidrug resistance efflux 

systems is AcrAB-TolC, which has a complex regulatory system and forms part of a general stress 

response (Du et al., 2018). While AcrAB-TolC is generally expressed at high intrinsic levels (Li and 

Nikaido, 2016; Du et al., 2018), numerous molecules have been shown to further upregulate its 

transcription. These inducers include not only factors produced by animal hosts (e.g. bile salts and 

fatty acids (Rosenberg et al., 2003)) and synthetic redox-active compounds (e.g. paraquat and 

phenazine methosulfate (Miller et al., 1994; Gu and Imlay, 2011; Gerstel et al., 2020)), but also self-

produced secondary metabolites such as the compound 2,3-dihydroxybenzoate, an intermediate in 

the biosynthesis of the siderophore enterobactin (Ruiz and Levy, 2014). In fact,                                       

2,3-dihydroxybenzoate directly binds to MarR (Chubiz and Rao, 2010), a transcriptional repressor 

that modulates the expression of AcrAB-TolC alongside the redox-sensing SoxRS regulatory system 

(Du et al., 2018) (Fig. 1C). Although whether production of enterobactin or 2,3-dihydroxybenzoate 

per se increases antibiotic resilience has not been tested, it is well-established that AcrAB-TolC 

provides protection against many clinical antibiotics  (Anes et al., 2015). Another example of a self-

produced secondary metabolite in E. coli with an efflux-mediated effect on antibiotic susceptibility 

is indole. Generally considered a signaling molecule, indole triggers activation of certain RND efflux 

genes in enteric bacteria and the resulting efflux pumps are capable of transporting multiple classes 

of antibiotics (Hirakawa et al., 2005; Nishino et al., 2005; Nishino et al., 2007; Nikaido et al., 2012). 

Indeed, the production of high levels of indole by a subpopulation of mutants has been characterized 

as a “charity” mechanism that induces population-level resistance against norfloxacin and 

gentamicin in E. coli, with the MdtEF-TolC efflux system being upregulated by this secondary 
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metabolite (Lee et al., 2010). Intriguingly, a connection between TolC and sensitivity to 

anthraquinone-2,6-disulfonate (an analog of naturally-occurring redox-active humic substances in 

soils that resembles quinone-containing synthetic antibiotics) was observed in Shewanella 

oneidensis (Shyu et al., 2002), reinforcing the point that functional relationships between these 

classes of molecules may be common.  

Besides being activated by diverse compounds, efflux pumps can also confer collateral 

resilience to clinical antibiotics when serving as a self-defense response against secondary 

metabolites that are toxic to their producers. For example, multiple RND efflux systems capable of 

exporting clinical drugs are regulated in the opportunistic pathogen Pseudomonas aeruginosa by 

toxic self-produced secondary metabolites called phenazines (Dietrich et al., 2006; Sakhtah et al., 

2016; Meirelles and Newman, 2018; Meirelles and Perry et al., 2021). Phenazines are redox-active 

compounds known to play important roles both in natural environments (e.g. by protecting plants 

against fungal pathogens) as well as in infections (e.g. by increasing P. aeruginosa virulence in the 

lungs of cystic fibrosis (CF) patients) (Lau et al., 2004; Mavrodi et al., 2006). P. aeruginosa produces 

several different phenazines, including phenazine-1-carboxylic acid (PCA), pyocyanin (PYO),           

5-methylphenazine-1-carboxylate (5-Me-PCA, an intermediate in PYO synthesis (Laursen and 

Nielsen, 2004)), phenazine-1-carboxamide (PCN), and 1-hydroxy-phenazine (1-OH-PHZ). Toxicity 

to the producing cells varies across the different phenazines, but all can cause auto-poisoning, 

particularly under nutrient-limited conditions (Meirelles and Newman, 2018). In the presence of 

PYO or 5-Me-PCA, the mexGHI-opmD efflux pump operon is positively regulated by the redox-

sensing transcription factor SoxR (Price-Whelan et al., 2006) (Fig. 1C), whereas expression of this 

pump is minimal in the absence of these phenazines (Sakhtah et al., 2016; Meirelles and Perry et al., 

2021). PYO also induces a second RND efflux operon, mexEF-oprN (Meirelles and Newman, 2018; 

Meirelles and Perry et al., 2021), which is known to be clinically relevant (Llanes et al., 2011; 

Richardot et al., 2016). The regulation of this efflux system is similarly thought to be impacted by 

redox sensing (Fargier et al., 2012), though the details of how this works are still unclear. The 

substrate specificities of these systems overlap, and both can transport phenazines; however, 

MexGHI-OpmD does so more efficiently (Wolloscheck et al., 2018). Experiments with a broad-

spectrum efflux pump inhibitor as well as a knockout mutant lacking mexGHI-opmD have confirmed 

that efflux is a major mechanism underlying the tolerance and resistance of P. aeruginosa to its own 
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phenazines (Sakhtah et al., 2016; Wolloscheck et al., 2018; Meirelles and Perry et al., 2021). 

Importantly, both PYO-regulated efflux pumps are also known to efficiently transport 

fluoroquinolones, and multiple studies have reported a strong antagonistic effect of phenazines on 

fluoroquinolone efficacy (Wolloscheck et al., 2018; Schiessl et al., 2019; Zhu et al., 2019; Meirelles 

and Perry et al., 2021). For example, P. aeruginosa cells exposed to PYO (either self-produced or 

exogenously added) display increased tolerance against the fluoroquinolones ciprofloxacin and 

levofloxacin (Meirelles and Perry et al., 2021). This phenotype was recapitulated in one study by 

artificially overexpressing MexGHI-OpmD in a phenazine-null mutant to a level similar to that 

achieved in the presence of PYO, suggesting that drug efflux drives PYO-mediated increases in 

fluoroquinolone tolerance (Meirelles and Perry et al., 2021). Interestingly, besides fluoroquinolones 

and chloramphenicol, MexEF-OprN is also thought to transport trimethoprim and 

sulfamethoxazole—to which P. aeruginosa is intrinsically resistant (Lister et al., 2009)—but not 

aminoglycosides (Lister et al., 2009), against which phenazines have demonstrated mixed effects on 

tolerance (Schiessl et al., 2019; Zhu et al., 2019; Meirelles and Perry et al., 2021). Like phenazines, 

but unlike aminoglycosides, all of the known antibiotic substrates for MexEF-OprN have at least 

one aromatic ring (Fig. 1B), suggesting that when a secondary metabolite regulates an efflux pump 

with a relatively limited range of substrates, analysis of shared structural motifs may enable 

prediction of which clinical antibiotics will be most affected.  

Besides MexGHI-OpmD and MexEF-OprN, P. aeruginosa possesses at least nine other 

RND efflux systems, many of which are expressed at very low levels under typical laboratory 

conditions (Lister et al., 2009). Whether any P. aeruginosa-produced secondary metabolites regulate 

these other efflux systems under clinically-relevant circumstances remains to be determined. 

Notably, however, phenazines are not the only secondary metabolites produced by P. aeruginosa 

that promote increased resilience against antibiotics by inducing efflux. Recent work showed that 

production of the secondary metabolite paerucumarin likewise stimulates transcription of the 

MexEF-OprN efflux system in P. aeruginosa, with consequent increases in resistance to both 

chloramphenicol and ciprofloxacin (Clarke-Pearson and Brady, 2008; Iftikhar et al., 2020). These 

findings underscore the potential for self-produced secondary metabolites to promote clinical 

antibiotic resilience in opportunistic pathogens by triggering upregulation of efflux pumps.  



 

 

138 

Other bacterial opportunistic pathogens inhabiting soils or plant roots also produce secondary 

metabolites that promote efflux and decrease antibiotic susceptibility. For example, several strains 

of “Burkholderia cepacia complex” species isolated from CF patients can produce salicylate (Sokol 

et al., 1992; Darling et al., 1998). Salicylate has Fe-chelating properties and is used as a siderophore 

by the producing cells (Visca et al., 1993; Bakker et al., 2014), but it also induces specific efflux 

systems in Burkholderia species (e.g. CeoAB-OpcM in B. cenocepacia), leading to increased 

antibiotic resistance (Nair et al., 2004). Moreover, the salicylate-derived antibiotic resistance effect 

is not limited to the Burkholderia genus; for example, in enterobacteria, salicylate binds to and 

inactivates MarR, leading to upregulation of efflux pump expression and increased resistance to 

multiple clinical antibiotics (Cohen et al., 1993; Brochado et al., 2018). Burkholderia species also 

produce several other secondary metabolites that could affect antibiotic resilience, including many 

natural antibiotics with strong inhibitory capacities relevant during plant host colonization (Burkhead 

et al., 1994; Jeong et al., 2003; Depoorter et al., 2016; Depoorter et al., 2021). One intriguing 

example is toxoflavin, which is made by several Burkholderia species including Burkholderia 

gladioli, a common species in CF patients (Lipuma, 2010). Although it is still unknown whether 

toxoflavin auto-poisons producing cells, it is redox-active (Latuasan and Berends, 1961; Gencheva 

et al., 2018), presumably causing oxidative stress through the generation of H2O2 (Latuasan and 

Berends, 1961), and it is toxic to other bacteria and fungi (Latuasan and Berends, 1961; Li et al., 

2019). More importantly, like PYO, toxoflavin induces a specific RND efflux system, ToxFGHI, 

which is used for its export (Kim et al., 2004). It is not yet known if B. gladioli or other opportunistic 

pathogens within the Burkholderia genus produce toxoflavin during infections, or if the toxoflavin-

induced RND efflux system ToxFGHI can transport any of the currently used clinical antibiotics; 

however, it would not be surprising if it were to do so, given that toxoflavin, like PYO, bears 

structural similarity to fluoroquinolones. Taken together, the examples discussed in this section 

highlight the rich diversity of bacterial secondary metabolites that induce efflux activity in their 

producers, consequently threatening the efficacy of clinical antibiotic treatments.  

Effects of secondary metabolites on oxidative-stress-related antibiotic toxicity  

More than a decade ago, it was proposed that bactericidal antibiotics exert their lethal effects 

in part by inducing oxidative stress, regardless of the specific cellular targets of different antibiotic 

classes (Kohanski et al., 2007). While this hypothesis has engendered controversy (Keren et al., 
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2013; Liu and Imlay, 2013), ample evidence reviewed elsewhere (Dwyer et al., 2015) strongly 

suggests that bactericidal antibiotics impact cellular redox states, and that the resulting increases in 

reactive oxygen species (ROS) and oxidative stress can be lethal, even though other mechanisms 

also contribute to cell death. Bacteria exhibit increased resilience to bactericidal antibiotics when 

pretreated with antioxidants (Dwyer et al., 2014), when respiration is attenuated (Lobritz et al., 

2015), and following pre-exposure to hydrogen peroxide or superoxide-generating redox-cycling 

drugs, which induce protective oxidative stress responses (Vega et al., 2013; Mosel et al., 2013; 

Dwyer et al., 2014; Martins et al., 2020). Conversely, antibiotic toxicity can be potentiated by the 

loss of oxidative stress response genes (Wang and Zhao, 2009; Dwyer et al., 2014), or by alterations 

in cellular metabolism that increase endogenous ROS generation (Brynildsen et al., 2013). 

Importantly, many secondary metabolites also interface with cellular redox homeostasis and 

oxidative stress responses. Here, we discuss three different modes of action by which these 

metabolites can affect the potency of clinical antibiotics (Fig. 2A): 1) upregulation of oxidative stress 

response genes, 2) direct detoxification of ROS, and 3) increased endogenous ROS generation.  

Secondary metabolites that upregulate defenses against oxidative stress 

Secondary metabolites that upregulate the expression of oxidative stress responses can prime 

bacterial cells for tolerance and/or resistance to clinical antibiotics, analogous to the protective 

effects of exposure to sub-lethal concentrations of oxidants like H2O2. Among this class of 

metabolites, indole is perhaps the best-studied. As mentioned above, indole can also influence 

antibiotic susceptibility by upregulating efflux pump expression. However, this effect is thought to 

happen primarily at high concentrations of indole (>1 mM) (Hirakawa et al., 2005; Nikaido et al., 

2012); indole concentrations in human feces tend to be somewhat lower (Zuccato et al., 1993), 

though measurements up to the equivalent of 1100 µM have been recorded (Karlin et al., 1985). At 

these lower concentrations, indole is non-toxic to its producer, E. coli, but still induces oxidative 

stress response genes regulated by OxyR, including alkyl hydroperoxide reductases, thioredoxin 

reductase, and the DNA binding protein Dps (Vega et al., 2012). While exposure to indole increases 

the frequency of E. coli persisters to antibiotics belonging to three different classes 

(fluoroquinolones, aminoglycosides, and beta-lactams) by at least an order of magnitude, deletion of 

oxyR significantly diminishes this effect, demonstrating that upregulation of oxidative stress 

responses by a secondary metabolite can contribute to bacterial persistence (Vega et al., 2012). The 
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molecular pathway through which indole activates OxyR remains unclear, but indole readily 

undergoes one-electron reduction to a radical form in the presence of hydroxyl radicals or other 

strong oxidants (Shen et al., 1987), suggesting that it might interact with and potentially amplify 

endogenous ROS generated as a byproduct of respiration. Indole has also been proposed to disrupt 

the arrangement of membrane lipids, allowing direct interaction of respiratory quinones with 

dioxygen and thereby leading to superoxide generation (Garbe et al., 2000).   

Figure 2: Secondary metabolite interactions with oxidative stress.  
A. Schematic depicting how bactericidal antibiotics can cause cell death both by directly disrupting target-
specific processes, and by indirectly promoting the formation of reactive oxygen species as a consequence of 
altered respiration and cellular damage. Secondary metabolites can interface with these pathways at multiple 
points, including by interfering with respiration and redox homeostasis, directly generating ROS through redox-
cycling, and detoxifying ROS via one-electron reactions. Secondary metabolites that promote oxidative stress 
can either antagonize or potentiate antibiotic toxicity, likely depending on whether the resulting increases in 
ROS are moderate (green arrow) or severe (purple). Moderate increases in ROS may induce protective 
oxidative stress responses that can counteract antibiotic toxicity, whereas severe increases in ROS may 
overwhelm the cell’s defenses, leading to synergistic effects with bactericidal antibiotics.  
B. The redox-active nature of PYO is visually apparent as it undergoes a color change from blue (oxidized) to 
colorless (reduced) upon gaining two electrons and two protons from cellular reductants. This reaction is 
reversible under physiological conditions.  
C. Many redox-active secondary metabolites can donate electrons to molecular oxygen in the process of cycling 
from a reduced (Red) to an oxidized (Ox) state, leading to the formation of superoxide or hydrogen peroxide. 
Cells can detoxify these forms of ROS through enzymatic reactions catalyzed by superoxide dismutase, 
catalase, and alkyl hydroperoxide reductase (Imlay, 2013).  
D. Bacterial oxidative stress responses are typically regulated through multiple pathways. Shown here is the 
example of Pseudomonas aeruginosa, in which the H2O2-sensing transcription factor OxyR controls the 
expression of catalases (KATs) and alkyl hydroperoxide reductases (AHPs) (Ochsner et al., 2000; Wei et al., 
2012), and IscR upregulates the biosynthesis of iron-sulfur clusters in response to oxidative stress (Romsang et 
al., 2016).  
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PYO is another example of a bacterial secondary metabolite that induces oxidative stress 

responses. As a redox-active metabolite that can gain and lose electrons reversibly under 

physiological conditions (Fig. 2B), PYO can generate ROS under aerobic conditions through direct 

reduction of oxygen to superoxide (Fig. 2C), in addition to interfering with respiration (Voggu et al., 

2006; Perry and Newman, 2019). In its producer, P. aeruginosa, PYO increases superoxide 

dismutase activity (Hassett et al., 1992) and upregulates the transcription of several other oxidative 

stress response genes, including those encoding alkyl hydroperoxide reductases, thioredoxin 

reductase, catalase, and iron-sulfur cluster biogenesis machinery (Meirelles and Newman, 2018) 

(Fig. 2C-D). Intriguingly, PYO has been shown to increase the frequency of gentamicin-resistant 

mutants in P. aeruginosa cultures in a manner that is independent of drug efflux, as PYO does not 

upregulate aminoglycoside-transporting efflux pumps (Meirelles and Perry et al., 2021). Given that 

gentamicin is known to promote intracellular ROS formation through the formation of complexes 

with iron (Priuska and Schacht, 1995; Prayle et al., 2010), and that pre-treating cells with oxidants 

can prime them to tolerate antibiotics (Mosel et al., 2013), a plausible explanation for this 

phenomenon is that PYO-induced oxidative stress responses counteract ROS-related gentamicin 

toxicity. This in turn could decrease the rate at which spontaneous mutants are stochastically lost 

from the population (Alexander and MacLean, 2020), leading to the observed increase in the 

frequency of resistant mutants. PYO can also promote the growth of P. aeruginosa in the presence 

of other aminoglycosides (kanamycin, streptomycin, and tobramycin) and a beta-lactam antibiotic 

(carbenicillin) (Zhu et al., 2019). Like gentamicin, these antibiotics are not known to be substrates 

for PYO-regulated efflux systems (Lister et al., 2009; Meirelles and Perry et al., 2021), but do belong 

to classes of drugs that have been shown to perturb cellular redox states (Dwyer et al., 2014; Belenky 

et al., 2015), again suggesting that the observed decreases in antibiotic efficacy could be related to 

PYO-induced oxidative stress responses.  

Microbial metabolites that detoxify ROS 

In contrast to ROS-generating redox-active secondary metabolites that induce enzymatic 

oxidative stress responses, secondary metabolites that possess antioxidant activity (i.e. the ability to 

neutralize highly reactive free radicals) can protect against antibiotic assaults by directly detoxifying 

antibiotic-derived ROS. One example is ergothioneine, which is one of two major sulfur-containing 

redox buffers in mycobacteria, along with mycothiol. Loss of ergothioneine biosynthesis genes in 
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Mycobacterium tuberculosis significantly decreases minimum inhibitory concentrations (MICs) for 

rifampicin, isoniazid, bedaquiline, and clofazimine, in addition to decreasing survival under 

treatment at the wildtype MICs by at least 30-60% (Saini et al., 2016). Other secondary metabolites 

with antioxidant activity have been shown to be important for resistance to ROS generated by host 

immune cells, including macrophages and neutrophils. One such metabolite is staphyloxanthin, a 

membrane-embedded carotenoid pigment that protects Staphylococcus aureus against ROS 

(Clauditz et al., 2006; Hall et al., 2017) and consequently decreases killing by neutrophils (Clauditz 

et al., 2006). Carotenoids produced by group B Streptococcus (Liu et al., 2004) and the dental 

pathogen Streptococcus mutans (Wu et al., 2010) have likewise been implicated in resistance to 

ROS. The antioxidant capacity of these pigments has been attributed to their highly conjugated 

polyene backbones (Edge and Truscott, 2018), though the exact mechanisms by which different 

carotenoids scavenge ROS remain unclear (Young and Lowe, 2018). Importantly, antioxidant agents 

need not necessarily be located in the cytoplasm in order to protect against antibiotic-induced ROS 

accumulation, as exogenous catalase has been shown to increase bacterial survival following 

exposure to trimethoprim (Hong et al., 2019). Thus, while most studies on membrane-embedded 

carotenoids have focused on interactions with extracellular sources of ROS, these pigments might 

also be able to dampen oxidative stress that originates inside the cell during treatment with 

bactericidal antibiotics. Considering the growing body of evidence that redox imbalance and 

oxidative stress are downstream effects of many antimicrobial drugs (Dwyer et al., 2015), the 

possibility that staphyloxanthin or other membrane-associated pigments promote resilience to 

clinical antibiotics is worthy of further investigation.  

In addition to the above examples, certain microbially-produced compounds that are not 

classical secondary metabolites—either because they are inorganic or are not always dispensable for 

normal growth—also contribute to antibiotic tolerance or resistance by enhancing the antioxidant 

capacity of bacterial cells. For example, endogenously generated H2S protects a diverse range of 

bacteria, including E. coli, P. aeruginosa, and S. aureus, against the toxicity of antibiotics known to 

exert oxidative stress, such as gentamicin (Shatalin et al., 2011). This phenomenon has been 

proposed to stem from a dual-action mechanism whereby H2S both inhibits the Fenton reaction and 

stimulates the activities of catalase and superoxide dismutase (Shatalin et al., 2011). Polyamines 

have also been shown to protect bacteria from antibiotic toxicity by counteracting oxidative stress. 
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This is thought to be due in part to their capacity to neutralize free radicals (Tkachenko and Fedotova, 

2007; El-Halfawy and Valvano, 2014), though physical protection of cellular components and 

indirect upregulation of other oxidative stress responses may also be involved (Tkachenko and 

Fedotova, 2007; El-Halfawy and Valvano, 2013). E. coli upregulates production of putrescine and 

spermidine upon exposure to antibiotics under aerobic conditions, and these polyamines in turn 

significantly increase viability under antibiotic treatment by decreasing ROS production and 

oxidative damage (Tkachenko et al., 2012). Similarly, putrescine secreted by Burkholderia 

cenocepacia protects its producer against oxidative stress arising from treatment with polymyxin B, 

norfloxacin, or rifampicin (El-Halfawy and Valvano, 2014). Finally, in P. aeruginosa, the BqsRS 

regulatory system drives increased polyamine production upon sensing ferrous iron, which is 

prevalent in the lungs of CF patients, thereby promoting survival in the presence of cationic 

antibiotics such as polymyxins and aminoglycosides (Kreamer et al., 2015). Together, these 

examples demonstrate how interactions between bacterial metabolites and oxidative stress can lead 

to increased resilience against clinical antibiotics.  

Synergistic interactions between ROS-generating secondary metabolites and antibiotics 

Besides the examples in which secondary metabolites decrease antibiotic efficacy by 

attenuating oxidative stress, it is also important to note that in some cases, secondary metabolites 

that increase ROS generation can amplify the toxicity of clinical antibiotics. One example is                 

2-heptyl-3-hydroxy-4-quinolone, also known as the Pseudomonas quinolone signal (PQS), which is 

produced by P. aeruginosa. PQS is a redox-active molecule capable of reducing not only free 

radicals but also metal ions, and consequently possesses both antioxidant properties and pro-oxidant 

activity (i.e. the ability to induce oxidative stress), as reduction of iron promotes ROS formation 

through the Fenton reaction (Häussler and Becker, 2008). The pro-oxidant activity appears to 

dominate in cells, as PQS induces oxidative stress responses and increases sensitivity to hydrogen 

peroxide and ciprofloxacin (Bredenbruch et al., 2006; Häussler and Becker, 2008). The pro-oxidant 

activity of PQS is also evidenced by the fact that overproduction of PQS acts synergistically with 

impairment of superoxide dismutase and catalase activity to increase endogenous oxidative stress 

and antibiotic susceptibility (Nguyen et al., 2011). Notably, abolishment of PQS production 

increases tolerance to ciprofloxacin, imipenem, and gentamicin (Häussler and Becker, 2008). 

Another redox-active secondary metabolite that increases antibiotic susceptibility under certain 
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conditions is PYO. While pre-exposure of P. aeruginosa to PYO increases tolerance to 

fluoroquinolones and promotes the establishment of gentamicin-resistant mutants, PYO and other 

phenazines have also been shown to increase the sensitivity of P. aeruginosa to cationic 

antimicrobial peptides, including colistin (Schiessl et al., 2019; Meirelles and Perry et al., 2021) and 

polymyxin B (Zhu et al., 2019). The underlying mechanism of this synergistic interaction has yet to 

be determined, but it is notable that polymyxin B precipitates severe oxidative stress in P. aeruginosa 

and other Gram-negative opportunistic pathogens (Sampson et al., 2012; Han et al., 2019). 

Moreover, unlike fluoroquinolones or aminoglycosides, cationic antimicrobial peptides also 

permeabilize the outer membrane (Trimble et al., 2016) and consequently are almost certain to 

increase phenazine uptake, which would accelerate ROS generation even further. Thus, the lethal 

synergy between phenazines and cationic antimicrobial peptides may ultimately be driven by an 

overwhelming cascade of oxidative stress. Given that ROS-generating secondary metabolites can 

both potentiate and diminish antibiotic efficacy depending on the circumstances, future studies 

focused on revealing which effects take precedence during infections will be critical to better 

understanding how such secondary metabolites may affect clinical treatment outcomes.    

Secondary metabolites as interspecies modulators of antibiotic resilience  

So far, we have discussed examples of secondary metabolites that either are known to affect 

their producer’s susceptibility to clinical antibiotics, or have the potential to do so based on their 

interactions with established mechanisms of antibiotic tolerance and resistance. Equally important, 

however, is the fact that many secondary metabolites—in particular those that are secreted—are also 

capable of acting as interspecies modulators of antibiotic resilience (Fig. 3). Indeed, significant 

attention has recently been called to how interactions among members of a polymicrobial infection 

might affect antibiotic treatment outcomes (Welp and Bomberger, 2020; Bottery et al., 2020). Such 

infections are common in chronic respiratory disease (such as in CF patients) and in chronic wounds, 

with a wide range of microbial species often being acquired over time (Rhoads et al., 2012; Einarsson 

et al., 2019; Welp and Bomberger, 2020). Many of these organisms originate from soil (LiPuma et 

al., 2002; Berg et al., 2005) and therefore are likely to have a long history of evolving defense 

mechanisms to cope with each other’s toxins (Martinez, 2009; Davies and Davies, 2010). 

Interspecies microbial interactions are also thought to be important in gastrointestinal infections, 

where enteric pathogens are surrounded by the resident commensal microbiota (Vega et al., 2013).  
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While our understanding of how exchangeable secondary metabolites impact community-

level antibiotic resilience is still in its infancy, there have been several reports on this subject. For 

example, indole has been identified as an interspecies modulator of antibiotic tolerance between         

E. coli and Salmonella typhimurium (Nikaido et al., 2012; Vega et al., 2013). S. typhimurium, which 

likely interacts with commensal E. coli during infections, does not itself produce indole, yet its 

tolerance to ciprofloxacin increased by greater than threefold in the presence of exogenously-added 

indole, as well as in co-cultures with indole-producing E. coli (Vega et al., 2013). Similarly to its 

effect in E. coli, indole induces OxyR-regulated oxidative stress responses in S. typhimurium, and 

deletion of oxyR abolished the indole-mediated increase in ciprofloxacin tolerance (Vega et al., 

2013). Interestingly, indole has also been reported to increase resistance to ampicillin in the indole 

non-producer P. aeruginosa, not by inducing oxidative stress responses but rather by stimulating the 

expression of efflux pumps and a chromosomal beta-lactamase (Kim et al., 2017). These examples 

highlight the potential for secreted secondary metabolites to have both conserved and 

mechanistically divergent effects on antibiotic resilience in neighboring species.  

Other secondary metabolites besides indole have shown potential as interspecies modulators 

of antibiotic resilience. For example, the protective effect against polymyxin B of putrescine secreted 

by B. cenocepacia extends not only to the producer, but also to neighboring species in co-cultures, 

including E. coli and P. aeruginosa (El-Halfawy and Valvano, 2013). Similarly, PYO produced by 

P. aeruginosa dramatically increases the tolerance of multiple clinically-relevant Burkholderia 

species to ciprofloxacin in co-cultures (Meirelles and Perry et al., 2021). In yet another opportunistic 

pathogen, Acinetobacter baumanii, exposure to PYO increases the frequency of persisters to 

amikacin and carbenicillin by three- to four-fold (Bhargava et al., 2014), possibly through the 

upregulation of superoxide dismutase and catalase (Heindorf et al., 2014; Bhargava et al., 2014). 

Finally, quorum sensing signals produced by P. aeruginosa induce fluconazole resistance in the 

yeast Candida albicans (Bandara et al., 2020), indicating that bacterial secondary metabolites can 

mediate not only interspecies but also interkingdom effects on antimicrobial efficacy. So far, these 

interactions have only been demonstrated in vitro. However, given that Burkholderia species, 

Acinetobacter species, and fungal pathogens can all be found together with P. aeruginosa in chronic 

infections (Lipuma, 2010; Chmiel et al., 2014; Schwab et al., 2014), these findings suggest that 
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valuable insights could be gained from future studies focused on the in vivo relevance of secondary-

metabolite-mediated interspecies induction of antibiotic resilience.  

Importantly, while the above examples suggest that certain secreted secondary metabolites 

have the potential to raise the community-wide level of antibiotic resilience in polymicrobial 

infections, a secondary metabolite that promotes antibiotic resilience in one species will not always 

do so in others. One key consideration is that in order for a secondary metabolite to trigger cross-

species induction of clinical antibiotic resilience, the non-producing species must be able to tolerate 

any stress caused by the secondary metabolite. Otherwise, the added toxicity of the secondary 

metabolite may outweigh the benefit of any induced defenses or collateral antibiotic detoxification, 

and the secondary metabolite might even act synergistically with the clinical antibiotic (Wood and 

Cluzel, 2012). Examples of this type of interaction have been found between S. aureus and                    

P. aeruginosa, two species that often co-occur in CF patients (Briaud et al., 2020; Yung et al., 2021; 

Camus et al., 2021). S. aureus is sensitive to several secondary metabolites secreted by P. aeruginosa 

(Noto et al., 2017; Radlinski et al., 2017), and some of these can increase the susceptibility of               

S. aureus to clinical antibiotics. For example, P. aeruginosa-produced rhamnolipids potentiate 

tobramycin toxicity in S. aureus by increasing membrane permeability (Radlinski et al., 2017). 

Another P. aeruginosa-produced secondary metabolite, 2-n-heptyl-4-hydroxyquinoline N oxide 

(HQNO), was recently shown to increase the sensitivity of S. aureus biofilms to fluoroquinolones 

and membrane-targeting antibiotics via a similar mechanism (Orazi et al., 2019). However, the toxic 

effects of P. aeruginosa secondary metabolites on S. aureus are not always synergistic with clinical 

antibiotics. By inhibiting growth, HQNO promotes tolerance in S. aureus biofilms specifically to 

antibiotics targeting cell wall synthesis and protein synthesis (Orazi and O’Toole, 2017), contrary to 

its effect on other classes of antibiotics, while in planktonic cultures of S. aureus, HQNO can induce 

multidrug tolerance by inhibiting respiration and depleting intracellular ATP (Radlinski et al., 2017). 

The interference of PYO with respiration in S. aureus similarly selects for non-respiring small colony 

variants (Biswas et al., 2009; Noto et al., 2017), which are often resistant to antibiotic treatment 

(McNamara and Proctor, 2000). In such cases where different secondary metabolites produced by 

one species seem to have conflicting and condition-dependent effects on a neighboring species, in 

vivo studies and co-culture experiments are particularly necessary to determine the overall impact 

on clinical antibiotic efficacy.  
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The potential for P. aeruginosa-produced secondary metabolites to have complex effects on 

antibiotic resilience has also been observed in another opportunistic pathogen, Stenotrophomonas 

maltophilia. Compared to members of the Burkholderia cepacia complex, which strongly benefit 

from exposure to PYO during treatment with ciprofloxacin, S. maltophilia is more sensitive to PYO 

toxicity, exhibiting growth inhibition at concentrations as low as 50 µM (Meirelles and Perry et al., 

2021). At a relatively low but still lethal dose of ciprofloxacin, PYO at concentrations up to 50 µM 

significantly increased survival of S. maltophilia, suggesting that defenses active against 

fluoroquinolones are indeed induced by PYO in this species (Meirelles and Perry et al., 2021). Yet 

at a ten-fold higher dose of ciprofloxacin, even 10 µM PYO was detrimental. Notably, while in situ 

levels of PYO can vary greatly across patients infected with P. aeruginosa, PYO has been detected 

in infected sputum and wound exudates at concentrations up to 130 µM or 0.31 mg/g, respectively 

(Cruickshank and Lowbury, 1953; Wilson et al., 1988). Thus, the example of PYO and                           

Figure 3: Secondary metabolites as interspecies modulators of antibiotic resilience. The presence of 
secondary metabolite producers in polymicrobial infections can alter the community susceptibility profile to 
antibiotic treatment. When the producer is not present (top), overall resilience levels upon treatment are low. 
However, through the secretion of the secondary metabolite, the producer’s presence (bottom, blue cells) can 
have distinct effects on different community members. For members intrinsically resistant to the secondary 
metabolite (brown cells), the molecule’s presence can increase resilience to antibiotic treatment. However, if a 
member is sensitive to the secondary metabolite (yellow cells), the added toxicity can overwhelm cellular 
defenses, potentiating the killing by the clinical drug. 
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S. maltophilia suggests that in order to predict how a secondary metabolite will impact community-

wide levels of clinical antibiotic resilience during a polymicrobial infection, it may be necessary to 

characterize the directionality and magnitude of interspecies effects over a range of clinically-

relevant concentrations of both the secondary metabolite and the clinical antibiotic.  

Implications of secondary-metabolite-induced antibiotic tolerance for the evolution of 

resistance  

In recent years, it has increasingly become appreciated that antibiotic tolerance can not only 

directly contribute to infection treatment failure, but also promote the establishment of heritable 

resistance mutations (Levin-Reisman et al., 2017; Windels et al., 2019; Levin-Reisman et al., 2019; 

Liu et al., 2020; Santi et al., 2021). The latter observation raises the possibility that secondary-

metabolite-induced antibiotic tolerance could promote the evolution of de novo antibiotic resistance 

during the course of an infection, especially considering the fact that the stimulatory effect of 

tolerance on the acquisition of resistance is thought to occur via multiple mechanisms that are largely 

agnostic to the specific mode of tolerance. First, tolerance results in a larger pool of surviving cells 

following transient or intermittent antibiotic treatments, inherently broadening the window of 

opportunity for rare spontaneous resistance mutations to occur (Levin-Reisman et al., 2017). Second, 

tolerance raises the likelihood that a spontaneous mutation conferring low-level resistance will 

become established in the population rather than being stochastically lost during the antibiotic 

treatment. That tolerance can promote resistance in this manner was first proposed more than 30 

years ago by Moreillon and Tomasz, who sought to explain the empirical correlation between 

penicillin tolerance and penicillin resistance in clinical isolates of pneumococci (Moreillon and 

Tomasz, 1988), and has recently been confirmed with a combination of in vitro evolution 

experiments, mathematical modeling, and simulations (Levin-Reisman et al., 2017). Importantly, 

another recent study demonstrated that even at antibiotic concentrations less than 1/8 the MIC of a 

resistant strain, fewer than 5% of single resistant cells produce detectable outgrowth (Alexander and 

MacLean, 2020), suggesting considerable scope for tolerance to promote the evolution of resistance 

by raising this frequency. Moreover, while this effect of tolerance is most impactful for spontaneous 

mutants with low-level resistance (Levin-Reisman et al., 2017), such mutations significantly 

increase the probability of subsequently acquiring high-level resistance (Toprak et al., 2011; Baym 

et al., 2016; Santi et al., 2021). Finally, antibiotic tolerance and slow growth have also been proposed 
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to be epistatically linked to genome-wide mutation rates (Nishimura et al., 2017; Windels et al., 

2019); slow growth is itself a common mechanism of tolerance by virtue of decreasing the 

opportunity for interactions between bactericidal antibiotics and their targets, which generally are 

components of core biosynthetic machinery (Pontes and Groisman, 2020). In one study, expression 

levels of the AcrAB efflux pump in E. coli were not only positively correlated with the frequency of 

mutation to resistance against diverse clinical antibiotics (which could potentially be explained by 

the aforementioned mechanisms), but were also inversely correlated with growth rate and levels of 

the DNA mismatch repair protein MutS (El Meouche and Dunlop, 2018). This observation suggests 

that induced antibiotic tolerance could in some cases affect the inherent mutability of a strain, in 

addition to promoting the fixation of spontaneous resistance mutations.   

To date, exploration of the connection between antibiotic tolerance and the evolution of 

resistance has largely focused on tolerance resulting from spontaneous mutations that are selected 

by treatment with clinical antibiotics (Levin-Reisman et al., 2017; Levin-Reisman et al., 2019; Liu 

et al., 2020; Santi et al., 2021). However, effects on the establishment of heritable resistance 

mutations have already been demonstrated for at least one antibiotic-tolerance-inducing secondary 

metabolite produced by an opportunistic pathogen—namely, PYO. Experiments based on classical 

fluctuation tests revealed that PYO increases the rate of mutation to antibiotic resistance not only in 

the producing species, P. aeruginosa, but also in a clinical isolate of a co-occurring opportunist, 

Burkholderia multivorans (Meirelles and Perry et al., 2021). Importantly, the impact of PYO on the 

acquisition of heritable resistance varied across different classes of antibiotics, with particularly 

strong effects for drugs against which PYO-induced defenses confer increased tolerance, suggesting 

that this phenomenon is indeed driven by tolerance as opposed to a mutagenic effect of PYO. 

Remarkably, in B. multivorans, treatment with PYO increased mutation rates for ciprofloxacin 

resistance to a level rivaling clinical hypermutator strains (Martina et al., 2014; Meirelles and Perry 

et al., 2021). In addition, in both P. aeruginosa and B. multivorans, pre-treatment with PYO prior to 

antibiotic selection was sufficient to increase the rate at which resistant mutants became established, 

even without continued exposure to high levels of PYO. These findings collectively reveal the 

potential for tolerance-inducing secondary metabolites to significantly impact the evolution of 

antibiotic resistance during infections.  
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Concluding remarks and future directions 

While direct connections between bacterial secondary metabolite production or exposure and 

resilience to clinical antibiotics have only been pursued in a handful of studies, many more secondary 

metabolites are known to interface with cellular functions that are relevant to antibiotic tolerance and 

resistance—especially drug efflux and oxidative stress responses. We hope the examples discussed 

in this Review stimulate further investigation into the conditions under which these and related 

secondary metabolites alter the efficacy of clinical antibiotics. Moreover, we expect that deliberately 

searching for such molecules across a broad range of opportunistic pathogens (Box 1) will reveal 

additional as-yet-uncharacterized secondary metabolites that have the potential to meaningfully 

affect antibiotic treatment outcomes. Soil-borne opportunistic pathogens in particular often possess 

the biosynthetic capacity to produce a great variety of secondary metabolites (Ryan et al., 2009; 

Smith et al., 2013; Walterson and Stavrinides, 2015; Depoorter et al., 2016), perhaps as a 

consequence of needing to cope with the extraordinary complexity and heterogeneity that typifies 

the soil environment (König et al., 2020). In most cases, the biological functions of these secondary 

metabolites, as well as whether they are produced during infections, remain unknown. However, 

biosynthetic gene clusters for secondary metabolites are often located near or co-transcribed with 

genes encoding efflux pumps (Martín et al., 2005; Severi and Thomas, 2019; Crits-Christoph et al., 

2020), and numerous microbial secondary metabolites are redox-active and therefore have the 

potential to generate or detoxify ROS (Glasser et al., 2017; McRose and Newman, 2021), suggesting 

that interactions with clinical antibiotic efficacy are likely to be far more common than is currently 

appreciated.  

Importantly, understanding the molecular mechanisms involved in the cellular responses 

triggered by a secondary metabolite, as well as the chemical properties of the secondary metabolite 

itself, can provide practical insights regarding which clinical antibiotics are likely to be affected. 

With this knowledge in hand, combined with an understanding of other environmental and 

physiological factors that affect antibiotic susceptibility (Ersoy et al., 2017; Yan and Bassler, 2019), 

we posit that it will be possible to optimize the use of existing antibiotics so as to better minimize 

the risk of treatment failure and prevent the evolution of resistance in vivo. For example, if a pathogen 

produces a secondary metabolite that upregulates efflux pumps specific to fluoroquinolones and 

other aromatic molecules, the chances of successful treatment would likely be higher with another 
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class of antibiotics that is not susceptible to this defense, such as aminoglycosides. The biosynthetic 

pathways for these secondary metabolites, or even the molecules themselves, could also serve as 

targets for the development of new adjuvants for antimicrobial drugs. Such efforts are already 

underway for secondary metabolites such as PYO and staphyloxanthin ( Liu et al., 2008; Song et al., 

2009; Costa et al., 2017; VanDrisse et al., 2021), which are also known to act as virulence factors 

(Liu and Nizet, 2009). Finally, retooling clinical antimicrobial susceptibility testing protocols to 

account for the impact of secondary metabolites on antibiotic efficacy (Box 2) could potentially 

significantly improve the predictive value of these assays—especially in the case of secondary-

metabolite-producing opportunistic pathogens, such as members of the Burkholderia cepacia 

complex, that often exhibit discrepancies between in vitro minimum inhibitory concentration 

measurements and clinical treatment outcomes (Abbott and Peleg, 2015).  

In conclusion, our ability to address the vexing challenges posed by antibiotic tolerance and 

resistance in the future has much to gain by reflecting on the past.  The evolutionary and ecological 

history of natural antibiotics intersects directly with the history of clinical antibiotic discovery.  

While the soil has continued to provide a rich reservoir for natural product mining efforts, what has 

gotten lost is the fact that alongside the evolution of pathways that synthesize these molecules, other 

pathways have co-evolved that respond to them.  Remembering this shared historical context is 

important for predicting how secondary metabolites might impact the response of polymicrobial 

communities to conventional antibiotics, and compels creative thinking about novel ways to manage 

such responses.   

Box 1: Guidelines for establishing causal links between secondary metabolite production and 

increased antibiotic tolerance or resistance. 

Here we propose a few steps for the investigation of secondary-metabolite-mediated changes in 

antibiotic susceptibility:  

1. Identifying the candidate secondary metabolite. This can be done in multiple ways, 

including based on molecular structure or its physiological effects on the cells. 

Genomic analysis could also be used to reveal potentially relevant secondary 

metabolites produced by pathogens (Blin et al., 2019). Researchers should investigate 
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whether the putative secondary metabolite of interest shows any toxicity to the 

producer, as well as the molecular responses induced upon exposure to it. 

Transcriptomics approaches, such as RNA-seq, can be used to reveal such responses. 

Importantly, in order to have appropriate negative controls for such experiments, it will 

often be necessary to construct a mutant strain lacking the biosynthetic genes for 

production of the secondary metabolite.  

2. Detecting the secondary metabolite. It is essential to use an accurate and quantitative 

detection method because the secondary metabolite concentration might directly 

impact how it changes antibiotic susceptibility. Depending on the secondary metabolite, 

possible detection methods may include ultraviolet or visible light spectroscopy or 

mass spectrometry, both of which can be coupled to high-performance liquid 

chromatography in the case of analyzing complex samples (e.g. extracts of microbial 

cultures or clinical samples). Investigators should attempt to detect the secondary 

metabolite in the relevant clinical context (e.g. in infected sputum, wound exudates, or 

stool samples), and physiologically-relevant concentrations of the secondary 

metabolite should always be used in in vitro experiments. 

3. Considering the effects on nearby species. Beyond understanding how secondary 

metabolites might change the producer’s response to antibiotics, it is critical to account 

for the impacts on the entire microbial community in the case of polymicrobial 

infections. Thus, investigators should consider which species are most commonly 

found together with the secondary metabolite producer and perform experiments in 

which the producer and non-producers are cocultured, or the non-producers are 

separately exposed to controlled concentrations of the secondary metabolite. 

Understanding how the non-producers are impacted, including the molecular 

mechanisms involved, is essential for predicting how the secondary metabolite might 

change the overall antibiotic susceptibility profile of a microbial community.  

4. Testing the secondary-metabolite-mediated effects on antibiotic susceptibility. 

Tolerance and resistance are two different modes of antibiotic resilience that should be 

tested separately (Kester and Fortune, 2014; Brauner et al., 2016; Balaban et al., 
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2019) (see the figure below, part A); the former can be measured by determining the 

percentage of surviving cells following a temporary exposure to the antibiotic, while 

the latter calls for assessing the ability to grow in the presence of the antibiotic. There 

are also a variety of assays available for testing secondary-metabolite-mediated effects 

on drug susceptibility in multispecies communities (see the figure below, part B). In 

liquid cocultures, the species can be grown with or without separation by a permeable 

membrane that restricts interactions to those mediated by diffusible small molecules. 

For biofilms, experiments can be done in (i) macroscopic assays (e.g. colony biofilms, 

with species mixed or separated), or (ii) microscopic assays (e.g. microfluidics (Liu et 

al., 2015; Liu et al., 2017) or alternatives assays like the agar block biofilm assay 

(ABBA) (Costa et al., 2017; Spero and Newman, 2018), to which concomitant 

measurements of microenvironment variables – such as pH or O2 levels – have been 

applied).  Importantly, the decision to perform experiments on liquid cultures versus 

biofilms can directly influence the results, as some secondary-metabolite-mediated 

tolerance mechanisms are specific to biofilms. For example, secondary-metabolite-

mediated increases in extracellular DNA release can stimulate biofilm formation, 

resulting in elevated tolerance levels (Hazan et al., 2016). In addition, redox-active 

secondary metabolites, such as phenazines, significantly impact metabolism within 

biofilms (Schiessl et al., 2019; Saunders et al., 2020). Metabolic activity in turn is 

known to dramatically affect antimicrobial drug efficacy (Dwyer et al., 2015). 
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Accordingly, recent work demonstrated that redox-active secondary metabolites can 

lead to metabolism-mediated increases in antibiotic tolerance within biofilms (Schiessl 

et al., 2019). On the other hand, planktonic cultures provide better control for testing 

specific secondary-metabolite-mediated responses and more sophisticated methods 

when evaluating resistance, such as fluctuation tests to measure mutation rates (Rosche 

and Foster, 2000; Zheng, 2015). The investigators should therefore decide what is more 

appropriate for their particular questions. 

Box 2: Accounting for secondary metabolite production during antimicrobial susceptibility 

testing. 

As the traditional basis for determining appropriate courses of treatment for infections, 

antimicrobial susceptibility testing (AST) is a cornerstone of clinical microbiology. However, in 

many clinical contexts, such as chronic lung infections in cystic fibrosis patients, there is little to no 

correlation between AST results and treatment outcomes (Hurley et al., 2012; Somayaji et al., 2019). 

This discrepancy may stem in some cases from the fact that standard AST conditions generally 

preclude detection of interactions between secondary metabolites and antimicrobial drugs. 

Regardless of the specific method employed (disk diffusion, microbroth dilution, agar dilution, E-

test, or automated systems), clinical AST relies on a readout of absence of growth in cultures that 

are inoculated at low cell densities (Jorgensen and Ferraro, 2009), whereas secondary metabolites 

are typically not produced until at least late log-phase or early stationary phase (Davies, 2013). 

Moreover, AST is routinely performed on single-species cultures even in the case of polymicrobial 

infections, eliminating the possibility of detecting secondary-metabolite-mediated interspecies 

interactions that could affect antimicrobial efficacy.  

Here, we suggest four possible modifications to clinical AST protocols that would help 

account for the effects of microbial secondary metabolites produced during infections. Given that 

secondary metabolites can significantly affect antimicrobial efficacy, the proposed modifications 

could potentially improve the empirical correlation between in vitro AST results and the success of 

clinical treatments. However, these approaches will need to be validated in animal models of 

infection and in clinical trials comparing patient outcomes against the use of traditional AST for 

antimicrobial drug selection. In addition, if studies indicate that secondary-metabolite-related 



 

 

155 

modifications improve the predictive value of AST, scalability in terms of cost and throughput will 

likely need to be further optimized before widespread implementation becomes possible in clinical 

microbiology laboratories.  

Proposed modifications to AST protocols   

1. Use filtered supernatants from overnight cultures of the infective microorganism(s). By 

setting up AST assays using a 1:1 dilution of fresh growth media (prepared at 2x 

concentration) and filtered supernatant from an overnight culture of the infective agent, 

the effects of any secondary metabolites produced during late log phase or stationary 

phase could be accounted for without needing to modify other aspects of standard AST 

protocols (e.g. the use of visible growth as a readout). A key advantage of this approach 

is that it is agnostic to which secondary metabolite is produced, avoiding the need for 

prior knowledge of the biosynthetic capabilities of the infective agent, as well as 

allowing for the combined effects of multiple secondary metabolites to be considered. 

However, this approach would significantly increase the time between receiving a 

clinical sample and producing an AST result. In addition, mixing spent supernatant 

with fresh growth media might dilute the concentrations of the secondary metabolite(s) 

below clinically relevant levels. The concentrations of different nutrients in the media 

would also be affected, possibly in unpredictable ways across different strains, which 

in turn could also impact antibiotic susceptibility (Brown, 1977).   

2. Add purified secondary metabolites exogenously to cultures. If it is known that the 

infective species is capable of producing specific secondary metabolites that have been 

validated as clinically relevant (e.g. PYO in P. aeruginosa or indole in E. coli), purified 

forms of the secondary metabolite(s) could be added to traditional AST assays. An 

advantage of this approach is the ability to control the level of exposure to the 

secondary metabolite(s), which would make it possible to ensure that the 

concentrations in the AST assay are similar to those detected in clinical samples. 

However, this approach requires that the secondary metabolite(s) be commercially 

available or otherwise economically viable to synthesize or purify from cultures. In 

addition, prior knowledge of the biosynthetic capabilities of the infective agent would 
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be necessary. An important caveat in this regard is that microbial secondary metabolite 

production can vary greatly from strain to strain within the same species. Thus, basing 

the working concentration of a secondary metabolite on an average across strains or 

patient samples may lead to over- or underestimation of the effects of the secondary 

metabolite in individual cases.  

3. Adjust antibiotic “breakpoint” guidelines according to in situ levels of secondary 

metabolites. For secondary metabolites that are commonly found in infections and can 

be procured in purified form, in vitro testing could lead to the development of 

mathematical models that quantitatively relate the concentration of the secondary 

metabolite to the change in the producing species’ resistance to different antimicrobial 

drugs. Once validated across a range of different strains, such models could potentially 

enable secondary-metabolite-based adjustments to the standard “breakpoint” antibiotic 

concentrations used by clinicians to classify microorganisms as susceptible or resistant. 

Assays for the quantification of the secondary metabolite in patient samples could then 

be combined with traditional AST testing. Such an approach would enable taking into 

account strain variability in secondary metabolite production and avoid necessitating 

modifications to existing AST protocols. However, this approach might also lead to 

underestimation of secondary metabolite effects in some cases, as bulk measurements 

of a secondary metabolite in a patient sample may obscure heterogeneity at the micron 

scale.     

4. Grow multiple species together if they are co-isolated from a polymicrobial infection. 

Secreted secondary metabolites produced by one species can significantly affect 

antimicrobial efficacy in neighboring species. Thus, in the case of polymicrobial 

infections, inoculating multiple species together in AST assays may improve prediction 

of the overall community response to antimicrobial drugs. To account for the 

production of secondary metabolites, this approach would still need to be combined 

with other modifications, such as those proposed above in options 1-3. In addition, the 

optimal ratios at which to inoculate different species would need to be investigated and 

standardized. Alternatively, it may be possible to perform AST using mixed cultures 
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derived directly from patient samples, either bypassing or in parallel to the step in 

which individual isolates are obtained and identified.  

Table 1: Secondary metabolites produced by opportunistic or enteric pathogens and their 

impacts on antibiotic efficacy. ND = not determined; these are molecules whose effects on 

antibiotics have not been directly tested. * = for aminoglycosides, PYO has been shown to increase 

or decrease antibiotic resilience, depending on the studied conditions. ** = hypothesized 

mechanisms by which the molecule might affect susceptibility. 

Metabolite Producer Antibiotic affected Mechanism References 

Pyocyanin (PYO) Pseudomonas aeruginosa 
Fluoroquinolones, 
aminoglycosides*, 
chloramphenicol, carbenicillin 

Efflux induction, oxidative 
stress response induction 

(Schiessl et al., 
2019; Zhu et al., 
2019; Meirelles 
and Perry et al., 
2021) 

Phenazine 1-carboxylic 
acid (PCA), phenazine 1-
carboxamide (PCN) 

P. aeruginosa Ciprofloxacin, tobramycin, 
carbenicillin Metabolic changes (Schiessl et al., 

2019) 

Paerucumarin P. aeruginosa Chloramphenicol, ciprofloxacin Efflux induction (Iftikhar et al., 
2020) 

Indole Escherichia coli Fluoroquinolones, gentamicin, 
ampicillin, carbenicillin  

Efflux induction, oxidative 
stress response induction 

(Hirakawa et al., 
2005; Lee et al., 
2010; Vega et al., 
2012; Vega et al., 
2013) 

Salicylate Burkholderia spp. Chloramphenicol, 
trimethoprim, ciprofloxacin Efflux induction (Nair et al., 2004) 

HQNO P. aeruginosa Meropenem 
Increased extracellular 
DNA release and biofilm 
formation 

(Hazan et al., 
2016) 

Ergothioneine Mycobacterium 
tuberculosis 

Rifampicin, isoniazid, 
bedaquiline, clofazimine 

Direct ROS detoxification, 
redox buffering 

(Saini et al., 
2016) 

Polyamines (putrescine, 
spermidine) 

E. coli, Burkholderia 
cenocepacia, P. aeruginosa 

Levofloxacin, amikacin, 
cefotaxime, polymyxin B, 
norfloxacin, rifampicin, 
tobramycin 

Direct ROS detoxification, 
decreased drug penetration 

(Tkachenko et 
al., 2012; El-
Halfawy and 
Valvano, 2014) 

Pseudomonas quinolone 
signal (PQS) P. aeruginosa 

Ciprofloxacin, oxofloxacin, 
imipenem, meropenem, 
gentamicin, colistin 

Increased ROS generation 

(Häussler and 
Becker, 2008; 
Nguyen et al., 
2011) 

H2S Diverse microbes Gentamicin, amikacin, nalidixic 
acid, ciprofloxacin, ampicillin 

Oxidative stress response 
induction, Fe2+ 
sequestration, redox 
buffering 

(Shatalin et al., 
2011; Shukla et 
al., 2017) 

Staphyloxanthin Staphylococcus aureus ND Direct ROS detoxification 
(Clauditz et al., 
2006; Hall et al., 
2017) 

Carotenoids Streptococcus spp. ND Direct ROS detoxification (Liu et al., 2004; 
Wu et al., 2010) 

2,3-dihydroxybenzoate E. coli ND Efflux induction (Ruiz and Levy, 
2014) 

Toxoflavin Burkholderia spp. ND 
Efflux induction**, 
oxidative stress response 
induction** 

(Latuasan and 
Berends, 1961; 
Kim et al., 2004) 
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Phthiocol M. tuberculosis ND Oxidative stress response 
induction** 

(Anderson and 
Newman, 1933; 
Gardner, 1996) 

D-alanylgriseoluteic acid Pantoea agglomerans ND Oxidative stress response 
induction** 

(Giddens et al., 
2002; Giddens 
and Bean, 2007) 

β-3H-
indolydenopyruvate Achromobacter sp. ND ND (Krishnamurthi et 

al., 1969) 

Anthraquinones (e.g., 
emodin, endocrocin) Aspergillus spp. ND ND 

(Wells et al., 
1975; Lim et al., 
2012) 
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C h a p t e r  5  

PREVALENCE OF PHENAZINE RESISTANCE IN CULTURABLE BACTERIA FROM A 

DRYLAND WHEAT FIELD 

Abstract 

Phenazines are a class of bacterially-produced natural antibiotics that have demonstrated 

potential as a sustainable alternative to traditional pesticides for the control of fungal crop diseases 

in agriculture. However, the prevalence of bacterial resistance to agriculturally-relevant phenazines 

is poorly understood, limiting the ability to assess the risk of off-target negative effects on native 

rhizosphere communities. In addition, it is currently not known whether there are conserved genetic 

markers that could be used to predict bacterial resistance or susceptibility to phenazines. Here, we 

describe profiles of susceptibility to an agriculturally-relevant phenazine across more than 100 

bacterial strains isolated from a wheat field where phenazine producers are indigenous. Our results 

shed light on which classes of bacteria are most likely to be susceptible to phenazine toxicity, 

depending on the environmental pH. These insights will be useful for investigating whether the 

effects of phenazine producers on rhizosphere communities are consistent with the incidence of 

bacterial resistance to this family of natural antibiotics. In addition, the taxonomic and phenotypic 

diversity of our strain collection lays a foundation for the future development of models that could 

enable prediction of phenazine resistance in diverse bacterial taxa.     

Introduction 

Diverse microorganisms produce natural antibiotics that can kill or inhibit the growth of other 

microbes (Bérdy, 2012; Granato et al., 2019). Several such compounds have been commercialized 

as antimicrobial drugs for the treatment of infections, beginning with penicillin in the 1940s 

(Aminov, 2010; Hutchings et al., 2019). Unfortunately, the selective pressures exerted by the 

widespread use of antibiotics in medicine and agriculture have led to worrisome increases in the 

prevalence of antimicrobial resistance among human and animal pathogens over the past several 

decades (Davies and Davies, 2010; Manyi-Loh et al., 2018). Yet while this repercussion of human 

antibiotic use has been well documented, comparatively little is known about the ecological roles of 
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microbially-produced antibiotics in natural environments (Aminov, 2009; Sengupta et al., 2013). 

Recent studies have suggested that natural antibiotics may serve a variety of functions for their 

producers beyond the suppression of competing microbes (Davies, 2006; Davies et al., 2006), 

including nutrient acquisition (Wang and Newman, 2008; McRose and Newman, 2021), 

conservation of energy in the absence of oxygen (Glasser et al., 2014; Glasser et al., 2017), and cell-

cell signaling (Dietrich et al., 2006; Linares et al., 2006). At the same time, toxicity to one or more 

microorganisms is by definition a feature of these molecules, but the extent to which this trait shapes 

their influence on microbial communities is unclear (Demain and Fang, 2000; Davies and Ryan, 

2012; Bérdy, 2012). In addition, for many if not most natural antibiotics, the determinants and 

prevalence of susceptibility or resistance to their toxicity remain unknown or poorly characterized 

(Handelsman and Stabb, 1996). These gaps in knowledge hinder our ability to understand and predict 

the impacts of these metabolites on microbial communities of interest.  

One environmental context in which natural antibiotics are thought to be particularly 

abundant and ecologically relevant is the rhizosphere—the narrow plane of soil immediately 

adjacent to plant roots (Haas and Défago, 2005; Mavrodi et al., 2012; Tyc et al., 2017). Natural 

antibiotics such as phenazines and 2,4-diacetylphloroglucinol have been directly detected in the 

rhizospheres of multiple crops, including wheat, potato, and sugar beet (Thomashow et al., 1990; 

Bergsma-Vlami et al., 2005; Mavrodi et al., 2012), and phenazines have been shown to increase the 

fitness of their producers when competing with other microbes in the rhizosphere (Mazzola et al., 

1992; Yu et al., 2018). Production of these molecules has also been demonstrated to underpin the 

ability of certain bacteria to control fungal crop diseases (Thomashow and Weller, 1988; 

Thomashow et al., 1990; Haas and Keel, 2003; Mazurier et al., 2009; Yu et al., 2018), further 

indicating that natural antibiotics can act as agents of microbe-microbe antagonism in the 

rhizosphere. As a result of this activity, phenazine-producing Pseudomonas strains have received 

attention as potential “biocontrol agents” that could serve as a more sustainable alternative to 

traditional synthetic pesticides in agriculture (Handelsman and Stabb, 1996; Haas and Keel, 2003). 

However, several challenges remain with respect to the practical application of these strains, 

including inconsistent efficacy under field conditions (Haas and Keel, 2003; Haas and Défago, 

2005), limited understanding of the mechanisms and evolutionary dynamics of resistance to 
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phenazines (Mazzola et al., 1995; Handelsman and Stabb, 1996), and the possibility of off-target 

effects (Haas and Keel, 2003). 

Importantly, with regard to the latter concern, phenazines are toxic not only to fungi, but also 

to some bacteria (Baron and Rowe, 1981; Turner and Messenger, 1986; Costa et al., 2015). Yet 

while the utility of phenazine-producing pseudomonads for biocontrol of fungal crop diseases has 

been extensively investigated, the potential impact of these strains on non-target bacterial residents 

of the rhizosphere is less well understood. One study found that inoculation of Pseudomonas 

biocontrol strains shifted the rhizosphere community of maize seedlings, pushing the ratio of Gram-

positive to Gram-negative bacteria in favor of the latter; however, this analysis was based on 

profiling colony growth rates and whole-cell fatty acids from pooled cultured isolates, greatly 

limiting the taxonomic resolution and making it difficult to rule out whether the Gram-negative 

biocontrol strains might themselves have directly contributed to the shift (Kozdrój et al., 2004). On 

the other hand, at least three studies found no notable or consistent effects of introduced 

Pseudomonas species on the rhizosphere bacterial communities of wheat or potato (Gagliardi et al., 

2001; Bankhead et al., 2004; Roquigny et al., 2018), albeit the studies in wheat employed methods 

with limited discriminatory power (namely, carbon source utilization profiling and terminal 

restriction fragment length polymorphism). Given these mixed results and the lack of fine-grained 

spatial or taxonomic resolution in most studies on this topic, whether phenazine-producing bacteria 

actively shape the surrounding rhizosphere bacterial community through antibiosis, potentially at the 

micron or millimeter scale, remains an open question.  

In addition to the lack of clarity regarding the effects of phenazines on rhizosphere bacterial 

communities, the genetic and phylogenetic correlates of phenazine resistance in bacteria remain 

incompletely understood. The toxicity of phenazines is generally ascribed to the generation of 

reactive oxygen species (ROS) and interference with respiration (Hassan and Fridovich, 1980; Baron 

and Rowe, 1981; Voggu et al., 2006; Perry and Newman, 2019). Previous studies have suggested 

that efflux pump expression, cell permeability, oxidative stress responses, and the composition of 

the respiratory electron transport chain can affect bacterial susceptibility to phenazines (Voggu et 

al., 2006; Khare and Tavazoie, 2015; Noto et al., 2017; Wolloscheck et al., 2018; Perry and 

Newman, 2019; Meirelles and Perry et al., 2021). In addition, a comparison of 14 bacterial strains 

indicated that Gram-negative bacteria as a group may be more resistant to phenazine toxicity than 
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Gram-positive bacteria (Baron and Rowe, 1981). However, all of these studies focused on a specific 

phenazine, pyocyanin, that is particularly toxic (Meirelles and Newman, 2018) and best known for 

its role as a virulence factor during infections of humans and animals (Lau et al., 2004; Liu and 

Nizet, 2009). Whether the same observations hold true for more agriculturally-relevant phenazines 

such as phenazine-1-carboxylic acid (PCA) (Thomashow and Weller, 1988; Thomashow et al., 

1990; Mavrodi et al., 2012; Dar et al., 2020) is unknown, and no consensus set of predictive genetic 

markers of phenazine resistance exists that has been validated across different microorganisms.  

In this study, we set out to lay a foundation for addressing unresolved questions about the 

ecological impact of phenazine toxicity in the rhizosphere by determining the prevalence of 

phenazine resistance among bacteria isolated from a wheat field in the Inland Pacific Northwest, a 

region where phenazine production and the biocontrol potential of indigenous Pseudomonas species 

have been studied for decades (Thomashow and Weller, 1988; Thomashow et al., 1990; Mazzola et 

al., 1992; Mavrodi et al., 2012). We designed a culture-based assay to measure sensitivity to PCA, 

which is the best-studied and one of the most abundant phenazines in this environment (Thomashow 

et al., 1990; Mavrodi et al., 2012; Dar et al., 2020). We also performed full-length 16S rRNA gene 

sequencing of our isolates in order to assess the relationship between taxonomy and PCA resistance. 

Our strain collection is taxonomically diverse and encompasses a wide range of phenotypes with 

respect to PCA resistance. This work thereby opens the door to identifying conserved genetic 

markers of resistance to phenazines, if any exist. 

Results 

Taxonomy of culturable bacteria from dryland wheat rhizospheres and bulk soil 

A total of 175 strains of bacteria were isolated from 12 soil samples collected from a wheat 

field at Washington State University’s Lind Dryland Research Station in early August 2019, shortly 

after the wheat harvest. The samples comprised 4 replicates each of wheat rhizosphere (“Wheat”), 

bulk soil collected between planted rows (“Between”), and bulk soil from a virgin patch of 

uncultivated soil adjacent to the field (“Virgin”). Full-length 16S rRNA gene sequencing revealed 

that the isolates represented 21 genera across 4 phyla: Actinobacteria, Bacteroidetes, Firmicutes, and 

Proteobacteria. The vast majority of isolates from the bulk soil samples (both Between and Virgin) 
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were Actinobacteria or Firmicutes. In Wheat samples, on the other hand, the combined proportions 

of these two phyla were lower, accounting for 18-50% and 10-25% of isolates respectively, while 

Proteobacteria accounted for approximately 25-60% of isolates depending on the replicate, and 1-3 

strains of Bacteroidetes were also detected in each replicate (5-12% of isolates) (Fig. 1).  

Development of a phenotypic screen for PCA resistance 

The toxicity of PCA to diverse organisms is known to vary depending on pH, with generally 

minimal toxicity above pH 6 and increasing toxicity with increasing acidity (Brisbane et al., 1987; 

Cezairliyan et al., 2013). This phenomenon has been attributed to the fact that the deprotonated form 

of PCA is negatively charged (Fig. 2A); the negative charge on bacterial cell walls and the outer 

membrane of Gram-negative bacteria (or the negative membrane potential of eukaryotic cells) likely 

hinders uptake of this species. The protonated form of PCA, on the other hand, is neutral and 

presumably can passively diffuse across cell membranes given the small size and hydrophobic nature 

of the molecule (Price-Whelan et al., 2006; Cezairliyan et al., 2013). The pKa of PCA is 4.24 at      

25 °C; thus, at pH 7, only 0.17% of PCA in solution is protonated compared to 14.8% at pH 5, 

leading to greater toxicity at the lower pH (Brisbane et al., 1987). Given this pH dependency and the 

fact that the bulk soil and rhizosphere pH of wheat fields in the Inland Pacific Northwest can vary 

by >3 units (pH 4.3-8.0) depending on geographic location and fertilizer treatment status (Smiley 

Figure 1: Taxonomic distribution of bacterial isolates from wheat rhizosphere and bulk soil samples. 
This plot depicts the proportion of isolates from each sample that belonged to the 4 represented phyla. Each 
column represents one soil sample, and each box within the columns represents an individual isolate colored by 
the phylum to which it belongs (e.g. 6 boxes comprising one column indicates that 6 strains were isolated from 
that sample). B = Between (bulk soil), V = Virgin (bulk soil), W = Wheat (rhizosphere).  
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and Cook, 1973), we decided to screen our isolates for resistance to PCA at both circumneutral and 

acidic pH (7.3 and 5.1, respectively). We chose 100 µM as the working concentration of PCA as this 

is likely to be in a physiologically relevant range based on concentrations measured both in pure 

cultures and in the field. In broth cultures of biocontrol strains of Pseudomonas, PCA accumulates 

to concentrations ranging from dozens to hundreds of micromolar (Séveno et al., 2001; Tagele et al., 

2019). In natural wheat rhizospheres, PCA has been detected at nanomolar concentrations (Mavrodi 

et al., 2012), but these bulk measurements almost certainly underestimate local concentrations at the 

micron scale given that bacteria colonize the rhizosphere in a patchy manner (Thomashow et al., 

1990). Notably, PCA can accumulate in biofilms to concentrations 360-fold greater on a per volume 

basis compared to broth cultures (Séveno et al., 2001), suggesting that local concentrations of PCA 

in the rhizosphere, where biocontrol strains form robust biofilms (LeTourneau et al., 2018), may be 

orders of magnitude higher than the reported values.  

We initially attempted to perform our screen in liquid cultures in 96-well plates, in order to 

quantitatively track growth of the isolates using optical density over time. However, we found that 

for the majority of our isolates, even the untreated controls did not grow well under this condition—

either they grew as clumps or showed minimal growth after 3 days, despite robustly forming visible 

colonies on agar plates in the same timeframe. We therefore turned instead to an agar-based assay, 

Figure 2: Design and examples of readouts from a first-round PCA resistance screen. 
A. Structure of oxidized PCA in deprotonated and protonated states. 
B. In the first round of screening, resuspended cells of individual strains were spotted next to each other on       
10 cm agar plates under the four depicted conditions (pH 7.3 or pH 5.1, with or without 100 µM PCA). The 
relative positions of individual strains are consistent across the conditions. These images were taken after             
72 hrs. The colored boxes highlight different types of outcomes. Orange: a strain that was inhibited by an 
unidentified antibiotic secreted by its neighbor (the strain marked “146”). Green: a strain that was completely 
resistant to PCA at both pH 7.3 and pH 5.1. Yellow: a strain that was resistant to PCA at pH 7.3, but mildly 
inhibited by PCA at pH 5.1. Pink: a strain that was mildly inhibited by PCA at both pH 7.3 and pH 5.1.  
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whereby cells of each isolate were resuspended to a low density in liquid medium (or diluted from 

overnight cultures) and the suspensions were spotted onto agar plates containing either 100 µM PCA 

or a solvent control. In the first round of this assay, we used 10 cm petri dishes and spotted up to 40 

strains on the same plate. The plates were imaged once per day for 3 days using a flatbed scanner 

and the growth of each strain on the PCA plates relative to the controls was qualitatively scored by 

eye. This approach clearly revealed that certain strains were sensitive to PCA while others were 

resistant (Fig. 2B). However, one confounding factor was that several isolates produced their own 

antibiotics that inhibited the growth of their neighbors, and PCA appeared to alter antibiotic 

production in some of these strains, leading to cases where neighboring strains grew better on the 

PCA plates than on the control plates (Fig. 2B). In addition, we had used 0.1x tryptic soy agar (TSA) 

for the pH 7.3 condition and 0.1x potato dextrose agar (PDA) for the pH 5.1 condition; while these 

two media naturally have the desired pH, this raised the possibility that other nutritional differences 

between the conditions might also have affected sensitivity to PCA toxicity.  

To address these shortcomings, we performed a second, optimized round of the screen using 

24-well plates and 0.1x TSA that was either left unadjusted (pH 7.3) or adjusted to pH 5.1 with HCl. 

Each isolate in this round was spotted onto agar in separate wells (one spot per well) to prevent 

crosstalk and antagonism between the strains, and image analysis was used to derive quantitative 

information about the growth of each strain. Since several strains among our isolates appeared to be 

duplicates of each other, we restricted this round to strains that we judged likely to be unique      

(Table S1), as determined by the combination of 16S rRNA gene sequence, colony morphology, and 

response to PCA in the first round of screening (data not shown); where multiple strains appeared 

identical, we chose a representative strain. We also included 13 strains from the U.S. Department of 

Agriculture’s Agriculture Research Service Culture Collection (NRRL) that represented species 

found among our isolates (Table S1), in order to investigate the extent to which PCA resistance 

phenotypes are consistent across different strains of the same species. Finally, in this round we 

imaged the plates for up to 7 days in order to allow for the possibility that some sensitive strains 

would eventually grow in the presence of PCA. While performing the image analysis, it became 

evident that accurate quantification of growth would not be possible for certain strains that formed 

transparent colonies or secreted dark pigments. Nevertheless, this assay enabled us to derive detailed 

profiles of PCA sensitivity and resistance for the vast majority of our strains. 
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Distribution of PCA resistance phenotypes 

We began our analysis by focusing on a single-timepoint snapshot of each strain’s phenotype, 

taken at the equivalent of late log or early stationary phase (i.e. around the time that the spots on non-

PCA control plates reached their maximal density; see Methods for details). In accordance with 

previous reports of the pH dependency of PCA toxicity, we found that more of our strains were 

sensitive to PCA at pH 5.1 than at pH 7.3, and strains that were mildly inhibited by PCA at pH 7.3 

were typically inhibited more strongly at pH 5.1 (Fig. 3A-B). At pH 5.1, sensitivity or resistance to  

PCA largely fell along a Gram-positive / Gram-negative divide (Fig. 3A): most strains of  

Actinobacteria and Firmicutes were strongly inhibited by PCA, while most Proteobacteria were 

relatively resistant, and members of Bacteroidetes were either resistant or fell in the middle of the 

range. Interestingly, three strains of Proteobacteria (W1I13, W2I6, and W3I7, representing 

Paraburkholderia graminis, Pseudomonas brenneri, and Pseudomonas fluorescens, respectively) 

even appeared to grow slightly better on PCA plates compared to the control at pH 5.1. At pH 7.3, 

there was considerably more phenotypic variation among the Actinobacteria (Fig.  3B), particularly 

within the genera Agromyces and Streptomyces; for example, the top two rows of the heat map in 

Fig. 3B represent two species of Agromyces with dramatically different sensitivities to PCA. In some 

cases, there was even significant variation within the same species of Streptomyces (Fig. 3C). In 

addition, two strains of Microbacterium (W2I7 and W4I20) and two strains of Arthrobacter (B2I5 

and W3I6) grew significantly better in the presence of PCA at pH 7.3 compared to the control 

condition, perhaps suggesting that they can use PCA as a carbon source or otherwise benefit from 

its presence at a pH where toxicity is limited; one strain of Streptomyces (B-2570) also had higher 

calculated growth on the PCA plate compared to the control, but visual examination indicated that 

this was likely due to pigment production on the control plate. On the other hand, in contrast to the 

phenotypic variation seen among Actinobacteria, Firmicutes remained universally sensitive to PCA 

at pH 7.3 (albeit somewhat less so than at pH 5.1), and Proteobacteria and Bacteroidetes remained 

relatively resistant (Fig. 3B)—the latter more so than at pH 5.1. The one exception among the 

Proteobacteria was a strain of Sphingomonas faeni, isolate W4I17, that appeared to be mildly 

inhibited by PCA; surprisingly, the degree of inhibition for this strain appeared greater at pH 7.3 

than at pH 5.1.  
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Figure 3: Distribution of PCA resistance phenotypes across phyla and soil sample type.  
A-B. Heat maps depicting the growth of the strains at pH 5.1 (A) and pH 7.3 (B) in the optimized second round 
of screening for PCA resistance. Each row represents a strain. The leftmost columns are colored according to 
the ratio of growth on PCA-containing agar versus PCA-free agar; magenta indicates sensitivity to PCA while 
green indicates resistance to PCA. The right two columns in each heat map are colored according to the separate 
values for growth on PCA-containing agar (+ PCA) or solvent control agar (- PCA), with darker green indicating 
more growth; values are the average of three technical replicates. See Methods for a description of how growth 
was quantified. The rows in A roughly align with the rows in B; however, a few strains in B were not included 
in A due to poor growth at pH 5.1 in the PCA-free control condition.  
C. PCA sensitivity at pH 7.3 of different strains belonging to the same species of Bacillus or Streptomyces. Dots 
represent the mean of three technical replicates for one strain and vertical lines represent the standard deviation. 
% Growth = percentage of growth on PCA-containing agar compared to PCA-free agar. B. atr. = B. atrophaeus; 
B. nia. = B. niacini; B. pum.  = B. pumilus; S. afr.  = S. africanus; S. aur.  = S. aurantiacus; S. bob. = S. bobili; 
S. can. = S. canus (synonymous with S. ciscaucasicus); S. cya. = S. cyaneofuscatus; S. nov. = S. novaecaesareae; 
S. peu. = S. peucetius; S. pha. = S. phaeochromogenes.  
D-E. Density plots (i.e. smoothed histograms) representing the distribution of PCA resistance phenotypes at pH 
5.1 (D) and pH 7.3 (E) among strains isolated from Between (bulk), Virgin (bulk), or Wheat (rhizosphere) soil. 
Higher values along the x-axis indicate greater resistance to PCA. If multiple identical strains were isolated from 
the same soil type, only one representative was counted; thus, 26 strains were counted for Between, 39 for 
Virgin, and 45 for Wheat. Colored tick marks above the x-axis represent where individual isolates fall along the 
range of PCA resistance phenotypes.  
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We next examined whether there was any evidence of correlation between PCA resistance 

phenotypes and which type of soil each strain was isolated from (Between, Virgin, or Wheat). A 

previous study based on samples taken from the same wheat field found that the relative abundance 

of phenazine producers was higher in the wheat rhizosphere compared to adjacent bulk soil (Dar et 

al., 2020). We therefore hypothesized that if PCA-mediated antibiosis had shaped the bacterial 

community composition of this field, the prevalence of PCA resistance would be higher among 

isolates from the rhizosphere samples. Indeed, the Wheat samples clearly had the highest proportion 

Figure 4: Growth of strains over time with and without PCA at pH 5.1. 
Growth was quantified as described in the Methods. Solid lines represent the growth of spotted cultures on PCA-
free agar, and dashed lines represent the growth of spotted cultures on agar containing 100 µM PCA. Each color 
within a panel corresponds to one strain. Data points are the mean of three technical replicates and vertical error 
bars are the standard deviation. Strains of Chitinophaga and two strains of Variovorax were only tracked for 3 
days instead of 7 because these strains became highly mucoid and appeared to lyse starting on day 3. 
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of PCA-resistant isolates, regardless of whether resistance was assessed at pH 5.1 (Fig. 3D) or          

pH 7.3 (Fig. 3E). By contrast, all strains from Between or Virgin samples were highly sensitive to 

PCA at pH 5.1, though at pH 7.3, the resistance phenotypes of isolates from either type of bulk soil 

spanned the full range from highly sensitive to completely resistant. However, these findings are 

conflated with the fact that all of our Bacteroidetes strains, and all but one strain of Proteobacteria, 

were exclusively isolated from the Wheat samples, and that the members of these two phyla were 

Figure 5: Growth of strains over time with and without PCA at pH 7.3. 
Growth was quantified as described in the Methods. Solid lines represent the growth of spotted cultures on PCA-
free agar, and dashed lines represent the growth of spotted cultures on agar containing 100 µM PCA. Each color 
within a panel corresponds to one strain. Data points are the mean of three technical replicates and vertical error 
bars are the standard deviation. Strains of Chitinophaga and two strains of Variovorax were only tracked for 3 
days instead of 7 because these strains became highly mucoid and appeared to lyse starting on day 3. 
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generally relatively resistant to PCA. Further experiments will be necessary in order to distinguish 

whether the enrichment of PCA-resistant phenotypes in the rhizosphere samples is a consequence of 

PCA-mediated antibiosis or merely an indirect reflection of other factors that favor the growth of 

Proteobacteria and Bacteroidetes in the rhizosphere. 

Finally, plotting the growth of each strain over time revealed more nuanced variations among 

the PCA resistance phenotypes at pH 5.1 and pH 7.3 (Figs. 4 and 5, respectively). For example, 

strains of Chryseobacterium and Pedobacter (both in the Bacteroidetes phylum), as well as one strain 

of Microbacterium (Actinobacteria), displayed increased lag in the presence of PCA at pH 5.1, but 

the growth on the PCA plates eventually caught up to the controls. In addition, one strain of 

Arthrobacter eventually started to grow on PCA at pH 5.1 but only after 5 days, with variable lag 

across the three technical replicates (Fig. S1A). At pH 7.3, the effect of PCA on Bacillus species was 

a combination of increased lag, slower growth rate, and lower final cell density, as compared to no  

growth at all on PCA at pH 5.1. A few strains of Bacillus, as well as Paenibacillus, appeared to be 

still unable to grow on PCA at pH 7.3 based on the values shown in Fig. 5. However, examination 

of the plate images by eye revealed that this reflected a limitation in the sensitivity of our imaging 

and quantification methods to low levels of growth, as well as underestimation of growth due to 

color changes, rather than a true lack of growth (Fig. S1B).  

Other phenotypic interactions with PCA 

In the course of examining the plates from both rounds of our screen, we noticed two other  

interesting phenomena that appeared related to the presence of PCA, besides simple growth 

inhibition of sensitive strains. First, as alluded to above, the production of pigment or antibiotics by 

certain Streptomyces strains appeared to be altered by PCA (Fig. 6A-B); for a few strains, this was 

likely directly tied to growth inhibition by PCA, but in other cases where growth was not clearly 

altered, generalized stress responses or specific signaling interactions might be involved. In some 

cases, PCA inhibited pigment  production, while in others, it seemed to act as a stimulant. Thus, 

besides directly suppressing strains that are sensitive to PCA toxicity, PCA producers could 

potentially indirectly modulate other interspecies microbial interactions by altering the secondary 

metabolite profiles of other species; this is already evident from the examples where PCA rescued 

the growth of one strain by suppressing antibiotic production in a neighboring strain (Fig. 6B). 
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Second, certain strains of Bacillus and Paenibacillus catalyzed a color change in the presence 

of PCA, turning the surrounding medium pink over the course of several days (Fig. 6C). Typically, 

the color change first became visible after 4 days of incubation, when growth also became visible, 

and the color continued to intensify in subsequent days as the colonies grew. In addition, the color 

change only happened at pH 7.3, as none of these strains grew in the presence of PCA at pH 5.1. 

However, while the color change is striking, the evidence does not particularly suggest that it is 

related to a mechanism of detoxifying PCA: several strains of Bacillus that did not catalyze the color 

change were similarly able to grow to a moderate density on PCA at pH 7.3 within 7 days (Fig. 6D).  

We have so far been unable to confirm whether PCA itself is enzymatically transformed into 

another compound by these strains, whether the strains secrete another compound that directly reacts 

with PCA or indirectly causes PCA to react with a component of the medium, or whether PCA 

stimulates the production of an unrelated molecule. We attempted to perform reverse phase liquid 

Figure 6: Interactions between PCA and Streptomyces, Bacillus, and Paenibacillus species. 
A. Streptomyces strains for which PCA affected pigment production at pH 7.3. PCA suppressed pigment 
production in B-3826 (S. peucetius) and B2I16 (S. aurantiacus/glomeraurantiacus), but stimulated it in V1I8 
(S. phaeochromogenes) and V2I4 (S. ederensis). 
B. Examples of PCA-mediated suppression of antibiotic production at pH 7.3 in various Streptomyces strains. 
In each of the displayed pairs of strains, one strain was partially suppressed by the other in the absence of PCA, 
but recovered growth in the presence of PCA. 
C. Strains of Bacillus and Paenibacillus that catalyzed the development of a pink color in PCA-containing plates 
at pH 7.3. W2I17 = P. mobilis, V3I1 = B. atrophaeus, NRS-272 = B. pumilus, B3I3 = B. pumilus. 
D. Comparison of growth after 7 days at pH 7.3 with and without PCA, for selected strains of Paenibacillus and 
Bacillus that did or did not catalyze the pink color change. W2I17 = P. mobilis, W4I10 = P. mobilis, B3I3 =      
B. pumilus, B2I15 = B. simplex, V3I5 = B. drentensis, V2I10 = B. idriensis. 
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chromatography-mass spectrometry (LC-MS) on pink supernatant from one of these strains to 

identify the colored compound, but this was unsuccessful due to clogging of the column, even after 

centrifuging and filtering the sample to remove cells. We were also unable to extract the pink 

compound using ethyl acetate or dichloromethane, solvents that work well for PCA and pyocyanin, 

respectively, although whether PCA is depleted by these strains could be inferred by attempting 

instead to extract PCA from the pink supernatant. The insolubility of the pink compound in ethyl 

acetate and dichloromethane suggests that it is hydrophilic, which is consistent with the properties 

of at least one group of red phenazines derived from PCA: aeruginosins A and B (Turner and 

Messenger, 1986). However, it seems unlikely that the compound is specifically aeruginosin A or B, 

as these compounds have been described as reddish-brown rather than bright pink (Ogunnariwo and 

Hamilton-Miller, 1975). In the future, a simple test of whether the compound is potentially an 

aeruginosin would be to transfer the cultures to airtight containers after the color has turned pink; if 

it is an aeruginosin, it should be reversibly reduced to a colorless form as the bacteria consume the 

oxygen in the culture (Turner and Messenger, 1986). Even if it is not an aeruginosin, its apparently 

hydrophilic nature suggests that techniques that have been used to purify aeruginosin A may also be 

useful for extraction of this compound. 

Notably, the ability to catalyze the color change varied even across strains that appeared 

relatively closely related to each other. For example, isolates W2I17 and W4I10 both have high 16S 

sequence similarity to Paenibacillus mobilis strain S8 (99.63% and 99.64%, respectively), but only 

W2I17 catalyzed the color change (Fig. 6D). Similarly, isolate B3I3 matched to the 16S sequence of 

Bacillus pumilus NRS-272 with 100% identity, but B3I3 catalyzed the color change to a far greater 

degree than NRS-272 under identical conditions (Fig. 6C). The strain-specificity of the phenotype 

suggests that comparative genomics and/or a genetic screen might prove fruitful in identifying the 

underlying mechanism of the color change.  

Discussion 

In this study, we have characterized profiles of resistance to an agriculturally-relevant 

phenazine across taxonomically diverse bacteria isolated from a wheat field where phenazine 

producers are indigenous. One of our more notable findings is that the previously reported pH 

dependency of PCA toxicity varies across bacterial taxonomic groups. For most Actinobacteria and 
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Firmicutes, sensitivity to PCA was clearly higher at pH 5.1 than at pH 7.3, indicating greater toxicity 

at the lower pH as expected according to the pKa of PCA. On the other hand, nearly all tested 

Proteobacteria were completely resistant to 100 µM PCA regardless of pH, at least down to pH 5.1. 

Consequently, at pH 5.1, PCA resistance phenotypes largely correlated with phylum—and more 

broadly, a Gram-positive versus Gram-negative divide, which has previously been reported for the 

toxicity of another phenazine, pyocyanin (Baron and Rowe, 1981). The Gram-positive versus Gram-

negative divide at pH 5.1 is perhaps not surprising, as at this pH, a significant proportion (~14%) of 

PCA in solution is protonated and therefore would not be repelled by the negatively charged cell 

wall. Under this condition, the outer membrane of Gram-negative species presumably presents an 

additional barrier to the entry of PCA, helping to limit the intracellular accumulation of the toxin in 

the same manner as for numerous other antibiotics (Nikaido, 1989). Less expected, however, was 

the considerably greater within-phylum and even within-species variation in PCA resistance 

phenotypes at pH 7.3, at least among the Actinobacteria. In particular, it was surprising that several 

Streptomyces strains exhibited at least some PCA-dependent growth inhibition even at pH 7.3, 

considering that many Streptomyces species are capable of producing their own toxic phenazines 

(Turner and Messenger, 1986; Dar et al., 2020).  Given that the major limit on PCA toxicity at 

circumneutral pH is thought to be its ability to enter cells, the phenotypic variability at pH 7.3 may 

indicate the presence of transporters or channels capable of phenazine uptake in some PCA-sensitive 

Actinobacteria. Alternatively, it is possible that PCA-sensitive strains acidified the growth medium, 

which was not buffered.  

Importantly, despite the general Gram-positive versus Gram-negative divide in sensitivity to 

PCA at pH 5.1, possessing an outer membrane is evidently not a leakproof shield against PCA 

toxicity. Proteobacteria as a group were more resistant to PCA at pH 5.1 compared to strains of 

Bacteroidetes, most of which exhibited increased lag in the presence of PCA, even though both phyla 

are comprised of Gram-negative bacteria. Intriguingly, one major difference between these clades is 

that Proteobacteria generally utilize ubiquinone as an electron carrier during aerobic growth (Collins 

and Jones, 1981), while the Bacteroidetes genera screened in this study (Chitinophaga, 

Chryseobacterium, and Pedobacter) utilize menaquinone (Lin et al., 2015; Singh et al., 2017; Kong 

et al., 2019). Menaquinones have a lower reduction potential compared to ubiquinones (White et al., 

2012). Although the standard reduction potential of menaquinone is still higher than that of PCA        
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(-74 mV compared to -177 mV) (Price-Whelan et al., 2006; White et al., 2012), indicating that PCA 

likely is not reduced by menaquinol, this difference with ubiquinone nevertheless raises the 

possibility that PCA may interact differently, and perhaps more readily, with the aerobic respiratory 

electron transport chain of menaquinone-utilizing Bacteroidetes strains compared to Proteobacteria, 

thereby generating more ROS and/or interfering with the generation of ATP. Interestingly, another 

study has shown that the reduced form of different phenazine with a low reduction potential, neutral 

red (3-amino-7-dimethylamino-2-methylphenazine), can directly transfer electrons to menaquinone, 

bypassing the proton-pumping NADH dehydrogenase complex that normally transfers electrons 

from NADH to menaquinone and thereby “robbing” the electron transport chain of energy that 

normally would be used to power ATP synthesis. We hypothesize that a similar phenomenon may 

occur with PCA in strains that rely on menaquinone. In future studies, this hypothesis could be tested 

by 1) performing in vitro experiments with purified menaquinone, ubiquinone, and reduced PCA to 

directly test whether quinones oxidize the latter and if so, whether the kinetics differ between 

menaquinone and ubiquinone, 2) measuring ROS production and steady-state ATP pools in selected 

strains of Bacteroidetes and Proteobacteria both in the presence and absence of PCA, and 3) forcing 

species of Proteobacteria (such as Escherichia coli) that utilize both ubiquinone and menaquinone 

in different branches of their electron transport chains to rely only on latter (for example, by deleting 

the genes for ubiquinone biosynthesis), followed by reassessing their sensitivity to PCA.  

Beyond the specific strains screened in this study, our larger goal for the risk assessment of 

phenazine-producing biocontrol strains, and the understanding of phenazine biology in general, is to 

develop a platform for the prediction of phenazine resistance phenotypes from genomic or 

phylogenetic information. The results of this study already indicate that, depending on the 

environmental pH, phylogenetic information may be of limited utility for prediction of PCA 

resistance, given the variation in phenotypes for Actinobacteria at circumneutral pH. However, this 

variability may also hold the key to identifying genome-based predictive markers of phenazine 

resistance. We envision sequencing whole genomes for our isolates and using comparative genomics 

to search for such markers. The latter could potentially be accomplished through a machine-learning 

approach such as sparse logistic regression, based on the presence/absence or counts of certain 

orthologs or functional gene groups, such as multidrug efflux pumps, components of the respiratory 

electron transport chain, redox-sensing transcription factors (e.g. SoxR), oxidative stress responses, 
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and enzymes that modify structural or chemical properties of the cell wall or membrane. Predicted 

genomic markers of phenazine resistance, if any, could be validated through classical genetic 

approaches (i.e. knockouts, overexpression, and heterologous expression) in both intrinsically 

resistant and sensitive strains. In parallel to the comparative genomics approach, phenotypic traits 

that are expected to correlate with PCA resistance (e.g. efflux activity, ROS generation, and PCA 

uptake and reduction rates) could also be screened through fluorescence-based assays to identify 

which cellular properties are most relevant for resistance (Price-Whelan et al., 2007; Sullivan et al., 

2011; Blair and Piddock, 2016; McBee et al., 2017).  

In addition to identifying genetic markers and physiological determinants of phenazine 

resistance, it will be important to relate PCA resistance phenotypes to how PCA shapes rhizosphere 

bacterial communities. On the millimeter-to-meter scale, this question could be addressed in part by 

metagenomic sequencing of bulk and rhizosphere soil samples from wheat fields to determine 

whether there are trends in the relative abundances of putative phenazine producers and putative 

PCA-sensitive or -resistant bacteria in different samples, following the example of Dar et al. (2020); 

such efforts are currently underway for the original soil samples used in this study. However, this 

approach can only reveal correlation, not causation. To probe the latter, it may be useful to start with 

reductionist model systems, such as in vitro co-cultures of selected strains from among our isolates 

with differing PCA resistance phenotypes. Culture setups that promote biofilm growth may be 

particularly relevant to modeling microbial interactions in the rhizosphere (LeTourneau et al., 2018), 

and could reveal whether PCA producers affect the spatial organization of the strains in addition to, 

or perhaps instead of, the overall taxonomic composition of the community. Wheat seedlings could 

also be grown in vitro with the selected strains to see which ones successfully colonize the roots in 

the presence or absence of a PCA producer, and how the strains organize themselves along the root 

surface; one might hypothesize that PCA producers would most likely be surrounded by PCA-

resistant strains, with PCA-sensitive bacteria potentially colonizing other regions of the root. 

Notably, the impact of PCA toxicity may be affected by environmental conditions; for example, 

PCA is likely to be less toxic in waterlogged soils in which oxygen has been depleted. 

In summary, the findings presented in this study have established a basis for inferring 

whether intrinsic resistance is a factor that affects how phenazine production shapes bacterial 

communities in the rhizosphere, as it will now be possible to test data-driven predictions regarding 
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which strains, species, or even phyla are most likely to be affected by phenazine-mediated antibiosis. 

This work has thus laid the groundwork for rectifying a major gap in studies of how introduction of 

a phenazine-producing biocontrol strain affects rhizosphere bacterial communities. Previous studies 

have lacked information about the baseline prevalence of resistance in the native communities 

(Gagliardi et al., 2001; Bankhead et al., 2004; Kozdrój et al., 2004; Roquigny et al., 2018), and in 

the absence of such information, it is impossible to determine whether a negative result (lack of 

change in the rhizosphere community) reflects a high prevalence of resistance to PCA that is 

particular to the studied community, versus a general lack of toxicity of PCA to most bacteria or 

fundamental abiotic constraints on the antibacterial activity of PCA in the rhizosphere (e.g. limited 

diffusion, adsorption to soil particles, etc.). Distinguishing between these scenarios is key to 

assessing the risk of unwanted side effects in rhizosphere communities upon the application of 

phenazine-producing biocontrol strains. In addition, recent studies have demonstrated that 

phenazines produced by the opportunistic pathogen Pseudomonas aeruginosa can promote bacterial 

tolerance and resistance to clinical antibiotics (Schiessl et al., 2019; Zhu et al., 2019; Meirelles and 

Perry et al., 2021; VanDrisse et al., 2021), and that these effects can extend to other opportunistic 

pathogens that are resistant to phenazines (Meirelles and Perry et al., 2021). Thus, understanding the 

prevalence and genetic determinants of resistance to phenazines may have implications not only for 

agriculture but also for human medicine and beyond, as we continue to uncover new ecological roles 

for these multifaceted bacterial metabolites.   

Methods 

Isolation of bacteria from wheat rhizosphere and bulk soil samples 

Three types of samples were collected from a non-irrigated wheat field at Washington State 

University’s Lind Dryland Research Station on August 9, 2019: wheat plants and surrounding soil, 

bulk soil from in between the planted rows, and bulk soil from a “virgin” hillside site that has never 

been farmed. The wheat had been harvested a few weeks prior to sample collection. All samples 

were immediately stored on ice in clean plastic bags, and subsequently at 4 °C for four days until 

processing. Rhizosphere soil samples were obtained by shaking the wheat roots until only 1-2 mm 

of tightly-adhering soil remained, followed by excising the roots at the crown with a sterile razor 

blade. The roots of 2-3 plants per replicate were placed in 50 mL conical tubes with 30 mL of sterile 



 

 

188 

deionized water, vortexed at top speed for 1 min, and treated in an ultrasonic water bath for 1 min to 

dislodge bacteria from the roots. Bulk soil samples (1 g per sample) were processed in the same 

manner. Large soil particles were allowed to settle to the bottom of the tubes on the bench top, and 

100 µL each of a 10-fold dilution series of the supernatants was spread onto 0.1x TSA plates 

containing 50 µg/mL nystatin to inhibit fungal growth. The plates were incubated upside down at 

room temperature in the dark and monitored for the appearance of new colonies over the course of 

a week. Colonies that appeared morphologically distinct in each sample were picked and restreaked 

on 0.1x TSA until visually pure cultures were obtained. Multiple representatives were also picked 

for the most common colony types in an attempt to account for strain variations that might not be 

apparent to the eye. Once the streaks yielded uniform single colonies, the isolates were inoculated 

into 1.5 mL of 0.1x tryptic soy broth (TSB) in 5 mL polycarbonate culture tubes and incubated at  

30 °C with shaking at 250 rpm. After 1-3 days of incubation, depending on when the cultures became 

turbid, 0.5 mL of each culture was mixed with 0.5 mL of 50% glycerol and stored at -80 °C. Some 

cultures never became turbid under these conditions, but nevertheless yielded viable frozen stocks. 

Species identification by 16S rRNA gene sequencing 

Single colonies or patches of morphologically pure streaks were picked and resuspended in 

20 µL sterile nuclease-free water. Colony PCR was performed using GoTaq Green Master Mix 

(Promega, Madison, WI) in 50 µL reactions (1 µL of cell suspension) according to the 

manufacturer’s instructions. For putative streptomycetes (isolates that formed hard colonies rooted 

in agar, often with aerial hyphae), the thermocycling protocol was modified to include a 10 min 

initial heating step at 95 °C (compared to 2 minutes for other samples). The primers used were 27F 

(AGAGTTTGATCMTGGCTCAG) and 1492R (TACGGYTACCTTGTTACGACTT) (Lane, 

1991). The PCR products were run on a 1% agarose gel to verify the presence of a single band at the 

expected size (~1500 bp), followed by purification with the Monarch PCR and DNA Cleanup Kit 

(New England Biolabs). The purified products were submitted for Sanger sequencing at Laragen, 

Inc., using the same 27F and 1492R primers. The resulting forward and reverse sequences were 

aligned using MAFFT (Katoh et al., 2019) and subjected to BLAST against the NCBI 16S ribosomal 

RNA sequences database. For a few strains, either the forward or reverse sequence was unusually 

short (possibly due to high GC content in the case of streptomycetes) or appeared to contain multiple 

products. We presumed that the latter was generally due to multiple primer binding sites or other 
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sequencing artifacts rather than mixed cultures as the corresponding sequence from the other 

direction was always clean. In these cases, only the clean sequence was submitted to BLAST. 

PCA resistance screen 

The optimized version of the PCA resistance screen was performed with four conditions: 

0.1x TSA (15 g/L agar plus 3 g/L tryptic soy broth no. 2 from MilliporeSigma) with or without        

100 µM PCA at pH 7.3 or pH 5.1 (adjusted with HCl). PCA was purchased from Princeton 

BioMolecular Research and dissolved in filter-sterilized 14 mM NaOH to make 10 mM stock 

solutions. The PCA stock solution or solvent control (14 mM NaOH) was added at 1% v/v to 

autoclaved molten 0.1x TSA; we verified that this addition did not noticeably alter the pH of the 

medium. Subsequently,       1 mL of the medium was pipetted into each well in 24-well polystyrene 

Cellstar Cell Culture plates (Greiner Bio-One). The plates were allowed to set and dry with the lids 

off in a biological safety cabinet for 20-30 min, followed by storage upside with the lids on at room 

temperature in the dark for two days prior to use. 

Cell suspensions for inoculation in the screen were prepared in one of two ways. First, 

individual strains were inoculated into 5 mL TSB cultures in glass culture tubes and incubated at     

25 °C with shaking at 250 rpm. Strains that grew overnight were then diluted to an OD600 of 0.05. 

Some strains did not grow well in this condition, especially strains of Streptomyces and 

Paenibacillus. For these, we directly scraped cells from streaks grown on 0.1x TSA plates and 

resuspended the cells in 200 µL TSB with pipetting and brief vortexing at top speed. Subsequently, 

10 µL of each cell suspension was pipetted onto the agar in a single well in the 24-well plates. Three 

adjacent wells per condition were inoculated with each cell suspension, representing technical 

replicates. After the spots dried, the plates were incubated at room temperature upside in the dark for 

up to 7 days. Every 24 hrs, the plates were imaged in color at 600 dpi with an Epson Perfection 

V550 Photo flatbed scanner (Epson).  

Image analysis and quantification of growth 

Images from the scanner were analyzed using Fiji (Schindelin et al., 2012). Circular regions 

of interest (ROIs) were drawn around each culture spot and the mean gray value was measured for 

each ROI. We also measured the mean gray values of equivalent ROIs in the wells of blank, 
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uninoculated plates for each condition. The latter values were averaged across each 24-well blank 

plate to give the “background” gray value, which was then subtracted from the mean gray values of 

the culture spots. The resulting numbers were reported as the metric for growth. Importantly, while 

this method generally worked well for comparisons across conditions within each strain, there are a 

few caveats. First, this metric underestimated growth for strains that produced a dark pigment. 

Second, growth was difficult to quantify for a few strains that grew as nearly transparent colonies. 

Finally, this metric is not very sensitive to low levels of growth. Nevertheless, for the vast majority 

of strains, this approach captured visible differences in growth across the four conditions in the 

screen.  
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Supplementary Table and Figure 

 
Table S1: Strains used in this study. This table is available in CaltechDATA and is linked to the record of this 
thesis in CaltechTHESIS. 
 

 
 
Figure S1: Limitations of image analysis for the quantification of bacterial growth on agar plates 
A. Growth of isolate W4I2 (Arthrobacter woluwensis) on 100 µM PCA at pH 5.1 after 7 days, showing variable 
lag across the 3 technical replicates.  
B. Growth of isolates B4I4 (Bacillus drentensis) and V3I1 (Bacillus atrophaeus) on 100 µM PCA at pH 7.3 after 
7 days. These are examples of strains for which growth was visible, but image analysis and quantification yielded 
growth values that were within the range seen for strains with no visible growth (in the case of B4I4, due to the 
limited sensitivity of our image analysis method) or were below zero (in the case of V3I1, due to the combination 
of low growth and a color change in the medium). 
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C h a p t e r  6  

CONCLUSIONS 

Summary 

In this thesis, I have presented new insights into both the molecular mechanisms and broader 

consequences of intrinsic resistance to phenazines, a class of bacterially-produced natural antibiotics. 

Below, I synthesize our main findings with regard to bacterial defenses against phenazine toxicity, 

links between natural antibiotics and clinical antibiotic resistance, and the prevalence of phenazine 

resistance in soil and the rhizosphere. I also provide some suggestions for future research directions, 

particularly with an eye towards bridging the gap between reductionist in vitro studies and predicting 

the ecological impacts of phenazines in complex communities and natural environments. 

In Chapter 2, by taking a functional genetics approach to dissecting defenses against 

phenazine toxicity in A. tumefaciens, a soil bacterium that is relatively resistant to pyocyanin (PYO), 

I revealed a dose-dependent interplay between two contrasting yet complementary transcriptional 

regulation systems. At low doses of PYO, appropriate regulation of the terminal members of the 

respiratory electron transport chain (ETC) plays a crucial role in tolerance to PYO toxicity; 

upregulation of oxidative stress responses and multidrug efflux pumps seemingly cannot compensate 

for disruptions in this system. However, at high doses of PYO, these active resistance mechanisms 

become equally indispensable. In P. aeruginosa, the producer of PYO, the transcriptional responses 

to PYO are functionally similar to those found in A. tumefaciens, including ROS-detoxifying 

enzymes and specific efflux pumps. As discussed in Chapter 3, the latter are essential for the 

tolerance of P. aeruginosa to physiologically-relevant concentrations of PYO. Interestingly, unlike 

in A. tumefaciens, which displays an all-or-nothing response to PYO, the expression of PYO-

regulated efflux pumps in P. aeruginosa is PYO dose-dependent. This difference may partially 

explain why low concentrations of PYO have a mild growth-inhibitory effect on A. tumefaciens but 

not P. aeruginosa, as eliminating the burdensome transcriptional response to PYO in A. tumefaciens 

improved growth at low-to-moderate doses (up to 50 µM PYO). In addition, in both A. tumefaciens 

and P. aeruginosa, disruptions of genes involved in cell wall or membrane modifications increased 

susceptibility to PYO toxicity, presumably by increasing cellular permeability and uptake of PYO. 
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Taken together, the results from both species suggest that minimizing intracellular redox cycling of 

PYO is key to intrinsic bacterial resistance to this natural antibiotic, and that multiple mechanisms 

can work in parallel towards this end. Thus, features such as possessing an outer membrane and 

efflux pumps that are homologous to known transporters of aromatic molecules may prove to be 

particularly informative when predicting phenazine resistance phenotypes in other bacteria. The 

composition of the ETC likely also plays an important role in modulating the sensitivity of different 

organisms to phenazines, but further studies will be necessary to develop a broad understanding of 

which variants are beneficial or detrimental.     

Importantly, the efflux pumps induced by PYO in P. aeruginosa not only provide protection 

against this self-produced toxin, but also confer cross-tolerance to structurally similar clinical 

antibiotics, such as fluoroquinolones. PYO-mediated increases in antibiotic tolerance in turn 

promote the fixation of spontaneous antibiotic resistance mutations. This stimulatory effect of PYO 

on the evolution of heritable antibiotic resistance is robust in P. aeruginosa, and can be even more 

dramatic in other opportunistic pathogens, such as B. multivorans, that are known to form 

polymicrobial infections alongside P. aeruginosa. These findings, along with related examples 

reviewed in Chapter 4, suggest that natural antibiotics and certain other types of bacterial secondary 

metabolites may have underappreciated effects on clinical antimicrobial treatment outcomes, 

particularly in the context of opportunistic and/or chronic infections.  

Finally, in order for a microorganism to benefit from exposure to a natural antibiotic, it must 

be able to tolerate any attendant toxicity. Given the pleiotropic effects of phenazines, being able to 

predict which species are intrinsically resistant to these natural antibiotics could be impactful in a 

variety of fields, from informing new approaches to antimicrobial therapy in polymicrobial 

infections, to refining risk assessments for phenazine-based biocontrol of crop diseases, to improving 

our understanding of which microbes might leverage phenazines for nutrient acquisition or anaerobic 

survival. As described in Chapter 5, I have advanced this goal by characterizing the phenazine-1-

carboxylic acid (PCA) resistance profiles of bacteria isolated from a wheat field where phenazine 

producers are native members of the rhizosphere microbiota. I found that while Gram-positive 

bacteria are generally more sensitive to PCA than Gram-negative bacteria, especially under acidic 

conditions, there are occasional exceptions to the rule, and not all Gram-negative bacteria are equally 

resistant. Moreover, among Streptomyces species, which are a clade of bacteria known to contain 
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phenazine producers, I observed unexpected variation in the ability to resist PCA when grown at 

circumneutral pH. Together with the findings presented in Chapters 2 and 3, this work has set the 

stage for a multifaceted comparative approach that will reveal which genetic and physiological 

correlates are most predictive of resistance to phenazines and related redox-active natural antibiotics. 

In addition, with more than 100 taxonomically and phenotypically diverse strains, our collection of 

soil and wheat rhizosphere isolates will facilitate investigations of whether and how resistance to 

natural antibiotics shapes their ecological impact in complex microbial communities. 

Future directions 

Disentangling condition-dependent contributions of different modes of phenazine resistance 

While genetic analysis of intrinsic phenazine resistance in A. tumefaciens and P. aeruginosa 

suggests that minimizing reactive oxygen species (ROS) production plays a central role in this 

phenotype, several questions remain open with regard to how different modes of controlling 

phenazine redox-cycling interact with each other, and which take precedence under different 

conditions. For example, is proper regulation of the respiratory ETC an essential prerequisite in all 

bacteria that are intrinsically resistant to phenazines, or is this necessity an idiosyncratic feature of 

A. tumefaciens? Does the robustness of a phenazine resistance phenotype depend on the number of 

branches in an organism’s ETC or the degree of redundancy in ETC regulation? To what extent can 

enhanced efflux or oxidative stress responses compensate for increased cell permeability? Genetic 

analysis with combinatorial mutants in P. aeruginosa and other intrinsically resistant species, 

together with comparative genomics and/or heterologous expression of putative resistance genes in 

phenazine-susceptible organisms, may shed light on these issues. For example, as discussed in 

Chapter 5, the generally higher susceptibility of Gram-positive bacteria to phenazines compared to 

Gram-negative bacteria is thought to be related to cell permeability; the outer membrane of Gram-

negative bacteria, which Gram-positive bacteria lack, acts as a barrier to the uptake of many other 

antibiotics, and may limit the uptake of phenazines as well. It would therefore be interesting to 

determine whether overexpression of a P. aeruginosa phenazine-regulated efflux pump in a Gram-

positive organism can rescue growth in the presence of phenazines, or whether the inherently greater 

permeability of Gram-positive cells is an overriding factor that active resistance mechanisms cannot 

overcome.  
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It would also be worthwhile to investigate how the contributions of different pillars of 

phenazine resistance (including efflux, oxidative stress responses, cell wall, or membrane 

modifications, and ETC regulation) are modulated by oxygen tension, especially since phenazines 

are important for anaerobic energy conservation in P. aeruginosa. Notably, while ROS generation 

is thought to be the primary mechanism of phenazine toxicity, phenazines such as PYO still retain 

some of their toxicity under anoxic conditions (Baron and Rowe, 1981; Noto et al., 2017; Meirelles 

and Newman, 2018). The mechanisms that drive this mode of toxicity are poorly understood, but 

may include the formation of reactive nitrogen species, oxidation of proteins, damage to iron-sulfur 

clusters, and/or DNA intercalation. The key resistance mechanisms that enable P. aeruginosa to take 

advantage of the redox-cycling properties of phenazines under oxygen limitation are also unknown. 

Identifying the relevant targets of phenazine toxicity and protective mechanisms under anoxic or 

microoxic conditions will require careful experimental design and more sophisticated approaches 

than those used under oxic conditions, given that phenazines can support anaerobic survival. If 

performing Tn-seq, for example, it will be necessary to disentangle cell death due to increased 

phenazine toxicity per se from cell death due to decreased ability to leverage phenazine redox-

cycling for survival. One possible approach might be to perform an initial screen to identify mutants 

with a fitness disadvantage in the presence of phenazines under anoxic conditions, and subsequently 

monitor NADH/NAD+ ratios in the mutants of interest; if a mutant is unable to efficiently use 

phenazines as an electron shuttle for anaerobic survival (e.g. due to a defect in phenazine reduction), 

the NADH/NAD+ ratio should theoretically be higher than that of the wildtype strain, and more 

similar to that of a phenazine-null mutant in the absence of exogenous phenazines. However, some 

mechanisms, such as efflux, might be essential both for minimizing intracellular toxicity and for 

supporting efficient electron shuttling.  

Assessing the impact of phenazines on the evolution of antibiotic resistance during infections 

Our data indicate that exposure to PYO can significantly increase the rate of antibiotic 

resistance acquisition via spontaneous mutations, both in P. aeruginosa and in certain other 

opportunistic pathogens that are intrinsically resistant to PYO. However, while our experiments were 

performed in a clinically-relevant growth medium that mimics the environment of the CF lung, it 

remains to be seen whether the observed effects also occur in patients, and whether they have any 

bearing on treatment outcomes. In animal models of infections, it may be possible to perform 
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controlled experiments to address these questions. Infections could be initiated with otherwise 

isogenic PYO-producing or PYO-deficient strains of P. aeruginosa and the emergence of antibiotic 

resistant mutants could be monitored over time. The efficacy of different treatment strategies (e.g. 

using or avoiding drugs that are structurally similar to PYO) could also be interrogated in such 

models. However, it is important to keep in mind that animal models for CF and chronic wounds 

have a variety of limitations with regard to how faithfully they capture clinical features of these 

disorders (Grada et al., 2018; McCarron et al., 2018). In humans, it will only be possible to perform 

correlative analyses due to ethical considerations. Nevertheless, it may be possible to indirectly infer 

relationships between PYO production and antibiotic resistance; for example, the PYO production 

phenotypes of P. aeruginosa isolates from various stages of infection could be assessed alongside 

their clinical antibiotic resistance phenotypes. Ultimately, if there appears to be an empirical 

correlation between the production of PYO and either antibiotic resistance phenotypes or treatment 

outcomes, clinical trials could be carried out to determine the utility of accounting for secondary 

metabolite production during antimicrobial susceptibility testing—for example, by implementing 

one or more of the approaches discussed in Chapter 4.   

Quantifying the production and spatial distribution of phenazines in the rhizosphere 

In order to forecast the potential impacts of phenazine production on bacterial communities 

in situ, it will be useful not only to have a predictive understanding of phenazine resistance, but also 

to know where and to what concentration phenazines accumulate, and how far they can diffuse away 

from producing organisms. However, addressing these seemingly simple questions presents 

significant challenges. Existing measurements of phenazines in natural environments are based on 

organic extraction followed by high-performance liquid chromatography (Wilson et al., 1988; 

Mavrodi et al., 2012). The results of such analyses are expressed in nonintuitive units (e.g. 

nanograms of phenazines per gram of fresh roots) that are difficult to relate to the units of 

concentration (e.g. µM) that are typically used in laboratory experiments. Moreover, such 

measurements obscure any variation in local concentrations at the micron scale—which is the scale 

that likely matters to microorganisms.  

One approach to measuring phenazine production and diffusion with higher spatial resolution 

would be to design a system of reporter genes in “producer” and “receiver” bacteria, and apply it to 
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the rhizosphere. In the producing organism, expression of a fluorescent protein could be coupled to 

the promoter that controls expression of phenazine biosynthesis genes. On the receiving end, 

expression of a different fluorescent protein could be placed under control of a phenazine-sensing 

transcription factor, such as SoxR, in an organism that does not make its own phenazines or other 

redox-active secondary metabolites. The regulation of the heterologous SoxR copies could further 

be tuned to yield either a dose-dependent response to phenazines (as is the case for SoxR in                   

P. aeruginosa), or an all-or-nothing response (as is the case for SoxR in A. tumefaciens due to an 

autoregulatory positive feedback loop). The former approach could be validated against known 

concentrations of phenazines to generate a calibration curve, while the latter might offer a more 

sensitive detector to define the outer reaches of phenazine diffusion. The producers and receivers 

could then be inoculated into a complex in vitro system, such as an EcoFAB (Gao et al., 2018), that 

recreates the rhizosphere environment while remaining amenable to fluorescence microscopy. 

However, while this approach would enable detailed characterization of the location of the bacteria 

in addition to revealing the distribution of phenazines, there are limitations: 1) SoxR is not specific 

to phenazines and can be activated by a wide range of redox-active metabolites, so it will be 

important to include control samples without the producer, and 2) it remains difficult to image 

fluorescently-tagged bacteria in natural soils, except by embedding samples in resin and thin-

sectioning. Thus, it would also be worthwhile to develop mass spectrometry imaging techniques for 

direct detection of phenazines in  “wild” rhizosphere samples (Veličković and Anderton, 2017). 

Conveniently, EcoFABs can also be made amenable to mass spectrometry imaging (Gao et al., 

2018), which would enable sample processing methods to be validated based on concordance 

between expression of phenazine biosynthesis reporter genes and actual detection of phenazines.   

Determining effects of phenazine production on rhizosphere microbial communities 

Even in the absence of quantitative, spatially-resolved in situ measurements of phenazines, 

it may be possible to empirically determine how phenazine production shapes rhizosphere microbial 

communities. Effects on overall taxonomic composition could be addressed through 16S and ITS 

rRNA amplicon sequencing and/or shotgun metagenomics, ideally with an initial focus on 

rhizospheres in EcoFABs or similar systems where highly controlled introduction of a phenazine-

producing strain is possible. This type of analysis could subsequently be extended to more natural 

scenarios, such as temporally-resolved analysis of taxonomic composition before and after the 
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introduction of a biocontrol strain to an actual crop field. Meanwhile, effects on the spatial 

organization of different taxa could be addressed through techniques such as multiplexed, spectral 

imaging fluorescence in situ hybridization (FISH), using probes that are specific for individual 

genera or species. When paired with information on each taxon’s biosynthetic capacity and 

susceptibility to phenazines, the spatial organization of the visualized taxa could indirectly reveal the 

extent to which phenazines accumulate and diffuse in the rhizosphere, as well as how different 

degrees of phenazine susceptibility affect the outcome of competition between strains.   

 

Concluding thoughts 

We are at an exciting junction in the study of phenazine biology. New physiological and 

ecological functions continue to come to light, and the potential impacts on multispecies bacterial 

communities are just beginning to be appreciated. Much can still be gained from using in vitro model 

systems to further refine the molecular details of how phenazines interface with microbial 

physiology. However, I believe the next great frontier is to take the insights we have acquired in the 

laboratory and test their predictive value in real-world environments. Fortunately, new tools and 

resources are making this ever more achievable, raising the tantalizing possibility that we will one 

day be able to leverage our knowledge of phenazines and other natural antibiotics not only to uncover 

fundamental principles of microbial ecology, but also to improve human medicine and agricultural 

sustainability.         
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