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ABSTRACT

We are on the verge of experiencing a new, integrated society where autonomous
vehicles will become a fabric of our everyday lives. And yet, seamless integration
of autonomous vehicles into our society will require vehicles to interface safely with
humans in an incredibly complex, fast-paced, and dynamic environment. Prema-
ture deployment of these new autonomous systems—without safety guarantees or
interpretability of algorithms, could prove catastrophic. How can algorithms gov-
erning vehicle behavior be designed in a way that guarantees safety, performance,
interpretability and scalability? This is the question this thesis seeks to answer.

First, we present a framework for architecting the decision-making module of au-
tonomous vehicles so that safety and progress of agents can be formally guaranteed.
In particular, all agents are defined to act according to what is termed an assume-
guarantee contract, which is broadly defined as a set of behavioral preferences. The
first version of the assume-guarantee contract is a behavioral profile, which is a set
of ordered rules that agents must use to select actions in a way that is interpretable.
With all agents operating according to a behavioral profile, the interactions however,
are not necessarily coordinated. We then constrain agent behavior with an addi-
tional set of interaction rules. The behavioral profile combined with these additional
constraints, are what we term a behavioral protocol. With all agents operating ac-
cording to a local, decentralized behavioral protocol, we can provide formal proofs
of the correctness of agent behavior, i.e. all agents will never collide and agents
will make it to their respective destinations. Not only does the protocol so defined
allow us to make formal guarantees, but it is also designed in a way that scales well
in the number of agents and provides interpretability of agent behaviors. Safety and
progress guarantees are proven and verified in simulation.

Second, we focus on using information from object classifiers to enhance an au-
tonomous vehicle’s ability to localize where it is within its environment. The
proposed approach for incorporating this semantic information is based on solving
the maximum likelihood problem. With a hierarchical formulation, we are not only
able to improve upon the accuracy of traditional localization techniques, but we are
also able to improve our confidence in the accuracy of object detection classifica-
tions. The improvement in robustness and accuracy of these algorithms are shown
in simulation.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation
In the last few decades, there has been a significant push to innovate autonomous
robotic technologies in industries ranging from transportation to healthcare. Because
of the widespread availability of computational resources and recent advances in
robotics, humans and robots will likely be able to operate side-by-side in the very
near future.

The Uber and Tesla crashes, where software algorithms caused fatalities, are grim
reminders that the algorithms that we design for these autonomous vehicles have
very real and potentially catastrophic consequences [1, 39]. More of these incidents
would cost lives and would justifiably obliterate human trust in robotic technolo-
gies. A prerequisite for introducing new technologies into society is thus providing
compelling proof of their safety (showing there is an extremely low probability of
the technology to cause harm or injury to humans), performance (the technology
performs some functional task, presumably better than humans can), and inter-
pretablility (there is an explanation for the reasoning agents use to make decisions).
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Figure 1.1: A typical autonomy stack. The thesis will focus on the perception and
decision-making modules.

How can algorithms governing vehicle behavior be designed in a way that guar-
antees safety, performance, and interpretability? In this thesis, we provide solu-
tions to this question in two different domains of a robot’s autonomy stack: 1) the
decision-making module, where agents make high-level behavioral choices and 2)
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the perception module that agents use to localize and understand their surroundings,
as can be seen in Fig. 1.1.

In the following sections, we pose the particular problems and challenges for design-
ing safe and interpretable algorithms in each of these modules and present existing
approaches.

1.2 Decision-Making
To define the agent’s high-level behavior, we must define the strategy it uses to make
decisions. The problem we address in this thesis is how to define a local, decentral-
ized strategy for an agent that guarantees “correct” agent behavior. Here, correct
behavior implies safety, lawfulness, and its ability to make progress. Other desirable
properties of the decision-making module include scalability and interpretability.

Design of such a decision-makingmodule is extremely challenging because 1) the set
of actions agents are choosing will only partially satisfy some set of specifications,
and it becomes unclear how actions should be ranked relative to each other [18],
2) the robot-freezing problem, in which the uncertainty propagation of other agent
behaviors can cause the robot to freeze altogether [91], 3) the joint action space grows
exponentially with every additional agent and quickly becomes computationally
intractable, and 4) safety and progress proofs for these decision-making modules
are extremely difficult to formalize because of unbounded rationality.

There are two main approaches in the multi-agent literature in defining the decision-
making module for autonomous agents. The first more common approach involves
designing a decision-making module for an individual agent, with some assumed
behavioral model for how other agents will interact with it. The second involves
a more collective approach where the focus is on designing efficient conventions
or protocols that specify how agents should negotiate and resolve conflicts while
interacting. The assumption here is that all agents are acting according to these
social laws or conventions. In the following sections, we provide details of these
approaches and their inherent limitations.

Behavior-Aware Motion-Planning for Individual Agents
Agents need to engage in interactive and cooperative decision-making in order to
choose actions that are safe, but also not maximally prohibitive and prevent the
agent from moving altogether like in the robot freezing problem [91]. How do
agents make decisions while taking into account the complex inter-dependencies
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that emerge from interactions with other agents?

Interacting Behavioral Models

One approach to solving this problem has been to use prediction methods to form a
set of possible hypotheses other agents may take [43, 53, 55]. Contingency motion-
planning based on these predictions has been proposed to guarantee that agents will
be able to take coordinated actions while retaining a safe trajectory [38]. These
approaches do not fully accommodate for reactivity of agent behaviors and tend to
be overly conservative. A second approach has been to use probabilistic models
to capture the interactivity among a set of self-interested agents. By modeling
agents as interacting Gaussian processes, some level of agent reactivity is captured.
These methods, however, lack performance guarantees [91]. A third approach has
been taking a game-theoretic perspective and modeling agent decision-making with
respect to a Markov game (and in the case of partially-observable information) as
interacting partially-observable Markov Decision Processes (i-POMDPs) [10, 32].
These methods often capture the reactivity of agents by modeling a reward function
defined on a joint action space, but this joint action space grows exponentially in
the number of agents. Methods like using factor-graph Markov Decision Processes
or imposing additional assumptions on agents have been proposed to reduce the
complexity of the problem [34, 81, 56]. All the interactive models of agent behavior
and associated decision-making strategies are limited because they do not scale well
and fail to provide either safety or performance guarantees.

Data-Driven Methods

A wide breadth of data-driven methods have been proposed so autonomous agents
can learn how to make decisions in an interactive multi-agent setting. Gaussian
Mixture Models, parameterized by neural networks, have been used to predict the
coupled behaviors of vehicles in a highway setting based on features like the ego
vehicle state, surrounding vehicle past and current states, specifications and road
geometry [43]. A large thread of research has been on using inverse reinforce-
ment learning (IRL) to learn the reward function that agents are using to make
behaviorally-aware decisions, and design control strategies for the ego agent ac-
cordingly [75, 77, 78]. Maximum-entropy IRL methods, a form of learning where
the entropy-based cost-function reduces the chance of overfitting, is used to help
agents learn human behavior and perform motion-planning in a socially-compliant
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manner [40, 48, 71]. In the case where agent transition functions and their joint re-
ward functions are not known, reinforcement learning algorithms can provide a way
to learn best policies in a multi-agent game with self-interested agents [12, 44, 84].
These approaches are often based on the joint action space and may not always guar-
antee convergence to an optimal equilibrium policy. Furthermore, decision-making
policies defined based on any learned models, lack interpretability and do not allow
for providing formal guarantees on the safety or performance of the decision-making
modules.

Formal Methods

Formal methods offer tools for designing provably correct control strategies for
complex systems like autonomous vehicles that satisfy high-level behavioral spec-
ifications like safety and liveness [6] for each individual vehicle. Linear temporal
logic (LTL) and signal temporal logic (STL) are used to define formal specifications
or rules agents should follow, and correct-by-construction controllers are then syn-
thesized to satisfy these specifications [3, 96]. Oftentimes agents will not be able to
satisfy all specifications at once and there may exist many conflicting specifications
the agent must follow [18, 92]. Minimum violation motion-planning has been pro-
posed to help the vehicle choose the trajectory that minimizes violation of a set of
ordered rules [92, 93, 98]. Unfortunately many of these algorithms rely on a joint
product automata which is inherently hard to scale with an increasing number of
agents. Recent work has been shown to reduce this computational tractability with
additional assumptions on the types of specifications [97]. Even so, the algorithms
used for synthesizing formally-correct strategies for the vehicles cannot guarantee
global safety properties since they do not make the assumptions that must hold on
other vehicle behaviors explicit.

Social Laws and Conventions for a Collective Set of Agents
A separate branch of research for designing decision-making modules has been
focused on the entire collective set of agents instead of individual agents. These
methods suggest defining behavioral restrictions or protocols for all agents to follow
so agent motion becomes coordinated and emergent global properties like safety
can be guaranteed [9, 85]. Shoham and Tenneholtz defined the idea of social
laws, which are a set of behavioral conventions that guarantee safe coordination of
agents [85]. Alternating temporal logic model checkers can be used to solve related
feasiblity and synthesis problems based on these social laws [23]. The complexity
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of designing social laws, however, has been shown to be NP-complete [85]. Other
conventions include defining a lexicographical ordering over the joint action space
and choosing an action based on the ordering, but this requires substantial overhead
about knowledge of other agents [9, 10]. The Responsibility-sensitive-safety (RSS)
framework proposed by Mobile-Eye is a similar approach in that it defines a set of
rules or behaviors all agents should satisfy to guarantee safety [83]. This framework,
however, is very scenario dependent and does not guarantee that agents will be able
to make progress.

Alternative methods focus on designing communication protocols and mechanism
design via actions to facilitate coordinated agent behaviors. For instance, Pearl in
[69] suggestsmessage passing via coordination graphs, where agents repeatedly send
messages to neighboring agents to establish coordinated behaviors. Auction-based
methods designed for resource allocation are those in which incentive structures
are defined to establish global properties of the collective system [17, 67, 94].
Other auction-based methods solve the assignment problem to coordinate agents in
a decentralized way [8, 61]. These types of methods require some infrastructural
overhead and often suffer from the state-space explosion problem, but are powerful
in that they allow more global guarantees to be defined on the entire system.

The Approach
We can see that existing methods offer a variety of approaches that partially solve the
proposed problem, but there are none that propose a fully comprehensive decision-
making module that guarantees properties like safety and liveness (progress) for all
agents.

In our approach, we propose a framework that bridges a lot of elements of the above
theory and ideas in the literature. The main distinction of our proposed architecture
from the existing literature is the shift from thinking of each agent as separate,
individual entities, to agents as a collective where all agents adopt a common local,
decentralized protocol (where additional customization can be built in later). In
particular, we define a specific behavioral contract for one type of agent class in
a specific type of road network environment. The behavioral contract assumes
agents are constrained to reason about agents in a local region about it and that they
have minimal communication (i.e. token querying) capabilities. If all agents are
following this protocol, then we can guarantee safety and progress for all agents for
certain road network conditions. Moreover, the protocol is interpretable because
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the structure imposed on the set of specifications the agent is following is defined in
a particular way that guarantees transparency in the way agents select actions.

The work builds off of local, decentralized algorithms proposed for the solution to
the drinking philosopher problem [19]. The details of the approach can be found in
Chapter 1 and 2. Unlike existingworks, the result of ourwork is a behavioral protocol
that: 1) defines a set of behavioral specifications where the behavior is interpretable
(explainable), 2) leverages road network structure, 3) allows for inertial vehicle
dynamics, 4) includes a notion of locality, 5) is scalable with respect to the number
of agents (because of the invariance of agents’ safety backup plan action), and 6)
can formally guarantee safety and liveness.

Summary of Contributions
We define a behavioral protocol that specifies the set of rules agents should use to
ultimately select their actions. For this behavioral protocol, we introduce:

1. A behavioral profile that orders a set of agent specifications in such a way that
actions are chosen in an interpretable manner.

2. A quasi-simultaneous discrete game, a turn-based game in which turn-order
of agents is dependent on agent states.

3. A conflict resolution scheme based on agent precedence and token-querying.

4. Safety proofs based on all agents always having a safe backup plan action.

5. Progress proofs based on inductive reasoning where all agents are shown to
always eventually take a forward progress action.

1.3 Perception
The role of the perception module in the autonomy stack is to allow for an agent to
have some representation of its environment—where other agents are located, and
where it is locatedwithin this environment. In this thesis, we focus on the localization
problem. Conventional simultaneous localization and mapping (SLAM) algorithms
typically rely on geometric measurements. Access to semantic information (like
what objects are and/or contextual knowledge about the environment) can enrich
an agent’s perceptual understanding of its environment and where it is within that
environment.
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Vision-based object classifiers, combined with an a-priori map of object locations,
offer away to improve existing pose estimationmethods. Augmenting existing local-
ization methods with semantic information from these classifiers can be challenging
because 1) the measurement model is inherently different than more traditional con-
tinuous measurements and 2) the algorithm must be robust to false positive and
negative measurements.

In the following sections, we provide somemore context on traditional SLAMmeth-
ods and ways traditional methods have been augmented to accommodate semantic
information.

Traditional SLAMMethods
Standard SLAM algorithms are posed as the following problem: given a set of mea-
surements� , {I})

C=0, find the best estimate for both the vehicle poses� , {G})
C=0

and the landmark positions ℒ , {;})
C=0 seen in the environment during the vehi-

cle trajectory [13]. Batch estimation techniques are when all pose-estimate and
landmark positions are solved for at once. The maximum likelihood formulation
turns into a nonlinear least-squares minimization problem under some Gaussian
assumptions about the model and measurement noise and can thus be solved via
QR-factorization. The gtsam algorithm in particular is a widely-used pose-graph
estimation algorithm that can solve the nonlinear batch-optimization formulation in
an incremental fashion [22]. Solving the optimization problem is often referred to as
solving the ‘back-end’ of the SLAM problem. The front-end of the SLAM problem
involves solving the data association problem (matchingmeasurements to landmarks
in the map) and the loop-closure problem (identifying when an agent has reached its
original location) [22]. Several algorithms have been developed to ensure that the
factor-graph formulation for SLAM problems are robust to loop-closure errors [16,
31, 87]. In particular, the covariance value associated with loop closure measure-
ments, which are referred to as switchable constraint variables, are introduced into
the optimization framework to improve robustness to false detections [2, 87]. These
same methods can be extended to make semantic estimation algorithms robust to
false positive measurements as well.

Semantic SLAMMethods
Semantic data can be modeled as binary measurements that have state-dependent
probabilistic likelihood functions [5, 45, 46]. The probability of a positive detection
measurement is modeled as an inverse exponential function of the distance to the
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detected object in [45], meaning positive object detections aremodeled to occur with
higher probability when the vehicle is close to the detected object. In [11], Bowman
et al compute the likelihood function of an object detection event as a function of
the object classifier confusion matrix, and solve the coupled data association and
estimation problem by iteratively solving an expectation-maximization problem. In
these algorithms, however, the likelihood functions lack the ability to capture false
positive or negative detections. A likelihood function that captures these types of
errors is derived in [5], but requires additional assumptions on the probability of
false positive detections generated by clutter.

While semantic measurements have been shown to improve the accuracy, there has
been an active effort or research in actively leveraging vehicle dynamics to enhance
its ability to recognize objects [68, 74, 89]. Pose estimation has been shown to
improve the accuracy of object classification algorithms [68, 74]. These methods
take into account the motion profile taken when observing an object, but do not
consider the dynamics between object detections [74].

The Approach
Existing methods for semantic estimation either use semantic measurements to
improve the accuracy of localizationmethods or use the vehicle dynamics to improve
the accuracy of object classifiers—but few do both simultaneously. In our approach,
we fully leverage the information offered by object classification information. In
particular, we introduce a hierarchical frameworkwhere both object-detection events
and the object state are estimated. The hierarchical framework that we propose
robustly handles false positive measurements used in localization and also allows
for our greater certainty in the object classification measurements. This framework
enables the agent to have a more enriched semantic understanding of where it is
located.

Summary of Contributions
We define two methods for incorporating semantic measurements into more tradi-
tional SLAM algorithms:

1. A maximum likelihood framework with semantic information that is shown to
improves both the accuracy and the robustness of traditional SLAMalgorithms
in simulation.

2. A hierarchical estimation framework, where object detection events as well
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as robot poses are estimated. In this framework, robustness and accuracy of
the estimation, along with the confidence of object classifiers, are improved.
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C h a p t e r 2

DECISION-MAKING: BEHAVIORAL PROFILES

2.1 Introduction
In this chapter, we focus on designing the decision-making module for autonomous
vehicles with the specific focus of designing the set of rules (and the ordering on this
set of rules) that agents use to select their actions. Although the theory introduced
here can be applicable to any sets, we focus on the particular use-case of sets of
specifications (for self-driving cars).

Fundamental to defining agent behavior is deciding which rules or specifications
agents must follow. While defining the set of rules agents should follow is quite
easy, it is often the case that agents cannot always choose actions that satisfy all
actions simultaneously. It thus becomes necessary to define the priority among each
of these specifications. Currently, rules or specifications for autonomous vehicles
are formulated on a case-by-case basis, and put together in a rather ad-hoc fashion
[38, 54].

As a step towards eliminating this practice, we propose a systematic procedure for
generating a set of specifications for self-driving cars that are 1) associated with
a distributed assume-guarantee structure and 2) characterizable by the notion of
consistency and completeness. The behavioral profile, which is a product of this
systematic procedure, is a mathematical structure on the set of specifications that
ultimately defines a version of a rulebook that agents can use to transparently select
their actions. The work presented in this chapter has been published in [72], and
was done in joint collaboration with Tung Phan-Minh.

2.2 Assume-Guarantee Profiles
In a dynamic and interactive environment, the problem of providing guarantees for
a single agent without making any assumption on the behaviors of other agents
is ill-posed. The inherent coupling between the assumptions on the environment
and the system’s guarantees can be seen in Fig. 2.1. Assume-guarantee contracts
provide a formalism for defining contracts between modules of a complex system
so that system-level specifications can be met if the contracts among the individual
modules are satisfied.
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In the case of autonomous systems, each agent can be seen as an individual module
of the complex, multi-agent system. In this setting, we propose that this assume-
guarantee contracts should be defined in the form of a set of behavioral preferences
or rules that agents adhere to when selecting actions to take. Specifically, we propose
the framework of assume-guarantee profiles as follows.

Definition 1 (Assume-guarantee profile). An assume-guarantee profile for an agent
is a 2-tuple (A,G) where

• A is a set of behavioral preferences or characteristics that the agent assumes
its environment to have.

• G is a set of behavioral preferences or characteristics that it is obligated to
behave according to as long as its environment makes decisions in accordance
with A.

Autonomous Vehicle Profile for Individual Agent
The first version of a behavioral contract for an autonomous agent that we propose
is a profile each agent uses to select actions. The purpose of the behavioral profile
is to define the behavioral preferences by ranking different actions (in most cases,
trajectories) relative to one another so that the optimal one can be selected. Ideally,
there would always be an action that the agent could select that would satisfy all
agent specifications.

Realistically, however, an action that satisfies all specifications does not always exist.
The individual behavioral profile therefore must have both 1) a set of specifications
(or rules) that agents should follow, but also 2) an ordering that defines a hierarchy of
importance on the specifications. As shown in Fig. 2.1, the functionality of a profile
serves to distinguish which action among a set of actions, has the highest-priority
with respect to some set of ordered specifications.

To order these actions, it is first necessary to know which subset of specifications
each of these actions satisfies. In other words, the agent needs a way to resolve
whether an action satisfies or does not satisfy each of the relevant specifications.
This is the role of the oracle, defined as follows.
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Figure 2.1: A high-level system architecture capturing the inherent coupling of the
behavioral specifications for an agent and its environment is shown in the bottom
figure. Each agent identifies the best action to take based on which subset of rules
are satisfied by that action. The specification structure and consistent evaluating
function define a unique ordering on all subsets of rules that ultimately determine
which actions are better or worse than others.

We assume that each autonomous agent relies on an oracle [86] that provides
predictions as to which set of specifications of interest that a particular action
will satisfy. The input to the oracle is a set of specifications, a potential action
the car can choose to take, and the current world state configuration. The output
of the oracle is a prediction of what specifications will be satisfied if the action
is taken. In the simplest case, the oracle could return a valuation of a set of a
Boolean variables, each indicating whether or not a property is violated. Note,
these specifications could be refactored to accommodate specifications that are
more continuous in nature (e.g. speed limit, extent of lane violation, etc.). Although
many decision/optimization problems currently posed for autonomous vehicles are
of high computational complexities, not to mention undecidable [59, 66], we expect
future technology to be capable of approximating the oracle to an acceptable level
of fidelity.

The oracle thus maps each action to a subset of specifications that are satisfied if
an agent were to take that action. The remaining role of the behavioral profile is
to evaluate how each action (subset of satisfied specifications) compares to every
other action (subsets of satisfied specifications), allowing the agent to ultimately
select the most preferable action. In order to perform this evaluation, we define a
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mathematical object termed a specification structure that imposes a hierarchy on a
set of specifications.

The hierarchy on the set of specifications cannot be partially defined, as this would
lead to a lack of transparency and interpretability behind agent decisions and would
thus undermine the purpose of defining a behavioral contract in the first place. On
the other hand, defining a total order on the powerset of the set of specifications
would not be amenable to computational tractability and would greatly restrict
agent behaviors. In Section 2.3, we thus introduce something in between the two.
We define a set of rules that must hold on the set of specifications so the profile
is minimally restrictive (still allows for customization), clearly defines a unique
line of reasoning for the agent’s decision-making process, and can be defined in a
computationally tractable and intuitive way. The specific mathematical properties
that the specification structure must satisfy for these characteristics to hold are
defined more rigorously in the following section.

2.3 The Specification Structure and Consistency
In order to motivate the definition of properties that must hold on the ordering
imposed on the specifications, we first consider an example where there exists a
partial order on a set of specifications. We show that the partial order on the set
of specifications is not enough to define a unique and transparent ordering on the
powerset of specifications. This would imply that there would be many ways to rank
different actions to each other, leading to inconsistencies in agent behavior.

Example 1. Consider a set ( = {0, 1, 2, 3, 4} that is partially ordered (a poset) such
that 1 ≺ 0, 2 ≺ 0, 3 ≺ 2, and 4 ≺ 2. Here, each element in the set represents a
specification like safety, the law, performance, etc. By this partial order, the node
1 cannot be compared to 2 or 3 or 4. Since 1 cannot be compared to 2 or 3 or 4,
it is ambiguous whether a self-driving car should take an action that satisfies the
properties 0, 1, and 3 or an action that satisfies 0, 1, and 4. More specifically,
there exist multiple ways to rank subsets relative to one another, thereby causing an
ill-posed definition of agent behavior.

The above example illustrates that there is not enough mathematical structure on
this partially-ordered set to resolve the ambiguity on the set of all possible subsets
of specifications. In order to define what additional constraints must hold on the
ordering for the rankings to be well-posed, we first introduce the idea of consistent
evaluators, which are a class of functions that endow a partially-ordered set (in our
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case, of specifications) with a unique weak order on their powersets. Being weakly
ordered means that all subsets are comparable, but some subsets may have equal
values to each other (these are considered indistinguishable).

We argue that aweak order on the powerset of specifications is preferable to imposing
a total order. In a practical setting, if a self-driving car manufacturer wanted to
impose a total order instead of a weak order on the powerset, they would have to
face the challenging task of defining how any one set of specifications is strictly
better or worse than another set of specifications. This is arguably impractical not
only because of the exponential growth in the size of the powerset, but also because
sometimes a strict comparison among sets of properties is simply unnecessary. A
consistent evaluator, which allows for sets in the powerset to have equal value,
therefore allows for a more sensible way of resolving comparisons between subsets
of specfications.

In summary, the role of the consistent evaluating function is to take as input some
partially-ordered set of specifications. It then defines a weak order on the powerset
of that set of specifications, thereby ranking every subset of specifications to every
other subset of specifications in a unique way. In the way the consistent-evaluator
function is defined, the ranking of subsets will respect the partial-order on the
specifications.

We refer to maximal chains (antichains) in our definitions and proofs, so we present
the definitions here.

Definition 2 (Maximal Chain (Antichain)). A chain (antichain) is a subset of a
partially ordered set such that any two distinct elements in the subset are comparable
(incomparable). A chain (antichain) is maximal when it is not a proper subset of
another chain (antichain).

In order for the consistent-evaluator function to be a well-posed function, we define
it as follows:

Definition 3 (Consistent evaluator). Given a set of specifications P and its powerset
2P , we define the consistent evaluator function as 5 : 2P → ) , where ) is a totally
ordered set with ≤ as an ordering relation. For all subsets, %1, %2 ⊆ P, the following
must hold:

1. ∀?1 ∈ %1, %1 ≠ ∅ ⇒ 5 (∅) < 5 (%1);
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2. ∀?1 ∈ %1.∀?2 ∈ %2.?1 ∈ %1 ∧ ?2 ∈ %2 ∧ 5 ({?1}) = 5 ({?2}) ⇒ ( 5 (%1) ≤
5 (%2) ⇒ 5 (%1 − {?1}) ≤ 5 (%2 − {?2})); and

3. (∀?1 ∈ %1.∀?2 ∈ %2. 5 ({?1}) ≠ 5 ({?2})) ⇒ (max
?∈%1

5 ({?}) < max
@∈%2

5 ({@}) ⇒
5 (%1) < 5 (%2)).

If P is partially ordered by � and A(%,�) is the set of all antichains of %, we further
require that for any ?1, ?2 ∈ %

4. ∀?1 ∈ %1.∀?2 ∈ %2.?1 ≺ ?2 ⇒ 5 ({?1}) < 5 ({?2}); and

5. ∀?1 ∈ %1.∀?2 ∈ %2.({?1, ?2} ∈ A(%,�) ∧ 5 ({?1}) < 5 ({?2})) ⇒ (∃B, C ∈
%.?1 ≺ B ∧ 5 ({B}) = 5 ({?2}) ∧ 5 ({?1}) = 5 ({C}) ∧ C ≺ ?2).

Intuitively, the conditions in Definition 3 mean

1. The evaluator will assign the worst value when no property is satisfied. This
ensures that every property included in P matters to the evaluator.

2. Properties of equal value to the evaluator can be disregarded without affecting
the result of the evaluation.

3. For sets that do not have properties with the same values, the one with the
most highly valued property is preferable.

4. If there exists a pre-imposed hierarchy between some of the properties via
some partial ordering, then the evaluator must respect it.

5. Given a pre-imposed hierarchy on the properties, the evaluator must be impar-
tial: it will only assign different values to two properties whose relationship is
not defined in the hierarchy when they are comparable via two equally valued
“proxies.” In Condition 5, the proxies are B and C .

First, we present an example of a partially-ordered set and its respective consistent-
evaluation function. In particular, the consistent-evaluating function is a function
that takes in a partially-ordered set and outputs a weak order on the powerset of
specification, thereby allowing us to rank the subsets of specifications relative to
one another—in what we later prove to be a unique way.



16

Example 2. Consider a partially ordered set & in which ? is the greatest element
and all other elements belong to an antichain. Then we can define 5 as the function
5 (&̃) B 1?∈&̃ |& | + |&̃ − {?}| for all &̃ ⊆ & where 1 is the indicator function. This
function evaluates any subset with the maximal element in it as the cardinality of &
plus the dimension of the subset not including the element ?. It also evaluates any
subset without the maximal element as the dimension of that subset. One can easily
verify that 5 is a consistent evaluator for &.

Do all partially-ordered sets have a consistent evaluator? The answer is no. We
present an example to show that not all posets admit a consistent evaluator.

a (2)

p1 (0)

*s (1)

*proxy nodes

p2 (1)

a (2)

p1 (0)

*s (1)p2 (0)

f1 f2

Figure 2.2: A poset that does not admit a consistent evaluator. The values in
parentheses denote the value of the singleton set containing that node given by the
evaluator 58. In both cases, requirement 5 is violated. © 2019 IEEE.

Example 3 (Poset without consistent evaluator). Consider the poset with the struc-
ture shown in Fig. 2.2. We cannot define a consistent evaluator that satisfies all five
requirements on this partially-ordered set. In order to satisfy requirement 4, such
that the partial order established in the poset is preserved, the consistent evaluator
function 51 on the left and 52 on the right can, WLOG, assign all nodes on the right
branch of the poset with the values shown in Fig. 2.2. To respect the partial order, by
requirements 4 and 5 of consistent evaluators, ?2 must be assigned a value in {0, 1}.
The left figure shows what happens if the function takes on the value 1 for the left
node, i.e., 51({?2}) = 1. If this happens, then 51({?1}) < 51({?2}), but there is no
proxy node that is comparable to ?2 in the poset and has a value equal to 51({?1}).
This clearly violates requirement 5. The right figure shows what happens if the
function takes on the value 0, i.e. 52({?1}) = 0. A similar violation is incurred by
52 (see Appendix A).

Through the previous example, we see that not all posets admit a consistent evaluator.
The natural question to ask is: what makes posets consistently evaluable? The next
theorem will answer this question.
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Theorem 1. A finite poset % of specifications has a consistent evaluator if and only
if it can be partitioned by a set A of # maximal antichains such that

1. Maximal Antichain and Rank Criterion: The maximal antichains A can be
assigned ranks in such a way that the partial order is respected.

2. The Maximal Chain Criterion: For each node (dimensional property), there
exists a maximal chain containing the node of length # .

The proof of Theorem 1 is as follows:

Proof: (⇒): Suppose that % is a poset of specifications with the ordering relation �
such that % has a consistent evaluator 5 . Since % is finite, the set 5% B { 5 ({?}) |
? ∈ %} is also finite. Furthermore, the range of 5 being totally ordered implies that
we can write 5% = {I1, I2, . . . , I=} for = = | 5% | such that I1 < I2 < . . . < I=. For
each I8 ∈ 5%, let 5 −1(I8) ⊆ % be defined by 5 −1(I8) B {? | ? ∈ % ∧ 5 ({?}) = I8}.
Observe that requirement 4 of Definition 3 implies that for each 8, 5 −1(I8) is an
antichain. Consequently, the 5 −1(I8)’s form a partition of % by antichains. By
ranking each 5 −1(I8) by the corresponding I8, it also follows that the antichains
respect the partial order defined by �. To show maximality, suppose that there
exists 9 ∈ [=] such that 5 −1(I 9 ) is not a maximal antichain. This implies that there
exists : ∈ [=] − { 9} and there is a property @★ ∈ 5 −1(I: ) such that {@★}∪ 5 −1(I 9 ) is
an antichain. WLOG, suppose 9 < : so that I 9 < I: implies ∀@ ∈ 5 −1(I 9 ). 5 (@) <
5 (@★). But the existence of any @̃ ∈ 5 −1(I 9 ) such that 5 (@̃) < 5 (@★) implies, by
requirement 5 of Definition 3, that there exists @′ ∈ 5 −1(I 9 ) such that @′ ≺ @★.
But this contradicts the assumption that {@★} ∪ 5 −1(I 9 ) is an antichain. From this,
we hence conclude that 1) holds. To see that 2) holds, observe that any property
? ∈ 5 −1(I 9 ), if 9 ≠ = ∧ = ≥ 2, then by requirement 5 and the antichain property of
the 5 −1(I8), there exists @ ∈ 5 −1(I 9+1) such that ? ≺ @. Similarly, if 9 ≠ 1 ∧ = ≥ 2,
there exists A ∈ 5 −1(I 9−1) such that A ≺ ?. Applying this argument to A and/or @
inductively yields a chain of length = that contains @. This chain is maximal by the
contradiction resulting fromapplying the pigeonhole principle [36] to the assignment
of properties from any chain of greater length to the maximal antichains.
(⇐): Let the maximal antichains in the partition of % be %0, %1, . . . , %<−1 with
ranks A (%0) < A (%1) < . . . < A (%<−1). We construct a function , : 2% → N<

as follows. For any subset ( ⊆ %, we define �(,A to be the set of all elements
in the subset ( with rank A. , (() ∈ N< is an (<)-tuple whose 8th digit is such
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that ,8 (() B |�(,8 |. This means that the 8th element in the tuple is the number of
elements in the subset ( with rank 8.

The 8th digit of, (() is defined to be more significant than the 9 th digit if the former
is associated with a higher rank. This induces a natural total ordering relation ≤
on the set {, (%) | % ⊆ P} by most significant digits. In particular, this means,
, ((0) ≤ , ((1) if and only if all corresponding entries are equal or the first most
significant differing pair satisfies ,8 ((0) < ,8 ((1). The rest of the proof involves
checking that, has all the properties of a consistent evaluator.

We can easily verify that requirements 1-4 of a consistent evaluator are satisfied.
Now, we show that requirement 5 holds as well. Let us show this by contradiction.
Consider that there exists a node ?1 and ?2 such that 5 ({?1}) < 5 ({?2}), but there
does not exist a node B or C such that ?1 ≺ B, C ≺ ?2, and 5 ({?2}) = 5 ({B}) and
5 ({?1}) = 5 ({C}). WLOG, consider ?1 to be a node where there does not exist
a node B such that ?1 ≺ B and 5 ({?2}) = 5 ({B}). Since there is no node that is
directly comparable to ?1 in the antichain with value equal to 5 ({?2}), there exists a
maximal chain containing ?1 that has length strictly less than <. This is a violation
of property 2) characterizing the poset %.
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Figure 2.3: A visualization of Theorem 1.

Is it possible that there may be multiple such decompositions of maximal antichains,
making the ordering that is induced via the corresponding rankings not unique?
Luckily, the answer is a reassuring negative.

Theorem 2. Such a partition in Theorem 1 is unique.

Proof: Suppose that %1, %2, . . . , %< is also a partition of maximal antichains of %
with ranks A (%1) < A (%2) < . . . < A (%<) that respect the partial order. Suppose
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that < ≠ = where = = | 5% |. If < > =, then by 2) of Theorem 1 there is a chain
of length <. However, assigning these < properties to the 5 −1(I8) means by the
pigeonhole principle that there are at least two properties that are assigned to the
same 5 −1(I 9 ) for some 9 , implying that 5 −1(I 9 ) is not an antichain, a contradiction.
It follows that< ≤ =. Similarly, we can argue that< ≥ = and therefore< = =. Now,
we claim that %8 = 5 −1(I8) for all 8 ∈ {1, 2, . . . , =}. Suppose this is not the case,
then there exists ? ∈ %: such that ? ∈ 5 −1(Iℎ) for : ≠ ℎ. Then by 2), there are two
chains of length =: ?1 ≺ ?2 ≺ . . . ≺ ?= and 51 ≺ 52 ≺ . . . ≺ 5= such that ?8 ∈ %8
and 58 ∈ 5 −1(I8). We also have ?: = 5ℎ = ?. WLOG, assume ℎ < : . This implies
that ?1 ≺ ?2 ≺ . . . ≺ ?: = ? = 5ℎ ≺ 5ℎ+1 ≺ . . . ≺ 5=. However, this chain has
length : + = − ℎ > = since : > ℎ. This contradicts the fact that % can be partitioned
into = antichains.

Since the consistent-evaluating function is defined on this uniquely-defined decom-
position, there is only one unique weak order induced on the powerset of specifica-
tions. The uniqueness of the weak order means there is only a single way to rank
subsets of specifications relative to one another up the the weak order. The line
of reasoning the agent uses for selecting a given action, based on this profile, is
well-defined and therefore interpretable. In the following theorem, we show that all
consistent-evaluator functions defined on this partial-order have to assign the same,
unique weak-order on the partially-ordered set.

Consistency
The notion of consistency comes from Theorem 3, which says that there is a unique
weak order on the powerset of a specification structure regardless of the consistent
evaluator used.

Theorem 3 (Consistency implies uniqueness). If P is a poset with an ordering
relation � that can be consistently evaluated, then all consistent evaluators of P
are equivalent. That is, for any pair of consistent evaluators 50, 51 of P, for all
%1, %2 ⊆ P, we have 50 (%1) ≤ 50 (%2) ⇔ 51 (%1) ≤ 51 (%2).

Proof: By symmetry, it is sufficient to prove the (⇒) direction. Suppose 50 (%1) ≤
50 (%2). Now since P is consistently evaluable, by Theorems 1 and 2, it can be
partitioned by a unique set of maximal antichains {�A}'A=1. By requirement 4 of
Definition 3, one can show that any consistent evaluator will rank these antichains
the same way. Namely, any consistent evaluator 5 of P can be assumed, WLOG, to
satisfy the following conditions
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1. 5 ({?1}) < 5 ({?2}) < . . . < 5 ({?'}), for ?A ∈ �A , A ∈ {1, . . . , '},

2. 5 ({@8}) = 5 ({A8}), for any @A , AA ∈ �A , A ∈ {1, . . . , '}.

Condition 2 above implies that all pairs of nodes that are of equal value to 50 are
also of equal value to 51 and vice versa. So by requirement 2 of Definition 3, we
can assume that %1 and %2 do not overlap in property values due to either 50 or
51. If %1 = ∅, then by requirement 1, we have 51 (%1) < 51 (%2). Otherwise, by
requirement 3, let ?★

8
∈ %8 be the property that maximizes the value of 5 on %8. We

have 50 (%1) ≤ 50 (%2), which implies that ?★1 ≺ ?
★
2 since 50 ({?★1 }) ≠ 50 ({?★2 }) due

to %1 and %2 not overlapping in property values, and therefore 51 (%1) < 51 (%2).

We have thus defined the necessary and sufficient properties that must hold on a
partially-ordered set of specifications such that it is consistently-evaluable, i.e. sub-
sets of specifications can be ranked in a unique, weak order. Note, we use the term
specification structure interchangeably with consistently-evaluable posets. We be-
lieve that the criteria for determining whether a partially-ordered set is consistently-
evaluable is not particularly intuitive, so we introduce a simpler class of consistently-
evaluable posets in the following section.

A Simpler Class of Consistently-Evaluable Posets
Reasoning about whether a partially-ordered set is consistently-evaluable is non-
trivial. For example, imagine that a designer adds or removes a pairwise comparison
between a pair of specifications. It is not clear to see whether the criteria of
consistently-evaluable posets still holds. We therefore introduce a simpler class
of partially-ordered sets which we show satisfy the criteria for being consistently-
evaluable, but are easier to reason about. The clarity comes at the cost of being
more restrictive (i.e. they are a subset of consistently-evaluable posets). This can
be seen in Fig. 2.4. This simpler class of partially-ordered sets are what are termed
graded posets.

Definition 4 (Graded Specification Poset). A graded specification poset is a finite,
graded, poset of specifications P. Namely, if � is the ordering relation for P and ≺
is the strict version thereof satisfying G ≺ H ⇔ (G � H ∧ G ≠ H), then there exists a
ranking function d : P → N such that

1. ?1 ≺ ?2 ⇒ d(?1) < d(?2).

2. ?1 l ?2 ⇒ d(?2) = d(?1) + 1.
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3. ? is a minimal element of P ⇒ d(?) = 0,

where l denotes the covering relation on P that satisfies

?1 l ?2 ⇔ ?1 ≺ ?2 ∧ ∀? ∈ P .¬(?1 ≺ ? ∧ ? ≺ ?2).

The following corollary follows from the properties of graded posets.

Corollary 1. Any graded specification poset can be consistently-evaluated.

Proof: This follows directly from Theorem 1 and the fact that any graded poset has
properties 1) and 2) defined therein.
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Figure 2.4: Graded specification posets are a subset of consistently-evaluable posets.

The relation between consistently-evaluable sets and partially-ordered sets is shown
more clearly in Fig. 2.4. The main difference between consistently-evaluable posets
and graded posets is the constraint that graded posets are defined such that the ranks
assigned to two nodes which are comparable have to have a difference of one. It is
easier to check whether a set is graded as opposed to consistently-evaluable because
of the following lemma:

Lemma 1. A poset is graded if and only if all of its maximal chains have the same
length.

Any consistently evaluable poset can be reduced to a “canonical” form that has the
graded property with the same consistent evaluation.
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Theorem 4. Each consistently evaluable poset can be turned into a graded poset
that is equivalent under consistent evaluation.

Proof: This is achieved by removing all “edges” that span more than 2 levels of
antichains in the unique partition of Theorem 1. One can without much difficulty
verify that doing so will remove all maximal chains with length strictly less than
the total number of these antichains, which by Lemma 1 implies that the resulting
poset is graded. Since the other antichains are not affected by these operations, the
resulting evaluation is not affected either.
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Figure 2.5: This shows how the consistent evaluator function, works on a graded
specification poset. The functionW computes a tuple for each subset, and compares
the elements from most significant to least significant digits (left to right).

We now present an example of a graded specification poset and its respective
consistent-evaluator function.

Example 4 (Consistent-Evaluator for a Graded Poset). Let (, !, #�, � 5 , �� , �,
and � be specifications denoting safety, lawfulness, no deadlock, comfort, fuel ef-
ficiency, courtesy, and durability respectively. Let % B {(, !, #�,� 5 , ��, �, �}.
The partial order on these specifications is shown in Fig. 2.5. Given the current world
configuration, we assume the oracle can determine which subset of specifications
will be satisfied by taking a given action. Let %U B {(, !, �, �} denote the subset
of specifications satisfied by taking action U. Similarly, let %V B {(, !, #�}. To
compare the actions U and V, given %U, %V, we use the evaluator , defined in the
proof sketch of Theorem 1 to make the comparison. , (%U) = [1, 1, 0, 0, 2] since
this denotes the number of specifications satisfied in every ranking that can be sat-
isfied by taking the action U, and, (%V) = [1, 1, 1, 0, 0] since there is one property
in the top three ranked antichains that can be satisfied by taking action V. Therefore,
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to evaluate their relative importance, the most significant figure corresponds to the
left-most element in the tuple since that element has the highest rank. We begin our
comparison there. Note that ,8 represents the 8th the element of the tuple. Since
,0(%U) = 1 and ,0(%V) = 1, we have to keep comparing elements in the tuple to
determine which one has higher ordering. We find,2(%U) < ,2(%V). Therefore,
%V dominates %U by the weak order imposed by the, evaluator and therefore, the
action V should be chosen over U.

We introduced the notion of consistency of consistently-evaluable sets of speci-
fications above. Now, we would like to introduce the idea of completeness of a
consistently-evaluable set of specifications.

2.4 The Specification Structure and Completeness
Here, we define completeness by the number of specifications that are specified.
A specification structure that has more specifications (i.e. encompasses a broader
range of specifications) is therefore more complete.

In order to make an existing specification structure more complete, we must be
able to refine the graph in a consistent manner. Refinement is equivalent to adding
specifications (nodes) or comparisons (edges) to the specification structure in a way
that preserves the gradedness property of a specification structure. We now define
how to properly add a node or edge into the specification structure in a way that
preserves the specification structure’s mathematical properties.

The following is a direct corollary of Lemma 1.

Corollary 2 (Proper mode or edge refinement). If a node (or an edge) is added to the
specification structure such that its relationship to the other nodes (the comparison
it makes) is defined in a way that all maximal chains have the same length, then the
resulting partially ordered set is also a specification structure.

Examples for proper (and improper) ways of adding a new node are shown in Fig.
2.6. We have also included examples of how to make minimal modifications to
accommodate for an improperly-added nodes and edges in Appendix A.

Thus far, we have focused on defining the mathematical structure on each individual
profile. In the following section, we look at these profiles in the context of assume-
guarantee contracts.
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Figure 2.6: This shows proper and improper ways of adding a node into the poset.
The addition is improper when the resulting poset is no longer graded (as seen on
the right).

2.5 Behavioral Profiles in the Assume-Guarantee Context
Assume-guarantee contracts, introduced in Definition 1, are behavioral contracts
that define agents’ behavioral preferences. In the context of the assume-guarantee
contracting framework, the guarantees are formulated such that the car will exhibit
“correct” behavior by guaranteeing that the car will choose actions that are con-
sistent with their respective profiles, where in this section we use the term profiles
and specification structures (and their respective consistent-evaluating functions)
interchangeably.

Example 5. Here, we give a very simple specification structure: lawfulness (!) ≺
no deadlock (#�) ≺ safety ((). We consider the consistent evaluator, (presented
in the proof sketch of Theorem 1). , will have the ordering, ({!}) < , ({#�}) <
, ({(}) < , ({(, !}) < , ({(, #�}) < , ({(, !, #�}). The ordering intuitively
means that a car should always prioritize taking actions that satisfy all three types
of specifications. However, if there is a situation where a car cannot ensure safety
without breaking the law, then it should break the law to maintain safety since
, ({(}) > , ({!}). Also, this hierarchy says if there is a situation where the car is
in a deadlock, it can break the law since , ({(, #�}) > , ({(, !}) as long as the
action is still safe.

As long as the car chooses behaviors that respect the weak order from the consistent
evaluator on the specification structure, the system will satisfy the guarantees part
of the assume-guarantee contract, and therefore perform actions that are “correct.”
We now introduce how assumptions can be defined with respect to the behavioral
profiles.

While each autonomous vehicle should only guarantee that it will behave according
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Figure 2.7: The assumptions are based on a set of specification structures that satisfy
some constraints, which is shown on the left. The guarantees are based on a single
specification structure that is shown on the right.

to a single profile, we want our assumptions on the environment (other agents) to
accommodate for the diverse behaviors displayed by human drivers who may not
follow the law all the time. This implies that other agents might choose to follow any
one of a large number of possible profiles. We constrain the set of profiles of other
agents to always prioritize safety first. Since other agents presumably follow the
law most of the time, we also include a relative ordering constraint where safety is
prioritized before the law. We have only defined a relative ordering between safety
and law in the assumptions since we do not exactly know where other specifications
will fit within that agent’s specification structure. Therefore, our assumptions on the
environment can be defined as follows:

Example 6 (Assumption set). Let ( denote the set of all specification structures. Let
% be a set of specifications. Let ? ∈ %. The assumption set in the assume-guarantee
contract is defined as:

�spec = {(8 ∈ ( | (safety ∈ (8) ∧ (lawfulness ∈ (8)
∧(∀? ∈ (8 .? � safety)}.

It is the set of all specification structures that both safety and lawfulness are in-
cluded in the specification structure and that safety has the highest rank out of all
specifications included in the specification structure.

The following revised assume-guarantee definition of Definition 1 characterizes the
set of specification structures agents in the environment can be assumed to have and
the specifications that an individual self-driving car can guarantee.

Definition 5 (Assume-guarantee profiling revised). An assume-guarantee contract
C defined for an agent is a pair (A,G), where
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1. Agents are assumed to select actions in accordance with one of the specifi-
cation structures in A. An example set of specification structures is given in
Example 6.

2. G is the guarantee that the agent will select actions in accordance to a single,
pre-defined specification structure.

This assume-guarantee profiling is shown in Fig. 2.7. Let J be the index set for a
set of agents. Agents will invariably violate the assume-guarantee contracts. This
assume-guarantee contract formalism, however, allows us to define a formal way to
assign blame for the agent that causes something like a collision to occur. Before
defining blame, we must introduce the definition of a compatible set of agents.

Let C9 = (A 9 ,G9 ), where 9 is the index of an agent and A 9 are the assumptions
that agent 9 is making about its environment while G9 is its guarantees. We say that
the group of agents indexed by J are compatible if

∀ 9 ∈ J .∀8 ∈ J − { 9}.G9 ⊆ A8 .

This says that each agent is compatible with every other agent as long as the agents
only make assumptions on other agents that are guaranteed by all other agents. If
one agent 8 has guarantees corresponding to a specification structure that is not
included in another agent :’s assumptions, then correct behavior (i.e. each agent is
operating according to its respective protocol) cannot be guaranteed. Similarly, if
one agent 8 has assumptions on another agent that are not guaranteed by an agent : ,
then correct behavior cannot be guaranteed. Assuming that all agents’ assumptions
and guarantees are compatible, we can formulate the notion of a blame-worthy
action/strategy.

Definition 6 (Blameworthy action). A blameworthy action is one in which an
agent violates its guarantees, thereby causing another agent’s assumptions not to be
satisfied and thus resulting in an unwanted situation where blame must be assigned.

In order to show an example of an assume-guarantee contract that might be legally
imposed for self-driving cars, we present a set of axioms for the road. The spec-
ification structures defined in the assumptions and guarantees of this contract are
intentionally left unrefined, since it would ultimately be up to a car-manufacturer to
determine the remaining ordering of specification properties.
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Figure 2.8: Two examples of refined assumption (left) and guarantee (right) spec-
ification structures. Specifications in the root structures are in bold text. The left
could represent an ambulance and the right could represent a civilian vehicle.

A1 Other agents will not act such that collision is inevitable.

A2 Other agents will often act corresponding to traffic laws, but will may or may
not follow them.

G1 An agent will take no action that makes collision inevitable.

G2 An agent will follow traffic laws, unless following them leads to inevitable
collision.

G3 An agent may violate the law if by doing so, it can safely get out of a deadlock
situation.

We can see from Fig. 2.8 how these axioms have a direct mapping to a specification
structure. We argue that this sort of root structure might be imposed by a governing
body to ensure the safe behaviors of self-driving cars.

2.6 Game Examples
In this section, we present some preliminary examples of how these types of high-
level behavioral specifications that are defined via these specification structures
might be applied in some traffic scenarios.

Under the simplified assumption that each agent has a single specification structure
(i.e. agents are not human), each agent will have a well-defined ordering of which
actions have higher value, and will therefore have a well-defined utility function
over actions. Game theory provides a mathematical model of strategic interaction
between rational decision-makers that have known utility functions [30]. We can
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therefore use game-theoretic concepts to analyze which pair of actions will be jointly
advantageous for the agents given their specification structures.

Multiple Nash Game
Consider the case where there are two agents, each of whose specification structures
are specified in Fig. 2.9. In this game, Player Y encounters some debris, and must
choose an action. Player Y can either choose to stay in its current location, or do a
passing maneuver that requires it to break the law. Player X represents a car moving
in the opposite direction of Player Y. In this case, Player X can either move at its
current velocity or accelerate. The move and accelerate action make Player X move
one and two steps forward, respectively. The , function is the same as the one
provided in the proof sketch of Theorem 1.

X

YSx
no collision

SY

performance

lawfulness

no collision

  lawfulness

performance

Figure 2.9: The game scenario when Player Y encounters debris on its side of
the road. The specification structures of each of the agents are given by (G and
(H, where (G and (H are different since they are presumed to come from different
manufacturers.

,G is evaluated on the specification structure (G shown on the left side of Fig. 2.9
and,H is evaluated on (H. Assuming there is a competent oracle who gives the same
predictions for both agents, the resulting payoffmatrix according to the specification
structures are given in Table 2.1 (note that an equivalent decimal conversion of the
scores is given for ease of reading).

Table 2.1: Two-Player Game with Multiple Nash

playerX/playerY Stay Pass

Move ,G (1, 1, 0) ∼ 6
,H (1, 0, 1) ∼ 3

,G (1, 1, 0) ∼ 6
,H (1, 1, 0) ∼ 6

Accelerate ,G (1, 1, 1) ∼ 7
,H (1, 0, 1) ∼ 3

,G (0, 0, 0) ∼ 0
,H (0, 0, 0) ∼ 0

ANash equilibrium is a set of strategies, one for each of the n agents in the game, for
which each agent’s choice is the best response to each of the =− 1 other agents [42].
From the table, we can see that there are twoNash equilibria in this game scenario. In
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this case, the two equilibria are Pareto efficient, meaning there are no other outcomes
where one player could be made better off without making the other player worse off.
Since there are two equilibria, there is ambiguity in determining which action each
player should take in this scenario despite the fact that the specification structures
are known to both players.

There is a whole literature on equilibrium selection [30]. The easiest way to resolve
this particular stand-off, however, would be to either 1) communicate which action
the driver will take or 2) define a convention that all self-driving cars should have
when such a situation occurs. In this particular scenario, however, Player X can
certainly avoid accident by choosing to maintain speed while Player Y can also avoid
accident by staying. Any “greedy” action of either Player X or Ywould pose the risk
of crashing depending on the action of the other player. This suggests a risk-averse
resolution in accident-sensitive scenarios like this one. We will focus on defining a
more systematic way of resolving multiple Nash equilibria in future work.

Faulty Perception Game
In this work, we have abstracted the perception system of the self-driving car to the
all-knowing oracle. We first consider the case where the oracles on each of the cars
are in agreement, and then consider the potential danger when the oracles of the
cars differ. In this scenario, we assume that there are two cars that are entering an
intersection with some positive velocity, as shown in Fig. 2.10.

XY

no collision
SX, SY

lawfulness

performance

Figure 2.10: The game scenario where two cars are approaching an intersection, but
have different beliefs about the state of the traffic light.

In the case where both vehicles’ oracles agree on the same information, i.e. that
the yellow light will remain on for long enough for both vehicles to move past the
intersection, the best action for both Player X and Player Y is to move forward.

Now, consider the case where the oracles are giving incompatible beliefs about the
environment, namely, the state of the traffic signal. Let X have the erroneous belief
that the traffic light will turn red very soon, and it assumes that Y’s oracle believes



30

Table 2.2: Two-Player Game with Perfect Perception

playerX/playerY Slow Move

Slow ,G (1, 1, 0) ∼ 6
,H (1, 1, 0) ∼ 6

,G (0, 1, 0) ∼ 2
,H (0, 0, 0) ∼ 0

Move ,G (1, 0, 1) ∼ 3
,H (1, 1, 0) ∼ 6

,G (1, 0, 1) ∼ 3
,H (1, 0, 1) ∼ 3

the same thing. X’s oracle gives rise to Table 2.2, according to which the conclusion
that Player X will make is that both of the cars should choose to slow down.

Assume that Y has a perfect oracle that predicts the traffic light will stay yellow for
long enough such that Y would also be able to make it through the intersection. If
Y assumes that X has the same information (see Table 2.3), then the best choice for
both is to move forward into the intersection.

Table 2.3: Two-Player Game with Faulty Perception

playerX/playerY Slow Move

Slow ,G (1, 1, 0) ∼ 6
,H (1, 1, 0) ∼ 6

,G (0, 1, 0) ∼ 2
,H (0, 0, 0) ∼ 0

Move ,G (1, 1, 1) ∼ 7
,H (1, 1, 0) ∼ 6

,G (1, 1, 1) ∼ 7
,H (1, 1, 1) ∼ 7

The incompatible perception information will thus cause Player X to stop and Player
Y to move forward, ultimately leading to collision.

This particular collision is caused by errors in the perception system. Future work
will need to focus on developing a better perception system or on creating a system
that will yield correct behaviors even in the presence of perception uncertainty.

2.7 Conclusion
In summary, we have proposed the idea of assume-guarantee contracts for multi-
agent systems that we broadly define as a set of behavioral rules that each agent
is constrained to act according to. In this work, we present a first iteration of
a behavioral contract. In particular, we have defined a behavioral profile, which
is a mathematically-ordered structure on a set of specifications, that agents use
to transparently define which action to prioritize (and ultimately select) at every
time-step. Through some simple game-theoretic scenarios, we show the inherent
limitations of all agents selecting actions according to these behavioral profiles. In
particular, we see how agents are not able to coordinate safely when multiple Nash
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equilibria arise. In Chapter 3, we will extend upon this work to enable safe and
high-performing coordination of multi-agent systems.
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C h a p t e r 3

DECISION-MAKING: BEHAVIORAL PROTOCOLS

3.1 Introduction
In the previous chapter, we discussed assume-guarantee contracts, where each agent
is making decisions in accordance with a behavioral profile [72]. The behavioral
profiles enabled a decision-making strategy that was interpretable, flexible, and
prioritized safety. The limitations of using these profiles, however, became evident
when modeling agents making decisions simultaneously. The existence of multiple-
nash equilibria and the lack of coordination among agents made it ambiguous as to
which action agents should ultimately select that were mutually beneficial and safe.

In this chapter, we introduce a new framework to resolve the ambiguity among
agents with conflicting intentions in a way that guarantees both safety and progress
of all agents. A preliminary version of the work presented in this chapter appears in
[15], and was done jointly with Tung Phan-Minh.

Here, we present a shift from thinking in terms of behavioral profiles to behavioral
protocols. The behavioral protocol can be thought of as a set of rules agents must
follow to select their action (like the behavioral profile), but that also dictates when
agents are allowed to take their intended action or have to defer to other agents. In
this way, the behavioral profiles are a single element of the behavioral protocol—the
profile serves to help an agent select which action it intends to take. The behavioral
protocol builds on the behavioral profile by adding in constraints that determine
whether or not an agent is allowed to take its intended action. By constraining agent
behavior in this way, we can guarantee safety and liveness properties. Note that the
safety property is that agents do not collide and the liveness property is equivalent
to all agents making progress towards their respective destinations.

In this chapter, we introduce the framework necessary for defining the agent protocol.
In particular, we: 1) The introduction of a new game paradigm, which we term the
quasi-simultaneous discrete-time multi-agent game, 2) the definition of an agent
protocol that defines local rules agents must use to select their actions, 3) safety
and liveness proofs when all agents operate according to these local rules and 4)
simulations as proof of concept of the safety and liveness guarantees.



33

3.2 Quasi-Simultaneous Discrete-Time Game
We propose a quasi-simultaneous discrete-time game paradigm, which is motivated
by the shortcomings of more traditional game paradigms. In simultaneous games,
all agents in the game aremaking decisions simultaneously. Since agents are making
decisions in the absence of knowing other agent decisions, it does not capture the
sequential and reactive nature of real-life decision making. Turn-based games offer
potential for capturing sequential decision-making, but the turns are often assigned
arbitrarily. The quasi-simultaneous discrete-time game is a turn-based game, but
instead of being randomly assigned, the turn order is determined by the agent states
defined with respect to the road network.

A state associatedwith a set of variables is an assignment of values to those variables.
A game evolves by a sequence of state changes. A quasi-simultaneous game has the
following two properties regarding state changes: 1) Each agent will get to take a
turn in each time-step of the game and 2) Each agent must make their turn in an order
that emerges from a locally-defined precedence assignment algorithm. Thus, the
state-change is simultaneous yet locally sequential because each agent must make a
state-change in a given time step, but it must wait for its turn according to turn order
(defined based on the locally-defined precedence assignment algorithm) during this
time-step. We define a quasi-simultaneous game where all agents act in a local,
decentralized manner as follows:

G = 〈A,Y, �2C [·] , d[·] , g[·] , %〉 (3.1)

where

• A is the set of all agents in the game G.

• Y is the set of all variables in the game G.

• For each agent Ag ∈ A, let:

– (Ag be the set that contains all possible states of +Ag, where +Ag are the
variables associated with each agent Ag and +Ag ⊆ Y.

– �2CAg be the set of all possible actions Ag can take.

– gAg : (Ag × �2CAg → (Ag be the transition function that defines the state
an agent will transition to when taking an action 0 ∈ �2CAg from a given
state.
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– dAg : (Ag → 2�2CAg be a state-precondition function that defines a set of
actions an agent can take at a given state.

• % : Y → PolyForest(A), is the precedence assignment function where
PolyForest is an operator that maps a set to a polyforest graph object. The
polyforest, with its nodes and directed edges, defines the global turn order (of
precedence) of the set of all agents A ∈ G based on the agent states.

Note, the transition function gAg and the state-precondition function dAg must be
compatible for any agentAg. In particular,∀Ag ∈ A and∀B ∈ (Ag,Domain(gAg(B, ·)) =
dAg(B).

3.3 Specific Agent Class
In order to make global guarantees on safety and progress, we first only consider a
single specific class of agents whose attributes, dynamics, motion-planner, and per-
ception capabilities are described in more detail in the following section. Although
assuming a single class of agents seems very restrictive, the work can be easily
extended to accommodate additional variants of the agent class. These extensions,
however, are beyond the scope of this work.

Agent Attributes
Each agent Ag is characterized by a set of variables VAg ⊆ Y. In this work, we
only consider car agents such that if Ag ∈ A, thenVAg includes GAg, HAg, \Ag, EAg,
namely its absolute coordinates, heading and velocity. VAg also has parameters
0minAg ∈ Z, 0maxAg ∈ Z, EminAg ∈ Z and EmaxAg ∈ Z which define the minimum
and maximum accelerations and velocities, respectively. The agent also has the
variables: {IdAg, TcAg, GoalAg} ⊆ VAg where IdAg, TcAg, and GoalAg are the
agent’s ID number, token count, and goal, respectively, where the token count and
ID are used in the conflict-cluster resolution defined in Section 3.5. Agents are
assumed to have the capability of querying the token counts of neighboring agents.

The agent control actions are defined by two parameters: 1) an acceleration value
accAg between 0minAg and 0maxAg and 2) a steer maneuver WAg ∈{left-turn,
right-turn, left-lane change, right-lane change, straight}.

The discrete agent dynamics works as follows. At a given state B ∈ (Ag at time
C, for a given control action (acc�6, W�6), the agent first applies the acceleration to
update its velocity B.E�6,C+1 = B.E�6,C + accAg. Once the velocity is applied, the



35

steer maneuver (if at the proper velocity) is taken and the agent occupies a set of
grid-points, specified in Fig. 3.1, while taking its maneuver.

Before and after a state transition, the agent is assumed to occupy only a single grid
point. During an agent state transition, an agent might occupy one or more grid
points. Fig. 3.1 shows the grid point occupancy for different agent maneuvers. The
concept of grid point occupancy is defined as follows:

Definition 7 (Grid PointOccupancy). The notion of grid point occupancy is captured
by the definitions of the following maps for each Ag ∈ A. To define the grid point
an agent is occupying at a given time, we use the map: GAg,C : (Ag → 2� , mapping
each agent to the single grid point the agent occupies. Note � is a grid point cell of
the road network. By a slight abuse of notation, we let G�6,C : (Ag × �2CAg → 2�

be a function that maps each B ∈ (Ag and 0 ∈ dAg(B) to denote the set of all nodes
that are occupied by the agent Ag when it takes an allowable action 0 from state B
at the time-step C.

The occupancy grids associated with each of the maneuvers allowed for the agents,
and the velocity that the agent has to be at to take the maneuver, are shown in
Fig. 3.1.
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Figure 3.1: Different grid point occupancy associated with different discrete agent
maneuvers. Note that the grid point occupancy represents a conservative space
which the agent may occupy when taking the associated maneuver.

Note, the safety and liveness guarantees will hold for any choice of agent dynamic
parameters (i.e. 0min, 0max, Emin, Emax), but only under the condition that all agents
have the same set of dynamic parameters. The maneuvers must be the ones specified
above.
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We assume that any graph planning algorithm can be used to specify an agent’s
motion plan. The motion plan must be divided into a set of critical points along
the graph that the agent must reach in order to get to its destination, but should not
specify the exact route agents must take to get to these critical points. It should
be noted that the liveness guarantees rely on the assumption that rerouting of the
agent’s motion plan is not supported.

Agent Backup Plan Action
A backup plan is a reserved set of actions an agent is entitled to execute at any time
while being immune to being at fault for a collision if one occurs. In other words,
an agent will always be able to safely take its backup plan action. We show that if
each agent can maintain the ability to safely execute its own backup plan (i.e. keep
a far enough distance behind its lead agent), the safety of the collective system is
guaranteed.

The default backup plan adopted here is that of applying maximal deceleration until
a complete stop is achieved, which is defined as:

Definition 8 (Backup Plan Action). The backup plan action 01? is a control action
where 0 = 0min and when applying 0min causes the agent’s velocity to go below 0,
0 = max(0min,−B.E�6), and WAg = straight.

Note, it may takemultiple time-steps for an agent to come to a complete stop because
of the inertial dynamics of the agent.

Limits on Agent Perception
In real-life, agents make decisions based on local information. We model this
locality by defining a region of grid points around which agents have access to
the full state and intention information of the other agents. We assume agents
have different perception capabilities in different contexts of the road network when
making decisions on 1) road segments and 2) at intersections.

Road Segments

For road segments, the region around which agents make decisions cannot be arbi-
trarily defined. In fact, an agent’s bubble must depend on its state, and the agent
attributes and dynamics of all agents in the game. In particular, the bubble can be
defined as follows:



37

Definition 9 (Bubble). Let Ag be an agent with state B0 ∈ (Ag. Let agent Ag′ be
another agent. Then the bubble of Ag with respect to agents of the same type as
Ag′ is given by BAg/Ag′ (B0). The bubble is the minimal region of space (set of
grid points) agents need to have full information over to guarantee they can make
a decision that will preserve safety under the defined protocol. Since all agents
considered in this work have the same attributes, for ease of notation, we refer to the
bubble of �6 as BAg.

Figure 3.2: Bubble if all Ag ∈ A have the agent dynamics specified in Section 3.3.
The transparency is a property of how the bubble is constructed. Details can be
found in Appendix B.

For our protocol, the bubble contains any grid points in which another agent Ag′

occupying those grid points can interfere with at least one of Ag’s next possible
actions and the backup plan it would use if it were to take any one of those next
actions. With a slight abuse of notation, we say Ag′ ∈ BAg(B) if (B.GAg’, B.HAg’) is
on a grid point in the set BAg(B).

Intersections

The locality of information that agents are restricted to is relaxed at intersections
because agents can presumably see across the intersection when making decisions
about crossing the intersection. More precisely, any Ag must be able to know about
any Ag′ ∈ A that is in the lanes of oncoming traffic (when performing an unprotected
left turn). The computation of the exact region of perception necessary depends on
the agent dynamics. Locality for the local-precedence assignment algorithm is also
extended to this larger region at intersections as well.

3.4 Road Network Environment
Here we introduce the structure of the road network environment that agents are
assumed to be operating on. The road network is a grid world with additional
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structure (e.g. lanes, bundles, road segments, intersections, etc.). The road network
is formalized as follows:

Definition 10 (Road Network). A road network ℜ is a graph ℜ = (�, �) where �
is the set of grid points and � is the set of edges that represent immediate adjacency
in the Cartesian space among grid points. Note that each grid point 6 ∈ � has a
set of associated properties P, where P = {?, 3, lo} which denote the Cartesian
coordinate, drivability of the grid point, and the set of legal orientations allowed on
the grid point, respectively. Note, ? ∈ Z2, 3 ∈ {0, 1} and lo is a set of headings q;
where each q; ∈ {north, east, south, west}.

Grid points where specific properties hold are given special labels, which can be
seen in Fig. 3.3. These labels and the associated properties are defined as follows:

• Ssources, (Ssinks): A set of grid points designated for Ag to enter (or leave) the
road network ℜ from.

• Sintersection: A set of grid points that contains all grid points with more than
one legal orientation.

• Straffic light: A set of grid points that represents the traffic light states in the
vertical or horizontal direction via its color (for every intersection).

The road network is hierarchically decomposed into lanes and bundles, which are
defined as follows:

• Lanes: Let lane !0(6) define a set of grid points that contains 6 and all grid
points that form a line going through 6.

• Bundles: Let �D(6) be a set of grid points that make up a set of lanes that are
adjacent or equal to the lane containing 6 and have the same legal orientation.

Each bundle can be decomposed into a set of road segments, which we refer to
as '(, where the intersections are used to partition each bundle into a set of road
segments. Example of a bundle partitioned into road segments is shown in Fig. 3.3.

We introduce the following graph definition since it will be used in the liveness
proof.



39

Definition 11 (Road Network Dependency Graph). The road network dependency
graph is a graph �dep = ('(, �) where nodes are road segments and a directed
edge (AB1, AB2) denotes that agents on AB1 depend on the clearance of agents in AB2

to make forward progress.
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Figure 3.3: Road network decomposition where each box represents a grid point.

With slight abuse of notation, we let !0(Ag) refer to the lane ID associated with the
grid point (B.GAg, B.HAg), and �D(Ag) mean the bundle ID associated with the lane
!0(Ag).

Scope of Road Network Environments
The safety and progress guarantees do not generalize to all possible road networks.
Instead, the road network environments are any straight road segments with traffic
intersections governed by traffic lights (with unprotected left turns) and less than 3
lanes per bundle. Extending the work to accommodate more road network environ-
ments, however, is not difficult but it is beyond the scope of the work presented in
this chapter.

3.5 The Agent Protocol
Now that we have defined the game, the specific class of agents (and their associated
attributes) and the road network environment, we introduce the agent protocol. The
protocol serves to 1) define the method agents use to choose an intended action and
2) define rules that an agent uses to determine whether it has priority to take its
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intended action, and if not, which alternative, less-optimal actions it is allowed to
take. The protocol, as defined, will ensure safety and progress for all agents in the
multi-agent game.

Motivation of Protocol Design
In this section, we introduce the agent protocol. The agent protocol is defined to
establish local rules agents must followwhile making decisions on the road network.
The protocol must be defined in a way such that it 1) scales well, 2) is interpretable
so there is a consistent and transparent way agents make their decisions, 3) ensures
the safety of all agents, and 4) ensures progress for all agents. In this section, we
introduce the components that form the agent protocol that make it such that all
these properties are satisfied.

High-Level Overview
The introduction of a single backup plan action that all agents rely on is fundamental
for making the protocol work. Dependence on this backup plan action is what
ultimately allows for the decoupling of agent dependencies when reasoning about
one another, while still allowing us to guarantee global properties like safety and
liveness.
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Figure 3.4: Agent protocol architecture.

The following is an overview of the agent protocol. For each time step of the
game, each agent first assigns local precedence, thereby establishing a consistent
turn order (in a local manner). Then, each agent evaluates a set of actions and
chooses the best action according to its behavioral profile as its intended action.
Since the turn-order does not fully resolve ambiguity on which agents should be
allowed to take their intended action at a given time, the action selection strategy,
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based on 1) what actions agents ahead of it (in turn) have taken and 2) the results of
the conflict-cluster resolution, defines how agents should ultimately decide which
action to select (whether its the agent’s intended action or an alternative sub-optimal
action). The next sections of this paper will formalize these ideas and go into greater
depth of how these ideas work for a specific class of agents with the particular set
of dynamics described in Section 3.3.

Agent Precedence Assignment
The definition of the quasi-simultaneous game requires agents to locally assign
precedence, i.e. have a set of rules to define how to establish which agents have
higher, lower, equal, or incomparable precedence to it. Our precedence assignment
algorithm is motivated by capturing how precedence among agents is generally
established in real-life scenarios on a road network. In particular, since agents are
designed to move in the forward direction, we aim to capture the natural inclination
of agents to react to the actions of agents visibly ahead of it.

Before presenting the precedence assignment rules, we must introduce a few defini-
tions. Let us define: proj�long : A→ Z, which is restricted to only be defined on the
bundle �. In other words, proj�long(�6) is the mapping from an agent (and its state)
to its scalar projection onto the longitudinal axis of the bundle � the agent Ag is in.
If proj�long(Ag

′) < proj�long(Ag), then the agent Ag
′ is behind Ag in �.

The following rules can be used to define the precedence relation among agents
�6 and �6′. In other words, for a given �6, they tell the agent whether to assign
higher, equivalent, or lower precedence to another agent �6′—or whether they are
incomparable.

Local Precedence Assignment Rules

1. If proj�long(Ag
′) < proj�long(Ag) and �D(Ag

′) = �D(Ag), then Ag′ ≺ Ag, i.e.
if agents are in the same bundle and Ag is longitudinally ahead of Ag′, Ag has
higher precedence than Ag′.

2. If proj�long(Ag
′) > proj�long(Ag) and �D(Ag

′) = �D(Ag), then Ag ≺ Ag′, i.e.
if agents are in the same bundle and Ag’ is longitudinally ahead of Ag, Ag
has lower precedence than Ag′.

3. If proj�long(Ag
′) = proj�long(Ag) and �D(Ag

′) = �D(Ag), then Ag ∼ �6′ and
we say that Ag and Ag′ are equivalent in precedence.
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4. If Ag′ andAg are not in the same bundle, then the two agents are incomparable.

Each agent Ag ∈ A only assigns precedence according to the above rules locally
to agents within its perception region (e.g. bubble on road segments and a slightly
larger region at intersections, defined in Section 3.3) when making a decision of
which action to take.
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Figure 3.5: Rules for precedence assignment.

Thus, we must show if all agents locally assign precedence according to these rules,
a globally-consistent turn precedence among all agents is established. In particular,
we need to prove the following lemma.

Lemma 2. If all agents assign precedence according to the local precedence as-
signment rules to agents in their respective bubbles, then the precedence relations
will induce a polyforest on A/∼ (the quotient set of ( by ∼).

Proof: Suppose there is a cycle� inA/∼. For each of the equivalent classes in� (�
must have at least 2 to be a cycle), choose a representative from A to form a set '� .
Let Ag ∈ '� be one of these representatives. Applying the third local precedence
assignment rule inductively, we can see that all agents in '� must be from Ag’s
bundle. By the first local precedence assignment rule, any � edge must be from an
agent with lower projected value to one with a higher projected value in this bundle.
Since these values are totally ordered (being integers), they must be the same. This
implies that � only has one equivalence class, a contradiction.
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The acyclicity of the polyforest structure implies the consistency of local agent
precedence assignments. Note, the local precedence assignment algorithm estab-
lishes the order in which agents are taking turns. Even when this order is established,
it is ambiguous what actions the agents should select when 1) agents of equal prece-
dence have conflicting intentions, since they select their actions at the same time or
2) an agent’s intended action is a lane-change action and requires agents of lower
or equivalent precedence to change their behavior so the lane-change action is safe.
The additional set of rules introduced to resolve this ambiguity is what we refer to
as conflict cluster resolution, which is defined later on in this section.

Behavioral Profile
The way in which agents select actions is the fundamental role of the behavioral
protocol. The behavioral profile serves the purpose of defining which action an
agent intends to take at a given time-step C.

We define a specific assume-guarantee profile, with the mathematical properties
described in Chapter 2, for the agent. In particular, we define a set of ten dif-
ferent specifications (rules) and the hierarchy of importance (ordering) on these
specifications.

Each specification is associated with an oracle that interprets whether or not taking
a given action will satisfy the specification. More formally, let A ∈ ' denote a
specification for an agent and Ag ∈ A. The oracle, for a specification A is defined as
follows OAgA : (Ag × �2CAg ×U → B whereU is the set of all possible states of the
game, B = {T, F}, and the subscript C denotes the time-step the oracle is evaluated.
In other words, given a specification and an action, the oracle will evaluate to T (or
F) depending on whether an agent taking that action in its current state will satisfy
(or not satisfy) the specification.

There are ten specifications in the assume-guarantee profile we consider for the
agent protocol. The following define how the oracles evaluate satisfaction of each
of the ten specifications:

1. $Ag,dynamic safety(B, 0, D): returns T when the action 0 from state B will not
cause Ag to either collide with another agent or end up in a state where the
agent’s safety backup plan 01? is no longer safe with respect to other agents
(assuming other agents are not simultaneously taking an action).

2. $Ag,unprotected left-turn safety(B, 0, D) returns Twhen the action 0 from the state B
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will result in the complete execution of a safe, unprotected left-turn (invariant
to agent precedence). Note, an unprotected left turn spans over multiple time-
steps. The oracle will return T if Ag has been waiting to take a left-turn (while
the traffic light is green), the traffic light turns red, and no agents are present
in oncoming lanes.

3. $Ag,static safety(B, 0, D) returns T when the action 0 from state B will not cause
the agent to collide with a static obstacle or end up in a state where the agent’s
safety backup plan 01? with respect to the static obstacle is no longer safe.

4. $Ag,traffic light(B, 0, D) returns T if the action 0 from the state B satisfies the
traffic light laws (not crossing into intersection when red. It also requires that
Ag be able to take 01? from B′ = gAg(B, 0) and not violate the traffic-light law.

5. $Ag,legal orientation(B, 0, D) returns T if the action 0 from the state B follows the
legal road orientation.

6. $Ag,traffic intersection clearance(B, 0, D) returns T if the action causes the agent to
enter the intersection and has enough clearance to safely exit the intersection.
It also must be such that the action causes the agent to end up in a state where if
it performs its backup plan action, it will still be able to leave the intersection.

7. $Ag,traffic intersection lane change(B, 0, D) returns T if the action is not one where
W�6 = {left-lane change, right-lane change} and the agent either
begins in an intersection or ends up in the intersection after taking the action.

8. $Ag,destination reachability(B, 0, D) returns T if the action 0 from the state B will
allow Ag′B planned path to its goal to remain reachable.

9. $maintains progress(B, 0, D) returns T if the action 0 from the state B stays the
same distance to its goal goalAg.

10. $Ag,forward progress(B, 0, D) returnsT if the action 0 from the state Bwill improve
the agent’s progress towards it’s goal goalAg.

The partial ordering of the specifications that each agent must follow is shown in
Fig. 3.6. As a reminder, each action will satisfy some subset of specifications in this
profile. The consistent-evaluating function, defined on this behavioral profile, will
evaluate actions based on which specifications they satisfy, giving priority to actions
with the highest number of highest-valued specifications as described in more detail
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in Chapter 1. The action with the highest value is then selected as the action the
agent intends to takes.

Figure 3.6: Assume-guarantee profile that shows ordering of specifications, where
specifications on the same tier are incomparable to one another. Here, the tiers are
equivalent to the ranked maximal antichains in the profiles defined in Chapter 2.
Tier 1 is the highest priority tier. W.l.o.g. more oracles can be added with priority
less than the oracles in the fourth tier.

For this work, the behavioral profile is used to define the agent’s intended action
08. Note, $Ag,dynamic safety(B, 0, D) is not included in the selection of the intended
action 08—otherwise an agent might never propose a lane-change action (since it
would require other agents to yield in order for the lane-change action to be safe).
The profile is also used to define the agent’s best straight action 0BC which is defined
later in the subsection on Action Selection Strategy. The best straight action can
intuitively be thought of as the highest-ranked action that is a straight maneuver.

Conflict-Cluster Resolution
At every time-step C, each agent will know when to take its turn based on its local
precedence assignment algorithm. Before taking its turn, the agent will have selected
an intended action 08 using the behavioral profile. When it is the agent’s turn to
select an action, it must choose whether or not to take its intended action 08. When
the intended actions of multiple agents conflict, the conflict-cluster resolution is a
token-based queryingmethod used to help agents determinewhich agent has priority
in taking its action.

Under the assumption that agents have access to the intentions of other agents within
a local region as defined in Section 3.3, each agent can use the following criteria to
define when it conflicts with another agent.
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Definition 12 (Agent-Action Conflict). Let us consider that an agent Ag is currently
at state B ∈ (Ag and wants to take action 0 ∈ d�6 and an agent Ag′ at state B′ ∈ (Ag′
that wants to take action 0′ ∈ d�6′. We say that an agent-action conflict between
Ag and Ag′ for 0 and 0′ occurs and write (Ag, B, 0) † (Ag′, B′, 0′) if each of the
agents taking their respective intended actions which will cause them to overlap in
occupancy grid points or end up in a configuration where the agent behind does not
have a valid safe backup plan action (i.e. if the lead agent executes its safety backup
plan action, the following agent is far enough behind that it can safely execute its
own safety backup plan action).

In the case that an agent’s action is in conflict with another agents’ action, the agent
must send a conflict request that ultimately serves as a bid the agent is making to
take its intended action. It cannot, however, send requests to just any agent (e.g.
agents in front of it). The following criteria are used to determine the properties
that must hold in order for an agent Ag to send a conflict request to agent Ag′:

Criteria that Must Hold for Agent Ag to Send Conflict Request to Agent Ag’

• Ag’s intended action 08 is a lane-change action (i.e.
W�6 ∈ {left-lane change, right-lane change}).

• Ag′ ∈ B�6 (B), i.e. Ag′ is in agent Ag’s bubble.

• Ag′ - �6, i.e. Ag has equivalent or higher precedence than Ag′.

• B.\�6 = B.\�6′, i.e. the agents have the same heading.

• (�6, 08) † (�6′, 0′8): agents’ intended actions are in conflict with one another.

• FAg(D, 08) = F, where FAg(D, 08) is the maximum-yielding-not-enough flag
and is defined below.

Definition 13 (maximum-yielding-not-enough flag). The maximum-yielding-not-
enough flag FAg : U × �2CAg → B that is set to T when �6 is in a configuration
where if Ag did a lane-change, even if Ag’ applied its maximum-yielding action, it
would still violate the safety of Ag′’s backup plan action.

We note that if FAg(D, 08) is set, Ag cannot send a conflict request by the last
condition. Even though Ag does not send a request, it must use the information
that the flag has been set in the agent’s Action Selection Strategy. After a complete
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exchange of conflict requests, each agent will be a part of a cluster of agents. The
agent is bidding for its priority to take its intended actions among the agents that
make up this cluster. These clusters of agents are defined as follows:

Definition 14 (Conflict Cluster). A conflict cluster for an agent Ag is defined as
C�6 = {�6′ ∈ A | �6 send Ag′ or �6′ send �6}, where Ag send �6′ implies
Ag has sent a conflict request to Ag′. An agents’ conflict cluster defines the set of
agents in its bubble that an agent is in conflict with.
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Figure 3.7: An example scenario with agents in a given configuration of agents,
their intended actions, and their respective conflict clusters.

By the rules agents must follow to send conflict cluster requests, all agents in one
agent’s cluster must be a part of that agent’s bubble and vice versa. Fig. 3.7 shows an
example scenario and each agents’ conflict clusters. Once the conflict requests have
been sent and an agent can thereby identify the other agents in its conflict cluster, it
needs to establish whether or not the conflict resolution has resolved in its favor.

Token Resolution

Once an agent has determined which agents are in its conflict cluster, it must
determine whether or not it has the priority to take its intended action. The token
resolution scheme is the way in which agents determine whether they have this
‘right.’

The conflict resolution strategy must be designed to be fair, meaning each agent
always eventually wins a conflict resolution and gets priority. The resolution is
therefore based on the agents’ token counts Tc, which is updated by agents to
represent how many times an agent has been unable to take a forward progress
action thus far. In particular, token counts are updated as follows:
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Definition 15 (Token Count Update). The token count updates according to the
agent’s chosen action. In particular, if Ag selects action 0: if$Ag, forward progress(B, 0, D) =
T, the agent’s token count resets to 0, otherwise it increases by 1.

Then, a fair strategy would be to give agents with the highest amount of tokens
precedence. Formally, this can be written as follows: for each Ag ∈ A, letWAg ∈ B
be an indicator variable for whether or not the agent has won in its conflict cluster.
Let Tc�6 represent the token count of the agent when it has sent its request. Let Id�6
represent a unique ID number of an agent. The conflict cluster resolution indicator
variableWAg is determined as follows:

WAg , ∀Ag′ ∈ BAg(B) :

(TcAg′ < TcAg) ∨ ((TcAg′ = TcAg) ∧ IdAg′ < IdAg).

The agent with the highest token count is defined as the winner of the agents’ conflict
cluster and any ties are broken via an agent ID comparison. The following lemmas,
which come from the definition of the conflict-cluster resolution scheme, are helpful
for proving safety of the agent protocol.

The first lemma states that an agent cannot send (or receive) a conflict request to
(from) an agent outside its bubble.

Lemma 3. Let us consider agent Ag at state B and agent Ag′ at state B′.
Ag send Ag′⇒ Ag ∈ BAg′ (B′).

Proof: If � send �, this means that all of the conditions specified in Section
3.5 must hold. Further, it means (�, 08) † (�, 0′8). This condition is only valid if
proj�B ∈ G�,� (�) or proj�B ∈ G�,�% (�) hold. Membership of Agent A’s state in
either of these sets implies � ∈ B(�).

The following lemma follows from the lemma above.

Lemma 4. At most one agent will win in each agent’s conflict cluster.

Proof: W.l.o.g., let us consider an agent Ag and its respective conflict cluster C(Ag).
It follows from Lemma 3 that ∀Ag′ s.t. Ag send Ag′, then Ag′ ∈ B�6 (B) and
Ag ∈ B�6′ (B′). It also follows that ∀Ag′ s.t. Ag send Ag′, then Ag ∈ BAg′ (B′)
and Ag′ ∈ BAg(B). This means that an agent has access to all token counts and IDs
of all agents in its conflict cluster, and all agents in its conflict cluster have access to
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the agent’s token count and ID. The conflict resolution implies that all agent edges
are incident to the winning agent, where edges point to the agent they cede to. This
implies that at most one agent can be the winner of each cluster. Less than one
winner (per conflict cluster) will occur when an agent that is in the intersection of
more than one conflict cluster wins.

The next section defines how each agent uses information from the conflict cluster
resolution scheme to ultimately select an action.

Action-Selection Strategy
The purpose of the agent Action Selection Strategy is to define whether or not an
agent is allowed to take its intended action 08 and if it is not, which alternative action
it should take. The action-selection strategy is defined to coordinate agents so that
lane-change maneuvers can be performed safely.

In the case where an agent is not allowed to take 08, the agent is restricted to take
either: the best straight action 0BC , which is defined in Definition 16, or its backup
plan action 01?. The action-selection process that determines which of the three
actions an agent Ag will choose is determined by the following five conditions:

1. 08, the agent’s and other agents’ (in its bubble) intended actions, which have
been selected via the behavioral profile and consistent evaluating function
defined in Section 3.5.

2. Ag’s role in conflict request cluster being:

• A conflict request sender (∃Ag′ ∈ BAg(B) : Ag send Ag′).

• A conflict request receiver (∃Ag′ ∈ BAg(B) : Ag′ send Ag).

• Both a sender and a receiver of conflict requests.

• Neither a conflict request sender nor receiver.

3. The agent’s conflict cluster resolutionWAg.

4. Evaluation of $Ag,dynamic safety(B, 08, D).

5. FAg(D, 08) for Ag is raised, where FAg(D, 08) is the maximal-yielding-not-
enough flag defined in Section 3.5.

The Action Selection Strategy decision tree, shown in Fig. 3.8, defines how agents
should select which action to take based on the five different conditions.
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Figure 3.8: Agent action selection strategy.

The best straight action 0BC , one of the three allowable actions the agent can take
according to the action-selection strategy, is defined as follows:

Definition 16 (Best Straight Action). Let us consider Ag and its associated action
set dAg(B). The best straight action is the action 0 ∈ dAg(B) that is the highest-
ranked action according to the consistent-evaluating function defined on the profile
in Fig. 3.6, among the set of all actions for which WAg = straight. In this case, the
specification for dynamic safety $Ag, C, dynamic safety(B, 0, D) is included.

The action-selection strategy thus defines the conditions in which an agent is able
to take its intended action 08, its best straight action 0st, or when it is expected to
yield and take its backup plan action 0bp. For instance, as one example, when an
agent is both a receiver of a conflict request and a loser in its conflict cluster, the
action-selection strategy dictates that the agent must yield (choose its backup plan
action 0bp) to the agent that it received the conflict request from.

The agent protocol, as described in the above sections, has been designed in a way
that formal guarantees on the safety and liveness of all agents can be proven if all
agents are taking actions according to it. The proofs of safety and liveness are given
in the following sections.
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3.6 Safety Guarantees
Safety is guaranteed when agents do not collide with one another. An agent causes
collision when it takes an action that satisfies the following conditions.

Definition 17 (Collision). An agent Ag that takes an action 0 ∈ �2CAgwill cause col-
lision if the grid point occupancy of �6 ever overlaps with the grid point occupancy
of another agent �6′ or a static obstacle $st.

A strategy where agents simply take actions that avoid collision in the current time-
step is insufficient for guaranteeing safety because of the inertial properties of the
agent dynamics. The agent protocol has therefore been defined so an agent also
avoids violating the safety of its own and any other agent’s backup plan action 01?
defined in Section 3.3. An agent’s backup plan action 01? is evaluated to be safe
when the following conditions hold:

Definition 18. [Safety of a Backup Plan Action] Let us define the safety of an agent’s
backup plan action (Ag,1? : U → B, where B = {T, F} is an indicator variable that
determines whether an agent’s backup plan action is safe or not. It is defined as
follows:

(�6,1? (D) = ∧>∈$>(B, 01?, D),

where the set$ is the set of all oracles in the top three tiers of the behavioral profile
defined in Fig. 3.6.

An agent Ag takes an action 0 ∈ �2CAg that violates the safety backup plan action
of another agent Ag′ when the following conditions hold:

Definition 19 (Safety Backup Plan Violation Action). Let us consider an agent Ag
that is taking an action 0 ∈ �2CAg, and another agent Ag′. The action (Ag, 0)⊥Ag′,
i.e. agent Ag violates the safety backup plan of an agent Ag′ when by taking an
action 0, then SAg′,1? (D′) = F, where D′ is the state of the game after Ag has taken
its action. In other words, by taking the action, the agent has ended in a state such
that it violates the safety of its own or another agents’ backup plan action.

The safety proof is based on the premise that all agents only take actions that do
not collide with other agents and maintain the invariance of the safety of their own
and other agents’ safety backup plan actions. The safety theorem statement and the
proof sketch are as follows.
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We can treat the quasi-simultaneous game as a program, where each of the agents
are separate concurrent processes. A safety property for a program has the form
% ⇒ �&, where % and & are immediate assertions. This means if the program
starts with % true, then & is always true throughout its execution [64].

Theorem 5 (Safety Guarantee). Given all agents Ag ∈ A in the quasi-simultaneous
game select actions in accordance to the agent protocol specified in Section 3.5, we
can show the safety property % ⇒ �&, where the assertion % is an assertion that
the state of the game is such that ∀�6, (Ag,1? (B, D) = T, i.e. each agent has a backup
plan action that is safe, as defined in Definition 18. We denote %C as the assertion
over the state of the game at the beginning of the time-step C, before agents take their
respective actions. & is the assertion that the agents never occupy the same grid
point in the same time-step implying that collision never occurs when agents take
their respective actions during that time-step. We denote &C as the assertion for the
agent states/actions taken at time-step C.

The following is a proof sketch. Note, the full proof can be found in Appendix B.

Proof: To prove an assertion of this form, we need to find an invariant assertion �
for which i) % ⇒ �, ii) � ⇒ ��, and iii) � ⇒ & hold. We define �C as the assertion
that all agents are taking actions that 1) do not collide with other agents and 2)
do not violate the safety backup plan of other agents ∀Ag, (Ag,1? (D′) = T where
B′ = gAg(B, 0), and D′ is the corresponding global state of the game after each Ag
has taken its respective action 0.

It suffices to assume:

1. Each Ag ∈ A has access to the traffic light states.

2. There is no communication error in the conflict requests, token count queries,
and the agent intention signals.

3. All intersections in the road network ' are governed by traffic lights.

4. The traffic lights are designed to coordinate traffic such that if agents respect
the traffic light rules, they will not collide.

5. Agents follow the agent dynamics defined in Section 3.3.

6. For C = 0, ∀Ag ∈ A in the quasi-simultaneous game is initialized to:
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• Be located on a distinct grid point on the road network.

• Have a safe backup plan action 01? such that (Ag,1? (B, D) = T.

We can prove %⇒ �& by showing the following:

1. %C ⇒ �C . This is equivalent to showing that if all agents are in a state where %
is satisfied at time C, then all agents will take actions at time C where the � holds.
This can be proven using arguments based on the agent protocol showing that
each agent will always take actions that 1) do not collide with other agents and
2) will not violate the safety of its own or other agents’ backup plan action.

2. � ⇒ ��. If agents take actions such that at time C, the assertion �C holds, then
by the definition of the assertion �, agents will end up in a state where at time
t+1, assertion % holds, meaning �C ⇒ %C+1. Since %C+1 ⇒ �C+1 from 1, we get
� ⇒ ��.

3. � ⇒ &. If all agents take actions according to the assertions in �, then
collisions will not occur. This follows from the definition of �.

Proof of safety alone is not sufficient reason to argue for the effectiveness of the
protocol, as all agents could simply stop for all time and safety would be guaranteed.
A liveness guarantee, i.e. proof that all agents will eventually make it to their final
destination, is critical. In the following section, we present liveness guarantees.

3.7 Liveness Guarantees
Note, we introduce the definition of liveness, from [64], as follows:

Definition 20 (Liveness). A liveness property asserts that program execution even-
tually reaches some desirable state.

For this work, the eventual desirable state for each agent is to reach their respec-
tive final destinations. Proving fairness, as described in [64], is proving that each
action will always terminate, and is fundamental for proving liveness. Additionally
for liveness, the absence of 1) deadlocks and 2) collisions also need to be proved.
Deadlock occurs when agents indefinitely wait for resources held by other agents
[73]. Since the Manhattan grid road network has loops, agents can enter a config-
uration in which each agent in the loop is indefinitely waiting for a resource held
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by another agent. When the density of agents in the road network is high enough,
deadlocks along these loops will occur. We can therefore guarantee liveness only
when certain assumptions hold on the density of the road network.

Definition 21 (Sparse TrafficConditions). Let" denote the number of grid points in
the smallest loop (defined by legal orientation) of the road network, not including grid
points 6 ∈ Sintersections. The sparse traffic conditions must be such that # < " − 1,
where # is the number of agents in the road network. The number of agents has
to be such that the smallest loop does not become completely saturated, in which
deadlock would occur. Note, these sparsity conditions are conservative because they
are define based on the worst possible assignment of agents and their destinations.

Now, we introduce the liveness guarantees under these sparse traffic conditions.
The proof of liveness is based on the fact that 1) behavioral profile include progress
specifications and 2) conflict precedence is resolved by giving priority to the agent
that has waited the longest time (a quantity that is reflected by token counts).

Theorem 6 (Liveness Under Sparse Traffic Conditions). Under the Sparse Traffic
Assumption in Definition 21 and given all agents Ag ∈ A in the quasi-simultaneous
game select actions in accordance to the agent protocol specified in Section 3.5,
liveness is guaranteed, meaning all Ag ∈ A will always eventually reach their
respective goals.

The following is a proof sketch.
Proof: It suffices to assume:

1. ∀Ag ∈ A, ∀Ag′ ∈ B�6 in road segments, and ∀�6′ within a local region
around the agent as defined in Section 3.3 at intersections, �6 has access to
other agents’ state and intended action.

2. Each Ag ∈ A has access to the traffic light states.

3. There is no communication error in the conflict requests, token count queries,
and the agent intention signals.

4. For C = 0, ∀Ag ∈ A in the quasi-simultaneous game is initialized to:

• Be located on a distinct grid point on the road network.

• Have a safe backup plan action 01? such that (Ag,1? (D) = T.
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5. The traffic lights are red a window of time ΔCtl such that Cmin < ΔCtl < ∞,
where Cmin is defined so agents are slowed down long enough so agents that
have been waiting at a red light can eventually take a lane-change action. More
details can be found in Appendix B.

6. The static obstacles are not on any grid point 6 ∈ � where 6.3 = 1.

7. Each Ag treats its respective goal goalAg as a static obstacle.

8. Bundles in the road network ℜ have no more than 2 lanes.

9. All intersections in the road network ℜ are governed by traffic lights.

and prove:

1. The invariance of a no-deadlock state follows from the sparsity assumption
and the invariance of safety (no collision) follows from the safety proof.

2. Inductive arguments related to control flow are used to show that all Ag will
always eventually take 0 ∈ �2CAg where $Ag, forward progress(B, 0, D) = T.

a) Let us consider a road segment AB ∈ '( that contains grid point(s)
6 ∈ Ssinks meaning that the road segment contains grid points with sink
nodes. Inductive arguments based on the agents’ longitudinal distance
to destination grid points are used to show that every Ag ∈ A will be
able to always eventually take 0 ∈ �2CAg for which the forward progress
oracle $forward progress(B, 0, D) = T.

b) Let us consider a road segment AB ∈ '(. Let us assume ∀AB′ ∈ '(
for which (AB, AB′) ∈ �dep, there is always eventually clearance on AB′,
meaning all road segments that agents on AB depend on to have clearance
always eventually have it. We can use inductive arguments based on
agents’ longitudinal distance to the front of the intersection to show
any Ag on AB will always eventually take 0 ∈ �2CAg where the forward
progress oracle $Ag, forward progress(B, 0, D) = T.

c) For any ℜ where the dependency graph �dep (as defined in Definition
11) is a directed-acyclic-graph (DAG), inductive arguments based on the
linear ordering of road segments AB ∈ �dep are used to prove that all
Ag ∈ A will always eventually take 0 ∈ �2CAg for which the forward
progress oracle $Ag, forward progress(B, 0, D) = T.
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d) When the graph �dep is cyclic, the Sparsity Assumption (in Definition
21) breaks the cyclic dependency and allows for the similar induction
arguments in 2c to apply.

3. By the above inductive arguments and the definition of the forward progress
oracle $Ag, forward progress(B, 0, D), all Ag will always eventually take actions
that allow them to make progress towards their respective destinations.

Features of the agent protocol, like fairness from the conflict-cluster resolution and
eventual satisfaction of all oracles in the behavioral profile are used for the arguments
in the proof. The full proof can be found in Appendix B.

3.8 Simulation Environment
In order to streamline discrete-time multi-agent simulations, we have built a traffic
game simulation platform called Road Scenario Emulator (RoSE). This emulator
offers an easy-to-use, simple, modular interface. We use RoSE to generate different
game scenarios and simulate how agents will all behave if they each follow the agent
strategy protocol introduced in this work.

A road network environment, complete with legal lane orientations, intersections,
and traffic lights, can be specified via a CSV file. The specified (by the user) road
network environment forms amap data structure graph, which decomposes the roads
into bundles, mentioned in Section 3.5.

The map will automatically parse the boundaries and lane directions of the road
network to define where agents can either spawn from or exit the road network. In
each game scenario, agents will randomly spawn according to a specified spawn
rate. Each agent has the attributes described in Section 3.3 (i.e. goal destination,
ID, dynamic parameters, etc.). The specific dynamic parameters are described in
the following section.

Each game scenario is comprised of the road network graph and a set of agents
(constantly changing over time as new agents spawn and old agents reach their goals
and leave). The game is simulated forward for a specified number of time steps and
the traces from the simulation are saved. The animation module in RoSE animates
the traces from the simulated game.
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Simulation Results
We simulate the game with randomized initialization of spawning agents at the
source nodes for three different road network environments: 1) the straight road
segment, 2) the small city blocks grid, and 3) the large city blocks grid. A snapshot of
a small city blocks grid simulation is shown in Fig. 3.9, 3.10, and 3.11, respectively.
The agent attributes are as follows: Emin = 0, Emax = 3, 0min = −1, and 0max = 1.
For each road network environment, we simulate the game 100 times for C = 250
time-steps. During each time-step, agents will spontaneously spawn with some
defined probability ? at the source nodes. Each agent that spawns onto the road
network is randomly assigned a sink node as its desired destination.

Figure 3.9: Straight road map environment.

Figure 3.10: Simulation

Figure 3.11: City blocks map environment.
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Agents that make it to their respective sink node destinations will exit the map. For
all simulation trials, collision does not occur. Although liveness is only guaranteed in
sparse traffic conditions, we simulate for a number of agents # for which # > "−1.
Even with a number of agents much greater than the number specified in the sparsity
assumption, deadlock still does not occur. In particular, over the 100 trials for each
of the maps, on average 77%, 36%, and 43% of agents made it to their respective
destinations on the respective maps by the end of the 250 time-steps.

3.9 Conclusion
In this work, we have defined a comprehensive framework for introducing behavioral
protocols for autonomous agents to follow. In particular, we introduced a quasi-
simultaneous game, which is a turn-based game where the turns are defined based
on agent states. The road network environment includes any grid-road network
with traffic intersections. The specific agent class has specific attributes like limited
perception and communication capabilities, a token count, and specific dynamic
maneuvers. The behavioral protocol is then the process agents use to select which
action to take in their given state. In this process, the agent uses its behavioral
profile to select an intended action, conflict-cluster resolution to resolve conflicts,
and the action selection strategy to ultimately select an action to take. If all agents
are selecting actions according to the protocol, safety and progress of all agents
can be guaranteed. Proofs of the safety and liveness properties are presented and
verified in simulation.
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C h a p t e r 4

PERCEPTION: SEMANTIC ESTIMATION

4.1 Introduction
Conventional simultaneous localization and mapping (SLAM) algorithms rely on
geometric measurements and require loop-closure detections to correct for drift ac-
cumulated over a vehicle trajectory. Semantic measurements can add measurement
redundancy and provide an alternative form of loop closure.

In this chapter, we propose two different estimation algorithms that incorporate
semantic measurements provided by vision-based object classifiers. The work pre-
sented in this chapter has been published in [14] and was done in joint collaboration
with Alexei Harvard.

We assume we have an a-priori map of regions where the objects can be detected.
The first estimation framework is posed as a maximum likelihood problem, where
the likelihood function for semantic measurements is derived from the confusion
matrices of the object classifiers. In this case, the semantic measurements improve
the performance of conventional SLAM algorithms by incorporating measurements
that provide additional information about the vehicle state. This method is described
in further depth in Section 4.2. The second estimation framework is a hierarchical
formulation that serves a dual purpose because it 1) leverages semantic measure-
ments to improve the accuracy of state estimation and 2) uses state estimation to
improve the certainty of object detection events. In particular, it is comprised of two
parts: 1) a continuous-state estimation formulation that includes semantic measure-
ments as a form of state constraints and 2) a discrete-state estimation formulation
used to compute the certainty of object detection measurements using a Hidden
Markov Model (HMM). The details of this technique can be found in Section 4.3.

Before introducing the two differentmethods, we introduce the problem formulation.
Consider the traditional localization and mapping algorithm, where the goal is to
simultaneously estimate the vehicle poses � , {GC})C=0 and the position of a set of
landmarks in the environment denoted by ℒ , {;<}"<=1, given a set of continuous
measurements �c , {Ic,C})C=0. The landmarks are features in the environment that
can easily be recognized, and the continuous measurements are range measurements
to those landmarks. Note that GC ∈ R=, where = is the dimension of the vehicle state,
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and " is the number of landmarks in the environment.
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Figure 4.1: Model for the inclusion of semantic measurements in a traditional
plant-controller system.

For this model, we assume that we have a set of odometry measurements given
by ℬ , {1C})C=0 to approximate the vehicle dynamics, where 1C gives the vehicle
translation and rotation between discrete-time points of the vehicle trajectory. These
odometry measurements can be given by methods like the iterative closest point
(ICP) algorithm. This estimation problem is typically formulated as the following
maximum likelihood problem:

�̂, ℒ̂ = argmax
�,ℒ log ?(�2 |�,ℒ). (4.1)

In our problem, we consider a vision-based object classification algorithm that can
detect  different objects given by � , {>: } :=1. We assume that we have an a
priorimap that defines the positions of each object >: and the corresponding region
': where the object can be detected. We define the set of semantic measurements
as �B , {Is,C})C=0, where Is,C ∈ B

 . The measurement corresponding to the object
detector of object >: can be represented as a binary variable I:s,C ∈ {1, 0}, where a
measurement of 1 indicates that the object >: has been detected and 0 indicates that
it has not.
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Figure 4.2: Object classification measurements modeled as binary measurements.
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Each object detectionmeasurement has a corresponding confusionmatrix�: ∈ R2×2

that captures the ratio of false positive and negative detections. Let the variable
E:C = 6(GC , >: ) be an indicator variable representing whether the object >: is in the
field of view of the camera and can be detected at time C that depends on the vehicle
state GC . The elements of the confusion matrix are defined as: 2:

8E:
= ?(I:s,C = 8 |GC).

We assume that these error statistics can be computed offline. In the case of a perfect
classification algorithm, the confusion matrix would be the identity matrix. In the
next section, we encode these semantic measurements into the traditional maximum
likelihood formulation to add redundancy and robustness to the estimation algorithm.

4.2 Maximum Likelihood Formulation with Semantic Measurements
The first method we introduce for incorporating semantic measurements into SLAM
algorithms is based on the maximum likelihood formulation. The estimation prob-
lem with semantic measurements can be formulated as a maximum likelihood prob-
lem:

�̂, ℒ̂ = argmax
�,ℒ log ?(�2,�s |�,ℒ). (4.2)

Assuming that the semantic measurements are independent from the continuous
range measurements, the maximization problem can be rewritten as the following
minimization problem:

�̂, ℒ̂ = argmin
�,ℒ

)∑
C=0

 ∑
:=1
− log(?(I:s,C |GC)) − log(?(�2 |�,ℒ)) − log(?(ℬ|�)),

(4.3)

where the first term in the formulation corresponds to the likelihood function of
the semantic measurements, and the second and third terms represent the nonlinear
least-squares terms associated with the continuous measurements and odometry
measurements, respectively. The likelihood function for the semantic measurements
from object detector : can be derived from the object detector’s confusion matrix
�: as follows:

?(I:s,C |GC) =
∏

0={0,1}

∏
1={0,1}

2
1(I:s,C=0)1(E:C =1)
0,1

, (4.4)

where E:C is a function of GC since it represents whether the object >: is in the field
of view of the vehicle at the state GC . This likelihood function selects each element
of the confusion matrix based on the semantic measurement I:s,C and E:C , which
indicates whether the object is in the field of view.
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Depending on whether the measurement I:s,C is a 1 or a 0, the likelihood function
takes on a different shape. The likelihood function shown in Fig. 4.3 assumes that
the object is in the field of view when inside the region ': associated with object >: .
Under this assumption, we can see how the likelihood function promotes the region
corresponding to the detected object when the measurement I:s,C = 1 and demotes
the region when I:s,C = 0.

For the likelihood estimation formulation, where we solve for Eqn. 4.3, we only
include measurements where I:s,C = 1. The positive detection events are the mea-
surements that give the most information, since they promote a very small region
when they occur. Further, a measurement where I:s,C = 0 does not imply the vehicle
is not in the region associated with the object. Instead, the vehicle could simply not
have the object in its field of view, but still be in the region ': .

Note that the likelihood function is a discrete, nonlinear function that must be
approximated by a smooth function in order to be implemented in any factor-graph
estimation algorithms like gtsam [47], which relies on gradient-based methods for
solving the optimization problem. The details of this approximation are given in
Appendix C.

Although this model improves the robustness of the estimation algorithm, the like-
lihood function does not take into consideration higher-level details about the mea-
surements like their persistence over time. In the next section, we therefore introduce
an alternative formulation for including object detection events as nonlinear factors
that impose state constraints similar to loop closure detections.

4.3 Hierarchical Formulation with Semantic Measurements
In this section, we present a hierarchical estimation framework that is intended
to serve two purposes: 1) use semantic measurements from object classifiers to
improve the accuracy of estimationmethods in amore robust way than themaximum
likelihood method and 2) to use state estimates to improve the certainty of object
classification events. The inner loop of this algorithm and outer loop are described
in the remainder of this section, and the system architecture for the overall algorithm
is defined in Section 4.4.

Inner-Loop: Continuous-State Estimation Process
The inner-loop continuous-state estimation process is very similar to the maximum-
likelihood formulation, except with a slight modification to the factors associated
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with semantic measurements and the introduction of switch variables.

In particular, we treat each object detectionmeasurement I:s,C = 1 as a state constraint
that is modeled to reflect the same shape as the factors in the maximum likelihood
formulation. We do not consider measurements when I:s,C = 0 in our factor-graph
formulation for the same reasons we excluded them in the maximum likelihood
formulation. Since the standard factor-graph formulation does not allow for explicit
state constraints, we introduce a relaxation, and use the following nonlinear least-
squares factor to represent the constraint imposed by a positive object detection
measurement:

5 (I:s,C , GC) = I:s,C 5 :1 (GC). (4.5)

This semantic factor is defined to reflect the same properties as the discrete likelihood
function described in Section 4.2. The comparison between the factors derived for
the likelihood function and the factor derived here can be seen in Fig. 4.3. The
factor 51(GC) is defined as the following piecewise function:

5 :1 (GC) =
{ 0 3:

ℎ
(GC) = 0

U exp(− V

3:
ℎ
(GC )
) 3:

ℎ
(GC) > 0 , (4.6)

where 3ℎ (GC) is the shortest distance from GC to the boundary of the region corre-
sponding to object : given by ': . Although the factor representing the likelihood
function and the customized factor are similar, the customized factor improves the
estimation accuracy further because of properties of its gradient.

The gradient of the function 5 :1 (GC) is nonzero even when the estimate is far from
the object detection region, so it still acts towards improving the estimate each time
a positive object detection measurement occurs. Further, the parameters U and V
can be modified to change the scale and rate of the inverse exponential functions,
respectively. With these additional features, the new formulation with semantic
measurements becomes the following minimization problem:

�̂, ℒ̂ = argmin
�,ℒ

)∑
C=0

 ∑
:=1
‖ 5 (I:s,C , GC)‖ − log(?(�2 |�,ℒ)) − log(?(ℬ|�)).

(4.7)

False positive measurements will cause the wrong state-constraint factors to be
imposed andwill result in poor estimation results. We therefore introduce switchable
constraints, taken from the loop-closure literature, to account for the possibility of
bad measurements.
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Figure 4.3: The nonlinear least squares factors added to the graph corresponding
the semantic measurement I:s,C = 1 is in the top figure and I:s,C = 0 on the bottom.
The factor added corresponding to the negative log likelihood function described in
(C.1) and the customized factors formed by piecewise inverse exponential functions
correspond to the blue and red plots, respectively. The parameter U for the inverse
exponential factor is chosen to be 3.5 to approximate the same properties as the
factor derived from the likelihood function.

In traditional SLAM algorithms, switchable constraints are introduced into the op-
timization formulation to improve the algorithm’s performance when false positive
data associations or loop-closure detections occur [87]. We propose the following
addition of switchable constraints to improve the robustness of our algorithm to
false semantic measurements:

�̂, ℒ̂, Γ̂ = argmin
�,ℒ,Γ

)∑
C=0

 ∑
:=1

(
‖k(W:C ) 5 (I:s,C , GC)‖Σ + ‖W:C − W̄:C ‖Λ

)
−

log(?(�2 |�,ℒ)) − log(?(ℬ|�)) (4.8)

where Γ , {WC})C=0 is the set of all switch variables, WC ∈ R , and Γ̄ , {W̄C})C=0 is
the set of priors on the switch variables. The variables Σ and Λ are optimization
hyperparameters that determine the weight of the factors corresponding to the state
constraints and the switch variable priors. The functionΨ : R ↦→ [0, 1] is a function
which takes a real value and maps it to the closed interval between 0 and 1. We
choose Ψ(W:C ) = W:C to be a linear function of the switch variables and to constrain
the switch variables between 0 ≤ W:C ≤ 1 since these choices have been empirically
shown to work well [87].
Each switch variable W:C quantifies the certainty of its associated semantic measure-
ment I:s,C . When the switch variable W:C is set to 0, the certainty in the measurement
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is extremely low, and the influence of the state-constraint factor associated with
the measurement I:s,C gets disregarded. Probabilistically, the switch variable is
modifying the information matrix associated with the semantic factor such that
Σ̂−1 = Ψ(W:C )2Σ−1 [87]. This means the covariance of the semantic measurement is
unchanged from Σ when Ψ(W:C ) = 1 and the certainty in the measurement is high,
but scales with Ψ(W:C )2 when Ψ(W:C ) < 1. For typical object classifiers, since the
rate of false positive measurements is relatively low, we can default to trusting the
measurements, so the switch priors W̄:C are set to 1. Thus, both the certainty of
each object detection measurement and the pose estimates are optimized for in this
framework.
Although the formulation in Eqn. 4.8 is more robust to semantic measurement
errors, setting the prior on all switch variables to 1 will sometimes cause the opti-
mization to converge to the wrong solution. If we can compute the certainty of each
object detection measurement by leveraging both the error statistics of the object
classifier algorithms and the vehicle dynamics, we can construct a more accurate
prior on the switch variables. In the next section, we propose a formulation where
we use an HMM to compute the marginal probabilities of object detection events.
These marginal probabilities reflect a new certainty of object detection events, and
improve the certainty of individual detection measurements. Furthermore, these
marginal probabilities can be used to set the prior on the switch variables in the
optimization framework.

Outer-Loop: Discrete-State Estimation Process
Higher-level properties of the estimation formulation, like the persistence of se-
mantic measurements over time and the relative vehicle dynamics, can be used to
improve the certainty of object detection measurements. In this section, we propose
a discrete-state estimation framework.
In particular, we consider a discrete-state representation of the vehicle trajectory in
terms of object detection events. The vehicle trajectory can be parsed into different
object detection events based on the persistence of semantic measurements in �s

over time. The continuous-state estimation, which we refer to as the lower-layer
estimation framework, occurs on the time-scale of C whereas the discrete-state esti-
mation, which we refer to as the higher-layer estimation framework, occurs on the
time-scale of g. This is also shown more clearly in Fig. 4.4. Once an object detec-
tion event has been detected, we represent the detection event with a discrete state
Bg. This discrete state Bg has a time interval in the continuous-state estimation time
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domain given by Cg = [Cg,8, Cg, 5 ] and a set of semantic measurements .g , {Is,C}
Cg, 5
C=Cg,8

that occur over the time interval Cg. The semantic measurements associated with the
object >: during this time interval are defined as: . :g , {I:s,C}

Cg, 5
C=Cg,8

.
The vehicle trajectory can then be represented as a sequence of states � , {Bg}&g=1,
where & is the number of object detection events that occur over the trajectory and
Bg = {>1, >2, ..., >: }. The notation Bg = >8 means that object >8 has been seen during
the detection event Bg.
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Figure 4.4: This figure shows the relation between the discrete-state HMM and the
continuous-state estimation. The semantic measurements �s are illustrated by the
grid, where each row represents the measurements received by an object classifier.
The grey boxes represent I:s,C = 1 and the white boxes represent I:s,C = 0. We can see
that an object detection event, which is represented as a discrete state in the HMM,
corresponds to a time interval in the continuous-state estimation framework.

The time-sequence of object detection events can be modeled as an HMM since
the memoryless-Markov property holds, i.e. ?(Bg |B0:g−1) = ?(Bg |Bg−1). The HMM
estimation formulation and the algorithms for computing the switch prior, which
are used to improve the optimization formulation in Eqn. 4.8, are described in the
following sections.

Parsing Trajectory into Object Detection Events

In this model, we assume that only one object detection event occurs at a given time.
The trajectory � can be parsed into different object detection events based on the
semantic measurements �s. Each object classifier is associated with a sequence
of measurements given by {I:s,C})C=0 and a confusion matrix �: that describes the
algorithm’s error statistics. In the event that the object >: is visible, the frequency
of nonzero measurements can be approximated by �:11 = ?(I:s,C = 1|E:C = 1). We
therefore define an object detection event for the object >: as occurring when the
proportion of nonzero measurements over a minimum time interval exceeds the
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threshold value set by �:11 − n . The value of n is set to a value that depends on the
certainty of the statistics given by the confusion matrix. The object detection event
is terminated when the proportion of nonzero measurements decreases to less than
the threshold value of �:11 − n .

Transition and Observation Matrices

HMMs are typically defined by a single transition matrix and a single observa-
tion matrix. The hybrid nature of our estimation formulation means continuous
states have been traversed between the discrete states representing object detection
events, and that a set of semantic measurements, denoted by.g, have elapsed during
each object detection event. Since we want to incorporate continuous-state pose
estimates and semantic measurements into our HMM formulation, the transition
and observation matrices are time-varying and dependent on the lower-layer esti-
mates and measurements. In particular, the transition matrices are a function of
the pose-estimates between discrete states representing object detection events, and
the observation matrices are a function of .g, the semantic measurements that have
elapsed during the time interval Cg corresponding to the discrete state Bg. Each
element of the transition matrix between discrete states Bg−1 and Bg is defined as
follows:

�(Bg−1, Bg)8 9 , ?(Bg = > 9 |Bg−1 = >8, ĜCg,8 , ĜCg−1, 5 )

∝ exp(−1
2
‖38 9 − 3̂g−1,g‖),

(4.9)

where 38 9 = ‖?8 − ? 9 ‖
1
2 , and ?8 and ? 9 denote the positions of the center of mass

(COM) of the objects >8 and > 9 respectively. The distance 3̂g−1,g , ‖ĜCg,8 − ĜCg−1, 5 ‖
1
2

is the estimated distance traveled between object detection events. The rows of the
transition probabilitymatrix are normalized to sum to one. The transition probability
is defined by the error between the actual distance of two objects from each other
and the estimated distance traveled from one object detection event to another. The
definition of the transition matrix would have to be modified to accommodate for
the objects whose regions are not centralized around the objects’ COM, because the
distance traveled between object detection events could vary considerably. Examples
of such objects include sidewalk or road detectors. This will be considered in future
work.
Each element of the observation matrix for the discrete state Bg is defined as follows:

$ (g)8 9 , ?(Hg = >8, .g |Bg = > 9 )
= ?(Hg = >8 |.g)?(.g |Bg = > 9 ).

(4.10)
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The probability ?(.g |Bg = > 9 ) is the likelihood of a sequence of semantic measure-
ments over the time interval Cg given that the object detection event corresponds to
object > 9 . When conditioned on Bg = > 9 , each measurement in the sequence . 9g can
be modeled as a Bernoulli random variable with the probability of a nonzero mea-
surement given by � 9

11. Thus, the probability ?(.g |Bg = > 9 ) can be approximated
by how well the sequence of measurements . 9g fits a Bernoulli distribution with
parameter ? = � 9

11. This probability can be computed with a Chi-squared goodness
of fit test [7].

Since there is no discrete-state observation of the system, we define Hg to be a
function of the sequence of measurements .g. The discrete-state observation is the
object that corresponds to the maximum likelihood for the sequence of semantic
observations, which means H̄g = argmax>: ?(.g |Bg = >: ) for : = 1, ..,  . Thus,
the probability of a discrete-time measurement conditioned on the continuous-state
observations becomes defined as follows:

?(Hg = >8 |.g) =
{

1 if >8 = H̄g,
0 if >8 ≠ H̄g .

(4.11)

Therefore, an observation matrix for each discrete-state Bg can be derived for the
HMM as a function of the sequence of semantic measurements .g.

Computing Marginal Probabilities

The Viterbi algorithm can be used to determine the most probable sequence of states
given a set of observations. We use a modified version of the Viterbi formulation
given as follows:

�̂ = argmax
�

g, 5∑
g=1

log(?(Hg, .g |Bg)) + log(?(Bg |Bg−1, 3̂g−1,g)). (4.12)

This equation accounts for the dependencies of the transition and observation ma-
trices on the time-varying lower-layer estimates and measurements. Once the most-
probable sequence of states for the HMM are derived from the Viterbi algorithm
in Eqn. 4.12, the marginal probabilities ?(Bg = >8 |.0:g, 5 ) can be computed with
dynamic programming using amodified version of the forward-backward algorithm.
The variable .0:g, 5 denotes all the measurement sequences corresponding to object
detection events that have been observed. Details of this computation can be found
in Appendix C.
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The forward-backward algorithm therefore defines a certainty associated with the
most-probable sequence of object detection events. The switch prior associated
with the semantic measurements that occur over the time-intervals corresponding to
these object detection events are computed in the following section.

Switch Prior Derivation

The switch prior W:C associated with a semantic measurement I:s,C quantifies the
reliableness of the measurement. When an object detection event corresponding
to object >: occurs, the marginal probability from the forward-backward algorithm
gives us ?(Bg = >: |.0:g, 5 ), which is a metric for the certainty that object >: for the
time interval Cg associated with the detection event. This means that over the time
interval Cg, the measurements where I:s,C = 1 should be proportional to the certainty
of the detection event. Thus, we define the switch priors for the time interval Cg
where Bg = >: for every measurement for which I:s,C = 1 as follows:

W:C = ?(Bg = >: |.0:g, 5 , H0:g, 5 ). (4.13)

In the case where the certainty in the object detection event Bg = >: is high, the
switch priors corresponding to I:s,C = 1 will be very close to 1.

The HMM formulation only gives a certainty metric for positive object detection
events. The switch prior must also be derived for any semantic measurements
where I:s,C = 1 and the measurement does not occur during a time interval specified
by an object detection event. These measurements occur during a non-detection
event which occurs over the time interval in the continuous-state estimation time
domain given by Cg∅ = [Cg∅,8, Cg∅, 5 ], and has semantic measurements given by . :

g∅ =

{I:s,C}
) 5 =g∅, 5
C=g∅,8 . To compute the probability that all measurements during the time

interval correspond to a non-detection event, which we define as ?(Bg∅ = ∅|. :g∅),
we can compute how well the sequence of measurements in . :

g∅ fits to a Bernoulli
distribution with parameter�:10. The switch prior associated with the measurements
outside the object detection are set to have a certainty proportional to 1 − ?(Bg∅ =
∅|. :

g∅). Thus, when the certainty that the non-object detection event has occurred is
high, the switch priors corresponding to I:B,C = 1 will be very close to 0.

4.4 Hierarchical System Architecture
In this section, we summarize the hierarchical architecture. There are two esti-
mation processes that are occurring on different time-scales: the continuous-state
estimation process with switchable constraints and the discrete-state estimation of
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object detection events. Each process is iteratively improving the other, and the
dependencies of the two processes can be seen in Fig. 4.5.

Switch variables are introduced into the continuous-state estimation framework to
improve the robustness of the algorithm to erroneous measurements [87]. The
continuous-state optimization problem with semantic measurements and switchable
constraints can be formulated as follows:

�̂, ℒ̂, Γ̂ = argmax
�,ℒ,Γ log(?(�s,�2 |�,ℒ, Γ0)). (4.14)

Note, the switch variables are variables that represent the certainty of semantic
measurements. We define the discrete-state estimation framework to define the
priors on these switch variables, where the switch priors should be representative of
the confidence we have in the semantic measurements.

The discrete-state estimation framework operates on the time scale of object de-
tection events given by g. Once an object-detection event has been classified, as
described in Section 4.3, the pose-estimates and semantic measurements from Eqn.
4.14 are used to derive the transition and observation matrices of the HMM. This
HMM is used to model the discrete-state representation of the trajectory. The most
probable sequence of object detection events, represented by the set of discrete states
�, is then solved as follows:

�̂ = argmax
�

log(?(�s,�2 |�, �̂)). (4.15)

The forward-backward algorithm is then used to compute the marginal probabilities
associated with the maximum likelihood sequence of object detection events.
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Figure 4.5: The system architecture is comprised of two layers: the lower layer
shown in the lower box represents the factor-graph formulation with switchable
constraints and updates at every time step C, whereas the higher layer shown in
the top box represents the HMM estimation framework, and computes switch prior
variables after every object detection event. The switch variables are denoted by Γ
and the switch prior is given by Γ0.
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These marginal probabilities are used to compute priors on the switch variables
associated with the semantic measurements in Eqn. 4.14. Therefore, the higher and
lower-layer estimation processes are simultaneously improving the pose estimate
and the certainty of object detection events.

4.5 Simulation Results
We investigate the performance of our algorithms in simulation. We consider an
object classifier that can detect three different objects, each of which is associated
with a known radial region in a 2-D map that is shown in Fig. 4.6, and each of which
has a confusion matrix whose parameters are defined in Table 4.1.

Table 4.1: Confusion Matrix Parameters

>1 >2 >3
?(I:s,C = 1|E: ) 0.02 0.03 0.05
?(I:s,C = 0|E: ) 0.2 0.15 0.1

There are four landmarks that provide the vehicle with range measurements when
detected. The data association problem for the landmarks are assumed to be solved
in this formulation. The vehicle traverses an ellipsoid trajectory and goes through
each of the object detection regions during its path. We introduce noisy odometry
measurements in our simulation. The range measurements to the landmarks miti-
gate the estimation error when included in the traditional SLAM algorithms. We
investigate how the introduction of semantic measurements improves the estimation
even further.

In our simulations, we run three different algorithms to estimate the vehicle tra-
jectory. First, we run the algorithm with range measurements to the four different
landmarks, which is what is conventionally available in the SLAM community. In
the simulation figures, this is referred to as ‘landmarks only.’ Second, we use the
maximum likelihood formulation with the smoothed likelihood function described
in Section 4.2. In the simulation figures, this is referred to as ‘likelihood.’ Finally,
we test the hierarchical formulation which was described in Section 4.3. In the
simulation figures, this is referred to as ‘switch with HMM.’ In our simulations, the
estimation frameworks are implemented using gtsam, a factor-graph formulation
commonly used for solving pose-graph estimation problems [22, 47].

For the different formulations, the noise model must be chosen for the factors
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corresponding to the state constraints imposed by the semantic measurements. In
the algorithm involving the likelihood function, we use the identity matrix to define
the covariance on the likelihood factor so that the Bayesian representation of the
likelihood function is preserved.

oo

o

1 2

3

Figure 4.6: The objects and their corresponding regions of detections ': are shown
in blue and the positions of the landmarks that are visible during the vehicle trajectory
are shown in orange. The gray line represents the true vehicle path.

For the formulation with switch variables, the noise on the prior for the switch
variables, which is given by Λ in Eqn. 4.8, is chosen to be 0.01 when the switch
prior values are chosen by the HMM and 10 when the switch prior is set to the
default value of 1. This choice reflects our increase in certainty on the switch prior
when we use the HMM formulation. The noise on the inverse-exponential factors,
which is represented by Σ in Eqn. 4.8, is chosen to be 0.5.
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Figure 4.7: The true trajectory can be compared to the estimated trajectory using
three different algorithms. The algorithms that incorporate the semantic measure-
ments improve the estimate significantly.

The estimated trajectory resulting from the different estimation algorithms are shown
in Fig. 4.7. The squared error between the estimated trajectories and the true
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trajectory is shown in Fig. 4.8. We can see that the two algorithms that incorporate
semantic measurements outperform the traditional SLAM algorithm. We also see
that the estimation framework with the smooth approximation of the likelihood
function and the estimation framework with the switch variables and HMM-derived
switch priors converge to very similar local minima.

Since different noise on the odometry measurements will contribute to different
estimation results, we compare our estimation algorithms on a set of randomly
generated odometry measurements. This way, we can evaluate the performance of
the different algorithms over many different trials.
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Figure 4.8: The squared error between the true trajectory and the estimated trajec-
tories from the three different estimation estimation algorithms.

The comparison of the different estimation algorithms is captured in Fig. 4.9 and
Fig. 4.10. We see how the mean of the squared error over the entire trajectory
for all the trials is notably smaller when the semantic measurements use either the
likelihood algorithm or the hierarchical algorithm.
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Figure 4.9: The mean squared error over the trajectory path is computed for each
of the different algorithms and the results from the trials can be compared in this
histogram. The likelihood estimation algorithm and the two-layer estimation algo-
rithm perform similarly, and both perform significantly better than the algorithm
without semantic measurements.
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The estimation framework with the likelihood function has more trials with very
low average-squared errors, but is less consistent than the two-layer estimation
framework, since its distribution has higher variance. If we look at the squared
error of the final position estimate, which is the value we are iteratively estimat-
ing, Fig. 4.10 shows that the HMM algorithm performs marginally better than the
likelihood algorithm.

The main advantage of using the HMM formulation, however, is not to improve
the performance of the likelihood formulation. Rather, it is to leverage information
from the persistence of the semantic measurements as well as vehicle dynamics
(i.e. distance traveled between object detection events) to improve the certainty of
the measurements corresponding to object detection events. In this simulation, the
sequence of events corresponding to the maximum likelihood given by the Viterbi
algorithm was given as follows: B0 = >2, B1 = >3, and B2 = >1, meaning object
2 as detected first, followed by object 3, and then object 1. The corresponding
marginal probabilities of these object detection events are ?(B0 = >2 |.0) = 0.943,
?(B1 = >3 |.1) = 0.994, and ?(B2 = >1 |.2) = 0.997. This shows certainty levels of
object detection events that are much greater than the accuracy guaranteed by the 2:11
element in the confusion matrix for each object detector which were approximately
0.8 for each of the object classifiers in our simulation. These results highlight how
the additional state information (how much distance was traveled between object
detection events) can be leveraged to increase the confidence that an object detection
measurement was correctly triggered.
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Figure 4.10: For every trial corresponding to different odometry noise measure-
ments, we use the three algorithms to estimate the trajectory. The mean squared
error of the final position estimate is computed. The final position estimate is
marginally better using the two-layer estimation framework.

The effectiveness of semantic measurements will depend on the frequency at which
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these objects are detected, but when objects have been detected, these estimation
architectures proposed in this paper provide a robust way to incorporate these
semantic measurements.

4.6 Conclusion
In summary, we have presented two methods of augmenting existing localization
methods with semantic information from object classifiers. In particular, we have in-
troduced a maximum likelihood approach where we model semantic measurements
as binary measurements with probabilistic error based on the confusion matrix. In
the second approach, we introduced a hierarchical formulation where the certainty
of object detection events is computed. Then, this certainty is used to better reject
false positive measurements in the localization estimation layer. The improvement
of robustness and accuracy of localization is demonstrated in simulation.
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C h a p t e r 5

CONCLUSION AND FUTURE WORK

Designing safe and interpretable algorithms for autonomous vehicles is paramount
to their successful integration into society. In this thesis, we have presented new
frameworks for designing safe and interpretable algorithms—particularly in the
decision-making and perception modules of autonomous vehicles.

5.1 Decision-Making
Designing the behavioral module for autonomous vehicles is especially challenging
because of the complex coupling among many agents at once in highly-interactive
settings. Without any baseline assumptions about how all agents are operating, we
cannot provide any formal guarantees of the entire system. We therefore propose
a top-down design approach for the decision-making module where all agents are
expected to behave according to a behavioral contract.

The first questions to answer in designing this behavioral contract include: 1)
what specifications (or rules) should each agent follow and 2) what prioritization
structure should exist on these rules so they behave “correctly” (i.e. are safe) and
it is clear why an agent selects a particular action. In Chapter 2, we have specified
a methodology for ordering specifications that govern the high-level behaviors of
autonomous vehicles. If specifications are hierarchically ordered into a profile with
the mathematical properties that we proposed, the actions agents are selecting from
can be compared to one another in a consistent manner. In this way, there is a unique
line of reasoning for agents to use when selecting actions. An assume-guarantee
contract says if the environment can be assumed to behave according to some class
of profiles, then the self-driving car can guarantee that it will behave according to its
own profile. Blame is defined as the case where an agent does not act according to
its assumed profile. Finally, we provide some examples of how cars following these
assume-guarantee profiles might behave in game-theoretic experiment settings. We
show, through these simple game-theoretic scenarios that behavioral profiles are
insufficient for the successful and safe coordination of multiple agents. They also
fail to guarantee the progress of the agents.

In Chapter 3, we propose a solution to address these limitations. In particular,
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we define a comprehensive framework that defines 1) a new quasi-simultaneous
game paradigm where turn-order is based on agent states, 2) the road network
environment agents are assumed to be operating on, and 3) an extended version of
the assume-guarantee profile introduced in Chapter 2 that additionally constrains
agent behaviors. The assume-guarantee contract (protocol) is defined for a single
class of agents with specific agent attributes. The protocol definition includes the
region an agentmust reason over (i.e. the bubble), how the agent chooses its intended
action (via the assume-guarantee profile), and how it ultimately selects which action
to take. The action selection process depends on a conflict-resolution scheme that
depends on the querying of other agent intentions and tokens. With this protocol,
we formally guarantee safety and progress (under sparse traffic conditions) for all
agents. We validate the safety and liveness guarantees in a randomized simulation
environment.

5.2 Perception
With regard to perception, we introduce a robust estimation framework for incor-
porating probabilistic binary measurements, which are used to model data from
vision-based object classification algorithms. We first introduce a formulation for
solving a maximum likelihood problem with the semantic measurement likelihood
function modeled after the confusion matrix of object classifiers. We then derive a
two-part estimation framework where the lower-layer is formulated as a factor-graph
estimation problem, with each measurement corresponding to a state-constraining
factor modeled after the discrete likelihood function and a switchable constraint. We
also present a higher-layer estimation framework that takes into account measure-
ment persistence and vehicle dynamics to compute the certainty of sets of semantic
measurements corresponding to object detection events. These certainties capture
which measurements are false positives, and are used to compute the switch priors
in the lower-layer estimation algorithm. The advantage of including the higher-layer
estimation framework is demonstrated in the presented numerical simulation. We
show in simulation how the addition of semantic measurements in this framework
improves the robustness and accuracy of the estimated trajectory.

5.3 Future Work
Robust Behavioral Contracts
The current framework relies on strong assumptions about the agents and the road
network in order for the safety and liveness properties to hold. Real-life systems
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have multiple types of agents and are also especially prone to both unintentional and
intentional agent error, especially when humans are in the loop. In order to make
the proposed behavioral contract paradigm relevant to deployment in the real world,
the framework must be extended to accommodate for a heterogeneous set of agents
and be robust to errors. One approach would be to introduce some probabilistic
modeling over the agent behaviors and dynamics, and designing the protocol to
ensure some probabilistic lower bounds on safety and performance guarantees.

A separate approach for dealing with errors specifically could involve defining
different classes of agent error (i.e. perception error, communication error, and
violations of agent protocols). Then some type of perturbation analysis could be
used to determine the protocol’s sensitivity to these different classes of errors.
Perhaps some notion of compositionality could be used to establish overlap among
these different classes of errors. The sensitivity analysis would hopefully highlight
how the system should be modified to be more robust to errors in the system.

Data-Informed, Human-Robot Behavioral Contracts
It is safe to assume that humanswill never strictly act in accordancewith a behavioral
protocol like the one defined in the thesis. Further, human intentions are not always
perfectly communicated. These are just a few of many reasons why behavioral
contract design with humans in-the-loop will be extremely challenging. Luckily, a
tremendous amount of traffic and human driving data has recently become readily
available. A future direction for this would be defining a way to leverage this
data to define a human-robot behavioral contract that guarantees correct agent
behavior. This relaxed version of the fully-autonomous agent protocol would depend
on inferring human internal states and understanding the behaviors associated with
those states (learned from data). An effective approach for defining these contracts
would allow us to define probabilistic lower bounds on safety and performance
guarantees.

Robust System-Level Design
Designing any module in the autonomy stack (like the behavioral module) in isola-
tion from the other modules (perception, controls, etc.) will invariably encourage
sub-optimality and failure. In this thesis, the decision-making module and the per-
ception modules were studied in isolation. For the decision-making module, the
perception module was abstracted away and vice versa (for the perception module).
We would also like to design modules in a way that is complementary (where infor-
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mation passed between modules are thought to more actively inform one another).
This framework could potentially offer significantly more robustness in the case
of system failures. Simple examples of this methodology could include designing
motion-planning schemes that enhance an agent’s perceptual understanding of its
surroundings (i.e. certainty objects that might be hidden by occlusions, certainty
of object classifications). Along the same vein, an agents’ semantic context and
understanding of its environment can be leveraged to gain certainty over how it
should behave (i.e. if an agent has a notion of what objects are possibly occluded,
then it can motion-plan more conservatively).
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A p p e n d i x A

DECISION-MAKING: BEHAVIORAL PROFILES

A.1 Examples of Consistent Evaluators

a (2)

*t (0)

p2 (1)

*proxy nodes

*s (1)

p1 (0)

a (2)

f(0)

b(2)

c(1) d(1)

e(0)

Figure A.1: Both posets admit consistent evaluators. The value the consistent
evaluator assigns on each singleton that consists of the node is written in parentheses.
Note that the poset on the left has the additional graded property while the one on
the right does not.

Consider the posets in Fig. A.1. Any evaluator 5 that assigns the values according
to the values in the parentheses, shown in the figure, can easily be verified to
have properties 1-4 of consistent evaluation. On the left poset, we can also see
that property 5 is also satisfied since for every pair of nodes such that 5 ({?1}) <
5 ({?2}) implies that there exist proxy nodes B and C such that 5 ({?1}) = 5 ({C}),
5 ({?2}) = 5 ({B}) and ?1 ≺ B and ?2 ≺ C. This relation can be easily seen for the
nodes ?1 and ?2 in Fig. A.1. The same statement applies to the poset on the right,
which is not graded, but also happens to be consistently evaluable!

A.2 Adding Nodes to a Specification Structure
Since car-manufacturers will want to refine a given root specification structure, it is
important to define the ways nodes (or specifications) can be added and still preserve
the graded property of the specification structure. In Fig. A.2, we see some simple
examples of how nodes can be added and the maximal chain property defined in
Lemma 1 is maintained. When a node is added to an anti-chain with a given rank
A, it must be valued less than at least one node with rank A + 1 and greater than
at least one node of rank A − 1 if such nodes exit. This is clearly displayed in
the top-left example and bottom-right example in Fig. A.2. When a specification
is added in-between existing rankings to create a new ranking, the node must be
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a
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Figure A.2: Different ways a dimensional property can be added to a graded poset
and still preserve the graded property.

compared to all nodes in the rank above and the rank below in a manner that is
consistent with the existing partial order. This can be seen in the top right and left
bottom examples in Fig. A.2. Oftentimes comparisons of a new node with existing
nodes in a specification structure will result in a poset that is no longer graded.
When the resulting poset is no longer graded, we introduce a way to make minimal
modifications to the poset such that it regains its graded property. We mean that
the modifications are minimal in the sense that they do not significantly redefine
the existing relationships between nodes. In the particular scenario where a node

gg

a

b c

fd e

a

b c

fd e

g

a

b c

fd e

Figure A.3: The steps taken to add the node 6 such that 6 < 4 and 6 < 2. The
orange edges are deleted and the green edges are added to minimally change the
poset to a graded poset.

is added such that it has a lower value than two nodes of ranks with a difference of
one as shown in Fig. A.3, it is best to preserve the edge with the node in the poset
with smaller rank, remove the edge of the node with higher rank, and redefine that
comparison via a proxy node. We can see it can be burdensome to exhaustively
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define all the different ways a node could be compared to existing nodes in a graded
poset. Here are some general guidelines to follow when trying to add or remove
edges to regain the graded property of the poset:

1. If an edge is redundant (i.e. the comparison is already defined via another
node), then remove it.

2. Add edges between incomparable nodes of the poset.

A.3 Adding Edges to a Specification Structure
The same guidelines for resolving improperly added nodes applies to edges as well.
Note that the only incomparable nodes are ones of the same rank.

a

d

c b

b < c

a

d

c 

b

e

f

g

a

c 

b f

d e

g

Figure A.4: This shows the sequence of steps to add in the edge 1 < 2 into the
existing poset on the left. Orange edges are removed and green edges are added.

The example shown in Fig. A.4 shows how adding a comparison between the nodes
1 and 2 causes the set to no longer have the graded property. By adding edges
between incomparable nodes and also removing redundant edges, the gradedness of
the poset returns.
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A p p e n d i x B

DECISION-MAKING: BEHAVIORAL CONTRACTS

B.1 Road Network
The following defines the set of properties that grid points can have.

Grid Point Properties
The set of properties P6 = {?, 3, lo} of each grid point 6 ∈ �. ? ∈ Z2 denotes the
Cartesian coordinate of the grid point, 3 ∈ {0, 1} is an indicator variale that defines
whether or not the grid point is drivable, lo is the legal orientation, where the legal
orientation is an element of the set {north, east, south, west}. The set lo may
be empty when the grid point is not drivable.

The road network is hierarchically decomposed into lanes and bundles, which are
defined informally as follows:

• Lanes: Let lane !0(6) denote a set of grid points that contains all grid points
that are in the same ‘lane’ as 6. !0(6) = {6′|projG (6′.?) = projG (6.?) or
projH (6.?) = projH (6.?), 6′.q; = 6.q; , 6.drivable = 6′.drivable = 1}.

• Bundles: First, we define the set of adjacent lanes to lane !0(6) asadj(!0(6)) =
{!0(6′) | ∃4 = (6̂, 6̂′) ∈ ℜ s.t. (6̂ ∈ !0(6), 6̂′ ∈ !0(6′)) and 6̂.q; = 6̂′.q;}.
This represents the set of lanes !0(6) in the same direction that the lane is
adjacent to. Let # (6) = adj(La(g)). Let bundle �D(6) denote a set of lanes
that are all connected to one another and is defined recursively as follows:

�D(6) =

!0(6) ∪ # (6) if # (6) ≠ ∅

!0(6) otherwise.

B.2 Bubble Construction
In order to define the bubble for the agent dynamics specified in Section 3.3, we
present some preliminary definitions. We first introduce the backup plan node set
(which is defined recursively) as follows:

Definition 22 (Backup Plan Node Set). Let Ag ∈ A and B0 ∈ (Ag. The backup
plan grid point set �%Ag(B0) is all the grid points agent Ag occupies as it applies
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maximum deceleration to come to a complete stop. �%Ag(B0) = GAg(B0, 0bp) ∪
�%Ag(gAg(B0, 0bp)) if gAg(B0, 0bp).E ≠ 0 and �%Ag(B0) = GAg(g(B0, 0bp)) otherwise,
where 0min is the agent’s action of applying maximal deceleration while keeping the
steering wheel at the neutral position.

Definition 23 (Forward/Backward Reachable States). The (1-step) forward reach-
able state set of agent Ag denoted RAg(B0) represents the set of all states reachable
by Ag from the state B0. The forward reachable set is defined asRAg(B0) , {B ∈ (Ag |
∃0 ∈ dAg(B0).B = g(B0, 0)}. Similarly, we define the (1-step) backward reachable
state set R−1

Ag (B0) as the set of all states from which the state B0 can be reached by
Ag. Formally, R−1

Ag (B0) , {B ∈ (Ag | ∃B ∈ (Ag.∃0 ∈ dAg(B).B0 = g(B, 0)}.

Definition 24 (Forward Reachable Nodes). Wedenote byGRAg(B0) the forward reach-
able node set, namely, the set of all grid points that can be occupied upon taking
the actions that brings the agent Ag from its current state B0 to a state in RAg(B0).
Specifically,

GRAg(B0) ,
⋃

0∈d�6 (B0)
GAg(B0, 0)

.

This set represents all the possible grid points that can be occupied by an agent in
the next time step.

Definition 25 (Occupancy Preimage). For = ∈ �, where � are the nodes in the
road network graph ℜ, the occupancy preimage GR−1

Ag (=) is the set of states of agent
Ag from which there is an action that causes = to be occupied in the next time step.
Formally,

GR−1

Ag (=) = {B ∈ (Ag | ∃0 ∈ dAg(B).= ∈ GAg(B, 0)}

.

In the next section, we define several different sets of grid points that are defined to
represent the locations where two agents may possibly interfere with one another,
which are shown in Fig. B.1. The bubble is defined to be the union of these sets of
grid points.
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Figure B.1: Bubble if all Ag ∈ A have the Agent Dynamics specified in Section 3.3.
Construction of this set defined in the Appendix.

We begin by considering the ego agent whose bubble we are defining. In particular,
let us again consider an agent Ag at state B0 ∈ (�6. The corresponding grid point
set GRAg(B0) is shown in the left-most figure in Fig. B.1. The grid points an agent
occupieswhen executing its backup plan from a state in the agent’s forward reachable
set RAg(B0) is given by:

GR,�%Ag (B0) ,
⋃

B∈RAg (B0)
�%Ag(B).

These grid points are shown in the second from the left sub-figure in Fig. B.1. The
set-valued map

ZAg(B0) , GRAg(B0) ∪ GR,�%Ag (B0)

represents all the grid points an agent can possibly reach in the next state or in the
following time step were it to execute its backup plan. Let Ag′ ∈ A and Ag′ ≠ Ag.
The set:

SRAg′ (Ag, B0) ,
⋃

=∈ZAg (B0)
GR−1

Ag′ (=)

defines the set of all states in which another agent Ag′ can reach any grid point in
the other agents’ forward reachable grid pointsZAg(B0). Let us define the grid point
projection of these states as

GRAg′ (Ag, B0) , {GAg′ (B) | B ∈ SRAg′ (Ag, B0)}

These grid points are defined in the third from the left subfigure in Fig. B.1.

The bubble also needs to include any state where an agent Ag′ where the agent has
so much momentum it cannot stop fast enough to avoid collision with the agent Ag.
To define the set of states from which this might occur, let us define the set:

S�%�6′ (�6, B0) = {B ∈ (�6′ | �%�6′ (B) ∩ Z�6 (B0) ≠ ∅}.
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If another agent Ag′ occupies a state in this set, then execution of that agent’s backup
plan will cause it to intersect with the set of grid points that are in agents setZAg(B0).
Let

SR,�%Ag′ (Ag, B0) =
⋃

B∈S�%Ag′ (Ag)
R−1
Ag′ (B).

This is the set of all states backward reachable to the states in S�%Ag′ (Ag, B0). If an
agent Ag′ occupies any of these states, it will end up in a state where its backup
plan will intersect with agent Ag’s potential grid points that are defined inZAg. We
project this set of states to a set of grid points as

GR,�%Ag′ (Ag, B0) = {G�6′ (B) | B ∈ S�%�6′ (�6, B0)}.

Note, this set of grid points is shown in the right-most subfigure in Fig. B.1. The
bubble is then defined as the union of all the sets of grid points specified above.

Definition 26 (Bubble). Let us consider an agent Ag with state B0 ∈ (Ag and agent
Ag′ be another agent. Then the bubble of Ag with respect to agents of the same type
as Ag′ is given by

BAg/Ag′ (B0) , ZAg(B0) ∪ GRAg′ (Ag, B0) ∪ GR,�%Ag′ (Ag, B0).

Note that under almost all circumstances, we should have

ZAg(B0) ⊆ GRAg′ (�6, B0) ⊆ GR,�%Ag′ (Ag, B0)

so BAg(B0) is simply equal to GR,�%Ag′ (Ag, B0). This holds true for the abstract
dynamics we consider in this paper. This means the bubble contains any grid
points in which another agent Ag′ occupying those grid points can interfere (via its
own forward reachable states or the backup plan it would use in any of its forward
reachable states) with at least one of agent Ag’s next possible actions and the backup
plan it would use if it were to take any one of those next actions.

B.3 Safety Lemmas
The following lemma states that if all Ag ∈ A are following the agent protocol, an
agent Ag will not take an action that will cause it to 1) collide with or 2) violate the
safety backup plan of another agent outside its bubble BAg(B).

Lemma 5. If Ag is following the agent protocol, and (Ag,1? (D) = T, Ag will
only choose an action 0 ∈ �2CAg for which the following two conditions hold:
1) GAg(B, 0) ∩ (∪Ag′∈(GAg′ (B′, 0′)) = ∅ and 2) ∀Ag′ ∈ (, ¬((Ag, 0)⊥Ag′), where the
set ( , {Ag′|Ag′ ∉ BAg(B) ∧ ((Ag′ ∼ Ag) ∨ (Ag′ ≺ Ag) ∨ (Ag ≺ Ag’))}.
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Proof: This follows from the definition of the agent bubble, whose construction is
defined in Section B.2.

The following lemma states that an agent Ag following the agent protocol will not
take an action for which it violates the safety of its own backup plan.

Lemma 6. If Ag is following the agent protocol, and (Ag,1? (D) = T, Ag will only
choose an action 0 ∈ �2CAg for which the following condition holds: ∀Ag′ ∈ (,
¬((Ag, 0)⊥�6′), where ( = {Ag}.

Proof: We prove this by using definitions of elements in the agent protocol.

1. Let us first show that any action 0 ∈ �2CAg that Ag takes will satisfy the
oracles in the top two tiers (safety and traffic rules) of Ag’s profile defined in
Section. 3.5.

a) According to the Action Selection Strategy defined in Section 3.5, Ag
will choose one of three actions: the agent’s intended action 08, the best
straight action 0BC , or its backup plan action 01?.

b) Let us consider the actions 08 and 0BC .

i. Both 08 and 0BC are selected via the behavioral profile and consistent-
function evaluator defined in Section 3.5.

ii. Since (Ag,1? (D) = T, the agent will have at least one action (01?)
for which the top two tiers of specifications are satisfied.

iii. By definition of the behavioral profile and the consistent evaluator
function, if (Ag,1? (D) = T, the safety backup plan action 01? will
always be chosen over an action where any of the specifications in
the top two tiers of the profile are not satisfied.

iv. By 1(b)ii and 1(b)iii, Ag will have 0 ∈ �2C�6 and will choose
an action for which the top two tiers of the behavioral profile are
satisfied and thus 08 and 0BC are actions where all oracles in the top
two tiers of the profile are satisfied.

c) Let us consider the action 01?.

i. This follows from the assumption that (Ag,1? (D) = T and the defi-
nition of (Ag,1? (D).
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2. If the oracles in the top two tiers are satisfied by an action 0, by the definition
of the oracles in Section 3.5, this implies that the action 0 will take Ag to a
state B′ and the system will be in a new global state D′ where (�6,1? (D′) = T.

3. (�6,1? (D′) = ) means Ag will end up in a state where 01? will be an action
that satisfies traffic rules, avoids inevitable collision with static obstacles, and
thus will not violate its own safety backup plan action ¬((�6, 08)⊥Ag).

The following lemma states that if all Ag ∈ A are following the agent protocol, any
agent Ag will not take an action for which it collides with or violates the safety
backup plan of any agent with higher precedence.

Lemma 7. If Ag is following the agent protocol, and (Ag,1? (D) = T, Ag will only
choose an action 0 ∈ �2CAg for which the following two conditions hold: 1)
G�6 (B, 0) ∩ (∪�6′∈(GAg′ (B′, 0′)) = ∅ and 2) ∀Ag′ ∈ (, ¬((�6, 0)⊥�6′), where
the set ( , {Ag′|Ag ≺ Ag′}, i.e. agents with higher precedence than Ag.

Proof: We prove this by using arguments based on the definition of precedence, the
agent protocol, and agent dynamics.

1. Let us first consider all Ag′ where Ag ≺ Ag′ and �6′ ∉ BAg(B).

a) Proof by Lemma 5.

2. Now, let us consider all Ag′ where Ag ≺ Ag′ and Ag′ ∈ BAg(B).

3. According to Lemma 6, Ag will only take an action that satisfies all oracles
in the top two tiers, including
$Ag, dynamic safety(B, 0, D).

4. Since 0 is such that $Ag, dynamic safety(B, 0, D) = T, by definition of the oracle,
�6 will not cause collision with any �6′ ∈ BAg(B).

5. For anyAg ≺ Ag′, whereAg′ has higher precedence thanAg, then projlong(Ag) <
projlong(Ag′), i.e. Ag′ is longitudinally ahead of Ag.

6. In order for (Ag, 0)⊥Ag′, the action 0 would have to be such that B 5 =
g�6 (B, 0), and !0(B 5 ) = !0(B′) and projlong(Ag) > projlong(Ag′), where Ag
is directly in front of Ag′.
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7. Because of the agent dynamics defined in Section 3.3, any 0 such that
(Ag, 0)⊥Ag′ will require G(Ag, 0) ∩ G(Ag′) ≠ ∅.

8. Thus, any such action 0 will not satisfy the oracle
$Ag, dynamic safety(B, 0, D).

9. Since (Ag,1? (D) = T, by Assumption 6 in Section B.4, the agent will have at
least one action 01? for which
$Ag, dynamic safety(B, 0, D) = T.

10. Since the agent will only choose an action for which
$Ag, dynamic safety(B, 0, D) = T and it always has at least one action 01? that
satisfies the oracle, the agent will always choose an action for which
$Ag, dynamic safety(B, 0, D) = T and thus will take an action such that ∀�6′ ∈
(¬((Ag, 0)⊥Ag′).

The following lemma states that if all Ag ∈ A are following the agent protocol, any
agent Ag will not take an action for which it collides with or violates the safety
backup plan of any agent with lower precedence.

Lemma 8. If Ag is following the agent protocol, and (Ag,1? (D) = T, Ag will only
choose an action 0 ∈ �2CAg for which the following two conditions hold: 1)
G�6 (B, 0) ∩ (∪�6′∈(GAg′ (B′, 0′)) = ∅ and 2) ∀�6′ ∈ (, ¬((�6, 0)⊥�6′), where
the set ( , {Ag′|Ag′ ≺ Ag}, i.e. agents with lower precedence than Ag.

Proof: We prove this by using arguments based on the definition of precedence, the
agent protocol, and agent dynamics.

1. Let us first consider all Ag′ where Ag ≺ Ag′ and Ag′ ∉ BAg(B).

a) Proof by Lemma 5.

2. Now, let us consider all Ag′ where Ag ≺ Ag′ and Ag′ ∈ BAg(B).

3. According to 3, Ag will only take an action that satisfies all oracles in the top
two tiers, including $Ag, dynamic safety(B, 0, D).

4. Since 0 is such that $Ag, dynamic safety(B, 0, D) = T, by definition of the oracle,
�6 will not cause collision with any �6′ ∈ BAg(B).
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5. According to the Action Selection Strategy defined in Section 3.5, Ag will
choose one of three actions: the agent’s intended action 08, the best straight
action 0BC , or its backup plan action 01?.

6. Let us consider the backup plan action 01?.

a) By violation of safety backup plan, ((Ag, 01?)⊥Ag′) only if !0(Ag) =
!0(Ag′).

b) W.l.o.g., let us consider Ag′ that is directly behind Ag.

c) Since (Ag′,1? (B, D) = T, by Assumption 6 in Section B.4,
$Ag, dynamic safety(B, 01?, D) = T, meaning Ag′ will be far enough behind
Ag so that if Ag executes its backup plan action 01?, Ag′ can safely
execute its own backup plan action.

d) Thus, by Definition 19, ¬((Ag, 01?)⊥Ag′).

7. Let us consider the best straight action 0BC .

a) This follows from the arguments made in 6, since 0BC is a less severe
action than 01?.

8. Let us consider the intended action 08.

a) Let us consider when WAg = {straight}.

i. This follows from 6.

b) Let us consider when WAg ∈ {right-turn, left-turn}.

i. If Ag takes such an action, Agwill end up in a statewhere �D(Ag′) ≠
�D(Ag) and from Definition 19, agents in different bundles cannot
violate each others’ backup plans.

c) Let us considerwhen WAg ∈ {right-lanechange, left-lane change}.

i. (Ag, 08)⊥Ag′ when 08 is a lane change and the agents Ag and
Ag′ are at a state such that B 5 = g(B, 08) and B′

5
= g(B′, 01?),

respectively, where 3 (B 5 , B′5 ) < 60?A4@, where 3 (B 5 , B′5 ) is the ;2
distance between B 5 and B′5 .

ii. When this condition holds, the agent’s max-yielding-not-enough
flag FAg(D, 08) defined in Section 13 will be set.

iii. According to the action-selection strategy, Agwill only take 08 when
FAg(D, 08) = F.
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iv. Thus, Ag will only take 08 when ¬((�6, 08)⊥�6′).

The following lemma states that if all Ag ∈ A are following the agent protocol, any
agent Ag will not take an action for which it collides with or violates the safety
backup plan of any agent with equal precedence.

Lemma 9. If Ag is following the agent protocol, and (Ag,1? (D) = T, Ag will
only choose an action 0 ∈ �2CAg for which the following two conditions hold:
1) GAg(B, 0) ∩ (∪Ag′∈(GAg′ (B′, 0′)) = ∅ and 2) ∀Ag′ ∈ (, ¬((Ag, 0)⊥Ag′), where the
set ( , {Ag′|Ag′ ∼ Ag}, i.e. agents with equivalent precedence as the agent.

Proof: We prove this by using arguments based on the definition of precedence,
Agent Dynamics, and the agent protocol.

1. Let us first consider all Ag′ where Ag ≺ Ag′ and Ag′ ∉ BAg(B).

a) Proof by Lemma 5.

2. Now, let us consider all Ag′ where Ag ≺ Ag′ and Ag′ ∈ BAg(B).

3. Let us first consider the agent itself, since an agent has equivalent precedence
to itself.

a) This is true by Lemma 6.

4. This can be proven for any other agents of equivalent precedence that is not
the agent itself as follows.

5. Agents with equal precedence take actions simultaneously so
$Ag, dynamic safety(B, 0, D) does not guarantee no collision.

6. According to the Action Selection Strategy defined in Section 3.5, Ag will
choose one of three actions: the agent’s intended action 08, the best straight
action 0BC , or its backup plan action 01?.

7. By definition of precedence assignment, any Ag′ for which Ag′ ∼ Ag will be
such that !0(Ag) ≠ !0(Ag′).

8. Let us show if Ag selects 01?, it will 1) not collide with any Ag′ ∈ ( and 2)
¬((Ag, 01?)⊥Ag′).
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a) W.l.o.g., let us consider Ag′ where Ag′ ∼ �6.

b) The flag FAg’(D, 08) = T if Ag′B intended action 08 causes collision with
Ag or (�6′, 08)⊥�6, i.e. it collides with or violates the safety of Ag’s
backup plan action.

c) By the action-selection-strategy, Ag′ will not take the action 08 when
FAg’(D, 08) = T, so this guarantees Ag will not collide with Ag′ when
Ag takes 01?.

d) By the Agent Dynamics, Ag’s backup plan action cannot cause Ag to end
up in a position where it can violate Ag′’s backup plan without colliding
with it–for which Ag′’s flag FAg(D, 08) would be set.

9. Let us show that Ag will only choose an 0BC if it will 1) not collide with
Ag′ ∈ ( and 2) ¬((Ag, 0BC)⊥Ag′).

a) When 0BC = 01?, then the arguments in 8 hold.

b) Ag selects an 0BC that is not 01? only when 1) its conflict cluster is empty
(i.e. �Ag = ∅) or 2) when it has received a conflict request from another
agent and it has won its conflict cluster resolution (i.e. ,Ag = T).

c) If �Ag = ∅, by definition of how conflict clusters are defined in Section
14, the agent’s action 0BC will not cause Ag to collide with any Ag′ ∈ (,
and ∀Ag′ ∈ (,¬((Ag, 0BC)⊥Ag′).

d) In the case Ag has received a conflict request and has won ,Ag, by
Lemma 3, if,Ag = T, it will be the only agent in its conflict cluster that
has won.

e) By definition of the conflict cluster, any Ag′ ∈ �Ag where Ag ∼ Ag′ will
take a straight action.

f) Since agents of equivalent precedence are initially in separate lanes
by 7 and any Ag′ ∈ ( will take a straight action, then !0(BAg,C+1) ≠
!0(BAg’,C+1) when Ag takes 0BC .

g) Thus, by definition of agent dynamics and Definition 19, the action will
not causeAg to collidewith anyAg′ ∈ (, and∀Ag′ ∈ (,¬((Ag, 0BC)⊥Ag′).

10. Let us show that Ag will only choose an 08 if it will 1) not collide with any
Ag′ ∈ ( and 2) ¬((Ag, 08)⊥Ag′).

a) Let us consider when WAg = straight for 08.
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i. This follows from the same arguments presented in 9.

b) Let us consider when WAg ∈{right-turn, left-turn} for 08.

i. This follows from the fact that all other agents are following the agent
protocol and will not take a lane-change action in the intersection,
and because of the definition of the Agent Dynamics and Road
Network.

c) Let us considerwhen WAg ∈ {right-lanechange, left-lane change}.

i. Ag will only take its intended action 08 if the flag
FAg(D, 08) = F, and in the case that it is part of a conflict cluster, it
is the winner of the conflict cluster resolution, i.e. WAg = T.

ii. By definition of FAg(D, 08), the agent will not take 08 when 08 causes
Ag to collide with any agent Ag′ ∈ ( or when it causes �6 to violate
the safety of the back up plan of another agent �6′, i.e. ∃�6′ s.t.
(Ag, 08)⊥Ag′.

iii. In the case the agent has received a conflict request and has won
WAg, by Lemma 3, if WAg = T, it will be the only agent in its
conflict cluster that has won.

iv. By definition of the conflict cluster, any Ag′ ∈ �Ag where Ag ∼ Ag′

will take its backup plan action 01?, and thus B 5 = g(B, 0BC), and
B′
5
= g(B, 01?), where 3 (B 5 , B′5 ) ≥ 60?req.

v. Thus, 08 will only be selected when 08 does not cause Ag to collide
with any Ag′ ∈ ( and
∀Ag′ ∈ (,¬((Ag, 08)⊥Ag′).

The following lemma states that if all Ag ∈ A are following the agent protocol, any
agent Ag will not take an action for which it collides with or violates the safety
backup plan of any agent with incomparable precedence to it.

Lemma 10. If Ag is following the agent protocol, and (Ag,1? (D) = T, Ag will
only choose an action 0 ∈ �2CAg for which the following two conditions hold: 1)
GAg(B, 0) ∩ (∪Ag′∈(GAg′ (B′, 0′)) = ∅ and 2) ∀Ag′ ∈ (, ¬((Ag, 0)⊥Ag′), where the
set ( , {Ag′|Ag′ � Ag}, i.e. agents with precedence incomparable to the agent.

Proof: We prove this by using arguments based on the definition of precedence,
Agent Dynamics, and the agent protocol.
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1. Let us show when Ag chooses 01?, it will 1) not collide with any Ag′ ∈ ( and
2) ¬((Ag, 01?)⊥Ag′).

a) Since (Ag,1? (D) = T, the agent will have at least one action (01?) for
which the top two tiers of specifications are satisfied.

b) By 1a, the action 01? will only take Ag into the intersection if the traffic
light is green.

c) By Assumption 4, all traffic lights are coordinated so if agents respect
traffic light rules, they will not collide.

d) By the assumption that all other Ag′ ∈ G are obeying the same protocol,
each agent will only take actions that satisfy the top two tiers of their
profile.

e) Any Ag′ in a perpendicular bundle will not enter the intersection since
they have a red light.

f) Thus, Ag cannot collide or violate the backup plan of agents in perpen-
dicular bundles.

g) Any Ag′ in an oncoming traffic bundle must only take an unprotected
left-turn when it satisfies
$Ag, unprotected left-turn(B, 0, D).

h) Thus Ag will not collide or violate the backup plan of agents in bundles
of oncoming traffic.

2. Let us show that when Ag chooses 0BC , it will 1) not collide with any Ag′ ∈ (
and 2) ¬((Ag, 0BC)⊥Ag′).

a) Since 0BC is chosen according to the behavioral profile, it will only be a
straight action that is not 01? as long as it satisfies the top-two tiers of
the profile and more.

b) Thus, 0BC will only take Ag into intersection if traffic light is green.

c) By the same arguments in 1, this holds.

3. Let us show that when Ag chooses 08, it will 1) not collide with any Ag′ ∈ (
and 2) ¬((Ag, 08)⊥Ag′).

a) Let us consider when 08 is such that W�6 = straight.

i. This follows from the same arguments presented in 2.
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b) Let us consider when 08 is such that W�6 ∈
{left-lane change,right-lane change}.

i. Ag will never select such an action at an intersection since
$Ag, intersection lane-change(B, 0, D) will evaluate to F.

c) Let us considerwhen 08 is such that W�6 ∈ {left-turn, right-turn}.

i. By the assumption that all other agents are following the agent
protocol, all Ag′ that are in bundle perpendicular to �D(�6) will
not be in the intersection and will not collide with Ag.

ii. Further, the agent will only take WAg = right-turn when
$Ag, dynamic safety(B, 0, D) = T and $Ag, traffic light(B, 0, D) = T. Thus,
¬((Ag, 08)⊥Ag′).

iii. For an action 08 where WAg = left-turn,Ag will only take 08 if
$Ag, traffic-light(B, 0, D) = T and
$Ag, unprotected left-turn(B, 0, D) = T.

iv. Since all agents are following the traffic laws based on Proof B.4,
$�6,traffic light(B, 0, D) = T means action will not cause the agent to
collide with or violate the safety of the backup plan in perpendicular
bundles.

v. By the definition of the unprotected-left-turn oracle, �6 will only
take the left-turn action when it does not violate the safety of the
backup plan of agents in oncoming traffic.

B.4 Safety Proof

Theorem 7. Given all agents Ag ∈ A in the quasi-simultaneous game select actions
in accordance to the agent protocol specified in Section 3.5, we can show the safety
property % ⇒ �&, where the assertion % is an assertion that the state of the game
is such that ∀�6, (Ag,1? (B, D) = T, i.e. each agent has a backup plan action that is
safe, as defined in Definition 18. We denote %C as the assertion over the state of the
game at the beginning of the time-step C, before agents take their respective actions.
&C is the assertion that the agents never occupy the same grid point in the same
time-step C (i.e. collision never occurs when agents take their respective actions
during that time-step).

Proof: To prove an assertion of this form, we need to find an invariant assertion �
for which i) %⇒ �, ii) � ⇒ ��, and iii) � ⇒ & hold. We define � to be the assertion
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that holds on the actions that agents select to take at a time-step. We denote �C to be
the assertion on the actions agents take at time C such that ∀�6, Ag takes 0 ∈ �2CAg
where 1) it does not collide with other agents and 2) ∀Ag, (Ag,1? (D′) = T where
B′ = gAg(B, 0), and D′ is the corresponding global state of the game after Ag has
taken its action 0.

It suffices to assume:

1. Each Ag ∈ A has access to the traffic light states.

2. There is no communication error in the conflict requests, token count queries,
and the agent intention signals.

3. All intersections in the road network R are governed by traffic lights.

4. The traffic lights are designed to coordinate traffic such that if agents respect
the traffic light rules, they will not collide.

5. Agents follow the agent dynamics defined in Section 3.3.

6. For C = 0, ∀Ag ∈ A in the quasi-simultaneous game is initialized to:

• Be located on a distinct grid point on the road network.

• Have a safe backup plan action 01? such that (Ag,1? (B, D) = T.

We can prove %⇒ �& by showing the following:

1. %C ⇒ �C . This is equivalent to showing that if all agents are in a state where
% is satisfied at time C, then all agents will take actions at time C where the �
holds.

a) In the case that the assertion %C holds, let us show thatAgwill only choose
an action 0 ∈ �2C�6 for which the following two conditions hold: 1)
G�6 (B, 0) ∩ (∪�6′∈(GAg′ (B′, 0′)) = ∅ and 2) ∀�6′ ∈ (, ¬((Ag, 0)⊥Ag′),
where the set ( is:

i. The set ( , {Ag′|Ag ≺ Ag′}, i.e. agents with higher precedence
than Ag. Proof by Lemma 7.

ii. ( , {Ag′|Ag′ ≺ Ag}, i.e. agents with lower precedence than Ag.
Proof by Lemma 8.
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iii. ( , {Ag′|Ag′ ∼ Ag}, i.e. agents with equal precedence than the
agent. Proof by Lemma 9.

iv. ( , {Ag′|Ag′ � Ag}, i.e. agents with precedence incomparable to
the agent. Proof by Lemma 10.

b) The set of all agents, agents with lower precedence, higher precedence,
equal precedence, and incomparable precedence, is complete and in-
cludes all agents.

c) By 1-1(a)iv and 1b, an agent will not take an action that will cause
collision with any other agents (including itself) or violate the safety
of the safety backup plan of all other agents, and thus any action taken
by any agent will be such that following the action, the assertion % still
holds.

2. � ⇒ ��. If agents take actions at time C such that the assertion �C holds, then
by the definition of the assertion �, agents will end up in a state where at time
t+1, assertion % holds, meaning �C ⇒ %C+1. Since %C+1 ⇒ �C+1, from 1, we
get � ⇒ ��.

3. � ⇒ &. This is equivalent to showing that if all agents take actions according
to the assertions in �, then collisions will not occur. This follows from the
invariant assertion that agents are taking actions that do not cause collision,
and the fact that all Ag have a safe backup plan action 01? to choose from, and
thus will always be able to (and will) take an action from which it can avoid
collision in future time steps.

B.5 Liveness Lemmas

Lemma 11. If the only 0 ∈ �2C�6 for an agent Ag for which
$Ag, destination reachability(B, 0, D) = T and $Ag, forward progress(B, 0, D) = T is an action
such that: WAg ∈ {right-turn, left-turn} and the grid-point B 5 = gAg(B, 0) is
unoccupied (for a left-turn, where 0 is the final action of the left-turn maneuver),
Ag will always eventually take 0.

Proof: W.l.o.g., let us consider agent Ag ∈ A in the quasi-simultaneous game G.
We prove this by showing that all criteria required by the agent protocol are always
eventually satisfied, thereby allowing Ag to take action 0.
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1. By the definition of ℜ and the agent dynamics, when Ag is in a position
where only WAg ∈ {right-turn, left-turn}, it will neither send nor receive
requests from other agents and FAg(D, 08) will never be set to T.

2. In accordance with the Action Selection Strategy, for Ag to take action 0, all
the oracles in the behavioral profile must be simultaneously satisfied (so it
will be selected over any other 0′ ∈ �2CAg). Thus, we show:

a) The following oracle evaluations will always hold when Ag is in this
state:
$Ag, traffic intersection lane-change(B, 0, D) = T
$Ag, legal orientation(B, 0, D) = T, $Ag, static safety(B, 0, D) = T and
$Ag, traffic intersection clearance(B, 0, D) = T.

i. The first oracle is true vacuously and the following are true by
the road network constraints and agent dynamics, assumptions 6,
and the Assumption in the lemma statement that B 5 = g(B, 0) is
unoccupied respectively.

b) To show that the following oracles will always eventually simultaneously
hold true, let us first consider when WAg = {right-turn}.

i. By the assumption, the traffic light is red for a finite time, and when
the traffic light is green, $Ag, traffic light(B, 0, D) = T.

ii. $unprotected left-turn(B, 0, D) is vacuously true for a right-turn action.
iii. Since$Ag, traffic intersection clearance(B, 0, D) = T and by the safety proof

B.4, all Ag are only taking actions in accordance with traffic laws so
there will never be any Ag′ ∈ A blocking the intersection, making
$Ag, dynamic safety(B, 0, D) = T.

iv. Thus, all oracles are always eventually simultaneously satisfied and
Ag can take 0 where WAg = {right-turn}

c) Let us consider when WAg = {left-turn}.

i. By Assumption 5, traffic lights are green for a finite time.

ii. By the safety proof B.4, all Ag are only taking actions in accordance
with traffic laws so there will never be any Ag′ ∈ A blocking the
intersection.

iii. When WAg = left-turn, by definition of the unprotected left-turn
oracle, �♦$Ag, unprotected left-turn(B, 0, D), specifically when the traffic
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light switches from green to red and Ag has been waiting at the
traffic light.

iv. Thus,�♦$Ag, unprotected left-turn(B, 0, D) after the light turns fromgreen
to red.

v. Further, $Ag, unprotected left-turn(B, 0, D) = T combined with
$Ag, traffic intersection clearance(B, 0, D) = T implies
$Ag, dynamic safety(B, 0, D) = T.

vi. Thus, all oracles are always eventually simultaneously satisfied and
Ag can take 0 where W = {left-turn}.

3. Thus, we have shown all oracles in the behavioral profilewill always eventually
be satisfied, and Ag will take 0 such that $Ag, destination reachability(B, 0, D) = T
and $Ag, forward progress(B, 0, D) = T.

Lemma 12. If the only 0 ∈ �2CAg for which $Ag, destination reachability(B, 0, D) = T
and $Ag, forward progress(B, 0, D) = T is when 0 has WAg ∈ {right-lane change,
left-lane change} and the grid-point(s) G(B, 0) is (are) either unoccupied or
agents that occupy these grid points will always eventually clear these grid points,
Ag will always eventually take this action 0.

Proof: W.l.o.g., let us consider agent Ag ∈ A in the quasi-simultaneous game G.
We prove this by showing that all criteria required by the agent protocol are always
eventually satisfied, thereby allowing Ag to take its action 0.

1. Let us consider Case A, when 0 is such that B 5 = gAg(B, 0) = GoalAg, i.e.
the action takes the agent to its goal, and let us show that Ag will always
eventually be able to take 0.

2. In accordance with the Action Selection Strategy, for Ag to take 0 is that 1)
all the oracles in the behavioral profile must be simultaneously satisfied (so
the action 0 is chosen over any other 0′ ∈ �2CAg, 2) FAg(D, 08) = 0, and 3)
,Ag = T.

3. We first show all the oracles for Ag will always be simultaneously satisfied:

a) When Ag is in this state, the following oracle evaluations always hold:
$Ag, traffic light(B, 0, D) = T,
$Ag, traffic intersection lane-change(B, 0, D) = T,
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$Ag, unprotected left turn(B, 0, D) = T,
$Ag, traffic intersection clearance(B, 0, D), $Ag, static safety(B, 0, D) = T,
$Ag, traffic orientation(B, 0, D) = T.

i. The first four hold vacuously, the others hold by Assumption 6, and
the last holds by agent dynamics and the Road Network.

b) $Ag, dynamic safety(B, 0, D) = T.

i. By the definition Road Network ℜ, agent dynamics in Section 3.3,
and the condition that ∀Ag ∈ A will leave ℜ (i.e. Ag does not
occupy any grid point on ℜ when it reaches its respective goal
GoalAg). Thus, $Ag, dynamic safety(B, 0, D) = T whenever an agent is
in this state.

4. In accordance with the action selection strategy, for Ag to take 0, it must be
that FAg(D, 08) = 0, i.e. the max-yielding-flag-not-enough must not be set.
Let us show that this is always true.

a) The only Ag′ that can cause the FAg(D, 08) = 1 of Ag is when an agent
Ag′ is in a state where !0(�6′) = GoalAg.

b) W.l.o.g. let us consider such an Ag′. By liveness Assumption 7, upon
approaching the goal, the agent Ag′ must be in a state where Ag′ backup
plan action 01? will allow it to come to a complete stop before reaching
its goal.

c) By 4b, Ag′ will always be in a state for which the max-yielding-not-
enough flag for Ag is FAg(D, 08) = 0.

5. In order for Ag to take 0, it must be that ,�6 = 1. Let us show that this is
always eventually true.

a) In the case that Ag has the maximum number of tokens,W�6 = 1 and
Ag will be able to take its forward action since all criteria are satisfied.

b) Any Ag′ ∈ C�6 will be of equal or lower precedence than Ag.

c) Any Ag′ with the maximum number of tokens will move to its goal since
WAg = 1 and all the other criteria required for that agent to take its
action will be true.

d) By definition of the Action Selection Strategy in Section 3.5, any agent
Âg that replaces Ag′ will have taken a forward progress action and its
respective token count will reset to 0.
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e) Thus, any Ag′ will be allowed to take its action before Ag, but Ag’s
token count TcAg will increase by one for every time-step this occurs.

f) Thus, by 5d and by 5e, Ag will always eventually have the highest token
count in its conflict cluster such that,Ag = 1.

g) Since conditions 3 and 4 are always true, and 5 is always eventually true,
then all conditions will simultaneously always eventually be true and the
Ag will always eventually take the action 0.

6. Let us consider Case B, when 0 is the final action to take for an agent to
reach its sub-goal (i.e. a critical left-turn or right-turn tile), and let us show
Ag will always eventually be able to take a forward progress action where
WAg ∈ {left-lane change, right-lane change}.

7. In accordance with the Action Selection Strategy, for Ag to take 0 is that 1)
,Ag = 1, 2) FAg(D, 08) = 0, i.e. the max-yielding-flag-not-enough must not
be set and 3) all the oracles in the behavioral profile must be simultaneously
satisfied.

8. Let us first consider when ,Ag = 1, then �,Ag until Ag takes its forward
progress action 0 because by definition of,Ag, Ag has the highest token count
in its conflict cluster, Ag.tc = Ag.tc+1, while Ag does not select 0 (and thus
does not make forward progress) and any Ag that newly enters Ag’s conflict
cluster will have a token count of 0.

9. All the oracles are either vacuously or trivially satisfied by the assumptions
except for $Ag, dynamic safety(B, 0, D).

10. By the lemma assumption that all �6′ occupying grid points will always even-
tually take their respective forward progress actions,�♦$Ag, dynamic safety(B, 0, D).

11. By the Assumption 5, the traffic light will always cycle through red-to-green
and green-to-red at the intersection Ag is located at.

12. By the Assumption on the minimum duration of the red traffic light, all Ag′

will be in a state such that FAg(D, 08) = 0.

13. Thus, all criteria for which Ag can take its forward progress action 0 will be
simultaneously satisfied.

14. When,Ag = 0, we must show �♦,Ag.
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a) For Ag, all agents in its conflict cluster have equal or lower precedence
and are not in the same lane as Ag.

b) For any such Ag′ with equal precedence, Ag′ will always eventually take
its forward progress action by the arguments in 8-14 if Ag′ intends to
make a lane-change.

c) By the lemma assumption, any agents �6′ occupying the grid points
that �6 needs to take its action will always eventually take its forward
progress action so
�♦$Ag, dynamic safety(B, 0, D).

d) Any Âg with lower precedence and higher token count that Ag will take
Ag′’s position and in doing so will have a token count of 0 and any Ag
that replaces any agents with higher token count than Ag and is in Ag’s
conflict cluster will have token count 0.

e) Thus �♦,Ag.

Lemma 13. Let us consider a road segment AB ∈ '( where there exist grid points
6 ∈ Ssinks. Every Ag ∈ AB will always eventually be able to take 0 ∈ �2CAg for which
$Ag, forward progress(B, 0, D) = T.

Proof: We prove this by induction. W.l.o.g, let us consider Ag ∈ A. Let <Ag =

projlong(GoalAg) − projlong(�6.B).

1. Base Case: <Ag = 1, i.e. Ag only requires a single action 0 to reach its goal
GoalAg.

a) If 0 is such that
W�6 ∈ {left-lane change, right-lane change}, then Ag will
take always eventually this action by Lemma 12.

b) If 0 is such that WAg = straight:

c) In accordance with the Action Selection Strategy, for Ag to take 0 is
that 1) all the oracles in the behavioral profile must be simultaneously
satisfied (so the action 0 is chosen over any other 0′ ∈ �2CAg, and 2)
,Ag = 1.

d) First, we show that all oracles in the behavioral profile will always be
simultaneously satisfied.
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i. These all follow from the same arguments presented when W�6 =
{right-lane change, left-lane change} in Case A in Lemma
12.

e) In accordance with the Action Selection Strategy, we must show that
�♦,Ag. This is vacuously true since no Ag will be in the agent’s conflict
cluster when an agent is in this state.

2. Case < = #: Let us assume that any ∀Ag where <Ag = # always eventually
take 0 ∈ �2CAg for which
$Ag, forward progress(B, 0, D) = T.

3. Case < = # + 1: Let us show ∀Ag where <Ag = # + 1 always eventually take
0 for which
$Ag, forward progress = T.

a) AnyAg forwhich<Ag > 1will always have an 0where WAg = straight
such that $Ag, forward progress(B, 0, D) = T.

b) Thus, we show that Ag always eventually will take WAg = straight
such that $Ag, forward progress(B, 0, D) = T.

c) W.l.o.g., let us consider Ag for which <Ag = # + 1.

d) In accordance with the Action Selection Strategy, for Ag to take 0
is 1) ,Ag = 1 and 2) all the oracles in the behavioral profile must
be simultaneously satisfied (so the action 0 is chosen over any other
0′ ∈ �2CAg).

e) In accordance with the Action Selection Strategy, we must show �♦,Ag.

i. Any Ag′ ∈ CAg will be an agent of equal or higher precedence and
in a separate lane.

ii. Any such agent with higher token count than Ag that is in its con-
flict cluster will always eventually be able to go by the inductive
assumption in 2.

iii. After all such agents take a forward progress action, they will no
longer be in Ag’s conflict cluster and Ag will have the highest token
count since all �6 that newly enter the conflict cluster will have
token count of 0.
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f) After the assignment ,Ag = 1, �,Ag until Ag selects 0. This is true
because by definition of ,Ag, Ag has the highest token count in its
conflict cluster, Ag.tc = �6.tc + 1, while Ag does not select 0, and any
Ag that enters Ag’s conflict cluster will have a token count of 0.

g) Let us show that the oracles in the behavioral profile will always evaluate
to T.

i. The same arguments hold here as in Lemma 12.1 for all oracles ex-
cept for$Ag, dynamic safety(B, 0, D), where�♦$Ag, dynamic safety(B, 0, D) =
T by the inductive Assumption 2.

Lemma 14. Let Ag be on a road segment AB ∈ '(, where '( is the set of nodes
in the dependency road network dependency graph Gdep. Let AB be a road segment
for which ∀AB′ ∈ '(B.C.∃4 : (AB′, AB). Each road segment AB′ has vacancies
in the grid points where Ag ∈ AB would occupy if it crossed the intersection (i.e.
B 5 = gAg(B, 0)), and we show that Ag will always eventually take an action 0 ∈ �2CAg
where $Ag, progress oracle(B, 0, D) = T.

Proof: We prove this with induction. W.l.o.g., let us consider Ag ∈ A. Let
<Ag = projlong(6front of rs) − projlong(Ag.B), where 6front of intersection represents a grid
point at the front of the road segment.

1. Base Case <Ag = 0: Let us consider an Ag whose next action will take will
bring Ag to cross into the intersection and show that Ag will always eventually
take 0 for which $Ag, forward progress(B, 0, D) = T.

a) If the only 0 where $Ag, forward progress = T is such that
WAg ∈ {left-turn, right-turn}, proof by Lemma 11.

b) If the only 0 where $Ag, forward progress(B, 0, D) = T is such that WAg =
straight.

i. In accordance with the Action Selection Strategy, for Ag to take 0
is that 1) all the oracles in the behavioral profile must be simultane-
ously satisfied (so the action 0 is chosen over any other 0′ ∈ �2CAg,
2),Ag = 1.

A. $Ag, unprotected left-turn(B, 0, D) = T,
$Ag, traffic intersection lane-change(B, 0, D) = T,
$Ag, static safety(B, 0, D) = T,
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$Ag, traffic intersection clearance(B, 0, D) = T
$Ag, legal orientation(B, 0, D) = T.

B. Thefirst two oracles are true vacuously, followed byAssumption
6, and by agent dynamics and the Road Network ℜ definition,
respectively, and by the assumption in the lemma statement.

C. �♦$Ag, traffic light(B, 0, D) by Assumption 5.
D. $Ag, dynamic obstacle(B, 0, D) = T because by the safety proof, all

Ag take 0 ∈ �2CAg that satisfy the first top tiers of the behav-
ioral profile so there will be no Ag′ ∈ A that are in the inter-
section when the traffic light for Ag is green. Thus, whenever
$Ag, traffic light(B, 0, D) = T, then it $Ag, dynamic obstacle(B, 0, D) =
T as well.

ii. ,�6 = 1 vacuously since neither Ag or any Ag′ ∈ A will send
a conflict request at the front of the intersection since all 08 must
satisfy $Ag, traffic intersection lane-change(B, 0, D) according to the Safety
Proof in Section AB.4.

c) By the safety proof in B.4, Ag will only take 0 ∈ �2CAg that satisfy the
top two tiers of the behavioral profile, so Ag will not take an 0 where
WAg ∈ {left-lane change, right-lane change} into an intersec-
tion.

2. Case <�6 = #: Let us assume that Ag with <Ag = # will always eventually
take 0 ∈ �2CAg for which
$Ag, forward progress(B, 0, D) = T.

3. Case <�6 = # + 1: Let us show that any Ag that is at a longitudinal dis-
tance of # + 1 from the destination will always eventually take 0 for which
$Ag, forward progress(B, 0, D) = T.

a) Let us consider when Ag’s only 0 such that
$Ag, forward progress(B, 0, D) = T is
WAg ∈ {right-lane change, left-lane change }.

b) Although �6 may not have priority (since it does not have max tokens
in its conflict cluster), any �6 that occupies grid points G(B, 0, D) will
always eventually make forward progress by Argument 1.

c) Once these agents have made forward progress, any �̂6 that replace Ag′

will have a Tc�6 = 0 and since �6 is always increasing its token counts
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as it cannot make forward progress, it will always eventually have the
max tokens and thus have priority over those grid points.

d) Thus, this can be proven by using Case B in Lemma 12.

e) For all other 0 ∈ �2CAg are actions for which WAg = straight, and the
same arguments as in the proof of straight actions for AB with 6 ∈ Ssinks
in 3 hold.

B.6 Liveness Proof

Theorem 8 (Liveness Under Sparse Traffic Conditions). Under the Sparse Traffic
Assumption given by 21 and given all agents Ag ∈ A in the quasi-simultaneous
game select actions in accordance with the agent protocol specified in Section 3.5,
liveness is guaranteed, i.e. all Ag ∈ A will always eventually reach their respective
goals.

Proof: It suffices to assume:

1. ∀Ag ∈ A, ∀Ag′ ∈ BAg, Ag knows Ag′.B, �6′.8, i.e. the other agent’s state
Ag.B and intended action 08 and all Ag within a region around the intersection
defined in Appendix B.

2. Each Ag ∈ A has access to the traffic light states.

3. There is no communication error in the conflict requests, token count queries,
and the agent intention signals.

4. For C = 0, ∀Ag ∈ A in the quasi-simultaneous game is initialized to:

• Be located on a distinct grid point on the road network.

• Have a safe backup plan action 01? such that (Ag,1? (D) = T.

5. The traffic lights are red for some time window ΔCtl such that Cmin < ΔCtl < ∞,
where Cmin is defined in Appendix B in Section B.7.

6. The static obstacles are not on any grid point 6 where
6.3 = 1.

7. Each Ag treats its respective goal Ag.g as a static obstacle.

8. Bundles in the road network ℜ have no more than 2 lanes.
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9. The road network ' is such that all intersections are governed by traffic lights.

and prove:

1. The invariance of a no-deadlock state follows from the sparsity assumption
and the invariance of safety (no collision) follows from the safety proof.

2. For any ℜ where the dependency graph �dep (as defined in 11) is a directed-
acylcic-graph (DAG), we prove all Ag ∈ A will always eventually take 0 ∈
�2C�6 for which
$Ag, forward progress(B, 0, D) = T inductively as follows.

a) A topological sorting of a directed acyclic graph G = (V, E) is a linear
ordering of vertices V such that (D, E) ∈ � → D appears before E in
ordering.

b) If and only if a graph � is a DAG, then � has a topological sorting.
Since �dep is a ���, it has a topological sorting.

c) We can then use an argument by induction on the linear ordering provided
by the topological sorting to show that all Ag always eventually take
0 ∈ �2C�6 for which $Ag, forward progress(B, 0, D) = T.

i. Let ; denote the linear order associated with the road network de-
pendency graph �dep, where an ordering of ; = 0 denotes a road
segment with source nodes.

ii. Base Case ; = 0. This can be proven true by Lemma 13.

iii. Let us assume this is true for any road segment where ; = # .

iv. Under the Inductive Assumption 2(c)iii, there will be clearance in
any road segment that agent Ag depends on for Ag to make forward
progress to its destination.

v. Since all Ag are following the traffic laws by the Safety proof in
B.4, the clearance spots will be given precedence to Ag ∈ AB for a
positive, finite time, and thus the assumptions required in Lemma
11 and 12 used to prove Lemma 14 will hold.

vi. Thus, the Lemma 14 can be used to show that all Ag for which
; = # + 1 always eventually take an action for which
$Ag, forward progress(B, 0, D) = T.
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3. When the graph �dep is cyclic, the Sparsity Assumption (in Defintion 21)
can be used to prove all agents always eventually take an action for which
$Ag, forward progress(B, 0, D) = T.

a) The sparsity assumption (in Definition 21) ensures that there is at least
one vacancy in any map loop.

b) Let us consider �6 inside a map loop.

i. Let us consider �6 in the loop for which the vacancy is directly
ahead of �6. If the vacancy is directly ahead of �6, then if the
only forward progress action 0 keeps �6 in the loop, �6 will always
eventually take its action by Lemmas 11, 12 and the arguments in
Lemma 14 1b. If the only forward progress action 0makes �6 leave
the loop, �6 will always eventually take its action by the sparsity
assumption (in Definition 21) and the inductive arguments in the
Liveness proof argument 2c.

ii. By 3(b)i, it can then be inductively shown that any �6 in the loop
will always eventually have a vacancy for which it can take a forward
progress action.

c) Let us consider �6 on a road segment that is not part of a map loop.

i. Let us consider an action 0 that takes �6 into a map loop. If the
grid point required by �6 to make forward progress is occupied, by
3(b)ii, it will always eventually be unoccupied. If the only action �6
can take is such that W�6 = {lane-change} since all �6′ in the loop
are reset when they take forward progress action, �6 will always
eventually have the max token count. Thus, the same arguments
in Lemma 12 hold. If the only action �6 can take is such that
�6 crosses into an intersection, the traffic light rules ensure that
�6 has precedence over any �6 in the loop. Thus, �6 will always
eventually take a forward progress action by Lemma 11 and Lemma
14 1b.

ii. For any action 0 that does not take �6 into a map loop, �6 can
take a forward action because of the sparsity assumptions 21 and
the inductive arguments in the Liveness proof argument 2c.

4. By the induction arguments and by definition of the forward progress ora-
cle $Ag, forward progress(B, 0, D), all Ag will always eventually take actions that



118

allow them to make progress to their respective destinations, and liveness is
guaranteed.

B.7 Traffic Light Assumptions
A traffic light grid point contains three states 6.B = {red, yellow, green}. The
traffic lights at each intersection are coordinated so that if all agents obey the traffic
signals, collision will not occur (i.e. the lights for the same intersection will never be
simultaneously green) and the lights are both red for long enough such that Ag that
entered the intersection when the light was yellow will be able to make it across
the intersection before the other traffic light turns green.

Traffic Light Minimum Time
In order to guarantee that agents will always eventually be able to make a lane-
change to a critical tile, the traffic light has to be red for sufficiently long such that
any �6′ that may cause FAg(D, 08) = T is slowed down for long enough such that
�6 can take its lane-change action. This can be computed simply once given the
dynamics of Ag. Normally a simple heuristic can be used instead of computing this
specific lower-bound.
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A p p e n d i x C

PERCEPTION: SEMANTIC ESTIMATION

C.1 Discrete Likelihood Function
The discrete likelihood function in Section 4.2 is a nonlinear discrete function.
There are two separate likelihood functions depending on whether the semantic
measurement I:s,C is 1 or 0. We want to give a smooth approximation for the negative
log of the discrete likelihood function. For this paper, we approximate the likelihood
function with a bump function parameterized by the probabilities 0 and 1 with the
following form:

5 (A, 0, 1) =
√
(: exp(− 1

A2
0 − A2

) − log(1)), (C.1)

where : = log(1)−log(0)
exp(− 1

A2
0
) and A =

√
(G2

1 + G
2
2), where G1 and G2 are the first and second

coordinates of the state GC . For the bump function corresponding to I:s,C = 1, the
bump function parameters are set so 0 = �:11 and 1 = �

:
10 and for the measurement

I:s,C = 0, the parameters are set so 0 = �:01 and 1 = �
:
00.

The nonlinear factor in a factor graph becomes the term 5 (A, 0, 1)'−1 5 (A, 0, 1),
where ' is the covariance associated with the measurement. This is why the square
root is necessary in order to preserve the Bayesian representation of the likelihood
function, and the covariance matrix associated with this factor is chosen to be the
identity matrix.

C.2 Forward-backward Algorithm
The modified forward-backward algorithm that can be used to accommodate the
time-varying transition and observation matrices can be written as follows:

%(Bg = >8, .0:g, 5 ) =
U>8 (g)V>8 (g)∑
>′
8
U>′

8
(g)V>8 (g)

, (C.2)

where the values U>8 (g) and V>8 (g) are recursively defined below:

U>8 (g) = ?g (Hg |>8)
∑
>′
8

U>′
8
(g − 1)?g−1,g (>8 |>′8) (C.3)
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and
V>8 (g) =

∑
>′
8

V>′
8
(g + 1)?g−1,g (>′8 |>8)?g+1(Hg+1 |>′8). (C.4)

The dependencies of the transition and observation matrices on the object detection
events are denoted by the subscripts of the probabilities in the above equation.
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