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ABSTRACT

Synthetic biology will one day enable embedded control of a variety of chemical
and biological contexts, from the human gastrointestinal tract to crop roots.
Groups of engineered organisms, also known as synthetic consortia, can inhabit
niches of interest while monitoring and intervening according to their genetic
design. However, the spatial structure of the deployment environments can
obstruct coordination between cosortia members. The mechanisms engineered
bacteria use to communicate must contend with these adversarial conditions
to maximize group performance.
Coordination between synthetic bacteria is typically achieved using small
molecules that can traverse cell membranes through passive transport. Cell
communicate by producing and sensing these small molecules. In cell-cell sig-
naling relationships composed of a sender population and a receiver population,
the concentration of signaling molecule sensed by the receiver cells depends
on the spatial patterning of the two groups, the geometry of the diffusive
environment, and the sender population’s signal secretion rate.
To make sender-receiver communication more robust to these environmental
features, we introduce a third consortium strain that transiently amplifies local
signaling molecule concentrations. These amplifier cells employ a synchronized
pulse-generating circuit built using Lux-type quorum sensing components and
an IFFL transcriptional architecture. When applied to sender-receiver consortia
growing on semi-solid media, these amplifier cells respond to sender-secreted
signaling molecules by contributing a small amount themselves. The support
of amplifier cells enables communication over longer distances than can be
achieved by sender cells alone and can partially recover coordination in small
consortia where the sender population is too small to successfully signal its re-
ceiver population alone. We extend these results using simulation to investigate
the benefit that amplifier cells confer to consortia of varying complexity.
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C h a p t e r 1

INTRODUCTION

Research in synthetic biology is an exercise in constant humility. Every break-
through in this field demands a comparison to the astounding brilliance of the
natural work it is imitating. It is like designing the first moon lander while
seeing aliens pass through our solar system on intergalactic spacecraft without
saying so much as “hello”.

Such is the relationship of a synthetic biologist to all living things. The majority
of research and commercial applications in this field rely on domesticated
cell lines to express synthetic gene circuits without significantly altering the
genomic programming for the cell line’s key biological features, such as self-
replication and metabolic homeostasis. In a 2020 comment paper published in
Nature Communications, Voigt highlighted six commercial products that were
manufactured using genetically modified oranganisms. Three were products
produced by engineered cells and the other three were themselves engineered
cells (Voigt (2020)). The commercial success of these commodities derived
from engienered cells illustrates that bioengineered cellular factories represent
a significant industrial source of valuable chemicals and materials, and the
living commodities show that the future is bright for applications of engineered
organisms.

While these indicate synthetic biology’s growing relevance in the commercial
sector, the article notes that the next phase of industrial synthetic biology
would need to develop on engineering cells as embedded controllers for biosyn-
thesis and biochemical environments of interest. Consider for example one of
the living commodities highlighted in Voigt’s article: a rhizosphere bacteria
strain engineered to overexpress nitrogen-fixing genes marketed under the
name PROVEN (Willits (2020), Temme (2019)). The modification alters a
conditionally-expressed gene cluster to instead be persistently active, thereby
increasing soil nitrogen and crop yields while reducing the need for chemical
fertilizers. Other known benefits of bacteria-plant symbiosis, however, cannot
be achieved by unconditional overexpression of the relevant biosynthesis path-
ways (Sarma et al. (2015)). Species of the genus Rhizobium associate with
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legume roots and secrete biocontrol agents that suppress pathogens, but the
same mechanisms of action that target pathogenic bacteria also antagonize
other Rhizobia (Avis et al. (2008)). Improper balancing of strain demographics
in the root microbiome or adjustments to the control circuits of antagonistic
genes could spoil the potential benefit provided to the plant (Jain et al. (2012)).
Action by the beneficial microbial consortia associated with the root system
must also properly respond to chemical signals emitted by the plant itself in
order to be effective (Avis et al. (2008)). The next generation of engineered
microbial interventions for complex deployment scenarios must include the
capability to sense environmental signals and respond accordingly.

One avenue for expanding the functional capabilities of synthetic bacterial de-
vices is through engineering bacterial communities. As opposed to populations
of synthetic bacteria made up of a single genotype, synthetic bacterial consortia
include multiple genetically distinct strains that cooperate in completing a
shared task. Strains that compose a synthetic microbial consortium can be
specialized in different subroutines of the overall task. Dividing the requisite
labor between component strains and optimizing each strain individually re-
duces the overall difficulty of the engineering task in comparison to optimizing
a single strain to perform all functions. Division of labor has been successfully
applied in various bioproduction applications to increase yield and titer of
biochemicals (Tsoi et al. (2018), Saini et al. (2016), Zhang and Stephanopoulos
(2016)). Furthermore a consortium may include multiple species to broaden the
natural mechanisms in the consortium (H. J. Kim, Du, and Ismagilov (2011)).
A unique challenge in consortia engineering, however, is making the intended
function robust to variations in the population balance and spatial patterning
of the component strains (Johns et al. (2016), Zomorrodi and Segrè (2016)).

Coordination between members of a synthetic bacterial consortium is most
often achieved by modified quorum sensing systems. Quorum sensing refers to
a positive-feedback gene regulatory motif, commonly found in bacteria, that
is composed of a signal synthase, a signal receptor protein, and a receptor-
controlled promoter. Communities of wild microbes use this motif to coordinate
group behaviors in a manner that is conventionally understood to be density-
dependent. The cell-cell signaling chemicals of quorum sensing systems are acyl-
homoserine lactones (AHLs); the composition of the acyl chain varies between
instances of this motif. AHL signaling molecules are created by the signal
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synthase protein and can diffuse freely through cell membranes. The receptor
proteins bind to AHL molecules, forming a complex that activates transcription
at associated promoters containing the receptor’s binding sequence. These
components are a popular choice in the design of synthetic bacterial consortia
due to their simplicity and portability. Because AHL molecules undergo passive
transport through cell membranes, AHL-mediated communication can be
implemented using only the two protein components and one AHL-induced
promoter.

Synthetic bacterial consortia can make use of modified quorum sensing circuits
to autonomously balance their strain composition and activity. In gene circuits
engineered to limit or balance strain populations, a positive-feedback loop
similar to natural quorum sensing circuits is connected to genes that lead
to autolysis or expression of antibiotic compounds. Cells expressing these
circuits limit their own population by implementing self-killing measures in a
density-dependent fashion (Scott et al. (2017)). Consortia may also make use of
mutualistic or antagonistic relationships between strains. These interactions are
effected by metabolic relationships or targeted antibiotic interactions to achieve
programmatic strain balancing (Balagaddé et al. (2008), Kong et al. (2018),
Taillefumier et al. (2017)). The emergent behavior can also be made more
robust without population-limiting circuits by encoding density-dependence
through cell-cell signaling circuits. Chen et al. (2015) show in simulation that a
two-strain relaxation oscillator is made more robust to demographic variation
by the addition of a negative feedback loop used by one strain to attenuate
its own activity in a density-dependent fashion. These examples demonstrate
several approaches to engineering consortia that autonomously balance their
strain demographics in well-mixed media.

Cell-cell communication circuits that apply spatiotemporal control over strain
composition or behavior in media that is not well mixed are called pattern
forming circuits. In diffusive environments, the absence of convection or
turbulence allows for the formation of chemical gradients and non-homogeneous
spatial patterning of the cells making up a consortium. As a result, cells in a
consortium may sense different chemical signals depending on their position in
these gradients. Pattern forming systems exploit spatial gradients in signaling
molecules, cell density, and nutrients to generate complex spatial patterns out
of growing consortia.
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Ring-forming systems have been described several times in the literature (C.
Liu et al. (2011), Schaerli et al. (2014), X. Xue, C. Xue, and Tang (2018),
Basu et al. (2005), Cao et al. (2016), Potvin-Trottier et al. (2016)). Given the
radial symmetry of bacterial colonies that grow from a small number of close
founding cells, ring-forming systems are the first choice for demonstrating that a
cell-cell communication system can be used to program spatially heterogeneous
behaviors. Cao et al. (2016) and C. Liu et al. (2011) describe ring-forming
bacteria that coordinate using quorum sensing components. On the other hand,
Potvin-Trottier et al. (2016) describe a system that relies on a transcriptional
oscillator circuit with the remarkable feature that, over many generations of
cell division, the oscillations in daughter cells remain synchronized. As a colony
of these oscillators grows, then, their synchronized oscillations give rise to
uniform rings.

While these examples achieve similar spatial patterns through drastically
different mechanisms, they all rely on the spatial heterogeneity of nutrient
availability as a key component of pattern formation. C. Liu et al. (2011) employ
a combination of AHL-mediated cell-cell signaling and synthetic chemotaxis to
program a consortium to form stripes of high and low cell density. However,
monotonically decreasing nutrient availability at each position is key to this
mechanism: falling resource concentrations eventually fix cells in place. Indeed,
the fact that cells struggle to express transgenic circuits when nutrients are low
is a common feature in these ring-forming systems. Cao et al. (2016) identify
that the gradient in gene expression capacity along the radius of a colony is
critical to achieving the scale-free ring patterns observed in their experiments.
Gene programs that create synchronized oscillations in time at the colony
edge will produce oscillations in space along the colony radius as a result of
the difference in gene expression capacity between the colony’s interior and
exterior.

These pattern formation systems underscore the fact that spatially heteroge-
neous gene expression is inherent to consortia growing in diffusive environments.
While nutrient-dependent growth and gene expression can be leveraged in
pattern-forming systems, these factors can be an enormous obstacle to co-
ordination within multi-component consortia. The distance separating two
consortium components, components that together form a signaling or metabolic
relationship, dramatically impacts their emergent behavior (S. Gupta et al.
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(2020), Langebrake et al. (2014), Macia et al. (2016)). A study investigating
the capability of a sender-receiver pair composed of engineered Pseudomonas
putida strains to communicate within the rhizosphere found that the introduced
cells grow in sparsely-distributed groups of dozens of cells that can communi-
cate reliably only over tens of microns (Gantner et al. (2006)). The limited
signaling distances and the impact of nutrient availability highlight the need for
communication networks in engineered bacterial consortia that can overcome
not only spatial heterogeneity in strain demographics, but in cellular resources
and relevant environmental events as well.

Agents in nature utilize traveling waves of signaling activity to share localized
information over longer distances than can be achieved by diffusion from an
isolated source. Slime molds such as Dictyostelium emit waves of cAMP, a
nucleotide derivative, as they approach starvation. As neighboring amoebae
join in the signaling activity, the emergent behavior appears to be an election of
a community leader that serves as the target for chemotaxis by local members
(Goldbeter (2006), Noorbakhsh et al. (2015)). Bacillus subtilis propagate waves
of potassium signaling to coordinate resource sharing between the interior and
exterior of growing colonies (Larkin et al. (2018), Prindle, J. Liu, et al. (2015)).
Cheng and Ferrell (2018) describes a self-regenerating front of apoptotic activity
that travels through cell-free extracts of Xenopus eggs in response to localized
initiation. The authors of this study demonstrate a nearly 5-fold range in
wave speeds under a variety of perturbations to the feedback loops supporting
the traveling wave of apoptosis-related activity. In each of these articles, the
researchers discuss a well-known result in traveling wave phenomena: positive
feedback and local tethering are key to long-distance chemical signaling (Gelens,
Anderson, and Ferrell (2014), Oleinik, Kolmogorov, and Piskunov (2019)).

The theoretical conditions necessary for traveling wave phenomena in cell-cell
signaling circuits can be derived from mathematical models. For their 2020
eLife article, authors Dieterle et al. (2020) constructed reaction-diffusion models
describing signaling molecule behavior in various wave-generating microbial
consortia wherein a small “initiating colony” elicits a wave of signaling activity
through a semi-infinite region of “relay cells”. In each scenario considered,
the authors derived relationships between the model parameters, such as cell
density and signal emission rate, and characteristics of the traveling wave
propagated by the relay cells such as velocity and signal concentration profile.
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These relationships were derived for consortia employing switch-like, pulsatile,
or Hill-like activation functions defining their signal emission rates as a function
of the local signal concentration. Just as in the natural examples described
above, the authors found each of the activation functions to be capable of
producing traveling waves. Furthermore, the signaling fronts propagated by
relay cells yielded higher signaling concentrations and traveled faster than
fronts produced from initiating colony alone. The benefit of relay cells was
more pronounced in scenarios where the dimensionality of the diffusive medium
was greater than that of the consortium (e.g., signal molecules diffusing in
three dimensions while the consortium cells exist in a two-dimensional plane.
Other studies also suggest that local amplification in cell-cell signaling circuits
could enable long-distance signaling in synthetic microbial consortia and may
overcome environmental obstacles to group consensus (Langebrake et al. (2014),
Holzer, Doelman, and Kaper (2013)).

Self-propagating signaling fronts that include a motif of positive-feedback
and local tethering have been demonstrated experimentally in both synthetic
bacteria and active chemical media.(^The earliest described active chemical
media being the inorganic Belousov-Zhabotinsky reaction ( Belousov 1959, p. .)
Cell-free approaches have also demonstrated that positive feedback circuits
elicit traveling waves in response to localized initiation. By exploiting the
precise control over the chemical composition of cell-free active media, these
studies provide further validation and context for the theoretical results relating
wave characteristics to reaction dynamics (Gines et al. (2017), Tayar et al.
(2015)). Synthetic bacteria expressing synchronized oscillator circuits generate
traveling waves when grown in a low-turbulence microfluidic device (Danino
et al. (2010)). Much like the leader selection performed by Dictyostelium,
synchronized oscillators tend towards a out-of-equilibrium state in which a
minority initiates oscillations that trigger wave propagation through neighboring
cells (Garcia-Ojalvo, Elowitz, and Strogatz (2004), Dalchau et al. (2018), Watts
and Strogatz (1998)). These results suggest that a similar mechanism could
enable sender cells to generate non-oscillatory traveling pulses through nearby
propagator cells. Traveling pulse circuits could be used by consortium members
to share local information, thereby enabling well-informed group decision-
making from spatially heterogeneous environmental conditions.

The research presented in this thesis introduces an approach to cell-cell commu-
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nication networks that supports sender-receiver relationships when the spatial
patterning of deployed consortium members cannot be pre-determined. In a
consortium, a sender-receiver pairing implies three subpopulations: sender,
receiver, and bystander. Augmenting the bystander strains with a signal am-
plifier circuit enables them to generate traveling waves in response to initiating
signals released by a sender population. These traveling waves would enable a
consortium to share local information over longer distances than by the action
of the sender population alone. Amplifier activity could also compensate for
variations in the amount of sender cells by increasing the overall signal molecule
concentration to counteract attenuated emission from a diminished sender
population. The amplifier gene circuit in this approach is pulsatile, rather than
bistable or oscillatory, which allows for repeated amplifier activity in response to
periodic initiation from sender cells. Together, these features improve signaling
from senders to receivers over variations in the spatial patterning of consortia
and geometry of the diffusive environment.

This approach is investigated in the context of pulsatile amplifier cells and sender
cells growing together on the surface of agarose hydrogels. We demonstrate
that the amplifier strain generates a traveling wave of signaling activity that
propagates messages from a sender population more quickly than by passive
transport alone. This principle is then investigated in consortia founded by
a small number of sender cells and many amplifier cells. We demonstrate
that, without active signal propagation from the amplifier cells, the sender
population could not marshal a response from its neighboring receiver cells.
On the other hand, consortia with pulsatile activation responded quickly to
their sparse sender populations. A mathematical model was developed to
match the observed behavior of these sender-amplifier consortia and was used
to investigate the behavior of hypothetical consortia in silico applied to a
two-dimensional diffusive environment.

Chapter 2 describes the composition of the pulsatile amplifier circuit, its
characterization through liquid-culture experiments, and applications of the
amplifier strain to extend communication distances within a spatially-structured
sender-receiver consortium growing in semi-solid media. In Chapter 3, the
same consortium is investigated at a smaller length scale and with random
spatial organization. Chapter 4 introduces a finite-differences approach to
simulating the amplifier strain in various diffusive environments and ends with
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an in silico investigation of how amplifier strains could benefit computation
within hypothetical engineered consortia.
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C h a p t e r 2

LONG-DISTANCE SIGNALING USING PULSATILE
AMPLIFICATION

2.1 Introduction
Quorum sensing circuits, auto-inductive genetic circuits used by wild bacteria
for collective decision-making, are a popular platform for designing synthetic
communication circuits. Conventionally, quorum sensing circuits are understood
to allow groups of cells to estimate their local density. The signaling molecule
promotes expression of its associated synthase protein, forming a positive-
feedback loop that enables a rapid transition from low to high signal production
rate once cell density passes a “quorum” threshold (Dockery and Keener (2001)
Redfield (2002)). These natural systems have been applied relatively intact to
synthetic applications, such as a circuit that delays expression of an engineered
biosynthetic pathway until a quorum has been achieved (A. Gupta et al. (2017)).
With small alterations to the feedback structure, these components can yield
complex dynamical behaviors in multi-strain consortia (Youk and Lim (2014)).
Two recent examples involve bidirectional signaling between two strains in a
co-culture, in one case to achieve sustained oscillations in fluorescent protein
expression and in another to recreate the classical predatory-prey dynamical
system in an E. coli co-culture through AHL-controlled suicide and toxin-rescue
circuits (Chen et al. (2015), Balagaddé et al. (2008)). Transcriptional oscillators
that include a quorum sensing-like positive feedback loop tend towards phase
synchronization within consortia. Depending on the diffusive environment and
diffusion rate of the chemical species shared between cells, this synchronization
tendency leads to different emergent behaviors. Low diffusion coefficients of
signal chemicals or rapid extracellular signal loss rates produce traveling waves
(~1.2 mm/hr) through dense consortia (Danino et al. (2010)). Higher diffusion
coefficients or low rates of extracellular signal loss can enable synchronous
oscillations over long distances (~2 mm) (Prindle, Samayoa, et al. (2012), J. K.
Kim et al. (2019)).

Other applications, however, call for aperiodic yet repeated cell-cell communi-
cation and cannot rely on the circuits mentioned above. Consider a consortium
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composed of sensor and actuator microbes embedded in an environment that
restricts cell movement, such as intestinal mucus in the mammalian gut. The
consortium is intended to persist in this environment and monitor it for a rare
chemical event. In response to each event detected by the sensor population, the
actuator strain should perform a discrete action, such as release a therapeutic
small molecule. Without well-mixed conditions, individual sensor cells will
differ in exposure to environmental variables of interest and actuators may per-
ceive different concentrations of signal molecule produced by the sensors. These
factors reduce the fraction of microbes that participate in signaling, therefore
limiting the efficacy of the actuator strains’ impact on the environment.

To overcome the obstacles to group consensus that are inherent to unmixed
environments, microbes must collaborate in propagating signals even when they
are not the signal’s intended recipient. This is because, without sophisticated
self-patterning programs or direct consortia printing, there is no guarantee the
intended recipient population will receive a signal. Furthermore, amplification
activity must be ephemeral to preclude steady states with high secretion rate
and non-oscillatory in order to match propagated signals to individual initiation
events. Signaling via traveling pulses, like action potentials through nervous
tissue, achieves these two requirements (Holzer, Doelman, and Kaper (2013)).

Figure 2.1 shows a simplified circuit diagram of a pulsatile amplifier and two
simulations demonstrating its behavior in well-mixed and diffusive environments.
Pulsatile communication requires only ephemeral investment in the protein
components and signal molecules used in cell-cell signaling, making it a relatively
low-burden approach to coordination compared to bistable or oscillatory circuits.
When designing a multi-strain bacterial device, or any consortium that may
experience a spatially heterogeneous front of chemical signals, these features
are necessary for reliable, long-distance cell-cell signaling. This system would
enable cells to initiate and transmit communications without permanently
altering their internal transcriptional state or spontaneously generating signals
at regular intervals.

2.2 Characterizing genetic components in liquid culture
Lux-type quorum sensing systems include a transcription activator (receptor),
an acyl-homoserine lactone (AHL) signal molecule1, and an enzyme that

1This abbreviation is used to mean the cognate signal molecule of the quorum sensing
molecules stated in context.
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Figure 2.1: Abstracted interaction map of the species comprising the pulsatile
gene circuit as well as two simulations of its behavior, one in well-mixed
conditions and the other in a diffusive environment. The circuit schematic (a)
depicts the positive-feedback relationship between the signal chemical and its
synthase as well as the negative feedforward arm connecting the same signal
chemical to a repressor that shuts off synthase production. In this model of a
pulsatile gene circuit, a large expression delay is included that is not a part
of the other models described in this document. This delay was included to
make the spike-in signal chemical and cell-generated signal chemical distinct
bumps in the under the “Cell model” figure, (b). The “community model” in (c)
represents a scenario in which a 1D region of cells, each expressing the pulsatile
circuit, is perturbed by a local addition of signal molecule. The ensemble effect
of each cell amplifying local AHL concentration results in a traveling pulses of
signaling activity that moves away from the perturbation where they initiated.

synthesizes the signal molecule (synthase). In these systems, the receptor
binds to its cognate signal molecule and promotes transcription of the synthase
to form a positive feedback loop. Cells expressing this type of gene circuit
exhibit switch-like behavior between a low-output state and a high-output
state. Stability analysis shows the low-output state to have a narrower margin
of stability than the high-output state, which is stabilized by the structure
of the feedback loop as well as local accumulation of AHL (Doelman (2019),
Dockery and Keener (2001)).

To engineer pulsatile release of signaling molecules, we augment a Lux-type
positive feedback system with a negative feedforward arm to eliminate per-
sistence of the high-output state. 2 The combined regulatory arms form a
well-studied architecture known as a Type-I incoherent feedforward loop (IFFL)
that generates pulses in response to increases in the input (Goentoro et al.
(2009), Alon (2006)). This negative regulation is accomplished by a transcrip-

2This circuit architecture, and implementations of it, is referred to as “pulsatile signaling
circuit” and “amplifier circuit” interchangeably in this document.
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tional repressor that, like the synthase, is regulated by the receptor. When
exposed to AHL, the cell begins to express both synthase and repressor. The
promoter controlling synthase expression therefore contains binding sites for
the activating and repressing transcription factors. Soon after, the accumulated
repressor protein prevents further expression of the synthase, which allows for
a gradual return to a low-expression state. Repressor protein will continue to
be expressed, however, as long as the AHL concentration is sufficient. The
concentration of repressor must be reduced through degradation or dilution
from cell growth before the circuit can generate a pulse of synthase expression
again. This architecture elicits pulses in a similar manner as neurons: rapid
excitation followed by a long refractory period (Holzer, Doelman, and Kaper
(2013)).

CinI SCFP3A

AmpRpSC101

pCin-LacO
LacI mScarlet-I

ChlorRp15a

pCin-TetO

CinR

Chromosome

Figure 2.2: The genetic components of the pulsatile communication circuit.
Quorum sensing components are drawn from the CinRI system from the species
Rhizobium leguminosarum. The synthase protein, CinI, produces N-(3-hydroxy-
7-cis-tetradecanoyl)-L-homoserine lactone (referred to as AHL in the context
of the Cin system for convenience) (Lithgow et al. (2000)). CinR is expressed
constitutively, AHL-bound CinR promotes expression from pCin, and LacI
represses CinI transcription when bound to the LacO site. AHL freely diffuses
through cell walls.

IFFL gene circuit generates pulses of synthase protein
The positive and negative regulation arms were cloned into different plasmids.
CinI, the synthase protein used in this circuit, was cloned onto a low-copy
pSC101 vector and the repressor, LacI, onto a p15a backbone. By dividing
the circuit between two plasmids, a larger pool of strain candidates could be
generated via combinations of a handful of plasmid candidates. As shown in
Figure 2.2, co-transcriptional fluorescent reporters were appended to both the
LacI and CinI coding sequences. Including these co-transcriptional reporters
provides an unique marker of transcription activity for the two circuit promoters.
In all experiments, plasmids were transformed into CY026, an E. coli strain
that constitutively expresses CinR (Chen et al. (2015)).
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Figure 2.3: A series of experiments were performed wherein one inducer,
IPTG, was kept at a constant concentration while another inducer, AHL, was
introduced and then removed. The dark gray region indicates the period of
time when AHL was included in the growth media. OD-normalized fluorescence
data from these experiments. This figure only shows data collected from the
candidate strain that demonstrated pulsatile response to AHL and showed the
fastest doubling time.

We performed liquid culture in vivo experiments screening plasmid variants
that differed in ribosomal binding site sequences 5’ of the LacI and CinI coding
regions. Two rounds of characterization were performed to optimize circuit
behavior. In the first round, strains harboring repressor plasmid candidates
were subjected to an induction ladder of the signal chemical. Plasmid candidates
that did not fluoresce or that significantly reduced doubling time were removed
from further consideration. In the following round, both repressor and synthase
plasmid variants were co-transformed and strains were subjected to a grid
of conditions varying in both AHL and IPTG concentrations. Candidates in
this round of characterization were screened for pulsatile expression of the
synthase-associated fluorescent reporter and robust cell growth. The behavior
of the best-performing strain is shown in Figure 2.3. The data in this figure
show that the IFFL architecture produces pulsatile synthase expression only in
the presence of both AHL and IPTG. Growing cells expressing the pulsatile
amplifier circuit do not produce fluorescent protein when grown in high-IPTG
media, indicating that leaky expression does not result in spurious activation
of the positive-feedback loop, thus generating a spurious signal, or the negative
feedforward arm. During the period of AHL induction the synthase reporter
shows a pulsatile response while the repressor reporter increases unceasingly.
Following stimulation, when cells are grown in low-AHL and high-IPTG media,
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there are no subsequent pulses or increases in the synthase reporter trace. The
selected candidate shows well-tuned pulsatile behavior in response to exogenous
AHL.

IPTG tunes synthase pulse amplitude but not repressor expression
Both inducers, AHL and IPTG, are necessary for significant expression of the
synthase co-transcriptional fluorescent reporter. This suggests that, before
inducers are added, cells have accumulated enough LacI to block AHL-activated
expression of the synthase. Alleviating LacI-mediated repression by including
IPTG in the growth media allows for modulating the pulse height of synthase
expression, a useful feature for experiments involving cell-cell signaling. Figure
2.4b) shows that, without added IPTG, no synthase expression is permitted.

While the circuit succeeded in eliciting a pulse of expression, the data did
not show a clear relationship between amplitude of the synthase pulse and
an increase in AHL concentration in the growth media. Activity from the
LacI cistron was not highly correlated with IPTG concentration, meaning that
synthase expression did not lead to increased AHL-mediated gene expression.
Figure 2.4a) shows the impact of varying IPTG concentration at three AHL
concentrations. At 0 nM, IPTG correlates with higher endpoint fluorescence
(𝜌 = 0.834), though its effect is relatively negligible. Sensitivity to changes in
AHL concentration should be greatest near a promoter’s half-maximum induc-
tion concentration (IC50). The half-maximum AHL induction concentration of
the negative cistron’s promoter is roughly 40 nM. Even if the contribution of
AHL from the amplifier cells were small, such as on the order of 5 nM, that
would likely result in a detectable change in mScarlet-I fluorescence. However,
unlike the simulation shown in Figure 2.1, this implementation of the amplifier
circuit failed to noticeably increase AHL concentrations. Above the twice
the IC50 concentration, promoters are less sensitive to changes in inducer
concentrations but may still result in detectable changes in the accumulated
fluorescence after a long enough time. The fact that the endpoint fluorescence
from high-IPTG samples fall within the range of values from no-IPTG samples
suggests that, even when activity synthase activity is driven to its maximum,
the change in AHL concentration remained constant over the course of the
experiments. The short pulse width, well-mixed media, and low cell density
during synthase expression act to minimize signal retention within the cells.
While chemical quantification procedures could provide insight on the absolute
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Figure 2.4: (a) mScarlet-I endpoint fluorescence from experimental wells varying
in AHL and IPTG concentration. Fluorescence traces are normalized by OD700
and endpoints were taken to be the median value from timepoints with OD700
greater than 0.9. The x-axes are logarithmic in scale, the dashed vertical
line separates the logarithmic scale from the zero IPTG concentration data.
Pearson’s correlation coefficients for data presented in each plot are 0.834, -0.369,
0.564, respecting plot order. (b) Maximum expression rate values from both
mScarlet-I and SCFP3A channels at varying AHL and IPTG concentrations.
These correspond to expression activity from repressor and synthase arms of
the transcriptional network, respectively, and the data show that IPTG is
necessary for synthase activity and that IPTG does drastically impact repressor
expression.
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amount of signaling molecule secreted by the amplifier cells during an exper-
iment, the purpose for this strain is to facilitate AHL-based communication
between cells (Yates et al. (2002)). When applied to well-mixed conditions, the
amplifier cells were not be able to amplify their own response.

2.3 Extending signaling distance in semi-solid media
This chapter describes the time-lapse microscopy experiments performed to
investigate the capability of the amplifier strain to support cell-cell signaling
over long distances for consortia growing on semi-solid media. While the
amplifier strain appeared unable to support cell-cell signaling within well-
mixed liquid cultures, cells have greater leverage over their local chemical
environments in unmixed conditions. In these diffusive environments, transport
of small chemical species is achieved only due to diffusion, and therefore secreted
chemicals accrue more rapidly in comparison to liquid media with convection-
mediated mixing. Wild microbes in diffusive environments transmit chemical
signals over long distances by the combined action of positive feedback loops
expressed by dense communities of cells (Goldbeter (2006), Noorbakhsh et al.
(2015), Larkin et al. (2018), Prindle, J. Liu, et al. (2015)). Here, we apply the
pulsatile amplifier circuit characterized in Section 2.2 in an attempt to recreate
the same emergent behavior.

Recent work investigating the difference between diffusive waves generated by
passive or active propagation of chemical fronts shape our expectations for
the pulse amplifier circuit. Passive propagation is the case in which sender
agents are the sole source of signal chemicals. The diffusive wave is shaped
by the diffusive environment, production rate, and degradation rate of the
signal chemical. Both theoretical and experimental studies show that passive
propagation can result in either constant-velocity fronts, diminishing-velocity
fronts, or asymptotic fronts that approach a steady state concentration profile
(Reátegui et al. (2017), Dieterle et al. (2020), Gines et al. (2017), Alon (2006),
Wolpert (1969)). Adding a mechanism for active front propagation, often a
bistable positive feedback loop, increases transmission velocity and yields a
fixed-velocity diffusive wave when the release rate of the amplifiers is sufficient
(Gines et al. (2017), Dieterle et al. (2020), Cheng and Ferrell (2018)). However,
the scenario of interest here is complicated by the logistic growth and time-
varying protein expression capacity of cells in the synthetic bacterial consortia.
It is difficult to predict given the data from liquid culture characterization what
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impact the amplifier strain will have on the diffusive wave dynamics, given the
difficulty in analyzing the scenario mathematically.

Quantifying the extent to which the amplifier circuit extends communication
distances requires as direct a comparison as possible between indicators of local
AHL concentrations through the semi-solid media. That is accomplished by
composing two consortia, one composed of a signal source and signal reporter
and the other composed of a signal source and the signal amplifier strain.
Each consortia is applied to the same scenario: the sender population is
localized to one end of a long, rectangular agarose pad and its partner strain
and its partner strain occupies the complementary region of the pad. After
inoculating the surface of an agarose pad, the inducer chemicals embedded in
the agarose stimulate the sender component to produce synthase protein and
release signaling molecules. Following this, the signaling molecules diffuse to the
partner strain, which is either the reporter or amplifier strain. If the amplifier
cells can appreciably increase local signaling molecule concentrations, then the
sender-amplifier consortium should produce a larger activated region of the
pad than the sender-receiver consortium. Because the amplifier cells strictly
increase AHL amounts, it is expected that the sender-amplifier consortium will
elicit a higher degree of activation than the sender-reporter consortium.

Here, the role of a reporter component in a consortium is to produce fluorescent
protein in response to signal molecule. Consider the amplifier strain’s two
fluorescent proteins, mScarlet-I and SCFP3A. Transcription of SCFP3A is
controlled both by AHL-mediated activation and LacI-mediated repression,
therefore it is not a reliable reporter of local AHL concentrations. mScarlet-I, on
the other hand, is under singular control by AHL-activated expression and can
be used as an AHL reporter. It would be convenient if the fluorescent reporters
in the sender-reporter and sender-amplifier consortia could be assumed to have
identical activity as a function of AHL.

Fortunately, the sender-amplifier and sender-reporter consortia can be formed
from the same pair of engineered strains. As demonstrated in the previous
section, IPTG is required for synthase expression yet does not impact mScarlet-
I expression (see Figure 2.4. When deployed to pads lacking IPTG, the
amplifier cells cannot signal to their neighbors and therefore take the role of
signal reporter. This is an ideal scenario, as the genetic and kinetic details
of transcription factor binding sites as well as the metabolic load on the host
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Figure 2.5: Schematic (a) summarizes the experimental setup described in
the text, with shaded regions corresponding to the portions of the agar pad
occupied by the sender and pulser cell strains. This subfigure also depicts
abbreviated transcriptional networks of the sender and pulser strains. Subfigure
(b) includes an image from a time-lapse microscopy experiment of a sender-
amplifier consortium. Subfigures (b-c) are fluorescence micrographs where
yellow indicates sender activity, red indicates repressor activity, and blue
indicates synthase activity. Subfigure (c) is a sender-receiver consortium from
the same experiment imaged at the same time, 4 hours after pad inoculation.
These images show the initiation of cell-cell communication, when sender cells
have secreted sufficient AHL to elicit a response from their consortium partners.
Amplifier cells fluoresce in both SCFP3A and mScarlet-I channels, which can
appear white in the composite image. Position values are relative to the interior
end of the sender population.
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cell from propagating transgenic plasmids are kept constant between the two
consortia.
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Figure 2.6: The two plots depict mean fluorescence values along the sender-
amplifier consortium at each acquisition time. Images were first rotated such
that the agarose pad’s long axis was parallel to the image’s column axis. Mean
fluorescence values were determined by averaging the pixels above a threshold
value at each image column. Stacking these vectors for each time point results
in the heatmaps shown.

During agarose pad time-lapse microscopy experiments, cells are sandwiched
between the agarose pad and a glass-bottomed dish. A depiction of consortium
organization is shown in Figure 2.5. This restricts their movement while the
signaling molecules they secrete can diffuse through the aqueous growth media
contained in the pad. As a result, a small group of signal-secreting cells can
locally accumulate a significant concentration of signal molecule more easily
than in a well-mixed media of the same volume. The geometry and organization
of cells on the agarose pads were both selected to maximize the rate at which
sender cells locally accumulate signaling molecule. The rate at which diffusion
draws signal chemicals away from their origin is significantly increased with
each dimension permitting transport (Dieterle et al. (2020)). By isolating the
sender cell population to one end of a pad, diffusion mainly acts to transport
molecules in one direction: towards the interior. This reduces the impact of
diffusion and leads to more rapid accumulation.
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Figure 2.7: This plot shows the progression of SCFP3A and mScarlet-I fluo-
rescence profiles recorded along agarose pads organized as in Figure 2.5. To
determine the position of the signaling front, a threshold was applied to the
fluorescence values at each frame. The points depicted in the plot correspond
to the position farthest from the sender population that surpasses the threshold
value. Threshold values were selected for each experiment to best capture the
movement of the signaling front. Best-fit lines of the form Min(𝑎𝑡+𝑏, 𝑐), where
𝑡 is time, were fit by least squares. Estimates of propagation velocity (𝑎) and
maximum propagation distance (𝑐) taken from these best-fit lines.

A depiction of consortium organization is shown in Figure 2.5. Sender cells are
the CY026 strain of E. coli co-transformed with two plasmids. One plasmid
is a clone of the amplifier strain’s negative regulation plasmid but with a
large deletion in the LacI CDS. This loss-of-function deletion preserves the
genetic context surrounding the AHL-associated promoter and the downstream
reporter CDS in order to preserve its behavior as a reporter. Similarly, the
other plasmid was designed to resemble the amplifier strain’s positive feedback
plasmid. It also uses a pSC101 backbone and codes for a bicistronic transcript
of CinI and a reporter protein, but the reporter is sfYFP and the promoter
is pRpa, a quorum-sensing promoter from the Rpa operon of the species
Rhodepsuedomonas palustris. This sender plasmid also contains a constitutive
source of RpaR, the receptor for p-courmaroyl-HSL (Rpa-AHL).
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Figure 2.8: Peak fluorescence values were determined by calculating the average
above-threshold fluorescence value at each distance and time, in the same
manner that produced the heatmaps in Figure 2.6, then finding the maximum
value attained at each distance over the course of the experiment.

Pulsatile signal amplification extends communication distance along
one-dimensional, segrated sender-receiver consortia
Each time-lapse microscopy experiment includes four agarose pads mixed with
a different set of inducer chemicals. The inducer sets are the four combinations
of the presence or absence of Rpa-AHL and of IPTG. Rpa-AHL is used to
activate synthase production within the sender cells and IPTG is used to enable
the amplifier circuit in the amplifier cells. Table 2.1 shows the state of the
sender and amplifier cells under each condition. Pads lacking inducers should
result in no fluorescence from any cell. Images from these pads provides data on
the background fluorescence from the agarose pad itself and the dividing cells.
Pads with only IPTG included test the stability of the pulse circuit’s “off” state,
when sender cells are absent or inactive. While sender cells are inactive, it is not
uncommon for asymmetric plasmid distribution during cell division to result
in daughter cells lacking the negative regulation arm of the amplifier circuit,
reducing it to a positive feedback loop around the synthase protein (Halleran,
Flores-Bautista, and Murray (2019)). Cells lacking the negative regulation
plasmid quickly lose cytosolic LacI, at which point they can rapidly switch
to a high synthase expression state. This experimental control is necessary
to monitor the effect of these errant positive feedback loops; spurious pulses
generated by mutants would indicate that the signal amplifier is unreliable.
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With only Rpa-AHL, senders are spurred to transmit signaling molecules to the
inactive amplifier cells. Unable to produce synthases themselves, the receiver
cells’ repressor arm reports on the local abundance of signaling molecules
generated by the sender cells. The propagation of this fluorescence front
provides negative control of passive signal transport.

Table 2.1: Agarose pad experimental conditions

Condition Senders Amplifiers
Inducers
included

Autofluorescence blank Inactive Inactive None
Sender leak and amplifier
self-activation

Inactive Active Rpa-AHL

Sender-Reporter Active Inactive IPTG
Sender-Amplifier Active Active Rpa-AHL +

IPTG

Subfigures (b) and (c) in Figure 2.5 show false-colored images produced from the
fluorescence micrographs of the sender-amplifier and sender-reporter agarose
pads, respectively. From these images, it is clear that the sender cells on both
pads can communicate to their partner strains that are nearby. Threshold-
crossing points depicted in Figures 2.7 show that the region of mScarlet-I
activation extends farther from the sender population in the sender-amplifier
consortium than in the sender-reporter consortium. Fluorescence output is
analyzed by manually selecting a threshold value and eliminating data that
falls below this value. The position and average fluorescence of the response
profile can then be determined by the above-threshold pixels. Figure 2.7 shows
the positions of the leading edge of the traveling pulse over time for each
experimental condition and channel.

Data from the sender-amplifier pad shows SCFP3A activity extending farther
into the interior of the pad than mScarlet-I. This matches the observation from
the liquid-culture experiments that mScarlet-I detection is delayed relative
to SCFP3A. However, translation of the mScarlet-I front halts before the
SCFP3A front. The promoters in the negative and positive regulation arms
have similar AHL activation curves (see Figure 2.4); where amplifier cells can
express SCFP3A, they should also be able to express mScarlet-I. Figure 2.6
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shows the mean fluorescence from the sender-amplifier consortium along the
direction of propagation. Expression in the mScarlet-I channel appears to halt
abruptly after about 2.5mm of translation. Activation beyond that distance
does not remain above the threshold value.

The time-lapse microscopy data show that the amplifier cells fail to maintain
pulse amplitude over the propagation direction. Figure 2.8 shows the peak
fluorescence value achieved at each position over the course of the experiment.
In both channels, peak fluorescence drops continuously as signaling activity
invades the center of the pad. The SCFP3A channel exhibits a linear trend while
the mScarlet-I decline appears more similar to an exponential decay. Active
amplifier cells significantly improve the response in the mScarlet-I channel
relative to the sender-receiver consortium by increasing recruitment and by
increasing peak response near overall. However, the diminishing amplitude and
truncated mScarlet-I propagation relative to SCFP3A propagation through
the amplifier population both suggest that, after a certain amount of time, the
growth rate and protein expression capacity of cells on the agarose slows to the
point that host cells can no longer contribute resources to transgene expression.

Increased sender emission rate extends sender-receiver signaling dis-
tance
Both sender-amplifier and sender-receiver consortia exhibited fixed-velocity
propagation of signaling activity followed by an abrupt stalling and cessation
of propagation. This raises the question of whether sender-receiver consortia
can extend signal propagation without the aid of amplifier cells by simply
increasing their signal production rate. To that end, a variant of the sender
strain with a greater signal secretion rate was cloned. This strain was applied
to a similar agarose pad organization as described above and the propagation
of receiver activity was observed.

Figure 2.9 shows both a fluorescence micrograph of the experimental agarose
pad as well as a plot depicting threshold-crossing events within the receiver cells.
The threshold-crossing events show a fixed-velocity propagation that is similar
in speed to that produced by the weaker sender strain. Its transmission distance,
however, is much greater. This experiment shows that, along one-dimensional
consortia and diffusive environments, sender cells can produce diffusive waves
that are as rapid and travel as far as the sender-amplifier consortium.
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Figure 2.9: Measuring propagation distance and velocity from a stronger sender
cell variant. (a) shows a fluorescence micrograph of sfYFP and mScarlet-I
fluorescence. sfYFP indicates synthase expression within sender cells and
mScarlet-I indicates AHL-induced expression within receiver cells. The sender
population spans the width of the agarose pad while receiver cells were deposited
at three different positions. White arrows direct to the positions of the deposited
receivers. (b) depicts threshold-crossing events determined from fluorescence
of the receiver cells. The three clusters of data points correspond to the three
receiver depositions in (a). (c) shows the areas of each microcolony and mean
areas at each deposition after 13 hours.

The microcolony sizes diminish with proximity to the sender population. Theo-
retical studies suggest that, in the case of a homogeneous and static consortium,
pulsatile amplification produces a flat concentration profile over the region
traversed by a propagated diffusive wave (Dieterle et al. (2020)). Persistent
emission from a sender population, however, will result in an exponential
concentration gradient over space. The microcolony area data depicted in
Figure 2.9c) indicate that the AHL concentration near the sender population
drives receiver cells to over-express LacI and mScarlet-I to the point that cell
growth slows down. Receiver cells that are farther away are larger due to the
decreasing AHL gradient a delay before the diffusive wave arrives. The growth
penalty in the receiver strains shows that, while the diffusive wave is rapid and
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long-ranged, the steep concentration gradient can be toxic to receiver cells.
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Figure 2.10: Comparing signaling propagation through bistable amplifier cells
with different 5’ UTR sequences controlling ribosomal binding to mRNA
transcripts. Threshold-crossing events are grouped into 1mm-wide bins. The
data points with smallest time value from each bin are plotted and used in
fitting trend lines. Trend lines are piecewise, with a linear and flat components.
Both “weak” and “strong” positive feedback circuits uniformly deposited over
a long agarose pad. In control samples, cells were grown without inducer
chemicals. In experimental samples, a 25nL droplet of 50uM C4-HSL was
deposited at the 0 mm position and allowed to dry before imaging.

The pulse amplifier circuit limits the maximum expression rate through the
promoter controlling synthase mRNA transcription by LacI-mediated repression
and by the metabolic investment in LacI and mScarlet-I. It is well-known that
signal production rate scales with the propagation velocity in diffusive waves
(Dieterle et al. (2020), Oleinik, Kolmogorov, and Piskunov (2019)). Engineering
an amplifier strain that propagates signaling activity more quickly could make
use of a bistable rather than pulse-generating circuit by reducing the number
of protein components and the removal of the transcriptional repressor.

A bistable amplifier strain was engineered to express a positive feedback loop
controlling synthase production, similar to natural quorum sensing motifs. This
circuit used components from the Rhl quorum sensing system from the species
Pseudomonas aeruginosa. The AHL variety associated with the Rhl system is
C4-HSL, a homoserine lactone with a four-carbon acyl chain (Pearson, Van
Delden, and Iglewski (1999)). This molecule is much smaller than C14-HSL, the
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AHL molecule associated with the CinRI system used in the pulsatile amplifier
circuit, and therefore has a larger diffusion coefficient. While the transcription
dynamics of the Rhl quorum sensing components are likely different from
those of the Cin quorum sensing system, the lack of negative regulation on the
synthase promoter, reduced metabolic load, and smaller AHL molecule could
allow for an upper-bound estimate of the propagation velocity of AHL-mediated
signal propagation along one dimension.

Figure 2.10 traces cell-cell signaling propagation through amplifier cells express-
ing either a “weak” or “strong” bistable quorum sensing circuit. The “weak”
positive feedback appears to be insufficient for generating traveling waves and
reaches only ~10mm into the interior of the pad. The “strong” circuit, how-
ever, shows a fixed-velocity traveling wave of signaling activity that traverses
~30mm. Data from the uninduced control of the “strong” positive feedback
circuit shows a synchronous self-activation at around 8 hours, demonstrating
that the low-expression state becomes unstable as cell density increases. A
spurious signal can be seen in the induced case as well, initiating at position
40mm and 5 hours and moving towards the interior, eventually meeting the
induced signaling wave at position 30mm and 7 hours. These results suggest
a possible velocity upper-bound to AHL-mediated signaling propagation over
one dimension and highlight a difficulty in engineering feedback within growing
synthetic bacterial consortia.

2.4 Methods
Liquid culture experiments were performed in a Biotek Synergy H1F plate
reader using M9CA minimal media (Teknova product code M8010-06) with
100 𝜇g/mL ampicillin and 34 𝜇g/mL chloramphenicol. Starter cultures were
inoculated into M9CA media from single colonies picked from an agar plate.
Inoculated cultures were shaken and incubated at 37∘C until the optical density
at 700 nm measured ~0.3. The experimental wells were then prepared by
diluting starter cultures 1:20 into a final volume of 500𝜇L in a 96-well glass-
bottom plate. When necessary, inducer chemicals were added to wells using an
Echo 525 acoustic liquid handler before the addition of cell culture and broth.

At two points during the liquid culture experiments, inducer concentrations
were altered by diluting and washing experimental cell cultures. Washes were
performed by first pelleting the full 500𝜇L of culture from an experimental well,
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discarding the supernatant, and then resuspending in 15mL of PBS. These
wash-discard-resuspend cycles were repeated twice more for a total of three
wash cycles. 500 𝜇L of M9CA broth was used in the final resuspension step
to return the culture to approximately the same density as before the wash
steps. Subsequent experimental wells were prepared by first depositing inducer
chemicals as needed with the Echo 525 liquid handler, followed by cell culture
and sterile M9CA broth in a 1:20 ratio.

Analysis of data collected from plate reader experiments was performed using
custom Python scripts. Background fluorescence and OD700 were determined
by measuring these quantities in wells prepared without inducer chemicals,
which previous experiments had shown to be identical in fluorescence to cells
without fluorescent reporters. These background signals were determined to be
time-varying, resulting from either background fluorescence from growing cells
or from broth oxidation. OD700-normalized fluorescence values (fluorescence
divided by OD700) were calculated using background-subtracted data.

Microscopy experiments were performed using agar pads prepared according
to the protocol described in (Young et al. (2012)). Pads were prepared with
inducers introduced to the molten agar, when necessary, and 100 𝜇g/mL
ampicillin and 34 𝜇g/mL chloramphenicol. When added to molten agar, final
IPTG concentration was 1 mM and final C4-HSL concentration was 10 𝜇M.
Images were acquired using an Olympus IX81 inverted microscope through a
UPlanFl10XPh objective and Chroma filters 31040, 41027, and 310442V2 for
sfYFP, mScarlet-I and SCFP3A, respectively. Sample temperature was held at
37∘C for the duration of the time-lapse microscopy.

Analysis of data collected from microscopy experiments was performed using
custom Python scripts.



28

C h a p t e r 3

SIGNAL PROPAGATION FROM ISOLATED SENDER CELLS

3.1 Introduction
The previous chapters considered signal amplification in a context that is
unlikely for a consortium of engineered bacteria to encounter outside of a
man-made arena: segregated sender and amplifier populations confined to
a narrow, rectangular surface. A goal of synthetic consortia research is to
deploy synthetic bacterial communities to natural environments such as the
mammalian gut, soils, and rhizosphere. Introducing synthetic cells to these
spaces could enable long-term monitoring of the chemical and biological agents
(Mimee et al. (2015), Hsiao et al. (2016), Daeffler et al. (2017)) or intervention in
support of human health (Steidler, Rottiers, and Coulie (2009), Christian et al.
(2014)) or crop yield (Voigt (2020), Jin et al. (2020), Avis et al. (2008)). Even
when synthetic colonies can persist and maintain their individual engineered
functions in the face of competition from the natural microbiome, the physical
organization of consortium members cannot be determined ahead of time. The
growth context of cells in these settings are porous or high-viscosity media
that constrain cell motility and spatial partitioning that results in patchy
colonization (Donaldson, Lee, and Mazmanian (2015), Gantner et al. (2006)).
While the spatial arrangement and density of soil bacteria that interact with
root systems, a context known as the rhizosphere, is the subject of active
research, in situ imaging of synthetic cells associated with the rhizosphere and
with roots directly depict clumped or sparse cell distributions, where cells either
are in closely-packed groups of tens to hundreds or separated by distances
much longer the length of a single bacterium (Gantner et al. (2006), Tecon
et al. (2018), Bulgarelli et al. (2012), Nunan et al. (2006)). Bacteria inhabiting
the mammalian gastrointestinal track likely form long-term communities by
invading the mucus which protects intestinal and colonic epithelial cells, those
that are not quickly washed out with feces, that is (Donaldson, Lee, and
Mazmanian (2015), Berlec et al. (2015)). Generally, there is no guarantee
that strains in sender-receiver pairs will be close enough to enable efficient
communication.
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The geometric characteristics of the agarose pads and sender-receiver consortia
described in Chapter 2 were designed to support cell-cell signaling activity
and observation of the diffusive wave dynamics. The spatial scales of bacterial
communities in deployment environments are much smaller than the consortia
of these propagation experiments. The aim of this chapter is to evaluate
the performance of the same consortia in a patterning scenario that is more
adversarial to cell-cell signaling, the case of sparse sender cells in a small colony
of dense amplifiers. By growing consortia from a smaller seeding population
with a relatively larger diffusive environment, the role of diffusion in diminishing
local signaling concentrations is more pronounced. Analytical results suggest an
approach to nondimensionalization that normalizes the spatiotemporal pattern
of gene activity to the size and signal secretion rate of the sender population.
This approach is used to normalize data from each experimental sample for
comparison of the signaling behavior between consortia.

3.2 Amplifying communication from a single sender cell
The efficacy of cell-cell signaling via diffusive molecules depends on the ge-
ometry of the diffusive environment, the volume that permits diffusion of
molecular species and its characteristics, and on the characteristics of the wave
generated by the microbial consortium. In time-lapse microscopy experiments,
for example, cells live in a thin aqueous layer between an agarose pad and an
impermeable glass plane. The experiments described in the previous chapter
involved cells spread uniformly over the surface of agarose pads fashioned to be
extended in length and short in width and height. The uniformity across with
pad width ensures one less dimension along which diffusion can occur, thus
encouraging cell-cell communication. Under the assumption that diffusion is
fast enough that signaling molecules do not form a significant gradient along
the pad height, the concentration of signaling molecules in the agarose pad
takes on a gradient only over the pad’s length, making the diffusive environment
and the diffusive wave both one-dimensional. Greater differences between the
dimensionality of the unoccupied environment and that of the diffusive signaling
wave imparts a greater obstruction to cell-cell communication (Dieterle et al.
(2020)). The case described here, therefore, is the most supportive of cell-cell
signaling via diffusive waves.

The experiments described in this section apply a different geometry to present
the consortium cells with a diffusive environment more adversarial to cell-cell
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signaling. Rather than deposit cells uniformly on the surface of the agarose
pad, a single 25nL droplet is placed at the center of a square pad. As a result,
the consortium cells form a disk of roughly 0.7mm in diameter on the surface
of an agarose pad that is 4.5mm to a side and 2mm tall. The seed population
contains on the order of 100 cells with a roughly 1:100 ratio of sender cells to
amplifier or reporter cells. Under these conditions, there is no symmetry that
ensures flat concentration profiles along any axes. Therefore, diffusion dilutes
local signaling concentrations faster than in the extended-length agarose pad
experiments. Figure 3.1 contains a schematic of the cell organization on the
agarose pads as well as composite images of the consortia at various times.

a)

b)

Agarose pad organization

c)

Senders

Amplifiers

Agarose pad

0.7 mm

4.5mm

~ 0.02 mm

Figure 3.1: Fluorescence microscopy images of sender-amplifier consortia from
two different agarose pads. The cartoon in (a) shows the size of the agarose
pad and the consortium growing on it. The scenario depicted is one including
a single sender population. Subfigures (b) and (c) show selected frames from
experiments on sender-amplifier and sender-reporter consortia, respectively.
The “Active” pad contains IPTG, thus enabling amplifier activity, while the
“Inactive” pad does not. Each image is a composite of sfYFP, mScarlet-I, and
SCFP3A expression. Scale bar is 100𝜇m.

The sender-amplifier and sender-reporter consortia were applied to this scenario.
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Performance of each consortium was evaluated by two metrics: 1) how quickly
a sender cell can trigger fluorescent protein production in its neighbors, and
2) the fraction of cells that have increased in fluorescence by the end of the
observation period. These metrics are respectively termed response time and
recruitment fraction. As before, the same pair of E. coli strains can be assayed
with and without pulsatile signal amplification by the presence or absence of
IPTG (see Section 2.3). While data from both the mScarlet-I and SCFP3A
channels are included, only amplifier cells on pads including IPTG can produce
SCFP3A. Otherwise, these cells are called “reporters” and can only express
mScarlet-I. Figure 3.2 shows the response times for each condition and Figure
3.3 shows the recruitment fractions.
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Figure 3.2: Initiation time is the duration from beginning of experiment to first
threshold-crossing event from amplifier cells. These plots show initation time
values calculated for each consortium and fluorescence channels. mScarlet-I
fluorescence indicates repressor expression and SCFP3A indicates synthase
expression. In the “Reporter/Strong sender” condition, there is a data point
showing a SCFP3A threshold-crossing event at roughly 6 hours. This is the
result of a putative mutant microcolony in the amplifier strain that resulted in
persistent SCFP3A expression. The fact that only one such microcolony was
observed out of the many sender-reporter consortia replicates suggests this is a
rare event.

Comparisons between values associated with mScarlet-I fluorescence suggest
that pairing amplifier cells with a “weak” sender can dramatically improve
both response time and recruitment fraction relative to the case of passively
signal chemical transport. The consortium containing the “strong” sender, on
the other hand, show similar response times and recruitment fractions between
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active and passive signal propagation. However, those consortia with weak
sender cells and active signal propagation exhibit the fastest responses and
greater recruitment than all other experimental conditions.
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Figure 3.3: Recruitment fractions are calculated by dividing the above-threshold
area by the total cell-occupied area. The area occupied by cells is determined
using a low threshold on the SCFP3A fluorescence data that separates agarose
autofluorescence and bacterial autofluorescence. As mentioned in the caption to
Figure 3.2, one of the “Reporter/Strong sender” replicates produced a putative
mutant amplifier microcolony that exhibited strong SCFP3A fluorescence.
These data show that this mutant did result in a significant recruitment
fraction.

Deducing the reasons for these differences in response time and recruitment
fraction is confounded by the differences in the growth patterns of each con-
sortium. These considerations include the number and arrangement of the
founding population and how the microcolonies impact one another’s growth
rates and protein expression capacity. As can be seen in Figure 3.1, growing
microcolonies can interfere with each others’ growth by crowding. Furthermore,
after 10 hours of growth it appears that only cells near microcolony edges can
continue to express fluorescent protein, perhaps as a result of limited nutrient
availability in the microcolony interior. To enable direct comparisons between
experimental samples in a way that accounts for these details, a mathematical
model was developed to formalize the expected diffusive signaling front from
an isolated sender colony, considering size and growth rate.

3.3 Mathematical modeling of chemical front propagation from iso-
lated sender cells

We will consider a disk of sender cells of radius 𝑟 that is sandwiched between
an impermeable boundary and a porous medium of infinite height and radius.
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At time 𝑡 = 0, the sender cells are induced to express synthase protein. The
cells are assumed to reach equilibrium cellular concentrations of synthase
immediately, allowing for the total amount of synthase to be proportional to
the cell number. Therefore, synthase increases exponentially with rate constant
𝜆. The production rate per unit area is therefore

𝑓(𝑥, 𝑡) = 𝑐0Θ(𝑟 − 𝑥)Θ(𝑡)𝑒𝜆𝑡, (3.1)

where 𝑐0 is the AHL emission rate at the moment of induction and Θ is the
Heaviside function. These features closely resemble the experimental scenarios,
to a point. Once amplifier cells secrete AHL or nutrient limitations attenuate
cell growth and protein expression, the model assumptions no longer describe
consortia behavior. However, we will see that the diffusive waves propagated in
sender-amplifier consortia appear to match those predicted by the math model.
This will enable us in Section 3.4 to compare consortia on the basis of their
apparent sender strengths as represented by the emission rate parameter 𝑐0.

We will use the method of fundamental solutions to solve for 𝑎(𝑥, 𝑡), the
concentration of AHL at a point 𝑥 at time 𝑡. We begin with the differential
equation governing signal diffusion in the agarose pad, including a source term
representing secretion from the sender population, the inhomogeneous heat
equation

𝜕𝑡𝑎(𝑥, 𝑡) = ∇2𝑎(𝑥, 𝑡) + 𝑓(𝑥, 𝑡),

where the rate of change in concentration is a combination of diffusion and
production terms. The solution to the inhomogeneous heat equation can be
found by convolution of the fundamental solution with the inhomogeneous
term. Here the heat kernel 𝑔 must respect the no-flux boundary condition. The
placement of sender cells on the boundary provides a convenient symmetry:
the heat kernel for an unbounded 3D domain is multiplied by a factor of 2,
effectively superimposing the portion of the distribution that would extend
past the boundary back onto available volume. This yields the function

𝐺(𝑥, 𝑡) = 1
4(𝜋𝐷(𝑡 − 𝜏))3/2 𝑒

−𝑝(𝑥)2
4𝐷(𝑡−𝜏) ,

where 𝑝(𝑥) represents the distance from the point 𝑥 and the center of the
kernel function. The convolution integral will use polar coordinates with the
origin located at the center of the disk of sender cells and vary over time
and the area of the disk to determine the concentration at the space-time
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coordinate (𝑥, 𝑡). Radial symmetry allows the position 𝑥 to be restricted to
{(𝑅, 𝜃)|𝜃 = 0, 𝑅 > 𝑟, 𝑅 ∈ ℝ+} without loss of generality. To calculate the
distance 𝑝 at position 𝑥, we use

𝑝(𝑅, 𝜃, 𝑥) = √(𝑅Cos(𝜃) − 𝑥)2 + (𝑅 Sin(𝜃)) .

Composing the convolution integral yields

𝑎(𝑥, 𝑡) = ∫
2𝜋

0
d𝜃 ∫

∞

0
d𝑅 ∫

𝑡

0
d𝜏 𝑓(𝑥, 𝜏) 𝑅𝑒

−𝑝(𝑅,𝜃,𝑥)2
4𝐷(𝑡−𝜏)

4(𝜋𝐷(𝑡 − 𝜏))3/2 ,

which becomes

𝑎(𝑥, 𝑡) = ∫
𝜋

0
d𝜃 ∫

𝑟

0
d𝑅 ∫

𝑡

0
d𝜏 𝑐0𝑒𝜆𝑡 𝑅𝑒

−𝑝(𝑅,𝜃,𝑥)2
4𝐷(𝑡−𝜏)

2(𝜋𝐷(𝑡 − 𝜏))3/2

after substituting 𝑓(𝑥, 𝜏), restricting the integrals to non-zero values of the
Heaviside function, and applying symmetry across the x-axis to reduce the
integral over 𝜃 to the range [0, 𝜋]. Next, a change of variables 𝜓𝑥(𝑅, 𝜃) is applied
to re-center the polar coordinates from the center of the sender population to
the point 𝑥:

u = (𝑅, 𝜃),

𝜓𝑥(u) = (𝑝(𝑅, 𝜃, 𝑥),ArcTan( 𝑅 Sin(𝜃)
𝑅 Cos(𝜃) + 𝑥

),

|det(𝐷𝜓)(u)| = 𝑝(𝑅, 𝜃, 𝑥)
𝑅

.

The result of this operation is a more tractable integrand and 𝜃 integration
bounds that depend on 𝑅:

∫
𝑥+𝑟

𝑥−𝑟
d𝑅 ∫

𝜋

ArcCos( 𝑟2−𝑥2−𝑅2
2𝑥𝑅 )

d𝜃 ∫
𝑡

0
d𝜏 𝑐0𝑒𝜆𝑡 𝑅𝑒

−𝑅2
4𝐷(𝑡−𝜏)

2(𝜋𝐷(𝑡 − 𝜏))3/2 .

From here, the integrals are resolved individually, beginning with 𝜏. The 𝜏
integral can be performed by applying a change of variables ̃𝜏 = 𝑡 − 𝜏 and
results in a sum of complementary error functions
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∫
𝑥+𝑟

𝑥−𝑟
d𝑅 ∫

𝜋

ArcCos( 𝑟2−𝑥2−𝑅2
2𝑥𝑅 )

d𝜃 𝑐0
2𝐷𝜋

𝑒𝜆𝑡−𝑅√ 𝜆
𝐷 (Erfc( 𝑅

2
√

𝐷𝑡
− √ 𝜆

𝐷
𝑡)+

𝑒2𝑅√ 𝜆
𝐷Erfc( 𝑅

2
√

𝐷𝑡
+ √ 𝜆

𝐷
𝑡))

. (3.2)

At this stage, we apply estimates for the parameters 𝑟, 𝐷, 𝜆, and the variable
𝑡. Figures 3.1 and 3.2, and knowledge of the AHL signaling molecules, suggest
the following:

1. The earliest response occurs after roughly 3 hours.
2. Sending colonies are roughly 20𝜇m in diameter.
3. 𝑥 is bounded from above by 1mm.
4. 𝐷 ≈ 200𝜇m

s2 (Dilanji et al. (2012)).
5. Synthase accumulation should roughly match cell growth, or 𝜆 ≈ 10−3/s.

These approximations motivate the following simplifying assumptions:

1. 𝑅
2

√
𝐷𝑡 ≈ 0

2. √ 𝜆
𝐷𝑡 ≫ 0

3. 𝜆𝑡 − 𝑅√ 𝜆
𝐷 ≈ 𝜆𝑡

With these assumptions, the sum of the Erfc terms within the parenthesis of
Equation (3.2) evaluates to 2 and all dependence on 𝑅 within the integrand
disappears, leaving

𝑎(𝑥, 𝑡) = ∫
𝑥+𝑟

𝑥−𝑟
d𝑅 ∫

𝜋

ArcCos( 𝑟2−𝑥2−𝑅2
2𝑥𝑅 )

d𝜃 𝑐0
𝐷𝜋

𝑒𝜆𝑡

= 𝑐0
𝐷𝜋

𝑒𝜆𝑡 ∫
𝑥+𝑟

𝑥−𝑟
d𝑅 𝜋 − ArcCos(𝑟2 − 𝑥2 − 𝑅2

2𝑥𝑅
).

Here we apply a lower-bound approximation

𝜋 − ArcCos(r
2 − x2 − R2

2xR
) ≥ ArcCsc(𝑥/𝑟)2

𝜋
and ultimately recover
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𝑎(𝑥, 𝑡) = 4𝑐0
𝐷𝜋2 𝑟ArcCsc(x/r)𝑒𝜆𝑡. (3.3)

As the sender colony radius is a fixed parameter in this case, we conclude from
Equation (3.3) that front propagation occurs rapidly and concentration grows
exponentially at all positions.

3.4 Analyzing nondimensionalized wave propagation
Equation (3.3) suggests a nondimensionalization of time and position according
to the arguments for the trigonometric and exponential functions, 𝑥/𝑟 and 𝜆𝑡.
This enables comparisons between consortia in a way that reduces the impact
of variability in sender microcolony position, size, and growth. The term 𝑐0

can further be nondimensionalized by normalizing to the minimum activation
concentration for each channel’s promoter, forming the nondimensional term

4𝑐0𝑟
𝑐𝑡ℎ𝐷𝜋2 .

When applying the nondimensionalization, it is essential to also consider the
assumption of exponential accumulation of synthase molecule. The sender
cells’ bicistronic expression of CinI and YFP allows for the identification of the
period of exponential accumulation of CinI. Restricting curve fitting to only
data from this period duplicates the results of Figure 3.2: reporter components
in the “weak sender”-reporter consortia show almost zero response to signaling
activity. The only sample out of four which shows any reporter activity is
depicted in Figure 3.1.c), and fluorescence in this case began after the period of
exponential CinI accumulation. This suggests that senders are emitting AHL
at a very slow rate, possibly less than 3000 molecules per second per square
micron, at peak CinI accumulation.

Consortia with active signal propagation, on the other hand, have best-fit
lines for their SFP3A threshold-crossing events that largely fall atop one
another, showing agreement in behavior despite the variability in the founding
population. It is also notable that these best-fit lines appear to represent the
data well, despite violating the model assumption restricting AHL emission
to the sender colony. These estimates of 𝑐0, therefore, can provide a metric
for how quickly a consortium propagates signal fronts away from sender cells,
with larger values implying a faster response. Figure 3.5 shows estimates from
each threshold-crossing event as well as those correspond to the fitted lines
for each experimental pad. These results highlight the benefit provided by
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Figure 3.4: These plots depict threshold-crossing events using nondimensional-
ized position and time values along with best-fit lines to the propagation model.
Triangular points correspond to threshold-crossing events that occurred while
the sender microcolonies were rapidly growing and circular points represent
data from after cell growth slowed. Only triangular data points were used
in model fitting. Data from the same pad are colored similarly between the
channel plots.

signal amplification in scenarios where the diffusive environment is adversarial
to cell-cell communication within a consortium.

3.5 Methods
Cells were deposited in droplets onto agarose pads and allowed to dry. The
droplets were either 1uL in volume and placed by pipette onto agarose pads
10mm by 10mm or 25nL in volume and transferred via acoustic liquid handler
onto pads 5mm by 5mm. Once dried, the seeding colonies were roughly 2mm
in diameter in the former case and 700um in the latter. The agarose pads were
observed via fluorescence microscopy and incubated at 37 degrees Celsius.

Agarose pads contained chemical inducers that enabled different consortia
behavior. In one set, pads contained both Rpa-AHL and IPTG to enable
sender and amplifier activity. In the other set, pads contained only Rpa-AHL.
The Rpa-AHL-only pads would allow amplifier cells to express mScarlet-I in
response to signaling activity, but not contribute to it.
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Figure 3.5: These data are estimates of initial signal emission rate density, 𝑐0.
The color dots correspond to estimates from an individual threshold-crossing
event and white/black dots correspond to model fits from a single agarose
pad as depicted in Figure 3.4. Channel-specific threshold concentrations were
10/𝜇m3 and 20/𝜇m3 for the promoters of SCFP3A and mScarlet-I, respectively,
for model-fitting. Fits were not performed when there were fewer than three
threshold-crossing events available.
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C h a p t e r 4

MODEL DEVELOPMENT

4.1 Introduction
The time-lapse microscopy experiments presented in Chapters 2 and 3 demon-
strated that amplifier cells can support communication between sender-receiver
signaling pairs. The question then becomes can amplifier cells benefit commu-
nication within more complex consortia? While the amplifier cells succeeded
in increasing the signaling distance of sender cells, the data make clear that
the organization of consortia members, environment geometry, and timing
are critical to its performance. The timing can be broken down into three
phases. In the first phase, sender cells grow and accumulate synthase protein.
During the second phase, the consortia density has increased to the point that
sender cells can initiate a propagating wave through the amplifier cells. This
propagation ends at the third phase, when cell growth and protein production
slow down such that the amplifier cells cannot produce enough synthase protein
to sustain signal transmission. Cells in a consortium will transition between
these phases at different times, compounding the spatially heterogeneity of the
consortium’s demographic patterning to the gene expression capacity.

This chapter walks through the development of a finite differences method
(FDM) approach to simulating a reaction-diffusion model of sender-amplifier
consortia. These simulations help to determine the applicability of amplifier
strains to collaborative computations under the restrictions of the three phases
outlined above. First, a set of ordinary differential equations (ODEs) describing
the behavior of the amplifier strain in liquid culture is presented. While the goal
is to simulate new engineered consortia in semisolid media, development begins
with parameter identification on these ODEs using data from liquid culture
experiments. These equations are adapted to a reaction-diffusion model and are
supplemented with equations describing sender cell growth and signal release.
While the gene circuit parameters inferred from liquid-culture experiments
are maintained, microscope data are used to determine parameters governing
nutrient-dependent growth and protein production. Finally, reaction-diffusion
simulations of the sender-amplifier consortia are validated against experimental
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data described in Chapters 2 and 3 and then extended to predict the behavior
of complex hypothetical consortia.

4.2 Parameter inference from liquid-culture experiments
Well-mixed Media Model
The experiments described in Section 2 produced the the data used to infer
gene circuit parameters. We here describe the ordinary differential equations
model for pulse-generator circuit behavior in liquid culture. The intention is
for the model to capture the observed fluorescence dynamics using as simple a
model as possible, not to make mechanistic inferences about hidden cell state
variables. This liquid-culture model will then be adapted to a spatiotemporal
PDE problem, where any simplifying assumption made at in the liquid culture
model will facilitate the PDE model’s implementation and execution.

In the model, expression activation is modeled using Hill functions of the form

ℋ(𝐴, 𝜆, 𝐾) = 𝐴𝜆

𝐾𝜆 + 𝐴𝜆 .

In this form, the parameter 𝐾 represents the IC50, the concentration of inducer
chemical 𝐴 which generates expression rate at half the maximal value, and the
parameter 𝜆 controls how sharp the transition is from low to high output around
the IC50 point. Lower values correspond to more gradual transitions and higher
values. Protein quantity is also diminished through dilution as cells grow and
divide. In the ODE, the protein concentration diminishes proportionally to
the variable rate term

𝑟𝑐(1 − 𝑐
𝐶𝑚

),

where 𝑐 is the cell density, 𝑟𝑐 is the maximal cell growth rate, and 𝐶𝑚 is the
carrying capacity of the amplifier strain. Co-transcribed proteins are expressed
proportionally to one another, the proportionality being dependent on their
genetic context and RBS sequence. Identical LVA-ssrA degradation tags were
appended to the coding sequences of the synthase, repressor, and reporter
proteins to promote equal degradation rates, represented in the model as 𝜌 with
subscripts indicating the associated model species. As a result, for each protein-
reporter pair, the expression rates are proportional and autodegradation rates
can be treated as identical in the model. This permits the assumption that the
ratio of co-transcriptional protein amounts is constant, a useful assumption
when performing parameter inference (See Appendix A).
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The combined production and degradation terms result in the governing equa-
tion of the model’s protein species. For LacI, the transcriptional repressor, that
equation is

d𝑅
d𝑡

= 𝑥𝑅 ℋ(A, 𝜆𝑅, 𝐾𝑅) − (𝜌𝑅 + 𝑟𝑐(1 − 𝑐
𝐶𝑚

))𝑅,

where 𝑥𝑅 represents the maximal expression rate as a function of AHL, 𝐴, and
the Hill function parameters 𝜆𝑅 and 𝐾𝑅. The synthase, CinI, is dependent on
IPTG (model species 𝐼), AHL, and LacI concentration within the cell. Each
chemical inducer is associated with a Hill function and the product of the three
defines the production term. A decreasing Hill function

ℋ𝑛(𝑅, 𝜆, 𝐾) = 𝐾𝜆

𝐾𝜆 + 𝑅𝜆

is used to model the dependence of synthase expression on repressor protein
concentration. LacI-mediated expression, however, is modulated by IPTG
concentration. IPTG binds to LacI, preventing it from acting on operator
regions in promoter sequences. To model the effect of IPTG, we scale the
maximum synthase expression rate by an an increasing Hill function. This
implies that the action of IPTG is independent of LacI concentration. While
this is an unconventional approach to modeling this well-studied repression
system, it was necessary to prevent simulations from producing small pulses
in synthase concentration when AHL induction is low and IPTG is absent in
order to match the observed circuit behavior. Under a more conventional set
of gene regulation approximations, a simulation without IPTG and minor AHL
would allow low levels of both synthase and repressor expression. The slow
expression of repressor gives the simulated gene circuit time to accumulate a
non-negligible amount of synthase, which would cause problems for parameter
inference.

Letting 𝑥𝑆 be the maximal expression rate of the synthase protein, the governing
equation for CinI is

d𝑆
d𝑡

= 𝑥𝑆 ℋ(I, 𝜆𝐼, 𝐾𝐼)ℋ(A, 𝜆𝑆, 𝐾𝑆)ℋ𝑛(𝑅, 𝜆𝐶, 𝐾𝐶) − (𝜌𝑆 + 𝑟𝑐(1 − 𝑐
𝐶𝑚

))𝑆.

According to these equations, cells should begin producing fluorescent proteins
the instant AHL is added to the growth media. The data, however, show a delay
between inducer spike-in and the response in fluorescence, as shown in Figure
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4.1. AHL transport into the cell, transcription, translation, and fluorescent
protein maturation all contribute to this delay. We will rely on equations
governing AHL transport to enable the model to reproduce these delays. Other
methods of accounting for this delay include introducing species representing
mRNA and immature fluorescent reporters or employing delay-differential
equations. Both approaches are common choices in the literature and could
result in the observed delay. However, these would complicate the numerical
solution of the finite-difference approximation of the reaction-diffusion PDE
used to simulate microbial consortia described in Subsection 4.3. Therefore, the
model relies a modified Fick’s first law to create these post-induction delays.
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Figure 4.1: Fluorescence data from two experimental wells with high expres-
sion activity show a marked delay in the initial accumulation of mScarlet-I
fluorescence in comparison to SCFP3A fluorescence.

AHL transport is modeled by Fick’s first law with a bounded transport rate,
leading to the conditional equation

d𝐴
d𝑡

=
⎧{
⎨{⎩

𝑡𝐴(𝐴Ext − 𝐴) if |𝑡𝐴(𝐴Ext − 𝐴)| < 𝑡𝑀,

Sign(𝐴Ext − 𝐴)𝑡𝑀 otherwise.
. (4.1)

The parameter 𝑡𝐴 is the rate constant defining transport into the cell as a
proportion to the difference in signal molecule concentrations between the
external media and bacterial cytosol. Investigations into trans-membrane
transport of AHL molecules have found that larger quorum sensing molecules
rely on active transport. Applying an upper bound 𝑡𝑀 to the transport rate
is to consider saturation of the active transport proteins. The impact of
transport on the external AHL concentration is ignored, as the volume fraction
of the bacterial population is much less than the volume of the growth media.
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𝐴Ext, therefore, is a constant, equal to the concentration of AHL added at
the beginning of an experiment. While the synthase could contribute to the
concentration of AHL, we do not model this effect. As discussed in Section 2.2,
increasing synthase expression did not result in increased mScarlet-I expression.

The full set of differential equations

d𝐴
d𝑡

=
⎧{
⎨{⎩

𝑡𝐴(𝐴Ext − 𝐴) if |𝑡𝐴(𝐴Ext − 𝐴)| < 𝑡𝑀

Sign(𝐴Ext − 𝐴)𝑡𝑀 else
d𝑅
d𝑡

= 𝑥𝑅 ℋ(A, 𝜆𝑅, 𝐾𝑅) − (𝜌𝑅 + 𝑟𝑐(1 − 𝑐
𝐶𝑚

))𝑅

d𝑆
d𝑡

= 𝑥𝑆 ℋ(I, 𝜆𝐼, 𝐾𝐼)ℋ(A, 𝜆𝑆, 𝐾𝑆)ℋ−(𝑅, 𝜆𝐶, 𝐾𝐶) − (𝜌𝑆 + 𝑟𝑐(1 − 𝑐
𝐶𝑚

))𝑆

d𝑐
d𝑡

= 𝑟𝑐 𝑐 (1 − 𝑐
𝐶𝑚

)

are applied as a generative model used during Bayesian parameter inference
described in Appendix A.

4.3 Reaction-diffusion Model
The model described in the previous section was adapted to a reaction-diffusion
model to describe the behavior of cells growing on the surface of agarose pads.
This simulation approach was adapted from one used in a related project
(Doong, Parkin, and Murray (2017)). A reaction-diffusion model is a system of
partial differential equations of the form

𝜕𝑡𝑢 = 𝐷∇2𝑢 + 𝑓(𝑢).

The function 𝑓 is called the reaction term; it describes the dynamics resulting
from interactions between model species. The diffusion term is 𝐷∇2𝑢, which
confers linear, isotropic diffusion at rates 𝐷𝑖,𝑖. 𝐷 is an 𝑛×𝑛 real-valued matrix
and 𝑢 is a vector of 𝑛 terms.

Evolution equations from the well-mixed media model become the components
of the reaction term 𝑓(𝑢), with a few modifications. Instead of logistic growth,
the bacterial division rate varies with the local value of a model species rep-
resenting nutrient concentration. Both cell growth and protein production
depend on nutrient availability. Just as the relationship between chemical
inducers and protein expression rate is defined by a Hill function, the nutrient



44

species scales cell growth and protein production generally; an approach that
is adapted from C. Liu et al. (2011). Each evolution equation governing these
species includes a production term that is scaled by a

𝒩(𝑡, 𝑥, 𝑦) = ℋ(𝑛(𝑡, 𝑥, 𝑦), 𝜆𝑛, 𝐾𝑛),

a term representing nutrient availability. While protein production and cell
growth depend on nutrient availability, only cell growth actually consumes nutri-
ents. This feature is anchored in the assumption that the metabolic investment
in the synthetic circuit’s proteins is minor compared to host functions.

The reaction terms for the model species representing the sender and amplifier
strains are

d𝐶sender
d𝑡

= 𝑟𝑐 𝒩𝐶sender,

d𝐶pulser

d𝑡
= 𝑟𝑐 𝒩𝐶pulser

and the resulting change in nutrient concentration is defined by
d𝑛
d𝑡

= −𝜌𝑛 (𝐶sender + 𝐶pulser) 𝒩,

where 𝜌𝑛 is the nutrient consumption rate. The initial condition of the nutrient
concentration is 100, uniform over the simulation space. 100 is a value selected
out of convenience and the species is unitless. Nutrient and cell density are
exchanged at a rate of 𝑟𝑐/𝜌𝑛, meaning the total amount of cell produced during
a simulation is bounded by 100𝑟𝑐/𝑟ℎ𝑜𝑛.

The reaction terms corresponding to the protein species have a production and
degradation term, just as in the well-mixed media model. Degradation terms,
however, must be adapted according to the growth model. In place of the
logistic function is the 𝒩 scaling term and a masking function to limit protein
expression to the appropriate regions. Masking is accomplished by applying a
Heaviside function on the concentration of cell species, biased negatively by
a small bias term 𝜖𝑐. When simulations incorporate non-zero diffusion rates
for the cell species, cells may invade nearby space. Masking ensures protein
expression occurs only in regions occupied by cells of the correct identity. The
small bias ensures that, in the case of linear diffusion, the rapidly expanding
cell mass does not result in an equally rapid expansion of protein expression. It
is a well-known fact from transport theory that linear isotropic diffusion results
in infinite range expansion; any local perturbation of a continuously-valued,
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diffusing species instantly produces a global effect. While this is not the case
in a finite difference scheme, the range does increase with each time step and
the bias term prevents expression from regions of negligible cell concentration.
With these alterations, the reaction terms governing protein species evolution
are

d𝑅
d𝑡

= (𝑥𝑅 ℋ(A, 𝜆𝑅, 𝐾𝑅)Θ(𝐶pulser − 𝜖𝑐) − 𝑟𝑐𝑅)𝒩 − 𝜌𝑅𝑅

for the repressor species and
d𝑆
d𝑡

= (𝑥𝑆 ℋ (A, 𝜆𝑆, 𝐾𝑆) ℋ− (𝑅, 𝜆𝐶, 𝐾𝐶) Θ (𝐶pulser − 𝜖𝑐) +

𝑥𝑂 Θ (𝐶sender − 𝜖𝑐) − 𝑟𝑐𝑆) 𝒩 − 𝜌𝑆𝑆

for the synthase species. Finally, AHL synthesis is emitted at a rate propor-
tional to the synthase quantity at a location and degrades according to the
autodegradation term 𝜌𝐴:

d𝐴
d𝑡

= 𝑥𝑎 𝑆 (𝐶pulser + 𝐶sender) − 𝜌𝐴𝐴 .

The finite difference method (FDM) is an approach to approximating partial
differential equations using difference equations. These difference equations are
designed to approximate the PDE system on a set of grid points, in this case
over the space and time variables. In this model, the difference scheme applies
second-order second central difference equations to approximate the second-
order spatial derivatives. The grid used in the FDM scheme is conceptually
similar to a compartmentalization of the agarose arena into cubic chambers.
The model species take on a single value within each chamber and evolve
according to the ODE model equations and diffusion. For a parameter set 𝑝
and state vector 𝑢, the finite-difference approximation to the reaction-diffusion
system results in the difference equation

𝑢𝑛+1 − 𝑢𝑛
Δ𝑡

= 1
Δ𝑥2 𝐴(𝑝) ⋅ 𝑢𝑛 + 𝑓(𝑢𝑛; 𝑝).

𝐴(𝑝) is a matrix that applies the second-order central differences approximation
of the Laplace operator, resulting in difference equations of the form

ℒ(𝑢(𝑡, 𝑥, 𝑦)) = ∑
1=|(𝑖,𝑗)−(𝑥,𝑦)|

(𝑖,𝑗)∈P

1
Δ𝑥2 (𝑢𝑖,𝑗 − 𝑢𝑥,𝑦) (4.2)
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that describes diffusion at each position (𝑥, 𝑦) given the values at neighboring
positions in the grid 𝑃. The finite difference schemes applied to this problem
take equally spaced grids in all spatial dimensions. In Equation (4.2), there are
two spatial dimensions, so Δ𝑥 = Δ𝑦. In the case of linear, isotropic diffusion,
the matrix 𝐴(𝑝) is a constant, band matrix. The band structure in 𝐴(𝑝) applies
the second-order central differences while 𝐷, from the PDE, is diagonal and
scales the Laplacian terms according to their diffusion rates. The matrix 𝐴(𝑝)
also provides no-flux boundary conditions to ensure diffusing species do not
escape the agarose pads at its boundaries. Note that the size of matrix 𝐴(𝑝) is
𝑛 × 𝑛 for 𝑢𝑛 ∈ ℝ𝑛; though the simulated arena is two-dimensional, the values
of the model species over the two-dimensional spatial grid is represented as a
vector and the diffusion operator as a two-dimensional matrix.

Accounting for out-of-plane diffusion
It would be convenient to find a difference scheme that can produce simulated
data that is similar to experimental observations without explicitly tracking
AHL concentration within the interior of the agarose pad. However, scaling laws
described by Dieterle et al. (2020) suggest that the most natural treatments,
either of an infinitely tall pad or a negligibly tall pad, are not appropriate given
the similarity in the measured propagation velocity (in the area of 1-2 mm/hr)
and the height of the pad (roughly 1.5mm). Here, the agarose pad organization
described in Section 2.3 is applied to determine the impact of AHL diffusing
out of the plane of interest through simulation.

The organization of strain components on the agarose pads applied in Section
2.3 to investigate signaling propagation along one dimension was designed
to minimize rate at which diffusion carried AHL away from consortium cells.
Sender strains were separated from their consortium partner strains, either
amplifiers or reporters, and isolated to a narrow region at one end while their
partner strain occupied the larger portion. As a result, the experimental
setup was symmetrical in one dimension. Thus, simulations of this setup can
consider only two dimensions, one in the direction of signal propagation and
one perpendicular to the surface the cells live in.

Simulations of the model described in Section 4.3 were performed that matched
the cell patterning and agarose dimensions applied described in Section 2.3. The
simulation region described a surface 2mm high and 24mm long, matching the
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Figure 4.2: The two plots depict simulated protein quantities (in arbitrary
units) along the sender-amplifier consortium at each simulation time step.
Quantities are determined by multiplying the model species of cell density by
those representing intracellular protein concentrations. The intensity values
depicted in the heatmaps are normalized to the maximum value in each image.
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Figure 4.3: This plot shows the propagating front of signaling activity as
represented by the quantities of repressor and synthase species. To determine
the position of the signaling front, a threshold was applied to the fluorescence
data presented in Figure 4.2. The points depicted in the plot correspond to
the position farthest from the sender population that surpasses the threshold
value at each time step. Threshold values were determined by the Otsu
thresholding method. Propagation velocities and maximum signaling distances
were determined by fitting a line of the form Min(𝑎𝑡+𝑏, 𝑐), where 𝑡 is simulation
time, 𝑎 is velocity, and 𝑐 is maximum calling distance, were fit by least squares.



48

dimensions of the agarose pads used during time-lapse microscopy experiments.
In the initial data used for numerical solution of the initial value problem

𝑢𝑛+1 = 𝐴(𝑝)𝑢𝑛 + 𝑓(𝑢𝑛),

cells were confined to the bottom row of a two-dimensional grid that spanned
the pad height with grid spacing Δ𝑥 = 1

16𝑚𝑚. Diffusion was considered only
for the model species representing AHL. Due to the uniform cell occupation
across the pad length, no spatial variation could occur in nutrient or cell density.
Diffusion rates for the protein species were likewise set to zero. The simulation
ran for a simulated time of 15 hours.

Figure 4.2 depicts protein quantities over the layer of cells and time grid from
a simulated sender-amplifier consortium. Just as in the experimental data
depicted in Figure 2.6, after a period of a few hours, the amplifier cells respond
to AHL secreted by the near by sender cells (which occupy the grid positions
between 0 and -4mm) and produce a propagating front of signaling activity that
travels away from the sender population. The position of this signaling front
over time is shown in Figure 4.3. The front produced by the simulated consortia
travels farther and slightly slower than the experimental consortium (see Figure
2.7). However, the three phases of pulse propagation remain: pre-initiation
growth, constant-velocity propagation, and nutrient depletion, and the behavior
is remarkably similar considering the model parameters were identified from
data generated by liquid culture experiments.

Figure 4.4 shows the concentration drop in the out-of-plane direction, measured
at each grid point in the cell layer. The more-negative values coincide with
the synthase peaks in Figure 4.2, while the concentration profile everywhere
is significantly less steep. This suggests that, as might be expected, out-of-
plane diffusion is most significant near isolated, high-AHL emission regions
and at the leading edge of the propagation front in particular. Away from
these areas, diffusion smooths the out-of-plane concentration gradient and
reduces the impact of diffusion along that vector. A reasonable approach to
capturing the effect of out-of-plane diffusion without explicitly modeling signal
transport within the interior of the agarose pad, therefore, would be reducing
the expression rate of synthase protein or the synthesis rate of AHL. This
reduction in expression rate accounts for the quantity of signaling molecule that
is effectively sequestered in the interior of the pad by diffusion. This is more
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Figure 4.4: The difference between AHL concentrations in the cell layer and
the layer immediately above it was calculated at each gridpoint within the cell
layer, then divided by the value in the cell layer. The value in the cell layer
was subtracted from the value in the higher layer. Negative values indicate a
concentration drop in the out-of-plane direction, which results in out-of-plane
diffusion. Values closer to zero indicate a flat profile where diffusion has less of
an impact. The interface between the sender and amplifier regions is at 4mm,
with sender cells below that line and amplifier cells above it.

appropriate account for out-of-plane diffusion by increasing the autodegradation
rate, which would lead to rapid concentration declines even away from high-
emission regions where the out-of-plane diffusion rate should be small. One
unrealistic result of this assumption is that it cannot account for the gradual
accumulation of signaling molecules in high-synthesis regions. As seen in Figure
4.4, the concentration gradient over the sender cell population grows more
shallow over time as signaling molecules accumulate above it. As this occurs,
AHL accumulation within the cell layer will accelerate. However, this takes
place well behind the propagating signaling front and has little impact on it.
In order to capture the impact of out-of-plane diffusion at the leading edge
of the propagating signaling front, the simplest appropriate adjustment was
made: reducing the protein production rate of the sender synthase and the
signal synthesis rate by half.

Finite difference scheme for growing microbial consortia in two di-
mensions
The purpose of developing this model of cell-cell communication within micro-
bial consortia is to accurately reproduce observations made during time-lapse
microscopy experiments and then extend its use to hypothetical consortia.
These data show heterogeneous responses in fluorescence and growth at the
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sub-millimeter level. It is critical to determine whether these observations
are natural consequences of the well-characterized growth and synthetic gene
circuit models; if not, then our understanding of the synthetic consortia is
insufficient to extend use of this model to more complicated consortia.

Unfortunately, the PDE model includes processes that proceed at drastically
different time scales. This can make numerical solution problematic. It was the
case that applying common general-purpose numerical solvers for stiff problems,
such as Runge-Kutta 4(5) and LSODA, failed in integrating the nutrient-
dependent growth model combined with the cell-cell signaling circuit with
spatially heterogeneous microbial consortia. A fixed-step numerical integration
method was therefore developed. While generally less computational efficient
and accurate than variable time step methods, fixed-step methods can be
customized to satisfy a priori accuracy constraints and guarantee completion
of the requested integration. This subsection describes the fixed-step operator-
splitting approach used in simulating complex, growing consortia on 2D surfaces.

It is likely that the “stiffness” at issue in this problem arises from the expanding
microcolonies and the masking performed to restrict protein production to grid
points that are sufficiently dense in cells. By splitting the system evolution
into two steps and calculating the effect of the diffusion and reaction terms
separately, each can be efficiently calculated according to their different time
scales.

The diffusion step, due to the linearity of its differential operator, can be
efficiently resolved using a second-order implicit method that ensures good
performance while maintaining a relatively large fixed time step to speed
integration. Relative to the diffusion term, the reaction term is both non-linear
and more difficult to apply to an implicit approach. Instead, the reaction
contribution is calculated using a simple explicit form, iterated several times
over a smaller time step.

The diffusion step is performed by a Crank-Nicholson step. First, the diffusion
step is proposed as an implicit difference equation

�̃�𝑛+1,𝑖 = 𝑢𝑛 + Δ𝑡
2

𝐴(𝑝)(�̃�𝑛+1,𝑖 + 𝑢𝑛)

and is then rearranged to form the matrix equation

(𝐼 − Δ𝑡
2

𝐴(𝑝))�̃�𝑛+1 = (𝐼 + Δ𝑡
2

𝐴(𝑝))𝑢𝑛 ,
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which permits approximation of the mid-step value �̃�𝑛+1,1 from the known
value 𝑢𝑛. Python scripts executing the simulation use SciPy’s generalized
minimum residual method to quickly approximate the value of the unknown.
Following this, the mid-step value �̃�𝑛+1,1 is used as the initial data for a series
of forward Euler steps of the form

�̃�𝑛+1,𝑖+1 = Δ𝑡
4

𝑓(�̃�𝑛+1,𝑖) + �̃�𝑛+1,𝑖

that employ a time step Δ𝑡/4. The forward Euler steps are repeated four times
to match the time step taken during the diffusion calculation, resulting in the
final step value �̃�𝑛+1,5 = 𝑢𝑛+1 at the completion of the time step. The time
step for the implicit portion is selected according to the constraint Δ𝑡 < Δ𝑥2

6𝐷𝑎

to prevent oscillations in the diffusion step.

All model species have positive diffusion coefficients in the linear diffusion
operator 𝐴(𝑝). While E. coli can engage in random walks through flagellar
motion and modeled as such using linear diffusion, the bacteria under the
agarose pad move only as the result of crowding and pressure from microcolony
formation. Nonlinear diffusion equations such as the permeable membrane
equation would be a more appropriate descriptor of cell movement in this
scenario. This is not pursued here, as linear diffusion enables more efficient
integration. The nutrient-based growth model, however, achieves a similar
range expansion effect that is achieved by slow diffusion of nutrient and cell
species. While linear diffusion results in an immediate response across the
spatial domain in the PDE, the low diffusion coefficients of nutrient and cell
species creates a sharp transition from high to low density at the edge of
cell-occupied regions.

Using this finite difference scheme and operator-splitting approach to time
stepping, simulations were performed to match the conditions present in the
experiments described in Chapter 3. Selected images representing the simulation
state are depicted in Figure 4.5. The spatial grid in the scheme had Δ𝑥 = 1

16mm
over a region 9mm × 9mm and a Crank-Nicholson timestep of Δ𝑡 = 3seconds
was applied. Initial cell data were sparse boolean arrays, where the small
number of high-density grid points were selected randomly from a 0.7mm disk
at the center of the spatial domain. For each simulation, a single high-density
sender position was selected and 100 high-density amplifier or reporter positions
were selected. The integration proceeded for 18000 time steps such that the
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Figure 4.5: Simulations of sender-amplifier and sender-reporter consortia were
performed, designed to recreate the experiments described in Chapter 3. The
two rows of images show protein amounts from the sender-amplifier (Active)
and sender-reporter (Inactive) consortia at selected time points. Protein
concentrations are represented in the false-color images according to their
identity and their associated cell type. Black indicates absence, and brightness
correlates with quantity. A color key is indicated by the figure legend. The
isolated point in the frames corresponding to 2 hours is the location of the
single sender microcolony. Scale bar is 100𝜇m.

time grid spanned 0 to 15 hours. Ten such simulations were performed for each
consortium.

While the simulated sender-amplifier consortia exhibit a marginally more
rapid response to signals originated by the sender population than the sender-
reporter consortia, the simulated consortia generally appeared to respond more
rapidly than observed in experiment. Figure 4.6 shows the response time
values calculated for each simulation. Compared to the analogous plot of
experimentally observed response times in Figure 3.2, the simulated consortia
activate in roughly in roughly half the time. Simulated sender-reporter consortia,
where signal amplification is inactive, also showed a significant response. This
can be seen in Figure 4.5, where the images in the “Inactive” row show a clear
response near the sender colony that is absent from the experimental data in
Figure 3.1. In contrast, experimental data showed almost no reporter activity.
This suggests that the adjustments described in Section 4.3 did not sufficiently
account for the impact of out-of-plane diffusion in this scenario. In order to
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Figure 4.6: Response times observed in simulation. Each point represents
the time at which the first reporter or amplifier grid point value crossed a
threshold value. Threshold values were determined for each protein species
by applying the Otsu method to the values generated from sender-amplifier
consortia simulations. The black horizontal lines indicate the sample median.

improve this model’s ability to accurately recreate experimentally observed
phenomena, the parameters controlling synthase expression in sender cells and
synthase activity rate could be fit to the model data.
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4.4 Evaluating the benefit of amplification in hypothetical consortia
Simulations were designed to apply the inferred parameters governing cell
growth, sender activity, and amplifier activity to predict the behavior of
hypothetical consortia to scenarios matching the growth and diffusive contexts
described in Chapter 3: a consortium growing within a disk of 0.7mm diameter
on an agarose pad 4.5mm by 4.5mm by 2mm. The consortia applied to these
simulations express cell-cell signaling and transcriptional programs selected to
explore the potential for collective decision-making in random founding cell
patterns and spatiotemporally heterogeneous sender activity.

Chained sender-receiver cascade
The first consortium assayed is a chained sender-receiver cascade. Like the party
game “telephone”, a cascade is initiated by one strain of sender cells secreting
signals that are received by the next strain in the chain. This population then
expresses synthase protein as activated by the initial signals, producing signal
molecules that activate the following component of the chain. In total the
chain contains five strains, the initiator and four subsequent chain components.
Added to these chained sender-receiver relationships are amplifier cells that are
triggered by each of the sender-receiver signaling species to emit a pulse of the
same species. Figure 4.7a) conceptually represents this consortium structure,
though not the founding cell patterning. The composition of these simulated
consortia vary over the ratio of cascade cells to amplifier cells as well as toggling
the amplifier cells between inactive, in which case they act as bystanders, or
active amplifiers for all sender-receiver interactions. Varying the composition
in this manner allows for the investigation of the relative benefit of amplifier
cells as the cascade cells increase in density. Figure 4.7c) suggests that, with
or without amplifier activity, the chained cascade produces negligible activity
past the first interaction. However, the amplifiers succeed in boosting that
response in all cases. This is likely due to nutrient depletion, which appears
to enforce a time limit on effective consortium-wide communication at the
simulated arena size, simulation time, and the assumption of an infinitely-deep
diffusive environment.

Coincidence detector
The second consortium investigated was composed of amplifiers (or receivers
when inactive), two sender populations, and a receiver. Simulating this consor-
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Figure 4.7: Hypothetical consortia composed of amplifiers/receivers and chained
sender cells are simulated to evaluate how amplifying cell-cell signaling can
benefit information propagation. (a) depicts a schematic representing the
cell-cell signaling relationships represented in these simulations. The chained
senders are connected by unidirectional, sender-receiver relationships in which
chain index 𝑖 emits signal molecules that activate synthase expression in chain
index 𝑖 + 1. The index 0 population are constitutively active. Each sender-
receiver relationship employs unique, orthogonal signaling species Amplifiers,
however, can amplifify the signaling activity at each index. Simulations vary
the bystander cells’ status as amplifier or receiver and the composition of the
founding consortia populations, which is described in (b). Sender multiplicity
is the number of founding cells of each of the sender populations. Because the
founding population is set at 100 individuals, higher multiplicity reduces the
total number of amplifier/receiver cells in the founding population. The benefit
provided by amplification is measured by comparing the maximum synthase
amount in each sender population achieved during simulations including either
amplifiers or receivers as partners to the chained senders. Receivers do not
respond to signaling activity, but they occupy space and consume nutrients.
(c) depicts, in boxplots, the distributions of sender activity at each index of the
sender chain obtained over ten simulations of each consortium. Simulations of
chain/amplifier and chain/receiver consortia utilize the same initial conditions
such that the comparisons of the distributions are not confounded. In all
assayed conditions, utilizing parameters governing gene networks and cell
growth in B.3, the amplifiers increase the response in chain indices greater
than 0. However, the response in all multiplicities except 2 is significantly
diminished in comparison to the constitutively-active index 0 senders and the
response from chain indices greater than 1 is negligible in all cases. Together,
these data suggest that even with amplifier cells, a chained signaling cascade
between minority populations is unlikely succeed past a single step.
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tium sheds light on how amplifying cell-cell signaling can benefit consensus in
an environment of spatially heterogeneous chemical signals. In this scenario,
the senders stand in for components of a deployed consortium that alert the
community to environmental events to which they are uniquely sensitive. Re-
ceivers respond to the simultaneous presence of signals from both sender cells,
which can also be amplified by the amplifier strain. Simulations are performed
that apply varied pulses of activity from the sender populations. The success of
the communication strategy is evaluated on the basis of simulated fluorescence
from the receiver population. A conceptual summary of this consortium and
results provided in Figure 4.8a). The results show an unexpected pattern of
receiver response in which the strongest activity arose from simulations with
sender pulse timings at time 2 and 5 hours with a pulse width of 4 hours.
This implies an overlap in both pulses of 1 hour, relatively short compared to
other simulations that produced overlaps of 2 or 3 hours. While increasing
the overlap time naturally results in more receiver activity, it appears that
separating the initiating times of the two sender populations has a greater
benefit. The reasons behind this are not clear and further investigation is
required before arriving at conclusions. It is clear that the time-varying nutrient
availability and spatial patterning is a key determinant of both the effectiveness
of cell-cell communication within consortia executing complex programming
and the benefit provided by amplifier strains.
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Figure 4.8: Outline and results of the coincidence detector consortium. (a)
depicts a schematic representing the cell-cell signaling relationships represented
in these simulations. The two sender populations initiate signaling through the
release of diffusible signaling chemicals. Amplifiers, when active, are triggered
by the sender populations to contribute to the local concentrations of these
chemicals in a pulsatile fashion. The receiver population produces a fluorescent
output in the presence of both signaling molecules. Simulations vary the
timing and duration of synthase expression within the sender populations
as shown in (b). Simulations span 12 hours. Gray-shaded regions indicate
overlapping synthase expression within the sender populations. Plots in (c)
show the maximum pixel values within the receiver population obtained over
three simulations of each sender-emission pattern. Each of these three iterations
employs a different random spatial patterning of the founding population, which
is composed of a single founder of each of the sender and receiver strains and
100 amplifier/bystander cells. These random initial conditions are repeated
for consortia with active and inactive amplifier cells such that active/inactive
cases can be compared directly. In all assayed conditions, utilizing parameters
governing gene networks of sender, amplifiers, and receivers as well as cell
growth in B.3 and use the same arena and consortia geometry as in 4.5. The
simulated receiver fluorescence indicates the degree to which the population
receives input from both sender cells. All conditions show a greater average
response in the receiver population when amplifiers are active. However, only
the simulations in which one pulse initiates at 2 hours and the other at 5 hours
results in significant expression. This is likely a result of the time-varying
nutrient availability and suggests the relationship between event timing and
response is non-trivial and not intuitive. Further exploring the spatiotemporal
dynamics of nutrient availability in simulation requires more experimental data
capturing these effects in order to be predictive.
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A p p e n d i x A

BAYESIAN PARAMETER INFERENCE OF THE LIQUID
CULTURE MODEL USING MARKOV CHAIN MONTE

CARLO

A.1 Bayesian parameter inference
Bayesian parameter inference using Markov Chain Monte Carlo is an approach
to curve-fitting that enables approximation of the probability distribution over
model parameters given the observed experimental data. This section describes
the selection of likelihood and prior functions used to estimate the posterior
(Hogg, Bovy, and Lang (n.d.)).

The data available presents many options for defining the likelihood function.
Many approaches to parameter inference for dynamical systems apply generative
models to produce simulated data. At each parameter set sampled by the
Markov process, the difference between the simulated and experimental values,
or residual, is used to estimate the probability of the data given the sampled
parameter set. The difficulty in taking this approach when dealing with a
nonlinear dynamical system is that the distribution of residual values can
be hard to determine or approximate. This is in part due to the fact that
the residuals are not independent of one another. Consider, for instance, a
generative model of the data that involves the numerical solution of ordinary
differential equations that depends on the sampled parameters. Due to the
continuity of the differential equations and, by assumption, the physical process
that generated the experimental data set, large residuals are likely surrounded
by large residuals. Instead of generating simulated data according to a sampled
parameter set and the model equations, the approach we take here is to compute
the residual of a self-consistency relationship derived from the model equations.

Defining the residual function
These self-consistency functions are derived from the differential equations
described in Chapter 4. The equations governing protein expression include
variables that represent intracellular concentrations. By rewriting these as
equations relating the total quantities of each species, the equations then define
an expected consistency between observable data, namely the derivatives of
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the fluorescence and optical density traces, and Hill functions. A residual
calculation is performed by treating the Hill functions as the generative model
describing the observed data.
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Figure A.1: The two plots show the Hill and Data terms based on data from two
experimental wells and the maximum-posterior estimate for the liquid culture
model parameters. The inducer concentrations from each well are included in
the figure legend. While the Hill term values corresponding to the mScarlet-I
channel are functions of simulated AHL transport and parameter values, those
of the SCFP3A channel depend on observed density-normalized mScarlet-I
fluorescence. Due to noise in measuring density-normalized fluorescence, the
Hill term values of the SCFP3A channel appear less smooth than in the
mScarlet-I channel.

Consider the differential equation that governs mScarlet-I expression, according
to the liquid culture model:

d𝑅
d𝑡

= 𝑥𝑅 ℋ(A, 𝜆𝑅, 𝐾𝑅) − (𝜌𝑅 + 𝑟𝑐(1 − 𝑐
𝐶𝑚

))𝑅.

Substitute the growth-rate dependent dilution term with the definition for the
derivative of cell growth and simplify the notation by letting a time-varying
function 𝐻(𝑡) stand in for the production term:

d𝑅
d𝑡

= 𝐻(𝑡) − 𝜌𝑅𝑅 − d𝑐
d𝑡

𝑅
𝑐

. (A.1)

Now consider the relationship between the intracellular concentration of
mScarlet-I, 𝑅, and the total amount �̂� = 𝑐𝑅. Using the chain rule, we
compute the derivative of the total mScarlet-I quantity:

d�̂�
d𝑡

= d𝑐
d𝑡

𝑅 + 𝑐d𝑅
d𝑡

. (A.2)
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Using this relationship, we can substitute the terms for intracellular concentra-
tion 𝑅 with those of the total quantity �̂� in Equation (A.1):

0 = 𝐻(𝑡) − 𝜌𝑅𝑅 − d𝑐
d𝑡

𝑅
𝑐

− d𝑅
d𝑡

,

0 = 𝐻(𝑡) − 𝜌𝑅𝑅 − 1
𝑐

(d𝑐
d𝑡

𝑅 − 𝑐d𝑅
d𝑡

),

0 = 𝐻(𝑡) − 𝜌𝑅𝑅 − 1
𝑐

(d�̂�
d𝑡

),

0 = 𝐻(𝑡) − 1
𝑐

(𝜌𝑅𝑅 + d�̂�
d𝑡

).

Just as 𝐻(𝑡) is a time-varying function, so to is the term 𝐷(𝑡) = 1
𝑐 (𝜌𝑅𝑅 + d�̂�

d𝑡 ).
These are called the Hill and Data terms, respectively, and examples are shown
in Figure A.1. The residual is the difference between the two terms

𝑟 = 𝐻(𝑡) − 𝐷(𝑡).

As a result, the residual distribution can be approximated by the distribution
of the Data terms. This same derivation is used to determine the definition of
the residual for SCFP3A data, where the Hill term is a product of the three
Hill functions describing IPTG activation, AHL activation, and transcriptional
repression via Laci, and the maximal expression rate parameter 𝑥𝑆.
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Figure A.2: Fluorescence data from two experimental wells with high expres-
sion activity show a marked delay in the initial accumulation of mScarlet-I
fluorescence in comparison to SCFP3A fluorescence. Derivative estimates verify
that there is no measured change in mScarlet-I fluorescence in the first half
hour of data acquisition.

In the case of bicistronic LacI and mScarlet-I expression, we expect that the Hill
functions vary in time only as the AHL concentration equilibrates between the
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cell volume and the growth media. This occurs rapidly (Kaplan and Greenberg
(1985)). However, the data in Figure A.2 show a significant delay before the
expression rate gradually ramps up to a peak and, finally, descending. The
ramp up may be due to the long maturation time of mScarlet-I (roughly 66
minutes to 90% maturation) and the descent is likely due to slowing cell growth
and protein production. This delay is less apparent in the SCFP3A fluorescence
channel, perhaps due to its more rapid mautration (roughly 24 minutes to 90%
maturation) (Balleza, J. M. Kim, and Cluzel (2018)).
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Figure A.3: Data from a single experimental well is shown here with two choices
of mScarlet-I channel delay. The corresponding Hill and Data term values
illustrate the effect of the delay parameter on how the residual is calculated.
In the case of the mScarlet-I terms, the Hill term is left unchanged while the
Data terms are moved backwards in time by the delay value. Data that fall
into negative time are removed and replaced by resampling the same number of
points from the end of the time series. The SCFP3A Data terms are unchanged
while the Hill terms respond to the time-shifted density-normalized mScarlet-I
fluorescence.

As the model does not consider maturation time or nutrient effects, an additional
parameter is included while performing MCMC. This parameter represents
impact of mScarlet-I’s maturation time on the observed fluorescence data and
is demonstrated in Figure A.3. For a delay time 𝑡𝑑, data from the mScarlet-I
channel measured at time 𝑡𝑚 < 𝑡𝑑 is removed and the observation times of
subsequent data are shifted backwards in time by Max(𝑡𝑚 ∶ 𝑡𝑚 < 𝑡𝑑). To avoid
favoring large delay times by removing data from the likelihood calculation,
observations are added by resampling. When 𝑛 observations are removed, 𝑛
are resampled from the terminal 𝑛 points of the time series.
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Approximating the residual distribution
The residual distribution is difficult to approximate whenever its dependencies
on model parameters, observation values, and other residuals are unknown
(Hogg, Bovy, and Lang (n.d.)). One of the benefits of calculating the residual
using the self-consistency relationships instead of simulated data is that each
residual calculation represents an independent sampling of the residual distribu-
tion. When comparing data to a simulated ODE time series, on the other hand,
the residuals at each point are not independent of one another. This section
describes how the residual distribution of the self-consistency relationships
were approximated.

The mScarlet-I channel Hill term is a function of AHL concentration, maximal
expression rate 𝑥𝑅, and Hill function parameters 𝜆𝑅 and 𝐾𝑅 while the Data
term depends both on the observed fluorescence and a single model parameter,
𝑑𝑟. In determining the residual distribution, the contribution of uncertainty
from the Hill term is ignored. It is assumed that understanding the distribution
of Data term values is sufficient to describe the residual distributions. As
the uncertainty in measuring Data term values results from the measurement
process and sample-to-sample variability, it is natural to assume that both
sources of uncertainty will result in a monotonic increasing relationship between
the expected value and width of the distribution of Data terms. The task then
becomes determining this relationship.
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Figure A.4: Distribution of residual values from wells with Hill term values
equal to 0. Empirical distribution values were determined through binning
the 𝑛 Data term values into 2

√
𝑛 bins and calculating the normalized bin

occupancy. The fit to a Normal distribution was perfomed by calculating the
sample mean and standard deviation. The fit to a Cauchy distribution used
the same sample mean. The Cauchy scale parameter was taken to be half of
the sample standard deviation. The sample standard deviation here is 0.24.
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This is accomplished by first characterizing the residual distribution when the
Hill term is equal to zero, which corresponds to no mScarlet-I expression. In the
case that both the Data and Hill terms are expected to be zero, the distribution
of Data term values represents the uncertainty in measurement and sample
preparation. Sample variability can only introduce uncertainty, therefore the
distribution when the Hill term is zero corresponds to the minimum uncertainty
in the residual distribution. Figure A.4 depicts the distribution of mScarlet-I
channel Data term values recovered from experimental wells without any added
AHL.

The distribution of residuals at higher Data term values was approximated by
sampling the highest 4 Data term values from experimental wells grouped by
AHL concentration. Data terms depend on a single model parameter that at
this point is unknown. For the purpose of estimating the residual distribution,
the a priori expected value of 2 ⋅ 10−4/second was selected. Data term values
from the mScarlet-I channel reach a plateau after a few hours (see Figure A.1 ).
By sampling values from the plateaus corresponding to different experimental
wells, pooled according to inducer condition, the resulting distribution reflects
both measurement residual and sample-to-sample variability. The sample
means and standard deviations were computed for each pooled group of Data
term values and plotted to determine the relationship between distribution
width and expected value. Figure A.5 depicts the observed width - center pairs
along with the scaling law implemented in the likelihood calculation.

To verify that the distribution scaling law appropriately described data from
all ranges of Data term values, the data within each pooled group was rescaled
according to the sample means and standard deviation as predicted by the
scaling law. Following this, the data were collated and its empirical density
function computed. The result, as shown in Figure A.6, appeared to be
well-represented by a Normal distribution.

A similar approach was employed to determine the appriopriate scaling law
for the SCFP3A residual distrubtion. Figures A.7 through A.9 show residual
distributions and scaling law.

MCMC was performed using the emcee python package, making use of 1000
walkers and the kombine move selector (Foreman-Mackey et al. (2012), B.
Farr and W. Farr (2015)). The chain was run for 10000 steps and the walker
occupancy distrubtion appeared unimodal. Figure A.11 depicts the positions
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Figure A.5: Investigating the residual distribution in the mScarlet-I channel
at high expression from liquid culture experiments. This plot of rescaled Hill
and Data terms from high-expression samples suggests that the scaling law
appropriately describes the residual distribution as mScarlet-I fluorescence
increases. Data term values were rescaled according to the scaling law and an
empirical density function was calculated. The empirical probability density
function is plotted against fitted Normal and Cauchy distributions. This data
set is much smaller than that of Figure A.4, so only

√
𝑛/2 equal-sized bins

were used in calculating the empirical density function. The by-eye match
between the empirical density values and the Normal distribution was the
basis of selecting a Normal distribution using the scaling law in the likelihood
calculation.

of the walkers at each iteration. The acceptance rate is well below the optimal
for the dimensionality of the posterior distribution. This typically indicates
that the walkers have discovered multiple local minima such that the move
selector cannot produce a likely proposal. However, due to the proximity
of these apparent local minima, the large number of walkers used, and the
appearance of the marginalized posterior distributions, the chain is accepted as
is. Furthermore, the authors of the emcee package note that many problems
suffer from a vanishing acceptance rate, but that this is no cause for concern
outside of applications in high-accuracy machining or involving life-or-death
decision-making (Foreman-Mackey et al. (2012)). Outside of these cases, a
chain with low-acceptance that surpasses 10 autocorrelation times can be



65

0 2
Residual

0.0

0.2

0.4

0.6

0.8

Pr
ob

ab
ilit

y 
de

ns
ity

0 2
Residual

4

2

0

Lo
g 

pr
ob

ab
ilit

y 
de

ns
ity Rescaled empirical

Cauchy fit
Normal fit

Figure A.6: Investigating the residual distribution in the mScarlet-I channel
at high expression from liquid culture experiments. This plot of rescaled Hill
and Data terms from high-expression samples suggests that the scaling law
appropriately describes the residual distribution as mScarlet-I fluorescence
increases. Data term values were rescaled according to the scaling law and an
empirical density function was calculated. The empirical probability density
function is plotted against fitted Normal and Cauchy distributions. This data
set is much smaller than that of Figure A.4, so only

√
𝑛/2 equal-sized bins

were used in calculating the empirical density function. The by-eye match
between the empirical density values and the Normal distribution was the
basis of selecting a Normal distribution using the scaling law in the likelihood
calculation.
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Figure A.7: Investigating the residual distribution in the SCFP3A channel
at low expression from liquid culture experiments. Distribution of residual
values from wells with Hill term values equal to 0. Empirical distribution values
were determined through binning the 𝑛 Data term values into 2

√
𝑛 bins and

calculating the normalized bin occupancy. The fit to a Normal distribution
was performed by calculating the sample mean and standard deviation. The
fit to a Cauchy distribution used the same sample mean. The Cauchy scale
parameter was taken to be half of the sample standard deviation. The sample
standard deviation here is roughly 1.
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Figure A.8: Characterizing the scaling law for residual distributions in SCFP3A
fluorescecne data from liquid culture experiments. This plot depicts in blue
the sample means and standard deviations calculated of the Data term values,
grouped according to AHL and IPTG concentration. The orange line depicts
the scaling law used to define the residual distribution’s standard deviation.

considered a reliable approximation of the posterior distribution. Empirical
cumulative density functions for each parameter are depicted in Figure A.10.
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Figure A.9: Investigating the residual distribution in the SCFP3A channel
at high expression from liquid culture experiments. This plot suggests that
the scaling law appropriately describes the residual distribution when the
Hill and Data terms are larger than zero. Data term values were rescaled
according to the scaling law and an empirical density function was calculated.
The empirical probability density function is plotted against fitted Normal
and Cauchy distributions. Again, only √(𝑛)/2 equal-sized bins were used
in calculating the empirical density function. The by-eye match between the
empirical density values and the Normal distribution was the basis of selecting
a Normal distribution using the scaling law in the likelihood calculation.
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Figure A.10: Empirical cumulative density derived from the MCMC chain.
Stem plots bracket the middle 95 centiles and mark the maximum estimated
posterior parameter set between them.
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Figure A.11: Walker positions in parameter space over all iterations. Estimated
log posterior values were calculated by the emcee ensemble sampler instance.
The initial positions of the walker were selected from the a priori best fit, but
all walkers quickly moved to a more likely region of parameter space.
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A p p e n d i x B

TABLES OF MODEL SPECIES AND PARAMETERS

B.1 Liquid culture model

Table B.1: Liquid culture model parameters 1

Parameter Notation Value Units

Cell growth rate 𝑟𝑐 2.6 × 10−4 second−1

Density carrying capacity 𝐶𝑚 1 OD700
Synthase autodegradation 𝜌𝑠 2 × 10−4 second−1

Repressor
autodegradation

𝜌𝑟 8 × 10−6 second−1

Synthase maximum
expression

𝑥𝑆 389.2 𝑎.𝑢.
second OD700

Synthase AHL-activated
Hill coefficient

𝜆𝑆 2.3

Synthase AHL-activated
IC50

𝐾𝑆 126.4 nM

Synthase IPTG-activated
Hill coefficient

𝜆𝐼 1.4

Synthase IPTG-activated
IC50

𝐾𝐼 558 uM

Repressor maximum
expression

𝑥𝑅 13.6 𝑎.𝑢.
second OD700

Repressor AHL-activated
Hill coefficient

𝜆𝑅 2.65

Repressor AHL-activated
IC50

𝐾𝑅 36.6 nM

Repressor-mediated
inhibition Hill coefficient

𝜆𝐶 2.3

Repressor-mediated
inhibition IC50

𝐾𝐶 11280 a.u. OD700−1

AHL autodegradation 𝜌𝐴 3 × 10−5 second−1
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Table B.2: Liquid culture model species

Species notation Units

Synthase 𝑆 a.u.
OD700

Repressor 𝑅 a.u. OD700−1

Cell density 𝑐 OD700
Intracellular AHL
concentration

𝐴 nM

Extracellular AHL
concentration

𝐴𝐸 nM

IPTG concentration 𝐼 uM

B.2 Reaction-diffusion model
Table B.3: Model terms unique to the reaction-diffusion
model 2

Parameter Notation Value Units

Nutrient consumption
rate

𝜌𝑛 1.6 × 10−2 second−1

Nutrient Hill
concentration

𝐾𝑛 68

Nutrient Hill coefficient 𝜆𝑛 4
Sender cell synthase

expression rate3
𝑥𝑂 300 𝑎.𝑢.

second OD700

Sender cell synthase
expression rate4

𝑥𝑂 150 𝑎.𝑢.
second OD700

Amplifier cell synthase
expression rate5

𝑥𝑠 250 𝑎.𝑢.
second OD700

Synthase activity rate 6 𝑥𝑎 2 × 10−6 𝑛𝑀
second a.u.

Synthase activity rate 7 𝑥𝑎 1 × 10−7 𝑛𝑀
second a.u.

Nutrient diffusion rate 𝐷𝑛 1.14 × 10−6 mm2

second
AHL diffusion rate 𝐷𝑎 2 × 10−4 mm2

second

1Appendix A describes the parameter inference approach for the gene circuit parameters.
2Appendix C describes the parameter inference approach for the nutrient-based growth

parameters.
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3Out-of-plane diffusion model
42D model
5Calculated by applying agarose IPTG concentration, 1.5mM, to the IPTG-dependent

Hill function from the liquid culture model
6Out-of-plane diffusion model
72D model
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A p p e n d i x C

INFERRING PARAMETERS GOVERNING CELL GROWTH
IN SEMI-SOLID MEDIA

C.1 Introduction
The growth process of cells in semi-solid media is different from growth in liquid
culture and therefore requires different treatment within a model. In a diffusive
environment, such as an agarose pad, cells deplete local nutrient concentrations
while dividing exponentially. Following this depletion, microcolonies grow at
a reduced rate, consuming nutrients as they diffuse away from unoccupied or
more sparesly occupied by cells. Furthermore, cells divide more slowly as a
result of contact inhibition (Payne et al. (2013), Cao et al. (2016)).

Disentangling the various mechanisms affecting division rates in semi-solid
media is an active area of research that is beyond the scope of this work. The
goal here is to apply a simple model describing cell growth that accurately
reflects the empirical growth curves observed during time-lapse microscopy
experiments. To do so, a model of cell growth in a diffusive environment
is selected that can, under different parameter choices, reflect the range of
expected growth behaviors. Then, parameters are selected to minimize the
difference between experimental and simulated data.

C.2 Growth model
The model of cell growth used in the finite-differences approximation simulations
was based on the work of C. Liu et al. (2011). In this model, the division rate
at a position is related to the value of a nutrient species by a Hill function of
the form

𝜕𝑡𝑐
𝑐

= 𝑟𝑐
𝑛𝜆𝑛

𝑛𝜆𝑛 + 𝐾𝜆𝑛𝑛
(C.1)

As noted in Chapter 2, the shorthand

ℋ(𝑎, 𝑛, 𝐾) = 𝑎𝑛

𝑎𝑛 + 𝐾𝑛 (C.2)

is used for Hill functions.
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At the beginning of a simulation, the nutrient species is equal to 100, a
nondimensional quantity. This is simply for convenience in notation; a value of
100 indicates 100% nutrient availability. Nutrients diffuse freely within the no-
flux boundaries of the simulation. The rate of cell growth is proportional to the
rate at which nutrient is consumed. Nutrient quantities are therefore diminished
at a rate proportional to the Hill function as well. The model parameter 𝜌𝑛

defines this proportionality. The two differential equations comprising this
nutrient-based model are

𝜕𝑡𝑛 = 𝐷𝑛∇2 − 𝜌𝑛ℋ(𝑛, 𝜆𝑛, 𝐾𝑛)

𝜕𝑡𝑐 = 𝑟𝑐ℋ(𝑛, 𝜆, 𝐾𝑛).
(C.3)

C.3 Dataset
A set of time-lapse microscopy experiments were performed to capture the
growth behavior of E. coli cells on agarose pads. Competent cells of the strain
JS006 were transformed with a plasmid conferring constitutive expression of
the mScarlet-I fluorescent protein. These cells were deposited onto agarose
pads using an acoustic liquid handler. A variety of growth contexts were
implemented that varied in both the seeding population density and shape,
the position of the colonies on the agarose pad, and size of the agarose pad.
Images depicting these contexts are shown in Figure C.1.

Seeding shapes were square patterns of Echo-deposited droplets of 1, 2, or 3
positions wide. Likewise, the square shapes of the agarose pads were multiples
of 4.5mm to a side, ranging from 9mm$×9𝑚𝑚𝑡𝑜24.5𝑚𝑚×$24.5mm. The
positions of the colonies were selected near the center and near edges of the
agarose pads to create different diffusive environments for nutrient transport.
Furthermore, some conditions including two separated colonies were repeated
with one of the pair missing. If the growing colonies could impact each others’
growth even when separated by millimeters, a comparison of these matched
agarose pads would illuminate that interaction.

The constitutive expression of fluorescent protein allowed for easy segmentation
of the cells within each image. Average cell density was calculated by applying
a threshold to each fluorescence micrograph and downsampling the resulting
boolean arrays. Downsampling was performed using local means and a scale
factor of 64. In this way, planar cell density values were calculated over square
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Growth test 0 Growth test 1 Growth test 2

Growth test 3 Growth test 4 Growth test 5

Growth test 6 Growth test 7

Figure C.1: The images in each plot show the fluorescence micrographs of the
different agarose pad growth contexts. The images show the size and position
of the cells on the square agarose pads of varying sizes. While the images were
collected with a spatial resolution of 0.89 𝜇m, these images were downsampled
by a factor of 64 in order to match the spatial resolution of the simulated data.
Scale bars in each image are 4mm.

regions 56.8 𝜇m to a side.

C.4 Simulation and parameter fitting
Simulations were performed with the same spatial resolution and applied the
first downsampled, stitched microscopy image from each agarose pad as the
initial condition of the simulated cell density. Images were drawn from the
ongoing simulations at timepoints equal to those of the experimental data as
well. Examples of these simulated agarose pads are shown in Figure C.2.

Parameter fitting requires a generative model and a measure of goodness-of-fit
between the simulated and experimental datasets. While the correspondence
in spatiotemporal resolution of the two datasets encourage a measure that is a
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Growth test 0 Growth test 1 Growth test 2

Growth test 3 Growth test 4 Growth test 5

Growth test 6 Growth test 7

0.90

0.70

0.50

0.30

0.10

Simulated cell density (cells / pixel)

Figure C.2: The images in each plot show the simulated planar cell densities
designed to match the experimental conditions shown in Figure C.1. Yellow
scale bars in each image are 4mm.

function of the residuals at each position and time, this was not the approach
taken. The reason is that cell crowding and displacement are not features of
the model. As the founding cells grow from single cells into microcolonies, they
form expanding disks. Some of these disks remain within the bins used when
performing downsampling while others do not. Increasing the downsampling
scale factor reduces the impact of these bin-crossing microcolonies at the
expense of spatial resolution. The scale factor of 64 was selected to reduce the
impact cells passing into neighboring bins. However, there is another issue.
Cells lose fluorescence as a result of loss-of-function mutations. Without the
burden of expressing the reporter, mutant cells grow more rapidly than their
neighbors and form large, expanding gaps in the fluorescence micrographs. This
results both in vanishing cell density estimates within the mutant-occupied
regions and crowding of fluorescent cells around the edges of these regions. If
goodness-of-fit were calculated on a sum of residuals, it is likely that parameter
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inference routine would fit to these outlier data rather than overall distribution
of growth rates.

To reduce the impact of loss-of-fluroescence mutants on parameter inference,
the two-sample Kolmogorov-Smirnov goodness-of-fit function (K-S function)
was used to compare the empirical distributions of the cell growth rates from
the simulated and experimental data. The empirical cumulative distribution
functions for the experimental and simulated datasets were calculated using
20 equal-width bins between growth rate values of 0 and 2 per hour. The K-S
goodness-of-fit function 𝑓𝐾𝑆 used here to compare empirical cumulative density
functions 𝐹1 and 𝐹2 describing samples of size 𝑝 and 𝑞 is

𝑓𝐾𝑆(𝐹1, 𝐹2) = 𝑝 𝑞
𝑞 + 𝑝

sup𝑥|𝐹1(𝑥) − 𝐹2(𝑥)|2 (C.4)

Cell growth rates were determined at each position and time by forward differ-
ences in cell densities. The parameter fitting routine used SciPy’s “optimize”
module to find the parameter vector that minimized the K-S values, summed
over each frame and growth context. While doing so eliminates the spatial
information from the comparison, spatial variability in nutrient availability
leads directly to shift of the empirical distribution of the growth rate towards
slower growth. The K-S function therefore allows for parameter fitting in spite
of obstacles presented by loss-of-function mutations and cell crowding.

A comparison of the simulated behavior at best-fit parameters to experimen-
tal data are shown in Figure C.3. The clearest discrepancies are the wider
distributions in growth rate seen in the simulated data as mean growth rate
declines. However, the mean growth rates are very similar between datasets at
all timepoints in all growth contexts.
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Figure C.3: Growth rate of cells in each growth context calculated by forward
difference approximations. Simulation data was generated used the optimized
parameter set. Solid lines represent mean growth rate, excepting empty po-
sitions. Shaded regions extend from the 25th to the 75th centile at each
timepoint.
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A p p e n d i x D

TABLES OF PLASMIDS AND STRAINS

D.1 Plasmid and strain tables
Table D.1: Plasmid names and descriptions

Code Description

ha3_2 pSC101 carb pCinLacO_m B0032 CinI BCD2 sfCFP
har_2 p15a chlor pCinTetO B0032 LacI B0034 mScarlet-I
i1f_8 p15a chlor J23106 B0034 mScarlet-I
i38_13 pSC101 carb pRhlLacO_m B0032 RhlI-ssrA BCD2 sfCFP
i39_1 p15a chlor pRhl B0032 LacI-ssrA B0034 mScarlet-I-ssrA
j78_7 pSC101 carb pCinLacO_m B0032 truncated-CinI-ssrA BCD2

sfCFP
j7h_1 p15a chlor pCinTetO truncated-LacI mScarlet-I
jag_d3 pSC101 carb pRpa B0034 CinI BCD2 sfYFP T J23103 B0032

RpaR

Table D.2: Strain names and descriptions

Description Code Plasmids E. coli strain

Cin Amplifier strain i59_2 ha3_2;har_2 CY026
Weak sender strain jao_1 jag_d3;har_2 CY026
Strong sender strain k25_1 jag_d3;j78_7 CY026

Reporter strain k25_3 j7h_1;j78_7 CY026
Constitutive mScarlet-I i1f_8 i1f_8 JS006

Rhl positive feedback strain i38_13 i38_13 CY026

Table D.3: E. coli strain genotypes

Description Genotype Source

CY026 BW25113 ΔlacI ΔaraC
ΔsdiA Ptrc* -cinR Ptrc*
-rhlR

Ye Chen, Addgene
Bacterial strain #72340
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Description Genotype Source

JS006 BW25113 ΔaraC ΔlacI Jesse Stricker, Stricker et al
2008

D.2 Plasmids maps

Figure D.1: Plasmid map for Cin positive feedback plasmid ha3_2.
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Figure D.2: Plasmid map for Cin negative feedforward plasmid har_2.



82

Figure D.3: Plasmid map for constitutive mScarlet-I source i1f_8.
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Figure D.4: Plasmid map for Rhl positive feedback plasmid i38_13.
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Figure D.5: Plasmid map for Rhl negative feedforward plasmid i39_1.
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Figure D.6: Plasmid map for truncated CinI Cin reporter plasmid j78_7.
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Figure D.7: Plasmid map for truncated LacI Cin reporter plasmid j78_9.
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Figure D.8: Plasmid map for truncated LacI Rhl reporter plasmid j7h_1.
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Figure D.9: Plasmid map for Cin sender plasmid jag_d3.
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