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ABSTRACT

Multirotors have become widespread but their usage is still limited. Ensuring safety
during take-off and landing is still an open problem. Towards this goal this thesis
proposes two different solutions to address this problem. The two approaches
complement each other and they are tested on hardware.

The first approach is to design a vehicle that is stable during take-off, despite
hardware failures or unsteady take-off platforms. A solution is to use a ballistic
launch to impose a deterministic path, preventing collisions with its environment.
Following this approach led to the development of several SQUID (Streamlined
Quick Unfolding Investigation Drone) vehicles. Themain challenges are the ballistic
initial flight, large accelerations during launch, and limited volume. A first prototype
was developed, which is able to transition mid-flight from stable ballistic flight to
a fully controllable multirotor. The system has been fabricated and field tested
from a moving vehicle up to 50mph to successfully demonstrate the feasibility
of the concept and experimentally validate the design’s aerodynamic stability and
deployment reliability. A second prototype expanded the first one’s capabilities
incorporating fully-autonomous vision-based navigation, while keeping the ballistic
passive stability and stable transition abilities. The new design includes a more
reliable plate-based structure and more effective folding fins.

The second approach focuses on designing controllers that are safe regardless of the
platform. For that purpose, a Model Predictive Control (MPC) is used to ensure
state and input constraints. Given the highly non-linear dynamics platforms and
fast dynamics that require a quick controller evaluation, the work in this thesis
is built using Koopman Operator theory, which allows tools from linear analysis
to be applied to systems with inherently non-linear dynamics. One of the main
contributions is a novel method to find Koopman Eigenfunctions directly from data.
Another key contribution is an episodic approach to model non-linear actuation
dynamics. The proposed method is first tested on simulation and it outperforms
comparable approaches. The method is also demonstrated on-board a multirotor
for a fast landing application, where the nonlinear ground effect is learned and used
to improve landing speed and quality. An additional extension considers model
uncertainty in the MPC architecture, where an Ensemble Kalman Sampler is used
to learn the uncertainty distribution.
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C h a p t e r 1

INTRODUCTION

The focus of this thesis is to develop control algorithms and hardware prototypes
for highly agile aerial robotic platforms. These kinds of robots are characterized
by complex interactions with their environment, strongly actuated dynamics, and
unstable autonomous dynamics. To cope with these challenges, this thesis presents
results to this problem using two different approaches: the first approach is to
create multi-rotor vehicles that are inherently stable by design, despite the high
level of aerodynamic uncertainty. This is achieved by using traditional aerospace
designmethodswhile considering the limitations of smallmulti-rotors. In particular,
Chapter 3 solves the problem of stabilizing a platform that is launched from a vehicle
moving at high speed. It led to the development of several SQUID (Streamlined
Quick Unfolding Investigation Drone) prototypes.

The second approach focuses on designing controllers that are safe regardless of the
platform. For this purpose, one of the gaps that was identified is the extensive use
of linear models for controllers. But because most systems have at least some non-
linear dynamical behavior, the effective usage of controllers based on linear models
requires cumbersome engineering. It is clear why linear models are so widely used.
There are decades of rigorous analysis for linear systems and the real-time controller
evaluation does not pose a problem for the strict time requirements of these systems.
Despite their popularity, linear systems cannot accurately model most robots of
interest, and careful linearization and gain scheduling is needed when significant
nonlinearities are present. This process is slow, and limits the ability of the robot to
adapt to changes in the environment.

To deal with these challenges, Chapters 4, 5, and 6 are based on the Koopman Oper-
ator, which allows tools from linear analysis to be applied to systems with inherently
non-linear dynamics. The main identified issue in this field is the limitation from
hand-crafted lifting functions that "lift" the nonlinear dynamics to a higher dimen-
sion linear representation. One of the contributions of this thesis is a systematic
approach to generate lifting functions. Another gap in the literature is the lack of
practical applicability of existing Koopman modeling approaches. For example,
[41] requires a dense set of uniformly sampled initial conditions in order to com-
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pute the lifting functions, which is not feasible in practice for robotic systems, and
many engineering systems of interest. This thesis will presents solutions to these
problems, and hardware experiments illustrate the applicability of the approach.

Although themethods developed in this thesis can be applied to any robotic platform,
this work focuses on small aerial vehicles, as they are ideal for research and for many
practical information gathering applications. On the one hand, their complexity is
high enough that they allow multiple research directions to be explored, like path
planning [82], non-linear control [47], or uncertainty modeling [44], among many
others. Compared to simpler platforms, like the cart pendulum, multirotors offer a
rich environment to test algorithms. Additionally, they can easily be constrained to
one or two dimensions for initial testing as is shown in Chapter 5. On the other hand,
their usage is far simpler than other complex platforms, like bipedal robotics [2] or
autonomous cars, that are very expensive, require cumbersome maintenance, and
need an extensive domain knowledge to get started. Besides research, multirotors’
main usage is in cinematography, and they are expanding into sectors such as
inspection, agriculture, mapping, and surveying.

The remainder of this chapter will give an overview of robotic control systems from
a general perspective, using examples from multirotor control and providing a brief
literature review. This discussion will help to frame each chapter into appropriate
context. See the introduction of each chapter for more specific related work and
motivation.

1.1 Controlling Robotic Systems
The control problem of a robotic platform consists of generating the next control
command to be sent to the actuators. This command is computed taking into
consideration the prescribed goal and the history of measurements. Examples of
typical goals are reaching a destination, exploring an area, or following a trajectory.

The solution of this problem is a continuous vector of actuation commands. Given
the nature of digital computers and the need to sample the measurements, the actua-
tion commands are only updated at finite time increments. Additionally, evaluating
the controller and testing goal satisfaction take a non-zero amount of time, limiting
the effective update rate. For most practical applications, the control command is
updated after evaluating each measurement, and the complexity is adjusted so that
no measurements are discarded. Examples of common measurements are camera
images, time of flight distance sensing, or acceleration measured by an accelerom-
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eter.

The process of using measurements sequentially splits the control problem into two
seemingly independent problems: first, measurements can be used to update the
controller. This process will be refereed as learning, and next section will cover it
in more detail. Second, after the learning update, the control command is computed
directly from the current state.

Inmodel-based control, the calculation of the control command includes an explicit
parametrization and consideration of the dynamical model that describes the evo-
lution of the state. Linear models in continuous time are the most popular choice,
combined with a linear controller. In model-free control, the control inputs do not
explicitly include the dynamical system model. Historically, model-free control has
been relegated to the control of simple models for online feedback control. The
simplest model, a constant term, is a key element of most control implementations.
It is widely used to ensure zero stationary error for constant disturbances. Model-
free control with high capacity models is widely used in the reinforcement learning
approach for control. While traditional control has focused on finding stability and
safety guarantees using relatively simple models, reinforcement learning addresses
the same problem, but it incorporates the learning problem as part of the problem
setup. Its roots come from the Machine Learning community and it has been highly
successful in synthesized control policies directly from raw pixels [51].

Model Predictive Control (MPC) computes the control input by solving an opti-
mization problem at each iteration. Originally relegated to problems with slow
dynamics such as chemical plants [26] due to its expensive computational cost, it
is now a fundamental control technique thanks to its ability to incorporate state
and input constraints. Applications include aerospace [22], multirotors [52], and
process control [75]. Despite all these advantages, MPC has several shortcomings
besides the aforementioned computational cost. One of the problems is the need
to control the receding horizon length to ensure stability and recursive feasibility.
In [70], the author uses past trajectories of repetitive tasks as target goals for short
horizon MPC, thus ensuring cost improvement over several repetitions. A survey of
robust MPC can be seen in [5].

1.2 Learning Robotic Systems
Learning has been always an integral part of any scientific discipline, including
robotics. In this context, learning is considered as the process of modifying the
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control actions based on new data. Using this definition, learning is ubiquitous in a
robotic system, from the initial design to the state estimation subsystem, including
iterative model improvements.

A learning problem is defined using 3 elements: a dataset, a hypothesis set, and an
identificationmethod. The dataset includes all pastmeasurements and rewards/costs.

The hypothesis set is the set of all considered controllers. It is normally specified
using a model class, for example, polynomials of a given order or a neural network
with a given structure. As mentioned above, a useful approach is to parametrize the
state evolution equations, the model, as part of the controller design. Linear models
are traditionally at the core of any robotic design, as any system can be approximated
by a linear model close to an operating point. In addition, the combined response of
a set of linear systems will be the combination of the responses of each individual
component, allowing design and analysis of individual components independently.
This led to the development of powerful methods to study and design linear models.
However, any deviation from a linear model has to be captured as a disturbance,
resulting in conservative or even not feasible controllers. One solution is to compute
the approximated linear model at each state. Similarly, gain scheduling divides the
operation regime in different areas, each with its own controller. This allows to
optimize the controller for its operation regime and this approach only requires to
ensure stability on finitely many transitions. Non-linear models allowmore accurate
representations, which reduces the necessary disturbance in the model to satisfy the
data, and they can potentially be used to synthesize better controllers.

Another alternative to linear models is to use Koopman spectral analysis, and it
is one of the main focuses of this thesis. It uses non-linear functions to lift the
original states to a higher dimensional system where a linear model can more ac-
curately predict the original system’s evolution. This approach has gained a lot
of attention in the field of fluid dynamics as it can generate parsimonious repre-
sentations directly from data. For robotic applications this approach allows one to
apply linear controller theory to systems whose linearized model would not produce
accurate predictions. In addition, the computation of the lifting function and the
linear controller can occur significantly faster than comparable non-linear models.
As shown originally by Korda [41], Koopman-based modeling can be combined
with Model Predictive Control to generate a controller that satisfies state and input
constraints. In comparison, methods that directly model the right hand side of the
dynamics require to solve a computationally expensive non-convex optimization
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problem without guarantees. The main limitation of Koopman-based methods is
that the controlled dynamics have to be formulated as linear in the lifted space,
and Chapter 5 proposes a solution to this problem. Another limitation is the need
of a equilibrium point in the autonomous dynamics. It limits to directly apply the
method to systems with unstable dynamics or limit cycles, and it requires a known
controller to stabilize the system.

The identification method is the procedure to select a subset of the hypothesis set
using the dataset. For identification problems that can be formulated as a convex
optimization problem, fast and reliable methods have been developed, for example,
least squares methods. For general non-convex problems, such as fitting a neural
network, gradient methods are usually employed. In this thesis, both approaches are
used, depending on the situation. For example, the process of learning Koopman
Eigenfunctions in Chapter 4 uses Extended Dynamic Decomposition [86] to learn
the linear dynamics in the lifted system, and gradient descent to learn the non-linear
diffeomorphism.

The main classification of a learning algorithm is first-principles vs end-to-end
learning: in first-principles learning, the robotic system is split into smaller sub-
systems, and each of those subsystems is identified individually. This facilitates
validation, allows sharing of models between systems, and it is more aligned with
the models used for system design. Each model can be then executed at the required
frequency on the required computer, allowing great flexibility. This approach is
also referred as physics-based approach in the literature. For example, the airplane
wings model, engine model, and landing gear model are learned independently, and
then combined to generate a model of the full aircraft. Ultimately, each subsystem
is decomposed into simple components, like materials and fluids, for which their
models are already known through basic experimentation. This approach can use
information about the design of the platform as data to fit the model. For example,
a standard multirotor model considers the force for each individual motor to be
parallel, not as a result of any curve fitting, but as data coming from the design
process. Chapter 3 is a clear example of this approach.

Alternatively to the first-principles approach, one can identify the model for the
whole system without looking into its components. This approach has been fueled
by advances in the machine learning community, and it is also referred to as end-
to-end learning. The main advantage of this type of learning is that it does not
require any additional data not available during operations. This reduces the need
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for expert knowledge for each of the subsystems, and it could allow the robot
to adapt better to unexpected changes in the environment. Moreover, it allows
for end-to-end learning using complex models whose usage would be infeasible
using subsystem methods. A clear success story can be seen when applied to high
dimensional measurements, such as raw images. The main disadvantage is the
increased amount of operational data required. Gathering all that data could be very
expensive or even not practical, for example, to satisfy the strict safety requirements
of 10−9 failures/hour in the aerospace industry. Another disadvantage is that the
model has to be evaluated entirely at every timestep, imposing strong computational
requirements on the platform.

In practice, as it is done in the experiments in this thesis, it is better to use a combi-
nation of both approaches, where subsystem data helps to create a sparse controller
structure, and operational data is used to fit the selected function. Chapters 4, 5,
and 6 will focus on the data-driven learning, keeping the first-principles learning in
the layers before the model, state estimation, and in the layers after the model, i.e.
low level control.

1.3 Thesis Contribution and Organization
Chapters 2 describes basic concepts for multirotor control and Model Predictive
Control (MPC). These concepts will serve as background material for the rest of the
chapters.

Chapter 3 presents the development of SQUID, the aerial platform for ballistic
launch and quick deployment. The contributions include a requirements list for
multirotor ballistic launch, an analysis of passive stability for ballistic launches, a
design that satisfies those previous requirements, and extensive testing to validate
the design. Two distinct prototypes will be explained: a 3" in diameter proof of
concept with streamlined body and the capability to release the arms mid-flight.
This prototype was tested from a moving truck and it relies on human pilot control.
The contributions of the second prototype are the development of a vision-based
autonomy pipeline. It required a new design that was validated on a wind tunnel for
cross-wind launches.

Chapters 4, 5, and 6 are related to the Koopman Operator. Chapter 4 proposes
a new method to compute the Koopman Eigenfunction. The first contribution is
how to build Koopman eigenfunctions from the principal eigenfunctions directly
from data. An analytical example is shown to illustrate the method. The Koopman
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Eigenfunction are then used as lifting functions to learn the approximated linear
dynamics. It is shown in simulation that it has better prediction capabilities than
user-defined lifting functions. In addition, it also shows an improvement in closed-
loop performance when it is used with a MPC controller.

Chapter 5 builds upon the previous chapter to learn models with non-linear control
actions. These kinds of dynamics are important for practical robotic applications.
The proposed method sidesteps the linear input dynamics limitations by exciting
the non-linear control effects and then learn then as part of the non-linear Koopman
autonomous dynamics. This process creates a series of episodes where each sub-
sequent controller learns the residual dynamics using the methods in the previous
chapter. The importance of these contributions is shown in hardware experiments of
multirotor landing. The proposed controller can quickly generate at each timestep
optimal input commands, respecting state and input bounds.

Chapter 6 describes a new type of robust MPC based on Ensemble Kalman Sam-
pling. It extends the controller used in Chapter 4 to include model uncertainty. This
chapter also shows how this method can be applied to Koopman-based MPC.

Finally, Chapter 7 concludes the thesis and presents future work directions.
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C h a p t e r 2

PRELIMINARIES

This chapter describes some of the fundamental concepts used in later chapters of
this thesis. Section 2.1 describes basic concepts for multirotor control, used later
in Chapter 3 to discuss the development of SQUID, and in Chapter 5 to support
the discussion of the Episodic KEEDMD experiments. Section 2.3 introduces
Model Predictive Control (MPC) as the main control algorithm that will be used in
Chapters 4, 5, and 6.

2.1 Multirotor Basics
A multirotor is an aerial vehicle with more than one lift-generating motors, as
opposed to a helicopter with only one motor to generate lift. Most commonly, they
have 4 motor or more, so the control of the vehicle can be achieved by changing
the speed of each motor. This design avoids the complex and delicate swashplate
mechanism that helicopters use for control. Combined with advances in batteries,
this simple design helped multirotors surge in popularity for small vehicles. For
convenience, this section will focus on the most common type with 4 parallel
motors, but the control techniques can be generalized to higher number of motors.
Figure 2.1 shows a picture of a multirotor with its main reference frames. The
vehicle state is defined using the position in world coordinates of the center of mass
p = [x, y, z] ∈ R3, the velocity of the center of mass v = [vx, vy, vz] ∈ R3, the
rotation R ∈ SO(3) from the body reference frame to the world reference frame,
and the instantaneous rotation vector ω ∈ R3 in world coordinates. This section will
also use the 321 Euler Angles, that is, a rotation ψ around the z axis, a rotation θ
around the y axis, and a rotation φ around the x axis, in this order. For more details
on transformations for robotics, see [36].

2.2 Control
To control a multirotor, a speed command has to be generated for each motor. The
command is normally referred to as PWM, Pulse Width Modulation, a commu-
nication protocol used to transmit the desired speed from the microcontroller to
the electronic speed controllers (ESC). To generate these commands, a cascaded
controller is used, that is, the control problem is divided into multiple sequential
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Figure 2.1: Coordinate reference frames used to describe the multirotor dynamics.
Body frame B is rigid to the vehicle, while world frameW is considered an inertial
frame.

problems and the output of one subcontroller is the command for the next one.

For autonomous flight, the following controllers are used, in order from the goal to
themotors: a trajectory planner, a higher level attitude controller, a lower level torque
controller, and a motor mixer. Most of these controllers are already implemented
by the autopilot and the research in this thesis only replaces the trajectory planner
and the attitude controller, leaving the low level controller and motor mixer from
the default stock autopilot implementation.

The trajectory planner computes the sequence of positions in order to reach a final
goal position. The common approach, presented in [57], is to use q = [x, y, z, ψ]

as flat outputs [17], and minimize its 4th derivative. The states and the inputs can
be written as a combination of the 4th derivative of previously chosen flat outputs.
This allows to write state and input constraints directly in the optimization problem.

The higher level controller transforms desired positions into desired attitude. New-
ton’s equations is used

mv̇ = −mgzW + FzB (2.1)

where m is the vehicle’s mass, g is the gravity’s constant, zW = [0, 0, 1]
T is the

unity vector along the z axis in the world coordinate frame, and zB = RzW in body
coordinate frame. As the motors can only generate force parallel to zB, the desired
attitude should have the vertical axis parallel to zB.

Fd = mgzW +mp̈d (2.2)
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Moreover, a proportional derivative control action is added to balance the equation
as

F = Fd −Kpep −Kvev (2.3)

where ep is the error in position and ev is the error in velocity with respect to the
desired trajectory. The remainder degree of freedom is commonly chosen so that
the vehicle points forward during the trajectory. This defines the desired rotation
Rd.

Using the desired attitude, the lower level controller computes the desired torques
τ = [τφ, τθ, τψ]

T . Similarly to Equation (2.3), a proportional derivate controller is
used to satisfy the desired value as

τ = KτeR (2.4)

where eR is the error in orientation using the vee map ∨ : so(3)→ R3

eR =
1

2

(
R

T

dR−R
T

Rd

)∨
. (2.5)

The motor mixer simply converts the commanded torque and total force to motor
commands using the geometry of the vehicle and motor characteristics. On first
approximation, dimensional analysis can be used to model motor force and torque
proportional to the squared speed, Fi = cfω

2
i = cfui. The total force is the sum of

all forces F =
∑

i Fi. Each motor contributes with a torque τψ = sict, where si is
+1 or −1 depending on if it rotates clockwise or counterclockwise, and a term Fil

from the force Fi with arm l. For the case with 4 motorsm the solution is unique
and it is given by

F

τφ

τθ

τψ

 =


cf cf cf cf

0 −`cf 0 `cf

`cf 0 `cf 0

−ct ct −ct ct




u1

u2

u3

u4

 =M


u1

u2

u3

u4

 (2.6)


u1

u2

u3

u4

 =M−1


F

τφ

τθ

τψ

 . (2.7)

Besides autonomous flight, there are several manual modes that are used to control
the vehicle by a human pilot. This mode of operation is used in Chapte 3 for the
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SQUID3" prototype, and during initial testing inChapter 5. The signal is transmitted
using a dedicated radio-link at 2.4GHz optimized for low latency. There are two
principal modes, depending of the input. In angle mode (termed manual in PX4),
3 of the joystick inputs are interpreted as desired angle, and the autopilot follows
this command using the same low level controller described above. The remaining
joystick axis is read as total thrust command and it is fed directly in the mixer. This
mode makes it easier to control the vehicle near hover conditions. In rate mode, or
acro mode, 3 of the inputs are desired angular rates. The autopilot compares them
directly to the gyroscope read outs and it generates a torque command using a PID
controller on the angular rate error. As in angle mode, the fourth input is total thrust,
and it is combined in the mixer with the torque commands to generate the PWM
commands to the motors.

Estimation
To estimate its position, a multirotor normally uses several sensors. An inertial
measurement unit (IMU) provides acceleration and angular velocity in body coor-
dinates. A standard IMU has a sampling frequency of 1kHz. The acceleration can
only be integrated for very short periods of time before it is corrupted by noise.
To solve this issue, an additional sensor is required. For experiments inside CAST
(Center for Autonomous Systems and Technologies) pose measurements are directly
available. These measurements are very precise but they limit the usage to purpose
built rooms. More generally, on-board cameras are widely used due to its small size,
power requirements and rich information.

2.3 Model Predictive Control (MPC)
In Model Predictive Control (MPC), the control input is obtained by minimizing
the future cost, given the initials conditions x(t0) = x0, and subject to the model
dynamics xp = f(xp−1, up−1) to propagate the state given the previous state x ∈ RNs

and control input u ∈ RNu , state constraints x ∈ X and control input constraints
u ∈ U . Figure 2.2 shows a diagram with the main elements of an MPC problem. It
can be written as the following optimization problem
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min
u∈RNu×Np
x∈RNs×Np

∑Np−1
p=1 l(xp, up, τp) + lf (xNp)

s.t. xp = f(xp−1, up−1)

xp ∈ X p = 1, . . . , Np

up ∈ U
x0 = xk

(2.8)

whereNp is the prediction horizon of the controller, l : RNs×RNu×RNs → R is the
stage cost that encodes the objective of the control task at each stage, lf : RNs → R
is the terminal cost function, τ ∈ RNs×Np is the reference trajectory, X ⊆ RNs is
the set of allowable states, U ⊆ RNu is the set of allowable control actions, and xk
is the state at time step k.

The solution of (2.8) is a sequence of control actions u ∈ RNu×Np . The predicted
trajectory at time k1 evaluated using information up to timestep k2 will be referred as
xk1|k2 . To allow the controller to mitigate model errors, state feedback is introduced
by performing receding horizon control, i.e. , only the first controller command,
uk|k, is deployed on the system at timestep k before the optimization problem is
resolved at the next timestep [9].

Note that the cost, the constraints, and the reference trajectory are considered known,
and they are normally imposed by the user. However, the dynamic evolution and the
initial state are often approximated from data, and they are obtained through system
identification before the timestep k. If the data is obtained from past experiments,
the identification process is often called offline learning. If the identification occurs
simultaneously with control execution, the identification process is often called
online learning.

This thesis will mostly consider problems where the stage cost is a quadratic func-
tion. This is the most common cost function and it simplifies calculations because
efficient MPC solvers exist in this case. Quadratic costs arise naturally for gaussian
disturbances. In addition, for notation simplicity, constraint will apply to one state
at a time. Under these conditions, the problem can be written as:
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measured past

predicted future

Figure 2.2: Model Predictive Control (MPC) diagram. At each time step tk, an
optimization problem is solved to compute the best control action u using the
desired trajectory τ(t). State constraints xmin, xmax and input constraints umin, umax

can be enforced as part of a constrained optimization problem. Once a solution
sequence is found, the first value is executed for the remaining time step.

min
u∈RNu×Np
x∈RNs×Np

∑Np−1
p=1 [(xp − τp)TQ(xp − τp) + uTpRup] + xTNQNxN)

s.t. xp = f(xp−1, up−1)

xmin ≤ zp ≤ xmax p = 1, . . . , Np

umin ≤ up ≤ umax

x0 = xk

(2.9)

where

Solving problem (2.9) in real-time is normally not feasible for nonlinear dynamics.
A common approach is to linearize the dynamics around an initial solution, solve the
generated quadratic program, and iterate with the new solution until it converges.

Dense Form MPC
To reduce the size of the optimization problem, we remove the dynamic constrain
by explicitly solving them. Starting at z0 = zk, the z1 results from the first iteration
of the dynamic model: z1 = Az0 + Bu0. The next state, z2, and subsequent states



14

result from iteration, starting at z1:

z1 = Az0 +Bu0 (2.10)

z2 = Az1 +Bu1 (2.11)

= A(Az0 +Bu0) +Bu2 (2.12)

= A2z0 + ABu0 +Bu1 (2.13)

. . . (2.14)

zN = ANz0 + AN−1Bu0 + · · ·+ ABuN−2 +BuN−1 (2.15)

= ANz0 +
N−1∑
i=0

AN−iBui. (2.16)

Writing each variable vector with its bold equivalent, i.e. z = [z0, . . . , zN+1], the
linear relationship can be expressed as:

z = az0 + bu (2.17)

where

a =



A

A2

A3

...
AN


, b =



B

AB B

A2B AB B
...

... . . .
AN−1B AN−2B AN−3B · · · B


,

then substituting these terms in the objective function yields

J(z, u) = (zp − τp)T Q (zp − τp) + uTpRup (2.18)

J(u) = ((az0 + bu)− τp)T Q ((az0 + bu)− τp) + uTpRup (2.19)

= uT
[
Rbd + bTQbdb

]
u+ uT bTQbd(ax0 − τr) (2.20)

This result can be compared to a quadratic program in standard form

minimize 1
2
xTPx+ qTx

subject to l ≤ Ax ≤ u
(2.21)

where

P = Rbd + bTQbdb q = bTQbd(ax0 − τr) A = [b; Im]

l = [xmin − ax0, umin] u = [xmax − ax0, umax]
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C h a p t e r 3

SQUID

This chapter describes the design of several air vehicles for safe takeoff from a
moving platform. The contents of this chapter have been previously published in
two collaboration papers. The first paper was presented at the 2019 International
Conference on Intelligent Robots and Systems (IROS) [63]. It introduced the basic
concepts and results from the first prototype, SQUID 3". The second paper was
presented at the 2020 IEEE International Conference on Robotics and Automation
(ICRA) [1], where it won the Unmanned Aerial Vehicles Best Paper Award. It
extended the basic principles with a bigger design and it focused on vision-based
autonomous position stabilization. This new design was led by Amanda Bouman.

3.1 Introduction
Unmanned fixed-wing and multirotor aircraft are usually launched manually by an
attentive human operator. Aerial systems that can instead be launched ballistically
without operator intervention can play an important role in emergency response
and space exploration applications where the situational awareness provided by a
camera-equipped aerial vehicle is often required, but the ability to conventionally
launch aircraft to gather this information is not available.

For example, firefighters responding to massive and fast-moving fires could benefit
from the ability to quickly launch drones through the forest canopy from a moving
vehicle. This eye-in-the-sky could provide valuable information on the status of
burning structures, fire fronts, and safe paths for rapid retreat.

Takeoff is one of the most dangerous portions of a multirotor’s flight, as it involves
hazards to not only the multirotor, but also other assets on the ground, such as
nearby humans and their equipment or infrastructure. A ballistic launch addresses
this problem by creating a pre-determined path for the multirotor away from higher-
value assets, even in the case of aircraft failure. A typical scenario would involve
deployment from a windy roof, the bed of a truck, or a ship operating in waves.
In these scenarios, the vehicle is stored for long periods of time and must quickly
provide air support in the case of an unexpected event. Current drone designs are
slow to deploy, require user intervention prior to takeoff, and cannot be deployed
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Figure 3.1: The SQUID 3" prototype in both ballistic (left), deploying its arms
(center) and multirotor (right) configurations during flight. Selected frames during
a launch from a moving vehicle at 50mph (22 m/s). After deployment the drone
hovered around the area.
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from a moving vehicle. Furthermore, traditional foldable designs require the user
to unfold the arms, slowing the process and putting the user at risk. In the case of
deployment fromamoving vehicle, the drone also needs to be aerodynamically stable
to avoid tumbling when exposed to sudden crosswinds. The design, development
and testing of such a vehicle is the main contribution of this chapter.

Whilemature tube-launched fixed-wing aircraft are already in active use [49, 68, 84],
tube-launched rotorcraft (both co-axial and multirotor) are much rarer and primarily
still in development. Several consumer drones (e.g., the DJI Mavic series [19] and
Parrot Anafi [62]) can be folded to occupy a small volume, but these designs cannot
fit smoothly inside a launch system, and the unfolding is manual. Other manually
unfolding rotorcraft can achieve a cylindrical form factor like SQUID: thePower Egg
from Power Vision folds into an egg shape [66], the LeveTop drone folds into a small
cylinder [50], and the coaxially designed Sprite fromAscent Aerosystems packs into
a cylinder shape [1]. Automatic in-flight unfoldingmechanisms for quadrotors, using
both active [25] and passive [15] actuation, have been developed for the traversal of
narrow spaces. However, to enable the ability to ballistically launch like SQUID,
these existing foldable platforms must be redesigned to withstand launch loads and
maintain passive aerodynamic stability post-launch. Ballistically-launched aerial
systems that combine an aerodynamically stable structure and a foldable airfoil
system have been developed in coaxial rotorcraft [31] and multirotor [32] formats,
but both designs are theoretical designs , and have yet to demonstrate a transition
from ballistic to stabilized flight.

While the SQUID prototype, as outlined in this chapter, has been designed for
operation on Earth, the same concept is potentially adaptable to other planetary
bodies, in particular Mars and Titan. Ingenuity, the future Mars helicopter, planned
to deploy from the Perseverance rover, will provide a proof-of-concept for powered
rotorcraft flight on the planet, despite the thin atmosphere [61]. A rotorcraft greatly
expands the data collection range of a rover, and allows access to sites that a rover
would find impassible. However, the current deployment method for the Mars
Helicopter from the underbelly of the rover reduces ground clearance, resulting in
stricter terrain constraints. Additionally, the rover must move a significant distance
away from the helicopter drop site before the helicopter can safely take off. The
addition of a ballistic, deterministic launch system for future rovers or entry vehicles
would isolate small rotorcraft from the primary mission asset, as well as enable
deployment at longer distances or over steep terrain features. Titan is another major
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candidate for rotorcraft flight. The Dragonfly mission proposal to the New Frontiers
Program illustrates how rotorcraft can take advantage of the thick atmosphere and
low gravity of Titan to fly to many different sites with the same vehicle [80]. A
SQUID-type launch applied to Titan could be used for deployment of small daughter
rotorcraft from landers, airships, or lake buoys, expanding the option space for Titan
mission design.

3.2 Scaling Arguments
The SQUID concept can be implemented at many different sizes, depending upon
the needs for specific missions or applications. This section considers the principles
of scaling the SQUID concept to different sizes.

When designing a ballistic launch for a different-sized SQUID (larger tube diameter,
etc.), the following non-dimensionalized argument can be used to predict the aero-
dynamic performance. The idea is that a specific design that has been successful in
testing at one given size can be scaled to other applications, with a high confidence
of success. Dimensional analysis has been widely used in aerospace applications
[30] to design experiments. This scaling analysis broadens the scope of our field
testing conclusions, which can then be applied to other aircraft given the appropriate
scaling.

The launch trajectory of the multirotor must be a function of an input variable set;
namely the launch velocity (U ), vehicle velocity (Uvehicle), air properties (density and
viscosity ρ and µ), gravity (g), time (t), and the geometry of the aircraft (mass m,
diameter d, length L, inertia I). Given that these input variables can be expressed
using three independent physical units (mass, time, and length), we can describe the
same equations using three fewer non-dimensional variables than input variables
using the Buckingham π Theorem [46]. To compute the non-dimensional variables,
we build the dimensional matrix using the dimension power of each variable (length,
time, and mass) and we solve for its nullspace. The following non-dimensional
variables accordingly span the input space:

t̃ =
tU

L
, Fr =

U√
gL
, Re =

ρUL

µ
, (3.1)

Ũvehicle =
Uvehicle

U
, m̃ =

m

ρL3
, d̃ =

d

L
, Ĩ =

I

ρL5
(3.2)

where Fr is the Froude number and Re is the Reynolds number. Further nondimen-
sional groups can represent the fin area ratio Afin/L

2 and other geometry details,
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but are generally held constant for exact scale models. Reynolds number Re effects
are expected to be minimal and can be neglected for models scaled by a single
order-of-magnitude, as drag coefficients are only weakly dependent on Re given the
fully transitioned flow and only partial streamlining of the model [34].

Finally, the trajectory during launch (position x(t), y(t), z(t) and rotationR(t)) once
non-dimensionalized can only be a function of these input groups. For example for
x(t):

x̃(t̃) =
x(t̃)

L
= fx(t̃,Fr, Ũvehicle, m̃, d̃, Ĩ), (3.3)

Accordingly, the trajectory of the 3" SQUID prototype that was launched at 35mph
from a 50mph vehicle (Fr = 9.4, d̃ = 0.27, Ũvehicle = 1.4) can be used to predict
trajectories for scaled prototypes. For example, a 2x scale model (i.e. 8 times the
weight, 32 times the inertia, etc.) launched at 50mph from a 70mph vehicle will
match these same non-dimensional inputs. Such a model would therefore follow the
same trajectory scaled by 2x the distance and take

√
2 times the amount of time to

do so.

3.3 SQUID 3": Proof of Concept
The first design targeted a launcher with a 3 inches tube diameter. The smaller size
allowed for fast design iterations and a low mass vehicle that is relatively safe to
operate. The main limitations of this first small design are its limited payload and
reduced flight time due to its small onboard batter.

This sectionwill describe the design process for the first prototype as a requirements-
driven process. These requirements are:

(a) it will be launched from an approximately 3 inch tube (70-85mm),

(b) it should fly ballistically to reach an altitude of 10m,

(c) it should be able to stabilize its flight after launch. In addition,

(d) it should be a multirotor,

(e) it should be able to carry a payload of 200g.

From this set, of requirements we derive functional requirements that help the design
process: the first requirement sets a form factor and, combined with requirement
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(d), requires that the vehicle be able to deploy a set of arms that hold the motors.
Requirement (a) also implies high vertical acceleration loads during launch, up to
50g’s fromdirectmeasurements, whichwill drive the structural design. Requirement
(e) does not constrain the design space, as the vehicle is more volume limited than
thrust limited.

Operations
The operation of SQUID is composed of six different phases from loading to con-
trolled flight. See Figure 3.2 for an illustrative diagram.

(4) Arms deployment

(3) Unpowered flight

(5) Stabilization

(1-2) Resting and launch inside the barrel

(6) Standard multirotor
controlled flight

Figure 3.2: SQUID 3" deployment sequence

1. Resting inside the launching device: The vehicle is static and ready to be
launched. Before this phase, the vehicle’s onboard electronics and control
systems are turned on and armed. In order to maintain compatibility with the
nature of the onboard PX4-based control and navigation system, the vehicle’s
command state is set to the ’kill’ mode, which causes the onboard controller
to neglect all input commands.

2. Launch acceleration inside the barrel: After launch is triggered, the com-
pressed air accelerates the vehicle through a barrel (76 cm in length for the 3"
SQUID) with high accelerations and high volumetric g forces. This acceler-
ation can be used by the on board autopilot to detect the launch. Figure 3.10
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shows a typical acceleration profile throughout all phases of flight opera-
tion. The first acceleration spike corresponds to the launch acceleration. All
SQUId 3" test used a pneumatic ZS740 baseball pitchingmachine from Zooka
(see Figure 3.3), which can realize 15m/s (35mph) muzzle velocity for the
described SQUID prototype.

3. Unpowered (or ballistic) flight: After launch, SQUID travels at high initial
speeds and follows a parabolic trajectory. In the case of a moving vehicle
launch, SQUID’s relative velocity is the composition of the launch speed and
the moving vehicle speed.

4. Armsdeployment: The folded arms are initially retained by themonofilament
line, as described above. The arms deploy when a relay actuates the nichrome
burn wire. Without the restraining forces of the monofilament line, the torsion
spring deploys the arms. While the arm deployment angle is not controlled,
the arms fully deploy in 70ms, but they recoil by up to 30◦ before the motion
is damped.

5. Stabilization: The pilot sends the command to ’unkill’ the drone and it
automatically orients itself to the hovering attitude. For convenience, in the
tested SQUID prototype, the pilot must compensate for altitude and lateral
motion, but the vehicle includes a GPS for waypoint navigation. Autonomous
stabilization using vision-based methods (which requires a larger volume to
house a computer vision camera, 1D lidar and a bigger onboard computer) is
described below in the context of the second generation SQUID prototype. In
[24], the authors implement an algorithm to recover drone stability in midair
using onboard sensors. SQUID requires a similar approach, but the vehicle
speeds are much greater.

6. Controlled Flight: After SQUID stabilizes, it operates as a normal multirotor
aircraft. The current design was not optimized for long battery life, but future
prototypes might be able to carry different batteries depending on the mission
length. While this SQUID prototype does not have dedicated landing legs,
it can safely land if the bottom touches the ground first at a low speed. It
naturally falls to one side without damaging any component. Another landing
method is to grab the bottom part of SQUID. The second SQUID prototype,
described below, does have integrated landing legs.
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Table 3.1: SQUID 3" System Properties

Property Value

Mass 530 g
Inertia about yaw axis, folded 0.4 10−3kg m2

" " " " , unfolded 2.3 10−3kg m2

Inertia about pitch axis, folded 2.0 10−3kg m2

" " " " , unfolded 1.6 10−3kg m2

Length 270mm
Folded Diameter 83mm (≈3in)
Maximum amperage 38 A
Thrust at hovering 28%
Launch speed 15m/s

Vehicle Design
This section will focus on the new challenges for SQUID design, as compared to
the design of a standard multirotor: first, the limited volume reduces the number
of possible choices for most of the components. Second, the arms are not rigidly
attached to the body. This will induce vibrations that affect the structure and control.
Lastly, the strong vertical acceleration during launch imparts a large axial load on the
multirotor. The main consequence of this high acceleration is the need to reinforce
the structure, as well as ensure all components are properly secured and electrical
connectors are tightly locked. Table 3.1 provides a summary of the main design
figures and Table 3.2 contains a list of key SQUID components.

Figure 3.3: The pneumatic baseball pitching machine used to launch the SQUID 3"
prototype.
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Figure 3.4: Aerodynamic Nomenclature

Vehicle Sizing and Aerodynamic Design: Due to the launcher diameter constraint,
we design the outer shell in a compromise of internal volume, air drag, and stability
(see Figure 3.5 for the selected shape). No detailed numerical simulations were
performed, but we followed the insights from classic projectile design [34, 37] with
aerodynamic forces and moments estimated as:

Mmunk = ρvavnV– (1− d/L) (3.4)

Fbase,n = ρvavnAfrontCd,front (3.5)

Flift,n =
1

2
ρvavnAfinClα,fin (3.6)

Fside,n =
1

2
ρvnvnAsideCd,side (3.7)

where Fbase,n, Flift,n, and Fside,n are the components of the base drag, fin lift, and
side drag taken normal to the primary axis of the body, and Mmunk is the Munk
moment, the moment of a streamlined body in an inviscid flow. Symbols ρ, va,
vn, L, d, and V– are the air density, axial and normal velocities, length, diameter,
and volume, respectively. Equations 3.4-3.7 are applicable for the designed SQUID
model (a mildly streamlined body operating beyond turbulent transition) [34], but
are not expected to apply to substantially smaller, slower, or smoother aircraft whose
operation may be more sensitive to the Reynolds number. The aerodynamic center,
which should be placed after the center of mass for passive stability, is given by:

zAC =
−Mmunk + Fbase,nL+ Ffin,nL+ Fside,nL/2

Fbase,n + Flift,n + Fside,n
(3.8)

The Munk moment is unstable and grows with the object’s volume, while both the
drag and fin lift are generally stabilizing. Accordingly, both standard fins and a ring-
fin are required to lower the aerodynamic center (and increase fin structural integrity
to handle launching forces) in order to compensate for the low-drag high-volume
design. The estimated aerodynamic center location of the final design resides at
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roughly 65% of the folded SQUID length (as measured from the front of the body),
leading to stable damped pitch oscillations of a 0.6s period and stability margin of
5cm.

The "arms" which support the thrusting motors are folding when SQUID is placed
in its launch tube. As described below, the arms are released, using a programmable
fuse, partway through the ballistic launch phase. The arm deployment has three
effects related to aerodynamic stability: the center of mass moves 3cm towards
the nose after complete arm deployment (increasing stability), both the axial and
normal drag are increased (increasing damping, but also shifting the aerodynamic
center 3cm towards the nose due to the arm location), and it increases the yaw
inertia by a factor of 5 (thereby decreasing yaw rate due to conservation of angular
momentum). The effects act in concert to maintain stability during the transition
from the ballistic launch phase to the geometry of the controlled flight phase.
Deliberate spin-stabilization during launch was rejected for ease of piloting and
to simplify the transition dynamics between launch and flight. The design was
experimentally validated as is shown in Section 3.3.

Propeller and motor selection: The selection of the motors, propellers, and their
associated power electronics will naturally affect the controlled flight performance.
However, the mass and inertia have secondary impacts, and the propellers must fit
within the body structure when the vehicle is in its folded state. The propeller size
can be derived for ideal disc loading at hover [48]:

mg

4πr2prop
=

1

2
ρv2tip(σpropCd0,prop/kprop)

2/3 (3.9)

where σprop ≈ 0.1, Cd0,prop ≈ 0.02, kprop ≈ 1.25 are rough estimates of the propeller
solidity, nominal drag coefficient, and induced loss factors. Assuming a referred
maximum tip speed of vtip = 100 m/s at hover (Mach 0.3), the ideal propeller size
for hover with payload is around 6 or 7 inches. However, given the strong volume
constraints for a passively stable aeroshell that folds within the launch tube, we
can only choose the biggest propeller accommodated in the full system design, in
this case 5 inches in diameter. This still gives us a large margin of excess thrust
for operations using racing motors designed for smaller propellers. Knowing the
propeller size, we select the motor Air40 from TMotors as it can drive this propeller
and it has a good compromise of responsiveness and efficiency. Note that, despite
the fact that maximum expected flight time is not a requirement for this vehicle ( and
therefore the design is not optimized for it), the battery was selected as the biggest
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battery that can be accommodated in the given nose cone space, in this case a Tattu
850mAh.

Component Placement: The heaviest component, the battery, is placed as close
to the nose as possible to increase the center of mass vertical location. This will
increase aerodynamic stability during the ballistic launch [34]. The rest of the
electronic components are placed directly below the battery: autopilot, BEC, and
radio receiver. In addition, the ESC are placed on each arm to avoid the limited
space in the airframe core and the radio antennas are extended to the bottom core
piece for improved radio reception. Similarly, the GPS module is situated on top of
the battery for better reception.

Structure Design: The main structural load experienced by the SQUID airframe
occurs during the vertical acceleration from launch. From experiments with early
SQUID prototypes, we measured a vertical acceleration of 50G’s (490 m/s2) to
meet the launch height requirement with a sub-meter acceleration distance. This
acceleration will appear as a volumetric force to all components. In particular, we
designed the main structure to connect the inertial load from the battery, situated at
the top and the heaviest component, to the launcher at the bottom. The 3D printed
parts were printed using high impact resistance materials, using a Markforge printer
with Onyx and carbon fiber. Another important load arises during the process of
arm unfolding. Limited space in the overall system design prevents us from adding
additional material to make the arms more rigid, and the curved surface (needed
for aerodynamic streamlining in the folded state) limits the use of traditional CNC
fabricationmethods. Another benefit of 3D printed carbon fiber is the added rigidity,
which is needed in our design in order to provide a tight fit when the arms are folded.

Hinge Design: The hinges between the folding arms and the central airframe
body allow the arms to rotate freely after release and limit their movement so that
the propellers are horizontal during normal flight. The unfolding limit is set by
a mechanical stop. The hinges each hold a torsion spring that push the arms to
open after their release. During normal flight, the springs are strong enough to
maintain the arms in a fully open position, and provide resistance against vertical
disturbances. An overly stiff spring creates large shock loads during arm unfolding.
During launch, the arms fold to slightly beyond 90◦ from their open posture so
that the propellers are tilted inside the body to allow more space at the top for the
electronics.
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Figure 3.5: SQUID 3" CAD model. From left to right: ballistic configuration view,
multirotor configuration view and section view with a hinge closer look.

Arm Release Mechanism: A critical function in SQUID deployment is the de-
ployment or "release" of the arms during the ballistic flight phase. While several
potential release mechanisms were considered, including designs employing elec-
tromagnets and servo motors, we selected a nichrome burn-wire trigger due to its
reliability, efficient use of space, low susceptibility to G-forces, and low mass. The
small downside of this design is the need to manually replace the burn-wire between
launches.

Electrical current passing through the nichrome wire causes it to heat up and cut
through a restraining loop of nylon monofilament line. This technique has been
previously used on CubeSats, proving effective in both Earth atmosphere and vac-
uum [81]. The greatest downside of a nichrome release mechanism is the incon-
venience of manually replacing the monofilament line after every launch, so the
mechanism was designed for ease of access. A shallow groove runs around the
circumference of the SQUID in its ballistic configuration to hold a loop of monofil-
ament line in place (see Figure 3.6 for details). The tension in the arms causes them
to push outwards against the line, but the chosen line is strong enough to withstand
both the spring and launch forces without snapping. Mounted on one of the arms
is a length of nichrome wire, held under tension by screw terminals that have been
heat-set into the arm. The nichrome wire presses against the line, so that when
heated, it severs the line and releases the spring-loaded arms. As described above,
once the arms are released, the spring-loaded arm hinges quickly rotate under the
spring forces to their final configuration.
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Nichrome wire

Monofilament line

Figure 3.6: Release Mechanism Detail.

Table 3.2: Key SQUID 3" components

Component Name Weight (g) Quantity

Autopilot Pixracer running PX4 14 1
Motor T-Motors Air40 24 4
ESC T-Motors F30A 7 4
Propeller DAL 5050 4 4
Receiver FrSky R-RXR 1.2 1
Battery Tattu 850mAh 104 1
Power board ACSP7 15 1
Frame Custom 181 1
Arms Custom 16 4

Field Testing
We designed a set of tests to verify SQUID’s capabilities. There were three main
phases during the development of the field testing results.

1. Aerodynamic test: We used a mass model in order to evaluate aerodynamic
effects in the vehicle prior to integrating electrical components, slowly in-
creasing the fin size within volume constraints until enough stability margin
was achieved for the test conditions. The selected shape includes a ring-fin
for added stability and structural integrity.

2. Delayed deployment test: This test demonstrates deployment from a static
launcher, see Figure 3.8 for a picture during midair flight. It contains all the
phases described in Section 3.3.

3. Moving vehicle test: For this test, we launched SQUID from a car moving
at 22m/s (50mph); see Figure 3.1 and 3.7 for keyframes from the video and
Figures 3.10 and 3.9 for key data during flight. It demonstrates that SQUID can
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be deployed at high speeds from a moving vehicle, and succesfully transition
through all operational phases, concluding with a stable controlled flight.

(a) t = 20 ms (b) t = 70 ms

(c) t = 200 ms (d) t = 700 ms

Figure 3.7: Snapshots taken from a video of the process of launching Squid 3 from
a moving vehicle. The time from launch is noted on the upper left of each video
frame. From left to right: (a) 20ms after deployment the arms are still closed. It
is moving straight up in the cannon direction. (b) The arms have been deployed
around 70ms after launch. The vehicle is still moving up. (c) The body is passively
aerodynamically stable as it predictably orients itself relative to the apparant wind
velocity. By 200ms, it is oriented upwind. (d) In this snapshot the vehicle is already
stable and hovering.

3.4 SQUID 6": A Vision-Based Stabilization Prototype
This section refines and advances the capabilities of the SQUID concept that were
described above and in [63]. In particular, this section presents the design, develop-
ment and testing of a full-scale SQUID prototype. Capable of carrying a significant
sensor payload, SQUID 6" transitions from a folded, 6 inch-diameter (152.4 mm)
launch configuration to an autonomous, fully-controllable hexacopter after launch
(Fig. 3.11). The entire process from launch to stabilization requires no user input
and demonstrates the viability of using ballistically-launched multirotors for useful
and varied missions.
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Figure 3.8: Picture of the field testing setup deployed on a Caltech sports field, with
a net to protect the SQUID 3" prototype from crashes
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Figure 3.9: SQUID 3" roll angle profile during the moving vehicle test. The vehicle
takes around one second to stabilize to the commanded roll angle.

Mechanical Design
The mechanical design of the second SQUID prototype (hereafter termed SQUID
6", while SQUID 3" will refer to the earlier 3-inches SQUID prototype) is dictated
by three broad functional requirements. The multirotor must: (i) launch from a tube
(6-inch diameter for this prototype), (ii) travel ballistically to a predetermined height,
and (iii) autonomously transition into stable, multirotor flight. To satisfy these non-
traditional flight requirements, SQUID blends design elements from both ballistic
and multirotor platforms. The multirotor’s central rigid body houses a battery and
the perception and control systems, and interfaces with six fold-out arms with rotors
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Figure 3.10: The three Cartesian accelerations measured during SQUID 3" moving
vehicle test, where the x axis is pointing forward, the z axis is pointing up, and time
starts when SQUID is launched. At -25s before launch, the vehicle accelerates to
80km/h (50mph) which can be seen as a constant acceleration on the x axes. After
that, the acceleration is very noisy due to the bumpy road. The launch is indicated
by a large acceleration spike in the z axis. There is another spike 29s later when the
vehicle lands and tilts sideways onto its arms. During the flight, the z acceleration is
close to negative one-g (9.8 m/s2) indicating level flight, and the x and y acceleration
commanded by the pilot compensate for the initial 50mph vehicle speed.
and three fold-out finswhich passively stabilize themultirotor during ballisticmotion
(and act as landing gear). The layout of key SQUID components is shown in Fig. 3.12
and the configuration in folded and deployed states are shown in Fig. 3.13. Table 3.3
and Table 3.4 provide a list of key SQUID components and main design attributes.
Some of the features that were demonstrated in the SQUID 3" prototype, such as a
controllable arm release mechanism and a streamlined ballistic launch shape, were
deemphasized in this prototype, as they were less important to demonstrating the
key goal of autonomous stabilization in the ballistic-to-controlled-flight transition.
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Figure 3.11: Launching SQUID 6": inside the launcher tube (left), deploying the
arms and fins (center), and fully-deployed configuration (right). Note the slack in
the development safety tether and how the carriage assembly remains in the tube
throughout launch. Each picture is 82 ms apart.
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Figure 3.12: An annotated view of SQUID 6".
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Table 3.3: SQUID 6" System Properties

Property Value Units

Mass 3.3 kg
Length 79 cm
Folded Diameter 15 cm
Unfolded Diameter (propeller tip-to-tip) 58 cm
Thrust at Hover 56 %
Launch Speed 12 m/s

(a)

(b)

(c)

Figure 3.13: SQUID 6" partially inside the launcher tube and interfacing with the
carriage (a), and with its arms and fins fully deployed from a side (b) and top
perspective (c).

Central Rigid Body
In contrast to conventional multirotors, SQUID’s central body must sustain high
transient forces during ballistic launch. Unlike prior SQUID 3", which wasmanually
stabilized by a pilot, SQUID 6" also requires a perception system comprising a
camera (FLIR Chameleon3), rangefinder (TeraRanger Evo 60m), IMU/barometer
(VectorNav VN-100), and onboard computer (NVIDIA Jetson TX2) to achieve full
autonomous stabilization. Due to these added components, the original 3D-printed
aeroshell structure was abandoned in favor of a hollow carbon fiber frame in order to
maximize payload volume, increase strength, and allow easy access to the perception
and control system components.

The frame consists of six thick carbon fiber plates separated by support columns
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(made of aluminum standoff pins surrounded by carbon fiber tubes) that transmit and
support the launch loads generated during the launch phase. A 3D printed nosecone
reduces drag by approximately 50% compared to a bluff body nose. The placement
of the heavy LiPo battery in the nosecone shifts the center of mass (COM) upward.
This placement ensures that SQUID’s aerodynamic center (AC) trails behind the
COM, which improves the passive ballistic stabilization. Passive stabilization is
further addressed in Section 3.4.

Rotor Arms
The six rotors are mounted on carbon fiber tubes which attach to the central body
with passive, spring-loaded hinges to allow 90◦ of rotation. The arms can exist in
two states: constrained by the launch tube to be parallel to the body axis (closed),
or extending radially outward perpendicular to the central axis (open). For SQUID
3", the timing of the transition was controlled by an arm release mechanism. For
SQUID 6" however, the transition from the closed state to the open, or unfolded, state
occurs immediately after the multirotor leaves the launch tube, reducing mechanical
complexity.

A torsional spring inside the hinge generates 1.04 N·m of torque when the arm is
closed, and half that amount when the arm is open. Vibration in the motor arms
during flight dictates the addition of a spring-loaded latch to keep the arms rigidly
open after deployment.

Fins
SQUID 6"’s fins provide significant aerodynamic stabilization during ballistic flight
to ensure that the vehicle maintains the launch direction before active stabilization is
engaged. Aerodynamic forces on the fins shift the multirotor’s AC downward behind
the COM, enabling SQUID 6" to passively weathercock and align with the direction
of flight. That is, when SQUID 6" is launched vertically from a stationary tube,
the fins maintain a vertical trajectory during the ballistic phase. When the vehicle
is launched from a moving vehicle, SQUID 6" will orient into the apparent wind
direction, which has a component in the direction of the moving base’s direction.
Folding fins, rather than fixed fins, are a major design change from SQUID 3" [63]
and were driven by a compromise between competing requirements of aerodynamic
stability, low drag, constrained tube volume, and design simplicity. This design
change was guided by the use of literature-derived expressions [33, 34] and scale
model testing.
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Fixed fins have a number of disadvantages. Any fin requires clean, unseparated
flow to operate as designed. Therefore, fins that remain fixed within the tube area
must also be paired with a streamlined tailbox in order to have access to said flow.
This tailbox streamlining however reduces the wake drag and hence also reduces
the stabilizing force it provides. Additionally, small fins which fit within the tube
can only be partially effective as they have a limited wingspan. Expanding the fins
along the tube only further lowers their aspect ratio (and therefore lift coefficient),
reducing their capacity to move the AC. Deploying fins radially is therefore a
much more effective means of enhancing stability, improving SQUID’s ability to
predictably rotate upwind.

SQUID 6"’s tubular cross section (vs. the SQUID 3" teardrop shape) and foldout fins
increase stability relative to SQUID 3" and simplify launch packaging issues with a
simple cylindrical geometry, but do so at the cost of more ballistic drag. For most
SQUID applications however, ballistic efficiency can often be sacrificed for these
gains. Foldout fins can be tailored to provide a desired stability margin between
the COM and AC, and provides margin for swappable payloads that may shift the
COM. Given our selected 30 cm fins, the AC is located 38 cm from the nose, with
a margin of 14 cm from the COM. Uncertainties in aerodynamic coefficients, drag
on the arms, and the dynamics of the unfolding components can lead to substantial
deviations from this calculated margin however. Accordingly, we validated our
aerodynamic stability with a 3:1 scale model (50 mm diameter, 150 grams) using
an open air wind tunnel (see Section 3.2) prior to full-scale tests.

While the hinges connecting the fins to the body are similar to the arm hinges, the
fins do not use a latchingmechanism because vertical vibrations have little impact on
their functionality. "Feet" attached to the ends of the fins protect the tips and enable
them to double as landing gear when the fins are in their extended configuration.

Ballistic Launch Process and the Autonomous Transition to Stabilized Flight
SQUID 6"’s mechanical design and onboard active controls manage the deployment
sequence (Fig. 3.14). The deployment pipeline comprises two primary phases:
passive stabilization and active stabilization. In the first phase, the multirotor’s
aerodynamic design ensures attitude stability as it travels along a ballistic trajectory
after launch. Active stabilization begins once the arms are fully deployed and occurs
before the trajectory’s apogee. The following sections provide details on the launch
stabilization process and our experimental validation of these concepts.
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Table 3.4: Key SQUID components

Component Description Mass (g)

Flight Electronics
Motors T-Motor F80 Pro, 1900kv 36 (x6)
ESCs T-Motor F30A 2-4S 6 (x6)
Propellers 7" diameter x 4" pitch 8 (x6)
Flight Controller mRo PixRacer (PX4 Flight Stack) 11
Receiver X8R 8-Channel 17
Telemetry HolyBro 100 mW, 915 MHz 28
Battery 4S LiPo, 6000 mAh, 50C 580

Perception System
Onboard Computer NVIDIA TX2 144
Carrier Board Orbitty Carrier Board 41
Rangefinder TeraRanger Evo 60mm 9
IMU/Barometer VectorNav VN-100 4
Camera FLIR Chameleon3 w/ 3.5 mm Lens 128

Ballistic Launch Process

SQUID is ballistically launched to a minimum height that depends on both the
safety requirements of the assets near the launch site and the altitude required for
the targeted investigation. All the energy needed to loft the multirotor to the desired
height, as well as to overcome the drag of the passive stabilization process, must be
generated over the launching tube’s very short length. Consequently, the airframe
experiences very large acceleration forces while being launched.

The core of the launch mechanism is a re-purposed T-shirt cannon [83]. Pressure
is supplied by a liquid CO2 canister that is regulated between 5.5 bar (indoor, to
stay within ceiling clearance) and 6.9 bar (outdoor, maximum safe pressure of
the pressure regulation system) chamber pressure in gas phase. An aluminum
stand holds the launch tube in place and allows adjustment of the launch angle.
Accordingly, both the launch height and angle can be adjusted to avoid local hazards.

Prior to launch, SQUID 6" rests in a folded state inside the launch tube, which is
generally pointed upwards. A 300 gram carriage assembly sits between SQUID
6" and the tube base, transmitting launch loads generated by the compressed gas
directly to the frame’s support columns. A 25 mm-thick polyethylene foam disk at
the base of the carriage creates a low-friction seal which maximizes the transfer of
energy from the compressed gas into kinetic energy and also prevents the carriage
from leaving the tube during launch.
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This launching mechanism meets the physical requirements to launch SQUID 6",
but has a number of inefficiencies. After launch is triggered, the compressed gas
accelerates SQUID 6" through the tube at approximately 21 g’s (estimated from
video as the IMU saturates at 16 g’s), but short of the unchoked valve throughput
prediction of ≈350 g’s. The maximum height achieved with this system is also
32 m (or 1 kJ potential energy), less than a third of the imparted energy as calculated
from the ideal adiabatic expansion of the CO2 chamber. Discrepancies between the
predicted and estimated values are thought to arise from friction within the tube,
losses in the pressure valve throughput, and air drag during the launch and ballistic
phases.

Folded
Configuration

Launch

Arms and Fins
Deploy

Ballistic
Flight

Motors
Activate

Active
Stabilization

Controlled
Flight

Figure 3.14: SQUID 6" deployment sequence.
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Passive Stabilization - Launch without Wind

After exiting the launch tube, SQUID’s arms and fins deploy immediately due to
the spring-loaded hinges. This deployment has four effects on the aerodynamic
stability: the COM is shifted towards the nose, the AC is shifted rearward due to the
fin lift, the fins increase aerodynamic damping in yaw, and mass moves outwards
which increases yaw inertia, thereby reducing yaw rate.

As described in Section 3.4, the lower AC helps SQUID maintain orientation and
follow the intended flight path until active stabilization begins. The large displace-
ment between the COMandAC, coupledwith the launchmomentum, causes SQUID
to orient robustly into the apparent wind. When the launch tube is stationary and
roughly vertical, this effect helps SQUID to passively maintain orientation during
the ballistic phase, which simplifies the transition to active stabilization.

Passive Stabilization - Launch in Crosswind

During launch from a moving vehicle, SQUID experiences a strong crosswind,
and will weathercock its nose in the direction of the launch platform’s motion.
Accordingly, SQUID’s passive stabilization design ensures that themultirotor travels
smoothly during the ballistic phase and that its orientation at the beginning of the
active stabilization phase is quite predictable from the knowledge of SQUID’s launch
speed and the vehicle speed at launch.

To validate SQUID’s expected passive aerodynamic behavior before field testing,
sub-scale wind tunnel tests were performed at the Center for Autonomous Systems
and Technologies (CAST) at Caltech. These tests were intended to prove that the new
folding fin architecture could provide a sufficient stabilizing effect in the presence
of a crosswind.

U

Vlaunch

θ

Figure 3.15: SQUID 2" Wind Tunnel Testing. Left – Definition of experiment
parameters. Right – Snapshot sequence showing stable upwind pitching of the
SQUID 2" model.



38

The sub-scale wind tunnel tests were performed using a 1/3 scale model of SQUID.
Scaling for ballistically-launched drones near apogee, as seen in Section 3.2 of this
chapter, primarily depends upon the Froude number (U/

√
gL), launch- to wind-

velocity ratio, geometric parameters, and launch angle. Since SQUID’s tailbox
can be modeled as a bluff-body disc, separation at the base is virtually guaranteed,
meaning Reynolds effects can be neglected [34]. To correct the sub-scale results to
be representative of the full-scale model, the trajectories and velocities were scaled
by a factor of 3 and

√
3, respectively [63].

Accordingly, the performance of a vertical launch of 4.5 m/s in 10 m/s crosswinds
(Fig. 3.15) can be extrapolated to the behavior of a full-sized drone launched at
7.8 m/s in a 17 m/s crosswind. The aerodynamically stable behavior, as indicated
by the upwind turn, illustrates that the multirotor with deployed fins and motor arms
produces a sufficient righting moment to predictably orient the multirotor upwind
on launch. While not perfectly analogous (full-scale tests were performed at 12 m/s
and a slightly different geometry), these sub-scale trajectories had a similar one-third
scaled stability margin (5cm) and provided confidence that the full-sized SQUID
would have a predictable trajectory if launched from a moving vehicle.

Transition from Passive to Active Stabilization

SQUID 6" commences the autonomy pipeline once the laser-based distance sensor
indicates that the vehicle has cleared the launch tube. The passive-to-active transition
occurs after the vehicle has exited the tube and the arms are fully deployed, allowing
the motors to spin. Starting the motors early in the ballistic phase of launch is
important, as the motors need to be fully spooled up and stabilizing the multirotor
before apogee. At apogee, the airspeed may not be sufficient to provide enough
aerodynamic stabilization, risking the multirotor entering a tumbling state from
which it may not recover.

Active Stabilization
Our active stabilization solution is based upon previous research into autonomously
recovering a monocular vision-based quadrotor after its state-estimator fails due
to a loss of visual tracking [11, 24]. For our visual inertial odometry pipeline,
we utilize the open-source Robust Visual Inertial Odometry (ROVIO), an extended
Kalman Filter that tracks both 3D landmarks and image patch features [8]. Since it
tightly integrates image intensity information with inertial data to produce odometry
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estimates, ROVIO is capable of operating in stark, low-texture environments such
as over pavement, water, and the surface of other planets.

The first stage of the active stabilization process controls the attitude to a nominal
zero-roll/pitch orientation using the IMU-based attitude estimate. As the air pressure
around the multirotor spikes on launch, the barometric altitude estimates become
unreliable and the altitude must be maintained open-loop, biased upwards for safety.
The barometric readings stabilize within three seconds of launch, and at this point,
SQUID begins actively controlling its altitude and attempts to reduce the vertical
velocity to zero. As no horizontal position or velocity information is available,
active control of the lateral position is not possible and SQUID continues to drift in
plane until the VIO can be initialized.

Several conditions need to be met before the VIO can be successfully initialized.
Firstly, the pitch and roll rates need to be near-zero to ensure that the camera captures
frames with low motion blur. Secondly, the vertical velocity needs to be near-zero
so the distance between the multirotor and the ground remains constant and the
initial feature depth can be well established using measurements from the onboard
laser-based distance sensor. Finally, the lateral velocity must be small (once again
to minimize motion blur), so the multirotor is allowed to drift for 10 s post spool
up to enable aerodynamic drag to bleed off excess speed. Future iterations of the
autonomy pipeline will sense when to initialize VIO directly from the detected
motion blur, enabling the vehicle to enter position stabilization sooner after launch.

The VIO is considered initialized when the cumulative variance of the VIO’s x- and
y-position estimates drop below a preset threshold. The pose estimates are then fed
into the flight controller state estimator filter to be fused with the IMU. At this point,
SQUID 6" has full onboard state estimation and can now control both altitude and
lateral position.

Experimental Validation

To demonstrate the proposed passive-to-active stabilization pipeline, we launched
SQUID 6" in a 42 foot-tall flying arena at CAST (Fig. 3.17). The arena has
two tiers of Optitrack motion capture cameras allowing SQUID 6"’s position and
orientation to be tracked throughout the duration of a flight for offline analysis.
During initial development, a tether system was constructed inside the arena to
prevent the multirotor from damaging the facility in the event of a launch failure.
A small weight was used to passively eliminate any slack in the tether. As SQUID
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accelerates significantly faster than the 1 g of the counterweight (note the slack
in the tether in Fig. 3.11), it is unlikely that the tether interfered with the critical
passive-to-active attitude stabilization phase.

Figure 3.16: Onboard state estimates and ground truth during launch. 1: Motors
on, 2: Closed-Loop altitude control, 3: VIO initialization, 4: Position control.

Fig. 3.16 plots the position of a point on the vehicle during the period from launch
to active position stabilization. At launch (t=0), altitude is quickly gained as the
multirotor accelerates from the forces of the expanding propellant gases. The
motors turn on at Point 1 and begin actively stabilizing the attitude. By Point
2, the barometer has recovered from the launch and closed-loop altitude control
commences. Ten seconds after the motors are turned on (Point 3), VIO initialization
begins. At Point 4, the VIO is initialized and starts to feed pose estimates to
the flight controller, which then actively controls the position of the multirotor,
completing the pipeline. The pipeline was successfully demonstrated across several
days, lighting conditions, and launch pressures. Footage of the launches can be
found at https://youtu.be/mkotvIK8Dmo.
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Figure 3.17: Launching SQUID inside CAST.

0.07 s 0.13 s
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Figure 3.18: Preliminary outdoor free-flight SQUID testing.
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3.5 Conclusion
Together, SQUID 3" and SQUID 6" successfully demonstrated the ability to bal-
listically launch and transition into autonomous stable flight, using only onboard
sensors and control. In particular, the work presented in this chapter demonstrated:

1. A 450g quadcopter with aerodynamic body and passive aerodynamic stability

2. A smooth launch and stabilization from a moving vehicle (at vehicle speeds
of 50 mph).

3. A 3.3 kg hexacopter with a payload of an advanced sensor package andmission
computer, plate-based airframe strong enough to carry and transmit launch
loads without damaging onboard components, and aerodynamic stability gen-
erated by folding fins

4. Wind tunnel testing that validates the proposed multirotor design in cross-
wind launches.

5. An autonomy pipeline that carries the platform from launch detection to full 6-
degree of freedom stabilization using only onboard sensing (IMU, barometer,
rangefinder, and camera) and without the need for GPS.

This proof-of-concept system validates the viability of a ballistically-launched mul-
tirotor that deploys without human involvement, opening up new applications in
fields such as disaster response and space exploration.
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C h a p t e r 4

LEARNING KOOPMAN EIGENFUNCTIONS

This chapter describes a new method to learn Koopman Eigenfunctions using a
non-linear transformation of the linearized principal eigenfunctions. The results of
this chapter have been presented at the 2020 American Control Conference [27] in
collaboration with Carl Folkestad.

4.1 Introduction

A key step in developing a high performance robotic application is the modeling of
the robot’s mechanics. Standard cyberphysical system modeling and identification
methods require extensive knowledge of the system and laborious system identifi-
cation procedures [55]. Moreover, although methods to show stability and safety of
nonlinear systems exist [3, 40], the design of control systems that incorporate state
and control limitations remains a challenging endeavor.

Learning can capture the salient aspects of a robot’s complex mechanics and en-
vironmental interactions. Gaussian process dynamical systems models [85] can
identify nonlinear affine control models in a non-parametric way. Alternatively,
spectrally normalized neural networks [76] can fit dynamics models with stability
guarantees. Yet, the effective design of nonlinear controllers that incorporate state
and actuator constraints, after identifying the model, can be challenging. Deep
neural networks for control Lyapunov function augmentation [79] can be used for
control design with different types of constraints, but learns a task-specific augmen-
tation that cannot be used for other objectives. Similarly, model-free reinforcement
learning (MFRL) [20] learns feedback policies that implicitly incorporate the robot’s
dynamics. However, sample efficiency is very low. Moreover, while safety during
model free reinforcement learning is now possible [18, 29], one cannot yet guaran-
tee that learned policies will satisfy performance requirements or state and actuator
limits.

The work presented in this chapter contributes to Koopman inspired modeling and
identification techniques, which have received substantial recent attention [16, 72].
In particular, the Dynamic Mode Decomposition (DMD) and extended DMD
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(EDMD) methods have emerged as efficient numerical algorithms to identify fi-
nite dimensional approximations of the Koopman operator associated with the sys-
tem dynamics [74, 86]. The methods are easy to implement, mainly relying on
least squares regression, and computationally and mathematically flexible, enabling
numerous extensions and applications [13].

For example, DMD-based methods have been successfully used in the field of
fluid mechanics to capture low-dimensional structure in complex flows [78], in
robotics for external perturbation force detection [6], and in neuroscience to identify
dynamically relevant features in ECOG data [12]. More recently, Koopman-style
modeling has been extended to controlled nonlinear systems [38, 67]. This is
particularly interesting, as EDMD can be used to approximate nonlinear control
systems by a lifted state space model. As a result, well developed linear control
design methods such as robust, adaptive, and model predictive control (MPC) [42]
can be utilized to design nonlinear controllers.

Typically, EDMD-methods employ a dictionary of functions used to lift the state
variables to a space where the dynamics are approximately linear. However, if not
chosen carefully, the time evolution of the dictionary functions cannot be described
by a linear combination of the other functions in the dictionary. This results in error
accumulation when the model is used for prediction, potentially causing significant
prediction performance degradation. Tomitigate this problem, we develop a learning
framework that can extract spectral information from the full nonlinear dynamics
by learning the eigenvalues and eigenfunctions of the associated Koopman operator.
Limited attention has been given to constructing eigenfunctions from data. Sparse
identification techniques have been used to identify approximate eigenfunctions
[39], but rely on defining an appropriate candidate function library. Other previous
methods (e.g., [41]) depend upon assumptions that are problematic for robotic
systems: the ID data is gathered while the robot operates under open loop controls,
which can lead to catastrophic system damage for naturally unstable systems.

4.2 Preliminaries on Koopman Operator Theory
Consider the autonomous dynamical system:

ẋ = f(x) = Ax + v(x) (4.1)

with state x ∈ X ⊂ Rd and f(·) Lipschitz continuous onX . We assume that system
(4.1) has a fixed point at the origin: f(0) = 0. For a system with a single attractor in
X , this assumption can always be achieved without loss of generality by a change of
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coordinates. The flow of this dynamical system is denoted by St(x) and is defined
as

d

dt
St(x) = f(St(x)) (4.2)

for all x ∈ X and all t ≥ 0. The Koopman operator semi-group (Ut)t≥0, hereafter
denoted as the Koopman operator, is defined as

Utγ = γ ◦ St (4.3)

for all γ ∈ C(X ), where ◦ denotes function composition. Each element of the
Koopmanoperatormaps continuous functions to continuous functions,Ut : C(X )→
C(X ). Crucially, each Ut is a linear operator. An eigenfunction of the Koopman
operator associated to an eigenvalue eλ ∈ C is any function φ ∈ C(X ) that defines
a coordinate evolving linearly along the flow of (4.1) satisfying

(Utφ)(x) = φ(St(x)) = eλtφ(x). (4.4)

Construction of Eigenfunctions for Nonlinear Dynamics
For any sufficiently smooth autonomous dynamical system that is asymptotically
stable to a fixed point, Koopman eigenfunctions can be constructed byfirst finding the
eigenfunctions of the system linearization around the fixed point and then composing
them with a diffeomorphism [58]. To see this, consider asymptotically stable
dynamics of the form (4.1). The linearization of the dynamics around the origin is

ẏ = Df(0)y = Ây, y ∈ Y . (4.5)

The following proposition describes how to construct eigenfunction-eigenvalue pairs
for the linearized system (4.5).

Proposition 1. Let Â1 denote the linearization (4.5) of the nonlinear system (4.1)
with Y scaled into the unit hypercube, Y1 ⊂ Q1, and let {v1, . . . ,vd} be a basis
of the eigenvectors of Â1 corresponding to nonzero eigenvalues {λ1, . . . , λd}. Let
{w1, . . . ,wd} be the adjoint basis to {v1, . . . ,vd} such that 〈vj,wk〉 = δjk and wj

is an eigenvector of Â∗1 at eigenvalue λ̄j . Then, the linear functional

ψj(y) = 〈y,wj〉 (4.6)

is a nonzero eigenfunction of UÂ1
, the Koopman operator associated to Â1. Further-

more, for any tuple (m1, . . . ,md) ∈ Nd
0( d∏

j=1

emjλj ,
d∏
j=1

ψ
mj
j

)
(4.7)

is an eigenpair of the Koopman operator UÂ1
.
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Proof. A less formal description of the results in the proposition and associated
proofs are described in [58], Example 4.6. By utilizing inner-product properties, ψj
is an eigenfunction of UÂ as described in (4.4) since

(Utψj)(y) = Ut〈y,wj〉 = 〈y, U∗t wj〉 = 〈y, ēλjwj〉
= eλj〈y,wj〉 = eλjψj(y).

By scaling the state-space such that Y1 ⊂ Q1, the linear eigenfunctions (4.6) form
a vector space on Y1 that is closed under point-wise products. The construction of
arbitrarily many eigenpairs (4.7) therefore follows from the semi-group property of
eigenfunctions (see [16], Prop. 5).

In the following, linear functionals (4.6) are denoted as principal eigenfunctions. The
eigenfunctions for the Koopman operator associated with the linearized dynamics
can be used to construct eigenfunctions associated with the Koopman operator of
the nonlinear dynamics through the use of a conjugacy map, as described in the
following proposition.

Proposition 2. Assume that the nonlinear system (4.1) is topologically conjugate
to the linearized system (4.5) via the diffeomorphism h : X → Y . Let B ∈ X be
a simply connected, bounded, positively invariant open set in X such that h(B) ⊂
Qr ⊂ Y , where Qr is a cube in Y . Scaling Qr to the unit cube Q1 via the smooth
diffeomorphism g : Qr → Q1 gives (g◦h)(B) ⊂ Q1. Then, if ψ is an eigenfunction
for UÂ1

at eλ, then ψ ◦ g ◦ h is an eigenfunction for Uf at eigenvalue eλ, where Uf
is the Koopman operator associated with the nonlinear dynamics (4.1).

Proof. See [16], Proposition 7.

The following extension of the Hartman-Grobman theorem guarantees the existence
of the diffeomorphism, h described in Proposition 2, between the linearized and
nonlinear systems in the entire basin of attraction of a fixed point, for sufficiently
smooth dynamics.

Theorem 3. (Theorem 2.3 in [45]) Consider the system (4.1) with v(x) ∈ C2(X ).
Assume that matrix A ∈ Rd×d is Hurwitz, i.e., all of its eigenvalues have negative
real parts. So, the fixed point x = 0 is exponentially stable and let Ω be its basin of
attraction. Then ∃h(x) ∈ C1(Ω) : Ω→ Rd, such that

y = c(x) = x + h(x) (4.8)

is a C1 diffeomorphism with Dc(0) = I in Ω and satisfies ẏ = Ay.
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Koopman Theory for Controlled Systems
There are several ways to extend the Koopman operator to actuated systems such
that systems with external forcing can be analyzed through the spectral properties
of its associated Koopman operator [42, 67]. These observations underpin the
adaption of EDMD methods to controlled systems to construct finite-dimensional
approximations to the Koopman operator. In particular, given a dictionary of D
dictionary functions φ(x) and N data snapshots of the states, X, control inputs, U,
and state derivatives, Y, from a n-dimensional system withm control inputs, a linear
regression problem can be formulated as

min
A∈R(D×D),B∈(D×m)

||Aφ(X) +BU − Y ||. (4.9)

The solution to this regression problem results in a linear model of the dynamics
of the form ż = Az + Bu where the outputs of interest are predicted by y = Cz

where C can be approximated by another regression problem aiming to minimize
||CZ − Y || [42].

4.3 Motivating Analytic Example
Certain systems have a structure that leads to a closed Koopman subspace if a correct
set of observables is chosen. This section demonstrates how the theory presented in
Section 4.2 can be used to construct eigenfunctions when the system dynamics are
known and we can analytically construct the diffeomorphism described in Theorem
3. We consider the system

[
ẋ1

ẋ2

]
=

[
µx1

λ(x2 − x21)

]
(4.10)

which has a finite dimensional Koopman operator. These equations are used in Sec-
tion 4.3 to construct three eigenfunctions that can completely describe the evolution
of the system by utilizing the Koopman modes associated with each eigenfunction
[16]. Then, we demonstrate how to arrive at the same eigenfunctions through the
use of the diffeomorphism in Section 4.3. This underpins the data-driven approach
described in Section 4.4, using data to approximate the conjugacy map when the
dynamics are unknown and/or a exact diffeomorphism cannot be derived.
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Calculating Eigenfunctions from the Koopman Operator
By choosing observables y = [x1, x2, x

2
1]
T , Equation (4.10) can be rewritten as an

equivalent linear system ẏ1ẏ2
ẏ3

 =

µ 0 0

0 λ −λ
0 0 2µ


︸ ︷︷ ︸

K

y1y2
y3

 (4.11)

where K is the Koopman operator of the system. From this result we can construct
three Koopman eigenfunctions of (4.10). Let {vi}3i=1 be the eigenvectors of K and
let {wi}3i=1 be the adjoint basis to {vi}3i=1 scaled such that 〈wi,vj〉 = δij . Then,
three eigenfunctions of the system are

ψ1(y) = 〈y,w1〉 = y1 = x1

ψ2(y) = 〈y,w2〉 = y3 = x21

ψ3(y) = 〈y,w3〉 = y2 +
λ

λ− 2µ
y3 = x2 +

λ

λ− 2µ
x21

(4.12)

Calculating Eigenfunctions Based on the Diffeomorphism
We now show how the calculated eigenfunctions can be obtained through the dif-
feomorphism between the linearized and nonlinear dynamics. The linearization of
the dynamics (4.10) around the origin is[

˙̂x1
˙̂x2

]
=

[
µ 0

0 λ

]
︸ ︷︷ ︸

A

[
x̂1

x̂2

]
(4.13)

and we can construct principal eigenfunctions for the linearized system, ψ̂1(x) =

〈ŵ1,x〉 = x1, ψ̂2(x) = 〈ŵ2,x〉 = x2, where ŵ1, ŵ2 are the eigenvectors of the
adjoint ofA. As described in Proposition 1, we can construct arbitrarily many eigen-
functions for the linearized system by taking powers and products of the principal
eigenfunctions, i.e. ψ̂i(x) = ψ̂

m
(1)
i

1 (x)ψ̂
m

(2)
i

2 (x) = x
m

(1)
i

1 x
m

(2)
i

2 is an eigenfunction of
the linearized system.

To get the eigenfunctions for the nonlinear system, it can be shown that

c(x) =

[
x1

x2

]
+

[
0
λ

λ−2µx
2
1

]
(4.14)

is a diffeomorphism of the form described in Theorem 3. Then, ignoring the scaling
function g(x) for simplicity of exposition, we get the following eigenfunctions for
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the nonlinear dynamics

φ1(x) = ψ̂1(c(x)) = x1

φ2(x) = ψ̂2(c(x)) = x2 +
λ

λ− 2µ
x21

φi(x) = ψ̂i(c(x)) = x
m

(1)
i

1

(
x2 +

λ

λ− 2µ
x21

)m(2)
i

, i = 3, . . .

(4.15)

and it can be seen that with m3 = (2, 0), the analytic eigenfunctions of Equation
(4.12) are recovered.

4.4 Data-driven Koopman Eigenfunctions for Unknown Nonlinear Dynamics
This section presents a data-driven approach to learn the diffeomorphism h(x)

described in Proposition 2 and Equation 4.8, resulting in a methodology for con-
structing Koopman eigenfunctions from data.

Modeling Assumptions
We consider the dynamical system

ẋ = a(x) +Bu (4.16)

where x ∈ X ⊂ Rd, a(x) : X → X , u ∈ U ⊂ Rm, B ∈ Rd×m, and where a(x)

and B are unknown. We assume that we have access to a nominal linear model

ẋ = Anomx +Bnomu (4.17)

where x ∈ Ω ⊂ X ⊂ Rd, Anom ∈ R(d×d), Bnom ∈ R(d×m), u ∈ U and an
associated nominal linear feedback controller unom = Knomx that stabilizes the
system (4.16) to the origin in a region of attraction Ω around the origin. The
nominal model (4.17) can for example be obtained from first principles modeling or
from parameter identification techniques and linearization of the constructed model
around the fixed point if needed.

Constructing Eigenfunctions from Data
Algorithm1 constructsKoopman eigenfunctions fromdata, based on the foundations
introduced in Section 4.2. Mt trajectories of fixed length T are executed from initial
conditions xj0 ∈ Ω j = 1, . . . ,Mt, and are guided by the nominal control law unom.
The system’s states and control actions are sampled at a fixed interval ∆t, resulting
in a data set

D =
((

xjk,u
j
k

)Ms

k=0

)Mt

j=1
(4.18)
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Figure 4.1: Chain of topological conjugacies used to construct eigenfunctions,
adapted from [58].

where Ms = T/∆t. Variable length trajectories and sampling rates can be imple-
mented with minor modifications.

Under the nominal control law, Koopman eigenfunctions for the nominal linearized
model (4.17) can be constructed as in Proposition 1 using the eigenvectors and
eigenvalues of the closed loop dynamics matrix Acl = Anom + BnomKnom. I.e. let
Qr be a hypercube of radius r such that X ⊂ Qr. A scaling function g : Qr → Q1

can then be constructed (by scaling each coordinate) to get the scaled dynamics
matrix Acl,1. Furthermore, let {vj}dj=1 be a basis of eigenvectors of Acl,1 with
corresponding eigenvalues {λj}dj=1 and let {wj}dj=1 be the adjoint basis to {vj}dj=1.
Then ψj(y) = 〈y,wj〉 is an eigenfunction of UAcl,1 with eigenvalue eλj and we can
construct an arbitrary number of eigenpairs using the product rule (4.7).

The eigenfunction construction for the linearized system only relies on the nominal
model. To construct Koopman eigenfunctions for the true nonlinear dynamical sys-
tem, we aim to learn the diffeomorphism (4.8) between the linearized model (4.17)
and the true dynamics (4.16), see Figure 4.1. This diffeomorphism is guaranteed to
exist in the entire basin of attractionΩ by Theorem 3. LetHh be a class of continuous
nonlinear function mapping Rd to Rd such that h(x) ∈ Hh. The diffeomorphism is
found by solving the following optimization problem:

min
h∈Hh

Mt∑
k=1

Ms∑
j=1

(ẋjk + ḣ(xjk)− Acl(xjk + h(xjk)))
2

s.t. Dh(0) = 0

(4.19)

which is a direct transformation of Theorem 3 into the setting with unknown nonlin-
ear dynamics. The form of problem (4.19) is found by minimizing the squared loss
ẏk −Aclyk over all data pairs, substituting y = x + h(x), and adding the constraint
Dc(0) = I results in the formulated optimization problem (4.19).
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We next formulate (4.19) as a general supervised learning problem. Consider the
data set of input-output pairs Dh =

{
(xk, ẋk), ẋk −Aclxk

}Ms·Mt

k=1
, constructed from

the state measurements (perhaps by calculating numerical derivatives ẋjk as needed),
and aggregated to a data matrix. The class Hh can be any function class suitable
for supervised learning (e.g. deep neural networks) as long as the Jacobian of the
function h(x) ∈ Hh w.r.t. the input can be readily calculated. Assuming that
h(x) ∈ Hh, we define the loss function

Lh(x, ẋ, Aclx− ẋ) =

||ḣ(x)− Aclh(x)− (Aclx− ẋ)||2 + α||Dh(0)||2

= ||Dh(x)ẋ− Aclh(x)− (Aclx− ẋ)||2 + α||Dh(0)||2
(4.20)

where parameter α penalizes the violation of constraint (4.19). The supervised
learning goal is to select a function in Hh through empirical risk minimization
(ERM):

min
h∈Hh

1

Ms ·Mt

Ms·Mt∑
k=1

Lh(xk, ẋk, Aclxk − ẋk) . (4.21)

Finally, with function h identified from ERM (4.21), Proposition 2 implies that the
Koopman eigenfunctions for the unknown dynamics under the nominal control law
can be constructed from the eigenfunctions of the linearized system by the function
composition:

φj(x) = ψ̃j(g(h(x))) (4.22)

where g is the scaling function ensuring that the basin of attraction Ω is scaled to lie
within the unit hypercube Q1 and ψ̃j is an eigenfunction for the linearized system
with associated eigenvalue λ̃j constructed with (4.7).

Importantly, because the diffeomorphism is learned from data, it may not perfectly
capture the underlying diffeomorphism over all of Ω, and thus the eigenfunctions for
the unknown dynamics are approximate. The error arises from the fact that the ERM
problem is underdetermined resulting in the possibility of multiple approximations
with equal loss while failing to capture the underlying diffeomorphism. This is
especially an issue when encountering states and state time derivatives not reflected
in the training data and introduces a demand for exploratory control inputs to cover
a larger region of the state space of interest. This can be achieved by introducing
a random user-generated perturbation of the control action deployed on the system
and is akin to persistence of excitation in adaptive control [53]. To understand these
effects, state dependent model error bounds are needed, but they are left open for
future work.



52

4.5 Koopman Eigenfunction Extended Dynamic Mode Decomposition
To use the constructed Koopman eigenfunctions for prediction and control, we
develop an EDMD-based method to build a linear model in a lifted space. Since this
method exploits the structure of the Koopman eigenfunctions, it is dubbedKoopman
Eigenfunction Extended Dynamic Mode Decomposition (KEEDMD). We construct
N eigenfunctions {φj}Nj=1 with associated eigenvalues Λ = diag(λ1, . . . , λN) as
outlined in Section 4.4, and define the lifted state as

z = [x,φ(x)]T (4.23)

where φ(x) = [φ1(x), . . . , φN(x)]. We seek to learn a model of the form

ż = Az +Bu (4.24)

where matrices A ∈ R(N+d)×(N+d), B ∈ R(N+d)×m are unknown, and are to be
inferred from the collected data.

We focus on systems governed by Lagrangian dynamics, whose state space coordi-
nates consist of position, p, and velocity v: x = [p,v]T , with ṗ = v. The rows
of A corresponding to the position states are known. Furthermore, by construction,
the eigenvalues Λ describe the evolution of the eigenfunctions under the nominal
control law. Therefore, the rows of A corresponding to eigenfunctions are also

Algorithm 1 Data-driven Koopman Eigenpair Construction
Require: Data set D =

(
(xjk,u

j
k)
Ms
k=0

)Mt

j=1
, nominal model matrices Anom,

Bnom, nominal control gains Knom, number of lifting functions N , N power
combinations (m

(i)
1 , . . . ,m

(i)
d ) ∈ Nd

0, i = 1, . . . , N

1: Construct principal eigenpairs for the linearized dynamics:
(λj, ψj(y))← (λj, 〈y,wj〉), j = 1, . . . , n

2: Construct N eigenpairs from the principal eigenpairs:

(λ̃i, ψ̃i)←
(∑d

j=1 λ
m

(i)
j

j ,
∏d

j=1 ψ
m

(i)
j

j

)
, i = 1, . . . , N

3: Fit diffeomorphism estimator: h(y)← ERM(Hh,Lh,D)
4: Construct scaling function: g(y)← g : Qr → Q1

5: Construct N eigenpairs for the nonlinear dynamics:
(λ̃i, φi)← (λ̃i, ψ̃i(g(c(x)))), i = 1, . . . , N

Output: Λ = diag(λ̃1, . . . , λ̃N), φ = [φ1, . . . , φN ]T
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Position dynamics:
min

Bp∈R(d/2)×m
||yp −XpB

T
p ||22, Xp = [U ], yp = [Ṗ − IV ]

(4.26a)
Velocity dynamics:

min
Av∈R(d/2)×(n+N)

Bv∈R(d/2)×m

||yv −Xv[Av Bv]T ||22, Xv = [P V Φ U ], yv = [V̇ ]

(4.26b)
Eigenfunction dynamics:

min
Bφ∈RN×m

||yφ −XφBT
φ ||22, Xφ = [U − Unom], yφ = [Φ̇− ΛΦ]

(4.26c)

known. As a result, the lifted state space model has the following structure:
ṗ

v̇

φ̇

([
p

v

])
 =

 0 I 0

Avp Avv Avφ

−BφKnom Λ


︸ ︷︷ ︸

A


p

v

φ

([
p

v

])
+

 Bp

Bv

Bφ


︸ ︷︷ ︸

B

u (4.25)

where 0, I,Λ, Knom are fixedmatrices andAvp, Avv, Avφ. ThematricesBp, Bv, Bφ

are determined from data. The term −BφKnom accounts for the effect of the nom-
inal controller on the evolution of the eigenfunctions. To infer the different parts
of (4.25), we construct the data matrices and formulate the loss function for three
separate ordinary least squares regression problems defined in Equation (4.26).
The data matrices are aggregations of the data samples concatenating all obser-
vations, e.g. P = [p1

1, . . . ,p
1
Ms
, . . . ,pMt

1 , . . . ,pMt
Ms

]T . Furthermore, the variables
P, V,Φ, U, Unom are derived from measurements p, v, φ, u, and unom. Ṗ , V̇ , Φ̇ are
found by numerically differentiating P, V,Φ, respectively. U and Unom are related
by U = Unom +Upert, where Unom is the nominal linear feedback control action and
Upert is the added random perturbation to induce exploratory behavior as discussed
in Section 4.4. The KEEDMD exploits the control perturbation to learn the effect
of actuation on the Koopman eigenfunctions.

To reduce overfitting, regularization can be added to the objectives of the regression
formulations. In particular, LASSO-regularization promoting sparsity in the learned
matrices has been shown to perform well for dynamical systems [14] when used
in normal EDMD. This has also been the case in our numerical simulation, where
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LASSO-regularization seems to improve the prediction performance and the stability
of the results.

When the lifted state space model is identified, state estimates can be obtained as
x = Cz, where C = [I 0]. C is denoted the projection matrix of the lifted state
space model.

Extensions for Trajectory-tracking Nominal Controller
In all of the above, a pure state feedback nominal control law is considered. We now
discuss how to extend the methodology to allow linear trajectory-tracking feedback
controllers of the form u = Knom(x − τ (t)). Under this controller, the closed
loop linearized dynamics become ẋ = Anomx + BnomKnom(x − τ (t)). Let the
definition of the closed loop dynamics matrix, Acl = (Anom + BnomKnom) and the
principal eigenfunctions (the eigenfunctions associated with the Koopman operator
of the linearized system) be as in Section 4.2. Then, the evolution of the principal
eigenfunctions becomes

ψ̇j(y) = ˙〈wj,y〉 = wT
j ẏ

= 〈wj, Acly −BnomKnomτ (t)〉
= λj〈wj,y〉 − 〈wj, BnomKnomτ (t)〉
= λjψ(y)−wT

j BnomKnomτ (t)

(4.27)

where λj and wj are the j-th eigenvalue and adjoint eigenvector of Acl, respectively.
Notably, the principal eigenfunctions evolve as described in Section 4.4, but with an
additional forcing term, −wT

j BnomKnomτ (t).

Utilizing the fact that the dynamical equations considered in this section have linear
(constant) control vector fields (see Eq. 4.16), we show that the evolution of the
eigenfunctions of the Koopman operator associated with the full dynamics is affine
in the input signal.

Proposition 4. Assume that Bnom in the linearized model of the dynamics (4.17)
is equal to the actuation matrix of the true dynamics (4.16) and that the dynamics
are controlled by a linear trajectory-tracking feedback controller of the form u =

Knom(x − τ (t). Then, the time derivatives of the eigenfunctions of the Koopman
operator associatedwith the dynamics (4.16) constructed as described in Proposition
1-2 are affine in the external forcing signal τ (t).
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Proof. We first show that the diffeomorphism between the linearized and nonlinear
dynamics is linear in the forcing signal. Consider the diffeomorphism described in
Theorem 3 with an additional forcing term. Derived from the linearized dynamics,
we seek to find h(x) such that

ẏ = Acly −BnomKnomτ (t), y = x + h(x). (4.28)

By algebraic manipulations, we get that

ẏ = ẋ + ḣ(x) = Acl(x + h(x)−BnomKnomτ (t)

⇒ a(x) +BKnom(x− τ (t)) + ḣ(x)

= (Anom +BnomKnom)(x + h(x))−BnomKnomτ (t)

⇒ ḣ(x)− Aclh(x) = Anomx− a(x)

(4.29)

Hence, h(x) does not depend on the forcing signal τ (t). As a result, the dif-
feomorphism c(x) does not depend on the forcing signal and the eigenfunctions
associated with the eigenfunctions of the nonlinear dynamics (4.16) evolve affinely
in the forcing signal.

Because the eigenfunctions evolve linearly in the forcing signal, the KEEDMD-
framework can readily learn the effect of external forcing on the eigenfunctions
by minor modifications. First, the loss term of the diffeomorphism empirical risk
minimization (4.19) must be modifed to account for the forcing term following the
construction of Equation (4.28). The new loss function becomes

Lh(x, ẋ, Aclx− ẋ, τ (t)) =

||ḣ(x)− Aclh(x)− (Aclx− ẋ) +BnomKnomτ ||2

+ α||Dh(0)||2
(4.30)

where τ is the vector of desired states corresponding to the time that x, ẋ were
sampled. Second, the data matrix Xφ in the regression formulation (4.26) must be
modified so the effect of the forcing on the eigenfunction evolution can be learned.
This is achieved by setting Xφ = [U −Knom[P V ]].

4.6 Model Predictive Control Design
Inspired by [42], the Koopman operator is used to transform the original nonlinear
optimization problem into an efficient quadratic program (QP) that is solved at each
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Figure 4.2: Performance comparison of the nominal model, EDMD, and KEEDMD
for (a) prediction and (b) closed loop.

time step. The QP formulation requires to discretize the previously learned linear
continuous dynamics. The algorithm assumes a known objective function that is
solely a function of states and controls. For simplicity, it uses a quadratic objective
function, but other objective functions are possible by adding them to the lifting
functions. It assumes known control bounds umin, umax ∈ Rm and state bounds
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xmin, xmax ∈ Rn. These assumptions define the following optimization problem:

min
u∈Rm×Np

z∈RN×Np

∑Np
p=1

[
(Czp − τp)T Q (Czp − τp) + uTpRup

]
s.t. zp = Adzp−1 +Bdup

xmin ≤ Czp ≤ xmax p = 1, . . . , Np

umin ≤ up ≤ umax

z0 = φ (xk)

(4.31)

whereQ ∈ Rn×n andR ∈ Rm×m are positive semidefinite cost matrices, τ ∈ Rn×Np

is the reference trajectory, Ad ∈ RN×N and Bd ∈ RN×m are the discrete time
versions of (4.24), C ∈ Rn×N is the projection matrix, and φ ∈ RN are the
eigenfunctions. If the projection matrix C is learned from data, a margin should
be added to account for reprojection errors. This margin can be obtained from the
residual statistics and a desired satisfaction probability δ.
To remove the dependency on the lifting dimension N in Eq. (4.31), the state is
eliminated via an explicit relation with the control input. This formulation is referred
as the dense form MPC. This step greatly reduces the number of optimization
variables, which is beneficial as we must solve the MPC problem in real-time. In
this form, the MPC is agnostic not only of the lifting dimension but of the whole
Koopman formalism, i.e. the eigenfunctions φ and linear matrices Ad, Bd, and C
do not directly appear in the formulation.

4.7 Simulation Results
To obtain an initial evaluation of the performance of the proposed framework, the
canonical cart pole system with continuous dynamics1 is used:[

ẍ

θ̈

]
=

[
1

M+m

(
mlθ̈ cos θ −mlθ̇2 + F

)
1
l

(
g sin θ + ẍ cos θ

) ]
(4.32)

where x, θ are the cart’s horizontal position and the angle between the pole and the
vertical axis, respectively,M,m are the cart’s and pole tip’s mass, respectively, l is
the pole length, g the gravitational acceleration, and F the horizontal force input on
the cart. The linearization of the dynamics around the origin is used as the nominal
model. Starting with knowledge of the nominal model only, our goal is to learn a
lifted state space model of the dynamics to improve the system’s ability to track a

1The code for learning and control Koopman Eigenfunctions is publicly available on
https://github.com/Cafolkes/keedmd
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trajectory designed based on the nominal model to move to the origin from an initial
condition two meters away. We will collect data with a nominal controller, learn the
lifted state space model, and use this model to design an improved MPC.

To build the dataset used for training, 40 trajectories are simulated by sampling an
initial point in the interval (x, θ, ẋ, θ̇) ∈ [−2.5, 2.5]×[−0.25, 0.25]×[−0.05, 0.05]×
[−0.05, 0.05], generating a two-second long trajectory from the initial point to the
origin with a MPC based on the nominal model, and simulating the system with
a PD controller stabilizing the system to the trajectory. Note that the system is
underactuated and stabilizing the system to a set point under PD control will not
work. The PD controller is perturbed with white noise of variance 0.5 to aid
the model fitting as described in Section 4.4, and state and control action values
are sampled from the simulated trajectories at 100 Hz. With the collected data,
eigenfunctions are constructed as described in Algorithm 1 and a lifted state space
model is identified according to (4.26).

To benchmark our results, we compare our prediction and control results against (1)
the nominal model, and (2) an EDMD-model with the state andGaussian radial basis
functions as lifting functions. In both the EDMD and KEEDMD models, a lifting
dimension of 85 is used and elastic net regularization is added with regularization
parameters determined by cross validation. The diffeomorphism, h, is parameterized
by a 3-layer neural networkwith 50 units in each layer and implementedwithPyTorch
[64]. The EDMD and KEEDMD regressions are implemented with Scikit-learn
[65].

First, we compare the open loop prediction performance by sampling 40 points
from the same intervals as the training data, and then stabilizing the system to the
origin with a MPC based on the nominal model with a 2 second prediction horizon.
Then, the time evolution of the system is predicted from the sampled initial point
and with the control sequence from the collected data for each trajectory with the
nominal model, EDMD-model, and the KEEDMD-model. The mean error between
the predicted evolution and the true system evolution over all the trajectories is
depicted in Figure 4.2a. Both the nominal and EDMD models are able to predict
the evolution for the first second, but then diverge. In contrast, KEEDMD is able
to maintain good prediction performance over the entire duration of the trajectories,
with relatively low and constant standard deviation.

To evaluate the closed loop performance, we compare the behavior of the three
different models on the task of moving from the initial point (x0, θ0, ẋ0, θ̇0) =
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Table 4.1: Improvement in MPC cost with learned models

Improvement over
nominal model

Improvement over
EDMD-model

EDMD −68.00%

KEEDMD −96.75% −89.84%

(2, 0.25, 0, 0) in two seconds. The nominal model is used to generate a trajectory
from the initial point to the origin. Then, a dense formMPC using the learned lifted
state space model is implemented in Python using the QP solver OSQP [77]. The
MPC costs on the trajectory tracking task are significantly improved when the lifted
state space models are used, see Figure 4.2b. It is important to note that the EDMD
based MPC regulates less towards the end of the trajectory causing large deviations
but still outperforms the nominal model in terms of MPC cost by 62 percent. For
the same penalty matrices Q,R, the KEEDMD based MPC has significantly better
trajectory tracking performance and further reduces the MPC cost by 90 percent.

4.8 Conclusion
This chapter presented a novel method based on the Koopman Operator to learn
the dynamics of controlled robotic systems. Koopman eigenfunctions are used to
learn the system’s nonlinear dynamics and to learn a near optimal control strategy
(MPC) for given tasks. By using a Koopman approach, we are able to implement a
real-time MPC framework for optimal system control during the learning process.
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C h a p t e r 5

EPISODIC KOOPMAN EIGENFUNCTIONS

This chapter extends the work in Chapter 4 to make it practically useful for robotics.
The main results in this chapter were presented at the 2020 IEEE International Con-
ference on Robotics and Automation (ICRA) in collaboration with Carl Folkestad.
First, the method presented below gathers data while the system operates under any
nonlinear stabilizing controller. This enables nonlinearities in the input vector fields
to be captured during the learning process, unlike prior Koopman-based model ID
approaches. Second, this chapter introduces an episodic learning procedure, by
considering the closed-loop dynamics obtained with a non-linear controller as the
autonomous dynamics for the next episode. This feature increases sample efficiency
(i.e., fewer learning trials) for improving specific tasks, and enables nonlinear ac-
tuation effects, which are important in robotics, to be captured in the Koopman
eigenfunctions. Third, it should be noted that data collected from robots while
they execute trajectories may formally violate the i.i.d. assumption underlying the
performance guarantees of most learning paradigms. In practice, this fact can lead
to error cascades and poor performance guarantees. Episodic learning mitigates
this problem [71]. Finally, our method integrates Model Predictive Control (MPC)
[56] into its structure, thereby allowing control and state constraints to be satisfied
during the learning process.

5.1 Problem Setup and Dynamics Modeling
Assume that we have selected a fixed trajectory τ (t) to be tracked by the robot
during episodic learning. Further assume a nominal controller û(x, τ , t) that can
stabilize the system to τ within a region of attraction Ω around the trajectory. This
controller might be the outcome of a previous learning episode (see below), or the
simple linear nominal controller from the KEEDMD process described in the last
chapter. Finally, the system’s governing dynamics are assumed to be unknown

ẋ = f(x,u) (5.1)

where x ∈ X ⊂ Rn, u ∈ U ⊂ Rm, and f(x,u) is assumed to be Lipschitz
continuous on X × U .
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Figure 5.1: From left to right: hovering before the sequence start, high speed descent
with learned dynamics, and soft landing.

Figure 5.2: Flow chart showing the different elements for each episode.

Learning with Arbitrary Stabilizing Control Laws
KEEDMD (Section 4.4) requires batch training data to be collected from a system
that operates under a nominal linear control law: unom(x) = Knom(x − τ (t)). A
main contribution of this chapter is to iteratively learn an improving sequence of
eigenfunctions and nonlinear controllers. Specifically, we will iteratively use the
lifted state-space model to design an MPC-controller to track learning trajectories
(see Figure 5.2).

If a candidate nonlinear controller û(x, τ , t) can stabilize system (5.1) to a given
trajectory τ , the controlled system can be described by the autonomous dynamics

ẋ = f(x, û(x, τ , t)) , Fû,τ (x, t). (5.2)

where Fû,τ (x, t) denotes an autonomous dynamical system, under control law û
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stabilizing the system to τ . Importantly, for the autonomous dynamics (5.2), there
exists an associated Koopman operator UFû,τ

that depends on control law û and
trajectory τ . Therefore, approximate eigenpairs for UFû,τ

can be constructed (see
Section 4.2) from the gathered state and control samples. A lifted state-space model
can be constructed from these eigenpairs.

However, unlike the framework reviewed in Section 4.4, we aim to learn a dynamical
model that assumes that the system is already regulated by the nominal controller
û(x, τ , t). As a result, the A-matrix of the lifted state space model captures the
autonomous dynamics under the nominal control law (Eq. 5.2), and the B-matrix
captures the effect of control variations around the nominal controller:

˙̂z = Aẑ +B(u(x, τ , t)− û(x, τ , t)). (5.3)

This model is used in an MPC framework below to design an augmenting control
law that adds optimal control actions to the nominal controller. The augmenting
controller leverages the improved system model to make corrections to sub-optimal
actions taken by the nominal controller.

Capturing Nonlinear Control and Dynamics Effects
Recall that the last chapter defined a diffeomorphism, h(·), that was crucial to map-
ping between the eigenfunctions of a linearized dynamical system and the Koopman
eigenfunctions of the nonlinear system. To enable the proposed learning framework
to capture nonlinear effects caused by the nonlinear controller and actuated dynam-
ics, a minor modification to the function approximator that represents h is necessary.
Namely, since the diffeomorphism is affected by the forcing signal τ (t), it must be
included in the inputs of h. This is motivated by the form of the diffeomorphism
loss function (4.20). In the case considered in the previous chapter, however, the
actuated dynamics and controller are assumed to be linear. This linearity causes
the effect of the forcing signal τ (t) to cancel out such that the diffeomorphism is
independent of the trajectory τ . In the general nonlinear case however, the effect
is not canceled out and must be captured by the diffeomorphism. As a result, the
diffeomorphism is modified such that h : X × X → Y (see 4 for details).

5.2 Episodic Eigenfunction Construction and KEEDMD Inference
This section describes the main contribution of this paper, a substantial extension of
the KEEDMD framework to allow iterative learning and improvement of the lifted
state-space model and its associated controller.
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Overview of the Episodic Learning Algorithm
Algorithm 2 summarizes the episodic learning approach, which applies three key
steps per episode. In each episode, e, the first key step starts when an initial
condition is sampled from setX0 and an experiment is executed with the controller
that was designed at the end of the previous episode, ue−1(x, τ , t). The state x,
control actions ue−1, control difference ũ, and the desired position dictated by the
trajectory at the time associated with the i-th sample τi are sampled. State data can
be differentiated numerically to find estimates ẋ. The resulting data set is:

D(e)
x =

{(
x
(e)
i ,u

(e)
i , ũ

(e)
i , τi

)
, ẋ

(e)
i

}Ts
i=1

(5.4)

where x
(e)
i denotes the i-th timestep of the e-th episode and Ts denotes the number of

samples in the episode. FromD(e)
x , we estimate the diffeomorphism h and construct

the eigenfunctions φ(e)(x) with associated eigenvalues Λ(e), via Algorithm1. Since
changes in the control law between episodes are expected to be small, we warm start
the learning algorithm with model coefficients from the previous episode.

The second key step is to use the constructed eigenpairs to build a lifted data set
D(e)
z

D(e)
z =

{(
z
(e)
i ,u

(e)
i , ũ

(e)
i , τi

)
, ż

(e)
i

}Ts
i=1

(5.5)

which is the same data as D(e)
x , but with the state and its derivative, x

(e)
i , ẋ

(e)
i ,

replaced with the lifted state and its derivative, z(e)
i , ż(e)

i . Next, data from the current
and previous episodes is aggregated:

⋃e
j=1D

(j)
z . The lifted state-space model is

Algorithm 2 Episodic KEEDMD
Require: Desired trajectory τ , nominal controller û(x, τ , t), diffeomorphism model
classHh, diffeomorphism loss Lh, number of lifting functionsN , KEEDMD loss Lz
Dz = ∅, u0(x, τ , t) = û(x, τ , t)
for e = 1, . . . , Nep do

Sample initial condition: x0 ← sample(X0)

Execute experiment: D(e)
x ← run(x0,u

(e−1)(x, τ , t))

Fit diffeomorphism estimator: h(x)← ERM(Hh,Lh,D(e)
x )

Construct eigenpairs: (φ(e)(x),Λ(e))← h(g(ψ(x)))

Construct and aggregate lifted data set: Dz ← Dz ∪ D(e)
z

Fit KEEDMD model: ż(e)(z)← ERM((φ(e),Λ(e)),Lz,Dz)
Update controller: u(e) ← u(e−1) + w(e)MPC(ż(e),u(e−1))

end for
Output: Final control law u(Nep)



64

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

Al
tit

ud
e 

(m
)

∫(z− zd)2 = 0.57

Episode  0

0.0 0.5 1.0 1.5
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

Th
ru

st
 (n

or
m

al
ize

d)

∫u2 = 0.67

0.23 sec

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

∫(z− zd)2 = 0.57

Episode  1

0.0 0.5 1.0 1.5
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

∫u2 = 0.68

0.32 sec

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

∫(z− zd)2 = 0.54

Episode  2

0.0 0.5 1.0 1.5
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

∫u2 = 0.68

0.44 sec

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

∫(z− zd)2 = 0.46

Episode  3
z
zd

0.0 0.5 1.0 1.5
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

∫u2 = 0.70

0.46 sec T
Tmax

Figure 5.3: Evolution of drone altitude pz with accumulated error and control effort
after each episode. Episode 0: baseline controller, Episode 1-3: performance after
each episode of learning. Red arrows: duration the thrust constraint is active.

constructed from this data using the framework of Section 5.1. This results in a
model of the form (5.3).

In the third and final step, an augmenting MPC is designed (see Section 5.2) for
the lifted state-space model. The evaluation of the previous iteration’s controllers
is necessitated by the fact that the eigenfunctions depend on the dynamics under
closed loop control with the controller deployed in the previous episodes. The
controller augmentations are weighted and added to the previous episode’s control
law: ue = u0+

∑e
j=1wjuj , wherewe is a weighting factor indicating the confidence

in the augmenting controller. The weighting factors can be any monotonically
increasing sequence on the interval [0, 1] which allows the augmenting controller to
have a bigger impact after a sufficiently rich data set has been collected.

Efficient Model Predictive Controller Implementation
Inspired by [42], we transform the original non-linear optimization problem into an
efficient quadratic program (QP). The QP formulation requires us to discretize the
previously learned linear continuous dynamics. We assume a known objective func-
tion of states and controls only. For simplicity, we use a quadratic objective function
with respect to the state error and control action, but other objective functions can
be used by simply adding it to the lifting functions. We assume known control
bounds umin, umax ∈ Rm and state bounds xmin, xmax ∈ Rn. Because the control
input for each MPC problem refers to the change from the previous controller, we
have to correct for this change in the control bounds. All these assumptions define
the following optimization problem that is solved at each time step:
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min
u∈Rm×Np

z∈RN×Np

∑Np
p=1

[
(Cjzp − τp)T Q (Cjzp − τp) + uTpRup

]
s.t. zp = Ajzp−1 +Bjup

xmin ≤ Cjzp ≤ xmax p = 1, . . . , Np

umin ≤ up −
∑j−1

i=1 w
(i)u

(i)
p ≤ umax

z0 = φj(xk)

(5.6)

whereQ ∈ Rn×n andR ∈ Rm×m are positive semidefinite cost matrices, τ ∈ Rn×Np

is the reference trajectory, Aj ∈ RN×N and Bj ∈ RN×m are the discrete time
versions of (5.3) for controller j, Cj ∈ Rn×N is the jth controller’s projection
matrix, and φj ∈ RN are the jth controller’s eigenfunctions. See Figure 5.2 to see
how each controller is used as more episodes are being executed. In addition, we
add a smoothing regularizer to avoid chatter that may arise from optimization-based
controllers [60] of the form

∑Np
p=1 αR(up − up−1)2 where u0 is the deployed control

action at the previous timestep.

5.3 Improving FastMultirotor Descent and Landing by Learning the Ground
Effect

To validate our methodology, we apply it to fast descent and landing of a multirotor1.
As the vehicle approaches the landing plane, a ground effect from the interaction of
the prop downwash and the landing surface becomes prominent. This effect induces
added upward thrust on the drone, which can lead to poor tracking performance for
control designs that rely on models which omit these fluid flow interactions.

Modeling and Problem Statement
To simplify the discussion, we consider a 1-dimensional nominal model of the
multirotor’s altitude dynamics, consisting of a point mass model having altitude and
its derivative, [pz, ṗz]

T , as states, massm, and total thrust, T , as input:[
ṗz

p̈z

]
=

[
0 1

0 0

][
pz

ṗz

]
+

[
0

1/m

]
T. (5.7)

Using this model, we design a nominal MPC as described in Section 5.2 with the
goal of reaching a fixed point of 0.05 m above ground at zero velocity.

A nominalMPC stabilizes the drone to a fixed point, but uses more control effort and
time to reach that point as a result of its simplified model. Importantly, the nominal

1The code for learning and control is publicly available on github.com/Cafolkes/keedmd
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dynamics model does not capture the ground effect. Our goal is to iteratively learn a
better dynamics model (and associated MPC) that will improve speed and tracking
performance in both the air and near-ground regimes.

Implementation and Experimental Details
Our experiments use the Intel Aero RTF Drone. The Drone’s position is measured
using an OptiTrack motion capture system and is fused with the drone’s IMU (stock
PX4 v1.8) to estimate the state. The diffeomorphism, h, is parameterized by a
neural network and implemented with PyTorch [64], and the KEEDMD regression
is implemented with elastic net regularization in Scikit-learn [65]. A dense form
MPC-controller is implemented in Python using the QP solver OSQP [77], and
commands are sent to the PX4 flight controller viaROS. All computation for learning
and control is done on board the drone. Each neural network and MPC evaluation
takes 5 ms, limiting us to 5 episodes as update rates below 60 Hz lead to poor
performance on our hardware. The experiment’s key parameters are summarized in
Table 5.1.

We execute Algorithm 2 as discussed in Section 5.2 on the drone for three episodes
in each campaign. Each episode starts with 3 repetitions of the following: (1)
the drone takes off and moves to an initial point under PX4 control; (2) the lifted
controller takes over to stabilize the fixed point and hovers at that point for a second.
After 3 repetitions, the drone lands under lifted control, fits the diffeomorphism
and KEEDMD models, and repeats the episode. An additional landing sequence is
executed to evaluate the performance of the current episode controller.

Results and Discussion
Figure 5.3 depicts the drone’s trajectory and control effort under the nominal con-
troller (Episode 0), and then final landing for three episodes of a single learning
campaign. Episode 0 represents the nominal performance before learning, while
episodes 1-3 show the learning effect. Tracking error is reduced by 19.3 percent by
the end of the last episode while the total control effort increases 4.5 percent as a
consequence of the chosenMPC penalty matrices. Importantly, the thrust constraint

Table 5.1: Experiment Parameters

State error penalty, Q [10, 0.1] Min thrust, umin 0.3
Control penalty, R 1 Max thrust, umax 0.8
Min altitude, xmin 0.05 m Hover thrust, uhover 0.66
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Figure 5.4: Mean± 1 standard deviation of tracking performance after each episode
over 5 independent campaigns.

is rigorously satisfied, and this constraint is active for longer duration. As the system
learns more accurate dynamic models, it takes on more of an open-loop bang-bang
characteristic, as would be expected from an optimal solution, and less from closed
loop control. Less control effort is needed towards the end of the trajectory, indi-
cating that our methodology captures the ground effect. The mean and standard
deviation of five independent learning campaigns are reported in Fig. 5.4. The
tracking performance improves in every episode. Furthermore, the methodology
has low variance between campaigns.
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C h a p t e r 6

ENSEMBLE MPC

This chapter focuses on learning parametric uncertainty of an unknown dynamical
system, and formulates a computationally efficient Model Predictive Controller
(MPC) that is robust to the considered uncertainty under certain conditions. The
results of this Chapter have been presented at the 2020 Conference on Decision and
Control [6].

6.1 Introduction
Tomotivate this work, consider amulti-rotor drone that must land quickly. Naturally,
the drone should not hit the ground, even with limited actuator authority. Intuitively,
the minimum time landing trajectory should incorporate aspects of bang-bang con-
trol: the drone should accelerate towards the ground as quickly as possible, and
then brake as fast as possible. However, any error in the modeling of the actua-
tion dynamics or the vehicle aerodynamics near the ground might not be recovered
during closed loop control, as the actuation is under saturation. Practically, some
actuation margin can be added to handle the modeling errors, but this solution
leads to conservatism and does not provide any quantitative information about the
performance-safety trade-offs. Next, consider the case of emergency braking in
autonomous vehicles. The autonomous dynamics are easy to model, but the actua-
tion dynamics present a harder challenge since in emergency situations, the control
behavior depends on road conditions or hard-to-model variables, e.g. brake and
tire temperatures. In these scenarios, actuation dynamics could be learned from
operational data, and then used to rigorously impose safety during the planning and
control process.

Several authors have considered uncertainty for MPC. One of the early works [59],
considered the worst case scenario using impulse responses of the system, leading
to exponential explosion of cases. The subsequent LTF-approach [43] avoided the
combinatorial complexity of [59] at the expense of considering a more conservative
linear controller in the analysis. The minimax approach [54] posed the problem as
a second-order cone, and considered an extension to uncertainties in the actuation
matrix ([54], chapter 10). We deviate from this work as we only consider formu-
lations leading to quadratic programs that can be solved in real-time for practical
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applications at the cost that it imposes some restrictions on the types of systems and
uncertainties that can be considered. One of the restrictions is linear time invariant
dynamics. As seen in previous chapters, we will use Koopman Operator theory to
extend this resctriction to non-linear systems.

We employ Bayesian methods to update the parametric uncertainty. Specifically,
we use an Ensemble Kalman method, as it models uncertainty as a polytope of
parameters and directly propagates the polytope’s vertices. But other methods like
set membership identification could be used. These features are used synergisti-
cally when formulating the robust controller. Other sample-based methods, like
Unscented or Quadrature methods have been proven useful for state estimation [4]
and could be used in the parameter-estimation inversion setting. In comparison, en-
semble methods allow the user to control the number of vertices, and the resampling
step is avoided. Particle filters are similar to Ensemble methods, but the particles
interact weakly only by re-sampling, avoiding the Gaussian assumption at the cost
of very expensive computation for high-dimensional systems.

The Ensemble Kalman Filter was first introduced by Evensen [23] and then used
in [10, 21] for state uncertainty estimation of large scale problems. Subsequently,
it was introduced to solve inverse problems [35]. Different parametrizations were
studied in [17], and convergence properties were analyzed in [73]. In [28], they
proposed the Ensemble Kalman Sampler approach that we use in this paper, to solve
the ensemble collapse of the Ensemble Kalman Inversion. In their preliminary
results. the solution compares to the more expensive Random Walk Metropolis
Hastings Monte Carlo Markov Chain [69].

6.2 Preliminaries on the Ensemble Kalman Sampler
The Ensemble Kalman Sampler (EKS) formulates the estimation problem as an
inverse problem of the vector of parameters θ ∈ RNθ given noisy data as

y = G (θ) + η, η
i.i.d∼ N (0,Γ) (6.1)

where y ∈ RNy are the measurements, G(θ) : RNθ → RNy is the forward model,
and η is the measurement noise, usually assumed known from sensor calibration.
The objective of the inverse problem is to compute the unknown model parameters
θ given the observation y, the known forward model G, and noise characteristics η
of the process. For the Ensemble Kalman Sampler, the problem is formulated as
a Bayesian regression where it maximizes the posterior probability represented by
an ensemble, or set of particles. Starting with an initial estimate for each particle,
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u
(0)
n , n = 1, . . . , Nu, the new estimate for each particle is computed by performing a

Kalman Measurement Update using the empirical covariances CGG and CθG, where
the empirical estimates Cxy is computed as Cxy = 1

N

∑N
n=1 (xn − x̄)⊗ (yn − ȳ) for

{x, y} equal to G(u) or u. The new estimate for each particle is

K = CuG (CGG + Γ)−1 (6.2)

u(k+1)
n = u(k)n +K

(
yn −G

(
u(k)n
))
. (6.3)

The method as presented above would converge to the posterior mean, that is, the
particle distribution will collapse to the mean of the true distribution. This result
is desired in the optimization setting, but our interest is to recover the original
distribution of the data. To do so, we follow the extension named Ensemble Kalman
Sampler and we add two corrections: (1) we add a prior regularization, (2) we add
a random variable sampled from the current empirical covariance.

u+(k+1)
n = (I + CuuΓ

−1
0 )u(k+1)

n (6.4)

u++(k+1)
n = u+(k+1)

n +
√

2Cuuξ, ξ ∼ N (0, I) (6.5)

Algorithm 3 shows the pseudo-code version of the algorithm. Note that the state
covariance is not updated but the spread of the ensemble particles determines the
empirical covariance. Garbuno-Inigo et al. [28] showed that the posterior density
is a global attractor for all initial densities of finite energy which are not a Dirac
measure.

6.3 Ensemble Model Predictive Control (EnMPC)
We first describe an overview of the algorithm and how to incorporate parametric
uncertainties in the MPC formulation. Then, we describe how to learn these un-
certainties from data using ensemble Bayesian methods. Two particular cases will
be explored: first, we consider linear dynamics and quadratic objective functions
to formulate the problem as a quadratic program, second, we consider nonlinear
autonomous dynamics and model them based on Koopman theory.

Overview of the EnMPC-algorithm

Consider a system with discrete-time control-affine dynamics

xk+1 = a(xk) + b(xk)uk + wk (6.6)

where a : RNs → RNs , b : RNs → RNs × RNu , the allowed set for the states is
X , the control inputs must lie in the set U , and the disturbance w is compactly
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Algorithm 3 Ensemble Kalman Sampler
Input: initial ensemble members u ∈ RN×Ne , number of iterations J , data
Y ∈ RNy , forward function G : RN −→ RNy , measurement Noise covariance
Γ ∈ RNy×Ny , prior covariance Γ0

1: procedure EKS(u, J , Y , G(·), Γ, Γ0)
2: for j = i . . . J do
3: ū = 1

N

∑N
n=1 un

4: Ḡ = 1
N

∑N
n=1G (un)

5: CuG = 1
N

∑N
n=1 (un − ū)⊗

(
G (un)− Ḡ

)
6: Cuu = 1

N

∑N
n=1 (un − ū)⊗ (un − ū)

7: CGG = 1
N

∑N
n=1

(
G (un)− Ḡ

)
⊗
(
G (un)− Ḡ

)
8: for n = i . . . N do
9: yn = Y + η . η ∼ N (0,Γ), i.i.d.
10: un = un + ∆tCuG (CGG + Γ)−1 (yn −G (un))
11: un = (I + ∆tCuuΓ

−1)un
12: un = un +

√
2∆tCuuξ . ξ ∼ N (0, I), i.i.d.

13: return u ∈ RNu×Ne

supported by W . We consider the setting where the dynamics of the true system
(6.6) are unknown but that we know a model of the dynamics parametrized by
θ = [θa, θb, θw]

xk+1 = a(xk, θa) + b(xk; θb)uk + θw (6.7)

such that there exists a θ∗ that exactly describes the true dynamics. We do not assume
knowledge of θ∗ but instead assume that we know a polytopeP = A⊗B⊗W defined
by the convex full of the ensemble of θ such that θ∗ ∈ P , θ∗a ∈ A, θ∗b ∈ B, θ∗w ∈ W .

EnMPC consists of two main steps: first, we collect a dataset of state and input
pairs from the system’s trajectory. The collected data is used to fit a model of the
dynamics as an ensemble of parameters θ, i.e. inferring the vertices of the polytope
P . Then, we generate a controller that is robust to the possible system realizations
captured in the learned polytope. Deploying that controller allows us to generate
more data and repeat the process. As the knowledge of P improve, the volume of
P can be reduced, and the performance of the controller improved. Our proposed
algorithm is summarized in Algorithm 4.

By incorporating the uncertainty of the system model, as described by the polytope
P , in a model predictive controller, robust forward invariance of the set X can
be certified under specific assumptions on a(xp−1), b(xp−1), A, B, and W . We
first present the general MPC formulation and then discuss needed assumptions and
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analyze the robustness of the controller in Sections 6.3 through 6.3.

We extend the standard MPC (2.8) with an additional set of constraints for each of
the Nv vertices of the polytope P . We denote

x
(v)
k ∈ X ,∀k = 1, · · · , Nt, v = 1, · · · , Nv (6.8)

where x(v)k denotes the predicted state at time k as predicted by the dynamics model
with θ equal to the v-th vertex of P . This increases the complexity of the MPC
formulation by adding (Nv − 1)NpNs new constraints to the sparse formulation
(2.8). This results in the robust MPC formulation

min
u∈RNu×Np

x∈RNs×Np×Ne

∑Np−1
p=1 l(x̄p, up, τp) + lf (x̄Np)

s.t. x
(v)
p = a(x

(v)
p−1; θ

(v)
a ) + b(x

(v)
p−1; θ

(v)
b )up + θ

(v)
w

x
(v)
p ∈ X p = 1, . . . , Np

up ∈ U v = 1, . . . , Nv

x0 = xk

(6.9)

where θ(v) = [θ
(v)
a , θ

(v)
b , θ

(v)
w ] denotes the v-th vertex of P .

In this work, we are particularly interested in applications where the uncertainty of
the control vector fields is large, such maxx∈X ,u∈U ,θb∈B ||b(x, θb)u− b(x, θ∗b )u|| >>
maxx∈X ,θa∈A ||a(x, θa) − a(x, θ∗a)||, either because the uncertainty in the actuation
matrix is big, or the elements of the matrix themselves are big. Considering these
systems allows us to formulate (6.9) as a computationally efficient quadratic program
under certain assumptions.

Learning Unknown Dynamics with Ensemble Kalman Sampler
In this section we discuss how to learn the unknown system dynamics model (6.7).
For simplicity, we assume that we have access to noisy data snapshots gathered from
executing trajectories with the system (6.6) under an arbitrary control law, such that

we have a data set of state and control action snapshots D =
{
{x̃k, uk}Ntk=1

}Ntraj

d=1
,

where Nt is the number of timesteps, and Ntraj the number of trajectories. It can be
extended to any other function of the state h(x).

We define the forward function G(θ) ∈ RNg , Ng = (Nt − nk) × Ns × Ntraj as the
difference between the predicted state for two different time steps, usually known as
multi-step prediction. For clarity, we omit the trajectory subindex in the following.
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At timestep k,

Gk(θ) = x̂k+nk − x̂k (6.10)

=

k+nk∏
i=k

(
a(x̂i, θa) + b(x̂i, θb)ui + θw

)
− x̂k, (6.11)

where nk represents the number of timesteps between state comparisons. Note that
an alternate approach is to directly use the right hand side of the state evolution as
the forward function, also called single-step prediction. The advantages of multi-
step prediction are twofold: it increases sensitivity by integrating the dynamics
over long periods of time, and avoids computation of numerical derivatives, but the
measurements become loosely correlated.

From the raw dataset, we construct the measurement vector y by subtracting each
measurement from a copy of themeasurement shiftednk timesteps, yk = x̃k+nk−x̃k.
Other multi-step approaches are possible, but it is outside the scope of this chapter.
Finally, the covariance of themeasurement noise, η, is defined as the difference of two
identically distributed i.i.d. Gaussian variables. Let x̃k = xk + ηx, ηx ∼ N (0, Rx),
where Rx ∈ RNs×Ns is assumed to be known as part of the sensor calibration
process. The EKS noise covariance matrix Γ ∈ RNg×Ng is then the block diagonal
matrix Ng times of 2Rx.

Algorithm 4 Ensemble Dynamical Learning with Robust EnMPC Algorithm
1: procedure En-DL-MPC(θ0, Ntraj, Nt)
2: Input: Initial Prior Dynamics θ0, Number of trajectories Ntraj, number of

timesteps Nt

3: Y = [ ]
4: for j = i . . . Ntraj do
5: Initialize the system x0
6: for k = 1 . . . Nt do
7: Collect New State xk
8: uk = EnMPC (xk; θk)
9: Command uk
10: Yj = [Yj, {x,u}] . Aggregate Measurements
11: θj = EKS(θj−1, Y ) . Compute new ensemble
12: return Learned Dynamics θNtraj
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Linear EnMPC

Consider a linear dynamical system of the form (6.6) with a(x) = Ax and b(x) = B

xk+1 = Axk +Buk + E (6.12)

where A ∈ RNs×Ns , B ⊂ RNs×Nu , and E ∈ RNs . Note that E adds a bias
to w, shifting its compact support. In addition, we assume a quadratic cost
l(xp, up, τp) = (xp − τp)TQ(xp − τp) + uTRup, and lf (xNp) = xTNpQfxNp , where
Q,Qf ∈ RNs×Ns and R ∈ RNu×Nu are positive semidefinite cost matrices. The
system parametrization has the structure θ = {vec(A), vec(B), E}. For conve-
nience, we explicitly write the state variables as a function of the control input
x(v) = A(v)xk + B(v)u + w(v), where w(v) = [1, . . . , Np]

Tw(v) propagates w(v).
This defines the following MPC problem

min
u∈Rm×Np

(x̄− τ )TQ(x̄− τ ) + uTRu

s.t. A(v)x0 +B(v)u+w(v) ∈ X b = 1, . . . , Nv

u ∈ U
x0 = xk

(6.13)

where bar elements denote the mean of all possible elements in P . Importantly, the
number of constraints added is linear in the number of vertices in P . This is the key
computational advantage of only considering uncertainty in the actuated dynamics
and completely avoids costly combinatorial searches present in other robust MPC
approaches [54], while still handling uncertainty in the dynamics.

Proposition 5. For the system (6.12), if the actuation matrix B associated with the
true dynamics lies in the polytope B with probability (1 − δ), there is an initial
feasible solution, then, with probability (1 − δ), the system under the designed
control law (6.13) renders the constraint set X forward invariant in the presence of
the actuation constraints u ∈ U .

Proof. First, the cost function is convex, and propagating the states with linear
dynamics generate a convex set [7], so the extreme of the propagated points must be
generated with the vertices of the polytope P . Next, we show recursive feasibility
using the initially feasible open-loop input sequence u0. At k = 1, the initial
feasible solution satisfies the constraint set, therefore, x1|1 is inside the convex hull
defined by (xv1|0, v = 1, . . . , Nv) with probability 1 − δ. If we applied the rest of
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the open-loop input sequence at x1|1, it would generate states xp|0, p = 2, . . . , Np,
where each state is shifted to the previous sequence xp|0 p = 1, . . . , Np by linearity
of the dynamics, and bounded worst case ofw, but starting from x1|1. This sequence
is shifted to the inside of the constraint set so it will also be inside the constraint set.
Thus, the open loop sequence up|0, p = 1, . . . , Np is a valid feasible solution to the
optimization problem at k = 1, but there might be other solutions with lower cost.
In particular, the optimal solution to the mean cost is unique and is guaranteed to
found [77]. A similar argument can be used for k = 2 using the open-loop controller
from k = 1, showing recursive feasibility.

Extension to Nonlinear Autonomous Dynamics using Koopman Operator
Theory

We now consider affine system dynamics with a nonlinear drift term and constant
linear input vector fields, i.e. as (6.6) with b(x) = B

xk+1 = a(xk) +Buk + wk. (6.14)

We use Koopman-based learning to estimate (6.14) and thus aim to learn a lifted-
dimensional linear model of the form

zk+1 = Azzk +Bzuk + Ez (6.15)

Az ∈ RNz×Nz , Bz ∈ RNz×Nu , and Ez ∈ RNz .

The state itself and learned Koopman eigenfunctions are used as the lifted state
z = [x, φ(x)]T . These eigenfunctions, φ(x) are learned and constructed using
the approach in Section 4.5. I.e. collected data from executed trajectories of the
system (6.14) is used to construct eigenfunctions φ(x) = [φ1(x), . . . , φNz−Ns(x)]T

that define nonlinear transformations of the state variables. Similarly to EDMD
as described by (4.9), we parametrize (6.15) by θ = {vec(Az), vec(Bz), Ez} and
then use EKS to infer the best fit ensemble of parameters θ. This is done by

applying EKS to the lifted dataset Dz =
{
{zk, uk}Ntk=1

}Ntraj

d=1
which is the same data

as D, but with the state replaced with the lifted state. With z defined in this way,
x = Cz,C = [I 0] and we obtain the following MPC problem

min
u∈Rm×Np

(Cz̄ − τ )TQ(Cz̄ − τ ) + uTRu

s.t. A
(v)
z z0 +B

(v)
z u + w(v) ∈ X v = 1, . . . , Nv

u ∈ U
z0 = [x0, φ(x0)]

T

(6.16)
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Figure 6.1: Comparison of standard MPC with robust EnMPC for different values
of actuation matrices B.

Note that if the lifted dynamics model (6.15) satisfies the assumptions of Proposition
1, the controller (6.16) certifies X to be forward invariant for the system dynamics
(6.14).

6.4 Simulation Results
To obtain an initial evaluation of the performance of the proposed framework, we
study one dimensional multirotor dynamics and aim to design a controller that can
land from an initial position as quickly as possible while being robust to model
uncertainty such that state constraints are not violated. The code for running the ex-
periments is publicly available athttps://github.com/PastorD/ensemblempc.
Consider the dynamics:
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z̈ =
1

m

(
−mg − 1

2
CdρAż

2 +
1

1− (Ra/4z)2
T

)
(6.17)

where z is the altitude of the quadrotor, m,Cd, A,Ra is the drone’s mass, drag
coefficient, surface area facing the xy-plane, and rotor radius, respectively. Finally,
ρ is the air density. The first term of the dynamics accounts for the gravity effect, the
second term captures aerodynamic drag, and the last term is the effect of the total
thrust of the rotors, T , including ground effects. For the following simulations we
use the same cost function,Q = diag(105, 1), R = 1, and terminal state x = [0, 0]T .

First, we show that without the robustness constraint, a traditional MPC algorithm
might violate the state constraints in closed loop. For this purpose, we consider
a simplified version of (6.17) using only the gravity and direct control input, i.e.
z̈ = g−T , control bounds T ∈ [0, 1], and state constraints z < 0∀t. We sample the
control matrix from the distributionB = [0, b]T , b ∼ N (1, 0.4), to simulate different
conditions for each experiment. Figure 6.1 shows results for 200 trajectories. The
traditional MPC algorithm, on the top, crashes for any large values of b. On the
bottom, the EnMPC only hits the ground for high values of b outside the initial
ensemble spread. Note that adding extra ground clearance can also avoid the
impacts, but it is not known a priori how much ground clearance to add given a
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Figure 6.2: Example of initial prediction trajectories for different ensemble dynam-
ics. The solution optimizes the mean dynamics, while keeping the position and
velocity constraints for all dynamics in the ensemble.
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Figure 6.3: Closed-loop trajectories using EnMPC at selected episodes. For smaller
uncertainties set, the MPC cost is not being reduced significantly, but the predicted
trajectories (in gray starting from the red dots) become closer to the closed-loop
trajectory. Similarly, the predicted thrust does not coincide with the closed-loop
thrust when the uncertainty is high.

known uncertainty error. To illustrate the EnMPC solution, Figure 6.2 shows the
predicted trajectories at the beginning of each simulation taking into consideration
the dynamics in the ensemble.

Next, we show how a smaller ensemble provides lower prediction uncertainty,
the controller can be more aggressive, and therefore improve performance while
satisfying state constraints. Figure 6.3 shows the value for the second element of
B for each episode, the evolution of the position, velocity, and control input for
selected episodes. The predicted open-loop trajectory costs are displayed in gray
for several timesteps. As the uncertainty in the actuation matrix decreases, the
prediction becomes tighter and the performance improves.

6.5 Conclusion
This chapter presented a model predictive controller for uncertain systems. Para-
metric uncertainty was modelled as a polytopic set and updated using ensemble
methods. This allows to formulate the optimization problem as a quadratic pro-
gram, which is fast to solve for agile applications. Using past trajectories, the
estimation of the parametric uncertainty is improved to reduce the uncertainty of
the prediction, resulting in a less conservative controller with better performance
while satisfying state and input constraints. The analysis of the proposed methods
focused on linear systems and it was extended to certain nonlinear systems using
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Koopman-based learning. The initial experiments show promising results, and fu-
ture work will further develop the theoretical aspects of the algorithm and apply it
to more challenging problems.
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C h a p t e r 7

CONCLUSION

This thesis has presented multiple results to ensure stability and safety, as it applied
to multirotor flight. It is divided in two main approaches: one focusing on the
mechanical design and the other one on the controller design. They are explained
in Chapters 3-6 as follows.

Chapter 3 described several designs to quickly deploy an aerial asset using a pres-
surized tube. The first design, SQUID 3", was a proof of concept and it introduced
several design criteria for successful deployment. It contained a 3D printed body
with off-the-shelf electronics. It demonstrated several successful launches from a
vehicle moving at 50 mph. The contributions include a novel design for multirotor
take off and extensive testing under harsh conditions. The second prototype, SQUID
6", demonstrated autonomous flight using on-board cameras. To accommodate the
bigger payload, the size was increased to six inches. The unibody design was aban-
doned for a open design consisting of carbon fiber plates, adding structural integrity
and ease of usage. Additionally, the fins were replaced with a similar folding mech-
anism as the arms. This change allowed the fins to engage the free stream and it was
validated using a 2" scaled model on a wind tunnel.

The next 3 chapters used the Koopman Operator Framework to model and control
non-linear dynamical systems. Themain application is multirotor control but simple
examples are provided to illustrate each method. Chapter 4 proposed a novel
technique to find the Koopman eigenfunctions directly from data. First, it computes
the principal eigenfunctions analytically of the linearized system. Next, it learns the
non-linearmapping using function approximation. The computed eigenfunctions are
then used as lifting functions to learn a finite aproximation of the KoopmanOperator.
Simulations show that this approach predicts better the non-linear evolution than
several standard choices of lifting functions. It also shows that the learned model
can be used for Model Predictive Control, improving the closed-loop performance.
One of the contributions is a dense approach to MPC, removing the dependency
of the lifting dimensions by explicitly writing the state evolution as a function of
the control input. This allows to quickly compute the optimal control action, while
satisfying state and actuator constraints.
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Chapter 5 demonstrated the usage of Koopman Operator Framework for a practical
demanding robotic application. The method developed in the previous chapter
allowed fast and safe control, however, it is limited to a constant actuationmatrix. For
many robotic applications this imposes a strong limitation and most commonly used
dynamical models include an control-affine function. To solve this limitation, this
chapter introduced an extension to the previous method using an episodic approach.
At the end of each episode, the controller learns a Koopman Operator of the closed-
loop dynamics. Wrapping the non-linear controller in the autonomous dynamics
effectively allows to model the non-linear actuation effects using the methods seen
in the previous chapter. To demonstrate the method, it applies the algorithm to the
case of fast multirotor landing. During each trajectory, the controller satisfies a set
speed, position, and control actuation limits.

Lastly, Chapter 6 incorporates model uncertainty into the Koopman-based Model
Predictive Controller framework. It considers a model represented as a polytope
in parameter space. The linear formulation of the Koopman Operator allows to
keep the optimization problem as a quadratic program, enabling fast computation of
the robust controller while satisfying state and control input constraints. Modeling
uncertainty is particularly important for systems following optimal control actions
with saturated inputs, as any disturbance in the direction of the constraint might
lead to the violation of those constraints. This chapter showed how to learn model
uncertainty from data using ensemble methods, and how to incorporate it to a MPC
formulation. It showed in simulation the improved performance as more data is
gathered and the uncertainty bounds decrease.

7.1 Further Work
SQUID
There are several directions being investigated at the publication of this thesis. A
new design with four inches of diameter was being tested but, due to the pandemic
restrictions, the development stopped. It shares the plate design of SQUID 6", but
it aims to be fully autonomous by just using a GPS device instead of a camera. This
allows to reduce the overall size and weight, making it easier and safer to operate. In
addition, the application for aerial deployment for future Mars missions is an active
project at JPL. An extension is being investigated where theMars Helicopter is being
released from mid-flight, instead of from under the belly after landing in the current
design. This would allow to visit a big area of Mars that is currently inaccessible,
as current rover landing technology only allows to land on low elevation terrain.
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The original SQUID project was conceived as a way to put an aerial asset using a
pressurized tube launcher. However, there are other methods to put a multirotor in
the air without a pressurized tube launcher. In particular, it can simply take off using
its own propellers like a standard multirotor. They can reach high speeds quickly,
as a good rule of thumb is to design the maximum thrust at least twice the weight,
but racing drones normally surpass a ratio of ten. This design would simplify and
strengthen the structure avoiding moving arms. One of the main problems would be
the high speed apparent wind when it is launched from a moving vehicle. Detailed
analysis and testing would be needed to ensure it can take off without losing stability.
From the control perspective, this vehicle introduces interesting challenges given
the impulsive nature of the take off. To simplify the takeoff, guide rods could
be deployed so the trajectory is constrained while it is in contact with the rods.
Once it leaves the guide rods, it would have some speed and its flight would be
similar to a traditional multirotor flying forward. Additionally, the platform could
be oriented forward so the launching angle is similar to the pitch angle flying at
that speed. This flat SQUID would occupy a larger footprint for a similar propeller
size, but the vertical clearance would be significantly smaller. While several of the
original tube launchers can be stacked laterally, several flat SQUID could be stacked
vertically. This thin package could retrofitted into vehicles without a track bed, for
example, a police car could attach one of these vehicles on top of the car roof to
quickly deploy a multirotor at the press of a button. Another advantage is the lack
of the pressurized components, which require especial usage. In summary, the flat
version of SQUID would resemble a traditional multirotor, launched from a moving
vehicle with the help of guide rods and an inclined platform. It would introduce
new control challenges and thanks to its simplicity it would be closer to be used in
real applications.

Koopman Operator
The Koopman Operator was originally intended for autonomous systems. Although
there have been several extensions for controlled systems, they do not seem to
fit within the formulation and they do not work well with robotic applications.
Chapter 5 proposed one of those solutions, but not without drawbacks. A new
paradigm is needed to directly model controlled systems, not as an extension to a
Koopman model. A direction that could be exploited is to lift the control signal
to a higher dimensional space, in a similar way as the state is lifted in the original
formulation. An alternative direction could be to use a different model class to
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model the control input. Bilinear models have been proposed in recent work and
they are able to model generic control-affine dynamics.

Future work will test the Koopman Operator for more demanding applications.
Most of the published work focus on simulations with simple dynamics. This thesis
presentedwork on a physical platform, but only in 2 dimensions. Amore challenging
robotic application, such a bipedal robot, would test if it is feasible to implement
a Koopman-based control for high dimensions. Similarly, Chapter 5 considered
full-state feedback. Measurements in high dimensional spaces, such as raw pixels,
are particularly challenging for traditional robotics, but they are commonly used in
machine learning applications. Koopman Operator theory could be used to blend
both approaches by providing rigorous analysis using high capacity models as part
of the lifting functions.
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