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ABSTRACT

One approach to studying finite linear groups over the complex
numbers is to classify those groups with an element possessing a cer-
tain eigenvalue structure. Let G be a finite group with a faithful,
irreducible, primitive, unimodular complex representation X of degree
n. Assume g € G such that X(g) has eigenvalues €,€,1,1,...,1 where
€ is a primitive rt root of unity. H. F. Blichfeldt and J. H. Lindsey
have classified G whenever r = 5. In this thesis r = 3 and 4 are handled.

The main results are:

Theorem 1: Let G be a finite group with a faithful, irreducible,
primitive, unimodular complex representation X of degree n. Assume
there is an element g € G such that X(g) has eigenvalues i, -i, 1,1, ..., 1.

Then n < 4 and G is a known group.

Theorem 2: Let G be a finite group with a faithful, irreducible,
primitive, unimodular complex representation X of degree n. Assume
there is an element g € G such that X(g) has eigenvalues w,w,1,1,...,1
where w = e2”1/3. Let N be the subgroup of G generated by all such
elements. Then either

1. N= Ay, and G/Z(G) = Ap,,; Or Sp;y.

2. n=8, N=N’ Z(N)has order 2, and N/Z(N) = 0, (2);

G/Z(G) is a subgroup of the automorphism group of O, (2).

3. n < T and G is a known group.
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INTRODUCTION

Finite linear groups of degree n over the complex numbers can
many times be classified according to the eigenvalue structure of an
element in the group. As finite linear groups are subdirect products of
irreducible linear groups, it is convenient to restrict the study to
irreducible groups. For example, Mitchell [21] classified all irreducible
linear groups containing an element with eigenvalues «,3,3,...,3
where @ # 8. The next natural step is to consider the case where there
exists an element of the group which has an eigenspace of dimension n - 2
corresponding to one of its eigenvalues. In this thesis, we will examine
groups which contain an element with eigenvalues €x,ex,a,a,...,®
where € # 1.

Let G be a finite group with a faithful, irreducible complex repre-
sentation X of degree n over the vector space V. The representation X
is said to be primitive if there does not exist a set of m > 2 proper,
nontrivial subspaces Vi withv=V,®&V,® ... ® Vm such that X(g)
permutes {Vi} for all g € G. An irreducible representation which is
not primitive is similar to one induced from a representation of some
proper subgroup [5, Theorem 50.2]. Thus it is not very restrictive to
consider only primitive representations. The representation X is uni-
modular if X(g) has determinant 1 for all g € G. Any irreducible
representation is projectively equivalent (i.e., as a collineation group)
to a unimodular representation. Therefore by classifying unimodular,

irreducible, primitive groups containing an element with eigenvalues



€,€6,1,1,...,1, we are classifying, up to projective equivalence, those
irreducible primitive groups containing an element with eigenvalues
€, ea,q,...,a Some work has been done on this problem. If X is

th root of unity, the

irreducible and primitive, and if € is a primitive r
results are known for r = 5. A special case of a theorem in Blichfeldt
[2, p. 96] proves that if r > 6, thenn <2, r = 6, 8, or 10, and the
groups are known. If r =5, Lindsey [14, Lemma 2] proves n <4 and
the groups are known. In this thesis the cases r = 3 and 4 are handled.

The results are:

Theorem 1: Let G be a finite group with a faithful, irreducible,
primitive, unimodular complex representation X of degree n. Assume
there is an element g ¢ G such that X(g) has eigenvalues i,-i,1,1,...,1.

Then n <4 and G is a known group.

Theorem 2: Let G be a finite group with a faithful, irreducible,
primitive, unimodular complex representation X of degree n. Assume
there is an element g € G such that X(g) has eigenvalues w,w,1,1,...,1
where w = ezﬂi/ 3. Let N be the subgroup of G generated by all such
elements. Then either

1. N=A_ and G/Z(G) = A, orS . .

2. n =8, N=N, Z(N) has order 2, and N/Z(N) = O} (2);

G/Z(G) is a subgroup of the automorphism group of O:(Z).

3. n <7 and G is a known group.

Note that all primitive linear groups of degree 7 or less are known (see

Blichfeldt [2], Brauer [3], Lindsey [14,16,17], and Wales [ 27, 28]).



Some authors in recent years have become interested in classi-
fying quasiprimitive groups rather than primitive ones. A representation
X of G is quasiprimitive if for every normal subgroup N of G, X ‘N splits
into isomorphic factors. By Clifford's theorem [5], a primitive repre-
sentation is quasiprimitive. By examining the results of Chapter I, it is
easy to see that a quasiprimitive irreducible representation X of G,
where X(g) has eigenvalues i,-i,1,1,...,1 or w,w,1,1,...,1 for some
g € G, is indeed primitive. Therefore Theorems 1 and 2 are true if X
is quasiprimitive rather than primitive.

Chapters I and II give preliminary material used in the proofs of
Theorems 1 and 2. The results help characterize the possible subgroup
structure of G; in particular under certain conditions primitive sub-
groups of codimension 1 or 2 can be constructed. These results are
useful for induction purposes to prove the main results. In Chapter III,
Theorem 1 is proved. This proof is much easier than that of Theorem 2
because no primitive group of degree 5, 6, or 7 contains an element with
eigenvalues i,-i1,1,...,1. In Chapter IV, the alternating groups of
Theorem 2 are obtained by exhibiting appropriate generators and
relations. The proof of Theorem 2 is completed in Chapter V. The
powerful results of Aschbacher-Hall [1] and Stellmacher [26] on groups
generated by elements of order 3 are used. The following corollary is

also proved:

Corollary: If G is a finite simple group containing Ay, with a

nontrivial representation of degree n > 10, then G = A, _, ,An, or Ay ;-



The following notation is adopted. If H is a subgroup of a finite
group K, NK(H) is the normalizer in K of H, CK(H) is the centralizer in
K of H, Z(H) is the center of H, and H’ is the derivedgroup of H. If p
is a prime, Op(H) denotes the largest normal p-subgroup of H and O (H),
the largest normal solvable subgroup of H. If x,y € H, y'lxy is denoted
by x7. Also m 1H is the direct sum of m copies of the trivial representa-
tion of H. If H and L are subgroups of K, [H,L] = (A"'¢"'he¢ |h€ H, L € L).
The symbol Zk denotes the cyclic group of order k. The order of H is
denoted IH ]; also H 4 K means H is normal in K.

Let H be a finite group with a faithful, irreducible, primitive
complex representation Y of degree m. The term Blichfeldt refers to
the result [2, p.96 ]that H\Z(H) does not contain an element h where Y(h)
has an eigenvalue € such that all other eigenvalues are at most 60°
away from €. The term Mitchell will refer to two results in [ 21} : If
h € H and Y(h) has eigenvalues @, 3, ...,3 such that h® ¢ Z(H) but
h* ¢ Z(H), then m < 2. If h €H and Y(h) has eigenvalues @,8,...,8
such that h ¢ Z(H) but h® € Z(H), then m < 4. In the latter case if m=3,
H/Z(H) is a split extension of Z; X Z, by SL,(3) and if m=4, H/Z(H) =
O,(3). Which result the term Mitchell refers to will be clear from the
context. If p is a prime, a p-element of H is an element in H of order
a power of p. A special 4-element of H is an element h € H such that Y(h)
has eigenvalues i, -i,1,1,...,1. A special 3-element of H is an element
h € H such that Y(h) has eigenvalues w,w,1,1,...,1 where w = ezﬂi/s.
The group G will be a finite group with a faithful, irreducible, primitive,
unimodular complex representation X of degree n over the vector space

V. Bvy.cia e €V, (V3000 vy denotes the subspace of V generated

by vy, ..., Vk.



When working on this problem, it was often necessary to consult
character tables of various groups. Some of these tables are found in
(71, [8], [13], [16], [17], [19], [20], [29], and [30]. General ref-
erences for group theory and representation theory are [2], [5], [11],

[19], [23], and[24].



CHAPTER I
THE CONSTITUENTS OF X WHEN RESTRICTED
TO SUBGROUPS

In this chapter, we give properties of the constituents of X when
restricted to subgroups of G generated by special 3-elements or special
4-elements. In particular these constituents are shown to be either
primitive or monomial. The possible monomial groups are investigated
more closely, and conditions are given which guarantee the uniqueness
up to scaling and ordering of the basis. These results are useful in con-

structing large subgroups in later chapters.

Lemma 1.1: Let N < G and assume N contains a special 3-

element or special 4-element h. Then X |N is irreducible.

Proof: By Clifford's theorem [5], X|[N =X, ® ... & X, where
all the Xi's are equivalent irreducible representations of N. In par-
ticular the trace of )%(h) is the trace of X;(h). By the eigenvalue
structure of X(h), t > 1 is impossible.

Lemma 1.2: Let H be a subgroup of G generated either by
special 3-elements or special 4-elements. Assume X |H = X, @ X,

where X, is irreducible. Then either X, is monomial or X, is primitive.

Proof: Let H = (h;,...,h.)where hi are special 3-elements or
special 4-elements. Let X, have degree m and act on the subspace V*.

Assume the result is false. Then there exist ¢ > 1 subspaces



Vis...,Vyof V*all of dimension k > 1 with m = £k such that the Xl(hi)
permute {V, ... ,Vﬁ}. We may assume m > 4. Assume Xl(hi) fixes
exactly t subspaces, say V,,..., Vt by renumbering if necessary. Let

x :(h,) be the trace of Xll (h;) for j=1,...,t. Then
jvi Vj 1

t t
m- 3 < [trace Xl(hi)] = xj(hi)l < ), lxj(hi)l < kt
j:l ]=1

So k-3 <kt and hencet > ¢-1ask>1. As Xl(hi) fixes £ -1 subspaces,

it must fix all £ subspaces; so X, is reducible, a contradiction.

Lemma 1.1 implies in particular that if V, is a proper subspace
of V, there exists a special 3-element or special 4-element g € G such
that X(g) does not leave V, invariant. It also implies that the subgroup
generated by special 3-elements or special 4-elements could not be
abelian. These facts along with Lemmas 1.1 and 1.2 are used without
reference throughout this paper.

We now want to look more closely at what happens when the
hypothesis of Lemma 1.2 holds. In particular we want to investigate H

when X, is monomial and X, is of a special nature.

Lemma 1.3: Let H be a subgroup of G generated by special
4-elements such that X |H =X, @ (n-r’)lH where X, is irreducible of
degree r > 3. Suppose X, acts on V, and X !H is monomial in the basis
ViseeosVy of V. Then

1. There exist special 4-elements h,,...,h,._;, € H such that

when v, ... ,V, are properly scaled and ordered



v;X(hy) = -vj,,
vis, X(hy) = v;
VQX(hi) = v, for £ g{i,i+1}

Also (v,,...,vy) =V, and (n-r)lH acts on (Ve ..., V) -
2. X| ¢h,,...,h;) is irreducible on {(v,,... ’Vj+1> for j = 2.
3. IfX IH is monomial in a basis Vf, e ,v;';, by ordering and

scaling vf, % n% ,v:; correctly, v, = vf, ceey V= V:_ and

* b3
(Vr+l, oo e ,Vn> = (Vr+l, 6 % ,Vn> .

Proof: As X, is irreducible there is a special 4-element h, € H

such that X(h,) is not diagonal. So for some j # k, we have

va(hl) = -6vk

-1
VkX(hl) = B vj
v X(h,) = v, for ¢ q{i k.
By ordering v, ... s Wy correctly, we may assume j =1, k =2. Replacing

v, by 6v,, we may assume 6 =1. So X(h,) has the desired form. Note

that if h is any special 4-element of H with j # k and

v X(h) = e'lvj
VQX(h) = v, for 04 {j,kt ,

then the eigenspaces of X(h) corresponding to i and -i span (vj,vk> .
Thus (v].,vk) C V,, the unique subspace of V on which X, acts; in
particular (v,,v,) C V,. Assume we have constructed h,,...,h, where

i<r-1. So (v;,Vy), vy V), ..., {V;, Vi) € V, and as X, is irreducible



there is a special 4-element h¥,, € H such that X(h{,,) does not leave
(Viy...,Vjy,) invariant. So there exist j,k with 1 <j <i+1 and
i+2 <k <n such that

va(h;Ll) = -5Vk
v X(hi},) = 07y
VQX(h;ﬂ) = v, for £ d{j, &t

As (X(h,),... ,X(hi)) acts transitively on (v,),..., (vj;,), we may choose

h € (hy,...,h;) suchthat v.X(h) =Avj,,. Letting hy,, =h™'hi,, h,

J

vig X(hiy,) = -2 lévk
-1

ka(hi+l) = A0 vy,
/) X(hi,,) = v, for £ g {i+l,k}

Replacing v, by A"'6v, and rearranging v; ,,...,V_, We may assume
k k i+

n’
27’6 =1 and k =i+2. We have inductively constructed h;, ..., hy_;;
clearly (v, ...,v,.) =V, as (vj,vj,) € V;. As (n-r)lH acts on a sub-
space of (Vpi,...,Vy) and (vp,,,...,v ) has dimensionn-r, (n-r)ly
actson (vp g, ... ,vn) , proving 1.

The second assertion is proved by induction. Letj =2. As h,
and h, do not commute, if X| ¢(h;, h,) is not irreducible on (v,,Vv,, v,),
it must contain an eigenvector common to both X(h,) and X(h,). This is
not true because on (v,,v,,Vv,), X(h,) has eigenspaces (v, + iv,),
(v, - ivy), {(v,) corresponding to i,-i, 1, respectively, while X(h,) has
eigenspaces (v, + iv,), (v, - ivy), (v,) corresponding to i,-i,1. Thus

XI ¢(h,,h,) is irreducible on (v,,v,,v,;). Assume X l Chy, ..., hj,) is
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irreducible on (v,,... ,vj) for j-1 = 2. As XI ¢t,,...,h;) is invariant
G Wy x=vy vj+1> but not on <Vj+1> , it is irreducible on (v,,... ,v]-+1> 3
proving 2.

To prove 3, we examine X(h,),...,X(h._;). As a permutation on
<vf) PR (v;';) , each X(hi) acts trivially or as a transposition. As
X | (h,, h,) has an irreducible constituent of degree 3, the only possibility

is that there exist 1i,j,k distinct with

% %
V;‘X(hl) = -évj Vj X(h,) = —ev;
= * -
V;X(hl) =6 lv’ik and v X(h,) = € : ;‘
vy X(h,) = vy for 24 {i,i} vyX(h,) = v, for 24 {j,k}

*
]
reordering vf, ..

Replacing v. by (5v3'< and v; by eévl’: , we may assume 6 =€ =1. By

*

L’ We may assume i = 1, j =2, k=3. Soassume

under suitable ordering and scaling of vf, oy V; that we have

*
v; X(hy) = Vi,

(1) v’i’;lX(hi) = Vi*
sz(hi) = vz for £ €i,i+1}

for 1 <i < jand some j > 2. Clearly (v,... ,vj+1) = (vf, 5 % .,v};l), as
X’ (,..., hj> is irreducible on (v,,..., Vj+1> and invariant on

w ..., v}"ﬂ) . As X(hjﬂ) does not leave (v,,...,vj;,) invariant,

X(hj+l) must interchange (v’{) . (v;) for some 1 <i < j+1 and
j+2 < k < n. By renumbering v;z, T mmip v:;, we may assume k = j+2. As

hj;, commutes with h,, ..., hj_l, the only possibility is that i = j+1. So
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*
szk+1x(hj+1) = '5Vj+2
* -1k

* 3 a
vyX(hj,,) = v, for €@ {j+1,j+2}

By replacing v by 6v3k+2, which doesn't affect the form of X(h,), ..

|
X(h.), we may assume 6 =1, By suitably ordering and scaling
v, .. X(h;) has the form (1) for 1 i <r-1. Clearly V, =
wL””%>=w““”v>mdwnuuq%>:wﬂuuw%y Let
ViS = v’{; clearly S commutes with each hi' As X, is irreducible, S

; *
must act as a scalar on V,. Hence by correctly scaling v, , ... ,v , we

have 3.

Lemma 1.4: Let H be a subgroup of G generated by special
3-elements such that XIH =X, @t D (n-m—l)lH where X, is irreducible
of degree m > 5. Assume X, is monomial on a subspace V, of V, £ is
linear and acts on (v), and (n-m-l)lH acts on V,. Let V, have a basis
Ve Vi such that X, is monomial in that basis. Then there exist

special 3-elements h;,...,hy., € H such that by properly scaling and

ordering v,,..., Vi We have
(~ —
V. X(h ) = Vi
< Vi X(hy) = vy,
1+2X(h) =V
\ vpX(hy) = v, for ¢ g{i,i+1,i+2}

Also £(hy) =1for 1 <i <m-2. The elements h € H with (X, ® £)(h)
diagonal in the basis vy, ...,v, Vv form a normal subgroup F of H with

H = FA where A = ¢h,,...,hy_,). Also X, |F splits into m distinct
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linear representations all different from . Furthermore if vf, " v:;
is a basis for V in which X ]H is monomial and if v’f, 5 % a5 v:; are properly
scaled and ordered, v, = vf, o5 ¥ g Wy = v*m. If &= 1H’ (v*m+1, e ,V;) =

(v) ® V,. K&z lH’ by ordering and scaling v;ﬂ“, o ,v; correctly,

* * *
V =Vme and V, = (Viygp, 000, V)

Proof: As H is not abelian, there is a special 3-element h, € H
such that X, (h,;) is not diagonal. In particular, we must have i, j, k

all distinct such that

( viX(hl) = av;
< va(hl) = bvk abc =1
ka(hl) = Cv;
_VgX(hy) = v, for ¢ dii,j,k
By reordering v,,...,v, we may assume i =1, j=2, k=3. Replacing v,
by av, and v, by abv,, we may assume a =b =c =1 and we have h,.

Assume we have constructed h,, ... ’hi for some i < m-4. Then
there is a special 3-element h € H which does not leave (v;,...,vj,,)
invariant, as X, is irreducible. So in particular there exist r,s,t all

distinct such that

- _
va(h) = avg
VSX(h) = bv; abe =1
th(h) = cv,

kle(h) = v, for 24 {r,s,t}

where 1 <r < i+2 and at least one of s or t is greater than i+2.
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Replacing h by h™" if necessary, assume i+ 3 <t < m.

Casea) i+ 3 <s <m:

By renumbering vj, s, . .. »V, W€ may assume that s =i+3, t =i+4,
which does not affect the form of X(h,),..., X(hi). As X] Wiy v g hi> is
the alternating group on v,,...,v;,,, choose g € (h;,... ’hi> with

v, X(g) = vj,,. Letting h , = he,

hj..) = bvj,, abc =1

L

ViyaX(hiy,) = CVii2

vyX(hi,,) = v, for ¢ {i+2,i+3,i+4}

Replacing vy, ; by avi,;, vj,, by abv;,,, which does not affect the form of
X(h,),... ,X(hi), we may assume a =b =c¢ =1. This is the desired

. . h.
element hj,, and h, "1 5 the element hi,.

Case b) 1 < s < i+2:

By renumbering vj_ g, ... »Vy» We may assume t =i+3. Then
clearly Xl | N, h;, h) acts as the alternating group on (Vidsooos (Vigal -
As X, is irreducible and i+3 < m, there is a special 3-element g ¢ H
such that X, (g) does not leave (v,,...,vj, ;) invariant. So there exist

p, i,V all distinct such that

av

i va(g)

il

v X(g) = By, afy =1
v X = v,

v X(g) = v, for 2 d1{p,n, v}
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where not all of p, u,v are less than or equal to i+ 3, but at least one is.
By replacing g by g~ ! if necessary, we may assume 1 < p < i+3 and
i+4 < v <m. Ifi+4 < p < m, then choose k € ¢h,... ,hi,h) such that

VpX(k) = XVj,,. Then

-1
X av

Vi, X(k ™ gk) "

vuX(k'lgk) = Bv
VVX(k' 'ok)

vV

XY Vi+2

vﬂx(k'lgk) vy for ¢ q {i+2, u, v}

We now have Case a, with k™ 'gk in place of h. If 1 < u <i+3, let

k e <¢h,..., hy, h) such that va(k) = XVj,, and V“X(k) = yVj;5;. Therefore
f'vi+2X(k'1gk) = x'lozyvi+3
viHX(k'lgk) = y'leV
VVX(k'lgk) = X¥Vi,s
3 vﬂX(k'lgk) = v, for ¢4 {i+2,i+3, v} .

Again we have Case a, with k'lgk in place of h. So by induction
h,...,h,_, are found. Clearly g(hi) =1forl <i<m-2as Xl(hi) is
not diagonal inv,,..., Vg »

Let F ={he H I(X1 ® £)(h) is diagonal in the basis v, ... ,vm,v} ;
fgcHandfcF, (X, ® £)(g”1g) is still diagonal and so F 4 H. Let g
be a special 3-element in H. If (X, © £)(g) is diagonal, then g € F.
Assume (X; @ £)(g) is not diagonal. Then for some i, j, k distinct,

vX(g) = vand
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viX(g) = av;
va(g) = bv abc =1
ka(g) = cvy
VQX(g) = v, for £ d{i,j, kt

As X, |A is the alternating group on v,,...,v_, there is an he A with

( viX(h) = vy
< va(h) = ¥,
ka(h) =V,
\vyX(h) = v, for £ ¢ {i,j,k

Then gh’ e Fand so g ¢ FA. Hence H=FAand F 1 A =1.

Consider X, IF =£@... @ £, Where £ is linear on <Vi> for
1<is<m. Assume first that Ey = gj for some i #j. Letf € F and by
double transitivity, let g € A such that viX(gr) = v; and va(gr) = Vi
So ¢;(e; "fe,)v; = viX(gr Tg,) = &.()v; and £(g] 1g,)v; = viX(g; fg,) =
£(f)v;. This implies £ (f) = gj(g;lfgr) = gi(g;lfgr) = £,(f). Thus
£,=... =&, contradicting the irreducibility of X,. So the §;'s are
distinct. If £ # lH, for some special 3-element g, £(g) = w or w. So
(X, ® &)(g) is diagonal and gi(g) + £(g) for 1l <i<m. Thus ¢ # g; for
l<i<smif £ 2 lH' If &= lH’ there is an f € F such that for some i,
gi(f) +1. Let g, €A with viX(gr) = V.. Then gr(g;lfgr)vr = va(g;lfgr) =
£ (f)v,.. So gr(g;lfgr) #1 and £+ £ for 1 <i <m.

Let v}, ..., v} be a basis of V in which X |H is monomial. We
first consider X(h,),...,X(hy.,) acting on this basis. As ¢h,,h;) = A,
clearly the only possibility is that



16

(. x _ * g * = *
va(hl) = avg Xib,) = av,
viX(h) = bv} abc =1 ; < VuX(hR) = BV, aBy =1
an
*
ﬁ vZX(hl) = cv; v X(hy) = yv:
LvZX(hl) = vz for £ ¢{r,s,t} gsz(hg) = vz for £ ¢ {t,u,w}

By replacing v; by av;, VZ by abv:, V: by aabv:, and vz‘v by aBabv;, we
may assume a =b=c =a= 3 =y =1. Also by renumbering we may

h;h
assumer =1, s =2, t =3, u=4, w=5. Notethath, =h, > '. So

inductively assume we have reordered and rescaled v’l", g v; such that
for some i, with 2 <i < m-4,
r
v X(h) = Vj]':_l
(1) < J+1x(h) = Vi:-z
]+2X(h) = v}‘
\ le( ) = vy for €@ {j,j+l,j+2}
for 1 <j <i. As X(h;,,) does not commute with (X(h,),... X(h-) '
X(h;,,) must act trivially on at least n - (i+4) of the vectors v1+3, - ,v;.
By reordering v FTTR ,vn, assume X(hj,,) acts trivially on vi+5, N v;.
So X| ¢h,,..., h,hij,,) acts as a permutation group on v, ..., i)
As (hy,...,h;,hj,) = Ay, which is simple, X|(hl, .+.»hy,hj ) cannot

act trivially on <vi+3) or <Vi+4>' Thus there isa j with 1 <j <i+2 such

that by ordering Vi*+3’ fo correctly

(v, X(h1+2) = aviys

Vi+3X(hi+z) = bv},, abc =1
visaX(hiy,) = cv;-k
" sz(hin) = Vz for ¢ g{j,i+3,i+4}
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Replacing V>ik+3 by avi"+3 and v’{+4 by abfo, we may assume a =b =c =1.
As hj , commutes with h;, ... ,h;_;, j =i+2 is the only possibility. Noting
that h;,, = hihi“hi, we have by induction and properly scaling and
ordering vf, e ,v; that X(h].) has the form (1) for 1 <j <m-2.

Let D = {h ¢ H|X(h) is diagonal inv},...,vi}} 9H. If g isa
special 3-element in H, by looking at (X; ® £#)(g) in the basis v, ... Vi ¥
it is clear that g does not commute with A. Thus either g € D or for

i,j,k distinct withi <m,

( v’{X(g) = av}k
* _ * _
< i X(g) = bvy abc =1
vi';X(g) = cv’ik
L VEX(g) = vz for 24 {i,j,k

In the latter case if j,k > m, by replacing v;.k by a.v;ik and vi: by abv;;, it
is clear that (h,...,hy-,,8) = Ay, and X|<¢hy, ..., hy_,,g) has an
irreducible constituent of degree m+1, a contradiction. If only one of
j,k is greater than m, by replacing g by g'1 if necessary, we may
assume j <m and k > m. Replacing v;; by bvi:, we may also assume
c=atandb=1. Ifazl, X| (hy,...,hy_,,8) is irreducible on
A ,v:n,v;) , a contradiction. Soa =1andK = ¢h,...,hy_,, 8

~ A As K NN F is a nontrivial abelian normal subgroup of K, this

m+1-

is a contradiction. So i,j,k < m and as done previously, gh € D for
some h € A. Therefore H = DA. As DF/F is a normal abelian sub-
groupof H/F A _, DCF. HenceD=FasF A =1.

Assume first that & = lH' As the only linear constituents of X |H

*

are trivial, X |D must be trivial on v ,,..

Ly Vr; 80 (V) @V, =
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(v:‘nH, ... ,V:;) and (vf, e ’V:n>= (Wyn e s 5 ,vm) . Suppose £ # lH'
As there is exactly one nontrivial linear constituent of X 'H, X ID must
be trivial on n-m-1 of the vectors vj,,,, - .- , vy while £ acts on the
remaining one. By reordering and rescaling, we may assume v = V;kn 415
so (v},... ’V:n> = (V... V) and V, = AN .,vl’:). As

XllF =£®...9 & =X1|D: b, ®...® Ky, Where u. acts on (v;‘)
and each £, is unique, { (v;‘) |1 <i <m} :{(vj) |1 <j <m} proving the

lemma.

If n > 5 and H is generated by special 3-elements such that X |H
is irreducible, clearly Lemma 1.4 holds when appropriately modified
to avoid conclusions concerning ¢ or (n-m-l)lH. So when necessary,

Lemma 1.4 will include this case.



19

CHAPTER I
BUILDING UP OF CERTAIN SUBGROUPS

In this chapter lemmas are developed which allow the building
up of subgroups of G generated by special 3-elements and special 4-
elements. Also under certain conditions it is shown that there are
subgroups of G which are primitive of smaller degree. These results

are used for induction later.

Lemma 2.1: Let n > 4 and H be a subgroup of G generated by
special 4-elements. Assume X|H =X, ® (n-r)lH where X, is irre-
ducible such that 3 <r < n. Then there exists a special 4-element
h € G with X|(H,h) =X, & (n—s)1<H’ h) where X, is irreducible of

degrees =r+1orr+2.

Proof: Let X, act on V,. Choose a special 4-element h such
that X(h) does not leave V, invariant. So X| (H,h) =X, ®(n-r-2)1 (H, h)
where either X, is irreducible or X, = X, © & such that X, is irreducible
and £ is linear. We are done unless X, = X; & & where £ 1 (H,h)
Assuming this is the case, by Mitchell X, is monomial. In particular
X |H is monomial in some basis v, ... ,V,- By Lemma 1.3, there exist

special 4-elements h;,..., h,._, € H such that when v, ... , Vv, are properly

scaled and ordered
VkX(hk) = -Vk+l

Vk+1X(hk) = Vi
vpX(h) = v, for ¢ 7 {k,k+1}
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for 1 <k <r-1 and XI (hy,...,h._ ;) is irreducible on (v, ... ’Vr> g

Thus V, = (v;,...,v,). As () =1foru €H, £h) + 1. Since X(h)

does not leave V, invariant, X(h) is not diagonal in v,,..., v, So
_ s
va(h) =07V,
v, X(h) = v, for £¢ {i,i}

where 1 <i <r and r+1 <j <n. Thus XI (H, h) is irreducible on
Wisnas ,vr,vj) and trivial on (v,_,,... 3 Vim15 Vigrs - - - ,vn> contradicting

g(h) # 1. So the lemma is proved.

Lemma 2.2: Let H be a subgroup of G generated by special 3-
elements such that X‘H =X,©0 X, (n-s)lH where X, is a nonunimodular,
irreducible, primitive representation of degree 4. Assume X, is a
representation of degree d with 1 < d < 4 and s = d+4. Suppose Xi(H) =
H;. Then n = 8, X, is irreducible and primitive of degree 4, and
H; = 0,(3) x Z, where (’)\5@) is the nonsplitting central extension of Z,
by O4(3). If Li is the set of all elements of Hi which occur with com-
ponent the identity of Hj (j # i) in the subdirect product, then L, c

OZ(Z(Hi)) for i = 1 and 2.

Proof: By Mitchell, as X, is not unimodular and X, is primitive,
H,/Z(H,) = O4(3). But HZ(H,) = H, and so H/ =H,”. Thus H//Z(H,)
=~ 0,(3). As O4(3) does not have a nontrivial representation of degree 4,
Z(H/) # 1. The Schur multiplier of O4(3) is Z, (see [6]); so Z(H}) = Z,.
Because H, has elements with determinant w and only elements with

determinants 1, w, or w, O,(Z(H,)) = Z, and O,(Z(H,)) = Z, or Z,. If
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0,(Z(H,)) = Z,, then K = H/ O,(Z(H,) ) has index 2 in H,, contradicting
the fact that H, is generated by 3-elements. Thus O,(Z(H,)) = Z(H,) and
H, = H/ X Z, where H = C/)Rg), the nonsplitting central extension of

Z, by O4(3). Let Li be as in the statement of the lemma. By Theorem
5.5.1 of [11], L; 4 H; and H,/L, = H,/L,. As L, consists of unimodular
matrices, either L, = H/ or L, € O,(Z(H,)). In the first case L, con-
tains an element with eigenvalues w, w, w, w and a central element with
eigenvalues -1, -1, -1, -1. But then X(G) contains an element with
eigenvalues -w, -w, -w, -w, 1, 1, ..., a contradiction to Blichfeldt. So
L, C O,(Z(H,)) and H,/L, = O4(3) X Z, or C’)::(/3) X Z,. By examining the
possible decompositions of X, into its components and consulting
Blichfeldt's list [2] carefully, it is easy to see that X, is irreducible of
degree 4 and is primitive. Carrying out the same analysis as on H,, we
see H, = 6:(3) X Z,and L, C O,(Z(H,)). Also in the isomorphism from
H,/L, onto H,/L,, the central elements are mapped onto central elements.
In particular if n = 9, X(G) contains an element with eigenvalues -w, -w,

W, -w,-W,-w,-w,-w,1,..., contradicting Blichfeldt. Son = 8.

Lemma 2.3: Let n = 5 and H a subgroup of G generated by special
3-elements. Assume XIH =X, @ (n-r)lH where X, is irreducible of
degree r with 3 < r < n. Then there exists a subgroup K generated by
special 3-elements such that XI (H,K) =X, ® (n-s)1 (H, K) where s =r+1

or r+2 and X, is irreducible of degree s.

Proof: Let X, act on the subspace V, and let h be a special

3-element such that X(h) does not leave V, invariant. So



22

XI (H,h) =X, ® (n-r-2)1 (H, h) where either X, is irreducible or
X, = X, @ & such that X, is irreducible and & is linear. We are done
unless X, =X, ® & and £ #1 (H,h) " Assume this is the case.

Suppose first that r = 3. By Lemma 2.2, X, is not primitive; so
X, is monomial. Let X; act on V, © V, and let v,, v,, v;, v, be a basis of
V, such that X, is monomial in that basis. As X, is irreducible, there
exist special 3-elements h,, h, € (H, h) such that by scaling and ordering

Vys + s »5 V4 COTTECtly,

v,X(h) = v, v,X(h,) =

v,X(h) = v, v,X(h,) = av,
and

v, X(h,) = v, v,X(hy) = v,

v, X(h) = v, v, X(h) = a'lv4

Haz1, X, l (H, h;, h,) is irreducible and we are done. The casea =1
is handled in the same way as r = 4 is. |

Assume r > 4. Let X;acton V,. For g € H, &(g) =1; also
g(h) # 1. By Mitchell, X; is monomial. Letv,...,v.,, be a basis of

V, in which X, is monomial.

By Lemma 1.4, there exist h;,...,h,._, € (H,h) such that by
scaling and ordering v,, ..., Vv,,, properly,
VIX(h) = Vigy
< 1+1X( = Vit
Vi X(hy) = v
. VQX(h) = v, for £4¢ {i,i+1,i+2}

Since £(h) # 1, by replacing h by h™" if necessary, va(h) = wv; for
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some j and viX(h) =v;fori#j. Letge ¢hy, ..., h._)) with va(g) = vy
for some k # j. Let h* = g'lh'lgh. Then £(h*) = 1 and

X(h*) = wv.
Vs (h™) wv;
ka(h*) = avk
v X(h*) = v, for 24 {j,k}
Letting K = <h;,...,h,._,, h*) , we are done since X, IK is irreducible
and ¢ [K = 1.

Lemma 2.4: Let H be a subgroup of G generated by special
4-elements (special 3-elements) such that X IH =X, & (n-r)lH where
r = 4(r = 5) and X, is irreducible of degree r. Suppose X, acts on V,
and is monomial in a basis v,,...,v of V;. LetH, = (h €H IviX(h) = v,

and h is a special 4-element (special 3-element)). Then X IHi =

X,,i ® (n-r+1)1, where X, j is irreducible and monomial on
b i b
(Vs eor s Vi Vigrs » oo ,vr).

Proof: Notice that multiplying \£ by @ does not change Hi‘ Let

(n-r)l,, act on V,. First take the case where H is generated by special
H 2

4-elements. By Lemma 1.3 after scaling and ordering v, ... ,V,. cor-
rectly, there exist special 4-elements h,,...,h,._, such that,
VJX(h]) = 'Vj+l

Vj+lX(hj) = V.

J
VQX(hj) v, for £ d{j,ij+1}

By transitivity, choose g; ¢ (hy,...,h._;) such that viX(gi) =a;v.. Then
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Hr = (hgr Ih € Hi> . Clearly Hi has the desired properties if and only if
Hr does. But by Lemma 1.3, X [ ¢hy,...,hy_,) is irreducible on
Vs sonaVpait. ABXK IHr clearly acts trivially on V, © (vr> , we have
X [Hr = Xl, r® (n-r+1)1Hr where Xl, r is irreducible and monomial on
(ViseonsVp o).

Now consider the case where H is generated by special 3-elements.
By Lemma 1.4, after scaling and ordering v,,... V. correctly, there

exist special 3-elements h;,...,h,._, such that

(" viX(hy) = viy,

Vi+1X(hi) = Vige

2 X(hy) = v,

| VyX(hy) = v, for L€ {i,i+1,i+2}

A%

Again as X | (hy,...,h._;) is transitive onv,,... s Vo it suffices to show

the results hold for H.. Since X, is irreducible, there exists h € H

such that
( v;X(h) = av; ®)
v.X(h) = wv
viX(h) = by, abe =1 ' _
) - v].X(h) = wv;
ka(h) = cv,
VQX(h) =V, for £ ¢ {i,i}
kV’QX(h) = V,Q for L ¢ {iyj’k}

In the first case not all of a, b, and c are 1. In either case, for some £,
VQX(h) =v,. By transitivity, thereisa g € ¢hy,y ..., hr) such that
VQX(g) = Wi Replacing h by hg, we may assume i,j,k < r. In particular

X] (hy,...,h._5,h) is irreducible on (v,,...,v,_;). Clearly X IHr acts
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trivially on V, & (v,), and so X[H_ =X, , & (n—r+1)1Hr where X, p is

irreducible and monomial on (v,,...,v._,).

We are now ready to prove that under certain circumstances
there exist primitive subgroups of codimension 1 or 2. These are im-
portant for inductive purposes in the proofs of the main results. Lemma
2.7 will also be useful in Chapter V to determine the possible subgroups

generated by two special 3-elements.

Lemma 2.5: Letn > 6. Assume there exists a subgroup U of G
generated by special 4-elements such that X IU =X, @ rlU wherer =1 or
2 and X, is irreducible. Then there exists a subgroup H of G generated
by special 4-elements such that X|H=Y & y1H where Y is irreducible

and primitive, andy = 1 or 2.

Proof: Assume the lemma is false. In particular X, is monomial.
By replacing U by another subgroup, we may assume r =1 as follows.
Let X, acton V, and let v, ...,v,_, be a basis of V, such that X| is
monomial in that basis. Let 2 -1U act on V,. Choose a special 4-
element h* such that X(h*) does not leave V, invariant. Then X(h*) does
not leave both (v,,...,v,_3 and (v,,...,v,_,) invariant. By reordering
the vi's, we may assume X(h*) does not leave (v,,... y V-3 invariant.
Let Up_, = ¢h € Ulvy_,X(h) = v,_, and h is a special 4-element). By
Lemma 2.4, X lUn_2 =X;,n-29 3- lUn_2 where X, .-, is irreducible on
(Viy...,Vh-y and monomial in the basis v,,...,v,_;. Also 3 -1U

n-2

acts on V! = (v_,,V,). So X[ (Up-2,h*) =X, ® 1< h*) where X, is

U
n-2’
irreducible or X, = X, ® ¢ with X, irreducible of degree n-2. If X, is
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irreducible, replace U by (U, _,,h*). Suppose X, =X, &€ ¢£. If X, is

primitive, by Mitchell, & =1 (U h*) and the lemma is true, a con-

n-2’
. . . . K *
tradiction. So X, is monomial and there is a basis v, ..., v, of Von

which X’ (U h*) is monomial. By Lemma 1.3 applied to U,,_,, we

n-2s
may reorder and rescale v, , ... ,v:; such that v, =v),...,vp_s = v;_3
and V' = (vﬁ_z,v;_l, v;) . As {v,,...,vy_5 is not left invariant by
X(h*), in the basis v¥,... , v, X(b*) is not diagonal. In particular
£=1 (Up_py %) ° So X | (Up_,, h*) acts trivially on a subspace Vj of
dimension 2 with V; c V/'. As V,, V; have dimension 2 and are in a
subspace V' of dimension 3, V, N V,# {0}. Thus X I (U, h*) acts trivially
onV, N V,. Hence X|(U,h*) =X’ @ 1 (U, p*y Where X' is irreducible of
degree n-1, as X(h*) does not leave V, invariant. Replacing U by (U, h*),
we may assume r =1.

So X|U =X, & 1; where X, is monomial and irreducible on V,.
Let V, have a basis v, ...,v,., in which X, is monomial, and let 1U act
on <vn) . First let g be any special 4-element such that X(g) leaves V,
invariant. Then XI (U,g) =X @ & where X] is irreducible on V, and &
actson (v ). If £#1 U, g’ by Mitchell, X; is monomial. If £ =1 U, g’
as we are assuming this lemma is false, Xj is still monomial. If
v, ... ,v;: is a basis of V in which Xl (U, g) is monomial, by Lemma 1. 3,
after suitably scaling and ordering v}, ..., v:;, we have v, = vf, ce o9 Vo1
= vp_, and (v}) = (v ). So X(g) is monomial in the basis v,,...,v,.
Now let g be a special 4-element such that X(g) does not leave V,

invariant. Either X(g) does not leave (v,,...,v,_) or (v,,...,v )

invariant. By reordering v,,...,v,_, if necessary, assume X(g) does
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not leave (v, ...,V,_,) invariant. Let U = ¢h ¢ U|h is a special 4-
element and v_;X(h) = vj_,, vy, X(h) = vy-,). By Lemma 2.4 applied
twice, X Iﬁ =X® 3. lﬁ where X is monomial and irreducible on
(Viy...,Vy-3 and has a monomial basis v,,...,v,_, on this subspace.
Also 3 - lﬁ acts on (Vn_z,Vn_l,Vn> . SoX f U,g) = X, @1 @, ) where
either X, is irreducible or X, = X, © & such that X, is irreducible and ¢
is linear. By assumption that this result is false, X, is monomial unless

X, =X, ® gwith £ #1 i g In that case, however, X, is monomial by
J

Mitchell. In any case X| (U, g) is monomial in some basis v}, ... , v of
V. Applying Lemma 1.3 to ﬁ, by ordering and scaling v’f, b s ,v; cor-
rectly, vf 5 Py nas ,V;_S = Vp_3, and (v;_z,v;_l,vp = (vn_z,vn_l,vn) .

In particular va(g) = v]. for some 1 < j <n-3. By reordering
Vise.osVpn-3, We may assume j =1.

Now let U, = <¢h€ U [le(h) =v, and h is a special 4-element).
By Lemma 2.4, X ’Ul =Y, @ 2 'lUl where Y, is irreducible and monomial

on (V,,...,Vn-,)> and Y, has a monomial basis v,,...,v,_,. Also 2 -lU
1

acts on (v,,v ). As X(g) does not leave (v,,...,Vv,_;) invariant, X(g)
does not leave (v,,...,vy-;) invariant. So X ’ U,g) =YD 1 U
1,8)

where Y acts irreducibly on Vo Va3 0 5+ 3 Vg and 1 U on (v;). By

18

assumption that the result is false, Y is monomial with a basis v:, . vr

n
*
n’

and v} € (v,v_). As X|U, acts

By Lemma 1.3 applied to U,, after reordering and rescaling v:, sk 2 gV

We may assume V, = Vy,...,Vh_; = Vg,

trivially on (v,, v, VI";X(u) = v; for u € U;; so as Y is irreducible, we

have for some j with 2 < j <n-1,
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X
va(g) =-0v

* _ s-1
an(g) = B Vs

v, for 2¢ {j,n}

V}ZX(g)

By reordering v,,...,Vp-;, We may assume j =n-1. In particular,
VQX(g) =V, for 1 < ¢ <n-2.
LetU,=<¢heU |v2X(h) = v, where h is a special 4-element). As

in the analysis of (U,,g), there is v’n € (v,, vy, such that

va(g) = -ev'
’ _ -1

an(g) =€V
VQX(g) = v, for £ ¢{j, n}

The only possibility is that j =n-1 and (vh) <v ) S v, v N vy, vy
= (v . Soin fact X(g) is monomial in the basis v,,...,v,.

Therefore if h is a special 4-element, X(h) is monomial in the
basis v;,...,v,. Let N be the subgroup of G generated by all special
4-elements. So N 4 G. By Lemma 1.3, the set {(Vi> |1 <i <n} is the
unique set of one dimensional subspaces of V permuted by X(N). For
gc G, heN, ghg™ =h, € N. So ((v;) X(g))X(h) = ({v;) X(h,))X(g) =
<v.)X( ) for some j depending on i and h,. Thus X(h) for all h ¢ N
permutes {(v YX(g)|1 <is<n}. So {(vi)X(g) |l <is<n} = {(Vi> I1 <i <n}

and X is monomial, a contradiction.

Lemma 2.6: Letn > 5. Let h; and h, be noncommuting special

3-elements of G. Assume X ’ ¢h;, h,) is monomial in a basis v,, ..., v,

such that X I ¢(h,, h,) leaves exactly n-5 of the subspaces (Vi> fixed. Then
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¢h;,h,) = A, and X|<¢h,,h,) =X, & (n-4)1 (h,, b,) Where X, is irreducible.
1’

Proof: By ordering v,...,v, correctly, we get
" v,X(h,) = av, (v, X(h,) = av,
v,X(h,) = bv, abe =1 v,X(h,) = Bv, aBy =1
v, X(h,) = ev, A < viX(h,) = yv,
_VgX(h) = v, for £¢ {1,2,3} vy X(hy) = v, for £4 {3,4,5} .

By replacing v, by av,, v, by abv,, v, by aabv,, and v, by @Babv,, we may
assume a=b=c=a=8=y=1. Clearly ¢h,,h,) = A;, and X |<hl,h2>
=X, ® (n-4)1 (h,, h,) where X, is irreducible.

Lemma 2.7: Let n > 8 and let K be a subgroup of G satisfying one
of the following:
1. K = (g,h) where g, h are special 3-elements with
X IK =X @ (n-r)lK such that X is irreducible of degree
r =3or 4. Assume forn=8andr =4 that K & A,.
2. K =(g,h,k) where g, h, k are special 3-elements with
X ’K =X @ (n-4)lK. Let X be monomial on a subspace V

with a basis e, e,, e,,e, such that in this basis

0100 1 0 0 1000
- 0010 _ 0 0-10 B 0010
X(g) = , X(h) = , and X(k) =
1000 0 0 01 0001
0001 0-1 00 0100

Then there exists a subgroup H of G generated by special 3-elements such

that X |H = Y @ yly where Y is irreducible and primitive with y = 1
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or 2 and H contains a G-conjugate of K.

Proof: First a few remarks are made about situation 2. The
representation X is irreducible and X l g,h) =R, © R, where R, are
both irreducible with R, acting on (e, + We, + we,;) B (-e, + w e, + we,)

and R, on (e, + we, + we,) ® (-e, + we, + we,). Also (g,h) = SL,(3),

g,k) = A,, and (h,k) = A,. Assume there is a basisu,... ,U, on
which X | (g,h,k) is monomial. By Lemma 2.6, after ordering u,,... Uy
correctly, we may assume X] (g,h) acts trivially on u,,.. U As

R, © R, acts on the same subspace as X does, (e,,e,,e;,€,) =
{0,y 0y, Uy, U,) s 80d X l (g,h,k) acts trivially on u,, ... U

Let K satisfy either 1. or 2. By Lemma 2.3 applied inductively,
beginning with K, there exists a subgroup U generated by special 3-
elements with K ¢ U such that X IU =X, @& s -1U where s =1 or 2 and X,
is irreducible.

Assume the lemma is false. Then X, is monomial. First we
want to show that we may assume s =1. So assume s =2. Let X, act on
V, and let v,,...,v,_, be a basis of V, in which X, is monomial. Let
2. lU act on W. If K satisfies 2., we may assume X, |K acts trivially on
Vsy ..., Vy_p Dy ordering v, ...,vy_, correctly. Suppose K satisfies 1.

As g and h do not commute, we may assume by ordering correctly that
X, |K acts trivially on vq,...,v,_,. By Lemma 2.6, if n =8 and r = 4, we
may also assume that X | (g, h) acts trivially on v,. Thus in any case,
we may assume X IK acts triviallyonv ,...,v, , where 0=6ifn > 8
and 0 =5if n =8.

Let h* be a special 3-element such that X(h*) does not leave V,
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invariant. So X(h*) does not leave both (v,,...,Vg_ 1, Vg, .-V o)
and (Vy,...,Vg,Vgyay---,Vy_p) invariant. By renumbering vy,...,v,_,,
we may assume X(h*) does not leave (v,,...,Vy_1,Vgyps---, Vo)

invariant. Let M = ue U 'VGX(U) = Yy where u is a special 3-element) .
By Lemma 2.4, X IM =X,09 3 1M where X,  acts irreducibly on
(ViseeesVgo1sVogrs e -5 Vpop? and 3 '1M on (VO_,W> . Note K <M. Then
X|M,h*) =Y © 1 (M, h*) where either Y is irreducible or Y =Y, @ £
with Y, irreducible and & linear. If Y is irreducible, replace U by
(M, h*). Assume thenthat Y =Y, ©® £ If Y, is primitive, & =1 (M, h*)
by Mitchell, contradicting the assumption that the result is false. So Y,
is monomial on the subspace vl Vs Vs aee s Vs Vit soe s Voot - I
Vi) ...,V is a basis of V, in which Y, is monomial, by Lemma 1.4,
applied to M, when v, ...,V,_, are ordered and scaled correctly,
V=V o9 Vg1 = Voo Vgy1 = Vgaas--rsVpoe = Vpp and V€ (v, W).
As X(h*) does not leave (v,,...,Vg.1,V,y,---,Vy ) invariant, Y,(h*) is
not diagonal. In particular £(h*) =1 and so X ’ (M,b*) =Y, & 2-1 (M, h*) °
Let2-1 (M, h*) act on W*. Then W*< (v _,W). As W and W* have
dimension 2, W N W*# {0}, and so X | (U, h*) acts trivially on W N W*.
Hence X I (U, h*) = Xe1 (U, h*) where X is irreducible of degree n - 1,
because X(h*) does not leave V, invariant.

So without loss of generality, we may assume s =1 and X, acts
onV,. Let v,,...,v,-, be a basis of V, in which X, is monomial. Sup-
pose 1U acts on (vn). Assume first that h is a special 3-element such

that X(h) leaves V, invariant. Then X l (U,h) =X & ¢ where X acts on V,

and &£ on <vn> . I Xis primitive, by Mitchell, £(h) =1, and we have a
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contradiction to the assumption that the result is false. So X is monomial
and by Lemma 1.4, X(h) is monomial in v,,... s Vy-

Now let h be a special 3-element such that X(h) does not leave V,
invariant. As earlier, we may order v,... » Vi1 correctly so that X [K
acts trivially on vy, ...,v,_, where 0 =5if n=8and 0 =6 if n > 8. Also
X(h) does not leave all three of (vi,...,Vg 1, Vgyos-- sV 1)
(ViyeoesVgorsVagrse--sVpo2?s @and Vi, ..., V5,Vgis, ... ,Vy_,) invariant.
By numbering v,..., vy, correctly, we may assume X(h) does not
leave (V,,...,Vg_1,Vgyies--+»Vy-y) invariant. LetM = {uc U ,VOX(U) =V
Vo X(u) = Vs,1 Where u is a special 3-element). By Lemma 2.4 applied
twice, X |M = X ® 3 "1,1 where X is irreducible and monomial on
(ViseeesVgarsVgpar-++sVpy) and 3+ lM acts on <v0,v0+l,vn) . But
KcMand X|(M,h) =Y & 1 (M, by Where either Y is irreducible or
Y =Y, © £ with Y, being irreducible and ¢ being linear. By assumption
that the result is false, if Y is irreducible, Y is monomial. Also if Y is
reducible, Y, is monomial by Mitchell and the assumption that the result
is false. In either case there is an i < n with viX(h) =¥ by Lemma 1.4,

If 1 <i<o-1, by Lemma 1.4, choose u € U such that v;X(u) = v;-
Ifi> 0, letu=1. Then X[K" acts trivially on v;. LetN, = @€ U |v,;X(g)
= and g is a special 3-element). So K" c N; and by Lemma 2.4,

XN, =Y, D 2 -lNi where Y, is irreducible and acts with monomial basis
VyseoosVim1sVigrs s s Vo1~ Also 2 .lNi acts on <Vi’vn> . As X(h) leaves
v, invariant but not v, X(h) does not leave (vy,...,Vi_;,Vii1s---» Vo1
invariant. Thus X| (N;,h) = R, ®1 (N, h) where R, acts irreducibly on
V,and 1 <Ni’h> acts on (vi> . As the result is assumed false, R; is

monomial in some basis V,,...,V,.1 of V,. By Lemma 1.4 applied to N;,
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we can renumber and rescale ¥,,...,V,_, sothat v, =V, ...,vj_, =

~

=Vi-1>Vi41 = Vip1s- -+ Vo1 =V and vy € <Vi’vn>‘ As X(h) does not

leave (Vy,...,Vj_1,Vit1s--.,Vy_y) invariant, ”x?iRi(h) q (\"ri> . So for

some j,k < n with i, j,k all distinct,

g va(h) = avy
ka(h) = b?ii abc =1
ﬂ ViX(h) = e
KVQX(h) = v, for 1 <2 <n-1,0+j,k

Choosing ¢ with 1 < £ < n-1 but distinct from i, j,k, we may

apply the same argument to get

rva(h) = avy
_ * _
qu(h) = Bv2 aBy =1
* —
VRX(h) = yvp
thX(h) = v, for 1 <t <n-1, t+p,q

where p,q, £ < n aredistinct and VI € <Vﬁ’vn> . By comparing the two
expressions for X(h), the only possibility is j =pand k =q. So
(Tfi> = (v}) c <Vi’vn> n (vg v, = (v). Inparticular, X(h) is monomial
in the basis v,...,v,.

Therefore if N is the normal subgroup of G generated by the

special 3-elements of G, X |N is monomial. As in the concluding para-

graph of the proof of Lemma 2.5, this is a final contradiction.

Corollary 2.1: Let K be as in Lemma 2.7 and n = 8. Then there

exists a subgroup U of G generated by special 3-elements such that
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X|[U=R® rly; where R is primitive and irreducible with r =1 or 2,

and K c U.

Proof: Let H be as in the conclusion of Lemma 2.7. Then

-]
KggH for some g € G. Letting U = ué , the desired result follows.

Corollary 2.2: Let H be a subgroup of G generated by special

3-elements such that X ’H =X @ (n—r)lH where X is irreducible of
degree r and 3 < r < n. Then there exists a subgroup U of G such that

X IU =Y @ le where Y is irreducible and primitive withy =1 or 2.

Proof: By Lemma 2.3 and induction, we may assume r =n-2
or n-1. If Xis primitive, we are done. So assume X is monomial. By
Lemma 1.4, there exist special 3-elements h,,h, such that
X ’ (h,,h,) =S & (n-3)1 (h,, hy) where S is irreducible of degree 3. We
are done by Corollary 2.1.
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CHAPTER III
THE PROOF OF THEOREM 1

Theorem 1 will now be proved. The primitive groups of degree 7
or less are known. By examining Brauer [3], Lindsey [14,16,17], and
Wales [27,28] very carefully, we see there are no primitive, irreducible,
unimodular linear groups of degree 5, 6, or 7 containing special 4-
elements. We may assume n > 8.

Let g and h be special 4-elements which do not commute. Then
X l €,h) =Y & (n-4)1 @, h where Y has an irreducible constituent of

degree at least 2.
Case A: Y=Y, ® Y, where Y, is irreducible of degree 2.

Let H; = Yi( (g,h)). Then Y({(g,h)) = H is a subdirect product
of H, and H,. By examining Blichfeldt [2], we check the various pos-

sibilities for H,.

Subcase 1: H,/Z(H,) = A,. (This proof is as in Lemma 2 of
[14]).

Then H’ is a subdirect product of H] and H}, which are unimodular
groups of 2 X 2 matrices. Let Mi be the set of all elements in H; which
occur with component the identity of H3 (j # i) in the subdirect product.
By Theorem 5.5.1 of Hall [11], M; < H} and H{/M, = H}/M,. As
H;/Z(H;) = A,, either M, =H] = H or M,  Z(H}). As A, has no

representation of degree 2, |Z(H,) | =2. If M, = H, there is an element

of order 3 in M,, which must have eigenvalues w, w. Multiplying by the
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nontrivial element in Z(H}) gives an element in X(G) with eigenvalues
-w,-w,1,1,1,..., contradicting Blichfeldt. If M, € Z(H}), the only
possibility is that H,/Z(H}) = A,. In any case there are elements h, € H;
with eigenvalues -w, -w which are paired in H. So X(G) contains an
element with eigenvalues -w,-w,-w,-w,1,1,..., contradicting Blichfeldt.

Subcase 1. is therefore impossible.
Subcase 2: H,/Z(H,) = S,.

Then H' is isomorphic to a subdirect product of H, and H), which
again are unimodular. Let M, be as in subcase 1. Then H;/Z(H]) = A,.
The only element of order 2 in a 2 dimensional unimodular group is
(-01 _(1) ). So [Z(Hi) l = 2 and the Sylow 2-subgroup of H;, which has order
8, is either cyclic or quaternion. As A, has no elements of order 4, the
Sylow 2-subgroup of H] must be quaternion. If M, contains the Sylow
2-subgroup of Hj, there exist special 4-elements g,, g, such that (g,,g,)
is the quaternion group of order 8 and X |(g,,g,) = X* @ (n-2)1 s
where X*(g,) = (‘3 ?) and X*(gz) = ((1) '(1)) in some basis. If M, does
not contain the Sylow 2-subgroup of H;, as H;/Z(H}) = A, and M, 4 H],
M, c Z(H}). As H;/M, = H}/M,, the only possibility, by looking at
Blichfeldt's list of 2 dimensional groups is H,/Z(H}) = A,. As in sub-
case 1, there are elements hi € H; with eigenvalues -w,-w, which are

paired in H. So X(G) contains an element with eigenvalues -w,-w, -w,

-w,1,1,..., contradicting Blichfeldt.
Subcase 3: H,/Z(H,) = A,.

This subcase is impossible as 2-elements do not generate A,.
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Subcase 4: Y, is monomial and unimodular.

As Y, is irreducible and unimodular, Y,(g) and Y,(h) both have

eigenvalues i and -i. So Y, =2-1 (g,h)
Subcase 5: Y, is monomial and not unimodular.

Let Y, act on Vj and let v,, v, be a basis of V, in which Y, is
monomial. As both Y,(g), Y,(h) could not be diagonal, only one of Y,(g),
Y,(h) could have eigenvalue structure 1,i or 1,-i. As Y, is not unimodular,
we may assume by replacing g by g'l if necessary that Y,(g) has eigen-
values 1, i. So Y,(h) is the identity and hence Y, = £, @ £,. Let &, act

onv,, £, onv,. Byordering v,, v, and v,, v, correctly we get in the

basis v,, ..., v, that
/1 0 0 0 0 -6 0 0
0i 0 0 5 0 0 0
(Y, ® Y,)(g) = and (Y, ® Y,)(h) =
0 -i 0 0 1 0
0 0 0 1 0 0 0 1
But
i 0 0 0
I 0 -i 0 0
(Y, ® Y,)(h" ghg ) =
0 0 1 0
0 0 0 1

and letting g, =h, g, = h'lghg”l, which are special 4-elements,

X‘ (g,,8 =Y, ® (n-2)1 where Y, is monomial and irreducible.

(g,,82
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Therefore if case A holds, we may choose special 4-elements

g,, 8, such that X ’ (g,,8) =X, & (n-2)1 where X, is irreducible

(81,82
and monomial. Let X, act on V, and choose a special 4-element g,
such that X(g,) does not leave V, invariant. So X l (81,85,83) =

X, © (n-4) where X, is irreducible or X, = X, © £ such that

1
(81,82,83)
X, is irreducible of degree 3. Assume the latter is the case with

£+ 1 Then by Mitchell, X, is monomial on some basis

(81,82,83)
Vi, Vp, V5. Consider X;(g;) in this basis; X;(g;) must act trivially on at
least one v].. Assume first that X [(gl,g2> does not leave any <Vi>

invariant. Then by ordering v,, v,, v, correctly, we get

0 -5 0 1 0 0
X,g)=( 8" 0 0 and X,(g,) =| 0 0 -e€
0 0 1 0 ' 0

But then X, l {g,,8,» is irreducible, a contradiction. So X’ (€15 82)
leaves some (vi) invariant. But as &(g,) = £(g,) =1, &(g,) # 1, X,(g,) is
diagonal and so also leaves <Vi> invariant, a contradiction. Thus in

any case X [ (€1,8,,8 = X (n-s) where s = 3 or 4 and X is

1
o g3
irreducible when case A holds.

Case B: Y =Y, @ £ where Y, is irreducible of degree 3.

If Y, is primitive, £ =1 @, h by Mitchell. Assume Y, is
monomial on V,; let v,, v,, v; be a basis of V, in which Y, is monomial.
If Y,(g) or Y,(h) have eigenvalues 1,1,-i or 1,1,1i, they are diagonal in

this basis. In any case Y,(g) and Y,(h) each fix one of the subspaces <vj>,
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j depending on g and h. So neither Y,(g) nor Y,(h) is diagonal and hence
£=1 @,h "

Therefore in any case G contains a subgroup H generated by
special 4-elements such that X IH =X, & (n-r)lH where X, is irreducible
andr = 3 or 4. Assume Theorem 1 is false. Let n = 8 be minimal such
that there is a counterexample. Thus, recalling the remark at the
beginning of this section, there does not exist irreducible, primitive
unimodular groups of degree n-1 or n-2 which contain special 4-elements.
Applying Lemma 2.1 inductively, starting with H, there exists a sub-
group U generated by special 4-elements such that X ]U =YY@ y- 1U
where Y is irreducible and y =1 or 2. By Lemma 2.5, we may assume

Y is primitive, contradicting the minimality of n. So Theorem 1 holds.
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CHAPTER IV
A SPECIAL CASE OF THEOREM 2

We return to the proof of Theorem 2. In this chapter we classify
G when n = 8 and a certain hypothesis holds, which will be useful for

induction purposes. Define hypothesis (A) as follows:

(A) If U is any subgroup of G generated by special 3-elements
such that XU =S @ s- lU where S is irreducible and

primitive of degree n-s withs =1 or 2, then U = Aj_g,,.

We first prove some results on the irreducible characters of the
alternating and symmetric groups.

By the work of Frobenius [9], the characters of Sn are all related
to the partitions of n into integers. Let () = {Al, 5 ,)\k} be a partition
of the integer n into nonnegative integers where A, = 2, > ... 2 Ak = U,
Let ¢, =A, +k-1i. Son> {4, >4, >... >4 >0. Then the degree d()\)

of the irreducible character corresponding to (\) is

i
dy = nt =4 Uply)
£,1...0, !

All irreducible characters come from such partitions.

Lemma 4.1: The group Srl for n = 9 has two irreducible char-
acters of degree 1 due to the partitions (A\) ={n} and (\) = {1, 1,...,1},

two irreducible characters of degree n-1 due to the partitions
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() ={n-1,1} and ) ={2,1,1,...,1}. All other irreducible characters

have degree greater than 2(n+1).

Proof: By checking the character tables, we see that the result
holds forn = 9,...,14 (see [13,19,29,30] ). So assume n > 15 and

proceed by induction. We split this into several cases.

The case k = 1: The only partition is (A) ={n}. So d(y) = n! lr =1.

The case k =2: Then (A) ={x,;,,} and 2, > 5. A =n-1,

then £, =n, £, =1, andd()\):n-l. IfA, =n-2, then ¢, =n-1, £, =2,
and dyy = 2572 > 2(n+1) for n > 15.

So assume§ A, <n-3. LetA, =m. Thenf, =m+1 and

f;=n-m. Sody =nl (m'?}:g) > oy . Notice that if
n! n!

Also for m =n-3

m,m’ > 2—w1thm > m’, m’ T(n-m")T 7 mT(n-m)7

andn > 15, Eﬂni!ET >2(n+l). Sodiy)> 2n+1).

The case k = n: The only partition is (\) ={1,1,...,1}.

£i=1+n—iand

n-1 n n-1
n! TT ( TT . (2.-¢ )) n! TT (n-p)!
g - _p=t\g=p+1 P 9)  p=1 = 1
A T et 1 nl(n-1)1...11
The case (\) ={n-k+1,1,1,...,1} for 3 <k <n-1: Then ¥, =

and £; =k - (i-1) for i = 2. So
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Tr (-2) TT (2,-2)

- !q— 1<p<q
nl(k-1)!1(k-2)!...1!

_{-k-1) . ()R 1&-3)1 .. 1) (n - 1)
(k-1)1(k-2)1 ... 11 k-1

Ifk=n-1, ) ={2,1,1,...,1} and d(y) = n-1. Because G;: D = (g ) 11;) ,

to prove (k i) > 2(n+1) for n = 15 and 3 <k < n-2, it suffices to prove

itfor 3<k <D. Butif3 <k <, forn> 15, 2(nsl) < B=L)0=2) _
n=-1%y  [n-1
2 | \k-1

The remaining cases: In the remaining cases we have k > 3 and

we do not have the partition (\) ={n-k+1,1,...,1} . Let M =T As
k> 3, g-z r. Consider the partition (\") ={x,,..., A _;} of n-r. Let
r _ wdiz=f. = r_pr - _

ﬁi—)\i+(k-1) 1=44 1. Then ﬁp !Zq [ ﬂqand

p
TT (€,-1,)
d;, = n! B4
(%) 0,101
k-1
(£ -2") n(n-1)...(n-r+1) ’[T (2_-r)
= { (n- r)!p<q<k P q pl P
ﬂ" .o Qk 1 r!
But
(21-27)
dpry = (0-1)! p<,Q<k i
Lite. Ly !

is the degree of a character of Sn_ 5 corresponding to the partition (A').
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By induction, noting that we have enough initial cases (as r < 131 ),
dovy > 2(n-r+1) because (') is not of the form {1,...,1}, {n-r},
{n-r-1,1}, or{2,1,...,1}.

Assume first thatk -1 >r. Asn=> £, > £, > ... >£ > 1,

-r > 1- - >
ﬁpr ﬂp for p <k-1-r. SOlpr/ﬂp+r lforp <k-1-r. As

ky =1, £ r=T >...2> 4, _4-r >0 and so
T
(L ~x)
psker P

r!

Thus
T

1 _ (2_-r)

d - do, n(n-1)...(n-r+1) k’T\lT r (b,r p=k-r P
(2) 5 I T Sy p=1 Ip+r -

> 2(n-r+1) n(nl-l)r- .. (n-r+1)

1X2 - Xp

Asn> >4, >..>2, 21 > 1or2<i<r. S0 dy > 2(n- r+1)ln—

: 1)

If r =1, A, <n-(k-1) with equality holding only if (A\) = {n-k+1,1,1, 4

Pt

which we are excluding. So £, =2, +k -1 <n-1and
d()\) —1-2n >2(n+1). Ifr>1, A, sn-r(k-1) and £, =2, +k-1

n
<n- (I‘-l)(k-l) <n- 2(1‘-1) as k= 3. So d()t) > m 2(n—r+1).
But n__z%lf-_ﬂ 2(n-r+1) = 2(n+1) is equivalent to 0 < n(r-2) + 2(r-1),
which is true for r = 2.

Assume that k-1 <r. Then
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d _d n(n-1)...(n-(k-2)) (n=-(k-1))(n-K)...(n-r+1)
() (") [N PO r(r-1)...(r-(r-k))

(£,-r)(L,-1)...(LKk-,-T)
(k-1)(k-2)...1

The middle product is vacuous if k-1 =r. As £, > £, > ... >0, > P_k =T,

ﬂi-ra k-ifori<k-1. So

k-1 rf.-r
L = 1
i:]_ (k"i )

Asg—l—a r = k-1, n-(k-1) > r and n-(k-1)-i > r-i for 0 <i <r-k.

Thus

(n-(k-1) )(n-k)...(n-r+1) \ _ 1
r(r-1)...(r-(r-k)) -

n-i n
Asn= 4, >0, >...> 4, T > 1. Therefore d()\) > 2(n-r+1) T,
But A, <n-r(k-1)and £, =X, + k-1 <n-(r-1)(k-1) <n-2(r-1). So

d(}‘) > 5:2-%_?1-5 2(n-r+1). Proceeding as above, d(A) > 2(n+1), and the

lemma is proved.

Lemma 4.2: If n=> 17, An has only one irreducible character of
degree 1, which is the trivial character, and only one irreducible char-
acter of degree n-1, which is the nontrivial constituent of the permutation
character. All other irreducible characters have degree greater than

n+1.

Proof: By Frobenius [ 10], all irreducible characters of S,

remain irreducible or split into two conjugate irreducible characters,
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obviously of equal degree, when restricted to An‘ All characters of

An are obtained in this way. The result is true for n =7, 8 by checking
the character tables. Assume n > 9. Let p, be the permutation char-
acter of Sn on n points and let u be the nontrivial linear character of
S,- Two irreducible characters of S of degree n-1 are pl-lsn and
“‘(pl'lSn)' They are equal and irreducible when restricted to An‘ As
all other irreducible characters of Sn have degree greater than 2(n+1)

by Lemma 4.1, all other irreducible characters of An have degree

greater than n+1.

Notice that if H = Am for m > 7 is a subgroup of G such that
XH=X, & (n-m+1)1H, X, is irreducible and the 3-cycles of H corre-
spond precisely to the special 3-elements of H. Also X, is primitive by
Lemma 1.4 as Am is simple. These facts will be used without reference
in the rest of the paper. We now give some results on generators and

relations of An‘

Lemma 4.3: Let Uk = (f;,...,fx_,) for k = 5. Suppose the fol-
lowing relations hold:

(1) £7 =1, B4fg_,...£) =1ford=2,...,k-2

(2) fy,, =1ford=1,...,k-3

(3) ((fd...fl)(fe...fl))z =1ford=1,...,k-4and e =d+2, ..

.., k-2,

Then either U =1 or U, = Ap. Alsoin Ay if we let f; = (d, d+1, d+2),
then f,, ..., f)_, satisfy (1), (2), and (3).
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Proof: Let hd = fdfd-—l ...f,. Then (1) is equivalent to

(1) b =1, hy =1ford=2,...,k-2
Also (2) is equivalent to

(2’) (hdhd+1)3 = 1

3 -1 .8 =1 -1 .3 -1 .3

because (hghg,,)” = (hghg,,) = ((E4... £)E ... £5,)) =(fg.) . In
addition, (3) is equivalent to

(3') (h4hy)* =1 for d=1,...,k-4 and e=d+2,...,k-2.
By Moore [22], U, =1 or U, = ApasUyg = <hy, ... 0y ).

Now letf, = (d,d+1,d+2). Then fq---f1= (1,2)(d+1,d+2) for
d > 2. Thus (1) and (2) hold. Also (ff,...f,)" = ((1,2,3)(1,2)(e+1,e+2))

2

=1fore= 3andford> 1, e > d+2, (fd...flfe...fl) =
((1,2)(d+1,d+2)(1,2)(e+1,e+2))* =1. So (3) holds.

Lemma 4.4: Let U be a group with a subgroup H = Ak for k = 5.
Let H = (f,,...,fx.,) where f; corresponds to (d,d+1,d+2) on{1,...,Kk}.
Assume f)_, € U such that ff{_l =1, (fk-sz-1)2 =1, f)_, commutes with
£1500 08Ky, and £ fp ofje ofi ) =fy_ofy ;. Then (H,f ) = A .

Proof: It suffices to show (1), (2), and (3) hold in Lemma 4. 3.
By Lemma 4.3, these relations hold for the f;'s with i < k- 2. So for

(1) we only need to consider d =k-1. But

2

(fieatiez- - - 1)

(Epemsfe el afic. ficas - - Bifie g -« + o

fre oo B gen .ty =1

Thus (1) holds. Clearly (2) holds. We only need to consider e = k-1 in
(3). Assume first that d < k-4. Then
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(fg--- Bifgey - - £)°

fq - B afieofy afiee)fgoa - Bufq - Bifge oo £y

2

(fd v e flfk—z oo fl) =1 as d+2 < k-2.

Now assume d =k-3. Firstas fy_,fi .f,_sfi_, =1, _of)_,and
2 2
(fk—ka—l) = 1, fk-3fk"1 = fk_lfk_sz_S. SO
1§ FORIPUND £ § OIS § PP § FOIPARUPID O § FORIPIPID 7 § PR § ISP IPPRD o
= f) g e Efieafpe oy s - Bl afe i) s fify .- 8§y

= B gn » BBl e oo s Tl iy ol fi o v il oo s B)

fg oo £ BTt ofie )fid - - - fifiees

-l 2
= fk—S oo e flfk-Z R flfk—Z = fk_z(fk_z i@ fl) fk-z = 1 .

Lemma 4.5: Let U be a group containing a subgroup H = ¢h,, . .
oy hy2) = A, for some k > 6. Assume H acts on {1,...,k} with
h, = (i,i+1,i+2) for 1 <i <k-2. Letg € U such that (H,g) = Ay, ¢
where s =1 or 2. Assume (H,g) acts on {bl, . ’bk+s} and that

h,...,hg_,,g are 3-cycles in (H,g). Then by numbering b, ... ’bk+s
b

Also there is an h € H such that gh or

i+2) :

correctly, h, = (bj, by,

(g'l)h is (by, «_25Pr. a1 Pr.o); if & commutes with h;, we can choose
k+s k+s k+s L

he (hy,... hy o).

Proof: Because ¢h;,h;) = A, and h;,h, are 3-cycles in (H,g),

by correct ordering of by, ...,b, ., h = (b,, by, b,) and h, = (b, b,, by).

h;h
Ash, =h,° ', h, = (b,,b,,b,). Assume we have numbered by, .. . N I

correctly so that hj = (bj,b]-+1,bj+2) for 1 <j <m wherem > 2. If

m = k-3, omit hm in the latter classification and so assume m < k-4.
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As ¢h,...,h

shpshie) = Ay, and each h, is a 3-cycle, by numbering
b

m4ss - - > Py, g correctly, hp, , = (by, by 455Dy a) fOr sOme k < m+2.

Since h, ., commutes with h;,...,h the only possibility is k = m+2.

2 P 19
' I |

Alsoh ., = hmm+2 m (Pm41sPpyy2sBmys). Therefore by induction

h),...,h_, have the desired form. If s =1, g = (bi’bj’bk+l) where
i,j<sk, andif s =2, g = (bj’bk+1’bk+2) where j < k upon ordering
bjc15 bk, e correctly. By double transitivity, choose h € H with bih =

h
by, and bjh =by,. Theng = (bk+s-2’bk+s-1’bk+s)' Suppose g com-
mutes with h;. Then i,j = 4. So we could have chosen h € <h,,... ,hk_2)
unless <h,,...,hy_,) is not doubly transitive, which occurs only if k = 6.

If k =6, however, gh or (g—l)h where h ¢ (h,) is of the desired form.

Lemma 4.6: Let U be a group with a subgroup H = ¢h;, ..., h_,)
= Ak where k > 7. Assume H acts on {1,...,k} and that h, = (i,i+1,i+2)
for 1 < i <k-2. Letg ¢ U such that g commutes with h, and h,. Let
H, = (h,,...,hy_,,8) = A, and assume H, acts on {b,,... ,bk} . Further-

more assume h,,...,h _,,g are 3-cycles in H,. Then (H,g) = A _,.

Proof: By Lemma 4.5, we may assume h, = (bi_l,bi,bi+1) for
2 < i <k-2 and for some h € (h;,...,h _,), gh or (g'l)h is
g, = (bk_ubk, bk+1)' Also g, commutes with h, as g,h do. Thus gf =1,
(hk-2g1)2 =1, g, commutes with h;,...,h._,, and g;h,_,hy_.g, =
hy _,hy_;. By Lemma 4.4, (H,g) = H,g,) = Ay,,.

Lemma 4.7: Assume hypothesis (A) holdsand n > 8. Let M be
a subgroup of G generated by special 3-elements such that X ]M =

X, @ (n-m)lM where X, is irreducible of degree m = 5 (including the
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possibility that m =n) or X|M =X, ® £ & (n-m-1)1, where X, is
irreducible of degree m = 5 and ¢ is linear. Then X, is primitive and

if X|M is of the latter form, £ = lM'

Proof: Let K be as in the hypothesis of Lemma 2.7. By
Corollary 2.1 and hypothesis (A), there is a subgroup U generated by
special 3-elements such that K cU = A _. , where U and s are as in
hypothesis (A). As two special 3-elements of U, which must be 3-cycles
of U, either commute, generate A,, or generate A,, K can only satisfy
1. of Lemma 2.7 and K = A, or A;.

Let X, act on the subspace V, and assume X, is monomial. Let
V...,V beabasis of v, in which X, is monomial. By Lemma 1.4,
after rescaling and reordering v,, ... » Vs there exist special 3-elements

h,,...,h,_, €M such that

~
viaX(hy) = v,
vi+2X(hi)

L VeX(hy)

s

v, for 24 i,i+1,i+2}

Il

for 1 <i < m-2.

Assume first that X‘M =X, ® D (n-m-l)lM where & # 1,,.
Therefore there is a special 3-element g € M with £(g) = w. So X,(g)
must be diagonal in the basis v, ..., Vi and for some i, ViX(g) = Wv;.
Let g,,g, € ¢hy,...,h _,) such that viX(gl) = v, and v;X (g,) =v,. Then

h =g 'gg,g, g”'g, is a special 3-element and
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v, X(h) = wv,
(1) v,X(h) = wv,
VQX(h) = vy for £>2

But then X | (h,,h) =Y & (n-3)1 (h,, b where Y is irreducible and
¢h;,h) ¥ A, or A, a contradiction.

Therefore £ = 1,, and we may assume X M =X, ® (n-m)1,,. As
X, is irreducible, there is a special 3-element g € M with X(g) not
leaving (vi+...+v ) invariant. First assume X,(g) is diagonal in the

basis v, .. Vi

Then viX(g) = wv; and VjX(g) = Z)vj for some i and j.
Let g, € ¢hy,...,hy_,) such that v;X(g,) = v, and va(gl) =v,, by double
transitivity. Letting h = g;lggl, we get X(h) as in (1), which is again a
contradiction. Therefore X,(g) is not diagonal. Hence there exist

distinct i, j, and k such that

- _
viX(g) = av;
va(g) = bvy abc =1
ka(g) = cv;
vy X(g) = v, for ¢4 {i, j, k}
where not all of a, b, care 1. Letg, € <h,...,h,_,) with viX(gl) = V,,

V]-X(gl) = vy, and v X(g,) = v,. Replacing g by g7 'gg,, we may assume
i=2,j=3,andk =4. If g commutes with h,, thena =b =c¢ {w, w};
however X! (h;,g) =Y & (n-4)1 (t,,g) where Y is irreducible but

1’
(h,,g) ¥ A, or A, a contradiction. So g does not commute with h,.
Hence X l (h,,g) =Y & (n-3)1 (hy, &)

possibility is that ¢h,,g) = A, and {a,b,c} ={-1,-1,1}. By conjugating

where Y is irreducible. The only
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g by h, or h;1 if necessary, we may assume a =-1, b =1, andc =-1.
But then situation 2. of Lemma 2.7 occurs, a contradiction.
Therefore we can only conclude X, is primitive. If XM =

X, ® t® (n-m-1)1,,, by Mitchell ¢ = Ly

M’
Lemma 4.8: Assume hypothesis (A) holds and n = 8. Let H be

a subgroup of G generated by special 3-elements. Assume X )H =

X, @ (n-m)lH where X, is irreducible of degree m = 5. Let g be a

special 3-element which does not commute with H. Then

X[ H,g) =YD (n-s)l(H,g> where s =m, m+ 1, or m + 2 and Y is

irreducible.

Proof: We must have X! (H,g) =R ® (n-m-2)1 (H, g) where either
1. R is irreducible.
2. R=R, ® £ where R, is irreducible and ¢ is linear.
3. R=R, © & @ &, where R, is irreducible and &,, &, are
both linear.
We are done if 1. holds. If 2. holds, £ =1 @, ) by Lemma 4.7. If 3.
holds, since g does not commute with H, one Ei’ say &,, is 1 (H,g)"

By Lemma 4.7, &, isalso 1 (H, g) and the lemma is proved.
)

Lemma 4.9: Assume hypothesis (A) holds and n > 8. Let H be
a subgroup of G generated by special 3-elements such that X ]H =
X, @ 2 -1H where X, is irreducible. Let g € G be a special 3-element
such that X | (H,g) is irreducible. Then (H,g) = A, ;.

Proof: By Lemma 4.7, X, is primitive; so by hypothesis (A),

H=A Let H act on the set {a,,...,a,_,}. The special 3-elements

=i
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in H are 3-cycles and so define h, = (ai,a aj,,) for 1 <i <n-3. Then

i+10
H=<(,,...,hh 5. As X{ (H,g) is irreducible, g does not commute
with H. Thus g does not commute with both ¢h,..., h,.4 and

(hy,...,hy ;). Letg =hyl;,for 1 <i<n-3and b, =a,_j for
1<is<n-1. Then 8y = (bi’bi+1’bi+2) and g,...,8p-4 = (p_g,...,hp).
If necessary, replacing hi by g; and an_i by bi’ we may assume notation
is chosen so that g does not commute with ¢h,...,h _,).

First consider X|<¢h,...,h,_,,g). By Lemma 4.2,
X|¢hy, ... hy) =X | ¢hy, .. hy ) @ 2'1<h1,-~-,hn_4> =
X, ® 3-1 (h he ) where X, is irreducible. By Lemma 4.8,

19 ° - silpag

X’(hl,...,hn_4,g>=Y€Bs-1<h where s =1, 2, or 3 and

1oy 48
Y is irreducible. If s = 3, clearly XI By, ..oy hy 4,80 50 is not
irreducible, a contradiction. So s =1or 2. By Lemma 4.7, Y is
primitive and hence by hypothesis (A), <hy,...,h,_,,8) = A, o, and

h,...,h,_ 4 g represent 3-cycles. By Lemma 4.5 there is an element

g, = gh for some h € <h,,...,h,_,) such that g, commutes with h,, ..
.,hy_¢. As (H,g) = (H,g,), by replacing g by g,, we may assume g
commutes with h,,...,h, .

As X[ (H,g) is irreducible, g does not commute with (h,, ..
..,hp.. By Lemma 4.2, X|¢h,,...,h ) =X, [(h,,...,hy ) @

) @ 3. o ible.
2-1 X, ® 3-1 (hyy ... By where X, is irreducible

(hyy ... hpg)
Therefore by Lemma 4.8, X | Bogros p By =RE -1 (hyy ... By )
wherer =1, 2, or 3 and R is irreducible. K r =3, X’ | PP | TP -9 1)
is reducible, a contradiction. By Lemma 4.7, R is primitive. Ifr =2,
by hypothesis (A), <h,,...,hy_5,8) = An_l. By Lemma 4.6 (H,g) =

An; however X l (H,g) could not be irreducible by Lemma 4.2.
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Therefore r =1 and by hypothesis (A), <h,,...,h _,,g) = A Let
(hy,...,h,_5,8) act on {bl, e ,bn} . By Lemma 4.5, we may assume

h, = (bi-ubi’bi+1) for 2 <i sn-3andg =(b;,b,_,,b,). Also there is
an element h € (h;,...,h,_,) such that gh or (g'l)hl isg, =
(bn_z,bn_l,bn). As g and h commute with h;, so does g,. Let

g:hp-s

hy_, =hy_ Then by Lemma 4.6, (H,hn_2> e An' But h,...,h,_,

represent 3-cycles in (H,h,_,) and if (H,h,_,) acts on {cl, o8 4 ,cn} , by
Lemma 4.5, we may assume hi =(Ci,Ci41,Ci42) for 1 <i <n-3 and

h (c.,ck,cn). Looking in (h,,...,h,_,), the only possibility is

n-z -~ ]
h,_2 =(Cy_2,Cy_15Cpn). Thus by Lemma 4.6, (H,h,_,,g,) = H,g) = A}

L

Lemma 4.10: Assume hypothesis (A) holds and n = 8. Let H be

a subgroup of G generated by special 3-elements such that X |H =X, @ 1H
where X, is irreducible. Let g € G be a special 3-element such that

X |(H,g) is irreducible. Then (H,g) = A,.,.

Proof: By Lemma 4.7, X, is primitive. Therefore by hypothesis
(A), H = An' Assume H acts on {al, < ,an} . The special 3-elements
in H are precisely the 3-cycles and so let hi = (ai,ai+l,ai+2). Hence
H=<¢,...,h,; ;) and as X l (H,g) is irreducible, g does not commute
with H. So g could not commute with both ¢h,,...,h,_;) and
(hy,...,hy_5) . As in the proof of Lemma 4.9, we may assume g does
not commute with <h,,...,h,_.).

By Lemma 4.2, X|¢h,,...,hy ) =X, |y, ..., h, ) @
1<h1,...,hn_3) =X, ® 2'1(h1,...,hn_3>‘ By Lemma 4.8,

X l(hl, ceoshpo;,2) =YD s-1 h where Y is irreducible and

13 = u » 3 Do gs g)
s=0,1, or 2. By Lemma 4.7, Y is primitive. If s =2, by hypothesis
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(A), (hy,...,hy 5,8 = Ay, = <h,...,h,_,) and g € H, contradicting the
irreducibility of X l (H,g). Thus s =0 or 1 and by Lemma 4.9 or
hypothesis (A), respectively, <h,,...,h,_;,8) = A _g,;.- The elements
h,...,h,_;,8 must all represent 3-cycles and by Lemma 4.5, there is
a conjugate g, of g by an element in ¢h;,...,h,_, such that g, com-
mutes with h;,...,h,_ 5. Without loss of generality, we may replace
g by g, and hence assume g commutes with h;, ... ,h,_;.
As XI (H,g) is irreducible, g does not commute with <h,, ..

.yhy o). But X|<hy, ..., by ) =X, [<hy, ..., hy ) @1<h2,__.’hn_2>

=X, 021 (Byy -+ By ) where X, is irreducible by Lemma 4.2. So

by Lemma 4.8, X!(hz,...,hn_z,g> =R69r-1< where R

s o s a5 Bpnas B
is irreducible and r =0, 1, or 2. By Lemma 4.7, R is primitive. If

r = 2, by hypothesis (A), (hy,...,h o) = A, = <h,,...,h, ;) and
so g ¢ H, contradicting the irreducibility of X l H,g). Ifr =0, by

Lemma 4.9, <h,,...,h,_,,8) = Ap,,. Ash,,...,h _,,g are special
3-elements, they represent 3-cycles. Assume <¢h,,...,h,_,,g) acts
on {bl, e ,bn+l} . By Lemma 4.5, we may assume h, = (bi_l,bi,bi+l)

and g = (bj,bn,bml) for some j. By Lemma 4.5, there is an

h € <h;,...,h,_,) such that gh or (g'l)h isg, =(b,_,,b,,b

n-1’~n? n+1)' AS g

and h commute with h;, so does g,. Leth,_, = hn_2gl n=2 -
(bn-z’bn-ubn)° This commutes with h;, and h,; so by Lemma 4.6,
(H,h,_,) = A,,,. Againhj,...,h, , represent 3-cycles in (H,h,_,)
and if (H,h,_,) acts on{c,,...,c,,,}, by Lemma 4.5, we may assume
h; =(cj,€4,1,Cj,2) for 1 <i <n-2 and hn_lz(ci,cj,cml). Examining
¢hy,...,hy_,), the only possibility is h,_, =(cj_;,¢p» Cphs1)- By Lemma

4.6, H,h,_,,g) = H,g) = A, .., contradicting Lemma 4.2, Sor =1
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and by hypothesis (A), (h,,...,h _,,g) = A . By Lemma 4.6,
H,g) = An+1'

We are now ready to classify G when n > 8 and hypothesis (A)

holds.

Lemma 4.11: Assume hypothesis (A) holds and n = 8. Assume

there is a subgroup H of G generated by special 3-elements such that
XH=Y ® (n—s)lH where Y is irreducible of degree s with 3 < s < n.
Then G contains a normal subgroup N generated by special 3-elements

such that N =A_, and G/Z(G) = A, or S,,.

n+

Proof: By Lemma 2.3 and induction, we may assume s = n-2
or n-1. Let Y act on the subspace V, of dimension s. Let g be a
special 3-element such that X(g) does not leave V, invariant. If s=n-1
X l (H,g) is irreducible and by Lemma 4.10, (H,g) = A ,. If s=n-2
and X [ (H,g) is irreducible, by Lemma 4.9, (H,g) =A . Ifs=n-2
and X | H,g) =X, ® £ where X, is irreducible of degree n-1, by Lemma
4.7, £ =1 H,g)" In this case, let X, act on V, and let g, be a special
3-element such that X(g,) does not leave V, invariant. So X ] (H,g,g.
is irreducible and by Lemma 4.10, (H,g,g,) = A, ,. Hence in any
case, G contains a subgroup N generated by special 3-elements such
that X |N is irreducible and N = A .

Let N act on {al, ee ’an+1} and choose special 3-elements
h,...,hy_, such that h, = (ai,ai+1,ai+2). Let h be a special 3-element
not in N. By Lemma 4.2, X|<,,... yhy ») =X, &1 ty, ... h_,) where
X, is irreducible. Let X, act on the subspace W. If X(h) leaves W
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invariant, by Lemma 4.7, X|<¢h,...,h _,h) =X, & 1 s, o)
where X, is primitive. But by hypothesis (A), h € (h,..., h) ) = An’
a contradiction. So X ' (hy,...,h,_,,h) is irreducible and by Lemma
4.10, <hy,...,h, ,,h) = A,.,. By Lemma 4.5, thereisa g, = h® for
some g € <hy,...,h, ;) suchthat g, commutes with h,,...,h . Also
g, is not in N. As above X l ¢(h,,...,h,.,,8,) is irreducible and so by
Lemma 4.10, <hy,...,h, ,,8,) = Ay, and h,,...,h, ,,g, are 3-cycles.
By Lemma 4.6, <(h,,...,h,_,,8,) = A, which contradicts Lemma 4.2.
So h does not exist and N is the subgroup of G generated by all special
3-elements of G.

Therefore N 4 G and as X [N is irreducible, C5(N) = Z(G). Thus
G/Z(G) is a subgroup of the automorphism group of Arl 41+ SO

G/Z(G) = A, or S .,. (See[24]).
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CHAPTER V
THE PROOF OF THEOREM 2

In this chapter we complete the proof of Theorem 2. We first
begin by considering what groups could be generated by two special

3-elements.

Lemma 5.1: Let h, and h, be special 3-elements such that h,
and h, do not commute. Letn = 6. Then one of the following holds:
1. X|(,h) =Y, ® Y, ® (n-4)1 (h, . h.) where Y,, Y, are
13 2
irreducible of degree 2. Let Y;((h;,h,)) = H; and let M,
be the set of all elements in Hi which occur with component
the identity of Hj(j # i) in the subdirect product. Then
H. =~ SL,(3) for i =1 and 2, ]Z(Hi) | =2, and either

i
M; = Z(Hi) fori=1and2, or M; =1fori=1and2. Also
Yi(hj) are not unimodular for i =1,2 and j =1,2.
2. X|¢h,h) =Y, @ £ (n-4)1 (h. by Where Y, is irreducible
1 9442
of degree 3.
3. X|(h,h,) =Y @ (n-4)1 (h ny Where Y is irreducible of
15 by

degree 4.

Proof: As h, and h, do not commute, X |¢h,,h,) =Y @ (n-4)1 (h,, )
where Y has a constituent of degree at least 2. So we have three pos-
sibilities:

a. Y=Y, ® Y, where Y, is irreducible of degree 2.

b. Y =Y, ® & where Y, is irreducible of degree 3.

c. Y is irreducible.
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As b. and c. give 2. and 3., respectively, we only need to show that a.
gives 1.
So assume Y [ (h,,h,) =Y, ® Y, where Y, is irreducible of degree

2. Let Y(<h;,hy)) = H,.

i~ So Y((h,,h,)) is a subdirect product of H, and

H,. If Y, is monomial in some basis, then Y,(h;) and Y,(h,) would both
be diagonal in that basis as they have odd order. This contradicts the
irreducibility of Y,. So Y, is primitive. We now examine the pos-

sibilities for Y, by examining Blichfeldt's list [2].
Case A: H,/Z(H,) = A,
This case is impossible as in case A of Chapter 3.
Case B: H,/Z(H,) = S,

This case is also impossible as S, is not generated by its 3-

elements.
Case C: H,/Z(H,) = A,

Assume first that Y, is reducible. So Y, = ¢, © &,. Thus H, is
abelian and so Y((h,,h,))’ =H/ ® 1 @ 1 and H//(Z(H,)N H/) is elementary

abelian of order 4. As H,’ consists of 2X 2 unimodular matrices, the

-1 0
only element of order 2 in H/ is 0 1) . In particular H/ contains
an element x of order 4. As x is unimodular, x has eigenvalues

i and -i. So G contains a special 4-element, a contradiction by
Theorem 1.
So Y, is irreducible also. As previously, Y, is primitive; also

H,/Z(H,) = A, or S, are eliminated as in cases A and B. So
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H,/Z(H,) = A,. Note that if any one of Yi(hj) is the identity, then Y,

or Y, is reducible, a contradiction. So each Yi(hj) is not unimodular.
Let M; be as defined in the statement of the lemma. By Theorem 5.5.1
of [11], M; < H; and H,/M, = H,/M,. LetC; = Z(H,;). Assume first
that for some i, Mici/ci contains the Sylow 2-subgroup of Hi/ci‘ Then
M, contains a unimodular subgroup of order 4. As earlier M, could only
have one involution, the central involution, and so has an element with
eigenvalues i and -i. Thus G contains a special 4-element, a contra-
diction to Theorem 1. So for i =1 and 2, M, < C;- As elements of H,
and H, have only determinant 1, w, or w, Ci could (_)rlxly boe 1, Z,, Z, or
Z,. As H/ contains an involution, which must be( 5 _1) y Z,< Cy
fori=1and 2. Assume C; = Z, for some i, say i =1. As M, contains
unimodular matrices, M; =Z, or M, = 1. In either case, as

H,/M, = H,/M,, we would have C, = Z, and M, = M,. The iso-
morphism between H, /M, and H,/M, maps the centers onto one another;
so X(G) contains an element with eigenvalues -w, ~w, ~w,-w,1,1,...,

a contradiction to Blichfeldt. So C, = Z, and Hl’ 2C, fori= 1 and 2.
By Schur [25], the only nonsplitting central extension of Z, by A, is
SL,(3). So H, = H, = SL,(3) and either M, = Z(Hi) for i =1 and 2 or
Mi=1f0r1=1and2.

Lemma 5.2: The only nonabelian linear unimodular group P of

degree 3 and order 27 has exponent 3 and is given by P = (g, h) where

O O =
o = O

1 0 O
and h=({0 w O
0 0 w

in some basis.
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Proof: The representation is monomial (52.1 of [5]). Let v,,
V,, V5 be a basis for the space on which the representation is defined.
Assume P has an element t of order 9. Assume first that t is not

diagonal. By ordering v,, v,, v, correctly,

0
b
0

o o &

But t has determinant 1. So abc =1 implying t has order 3, a con-
tradiction. So t is diagonal. Also P = (s,t|s™'ts =t*, t* =1, s’ = 1).
(See Chapter 4 of [11].) As s could not be diagonal, by scaling and

ordering v,, v,, v, correctly,

1 0 a 0 0
0 1 and t=(0 b O
0 O 0 0 c

where abc =1. Ast’e Z(P), a’=b" =c’¢{w,®}. Leta =€ where €
is a primitive ninth root of unity. If €3 = w either b =¢ = €w or

{b,c} ={€,ew}. If € =w either b =c = €w or {b,c} ={¢, ew}. But

c 0 O a* 0 0
sts ={0 a o)l=0 ©p
0 b 0 0 ¢t

and none of the combinations of a, b, and c work.
So P has exponent 3. Let s be nondiagonal. By ordering and

scaling v,, v,, v, correctly,
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0 1 0
s={0 0 1

1 0 O

Let t be an element of order 3 not commuting with s. If t is diagonal,
by replacing t by t™hif necessary and permuting v,, v,, v, cyclically,

we may assume

g © ©

1 0
t=10 w
0 O

If t is not diagonal, by replacing t by t™hif necessary

0 a O
t=10 0 b
c 0 O
where abc = 1. But
c 0 O
st =0 a 0
0 0 b

As s and st do not commute and s’t has order 3, {a,b,c} ={1,w, o},

and the result holds.

Lemma 5.3: Let h, and h, be special 3-elements. Assume
X|(h,,h) =Y, ® £t & (n-4)1 (h,, hy) where Y, is irreducible of degree
3and £ # 1 (hy, hy) * Then there exist special 3-elements h] and h,
contained in ¢h,,h,) such that X|(h/,h/) =Y @ (n-3)1 (hy by Where Y
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is irreducible and <h/,h)) is the nonabelian group of order 27 and

exponent 3.

Proof: Assume first that Y, is monomial. Let Y, act on V,
and £ on (v,). Let v, v,, v, be a basis of V, in which Y, is monomial;
since Y,(h,) and Y,(h,) cannot both be diagonal, we may assume Y,(h,)
is not diagonal. By replacing h, by h;, b if necessary and scaling and

ordering v,, v,, v, correctly,

(Y, & g(h) = and (Y, @ &)(h,) =

o = O O
o O O =
o O = O
= O O O
O O O =
o © = O
© g ©O ©
€] © ©o ©

Let h* = h,h,h] 'h;*. Then

(Y, ® &) (h*) =

o o o

© o g ©
© g|] o o
- o O g

and h/ =h,, h) = h* gives the desired group by Lemma 5.2.

Assume now that Y, is primitive. Let Y,(¢h,,h,)) = H, and
£(¢h,,h,)) =H,. Then H = (Y @ £&)(<¢h,,h,)) is a subdirect product of H,
and H,. By Mitchell, H, /Z(H,) is an extension of Z, X Z, by SL,(3). Now
H’ is a subdirect product of H/ and H, =1; also |H//(Z(H,)N H)) | = 72.
If Sis the Sylow 3-subgroup of H/, S ¢ H/ and so S char H' < H. Thus
S 4 H and by Clifford's theorem (see [5]), as S # Z(H,), S is non-
abelian. As Z(H,) N H/ consists of nonsingular unimodular scalar

matrices, |Z(H,) N H/| < 3. So as S is nonabelian, Z(H,) N H/ has
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order 3 and S has order 27. By Lemma 5.2, S is of exponent 3 and the

result follows.

The next three lemmas deal with special 3-elements which
satisfy conclusion 1. of Lemma 5.1. The possibility of conclusion 1.
occurring is one reason why Theorem 2 is more difficult than Theorem 1.
Induction techniques do not work quite as easily in this situation as one

would hope.

Lemma 5.4: Let h, and h, be special 3-elements such that they
satisfy 1. of Lemma 5.1. Letn > 6 and let Y; act on the subspace V..
Let h, be a special 3-element such that X(h,) does not leave V, & V,
invariant. Then one of the following holds:

1. X|(hl,h2,h3) =U & (n-8)1 th, . h, h) where U is irreducible

125228~
of degree s with s =5 or 6.

2. There are special 3-elements h/,h) ¢ <h;, h,, h,) such that

X’ (/,h)) =U @ (n-3)1 ,, ,,, where U is irreducible of
<h1 L hz >

degree 3 and <¢h/,h;)) is the nonabelian group of order 27

and exponent 3.

3. X|¢h,h,,h) =U, & U, & (n-6)1 (h,, hy, hy) where both U, are
irreducible and primitive of degree 3. Also Ui(hj) are
nonunimodular for i =1,2 and j =1,2,3. Let Gi =
U.(¢hy, by, b)) and N; be the set of all elements in G; which
occur with component the identity of Gj (i # j) in the sub-
direct product. Then Gi/Z(Gi) is an extension of Z, X Z,

by SL,(3). If Nig Z(Gi) for some i, 2. also holds.
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Proof: We have X|<¢h,,h,,h,) =U & (n-6)1 (b, hy, by AS
X(h,) does not leave V, @© V, invariant, X(h,) does not leave both V,
and V, invariant. Hence U has an irreducible constituent of degree at
least 3. So we have four possibilities for U:

U is irreducible.

U =U, © & where U, is irreducible of degree 5.

U =U, & U, where U, is irreducible of degree 4.

2 2 " =

U =U,; © U, where U, is irreducible of degree 3.

First,case A gives 1. Assume case B holds; then 1. holds if
we show ¢ =1 (h,,hy,hy) " By Mitchell, if U, is primitive,
£ =1 (. h,, h) Assume U, acts on a subspace W and is monomial in

17 °%29 73
a basis v,,...,v.. AsU,|(,,h) =Y, ®Y, ® L, by’ €+ b onys
U,(h,) must be diagonal in the basis v,,...,v,. Hence as U, is irreducible,
Uy l ¢(h,,h,) does not leave any <Vi> invariant. By Lemma 2.6,
(h;, h,) = A, a contradiction. So £ =1 (hy, by, hy) and 1. holds.

Assume case C holds. Let U; acton W,. If V, eV, cw,
V, ® V, =W, and X(h,) leaves V, ® V, invariant, a contradiction. Hence
as V,, V, are unique subspaces, we may assume V, € W, and V, = W,.
So U,(h,) and U,(h,) have eigenvalues 1,1,1,w or 1,1,1,w. If U, is
monomial in some basis, U,(h,) and U,(h,) would have to be diagonal ,
contradicting U, | (h,,h)) =Y, @ 2-1 (b h)" Therefore U, is primitive.

Ly ™R

But this is impossible by Lemma 2.2. So case C does not occur.
Finally assume case D holds. Let G; = U;(<h,,h,,hy)) and let

U; act on W,. By ordering Y, and Y, correctly, we may assume V, = Wi'

Therefore U, has a constituent of degree at least 2, and Ui(hl) and

U;(hy) are nonunimodular for i =1 and 2. We have two possibilities:
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(i) U, =U, ® £ where U, is irreducible of degree 2 and
£+ 1, hy,hy-

(ii) U, is irreducible or U, =U, & 1 (b, hy, hy) where U, is
irreducible of degree 2.

If (i) holds, then £(h;) = £(h,) =1 and £(h,) # 1. As U, is
irreducible, h; does not commute with both h, and h,. Without loss of
generality assume h, does not commute with h;. As U,(h,) is not
trivial, U,(h,) is trivial. So U, |[¢h,,h;) =R @ 1 (h,,h,y Where R is
irreducible of degree 2 and X |(h,,h,) =R @ £,® ¢, @ (n-4)1 (h,, hy)
But by Lemma 5.1, this is impossible.

So (ii) holds. If either U, is monomial, in some basis Ui(hl) and
Ui(hz) are both diagonal as they have eigenvalues 1,1, w or 1,1, w. This
contradicts the irreducibility of Yi‘ So U, is primitive; if U, is
irreducible, it is primitive and if U, = U, © 1 (h,, by, by’ U, is prim-
itive. Let G; = Ui( (h;,h,,h;) ). So U(<¢h,,h,,h,)) is a subdirect product
of G, and G,. By Mitchell, G,/Z(G,) is Z, X Z, extended by SL,(3). Let
Ni be the set of all elements in G; which occur with the identity of Gj
(j # i) in the subdirect product. By Theorem 5.5.1 of [11], N; < Gy
and G,/N, = G,/N,. All nontrivial normal subgroups of G,/Z(G,) con-
tain §, a normal subgroup of order 9. Let S be the inverse image of
Sin G,. Assume first that N, ¢ Z(G,). Then S < N, = N,Z(G,)/Z(G,).
Also S NN, < G, and [S| =9 |Z(G,) |. As N, contains only unimodular
matrices, |S N N,| =9 or 27. By Clifford's theorem [5] as G, is
primitive and S N N, ¢ Z(G,), IS N N, | =27. So by Lemma 5.2, we
have 2. Now assume N, c Z(G,). As G,/N, = G,/N,, by looking at

Blichfeldt's list of primitive groups of degree 2 and 3, U, must be
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irreducible. As it is primitive G,/Z(G,) = G,/Z(G,). If N, ¢ Z(G,),
we have 2. as above. We must have Ui(hB) nonunimodular as both U,

and U, are irreducible, and so 3. holds.

Lemma 5.5: One of the following occurs for n = 6.
1. There exists a subgroup H of G generated by special 3-
elements such that X IH =Y @ (n-r)lH where Y is irreducible
of degree r for some r with3 <r < 6.
2. Let h; and h, be any two special 3-elements. Then either
a) h, and h, commute
b) <h;,h,) = SL,(3) and X | (h,,h,) satisfies 1. of Lemma 5.1.
For any special 3-element h, satisfying the hypothesis of
Lemma 5.4, conclusion 3. holds in Lemma 5.4 but 2.

doesn't.

Proof: By Lemma 1.1, not all special 3-elements commute. So
let h, and h, be special 3-elements which don't commute. If conclusion
3. of Lemma 5.1 holds, we have 1. If conclusion 2. of Lemma 5.1 holds,
we have 1. by Lemma 5.3. So assume conclusion 1. holds of Lemma 5.1.
Let Yi act on V.. There is a special 3-element h, such that X(h,) does
not leave V, @ V, invariant. Hence, if for this h,;, conclusion 1. or 2.
of Lemma 5.4 hold, we have 1. So assume conclusion 3. holds but 2.
doesn't. Then Ni & Z(Gi). As elements of U, have determinant 1, w,
or @, |Z(G)[[9. Also |¢h,h;,h) | =[G, |- |N,| =216+ |Z(G) | N, ][ =
2°.3°.3% for somea > 1. So in particular 48 /f [ ¢(h;, hy, hy) [ and hence

by conclusion 1. of Lemma 5.1, <¢h;,h,) = SL,(3).
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Lemma 5.6: Assume n = 8 and that conclusion 2. of Lemma 5.5
holds. Let h;, h,, h; be special 3-elements of G that satisfy conclusion
3. of Lemma 5.4 where U, acts on W.. Let h, be a special 3-element
of G such that X(h,) does not leave W, © W, invariant. Then one of the
following holds:

1. X|¢h,,bh,,h,,h) = X & (n-s)1 (h,, by, hy, by where X is

irreducible and primitive of degree s = 7 or 8.

2. n=8and X|(,,hy,h,;,h,) =R, ® R, where R, and R, are
irreducible and primitive of degree 4. If F, = Ri( thy o b, b, B,
then Fi = ONS(/S) X Z, where (ﬂg) is the nonsplitting central
extension of Z, by O4(3). If Li is the set of all elements in
Fi which occur with component the identity of Fj (i#j) in the

subdirect product, then L; © OZ(Z(Fi)) fori =1 and 2.

Proof: As X(h,) does not leave both W, and W, invariant, we
have the following possibilities:
(i) X|<¢hy,h,,h,,h) =X & (n-8)1 (hy, by, h,, b,y Vhere X is
irreducible.
(ii) X|[(h,,h,,h,h) =X B Y & (n'8>1<h1,h2,h3,h4> where X
is irreducible of degree r with 4 < r < 7 and Y has
degree 8-r.
First assume either (i) holds or (ii) holds with r =7. Let X
act on V. Suppose that X is monomial on V. Then by Lemma 1.4,
there exist special 3-elements generating A,, a contradiction to the
assumption that 2.holds in Lemma 5.5. So Xis primitive and by
Mitchell, if (ii) holds withr =7, Y =1 (h,,h,,hy, h)" So in these

cases, 1. holds.
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We now assume (ii) holds for 4 < r < 6. Ifr =6, X must be
acting on W, © W,, a contradiction that X(h,) does not leave W, & W,
invariant. If r = 5, the only possibility by correctly ordering U, and

U, is that X |(hy,h,,h,) = U, & 2-1 and Y | ¢h,, h,,h,) = U,.

¢y, h, b
As X(h;) for 1 <1i < 3 have eigenvalues 1,1,1,1,w or 1,1,1,1,w, by
Mitchell, X is not primitive; so X is monomial. But then in some basis
of the space on which X acts, i(hi) are all diagonal for 1 <i < 3, con-
tradicting the fact that U, is irreducible. Sor =4. LetX =R, and

Y =R,. By correctly ordering U, and U,, the only possibility is

R; ’ ¢hy,hy,hy) =T, © 1 (t,,h,,hy) If either R, is monomial, in some
basis Ri(hl), Ri(hz), and Ri(hg) are all diagonal because they have

eigenvalues 1,1,1, w or 1,1,1,w. This contradicts the irreducibility

of U;. So R, is primitive and the result follows by Lemma 2.2.

The next lemma eliminates a possibility which occurs in [15].
Using the powerful results of [1], Lemma 5.8 shows that condition 1.
of Lemma 5.5 holds. This allows us to construct primitive subgroups

of codimension 1 or 2.

Lemma 5.7: If X, is an irreducible representation of a group H
containing a special 3-element and X, has degree 8, then X, is not the

tensor product of two representations of smaller degree.

Proof: Assume X, is the tensor product of Y, and Y, each of
degree less than 8. Then we may assume Y, has degree 4 and Y, has
degree 2. There exist elements y,, y, such that Y,(y,) ® Y,(y,) has
eigenvalues w,w,1,1,1,1,1,1. Let Y,(y,) have eigenvalues Wy Oy (o

a, and Y,(y,) have eigenvalues 3,, 8,. So Y,(y,)® Y,(y,) has
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eigenvalues aiBj forl si<4andl <j<2. We may assume 83, = 0.
SoB, #B;and o + a,. Thus {011132, (2232}’ = {w’ 1} . So {a3/32,a482} =
{1,1} and hence @, = @,. So a3, = @,3, =1 and hence 3, = 3,, a con-

tradiction.
Lemma 5.8:; Letn = 8. Then 1. of Lemma 5.5 holds.

Proof: Assume 1. of Lemma 5.5 fails. By Lemma 1.1 not all
special 3-elements commute. Choose special 3-elements h, and h,
which do not commute. So ¢h,,h,) = SL,(3) and by replacing h, by
hz'1 if necessary, we may assume h, and h, are conjugate in <h;,h,).
Also X] (h,,h,) satisfies 1. of Lemma 5.1. There is a special 3-
element h, satisfying the hypothesis to Lemma 5.4. So (hi,h3> = Bli,(3)
for either i =1 or i = 2 and in particular, replacing h, by h;l if
necessary, we may assume h, is conjugate to h, in ¢h;, h,,h,). Also
3. holds in Lemma 5.4 but 2. doesn't. We may choose h, as in the
hypothesis of Lemma 5.6, and as above we may assume h, is conjugate
to h, in ¢h;, h,,h;,h,). Assume 2. holds in Lemma 5.6. Thenn =8 and
by Lemma 1.1 there is a special 3-element h; such that X l b, by, B BD
is irreducible. By Lemma 1.4 and our hypothesis, X| W5« ¢ o ) 18
primitive. As before we may assume h, is conjugate to h, in (h;,...,hg).
Therefore in any case we may assume that there is a subgroup H of G
generated by an H-conjugate class 2 of special 3-elements such that
X ]H =X & (n—r)lH where r =7 or 8 and X is irreducible and primitive.
Any two elements in Q either commute or generate SL,(3).

By Aschbacher-Hall [1], H/O_(H) = Spg(3), Ur(3), or PGU(2).

By examination of Wales [27,28], we see that r =7 is impossible. So
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assume r = 8. First consider the case when O_(H) > Z(H). By
Lemma 5.7 and inspection of the theorem and proof in Lindsey [15],
there is a 2-group Q 4 H with X, IQ irreducible. Consider the group
T = ¢h,,h,)Q which has order 2%3. Let X|(h,,h,) =
Y, ® Y, ® (n-4)1 &, 1 and let Y. act on V.. Assume there is a con-
15 o 1 1
jugate h €T of h, by an element in T such that h ¢ <¢h,,h,). Then as
3 f/|T|, by Lemma 5.5, X(h) must leave V, ® V, invariant. If h
commutes with (h;,h,), 32| IT|, a contradiction. Thus X|(h,,h,,h) =
YD £ (n-51 where Y actson V;, ©® V, and ¢ is linear. But
¢hy, by, b)
for one of h, or h,, say h,, X’(hl,h) =U, ® U, ® (n-4)1 (h . h) where
12
U,, U, are irreducible of degree 2, by Lemma 5.1. So £ =1 th h
1» }12? >
and by assumption that 1. of Lemma 5.5 fails, X(h) must leave both V,
and V, invariant. Hence X|<¢h,,h,,h) =R, ® R, ® (n-4)1 (h . h,,h) where
12 %%2»
Ri acts on V1 In a manner analogous to case C of Lemma 5.1,
‘ (h,,h,, h) l =24 or 48. But (h,;,h,) has four Sylow 3-subgroups and as
| ¢h,,h,,h) | =24 or 48, so does ¢h,,h,,h), contradicting h ¢ ¢h,,h,).
Thus all conjugates of h, by elements in T lie in ¢h;,h,). In
particular Q normalizes <h,,h,).
For eitheri =1 ori =2, (hi,hs) =~ SL,(3). As in the preceding
paragraph, Q normalizes <hi’ h;). So Q normalizes H, = ¢h;,h,,h,).
By examining the groups listed in section 3 of Aschbacher-Hall [1],
|H, | =648 and O,(H,) =1. As Q and H, normalize each other,
[Q,H,] cQNHAQH,. AsO,(H,) =1, Q N H, =1 and hence Q and H,
centralize each other. This is clearly impossible as X, IQ is irreducible.
Thus O _(H) = Z(H). By 2D of Brauer [3], we may assume the
highest prime dividing |[H|is 7. Then H/Z(H) = 0,(3), U,(3), or U,(3).
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As |Z(H) | |8, if H/Z(H) = U,(@3), 3'f|H|.  But3*| |, h,,h,)]as

| ¢h,,h,,h,) | = 648, a contradiction. Let K = O4(3) or U,(3) and let

L be a group with Z(L) a 2-group and L/Z(L) = K. An element of
order 5 in K is self-centralizing, and so CL( (my) = (@) X Z(L) where
T, is a 5-element of L. All 5-elements of K are conjugate and so all
5-elements of L are conjugate. As 521 IL f, by Brauer [4, I, Theorem
10], every 5-block of defect 1 has characters of degree z = + 1 (mod 5).
So L does not have an irreducible character of degree 8, and hence H
does not exist. This is a final contradiction and so 1. of Lemma 5.5

holds.

The next lemma allows us to use the results of Stellmacher [26]
when n = 8. Lemma 5.10 shows that when hypothesis (A) of Chapter IV
fails in the case n = 8, we get a large primitive subgroup of degree 7.

The final two lemmas complete the proof of Theorem 2.

Lemma 5.9: Letn =8. Let h, and h, be special 3-elements.
Then either h, and h, commute or <¢h,,h,) is isomorphic to A,, SL,(3),

or A;.

Proof: Assume there is a subgroup H of G generated by special
3-elements such that X [H = X, @ (8- s)1;; where X, is irreducible and
primitive of degree s = 6 or 7. By Lemma 5.8 and Corollary 2.2, such
a subgroup exists. By examination of the primitive groups in Lindsey
[14,16,17] and Wales [27,28] and by applying Blichfeldt, we get that
if s=6, H=~ A,or O4(3) and if s =7, H = A; or PSp,(2). (If s =6, the
group H with H/Z(H) = U,(3) has a special 3-element (see |16]); but

Z(H) ’ = 6 in this case, which gives a contradiction by Blichfeldt.) In
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particular if p’ ]G] where p is a prime we must have p < 7 (see
Brauer [ 3]). Also in these cases X, has a rational character.

Let h, and h, be noncommuting special 3-elements. We study
the possibilities for X' (h,;,h,) given in Lemma 5.1.

Consider the case Xl ¢h),h,) =Y, ® £ 4-1 ., h,) where Y, is
irreducible of degree 3. If £« 1 (h,, h,)’ by Lemma 5.3, there exist
special 3-elements h/, h/ such that X |¢h/,h/) =Y & 5-1 (h?,h!)
where (h/,h/) is the nonabelian group of order 27 and exponent 3. Then
by Corollary 2.1, there is a subgroup H of G generated by special 3-
elements such that ¢h/,h/) c Hand X|H = X, & (8-8)1; where X, is
irreducible and primitive of degree s = 6 or 7. By the first paragraph
of this proof, X, has a rational character, contradicting the existence
of an element z € Z(<h/,h,)) such that X(z) has eigenvalues
w,w,w,1,1,1,1,1. So ¢=1 (G, h,) " Thus by Corollary 2.1, there is
a subgroup H of G generated by special 3-elements such that <¢h,,h,) c H
and X IH =X, © (8-s)1H where X, is irreducible and primitive of degree
s=6or 7. Asabove Z(¢h,,h,)) =1. If Y, is primitive, the only pos-
sibility is ¢h,,h,) = SL,(7) or A, by looking at Blichfeldt's list. If
(h;,h,) = SL,(7), the eigenvalue structure of a 7-element is incorrect
in X, [H. So if Y, is primitive, ¢(h,,h,) = A,.

Now assume Y, acts on V, and is monomial in some basis v,, v,,
v,. Not both Y,(h;) and Y,(h,) are diagonal. So by scaling and ordering

V,, V,, V, correctly and numbering h,, h, correctly, we may assume

0 1 0
Y, (h) ={ 0 0 1
1 0 0
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As <h;,h,) cannot be the nonabelian group of order 27 and exponent 3,

as above, by replacing h, by h;1 if necessary, we may assume
0 a 0
Y, (h,) =10 0 b
c 0 O

If H is A, or A,, the special 3-elements correspond to 3-cycles and so
two of them commute, generate A,, or generate A;,. So we may assume
H = O4(3) or PSp,(2). But Xl(hlzhz) has eigenvalues a,b,c,1,1,... .
By examining X, |H, the only possibilities are {a,b,c} ={1,-1,-1} or
{1,w,w}. The first case gives (h,,h,) = A, and the second case gives
(h,,h,) the nonabelian group of order 27 and exponent 3, a contradiction.
So if case 2. of Lemma 5.1 holds, (h;,h,) = A, or A,.

Now assume X, (h;,h,) =YD 4-1 (h,,h,) where Y is irreducible
of degree 4. Let Y act on V,. Assume first that Y is monomial on V,.
Let v,, v,, v;, v, be a basis of V, in which Y is monomial. By ordering
and scaling v,, v,, v,, v, correctly and replacing h, by h;1 if necessary,

we may assume

Y(h1> =

o = O O
O O O =
O O = O
- O O O
O O O =
PO O O
O O M O
O = O O

where a # 1. By Corollary 2.1, there is a subgroup H of G generated
by special 3-elements such that ¢(h,,h,) € H and X [H =X, ® (8-s)1H
where X, is irreducible and primitive of degree s =6 or 7. By the

first paragraph H = A,, Az, O4(3), or PSp,(2). If H = A, or Ay, h, and

h, represent 3-cycles and generate A, or A, contradicting Y being
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irreducible and monomial. So H = O(3) or PSp,(2). Now Xl((hlhz)z)
has eigenvalues a,a'l,a,a'l, 1,1,... . By looking in the character
table of O4(3) or PSp,(2), the possibilities for a are -1,w,w,i, or -i.

If a =-1, Y has an invariant subspace (v, + wv, + wv,) @
(-v, + wv, + wv,), a contradiction. Letg = hl(hlhz)zhl'l(h;'lhfl)2 and
h = h,ghl'g™!. Then X,(h) has eigenvalues a”,a"%,2"",1,1,1,... which
is impossible if a = w or w. Leth = hl'l(h;lhl'l)z(hzhlhz)z. Then X, (h)
has eigenvalues a~t,a™',a’,a”",1,1,... which is impossible if a = +1i.
Thus Y must be primitive.

There is a special 3-element h, such that X(h,) does not leave
V, invariant. So X l ¢h;,h,,h;) =R @ 2-1 (h,, by, hy) where either R is ir-
reducible or R = R, © & where R, is irreducible of degree 5. Assume
first that R acts on V, and is monomial. Then there is a basis
Vyy...,Vs 0f V, in which R is monomial. As Y is not monomial,
R I <¢h,,h,) can fix at most one <Vi> trivially. But the only possibility
by Lemma 2.6 is that <h,,h,) = A;. So we may assume that if R is
irreducible it is primitive, and if R =R, © £, R, is primitive and
E=1 (b, by, h) by Mitchell. By Lindsey [18], the Sylow 5-subgroup of
G is abelian. Using this fact and the list of primitive groups of degree
5 in Brauer [3], if R is reducible ¢h,,h,,h;) = A_ or O,(3). Now if
(h;,h,,h,) = O,(3), R, doesn't have a rational character. Let R, act
on V, and let h, be a special 3-element such that X(h,) does not leave
V, invariant. So X|¢h,,h,,h,,h,) =8 & Lh,,h,,h,,h,) Where either §
is irreducible or S = S, ® £ with S, irreducible of degree 6. By Lemma

1.4, as O4(3) is simple and not contained in A,, S cannot be monomial.

So S is primitive if it is irreducible, and if S=S, @ ¢, £=1 (. h,.h. h)
' 1y 77297737774
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and S, is primitive. By the first paragraph, S has a rational character,
a contradiction. So if R is reducible, (h,,h,,h;) = A, and the only
possibility is that ¢h;,h,) = A,. So we assume R is irreducible. By
the first paragraph, <h,,h,,h,) = A, or O,(3). Noting that in either
group a 5-element is self-centralizing, by examining Blichfeldt's list
[2] of primitive groups of degree 4, and by applying Blichfeldt, the only
possibility is that <h;,h,) = A,. So if 3. holds of Lemma 5.1,

(h;,h,) = A,.

Now assume 1. holds in Lemma 5.1. In the notation of con-
clusion 1. of Lemma 5.1, it suffices to prove Mi =1fori=1and 2.
Let h, be a special 3-element such that X(h,) does not leave V, ® V,
invariant by Lemma 1.1. Then the possibilities for X | {h,, h,,h,) are
listed in Lemma 5.4. Assume M, # 1 for bothi =1andi =2, and
hence |<(h,,h,) | =48. Assume first that X|¢h,,h,,h,) =U &

(8-s)1 (h,, hy, hy) where U is irreducible of degree s with s = 5 or 6.
Suppose U is primitive. By what was done in the previous paragraph,
if s=5, (h,,h,,h;) = A and if s =6, (h,h,,h;) = A, or O4(3). But as
M; # 1 fori=1andi=2, there is an element g € ¢h;,h,) with

-1 0
Y, (g) =Y, (h), Y,(g) = ( ) Y.(h;). Then U(g) does not have a

0 -1
rational trace, a contradiction as U must have a rational character.
So U is monomial. Thus in some basis v, ..., Vg of the subspace on
which U acts, by ordering and scaling v,,...,vg correctly and replacing

-1 ,
h, by h, if necessary, we may assume
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(v, X(h,) = v, v,X(h,) = av,
v,X(h,) = v, v,X(h,) = v,
ﬁ and -
v,X(h,) = v, v, X(h,) =a" v,
LV X(h) =v, for £>3 v, X(h) = v, for ¢ ¢1{2,3,4}

AsU|(,h) =Y, ® Y, & (s-4)1 h,, b,y 2nd as U( (h,h,)) =

1

diag{a,a™',a,a™",1,...}, the only possibilityisa =a™*. Soa =+1. If
a=1, ¢h,h,) = A,, a contradiction. Ifa =-1, <h,h,) = SL,(3), a
contradiction. Thus if Mi # 1fori=1andi=2, 1. of Lemma 5.4 does
not hold. By what we have already done, 2. of Lemma 5.4 could not
hold. So assume 3. of Lemma 5.4 holds. In the notation of that lemma,
N; c Z(Gy) for i =1 and 2 and | ¢hy, hy,h,) | =2°-3% for some integer a.

But then f (h,;, h,) | # 48, a contradiction. So in any case, we must con-

clude M; = 1 for bothi =1 and i =2, and hence ¢h;,h,) = SL,(3).

Lemma 5.10: Let n =8. Assume the special 3-elements of G

do not generate A,. Then there is a subgroup H of G generated by
special 3-elements such that X|H =R @ 14 where R is irreducible and

primitive of degree 7 with H = PSp,Q).

Proof: By Lemma 5.8 and Lemma 4.11, hypothesis (A) of
Chapter 4 does not hold. Thus there is a subgroup K of G generated by
special 3-elements such that X JK =X, @ (8-s)1K where X, is irreducible
and primitive of degree s =6 or 7Tand K # Ag ,. By the first para-
graph of the proof of Lemma 5.9, if s =6, K = O4(3) and if s =17,

K = PSpy(2). If s =7, we are done and so assume s = 6.

There is a subgroup K, < K with K; = A,. This subgroup is the

derived group of the stabilizer of a point in the permutation represen-

tation of O4(3) on 36 letters [12]. So X |K, = X, [K, & 2 g =X, ® 31y
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where X, is irreducible and primitive, by examining the character table
of As. Also K, is generated by special 3-elements. Let X; act on V; for
i=land2. SoV,cV,. Let2-1,acton V) and 3 - lKlact on V,. Hence
v/ cV,.

Assume the lemma is false. Let g be a special 3-element such
that X(g) does not leave V, invariant. In particular g does not com-
mute with K. Let K,,... ’Kk be all the K-conjugates of K;,. As K is
simple, K = (K, ..., Kk> . Thus g does not commute with some K, and
by renumbering, we may assume g does not commute with K,. Assume
first that X(g) leaves V, invariant. So X l Ki,8) =X, D g PE, DL X,,g)
where X, acts on V,. As g does not commute with K,, £,(g) # 1,
£,(g) # 1 is impossible. So one £, sayfori=2, is1 K, e If
£(g) =1, X(g) leaves V, invariant, a contradiction. So ¢,(g) # 1. But
this is a contradiction by Mitchell as X, JKl = X, is primitive. So X(g)
does not leave V, invariant. We have three possibilities for X l K8 :

A. X’ K,;g) =R®1 (K,,g) where R is irreducible and primitive.

B. X l K,;,g) =R 1 K,,g) where R is irreducible and monomial.

C. Xl Kp,,8) =R® £¢® l(Kl,g) where R is irreducible of

degree 6.
We show that in any case there is a special 3-element h such that
X l K,,h) =YD 21 (K, h) where X(h) does not leave V, invariant.

Assume case A holds. As we are assuming the lemma is false,
X,,g) = A,;. As all special 3-elements of (K,,g) represent 3-cycles,
by Lemma 4.5, K, is the stabilizer of two points. Choose a special
3-element h such that (K,,h) is the stabilizer of one point, and hence
sothat (K,,h) = A,. So X|(K,,h) =Y &@ 21 1y Where Y is

irreducible. If X(h) leaves V, invariant, then Y acts on V, and
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X|®,h) =5 @ 2-1 @, ny Where S is primitive on V,. So (K,h) =
)
O,(3) or A,. But (K,h) contains subgroups isomorphic to both O4(3)
and A,, which is impossible. So X(h) does not leave V, invariant.
Assume case B holds. Let R act on Wand 1 on (vg).
(K;, 2
Letv,,...,Vv, be a basis of W on which R is monomial. Choose special

3-elements g,, g,, g;, g, in K, with g; corresponding to the 3-cycle

(i,i+1,i+2). By ordering and scaling v,, ..., Vv, correctly we may assume
e
Vi X(gy) = Vig (v,X(g) =
Vk+lx(gk) = Viye v, X(g> =
and
Vi X(g) = vy v.,X( ) =a" v,
L Yy X(gk) =v, for £ d{k, k+1, k+2} 2X(g) g for £ 7{i,j, "}

In the expression for X(g), a # 1 and i # jwithi,j < 7. By conjugating

by an element of K,, we may assume i =5andj =6. Leth = ggsggglg"1

Then
(v,X(h) = v,
vsX(h) = avy
< veX(h) = a” v,
kvﬂX(h) = v, for £ ¢ {4,5, 6}

Now X l K,,h) =YD 2-1 (K,, h)’ where Y is irreducible on (v,,...,vy).
By examining (g,,h), by Lemma 5.9, a = -1 is the only possibility.
Assume X(h) leaves V, invariant. Then V, = (v,,...,V,;) and

X|<K,h) =S ® 214 ;. SoasS|K =X, h €Kand (K,h) = 04(3).
Let f =g’h. Then v;S(f) = -v; for i = 4 and 6 and ij(f) = v; for

j =1,2,3, and 5. Conjugating f by elements of K,, we get elements
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hy, hy, hy with v, X(h;) = -vpi-y, v,3X(hy) = -v,5 and VjX(hi) = V4 for
j # 2i-1,2i. But then S(h;h,h,) is a nontrivial scalar matrix, con-
tradicting Z(04(3)) = 1. Thus X(h) does not leave V, invariant.
Assume case C holds. Suppose £ # 1 (Kl,g>; so &(g) # 1. But
there is some special 3-element g, € K, with g, not commuting with g.
The only possibility is that X [{g;,g) =Y, ® £ ® ¢, & 4-1 (g,,g) Where
Y, is irreducible of degree 2 or X I €,,8) =Y, ® u® 4-1 @, where
Y, is irreducible of degree 3 and ig) #+ 1. By Lemma 5.1, the first
case is impossible. By Lemmas 5.3 and 5.9, the second case is im-
possible. Hence £ =1 K,,e) and letting g = h, we have the desired
result.
So there is a special 3-element h such that X |(K,,h) =
YD 2-1 &, b where X(h) does not leave V, invariant. Thus either
X l (K,h) is irreducible or X ] (K,h) =R © ¢ where R is irreducible of

degree 7. Let Yacton W, and 2 -1 on W/. Note that W/ c V.

K, h)
As V/ and W, are subspaces of dimelision 2 contained in the subspace
V, of dimension 3, V/ 1 W/ has dimension at least 1 and X ] (K, h) acts
trivially on V/ 1 W/. So V/ N W/ has dimension 1 and X |(K,h) =R @ ¢
where £ = 1 (&, h)" As O4(3) is simple and not contained in A;, R is
primitive by Lemma 1.4. As O4(3) is not contained in Ag, the only

possibility is that (K,h) = PSp,(2). This contradicts the assumption

that the lemma is false and so the result follows.

Lemma 5.11: Let n = 8 and let N be the subgroup of G generated

by all special 3-elements. Then one of the following holds:

1. N= Agand G/Z(G) = A, or S,.
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2. N/Z(N) O;(2) where Z(N) has order 2 and N = N’. Also
G/Z(G) is a subgroup of the automorphism group of 08+(2).

Proof: If N = A,, then X [N is irreducible and so CG(N) = Z(G).
As N A G, G/Z(G) = G/CG(N) is contained in the automorphism group of
A,. Thus G/Z(G) = A, or Sy and 1. holds.

Assume N is not isomorphic to Ay. Then by Lemma 5.10,
there is a subgroup H generated by special 3-elements such that
H = PSp(2) and X 'H =R & 1H where R is irreducible and primitive of
degree 7. All special 3-elements of H are conjugate in H and the special
3-elements generate H. Also by Aschbacher-Hall [1] and Lemma 5.9,
there are two special 3-elements in H which generate A;. Let R act on V,
and let g be a special 3-element in G such that X(g) does not leave V,
invariant. Sc g does not commute with H; hence g does not commute
with some special 3-element h; € H. By Lemma 5.9, g is conjugate to
h, or hl'l in (g,h;). Thus g is conjugate to the special 3-elements of H
by an element in {(H,g). Let h be any special 3-element of G. Then h
does not commute with (H,g) as Xl (H,g) is irreducible and so h does
not commute with some special 3-element h, € (H,g). By Lemma 5.9,
h is conjugate to h, or h, Y in g,h,) and we can conclude that all special
3-elements of G are conjugate in the group N that they generate.

By Lemma 5.9 and Stellmacher [26], N/O_ (N) is isomorphic to
PSp,(2) for k > 3, Oj; (2) for k > 3, A, for k > 5, HJ, Gy(4), Sz, or
Co,. As H is simple, H N O_(N) =1 and N/O_, (N) contains a subgroup
isomorphic to PSpy(2). If p is a prime and p| |G|, thenp < 7 (see [3]).
Therefore using these two facts, we can conclude that N/OOO(N) 2

PSp,(2) or O;(Z).
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Consider first the case that O_ (N) > Z(N). By Lemma 5.7 and
inspection of the theorem and proof in Lindsey [15], there is a 2-group
QcO_ (N) suchthatQ 4 N, X lQ is irreducible, and N/Q is a subgroup
of PSp,(2). From the fact that N/O_ (N) = PSp,(2) or O, (2), we could
only have O _(N) = Qand N/O_ (N) = PSp,(2). Therefore as O, (N) N H
=1, N =HQ. By Frame [7], H has a subgroup H, with H, = O,(3). As
X IH has a rational character, the only possibility is that X [H1 =R, ©2 'lHl
where R, is irreducible and primitive of degree 6. H, is generated by
special 3-elements. As Q 4 N, consider the group N, = H,Q. Then

,Nl ! = IH1 | -2% for some integer a. Let R, act on V,. Let h, be any
special 3-element of H;, and h any conjugate of h; by an element of N,.
Assume X(h) does not leave V, invariant. Then X ] (H,,h) is irreducible
or X |(H,,h) =S @ ¢ where S is irreducible of degree 7. As 7/ |N, |,
the latter is impossible. So X I (H,,h) is irreducible; as O4(3) is simple
and not a subgroup of Ag, by Lemma 1.4, X l (H,,h) must be primitive.
But this contradicts Lemma 5.10. So X(h) leaves V, invariant. Hence
X l (H,,h) =S ® ¢, & &, where S is irreducible of degree 6. As S [H,
is primitive, so is S. If £,(h) # 1 and &,(h) # 1, h commutes with H, and
h ¢H,. But then the Sylow 3-subgroup of N, is larger than the Sylow
3-subgroup of H,, a contradiction. So at least one ¢, is 1 (H, , h) and

by Mitchell, both must be. By the first paragraph of the proof of
Lemma 5.9, the only possibility is h € H;,. Therefore H; 4 N, and so
[H,,Q] =<H, N Q=1. So H, centralizes Q, a contradiction as X |Q is
irreducible.

Thus O (N) = Z(N). Hence if N/O _(N) = PSp,(2), N = HZ(N),

a contradiction as X |N is irreducible. So N/Z(N) = O;(Z). By
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examining Frame [8], it is easy to see that O;(Z) has no irreducible
representation of degree 8. So Z(N) is cyclic of order 2, 4, or 8.
Also N’Z(N) = N as N/Z(N) is simple. Hence N/N’ is a 2-group. As
N is generated by elements of order 3, N = N’. The Schur multiplier
of O, (2) by Steinberg (see [6]) is Z, X Z,. As Z(N) is cyclic, we must
have |Z(N) | =2. Frame [8] exhibits a group, the Weyl group of E,,
whose derived subgroup has the properties of N described here. As
N 4 G and X |N is irreducible, Cs(N) =Z(G). So G/Z(G) is a subgroup
of the automorphism group of N. But the automorphism group of N is

clearly isomorphic to a subgroup of the automorphism group of 08+(2).

Lemma 5.12: Let n > 9 and let N be the subgroup of G generated

by all special 3-elements. Then N = A, ., and G/Z(G) = A, or S.,.

Proof: We first consider the case n = 9. Assume hypothesis (A)
of Chapter 4 does not hold. Then there is a subgroup K of G generated
by special 3-elements such that X [K = X, @ (9-s)1K where X, is prim-
itive and irreducible of degree s =7 or 8 and K Ag,,. Ifs=8, by
Lemma 5.11, K/Z(K) = O;(Z) and Z(K) # 1. But then X(G) contains an
element with eight eigenvalues equal to -1 and the other one equal to 1.
By Mitchell [21], G/Z(G) = S,,, clearly a contradiction. So s = 7and
by examining Wales [ 27,28] K = PSp,(2). Let X, act on V, and 2 g
act on V/.

By Frame [7], there is a subgroup K, of K with K, = O,(3) and
XK, =X, 3- 1Kl where X, is irreducible and primitive of degree 6.
Also K, is generated by its special 3-elements. Let g be a special

3-element in G such that X(g) does not leave V, invariant. In particular
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g does not commute with K. As in the proof of Lemma 5.10, by
replacing K, by an appropriate K-conjugate, we may assume g does
not commute with K;. Let X, act on V, and 3 - 1Kl on V). As in the
proof of Lemma 5.10, X(g) does not leave V, invariant. Therefore
X l (K,,g) =S ®1 &,,8) where S is irreducible or S =Y © £ such that
Y is irreducible of degree 7. Assume first that S is irreducible. By
Lemma 1.4, as O4(3) is simple and not a subgroup of Ay, S is primitive.
But by Lemma 5.11, (K,,g)/Z((K,,g)) = O;'(2) is the only possibility.
This is a contradiction, as in the first paragraph. So S=Y © £. By
Lemma 1.4, Y must be primitive. Hence X l K,,g =YD 2-1 X, ,g)
by Mitchell. Arguing as in Lemma 5.10, X l K,g) =R @1 &, g where
R is irreducible. By Lemma 1.4, since PSpy(2) is simple and is not
contained in Ag, R is primitive. By Lemma 5.11, (K,g)/Z({K,g)) =
08+ (2) is the only possibility, a contradiction as in the first paragraph.
So hypothesis (A) holds and by Lemmas 5.8 and 4.11, the result holds
for n = 9.

We now consider n = 10. Again assume hypothesis (A) fails.
Then there is a subgroup K of G generated by special 3-elements such
that X K =X, © (10-s)1K where X, is irreducible and primitive of
degree s = 8 or 9 with K & Ag,,. From the case n = 9, we must have
s =8. By Lemma 5.11, K/Z(K) = O, (2). By Lemma 5.10, K contains
a subgroup K, generated by special 3-elements such that X ’Kl =X, ®3- lK,
where K, = PSp,(2) and X, is primitive and irreducible. Let X, act
on V, and 2 -lK act on V/. Let X, act on V, and 3 - 1Kl onV, .

Let g be a special 3-element such that X(g) does not leave V,

invariant. As in the proof of Lemma 5.10, X(g) does not leave V,
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invariant. Therefore X l K,,g) =S&1 K,,g) where S is irreducible
or S=Y @ g suchthat Y is irreducible and ¢ is linear. By Lemma
1.4, as PSp4(2) is simple and not a subgroup of Ay, if S is irreducible,
it is primitive, and if S is reducible, Y is primitive. From the result
for n =9, S cannot be irreducible as PSp,(2) is not a subgroup of A,.

So X f K,,g) =YD 2-1 &,,e) by Mitchell. Arguing as in Lemma 5.10,
X [ (K,g) =R @ 1 X, ) where R is irreducible. But again by Lemma
1.4, R is primitive and so (K,g) = A,,. But K;= PSp,(2), a contra-
diction. So hypothesis (A) holds. Therefore by Lemmas 5.8 and 4.11,
the result holds for n = 10.

Assume the result fails for some n > 11 and let n be minimal
so that a counterexample exists. By Lemmas 5.8 and 4.11, hypothesis
(A) fails and so there exists a subgroup H of G generated by special 3-
elements such that X |[H = X, © (n-s)1y where X, is irreducible and
primitive of degree s =n-1or n-2 but H ¥ Ag,,. Asn > 11, this con-

tradicts the minimality of n and the lemma holds.

Combining Lemmas 5.11 and 5.12, the proof of Theorem 2 is now
complete.

The corollary is an easy application of Theorem 2. Let G be
simple and X a nontrivial complex representation of G of degree n > 10.
Let H be a subgroup of G isomorphic to A,,_;. By Lemma 4.2,
XH=X &2 - lH where X, is irreducible and primitive of degree n-2.
In particular G contains a special 3-element, and as G is simple, it is
generated by its special 3-elements. Also X =Y, & Y, where Y, is
irreducible of degree n-2, n-1, or n. If Y, has degree n-2, it is primi-

tive as X, is. So special 3-elements g € G\H have the property that
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either Y,(g) or Y,(g) is trivial; as G is simple, Y,(g) must be trivial
and hence Y, =2 -1G. By Theorem 2, G = A,_,. If Y, has degree
n-1, Y, = 1Gr as G is simple. By Lemma 1.4, Y, is primitive and by
Theorem 2, G = An’ If X is irreducible, by Lemma 1.3 it is primi-

tive and by Theorem 2, G = A, ;. The corollary is proved.
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