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ABSTRACT 

One approach to studying finite linear groups over the complex 

numbers is to classify those groups with an element possessing a cer­

tain eigenvalue structure. Let G be a finite group with a faithful, 

irreducible, primitive, unimodular complex representation X of degree 

n. Assume g E G such that X(g) has eigenvalues E, E, 1, 1, ... , 1 where 

€ is a primitive r th root of unity. H. F. Blichfeldt and J. H. Lindsey 

have classified G whenever r ? 5. In this thesis r = 3 and 4 are handled. 

The main results are: 

Theorem 1: Let G be a finite group with a faithful, irreducible, 

primitive, unimodular complex representation X of degree n. Assume 

there is an element g E G such that X(g) has eigenvalues i, -i, 1, 1, ... , 1. 

Then n ~ 4 and G is a known group. 

Theorem 2: Let G be a finite group with a faithful, irreducible, 

primitive, unimodular complex representation X of degree n. Assume 

there is an element g E. G such that X(g) has eigenvalues w, w, 1, 1, ... , 1 

where w = e21ri/3 . Let N be the subgroup of G generated by all such 

elements. Then either 

1. N ~ An+i and G/Z(G) ~ An+i or Sn+i· 

2. n = 8, N = N', Z(N) has order 2, and N/Z(N) ~ 0/(2); 

G/Z(G) is a subgroup of the automorphism group of o/(2). 

3. n ~ 7 and G is a known group. 
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INTRODUCTION 

Finite linear groups of degree n over the complex numbers can 

many times be classified according to the eigenvalue structure of an 

element in the group. As finite linear groups are subdirect products of 

irreducible linear groups, it is convenient to restrict the study to 

irreducible groups. For example, Mitchell [21] classified all irreducible 

linear groups containing an element with eigenvalues a, {3, J3, ... , {3 

where a =1 {3. The next natural step is to consider the case where there 

exists an element of the group which has an eigenspace of dimension n - 2 

corresponding to one of its eigenvalues. In this thesis, we will examine 

groups which contain an element with eigenvalues EC~, Ea, a, a, ... , a 

where E * 1. 

Let G be a finite group with a faithful, irreducible complex repre­

sentation X of degree n over the vector space V. The representation X 

is said to be primitive if there does not exist a set of m ~ 2 proper, 

nontrivial subspaces Vi with V = V1 E9 V2 EB ... E9 V m such that X(g) 

permutes { v.} for all g E G. An irreducible representation which is 
1 

not primitive is similar to one induced from a representation of some 

proper subgroup [ 5, Theorem 50. 2] . Thus it is not very restrictive to 

consider only primitive representations. The representation X is uni­

modular if X(g) has determinant 1 for all g E G. Any irreducible 

representation is projectively equivalent (i.e., as a collineation group) 

to a unimodular representation. Therefore by classifying unimodular, 

irreducible, primitive groups containing an element with eigenvalues 
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E, E, 1, 1, ... , 1, we are classifying, up to projective equivalence, those 

irreducible primitive groups containing an element with eigenvalues 

E:a, Ea, a, ... , a.. Some work has been done on this problem. If Xis 

irreducible and primitive, and if E is a primitive r th root of unity, the 

results are known for r ~ 5. A spec ial case of a theorem in Blichfeldt 

[2, p. 96] proves that if r ~ 6, then n ~2, r = 6, 8, or 10, and the 

groups are known. If r = 5, Lindsey [14, Lemma 2] proves n ~ 4 and 

the groups are known. In this thesis the cases r = 3 and 4 are handled. 

The results are: 

Theorem 1: Let G be a finite group with a faithful, irreducible, 

primitive, unimodular complex representation X of degree n. Assume 

there is an element g E G such that X(g) has eigenvalues i, -i, 1, 1, ... , 1. 

Then n ~ 4 and G is a known group. 

Theorem 2: Let G be a finite group with a faithful, irreducible, 

primitive, unimodular complex representation X of degree n. Assume 

there is an element g E G such that X(g) has eigenvalues w, w, 1, 1, ... , 1 
2 ·/3 where w = e 711 

• Let N be the subgroup of G generated by all such 

elements. Then either 

1. N 9:: An 
1 

and G/Z(G) 9:: An or Sn . + +1 +1 

2. n = 8, N = N', Z(N) has order 2, and N/Z(N) 9:: ot(2); 

G/Z(G) is a subgroup of the automorphism group of 0:(2). 

3. n ~ 7 and G is a known group. 

Note that all primitive linear groups of degree 7 or less are known (see 

Blichfeldt [2], Brauer [3], Lindsey [14, 16, 17], and Wales [ 27, 28]). 
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Some authors in recent years have become interested in classi­

fying quasiprimitive groups rather than primitive ones. A representation 

X of G is quasiprimitive if for every normal subgroup N of G, X IN splits 

into isomorphic factors. By Clifford's theorem [ 5], a primitive repre­

sentation is quasiprimitive. By examining the results of Chapter I, it is 

easy to see that a quasiprimitive irreducible representation X of G, 

where X(g) has eigenvalues i, -i, 1, 1, .. . , 1 or w, w, 1, 1, ... , 1 for some 

g E G, is indeed primitive. Therefore Theorems 1 and 2 are true if X 

is quasiprimitive rather than primitive. 

Chapters I and II give preliminary material used in the proofs of 

Theorems 1 and 2. The results help characterize the possible subgroup 

structure of G; in particular under certain conditions primitive sub­

groups of codimension 1 or 2 can be constructed. These results are 

useful for induction purposes to prove the main results. In Chapter III, 

Theorem 1 is proved. This proof is much easier than that of Theorem 2 

because no primitive group of degree 5, 6, or 7 contains an element with 

eigenvalues i, -i, 1, ... , 1. In Chapter IV, the alternating groups of 

Theorem 2 are obtained by exhibiting appropriate generators and 

relations. The proof of Theorem 2 is completed in Chapter V. The 

powerful results of Aschbacher-Hall [1] and Stellmacher [26] on groups 

generated by elements of order 3 are used. The following corollary is 

also proved: 

Corollary: If G is a finite simple group containing An-i with a 

nontrivial representation of degree n ~ 10, then G ~ An-i ,An, or An+i· 
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The following notation is adopted. If H is a subgroup of a finite 

group K, NK(H) is the normalizer in K of H, CK(H) is the centralizer in 

K of H, Z(H) is the center of H, and H' is the derived group of H. If p 

is a prime, OP (H) denotes the largest normal p- subgroup of H and O 
00

(H), 

-1 the largest normal solvable subgroup of H. If x, y E H, y xy is denoted 

by xY. Also m lH is the direct sum of m copies of the trivial representa­

tion of H. If Hand Lare subgroups of K, [H, L] = (h- 1.f- 1h.f lh E H, f EL). 

The symbol Zk denotes the cyclic group of order k. The order of H is 

denoted jH J; also H <l K means H is normal in K. 

Let H be a finite group with a faithful, irreducible, primitive 

complex representation Y of degree m. The term Blichf eldt refers to 

the result [2, p.96] that H\Z(H) does not contain an element h where Y(h) 

has an eigenvalue E such that all other eigenvalues are at most 60 ° 

away from E. The term Mitchell will refer to two results in [ 21] : If 

h E H and Y(h) has eigenvalues a, f3, . .. , J3 such that h2 ri Z(H) but 

h4 E Z(H), then m ~ 2. If h EH and Y(h) has eigenvalues a, {3, •.. , {3 

such that h rt. Z(H) but h3 
E Z(H), then m ~ 4. In the latter case if m = 3, 

H/Z(H) is a split extension of Z3 x Z3 by SL2(3) and if m = 4, H/Z(H) ~ 

Os{3). Which result the term Mitchell refers to will be clear from the 

context. If p is a prime, a p-element of H is an element in H of order 

a power of p. A special 4-element of H is an element h E H such that Y(h) 

has eigenvalues i, -i, 1, 1, ... , 1. A special 3-element of H is an element 

. - l 21ri/3 h E H such that Y(h) has eigenvalues w, w, 1, 1, ... , where w = e . 

The group G will be a finite group with a faithful, irreducible, primitive, 

unimodular complex representation X of degree n over the vector space 

~- If v 1, ••• , vk E V, (vi, ... , vk) denotes the subspace of V generated 

by V 1, ••• ' Vk-
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When working on this problem, it was often necessary to consult 

character tables of various . groups. Some of these tables are found in 

[7], [8], [13], [16], [17], [19], [20], [29], and [30]. General ref­

erences for group theory and representation theory are [2], [ 5], (11], 

[ 19] , [ 2 3] , and [ 2 4] . 
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CHAPTER I 

THE CONSTITUENTS OF X WHEN RESTRICTED 

TO SUBGROUPS 

In this chapter, we give properties of the constituents of X when 

restricted to subgroups of G generated by special 3-elements or special 

4-elements. In particular these constituents are shown to be either 

primitive or monomial. The possible monomial groups are investigated 

more closely, and conditions are given which guarantee the uniqueness 

up to scaling and ordering of the basis. These results are useful in con­

structing large subgroups in later chapters. 

Lemma 1. 1: Let N <J G and assume N contains a special 3-

element or special 4-element h. Then X IN is irreducible. 

Proof: By Clifford's theorem [ 5], X jN = X1 EB ... EB~ where 

all the Xi's are equivalent irreducible representations of N. In par­

ticular the trace of ~ (h) is the trace of X1 (h). By the eigenvalue 

structure of X(h), t > 1 is impossible. 

Lemma 1. 2: Let H be a subgroup of G generated either by 

special 3-elements or special 4-elements. Assume X IH = X1 EB ~ 

where X1 is irreducible. Then either X1 is monomial or X1 is primitive. 

Proof: Let H = (hu ... , hr) where hi are special 3-elements or 

special 4-elements. Let X1 have degree m and act on the subspace V*. 

Assume the result is false. Then there exist l > 1 subspaces 
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V 1 , ••• , V 1 of V* all of dimension k > 1 with m = lk sue h that the X1 (hi) 

permute {Vu ... , v1}. We may assume m ~ 4. Assume X1 (hi) fixes 

exactly t subspaces, say Vu ... , Vt by renumbering if necessary. Let 

x /hi) be the trace of X1 Iv. (hi) for j = 1, ... , t. Then 
J 

t t 
m - 3 ~ !trace X1 (hi) I = I L x/hi) I ~ L Ix /hi) I ~ kt 

j =1 j =1 

So kl- 3 ~ kt and hence t ~ £- 1 as k > 1. As X1 (hi) fixes i - 1 subspaces, 

it must fix all l subspaces; so X1 is reducible, a contradiction. 

Lemma 1.1 implies in particular that if V1 is a proper subspace 

of V, there exists a special 3-element or special 4-element g E G such 

that X(g) does not leave V1 invariant. It also implies that the subgroup 

generated by special 3-elements or special 4-elements could not be 

abelian. These facts along with Lemmas 1. 1 and 1. 2 are used without 

reference throughout this paper. 

We now want to look more closely at what happens when the 

hypothesis of Lemma 1. 2 holds. In particular we want to investigate H 

when X1 is monomial and ~ is of a special nature. 

Lemma 1. 3: Let H be a subgroup of G generated by special 

4-elements such that X IH = X1 EB (n-r) lH where X1 is irreducible of 

degree r ~ 3. Suppose X1 acts on V1 and X IH is monomial in the basis 

v 1 , ••• , v n of V . Then 

1. There exist special 4-elements hu ... , hr_ 1 EH such that 

when v1 , ••• , vn are properly scaled and ordered 



Vi+1X(hi) = 

v .QX(hi) = 

v. 
1 
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v .Q for .Q El {i, i+l} 

Also (vi, ... , vr) = V1 and (n-r)lH acts on (vr+u ... , vn). 

2. XI (hu ... , hj) is irreducible on (vu ... , vj+1) for j ~ 2. 

3. If XI H is monomial in a basis v 7, ... , v~, by ordering and 

. * * * * scalmg v1 , . .. , vn correctly, v1 = v1, ... , vr = vr and 

* * <vr+u···,vn) = (vr+u···,vn). 

Proof: As X1 is irreducible there is a special 4-element h1 E H 

such that X(h1) is not diagonal. So for some j * k, we have 

vjX(h1) = -ovk 

vkX(h1) 
◊-1 = v. 

J 
v !X(h1) = vi for £ El {j, k} . 

By ordering v 1, ... , v n correctly, we may assume j = 1, k = 2. Replacing 

v2 by ov2 , we may assume o = 1. So X(h1) has the desired form. Note 

that if h is any special 4-element of H with j * k and 

vjX(h) = -Evk 

vkX(h) 
-1 

= E v. 
J 

v .QX(h) = v1 for fJ/ {j, k} 

then the eigenspaces of X(h) corresponding to i and -i span (vj, vk) . 

Thus (v., vk) c V 1, the unique subspace of V on which X1 acts; in 
J -

particular (vu v2 ) ~ V1. Assume we have constructed hu ... , hi where 

i < r-1. So (vu v2), (v2 , v3), ••• , (vi' Vi+1) ~ V1 and as X1 is irreducible 
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there is a special 4-element hi+i E H such that X(h1+i) does not leave 

(v1 , ••• , vi+i) invariant. So there exist j, k with 1 ~ j ~ i+l and 

i+2 ~k ~ n such that 

* -ovk vjX(hi+1) = 

vkX(h1+J 0-1 = v. 
J 

v _e_X(h1+1) = v1 for £ El {j, k} 

As (X(h1), ••• , X(l\)) acts transitively on (v 1 ) , ••. , (vi+i) , we may choose 

-1 * h E (hi, ... , hi) such that vj X(h) = AVi+i · Letting hi+1 = h hi+ 1 h, 

Vi+iX(hi+i) 
-1 

= -A ovk 

vkX(hi+i) 
-1 

= AO vi+i 

v £ X(hi+i) = vl. for £ El {i+l, k} 

Replacing vk by ~ - 1
ovk and rearranging vi+ 2 , ••• , vn, we may assume 

A- 16 = 1 and k = i+2. We have inductively constructed hi, ... , hr_ 1 ; 

clearly (vi, ... , vr> = V1 as (vi, vi+i) c V1 • As (n-r)lH acts on a sub-

space of (vr+u ... , vn) and (Vr+u ... , vn) has dimension n - r, (n-r)lH 

acts on <vr+u ... , v n> , proving 1. 

The second assertion is proved by induction. Let j = 2. As h1 

and~ do not commute, if XI (hi,~) is not irreducible on (vi, v2 , v3), 

it must contain an eigenvector common to both X(h1 ) and X(h2). This is 

not true because on (vu v2 , v3), X(h1) has eigenspaces (v1 + iv2), 

(v1 - iv2), (v3) corresponding to i,-i, 1, respectively, while X(~) has 

eigenspaces (v2 + iv3), (v2 - iv3), (v1 ) corresponding to i, -i, 1. Thus 

XI (h1 , !½) is irreducible on (v1 , v2 , v). Assume XI (h1 , ••• , hj_ 1) is 
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irreducible on (vu ... , vj) for j-1 ~ 2. As XI (hu ... , hj) is invariant 

on (vu ... , vj+i> but not on (vj+i), it is irreducible on (vu ... , Vj+i), 

proving 2. 

To prove 3, we examine X(h1), ••• , X(hr_ 1). As a permutation on 

(vi), ... , (v~), each X(hi) acts trivially or as a transposition. As 

X I (h1 , h2 ) has an irreducible constituent of degree 3, the only possibility 

is that there exist i, j, k distinct with 

v;x(h1) * * * = -ov. vj X(h2) = -EVk ] 

v;x(h1) 
0-1 * * -1 * = v. and vkX(h2) = E v. 

1 J 

v;x(h1) * l Et {i, j} * * i Et {j, k} = v1 for V f X(l'½) = v 1 for 

. * * * * Replacmg vj by ovj and vk by EOVk, we may assume o = E = 1. By 

reordering Vi, ... , v~, we may assume i = 1, j = 2, k = 3. So assume 

under suitable ordering and scaling of v7, ... , v* that we have n 

* * vi X(hi) = -Vi+l 

(1) * v.* vi+1X(hi) = 
1 

* v f X(hi) * = Vi for l Et {i, i+l} 

* * for 1 ~ i ~ j and some j ~ 2. Clearly (vu ... , vj+i) = (v1 , ••• , Vj+i), as 

XI (hi, ... , hj) is irreducible on (vu ... , Vj+i) and invariant on 

(vi', ... , Vj+i). As X(hj+J does not leave (vu ... , Vj+i) invariant, 

X(hj+i) must interchange (v;), (v~) for some 1 ::s; i ~ j+l and 

j+2 ~ k ~ n. By renumbering vj+2 , ••• , v~, we may assume k = j+2. As 

hj+i commutes with hu ... , hj-u the only possibility is that i = j+l. So 
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Vj+i X(hj+i) * = -0Vj+2 

* Vj+2X(hj+1) -1 * 
= 0 Vj+l 

* v 1X(hj+i) = v; for l.. ti {j+ 1, j + 2} 

By replacing vj+2 by ovj+2 , which doesn't affect the form of X(h1), •• 

. . , X(hj), we may assume o = 1. By suitably ordering and scaling 

v:, ... , v~, X(~) has the form (1) for 1 ~ i ~ r-1. Clearly V1 = 

* *> ( ) d ( * *> ( ) (v 1 , ••• , v r = vi, ... , v r an v r+P ... , v n = v r+i, ... , v n . Let 

vis = vt; clearly S commutes with each hi. As X1 is irreducible, S 

must act as a scalar on V1 • Hence by correctly scaling v~, ... ,v;, we 

have 3. 

Lemma 1. 4: Let H be a subgroup of G generated by special 

3-elements such that X IH = X1 EB~ EB (n-m-l)lH where X1 is irreducible 

of degree m ~ 5. Assume X1 is monomial on a subspace V1 of V, ~ is 

linear and acts on (v), and (n-m-l)lH acts on V2 • Let V1 have a basis 

vi, ... , vm such that X1 is monomial in that basis. Then there exist 

special 3-elements hi, ... , hm_ 2 E H such that by properly scaling and 

ordering v1 , ••• , vm, we have 

viX(hi) = vi+1 

Vi+iX(hi) = Vi+2 

vi+2X(hi) = vi 

v 1X(hi) = v 9- for f._ ti {i, i+l, i+2} 

Also ~(hi) = 1 for 1 ~ i ~ m-2. The elements h E H with (X1 EB ~)(h) 

diagonal in the basis v 1 , ••• , v m, v form a normal subgroup F of H with 

H = FA where A = (hi, ... , hm_ 2 ). Also X1 IF splits into m distinct 
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linear representations all different from ~. Furthermore if v7, .. . , v~ 

is a basis for Vin which X IH is monomial and if Vi, ... , v~ are properly 

* * * * scaled and ordered, v1 = v1 , ••• ,vm = vm. If~= l H, (Vm+u ... ,vn) = 

(v) EB V2 • If ~ -J lH, by ordering and scaling v:X1+ 1 , ••• , v~ correctly, 

* d ( * *> v=vm+1 an V2 = Vm+2 , ••• ,vn. 

Proof: As H is not abelian, there is a special 3-element h1 E H 

such that X1 (h1) is not diagonal. In particular, we must have i, j, k 

all distinct such that 

viX(h1) = av. 
J 

vjX(h1) = bvk abc = 1 

vkX(h1 ) = cv. 
1 

vf X(h1) = Vi for ! (1 {i, j, k} 

By reordering Vu ... , vn we may assume i = 1, j =2, k = 3. Replacing v2 

by av2 and v3 by abv3 , we may assume a = b = c = 1 and we have h1 • 

Assume we have constructed hu ... , hi for some i ~ m-4. Then 

there is a special 3-element h E H which does not leave (vi, ... , vi+2 ) 

invariant, as X1 is irreducible. So in particular there exist r, s, t all 

distinct such that 

vrX(h) = av s 

V SX(h) = bvt abc = 1 

vtX(h) = CV r 

v !X(h) = Vi for i (1 {r, s, t} 

where 1 ~ r ~ i+2 and at least one of s or t is greater than i+2. 
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Replacing h by h-1 if necessary, assume i + 3 ~ t ~ m. 

Case a) i + 3 ~ s ~ m: 

By renumbering vi+3, ... , vm we may assume that s = i+3, t = i+4, 

which does not affect the form of X(h1), ••• , X(hi). As XI (hi, ... , hi) is 

the alternating group on Vu ... , vi+2, choose g E (hi, ... , hi) with 

V rX(g) = Vi+2. Letting hi+2 = hg, 

Vi+2X(hi+2) = avi+3 

Vi+3X(hi+2) = bviH abc = 1 

Vi+4X(hi+2) = CVi+2 

v 1X(hi+2) = Vi.. for l (j_ {i+2, i+3, i+4} 

Replacing vi+3 by avi+3, vi+4 by abvi+4' which does not affect the form of 

X(h1), ••• , X(hi), we may assume a = b = c = 1. This is the desired 
hi+2hi . 

element hi+2 and hi 1s the element hi+i. 

Case b) 1 ~ s ~ i+2: 

By renumbering vi+ 3, ... ,vm, we may assume t = i+3. Then 

clearly XI (hi, ... , hi' h) acts as the alternating group on (v1), ••• , (vi+ 3). 

As X1 is irreducible and i+3 < m, there is a special 3-element g E H 

such that X1 (g) does not leave (vi, ... , vi+ 3 ) invariant. So there exist 

p, µ, v all distinct such that 

vpX(g) = Ci.V µ 

v~(g) = /3v 
V 

ct.{3y = 1 

v~(g) = yv p 

v lX(g) = vi for l (j_ {p , µ , v} 
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where not all of p, µ, v are less than or equal to i+ 3, but at least one is. 

By replacing g by g- 1 if necessary, we may assume 1 ~ p ~ i+3 and 

i+4 ~ V ~ m. If i+4 ~ µ ~ m, then choose k E (h1 , ••• , h., h) such that 
1 

vpX(k) = XVi+2· Then 

Vi+2X(k-
1
gk) 

V µX(k-
1
gk) 

V VX(k-
1gk) 

v 1X(k- 1gk) 

-1 
= X Ci.V µ 

= {3v 
11 

= xyvi+2 

= v ! for l. rJ {i+2, µ, 11} 

We now have Case a, with k- 1gk in place of h. If 1 ~ µ ~ i+3, let 

k E (hi, ... , hi' h) such that v PX(k) = xvi+2 and v µX(k) = YVi+ 3 • Therefore 

Vi+3X(k- 1gk) 

V l/X(k- 1gk) 

v 1X(k- 1gk) 

-1 
= y {3v 

V 

= xyvi+2 

= v 1 for ! rJ {i+2, i+3, 11} • 

Again we have Case a, with k- 1gk in place of h. So by induction 

h1 , ••• , hm_ 2 are found. Clearly ~(hi) = 1 for 1 ~ i ~ m-2 as X1 (hi) is 

not diagonal in Vu ... , vm. 

Let F = {h E H I (X1 EB ~) (h) is diagonal in the basis v1 , .•• , v m, v} . 

If g E H and f E F, (X1 EB ~)(g-
1
fg) is still diagonal and so F <l H. Let g 

be a special 3-element in H. If (X1 EB ~)(g) is diagonal, then g E F. 

Assume (X1 EB E)(g) is not diagonal. Then for some i, j, k distinct, 

vX(g) = v and 



= cv. 
1 
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abc = 1 

viX(g) 

vjX(g) 

vkX(g) 

V 1X(g) = v1 for I El {i, j, k} 

As X1 IA is the alternating group on Vi, ... ,vm, there is an hE A with 

viX(h) = vj 

vjX(h) = vk 

vkX(h) = vi 

v Q X(h) = v ! for f El {i, j, k} 

Then gh2 E F and so g E FA. Hence H = FA and F O A = 1. 

Consider X1 IF = ~1 E9 ... EB ~m where ~i is linear on (vi) for 

1 ~ i ~ m. Assume first that ~i = ~j for some i * j. Let f E F and by 

double transitivity, let gr E A such that viX(gr) = vi and v rX(gr) = vr 

So ~/g;
1
fgr)vj = vjX(g;

1
fgr) = ~r(f)vj and ~/g;

1
fgr)vi = viX(g;

1
fgr) = 

~i (f)vi. This implies ~r(f) = ~/g;
1
fgr) = ~i (g;

1
fgr) = ~/f). Thus 

~ 1 = ••• = ~m contradicting the irreducibility of X1 • So the ~i's are 

distinct. If ~ * lH, for some special 3-element g, ~(g) = w or w. So 

(X1 E9 ~)(g) is diagonal and ~i(g) * ~(g) for 1 ~ i ~ m. Thus ~ * ~i for 

1 ~ i ~ m if ~ :1; lH. If ~ = lH, there is an f E F such that for some i, 

~/f) * 1. Let gr EA with viX(gr) = vr. Then ~r(g;
1
fgr)vr = vrX(g;

1
fgr) = 

~/f)vr. So ~r(g;
1
fgr) * 1 and ~ * ~i for 1 ~ i ~ m. 

Let v~, ... , v~ be a basis of V in which XI H is monomial. We 

first consider X(h1), ••• , X(hm_ 2 ) acting on this basis. As (hi, h3) ~ A5 , 

clearly the only possibility is that 
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v*X(h1) = av* v;x(h3) * = av r s u 

v*X(h1) = bv; abc = 1 v:x(h3 ) * Cl/3y = 1 = /3v s and w 

v;x(h1 ) cv* * * = vwX(h3) = yvt r 

v1X(h1 ) * l Et {r, s, t} v;x(h3 ) * = v1 for = v l for l Et{t,u,w} 

. * * * * * * * * By replacmg vs by av s' vt by abvt, vu by nabvu, and vw by a,Babvw' we 

may assume a = b = c = a = ,B = y = 1 . Also by renumbering we may 
h3hl 

assumer = 1, s = 2, t = 3, u = 4, w = 5. Note that~= h1 • So 

inductively assume we have reordered and rescaled Vi, ... , v~ such that 

for some i, with 2 ~ i ~ m-4, 

v~X(h.) * = Vj+i J J 

vj+ 1X(hj) * = Vj+2 
(1) 

vj +2X(hj) * = v. 
J 

v;x(hj) = v; for£ El {j,j+l,j+2} 

for 1 ~ j ~ i. As X(hi+2) does not commute with (X(h1), ••• , X(hi)) , 

X(hi+2 ) must act trivially on at least n - (i + 4) of the vectors v1+3 , ••• , y~. 

By reordering vi+3 , ••• , v~, assume X(hi+2 ) acts trivially on ViH, ... , v~. 

So XI (hi, ... , hi, hi+2 ) acts as a permutation gr oop on (v~) , ... , (vf +4 ). 

As (hu ... , hi' hi+2> ~ AiH, which is simple, X l<hu ... , hi' hi+2) cannot 

act trivially on (vf+ 3) or (vf +4) • Thus there is a j with 1 ~ j ~ i+2 such 

that by ordering vi+ 3 , viH correctly 

vjX(hi+2 ) = avt +3 

vi +3X(hi+2 ) = bvf +4 abc = 1 

vf +4 X(hi+2 ) = cvj 

v;x(hi+2) = v; for £ fl. {j, i+3, i+4} 
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· * b * d * * Replacmg vi+ 3 y avi+ 3 an viH by abviH' we may assume a = b = c = 1. 

As hi+2 commutes with hu ... , hi-u j = i+2 is the only possibility. Noting 
h, h• 

that hi+i = hi 1+
2 1 , we have by induction and properly scaling and 

ordering v:, ... , v* that X(h.) has the form (1) for 1 ~ j ~ m-2. 
n J 

Let D = {h E ·H lx(h) is diagonal in Vi, ... , v~} <l H. If g is a 

special 3-element in H, by looking at (X1 EB ~)(g) in the basis Vu ... , v , v, m 

it is clear that g does not commute with A. Thus either g E D or for 

i, j, k distinct with i ~ m, 

v~X(g) 

v;x(g) 

vkX(g) = 

* = av· J 
* = bvk 

CV~ 
1 

abc = 1 

= v; for l (l {i,j,k} 

In the latter case if j, k > m, by replacing vj by avj and v; by abv;, it 

is clear that (hu ... , hm- 2 , g) ~ Am+2 and XI (hi, ... , hm_ 2 , g) has an 

irreducible constituent of degree m+l, a contradiction. If only one of 

j, k is greater than m, by replacing g by g- 1 if necessary, we may 

assume j ~ m and k > m. Replacing v; by bv;, we may also assume 

c = a- 1 and b = 1. If a -:1= 1, xi (hu ... ,hm_ 2 ,g) is irreducible on 

* * * 1 (v1 , ••• , v m, vk) , a contradiction. So a = and K = (h11 ••• , hm_ 2 , g) 

~ Am+i · As K n F is a nontrivial abelian normal subgroup of K, this 

is a contradiction. So i, j, k ~ m and as done previously, gh E D for 

some h EA. Therefore H = DA. As DF /F is a normal abelian sub­

group of H/F ~Am, D c;_F. Hence D =Fas F n A= 1. 

Assume first that ~ = lH. As the only linear constituents of XI H 

are trivial, X In must be trivial on v~+u ... , v~; so ( v) EB V2 = 
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( * *> * * ) vm+ 1, ••• ,vn and (v1 , ••• ,vm =(vi, ... ,vm). Suppose~* lH. 

As there is exactly one nontrivial linear constituent of X IH, X In must 

be trivial on n - m - 1 of the vectors v~+u ... , v~ while ~ acts on the 

remaining one. By reordering and rescaling, we may assume v = v~+ 1 ; 

so (vf, ... ,v~) =(vu ... ,vm) and V2 = (v~+2 , ••• ,v~). As 

X1 IF = ~1 EB ... EB ~m = X1 In = µ 1 EB ... EB µm where µi acts on (v;) 

and each ~ i is unique, { (v;) I 1 ~ i ~ m} = { (vj) jl ~ j ~ m} proving the 

lemma. 

If n ~ 5 and H is generated by special 3-elements such that X IH 

is irreducible, clearly Lemma 1. 4 holds when appropriately modified 

to avoid conclusions concerning ~ or (n-m-l)lH. So when necessary, 

Lemma 1. 4 will include this case. 
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CHAPTER II 

BUILDING UP OF CERTAIN SUBGROUPS 

In this chapter lemmas are developed which allow the building 

up of subgroups of G generated by special 3-elements and special 4-

elements. Also under certain conditions it is shown that there are 

subgroups of G which are primitive of smaller degree. These results 

are used for induction later. 

Lemma 2. 1: Let n ~ 4 and H be a subgroup of G generated by 

special 4-elements. Assume X !H = X1 EB (n-r)lH where X1 is irre­

ducible such that 3 ~ r < n. Then there exists a special 4-element 

h E G with XI (H, h) = ~ EB (n-s)l (H, h) where X2 is irreducible of 

degree s = r + 1 or r + 2. 

Proof: Let X1 act on V1. Choose a special 4-element h such 

that X(h) does not leave V1 invariant. So XI (H, h) = ~ EB (n-r-2)1 (H, h) 

where either ~ is irreducible or X2 = X3 EB i such that X:i is irreducible 

and t is linear. We are done unless X2 = X3 EB ~ where ~ =1= 1 (H, h) • 

Assuming this is the case, by Mitchell X3 is monomial. In particular 

X !His monomial in some basis Vu ... , vn. By Lemma 1. 3, there exist 

special 4-elements hu ... , hr_ 1 E H such that when Vu ... , vn are properly 

scaled and ordered 

vkX(hk) = -vk+1 

Vk+1X(hk) = vk 

v _eX(hk) = vf_ for £ q {k, k+l} 
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for 1 ~k ~ r-1 and XI (hi, ... , hr_ 1 ) is irreducible on (vi, ... , vr). 

Thus V1 = (vi, ... , vr). As ~(u) = 1 for u EH, ~(h) * 1. Since X(h) 

does not leave V 1 invariant, X(h) is not diagonal in Vu ... ,v . So n 

viX(h) = -ov. 
J 

vjX(h) 
-1 = o v. 

1 

v1X(h) = v1 for /._ ti {i' j} 

where 1 ~ i ~ r and r+l ~ j ~ n. Thus XI (H, h) is irreducible on 

<vu ... , vr, vj) and trivial on <vr+i, ... , Vj-u vj+1' ... , vn) contradicting 

t(h) =1= 1. So the lemma is proved. 

Lemma 2. 2: Let H be a subgroup of G generated by special 3-

elements such that XIH = X1 E9 ~ E9 (n-s)lH where X1 is a nonunimodular, 

irreducible, primitive representation of degree 4. Assume X2 is a 

representation of degree d with 1 ~ d ~ 4 ands = d+4. Suppose ~(H) = 

Hi. Then n = 8, X2 is irreducible and primitive of degree 4, and 

Hi ~ 6;(3) x Z3 where 6;(3) is the nonsplitting central extension of Z2 

by 0 5(3). If Li is the set of all elements of Hi which occur with com­

ponent the identity of HJ. (j * i) in the subdirect product, then L. c 
1 -

0 2(Z(Hi)) for i = 1 and 2. 

Proof: By Mitchell, as X1 is not unimodular and X1 is primitive, 

H1 /Z(H1) ~ 0 5(3). But Hf'Z(H1) = H1 and so H{ = H{'. Thus H; / Z(H{) 

~ 0 5(3). As 0 5(3) does not have a nontrivial representation of degree 4, 

Z(H;) =1= 1. The Schur multiplier of 0 5(3) is Z2 (see [ 6]); so Z(H:) ~ Z2 • 

Because H1 has elements with determinant w and only elements with 

determinants 1, w, or w, 0 3(Z(H1)) ~ Z3 and 0 2 (Z(H1)) £::: Z2 or Z4 • If 
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0 2 (Z(H1)) ~ Z4 , then K = tt; 0lZ(H1)) has index 2 in Hu contradicting 

the fact that H1 is generated by 3-elements. Thus 0 2 (Z(H1)) = Z(H1') and 
__,,, 

H1 "' tt; x Z3 where tt; ~ 0 5 (3), the nonsplitting central extension of 

Z2 by 0 5(3). Let Li be as in the statement of the lemma. By Theorem 

5. 5.1 of [11], L. 4 H. and H1 /L1 ~ H2 /L2 • As L. consists of unimodular 
1 1 1 

matrices, either L1 = tt; or L1 S 0 2 (Z(H1)). In the first case L1 con-

tains an element with eigenvalues w, w, w, w and a central element with 

eigenvalues -1, -1, -1, -1. But then X( G) contains an element with 

eigenvalues -w, -w, -w, -w, 1, 1, ... , a contradiction to Blichfeldt. So 
~ 

L1 s_ 0 2 (Z(H1)) and H2 /L2 ~ 0 5(3) X Z3 or 0 5(3) X Z3 • By examining the 

possible decompositions of ~ into its components and consulting 

Blichfeldt's list [2] carefully, it is easy to see that ~ is irreducible of 

degree 4 and is primitive. Carrying out the same analysis as on Hu we 
--..,/ 

see H2 ~ 0i3) x Z3 and L2 s_ 0 2 (Z(H2)). Also in the isomorphism from 

H1 /L1 onto H2 /L2 , the central elements are mapped onto central elements. 

In particular if n ~ 9, X(G) contains an element with eigenvalues -w, -w, 

-w, -w, -w, -w, -w, -w, 1, ... , contradicting Blichfeldt. Son = 8. 

Lemma 2. 3: Let n ~ 5 and H a subgroup of G generated by special 

3-elements. Assume X IH = X1 EB (n-r)lH where X1 is irreducible of 

degree r with 3 ~ r < n. Then there exists a subgroup K generated by 

spec ial 3-elements such that XI (H, K) = X 2 EB (n-s)l (H, K) where s = r+l 

or r+2 and ~ is irreducible of degree s. 

Proof: Let X1 act on the subspace V1 and let h be a special 

3-element such that X(h) does not leave V1 invariant. So 
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XI (H, h) = ~ EB (n-r-2)1 (H, h) where either X2 is irreducible or 

X2 = X3 EB ~ such that X3 is irreducible and ~ is linear. We are done 

unless X2 = X3 EB E and E =I= 1 (H, h). Assume this is the case. 

Suppose first that r = 3. By Lemma 2. 2, X3 is not primitive; so 

X3 is monomial. Let X3 act on V3 :) V1 and let Vu v2, v3, v4 be a basis of 

V 3 such that X3 is monomial in that basis. As X3 is irreducible, there 

exist special 3-elements hi, h2 E (H, h) such that by scaling and ordering 

vi, ... , v4 correctly, 

v1X(h1) = V2 v1X (~) = V1 

v2X(h1) = V3 v2X(h2) = av3 
and 

V3X(h1) = V1 v3X(~) = V4 

v4X(h1) v4X(~) 
-1 

= V4 = a V4 

If a * 1, X3 j (H, hu h2) is irreducible and we are done. The case a = 1 

is handled in the same way as r ~ 4 is. 

Assume r ~ 4. Let X3 act on V3. For g E H, ~(g) = 1; also 

~(h) * 1. By Mitchell, X3 is monomial. Let Vu ... , vr+i be a basis of 

V 3 in which X3 is monomial. 

By Lemma 1. 4, there exist hu ... , hr-i E (H, h) such that by 

scaling and ordering Vu ... , Vr+i properly, 

v.X(h.) = Vi+i 1 1 

vi+1X(hi) = Vi+2 

Vi+2 X(hi) = v. 
1 

v 1X(hi) = Vf for ltl{i,i+l,i+2} 

Since ~(h) * 1, by replacing h by h-1 if necessary, v.X(h) = wv. for 
J J 
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some j and viX(h) = vi for i -:f. j. Let g E (hi, ... , hr_ 1 ) with vjX(g) = vk 

for some k -:f. j. Leth* = g- 1h- 1gh. Then ~(h*) = 1 and 

Letting K = (hi, ... , hr-uh*), we are done since X3 jK is irreducible 

and~ jK = lK. 

Lemma 2. 4: Let H be a subgroup of G generated by special 

4-elements (special 3-elements) such that X IH = X1 EB (n-r)lH where 

r ~ 4 (r ~ 5) and X1 is irreducible of degree r. Suppose X1 acts on V1 

and is monomial in a basis Vu ... , vr of V1 • Let Hi = (h EH lviX(h) = vi 

and h is a special 4-element (special 3-element)) . Then X !Hi = 

x1 , i EB (n-r+l)lH, where X1 , i is irreducible and monomial on 
1 

(vi, ... ' vi-u Vi+u ... 'vr). 

Proof: Notice that multiplying vi by a does not change Hi. Let 

(n-r)lH act on V2 • First take the case where His generated by special 

4-elements. By Lemma 1. 3 after scaling and ordering Vu ... , vr cor­

rectly, there exist special 4-elements hu ... , hr-i such that, 
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H = ( hgr lh E H.). Clearly H. has the desired properties if and only if r 1 1 

Hr does. But by Lemma 1. 3, X I (h1, ... , hr_ 2 ) is irreducible on 

(vi, ... , vr_1). As X !Hr clearly acts trivially on V2 EB (vr), we have 

X IH = X1 r EB (n-r+l)lH where X1 r is irreducible and monomial on r , r , 

(vi, ... 'vr-1> . 

Now consider the case where H is generated by special 3-elements. 

By Lemma 1. 4, after scaling and ordering Vu ... , v r correctly, there 

exist special 3-elements hu ... , hr_ 2 such that 

viX(hi) = Vi+i 

Vi+iX(hi) = Vi+2 

vi+2X(hi) = vi 

v f X(hi) = v f for £ E {i, i+l, i+2} 

Again as XI (h1 , ••• , hr_ 2 ) is transitive on Vu ... , v r' it suffices to show 

the results hold for Hr. Since X1 is irreducible, there exists h E H 

such that 

viX(h) = av. 
J {viX(h) = WV-

vjX(h) = bvk abc = 1 1 

vjX(h) = wv. 
vkX(h) 

or J = cv. 
1 vfX(h) vf for f q {i, j} = 

v fX(h) = vf for £ fl. {i, j, k} 

In the first case not all of a, b, and c are 1. In either case, for some I.., 

v f X(h) = v f. By transitivity, there is a g E (hi, ... , hr) such that 

v f X(g) = v r. Replacing h by hg, we may assume i, j, k < r. In particular 

XI ( hu ... , hr_ 3 , h) is irreducible on (vi, ... , Vr_1) . Clearly X !Hr acts 
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trivially on V2 EB (vr), and so X !Hr = X1 r EB (n-r+l)lH where X1 r is 
' r ' 

irreducible and monomial on (vu ... , Vr_ 1). 

We are now ready to prove that under certain circumstances 

there exist primitive subgroups of codimension 1 or 2. These are im­

portant for inductive purposes in the proofs of the main results. Lemma 

2. 7 will also be useful in Chapter V to determine the possible subgroups 

generated by two special 3-elements. 

Lemma 2. 5: Let n ~ 6. Assume there exists a subgroup U of G 

gen~rated by special 4-elements such that X lu = X1 EB rlu where r = 1 or 

2 and X1 is irreducible. Then there exists a subgroup H of G generated 

by special 4-elements such that X IH = Y EB ylH where Y i.s irreducible 

and primitive, and y = 1 or 2. 

Proof: Assume the lemma is false. In particular X1 is monomial. 

By replacing U by another subgroup, we may assume r = 1 as follows. 

Let X1 act on V1 and let v1 , ••• , Vn_ 2 be a basis of V1 such that X1 is 

monomial in that basis. Let 2 · lu act on V2 • Choose a special 4-

element h* such that X(h*) does not leave V1 invariant. Then X(h*) does 

not leave both (vu ... , vn_) and (v2 , ••• , Vn_ 2 ) invariant. By reordering 

the vi's, we may assume X(h*) does not leave (vu ... , vn_) invariant. 

Let Un_ 2 = (h E U lvn_ 2X(h) = Vn_ 2 and h is a special 4-element). By 

Lemma 2.4, xlun_ 2 = X1 ,n_ 2 EB 3 •lun_
2 

where Xun-2 is irreducible on 

(vu ... , Vn_ 3) and monomial in the basis Vu ... , vn_ 3 • Also 3 · lu 
n-2 

acts on V' = (vn_ 2 , V2 ) • So XI (Un_ 2 , h*) = ~ EB 1 (U h*) where ~ is 
n-2, 

irreducible or X2 = X 3 EB ~ with X3 irreducible of degree n - 2. If ~ is 
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irreducible, replace U by (Un_2 , h*). Suppose X2 = X3 EB ~. If X3 is 

primitive, by Mitchell, ~ = 1 (U h*) and the lemma is true, a con-
n-2, 

tradiction. So X3 is monomial and there is a basis v7, ... , v~ of V on 

which XI (Un_ 2 , h*) is monomial. By Lemma 1. 3 applied to Un_ 2 , we 

* * * * may reorder and rescale v1 , ••• , vn such that v1 = v1 , ••• , vn_ 3 = Vn_ 3 

and V' = (v~_ 2 , v;_u v~). As (vi, ... , Vn_) is not left invariant by 

X(h*), in the basis v~, ... , v~, X(h*) is not diagonal. In particular 

~ = 1 (U h*). So XI (Un_2 , h*) acts trivially on a subspace V3 of 
n-2, 

dimension 2 with V3 c V' . As V 2 , V 3 have dimension 2 and are in a 

subspace V' of dimension 3, V2 11 V3 =f:. {O }. Thus XI (U, h*) acts trivially 

on v2 n v3. Hence XI (U' h*) = X' EB 1 (U' h*) where X' is irreducible of 

degree n-1, as X(h*) does not leave V1 invariant. Replacing U by (U,h*), 

we may assume r = 1. 

So X lu = X1 EB lu where X1 is monomial and irreducible on V1 • 

Let V1 have a basis Vu ... , Vn-i in which X1 is monomial, and let lu act 

on (vn). First let g be any special 4-element such that X(g) leaves V1 

invariant. Then XI (U, g) = X~ EB ~ where X~ is irreducible on V1 and ~ 

acts on (v n> . If ~ * 1 (U, g) , by Mitchell, X~ is monomial. If ~ = 1 (U, g) , 

as we are assuming this lemma is false, X~ is still monomial. If 

v7, ... , v~ is a basis of Vin which XI (U, g) is monomial, by Lemma 1. 3, 

after suitably scaling and ordering v1, ... , v~, we have v1 = v:, ... , Vn_ 1 

= v;_ 1 and (v~) = ( v n> . So X(g) is monomial in the basis vu ... , v n. 

Now let g be a special 4-element such that X(g) does not leave V1 

invariant. Either X(g) does not leave (vi, ... , vn_
3

) or (v3 , ••• , Vn_ 1 ) 

invariant. By reordering Vu ... , Vn-i if necessary, assume X(g) does 
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not leave (vu ... , vn_ 3 ) invariant. Let U = (h E U lh is a special 4-

element and Vn_ 2 X(h) = Vn_ 2, Vn_ 1X(h) = vn_1 ) • By Lemma 2. 4 applied 

twice, X lu = X EB 3 • lu where X is monomial and irreducible on 

<vu ... , vn_ 3 ) and has a monomial basis Vu ... , vn_ 3 on this subspace. 

Also 3 • lu acts on <vn-2, Vn-u vn). So XI (U' g) = ~ EB 1 (U' g) where 

either ~ is irreducible or X2 = X3 EB ~ such that X3 is irreducible and ~ 

is linear. By assumption that this result is false, ~ is monomial unless 

X2 = X3 EB ~ with ~ * 1 (U, g) . In that case, however, X3 is monomial by 

Mitchell. In any case XI (U, g) is monomial in some basis v7, ... , v~ of 

V. Applying Lemma 1. 3 to U, by ordering and scaling Vi, ... , v~ cor-

* * * * * rectly, v1 =Vu ... , vn_ 3 = vn_ 3 , and <vn_ 2, vn_u vn> = <vn-2' Vn-u vn). 

In particular vjX(g) = vj for some 1 ~ j ~ n-3. By reordering 

Vu ... , vn_ 3 , we may assume j = 1. 

Now let U1 = (h E U lv1X(h) = v1 and h is a special 4-element). 

By Lemma 2. 4, X ju1 = Y1 EB 2 • lu where Y1 is irreducible and monomial 
1 

on (v2 , ••• , Vn_1 ) and Y1 has a monomial basis v2, ... ,vn-i. Also 2 · lu 
1 

acts on (vu v n>. As X(g) does not leave <Vu ... , Vn_ 1 ) invariant, X(g) 

does not leave (v2 , ••• , Vn_ 1 ) invariant. So XI (Uu g) = Y EB 1 (Uu g) 

-where Y acts irreducibly on V =:) (v2, ... , vn_ 1 ) and 1 (Ui, g) on (v1). By 

assumption that the result is false, Y is monomial with a basis v;, ... , v~. 

By Lemma 1. 3 applied to U 1 , after reordering and rescaling v;, ... , v~, 

we may assume v1 = v2 , ••• , v~_ 1 = vn_ 1 and v~ E (vu vn). As X !u1 acts 

trivially on (vuvn>, v~X(u) = v~ for u E U1 ; so as Y is irreducible, we 

have for some j with 2 ~ j ~ n-1, 
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By reordering v 2 , ••• , Vn- 1 , we may assume j = n-1. In particular 
' 

v .QX(g) = v f for 1 ~ f ~ n-2. 

Let U2 = (h E U lv2X(h) = v2 where h is a special 4-element). As 

in the analysis of (Uu g), there is v'n E (v2 , vn> such that 

= -EV' n 
-1 

= E V. 
J 

= v f for l Et {j , n} 

The only possibility is that j = n-1 and (v~) = (v~) :=. <vu vn> n (v2 , vn> 

= (vn). So in fact X(g) is monomial in the basis Vu ... , Vn. 

Therefore if h is a special 4-element, X(h) is monomial in the 

basis v1 , ••• , Vn· Let N be the subgroup of G generated by all special 

4-elements. So N <l G. By Lemma 1. 3, the set { (vi) 11 ~ i ~ n} is the 

unique set of one dimensional subspaces of V permuted by X(N). For 

g E G, h E N, ghg-
1 = h1 E N. So ( (vi) X(g) )X(h) = ( (vi) X(h1) )X(g) = 

(v.) X(g) for some j depending on i and h1 • Thus X(h) for all h E N 
J 

permutes { (vi)X(g) jl ~ i ~ n}. So { (vi)X(g) 11 ~ i ~ n} = { (vi) 11 ~i ~n} 

and Xis monomial, a contradiction. 

Lemma 2. 6: Let n ?- 5. Let h1 and h2 be noncommuting special 

3-elements of G. Assume XI (hi, h2 ) is monomial in a basis Vu ... , vn 

such that XI (hu h2) leaves exactly n-5 of the subspaces (vi) fixed. Then 
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Proof: By ordering Vu ... , Vn correctly, we get 

v1X(h1 ) = av2 · v3X(h2 ) = ClV4 

v2 X(h1 ) = bv 3 abc = 1 v4X(h2) = /3V5 aj3y = 1 

v3X(h1 ) = CV1 
and v5X(h2) yv3 = 

v .e_X(h1 ) = v 1 for fq{l,2,3} v 1X(h2) = vf for i q {3, 4, 5} 

By replacing v2 by av2 , v3 by abv3, v4 by aabv4 , and v5 by a{3abv5 , we may 

assume a = b = c =a= J3 = y = 1. Clearly (hu ~) ~ A5 , and X l<hu h2 ) 

= X1 EB (n-4)1 (hu~> where X1 is irreducible. 

Lemma 2. 7: Let n ~ 8 and let K be a subgroup of G satisfying one 

of the following: 

x(g) = 

1. K = (g, h) where g, hare special 3-elements with 

X IK = X EB (n-r)lK such that Xis irreducible of degree 

r = 3 or 4. Assume for n = 8 and r = 4 that K ~ A5 • 

2. K = ( g, h, k) where g, h, k are special 3-elements with 

X jK = X EB (n-4)1K. Let X be monomial on a subspace V 
with a basis eu e2 , e3, e4 such that in this basis 

0 1 0 0 

0 0 1 0 

1 0 0 0 

0 0 0 1 

X(h) = 

1 0 0 

0 0 -1 0 

0 0 0 1 

0 -1 0 0 

, and X(k) = 

1 0 0 0 

0 0 1 0 

0 0 0 1 

0 1 0 0 

Then there exists a subgroup H of G generated by special 3-elements such 

that X I H = Y EB ylH where Y is irreducible and primitive with y = 1 
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or 2 and H contains a G-conjugate of K. 

Proof: First a few remarks are made about situation 2. The 

representation Xis irreducible and XI (g, h) = R1 EB R2 where Ri are 

both irreducible with R1 acting on (e1 + we2 + we) EB (-e2 + w e 3 + we4 ) 

and R2 on (e1 + we2 + we 3 ) EB (-e2 + we 3 + we4). Also (g, h) ~ SL2 (3), 

(g, k) ~ A4 , and (h, k) ~ A4 • Assume there is a basis u1 , ••• , un on 

which XI (g, h, k) is monomial. By Lemma 2. 6, after ordering ui, ... , un 

correctly, we may assume X I (g, h) acts trivially on u5 , ••• , un. As 

R1 EB R2 acts on the same subspace as X does, (e1 , e2 , e 3 , e4 ) = 

(ui, u2 , u 3 , u4), and XI (g, h, k) acts trivially on u5 , ••• , un. 

Let K satisfy either 1. or 2. By Lemma 2. 3 applied inductively, 

beginning with K, there exists a subgroup U generated by special 3-

elements with K ~ U such that X lu = X1 EB s • lu where s = 1 or 2 and X1 

is irreducible. 

Assume the lemma is false. Then X1 is monomial. First we 

want to show that we may assume s = 1 . So assume s = 2. Let X1 act on 

V1 and let Vu •.• , vn_ 2 be a basis of V1 in which X1 is monomial. Let 

2 • lu act on W. If K satisfies 2., we may assume X1 jK acts trivially on 

v5 , ••• , vn_ 2 by ordering Vu •.• , vn_ 2 correctly. Suppose K satisfies 1. 

As g and h do not commute, we may assume by ordering correctly that 

X1 jK acts trivially on v6 , ••• , vn_ 2 • By Lemma 2 .. 6, if n = 8 and r = 4, we 

may also assume that XI (g, h) acts trivially on v5 • Thus in any case, 

we may assume X IK acts trivially on v 
O

, ••• , v n- 2 where a = 6 if n > 8 

and a = 5 if n = 8. 

Let h* be a special 3-element such that X(h*) does not leave V1 
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invariant. So X(h*) does not leave both (vi, ... , v o-u v o+u ... , vn_ 2) 

and (vi, ... , v O , v o+2, ... , vn_ 2) invariant. By renumbering v a, ... , vn_2, 

we may assume X(h*) does not leave (vi, ... , v o-v v o+v ... , vn_ 2 ) 

invariant. Let M = (u E U Iv 
0

X(u) = v 
O 

where u is a special 3-element) . 

By Lemma 2. 4, X IM = X1 0 EB 3 · lM where X1 0 acts irreducibly on 
' ' 

(vi,••·,vo-vVo+u···,vn-2) and 3·1M on (v 0 ,W). Note K~M. Then 

XI (M, h*) = Y EB 1 (M, h*) where either Y is irreducible or Y = Y1 EB ~ 

with Y1 irreducible and ~ linear. If Y is irreducible, replace U by 

(M, h*). Assume then that Y = Y1 EB ~- If Y1 is primitive, ~ = 1 (M, h*) 

by Mitchell, contradicting the assumption that the result is false. So Y1 

is monomial on the subspace V1 :J (vi, v2, ... , v a-u v a+l , ••• , vn_ 2). If 

Vu ... ,vn_ 2 is a basis of V1 in which Y1 is monomial, by Lemma 1. 4, 

applied to M, when Vi, ... , "n- 2 are ordered and scaled correctly, 

- - - - d,.,,, E ( W) V1 =Vu ... ,vo-v = Va-uVa+1 = Va+1' ... ,vn-2 = vn-2 an va va, . 

As X(h*) does not leave (v1, ... , v o-u v a+i' ... , vn_ 2 ) invariant, Y1 (h*) is 

not diagonal. In particular ~(h*) = 1 and so XI (M, h*) = Y1 EB 2 · 1 (M, h*) · 

Let 2 · 1 (M, h*) act on W*. Then W* c (v 0 , W). As Wand W* have 

dimension 2, W n W*=!: {O }, and so XI (U, h*) acts trivially on W n W*. 

Hence XI (U, h*) = X EB 1 (U, h*) where Xis irreducible of degree n - 1, 

because X(h*) does not leave V1 invariant. 

So without loss of generality, we may assume s = 1 and X1 acts 

on V1 • Let Vu ... , Vn-i be a basis of V1 in which X1 is monomial. Sup­

pose lu acts on (vn). Assume first that h is a special 3-element such 

that X(h) leaves V1 invariant. Then XI (U, h) = X EB ~ where X acts on V1 

and~ on (vn). If Xis primitive, by Mitchell, ~(h) = 1, and we have a 



32 

-contradiction to the assumption that the result is false. So X is monomial 

and by Lemma 1. 4, X(h) is monomial in Vi, ... , vn. 

Now let h be a special 3-element such that X(h) does not leave V1 

invariant. As earlier, we may order Vi, ... , vn_ 1 correctly so that X IK 

acts trivially on Va, ... , vn-i where a = 5 if n = 8 and a = 6 if n > 8. Also 

X(h) does not leave all three of (vu ... , v a-u v a+ 2 , ••• , vn_ 1), 

(vi, ... , Va-u Va+u ... , vn_ 2), and (vu ... , v a, Va+ 3 , ••• , Vn_ 1 ) invariant. 

By numbering v a, ... , Vn-i correctly, we may assume X(h) does not 

leave (vu ... , v a-u v a+z, ... , vn_ 1 ) invariant. Let M = (u E U lvaX(u) = v a , 

v a+1X(u) = v a+i where u is a special 3-element). By Lemma 2. 4 applied 

twice, X IM = X EB 3 · lM where Xis irreducible and monomial on 

(vi, ... , v a-v Va+z' ... , vn_ 1 ) and 3 · lM acts on (v a, v a+u vn). But 

K ~ M and XI (M, h) = Y EB 1 (M, h) where either Y is irreducible or 

Y = Y1 EB ~ with Y1 being irreducible and ~ being linear. By assumption 

that the result is false, if Y is irreducible, Y is monomial. Also if Y is 

reducible, Y1 is monomial by Mitchell and the assumption that the result 

is false. In either case there is an i < n with viX(h) = vi by Lemma 1. 4. 

If 1 ~ i ~ a-1, by Lemma 1.4, choose u EU such that vaX(u) = vi. 

If i ~ a, let u = 1. Then X !Ku acts trivially on vi. Let Ni = (g E U lviX(g) 

=viand g is a special 3-element). So Ku~ Ni and by Lemma 2. 4, 

X !Ni = Yi EB 2 · lN, where Yi is irreducible and acts with monomial basis 
l 

Vu ... ,vi-vVi+u ... ,vn_ 1 • Also 2 ·lN. acts on (vi,vn). As X(h) leaves 
l 

vi invariant but not Vu X(h) does not leave (vu ... , vi-u vi+i, ... , vn_ 1) 

invariant. Thus XI (N., h) = R. EB 1 (N h) where R. acts irreducibly on 
l l i, l 

V2 and 1 ( N., h) acts on (vi). As the result is assumed false, Ri is 
l 

monomial in some basis Vu ... ,vn-1 of V2 • By Lemma 1. 4 applied to Ni, 
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we can renumber and rescale ,7i, ... , Vn-i so that v1 =Vu ... , Vi-i = 

= "i-1' Vi+1 = vi+1' • • •, Vn-1 = "n-1 and "i E (vi, vn). As X(h) does not 

leave (Vi, ... , vi-1' Vi+u ... , Vn-1> invariant, viRi(h) (/_ (\\). So for 

some j, k < n with i, j, k all distinct, 

vjX(h) = avk 

vkX(h) = b\ 

,\X(h) = cvj 

abc = 1 

v .e_ X( h) = v f for 1 ~ £ ~ n-1, f * j , k . 

Choosing £ with 1 ~ .e. ~ n-1 but distinct from i, j, k, we may 

apply the same argument to get 

v X(h) p = av q 

vqX(h) = {3v; a.f3y = 1 

v;x(h) = yvp 

vtX(h) = Vt for 1 ~ t ~ n-1, t -:/= p, q 

where p, q, .Q < n are distinct and v; E (v f, vn). By comparing the two 

expressions for X(h), the only possibility is j = p and k = q. So 

(t\) = (v!) ~ (vi' vn) n (v.e_, vn) = (vn). In particular, X(h) is monomial 

in the basis Vu •.. , vn. 

The ref ore if N is the normal subgroup of G generated by the 

special 3-elements of G, X IN is monomial. As in the concluding para­

graph of the proof of Lemma 2. 5, this is a final contradiction. 

Corollary 2 .1: Let K be as in Lemma 2. 7 and n ~ 8. Then there 

exists a subgroup U of G generated by special 3-elements such that 
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X lu = R EB rlu where R is primitive and irreducible with r = 1 or 2, 

and K cU. 

Proof: Let H be as in the conclusion of Lemma 2. 7. Then 
-1 

Kg~ H for some g E G. Letting U = Hg , the desired result follows. 

Corollary 2. 2: Let H be a subgroup of G generated by special 

3-elements such that X IH = X EB (n-r)lH where Xis irreducible of 

degree r and 3 ~ r < n. Then there exists a subgroup U of G such that 

XI U = Y EB ylu where Y is irreducible and primitive with y = 1 or 2. 

Proof: By Lemma 2. 3 and induction, we may assumer = n-2 

or n-1. If X is primitive, we are done. So assume X is monomial. By 

Lemma 1. 4, there exist special 3-elements hu h2 such that 

XI {h1 , h2 ) = S EB (n-3)1 {h h ) where S is irreducible of degree 3. We 
1' 2 

are done by Corollary 2 .1. 
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CHAPTER III 

THE PROOF OF THEOREM 1 

Theorem 1 will now be proved. The primitive groups of degree 7 

or less are known. By examining Brauer [3], Lindsey [14, 16, 17] , and 

Wales [27, 28] very carefully, we see there are no primitive, irreducible, 

unimodular linear groups of degree 5, 6, or 7 containing special 4-

elements. We may assume n ~ 8. 

Let g and h be special 4-elements which do not commute. Then 

XI (g,h) = Y EB (n-4)1 (g,h) where Y has an irreducible constituent of 

degree at least 2. 

Case A: Y = Y1 EB Y2 where Y1 is irreducible of degree 2. 

Let Hi = Y/ (g, h)). Then Y( (g, h)) =His a subdirect product 

of H1 and H2 • By examining Blichfeldt [2], we check the various pos­

sibilities for H1 • 

Subcase 1: H1 /Z(H1 ) ~ A5 • (This proof is as in Lemma 2 of 

[ 14]). 

Then H' is a subdirect product of H~ and H~, which are unimodular 

groups of 2 x 2 matrices. Let Mi be the set of all elements in Hi which 

occur with component the identity of Hj (j =1= i) in the subdirect product. 

By Theorem 5. 5.1 of Hall [11], Mi <l Hi and H~/M1 ~ H~/M2 • As 

H~/Z(H~) ~ A5 , either M1 = H~ = H1 or M1 ::: Z(H~). As A5 has no 

representation of degree 2, I Z(H~) I = 2. If M1 = H~, there is an element 

of order 3 in Mu which must have eigenvalues w, w. Multiplying by the 
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nontrivial element in Z(H~) gives an element in X(G) with eigenvalues 

-w,-w,1,1,1, ... , contradicting Blichfeldt. If M1 ~Z(H~), the only 

possibility is that H~/Z(H~) ~ A5 • In any case there are elements h. E H~ 
l l 

with eigenvalues -w, -w which are paired in H. So X(G) contains an 

element with eigenvalues -w, -w, -w, -w, 1, 1, ... , contradicting Blichf eldt. 

Subcase 1. is therefore impossible. 

Then H' is isomorphic to a subdirect product of H~ and H~, which 

again are uni modular. Let Mi be as in subcase 1. Then H~ /Z (H~) ~ A4 • 

The only element of order 2 in a 2 dimensional unimodular group is 

( -J _ ~). So I Z(H~) I = 2 and the Sylow 2-subgroup of H~, which has order 

8, is either cyclic or quaternion. As A4 has no elements of order 4, the 

Sylow 2- subgroup of H~ must be quaternion. If M1 contains the Sylow 

2-subgroup of H~, there exist special 4-elements gi, g2 such that (gi, g2 ) 

is the quaternion group of order 8 and XI (g1 , g2 ) = x* EB (n-2)1 ( ) 
g1, g2 

*( (-i 0) *( (0 -1 where X g1 ) = 0 i and X g2 ) = 1 0 ) in some basis. If M1 does 

not contain the Sylow 2-subgroup of H~, as HUZ(H~) ~ A4 and M1 <l H~, 

M1 ::: Z(H~). As H~/M2 ~ H~/Mu the only possibility, by looking at 

Blichfeldt's list of 2 dimensional groups is H~/Z(H;) ~ A4 • As in sub­

case 1, there are elements hi E H1 with eigenvalues -w, -w, which are 

paired in H. So X( G) contains an element with eigenvalues - w, - w, -w, 

-w, 1, 1, ... , contradicting Blichfeldt. 

This subcase is impossible as 2-elements do not generate A4 • 
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Subcase 4: Y 1 is monomial and unimodular. 

As Y1 is irreducible and unimodular, Y1 (g) and Y1 (h) both have 

eigenvalues i and -i. So Y2 = 2 · 1 (g, h). 

Subcase 5: Y1 is monomial and not unimodular. 

Let Yi act on Vi and let Vu v2 be a basis of V1 in which Y1 is 

monomial. As both Y1 (g), Y1 (h) could not be diagonal, only one of Y1 (g), 

Y1 (h) could have eigenvalue structure 1, i or 1, -i. As Y1 is not unimodular, 

we may assume by replacing g by g- 1 if necessary that Y 1 (g) has eigen­

values 1, i. So Y2(h) is the identity and hence Y2 = ~1 EB ~2 • Let ~1 act 

on v3 , ~ 2 on v4 • By ordering Vu v2 and v3 , v4 correctly we get in the 

basis Vu ... , v4 that 

(1 0 0 0 -0 0 0 

0 i 0 0 0 0 0 
(Y 1 EB y 2)(g) = and (Y1 EB Y2)(h) = 

0 0 -i 0 0 1 0 

0 0 0 1 0 0 1 

But 

0 0 0 

(Y l EB Y2)(h- 1ghg- 1
) 

-i 0 0 
= 

0 1 0 

0 0 1 

-1 -1 
and letting g1 = h, g2 = h ghg , which a.re special 4-elements, 

XI (gi, g2) = Y3 EB (n-2)1 (gi, g
2

) where Y3 is monomial and irreducible. 
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Therefore if case A holds, we may choose special 4-elements 

gu g2 such that XI ( gu g2 ) = X1 EB (n-2) 1 (gu g
2

) where X1 is irreducible 

and monomial. Let X1 act on V1 and choose a special 4-element g3 

such that X(g3) does not leave V1 invariant. So X I ( gu g2 , g3) = 

X 2 EB (n-4)1 (gi, g
2

, g
3

) where ~ is irreducible or ~ = X3 EB ~ such that 

X3 is irreducible of degree 3. Assume the latter is the case with 

~ :t 1 ( g ) . Then by Mitchell, X3 is monomial on some basis 
g1' g2, 3 

Vu v2 , v3 • Consider X/gi) in this basis; X3(gi) must act trivially on at 

least one vr Assume first that X j(g1 , g2 ) does not leave any (vi) 

invariant. Then by ordering Vu v2 , v3 correctly, we get 

0 

0 

-0 0 

0 0 

0 1 

1 0 

and X3(g2 ) = 0 0 

0 E- 1 

0 

-E 

0 

But then X3 j (gu g2) is irreducible, a contradiction. So XI (gu g2 ) 

leaves some (vi) invariant. But as ~(g1) = ~(g2 ) = 1, ~(g3) :t 1, X3 (g3) is 

diagonal and so also leaves (vi) invariant, a contradiction. Thus in 

any case xi (gug2 ,g3) = X EB (n-s)l (g
1
,g

2
,g

3
) wheres= 3 or 4 andX is 

irreducible when case A holds. 

Case B: Y = Y1 EB ~ where Y1 is irreducible of degree 3. 

If Y1 is primitive, ~ = 1 (g, h) by Mitchell. Assume Y1 is 

monomial on V 1 ; let Vu v2 , v3 be a basis of V1 in which Y1 is monomial. 

If Y1 (g) or Y1 (h) have eigenvalues 1, 1, -i or 1, 1, i, they are diagonal in 

this basis. In any case Y1 (g) and Y1 (h) each fix one of the subspaces <v/, 
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j depending on g and h. So neither Y1 (g) nor Y1 (h) is diagonal and hence 

~ = 1 (g, h). 

Therefore in any case G contains a subgroup H generated by 

special 4-elements such that X jH = X1 EB (n-r)lH where X1 is irreducible 

and r = 3 or 4. Assume Theorem 1 is false. Let n ~ 8 be minimal such 

that there is a counterexample. Thus, recalling the remark at the 

beginning of this section, there does not exist irreducible, primitive 

unimodular groups of degree n-1 or n-2 which contain special 4-elements. 

Applying Lemma 2.1 inductively, starting with H, there exists a sub­

group U generated by special 4-elements such that X /u = Y EB y • lu 
where Y is irreducible and y = 1 or 2. By Lemma 2. 5, we may assume 

Y is primitive, contradicting the minimality of n. So Theorem 1 holds. 
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CHAPTER IV 

A SPECIAL CASE OF THEOREM 2 

We return to the proof of Theorem 2. In this chapter we classify 

G when n ~ 8 and a certain hypothesis holds, which will be useful for 

induction purposes. Define hypothesis (A) as fallows: 

(A) If U is any subgroup of G generated by special 3-elements 

such that X ju = S EB s • lu where S is irreducible and 

primitive of degree n - s withs = 1 or 2, then U ~ An-s+i · 

We first prove some results on the irreducible characters of the 

alternating and symmetric groups. 

By the work of Frobenius [ 9] , the characters of Sn are all related 

to the partitions of n into integers. Let (A) ={Au ... , Ak} be a partition 

of the integer n into nonnegative integers where A1 ~ A2 ~ . • • ~ Ak > 0 . 

Let f i = \ + k - i. So n ~ .f. 1 > £2 > . . . > f k > 0. Then the degree d(A) 

of the irreducible character corresponding to (A) is 

All irreducible characters come from such partitions. 

Lemma 4 .1: The group Sn for n ~ 9 has two irreducible char­

acters of degree 1 due to the partitions (A) = {n} and (A) = {1, 1, ... , 1}, 

two irreducible characters of degree n - 1 due to the partitions 
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(A) = {n-1, 1} and (A) = {2, 1, 1, ... , 1}. All other irreducible characters 

have degree greater than 2(n+l). 

Proof: By checking the character tables, we see that the r esult 

holds for n = 9, ... , 14 (see [13, 19, 29, 30]). So assume n ~ 15 and 

proceed by induction. We split this into several cases. 

The case k = 1: The only partition is (A) = {n} . So d(A) = n ! Jr = 1 . 

The case k = 2: Then (A) = {Au AJ and A1 ~ ~- If A1 = n - 1, 

thenf.. 1 =n, f.. 2 =1, andd(A) =n-1. IfA1 =n-2, thenf.. 1 =n-1, f.. 2 =2, 

n(n
2
- 3) ( ) and d(A) = > 2 n+l for n ~ 15. 

n So assume 2 ~ A.1 ~ n - 3. Let A1 = m. Then ! 1 = m + 1 and 

(m+l+m-n) > n ! 
l. 2 = n - m. So d(A) = n I m ! (n-m) I m ! (n-m) ! . Notice that if 

' >= n · th > ' n ! > n ! Al f 3 m,m ;;.-- 2'"w1 m m, m'!(n-m')I m!(n-m)! so or m =n-

and n ;;,. 15, m !(~-Im)! > 2(n+l). So d(A) > 2(n+l). 

The case k = n: The only partition is (A) = {1, 1, ... , 1}. So 

£. = 1 + n - i and 
l 

= 1 

The case (A) = {n-k+l, 1, 1, ... , 1} for 3 ~ k ~ n-1: Then f.. 1 = n 

and f i = k - ( i-1) for i ~ 2 . So 
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= {(n-(k-1) ) ... (n-1 )} {(k-2) I (k-3) ! ... 1 !} 
(k-1) l(k-2) ! ... 1 ! 

= (n-1\ 
k - 1) 

If k = n-1, (A) = {2, 1, 1, ... , 1} and d(A) = n-1. Because(~= i) = ( ~ = fl , 
to prove (~ = fl > 2(n+l) for n ~ 15 and 3 ,;; k,;; n-2, it suffices to prove 

it for 3 ~ k ~ ~- But if 3 ~ k ~ ~' for n ;?: 15, 2(n+l) < (n-l~(n- 2) = 

( n ;1} ,;; (~ = fl 
The remaining cases: In the remaining cases we have k ;?: 3 and 

we do not have the partition (A) = {n-k+l, 1, ... , 1} . Let >tk = r. As 

k ;?: 3, ~ ;?: r. Consider the partition (A') = {Au ... , Ak_J of n - r. Let 

1'
1
. =A

1
. + (k-1) - i =/..

1
. - 1. Then e -!' =l -i and p q p q 

But 

is the degree of a character of S corresponding to the partition (A'). n-r 
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By induction, noting that we have enough initial cases (as r ~ i ) , 
d(A') > 2(n-r+l) because (A') is not of the form {1, ... , 1}, {n-r}, 

{n-r-1,1}, or{2,1, ... ,1}. 

Assume first that k - 1 > r. As n ~ f 1 > 12 > ... > ik > 0, 

Qp-r ~ Qp+r for p ~ k- 1 - r. So .fp-r /.e.p+r ~ 1 for p ~ k - 1 - r. As 

ik = r, .fk-r-r > ... > .fk_ 1-r > 0 and so 

Thus 

k-1 
TT (t -r) 

p=k-r p 

r ! 

(~\ 
p+r} 

k-1 n (i -r) 
p=k-r p 

r! 

> > > n+l-i . ( n As n ~ £1 £2 • • • £r, 1i ~ 1 for 2 ~ 1 ~ r. So d(A) > 2 n-r+l) r; . 
If r = 1, A1 ~ n - (k-1) with equality holding only if (A) = {n-k+l, 1, 1, ... , 1} 

which we are excluding. So £1 = A1 + k - 1 ~ n - 1 and 

d(A) > n~l 2n > 2(n+l). If r > 1, A1 ~ n - r(k-1) and £1 = A1 + k- 1 

~ n - (r-l)(k-1) ~ n - 2(r-l) ask~ 3. So d(A) > n-2(r-l) 2(n-r+l). 

But n-2(r-l) 2(n-r+l) ~ 2(n+l) is equivalent to O ~ n(r-2) + 2(r-1), 

which is true for r ~ 2. 

Assume that k - 1 ~ r. Then 
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The middle product is vacuous if k-1 = r. As l 1 > f 2 > ... > .e.k-i > lk = r, 

l... - r ~ k - i for i ~ k - 1 . So 
1 

11' _1___ ~ 1 k-1 (l...-rj 

i=l k-1 

As~~ r ~ k-1, n-(k-1) ~ rand n-(k-1)-i ~ r-i for O ~ i ~ r - k. 

Thus 

{
(n-(k-lwn-k) ... (n-r+l)~ " l 

r(r- ... (r-(r-k)) j ~ 

As n ~ f 1 > f 2 > ... > l..k_u ~~i ~ 1. Therefore d(A) > 2(n-r+l) -J!: 
1+1 1 

But A1 ~ n-r(k-1) and l.. 1 = A1 + k- 1 ~ n - (r-l)(k-1) ~ n - 2(r-1). So 

d(A) > n- 2(r-l) 2(n-r+l). Proceeding as above, d(A) > 2(n+l), and the 

lemma is proved. 

Lemma 4. 2: If n ~ 7, An has only one irreducible character of 

degree 1, which is the trivial character, and only one irreducible char­

acter of degree n-1, which is the nontrivial constituent of the permutation 

character. All other irreducible characters have degree greater than 

n+l. 

Proof: By Frobenius [ 10] , all irreducible characters of S
0 

remain irreducible or split into two conjugate irreducible characters, 
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obviously of equal degree, when restricted to An. All characters of 

A are obtained in this way. The result is true for n = 7, 8 by checking n 

the character tables. Assume n ~ 9. Let p 1 be the permutation char-

acter of Sn on n points and let µ be the nontrivial linear character of 

S . Two irreducible characters of Sn of degree n-1 are p 1-ls and n n 
µ(p 1-ls ) . They are equal and irreducible when restricted to An. As 

n 
all other irreducible characters of Sn have degree greater than 2(n+l) 

by Lemma 4.1, all other irreducible characters of An have degree 

greater than n+ 1 . 

Notice that if H ~ Am for m ~ 7 is a subgroup of G such that 

X jH = X1 EB (n-m+l)lH, X1 is irreducible and the 3-cycles of H corre­

spond precisely to the special 3-elements of H. Also X1 is primitive by 

Lemma 1. 4 as Am is simple. These facts will be used without reference 

in the rest of the paper. We now give some results on generators and 

relations of An. 

Lemma 4. 3: Let Uk = {fu ... , fk_ 2 ) for k ~ 5. Suppose the fol­

lowing relations hold: 
3 2 

(1) f1 = 1, (f afd-i ... f1 ) = 1 for d = 2, ... , k-2 

( 2) f d+ 1 = 1 for d = 1 , . . . , k- 3 
2 

( 3) ( ( f d . . . f 1 )(f e . . . f 1) ) = 1 for d = 1, . . . , k- 4 and e = d+ 2 , . . 

.. , k-2. 

Then either Uk = 1 or Uk ~ Ak. Also in Ak if we let fd = (d, d+l, d+2), 

then f u ... , fk_ 2 satisfy (1), (2), and (3). 
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Proof: Let hd = fafd-i ... f1. Then (1) is equivalent to 

( 1 ') h~ = 1, h~ = 1 for d = 2 , . . . , k- 2 

Also (2) is equivalent to 

(2') (hdhd+1) 3 = 1 

( ) 
3 ( h- 1 ) 3 ( ( ( -1 _ 1 3 _ 1 3 

because hdhd+i = hd d+i = f d ... f 1 ) f 1 ••• f d+i) ) = (f d+i) . 

addition, (3) is equivalent to 

(3') (hdhe)
2 

= 1 for d=l, ... , k-4 and e=d+2, ... , k-2. 

By Moore [ 22] , Uk = 1 or Uk ~ Ak as Uk = (hu ... , hk_ 2). 

Now let fd = (d, d+l, d+2). Then fd ... f 1 = (1, 2)(d+l, d+2) for 

In 

2 2 
d ~ 2. Thus (1) and (2) hold. Also (f1fe ... f1 ) = ( (1, 2, 3)(1, 2)(e+l, e+2)) 

2 
= 1 for e ?: 3 and for d > 1, e ?: d+2, (fd ... f 1f e ... f 1 ) = 

( (1, 2)(d+l, d+2)(1, 2)(e+l, e+2) )
2 

= 1. So ( 3) holds. 

Lemma 4. 4: Let U be a group with a subgroup H ~ Ak for k ?: 5. 

Let H = (fu ... , fk_ 2 ) where fd corresponds to (d, d+l, d+2) on {1, ... , k}. 

Assume fk-i E U such that fk-i = 1, (fk_ 2fk_ 1)2 = 1, fk-i commutes with 

fu ... ,fk_ 4 , and fk_ 1fk_ 2fk-ik-i = fk_ 2fk_ 3 • Then (H,fk_ 1 ) ~ Ak+i· 

Proof: It suffices to show (1), (2), and (3) hold in Lemma 4. 3. 

By Lemma 4. 3, these relations hold for the f i's with i ~ k - 2. So for 

(1) we only need to consider d = k - 1. But 

Thus (1) holds. Clearly (2) holds. We only need to consider e = k-1 in 

(3). Assume first that d ~ k-4. Then 
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Now assume d = k-3. First as fk_ 1fk_ 2fk-ik_ 1 = fk_ 2fk_ 3 and 
2 2 

(fk-ik-1) = 1, fk-ik-1 = fk_1fk_2fk_3• So 

Lemma 4. 5: Let Ube a group containing a subgroup H = (h1 , •• 

. . , hk_2) ~ Ak for some k ~ 6. Assume H acts on {1, ... , k} with 

hi = (i, i+l, i+2) for 1 ~ i ~ k-2. Let g E U such that (H, g) ~ Ak+s 

where s = 1 or 2. Assume (H, g) acts on {b1 , ••• , bk+J and that 

hu ... , hk_ 2, g are 3-cycles in (H, g). Then by numbering bu ... , bk+s 

correctly, hi = (bi, bi+i' bi+2). Also there is an h E H such that gh or 

(g-
1
)h is (bk+s- 2 , bk+s-u bk+s); if g commutes with hi, we can choose 

h E (h4 , • • • , hk- 2 ) • 

Proof: Because (hu h3 ) ~ A 5 and hu h3 are 3-cycles in (H, g), 

by correct ordering of bu ... , bk+s' h1 = (bu b2, b3) and h3 = (b 3 , b4 , b 5). 

h3h1 
As h2 = h1 , ~ = (b2 , b3, b4 ). Assume we have numbered bi, ... , bk+s 

correctly so that hj = (bj, bj+i' bj+2) for 1 ~ j ~ m where m ~ 2. If 

m = k-3, omit hm in the latter classification and so assume m ~ k-4. 
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As (hi, ... , hm, hm+2) ~ Am+ 4 and each hi is a 3-cycle, by numbering 

bm+ 3 , ••• , bk+s correctly, hm+2 = (bk, bm+ 3 ' bm+4 ) for some k ~ m+2. 

Since hm+2 commutes with hu ... , hm-u the only possibility is k = m+2. 
hm+2hm 

Also ~+1 = hm = (bm+i, bm+2, bm+ 3) • Therefore by induction 

hi, ... , hk_ 2 have the desired form. If s = 1, g = (bi, bj, bk+1) where 

i, j ~ k, and if s = 2, g = (bj, bk+i, bk+2) where j ~ k upon ordering 

bk+i, bk+2 correctly. By double transitivity, choose h E H with bih = 
h 

bk_1 and bjh = bk. Then g = (bk+s-2, bk+s-u bk+s). Suppose g com-

mutes with h1 • Then i,j ~ 4. So we could have chosen h E (h4 , ••• ,hk_ 2) 

unless (h4 , ••• , hk_ 2) is not doubly transitive, which occurs only if k = 6. 

h ( -l)h If k = 6, however, g or g where h E (h4) is of the desired form. 

Lemma 4. 6: Let U be a group with a subgroup H = (h1 , ••• , hk_2) 

~ Ak where k ~ 7. Assume H acts on {1, ... , k} and that hi = (i, i+l, i+2) 

for 1 ~ i ~ k-2. Let g E U such that g commutes with h1 and h2 • Let 

H1 = (h2 , ••• , hk_ 2, g) ~ Ak and assume H1 acts on {b1 , ••• , bk} . Further­

more assume h2, ... , hk_ 2, g are 3-cycles in H1 . Then (H, g) r-J Ak+i. 

Proof: By Lemma 4. 5, we may assume hi = (bi-v bi' bi+1 ) for 

2 ~ i ~ k-2 and for some h E (h5 , ••• ,hk_ 2), gh or (g- 1)h is 

g1 = (bk-1' bk, bk+ 1). Also g1 commutes with h1 as g, h do. Thus g: = 1, 

(hk_ 2g1 )
2 

= 1, g1 commutes with hu ... , hk_ 4 , and g1 hk_ 2hk_ 3g1 = 

hk_ 2hk_ 3 • By Lemma 4. 4, ( H, g) = (H, g1 ) ~ Ak+i. 

Lemma 4. 7: Assume hypothesis (A) holds and n ~ 8. Let M be 

a subgroup of G generated by special 3-elements such that X /M = 

X1 EB (n-m)lM where X1 is irreducible of degree m ~ 5 (including the 
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possibility that m = n) or X IM = X1 EB ~ EB (n-m-l)lM where X1 is 

irreducible of degree m ~ 5 and ~ is linear. Then X1 is primitive and 

if X IM is of the latter form, ~ = lM. 

Proof: Let K be as in the hypothesis of Lemma 2. 7. By 

Corollary 2. 1 and hypothesis (A), there is a subgroup U generated by 

special 3-elements such that K 5= U ~ An-s+i where U and s are as in 

hypothesis (A). As two special 3-elements of U, which must be 3-cycles 

of U, either commute, generate A4 , or generate A5 , K can only satisfy 

1. of Lemma 2. 7 and K ~ A4 or A5 • 

Let X1 act on the subspace V1 and assume X1 is monomial. Let 

Vu ... , vm be a basis of V1 in which X1 is monomial. By Lemma 1. 4, 

after rescaling and reordering Vu ... , v m, there exist special 3-elements 

hu ... 'hm-2 EM such that 

v.X(h.) = Vi+l 1 1 

vi+iX(hi) = vi+2 

vi+2X(hi) = v. 
1 

v f X(hi) = vi for itl_{i,i+l,i+2} 

for 1 ~ i ~ m-2. 

Assume first that X IM = X1 EB ~ EB (n-m-l)lM where ~ * lM. 

Therefore there is a special 3-element g E M with ~(g) = w. So X1 (g) 

must be diagonal in the basis Vu ... , vm and for some i, viX(g) = wvi. 

Let gv g2 E (hi, ... , hm_ 2 ) such that viX(g1) = v1 and viX (g2 ) = v2 • Then 

h = g~ 1gg1g; 1g-1g2 is a special 3-element and 
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{ 

V1X(h) = WV1 

V2X(h) = WV2 

vfX(h) = vl for f > 2 

But then XI (huh) = Y EB (n-3)1 (huh) where Y is irreducible and 

(h1 , h) i A4 or A5 , a contradiction. 

Therefore ~ = lM and we may assume X IM = X1 EB (n-m)lM. As 

X1 is irreducible, there is a special 3-element g EM with X(g) not 

leaving (v1+ ... +v m> invariant. First assume X1 (g) is diagonal in the 

basis vi, ... , vm. Then viX(g) = wvi and vjX(g) = wvj for some i and j. 

Let g1 E (hu ... , hm_ 2 ) such that viX(g1) = v1 and vjX(g1 ) = v2 , by double 

transitivity. Letting h = g~
1
ggu we get X(h) as in (1), which is again a 

contradiction. Therefore X1 (g) is not diagonal. Hence there exist 

distinct i, j, and k such that 

viX(g) = av. 
J 

vjX(g) = bvk abc = 1 

vkX(g) = cv. 
1 

V f X(g) = V f for ftl_{i,j,k} 

where not all of a, b, c are 1. Let g1 E (hu ... , hm_ 2 ) with viX(g1 ) = v2 , 

vjX(gi) = v3 , and vkX(g1 ) = v4 • Replacing g by g~
1
gg1 , we may assume 

i =2, j =3, andk=4. If g commuteswithh2 , then a =b =cE {w,w}; 

however XI ( hi, g) = Y EB (n-4)1 (hi, g) where Y is irreducible but 

(hi, g) -;/. A4 or A5 , a contradiction. So g does not commute with h2 • 

Hence XI (I½, g) = Y EB (n-3)1 (h
2

, g) where Y is irreducible. The only 

possibility is that (~, g) ~ A4 and {a, b, c} = {-1, -1, 1} . By conjugating 
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-1 
g by ~ or h2 if necessary, we may assume a = -1, b = 1, and c = -1. 

But then situation 2. of Lemma 2. 7 occurs, a contradiction. 

Therefore we can only conclude X1 is primitive. If X IM = 

X1 EB ~ EB (n-m-l)lM, by Mitchell ~ = lM. 

Lemma 4. 8: Assume hypothesis (A) holds and n ~ 8. Let H be 

a subgroup of G generated by special 3-elements. Assume X IH = 

X1 EB (n-m) lH where X1 is irreducible of degree m ~ 5. Let g be a 

special 3-element which does not commute with H. Then 

X I (H, g) = Y EB (n- s) 1 (H, g) where s = m, m + 1, or m + 2 and Y is 

irreducible. 

Proof: We must have XI (H, g) = R EB (n-m-2)1 (H, g) where either 

1 . R is irreducible. 

2. R = R1 EB ~ where R1 is irreducible and ~ is linear. 

3. R = R1 EB ~1 EB ~2 where R1 is irreducible and ~1 , ~ 2 are 

both linear. 

We are done if 1. holds. If 2. holds, ~ = 1 (H,g) by Lemma 4. 7. If 3. 

holds, since g does not commute with H, one ~i' say ~2 , is 1 ( H, g). 

By Lemma 4. 7, t 1 is also 1 (H, g) and the lemma is proved. 

Lemma 4. 9: Assume hypothesis (A) holds and n ~ 8. Let H be 

a subgroup of G generated by special 3-elements such that X !H = 

X1 EB 2 · lH where X1 is irreducible. Let g E G be a special 3-element 

such that XI (H, g) is irreducible. Then (H, g) ~ An+1 • 

Proof: By Lemma 4. 7, X1 is primitive; so by hypothesis (A), 

H ~ An_ 1 . Let H act on the set {av ... , au-J. The special 3-elements 
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in Hare 3-cycles and so define hi= (ai,ai+vai+2 ) for 1 ~ i ~ n-3. Then 

H = (hi, ... , hn_ 3). As XI (H, g) is irreducible, g does not commute 

with H. Thus g does not commute with both (hi, ... , hn_ 4 ) and 
-1 . 

(h2 , ••• , ~- 3). Let gi = hn-i- 2 for 1 ~ 1 ~ n-3 and bi = an-i for 

1 ~ i ~ n-1. Then gi = (bi, bi+v bi+2 ) and (gv ... , gn_ 4 ) = (hn_ 3 , ••• , ~). 

If necessary, replacing hi by gi and an-i by bi, we may assume notation 

is chosen so that g does not commute with (hi, ... , hn_ 4). 

First consider XI (hi, ... , hn_ 4 , g) . By Lemma 4. 2, 

XI (hi, ... , hn_ 4 ) = X1 I (hi, ... , hn_ 4 ) EB 2 · 1 (h h ) = 1, ... , n-4 

X2 EB 3 · 1 (h h ) where ~ is irreducible. By Lemma 4. 8, 
1, ••• , n-4 

xl(h1 , ••• ,hn_4 ,g) =Y EB s·l(h h g) wheres= 1, 2, or 3 and 
v ... ' n-4' 

Y is irreducible. If s = 3, clearly XI (hi, ... , ~-4 , g, ~- 3) is not 

irreducible, a contradiction. So s = 1 or 2. By Lemma 4. 7, Y is 

primitive and hence by hypothesis (A), (hi, ... , ~-4 , g) ~ An-s+ 1 and 

hu ... , hn_ 4 , g represent 3-cycles. By Lemma 4. 5 there is an element 

h g1 = g for some h E (hi, ... , hn_ 4 ) such that g1 commutes with hv .. 

. . , hn_ 6 • As (H, g) = (H, g1), by replacing g by gv we may assume g 

commutes with hu ... , hn_ 6 • 

As XI (H, g) is irreducible, g does not commute with ( h2 , •• 

. . , hn-). By Lemma 4. 2, XI (h2 , ••• , hn_ 3 ) = X1 I (h2 , ••• , hn_ 3) EB 

2 · 1 (h h ) = X3 EB 3 · 1 (h h ) where X3 is irreducible. 
2, ... , n-3 2, ... , n-3 

Therefore by Lemma 4. 8, XI (h2 , ••• , hn_ 3 , g) = R EB r · 1 (h h g) 
2,· • ., n-3' 

where r = 1, 2, or 3 and R is irreducible. If r = 3, XI (h2 , ••• , hn_ 3 , g, h1 ) 

is reducible, a contradiction. By Lemma 4. 7, R is primitive. If r = 2, 

by hypothesis (A), (~, ... , hn_ 3 , g) ~ An_ 1 • By Lemma 4. 6 (H, g) ~ 

An; however XI (H, g) could not be irreducible by Lemma 4. 2. 
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Therefore r = 1 and by hypothesis (A), (h2 , ••• , ¾- 3 ' g) ~ An. Let 

(h2 , ••• , hn_ 3 , g) act on {bu ... , bJ. By Lemma 4. 5, we may assume 

hi = (bi-u bi, bi+1 ) for 2 ~ i ~ n-3 and g = (bi, bn-u bn). Also there is 

( ) h ( - l)h . an element h E h5 , ••• , hn_ 3 such that g or g 1s g1 = 

(bn_ 2 , bn-u bn). As g and h commute with hi, so does g1 • Let 
g1hn-3 

hn_ 2 = hn_ 3 • Then by Lemma 4~ 6, (H, hn_ 2 ) ~ An. But hu ... , hn_ 2 

represent 3-cycles in (H, ~- 2> and if (H, hn_ 2 ) acts on {cu ... , en}, by 

Lemma 4. 5, we may assume hi = (ci, ci+u Ci+2 ) for 1 ~ i ~ n-3 and 

hn_2 = (cj, ck, en). Looking in (~, ... , ~- 2>, the only possibility i s 

hn_2 = (cn_ 2 ,Cn_ucn). Thus by Lemma 4.6, (H,hn_ 2 ,g1 ) = (H,g) ~ An+i· 

Lemma 4.10: Assume hypothesis (A) holds and n ?: 8. Let H be 

a subgroup of G generated by special 3-elements such that X IH = X1 EB lH 

where X1 is irreducible. Let g E G be a special 3-element such that 

XI (H, g) is irreducible. Then (H, g) ~ An+i · 

Proof: By Lemma 4. 7, X1 is primitive. Therefore by hypothesis 

(A), H ~ An. Assume H acts on {au ... , an} . The special 3-elements 

in H are precisely the 3-cycles and so let hi = (ai, ai+i, ai+2). Hence 

H = (h11 ••• , hn_ 2 ) and as XI (H, g) is irreducible, g does not commute 

with H. So g could not commute with both (hu ... , hn_) and 

(h2 , ••• , hn_ 2 ) • As in the proof of Lemma 4. 9, we may assume g does 

not commute with (hu ... , hn_) . 

By Lemma 4. 2, XI (hu ... , hn_ 3 ) = X 1 I (hu ... , hn_ 3) EB 

l(h h ) =Xz EB 2 ·l(h h ) . By Lemma 4.8, 1, ... , n-3 1, ... , n-3 

XI (hu ... , hn_ 3 , g) = Y EB s · 1 (h h g) where Y is irreducible and 
1, ••• , n-3, 

s = 0, 1, or 2. By Lemma 4.7, Y is primitive. Ifs= 2, by hypothesis 
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(A), (hu ... , hn_ 3 , g) ~ An_ 1 ~ (hu ... , hn_) and g E H, contradicting the 

irreducibility of XI (H, g). Thus s = 0 or 1 and by Lemma 4. 9 or 

hypothesis (A), respectively, (hi, ... , hn_ 3 , g) ~ An-s+ 1 • The elements 

hu ... , ~- 3 ,g must all represent 3-cycles and by Lemma 4. 5, there is 

a conjugate g1 of g by an element in (hu ... , ¾-) such that g1 com­

mutes with hu ... , hn_ 5 • Without loss of generality, we may replace 

g by g1 and hence assume g commutes with hu ... , hn_ 5 • 

As XI (H, g) is irreducible, g does not commute with (h2 , •• 

• • ,~_2). But XI (h2 , ••• ,hn_ 2 ) = X1 I (h2 , ••• ,hn_ 2 ) EB 1 (h h ) 
2, · · · , n-2 

= X3 EB 2 · 1 (h h ) where X3 is irreducible by Lemma 4. 2. So 
2,·· ·, n-2 

by Lemma 4. 8, XI (h2 , ••• , hn_ 2 ,g) = R EB r -1 (h h ) where R 
2, • • · , n-2, g 

is irreducible and r = 0, 1, or 2. By Lemma 4. 7, R is primitive. If 

r = 2, by hypothesis (A), ( h2 , ••• , ~-2 , g) ~ A
0

_ 1 ~ (h2 , ••• , ~- 2> and 

so g E H, contradicting the irreducibility of XI (H, g). If r = 0, by 

Lemma 4. 9, (h2 , ••• , ~-2 , g) ~ An+i · As h2 , ••• , hn_ 2 , g are special 

3-elements, they represent 3-cycles. Assume (h2 , ••• , ¾-z, g) acts 

on {bu ... , bn+J. By Lemma 4. 5, we may assume hi = (bi-u bi, bi+1) 

and g = (bj, bn, bn+1 ) for some j. By Lemma 4. 5, there is an 

h ( -1 h . ( ) h E (h5 , ••• , ~-2 ) such that g or g ) 1s g1 = bn_u bn, bn+ 1 • As g 

. g1hn-2 
and h commute with hu so does g1 • Let ~- 1 = hn_ 2 = 

(bn_ 2 , bn-u bn). This commutes with h1 and~; so by Lemma 4. 6, 

(H, hn_ 1 ) ~ An+i· Again hu ... , hn_ 1 represent 3-cycles in (H, hn_ 1 ) 

and if (H, hn_ 1 ) acts on {cu ... , cn+J, by Lemma 4. 5, we may assume 

hi= (ci,ci+uci+ 2) for 1 ::$ i ::$ n-2 and hn-i =(ci,cj,cn+1). Examining 

(h2 , ••• , hn_ 1), the only possibility is ~- 1 = (cn-u en, cn+J. By Lemma 

4. 6, (H, hn-u g1 ) = (H, g) ~ An+2 , contradicting Lemma 4. 2. So r = 1 
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and by hypothesis (A), (~, ... , ~ _2 , g) ~ An. By Lemma 4. 6, 

(H, g) ~ An+i · 

We are now ready to classify G when n ~ 8 and hypothesis (A) 

holds. 

Lemma 4.11: Assume hypothesis (A) holds and n ~ 8. Assume 

there is a subgroup H of G generated by special 3-elements such that 

X IH = Y EB (n-s)lH where Y is irreducible of degree s with 3 ~ s < n. 

Then G contains a normal subgroup N generated by special 3-elements 

such that N ~An+i and G/Z(G) ~ An+i or Sn+i· 

Proof: By Lemma 2. 3 and induction, we may assume s = n-2 

or n-1. Let Y act on the subspace V1 of dimension s. Let g be a 

special 3-element such that X(g) does not leave V1 invariant. If s = n-1 

XI (H, g) is irreducible and by Lemma 4.10, (H, g) ~ An+i · Ifs= n-2 

andXl(H,g) is irreducible, byLemma4.9, (H,g) ~An+i· Ifs=n-2 

and XI (H, g) = X1 EB ~ where X1 is irreducible of degree n-1, by Lemma 

4. 7, ~ = 1 (H, g). In this case, let X1 act on V2 and let g1 be a special 

3-element such that X(g1 ) does not leave V2 invariant. So XI (H,g,g1 ) 

is irreducible and by Lemma 4.10, (H, g, g1 ) ~ An+i. Hence in any 

case, G contains a subgroup N generated by special 3-elements such 

that X IN is irreducible and N ~ An+i · 

Let N act on {a1 , ••• , ~+J and choose special 3-elements 

hu ... , hn-i such that hi = (ai, ai+u ai+ 2). Let h be a special 3-element 

not in N. By Lemma 4. 2, X I (h1 , ••• , ~-2 ) = X1 EB 1 (h
1

, ••• , ¾-
2

) where 

X1 is irreducible. Let X1 act on the subspace W. If X(h) leaves W 
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invariant, by Lemma 4. 7, XI (hi, ... , ~- 2 ,h) = ~ EB 1 (h h h) 
u · · · , n-2, 

where X2 is primitive. But by hypothesis (A), h E ( hu ... , l\i_ 2 ) ~ An, 

a contradiction. So X I (h1 , ••• , ~-2 , h) is irreducible and by Lemma 

4.10, (hi, ... , hn_ 2 , h) ~ An+i· By Lemma 4. 5, there is a g1 = hg for 

some g E (hi, ... , hn_2 ) such that g1 commutes with hv ... , hn_ 5 • Also 

g1 is not in N. As above XI (h2 , ••• , hn-u g1 ) is irreducible and so by 

Lemma 4.10, (h2 , ••• , ~-u g1 ) ~ An+i and h2 , ••• , hn-v g 1 are 3-cycles. 

By Lemma 4. 6, ( hu ... , hn-v g1 ) ~ An+2 which contradicts Lemma 4. 2. 

So h does not exist and N is the subgroup of G generated by all special 

3-elements of G. 

Therefore N 4 G and as X IN is irreducible, CG(N) = Z(G). Thus 

G /Z( G) is a subgroup of the automorphism group of An+i. So 

G/Z( G) ~ An+i or Sn+i. (See [24]). 
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CHAPTER V 

THE PROOF OF THEOREM 2 

In this chapter we complete the proof of Theorem 2. We first 

begin by considering what groups could be generated by two special 

3- elements. 

Lemma 5 .1: Let h1 and h2 be special 3-elements such that h1 

and h2 do not commute. Let n ~ 6. Then one of the following holds: 

1. XI (hi,~) = Y1 EB Y2 EB (n-4)1 (h h) where Yu Y2 are 
1' 2 

irreducible of degree 2. Let Yi ( (h1 , h2 )) = Hi and let Mi 

be the set of all elements in Hi which occur with component 

the identity of H/j * i) in the subdirect product. Then 

Hi ~ SL2(3) for i = 1 and 2, IZ(Hi) I = 2, and either 

M. = Z(H.) for i = 1 and 2, or M
1
. = 1 for i = 1 and 2. Also 

1 l 

Yi (hj) are not unimodular for i = 1, 2 and j = 1, 2. 

2. XI (hi, h2 ) = Y1 EB ~ EB (n-4) 1 (h h ) where Y1 is irreducible 
1' 2 

of degree 3. 

3. X I (h1 , h2 ) = Y EB (n-4) 1 (h
1

, ~) where Y is irreducible of 

degree 4. 

Proof: As h1 and h2 do not commute, XI (hi, h2 ) = Y EB (n-4) 1 (h h ) 
1' 2 

where Y has a constituent of degree at least 2. So we have three pos-

sibilities: 

a. Y = Y1 EB Y2 where Y1 is irreducible of degree 2. 

b. Y = Y1 ED ~ where Y1 is irreducible of degree 3. 

c. Y is irreducible. 
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As b. and c. give 2. and 3., respectively, we only need to show that a. 

gives 1. 

So assume YI (hu h2 ) = Y1 EB Y2 where Y1 is irreducible of degree 

2. Let Yi ( (h1, h2)) = Hi. So Y( (h1, ~)) is a subdir ect product of H1 and 

H2 • If Y1 is monomial in some basis, then Y1(h1) and Y1(h2 ) would both 

be diagonal in that basis as they have odd order. This contradicts the 

irreducibility of Y1 • So Y1 is primitive. We now examine the pos­

sibilities for Y1 by examining Blichfeldt's list [2]. 

This case is impossible as in case A of Chapter 3. 

This case is also impossible as S4 is not generated by its 3-

e lements. 

Assume first that Y2 is reducible. So Y2 = ~1 EB ~2 • Thus H2 is 

abelian and so Y( (h1, h2 ) )' = H: EB 1 EB 1 and H:/(Z(H1) n H;) is elementary 

abelian of order 4. As Hi' consi(s:~ of ~ x) 2 unimodular matrices, the 

only element of order 2 in H{ is 
O 

_ 1 . In particular H{ contains 

an element x of order 4. As x is unimodular, x has eigenvalues 

i and -i. So G contains a special 4-element, a contradiction by 

Theorem 1. 

So Y2 is irreducible also. As previously, Y2 is primitive; also 

H2 /Z(H2) ~ A5 or S4 are eliminated as in cases A and B. So 
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H2 /Z(H2 ) ~ A4 • Note that if any one of Yi(hj) is the identity, then Y1 

or Y2 is reducible, a contradiction. So each Y/hj) is not unimodular . 

Let Mi be as defined in the statement of the lemma. By Theorem 5 .5 .1 

of [11], Mi <3 Hi and H1 /M1 ~ H2 /M2 • Let Ci = Z(Hi). Assume first 

that for some i, MiC/Ci contains the Sylow 2-subgroup of Hi/Ci. Then 

Mi contains a unimodular subgroup of order 4. As earlier Mi could only 

have one involution, the central involution, and so has an element with 

eigenvalues i and -i. Thus G contains a special 4-element, a contra­

diction to Theorem 1. So for i = 1 and 2, M. c C.. As elements of H1 1- 1 

and H2 have only determinant 1, w, or w, Ci could(~rly bt)l, Z2 , Z3, or 

Z6 • As H.' contains an involution, which must be , Z2 c C. 
l Q -1 - l 

for i = 1 and 2. Assume Ci = Z6 for some i, say i = 1. As M1 contains 

unimodular matrices, M1 = Z2 or M1 = 1. In either case, as 

H1 /M1 ~ H2 /M2 , we would have C2 = Z6 and M2 ~ M1 • The iso­

morphism between H1 /M1 and H2 /M2 maps the centers onto one another; 

so X(G) contains an element with eigenvalues -w, -w, -w, -w, 1, 1, ... , 

a contradiction to Blichfeldt. Soc. ~ Z2 and H.' => C. for i = 1 and 2. 
l l - l 

By Schur [25], the only nonsplitting central extension of Z2 by A4 is 

SL2 (3). So H1 ~ H2 ~ SL2 (3) and either Mi = Z(Hi) for i = 1 and 2 or 

M. = 1 for i = 1 and 2. 
l 

Lemma 5. 2: The only nonabelian linear unimodular group P of 

degree 3 and order 27 has exponent 3 and is given by P = (g, h) where 

and 

in some basis. 

0 

w 

0 
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Proof: The representation is monomial ( 52 .1 of [ 5]). Let vu 

v2 , v3 be a basis for the space on which the representation is defined. 

Assume P has an element t of order 9. Assume first that t is not 

diagonal. By ordering Vu v2 , v 3 correctly, 

(

0 a 0) 
t = 0 0 b 

C O 0 

But t has determinant 1. So abc = 1 implying t has order 3, a con­

tradiction. So t is diagonal. Also P = (s, t ls- 1ts = t4
, t

9 = 1, s
3 = 1). 

(See Chapter 4 of [11] . ) As s could not be diagonal, by scaling and 

ordering Vu v2 , v3 correctly, 

s = G : D and (

a O 0) 
t = 0 b 0 

0 0 C 

3 ( 3 ~ 3 { -} where abc = 1 . As t E Z P), a = b = c E w, w . Let a = E where E 

is a primitive ninth root of unity. If E 3 = w either b = c = EW or 

{b, c} = {E, Ew}. If E3 
= W either b = C = EW or {b, c} = {E, Ew}. But 

-1 (~ 

s ts=~ 

and none of the combinations of a, b, and c work. 

So P has exponent 3. Let s be nondiagonal. By ordering and 

scaling Vu v2 , v3 correctly, 
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Let t be an element of order 3 not commuting with s. If t is diagonal, 

by replacing t by C 1 
if necessary and permuting Vi, v2 , v3 cyclically, 

we may assume 

-1 
If t is not diagonal, by replacing t by t if necessary 

where abc = 1. But 

As s and s2t do not commute and s
2
t has order 3, {a, b, c} = {1, w, w} , 

and the result holds. 

Lemma 5. 3: Let h1 and h2 be special 3-elements. Assume 

XI (hu h2 ) = Y1 EB ~ EB (n-4)1 (hi,~) where Y1 is irreducible of degree 

3 and ~ * 1 (h h). Then there exist special 3-elements h( and l½' 
1' 2 

contained in (hi, I½) such that X I (h:, h;} = Y EB (n-3) 1 (h:, h{) where Y 
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is irreducible and (h{, h;) is the nonabelian group of order 27 and 

exponent 3. 

Proof: Assume first that Y1 is monomial. Let Y1 act on V1 

and ~ on (v4). Let Vu v2 , v3 be a basis of V1 in which Y1 is monomial; 

since Y1 (h1) and Y1 (h2) cannot both be diagonal, we may assume Y1 (h1) 

is not diagonal. By replacing h2 by h;
1 

if necessary and scaling and 

ordering v1 , v2 , v 3 correctly, 

0 1 0 1 0 0 0 

(Y1 EB ~) (h1 ) = 0 0 1 and (Yl EB ~)(h2) 0 1 0 0 
= 

1 0 0 0 0 w 0 

0 0 0 0 0 0 

-1 -1 
Let h* = h1 h2h1 h2 • Then 

0 0 

0 w 0 

0 0 w 

0 0 0 1 

and h: = hv h; = h* gives the desired group by Lemma 5. 2. 

Assume now that Y1 is primitive. Let Y1 ( (hi,~)) = H1 and 

~( (h1 , ~)) = H2 • Then H = (Y EB ~)( (h1 , ~)) is a subdirect product of H1 

and H2 • By Mitchell, H1 /Z(H1 ) is an extension of Z3 x Z3 by SL2 (3). Now 

H' is a subdirect product of Hf and H; = 1; also IH; /(Z(H1 ) n H;) I = 72. 

If S is the Sylow 3- subgroup of H:, S ., tt; and so S char tt; <3 H. Thus 

S <J Hand by Clifford's theorem (see [ 5)), as S <t Z(H1), Sis non­

abelian. As Z (H1) n tt; consists of nonsingular uni modular scalar 

matrices, jz(H1 ) n H; I ~· 3. So as Sis nonabelian, Z(H1 ) n H( has 
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order 3 and S has or der 27. By Lemma 5. 2, S is of exponent 3 and the 

result follows . 

The next three lemmas deal with special 3-e lements whic h 

satisfy conclusion 1. of Lemma 5.1. The possibility of conclusion 1. 

occurring is one reason why Theor em 2 is mor e difficult than Theorem 1 . 

Induction techniques do not work quite as ea s ily in this situation as one 

would hope. 

Lemma 5. 4: Let h1 a nd ~ be specia l 3- e lements such that they 

satisfy 1. of Lemma 5.1. Let n ~ 6 and let Yi act on the subspace Vi . 

Let h3 be a special 3-element such that X(h3) does not leave V1 EB V2 

invariant. Then one of the fallowing holds: 

1. XI <hu h2 , h3 ) = U EB (n-s) l (hi, h
2

, h~) where U is irreducible 

of degree s withs = 5 or 6. 

2. There are special 3-elements hf, h; E (hi,~' h:) such that 

XI (h{, 11;) = U EB (n-3) 1 (h, h ') where U is irreducible of 
1 , 2 

degree 3 and (h;, hf) is the nonabelian group of order 27 

and exponent 3. 

3. XI (hi, h2' h3 ) = U1 EB U2 EB (n-6) 1 (h h h ) where both Ui are 
1' 2, 3 

irreducible and primitive of degree 3. Also U/hj) are 

nonunimodular for i = 1, 2 and j = 1, 2, 3. Let Gi = 

U
1
. ( (h1 , h2 , h3)) and N. be the set of all elements in G. which 

1 1 

occur with component the identity of Gj (i =t- j) in the sub-

direct product. Then G. /Z ( G.) is an extension of Z 3 x Z 3 1 l 

by SL2 (3). If N. ct Z(G.) for some i, 2. also holds. 
1- 1 
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Proof: We have XI (hu h2 , h3 ) = U EB (n-6)1 (h h h). As 
1' 2, 3 

X(h3) does not leave V1 EB V2 invariant, X(h3) does not leave both V 1 

and V 2 invariant. Hence U has an irreducible constituent of degree at 

least 3. So we have four possibilities for U: 

A. U is irreducible. 

B. U = U 1 EB ~ where U 1 is irreducible of degree 5. 

C. U = U 1 EB U2 where U 1 is irreducible of degree 4. 

D. U = U1 EB U2 where U1 is irreducible of degree 3. 

First, case A gives 1. Assume case B holds; then 1. holds if 

we show ~ = 1 (h h h ) . By Mitchell, if U1 is primitive, 
1' 2, 3 

~ = 1 (h h h). Assume U1 acts on a subspace Wand is monomial in 
1' 2, ~ 

a bas is vu ... , v :',. As U 1 I (h u h2 ) = Y 1 EB Y 2 EB 1 (h h ) , if ~ * 1 (h h h ) , 
1' 2 1' 2, 3 

U1 (h3) must be diagonal in the basis Vu ... , v5 • Hence as U 1 is irreducible, 

U1 I (h1 , h2 ) does not leave any (vi) invariant. By Lemma 2. 6, 

(hu ~) ~ A5 , a contradiction. So ~ = 1 (h h h ) and 1. holds. 
1' 2, 3 

Assume case C holds. Let Ui act on Wi. If V1 EB V2 .:: Wu 

V1 EB V2 = W1 and X(h3) leaves V1 EB V2 invariant, a contradiction. Hence 

as Vu V2 are unique subspaces, we may assume V1 c W1 and V2 = W2 • 

So U1 (h1) and U1 (h2) have eigenvalues 1, 1, 1, w or 1, 1, 1, w. If U1 is 

monomial in some basis, U 1 (h1) and U 1 (~) would have to be diagonal , 

contradicting U1 I (h1 , h2 ) = Y1 EB 2 · 1 (h h ) . Therefore U1 is primitive. 
1' 2 

But this is impossible by Lemma 2. 2. So case C does not occur. 

Finally assume case D holds. Let Gi = Ui ( (hu h2 , h:)) and let 

Ui act on Wi. By ordering Y1 and Y2 correctly, we may assume Vi ~ Wi. 

Therefore U2 has a constituent of degree at least 2, and U/h J and 

Ui (h2 ) are nonunimodular for i = 1 and 2. We have two possibilities: 
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(i) U2 = U3 EB ~ where U 3 is irreducible of degree 2 and 

~ -:f:. 1 (hu h2' h3) . 

(ii) U2 is irreducible or U2 = U3 EB 1 (h h h) where U3 is 
1' 2, 3 

irreducible of degree 2. 

If (i) holds, then ~(h1) = ~(~) = 1 and ~(h3) -:t 1. As U 1 is 

irreducible, h3 does not commute with both h1 and h2 • Without loss of 

generality assume h3 does not commute with h1 • As U 1 (h3) is not 

trivial, U2(hJ is trivial. So U1 I (hi, h3) = R EB 1 (h h ) where R is 
1' 3 

irreducible of degree 2 and XI (hi, h~) = R EB ~1 EB t2 EB (n~4)1 (h h ) . 
1' 3 

But by Lemma 5. 1, this is impossible. 

So (ii) holds. If either Ui is monomial, in some basis U/h1) and 

U/h2) are both diagonal as they have eigenvalues 1, 1, w or 1, 1, w. This 

contradicts the irreducibility of Yi. So U1 is primitive; if U2 is 

irreducible, it is primitive and if U2 = U 3 EB 1 (h h h ) , U 3 is prim-
1 , .142 , 3 

itive. Let Gi = U / (hi,~, h3) ) . So U( (h1 , l½, h 3)) is a subdirect product 

of G1 and G2. By Mitchell, G1 /Z(G1 ) is Z 3 X Z 3 extended by SL2(3). Let 

Ni be the set of all elements in Gi which occur with the identity of Gj 

(j =f:: i) in the subdirect product. By Theorem 5. 5.1 of [11], Ni <1 Gi 

and G1 /N1 ~ G2 /N2. All nontrivial normal subgroups of G1 /Z( G1 ) con­

tain S, a normal subgroup of order 9. Let S be the inverse image of 

Sin G1 • Assume first that N1 ~ Z(G1). Then Sc N1 = N1Z(G1)/Z(G1). 

Also S .n N1 <J G1 and Is I = 9 · !Z(G1 ) 1- As N1 contains only unimodular 

matrices, Is n N1 I = 9 or 27. By Clifford's theorem [5] as G1 is 

primitive and Sn Nl <t_ Z(Gl), Is n Nl I= 27. So by Lemma 5.2, we 

have 2. Now assume N1 c Z( G1). As G1 /N1 ~ G2 /N2 , by looking at 

Blichfeldt's list of primitive groups of degree 2 and 3, U2 must be 
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irreducible. As it is primitive G2 /Z(G2) ~ G1 /Z(G1). If N2 ~ Z(G2), 

we have 2. as above. We must have U/h3) nonunimodular as both U1 

and U2 are irreducible, and so 3. holds. 

Lemma 5. 5: One of the following occurs for n ~ 6. 

1. There exists a subgroup H of G generated by special 3-

elements such that X IH = Y EB (n-r)lH where Y is irreducible 

of degree r for some r with 3 ~ r ~ 6. 

2. Let h1 and h2 be any two special 3-elements. Then either 

a) h1 and h2 commute 

b) (hu h2 ) ~ SL/3) and XI ( hu h2 ) satisfies 1. of Lemma 5 .1. 

For any special 3-element h3 satisfying the hypothesis of 

Lemma 5. 4, conclusion 3. holds in Lemma 5. 4 but 2. 

doesn't. 

Proof: By Lemma 1. 1, not all special 3-elements commute. So 

let h1 and h2 be special 3-elements which don't commute. If conclusion 

3. of Lemma 5.1 holds, we have 1. If conclusion 2. of Lemma 5.1 holds, 

we have 1. ·by Lemma 5. 3. So assume conclusion 1. holds of Lemma 5.1. 

Let Yi act on Vi. There is a special 3-element h3 such that X(h3) does 

not leave V1 EB V 2 invariant. Hence, if for this h3 , conclusion 1. or 2. 

of Lemma 5. 4 hold, we have 1. So assume conclusion 3. holds but 2. 

doesn't. Then N. c Z(G.). As elements of U1 have determinant 1, w, 
1 - 1 

or w, IZ(Gi) I 19. Also I (huh 2 ,h3) I = IG1 I· IN2 I = 216 · IZ(Gi) I IN2 I= 
2

3 
• 33 

• 3a for some a ~ 1. So in particular 48 ~ I (hi, h2 , h3) I and hence 

by cone lusion 1. of Lemma 5. 1, (h1 , h2 ) ~ SL2 ( 3). 
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Lemma 5. 6: Assume n ~ 8 and that conclusion 2. of Lemma 5. 5 

holds. Let hu h2 , h3 be special 3-elements of G that satisfy conclusion 

3. of Lemma 5. 4 where Ui acts on Wi. Let h4 be a special 3-element 

of G such that X(h4 ) does not leave W1 EB W2 invariant. Then one of the 

following holds: 

1. XI (hi,~' h3 , h4 ) = X EB (n-s)l (h h- h h) where Xis 
1, 2 , 1, 4 

irreducible and primitive of degree s = 7 or 8. 

2. n = 8 and XI (hi, h2 , h3 , h4 ) = R1 EB R2 where R 1 and R2 are 

irreducible and primitive of degree 4. If Fi = R/ (hi, h2 , h3 , h4 ) ), 

___,. ,,,--..-, 
then Fi ~ 0 5(3) x Z3 where 0~(3) is the nonsplitting central 

extension of Z2 by 0 5(3). If Li is the set of all elements in 

Fi which occur with component the identity of F j (i * j) in the 

subdirect product, then Li := O2 (Z(F i)) for i = 1 and 2. 

Proof: As X(h4 ) does not leave both W1 and W2 invariant, we 

have the following possibilities: 

(i) XI ( hv h2 , h3 , h4 ) = X EB (n-8)1 (h h h h ) where Xis 
1' 2, 3, 4 

irreducible. 

(ii) XI (hi, h2 , h3 , h4 ) = X EB Y EB (n-8)1 (h h h h) where X 
1' 2, 3' 4 

is irreducible of degree r with 4 ~ r ~ 7 and Y has 

degree 8-r. 

-First assume either (i) holds or (ii) holds with r = 7. Let X 

- ,.., -act on V. Suppose that X is monomial on V. Then by Lemma 1. 4, 

there exist special 3-elements generating A~, a contradiction to the 

assumption that 2. holds in Lemma 5. 5. So X is primitive and by 

Mitchell, if (ii) holds with r = 7, Y = 1 ( h h h h ) . So in these 
1' 2, 3' 4 

cases, 1. holds. 
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We now assume (ii) holds for 4 ~ r ~ 6. If r = 6, X must be 

acting on W1 EB W2 , a contradiction that X(h4 ) does not leave W1 EB W2 

invariant. If r = 5, the only possibility by correctly ordering U 1 and 

U 2 is that X I ( hu ~, h3 ) = U 1 EB 2 · 1 (h h h ) and Y I (hi, ~, h) = U 2 • 
1' 2, 3 

As X(hi) for 1 ~ i ~ 3 have eigenvalues 1, 1, 1, 1, w or 1, 1, 1, 1, w, by 

Mitchell, Xis not primitive; so Xis monomial. But then in some basis 

of the space on which X acts, X(hi) are all diagonal for 1 ~ i ~ 3, con­

tradicting the fact that U1 is irreducible. So r = 4. Let X = R1 and 

Y = R2 • By correctly ordering U1 and U2 , the only possibility is 

Ri I (hu h2 , h3) = U i EB 1 (h h h ) . If either Ri is monomial, in some 
1' 2' 3 

basis Ri (h1 ), Ri (h2), and Ri (h1) are all diagonal because they have 

eigenvalues 1, 1, 1, w or 1, 1, 1, w. This contradicts the irreducibility 

of Ui. So R1 is primitive and the result follows by Lemma 2. 2. 

The next lemma eliminates a possibility which occurs in [15]. 

Using the powerful results of [ 1] , Lemma 5. 8 shows that condition 1. 

of Lemma 5. 5 holds. This allows us to construct primitive subgroups 

of codimension 1 or 2. 

Lemma 5. 7: If X1 is an irreducible representation of a group H 

containing a special 3-element and X1 has degree 8, then X1 is not the 

tensor product of two representations of smaller degree. 

Proof: Assume X1 is the tensor product of Y1 and Y2 each of 

degree less than 8. Then we may assume Y1 has degree 4 and Y2 has 

degree 2. There exist elements Yu y2 such that Y1 (y1) 0 Y2 (y2 ) has 

eigenvalues w,w,1,1,1,1,1,1. Let Y1(y1) have eigenvalues n;_, ~' a:P 

a 4 and Y2(y2 ) have eigenvalues /3 11 {3 2 • So Y1 (y1)@ Y2 (y2 ) has 
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eigenvalues l\/3j for 1 ~ i ~ 4 and 1 ~ j ~ 2. We may assume a 1{3 1 = w . 

So /3 1 * /3 2 and ~ * a 2 • Thus { n;_/3 2 , a 2{3J = {w, 1}. So {a 3p2 , a 4{3J = 

{1, 1} and hence a 3 = a 4 • So ~/31 = OJ. 4 /3 1 = 1 and hence p1 = /3 2 , a con­

tradiction. 

Lemma 5.8: Let n ;?:- 8. Then 1. of Lemma 5.5 holds. 

Proof: Assume 1. of Lemma 5. 5 fails. By Lemma 1. 1 not all 

special 3-elements commute. Choose special 3-elements h1 and h2 

which do not commute . So (hi,~) ~ SL2 (3) and by replacing h2 by 

Ii;" 1 if necessary, we may assume h1 and ~ are conjugate in (hi, h2 ). 

Also XI ( h1 , h2 ) satisfies 1. of Lemma 5. 1. There is a special 3-

element h3 satisfying the hypothesis to Lemma 5. 4. So (hi, h3) = SL2 (3) 

for either i = 1 or i = 2 and in particular, replacing h3 by h; 
1 

if 

necessary, we may assume h3 is conjugate to h1 in (h1 , h2 , h:) . Also 

3. holds in Lemma 5. 4 but 2. doesn't. We may choose h4 as in the 

hypothesis of Lemma 5. 6, and as above we may assume h4 is conjugate 

to h1 in (hi, h2 , h3 , h4 ). Assume 2. holds in Lemma 5. 6. Then n = 8 and 

by Lemma 1. 1 there is a special 3-element h5 such that XI (hu h2 , h3 , h4 , hi) 

is irreducible. By Lemma 1. 4 and our hypothesis, XI (hi, ... , hs) is 

primitive. As before we may assume h5 is conjugate to h1 in ( hv ... , h!j). 

Therefore in any case we may assume that there is a subgroup Hof G 

generated by an H-conjugate class n of special 3-elements such that 

X jH = X1 EB (n-r)lH where r = 7 or 8 and X1 is irreducible and primitive. 

Any two elements in n either commute or generate SL2 (3). 

By Aschbacher-Hall [1], H/O
00

(H) ~ SPk:(3), Uk(3), or PGUk(2). 

By examination of Wales [27, 28], we see that r = 7 is impossible . So 
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assume r = 8. First consider the case when O 
00

(H) > Z (H). By 

Lemma 5. 7 and inspection of the theorem and proof in Lindsey [15], 

there is a 2-group Q 4 H with X1 IQ irreducible. Consider the group 

T = (hu h2 ) Q which has order 2a3. Let XI (hu h2 ) = 

Y1 EB Y2 EB (n-4)1 (h h) and let Y. act on v.. Assume there is a con-
u 2 l l 

jugate h E T of h1 by an element in T sue h that h ti. (h1, h2 ) • Then as 

32 J IT I, by Lemma 5. 5, X(h) must leave V1 EB V2 invariant. If h 

commutes with ( hu h2 ) , 3
2 

j IT I, a contradiction. Thus X J ( hu h2 , h) = 

Y EB ~ EB (n-5) 1 (h h h) where Y acts on V1 EB V2 and ~ is linear. But 
1' 2, 

for one of h1 or h2 , say hu x!(hi,h) =U1 EB U2 EB (n-4)1 (huh) where 

Uu U2 are irreducible of degree 2, by Lemma 5.1. So ~ = 1 (hu ~' h) 

and by assumption that 1. of Lemma 5. 5 fails, X(h) must leave both V1 

and V2 invariant. Hence xi (huh2 ,h) = R1 EB R2 EB (n-4)1 (h h h) where 
1' 2, 

R. acts on ~. In a manner analogous to case C of Lemma 5. 1, 
1 l 

I ( h1, ~, h) I = 24 or 48. But (h1, h2 ) has four Sylow 3- subgroups and as 

I (hu h2 , h) I = 24 or 48, so does (hu h2 , h) , contradicting h (/_ (hu ~) . 

Thus all conjugates of h1 by elements in T lie in (h1, ~) . In 

particular Q normalizes (h1, h2 ) • 

For either i = 1 or i = 2, (h., h 3) ~ SL2(3). As in the preceding 
l 

paragraph, Q normalizes (hi' h3). So Q normalizes H1 = (hu h2 , h). 

By examining the groups listed in section 3 of Aschbacher-Hall [1], 

IH1 I = 648 and 0 2 (H1) = 1. As Q and H1 normalize each other, 

[ Q 'H1] ~ Q n H1 <J QHl. As 02(H1) = 1, Q n Hl = 1 and hence Q and Hl 

centralize each other. This is clearly impossible as X1 /Q is irreducible. 

Thus O 
00

(H) = Z(H). By 2D of Brauer [ 3] , we may assume the 

highest prime dividing IHI is 7. Then H/Z(H) ~ Ofi(3), U3(3), or U4(3). 
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I (hu ~' h~) I = 648, a contradiction. Let K ~ 0 5(3) or U4 (3) and let 

L be a group with Z(L) a 2-group and L/Z(L) ~ K. An element of 

order 5 in K is self-centralizing, and so CL((7T 5)) = (1T 5 ) x Z(L) where 

1T 5 is a 5-element of L. All 5-elements of Kare conjugate and so all 

5-elements of Lare conjugate. As 5
2 f IL I, by Brauer [4, I, Theorem 

10], every 5-block of defect 1 has characters of degree z = ± 1 (mod 5). 

So L does not have an irreducible character of degree 8, and hence H 

does not exist. This is a final contradiction and so 1. of Lemma 5. 5 

holds. 

The next lemma allows us to use the results of Stellmacher [26] 

when n = 8. Lemma 5.10 shows that when hypothesis (A) of Chapter IV 

fails in the case n = 8, we get a large primitive subgroup of degree 7. 

The final two lemmas complete the proof of Theorem 2. 

Lemma 5.9: Let n = 8. Let h1 and h2 be special 3-elements. 

Then either h1 and h2 commute or (hu I½> is isomorphic to A4 , SL2 (3), 

Proof: Assume there is a subgroup H of G generated by special 

3-elements such that X IH = X1 EB (8-s)lH where X1 is irreducible and 

primitive of degree s = 6 or 7. By Lemma 5. 8 and Corollary 2. 2, such 

a subgroup exists. By examination of the primitive groups in Lindsey 

[14, 16, 17] and Wales [27, 28] and by applying Blichfeldt, we get that 

if s = 6, H ~ A7 or 0 5(3) and if s = 7, H ~ A8 or PSp6(2). (If s = 6, the 

group H with H/Z(H) ~ U4 (3) has a special 3-element (see I 16]); but 

I Z(H) I = 6 in this case, which gives a contradiction by Blichfeldt.) In 
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particular if p j jG I where p is a prime we must have p ~ 7 (see 

Brauer [ 3] ) . Also in these cases X1 has a rational character. 

Let h1 and h2 be noncommuting special 3-elements. We study 

the possibilities for XI (hi, h2 ) given in Lemma 5. 1. 

Consider the case XI (hi, h2 ) = Y1 EB ~ EB 4 · 1 ¢1u ~) where Y1 is 

irreducible of degree 3. If ~ * 1 (hi,~), by Lemma 5. 3, there exist 

special 3-elements h{, h; such that XI (h{, h;) = Y EB 5 · 1 <h{, h;) 

where ( h{, ~) is the nonabelian group of order 27 and exponent 3. Then 

by Corollary 2 .1, there is a subgroup H of G generated by special 3-

elements such that (h{, h;) ~ H and X jH = X1 EB (8-s)lH where X1 is 

irreducible and primitive of degree s = 6 or 7. By the first paragraph 

of this proof, X1 has a rational character, contradicting the existence 

of an element z E Z( (h{, h;)) such that X(z) has eigenvalues 

w,w,w,1,1,1,1,1. So~ =l(h h)' ThusbyCorollary2.1, there is 
1' 2 

a subgroup H of G generated by special 3-elements such that (hi, h2 ) :::. H 

and X jH = X1 EB (8-s)lH where X1 is irreducible and primitive of degree 

s = 6 or 7. As above Z( (hi, h2 )) = 1. If Y1 is primitive, the only pos­

sibility is (h1 , h2 ) ~ SL2(7) or A5 by looking at Blichfeldt's list. If 

(hi, h2 ) ~ SL/7), the eigenvalue structure of a 7-element is incorrect 

in X1 jH. So if Y1 is primitive, (hu h2 ) ~ Af',. 

Now assume Y1 acts on V1 and is monomial in some basis Vu v2 , 

Vu v2 , v3 correctly and numbering hu h2 correctly, we may assume 
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As (hi, h2 ) cannot be the nonabelian group of order 27 and exponent 3, 

as above, by replacing h2 by h;
1 

if necessary, we may assume 

If H is A7 or A8 , the special 3-elements correspond to 3- cycles and so 

two of them commute, generate A4 , or generate A5 • So we may assume 

H ~ 0 5 ( 3) or PSp6(2). But X1 (h1
2
~) has eigenvalues a, b, c, 1, 1, . . . . 

By examining X1 IH, the only possibilities are {a, b, c} = { 1, -1, -1} or 

{1, w, w}. The first case gives (hu h2 ) ~ A4 and the second case gives 

(hi, h2 ) the nonabelian group of order 27 and exponent 3, a contradiction. 

So if case 2. of Lemma 5 .1 holds, ( hu hJ ~ A4 or A5 • 

Now assume X I (h1 , h2 ) = Y EB 4 · 1 ( h
1

, ~) where Y is irreducible 

of degree 4. Let Y act on V 1 • Assume fir st that Y is monomial on V 1 • 

Let Vu v2 , v3 , v4 be a basis of V1 in which Y is monomial. By ordering 

and scaling Vi, v2 , v3 , v4 correctly and replacing h2 by h;
1 

if necessary, 

we may assume 

·o 1 0 0 1 0 0 0 

0 0 1 0 0 0 a 0 
Y(h1 ) = 1 0 0 0 and Y(~) = 0 0 0 1 

0 0 0 1 0 
-1 

0 0 a 

where a * 1. By Corollary 2. 1, there is a subgroup H of G generated 

by special 3-elements such that (bu h2 ) ~Hand X IH = X1 EB (8-s)lH 

where X1 is irreducible and primitive of degree s = 6 or 7. By the 

first paragraph H ~ A7 , A8 , 0 5(3), or PSp6(2). If H ~ A7 or A8 , h1 and 

h2 represent 3-cycles and generate A4 or A':, contradicting Y being 
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irreducible and monomial. So H ~ 0 5 (3) or PSp6(2). Now X1 ( (h1 h2 )
2

) 

has eigenvalues a, a-
1

, a, a - 1
, 1, 1, . . . . By looking in the character 

table of 0 5(3) or PSp 6(2), the possibilities for a are -1, w, w, i, or -i. 

If a = -1, Y has an invariant subspace (v1 + wv2 + wv3 ) EB 

- ( 2 -1( -1 -1 2 (-v2 + wv3 + wv4), a contradiction. Let g = h1 h1 ~) h1 h2 h1 ) and 

h = h1gh; 1g- 1
• Then X1 (h) has eigenvalues a 4, a- 2

, a -
2

, 1, 1, 1, ... which 

- -1( -1 -1 2( 2 ( is impossible if a = w or w. Let h = h1 h2 h1 ) h2 h1 h2 ) • Then X1 h) 
-1 - 1 3 -1 

has eigenvalues a , a , a , a , 1, 1, ... which is impossible if a = ± i. 

Thus Y must be primitive. 

There is a special 3-element h 3 such that X(h3) does not leave 

V1 invariant. So XI (hu h2 , h3 ) = R EB 2 · 1 (h h h ) where either R is ir-
1' 2' 3 

reducible or R = R1 EB ~ where R1 is irreducible of degree 5. Assume 

first that R acts on V2 and is monomial. Then there is a basis 

Vu ... , v 6 of V2 in which R is monomial. As Y is not monomial, 

R I (hu h2 ) can fix at most one (vi) trivially. But the only possibility 

by Lemma 2. 6 is that (h1 , h2 ) ~ A5 • So we may assume that if R is 

irreducible it is primitive, and if R = R1 EB ~' R1 is primitive and 

~ = 1 (h h h) by Mitchell. By Lindsey [18], the Sylow 5-subgroup of 
1' 2, 3 

G is abelian. Using this fact and the list of primitive groups of degree 

5 in Brauer [ 3] , if R is reducible (h1 , ~, h3) ~ A6 or 0 5 ( 3) . Now if 

(hu h2 , h3) ~ 0 5 (3), R1 doesn't have a rational character. Let R1 act 

on V 3 and let h4 be a special 3-element such that X(h4) does not leave 

V 3 invariant. So XI (hu h2 , h3 , h1 ) = S EB 1 (h h h h ) where either S 
1, 2, 3, 4 

is irreducible or S = S1 EB ~ with S1 irreducible of degree 6. By Lemma 

1. 4, as 0 5 (3) is simple and not contained in A7 , S cannot be monomial. 

So S is primitive if it is irreducible, and if S = S1 EB ~, ~ = 1 (h h h h ) 
· 1' 29 3' 4 
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and S1 is primitive. By the first paragraph, S has a rational character, 

a contradiction. So if R is reducible, ( h1 , h2 , h3 ) ~ A6 and the only 

possibility is that (hu h2 ) ~ A5 • So we assume R is irreducible. By 

the first paragraph, (h1 , ~' h) ~ A7 or 0 5 (3). Noting that in either 

group a 5-element is self-centralizing, by examining Blichf eldt' s list 

[2] of primitive groups of degree 4, and by applying Blichfeldt, the only 

possibility is that (hu ~) ~ A5 • So if 3. holds of Lemma 5 .1, 

(hu h2 ) ~ A5 • 

Now assume 1. holds in Lemma 5 .1 . In the notation of con­

clusion 1. of Lemma 5. 1, it suffices to prove M. = 1 for i = 1 and 2. 
1 

Let h3 be a special 3-element such that X(h3) does not leave V1 EB V 2 

invariant by Lemma 1. 1. Then the possibilities for X I ( h1 , ~, h:1) are 

listed in Lemma 5. 4. Assume Mi * 1 for both i = 1 and i = 2, and 

hence I (h1 , ~) I = 48. Assume fir st that X I (h1 , h2 , h) = U EB 

(8-s)l (h h h) where U is irreducible of degree s with s = 5 or 6. 
1' 2, 3 

Suppose U is primitive. By what was done in the previous paragraph, 

if s = 5, ( hu ~' h3 ) ~ A6 and if s = 6, (hu h2 , h3 ) ~ A7 or 0 5(3). But as 

M. =1= 1 for i = 1 and i = 2, there is an element g E (h1 , h2 ) with 
1 

'( 1 0) Y1 (g) = Y1 (h1), Y2(g) = - Y2(h1 ). Then U(g) does not have a 
0 -1 

rational trace, a contradiction as U must have a rational character. 

So U is monomial. Thus in some basis vu ... , vs of the subspace on 

which U acts, by ordering and scaling v 1 , ••• , vs correctly and replacing 
-1 

h2 by ~ if necessary, we may assume 



V1X(h1 ) = V2 

V2 X(h1 ) = V3 

V 3X(h1 ) = V1 

V £X(h1) = v.f for l > 3 

and 
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v2X(~) = av3 

V3X(~) = V4 

v4X(~) = a- 1v2 

v.fX(~) = v.f for £ i {2, 3, 4} 

As U I (hu h2 ) = Y1 EB Y2 EB (s-4)1 (h h ) and as U( (h1h2 )
2

) = 
1' 2 

diag{a, a- 1
, a, a- 1

, 1, ... } , the only possibility is a = a -i. So a = ± 1. If 

a= 1, (h1,h2 ) ~ A4 , a contradiction. If a= -1, (h1,h2 ) ~ SL2(3), a 

contradiction. Thus if Mi * 1 for i = 1 and i = 2, 1. of Lemma 5. 4 does 

not hold. By what we have already done, 2. of Lemma 5. 4 could not 

hold. So assume 3. of Lemma 5. 4 holds. In the notation of that lemma, 

Ni£ Z(Gi) for i = 1 and 2 and I (hi,~' h3 ) I = 2
3 

• 3a for some integer a. 

But then I (hi,~) I =t- 48, a contradiction. So in any case, we must con­

clude Mi = 1 for both i = 1 and i = 2, and hence (hi, h2 ) ~ SL2 (3). 

Lemma 5.10: Let n = 8. Assume the special 3-elements of G 

do not generate A 9 • Then there is a subgroup H of G generated by 

special 3-elements such that X jH = R EB lH where R is irreducible and 

primitive of degree 7 with H ~ PSp6~). 

Proof: By Lemma 5. 8 and Lemma 4.11, hypothesis (A) of 

Chapter 4 does not hold. Thus there is a subgroup K of G generated by 

special 3-elements such that X IK = X1 EB (8- s) lK where X1 is irreducible 

and primitive of degree s = 6 or 7 and K ~ As+i. By the first para­

graph of the proof of Lemma 5. 9, if s = 6, K ~ 0 5(3) and if s = 7, 

K ~ PSpi2). If s = 7, we are done and so assume s = 6. 

There is a subgroup K1 c K with K1 ~ A6 • This subgroup is the 

derived group of the stabilizer of a point in the permutation represen­

tation of 0 5(3) on 36 letters [12] . So X IK1 = X1 IK1 EB 2 · lK
1 

= ~ EB 3 · lK
1 
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where X2 is irreducible and primitive, by examining the character table 

of A6 • Also K1 is generated by special 3-elements. Let Xi act on Vi for 

i = 1 and 2. So V2 cV1 • Let 2 ·lK act on v; and 3 ·lK
1
act on v;. Hence 

v; c v;. 
Assume the lemma is false. Let g be a special 3-element such 

that X(g) does not leave V1 invariant. In particular g does not com-

mute with K. Let Ki, ... , Kk be all the K-conjugates of K1 • As K is 

simple, K = <Ku ... , Kk). Thus g does not commute with some Ki and 

by renumbering, we may assume g does not commute with K1 • Assume 

first that X(g) leaves V2 invariant. So XI (Ki, g) = X3 EB ~1 EB ~2 EB 1 (Ki, g) 

where X3 acts on V2 • As g does not commute with Ku ~1(g) * 1, 

~ 2 (g) * 1 is impossible. So one~-, say for i = 2, is 1 (K >. If 
1 1'g 

~ 1 (g) = 1, X(g) leaves V1 invariant, a contradiction. So ~1 (g) * 1. But 

this is a contradiction by Mitchell as X3 jK1 = X2 is primitive. So X(g) 

does not leave V2 invariant. We have three possibilities for XI (Ku g): 

A. XI <Ku g) = R EB 1 (Ki, g) where R is irreducible and primitive. 

B. XI <Ku g) = R EB 1 (Ku g) where R is irreducible and monomial. 

C. XI (Ki, g) = R EB ~ EB l(Ki, g) where R is irreducible of 

degree 6. 

We show that in any case there is a special 3-element h such that 

XI (K1 , h) = Y EB 2 · 1 (K
1

, h) where X(h) does not leave V1 invariant. 

Assume case A holds. As we are assuming the lemma is false, 

(Ki, g) ~ A8 • As all special 3-elements of (Ki, g) represent 3-cycles, 

by Lemma 4. 5, K1 is the stabilizer of two points. Choose a special 

3-element h such that <Kuh) is the stabilizer of one point, and hence 

so that <Kuh) ~ A7 • So XI (Ki, h) = Y EB 2 · 1 (Ki, h) where Y is 

irreducible. If X(h) leaves V1 invariant, then Y acts on V1 and 
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XI (K, h) = S EB 2 • l (K, h) where S is primitive on V1. So (K, h) ~ 

0 5(3) or A7 • But (K, h) contains subgroups isomorphic to both 0 5(3) 

and A7 , which is impossible. So X(h) does not leave V1 invariant. 

Assume case B holds. Let R act on Wand 1 ( Ku g) on (v8). 

Let Vi, ... , v7 be a basis of Won which R is monomial. Choose special 

3-elements gu g2, g 3 , g4 in K1 with gi corresponding to the 3-cycle 

(i, i+l, i+2). By ordering and scaling v1, ... , v7 correctly we may assume 

vkX(gk) = Vk+1 viX(g) = av. 
J 

vk+1X(gk) = vk+2 vjX(g) = V7 
and 

vk+2X(gk) = vk V7X(g) 
-1 

=a v. 
l 

v f_ X(gk) = v f_ for I._ Et {k, k+l, k+2} V 1X(g) = Vf for £ El{i,j,7} 

In the expression for X(g), a =1= 1 and i =1= j with i, j < 7. By conjugating 
-1 -1 

by an element of Ki, we may assume i = 5 and j = 6. Leth = gg3gg 3 g . 

Then 

v4X(h) 

v5X(h) 

v6X(h) 

Now XI <Kuh) = Y EB 2 · 1 (Ki, h), where Y is irreducible on (vu ... , v 6). 

By examining (g4 , h), by Lemma 5. 9, a = -1 is the only possibility. 

Assume X(h) leaves V1 invariant. Then V1 = (vi, ... , v 6 ) and 

XI (K, h) = S EB 2 • 1 (K, h). So as S jK = Xu h EK and (K, h) ~ 0 5(3). 

Let f = gfh. Then viS(f) = -vi for i = 4 and 6 and vjS(f) = vj for 

j = 1, 2, 3, and 5. Conjugating f by elements of K1, we get elements 
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hv I½, h3 with V2 i_ 1 X(h
1
.) = -V2i-v V 2 iX(h.) = -V2i and v.X(h.) = v. for 

1 J 1 J 

j * 2i-1, 2i. But then S(h1 l½h3) is a nontrivial scalar matrix, con-

tradicting Z(0~(3)) = 1. Thus X(h) does not leave V1 invariant. 

Assume case C holds. Suppose ~ =t- 1 (K
1

, g) ; so ~(g) * 1. But 

there is some special 3-element g1 E K1 with g1 not commuting with g. 

The only possibility is that XI (gu g) = Y1 EB ~1 EB ~2 EB 4 · 1 ( ) where 
g1' g 

Y1 is irreducible of degree 2 or XI (gv g) = Y2 EB /J. EB 4 · 1 ( ) where 
g1' g 

Y2 is irreducible of degree 3 and µ{g) =t- 1. By Lemma 5 .1, the first 

case is impossible. By Lemmas 5. 3 and 5. 9, the second case is im­

possible. Hence ~ = 1 (Ku g) and letting g = h, we have the desired 

result. 

So there is a special 3-element h such that XI (Ki, h) = 

Y EB 2 -1 <Kuh) where X(h) does not leave V1 invariant. Thus either 

XI (K, h) is irreducible or XI (K, h) = R EB ~ where R is irreducible of 

degree 7. Let Y act on W 1 and 2 · 1 (K
1

, h) on W; . Note that W { c V;. 

As V { and W { are subspaces of dimension 2 contained in the subspace 

V; of dimension 3, V; n W { has dimension at least 1 and XI (K, h) acts 

trivially on V{ n W{. So V{ n w; has dimension 1 and XI (K, h) = R EB~ 

where ~ = 1 (K, h). As 0 5(3) is simple and not contained in A7 , R is 

primitive by Lemma 1. 4. As 0 5(3) is not contained in A8 , the only 

possibility is that (K, h) ~ PSp6(2). This contradicts the assumption 

that the lemma is false and so the result follows. 

Lemma 5 .11: Let n = 8 and let N be the subgroup of G generated 

by all special 3-elements. Then one of the following holds: 

1. N ~ A9 and G/Z(G) ~ A 9 or S9 • 
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2. N/Z(N) ~ 0:(2) where Z(N) has order 2 and N = N'. Also 

G/Z( G) is a subgroup of the automorphism group of 0 8+ (2). 

Proof: If N ~ A 9 , then X jN is irreducible and so CG(N) = Z(G). 

As N 4 G, G/Z(G) = G/CG(N) is contained in the automorphism group of 

A 9 • Thus G/Z(G) ~ A 9 or S 9 and 1. holds. 

Assume N is not isomorphic to A 9 • Then by Lemma 5. 10, 

there is a subgroup H generated by special 3-elements such that 

H ~ PSp6(2) and X !H = R EB lH where R is irreducible and primitive of 

degree 7. All special 3-elements of H are conjugate in H and the special 

3- elements generate H. Also by Ase hbacher- Hall [ 1] and Lem ma 5. 9, 

there are two special 3-elements in H which generate A5 • Let R act on V1 

and let g be a special 3-element in G such that X(g) does not leave V1 

invariant. So g does not commute with H; hence g does not commute 

with some special 3-element h1 E H. By Lemma 5. 9, g is conjugate to 

h1 or h1-
1 

in (g, h1) • Thus g is conjugate to the special 3-elements of H 

by an element in (H, g). Let h be any special 3-element of G. Then h 

does not commute with < H, g) as X I (H, g) is irreducible and so h does 

not commute with some special 3-element h2 E (H, g). By Lemma 5. 9, 

h is conjugate to ~ or h; 
1 

in (g, h2 ) and we can cone lude that all special 

3-elements of Gare conjugate in the group N that they generate. 

By Lemma 5. 9 and Stellmacher [26], N/O
00

(N) is isomorphic to 

± PSp2k(2) fork ~ 3, O2k (2) for k ~ 3, Ak fork~ 5, HJ, G2(4), Sz, or 

C 0 1 • As H is simple, H n O 
00 

(N) = 1 and N /O 
00 

(N) contains a subgroup 

isomorphic to PSpi2). If p is a prime and p I I G I, then p ~ 7 ( see [ 3]). 

Therefore using these two facts, we can conclude that N/O 
00 

(N) ~ 

PSpi2) or o: (2). 
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Con sider first the case that 0 
00 

(N) > Z (N). By Lemma 5. 7 and 

inspection of the theorem and proof in Lindsey [ 15] , there is a 2-group 

Q ~ 0 
00 

(N) such that Q 4 N, X /Q is irreducible, and N /Q is a subgroup 

of PSpi2). From the fact that N/0 
00 

(N) ~ PSp6 (2) or 0:(2), we could 

only have 0 
00

(N) = Q and N /0 
00 

(N) ~ PSp6 (2) . Therefore as 0 
00 

(N) n H 

= 1, N = HQ. By Frame [7], H has a subgroup H1 with H1 ~ 0 5(3). As 

X jH has a rational character, the only possibility is that X jH1 = R1 EB 2 · lH 
1 

where R1 is irreducible and primitive of degree 6. H1 is generated by 

special 3-elements. As Q 4 N, consider the group N1 = H1Q. Then 

jN1 I = IH1 I· 2a for some integer a. Let R1 act on V2 . Let h1 be any 

special 3-element of H1 and h any conjugate of h1 by an element of N 1 • 

Assume X(h) does not leave V2 invariant. Then XI <Huh) is irreducible 

or X I ( H11 h) = S EB ~ where S is irreducible of degree 7. As 7 ~ jN1 I, 

the latter is impossible. So X I (H1 , h) is irreducible; as 0 5 ( 3) is simple 

and not a subgroup of A8 , by Lemma 1. 4, X I (H1 , h) must be primitive. 

But this contradicts Lemma 5.10. So X(h) leaves V2 invariant. Hence 

XI (H11 h) = S EB ~1 EB ~2 where S is irreducible of degree 6. As S jH1 

is primitive, so is S. If ~1 (h) =1- 1 and ~2 (h) -t- 1, h commutes with H1 and 

h El H1 • But then the Sylow 3-subgroup of N1 is larger than the Sylow 

3-subgroup of H11 a contradiction. So at least one ~i is 1 (Huh) and 

by Mitchell, both must be. By the first paragraph of the proof of 

Lemma 5. 9, the only possibility is h E H1 • Therefore H1 <l N1 and so 

[H1 , Q] ~ H1 n Q = 1. So H1 centralizes Q, a contradiction as X jQ is 

irreducible. 

Thus 0 
00 

(N) = Z(N). Hence if N/0 
00 

(N) ~ PSp6 (2), N = HZ(N), 

a contradiction as X jN is irreducible. So N/Z(N) ~ 0 8+(2). By 
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examining Frame [8], it is easy to see that 0:(2) has no irreducible 

representation of degree 8. So Z(N) is cyclic of order 2, 4, or 8. 

Also N'Z(N) = N as N/Z(N) is simple. Hence N/N' is a 2-group. As 

N is generated by elements of order 3, N = N'. The Schur multiplier 

of 0 8+(2) by Steinberg (see [6]) is Z2 x Z2 • As Z(N) is cyclic, we must 

have ]Z(N) I = 2. Frame [ 8] exhibits a group, the Weyl group of E 8 , 

whose derived subgroup has the properties of N described here. As 

N <1 G and X /N is irreducible, CG(N) = Z(G). So G/Z(G) is a subgroup 

of the automorphism group of N. But the automorphism group of N is 

clearly isomorphic to a subgroup of the automorphism group of o/(2). 

Lemma 5. 12: Let n ?:. 9 and let N be the subgroup of G generated 

by all special 3-elements. Then N ~ An+i and G/Z( G) ~ An+ 1 or Sn+1 • 

Proof: We first consider the case n = 9. Assume hypothesis (A) 

of Chapter 4 does net hold. Then there is a subgroup K of G generated 

by special 3-elements such that X /K = X1 EB (9-s) lK where X1 is prim­

itive and irreducible of degree s = 7 or 8 and K ';f. As+i. If s = 8, by 

Lemma 5.11, K/Z(K) ~ 0 8+(2) and Z(K) * 1. But then X(G) contains an 

element with eight eigenvalues equal to -1 and the other one equal to 1. 

By Mitchell [21], G/Z(G) ~ S10, clearly a contradiction. So s = 7 and 

by examining Wales [ 27, 28] K ~ PSp6 (2). Let X1 act on V1 and 2 · lK 

act on V(. 

By Frame [7], there is a subgroup K1 of K with K1 ~ Os{3) and 

X jK1 = ~ EB 3 · lK where ~ is irreducible and primitive of degree 6. 
1 

Also K1 is generated by its special 3-elements. Let g be a special 

3-element in G such that X(g) does not leave V1 invariant. In particular 
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g does not commute with K. As in the proof of Lemma 5.10, by 

replacing K1 by an appropriate K-conjugate, we may assume g does 

not commute with K1 • Let X2 act on V 2 and 3 · lK on V;. As in the 
1 

proof of Lemma 5.10, X(g) does not leave V2 invariant. Therefore 

XI ( Ku g) = S EB 1 <Kv g) where S is irreducible or S = Y EB ~ such that 

Y is irreducible of degree 7. Assume first that Sis irreducible. By 

Lemma 1. 4, as 0 5(3) is simple and not a subgroup of A8 , S is primitive. 

But by Lemma 5. 11, (Ki, g) /Z( (Ki, g)) ~ o: (2) is the only possibility. 

This is a contradiction, as in the first paragraph. So S = Y EB ~. By 

Lemma 1. 4, Y must be primitive. Hence XI (K1 , g) = Y EB 2 · 1 (K ) 
i,g 

by Mitchell. Arguing as in Lemma 5.10, XI (K, g) = R EB 1 (K, g) where 

R is irreducible. By Lemma 1. 4, since PSp6(2) is simple and is not 

contained in A8 , R is primitive. By Lemma 5.11, (K, g) / Z( (K, g)) ~ 

0 8+(2) is the only possibility, a contradiction as in the first paragraph. 

So hypothesis (A) holds and by Lemmas 5. 8 and 4.11, the result holds 

for n = 9. 

We now consider n = 10. Again assume hypothesis (A) fails. 

Then there is a subgroup K of G generated by special 3-elements such 

that X IK = X1 EB (10-s)lK where X1 is irreducible and primitive of 

degree s = 8 or 9 with K ~ As+i· From the case n = 9, we must have 

s = 8. By Lemma 5.11, K/Z(K) ~ 0 8+(2). By Lemma 5.10, K contains 

a subgroup K1 generated by special 3-elements such that X jK1 = ~ EB 3· lK 

where K1 ~ PSpi2) and X2 is primitive and irreducible. Let X1 act 

onV1 and2·1KactonV{. Let~actonV2 and3·1K onv;. 
1 

Let g be a special 3-element such that X(g) does not leave V1 

invariant. As in the proof of Lemma 5.10, X(g) does not leave V2 

] 



84 

invariant. Therefore X I (K1 , g) = S EB 1 (Ku g) where S is irreducible 

or S = Y EB ~ such that Y is irreducible and ~ is linear. By Lemma 

1. 4, as PSp6(2) is simple and not a subgroup of A 9 , if Sis irreducible, 

it is primitive, and if S is reducible, Y is primitive. From the result 

for n = 9, S cannot be irreducible as PSpi2) is not a subgroup of A10 • 

So XI <Ku g) = Y EB 2 · 1 <Ki, g) by Mitchell. Arguing as in Lemma 5.10, 

XI (K, g) = R EB 1 (K, g) where R is irreducible. But again by Lemma 

1. 4, R is primitive and so (K, g) ~ A10• But K1 ~ PSpi2), a contra­

diction. So hypothesis (A) holds. Therefore by Lemmas 5. 8 and 4. 11, 

the result holds for n = 10. 

Assume the result fails for some n ? 11 and let n be minimal 

so that a counterexample exists. By Lemmas 5. 8 and 4.11, hypothesis 

(A) fails and so there exists a subgroup H of G generated by special 3-

elements such that X IH = X1 EB (n- s) lH where X1 is irreducible and 

primitive of degree s = n-1 or n-2 but H ~ As+i. As n ? 11, this con­

tradicts the minimality of n and the lemma holds. 

Combining Lemmas 5.11 and 5.12, the proof of Theorem 2 is now 

complete. 

The corollary is an easy application of Theorem 2. Let G be 

simple and X a nontrivial complex representation of G of degree n ? 10. 

Let H be a subgroup of G isomorphic to An-i · By Lemma 4. 2, 

X I H = X1 EB 2 · lH where X1 is irreducible and primitive of degree n-2. 

In particular G contains a special 3-element, and as G is simple, it is 

generated by its special 3-elements. Also X = Y1 EB Y2 where Y1 is 

irreducible of degree n-2, n-1, or n. If Y1 has degree n-2, it is primi­

tive as X1 is. So special 3-elements g E G '\H have the property that 
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either Y1 (g) or Y2 (g) is trivial; as G is simple, Y2 (g) must be trivial 

and hence Y2 = 2 · lG. By Theorem 2, G ~ An-i· If Y1 has degree 

n -1, Y2 = lG as G is simple. By Lemma 1. 4, Y1 is primitive and by 

Theorem 2, G ~ An. If X is irreducible, by Lemma 1. 3 it is primi­

tive and by Theorem 2, G ~ ¾+i· The corollary is proved. 
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