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ABSTRACT

Microstructure-governed damage resistance in materials enables a variety of func-
tional applications, such as durable biomedical implants and robust product pack-
aging. For example, the refined phase compatibility qualifies NiTi for artery stents,
while carbon fiber reinforced polymers improve structural strength in aerospace
engineering. As the overall size of industrial applications continue to decrease, it
has become increasingly apparent that when a material’s external structural size and
internal microstructural size become comparable, its mechanical behavior starts to
deviate from that of bulk, such as the smaller-is-stronger size-effect in metals. This
elucidation necessitates the characterization of materials at lengthscales relevant
to their internal microstructure to guarantee accuracy in the design of real-world
applications.

This thesis aims at deciphering the microstructure-mechanics relationship for ma-
terials at lengthscales bridging the gap between 1𝑛𝑚 and 1𝜇𝑚, with shape memory
ceramics, scorpion shells, and jellyfish biogel as sample systems. We use elec-
tron and x-ray diffraction to characterize microstructures such as twinning, defects,
and fiber organization, while revealing strength, toughness, and other deforma-
tion mechanisms through in-situ nanomechanical experiments. We show improved
shape recovery in an otherwise brittle ceramic by tuning its phase compatibility
at the nanoscale and reveal unprecedented smaller-is-stronger size-dependence for
its twinning-induced plasticity. We then unveil competing fiber orientations in
Scorpion shells that follow fiber-mechanics principles and demonstrate a combined
poroelasticity/viscoelasticity constitutive relation in jellyfish that explains their self-
healing behavior. The correlation between microstructure and mechanical behavior
unveils unique damage mitigation and energy dissipation techniques in both brittle
ceramics and natural biomaterials at each order of lengthscale, paving the road to de-
signing macroscopic materials with hierarchical mechanical behavior and improved
plasticity.
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C h a p t e r 1

INTRODUCTION

As the effective size of engineering applications continues to shrink in important
industries such as consumer electronics, biomedical devices, energy storage, etc.,
the need for systematic design and improvements in the mechanical behavior of ma-
terials at the micro- and even nanoscale becomes increasingly important. Improved
understanding of the stress distribution under nanoindentation for different materials
[1, 2] and its more recent adaptations [3, 4] have enabled systematic in-situ studies
of microstructure-governed post-elastic deformation (plasticity [5], fracture [6, 7],
buckling [8], densification [9], etc.) at scales as small as a few nanometers [10] in
a plethora of materials such as porous metals [11], amorphous-crystal composites
[12], biomaterials [13], lattices [14], and functional metamaterials [8]. A variety
of miniaturized testing configurations have been developed, such as compression
[15], tensile testing [16], and bending [7, 17] under varied environmental control,
for example cryogenic temperatures [18]. With the abundance of covered topics,
nanomechanical experimentation has quickly transitioned from a scientifically in-
triguing research direction to a handy tool for the investigations of more complex
systems such as hierarchical arhitected materials [19], textured shape memory alloys
[20], and biocomposites [21].

1.1 Mechanics at Different Lengthscales

Figure 1.1: Microstructure at different relevant lengthscales presented in this work,
with (left to right) crystal lattice transformation [22], dislocation-governed plasticity,
fiber-reinforced composite [23], and lattice-based mechanics.
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While conventional engineering often treats materials to be homogeneous, studies
have repeatedly shown that as application size decreases to approach that of its
material microstructure lengthscale, its mechanical properties change dramatically,
whether through brittle-to-ductile transitions [24–26], size-effect due to dislocation
networks [27], or homogenized random buckling [19, 28, 29]. It is therefore
necessary to probe the physical origin of material mechanical behavior at each
relevant lengthscale to both explain and predict phenomenon such as material failure
[15], increased toughness [30], microscopic noise [31], energy dissipation [32], etc.

1.1.1 Coherent crystal lattice deformation: Phase transformation

At the smallest scale that current mechanical instruments can probe, just above
the atomic level, comes the crystal lattice deformations. One such example is the
Martensitic Transformation, which is the backbone of shape memory alloys (SMA)
[33] and entails a lattice distortion through a first-order, diffusionless, solid-to-
solid phase transformation between a stable high-temperature phase (Austenite) and
a stable low-temperature phase (Martensite) that can be triggered either through
temperature change or external stress. In some materials such as NiTi, the strictly
higher symmetry of the Austenite crystal structure than that of the Martensite creates
a lattice distortion with reversible strain that is significantly higher than what can be
achieved in conventional metals [34].

The shape memory effect of the aforementioned material systems is often quantified
through two rubriks: pseudo-plasticity and pseudo-elasticity. Pseudo-plasticity is
the plastic strain that can be achieved through stress-induced twinning (Martensite
reorientation between different variants to comply with the applied stress); when the
external boundary conditions return to its original state, the deformation remains.
Upon heating to Austenite, the reoriented crystal recovers its starting shape (which
is deterministic due to the unchanged boundary conditions), therefore giving it the
prefix ’pseudo.’ Pseudo-elasticity is the reversible A→M transfromation through
applied stress at just above the phase transformation temperature. While in-depth
understanding for the functional performance of shape memory in metallic alloys has
matured [20, 35, 36], its application to ceramics remains preliminary [37, 38], with
many studies simply miniaturizing the macroscopic phenomenon of transformation
toughening [39] and limited quantitative improvements on either their pseudoplastic
strain or reversibility [40]. We will later tackle this problem in Chapter 2 of this
work.
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1.1.2 Dislocation-goverened plasticity

The external size-effect on dislocation governed yield strength without strain gradi-
ent has been studied in depth since its first systematic introduction through single
crystal Ni pillar compression by Ref [41]. Since then, efforts have been made
to build an all-emcompassing model that describes this behavior across the entire
single-crystal empire, starting from the simplest fcc metals to low-symmetry, high
internal friction ceramics [41–44]. Initially, the scaling of strength as a function of
sample dimension was characterized by a power-law with exponents inversely related
to the crystal’s Peierls stress [27], and the phenomenon was qualitatively explained
through the lack of existing dislocations in the sample to initiate plastic events. Later
findings through 3D dislocation dynamics (3DDD) simulations confirmed that with
finite number of dislocations in the sample (contrary to a near-continous disloca-
tion network observed at the macroscale) it is the lack of mobile dislocations that
drives up the yield strength [45]. In addition, the stoichastic and intermittent nature
of dislocation avalanches, which manifests as strain bursts at the submicron level,
triggered a whole area of statistical physics [5, 46–48], treating the elastic-to-plastic
transition as a critical point that resembles a reversible-to-irreversible transition
similar to many other drastically different systems such as seismic events, colloidal
solutions, and granular materials [49–51]. This is not to say that plasticity does not
exist before this transition — there is evidence to show that microplasticity, which is
nondetectable at larger scales, can be prevalent at smaller scales, which challenges
the idea of perfect elasticity altogether [52, 53].

Despite the abundance of material systems studied for the size effect, its physical
origin remains a mystery. Phenomenolocal models have been suggested to explain
the scaling exponent based on hardening mechanisms and a break-down of the mean-
field approach [45] as well as incorporating the much older idea of geometrically
necessary dislocations (GNDs) when a strain gradient is present [54, 55]. The failure
in these models to pinpoint an intrinsic lengthscale that comes with fitting later
prompted re-examination of the fits using the Matthew’s critical thickness theory
(CTT) [43, 56]. A detailed analysis was presented in Ref [57], which concludes
that the CTT, originally developed for clean pristine semiconductor epitaxial layers,
can be used to describe the origin of the size-effect (up to strain hardening) for
any dislocation-governed plasticity, encompassing the more specific models such
as GNDs. Statistically, there is not enough data to distinguish between a clear cut
CTT fit from that of a powerlaw with arbitrary exponent, therefore the question now
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comes down to whether it is possible to directly probe the CTT via cleverly designed
experiments or restricted deformation mechanism, such as deformation twinning,
which we will discuss in Chapter 3.

1.1.3 Fiber reinforced composites

Moving up the lengthscales ladder to tens of nanometers, we encounter bio-fibers
such as chitin, keratin, and collagen, providing biological materials with integral me-
chanical properties while serving functional purposes [58, 59]. While the nature of
biomineralization and self-assembly is still largely unsolved, the structure-mechanics
relationship of these fiber architectures have been explored in depth [60–62]. Fibers,
often considered anisotropic stiff elements, provide directional elasticity that can be
arranged to produce different stiffness and strength profiles such as in wood, bone,
and insect shells [13, 63], without the need of heavy strong engineering materials
. These principles have been applied to many artificial fiber-reinforced composites
to produce materials with superior stiffness, strength, ductility, energy dissipation,
and toughness [64, 65]. While site-specific nanomechanical experiments have been
proven to yield reliable results for complex bio-composites [13, 17], nature still
holds immense opportunities and inspiring lessons for the mechanics community to
learn from, such as the intricate fiber structure in Arthropods and the viscoelastic
recovery in jellyfish, discussed in Chapter 4 and 5, respectively.

1.1.4 Cellular solids

The mechanical behavior of cellular solids such as foams straddles between contin-
uum and structural mechanics. Among their interesting properties, two of the most
well-known are the scaling of stiffness and strength with relative density. Controlled
fabrication of ordered cellular materials with nanometer-thick features was made
possible by breakthroughs in the additive manufacturing field [19, 66]. Interest-
ingly, in cellular metals with high relative density (80% dense), the size effect from
the hundred-nanometer thick microstructure is still prevalent, reinforcing the im-
portance of incroporating microstructure-governed deformation even in larger scale
mechanics [11]. While extended research shows that the scaling of strength and
stiffness with relative density in periodic lattices is highly dependent on node geom-
etry [28, 32], there is still debate on how to approach the fracture mechanics of such
discrete-continuum-hybrid materials [67]. In addition to strength and toughness,
efforts have been made to recreate the crystal phase transformation induced shape
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memory using metamaterials [68], albeit limited to 2D and theoretical cases, with
potential to extend into 3D lattices.

1.2 Progression of In-situ Nanomechanical Experiments for Plasticity

Since the developement of nanoindentation in the 1980s [69], experimental nanome-
chanics has come a long way. Initially designed for engineering materials and thin
films, gradual instrumental refinement over the past 40 years have enabled complex
testing configurations (quasistatic loading, dynamic loading with precise control,
etc.) under extreme conditions (high or low temperatures, hydration, in-situ TEM,
etc.) using custom set-ups (MEMS devices, push-to-pull tensile tests, etc.). With
the decreasing feature size in additive manufacturing and constantly increasing ma-
terial selection suitable for nanoscale testing, this opens doors to unveiling many
deformation mechanisms that we were not previously able to probe.

1.2.1 Experiments on conventional fully-dense materials

Based on the Vickers hardness tests, which have been around for almost a century,
nanoindentation was first introduced in the 1980s to characterize material behavior
of thin films and to precisely map the modulus and hardness of the material with
submicron-level microstructure [1, 2, 69]. At the transition of the bicentennial,
studies on the external size effect with plastic strain gradients revived the interest
in the understanding of plasticity in miniaturized materials [55, 70]. In 2004, Ref
[41] developed a method to use Focused Ion Beam (FIB) etching for uniaxial pillar
compression experiments that can be used to readily extract the yield stress of
micrometer-size Ni samples, which was then extended to submicron samples in Ref
[3]. Since then, this method has been adopted to measure the size-effect of many
other material systems [27], and was confirmed via mirrored tensile experiments
[42].

The success of the etched pillars were challenged due to the beam damage during
fabrication [71]. In 2011, electroplated pillars were shown to exhibit the same
scaling behavior, despite never being exposed to the FIB [4], debunking the notion
of a damaged layer preventing dislocations from escaping at lower stresses. It is
worth noting that despite evidence that ion-implantation and amorphorization from
beam etching have negligible effects on monolithic metals and ceramics, one needs
to be careful when using it for complex or soft materials, expecially those that are
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highly porous, where the amount of material redeposition can greatly affect the
results [72].

In addition to tension, increasingly complex testing geometries have been developed
for the measurement of properties such as fracture toughness [7, 21], which lacks
standard testing procedures at the submicron level. This effort generated cantilever
deflecting, adapted 3-pt bending, and center-notch tensile geometries [7, 67]. Re-
cently, experiments on bone have produced repeatable and reliable results for the
fracture toughness and energy absorption rates in complex biological materials [21].

1.2.2 Experiments with environmental constraints

The quantification of many material properties require testing with environmental
control, such as for biomedical applications under physiological conditions and
for crystals on extraterrestrial planets. Here we briefly outline the set-up and
developements for different temperature conditions.

Nanomechanical experiments at high temperatures are known to suffer from thermal
drift. While many instrument providers state stable testing in their equipments up to
800◦𝐶, there are very limited records of peer-reviewed work with nanomechanical
testing up to that temperature. This can be due and not limited to a few different
reasons: (1) the temperature measurement in some instruments are not accurate and
relies on the temperature control of the heating unit, which generates large errors at
high temperatures; (2) the rapid cooling system, which runs on a liquid circuit, can
become dangerously unstable in vacuum; (3) for stablized temperature, the tip and
sample needs to be in contact for an extended period of time to avoid temperature
gradients, during which drift and instabilities can easily crush the sample if it is small
and/or fragile. In fact, this was our experience with the Hysitron PI88 system, which
we will discuss in more detail in Chapter 2. Despite these challenges, there exist
in-air nanoindentation results for creep at high temperatures [73] and in-situ high
temperature TEM pillar compression capabilities with special types of materials
[74]. Generally speaking, one needs to be wary of testing miniature-sized samples
at elevated temperatures before reliable instrumentation is developed.

Compared to high-temperature experiments, testing at low- or cryogenic tempera-
tures have proven to be much simpler [15, 18], often only requiring doses of liquid
nitrogen. At these lowered temperatures, all noise quiets down and material behavior
becomes more stable. Mechanisms such as diffusion, dislocation climb, or alloying
become muted, making way for cleaner measurements of its mechanical behavior.
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1.2.3 Potential in custom nanomechanical capabilities

Progression in additive manufacturing have opened the door to complex testing ge-
ometries for experimental nanomechanics. For example, while recent studies have
succeeded in measuring fracture toughness using center-notch tensile tests [67],
3pt-bending geometries [21], and adapted cantilever deflection [7], less restrictive
testing protocals are necessary for materials that can not be directly printed, do not
respond well to the FIB, or have complex energy absorption mechanisms. Possible
geometries for this type of tests include ASTM methods using compression [75]. On
the other hand, improvements on Digital Image Correlation using electron images
provide an alternative route to directly measuring the stress distribution and con-
centration for plasticity and fracture analysis at the nanoscale [76], which provides
immense opportunities for the quantification of microstructure evolution in crystal
phase transformation, plastic deformation via twinning or slip, fiber-induced local
buckling, and stress distribution in nanolattices under nonuniform loading.

1.3 Objectives and Outline

In this work, we focus on the post-elastic deformation mechanisms of a wide range
of materials at lengthscales relevant to their intrinsic microstructure. We tap into the
general principles discussed in Section 1.1 and use methods described in Section 1.2.
The results shed light on the usage of nanomechanical instruments and accumulated
knowlege to decipher material behavior and their function in larger-scale systems,
providing guidelines to designing novel artificial materials with superior properties.

The thesis is outlined as follows: Chapter 1 provides an overview of the develope-
ment and current state of experimental nanomechanics with a focus on the external
size-effect. Chapter 2-5 describe four projects that focus on the mechanical behavior
of materials with microstructure at gradually increasing lengthscales, each aimed
at tackling a different question from Section 1.1. Chapter 2 presents the quantified
one-way shape memory effect of a brittle ceramic via phase transformation. Chap-
ter 3 extends on that notion and delves more deeply into the twinning mechanism
and its size effect in said ceramics. Chapter 4 shifts from a monolinic material to
a bio-composite, focusing on the fiber-governed structure-mechanics relationship
of Scorpion shells. Chapter 5 looks at a different biomaterial at a close-to-bulk
lengthscale, using indentation to characterize the time-dependent behavior of jelly-
fish. Chapter 6 summarizes the work and provides insights and outlook for potential
future studies.
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C h a p t e r 2

(𝑍𝑟𝐻 𝑓𝑂4)𝑥 (𝑌𝑇𝑎𝑂4)1−𝑥 SHAPE MEMORY CERAMICS

Jetter*, Justin, Hanlin Gu*, Haolu Zhang*, Manfred Wuttig, Xian Chen, Julia R.
Greer, Richard D. James, and Eckhard Quandt (2019). “Tuning crystallographic
compatibility to enhance shape memory in ceramics.” In: Physical Review Mate-
rials 3, p. 093603. doi: 10.1103/PhysRevMaterials.3.093603.

The extraordinary ability of shape memory alloys to recover after large imposed
deformation motivates efforts to transpose these properties onto ceramics, which
would enable practical shape memory properties at high temperatures and in harsh
environments. The theory of mechanical compatibility was utilized to predict
promising ceramic candidates in the system (𝑌𝑇𝑎𝑂4)1−𝑥 (𝑍𝑟𝐻 𝑓𝑂4)𝑥 , 0.6 < 𝑥 <

0.9. When these compatibility conditions are met, a reduction in thermal hysteresis
by a factor 2.5, a tripling of deformability, and a 75% enhancement in strain recovery
within the shape memory effect was found. These findings reveal that predicting and
optimizing chemical composition of ceramics to attain improved crystallographic
compatibility is a powerful tool for enabling and enhancing their deformability that
could ultimately lead to a highly reversible oxide ceramic shape memory material.

2.1 Introduction: From Shape Memory Alloys to Ceramics

The shape memory (SM) and the related effect of superelasticity occur in all classes
of materials: metals [77], ceramics [78], and polymers [79]. Some crystalline solids
display these effects with almost perfect shape recovery through a reversible first
order phase transformation between a low-crystallographic-symmetry low tempera-
ture phase (Martensite) and a higher-symmetry high temperature phase (Austenite).
Extensive investigations of such phase transformations have deepened fundamental
understanding of shape memory effect in metallic SM alloys and facilitated a variety
of emerging applications, for example NiTi-based SM alloys are now used as brain
stents [80] and devices for minimally invasive surgery [81].

Properties of SM alloys depend significantly on the reversibility of the underlying
phase transformation. Cyclic degradation, which manifests as the gradual decrease
in one-way work (energy dissipated in one shape memory cycle) over repeated
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activation, is common among metallic SMs [82] as a result of dislocation pile up
in the region of phase transformation [83]. It has been shown in metals that the
transformation hysteresis Δ𝑇 decreases [84] and fatigue properties improve [36]
dramatically with greater kinematic compatibility between the lattice parameters of
the transforming phases. Tuning lattice parameters by changing composition allows
for optimizing macroscopic properties, i.e. hysteresis and functional fatigue. The
strongest known conditions of compatibility are the so-called cofactor conditions
[85]. These developments have significantly improved our understanding of metallic
shape memory alloys (SMAs). For example, 𝑍𝑛45𝐶𝑢25𝐴𝑢30 exhibits extremely
small thermal hysteresis of 0.2𝐾 and nearly full repeatability after 100,000 full
transformation cycles at 7% strain and 700 MPa compression stress cycles [20].

Two-phase ceramic shape memory materials were actively investigated until the
nineties, which led to the discovery of now well-known transformation toughened
Zirconia-based ceramics [86]. This line of research stagnated as the materials
approached their technological limits, with very limited efforts dedicated to de-
veloping shape memory ceramics that display metal-like shape memory properties
[87]. Various approaches have been used to change the transformation temperatures
of matrix and particles, e.g., solid solutions formed with 𝐶𝑒𝑂2 [88] or stabilization
by 𝑌2𝑂3 [89]. The superelastic and shape memory behavior was demonstrated in
freestanding 𝐶𝑒𝑂2 − 𝑍𝑟𝑂2 pillars of approximately 1µm diameter [78]. Due to
the high transformation temperatures and low compatility, the extent of SM effect
in ceramics stops at a few cycles of superelasticit (reversible mechanically-induced
phase transformation) and limited one-way SM effect through phase transformation
from retained metastable Austenite. Here, we show that the success in improving the
repeatability and lowering of the superelastic hysteresis and shape memory effects in
metallic SMAs by satisfying conditions of compatibility can be translated to oxide
ceramics.

Ceramics in the system (𝑌𝑇𝑎𝑂4)1−𝑥 (𝑍𝑟𝐻 𝑓𝑂4)𝑥 , with 0.6 < 𝑥 < 0.9 were fabri-
cated, where transformation between Tetragonal (Austenite) and Monoclinic (Marten-
site) had been identified previously [87]. The minimum hysteresis Δ𝑇 was found
to be around 𝑥 = 0.735, where the theorized highest compatibility is met [90].
We use crystallographic characterization combined with nanomechanical experi-
ments to demonstrate the highest SM effect in 𝑥 = 0735 samples compared to other
compositions and ceramic SM materials in general.
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2.2 Material Characterization and Crystallographic Analysis

Disks with 5mm diameter and 2mm thickness where ball-milled, pressed, and sin-
tered by our collaborators in the Quandt group at University of Kiel, following
steps illustrated in [90]. We expect different behavior in samples with differ-
ent composition governed hysteresis; this difference was immediately evident as
samples with high hysteresis disintegrate after a couple of heat cycles as a re-
sult of transformation-induced cracking at grain boundaries. To fully understand
the microstructure-enabled deformation and recovery, we use a series of imaging
and diffraction methods to visualize, identify, and characterize the crystallography,
phases, and microstructure within samples of various compositions. The revealed
microstructure serves as a basis for the design and understanding of mechanical
experiments that then enable the full-circle analysis of the shape memory effect at
the microscale.

2.2.1 X-ray diffraction (XRD)

Figure 2.1: X-ray diffraction data for 𝑥 = 0.75 sample showing diffraction peaks that
closely match that of Monoclinic Zirconia and Tetragonal Yttrium-doped Zirconia.

Preliminary XRD scans at room temperature using PANalytical X’Pert Pro in the
Faber group at Caltech on samples of different compositions. A representative
diffraction curve is shown in Fig.2.1, where clear peaks that match the close-packed
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planes of both Tetragonal and Monoclinic 𝑍𝑟𝑌𝑂4 (Yttrium-doped Zirconia) were
identified. This reveals the co-existence of the two phases at room temperature, as
is often observed in 𝑍𝑟𝑂2 based ceramics [91–95].

Accurate temperature dependent lattice parameters of each sample were obtained
through high-temperature XRD at our collaborator’s site [90], which enabled us to
analyze data from more complicated diffraction tests such as EBSD and TEM.

2.2.2 Electron Backscattering Diffraction (EBSD)

Figure 2.2: Phase mapping obtained from EBSD on the surface of polycrystalline
samples of two distinct compositions. A clear V-shaped correlation is seen between
the Tetragonal phase fraction and the compositional make-up of the material with a
minimum at 𝑥 = 0.735.

EBSD scans on surfaces of 6 samples with various compositions between 𝑥 = 0.6
and 𝑥 = 0.9 were conducted using a ZEISS 1550 VP Field Emission SM in the
Caltech GPS Division Analytical Facility. Representative maps of two samples with
𝑥 = 0.6 (Δ𝑇 = 315𝐾) and with 𝑥 = 0.735 (minimum Δ𝑇 = 120𝐾) are shown in
Fig. 2.2. We reveal dual-phase polycrystals with Tetragonal and Monoclinic grains
randomly distributed, while there are significantly higher fractions of the metastable
Tetragonal grains in the 𝑥 = 0.735 sample, which has the lowest measured hys-
teresis Δ𝑇 and therefore the highest compatibility. We evaluated the phase fraction
by integrating the area in each phase for 6 different compositions and revealed a
minimum in the retrained Tetragonal phase fraction at 𝑥 = 0.735 with the same
V-shape as the measured hysteresis. To further analyze the relationship between
phase fraction and compatibility, we plot them against the normalized hysteresis (𝐴𝑠
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Figure 2.3: Tetragonal phase fraction linearly increasing with normalized hysteresis.

is the starting transformation temperature for A→M during cooling and 𝑀𝑠 is the
starting transformation temperature for M→A during heating), shown in Fig. 2.3,
where a linear relationship was uncovered.This correlation is hypothesized to be
due to, at least partially, the high compatibility at 𝑥 = 0.735 that allow for easier
stabilization of the metastable Tetragonal phase at room temperature.

Figure 2.4: IPF contours for the two phases in a 300𝜇𝑚 by 100𝜇𝑚 scan on a
𝑥 = 0.675 sample, revealing preferred orientations for the metastable Tetragonal
grains and random distribution in the Monoclinic grains.

Because of the phase transformation mechanism, there is a small strain in the
Tetragonal [001] direction to the Monoclinic [010] direction. Therefore, on the
surface of the sample where there is little constraint in the surface normal direction,
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grains with their [001] axis in the Tetragonal phase at high temperature are more
likely to remain unchanged during cooling. This is confirmed by the integrated
Inverted Pole Figure (IPF) at room temperature for the two phases for a 𝑥 = 0.675
sample, as is shown in Fig. 2.4, where the Tetragonal grains have a much higher
probability to be oriented with the least strain on the surface (highest density for
[001] along the surface normal), while the Monoclinic grains are more uniformly
distributed.

Figure 2.5: Clear twin domains within Monoclinic grains in a 𝑥 = 0.75 sample with
the corresponding IPF.

For Martensitic shape memory effect and pseudoplasticity, we focus on the Mon-
oclinic grains (Martensitic, lower temperature stable phase). EBSD maps show
clear twin domains within individual Monoclinic grains, as those seen in Fig. 2.5.
Here the white borders represent the grain boundaries, whereas the different colors
represent crystal orientation with the legend shown on the right hand side IPF.

2.2.3 Energy Dispersive Spectroscopy (EDS)

Apart from orientation dependence, heterogeneities in the elemental contribution
can also influence the phase transformation process. EDS mapping reveals aggre-
gation of Yttrium in Tetragonal grains (Fig. 2.6), with 70% increase in Yttrium
content in Tetragonal grains (Table 2.1), while other elements are uniformly dis-
tributed. Since Yttria content contributes to stabilization of the Tetragonal phase and
less prominent aging effects [39, 91], the heterogeneity during sample fabrication
and sintering likely prevented these Yttrium-contrentrated regions from transform-
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Figure 2.6: EDS analysis showing aggregation of Yttrium in Tetragonal grains.

Element Tetragonal Monoclinic
𝑂 19.9 ± 0.2 17.8 ± 0.2
𝑌 12.2 ± 0.3 7.3 ± 0.3
𝑍𝑟 25.5 ± 0.3 28.5 ± 0.3
𝑇𝑎 13.9 ± 0.2 14.1 ± 0.2
𝐻 𝑓 28.5 ± 0.3 32.3 ± 0.3

Table 2.1: Weight percentage of different elements in the two phases in a 𝑥 = 0.715
sample, with significantly higher Yttrium concentration in Tetragonal grains.

ing to the more stable Monoclinic phase due to low energy difference and high
energy barrier.

2.2.4 Transmission Electron Microscope (TEM)

Further investigations of the Monoclinic twin systems were conducted under the
TEM using the Tecnai TF30 in the Caltech Kavli Nanoscience Institute (KNI). Sam-
ples were prepared with the FEI Versa Dual beam with an EZlift nano-manipulator
and deposited Pt for protection. Fig. 2.7a contains a TEM image of a Martensite
grain in a low hysteresis sample (𝑥 = 0.735, Δ𝑇 = 120𝐾) and reveals a twinning
microstructure with laminates ranging from 40 to 500 nm in thickness. Fig. 2.7b
shows its bright field (BF) image with a [001] zone axis (za) in the Martensite
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Figure 2.7: TEM imaging of samples with (a-c) 𝑥 = 0.735 and (d-e) 𝑥 = 0.6, where
clear twin domains and mirror planes were observed. (a,d) TEM images of entire
twin-populated grains. (b,e) Close-up BF images containing mirror planes and
defects, with the corresponding indexed DP. (c,f) HRes images of twin boundaries.

basis, where the corresponding indexed diffraction pattern (DP, inset) for the grain
contains no twinning patterns, which suggests that all variants share the common
two-fold axis [001]. The blown up (3̄00) spot which demonstrates a triplet-like
feature is a clear evidence for preexisting twins. No visible defects were observed
within any variant, which indicates that the crystal is in a low-energy state with
minimal internal stresses. The majority of twinning planes are found to be along
(100), (010), and (110) type planes, which supports the theoretical prediction that
for 𝑥 = 0.735, the sample contains the maximum number of Austenite/Martensite
interfaces. High resolution (HRes) TEM images reveal that the mirror planes are
mostly coherent, with an occasional incoherency, for example the partial dislocation
cutting through a (010) plane highlighted by an arrow in the high-resolution image
in Fig. 2.7c. TEM images of a high-hysteresis sample (𝑥 = 0.6, Δ𝑇 = 315𝐾) reveal
similar twinning microstructures at the near-micron scale shown in Fig. 2.7d. Fur-
ther investigation with BF at a higher resolution (Fig. 2.7) shows that although the
twinning direction and mirror planes are identical to those in the low-hysteresis sys-
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Figure 2.8: Examples of theoretical DPs overlayed on experimentally generated
ones. (left) 𝑧𝑎 = [001]. (right) 𝑧𝑎 = [11̄0].

Figure 2.9: SAD patterns generated from different locations using a 10𝜇𝑚 aperture,
showing the same closed packed planes.

tem, the crystal is much more distorted and is populated with dislocations, which cut
through individual variants (indicated by the small arrows). The high-resolution im-
age of the high-hysteresis sample in Fig. 2.7 displays a complicated twin-boundary
structure with multiple dislocations. This microstructural analysis supports that the
high-hysteresis sample contains greater internal stress during phase transformation
compared with the low-hysteresis system, as a result of its low compatibility.
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Due to the almost cubic-like Monoclinic crystal structure, the diffraction patterns
were almost indiscernible at miller indices with lower symmetry than 〈111〉. We
used a custom Matlab script to generate theoretical diffraction patterns and identify
the highest match for each measured diffraction pattern. Examples of matched DPs
are shown in Fig. 2.8. Selected Area Diffraction (SAD) using the smallest aperture
size (10𝜇𝑚) was used to confirm that the different variants in the sample indeed
diffract similarly, which is shown in Fig. 2.9.

Figure 2.10: Crystallographic diagram showing the twin planes in (left) 3d view
and (right) same view as in Fig. 2.9.

The observed DP and microstructure predict twin systems of {100}〈001〉, {010}〈001〉,
and {110}〈001〉, which is consistent with that reported for Zirconia after Tetragonal
to Monoclinic phase transformation under a TEM [92]. The corresponding mirror
planes in a pure Monoclinic ZrO2 crystal structure is demonstrated in 3D in Figure
2.10c and in 2D in Figure 2.10d with the same viewing zone axis as the TEM image
in Fig. 2.9. The coherent mirror planes of {100}, {010}, and {110} provide easily
accessible glide planes for twinning dislocations and are therefore predicted to be
the location for onset of plasticity.

Dark Field (DF) imaging was used to distinguish dislocations from other types of
defects, as is shown in Fig. 2.11(left). In a defect populated 𝑥 = 0.6 Monoclinic
grain, a dislocation was observed to dissappear in DF with 𝑔𝑔𝑔 = (010), implying
Burger’s vector of [100] if it is a screw or [001] if it is an edge. Twinned DPs
were obtained with samples with different 𝑧𝑎s, an example of which is shown in
Fig. 2.12, where a twin boundary cuts across the image diagonally, with the DF
diffraction spot shown on the lower-left corner. The twinned DPs for the two sides
are shown on the corresponding corners, with the lowest-order spots indexed. As per
the index, a common variant with 𝑧𝑎 = [1̄01] (marked in orange) extends through
the figure, while two variants of 𝑧𝑎 = [011̄] (blue) and 𝑧𝑎 = [011] (green) sits on
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Figure 2.11: Close-up BF image as in Fig. 2.7 and corresponding DF images
for a 𝑥 = 0.6 Monoclinic grain (high Δ𝑇 = 315𝐾), where the marked dislocation
disappears under the 𝑔𝑔𝑔 = (010) condition.

Figure 2.12: DF image from a different za between two twin variants with (left)
corresponding DPs and (right) Moiré fringes.

top on either side of the observed twin boundary. A diagram of the twin junction
between the [011̄] and [011] variants is shown on the upper-right corner. Fig. 2.12
(right) repeats the same DF image with the twin boundary crystallographic plane
marked. The measured Moiré fringes and their originating diffraction spots are also
shown, with the direction and spacing matching what is theoretically predicted.

With the low-symmetry nature of the Monoclinic crystal structure, it was hard to
discern defects in atomic planes using original HRes TEM images. We used a custom
filtered Fast Fourier Transform (FFT) and inverse FFT (iFFT) script in Matlab to
visualize the heterogeneities in the atomic planes cutting orthogonal to the shown
twin boundary in Fig. 2.13. Despite other heterogeneities in the generated plot
due to other defects such as dislocations and diffraction quality, the twin boundary
clearly appears as a non-uniform line of discontinuity in the middle of the lines of
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Figure 2.13: Filtered FFT showing the twin boundary as a discontinuity in the
coherent lattice planes.

atomic planes.

2.3 Nanomechanical Experimental Methods

2.3.1 Sample preparation

Samples were sintered at 1400◦𝐶 for 48 hours to grow grains to ∼ 10𝜇𝑚, which
allows for singlecrystalline pillars of up to 2𝜇𝑚 in diameter, fully contained within
a grain. Monoclinic grains with suitable orientations (close to [100], [010], [101],
[110], or [001] along the surface normal / loading direction) were chosen from the
EBSD maps due to their easily accessible glide systems, by filtering orientations
that are orthogonal to the [010] direction (Fig. 2.14). Samples were naturally
electron-isolating, therefore carbon coatings of ∼15nm were deposited prior to
sample fabrication using a Turbo Carbon Evaporator in the Caltech GPS Division
Analytical Facility. For uniaxial compression experiments, cylindrical pillars with
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Figure 2.14: Grains with suitable orientations for uniaxial compression experiments.

1 : 3 aspect ratio and of diameters ranging from 200𝑛𝑚 to 2𝜇𝑚 were fabricated using
a top-down concentric focused-ion beam etching method from the bulk samples
using the FEI Versa Dual Beam SEM. Attempts to characterize grain boundary
effects were made, with no conclusive results except for their overall brittleness,
which is common among oxides; therefore only pillars contained within a single
grain (no grain boundaries or cracks) were brought to further experimentation.

In addition to uniaxial pillar compressions in the bulk samples, we also carried out
particle compression experiments in-situ. The particles were entire single-grains
broken away from originally in-tack samples through repeated heating cycles (no
mechanical force was used). The particles were compressed on a silicon chip without
any physical or chemical binding techniques.

2.3.2 Compression experiments

In-situ mechanical experiments were carried out using a Hysitron PI-85 nanoindenter
inside the Versa SEM to visualize deformation during the tests. Due to large
drift, machine compliance, and substrate effects in the in-situ system, a custom
Matlab script was used to track the displacement of the pillar during the tests
(Fig. 2.15). For data collection, ex-situ experiments were carried out on larger
quantities of pillars using the Hysitron triboindenter. For ex-situ tests, we calibrate
the machine compliance beforehand, use drift monitor before the tests, and correct for
the substrate effect by subtracting the Sneddon contribution [96], where the substrate
modulus was measured using nanoindentation and found to be 34.5 ± 7.5𝐺𝑃𝑎.
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Figure 2.15: Displacement correction using recorded images during the mechanical
experiments.

Further in-situ pillar compression at elevated temperatures were conducted using
a Hysitron PI88 equiped inside an FEI versa SEM in the UC Berkeley Hosemann
group, where both the tip and the sample (after coming in contact) were heated up
to 400◦𝐶 and held there for 15 minutes before carrying out each test.

2.3.3 Thermal treatment

Figure 2.16: Demonstration of the thermal cycle used to characterize the shape
memory effect.

The thermal process used to characterize the one-way shape memory effect is
demonstrated in Fig. 2.16, with the following 6 steps:

1. Particles are heated to 100𝐾 above their transformation temperatures and
cooled back down to reset their boundary conditions.

2. Particles are imaged for original shape.
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3. Particles are compressed for deformation.

4. Post-compression particles are imaged for deformed shape.

5. Post-compression particles are heated to 100𝐾 above their transformation
temperatures and cooled back down to trigger phase transformation and the
one-way shape memory cycle.

6. Post-heated particles are imaged for recovered shape.

The original shape, deformed shape, and recovered shapes are then used to quantify
the amount of recovery for two compositions with 𝑥 = 0.735/low hysteresis/high
compatibility and with 𝑥 = 0.6/high hysteresis/low compatibility.

2.4 Shape Memory Recovery

With transformation temperatures above 600◦𝐶, it is unrealistic to probe the pseu-
doelasticity of these ceramic samples, which required repeated cycling of austenitic
samples at just above their transformation temperatures. We therefore probe the
pseudoplasticity and characterize performance as the amount of shape recovery
from heat treating a deformed particle. Pseudoplastic strain was first measured
through pillar compression experiments, while the overall shape recovery was mea-
sured through particle compression and heat treatments. The heat cycle is described
in section 2.3.

2.4.1 Significant pseudoplasticity as seen in pillar compression experiments

Example of an in-situ pillar compression experiment is demonstrated in Fig. 2.17,
with the engineering stress-strain data and its corresponding pre and post compres-
sion SEM images. With Young’s Modulus of 𝐸 = 160𝐺𝑃𝑎 and yield stress of
5.5𝐺𝑃𝑎, the pillar is both strong and ductile, attaining up to 6.2% pseudoplastic
strain without failure. The surrated plastic flow represents twin plane propagation,
where each newly nucleated twin overcomes a higher barrier and then takes slightly
lower stress to propagate until it hits a barrier such as a pre-existing twin boundary,
defect, or surface. The zig-zag-like prisms on the post-compression pillar are clear
signs of twinned deformation.

Fig. 2.18 compares the compression response of two pillars with similar size
(∼ 900𝑛𝑚 diameter) and original orientations (Fig. 2.18(left), inset) from two sam-
ples of different composition. Both pillars favor the (100) [001̄] twin system: in
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Figure 2.17: A 𝑥 = 0.735 900nm diameter pillar undergoing deformation twinning
under compression.

the low-hysteresis sample, the onset of detwinning at about 800MPa is followed by
a steady serrated flow at a constant applied stress, similar to the serrated detwin-
ning stress plateau seen in the deformation of macroscopic metallic SMAs [97].
Unlike these previously studied systems, where the detwinning plateau is followed
by a uniform nonlinear deformation due to incomplete reorientation [98, 99], the
detwinning process in this pillar ends with a rapid strain burst at the same stress,
which suggests that the reorientation is completed at 5.9% strain. This strain burst
and the subsequent stress drop at 6.3% are clear signatures of dislocation-mediated
slip in small-scale plasticity [46, 100], followed by steep plastic hardening starting
at 6.6% strain. The high-hysteresis sample undergoes a similar process after the first
detwinning event at about 800 MPa and has a significantly less recoverable strain
from detwinning – it quickly transitions into the burst-governed plasticity at 1.3%
strain, and begins to harden at 2.2% strain. After subtracting the elastic contribution,
the retained pseudoplastic strain coming from detwinning (which is reversible upon
heating) are found to be 5% for the low hysteresis sample (much higher than the
0.8% previously reported for Zirconia-based ceramics [78]) and 0.7% for the high
hysteresis sample. This suggests that as the compatibility conditions become bet-
ter satisfied, the post-elastic deformation mechanism transitions from a detwinning
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Figure 2.18: Comparison of plasticity in two pillars of similar orientation and size
in different composition/hysteresis samples.

process to dislocation-slip. This could be related to the pre-existence of defects in
the high-hysteresis system as shown in Fig. 2.11. The twin bands (indicated by the
yellow arrows in Fig. 2.18) are clear visual evidence of detwinning in the pillars.

2.4.2 Temperature dependence of plastic deformation in both phases

As the most straighforward way to determine shape memory performance, the
pseudoelastic one-way work (stress-strain hysteresis) needs to be measured at just
above the tranformation temperature (∼ 700◦𝐶). Attempts at compressing Tetrag-
onal (Austenite) pillars were made, where pillars were fabricated out of metastable
Tetragonal grains at room temperature and compressed at elevated temperatures
in-situ. However, performing nanomechanical experiments at temperatures as high
as 700◦𝐶 in vacuum proves to be difficult; apart from thermal drift and diffusion,
which takes over at high temperatures in miniature samples, the cooling system
becomes unstable and is subject to leakage and plasmonic effects that are damaging
to the instrument. Despite many manufacturers advertising their instruments to be
functional up to 800◦𝐶, very few credible published works achieve that target, with
a few in the 400◦𝐶 range [101–103] and some going above 1000◦𝐶 with complex
instrumental setup, data manipulation, or specific functional materials [104, 105].
We attempted at probing pseudoelasticity at high temperatures nevertheless, with
limited success.
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Figure 2.19: Tetragonal pillars of a 𝑥 = 0.715 sample with different orientations
undergoing single-slip plastic deformation at nominally 700◦𝐶 (blue) compared to
at room temperature (orange).

Fig. 2.19 shows the mechanical response of four Tetragonal pillars of different
orientation at nominally 700◦𝐶 in blue (the machine prevents exact measurement
of the real sample temperature, and the nominal 700◦𝐶 is simply the prescribed
temperature) and at room temperature in orange. All six pillars undergo single-slip
plastic deformation at constant flow stress. No phase tranformation was observed
at either temperature, likely because these are pillars in the metastable Tetragonal
phase at room temperature, where the high compatibility and elevated dislocation
mobility gave preference to dislocation activity instead of lattice distortion. It is
worth noting that due to high and unmeasurable drift at high temperatures, the
"strain" of these compression tests remain questionable. Despite discrepancies
between the measured strain, the evident decrease in yield stress and disappearance
of hardening at elevated temperatures confirm the increase of dislocation mobilities.

The temperature dependence of detwinning stress / pseudoplastic response of Mon-
oclinic pillars was studies through compression of three pillars at different tempera-
tures, the results of which are shown in Fig. 2.20. The existence of grain boundaries
prevent any conclusive results, yet it is already clear that at 400◦𝐶, it takes at most
half the stress to initiate deformation twinning than at room temperature. It is also
evident that the grain boudaries remain rigid and brittle at 300◦𝐶.
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Figure 2.20: 𝑥 = 0.715 Monoclinic pillars deforming via twinning at different
temperatures.

2.4.3 Caveats of the pillar geometry

Fibbing, as a fabrication technique, changes the boundary conditions of the remain-
ing material of the pillar. As a result, when the fibbed pillars are heated to above
their transformation temperatures (without mechanical deformation at any point), it
changes shape because of the newly created surface being on the same lengthscale
as the twinning microstructure, as is demonstrated by Fig. 2.21. This is remi-
niscent of the wrinkling effect from polished Martensite surfaces being heated to
transformation in earlier studies of SMAs and recent work of thin films [106]. The
irregular shape change as seen in Fig. 2.21 is, unfortunately, inevitable, preventing
quantitative measurements of the strain and shape recovery, which undermines the
sole advantage of pillar experiments.

2.4.4 3D particle shape reconstruction and strain mapping

Example of a particle compression experiment and the corresponding measured
mechanical data are shown in Fig. 2.22. The particle undergoes step-wise plastic
flow, where each step represents the propagation of a twin plane until it is depleted,
at which point a higher stress is needed to propagate the next twin. From the in-situ
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Figure 2.21: Undeformed pillar changing shape from thermally-induced phase trans-
formation.

SEM images, it is evident that upon yielding, the top half of the particle shears to the
left, then during the later part of detwinning, the mid-section of the paricle shears
to the right, with significant amount of height shrinkage.

Fig. 2.23(A-C) provides SEM images of an irregularly-shaped low hysteresis 𝑥 =

0.735 particle at room temperature before compression by approximately 15% of the
particle height, after compression, and after heating to 850 °C. To better visualize
the shape recovery, the original shape of the particle is traced in black and overlaid
on all three images, along with partial outlines of the particle after compression
(red) and after heating (blue). These images reveal that the low hysteresis particle
exhibits near complete recovery (Fig. 2.23(A-C)), while the high hysteresis particle
does not (Fig. 2.23(D-F)).

As is described in Section 2.3, the particles at the three different stages are imaged
at 5 different angles to reconstruct their shape in 3D. Fig. 2.24 provides the 5
viewing angle diagrams and examples of a 𝑥 = 0.735 (minimum Δ𝑇) particle
viewed in the corresponding views at the three different stages (original, deformed,
and recovered). It is evident that the particle became shorter and flatter after
deformation, but regained its height after heating, yet the amount of shape change
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Figure 2.22: Example of in-situ particle deformation throught detwinning.

appears different in each view, necessitating the need to reconstruct its shape in 3D,
which accounts for the full shape change.

Using images taken of the same particle from different angles, shown in Fig.
2.25(left), points on the particle were mapped to their actual position in 3d-space
using simple image correlation. For each point in 3D, its coordinate in the 2D
projected planes from 2 angles are taken from the corresponding images, then its
coordinate in 3D can be uniquely determined given that the two viewing angles are
sufficiently different (in this case 90◦, see Appendix C for more details). The result-
ing 3D-reconstructed particle (consisting of identified sharp corners as correlated
points in space) is shown in Fig. 2.25(right).

This reconstruction process is carried out for both low hysteresis and high hys-
teresis particles in their original, deformed / post-compression, and recovered /
post-heating states. Fig. 2.26(left) shows the reconstructed low hysteresis particle
post-compression (dark grey) compared to its original shape (transparent), where
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Figure 2.23: Visualization of the three states of two particles with (A-C) 𝑥 = 0.735
(minimum Δ𝑇) and (D-F) 𝑥 = 0.6 (high Δ𝑇 , with the original shape mapped as the
black outlines.

the particle has become shorter due to compression and expanded horizontally.
Fig.2.26(right) then shows the particle after heated (dark grey) compared to its com-
pressed state, where the particle clearly regains its height and shrinks in the lateral
direction. Similarly, the high hysteresis particle becomes shorter after compression
(Fig. 2.27), but does not recover to its original height after it was heated (Fig. 2.27).

We map an average deformation gradient F for each deformed state using the original
particle configuration as the reference, and calculate the corresponding stretch tensor

through𝑈 =

(
𝐹
(
𝐹𝑇𝐹

)− 1
2
)𝑇
𝐹 [107]. We defined the recovery of a particle as

𝑟 =
|𝑈𝑐𝑜𝑚𝑝 −𝑈ℎ𝑒𝑎𝑡 |
|𝑈𝑐𝑜𝑚𝑝 − 𝐼 |

(2.1)

and found it to be 94.5±5.9% (N = 5) for low-hysteresis particles and 62.3±13.3% (N
= 3) for the high-hysteresis particles, proving that the low-hysteresis system exhibits
a nearly complete shape recovery through the shape-memory effect.

2.5 Summary

We demonstrated that the theory of crystallographic compatibility provides an ef-
fective strategy to guide compositional changes for the discovery of reversible shape
memory in ceramics. Crystallographic characterization through diffraction methods
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Figure 2.24: Diagrams and examples of a particle imaged from the 5 different views
used for 3D shape reconstruction.

Figure 2.25: 3D shape reconstruction using points from 2D images of the same
particle at different angles.

reveal orientation and compositional dependence of phase separation in Zirconia-
based polycrystalline ceramics, with a predicted highest compatibility in 𝑥 = 0.735
samples. We performed nanomechanical experiments on site-specific, small-scale
ceramic samples with predicted optimal composition to reveal the shape memory
effect. This comprehensive suite of theory, synthesis, in-situ nanomechanical ex-
periments, and microstructure analysis uncovered a new, unique class of potential
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Figure 2.26: Shape memory recovery of a 𝑥 = 0.735 (low Δ𝑇 /high hysteresis)
particle.

Figure 2.27: Shape memory recovery of a 𝑥 = 0.6 (high Δ𝑇 /low hysteresis) particle.

shape-memory oxides. These new materials could provide major breakthroughs in
vibration isolation and mitigation, deployable structures, and structural materials
subjected to extreme thermomechanical environments. With rigid and brittle grain
boundaries, potential extensions that could scale the size of these materials would
include single-crystal synthesis and grain boundary engineering.
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C h a p t e r 3

SIZE EFFECT OF DEFORMATION TWINNING IN BRITTLE
SOLIDS

Zhang, Haolu, Justin Jetter, Hanlin Gu, Richard D. James, Eckhard Quandt, and Julia
R. Greer (2021). “Size-dependence of zirconia-based ceramics via deformaton
twinning.” In: Extreme Mechanics Letters 42, p. 101124. doi: 10.1016/j.eml.
2020.101124.

Chapter 2 demonstrates the deformation twinning enabled pseudoplastic strain of
>5% in (𝑍𝑟𝐻 𝑓𝑂4)𝑥 (𝑌𝑇𝑎𝑂4)1−𝑥 SM ceramics. Contrary to the dislocation-driven
‘smaller-is-stronger’ size-effect in nanocrystals, the size-dependence of strength in
deformation twinning, another carrier of plasticity, remains unknown. We use
diffraction methods, microstructure analysis, and in-situ nanomechanical experi-
ments to uncover contributing factors to the competition between twinning and slip
in these submicron-sized ionic crystals, revealing power-law scaling of strength with
size for both mechanisms. The slip power-law exponent of −0.57 is comparable
to that of face-centered cubic (fcc) metals; the twinning size-dependence is more
significant and follows a superimposed power-law with an exponent of −1. These
findings unveil the universality of the superimposed power-law size-effect for twin-
ning in single-crystals and provide new insights on deformability of ceramics and
microstructure-driven nano-plasticity.

3.1 Introduction: Size-Effect of Dislocation-Governed Plasticity

Permanent deformation of single-crystalline materials, like metals and ceramics, can
occur via two distinct plasticity carriers at room temperature: dislocation slip and
deformation twinning. Over the past decade, the well-established power-law scaling
of yield point with crystal size, with a universal exponent of −0.6 in fcc metals [3,
41, 108], was extended to metals with lower symmetry and/or higher internal friction
[42, 109], as well as to hard-brittle materials such as ionic [43] or covalent crystals
[44], where the power-law coefficient was suppressed to under −0.3. An inverse
correlation between power-law exponent and internal lattice friction in bcc metals
at room temperature has been reported in [27, 110], prompting a new superimposed
power-law function for the yield-point size-dependence, 𝜏𝑐 = 𝑎−1 + 𝜏0, where 𝜏𝑐
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is the critical shear stress, 𝑎 is the normalized sample size, and 𝜏0 is the size-
independent bulk yield strength that depends purely on internal lattice friction and
initial dislocation density [43]. Unlike the varying exponents in numerous reported
power-law scaling for different single-crystals, the proposed inverse relation with a
fixed exponent of−1 allows for a concrete physical interpretation under, for example,
the Matthews-Blakeslee critical thickness model [111]. Such models break down at
larger sample sizes, where plasticity shifts into a dislocation-interaction-dominated
regime, giving rise to strengthening mechanisms, i.e., Taylor hardening [45, 71,
112]. The limited size range in which these models can be probed has become a
pervasive roadblock to an unambiguous observation of the −1 exponent in single-
crystalline plasticity [56].

The superimposed power-law with the exponent of −1 was first experimentally
observed in the size-dependent critical stress for deformation twinning in single-
crystalline Ti nanopillars [113], where it was attributed to a different physical origin –
the probability of finding a dislocation orthogonal to the primary twin plane inversely
scaling with its area. Deformation twinning, as was theorized and observed [114,
115], is nucleated by a leading partial dislocation and a trailing one on a separate
atomic plane, creating an extended stacking fault that becomes the initial stage of a
twin band. As a result, twinning is commonly found in metals with low stacking fault
energies [10, 116, 117] and in crystals with low symmetry [118, 119], caused by the
lack of accessible crystallographic planes for dislocation slip. With the twinning
partials’ glide restricted to parallel planes, the common mechanisms for Taylor
hardening, i.e. dislocation entanglements, pinning, and multiplication [45], do not
easily affect deformation twinning, making it an ideal mechanism for studying the
fundamental origins of the mysterious “smaller-is-stronger” phenomenon. To probe
the universality of the −1 power-law exponent, it is necessary to study deformation
twinning in hard brittle crystals, for example Monoclinic zirconia, a common ionic
ceramic that produces coherent twin domains upon phase-transformation [91, 92]
and can be adapted in composition to undergo stress-induced twinning at room
temperature [90].

In this chapter, we focus on the plastic deformation of Monoclinic (𝑍𝑟𝐻 𝑓𝑂4)𝑥 (𝑌𝑇𝑎𝑂4)1−𝑥
with 𝑥 = 0.735, which was theoretically and experimentally found to produce the
largest twinning-induced plastic strain and the smallest thermal transformation hys-
teresis [35, 90]. We uncover the twinning mechanism via site-specific systematic
nanomechanical experiments and microstructural analysis, identify the conditions
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under which twinning is preferred over ordinary dislocation slip, and probe the over-
all size-dependence of the stress required for the nucleation of twinning. We discuss
these findings in the framework of nano-plasticity in single-crystals to identify the
physical origin of the extrinsic size-effect in deformation twinning.

3.2 Plastic Deformation in (𝑍𝑟𝐻 𝑓𝑂4)𝑥 (𝑌𝑇𝑎𝑂4)1−𝑥

Oxide ceramics are known for their brittleness at room temperature, often not with-
standing 0.2% strain before fracturing and failing. As was demonstrated in section
2.4, the unique microstructure in our zirconia-based ceramics enables deformation
to unprecedented plastic strain at room temperature at the microscale. Here, we
dive down deeper into the mechanisms contributing to plastic deformation and its
implications for dislocation-based plasticity in crystalline materials in general. The
experimental process is the same as in section 2.3. Composition is 𝑥 = 0.735 unless
stated otherwise.

3.2.1 Deformation mechanism

Figure 3.1: Twinning vs. slip as seen in post-compression pillar images.

As was described in section 2.2, the coherent mirror planes seen in the Monoclinic
phase (stable phase at room temperature) in these ceramics provide easily accessible
deformation twinning systems of {100}〈001〉, {010}〈001〉, and {110}〈001〉. How-
ever, twinning was not the only deformation mechanism at submicron scales. As the
size of the crystals decreases, the total amount of stored elastic energy decreases,
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making way for dislocation slip governed plasticity before there is enough energy
to create new surfaces, which initiates brittle failure. Under certain conditions that
will be described below, pillars deform via twinning or slip, while fracture happens
exclusively in pillars above 2𝜇𝑚 in diameter after deformed to > 3% strain (pertain-
ing some level of plastic deformation first). Post-compression images were used to
identify twinning agains slip, examples of which are shown in Fig. 3.1 for two pillars
of silimar size. As made evident by the images, twinning manifests as shearing of
entire regions of the pillar in prism-like segments, while slip is identified through
parallel surface offsets that fall along the glide planes [3].

3.2.2 Microstructure analysis for deformation twinning

Figure 3.2: TEM image of a sliced pillar post twinning-induced plastic deformation.

Deformation twinning was visualized through TEM imaging. A deformed pillar was
thinned to ∼80nm thick using FIB and visualized under TEM (Fig 3.2). The pillar
originally contained orientations with [101]/[110] along the loading axis. The
lower part of the pillar remains undeformed, where a twin boundary cuts through
diagonally. The upper half of the pillar deforms via twinning, shearing out of plane
(which is why it appears to grow narrower at the top — result of the top-down
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FIBbing process). The corresponding DP shows the indexed theoretical pattern
overlaid on top. The theoretical angle between the zone axis [61̄5̄] and [1̄01], 8.1◦,
matches that was measured post-compression.

Figure 3.3: TEM images of the pillar before and after compression with its measured
mechanical response and twinning mechanism.

To better characterize the microstructural change after twinning, a FIB-milled
200nm-wide, 100nm-thick nanopillar was imaged through TEM both before and
after in-situ SEM uniaxial compression. Fig. 3.3A conveys the TEM image of the
single-crystalline pillar as fabricated, along with a high-resolution image (upper-left
inset) that contains 34-spaced Moiré fringes which arise from stacking of two ori-
entations identified in the diffraction pattern (DP, lower-left inset): one orientation
along the [011̄] zone axis (green) and the other oriented favorably only for diffrac-
tion from (110) planes, resulting in the additional (110) dot (blue). The (110)
planes on top of the existing [011̄] pattern produce satellite peaks whose intensity is
sufficiently visible only in the vicinity of the diffraction spots [120], resulting in the
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triplet-like DP. The theoretical diffraction difference between the green (111) and
blue (110) spots matches the predicted 0.029−1 from the measured Moiré spacing.
The pillar was then uniaxially compressed in the SEM, with the engineering stress-
strain data shown in Fig. 3.3B, revealing elastic loading up to 3.5% strain, followed
by a sudden 10% stress drop after onset of deformation twinning at 𝜎𝑐 = 8𝐺𝑃𝑎.
The pillar then steadily hardens with a ∼ 75𝐺𝑃𝑎 slope while the twin plane mi-
grates downwards at increasing cross-sectional area to 8% engineering strain with
5% plastic strain. A crystallographic diagram of the twinning system is presented in
Fig. 3.3, where the Monoclinic unit cell shears along the (110) plane in the [001]
direction. Fig. 3.3D shows the post-compression TEM image, where the top portion
of the pillar has undergone coherent shearing, a signature of deformation twinning
[10, 113]. This twinning-induced reorientation eliminates the Moiré pattern, leaving
solely the [011̄] DP (upper-left inset), while the lower undeformed section contains
the original crystal orientations with the Moiré character. The disappearance of
(110) spots and the observed (110) twin plane confirms the (110) [001] twinning
system.

3.2.3 Competition between slip and twinning

Main factors contributing to the competition between slip and twinning are sample
size, crystal orientation, and composition.

Size:Size:Size: Cylindrical pillars with diameters ranging from 200nm to 2µm of different ori-
entations as identified from EBSD were compressed. Fig. 3.4A shows representative
uniaxial compression stress-strain data for pillars with roughly [101]/[1̄01]/[011]
orientations along the loading direction, corrected for substrate effects using image
correlation as described in section 2.4. The exact loading orientations for each
pillar are presented in the IPF (Fig. 3.4A, inset). Twinning was found to be the
preferred deformation mechanism in this orientation, with five out of seven 200nm
diameter pillars and all eleven larger pillars deforming via twinning and only two
200nm pillars deforming via slip. The response of four typical pillars of different
sizes that deformed via twinning is plotted in purple in Figure 2A. After the initial
linear-elastic region, plasticity is triggered at a critical stress 𝜎𝑐 that decreases with
size, followed by steady serrated plastic flow, which is a typical trait of deformation
twinning [100, 121]. While the flow stress stays stable for the two larger pillars,
the two smaller pillars exhibit strain hardening as a result of the fabrication induced
tapering (more details in section 3.3). All sub-micron pillars deformed to >4%
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Figure 3.4: Mechanical response of different size pillars with 𝑥 = 0.735 and similar
orientation.

engineering strain without catastrophic failure, with the 200nm pillar compressing
to 13% and retaining 8% plastic strain post-unloading, which is on par with that
seen in ductile metals [113, 114, 121]. Twinning without fracture was also found in
samples up to ∼ 5𝜇 m in size of non-standard shape (see Section 2.4). The mechan-
ical response of a 200nm pillar that deformed via dislocation slip (grey) yields at a
strain of 8% and a 4x higher stress, with subsequent stochastic strain bursts that are
a signature of slip dislocation avalanches [41, 100]. As the pillar size decreases to
the average twin width of 200nm, the probability of it not containing a suitable ori-
entation for twinning increases, in which case the pillar yields only when it reaches
the much higher required stress for slip. Post-compression images of the 200nm
pillars that deformed via slip (Fig. 3.4B) exhibit shear offsets that are characteristic
of dislocation slip at the nanoscale [3] with the slip direction marked by the white
arrow. Samples that twinned (Fig. 3.4C) undergo a reorientation-induced shear,
with the white arrow marking the twin direction.

Orientation:Orientation:Orientation: Despite twinning being the preferred plasticity carrier in (ZrHfO4)0.735,
it is possible to trigger the {111}〈011〉 dislocation glide system in large pillars by
aligning the loading direction to the twinning direction [001], which results in neg-
ligible resolved shear stress on all three twin planes. Mechanical response of three
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Figure 3.5: Slip triggered by aligning the [001] axis to the loading direction while
other orientations deform via deformation twinning.

900nm pillars of different orientations are shown in Fig. 3.5. While both puple and
blue yield at ∼ 900𝑀𝑃𝑎 due to twinning (as is evident through the post compression
images, the blue orientation undergoes hardening that is almost negligible in the
purple orientation as a result of the more refined twin domain microstructure, where
the propagating twin encounters obstacles continuously throughout the deformation
process. On the contrary, plasticity in the grey orientation is triggered through
ordinary dislocation slip (slip lines on the post-compression image and the sudden
strain burst in the stress-strain data).

Composition:Composition:Composition: Comparing the stress-strain response of the same set of pillar sizes for
𝑥 = 0.735 and 𝑥 = 0.6 with similar orientations ([101]/[1̄01]/[011]), evidently the
stress range and hardening behavior are very similar. While there is not much dif-
ference between the two 200nm pillars, the larger pillars demonstrate slip-governed
plasticity at a much smaller strain in 𝑥 = 0.6 samples than in 𝑥 = 0.735 samples, as
a result of their higher pre-existing defect density.

Apart from the drift and the Sneddon effect (elastic indentation into the substrate),
another factor that skews measured displacement is the irreversible plastic deforma-
tion in the substrate below the pillar. This cannot be accounted for unless image
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Figure 3.6: Similar mechanical response in different compositions.

Figure 3.7: Similar mechanical response in different compositions.

correlation is done using videos containing the top and bottom of the pillars, which
is often inaccessible, leading to different elastic slopes in the loading regime for dif-
ferent tests. To verify that this hypothesis is valid, we evaluated a theoretical model
where a crack is located in the substrate below a pillar that is being compressed
(Fig. 3.7(left)). Assuming a Boussinesq stress distribition in the substrate [122], the
elastic loading of the pillar — both before and after the crack closes — is calculated
and compared to that on a rigid substrate (engineering) and simple dense substrate
(Sneddon corrected), which is shown in Fig. 3.7(right). The load is calculated by
integrating the Boussinesq stress field on the sphere surface containing the crack,
where the crack area is excluded (before the crack is closed) and then included
(after the crack closes, which collapses onto the Sneddon corrected solution). The



41

criterion for crack closing is based on the displacement of the crack center in the
direction orthogonal to the crack plane reaching the width 𝑤 of the crack. It is clear
that before the crack closes, the elastic strain coming from a 400𝑛𝑚 diamater crack
can result in a larger than two-fold difference from the nominal engineering stress-
strain, therefore explaining the large discrepancies between the different pillars in
Fig. 3.4 - 3.6.

3.3 Yield Point Size Dependence

As was seen qualitatively in section 3.2, sample size (pillar diameter) significant
influences material behavior during plastic deformation, including yield point for
slip / twinning and subsequent hardening behavior.

3.3.1 Orientation dependent size-effect

Figure 3.8: Yield stress (slip) and critical stress (twinning) defined as the maximum
before the first stress drop.

Quantitative analysis on the critical stress for yielding reveals the yield point for
each orientation decreasing with increasing pillar diameter (Fig. 3.9(left), the lines
are there to guide the eye — detailed discussions are in Section 3.4). We defined the
yield point — for slip or twinning — as the local maximum before the first stress
drop as a result of the nanomechanical setup, as is demonstrated in Fig. 3.8 [3, 5,
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Figure 3.9: Yield point size dependence for three sets of orientations.

27, 41]. It is immediately evident that the slip size-effect follows that of fcc metals
(green gradient at the upper-right corners), while the size effect for twinning in both
orientations are much more significant. Between the two twinning orientations, the
purple/circle set of pillars’ yield points are more repeatable - with the blue/triangle
set of pillars’ glide planes almost perpendicular to the loading direction, any small
misalignment in the loading axis results in a large discrepancy in the measured
yield stress. On average, the blue/triangle orientations have significantly higher
yield points than the purple/circle set of pillars as a result of their less ideal loading
orientation.

𝐶𝑅𝑆𝑆 = 𝜎𝑐𝑠 = 𝜎𝑐 (𝑛𝑛𝑛𝑙𝑜𝑎𝑑 · �̂̂��̂�𝑛𝑡𝑤𝑖𝑛) (𝑛𝑛𝑛𝑙𝑜𝑎𝑑 · 𝜆𝜆𝜆𝑡𝑤𝑖𝑛) (3.1)

We investigated the critical resolved shear stress (CRSS) for critical dislocation
activity, calculated using Eq. 3.1, as a function of the effective pillar diameter.
Here, 𝑠 is the maximum Schmid factor among combinations of pillar orientations
and accessible twin/slip systems; 𝑛𝑛𝑛𝑙𝑜𝑎𝑑 is the loading direction, �̂̂��̂�𝑛𝑡𝑤𝑖𝑛 is the twin/slip
plane normal, and 𝜆𝜆𝜆𝑡𝑤𝑖𝑛 is the twin/slip direction. The two twinning orientations
collapse onto the same scale once we account for the different Schmid factors,
further confirming the twin systems, while the slip yield stress remains higher and
less size-dependent. Further discussion can be found in section 3.4.

3.3.2 Composition indifference

Since composition is found to affect pseudoplastic strain rather than initiation of
deformation twinning, the initially twinning critical (yield) stress follows the same
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Figure 3.10: Size effect of twinning critical stress is independent of material com-
position or compatibility.

size dependence scaling in 𝑥 = 0.735 and 𝑥 = 0.6 samples with the same orientations
[101]/[1̄01]/[011] (Fig. 3.10). Since the two compositions contain the same crystal
structure and twin microstructure but with different defect density, this confirms the
hypothesis that the initiation of twinning-induced plasticity is not dependent on the
type of density in existing ordinary dislocations.

3.3.3 Hardening

As was briefly mentioned in section 3.2, hardening becomes prevalent in the twin-
ning process of smaller pillars. Close examination reveals power-law-like size effect
on the hardening slop (fitted to the post-yield region of loading), shown in Fig. 3.11.
At smaller scales, the lack of mobile dislocations give rise to increased stress to
initiate glide after each source is depleted, which partially explains the size effect
of hardening in both slip and twinning. Another source of hardening, which affects
twinning more than slip, is that as the diameter decreases, the ratio of pillar side
tapering to diameter increases, hence as a twin plane propagates down the pillar, the
amount of force needed increases at higher rates for smaller pillars.
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Figure 3.11: Hardening slope increases with decreasing pillar size.

3.4 Universality of the ’Smaller-is-Stronger’ Size Effect for Twinning and Slip

Fig. 3.12 plots normalized 𝐶𝑅𝑆𝑆 vs. 𝐷 for both twinning (purple) and slip (gray)
orientations. The shear modulus, 𝐺 = 61.5𝐺𝑃𝑎, was estimated from the linear
unloading segments in 200nm pillars, consistent with previous reports on Yttrium-
stabilized Zirconia [38, 123]. For pillars of similar size, CRSS for twinning is
significantly lower than that for slip, consistent with twinning being the preferred
deformation mode for pillars with access to both. Adopting the well-established
pure power-law of

𝐶𝑅𝑆𝑆 ∝ 𝐷−𝛼, (3.2)

the twinning size-effect, found to be universal among different orientations and
compositions (Fig. 3.9 and Fig. 3.10), has a higher exponent 𝛼𝑡𝑤𝑖𝑛 = 0.74 than
𝛼𝑠𝑙𝑖𝑝 = 0.57. Fig. 3.12(A) also contains power-law scaling reported for other brittle
materials (dashed lines), most of which exhibit a suppressed exponent of < 0.3,
commonly attributed to their high intrinsic lattice resistance [24, 25, 124, 125].
All dashed lines in Fig. 3.12(A) correspond to slip or fracture; this work presents
the first known systematic size-effect for twinning in a non-metallic material. A
ceramic whose size-effect comes closest to that for slip in (𝑍𝑟𝐻 𝑓𝑂4)0.735 is MgO
with activated {110}〈110〉 slip and exponent 𝛼 = 0.6 [43], similar to that in fcc
metals [27]. The scaling for twinning in this work is significantly more prominent.
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Figure 3.12: Universality of size-effect on normalized CRSS through deformation
twinning.

This large increase of size-dependence from slip to twinning finds its equivalence
in metals, where a similar exponent of 𝛼 = 0.7 was discovered for twinning in Mg
[121], and an unprecedented 𝛼 = 1 was found for Ti [113]. Fig. 3.12(A) also plots
two experimental data points for deformation twinning in quartz [126] (teal stars),
where a similar size-effect begins to emerge, although no conclusion was drawn due
to the small span in size.

The physical basis for the extrinsic size-effect on strength remains unclear – the pure
power-law fitting brings to question its validity in brittle solids [43, 56], whose high
lattice resistance persists as a dominating factor on yield stress in the commonly
probed size-range for nano- and micro-pillar work. Another way to represent size-
effect for materials with high background stress is

𝐶𝑅𝑆𝑆 = 𝜉𝐷−𝛼 + 𝜏0, (3.3)

where 𝜉 is a length-scale constant that scales with the Burgers’ vector and 𝜏0 is
the resolved macroscale yield strength. Fitting Eq. 3.3 to the twinning data for
(𝑍𝑟𝐻 𝑓𝑂4)0.735 gives 𝛼 = 1.00 ± 0.22 and 𝜏0/𝐺 = 0.0019 ± 0.0018 (Fig. 3.12(B)),
with the average 𝛼 identical to that predicted by the Matthews-Blakeslee critical
thickness model, which emerges as equilibrium is reached between the plastic strain
and the curvature of geometrically-necessary (misfit) dislocations [112]. The fitting
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process was done in Matlab using the 𝑓 𝑖𝑡 () function with nonlinear least squares
option.

We now seek to understand the form of Eq. 3.3 and its universality for twinning
in both metals and non-metals, and potentially extending to dislocation slip. The
size-dependence of twinning in Ti [113] exhibits the identical form as Eq. 3.3
with −1 exponent, but was theorized as a Hall-Petch type relationship with the
critical dislocation density for twinning scaling as 𝐷2, while it defines 𝜏0 as having
contributions from internal friction and solute strengthening, which approaches the
corresponding bulk strength at the macro-limit [43, 56]. We fit previously reported
Mg CRSS [121] to Eq. 3.3, only including data between 1𝜇𝑚 and 5𝜇𝑚 since smaller
pillars plateau at theoretical strength, resulting in 𝛼 = 1.00± 0.38 and bulk strength
𝜏0/𝐺 = 0.0017 ± 0.0034; this estimated 𝜏0 is close to that reported for mm-size Mg
samples [127]. The uncanny similarities among the drastically different systems in
Fig. 3.12(B) suggest universality of Eq. 3.3 with 𝛼 = 1 for a larger selection of
materials.

For dislocation slip, the immediate caveat of the widely-accepted power-law in Eq.
3.2 – that it breaks down at the macro-limit with nonnegligible bulk strength –
prompted the additional 𝜏0 term in Eq. 3.3 [43, 56], yet the lack of data below
100nm prevents a conclusive fit for the scaling exponent 𝛼. As was extensively
discussed in [56], there exist physical models for Eq. 3.3 with 𝛼 = 1 [111], which
collapses onto the same form as in Fig. 3.12(B). An example of such models is the
Matthews-Blakeslee critical thickness model [112], which applies to both ordinary
and twinning dislocations. In the case of ordinary dislocation slip, these idealized
models begin to break down at 𝜇𝑚-scale, where dislocation interactions come into
play. Such limitations do not affect deformation twinning, making it the ideal
mechanism for studying this phenomenon. We do not have enough evidence in this
work to pinpoint its exact explanation, but the universality of the 𝛼 = 1 exponent
suggests that deformation twinning can serve as an alternative route to investigating
the fundamental origin of the mysterious ‘smaller-is-stronger’ crystal behavior.

3.5 Summary

Deformation twinning in single-crystals and its dependence on extrinsic dimensions
has not been fully understood at the nanoscale. In this work we uncover twinning as
the preferred plasticity carrier for small volume (𝑍𝑟𝐻 𝑓𝑂4)𝑥 (𝑌𝑇𝑎𝑂4)1−𝑥 ceramics,
while dislocation slip can be activated only when no accessible orientation for twin-
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ning exists. In the sub-micron range, these single-crystal oxides plastically deform
up to a 10% strain through twinning without failure. While the power-law exponent
for the yield-stress size-effect of slip, 𝛼𝑠𝑙𝑖𝑝 = 0.57, is close to that in fcc metals,
we reveal the first systematic strength-to-size dependence for twinning in ceramics.
This significant size-effect was found to follow the inverse-like relationship with
exponent 𝛼 = 1 when considering a superimposed bulk strength, identical to the
twinning size-effect in soft metallic materials. The large similarities between a
brittle oxide and ductile metals shed light on the universality of the superimposed
scaling for the yield-point size-effect in single-crystal plasticity, suggesting defor-
mation twinning as an alternative controllable way of probing its exact physical
origin.
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C h a p t e r 4

MICROSTRUCTURE-MECHANICS RELATIONSHIP OF
SCORPION PINCER CUTICLES

Zhang, Haolu, Israel Kellersztein, Rebecca A. Gallivan, H. Daniel Wagner, and Julia
R. Greer (n.d.). “Microstructure enabled fracture resistance in Scorpio Maurus
Palmatus cuticles.” In: In Preparation ().

The complex hierarchical microstructure in biomaterials prevent a universal un-
derstanding of their mechanical behavior. Previous studies reveal a unique fiber
organization in scorpions that is not found in their close relatives in the Arthropod
family. While the uncovered Bouligand and Unidirectional structures are hypoth-
esized to dominate the stiffness and toughness of the organ, there is still a lack
of accurate constitutive depictions of the constituents or of intact microstructural
characterization. We use Synchrotron X-ray diffraction to reconstruct fiber ar-
chitecture and in-situ microscopic tension and compression with FEA to identify
isolated stiffness, strength, and fracture behavior of the two different regions. The
unveiled microstructure-mechanics relationship — orientation-dependent stiffness,
compression-tension asymmetry, fiber-protein detachment — shed light on the op-
timized structural functionalities for the two regions in the scorpion cuticles.

4.1 Introduction: Damage Mitigation in Hard Biomaterials

Hard biomaterials such as bone, diatoms, nacre, etc. constitute a mechanical behav-
ior superior to man-made materials, such as increased toughness and crack deflection
[17, 21, 30, 61, 63, 128, 129], despite using simple building blocks such as chitin
[130], silica [17], collagen [131], etc. With strengthening mechanisms at continuous
hierarchical lengthscales, the unique behavior of these materials stems from their
optimized microstructure. For example, collagen fiber bridging provides energy
dissipation in fractured bones [21, 132]; the brick-and-mortar structure in nacre
incorporates friction and interplate bridging [30]; unique nano-patterns on diatoms
strategically deflect crack paths [17]. These evolution optimized microstructures in-
spire artificial composites with combined material properties significantly improved
from a simple mixtures of their corresponding constituents [133–135].
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One material of particular interest to the biomechanics community is chitin, a long-
chain biopolymer that is a major component to arthropod exoskeletons [136]. Chitin,
specifically 𝛼-chitin fibrils, combines with proteins to make nanometer-thick chitin-
protein fibers that become the basic building blocks providing the structural integrity
for many organisms. The unique Bouligand twist/plywood structure of chitin-protein
fibers in the cuticles of crustaceans and insects have inspired a plethora of mechanical
investigations on the macroscopic stiffness, strength, and toughness of the cuticles
of lobsters [61, 130, 137–140], crabs [138, 141], spiders [139, 142], insects [143–
145], and other arthropods [58, 146–149]. Theoretical and simulation frameworks
have been developed to quantify the crack deflection and energy absorption in the
twisted laminates of chitin fibers [150, 151], and bio-inspired artifical materials
show improved impact resistance and shear strength [65, 152, 153]. Depite the
abundance of dissected lobsters, directly measuring the mechanical properties of
𝛼-chitin remains a challenge, with extended efforts on theoretical and simulated
predictions for its stiffness and strengh at the nanoscale [61] using MD, DFT, and
other complicated methods.

Recent works from our collaborators in the Wagner group at the Weizmann Institute
of Science reveal extra unidirectional layers that are unique to the moving fingers
of two species of scorpions [154] and helicoid patterns that add an out-of-plane
twist to the purely-rotational Bouligand structure [155]. While there is nanoinden-
tation data that show anisotropy in the mechanical response of these materials, a
few questions remain unanswered. 1) With a 3-dimensional microstructure inferred
from fractured surfaces and the material naturally designed for guided crack paths,
there is limited visual observation of hidden features in the Bouligand structures and
little quantifiable information on the fiber organization. 2) While nanoindentation
probes the homogenized reduced stiffness of specific regions, the deformation mech-
anism, strength, and inhomogeneity within the individual layers remain unknown.
3) Known for its improved fracture toughness, the Bouligand layers and their com-
petition with the unidirectional layers can only be deciphered through controlled
microscopic fracture experiments such as 3pt bending or tensile tests.

We use Synchrotron X-ray scattering to resolve the fiber orientation, distribution,
and network structure in intact samples of dehydrated scorpion cuticles in differ-
ent orientations. Microscale compression and tension experiments were used to
characterize the microstructure-mechanics relationship, quantifying properties such
as directional stiffness, large-strain deformation, strength, and fractography, in an
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attempt to resolve the individual constituent behavior and how they each contribute
to the overall functionality of the organism.

4.2 Microstructural Analysis

Figure 4.1: Hierarchical overview of the Scorpio Maurus Palmatus tarsus cuticle.

Dehydrated tarsuses (moving fingers) of Scorpio Maurus Palmatus (SP) were pre-
pared by our collaborators from the Wagner goup at the Weizmann Institute of
Science following steps in [154]. Each tarsus was dehydrated again using ethanol
with graded concentrations up to 100%, vacuum embedded in epoxy, then polished
using a Buehler Ecomet3 with graded sandpapers (240 grits up to 1200 grits, then
finishing with 1𝜇𝑚 and 0.1𝜇𝑚 diamond suspension solutions). Overview of an SP is
shown in Fig. 4.1(A), with a close up of its tarsus shown in Fig. 4.1(B). Fig. 4.1(C)
presents a SEM transversal cross-sectional view of the tarsus, with clear sublayers
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Figure 4.2: Distint microtructural regions in the tarsus with (orange) unidirectional
fibers and (blue) Bouligand fibers.

within the shell of the cuticle. The slight contrast in the layers come from the differ-
ent microsctructures, which polishes to slightly different roughness. More detailed
description of the layers can be found in Ref [154]. Fig. 4.2 shows the cross-section
with the Bouligand regions marked in blue and the unidirectional regions marked
in orange. It is evident that the thickness of the endocuticles varies in different
locations, with the thickest parts in the innermost, outermost, left, and right regions,
where stress is highest when the cuticle is bent inwards or side-ways, suggesting that
the competition between the Bouligand structure and the Unidirectional structure is
due to their different load-bearing capabilities.

Prior studies have shown that the Bouligand structure in the SP manifests as stacked
helicoid (added twist on the ordinary Bouligand structure, which is rotational in-
plane) lamellae that form a thick laminate which then stacks in the orthogonal
direction; the Unidirectional layers, on the other hand, consist of lamellae made
of short textured fibers aligned across the lamellae, which stack in the longitudinal
direction along the cuticle. Representative SEM images are shown in Fig. 4.3 [155],
where textured lamellae in the two regions can be seen.
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Figure 4.3: SEM images showing the microstructure in the (A) Bouligand layers
and (B) Unidirectional layers.

4.2.1 Microbeam SAXS/WAXS/Fluorescence via Synchrotron X-ray Diffraction

To observe the twist angle and rotation axis of the helicoid geometry in these unique
biocomposites, samples were fractured by force to create textured surfaces from
which the 3-dimensional geometry of the fiber structure were interpreted [154,
155]. Due to the porosity of the material, the weak fiber-protein interface, and
the ordered pore cannals, the material fractures at biased faces, revealing the same
fracture surface in all reported SEM images. The structure of the fiber behind these
surfaces in 3-dimensions remains mysterious. We use transmission Synchrotron X-
ray Diffraction to visualize the fiber structure within the volume of these composites
without physically damaging the samples. Due to the highly heterogeneous nature
of the material, we used a 𝜇-beam Small Angle X-ray Scattering (SAXS) and
simultaneous Wide Angle X-ray Scattering (WAXS) at the Brookhaven National
Synchrotron Light Source (NSLS-II), beamline 12-ID.

Scanning set-up

Samples of 5𝜇𝑚 thickness were prepared by microtome and deposited onto 𝑆𝑖3𝑁4

membranes, then secured on the instrument using Kapton tape. Samples from two
species, SP and Buthus Occitanus Israelis (BO), each of two orientations (transverse
and longitudinal cross-sections) were used. Optical images of the SP samples are
shown in Fig. 4.4.
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Figure 4.4: SP cuticle samples used for Synchrotron X-ray diffraction with (A)
transversal cross section and (B) longitudinal cross section.

The scanning set-up is shown in Fig. 4.5, where a 2𝜇𝑚 (vertical) by 20𝜇𝑚 (hori-
zontal) 16.1 keV beam is scanned across a region of the sample containing all layers
of interest and the diffraction pattern as well as fluorescence signal from each pixel
was recorded, with the scanning configurations shown in Fig. 4.5. Each sample
was scanned at two rotations that were 90◦ apart to eliminate effect from the beam
shape.

Fiber structure reconstructed via SAXS

The diffraction data of the Endocuticle (Bouligand) region of the SP cuticles from the
two orientations are shown in Fig. 4.6. In the transverse orientation as seen in Fig.
4.6(A), the diffraction pattern varies as the beam travels across the sample: in the
interlayers, which are unidirectional transitions between each Bouligand laminate,
the diffraction is anisotropic since the beam only detects stacking from fibers in the
one textured orientation along the hoop direction. In the middle of a laminate, the
fiber stacking is averaged over the 2𝜇𝑚 by 20𝜇𝑚 beam to show a diffraction pattern
from all stackings as a result of the rotation and twist in the helicoid geometry. The
change in fiber orientation interpreted from the diffraction patterns are shown in
the fiber diagrams, which match that observed from the fracture surfaces in [154,
155]. In the longitudinal direction, the stacking of the interlayers are along the beam
direction, which does not diffract intensely, resulting in the same DP as seen in Fig.
4.6 throughout the Endocuticle. The interpreted fiber structure is again consistent
with that seen in SEM images.
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Figure 4.5: Synchrotron 𝜇-beam X-ray SAXS/WAXS set-up.

Similarly, the diffraction data and interpreted fiber structure are shown in Fig. 4.7.
The diffraction peak from the 4.69𝑛𝑚 fiber packing (typical of 𝛼-chitin [142]) in
addition to the diffuse background in the transversal orientation (Fig. 4.7(A)) suggest
packing of layers of randomly spaced fibers pointing towards the beam direction,
while the shape 4.69𝑛𝑚 peaks in the longitudinal direction (Fig. 4.7(B)) confirm the
evenly packed fibers along the longitudinal direction as seen in the broken samples
through SEM [154, 155].

Anisotropy analysis

Further analysis on the anisotropy in the diffraction patterns was performed to
visualize the inhomogeneity of fiber organization throughout the distinct layers in the
samples. The Azimuthal integration (integrated intensity along the radial direction
from the incident beam), an example of which is shown in Fig. 4.8(left), obtained
using provided scripts from the beamline at NSLS-II, is used for the analysis.
The background intensity is first subtracted from the data, then a Gaussian/normal
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Figure 4.6: SAXS for Bouligand structure with (A) transversal orientation and (B)
longitudinal orientation.

distribution is fitted to find the peak mean (which corresponds to the main diffracting
fiber orientation) and peak broadness (which is inversely related to the sharpness).
An example of the fit process is shown in Fig. 4.8(right). From the fitted results
for each mapped pixel, the intensity of the anisotropy is then defined as the peak
height devided by the standard deviation, since a faint sharp peak (diffracting in one
direction) is more anisotropic than an intense broad peak (diffraction everywhere).
The intensity is then normalized by the same value (arbitrary units) such that the
results from different orientations are comparable.

The results are plotted in Fig. 4.9 for both orientations. The direction of the
lines represents the direction of the fibers that are diffracting and the length of the
line represents the degree of anisotropy (longer line is equivalent to more aligned
fibers). In the Unidirectional regions (mid orange sections), the fiber organization
seen from both directions are both fairly uniform and textured. The transition from
each region to the next is coherent with no sudden change in fiber organization. In
the Endocuticle / Bouligand regions (upper blue sections), there is more alignment
seen in the transversal direction than in the longitudinal direction, as a result of the
highly textured interlayers as seen in Fig. 4.6(A). The waviness in the outerprofile of
the patterns in the blue regions represent the periodicity of the Bouligand laminates,
which are on the order of 10𝜇𝑚 in thickness, consistent with that seen through SEM
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Figure 4.7: SAXS for Unidirectional structure with (A) transversal orientation and
(B) longitudinal orientation.

(Fig. 4.3). In the hypothesized helicoid structures in Ref [155], there is an additional
twist to the pure rotations in the Bouligand structure; the lack of heterogeous fiber
texture (no periodic change in direction) suggest that the twist axis is always along
the fiber direction in each layer of fibers, such that the fibers remain tangential to
the hoop direction of the cuticle.

4.2.2 Elemental distribution of metals in protein matrix

Metals are hypothesized to exist in the protein matrix of biological exoskeletons in
two ways: (1) minerals or (2) coordination bonds. In their mineral form, metals
are theorized to provide higher hardness and toughness for the proteins, especially
in marine bodies due to hydration-induced softening [130, 138, 139, 141, 145,
156]. Common minerals found in biological shells include crystalline or amorphous
Calcium Carbonate [148, 157], Calcium Phosphate [147, 158], and iron oxides
[159], and can exist as nanoparticles in different shapes and distributions. In marine
Arthropods, relatives of our scorpions, amorphous Calcium Carbonate (ACC) and
Calcium Phosphate (ACP) has been found, [148]. ACC and ACP are metastable
phases that requires the organism’s active stablization to exist in the biological
system, and has been found to crystalize immediately [160]. Metal-coordination
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Figure 4.8: Fitting process for anisotropy analysis.

bonds, on the other hands, describe the chemical interaction between bio-molecules
such as proteins and metal ions (𝐶𝑎2+, 𝐹𝑒3+, 𝑍𝑛2+, etc.) between covalent and
non-covalent bonding, and have been observed to increase toughness and hardness
of bio-materials in more recent years, in addition to their multifunctional roles
such as catalysis or signal transmission [142, 161]. Specifically, Phosposerine-Ca
(containing Ca and P) is found in sandcastle worm glue [161] and 𝑍𝑛2+ metal-ligands
were found in spider fangs [142].

X-ray fluorescence shows distribution of four different elements in the tarsus cuticle.
No significant orientation dependence was found. P, Ca, and Fe are inhomoge-
neously distributed with aggregations in every region. The aggregation sites for Ca
and P are closely correlated, suggesting that they are linked in either mineral (likely
ACC or ACP) or ionic form (Phosposerine-Ca). Zn is distributed more evenly, with
the highest concentration in the exocuticle and lowest in the endocuticle, while its
concentration in the unidirectional region is in the middle. This is consistent with
the distribution of Zn in spider fangs, which is used to inject venom into their preys
and thus require high hardness and resistance to failure. A typical radially integrated
WAXS spectrum of the SP cuticles is shown in Fig. 4.11, with broad background
diffraction and no sharp peaks corresponding to crystal diffraction, suggesting that
there are no minerals in the materials and therefore likely only metal-coordination
bonds.
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Figure 4.9: Fiber organization from SAXS diffraction for the SP cuticles in the (left)
transversal and (right) longitudinal orientations.
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Figure 4.10: Elemental map from X-ray fluorescence.

4.3 Mechanical Set-up

With further understanding of the intact material microstructure, mechanical experi-
ments were designed to investigate the site-specific stiffness, strength, and toughness
at the microscale through pillar compression experiments, 3pt bending experiments
as outlined in [21], and tensile experiments. Details of the pillar experiments can be
found in Section 2.3; pillars were contained within individual laminates to eliminate
effects from interfaces.

4.3.1 Attempts at 3pt bending

Measuring fracture toughness at the microscale proved to be difficult, with the
sample sizes inconsistent with standard testing procedures [162]. Recently our
group has developed a technique that measures the crack opening and R-curve of
𝜇m-scale bone samples through 3pt bending experiments [21]. We attempted to
perform the same set of experiments, extracting rectangular pieces of the sample
from the cuticles using the FIB. The sample is highly porous both naturally and as
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Figure 4.11: WAXS spectrum from the SP cuticles showing no crystallographic
phases.

Figure 4.12: High porosity in SP cuticles as seen in FIBbing.

a result of the FIB etching away the protein faster than the chitin fibers, resulting in
large free volumes as seen in the pillar making process in Fig. 4.12. This becomes
an issue with sample deposition onto Si wafers later in the testing process.

A sample polished to reveal its longitudinal cross-section is shown in Fig. 4.13(A).
Trenches were etched in the Bouligand region to produce a rectangular piece that
can be etched from the side and taken out of the bulk of the material, as is shown
in Fig. 4.13(B). Upon etching away the left and lower parts of the rectangle, the
piece bends without physical manipulation, revealing small residual stresses in the
material that curls the material inwards slightly (Fig. 4.13(C)). To glue the sample
onto a substrate, Pt was deposited onto parts of the sample using evaporated Pt.
Slight bounce off of Pt from the deposition landing on the sample resulted in severe
distortion of the piece, as is shown in Fig. 4.13(D), as a result of the porosity
and the residual stress. Plans to measure toughness through 3pt-bending was thus
suspended and switched to micro-tension experiments, as is used in mechanical
characterization of other materials [6, 67].
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Figure 4.13: Porous 3pt-bending sample deforming.

4.3.2 Micro-tension experiments

Figure 4.14: Micro-tension experimental set-up with (A) custom grip and (B) half
dogbone samples.

Tensile experiments were performed on the Agilent InSEM in the FEI Quanta. The
experimental setup is similar to that in Section 2.3 and more details can be found
in [32, 67]. A few iterations were made to fabricate the suitable tensile grip, with
failed attempts on tungsten needles epoxied/super-glued/crystalbonded to a InSEM
tip base. The final grip was fabricated out of a Diamond cone tip from Synton-MDP
AG, with its overview and shape in Fig. 4.14(A). The grip clearance is 4.2𝜇m with
20𝜇m thickness. Example of a half dogbone fabricated out of the samples using
FIB is shown in Fig. 4.14(A). Each dogbone is restricted to one lanimate either in
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the Bouligand region or in the Unidirectional region to eliminate influence from the
interfaces.

4.3.3 Finite Element Analysis (FEA)

FEA was performed to visualize and interpret stress concentrations and localized
behavior of the natural composite. We used Abaqus CAE 2018. Pillar compression
experiments were mimicked with a 1.3𝜇m diameter pillar with 1:3 aspect ratio.
Identical fibers with 70𝜇m spacing, tiled in a square pattern, populated the pillar.
Due to the lack of reported experimental results for the material properties, size, and
hierarchy of either the chitin fibers or the protein matrix, multiple tests were done
for fibers of 20𝜇m or 70𝜇m diameter, with fixed fiber stiffness as 𝐸 𝑓 =70GPa [61,
155]. 4 different protein modulus values 𝐸𝑝 were used for a total of 8 tests: 10MPa,
35MPa, 100MPa, 1GPa, which fall in the ballpark of what had been simulated or
predicted [61, 155]. Meshes with 20𝜇m roughly in size were used, and an embedded
constraint was set between the fibers and the bulk of the pillar. Poisson’s ratio for
both the fibers and the bulk were set to 0.4. A rigid punch with a 2𝜇m diameter was
set on top of the pillar to control compression force for buckling analysis. The BC
at the top and bottom of the pillar were set to Encastre for no-slip conditions.

The simulations were done in two steps:

1. A Linear perturbation step (Buckling) with Load=1 was run to find the first 24
eigenvalues (largest allowed for the amount of computing power available).
The Model Keywords were editted to output the eigenmodes, and reran.

2. A Static, Riks step (replacing the buckling step) with the first buckling eigen-
value as load was run for post buckling analysis. The buckling eigenmode
output were input into the new model’s Keywords as to initiate the buckling
modes. The results from this step were taken to further analysis and compared
with experimental data.

This turns out to be a standard process and can be found on many tutorial websites.

4.4 Localized Buckling Under Compression Geometry

800nm diameter pillars in the two fiber organization regions on a transversal cross-
section were compressed for their mechanical response. For pillars in the Bouligand
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Figure 4.15: Engineering stress-strain response of pillars in both regions before and
after creep isolation.

region, the fibers had a random chance of being aligned with the loading direction
or misaligned due to fiber structure; for pillars in the Unidirectional region, the
fibers were aligned with the loading direction. Four pillars in the Bouligand region
and three pillars in the Unidirectional region were recorded, and their engineering
stress-strain data (corrected for Sneddon effect [96]) are shown in Fig. 4.15(A).
The significant load drop during the 10s hold at the end of loading and before
unloading suggests creep in the material, likely as a result of reabsorption of water
from the atmosphere, since the samples had been stored for a month since they
were embedded. Since it was impractical to quantify the water content, we used a
linear approximation for the creep (fitted to the hold segment) and subtracted it from
the original data to obtain the "instantaneous" mechanical response, as is shown
in Fig. 4.15(B). While we successfully eliminated creep, there still was significant
hysteresis in the response, partially due to the nonlinearity in the creep and mostly
from microplasticity. We focused on the "instantaneous" response so as not to focus
on the water effect too much, more details of which are shown below.

Mechanical response of the Unidirectional fibers (aligned with the loading direction)
are repeatable due to the determined fiber direction while the response from the
Bouligand fibers are scattered as the fibers are randomly oriented. When the pillar
is in the direct center of the Bouligand laminates with fibers pointing mostly towards
the loading direction, the response is close to that from the Unidirectional pillars;
when the pillar is off-center of the Bouligand laminates, the fibers are rotated
away from the axis, resulting in lower stiffness. The effect on stiffness from fiber
direction (angle between fiber and loading direction) are shown as dashed lines on
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Figure 4.16: Pillar compression response in scorpion shells. (A) Instantaneous
stress-strain response for the deformation in the (B) Bouligand and (C) Unidirectional
structures.

the plot, where the slope decreases with increasing misalignment. The fitted moduli
from the initial unloading segment is 5.4±0.3GPa for the Unidirectional pillars and
4.5±0.5GPa for the Bouligand pillars, which are both lower than that measured from
nanoindentation [154], although the trend stays the same. This could be from the
inaccurately assumed Poisson’s ratio used to calculate modulus in the indentation
tests or from softening effects due to hydration. The post-compression pillar SEM
images are shown in Fig. 4.16 for both fiber structures. Clear signs of fiber
collapse can be observed on both pillars after compression, with the unidirectional
pillar suffering from more severe distortion from the fiber collapse, despite being
compressed to lower strain. The preferred collapse direction (on the right half of
the pillars) is a result from the inevitable slight misaglignment in the instrumental
set-up.

FEA of pillars with Unidirectional pillars reveal localized buckling of embedded
fibers during compression (Fig. 4.17(A)), which is consistent with the collapsing
behavior seen in Fig. 4.16(C). Color in the stress distribution represents Mises
stress. Since post-buckling produces nonlinear stress-strain response, we expect
the simulated post-buckling data to divert from the simple linear rule of mixture
calculations. Hypothetically, by comparing the scaled stress-strain data for different
combinations of fiber size / protein stiffness to that experimentally measured, we
should be able to identify the best combination that describes the individual con-
situent properties, which remain inaccessible to this day. Closer evaluation reveals
that for all the combinations, buckling happens at strains way larger than 0.1 (with
the smallest of 0.1423 for 20nm thick fibers and 𝐸𝑝 = 10𝑀𝑃𝑎), before which the
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Figure 4.17: Stress distribution visualized through FEA and compared to experi-
mental and theoretical data.

response was purely linear elastic. Among all the combinations, the simulated
elastic response of 𝐸 𝑓 = 70𝐺𝑃𝑎, 𝐸𝑝 = 35𝑀𝑃𝑎, 20nm thick fibers matched the
experimental results best, which is shown in Fig. 4.17(B) along with theoretical
rule-of-mixture stress response and the measured experimental response. From the
pre-buckling elastic response alone, protein stiffness does not provide significant
distinction. The experimentally observed buckling, despite not reaching buckling
strain, suggest that the fibers are either discontinuous in the pillars or other defects
are lowering the destablization stress (such as Ga implantation caused stiffening at
the pillar top).

4.5 Failure Analysis through Micro-Tension Experiments

Contrary to compression, tensile tests reveal higher stiffness in the Bouligand region
(same orientations as in Section 4.4) than in the Unidirectional region, as is shown
in Fig. 4.18, despite the Bouligand pillar with visibly higher porosity as perceived
in the SEM images. Both pillars deformed up to a 16.5% strain without failure,
suggesting significant plasticity from the protein and slip between fibers and their
surrounding protein.

The tensile response of pillars are not repeatable, and more data is needed for
statistically conclusive results. As is shown in Fig. 4.19, two pillars of the same size
from the same Unidirectional region on the same sample (transversal orientation)
deform to different strains. While the two pillars follow the identical initial linear
elastic response with 35MPa modulus, one fails at the 3% strain while the other
deforms up to 17% without failure. The repeatable elastic segment suggests that
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Figure 4.18: Bouligand microstructure stiffer than Unidirectional in the tensile
configuration.

Figure 4.19: Unidirectional fibers pulled off from the protein matrix in tension
experiments with stochastic failure strength.

the drastic different response are both authentic data measured from the material
itself, in contrary to experimental errors. The stochastic nature in the failure stress
between the two pillars suggests that despite deforming the weakest link in both
pillars, the interface between the fibers ends and the protein can have different
strength, similarly to how initial micro-crack distribution changes the failure strength
of brittle materials. A closer evaluation of the fracture surface as seen in Fig. 4.19
suggests a clean cut fiber break off from where it embeds in the protein: the periodic
grooves remaining on the fracture surface match the measurement for the fiber
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Figure 4.20: Compression-tension asymmetry in the Unidirectional region.

stacking from SEM images in Ref [154, 155]; no fiber pull-out (holes or fibers
sticking out) is observed. Comparing the compression and tension response in the
Unidirectional region (Fig. 4.20), the tensile modulus is orders of magnitude lower
than in the compression geometry (5.4GPa), suggesting that it is the weakest link that
dominates stiffness in the tensile configuration — the protein between discontinuous
fibers. This confirms the use of 35MPa as 𝐸𝑝 in the FEA in Section 4.4.

4.6 Summary

Chitin fiber structures are hypothesized to dominate mechanical behavior of arthro-
pod shells, which are know for their high strength and toughness. Synchrotron X-ray
SAXS and WAXS are used to reveal the intact fiber organization in Scorpion cuticles
that match fractography observations, while fluorescence uncovers transition metals
in the form of metal-coordination bonds, which have been shown to stiffen and
toughen exoskeleton proteins in arthropods and insects. Combined site-specific mi-
croscopic compression and tension experiments reveal tension-compression asym-
metry in both the Bouligand and Unidirectional microstructural regions, shedding
light on the complex mechanical behavior and how the two microstructures are
optimized for the two stress configurations. In the Unidirectional layers, which is
unique to the SP tarsus cuticles, compression manifests as localized buckling of
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the fibers while tension passes onto the weakest link in the material, which is the
protein matrix between discontinuous fibers. These observations shed light on how
these complex fiber-reinforced bio-materials are optimized for their functionality
and ambient conditions.
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C h a p t e r 5

VISCOELASTICITY OF JELLYFISH VIA IN-SOLUTION
INDENTATION

Soft biological tissues lend their complex self healing properties to bioinspired
materials with a multitude of applications. Previous studies reveal that jellyfish
can exhibit mechanically driven shape recovery, yet there lack quantitative charac-
terization of its viscoelasticity to accurately model and replicate this behavior in
simulations or aritificial systems. Conventional mechanical experiments designed
for engineering materials are not suitable for jellyfish due to its complex structure
and necessary ambient conditions (moisture). We use in-solution flat punch inden-
tation to conduct stress-relaxation, DMA, and quasi-static loading to identify and
cross-examine viscoelastic models that accurately depict jellyfish Mesoglea.

5.1 Introduction: Mechanically-Driven Self-Healing of jellyfish

The viscoelastic nature of soft biological tissue enables a wide range of organ func-
tions, such as self-healing and shape recovery. For example, sea anemones change
shape with water currents [163]. Owing to their complex gel network structure, the
both solid- and fluid-like properties of these animals give rise to their self-healable
multifunctionality, inspiring novel material avenues with application in soft robotics
[164], tissue engineering [165], bio-implants [166], etc. The success of designing
artificial soft materials with optimal properties relies on a full understanding of how
microstructural constituents facilitate the mechanical response of natural hydrogels,
such as that in jellyfish.

It was revealed that the shape of grafted jellyfish can retain its symmetrical config-
uration via mechanically driven processes without cellular regeneration [167]. As
one of the simplest animals, jellyfish consists of mainly its Mesoglea, which is a
natural hydrogel containing a small number of cells; it is thus hypothesized that the
mechanical properties of Mesoglea is the origin of jellyfish’s self-healing behavior.
A natural proof to this hypothesis would be a full-scale FEM run that captures the
shape recovery under simulated muscle contractions. To do this, accurate depictions
of the material parameters are needed. Unlike artificial materials, which can be cast
into standard shapes for tensile or compressive testing [168–171], mechanical ex-
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periments on biological tissue has been challenging, since it often requires specific
ambient conditions (physiological temperatures [172], hydration [173], etc.) and
custom instrumental set-up (unconventional stress conditions [174], sample damage
[175], etc.). Currently, there is still a lack of a universal testing standard for the
characterization of soft biomaterials, which gives rise to large discrepancies among
different reports of the same subject [176]. The viscoelasticity of Mesoglea has
been studied since the 1960s [173, 175, 177], yet there is still a lack of a consti-
tutive model that describes the shape retaining process observed by Ref [167] due
to the large differences among the various reports. In addition to viscoelasticity,
hydrogels’ unique poroelastic behavior serves as another source of time-dependent
response, rendering the analysis of many mechanical experiments infeasible.

To overcome this problem, we have established mechanical experiments to charac-
terize both static and dynamical response of the jellyfish Mesoglea in sea water using
nanoindentation, which has been adopted in the characterization of viscoelasticity
[178, 179] and poroelasticity [180, 181] in artifical hydrogels, validating the stress
output of indentation by comparing to macroscopic experimental results. Unlike
tension or compression, indentation does not require complicated material handling
before or during the tests, therefore allowing for fast and repeatable data acquisition
without interfering with material behavior.

5.2 Experimental Setup

Figure 5.1: Diagrams of the Aurelia aurita: (left) bottom-up view; (right) vertical
cross-section.

Fig. 5.1 provides the bottom-up and cross-sectional diagram of the Aurelia aurita
jellyfish. The fish is mainly composed of its body (round flat bell) and its four legs.
The bell diameter ranges from a few millimeters to a few centimeters (depending
on its age) and is thickest at the center while thinnest on the edge. There is a ring
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of muscles on the lower side of the edge that controls the movement of its body
(propelling water, which enables swimming [182]). The thickness of the fish also
varies, with a 3cm wide fish usually ∼5mm at its thickest part. At the center of the
fish is its stomach — a small cavity that holds and digests food particles. Around
the stomach lie four gonads, which are its reproductive organs. Collagen fibers are
randomly dispersed throughout the gel, oriented across the bell thickness, shown as
the orange lines in Fig. 5.1(right).

5.2.1 In-solution flat punch indentation

Figure 5.2: Indentation test setup for jellyfish in solution.

Indentations were carried out in the KLA G200 XP system. To conduct accurate
indentation tests, the jellyfish were sumberged in seawater with 8% menthol (anes-
thetic) such that they were fully hydrated but immobile. A custom 3D printed
sample holder with 2.5mm diameter was used to hold the solution and the jellyfish
(Fig. 5.2). Initial efforts to glue the jelly to the substrate failed with both regular
glue and suture glue, thus the fish were tested with anesthetic instead of adhesion.
The top of the solution just covered the top of the jellyfish so that the indenter had
enough displacement allowance to reach the fish. We used jellyfish ∼2cm in width
to control their age and thickness. Indents were all smaller than 200𝜇𝑚 (<10% of
its thickness), therefore the curvature and substrate effect were neglected. Indent
locations were chosen around the stomach, between the gonads, so that they do not
interfere with the results. Stress-relaxation, DMA, and ramp loading ("quasi-static"
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indentation) were carried out for depths up to 150𝜇𝑚; for stress-relaxation, the dis-
placement was ramped to target within 1s, then held for 300s after the initial "step."
Cylindrical flat punchs with 120𝜇𝑚 and 400𝜇𝑚 diameter were used for constant
area function and stable contact. Since salt water has a highly rusting agent, the tips
were ultrasonically cleaned in IPA for 30min, then rinsed with IPA and air-dried
after every experiment session.

Figure 5.3: Correcting for machine stiffness by subtracting force in air at constant
prescribed raw depth.

For the G200 XP and most common nanoindentors, machine detectable stiffness
is usually above 50N/m, which translates to 100kPa. Since jellyfish is orders of
magnitude softer than what the machine is able to detect (∼1kPa), the tests were
carried out to nominal depths in both jellyfish and air, then calibrated to find the exact
load on the sample. The displacement of ramp tests were determined by examining
the difference between tests in air and on the sample; for stress-relaxation and DMA
tests, since the initial ramping happens in a short amount of time (1s), the corrected
displacement is determined as the nominal depth minus the microscope focus length
on the jellyfish’s surface (which is calibrated to be at 0 depth), which can give errors
up to ∼ 20𝜇𝑚. Example of a stress-relaxation test being corrected is shown in Fig.
5.3. It can be seen that the load coming from the jellyfish starts at 300𝜇𝑁 while the
machine stiffness contributes up to 6.3𝑚𝑁 , a clear evidence that automatic detection
in the machine would treat jellyfish as air.

Validation for the method was done using artificial gel with 2.5% Agarose (in
water). Examples of ramp-hold tests are shown in Fig. 5.4, where repeatable load-
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Figure 5.4: Repeatable measured load-displacement data for artificial gel.

displacement curves were measured for four separate tests using a 400𝜇𝑚 punch.
At 220𝜇𝑚 depth, the sample touches the sides of the tip, resulting in the "sink-in"
dip in the load data and subsequent stiffening. The measured reduced modulus is
21±1𝑘𝑃𝑎, which falls between that measured for macroscopic Agarose with 1% and
5% concentration [183], validating that the method produces reliable and repeatable
results.

5.2.2 Dynamic Mechanical Analysis (DMA)

Figure 5.5: Representation of DMA. (A) DMA system diagram with 1-machine
response and 2-material response. (B) Representation of measured response.

Frequency sweeps between 1Hz and 10Hz were carried out since the jellyfish pulses
at ∼0.8s in the wild, with 150𝜇𝑚 pre-depth and 1𝜇𝑚 oscillatory displacement.
Forward and backward sweeps with the 400𝜇𝑚 punch were conducted and averaged
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to minimize effect from loss of hydration. A representative machine diagram is
shown in Fig. 5.5(A), where the (1) machine viscoelastic response and the (2)
material viscoelastic response are in parallel due to the indentor’s capacitor set-up.
Representative stable response for a DMA test is shown in Fig. 5.5(B), where in
addition to a pre-indentation stress 𝜎𝑝 and strain 𝜀𝑝, the stress 𝜎(𝑡) and strain 𝜀(𝑡)
signals follow sinusoidal waves with the same frequency 𝜔 at a finite phase lag 𝛿,
with the stress amplitude as 𝜎𝐴 and strain amplitude as 𝜀𝐴. Mathematically this is
written as

𝜀(𝑡) = 𝜀𝑝 + 𝜀𝐴 sin(𝜔𝑡)

𝜎(𝑡) = 𝜎𝑝 + 𝜎𝐴 sin(𝜔𝑡 + 𝛿).

The complex modulus 𝐸 , storage modulus 𝐸′, and loss modulus 𝐸′′, which are
standard DMA outputs [184], can then be calculated as

𝐸 =
𝜎𝐴

𝜀𝐴

𝐸′ = 𝐸 cos(𝛿)

𝐸′′ = 𝐸 sin(𝛿).

Since the measured response is an addition of the two, therefore correction for the
machine response is necessary, especially for soft / viscous materials [178, 179].

Figure 5.6: Air corrected DMA results.

Ideally, the method would be validated on a viscoelastic material with known vis-
coelastic properties; due to practical limitations and time constraint, we conduct
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validation on Quartz, which is expected to be purely elastic (𝐸 = 𝐸′, 𝐸′′ = 0). The
same parameters (𝜀𝑝, 𝜀0, 𝜔) were used for the frequency sweep on Quartz and in
air, where the air data was subtracted from the measured data on Quarts to obtain
the material parameters. The corrected data for the target frequencies on Quartz
are shown in Fig. 5.6, where 𝐸′ stays constant at 69GPa (consistent with regular
nanoindentation [1]), while 𝐸′′ and tan(𝛿) stay constant at 0 as expected. For further
validation, correction on standard PDMS should be used.

5.3 Viscoelastic Analysis of jellyfish Mesoglea using Indentation

The following analysis is used for the interpretation of measured data from indenting
into jellyfish in seawater, adapted from more general forms of viscoelastic analysis
[178, 184].

For a unit step strain input 𝜀(𝑡) = 𝜀0𝐻 (𝑡), where 𝐻 (𝑡) is the step function, define
the stress relaxation function as

𝜎(𝑡) = 𝑀 (𝑡)𝜀0.

Then for an arbitrary input strain function 𝜀(𝑡), the resulting stress is

𝜎(𝑡) = 𝑀 (𝑡) ∗ 𝜀(𝑡) =
∫ 𝑡

−∞
𝑀 (𝑡 − 𝜏) 𝜕𝜀(𝜏)

𝜕𝜏
𝑑𝜏 (5.1)

with ∗ denoting convolution. Similarly, for a unit step stress input 𝜎(𝑡) = 𝜎0𝐻 (𝑡),
the creep function is written as

𝜀(𝑡) = 𝐽 (𝑡)𝜎0.

Then for an arbitrary input stress function 𝜎(𝑡), the resulting strain is

𝜀(𝑡) = 𝐽 (𝑡) ∗ 𝜎(𝑡) =
∫ 𝑡

−∞
𝐽 (𝑡 − 𝜏) 𝜕𝜎(𝜏)

𝜕𝜏
𝑑𝜏.

It is then possible to write 𝐽 (𝑡) as a function of 𝑀 (𝑡), since for a given material
there should only be one constitutive relation. This gives

𝐻 (𝑡) = 𝐽 (𝑡) ∗ 𝑀 (𝑡).

Some additional definitions include: 𝜔, which is the harmonic frequency in radians,
𝐸′ as the storage modulus, and 𝐸′′ as the loss modulus. Both 𝐸′ and 𝐸′′ can be
functions of 𝑡 and 𝜀. It is also worth noting that although we are not writing 𝜀 as
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independent variables in the previously defined functions, they can all be dependent
on 𝜀. The math so far should not be affected by this.

The following assumptions apply:

1. The time constants 𝜏𝑖 are fixed material parameters and not dependent on the
strain.

2. For a DMA test with constant pre-strain and small oscillatory amplitude, we
assume that 𝑀 (𝑡, 𝜀) and 𝐽 (𝑡, 𝜀) stay constant around their values at the pre-
strain. This makes the math simpler since we can now take them outside of
integrals.

There seem to be two ways of describing the material. First, there is the isostrain
model, which is equivalent to a spring in parallel to 𝑁 Maxwell elements. For this,
we are going to work with the stress relaxation (stiffness) function, since it is easier
in this case to start with a strain input. The relaxation function is written as

𝑀 (𝑡, 𝜀) = 𝑀0(𝜀) +
𝑁∑︁
𝑖=1

𝑀𝑖 (𝜀)𝑒−𝑡/𝜏𝑖 . (5.2)

When 𝑁 is large, the discreet time constants become a weighted relaxation spectrum,
and the sum becomes a integral in the form

𝑀 (𝑡) = 𝑀0 +
∫ ∞

0

1
𝜏
𝐻 (𝜏)𝑒−𝑡/𝜏𝑑𝜏.

where 𝐻 (𝜏) is effectively the spring constant at the time constant 𝜏. So far, we have
not found any literature regarding using this relaxation spectrum with experimental
data, since we can not simply fit an integral to data. It may be possible to guess
functional forms with iterative methods to find a relaxation spectrum for a material,
but we do not think that it is realistic for a mostly unknown material such as the
Mesoglea. It might be worth pursuing for a standard material like PDMS. Moving
forward, we will just work with the discrete model (sums).

The other model is the isostress model, with a spring connected to 𝑁 Voigt elements
in series. In this case, the creep (compliance) function, usually referred to as the
Prony series [178], is

𝐽 (𝑡, 𝜀) = 𝐽0(𝜀) +
𝑁∑︁
𝑖=1

𝐽𝑖 (𝜀)
(
1 − 𝑒−𝑡/𝜏

)
.
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Note that there is a conversion from force-displacement to stress-strain in the in-
dentation geometry. For a circular flat punch with diameter D, ideally we can
write

𝐸′

1 − 𝜈2 =
𝑃𝐴

𝑢𝐴

cos(𝛿)
𝐷

𝐸′′

1 − 𝜈2 =
𝑃𝐴

𝑢𝐴

sin(𝛿)
𝐷

𝑀 (𝑡) = 𝑃(𝑡) (1 − 𝜈2)
𝐷𝑢0

𝐽 (𝑡) = 𝐷𝑢(𝑡)
𝑃0(1 − 𝜈2)

where 𝑃 is load, 𝑢 is displacement; (·)0 denotes step input and (·)𝐴 denotes harmonic
amplitude.

5.3.1 Measured stress-relaxation function

Figure 5.7: Stress-relaxation measurements at different locations on the same jelly-
fish.

Four sets of measured stress-relaxation data at 𝑢0 = 150 ± 20𝜇𝑚 on the same
jellyfish is presented in Fig. 5.7, where the load decays smoothly with time. While
the general shape of the curves follow similar trends, it is worth noting that the long
term load (indicator of material elasticity at equilibrium after all energy dissipation
has finished) vary significantly among the tests. Since the tests were done at the
same distance from the center of the jellyfish at similar geometrical locations between
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the gonads, this variation is not due to material heterogeneity. Loss of hydration
over time (since the hydration state is not precisely-controlled) and the errors in
indentation depth contribute to the varied long-term stiffness. Since hydration
affects the decaying timescale, which remains stable among the different tests, the
main reason for the variability is hypothesized to be due to variation in the exact
indentation depth 𝑢0.

Figure 5.8: Standard viscoelastic models fitted to experimentally measured data.

Model S3EM S5EM
𝑀0 3.2 ± 1.5𝑘𝑃𝑎 2.2 ± 1.8𝑘𝑃𝑎
𝑀1 4.5 ± 1.8𝑘𝑃𝑎 4.0 ± 2.7𝑘𝑃𝑎
𝜏1 236 ± 121𝑠 404 ± 253𝑠
𝑀2 1.9 ± 1.9𝑘𝑃𝑎
𝜏2 130 ± 142𝑠

Table 5.1: Fitted parameters for isostrain viscoelastic models.

We fit the measured stress-relaxation data to multiple isostrain (standard linear
viscoelastic) models as described in Eqn. 5.2 (which is mathematically simple
with displacement-controlled experiments) using the 𝑓 𝑖𝑡 () function in Matlab with
nonlinear least squares. All of 𝑀0, 𝑀𝑖, and 𝜏𝑖 are released as free parameters to fit
for. The result for models with 1 Maxwell element and with 2 Maxwell elements are
shown in Fig. 5.8. It is clear that while both models capture the instantaneous load,
long-term load, and overall decay, the isostrain model with 2 Maxwell elements
(hereafter referred to as the standard 5-element model or S5EM) captures the initial
faster decay and the later slower decay with higher precision. The resulting fitted
parameters are shown in Table 5.1. The large standard errors in the fitted parameters,
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especially that for 𝐸2 in the S5EM, which is a result of a large variability in the
data and the large number of free parameters, renders the results from these fits
impractical.

Figure 5.9: Poroelastic model [180] fitted to experimentally measured data.

In addition to the linear standard models, we also fitted the data to a generalized
poroelastic model from Ref [180]; for a cylindrical flat punch, it can be written in
the form

𝑀 (𝑡) = 𝑀𝑝𝑜𝑟𝑜

(
1.304𝑒−

√︃
𝑣𝑡

𝐷2 − 0.304𝑒−0.254 𝑣𝑡

𝐷2
)
+ 𝑀∞

where 𝐷 is the punch diameter and 𝑣 is a scaled diffusivity constant. Using the same
Matlab script, we fit for 𝑀𝑝𝑜𝑟𝑜, 𝑣, and 𝑀∞, resulting in the fit shown in Fig. 5.9(A)
with 𝑀𝑝𝑜𝑟𝑜 = 8.4 ± 3.2𝑘𝑃𝑎 and 𝑀∞ = 0.0 ± 0.0𝑘𝑃𝑎 (practically no long-term
stiffness). For the model to be accurate, it is necessary that the rescaled relaxation
function 𝑀 (𝑡/𝐷2) is independent of punch diameter [180]; we therefore plot the
rescaled relaxation data for both 120𝜇𝑚 punch (as in Fig. 5.7) and for 400𝜇𝑚 punch
(open circles) in Fig. 5.9(B). While there is some overlap between the rescaled data,
the result is unconvincing, thus for the remainder of this chapter, the standard linear
viscoelastic models will be used.

Model S3EM S5EM
𝑀0 84.6 ± 1.3𝑘𝑃𝑎 43.5 ± 9.8𝑘𝑃𝑎
𝑀1 99.6 ± 1.2𝑘𝑃𝑎 128.7 ± 8.2𝑘𝑃𝑎
𝜏1 186.6 ± 4.9𝑠 382 ± 48𝑠
𝑀2 15.6 ± 1.6𝑘𝑃𝑎
𝜏2 24.4 ± 3.3𝑠

Table 5.2: Fitted parameters for isostrain viscoelastic models using average data.
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Figure 5.10: Standard viscoelastic models fitted to average experimentally measured
data.

As mentioned earlier, the experimental variability is largely due to the error in the
nominal indentation depth. We therefore fit the S3EM and S5EM to the average
experimental relaxation data, as is shown in Fig. 5.10. The resulting parameters are
shown in Table 5.2, where the errors are statistically determined from the fit to the
average data. The resulting parameters are much more practical to interprete, with
an instantaneous modulus of 184.2 ± 1.8𝑘𝑃𝑎 for the S3EM and 187.8 ± 12.9 for
the S5EM, which are the comparable within experimental error. While qualitatively
the two models seem similar, the two time constants in the S5EM are an order of
magnitude away, which necessitates the additional Maxwell element.

5.3.2 DMA and ’quasi-static’ loading: Measured v.s. predicted

Assuming isostrain, converting from relaxation to DMA, take a harmonic strain
input

𝜀(𝑡) = 𝜀0𝑒
𝑖𝜔𝑡

and the resulting stress output should also be harmonic

𝜎(𝑡) = 𝜎0𝑒
𝑖𝜔𝑡

with 𝜎0 and 𝜀0 being complex and containing the damping information. This gives
the storage and loss modulus:

𝐸′ = 𝑅𝑒{𝜎0

𝜀0
}

𝐸′′ = 𝐼𝑚{𝜎0

𝜀0
}.
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We need to write 𝜎0 as a function of 𝜖0 and 𝑀 (𝑡).

𝜎(𝑡) =
∫ 𝑡

−∞
𝑀 (𝑡 − 𝜏)𝜀0

𝜕

(
𝑒𝑖𝜔𝜏

)
𝜕𝜏

𝑑𝜏

=

∫ 𝑡

−∞
𝑀 (𝑡 − 𝜏)𝜀0𝑖𝜔𝑒

𝑖𝜔𝜏𝑑𝜏

=

∫ 𝑡

−∞

[
𝑀0 +

𝑁∑︁
𝑖=1

𝑀𝑖𝑒
(𝑡−𝜏)/𝜏𝑖

]
𝜀0𝑖𝜔𝑒

𝑖𝜔𝜏𝑑𝜏

assuming it converges (it would not be realistic if it did not) and that we can take the
sum out of the integral,

= 𝜀0

[
𝑀0𝑒

𝑖𝜔𝑡 +
𝑁∑︁
𝑖=1

(
𝑀𝑖𝑒

𝑡/𝜏𝑖 𝑖𝜔

∫ 𝑡

−∞
𝑒𝜏(𝑖𝜔−1/𝜏𝑖)𝑑𝜏

)]
= 𝜀0

[
𝑀0𝑒

𝑖𝜔𝑡 +
𝑁∑︁
𝑖=1

(
𝑀𝑖𝑒

𝑡/𝜏𝑖 𝑖𝜔

𝑖𝜔 − 1/𝜏𝑖
𝑒𝑡 (𝑖𝜔−1/𝜏𝑖)

)]
= 𝜀0𝑒

𝑖𝜔𝑡
[
𝑀0 +

𝑁∑︁
𝑖=1

(
𝑀𝑖

𝑖𝜔

𝑖𝜔 − 1/𝜏𝑖

)]
=⇒ 𝜎0 = 𝜀0

[
𝑀0 +

𝑁∑︁
𝑖=1

(
𝑀𝑖

𝑖𝜔

𝑖𝜔 − 1/𝜏𝑖

)]
.

This then gives

𝐸′(𝜔) = 𝑀0 +
𝑁∑︁
𝑖=1

𝑀𝑖

𝜔2𝜏2
𝑖

1 + 𝜔2𝜏2
𝑖

(5.3)

𝐸′′(𝜔) =
𝑁∑︁
𝑖=1

𝑀𝑖

𝜔𝜏𝑖

1 + 𝜔2𝜏2
𝑖

. (5.4)

From here, it is now possible to choose𝑁 and fit a relaxation function to experimental
data, then try to predict frequency response, or vice versa.

Similarly, we can construct DMA from creep for the isostress model (Prony series),
which gives

𝐸′

𝐸′2 + 𝐸′′2 = 𝐽0 +
𝑁∑︁
𝑖=1

𝐽𝑖

1 + 𝜔2𝜏2
𝑖

𝐸′′

𝐸′2 + 𝐸′′2 =

𝑁∑︁
𝑖=1

𝐽𝑖𝜔𝜏𝑖

1 + 𝜔2𝜏2
𝑖

.

This then matches the model used in literature [178].
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Figure 5.11: Theoretically predicted DMA results using stress-relaxation data.

The predicted 𝐸′, 𝐸′′, and tan 𝛿 for the S3EM and S5EM from the mean values
in Fig. 5.8 are plotted in Fig. 5.11. Depite small numerical differences, the two
sets of results have similar trends, while the difference becomes nonnegligible at
frequencies smaller than 1Hz, which is consistent with the 0.8s pulsing time. The
difference coming from the two models largely lies in the second time constant in
the S5EM, which captures material behavior at around 0.1Hz. The large similarities
suggest that instead of using a theoretical model, it is possible to numerically
integrate for predicted DMA results directly using the experimental data, without
going through the fitting step. In tissue engineering, it is common to set the necessary
number of elements by trial and error since biomaterials are often too complicated
to pinpoint the exact nature of energy dissipation [185]. Models with more Maxwell
elements were also evaluated, at which point no difference can be detected between
the time constants within experimental error.

Preliminary DMA results for the jellyfish at 6 frequencies between 0.1Hz and 10Hz
are plotted in Fig. 5.12 in comparison to that predicted from relaxation data with
the same indentation depth and punch size. While the predicted results at the
lower and higher ends match those experimentally collected within experimental
error, there are large discrepancies at frequencies between 1Hz and 10Hz, which
are the frequencies directly related to the pulsing time scale 0.8s. Unfortunately, the
precision of the stress-relaxation tests are not high enough to resolve the 0.8s time
scale, so to cross-validate the DMA data with relaxation results, it is necessary to
increase data acquisition in relaxation in the initial 1s and to acquire DMA data at
below 1Hz.
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Figure 5.12: Comparison between experimentally measured DMA data and data
theoretically predicted from stress-relaxation.

For "quasi-static" conventional indentation, we use a numerical integration using
the measured displacement data to predict the theoretical load. Going from Eq.
5.1, substituting for the standard 5 element model (1 spring and 2 Maxwells), the
predicted stress �̂�𝑗 at a given measured strain data point 𝜀 𝑗 is

�̂�(𝑡) =
∫ 𝑡

−∞

(
𝐸0 + 𝐸1𝑒

(𝑡−𝜏)/𝜏1 + 𝐸2𝑒
(𝑡−𝜏)/𝜏2

) 𝜕𝜀(𝜏)
𝜕𝜏

𝑑𝜏

=⇒ �̂�𝑗 = 𝐸0𝜀 𝑗 +
2∑︁
𝑖=0

𝑗∑︁
𝑘=2

(
𝐸𝑖𝑒

(𝑡 𝑗−𝜏𝑘 )/𝜏𝑖 (𝜀𝑘 − 𝜀𝑘−1)
)
.

The resulting load-displacement "data" are compared to experimentally measured
data (Fig. 5.13), where the overall shape and timescale of the load-hold-unload
response can be captured. When examined closely, the numerically integrated data
is concave during loading, while the experimental data hardens with increasing
depth; while the holding and unloading segments of the red set of data match nicely,
there are large discrepancies between the blue set of predicted and measured data.
Implications on these discrepancies are discussed further in Section 5.4.

5.4 Discussion

Biological tissues in their hydrated form, such as cartilage, tendons, or Mesoglea, are
a gellatinous matrix with pores filled with water, much like a dual-phase material.
As the medium is deformed, the liquid diffuses throughout the material, often getting
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Figure 5.13: Comparison between experimental and theoretical "quasi-static" in-
dentation response.

pushed out or pulled in as a result of the pressure change; this contributes to the
mechanical response and adds another mechanism for energy dissipation, often
evaluated through poroelastic models [186–188]. While we attempted at fitting to
such a model, there was not sufficient evidence that it is suitable for our material;
in addition, the viscoelastic nature of the gel matrix itself renders the material
response complicated and hard to interpret [187–189]. Existing studies have shown
that when the probed frequency is on par with the liquid equilibrium time (related
to diffusivity), poroelastic models are significantly more accurate than viscoelastic
models [190]. Linear viscoelasticity is mathematically simple and can substitute for
the more complicated poroelastic models at other frequencies, and it was shown that
the two can be separated when their time scales are different [191]. This could serve
to explain the discrepancies in Fig. 5.12 at 1-10Hz, suggesting that the pulsing time
is correlated with the water diffusivity time scale in the Mesoglea.

It is also necessary to discuss the implications of model accuracy, which could be an
alternative reason for the discrepancies between experimental DMA data and data
theoretically predicted in Fig. 5.12 and Fig. 5.13. Reasons contributing to model
accuracy could entail diverse types of energy dissipation mechanisms with vairous
time constants, nonlinearity, or a combination of the two. For the models to be
accurate, fitting Eq. 5.3 to the storage data and Eq. 5.4 to the loss data from a single
experiment should produce similar results for 𝑀𝑖 and 𝜏𝑖. However, as is shown in
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Figure 5.14: Fitting the S3EM and S5EM models to experimental DMA data.

Fig. 5.14, neither the S3EM or the S5EM can fully capture the peaks in both 𝐸′ and
𝐸′′, suggesting that there is large nonlinearity in the material that can not be fully
captured using these standard linear models.

Throughout this chapter, we have treated Mesoglea as a homogeneous, isotropic
material, which is not necessarity true or accurate given what we know of its
microstructure. Collagen fibers are dispersed randomly throughout the gel, roughly
100𝜇𝑚 apart; within the bulk of the gel, the fibers are oriented vertically, connecting
the outer and inner surfaces of the bell; close to the surface, there are more densely
packed collagen fibers forming a random network, giving stucture to the material
[174, 175]. The mechanical properties of hydrated isolated collagen fibers has been
under investigation for decades, with a plethora of disagreeing results [60, 62, 192–
196], with the most recent studies concluding on Young’s modulus of 300MPa [194],
123MPa [192], and 1.1MPa [60]. These large discrepancies highlight the difficulty
of performing and analyzing high-precision in-solution mechanical experiments.
Nevertheless, there is sufficient evidence to show that collagen fibers are orders of
magnitude stiffer than its surrounding gel. In a compression-like geometry such
as nanoindentation, collagen fibers likely buckle instead of stretch, which greatly
softens their response to external load, likely constituting why we see no sign of
stiffer signals from the indentation results shown in the previous sections. In the
pulsing conditions that lead to shape recovery, collagen fiber networks undergo
complex stress conditions that are not necessarily compression or tension, therefore
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in an FEM model (which is what we are ultimately interested in), it is necessary to
model the material with included collagen behavior, such as using embedded wire
elements or a transversely anisotropic material input.

5.5 Summary

Viscoelasticity is hypothesized to consitute shape recovery in jellyfish. Using in-
solution indentation, we capture stress-relaxation that descibes time-dependent ma-
terial response of jellyfish Mesoglea under external loads in its natural ambient con-
ditions. A 2 Maxwell element standard linear isostrain viscoelastic model (S5EM)
was found to best fit the relaxation data, while predicted quasistatic indentation
matches the data experimentally measured. Discrepancies between predicted DMA
data and experiments suggest water diffusivity time-scales within the frequency
range of interest as well as potential nonlinearity of the viscoelasticity in the ma-
terial, which needs to be further evaluated to separate their effects. Lengthscales
in this work approach that of collagen fibers, a major constituent of Mesoglea,
which renders the material anisotropic, necessitating the incorporation of collagen
behavior in FEM models in the future.
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C h a p t e r 6

CONCLUSIONS AND OUTLOOK

In-situ nanomechanical experiments open new doors to both understanding funda-
mental deformation mechanisms at the relevant lengthscales of material microstruc-
tures and providing guidance of designing artificial materials with superior proper-
ties. While recent development in both the instrumental techniques and the diversity
of materials have significantly strengthened the microstructure-mechanics relation-
ship, there remain unanswered questions at each important lengthscale pertaining to
the crystal structure, defect-dominated plasticity, composite constituents, and fea-
tures in cellular solids. Using in-situ experiments as a tool and tapping into the pool
of existing knowledge, we tackled these specific challenges and shed light on some
long-lasting mysteries.

In Chapter 2, we explored the improved shape memory effect in a ceramic using
theories initially developed for metals. The microstructure characterization and
mechanical analysis combined demonstrated that the shape memory performance
can be tuned through minimizing thermal hysteresis, enabling a new SMC with
pseudoplastic strains comparable to that in metallic SMAs. Since the functionality
is limited to single crystals/grains, the scalability of this material heavily depends on
the grain boundary effects. Preliminary results have shown that its grain boundaries
are rigid and do not allow transfer of deformation like in ductile metals, therefore
preventing successful fabrication of polycrystalline SMC using the current material
system at the current stage. While efforts are being made to fabricate large, scalable
single crystals, an alternative route would be to consider grain boundary engineering,
allowing for ductile grain boundaries rather than brittle amorphous regions between
grains.

Chapter 3 further investigates the size-effect of twinning yield stress for the ceramic,
revealing a universal scaling law that captures both twinning and slip behavior. This
serves as supporting evidence for the Matthew’s CTT, which can be argued (to
some level of controversy) to be the all-encompassing model that describes size-
dependence in dislocation-governed plasticity. Since the CTT can only be probed
in the absence of strain hardening, deformation twinning, with its restricted glide
planes, serves as a clean alternative to exploring the physical origins of the size-
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effect. This conclusion can be further strengthened by more studies on a diverse set
of crystal structures and bond types that deform via twinning, much like what was
done for dislocation slip in the 2005-2010 period.

Chapter 4 continues to climb the lengthscale ladder to a fiber-infused bio-composite:
Scorpion pincer cuticles. With the help of Synchrotron radiation, the stiffness and
deformation mechanism of two regions were related to their corresponding fiber
structure. More data are underway for statistical robustness, while the exact role of
the two types of structures are still under question. Quantitative fracture analysis
is necessary to identify the direct competition between the two microstructures in
the load-bearing functions of the overall organ as a whole, while more in-depth
FEA could shed some light on the logic behind the observed tension-compression
asymmetry. The newly deciphered principles pave the way to designing bio-inspired
additively manufactured 3D materials with tuned toughness/strength profiles.

In Chapter 5, we return to indentation, adapted to accommodate in-solution testing,
for the characterization of jellyfish, revealing two time scales in its viscoelastic
behavior and frequency dependence that can only be described via combined poroe-
lastic/viscoelastic behavior. While further theoretical analysis could either prove
or debunk the accuracy of a generalized poroelastic model, high quality systematic
data using different size tips are necessary for repeatability. Since the collagen fibers
are nonnegligible, they can be incorporated and examined first through an inverse
problem FEA to recreate indentation results, then used to simulate observed jellyfish
recovery through muscle contractions.

This work explores the lengthscales bridging the gap between an atomic level
phenomenon and macroscopic material behavior, deciphering different ways nature
has adopted to mitigate stress and damage at each level along the way. While the
scope of this work ends here, the efforts of exploring deeper into each of these
lengthscales or of filling the gaps in between does not need to. A natural extension
on this work that ties back to the Martensitic Transformation in Chapter 2 is to
study phase transformation in lattices. This can open an opportunity of achieving
shape memory using any otherwise monolithic material with thermal expansion
properties. While there are some published shape memory 2D metamaterials works
[68] and similar concepts using functional materials [8], recreating Martensitic
transformation in 3D through thermal treatment alone proves to be difficult, since
it relies on the design of a clever lattice structure that can be deformed into a
mirrored orientation without changing the energy landscape. One potential solution
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is using carefully designed local heat-induced buckling that can generate a global
deformation. By combining optimized atomic phenomenon and newly developed
engineering capabilities, we hope to pave the road to the design of optimized
structural materials.
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A p p e n d i x A

STUDY OF MICROCRACK GOVERNED FAILURE IN GLASS
VIA FINITE ELEMENT MODELING (FEM) AND

NANOINDNETATION

Amgen Autoinjector glass syringes are most prone to fracture at the tip during its
impact with the front end of the outer plastic casing. It was hypothesized that this
fracture mechanism is a combination of (a) the tip area including micro-defects
or flaws that lower the failure stress and (b) the impact generating a high stress
concentration near the fracture site.

Figure A.1: Modulus showing similar trends for indents on the wall and tip of the
syringe.

To first understand the material properties as well as the size and distributions of
flaws, we carried out nano-indentation experiments at the tip and at areas on the
outer wall of the syringe for comparison; it was found that the material stiffness is
consistent among all the tested sites (see Fig. A.1). The indentation load-depth data
as well as post-indentation imaging, both shown in Fig. A.2, revealed no visible
sign of pre-existing flaws, which usually create large load plateaus in the mechanical
data and generate visible cracks around the indentation marks.

Despite the lack of catastrophic failure / crack events during indentation, microcrack
events are visible during the deforming process of indentation both on the wall and
the tip of the syringes. We identify fast popin events as micrack propagation similar
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Figure A.2: Corresponding indentation data and plastic deformation.

Figure A.3: Example of popin measurements during an indentation test.

to in [1] and Fig. A.3 demonstrates the popins identified for an example indentation
test using this method. The PDF (probability distribution function) of size for the
popins are shown in Fig. ??, which show clear distinction between the wall and tip,
suggesting that the two regions, despite having similar elastic properties, are prone
to different failure probabilities.

In addition, we ran several dynamic Abaqus FEM simulations to find out the stress
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Figure A.4: Different PDF for microcrack events at the wall and at the tip of the
syringe.

distribution in the syringe wall before and after the impact, and found a stress
concentration of 28MPa at the impact site at the end of the tip (shown in Fig. A.5)
at 375𝜇s after the impact, which is higher than the tensile failure strength of glass
( 7MPa) [2] and enough to generate local cracks.
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Figure A.5: Stress concentration upon impact at the tip near crack site.
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A p p e n d i x B

2D TO 3D RECONSTRUCTION

Here we describe the process of 2D image to 3D shape reconstruction and attach
the corresponding Matlab code.

Figure B.1: Defining a reference point based on 2D images of the same particle.

As is described in Chapter 2, the 3D coordinate of a point on a particle is uniquely
calculated using the 2D coordinates of that point in two images taken of the particle
from different angles (Fig. 2.24). For each particle, a reference point was first
determined by assigning (0, 0, 0) coordinate to a point, as is demonstrated in Fig.
B.1. The direction of the projected viewing line is then uniquely determined as the
direction perpendicular to the image planes. For each point in 3D, two projection
lines can be determined by taking that viewing line through the point’s location on
the two images, and its 3D coordinate is simmply the crosspoint of those thwo lines
(Fig. B.2). Due to experimental errors, the two projection lines may not perfectly
cross, in which case the final coordinate of that point is taken as the midpoint of the
shortest line between the two projection lines, which is mathematically unique.
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Figure B.2: Calculating the 3D coordinate of a point as the crosspoint of two
projection lines.

1 %% t a k e s images o f 2 views and o u t p u t t h e g i n p u t p o i n t
p a i r s a s p o i n t s i n 3d space

2 LS0 = [ 0 ; s i n ( deg2 rad ( 5 2 ) ) ; − cos ( deg2rad ( 5 2 ) ) ] ; % l i n e
s en s e o f view

3 % LS90 = [ − s i n ( deg2 rad ( 5 2 ) ) ; 0 ; − cos ( deg2rad ( 5 2 ) ) ] ;
4 % LS180 = [0 ; − s i n ( deg2 rad ( 5 2 ) ) ; − cos ( deg2rad ( 5 2 ) ) ] ;
5 % LS270 = [ s i n ( deg2rad ( 5 2 ) ) ; 0 ; − cos ( deg2rad ( 5 2 ) ) ] ;
6

7 %% image names
8 p a r t i c l e = ’ R1_pos tPI85 ’ ;
9 imgnames = { [ p a r t i c l e ’ . t i f ’ ] , [ p a r t i c l e ’ _90deg . t i f ’ ] , [

p a r t i c l e ’ _180deg . t i f ’ ] , [ p a r t i c l e ’ _270deg . t i f ’ ] } ;
10 vRs = [ 0 , 9 0 , 1 8 0 , 2 7 0 ] ;
11

12 %% i n p u t 2 views
13 v1 = 4 ;
14 v2 = 1 ;
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15 v1_imgname = imgnames{v1 } ;
16 v1R = vRs ( v1 ) ; % r o t a t i o n deg r e e from o r i g i n a l view i n

deg
17 LS1 = LS0 ;
18 %LS1 = [ 0 ; s i n ( deg2rad ( 5 6 ) ) ; − cos ( deg2rad ( 5 6 ) ) ] ;
19 v2_imgname = imgnames{v2 } ;
20 v2R = vRs ( v2 ) ;
21 LS2 = LS0 ;
22 %LS2 = [ 0 ; s i n ( deg2rad ( 5 6 ) ) ; − cos ( deg2rad ( 5 6 ) ) ] ;
23 f i g u r e ( 1 ) ;
24 image1 = imread ( v1_imgname ) ;
25 imshow ( image1 ) ;
26 s e t ( gcf , ’ P o s i t i o n ’ , [ 100 200 900 600 ] ) ;
27 f i g u r e ( 2 ) ;
28 image2 = imread ( v2_imgname ) ;
29 imshow ( image2 ) ;
30 s e t ( gcf , ’ P o s i t i o n ’ , [ 1050 200 900 600 ] ) ;
31 v1R = deg2rad ( v1R ) ;
32 R1 = [ cos ( v1R ) , − s i n ( v1R ) , 0 ; s i n ( v1R ) , cos ( v1R ) , 0 ; 0 , 0 , 1 ] ;
33 v2R = deg2rad ( v2R ) ;
34 R2 = [ cos ( v2R ) , − s i n ( v2R ) , 0 ; s i n ( v2R ) , cos ( v2R ) , 0 ; 0 , 0 , 1 ] ;
35

36 % s e t s c a l e f o r bo th
37 f i g u r e ( 1 ) ;
38 f p r i n t f ( ’ S e l e c t end p o i n t s o f s c a l e ba r \ n ’ ) ;
39 [ x , ~ ] = g i n p u t ( 2 ) ;
40 s c a l e 1 = i n p u t ( ’ P h y s i c a l l e n g t h o f s c a l e ba r (nm) : ’ ) / (

x ( 2 ) −x ( 1 ) ) ;
41 f i g u r e ( 2 ) ;
42 f p r i n t f ( ’ S e l e c t end p o i n t s o f s c a l e ba r \ n ’ ) ;
43 [ x , ~ ] = g i n p u t ( 2 ) ;
44 s c a l e 2 = i n p u t ( ’ P h y s i c a l l e n g t h o f s c a l e ba r (nm) : ’ ) / (

x ( 2 ) −x ( 1 ) ) ;
45 % g i n p u t t i l l q u i t p a i r o f d o t s −> ave r ag e o f n e a r e s t

p o i n t s be tween two p r o j e c t i o n
46 % l i n e s
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47 f l a g = t r u e ;
48 coun t = 1 ;
49 f p r i n t f ( [ ’ p i c k 1 s t p o i n t s . ’ ] )
50 i f coun t == 1
51 f p r i n t f ( ’ Th i s w i l l be t h e r e f e r e n c e p o i n t ’ ) ;
52 end
53 f p r i n t f ( ’ \ n ’ ) ;
54 f i g u r e ( 1 ) ;
55 [ x1 , y1 ] = g i n p u t ( 1 ) ;
56 t e x t ( x1 , y1 , num2s t r ( coun t ) , ’ Co lo r ’ , [ 1 , 1 , 1 ] ) ;
57 x2d1 = [ x1 ; y1 ] ;
58 f i g u r e ( 2 ) ;
59 [ x2 , y2 ] = g i n p u t ( 1 ) ;
60 t e x t ( x2 , y2 , num2s t r ( coun t ) , ’ Co lo r ’ , [ 1 , 1 , 1 ] ) ;
61 x2d2 = [ x2 ; y2 ] ;
62 x3d = [ 0 ; 0 ; 0 ] ;
63 A = R1∗LS1 ;
64 B = R2∗LS2 ;
65 whi l e f l a g
66 coun t = coun t +1 ;
67 f p r i n t f ( [ ’ p i c k ’ num2s t r ( coun t ) ’ t h p o i n t s . ’ ] )
68 f p r i n t f ( ’ \ n ’ ) ;
69 f i g u r e ( 1 ) ;
70 [ x1 , y1 ] = g i n p u t ( 1 ) ;
71 t e x t ( x1 , y1 , num2s t r ( coun t ) , ’ Co lo r ’ , [ 1 , 1 , 1 ] ) ;
72 x2d1 ( : , coun t ) = [ x1 ; y1 ] ;
73 f i g u r e ( 2 ) ;
74 [ x2 , y2 ] = g i n p u t ( 1 ) ;
75 t e x t ( x2 , y2 , num2s t r ( coun t ) , ’ Co lo r ’ , [ 1 , 1 , 1 ] ) ;
76 x2d2 ( : , coun t ) = [ x2 ; y2 ] ;
77 % p r o c e s s
78 x1 = x1−x2d1 ( 1 , 1 ) ;
79 y1 = x2d1 ( 2 , 1 ) −y1 ; % ze ro
80 a = R1∗ [ x1 ; y1∗ cos ( deg2rad ( 5 2 ) ) ; y1∗ s i n ( deg2 rad ( 5 2 ) )

] . ∗ s c a l e 1 ;
81 x2 = x2−x2d2 ( 1 , 1 ) ;
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82 y2 = x2d2 ( 2 , 1 ) −y2 ; % ze ro
83 b = R2∗ [ x2 ; y2∗ cos ( deg2rad ( 5 2 ) ) ; y2∗ s i n ( deg2 rad ( 5 2 ) )

] . ∗ s c a l e 2 ;
84 x3d ( : , coun t ) = c r o s s p o i n t _ n e a r e s t (A, a , B , b ) ;
85 f l a g = i n p u t ( ’ want more ? (N=0) : ’ ) ;
86 end
87 f i g u r e ( 1 ) ;
88 s a v e a s ( gca , [ v1_imgname ( 1 : end −4) ’ (w’ v2_imgname ( 1 : end

−4) ’ ) _ idx . f i g ’ ] ) ;
89 s a v e a s ( gca , [ v1_imgname ( 1 : end −4) ’ (w’ v2_imgname ( 1 : end

−4) ’ ) _ idx . png ’ ] ) ;
90 f i g u r e ( 2 ) ;
91 s a v e a s ( gca , [ v2_imgname ( 1 : end −4) ’ (w’ v1_imgname ( 1 : end

−4) ’ ) _ idx . f i g ’ ] ) ;
92 s a v e a s ( gca , [ v2_imgname ( 1 : end −4) ’ (w’ v1_imgname ( 1 : end

−4) ’ ) _ idx . png ’ ] ) ;
93 d lmwr i t e ( [ v1_imgname ( 1 : end −4) ’+ ’ v2_imgname ( 1 : end −4) ’

_x . t x t ’ ] , x3d ’ ) ;
94

95 %%
96 f i g u r e ( 3 )
97 p l o t 3 ( x3d ( 1 , : ) , x3d ( 2 , : ) , x3d ( 3 , : ) , ’ o ’ ) ;
98

99 %%
100 f i g u r e ( 4 )
101 pa t c h ( x3d ( 1 , : ) , x3d ( 2 , : ) , x3d ( 3 , : ) , [ 0 . 5 , 0 . 5 , 0 . 5 ] ) ;


