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Abstract

Bulk metallic glasses are recent advanced materials which generate residual stresses due to

rapid cooling from their surfaces during processing. These stresses arise from the thermal

gradients that form within the sample at and above the glass transition region. A typical

processing of BMGs involves feeding the alloy melt into a mold followed by severe quenching.

The formation and nature of these stresses are analogous to the residual stresses due to the

thermal tempering of silicate glasses. This analytical-experimental study investigates the

thermal tempering phenomenon in BMGs for the first time.

One of the best glass forming metallic alloys, Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vitreloy

1TM), is employed in this study. First, the best technique for the high-resolution mea-

surement of residual stresses in BMGs is determined to be the crack compliance method.

Second, the formation of the stresses is modeled with three different levels of viscoelastic

phenomenology, namely, an instant freezing model, a viscoelastic model and a structural

model. The first is a simplistic analytical model to estimate residual stresses whereas the

structural model accounts for the temperature history dependence of the glassy structure.

The constitutive laws for the viscoelastic and structural models are incorporated into the

finite element method (ABAQUSTM software package) allowing the application of these

models to complex geometries. To increase the accuracy of the analysis, the ‘correct’ tem-

perature evolution in the sample during processing has to be input to these ‘mechanical’
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models. Therefore, the heat transfer problem during the casting process of the BMG is

analyzed in detail. Accuracy also requires a detailed knowledge of the thermal parameters

of the material as a function of temperature; thus, some attention is also devoted to their

measurement.

At the end, calculated and measured stresses are compared and good agreement is

achieved. BMGs are demonstrated to be capable of generating very high (around 400 MPa)

compression on their surfaces. The study also yielded valuable physical insight into the

thermal tempering process itself. It is seen that this process exhibits significant discrepancies

in BMGs compared to its analogy in silicate glasses. For instance, the transient tensile

stresses that develop in the latter are shown to be lacking in the BMGs. Another discrepancy

between the two materials is that the density of BMGs is uniform across the sample cross

section in contrast to that found in silicate glasses. Overall, this investigation developed

sufficient understanding of the thermal tempering phenomenon in BMGs to establish it as

a viable process to manipulate properties.
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Chapter 1

Introduction

1.1 Motivation

Although metallic glasses have been made since 1960s, specimen dimensions were previously

limited to tens of µm due to the very fast cooling rates (about 106 to 1012 K/s) needed in

order to prevent crystallization. Recently, multicomponent alloys have been developed with

exceptional glass formation ability that allow the processing of bulk specimens (Peker [67]).

These alloys form glass at critical cooling rates low enough to allow the casting of specimens

up to 5 cm in diameter. The ability to prepare large specimens has permitted the bulk char-

acterization of these materials using more traditional techniques. The unique properties of

bulk metallic glasses (BMGs) place them among significant engineering materials: very high

strength (1.9 GPa), good fracture toughness (20–55MPa ·m1/2), a high specific strength,

excellent wear and corrosion resistance, and a high elastic strain limit (up to 2 %) (see, e.g.,

Gilbert et al. [35] and Bruck et al. [17]).

One important question that arises with bulk production is the nature and magnitude

of processing induced residual stresses, since, as with all materials, these stresses can af-

fect the mechanical behavior of BMGs significantly. Typical processing of BMGs includes

rapid cooling of the alloy from the melt (above liquidus temperature) such that the material
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Figure 1.1: Typical residual stress state in an infinite glass plate subjected to thermal
tempering. Stresses are equibiaxial varying only in the out-of-plane direction (x). This
stress profile is roughly parabolic with surface compression balanced by tension in the
interior.

undergoes glass transition and remains amorphous. Observing the fairly low thermal con-

ductivity of these alloys (∼ 10 W/(m ·K) at glass transition), rapid cooling from the surface

would form significant thermal gradients in these ‘thick’ samples, i.e., a surface point will

cool considerably faster than a point at the core. Thermal gradients that form above and

during the glass transition were observed to generate residual stresses in the more tradi-

tional amorphous materials (see, e.g., Gardon [34] for silicate glasses and Struik [82] for

polymers). These residual stresses had a typical compression on the surface balanced by

tension in the interior, and they were the subject of an intense research activity, in particu-

lar, for silicate glasses. The motivation there was that the bending strength of silicate glass

plates could be significantly improved with the residual stresses of this nature (as much as

three times their regular strength). Therefore, inducing residual stresses by heating above

glass transition and subsequent rapid quenching has become an industrial process. The pro-

cess/phenomenon is known as ‘thermal tempering’ (Gardon [34]) and the typical residual

stress profile in a thermally tempered plate is shown in Figure 1.1.
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The hypothesis of the present study is that residual stresses with the same mechanism

could also be formed in metallic glass samples. Therefore, the name ‘thermal tempering’ is

inherited. The study involves the following topics and challenges:

1. Investigation of relevant material properties and constitutive behavior

Thermal tempering is a thermomechanical problem that is extremely material data

intensive. Furthermore, the temperature span of the process in BMGs (up to 1000 K),

and therefore the temperature span over which material data are required, is several

times that of the silicate glasses. Also, investigation of these properties between glass

transition and liquidus temperature is inhibited by phase separation and crystalliza-

tion in BMGs.

2. Controlling and monitoring of the processing conditions

BMGs need to be cast from their melt under a controlled atmosphere (inert gas flush

or vacuum), since oxygen is utterly detrimental to glass formation. This requirement

and the high temperature of the melt (∼ 900◦C) pose a difficult problem to monitor

the process.

3. Modeling of residual stresses with the input of items 1 and 2

This involves determination of models that comprise sufficient physics to predict the

residual stresses successfully.

4. Measurement of residual stresses

BMGs, as opaque and amorphous materials, preclude the use of typical non-destructive

methods of photoelasticity or X-ray diffraction. Also, the problem requires not an

average value of surface residual stresses as most methods would offer, but the high-
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resolution measurement of the residual stress profile through the thickness for mean-

ingful comparison with model results. This know-how did not exist in the literature,

hence, adapting a ‘powerful’ residual stress measurement method to these materials

is an important goal of this study.

1.2 Formation of Thermal Tempering Stresses

In silicate glass tempering, the thermal tempering process involves (i) cooling a glass plate

above its glass transition temperature (Tg) by ∼ 50−100 K where it is still viscous enough

to retain its shape and then (ii) rapidly cooling it from both sides, typically by air quenching.

During this process, first, temperature gradients form in the sample that is initially at a

uniform temperature, Ti, i.e., surface cools faster than the mid-plane. Then, these gradients

grow and reach a maximum, realized by the maximum differential between the mid-plane

and surface temperatures. After this point, the gradients decay and the sample temperature

eventually settles to the ambient temperature, Ta .

In an always-elastic plate, stress generation in a time increment dt due to an x-symmetric

temperature increment dT (x, t) across the thickness is given by the simple thermoelastic

formula (e.g., Timoshenko and Goodier [85], p. 433)

dσ =
E α

1− ν
(dT (x, t)− dT̄ (t)) (1.1)

where E is the Young’s modulus, ν is the Poisson’s ratio, α is the coefficient of thermal

expansion, dT̄ is the temperature increment averaged over x. Integrating this equation,

it is easy to see that no residual stresses are generated due to cooling from the uniform

temperature Ti to the uniform temperature Ta, since stresses generated during the growth
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of temperature gradients are nullified by the equal-in-magnitude but opposite stresses that

form as the gradients decay.

On the other hand, stress evolution in thermal tempering is different due to three stages

of material behavior demonstrated in Figure 1.2. In this figure, the temperature profile

is pictured at the top in reference to Ti, Tg and Ta, whereas corresponding stress state is

shown at the bottom.

In the first stage, the temperatures in the entire cross section are sufficiently above glass

transition such that stresses formed by imposed thermal gradients are instantly relaxed.

Let us call this material behavior ‘liquid’ for which typical stress relaxation time is much

smaller than the process time scale. Hence, thermal gradients are formed but no stress is

generated (Figure 1.2(i)).

When the surface temperature cools down to the temperature at which relaxation time

becomes comparable to the process time scale, ‘solidification stage’ commences and the

surface of the material becomes capable of holding stresses. This material behavior is called

‘viscoelastic’ and involves simultaneous relaxation of the generated stresses. Eventually, the

material will cool to a temperature at which relaxation time becomes large compared to

the process time scale, and thus, the material becomes ‘elastic’. As neighboring layers cool,

an increasingly bigger fraction of the cross section becomes viscoelastic, and subsequently,

elastic. Finally, the center of the material will freeze at time ts which is the end of the

‘solidification’ stage. The temperature and stress profile at an instant in the solidification

stage are demonstrated in Figure 1.2(ii). Note on this figure that stresses do not exist in

the still fluid region about the core. The sense of stresses generated (via equation (1.1))

naturally depends on whether temperature gradients are still growing or started to decay

at this stage of the process. For silicate glasses Ti is close to Tg, and typically the former
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Figure 1.2: Temperature profiles (top) and stress states (bottom) in the three stages of
thermal tempering: (i) The temperatures are sufficiently above glass transition Tg and
stresses are zero although thermal gradients exist. (ii) Solidification stage; part of the cross
section became capable of holding stresses and relaxation times decrease from the (cold)
surface to the (hot) mid-plane. The shown stress state is for still-growing thermal gradients
that results in tension at the surface. At this particular instant, a region about the mid-
plane is still ‘liquid’ and does not hold stress. (iii) Temperature equalization stage; begins
with the solidification of entire cross section at time ts. In this stage, the temperature profile
T (x, ts) decays to uniform Ta. The shown stresses are temperature equalization stresses,
namely, the thermoelastic stresses generated during this decay.

is the case leading to tensile stresses at the surface. This was the case demonstrated in

Figure 1.2(ii). The stresses generated are prone to viscous relaxation until ts and the

(‘survived’) stresses at this point, σ(x, ts), are called the ‘solidification stresses.’

In the third stage of thermal tempering that starts at time ts, the material becomes

practically an elastic plate, imposed with the temperature profile at that instant. The

stresses that will be generated upon decay of this temperature profile are called ‘temperature

equalization stresses,’ and determined via equation (1.1) as

σ(x,∞)− σ(x, ts) = − Eα

1− ν
(T (x, ts)− T̄ (ts)) (1.2)
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Temperature equalization stresses are compressive on the surface and tensile in the core

and they are demonstrated in Figure 1.2(iii). The final residual stresses (σ(x,∞)) are

obviously the superposition of solidification and temperature equalization stresses, and due

to relaxation in the first and second stages, the former is smaller in magnitude1. As a result,

residual compression is obtained on the surface balanced by mid-plane tension.

Gardon [34] reviewed the thermal tempering of silicate glasses and terms such as tem-

perature equalization and solidification stresses are taken from this work. Unlike the trivial

temperature equalization stresses, the analysis of solidification stresses and the stress evo-

lution in the glass transition region is a complicated problem and necessitate various levels

of viscoelastic phenomenology. Gardon classifies the varius models developed for silicate

glasses as instant-freezing theories (e.g., Aggarwala and Saibel [3]), the viscoelastic theory

(Lee et al. [50]) and the structural theory (Narayanaswamy [63, 64]). The first is a sim-

plistic approach to estimate residual stresses, the second is the linear thermoviscoelastic

treatment with time-temperature-superposition principle and the last one is nonlinear vis-

coelastic accounting for the temperature history dependence of the glass structure. The

latter theory is accepted to be the definitive theory of thermal tempering in silicate glasses

since it achieved reasonable agreement with experiments for both the evolution and mag-

nitude of temper stresses. In silicate glasses, photoelasticity could be used to monitor both

the evolution and final value of temper stresses whereas for BMGs no known method will

avail to monitor the stress evolution in situ.
1As explained, the sense of solidification stresses are dependent on the process and they may be partly

neutralizing (as is the case in Figure 1.2) or contributing to the temperature equalization stresses.
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Figure 1.3: Structure of the thermal tempering problem: The heat transfer problem is
uncoupled from the mechanical problem due to the dominance of forced cooling over heat
generation by viscous mechanisms. Hence, it is solved first with the inputs of the boundary
condition (e.g., that imposed by the heat transfer coefficient, h), the initial conditions
(e.g., initial temperature, Ti), and material parameters in the heat equation. The obtained
temperature solution T (x, t) is then fed to the mechanical problem which is solved with
a constitutive model (instant freezing, thermoviscoelastic, etc.), the material properties
required by the chosen model and the mechanical boundary conditions. The stress history
(σ(x, t)), and in particular, residual stresses are solved for comparison with the experimental
data.

1.3 Structure of the Problem and Organization of the Thesis

Figure 1.3 is a block diagram to demonstrate the physics of this thermomechanical problem.

The heat produced through inelastic dissipation mechanisms is negligible in comparison to

the heat drawn by forced cooling, therefore the thermal problem is uncoupled from the

mechanical problem. In this way, the heat transfer problem is solved first to obtain the

temperature field, T (x, t), and then this temperature field is imposed on the succeeding

mechanical analysis.

Since the main cause of stress generation is the thermal gradient within the sample,

the accurate prediction of stresses relies firstly on the accurate solution of the heat transfer

problem. The constituents of this problem are the boundary conditions (e.g., that imposed

by the heat transfer coefficient, h), the initial condition (e.g., Ti) and the thermal properties
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of the material such as thermal conductivity k(T ), specific heat Cp(T ) and density ρ(T ),

which are the material parameters in the heat diffusion equation

∇ · (k(T )∇T ) = ρ(T ) Cp(T )
∂T

∂t
(1.3)

As mentioned earlier, the temperature range during the casting of the Zr41.2Ti13.8Cu12.5Ni10Be22.5

alloy used in this study is broad (typically from ∼ 1200 to 300 K) and k and Cp exhibit

pronounced temperature dependence in this range. Due to the important role of the tem-

perature dependence of these parameters in the problem, a detailed chapter is given in

Appendix A that describes material properties and the study to measure them.

As seen on the block diagram, the evaluated T (x, t) is then fed to the mechanical problem

which also employs material data. The mechanical problem is solved with a constitutive

model and the material properties needed become a larger set as the sophistication of the

constitutive models increases. Note also that the boundary conditions during the processing

of BMGs are more complicated than the traction-free surfaces of silicate glass tempering

due to the interaction of BMGs with the mold. Finally residual stress prediction is made

and compared with the experimental data. Chapter 2 gives a broad background of the

mechanical constitutive models, namely, linear viscoelasticity concepts, the phenomenology

of silicate glass tempering models and certain characteristic metallic glass features.

A series of studies have been performed for the first time (Aydıner et al. [11], Aydıner et

al. [12], Aydıner and Üstündag [9] and Aydıner et al. [10]) to evaluate the thermal tempering

of BMGs. While these articles were prepared, the available material data, in particular the

high temperature values of the thermal parameters, progressively increased in time. In this

thesis, however, the material data used for all calculations are unified with the material data
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in Appendix A. For this reason, some slight discrepancies will be found when the results in

these articles are compared with those in this thesis.

Chapter 3 describes an analytical-experimental study of a copper-mold-cast BMG plate,

the same geometry employed for silicate glasses. On the experimental side, it is demon-

strated for the first time that the crack compliance method is a highly effective technique

to measure residual stresses in BMGs and is particularly suited to thermal tempering stud-

ies due to its ability to resolve through-thickness stress profiles. On the modeling end, a

viscoelastic model for BMG is formulated for the first time making use of the equilibrium

viscosity data as a function of temperature. Analysis is also carried out with a simple in-

stant freezing model. It is concluded that copper mold casting, due to separation of the

cast BMG from the mold, does not allow well defined analysis of the heat transfer prob-

lem. This precludes any detailed comparison of the stress results from the models and the

measurements.

To remedy this problem, Chapter 4 presents an analytical-experimental study for which

an alternative casting process is employed to determine and enhance heat transfer. Here, the

BMG is melt in a stainless steel tube and the cooling is implemented by water quenching.

This method presents a geometry change from a plate to a long cylinder. Agreement

between the measured stresses (using the crack compliance method) and the model results

is achieved within the accuracy of the thermal problem.

A related study is summarized in Appendix B, where a cylindrical stainless steel-BMG

composite produced with a similar process is considered. In this case, the residual strains

in the stainles stainless phase are measured with neutron diffraction and then related to

thermal tempering.

Chapter 5 attempts to develop a structural model (the most advanced model in silicate



11

glass tempering) for the Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy. In order to investigate the

required material function, volumetric physical aging (structural relaxation) experiments

are performed and presented.

Finally, Chapter 6 summarizes the main conclusions of the study and lists possible future

work.
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Chapter 2

Background

This chapter presents a broad background of the thermal tempering phenomenon by drawing

upon literature from multiple fields. First, there are the thermal tempering theories for

silicate glasses for which the process has proved useful for their mechanical performance,

in particular, in glass plates. Roughly over a period of forty years, theories of thermal

tempering evolved by gradually accounting for more complicated physics of the material

behavior: from the theories with a simple instant freezing assumption (e.g. Aggarwala and

Saibel [3]) to a theory that accounted for the temperature history (cooling rate) dependence

of the viscoelastic behavior (Narayanaswamy [64]). This latter theory has been accepted as

the definitive theory of thermal tempering in silicate glasses since it yielded good qualitative

and reasonable quantitative agreement with experiments not only for residual stresses but

also for stress evolution during quenching that could be measured in situ by photoelasticity.

Hence, the silicate glass thermal tempering literature provides an obvious starting point

considering behavioral similarities of silicate and metallic glasses. However, although it

seems to comprise the essential physics of silicate glass tempering, the phenomenology of

even the Narayanaswamy theory is arguable in terms of completeness. A broader framework

is, therefore, considered here which will have elements from the polymer literature which

is more extensive in viscoelastic phenomenology. The ideas here might help with a better
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understanding of the metallic glass rheology.

On the other hand, the rheological literature of metallic glasses should be elaborated

considering the material’s unique features dissimilar to other amorphous materials. Metallic

glass literature is indeed noticeably different in character. The lower glass formation ability

of metallic glasses allows limited time to conduct viscoelastic experiments often with little

confidence that the material has perfectly maintained its amorphous structure. Hence,

viscoelastic behavior cannot be investigated to the same degree as in silicate glasses or

polymers. For example, rheology of metallic glasses is often considered only in terms of

average viscosity. Furthermore, the material has a pronounced nonlinear viscoelastic regime

unlike silicate glasses. This is characterized by softening of the material due to deformation

itself and considerable work has been focused on this shear thinning phenomenon, also in

relation to formation of shear instabilities called shear bands.

In order to span this broad field in a sufficiently concise manner, concepts are introduced

only to the extent they are needed in later discussions. The reader is referred to the

numerous excellent sources cited throughout the text for additional details.

2.1 Linear Viscoelasticity Preliminaries

There are many good texts (e.g., by Ferry [33], Lakes [49], Christensen [25]) that cover the

standard material of linear viscoelasticity. The concise coverage here will be confined to

the integral formulation and will exclude the dynamic response. Assuming small deforma-

tions under isothermal and isobaric (more generally structure-preserving) conditions, linear

viscoelastic constitutive behavior that relates stress and strain tensors in time is given by

σij(t) =
∫ t

−∞
Cijkl(t− t′)

∂εkl(t′)
∂t′

dt′ (2.1)
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or

εij(t) =
∫ t

−∞
Jijkl(t− t′)

∂σkl(t′)
∂t′

dt′ (2.2)

where Cijkl is the tensorial relaxation function and Jijkl is the tensorial creep function.

Thus, local stress history is related to the local strain history via the Boltzmann super-

position which assumes linearity, translation-invariance and non-retroactivity (Gurtin and

Sternberg [36]). To construct the boundary value problem for a body B, the remaining field

equations are

εij =
1
2

(
∂ui(x, t)

∂xj

∣∣∣∣
t

+
∂uj(x, t)

∂xi

∣∣∣∣
t

)
(2.3)

∂σij(x, t)
∂xj

∣∣∣∣
t

+ fi = 0 (2.4)

namely, compatibility (2.3) and equilibrium (2.4) that preserve their form in linear elasticity

and hold at all times. Using the equilibrium equation instead of the equation of motion—

ignoring inertia term—assumes that the body is in quasi-static equilibrium at all times. If

the body is initially undisturbed initial conditions are given by

ui = εij = σij = 0 for −∞ < t < 0 (2.5)

The boundary conditions on the surface of B, denoted by ∂B, take their usual form of

either prescribed traction over ∂Bt with an outward-pointing normal vector n or prescribed

displacement over ∂Bu, ∂Bu + ∂Bt = ∂B. Thus

σij(x, t) nj(x) = t̂i(x, t) over ∂Bt

ui(x, t) = ûi(x, t) over ∂Bu

(2.6)
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More complicated boundary conditions can be conceived where a traction boundary, in time,

turns into a displacement boundary or vice versa, yet such considerations are out of scope

in this study where even the time dependence in (2.6) can be dropped for the considered

problems.

When the constitutive equations are reduced to isotropic1, linearly viscoelastic materials,

it is logical to express material response through its shear and dilatation components. Hence,

deviatoric stress sij = σij − 1
3σkkδij is related to the deviatoric strain eij = εij − 1

3εkkδij via

sij(t) =
∫ t

−∞
G(t− t′)

∂eij(t′)
∂t′

dt′ (2.7)

where G(t) is the shear relaxation modulus and, similarly, dilatational stress σkk is related

to dilatational strain εkk by

σkk(t) =
∫ t

−∞
K(t− t′)

∂εkk(t′)
∂t′

dt′ (2.8)

where K(t) is the bulk relaxation modulus. Alternatively, creep formulation is given by

eij(t) =
∫ t

−∞
J1(t− t′)

∂sij(t′)
∂t′

dt′ , εkk(t) =
∫ t

−∞
J2(t− t′)

∂σkk(t′)
∂t′

dt′ (2.9)

where J1 and J2 are the shear and bulk creep compliances, respectively. Explicitly, shear

(bulk) relaxation modulus is defined by the time-dependent response of the material point

to a step disturbance in shear (dilatational) strain normalized by the amplitude of the

step. Shear relaxation modulus is demonstrated in parts (a) and (b) of Figure 2.1. Creep

compliance definitions are obtained by swapping the terms stress and strain in the previ-
1Isotropy is well justified for silicate and metallic glasses. In the case of polymers, preferential aligning

of molecule chains, e.g., due to melt injection, may cause anisotropy.
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ous expression. For brevity, the discussion will be limited to the shear (bulk) relaxation

formulation from this point onwards. On a phenomenological basis, relaxation moduli are

ττi

gi

t

Γ(τ)

G0

G∞

G(t) (= σ12(t)
εo

)

εo

ε12(t)

t

(a)

(b)

(c)

Figure 2.1: (a) Step disturbance in shear strain at t = 0. (b) Shear relaxation modulus
G(t): stress response normalized by the magnitude of the step in strain. (c) Continuous
relaxation spectrum Γ(τ), line spectrum; the set of all (gi, τi).

expressed as a superposition of exponential decay functions

G(t) = G∞ + (G0 −G∞)
∑
i

gi exp
(
− t

τs
i

)
K(t) = K∞ + (K0 −K∞)

∑
i

ki exp
(
− t

τd
i

) (2.10)

where G∞(K∞) is the infinite time (equilibrium) modulus, G0(K0) is the instantaneous

(elastic) modulus, gi(ki) is the weight and τ s
i (τd

i ) the time constant of the ith relaxation

process and the weights satisfy
∑
i

gi = 1 (
∑
i

ki = 1). The set of all (τ s
i , gi) ((τd

i , ki))

constitutes the line spectrum of the shear (bulk) relaxation modulus. Relaxation via a

single time constant (single process) is the Debye relaxation. The idea presented by (2.10)

can be extended to a continuous spectrum of relaxation times. Thus, e.g., for the shear
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relaxation modulus the following expression is written

G(t) = G∞ + (G0 −G∞)
∫ ∞

0
Γ(τ) exp

(
− t

τ

)
dτ (2.11)

where Γ(τ) is the continuous spectra of relaxation times satisfying
∫∞
0 Γ(τ)dτ = 1. A sym-

bolic plot of discrete and continuous spectrum of the shear relaxation modulus of Fig-

ure 2.1(b) is given in Figure 2.1(c). Numerical algorithms can be utilized to extract both

types of spectra from relaxation modulus data2 (e.g., see Tschoegl [87]). A simple alterna-

tive expression that can represent multiple-relaxation-time moduli (often reasonably well)

is the stretched exponential function. This form is given by

G(t) = G∞ + (G0 −G∞) exp
[
−
(

t
τs

)βs
]

K(t) = K∞ + (K0 −K∞) exp
[
−
(

t
τd

)βd
] (2.12)

where τs(τd) is a mean relaxation time and βs(βd) is the stretching exponent that varies

between 0 and 1. βs(βd) = 1 is obviously the Debye relaxation and the spectrum becomes

broader as the value of the stretching exponent gets smaller.

2.2 Basic Linear Thermoviscoelasticity

The theory here refers to the framework introduced by Morland and Lee [60], which is

restricted to a set of materials that are thermorheologically simple3. For these materials,

characteristic viscoelastic functions measured at different temperatures (such as relaxation
2Yet, such depth is not meaningful (it may even be deceptive) when the material of concern does not

preserve its structure, i.e., the relaxation time(s) change within the time span of the experiment.
3The term thermorheological simplicity has been introduced by Schwarzl and Staverman [77], another

popular term for the same phenomenon is time-temperature superposition.
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and creep moduli) exhibit only a pure shift—no change in shape—when they are plotted

versus logarithm of time. Of course, being a purely phenomenological definition, such trans-

lational invariance is sought only within the accuracy of careful experiments. Figure 2.2(a)

exhibits this phenomenon for the shear relaxation modulus, where G(t) measured at tem-

perature T is denoted by GT . As shown in Figure 2.2(b), a reference temperature Tr with

log tlog ξ

a(T )

GT (t)GT (t)

GTGr

GT1 GT2 GT3

log t

(a) (b)

Figure 2.2: (a) Demonstration of thermorheological simplicity (time-temperature super-
position) for shear relaxation modulus GT (t) where T is the constant temperature of the
measurement (here T1 > T2 > T3 ). (b) Representation of GT (t) with the reference (master)
curve Gr measured at temperature Tr where ξ is the reduced time.

corresponding relaxation modulus Gr(≡ GTr) can be chosen such that GT can be repre-

sented by Gr and the shift function a(T ) that bears the separation between the two curves,

defined as

a(T ) =
τ s
i (T )

τ s
i (Tr)

,∀i (2.13)

Setting the notation F (t) = F̃ (ln(t)) for a function:

G̃T (ln t) = G̃r(ln t− ln a(T )) = G̃r(ln
t

a(T )
) (2.14)
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It follows that

GT (t) = Gr(ξ) , ξ =
t

a(T )
(2.15)

Hence GT can be represented by the master curve, Gr, only by allowing the time for the

latter to proceed at a different pace. This latter time, denoted in (2.15) by the letter ξ, is

called the reduced time, whose pace with respect to real time t is determined by the shift

function a(T ). When the material experiences a temperature field that is, most generally,

not uniform in time and space, the above definition of reduced time is generalized to

ξ(T (x, t)) =
∫ t

0

1
a(T (x, t′))

dt′ (2.16)

With this definition, the Boltzmann superposition form of the constitutive law is preserved

and the reader is referred to Morland and Lee [60] for the proof. Once more exemplifying

for shear relaxation:

sij(x, t) =
∫ t

−∞
Gr(ξ(x, t)− ξ(x, t′))

∂eij(x, t′)
∂t′

dt′ (2.17)

or in an easily derived alternative form

sij(x, ξ) =
∫ ξ

−∞
Gr(ξ − ξ′)

∂eij(x, ξ′)
∂ξ′

dξ′ (2.18)

Hence, compared to the isothermal constitutive equations, all that is needed is to replace

time by reduced time and the characteristic function with the master curve. The remaining

field equations are again compatibility (2.3) and equilibrium (2.4) and it is emphasized

that they hold in real time t. Unfortunately, when the temperature field varies with spatial

coordinates, their form is not preserved upon converting the independent variable to reduced
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time ξ. An important consequence is that the Correspondence Principle (see, e.g., Gurtin

and Sternberg [36]) is no longer useful. This principle, given non-time-varying boundary

conditions, allows obtaining the solution for a linear viscoelasticity boundary value problem

from the problem’s solution in linear elasticity, i.e., the solution of the problem with the

linear elastic constitutive law. It can be seen through the examination of the field equations

that the farthest point the Correspondence Principle would be valid is a temperature field

that varies in time but homogeneous in space. For example, sufficiently slow cooling of

a hot thermorheologically simple viscoelastic body may be approximated like this (see,

e.g., Scherer and Rekhson [76]). Since the thermal tempering problem is certainly not in

this class, further elaboration on this solution method is not necessary. Actually, semi-

analytical solutions to thermoviscoelastic problems with non-uniform temperature fields

are limited (e.g., Muki and Sternberg [62]) only to a few cases with simple geometries and

often under simplifying assumptions such as elastic (instantaneous) bulk response. The

thermoviscoelastic tempering solution for a uniformly cooled infinite plate by Lee at al. [50]

is in this group detailed in the next section.

2.3 Thermoviscoelastic Theory of Silicate Glass Tempering

The solution by Lee et al. [50] is for the simple boundary value problem where an infinite

(length and width � thickness) glass plate above its glass transition, yet viscous enough to

retain its shape is cooled homogeneously from both sides via air convection. The framework

introduced above has been used to obtain semi-analytical results by assuming that the

dilatational response is linear elastic (instantaneous). Thermal strain, εθ(x, t) = α (T (x, t)−

T (x, 0)), is introduced as an isotropic eigenstrain in the dilatational constitutive behavior
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the same way it is done in thermoelasticity (e.g., Boley and Weiner [15]). Hence

σkk = K0(εkk(x, t)− 3εθ(x, t)) (2.19)

where K0 = 3K, and K is the elastic bulk modulus.

This equation, along with equations (2.16), (2.17) and an appropriate shift function a(T )

define the constitutive behavior. The solution of this particular boundary value problem

is not reproduced here since it is one of the problems that are considered for the thermal

tempering of bulk metallic glasses in this thesis. The Finite Element Method (FEM) is

generically employed throughout this study to solve the boundary value problems specifying

constitutive laws also since problems other than the infinite plate case are too complicated

for semi-analytic solutions and require numerical solutions4.

The instant freezing theory (e.g., Aggarwala and Saibel [3]) can be deduced from the

viscoelastic theory by assigning an instant freezing temperature such that the material

becomes a non-viscous fluid above it and an elastic solid below it. Therefore, glass transition

is artificially shrank to a point. Under certain operating conditions, it is shown to yield

good accuracy for the final residual stresses, though obviously, it does not comprise the

physics to predict the correct evolution of stresses.

Now, let us worry about the validity of the assumed elastic bulk behavior. For silicate

glasses, the partial justification behind this and another commonly used assumption for

simplifying viscoelastic problems, K(t) � G(t) , ∀t, is demonstrated in Figure 2.3 that

has been adapted from Rekhson and Rekhson [72]. First, the bulk relaxation is seen to
4The solution of Lee et al. [50], too, requires numerical routines to tackle the coupled time integration

of the constitutive law and the equilibrium equation which is not entirely trivial (this is the reason the
term semi-analytic has been adopted for such solutions). Indeed, their solution method did not give enough
accuracy resulting in erroneous results later corrected by Narayanaswamy and Gardon [65]
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be more sluggish than the shear relaxation, and second, the equilibrium modulus K∞ is

nonzero, unlike isochoric shear relaxation which is generally observed to continue until

complete relaxation, i.e., G∞ ' 0 and G0 = 2µ. Rekhson and Rekhson reported τd
i /τ s

i = 6

and K0/K∞ = 3. Then, they calculated the uniaxial relaxation modulus E(t) and biaxial

K(t),
G(t)

t (s)

Figure 2.3: Bulk relaxation modulus K(t) (curve 1) in comparison to shear relaxation
modulus G(t) (curve 2) for silicate glass at 473◦C (adapted from Rekhson and Rekhson [72]).

relaxation modulus M(t) whose elastic counterparts are E and E
1−ν , respectively, for the

two cases simplified with the aforementioned assumptions and the exact case for which

K(t)5 shown in Figure 2.3 is used. They observed that neither of the two assumptions yield

particularly closer results to the exact solution and both seem reasonable for the problems

of uniaxial and biaxial loading. The biaxial relaxation modulus is the viscoelastic function

that relates in-plane stress to in-plane strain for the one-dimensional (i.e., fields (stress,

temperature, etc.) vary only in the thickness direction) infinite plate problem. So, this

study of Rekhson and Rekhson specifically targets the plate tempering problem with the

treatment for biaxial modulus.

To draw conclusions for the present study, if metallic glass demonstrates similar charac-
5The bulk relaxation modulus curve here has been inverted from creep compliance measurements.
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teristics, the elastic bulk response appears to be a good assumption. Unfortunately, there

is lack of data from metallic glasses on this issue. For this reason, the present study limits

itself to an elastic bulk deformation. In addition, the relatively low pressures employed in

BMG casting may be expected to limit the inadequacy of ignoring bulk relaxation.

There is another significant shortcoming of the thermoviscoelastic theory that will be

discussed starting in the next section, which led to the structural theory of tempering

(Narayanaswamy [64]): The thermoviscoelastic theory makes use of the relaxation data

for stabilized glass, which was shown to be indeed thermorheologically simple (see, e.g.,

Kurkjian [48]). Stabilized glass is a term in silicate glass terminology for liquid at metastable

equilibrium. However, rapidly-cooled glass deviates from metastable equilibrium and mere

temperature dependence does not describe the behavior well. Rather, it is required to

account for the dependence of structure on temperature history.

2.4 Temperature History Dependence of Structure

The general term structure is used in the title since the complete set of thermodynamic

and kinetic properties of a glassy material, such as enthalpy, entropy, volume and viscosity

are influenced by the imposed temperature history around glass transition. However, in

the context of the thermal stress problem, attention is essentially constrained to specific

volume, v, and viscosity (more specifically relaxation times). An important parameter for

the following discussion is the linear coefficient of thermal expansion (CTE), which for

isotropic expansion, is given by

α =
1
3v

(
∂v

∂T

)
P

' 1
3v(0)

(
∂v

∂T

)
P

(2.20)
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where v(0) is the specific volume at the beginning (t = 0) of the process and the second

part is valid for small volumetric changes6. Also, in terms of isotropic thermal strain εθ,

CTE definition becomes

α =
(

∂εθ

∂T

)
P

(2.21)

Now, let us formally phrase the question that we currently seek an answer for: “Consider

a traction-free particle of glassy material under atmospheric pressure. Given, temperature

history,
∞
T

t=0
, imposed on it, what is the specific volume response of the particle in time,

v(t)?”

The question has a nontrivial answer about the glass transition region, due to the kinetic

nature of the glass transition phenomenon. This is demonstrated in the example shown in

Figure 2.4(a) that considers the volumetric response to cooling from above melting tem-

perature to room temperature with two different rates denoted by
.

T1 and
.

T2, such that

.
T2 >

.
T1. As the cooling rate is increased, the material has less time for structural ar-

rangements that result in volume compaction and the glass transition is shifted to higher

temperatures. Also, the curve of the case where crystallization occurs at melting temper-

ature Tm is plotted for reference. For a rapidly cooled glass forming material that evades

crystallization at and under Tm, the region between Tm and glass transition is called the

supercooled liquid region7. In the supercooled liquid region, the material is in metastable

equilibrium; metastable, since real thermodynamic equilibrium is achieved with crystalliza-

tion that is averted in laboratory time scales by sluggish kinetics. The CTE here is denoted

by αl, where subscript ‘l’ is for ‘liquid’. On the other hand, the low temperature region

to the left of glass transition region in Figure 2.4 is called the glassy region and the CTE
6For clarity, the factor 3 will be omitted in the volume expansion expressions in this chapter that follow.

In these expressions, α should be understood as the volumetric CTE that is three times the linear CTE.
7This terminology is somewhat particular to metallic glass literature.
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Figure 2.4: (a) Specific volume (v) vs. temperature (T ) curves traced by a glassy material
for cooling rates

.
T1 and

.
T2,

.
T2 >

.
T1. The crystal curve (dashed) is also provided for

reference. The glass transition region is indicated for the
.

T1 case between supercooled
liquid and glassy regions. (b) Zoom of the glass transition region for the

.
T1 case.

here is denoted by αg. Typically, the value of αl is 1.5 to 3 times that of αg. For the sake

of discussion, let us assume that both αl and αg are constant values ignoring their weak

variation in supercooled liquid and glassy regions, respectively.

As shown Figure 2.4(a), the glass transition region is where the CTE decays from αl

to αg while its span and nature depend on the cooling history. Figure 2.4(b) is a zoom

of the glass transition region for the
.

T1 cooling rate. In this plot, let us call the line

that passes through (but not limited to) the points in the supercooled liquid region, the

metastable equilibrium line. Likewise, the line that passes through the points in the glassy

region will be the glassy line. Accordingly, the glass transition temperature, Tg, is defined

as the temperature at the intersection of these two lines. This definition is somewhat more

rigorous than the engineering definition as the temperature that corresponds to a fixed value

of viscosity (= 1013 Pa · s). The definition of fictive temperature, Tf , is also demonstrated

in Figure 2.4(b) and is one of the commonly used disorder parameters to quantify the
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deviation from metastable equilibrium. Verbally, Tf corresponds to a point (T, v) at the

intersection of the line that is extrapolated from (T, v) with the glassy slope αgv(0) and

the metastable equilibrium line. It should now be apparent that Tf equals to the actual

temperature T in the supercooled liquid region, then starts to lag behind it in the glass

transition region and finally settles to the constant value of Tg at the onset of glassy region.

The volumetric departure from metastable equilibrium at point (T, v), denoted by ∆v, can

easily be expressed in terms of Tf as

∆v = v − v∞(T ) = αsv(0)(Tf − T ) (2.22)

where αs = αl − αg is called the structural CTE and v∞(T ) is the metastable equilibrium

volume at temperature T . More explicitly, it is the specific volume the material would tend

to as t →∞ in an isothermal hold at temperature T . Now, as a step to formulate an answer

to our main question, consider some simple temperature step experiments. In these, the

glassy material is allowed to achieve metastable equilibrium, and then its temperature is

altered abruptly by ∆T .

The experiment for upward and downward jumps of ∆T to a common target temperature

T is shown in Figure 2.5(a). An important assumption on material behavior is that the

material gives an instantaneous response to the temperature jump with the glassy CTE,

hence volume contracts for the downward jump (expands for the upward jump) by αgv(0)∆T

instantly. This is due to the fact that glassy expansion represents stretching of interatomic

bonds, much like the one in a perfect crystalline lattice with no viscous mechanisms. The

time dependence is in the remainder of the isothermal contraction (expansion) of αsv(0)∆T

magnitude. This is called structural relaxation and, the normalized structural relaxation
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Figure 2.5: (a) Upward and downward temperature jump experiments to a target tempera-
ture T on the v − T plot; instantaneous response with the glassy slope and following time-
dependent relaxation to the equilibrium volume for downward (path 1) and upward (path
2) jumps. (b) Structural relaxation function MT,∆T

V (t) for downward(1) and upward(2)
jumps.

function of Figure 2.5(b) is given by

MT,∆T
V (t) =

v(t)− v∞(T )
v(0)− v∞(T )

=
Tf (t)− T

∆T
(2.23)

where T is the temperature of the isothermal hold and ∆T is the jump to it. The sign of

∆T is positive for an upward jump and vice versa. To demonstrate the ∆T dependence,

the asymmetry of the structural relaxation functions MT,∆T
V (t) and MT,−∆T

V (t), is pictured

in Figure 2.5(b). The reason for this asymmetry is the dependence of the relaxation times

on the dependent variable v itself. This, by definition makes the process nonlinear. In the

upward jump experiment, the material obviously starts from a more compact structure in

comparison to the downward jump experiment. In fact, the specific volume in the former

process is always less than v∞(T ) whereas the opposite is true for the latter. This means, the

relaxation times are always bigger in the upward jump experiment making it more sluggish.

On the other hand, the relaxation becomes slower during the downward jump experiment
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as the structure becomes more compact and therefore it is called autoretarded. Obviously,

the opposite is true for the upward jump experiment and it is called autocatalytic.

To eliminate the dependence on ∆T , Narayanaswamy [63] has written the function in

the limit sense

MT
V (t) = lim

∆T→0
MT,∆T

V (t) (2.24)

which is called the structural relaxation modulus. Now, analogous to the time-temperature

superposition, a reference temperature, Tr is chosen and the structural relaxation modulus

for the equilibrium liquid at this temperature is taken to be the master curve, denoted by

Mr
V . Through the reduced time concept, any MT,∆T

V can be represented as

MT,∆T
V (t) = Mr

V (ξ) (2.25)

provided that the shift function depends not only on temperature but structure (specific

volume) to account for the aforementioned nonlinearity. Expressing in terms of fictive

temperature to reproduce Narayanaswamy’s theory, the shift function is given by

ξ(T, Tf ) =
∫ t

0

1
a(T (t′), Tf (t′))

dt′ (2.26)

This generalization of the time-temperature superposition is called the time-temperature-

structure superposition8. Narayanaswamy [63] proposed the following form

a(T, Tf ) = exp
Q

R

(
x

T
+

1− x

Tf
− 1

Tr

)
(2.27)

8The formal justification of the time-temperature-structure superposition by demonstrating shape preser-
vation in stress relaxation experiments is even more challenging. One has to do experiments at different ∆v’s
for each temperature which is only possible when the time scale of structural relaxation is much bigger than
that of shear relaxation. This allows taking snap shots of the material with stress relaxation experiments as
it isothermally approaches equilibrium.
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where 0 ≤ x ≤ 1, and for x = 1, Arrhenius type dependence is recovered by which this

relation has been inspired. The parameter x determines the relative weight of temperature

and fictive temperature (deviation from equilibrium) on the viscosity of the material.

With the convolution of step functions assuming linear superposition, the response to

an arbitrary temperature history up to time t,
t
T

t=0
, starting from equilibrium material at

specific volume vi in Figure 2.4(b) may be formulated as follows:

v(t) = vi + αl(T (t)− Ti)− αs

∫ t

0
Mr

V (ξ(t)− ξ(t′)
∂T

∂t′
dt′ (2.28)

where the first two terms yield the metastable equilibrium volume at time t and the last

term is ∆v, deviation from metastable equilibrium volume. Thus, once more, the kernel

function, Mr
V , can conveniently be kept constant bearing all the structure and temperature

dependence on reduced time.

Narayanaswamy derived the formal relation for Tf from the volumetric formulation (2.28)

and the relation between ∆v and Tf (2.22) as

Tf = T −
∫ t

0
Mr

V (ξ(t)− ξ(t′)
∂T

∂t′
dt′ (2.29)

Therefore, it is indeed a matter of taste to use Tf or ∆v as the disorder parameter which

lumps the effect of entire temperature history on the relaxation times. These theories with

essentially identical phenomenology to explain structural relaxation have been reviewed

by McKenna and Simon [59] and attributed to Tool [86], Narayanaswamy [63], Moynihan

et al. [61], and Kovacs at al. [47], the last one making use of ∆v and the others of Tf .

Narayanaswamy’s work is focused here due to its use in the definitive thermal tempering

study of silicate glasses (Narayanaswamy [64]). Through his generalization of Tf with
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equation (2.29), problems encountered with single relaxation time description of Tool (such

as crossover effect, see, e.g., Ritland [74]) are resolved. Actually, the theory does not require

the introduction of Tf since everything can be formulated through specific volume if it were

not for the Arrhenius-relation-inspired shift function (2.27).

2.5 Structural Theory of Tempering

The structural theory (Narayanaswamy [64]) is then formulated by (i) the structure depen-

dent shift function (equation (2.27)), (ii) reduced time (equation (2.26)), (iii) convolution

of the structure parameter, Tf , over time with the kernel Mr
V (equation (2.29)), and (iv)

the following expression for thermal strain that is easy to see on Figure 2.4(b)

εθ = αg (T (x, t)− Ti) + αs (Tf (x, t)− Ti) (2.30)

Alternatively, the expression of coefficient of thermal expansion α that depends on thermal

history can be derived simply taking the temperature derivative (equation (2.21)) as

α = αg + αs
∂Tf (x, t)

∂T
(2.31)

In this theory, the effect of thermal strain on stresses are still through the elastic dilatational

response given by equation (2.19). Thus, the addition of structural model over the ther-

moviscoelastic one is twofold: (i) the stress generating thermal strain becomes dependent

on structure as depicted by any of the two equations above; (ii) via the Tf dependent shift

function relaxation times depend on the structure. Narayanaswamy reports that the effect

of the former is much more pronounced for the residual stresses. These stresses, simply put,
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are due to the freezing of glass of different densities (or residual ‘free volume’s as introduced

in next section) across the plate. Since the surface is cooled faster, it will attain a lower

density.

In this theory, there is no coupling between the local stress state at the material point

and the thermal strain that depends on the thermal history. In other words, the thermal

strain history a material point will experience is fixed once its temperature history is given

regardless of whether it is inside a body or it is a traction-free small particle. This deficiency

though is consistent with the assumption of elastic dilatational response.

For example, a more complete theory, developed by Losi and Knauss [52], allows the

coupling between pressure and thermal response by defining the mechanical effect of tem-

perature change through ‘thermal pressure’ given by

p̂ = K∞ αl∆T (2.32)

Then the dilatational law is written in its creep form as

εkk(t) =
∫ t

−∞
J2(ξ(t)− ξ(t′))

∂(σkk + p̂)(t′)
∂t′

dt′ (2.33)

2.6 Free Volume and Vitreloy 1 Viscosity

Free volume, vf , is a phenomenological parameter that quantifies the amount of vacancies

present in glassy materials. In free volume based theories, the viscosity of the material is

expressed as a function of free volume and other parameters such as temperature, pressure,

strain rate, etc., that affect the relaxation time of the material via their influence on the free
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volume. With statistical considerations, Cohen and Turnbull [27] formulated the viscosity

η = η0 exp(b
vm

vf
) (2.34)

where vf is the average free volume per atom and b vm is the critical volume for flow. This

equation was formerly derived empirically by Doolittle from experiments on hydrocarbon

liquids (see, e.g. Doolittle [30]). Williams, Landell and Ferry [90] then showed that the

viscosity dependence of most glass-forming substances can be described by the Doolittle

equation and that the free volume is given by

vf = vf,ref + αsvm(T − Tref ) (2.35)

where Tref is a reference temperature, and vf,ref is the corresponding free volume. Setting

Tref as the glass transition temperature Tg, they obtained the ‘universal’ value of fractional

free volume (vf/vm) as 0.25% at Tg which is valid for a large set of amorphous materials. If

Tref is taken as the kinetic freezing temperature, denoted by T0, at which free volume be-

comes zero, equations (2.34) and (2.35) yield the Vogel-Fulcher-Tammann (VFT) equation

η = η0 exp(
C

T − T0
) (2.36)

where C is a constant. The viscosity data of Vit.1 are successfully fit with this equation

and are used in the latter chapters for implementing the thermoviscoelastic theory to Vit.1.

For the purpose of discussion here, only the regressed value of constant C is important, yet,

it is worth noting that in the original references (see, e.g., Waniuk et al. [89]) for Vit.1, C

is taken as D∗T0 where D∗ is the fragility parameter introduced by Angell [5]. The values
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of T0 and D∗ for Vit.1 are 412.5 K and 18.5, respectively, and this alloy is called a strong

liquid.

2.7 The Matsuoka Model for the Nonequilibrium State

Nonequilibrium means deviation from the metastable liquid, as detailed in Section 2.4. In

his treatment for polymers, Matsuoka [58], by cooperative domain and configurational en-

tropy concepts similar to Adam and Gibbs [2] first derives the Adam-Gibbs equation9. Then

he states that the Adam-Gibbs equation is valid both for equilibrium and nonequilibrium

states. His derivation with the equilibrium assumption leads to a shift function identical

to that given by the VFT equation. For the nonequilibrium state, first, he criticizes the

treatment of Narayanaswamy given by equation (2.27) since a good fit to the data in a rel-

atively broad temperature interval cannot be obtained without changing activation energy

Q and the parameter x. Instead, he argues that the configurational entropy of the nonequi-

librium state at temperature T (i.e., Tf (> T )) is equal to the configurational entropy of

the equilibrium liquid at its fictive temperature Tf . Then via the Adam-Gibbs equation he

obtains

a(T, Tf ) = exp
[
C

(
1
T

Tf

Tf − T0
− 1

Tref − T0

)]
(2.37)

where T0 is again the kinetic freezing temperature and the above equation reverts to the VFT

shift function for Tf = T . At this point, for the treatment in Chapter 5, it is emphasized

that the constant C is unchanged from its value in the equilibrium VFT fit. Also, according

to this theory, it is easy to see that the fractional free volume for the nonequilibrium state
9Detailed description of this set of theories is out of the scope of this thesis and the reader is referred to

the original references.
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is equal to

vf

vm
= αs (Tf − T0)

T

Tf
(2.38)

2.8 Shear Thinning of Vitreloy 1

At high strain rates and low temperatures, metallic glasses deform in the non-Newtonian

regime, i.e., the relaxation times decrease due to the deformation itself (Lu et al. [54],

Johnson et al. [43]). The effect is exemplified on a figure reproduced from Lu et al. that

plots the stress-strain response of the material for a series of strain rates at a constant

temperature T = 643 K. At the beginning of the deformation, the material is Newtonian,

and in this case, the stress response would settle to ∼ ηε̇ where η is the Newtonian viscosity.

This is the case for ε̇ = 2.0×10−4 s−1 on Figure 2.6. For the strain rates of ε̇ = 5.0×10−3 s−1

and ε̇ = 3.2 × 10−2 s−1, the internal relaxation time of the material decreases in time and

the overshoot phenomenon occurs that results in a smaller equilibrium viscosity and a final

stress value as seen in this figure. If the strain rate is higher, then the material fails by

shear banding via localized deformation which is the case for ε̇ = 3.2× 10−2 s−1.

The three regimes in deformation for Vit.1 as a function of strain rate and temperature

are shown in Figure 2.7. Note, however, this figure considers the steady state response

of the material for which the experiments are carried out at a constant strain rate and

temperature. The rapidly varying temperature and strain rates in the thermal tempering

problem would require the transient response, more specifically, the effect of deformation

history on the shift function.

Lu et al. modeled the transient (and steady-state) response with an empirical fictive

stress model. Johnson et al.’s treatment is more prone to be incorporated into the reduced

time models of thermoviscoelasticity since there the formulation is pursued by adding a
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Fig. 2. Effect of strain rate on the uniaxial stress-strain
behavior of Vitreloy 1 at temperature T = 643 K and strain rates
of 1.0 × 10�1, 3.2 × 10�2, 5.0 × 10�3 and 2.0 × 10�4 s�1. The
stress-strain curves have been shifted to the right to avoid over-
lapping curves of similar shapes and sizes.

value immediately, typical of “brittle” failure. The
failed surface exhibited a “vein-like” pattern on
each of the recovered specimens. The general tend-
ency is that the maximum stress decreased slightly
with increasing strain rates, as will be summarized
later. It is clear that increase in strain rate led to a
transition from homogeneous flow to inhomo-
geneous deformation. Therefore, the effect on the
stress-strain curves due to a decrease in strain rate
is similar to that due to increase in ambient tem-
perature, as depicted in Fig. 1.

3.3. Peak stress and overshoot stress

The peak stress, one of the principal parameters
that characterize the strength of the bulk metallic
glass, is plotted as a function of strain rate and
temperature in Figs. 3 and 4, respectively. In the
homogeneous deformation region, the peak stress
variation is quite similar to that of the steady state
stress, discussed later. Both these stress quantities
have pronounced dependences on strain rate and
temperature. On the other hand, the variation of the
peak stress with respect to strain rate and tempera-
ture in the inhomogeneous region is quite small
compared to its variation in the homogeneous
region. The average peak stress was reduced from
around 1850 MPa at room temperature to about

Fig. 3. Plot of the peak stress as a function of strain rate at
various temperatures.

Fig. 4. Plot of the peak stress as a function of temperature at
various strain rates.

1570 MPa at about 573 K. However, a remarkable
drop in peak stress occurred at higher temperatures.
For instance, at the strain rate of 1.0 × 10�4s�1,
the peak stress dropped from 1475 MPa at 573 K
to about 21 MPa at 653 K, by a factor of 70 for a
change in temperature of only 80 K. These results
suggest that Vitreloy 1 should not be used in appli-
cations where ambient temperature is substantially
higher than 573 K, which can be regarded a thres-
hold temperature beyond which this metallic glass
cannot be employed as a structural material, but

Figure 2.6: Effect of strain rate on the uniaxial stress-strain behavior of Vit.1 at temperature
T = 643 K. The stress-strain curves have been shifted to the right to avoid overlapping
curves of similar shapes and sizes (reproduced from Lu et al. [54]).

strain rate contribution to free volume. Hence, the free volume based shift function can

easily be modified. Unfortunately, however the work of Johnson et al. considers primarily

the equilibrium (steady-state) viscosity for constant strain-rate deformation.

In the present study, the effects of shear thinning in the non-Newtonian regime are not

considered with the following justifications:

• Reasonable agreement for residual stresses are obtained with a linear viscoelastic

model (Chapter 4).

• In the thermal tempering problems considered in this thesis, the glass transition re-

gion is traversed at 10–100 K/s and the material has limited time to go to the non-

Newtonian regime. (Recall the ‘short’ time response in all experiments plotted in

Figure 2.6 is within the Newtonian regime.)

• In the present study, the transient stresses around glass transition are typically smaller
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Fig. 11. The boundaries between the three distinct modes of
deformation for Vitreloy 1 as determined from the current
investigation. Two boundaries are shown in each figure, one for
transition from homogeneous deformation to inhomogeneous
deformation and the other for transition from Newtonian to non-
Newtonian flow.

been realized from all the stress-strain curves that
if shear failure occurs in Vitreloy 1, the corre-
sponding failure strain is always less than 5%. The
experiments have also confirmed that under uniax-
ial compressive loading condition, if failure does
not occur at the peak stress, Vitreloy 1 will exhibit
superplasticity, with substantial flow at the corre-
sponding strain rate. Although the peak stress for
the onset of shear localization for Vitreloy 1varies
with temperature, it is in the range of 1100–1700
MPa.

4.3. Effect of jump in strain rate

The viscous nature of flow and high rate sensi-
tivity of the flow stress of Viterloy 1 during homo-
geneous deformation allows detailed investigation
of the kinetics of flow and associated strength. By
varying the strain rate during a uniaxial com-
pression experiment, not only the influence of the
preloading history on the steady state can be inves-
tigated, but also the effect of the relaxation at the
first strain rate on the stress overshoot at the second
strain rate can be examined, which provides
additional information to further validate flow
models for metallic glasses. A series of jump-in-
strain-rate experiments was performed where strain
rates were abruptly changed from one value to

another, while holding the ambient temperature
constant. Fig. 12 shows the stress-strain curve
where the strain rate was changed from 3.2 ×
10�3 s�1 to 3.2 × 10�2 s�1 (by one order of
magnitude) at a strain of around 0.13 at 643 K.
The stress-strain curves at 643 K and constant
strain rates of 5.0 × 10�3 s�1 and 3.2 ×
10�2 s�1 are also plotted for reference. After the
strain rate was changed, the stress-strain curve
exhibited a second peak stress which is smaller
than the one obtained under constant strain rate
loading at the corresponding temperature. This is
probably due to the preloading effect that relaxed
the glass and/or increased free volume due to
inelastic deformation. However, it is obvious that
the steady state flow stress was not affected, within
the experimental error. In other words, the steady
state flow stress is independent of the material
deformation history while the overshoot stress does
depend on the loading history and the transient
response is highly path dependent. Similar obser-
vations were made for numerous jump-in-strain-
rate tests involving different sequences of strain
rates at various temperatures [37].

5. Modeling

In this section, a phenomenological model is
employed to describe the flow behavior of Vitreloy

Fig. 12. Effect of jump-in-strain-rate at 643 K from 3.2 ×
10�3 s�1 to 3.2 × 10�2 s�1. The strain at which the jump took
place is 0.126.

Figure 2.7: The boundaries between the three distinct modes of deformation for Vit.1. Two
boundaries are shown, one for transition from homogeneous deformation to inhomogeneous
deformation and the other from Newtonian to non-Newtonian flow (reproduced from Lu et
al. [54]).

than 100 MPa (Section 5.4). In comparison, the stress levels in Figure 2.6 are much

higher.

• The low level of measured temper stresses (maximum about ∼ 400 MPa) in compar-

ison to the yield strength of the material (1.9 GPa) justifies ignoring shear banding

at low temperatures. In addition, no experimental evidence of shear bands have ever

been observed in the produced samples.

• To incorporate the effect of strain rate history into the shift function poses a difficult

problem.

On the other hand, the last item defines an interesting problem for future work.
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Chapter 3

Modeling and Measurement of
Residual Stresses in a Bulk
Metallic Glass Plate

3.1 Introduction

The BMG processing typically involves casting an alloy into a mold followed by severe

quenching. This procedure can lead to large thermal gradients due to the low thermal

conductivity of BMG. In addition, during glass transition the alloy exhibits large changes

in its viscosity within a small temperature range. All of these parameters can lead to

“thermal tempering” which generates compressive surface residual stresses balanced with

mid-plane tension.

A similar phenomenon was observed previously in silicate glasses (Gardon [34]). Thermal

tempering in these glasses was mostly studied for a certain initial boundary value problem:

an infinite plate at a uniform initial temperature convectively cooled from both sides. The

resulting stress profile was roughly parabolic where compression on the surface(s) was bal-

anced by tension in the interior. First theories made use of the instant freezing assumption

(see, e.g., Aggarwala and Saibel [3]) that presumed the material behaves as a non-viscous

fluid above its glass transition temperature and as a linear elastic solid below it. This sim-
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plistic approach required only the glass transition temperature as the rheological input and

ignored the details of the glass transition range and its cooling rate dependence as well as

any stress relaxation below that range. As described in Chapter 2, the theory eventually

evolved with the necessary material functions (e.g., relaxation and structural moduli) (Na-

rayanaswamy [64]) such that any geometry could be handled with finite element modeling

(e.g. Soules et al. [81], Daudeville and Carre [29]).

In this chapter, the instant freezing assumption is invoked first to obtain estimates of the

residual stresses generated by this thermal tempering. Next, the only available viscoelastic

data on the BMG alloy used here, its equilibrium viscosity as a function of temperature, is

employed to develop the first viscoelastic model of thermal tempering in BMGs. The model

predictions are then compared to residual stress data collected from a cast BMG plate using

the crack compliance method.

3.2 Specimen Preparation

A Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit.1TM) plate is considered in this study that is cast into

a large copper mold, initially at room temperature1. This plate is nominally 150 mm long,

100 mm wide and 8.25 mm thick. The total thickness of the copper mold is 50.8 mm,

hence, there lies a 21.28 mm thick copper section on each side of the BMG plate in the

out-of-plane direction. Due to the proprietary nature of the process, only details relevant

to this publication are discussed here. The alloy melt was fed into the copper mold at low

pressure by vacuum assistance. A solid skin of Vit.1 likely forms at the cavity surfaces as

the molten alloy flowed into the mold. Filling up the mold is estimated to take 2–3 seconds.
1Casting into metallic molds is the typical production method for BMG parts and one of the advanatages

of BMGs over crystalline alloys lies in this process. BMGs can be cast into intricate shapes with fine
dimensional tolerances similar to plastics.
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The feeding pressure is kept for another 10 seconds to allow sufficient solidification of the

plate such that it could be retained in the mold cavity. Final cooling to room temperature

is achieved by quenching the mold in water at room temperature.

3.3 Modeling of Thermal Tempering

3.3.1 Instant Freezing Model

The name of the analysis originates from the assumption that glass abruptly solidifies at

its glass transition temperature, Tg. Here, glass is treated as an elastic solid below this

temperature and as a non-viscous fluid that cannot support shear above it. Also, the plane-

stress condition in the large plate geometry (zero normal stress in one direction along the

thickness) does not allow the fluid to feel pressure, either2. The first correct solution has

been obtained by Indenbom [42] in 1954.

During quenching, the surface of the material will cool to Tg first, and here, the ‘freezing

front’ will initiate and then move towards the mid-plane as the temperature of consecutive

layers drop to Tg. Making the classification of Gardon [34] in the context of this model,

the stresses that are generated until freezing front reaches the center are the solidification

stresses and the rest that are due to the decay of the temperature profile in the now-elastic

plate are the temperature equilization stresses.

Figure 3.1 demonstrates the typical shape of the resulting in-plane residual stress profile

across the plate thickness. In-plane coordinates are X and Y while Z is the out-of-plane

coordinate whose origin is at the mid-plane. Thermal-tempering-induced residual stresses

are equibiaxial in the X-Y plane for this infinite plate problem.
2This is the precise reason instant freezing model can be classified as a plate tempering model and will

not apply for, say, other simple geometries like long cylinder and sphere.
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Figure 1.  A typical residual stress profile across the thickness of a large plate due to thermal tempering:  

surface compression (σs) is balanced with mid-plane tension (σm).  The in-plane stresses are equibiaxial 

and function of the thickness coordinate (Z) only. 
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Figure 3.1: A typical residual stress profile across the thickness of a large plate due to
thermal tempering: surface compression (σs) is balanced with mid-plane tension (σm). The
in-plane stresses are equibiaxial and function of the thickness coordinate (Z) only.

The instant freezing model solution is developed for the convective cooling problem of

silicate glass tempering. Accordingly, the heat transfer on the surface is given by [41]:

Q = h(Ts − Ta) (3.1)

where, the heat flux (Q) is proportional to the differential between the surface temperature

(Ts) and the temperature of the cooling medium (Ta) and the constant of proportionality is

the heat transfer coefficient, h. To obtain a closed form solution for stress, the temperature

solution is approximated as the first term of the Fourier series solution (see e.g., Brown and

Churchill [16], p. 195) given by

T (Z, t) = C cos
(

δZ

L

)
exp

[
−
(

δ

L

)2

κt

]
(3.2)

where C is a constant, δ is the first root of δ tan δ = Bi, in which Bi is the Biot number,
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defined as Bi = h L
k where k is the thermal conductivity. The term κ stands for thermal

diffusivity
(

k
ρCp

)
where ρ is density and Cp is the specific heat. Then, the resulting resid-

ual stress profile is given as follows (the reader is referred to Aydıner et al. [11] for full

derivation):

σX(Z) =
αE(Tg − Ta)

1− ν

(
1− sin δ

δ
−
∫ Z

L

0

(sin δ − sin δζ) sin δζ

(1− ζ) cos2 δζ
dζ

)
(3.3)

where α is the coefficient of linear thermal expansion, E is the Young’s modulus, ν is the

Poisson’s ratio and Ta is the ambient temperature.

The instant freezing model provided a convenient closed form solution in the pre-

computer days, yet it was not invalidated by the more advanced and realistic models as

far as the final value of residual stresses are concerned. Indeed, when initial (pre-quench)

temperature, Ti is sufficiently bigger than Tg
3, the instant freezing model predicts the resid-

ual stresses as well as the viscoelastic (Lee et al. [50]) or structural (Narayanaswmay [64])

theories within the accuracy of the material data and the stress measurement technique

(Gardon [34]). This may be surprizing due to the extreme oversimplification of the ma-

terial behavior, but can be understood considering two facts. First, although the freezing

temperature (at which the timescale of stress relaxation becomes ‘big’ compared to the ex-

perimental timescale) will depend on the model, eventually at some temperature below Tg

the residual stresses generated will be the thermoelastic temperature equilization stresses.

Obviously, these stresses are equal for all models and they constitute a large of fraction

of the final stresses. Secondly, if it is assumed that the thermal gradients are monoton-

ically decaying or growing during solidification, i.e., the sense of stresses generated at a
3This requirement is partly due to not considering the higher order terms in the temperature solution.

Depending on the cooling rate, Ti should be sufficiently bigger than Tg such that these terms decay to zero
before the temperatures across the plate cool to Tg. (Seifert et al. [78].)
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Initial(melt) temperature Ti 900◦C
Quenching temperature Ta 25◦C

Glass transiton temperature Tg 352◦C
Young’s modulus E 96 GPa
Poisson’s ratio ν 0.36
Glassy CTE αg 9.8× 10−6 1/K

Table 3.1: Processing parameters and thermophysical properties of Vit.1 reproduced from
Appendix A.

material point remains the same when it passes through the glass transition range, the

model has an averaging effect by ignoring both the non-relaxed (‘remembered’) portion of

stresses that are generated above Tg and the relaxation of stresses that are generated below

Tg. Certainly, however, the instant freezing assumption is too crude to correctly predict

the time evolution of solidification stresses. Since BMG’s are in molten state when they

are cast, initial temperatures are much higher than Tg (see Table 3.1). Hence, the instant

freezing model can be expected to estimate the tempering stresses in these materials rather

accurately when equation (3.1) is applicable for their queching process. Besides, the closed

form expression provides insight and points out the important physical parameters. Among

these, the dimensionless Biot number, Bi = h L
k , is particularly important. Just from the

heat transfer perspective, Biot number determines the extent of thermal gradients that

will be formed in the sample (Incropera and DeWitt [41]) depicted by the spatial (cosine)

term in equation (3.2). Note that thermal conductivity is the only material parameter in

Biot number. Density and specific heat merely alter the overall decay speed of the same

temperature evolution through thermal diffusivity. Thus, via equation (3.3), the residual

stress profile formed in Vit.1 plates can be calculated given the Biot number and a small set

of process parameters and material properties presented in Table 3.1. Results are plotted

in Figure 3.2 and Figure 3.3. The former shows the magnitude of mid-plane tension and
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Figure 3.2: Effect of the Biot number on the absolute values of surface compression and
mid-plane tension in a Vit.1 plate.

surface compression as a function of Bi and the latter presents residual stress profiles (σX

vs. Z/L) for a set of Biot numbers.

It is shown in Figure 3.2 that, as Biot number increases, mid-plane tension goes to an

asymptotic value whereas surface compression keeps monotonically rising. This saturated

value of mid-plane tension can be evaluated from equation (3.3) as 175 MPa by taking

the Bi → ∞ limit of σX(0). Also, since the balancing mid-plane tension saturates, as the

value of surface compression increases, the thickness of the surface layer it is confined to

decreases. As seen in Figure 3.3, this means that a progressively thinner surface layer with

an increasingly high stress gradient can be formed as the degree of temper increases. On the

other hand, the strong temperature dependence of its thermal parameters (described in Ap-

pendix A) seems to be a problem for the application of the instant freezing model to Vit.1.

In particular, thermal conductivity, which is the first order parameter, exhibits pronounced

temperature dependence increasing from 4.59 W/(m ·K) at 25◦C to 20.05 W/(m ·K) at
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Figure 3.3: Residual stress profiles across the half-thickness of a Vit.1 plate as a function
of the Biot number, Bi = h L/k. According to the model predictions, about 35% of plate
thickness will be in compression.

900◦C in an approximately linear fashion. Hence, equation (3.2) which is for constant ther-

mal parameters becomes apparently invalid. To remedy this problem, the heat transfer

problem is solved with the simplification that thermal conductivity is assumed constant at

its Tg value (k = k(Tg) = 9.98 W/(m ·K)) to obtain an approximate temperature solution.

Then, fortunately, it is seen that, in the critical interval about Tg, this approximate so-

lution tends to the ‘exact’ solution that uses the detailed temperature dependent data in

Appendix A. This is demonstrated in Figure 3.44. Hence, the stress estimates via instant

freezing model remain valid with a small error (most probably contained within the error

of the model), if we define Biot number as B̃i = h L
k(Tg) .

4Note in the figure comparison is made at equal mid-plane temperatures instead of equal times. The
instant freezing model does not have a ‘real’ time dependence since it comprises material behavior on two
extremes of viscoelasticity only (elastic solid and non-viscous fluid). For example, one can artificially increase
the decay speed of the temperature evolution by multiplying thermal diffusivity with an arbitrary number
and the stress prediction will be unaltered.
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Figure 3.4: Temperature profiles at selected mid-plane temperatures (350, 400, 450, 500◦C)
for the temperature evolution during the quench of a Vit.1 plate. Calculations are carried
out (i) with the actual temperature-dependent thermal parameters (Appendix A) including
thermal conductivity, k(T ) (straight lines) (ii) with the simplification that k = k(Tg) =
9.98 W/(m ·K) (dashed lines). (Process parameters for these runs are Ti = 900◦C, Ta =
25◦C, h = 4800W/(m2 ·K), L = 4.125 mm, yielding B̃i ' 2.)

3.3.2 Viscoelastic Model

3.3.2.1 Introduction

Historically, this was the second model developed to quantify the thermal tempering of

silicate glasses (Lee et al. [50]). The viscoelastic model employed the measured rheological

properties of the equilibrium liquid at each temperature. Hence, it replaced the awkward

jump from a non-viscous fluid to a linear elastic solid in the former instant freezing models

with a smooth transition. The viscoelastic model was applied to a class of materials with

thermorheological simplicity. For such a material, the creep function, relaxation modulus

and any other characteristic viscoelastic function plotted versus the logarithm of time exhibit

only a simple shift when the temperature is changed to another constant value. Equilibrium

liquids of silicate glasses (called stabilized glass) were shown to be thermorheologically
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simple prior to the analysis in [50].

For the tempering problem, the appropriate viscoelastic function is the shear relaxation

modulus and at a certain temperature T , it will be denoted by GT . Bulk relaxation is

typically more sluggish than shear relaxation and Lee et al. made the assumption of elastic

bulk response. Hence in this problem, the viscoelastic behavior of the material over the

entire temperature range is obtained using two material functions only. The first is the

shear relaxation modulus measured at a reference temperature, Tr, denoted by Gr(t) and

the second is the ‘shift function’, a(T ), which bears the temperature dependence. It shifts

the reference function Gr(t) in logarithm of time to obtain GT , namely, the relaxation

modulus at the temperature of interest.

3.3.2.2 Viscoelastic Model for Bulk Metallic Glass

The author is not aware of any definitive data on isothermal measurements of shear relax-

ation moduli for Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit.1TM) at various temperatures. There-

fore, this model considers the equilibrium viscosity of this alloy which has been thoroughly

studied with creep tests around the glass transition and rotating cup experiments about

the melting point (Waniuk et al [89], Masuhr et al. [57], Busch et al. [21]). The viscosity

data covers a range of 14 orders of magnitude and is successfully fit with the Vogel-Fulcher-

Tammann (VFT) relation as follows:

η(T ) = η0 exp
[

D∗T0

T − T0

]
(3.4)

where, D∗ is called the fragility parameter and T0 is the VFT kinetic freezing temperature.

The value of η0 is 4× 10−5 Pa · s and the best fits to the experimental data yield D∗ = 18.5
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and T0 = 412.5 K [89].

Since the steady-flow viscosities were measured with creep tests in the temperature range

of interest, the following relation between viscosity and relaxation modulus at temperature

T holds (see, e.g. Ferry [33], p. 70):

η(T ) =
1
2

∫ ∞

0
GT (t) dt (3.5)

The determination of the relaxation modulus from the scalar viscosity data is not possible.

Therefore, the analysis was pursued as a parametric study for the relaxation time spectrum

(Aydıner et al. [12]). In other words, a set of relaxation moduli with varying spectra

were considered for residual stress calculations such that they satisfied equation (3.5). To

conveniently cover a broad relaxation spectra, the Kohlrausch-Williams-Watts (KWW) form

was assumed for the relaxation modulus:

GT (t) = 2µ(T ) exp

[
−
(

t

τs(T )

)βs
]

(3.6)

where βs is the stretching exponent and µ(T ) the instantaneous shear modulus at T . βs = 1

corresponds to Debye relaxation and the spectrum broadens as βs decreases. τs(T ) is

calculated by substituting equation (3.6) in equation equation (3.4) as follows:

τs(T ) =
η(T )
µ(T )

1
Γ(1 + 1/βs)

(3.7)

Calculations were carried out for βs values that systematically varied in increments of 0.05

in the 0.5 ≤ βs ≤ 1 range. First, the temperature dependence of the shear modulus was

neglected and its room temperature value (µRT = 35.3 GPa) was used. This was one of the
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assumptions made by Narayanaswamy [64] in his analysis of silicate glass tempering after

noting Kurkjian’s data [48] that showed ∼ 15% decrease in the shear modulus of glass as

its temperature approached the glass transition region. Recently, a similar decrease (10–

20%) in the elastic modulus of some metallic glasses has been measured as the temperature

reached Tg (Keryvin et al. [44]). To investigate the sensitivity of the residual stresses to such

changes in the shear modulus, a second set of computations was made by assuming a linear

variation of the shear modulus from µRT = 35.3 GPa at room temperature to 0.85 · µRT

(= 30.0 GPa) at Tg. The results showed that the effect of shear modulus variation with

temperature was negligible as far as the final residual stress values were concerned (the

change was less than 0.25%). Therefore, this effect is excluded from the discussion that

follows.

Note that any possible temperature dependence of the Kohlrausch factor βs was not

considered in the above parametric study. This was done to preserve the thermorheological

simplicity assumption. Allowing for the temperature variation of βs invalidates thermorhe-

ological simplicity and excessively complicates the calculations impeding the use of the

current numerical method. Furthermore, the extremely weak dependence of the solution on

βs justifies this negligence of its variation with temperature.

The viscoelastic model calculations were performed using the finite element method and

the details are described in the next section. The comparison of results obtained from both

the instant freezing and viscoelastic models is exhibited in Figure 3.5. It is seen that the

predicted residual stresses are rather insensitive to the value of the Kohlrausch factor, βs,

for the range of βs values considered (0.5 ≤ βs ≤ 1). The variation in mid-plane tension

and surface compression with βs in this range is under 5.4% (the calculated stresses increase

when βs changes from 0.5 to 1).
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Figure 3.5: Absolute values of surface and mid-plane stresses predicted by both instant
freezing (IFM) and viscoelastic-VFT models of thermal tempering of an 8.25 mm thick
Vit.1 plate as a function of (convection) heat transfer coefficient. The VFT data are shown
for two different calculations using βs = 0.5 and 1 in equation (3.6).
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Finally, all the arguments presented above assume the thermal stability of the BMG

alloy throughout the quenching process, and phenomena such as phase separation [89, 57]

were not considered. In addition, the non-linear viscous response (e.g., shear thinning) of

the material (Lu [53]) due to high shear rates was also ignored.

3.3.2.3 Implementation of the Viscoelastic Model

The calculations for the viscoelastic model were conducted using the ABAQUSTM finite

element (FE) software5. A one-dimensional model was built (see Figure 3.6) to represent

an infinite plate. The elements were arranged along the plate thickness direction (Z) with

symmetry imposed on both perpendicular directions (X and Y ). To implement the compat-

ibility condition for the infinite plate, first, the right side nodes were constrained to deform

as a line. Second, unlike regular plane strain elements where the displacements in the Y

direction would merely be set to zero, generalized plane strain elements were used that

allowed uniform deformation in the out-of-plane direction Y . The lengths of the elements

along the Z direction were biased such that the mesh became finer towards the surface

where there are higher temperature gradients. The cooling of the plate was carried out

via convection heat transfer applied on the top surface. Thermorheological simplicity in

ABAQUS was defined for the relaxation function, namely, relaxation modulus normalized

by its instantaneous value was given by exp[−(t/τs)βs ] in the KWW formalism. This way,

the use of temperature-dependent shear modulus µ(T ), which invalidates thermorheological

simplicity for relaxation modulus but not relaxation function, did not pose any additional
5For this one-dimensional thermoviscoelastic problem, the semi-analytical solution of Lee et al. that

involves two coupled integral equations can be obtained with the efficient algorithm of Narayanaswamy and
Gardon [65]. This algorithm was implemented in MATLABTMand FE analysis results here were verified.
Unfortunately, this approach cannot be pursued even for a slightly more complicated geometry (e.g. the
cylinder geometry of Chapter 4 or more detailed constitutive behavior (such as the considered temperature
dependence of shear modulus) making the incorporation of FE analysis a necessary task.
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Figure 4.  Schematic of the finite element model used in viscoelastic model calculations.  An infinite 

plate is represented via symmetric elements (in X and Y) while the plate half-thickness extends along Z.  

The elements (or nodes) on the right hand side are required to move uniformly along the X direction.  

 

Figure 3.6: Schematic of the finite element model used in viscoelastic model calculations.
An infinite plate is represented via symmetric elements (in X and Y ) while the plate half-
thickness extends along Z. The elements (or nodes) on the right hand side are required to
move uniformly along the X direction.

difficulties. The relaxation function was calculated and input to the program at a reference

temperature Tr and the shift function given below was implemented with a user-defined

subroutine:

a(T ) =
τs(T )
τs(Tr)

=
µ(Tr)
µ(T )

exp
[
D∗T0

(
1

Tr − T0
− 1

T − T0

)]
(3.8)

3.3.3 ‘Perfect’ Contact Analysis of the Copper Mold Casting

The analysis up to this point has been pursued as a function of heat transfer coefficients

and close results have been obtained for instant freezing and viscoelastic models. To make
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Figure 3.7: (a) Temperature profiles at selected times in the cross section of the cast Vit.1
(initially at 900◦C) and the copper mold (initially at 25◦C) that are put in instantaneous
contact and do not separate (‘perfect’ contact) throughout the process. (b) The residual
stresses induced in Vit.1 by this temperature solution.

quantitative comparison with the experimental data, now let us draw our attention to the

casting process of the considered plate. Obviously, this process does not involve convective

cooling on traction-free surfaces.

In the heat transfer analysis, considering that the filling stage takes a very small time

compared to the overall duration of the process, flow effects are ignored and the heat

transfer problem is approximated by putting the 8.25 mm thick Vit.1 melt at 900◦C in

instantaneous contact with copper mold at 25◦C. A one-dimensional solution is conducted

in MATLABTM for this boundary value problem observing the symmetry about Z = 0. Free

air convection (= 20 W/(m ·K) [41]) is also applied on the outer surface of the mold, which,

not surprisingly, had negligible effect. The calculation made use of the material data in

Appendix A and Table 3.2 for Vit.1 and copper, respectively, and assumed perfect contact

(no separation) between the two. The temperature evolution is shown in Figure 3.7(a) that



53

plots the temperature profile at several representative times. The heat transfer upon contact

is extremely fast and reduces the BMG surface temperature to ∼ 170◦C instantaneously.

The BMG surface temperature, or more precisely, the temperature at the BMG-copper

boundary remains at the same level in the rest of the process, increasing only ∼ 20◦C as

the copper mold heats up. Eventually, both phases come to equilibrium at about ∼ 190◦C.

Naturally, once the temperature accross the plate thickness gets sufficiently below Tg =

352◦C, residual stresses are not influenced by the treatment in the rest of the process. This

temperature history is similar in nature to what would be imposed by convective cooling

with an extremely high h by a medium at temperature Ta = 170◦C since, in the h → ∞

limit of convective cooling, surface temperature is brought to Ta instantaneously [16].

Before, pursuing a sequential mechanical analysis with the developed models, it is re-

quired to justify the negligence of the filling stage for the stresses. At this point, we refer

to residual stress studies in the injection molding process used in the polymer industry

(e.g., Struik [82], Hastenberg et al. [38], Zoetelief et al. [93]). For polymers, the residual

stresses are classified as flow-induced stresses and residual thermal stresses. Flow-induced

stresses are the stresses generated during the filling stage of the mold whereas the residual

thermal stresses are due to the differential cooling of the material, which is the only case

for the thermal tempering problem. It is noted in [93] that the flow stresses are an order

of magnitude lower than the thermal stresses in absolute value. This is not surprising since

the existence of flow at considerable rates indicates that most of the material still has very

short shear stress relaxation times, and thus, is not able to accumulate residual stresses.

Based on this argument, it is likely that the residual stresses that form in the BMG plate

are also mostly thermal residual stresses. For the considered plate, this assumption will be

corroborated by the nature of measured residual stresses.
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Density (kg/m3) 8933
413 @ − 73◦C

Thermal conductivity (W/(m ·K)) 393 @ 123◦C
379 @ 323◦C
356@− 73◦C

Specific Heat (J/(kg ·K)) 397@123◦C
417@323◦C

Table 3.2: Thermophysical properties of pure copper [41].

Hence, it is reasonable to apply the models developed for estimating residual stresses and

Figure 3.7(b) shows the resulting stress profile from the viscoelastic analysis with βs = 1.

As expected, the surface stress is extremely high (-983 MPa) and the stress gradient at the

surface is very steep. The mid-plane tension is 104 MPa which is in reasonable agreement

with the limiting value from instant freezing model for Ta = 170◦C as 97 MPa.

The perfect contact analysis in this section has been made to have a reference point in

the interpretation of measured residual stresses. In actual fact, due to the nature of the

process, BMG likely separates from the mold cavity. As it will be explained in section 3.6,

the comparison of perfect contact analysis results with the measured stresses indeed leads

to this conclusion.

3.4 Residual Stress Measurement Using the Crack Compli-

ance Method

Residual stresses in BMGs cannot be conveniently determined by non-destructive methods.

While photoelasticity could be used in silicate glasses to measure both residual and in situ

stress profiles during processing (Gardon [34]), the opacity of BMGs prevents the use of

this method. Diffraction is similarly not applicable since BMGs are amorphous. Therefore,

mechanical relaxation methods remain as the only options to obtain the stress profile within
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Figure 3.8: Crack compliance method terminology (adapted from [68]).

the desired spatial resolution. These methods rely on disturbing the equilibrium of a sample

under residual stress by removing material in a particular way. The deformation of the

sample as it reaches a new equilibrium is then monitored and this information is used to

back-calculate the original residual stresses. The crack compliance method (Prime [68],

Cheng and Finnie [22]) was chosen in this study since it allows accurate determination

of the complete through-thickness profile with good spatial resolution in the measurement

direction.

In this method, strains are measured as a slit is incrementally cut through a specimen.

Assuming that the stress relaxation from cutting the slit is elastic, the original profile

of residual stress is calculated from the measured strains. Figure 3.8 illustrates a crack

compliance measurement and defines the terminology. A slit is introduced, and its depth a

in the Z direction is extended incrementally. The test is used to determine σX(Z) through

the thickness of the specimen. Two strain gauges are employed. The top strain gauge,

placed very near the cut, is used for determining the stresses in the near surface region
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(a/t < 0.05). The back gauge is placed directly opposite to the cut and is used to calculate

the stresses through the remaining portion of the specimen.

The original residual stresses are determined from the measured strains using the series

expansion approach (Prime [68], Schajer [75]) , which is very tolerant of noise and errors

in the experimental strain data. It is first assumed that the unknown stress variation as a

function of the through-thickness coordinate can be expressed as a series expansion:

σX(Z) =
n∑

i=1

Ai Pi(Z) = [P ]{A} (3.9)

where, the Ai represent unknown series coefficients. For this study, Legendre polynomials

expanded over the thickness of the plates were chosen for the Pi because, by excluding

the 0th and 1st order polynomials, the resulting stress distribution is guaranteed to satisfy

force and moment equilibrium. The strains that would be measured at the cut depths aj

are calculated for each term in the series. These are called the compliance functions Cij .

Using superposition, the strains given by the series expansion can be written as

εX(aj) =
n∑

i=1

Ai C(aj , Pi) = [C]{A} (3.10)

A least squares fit to minimize the error between the strains given by equation (3.10) and

the measured strains yields the Ai (and hence the stresses by equation (3.9)) and can be

written as

{A} =
(
[C]T [C]

)−1
[C]T {εmeasured} (3.11)

In this study, the compliance functions for the top strain gauge were calculated using a nu-

merical, body-force method solution for a slot in a semi-infinite solid (Cheng and Finnie [23])
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with some improvements made to the numerical solution (Prime and Finnie [69]). The com-

pliance functions for the back strain gauge were calculated by two-dimensional finite element

calculations of a crack in a plate. Uncertainties in the final stress prediction were based

on standard error propagation formulas applied to the above equations using the difference

between the measured and calculated strains (equation (3.10)) as the measurement uncer-

tainty (Hill and Lin [40]). Using too low an order, n in equation (3.9), of an expansion

results in not fitting the measured strains well and, therefore, leads to large uncertainties in

the stresses. Inversely, using too high of an order results in a more singular matrix inverse,

equation (3.11), and also large uncertainties in the stresses. Thus, an optimal fit order was

chosen to minimize uncertainty.

The cuts were made using wire electric discharge machining (EDM), which is preferred

over mechanical cutting. The machine was set to ‘skim cut’ settings to minimize stresses

induced during cutting (Cheng et al. [24]). It must be mentioned that the dimensional

accuracy of the samples was not perfect since they were extracted from a cast plate. The

thickness of the sample in the cut plane varied within 0.1 mm for most samples. The

cut depth and thickness values were based on accurate measurements performed with an

optical microscope from both sides of the sample. Figure 3.9, which is roughly to scale,

shows the original locations of samples extracted from the plate. The seven samples tested

for through-thickness stress profiles in the Y direction were named Y1,..., Y7, and similarly

the four samples tested in the X direction were called X1,..., X4. One face of the plate was

selected as the top and was kept as such for all samples except Y7, X2 and X4 that were

intentionally slit from the other side to check the symmetry of the stress profile. Sample A1

was annealed at 290◦C for two hours to relieve the residual stresses. This temperature is

high enough to allow rapid stress relaxation (Suh and Dauskardt [83]) without significantly
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Figure 6.  Locations of samples in the plate before cutting.  Plate dimensions are: 150 mm by 100 mm by 

8.25 mm.  Wire diameters used in cutting each sample are indicated in inches.  The flow direction of the 

molten BMG during casting is also shown.  The samples are 12.7 mm by 25.4 mm.  The ones designated 

by X were used to determine in-plane stresses along the X direction (σX), while those named Y1, etc. were 

used to measure σY. 

Figure 3.9: Locations of samples in the plate before cutting. Plate dimensions are 150 mm
by 100 mm by 8.25 mm. Wire diameters used in cutting each sample are indicated in
inches. The flow direction of the molten BMG during casting is also shown. The samples
are 12.7 mm by 25.4 mm. The ones designated by X were used to determine in-plane stresses
along the X direction (σX), while those named Y1, etc., were used to measure σY .

changing the structure of Vit.1. The amorphous structure of A1 after heat treatment was

confirmed with X-ray diffraction. The samples were nominally 25.4 mm long by 12.7 mm

wide. The sample length, l, was large enough (l/t ∼ 3) to substantially preserve the original

residual stresses in the measurement direction on the cut plane (Prime and Hill [71]). Also

the width dimension, b, was large enough to conform to the plane strain assumption used

in the calculations [71]. While the earlier tests employed a 0.006 inch (0.150 mm) diameter

wire, the later ones used a 0.004 inch (0.100 mm) diameter wire (see Figure 3.9 about a

distribution of samples for each). The slot was cut in 0.254 mm increments. This value was

reduced to 0.127 mm during the first few steps to obtain a higher resolution near the top

surface.
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3.5 Experimental Results

The top gauge did not yield reliable data in some early tests. This was attributed to the

poor attachment and coating of the gauge which prevented its waterproof installation. The

EDM machine used in these tests employed a water jet to keep the wire-workpiece region

engulfed in a dielectric fluid. Fortunately, most of the data comes from the back gauge

(from 10 to 90% of the thickness of the sample) and a top gauge is not strictly necessary.

Therefore, almost the complete stress profile can be obtained using only back gauge data.

The disadvantages in this case are that the precision in the near-surface stresses is low and

the stabilizing effect of the top gauge on the solution is lost. Nevertheless, the uncertainty

analysis correctly accounts for such issues. In this study, it was seen that the accuracy of

the mid-plane stresses was still quite good and the trend of the stress profile was adequately

resolved. On the other hand, the tests for samples X1, X2, X4, Y7 and A1 were successful

in yielding data from both gauges and the results obtained from the first four of these

samples are similar to those obtained from all other as-cast specimens. The back gauge

strain profiles from all specimens are shown in Figure 3.10. It is worth noting that the

profiles for all samples, tested both in X and Y directions (except the stress-relieved A1),

exhibited remarkable similarity in shape and magnitude even though a few of the tests, e.g.,

that of Y6 and X4, yielded somewhat lower quality data. This shows, first, that the stress

profile has weak X–Y coordinate (spatial) dependence and it also suggests that the stress

state is approximately equibiaxial. Note that if samples with stress profiles that are merely

multiples of each other are considered, back gauge strain vs. normalized depth data will

scale linearly with the amplitude of these stress profiles. On the other hand, top gauge data

is not directly comparable for its values will also depend on the gauge-to-slot distance.
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Figure 7.  Back strain vs. normalized depth data for samples (a) in the Y direction, and (b) in the X 

direction, in comparison to the annealed sample A1.  See Fig. 6 for original specimen locations on the 

plate. 
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Figure 3.10: Back strain vs. normalized depth data for samples (a) in the Y direction, and
(b) in the X direction, in comparison to the annealed sample A1. See Figure 3.9 for original
specimen locations on the plate.

Typical stress profiles obtained from the back gauge data of specimens Y2, Y3, Y4 are

shown Figure 3.11(a). These tests yielded particularly clean data and reduction of the stress

profile was straightforward. In Figure 3.11(b), the test of Y7 is compared with that of the

annealed sample, A1. Since the top gauge worked in both tests, the stresses on the top

surface are also exhibited. The error bars in Figure 3.11 are seen to be much smaller than

the observed stress profile. More significantly, the apparent stress variation in the annealed

specimen (A1) is within 5 MPa indicating the stress resolution of the crack compliance

method.

Note that only stress values that are significant are plotted. This involves excluding a

number of points near the top surface where the back gauge response is too weak (for the

tests where the top gauge did not function properly) and a few points close the full thickness

of the sample where the strains no longer give a good estimate of the residual stress. As the
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remaining ligament ( t− a in Figure 3.8) becomes small, several factors (e.g., the weight of

the specimen and tension in the lead wires) increasingly contribute to the strain measured

by the back strain gauge by causing bending and torsion of the remaining ligament. In

small samples such as these, additional stiffness from the gauge coating can also affect the

strain readings as the remaining ligament becomes small. The net effect of the remaining

ligament becoming small is that the experimentally measured strains become singular as

the cut approaches the back face, see Figure 3.10, whereas without these effects the strain

would approach a finite value (surface stress divided by plane strain elastic modulus) as the

cut neared the opposite surface. In these specimens, the singular effects became significant

after about a/t = 0.92; therefore, stresses are not reported beyond that depth.

As seen in Figure 3.10, especially samples Y6 and X4 do not follow the generaly observed

smooth profile. Their data show awkward changes in slope and some especially bad data

points were deleted. Later it was realized that the reason was variations in the flow of the

dielectric fluid and formation of bubbles on the gauge surfaces as the EDM wire moved into

the sample. This happened only for a few samples because the wax coating on the gauges

of these samples had apparently a rougher surface that caused complicated flow patterns.

Some samples such as the ones in Figure 3.11(a) were usually very stable. Caution should

be exercised when inverting the stresses from problematic strain data as fitting the noise

will result in a wavy profile instead of the simple ‘compression on the surface, tension in

the middle’ distribution.

The next source of error that was valid for all samples is called the ‘EDM effect’. Dur-

ing EDM cutting, a thin material layer (with a new stress state) can be recast on the cut

surfaces. This especially affects the top gauge data while the back gauge is relatively in-

sensitive. The data from the test on the annealed specimen—very small strains measured
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Figure 8.  (a) Calculated stress profile vs. normalized depth reduced from the back gauge strain data only.  

(b) The stress profile obtained from both top and back gauges.  
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Figure 3.11: (a) Calculated stress profile vs. normalized depth reduced from the back gauge
strain data only. (b) The stress profile obtained from both top and back gauges.

by the back gauge and inconsistently large values from the top gauge—confirmed the likeli-

hood of an EDM effect. The consistency of bottom gauge results for tests made with both

0.004 inch and 0.006 inch diameter wires also corroborates that the back gauge data were

unaffected. An EDM correction detailed in [24] was performed to the top gauge strains

in order to obtain the stress profiles shown in Figure 3.11(b). The profile of strain as a

function of cut depth that is caused by an EDM effect is quite different from the profile

caused by residual stresses. It can be estimated analytically and separated out from the

measured strains.

Several factors combined to make the EDM effect an issue in these tests, whereas it

is usually insignificant [24]. The major factor is that the residual stresses are so low in

the tested specimens. The strains caused by the EDM effect are generally a fixed small

value, independent of the residual stress magnitudes, when cutting is performed gently.
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Thus, they generally comprise an insignificant portion of the measured strains and do not

have a noticeable effect on the results. When the stresses are extremely low, as in the

tests reported here, the EDM strains can contribute significantly to the measured data and,

therefore, affect the results. The other factor is that the EDM effect is, other parameters

equal, greater for materials with higher yield stress and low thermal conductivity, both of

which apply to the BMG specimens. Even so, if the residual stresses were higher, the EDM

effect would have been negligible.

3.6 Discussion

Figure 3.5 exhibits the predictions of both the instant freezing and viscoelastic models.

Despite vastly different approaches and the use of independent data in each, their similarity

is remarkable. For instance, the shapes of the stress vs. heat transfer coefficient plots are

almost identical.

The model predictions that are obtained by the analysis that assumed ‘perfect’ con-

tact between copper mold and BMG (section 3.3.3) (∼ 100 MPa for mid-plane tension and

∼ 1000 MPa for surface compression), however, are significantly different than the experi-

mental results (10–13 MPa mid-plane tension and 25–30 MPa surface compression) that are

much smaller. To understand the discrepancy, consider the two main stages of the analysis,

the heat transfer problem (processing) and mechanical constitutive model (instant freezing

and viscoelastic models).

Both instant freezing and viscoelastic models disregard a critical component of glass

behavior: its structural relaxation from a metastable amorphous solid to a supercooled

liquid in thermodynamic equilibrium [89, 57]. During this process, the excess free volume

trapped in the material is relaxed by short range atomic movement leading to a denser,
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more viscous solid. In viscoelastic theory, data for the viscoelastic behavior of the equi-

librium material at every temperature is employed. Therefore, just from viscosity point of

view, the viscoelastic model employed in this study is expected to overestimate the temper

stresses with respect to a more advanced structural model which can accurately consider

the transient effects during structural relaxation. However, as explained earlier, residual

stresses are dominantly thermoelastic temperature equilization stresses and such deficient

description of relaxation behavior about glass transition region has a limited affect on them.

Hence, deficient material behavior is not likely to be responsible for the order of magnitude

error.

The assumption that the thermal stresses are dominant over the flow-induced stresses

is justified by the experimental data since (i) measured stress profiles have no significant

spatial and directional dependence and, (ii) the observed ‘compression-tension-compression’

stress profile is typical of thermal tempering [34, 11].

Therefore, it can be concluded that major part of the discrepancy is due to the tempera-

ture solution. The low magnitude of measured stresses suggests a relatively flat temperature

profile about the glass transition of Vit.1 existed during the casting. The only major as-

sumption in the analysis which otherwise made use of carefully measured material data

and actual dimensions is that the contact between the Vit.1 and copper mold is maintained

during the entire process. Therefore, it is inferred that separation occured before the tem-

perature of the majority of the sample crossection cooled to Tg. After separation, the heat

transfer from the plate through the vacuumed mold cavity would be significantly reduced.

Separation is expected due to the immediate solid skin formation suggested by the thermal

analysis and subsequent shrinkage of the core. The perfect contact analysis was conducted

to prove the point.



65

The difficulty of determining heat transfer in the mold casting with the separation phe-

nomenon, may be the reason that the concept of heat transfer coefficient with equation (3.1)

has been used in the literature for mold casting processes (see, e.g., Zoetelief [93], an ex-

ample from polymer literature). This effective heat transfer coefficient suggested by the

stress measurements can be obtained from Figure 3.5 assuming reasonable accuracy from

the considered models.

These results point to the need for an instrumented casting experiment during which the

exact temperature profile of BMG can be monitored that would allow a healthy comparison

of mechanical model and experiment results. This is done in Chapter 4.

Finally, it is worth mentioning the fact that lack of high temper stresses in BMGs

is not necessarily a disadvantage. Conventional (crystalline) metals typically have residual

stresses on the order of 25–50% of their yield strength (Prime and Hill [71], Yazdi et al. [92]).

Such stresses contribute to failure by fracture, fatigue, stress corrosion cracking, and other

stress-driven processes (Wulpi [91]). These stresses are also a major source of expensive

distortion problems caused during machining to final shape (Lequeu et al. [51]). Stress relief

in conventional metals, by thermal treatment or by cold working (Tanner et al. [84], Metals

Handbook [1]) is generally expensive and often not possible because it can significantly

degrade mechanical properties. By contrast, the peak residual stresses measured in BMGs

in this study only amount to about 1.5% of the yield strength. From a distortion and

mechanical failure point of view, such low stresses can effectively be neglected.

3.7 Conclusion

This investigation of thermal-tempering-induced residual stresses in a thick BMG plate had

two premises: (i) to accurately measure the residual stresses in BMG samples, and (ii) to
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compare the results with appropriate theory and obtain insight about the processing method

and the material properties. The first was accomplished by the use of the crack compliance

method, which is capable of yielding through-thickness stress profiles. The method is appli-

cable with wire EDM cutting taking advantage of the fair electrical conductivity of BMGs.

Although the measured stress magnitudes were low, the technique yielded good resolution.

The measured stress profiles exhibited thermal tempering characteristics. The compar-

ison between the theory and experiments yielded two main results (i) The BMG plate has

separated from the mold before Tg and the heat transfer dropped taking the stresses down.

(ii) A detailed comparison of the model cannot be made in this process and an instrumented

casting process is necessary.

It is shown that same processing method of BMG plates introduces very small stresses

in the material although certain dependence on process parameters (esp. feed pressure)

is expected. When the pressure is higher more material can be packed inside avoiding

separation for a longer time, that would be expected to result in higher thermal gradients

and stresses.

The non-existence of stresses may be an advantage since an annealing treatment might

bring together physical aging (free volume reduction) which results in a decrease in frac-

ture toughness. On the other hand, the compromised heat transfer after separation might

result in crystallization which will limit the critical thickness that can be attained with this

procedure.
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Chapter 4

Residual Stresses in a Bulk
Metallic Glass Cylinder Induced by
Thermal Tempering

4.1 Introduction

The purpose of the investigation in this chapter is to control the processing conditions

so that a more accurate estimate of tempering stresses can be performed (Aydıner and

Üstündag [9]). More specifically, the error in the heat transfer problem is minimized (recall

the structure of the thermal tempering problem on Figure 1.3) so that the ‘actual’ agreement

between the developed viscoelastic model (section 3.3.2) and experimentally determined

residual stresses can be evaluated. This is accomplished by casting BMG in a stainless steel

(SS) tube, which due to its higher coefficient of thermal expansion will always clamp onto

the BMG core and help assure contact throughout the quenching process. In addition, the

heat transfer coefficient during the quenching is actually measured.

A strong interface forms between BMG and SS after casting that is indicative of their

mutual contact. To investigate the temper stresses, SS is cut out of this BMG-SS composite.

Finite element analysis is performed to investigate the possible effect of its mechanical

interaction with SS during casting on the final residual stresses in BMG. These stresses are



68

then determined using the crack compliance method. The reader is also referred to a closely

akin and complimentary study presented in Appendix B. There, the stress state in a BMG-

SS composite that is cast with the same method is investigated with finite element analysis

and non-destructive elastic strain measurement on the SS phase via neutron diffraction.

4.2 Experimental Procedure

4.2.1 Sample Preparation

The casting process is optimized to assure uniform cooling and continuous thermal contact

between the BMG and the mold. A type AISI 304L stainless steel tube (12.7 mm outer

and 10.7 mm inner diameters) is used as mold. One of its ends is closed and a plug

machined from the same material is slid upside down to its bottom such that an empty

space forms (Figure 4.1). The tube-plug assembly is evacuated to 10−1 Pa and flushed with

Ar gas several times. While still under vacuum, it is heated to about 900◦C where the

Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit.1) alloy completely melts and fills the tube. The tube is

then quickly immersed in iced water (at 0◦C) which is continuously stirred with a magnetic

bar to ascertain temperature uniformity. The evacuated space above and below the BMG

is considered to be of sufficiently low thermal conductivity so that most of the heat transfer

will occur in the lateral direction via the circumference. In addition, to approximate the

stress analysis with a plane problem, the length of the casting is large with respect to its

diameter (the aspect ratio is above 8). To avoid the end effects in the heat transfer and

stress analyses, the actual sample is cut 30 mm above the bottom of the cast assembly

(Figure 4.1).

One advantage of such a sample preparation procedure (in addition to making the heat
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Figure 4.1: Geometry of the BMG alloy cast in a stainless steel (SS) tube. The actual
sample location used in crack compliance measurements is shown between dashed lines. All
dimensions are in mm.
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transfer problem one-dimensional) is that it promotes contact between the mold and the

BMG. As mentioned above, the CTE of the stainless steel is always higher than that of the

BMG at all temperatures of interest. Since the initial temperature is the same for both, the

tube is expected to be clamping on the BMG core during the cooling process. The strong

interface that forms between the two is an indication of the continuity of their mutual

contact. Another advantage of the processing used here is that the boundary conditions of

the problem are well defined, e.g., the initial and final temperatures for both the BMG and

stainless steel are well known.

Following the casting and quenching, the stainless steel tube is removed with wire electric

discharge machining (EDM). The EDM process imposes insignificant cutting forces on the

sample, and hence, almost no inelastic deformation is expected during cutting. However,

it produces a thin molten and re-solidified layer (called the EDM layer) which typically is

under tension (Cheng et al. [24]). To avoid the contribution of this layer to the final residual

stress state in the BMG, it is removed by a two-minute application of an acid solution (10%

HF + 45% HNO3 + 45% deionized water). This also eliminates the thin reaction layer

that forms between the BMG and the steel during casting. The exclusion of the stainless

steel tube after quenching serves two purposes. First, it relaxes the residual stresses due to

the interaction of the tube and the BMG core. For instance, the CTE mismatch between

the tube and the BMG can generate significant residual stresses in both. The second

advantage brought by the removal of the tube is the fact that it greatly simplifies the crack

compliance analysis of the residual stresses in the BMG. These issues are further discussed

in the following sections.
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4.2.2 Heat Transfer Coefficient Analysis

An accurate estimate of the heat transfer coefficient during processing is crucial for a suc-

cessful comparison of experimental data with model predictions in thermal tempering. Un-

fortunately, several experimental difficulties make it very difficult to directly monitor the

temperature evolution in the BMG during its casting and quenching. First, since the initial

temperature of the BMG alloy is over 900◦C, a thermocouple embedded in it will lead to

an extensive interface reaction which will complicate the interpretation of the results by

introducing additional thermal effects. Second, a thermocouple cast within the BMG will

generate extra residual stresses that will confuse the stress analysis. Third, feeding the ther-

mocouple through the present vacuum system is unfeasible. Use of a thermocouple on the

lateral tube surface, on the other hand, is difficult since the tube wall is thin and properly

insulating the thermocouple against water is problematic. Furthermore, a surface tempera-

ture measurement will require a faster response from the thermocouple and may lower the

temporal resolution since the cooling rate at the surface is more extreme in comparison to

the center.

It is therefore decided to employ a solid stainless steel rod (type AISI 304) of 100 mm

length and 12.7 mm diameter with a thermocouple probe inserted in its center. This

approach requires detailed knowledge of the thermophysical properties of the stainless steel

as a function of temperature (see Table 4.1). Once the temperature evolution in the probe

is measured, the only critical unknown in the process is the value of the convection heat

transfer coefficient on the surface of the stainless steel. A fast-response thermocouple probe

(0.5 mm diameter, type HKMTSS-020G with AISI 304 sheath from Omega Engineering,

Stamford CT) is inserted into a 0.55 mm blind hole machined with punch EDM into a 50 mm

depth from top surface. The hole is filled with Omega CC high temperature thermocouple
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cement to ensure good thermal contact between the probe and the rod. Care is also taken

to avoid direct contact between the quenching medium and the probe. The actual casting

process is then simulated by taking the rod to 900◦C and quenching into the same iced

water used before for BMG processing.

The convection heat transfer coefficient (h) is defined as (Incropera and DeWitt [41]):

Q = h(Ts − T∞) (4.1)

where Q is heat flux, Ts is surface temperature of the tube and T∞ is temperature of the

cooling medium (= 0◦C). In the present analysis, using the ABAQUSTM finite element

software, the heat transfer problem is solved for a set of presumed heat transfer coeffi-

cients and the center temperature is extracted to compare with experimental data. Since

a long rod is employed in the experiment, cooling at its center (at mid-length) is assumed

to occur from the circumference only. Therefore, the heat transfer problem is reduced to a

one-dimensional, axis-symmetric case where the temperature is a function of the radial co-

ordinate only. The calculations use a mesh of 60 CAX8RT quadratic heat transfer elements

biased from the center to the surface. The simulation results for heat transfer coefficients

ranging from 6, 000 to 20, 000 W/(m2 ·K) in increments of 2, 000 W/(m2 ·K) are shown in

Figure 4.2(a) together with the experimental data.

Two problems appear when the simulations and data are compared. First, the determi-

nation of the exact starting time for the quenching during the experiment is difficult since

several seconds pass when the rod is taken out of the furnace and dipped in the water. The

second problem is that the experimental curve does not seem to follow the calculated curve

of a single heat transfer coefficient throughout the entire process. The probable explanation
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Figure 4.2: Center temperature of the stainless steel rod used in heat transfer analysis
as a function of quenching time. (a) Experimental data in comparison to simulations for
h = 6, 000 to 20, 000 W/(m2 ·K) in increments of 2000W/(m2 ·K). (b) The fit of the
h = 10, 500 W/(m2 ·K) simulation to the experimental data, which yields the best fit after
the time offset optimization as detailed in the text.

for the latter is the extensive boiling observed in the early parts of the quenching which is

known to enhance convective heat transfer [41].

Fortunately, the second problem can be remedied by the physics of the thermal temper-

ing phenomenon. In thermal tempering, once the entire sample cross section freezes (i.e.,

becomes elastic), the stresses produced in the rest of the process are entirely determined by

the temperature profile at that instant, i.e., the nature of the heat transfer after this point

has no influence on the subsequent residual stress generation. Therefore, the convective

heat transfer should be investigated only until the center temperature drops sufficiently

below the glass transition temperature of the BMG. A 5-second initial period of quenching

is chosen for this purpose since, as will be shown later, the center temperature of the BMG

core is reduced below 300◦C in that interval. To obtain the best fit between the experi-

mental data and the simulated curves (and thus determine the value of the heat transfer

coefficient in that period), the time offset between the two has to be optimized. Suppose
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the measured temperature data are expressed by a function fexp(texp) and the simulation

curve for heat transfer coefficient hi is denoted byf i
sim(tsim). Then the time offset between

the two is toffset = texp − tsim. If the offset is corrected, the fitting error between the two

curves in the 0 to 5 seconds time interval will be given by

erri =
∫ 5

0

[
fexp(t)− f i

sim(t− toffset)
]2

dt (4.2)

The heat transfer coefficient that best represents the experimental data is hj such that

errj = min(erri), for all i. However, since the toffset is unknown, it is first estimated as

the value which minimizes erri by translating the simulation function in time such that

it matches the experimental function. In practice, fexp and f i
sim are taken as high order

polynomials that represent the data well and the minimization of equation(4.2) for each

simulation is implemented in MathematicaTM to calculate toffset. Figure 4.2(b) displays the

best match obtained for a heat transfer coefficient of h = 10, 500 W/(m2 ·K). The resolution

of the above procedure barely differentiates between 10, 000 and 10, 500 W/(m2 ·K) which

suggests an error of about 5% in the value of h.

Finally, to evaluate the temperature history in the actual composite sample with this

heat transfer coefficient another ABAQUSTM heat transfer analysis is performed. The

temperature at the center of the BMG core after 5 seconds is found to be 280◦C. This

temperature is well below the glass transition temperature of the BMG alloy (∼ 350◦C)

and assures that the BMG has solidified enough to be considered an elastic solid (in fact,

the viscoelastic model discussed later yields a stress relaxation time of 4.3× 108 seconds at

280◦C). Therefore, it can be concluded that within the critical first 5-second period during

quenching, the convection heat transfer coefficient on the outside surface of the stainless
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Young’s modulus (GPa) 193 [4]
Poisson’s ratio 0.3 [4]

Room temperature yield strength (MPa) 170 [4]
Density (kg/m3) 8.0 [4]

12.6 @ 200 K
16.6 @ 400 K

Thermal conductivity (W/(m ·K)) 19.8 @ 600 K
22.6 @ 800 K
25.4 @ 1000 K

28.0 @ 1200 K [41]
402 @ 200 K
515 @ 400 K

Specific Heat (J/(kg ·K)) 557@600 K
582 @ 800 K
611 @ 1000 K

640 @ 1200 K [41]
Coefficient of thermal expansion (×10−6 K−1) 18 [4]

Table 4.1: Thermophysical properties of stainless steel (AISI 304L) employed in the present
study.

steel tube is about 10, 500 W/(m2 ·K).

4.2.3 Residual Stress Measurement via the Crack Compliance Method

In this technique, the mechanical relaxation when a slit is incrementally cut into a sample is

monitored with strain gauges (Prime [68]). The strain vs. depth data obtained this way are

then used to calculate the original residual stress field that is relaxed. This technique was

described in Chapter 3 on samples cut from a BMG plate and provided excellent accuracy

despite the low stress values. In the present study, the technique is adapted to cylindrical

geometry (Figure 4.3). The specimen dimensions are chosen to satisfy the plane strain

condition for all slit depths: length, L = 27.9 mm and diameter, D = 10.67 mm (aspect

ratio > 2.5). The slitting is accomplished with wire EDM in steps of, first, 0.127 mm, and

then 0.254 mm. Both top and back strain gauges yielded reliable information. Additional

details about the cutting procedure can be found in Section 3.4.
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The hoop stress in the BMG cylinder (σθ) is calculated by assuming that the original

residual stress profile along the cut depth can be represented by a series expansion:

σθ(x) =
n∑

i=1

Ai Pi(x) = [P ]{A} (4.3)

where, Pi are chosen as Legendre polynomials expanded over the diameter of the specimen

and Ai are the coefficients that provide the best approximation of σ(x) via equation (4.3).

Then, the strains that would be measured at a cut depth aj are calculated for the resid-

ual stress distribution at that instant using the compliance functions C(aj , Pi) via linear

superposition:

εθ(aj) =
n∑

i=1

Ai C(aj , Pi) = [C]{A} (4.4)

A least-squares fit that minimizes the error between the measured strains and those given

by equation (4.4) determines the coefficients Ai (and hence the stresses via equation (4.3))

and can be expressed as

{A} =
(
[C]T [C]

)−1
[C]T {εmeasured} (4.5)

The fit order n is chosen to minimize the total fitting error which has two constituents

(Prime and Hill [70], Hill and Lin [40]): (i) the first error measures how well the chosen

series can represent the actual stress profile, i.e., the completeness of the series. (ii) The

second error propagates the fitting error in strains to the error in stresses and depends

not only on the magnitude of the former but also on the condition of the inversion in

equation (4.5).

The compliances in this study are calculated by a finite element model developed with
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ABAQUSTM that also employed Python scripts (Lutz [55]). The model geometry is shown

in Figure 4.3(b). At each experimental value of slit depth, ai the model geometry is modi-

fied and re-meshed using reduced integration, rectangular plane strain elements. Then the

stress functions Pi(x) in the series (equation (4.3)) are applied on the slit surfaces (Bueck-

ner’s superposition principle (Prime [68])) to obtain the compliances. Mesh convergence is

achieved throughout the analysis. To accurately represent the strain gauges, their locations

are partitioned on the circumference of the model. This permits the overlaying of an exact

number of elements on the gauge surfaces. Then the nodes on these surfaces are compiled

into node sets as shown in Figure 4.3(b). The magnified view of the back gauge node set

(Figure 4.3(c)) exhibits quadratic elements that allow accurate representation of the curved

surface. On the gauge surface, the face length of each element can be calculated as the

path integral of the quadratic interpolant. Then the face lengths of all these elements are

summed to obtain the gauge length. Applying this procedure on the coordinates of the

nodes yields the initial gauge length, l0 (Figure 4.3(c)), and similarly, the deformed gauge

length, l, is obtained by using the deformed coordinates (Figure 4.3(d)). Therefore, the

engineering hoop strain measured by the strain gauge can be calculated as εθ = (l− l0)/l0.

4.3 Results and Analysis

4.3.1 Residual Stresses due to Thermal Tempering

The results of the crack compliance measurement are shown in Figure 4.4 for three cases:

(i) top gauge only (which has a low depth sensitivity but is more accurate for surface

regions); (ii) back gauge only (which is sensitive over most of the cross section) and (iii)

both gauges (the results of both gauges are combined in the stress calculation step). The
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Figure 4.3: Geometry of the stress measurement and analysis. (a) The nomenclature of
the crack compliance method applied to a long cylinder. Strain gauges are placed on the
circumference of plane M at the mid-length of the rod where the plane strain condition is
satisfied. (b) The two-dimensional finite element mesh on plane M for a certain slot depth,
a. The nodes that are on the top and back strain gauge locations are defined as node sets.
The initial (c) and deformed (d) configurations of the back gauge node set are magnified.
The initial gauge length is given by l0 = su1 + su2 + su3 and the deformed gauge length is
l = sd1 + sd2 + sd3.
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Figure 5.  Measured hoop stress in the BMG as a function of normalized cut depth (x/D).  

Data obtained from (i) top gauge only, (ii) bottom gauge only, and (iii) both gages combined 

are shown.  All three analyses yield nearly identical results.  The errors bars represent the 

fitting errors in the crack compliance analysis.   

 

Figure 4.4: Measured hoop stress in the BMG cylinder as a function of normalized cut
depth (x/D). Data obtained from (i) top gauge only, (ii) bottom gauge only, and (iii) both
gauges combined are shown. All three analyses yield nearly identical results. The error bars
represent the fitting errors in the crack compliance analysis.

agreement between the independent top and back gauge results is remarkable. This suggests

an accurate measurement also helped by the high residual stress values which yield a good

signal-to-noise ratio. As a result, the EDM effect (Cheng et al. [24]) that was an issue

in back-calculating the residual stresses for the plate considered in Chapter 3 becomes

insignificant in the present one. In addition, the low order of the optimal fit (merely a third

order polynomial fits best both cases (ii) and (iii)) keeps the inversion in equation (4.5) well

conditioned. When the top gauge is added to the analysis to improve it (Hill and Lin [40]),

the total fitting error is reduced below 3 MPa for all depths. Of course, there are other error

sources in the crack compliance method, e.g., the error in determining the gauge locations,

the slight skew of the cut, etc. which are not accounted by the present analysis. However,

these errors are normally not as significant as the fitting error [40]. A careful review of the
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stress profile shown in Figure 4.4 leads to three main conclusions. First, a compression-

tension-compression profile typical for thermal tempering is observed. Second, the stress

magnitudes are quite high, an order of magnitude higher than those in the plate studied

in Chapter 3 although the sample dimensions are comparable. And third, the residual

stresses are symmetric about the sample center. The last observation strongly corroborates

the axial symmetry of the residual stress profile as expected from thermal tempering and

helps with the justification of the assumptions used in the heat transfer analysis. The next

section compares the predictions of the viscoelastic model of thermal tempering with these

experimental data.

4.3.2 Viscoelastic Model of Thermal Tempering

The viscoelastic model for the thermal tempering of BMG (Aydıner et al. [12]) is based

on its equilibrium viscosity which is given by the Vogel-Fulcher-Tammann (VFT) relation

(Waniuk et al. [89]):

η(T ) = η0 exp
[

D∗T0

T − T0

]
(4.6)

where, D∗ is called the fragility parameter(=18.5 for the Zr41.2Ti13.8Cu12.5Ni10Be22.5 BMG

alloy), η0 = 4 × 10−5 Pa · s, and T0 is the VFT kinetic freezing temperature(= 412.5 K).

The classical viscoelastic theory of thermal tempering (Lee et al. [50]) requires the shear

relaxation modulus as input and assumes the bulk relaxation is elastic due to its sluggish-

ness. The shear relaxation modulus (GT ) and viscosity at a temperature obey the following

viscoelastic relation:

η(T ) =
1
2

∫ ∞

0
GT (t) dt (4.7)
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The parametric study in Section 3.3.2.2 showed that the predicted final residual stress state

is practically independent of the shape of the relaxation modulus. Therefore, the simple

Debye relaxation

GT (t) = 2µ(T ) exp
(
− t

τs(T )

)
where τs(T ) =

η(T )
µ(T )

(4.8)

yields residual stress values that are similar to those obtained from any other plausible form

of GT . Here, t is time, µ(T ) is the instantaneous shear modulus at temperature T and τs(T )

is the shear relaxation time. The reader is referred to Section 3.3.2 for further details of the

viscoelastic model and how it is implemented in a finite element calculation.

Before proceeding with the comparison of model predictions with experimental data, the

effect of the stainless steel tube on the final residual stress state in the BMG core needs to

be analyzed. While the residual stresses in the quenched BMG-steel assembly are strongly

influenced by the interaction between the two1, the exact prediction of these stresses is

difficult due to the lack of information on, e.g., the temperature-dependent constitutive

behavior of the steel. However, the main emphasis of the present study is the residual

stress state in the BMG after the removal of the steel tube, and it is shown below that the

steel has a negligible influence on the final BMG stress state. To prove this point, a number

of extreme cases are considered:

1. The stainless steel is elastic throughout the entire quenching process.

2. The steel is elastic-perfectly plastic with a constant yield strength taken as the room

temperature value: 170 MPa (Table 4.1).
1The measured (with neutron diffraction on SS) and modeled stresses in a similar composite are studied

in Appendix B.
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3. The steel behaves as a mechanically inert insulation, i.e., it affects the heat transfer

but its mechanical contribution is neglected.

The calculations are performed via the finite element method using the ABAQUSTM pack-

age. A sequentially coupled thermal-stress analysis is conducted which involves the heat

transfer calculations first. These yield the temperature evolution which is used in the sub-

sequent mechanical analysis. Here, an implicit assumption is present, namely that the heat

transfer and mechanical problems are uncoupled. This assumption is justified by the severe

cooling during quenching which overwhelms heat generation in the sample due to inelastic

deformation. The finite element mesh consists of a line of axis-symmetric elements along

the radius of the composite. The interface between the two phases is assumed intact at

all times. The elements of both phases are biased toward the interface. The kinematic

boundary condition, in addition to axis-symmetry, is zero axial deformation at the bottom

surface of the mesh. To impose the long cylinder condition, the nodes at the top are con-

strained to move together in the axial direction (generalized plane strain). The analysis

also includes the removal of the stainless steel elements after cooling to room temperature

for the first two cases above (case 1: steel is elastic, and case 2: steel is elastic-perfectly

plastic). This way, a direct comparison with the residual stresses measured in the BMG

core can be performed.

Figure 4.5 displays the results of the model calculations as a function of the heat transfer

coefficient for all three cases of the stainless steel’s constitutive behavior. It is clear that

the final values of the residual stresses in the BMG (i.e., after the removal of the steel tube)

are hardly influenced by the mechanical constraint of the steel. The largest discrepancy

between the three extreme cases is about 3% of the stress values. While the calculations

predict high residual stresses in the tube-BMG assembly after cooldown, most of the stresses
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are relaxed after the removal of the tube leaving only those due to the thermal tempering

in the BMG. This result can be explained by the fact that the majority of the tempering-

induced stresses result from temperature equalization (Gardon [34]). As mentioned earlier,

these stresses develop after the whole specimen cross section becomes elastic and the decay

of the temperature profile at that instant is the driving force. Once the BMG is elastic, the

steel tube can only induce elastic stresses in it. Thus, when the steel is removed, regardless

of how much stress it generated in the BMG, the temperature equalization stresses are

unaltered. Based on these calculations, one can conclude that the effect of the steel on the

final residual stresses in the BMG is negligible.

When the experimental data are compared to the simulation results using the measured

heat transfer coefficient (h = 10, 500 W/(m2 ·K)), a close agreement is observed. The mid-

plane hoop stress from the model calculation is +131 MPa in comparison to the experimental

value of +125 MPa (about 5% difference). On the surface, the calculated stress is−330 MPa.

However, since stresses at the very surface cannot be reliably measured with the crack

compliance method, a comparison is made for stresses at the first experimental cut depth

of a/D = 0.012. Here, the model predicts −315 MPa whereas the experiment measured

−250 MPa (about 25% discrepancy). Of course, some of the discrepancy between the

model and experiment is due to the uncertainties in the thermophysical properties of BMGs

as a function of temperature. In particular, the thermal conductivity is a very sensitive

parameter that influences tempering stresses.

The fact that the agreement is better on the mid-plane in comparison to surface is

typical for the thermal tempering problem. The surface stresses are quite sensitive to error

sources in the heat transfer problem, namely,

1. the error in approximating the heat transfer with a constant heat transfer coefficient;
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2. the error in the value of the regressed heat transfer coefficient h;

3. the error in the temperature dependent thermal parameters of the material, in par-

ticular, thermal conductivity. As explained in Appendix A, these properties cannot

directly be measured in the supercooled liquid region due to devitrification and ex-

trapolated on the basis of physical formulations.

The sensitivity increases for the surface stresses due to the formation of steeper thermal

and stress gradients in comparison to the mid-plane. Recall that it is only possible to

compare the mechanical model results with the experimental results within the accuracy

of the heat transfer solution that is input to the sequential mechanical analysis. From this

perspective, the viscoelastic model agrees well with the experiment. The reader should also

note that Narayanaswamy, in his definitive work on thermal tempering of silicate glasses

(Narayanaswamy [64]) reported discrepancies between model predictions and experimental

data of about 17% for mid-plane stresses and 35% for surface compression. The results

of the present study, therefore, are noteworthy and show that the viscoelastic model is

reasonably accurate in predicting thermal-tempering-induced residual stresses in BMGs.

4.4 Conclusions

An integrated theoretical-experimental investigation is performed on the thermal tempering

of BMGs. Tempering-induced residual stresses are determined in a cylindrical specimen

using the crack compliance technique. In addition, the convection heat transfer coefficient

in the process is measured. The finite element method is employed to model the heat

transfer and thermal tempering processes. The casting is done in a stainless steel tube to

assure thermal contact during quenching and to better define the boundary conditions of
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the problem. The following conclusions are reached:

1. High tempering stresses (around −300 MPa surface hoop stress) can be generated in

BMGs with efficient cooling.

2. One way of generating such high stresses is by quenching in water which results in

a high convection heat transfer coefficient (h ∼ 10, 000 W/(m2 ·K)). This value is

much higher that the typical heat transfer coefficients reached during the thermal

tempering of silicate glasses via air jet cooling (h ∼ 500 W/(m2 ·K), Gardon [34]).

An important factor contributing to this discrepancy between the two types of glasses

is the much higher thermal conductivity of BMGs (kBMG = 4.6 to 20 W/(m ·K) vs.

ksilica = 1.4 W/(m ·K)). Therefore, more severe cooling is required to induce large

temperature gradients in BMGs.

3. The decay of these gradients below the glass transition temperature is the primary

source of residual stress generation during thermal tempering.

4. The previously developed viscoelastic theory of thermal tempering in BMGs yields a

good estimate of residual stresses if experimental conditions, especially the heat trans-

fer coefficient, are accurately determined. In the present study, the viscoelastic theory

predicts the mid-plane tension within 5% and the surface compression within 25% of

the experimental values. The agreement is good from an engineering perspective and

within the error of the heat transfer solution.
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Chapter 5

Physical Aging of Vitreloy 1 and
the Structural Model of Thermal
Tempering

5.1 Introduction

In Chapter 4, agreement is achieved between the thermoviscoelastic model and the experi-

mental results within the accuracy of the heat transfer solution. This agreement (5% at the

center and 25% at the surface residual stresses) is on the same order as that accomplished in

silicate glass tempering (Narayanaswamy [64]). Hence, from an engineering perspective, the

implementation of higher order theories is not necessary for calculating tempering stresses

in Vit.1 nor would this add more resolution to the problem given the unavoidable level of

error in the heat transfer analysis.

The relative insensitivity of the final residual stresses on the sophistication of the me-

chanical model has been demonstrated with the success of the simplistic instant freezing

model in Section 3.3. In sum, the details of BMG’s constitutive behavior around glass tran-

sition do not have a significant impact on the final residual stresses, which are dominated by

temperature equalization stresses. This was also the case in silicate glass tempering (Gar-

don [34]), where higher-order theories were not motivated by the poor prediction of residual
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stresses, but rather by the need to quantify the transient stresses around glass transition.

Transient stresses, which are tensile on the surface in the case of silicate glasses, could

lead to the fracture of the workpiece. Until the incorporation of the temperature history

dependence of the glass structure, the agreement with experiments was not achieved for

the transient stresses measured with photoelasticity. Unfortunately, in situ measurement

of transient stresses during BMG casting is not yet possible, leaving theoretical predictions

uncomparable to experimental results.

However from the rheology science perspective, the quantification of the residual free

volume trapped below glass transition as a function of the imposed cooling history T (x, t)

poses a very interesting problem. This phenomenon is called ‘physical aging’ and has been

extensively studied in polymers and silicate glasses (see, e.g., Kovacs et al. [47]). The essence

of some relevant formulations as reviewed by McKenna and Simon [59] has been given in

Section 2.4 and emphasizes Narayanaswamy’s implementation for silicate glass tempering.

These formulations made use of a structural relaxation modulus that quantifies the time-

dependent volumetric response (expansion) of the material at metastable equilibrium when

a small temperature jump is imposed on it. The models require a shift function which is

dependent on the structure of the material.

In this chapter, we attempt to investigate the physical aging and the structural model of

thermal tempering for Vit.1. First, the Matsuoka model (Section 2.7) for the shift function

is adopted for metallic glass structures. Then, structural volume (as opposed to enthalpy)

recovery experiments are conducted and described in Section 5.3. Volumetric recovery

experiments are very challenging in terms of the resolution required for meaningful results.

The instrument used here is a thermomechanical analyzer (TMA) in dilatometer mode,

which has a length resolution of 0.1 micrometers. The strategy is to produce dilatometric
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samples that have identical temperature histories, and therefore identical structures, so that

each can be used for isothermal volume recovery experiments at a different temperature

below Tg. Measuring the recovery of the same residual free volume at multiple annealing

temperatures provides extensive data for comparison with the Matsuoka model. Since these

samples must be fairly large (∼ 13 mm long) to meet the resolution requirement, care must

be exercised to impose a uniform temperature history within the samples as well. A specially

designed mold is used for these purposes. Furthermore, a thermocouple is introduced into

the casting and the uniform temperature history imposed on these samples is calculated

from the in situ temperature data incorporating finite element analysis.

Finally, in the last Section 5.4, the structural theory with the Matsuoka model is applied

to the tempering analysis of a Vit.1 plate. For implementation, user subroutines are coded

for finite element calculations with the ABAQUSTM software package.

5.2 Matsuoka Model

This model was introduced in Section 2.7. Matsuoka [58] successfully fits the polymer

structural recovery data of Kovacs [46] with this model and criticizes the Arrhenius based

function used by Narayanaswamy. The major reason the Matsuoka model is favored in the

present study is that it is composed of a convenient extension of the VFT equation (4.6),

and at least ideally, the constant D∗T0 in the exponential function is unchanged. Therefore,

adaptation of the model can be approached with the values regressed for the equilibrium

liquid (D∗ = 18.5 and T0 = 412.5 K). Then, given temperature history T (x, t), the structural

variable Tf can be calculated from the coupled solution of the expressions

Tf = T −
∫ t

0
Mr

V (ξ(t)− ξ(t′)
∂T

∂t′
dt′ (5.1)
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and

ξ(T, Tf ) =
∫ t

0

1
a(T (t′), Tf (t′))

dt′ where a(T, Tf ) = exp
[
D∗T0

(
1
T

Tf

Tf − T0
− 1

Tref − T0

)]
(5.2)

Recall that Tf is related to thermal strain by

εθ = αg (T (x, t)− Ti) + αs (Tf (x, t)− Ti) (5.3)

and the corresponding length formulation (that is relevant for TMA experiments) is l =

l(0) + l(0) εθ. Markovsky and Soules [56] formulated an efficient, and unconditionally sta-

ble, explicit algorithm to replace the iterative solution of equations (5.1) and (5.2). This

algorithm is implemented in MATLABTM and verified with the iterative solution.

The form assumed for the structural relaxation function is once more the KWW function

Mr
V = exp(−t/τ r

str)
βstr (5.4)

where the subscript τ r
str is the structural relaxation time for the equilibrium liquid at ref-

erence temperature Tr (set as 800 K here) and βstr is the stretching exponent. For the

preliminary analysis, βstr is taken equal to 1 (Debye relaxation). The variable of primary

importance is the reference relaxation time τ r
str, which can be expressed as

τ r
str =

η(Tr)
Gstr

(5.5)

where η(Tr) is the equilibrium viscosity at the reference temperature and Gstr is the struc-

tural stiffness. Since η(Tr) is obtained from the VFT fit, to determine τ r
str, all that is
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Figure 5.1: (a)Prediction of the formulation based on the Matsuoka model when the material
is cooled from 800 to 500 K at the rates of 1, 10, 100, and 1000 K/s in terms of (a) specific
volume normalized by its equilibrium value at 800 K, and (b) fictive temperature that is
plotted vs. temperature.

needed is the value of Gstr, which is typically lower in value than the shear modulus G

(e.g., Rekhson and Mazurin [73] and Masuhr et al. [57]). Here, Gstr is determined in refer-

ence to the data of Busch et al. [19] where the onset and end temperatures of calorimetric

glass transition were measured at several different rates upon heating BMG samples in a

DSC. For example, at 6.67 K/s, the onset and end temperatures of glass transition were

measured as 636 and 680 K, respectively. Now, recall that Tf settles to the temperature

at the end point of glass transition upon cooling. Matching this settling temperature with

the onset of the glass transition value provided by Busch et al. at the same rates, Gstr

is estimated as one tenth of the shear modulus Gstr = G/10. Thus, all the components

required by the Matsuoka model are set. The rate dependence of structure and trapped free

volume with this formulation are shown in Figure 5.1, both in terms of normalized specific

volume (part (a)), and fictive temperature (part (b)).
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5.3 Volumetric Physical Aging Experiments for Vitreloy 1

5.3.1 Introduction

The required function for stress formulation is the volumetric relaxation modulus, Mr
V .

This is the critical reason volumetric structural recovery experiments are pursued here,

even though enthalpy recovery is easier to measure. For example, studies on a very similar

alloy, known as Vit.4, by Busch and Johnson [18] and Hammond et al. [37] use enthalpy

recovery to quantify physical aging. In these studies [18, 37], Vit.4 was specifically chosen

because it does not undergo phase separation [18] upon annealing, which is an issue for Vit.1

(see, e.g., the viscosity measurements by Waniuk et al. [89]). Phase separation destabilizes

the amorphous state with respect to primary crystallization of nanocrystals [18]. In the

enthalpy recovery studies, typically, the sample is annealed at a temperature under Tg and

subsequently heated through glass transition at a constant rate. The material, then, draws

more heat to recover the annealed out enthalpy upon its transition to the supercooled liquid.

This results in a hysteresis in the cooling and heating curves of enthalpy. Consequently,

during heating of the annealed sample, specific heat Cp (the temperature derivative of en-

thalpy) exhibits an overshoot at the glass transition before settling to the equilibrium liquid

value. Similar hysteresis in volume and overshoot in the coefficient of thermal expansion

(its normalized temperature derivative), too, occurs in this process although it is harder to

measure.

The instrument used to investigate this behavior in Vit.1 is the thermomechanical an-

alyzer whose sample chamber is shown in Figure 5.2. A quartz probe sits on the sample

which is connected to an LVDT with 0.1 micrometer resolution. A flat edge probe is chosen

for dilatometric studies to avoid intrusion into the sample. The load on the probe is set
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Figure 5.2: A photograph of a sample positioned in the TMA sample chamber. The probe is
connected to a 0.1 micrometer sensitive LVDT. The furnace slides over the sample tube and
the chamber is flushed by Helium. The instrument thermocouple facilitates temperature
control whereas an additional (sample) thermocouple probe touches the sample for a direct
measurement.

as 20 mN, the minimum value that could be attained with this particular instrument. A

furnace slides on the sample tube shown in Figure 5.2 and the instrument thermocouple

facilitates temperature control. An additional thermocouple probe with 0.025 mm diameter

is used to monitor the exact sample temperature. The chamber is flushed with He gas to

prevent oxidation.

As previously mentioned, volume recovery experiments involve very small changes in

sample volume and require high instrument resolution. It is extremely difficult to directly

quantify Mr
V as defined in Section 2.4, and the 0.1 micrometer resolution of TMA is not

sufficient for such a measurement1. Kovacs’ procedure [46] of heating samples to the super-

cooled liquid region and instantly cooling to some temperature below Tg is also not feasible.

The fastest cooling rate available in the TMA is 1 K/s, making ‘instant’ cooling impossible.

Therefore, the following strategy is devised here to obtain volume recovery data that can
1Suppose the temperature jump is 5 K. The length of the sample is 13 mm and the structural CTE is

8.2 × 10−6 1/K. Then, the span of recovery to be measured is ∼ 0.5 micrometers and this allows merely 5
points to measure the function even when the noise at the same level is not considered.
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be used to evaluate Mr
V :

1. Design a casting procedure where Vit.1 is rapidly cooled with a measured temperature

history that is uniform within the prospective samples.

2. Ramp the temperature in the TMA with the rate of 50 K/min and to a sub–Tg

annealing temperature.

3. Measure the free volume relaxation during the isothermal hold at this temperature.

5.3.2 Specimen Preparation

The procedure of stainless steel (SS) tube casting has been described in Section 4.2.1. The

casting here for preparing the TMA samples differs in two respects: (i) the geometry of the

tube in the active (molding) section; (ii) the feeding of a thermocouple probe through the

vacuum into the casting chamber.

A cross section of the mold region is shown in Figure 5.3(a). It comprises three rectangu-

lar chambers machined from an AISI 316 SS block using a wire electric discharge machine.

The entire cross section is evacuated, and only the middle chamber is filled with Vit.1 melt

when the assembly is heated to ∼ 900◦C. During the quench, the evacuated chambers on

either side of the central melt inhibit heat transfer in the y direction. The cooling is thus

dominated by the heat drawn form the top and bottom surfaces. The intent of this design

is to render the heat transfer problem approximately 1-D, i.e., allow thermal gradients only

in the x direction. Without insulating the sides, this would require casting a large plate,

which is not possible with the current procedure (due to the fixed 50 mm diameter of the

vertical furnace tube) and not desirable for it would require a very large amount of BMG

alloy. The thickness, width and length (dimensions in x, y, z directions in this order) of the
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Figure 5.3: (a) Cross section of the designed SS mold that has three rectangular chambers.
The middle chamber is filled with Vit.1 melt whereas the chambers on both sides remain
empty. The thermocouple (TC) probe that is fed through the vacuum resides approximately
in the corner of the cast BMG section. The thickness, width and length (dimensions in
x, y, z directions, respectively) of this section are 12.7, 19, 127 mm, respectively. The
slab that has been cut out for TMA measurements is shown with bold lines. (b) The 2-D
geometry of the finite element heat transfer analysis of the quench. The convective heat
transfer occurs from the free surfaces, shown in the figure with arrows and the heat transfer
coefficient, h. The temperature history of the TC probe is obtained from FE analysis as
the average response of the elements that reside in the cross section of the TC (TC probe
elements). Similarly, the thermal history of the slab is averaged from the slab elements.

BMG beam cast in this way are 12.7, 19, 127 mm, respectively. The three-chamber mold

is closed on one end whereas the other end is welded to a 600 mm long, 19 mm diameter

tube of the same material. The open end of this assembly is connected to vacuum circuitry.

This connection is outside the furnace tube and remains under ∼ 200◦C during furnace

operation. Therefore, we will call it the ‘cold zone’.

To increase the cooling rate of the BMG section, the SS thickness on the top and

bottom surfaces is kept to a mere 0.6 mm. Also, to promote the intensity of convection,

the quenching water is salted with 15 volume pct. NaCl (brine quench), iced and stirred.

The thermocouple probes are fed from the cold zone. A three-way connector is used to

connect the tube to both the vacuum circuitry and a low-temperature thermocouple feed-

through. The 120 mm long, fast response probes (0.5 mm diameter, type HKMTSS-020G

with AISI 304 sheath from Omega Engineering, Stamford CT) are extended to the hot zone
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Figure 5.4: (a) Temperature vs. time data from the thermocouple. (b) Back-calculated
time variation of the heat transfer coefficient, h.

from inside the tube. The grounded probe which envelopes the thermocouple wires and

junction with a thin AISI 304 sheath could survive the hostile environment of the BMG

melt and yield temperature data throughout the process. This temperature data is shown

in Figure 5.4(a). At the end of the process, the probe is, naturally, cast in the BMG beam.

The exact location of the probe tip is found out by sectioning (see Figure 5.3(a)). The

temperature data are then used to solve the inverse problem: what heat transfer coefficient

as a function of time would yield this temperature history at the thermocouple location?

The analysis is implemented in ABAQUSTM and Figure 5.3(b) demonstrates the considered

domain. Only a quarter of the casting section needs to be considered due to symmetry. The

*AMPLITUDE option is used to vary the magnitude of h in time, by iteratively comparing

the calculated thermocouple temperature with the experimental data. The thermocouple

temperature from the FE analysis is taken as the mean temperature of the elements that

lie in the thermcouple section. The heat transfer coefficient as a function of time obtained



97

in this manner is shown in Figure 5.4(b).

A 2.4 mm thick, 13 mm wide slab is cut out of the mid-plane of the beam as shown in

Figure 5.3(a). Note that the thermal gradients in the x direction are smallest at the mid-

plane where the slab is extracted. The temperature history of the slab is taken by averaging

over the slab elements (see Figure 5.3(a)) upon the solution of the inverse problem.

Finally, TMA samples are cut off the slab in the x direction yielding 13 mm long samples

with a 2.4× 2.4 mm cross section.

5.3.3 Experimental Results and Discussion

Figure 5.5(a) shows the temperature history imposed on the sample for the isothermal hold

temperature of 567 K. The first stage is the temperature history from the casting obtained

by the procedure detailed in the previous section. Obviously, this stage determines the

amount of free volume trapped within the material. The second stage involves the 50 K/min

ramp in the TMA as the sample is taken to the annealing temperature. Finally, the third

stage is merely the isothermal hold. This temperature history is input to the Matsuoka

model and Figure 5.5(b) shows the resulting length variation normalized by its value at the

start of the third stage, l/l(0). Notice that the model accounts for the annealing of free

volume during the ramp that is clearly visible just before the beginning of the isothermal

stage. Also, when the heating ramp is continued without interruption until the supercooled

liquid region, the curve which has deviated from the cooling curve merges back onto the

equilibrium liquid line, realizing the aforementioned hysteresis. Figure 5.6 demonstrates the

isothermal recovery data at 531, 548, 567 and 589 K in comparison to the model calculations

in terms of normalized length vs. time. The agreement is clearly limited. It is qualitatively

observed in the experimental data that as the annealing temperature increases, structural
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Figure 5.5: (a) The entire temperature history (temperature T vs. time t) of the sample
that is composed of three stages: (1) the cooling during the casting, (2) 50 K/min ramp
in the TMA, and (3) isothermal hold in the TMA (for this example) at 567 K. (b) Output
of the Matsuoka model for this temperature history in terms of normalized sample length
(l/l(0)) plotted vs. temperature. The three stages of temperature history are indicated on
the figure with arrows.



99

0 0.5 1 1.5 2 2.5 3
x 104

0.9995

0.9996

0.9997

0.9998

0.9999

1

t(s)

Isothermal hold at 
531

589 K
567

548

l / l(0)

Figure 5.6: Length of the physically aged sample (l) normalized by its length at the begin-
ning of the isothermal hold l(0) plotted vs. time (t) at hold temperatures of 531, 548, 567,
589 K. Both the experimental data (noisy curves) and the calculations with the Matsuoka
model (smooth curves) are presented with the same color for each temperature.

recovery becomes more rapid. However, since the magnitude of deviation from equilibrium,

∆v, is higher as the temperature gets lower, eventually the higher temperature curves

cross the lower temperature curves. For example, the model predicts that the 589 K curve

crosses both the 567 and 548 K curves within the time scale of the experiment. However,

the experimental data do not reveal any such intersections. Also, the experimental ‘overall’

relaxation time is roughly two orders of magnitude smaller than the model predictions.

When the values of βstr and Gstr in the model are varied within physical bounds, the

agreement level does not improve significantly. Part of the problem may be phase separation

for this alloy. Future studies will target better evaluation of the results with regards to the

adequacy of the Matsuoka model and the phase separation phenomenon.
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5.4 Stress Analysis

5.4.1 Introduction

Despite the limited experimental agreement, we take the Matsuoka model as a reasonable

attempt to assess the magnitude of the structural effect for the thermal tempering of BMGs.

The question as to whether there is a pronounced distribution of densities (trapped free vol-

umes) across the specimen cross section (similar to the case in silicate glasses) is interesting

and may be technologically important. Here, we consider again a Vit.1 plate that is cooled

by a Biot number of B̃i = h l
k(Tg) = 2 (Section 3.3). The constitutive law is formed by the

introduced fictive temperature and shift function (equations (5.1) and (5.2)), in addition to

the viscoelastic shear relaxation law

sij(x, t) =
∫ t

−∞
Gr(ξ(x, t)− ξ(x, t′))

∂eij(x, t′)
∂t′

dt′ (5.6)

and elastic dilatational response

σkk = K0(εkk(x, t)− 3εθ(x, t)) (5.7)

where thermal strain εθ is given by equation (5.3). Recall from Section 2.5 that the addition

of the structural model over the thermoviscoelastic one is twofold: (i) the stress generat-

ing thermal strain becomes dependent on structure (equation (5.3)) and, (ii) via the Tf

dependent shift function relaxation time(s) depend on the structure.
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5.4.2 Finite Element Implementation with ABAQUSTM Software

The fictive temperature is defined as a field variable with the user subroutine USDFLD.

The calculation of Tf at each integration point is performed by the Markovsky and Soules

algorithm [56]. For finite element analysis, the computational time savings provided by this

algorithm as opposed to the standard coupled solution become appreciable. The effect of

fictive temperature on the coefficient of thermal expansion (the first effect above) is easily

implemented in the input file by using the field variable dependence of CTE. For the effect

of structure on relaxation times (the second effect) the user subroutine UTRS (that is for

defining shift functions in ABAQUSTM) is coded in accordance with equation (5.2). The

output of the finite analysis has been verified with the previously used MATLABTM scripts.

The aforementioned user subroutines are included in Appendix C.

5.4.3 Results

Due to the the fact that the differential between the initial temperature Ti and the glass

transition temperature Tg is large (∼ 650 K) in BMG processing, the results are surprisingly

simple. Figure 5.7 plots the cooling rates (part (a)) and temperatures (part (b)) as a

function of time for surface and mid-plane points. The cooling rates in Figure 5.7 reveal

that when the temperature of the surface and mid-plane points drop to the vicinity of the

glass transition region (at about 2.2 and 6.3 s, respectively), their cooling rates are very close

in value (∼ 70 K/s). This implies that the structure across the plate is almost uniform,

as evidenced by small differences (< 1 K) of the settled fictive temperatures. If Ti was

sufficiently close to Tg, then the cooling rate at the surface would be much higher than that

of the mid-plane as the surface temperature approached the glass transition region. This

also explains the pronounced density difference observed between the surface and mid-plane
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Figure 5.7: (a) Cooling rate and (b) temperature plotted vs. time at the mid-plane and
surface points of a Vit.1 plate cooled with B̃i = 2. The arrows in the first figure indicate
the approximate moments when temperature drops to the glass transition range.

points in silicate glass tempering, a feature that is likely missing in BMGs.

Notice in Figure 5.7(a) that the intersection of the cooling rates of the surface and

mid-plane points defines the point in time when thermal gradients begin to decay. At

this instant, because the surface temperature is still above the glass transition range, the

transient stresses are expected to be compressive on the surface (when considered with the

fact that the structural effect is negligible). Figure 5.8 shows transient stresses at selected

times that essentially agree with this conclusion. The opposite sense of transient stresses is

another important difference of BMG tempering in comparison to silicate glass tempering.

The implemented structural model yields values of 98 MPa mid-plane tension and

−254 MPa surface compression, representing only a small departure from the values given

by the viscoelastic model: 98 MPa mid-plane tension and -241 MPa surface compression.
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Figure 5.8: Transient stresses calculated by the structural model at selected times in the
solidification stage.
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Chapter 6

Conclusions and Future Work

A first-time analytical-experimental investigation is presented in this thesis on the rapid

cooling induced residual stresses in a novel bulk metallic glass alloy, Zr41.2Ti13.8Cu12.5Ni10Be22.5

(Vit.1). These stresses are called ‘thermal tempering’ stresses pertaining to the similar phe-

nomenon in silicate glasses.

This thermomechanical problem has a two-stage structure. The first stage is the heat

transfer problem that involves the determination of sample temperature as a function of

time and position during the cooling process. Since the constitutive behavior is defined by

the heat diffusion equation, the task here is to quantify (i) initial and boundary conditions,

and (ii) precise thermal properties of the material. Then, these two are used to solve for

temperature by numerical methods (e.g., the finite element method). For the former, a

casting method is devised to prevent separation of BMG from the mold that allows a well

defined convection problem. Then, the heat transfer coefficient in this process is measured.

For the latter, experiments are conducted for thermal conductivity (the thermal parameter

of primary importance in the thermal tempering problem) with the Van Der Pauw method

for electrical resistivity and the flash method for thermal diffusivity. Since the material

devitrifies in the supercooled liquid region, the properties in this range are extrapolated

from the amorphous region data on the basis of physical formulations.



105

The second stage of the thermal tempering analysis is the mechanical problem which de-

termines the stress evolution in the sample given the temperature solution. The mechanical

problem requires modeling of the material behavior in addition to the experimental deter-

mination of stresses. The constitutive behavior is modeled at three levels of viscoelastic

phenomenology using the instant freezing, viscoelastic, and structural models. The first is

a simple analytical estimate for residual stresses and requires only the glass transition tem-

perature as rheological input. The second is the temperature dependent thermoviscoelastic

treatment that employs time-temperature superposition. The third accounts for the tem-

perature history dependence of the glass structure. The constitutive laws for the viscoelas-

tic and structural models are incorporated into the finite element method (ABAQUSTM

software package), allowing the application of these models to complex geometries. For

implementation of the structural model, and to investigate the advanced rheological fea-

tures of the material, structural volume recovery experiments are conducted with a Perkin

Elmer TMA 7. The in-situ measurement of transient stresses during BMG casting is, yet,

not possible. In fact, high-resolution, accurate measurement of residual stresses in these

opaque and amorphous materials is challenging. The crack compliance method is deter-

mined as the ideal method to accomplish this goal, after evaluating few other methods such

as the hole-drilling strain gauge method and the layer removal method. Also, the use of the

non-destructive neutron diffraction method on a crystalline phase that is cast with a BMG

sample is assessed in a model composite.

The following conclusions are drawn from these investigations:

• BMGs exhibit a pronounced increase in their thermal conductivity at high tempera-

tures. For Vit.1, the room temperature thermal conductivity is 4.6 W/(m ·K) whereas

it increases in an approximately linear fashion to 10 W/(m ·K) at 352◦C (its glass
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transition temperature), and to 20W/(m ·K) at 900◦C (the typical processing tem-

perature used in casting). Accounting for the temperature dependence of thermal

conductivity is crucial for the analysis; using the room temperature thermal conduc-

tivity for the entire temperature range results in a significant overestimate of stress

magnitudes. It should be noted that the main source of this pronounced increase in

thermal conductivity with temperature is the rise in the heat carried by electrons (the

electronic component of thermal conductivity). The magnitude and temperature de-

pendence of thermal conductivity constitute an important distinction between silicate

glasses (typical thermal conductivity ∼ 1.4 W/(m ·K)) and metallic glasses.

• Despite a higher thermal conductivity, significant stresses (up to 400 MPa surface

compression) can still be introduced in BMGs with severe cooling, which involves

heat transfer coefficients on the order of 104 W/(m2 ·K), using the stainless steel

tube casting method. Agreement within the accuracy of the temperature solution is

obtained between the stresses calculated with the viscoelastic model and the measured

values.

• Similar to silicate glasses, residual stresses in BMG tempering are quite insensitive to

the details of material behavior around the glass transition region, indicated by the

fact that the instant freezing, viscoelastic, and structural models all yield close results

for residual stresses. The primary reason for this result is that the tempering process is

dominated by the thermoelastic stresses that are generated after the material freezes.

• Due to the large differential between the initial temperature and the glass transition

temperature during BMG casting (∼ 550 K), thermal gradients, depicted by surface

and center temperature difference, typically reach their maximum and start to decay



107

before temperatures across the sample thickness cool to the glass transition. This has

two implications: (i) There is no transient tension on the surface and, therefore, even

solidification stresses on the surface are compressive. (ii) The structure of the material

or the trapped free volume below glass transition is fairly uniform through the cross

section. In the case of silicate glasses, for which the initial temperature is close to the

glass transition temperature, thermal gradients still grow at the solidification stage.

For this reason, transient tension forms on the surface of a tempered silicate glass plate

during solidification and after-process structure of the material exhibits pronounced

variation across the thickness such that density increases from the surface to the

mid-plane.

• By comparing experimental residual stress values with model predictions, it is shown

that during copper mold casting with a low feed pressure, BMGs can separate from

the mold cavity when most of the material is above the glass transition temperature.

• Temper stresses arise from thermal gradients around the glass transition. Therefore,

residual stresses are good indicators of the cooling intensity in the casting process.

Hence, measurement of residual stresses can be used to obtain an ‘average’ heat trans-

fer coefficient for the process, using the stress vs. heat transfer coefficient plots in this

thesis.

Following the investigations presented so far, the following items may be interesting

future studies:

• An experimental study of the impact of the tempering stresses on the mechanical

performance of the material (e.g., using bending or and uniaxial tension/compression

tests). The interaction of the residual stresses with shear bands would be an interesting
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study that can be investigated both for monolithic and composite BMG samples.

• In the investigation of the volumetric structural recovery, experiments yield limited

agreement with the adopted Matsuoka model. Thus, a future investigation is necessary

to evaluate the model and the impact of the phase separation phenomenon, which is

commonly observed during the annealing of Vit.1.

• The viscoelastic pressure relaxation of the alloy is ignored in this study. The difficulty

of conducting bulk relaxation experiments is apparent. Therefore, creep experiments,

where the material is put under a constant pressure and the time dependent dilatation

is measured, may be more convenient.

• The incorporation of the shear thinning effect into the present framework.

• The effect of feed pressure in copper mold casting is an interesting topic in terms of

obtaining more efficient heat transfer and therefore higher residual stresses.

• As a side effect of fast quenching from the melt to room temperature, which involves

a volumetric contraction of about 2%, pores might form in the center section of rel-

atively thick BMG samples. Such defect formation needs to be analyzed for obvious

technological reasons.
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Appendix A

Material properties of
Zr41.2Ti13.8Cu12.5Ni10Be22.5

A.1 Thermal Properties

Thermal tempering is a thermomechanical problem where residual stresses arise in a traction-

free sample due to temperature gradients during cooling. The heat produced through in-

elastic dissipation mechanisms is negligible in comparison to the heat drawn by forced

cooling, therefore thermal problem is uncoupled from the mechanical problem. In this way,

heat transfer problem is solved first to obtain the temperature field, T (x, t), and then this

temperature field is imposed on the succeeding mechanical analysis.

Since the cause of stress generation is thermal gradients formed within the sample, the

accurate prediction of stresses relies firstly on the accurate solution of the heat transfer

problem and then on the correctness of the assumed mechanical behavior. Therefore, with-

out rendering the error in the temperature solution small enough, it is not possible make

a successful evaluation of the mechanical models (such as thermoviscoelastic, structural,

etc.). Solution of the thermal problem requires identification of boundary conditions (e.g.,

the intensity of convective heat transfer), and also of the thermal properties of the material.

These properties are thermal conductivity k(T ), specific heat Cp(T ) and density ρ(T ) which
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are the material parameters in the heat diffusion equation ∇· (k(T )∇T ) = ρ(T ) Cp(T ) ∂T
∂t .

The efforts to accurately determine boundary conditions are described elsewhere and this

section details the data on thermal properties.

The task is difficult since the temperature range for the casting of Zr41.2Ti13.8Cu12.5Ni10Be22.5

alloy is broad (typically around (300, 1200) K), k and Cp exhibit pronounced temperature

dependence in this range, and certain temperatures are unsuitable for property measure-

ments due to crystallization or rigid sample requirement of the instruments. Moreover,

considering only temperature dependence is still a simplification due to the kinetic phe-

nomenon of glass transition. This was the motivation of structural theory that, for the

stress problem, focused on viscosity and specific volume. For thermal parameters, how-

ever, such second-order dependence is disregarded to avoid superfluous complexity1. As

a further justification, the residual stresses are completely insensitive to the heat transfer

solution after kinetic freezing. Hence, it is rather critical to acquire the correct temperature

evolution from casting temperature to the end point of glass transition (kinetic freezing).

The dominant portion of this interval is, obviously, liquid and supercooled-liquid regions

where mere temperature dependence suffices to determine the structure.

The following sections present property versus temperature data for each thermal prop-

erty detailing the sources. In any of these tables, the value of the property at an intermediate

temperature can be calculated by linear interpolation.
1In a case that rate dependence of thermal parameters is considered, the parameters would have to evolve

with the temperature solution. Since, in general, every material point has different thermal history, this
would mean iterative calculation at every material point. The rate-dependent material data that would
make such consideration beneficial does not exist.
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T Cp

(K) (J/(g−atom ·K)) (J/(kg ·K))
300 24 400
450 25.5 425
500 26.5 441
550 28 466
602 29 483

Table A.1: Specific heat of Zr41.2Ti13.8Cu12.5Ni10Be22.5 in the glassy region.

A.1.1 Specific Heat (Cp)

The references for Cp are the differential scanning calorimetry (DSC) studies by Busch et

al. [19] and Fecht [32]. Busch et al. provide data for a set of cooling rates in the (540, 720) K

range. Samples are treated with a preliminary heat treatment to equalize their structure and

then taken to the temperature of measurement from room temperature. Hence, the data for

all samples are identical in the glassy region within experimental error. Fecht provides data

for only a single cooling rate, but in a broader temperature range of (320, 990) K, excluding

720 to 970 K where rapid crystallization precludes experiments. The data sets are in very

good agreement in their overlapping portion of the glassy region. The data is reproduced

in Table A.1 in units of J/(g−atom ·K) (as it is provided in [19, 32]) and J/(kg ·K). The

error in these measurements are inferred to be around 0.7 J/(g−atom ·K) (12 J/(kg ·K)).

In the supercooled liquid and liquid regions, Busch has given the following temperature

dependence that fits the data successfully.

C liq
p = 3R + (7.5× 10−3 T +

8.17× 10−6

T 2
)(J/g−atom ·K) (A.1)

From this formula, the following Table A.2 is produced for the supercooled liquid and liquid

regions.
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T Cp

(K) (J/(g−atom ·K)) (J/(kg ·K))
680 47.7 800
723 45.6 760
773 44.4 740
873 42.2 703
973 40.9 681
1073 40.1 668
1173 39.7 661

Table A.2: Specific heat of Zr41.2Ti13.8Cu12.5Ni10Be22.5 in the supercooled liquid and liquid
regions.

The end point of glassy region in Table A.1 (602 K) was picked as the onset of glass

transition for the slowest cooling rate (0.0167 K/s) in the work of Busch et al. Similarly, the

starting point of supercooled liquid region in Table A.2 (680 K) is taken as the end of glass

transition for the fastest cooling rate(6.67 K/s). This means, the glass transition region,

where Cp depends on temperature history, is excluded in the above data for the range of

cooling rates considered by Busch et al. The transition between the two data sets is taken

to be simply linear. Moreover, the glassy region data is, in fact, dependent on the frozen-in

structure. In the actual cooling process, depending on the rapidness of cooling, the glassy

region Cp would exhibit an offset over the data of annealed samples presented in Table A.1

(see e.g. [20]). Hence, with the justifications stated in the previous section, no attempt is

made to strictly follow the actual curve(s) of Cp at and below the glass transition region,

but to make the most reasonable approximation out of the available data.

A.1.2 Density (ρ)

It is interesting that for the room temperature density of this metallic glass, values used or

reported in the literature range from 5.9 to 6.1 g/cm3. The degree of discrepancy here cannot

be explained by merely the cooling rate dependence of density (or specific volume as it has
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been elaborated in Chapter 2). It can perhaps be attributed to less careful measurements

on this slowly varying property to obtain a nominal value and/or compositional variations.

To the knowledge of the author, the most accurate data for the density of this alloy as a

function of temperature is provided by Ohsaka et al. [66]. In this study, the specific volume

of a nominally 2.2 mm diameter sphere has been measured in an electrostatic levitator as it

cools (by natural radiative heat loss) from above 1300 K to 400 K. The volume measurements

were made on the images of the sphere recorded on a CCD camera and the authors report

an error of only 0.2% in this procedure. The best linear fits to the data in the liquid and

glassy regions are given by

vl = 0.1583 + 8.877× 10−6 T (cm3/g) (700− 1300) K

vg = 0.1603 + 5.528× 10−6 T (cm3/g) (400− 550) K

and it is observed that the room temperature measurement (with a micrometer) lies along

the vg line. Density data resulting from these fits is given in Table A.3.

T (K) ρ(g/cm3)
300 6.174
550 6.122
700 6.079
1300 5.888

Table A.3: Density of Zr41.2Ti13.8Cu12.5Ni10Be22.5 as a function of temperature.

Also, to provide more confidence, experiments were conducted by the author with the

buoyancy principle based on the instructions in ASTM standard C693-93 [6] on a sample

that was extracted out of the cast beam in Section 5.3.2. These measurements yielded a

room temperature density of 6.15±0.03 g/cm3 in close agreement with Ohsaka et al.’s data.
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A.1.3 Thermal Conductivity (k)

Thermal conductivity is the most important of the thermal parameters in the thermal

tempering problem. This can be seen most clearly through the Biot number, Bi = h l
k ,

where l is the characteristic length and h is the convective heat transfer coefficient. Biot

number largely determines2 the extent of thermal gradients within the sample in a convective

cooling process [41].

Temperature-dependent thermal conductivity measurements have been conducted by

Snyder [80] in 1997 and, in a recent work, by Snyder and the author at Jet Propulsion

Laboratory, Pasadena, CA. The measurements are done on two different setups.

The first setup is a high-temperature Hall-effect station that is used to measure the

resistivity of the material with the Van Der Pauw method (see, e.g., the original article [88]

and the related ASTM Standard F76-86 [8]) in an atmosphere-controlled furnace. The elec-

trical conductivity, denoted by σ, is the reciprocal of resistivity. To understand the relation

of these measurements to thermal conductivity, let us recall the following solid state physics

arguments. For solids, thermal conductivity has two components. The first is the electronic

component (ke) which represents heat carried by the electrons. The second is the lattice

part (kl) which represents the heat carried by phonons. For metals, ke is usually much big-

ger than kl and it is related to electrical conductivity through Wiedemann-Franz Law (see,

e.g., Kittel [45]). This law states that for metals at not too low temperatures the ratio of the

thermal conductivity to the electrical conductivity is directly proportional to the tempera-
2The solution for the convective cooling of a simple geometry (e.g., slab or cylinder) with constant thermal

parameters can be written as a series of spatial functions multiplied by time decay terms [16] and the spatial
functions are independent of ρ and Cp. After the rapid decay of all the terms except the first one, the spatial
solution, and therefore, thermal gradients, become independent of ρ and Cp. These parameters, via thermal
diffusivity, merely affect the decay speed of the same temperature evolution. Certainly, when all the thermal
parameters and boundary conditions are temperature-dependent this conclusion is not as sharp, but still of
qualitative value.
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ture. The constant of proportionality is called the Lorenz number L, given, thus, by L ≡ ke
σ T

and under the assumptions of free electron theory, its value is 2.45×10−8 W · ohm/K2. Ex-

perimental values of L for several metal elements are listed in Kittel [45], ranging from 2.23

to 3.04× 10−8 W · ohm/K2 at 273 K.

The samples used in resistivity measurements were nominally 1.2 mm thick, 14 mm

diameter discs, which were machined parallel and flat within a tolerance of 0.01 mm. The

setup provided high precision and room temperature resistivity was determined as 1.92 ±

0.3 × 10−6 Ohm ·m from measurements on several different samples and varying position

of the contacts. In accordance with this, 1997 data and recent measurements are also in

good agreement. It is observed that resistivity decreases (electrical conductivity increases)

with temperature with a very modest slope. The linear fit to electrical conductivity in the

(293, 573) K range yields

σ(T ) = 6.99× 101 T + 4.986× 105 (m ·Ohm)−1 (A.2)

Therefore, ke is approximately linear with temperature through Wiedemann-Franz Law. As-

suming the theoretical value of Lorenz number, ke values are calculated as 3.8 W/(m ·K) at

room temperature and 7.5 W/(m ·K) at 573 K. As a side point, measurements were pursued

also after crystallization that occurred around 700 K up to 925 K. Even after crystallization,

which brought about a small drop, resistivity remained on a similar level (minimum value

in this range is 1.55 × 10−6 Ohm ·m), implying a quite robust linear dependence of ke on

temperature.

The second setup is for thermal diffusivity (κ = k
ρCp

) measurement3 via the Flash Method

(see, e.g., ASTM Standard E1461-92 [7]) and identical disc samples were utilized. The
3The setup is capable of measuring Cp as well, but less accurately than a DSC.
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sample chamber is contained in an atmosphere-controlled furnace allowing high temperature

measurements. Figure A.1(a) shows thermal diffusivity measurements. Sample 1 is tested
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Figure A.1: (a)Thermal diffusivity, κ, data from experiments with the flash method, (b)
Thermal conductivity, k, that is calculated as k = κ ρ Cp, the solid line is the fit detailed
in the text. For both plots filled markers are for amorphous data points whereas empty
markers of the same kind imply that the sample has devitrified.

in 1997, whereas samples 2 and 3 were recently tested. Sample 2 has been heated to

above its melting temperature and lost its shape above 900 K, and the bad data points

here are omitted. Sample 3 has been heated up to 900 K, but then cooled to yield data

upon cooling as well. As seen on this figure, after smooth variation up to 608 K in the

glassy region (this part of data is shown with solid symbols), κ exhibits a relatively big

jump in its magnitude and slope, starting from the data point at 632 K. Although this

temperature is slightly above the typical glass transition temperature, the jump is attributed

to devitrification since the chamber furnace takes about 1200–1800 seconds to move from

one measurement temperature to the other4. Therefore, data collected for samples 2 and
4The TTT diagram of the alloy (Masuhr et al. [57]) shows about 104s at this temperature up to devitrifi-

cation. However, two things should be considered here, (i) this TTT diagram has been produced by cooling
from the melt, upon heating devitrification time drops significantly, (ii) the sample has been annealed in
between the previous data points as well. Nevertheless, the samples, without doubt crystallize at a slightly
higher temperature, say at 650 K, and the argument here is just against considering 632 K data point as
amorphous.
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3 after this point are for the devitrified material and they are shown with hollow symbols

in the figure. In calculating the thermal conductivity from thermal diffusivity via k(T ) =

κ(T ) · ρ(T ) · Cp(T ), density and specific heat, values tabulated in the previous sections

are used for the amorphous data. For the devitrified data points, ρ(T ) and Cp(T ) data for

crystal phase are used that are taken from the same references, Ohsaka et al. [66] for density

and Busch et al. [19] for specific heat. Figure A.1(b) shows thermal conductivity calculated

in this way. Note, due to lower specific heat of the crystal, rise of thermal conductivity upon

devitrification is much more gradual compared to thermal diffusivity. In the glassy region

thermal conductivity of all samples agree well (particularly those of samples 2 and 3 which

are from the same batch, and therefore, have similar ‘memory’) and the approximately linear

temperature dependence is apparent. Below glass transition temperature, the cooling curve

of sample 3 yields the thermal conductivity of the crystal which is significantly higher than

that of the amorphous phase. This may possibly be attributed to higher lattice contribution

kl for the crystal.

Since, it has not been possible to make direct measurements for the thermal conductivity

of the supercooled liquid and the liquid, due to devitrification and loss of sample shape,

respectively, values for these regions need to be extrapolated from the amorphous region

data. For this, thermal conducitivity is written as k(T ) = Lσ(T ) T +kl where σ(T ) is given

by equation (A.2) and slow variation of kl with temperature is assumed. Least-squares

fitting of the thermal conductivity data of the flash experiment samples to this equation

yields L and kl as 2.94 × 10−8 W · ohm/K2 and 0 W/(m ·K), respectively. Fitting for the

Lorenz number and lattice conductivity, this analysis utilized data from both experimental

techniques. It was already apparent that ke is the dominant over kl comparing free electron

values of ke and measured k (e.g., 3.8 vs. 4.6 W/(m ·K) at room temperature), however
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a zero kl is not expected. Better resolution on the value of kl may be obtained by direct

measurement and/or evaluating sub-room-temperature measurements. Nevertheless, the

error considered here is in how (total) thermal conductivity, k, is partitioned between ke

and kl and its effect on the fit of k is limited. This fit is shown in Figure A.1(b) and values

at representative temperatures are presented in Table A.4.

T (K) k (W/(m ·K))
273 4.16
473 7.39
673 10.80
873 14.36
1073 18.10
1273 21.99

Table A.4: Thermal conductivity of Zr41.2Ti13.8Cu12.5Ni10Be22.5 as a function of temper-
ature.

A.2 Mechanical Properties

Mechanical properties of Vit.1 are summarized in Table A.5. The references on elastic mod-

uli are in Conner et al. [28]. Coefficient of thermal expansion (CTE) is not only a first-order

parameter for stress generation but crucial for structural relaxation studies (Chapter 5). Its

values above and below glass transition, liquid and glassy CTEs, respectively, are taken from

the careful experiments by He et al. [39] with a TMA. The glassy CTE is rather straight-

forward to measure accurately with a TMA and the value by He et al. is verified with

the instrument used in Chapter 5. The fit of Ohsaka et al. presented in Section A.1.2 is

somewhat different in the glassy region(9.8 vs. 11.3 1/K), but this data is more noisy and

TMA data is favored. ESL data needs to be checked rather in the liquid region since it

allows the complete temperature range, which is not possible with the TMA, once more.

due to devitrification and viscous flow. This value (17.7 1/K) is in good agreement with the
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Young’s modulus, E (GPa) 96 [28]
Poisson’s ratio, ν 0.36 [28]

Room temperature yield strength, σy (MPa) 1900 [28]
Glassy CTE (1/K) 9.8 [39]
Liquid CTE (1/K) 18 [39, 66]

Table A.5: Mechanical properties for Zr41.2Ti13.8Cu12.5Ni10Be22.5.

peak CTE value reported by He et al. (18.1 1/K), before devitrification occured. Therefore,

we accept a value of 18 1/K for liquid CTE, here.
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Appendix B

Residual Stresses in a Bulk
Metallic Glass-Stainless Steel
Composite

B.1 Introduction

Residual stresses in BMGs are difficult to measure directly with non-destructive methods.

The amorphous nature of BMGs precludes the commonly used diffraction-based technique

for residual stress measurement. However, it is possible to introduce a limited amount of

crystalline phase into the BMG alloy and measure the residual elastic strain in it after

processing. Then, the link between the strains measured in the crystalline phase and the

stresses in the BMG can be established through mechanical modeling. This approach has

been successfully employed in studying the in situ deformation behavior of BMG matrix

composites with metallic inclusions (e.g., Dragoi et al. [31], Clausen et al. [26], Balch et

al. [13, 14]). A similar approach is followed in the present study. A model cylindrical

composite sample was produced under controlled conditions to evaluate the residual stresses

in a BMG alloy. Due to its good interface strength and limited reactivity with most BMGs,

stainless steel (SS) was used as the crystalline second phase. The residual strains in the steel

were measured by neutron diffraction and compared with the results of a finite element (FE)



121

analysis. It is shown that significant residual stresses are induced in the SS/BMG composite

and that neutron diffraction and FE can be effectively combined to evaluate and predict

them.

The study also addresses the question on the constitutive behavior of SS that is used

as a mold during the BMG casting process. This behavior is crucial in determining the

stress state of the resulting BMG-SS composite. This question, however, was avoided in

Chapter 4 by cutting out the SS tube and measuring the stresses in the monolithic BMG

rod via crack compliance method. It has been demonstrated that any plausible mechanical

behavior of SS, from zero to perfectly elastic stiffness, does not appreciably alter the final

residual stresses in the BMG rod. Here, conversely, the sample is retained as a composite

and the strain data is directly obtained from the SS sections.

This section is abridged from the paper by Aydıner et al. [10] and the user is referred

to this reference for full details.

B.2 Experimental

The sample geometry is shown in Figure B.1. It consists of an AISI 314 stainless steel pin at

the center (diameter: 3.2 mm), a tube of the same steel at the circumference (outer diameter:

19.0 mm, inner diameter: 15.6 mm) and a BMG alloy (Vitreloy 1) in between. The first

step in the production of this specimen was the welding of an SS pin to the closed end of a

900 mm long SS tube. Next, the top end of the tube was connected to a vacuum line after

pre-cast BMG ingots were put inside. The assembly was evacuated and placed in a vertical

furnace where the BMG alloy melted at around 900◦C and filled the volume between the pin

and the tube. Finally, the composite was quenched in room temperature water. A 50 mm

long section of the SS/BMG composite was then cut to obtain the specimen in Figure B.1.
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Figure 1.  Model specimen made of a type-314 stainless steel tube (19.0 mm outer diam., 15.6 

mm inner diam.) and a middle pin (3.2 mm diam.) with a Vitreloy 1 (Zr41.2Ti13.8Cu12.5Ni10Be22.5) 

BMG cast in between.  The specimen height is about 50 mm. 

Figure B.1: Model specimen made of a type-314 stainless steel tube (19.0 mm outer diam.,
15.6 mm inner diam.) and a middle pin (3.2 mm diam.) with a Vit.1 BMG cast in between.
The specimen height is about 50 mm.

Other details of specimen preparation using this method were presented elsewhere. It is

important to note that both SS/BMG interfaces were intact after processing. An identical

tube (with an attached pin) was also heat treated under the same conditions, but without

a BMG core, to be used as a stress-free reference in neutron diffraction measurements.

The details of heat transfer coefficient determination were presented in Section 4.2.2. In

the present study, additional experiments where the quench water was stirred with varied

speeds showed that heat transfer is very weakly dependent on stream velocity (plausibly

due to boiling convection [41]) and that the heat transfer coefficient varies between 8000

and 10000W/(m2 ·K) with an average value of h = 9000 W/(m2 ·K). These numbers

were used in the FE calculations. Neutron diffraction provided a non-destructive measure

of the residual strains in the steel components. The use of this technique at a reactor

source and specifically at the Missouri University Research Reactor Centers 2XD powder
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Figure 2.  Schematic of the 2XD neutron diffractometer at the Missouri University Research 

Reactor Center.  The sampling (or gauge) volume is defined by slits in the incident and diffracted 

beams to be about 1x1x8 mm3.   

 
 
 

Figure B.2: Schematic of the 2XD neutron diffractometer at the Missouri University Re-
search Reactor Center. The sampling (or gauge) volume is defined by slits in the incident
and diffracted beams to be about 1× 1× 8 mm3.

diffractometer. Measurements were performed using a monochromatic neutron beam of

wavelength, λ = 1.478 Å and a position sensitive detector (PSD). The 311 stainless steel

peak at 2θ = 86.6◦ was employed. The gage volume was a rectangular box of 1 × 1 ×

8 mm3 defined by incident and diffracted beam slits (see Figure B.2). An oscillating radial

collimator was used on the diffracted beam to reduce sources of background neutrons.

The residual strain was obtained from the difference in the 311 lattice spacings of the

composite and the stress-free reference sample. The uncertainty in experimental strain

data (obtained from 4 repeated measurements on the reference sample) is estimated at

330 µε (where µε = 10−6 strain), mostly due to the translation error.

B.3 Modeling

The thermoviscoelastic model detailed in Section 4.3.2 is used for BMG along with the

material data in Appendix A. The elastic constants and thermal parameters of AISI 314

are taken from Metals Handbook [4] whereas the plastic data is shown in Table B.1. It is well
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Table 2.  Temperature dependent plastic behavior of AISI 314 stainless steel for three cases 

considered.  σY:  Yield strength,  σT,Tensile:  true stress at the ultimate tensile strength,  and εT,p:  the 

corresponding plastic component of true strain. 

 Temperature (K) σY (MPa) σT,Tensile (MPa),  εT,p  

CASE 1   298 205 721,  0.332 

CASE 2   298 310 868,  0.332 

294 358 1105,  0.498 

700 276 804,  0.346 

811 248 758,  0.355 

866 224 665,  0.297 

1033 138 450,  0.530 

1089 103 259,  0.407 

CASE 3   

1144 90 274,  0.575 

 

 Table B.1: Temperature-dependent plastic behavior of AISI 314 stainless steel for three
cases considered. σY : Yield strength, σT,Tensile: true stress at the ultimate tensile strength,
and εT,p: the corresponding plastic component of true strain. The reference for Case 1 and
Case 2 is Metals Handbook [4] whereas the data of Case 3 is from the report by Simmons
and Cross [79].

known that the plastic behavior of stainless steels is strongly dependent on heat treatment,

sample dimensions and geometry. As a result, a wide range of plasticity data exist for the

AISI 314 steel. Therefore, the constitutive behavior of the SS was regarded a parameter

in the present analysis and three data sets were considered. As will be shown, such a

parametric study also helps with the understanding of the model predictions sensitivity

to the constitutive behavior of the SS, which could not be determined in situ during this

investigation. The first two cases listed in Table B.1 are room temperature test results

whereas the third case includes high temperature data as well [4, 79]. The data are presented

in Table B.1 in terms of yield strength (σY ), true stress at the ultimate tensile strength

(σT,Tensile) and the corresponding plastic component of true strain (εT,p), the way they were

used in the FE calculations. The latter two quantities specify the hardening behavior. The

analysis assumed von Mises plasticity with isotropic hardening. The FE implementation

was in principle identical to the sequential thermal mechanical analysis of Chapter 4 and
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the case specific details and discussion are given in [10].

B.4 Results

Axial elastic strain results from neutron diffraction and five different FE model predictions

are presented in Figure B.3. In all but one FE model (namely, ‘Elastic SS, BMG (CTE)’),

the constitutive behavior of the BMG was described by the thermoviscoelastic model. In

the latter case, both SS and BMG were considered linear elastic and no thermal gradients

were allowed. Therefore, the only residual stress source in this case is the CTE mismatch

between the two phases below 352◦C (the glass transition temperature of BMG). This case

was considered to highlight the effect of temperature gradients in the residual stress state

of the composite. It is obvious in Figure B.3 that if CTE mismatch were the only source of

residual strain in this composite, then the axial strains in the pin and the tube would be

identical and quite different than the experimental data. In all the other four FE models

the BMG behaved as a viscoelastic material, but the constitutive behavior of the SS varied

from a linear elastic material (‘Elastic SS’), to one with a room temperature yield strength

of (σY )SS = 205 MPa (Case 1), or (σY )SS = 310 MPa (Case 2), and finally for Case 3, with

a high yield strength at room temperature, (σY )SS = 358 MPa which decreases at higher

temperatures (see Table B.1 for additional details). Note that the first two cases assume

no variation of SS yield strength as a function of temperature.

Diffraction data exhibited a high tensile residual strain in the SS pin (+1420 µε) and

a low compressive strain in the tube (−140 µε), both in the axial direction. A straight

line was used to show the ND result for clarity although the measurement was taken from

one location, 1 mm wide in the radial and hoop directions. The measurement in the pin

is insensitive to the exact radial location of the sampling volume since the model calcula-
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Figure 4.  Axial elastic strains measured by neutron diffraction (ND) and calculated for different 

constitutive behaviors of stainless steel (SS) and BMG:  Case 1: (σY)SS = 205 MPa, BMG 

viscoelastic;  Case 2: (σY)SS = 310 MPa, BMG viscoelastic;  Case 3: (σY)SS = 358 MPa at room 

temperature and drops at higher temperatures (Table 2), BMG viscoelastic;  “Elastic SS”: SS 

linear elastic, BMG viscoelastic;  “Elastic SS, BMG (CTE)”: both phases are linear elastic, no 

thermal gradients allowed (CTE mismatch is the only residual stress source).  The shaded areas 

represent the error bars for the ND data (±330 µε). 
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Figure B.3: Axial elastic strains measured by neutron diffraction (ND) and calculated for
different constitutive behaviors of stainless steel (SS) and BMG: Case 1: (σY )SS = 205 MPa,
BMG viscoelastic; Case 2: (σY )SS = 310 MPa, BMG viscoelastic; Case 3: (σY )SS =
358 MPa at room temperature and drops at higher temperatures (Table B.1), BMG vis-
coelastic; ‘Elastic SS’: SS linear elastic, BMG viscoelastic; ‘Elastic SS, BMG (CTE)’: both
phases are linear elastic, no thermal gradients allowed (CTE mismatch is the only residual
stress source). The shaded areas represent the error bars for the ND data (330 µε).
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tions yielded almost uniform elastic strain in it. The variation in the tube is much more

pronounced. The primary reason is that the pin, being at the center, never experienced

severe temperature gradients within itself. When it yielded, plastic deformation was uni-

form and due to the loads exerted by the remaining section of the sample. Conversely, the

tube underwent non-uniform plastic deformation even before metallic glass solidified due

to high thermal gradients within its wall. Such deformation was especially pronounced in

Case 3 where high temperature softening of SS was considered. Note that when plastic

deformation was prevented (the ‘Elastic SS’ case), the strain distribution in the tube, too,

became uniform (Figure B.3).

The ND data from the pin had a better signal-to-noise ratio. In addition, since the pin

carries uniform axial strain, it is more advantageous in comparing the experimental data

with model predictions. Therefore, the following discussion will concentrate only on the

pin. When the FE calculations are compared with each other, the obvious trend is more

elastic strain in the pin as room temperature yield strength increases. The extreme point

is the fictitious elastic SS calculation which represents infinite yield strength. A simple

explanation for this result is that the majority of the residual stresses are generated after

the BMG completely ‘solidifies’, since the pin-BMG interface should be able to transfer load

to the pin. If the ‘solidification’ or ‘setting’ of the BMG is assumed to occur at 352◦C (its

glass transition temperature), the maximum temperature at this instant at the center of the

pin is only slightly higher (362◦C) according to the heat transfer solution. As mentioned

earlier, the pin does not yield due to thermal gradients within itself before the ‘setting’ of

the BMG. Therefore, no significant high temperature plastic deformation is expected in the

pin and the low temperature plastic properties of the SS essentially control the stress level

in the pin. Indeed, when high temperature softening was deleted from the input file of Case
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Figure 5.  Axial stresses predicted by the FE model for various constitutive behaviors of SS and 

BMG (see the caption of Fig. 4 for details). 
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Figure B.4: Axial stresses predicted by the FE model for various constitutive behaviors of
SS and BMG (see the caption of Figure B.3 for details).

3 and the calculation was repeated, the results (not shown) were not significantly affected.

This means, an accurate calculation of residual strains in the pin requires exact information

about the plastic behavior of the SS only around room temperature. This result eliminates

the influence on the final residual stresses of the high temperature constitutive behavior of

the SS, an unknown in the present study. Although the exact heat treatment (and hence

the room temperature plastic behavior) of the SS during the composite processing is not

known, it can be reasonably speculated that it approaches Case 1 (i.e., yield strength around

200 MPa) judging from the proximity of the model predictions for this case to the ND data

in the pin (Figure B.3).

Figure B.4 presents the axial residual stresses in the composite. The parabolic shape

of the stress distribution in the BMG is typical of thermal tempering. In Figure B.4, it

is obvious that the stress profile in BMG is not influenced appreciably by the constitutive
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behavior of SS. Here, the temper level can be expressed as the difference between the end

points of this parabola (∼ 560 MPa). In a tempered, monolithic BMG surface compression

to mid-plane tension ratio is around 2. Hence, the temper level attained in the present study

corresponds to about +190 MPa mid-plane tension and −380 MPa surface compression in a

monolithic BMG sample. This result again proves that BMGs can build significant residual

stresses due to thermal tempering. It is worth noting that the SS/BMG composite studied

here is a tempered product, too, as the surface compressive axial stress in the SS tube

reaches −200 MPa (Figure B.4).
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Appendix C

ABAQUS Subroutines for
Structural Model

SUBROUTINE USDFLD(FIELD,STATEV,PNEWDT,DIRECT,T,CELENT,TIME,DTIME,
1 CMNAME,ORNAME,NFIELD,NSTATV,NOEL,NPT,LAYER,KSPT,KSTEP,KINC,
2 NDI,nshr,coord,jmac,jmtyp,matlayo,laccflg)

C
INCLUDE ’ABA_PARAM.INC’

c 11-28-2003
c I have deleted the debug write’s

c 11-26-2003
c reproduction of markovsky and soules algorithm 1984 in calculating
c the fictive temperature, in this version i’ll verify the single
c relaxation time fictive temperature, then i may care about putting
c the multiple relaxation time formulation implemented by partial
c fictive temperatures. having one field variable per each might be
c a good idea.

c the previous version outputs the derivative of the thermal strain
c to set the coefficient of thermal expansion in a table definition
c however, all those arguments were for a tangent sense coefficient of
c thermal expansion which is the only notion I had, ABAQUS on the other
c hand uses a chord type CTE(see Chapter 12.1 in Standard Manual to see
c what I mean:

c so let me formulate things again

c the thermal strain from the initial temperature is given by
c eT = alphaL * (Tf-Ti)+ alphaG * (T-Tf)
c = alphaG * (T-Ti) + alphaS * (Tf-Ti)

c since alphaABQ = abaqus definition of CTE is not in integral sense
c but simply eT = alphaABQ*(T-Ti), we can get alphaABQ as
c alphaABQ = alphaG + alphaS* (Tf-Ti)/(T-Ti)
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c so this form is identical to what you have with the tangent formulation
c except instead of dTf/dT you end up with (Tf-Ti)/(T-Ti) as your second
c field variable.

c Also this version is adapted for use in the VFT fit of BMG, through
c Matsuoka’s formulation. I have to use exactly the same parameters as in
c UTRS of course. Note now I have to use UTRS since there is
c dependence on fictive temperature, the first field variable.
c since this formulation uses the parameters of the arhenius shift
c function the shift function specified in UTRS should have exactly
c the same parameters for consistency.

C MATERIAL PARAMETERS
PARAMETER(DSTART0=7631.25,TREF=800,TERMTREF=2.580645E-3)
PARAMETER(T0=412.5, TAUREF=4.0465E-6)

C TAUREF is the structural relaxationtime at TREF so it is calculated from a
C a different moduli, this time 10 times smaller then G so TAUREF is 10 times
C bigger

PARAMETER(TI=900)
C !!!!!!!!!!! TI is in degC. initial temperature should be the same as in
C the analysis.
C

CHARACTER*80 CMNAME,ORNAME
CHARACTER*8 FLGRAY(15)
DIMENSION FIELD(NFIELD),STATEV(NSTATV),DIRECT(3,3),T(3,3),TIME(2),
* coord(*),jmac(*),jmtyp(*)
DIMENSION ARRAY(15),JARRAY(15)

C

c I can use PNEWDT to keep DTIME constant and do even more
c complicated solution dependent stuff on adjusting PNEWDT
c yet now all I need is constant intervals and I’ll achieve that
c by sending setting the maximum and initial increments to the same
c small value in the input file

c the explicit formula of the algorithm requires the current
c temperature, the temperature in the previous increment and fictive
c temperature in the previous increment.

c i have to keep the temperature and fictive temperature
c of the previous increment stored
c somewhere in other words store the temperature in this increment for
c use in the next increment let me use a solution dependent state
c variable for that

c for the first two calls (two increments), time is zero so there
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c is nothing to do but take the initial values
c and set them to the solution-dependent variables,

c first inc first inc first inc
IF ((TIME(1).EQ.0.).AND.(KSTEP.EQ.1)) THEN

CALL GETVRM(’TEMP’,ARRAY,JARRAY,FLGRAY,jrcd,
$ jmac, jmtyp, matlayo, laccflg)

TEMP1 = ARRAY(1)
STATEV(1)=TEMP1

c the fields have been initialized in the input file
STATEV(2)=FIELD(1)

c simply return now
RETURN

ENDIF

c for next increments first call the state variables with GETVRM
CALL GETVRM(’SDV’,ARRAY,JARRAY,FLGRAY,jrcd,
$ jmac, jmtyp, matlayo, laccflg)

TEMP0=ARRAY(1)
TEMP0K = TEMP0 + 273.

c exactly the same thing for fictive temperature of the previous step

FICTIVETEMP0 = ARRAY(2)
FICTIVETEMP0K = FICTIVETEMP0 + 273.

CALL GETVRM(’TEMP’,ARRAY,JARRAY,FLGRAY,jrcd,
$ jmac, jmtyp, matlayo, laccflg)
TEMP1 = ARRAY(1)

TEMP1K=TEMP1 + 273.

c get fictive temperature which is the field variable.

FACTOR=EXP(DSTART0*(-(FICTIVETEMP0K/TEMP0K)/(FICTIVETEMP0K-T0)
$ + TERMTREF))

FICTIVETEMP1K = (TAUREF*FICTIVETEMP0K+TEMP1K*DTIME*FACTOR)/
$ (TAUREF+DTIME*FACTOR)

FICTIVETEMP1 = FICTIVETEMP1K - 273.
FIELD(1) = FICTIVETEMP1

c second field variable:
c calculate (Tf-Ti)/(T-Ti), make sure TI is set right in degC,
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c the same as in the problem

FIELD(2) = (FICTIVETEMP1 - TI)/(TEMP1-TI)

c now update the old guys for the next step, both in degC.

STATEV(1)=TEMP1
STATEV(2)=FIELD(1)

c if error, write comment to .DAT file:

IF(jrcd.NE.0) THEN
WRITE(6,*) ’REQUEST ERROR IN USDFLD FOR ELEMENT NUMBER ’,

1 NOEL,’ INTEGRATION POINT NUMBER ’,NPT
ENDIF

CLOSE(UNIT=16)

RETURN
END

C I KEEP THE TEMPERATURES IN K HERE, SINCE IN THE PROBLEM
C THEY ARE IN DEGC, THERE IS THE CONVERSION FIRST. IN
C MATSUOKA ABSOLUTE TEMPERATURE GOES IN THE FORMULATION
C AT ONE POINT SO IT HAS TO BE DONE.
C IN THE ACCOMPANYING ROUTINE USDFLD FICTIVE TEMPERATURES ARE
C KEPT ALSO INPUT IN DEGC, CONVERTED TO K, USED AND OUTPUT IN
C DEGC SO THAT I AM CONSISTENT WITH MY CONVERSIONS.

C INTO THE ROUTINE-> DEGC, CONVERT TO K, USE, OUTPUT BACK IN
C DEGC

SUBROUTINE UTRS(SHIFT,TEMP,DTEMP,TIME,DTIME,PREDEF,DPRED,
1 STATEV,CMNAME,COORDS)

C
INCLUDE ’ABA_PARAM.INC’

C MATERIAL PARAMETERS
PARAMETER(DSTART0=7631.25,TREF=800,TERMTREF=2.580645E-3)
PARAMETER(T0=412.5)

C TREF is in K , TERMTREF=1/(TREF-T0)
C
C

CHARACTER*80 CMNAME
C

DIMENSION SHIFT(2),TIME(2),PREDEF(1),DPRED(1),STATEV(1),
1 COORDS(1)
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C
TEMP0=TEMP-DTEMP
TEMP0K = TEMP0 + 273.

TEMP1=TEMP
TEMP1K = TEMP1 + 273.

FICTIVETEMP0 = PREDEF(1) - DPRED(1)
FICTIVETEMP1 = PREDEF(1)

FICTIVETEMP0K = FICTIVETEMP0 + 273.
FICTIVETEMP1K = FICTIVETEMP1 + 273.

TREL0= (FICTIVETEMP0K/TEMP0K)/(FICTIVETEMP0K-T0)-TERMTREF
TREL1 = (FICTIVETEMP1K/TEMP1K)/(FICTIVETEMP1K-T0)-TERMTREF

C
H0 = DSTART0 * TREL0
H1 = DSTART0 * TREL1
IF (H0.LE.100.) THEN

SHIFT(1)=EXP(H0)
ELSE

SHIFT(1)=EXP(50.)
ENDIF
IF (H1.LE.50.) THEN

SHIFT(2)=EXP(H1)
ELSE

SHIFT(2)=EXP(50.)
ENDIF
RETURN
END
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