
Intelligent Control for Fixed-Wing eVTOL Aircraft

Thesis by
Xichen Shi

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2021
Defended January 12, 2021

ii

© 2021

Xichen Shi
ORCID: 0000-0002-5366-9256

All rights reserved except where otherwise noted

iii

ABSTRACT

Urban AirMobility (UAM) holds promise for personal air transportation by deploying
“flying cars” over cities. As such, fixed-wing electric vertical take-off and landing
(eVTOL) aircraft has gained popularity as they can swiftly traverse cluttered areas,
while also efficiently covering longer distances. These modes of operation call
for an enhanced level of precision, safety, and intelligence for flight control. The
hybrid nature of these aircraft poses a unique challenge that stems from complex
aerodynamic interactions between wings, rotors, and the environment. Thus accurate
estimation of external forces is indispensable for a high performance flight. However,
traditional methods that stitch together different control schemes often fall short
during hybrid flight modes. On the other hand, learning-based approaches circumvent
modeling complexities, but they often lack theoretical guarantees for stability.

In the first part of this thesis, we study the theoretical benefits of these fixed-wing
eVTOL aircraft, followed by the derivation of a novel unified control framework. It
consists of nonlinear position and attitude controllers using forces and moments as
inputs; and control allocation modules that determine desired attitudes and thruster
signals. Next, we present a composite adaptation scheme for linear-in-parameter
(LiP) dynamics models, which provides accurate realtime estimation for wing and
rotor forces based on measurements from a three-dimensional airflow sensor. Then,
we introduce a design method to optimize multirotor configuration that ensures a
property of robustness against rotor failures.

In the second part of the thesis, we use deep neural networks (DNN) to learn part of
unmodeled dynamics of the flight vehicles. Spectral normalization that regulates
the Lipschitz constants of the neural network is applied for better generalization
outside the training domain. The resultant network is utilized in a nonlinear feedback
controller with a contraction mapping update, solving the nonaffine-in-control issue
that arises. Next, we formulate general methods for designing and training DNN-
based dynamics, controller, and observer. The general framework can theoretically
handle any nonlinear dynamics with prior knowledge of its structure. Finally,
we establish a delay compensation technique that transforms nominal controllers
for an undelayed system into a sample-based predictive controller with numerical
integration. The proposed method handles both first-order and transport delays in
actuators and balances between numerical accuracy and computational efficiency to
guarantee stability under strict hardware limitations.

iv

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] X. Shi, M. O’Connell, and S.-J. Chung, “Numerical predictive control for
delay compensation,” arXiv preprint arXiv:2009.14450, 2020,
X.S. proposed the concept of the project, formulated theoretical proofs,
analyzed simulation data, and participated in the writing of the manuscript.

[2] X. Shi, P. Spieler, E. Tang, E.-S. Lupu, P. Tokumaru, and S.-J. Chung,
“Adaptive nonlinear control of fixed-wing VTOLwith airflow vector sensing,”
in International Conference on Robotics and Automation (ICRA), IEEE,
2020, pp. 5321–5327. doi: 10.1109/ICRA40945.2020.9197344,
X.S. proposed the control algorithm, formulated theoretical proofs, and
participated in the writing of the manuscript.

[3] K. Kim, S. Rahili, X. Shi, S.-J. Chung, and M. Gharib, “Controllability
and design of unmanned multirotor aircraft robust to rotor failure,” in AIAA
Scitech Forum. 2019. doi: 10.2514/6.2019-1787. [Online]. Available:
https://arc.aiaa.org/doi/abs/10.2514/6.2019-1787,
X.S. implemented the algorithm on hardware, and conducted experiments.

[4] G. Shi, X. Shi, M. O’Connell, R. Yu, K. Azizzadenesheli, A. Anandkumar,
Y. Yue, and S.-J. Chung, “Neural lander: Stable drone landing control using
learned dynamics,” in International Conference on Robotics and Automation
(ICRA), IEEE, 2019, pp. 9784–9790. doi: 10.1109/ICRA.2019.8794351,
X.S. designed the controller based on contraction mapping, formulated
theoretical proofs, conducted experiments, and participated in the writing of
the manuscript.

[5] X. Shi, K. Kim, S. Rahili, and S.-J. Chung, “Nonlinear control of au-
tonomous flying cars with wings and distributed electric propulsion,” in
IEEE Conference on Decision and Control (CDC), 2018, pp. 5326–5333.
doi: 10.1109/CDC.2018.8619578,
X.S. proposed the architecture, formulated and implemented the controller,
conducted experiments, and participated in the writing of the manuscript.

https://doi.org/10.1109/ICRA40945.2020.9197344
https://doi.org/10.2514/6.2019-1787
https://arc.aiaa.org/doi/abs/10.2514/6.2019-1787
https://doi.org/10.1109/ICRA.2019.8794351
https://doi.org/10.1109/CDC.2018.8619578

v

TABLE OF CONTENTS

Abstract . iii
Published Content and Contributions . iv
Table of Contents . iv
List of Illustrations . vii
List of Tables . xi
Nomenclature . xii
Chapter I: Introduction . 1

1.1 Fixed-wing VTOL Aircraft as Urban Air Mobility 1
1.2 Learning and Adaptive Methods in Flight Control 5
1.3 Computation Cost and Actuation Delay 7
1.4 Thesis Organization . 9

Chapter II: Preliminaries and Designs . 11
2.1 Preliminaries for eVTOL and Fixed-wing Aircraft 11
2.2 Power Required for Mix-modes Flight 14
2.3 Example Fixed-wing VTOL Designs for UAM 16
2.4 Example Performance of UAM Design 17
2.5 Chapter Summary . 19

Chapter III: Unified Architecture for Flight Control 21
3.1 General Fixed-Wing VTOL Dynamic Model 21
3.2 Unified Control Architecture . 26
3.3 Force Allocation . 29
3.4 Control Allocation . 32
3.5 Results on Tilt-Rotor Fixed-wing VTOL 36
3.6 Chapter Summary . 39

Chapter IV: Physics-based Model Adaptive Flight Control 41
4.1 Linear-in-Parameter Force Model 41
4.2 Adaptive Force Allocation . 43
4.3 3D Airflow Sensing . 45
4.4 Experiments on The Prototype Vehicle 46
4.5 Chapter Summary . 50

Chapter V: Fault-Tolerant Design . 52
5.1 Controllability with Rotor Failure 52
5.2 Control-Centric Design Optimization 57
5.3 Example Design Optimization for AFA 59
5.4 Chapter Summary . 65

Chapter VI: Deep Learning for Flight Control 66
6.1 Dynamics Learning using DNN . 66
6.2 Flight Control for partial DNN Dynamics 68
6.3 Experiments on Quadrotor Drone 72

vi

6.4 General Control for DNN-based Dynamic Model 77
6.5 Chapter Summary . 85

Chapter VII: Actuation Delay Compensation 87
7.1 Problem Formulation . 87
7.2 Delay Compensation Control . 89
7.3 Numerical Analysis . 97
7.4 Chapter Summary . 100

Chapter VIII: Conclusion . 102
Bibliography . 106
Appendix A: Rotor Side Force Model . 117
Appendix B: Experimental Fixed-wing VTOL Prototypes 118

B.1 Caltech Autonomous Flying Ambulance (AFA) 118
B.2 Experimental Prototype for Adaptive Flight Control 120
B.3 Intel Aero Drone Testbed for Learning-based Control 121

vii

LIST OF ILLUSTRATIONS

Number Page
1.1 Visualization of travel from San Jose to San Francisco by Uber

Elevate [1]. It predicts that eVTOL would drastically reduce travel
time while being reasonably priced. 1

1.2 Examples of commercial fixed-wing VTOLs for UAM applications. . 2
2.1 Diagrams of rotor aerodynamics during ascending, descending, hov-

ering, and forward flight. Pictures are excerpts from [89]. 12
2.2 Induced velocity vs. climb velocity ratio, illustrating vortex ring state

region where momentum theory is invalid. Picture is excerpt from [89]. 13
2.3 Illustration of lift and drag on airfoil. 13
2.4 Example conceptual designs for fixed-wing eVTOL sketched by the

author in the beginning of Caltech’s AFA project. 17
2.5 Full-scale AFA 2.0 concept design. The image is rendered in Autodesk

VRED. 17
2.6 Required power %A breakdowns for VTOL and fixed-wing flight modes. 18
2.7 Endurance and range comparisons between VTOL and fixed-wing

flight modes. 19
3.1 Illustration of an example VTOL aircraft and associated frames of

references: (1) inertial frame I; (2) body frame B; stability frame S. 21
3.2 Demonstration of aerodynamic coefficient from [−180, 180] degrees. 24
3.3 Schematic of the proposed controller framework for winged VTOL

aircraft or flying cars. 25
3.4 State and commands related to a transition-to-cruise trajectory. 36
3.5 Projections of the attainable wrench spaceW) and its approximation

W̄) of the vehicle in Figure 3.1 onto (a) 2D force space and (b)
3D moment space. The force space is two-dimensional because the
vehicle does not have an ability to generate thrust in its H-axis. 37

3.6 AFA 1.0 flying in wind field generated by a fan-array wind tunnel. . . 38
3.7 State and commands related to a transition-to-cruise trajectory. 39
4.1 Fixed-wing VTOL prototype with copter-plane configuration. 41
4.2 Diagrams with definition of forces on different propellers and wings. 42
4.3 Linearity of flow angle measurement and model fit. 46

viii

4.4 The VTOL flying in position control in front of the CAST Fan Array,
with smoke for flow visualization. 47

4.5 Convergence of aerodynamic coefficient estimates for seven runs with
random initial θ̂. The filled region represents 1f to 3f deviations.
Freestream velocity is duplicated for visualization. 48

4.6 From top to bottom, figures show measured total airspeed from 3D
airflow sensor, norm of velocity tracking errors for all five controllers,
and norm of filtered (for visualization) prediction errors for the two
composite adaptation controllers. 49

4.7 Velocity tracking error and filtered (for visualization) acceleration
prediction error of the same experiment as in Figure 4.6, for each axis
individually. Velocity error is in Earth fixed North-East-Down frame
with the vehicle flying north; acceleration is in body frame. 50

5.1 Diagrams of prototype VTOL denoted with design parameters and
rotor numbers. The origin of the body frame coincides with the COM.
Rotor positions and orientations are defined with respect to the body
frame. 60

5.2 Quality measure ¯̂∗R onD. The optimal design parameters are marked
with a red star. 61

5.3 Moment authorities for the baseline and the optimized designs during
rotor failure A = (3, 7). (a) Note that the origin (marked with a red
dot) is on the boundary. Because of this, generation of roll and yaw
moments is coupled. (b) Independent generation of roll and yaw
moments is possible in this case and the aircraft is null controllable.
The axes are not drawn to scale. 62

5.4 The prototype in flight. The two rotors indicated by dotted circles are
intentionally failed. 63

5.5 Moment authorities for the baseline and the optimized designs during
rotor failure A = (1, 8). Red boxes represent the corresponding ¯̂∗A . . . 63

5.6 Euler angles and inertial position of the prototype with d0 after
perturbations are made in each axis. The prototype is able to track roll
and pitch commands as well as negative yaw commands. However, it
started to become unstable at around C = 10 s in (c) while yawing in a
positive direction. 64

ix

5.7 Euler angles and inertial position of the prototype with d∗ after
perturbations are made in each axis. The prototype is able to track
roll, pitch, and yaw commands in both directions. 65

6.1 Snapshots of Intel Aero Drone during a landing task. 72
6.2 Position trajectory during data collection. Part I (0 to 250 s) contains

constant height maneuvers (0.05 m to 1.50 m). Part II (250 s to 350 s)
is dedicated to random free flight for maximum state-space coverage. 73

6.3 Comparison of DNN 5̂�,I with physics-based ground effect model,
and �) from bench test. 74

6.4 Heatmaps of learned 5̂�,I versus I and EI. (Left) ReLU network
with spectral normalization. (Right) ReLU network without spectral
normalization. 75

6.5 Baseline Controller and Neural-Lander performance in take-off and
landing. Means (solid curves) and standard deviations (shaded areas)
of 10 trajectories. 76

6.6 Neural-Lander performance in take-off and landing with different
DNN capacities. 1 layer means f̂� =Wx + b; 0 layer means f̂� = b. 77

6.7 Generalization and control performance during near-object tasks. (a)
Heatmaps of learned 5̂�,I vs. G and H, with other inputs fixed. (Left)
ReLU network with spectral normalization. (Right) ReLU network
without spectral normalization. (b) Tracking performance and statistics. 86

7.1 Timeline of periodic control with computation, system, and actuator
delays. At every C8, the controller begins computing a new command,
D(C8), which takes Δ2 to calculate and an additional ΔB to be received
and applied by the actuators. 89

7.2 Theoretical Total error bound vs. computation delay Δ2 for different
system delay ΔB and model error F. (Top) Fixed control period
)B = 0.1s. (Bottom) Variable control period)B = Δ2. 98

7.3 Simulation tracking RMSEs for different integration schemes and step
sizes. (Left) Fixed sample period)B = 0.1 s. (Right) Variable sample
period)B = Δ2. 99

7.4 Comparisons of PD, baseline η̄(·), truncated η̄′′FO(·), and full predic-
tive control η̄′′(·). RMSE is steady-state root-mean-square-error. . . 100

x

7.5 Contour of RMSE and transport delay Δ for truncated predictive
control η̄′′FO(·) (7.30). The horizontal axis is the combined delay
(Δ + 1/_) in seconds. The vertical axis is its ratio of first-order delay
1/(_Δ + 1). 101

A.1 Rotor side force �(illustration with non-dimensionalized data. 117
B.1 AFA 1.0 prototypes. 118
B.2 Caltech’s 1/5 scale AFA 2.0 fixed-wing VTOL with tiltable rear rotors.119
B.3 Fixed-wing VTOL platform with wing and multi-rotor 120
B.4 Intel Aero Drone quadrotor platform 122

xi

LIST OF TABLES

Number Page
3.1 Comparison of pseudoinverse (Pinv), optimization (Opt), and recursive

control allocation (RCA) methods. 37
4.1 Initial adaptation gains: diagonal of P0 47
5.1 Comparison of quality measures ¯̂∗A (d∗) and ¯̂∗A (d0) over failure set R 61
7.1 Summary of proposed control methods for delay compensation . . . 89
7.2 Baseline parameters for delayed double integrator 97
B.1 AFA 1.0 rotor configuration parameters 118
B.2 AFA 1.0 rotor properties . 118
B.3 AFA 2.0 physical parameters . 119
B.4 Fixed-wing VTOL platform physical properties 120
B.5 Fixed-wing VTOL platform aerodynamic parameters 121

xii

NOMENCLATURE

Abbreviations

AFA Autonomous Flying Ambulance

AoA Angle-of-attack

AoS Angle-of-sideslip

BPTT Back-Propagation-Through-Time

CLF Control Lyapunov Function

CoM Center-of-mass

DEP Distributed Electric Propulsion

DNN Deep Neural Network

DoF Degree-of-freedom

eVTOL Electric VTOL

FDE Functional differential equations

FOPDT First-order plus dead time

LiP Linear-in-parameter

LQR Linear Quadratic Regulator

ODE Ordinary differential equation

PD Proportional-Derivative

PDE Partial differential equation

PI-PD Proportional-Integral-Proportional-Derivative

PID Proportional-Integral-Derivative

ReLU Rectified Linear Unit

RK Runge-Kutta

RL Reinforcement Learning

SBC Single board computer

SISO Single-Input Single-Output

xiii

SOPDT Second-order plus dead time

UAM Urban Air Mobility

VTOL Vertical take-off and landing

Mathematical Notations

(·)+ Right pseudoinverse

[x1, · · · ,x=] Stack of vectors by row

[x1; · · · ;x=] Stack of vectors by column

¤(·) Time derivative

_max(·) Maximum eigenvalue of a matrix

_min(·) Minimum eigenvalue of a matrix

‖·‖ 2-norm of vector

R= Set of =-dimensional vectors of real numbers

R Set of real numbers

Symbols

U, V Angle-of-attack and angle-of-sideslip

ω Angular velocity of vehicle

B� Actuation matrix for aerodynamic control surfaces

�(·) Basis function for LiP model

B) Actuation matrix for thrusters

B′
)

Optimized pseudoinverse ofB)

I Identity matrix of appropriate size

q Attitude quaternion of vehicle

r 9 Vector from vehicle CoM to 9-th rotor axle

2̄ Reference chord length for nondimensionalization

�! , �� , �. Lift, drag and side force coefficients

�<G , �<H, �<I Aerodynamic moment coefficients in G, H, I axis

M Attainable moment space

xiv

Δ Transport delay

Δ2 Computation delay

ΔB System delay

f� Aerodynamic force vector

f1 Total force on vehicle in body frame

f) Combined thruster force on vehicle in body frame

g Acceleration of gravity vector in inertial frame

k̂ 5 Favorable thrust force direction unit vector

ẑ 9 Unit vector for 9-th rotor direction

J Inertia matrix of vehicle

τ� Aerodynamic moment vector

M Masking matrix for available thrust force

τ1 Total moment on vehicle in body frame

τ) Combined thruster moment on vehicle in body frame

p Inertial position of vehicle

R Rotation matrix from body to inertial frame

(ref Reference area for nondimensionalization

g Rotor axial torque

θ̂ Parameter vector for LiP model

)B Sampling period for discrete control update

U) Attainable thruster control space

u) Thruster control input vector

v Inertial velocity of vehicle

v8 Incident wind velocity

+∞ Freestream windspeed

vF Wind velocity

W) Attainable thruster wrench space

xv

w) Thruster wrench vector

W̄) Fitted thruster wrench space

� Area of rotor disk

�∞ Area of stream tube far downstream

�) , �& Rotor thrust and torque coefficients

�%0 Profile power coefficient

3 Diameter of rotor

�(Rotor side force

!, �,. Aerodynamic lift, drag and side force

= Rotor rotation speed

#E, #2, #) Number of vertical, cruise and total thrusters

%0 Profile power

%ℎ Induced power at hover

%8 Induced power

%' Total required power

) Rotor thrust force

+2 Axial freestream windspeed with respect to rotor disk

E8 Induced speed at rotor plane

, Weight of vehicle

F Induced speed far downstream

1

C h a p t e r 1

INTRODUCTION

Recent interest in using electric vertical take-off and landing (eVTOL) aircraft in
urban aerial transportation for cargo and personnel promises great improvement over
existing transportation infrastructures. In cases such as the San Francisco Bay area
rush hours, a one-way trip in those conceptualized eVTOLs would take as short as
15 minutes compared to the 1.5 hours car ride shown in Figure 1.1 [1]. To achieve
these ambitious goals, the proposed vehicle systems need to: (1) operate in cluttered
urban environments for fast take-off and landing; (2) possess reasonable range and
endurance for inter/intra-city flights; (3) admit a superior safe and intelligent control
system when interacting with complex environments or other agents.

Figure 1.1: Visualization of travel from San Jose to San Francisco by Uber Elevate [1].
It predicts that eVTOL would drastically reduce travel time while being reasonably
priced.

1.1 Fixed-wing VTOL Aircraft as Urban Air Mobility
VTOL aircraft have been an area of intense research for most of the past century. It
has been conceived by inventors well before the first powered flights. The operational
simplicity associated with not requiring a runway and being able to hover in place
often outweighs the negative aspects of its design complexity. Different technologies
throughout the years have given birth to a variety of VTOL-capable aircraft that
spiked interests in military, commercial, and research domains. In recent years,
improvements in battery technology, computing power, and sensor availability have
spurred the development of electric multirotors. The canonical form of the multirotor
uses an even number of symmetric, coplanar rotors to generate vertical thrust. The

2

simplicity in the design, construction, and control of these platforms has made them
very popular as a cheap and robust aerial platform. However, a standard multirotor
lacks the efficiency for long range flight.

(a) WISK Cora (b) Kitty Hawk Heaviside

(c) Lilium Jet (d) Airbus Vahana

Figure 1.2: Examples of commercial fixed-wing VTOLs for UAM applications.

UAM calls for vehicle designs that can take-off and land in a cluttered urban
environment while efficiently flying a good range over metropolitan areas [1].
Married with the trend in electric drones, the class of hybrid VTOL aircraft with both
fixed wing surfaces and distributed electric propulsion (DEP) systems haven risen in
popularity [2]. They use lifting surfaces to enable longer range and endurance flights
and keep VTOL capabilities, eliminating the need for a substantial runway. Some of
the popular types of modern fixed-wing VTOL aircraft include: (1) copter-plane: a
direct hybrid between planes and multirotors; (2) tilt-rotor/vectored-thrust: thrust
can be diverted in different directions; and (3) tail-sitter: thruster is situated in
the back, and the aircraft takes off upright and later transitions to horizontal flight.
Commercial solutions for UAMs follow this fixed-wing VTOL philosophy as well,
with some prominent examples shown in Figure 1.2, which all adopt DEP and
fixed-wing combination. At Caltech, we have developed similar technologies named
Autonomous Flying Ambulance (AFA) as described in greater details in Appendix B.

3

1.1.1 Existing Control Methods for the Fixed-wing VTOL Hybrids
Although different in geometry, the underlying control logic is similar for all types
of fixed-wing VTOLs. Most controllers designed for such crafts rely on two separate
schemes, one for VTOL stage and one for cruise flight stage. A transition strategy
is designed to switch between the two. Because of the hybrid nature during this
transition period, complex interactions between propellers and wings pose challenges
for accurate and safe flight maneuvers. Early works achieve this transition by
overlapping the operation envelopes of the two controllers. In [3], [4], reference
commands were sent to the VTOL controller such that the vehicle would either
reach a high-speed or a low pitch angle state triggering the fixed-wing controller to
become active. A common technique for tilt-rotor transition is to vary tilt angles
following a monotonic schedule, during which the controller stabilizes the craft [5],
[6]. However, little attention was given to aerodynamic and flight-dynamic modeling
in this scenario. More recent methods utilize numerical optimization to solve for a
trajectory based on accurate vehicle dynamics. In [7], [8], transition trajectories are
solved offline and feedback tracking controllers are deployed for online exectution.
To further improve the performance, online optimization-based controllers with
global aerodynamic model for tail-sitters are proposed in [9], [10]. Such controllers
can give solutions between any global states, as long as the onboard computer can
solve the problem in real time.

Position trajectory tracking for aerial vehicles relies on their ability to generate
forces in desired directions. Although the control of all aerial vehicles often depends
on timescale separation property in flight dynamics [11], [12], the key difference
between vehicle types results from what forces are considered significant during
control design. In both fixed-wing and VTOL multirotors, the collective force from
all thrusters is one-dimensional. Specifically, a multirotor points in the direction
of the total commanded force whereas a fixed-wing aircraft merely uses thrust to
cancel drag force and relies on lift force for maneuver. For a fixed-wing VTOL,
the controller should realize its potentials as much as possible to extend the flight
envelope. The problem becomes more challenging when the vehicle can produce
thrust in multiple directions [13].

As far as multi-dimensional control forces are concerned, fully-actuated multiro-
tors [14]–[18] have garnered much attention in recent years. Because of the added
dimension in force space, vehicles can generate forces in any direction without
changing attitude [17], [18]. If this is not achieved, then the desired attitude is

4

found via the closest projection of the desired force onto force space [15], [16].
However, all such work does not consider aerodynamic forces and only focuses on the
concept of full-actuation which attempts to marginalize attitude determination [17].
Aircraft with thrust vectoring have been around for decades, but they have only
found applications in military or been used for moment generation during post-stall
maneuvers [19].

1.1.2 Fault Tolerance for Multirotor Distributed Electric Propulsion
For UAM applications, safety is of the utmost importance for these aircraft and it
cannot be sacrificed even when they encounter failure of some components and need
to operate under abnormal conditions. Having more than six rotors on such aircraft
allows them to be robust against rotor failure up to a certain degree. The key question
is how to optimize the design of the multirotors such that they remain controllable
when different combinations of rotors fail.

A survey on fault-tolerant techniques for multirotor aircraft can be found in [20]. One
way of handling the failure is to develop separate controllers to be used when rotors
fail [21], [22]. With this approach, control authority in certain axis is sacrificed in
order to retain control in the rest. For example, it is well-known that a quadrotor
cannot retain full controllability on its position and attitude when it loses one or
more rotors as it becomes an underactuated system. In this case, controllers may
decide to give up yaw authority [23] or to control only the reduced attitude [24].
In the literature, hexacopters have been a popular platform to study controllability
because they seem to be robust to the failure of up to two rotors and be able to fly
like quadrotors. Interestingly, however, researchers have shown that symmetric and
collinear hexacopters subject to a single rotor failure are not fully controllable [25],
and controllers with limited attitude controllability have been developed [22], [26].

As such, carefully designed control laws can handle certain rotor failure cases that
they are intended for, but it is difficult to come up with a set of control laws that can
cope with all possible cases of rotor failures. Furthermore, the resulting behavior and
inherent controllability of multirotor aircraft are limited by their own design choices
that govern the sets of admissible forces and moments from the aircraft. Therefore,
another way of addressing rotor failure is to optimize the design of aircraft to be
robust against rotor failure and enhance survivability of the aircraft. In such spirit,
a carefully designed aircraft with only one rotor was proposed in [27], which can
perform limited maneuvers and avoid unwanted crashes. Hexacopters with tilted

5

rotors were also proposed in order to retain controllability and to improve disturbance
rejection after rotor failure [15], [28], [29]. Although some asymmetric multirotor
aircraft have been reported in the literature [30], most multirotor aircraft resort to
symmetric configurations [31]–[34], limiting exploration of the full design space as
well as their control performance.

1.2 Learning and Adaptive Methods in Flight Control
As noted in the core needs of UAM, control of the craft with high accuracy is of
primary concern for efficiency, safety, and comfort of flights. Types of fixed-wing
VTOL vehicles inherit modeling complexities from their hybrid nature. Further
adding to the challenge is its requirement of frequent interaction with cluttered and
uncertain urban environments. Therefore, the need for learning from past interactions
and rapid adaptation to unseen scenarios are essential in designing controllers for
next generation UAM aircraft.

For a given dynamical system, complexity and uncertainty can arise either from
its inherent property or the changing environment. Thus model accuracy is often
key in designing a high-performance and robust control system. If the model
structure is known, conventional system identification techniques can be used to
resolve the parameters of the model. When the system becomes too complex to
model analytically, modern machine learning research conscripts data-driven and
neural network approaches that often result in bleeding-edge performance given
enough samples, proper tuning, and adequate time for training. However, the harsh
requirement on a learning-based flight control system calls for both representation
power and fast execution simultaneously. Thus it is natural to seek wisdom from
the classic field of adaptive control, where successes have been seen using simple
linear-in-parameter (LiP) models with provably robust control designs [35], [36].
On the other hand, the field of machine learning has made its own progress toward
fast online paradigms, with the rising interest in few-shot learning [37], continual
learning [38], [39], and meta learning [40], [41].

There has been some interest in designing a unified feedback controller for fixed-
wing VTOL, such as in [42], [43], and our prior work [44], where the controller
is flight-mode agnostic through estimating combined forces on the vehicles. The
success of these controllers relies primarily on the accurate prediction of aerodynamic
forces, which in turn requires high-fidelity models and accurate sensor feedback
for states relevant to such forces. Surprisingly, there has been little work on these

6

areas; complex aerodynamic interactions between wing and rotors that are crucial to
fixed-wing VTOL transition are often ignored. Although efforts have been made to
estimate aerodynamic states such as angle-of-attack and sideslip angle [45], [46], no
recent work has been using such information directly in a feedback control manner.
On the other hand, adaptive flight control has seen much progress over the years,
where the vehicle model is adapted via either aerodynamic coefficients [47], [48]
or neural network parameters [49], [50]. Recently, [51] used incremental nonlinear
dynamic inversion to estimate the external force through filtered accelerometer
measurement, and then apply direct force cancellation in the controller. [52] assumed
a diagonal rotor drag model and proved the differential flatness of the system for
cancellation, and [44] used a nonlinear aerodynamic model for force prediction.
When a LiP model is available, adaptive control theories can be applied for controller
synthesis. This does not limit the model to only physics-based parameterizations,
and a neural network basis can be used [36], [53]. Adaptive controllers with LiP
models have been applied to multirotors for wind disturbance rejection in [54].

One particularly interesting scenario where learning methods can thrive is flying
close to ground or objects. Compensating for ground effect is a long-standing
problem in the aerial robotics community. Prior work has largely focused on
mathematical modeling [55] as part of system identification. These models are
later used to approximate aerodynamics forces during flights close to the ground
and combined with controller design for feed-forward cancellation [56]. However,
existing theoretical ground effect models are derived based on steady-flow conditions,
whereas most practical cases exhibit unsteady flow. Alternative approaches, such as
integral or adaptive control methods, often suffer from slow response and delayed
feedback. [57] employs Bayesian Optimization for open-air control, but not for
take-off/landing. Given these limitations, the precision of existing fully automated
systems for VTOLs are still insufficient for landing and take-off, thereby necessitating
the guidance of a human UAV operator during those phases.

Using DNNs to approximate high-order non-stationary dynamics has recently
received considerable attention. For example, [58], [59] use DNNs to improve
system identification of helicopter aerodynamics, but not for controller design. Other
approaches aim to generate reference inputs or trajectories from DNNs [60]–[63].
However, these approaches can lead to challenging optimization problems [60], or
heavily rely on well-designed closed-loop controllers and require a large number of
labeled training data [61]–[63]. A more classical approach of using DNNs is direct

7

inverse control [64]–[66], but the non-parametric nature of a DNN controller also
makes it challenging to guarantee stability and robustness to noise. [67] proposes a
provably stable model-based reinforcement learning (RL) method based on Lyapunov
analysis, but it requires a potentially expensive discretization step and relies on the
native Lipschitz constant of the DNN.

When adapting to complex system dynamics or fast changing environments, one
would expect the network approximator to have enough representation power, which
makes a DNN an desirable candidate. However, there are several issues associated
with using a deep network for adaptive control purpose. First, training a DNN often
requires back propagation, easily leading to a computation bottleneck for realtime
control on small drones. Second, continual online training may incur catastrophic
inference where previously learned knowledge is forgotten unintentionally. Third, a
vanilla network for a regression problem often does not have guarantees on desirable
properties for control design, such as output boundedness and Lipschitz continuity.
Fortunately, advances have been made in circumventing these issues. Training
a deep network by updating the last layer’s weight more frequently than the rest
of the network is proven to work for approximating &-function in RL [68], [69].
This enables the possibility of fast adaptation without incurring a high computation
burden. Spectral normalization on all the network weights can constrain the Lipschitz
constant [70].

1.3 Computation Cost and Actuation Delay
State or control delays occur naturally in a variety of physical and cyber-physical
systems. For high accuracy tracking of time trajectory, such delays can become
crucial in further improving control performance. Electric VTOL aircraft typically
uses electric motors to drive rotor systems, where either rotor speed or pitch is
controlled via input signals to achieve desired thrust force output. In either case,
delays in actuation would exist due to the electric and mechanical nature of the drive
mechanism. This can be especially detrimental when delay time-scale is on the
same order as vehicle inertial dynamics. On the other hand, with the sensitivity to
total weight of flying vehicles, onboard computation is always limited compared to
ground platforms. Thus digital delays due to discrete computing architecture will
pose further hurdles for high performing flight control.

Time-delayed dynamics have been an active area of research since its introduction
in 1946 [71]–[74], and it is seeing continued interest with the popularization of

8

vast computer networks and internet-of-things (IoT) accompanied by substantial
communication lags [75], [76]. Delay compensation techniques have also been
widely used in control of power electronics [77], [78] and reinforcement learning
settings [79].

For linear systems, delay for unstable processes is often modeled as first or second
order plus dead time (FOPDT or SOPDT). Classical linear feedback control can
be applied and closed-loop system behavior is analyzed with transfer function ap-
proaches. It was shown that properly designed proportional-integral-derivative (PID)
controllers can act as a delay compensator [80]. Other popular techniques include
relay-based identification [81] and proportional-integral-proportional-derivative (PI-
PD) control [82]. For nonlinear systems, the usual consensus on the challenge of
continuous delays is that the state space becomes infinite dimensional. Thus, instead
of being described by ordinary differential equations (ODEs), these systems need to
be modeled as functional differential equations (FDEs) or transport partial differ-
ential equations (PDEs) [73], [74]. Accordingly, their analysis requires additional
mathematical tools such as Lyapunov-Krasovskii functionals [83], [84]. A prominent
class of delay compensation methods rely on state predictions of some kind. This
idea was first proposed as the Smith-predictor [72], and has been expanded to handle
unstable processes [85], increase robustness against uncertainties [86], or adapt to
varying delays [87]. In theory, predictor-based methods can handle arbitrarily large
delays for forward complete and strict-feedforward systems [88].

The FDE or PDE modeling approach has the underlying assumption that input signal
is continuous in time. For control systems run on digital computers in practice,
this assumption is only true when the evaluation time of the control algorithm is
much smaller compared to the transport delay of the signal. The statement is largely
valid for cases considered in a network control system. However, certain real-time
control applications with limited computation capacity tend to violate the continuity
assumption, since the controller calculation time runs at similar timescales as other
delays. We take interest in the following aspects of such systems: first, the control
input often corresponds to commands on actuators, which admit additional layers of
control that act as a dynamic delay; second, computation time of the controller is
non-negligible and is affected by the complexity of the control algorithm; last but
not least, the discrete sampling for the control implementation poses restrictions on
the stability for the continuous dynamics.

9

1.4 Thesis Organization
This thesis covers two parts of materials. In the first part, aspects of fixed-wing
VTOL aircraft are discussed in Chapters 2 to 5, where we cover the development
process in conceptual design, control system, and fault tolerance. The second part in
Chapters 6 and 7 focuses on crucial challenges in controlling such vehicles: how
to model the complex aerodynamic interactions with data-driven methods; how to
have fast online algorithms that can adapt to previously unseen situations; and how
to account for delays in actuation and computation on minimal hardware required for
safety.

In Chapter 2, we lay the mathematical foundation to understand the perks of fixed-
wing VTOL aircraft. Using rotor momentum theory, finite-wing aerodynamic model,
and battery consumption equations, we develop analysis tools for power requirement
for different modes of flight. Then we apply said theorems to design cases to reveal
the benefits of fixed-wing flight efficiency over multirotor, and justify the need for a
hybrid flying vehicle.

In Chapter 3, we start by considering a general flying vehicle that has both active
aerodynamic elements providing significant forces, as well as a multi-dimensional
thrust generation. A unified architecture of fixed-wing VTOL control is presented
along with a rigid body and aerodynamics model used for control design. Robust
position and attitude tracking controllers using forces and moments as inputs are
then proposed, augmented with a force allocation method that realizes desired forces
through attitude change and control allocation. Finally, simulation and experimental
results using a prototype eVTOL are presented.

In Chapter 4, we focus on creating a velocity tracking controller with a LiP forcemodel
that can adapt to transient wind conditions, with feedback from a novel 3D airflow
sensor for accurate aerodynamic force prediction. We propose a composite adaptation
scheme that augments our force allocation method, and we prove convergence of
tracking and prediction errors in the controller. Experimental results comparing
several control techniques are presented, where the superior force tracking accuracy is
demonstrated through tight holding of vehicle position under fast transient windspeed
changes.

In Chapter 5, we present a novel control-centric design method for multirotor aircraft
that ensures robustness against rotor failures. Specifically, we aim to optimize the
design in a way that it maximizes the ability of multirotor to reach static hover after
rotor failure. The notion of null controllability is first introduced with a derivation for

10

multirotor case. Then, we define a quality measure used to evaluate a given design
with the consideration of rotor failure. An optimization problem based on the quality
measure is proposed that identifies a set of optimal design parameters maximizing
an aircraft’s ability to control its attitude. Finally, we illustrate the design procedure
that leads to a design with improved tolerance to rotor failures, and demonstrate its
performance on hardware experiments.

In Chapter 6, methods from deep learning are studied to help improve physics-based
modeling for vehicle dynamics. The resulting DNN-based feedback controller is
globally exponentially stable under bounded learning errors. This is achieved by
exploiting the Lipschitz bound of spectrally normalized DNNs. It is intriguing
that spectral normalization proves essential to the stability of the system both in a
learning-theoretic and a control-theoretic sense. The proposed controller is applied to
multirotor flying close to ground and large objects, where it learns how ground effects
are coupled with unsteady aerodynamics and vehicular dynamics. Experiments are
conducted for multirotor trajectory tracking during take-off, landing and cross-table
maneuvers, which show improved smoothness and accuracy compared to nonlinear
baseline controllers. To further study the capability of neural network in control
design, we propose framework that use DNNs to represent full dynamics of a
system as well as a associated controller and a observer. The entire approach
relinquishes physics-based modeling, and utilizes full neural network structures for
better generality in controlling nonlinear systems.

In Chapter 7, general delays in control systems are considered, as they become promi-
nent in further improving control accuracy on certain flying vehicles. We propose
a periodic predictor-based controller with numerical integration or differentiation.
The system in consideration includes both dynamic and transport delays. We first
introduce the undelayed, nonautonomous system of state and actuator input. Then,
we describe the sample-based FOPDT model for actuator delay. Augmentations to
an existing exponentially stable controller are progressively made to compensate
for dynamic and transport delays. Hybrid stability analysis is provided to study the
effects of sampling and numerical methods. We test an example system numerically
for various attributes theorized.

11

C h a p t e r 2

PRELIMINARIES AND DESIGNS

To understand the benefits and difficulties in a fixed-wing VTOL design, we will first
introduce the aerodynamic principles behind rotors and wings.

2.1 Preliminaries for eVTOL and Fixed-wing Aircraft
2.1.1 Momentum Theory Analysis on Rotors
Although more complex aerodynamics methods exist for modeling forces on rotors
such as blade element theory and computational fluid dynamics, we elect to use the
simple momentum theory model to gain first-order understandings of the overall
system [89].

Figure 2.1 shows the diagrams of how a rotating propeller would interact with the air
in different flight conditions. Let 3 be the diameter of rotor and � = c32 its disk
area. +∞ is the freestream velocity of the air upstream of the rotor. In ascending and
descending flight, this is +2, the axial freestream velocity as depicted in Figures 2.1a
and 2.1b. E8 is the additional induced velocity at the rotor plane. F and �∞ are the
induced velocity and area at the stream tube far downstream. Using conservation of
mass, momentum, and energy, we can arrive at

Mass: ¤< = d�∞(+2 + F) = d�(+2 + E8)
Momentum:) = ¤<(+2 + F) − ¤<+2 = ¤<F

Energy:) (+2 + E8) =
1
2
¤<(+2 + F)2 −

1
2
¤<+2

2 =
1
2
¤<F(2+2 + F)

with) the thrust generated by the rotor, and ¤< the air mass flow rate. Thus we can
solve for the induced velocity at rotor E8 and its induced power %8, and its special
cases when +2 = 0 for hover flight and +2 < 0 for descending flight as

+2 > 0 : E8 = −
1
2
+2 +

1
2

√
+2
2 +

2)
d�

, %8 =
1
2
)+2 +

)

2

√
+2
2 +

2)
d�

(2.1a)

+2 = 0 : Eℎ =

√
)

2d�
, %ℎ =

)3/2√
2d�

(2.1b)

+2 < 0 : E8 = −
1
2
+2 −

1
2

√
+2
2 +

2)
d�

, %8 =
1
2
)+2 −

)

2

√
+2
2 +

2)
d�

(2.1c)

12

(a) Ascent (b) Descent

(c) Hover (d) Forward

Figure 2.1: Diagrams of rotor aerodynamics during ascending, descending, hovering,
and forward flight. Pictures are excerpts from [89].

(2.1) is useful to relate power consumption to desired rotor force generated, which
will be applied to designing the hybrid between VTOL and fixed-wing aircraft later
on.

The limitation of induced power from momentum theory is that it does not consider
profile power loss due to the spinning of the rotor. Moreover, real rotors would
enter a vortex ring state during slow descending flight, which invalidates momentum
theory as illustrated in Figure 2.2.

For forward flight shown in Figure 2.1d, the analysis is slightly complicated. Using
the same method to construct equations from conservation laws, we can get the

13

Figure 2.2: Induced velocity vs. climb velocity ratio, illustrating vortex ring state
region where momentum theory is invalid. Picture is excerpt from [89].

following equation

) = 2d�E8
√
+2
∞ + 2+∞E8 sinU + E2

8
, (2.2)

which we can use to solve for E8, and then substitute in to get induced power %8 =)E8.

For rotor profile power, i.e the power needed to spin rotors during flight, we have the
following equation from [89]

%0 = d�=
333�%0 with �%0 =

f̄�30

8

(
1 + ̄

(
+∞
=3

)2
)
, (2.3)

where ̄ ≈ 4.7 and �30 can take empirical constant from vast test data. f̄ is the rotor
solidity which can be calculated from rotor geometry.

2.1.2 Wing Aerodynamics

Figure 2.3: Illustration of lift and drag on airfoil.

On the other hand, aerodynamics of the wing is rather well understood for practical
analysis [90]. Here we mainly consider the lift and drag forces on a wing with
airfoil-shaped cross section as illustrated in Figure 2.3, with d as the air density and
(ref as the reference wing area. For an aircraft in steady flight, the force is resolved to

14

lift component ! normal to +∞, and drag component � along +∞. They are normally
expressed with non-dimensional coefficients as

! =
1
2
d+2
∞(ref�! and � =

1
2
d+2
∞(ref�� . (2.4)

�! and �� are often expressed with linear and quadratic models as

�! = �!0 + �!1U and �� = ��0 +
�2
!

c4A
. (2.5)

A is the aspect ratio of a finite-sized wing, and 4 < 1 is the Oswald efficiency [90].
Other constants �!0 , �!1 , ��0 can all be empirically determined or with simple
theoretical models [90].

2.1.3 Battery Endurance
We derive a battery endurance equation from Peukert’s equation [91]. The time it
takes to discharge a battery Cdc is approximated by

Cdc = 'C
1−;

(
[tot�

%tot

) ;
; (2.6)

with battery hour rating 'C ≈ 1 hr for small batteries, discharge parameter ; ≈ 1.3 for
LiPo, total battery capacity � in Watt · hr, total power consumption %tot in Watt, and
total transmission efficiency [tot.

2.2 Power Required for Mix-modes Flight
With tools we introduced in Section 2.1, we can now analyze the power required for
different stages of a fixed-wing VTOL flight. Suppose #E is the number of vertical
thrusters on the vehicle used during VTOL flight, and #2 is the number of cruise
thrusters mounted parallel to wing surface for cruise flight. The total weight of
the vehicle is, . Steady level flight refers to the vehicle flying level with forward
velocity +∞. The vehicle will be in force equilibrium during the entire flight stage.

2.2.1 Hover Power
For a vehicle during hover, all the power needed is to generate thrusts to balance its
weight. We rewrite (2.1b) as %ℎ (�,)) showing the functional dependency. Thus the
power required %',ℎ for hover is

%',ℎ =

#E∑
9=1

(
%ℎ (� 9 ,)9) + %0(� 9 , = 9)

)
+ %? (E8). (2.7)

15

with �E =
∑#E
9=1 � 9 as the total area of all vertical rotors. It is assumed that all

rotors are identical and share equal contribution during thrust generation (moment
balanced). = 9 will be estimated based on the rotor size and thrust, in general as
= 9 (3 9 ,)9), which in this case is)9 = ,/#E. Parasite power %? comes from drag
experienced on bodies and wings. Parasite drag would be nonexistent for +∞ = 0,
but can be included if the induced velocity around the vehicle is considered.

2.2.2 VTOL Mode Flight Power
In VTOL mode, the vehicle is assumed to fly similarly to a helicopter or multirotor.
The vehicle will pitch down with angle U similarly to the illustration in Figure 2.1d,
and we need to balance between thrust, weight, parasite drag, as well as lift generated
by the wing. Let us combine (2.4) and (2.5) and write ! (−U,+∞) and � (−U,+∞).
Here we assume the downward pitch is needed for forward VTOL flight, but incurs a
negative angle-of-attack. First we need to solve for the pitch angle from

, − ! (−U∗, +∞) tanU∗ − � (−U∗, +∞) = 0.

Then for each vertical rotor we have

)9 =
, − ! (−U∗, +∞)

cosU∗ #E
.

Then we can solve (2.2) as a function of E∗
8
(� 9 ,)9 , U∗, +∞). Moreover, the aerody-

namic power in forward flight is %� = � (−U,+∞)+∞, which is needed to overcome
the drag of the vehicle. Then the required flight power is

%',VTOL =

#E∑
9=1

(
)9E
∗
8 + %0(� 9 , = 9 , +∞)

)
+ %�. (2.8)

2.2.3 Fixed-wing Mode Flight Power
When the wing is utilized for lift generation, we assume a small AoA U during steady
flight. However, the wing would typically stall at high AoA and has maximum �!

which corresponds to a minimum stall speed +stall. In our case, vertical rotors can
compensate for any deficiency if +∞ is below stall speed. Thus we have wing lift !̄:

!̄ = , if +∞ > +stall

!̄ = 1
2d+

2
∞(ref�!max if +∞ ≤ +stall

(2.9)

From (2.4) and (2.5) we can derive the wing drag as function of the wing lift:

�̄ (!̄, +∞) =
1
2
d+2
∞(ref��0 +

2!̄2

(c4A)d+2
∞(ref

. (2.10)

16

Similarly, it is also easy to get Ū from !̄ and for each vertical thruster, we have

)E, 9 =
, − !̄

cos Ū #E
, Ē8 9 (� 9 ,)E, 9 ,−Ū, +∞), 0=3 %0 9 = %0(� 9 , = 9 , +∞).

Note that −Ū is due to the convention difference for AoA between rotor and wing.
The total drag force �� can be calculated as

�� = �̄ + !̄
[�Ē8

+∞

where the additional term is to account for interaction between the vertical rotor and
wing, by adding some induced velocity onto the wing surface, tuned by an efficiency
factor [�. Following the same notation, we have aerodynamic power %� = ��+∞.
For each cruise thruster, we use

)2,: =
��

#2
, Ē8: (�: ,)E,: ,−Ū + 90◦, +∞), and %0: = %0(�: , =: , +∞).

Assembling the terms, we have the require power for fixed-wing flight:

%',FW =

#E∑
9=1

(
)E, 9 Ē8 9 + %0 9

)
+

#2∑
:=1

(
)2,: Ē8: + %0:

)
+ %�. (2.11)

Now we have the power requirement for all modes of flight. In reality, there exist
multiple if not infinitely many solutions for mixed-mode flight configuration as
vertical and cruise thrusters can be combined arbitrarily. The settings we selected in
our analysis here are based on a conventional flight control philosophy, where the
wingborne lift is prioritized.

2.3 Example Fixed-wing VTOL Designs for UAM
With Caltech CAST’s initiative in research of the next generation aircraft for UAM,
conceptual designs are proposed based on real-world needs. Example concept
sketches are shown in Figure 2.4, all including different numbers of vertical and
cruise thrusters as well as wing surfaces. Using the mathematical tools developed
so far in Section 2.2, we can analyze the potential performance impact on different
design choices.

From various concepts, we eventually choose to pursue a tilt-rotor with a multirotor
hybrid configuration. Through trade studies on vehicle parameters, we predict the
performance of a full-scale vehicle with realistic specs of different components such
as battery packs and electric motors. Scaled prototypes are constructed to validate
the analysis method used and test automation algorithms for controlling the crafts.

17

(a) Concept 1 (b) Concept 2 (c) Concept 3

Figure 2.4: Example conceptual designs for fixed-wing eVTOL sketched by the
author in the beginning of Caltech’s AFA project.

Details of those prototypes are included in Appendix B. A skeletal version (AFA 1.0)
to verify the design of rotor and wing configuration is first built and tested. Then a
preliminary design for a full-scale version is proposed with a smooth aerodynamic
body and shrouded rotors. Similarly, this design is materialized as another scale
prototype (AFA 2.0) to further the understanding of its aerodynamic properties.
Figure 2.5 shows a computer-rendered image of AFA 2.0 concept as a full-scale
vehicle in urban Manhanttan, New York.

Figure 2.5: Full-scale AFA 2.0 concept design. The image is rendered in Autodesk
VRED.

2.4 Example Performance of UAM Design
Using specs of scaled AFA 2.0 from the design process, we can predict the power
requirement using equations (2.7), (2.8), and (2.11). Details of AFA 2.0 specs are

18

listed in Appendix B. In summary, it is a 5.5 kg vehicle with a 0.9 m long and 0.3 m
wide body. The wing has a 1.6 m span and an aspect ratio of roughlyA ≈ 8.6. It
consists of 6 dedicated vertical rotors and 2 tiltable cruise thrusters, all with 15 cm
diameter propellers. By using some empirical and experimental values for rotor and
wing properties, we can calculate the required power for rotors during flight.

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120
0

50

100

(a) VTOL Mode

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120
0

50

100

(b) Fixed-wing Mode

Figure 2.6: Required power %A breakdowns for VTOL and fixed-wing flight modes.

Figure 2.6 shows the required power for rotors for both VTOL mode and fixed-
wing mode. In the case of AFA 2.0, VTOL mode refers to all 8 rotors in vertical
configuration and propel the vehicle by pitching forward in the flight direction, similar
to a multirotor. Throughout the airspeed range, the induced power from rotors is
the dominating power consumption, with profile and aerodynamic power becoming
apparent at higher speed. On the other hand, the fixed-wing mode will have 2 cruise
rotors in forward configuration, leaving 6 vertical rotors to provide any lift assist
if necessary. Contrary to VTOL mode, the induced power from rotors becomes
much smaller as wing begins to generate enough lift to support vehicle weight, in
which case aerodynamic power becomes the main factor. Also can be seen between
graphs in Figure 2.6 is that fixed-wing mode consumes much less energy for faster
flight, making it ideal for traversing longer distance. This is the main benefit when
proposing fixed-wing VTOL as the prime candidate for UAM application.

The efficiency benefit of fixed-wing flight is further illustrated in Figure 2.7, where

19

0 20 40 60 80 100 120
0

1

2

3

0 20 40 60 80 100 120
0

5

10

15

20

(a) Power required and endurance

0 20 40 60 80 100 120
0

50

100

150

200

0 20 40 60 80 100 120
0

10

20

30

(b) Thrust required and range

Figure 2.7: Endurance and range comparisons between VTOL and fixed-wing flight
modes.

in addition to power requirement %A , we also plot a pseudo required thrust %A/+∞.
We denote the time for the aircraft to stay airborne as endurance. From (2.6), we
can expect that the maximum endurance is determined by the power required to stay
airborne. Conversely, the distance traveled by the aircraft on a single battery charge,
denoted as range, will be determined by pseudo required thrust %A/+∞, which has a
unit of N.

It is obvious from Figure 2.7 that for both endurance and range, fixed-wing flight is
more efficient at higher speeds compared to VTOL and vice versa. Note that since we
have a tilt-rotor configuration, the fixed-wing mode will have fewer rotors to sustain
weight at lower speeds, which will not be the case for a copter-plane configuration.
Overall, fixed-wing flight provides superior endurance and range when reaching
optimum cruise speed, offering about twice the performance gains.

2.5 Chapter Summary
In this chapter, we began by providing the theoretical foundations for fixed-wing
VTOL aircraft. With momentum theory, we first constructed the power-thrust
relationship for rotors in different flight conditions, then combined the rotor power
with wing aerodynamics to derive the total power required during flights. Using

20

the total flight power model together with the battery consumption model, we gave
examples of UAM designs that demonstrated the benefits of fixed-wing flight for
better endurance and range. It became clear that a fixed-wing VTOL hybrid was
essential for UAM application.

21

C h a p t e r 3

UNIFIED ARCHITECTURE FOR FLIGHT CONTROL

This chapter is largely based on [44], where unified control architecture for fixed-
wing eVTOL vehicles is proposed and analyzed. We consider a VTOL vehicle that
can produce forces directly with distributed electric propulsion and non-negligible
aerodynamic forces and moments from its body or wings. An example VTOL is
given in Figure 3.1, which is comprised of six side rotors that can produce upward
forces, two back rotors that are able to produce forward and upward forces, and a
pair of wings used for lift production.

Figure 3.1: Illustration of an example VTOL aircraft and associated frames of
references: (1) inertial frame I; (2) body frame B; stability frame S.

3.1 General Fixed-Wing VTOL Dynamic Model
A six degree-of-freedom (DoF) dynamics model for VTOL aircraft is considered.
The system states are defined by inertial position p ∈ R3 and velocity v ∈ R3 at the
center-of-mass (CoM) of the vehicle; attitude as rotation matrix R ∈ ($ (3); and

22

angular velocity ω ∈ R3 in the body frame. The dynamics are expressed as:

¤p = v ¤v = g +Rf1 (3.1)
¤R = RS (ω) J ¤ω = S (Jω)ω + τ1 (3.2)

where J ∈ R3×3 is the inertia matrix of the vehicle in body-frame, g is the constant
gravity vector in the inertial frame, and S (·) : R3 → ($ (3) is a skew-symmetric
mapping such that a × b = S (a)b. External forces and moments on the vehicle are
grouped into f1 and τ1. f1 is normalized with mass and has a unit of m/s2, while
moment has a unit of Nm. We can decompose

f1 = f) + f�, τ1 = τ) + τ� (3.3)

since the external forces and moments on flying vehicles generally consist of only
contributions from thrusters (f) , τ)) and aerodynamics (f�, τ�).

3.1.1 Thrust and Torque from Electric Propellers
Axial thrust) and torque g are the dominating force and moment generated when
spinning up a propeller [90],

) = �) d3
4=2 (3.4)

g = �&d3
5=2 (3.5)

with non-dimensional coefficient �) , �& , air density d, propeller diameter 3, and
propeller rotation speed =. Let the thrust from the 9-th propeller in the body frame
be)9 ẑ 9 , where ẑ 9 is the unit vector in the thrust direction. In turn, the axial torque
vector would be g9 ẑ 9 .

Let r 9 be the vector from the vehicle’s CoM to the rotor axle. The moment at CoM
of the vehicle from rotor 9 can be then written as

τ 9 ,cm = r 9 ×)9 ẑ 9 + g9

=)9

(
S (r 9)ẑ 9 +

�&3

�)
ẑ 9

)
︸ ︷︷ ︸

µ 9

. (3.6)

In practice, we can obtain the physical parameters in the model through bench testing.
Thus without loss of generality, we can safely assume that direct control of axial
thrust for each rotor is given. Let u) = [)1, · · · ,)#)]> be the vector of control input

23

with #) as number of rotors on the vehicle, then[
f)

τ)

]
=

[
ẑ1 · · · ẑ#)
µ1 · · · µ#)

] 
)1
...

)#)

 = B)u) . (3.7)

Through careful design of the vehicle’s configuration, one can get a well-conditioned
B) matrix.

3.1.2 Aerodynamic Force and Moment on Wings
Forces and moments on wing surfaces are mainly depended on the relative wind
velocities. We define such incident wind velocity as

v8 = R
> (v − vF) (3.8)

which is the combination of ambient wind velocity vF and vehicle’s inertial velocity
v. Then we can define the following quantities related to aerodynamic force and
moment calculations. Let +∞, +GI, and +GH be free-stream wind speed, and projected
speeds in body GI-plane and GH-plane, respectively. They can be calculated as

+∞ = ‖v8‖ , U = arctan
(
E8I

E8G

)
, V = arcsin

(
E8H

+∞

)
, (3.9)

which are incident wind speed +∞, angle-of-attack (AoA) U, and angle-of-sideslip
(AoS) V. For aerodynamic forces, we define lift ! and drag � in the body GI-plane,
and side force. in body H-axis. Similarly, aerodynamicmoments τ� = [g�G , g�H, g�I]
are defined for each body axis. They are often non-dimensionalized with

! =
1
2
d+2
∞(ref�! , � =

1
2
d+2
∞(ref�� , . =

1
2
d+2
∞(ref�. . (3.10)

g�G =
1
2
d+2
∞(ref2̄�<G , g�H =

1
2
d+2
∞(ref2̄�<H, g�I =

1
2
d+2
∞(ref2̄�<I, (3.11)

with (ref as the reference wing area and 2̄ as the chord length [92].

For aircraft, the non-dimensional coefficients �! , �� , �. , �<G , �<H, and �<I
are typically tabulated from wind tunnel tests as a function of various body and
aerodynamic states. We instead use the following method that combines models of
different accuracy. The general full range flat-plate model (·)fr can be used to get the
overall trend, while the linear model (·)lin provides more accuracy at low U:

�fr
! = :! sin(2U), �lin

! = �!0 + �!1U,

�fr
� = :�1 sin2 U + :�0, � lin

� = ��0 + ��1U + ��2U
2,

�fr
. = :. sin V, �lin

. = �!V V.

(3.12)

24

-150 -100 -50 0 50 100 150

-0.5

0

0.5

-150 -100 -50 0 50 100 150
0

0.5

1

-150 -100 -50 0 50 100 150
-1

0

1

Figure 3.2: Demonstration of aerodynamic coefficient from [−180, 180] degrees.

We use a hyperbolic tangent tanh blending function to aggregate two models
together [93]. The blending of two models can be tuned for accurate prediction
within the desired operating range, and bounded error everywhere else. Figure 3.2
shows an example of this method plot on full ranges of U and V, which demonstrates
a similar trend compared to test data for both airfoils [94] and real aircraft [8]. To
summarize, we can express f� by using (3.12):

f� =
1
2
d(ref+

2
∞


�! (U) sinU − �� (U) cosU

−�. (V)
−�! (U) cosU − �� (U) sinU

 , (3.13)

On the other hand, the moment coefficients are computed using a linear model refered
from [92], assuming that a VTOL vehicle is designed to be symmetric with respect

25

Position
Controller

Velocity
Controller

Force
Allocation

Attitude
Controller

Rate
Controller

Control
Allocation

Vehicle
Dynamics

Trajectory
Planner pd(t)

Reference Heading

vr f̄

ωr

Rd τ̄

fT uT

uA

ωR

vp


p
v
R
ω




Figure 3.3: Schematic of the proposed controller framework for winged VTOL
aircraft or flying cars.

to the GI-plane. We find

�<G = :G0 + :G1
2̄lG

2+∞
+ :G2

2̄lI

2+∞
+ :G3V︸ ︷︷ ︸

� ′<G

+Δ�<G = �′<G + Δ�<G ,

�<H = :H0 + :H1
2̄lH

2+∞
+ :H2U︸ ︷︷ ︸

� ′<H

+Δ�<H = �′<H + Δ�<H,

�<I = :I0 + :I1
2̄lG

2+∞
+ :I2

2̄lI

2+∞
+ :I3V︸ ︷︷ ︸

� ′<I

+Δ�<I = �′<I + Δ�<I .

(3.14)

The control surface deflections X� 9 are assumed to only affect the moment coefficients
linearly:

Δ�<8 =

=�∑
9=1

:8,X 9X�, 9 , 8 ∈ {G, H, I}. (3.15)

We can then define control input u� = [X�1 · · · X�=�] as vector of deflection angles,
with =� being the number of deflection surfaces. Thus τ� can be simplified to

τ� =
1
2
d(ref2̄+

2
∞


�′<G
�′<H
�′<I

︸ ︷︷ ︸
τ ′
�

+ 1
2
d(ref2̄+

2
∞


:G,X1 · · · :G,X=�
:H,X1 · · · :H,X=�
:I,X1 · · · :I,X=�

︸ ︷︷ ︸
B�


X�,1
...

X�,#�


= τ ′� +B�u�.

(3.16)

26

3.2 Unified Control Architecture
By substituting (3.7), (3.13), and (3.16) into (3.3), we can rewrite f1 and τ1 as,[

f1

τ1

]
=

[
f� (v8)
τ ′
�
(v8,ω)

]
+

[
0

B�u�

]
+B)u) . (3.17)

We see thatB)u) andB�u� indicate that direct inversion can be applied to generate
forces and moments, while f� presents a difficulty in determining the desired attitude.
We intend to useRf1 and τ1 as control inputs in our position and attitude dynamics,
then f̄ and τ̄ can be solved as desired forces and moments. Then we use a novel
force allocation method that outputs a desired attitude which ensures Rf1 → f̄ .
The proposed control system architecture is shown in Figure 3.3.

3.2.1 Position Tracking Controller
Given a desired position trajectory p3 (C) to track, a position error is defined as
p̃ = p − p3 . We intend to design a manifold ṽ on which the position error converges
to zero exponentially:

ṽ = ¤̃p + �?p̃ = v −
(
¤p3 − �?p̃

)
, (3.18)

where �? is a positive definite gain matrix for the position error. We propose the
following controller using a required net force f̄ as an input:

Proposition 3.1. The position controller is defined as

f̄ = −g + ¤vA −KEṽ −K?p̃, (3.19)

with ṽ = v − vA , vA = ¤p3 − �?p̃, (3.20)

whereKE andK? are positive definite gain matrices. Suppose the difference between
f̄ and its realization is f̃ . If it is bounded by some ‖f̃ ‖ ≤ n , then v → vA and
p→ p3 exponentially within a ball of radius A, denoted as 1A , controlled by n and
gain matrices �?,K?, andKE.

Proof. Using (3.1), (3.19), and (3.20), we get the closed-loop dynamics of ṽ:

¤̃v +KEṽ +K?p̃ = f̃ . (3.21)

Differentiating the Lyapunov functionV(ṽ, p̃) = (1/2)
(
‖ṽ‖2 + p̃> ?p̃

)
, it yields

¤V = ṽ>(−KEṽ −K?p̃ + f̃) + p̃>K?

(
ṽ − �?p̃

)
= −ṽ>KEṽ − p̃K?�?p̃ + ṽ>f̃ .

27

By letting ζ = [ṽ>, p̃>]> and using the comparison method from [95], we get

‖ζ (C)‖ ≤
√
22
21
‖ζ (C0)‖ exp

(
23
22
(C − C0)

)
+ 22
2123

sup
C≥C0
‖f̃ ‖,

with

21 = min{1, _min(K?)}
22 = max{1, _max(K?)}
23 = min{_min(KE), _min(K?)_min(�?)}.

Since ‖f̃ ‖ ≤ n on a compact set, ∴
√
‖ṽ‖2 + ‖p̃‖2 → 1A with A = (n22)/(2123). �

3.2.2 Attitude Tracking Controller on ($ (3) and Quaternion
We design a controller that provides global tracking of any attitude trajectory. Assume
that the desired time trajectories of attitudeR3 (C) and its associated angular velocity
ω3 (C) are given by the force allocation block, and define an error rotation matrix
which is defined as R̃ = R>

3
R. Following [96], it can be shown that the error function

used in ($ (3) is equivalent to the vector part of the error quaternion q̃ = [@̃0, q̃
>
E]>

from R̃ with @̃0 ≥ 0:

@̃0 =
1
2

√
1 + tr(R̃), q̃E =

1
4@̃0
(R̃ − R̃>)∨, (3.22)

where the ∨ symbol here denotes the E44 map which is the inverse operation of S (·).
We use singularity-free formulas when tr(R̃) = −1 [97], [98]. The angular rate error
eω can be obtained by differentiating R̃ with respect to time as

¤̃R = R>3
¤R + ¤R>3R (3.23)

= R̃S
(
ω − R̃>ω3

)
, (3.24)

which gives eω = ω − R̃>ω3 in the current body frame. The kinematic relation
between ¤̃q and eω is given as

¤̃q = 1
2
W (q̃)eω, W (q̃) =

[
−q̃>E

@̃0I + S (q̃E)

]
, (3.25)

withW (q̃)>W (q̃) = I3×3. We augment the quaternion attitude error with @̃0 − 1.
Similarly to (3.19), we design a manifold on which error will converge exponentially:

ω̃ = 2W (q̃)>
([
¤̃@0
¤̃qE

]
+W (q̃)�ωW (q̃)>

[
@̃0 − 1
q̃E

])
, (3.26)

28

where�ω is a 3×3 positive definite gain matrix. Suppose�ω has positive eigenvalues
{_1, _2, _3}, thenW (q̃)�ωW (q̃)> will have eigenvalues {0, _1, _2, _3}. Since the
fourth element of quaternion is redundant, it is expected that q̃E → 0 exponentially.
It is also easy to verify that

W (q̃)>
[
@̃0 − 1
q̃E

]
= q̃E . (3.27)

Our attitude control law is inspired by [99] with an additional back-stepping term.

Proposition 3.2. Suppose the control law is defined as

τ̄ = J ¤ωA − S (Jω)ωA −Klω̃ − :@q̃E, (3.28)

with ω̃ = ω − ωA , ωA = R̃ω3 − 2�ωq̃E (3.29)

whereKl is a positive definite matrix and :@ > 0. Suppose the difference between
τ̄ and its realization is τ̃ . If it is bounded by some ‖τ̃ ‖ ≤ n , then q̃E (C) → 0 and
ω → ωA exponentially within 1A controlled by n and the gain matrices �@, :@, and
Kl.

Proof. Select the candidate Lyapunov function as

V(ω̃, q̃E) = (1/2)ω̃>Jω̃ + :@q̃>E q̃E + :@ (@̃0 − 1)2.

@̃0 =

√
1 − ‖q̃E ‖2 is a redundant variable here. Combining dynamics from (3.2) and

controller (3.28), we get the closed-loop dynamics for ω̃ as

J ¤̃ω +
(
Kl − S (Jω)

)
ω̃ + :@q̃E = τ̃ . (3.30)

Using (3.25), (3.29), and (3.30), we compute the time derivative of Lyapunov function
as,

¤V = ω̃>J ¤̃ω + 2:@q̃>E ¤̃qE + 2:@ (@̃0 − 1) ¤̃@0

= ω̃>
(
S (Jω) −Kl

)
ω̃ − :@ω̃>q̃E + ω̃>τ̃

+ :@q̃>E
(
@̃0I3×3 + S (q̃E)

)
eω − :@ (@̃0 − 1)q̃>E eω

= −ω̃>Klω̃ − 2:@q̃>E �@q̃E + ω̃>τ̃ .

By letting η = [ω̃>, q̃>E]> and using the comparison method from [95], we get

‖η(C)‖ ≤
√
22
21
‖η(C0)‖ exp

(
23
22
(C − C0)

)
+ 22
2123

sup
C≥C0
‖τ̃ ‖,

29

with

21 = min{_min(J), 2:@}
22 = max{_max(J), 4:@}
23 = min{_min(Kl), 2:@_min(�@)}.

Since ‖τ̃ ‖ ≤ n on a compact set, ∴
√
‖ω̃‖2 + ‖q̃E ‖2 → 1A with A = (n22)/(2123). �

3.3 Force Allocation
The controllers in (3.19) and (3.28) are written in general form for any aircraft
type, but each different type relies on f̄ and τ̄ achieved through varying actuator
commands or vehicle attitudes. We name such processes as force allocation [44].
The realization of f̄ within a small error is essential to minimizing position tracking
errors.

The reference force command is achieved through a two-step process, solving for
desired attitude and thrust commands, respectively. First, desired attitude R3 is
obtained through

R3 ·
(
f) (u)) + f� (v8)

)
3
= f̄ (3.31)

with v8 also a function of R3 as seen from (3.8). Second, we solve for the thrust
commands by minimizing the force residue

R (f) + f�) − f̄

 in the current frame.

Note that f) is directly controlled by fast input dynamics u) while f� is dependent
on bothR and v8. For a forward flying VTOL with wings, we intend to utilize as
much wing-lift as possible. Thus f� will be prioritized to reach f̄ , with any residue
taken care of by f) .

3.3.1 Desired Attitude Determination
A solution to (3.31) for a multicopter relies on the differential flatness property, with
f� = 0 or considering only the drag effect [52], [100]. For a fixed-wing aircraft, a
similar property can be derived by constraining the vehicle in the coordinated flight
frame [101]. We propose a simplified solution following the same procedure in [44]
for fast and slow flight speeds.

Proposition 3.3 (Low-Speed Force Allocation). Suppose k̂ 5 is a unit vector in the
body frame indicating the favorable thruster force direction. Then we let

f) (u)) =
(
R>f̄ − f� (v8)

)
· k̂ 5 , (3.32)

30

as the current thruster force output. R3 is obtained as any rotation that satisfies

R3k̂ 5 =
f̄

f̄

 . (3.33)

To fully determineR3 , we can constrain the body G-axis to be in certain pre-defined
heading direction as normally done for multirotors [100], [102].

For high-speed flight, we limit V = 0 and U to be small within a linear region of the
aerodynamic model, as commonly done for fixed-wing aircraft.

Proposition 3.4 (High-Speed Force Allocation). Let f̄1 = R>f̄ denote the desired
body frame force. Given measured v8, the incident wind frame axes are defined as

x̂8 =
v8
‖v8‖

, ŷ8 =
v8 × f̄1

v8 × f̄1

 , ẑ8 = x̂8 × ŷ8 .

Incident wind frame is then represented in body frame as

R8 = [x̂8, ŷ8, ẑ8],

in which no side force is required (i.e f̄1 · ŷ8 = 0). Wing lift is then prioritized to
produce f̄1 normal to v8 by setting a desired angle of attack U3 according to the lift
model

U3 =


−f̄1 ·ẑ8−!0

!1
if − f̄1 · ẑ8 ≤ !max

Umax if − f̄1 · ẑ8 > !max
(3.34)

where !0 =
1
2d+

2
∞(ref�!0 and !1 =

1
2d+

2
∞(ref�!1 . The incident wind frame is then

rotated around ŷ8 by U3 denoted by rotation matrixRU. The desired attitude can be
calculated via consecutive rotations

R3 = RR8RU . (3.35)

The small angle approximation is often used implicitly for the fixed-wing aircraft
control problems. In contrast, our approach explicitly uses the lift model in (3.12) to
output the desired attitude, and relies on accurate estimation of the incident velocity
v8 with a dedicated sensor described in Section 4.3.

3.3.2 Thruster Force Allocation
At the current attitude, we calculate thruster force through

Mf) =M
(
R>f̄ − f� (v8)

)
, (3.36)

whereM is the matrix masking out the component of force in the body axis that
is unable to achieve by thruster input. f� is estimated from (3.9) and (3.13) using
current v8 estimation. Thus the desired thruster forces can be solved easily.

31

3.3.3 Boundedness of Force Error
Before proving the boundedness of f̃ , we state the following assumptions:

Assumption 3.1. The coefficients�! ,�. , and�� from (3.12) admit a lower bounded
error n1 on a linear model than n2 on a full-range model.

Assumption 3.2. Vehicle contained entirely in its flight envelope. The attitude error
satisfies ‖q̃E ‖ ≤ f1 globally. Within the linear aerodynamic region, ‖q̃E ‖ ≤ f1 < f1

determined by cruise condition.

Assumption 3.3. The total thruster force f) can be achieved arbitrarily close to a
desired value.

Theorem 3.1. Suppose we feedR3 into the attitude controller (3.28). In quaternion
form, this is q1 and q2, from (3.32) and (3.35) using q3 = Slerp(q1, q2; W), an
interpolation scheme for quaternions [103] with a parameter W as a tanh mixing
function varying with +∞ and transition around a threshold speed +tr. Assuming
+max is the maximum vehicle speed associated in the trajectory, the overall force
allocation guarantees a bound on f̃ controlled by max{2+2

trn2, +
2
maxn1}.

Proof. From (3.32) and (3.36), denote f3 = f̄ −Rf� (v8) and f̂3 as the estimated
value based on approximate aerodynamics (3.12). Using Assumptions 3.1 and 3.2, it
can be shown

f̃

 ≤

f3 − f̂3 · k̂ 5

 ≤

f̂3 − f̂3 · k̂ 5

 + d(ref2

+2
∞n2

≤ n3

f̂3

 + d(ref2

+2
∞n2,

where n3 < 1 is determined by the global attitude error bound from Assumption 3.2.
Similarly from (3.35), we have

f̃

 ≤ n4

f̂3

 + d(ref2
+2
∞n1,

where n4 < n3 is satisfied from small angle approximation and n4 � 1. During the
transitioning phase, when 0 < W < 1,

f̃

 ≤ n3

f̂3

 + d(ref+2
trn2.

Therefore, the supremum of the norm

f̃

 is bounded as follows

sup
C≥C0

f̃

 ≤ n3

f̂3

 + d(ref2

max{2+2
trn2, +

2
maxn1}. (3.37)

�

32

It is interesting to note the intuition behind this bound. n3

f̂3

 is limited by desired

force and attitude, respectively, which is achieved internally inside the controller.
The first term in max{·} represents a bound with the full-range aerodynamic model
having larger uncertainties, limited by +tr. This is a common implicit assumption
among multicopter controls. The second term in max{·} represents a tighter bound
from the high accuracy linear model.

3.4 Control Allocation
From (3.28) and (3.36), we eventually arrive at the required thruster forces and
moments [

f)

τ)

]
=

[
M

(
R>f̄ − f� (v8)

)
τ̄ −B�u�

]
. (3.38)

We can redefine wrench vector w) as a combination of thruster forces and moments.
Given a feasible control space U) ⊂ R#) of the distributed propulsion, control
allocation aims to find u) ∈ U) such that

w) = B)u) with w) =

[
f)

τ)

]
∈ R#F . (3.39)

However, [104] shows that there exists no single inverse mapping that can recover a
full set of feasiblew) without violating some control constraints for an over-actuated
system when #) > #F . Nonetheless, sinceB) has multiple right inverses, there still
exist more than oneB) satisfying (3.39).

Control allocation in practice is executed with very high frequency, thus we would
like to validate (3.39) within the same time-scale of the controllers. We achieve this
by pre-computing a full attainable wrench spaceW) ⊂ R#F for all elements in which
it is guaranteed to find u) ∈ U) under some inverse mapping ofB) . If w) ∈ W) ,
then a method proposed in Section 3.4.2 is used to solve for u) . Otherwise, the
magnitude of w) may have to be scaled down until it becomes an element ofW)

with its direction maintained, as is commonly done in the literature [104].

3.4.1 Attainable Thruster Wrench Space
LetU) = {u) | u),min ≤ u) ≤ u),max} and its boundary mU) = {u),min, u),max}.
A feasible wrenchw) lies under the column space ofB) withu) ∈ U) . We define the
attainable wrench space asW) = {w) =

∑#)
9=1 D), 9b 9 | D),min ≤ D), 9 ≤ D),max, ∀ 9},

where D), 9 and b 9 represent the 9-th element and the column of u) and B) ,
respectively. Without loss of generality, let us assume that the individual thrusters

33

are identical, with D),min = 0 and D),max = 1. Then, by definition

W) = Conv ©­«
#)⊕
9=1
{0, b 9 }

ª®¬ , (3.40)

where Conv(·) represents a convex hull of a given set and
⊕

is the Minkowski
sum. We check whetherw) ∈ W) can be done via linear programming [105]. Even
though linear programs run reasonably fast on modern computers, we argue that for
many low-power control units on aerial vehicles, the method still poses difficulty. In
such a case, we propose thatW) may be approximated by a hypercuboid W̄) that is
maximally fitted withinW)

W̄) = {w) |w),min ≤ w) ≤ w),max, } ⊂ W) , (3.41)

where w),min and w),max are constants that define the boundary of hypercuboid.
Although there is a potential loss of space inW) , checking w) ∈ W̄) will be
much faster than that of w) ∈ W) , involving only a finite number of comparison
operations.

In order to find the reduced wrench space W̄) , we recall thatWC is a convex hull
constructed with a finite set of points, and thus it is an #F-dimensional polyhedron
that can be written asWC = {w) |Aw) ≤ c, A = [08 9] ∈ R?×#F , c = [28] ∈ R?},
where ? is the number of polyhedron faces. We assume that the edge lengths of
W̄) are q(ā8 − a8), where q is a scaling constant to be optimized and ā8 and a8 are
given coordinates of an edge of W̄) along the 8-th dimension. Then the following
optimization problem solves for a maximum q, which is equivalent to finding W̄)

maximally fitted inW) :

q∗ = argmax
q

<∑
8=1

log
(
q(ā8 − a8)

)
, (3.42)

subject to 0+8 9 = max{08 9 , 0}, 0−8 9 = max{−08 9 , 0},
<∑
9=1
0+8 9 ā 9 − 0−8 9a 9 ≤ 28, 8 = 1, · · · , ?,

a
:
< ā: , : = 1, · · · , <.

3.4.2 Static and Recursive Control Allocation
A right pseudoinverse B+

)
= B>

)
(B)B

>
)
)−1 of B) is a common saturation-prune

method for control allocation often considered in the literature and practice. A

34

straightforward alternative is to solve an optimization,

min
u)

‖u) ‖2,

subject to B)u) = w) ,

u),min ≤ u) ≤ u),max,

(3.43)

which we deemed it not ideal for a real-time application for the abovementioned
practical reasons. Note that u) computed with the right pseudoinverse is a solution to
(3.43) if the inequality constraint is ignored. Therefore, the method of cascading in-
verse [106] can be promising in computing u) ∈ U) , which computes pseudoinverse
or generalized inverse solutions in an iterative manner.

Algorithm 1 Recursive Control Allocation
Input: Control effective matrixB) , desired wrench w) .
Output: Distributed propulsion control input u) ∈ U) .
1: while A new wrench vector w) is available do
2: if w) ∉W) or w) ∉ W̄) then
3: Scale down w) until w) ∈ W) or w) ∈ W̄) .
4: end if
5: if B) is square then
6: u) = B

−1
)
w) .

7: else
8: u) = B

>
)
(B)B

>
)
)−1w) .

9: if ∃ 9 such that D),max < D), 9 then
10: w) ← w) − D),maxb 9 .
11: B) ←

[
b1, · · · , b 9−1, b 9+1, · · · , b=

]
.

12: u) = Recursive Control Allocation(B) ,w)).
13: Insert D),max as 9-th element of u) .
14: else if ∃ 9 such that D), 9 < D),min then
15: w) ← w) − D),minb 9 .
16: B) ←

[
b1, · · · , b 9−1, b 9+1, · · · , b=

]
.

17: u) = Recursive Control Allocation(B) ,w)).
18: Insert D),min as 9-th element of u) .
19: end if
20: end if
21: return u) .
22: end while

When a pseudoinverse solution does not violate the constraints on u) , it is admitted
as a solution. Otherwise, the saturated element DC, 9 of u) is either set to DC,max if
DC, 9 > DC,max, or DC,min if DC, 9 < DC,min. This action determines the contribution of the
saturated element DC, 9 to the wrenchw) as either DC,maxb 9 or DC,minb 9 . The wrench is

35

updated by subtracting this amount, and the 9-th column b 9 ofB) is removed from
the matrix because its contribution tow) is already considered. Then Algorithm 1 is
executed recursively to solve for the remaining elements of u) with the updated w)

andB) until a non-saturated solution is found. For each given w) , the method runs
at most (#) − #F) iterations untilB) reduces to a square matrix, and each iteration
involves one pseudoinverse (or inverse in the last iteration) operation. Therefore, the
worst case time complexity of the algorithm is O(#) − #F).

For flying aircraft with distributed propulsion, a major portion of control effort
goes to lift generation to counter-balance the weight. Based on this observation,
we propose an allocation method that computes an inverse mappingB′

)
ofB) that

avoids saturation of u) by evenly distributing the effort to generate lift across the
thrusters. Furthermore, the allocation prevents thrusters from generating downward
forces. The resultantB′

)
can be implemented onboard as a static mapping and its

execution speed would be much faster than any online optimization method.

By definition,B′
)
w) = u) . The energy consumption, ‖u) ‖22 = (w))>(B′))>B′)w) ,

is minimized for a given feasible w) by minimizing the Frobenius norm ofB′
)
,

‖B′) ‖� =
√

tr(B′>
)
B′
)
).

The following optimization is formulated, which not only minimizes the energy
consumption, but also guarantees evenly distributed lift generation from all thrusters:

min
B ′
)

‖B′) ‖� + 5aad(b′),

subject to B)B
′
) = �,

b′ ≤ 0,

(3.44)

where b′ corresponds to the column ofB′
)
governing the allocation of a vertical force.

Note that the positive body I-direction is downwards in Figure 3.1, and to generate
an upward vertical lift, it is desirable to have all elements of b′ less than zero. In
addition, to avoid any individual rotor reaching maximum speed, we distribute the
vertical force evenly across thrusters. In particular, the difference between individual
thruster forces are minimized using the average absolute deviation 5aad(b′) about the
mean of b′, where

5aad(b′) =
1
#)

#)∑
8=1
|1′8 −mean(b′) |.

Note that (3.44) is convex and can be easily solved through a convex optimization
solver.

36

3.5 Results on Tilt-Rotor Fixed-wing VTOL
We model a vehicle similar to Figure 3.1 with tiltable rear thrusters to demonstrate
as test platform for the overall control architecture explained in this chapter. The
physical details of the test vehicles are described in Appendix B.1.

3.5.1 Flight Simulations of Take-off, Transition, and Cruise
Given crude velocity commands without any sophisticated trajectory design. Fig-
ure 3.4a shows the vehicle’s longitudinal states trajectory. Starting from rest, the
vehicle is commanded with a positive climbing speed EI = 5m/s from C = 0 s to
C = 5 s. Starting at C = 5s, a forward cruising speed EG = 15m/s is given. Lift, drag,
and angle-of-attack are shown in Figure 3.4b. The transitional behavior of the vehicle
can be clearly seen. During the slow climbing stage, the force allocator will use
upward force from vertical thrusters. Starting forward flight, the vehicle will first
pitch forward as a conventional multicopter. After gaining some forward speed, the
controller uses positive lift production from the wings during fast forward flight.

0 5 10 15

-40

-20

0

0 5 10 15

0

5

10

15

0 5 10 15

0

2

4

6

(a) Velocity and Pitch

0 5 10 15
-100

-50

0

0 5 10 15

0

20

40

0 5 10 15
0

5

10

15

(b) U and Aerodynamic Forces

Figure 3.4: State and commands related to a transition-to-cruise trajectory.

37

3.5.2 Numerical Simulations of Control Allocation Methods

(a) 2D force space FC (b) 3D moment spaceMC

Figure 3.5: Projections of the attainable wrench spaceW) and its approximation
W̄) of the vehicle in Figure 3.1 onto (a) 2D force space and (b) 3D moment space.
The force space is two-dimensional because the vehicle does not have an ability to
generate thrust in its H-axis.

Figure 3.5 shows the five-dimensional spacesW) and W̄) of the vehicle in Figure 3.1
projected onto a two-dimensional force space and three-dimensional moment space
for visualization. Note that the vehicle does not have an ability to generate a thrust in
its H-axis, hence the force space is only two-dimensional.

Table 3.1: Comparison of pseudoinverse (Pinv), optimization (Opt), and recursive
control allocation (RCA) methods.

Pinv Opt RCA

% of u) ∈ mU 10.8% 0% 0%

C̄/C̄pinv 1 7292 1.16

cost/costopt 0.9995 1 1

A total of 100,000 w) from W̄) were sampled, and their associated u) were
computed using the conventional pseudoinverse, cascading inverse, and optimization
(3.43). The result is presented in Table 3.1, where we show the percentage of
u) ∉ U) , average time spent to compute each u) normalized by the average time
taken by the pseudoinverse approach (C̄ / C̄pinv), and the average cost of the obtained
u) normalized by the average cost of the optimal solutions obtained by solving (3.43)
(cost/costopt). While the conventional pseudoinverse approach returned u) ∉ U) for
10.8% of the sampled wrenches, the cascading inverse method returned no saturated
control commands for all the test cases, with only about 20% increase in average

38

computation time. The optimization also returned no u) ∉ U) , but took much longer
to find solutions. In addition, the costs of u) obtained by the cascading inverse were
nearly the same as the optimal costs obtained by solving (3.43).

3.5.3 Flight Experiments on AFA
We conducted flight experiments on AFA 1.0 in Caltech CAST’s fan array wind
tunnel as shown in Figure 3.6. The wind tunnel can generate a wind field up to
17 m/s and should sustain the fast flight of our vehicle.

Figure 3.6: AFA 1.0 flying in wind field generated by a fan-array wind tunnel.

We implemented our controllers and force allocation method from Section 3.2, as
well as the control allocation scheme in (3.44), using modified PX4 firmware and
Pixhawk flight controller [107] on our functional prototype shown in Figure B.1.
The prototype had the same configuration in terms of thrusters and wing compared to
Appendix B.1. Tests on attitude tracking performance were performed. We conducted
experiments with and without uniform wind field generated by the fan-array wind
tunnel.

The vehicle has asymmetric rotor placement and aerodynamic surfaces of signifi-
cant size. Even during normal free flight, we observed noticeable non-vanishing
disturbances from wing, ground, and rotor interactions. In spite of that, our proposed
controller was able to swiftly track the attitude trajectory given by an operator, as
shown in Figure 3.7a. During the fan-array wind tunnel test shown in Figure 3.6,
the vehicle was switched to a forward flying mode with a tilted back rotor. Tracking
error increased due to a larger wind disturbance, but the controller still maintained
stability. The onboard pitot-tube measured an airspeed up to 8 m/s.

39

0 10 20 30
-20

-10

0

10

20

0 10 20 30
-20

-10

0

10

20

(a) Attitude without wind

0 10 20 30
-20

-10

0

10

20

0 10 20 30
-20

-10

0

10

20

(b) Attitude with steady wind

0 5 10 15 20 25 30
0

5

10

(c) Measured airspeed from onboard pitot-tube during fan-array test

Figure 3.7: State and commands related to a transition-to-cruise trajectory.

3.6 Chapter Summary
We presented a novel framework for designing controllers for a VTOL aircraft
with wing. The control design objective was split into: (a) designing nonlinear
position/velocity and attitude/rate controllers using net forces and moments as input;
and (b) force, moment, and control allocations to generate the desired wrench. We
identified the problem of force allocation as complex and vital to a winged VTOL
aircraft under substantial aerodynamic forces, and proposed a general solution for
closed-loop flight in varying speed regimes. Furthermore, the attainable force,
moments, and control spaces were analyzed to give a realtime verifiable set to avoid
control saturation. A prototype hybrid VTOL vehicle was constructed. Realistic
data were used to model and simulate the behavior of the proposed framework in

40

commanding a transitional maneuver of the vehicle without a explicit trajectory
design. Experiments were carried out to demonstrate the stability and robustness of
the proposed controller and allocation method.

41

C h a p t e r 4

PHYSICS-BASED MODEL ADAPTIVE FLIGHT CONTROL

The proposed unified control architecture, force allocation, and control allocation
schemes from Chapter 3 improve the performance of fixed-wing VTOL in all flight
stages. However, the accuracy of force tracking depends highly on the validity of the
force model being used, as well as a precise estimate of induced wind velocity v8.
Thus in this chapter, adapted from [108], we develop adaptive methods to update
force models for any unmodeled transient and unsteady behaviors; and incorporate
novel sensors to have realtime measurements of v8.

4.1 Linear-in-Parameter Force Model
The general dynamics for fixed-wing VTOL is described in great detail in Chapter 3.
The important point for us to note is that the body force is comprised of thruster
and aerodynamic forces f1 = f) + f�. To further evolve the performance for
postion tracking control, a more detailed and adaptation-friendly model needs to be
introduced.

Figure 4.1: Fixed-wing VTOL prototype with copter-plane configuration.

Instead of developing a general model for any vehicle type, we will focus on the
copter-plane configuration as shown in Figure 4.1. Details of the vehicle including
its physical parameters are included in Appendix B.2.

42

(a) Propeller Force Diagram (b) Wing Force Diagram

Figure 4.2: Diagrams with definition of forces on different propellers and wings.

As shown in Figure 4.2a, typical propellers generate an axial thrust as well as a side
force tangential to the rotor plane. As stated before in (3.4), a commonmodel for static
propeller thrust is) = �) d34=2 The rotor side force �(however lacks simplified
models, even though the measurements indicate that the side forces produced by
vertical thrusters often incur a significant drag increase during forward flight. Hence,
we derive a canonical model from wind tunnel test data and dimensional analysis.
Details about the derivation of the model are described in Appendix A, here we
include (A.1) again for completeness:

�(= �(d=
:1+

2−:1
∞ 32+:1

((c
2

)2
− U2

)
(U + :2) (4.1)

where U is in radians. By assuming a linear relationship between = and the throttle
signal D, and that only the vertical thrusters produce significant side forces, we get
the following force estimate

)G = �̄)GD
2
G ,)I = �̄)ID

2
I , (4.2)

�(= �̄(· � (U,+∞, DI). (4.3)

The coefficients �̄)G , �̄)I, and �̄(are non-dimensional coefficients combined with
constants in (3.4) and (4.1). � (U,+∞, DI) is the basis from (4.1) using fixed :1 and
:2 fitted from data. DG and DI represents the collective thrust signals in the G-axis and
I-axis, respectively, which is specific to our type of fixed-wing VTOL.

The aerodynamic lift and drag on wing as shown in Figure 4.2b is the same as defined
in (3.11) and (3.12). For the purpose of adaptation, we will focus on the linear range
of aerodynamics forces. In practice, we will operate our vehicle in this region for a
smooth flight. Thus the linear model for coefficients �! and �� is

�! = �!0 + �!1U (4.4)

�� = ��0 + ��1U + ��2U
2, (4.5)

43

while the side force �. remains unmodeled with the assumption that �. = 0 at V = 0.
This assumption is valid for most aircraft symmetric in the GI-plane. In Section 4.2,
we use this fact to constrain . = 0 by ensuring V = 0.

From (4.2) to (4.5), the estimated thruster and aerodynamic forces can be expressed
as

f̂) =


�̄)GD

2
G

0
−�̄)ID2

I

 +

−�̄(�I (U,+∞, DI) cos(V̄)
−�̄(�I (U,+∞, DI) sin(V̄)

0

 (4.6)

f̂� =
1
2
d(ref+

2
∞


�! (U) sinU − �� (U) cosU

−�. (V)
−�! (U) cosU − �� (U) sinU

 . (4.7)

Note that V̄ = arctan
(
E8H/E8I

)
is slightly different from the sideslip. We can express

the overall body force estimate

f̂1 = f̂) + f̂� = �(v8, DG , DI)θ̂

where �(· · ·) denotes the model basis collected from (4.4) to (4.7). The model
parameter vector is

θ̂ =
[
�̄)G , �̄)I, �̄(, ��0 , ��1 , ��2 , �!0 , �!1

]>
.

4.2 Adaptive Force Allocation
4.2.1 Force Model Composite Adaptation
With reference force realized through allocation methods (3.32), (3.35), and (3.36)
and position controller (3.19), the closed-loop dynamics of the velocity tracking
error ṽ is

¤̃v = g +Rf1 − ¤vA +
(
f̄ − f̄

)
+ (Rf̂1 −Rf̂1)

= −KEṽ +
(
Rf̂1 − f̄

)
−R(f̂1 − f1)

= −KEṽ + ζ −R�θ̃. (4.8)

The force tracking error ζ =
(
Rf̂1 − f̄

)
is affected by the attitude difference R̃

and the residual side force after projection in (3.36). Any force error in the body
H-axis cannot be directly compensated for by thrusters and has to be achieved through
an attitude change.

The composite adaptation technique is employed to facilitate convergence of both
tracking and prediction errors [109]. We compute prediction error via a low-pass

44

filtered onboard accelerometer measurement a< = [a − g] 5 and basis calculation
W 5 = [�] 5 , where [·] 5 here is a strictly-positive-real (SPR) filter [35], [36]. Then
the prediction error e is simply the difference between the two

e =W 5 θ̂ − a< . (4.9)

We are now ready to define tjhe parameter update law:
¤̂θ = P

(
�>R>ṽ −W >

5 e
)
− fP

(
θ̂ − θ0

)
(4.10)

¤P = −PW >
5 W 5P + _P . (4.11)

To improve the robustness, a damping term f is added to pull updates toward initial
estimates θ0, which is obtained through model fitting described in Appendix B.2. _
makes (4.11) exponentially forget data for continual adaptation [35].

4.2.2 Stability Property
From (4.8), it can be seen that the tracking of the velocity profile relies on the force
prediction as well as attitude control. Due to the realistic aerodynamic effects on a
fixed-wing VTOL being nonlinear and unsteady, we make the following assumptions
on ζ and q̃E

Assumption 4.1. The vehicle is confined to operate within a linear force model
range and ‖ζ‖ ≤ F ‖q̃E ‖, with F being a constant related to maximum aerodynamic
force.

Assumption 4.2. The controller in (3.28) enables exponential tracking of ω. The
time-scale of ω̃ convergence is much shorter than ṽ and q̃E thus can be treated as
ω = ωA .

Given exponential convergence proved in Proposition 3.2, Assumption 4.2 can be
easily validated through gain tuning based on the vehicle’s hardware. With the
composite adaptation on the force model and tracking controller defined previously,
the convergence of ṽ, q̃E, and θ̃ is given below.

Theorem 4.1. By applying the controller, force allocation, and model adaptation
from (3.19), (3.28), (3.35), (3.36), (4.10), and (4.11), the tracking errors ‖ṽ‖, ‖q̃E ‖
and parameter error

θ̃

 will exponentially converge to a bounded error ball.
Proof. A Lyapunov function consisting of tracking error and prediction error terms
is selected

V =
1
2
ṽ>ṽ + W−1(2 − 2@̃0) +

1
2
θ̃>P −1θ̃ (4.12)

45

where the global attitude tracking error 2 − 2@̃0 is used, similar to [96] for ($ (3),
with its time derivative

¤̃@0 = −
1
2
q̃>E

(
ω − R̃>ω3

)
.

Taking the time derivative ofV and substituting in (4.8), (4.10), and (4.11) with As-
sumption 4.2, we get

¤V = −ṽ>KEṽ + ṽ>ζ − W−1q̃>E �@q̃E

− 1
2
θ̃>

(
W >

5 W 5 + _P
)
θ̃

− f
2

(

θ̃

2 +

θ̂ − θ0

2 − ‖θ − θ0‖2
)
.

We define the minimum eigenvalues of positive definite matrices, 2E = _min(KE),
2@ = _min(�@), and 2% = _min(P). Applying Assumption 4.1 and using the fact that
W >

5
W 5 ≥ 0, we arrive at

¤V ≤ −2E ‖ṽ‖2 −
2@

W
‖q̃E ‖2 −

_2% + f
2

θ̃

2 + f
2
‖θ0‖2

+ F ‖ṽ‖ ‖q̃E ‖

= −
[
‖ṽ‖
‖q̃E ‖

]> [
2E F/2
F/2 2@/W

] [
‖ṽ‖
‖q̃E ‖

]
− _2% + f

2

θ̃

2

+ f
2
‖θ − θ0‖2 .

By selecting a W < (42E2?)/F 2, we can find a constant 2, such that ¤V < −2V +
f
2 ‖θ0‖2. This proves that ‖ṽ‖, ‖q̃E ‖, and

θ̃

 will exponentially converge to an error
ball bounded by initial parameter error ‖θ − θ0‖. �

4.3 3D Airflow Sensing
To measure the angle of attack (U) and the sideslip angle (V) in flight, a custom
3D airflow sensor (Figure B.3) containing three differential pressure sensors and
a conic tip [110] was developed. The sensor uses the SDP33 chip from Sensirion,
a pressure sensor based on thermal mass flow [111]. These sensors have almost
no zero-pressure offset and drift (0.2 Pa), which makes them ideal for sensing flow
angles. In addition, their fast response (< 3 ms) allows them to be used in the attitude
control loop. The conic tip has four orifices placed symmetrically relative to a central
orifice. The difference in pressure for each pair of holes varies with U and V. The
relationship between the differential pressures (@∞, @U, @V) and the incident velocity

46

v8 in the body frame is modeled as:

v8 =

√
2@∞/d

@2
∞ + (:@V)2 + (:@U)2


@∞

:@V

:@U

 (4.13)

−40 −20 0 20 40
Reference Flow Angle [deg]

−40

−20

0

20

40

M
ea

su
re

d
F

lo
w

A
n

gl
e

[d
eg

]

Figure 4.3: Linearity of flow angle measurement and model fit.

A wind tunnel was used to calibrate the sensor and fit the coefficient : from the
above equation. The linearity of estimated flow angle is shown in Figure 4.3.

The feedback from the sensor provides an accurate estimate of the incident airspeed
vector v8, which enables the aircraft to fly at desired aerodynamic conditions. The
airspeed vector is used in the force model described by (4.6) and (4.7) in order to
compensate for the aerodynamic forces and to provide an adaptation basis �.

4.4 Experiments on The Prototype Vehicle
We used a custom fixed-wing VTOL aircraft (Appendix B.2) running a modified PX4
firmware on a Pixhawk flight controller [107]. We conducted indoor experiments
using the Real Weather Wind Tunnel from the Center for Autonomous Systems and
Technologies (CAST). The fan array based wind tunnel can generate uniform wind
fields up to 12.9 m/s and produces wind speeds linearly with an input throttle. The
facility is equipped with motion capture cameras which allow closed-loop position
control in front of the fan array.

During the experiment, the VTOL keeps its position fixed in front of the fan array, as
shown in Figure 4.4. The control loop as well as the force allocation and parameter
adaptation is running at 250 Hz. Given our estimate of θ̂’s posterior distribution

47

Figure 4.4: The VTOL flying in position control in front of the CAST Fan Array,
with smoke for flow visualization.

from aerodynamic testing shown in Table B.5, we limit the maximum deviation of θ̂
to stay within fixed bounds around the initial parameter estimate. The filter used for
the acceleration measurement and prediction (4.9) is a first order low-pass filter with
a cutoff frequency of 10 Hz. In all experiments, P is initialized to a diagonal matrix
(P0) with elements listed in Table 4.1.

Table 4.1: Initial adaptation gains: diagonal of P0

�̄)G �̄)I �̄(��0 ��1 ��2 �!0 �!1

200 200 0.1 1 5 20 0.1 0.1

4.4.1 Aerodynamic Parameters Convergence
Figure 4.5 shows parameter convergence for seven runs of the composite adaptation
controller from (4.10) and (4.11), each with randomly sampled initial parameters.
Each experiment was started with the vehicle hovering in still air. The fan array was
then sequentially set to 30%, 50%, and 70% throttle, which roughly corresponds
to 4 m/s, 6.5 m/s, and 9 m/s wind speeds, as the vehicle continued to maintain its
position.

As the test conditions stay the same across different runs and only the initial parameters
are varied, it can be seen from Figure 4.5 that the components of θ̂ converge to some
patterns, indicated by the lower variance as time progresses. It is also interesting to
note that �!0 , �!1 , and �̄)I have cleaner trends than the other variables, indicating
steady and accurate force estimates in the vertical direction. There seem to be bigger

48

variations in ��1 estimates. Overall, the parameter convergence is consistent with
varying initial conditions, which reflects the robustness of the method.

0.2

1.0

C
L

0

3.0

5.5

C
L

1

0.1

0.5

C
D

0

0.1

0.6

C
D

1
1.1

2.5

C
D

2

0.1

0.3

C̄
S

15

30

C̄
T
x

75

125

C̄
T
z

0 20 40

Time [s]

0

10

V
∞

[m
/
s]

0 20 40

Time [s]

0

10

Figure 4.5: Convergence of aerodynamic coefficient estimates for seven runs with
random initial θ̂. The filled region represents 1f to 3f deviations. Freestream
velocity is duplicated for visualization.

4.4.2 Comparison of Different Feedback Control Schemes
The tests started with the vehicle hovering and the fan array turned off, the throttle
is increased to 30% (4 m/s wind) for 10 seconds and then to 70% (9 m/s wind)
in 10% increments every 5 seconds. The fan array was switched off after 10
seconds at top throttle. The same experiment profile was used to test five different
control and adaptation schemes: (I) The full implementation based on (3.19),
(4.10), and (4.11), (C. Adapt); (II) Same method, but with P update disabled (C.
Adapt ¤P = 0); (III). Tracking error only adaptation, with ¤̂θ = P0

(
�>R>ṽ

)
; (IV)

49

0.0

9.0

V
∞

[m
/
s]

0.0

0.7

||v
e
r
r
||

[m
/
s]

C. Adapt

C. Adapt, Ṗ = 0

Tr. Adapt

PID

PD

0 10 20 30 40

Time [s]

0.0

1.3

||e
||

[m
/
s2

]

Figure 4.6: From top to bottom, figures show measured total airspeed from 3D
airflow sensor, norm of velocity tracking errors for all five controllers, and norm
of filtered (for visualization) prediction errors for the two composite adaptation
controllers.

Proportional-Integral-Derivative (PID) controller; and (V) Proportional-Derivative
(PD) controller.

The adaptive controllers (I) to (III) use the controller from (3.19). The PID and PD
controller are based on Pixhawk’s default implementation of multirotor control

f̄ = −g −K%ṽ −K�
¤̃v −K�

∫ C

0
ṽ(g) 3g

with positive definite gain matricesK%,K� ,K� . The force allocation technique
described in Chapter 3 is still active with constant θ̂ using values from Table B.5.
The equivalent gains used in all five controllers are held the same for consistent
comparison.

It is clear to see from Figure 4.6 that as airspeed increases, the PD controller starts to
accumulate unrecoverably large tracking errors. The PID controller can account for

50

some model uncertainties and is almost on par with the adaptive controllers, however,
we can see its slow response to changing disturbance as the vehicle overshoots
significantly when airspeed ramps down.

-0.5

0.0

0.5

v
e
r
r
x

[m
/
s]

C. Adapt

C. Adapt, Ṗ = 0

Tr. Adapt

PID

PD

-1.0

0.0

1.0

e
x

[m
/
s2

]

-0.5

0.0

0.5

v
e
r
r
y

[m
/
s]

-1.0

0.0

1.0

e
y

[m
/
s2

]

0 10 20 30 40

Time [s]

-0.5

0.0

0.5

v
e
r
r
z

[m
/
s]

0 10 20 30 40

Time [s]

-1.0

0.0

1.0

e
z

[m
/
s2

]

Figure 4.7: Velocity tracking error and filtered (for visualization) acceleration
prediction error of the same experiment as in Figure 4.6, for each axis individually.
Velocity error is in Earth fixed North-East-Down frame with the vehicle flying north;
acceleration is in body frame.

All versions of the adaptive controllers have better overall velocity tracking and do
not suffer from the large overshoot that the PID has during sudden changes of the
environment. For the two composite controllers, the prediction is kept as low as
0.05g in error consistently. Interestingly, the constant gain composite controller
actually outperforms the full implementation in terms of prediction accuracy. This is
more prominent in Figure 4.7, which shows that the e for C. Adapt lies mostly in the
body I-axis. The result video is also available online.1

4.5 Chapter Summary
In this chapter, we introduced a set of linear-in-parameter force models with good
steady-state accuracy appropriate for fixed-wing VTOL. The 3D airflow sensor
provided crucial realtime information related to the aerodynamic forces on the
vehicle. The adaptation law, together with the controllers, was proven to possess

1Experiment video: https://youtu.be/2d2Gy-PjgpA

https://youtu.be/2d2Gy-PjgpA

51

the stability and robustness needed for high speed transition flight. After being
integrated into our custom hybrid VTOL, the composite adaptive controller with 3D
airflow sensor feedback greatly improved the tracking and prediction performance
over baseline methods.

52

C h a p t e r 5

FAULT-TOLERANT DESIGN

One of the benefits for distributed electric rotors as propulsion systems is their
robustness against failures of some of the rotors. In this chapter, we will first lay
the mathematical foundation needed, then discuss how rotor configuration can be
optimized for a specific type of fixed-wing VTOL aircraft. The content in this chapter
is based on the published prior results from [112].

5.1 Controllability with Rotor Failure
The robustness of distributed multirotor aircraft ties closely to the controllability of
such dynamics systems. We start from the same dynamics (3.1) and (3.2) introduced
in Chapter 3, with some variations on state representation x = [p;v; q;ω]:

¤p = v ¤v = g +Rf) (5.1a)

¤q = Q(q)ω J ¤ω = S (Jω)ω + τ) . (5.1b)

We elect to use /.- Euler angles q = [q; \;k] as attitude representation describing
the orientation of the aircraft with respect to the inertial frame. R(q) that transforms
a vector from the body frame to the inertial frame andQ(q) that transforms ω into
¤q are defined as a function of q:

R(q) =

cos \ cosk sin q sin \ cosk − cos q sink cos q sin \ cosk + sin q sink
cos \ sink sin q sin \ sink + cos q cosk cos q sin \ sink − sin q cosk
− sin \ sin q cos \ cos q cos \

 ,
(5.2)

Q(q) =

1 sin q tan \ cos q tan \
0 cos q − sin q
0 sin q/cos \ cos q/cos \

 . (5.3)

Furthermore, we choose to neglect the contribution of f� and τ� in multirotor
dynamics as their contributions are typically small in the rotor failure case we are
interested in. Namely, all body forces and moments come from rotor thrusts and
torques:

f1 = f) and τ1 = τ) .

We remind ourselves that both f) = [5),G; 5),H; 5),I] and τ) = [g),G; g),H; g),I] are in
the body frame. For simplicity, we define control signal u = [f) ; τ)].

53

5.1.1 Static Hover
When a multirotor aircraft detects rotor failure, it is desirable to steer the aircraft
to static hover as soon as possible to cope with the emergency and land safely if
necessary. If the aircraft has an ability to generate the force f) and the moment τ)
in all directions unconstrained, then one can design a controller such that f) and τ)
stabilize the position and attitude dynamics, respectively. However, many practical
multirotor aircraft can only generate a limited f) , and the position control often relies
on the attitude control because body fixed f) can only be directed through change in
attitude q, as shown in the hierarchical control architecture from Figure 3.3.

A multirotor may achieve static hover in two steps: first, it finds a desired attitude q3
such that the constrained f) can stabilize the position dynamics towards ¤p = ¤v = 0,
second, it stabilizes the attitude about ¤q = ¤ω = 0 and q = q3 . We make a mild
assumption that the aircraft can always generate thrust large enough to counterbalance
its own weight after the failure of any combination of rotors of interest. Obviously,
the remaining portion of f) after canceling the gravity, if any, can be used for position
control. Hereafter, we mainly focus on the attitude controllability of and moments
exerted on multirotor aircraft and let q3 = 0.

5.1.2 Null Controllability
Controllability analysis has been a classical problem in the controls community and
many seminal works exist in the literature [95], [113], [114]. Especially for nonlinear
systems, different concepts of controllability have been developed; among them, we
are interested in null controllability of a multirotor, which is related to its ability to
reach static hover.

Definition 5.1. Consider a nonlinear system ¤x = h(x,u), where x(C) ∈ R= is a
state vector, u(C) ∈ Ω ⊂ R< is a control input bounded by a restraint set Ω, and h
is �1. The system is locally Ω-null controllable if there exists an open set X ⊂ R=

containing the origin such that any x0 ∈ X at time C0 can be controlled to x 5 = 0

in finite time C 5 < ∞ by some controller satisfying u(C) ∈ Ω for all time C ∈ [C0, C 5].
The system is globally Ω-null controllable if X = R=.

The following theorem and corollary from [115] provide conditions for a system to
be globally Ω-null controllable. We refer the readers to [115] for their proofs.

Theorem 5.1. Consider a system ¤x = h(x,u). Suppose there exist a scalar function
+ (x) : R= → R and a vector function* (x) : R= → R< in �1 such that

54

(a) + (x) = 0 if and only if x = 0, and + (x) > 0 otherwise;

(b) lim‖x‖→∞+ (x) = +∞;

(c) * (x) ∈ Ω ∀x ∈ R=;

(d) ¤+ < 0 ∀x ≠ 0, and ¤+ = 0 when x = 0.

Then the system is globally asymptotically stable about the origin with the controller
u(C) = * (x(C)) ⊂ Ω for 0 ≤ C < ∞.

In addition to (3), if we also have that ¤+ ≤ −U+ holds for some U > 0, then the
system is globally exponentially stable.

Corollary 5.1.1. Consider the system in Theorem 5.1 and assume that + (x) and
* (x) exist satisfying the conditions therein. If the followings also hold

(e) h(0, 0) = 0;

(f) u = 0 is in the interior of Ω;

(g) rank
[
B,AB, · · · ,A=−1B

]
= =, whereA = hx(0, 0) andB = hu(0, 0),

then the domain of null controllability for the system is X = R=.

Define attitude state vector y = [q;ω]. For static hover, we want to arrive at
y(C 5) = ¤y(C 5) = 0 in finite time C 5 < ∞ from a given initial condition at time C0 by
some controller τ) bounded by a control input setM for all C ∈ [C0, C 5]. In other
words, we want the aircraft to beM-null controllable. Let us denote the attitude
dynamics in (5.1) as ¤y = g(y, τ)), and let Y be the domain of y where the Euler
angles are valid and ω ∈ R3.

Corollary 5.1.2. The system ¤y = g(y, τ)) is locallyM-null controllable if τ) = 0

is in the interior ofM.

Proof. We check the conditions presented in Theorem 5.1 and Corollary 5.1.1.
The local result is due to (c) because τ) (y) ∈ M is not guaranteed for all y ∈ Y
with a state feedback controller τ) , especially whenM is restricted due to rotor
failure. However, it is possible to show that there exists a non-empty domain of null
controllability. IfM = R3, then the system isM-null controllable on Y.

55

Similar to the attitude controller from (3.28) for ($ (3), an Euler angle based
controller can be defined with

ωA = ω3 +Q−1K1(q3 − q) and τ) = J ¤ωA − Jω × ω − JK2(ω − ωA).

Here,K1 andK2 are positive definite gain matrices. For static hover q3 = ω3 = 0,
then we have

ωA = −Q−1K1q and ¤ωA = − ¤Q−1K1q −Q−1K1 ¤q.

Define ω̃ = ω − ωA and ỹ = [q; ω̃]. Notice that ỹ = 0 if and only if y = 0, so we
can select a Lyapunov function

+ =
1
2
q>q + 1

2
ω̃>ω̃ =

1
2
‖ỹ‖2 ,

with + = 0 if and only if y = 0 and + > 0 when y ≠ 0, thereby satisfying (a).
Furthermore, + is radially unbounded and (b) is satisfied.

With the above controller τ) , it can be shown that

¤+ = −ỹ>P ỹ, where P =

[
K1 −1

2Q

−1
2Q
> K2

]
.

Also % is a positive definite matrix when we properly select gain matricesK1 and
K2. Hence, ¤+ = 0 if and only if y = 0; and ¤+ < 0 otherwise, satisfying (d). In fact,

¤+ ≤ −_min(P) ‖ỹ‖2 = −221+

with 21 = _min(P) = min{_min(K1), _min(K2)} > 0, and +
(
ỹ
)
≤ 4−221C+

(
ỹ0

)
.

Therefore, the closed loop system is exponentially stable and

‖q‖ ≤ ‖ỹ‖ ≤ 4−21C ‖ỹ0‖ .

Regarding (c), we show that there exists a non-empty subsetU within the domain of
null controllability, which guarantees τ) to be within a subset ofM for all times.
Define Bn = {τ) ∈ R3 | ‖τ) ‖ ≤ n} and let n̄ > 0 be the maximum radius possible
withinM. Such an n̄ always exists because the origin is in the interior ofM. We
show that n is determined by an initial state, and U is a set of y0 that satisfies
n (y0) ≤ n̄ . For this, notice that

‖τ) ‖ ≤ ‖J ¤ωA ‖ + ‖Jω‖ ‖ω‖ + ‖JK2ω̃‖
≤ _max(J) ‖ ¤ωA ‖ + _max(J) ‖ω‖2 + _max(JK2) ‖ω̃‖ .

56

With the controller τ) , the closed loop attitude dynamics become J ¤̃ω + JK2ω̃ = 0

whose solution is ω̃ = 4−K2Cω̃0, and thus, ‖ω̃‖ ≤ 4−22C ‖ω̃0‖ with 22 = _min(K2) ≥
21 > 0. Furthermore, we have

‖ω‖ ≤ ‖ω̃‖ + ‖ωA ‖ ≤ ‖ω̃‖ + 23 ‖q‖
≤ 4−22C ‖ω̃0‖ + 234

−21C ‖ỹ0‖ ,

with 23 =
√

2_max(K1) > 0. Also we can simplify

‖ ¤ωA ‖ ≤

 ¤Q−1K1q

 +

Q−1K1 ¤q

≤ _max(K1)
(
‖q‖ +

√
2
)
‖ ¤q‖ ≤ _max(K1)_max(Q)

(
‖q‖ +

√
2
)
‖ω‖

≤ _max(K1)_max(Q)
(
4−21C ‖ỹ0‖ +

√
2) (4−22C ‖ω̃0‖ + 234

−21C ‖ỹ0‖
)
.

Consequently, ‖τ) ‖ is upper bounded by the sum of terms that are in turn upper
bounded by the terms that are exponentially decaying from the norms of initial states;
we let this final upper bound of ‖τ) ‖ be n . Therefore, for the initial states that result
in n ≤ n̄ , τ) ∈ Bn ⊂ Bn̄ ⊂ M for all times and (c) is satisfied. Since n > 0 always
exist, such initial states also exist, andU is not empty. Furthermore,U is larger with
a greater n̄ .

The remaining conditions are straightforward. (e) is checked by noting that g(0, 0) =
0, and (f) is satisfied by the assumption. The controllability matrix constructed with

A = gy (0, 0) =
[
0 I

0 0

]
and B = gτ) (0, 0) =

[
0

J−1

]
has a full rank, thereby satisfying (g). �

According to Corollary 5.1.2, one can quickly inspect if the aircraft is null controllable
when its rotors are failed by checking if the resultant moment set M contains a
neighborhood of the origin. In the proof, we also noted that it is desirable to have a
greater n̄ that will result in largerU. Physically, n̄ measures the magnitude of the
admissible moment in the weakest direction. If the evolution of attitude dynamics
is too slow due to small n̄ , the position dynamics may become undesirable or too
much energy may be drained from the power source before reaching static hover.
Therefore, we want the aircraft to maintain as great n̄ as possible after rotor failure.
This may be done from the initial design stage of the aircraft using, for instance,
the optimization presented in Section 5.2. The aircraft may also be designed in

57

such a way that the position and orientation of its rotors are actively changed to
reshape the moment setM and to increase n̄ . In Section 5.3, we illustrate how rotor
failure affects controllability and demonstrate how aircraft design can help preserve
controllability with a concrete example.

5.2 Control-Centric Design Optimization
Let us denote the force and moment developed by the 8-th rotor as f),8 and τ),8,
respectively. We inherit the rotor force and torque models from Section 3.1.1 with

f),8 =)8ẑ8 and τ),8 =)8µ8

where ẑ8 and µ8 are defined by the configuration and physical properties of the rotors.
Here we define rotor-8’s maximum thrust)̄8 > 0, and consequently the max force and
torque vectors:

f̄),8 =)̄8ẑ8 andτ̄),8 =)̄8µ8 .

Without loss of generality, we will assume that all rotors have the same physical
properties to simplify analysis, thus dropping subscript 8 when needed.

5.2.1 Moment Set and Quality Measure
Let us denote the set of all possible moments that the rotors can exert on the aircraft
asM ⊂ R3 and define it as

M =

{
τ) ∈ R3 | τ) =

=)∑
8=1

08τ̄),8, 0 ≤ 08 ≤ 1, ∀8 = 1, · · · , =)

}
where =) is the total number of rotors. Note that M is a convex set defined by
the vectors ẑ8 and µ8, which in turn are characterized by a set of aircraft design
parameters r8, �) , �& , etc. If we denote the set of possible design parameters of
interest as D, then for each d ∈ D, one can construct the associated setM(d).

To achieve our goal of design optimization, we define a quality measure ¯̂ : D → R≥0

based on some characterization ofM(d), which enables comparison of the quality
of different aircraft designs in D. Recall from the discussion in Section 5.1.2 that,
for null controllability, we prefer to have a large radius n̄ of a maximal ball inscribed
inM(d). As a further generalization of the concept, one can also consider fitting
geometric objects other than a ball inside ofM(d). For example, an ellipsoid would
replace the ball if weighted control authority is desired for each dimension ofM(d).
If independence between different moment directions is desired, a rectangular cuboid
may be considered. Regardless of which geometric object is chosen, we define the

58

maximal scale of the object withinM(d) to be our quality measure function ¯̂. In
all cases, the objects describe preferred moment directions and amounts in some
manner, and ¯̂ indicates the aircraft’s largest ability to generate moments according
to this preference. Note that the origin must be always inM(d) in order for ¯̂ to
be properly defined; otherwise, we let ¯̂ = 0. Also, this measure corresponds to the
worst case analysis in the sense that there normally exists extra control authority
available beyond the geometric objects considered.

5.2.2 Design Optimization with Rotor Failure
We present a design procedure to obtain an optimal d∗ ∈ D that results inM(d∗)
maximizing ¯̂. Here, we consider a rectangular cuboid with a fixed ratio representing
the desired relative control authority between dimensions ofM(d), in order to ensure
that certain level of control authority is independently available for each dimension
ofM(d) even after rotor failure. However, the same approach may be taken with
a sphere or an ellipsoid by using the methods in [105] instead of the optimization
problem formulated below.

Suppose the rectangular cuboid is defined as

C =
{
τ) ∈ R3 | ζ ≤ τ) ≤ ζ̄; ζ, ζ̄ ∈ R3

}
with a pre-specified ratio given as β = [V1, V2, V3]> representing the desired relative
control authority for each dimension of M(d). Let ¯̂C be the scaled cuboid of
C with lower and upper bounds of τ) replaced by ¯̂ζ and ¯̂ζ̄, respectively. Note
that the convex setM(d) is a polyhedron, which can be written asM(d) = {τ) ∈
R3 |Aτ) ≤ b, A = [08 9] ∈ R?×3, b = [18] ∈ R?}, where ? is the number of
polyhedron facets. Then the following convex optimization problem solves for ¯̂∗,
which is the maximal scale possible while ensuring ¯̂∗C is withinM(d) and while

59

considering the relative importance β:

¯̂∗ = argmax
¯̂

3∑
8=1

log
(
¯̂(Z̄8 − Z

8
)
)
,

subject to ¯̂ ≥ 0,

V1
−1(Z̄1 − Z1

) = V2
−1(Z̄2 − Z2

) = V3
−1(Z̄3 − Z3

),

Z
:
< Z̄: , : = 1, 2, 3,

0+8 9 = max{08 9 , 0}, 0−8 9 = max{−08 9 , 0},
3∑
9=1
0+8 9 Z̄ 9 − 0−8 9 Z 9 ≤ 18, 8 = 1, · · · , ?.

(5.4)

In (5.4), the quality measure function is the log of a volume of ¯̂C. The equality
constraint enforces the relative ratio of ¯̂C, and the last inequality constraint ensures
that ¯̂C remains within M(d). The optimal set of design parameters d∗ is then
computed by solving (5.4) over the domain D, that is, d∗ = argmaxd∈D ¯̂∗.

The above formulation, which assumed all rotors are fully functional, can be extended
to handle the case with rotor failures. Let R be a set whose elements are combinations
of rotor failures. For each A ∈ R and d ∈ D, there is an associatedMA (d), where
the subscript represents the loss of rotors in A , and also ¯̂∗A obtained by solving (5.4)
withMA (d). Because we want to maintain at least some control authority even in
the worst case scenario, we let ¯̂∗R = minA∈R ¯̂∗A and d∗ = argmaxd∈D ¯̂∗R .

5.3 Example Design Optimization for AFA
We apply the optimization procedure from Section 5.2.2 to a prototype VTOL vehicle
described in Appendix B.1. The schematic showing the placement of rotors are
included in Figure 5.1. Specifically, the prototype has a total of eight rotors around
its main body, which are placed symmetrically about the body longitudinal axis and
are driven by electric brushless DC motors. Among them, six rotors are placed on
the sides of the main body, all at the same height and equidistant from the main body
to minimize aerodynamic drag when in cruise mode. The last two are located in the
back and are also tiltable for forward flight.

5.3.1 Optimization Result
Given fixed rotor locations, we intend to find their optimal orientations to maximize
controllability and robustness against failures. The optimization procedure in

60

(a) Top view

(b) Side view

Figure 5.1: Diagrams of prototype VTOL denoted with design parameters and rotor
numbers. The origin of the body frame coincides with the COM. Rotor positions
and orientations are defined with respect to the body frame.

Section 5.2.2 is solved for this specific aircraft. The design parameters for the
optimization and its domain are chosen as

D = {d | 0◦ ≤ \8 ≤ 20◦, 8 = 1, 2} with d = [\1; \2] .

Figure 5.1b shows that rotors alternate tilt angles \1 and \2 with respect to body
H-axis. The positive tilt angles are chosen such that each rotor’s thrust and torque
would generate body I-axis yaw moments in the same directions. We select set R of
all possible two-rotor failure cases. Regarding ¯̂, it is assumed that the rectangular
cuboid is centered at the origin, implying that an equal amount of control authority
is desired in both positive and negative directions for each dimension ofM(d). As a
result, additional constraints are added to the vanilla optimization problem (5.4):

Z
8
= −Z̄8, Z̄8 > 0, 8 = 1, 2, 3.

Furthermore, we assume that the ability to control roll, pitch, and yaw is of equal
importance and let V1 = V2 = V3 = 1.

The optimal quality measure ¯̂∗R on D is depicted in Figure 5.2, which also shows
the optimal design parameter as

d∗ = [\∗1; \∗2] = [19◦; 13◦] .

When there is no rotor failure, the loss in maximum vertical thrust in the body
I-direction due to the tilt angles is relatively small; only 4% loss compared to the
case of rotors without any tilt.

61

0

2020

0.05

15 15

0.1

1010

0.15

5 5

0 0

0.2

Figure 5.2: Quality measure ¯̂∗R on D. The optimal design parameters are marked
with a red star.

Table 5.1: Comparison of quality measures ¯̂∗A (d∗) and ¯̂∗A (d0) over failure set R

A ∈ R (1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) (2,3) (2,4) (2,5)

¯̂∗A (d∗) 2.04 1.01 0.20 0.20 2.09 1.89 1.89 0.20 1.01 2.09

¯̂∗A (d0) 0.48 0.23 0.16 0.09 0.48 0.44 0.44 0.16 0.23 0.48

A ∈ R (2,6) (2,7) (2,8) (3,4) (3,5) (3,6) (3,7) (3,8) (4,5) (4,6)

¯̂∗A (d∗) 0.20 1.89 1.89 1.34 1.12 1.34 0.19 1.34 1.34 1.12

¯̂∗A (d0) 0.09 0.44 0.44 0.33 0.33 0.33 0.00 0.33 0.33 0.33

A ∈ R (4,7) (4,8) (5,6) (5,7) (5,8) (6,7) (6,8) (7,8)

¯̂∗A (d∗) 1.34 0.19 2.58 1.59 1.08 1.08 1.59 1.58

¯̂∗A (d0) 0.33 0.00 0.57 0.41 0.15 0.15 0.41 0.40

5.3.2 Comparison of Controllability with Rotor Failure
A comparison between the optimized design d∗ and a baseline design d0 = [0, 0]>

over the fail set R is shown in Table 5.1. One can see that ¯̂∗A (d∗) > ¯̂∗A (d0) for all
A ∈ R.

Two notable cases are A = (3, 7) and A = (4, 8), where the optimal quality measures
are 0.0 for d0. In these cases, τ) = 0 is on the boundary of MA (d0), and yaw
moment is coupled with roll moment as shown in Figure 5.3a. For instance, it is
not possible to generate a negative yaw moment and a negative roll moment at the

62

(a)MA (d0), A = (3, 7) (b)MA (d∗), A = (3, 7)

Figure 5.3: Moment authorities for the baseline and the optimized designs during
rotor failure A = (3, 7). (a) Note that the origin (marked with a red dot) is on the
boundary. Because of this, generation of roll and yaw moments is coupled. (b)
Independent generation of roll and yaw moments is possible in this case and the
aircraft is null controllable. The axes are not drawn to scale.

same time for the case of A = (3, 7). Indeed, the linear analysis shows that these
cases are not controllable around static hover [116]. In such cases, one may give
up yaw authority and focus on roll control, as is commonly done in the literature,
since roll directly affects position control. However, this may not be a desirable
behavior for some multirotor aircraft, such as in UAM applications. This difficulty
stems from the fact that the two failed rotors have the same rotation direction, and
the aircraft suddenly loses a large amount of its capability to generate yaw moment
in one direction when they fail simultaneously. Furthermore, these rotors are located
on the same side with respect to the body G-axis, and the failure of these rotors
significantly reduces the amount of achievable roll moment in one direction.

The optimized design d∗, on the other hand, ensures that τ) = 0 is in the interior of
MA (d∗) and maintains null controllability of the aircraft after the failure of the same
sets of rotors shown in Figure 5.3b. In this case, tilted rotors generate additional
yaw moment from the body G-axis forces, which compensates for the loss of yaw
moment from rotor failure. As a result, the coupling between roll and yaw moments
is resolved near the origin, and both moments can independently be generated in
positive and negative directions, without having to give up yaw control authority.

63

Figure 5.4: The prototype in flight. The two rotors indicated by dotted circles are
intentionally failed.

5.3.3 Experiments on Prototype Hardware
Experiments are conducted on the prototype aircraft to test the aircraft’s controllability
after rotor failure. We use a Pixhawk flight controller [107] to control the prototype,
with changes made to the open-source firmware to enable custom control allocation
functions obtained by solving (3.44) from Section 3.4.2.

(a)MA (d0), A = (1, 8) (b)MA (d∗), A = (1, 8)

Figure 5.5: Moment authorities for the baseline and the optimized designs during
rotor failure A = (1, 8). Red boxes represent the corresponding ¯̂∗A .

In the experiments, we intentionally fail rotors No.1 and No.8 of the aircraft
(Figure 5.4). The resulting moment sets for d0 and d∗ are shown in Figure 5.5, which
shows that the aircraft has little yaw authority with d0, although it is able to generate
a reasonable amount of roll and pitch moments after the rotor failure. On the other
hand, the aircraft with d∗ is expected to generate a reasonable amount of roll, pitch,
and yaw moments.

In order to compare the null controllability of the prototype between d0 and d∗, we
configured the prototype with both settings across tests. During flight, Euler angles
are perturbed individually through manual remote control. The perturbation is made
in both directions of each Euler angle axis to check the directional dependency of

64

moment generation. We record the evolution of the vehicle’s angular states as well
as its position to see how well the prototype reaches static hover. The experiments
are conducted without changing position and attitude controllers so that the effect of
design change on the flight performance is solely verified.

0 5 10
-15

-10

-5

0

5

10

0 5 10
-2

-1

0

1

2

3

(a) Roll Perturbation

0 5 10 15
-10

-5

0

5

10

0 5 10 15
-2

-1

0

1

2

3

(b) Pitch Perturbation

0 5 10 15 20 25
-100

-50

0

50

100

0 5 10 15 20 25
-2

-1

0

1

2

3

(c) Yaw Perturbation

Figure 5.6: Euler angles and inertial position of the prototype with d0 after perturba-
tions are made in each axis. The prototype is able to track roll and pitch commands
as well as negative yaw commands. However, it started to become unstable at around
C = 10 s in (c) while yawing in a positive direction.

The result of d0 is shown in Figure 5.6. Figures 5.6a and 5.6b show that the
prototype is able to track roll and pitch commands and arrive at static hover once the
perturbations are removed. Regarding yaw, the prototype is able to track negative yaw
command while holding its position; however, yawing in positive direction caused
instability to the prototype due to its limited capability to generate positive yaw
moment, and the prototype is not able to hold its position anymore. This observation
agrees with our discussion in Section 5.3.2, both rotors No. 1 and No.8 were in
charge of generating positive yaw moment and their failure made it difficult for the
prototype to yaw in positive direction.

The result of d∗ is shown in Figure 5.7. As expected, the prototype now remains
null controllable after rotor failure and is able to track all of roll, pitch, and yaw
commands, reaching static hover when the perturbations are removed, drastically
improving over the baseline design.

65

0 5 10 15
-10

-5

0

5

10

0 5 10 15
-3

-2

-1

0

1

2

3

(a) Roll Perturbation

0 5 10 15
-10

-5

0

5

10

0 5 10 15
-3

-2

-1

0

1

2

3

(b) Pitch Perturbation

0 5 10 15
-100

-50

0

50

100

0 5 10 15
-3

-2

-1

0

1

2

3

(c) Yaw Perturbation

Figure 5.7: Euler angles and inertial position of the prototype with d∗ after pertur-
bations are made in each axis. The prototype is able to track roll, pitch, and yaw
commands in both directions.

5.4 Chapter Summary
This chapter presented a novel design optimization method for multirotor aircraft
robust to rotor failures, with the goal of maximizing a quality measure derived from
the notion of null controllability that is related to the aircraft’s ability to reach static
hover. The design procedure was illustrated in detail with the Autonomous Flying
Ambulance model being developed at Caltech’s Center for Autonomous Systems
and Technologies. We compared the controllability of the optimized design with a
baseline configuration and showed that the optimized design was able to maintain
null controllability for the failure cases with which the baseline could not. We
also validated our results with a set of hardware experiments using the prototype
aircraft, and showed that the prototype configured with the optimal design parameters
stabilized its attitude against perturbations in all angular states even after losing two
rotors.

66

C h a p t e r 6

DEEP LEARNING FOR FLIGHT CONTROL

To capture complex aerodynamic interactions without being overly-constrained by
conventional modeling assumptions, we take a machine-learning (ML) approach
to build a black-box force model using Deep Neural Networks (DNNs). However,
incorporating such models into a flight controller faces three key challenges. First,
collecting sufficient real-world training data is difficult, as DNNs are notoriously
data-hungry. Second, due to high-dimensionality, DNNs can be unstable to train and
generate an unpredictable output, which makes the system susceptible to instability
during control loop. Third, DNNs are often difficult to analyze for designing provably
stable DNN-based controllers.

Consider the same dynamics as in Chapter 3 for fixed-wing VTOL. The dynamics
from (3.1) and (3.2) is valid for any 6 DOF rigid body vehicle. High precision position
tracking for aerial vehicles require accurate estimation of forces and moments. In
particular, f) and τ) are typically easy to model and identify beforehand, such
as w) = B)u) (3.39). However, f� and τ� become particularly hard to model
for fixed-wing VTOL aircraft. Complex interactions among rotors, wing surfaces,
and the environments pose challenges for conventional formulation using physics
principles. We will first present prior result from [117] that incorporates DNN
with known vehicle dynamics for control design, then introduce methods to train
controllers for general DNN based dynamical models.

6.1 Dynamics Learning using DNN
We elect to learn the unknown force model using a DNN with Rectified Linear
Units (ReLU) activation. In general, DNNs equipped with ReLU converge faster
during training, demonstrate more robust behavior with respect to changes in
hyperparameters, and have fewer vanishing gradient problems compared to other
activation functions such as sigmoid [118].

67

6.1.1 ReLU Deep Neural Networks
A ReLU deep neural network with ! hidden layers represents the functional mapping
from the input x to the output 5 (x, θ):

5 (x, θ) =W !+1qact

(
W !

(
qact

(
W !−1

(
· · · qact(W 1x) · · ·

))))
, (6.1)

parameterized byDNNweightsθ = {W 1, · · · ,W !+1}, where the activation function
qact(·) = max(·, 0) is called the element-wise ReLU function. ReLU is less
computationally expensive than tanh and sigmoid because it involves simpler
mathematical operations. However, deep neural networks are usually trained by
first-order gradient based optimization, which is highly sensitive on the curvature of
the training objective and can be unstable [119]. To alleviate this issue, we apply the
spectral normalization technique [70].

6.1.2 Spectral Normalization with Specified Lipschitz Constant
Spectral normalization stabilizes DNN training by constraining the Lipschitz constant
of the objective function. Spectrally normalized DNNs have also been shown to
generalize well [120], which is an indication of stability in machine learning.
Mathematically, the Lipschitz constant of a function ‖ 5 ‖Lip is defined as the smallest
value such that

∀x,x′ : ‖ 5 (x) − 5 (x′)‖ ≤ ‖ 5 ‖Lip ‖x − x′‖ .

It is known that the Lipschitz constant of a general differentiable function 5 is the
maximum spectral norm (maximum singular value) of its gradient over its domain
‖ 5 ‖Lip = supx fsn(∇ 5 (x)).

The ReLU DNN in (6.1) is a composition of functions. Thus we can bound the
Lipschitz constant of the network by constraining the spectral norm of each layer.
For linear maps 6(x) =W ;x, the spectral norm is given by

‖6‖Lip = sup
x
fsn(∇6(x)) = sup

x
fsn(W ;) = fsn(W ;).

For ReLU activation function qact(·), the Lipschitz constant is equal to 1. With
inequality ‖61 ◦ 62‖Lip ≤ ‖61‖Lip · ‖62‖Lip, we can find the following bound:

‖ 5 ‖Lip ≤
!+1∏
;=1

fsn(W ;). (6.2)

In order to regulate the Lipschitz constant, we can apply spectral normalization to
the weight matrices in each layer ; during training as

W̄ ; =W ;/fsn(W ;) · W 1
!+1 , (6.3)

68

where W is the intended Lipschitz constant for the DNN. The following lemma bounds
the Lipschitz constant of a ReLU DNN with spectral normalization.

Lemma 6.1. For a multi-layer ReLU network 5 (x, θ), defined in (6.1) without an
activation function on the output layer. Using spectral normalization, the Lipschitz
constant of the entire network satisfies:

 5 (x, θ̄)

Lip ≤ W,

with spectrally-normalized parameters θ̄ = W̄ 1, · · · , W̄ !+1.

Proof. From (6.2), the Lipschitz constant can be written as the product of spectral
norms over all layers. The proof follows from (6.3). �

6.1.3 Constrained Training
Estimating f� boils down to optimizing the parameters θ in (6.1) with a constrained
Lipschitz constant, given a collected data of # entries: input feature x(8) and output
y (8) with 8 = 1, · · · , # .

The optimization problem is stated as

min
θ

#∑
8=1

1
#

y (8) − f (x(8) , θ)

subject to ‖f ‖Lip ≤ W. (6.4)

In our case, y (8) is the observed disturbance forces and x(8) is the observed states and
control inputs. According to the upper bound in (6.2), we can satisfy the constraint by
regulating the spectral norm of the weights in each layer. We use stochastic gradient
descent (SGD) to optimize (6.4) and apply spectral normalization to regulate the
weights. From Lemma 6.1, the trained ReLU DNN has a Lipschitz constant W.

6.2 Flight Control for partial DNN Dynamics
Different from before, let us represent f� in inertia frame here for simplicity. Thus
the position dynamics is now

¤p = v, ¤v = g +Rf) + f� (6.5)

Our controller for 3D trajectory tracking is constructed as a nonlinear feedback
linearization controller whose stability guarantees are obtained using the spectral
normalization of the DNN-based dynamics model. We exploit the Lipschitz property
of the DNN to solve for the resulting control input using fixed-point iteration.

69

6.2.1 Nonlinear Controller with Fixed-point Iteration on DNN
We start from our baseline nonlinear position controller (3.19) in Chapter 3. Using the
methods described in Section 6.1, we define f̂� (x,u)) as the DNN approximation
to the disturbance aerodynamic forces, with x being the partial states used as input
features to the network. We design the total desired rotor force f3 as

f3 = f̄ − f̂�, with f̄ = −g + ¤vA −KEṽ. (6.6)

Substituting (6.6) into (3.1), the closed-loop dynamics would simply become

¤̃v +KE
¤̃v = ε�,

with approximation error ε� = f� − f̂�. Hence from Proposition 3.1, p̃(C) → 0

globally and exponentially with bounded error, as long as ‖ε�‖ is bounded.

Consequently, desired total thrust)̄ and force direction k̂ 5 can be computed as

)̄ = f3 · k̂ 5 , and k̂ 5 = f3/‖f3 ‖ , (6.7)

with k̂ 5 being the unit vector of rotor thrust direction (typically I-axis in multirotors).
This is similar to (3.32) and (3.36), with f3 defined differently based on DNN
approximation f̂�.

We assume the same nonlinear attitude controller (3.28) that uses desired torque τ̄ to
trackR3 (C). In this case, τ� is ignored and we can use solely rotor torque τ) = τ̄ .
Thus from Proposition 3.2, exponential trajectory tracking of a desired attitudeR3 (C)
is guaranteed within some bounded error in the presence of bounded disturbance
torques.

From (3.28) and (3.39), we can relate the desired wrench w) = [)̄ , τ>)]> with the
control signal u) through

B)u) = w) =

[(
f̄ − f̂� (x,u))

)
· k̂ 5

τ)

]
. (6.8)

Because of the dependency of f̂� on u) , the control synthesis problem here is
nonaffine. Therefore, we propose the following fixed-point iteration method for
solving (6.8):

u),: = B
+
)

[(
f̄ − f̂� (x,u),:−1)

)
· k̂ 5

τ)

]
(6.9)

where u),: and u),:−1 are the control input for current and previous time-step in
the discrete-time controller. B+

)
denotes either the inverse or right pseudoinverse

depending on whetherB) is fully or over actuated. Next, we prove the stability of
the system and the convergence of the control inputs in (6.9).

70

6.2.2 Stability Analysis
In order to properly prove the stability of the closed-loop system, we have to
incorporate a discrete-time controller with continuous dynamics. The closed-loop
tracking error analysis provides a direct correlation on how to tune the neural network
and controller parameter to improve control performance and robustness. We first
show that the control input u),: converges to the solution of (6.8) when all states are
fixed.

Lemma 6.2. Define mapping u),: = F (u),:−1) based on (6.9) and fix x:

F (u) = B+)

[(
f̄ − f̂� (x,u)

)
· k̂ 5

τ)

]
. (6.10)

If f̂� (x,u)) is !�-Lipschitz continuous, and fsn(B+)) · !� < 1; then F (·) is a
contraction mapping, and u),: converges to a unique solution of u∗ = F (u∗).

Proof. ∀u1,u2 ∈ U) withU) being a compact set of feasible control inputs; and
given the fixed states as f̄ , τ) and k̂ 5 , then:

‖F (u1) − F (u2)‖ =

B+) (

f̂� (x,u1) − f̂� (x,u2)
)

≤ fsn(B+)) · !� ‖u1 − u2‖ .

Thus, ∃ U < 1, s.t ‖F (u1) − F (u2)‖ < U ‖u1 − u2‖. Hence, F (·) is a contraction
mapping. �

Before continuing to prove the stability of the full system, we make the following
assumptions.

Assumption 6.1. The desired states along the position trajectory p3 (C), ¤p3 (C), and
¥p3 (C) are bounded.

Assumption 6.2. One-step difference of control signal satisfies

u),: − u),:−1

 ≤
^ ‖ṽ‖ with a small positive ^.

Here we provide the intuition behind this assumption. From (6.10), we can derive
the following approximate relation with Δ(·): = ‖(·): − (·):−1‖:

Δu),: ≤ fsn(B+))
(
!�Δu),:−1 + !�Δx:

+ Δ ¤vA,: + _max(KE)Δṽ: + Δτ̄:
)
.

71

Because the update rate of attitude controller (> 100 Hz) and motor speed control
(> 5 kHz) are much higher than that of the position controller (≈ 10 Hz) in practice,
we neglect Δṽ: , Δ ¤vA,: , and Δx: in one update (Theorem 11.1 [95]). Furthermore,
Δτ̄: can be limited internally by the attitude controller. It leads to:

Δu),: ≤ fsn(B+))
(
!�Δu),:−1 + 2

)
,

with 2 being a small constant and fsn(B+)) · !� < 1 from Lemma 6.2. From here,
we can deduce that Δu) rapidly converges to a small ultimate bound between each
position controller update.

Assumption 6.3. The learning error of f̂� (x,u)) over the compact sets x ∈ X,
u) ∈ U) is upper bounded by n< = supx∈X,u) ∈U) ‖ε� (x,u))‖, where ε� (x,u)) =
f� (x,u)) − f̂� (x,u)).

DNNs have been shown to generalize well to sets of unseen data that are from almost
the same distribution as the training set [121], [122]. This empirical observation
is also theoretically studied in order to shed more light on an understanding of the
complexity of these models [120], [123]–[125]. Based on the above assumptions,
we can now present our overall stability and robustness result.

Theorem 6.3. Under Assumptions 6.1 to 6.3, for a time-varying p3 (C), the controller
defined in (6.6) and (6.9) with _min(KE) > ^!� achieves exponential convergence
of ṽ to error ball

lim
C→∞
‖ṽ(C)‖ = n<

_min(KE) − ^!�
with rate _min(KE) − ^!�. p̃ exponentially converges to error ball

lim
C→∞
‖p̃(C)‖ = n<

_min(�) (_min(KE) − ^!�)
(6.11)

with rate _min(�).

Proof. We begin the proof by selecting a Lyapunov function as V(ṽ) = 1
2 ‖ṽ‖

2,
then by applying the controller (6.6), we get the time-derivative ofV:

¤V = ṽ>
(
−KEṽ + f̂� (x: ,u),:) − f̂� (x: ,u),:−1) + ε� (x: ,u),:)

)
≤ −ṽ>KEṽ + ‖ṽ‖

(

f̂� (x: ,u),:) − f̂� (x: ,u),:−1)

 + n<)

.

72

Let _ = _min(KE) denote the minimum eigenvalue of the positive-definite matrix
KE. By applying the Lipschitz property of f̂� Lemma 6.1 and Assumption 6.2, we
obtain

¤V ≤ −2 (_−^!�) V +
√

2Vn<

Using the Comparison Lemma [95], we defineW(C) =
√
V(C) =

√
1/2‖ṽ‖ and

¤W = ¤V/
(
2
√
V

)
to obtain

‖ṽ(C)‖ ≤ ‖ṽ(C0)‖ exp
(
− (_ − ^!�) (C − C0)

)
+ n<

_ − ^!�
.

It can be shown that this leads to finite-gain L? stability and input-to-state stability
(ISS) [126]. Furthermore, the hierarchical combination between ṽ and p̃ results in
limC→∞ ‖p̃(C)‖ = limC→∞ ‖ṽ(C)‖/_min(�), yielding (6.11). �

By designing the controller gainKE and Lipschitz constant !� of the DNN, we can
ensure that _ − ^!� > 0 and achieve exponential tracking within bound.

6.3 Experiments on Quadrotor Drone
We evaluate both the generalization performance of our DNN as well as the overall
control performance of our controller. We perform experiment on the Intel Aero
Drone platform. The physical details of the drone is described in Appendix B.3.
Figure 6.1 shows snapshots of the quadrotor in a landing experiment.

Figure 6.1: Snapshots of Intel Aero Drone during a landing task.

6.3.1 Flight Data Collection and Pre-processing
We collect data by having an expert pilot flying the drone at different heights and
speeds. The collected data consists of sequences of relevant states and control inputs

73

{p, v, q,ω,u) }. We then parse the data to get labels for f� by using the relationship
f� = ¤v − g − 'f) from (3.1) and (3.2), where f) is calculated based on nominal �)
values.

Part I Part II

Figure 6.2: Position trajectory during data collection. Part I (0 to 250 s) contains
constant height maneuvers (0.05 m to 1.50 m). Part II (250 s to 350 s) is dedicated to
random free flight for maximum state-space coverage.

Our dataset is a single continuous trajectory with varying heights and velocities.
The trajectory has two parts shown in Figure 6.2. Intuitively, we would like the
DNN to learn height dependent ground effect on Part I of the trajectory, and other
aerodynamics forces such as drag and rotor interactions on Part II.

6.3.2 Prediction Performance of Spectrally Normalized DNN
From the collected data, we construct a parsed dataset of # total entries

D =

{
[I;v; q;u)] (8) , f (8)�

}
with 8 = 1, · · · , #. (6.12)

The input feature vector x = [I;v; q;u)] ∈ R12, with I, v, q, u) corresponds with
the vehicle’s height above ground-plane, global velocity, quaternion attitude, and
control input. The output is the calculated force f� ∈ R3. The entire dataset is split
into training (60%), test (20%), and validation set (20%) for hyper-parameter tuning.
We train a deep ReLU network f̂� (x,u)) with four fully-connected hidden layers
using PyTorch [127], and use spectral normalization (6.3) to constrain its Lipschitz
constant.

We first compare the near-ground estimation accuracy of our DNN model with an
existing 1D steady-state ground effect model from [56], [128]. The physics-based

74

model predicts the thrust force) of rotors when close to the ground:

)ge(=, I) =
=2

1 − `(38I)2
:) (=). (6.13)

Here = is the rotor RPM, and ` depends on the number and the arrangement of rotors
(i.e ` = 1 for a single rotor, but must be tuned for multiple rotors). :) = �) d34 is
the lumped thrust constant incorporating rotor diameter 3 and air density d. We can
subtract our nominal thrust model)nom = :) (=0)=2 from the total force prediction to
compare it with equivalent DNN prediction 5̂�,I, with =0 being the idle RPM.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Z (m)

0

1

2

3

f a
,z

 (N
)

ReLU Network prediction
Ground effect physical model with different
Ground truth

(a) DNN 5̂�,I compared to the ground effect model vs. height I during steady hover.
Ground truth is from hovering data at different heights.

(b) DNN 5̂�,I vs. RPM at I = 0.2 m and EI = 0 m/s), compared to measured �) from bench
test.

Figure 6.3: Comparison of DNN 5̂�,I with physics-based ground effect model, and
�) from bench test.

Figure 6.3a shows the comparison between the DNN estimated f� and physics-based
ground effect model (6.13) at different heights. We can see that our network achieves
much better prediction accuracy. We further investigate the trend of 5̂�,I with respect
to =, and see a similar trend as bench tested �) shown in Figure 6.3b.

75

Training set
domain

Training set
domain

New
domain

New
domain

Figure 6.4: Heatmaps of learned 5̂�,I versus I and EI. (Left) ReLU network with
spectral normalization. (Right) ReLU network without spectral normalization.

To understand the benefits of spectral normalization, we compared 5̂�,I trained
both with and without spectral normalization as shown in Figure 6.4. Note that
{EI ∈ [−1.0, 1.0] m/s} is covered in our training set, but {EI ∈ [−2.0, 1.0] m/s} is
not. We observe that: (I) Ground effect: 5̂�,I increases as I decreases, which is also
shown in Figure 6.4(a); (II) Air drag: 5̂�,I increases as the drone speeds up and vice
versa; (III) Generalization: the spectrally normalized DNN is smoother and can
generalize to unseen feature domains not included in the training set.

In [120], the authors theoretically show that spectral normalization can provide tighter
generalization guarantees on unseen data, which is consistent with our empirical
observation. We will connect the generalization theory more tightly with our
robustness guarantees in the future.

6.3.3 Near-ground Controller Performance
We implement the controller described in (6.6) and (6.9). For trajectory tracking
tasks near-ground, we denote this method the Neural-Lander. We compared the
Neural-Lander with a Baseline Nonlinear Tracking Controller, similar to (6.6) but
with f̂� ≡ 0, i.e f3 = f̄ . We also implement an integral feedback variation with

vA = ¤p3 − 2�p̃ − �2
∫ C

0
p̃(B)3B.

Though an integral gain can cancel steady-state error during set-point regulation, our
flight results show that the performance can be sensitive to the magnitude of gain,

76

especially during trajectory tracking. This can be seen in the demo video.1

First, we test the two controllers’ performance in take-off and landing tasks. A 1D
trajectory is constructed by commanding position setpoint p3 between [0, 0, 0] and
[0, 0, 1]. Similarly, a 3D trajectory is constructed with some lateral motions by
having setpoints [0, 0, 0] and [0.5,−0.5, 1]. We repeat the experiment 10 times and

final error: zero
final error: 0.13 m

mean L1 error: 0.007 m
mean L1 error: 0.072 m

mean L1 error: 0.021 m
mean L1 error: 0.032 m

Baseline

Baseline

Baseline

Baseline

(a) 1D Landing Trajectory

(a)

(b)

final z error: 0.119m

final z error: zero

(b) 3D Landing Trajectory

Figure 6.5: Baseline Controller and Neural-Lander performance in take-off and land-
ing. Means (solid curves) and standard deviations (shaded areas) of 10 trajectories.

compute the means and the standard deviations of the take-off/landing trajectories.
From Figure 6.5, we conclude that there are two main benefits of our Neural-Lander:
(I) Neural-Lander can control the drone to precisely and smoothly land on the ground
surface while the Baseline Controller struggles to achieve 0 terminal height due to
the ground effect. (II) Neural-Lander can mitigate drifts in the GH-plane, as it also
learns additional aerodynamics effects such as air drag.

Second, we test the Neural-Lander performance with different DNN capacities.
Figure 6.6 shows the necessity of having a deep neural network with more than two
layers, as baseline, zero, and one layer models generated significant errors during
take-off and landing.

Moreover, we observe that Neural-Lander without spectral normalization can even
result in unexpected controller outputs leading to crash, which empirically implies

1Demo video: https://youtu.be/FLLsG0S78ik

https://youtu.be/FLLsG0S78ik

77

0 2 4 6 8 10 12 14 16
time (s)

0.0

0.2

0.4

0.6

0.8

1.0
po

sit
io

n
(m

)

4 layers (error: 0)
1 layer (error: 0.07m)
0 layer (error: 0.08m)
Baseline (error: 0.12m)

Figure 6.6: Neural-Lander performance in take-off and landing with different DNN
capacities. 1 layer means f̂� =Wx + b; 0 layer means f̂� = b.

that spectral normalization is essential in designing the DNN-based controller.

6.3.4 Near-object Controller Performance
To show that our algorithm can handle more complicated environments where
physics-based modelling of dynamics would be substantially more difficult, we
devise a task of tracking an elliptic trajectory very close to a table with a period
of 10 seconds shown in Figure 6.7. The trajectory is partially over the table with
significant ground effects, and a sharp transition to free space at the edge of the table.

We manually pilot the drone in regions close to the table to collect another dataset.
We train a different ReLUDNNmodel with additional input features: f̂� (p, v, q,u)).
Similarly to the set-point experiment, the benefit of spectral normalization can be seen
in Figure 6.7(a), where only the spectrally-normalized DNN exhibits a clear table
boundary. Figure 6.7(b) shows that Neural-Lander outperforms Baseline Controller
for tracking the desired position trajectory in all axes. Additionally, Neural-Lander
exhibits a lower variance in height, even at the edge of the table, as the controller
captures the changes in ground effects when the drone flies over the table.

6.4 General Control for DNN-based Dynamic Model
So far, our main focus has been on dynamical systems of the form

¤x = f0(x) +B0(x)u + f* (x,u), (6.14)

78

with a known affine-in-control component f0(x) +B0(x)u and an unknown general
disturbance f* (x,u). For the flight control described in Section 6.2, the known
inertial dynamics of position and attitude is affine with respect to the thrust signals
u) ; the unknown aerodynamics is approximated via a DNN f̂* (x,u) = f̂� (x,u).
In general, a nonlinear and nonaffine-in-control dynamics system of the form

¤x = f (x,u) (6.15)

would be more appropriate for systems of unknown structures.

6.4.1 General Control for Partial DNN Dynamics
In the case of (6.14), a similar controller to (6.9) for dynamics (6.14) can be derived
to drive state x to reference state r(C). Using a DNN to approximate the unknown
dynamics as f̂ (x,u), we can write the controller as

u: = B0(x)+
(
¤r(C) − f0(x) −Kx̃ − f̂* (x,u:−1)

)
. (6.16)

For fully-actuated or over-actuated systems, we can always findB0(x)B0(x)+ = I .
Substitute (6.16) into (6.14), we can easily show that the closed-loop dynamics are
written as

¤̃x = −Kx̃ +
(
f̂* (x,u:) − f̂* (x,u:−1)

)
+ ε* , (6.17)

where ε* = f* (x,u) − f̂* (x,u) is the approximation error of f* (·). We can state
the stability of the closed-loop system in the following theorem.

Theorem 6.4. Applying controller (6.16) to dynamics (6.14), the state tracking error
x̃ converges exponentially to error ball

lim
C→∞
‖x̃(C)‖ =

supx,u ‖ε* (x,u)‖
_: − ^

f̂*

Lip

, (6.18)

with rate _: − ^

f̂*

Lip, and _: = _min(K).

Proof. Similar to Theorem 6.3, by making similar assumptions that

‖u: − u:−1‖ ≤ ^ ‖x̃‖ ,

and approximation error is ultimately bounded by supx,u ‖ε* (x,u)‖. Using closed-
loop equation (6.17), we can get the exponential convergence behavior of x̃:

‖x(C)‖ ≤ ‖x(C0)‖ exp

(
−

(
_: − ^

f̂*

Lip

)
(C − C0)

)
+

supx,u ‖ε* (x,u)‖
_: − ^

f̂*

Lip

. (6.19)

�

79

From Lemma 6.2, we know that the fixed-point iteration used in (6.16) relies on the
contraction mapping property, that the Lipschitz constant of the function composition
must satisfy

B0(x)+

Lip ·

f̂*

Lip < 1. (6.20)

SinceB0(x) is part of the pre-determined dynamics, (6.20) restricts the Lipschitz of
the unknown dynamics function to be

f̂*

Lip <
1

‖B0(x)+‖Lip
. (6.21)

This is acceptable when the disturbance function happens to possess the same
Lipschitz property

f̂*

Lip = ‖f* ‖Lip. If the nonaffine-in-control term f* (x,u)

exceeds the requirement

f̂*

Lip < ‖f* ‖Lip, then it is likely that supx,u ‖ε* (x,u)‖
becomes significant and poses challenge for trajectory tracking quality.

6.4.2 Learning to Control Full DNN Dynamics
For general dynamic systems ¤x = f (x,u) from (6.15), we can learn a f (x,u)
through data of {x,u}, and represent it with a DNN approximator f̂ (x,u) following
the discussion from Section 6.1. Without the assumptions of linear structures in
dynamics, the nonaffine-in-control problem can be challenging to solve. In [129], a
general solution was proposed by treating ¤u as control input. For a scalar single-input
single-output (SISO) system with G, D ∈ R, the controller that drives the system to
behave as ¤G = −0G is of the form

n ¤D = −sign
(
m 5

mD

) (
5 (G, D) + 0G

)
, with n � 1. (6.22)

However, the resultant controller requires that (a) ¤u changes continuously; (b) n � 1
is a timescale factor that prompts ¤u to evolve arbitrarily fast; and (c) u is closer to the
true solution to equation 5 (G, D) + 0G = 0. For a discrete controller implemented on
a digital computer, a large change rate would require the update frequency to increase
substantially. If the dynamics approximation f̂ (x,u) is done via a DNN, then the
evaluation of mf/mu at a fast rate would require significant computation resources.

For general control design, we elect to use a DNN f̂ (·, θ̂ 5) to approximate dynamics
f (x,u) and another DNN ĉ(·, θ̂2) to represent the controller:

u(C) = ĉ
(
x(C), r(C), ¤r(C), θ̂2

)
. (6.23)

θ̂ 5 and θ̂2 are parameters of the respective networks. The goal for ĉ(·) is such that
when applied to the original dynamics f (x,u), the closed-loop dynamics

¤x = f
(
x, ĉ(x, r, ¤r)

)
(6.24)

80

will guarantee convergence x(C) → r(C).

For learning the dynamics network f̂ (·, θ̂ 5), we record state and control input data,
and process them into sets of feature and label

D 5 =

{[
x(8);u(8)

]
, ¤x(8)

}
with 8 = 1, · · · , #. (6.25)

We then define the following supervised learning problem with a loss function L 5 :

min
θ̂ 5

L 5 =
1
#

#∑
8=1

 ¤x(8) − f̂ (x(8) ,u(8) , θ̂ 5)

 . (6.26)

For learning the controller network ĉ(·, θ̂2), we need it follow a prescribed exponential
convergence using Lyapunov analysis. For tracking error x̃(C) = x(C) − r(C), we
select a Lyapunov functionV(x̃), and derive its estimated derivative as

¤̂V(x, r, ¤r, θ̂ 5 , θ̂2) =
mV
mx̃

[
f̂
(
x, ĉ(x, r, ¤r, θ̂2), θ̂ 5

)
− ¤r(C)

]
. (6.27)

For exponential convergence with rate U > 0, we want the inequality ¤V ≤ −UV to
hold. To fit the network parameter θ̂2, we construct another dataset from the record
as

D2 =

{[
x(8); r(8); ¤r(8)

]}
with 8 = 1, · · · , #. (6.28)

In this case, we will fix the dynamics network parameter θ̂ 5 and define a second
optimization problem:

min
θ̂2

L2 =
1
#

#∑
8=1

qlyap

(
¤̂V
(
x(8) , r(8) , ¤r(8) , θ̂ 5 , θ̂2

)
+ UV

(
x(8) − r(8)

))
, (6.29)

where qlyap(·) is a scalar function that asymmetrically penalizes ¤̂V (8) + UV (8) > 0.
Note that (6.29) does not use recorded control inputs u(8) in training, this is similar
to a off-policy method in reinforcement learning settings.

In practice, we would first train the dynamics network by optimizing the cost from
(6.26) and obtain the parameters θ̂∗

5
, then use the learned f̂ (·, θ̂∗

5
) to get the controller

parameter θ̂∗2 through (6.29). The resultant controller ĉ(·, θ̂∗2) can be applied to
the actual system thereafter. The exact composition of training schedules will be
determined by different use cases. An episodic version of such process is listed in
Algorithm 2, which alternates the training of θ̂ 5 and θ̂2 after each trial episodes. The
data can be randomly sampled and do not have to be sequential because the networks
contain no recurrent formulation.

81

Algorithm 2 Episodic Learning for Dynamics and Control DNNs
Input: state x, control input u, desired state trajectory r(C) and ¤r(C), Lyapunov

functionV(·), replay buffer size #A , number of episodes #4, episode length #C ,
training iterations #; , training batch size #1

Output: network parameters θ̂ 5 and θ̂2
1: Randomly initialize θ̂ 5 and θ̂2
2: Initialize replay buffer R with size #A
3: for episode 8 = 1, · · · , #4 do
4: Randomize initial state x(C1)
5: for time C = 1, · · · , #C do
6: Obtain current x(C) , ¤x(C) , r(C) and ¤r(C)
7: Execute control u(C) = ĉ

(
x(C) , r(C) , ¤r(C) , θ̂2

)
8: Record

[
x(C); ¤x(C); r(C) , ¤r(C) ,u(C)

]
in R

9: end for
10: for iteration 9 = 1, · · · , #; do
11: Sample batch D (9)

5
from R as in (6.25)

12: Run gradient update on θ̂ 5 with loss L 5

(
D (9)

5
, θ̂ 5

)
as in (6.26)

13: end for
14: for iteration 9 = 1, · · · , #; do
15: Sample batch D (9)2 from R as in (6.28)
16: Run gradient update on θ̂2 with loss L2

(
D (9)2 , θ̂2

)
as in (6.29)

17: end for
18: end for
19: return learned parameters θ̂ 5 and θ̂2

6.4.3 Learning to Control from DNN Observer
For realistic settings, it is possible that the actual states x, and the structure of
dynamics f (·) are unknown to us. Instead, we have access to a observed output
vector y. The transformation from x to y can often be represented by an observation
model

y = h(x,u). (6.30)

One approach for learning a controller under this setting would be treating x ≡ y,
and the dynamics would simply becomes f (y,u). When y is high dimensional
(e.g images), it is often advisable to encode it to a lower dimensional representation
instead

x = ôENC(y), (6.31)

given that y contains all information necessary to recover x for proper dynamics
propagation. However, a general formulation is to use an observer to obtain a state

82

estimate x̂. As an example, a PD observer for a general nonlinear system from [130]
has the form

¤̂x = f (x̂,u) −K% (ŷ − y) −K� (¤̂y − ¤y)

ŷ = h(x̂,u), ¤̂y = mh
mx
f (x̂,u)

(6.32)

Similar to state trajectory tracking problems, our objective is to track a output
trajectory by enforcing y → y3 with the tracking error defined as ỹ = y − y3 .
Following the same philosophy of using neural network approximation, we will train
an observer neural network ô(·, θ̂>), an observation model network ĥ(·, θ̂ℎ), and
a slightly different controller network ĉ′(·, θ̂2) to handle output tracking and state
estimation:

¤̂x = f̂ (x̂,u) + ô
(
x̂, ŷ, y, θ̂>

)
(6.33)

ŷ = ĥ
(
x̂,u, θ̂ℎ

)
(6.34)

u = ĉ′(y, y3 , ¤y3 , x̂, θ̂2). (6.35)

Given the recurrent nature of an observer (6.33), we have to utilize sequential
data from continuous trajectory and back-propagation through-time (BPTT) during
training process. We convert the continuous equations from (6.33) to discrete updates
by introducing prior and posterior state estimates x̂−, x̂+. Along a trajectory with
time length #C , we can construct a sequential dataset

D′5 =
{[
y (C);u(C)

]}
with C = 1, · · · , #C , (6.36)

and optimize the following cost function in a recurrent fashion to learn the dynamics
and the observer models:

min
θ̂ 5 ,θ̂>,θ̂ℎ

L′5 =
1
#C

#C∑
C=1

y (C) − ŷ (C) (· · · , θ̂ 5 , θ̂>, θ̂ℎ)

 ,
where ŷ (C) = ĥ

(
x̂(C)− ,u

(C) , θ̂ℎ
)
,

x̂(C)+ = ô
(
x̂(C)− , ŷ

(C) , y (C) , θ̂>
)
ΔC,

x̂(C+1)− = x̂(C)+ + f̂
(
x̂(C)+ ,u

(C)
)
ΔC.

(6.37)

For learning the controller network, we admit a Lyapunov functionV(ỹ). A discrete
version of exponential convergence can be represented as

V
(
ỹ (C+1)

)
− (1 − UΔC) V

(
ỹ (C)

)
≤ 0 (6.38)

83

At each timestep C, the current ỹ (C) = y (C) − y (C)
3

is given but the future ỹ (C+1) has to
be estimated. Again, a sequential dataset is assembled for recurrent learning process

D′2 =
{[
y (C);y (C)

3
; ¤y3 (C);u(C)

]}
with C = 1, · · · , #C . (6.39)

We define the learning problem for controller network on trajectory data as

min
θ̂2

L′2 =
1
#C

#C∑
C=1

qlyap

(
V̂ (C+1) + (UΔC − 1) V

(
ỹ (C)

))
,

where x̂(C)+ = ô
(
x̂(C)− , ŷ

(C) , y (C) , θ̂>
)
ΔC,

û(C) = ĉ′
(
y (C) , y (C)

3
, ¤y3 (C) , x̂(C)+ , θ̂2

)
,

x̄(C+1)− = x̂(C)+ + f̂
(
x̂(C)+ , û

(C)
)
ΔC,

V̂ (C+1) = V
(
ĥ

(
x̄(C+1)− , û(C) , θ̂ℎ

)
− y (C+1)

3

)
,

x̂(C+1)− = x̂(C)+ + f̂
(
x̂(C)+ ,u

(C)
)
ΔC,

ŷ (C+1) = ĥ
(
x̂(C+1)− , û(C) , θ̂ℎ

)
.

(6.40)

In essence, along the trajectory we use the same propagation equations in (6.37)
in order to have proper recurrent estimates x̂(C+1)− and ŷ (C+1) with recorded control
inputs u(C) . On the other hand, we also calculate the actions from controller network
as û(C) , and propagate forward to get the estimated future state x̄(C+1)− and V̂ (C+1) .

Algorithm 3 summarizes the same episodic learning process as Algorithm 2, except
with recurrent structures that require continuous trajectory data. The dimension of x
can be tuned in this case, since we have no knowledge of it beforehand. In principle,
the recurrent structure of the observer network ô(·, θ̂>) can have states x resemble
not only dynamics evolution but also adaptation parameters.

6.4.4 Connection to Reinforcement Learning
Off-policy reinforcement learning methods on continuous action space has some
similarities to our proposed framework. In particular, actor-critic methods such
as Deep Deterministic Policy Gradient (DDPG) from [131] uses neural networks
to approximate &-functions &(x,u, θ̂&) and optimal policies ĉ(x, θ̂2). Using our

84

Algorithm 3 Recurrent Learning for DNN dynamics with Observer
Input: outputy, control inputu, desired output trajectoryy3 (C) and ¤y3 (C), Lyapunov

functionV(·), replay buffer size #A , number of episodes #4, episode length #C ,
training trajectory length #; , training batch size #1

Output: network parameters θ̂ 5 , θ̂2, θ̂> and θ̂ℎ
1: Randomly initialize θ̂ 5 , θ̂2, θ̂> and θ̂ℎ
2: Initialize replay buffer R with size #A
3: for episode 8 = 1, . . . , #4 do
4: Select random initial output y (1)
5: Randomly initialize state estimate x̂(1)− and output estimate ŷ (1)
6: for time C = 1, . . . , #C do
7: Obtain current y (C) ,y (C)

3
, and ¤y3 (C)

8: Run observer x̂(C)+ = ô
(
x̂(C)− , ŷ

(C) , y (C) , θ̂>
)
ΔC

9: Execute control û(C) = ĉ′
(
y (C) , y (C)

3
, ¤y3 (C) , x̂(C)+ , θ̂2

)
10: Propagate state x̂(C+1)− = x̂(C)+ + f̂

(
x̂(C)+ , û

(C)
)
ΔC

11: Update output estimate ŷ (C+1) = ĥ
(
x̂(C+1)− , û(C) , θ̂ℎ

)
12: Record

[
y (C);y (C)

3
; ¤y3 (C);u(C)

]
in R

13: end for
14: Sample batch of trajectories D′(8)

5
of #; × #1 from R as in (6.36)

15: Run gradient update on θ̂ 5 , θ̂>, θ̂ℎ with loss L′5
(
D′(8)

5
, θ̂ 5 , θ̂>, θ̂ℎ

)
as in (6.37)

16: Sample batch of trajectories D′(8)2 of #; × #1 from R as in (6.39)
17: Run gradient update on θ̂2with loss L′2

(
D′(8)2 , θ̂2

)
as in (6.40)

18: end for
19: return learned parameters θ̂ 5 , θ̂2, θ̂>, and θ̂ℎ

notation, DDPG alternates between the following optimizations:

min
θ̂&

L& =
1
#

∑
8

(
A (8) + W&

(
x(8+1) , ĉ(x(8+1) , θ̂′2), θ̂′&

)
−&

(
x(8) ,u(8) , θ̂&

))2
,

(6.41)

max
θ̂2

JD =
1
#

∑
8

&

(
x(8) , ĉ(x(8) , θ̂2), θ̂&

)
. (6.42)

DDPG and other actor-critic algorithms first use (6.41) to learn optimal action value
functions from past data, then optimize policies (i.e controllers). In contrast, our
method learns the dynamics of state transition functions, and relies on a pre-selected
Lyapunov functionV(·) to replace optimality.

85

For example, the &-function for linear quadratic regulator (LQR) problems is a
particular Control Lyapunov Function (CLF). Loosely speaking, we are fixing the
structure of our&-function by selectingV(·) using knowledge of control theory, and
adapt a CLF through learning the dynamics f̂ (x,u). Both our method and DDPG
employ controller in the forms of neural networks ĉ(·, θ̂2). Without the asymmetric
penalty function qlyap(·), (6.29) and (6.40) is equivalent to (6.42) if we treat

&

(
x(8) , ĉ(x(8) , θ̂2), θ̂&

)
≡ V

(
x(8) + ΔCf̂

(
x(8) , ĉ(x(8) , θ̂2, θ̂ 5)

))
. (6.43)

Without loss of generality, we set r(C) ≡ 0. In summary, a &-function learns a
general value function from reward data; and a Lyapunov function is tailored toward
the cost of driving x(C) → r(C) or y(C) → y3 (C).

6.5 Chapter Summary
In this chapter, we presented a deep learning-based nonlinear controller with
guaranteed stability for improved flight performance, and elaborated to general
DNN controller and observer formulation for any nonlinear dynamics. With pre-
collected flight data, the spectrally normalized ReLU DNN was able to estimate
unknown residual forces with a specified Lipschitz constant. Compared to previous
physics-based methods, our DNN learned from coupled aerodynamics and vehicle
dynamics to provide more accurate estimates. We also provided rigorous theoretical
analysis of our method and guarantee the stability of the controller, which implied
generalization to unseen domains. Compared to baseline control methods, our DNN-
based controller was able to significantly improve tracking accuracy in previously
challenging tasks such as take-off, landing, and flying near large objects. When
residual disturbance within dynamics became substantial, we proposed a general
deep learning framework that incorporated controller and observer networks. The
method used DNNs for all function approximators. It could potentially regulate any
nonaffine-in-control systems on feasible reference trajectories. This novel approach
shared resemblance to off-policy RL methods, but was tailored particularly toward
control settings.

86

(a)

(b)

table

desired trajectory

Mean X error

Mean Y error

Mean Z error

Z variance

0.079m

0.052m

0.027m

0.014m

0.126m

0.061m

0.153m

0.026m

Figure 6.7: Generalization and control performance during near-object tasks. (a)
Heatmaps of learned 5̂�,I vs. G and H, with other inputs fixed. (Left) ReLU network
with spectral normalization. (Right) ReLU network without spectral normalization.
(b) Tracking performance and statistics.

87

C h a p t e r 7

ACTUATION DELAY COMPENSATION

When actuator measurements are available, it is straightforward to include the actuator
dynamics in the full system control design and adjust for the additional transport
delay. In cases where such measurements are inaccessible, actuator observers can
be constructed. This is common in applications such as multirotor control when
delays exist in motor speed, but output rotation may not be available [132], [133].
Without the assumption of a continuous control signal, we resolve to use hybrid
stability analysis in place of Lyapunov-Krasvoskii approach. Similar methods have
been employed to show that input-to-state (ISS) stable systems inherit robustness
against effects of discrete sampling or reasonable actuation delays [134]–[136]. We
present methods from [137] in this chapter to account for various types of delay
during actuation.

7.1 Problem Formulation
7.1.1 Nonautonomous Dynamics of Trajectory Tracking
Consider the system described by nonlinear and nonautonomous dynamics of the
form

¤x = f (x,η, C) (7.1)

where x ∈ R= is the =-dimensional state, and η ∈ R< is the <-dimensional
actuator input. Given a smooth, time-prescribed, feasible reference trajectory r(C),
along with the corresponding reference control η∗(C), we define the state error as
x̃(C) = x(C) − r(C) corresponding dynamics

¤̃x = g(x̃,η, C). (7.2)

g(x̃,η, C) = f (x̃ + r(C),η, C) − ¤r(C) is transformed from (7.1). Without loss of
generality, we will focus our analysis on system (7.2) in this paper. We also assume
that r(C) is feasible for (7.1) with η∗(C) that guarantees f (r(C),η∗(C), C) = ¤r(C).
Therefore, along r(C) we have

0 = g(0,η∗(C), C). (7.3)

Additionally, we make the following assumptions:

88

Assumption 7.1. The function f (·) is Lipschitz continuous on compact sets with
constant ! 5 . The trajectory r(C) is C2 smooth with bounded derivatives. Thus it
follows that g(·) is Lipschitz continuous on compact sets with constant !6.

Assumption 7.2. The full state vector x is observable, the analytical form of r(C)
and its derivatives are known, but η cannot be measured directly.

Assumptions 7.1 and 7.2 are not overly restrictive. A wide class of dynamic systems
possess these properties. The unavailability of measuring η is intentional, and that
variation of our method can compensate for delay in η without its feedback.

7.1.2 Exponentially Stabilizing Control for Undelayed System
Suppose a feedback controller of the formη = η̄ (x̃(C), C) has been designed, such that
when applied to (7.2), the closed-loop system ¤̃x = g

(
x̃, η̄(x̃, C), C

)
is exponentially

stable. By the Converse Lyapunov Theorem [95], there exists a smooth Lyapunov
functionV(x̃, C) such that

21 ‖x̃‖2 ≤ V(x̃, C) ≤ 22 ‖x̃‖2 (7.4a)
mV
mC
+ mV
mx̃
g(x̃, η̄, C) ≤ −23 ‖x̃‖2 (7.4b)

mVmx̃

 ≤ 24 ‖x̃‖ . (7.4c)

Likewise, we assume the smoothness of the controller function:

Assumption 7.3. The function η̄(·) is Lipschitz continuous on compact sets with
constant !η̄.

We can differentiate η̄(x̃, C) and use (7.2) to get

¤̄η(x̃,η, C) = mη̄
mx̃
g(x̃,η, C) + mη̄

mC
. (7.5)

Based on Assumption 7.3, it can be shown that ¤̄η(x̃,η, C) is also Lipschitz continuous
on compact sets, and we define its Lipschitz constant as ! ¤̄η.

7.1.3 Delay in Systems with Sample-based Control
In practice, control input η(C) lags behind the actual command signal D(C) generated
by a sample-based control system. We choose to describe the combined delay as a
sample-based first-order plus dead time (FOPDT) model defined between sample
interval C ∈ [C′

8
, C′
8+1):

¤η(C) = −�η(C) + �u′(C), u′(C) = u(C′8 − Δ) (7.6)

89

Table 7.1: Summary of proposed control methods for delay compensation

Baseline (7.4) η̄ (x̃(C), C)

Actuator Delay (7.9) η̄′(x̃,η, C) = η̄(x̃, C) + �−1 ¤̄η(x̃,η, C)

Observer-based (7.13)
η̄′′(x̃, η̂, C) = (I − �−1Γ)η̂ + �−1Γη̄(x̃, C)

+ �−1 ¤̄η(x̃, η̂, C)

Predictive (7.21) η̄′′
(
ẑRK(C8 + Δ), C8 + Δ

)
Truncated (7.30) η̄′′FO(C8 + Δ) = η̄(C8) + (�

−1 + Δ) η̄(C8)−η̄(C8−1)
)B

with C′
8
= C8 + Δ being the time at which the actuator received the control signal

computed from samples at C8, and � � 0 is a diagonal matrix whose entries are rates
of convergence of η. The signal generated by the controller u(C − Δ) is delayed by Δ
when it is received by the actuator as u′(C). Figure 7.1 illustrates such a process at
sample time C8: Δ2 is the computation delay, which is the time needed to compute
a control signal; ΔB is the combined system delay in other parallel processes (e.g
network latency, downstream process, etc.). We express total transport delay as
Δ = Δ2 + ΔB.

Figure 7.1: Timeline of periodic control with computation, system, and actuator
delays. At every C8, the controller begins computing a new command, D(C8), which
takes Δ2 to calculate and an additional ΔB to be received and applied by the actuators.

7.2 Delay Compensation Control
We first devise a control that compensates for first-order dynamic delay; then we
introduce a general class of predictive controllers with a numerical integration scheme

90

to account for large transport delays. The stability of the combined method will
be analyzed under discrete sampling and integration. A summary of the proposed
methods is shown in Table 7.1.

7.2.1 Derivative Compensation for First-order Delay
Consider the case with only first-order delay when η̄(x̃, C) is naively applied to
u′ = η̄(x̃, C) in (7.6), the combined closed-loop system for actuation error η̃ = η − η̄
becomes

¤̃η = −�η̃ − ¤̄η(x̃, C), (7.7)

which can be shown using the Comparison Lemma [95] that

‖η̃(C)‖ ≤ ‖η̃(C0)‖ 4−_(C−C0) +
1
_

sup
x̃,C

 ¤̄η(x̃, C)

 (7.8)

with _ = _min(�) being the minimum first-order gain of the actuators. Thus the
actuation error ‖η̃(C)‖ converges exponentially to a bounded region determined
by

 ¤̄η(x̃, C)

, which is affected by the smoothness of trajectory as seen in (7.5).
We propose to extend the original controller with command derivative feedback to
overcome such deficiency.

Theorem 7.1. With system defined in (7.2) and (7.6), and controller η̄(x̃, C) that
satisfies (7.4), the augmented controller

u′ = η̄′(x̃,η, C) = η̄(x̃, C) + �−1 ¤̄η(x̃,η, C) (7.9)

exponentially stabilizes the closed-loop systems (7.2) and (7.7).

Proof. We choose a candidate Lyapunov function V1 = V + U ‖η̃‖2, where V is
from (7.4) and U > (22

4!
2
6)/(823_). Using (7.4), (7.6), and (7.9), we differentiateV1

with respect to C and obtain

¤V1 =
mV
mC
+ mV
mx̃

(
g(x̃,η, C) ± g(x̃, η̄, C)

)
+ 2Uη̃> ¤̃η

≤ −23 ‖x̃‖2 +
mV
mx̃

(
g(x̃,η, C) − g(x̃, η̄, C)

)
+ 2Uη̃>

(
− �η + �u′ − ¤̄η

)
≤ −23 ‖x̃‖2 + 24!6 ‖x̃‖ ‖η̃‖ − 2U_ ‖η̃‖2

≤ −
[
‖x̃‖
‖η̃‖

]> [
23 −24!6/2

−24!6/2 2U_

]
︸ ︷︷ ︸

K1

[
‖x̃‖
‖η̃‖

]

≤ −2′3 ‖θ‖
2 (7.10)

91

with θ = [x̃; η̃] being the combined error vector,K1 � 0, if U > (22
4!

2
6)/(823_),

and 2′3 = _min(K1). Furthermore, let 2′1 = min{21, U} and 2′2 = max{22, U}, so we
can get 2′1 ‖θ‖

2 ≤ V1 ≤ 2′2 ‖θ‖
2. Consequently,

‖θ(C)‖ ≤

√
2′2
2′1
‖θ(C0)‖ exp

(
−
2′3

22′2
(C − C0)

)
,

which proves that [x̃; η̃] converges exponentially with rate 2′3/(22
′
2). �

Remark 7.1. Equivalently, if ¤̃x is available through direct measurement or numerical
differentiation, then

¤̄η(x̃, ¤̃x, C) = mη̄
mx̃
¤̃x + mη̄

mC
(7.11)

and controller (7.9) can be implemented without η feedback. Nevertheless, the rate
of convergence is limited by _ of the underlying actuators.

7.2.2 Improved Delay Compensation with Actuator Observer
An actuator-observer is needed if we were to increase the convergence rate on η̃
beyond �. We define η̂ ∈ R< to be the estimation of η, and the observer error is their
difference η4 = η̂ − η. In this work, we assume that an observer with the following
property is available.

Assumption 7.4. An η observer can be designed such that the closed-loop dynamics
of estimation error satisfies

¤η4 = −
(x̃, C)η4, (7.12)

where
(x̃, C) is always positive definite. We can define its minimum and maximum
eigenvalues as l = infx̃,C _min
(x̃, C), l = supx̃,C _max
(x̃, C).

A trivial observer of such type is ¤̂η = −�η̂ + �u′, since the first-order delay is
a stable system. However, if we want to increase the rate of convergence of η̃, it
would be favorable to have l > _. With the availability of the measurement stated
in Assumption 7.2, a reduced-order Luenberger observer for a linear system or a
contraction-based PD observer for a nonlinear system [130] can be utilized.

The observer-based delay compensation controller that increases the overall rate of
convergence is stated as follows.

Theorem 7.2. With the system defined in (7.2) and (7.6), and controller η̄(x̃, C) that
satisfies (7.4), the augmented controller that incorporates the estimated actuator

92

input

u′ = η̄′′(x̃, η̂, C)
= (� − �−1Γ)η̂ + �−1Γη̄(x̃, C) + �−1 ¤̄η(x̃, η̂, C) (7.13)

exponentially stabilizes the closed-loop systems (7.2) and (7.7) with an increased
rate of convergence than the controller (7.9).

Proof. Similarly to Theorem 7.1, we select a candidate Lyapunov function V2 =

V + U ‖η̃‖2 + V ‖η4‖2. Taking time-derivative and substituting in (7.4), (7.6), (7.12),
and (7.13), we get the following relationship after some simplifications:

¤V2 = ¤V + 2Uη̃> ¤̃η + 2Vη>4 ¤η4

≤ −

‖x̃‖
‖η̃‖
‖η4‖


> 

23 −24!6/2 0
−24!6/2 2UW −Ud

0 −Ud 2Vl

︸ ︷︷ ︸
 2


‖x̃‖
‖η̃‖
‖η4‖


≤ −2′′3 ‖z‖

2 . (7.14)

We define the combined error vector z = [x̃; η̃;η4], constants W = _min(Γ) and
d = _max(Γ − �). If we choose U and V such that

U > (22
4!

2
6)/(823_)

V >
223U

2d2

l(823UW − 22
4!

2
6)
,

then we can guarantee 2 � 0 and define 2′′3 = _min(2). Letting 2′′1 = min{21, U, V},
2′′2 = max{22, U, V}, and consequently 2′′1 ‖z‖

2 ≤ V2 ≤ 2′′2 ‖z‖
2, we obtain

‖z(C)‖ ≤

√
2′′2
2′′1
‖z(C0)‖ exp

(
−
2′′3

22′′2
(C − C0)

)
,

which proves that [x̃; η̃;η4] converges exponentially with rate 2′′3/(22
′′
2) �

Remark 7.2. Although the overall rate of convergence is improved with the intro-
duction of the observer (7.12), tracking performance is now tied with the estimation
error η4, which will be affected by sensor noise or model error in practice.

Remark 7.3. When setting Γ = Λ, (7.13) reduces to (7.9), and the dependence on η̂
is dropped. Thus we can treat Theorem 7.1 as a special case of Theorem 7.2.

93

7.2.3 Numerical Predictive Control under Periodic Sampling
Starting with the continuous time formulation from Theorem 7.2, we propose to
extend the controller with predicted future states to account for transport delays. In
the literature (e.g, [74]), predictors are often treated as continuous integration of
dynamics from the current state:

x̂(C + Δ) = x(C) +
∫ C+Δ

C

f (x̂(B),u(B − Δ), B)3B.

Instead, we consider a predictor in the form of discrete numerical integration. Our
controller is activated periodically at sample times C8. A general fixed step-size
Runge-Kutta (RK) integration method is then used to predict state and actuator input
at C′

8
= C8 + Δ [

x̂RK(C′8)
η̂RK(C′8)

]
= FRK (x(C8), η̂(C8), C8,Δ, ℎ, ?) . (7.15)

We denote FRK(·) as the integration scheme, with accuracy of order ?, stepsize ℎ,
and time horizon Δ.

For ease of analysis, we vertically stack z = [x̃; η̃;η4], and rewrite η = η̄(x̃, C) + η̃.
Then we have

¤z =


g (x̃,η, C)
−�η̄(x̃, C) − �η̃ − ¤̄η(x̃,η, C) + �u

−
(x̃, C)η4

 = b (z,u, C). (7.16)

Furthermore, we limit ? ∈ {1, 2, 3, 4} and make the following assumption about the
bound on the integration error.

Assumption 7.5. The integration error from C8 to C8 + Δ is bounded by �RK as

‖ẑRK − z‖C ′
8
≤ �RK =

"ℎ? + F
!RK

(
4!RKΔ − 1

)
. (7.17)

!RK is the Lipschitz constant of the one-step RK function [138]; F is the upper bound
on model error; and " is a constant related to the smoothness of b (·).

Before stating the result for the predictive controller, we define the following useful
quantities based on the Lipschitz constants of g(·), η̄(·) and ¤̄η(·):

` =
√

3 max
{
d + ! ¤̄η, _!η̄ + ! ¤̄η (1 + !η̄)

}
(7.18)

a =
√

3 max
{
_!η̄ + (!6 + ! ¤̄η) (1 + !η̄), (7.19)

_ + ! ¤̄η + !6, l + ! ¤̄η
}

a0 =
√

3 max
{
!6 (1 + !η̄), W + !6, d + l

}
. (7.20)

94

The numerical predictive controller under periodic sampling can be stated as follows.

Theorem 7.3. At C = C8, prediction ẑRK(C8 + Δ) can be estimated from numerical
integration with (7.15). The predictive controller is defined from (7.13) as

u(C8) = η̄′′
(
ẑRK(C8 + Δ), C8 + Δ

)
. (7.21)

Suppose the sampling period satisfies

)B <
1
a

ln
[
1 +

(
a

a0

)
2′′3

2U`

]
. (7.22)

Then ∃ 0 < X1 ≤ X2 such that the overall system (7.16) is exponentially stable for
X1 ≤ ‖z‖ ≤ X2 under (7.21).

Proof. We start from the same Lyapunov candidate V2(I) as in Theorem 7.2.
DifferentiatingV2 with respect to time and substituting in (7.16) and (7.21), we get
the following inequalities after simplification

¤V2 = ¤V + 2Uη̃> ¤̃η + 2Vη>4 ¤η4

≤ −2′′3 ‖I‖
2 + 2U` ‖I‖

{

ẑRK(C′8) − z(C′8)

+

z(C) − z(C′8)

 + (1/√3)

C − C′8

 }
.

We can express z(C) = z(C′
8
) +

∫ C

C ′
8

b
(
z(B),u(C8), B

)
3B using (7.16) and (7.21). The

inequality can be reduced to

z(C) − z(C′8)

 ≤ `

ẑRK(C′8) − z(C′8)

 (C − C′8)

+ a0

z(C′8)

 (C − C′8) + 1

2
√

3
(C − C′8)2

+
∫ C

C ′
8

a

z(B) − z(C′8)

 3B

with (7.3), (7.20), and Assumption 7.1. We can apply Grönwall’s lemma to the above
inequality; and (7.17) to

ẑRK(C′8) − z(C′8)

:

¤V2 ≤ −2′′3 ‖I‖
2 + 2U` ‖I‖

{
�RK

+
(
a0
a

z(C′8)

 + `a �RK +
1
√

3a

) (
4a(C−C

′
8
) − 1

) }
.

95

Thus, for any sampling period that satisfies (7.22), the following equation holds

)B =
1
a

ln
[
1 +

(
a

a0

)
q2′′3
2U`

]
(7.23)

with q ∈ (0, 1). We can define n such that 0 < q <
√
q < n < 1. Therefore, for any

X ≥
2U`a0
2′′3

�RK + (`�RK + 1√
3
)q

a0(n2 − q)
, (7.24)

it can be shown using (7.23) that

2U`
n2′′3

[
�RK +

1
a

(
a0X + `�RK +

1
√

3

) (
4a)B − 1

)]
≤ nX

and we can state that if ∀ ‖I‖ ∈ [nX, X], we have ¤V2 ≤ −2′′3 (1− n) ‖I‖
2, and therefore

‖z(C)‖ ≤

√
2′′2
2′′1
‖z(C0)‖ exp

(
−
2′′3 (1 − n)

22′′2
(C − C0)

)
,

which guarantees exponential convergence with rate 2′′3 (1−n)/(22
′′
2). Setting X1 = nX

and X2 = X completes the proof. �

Remark 7.4. From (7.24), it can be shown that nX is lower bounded by

nX ≥
2U`a0
2′′3

�RK +
(
`�RK + 1√

3

)
q

a0(1 − q)
. (7.25)

This gives an asymptotic region within which exponential convergence is not proven
sufficiently. As q→ 0, we get its continuous limit 2U`�RK/2′′3 .

Remark 7.5. The limit for sampling time in (7.22) is a sufficient condition that
considers the worst case of which sampling error

z(C) − z(C′
8
)

 can grow during

C ∈ [C′
8
, C′
8+1]. In reality, a sampling period higher than the bound can still yield

reasonable stability, as seen in event-triggered controllers [134].

7.2.4 Effects of Numerical Prediction Scheme on Delay
In the case of our proposed predictive controller (7.21), we postulate that Δ2 is
mainly affected by computation of the predictor (7.15) and the controller η̄′′(·). The
predictor integrates (Δ2 + ΔB)/ℎ steps of target function using RK method of order
? ∈ {1, 2, 3, 4}, which requires the evaluation of target function ? times. Thus Δ2
can be written as

Δ2 =
Δ2 + ΔB
ℎ
(?� 5 + �0) + �η,

96

and � 5 , �η, and �0 are the respective times for evaluating f (·), η′′(·), and other
related numerical operations. In turn, Δ2 can be solved as

Δ2 =
ℎ�η + ΔB (?� 5 + �0)

ℎ − ?� 5 − �0
. (7.26)

It is clear that ℎ > ?� 5 +�0 is required for feasible Δ2, and that ℎ cannot exceed the
total delay (i.e ℎ ≤ Δ2 + ΔB). Furthermore, Δ2 needs to fit within sampling period)B.
We can derive that ℎ has to fall within the range:

ℎ ∈
[
)B + ΔB
)B − �η

(?� 5 + �0), ΔB + �η + ?� 5 + �0

]
. (7.27)

For a feasible ℎ to exist, it follows directly from the above equation that)B ≥
�η + ?� 5 +�0. Δ can thus be represented in terms of ℎ, ?, and other pre-determined
quantities:

Δ = (ΔB + �η)
ℎ

ℎ − ?� 5 − �0
. (7.28)

Combining (7.17) and (7.28), we obtain

�RK =
"ℎ? + F
!RK

(
4
!RK

ℎ (ΔB+�η)
ℎ−?� 5 −�0 − 1

)
, (7.29)

which admits a minimum within (7.27). Since the prediction error and �RK affect
the overall convergence rate of the system, a choice of ℎ and ? will directly affect the
controller performance.

7.2.5 Truncated Predictive Control with Numerical Derivative
We can also treat �−1 as the diagonal matrix of time constants for the actuator
dynamics. In many cases, �−1, Δ, and)B are on the same small timescale, i.e
O(�−1) ∼ O(Δ) ∼ O()) � 1. Using the 1st-order RK method (Euler’s method)
on (7.9) and applying a backward difference method to ¤̄η(C8), we can write the RK
predictive controller as

η̄′′(C′8) = η̄(C8) + (�−1 + Δ) ¤̄η(C8) + O(�−1Δ)
= η̄(C8) + O()2

B)

+ (�−1 + Δ)
[
η̄(C8) − η̄(C8−1)

)B
+ O()B)

]
= η̄(C8) + (�−1 + Δ)

[
η̄(C8) − η̄(C8−1)

)B

]
+ O()2

B)

97

where for simplicity we denote η̄′′(C′
8
) = η̄′′

(
ẑRK(C′8), C′8

)
, η̄(C8) = η̄(x̃(C8), C8), and

¤̄η(C8) = ¤̄η
(
x̃(C8), ¤̃x(C8), C8

)
. We can thus define the first-order truncation of the

predictive controller:

η̄′′FO(C
′
8) = η̄(C8) + (�−1 + Δ) η̄(C8) − η̄(C8−1)

)B
, (7.30)

which has a truncation error of O()2). The truncated controller (7.30) avoids the
evaluation of ¤̄η(·) and in turn g(·). Similarly to (7.9), it also avoids the need for η̂
and therefore saving computation on the observer as well. As will be seen in later
analysis, (7.30) performs favorably compared to more complex methods for a certain
class of systems.

7.3 Numerical Analysis
In this section, we conduct numerical experiments on a delayed double integrator
example running our proposed control methods described in Section 7.2.

7.3.1 Example: Delayed Double Integrator
We consider trajectory tracking for simple double integrator dynamics, with delayed
force actuation:

¤x1 = x2, ¤x2 = 1η1, ¤η1 = −_η1 + _u(C − Δ). (7.31)

Let the scalar states x1 and x2 denote position and velocity, respectively. 1 is a
known scalar actuation multiplier, and η1 is the actuator input with first-order delay
_. The goal is to track x1 → r(C) and x2 → ¤r(C). The error dynamics are

¤̃x1 = x̃2, ¤̃x2 = 1η1 − ¥r(C). (7.32)

We use a baseline feedback linearizing controller of the form:

η̄1(x̃, C) = 1−1
(
¥r(C) − :1x̃1 − :2x̃2

)
(7.33)

which can be proven to exponentially stabilize the undelayed system. Although the
base dynamics are relatively simple, the addition of an aggressive trajectory r(C),
large delays, and discrete sampling will pose difficulties for the baseline controller.

Table 7.2: Baseline parameters for delayed double integrator

1 _ :1 :2 � 5 �0 �η

1.0 5.0 1.0 2.0 0.005 0.0 0.025

98

We will use this example to study different effects on overall performance from
various components of our proposed methods. Table 7.2 lists related parameters for
the system that are set or calculated.

7.3.2 Effects of Computation Delay on Control Performance

1

2

(∆s = 0.2,w = 0.0)

RK1
RK2
RK3
RK4

(0.2,0.2) (0.2,0.5)

0.05 0.10

1

2

(0.3,0.0)

0.05 0.10

(0.3,0.2)

0.05 0.10

(0.3,0.5)

0.0 0.2 0.4 0.6 0.8 1.0
Computation Delay ∆c [s]

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

lE
rr

or
fo

rT
=

0.
1

[s
]

(a) Sample period fixed at)B = 0.1 s, ΔB ∈ {0.2, 0.3}s across rows, and F ∈ {0.0, 0.2, 0.5}
across columns.

0.05 0.10

1

2

(w = 0.0)

RK1
RK2
RK3
RK4

0.05 0.10

(0.2)

0.05 0.10

(0.5)

0.0 0.2 0.4 0.6 0.8 1.0
Compuatation Delay ∆c [s]

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

lE
rr

or
fo

rT
=

∆ c

(b) Varying sample period)B = Δ2 , with F ∈ {0.0, 0.2, 0.5}

Figure 7.2: Theoretical Total error bound vs. computation delay Δ2 for different
system delay ΔB and model error F. (Top) Fixed control period)B = 0.1s. (Bottom)
Variable control period)B = Δ2.

From the Lyapunov analysis in Theorem 7.2, together with (7.29), we can predict
trade-offs between integration schemes (? and ℎ) and system stability by plotting

99

0.04 0.06 0.08 0.10
Computation Delay ∆c [s]

0.04

0.05

0.06

0.07

R
M

SE

T = 0.1 [s]

RK1
RK2
RK3
RK4

0.04 0.06 0.08 0.10
Computation Delay ∆c [s]

T = ∆c

Figure 7.3: Simulation tracking RMSEs for different integration schemes and step
sizes. (Left) Fixed sample period)B = 0.1 s. (Right) Variable sample period)B = Δ2.

the Lyapunov derivative error bound. In Figure 7.2a, we fix the sample period
)B = 0.1 s and examine the variations of system delay ΔB and model error F.
The total error decreases with increasing Δ2 for small F, implying the benefit of
maximizing integration accuracy as long as Δ2 ≤)B. On the other hand, with higher
F, we observe a reversal in trend, where increasing numerical complexity no longer
decreases total error, and computation delay Δ2 should be minimized for better
results. In Figure 7.2b, we adapted the sampling period to the computation delay
)B = Δ2. These results show that faster computation is strongly favored. Moreover,
Euler’s method outperforms other higher order RK’s when F is high. Results from
numerical simulation corroborates our conjecture as shown in Figure 7.3. We observe
similar Δ2 versus steady state tracking root-mean-square-error (RMSE) patterns
when compared to Figure 7.2.

7.3.3 Control Performance Benchmarks
We conduct comparisons of our proposed controllers, η̄′′(·) and η̄′′FO(·) (given in
(7.21) and (7.30), respectively) to the baseline controller η̄(·) and a reasonably
tuned linear PD controller. The trajectory considered is a sine function of varying
frequency. For each test, we let the system run for a horizon of 20 s and then measure
the steady-state RMSE. In Figure 7.4a, we simulate the system with different system
delays, ΔB. Throughout the test, the predictive controller η̄′′(·) maintains a low level
of RMSE, even though it is computationally more complex and has a higher Δ2
than the others. As discussed in Section 7.2.5, the truncated control η̄′′FO(·) is a
first order approximation of the full predictive control scheme. It performs well for
ΔB < 0.4 s, but fails for larger values. The PD control maintains stability for most of
the range, but has worse RMSE than η̄′′(·). Not surprisingly, the naively applied

100

baseline control η̄(·) takes high error and becomes unstable even for moderate ΔB.
Figure 7.4b shows almost identical rankings in RMSEs. It is interesting to note that
η̄′′FO(·) outperforms its more sophisticated counterpart η̄′′(·) for small delay, likely
due to significant reduction in computation cost.

To characterize the performance of η̄′′FO(·) on different types of delay, we put it
through varying combinations of _ and Δ. Figure 7.5 shows that the truncated
controller is delay-type agnostic when Δ + 1/_ is moderate, and has trouble dealing
with larger Δ. This is expected since the assumption of O(1/_) ∼ O(Δ) breaks down
for large Δ.

0.0 0.2 0.4 0.6
∆s [s]

0

1

2

3

R
M

SE

PD
Baseline
Truncated
Predictive

(a) RMSE vs. system delay ΔB.

0.2 0.4 0.6
r(t) Frequency [Hz]

0.0

0.2

0.4

0.6

0.8

1.0

R
M

SE

(b) RMSE vs. r(C) frequency.

Figure 7.4: Comparisons of PD, baseline η̄(·), truncated η̄′′FO(·), and full predictive
control η̄′′(·). RMSE is steady-state root-mean-square-error.

7.4 Chapter Summary
We proposed a control augmentation strategy that transformed exponentially-
stabilizing controllers for an undelayed system to a class of sample-based, predictive
controllers with numerical integration. The predictive controllers exponentially
stabilized the corresponding sample-based system with FOPDT delay, and varied
computation complexity for different performance requirements. We performed
hybrid stability analysis on the overall system, which provided insights on how
features such as sampling period and integration step and order affected output
stability. We demonstrated the efficacy of our methods through numerical analysis
of our theoretical bounds and simulations of a delayed double integrator system
using our proposed control methods. Our analysis demonstrated the often overlooked
importance of computation delay in control design. In conclusion, our predictive
controller and its truncated variants provided an easily applicable improvement for
discrete control tasks in different computation, network, and dynamic environments.

101

0.2 0.4 0.6 0.8 1.0
Combined Delay

0.2

0.4

0.6

0.8

1.0

R
at

io
of

fir
st

-o
rd

er
de

la
y

∆ = 0.2

∆ = 0.4

∆ = 0.6

0.8

RMSE and Transport delay ∆

0.10

0.15

0.20

0.25

Figure 7.5: Contour of RMSE and transport delay Δ for truncated predictive control
η̄′′FO(·) (7.30). The horizontal axis is the combined delay (Δ + 1/_) in seconds. The
vertical axis is its ratio of first-order delay 1/(_Δ + 1).

102

C h a p t e r 8

CONCLUSION

Efficient vertical and long-range flight capabilities were indispensable for Urban Air
Mobility (UAM) applications. Although VTOL rotorcraft and fixed-wing aircraft
had been thoroughly studied, the combined and hybrid capability of the two different
flying mechanisms for a next-generation eVTOL vehicle posed many technological
challenges especially in understanding the underlying dynamical behaviors and
system-level particularities. In Chapter 2, we used momentum theory and linear
aerodynamic models to construct prediction methods for power required during flight
for such a hybrid aircraft. When applied to example VTOL designs of our CAST
Autonomous Flying Ambulance (AFA) project, the method showed that a fixed-wing
flight mode with lift assist from vertical rotors possessed a clear advantage over a
multirotor mode. The endurance and range boosts were as much as twice on a 1/5
scaled eVTOL prototype. It was expected that this superiority would hold for full
scale UAM vehicles, consistent with the claim from the Uber Elevate program [1].

The novel control architecture developed in Chapter 3 unified control methods across
different types of vehicles and flight modes. As fixed-wing VTOL vehicles would
be used in cluttered urban environments, it was expected to frequently encounter
transient aerodynamic disturbances, in addition to the already-challenging models of
rotor-wing interactions. With traditional control methods for hybrid VTOL focusing
on separate design schemes and transition strategies, flight performance could not be
fully utilized for mixed modes of vertical and forward flights, and control accuracy
was questionable during the transition phase. In contrast, our method split the
objective into two parts. First, nonlinear position/velocity and attitude/rate control
designs using forces and moments as input were discussed in Section 3.2. The
unified control scheme was easily proven to be globally exponentially stable, given
a property of robustness to bounded force and moment tracking errors. Second,
concepts of force allocation and control allocation to realize desired output wrench
were expanded on in Sections 3.3 and 3.4. Attainable force, moments, and control
spaces were analyzed to give a realtime verifiable set in order to avoid control
saturation. A prototype hybrid VTOL vehicle was constructed to validate the results.
The innovative force allocation scheme eliminated the need for separate control
designs and significantly simplified future implementation and maintenance. The

103

provably stable and robust method handled the fixed-wing VTOL control with ease,
as shown in results of simulation and experimentation from Section 3.5, where the
prototype vehicle achieved transition behavior without a explicit trajectory design.

Nevertheless, we identified that accuracy of force allocation was crucial to a fixed-
wing VTOL aircraft under substantial aerodynamic forces, which prompted further
development of force estimation methods in Chapter 4. In Section 4.1, a set of LiP
models derived from basic aerodynamic equations incorporated greater details on
rotor side force. It enabled the inclusion of composite adaptation of model parameters
based on trajectory tracking errors and force prediction errors. To further improve
force prediction accuracy, Section 4.3 introduced a 3D airflow sensor that provides
timely information on environmental airflow around the vehicle. We proved the
stability and robustness of the adaptive force allocation and control for high speed
transition flight in Section 4.2. The method vastly decreased the position tracking
error during fast transitions of flight stages. Transient aerodynamic effects that
caused baseline non-adaptive methods to temporally drift away from commanded
trajectory were completely compensated by the improved controller shown in the
results from Section 4.4.

For safety, Chapter 5 derived controllability-based optimization that increased the
vehicles’ authority during rotor failures. From the definition of null controllability
for multirotors introduced in Section 5.1, we established an optimization routine
in Section 5.2. The moment space of a multirotor was maximized with respect to
combinations of different rotor failure cases, by adjusting physical configuration
parameters of the aircraft design. Section 5.3 compared an optimized multirotor
design for AFA 1.0 with a baseline configuration. By checking the controllability
quality measure for each rotor failure case, we saw substantial improvements in all
of them. Especially in some situations when a naive design lose all authority in
directional yaw, the optimized design still performed a stabilization task. This was
also corroborated by experimental results on a hardware prototype for multirotor
position control.

Continued improvement of control performance for flights would require the inclusion
of greater amount of sensor information. Since our vehicle already possessed a
substantial amount of data collected from its past flights; it was natural to apply
data-driven methods for continual learning and improvements. In Chapter 6, the
method of using DNNswas studied as a performancemultiplier to the existing physics-
based approach. The learning capacity of a deep ReLU network was considered in

104

Section 6.1. By building on prior results on spectral normalization of DNNs [70],
we elucidated that the process of spectral normalization by regulating Lipschitz
constants of a DNNs presented important benefits to a learning-based control task
in addition to its generalization ability. When inputting both state and control in
DNN training, its prediction capability was expanded, but at the same time made
the system non-affine-in-control. We presented a DNN-based nonlinear controller
in Section 6.2 that used the Lipschiz property of the network during training to
construct a contraction mapping thereby solving the issue of nonlinearity of the
control input. The proposed DNN-based controller had guaranteed stability, making
it one of the first provably-stable DNN-based controller. When applied to a quadrotor
drone in Section 6.3, our learning and control method set a new record for flight tasks
near ground or large objects, achieving zero-speed touchdown during landing and
holding an accurate trajectory during a sudden drop in height near the table edges.
Furthermore, the spectrally-normalized DNN showed better prediction performance
on an unseen dataset compared to the ones trained without the spectral normalization
technique. Incorporating partial DNN dynamics required the known physics-based
model to be reasonably accurate and that the Lipschitz constant of residual DNN
was constrained to an acceptable range for the contraction mapping property to hold.
Section 6.4 instead used a DNN for modeling the entire dynamics, thereby further
producing controller and observer networks based on episodic and recurrent training.
The method could be adapted to any dynamic models at the cost of weaker theoretical
guarantees. Nevertheless, it still possessed advantages over deep Reinforcement
Learning (RL) approaches for the particular dynamics-controller-observer structure
designed specifically for output tracking problems.

In the temporal domain, actuation delay hindered further improvement in control
performance. Chapter 7 proposed methods that addressed delay directly. Starting
from the existing controllers designed to exponentially stabilize a general nonlinear
system, Section 7.2 introduced a novel augmentation scheme with predictive elements
to account for FOPDT delays and transport delays. The proposed predictive method
relied on numerical integration schemes to turn the overall system to a hybrid one. All
the proposed augmented controllers had discrete computations. The resulting sample-
based predictive controller was analyzed with hybrid stability analysis to prove
its validity under certain time constraints. In addition, the accuracy-computation
trade-offs of different RK methods were discussed in Section 7.2.4. Although higher
order methods gave better prediction results, they did not always translate to better
control performance due to their heavier computation requirement. These effects

105

were useful for all digital control systems, but were rarely studied. In Section 7.3,
results on different integration schemes for trajectory tracking tasks were compared,
showing that spending more time to compute for better accuracy versus updating the
control faster were both beneficial under different scenarios. In particular, higher
system delay or modeling uncertainty was the key incentive in using a faster yet less
accurate prediction scheme. Section 7.3 illustrated that our proposed augmentation
improved over the baseline result drastically, and only incurred small computation
burden. This justified the need for including such time-delay prediction techniques
in real-time flight control applications.

106

BIBLIOGRAPHY

[1] J. Holden and N. Goel, “Uber elevate: Fast-forwarding to a future of on-
demand urban air transportation,” Uber, Tech. Rep., Oct. 2016.

[2] M. D. Moore, “Distributed electric propulsion (DEP) aircraft,” NASA
Langley Research Center, 2012.

[3] A. Frank, J. McGrew, M. Valenti, D. Levine, and J. How, “Hover, transition,
and level flight control design for a single-propeller indoor airplane,” in AIAA
Guidance, Navigation and Control Conference and Exhibit, 2007, p. 6318.

[4] R. H. Stone, P. Anderson, C. Hutchison, A. Tsai, P. Gibbens, and K. Wong,
“Flight testing of the T-wing tail-sitter unmanned air vehicle,” Journal of
Aircraft, vol. 45, no. 2, pp. 673–685, 2008.

[5] A. B. Chowdhury, A. Kulhare, and G. Raina, “Back-stepping control strategy
for stabilization of a tilt-rotor UAV,” in Chinese Control and Decision
Conference (CCDC), IEEE, 2012, pp. 3475–3480.

[6] S. Park, J. Bae, Y. Kim, and S. Kim, “Fault tolerant flight control system
for the tilt-rotor UAV,” Journal of the Franklin Institute, vol. 350, no. 9,
pp. 2535–2559, 2013.

[7] S. Verling, T. Stastny, G. Bättig, K. Alexis, and R. Siegwart, “Model-based
transition optimization for a VTOL tailsitter,” in International Conference
on Robotics and Automation (ICRA), IEEE, 2017, pp. 3939–3944.

[8] A. Oosedo, S. Abiko, A. Konno, and M. Uchiyama, “Optimal transition from
hovering to level-flight of a quadrotor tail-sitter UAV,” Autonomous Robots,
vol. 41, no. 5, pp. 1143–1159, 2017.

[9] J. Zhou, X. Lyu, Z. Li, S. Shen, and F. Zhang, “A unified control method for
quadrotor tail-sitter UAVs in all flight modes: Hover, transition, and level
flight,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), IEEE, 2017, pp. 4835–4841.

[10] R. Ritz and R. D’Andrea, “A global controller for flying wing tailsitter
vehicles,” in International Conference on Robotics and Automation (ICRA),
IEEE, 2017, pp. 2731–2738.

[11] P.Menon,M.Badgett, R.Walker, andE.Duke, “Nonlinear flight test trajectory
controllers for aircraft,” Journal of Guidance, Control, and Dynamics, vol. 10,
no. 1, pp. 67–72, 1987.

[12] M.-D. Hua, T. Hamel, P. Morin, and C. Samson, “A control approach for
thrust-propelled underactuated vehicles and its application to VTOL drones,”
IEEE Transactions on Automatic Control, vol. 54, no. 8, pp. 1837–1853,
2009.

107

[13] A. M. Stoll, J. Bevirt, M. D. Moore, W. J. Fredericks, and N. K. Borer, “Drag
reduction through distributed electric propulsion,” in 14th AIAA Aviation
Technology, Integration, and Operations Conference, 2014, p. 2851.

[14] S. Rajappa, M. Ryll, H. H. Bülthoff, and A. Franchi, “Modeling, control
and design optimization for a fully-actuated hexarotor aerial vehicle with
tilted propellers,” in International Conference on Robotics and Automation
(ICRA), IEEE, 2015, pp. 4006–4013.

[15] M. Ryll, D. Bicego, and A. Franchi, “Modeling and control of FAST-Hex: A
fully-actuated by synchronized-tilting hexarotor,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), IEEE, 2016, pp. 1689–
1694.

[16] A. Franchi, R. Carli, D. Bicego, and M. Ryll, “Full-pose tracking control for
aerial robotic systems with laterally bounded input force,” IEEE Transactions
on Robotics, vol. 34, no. 2, pp. 534–541, 2018.

[17] D. Brescianini and R. D’Andrea, “Design, modeling and control of an omni-
directional aerial vehicle,” in International Conference on Robotics and
Automation (ICRA), IEEE, 2016, pp. 3261–3266.

[18] M. Kamel, S. Verling, O. Elkhatib, C. Sprecher, P. Wulkop, Z. Taylor, R.
Siegwart, and I. Gilitschenski, “Voliro: An omnidirectional hexacopter with
tiltable rotors,” arXiv preprint arXiv:1801.04581, 2018.

[19] S. A. Snell, D. F. Enns, and W. L. Garrard Jr, “Nonlinear inversion flight
control for a supermaneuverable aircraft,” Journal of Guidance, Control, and
Dynamics, vol. 15, no. 4, pp. 976–984, 1992.

[20] K. P. Valavanis and G. J. Vachtsevanos, Handbook of Unmanned Aerial
Vehicles. Springer Publishing Company, Incorporated, 2014.

[21] H. Alwi and C. Edwards, “Fault tolerant control of an octorotor using LPV
based sliding mode control allocation,” in American Control Conference
(ACC), 2013, pp. 6505–6510.

[22] G. P. Falconí and F. Holzapfel, “Adaptive fault tolerant control allocation for
a hexacopter system,” in American Control Conference (ACC), IEEE, 2016,
pp. 6760–6766.

[23] A. Lanzon, A. Freddi, and S. Longhi, “Flight control of a quadrotor vehicle
subsequent to a rotor failure,” Journal of Guidance, Control, and Dynamics,
vol. 37, no. 2, pp. 580–591, 2014.

[24] M. W. Mueller and R. D’Andrea, “Stability and control of a quadrocopter
despite the complete loss of one, two, or three propellers,” in International
Conference on Robotics and Automation (ICRA), IEEE, 2014, pp. 45–52.

[25] G.-X. Du, Q. Quan, and K.-Y. Cai, “Controllability analysis and degraded
control for a class of hexacopters subject to rotor failures,” Journal of
Intelligent & Robotic Systems, vol. 78, no. 1, pp. 143–157, 2015.

108

[26] J. Lee, H. S. Choi, and H. Shim, “Fault tolerant control of hexacopter for
actuator faults using time delay control method,” International Journal of
Aeronautical and Space Sciences, vol. 17, pp. 54–63, 2016.

[27] W. Zhang, M. W. Mueller, and R. D’Andrea, “A controllable flying vehicle
with a single moving part,” in International Conference on Robotics and
Automation (ICRA), IEEE, 2016, pp. 3275–3281.

[28] G. Michieletto, M. Ryll, and A. Franchi, “Control of statically hoverable
multi-rotor aerial vehicles and application to rotor-failure robustness for
hexarotors,” in International Conference on Robotics and Automation (ICRA),
IEEE, 2017, pp. 2747–2752.

[29] J. I. Giribet, R. S. Sanchez-Pena, and A. S. Ghersin, “Analysis and design of
a tilted rotor hexacopter for fault tolerance,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 52, no. 4, pp. 1555–1567, 2016.

[30] M. Achtelik, K.-M. Doth, D. Gurdan, and J. Stumpf, “Design of a multi
rotor MAV with regard to efficiency, dynamics and redundancy,” in AIAA
Guidance, Navigation, and Control Conference, 2012, pp. 4779–4795.

[31] B. Crowther, A. Lanzon, M. Maya-Gonzalez, and D. Langkamp, “Kinematic
analysis and control design for a nonplanar multirotor vehicle,” Journal of
Guidance, Control, and Dynamics, vol. 34, no. 4, pp. 1157–1171, 2011.

[32] E. Kaufman, K. Caldwell, D. Lee, and T. Lee, “Design and development of
a free-floating hexrotor UAV for 6-DOF maneuvers,” in IEEE Aerospace
Conference, 2014, pp. 1–10.

[33] M. Ryll, H. H. Bülthoff, and P. R. Giordano, “A novel overactuated quadrotor
unmanned aerial vehicle: Modeling, control, and experimental validation,”
IEEE Transactions on Control Systems Technology, vol. 23, no. 2, pp. 540–
556, 2015.

[34] H. Efraim, A. Shapiro, and G. Weiss, “Quadrotor with a dihedral angle: On
the effects of tilting the rotors inwards,” Journal of Intelligent & Robotic
Systems, vol. 80, no. 2, pp. 313–324, 2015.

[35] J.-J. E. Slotine, W. Li, et al., Applied Nonlinear Control, 1. Prentice hall
Englewood Cliffs, NJ, 1991, vol. 199.

[36] J. A. Farrell and M. M. Polycarpou, Adaptive Approximation Based Control:
Unifying Neural, Fuzzy and Traditional Adaptive Approximation Approaches.
John Wiley & Sons, 2006, vol. 48.

[37] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot
learning,” in Advances in Neural Information Processing Systems, 2017,
pp. 4077–4087.

109

[38] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A.
Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, et al., “Over-
coming catastrophic forgetting in neural networks,” Proceedings of the
National Academy of Sciences, vol. 114, no. 13, pp. 3521–3526, 2017.

[39] F. Zenke, B. Poole, and S. Ganguli, “Continual learning through synaptic
intelligence,” in International Conference on Machine Learning (ICML),
PMLR, 2017, pp. 3987–3995.

[40] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap, “Meta-
learning with memory-augmented neural networks,” in International Confer-
ence on Machine Learning (ICML), PMLR, 2016, pp. 1842–1850.

[41] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast
adaptation of deep networks,” in International Conference on Machine
Learning (ICML), PMLR, 2017, pp. 1126–1135.

[42] D. Pucci, “Towards a unified approach for the control of aerial vehicles,”
Ph.D. dissertation, INRIA Sophia Antipolis, France, 2013.

[43] E. Bulka andM.Nahon, “A universal controller for unmanned aerial vehicles,”
in IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE, 2018, pp. 4171–4176.

[44] X. Shi, K. Kim, S. Rahili, and S.-J. Chung, “Nonlinear control of au-
tonomous flying cars with wings and distributed electric propulsion,” in
IEEE Conference on Decision and Control (CDC), 2018, pp. 5326–5333.
doi: 10.1109/CDC.2018.8619578,

[45] T.A. Johansen,A. Cristofaro, K. Sørensen, J.M.Hansen, andT. I. Fossen, “On
estimation of wind velocity, angle-of-attack and sideslip angle of small UAVs
using standard sensors,” in 2015 International Conference on Unmanned
Aircraft Systems (ICUAS), IEEE, 2015, pp. 510–519.

[46] P. Tian and H. Chao, “Model aided estimation of angle of attack, sideslip
angle, and 3D wind without flow angle measurements,” in 2018 AIAA
Guidance, Navigation, and Control Conference, 2018, p. 1844.

[47] J. Farrell, M. Sharma, andM. Polycarpou, “Backstepping-based flight control
with adaptive function approximation,” Journal of Guidance, Control, and
Dynamics, vol. 28, no. 6, pp. 1089–1102, 2005.

[48] F. Gavilan, R. Vazquez, and J. Á. Acosta, “Adaptive control for aircraft
longitudinal dynamics with thrust saturation,” Journal of Guidance, Control,
and Dynamics, vol. 38, no. 4, pp. 651–661, 2014.

[49] A. J. Calise and R. T. Rysdyk, “Nonlinear adaptive flight control using neural
networks,” IEEE Control Systems Magazine, vol. 18, no. 6, pp. 14–25, 1998.

[50] T. Lee and Y. Kim, “Nonlinear adaptive flight control using backstepping and
neural networks controller,” Journal of Guidance, Control, and Dynamics,
vol. 24, no. 4, pp. 675–682, 2001.

https://doi.org/10.1109/CDC.2018.8619578

110

[51] E. Tal and S.Karaman, “Accurate tracking of aggressive quadrotor trajectories
using incremental nonlinear dynamic inversion and differential flatness,” in
IEEE Conference on Decision and Control (CDC), 2018, pp. 4282–4288.

[52] M. Faessler, A. Franchi, and D. Scaramuzza, “Differential flatness of quadro-
tor dynamics subject to rotor drag for accurate tracking of high-speed
trajectories,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 620–
626, 2017.

[53] J. Nakanishi, J. A. Farrell, and S. Schaal, “A locally weighted learning
composite adaptive controller with structure adaptation,” in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, IEEE, vol. 1, 2002,
pp. 882–889.

[54] M. Bisheban and T. Lee, “Geometric adaptive control with neural networks
for a quadrotor UAV in wind fields,” arXiv preprint arXiv:1903.02091, 2019.

[55] K. Nonaka and H. Sugizaki, “Integral sliding mode altitude control for a small
model helicopter with ground effect compensation,” in American Control
Conference (ACC), IEEE, 2011, pp. 202–207.

[56] L. Danjun, Z. Yan, S. Zongying, and L. Geng, “Autonomous landing of
quadrotor based on ground effect modelling,” in Chinese Control Conference
(CCC), IEEE, 2015, pp. 5647–5652.

[57] F. Berkenkamp, A. P. Schoellig, and A. Krause, “Safe controller optimization
for quadrotors with Gaussian processes,” in International Conference on
Robotics and Automation (ICRA), IEEE, 2016, pp. 491–496.

[58] P. Abbeel, A. Coates, and A. Y. Ng, “Autonomous helicopter aerobatics
through apprenticeship learning,” The International Journal of Robotics
Research, vol. 29, no. 13, pp. 1608–1639, 2010.

[59] A. Punjani and P. Abbeel, “Deep learning helicopter dynamics models,” in
International Conference on Robotics and Automation (ICRA), IEEE, 2015,
pp. 3223–3230.

[60] S. Bansal, A. K. Akametalu, F. J. Jiang, F. Laine, and C. J. Tomlin, “Learn-
ing quadrotor dynamics using neural network for flight control,” in IEEE
Conference on Decision and Control (CDC), 2016, pp. 4653–4660.

[61] Q. Li, J. Qian, Z. Zhu, X. Bao, M. K. Helwa, and A. P. Schoellig, “Deep
neural networks for improved, impromptu trajectory tracking of quadrotors,”
in International Conference on Robotics and Automation (ICRA), IEEE,
2017, pp. 5183–5189.

[62] S. Zhou, M. K. Helwa, and A. P. Schoellig, “Design of deep neural networks
as add-on blocks for improving impromptu trajectory tracking,” in IEEE
Conference on Decision and Control (CDC), 2017, pp. 5201–5207.

111

[63] C. Sánchez-Sánchez and D. Izzo, “Real-time optimal control via deep neural
networks: Study on landing problems,” Journal of Guidance, Control, and
Dynamics, vol. 41, no. 5, pp. 1122–1135, 2018.

[64] S. Balakrishnan and R. Weil, “Neurocontrol: A literature survey,”Mathemat-
ical and Computer Modelling, vol. 23, no. 1-2, pp. 101–117, 1996.

[65] M. T. Frye and R. S. Provence, “Direct inverse control using an artificial
neural network for the autonomous hover of a helicopter,” in 2014 IEEE
International Conference on Systems, Man, and Cybernetics (SMC), IEEE,
2014, pp. 4121–4122.

[66] H. Suprĳono and B. Kusumoputro, “Direct inverse control based on neural
network for unmanned small helicopter attitude and altitude control,” Journal
of Telecommunication, Electronic and Computer Engineering (JTEC), vol. 9,
no. 2-2, pp. 99–102, 2017.

[67] F. Berkenkamp, M. Turchetta, A. P. Schoellig, and A. Krause, “Safe model-
based reinforcement learning with stability guarantees,” Advances in Neural
Information Processing Systems 30, vol. 2, pp. 909–919, 2018.

[68] N. Levine, T. Zahavy, D. J. Mankowitz, A. Tamar, and S. Mannor, “Shallow
updates for deep reinforcement learning,” in Advances in Neural Information
Processing Systems, 2017, pp. 3135–3145.

[69] K. Azizzadenesheli, E. Brunskill, and A. Anandkumar, “Efficient explo-
ration through bayesian deep q-networks,” in 2018 Information Theory and
Applications Workshop (ITA), IEEE, 2018, pp. 1–9.

[70] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization
for generative adversarial networks,” arXiv preprint arXiv:1802.05957, 2018.

[71] Y. Z. Tsypkin, “The systems with delayed feedback,” Avtomathika i Telemech,
vol. 7, pp. 107–129, 1946.

[72] O. J. Smith, “A controller to overcome dead time,” ISA Journal, vol. 6,
pp. 28–33, 1959.

[73] J.-P. Richard, “Time-delay systems: An overview of some recent advances
and open problems,” Automatica, vol. 39, no. 10, pp. 1667–1694, 2003.

[74] M. Krstic, Delay Compensation for Nonlinear, Adaptive, and PDE Systems.
Springer, 2009.

[75] H. Gao, T. Chen, and J. Lam, “A new delay system approach to network-based
control,” Automatica, vol. 44, no. 1, pp. 39–52, 2008.

[76] R. A. Gupta and M.-Y. Chow, “Networked control system: Overview and
research trends,” IEEE Transactions on Industrial Electronics, vol. 57, no. 7,
pp. 2527–2535, 2009.

112

[77] P. Cortes, J. Rodriguez, C. Silva, and A. Flores, “Delay compensation in
model predictive current control of a three-phase inverter,” IEEE Transactions
on Industrial Electronics, vol. 59, no. 2, pp. 1323–1325, 2011.

[78] M. Lu, X. Wang, P. C. Loh, F. Blaabjerg, and T. Dragicevic, “Graphical
evaluation of time-delay compensation techniques for digitally controlled
converters,” IEEE Transactions on Power Electronics, vol. 33, no. 3, pp. 2601–
2614, 2017.

[79] E. Schuitema, L. Buşoniu, R. Babuška, and P. Jonker, “Control delay
in reinforcement learning for real-time dynamic systems: A memoryless
approach,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2010, pp. 3226–3231.

[80] A. Visioli, Practical PID Control. Springer Science & Business Media, 2006.

[81] P. K. Padhy and S. Majhi, “Relay based PI–PD design for stable and unstable
FOPDT processes,” Computers & Chemical Engineering, vol. 30, no. 5,
pp. 790–796, 2006.

[82] S.Majhi andD.Atherton, “Online tuning of controllers for an unstable FOPDT
process,” IEE Proceedings-Control Theory and Applications, vol. 147, no. 4,
pp. 421–427, 2000.

[83] V. L. Kharitonov and A. P. Zhabko, “Lyapunov–Krasovskii approach to the
robust stability analysis of time-delay systems,” Automatica, vol. 39, no. 1,
pp. 15–20, 2003.

[84] F. Mazenc, S.-I. Niculescu, andM. Krstic, “Lyapunov–Krasovskii functionals
and application to input delay compensation for linear time-invariant systems,”
Automatica, vol. 48, no. 7, pp. 1317–1323, 2012.

[85] M. A. Henson and D. E. Seborg, “Time delay compensation for nonlinear
processes,” Industrial & Engineering Chemistry Research, vol. 33, no. 6,
pp. 1493–1500, 1994.

[86] Y.-H. Roh and J.-H. Oh, “Robust stabilization of uncertain input-delay
systems by sliding mode control with delay compensation,” Automatica,
vol. 35, no. 11, pp. 1861–1865, 1999.

[87] D.Bresch-Pietri andM.Krstic, “Adaptive trajectory tracking despite unknown
input delay and plant parameters,” Automatica, vol. 45, no. 9, pp. 2074–2081,
2009.

[88] M. Krstic, “Input delay compensation for forward complete and strict-
feedforward nonlinear systems,” IEEE Transactions on Automatic Control,
vol. 55, no. 2, pp. 287–303, 2009.

[89] G. J. Leishman, Principles of Helicopter Aerodynamics. Cambridge Univer-
sity Press, 2006.

113

[90] B.W.McCormick,Aerodynamics, Aeronautics, and FlightMechanics, 2nd ed.
Wiley New York, 1995.

[91] L. W. Traub, “Range and endurance estimates for battery-powered aircraft,”
Journal of Aircraft, vol. 48, no. 2, pp. 703–707, 2011.

[92] B. Etkin, Dynamics of Atmospheric Flight. Courier Corporation, 2012.

[93] C. Rumsey and V. Vatsa, “A comparison of the predictive capabilities of
several turbulence models using upwind and central-difference computer
codes,” in 31st Aerospace Sciences Meeting, 1993, p. 192.

[94] R. E. Sheldahl and P. C. Klimas, “Aerodynamic characteristics of seven
symmetrical airfoil sections through 180-degree angle of attack for use in
aerodynamic analysis of vertical axis wind turbines,” Sandia National Labs.,
Albuquerque, NM (USA), Tech. Rep., 1981.

[95] H. Khalil, Nonlinear Systems. Prentice Hall, 2002.

[96] T. Lee, “Exponential stability of an attitude tracking control system on SO(3)
for large-angle rotational maneuvers,” Systems & Control Letters, vol. 61,
no. 1, pp. 231–237, 2012.

[97] S. W. Shepperd, “Quaternion from rotation matrix,” Journal of Guidance
and Control, vol. 1, no. 3, pp. 223–224, 1978.

[98] A. R. Klumpp, “Singularity-free extraction of a quaternion from a direction-
cosine matrix,” Journal of Spacecraft and Rockets, vol. 13, no. 12, pp. 754–
755, 1976.

[99] S. Bandyopadhyay, S.-J. Chung, and F. Y. Hadaegh, “Nonlinear attitude
control of spacecraft with a large captured object,” Journal of Guidance,
Control, and Dynamics, vol. 39, no. 4, pp. 754–769, 2016.

[100] D.Mellinger and V. Kumar, “Minimum snap trajectory generation and control
for quadrotors,” in International Conference on Robotics and Automation
(ICRA), IEEE, 2011, pp. 2520–2525.

[101] J. Hauser and R. Hindman, “Aggressive flight maneuvers,” in IEEE Confer-
ence on Decision and Control, vol. 5, 1997, pp. 4186–4191.

[102] T. Lee, M. Leok, and N. H. McClamroch, “Nonlinear robust tracking control
of a quadrotor UAV on SE (3),” Asian Journal of Control, vol. 15, no. 2,
pp. 391–408, 2013.

[103] K. Shoemake, “Animating rotation with quaternion curves,” in ACM SIG-
GRAPH Computer Graphics, ACM, vol. 19, 1985, pp. 245–254.

[104] W. C. Durham, “Constrained control allocation,” Journal of Guidance,
Control, and Dynamics, vol. 16, no. 4, pp. 717–725, 1993.

[105] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, 2004.

114

[106] K. A. Bordignon, “Constrained control allocation for systems with redundant
control effectors,” Ph.D. dissertation, Virginia Tech, 1996.

[107] L. Meier, P. Tanskanen, L. Heng, G. H. Lee, F. Fraundorfer, and M. Pollefeys,
“Pixhawk: A micro aerial vehicle design for autonomous flight using onboard
computer vision,” Autonomous Robots, vol. 33, no. 1-2, pp. 21–39, 2012.

[108] X. Shi, P. Spieler, E. Tang, E.-S. Lupu, P. Tokumaru, and S.-J. Chung,
“Adaptive nonlinear control of fixed-wing VTOLwith airflow vector sensing,”
in International Conference on Robotics and Automation (ICRA), IEEE,
2020, pp. 5321–5327. doi: 10.1109/ICRA40945.2020.9197344,

[109] J.-J. E. Slotine andW. Li, “Composite adaptive control of robot manipulators,”
Automatica, vol. 25, no. 4, pp. 509–519, 1989. doi: 10.1016/0005-
1098(89)90094-0.

[110] S. Popowski and W. Dabrowski, “Measurement and estimation of the angle
of attack and the angle of sideslip,” Aviation, vol. 19, no. 1, pp. 19–24, 2015.

[111] Preliminary datasheet sdp33, SDP33, Version 0.1, Sensirion, Aug. 2017.

[112] K. Kim, S. Rahili, X. Shi, S.-J. Chung, and M. Gharib, “Controllability
and design of unmanned multirotor aircraft robust to rotor failure,” in AIAA
Scitech Forum. 2019. doi: 10.2514/6.2019-1787. [Online]. Available:
https://arc.aiaa.org/doi/abs/10.2514/6.2019-1787,

[113] R. E. Kalman, “Contributions to the theory of optimal control,” Boletin de la
Sociedad Matematica Mexicana, vol. 5, no. 2, pp. 102–119, 1960.

[114] R. Hermann and A. Krener, “Nonlinear controllability and observability,”
IEEE Transactions on Automatic Control, vol. 22, no. 5, pp. 728–740, 1977.

[115] E. B. Lee and L. Markus, Foundations of Optimal Control Theory. John
Wiley & Sons, 1967.

[116] G.-X. Du, Q. Quan, B. Yang, and K.-Y. Cai, “Controllability analysis for
multirotor helicopter rotor degradation and failure,” Journal of Guidance,
Control, and Dynamics, vol. 38, no. 5, pp. 978–985, 2015.

[117] G. Shi, X. Shi, M. O’Connell, R. Yu, K. Azizzadenesheli, A. Anandkumar,
Y. Yue, and S.-J. Chung, “Neural lander: Stable drone landing control using
learned dynamics,” in International Conference on Robotics and Automation
(ICRA), IEEE, 2019, pp. 9784–9790. doi: 10.1109/ICRA.2019.8794351,

[118] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Communications of the ACM, vol. 60,
no. 6, pp. 84–90, 2017.

[119] T. Salimans and D. P. Kingma, “Weight normalization: A simple reparam-
eterization to accelerate training of deep neural networks,” in Advances in
Neural Information Processing Systems, 2016, pp. 901–909.

https://doi.org/10.1109/ICRA40945.2020.9197344
https://doi.org/10.1016/0005-1098(89)90094-0
https://doi.org/10.1016/0005-1098(89)90094-0
https://doi.org/10.2514/6.2019-1787
https://arc.aiaa.org/doi/abs/10.2514/6.2019-1787
https://doi.org/10.1109/ICRA.2019.8794351

115

[120] P. L. Bartlett, D. J. Foster, and M. J. Telgarsky, “Spectrally-normalized
margin bounds for neural networks,” in Advances in Neural Information
Processing Systems, 2017, pp. 6240–6249.

[121] C. Zhang, S. Bengio,M.Hardt, B. Recht, andO.Vinyals, “Understanding deep
learning requires rethinking generalization,” arXiv preprint arXiv:1611.03530,
2016.

[122] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Conference on Computer Vision and Pattern Recognition
(CVPR), IEEE, 2016, pp. 770–778.

[123] B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro, “A Pac-
Bayesian approach to spectrally-normalized margin bounds for neural net-
works,” arXiv preprint arXiv:1707.09564, 2017.

[124] G. K. Dziugaite and D. M. Roy, “Computing nonvacuous generalization
bounds for deep (stochastic) neural networks with many more parameters
than training data,” arXiv preprint arXiv:1703.11008, 2017.

[125] B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro, “Exploring gen-
eralization in deep learning,” in Advances in Neural Information Processing
Systems, 2017, pp. 5947–5956.

[126] S.-J. Chung, S. Bandyopadhyay, I. Chang, and F. Y. Hadaegh, “Phase
synchronization control of complex networks of Lagrangian systems on
adaptive digraphs,” Automatica, vol. 49, no. 5, pp. 1148–1161, 2013.

[127] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A.
Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in PyTorch,”
2017.

[128] I. Cheeseman and W. Bennett, “The effect of ground on a helicopter rotor
in forward flight,” Aeronautical Research Council Reports & Memoranda,
1955.

[129] N. Hovakimyan, E. Lavretsky, and A. Sasane, “Dynamic inversion for
nonaffine-in-control systems via time-scale separation. part i,” Journal of
Dynamical and Control Systems, vol. 13, no. 4, pp. 451–465, 2007.

[130] W. Lohmiller and J.-J. E. Slotine, “On contraction analysis for non-linear
systems,” Automatica, vol. 34, no. 6, pp. 683–696, 1998.

[131] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
arXiv preprint arXiv:1509.02971, 2015.

[132] M. Faessler, D. Falanga, and D. Scaramuzza, “Thrust mixing, saturation, and
body-rate control for accurate aggressive quadrotor flight,” IEEE Robotics
and Automation Letters, vol. 2, no. 2, pp. 476–482, 2016.

116

[133] Y. Chen and N. O. Pérez-Arancibia, “Adaptive control of aerobatic quadro-
tor maneuvers in the presence of propeller-aerodynamic-coefficient and
torque-latency time-variations,” in International Conference on Robotics
and Automation (ICRA), IEEE, 2019, pp. 6447–6453.

[134] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control tasks,”
IEEE Transactions on Automatic Control, vol. 52, no. 9, pp. 1680–1685,
2007.

[135] M. Mazo and P. Tabuada, “Input-to-state stability of self-triggered control
systems,” in 48th IEEE Conference on Decision and Control (CDC) held
jointly with 28th Chinese Control Conference, IEEE, 2009, pp. 928–933.

[136] D. Theodosis and D. V. Dimarogonas, “Self-triggered control under actuator
delays,” in IEEE Conference on Decision and Control, 2018, pp. 1524–1529.

[137] X. Shi, M. O’Connell, and S.-J. Chung, “Numerical predictive control for
delay compensation,” arXiv preprint arXiv:2009.14450, 2020,

[138] K. Atkinson, W. Han, and D. E. Stewart, Numerical Solution of Ordinary
Differential Equations. John Wiley & Sons, 2011, vol. 108.

117

A p p e n d i x A

ROTOR SIDE FORCE MODEL

Although rotor thrust) is well studied and has a simple model that works well with
feedback controllers [90], rotor side force �(lacks its counterpart. Measurements
from wind tunnel and flight tests indicate that �(produced by rotors often incurs a
significant drag increase during flight. Hence, we cannot ignore its contribution in
order to have high accuracy position tracking. We use dimensional analysis to derive
a canonical model that is consistent with wind tunnel test data:

�(= �(d=
:1+

2−:1
∞ 32+:1

((c
2

)2
− U2

)
(U + :2) . (A.1)

(a) Illustrative diagram
α

−1.5
0.0

1.5
nd

V∞0

60

120
F
s

ρ
(d
V
∞

)2

0.0

0.8

1.6

(b) Test data with numerical fit

Figure A.1: Rotor side force �(illustration with non-dimensionalized data.

To construct an empirical model for rotor side force �(, force data was collected for
a propeller in forward flight at various angles of attack ranging from −45◦ to 45◦

as shown in Figure A.1b. We assume that the side force depends on the freestream
velocity +∞, the air density d, the propeller’s angular velocity =, and the propeller
diameter 3. Additionally, we expect some variation with U, which is a dimensionless
quantity. Per symmetry, there should be no side force at angles of attack of ±90°.
Data also indicates that �(achieves a maximum at an angle other than 0°. Hence, we
use a third order polynomial of U with zeros at ±90° to construct the model. These
criteria combine to form the expression in (A.1).

118

A p p e n d i x B

EXPERIMENTAL FIXED-WING VTOL PROTOTYPES

B.1 Caltech Autonomous Flying Ambulance (AFA)
At Caltech’s Center for Autonomous Systems and Technologies, research and
development have been conducted on the feasibility of a fixed-wing VTOL aircraft
for UAM. The project is named autonomous flying ambulance (AFA), and focuses on
introducing an autonomous eVTOL that can transport patients with urgent medical
needs in urban areas. Two prototypes have been developed for control system and
aerodynamics research.

(a) Top view of AFA 1.0. (b) AFA 1.0 with add-on wing and tail surfaces.

Figure B.1: AFA 1.0 prototypes.

Table B.1: AFA 1.0 rotor configuration parameters

Location [cm] Tilt [◦]
G1 G2 G3 G4 H1 H2 I1 I2 \∗1 \∗2
44 18 −14 −46 25 10 0 7 19◦ 13◦

Table B.2: AFA 1.0 rotor properties

�) �% 3 =max)max

0.1753 0.0911 15.24 cm 24 600 RPM 19.47 N

The first prototype AFA 1.0 is a 1/5 scale vehicle that combines multirotor and
fixed wing surface. There will be two main flight modes for the aircraft: a VTOL
mode for multirotor slow speed flight and a fixed-wing mode for high speed cruise
flight. A bare-bone prototype of the aircraft is shown in Figure B.1a. Specifically,
the prototype has a total of eight rotors around its main body, which are placed

119

symmetrically about the body’s longitudinal axis and are driven by electric brushless
DC motors. Among them, six rotors are placed on the sides of the main body, all at
the same height and equidistant from the main body to minimize aerodynamic drag
when in cruise mode. The last two are located in the back, and the exact locations
and orientation of the rotors are shown in Table B.1. Table B.2 shows measured rotor
properties from bench tests.

The prototype is 112 cm × 56 cm × 16 cm in size with a mass of 3.65 kg. As shown
in Figure B.1b, it can also incorporate an add-on wing surface with a span of 160 cm
and a pair of horizontal tail. For fast forward flight, two servo motors are added
to the two rear rotors to achieve thrust vectoring through the tilting of the entire
drive mechanism. This will allow the prototype to gain forward acceleration without
pitching the main body too much until it flies fast enough for the wing to be effective.

Figure B.2: Caltech’s 1/5 scale AFA 2.0 fixed-wing VTOL with tiltable rear rotors.

Table B.3: AFA 2.0 physical parameters

< [kg] �GG �HH �II �GI [kg m2]
5.5 0.134 0.252 0.346 −0.004

�) �& �!0 �!1 [rad−1] ��0 :�!

0.182 0.0143 0.216 1.622 0.0651 0.273

AFA 2.0 shown in Appendix B.1 is built upon the same specs of the previous
version. It has the same rotor placement, thrust vectoring, and wing size. The
main improvements are the elimination of the rear tail surface and the inclusion of a

120

streamlined fuselage for reduced drag. The physical properties are listed in Table B.3,
with �GH ≈ �HI ≈ 0 due to symmetry. �) and �& are experimentally obtained for a
six-inch propeller. The aerodynamic coefficients are calculated through combining
both wind-tunnel test data as well as theoretical values of a finite wing and blunt
body.

B.2 Experimental Prototype for Adaptive Flight Control
A copter-plane configuration fixed-wing VTOL prototype is designed and built for
adaptive control research discussed in Chapter 4. The plane is shown in Figure B.3.
It has four vertical lift rotors on wingtips and a forward cruise motor mounted in
the front. The main wing is roughly 1 m in span, and a pair of all moving vee-tail is
responsible for pitch and yaw control during fixed-wing flight.

Figure B.3: Fixed-wing VTOL platform with wing and multi-rotor

Table B.4: Fixed-wing VTOL platform physical properties

Weight 1.70 kg Lift Motor T-motor F80-2200
Wingspan 1.08 m Front Motor T-motor AT2312-1150
Wing Area 0.223 m2 Lift Prop. King Kong 6"x4"
Battery 6S 1.3 Ah Front Prop. APC 7"x4"

The physical properties of the aircraft are summarized in Table B.4. For flight control
computation, it incorporates a Pixhawk flight controller with PX4 firmware [107]
and a small single board computer (SBC). The SBC is included to handle some high
level trajectory planning and input-output tasks. In addition, the novel 3D airflow

121

sensor described in Section 4.3 is mounted on the main wing. With all the hardware,
the platform achieves high accuracy position control in varying wind conditions.

Table B.5: Fixed-wing VTOL platform aerodynamic parameters

Thruster mean ± std Aero mean ± std

�)G 3.02e−3 ± 2.25e−5 �!0 0.3705 ± 0.06523
�)I 2.87e−3 ± 5.00e−6 �!1 3.2502 ± 0.04434
�(2.31e−5 ± 1.18e−5 ��0 0.1551 ± 0.00394
:1 1.425 ± 0.010 ��1 0.1782 ± 0.06518
:2 3.126 ± 0.087 ��2 1.6000 ± 0.10820

To accurately model the aerodynamic characteristics, the aircraft was mounted on a
force sensor with all control surfaces in a neutral position. The data collected was
for free-stream velocities up to 9 m/s, and parameters were fit using Bayesian linear
regression for the model described in (4.4) and (4.5). Similarly, single motor and
propeller combinations were tested to fit the model from (3.4) and (4.3). The results
of the numerical fits are summarized in Table B.5, split by thruster parameters and
aerodynamic parameters. The standard deviation is from the posterior distribution
of parameters after performing Bayesian linear regression using the Markov Chain
Monte-Carlo (MCMC) method.

B.3 Intel Aero Drone Testbed for Learning-based Control
To evaluate the performance of a DNN-based controller, we use an off-the-shelf com-
mercial quadrotor drone that has the required computation and sensing capabilities.

The Intel Aero Drone shown in Figure B.4 weighs 1.47 kg with rotors of 23 cm
diameters. The thrust coefficient �) is measured to be 0.089 from the bench test.
It includes an onboard Linux computer (2.56 GHz Intel Atom x7 processor, 4 GB
DDR3 RAM) as well as a flight controller in parallel running PX4 firmware [107].
We retrofitted the drone with eight reflective infrared markers for accurate position,
attitude, and velocity estimation at 100Hz.

122

Figure B.4: Intel Aero Drone quadrotor platform

	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	List of Tables
	Nomenclature
	Introduction
	Fixed-wing VTOL Aircraft as Urban Air Mobility
	Learning and Adaptive Methods in Flight Control
	Computation Cost and Actuation Delay
	Thesis Organization

	Preliminaries and Designs
	Preliminaries for eVTOL and Fixed-wing Aircraft
	Power Required for Mix-modes Flight
	Example Fixed-wing VTOL Designs for UAM
	Example Performance of UAM Design
	Chapter Summary

	Unified Architecture for Flight Control
	General Fixed-Wing VTOL Dynamic Model
	Unified Control Architecture
	Force Allocation
	Control Allocation
	Results on Tilt-Rotor Fixed-wing VTOL
	Chapter Summary

	Physics-based Model Adaptive Flight Control
	Linear-in-Parameter Force Model
	Adaptive Force Allocation
	3D Airflow Sensing
	Experiments on The Prototype Vehicle
	Chapter Summary

	Fault-Tolerant Design
	Controllability with Rotor Failure
	Control-Centric Design Optimization
	Example Design Optimization for AFA
	Chapter Summary

	Deep Learning for Flight Control
	Dynamics Learning using DNN
	Flight Control for partial DNN Dynamics
	Experiments on Quadrotor Drone
	General Control for DNN-based Dynamic Model
	Chapter Summary

	Actuation Delay Compensation
	Problem Formulation
	Delay Compensation Control
	Numerical Analysis
	Chapter Summary

	Conclusion
	Bibliography
	Rotor Side Force Model
	Experimental Fixed-wing VTOL Prototypes
	Caltech Autonomous Flying Ambulance (AFA)
	Experimental Prototype for Adaptive Flight Control
	Intel Aero Drone Testbed for Learning-based Control

