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ABSTRACT 

Application of the theory of numerical ranges to the study of com

mutation properties of operators is the purpose of the thesis. 

For a complex, unital Banach algebra cf?, T E d?, the numerical 

range of Tis V(f<, T) = {f(T) :f(l) = 1 = llfll, f Eat'}. This is a general

ization and extension of the notion of the numerical range defined for a 

bounded operator T on the Hilbert space ]' : W(T) = { (Tx, x) : x E "'1'' 
(x, x) = 1}. These numerical range concepts are used in studies of multi

plicative commutators, derivations, and powers of accretive operators. 

An extension of Frobenius' group commutator theorem is obtained: 

ForT,A,B E(B(]"), T=ABA-lB-l, AT=TA, Anormaland0 f.W(B)

imply T = 1. Other extensions of the Frobenius theorem are proved and 

a special discussion is given about these results in the case ~ is finite 

dimensional. The sharpness of the results is also reviewed. 

For X a Banach space, the numerical range of a derivation acting 

on 63(X) is completely characterized. If AT is the derivation induced by 

T E (B (X), then 

V(lB (CB (X)), AT) = V(03 (X), T) - V(tB (X), T) 

Normal elements of general Banach algebras are discussed. A consequence 

of an examination of derivations which are normal is a simple proof of the · 

Fuglede- Putnam Theorem. 
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A theorem for matrices by C. R. Johnson is generalized to the 

operator case: for T E (B (]'), W(Tn) c { Rez >-:: O} , n = 1, 2, . . . if and 

only if T >-:: 0. Examples are given which show neither the necessity nor 

the sufficiency part of the theorem can be transplanted into the general 

Banach algebra setting. A containment result for the numerical range of 

a product is also proved. 
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INTRODUCTION 

The study of numerical ranges of operators and Banach algebra 

elements has expanded considerably in recent years (for a survey of 

these advances, see [10]). It is the purpose of this work to apply newly 

found numerical range results to study commutativity and multiplicative 

properties of operators. 

A discussion of background material essential to the understanding 

of this thesis is contained in Chapter 1. Proofs are provided in many 

cases to make the thesis essentially self-contained. Many of the 

numerical range techniques used in later chapters are introduced in 

these proofs. 

For Ol a complex unital Banach algebra, T E Ol , 

V(~, T) = {f(T) : f(l) = 1 = llf 11, f E en*} 

is the algebra numerical range of T. Chapter 1. delineates properties of 

this set valued map. How it relates to other concepts of the numerical 

range and their antecedent in Hilbert space is shown. 

Extensions of Frobenius' group commutator theorem are the basis 

for discussion in Chapter 2. ffi (9-) denotes the algebra of bounded 

operators on the Hilbert space ~. In Q3 (~) the following extension of 

the Frobenius theorem is obtained: for T, A, B E (8 (~), suppose 

T =ABA-lB- 1, AT= TA, A.normal, and Of. V((B(~),B), then T = 1. 

For ~ (X), the algebra of bounded operators on the Banach space 

X, the numerical range of a derivation on (B (X) is completely 

characterized. This result is viewed with some surprise because of its 
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applicability to all algebras of the form <B (X); a related characterization 

of the norm of a derivation by Stampfli does not extend from Hilbert 

space to the general case. A simple derivation proof of the Fuglede

Putnam theorem is a consequence of our investigations. 

Chapter 4 is devoted to an operator proof of a matrix theorem of 

C.R. Johnson: for TE 8(f), V((n(%),Tn) c{Rez ~ O}, n = 1,2, ... , 

if and only if T ~ 0. Thus, as with complex numbers, operators which 

have all powers accretive are positive. Discussion is included about 

extensions of the main result. Examples are presented which show that 

neither the necessity nor the sufficiency part of the main theorem can be 

translated into a general Banach algebra setting. 

All results are stated for complete (Banach) spaces and algebras. 

It will be seen that there is no loss of generality in assuming complete

ness because the algebra numerical range is unaffected by enlargements. 

The assumed completeness makes the statement of results simpler and 

hence facilitates the discussion. 
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CHAPTER 1 

PRELIMINARIES: NUMERICAL RANGE PROPERTIES 

1. INTRODUCTION 

It is the purpose of this work to study multiplicative and com

mutation properties of Banach algebra elements by means of the numeri

cal range. Investigations are made into multiplicative and additive 

commutators and powers of operators. The effort is to show that the 

imposition of numerical range conditions yields useful characteristics of 

the algebra elements involved . . To meet these objectives, therefore, a 

groundwork is layed in this chapter of the preliminary material needed. 

The approach to the subject of numerical ranges is general. While 

often the attention is focused on the Banach algebra of Hilbert space 

operators and the well-known numerical range defined for these objects, 

in mind are thoughts of extending Hilbert space results to a more general 

Banach algebra case, or else demonstrating the distinctiveness of the 

Hilbert space case by counterexample. 

2. DEFINITIONS AND NOTATION 

~ denotes a complex Hilbert space equipped with the inner product 

( ·, •): »- x ~ - C. If X denotes a complex Banach space, (B (X) sym

bolizes the algebra of all bounded endomorphisms of X. The script 

letters 6{ , <B, ... are used to denote complex unital Banach algebras, the 

capitals A, B, ... , S, T, ... are used for Banach algebra elements or 

operators, and lower case letters f,g, ... ,x,y, ... denote Banach space 

vectors. The unit element of a Banach algebra is written 1. 
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The norm on a Banach space or algebra is denoted 11 • 11. Since 

context will reveal which norm is being applied no further identification 

is attached to the norm. Recall that for a Banach space X an endo-

morphism T : X -+ X is bounded if the set { II Tx II : II x II = 1, x E x} is a 

bounded set of real numbers. The norm induced from the Banach space, 

11 T II = sup{ II Tx II : 11 x II = 1, x E x} 

to the algebra (8 (X) makes lB (X) a Banach algebra. 

Associated with a Banach space Xis its dual space X*, the 

Banach space of all continuous linear maps from X to ~. Since ~ is 

self-dual no distinction is made between elements of the space and ele

ments of the dual. 

For T E ~(-§,) T* is the adjoint of T. T* E <B (1J-) and is 

defined by the relations 

(T*x, y) = (x, Ty), for all x, y E y 

g ((R) is the group of invertible elements in the unital Banach 

algebra (f?, • If T E= (f(, the spectrum of T in Q], denoted o-0< (T), is 

the set 

The spectrum of a Banach algebra element is a nonempty compact sub

set of the complex plane. If ~ is the maximal commutative sub

algebra of <R containing T, then 

o-<R (T) = a~ (T) = { cp(T) : <P: ~ -+ C is multiplicative} (1) 
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(see, e.g. [ 32] pages 35 and 111). When the algebra context is clear 

· the spectrum of T is written a(T). 

IIcn (T) denotes the approximate point spectrum of T in Ol. . 

A E Ila? (T) implies A - T is a generalized divisor of zero in r.n. . This 

means that there exists { An} ;=l' An E 61. , II ¾ II = 1 such that either 

An T -+ 0 or T An -+ 0. 

r(T) denotes the spectral radius, 

r(T) = max{ IA I : ,\ E all< (T)} 

and can be computed with the standard formula 

r(T) = lim II Tn 11 l/n 
n~oo 

(2) 

For K c C, coK denotes the convex hull of K, K- the closure, 
0 

K the interior, and aK the set of boundary points of K. K = { i: A E K} 

is the set of complex conjugates of the points of K. The real and 

imaginary parts of elements of Kare ReK = {¥:A E K} and 

ImK = { \i X- : ,\ E K}, respectively. 

3. THE NUMERICAL RANGES 

The study of the Hilbert space numerical range dates back to the 

work of Hilbert, Toeplitz, and others who were largely interested in 

quadratic forms. 

(1.1) DEFINITION. The numerical range of T E <B ('S,) i.s the 

collection 

W(T) = {(Tx,x): llxll = 1} 
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The numerical radius of T is 

w(T) = sup{ /A I : i\ E W(T)} 

That W(T) is convex for each T E ~(~) is the content of the 

Toeplitz-Hausdorff Theorem. Several additional properties of this 

numerical range are properties that will be observed for generalized 

numerical ranges . 

(1.2) THEOREM. For T E ~(~) 

i) W(T) is convex, 

ii) o-(T) C W(Tf, 

iii) w(T) ~ II T II ~ 2w(T) 

To briefly comment on the proof, i) (the Toeplitz-Hausdorff 

theorem) has many elementary proofs. One of the easiest derives from 

the observation that the numerical range of a restriction of an operator 

is contained in its full numerical range (this is made precise in Proposition 

1. 3 iii). Coupled with a result of Donoghue [ 14] that numerical ranges 

of operators on the two dimensional Hilbert space are closed elliptical 

disks this implies i). 

A E a o-(T) implies i\ E II~ ( j) (T) and in fact that there exists 

a sequence of unit vectors, {x) ;=l' such that 11 (i\ - T)~ II - 0 as 

n - co. Hence (T~, ~) ----+ i\ as n - 00 and i\ E W(Tf. Because o-(T) 

is compact and a a(T) c W(T)-, i) implies ii). 

It is clear that w(T) ~ 11 T II by the Schwarz inequality. That 

11 T 11 ~ 2w(T) follows from polarization. 
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Other numerical range results which pertain only to the Hilbert 

space case will also be useful in what follows. Some of these results 

are listed in 

(1. 3) PROPOSITION. For T E CB(~), 

l·) R T T + T* d I T T- T* e = 2 an m = 2i , then ReW('_f) = W(ReT) and 

ImW(T) = W(ImT), 

ii) For T normal (i.e., TT*= T*T), W(T)- = coa(T), 

iii) If P is an orthogonal projection on ~ (P = P
2 

= P*) and 

W(PTP) c W(T) 

where PTP is considered as an operator on P ~, 

iv) W(T) = W(UTU*), U unitary. 

PROOF. 

Re(Tx, x) = (Tx, x) 2 (Tx;i) = (Tx, x) 2 (T*x, x) = (ReTx, x) 

With a similar relation for the imaginary parts i) is proved. 

ii) follows from a more general result presented in Chapter 3, 

Section 4. 

PTP considered as an operator on P}' has the numerical range, 

W(PTP) = {(PTPx, x) : x = Px, II x II = 1} 

But then 

W(PTP) = {(Tx, x) : x = Px, 11 x II = 1} c W(T) 



8 

iv) is valid from the equations 

W(UTU*) = { (UTU*x, x) : llxll = 1} 

= {(Ty, y): y = U*x, llxll = 1} 

= {(Ty, y) : lly II = 1} 

= W(T) . ■ 

Additional facts about W will be described as needed. Further 

general discussion of Hilbert space numerical range properties is found 

in [20 I, Chapter 14. 

The properties of the Hilbert space numerical range are largely 

held intact in the generalizations examined in this chapter. Theorem 

1. 2 has analogous formulations in each new setting. 

The modern theory of numerical ranges has its roots in the study 

of geometrical properties of Banach algebras. One paper of note is that 

of Bohnenblust and Karlin [5] which studies the geometry of the unit 

sphere of a unital Banach algebra. The key result of [5], for the pur

poses of this thesis, is the fact that the unit element is a vertex of the 

unit sphere. Let _J (ln ) denote the set of states for the unital Banach 

algebra fl.. : 

_J(l1() ={fE 07_*:f(l)=l=llfll}. 

(1. 4) THEOREM. [ 5 j . For the complex unital Banach algebra CS(, _J' (07) 

separates the points of Ol. • Furthermore, for T E d?... , if 

v(T) = sup{ jf(T) I : f E . ..J (O< )} 

then 
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v(T) ~ !IT II ~ ev(T) 

It is Bonsall [7] who formulates the notation for the set implicitly 

examined by Bohnenblust and Karlin, Vidav [44], and others. In [7] the 

following definition is made: 

(1. 5) DEFINITION. For a unital Banach algebra tfl., T E= (R, the 

algebra numerical range, written V(ef<, T), is the set 

V(d(, T) = {f(T): f E .J ((R)} . 

The number v(T) described in Theorem 1. 4 is the numerical radius of T. 

Observe that the numerical range of a Banach algebra element, 

unlike the spectrum, is not algebra dependent. For if T E (B , ~ a unital 

Banach algebra, and (B c 6<, then clearly V(G3 ,T) :=) V(~, T) since a 

state on d( restricted to (5 is a state; because a state in d3 can be 

extended to a state in if?. by the Hahn- Banach theorem, V( (3 , T) c 

V(<fl., T). The numerical range is a norm dependent quantity because it 

is defined in terms of the states. 

It is eventually shown that describing both v and w as the 

numerical radius is not inconsistent. 

It is almost immediate from Definition 1. 5 that a theorem anal

ogous to Theorem 1. 2 is valid. 

(1. 6) THEOREM. Let <R be a complex unital Banach algebra. For 

T E <JZ , 

i) V( al., T) is closed and convex, 

ii) a(T) C V((Q, T), 
I 

iii) v(T) ~ IITII ~ ev(T). 
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PROOF. i) holds because ..J (62) is a compact, convex subset of (J? * in 

the weak* topology. Thus, since the map (fJ: ~ * _, C defined by 

<P(f) = f (T), f E tn. * 

is weakly continuous and linear, cp(J ( tR)) = V( (R,, T) is compact and 

convex. 

A E a a <f?. (T) implies A E II en (T) and even that there exists a 

sequence of unit elements, {An}n:l such that (A - T)An _, 0 as n _, 00 • 

From the Hahn-Banach theorem there exist functionals f E CR * n 

with f n (An) = llfn II = 1. But then gn ( · ) = fn( · An) is a state and 

gn(T) _,Aas n _, 00 • Thus A E V((f)., T). The compactness of a(R_ (T) 

and convexity of V imply ii). 

iii) is Theorem 1. 4. ■ 

Before the algebra numerical range was formulated Lumer [27 j 

introduced the concept of the semi-inner-product space (s . i. p. s.) . 

Independently, Bauer [ 2j introduced a related notion for finite dimen

sional spaces. Both sought to explore operators on spaces other than ]" 

by imitating Hilbert space structure. To do this to each element x of 

a Banach space X we associate a functional fx such that 

2 f (x) = llxll 
X 

and llf II = llxll. 
X 

With such an association we define a semi-inner-product on X, 

[ · , ·] : Xx X* _, C, which satisfies the relations 
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[x,x] = llxll 2 and [ ·, ·] is linear in the first variable. Otherwise the 

semi-inner-product does not satisfy any of the usual Hilbert space inner 

product -relations. Note that the selection of the functional associated 

with the vector x is not (in general) unique. However, if X = ~ then 

the selection is unique and the semi-inner-product coincides with the 

established inner product on -S, . 

(1. 7) DEFINITION. For X a Banach space, T E 03 (X), and [ ·, ·], a 

fixed semi-inner-product defined on X, put 

W[,] (T) = { (Tx, x] : llxll = 1} . 

W[,] (T) is the Lumer numerical range relative to the semi-inner-product 

[. ' . ] . 

(1. 8) DEFINITION. Let J (X) denote the family of all semi-inner

products on the Banach space X. Then for T E <B (X), the spatial numer-

ical range of T is 

W(T) = U W[ ] (T) 
J(X) ' 

w(T) = sup{ IA I : A E W(T)} 

is the numerical radius of T. 

By the remark above there is compatibility between Definitions 

1. 8 and 1. 1. These definitions also imply 

W[,j(T)CW(T)c V((B(X),T), TE ~(X). (3) 

It is also possible to produce a theorem analogous to Theorems 

1. 2 and 1. 6 for the spatial numerical range. Two intermediate results 
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are needed, however. 

(1.9) LEMMA. ([10], page 83). For T E CB (X) and[,] E J(x), 

inf el+a,;'ll- l :a> 0 = sup{Re[Tx,x] : llxll = 1} 

= sup{ReA : A E V( (B (X), T)} 

PROOF. Put a= inf{ 111 + a;;II - 1 : a > o}, {3 = sup{Re[ Tx, x] : llxll = 1}, 

andy=sup{ReA:A E V((B(X),T)}. SinceW[,](T) c V(~(X),T),,B ~y 

is clear. 

For f E .J (~ (X) ) 

Ref(T) = Ref(l+aT)-1 ~ lll+aTll-1 a>0. 
a ..._ a ' ' 

y ~ a is also clear. 

For a > 0 sufficiently small, 

ll(I- aT)xll ~ Re[(l-aT)x,x] 

= 1 - aR e[ Tx, x] ;?. 1 - a{3 > 0 , II x II = 1 . ( 4) 

With x replaced by (I+ aT)x (4) becomes 

11(1 - a2 T 2)xll ;?. (1 - a/3) 11(1 + aT)xll , x c X . 

Then 

Hence a ~ {3. ■ 

lll+aTll-1 
a a> 0 . 
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(1.10) THEOREM. (10]. For T E @(X) and(,] E J(X), 

coW(,] (T)- = coW(Tf = V((B (X), T), and w(T) = v(T). 

PROOF. Because of the inclusion (3) the theorem will be proved once 

it is verified that cow[,] (Tf = V((B (X), T). Since both sets in question 

are compact and convex it suffices to show sup{ReA : A E ei 8w[, J (T)} = 
. () ·0 

= sup{ReA : A E e1 V( er, (X), T)} , for all 0 E R. Because e1 W[, j (T) = 

= w[,] (ei 8T) and ei 8v((B(X), T) = V(03 (X), ei 8T), Lemma 1. 9 can be 

applied to yield the result. ■ 

The spatial numerical range analog to Theorems 1. 2 and 1. 6 is 

now available. 

(1.11) THEOREM. For T E (l3 (X), 

i) W(T) is connected, 

ii) acg (x/T) C W(T)-

iii) w(T) ~ IITII ~ ew(T). 

That W(T) is connected was first shown by Bonsall, Cain, and 

Schneider [8] . They show that the set 

Z = {(x,f) :x E X, f E X*, f(x) = 1 = llfll = llxll} 

is connected in the norm x weak* topology on X x X*. It is then a 

simple matter to show that W(T) is a continuous image of this set. 

Williams [ 46] gives an elegant proof that a <B (X)(T) c W(T)-. 

He uses the result of Bishop and Phelps [3]: for X a Banach space, 

D = {f E X* : llf 11 = 1 =~ f(x) = llxll for some x E x} 
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is norm dense in the unit sphere of X*. 

iii) follows from Theorems 1. 4 and 1. 10. 

One additional lemma is helpful in the sequel. The proof is 

similar to that of Lemma 1. 9 and is omitted. 

(1.12) LEMMA. [10]. For the complex unital Banach algebra en, 

and 

max{ReA: A E V( en, T)} = lim !. log II exp aT II 
a-o+ a 

1 
= sup a log llexp aTII , 

a>O 

max{ ReA: A E a <R (T)} = lim 
a-+oo 

1 a log llexp aTII 

= inf !.1ogllexpaTII . 
a>O a 

The limits in (5) and (6) exist and equal the sup and inf 

respectively by the subadditivity of the function¼ log llexp aTII (see 

[22], pages 135-145). 

For (6) note that lim log llexp aTlll/a = log r(exp T) = · 

max{ ReA: ,\ E a <f2 (T)}. 

4. HERMITIAN ELEMENTS 

( 5) 

(6) 

Vidav [ 44] introduced a norm characterization of hermitian ele

ments in Banach algebras. The study of such elements has been an 

important aspect of the investigation of numerical range properties. 
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(1. 13) DEFINITION. For the unital Banach algebra d?, H E ~ is 

called hermitian if llexp iaHII = 1, for all a E IR. 

From this definition a numerical range characterization of 

hermitian elements is available. 

(1.14) THEOREM. [27], [10]. H E (f( is hermitian if and only if 

V(~,H) CIR. 

PROOF. llexp iaHI I = 1, a E IR implies both 

sup !..1og II exp iaH II = 0 
a>O a 

and 

sup ¼ log II exp - iaH II = 0 
a>O 

By Lemma 1. 12, Im;\. = 0 for A E V(ffl. , H). 

If V(~ , H) c IR then ( 5) and (6) imply log llexp iaH II = 0 for all 

a E- IR. Thus llexp iaHII = 1, a E IR. ■ 

In (B ( -$-), therefore, the usual definition of hermiticity cor

responds to that given by Vidav. One other property which extends from 

the Hilbert space to the general case is that the norm and the spectral 

radius of a hermitian element are equal. This is the content of 

Sinclair's Theorem [37] (an elementary proof is given in [9]): 
• 

(1.15) THEOREM. For a unital Banach algebra {R, if HE (5? is 

hermitian, then r(H) = v(H) = IIH II. 

An immediate corollary of the theorem is that V( (f/, H) = co a(H) 

whenever His hermitian . 
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It is essential to note, however, that few other properties of 

Hilbert space hermitians carry over to the general setting. For example, 

it need not follow that H2 is hermitian if H is hermitian. A discussion 

of some of these differences is given in Chapter 4, Section 6. 

In the interest of previewing theorems which appear later in this 

thesis we combine two elementary facts to obtain an additive commutator 

theorm for a general Banach algebra. 

Recall the Kleinecke-Shirokov Theorem for Banach algebra ele

ments (see [20 j, page 128): 

(1. 16) THEOREM. Suppose that A, B E tR and that A commutes with 

D =AB-BA. Then a~ (D) = {o}. 

This algebraic theorem has immediate application in an additive 

commutator theorem. 

(1.17) THEOREM. Suppose ~ is a unital Banach algebra and that both 

H and K are hermitian in (R.. If H commutes with D = HK- KH, then 

D = 0. 

PROOF. It suffices to show that iD is hermitian, for by Theorem 1.15 

a(D) = { o} implies IIDII = 0. 

To sketch that iD is hermitian (see [10], page 48 for details), 

the heFmiticity of H and K is used to obtain 

llexp(iaH) exp(iaK) exp(-iaH) exp(-iaK) II = 1 . (7) 

Expanding the term on the left one finds 
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(8) 

Lemma 1. 9 implies that 

111 2
DII 1 Ill - a2Dll - 1 . f{ R .\ A E V(/() D)} . f - a - ~- ---- = 0 . 1n e : V (' = - 1n 2 = - 1m a2 

a>0 a a -o+ 

Changing the order of the signs in the left-hand side of (7) one obtains the 

variation of (8) 

Thus sup{Re.\ :A E V{(R,D)} = 0, as well, and iD is hermitian. ■ 

5. WILLIAMS'THEOREM 

Numerical ranges possess several useful manipulative properties 

which will be in constant use in the sequel. One result due to Williams 

will prove particularly valuable. This result will be discussed after 

several general results are collected in 

(1.18) PROPOSITION. Let en be a unital Banach algebra. 

i) If T E 62 , then V(dl , AT) = AV(~ , T), A E <C, 

ii) if S, T E (R., then V(lQ, S+T) c V(~ , S) + V(d(, T), 

V(IR , A+T) = .\ + V(d? , T), A EC, 

iii) for AE = {z E <C : I z I ~ E}, if 11S - T II ~ E then 

V(O<,T) C V(fn,S) + AE. 

PROOF. i) is trivial from the definition; ii) follows from the linearity 

of the states. 

If 11S-TII ~ E then lf(S) -f(T) I ~ E for each f E .J(~) . 
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Thus each element of V((/) , S) is within a distance E from an element of 

V((;, T). ■ 

It is important to observe that each part of this proposition also 

applies to the spatial and semi-inner-product numerical ranges. Part 

iii) of the proposition is the continuity which plays an important role in 

Chapter 4. 

Williams' Theorem gives a containment for the spectrum of a 

product of two Banach algebra elements. Despite the apparent rough

ness of the approximation to the spectrum, the result is widely used in 

what follows. 

(1.19) THEOREM. [ 46] . ~ is a unital Banach algebra, S, T E (R. If 

0 l V(~, T), then a(R (ST-l) c V({R, S)/V(O"(, T). 

PROOF. 0 f:. V((/), T) implies that Tis invertible. A E acR (ST-l) implies 

0 E ad? (.X T - S). From Theorem 1. 6 and Proposition 1. 18 i) and ii) 

0 E V ( /R , \ T - S) c .XV ( 62 , T) - V ( (lJ. , S) 

But this means A E V(f) , S) /V( (fl, T). 11 

If S and T commute more can be said. Let (B be a maximal 

commutative subalgebra of d'( containing S and T. By (1) 

aol. (ST) = a(B (ST) = {q,(ST): cpmultiplicative on Q3} 

c a(B (S) · a(B (T) = atn (S) • a~ (T) 

This fact is listed for reference as 
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(1. 20) THEOREM. For S, T c tf? . If S and T commute then 

ad? (ST) c a if< (S) a~ (T) . 

6. CORNERS AND BOUNDARIES OF NUMERICAL RANGES 

Hildebrandt [21] discovered that the corner of a Hilbert space 

numerical range is a point of the spectrum of the operator in question. 

This and other geometrical properties of numerical range sets will be 

studied in this section. 

(1. 21) THEOREM. [21]. For T E Q3 (~), a corner of W(T) (a point of 

aw(T) at which nonunigue tangents to W(T) exist) is a spectral point of 

T. 

PROOF. It can be supposed (by translation and rotation of T) that O is 

the corner lX)int of W(T) and that W(T) c {z E C : Rez ~ O}. By the 

nonuniqueness of tangents at 0, there exists an angle 0 * 0 such that also 

W(ei 9T) c {Rez ~ O}. There exists a sequence of unit vectors{~} :=l 

such that (T~,xn)-+ 0 as n - 00 • But then both (ReT~,xn) and 

(Reei0Tx ,x ) - 0 as n - 00 • Since both ReT and Reei8T are positive, n n 

this implies ReT~ -+ 0 and Reei0 T~ - 0 as n - 00 • Hence T~ - 0 

and n - 00 and O E a(T) . ■ 

Schmidt [36] has extended this theorem with restrictions to the 

general Banach algebra case. He proves that if i\ is a corner of V(~ , T) 

such that V((R , T) is contained in a sector with vertex at i\ of angular 

opening less than 7T / 2 then A E a62 (T). These results are also shown to 

be sharp [ 36] . 
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Sinclair and Crabb [ 38] investigate properties of points which 

belong to the boundary of the numerical range of an operator and some 

or all of its powers. One of their results will be of use in Chapter 4. 

(1.22) THEOREM. [38j. Let tf2 be a complex unital Banach algebra. 

For TE £n suppose OE av(62, Tn), n = 1,2, ... , then 8r(T) ?- IITII. 
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CHAPTER 2 

MULTIPLICATIVE COMMUTATORS 

1. INTRODUCTION 

This chapter is devoted to a study of multiplicative properties of 

operators using the multiplicative commutator as the main tool. The use 

of such a commutator as a tool is demonstrated in a theorem of Frobenius 

(see [ 29], [ 42] for background details). 

(2.1) THEOREM. For T,A, B E Q3 ()-), dim ~ < 00 , suppose 

A, BE 63 (~) such that 

T = ABA-lB-l (1) 

AT- TA = [A, T] = 0 , (2) 

and both A, Bare unitary. Then O E W(B) or [ A, Bl = 0. 

The central result of this chapter is an extension of the Frobenius 

Theorem which contains all known improvements of this theorem. The 

directions in which the central result is the best possible theorem are 

also discussed. 

2. EXTENSIONS OF THE FROBENIUS THEOREM 

A detail which plays a role in the theorems of this and the next 

section is the closedness of the numerical range. In general, W(T) is 

not closed. However, if dim ~ < 00 then, as a continuous image of a 

compact set, W(T) is closed. Normally the extension of a theorem with 

a numerical range condition from the finite dimensional to the infinite 
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dimensional case requires the closure of the numerical range as the con

dition. That Theorem 2. 4, the extension to the operator case of Theorem 

2 . 3, does not require this modification is a point of interest of this 

chapter. 

That Theorem 2 .1 is not the best possible commutator theorem 

with hypotheses (1) and (2) is demonstrated in Putnam [30]. There the 

following is shown to be true: 

(2.2) THEOREM. For T,A, B ;: 6) ()-), suppose A, BE {)3 (~), such that 

(1 ) and (2) hold, and that A is unitary . Then 0 E W(Bf or a(T) = {1}. 

Of course this implies Theorem 2 .1 and shows that Theorem 2. 1 

can be extended to the infinite dimensional case. That this result con-

2 -1 -1 tains Theorem .1 derives from the fact that T = ABA B and both A 

and B unitary imply T unitary. The only unitary T with a(T) = {1} is 

T = 1. A proof of Theorem 2. 2 will be given in Chapter 4 (page 57) by 

techniques which are fundamentally different from those of this chapter. 

In a somewhat different situation Marcus and Thompson [29] have 

also obtained an extension of Theorem 2·.1. In this case the condition 

that A, B (hence T) be unitary is changed to the weaker condition that 

only A, T be normal. 

(2.3) THEOREM. (29]. Let dim ~ < 00 • For T,A,B E {J3(-~) sup

pose (1) and (2) hold, and that A, T are normal. Then 0 E W(B) or 

[ A,B) = 0. 

- 1 -1 -1 -1 -1 -1 PROOF. T =--0 ABA B implies TA = A T = BAB . Put N1 = TA 

and N2 = A- 1 . What follows shows N1 = N2. Hence T =1 and [A, B] = 0. 
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Assume O f. W(B). Since N1 and N2 are commuting normal 

transformations, they simultaneously have diagonal representations. 

Assume this representation is chosen so that N1 = diag(,\1, ... , An) and 

N2 = diag( µ 1, ... , µn). B has a matrix representation relative to the 

same orthonormal basis, B = (b .. ) ~ . 1 . n = dim ..e. ✓• 
lJ 1, J = d 

That N1B = BN2 implies \bii = µibii' i = 1,2, ... ,n. However, 

by Proposition 1. 3 iii, if Pi is the projection on the ith basis vector, 

b .. =W(P.BP.) c W(B). b .. * 0, i =1,2, ... ,n, impltes,\
1
. = µ

1
., 

11 l 1 11 

i = 1, 2, ... , n, and N 1 = N2 . ■ 

Again Theorem 2. 3 contains the Frobenius result, and the proof 

of Theorem 2. 3 given above is still the most direct proof of Theorem 2 .1. 

It is shown in [ 12] and in [ 17] that the literal extension of Theorem 2. 3 

to the infinite dimensional case is valid. 

(2.4) THEOREM. For T,A,B E ~ ({j,-) suppose (1) and (2) hold and that 

T and A are normal. Then O E W(B) or [ A, B] = 0. 

The proofs in [ 12] and [ 17] are virtually the same. The pre

sentation of this proof is made in Section 3 where other related results 

are discussed. 

A direct extension of Theorem 2. 2 is made in [ 13] . The proof 

is suggested by DePrima and, independently, by the referee for [ 13]. 

(2. 5) THEOREM. For T,A, B E Q3 (if,), suppose (1) and (2) hold and 

that A is unitary. Then O E W(Bf or [A, B] = 0. 

PROOF. TB = ABA -l and note that if TnB = An BA -n, then Tn+ l B = 

TAnBA-n = AnTBA-n = An+lBA-(n+l) and Tn-lB = T-lAnBA-n = 
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is valid. Because A is unitary, W(TnB) = W(AnBA-n) = W(B) and 

w(TnB) = w(B), n E Z. Hence by Theorem 1. 2 iii , IITnB II ~ 2w(B), and 

IITn 11 ~ 2w(B) IIB- 1
11 , n E Z. This suggests application of a theorem of 

Sz.-Nagy [ 41]: IITnll ~ M, n E Z for some M, implies Tis similar to a 

unitary operator. Hence T = sus- 1, U unitary. But a(U) = a(T) = { 1} 

by Theorem 2. 2 so T = U = 1. ■ 

3. THE MAIN THEOREM 

The central result of this chapter is a theorem which contains 

every previous result. In some sense this theorem is the strongest pos

sible result in the class of commutator theorems which have relations 

(1) and (2) in the hypothesis. A discussion of this aspect of the theorem 

is contained in Section 4. 

Throughout the section the Fugle de- Putnam Theorem is used. 

(2. 6) THEOREM. [ 31] . li N1, N2 E (B (i) are normal and N1 B = BN2, 

B (: d3 ( )'), then NiB = BN; . 

A new proof of this theorem is given in Chapter 3, Section 5. 

Theorem 2. 6 finds immediate application in the proof of the main result , 

(2 . 7) THEOREM . For T, A , B E G] (t), suppose that (1) and (2) hold 

and that A is normal. Then O E W(Bf or [ A, B] = 0 . 
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PROOF. As in the proof of Theorem 2. 4 we examine the structure 

TA-l = A-lT = BA-lB- 1 . Put N = A-l, R = TA- 1 . [R,N] = 0, N is 

normal, and RB = BN. 

For any Borel subset M of C, let EM denote the spectral pro

jection of N for the set M. Since [ R, N] = 0, [ R, N* j = 0 by Theorem 

2. 6, R commutes with any polynomial in N and N*. Extending to 

weak limits R commutes with any Borel function of N and N*. Hence 

[ R, EM] = 0, Ma Borel subset of C. 

Noting this observe that 

(4) 

for any Borel set M. 

Suppose O rf. W(B)-. Then if EM =t O, Proposition 1. 3 iii implies 

that O f. W(BM)-, where BM is considered as an operator on EM~. 

Thus BM is invertible on EM\ . 

Let E > 0 be given. It will be shown that IIR - NII < KE for some 

fixed K. Therefore R = N and T = 1, as required. 

Choose a family of Borel subsets of C, {Mi}: =l' such that 

i) max(diam(Mi)) ~ E, i = 1,2, ... ,r, 

ii) EM. =I= 0, i = 1,2, ... ,r, 
1 

iii) 



26 

The spectral theorem insures that such a selection is always possible. 

Put o = dist(O, W(B)), then 

-1 -1 .R,._ Thus IIBM. 11 ~ o , where BM
1
. is considered as an operator on EM. '<f. 

1 1 

Using (4) and taking\ E Mi' 

2 -1 
~ 0 IIBII · E . 

IINM. - \ II ~ E because NM. is normal, 
1 1 

r(NM. -\) = IINM. -;\ill. 
1 1 

Finally' if X E ~' Then 

r 
ll(R - N)xll2 

ll(R - N)( Li 2 
= EM_X)II 

i=l 
1 

r 
2 

= II I: (RM. - NM.)~ 11 
i=l 

1 1 

r 

L 2 = ll(RM. - NM_)xi II 
i=l 

1 1 

~ (2o- 1 11BIIE)2 t llxi112 = (2o- 1 11BIIE)2 llxll2 . ■ 
i=l 
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(2. 8) COROLLARY. Let R, N, B_ !'.: Q3 ( ~) and suppose 

i) N is normal, 

ii) [ N, R] = 0, 

iii) RB = BN. 

Then O E W(B)- or R = N. 

PROOF. Essentially it is the proof of this result which has been given 

above. To apply the theorem translate R and N by A so that RA = R - A 

and NA = N - .\ are both invertible. Supposing that O f W(B)-, Theorem 

. . -1 -1 -1 -1 
2. 7 1mphes NA RA= NA BNAB = 1. NA RA = 1 means R = N. ■ 

As mentioned in Section 2 the proof of Theorem 2. 4 is similar to 

that of Theorem 2. 7 and is suited for presentation here. 

PROOF OF THEOREM 2. 4. [ 12], [ 17]. Again the structure 

-1 -1 -1 -1 -1 A T = TA = BA B is examined. As before put A T = R, 

-1 A = N. In this case, of course, both Rand N are normal. 

The family of spectral projections for R will be denoted FM' M 

a Borel set. The family for N will be written EM. By an argument 

similar to that used in the proof of Theorem 2. 7 EM 
1 

FM
2 

= FM
2 

EM 
1

, 

M1, M2 Borel. 

Suppose R * N. Then for some Borel set M, EM -=t- FM and there 

exists a unit vector x such that either EMx = x and F Mx = 0, or 

EMx = 0 and F Mx = x. 

In either case because RB = BN (and hence F MB = BEM), 

(Bx, x) = (BEMx, x) = (F MBx, x) = (Bx, F Mx) = 0 

Thus O E W(B). 11 
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In a sense this is a surprising result. As suggested at the 

beginning of the section one would expect the hypothesis O E W(B)

rather than O E W(B) in the infinite dimensional setting. 

An equivalent formulation of Theorem 2. 4 is stated here as a 

corollary. This version of Theorem 2. 4 is in the form taken by the 

main theorem of [ 17]. 

(2. 9) COROLLARY . For R, N, B E Q) (~) suppose 

i) R and N are normal, 

ii) [N,R]=O, 

iii) RB = BN. 

Then O E W(B) or R = N. 

4. THE SHARPNESS OF THE MAIN RESULT 

In view of the literal extension to the infinite dimensional case of 

Theorem 2. 3 it is natural to ask if the condition in the hypothesis of 

Theorem 2. 7, 0 E W(B)-, can be weakened to O E W(B). Unfortunately 

the answer to this question is not known. The impossibility of other 

weakenings is discussed in this section. 

To see that the condition O E W(B)- can not be weakened to 

0 E coa(B) examine the example which follows. 

N = 

For the example put 

0 -1 0 -1 0 0 

0 1 0 

0 0 -1 

B = 3 0 2 

4 0 3 

1 0 0 

R = 0 -1 0 

0 0 -1 
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These matrices represent transformations relative to an orthonormal 

basis for ~ = a:; 3 . Note that these transformations satisfy hypotheses 

i), ii), and iii) of either Corollary 2. 8 or Corollary 2. 9. Furthermore 

a(B) = {1} so that O E coa(B). However, that N * R shows that the 

weakening being studied is invalid. 

A relaxation of the condition i) of Corollary 2. 8 from N, R 

normal to N, R diagonable also does not lead to a positive result. By a 

theorem of Williams [ 45], for any open set V such that V =:) coa(B) 

there exists a similarity Sy for which W(SyBSy1) c V . Hence there 

exists an invertible S for the transformation B of the example above such 

that O E W(B') where B' = SBS- l. 

Putting N' = SNS-1 , R' = SRS- 1, the conditions of Corollary 2. 9 

are satisfied for R', N', B' in place of R, N, B, except that the condition 

R, N normal is replaced by R', N' diagonable. Again because R' =1- N' 

the weakening is not possible. 

To see that three dimensions are required to find counterexamples 

note that the fallowing holds: 

(2 .10) PROPOSITION. Let dim )' = 2. For R, N, B E Q3 (~) suppose 

i) N, R diagonable, 

ii) [R, N] = 0, 

iii) RB= BN. 

Then OE coa(B) or N = R. 

PROOF. Suppose N =t R and that O E a(B). It is shown here that 

0 (- coo(B). 
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Since R and N are simultaneously diagonable by a similarity S, 
-1 , -1 , -1 , , put N' = SNS , R = SRS , and B = SBS . Because N and R are 

similar, a(N') = a(R'). Hence N'= diag(a,13), R' = diag(/3,a), for some 

a, 13 E C. However, since R' B' = B'N', a computation shows that B' has 

the form, 

The trace of B' being zero implies O E coa(B') = coa(B). ■ 

5. REMARKS 

It is noted in [ 12] , that a result apparently stronger than 

Theorem 2. 7 appears in the literature [ 16]. This result (Theorem III 

of [ 16] ) , having the same hypotheses as Theorem 2. 7, has the con

clusion O E coa(B) or T = 1. That this is in error is seen from examining 

the example of the previous section. Actually what is shown in [ 16] is 

that under the hypotheses of Theorem 2. 7 and under the additional 

assumption that A commute with Bn AB-n, n = 1, 2, ... , then 0 E co a(B) 

or [ A, B] = 0. 

Theorem 2. 7 may be framed as a theorem for C*-algebras. If 

tfl. is a C*-algebra with unit, then the algebra numerical range will serve 

to replace the spatial range used in Theorem 2. 7. 

(2 .11) THEOREM. Let 6( be a C*-algebra with unit. For A, B, T E (R , 

suppose that (1) and (2) hold and that A is normal (i.e., [A,A*] = O). 

Then OE V(~ ,B) or [A,B] = 0. 
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PROOF. 0( is isometrically isomorphic to a self-adjoint subalgebra of 

d3 (1'), for some Hilbert space f. Let 63 be the weak closure of tJ? in 

a3 (%-), 

Because V((R, B) = V(8, B) by the remarks of Chapter 1, Section 

3 (page 9 ) and because the spectral theorem is valid in the w*-algebra 

(B, all of the techniques used to prove Theorem 2. 7 are valid in this 

setting. ■ 

Observe that the C * -algebra version of Theorem 2. 4 is contained 

in Theorem 2.11. This happens because of the closedness of V((Jl, B). 

It should be mentioned that Theorem 2. 4 (hence Theorem 2. 7) 

has many interesting applications. A small collection of these are listed , 

in [17 ]. One application which gives the general pattern of many of the 

others is due to Taussky [ 43] (see [ 43] and [ 47] for comments on the 

origin of the theorem). 

(2. 12) THEOREM. For A E ~ ( ~) normal, suppose 

and that O r/:. W(S). Then A = A*. 

PROOF. AS =SA*. Apply Corollary 2. 9 with R = A, N =A*, and B = S. ■ 

It is of interest to observe that Theorem 2. 7 may be viewed as 

a multiplicative analogue of an additive commutator theorem of Putnam 

[ 31 ], 
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(2 .13) THEOREM. Suppose [A, [A, B]] = 0 and that A is normal, then 

[A,B] = 0. 

{ } -1 -1 If the notation A, B = ABA B is adopted, then Theorem 2. 7 

has the formulation 

(2. 14) THEOREM. Suppose {A, {A, B}} = 1 and that A is normal, then 

0 E W(Bf or {A, B} = 1. 

As is the case with Theorem 2. 4 a proof of Theorem 2. 7 in the 

case t is finite dimensional is instructive. 

PROOF OF THEOREM 2. 7: DIM t FINITE. Put R = TA-1, N = A-1. 

It suffices to show that R = N, supposing O t/_ W(B). 
r 

By normality N = I: A.P., P. is the orthogonal projection on 
i= l 1 l l 

ker (N - \). That [R, N] = 0 implies RPi = PiR, i = 1, 2, ... , r. Then 

since RB= BN 

RP.BP. = P.RBP. = .\.P.BP., 
l l l l 11 l 

i = 1, 2, ... , r . 

By Proposition 1. 3 iii and the supposition Of. W(B), PiBPi is invertible on 

pi "1· r 
Thus RP. = .\.P. or P . .ev, and R = ' ~ .\. P. = N. ■ 

l 11 ld L 11 
i=l 
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CHAPTER 3 

NUMERICAL RANGES AND DERIVATIONS 

1. INTRODUCTION 

Derivations, as do commutators, provide a structure with which 

commutativity properties of operators can be studied. This chapter is 

devoted to derivations, their numerical ranges, and an application of the 

derivation to a commutativity question. In particular, the numerical 

range of a derivation acting on an algebra of the form (B (X), X a Banach 

space, is explicitly determined, and a numerical range proof of the Fuglede

Putnam Theorem, Theorem 2. 6, is given. 

Recall that, for the element T in a Banach algebra rn., the 

. derivation relative to T on d2 is the linear mapping AT: rn -+ 6? defined by 

Related to the derivation is the intertwining operator on rJ? 

relative to elements S, T of (f). • This intertwining operator is the map 

As T: ol -+ en defined by the relation 
' 

A E dl . 

Of course, AT T = AT. 
' 

RT denotes the operation of multiplication on the right by T. LT 

is multiplication on the left by T. 

RT(A) = AT and LT(A) = TA, A E dl. AT= LT - RT and 

As T = Ls - RT. Note that 
' 
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V(63 ((fl), LT) = coW(LT) 

= co{fA (TA): fA (A)= 1 = llfAII = IIAII, A E 0?} , (1) 

But {fA (TA): fA (A)= 1 = llfAII = IIAII} c V((f), T) since each functional 

g( · ) = f A ( · A) is a state of (fl • In the opposite direction if f is a state on 

(fl then f(·) = f(• 1) so that V(rfl, T) c {fA (TA): fA (A)= 1 = llfAII = IIAII }. 

(1) and these observations imply 

(2) 

Similarly 

(3) 

It is evident that the following is valid: 

(3.1) PROPOSITION. Suppose H, Kare hermitian elements of a complex 

unital Banach algebra C. Then ~H K is also hermitian in G3 (IC). 
' 

PROOF. 

c v(B ([J ), Ls) - v( (8 (IC, RT) 

= V(~, S) - V([C, T) c IR , 

by (2) and (3) and the hermiticity of S and T. ■ 

Throughout the remainder of this chapter d? denotes the full 

algebra of bounded endomorphisms on a Banach space X, 62 = CB (X). The 

techniques of this chapter yield best results when limited to this setting. 

In the case en = 6 ( f) Stampfli (39] has computed the norm of a 

derivation in terms of the norm of the operator in y defining the derivation. 
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(3. 2) THEOREM. (39 ]. Let T E Q3 (-s-). Then 

IIATII = 2 inf II.\ -TII . 

.\ E<C 

(4) 

It is clear that IIATII ~ 211.\-TII, .\ E <C, since AT= A.\-T' .\ E <C. 

The location of a .\ so that the inequality can be reversed is the content 

of the bulk of [39 ]. 

One of the results of this chapter is the formula for the numer

ical range of a derivation 

(5) 

where(!). is of the form Q3 (X). Because (4) does not hold for all algebras 

of the form Ot = (8 (X), it is surprising that (5) is always true. 

Theorem 3. 2 has an extension to the case of the intertwining 

operator. The same is true of the result described by (5). This exten

sion to the intertwining case is the numerical range analog of Kleinecke's 

Theorem (see (28] for a discussion of this and related theorems) which 

completely characterizes the spectrum of intertwining operators: 

(3. 3) THEOREM. (fl is of the form \\3 (X), X a Banach space. For 

s, TE 6<, ad3 (02 /As, T) = ad? (S) - aO? (T). 

In addition to the result (5) and its extension to the intertwining 

operator case, normal elements of general Banach algebras are defined 

and properties of intertwining operators which are normal elements are 

discussed. 
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2. THE NUMERICAL RANGE OF AN INTERTWINING OPERATOR 

As suggested above the exact analog of Kleinecke's Theorem on 

the spectrum of an intertwining operator is valid for the algebra numerical 

range. 

(3. 4) THEOREM. Let Cfl have the form (f2 = l1 (X). For S, T E tfl 

In more detail 

W(AS T) ::) W(S) - W(T) . 
' 

(6) 

PROOF. (6) is all that requires proof, for by Theorem 1.10 (6) implies 

V(a3 (<f( ), As, T) = co(W(As, T)-) 

::) co(W(S)-) - co(W(T)-) 

= V(cJ?, S) - V(~, T) . 

Here, the relation for compact sets K, L c C 

co(K + L) = coK + coL 

is used. Containment in the other direction follows because As T = 

' 
Ls - RT. By (2) and (3) 

v( Ql (rfl ), As T) = v(B (rft ), Ls - RT) 
' 

c V(~ (~),Ls) - V((B (if(), RT) 

= V(O(, S) - V(d2, T) . 
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To prove (6) suppose ;\ E W(S), µ E W(T). Then ;\ = fy(Sy ), 

µ = fx(Tx), 1 = llxll = llyll = llf II = llf II = f (x) = f (y), x, y E X, 
X y X y 

fx, fy E x*. Put Az = fx(z)y, z E X. Then 

and 

Ax= y 

imply IIAII = 1, A E (fl. 

Define <p E a?* by <p(B) = fy(Bx), BE 0(. Here llq,11 ~ 1 since 

I <p(B) I = I fy(Bx) I ~ IIBxll ~ IIBII, B Ea?. Furthermore <p(A) = \/Ax) 

= fy(y) = 1 implies <p(As, T(A)) E W(As, T). But 

<p(As, T(A)) = fy( (SA -AT)x) 

= fy(Sy) - fy(fx(Tx)y) 

= ;\ - µ . 

Thus ;\ - µ E W(As T) and (6) is proved. ■ 

' 
An alternate proof which has more numerical range orientation, 

but which applies only to the Hilbert space case follows. 

(3. 5) THEOREM. For S, TE ()3 (1), 

V(@ (0., (t) ), As, T) = V(~ (~), S) - V((B (f), T) . 

PROOF. Put K = V(~ ((\3 (i,) ), As, T) and L = V((j (~), S) - V((B (~), T). 

Because both K and L are compact and convex it suffices to show that 

the projections of K and L on any line are the same. 
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Note that 

i0 
e as T = a ·0 ·e 

' e1 s e1 T ' 

and 

ReeiOL = Re(V(63(f),S') -V(ffi({}), T')) 

Hence, if K' = V(IS3 (03 (~)),As', T') and L' = V((S) (f ), s') - V(~ (f ), T'), 

then the theorem is established when ReK' = ReL' is shown. 

As' T,(A) = s'A -AT' 
' 

= [(ReS')A-A(ReT')] + i[(ImS')A-A(ImT')] 

Proposition 3. 1, therefore, implies that As' T' has the form 
' 

H1 and H2 are hermitian in CB (63 (i) ). Thus ReK' = V(~ (~ (-~) ), H1). 

Applying Theorem 3. 3 and Theorem 1. 15, 
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ReK' = V(o3 (6 (i) ), H1) 

= coao3(i'.B(1))(H1) 

= co{ a (ReS) - a (ReT)} 

= coa (ReS) - coa (ReT) 

= V((B (-vj--), ReS) - V(03 (f ), ReT) 

= Re{V(8(~), S) - V((B (%-), T} 

= ReL~ ■ 

As suggested in the introduction, Theorem 3. 4 is somewhat sur

prising. This is because the numerical range is a norm property of an 

algebra element rather than an algebraic property. The formula in 

Theorem 3. 4 determines the numerical range of an intertwining operator 

in terms of the numerical ranges of the operators defining the intertwining 

operator. Stampfli's formula for the norm of a derivation on (B (f) gives 

a determination of the derivation norm in terms of the inducing operator's 

norm, 

ll~TII = 2 inf IL\ -TII . 
AE~ 

What is surprising is that Stampfli's formula is not valid in arbitrary 

algebras of the form <I? = ~ (X) (as shown by B. E. Johnson [23 ]), while 

the related assertion of Theorem 3. 4, of course, is valid for any algebra 

The norm of a derivation can always be estimated from below by 

the numerical radius . Because of this Stampfli's formula remains valid 

for the special class of derivations in which 
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2 inf 
A EC 

(7) 

To see this note that the remarks following the statement of Theorem 3.1 

assert that IIATII ~ 211A - TII, A E C. Thus the inequality 

and the assumption on the special class imply 

IIATII = 2 inf IIA-TII . 
AEC 

Because derivations induced by hermitians have property (7) 

Stampfli's formula holds in general for these derivations. 

(3. 6) COROLLARY. If (/), = 113 (X) and His a hermitian element of rfl, 

then 

More is true, however, as the determination of the norm of an 

intertwining operator induced by two hermitian elements is possible. 

(3. 7) COROLLARY. If d'J. = 63 (X) and H, Kare hermitian ind(, then 

II aH K II = inf { IIA - H 11 + II A - K II } . 
' AEC 

(8) 

either s 2 - r 1 or r 2 - s 1. To be specific suppose that v(AH K) = s 2 - r 1. 
' 

The argument in the case v(AH K) = r 2 - s 1 follows the same pattern. 
' s2 +s1 r2 +r1 

Note that because s 2 - r 1 ~ r 2 - s 1, 2 ~ 2 . Pick 
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s2+s1 r2+r1 
t E IR, 2 ~ t ~ 2 Then by Theorem 1.15 

= v(K - t) + v(t - H) 

= llt - KIi + llt - H 11 

Since, in general, 

v(AH K) ~ IIA II ~ IL\. - H 11 + IIA - KIi , A E ~ , , H,K 

(8) holds. ■ 

3. CONSEQUENCES OF THE NUMERICAL RANGE CHARACTERIZATION 

Several simple consequences of Theorem 3. 4 are described in 

this section. The results derive from geometrical properties of the num

erical range of the derivation characterized above. 

The first result shows that the only elements of 63 (X) which com

mute with all of 63 (X) are the scalars. 

(3. 8) THEOREM. For T E d'< = (B (X) suppose that [A, T] = 0 for all 

A E d( • Then T = A for some A E ~. 

PROOF. AT = 0. Therefore V(G3 ((n ), AT) = V((f?, T) - V(tn, T) = {O }. 

Thus V(d'l., T) = {A} for some A E (C , or T = A. • 

Recall that a convexoid operator is one for which the algebra 

numerical range coincides with the convex hull of the spectrum. That an 

intertwining operator inherits the property of being convexoid from the 

operators used to define it is the content of the next theorem. 
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(3. 9) THEOREM. Let 6( = (B (X). If S, TE (I? are convexoid, then ~S T 
' 

is convexoid in ~ ((f?). 

PROOF. Take,\-µ E V((B (~ ), ~S T) extreme, ,\ E V(rf2 , S), µ E V(ffl, T). 
' Al +.\2 

Should ,\ not be extreme in V((R, S), then,\ = · 2 , Al * .\2, 

\ E V((f), S), i = 1, 2. But then 

implies,\-µ is not extreme . This contradiction shows that ,\ is extreme 

in V(Ol., S) or that ). E a (R (S). Likewise µ E atfl (T). Thus 

.\-µ E a CB (o?f~s, T) by Theorem 3. 3. 11 

A related result is the observation that corners of the numerical 

range of an intertwining operator are spectral points. 

(3.10) THEOREM. For S, TE 63 (~), suppose ,\ is a corner in the boundary 

of V((B (63 ({j,) ), ~s, T). Then A E a & (~ (1) )(~s, T). 

PROOF. It suffices to show that if A = µ-TJ, µ E V({13 ({j, ), S) and 

17 E V(d3 (t ), T) that µ and 11 are corners of V(~ (y ), S) and V((B (j ), T), 

respectively. Corners of Hilbert space numerical ranges are spectral 

points by Theorem 1. 21. 

If µ is not a corner of V((B (-§, ), S), then µ -11 is not a corner of 

V((\3 ( t ), S) -17 c V((i3 ("1 ), S) - V((\3 (i), ), T). Thus A can not be a corner 

of V((J ((B (1') ), ~S, T). The contradiction establishes µ as a corner. 17 

is likewise a corner . 11 
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Theorem 3. 4 also implies a converse to Proposition 3. 1. 

(3. 11) THEOREM. Let d( = CB (X). If S, T E (R and As Tis hermitian, 
' 

then there exists A E <C such that both A-S and A-T are hermitian. 

PROOF. Obvious. ■ 

4. NORMAL ELEMENTS AND DERIVATIONS 

The existence of hermitian elements in an arbitrary complex 

unital Banach algebra permits the existence of normal elements. 

(3.12) DEFINITION. For the complex unital Banach algebra [C, N E [ 

is said to be normal if there exist hermitian elements H, K E IC such that 

N = H +iK and [H, K] = 0. 

This definition coincides with the definition of normality in G3 ("}) 
where N E d3 (f) is called normal if [N, N*] = 0. In & (t) N = ReN + ilmN 

and it is easy to check that the normality of N is equivalent to the com

mutativity, [ ReN, ImN] = O. 

Of interest here is the observation that if N1 and N2 are normal 

in a unital Banach algebraC, then AN1, N2 is normal in lB (IC). To see 

this suppose N1 = H1 + iK1, N2 = H2 + iK2, where Hi' Ki are hermitian 

and [Hi' Ki ] = 0, i = 1, 2. Then as described in the proof of Theorem 3. 4 

AN N = AH H + iAK K . 
1' 2 1' 2 1' 2 

Also because of the commutativity, [Hi, ~] = 0, i = 1, 2, 
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= H1 [K1A -AK2 ] - [K1 A - AK2 ]H2 

= K1 [H1A -AH2 ] - [H1A -AH2 ]K2 

= AK K AH H (A) ' A E IC . 
1' 2 1' 2 

Thus because AH
1 

H and AK K are hermitian by Proposition 3.1 and 
' 2 1' 2 . 

because they commute, AN N is normal in ~(IC). 
1' 2 

One important property of normal operators on Hilbert space 

which carries over to the general setting is that normal operators are 

convexoid. The proof of the following theorem is the promised proof of 

Proposition 1. 3ii. 

(3. 13) THEOREM. (35] (10 ]. Let IC be a complex unital Banach algebra. 

If N E [C is normal, then coalC (N) = V([:, N). 

PROOF. Let N = H + iK, H, K hermitian, [H, K] = O. Notice that N 

normal implies ei6N = (cos 0H - sin0K) + i(sin0H + cos 0K) is normal. Since 

rotations of normals are normal the proof of theorem will be complete once 

sup{ReJ\: A E a [C (N)} = sup{ReA: A E v(IC, N)} 

is demonstrated. 

Observe that for K hermitian, t E R 

A E IC . 

Thus IIAII = IIAeitKII and IIAII = lleitKAII, t E R, A E IC. 
By Theorem 1. 12, the hermiticity of K, and that [H, K] = 0, 
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sup{ReA : A E a ,r, (N)} = inf !_ log II exp a(H + iK) II 
lLJ a>0 a 

= inf !. log II exp aH II 
a>0 a 

By Theorems 1. 12 and 1. 15, the hermiticity of H, and that [H , KI = 0 , 

inf !. log II exp aH II 
a>0 a 

= sup !.1og II exp aH 11 

a>0 a 

1 
= sup - log11exp aNII 

a>0 a 

= sup{ReA : A E V( IC, N)} . ■ 

A result on the kernel of a normal element in an arbitrary Banach 

algebra is the key to the derivation proof of the Fuglede- Putnam Theorem 

presented in the next section. 

(3 .14) DEFINITION. Let IC be a complex unital Banach algebra . .!!_ 

T E [J is of the form T = H + iK, H, K hermitian, then the element 

T# = H - iK is called the I-adjoint of T. 

Note that this definition of the #-adjoint coincides with the usual 

adjoint for elements of C0 (f). A #-adjoint is defined for each element of 

G, (f) because such elements always have a decomposition in terms of 

real and imaginary parts. 

Trivially, the identities 

and V( IC , N) = V( IC , N#) 

hold for normal elements N in [J . 
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One additional property of normal operators on Hilbert space 

carries over to the general Banach algebra case. 

(3.15) THEOREM . Let N be a normal element of the complex unital 

Banach algebra IC . Then NA = 0 if and only if N# A = 0, A E OJ . 

PROOF. NA= 0 implies IIAII = ll(exp zN)(A)II, z EC. N = H+iK, H, K 

hermitian, [ H, K] = 0. Therefore 

IIAII = ll(exp irK)(exp rH)AII = ll(exp rH)AII, r E R 

Then 

ll(exp zH)AII = ll(exp isH)(exp rH)AII 

= ll(exp rH)AII = IIAII, z = r + is 

The function g(z) = (exp zH)A is entire and bounded, and, therefore, con

stant. That HA = 0 can be obtained by differentiating g and evaluating at 

zero. 

NA= 0 and HA= 0 imply KA= 0 and 

The same proof obviously holds in the case N is a normal element 

of the algebra (13 (X). Nx = 0, x E X, implies N*x = 0 is the result in 

these circumstances. 

(3. 16) DEFINITION. An eigenvalue for a Banach algebra element T of 

the form T = H + iK, H, K hermitian, is called a normal eigenvalue if 

(A - T)A = 0 implies (X" + T#)A = 0. 
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(3.17) COROLLARY. Eigenvalues of normal elements of Banach 

algebras are normal eigenvalues. 

One additional fact about the nature of the kernel of a normal inter

twining operator is appropriate. 

(3.18) THEOREM. LetN1,N2 E OJ(j)benormal. If[N1,N2] =0 and 

N1 =I: N2 then AN1, N
2

(B) = 0 implies O E W(B). 

PROOF. This is a direct application of Corollary 2. 9. ■ 

5. THE FUGLEDE- PUTNAM THEOREM 

The Fuglede- Putnam Theorem, Theorem 2. 6, is an immediate 

consequence of Theorem 3. 15 and the observation that an intertwining 

operator determined by normal elements is normal. 

(3.19) THEOREM. Let IC be a complex unital Banach algebra. For 
# # N1,N2 normal in IC, suppose N1A = AN2. Then N1A = AN2 . 

PROOF. Put N1 = H1 + iK1, N2 = H2 + iK2 , Hi, Ki hermitian, i = 1, 2. 

Then 

AN 1' N2 = AHl' H2 + i ~1, K2 
so that 

A # = A - iA 
N1,N2 H1,H2 K1,K2 

By hypothesis AN N (A) = 0. The ref ore by the normality of AN N
2 1' 2 # # # 1' 

and Theorem 3.15, AN N· (A)= AN# N#(A) = 0 or N1A = AN2 . ■ 
1' 2 1' 2 
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While there are other simple proofs of this theorem (notably 

Rosenblum's [ 34]), this one seems to be a particularly natural proof. 

This is because only one object , the intertwining operator, receives 

attention rather than the two normal operators. 

It is of interest to note that the Fuglede-Putnam Theorem pre

sented here and the proof by Rosenblum [ 34] both rely on the Liouville 

Theorem on entire functions. 
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CHAPTER 4 

NUMERICAL RANGES OF POWERS AND PRODUCTS 

1. INTRODUCTION 

As a means of discussing the behavior of numerical ranges of 

powers of operators a mapping theorem for numerical ranges of matrices 

with positive real part due to C. R. Johnson [ 24] is studied in detail in 

this chapter. The effort is to extend to the operator case and generalize 

Johnson's Theorem, 

(4.1) THEOREM. Let dim~< 00 and suppose TE~(~). Then T ~ 0 

if and only if W(Tn) c {z E <C :Rez ~ O}, n = 1,2, ... 

The generalizations are partly motivated by the study of multi

plicative commutators in Chapter 2. 

A short discussion of the numerical range of the product of two 

operators is presented at the end of this chapter. The main result of the 

discussion is a containment result for the numerical range of a product, 

an extension of work of Stampfli [39] and Loewy [ 26] . 

Throughout the chapter primary attention will be devoted to the 

set of positive operators and the set of accretive operators. Because of 

this, the following definition is made here. 

(4.2) DEFINITION. Putting 

n = { z E <C : Rez ~ O} 
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define the set of accretive operators in a complex unital Banach algebra 

IA((R) ={TEd? :V(i??,T) c II} 

and the set of positive operators in ff? , IP( <ft ) , ~ 

P(c1( ) = { T E d? : T E A((rn and V( 07 , T) c IR} 

If 6? = (B (~ ) , write A( j) for IA(d? ) and IP(~) for IP(O? ) . 

2 . KATO'S THEOREM 

A theorem of Kato [ 2 5] is the key element in the extension of 

Theorem 4.1 to the infinite dimensional case. This result, which will 

be modified in this section to suit the purposes of the chapter more 

directly, is listed as 

(4. 3) THEOREM. For T E IA(--$-), suppose f is holomorphic in a neighbor

hood of IT. Then W(f(T)) c cof(Il)-. 

Here f(T) is defined by the Dunford calculus, 

1 1· 1 f(T) = 
2
--:- f(z)(z - T)- dz 

7T i r (1) 

r is a closed Jordan curve in the domain of holomorphy of f; r contains 

a(T) in the bounded component of its complement. The spectrum lays to 

the left as r is traversed. 

It is shown by DePrima (see [ 13]) that Theorem 4. 3 is a conse

quence of von Neumann's theory of spectral sets. This approach to the 

proof of T~eorem 4. 3 is basically different from that of Kato. 
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The interest in this section is in a modification of Kato' s Theorem 

rather than in the proof of Theorem 4. 3. 

0 

(4. 4) LEMMA. Let TE A(1'") and suppose a(T) c II. If f is holomorphic 
0 0 

in II, then W(f(T)) C cof(IIf . 

0 

PROOF. Note that f(T) is well defined by (1), since dist( a(T), C'-.II) = 
0 

o > 0. For E > 0, supposing 2£ < o, define fE on II - Eby fE(z) = 

f(z+E). 

f E is holomorphic on a neighborhood of II and T E A(y). The re

fore by Theorem 4. 3 

0 

W(fE(T)) C cof E (II)- C cof(II)- (2) 

It is shown below that f E(T) - f(T) as E - o+. The continuity con

dition for the numerical range, Theorem 1. 18 iii, and (2), therefore, 

imply the result . 
0 

Taking r to lie in II, observe that 

( -1 If M = max 11 z - T) 11 and L is the length of r, then 
z Er 

llf E (T) - f(T) II ~ ~ ML· max jf(z + E) - f(z) I 
zEr 

Since f E (z) converges uniformly to f(z) on r , llf E(T) - f(T) II - 0 as 

E ---+ o+, as required. 11 
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Lenna 4. 4 will be applied most often to functions of the form 

f(z) = za.. The facts needed about such functions of accretive operators 

are collected in the next proposition. 

(4.5) DEFINITION. Fora EIR, Q:,; a< 2, put 

Sa = {z E C: I arg z I :,; z a} U {O} . 

0 

(4. 6) PROPOSITION. Let T E A(y) with a(T) c Il and suppose a E R, 

0 < la. I :,; 1. Put f(z) = za. with the normalization f(l) = 1. Then 

i) f(T) = Ta E A(t) and W(Ta) c S la. I; 
0 1/ 

ii) if a(U) c S la. I and U a= T, then Ta = U; 

iii) for {3 E R, T/3 is invertible, T{3 commutes with all operators 

commuting with T, and, if f3 = n, an integer, the definition of 

Tn given by (1) coincides with the usual algebraic power of T; 

iv) the mapping T--+ Ta is continuous in the uniform topology of 

PROOF. i) is a direct application of Lemma 4. 4 where f(z) = za. 

ii) is a consequence of the standard composition theorem for the 

Dunford calculus (see e.g., (15 ], Theorem VII. 3. 12). 

The commutativity assertion of iii) follows from (1). 

iv) is another consequence of the Dunford calculus; z{3--+ za. 

uniformly on a(T) as {3--+ a. ■ 

There is a strengthening of Proposition 4 . 6i which is useful in 

the sequel. 
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0 

(4. 7) PROPOSITION. For TE A(t ), a (T) c TI, suppose O < I a I < 1. 
0 0 

ThenW(Ta)-c Slal"-{0}. IfW(Tf c TI, thenW(Ta)-c Sia!· 

PROOF. W(Ta) c S la I from Proposition 4. 6i. That OE W(Taf follows 

from Theorem 1. 21. To see this observe that O E W(Taf implies that 0 

is a corner of W(Taf, hence in a(Ta). However, 0 E a(Ta) implies 

0 E a(T). 
0 

If W(Tf c TI then inf{ReA: A E W(T)} ?- 2E, for some E, E > 0. 
0 

Putting TE= T-E, then W(TEf c TI. Applying Lemma 4.4 to TE with 

fE(z) = (z +E)a, 

0 0 

W(fE(TE) f = W(Taf c cofE(Tif cs la I . ■ 

3. THE MAIN RESULTS 

Preparation has now been made for the operator version of Theorem 

4. 1. The techniques used in the proof yield a more general result which 

is discussed later. 

(4.8) THEOREM. For TE@(}), TE IP(t) if and only if Tn E A(f), 

n = 1, 2, .... 

PROOF. That Tn ?- 0, n = 1, 2, ... for T ?- 0 is trivial, so the necessity 

is clear. 

For the sufficiency note that for E > 0, (T +Ef E A(t). In fact, 

)n n n-1 n-1 n (T+E = T +nT € +··· +nTE +E. Hence 
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Then, 

Applying Proposition 4 . 6i and ii to (T +Ef with a = 1/n, 

Since this holds for every n, W(T +E) c s0. Because E is arbitrary, 

W(T) c s0 and TE 1P(7). ■ 

As suggested these techniques yield a more general non-semigroup 

type of theorem . 

(4. 9) THEOREM. Let {Tn};=l be a sequence in A(f) satisfying 
0 

a(Tn) c TI, n = 1, 2, ... , and let {rn};=l be a sequence in R+ converging to 
r 

0. If lim T n = T (in the uniform topology of (B (.e, ... ) ), then T E IP(~). 
n-oo n 'I 6 

PROOF. For some n0, n > n0 implies r n < 1. By Proposition 4. 6i 
r r 

W(T n) c Sr , for n > n0. Since T n - T, the continuity of W from 
n n n 

Theorem 1.18 iii and the convergence rn---+ 0 as n---+ oo imply T E IP(f ). ■ 

Theorem 4. 8 has two immediate corollaries. The first gives a 

perturbed form of Theorem 4. 8, a prototype for the class of theorems 

which are investigated later in this chapter. The second is an application 

of the result to the theory of semigroups. 

(4.10) COROLLARY. LetH EIP({}-)ng(IB(-r)). IfTnH E A(i), 
I 1 

n = 1, 2, . . . , then H-2 TH2 E IP(t), 
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n -1 n 1 PROOF. (T Hx, x) = (H T y, y), y = Hx. Letting (u, v)H = (H- u, v) 

denote a new inner product, observe that Tn is accretive relative to the 

new inner product, n = 1, 2, .... Thus by Theorem 4.8, (H- 1Ty,y) ~ 0, 
I I 

y E o/· But then H-2 TH2 E IP( 7). ■ 
(4.11) COROLLARY. Any semigroup of accretive operators is neces

sarily a commutative semigroup of positive operators. 

PROOF. For T accretive in the semigroup ~, Tn E ~, n = 1, 2, . . . . By 

~) * * * Theorem 4. 8, T E IP( '(J • For S, T E ~, STE ~. But ST = (ST) = T S 

= TS. ■ 

4. PERTURBATIONS OF THE HYPOTHESIS OF THE MAIN RESULT 

The sequence {TnB };=l is studied in this section. Conditions are 

sought for which T is positive or T is self-adjoint. 

To see that this structure arises naturally, recall from the dis

cussion of multiplicative commutators that if 

and [A, T] = 0 , 

then an induction argument shows that 

n E .Z 

In Theorem 2. 5, with the additional assumptions A unitary and 

0 E W(Bf, (3) is used to show T = 1. This section is directed toward 

generalizing this result. 

(3) 

The first theorem will help provide the promised proof of Theorem 

2.2. 
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(4. 12) THEOREM. If TnB E A( t ), n = O, 1, 2, ... , then O E W(B)- or 

a(T) c R. 

PROOF. If OE W(B)-, then because Bis accretive and because W(B) is 

convex, there exists a, 0 < a < 1, such that one of the sets 

exp(± i z a )W(B) is contained in s1_a. By Theorem 1. 19 

Thus a (Tt c K, where K omits a nonvoid open sector with vertex at the 

origin and edge the negative real axis. Observe that for r > 0 

( )n n n-1 n -1 n 
T + r D = T D + nrT D + · · · + nr TD + r D . 

Hence (T +rfD E A(t") for any n E IN and r ;:,. 0. The computation in (4) 

implies a( (T +r)n) c K, for any r ;:,. O, n E1N. 

Consequently, A E a(T) implies (X +r)n EK for any n EN, r ;:,. 0. 

This is possible only for X E IR. ■ 

To see that A need not be non-negative, an example is presented. 

For the example, t = <C
2 and T and B have matrix representations in an 

orthonormal basis for c2: 

Observe that 

n = 0, 1, 2, . . . . 
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Thus a (T) c s0 is not implied by ~B E A(f ), n = 0, 1, 2, ... and 

Of W(Br. 

A stronger constraint on B gives a stronger conclusion. 

n - o 
(4. 13) THEOREM. If T B E I\( t ), n = 1, 2, ... and W(B) c n, then 

a(T) C So-

PROOF. As before the hypothesis remain unchanged if T is replaced by 

T +r, r > 0. In this case, however, W(Br c S/3 for some {3, 0 < f3 < 1, 

so that by Theorem 1. 19 

a( (T +rt) = o-(T +rt C W( (T +rtBf /W(Bf C K . 

K c (C omits a nonvoid open sector of the plane with vertex at the origin 

symmetric about the negative real axis. 

;\ E o-(T) implies (:\+rt EK for any r ~ 0, n EN. Thus;\ E S0 . ■ 

To close an open issue the proof of Putnam's multiplicative com

mutator theorem, Theorem 2. 2, is given as a corollary to these results. 

(4.14) COROLLARY. For T, A, BE ~ (y), suppose T = ABA-lB-1, 

[A, T] = 0, and that A is unitary. Then OE W(Bf or a(T) = {1}. 

PROOF. An induction argument relying on the fact that [A, T] = 0 yields 

that 

nEZ (5) 

(see the proof of Theorem 2. 5). 
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Assume O f. W(Bf and note that because (5) is unchanged by multi

plication by scalar factor of modulus 1, it can be and is assumed that 
0 

W(Bf C Il. 

Because A is unitary, 

0 

= W(B) c Il, n = 0, 1, 2, . . . . (6) 

By Theorem 4. 13, a(T) c s0. 

Furthermore by Theorem 1. 19 

Since W(B)- /W(Bf is a compact set omitting O, A E a(T) implies jA I = 1. 

Thus a (T) == {1 }. ■ 

Recall that the hypothesis of Corollary 4. 14 imply a stronger con

clusion: 0 E W(Bf or T = 1 (see Theorem 2. 5). The conclusion of 

Corollary 4. 14 is obtained without using the full strength of the hypothesis, 

however. This is seen from (6) which uses (5) only on the non-negative 

integers. 

Spectral properties of T are not the only properties of interest. 

The hermiticity of T or its positivity is the issue on which the remainder 

of the section is centered. 

(4.15) CONJECTURE. For T, BE (lj (4}-) suppose TnB E &\(t), 
0 

n = 1, 2,... . Then W(B)- ¢.. Il or TE IP(t). 

Giving substance to the conjecture is the aim of the discussion 

which follows. To obtain a positive result a commutativity assumption is 

introduced. 
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(4.16) THEOREM. For T, B E (B (-%-) suppose TnB E A(y ), n = 0, 1, 2, ... , 
0 

and [T, B] = 0. Then W(B)- cf. II or T E !P( ~). 

0 

PROOF. Suppose W(Bf c 11. Put TE=T+E, E>0. The first task is to check 

that TEBl/n = (T~B//n_ Proposition 4. 6 ii implies that it need only be 

shown that 

a(TEBl/n) c Sl/n 

However, a(TE) c So by Theorem 4.13 and a(Bl/n) c W(Bl/nf c Sl/n 

by Proposition 4. 7. By the commutativity 

Proposition 4. 6 iv implies Bl/n - 1. Hence TE Bl/n ---+ TE . 

Theorem 4. 9 can be applied to the sequence of operators {T~B };=l and 

the sequence of positive real numbers {1/n };=l · Since it has been shown 

that (TnB//n = T Bl/n and that T Bl/n - T the conclusion is that 
E E E E' 

TEE IP(y). 

Because E is arbitrary T E IP(7). ■ 

Theorem 4. 16 can also be derived directly from Theorem 4. 8. In 
0 

this approach it is shown that if W(lfc)- c II, n = 0, 1, 2, ... , then 
1 o 

W(lfc2 f c TI, n = 0, 1, 2, ... where U E A(y) and [U, C] = 0. Once this 

is demonstrated, repetition of the argument and a limit show that 
n o 

W(U ) c IT, n = 0, 1, 2, ... or that U :.?- 0, by Theorem 4.8. Theorem 4.16 

is obtained by letting C = B 112m for m E IN and U = T + E. 

Demonstration of the required fact is made in the proof of 
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(4.17) PROPOSITION. For U, CE~(~) suppose [U, C] = 0. 
o I o 

w(lfcr c n, n = o, 1, 2, ... imI?lies W(Unc2r c Il, n = o, 1, 2, .... 

o l o 

PROOF. Since W(C)- c TI, Proposition 4. 7 implies that W(C2 )- c S 1 • 
2 

By Theorem 1. 19 

1 l l 2 2 
However, UC = CU implies UC2 = C2 U, so (unc2 ) = U nc . Because 

a (u2nc) c II, the spectral mapping theorem shows that 

1 o 

a (unc2 ) c S½ LJ {C\S3/ 2} . (8) 

l O 

Combining (7) and (8), a(t.fc2 ) c S1.. Proposition 4. 6 ii implies 
2 1 1 1

2
0 0 

(U nC)2 = (t.fc2 ). Hence W(t.fc2 ) C S1. C Il. ■ 
2 

Without a commutativity assumption additional evidence to support 

the conjecture is available. Indeed, if T is assumed convexoid Theorem 

4.13 can be applied directly to yield the conclusion of the conjecture in 

this special case. Another special case is one in which T is nilpotent. 

The proof of (4.18) is a simplification suggested by DePrima of the original. 

(4. 18) THEOREM. For T, BE ~ (7 ), suppose TB E A({j-) and T is nil

I?Otent. Then O E W(B) or TE IP(y). 

PROOF. Suppose T-:;. 0 and that OE W(B). 

There exists a unit vector x such that 

T*x = y, T*y = 0, y =I= 0, (x, y) = 0 . (9) 

Using (9) compute, putting v = y /11y II 
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(TB(ax+{3v),(ax+/3v)) = 11y11[ /a /2(Bx,v) + a/3(Bv,v)] E W(TB) 

for I a I 2 
+ I /3 12 

= 1. 

Since (Bv, v) -:/: 0, and because I a j 2(Bx, v) is dominated in modulus 

by a/3(Bv, v) for a close to zero, there exists a * 0 such that 

/a/3(Bv, v) I> /a /2(Bx, v), la 12
+l/31

2 
= 1. Allowing (3 to vary in argument 

(for this fixed a) in the quantity 

I a I 2(Bx, v) + a/3(Bv, v) 

it is seen that W(TB) contains a neighborhood of 0. This is a contradiction. ■ 

Though limited in some respects Theorem 4. 18 is of interest 

because it supports the conjecture with a weaker hypothesis. Here only 

that TB E A(1-), rather than TnB E A(f), n = 1, 2, ... , is required; 
0 

W(Bf c II is replaced by O ~ W(B). 

5. OTHER RELATED RESULTS 

The sharpness of some of the preceding results are discussed in 

this section. Mention of some additional observations and extensions is 

made. 

Two technical lemmas are of help. The first is a modification of 

Proposition 4. 6 i. 

(4.19) LEMMA. For TE (B (y), suppose TE A(y)n g (d3 (1') ), then for 

a, O < la I < 1, W(Ta) c S la j • 

0 

PROOF. TE= T+E. TEE A(f ), a(TE) CTI. 
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By Proposition 4. 6 i, W( (T +E)a) c S la I· Letting E - 0 and 

noting that (z +Ef approaches z0 uniformly on o-(T), (T +E)a ....... Ta and 

W(Ta) c S la 1 ·• 

(4. 20) LEMMA. For TE (B (°1) n ~ ((B (y) ), suppose W(T) c ei 8n, 

- 1r / 2 < e < 1r / 2, then for O < la 1 :!S 1, W(Ta) c eiaeslal· 

PROOF. W(T) c ei0Il implies e-iBT E lt\.(y). Then Lemma 4.19 implies 

( ( -i0 a ( -i0 a -iae a W e T) ) c SI a I· However, e T) = e T . Hence 

W(Ta) c eia es la 1 ·• 

An immediate consequence of this observation is a generalization 

of Theorem 4. 9. 

(4. 21) THEOREM. Let {Tn }~=l be a sequence in (13 (1,) n q (S (-4}-) ), 

{rn}~=l a sequence in R+ converging to zero, and {en}~=l a sequence in 
·e 

R such that suplenl = o < 1r/2. If W(Tn) c e1 nn, n = 1, 2, ... , and 
r n 

lim T n = T, then T E IP(t). n --n-ao 

A related situation is examined in 

(4. 22) THEOREM. For TE Q) (°o/) suppose W(Tn) c eiBTI, n = 1, 2, ... 

for some e, e E (-1r, 1r ]. Then T = T*. In particular, if I e I < 1r /2, 

T E IP(y ). If J 0 j > 1r / 2, T = o. 

PROOF. For 101 < 1r/2, o-(T) c s0 is readily verified. Taking TE= T +E 

note that all hypotheses remain intact for TE. By Theorem 4. 21, with 

Tn cc (T +Et, rn :c: 1/n, and 0n = 8, T +E r: IP(o/). Thus T c:. IP(y). 
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If 0 = 1r / 2, then a(T) C IR . Taking U = T + II TII + 1. 

W(Un) c ei 7T 12n so that exp(-i 7T / 2)Un E A(~). Again applying Theorem 

4.21, with Tn = exp(-i 1r/2)Un, rn = 1/n and e = 0, V = v*. Thus T = T *. 

The case e = - 1T / 2 is similar. 

a (T) = {O} in the case J e I > 1T / 2. Hence O E aw(Tn), n = 1, 2, .... 

Theorem 1. 22 can be applied to obtain IITII .,s 8r(T) = 0. Thus T = 0. ■ 

To see that these results and the results of section 4 are sharp in 

some sense some examples are presented. 

The condition O f. W(Bf in Theorem 4.12 can not be removed. To 

see this let 

B = {: J, T = {: :) 
Then 

;n+lG -:) ' n odd 

TnB = 

in+l G _:)' n even . 

Thus TnB EJ:\(y), n = 0, 1, 2, ... , 0 E W(Bf and a(T) c/. R. 

0 

The hypothesis W(Bf c Il ·of Theorem 4. 16 can not be replaced 

by the weaker B E A(7), 0 f. W(B). For this examine the example which 

follows Theorem 4.12. There TnB EA(}), n = 0, 1, 2, ... , [T, B] = 0, 

0 r/:. W(B), but T f. IP(t), 

A slight generalization of Theorem 4. 16 holds. 
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(4. 23) THEOREM. Let T11B E A(7 ), n = 0, 1, 2, . . . . If [T, B] = 0, 

then O E W(Bf or T = T*. 

PROOF. Suppose O E W(Bf . Theorem 4 . 12 implies a(T) c R. Putting 

U = T + IIT II + 1, note that the hypothesis of the theorem is satisfied by 

U and Bin place of T and B. However, as in the proof of Theorem 4. 16, 

(unB)l/n = UBl / n. By Theorem 4. 21, with Tn = DnB, rn = 1/n, and 

en= 0, V E [P(t) since UBl/n-+ U as n-+ oo. U E !P("1) implies T = T* . II 

6. THE MAIN RESULT IN AN ARBITRARY BANACH ALGEBRA 

It is of interest to translate Theorem 4. 8 into general Banach 

algebra terms and examine its validity. Unfortunately neither the necessity 

or the sufficiency of the theorem carry over to so general a setting. 

Special attention will be given to the c* -algebra case where the trans-

lated Theorem 4. 8 remains valid. 

To explore the validity of Theorem 4. 8 in a complex unital Banach 

algebra, (J? , results of Bollobas (6] are needed. Bollobas discusses the 

relationship between numerical ranges and entire functions of exponential 

type. Using this relationsh'ip, which is described below, extremal singly 

generated Banach algebras are constructed which have prescribed numer

ical range properties. These extremal algebras are useful in the search 

for counterexamples to the proposed extension of Theorem 4. 8. 

(4. 24) DEFINITION. For a compact, convex set Kc C determine the 

function k as follows: 
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Call k the support functional of K. 

(4. 25) DEFINITION. Whenever K is compact, convex put 

F(K) = {f entire: f(0) = 1 and /f(rei~ I ~ exp rk(K, 0), 0, r E IR} . 

Recall from Chapter 1 

sup{ReA: A EV((/(, T)} = sup .!.1ogllexp aTII 
a>O a 

where (/( is a complex unital Banach algebra and T E (R • Therefore, if 

K is compact, convex, V((f/,, T) c Kif and only if llexp zTII ~ exp rk(K, 0), 

z = reie, z E <C. Furthermore if h E .J (62) the function f(z) = h(exp zT) 

is entire. In fact, by the previous remark 

I f(z) I = jh ( exp zT) I ~ II exp zT II ~ exp rk(V(m ' T), ()) . 

Hence f E F(V((f?, T) ). 

These remarks also lead to a containment result for the numerical 

range of a polynomial in T. Let p be a polynomial, p(z) = 1 I\.zk. 
k=0 

Observe that f of the last paragraph, f E F(V(O(, T) ), can be written 

f(z) hE.J(([l). 

Thus 

r 
V(O?, p(T)) = { I: ~h(Tk): h E _J (CJ?)} 

k=0 
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It is Bollobas' observation that this containment can be reversed 

in certain extremal algebras which he constructs. The facts about these 

constructions that are used below are collected in 

(4. 26) THEOREM. [6]. Let K be a compact convex subset of C and 

v = max{ I,\ I : ,\ E K}. There exists a complex unital Banach algebra 
. 00 

(fl and an element T E (I? such that if g(z) = L gkzk is holomorphic in a 
k=0 

neighborhood of the disc { z : I z I ~ v }, then 

i) V(O?,T)=K. 
oo oo f k 

ii) V( Cft, g(T)) = { L fkgk: f(z) = L L and f E F(K)}. 
k=0 k=0 k! 

iii) For any Banach algebra [J, U E [J , 

V([J, U) c K implies V(C, g(U)) c V({R, g(T)) . 

The containment (10) and its refinement, Theorem 4. 26, are central 

to the discussion of Theorem 4. 8 in a general Banach algebra setting. Some 

positive evidence toward establishing the necessity of 4. 8 in the general 

setting is contained in 

PROOF. T hermitian and Definition 4. 25 imply I f(it) I ~ 1, t E IR, for 
oo f zk 

f E F(V(07, T) ). If f(z) = L _k_ , fk = gk + ihk, gk, hk E IR, k = 0, 1, ... , 
=0 k! 

then f(it) can be calculate~ in terms of t, the gk, and the hk. By (10) the 

theorem is established once it is demonstrated that Ref2 = g2 ;:. 0. 

From (11 ), 1 ? 1 + (-2h1 )t + o(t). Since t approaches zero through both 
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positive and negative values, h1 = 0 is necessary to preserve the inequality. 

Similarly, 

or (12) 

(4. 28) COROLLARY. Let T E 62 be hermitian, then ReV(O?, T2) c V(iJ<, T) 2 . 

PROOF. Theorem 1.15 implies IITll 2 
= IIT2

!1. Thus since 

IITII = sup{ \A\ : A E V(t», T)} and V((ft, T 2) c {A: \A\ .::;; IIT 11 2 } it need only 

be shown that µ E V(rJ?, T 2) implies Reµ ~ inf {A2 : A E V((ft, T) }. This 

follows from (12) . ■ 

These results represent the available positive evidence toward the 

establishment of Theorem 4. 8 in this setting. Preparations are now made 

for displaying a counterexample. 

A function f is exhibited such that \ f(z) \ .::;; exp\ Rez \. Let 

f(z) = 5/ 9 + 4/ 9 cosh z - 2/3 sinh z. For z = it, f(it) = 5/ 9 + 4/9 cos t -

2i / 3 sin t. Hence 

\ f(it) \ 2 
= Jr- (25 + 40 cos t + 16 cos 2t + 36 sin2t) 

= Jr- ( 61 + 2 0 COS t ( 2 - COS t) ) 

Since cost (2 - cost) .::;; 1, \f(it) \2 .::;; 1, t E IR. 

For z = s, s E IR, 

I 2 4 s
2 

2 s
3 

\ I f(s) = \ 1 - i s + n- . n - i . n- + ..• 

.::;; 1 +~isl+~· i2l2 +~· i3{3 +··· 
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By a standard result in the theory of functions of exponential type, 

lf(it) I ~ 1 and lf(s) I ~ exp ls I, s, t ER, imply lf(z) I ~ explRez I, (see 

e.g., Theorem 6.2.4 of [4]). 

For z = rei0, I Rez I = r I cos e 1- Observe that for the set 

K = [ -1, 1 ], k(K, 0) = I cos e I - Thus the function f studied in the last 

paragraph belongs to F(K). 

Theorem 4. 26 states that there exists a Banach algebra rJ7 and an 

element T E (f/ such that V((R, T) = K. Letting U = T + 1, f is used to 

compute an element of V((f? ., u3). 

3 3 3 2 U = (T + 1) = T + 3T + 3T + 1. Hence, Theorem 4. 26 ii implies 

f3 + 3f2 + 3f1 + 1 = - } E V((fl, u3). Because U E IP(()? ), it provides a 

counterexample to the extension of the necessity part of Theorem 4. 8 to 

the Banach algebra case. This is summarized in 

(4. 29) THEOREM. There exists a Banach algebra {R and an element 

U E P(0 ) such that V( (fl,, u3) c/. TI. 

Anderson (1] points out that a natural place to look for results on 

powers of hermitian elements is in the study of derivations. It is here 

that a counterexample to the sufficiency of an extended version of Theorem 

4. 8 is found. 

In what remains P is an orthogonal projection in (l3 (1" ), P * 0, 

P * 1. Of interest is the element Ap E (B (Q3 (1') ). By Proposition 3.1 

Ap is hermitian in S (8 (t) ). Since P is an idempotent, the following is 

possible. 
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(4. 30) LEMMA. For A E (B (t), (AP +l)nA = (2n- l)PA + (2 - 2n)PAP -

AP+ A, n E IN. 

PROOF. For n = 1 the relation is valid. Suppose further that it holds 

for some k. Then 

(Ap + lf +l A = (Ap + 1) [(2k - l)PA + (2 - 2k)PAP - AP +A] 

= (2k- l)PA + (2 - 2k)PAP - PAP + PA 

- (2k- l)PAP - (2 - 2k)PAP + AP - AP 

+ (2k-l)PA + (2-2k)PAP - AP +A 

= (2k+l_ l)PA + (2 - 2k+l)PAP - AP+ A . ■ 

PROOF. To prove the first containment, application of Lemma 1. 12 reduces 

the problem to showing that llexp(-t(Ap +lf)11 ~ 1, t > 0. From Lemma 

4. 30, 

00 

= PA r (-t)k(2nk_l)/ kl 

k=0 

00 

+ PAP L (- tf(2 - 2nk)/k l 

k=0 

00 

+ (A-AP) L (-tl/k! + 

k=0 

n 2n 
( -2 t -t) ( -t - t) = e - e PA + 2e - e PAP 

+e-t(A-AP) . 
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Letting A = (All A
12

\ be a representation of A relative to the 
A21 A22) 

decomposition oft= Pt EB (1 - P)fr, 

exp(-t(il.p + 1t)A O (e - 2'\ - e -t) ( Ail A:2) 

+ (2e -t _ e -2nt) e:1 :) 

Thus fort> 0, llexp(-t(Ap +ltAII ~ IIAII (this is checked by a simple 

explicit calculation). 

The second part is a calculation due to Anderson ( [1 ], page 105) 

which is sketched here for completeness. In the notation of Chapter 3, 

Ap 
2 

= Lp + RP - 2LPRP. Since L p and RP are hermitian in 63 ({£ ( y) ), 
it suffices to show that LpRp is not hermitian. 

exp(itLpRp)A = exp(it)PAP + (A - PAP) . 

(
i/2 1/J 

Let A= on T = Py EB (1-P){;(and putt= 31r/2. 
1/ 2 1/2 

Then 

1/2) 

1/2 
, an orthogonal projection (with norm 1). 
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However, 11A11 2 = IIA * All = ½ + _l _ < 1. Thus llexp(itLpRp)II > 1 for 
2/2 

some t and LpRp is not hermitian. ■ 

Theorem 4. 31 shows that the sufficiency part of Theorem 4. 8 can 

not be translated into the general Banach algebra setting. (~p + 1)2 is not 

hermitian, but V(~ ((B (y) ), (ap + 1)2n) c II, n = 1, 2, .. . , by Theorem 4.31. 

In c* -algebras the situation is close to that of ~ (f ). If 07 is a 

c* -algebra, then CR has a faithful *-representation as a closed self

adjoint subalgebra of 63 (y) for some Hilbert space y ([32 ], page 244). 

Moreover, for T E 6l , V(O?, T) = W(t(T) f, where t(T) is the representation 

image of Tin d3 ('T). Note that 

Thus Theorem 4. 8 (and the related results of sections 3, 4 and 5) can be 

trivially transplanted into the c* -algebra setting. 

If K ( t) is the closed two-sided ideal of compact operators in G3 (t ), 
f infinite dimensional and separable, IC = CB (y )/K ( {j--) is called the 

Calkin algebra [11 ]. It is well-known that IC is a c* -algebra [11 ]. 

Stampfli and Williams (18 ], [ 40] introduce the notion of an essential 

numerical range, W e(T), for T E {B (y) 

We (T) = fl W(T + Kf . 
K EK (f) 

It is demonstrated (18] that W e(T) = V(IC, 1r(T)) where 7T is the canonical 

homomorphism of (B (t) into [J. The following result is a consequence of 

the fact that [J is a c* -algebra. 
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(4 . 32) THEOREM. For T E (8 (f ), W e(Tn) c TI, n = 1, 2, .• • if and 

only if ImT E k_ (-}) and W e(T) ~ 0. 

The validity of Theorem 4. 8 in other settings (e.g., hermitian 

algebras, * normed algebras) deserves consideration. Study of these 

situations is hampered by the lack of numerical range mapping theorems . 

7. THE FINITE DIMENSIONAL AND COMPACT CASES 

It is of some interest to see that in the finite dimensional case the 

same results can be obtained by strictly finite dimensional techniques. 

How these techniques can yield a proof of Theorem 4. 8 in the case the 

operator is compact is also shown . 

The approach to a proof of Theorem 4. 8 in the finite dimensional 

case is based on a reduction of the problem to a two dimensional case. 

(4. 33) LEMMA. For a transformation Ton t= c2 with representation 

d ~ 0, a> 0, there exists n E N, such that W(Tn) ¢. Il. 

PROOF. For S E /jJ (t) put A(S) = inf{ReA: A E W(S) }. By Theorem 1. 9 

A(S) = - lim 
a-o+ 

lll+aSll -1 
a = - ½ lim 

a-o+ 

111 +aSll 2 - 1 
a 

A (S) is computed explicitly for transformations S with a representation 

(13) 
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c ~ 0, b > 0. Using that 111 + as11 2 = 11(1 + aS)(l + as*) II and that the norm 

of a hermitian element equals the spectral radius, the computation of 

the largest eigenvalue of (1 + aS)(l + as*) and the taking of the limit in (13) 

yields 

l [ 2 2 ] .! A(S) = 2 (1 + c - (d-1) + b / 2 2 ) 

Let {an} :=l be a sequence defined successively, a1 = 1, a2 = 2, and 

2 a 1 =a,n~2 . n+ n 

n-1 a 
1 a II (l+d k) 

a k=l 
T n = a 

0 d n 

For the case , 0 ~ ct < 1 

a a a 2 n-1 ak 2 1 

A(T 11) = ½(1 + d 11 - [ (d n - 1) + ½(a II (1 + d ) ) j 2) 
k=l 

a a 2 2 1 

~ ½( 1 + d n - [ ( d n - 1) + a / 2] 2) 

The right-hand side has limit ½(1 - (1 + a 2 / 2) ½) < 0 as n - 00 • For this 
a 

case A(T n) < 0 for n sufficiently large. 
an a a 2 2 ½ 

For d ~ 1, A(T ) ~ ½(1 + d n - [ (d n - 1) + a2n- ] ) and hence is 

negative for n sufficiently large. II 

(4.34) THEOREM. Suppose dim y< 00 • T E IP(y) if and only if 

Tn E ~(t), n = 1, 2, . . . . 

PROOF. T 11 E A( y) implies a(T) c s 0 . T is representable 

as an upper triangular matrix with real non-negative diagonal entries. 
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Suppose T * T* so that the triangular form has a non-zero entry above 

the diagonal. Let S = T + 1, Sn E A( 1'), n = 1, 2, . . . . 

S = (sij{, j=l' dim ~ = r. Let (i, j) be the coordinates for an 

entry such that sij * 0, j > i, and such that for (k, 1), 0 < 1 - k < j - i, 

skl = 0. Such a coordinate pair exists by the supposition T * T*. 

P is the two dimensional projection on the ith and jth coordinate 

vectors. By the selection of (i, j) 

PSP has the representation 

PSP 
(

s .. 
11 = 

0 

n=l,2, ... 

sij) 
s .. 

)) 

(14) 

Both sii > 0 and sjj > 0. sij can be as,sumed positive, as well (Scan be 

altered by a diagonal unitary transformation so that this is the case). 

Thus P(s-:-:-.1 S)P = (
1 

a, , a= s .. /s .. , d = s .. /s ... From the 
ii O ct) 1) 11 J J 11 

observation (14), Proposition 1. 3 iii and Lemma 4. 33, there exists m EN 

such that W(Sm) rt II, hence Sm f A({j-,), a contradiction. ■ 

For T compact the proof is similar, but uses the theorem of 

Sinclair and Crabb, Theorem 1. 22. 

(4. 35) THEOREM. For TE~ (y), T compact, TE IP(-t) if and only if 

Tn E A( t), n = 1, 2, . . . . 

PROOF. T is invariant on the space spanned by the eigenvectors of T. 

Call the closure of this space H. If T1 is the operator induced by Ton H, 
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there is an orthonormal basis such that T 1 has an upper triangular 

representation (see [ 19], pages 16-17). 

T, relative to the decomposition f = H EB H 1, has the form 

where Q is quasi-nilpotent and compact. Since { O} = o (Q) and 

W(Qn) c W(Tn) c rr, n = 1,2, ... , 0 E aw(Qn), n = 1,2, .... Theorem 

1. 22 implies 8r(Q) ~ IIQII. Hence Q = 0. 

Consequently H = °t' and T has an upper triangular representation. 

The argument used to prove Theorem 4. 34 yields that T is diagonal. 

* Hence T = T . a 

The techniques of this section rely heavily on an upper diagonal 

form. Accordingly there seems to be no way of extending these techniques 

to obtain an operator theoretic proof of Theorem 4. 8. 

8. THE NUMERICAL RANGE OF A PRODUCT 

Independently, Loewy [26] and Stampfli [ 39] study the numerical 

range of the product of two positive operators. Loewy's results, obtained 

by matrix techniques, are shown to be consequences of the operator 

theoretic calculations of Stampfli. Some of the operator techniques are 

used to obtain more general results. 

The first lemma is due to Stampfli [ 39] . 

(4.36) LEMMA. Suppose A, B, 1-A, 1-B E IP(1r'), then W(AB) '= 11 - ½-
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PROOF. Ax=ax+{3y, (x,y) =0, a =(Ax,x), I/xii= ll y ll =1, {3 =(Ax,y). 

By the generalized Schwarz inequality for positive operators 

A = (Ay, y) 

Because 1-AE IP(f), 

j( (1-A)x, y) 1
2 ~ (1-a)(l-A) 

For a* 0,1-A ~ 1 - jf3 j2 /a. Hence 

Note that (15) is valid for a = 0. 

(15) 

The same process is applied to B. Bx = yx + oz, y = (Bx, x), 

llz II = 1, (x, z) = 0, o = (Bx, z). The result analogous to (15) is 

Then 

and using (15) and (16) 

(ABx, x) = (A( yx + oz), x) 

= ay + Op(z, y) 

I 

Re(ABx, x) ~ ay - [ a(l-a)y(l-y)] 2 

Minimizing the right-hand side of (17), a, y E [ 0, 1] , yields 

1 Re(ABx, x) ~ - 8 . ■ 

(16) 

(17) 
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Stampfli [39 J also exhibits an example to show that the value - } 

is attained. For the example, put 

B = ( 1/4 J3/4) 
"3/4 3/4 

(18) 

The computation in the lemma is generalized to obtain the Loewy's 

estimate ([ 26], Theorem 3, page 59). 

(4.37) THEOREM. ForA,BEIP(f)supposeW(A) c [k,l] and 

W(B) C [0,lJ, then W(AB) c 11- ½(~=~) 2 
. 

I A-k PROOF. Put A = f:'k . A' and B satisfy the hypothesis of the lemma. 

From (17) 

l 

Re(A'Bx, x) ~ ay - [ a(l-a)y(l-y)] 2 

Hence 

1 

Re(ABx, x) ~ (1-k)[ ay - [ a(l-a)y(l-y)] 2 J + ky . (19) 

Minimization of the right-hand side of (19), et.,y E [0,1] gives 
.J-. l l-y2 -2 l 1-k a = ,- and y = 2 l+K . Hence 

1 (1-~)
2 

Re(ABx, x) ~ - 8 l+ •• 
The hermiticity condition is removed and another class of operators 

is examined. 

(4. 38) THEOREM. Let S = {z: Rez E l 0, 11 and Imz C: [ 0, 1]} . For 
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A, B E ~ (y) such that W(A) C S and W(B) c S, then W(AB) c TT + a, 

a=¾(l-¥) -~1+(1+f)½)
2

. 

PROOF. As in the proof of Lemma 4. 36, put Ax =ax+ ;3y, 

llyll = llxll = 1, (x,y) = O; A*x =AX+ µu, .\=a, llull = 1, (u,x) = O; 

Bx=yx+Bv, y ES, llvll =l, (x, v) =0. 

For convenience a =a+ ib, y = c + id. As in the proof of the 

lemma 

/(ReAx, y) /
2 

~ a(l-a) 

/ (ReA *x, u) /
2 

~ a(l-a) 
(20) 

/ (ImAx, y) /
2 
~ b(l-b) 

/(ImA*x, u) /2 
~ b(l-b) 

Combining the second and fourth of the inequalities (20) 

l l 

/(A *x, u) / = / µ / ~ (a(l-a)) 2 + (b(l-b)) 2 

The situation for B is the same 

I I 

/ (Bx, v) / = /o / ~ (c(l-c)) 2 + (d(l-d)) 2 

Then 

(ABx, x) = ay + oµ(v, u) 

Re(ABx, x) ~ ac - bd 
I l I l 

- [ (a(l-a)) 2 + (b(l-b)) 2J [ (c(l-c)) 2 + (d(l-d)) 2 j (21 ) 

(21) is minimized with the help of the symmetry of a with c and b with 
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d. The minimum, calculated by standard procedures, is 

a = ~1 - fJ-) -~1 + <9- + 1) ½ /. ■ 

A crude estimate of the minimum value of (21) is also possible. 

1 l l l 

ac - bd - [ (a(l-a) )2 + (c(l-c) )2 ][(b(l-b) )2 + (d(l-d) )2 ] 

I 1 

= (ac - [a(l-a)c(l-c)] 2 ) + (-bd - [b( l -b)d( l -d)] 2 ) 

I l 

+(-[ a(l-a)b(l-b)] 2 ) + (-[b( l -b)c(l-c)] 2 ) 

1 1 1 13 
~ - g--1- ;r- ;r=- 8 

To within 0.01 , a ~ -1.29. 

Using the operators described in (18), put A' = i + A, B' = i + B 

and note that W(A') c S, W(B') c S, and A'B' = AB - 1 + iA + iB. Hence 

inf{ReA: A E W(A'B')} = -1 + inf{ReA: A E W(AB)} = - 9/ 8. 

This is the closest computed value to the lower bound a . 

Computations and estimates used to prove Theorem 4. 38 can also 

be used to obtain a lower bound for 

inf{ImA : A E W(AB)} , W(A) , W(B) c S . 
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