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ABSTRACT

Application of the theory of numerical ranges to the study of com-
mutation properties of operators is the purpose of the thesis.

For a complex, unital Banach algebra (7, T € (R, the numerical
range of T is V(R,T) ={f(T) :£(1) =1 = ufu, £ € ¥*}. This is a general-
ization and extension of the notion of the numerical range defined for a
bounded operator T on the Hilbert space —@ : W(T) = {(Tx,x) :x € 5,
(x,x) = 1}. These numerical range concepts are used in studies of multi-
plicative commutators, derivations, and powers of accretive operators.

An extension of Frobenius' group commutator theorem is obtained:

For T,A,B ¢@(§), T - ABA-lp-1

, AT =TA, Anormal and 0 ¢ W(B)"~
imply T =1. Other extensions of the Frobenius theorem are proved and
‘a special discussion is given about these results in the case 6, is finite
dimensional. The sharpness of the results is also reviewed.

For X a Banach space, the numerical range of a derivation acting
on 3(X) is completely characterized. If AT is the derivation induced by

T € B (X), then

VB B (X)), ap) = V(BX),T) - VIB(X),T)

Normal elements of general Banach algebras are discussed. A consequence
of an examination of derivations which are normal is a simple proof of the

Fuglede-Putnam Theorem.
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A theorem for matrices by C. R. Johnson is generalized to the
operator case: for T ¢ @(—g), w(T") c{Rez =0}, n=1,2,... if and
only if T = 0. Examples are given which show neither the necessity nor
the sufficiency part of the theorem can be transplanted into the general

Banach algebra setting. A containment result for the numerical range of

a product is also proved.
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INTRODUCTION

The study of numerical ranges of operators and Banach algebra
elements has expanded considerably in recent years (for a survey of
these advances, see [10]). It is the purpose of this work to apply newly
found numerical range results to study commutativity and multiplicative
properties of operators. |

A discussion of background material essential to the understanding
of this thesis is contained in Chapter 1. Proofs are provided in many
cases to make the thesis essentially self-contained. Many of the
numerical range techniques used in later chapters are introduced in
these proofs.

For M a complex unital Banach algebra, T € O,

V(R,T) = {f#(T):£(1) =1 = ufn, f ¢ R}

is the algebra numerical range of T. Chapter 1 delineates properties of
this set valued map. How it relates to other concepts of the numerical
range and their antecedent in Hilbert space is shown.

Extensions of Frobenius' group commutator theorem are the basis
for discussioh in Chapter 2. 3 (6.) denotes the algebra of bounded
operators on the Hilbert space ﬁ In ® (%) the following extension of
the Frobenius theorem is obtained: for T,A,B ¢ (B (@), suppose
T =ABA™ B!, AT = TA, A normal, and 0 ¢ V(®(§),B), then T = 1.

For ® (X), the algebra of bouhded operators on the Banach space
X, the numerical range of a derivation on @ (X) is completely

characterized. This result is viewed with some surprise because of its



applicability to all algebras of the form (B(X); a related characterization
of the norm of a derivation by Stampfli does not extend from Hilbert
space to the general case. A simple derivation proof of the Fuglede-
Putnam theorerh is a consequence of our investigations.

Chapter 4 is devoted to an operator proof of a matrix theorem of
C. R. Johnson: for T ¢ 8(5,), V(@(%,),Tn) C{Rez >0}, n=1,2,...,
if and only if T = 0. Thus, as with complex numbers, operators which
have all powers accretive are positive. Discussion is included about
extensions of the main result. Examples are presented which show that
neither the necessity nor the sufficiency part of the main theorem can be
translated into a general Banach algebra setting.

All results are stated for complete (Banach) spaces and algebras.
It will be seen that there is no loss of generality in assuming complete-
ness because the algebra numerical range is unaffected by enlargements.
The assumed completeness makes the statement of results simpler and

hence facilitates the discussion.



CHAPTER 1
PRELIMINARIES: NUMERICAL RANGE PROPERTIES

1. INTRODUCTION

It is the purpose of this work to study multiplicative and com-
mutation properties of Banach algebra elements by means of the numeri-
cal range. Investigations are made into multiplicative and additive
commutators and powers of operators. The effort is to show that the
imposition of numerical range conditions yields useful characteristics of
the algebra elements involved. - To meet these objectives, therefore, a
groundwork is layed in this chapter of the preliminary material needed.

The approach to the subject of numerical ranges is general. While
often the attention is focused on the Banach algebra of Hilbert space
operators and the well-known numerical range defined for these objects,
in mind are thoughts of extending Hilbert space results to a more general
Banach algebra case, or else demonstrating the distinctiveness of the

Hilbert space case by counterexample.

2. DEFINITIONS AND NOTATION
‘9 denotes a complex Hilbert space equipped with the inner product
(+,): 5, X 6/ — €. I X denotes a complex Banach space, B (X) sym-

bolizes the algebra of all bounded endomorphisms of X. The script

letters ® , @, ... are used to denote complex unital Banach algebras, the
capitals A,B,...,S,T, ... are used for Banach algebra elements or
operators, and lower case letters f,g,...,x,y,... denote Banach space

vectors. The unit element of a Banach algebra is written 1.



The norm on a Banach space or algebra is denoted |- ||, Since
context will reveal which norm is being applied no further identification
is attached to the norm. Recall that for a Banach space X an endo-
morphism T :X — X is bounded if the set { NTx: lxll =1, x € X} is a

bounded set of real numbers. The norm induced from the Banach space,
ITH =sup{ 1Txn:nxn1 =1, x e Xp ,

to the algebra B (X) makes (B(X) a Banach algebra.
Associated with a Banach space X is its dual space X*, the
Banach space of all continuous linear maps from X to €. Since 5, is

self-dual no distinction is made between elements of the space and ele-
ments of the dual.
For T € 8(‘5,) T* is the adjoint of T. T* € (B(Pg,) and is

defined by the relations
(T*x,y) = (x,Ty), forallx,y ¢ %)/ )

? (R) is the group of invertible elements in the unital Banach

algebra @ . If T € 0, the spectrum of T in &}, denoted 0& (T), is

the set

0 (T) = {pecCc:a-T ¢ 9(02)} .

The spectrum of a Banach algebra element is a nonempty compact sub-
set of the complex plane. If @ is the maximal commutative sub-

algebra of @? containing T, then

% (T) = IR (T) = {@(T):¢:® — € is multiplicative} (1)



(see, e.g. [ 32] pages 35 and 111). When the algebra context is clear
- the spectrum of T is written o(T).

I, (T) denotes the approximate point spectrum of T in 0T .

A€ HOZ (T) implies A - T is a generalized divisor of zero in ¢ . This

e}

means that there exists {An}nzl’

A € a, | Al =1 such that either
AnT — 0 or TAn — @,

r(T) denotes the spectral radius,

r(T) = max{ [x]:x € O(R(T)} ,
and can be computed with the standard formula

r(T) = lim 11T 1/ (2)

Nn=+o0

For K C C, coK denotes the convex hull of K, K~ the closure,
K the interior, and 3K the set of boundary points of K. K ={Xx:x ¢ K}
is the set of complex conjugates of the points of K. The real and
imaginary parts of elements of K are ReK = {Z\—E—A- ‘A € K} and

A=) ;
ImK = {-2—1-— tA € K}, respectively.

3. THE NUMERICAL RANGES

The study of the Hilbert space numerical range dates back to the
work of Hilbert, Toeplitz, and others who were largely interested in

quadratic forms.

(1.1) DEFINITION. The numerical range of T € ®B (%,) is the

collection

w(T) = {(Tx,%): xi =1}



The numerical radius of T is

w(T) = sup{ [x|:x € W(T)}

That W(T) is convex for each T ¢ @('5,) is the content of the
Toeplitz-Hausdorff Theorem. Several additional properties of this
numerical range are properties that will be observed for generalized

numerical ranges.

(1.2) THEOREM. For T € (B(g»)
i) W(T) is convex,
if) o(T) € W(T)",

iii) w(T) < 1T < 2w(T) .

To briefly comment on the proof, i) (the Toeplitz-Hausdorff
theorem) has many elementary proofs. One of the easiest derives from
the observation that the numerical range of a restriction of an operator
is contained in its full numerical range (this is made precise in Proposition
1.3 iii). Coupled with a result of Donoghue [ 14] that numerical ranges
of operators on the two dimensional Hilbert space are closed elliptical
disks this implies i).

A € 90(T) implies A € H(B( )(T) and in fact that there exists
a sequence of unit vectors, {xn} ::1, such that 11(x - T)xn I — 0 as
n— «, Hence (Tx,,X )~ X asn— oandX ¢ W(T) . Because o(T)
is compact and 9 o(T) € W(T) , i) implies ii).

It is clear that w(T) < 1Tl by the Schwarz inequality. That

1T n < 2w(T) follows from polarization.



Other numerical range results which pertain only to the Hilbert
space case will also be useful in what follows. Some of these results

are listed in

(1.3) PROPOSITION. For T ¢ (3 (3),
_TF-T* _
and ImT = ===, then ReW(T) = W(ReT) and

) RerT =1L
ImW(T) = W(ImT),
ii) For T normal (i.e., TT" = T*T), W(T)~ =coo(T),
- P? = P*) and

iii) If P is an orthogonal projection on 5, (P

P #0, then

W(PTP) C W(T) |,

where PTP is considered as an operator on P 5,

iv) W(T) = W(UTU*), U unitary.

PROOF'.

Re(Tx,x) = (TX:X) : (Tx,%) _ (Tx,%) 3 (T*%,%) _ (ReTx, %)

With a similar relation for the imaginary parts i) is proved.
ii) follows from a more general result presented in Chapter 3,

Section 4.
PTP considered as an operator on Pf} has the numerical range,

W(PTP) ={(PTPx,x):x = Px, lIxll =1}

But then
W(PTP) = {(Tx,x):x = Px, lxll =1} C W(T)



iv) is valid from the equations

W(UTU*) = {(UTU*x,x) : Ixll =1}

= {(Ty,y) :y = U*x, Ixll =1}
{(Ty,y):uyn =1}
W(T) .&

Additional facts about W will be described as needed. Further
general discussion of Hilbert space numerical range properties is found
in [20], Chapter 14.

The properties of the Hilbert space numerical range are largely
held intact in the generalizations examined in this chapter. Theorem
1.2 has analogous formulations in each new setting.

The modern theory of numerical ranges has its roots in the study
of geometrical properties of Banach algebras. One paper of note is that
of Bohnenblust and Karlin [5] which studies the geometry of the unit
sphere of a unital Banach algebra. The key result of [5], for the pur-
poses of this thesis, is the fact that the unit element is a vertex of the

unit sphere. Let J(®r ) denote the set of states for the unital Banach

algebra R :

L) ={f e R*:£Q1) =1 =ufn} .

(1.4) THEOREM. [5]. For the complex unital Banach algebra o, - (?)

separates the points of ® . Furthermore, for T € R, if

v(T) = sup{ [{(T)|:f ¢ (R} ,

then




v(T) < ITH < ev(T)

It is Bonsall [7] who formulates the notation for the set implicitly
examined by Bohnenblust and Karlin, Vidav [44], and others. In [7] the

following definition is made:

(1.5) DEFINITION. For a unital Banach algebra @3, T < (R , the

algebra numerical range, written V(Q? ,T), is the set

VR,T) = {(T):f ¢ J(Q)} .

The number v(T) described in Theorem 1.4 is the numerical radius of T.

Observe that the numeriéal range of a Banach algebra element,
unlike the spectrum, is not algebra dependent. For if T ¢ (3, & a unital
Banach algebra, and @ C ®, then clearly V(8 ,T) > V(R , T) since a
state on R restricted to @ is a state; because a state in 8 can be
extended to a state in ® by the Hahn-Banach theorem, V(®,T) C
V(R ,T). The numerical range is a norm dependent quantity because it
is defined in terms of the states.

It is eventually shown that describing both v and w as the
numerical radius is not inconsistent.

It is almost immediate from Definition 1.5 that a theorem anal-

ogous to Theorem 1.2 is valid.

(1.6) THEOREM. Let R be a complex unital Banach algebra. For

T & R,

i) V(®,T) is closed and convex,

ii) o(T) € V(@,T),
iii) v(T) < ITH < ev(T).
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PROOF. i) holds because o (®?) is a compact, convex subset of ¢ * in

the weak* topology. Thus, since the map ¢ : q * — C defined by
o(f) = £(T), f € *

is weakly continuous and linear, ¢(J (®)) = V(®?, T) is compact and
convex.

A€ 00pq (T) implies A ‘E Ho-z(T) and even that there exists a
sequence of unit elements, {An}noil such that (A - T)An —0asn— o,
From the Hahn-Banach theorem there exist functionals by © R *
with fn(An) = lIg, It = 1. But then gn(-) = fn('An) is a state and
gn(T) —xasn— «. Thus A € V(¢Q,T). The compactness of % (T)
and convexity of V imply ii).

iii) is Theorem 1.4.®

Before the algebra numerical range was formulated Lumer [27]
introduced the concept of the semi-inner-product space (s.i.p.s.).
Independently, Bauer[ 2| introduced a related notion for finite dimen-
sional spaces. Both sought to explore operators on spaces other than *"9/
by imitating Hilbert space structure. To do this to each element x of

a Banach space X we associate a functional fX such that

- _
fx(x) = Ixl and If 1= lixll.

With such an association we define a semi-inner-product on X,

[-,-] : X XX* — €, which satisfies the relations

1%:¥% = ), x5 ¢€X
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[x,x] = ixii® and [-,-] is linear in the first variable. Otherwise the
semi-inner-product does not satisfy any of the usual Hilbert space inner
product relations. Note that the selection of the functional associated
with the vector x is not (in general) unique. However, if X = '6, then
the selection is unique and the semi-inner-product coincides with the

established inner product on 5,

(1.7) DEFINITION. For X a Banach space, T € (3 (X), and[,-], a

fixed semi-inner-product defined on X, put

W ](T) = {[Tx,x] :uxNl =1}

b

](T) is the Lumer numerical range relative to the semi-inner-product

1.

(1.8) DEFINITION. Let J(X) denote the family of all semi-inner-

products on the Banach space X. Then for T € B (X), the spatial numer-

ical range of T is

W(T) = ' T
() JL(}JQ (1D
w(T) = sup{ [x]: 2 € W(T)}

is the numerical radius of T.

By the remark above there is compatibility between Definitions

1.8 and 1.1. These definitions also imply
W (D) < W(T) < V(B (X),T), Te B(X . (3)

It is also possible to produce a theorem analogous to Theorems

1.2 and 1.6 for the spatial numerical range. Two intermediate results
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are needed, however.

(1.9) LEMMA. ((10], page 83). For T ¢ B (X) and[,] ¢ J(X),

int {ﬂl%"l"'_-l:a>(§

sup{Re[Tx, x] : Ixll = 1}
sup{Rex : 1 € V(B (X),T)} .

PROOF. Put a=inf{!"'*210=1 .5 > 0} g - sup{Re[ Tx,x] : ixi = 1},
and y = sup{Rex: A € V(B (X),T)}. Since W ](T) c V(B (X),T),B <y

is clear.

For f € 4(® X))

Ref(1+aT)-1 <M+aTl-1

Ref(T) = = = ; a>0:
v < «a is also clear.
For a > 0 sufficiently small,
I(I-aT)xll > Re[(l-aT)x,x]
=1-aRe[Tx,x] =1-a8>0 , uxil=1. (4)

With x replaced by (I+aT)x (4) becomes
2o
I(1-a"T%)xll = (1-aB)i(l+aT)xll, xC X .

Then

2
1Il+aTi-1 _ B+alTl a>0 .

a = 1-ap ’

Hence o <f3.®
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(1.10) THEOREM. [10]. For T ¢ B(X)and[,] ¢ J(X),
coW[,](T)' =coW(T)™ = V(B (X), T), and w(T) = v(T).

PROOF. Because of the inclusion (3) the theorem will be proved once
it is verified that coW[, ] (T)” = V(6 (X), T). Since both sets in question
are compact and convex it suffices to show sup{Rex : 1 € ei GW[, ] (T)} =
= sup{Rex : 1 ¢ ewV((%(X), T)}, for all 6€ R. Because eiOW[’ | (T) =

i6

= W[ ](eieT) and ewV((B(X),T) = V(B (X),e " T), Lemma 1.9 can be

applied to yield the result.m

The spatial numerical range analog to Theorems 1.2 and 1.6 is

now available.

(1.11) THEOREM. ForT € B(X),
i) W(T) is connected,
i) og (X)(T) c W(T)”
iii) w(T) < ITI < ew(T).

That W(T) is connected was first shown by Bonsall, Cain, and

Schneider [8] . They show that the set
Z ={(x,f):x € X, f € X*, f(x) =1 = Il = nxi}

is connected in the norm X weak* topology on X X X*, It is then a

simple matter to show that W(T) is a continuous image of this set.

Williams [46] gives an elegant proof that o (T) € W(T)".
8 (X)

He uses the result of Bishop and Phelps [3]: for X a Banach space,

D ={fe X*:0fl =1 =1£(x) = ixl for some x € X}
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is norm dense in the unit sphere of X*.

iii) follows from Theorems 1.4 and 1.10.

One additional lemma is helpful in the sequel. The proof is

similar to that of Lemma 1.9 and is omitted.

(1.12) LEMMA. [10]. For the complex unital Banach algebra ¢,

Te®@,
max{ReXx:x € V(R,T)} = lim 1 log llexp aTIl
a0" @
_ 1
= sup =>log llexp aTll , (5)
a>0

and

Il

lim 2%log llexp aTll

max{ ReX : X ¢ g (T)}
a—o+00

1

inf é—-log llexp aTll . (6)
a>0

The limits in (5) and (6) exist and equal the sup and inf

respectively by the subadditivity of the function ;Tlog llexp aTll (see

[22], pages 135-145).
For (6) note that lim log llexp aTll

a—°o

max{Rex: X € 0, (T)}.

1/a _ log r(exp T) =

4. HERMITIAN ELEMENTS
Vidav [ 44] introduced a norm characterization of hermitian ele-

ments in Banach algebras. The study of such elements has been an

important aspect of the investigation of numerical range properties.
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(1.13) DEFINITION. For the unital Banach algebra 2, H € @} is

called hermitian if llexp iaHIl =1, for all a € R.

From this definition a numerical range characterization of

hermitian elements is available.

(1.14) THEOREM. [27], [10]. H € @@ is hermitian if and only if

V(n,H) C R.
PROOF. llexp iaHll =1, a € R implies both

sup élog llexp iaHIl = 0
a>0

and

sup %a—log llexp - iaHIl = 0
a>0

By Lemma 1.12, Imx =0 for » € V(R ,H).
If V(@ ,H) C R then (5) and (6) imply log llexp iaH!l = 0 for all

a €. [R. Thus llexpiaHll =1, a € R.®

In (JS,), therefore, the usual definition of hermiticity cor-
responds to that given by Vidav. One other property which extends from
the Hilbert space to the general case is that the norm and the spectral
radius of a hermitian element are equal. This is the content of

Sinclair's Theorem [37] (an elementary proof is given in [9]):

(1.15) THEOREM. For a unital Banach algebra ¢, if H€ & is

hermitian, then r(H) = v(H) = I1HII.

An immediate corollary of the theorem is that V(®},H) = coo(H)

whenever H is hermitian.
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It is essential to note, however, that few other properties of
Hilbert space hermitians carry over to the general setting. For example,
it need not follow that H2 is hermitian if H is hermitian. A discussion
of some of these differences is given 1n Chapter 4, Section 6.

In the interest of previewing theorems which appear later in this
thesis we combine two elementary facts to obtain an additive commutator
theorm for a general Banach algebra.

Recall the Kleinecke-Shirokov Theorem for Banach algebra ele-

ments (see [20]|, page 128):

(1.16) THEOREM. Suppose that A,B €@ and that A commutes with

D =AB-BA. Then oa(D) ={o}.

This algebraic theorem has immediate application in an additive

commutator theorem.

(1.17) THEOREM. Suppose () is a unital Banach algebra and that both

H and K are _hermitian in ® . If H commutes with D = HK- KH, then

D =0.

PROOF. It suffices to show that iD is hermitian, for by Theorem 1.15
o(D) ={0} implies DI = 0.

To sketch that iD is hermitian (see [10], page 48 for details),
the hermiticity of H and K is used to obtain

llexp(iaH) exp(iaK) exp(-iaH) exp(-iaK)Il = 1 . (M

Expanding the term on the left one finds
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2

1 -a“Dll + o(az) = f . (8)

Lemma 1.9 implies that

2 2
inf{Rex : X € V(Q), D)} =- inf 128 D=1 M-aDi-l_g

Changing the order of the signs in the left-hand side of (7) one obtains the

variation of (8)
Il1+a2DlI + o(az) = 1
Thus sup{ReX:x ¢ V((?,D)} =0, as well, and iD is hermitian. m

5. WILLIAMS THEOREM

Numerical ranges possess several useful manipulative properties
which will be in constant use in the sequel. One result due to Williams
will prove particularly valuable. This result will be discussed after

several general results are collected in

(1.18) PROPOSITION. Let ¢? be a unital Banach algebra.
i) If T€@®, then V(R,AT) =AV(R,T), A € C,
ii) if S,T € R, then V(R,S+T) C V(R ,9) + V(R,T),
V(R ,+T) =2+ V(R ,T), » €C,

iii) for A€={z €eC: lzl < e}, if IS-TIl <€ then
V(R,T) © VR, + A .

PROOF. i) is trivial from the definition; ii) follows from the linearity

of the states.

If IS-TI < € then lf(S)-f(T)]se for each f ¢4 (®) .
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Thus each element of V(& ,S) is within a distance € from an element of

VR,T). =

It is important to observe that each part of this proposition also
applies to the spatial and semi-inner-product numerical ranges. Part
iii) of the proposition is the continuity which plays an important role in
Chapter 4.

Williams' Theorem gives a containment for the spectrum of a
product of two Banach algebra elements. Despite the apparent rough-
ness of the approximation to the spectrum, the result is widely used in

what follows.

(1.19) THEOREM. [46). ()} is a unital Banach algebra, S,T€ . If
0 £ V(R,T), then o sth cviR, V(R T).

PROOF. 0 £V(R®,T) implies that T is invertible. X € o, (sT"1) implies

0 ¢ UJ? (AT -S). From Theorem 1.6 and Proposition 1.18 i) and ii)

0 € V(R ,XT-S) CAV(QR,T) - V(@ ,S)

But this means A € V(R ,S)/V(RR,T). &

If S and T commute more can be said. Let @ be a maximal

commutative subalgebra of  containing Sand T. By (1)

% (ST) = og (ST) = {AST) : ¢ multiplicative on @ }
C 0@ (S) - 003 (1) = cﬁ (S) - GJQ(T) :

This fact is listed for reference as
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(1.20) THEOREM. For S,T C /. If Sand T commute then

0, (ST) C 0, (5)0, (T)

6. CORNERS AND BOUNDARIES OF NUMERICAL RANGES
Hildebrandt [21] discovered that the corner of a Hilbert space

numerical range is a point of the spectrum of the operator in question.

This and other geometrical properties of numerical range sets will be

studied in this section.

(1.21) THEOREM. [21]. For T € 8(/(3,), a corner of W(T) (a point of

dW(T) at which nonunique tangents to W(T) exist) is a spectral point of

T,

PROOF. It can be supposed (by translation and rotation of T) that 0 is
the corner point of W(T) and that W(T) C {Z € C:Rez = 0f. By the
nonuniqueness of tangents at 0, there exists an angle 6 # 0 such that also
W(ei HT) < {ReZ = 0}. There exists a sequence of unit vectors {xn} Iolo:l
such that (Txn,xn) — 0 as n — ., But then both (ReTxn,xn) and

eTxn,xn) — 0 asn— o, Since both ReT and ReewT are positive,

(Reei
this implies ReTx_ — 0 and ReeieTxn —~0asn— ©. Hence Tx — 0

andn — «© and 0 € o(T).m

Schmidt [36] has extended this theorem with restrictions to the
general Banach algebra case. He proves that if A is a corner of V(2 ,T)
such that V(R ,T) is contained in a sector with vertex at A of angular
opening less than 7 /2 then X € % (T). These results are also shown to

be sharp [ 36] .



20

Sinclair and Crabb [ 38] investigate properties of points which
belong to the boundary of the numerical range of an operator and some

or all of its powers. One of their results will be of use in Chapter 4.

(1.22) THEOREM. [38]. Let # be a complex unital Banach algebra.

For T € ® suppose 0 € 3V(R,T"), n =1,2,..., then 8r(T) > ITI.
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CHAPTER 2
MULTIPLICATIVE COMMUTATORS

1. INTRODUCTION
This chapter is devoted to a study of multiplicative properties of
operators using the multiplicative commutator as the main tool. The use

of such a commutator as a tool is demonstrated in a theorem of Frobenius

(see [ 29], [ 42] for background details).

(2.1) THEOREM. For T,A,B € (B({r), dim § < «, suppose
A,B€§ (fa») such that

-1,-1

T = ABA™ B™ | (1)

AT-TA = [A,T] =0 |, (2)

and both A, B are unitary. Then 0 € W(B) or [ A, B| =0.

The central result of this chapter is an extension of the Frobenius
Theorem which contains all known improvements of this theorem. The
directions in which the central result is the best possible theorem are

also discussed.

2. EXTENSIONS OF THE FROBENIUS THEOREM

A detail which plays a role in the theorems of this and the next
section is the closedness of the numerical range. In general, W(T) is
not closed. However, if dim *%/ < % then, as a continuous image of a
compact set, W(T) is closed. Normally the extension of a theorem with

a numerical range condition from the finite dimensionai to the infinite
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dimensional case requires the closure of the numerical range as the con-
dition. That Theorem 2.4, the extension to the operator case of Theorem
2.3, does not require this modification is a point of interest of this
chapter.

That Theorem 2.1 is not the best possible commutator theorem
with hypotheses (1) and (2) is demonstrated in Putnam [30]. There the

following is shown to be true:

(2.2) THEOREM. For T,A,B ¢ (B({r), suppose A, B ¢ (3 ({r), such that
(1) and (2) hold, and that A is unitary. Then 0 € W(B)~ or o(T) = {1}.

Of course this implies Theorem 2.1 and shows that Theorem 2.1
can be extended to the infinite dimensional case. That this result con-
tains Theorem 2.1 derives from the fact that T = ABA™'B™! and both A
and B unitary imply T unitary. The only unitary T with o(T) = {1} is
T =1. A proof of Theorem 2.2 will be given in Chapter 4 (page 97) by
techniques which are fundamentally different from those of this chapter.

In a somewhat different situation Marcus and Thompson [29] have
also obtained an extension of Theorem 2.1. In this case the condition
that A, B (hence T) be unitary is changed to the weaker condition that

only A, T be normal.

(2.3) THEOREM. [29]. Letdim 4 < «=. For T,A,B ¢ §(4) sup-

pose (1) and (2) hold, and that A, T are normal. Then 0 €W(B) or
[ A.B| =0,

PROOF. T = ABA™'B™! implies TA™! = A”!T - BAB™!. put N, = TA”]

and Ny = A°Y. what follows shows N; =N,. Hence T=1and [A,B] = 0.
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Assume 0 ¢ W(B). Since N; and N, are commuting normal

transformations, they simultaneously have diagonal representations.

Assume this representation is chosen so that Nl = diag(Al, o ,)\n) and
N2 = diag(ul, N un). B has a matrix representation relative to the
. : n "y
same orthonormal basis, B = (bij)i,jzl' n =dim {7
That N4B = BN2 implies )\ibii = 'uibii’ i=1,2,...,n. However,

by Proposition 1.3 iii, if Pi is the projection on the ith pasis vector,
by = W(PiBPi) C W(B). b, #0,1=1,2,...,n, implies A, = y,,

§ =18, o vnalhy andN1=N2.l

Again Theorem 2.3 contains the Frobenius result, and the proof
of Theorem 2.3 given above is still the most direct proof of Theorem 2.1.
It is shown in [ 12] and in [ 17] that the literal extension of Theorem 2.3

to the infinite dimensional case is valid.

(2.4) THEOREM. For T,A,B €8 (4) suppose (1) and (2) hold and that

T and A are normal. Then 0 € W(B) or [ A,B] =0.

The proofs in [ 12] and [ 17] are virtually the same. The pre-
sentation of this proof is made in Section 3 where other related results
are discussed.

A direct extension of Theorem 2.2 is made in [ 13]. The proof

is suggested by DePrima and, independently, by the referee for [ 13].

(2.5) THEOREM. For T,A,B € @(1”9,), suppose (1) and (2) hold and

that A is unitary. Then 0 € W(B)™ or [A,B] =0.

PROOF. TB - ABA™! and note that if T°B = A"BA™®, then T™1B -
TAPBA™ = APTBA™™ = APHlgp-(041) o pi-1p _ p-lanpga-n
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1

AR-1p-lapga-n o AR-1ga-(0-1)  1pis the relation

B = A"BA™™, necz ,

is valid. Because A is unitary, W(T"B) = W(A"BA™™) = W(B) and
w(TB) = w(B), n € Z. Hence by Theorem 1.2iii, IT"BIl < 2w(B), and

T < 2w(B) 1B~ LI

, h € Z. This suggests application of a theorem of
Sz.-Nagy [ 41]: T < M, n € Z for some M, implies T is similar to a
unitary operator. Hence T = SUS’I, U unitary. But o(U) = o(T) = {1}

by Theorem 2.2 so T=U =1.m

3. THE MAIN THEOREM

The central result of this chapter is a theorem which contains
every previous result. In some sense this theorem is the strongest pos-
sible result in the class of commutator theorems which have relations
(1) and (2) in the hypothesis. A discussion of this aspect of the theorem
is contained in Section 4.

Throughout the section the Fuglede-Putnam Theorem is used.

(2.6) THEOREM. [31]. I N, Ny €8 («3) are normal and Ny B = BN,,

B< @ ({r), then N’{B = BN;

A new proof of this theorem is given in Chapter 3, Section 5.

Theorem 2.6 finds immediate application in the proof of the main result,

(2.7 THEOREM. For T,A,B¢€ 03(6,), suppose that (1) and (2) hold

and that A is normal. Then 0 € W(B)  or [ A,B] = 0.
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PROOF. As in the proof of Theorem 2.4 we examine the structure

tal -alr-Ba lB 'l putn=-a"1, R-Tal [RN] -0, Nis
normal, and RB = BN.

For any Borel subset M of C, let EM denote the spectral pro-
jection of N for the set M. Since [R,N] =0, [R,N*| =0 by Theorem
2.6, R commutes with any polynomial in N and N*. Extending to
weak limits R commutes with any Borel function of N and N*. Hence
[R,EM] =0, M a Borel subset of C.

Noting this observe that

EMRBEM = EMREMBEM = EMBEMNEM = EMBNEM . (3)

Putting EvREM = Ryp EyBEy = Byp and EyNEN = Ny (3) implies

RyxByy = B

MBMm = ByvNm (4)

for any Borel set M.

Suppose 0 ¢ W(B)~. Then if EM + 0, Proposition 1. 3iii implies
that 0 ¢ W(BM)', where B, is considered as an operator on EM%’
Thus By, is invertible on EM% .

Let € > 0 be given. It will be shown that IIR - NIl < Ke for some
fixed K. Therefore R = Nand T =1, as required.

Choose a family of Borel subsets of C, {Ml} ;‘:1, such that

‘i) max(diam(Mi)) < €, i=1,2,...5F5

ii) EMi +£0, i=1,2,...,r,

r

iii) ) Ep =1
. 1
i=1
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The spectral theorem insures that such a selection is always possible.

Put 6 = dist(0,W(B)), then
2
OllxI™ < [((BM.X,X) | < By xiHlIxll, x €E
By, | M, M, %

Thus lIBM"lll < 6'1, where By is considered as an operator on Ey; {r
i i i
Using (4) and taking A € Mi’

-1
IRpg, - Ny, ! < 1Ry, By, - Nag, By, 10

-1
< 1By Ny, - Ny, By, 10

-1
< (”BMi(NMi - xi)n 4 H(NMi - Ai)BMiH)G

< 25’1||B|| - g

HNM.-A. Il < € because NM is normal, O(B (E ‘(&' NM) & M1’ and

(NM —)\) = !INM - x50

Finally, 1f X € % X = Z X, X5 € By f) Then
i=1

r
IR -N)xI? = IR-N)(Y Epp )02
i=1 !

c 2
= ), IRy, - Npp)x; !
: i i1
i=l
1 3 = ) 1 2, .2
< (267 "UBle)® ) Ix, 1% = (267" uBle)” IxI” . m
i=1
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(2.8) COROLLARY. LetR,N,B ¢ 03(6) and suppose
i) N is normal,
ii) [N,R] =0,
iii) RB = BN.
Then 0 € W(B)™ or R = N.

PROOF. Essentially it is the proof of this result which has been given
above. To apply the theorem translate R and N by A so that Ry, =R=-2

and N, = N-2 are both invertible. Supposing that 0 ¢ W(B)", Theorem

1, 1 1

2.7 implies N; 'R, =N, 'BN,B™" =1. N;'R, =1 meansR =N.m

As mentioned in Section 2 the proof of Theorem 2.4 is similar to

that of Theorem 2.7 and is suited for presentation here.

PROOF OF THEOREM 2.4. [12], [17]. Again the structure

Alr a1l —pa-lplyg examined. As before put Alp - R,

Al - N. In this case, of course, both R and N are normal.

The family of spectral projections for R will be denoted FM, M
a Borel set. The family for N will be written EM. By an argument
similar to that used in the proof of Theorem 2.7 EMlFMz = FMzEMl’
Ml’ MZ Borel.

Suppose R # N. Then for some Borel set M, EM # FM and there

exists a unit vector x such that either EMx =x and FMX =0, or

E. x =0 and FMx=x.

M
In either case because RB = BN (and hence FyB = BEM),

(Bx,x) = (BE,X,X) = (FMBx,x) = (Bx, F =

M M)

Thus 0 ¢ W(B).®
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In a sense this is a surprising result. As suggested at the
beginning of the section one would expect the hypothesis 0 € W(B)"~
rather than 0 € W(B) in the infinite dimensional setting.

An equivalent formulation of Theorem 2.4 is stated here as a
corollary. This version of Theorem 2.4 is in the form taken by the

main theorem of [ 17].

(2.9) COROLLARY. For R,N,B € (§ (%) suppose

i) R and N are normal,

ii) [N,R] =0,
iii) RB = BN.
Then 0 € W(B) or R = N.

4. THE SHARPNESS OF THE MAIN RESULT

In view of the literal extension to the infinite dimensional case of
Theorem 2.3 it is natural to ask if the condition in the hypothesis of
Theorem 2.7, 0 € W(B)™, can be weakened to 0 € W(B). Unfortunately
the answer to this question is not known. The impossibility of other
weakenings is discussed in this section.

To see that the condition 0 € W(B)™ can not be weakened to
0 € coo(B) examine the example which follows.

For the example put

1 0 0 0 -1 0 1 0 0
N=(01 0|, B=(3 02|, R=0 -1 0
0 0 -1 4 0 3 0 0 -1
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These matrices represent transformations relative to an orthonormal
basis for ﬁ = C3. Note that these transformations satisfy hypotheses
i), ii), and iii) of either Corollary 2.8 or Corollary 2.9. Furthermore
o(B) ={1} so that 0 ¢ coo(B). However, that N # R shows that the
weakening being studied is invalid.

A relaxation of the condition i) of Corollary 2.8 from N, R
normal to N, R diagonable also does not lead to a positive result. By a
theorem of Williams [ 45], for any open set V such that V O coo(B)
there exists a similarity SV for which W(SVBS{II) C V. Hence there
exists an invertible S for the transformation B of the example above such

that 0 ¢ W(B’) where B’ = SBS'l.

Putting N’ = SNs'l, R’ = SRS~}

, the conditions of Corollary 2.9
are satisfied for R’, N’, B’ in place of R, N, B, except that the condition
R, N normal is replaced by R’, N’ diagonable. Again because R’ # N’
the weakening is not possible.

To see that three dimensions are required to find counterexamples

note that the following holds:

(2.10) PROPOSITION. Let dim 4 =2. For R,N,B€ (JZ)) suppose
i) N,R diagonable,
ii) [R,N] =0,
iii) RB = BN.
Then 0 € coo(B) or N =R.

PROOF. Suppose N # R and that 0 ¢ o(B). It is shown here that

0 ¢ coo(B).
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Since R and N are simultaneously diagonable by a similarity S,

1 1, and B’ = SBS™!. Because N’ and R’ are

put N = SNS™~, R’ = SRS"
similar, o(N’) = o(R’). Hence N’= diag(a,B), R’ = diag(B, @), for some

a,B € C. However, since R'B’ = B’N’, a computation shows that B’ has

0 a
B’ =
b 0

The trace of B’ being zero implies 0 € coo(B’) =coo(B). m

the form,

5. REMARKS

It is noted in [12], that a result apparently stronger than
Theorem 2.7 appears in the literature [ 16]. This result (Theorem III
of [ 16] ), having the same hypotheses as Theorem 2.7, has the con-
clusion 0 € coo(B) or T =1. That this is in error is seen from examining
the example of the previous section. Actually what is shown in [ 16] is
that under the hypotheses of Theorem 2.7 and under the additional
assumption that A commute with BPTAB™, n =1,2,..., then 0 € coo(B)

or[ A,B] =0.

Theorem 2.7 may be framed as a theorem for C*-algebras. If
N is a C*-algebra with unit, then the algebra numerical range will serve

to replace the spatial range used in Theorem 2.7.

(2.11) THEOREM. Let & be a C*-algebra with unit. For A,B,T € ?,

suppose that (1) and (2) hold and that A is normal (i.e., [A, A*] =0).

Then 0 € V(Q?,B) or [A,B] =0.
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PROOF. R is isometrically isomorphic to a self-adjoint subalgebra of
(B} («%,), for some Hilbert space %r Let (3 be the weak closure of 0? in

8%).

3 (page 9 ) and because the spectral theorem is valid in the W*-algebra

Because V((?, B) = V(B , B) by the remarks of Chapter 1, Section

® , all of the techniques used to prove Theorem 2.7 are valid in this

setting. ®

Observe that the C*-algebra version of Theorem 2.4 is contained

in Theorem 2.11. This happens because of the closedness of V(¢?, B).

It should be mentioned that Theorem 2.4 (hence Theorem 2.7)
has many interesting applications. A small collection of these are listed -
in [17]. One application which gives the general pattern of many of the
others is due to Taussky [43 ] (see [43] and [47] for comments on the

origin of the theorem).

(2.12) THEOREM. For A e@(-%)normal, suppose

=1

STAS = A*
and that 0 ¢ W(S). Then A = A*.
PROOF. AS =SA*. Apply Corollary 2.9 withR=A, N=A* and B=S. =

It is of interest to observe that Theorem 2.7 may be viewed as

a multiplicative analogue of an additive commutator theorem of Putnam

[31],



32

(2.13) THEOREM. Suppose [A,[A,B]] =0 and that A is normal, then

[A,B] =0.

If the notation {A, B} = ABA™1p"!

is adopted, then Theorem 2.7

has the formulation

(2.14) THEOREM. Suppose {A, {A,B}}=1 and that A is normal, then

0¢ W(B) or {A,B}=1.

As is the case with Theorem 2.4 a proof of Theorem 2.7 in the

case 'gy is finite dimensional is instructive.

PROOF OF THEOREM 2.7: DIM 4 FINITE. PutR=TA™, N=A"".

It suffices to show that R = N, supposing 0 ¢ W(B).

r
By normality N = Z )\iP Pi is the orthogonal projection on

i’
i=1

ker (N-2,). That [R,N] =0 implies RP,=PR, i=1,2,...,r. Then

since RB = BN

RPiBPi = P.

{RBP, = A P,BP, i=1,2...,r

By Proposition 1. 3iii and the supposition 0 £ W(B), P,BP, is invertible on

P; % .
Thus RP; = \;P; or P; %, and R = -Zi AP, =N. =
1=
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CHAPTER 3
NUMERICAL RANGES AND DERIVATIONS

1. INTRODUCTION

Derivations, as do commutators, provide a structure with which
commutativity properties of operators can be studied. This chapter is
devoted to derivations, their numerical ranges, and an application of the
derivation to a commutativity question. In particular, the numerical
range of a derivation acting on an algebra of the form ® (X), X a Banach
space, is explicitly determined, and a numerical range proof of the Fuglede-
Putnam Theorem, Theorem 2.6, is given.

Recall that, for the element T in a Banach algebra 02, the

~derivation relative to T on R is the linear mapping AT : R — R defined by

AL(A) = TA - AT, Ac®

T

Related to the derivation is the intertwining operator on ?

relative to elements S, T of . This intertwining operator is the map

Ag A — N defined by the relation

5

AS,T(A) = SA - AT, Acd .

Of course, AT, T = Ap-

RT denotes the operation of multiplication on the right by T. LT
is multiplication on the left by T.

RT(A) = AT and LT(A) =TA, Ac. Ap = Lp - Ry and

AS, T = LS - RT. Note that
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V(B (@), Ly) = cow(Ly)

1l

co{fA(TA):fA(A) =1=1f,ll= A, Ac Rl , (1)

But {fA(TA) : fA(A) =1-= If 1l = IAI'} € V(R, T) since each functional
g(-) = fA(- A) is a state of ¢?. In the opposite direction if f is a state on

A then f(-) = (- 1) so that V(R , T) C {fA(TA) : fA(A) mle f, 1l = NAI }.
(1) and these observations imply

V(B (m ), LT) = V(m, T) . (2)
Similarly

V(B(R), Rp) = V(®,T) . (3)

It is evident that the following is valid:

(3.1) PROPOSITION. Suppose H, K are hermitian elements of a complex

unital Banach algebra [5. Then Ay g is also hermitian in ® ().
b

PROOF.
V(B(L), &g ) = VIB(D), Lg - Ry)
c V(B(D) Lg) - V(B(D, Ry)

= V([E,S) = V([II)T) CR ’
by (2) and (3) and the hermiticity of S and T.®

Throughout the remainder of this chapter 0? denotes the full
algebra of bounded endomorphisms on a Banach space X, @2 = (B (X). The
techniques of this chapter yield best results when limited to this setting.

In the case R = 3 (*9) Stampfli [39] has computed the norm of a

derivation in terms of the norm of the operator in &’X defining the derivation.
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(3.2) THEOREM. [39]. LetT e(B(g,). Then

IApl = 2inf IA-TH . (4)
AEC
It is clear that NALI < 2IA-TIH, X € C, since Ap =4y m A€C.

The location of a A so that the inequality can be reversed is the content
of the bulk of [39].
One of the results of this chapter is the formula for the numer-

ical range of a derivation

where @ is of the form B (X). Because (4) does not hold for all algebras
of the form R = B(X), it is surprising that (5) is always true.

Theorem 3.2 has an extension to the case of the intertwining
operator. The same is true of the result described by (5). This exten-
sion to the intertwining case is the numerical range analog of Kleinecke's
Theorem (see [28 ] for a discussion of this and related theorems) which

completely characterizes the spectrum of intertwining operators:

(3.3) THEOREM. (R is of the form 3 (X), X a Banach space. For

S, Te R, °g 0 )(AS, T) = on (S) - I (T).

In addition to the result (5) and its extension to the intertwining
operator case, normal elements of general Banach algebras are defined
and properties of intertwining operators which are normal elements are

discussed.
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2. THE NUMERICAL RANGE OF AN INTERTWINING OPERATOR
As suggested above the exact analog of Kleinecke's Theorem on
the spectrum of an intertwining operator is valid for the algebra numerical

range.

(3.4) THEOREM. Let¢) have the form ®# = B8 (X). For S, T € &?

V((B (02 )’ AS, T) = V(J?, S) = V(O? ’ T)

In more detail

W(Ag ) O W(S) - W(T) . (6)

PROOF. (6) is all that requires proof, for by Theorem 1.10 (6) implies
V(B (02 ), AS, T) = CO(W(AS, T)-)
D co(W(S)7) - co(W(T)")

= V(U?,S) = V(J?’T) .
Here, the relation for compact sets K, L C C
co(K+L) = coK +coL

is used. Containment in the other direction follows because AS T =
b

Lg - Rp. By (2) and (3)

V8 (), Ag, 1) = V(B (®), Lg-Ry)
C V(B () Lg) - V@ (@), Ryp)
- V(®,9) - V(R, T)
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To prove (6) suppose X € W(S), u € W(T). Then ) = fy(Sy),

U= fX(Tx), 1= jxi = iyl = I Il = nfyn = fx(x) = fy(y), X,y € X,

* _
. fy € X". Put Az = fx(z)y, z € X. Then
1Azl = 1f (2)yll = |fX(z)\ < Nzl = Nzl
and
Ax =y

imply I1All=1, A €.

Define ¢ € R* by ¢(B) = fy(Bx), B €. Here ligll < 1 since
l@(B)| = |fy(Bx)! < IIBxll < IBl, B € @ . Furthermore ¢(A) = fy(Ax)
2 fy(y) = 1 implies (p(AS, T(A)) € W(AS’ T). But

¢(Ag, 7(A)) = £,((SA-ATH)

£,(Sy) - £ (£, (Tx)y)

I

A= .
Thus A -pu € W(AS T) and (6) is proved. ®
2

An alternate proof which has more numerical range orientation,

but which applies only to the Hilbert space case follows.
(3.5) THEOREM. For S,T ¢ @ (%),
V(8 (8 (8)), g 1) = V@ (&),8) - V(@ (§), T)

PROOF. PutK = V(8 (8 (%)), o 1) and L = V(§ (§),8) - V(® (), T).
Because both K and L are compact and convex it suffices to show that

the projections of K and L on any line are the same.



38

Note that

) 0

. i i
Putting T = e'’T, S'=¢"S, 6 € R,

ReelPk = Re V(()}((B(VI) ), AS', T')
and

ReelfL = Re(V(B (%), 8") - V(B(4), T)

4 r - "o ¢
Hence, if K' = V(B (B (§)), Agr ) and L' = V(8 (), 8") - V(8 (), T),
then the theorem is established when ReK’ = ReL.’ is shown.

For A G(B(—CX),

S‘A - AT’

-~
>
N

1]

[(ReS”)A -A(ReT’)] +i[(ImS")A - A(ImT’) ]

AReS', ReTI(A) + iAImS', ImT'(A)

Proposition 3.1, therefore, implies that Agr mt has the form
b

AS', TI = Hl + le s

H; and Hy are hermitian in & (B ('%) ). Thus ReK’ = V(@ (§ (6,) ), Hy).

Applying Theorem 3.3 and Theorem 1.15,
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ReK'’

V(B (8 (4)), Hy)

= coo g (@ (%) )(Hl)
= co{o(ReS) - o(ReT)}

= coo(ReS) - coo(ReT)
= V(G (%), ReS) - V(8 (), ReT)
= Re{v(<8<vj), S) - V(B (ﬁ,), T}

= Rel! m

As suggested in the introduction, Theorem 3.4 is somewhat sur-
prising. This is because the numerical range is a norm property of an
algebra element rather than an algebraic property. The formula in
Theorem 3.4 determines the numerical range of an intertwining operator
in terms of the numerical ranges of the operators defining the intertwining
operator. Stam'pﬂi's formula for the norm of a derivation on 3 (%) gives
a determination of the derivation norm in terms of the inducing operator's

norm,

I =2 inf XA =TH
A eC

IIAT

What is surprising is that Stampfli's formula is not valid in arbitrary
algebras of the form @ = B (X) (as shown by B. E. Johnson [23]), while
the related assertion of Theorem 3.4, of course, is valid for any algebra
R = B (x).

The norm of a derivation can always be estimated from below by
the numerical radius. Because of this Stampfli's formula remains valid

for the special class of derivations in which
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v(Ar) = 2 inf IxA-TI . (7

)
T AEC

To see this note that the remarks following the statement of Theorem 3.1

assert that 1ALl < 2IIA-TI, A € €. Thus the inequality

T

V(AT) < lApll < 20x =TI
and the assumption on the special class imply

IIATII = 2 inf IA-TI
AceC

Because derivations induced by hermitians have property (7)

Stampfli's formula holds in general for these derivations.

(3.6) COROLLARY. If R = B (X) and H is a_hermitian element of 4,

then

=2 inf 1IA-HI
AeC

IIAH

More is true, however, as the determination of the norm of an

intertwining operator induced by two hermitian elements is possible.

(3.7) COROLLARY. If ® =8 (X) and H, K are hermitian in ¢, then

IAy Il = inf {Ux-HI + Ix-KI} . (8)

HK"  ecc

PROOF. Let V(R,H) = [rl, r2] CR, V(R,K) = [Sl’ sz]. V(AH’ K) is
either Sg-Tq O I'g-87. To be specific suppose that V(AH, K) =89 -Tq.
The argument in the case V(AH K) =I9-85 follows the same pattern.

S9 +S1 g +I1 .
Note that because Sg-Ty = I'g=8y, ) = 5 . Pick
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2t 2 —— . Then by Theorem 1,16

V(AH’K) = 8g-Ty = 89 -t +t-ry

l

v(K-t) +v(t-H)

1]

it =Kl + 1t -Hll
Since, in general,

A, Il < IN-HIl + IX-KIl,xe T,

K < '8y x

(8) holds. m

3. CONSEQUENCES OF THE NUMERICAL RANGE CHARACTERIZATION
Several simple consequences of Theorem 3.4 are described in
this section. The results derive from geometrical properties of the num-
erical range of the derivation characterized above.
The first result shows that the only elements of (3 (X) which com-
mute with all of @ (X) are the scalars.

(3.8) THEOREM. For T € ® = B(X) suppose that [A, T] = 0 for all

Acd@R. Then T =2 for some X € C.

PROOF. Ap =0. Therefore V(® (®), Ap) = V(R, T) - V(®, T) = {0}.
Thus V(@ , T) = {1} for some A €C, or T=2\.®

Recall that a convexoid operator is one for which the algebra
numerical range coincides with the convex hull of the spectrum. That an
intertwining operator inherits the property of being convexoid from the

operators used to define it is the content of the next theorem.
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(3.9) THEOREM. Let & = B(X). IfS, T € ¢? are convexoid, then A

S, T
is convexoid in @ ().

PROOF. Take r-p € V(B (®), Ag ) extreme, A € V(7,8), u € V(RR, T).
’ ' A1 +A
Should A not be extreme in V((?,S), then X = —172—2 » AL # Ao,

A € V(gR,S), i =1,2. But then
(- 12) + (g = 1)

A'“' ’
2

implies A-pu is not extreme. This contradiction shows that A is extreme

in V(}, S) or that x € O (S). Likewise u € T). Thus

Gﬂ? (
A-u € UCB (d?)(AS, T) by Theorem 3.3.m

A related result is the observation that corners of the numerical

range of an intertwining operator are spectral points.

(3.10) THEOREM. For S, T € @ (‘ea,), suppose A is a corner in the boundary
of V(B (B (‘6) ki AS, T)‘ Then A € O(B (® (67) )(AS, T)'

PROOF. It suffices to show that if A = u-n, u € V(® («3 ), S) and
n € V(S (6,), T) that . and 5 are corners of V(@ (%,), S) and V((} (‘9 % T,
respectively. Corners of Hilbert space numerical ranges are spectral
poin