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ABSTRACT 

RNA is a widely utilized and integrated component of core cellular function because of 

its abilities to recognize and hybridize to nucleic acid templates, spatially localize to 

different compartments within the cell, bind combinatorially to effector molecules, and in 

some cases directly catalyze chemical reactions. In this thesis, I describe three cases, 

illustrating the biomolecule’s unique importance in several different aspects of cellular 

homeostasis.  Chapter 1 provides historical context for studying RNA-protein interactions 

within RNA biology and Virology. Chapter 2 details experiments in which we explored 

RNA as a central target of host cell takeover by SARS-CoV-2. In the process, we 

highlight the importance of RNA in many integral complexes within the cell, including 

components of the spliceosome, the eukaryotic ribosome, and signal recognition particle. 

Chapter 3 presents data from our consideration of RNA within the context of cis gene 

regulation. We specifically focus on a model RNA-binding protein, SMRT/HDAC1 

Associated Repressor Protein (SHARP), and the paternally imprinted long non-coding 

RNA, Kcnq1ot1, as case studies. Chapter 4 describes our dissection of a transcriptional 

circuit involving SHARP and discusses implications of RNA-binding to developmentally 

sensitive circuits and processes. Finally, Chapter 5 poses new questions raised by these 

studies. Together these data emphasize the diverse and unique role RNA plays in cellular 

homeostasis and suggest additional roles in nuclear compartment stabilization and 

crosstalk. 
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2 

1.0 ABSTRACT 

Since the first documented isolation of nucleic acid in 1869 by Friedrich Miescher, RNA has 

been recognized as a widely utilized and integrated component of core cellular function. In this 

Chapter, I provide a historical overview of key advances within RNA biology, with emphasis on 

the diversity of non-coding RNA. I discuss three types of mechanisms used broadly by non-

coding RNAs in the cell, including sponge activities, direct RNA-mediated catalytic activity, and 

protein scaffolding. In addition, I introduce the paradigm of long non-coding RNAs as spatially 

concentrating protein scaffolds within the cell and discuss limitations in current methods used to 

evaluate RNA-protein interactions. Finally, I conclude by discussing the relevance of Virology 

towards advances in RNA biology and overall provide context for the investigation of RNA-

protein interactions during SARS-CoV-2 infection in Chapter 2, genomic imprinting in Chapter 

3, and transcriptional circuits and auto-regulation in Chapter 4. 

2.0 INTRODUCTION 

2.1 DISCOVERY, NON-CODING DIVERSITY, AND THE LENS OF CENTRAL DOGMA 

Nucleic acid was first isolated in 1869 by Friedrich Miescher, terming the highly acidic material 

as nuclein1-2. Several forms of nucleic acid were reported over the next few decades, varying as a 

result of purification method, primary source material, and research laboratory, and later 

resolved to two main groups: phytonucleic acid (yeast nucleic acid, thought to be typical of 

plants) and thymonucleic acid (also referred to as zoonucleic acid, thought to be typical of 

animals)3-4. It was later determined that differences between these two classes of nucleic acid 

were a result of changes within a pyrimidine base (uracil in yeast nucleic acid versus thymine in 
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thymonucleic acid) and sugar (pentose in yeast versus what was thought to be a hexose in 

animal), ultimately resolving to RNA and DNA respectively3-4. 

The connection between RNA and DNA was gradually established over the mid to late 20th 

century. In the late 1950s, Volkin and Astrachan described RNA as a DNA-like molecule 

synthesized from DNA5-6,2. Coupled with X-ray crystallography studies from Rosalind Franklin 

and the publication of the DNA double helix structure by Watson and Crick in 1953, RNA was 

later proposed to be an intermediate molecule in the flow of biological information from DNA to 

protein in a model called the Central Dogma of Molecular Biology7-9,2. This model was 

additionally supported by evidence from Caspersson and Brachet in 1939, who demonstrated that 

cells producing high amounts of protein also contained abundant RNA, and Jacob and Monod in 

1960, who (among others described in Section 2.4) identified the messenger RNA intermediate 

during protein synthesis10,2. 

In parallel to these coding RNA advances, non-coding RNA also emerged to the forefront. Key 

discoveries included: ribosomal RNA (rRNA), RNA components of the ribosome; transfer RNAs 

(tRNA), responsible for translation of RNA nucleotides to amino acids during protein assembly 

first identified in 1958 by Hoagland and Zamecnik; small nuclear RNAs, components of the 

spliceosome; small nucleolar RNAs, responsible for processing ribosomal RNA within the 

nucleolus; microRNAs (miRNAs), 20mer RNAs responsible for post-transcriptional gene 

silencing; and long non-coding RNA (lncRNA), non-coding RNAs greater than 200 nucleotides 

in length initially associated with gene regulation; among other types11-23,2.  

Central Dogma has been an invaluable paradigm for understanding the flow of biological 

information, and discoveries within non-coding RNA both complement the complexity of 
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Central Dogma (rRNA and tRNA) and illustrate the diversity of molecular processes within the 

cell. For better or worse, due to associations between non-coding RNA and regulatory activity 

(as a result of miRNAs, lncRNAs, and bacterial regulatory RNAs termed small RNAs), Central 

Dogma has unintentionally established a dichotomy within RNA biology: that is coding mRNA 

and regulatory non-coding RNA are mutually exclusive24,2. We later question this dichotomy in 

Chapters 3 and 5. 

2.2 REINING IN LONG NON-CODING RNAS AND CONSIDERATIONS OF CAUSALITY 

Recent reports have demonstrated that the mammalian genome is pervasively transcribed, 

producing upwards of 27,000 lncRNAs according to some estimates25-29. Coupled with the 

observations that 93% of the human genome is actively transcribed but only 1% contains protein-

coding gene exons, lncRNAs have become an exciting ‘new’ area of RNA biology research30-31, 

18-20,2. It is important, however, to take these newly reported lncRNAs with healthy skepticism 

because several lncRNAs have been reported to exert their function in an RNA-independent 

manner (that is, through activity as a cis regulatory DNA element or through the act of 

transcription itself)27,32. 

For example, Lockd (lncRNA downstream of Cdkn1b) is a mouse erythroblast lncRNA, 

associated with positive regulation of its neighbor, Cdkn1b33-34. Using a combination of 

CRISPR/Cas9-mediated excision of the Lockd gene body (which reduces neighbor Cdkn1b 

expression), as well as lncRNA transcript truncation via a pre-mature polyA termination signal 

(which does not effect Cdkn1b transcription), the authors demonstrated that a cis DNA element 

within the promoter of the Lockd locus, rather than the lncRNA itself, was responsible for its 

associated function. Another example is linc-p21, a p53-associated lncRNA linked to regulation 
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of Cdkn1a36. Through a combination of a Linc-p21 mouse knockout model, tissue-specific gene 

expression patterns, and a massively parallel reporter assay for enhancer activity, Groff et al. 

demonstrated that in vivo cis regulatory effects associated with Linc-p21 are due to DNA 

enhancer activity within the locus itself rather than the RNA molecule35-37.  

In contrast to DNA regulatory elements harbored within a lncRNA gene, the act of transcription 

can be responsible for a given behavior. An example of this is the Ftx RNA, a non-coding RNA 

associated with Xist lncRNA activation38-39. In their 2018 study, Furlan et al. demonstrated that 

deletion of the Ftx promoter resulted in impaired Xist activation. They additionally demonstrated 

that the Ftx transcript was not strictly required for this phenotype through LNA-Gapmer (locked 

nucleic acid oligonucleotides antisense to target RNAs) knockdown targeting mature Ftx. The 

authors later demonstrated that transcription of Ftx is functionally responsible for Xist activation 

using CRISPR-interference38. Ftx aside, groups have also documented that intense transcriptional 

activity can lead to expression of neighboring genes through a process termed transcriptional 

ripples40. Therefore, transcription of the lncRNA itself may lead to permissive changes in 

chromatin structure, with the produced RNA molecule ultimately dispensable towards an 

observed behavior in the laboratory32.  

Although certain lncRNAs may be ‘merely’ associated with a given behavior or disease, these 

associations can nevertheless be leveraged for diagnostic or prognostic purposes41-43. That said, 

lncRNA research demands additional experimental rigor to distinguish between the possibilities 

of RNA-independent and RNA-dependent mechanisms of action, particularly when claiming the 

prize of functional causality and possibly identifying a target for therapeutic intervention27,32.  

 



 

 

6 

2.3 REINING IN LONG NON-CODING RNAS AND RNA-PROTEIN INTERACTIONS 

Assuming a lncRNA molecule is functionally responsible for a given behavior, how are lncRNAs 

thought to work? The first reported class of mechanisms includes decoy and sponge activities2. A 

well-cited example of a lncRNA decoy is the GAS5 (growth arrest-specific 5) lncRNA, 

responsible for binding to glucocorticoid receptor by mimicking the nucleotide sequence of a 

glucocorticoid response element (GRE) and preventing the receptor from recognizing GREs 

within DNA to effect gene expression44,2. Another example includes the pseudogene derived 

lncRNA PTENP1. PTENP1 was shown to compete for miRNA binding with PTEN, effectively 

releasing PTEN from miRNA repression in a DICER-dependent manner45-47,2.  

A second mechanism, applicable to non-coding RNA more generally, is direct RNA-mediated 

catalytic activity48. Examples include self-cleaving group I introns, intronic RNA structures 

responsible for binding to guanosine and removal of 5’ RNA splice sites; RNase P, a tRNA 

processing enzyme responsible for cleaving off 5’ leader sequences to produce mature tRNAs; 

and the large subunit of ribosome, responsible for protein synthesis; among other examples48-57.  

The third and most prevailing mechanism is protein scaffolding51,58,21,27. One example is the 

human telomerase RNA; while its 5’ terminal domain binds to TERT protein-binding elements, 

stem loops within the 3’ half bind to dyskerin complexes and TCAB159-61,51. Another well-

established example is the Xist lncRNA, responsible for initiation of X-chromosome inactivation 

(XCI), the process by which one of the two female X-chromosomes is transcriptionally silenced 

to establish dosage compensation in early mammalian development21. During XCI, the Xist 

lncRNA recruits several regulatory proteins to the inactive X-chromosome, ultimately resulting 

in stable and heritable chromosome-wide silencing across an organism’s lifetime62-67. Xist 
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lncRNA remains an important tool for understanding how lncRNAs can directly interact and 

spatially concentrate effector proteins within the nucleus21,27. As a result of the paradigm 

established by Xist lncRNA and the repertoire of effector RNA-binding proteins within the cell, 

this dissertation examines RNA-protein interactions in several different contexts, including 

SARS-CoV-2 viral infection (Chapter 2), genomic imprinting (Chapter 3), and transcriptional 

circuits and auto-regulation (Chapter 4). 

RNA-protein interaction studies have historically relied on in vitro binding techniques or 

immunoprecipitation-based techniques, which include RNA Immunoprecipitation and 

Crosslinking Immunoprecipitation (CLIP)68-70. CLIP has been used successfully to identify 

precise RNA-binding sites for numerous RNA-binding proteins71,62. However, CLIP has also led 

to claims of direct RNA interactions by non-canonical RNA-binding proteins, including 

metabolic proteins and chromatin regulators72-73. Mili and Steitz previously showed that 

immunoprecipitation methods can identify RNA-protein interactions that do not occur in vivo, 

but rather form in solution post cell lysis (in vitro associations)74. Given discrepancies between 

CLIP-based biochemical evidence (supporting specific RNA-protein interactions) and genetic 

evidence (demonstrating that these same interactions are often dispensable), CLIP-based 

methods need to be reevaluated in light of possible in vitro association artifacts62,75-83. We 

discuss this reevaluation in greater detail in Chapter 2. 

2.4 LESSONS FROM VIROLOGY 

The fields of Virology and RNA biology are fundamentally linked. Insights from viruses have 

led to key discoveries within basic RNA biology, processing, gene regulation, and disease 

states84. Select examples include: the discovery of mRNA from bacteriophage; the discovery of 
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how RNA can carry genetic information, from tobacco mosaic virus; discovery of the retroviral 

reverse transcriptase from Rous sarcoma virus and Rauscher mouse leukaemia virus; the 

discovery of mRNA capping from simian vacuolating virus 40 (SV40) and vaccinia virus; the 

discovery of RNA-splicing from adenovirus; the discovery of the polyadenylation signal from 

SV40; and early discoveries of RNA-interference using various plant-viruses; among others10,84-

100. Vice versa as discussed in Chapter 2 with Covalent Linkage Affinity Purification, RNA 

biology methods development can also lead to insights in Virology. The two go hand-in-hand. 

The term ‘virus’ is derived from the Latin word for poison; given their associations with 

numerous debilitating diseases in man and detrimental effects on agriculture, livestock, and the 

food-supply, viruses justifiably remain the target of translational research efforts and 

application101-114. Translational application aside, viruses are an ideal basic science model 

system, owing to their limited coding capacity, rapid growth and replication cycle, and robust 

associated phenotypes (with notable exceptions in all three categories to be sure)115. Viruses 

enable researchers to frame every experimental hypothesis within the context of a simpler 

guiding question: “how does this interaction promote viral fitness and replication?” This 

interpretation may not necessarily be entirely intuitive or correct however, particularly with 

systems-level understanding of host-virus dynamics, as later discussed in Chapters 2 and 5. Still, 

viruses have increased our understanding of basic RNA biology, with clear ramifications for 

studies of non-coding RNA and RNA-protein interactions. 
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C h a p t e r  2  

SARS-CoV-2 DISRUPTS SPLICING, TRANSLATION, AND PROTEIN 

TRAFFICKING TO SUPPRESS HOST DEFENSES 
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1.0 ABSTRACT 

SARS-CoV-2 is a novel coronavirus that causes the respiratory disease known as COVID-19. 

Despite the urgent need, we still do not fully understand the molecular basis of SARS-CoV-2 

pathogenesis. Here, we comprehensively define the interactions between SARS-CoV-2 proteins 

and human RNAs using Covalent Linkage Affinity Purification, a technique capable of 

identifying bona fide RNA-protein interactions while reducing deleterious in vitro association 

artifacts. We show that NSP16 binds to the mRNA recognition domains of the U1 and U2 

splicing RNAs and acts to suppress global mRNA splicing upon SARS-CoV-2 infection. We 

find that NSP1 binds to 18S ribosomal RNA in the mRNA entry channel of the ribosome and 

leads to global inhibition of mRNA translation upon infection. Finally, we find that NSP8 and 

NSP9 bind to the 7SL RNA in the Signal Recognition Particle and interfere with protein 

trafficking upon infection. Disruption of these cellular functions suppresses the interferon 

response to viral infection. Our results uncover a multipronged strategy utilized by SARS-CoV-2 

to antagonize essential cellular processes to suppress host defenses. 

 

2.0 INTRODUCTION 

Coronaviruses are a family of viruses with notably large single-stranded RNA genomes and 

broad species tropism among mammals1. Recently, a new coronavirus, SARS-CoV-2, was 

discovered to cause the severe respiratory disease known as COVID-19. It is highly transmissible 

within human populations and its spread has resulted in a global pandemic with nearly a million 

deaths to date2-3. We do not fully understand the molecular basis of infection and pathogenesis of 
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this virus in human cells. Accordingly, there is an urgent need to understand these mechanisms 

to guide the development of therapeutics. 

 

SARS-CoV-2 encodes 27 proteins with diverse functional roles in viral replication and 

packaging4-5. These include 4 structural proteins: the nucleocapsid (N, which binds the viral 

RNA), and the envelope (E), membrane (M), and spike (S) proteins, which are integral 

membrane proteins. In addition, there are 16 non-structural proteins (NSP1-16) which encode the 

RNA-directed RNA polymerase, helicase, and other components required for viral replication6. 

Finally, there are 7 accessory proteins (ORF3a-8) whose function in viral replication or 

packaging remain largely uncharacterized7-8. 

  

As obligate intracellular parasites, viruses require host cell components to translate and transport 

their proteins and to assemble and secrete viral particles9. Upon viral infection, the mammalian 

innate immune system acts to rapidly detect and block viral infection at all stages of the viral life 

cycle10-12. The primary form of intracellular viral surveillance engages the interferon pathway, 

which amplifies signals resulting from detection of intracellular viral components to induce a 

systemic type I interferon response upon infection13. Specifically, cells contain various RNA 

sensors (such as RIG-I and MDA5) that detect the presence of viral RNAs, promote nuclear 

translocation of the transcription factor IRF3 leading to transcription, translation, and secretion 

of interferon (e.g. IFN-a and IFN-b). Binding of interferon to cognate cell-surface receptors leads 

to transcription and translation of hundreds of antiviral genes. In order to successfully replicate, 

viruses employ a range of strategies to counter host antiviral responses14.  
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In addition to their essential roles in the viral life cycle, many viral proteins also antagonize core 

cellular functions in human cells to evade host immune responses. For example, human 

cytomegalovirus (HCMV) encodes proteins that inhibit class 1 Major Histocompatibility (MHC) 

display on the cell surface by retaining MHC proteins in the endoplasmic reticulum15, 

polioviruses encode proteins that degrade translation initiation factors (eIF4G) to prevent 

translation of 5’-capped host mRNAs16-17, and influenza A encodes a protein that modulates 

mRNA splicing to degrade the mRNA that encodes RIG-I18-19. 

 

Suppression of the interferon response has recently emerged as a major clinical determinant of 

COVID-19 severity20, with almost complete loss of secreted IFN characterizing the most severe 

cases21. The extent to which SARS-CoV-2 suppresses the interferon response is a key 

characteristic that distinguishes COVID-19 from SARS and MERS22. Several strategies have 

been proposed for how the related SARS- and MERS-causing viruses may hijack host cell 

machinery and evade immune detection, including repression of host mRNA transcription in the 

nucleus23, degradation of host mRNA in the nucleus and cytoplasm24-25, and inhibition of host 

translation26. Nonetheless, the extent to which SARS-CoV-2 uses these or other strategies, and 

how they may be executed at a molecular level remains unclear. 

 

Understanding the interactions between viral proteins and components of human cells is essential 

for elucidating their pathogenic mechanisms and for development of effective therapeutics. 

Because SARS-CoV-2 is an RNA virus and many of its encoded proteins are known to bind 

RNA27, we reasoned that these viral proteins may interact with specific human mRNAs (critical 
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intermediates in protein production) or non-coding RNAs (critical structural components of 

diverse cellular machines) to promote viral propagation.  

  

To date, most studies of RNA-protein interactions have relied on in vitro binding assays or 

immunoprecipitation experiments (e.g. RNA Immunoprecipitation, RIP, or Crosslinking 

Immunoprecipitation, CLIP)28-30. However in a classic experiment, Mili and Steitz showed that 

immunoprecipitation methods can identify RNA-protein interactions that do not occur in vivo, 

but rather form in solution after cell lysis, which may be problematic for screens with potential 

therapeutic implications31. To address this issue, we developed a new method called Covalent 

Linkage and Affinity Purification (CLAP) that enables purification of RNA-protein interactions 

using fully-denaturing conditions. 

 

Using CLAP, we comprehensively define the interactions between each SARS-CoV-2 protein 

and human RNAs. We show that 10 viral proteins form highly specific interactions with mRNAs 

or ncRNAs, including those involved in progressive steps of host cell protein production. We 

show that NSP16 binds to the mRNA recognition domains of the U1 and U2 RNA components 

of the spliceosome and acts to suppress global mRNA splicing in SARS-CoV-2-infected human 

cells. We find that NSP1 binds to a precise region on the 18S ribosomal RNA that resides in the 

mRNA entry channel of the initiating 40S ribosome. This interaction leads to global inhibition of 

mRNA translation upon SARS-CoV-2 infection of human cells. Finally, we find that NSP8 and 

NSP9 bind to discrete regions on the 7SL RNA component of the Signal Recognition Particle 

(SRP) and interfere with protein trafficking to the cell membrane upon infection. We show that 

disruption of each of these essential cellular functions acts to suppress the type I interferon 
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response to viral infection. Together, our results uncover a multipronged strategy utilized by 

SARS-CoV-2 to antagonize essential cellular processes and robustly suppress host immune 

defenses. 

3.0 RESULTS 

3.1 CLIP IDENTIFIES MANY PRC2-RNA INTERACTIONS THAT FORM IN SOLUTION 

AFTER CELL LYSIS 

CLIP methods are the gold-standard for defining in vivo RNA-protein interactions and have been 

successfully used to define the precise RNA binding sites of numerous RNA binding proteins32. 

Briefly, CLIP utilizes UV crosslinking to form covalent interactions in cells between directly 

interacting RNA and protein, followed by immunoprecipitation, subsequent separation through a 

denaturing SDS-PAGE gel, transfer to a nitrocellulose membrane, size extraction of the RNA-

protein complex, and sequencing of the associated RNAs32-34. Given critical discrepancies 

between biochemical evidence (supporting specific chromatin-RNA interactions) and genetic 

evidence (demonstrating that these same interactions are often dispensable), we wanted to 

examine the specificity of CLIP and if it were subject to in vitro association artifacts prior to 

examining RNA-protein interactions in SARS-CoV-235-44. 

 

Based on the abundance of literature characterizing interactions between RNA and the chromatin 

regulatory complex Polycomb Repressive Complex 2 (PRC2), we specifically focused on PRC2 

complex components EZH2, EED, and SUZ12 as test cases45-48,36. To determine whether any 

observed PRC2-RNA interactions might represent associations that occur in solution, we 

designed an experiment modeled after the Mili and Steitz experiment, where authors expressed 
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an RNA binding protein (HuR) in one cell, its known RNA target (fos mRNA) in a separate cell, 

and measured RNA-protein associations that occur after mixing these distinct cells31. We 

extended this framework to enable quantitative measurements of in solution association by 

generating V5-tagged versions of all three PRC2 components (EED, EZH2, and SUZ12) and 

transfecting them into human HEK293T cells, followed by UV-crosslinking these cells to form 

covalent interactions between RNA and proteins that directly interact in vivo (+tag sample). We 

then mixed these human cells with UV-crosslinked mouse ES cells that do not express the V5-

tagged protein (-tag sample). We performed CLIP in these mixed samples using an antibody 

against the V5-tagged PRC2 proteins and only analyzed sequencing reads that mapped uniquely 

and unambiguously to either the human or mouse genomes (Figure 1A). In this system, any 

detected mouse RNA must represent an RNA-protein interaction that occurred after cell lysis 

because the immunoprecipitated V5-tagged protein is not expressed in mouse cells. 

 

We find that the majority of expressed RNAs are significantly enriched for all 3 PRC2 

components in the +tag samples (~65%, p<10-6, Figure 1B). For example, we observe strong 

enrichment for all 3 PRC2 components across several lncRNAs that have previously been 

reported to bind to PRC2 including XIST, HOTAIR, KCNQ1ot1, and TUG1 (Figure 1B)49-

52,48,39,43-44. We also observed PRC2 binding in the –tag samples, suggesting CLIP methods are 

subject to in vitro association artifacts (Figure 1B).  

  

In order to directly compare protein binding to the same RNAs in the +tag and -tag experiments, 

we transfected each of the 3 PRC2 components into a human cell line (+tag[Human]) and mixed 

them with untransfected mouse cells. In parallel, we transfected these same proteins into a mouse 
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cell line and mixed them with untransfected human cells (-tag[Human]). We performed CLIP in 

these two sets of mixed samples and directly compared PRC2 binding to the same human RNAs 

in the +tag[Human] and -tag[Human] experiments. We observed a strong global correlation between 

RNA regions that are highly enriched in the -tag[Human]  samples and those that are enriched in the 

+tag[Human] samples (Pearson correlation = 0.43, Figures 1C and 1E). For example, when 

focusing on XIST, we observed that the 3 PRC2 components showed highly comparable profiles 

in both the +tag[Human] and -tag[Human] samples and display broad enrichment across the RNA with 

the strongest enrichment being over the A-repeat region as previously reported (Figures 1D and 

1E)35,50. Notably, these binding profiles are highly similar to those observed across XIST when 

performing CLIP using antibodies that recognize the endogenous PRC2 components (Figure 

1D).  

 

These results demonstrate that thousands of PRC2-RNA interactions can be detected by CLIP 

even when they do not occur in vivo.   

 

3.2 COVALENT LINKAGE AFFINITY PURIFICATION REMOVES RNA-PROTEIN 

INTERACTIONS THAT DO NOT OCCUR IN VIVO 

While the presence of strong PRC2-RNA binding in solution does not preclude the possibility 

that these PRC2 components also bind to RNA in vivo, it highlights the challenge in accurately 

determining which of the detected PRC2-RNA represent bona fide interactions that occur in vivo. 

Because CLIP is the current gold standard approach for studying RNA-protein interactions, there 

are currently no methods available that allow us to confidently assess in vivo interactions 

between RNA and PRC2 or other putative non-canonical RBPs. 
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We considered several possibilities that could lead to the detection of RNA-protein interactions 

that do not occur in vivo: (i) the captured protein may interact directly with RNA in solution and 

this RNA could even be crosslinked to a distinct protein, (ii) the captured protein may associate 

in solution with other proteins that are crosslinked to RNA, or (iii) other proteins that are 

crosslinked to RNA may still be retained after immunoprecipitation (Figure 2A). Any of these 

non-specific interactions that remain after immunoprecipitation would be detected because the 

protein purification (immunoprecipitation) and denaturation steps (gel electrophoresis) are 

decoupled in the CLIP procedure (Figure 2B). These sources of protein-specific background 

binding would be especially problematic when the captured protein does not actually bind to 

RNA, or binds to rare RNA targets in vivo, because non-specific RNA targets will be present in 

vast excess relative to bona fide targets.  

 

To address these issues, we developed a new method called Covalent Linkage and Affinity 

Purification (CLAP) that enables purification of RNA-protein interactions using fully-denaturing 

conditions (Figure 2B). CLAP integrates an epitope tag into a protein of interest that enables 

covalent coupling of the tagged protein to a resin (e.g. HaloTag, SpyTag)53-54. Because the 

tagged protein is covalently coupled to the resin, rather than captured through an antibody, we 

can use a purification procedure that employs fully denaturing conditions – including high 

temperatures, high concentrations of denaturants and detergents, and chaotropic salts – that 

disrupt protein folding and RNA folding. This procedure directly couples protein purification 

and denaturation and accordingly the only RNA-protein interactions that should remain are those 

that represent the protein of interest where the RNA is covalently crosslinked in vivo.  
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To test whether CLAP reduces RNA-protein associations that occur in solution, we performed a 

mixing experiment where we expressed proteins fused to both Halo and V5 tags in human cells 

(+tag) and mixed them with untransfected mouse cells (-tag). We then split the lysate and 

performed CLIP and CLAP captures from the same mixture allowing us to directly compare the 

contribution of in solution associations in each experiment (Figure 2B). In the –tag samples, 

CLAP led to greatly reduced levels of background associated RNA for all 3 of the PRC2 proteins 

relative to V5 CLIP (Figure 2C and 2D). These results demonstrate that CLAP accurately 

removes RNA-protein interactions that do not occur in vivo.  

 

3.3 CLAPS ACCURATELY MAPS RNA-PROTEIN INTERACTIONS FOR A WIDE-RANGE 

OF RBPS IN VIVO 

To ensure that CLAP can identify bona fide RNA-protein interactions that occur in vivo, we 

performed CLAP on seven well-characterized RNA binding proteins (RBPs) that are known to 

interact with distinct classes of RNAs to mediate well-defined functions (e.g. mRNA splicing, 

translational regulation). These include (i) proteins that bind predominately within intronic 

regions and have high selectivity towards precise RNA sequence motifs (PTBP1, hnRNPC, 

hnRNPH1), (ii) proteins that bind to nascent pre-mRNA with broad affinity and a promiscuous 

binding profile (SAF-A and SRSF9), and (iii) proteins that bind to mature mRNAs in the 

cytoplasm (FMR1 and IGF2BP1)55-61. In all cases, we observed RNA binding profiles by CLAP 

that are highly comparable to those observed in previously reported CLIP experiments (Figures 

3A-C). For example, we find that hnRNPC binds specifically to intronic regions, SRSF9 binds 

broadly across nascent pre-mRNAs, and FMR1 binds predominately to spliced mRNAs with a 
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strong bias towards the 3’ end (Figures 3A-B). Importantly, for all proteins, the observed RNA 

binding profiles are markedly different from the distribution of RNA present in the total input 

sample (Figure 3A).  

 

Because these 7 well-characterized RBPs bind to many different RNAs, we wanted to ensure that 

the CLAP method would have the sensitivity to define RNA-protein interactions that might 

occur if a protein only binds to very few, highly specific RNA targets in vivo. To test this, we 

expressed a Halo-tagged GFP fused to a λN bacteriophage RNA binding protein, which does not 

have any endogenous RNA targets in animal cells, but is known to interact with high affinity in 

vivo to RNAs containing a BoxB RNA aptamer62 . We co-transfected these cells with an MBP-

BoxB RNA. Using CLAP, we found that GFP-λN was enriched exclusively over the co-

expressed MBP-BoxB RNA, but not over any endogenously expressed RNAs (Figure 3D). 

CLAP reads were enriched specifically over the BoxB containing portion of the RNA and 

comparatively depleted over the MBP RNA (Figure 3E).  Moreover, by exploiting the well-

described tendency for reverse transcriptase to preferentially terminate at the site of a UV-

crosslinked RNA-protein binding site, we find that the cDNA induced truncation sites 

correspond precisely to the location of the BoxB RNA sequences (Figure 3E)33. 

 

These results demonstrate that CLAP accurately identifies RNA-protein interactions that are 

crosslinked in vivo with high sensitivity and specificity across many different types of RNA-

protein interactions. 
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3.4 COMPREHENSIVE MAPPING OF SARS-COV-2 PROTEIN BINDING TO HUMAN 

RNAS 

We cloned all 27 of the known SARS-CoV-2 viral proteins into mammalian expression vectors 

containing an N-terminal HaloTag53, expressed each in HEK293T cells, and exposed them to UV 

light to covalently crosslink proteins to their bound RNAs. We then lysed the cells and purified 

each viral protein using stringent, denaturing conditions to disrupt any non-covalent associations 

and capture those with a UV-mediated interaction (Figure 4A, Methods). As positive and 

negative controls, we purified a known human RNA binding protein (PTBP1) and a metabolic 

protein (GAPDH) (Figures 5A-E). We successfully purified 26 of the 27 viral proteins (Figure 

5A; full-length Spike was not soluble when expressed). We found that 10 viral proteins (NSP1, 

NSP4, NSP8, NSP9, NSP12, NSP15, NSP16, ORF3b, N, and E protein) bind to specific host 

RNAs (p-value < 0.001, Figure 4B, Table S1), including 6 structural ncRNAs and 142 mRNAs 

(Table S1). These include mRNAs involved in protein translation (e.g. COPS5, EIF1, and 

RPS12), protein transport (ATP6V1G1, SLC25A6, and TOMM20), protein folding (HSPA5, 

HSPA6, and HSPA1B), transcriptional regulation (YY1, ID4, and IER5), and immune response 

(JUN, AEN, and RACK1) (FDR < 0.05, Figures 4B and 5F). Importantly, the observed 

interactions are highly specific for each viral protein, and each protein binds to a precise region 

within each RNA (Figures 4C and 5F). 

 

Using these data, we identified several viral proteins that interact with structural ncRNA 

components of the spliceosome (U1 and U2 snRNA), the ribosome (18S and 28S rRNA), and the 

Signal Recognition Particle (7SL) (Figure 4B). Because these molecular machines are essential 

for three essential steps of protein production – mRNA splicing, translation, and protein 
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trafficking – we focused on their interactions with viral proteins to understand their functions and 

mechanisms in SARS-CoV-2 pathogenesis. 

3.5 NSP16 BINDS TO THE PRE-MRNA RECOGNITION DOMAINS OF THE U1 AND U2 

SNRNAS 

After transcription in the nucleus, nascent pre-mRNAs are spliced to generate mature mRNAs 

which are translated into protein. Splicing is mediated by a complex of ncRNAs and proteins 

known as the spliceosome. Specifically, the U1 small nuclear RNA (snRNA) hybridizes to the 5’ 

splice site at the exon-intron junction and the U2 snRNA hybridizes to the branchpoint site 

within the intron to initiate splicing of virtually all human mRNAs65. We identified a highly 

specific interaction between the NSP16 viral protein and the U1 and U2 snRNAs (Figure 4B). 

 

Because U1 and U2 are small RNAs (164 and 188 nucleotides, respectively), we noticed strong 

enrichment of NSP16-associated reads across the entire length of each. To more precisely define 

the binding sites, we exploited the well-described tendency of reverse transcriptase to 

preferentially terminate when it encounters a UV-crosslinked protein on RNA (Figures 4A and 

5D)33. We determined that NSP16 binds to the 5’ splice site recognition sequence of U1 (Figures 

6A-B and 7A-B) and the branch point recognition site of U2 (Figures 6C-D and 7C-D). These 

binding sites are highly specific to NSP16 relative to all of the other viral and human proteins 

(Figures 4B, 7A, and 7C). Consistent with its interaction with U1/U2, we observed that NSP16 

localizes within the nucleus upon SARS-CoV-2 infection (Figures 6E and 7E-F) and when 

expressed in human cells (Figure 7G). 
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3.6 NSP16 DISRUPTS GLOBAL MRNA SPLICING UPON SARS-COV-2 INFECTION 

Based on the locations of the NSP16 binding sites relative to the mRNA recognition domains of 

the U1/U2 spliceosomal components, we hypothesized that NSP16 might disrupt splicing of 

newly transcribed genes (Figure 6F). To test this, we co-expressed NSP16 in human cells along 

with a splicing reporter derived from IRF7 (an exon-intron-exon minigene) fused to GFP66. In 

this system, if the reporter is spliced, then GFP is made; if not, translation is terminated (via a 

stop codon present within the first intron) and GFP is not produced (Figure 8A). We observed a 

>3-fold reduction in GFP levels in the presence of NSP16 compared to a control human protein 

(Figures 8B and 9A). 

 

To explore whether NSP16 has a global impact on splicing of endogenous mRNAs, we measured 

the splicing ratio of each gene using nascent RNA sequencing. Specifically, we metabolically 

labeled nascent RNA by feeding cells for 20 minutes with 5-ethynyl uridine (5EU), purified and 

sequenced 5EU-labeled RNA, and quantified the proportion of unspliced fragments spanning the 

3’ splice site of each gene (Figures 8C, 9B). We observed a global increase in the fraction of 

unspliced genes in the presence of NSP16 compared to controls (Figures 8D, 9C, 9D). 

 

Given that NSP16 is sufficient to suppress global mRNA splicing, we expect that its expression 

in SARS-CoV-2-infected cells would result in a global mRNA splicing deficit. To test this, we 

infected human lung epithelial cells (Calu3) with SARS-CoV-2 and measured splicing levels of 

newly transcribed mRNAs compared to a mock infected control. As expected, we observed a 

global increase in the fraction of unspliced transcripts upon SARS-CoV-2 infection, with ~90% 
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of measured genes showing increased intron retention (Figures 8E, 9E). Together these results 

indicate that NSP16 binds to the splice site and branch point sites of U1/U2 to suppress global 

mRNA splicing in SARS-CoV-2 infected cells (Figure 8F). Although NSP16 is known to act as 

an enzyme that deposits 2’-O-methyl modifications on viral RNAs67, our results demonstrate that 

it also acts as a host virulence factor. Global disruption of mRNA splicing may act to decrease 

host protein and mRNA levels by triggering nonsense-mediated decay of improperly spliced 

mRNAs68. Consistent with this, we observed a strong global decrease in steady-state mRNA 

levels (relative to ncRNA levels) upon SARS-CoV-2 infection (Figure 9F). 

 

3.7 INHIBITION OF MRNA SPLICING SUPPRESSES HOST INTERFERON RESPONSE TO 

VIRAL INFECTION 

Because many of the key genes stimulated by interferon (IFN) are spliced, we reasoned that 

mRNA splicing would be critical for a robust IFN response. To test this, we utilized a reporter 

line engineered to express alkaline phosphatase upon IFN signaling (mimicking an antiviral 

response gene). This IFN Stimulated Gene (ISG) reporter line can be stimulated using IFN-b and 

assayed for reporter induction. We observed strong repression of this IFN responsive gene upon 

expression of NSP16 (Figure 8G) and upon addition of a small molecule that interferes with 

spliceosomal assembly (Figure 9G). These results demonstrate that one outcome of NSP16- 

mediated inhibition of mRNA splicing is to reduce the host cells’ innate immune response to 

viral recognition. Consistent with such a role, we observed an increase in intron retention within 

multiple IFN-responsive genes (such as ISG15 and RIG-I) upon SARS-CoV-2 infection 

(Figures 8H and 9H-I). 
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3.8 NSP1 BINDS TO 18S RIBOSOMAL RNA IN THE MRNA ENTRY CHANNEL OF THE 

40S SUBUNIT 

Once exported to the cytoplasm, spliced mRNA is translated into protein on the ribosome. 

Initiation of translation begins with recognition of the 5’ cap by the small 40S subunit (which 

scans the mRNA to find the first start codon). We observed that NSP1 binds exclusively to the 

18S ribosomal RNA (Figures 4B and 10A) – the structural RNA component of the 40S 

ribosomal subunit. 

 

Several roles for NSP1 have been reported in SARS-CoV and MERS-CoV including roles in 

viral replication, translational inhibition, transcriptional inhibition, mRNA degradation, and cell 

cycle arrest69-70, 24-25. One of the reported roles for NSP1 in SARS-CoV is that it can associate 

with the 40S ribosome to inhibit host mRNA translation24,71, yet it remains unknown whether 

this association is due to interaction with the ribosomal RNA, protein components of the 

ribosome, or other auxiliary ribosomal factors. Accordingly, the mechanisms by which NSP1 

acts to suppress protein production remain elusive. 

 

We mapped the location of NSP1 binding to a 37 nucleotide region corresponding to Helix 18 

(Figure 11A), adjacent to the mRNA entry channel (Figure 11B)72. The interaction would 

position NSP1 to disrupt 40S mRNA scanning and prevent translation initiation (Figure 11B), 

and disrupt tRNA recruitment to the 80S ribosome and block protein production (Figure 10B). 

Interestingly, the NSP1 binding site includes the highly conserved G626 nucleotide which 

monitors the minor groove of the codon-anticodon helix for tRNA binding fidelity73. We noticed 

that the C-terminal region of NSP1 has similar structural regions to SERBP174 and Stm175, two 
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known ribosome inhibitors that bind within the mRNA entry channel to preclude mRNA access 

(Figure 10C). Consistent with this, a recent cryo-EM structure confirms that NSP1 binds to 

these same nucleotides of 18S within the mRNA entry channel76. 

 

3.9 NSP1 SUPPRESSES GLOBAL TRANSLATION OF HOST MRNAS UPON SARS-COV-2 

INFECTION 

Given the location of NSP1 binding on the 40S ribosome, we hypothesized that it could suppress 

global initiation of mRNA translation. To test this, we performed in vitro translation assays of a 

GFP reporter in HeLa cell lysates and found that addition of NSP1 led to potent inhibition of 

translation (Figure 10D). We observed a similar NSP1-mediated translational repression when 

we co-expressed NSP1 and a GFP reporter gene in HEK293T cells (Figures 11C-D). In contrast, 

we did not observe this inhibition when we expressed other SARS-CoV-2 proteins (NSP8, 

NSP9, M) or human proteins (GAPDH) (Figure 11D). 

 

To determine if NSP1 leads to translational inhibition of endogenous proteins in human cells, we 

used a technique called Surface Sensing of Translation (SUnSET) to measure global protein 

production levels77. In this assay, translational activity is measured by the level of puromycin 

incorporation into elongating polypeptides (Figure 10E). We observed a strong reduction in the 

level of global puromycin integration in cells expressing NSP1 compared to cells expressing 

GFP (Figures 10F-G). 

 

Because NSP1 expression is sufficient to suppress global mRNA translation in human cells, we 

hypothesized that SARS-CoV-2 infection would also suppress global translation. To test this, we 
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infected a human lung epithelial (Calu3) or monkey kidney (Vero) cell line with SARS-CoV-2 

and measured nascent protein synthesis levels using SUnSET. We observed a strong reduction of 

global puromycin integration upon SARS-CoV-2 infection in both cell types (Figures 11E-F, 

10H-I). 

 

To explore whether NSP1 binding to 18S rRNA is critical for translational repression, we 

generated a mutant NSP1 in which two positively charged amino acids (K164 and H165) in the 

C-terminal domain were replaced with alanine residues (Figure 10C)78. We observed a complete 

loss of in vivo contacts with 18S (Figure 11G); because this mutant disrupts ribosome contact, 

we refer to it as NSP1 Delta RC. We co-expressed GFP and NSP1 Delta RC in HEK293T cells 

and found that the mutant fails to inhibit translation (Figures 11H and 10J). In contrast, 

mutations to the positively charged amino acids at positions 124/125 do not impact 18S binding 

(Figure 11G) or the ability to inhibit translation (Figure 11H). 

 

Together, these results demonstrate that NSP1 binds within the mRNA entry channel of the 

ribosome and that this interaction is required for translational inhibition of host mRNAs upon 

SARS-CoV-2 infection. 

3.10 NSP1-MEDIATED TRANSLATIONAL INHIBITION SUPPRESSES HOST 

INFERFERON RESPONSE 

We explored whether NSP1 binding to 18S rRNA suppresses the ability of cells to respond to 

IFN-b stimulation upon viral infection. We transfected ISG reporter cells with NSP1, stimulated 

with IFN-b, and observed robust repression of the IFN responsive gene (>6-fold, Figure 11I). To 

confirm that this NSP1-mediated repression occurs in human cells upon activation of double 
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stranded RNA (dsRNA)-sensing pathways typically triggered by viral infection, we treated a 

human lung epithelial cell line (A549) with poly(I:C), a molecule that is structurally similar to 

dsRNA and known to induce an antiviral innate immune response(Figure 10K)79-80. We 

observed a marked downregulation of IFN-b protein and endogenous IFN-b responsive mRNAs 

in the presence of NSP1, but not in the presence of NSP1 Delta RC (Figures 10L-M). These 

results demonstrate that NSP1, through its interaction with 18S rRNA, suppresses the innate 

immune response to viral recognition (Figure 11J). 

 

3.11 THE VIRAL 5’ LEADER PROTECTS MRNA FROM NSP1-MEDIATED 

TRANSLATIONAL INHIBITION 

Because NSP1 blocking the mRNA entry channel would impact both host and viral mRNA 

translation, we explored how translation of viral mRNAs is protected from NSP1-mediated 

translational inhibition. Many viruses contain 5’ untranslated regions that regulate viral gene 

expression and translation81; all SARS-CoV-2 encoded subgenomic RNAs contain a common 5’ 

leader sequence that is added during negative strand synthesis82. We explored whether the leader 

sequence protects viral mRNAs from translational inhibition by fusing the viral leader sequence 

to the 5’ end of GFP or mCherry reporter genes (Figure 12A). We found that NSP1 fails to 

suppress translation of these leader-containing mRNAs (Figures 13A-B, 12B). We dissected the 

leader sequence and found that the first stem loop (SL1) is sufficient to prevent translational 

suppression upon NSP1 expression (Figure 13C) or SARS-CoV-2 infection (Figure 13D). 

 

We considered three models for how the leader could protect viral mRNAs: (i) it could compete 

with the ribosome for NSP1 binding, (ii) it could directly recruit free ribosomes or (iii) NSP1 
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could bind to the leader independently of its ribosome interaction to allosterically modulate the 

NSP1-ribosome interaction. We reasoned that if the leader competes for NSP1 binding or 

directly recruits free ribosomes, then the presence of SL1 should be sufficient for protection, 

regardless of its precise position in the 5’ UTR. In contrast, if the leader allosterically modulates 

ribosome binding then the spacing between the 5’ cap (which is bound to NSP1-40S) and SL1 

would be critical for protection. To distinguish between these models, we swapped the location 

of SL1 and SL2 in the 5’ leader or inserted 5 nucleotides between the 5’ cap and SL1 (Figure 

S5C) and found that both mutants ablate protection (Figures 13E and 12D). 

 

These results indicate that an mRNA requires the 5’ leader to be precisely positioned relative to 

the NSP1-bound 40S ribosome to enable translational initiation (Figure 13F). While many 

aspects of this allosteric model remain to be explored, it would explain how leader-mediated 

protection can occur on an mRNA only when present in cis. Moreover, this model suggests that 

NSP1 might also act to further increase viral mRNA translation by actively recruiting the 

ribosome to its own mRNAs. Consistent with this, we observe a consistent ~20% increase in 

translation of leader-containing reporter levels upon viral infection (Figure 13D) or expression 

of NSP1 (Figure 12E). 

 

3.12 NSP8 AND NSP9 BIND TO THE 7SL RNA COMPONENT OF THE SIGNAL 

RECOGNITION PARTICLE 

Upon engaging the start codon in an mRNA, the 60S subunit of the ribosome is recruited to form 

the 80S ribosome which translates mRNA. The Signal Recognition Particle (SRP) is a 

universally conserved complex that binds to the 80S ribosome and acts to co-translationally scan 
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the nascent peptide to identify hydrophobic signal peptides present in integral membrane proteins 

and proteins secreted from the plasma membrane83. When these are identified, SRP triggers 

ribosome translocation to the endoplasmic reticulum (ER) to ensure proper folding and 

trafficking of these proteins to the cell membrane83. 

 

We identified two viral proteins – NSP8 and NSP9 – that bind at distinct and highly specific 

regions within the S-domain of the 7SL RNA scaffold of SRP (Figures 14A and 15A). NSP8 

interacts with 7SL in the region bound by SRP54 (the protein responsible for signal peptide 

recognition, SRP-receptor binding, and ribosome translocation) (Figure 14B)83-84. NSP9 binds to 

7SL in the region that is bound by the SRP19 protein (Figure 14B), which is required for proper 

folding and assembly of SRP (including proper loading of SRP54)83. 

 

Because SRP scans nascent peptides co-translationally, we were intrigued to find that NSP8 also 

forms a highly specific interaction with 28S rRNA (the structural component of the 60S subunit) 

(Figures 14C and 15B). The binding site on 28S rRNA corresponds to the largest human-

specific expansion segment within the ribosome, referred to as ES2785. ES27 is highly dynamic, 

and thus has not been resolved in most ribosome structures86. However, when engaged by 

specific factors, ES27 can become ordered, and was recently shown to be capable of interacting 

with the ribosome exit tunnel, adjacent to the 60S binding site of SRP (Figures 14D and 15C)87.  

 

Together, these observations suggest that NSP8 and NSP9 bind to the co-translational SRP 

complex. Consistent with this, we find that NSP8 and NSP9 localize broadly throughout the 

cytoplasm when expressed in human cells (Figure 15D) or upon SARS-CoV-2 infection (Figure 
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15E-F). 

3.13 NSP8 AND NSP9 SUPPRESS PROTEIN INTEGRATION INTO THE CELL 

MEMBRANE 

Because NSP8 and NSP9 binding on 7SL are positioned to disrupt SRP function, we 

hypothesized that they may alter translocation of secreted and integral membrane proteins 

(Figure 16A). To test this, we expressed an SRP-dependent membrane protein (Nerve Growth 

Factor Receptor, NGFR88) fused via an Internal Ribosome Entry Site (IRES) to a non-membrane 

GFP (Figure 16F). In this system, if a perturbation specifically affects membrane protein levels 

we expect to see a decrease in the ratio of membrane to non-membrane protein levels. To ensure 

that the NGFR reporter accurately reports on SRP function, we treated HEK293T cells with 

siRNAs against SRP54 or SRP19 and found that both lead to a dramatic reduction of the NGFR 

membrane protein relative to the non-membrane GFP protein (Figure 16B). Similarly, we found 

that expression of NSP8 and NSP9 (alone or together) lead to a striking reduction in expression 

of NGFR relative to GFP (Figure 17A). Expression of control proteins did not specifically 

impact NGFR levels (Figures 17A and 16B). 

 

To determine if there is a global effect on membrane protein levels, we utilized the SUnSET 

method to measure puromycin levels in membrane proteins using flow cytometry (see Methods). 

We confirmed that disruption of SRP leads to a global reduction in puromycin levels in the cell 

membrane (Figure 16C). We observed a comparable global reduction of puromycin-labeled 

membrane proteins upon expression of NSP8 or NSP9 individually or together, but not with 

control proteins (Figure 17B-C). 
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3.14 SARS-COV-2 INFECTION SUPPRESSES PROTEIN INTEGRATION INTO THE CELL 

MEMBRANE 

Because NSP8 and NSP9 are each sufficient to suppress protein integration into the cell 

membrane, we anticipate that SARS-CoV-2 infection would lead to similar suppression. 

However, determining whether SARS-CoV-2 infection specifically impacts membrane protein 

expression is confounded by the fact that NSP1 inhibits translation of membrane and 

nonmembrane proteins upon infection. 

 

To address this, we co-expressed a membrane protein reporter (NGFR) containing the 5’ viral 

leader along with a non-membrane GFP reporter containing the viral leader. Upon viral 

infection, we observed a strong reduction of membrane protein levels (Figure 17C), but no 

reduction in non-membrane GFP levels (Figure 13D). To ensure that these effects are specific to 

SARS-CoV-2 infected cells, we separated individual cells within the infected population into 

those expressing the viral Spike protein (S+) and those not expressing the protein (S-). We found 

that the shift in membrane protein levels only occurs in S+ cells (Figure 17D), while the S- 

population resembled the mock infected samples (Figure 17C). We observed a strong 

relationship between the level of Spike protein – likely reflecting the amount of viral replication 

within each cell – and the level of membrane protein suppression (Figure 17C). We observed 

this membrane protein-specific decrease upon infection of human lung epithelial (Calu3, Figure 

16D) and monkey kidney (Vero, Figures 17C-D) cell lines. 

 

Together, these results demonstrate that NSP8 and NSP9 bind to 7SL to disrupt SRP function 

and suppress membrane protein trafficking in SARS-CoV-2 infected cells. Although NSP8 and 
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NSP9 are thought to be components of the viral replication machinery89, our results indicate that 

they play an additional role as host virulence factors. Because viral membrane proteins also 

require trafficking to the ER, viral disruption of SRP might negatively impact viral propagation, 

unless viral proteins are trafficked in an SRP-independent manner (Figure 16E) or if NSP8/9 

selectively impacts host (but not viral) proteins. 

 

3.15 VIRAL DISRUPTION OF PROTEIN TRAFFICKING SUPPRESSES INTERFERON 

RESPONSE 

Next we explored how disruption of SRP might be advantageous for viral propagation. Because 

secretion of IFN and other cytokines is dependent on the SRP complex for secretion (Figure 

16F), a central component of the IFN response is dependent on SRP. Accordingly, we 

hypothesized that NSP8/9-mediated viral suppression of SRP would act to suppress the IFN 

response upon infection. To test this, we co-expressed NSP8 and NSP9 and observed a 

significant reduction in the IFN response relative to a control protein (Figure 16G). 

Together, these results suggest that SARS-CoV-2 mediated suppression of SRP-dependent 

protein secretion enables suppression of host immune defenses (Figure 17E). Interestingly, 

many proteins involved in anti-viral immunity – including most cytokines and class I major 

histocompatibility complex – are membrane-anchored or secreted, and are known to use the SRP 

pathway for transport (Figure 16F), suggesting that there may be other effects of SRP pathway 

inhibition on SARS-CoV-2 pathogenesis90. 

 

4.0 DISCUSSION  

We identified several novel pathogenic functions of SARS-CoV-2 in human cells – including 
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global inhibition of host mRNA splicing, protein translation, and membrane protein trafficking – 

and described the molecular mechanisms by which the virus acts to disrupt these essential cell 

processes. Interestingly, all of the viral proteins involved (NSP1, NSP8, NSP9, and NSP16) are 

produced in the first stage of the viral life cycle, prior to generation of double stranded RNA 

(dsRNA) products during viral genome replication. Because dsRNA is detected by host immune 

sensors and triggers the type I interferon response, disruption of these cellular processes would 

allow the virus to replicate its genome while minimizing the host innate immune response. 

Disruption of these three non-overlapping steps of protein production may represent a 

multipronged mechanism that synergistically acts to suppress the host antiviral response (Figure 

17F). Specifically, the IFN response is usually boosted >1,000-fold upon viral detection (through 

amplification and feedback, Figure 11K), yet each individual mechanism impacts IFN levels on 

the order of ~5-10-fold. Accordingly, if each independent mechanism impacts IFN levels 

moderately, the three together may be able to achieve dramatic suppression of IFN (103=1,000- 

fold). This multi-pronged mechanism may explain the molecular basis for the potent suppression 

of IFN observed in severe COVID-19 patients. 

 

Interferon is emerging not only as a determinant of disease severity, but also a potential 

treatment option91. As such, our work identifies several therapeutic opportunities for boosting 

IFN levels upon SARS-CoV-2 infection. For example, disrupting the interaction between NSP1 

and 18S rRNA could allow cells to detect and respond to viral infection. Because many small-

molecule drugs target ribosomal RNAs92, it may be possible to develop drugs to block the NSP1-

18S and other interactions. Additionally, disrupting the 5’ viral leader may be a potent antiviral 

strategy since it is critical for translation of all viral proteins. Because SL1 is a structured RNA, 
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it may be possible to design small molecules that specifically bind this structure to suppress viral 

protein production93. 

 

Viral suppression of these cellular functions is not exclusive to the IFN response and will also 

impact other spliced, translated, secreted, and membrane proteins. Many proteins involved in 

anti-viral immunity are spliced and/or membrane-anchored or secreted. For example, class I 

major histocompatibility complex (MHC), which is critical for antigen presentation to CD8 T 

cells at the cell surface of infected cells94. By antagonizing membrane trafficking, SARS-CoV-2 

may prevent viral antigens from being presented on MHC and allow infected cells to escape T-

cell recognition and clearance. In this way, interference with these essential cellular processes 

might further aid SARS-CoV-2 in evading the host immune response. 

 

More generally, we expect that insights gained from the SARS-CoV-2 protein-RNA binding 

maps will be critical for exploring additional viral mechanisms. Specifically, we identified many 

other interactions, including highly specific interactions with mRNAs. For example, NSP12 

binds to the JUN mRNA (Figure 5E) which encodes the critical immune transcription factor c- 

Jun which is activated in response to multiple cytokines and immune signaling pathways95. We 

also identified an interaction between NSP9 and the start codon of the mRNA that encodes 

COPS5 (Figure 4C), the enzymatic subunit of the COP9 Signalosome complex which regulates 

protein homeostasis96, suggesting that it might disrupt its translation. Interestingly, COPS5 (also 

known as JAB1) is known to bind and stabilize c-Jun protein levels97 and several viruses are 

known to disrupt this protein98-100. While it remains unknown what, if any, role these interactions 
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play in virally infected cells, the specificity suggests that they may provide a selective advantage 

for viral propagation.  

 

Together, our results demonstrate that global mapping of RNA binding by viral proteins could 

enable rapid characterization of mechanisms for newly emerging pathogenic RNA viruses. 

 

4.1 LIMITATIONS OF STUDY  

We note several limitations of our current study that will need to be explored in future work. (i) 

Our mapping experiments were performed in uninfected human cells expressing tagged viral 

proteins. Accordingly, it remains possible that our maps may not fully capture all of the 

interactions that occur when human cells are infected, such as interactions that occur with viral 

induced RNAs, in specific viral compartments, or that require multiple viral proteins. (ii) While 

we characterized the functional and mechanistic roles of several viral proteins and structural 

ncRNAs, we did not explore what roles viral protein interactions with mRNAs might play. (iii) 

How the virus disrupts fundamental cellular processes while still maintaining its own production 

is still largely undefined. While we showed that the 5' leader is sufficient to relieve translational 

inhibition by NSP1, we still do not fully understand how this protection occurs and specifically 

how NSP1 might interact with the viral leader or allosterically modulate ribosome binding. 

Similarly, viral membrane proteins are dependent on trafficking to the ER and how NSP8/9 

might selectively impact ER translocation of host – but not viral – proteins remains to be 

explored. (iv) While we showed that viral disruption of these essential cellular functions can 

suppress IFN, what other roles host cell shutdown might play in viral pathogenesis and in 

suppressing other aspects of anti-viral immunity, including possible roles in adaptive immune 
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responses, have not been explored. 
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6.0 MATERIALS AND METHODS 

Cell lines and culture conditions 

Cell lines used in this study. We used the following cell lines in this study: (i) HEK293T, a 

female human embryonic kidney cell line obtained from ATCC. (ii) HEK-Blue™ ISG, 

Interferon regulatory factor (IRF)-inducible Secreted Alkaline Phosphatase (SEAP) reporter 

HEK293 cells of female origin (Invivogen). (iii) A549, a male human lung epithelial cell line 

obtained from ATCC. (iii) Calu3, a male human lung epithelial cell line obtained from ATCC, 

(iv) Vero E6, a female African green monkey kidney cell line, kindly provided by J.L. Whitton 

and Michele Bouloy. 
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Cell culture conditions. A549s, HEK293T cells and derivatives were cultured in complete media 

consisting of DMEM (GIBCO, Thermo Fisher Scientific) supplemented with 10% FBS 

(Seradigm Premium Grade HI FBS, VWR), 1X penicillin-streptomycin (GIBCO, Thermo Fisher 

Scientific), 1X MEM non-essential amino acids (GIBCO, Thermo Fisher Scientific), 1 mM 

sodium pyruvate (GIBCO, Thermo Fisher Scientific) and maintained at 37C under 5% CO2. For 

maintenance, 800,000 cells were seeded into 10 mL of complete media every 3-4 days in 10 cm 

dishes. Vero E6 cells were maintained in complete DMEM (Thermo Fisher Scientific, 11965–

092) containing 10% fetal bovine serum (FBS) (Thermo Fisher Scientific, 16140–071), 1% 

HEPES Buffer Solution (Thermo Fisher Scientific, 15630–130), and 1% penicillin-streptomycin 

(Thermo Fisher Scientific, 15140–122). Calu3 cells were maintained in Eagles’s Minimal 

Essential Medium (ATCC) containing 10% FBS and 1% penicillin-streptomycin purchased from 

Thermo Fisher Scientific. All cell lines were maintained at 37C under 5% CO2. Cells were grown 

in a humidified incubator at 37C with 5% CO2. 

 

SARS-CoV-2 Viral Infection conditions 

All experiments using infectious SARS-CoV-2 conducted at the UVM BSL-3 facility were 

performed under an approved Institutional Biosafety protocol. SARS-CoV-2 strain 2019- 

nCoV/USA_USA WA1/2020 (WA1) was generously provided by Kenneth Plante and the World 

Reference Center for Emerging Viruses and Arboviruses (WRCEVA) at the University of Texas 

Medical Branch and propagated in Vero E6 cells. Viral infections were performed at the 

indicated multiplicity of infection in a low volume of normal cellular maintenance media 

containing 2% FBS for one hour at 37.C, inoculum was removed and then overlaid in the 

respective cellular maintenance media containing 10% FBS for the indicated time periods. 
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Experiments performed to visualize the location of viral NSP proteins (and associated antibody 

validation) were performed in a Containment Level 3 facility at the MRC-University of Glasgow 

Centre for Virus Research using SARS-CoV-2 strain England-02 (from Public Health England 

[now called National Institute for Health Protection], GISAID: EPI_ISL_407073) using a MOI 

of 0.1 or 1 (as indicated). 

 

Crosslinking and Immunoprecipitation (CLIP) 

 

Purifications. Cells were lysed in 1 ml lysis buffer (50 mM Tris pH 7.5, 100mM NaCl, 1% NP-

40, 0.5% Sodium Deoxycholate, 1x Promega protease inhibitor cocktail). RNA was digested 

with Ambion RNase I (1:3000 dilution) to achieve a size range of 100-500 nucleotides in length. 

Lysate preparations were precleared by mixing with Protein G beads for 30 min at 4C. Target 

proteins were immunoprecipitated from 5 million cells with 10µg of antibody and 75µl of 

Protein G beads in 100µL lysis buffer. The antibodies were pre-coupled to the beads for 1 hour 

at room temperature with mixing and unbound antibodies removed with 3 washes of lysis buffer. 

The precleared lysate was added to the Protein G coupled antibody beads overnight at 4C. After 

the immunoprecipitation, the beads were washed four times with High salt wash buffer (50 mM 

TrisHCl pH 7.4, 1 M NaCl, 1 mM EDTA, 1% NP-40, 0.1% SDS, 0.5% sodium deoxycholate) 

and four times with Wash buffer (20 mM Tris-HCl pH 7.4, 10 mM MgCl2, 0.2% Tween-20). 

RNA and protein were eluted by incubating at 50C in NLS elution buffer (20 mM Tris-HCl pH 

7.5, 10 mM EDTA, 2% N-lauroylsacrosine, 2.5 mM TCEP) supplemented with 100 mM DTT 

for 20 minutes. Samples were then run through an SDS-PAGE gel and transferred to a 

nitrocellulose membrane using the iBLOT transfer system, and a region 70 kDa above the 

molecular size of the protein of interest was isolated and treated with Proteinase K (NEB) 
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followed by buffer exchange and concentration with RNA Clean & Concentrator™-5 (Zymo). 

RNA sequencing libraries from these samples were constructed as previously described102,119-121. 

We used the following antibodies: V5 antibody (Bethyl, A190-120A), EZH2 (Active Motif, 

39933), SUZ12 (Active Motif, 39357), PTBP1 (Abcam, ab5642), and SAFA/hnRNPU (Santa 

Cruz, SC-32315). 

 

CLIP Library Construction. CLIP samples were treated as previously described102,120. Briefly, 

after immunoprecipitation and wash steps, the RNA was dephosphorylated (Fast AP) and cyclic 

phosphates removed (T4 PNK) and then ligated on Protein G beads with an RNA adapter 

containing a RT primer binding site. The ligated protein-bound RNA was then run through a 

denaturing PAGE gel and transferred to nitrocellulose membrane (as described above). The RNA 

was then extracted by proteinase K and purified using a spin column (Zymo). The RNA was 

reverse transcribed into single stranded cDNA. After RT, the RNA was degraded and a second 

adapter was ligated to the single stranded DNA. PCR amplification is achieved using primers 

that target the 3’ and 5’ adapters. Input total RNA libraries were constructed using the same steps 

as outlined above except that the dephosphorylation, cyclic phosphate removal, and ligation were 

performed in solution rather than on Protein-G beads.   

 

Read processing and Alignment. Sequencing reads were trimmed to remove adaptor sequences 

and any bases containing a quality scores <10 using Trimmomatic122. We filtered out all read-

pairs where either read was trimmed to <25 nucleotides. We excluded PCR duplicates using the 

FastUniq tool123. The remaining reads were then aligned to Ribosomal RNAs (rRNAs) using the 

Tagdust program124 with a database of 18S, 28S, 45S, 5S, 5.8S sequences. TagDust was chosen 
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because it allowed more permissive alignments to rRNA reads that contained mismatches and 

indels due to RT errors induced by rRNA post-transcriptional modifications. The remaining 

reads were then aligned to a combined genome reference containing the mouse (mm9) and 

human (hg19) genomes using STAR aligner125. Only reads that mapped uniquely in the genome 

and unambiguously to the human or mouse genomes were kept for further analysis.  

 

Gene Window Enrichment calculations. All human (hg19) and mouse (mm9) annotated genes 

(RefSeq, downloaded from UCSC Hg19 and MM9, respectively) were used as a reference set 

except for the genes encoding the 6 transfected proteins. In addition, we added all human 

lncRNAs as annotated by Genecode (release 26). For each gene, we enumerated 100 nucleotide 

windows that span across the exons and introns of each gene. For each window, we calculated 

the enrichment by computing the number of reads overlapping the window in the protein elution 

sample divided by the number of reads in the input sample. Because all windows overlapping a 

gene should have the same expression level in the input sample, we estimated the number of 

reads in the input as the maximum of either (i) the number of reads over the window or (ii) the 

median read count over all windows within the gene. This approach provides a conservative 

estimation of enrichment because it prevents windows from being scored as enriched if the input 

values over a given window are artificially low, while at the same time accounting for any non-

random issues that lead to increases in read counts over a given window (i.e. alignment artifacts 

leading to non-random assignment or pileups).  

 

We normalized this observed ratio by the expected number of reads in a window defined as the 

total number of reads in the protein elution sample divided by the number of windows covered in 
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the sample. This normalization estimates the expected read coverage for each window and 

accounts for the redistribution of reads that occur because of the fixed sequencing depth used and 

possible “drop out” of specific RNA regions during the enrichment process. The total number of 

reads in the protein elution or input samples was calculated by adding the total number of 

human-specific reads, mouse-specific reads, and ribosomal RNA reads. Nominal p-values were 

calculated for each window using a binomial test where k (number of successes) is defined as the 

number of reads in the protein elution samples within the window, N (number of trials) is the 

sum of the number of reads in the protein elution and input samples, and p (probability of 

success) is the expected number of reads per window in the elution divided by the sum of the 

expected number of reads per window in elution and input samples. (The expected number of 

reads is defined as the total number of reads divided by the number of windows). For plotting 

and reporting purposes, we considered all regions with a nominal binomial p-value< 10-6 as 

significant. However, the overall results reported are robust to the precise p-value cutoff used. 

 

Plotting and visualization. IGV plots for specific RNAs were generated by computing 

enrichments (as described above) across 100 nucleotide windows and the enrichment value was 

plotted at the midpoint of each window.  

 

Generation of SARS-CoV-2 RNA binding maps 

 

Cloning of expression constructs. SARS-CoV-2 protein constructs (with the exception of 
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Nsp11) were a gift from Fritz Roth (see Table S3 for Addgene information)101 and were LR-

cloned (Invitrogen Gateway Cloning, Thermo Fisher Scientific) into mammalian expression 

destination vector pCAG-Halo-TEV-DEST-V5-IRES-puroR. Note that following LR 

cloning, proteins were not V5-tagged because all entry clones contained stop codons. For 

NSP11, an entry clone was generated by BP cloning (Invitrogen Gateway Cloning, Thermo 

Fisher Scientific) a PCR amplicon (primers: 

ggGGACAAGTTTGTACAAAAAAGCAGGCTTTtcagctgatgcacaatcgtttttaaacgg and 

gGGGACCACTTTGTACAAGAAAGCTGGGTTttacaccgcaaacccgtttaaaaacgattg; template: 

pGBW-m4133457 a gift from Ginkgo Bioworks) into pDONR221. 

 

Expression and lysis. For each viral protein capture, we transfected 10 µg of these expression 

vectors into HEK293T cells grown on a 15cm dish using BioT transfection reagent (Bioland) 

according to manufacturer’s recommendations. 24-48 hours post-transfection, cells were washed 

once with PBS and then crosslinked on ice using 0.25 J cm−2
 (UV2.5k) of UV at 254 nm in a 

Spectrolinker UV Crosslinker. Cells were then scraped from culture dishes, washed once with 

PBS, pelleted by centrifugation at 1,000 X g for 5 min, and flash-frozen in liquid nitrogen for 

storage at –80C. We lysed batches of 5 million cells by completely resuspending frozen cell 

pellets in 1 mL of ice cold lysis buffer (50 mM Hepes, pH 7.4, 100 mM NaCl, 1% NP-40, 0.1% 

SDS, 0.5% Sodium Deoxycholate) supplemented with 1X Protease Inhibitor Cocktail (Promega), 

200 U of Ribolock (Thermo Fisher Scientific), 20 U Turbo DNase (Ambion), and 1X 

Manganese/Calcium Mix (0.5mM CaCl2, 2.5 mM MnCl2). Samples were incubated on ice for 10 

minutes to allow lysis to proceed. The lysates were then incubated at 37C for 10 minutes at 700 

rpm shaking on a Thermomixer (Eppendorf). Lysates were cleared by centrifugation at 15,000 X 
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g for 2 minutes. The supernatant was collected and kept on ice until bound to the HaloLink Resin 

(Promega). Of the 1mL lysis volume, 50uL was set aside for input, 20uL used for protein 

expression confirmation, and the rest for capture on HaloLink Resin as described below. 

 

Protein capture. We used 200 µL of 25% HaloLink Resin slurry (50 µL of HaloLink Resin total) 

per 5 million cells. Resin was washed three times with 2 mL of 1X PBS-T (1x PBS + 0.1% 

Triton X-100) and incubated in 1X Blocking Buffer (50 mM HEPES, pH 7.4, 100 µg/mL BSA) 

for 20 minutes at room temperature with continuous rotation. After the incubation, resin was 

washed three times with 1X PBS-T. The cleared lysate was mixed with 50µl of HaloLink Resin 

and incubated at 4C for 3-16 hrs with continuous rotation. The captured protein bound to resin 

was washed three times with lysis buffer at room temperature and then washed three times at 

90C for 3 minutes while shaking on a Thermomixer at 1200 rpm with each of the following 

buffers: 1X NLS buffer (1xPBS, 2% NLS, 10 mM EDTA), High Salt Buffer (50 mM HEPES, 

pH 7.4, 0.1% NP-40, 1M NaCl), 8M Urea Buffer (50 mM HEPES, pH 7.5, 0.1% NP-40, 8 M 

Urea), Tween buffer (50 mM HEPES, pH 7.4, 0.1% Tween 20) and TEV buffer (50 mM HEPES, 

pH 7.4, 1 mM EDTA, 0.1% NP-40). The extended incubation of the bound RNA with the wash 

buffers leads to chemical fragmentation of the RNA yielding sizes that are suitable for RNA 

library preparation and binding site resolution. Between each wash, samples were centrifuged at 

1,000 X g for 30 seconds and supernatant was removed. After the last wash, samples were 

centrifuged at 7,500 X g for 30 seconds and supernatant was discarded. For elution, the resin was 

resuspended in 100 µL of NLS Buffer and 10 µL of Proteinase K (NEB) and the sample was 

incubated at 50C for 30 minutes while shaking at 1200 rpm. Input samples were similarly 

digested. Capture reactions were transferred to microspin cups (Pierce, Thermo Fisher 
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Scientific), centrifuged at 2,000 X g for 30 seconds, and elutions used for RNA purification by 

RNA Clean and Concentrate-5 kits (Zymo, >17nt protocol). 

 

For qPCR analysis, cDNA was generated from purified RNA using Maxima H- reverse 

transcriptase (Thermo Fisher Scientific) following manufacturer’s recommendations. 

Amplification reactions were assembled with primer sets indicated in Table S2 and 

LightCycler. 480 SYBR Green I Master (Roche) following manufacturer’s protocols and read 

out in a Roche Lightcycler 480. 

 

Library construction. RNA-Seq libraries were constructed from purified RNA as previously 

described102. Briefly, after proteinase K elution, the RNA was dephosphorylated (Fast AP) and 

cyclic phosphates removed (T4 PNK) and then cleaned using Silane beads as previously 

described102. An RNA adapter containing a RT primer binding site was ligated to the 3’ end of 

the cleaned and end-repaired RNA. The ligated RNA was reverse transcribed (RT) into cDNA, 

the RNA was degraded using NaOH, and a second adapter was ligated to the single stranded 

cDNA. Library preparation was the same for input samples except that an initial chemical 

fragmentation step (90C for 2 min 30 s in 1X FastAP buffer) was included prior to FastAP 

treatment. This chemical fragmentation step was designed to be similar to the fragmentation 

conditions used for purified Halo bound samples. The DNA was amplified and Illumina 

sequencing adaptors were added by PCR using primers that are complementary to the 3’ and 5’ 

adapters. The molarity of PCR amplified libraries were measured by Agilent Tapestation High 

Sensitivity DNA screentapes and all samples were pooled at equal molarity. The pool was then 

purified and size selected on a 2% agarose gel and cut between 150- 700 nts. The final libraries 
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were measured by Agilent Bioanalyzer and Qubit high sensitivity DNA to determine the loading 

density of the final pooled sample. Pooled samples were paired-end sequenced on an Illumina 

HiSeq 2500 with read length 35 x 35nts. 

 

Sequence alignment and analysis. For Halo purifications and RNA binding mapping sequencing 

reads were aligned to a combined genome reference containing the sequences of structural RNAs 

(ribosomal RNAs, snRNAs, snoRNAs, 45S pre-rRNA) and annotated mRNAs (RefSeq hg38) 

using Bowtie2. To distinguish between the nascent pre-ribosomal RNA and mature 18S, 28S, 

and 5.8S rRNA, we separated each of the components of the 45S into separate sequence units for 

alignment (e.g. ITS, ETS). We excluded all low quality alignments (MAPQ < 2) from the 

analysis. For mRNA analysis, we removed PCR duplicates using the Picard MarkDuplicates 

function (https://broadinstitute.github.io/picard/). 

 

For each RNA, we enumerated 100 nucleotide windows across the entire RNA. For each 

window, we calculated the enrichment by computing the number of reads overlapping the 

window in the protein elution sample divided by the total number of reads within the protein 

elution sample. We normalized this ratio by the number of reads in the input sample divided by 

the total number of reads in the input sample. Because all windows overlapping a gene should 

have the same expression level in the input sample (which represents RNA expression), we 

estimated the number of reads in the input as the maximum of either (i) the number of reads over 

the window or (ii) the median read count over all windows within the gene. This approach 

provides a conservative estimation of enrichment because it prevents windows from being scored 

as enriched if the input values over a given window are artificially low, while at the same time 
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accounting for any non-random issues that lead to increases in read counts over a given window 

(e.g. fragmentation biases or alignment artifacts leading to non-random assignment or pileups). 

 

We calculated a multiple testing corrected p-value using a scan statistic, as previously 

described103-104. Briefly, n was defined as the number of reads in the protein elution plus the 

number of reads in the control sample. p was defined as the total number of reads in the protein 

elution sample divided by the sum of the protein elution sample total reads and total reads in the 

control sample. w was the size of the window used for the analysis (100 nucleotides). The scan 

statistic p-value was defined using the Poisson estimations based on standard distributions 

previously described105. 

 

Because RNA within input samples are fragmented differently than the protein elution samples, 

we noticed that the overall positional distribution of protein elution samples was distinct from 

Input distributions. Accordingly, we used the remaining protein elution samples (rather than 

Input) as controls for each protein. Specifically, this enabled us to test whether a given protein is 

enriched within a given window relative to all other viral and control proteins. Enrichments were 

computed as described above. These values are plotted in Figure 1 and Table 1. 

 

Plotting and visualization. Enrichment plots for specific RNAs were visualized in IGV107 and 

were generated by either: (i) computing the enrichment for each nucleotide as described above. 

In this case, the read count for each nucleotide was computed as the total number of reads that 

overlapped the nucleotide. (ii) Counting the number of RT stop sites at a given nucleotide. In this 

case, we compute the alignment start position of the second in pair read and computed a count of 
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each nucleotide. We normalized this count by the total number of reads in the sample to account 

for sequencing depth generated. We then normalized this ratio by the same ratio computed for 

the control sample (merge of all other protein samples) for each nucleotide. Heatmaps were 

generated using Morpheus (https://software.broadinstitute.org/morpheus/). All values were 

included if they contained a significant 100nt window with a p-value<0.001 (see above) and 

minimum enrichment of 3-fold above the control sample. 

 

Gene ontology analysis. The 66 non-N enriched mRNAs were analyzed against the Gene 

Ontology Biological Processes and Reactome gene sets using the Molecular Signatures Database 

(MSigDB)107. Significantly enriched gene sets with an FDR<0.05 were used. To ensure that 

significant gene sets were not being driven by the multiple ribosomal proteins or histone 

proteins, these analyses were also carried out excluding these proteins. 

 

Antibody Generation 

To generate the sheep polyclonal anti-NSP1, anti-NSP8, anti-NSP9, and anti-NSP16 antibodies 

utilized in this study, NSP1, NSP8, NSP9 and NSP16 (using QHD43415.1 as reference) were 

cloned into pGex (GST-tagged) and pMex (MBP-tagged), in order to produce GST- and MBP-

tagged respective NSP proteins. The N-terminal GST fusions were then used as antigens to 

immunize sheep. A bleed from the sheep was taken 7 days later, after which the MBP-tagged 

NSP proteins were used for serum affinity purification of the antibodies. To validate expression 

of the antibodies, Vero E6 cells were uninfected (mock) or infected with SARS-CoV-2 England- 

02 using a MOI of 0.1 or 1 (as indicated). At 72 hours post infection, the samples were 

harvested and the resulting whole cell lysates were probed by western blot with either sheep anti- 
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NSP or mouse anti-actin (Developmental Studies Hybridoma Bank JLA20, antibody registry ID: 

AB_528068) primary antibodies. 

 

Microscopy imaging 

Cells were seeded on gelatin/laminin and poly-D-lysine (Sigma) coated coverslips or chamber 

slides (Nunc, Thermo Fisher Scientific) and transfected with mammalian expression vectors for 

Halo-tagged viral proteins. After 16-24 hours, cells were incubated with TMR-HaloTag. 

Ligand (Promega) according to manufacturer’s instructions, washed with PBS and fixed in 4% 

Formaldehyde (Pierce, Thermo Fisher Scientific). Cells were subsequently incubated in DAPI 

for 10 min and washed with PBS. For chamber slides, samples were imaged directly. For 

coverslips, samples were washed with water and mounted with ProLong Gold + DAPI 

(Molecular Probes, Thermo Fisher Scientific). We acquired images on a Nikon TS100-F 

widefield microscope or a Zeiss LSM800 inverted confocal microscope, collecting in line-

scanning mode with 4x line averaging using a 63x oil objective. 

 

For staining of infected cells, cells were fixed and permeabilized in 8% formaldehyde 1% Triton, 

and subsequently labelled with primary antibodies raised in sheep to SARS-CoV-2 at 1/500 

dilution, followed by incubation with a rabbit anti-sheep Alexa 555 secondary antibody (Abcam, 

ab150182) at 1/1000 dilution and mounted with DAPI in the medium (Thermo Fisher Scientific, 

cat# P36395). Cells were imaged with a Zeiss LSM 880 confocal microscope, with 1 Airy unit 

pinhole for all primary antibody channel acquisitions and pixel size 0.07 µm x 0.07 µm. The 

objective lens used was a Zeiss Plan-Apochromatic 63x/1.4NA M27. 
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Structure modeling 

 

NSP1 homology model. The predicted model of SARS-CoV-2 NSP1 was generated using the 

transform-restrained Rosetta (trRosetta) algorithm, a deep learning-based modeling method 

based on the Rosetta energy minimization pipeline with additional distance and interaction 

restraints generated from co-evolution108. All figures were generated using 

Pymol (www.pymol.org). 

 

NSP1-ribosome model. The model of NSP1 bound to the ribosome was generated using 

Modeller version 9.24109. The C-terminal sequence of NSP1 (KHSSGVTRELMRELNGG) was 

modeled using the structure of SERBP1 bound to the ribosome (PDB ID: 6MTE, chain w) as a 

template. The default Modeller parameters were used to create an alignment of NSP1 and 

SERBP1 and to generate the model, and all atoms within 6. of SERBP1 were included in the 

model to define the neighboring environment. Twenty models were generated and the model 

with the lowest DOPE score was selected to visualize with Pymol110. 

 

Structural analysis of protein-RNA interactions. X-ray crystal structures and cryo-electron 

microscopy structures were obtained from the Protein Data Bank (www.rcsb.org)111 and 

visualized with PyMOL110 . For U1 and U2 structural analysis, we used a cryo-EM structure of 

the pre-catalytic human spliceosome (PDB ID: 6QX9). For 7SL structural analysis, we used an 

X-ray crystal structure of the human signal recognition particle (PDB ID: 1MFQ). To examine 

human SRP in the context of the ribosome, we used a cryo-EM structure of the mammalian SRP-

ribosome complex (PDB ID: 3JAJ). To analyze the ribosomal ES27 expansion segment, we 
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superimposed a cryo-EM structure of the expansion segment (PDB ID: 6SXO) onto the complete 

ribosome structure (PDB ID: 3JAJ) using the PyMOL command “super.” Finally, for NSP1–18S 

rRNA structural analysis, we used multiple structures of the ribosome, including structures of the 

pre-40S subunit (PDB ID: 6G5H), 48S late-stage initiation complex (PDB ID: 6YAL), 80S in 

complex with SERBP1 (PDB ID: 6MTE), and 80S in complex with Stm1 (PDB ID: 4V88). 

 

Recombinant NSP1 production 

NSP1 was cloned into a bacterial expression vector resulting in N-terminally tagged Halo-6xHis-

tagged Nsp1. The NSP1 sequence was PCR amplified from Addgene Nsp1 entry vector to add a 

N-terminal 6X HIS tag and restriction enzyme sites for digestion and ligation into N-terminal 

Halo bacterial expression vector. This construct was transformed into BL21 DE3 E. coli 

(Agilent), expanded to a 500mL liquid culture, and grown until OD600 reached 1.0. IPTG was 

added to a final concentration of 1mM. After 3 hours of IPTG induction, bacteria was 

centrifuged for 15 min at 5000 X g. Pellet was lysed with binding buffer (50mM HEPES, pH 7.5, 

20mM MgCl2, 600mM NaCl, 2mM TCEP, 10mM Imidazole, 2mM ATP, 1% Triton X-100) 

supplemented with ATP (2mM), protease inhibitor cocktail (Promega), Benzonase (Sigma) and 

Triton-X 100 (Sigma) using 5mL of lysis mix per gram of wet cell paste. Cell suspension was 

rocked for 20 min at room temperature and then centrifuged at 16,000 X g for 20 min at 4C. 

Supernatant was incubated with washed iMAC resin (Bio-Rad) and rocked for 20 min at room 

temperature. We loaded the resin-lysate mixture into an appropriately-sized column and washed 

with 5 column volumes of binding buffer (50mM HEPES, pH 7.5, 20mM MgCl2, 600mM NaCl, 

2mM TCEP, 10mM Imidazole, 2mM ATP, 1% Triton X-100) followed by 10 column volumes 

of wash buffer (50mM HEPES, pH 7.5, 600mM NaCl, 2mM TCEP, 20mM Imidazole, pH 8). 
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Recombinant NSP1 (rNSP1) was eluted with 5 column volumes of elution buffer by adding 1 

column volume at a time with column flow stopped, collecting eluate after each addition, and 

waiting 15 min between each elution buffer addition. We dialyzed these eluates with a 10mL 

Spectra-Por. Float-A-Lyzer. G2 (Spectrum Laboratories) into storage buffer (50mM HEPES, 

pH 7.5, 150mM NaCl, 10% glycerol) at 4C using 2 exchanges, one after 2 hours and then 

overnight. 

 

In vitro translation assays 

Pierce 1-Step Human Coupled IVT-DNA (Thermo Fisher Scientific) in vitro translation kit was 

used to measure rNsp1-dependent translation inhibition. Bovine Serum Albumin (BSA), and 

buffer only controls were used to control for the addition of excess protein or changes in buffer 

composition. To measure translation inhibition, 5µL in vitro translation reactions were 

assembled, scaled according to manufacturer’s recommendations. The included control plasmid 

pCFE-GFP was used to measure translational output of the reactions. GFP fluorescence was 

measured on a BioTek Cytation3 plate reader using emission filters for GFP fluorescence. 1.5µM 

stock dilutions of rNsp1 and BSA were made in storage buffer (50mM HEPES, pH 7.5.,150mM 

NaCl,10% glycerol). Subsequent 10 fold dilutions were made in storage buffer to span a 

concentration range of 1000 nM to 1 nM for each protein in the final reaction. 10 µL of the 

diluted protein solution was added to the 5µL translation reactions, and incubated for 5 minutes 

at room temperature prior to the addition of the GFP reporter plasmid. Duplicate reactions were 

made to measure variability for each condition. In addition, a buffer only control was included to 

measure the effect of dilution of the translation reaction by the storage buffer. After the 5 minute 

incubation, 50 ng of GFP reporter plasmid was added to each reaction and incubated at 30C for 
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4 hours prior to fluorescence detection. Two microliters from each reaction was measured in 

duplicate on a Biotek Cytation3 microplate reader using excitation and emission filters for GFP. 

Sample readings were blanked by subtracting values obtained from the buffer only control. 

Promega’s Rabbit Reticulocyte Lysate System was also used to assay translation inhibition. To 

measure translation inhibition, 10µL in vitro translation reactions were assembled, scaled 

according to manufacturer’s recommendations. For each translation reaction, either 10µL of 

recombinant protein storage buffer or rNSP1 was added, followed by 500ng of mRNA. After 4 

hours of incubation at 30C, luciferase was read out using the Bright-Glo luciferase assay 

(Promega) or GFP fluorescence was measured, both on a Biotek Cytation3 plate reader. 

 

In vivo translation assays 

We assayed translation in HEK293T cells transfected with mammalian expression vectors, 

mRNAs, or combinations of these. For mRNA transfections of fluorescence protein translation 

reporters (including unmodified, +SARS-CoV2 leader sequence, +SL1, +SL2-SL1, and +5nts), 

DNA templates for in vitro transcription were generated with sequences appended to the 5’ end 

of GFP and mCherry (see Tables S4 and S5 for primers and templates, respectively) and 

transcribed using HiScribe™ T7 ARCA mRNA Kit with tailing (New England Biolabs). For 

Nsp1 mRNA transfection, indicated primers from Table S4 were used to add restriction enzyme 

sites for cloning into pT7CFE1-CHis backbone provided in the Pierce Human 1-step Coupled 

IVT Kit and HiScribe™ T7 High Yield RNA Synthesis Kit (New England Biolabs) was used for 

in vitro transcription. 
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Using BioT transfection reagent, mammalian expression vectors for a GFP reporter and for 

SARS-CoV-2 viral proteins were transfected into HEK293T cells seeded for imaging, as 

described above, or seeded in 24 well plate format. To transfect only mRNA, Lipofectamine 

messengerMax (Invitrogen, Thermo Fisher Scientific) or TransIT-mRNA Transfection Kit 

(Mirus Bio) was used. For transfections that included both mRNA and plasmid, Lipofectamine 

2000 (Invitrogen, Thermo Fisher Scientific) was used. 

 

To measure fluorescence at 24 hours (leader-mCherry, no leader-GFP) or 48 hours (leader GFP, 

no-leader mCherry) post-transfection, cells were trypsinized and processed for flow cytometry or 

transferred into black 96 well plates (Nunc) for fluorescence detection on a Biotek Cytation 3 

plate reader. For flow cytometry, lifted cells were washed with CBH buffer (10mM HEPES, pH 

7.4, 0.5% BSA, Hank’s Balanced Salt Solution (GIBCO, Thermo Fisher Scientific)), 

resuspended with a viability dye (7-AAD or DAPI) and analyzed on a MACSQuant Vyb. 

Acquisition files were analyzed with FlowJo analysis software. 

 

SUnSET assay 

To assay global protein translation, a SUnSET assay was performed as previously described77. 

Mammalian expression vectors were exchanged for versions that did not confer puromycin 

resistance and thus, for these experiments, LR reactions were carried out with destination vector 

pB-Halo-DEST-IRES-NGFR. Resulting expression vectors drive protein expression by a dox-

inducible promoter, contain the rtTA needed for dox induction, and produce an N-terminally-

tagged Halo fusion protein. Generation of this destination vector made use of the pB-TAG-ERN 

backbone (a gift from Knut Woltjen; Addgene plasmid # 80476; http://n2t.net/addgene:80476 ; 
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RRID:Addgene_80476)112 and the NGFR (Truncated Human Nerve Growth Factor Receptor) 

coding sequence from Addgene plasmid #27489 (a gift from Warren Pear; 

http://n2t.net/addgene:27489 ; RRID:Addgene_27489)88. 

 

We transfected these mammalian expression vectors for NSP1 and GFP into HEK293T using 

BioT transfection reagent. After 3 hours, doxycycline (Sigma) was added to a final concentration 

of 2µg/mL. After 24 hours, cells were incubated with puromycin (10µg/mL) for 10 min, then 

washed with fresh media, and harvested with cold PBS. Pelleted cells were lysed for 10 min on 

ice (mixing after 5 min) with 100uL RIPA buffer supplemented with protease inhibitor cocktail 

(Promega). Insoluble debris was pelleted by centrifuging at 12,500 X g for 2.5 minutes and 

supernatant was run on a Bolt™ 4-12% Bis-Tris Plus Gel (Thermo Fisher Scientific). Proteins 

were then transferred to nitrocellulose using the iBlot transfer system (Thermo Fisher Scientific) 

and Western blotting carried out using an anti-puro antibody (clone 12D10, EMD Millipore). 

 

SUnSET in SARS-CoV-2 infected cells 

SUnSET in SARS-CoV-2 infection was performed as above with the following modifications. 

Cells were infected or not (mock) with SARS-CoV-2, and 48 hpi cells were incubated with 

puromycin (10µg/mL) for 20 min. Media was aspirated and cells lysed directly in 2X Laemmli’s 

buffer (Biorad), heated at 95C for ten minutes and run on a 4-12% NuPAGE Gel (Thermo 

Fisher Scientific). Proteins were transferred to nitrocellulose using the iBlot transfer system and 

probed as above. 
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Membrane protein reporter experiments 

To assay SRP-dependent membrane protein transport to the cell surface, we monitored surface 

arrival of exogenously expressed Neuronal Growth Factor Receptor (NGFR) by flow cytometry 

in the presence of NSPs. Mammalian expression vectors were exchanged for versions that 

contained an IRES-NGFR to co-express a membrane reporter and thus, for these experiments, 

LR reactions were carried out with destination vector pB-6xHis-GFP-DEST-IRES-NGFR. 

Resulting expression vectors drive protein expression by a dox-inducible promoter, contain the 

rtTA needed for dox induction, and produce an N-terminally-tagged His-GFP fusion protein and 

a co-expressed NGFR. The GFP here is an enhanced GFP containing an amino acid substitution 

(A205K) to generate a monomeric variant based on previous literature113. 

 

We transfected these mammalian expression vectors for NSP8, NSP9, NSP1DRC mutant and 

EED into HEK293T using BioT transfection reagent, induced expression with 2µg/ml 

doxycycline 24 hours after transfection, and assessed surface arrival of NGFR 24 hours after 

induction. To carry out flow cytometric analysis, cells were lifted with 1mM EDTA, washed 

once with PBS and stained with PE-labeled anti-NGFR antibody (Biolegend; 1/600 dilution in 

PBS, 0.5%BSA) and analyzed on a MACSQuant Vyb. Fluorescence intensity measurements 

were taken for GFP and PE and analyzed using FloJo analysis software. 

 

siRNA experiments for SRP19 and SRP54 

To knockdown SRP19 and SRP54, siRNAs targeting each (Dharmacon cat# L-019729-01-0005 

and L-005122-01-0005, respectively) were transfected into HEK293T cells using Lipofectamine 

RNAiMAX (Invitrogen) according to manufacturer’s protocols. To validate knockdown, 
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transfected cells were assayed by qPCR using primer sets (Table S2) to amplify each target as 

well as normalizer CALM3. Transfections were carried out 48 hours prior to assaying cells, 

either by qPCR, membrane reporter, or membrane SUnSET (see below) experiments. 

 

Leader-NGFR measurements 

Calu3 and Vero cells were transfected with mRNAs encoding leader-NGFR and leader-GFP 

using TransIT-mRNA Transfection Kit (Mirus) and subsequently infected with SARS-CoV-2 at 

an MOI of 0.1. After 24 hours, cells were washed with PBS, trypsinized and fixed in 4% PFA for 

20 minutes before staining with biotinylated anti-NGFR (BioLegend) and anti-SARS-Cov-2 

Spike Antibody (Sino) and subsequently stained with PE-labeled anti-Rabbit (Thermo, P- 

2771MP) and PacBlue-labeled streptavidin (Thermo, S1222). FACS was performed on a 

MACSquant Flow cytometer and analyzed using FloJo analysis software; FACS distributions 

were compared using a 2-tailed Kolmogorov-Smirnov test. For these experiments, RNA was 

transcribed from a PCR template (see Table S4) using the HiScribe T7 ARCA mRNA kit (with 

tailing). 

 

Membrane SUnSET assay 

To assay transport to the cell surface of all plasma membrane proteins, the SUnSET assay was 

adapted to puro-label surface proteins as previously described77, and read out by flow cytometry. 

Briefly, cells were incubated with puromycin as described above, followed by two quick washes 

and a chase with fresh complete media for 50 min. Cells were lifted with 1mM EDTA as 

described above and stained with an anti-puro antibody (clone 12D10, EMD Millipore) 

conjugated to Alexa-647. For these experiments, NSP was expressed from the same vector 
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described above for membrane reporter assays. Fluorescence intensity measurements were taken 

for GFP and Alexa-647 on a MACSquant Flow cytometer and analyzed using FloJo analysis 

software; distributions were compared using a 2-tailed Kolmogov-Smirnov. 

 

Splicing assessment experiments 

 

IRF7-GFP splicing reporter. To assess splicing efficiency, exons 5-6 of mouse IRF7 

(ENMUST00000026571.10) containing its endogenous intron were fused upstream of 2A self-

cleaving peptide and eGFP and cloned into an MSCV vector (PIG, Addgene)118. This construct 

was co-transfected into HEK293Ts with NSP16 or GFP and measured 24 hours after transfection 

by flow cytometry (Macsquant) and analyzed using FloJo analysis software. 

 

5EU labeling of RNA. SARS-Cov2 or mock infected Calu3 cells and Nsp16- or GAPDH-

expressing HEK293Ts were labeled with 5-Ethynyl-uridine (5EU; Jena Bioscience) by adding 

5EU containing media to cells for 20 min at a final concentration of 1mM, as previously 

described114. After the pulse label, cells were washed with warm PBS and lysed in RLT buffer 

(Qiagen). Total RNA was isolated from cells using manufacturer’s protocols for Qiashredder and 

RNeasy RNA isolation (both Qiagen), followed by Turbo DNase treatment (Ambion, Thermo 

Scientific), and Zymo RNA Clean and Concentrate. For each sample, 2µg of RNA was used for 

ligation of a unique barcoded RNA adaptor, following the relevant steps in the protocol 

described above in Library Construction of RNA-seq libraries. Samples were then pooled before 

proceeding to biotinylation steps. 
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Biotinylation of 5EU labeled RNA. To biotinylate 5EU-labeled RNA, samples were first mixed, 

in order, with water, HEPES (100 mM), biotin picolyl azide (1 mM; Click Chemistry Tools) and 

Ribolock RNase inhibitor, then added to premixed CuSO4 (2 mM) and THPTA (10mM), and 

finally added to freshly prepared sodium ascorbate (12mM), as previously described115. The click 

reaction was incubated for 1 hour at 25C with 1000rpm shaking on an Eppendorf thermomixer 

followed by RNA purification using >17nt protocol for Zymo Clean and Concentrate. 

 

Sequential capture of biotinylated RNA. We completed three rounds of sequential capture on 

streptavidin beads to isolate nascent transcripts (see Figure 9B). To capture biotinylated RNA, 

MyOne Streptavidin C1 Dynabeads (ThermoFisher Scientific) were first washed three times in 

Urea buffer (10mM HEPES, pH 7.5, 10mM EDTA, 0.5M LiCl, 0.5% Triton X-100, 0.2% SDS, 

0.1% sodium deoxycholate, 2.5mM TCEP, 4M Urea) followed by three additional washes in M2 

buffer (20mM Tris, pH 7.5, 50mM NaCl, 0.2% Triton X-100, 0.2% sodium deoxycholate, 0.2% 

NP-40). Washed beads were mixed with 3 parts 4M Urea buffer and 1 part biotinylated RNA and 

incubated for 60 min with 900rpm thermomixer shaking at room temperature. 

 

After magnetic separation, beads were washed 3 times with M2 buffer followed by 3 washes 

with Urea buffer at 37C at 750rpm for 5 min. RNA was eluted from beads in 2 sequential 

elutions by incubating with elution buffer (5.7M guanidine thiocyanate , 1% N-lauroylsarcosine; 

both Sigma) at 65C for 2 minutes, repeating with more elution buffer for a second elution. 

The elutions were pooled, diluted with Urea buffer, incubated with pre-washed streptavidin 

beads, washed, and eluted for 2 additional rounds exactly as described above for a total of 3 
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sequential captures. Final elutions were pooled, cleaned with Zymo RNA Clean and Concentrate 

following manufacturer’s protocols, and carried through RNA-seq library preparation as 

described above starting with the reverse transcription step. 

 

Splicing analysis of 5EU data. Sequenced reads were demultiplexed according to barcoded 

RNA adaptor sequences ligated to each respective sample. Trimmomatic 

(https://github.com/timflutre/trimmomatic ) was used to remove any contaminating Illumina 

primer sequences in the reads and low quality reads. Demultiplexed and trimmed files were then 

aligned to a hg19 reference genome using the spliceaware STAR aligner 

(https://github.com/alexdobin/STAR). Alignments were then deduplicated 

for PCR duplicates using PICARD MarkDuplicates (https://broadinstitute.github.io/picard/). 

 

Aligned read-fragments were defined as read1 and read2 contained within a paired-end read 

fragment along with the insert between these two reads. We defined a set of high-quality 

represented isoforms per gene using the APPRIS database116. All read fragments that spanned 

any 3’ splice site within an isoform of one of these genes was retained. For each 3’ splice site 

spanning fragment, we classified the read-fragment as a spliced fragment if it spanned an exon-

exon junction (e.g. aligned entirely within 2 distinct exons) or an unspliced fragment if it 

spanned an intron-exon junction (e.g. one of the reads was contained, or partially contained, 

within the intron). For each isoform, we computed an unspliced ratio by counting the total 

number of reads that were classified as unspliced divided by the total number of read fragments 

spanning 3’ splice sites within that gene. To ensure that the splicing ratio that we measured is a 

reliable metric and not inflated/deflated due to low read counts, we only included genes that 
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contained at least 10 read-fragments in each sample and where the total number of reads in the 

control and sample conditions (when merged together) contained a significant number of reads to 

reliably measure a difference between the two groups as measured by a hypergeometric test 

(p<0.01). 

 

Because different genes contain different baseline splicing ratios due to gene length and 

coverage, we computed a change in the splicing ratio for each gene independently. To do this, 

we subtracted the unspliced ratio for each sample from the average unspliced ratio for that gene 

in all of the control samples. We plotted the overall distribution of these differences in splicing 

ratios as violin plots for each sample. If there is no change in splicing ratio, we would expect that 

some genes would have higher splicing ratios and others lower splicing ratios but that the overall 

distribution would be centered around 0. 

 

Total RNA analysis of infected samples. Total RNA-Seq libraries were generated from the same 

mock infected and SARS-CoV-2 virally infected Calu3 samples treated with 5EU. Prior to 5EU 

purification, total RNA was taken and an RNA-Seq library constructed as described above using 

barcoded RNA adapters. Cytoplasmic ribosomal RNAs (18S and 28S) were depleted using 

NEBNext ribosomal RNA depletion kit (NEB E6310L) per manufacturers recommendations. 

Demultiplexed reads were aligned using Bowtie2 (http://bowtie-

bio.sourceforge.net/bowtie2/index.shtml) to custom genomes encoding classical noncoding 

RNAs (ncRNAs) or human messenger RNAs (mRNAs). Expression levels were computed for 

each mRNA by counting the total number of sequencing reads aligned to the mature mRNA. To 

normalize across the different libraries, we computed the read counts for each sample that align 
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to non-spliced structural non-coding RNAs – excluding rRNA but including snRNAs, 7SL, 7SK, 

etc. We then divided each mRNA count by the sum of all ncRNA counts. This normalized value 

for each gene per sample was then converted into a fold-change by dividing this normalized 

value to the mean value for both mock infected samples. The fold change of each gene relative to 

mock was plotted across all mRNAs as a violin plot. 

 

Interferon stimulation experiments 

HEK-Blue™ ISG cells were seeded in 96 well plates, transfected with Nsp1 mammalian 

expression vectors using BioT and stimulated with 50 ng/ml human IFN-B (R&D Systems). 

Supernatants were assayed for alkaline phosphatase as per manufacturer instructions using 

QUANTI-Blue reagent (Invivogen). 

 

HEK-293T cells were seeded in 6 well plates, transfected with either Halo-tagged GapdH, Nsp1, 

NSP8 and NSP9 in combination, or NSP16 mammalian expression vectors using BioT. 24 hours 

later, the media was replaced with media containing 50 ng/ml human IFN-b (R&D Systems). 

Expression was assayed using live cell Halo-imaging. Halo-TMR ligand was diluted 1:200 in 

media and added to the culture for a 1:1000 final dilution. Samples were incubated 30 minutes at 

37C, 5% CO2 and then the media was aspirated. Wells were rinsed twice with PBS, then media 

was added back to the wells. Samples were incubated 30 minutes at 37C, 5% CO2 to allow 

uncoupled ligand to diffuse out of the cells. Media was then aspirated and replaced, and cells 

were imaged by widefield fluorescence microscopy. Cultures were ultimately harvested for RNA 

24 hours later, or 48 hours post transfection. 
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A549s were seeded in 6 well plates, transfected with NSP1 mammalian expression vectors using 

Lipofectamine 2000 and stimulated with 1 µg/ml HMW poly(I:C) (Invivogen) 24h after 

transfection. Supernatant was assayed for secreted IFN-b by ELISA (Human IFN Beta ELISA, 

High Sensitivity, PBL) 24 hours after stimulation, and RNA from cells was purified and assessed 

for ISG gene expression as normalized to GAPDH expression (SYBR Green Master Mix, Bio- 

Rad). Primers used for qPCR are listed in Table S2. 

 

5’ viral leader experiments 

Sars-CoV-2 Leader sequence was appended to the 5’ end of GFP and mCherry reporter 

templates via PCR. PCR templates were then transcribed using HiScribe T7 ARCA mRNA kit 

(with tailing). Leader mutants, including SL1 only, SL1/SL2 swap, and +5nts mutants were 

likewise appended to the 5’ end of fluorescent reporter templates via PCR and transcribed using 

Hiscribe T7 ARCA kit. mRNA reporters were transfected in HEK-293T cells with 

Lipofectamine MessengerMax. To measure fluorescence of mCherry and GFP reporters, 24 

hours post transfection cells were either lifted with PBS and transferred into black 96 well plates 

for fluorescence readout on a Biotek Cytation 3 or trypsinized and processed for flow cytometry. 

Alignments and phylogeny reconstructions 

 

Alignments were performed with MAFFTT (v7.407) using a local alignment (linsi --ep 0.123 -- 

reorder [in.fasta] > [out.aln.fasta]). Resulting alignments were visualized with Geneious. 

Pairwise distance matrices were visualized with Morpheus. Phylogeny reconstructions were 

performed with IQTREE multicore (v1.6.12), model selection with 1000 bootstrap 

pseudoreplicates (iqtree -s [out.aln.fasta] -m TEST -bb 1000 -nt 4 -o [outgroup]). Phylogenies 
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were visualized with FigTree. 

 
Table S1: RNA binding map of SARS-CoV-2 proteins, Related to Figure 4B can be found 
online117 

 
Table S2: qPCR primers 
 
Target Forward Primer Reverse Primer 
GAPDH ATTCCACCCATGGCAAATTC TGGGATTTCCATTGATGACAAG 
IFNbeta TTCAGTGTCAGAAGCTCCTGTGG CTGCTTAATCTCCTCAGGGATGTCA 
ISG54 CTTCCCAGTCTATCATCAACCTT CCGTCGCTTCTAGCTATGTATCT 
18S_1 CATTCGAACGTCTGCCCTAT ACCCTGATTCCCCGTCAC 
18S_2 ATTGGAGGGCAAGTCTGGT CCAAGATCCAACTACGAGCTTT 
LBR AGTATAGCCTTCGTCCAAGAAGA CAAAGGTTCTCACTGCCAGTT 
CALM3 GACCATTGACTTCCCGGAGTT GATGTAGCCATTCCCATCCTTG 
SRP19 GCCGACCAGGACAGGTTTATT TCTCTGTAGCTGTAGGATTTTCAAC 
SRP54 TGGATTGCAAGGGAGTGGTAA GGTCAAAAGCCCCTGCTCT 

 
 
Table S3: Addgene ORFs, can be found online117. 
 
Table S4: Primers used in mRNA generation. 

mRNA Forward Primer Reverse Primer Template 

- Leader 
mCherr

y 

TAATACGACTCACTATAGGCTAGCAC
C 
ATGGTGA 

CTACTACTACTTGT
A 
CAGCTCGT 

Leader 
mCherry 
Gblock 

- Leader 
GFP 

TAATACGACTCACTATAGGCTAGCAC
C 
ATGGCCCACATCGTGATGGT 

CTTGTACAGCTCGT
C 
CATGCCGA 

Spytag-
eGFP 
cDNA 

+ 
Leader 
mCherr

y 

TAATACGACTCACTATAGATTAAAG
GT 
TTATACCTTCCCAGG 

CTACTACTACTTGT
A 
CAGCTCGT 

Leader 
mCherry 
Gblock 

+ 
Leader 
GFP 

TAATACGACTCACTATAGATTAAAG
GT 
TTATACCTTCCCAGGTAACAAACCAA
C 

CTTGTACAGCTCGT
C 

Spytag-
eGFP 
cDNA 



 

 

76 

CAACTTTCGATCTCTTGTAGATCGCA
CC 
ATGGCCCACATCGTGATG 

CATGCCGA 

+5nt-
SL1 

mCherr
y 

TAATACGACTCACTATAGAATTATTA
A 
AGGTTTATACCTTCCCAGGTAACAAA
C 
CAACCAACTTTCGATCTCTTGTAGAT
CG 
GCTAGCACCATGgtga 

CTACTACTACTTGT
A 
CAGCTCGT 

Leader 
mCherry 
Gblock 

+SL1 
mCherr

y 

TAATACGACTCACTATAGATTAAAG
GT 
TTATACCTTCCCAGGTAACAAACCGG
C 
TAGCACCATGgtga 

CTACTACTACTTGT
A 
CAGCTCGT 

Leader 
mCherry 
Gblock 

+SL2-
SL1 

mCherr
y 

TAATACGACTCACTATAGATTAAAG
AT 
CTCTTGTAGATCAACCAACTTTCGGT
TT 
ATACCTTCCCAGGTAACAAACCGGCT
A 
GCACCATGgtga 

CTACTACTACTTGT
A 
CAGCTCGT 

Leader 
mCherry 
Gblock 

Nsp1 AAAAGGATCCATGGAGAGCCTGGTG

CC 

AAAACTCGAGTTAG
C 
CACCGTTCAGTTCA

C 

Nsp1 
mammalia

n 
expression 

vector 

+ 
Leader 
NGFR 

ATTAAAGGTTTATACCTTCCCAGGTA
A 
CAAACCGGCTAGCACCATGGCCACA
AC 
CATGGA 

TTATCGATAAGCTT
G 
GCTGCAG 

pB-Halo-
eGFPIRES

- 
NGFR 

mammalia
n 

expression 
vector 
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Table S5: Templates used in mRNA generation, Related to STAR Methods. 

Leader 
mCherry 
Gblock 

TCAGTCGCGATCGAACCCTGGAATTCATTAAAGGTTTATACCTTCC 
CAGGTAACAAACCAACCAACTTTCGATCTCTTGTAGATCTGTTCTC 
TAAACGAACGGCTAGCACCATGGTGAGCAAGGGCGAGGAGGATA 
ACATGGCCATCATCAAGGAGTTCATGCGCTTCAAGGTGCACATGG 
AGGGCTCCGTGAACGGCCACGAGTTCGAGATCGAGGGCGAGGGC 
GAGGGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGT 
GACCAAGGGTGGCCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCT 
CAGTTCATGTACGGCTCCAAGGCCTACGTGAAGCACCCCGCCGAC 
ATCCCCGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGG 
GAGCGCGTGATGAACTTCGAGGACGGCGGCGTGGTGACCGTGACC 
CAGGACTCCTCCCTGCAGGACGGCGAGTTCATCTACAAGGTGAAG 
CTGCGCGGCACCAACTTCCCCTCCGACGGCCCCGTAATGCAGAAG 
AAGACCATGGGCTGGGAGGCCTCCTCCGAGCGGATGTACCCCGAG 
GACGGCGCCCTGAAGGGCGAGATCAAGCAGAGGCTGAAGCTGAA 
GGACGGCGGCCACTACGACGCTGAGGTCAAGACCACCTACAAGG 
CCAAGAAGCCCGTGCAGCTGCCCGGCGCCTACAACGTCAACATCA 
AGTTGGACATCACCTCCCACAACGAGGACTACACCATCGTGGAAC 
AGTACGAACGCGCCGAGGGCCGCCACTCCACCGGCGGCATGGAC 
GAGCTGTACAAGTAGTAGTAGGCGGCCGCATAAAAATTAAAGA 

Spytag-eGFP 
cDNA 

AGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTAC 
GCCAAGCTTATACGAAATTAATACGACTCACTATAGGGAGACCAC 
AACGGTTTCCCGAATTGTGAGCGGATAACAATAGAAATAATTTTG 
TTTAACTTTAAGAAGGAGATATATCCATGGCCCACATCGTGATGG 
TGGACGCCTACAAGCCTACTAAGGGCAGCGGCTCTAGAATGGCCA 
CAACCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTG 
CCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTC 
AGCGTGTCTGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCT 
GACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTG 
GCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAG 
CCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGC 
CATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGA 
CGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCG 
ACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGG 
AGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAAC 
AGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATC 
AAGGCGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGT 
GCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGG 
CCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGC 
CCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCT 
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GGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCT 
GTACAAGGGATTCGGATCCGAACAAAAACTCATCTCAGAAGAGG 
ATCTGGCGGCCGCTGGATCTGGTGGCCAGAAGCAAGCTGAAGAG 
GCGGCAGCGAAAGCGGCGGCAGATGCTAAAGCGAAGGCCGAAGC 
AGATGCTAAAGCTGCGGAAGAAGCAGCGAAGAAAGCGGCTGCAG 
ACGCAAAGAAAAAAGCAGAAGCAGAAGCCGCCAAAGCCGCAGCC 
GAAGCGCAGAAAAAAGCCGAGGCAGCCGCTGCGGCACTGAAGAA 
GAAAGCGGAAGCGGCAGAAGCAGCTGCAGCTGAAGCAAGAAAGA 
AAGCGGCAACTGAAACCGCACACCTTACTGGTGTGCGGGGCATCC 
CGACATGGACGTTGAATTATGAATTCACTGGCCGTCGTTTTACA 
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8.0 FIGURES 

Figure 1 
 

 
 

Figure 1. A human and mouse mixing experiment defines RNA-protein interactions that 

occur in solution after cell lysis. (A) A schematic overview of the human and mouse mixing 

experiment. An epitope-tagged protein is expressed in human cells (+tag) and UV-crosslinked, 

lysed, and mixed with UV-crosslinked cell lysate from mouse cells not expressing the tagged 

protein (-tag). The tagged protein is specifically enriched using an antibody against the epitope 

tag and its associated RNAs are sequenced and aligned to the human and mouse transcriptomes 

to quantify the amount of signal associated with human RNAs and mouse RNAs, respectively. 
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(B) Scatter plot of RNA abundance (log scale, x-axis) compared to CLIP enrichment (log scale, 

y-axis) for all the PRC2 components (EZH2,SUZ12,EED) components across all 100-nucleotide 

windows of all annotated human RNAs (+tag, left) and mouse RNAs (-tag, right). Windows with 

significant enrichment (binomial p<10-6) are shown in red.  (C) CLIP enrichments for each 

PRC2 protein in the +tag (red) or –tag (blue) samples are plotted across the human lncRNA 

MALAT1. (D) CLIP enrichment profiles for PRC2 components captured using endogenous 

antibodies in untagged cells plotted across human XIST. (E) CLIP enrichment profiles for V5-

tagged PRC2 components across human XIST from +tag (red) or –tag (blue) samples.    
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Figure 2 
 

 

Figure 2. CLAP removes RNA-protein interactions that do not occur in vivo. (A) A 

schematic illustrating several potential ways in which RNA-protein interactions that form in 

solution may still be detected by CLIP. (B) A schematic overview comparing the CLIP (left) and 

CLAP (right) methods. A protein is tagged with both a HaloTag and V5 epitope and expressed in 

human cells (+tag) which are then mixed with mouse cells not expressing the tagged protein (-

tag). After the human and mouse lysates are mixed, the sample is split and CLIP and CLAP are 

performed on each. CLIP is performed with an anti-V5 antibody followed by standard CLIP 

washes, gel electrophoresis, transfer to a nitrocellulose membrane, and size selected prior to 
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RNA sequencing. CLAP covalently binds the protein to a Halo capture resin and washes in fully 

denaturing conditions prior to RNA sequencing. (C) Cumulative Distribution Function (CDF) 

plots for all 100 nucleotide windows across -tag RNAs comparing CLIP and CLAP data for the 

same proteins. (D) Scatter plot of RNA abundance compared to the CLIP enrichment (left) or 

CLAP enrichment (right) for all the PRC2 (EZH2,SUZ12,EED) proteins across all 100-

nucleotide windows of annotated mouse RNAs (-tag). Windows with significant enrichment 

(binomial p<10-6) are shown in red. 
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Figure 3 
 

 

Figure 3. CLAP accurately identifies RNA-protein interactions that occur in vivo for well-

defined RNA binding proteins. (A) Read distribution profiles are shown for three distinct RNA 

binding proteins (FMR1, hnRNP C, and SRSF9) as well as the distribution of features in input. 

(B) Examples of CLAP enrichments are plotted for hnRNPH1 and hnRNPC over an intronic 

region of TOP2B gene (top). FMR1, IGF2BP1, and SRSF9 CLAP enrichment profiles over the 

entire length of ENAH gene are shown. (bottom) Exons are denoted by boxes and introns by 

connecting lines in the schematic. (C) Examples of CLIP (top) and CLAP (bottom) enrichments 

are plotted for PTBP1 over intronic region of ITGAD (+tag) human pre-mRNA. The locations of 

the corresponding PTBP1 recognition motif (blue boxes) are shown. Examples of CLIP (top) and 
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CLAP (bottom) enrichments are plotted for SAF-A over pre-mRNA of SESN2 (+tag). Exons are 

denoted by boxes and introns by connecting lines in the schematic. (D) A scatter plot for cells 

co-expressing GFP-λN and MBP-BoxB RNA. All 100 nucleotide windows from the GFP-λN 

CLAP experiment show that most windows are depleted, except for a few significant windows 

(red) that correspond to a co-expressed MBP-BoxB RNA control for which λN has known 

binding affinity. (E) Distribution of reads (gray) and crosslinked induced truncations (red) are 

plotted for CLAP captures of GFP-λN in cells expressing MBP-BoxB.  
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Figure 4 

 

Figure 4. Global RNA binding maps of SARS-CoV-2 proteins. (A) Schematic of our 

approach. (B) Enrichment heatmap of each SARS-CoV-2 protein (rows) by significantly 

enriched 100 nucleotide RNA bins (columns, p-value<0.001 and enrichment > 3-fold, Methods). 

Shared colored bars indicate multiple bins within the same mRNA. For spacing reasons, the 82 

mRNAs bound by N-protein are displayed separately. (C) Examples of sequencing reads over 

specific mRNAs for viral proteins (red) relative to input RNA coverage (gray) are shown. 

Coding regions (thick lines) and untranslated regions (thin lines) are shown for each mRNA. See 

also Table S1. 
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Figure 5 
 

Figure 5. Global RNA binding maps of SARS-CoV-2 proteins, Supplementary Material 

Related to Figure 4. (A) Protein expression gels of Halo-tagged SARS-CoV-2 proteins. 

Expression is visualized via AlexaFluor-660 conjugated Halo-ligand. (B) Example of eCLIP 
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(top) and Halo (bottom) enrichments are plotted for PTBP1 over intronic regions of ITGAD 

mRNA. The location of the corresponding PTBP1 recognition motif (blue boxes) are shown. (C) 

Density scatter plot of the enrichment levels of PTBP1 over all human RNA regions as measured 

by eCLIP (x-axis) compared to the enrichment levels as measured by Halo (y-axis) for all RNAs 

identified as significantly enriched by eCLIP. (D) Cartoon illustrating protein-adduct mediated 

reverse transcriptase read stops at binding motifs (top). PTBP1 crosslink-induced truncation 

frequency relative to known PTBP1 motif (HYUUUYU, shown in red). (E) Scatter plot of RNA 

abundance (log scale, x-axis) compared to Halo enrichment (log scale, y-axis) for the GAPDH 

protein across all 100-nucleotide windows of all annotated human RNAs (exon and introns) are 

plotted. Windows with significant enrichment are shown in red. (F) Representative tracks 

illustrating different mRNA binding patterns in Halo captures of NSP12 (red), NPS9 (blue), 

NSP15 (black), and N-protein (blue). Input tracks are presented for each mRNA (gray). 
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Figure 6 

 

Figure 6. NSP16 binds to U1 and U2 at their mRNA recognition sites. (A) NSP16 enrichment 

of reverse transcription stop positions across each nucleotide of U1 (red) compared to a control 

protein (GAPDH - black). Red box (below the x-axis) represents most enriched nucleotide 

positions (U1:9-13 nts). Gray shaded box (overlay) outlines the position of the splice site 

recognition sequence. (B) Left: Structure of the pre-catalytic human spliceosome 

(PDB:6QX9)126 highlighting the location of NSP16 binding site (red spheres) relative to U1 

(yellow ribbon) and mRNA (purple ribbon). Right: Schematic of the structure. (C) Enrichment 

across each nucleotide of U2 for NSP16 (red) and GAPDH (black). Red box demarcates most 
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enriched nucleotide positions (U2:27-34 nts). Gray shaded box outlines the location of the 

branchpoint recognition sequence. (D) Structure of the pre-catalytic human spliceosome 

(PDB:6QX9)126 displaying NSP16 binding site (red spheres), U2 (orange), and mRNA (purple). 

(E) Mock (top) or SARS-CoV-2 infected (bottom) Vero E6 cells immunostained with a 

polyclonal antibody to NSP16 (left) or NSP1 (right). Imaris 3D reconstruction of DAPI (nucleus) 

and NSP16 or NSP1 signal are shown for each protein. Signal contained within the 3D nuclear 

volume (blue) is shown in yellow and cytoplasmic signal in purple. Size bars are 3µm. (F) 

Model: NSP16 binding to U1/U2 can impact mRNA recognition during splicing. 
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Figure 7 

 
 
Figure 7. NSP16 binds to the U1 and U2 components of the spliceosome at their mRNA 

recognition sites, Supplemental Material Related to Figure 6. (A) Comparison of U1 RNA 
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enrichment across SARS-CoV-2 Halo capture datasets. (B) NSP16 binding traces along U1 RNA 

between two separate captures. Splice site recognition domain is highlighted in gray. (C) 

Comparison of U2 RNA enrichment across SARS-CoV-2 Halo capture datasets. (D) NSP16 

binding traces along U2 RNA between two separate captures. Branch point recognition domain 

is highlighted in gray. (E) NSP16 immunofluorescence in Vero E6 cells infected (or mock 

infected) with SARS-CoV-2 at an MOI of 0.1 for 48h. Four representative fields are displayed, 

with size bar indicating 10 microns. (F) Western blot confirmation of NSP16 and NSP1 

antibodies used to generate images in (E). Vero cells were infected (or mock infected) with 

SARS-CoV-2 at an MOI of 0.1 or 1; 72 hpi cells were lysed and probed by western blot with 

antibodies raised against NSP1 or NSP16. (G) Imaging of HEK 293T cells transfected with 

Halo-tagged NSP16, NSP1, and NSP1 Delta RC plasmids. Proteins are visualized using TMR-

conjugated Halo-ligand (orange) and counter-stained with DAPI (blue). Scale bars indicate 10 

microns. 
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Figure 8 

 

Figure 8. NSP16 suppresses host mRNA splicing. (A) Schematic of fluorescence reporter used 

to assay mRNA splicing. (B) GFP density plot of HEK293T cells expressing the GFP splicing 

reporter and either GAPDH (gray) or NSP16 (red). (C) Schematic of nascent RNA purification 

method. (D) The % unspliced difference for each gene between HEK293T cells transfected with 

GAPDH (gray) or NSP16 (red). Plot represents the merge of four independent biological 
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replicates; replicates plotted in Figure S4C. (E) Violin plot for SARS-CoV-2 infected human 

lung epithelial cells (MOI=0.01, 48 hours) compared to mock. Plot are merge of two biological 

replicates; replicates plotted in Figure S4E. (F) Model: NSP16 binding to U1 and U2 can reduce 

overall mRNA and protein levels. (G) Expression of an interferon stimulated gene (ISG) reporter 

upon transfection with GAPDH (gray) or NSP16 (red) after stimulation with IFN-β. Three 

independent biological replicates, ** indicates p-value<0.01. (H) Example of nascent RNA 

sequencing at the intron of ISG15 (intron = line, exon = box) upon SARS-CoV-2 (red) or mock 

(gray) infection. 
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Figure 9 
 

 

Figure 9. NSP16 suppresses host mRNA splicing, Related to Figure 3. (A) Median of raw 

GFP fluorescence measured in splicing reporter assay performed in HEK293T cells expressing 
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either Halo-GAPDH (gray) or Halo-NSP16 (red). Two independent biological replicates per 

condition. (B) Overview of nascent RNA-sequencing method, including 5eU nucleotide feeding, 

biotin click chemistry conjugation, and biotin-streptavidin-based iterative capture methods. 

Human/mouse mixing experimental data illustrates selective enrichment of labeled material over 

unlabeled material after three sequential captures. (C1= capture 1 enrichment, C2= capture 2 

enrichment, etc.) (C) Violin plot depicting difference in unspliced reads per gene (defined as the 

difference between number of unspliced fragment divided by total fragments spanning the 3’ 

splice site between condition and median of all control samples) for HEK293T cells transfected 

with either GAPDH (gray) or NSP16 (red) for 48hrs. All four individual replicates are presented. 

(D) Violin plot depicting difference in unspliced reads per gene (relative to median of GAPDH) 

for HEK 293T cells transfected with either GAPDH, NSP9, or NSP16 (red) for 48hrs. (E) Violin 

plot depicting difference in unspliced reads per gene (relative to median of the mock condition) 

for Calu3 cells infected with SARS-CoV-2 virus at an MOI of 0.01 for 48 hrs (red) or uninfected 

(gray). Biological replicates are presented. (F) Violin plot depicting fold change in total steady-

state mRNA levels (mRNA initially normalized to ncRNA and ratio is fold normalized mock 

treatment) for SARS-CoV-2 infected (red) compared to mock infected (gray) samples. Data is 

presented for two biological replicates for each condition. (G) Normalized expression of an 

interferon signaling reporter upon stimulation with IFN-β and treatment with madrasin 

spliceosomal inhibitor (red) or DMSO vehicle (gray). Three independent biological replicates 

were measured for each condition. (H-I) Representative nascent RNA tracks from SARS-Cov-2 

infected (red) and mock-treated cells (gray) along Intron 11 and Intron 12 of interferon 

stimulated gene, RIG-I. 
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Figure 10 
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Figure 10. NSP1 binds to the 18S ribosomal RNA near the mRNA entry channel to 

suppress global mRNA translation in cells, Supplemental Material Related to Figure 11. 

(A) Comparison of 18S RNA enrichment across SARS-CoV-2 Halo capture datasets. (B) The 

location of NSP1 binding (orange spheres) relative to 18S binding site (cyan) upon known 

structure of the 80S ribosome (gray). (C) Predicted structure of NSP1 based on Robetta 

modeling. The critical C-terminal amino acids required for binding 18S (K164 and H165) are 

indicated as red spheres. The region of homology with SERBP1 is shown in green. The observed 

NSP1 binding sites on the 18S rRNA are demarcated in cyan on the structure of the human 40S 

ribosome (PDB: 6G5H; gray)127, relative to the mRNA path (purple; 6YAL)72 and known 

clogging factors (E) SERBP1 (green; 6MTE)74 and (F) Stm1 (orange; 4V88)75. (D) An mRNA 

encoding GFP was added to HeLa cell extracts along with different concentrations of purified 

NSP1 protein (x-axis). The amount of GFP protein measured relative to the median of replicates 

for a buffer only control is shown (y-axis). Two independent dose titrations were performed and 

are shown on top of each other. (E) Schematic illustrating puromycin tagging of newly translated 

proteins via the SuNSET method. If the level of ongoing translation is high, we expect to detect a 

large amount of newly generated proteins containing puromycin; if global translation is 

suppressed, we expect to observe a decrease in the amount of puromycin integrated into proteins. 

(F) Western blot of global puromycin incorporation into proteins of HEK293T cells transfected 

with either Halo-GFP (left) or Halo-NSP1 (right). GAPDH levels were measured in the same 

lysates to normalize for total protein in the sample (bottom). (-) puro lanes indicate transfected 

samples that were not treated with puromycin. (G) Quantification of puromycin intensity across 

each lane of the gel in Panel F. The ratio of puromycin signal over total GAPDH signal is plotted 

for individual replicates. (H) Vero E6 cells were infected (or mock infected) with SARS-CoV-2 
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at an MOI of 0.01. 48hpi cells were labelled with media containing puromycin, and lysates were 

probed by western blot. (I) As a control for total protein levels, after samples in (G) were run on 

a SDS-PAGE gel, transferred to nitrocellulose, and total proteins were stained with PONCEAU 

before blocking/antibody detection of puromycin signal. (J) Normalized GFP fluorescence 

intensity of GFP reporter co-transfected in HEK293T cells in the presence of the NSP1DRC 

mutant that does not bind to 18S (gray) or NSP1 (cyan) proteins. Three independent biological 

replicates were measured for each sample.  

 

Note: This experiment was performed alongside the various controls displayed in Figure 4D and 

are plotted on the same scale. (K) mRNA levels of ISG54 and IFN-β following stimulation with 

poly(I:C) normalized to levels in unstimulated A549 cells. (L and M) mRNA and protein levels 

of IFN-β following stimulation with poly(I:C) normalized to levels in unstimulated A549 cells 

transfected with NSP1 Delta RC mutant (gray) or NSP1 (cyan). Two independent biological 

replicates were measured for each condition. In all panels, error bars represent standard deviation 

across replicates, and dots represent individual values for each replicate. * indicates p<0.05, ** 

p<0.01, and *** p<0.001. 
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Figure 11 
 

 
 
Figure 11. NSP1 binds to 18S near the mRNA entry channel to suppress translation. (A) 

NSP1 enrichment across each nucleotide of 18S. Cyan box indicates the most enriched 

nucleotides of NSP1 binding (18S:607-644 nts). (B) The location of NSP1 binding (cyan 

spheres) relative to the known structure of 40S (gray) and mRNA (purple ribbon). Right: 
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Schematic illustrating structure127 and how NSP1 binding would block mRNA entry. (C) Images 

of HEK293T cells co-expressing GFP reporter and GAPDH (top) or NSP1 (bottom). (D) Flow 

cytometry quantification (mean intensity) of GFP in the presence of GAPDH, NSP8/9, M, or 

NSP1 proteins. Three independent biological replicates per condition. (E) Puromycin 

incorporation (top) or total actin levels (bottom) measured in Calu3 cells infected with SARS-

CoV-2 (MOI=0.01, 48h) or mock control (left 2 lanes). (F) The ratio of puromycin signal over 

total actin signal is plotted for each individual replicate. (G) Read enrichment on 18S for an 

independent replicate of NSP1 Wild Type, NSP1 R124A/K125A Mutant, and NSP1 

K164A/H165A (Delta RC) Mutant. (H) Flow cytometry analysis of HEK293T cells transfected 

with GFP and NSP1 Delta RC mutant (gray), wild-type NSP1, or NSP1 R124A/K125A (cyan). 

(I) Quantification of IFN-β response in the presence of GAPDH (gray) or NSP1 (cyan). (J) 

Schematic of how NSP1 acts to suppress mRNA translation. In all panels, error bars represent 

standard deviation across biological replicates, dots represent individual values for each 

replicate, *p<0.05 and **p<0.01.  
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Figure 12 
 

 

Figure 12. The 5’ viral leader sequence protects mRNAs from NSP1-mediated translational 

inhibition, Supplemental Material Related to Figure 13. (A) A schematic of the experimental 

design containing two reporter RNAs encoding fluorescent proteins, without the viral leader 

(top) and with the viral leader sequence appended to the 5’ end of the mRNA (bottom). Viral 

leader represented by three stem-loops in red. (B) Representative images of HEK 293T cells co-

transfected with GAPDH or NSP1 along with mCherry RNA with or without SARS-CoV-2 

leader sequence. (C) Schematic illustrating the insertion of 5 nucleotides between the 5’ cap and 

the viral leader sequence. NSP1 protein represented in red. (D) Quantification of mCherry 

expression in HEK 293T cells transfected with mCherry RNAs, fused to different 5’ leader 

variants, and either GAPDH or NSP1. Values are normalized to the median values of mCherry 
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levels from control condition (GAPDH with + mCherry). At least 3 independent biological 

replicates per condition. Dots represent value for each independent replicate (e.g. NSP1 -L 

contains 6 independent replicates). (E) Quantification of mCherry expression from HEK 293T 

cells transfected with Halo-tagged NSP1 WT or NSP1 Delta RC mutant, along with leader-

mCherry expressing plasmids. Values are normalized to the median values of mCherry levels in 

control sample (NSP1 with + leader-mCherry). Two independent biological replicates were 

measured per condition. In all panels, error bars represent standard deviation across replicates, 

and dots represent individual values for each replicate. * indicates p<0.05 and ** p<0.01. 
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Figure 13 
 

 

Figure 13. The 5’ viral leader protects mRNA from NSP1-mediated translational 

inhibition. (A) Images of cells co-transfected with NSP1 and mCherry alone (- leader, top) or 

mCherry fused to the SARS-CoV-2 leader (+ leader, bottom). (B) GFP (green) or mCherry (red) 

levels when fused to the viral leader (+leader, right) or lacking viral leader (-leader, left). (C) 

GFP reporter with no leader (left), full leader (middle), or stem loop 1 (SL1) upon NSP1 

expression. (D) Calu3 cells expressing SL1 fused to GFP. Cells were mock or SARS-CoV-2 

infected (MOI=0.1) and GFP expression was measured 24 hours post infection by flow 

cytometry. (E) GFP reporter containing SL1 (left), a swap of SL2 and SL1 (SL2-SL1), insertion 

of 5 nucleotides between the 5’ end and SL1 (+5nt-SL1), or no leader. GFP protein level was 

measured for each condition upon expression of NSP1. (F) Proposed model for how NSP1 

binding to the viral leader can allosterically modulate NSP1 structure to protect mRNAs in cis. In 
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all panels, error bars represent standard deviation across biological replicates, dots represent 

individual replicate values, * indicates p<0.05 and ** p<0.01. 
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Figure 14 

 

 

Figure 14. NSP8 and NSP9 bind to 7SL RNA of the Signal Recognition Particle. (A) 

Enrichment of reverse transcription stop positions across each nucleotide of 7SL is shown for 

NSP8 (blue) and NSP9 (red). Red (7SL:142-143 and 7SL: 149-151 nts) and blue (7SL:193-194 

nts) boxes demarcate the most enriched nucleotide positions. (B) The locations of the NSP8 

(blue spheres) and NSP9 (red spheres) binding sites on the S domain of 7SL (yellow ribbon) 

structure relative to SRP54 and SRP19 (gray) (PDB:1MFQ)128. Right: Schematic of the structure 

and model of how NSP8/9 binding to 7SL could impact SRP protein binding. (C) Read 

enrichment across each nucleotide of 28S for NSP8 (blue) is shown. Black box indicates the 
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location of the ES27 expansion sequence (28S:2889-3551 nts). Blue box indicates the most 

enriched nucleotide position on 28S rRNA (28S:3017-3529 nts). (D) The locations of the NSP8 

(blue) and NSP9 (red) binding sites relative to the structure of SRP ribosome complex 

(PDB:3JAJ)129 superimposed with the structure of the ES27 region of 28S (Ebp1-ribosome 

complex; PDB:6SXO)87. The observed NSP8 binding site within the ES27 region of 28S (gray) 

is demarcated in blue, and the NSP8 (blue) and NSP9 (red) binding sites on 7SL (yellow) are 

each highlighted. Right: Schematic illustrating the interaction between the ribosome and SRP. 
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Figure 15 

 

Figure 15. NSP8 and NSP9 bind to the 7SL RNA component of the Signal Recognition 
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Particle, Supplemental Material Related to Figure 14. (A) Comparison of 7SL RNA second 

read enrichment across viral protein capture datasets (top) with region of highest enrichment for 

NSP8/9 boxed. Independent expression, purification, and sequencing experiments for NSP8 and 

NSP9 were performed and are shown. (B) Comparison of 28S RNA enrichment across SARS-

CoV-2 Halo capture datasets (top). Replicate representative tracks of NSP8 (blue) and NSP9 

(red) on 28S rRNA are presented below. (C) Full view of 80S ribosome structure, interfaced 

with SRP (7SL RNA, yellow line), NSP9 binding sites on 7SL (red circles), and NSP8 binding 

sites on 7SL (dark blue circles) and on ES27 expansion segment on the 28S ribosomal RNA 

(light blue line). (D) Imaging of HEK 293T cells transfected with Halo-NSP8 or Halo-NSP9 

plasmids. Proteins are visualized using TMR-conjugated Halo-ligand (orange) and 

counterstained with DAPI (blue) nuclear stain. Size bars indicate 10 microns. (E) Vero E6 cells 

were infected (or mock infected) with SARS-CoV-2 at an MOI of 0.1 for 48h, before fixing and 

staining with an antibody raised against NSP8 or NSP9. Cells are counter-stained with DAPI. 

Size bars indicate 10 microns. (F) Western blot confirmation of NSP8 and NSP9 antibodies used 

to generate images in (E). Vero cells were infected (or mock infected) with SARS-CoV-2 at an 

MOI of 0.1 or 1; 72 hpi cells were lysed and probed by western blot with antibodies raised 

against NSP8 or NSP9.
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Figure 16 
  

 

Figure 16. NSP8 and NSP9 inhibit membrane and secretory protein function, 

Supplemental Material Related to Figure 17. (A) Schematic illustrating Signal Recognition 

Particle-mediated recognition and translocation of nascent membrane and secreted proteins (left). 

Upon SRP dysfunction, membrane and secreted proteins are predicted to be mis-localized and 

degraded (right). (B) Quantification of truncated Nerve Growth Factor Receptor (NGFR) 
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fluorescence normalized to eGFP fluorescence (NGFR:GFP) from HEK 293T cells transfected 

with control EED plasmid together with siRNAs targeting protein components of Signal 

Recognition Particle, SRP54 and SRP19. (C) Quantification of Membrane SuNSET puromycin 

staining fluorescence normalized to eGFP fluorescence (Puromycin:GFP) from HEK 293T cells 

transfected with control EED plasmid together with with siRNAs targeting protein components 

of Signal Recognition Particle, SRP54 and SRP19. Three independent replicates for control and 

one replicate for siRNA treatments within this experiment. (D) NGFR:GFP ratio from Calu3 

human lung epithelial cells infected with SARS-CoV-2 for 24 hrs at an MOI of 0.1. Density 

comparison between Spike positive cells in virally infected condition to Spike negative cells in 

virally infected condition. (E) Signal P analysis of open reading frames of SARS-CoV-2 

expressed proteins utilized in study. Proteins with greater than 0.95 predicted probability 

indicated Signal P algorithm are highlighted in green. (F) Top: Signal P analysis of open reading 

frames of various immunoregulatory cytokines and proteins, including Interferon Beta and Beta-

2-Microglobulin- Precursor. Bottom: Signal P analysis of NGFR (membrane reporter) amino 

acid sequence and plot of signal peptide probability along the first 70 amino acids of NGFR 

sequence. In all panels, error bars represent standard deviation across replicates, and dots 

represent individual values for each replicate. * indicates p<0.05 and ** p<0.01. (G) Expression 

of an interferon stimulated gene reporter upon transfection with GAPDH or NSP8 and NSP9 (in 

combination), followed by stimulation with IFN-β. We note that because this assay measures 

intensity across a population of cells, any cells that are not transfected by NSP8/9 would not 

show this effect and would lead to a smaller overall difference than might occur within 

individual cells. In contrast, NGFR and SUNSET flow cytometry measurements (B-C) represent 

analysis of cells expressing NSP8/9. 
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Figure 17 
  

 

Figure 17. NSP8 and NSP9 inhibit membrane and secretory protein trafficking. (A) 

Quantification of HEK293T cells transfected with plasmids co-expressing GFP-tagged NSPs and 

the NGFR membrane protein. Plotted is the ratio of NGFR to GFP levels for each condition. (B) 
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The ratio of puromycin-containing proteins at the cell membrane normalized to GFP expression 

for each condition. (C) Quantification of two mRNA reporters containing SL1 fused to either 

GFP (leader-GFP) or NGFR (leader-NGFR) in Vero cells infected with SARS-CoV-2 or mock 

for 24 hrs (MOI 0.1). Plotted is ratio of leader-NGFR to leader-GFP, binned by increasing 

amounts of Spike protein. (D) Density plot for leader-NGFR to leader-GFP ratios in virally 

infected Vero cells or mock treated controls. Replicate conditions were merged for display. (E) 

Model of how NSP8/9 act to suppress SRP-dependent protein trafficking upon viral infection. In 

all panels, error bars represent standard deviation across independent biological replicates, dots 

represent individual values for each replicate, * indicates p<0.05 and ** p<0.01. (F) A model of 

how SARS-CoV-2 suppresses host immune responses through multi-pronged inhibition of core 

cellular functions. Cellular mechanisms are shown in gray and viral mechanisms in red. 
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1. ABSTRACT 

Through its abilities to recognize and hybridize to nucleic acid templates, spatially localize to 

different compartments within the cell, bind combinatorically to effector molecules, and in some 

cases directly catalyze chemical reactions, RNA is a widely utilized and integrated component of 

core cellular function. RNA has been reported to play key roles in many developmentally 

regulated processes, with one well-characterized example being the role of the Xist long non-

coding RNA (lncRNA) in the initiation of X-chromosome silencing in mammalian development. 

Xist-mediated silencing, in particular the recruitment of effector binding proteins including 

SMRT/HDAC1 Associated Repressor Protein (SHARP), is an established paradigm for RNA-

mediated gene regulation in cis. To explore how prevalent this paradigm is, we used Covalent 

Linkage Affinity Purification to identify additional SHARP-RNA interactions and revealed an 

interaction within a critical region of the Kcnq1ot1 lncRNA. Kcnq1ot1 lncRNA is responsible 

for paternal imprinting of a conserved one megabase domain in mouse and human. 

Dysregulation of this imprinting cluster has been linked to an overgrowth disorder called 

Beckwith-Wiedemann Syndrome, which presents with a variety of findings, including 

visceromegaly of intra-abdominal organs, abdominal wall defects, hemihyperplasia, and a 

predisposition for embryonal malignancies. Here we demonstrate that Kcnq1ot1 silencing of 

imprinting target genes is SHARP-dependent. Additionally, we identify several more SHARP-

lncRNA interactions and surprisingly, many SHARP/pre-mRNA interactions. Coupled with 

super resolution microscopy of full length and mutant forms of SHARP, our data reveals RNA-

mediated compartmentalization of SHARP as a widely utilized mechanism for gene regulation in 

cis. 
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2.0 INTRODUCTION 

2.1 RNA-MEDIATED REGULATION OF GENE EXPRESSION 

RNA is a widely utilized and integrated component of core cellular function because of its 

abilities to recognize and hybridize to nucleic acid templates, spatially localize to different 

compartments within the cell, bind combinatorically to effector molecules, and in some cases 

directly catalyze chemical reactions1-8. As discussed in Chapter 2 within the context of host cell 

takeover by SARS-CoV-2, nonstructural RNAs can be utilized as scaffolds for many integral 

complexes within the cell, including subunits of the eukaryotic ribosome as well as the Signal 

Recognition Particle8. RNA can also play a key role in regulating gene expression, with 

discovered mechanisms inspiring novel treatment modalities such as Antisense Oligonucleotides 

or Small Interfering RNA9-14. 

Eukaryotic genomes are pervasively transcribed, with clusters of genes coordinately regulated in 

cis15-21; this coordination is integral to cellular homeostasis as disruptions can lead to 

compromised viability and disease pathogenesis22-25. Despite the ever-expanding catalog of 

tissue- and cell-type specific gene expression profiles, we still do not completely understand how 

complex transcriptional programs are coordinately established and maintained, nor the complete 

molecular repertoire responsible for coordinated gene regulation in cis26. 

2.2 XIST-MEDIATED SILENCING AS A PARADIGM OF RNA-MEDIATED GENE 

REGULATION 

How can cells coordinate gene expression in cis? While DNA cis regulatory elements (promoters 

or enhancers) offer exquisite cell type- and stage-specific gene regulation, these elements must 
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be encoded within each individual gene to allow trans acting factors (transcription factors) to 

recognize and coordinate a regulatory program27-28. Chromatin relaxation, in contrast, can result 

in deleterious upregulation of bystander genes17-18. Long non-coding RNAs (lncRNA) are an 

ideal answer; lncRNAs can leverage their preferential localization in the nucleus, spread in cis 

across local chromatin environments, and spatially concentrate effector chromatin effector 

molecules to seed defined regulatory compartments within the nucleus2,28-29. 

A well-established model for studying lncRNA-mediated gene regulation is X-chromosome 

inactivation (XCI), the process by which one of the two female X-chromosomes is 

transcriptionally silenced to establish dosage compensation in early mammalian development29. 

XCI is initiated through expression of a lncRNA called Xist, which was originally identified as 

the sole gene expressed from the inactive X-chromosome and later demonstrated to be both 

necessary and sufficient for this process30-35, 29. Xist-mediated silencing coordinates several 

different processes, including recruitment of chromatin-modifying proteins to the inactive X-

chromosome, chromosome-wide DNA compaction, and translocation of the entire chromosome 

to the nuclear lamina, to form a nuclear compartment called the Barr Body and ultimately 

establish stable and heritable chromosome-wide silencing across an organism’s lifetime3-6,36-46,34. 

2.3 SHARP AS A MODEL RNA-BINDING PROTEIN  

One RNA-binding protein required for Xist-mediated silencing is SMRT/HDAC1 Associated 

Repressor Protein (SHARP), also known as Split Ends Transcriptional Repressor (Spen) or 

Msx2-Interacting Nuclear Target Protein (Mint)3-6. SHARP is a member of the Split Ends 

Protein Family (which consists of SHARP, RBM15, and RBM15B) and is simultaneously the 

functional ortholog of the Drosophila Hairless protein with respect to regulation of Notch signal 
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transduction (discussed further in Chapter 4)47-48. SHARP is an approximately 3600 amino acid 

protein which contains four N-terminal RNA-Recognition Motifs (RRM), a C-terminal Spen 

Paralog and Ortholog C-terminal (SPOC) domain (demonstrated to be responsible for 

recruitment of SMRT (Silencing Mediator for Retinoid or Thyroid-Hormone Receptor, also 

known as Nuclear Receptor Co-Repressor 2 or NCOR2) and transcriptional silencing), as well as 

a large intrinsically disordered region (Figure 1A)50,54,29. Despite its documented interaction with 

direct chromatin regulators, transcription factors and non-coding RNA, SHARP lacks a defined 

DNA-binding domain51-54,3. Interestingly, the RRM domains of SHARP have been shown to be 

both necessary for Xist-mediated silencing and recruitment to the inactive X-chromosome 

compartment, as well as sufficient for interactions with the Xist A-repeat55,50. Likewise, the 

SPOC domain has been shown to be necessary for Xist-mediated silencing and sufficient once 

localized to the compartment50. 

SHARP is a model RNA-binding protein for studying RNA-mediated chromatin remodeling and 

transcriptional regulation because of its ability to directly recognize and bind to RNA and its 

clear effector function when recruited to chromatin50,53-54. Despite the clear mechanistic 

dissection of SHARP’s role in XCI, it remains unclear if Xist-mediated recruitment of SHARP to 

regulate gene expression in cis is an anomaly or a more widely applied mechanism. That is, is 

Xist special or emblematic of a more broadly utilized regulatory strategy in the nucleus? 
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3.0 RESULTS 

3.1 RESULTS: COVALENT LINKAGE AFFINITY PURIFICATION REVEALS 

INTERACTION BETWEEN SHARP AND LNCRNA KCNQ1OT1 

To address this question, we performed Covalent Linkage Affinity Purification against SHARP 

in pSM33-derived mouse embryonic stem cells (mESC) expressing N-terminal Halo-epitope 

tagged SHARP protein56. We induced cells to express Xist lncRNA using doxycycline induction 

and were able to recover the SHARP/Xist-Repeat interaction using this method (Figure 1B). 

Surprisingly, we observed an interaction between SHARP and the Kcnq1ot1 lncRNA, which we 

subsequently verified using Immunostaining with RNA Fluorescence In Situ Hybridization (IF-

FISH) (Figure 1C and 1D).  

3.2 LNCRNA KCNQ1OT1 REGULATES IMPRINTING TARGET GENES IN TOPOLOGICAL 

ASSOCIATED DOMAIN 

Kcnq1ot1 lncRNA (also known as KCNQ1 Opposite Strand Transcript 1, KCNQ1 overlapping 

transcript 1, or Long QT Intronic Transcript 1) is expressed in antisense orientation from within 

an intronic region of the Kcnq1 protein coding gene on chromosome 7 in mouse and 

chromosome 11 in human respectively22,57. Kcnq1ot1 is responsible for paternal imprinting of 

the Kcnq1 gene cluster, which includes Cyclin-Dependent Kinase Inhibitor 1C (CDKN1C), 

Solute Carrier Family 22 Member 18 (Slc22a18), and Pleckstrin Homology Like Domain Family 

A Member 2 (Phlda2)58-61. Dysregulation of Kcnq1ot1-mediated imprinting is linked to a 

pediatric overgrowth syndrome called Beckwith Wiedemann Syndrome, which presents with 

findings ranging from visceromegaly of intra-abdominal organs, abdominal wall defects, 
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hemihyperplasia, and a predisposition for embryonal malignancies, including Wilm’s Tumor and 

hepatoblastoma, among other sequelae22,62-63.  

Interestingly, Kcnq1ot1 lncRNA localizes to the same topologically associated domain on 

chromatin as its imprinting targets within the Kcnq1 gene cluster (Figure 2A). Given that 

lncRNAs may exert their function in an RNA-independent manner (that is, through the action of 

transcription or activity as a DNA cis regulatory element), we tested if Kcnq1ot1 is necessary 

and sufficient for transcriptional repression of its targets in vivo17,64. Using CRISPR-interference, 

we observed upregulation of imprint targets within the Kcnq1 gene cluster compared to control 

(Figure 2B). Moreover, using an mESC line engineered to express Kcnq1ot1 upon doxycycline 

administration, we observed specific repression of targets within the Kcnq1 gene cluster upon 

Kcnq1ot1 induction (Figure 2C). These data demonstrate that Kcnq1ot1 lncRNA is both 

necessary and sufficient for transcriptional repression in cis, consistent with findings from 

previous studies using deletion of the Kcnq1ot1 promoter, pre-mature transcriptional truncation, 

and RNA-destabilization58-59,65-68. 

3.3 KCNQ1OT1 REGULATES IMPRINTING GENES IN SHARP-DEPENDENT MANNER 

SHARP binds to Kcnq1ot1 lncRNA within a region previously demonstrated to be required for 

its silencing function, leading us to hypothesize that like Xist, Kcnq1ot1 transcriptionally 

silences genes in cis in a SHARP-dependent manner59,69. To test this hypothesis, we generated 

mESC lines harboring homozygous deletions of the SHARP binding site within Kcnq1ot1 and 

observed upregulation of imprint targets in this line compared to the control (Figure 3A). Given 

that SHARP interacts with SMRT to ultimately recruit histone de-acetylases, we independently 

tested our hypothesis by using measuring Kcnq1ot1-mediated transcriptional silencing in the 
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presence of Trichostatin A70. We observed blunting of Kcnq1ot1-mediated silencing in the 

presence of Trichostatin A compared to control (Figure 3B). Finally, we generated SHARP-

knockout mESC lines using the CRISPR-Cas9 system and observed upregulation of CDKN1C in 

knockout lines compared to parent; this upregulation reverted upon re-introduction of Full 

Length SHARP (Figure 3C and D)71. These data demonstrate that Kcnq1ot1 lncRNA 

transcriptionally silences imprint target genes in cis in a SHARP-dependent manner, similar to 

Xist. (Figure 3E). It should be noted that unlike Xist, which is capable of establishing RNA-

independent transcriptional memory, Kcnq1ot1 is required for maintenance of transcriptional 

silencing, suggesting additional complexity during Barr Body formation60,65,46,34. 

3.4 EXAMINING SHARP-RNA INTERACTIONS ON A GLOBAL SCALE 

Beyond our identification of SHARP as a critical protein for Kcnq1ot1-mediated silencing, we 

asked if SHARP interacted with additional lncRNA targets. Using our SHARP CLAP-Seq 

dataset, we identified two additional lncRNA targets: Dleu2 and lncRNA 2610035D17Rik 

(named Embryonic stem cell SHARP-Associated Long Coding Transcript 1, eSalt1). We 

subsequently verified these interactions using IF-FISH (Figure 4A). 

We also identified several SHARP/pre-mRNA interactions, which actually outnumbered the 

number of lncRNA interactions (Figure 4B and 4C, Table 1). To test if these pre-mRNA 

interactions were conserved between mouse and human, we performed CLAP-Seq against 

SHARP in HEK293T cells and identified similar binding profiles in several pre-mRNA targets, 

including Zc3h11a, Jarid2, and SHARP’s mRNA transcript (Spen) (Figure 4D). Similar to 

SHARP-interacting lncRNAs, SHARP-interacting pre-mRNAs display broad localization in cis 

over chromatin (Figure 4E and 4F). 
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Given the number of SHARP-interacting RNAs and SHARP’s role in establishing repressive 

transcriptional compartments on both the inactive X-chromosome and within the Kcnq1 gene 

cluster, we wanted to examine RNA-mediated localization of the protein within the nucleus. 

Using 3-Dimensional Structural Illumination Microscopy, we observed punctate localization of 

Full Length SHARP protein, which was lost upon deletion of the RRM domain (Figure 5A). 

SHARP also contains an Intrinsically Disordered Region, which based on previous phase 

separation studies has been speculated to play a role in cooperative self-aggregation and RNA-

mediated super-stoichiometric silencing of the X-chromosome72-73,29. To test if the IDR domains 

are required for SHARP aggregation in the nucleus, we over-expressed mutant forms of the 

protein tagged monomeric eGFP-tagged SHARP in HEK 293T and performed live cell 

imaging74. In comparison to Full Length Protein or deletion of the SPOC domain, we observed 

loss of punctate localization upon deletion of the RRM and IDR domains (Figure 5B). 

4.0 DISCUSSION 

Here we demonstrate that Kcnq1ot1 recruits SHARP to a defined gene cluster to silence imprint 

target genes, which supports a broader model of RNA-mediated gene regulation in the nucleus, 

where RNA can recruit and concentrate proteins to defined chromatin territories to spatially 

amplify local regulatory signals in cis28-29. Kcnq1ot1 recruits SHARP to a defined gene cluster to 

silence target genes. Through its avidity to RNA and its intrinsically disordered domains, 

SHARP can then aggregate and compartmentalize over this chromatin territory. Control over the 

entire 1 megabase gene cluster and RNA-mediated compartment can therefore be coordinated 

from a single 3.6 kilobase cis regulatory DNA element: the Kcnq1ot1 promoter (also known as 

the Kcnq1 Imprint Control Region)57,75.  
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It is important to note that although SHARP acts in trans (being spatially recruited from a 

nucleoplasmic pool to given location on DNA) and synthetic recruitment of a 3kb Kcnq1ot1 

fragment (harboring the SHARP binding site) is sufficient to silence ectopic genes, endogenous 

Kcnq1ot1 is spatially limited in cis to a defined location on chromatin (Figure 3F and 2A). 

Therefore, Kcnq1ot1 lncRNA interacts with trans-acting factors to spatially amplify and 

coordinate gene regulation in cis28-29. 

What was most surprising to us from this dataset was the identification of SHARP/pre-mRNA 

interactions, which actually outnumber the SHARP/lncRNA interactions observed. Many of 

these pre-mRNAs localize broadly to chromatin in a similar manner to lncRNAs. Together, these 

data combined with our mechanistic dissection of Kcnq1ot1 suggest that SHARP-RNA 

interactions may be more pervasive than previously understood, and responsible for establishing 

repressive compartments across the nucleus to coordinate gene regulation in cis. 

5.0 MATERIALS AND METHODS 

Cell line generation, cell culture, and drug treatments 

Cell lines used in this study. We used the following cell lines in this study: (i) male ES cells 

(pSM33 ES cell line) previously engineered to express Xist lncRNA under the control of a 

tetracycline-inducible promoter and stably transfected with an episomally-maintained plasmid 

expressing Halo-tagged SHARP from a constitutive CAG promoter (Halo-SHARP pSM33)56. 

(ii) Female ES cells containing dCas9 fused to 4 copies of the SID transcriptional repression 

domain integrated into a single locus in the genome (dCas9-4XSID). (iii) Female ES cells where 

we replaced the endogenous Kcnq1ot1 promoter with a tetracycline-inducible promoter on both 

alleles (Kcnq1ot1-inducible ES cell line). In the absence of doxycycline, these cells do not 
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express Kcnq1ot1 from either allele, and in the presence of doxycycline they express Kcnq1ot1 

biallelically (Figure 2C). (iv) male e14-derived ES cells containing clonal insertions of PB-

3xUAS-PGK-tGFP reporter, Gal4-Lambda-N insertion into the Rosa locus, and BoxB-tagged 

RNA expressed by stable insertion via piggybac transposon89-92. (v) HEK293T, a female human 

embryonic kidney cell line obtained from ATCC. 

Cell culture conditions. All mouse ES cell lines were cultured in serum-free 2i/LIF medium as 

previously described76. Halo-SHARP pSM33 cells were additionally maintained in 0.5µg/ml 

puromycin to promote stable selection of the episomal plasmid. HEK293T cells were cultured in 

complete media consisting of DMEM (GIBCO, Life Technologies) supplemented with 10% FBS 

(Seradigm Premium Grade HI FBS, VWR), 1X penicillin-streptomycin (GIBCO, Life 

Technologies), 1X MEM non-essential amino acids (GIBCO, Life Technologies), 1 mM sodium 

pyruvate (GIBCO, Life Technologies) and maintained at 37C under 5% CO2. For maintenance, 

800,000 cells were seeded into 10 mL of complete media every 3-4 days in 10 cm dishes. 

Doxycycline Inducible Kcnq1ot1 lines. Female ES cells (F1 2-1 line, provided by K. Plath) were 

CRISPR-targeted (nicking gRNA pairs TGGGCGGGAGTCTTCTGGGCAGG and 

GGATTCTCCCAGGCCCAGGGCGG) to express the Tet transactivator (M2rtTA) from the 

Rosa26 locus using R26P-M2rtTA, a gift from Rudolf Jaenisch (Addgene plasmid #47381). The 

endogenous promoter of Kcnq1ot1 was CRISPR-targeted (nicking gRNA pairs 

TCGTGGCTGCCACGTCACCA and CAGATGCTGAATAATGACTA) to insert a TRE and 
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minimal CMV promoter. Clones were screened for ablation of endogenous Kcnq1ot1 expression 

and biallelic upregulation of expression upon administration of doxycycline (Figure 2C).  

CRISPRi: dCas9-4XSID cell line generation. A catalytically dead Cas9 (dCas9) fused to 4 

copies of the SID repressive domain (4XSID) expressed from an Ef1a promoter was integrated 

into a single copy locus in the genome (mm10 - chr6:86,565,487-86,565,506; gRNA sequence 

AATCTTAGTACTACTGCTGC) using CRISPR (cells hereby referred to as dCas9-4XSID).  

Doxycycline induction. Expression of Xist and Kcnq1ot1 was induced in their respective cell 

lines by treating cells with 2 µg/ml doxycycline (Sigma). Xist was induced for 24 hours prior to 

crosslinking and analysis. Kcnq1ot1 was induced for 12-16hrs prior to harvesting RNA. 

Trichostatin (TSA) treatment. For HDAC inhibitor experiments, cells were treated cells with 

either DMSO (control) or 5µM TSA in fresh 2i media or 2µg/ml doxycycline in standard 2i.  

3D-SIM SHARP-Halo cell culture conditions. pSM33 cells were seeded in 4-well imaging 

chambers (ibidi) equipped with a high precision glass bottom and plasmids were transfected with 

lipofectamine 3000 24 hours prior to imaging according to the manufacturer’s instructions. 

SHARP expression was induced by the addition of doxycycline 8hrs prior to imaging. 1µM 

JF646 Halo ligand was introduced to the media for 30 min, washed off twice with PBS and 

exchanged with fresh media, following which cells were incubated for another 15 min. Live-cell 

3D-SIM imaging was performed at 37C and 5% CO2 in media without phenol red. 

Transfection of SHARP constructs in HEK293T. For those experiments that required high 

expression of proteins (CLAP, FRAP, live-cell imaging), we used human HEK293T cells instead 

of mESCs because they show much higher overexpression levels (Supplemental Note 2,3). We 
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transfected HEK293T cells using BioT transfection reagent (Bioland) according to 

manufacturer’s recommendations. We used ~10 µg of DNA when cells were grown on a 15 cm 

dish and ~1 ug of DNA when cells were grown on 3 cm glass-bottom dishes (Matek), adjusting 

DNA concentrations to match mole numbers across constructs. 48 hours post-transfection, cells 

were used for live-cell imaging (Figure 5B). 

 

Note: We observed that high and prolonged overexpression of SHARP and its mutants in 

HEK293T cells leads to rapid cell death. We found that processing cells 48 hours post-

transfection is an optimal time, providing both high protein expression and cell number.  

Another feature of the overexpression experiment that we had to take into consideration was 

heterogeneity in the level of protein expression between different cells and constructs. To correct 

for this and compare cells with similar levels of SHARP protein, we set laser powers and gains 

based on the lowest expressing samples (FL-SHARP) and used these settings for all other 

samples. As a consequence, some cells with extremely high overexpression levels (from Delta 

IDR-SHARP, Delta RRM-IDR, eGFP groups) were not imaged or analyzed. When lower laser 

powers and gains were used (too low to detect FL-SHARP), we observed the formation of 

condensates in Delta IDR-SHARP sample, but not in the eGFP control. This suggests that 

SHARP mutant proteins can form condensates; however, they require much higher concentration 

than the full-length protein.    
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Microscopy imaging 

RNA-FISH and IF. For immunostaining combined with in situ RNA visualization, we used the 

ViewRNA Cell Plus (Thermo Fisher Scientific, 88-19000-99) kit per the manufacturer’s protocol 

with minor modifications. Cells were grown on coverslips and rinsed with 1xPBS, pre-extracted 

with 0.5% Triton X-100 in PBS for 5 minutes at room temperature, fixed in 4% 

paraformaldehyde in PBS for 15 minutes at room temperature, and rinsed in 1xPBS, and 

permeabilized with 0.5% Triton X-100 in 4% paraformaldehyde for 10 minutes at room 

temperature. Cells were either stored at -20C in 70% ethanol or used directly for immunostaining 

and incubated in blocking solution (0.2% BSA in PBS) for at least 1 h. If stored in 70% ethanol, 

cells were re-hydrated prior to staining by washing 3 times in 1xPBS and incubated in blocking 

solution (0.2% BSA in PBS) for at least 1 hour. Primary antibody against SHARP (Bethyl # 

A301-119A, Lot # 2) was diluted in blocking solution and added to coverslips for 3-5 hours at 

room temperature. Cells were washed three times with 0.01% Triton X-100 in PBS for 5 minutes 

each and then incubated in blocking solution containing corresponding secondary antibodies 

labeled with Alexa fluorophores (Invitrogen) for 1 hour at room temperature. Next, cells were 

washed 3 times in 1xPBS for 5 minutes at room temperature. After the last wash in 1xPBS, cells 

were subject to post-fixation for 10 min in 2% paraformaldehyde on 1xPBS at room temperature, 

washed 3 times in 1XPBS, and then RNA-FISH, based on the ViewRNA ISH (Thermo Fisher 

Scientific, QVC0001) protocol, was performed. Coverslips were mounted with ProLong Gold 

with DAPI (Invitrogen, P36935) and stored at 4C until acquisition. All probes used in the study 

were custom made by Thermofisher. To test their specificity, we either utilized RNAse treatment 

prior to RNA-FISH or two different probes targeting the same RNA. Images were acquired on a 

Zeiss LSM800 confocal microscope with a 100x glycerol immersion objective lens. Z-sections 
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were taken every 0.3 µm. Image visualization and analysis were performed with Icy and ImageJ 

software respectively. 

3D-Structured Illumination Microscopy (3D-SIM): 3D-SIM 1000 super-resolution imaging was 

performed on a DeltaVision OMX-SR system (Cytiva, Marlborough, MA, USA) equipped with a 

60x/1.42 NA Plan Apo oil immersion objective (Olympus, Tokyo, Japan), sCMOS cameras 

(PCO, Kelheim, Germany) and 642 nm diode laser. Image stacks were acquired with z-steps of 

125 nm and with 15 raw images per plane. The raw data were computationally reconstructed 

with the soft-WoRx 7.0.0 software package (Cytiva, Marlborough, MA, USA) using a wiener 

filter set to 0.002 and channel-specifically measured optical transfer functions (OTFs) using an 

immersion oil with a 1.518 refractive index (RI). 32-bit raw datasets were imported to ImageJ 

and converted to 16-bit stacks. 

HEK 293T Live Cell Imaging: Live samples were imaged using the Leica Stellaris microscope 

with 63x water objective (~80nm xy, ~300nm z), and 16 Z-stacks were collected every 60 

seconds for 5 minutes. The microscope was equipped with a stage incubator to keep cells at 37ºC 

and 5% CO2. Image analysis was performed using ICY or FIJI (ImageJ v2.1.0/1.53c) software.   

Molecular Biology Protocols 

SHARP Covalent Linkage Affinity Purification. An expression vector containing full-length 

SHARP with an N-terminal Halo-FLAG (HF) fusion protein was transfected into mouse ES cells 

containing a doxycycline inducible Xist gene. Cells were washed once with PBS and then 

crosslinked on ice using 0.25 J cm−2 (UV2.5k) of UV at 254 nm in a Spectrolinker UV 

Crosslinker. Cells were then scraped from culture dishes, washed once with PBS, pelleted by 

centrifugation at 1,500g for 4 min, and flash-frozen in liquid nitrogen for storage at –80C. We 
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lysed batches of 5 million cells by completely resuspending frozen cell pellets in 1 mL of ice 

cold iCLIP lysis buffer (50 mM Hepes, pH 7.4, 100 mM NaCl, 1% NP-40, 0.1% SDS, 0.5% 

Sodium Deoxycholate) supplemented with 1X Protease Inhibitor Cocktail (Promega), 200 U of 

Murine RNase Inhibitor (New England Biolabs), 20 U Turbo DNase (Ambion), and 1X 

Manganese/Calcium Mix (0.5mM CaCl2, 2.5 mM MnCl2). Samples were incubated on ice for 

10 minutes to allow lysis to proceed. The lysates were then incubated at 37C for 10 minutes at 

1150 rpm shaking on a Thermomixer (Eppendorf). Lysates were cleared by centrifugation at 

15,000g for 2 minutes. The supernatant was collected and kept on ice until bound to the 

HaloLink Resin. 

We used 200 µL of 25% HaloLink Resin (50 µL of HaloLink Resin total) per 5 million cells. 

Resin was washed three times with 2 mL of 1X TBS (50 mM Tris pH 7.5, 150 mM NaCl) and 

incubated in 1X Blocking Buffer (50 mM HEPES, pH 7.5, 10 µg/mL Random 9-mer, 100 µg/mL 

BSA) for 20 minutes at room temperature with continuous rotation. After the incubation, resin 

was washed three times with 1X TBS. The cleared lysate was mixed with 50µl of HaloLink 

Resin and incubated at 4C for 3-16 hrs with continuous rotation. The captured protein bound to 

resin was washed three times with iCLIP lysis buffer at room temperature and then washed three 

times at 90C for 2 minutes while shaking at 1200 rpm with each of the following buffers: 1X 

ProK/NLS buffer (50 mM HEPES, pH 7.5, 2% NLS, 10 mM EDTA, 0.1% NP-40, 10 mM DTT), 

High Salt Buffer (50 mM HEPES, pH 7.5, 10 mM EDTA, 0.1% NP-40, 1M NaCl), 8M Urea 

Buffer (50 mM HEPES, pH 7.5, 10 mM EDTA, 0.1% NP-40, 8 M Urea), and Tween buffer (50 

mM HEPES, pH 7.5, 0.1% Tween 20, 10 mM EDTA). Finally, we adjusted the buffer by 

washing with Elution Buffer (50 mM HEPES, pH 7.5, 0.5 mM EDTA, 0.1% NP-40) three times 

at 30C.  The resin was resuspended in 83 µL of Elution Buffer and split into a 75 µL (ProK 
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elution) and 8 µL (TEV elution) reaction. 25 µL of 4X ProK/NLS Buffer and 10 µL of ProK 

were added to the ProK elution tube and the sample was incubated at 50C for 30 minutes while 

shaking at 1200 rpm. 2.3 µL of ProTEV Plus Protease (Promega) was added to the TEV Elution 

and the sample was incubated at 30C for 30 minutes while shaking at 1200 rpm.  

For each experiment, we ensured that we successfully purified the Halo-tagged protein. To do 

this, the TEV elution sample was mixed with 1X LDS Sample Buffer (Invitrogen) and 1X 

Reducing Agent (Invitrogen) and heated for 6 minutes at 70C. The sample was run on a 3-8% 

Tris Acetate Gel (Invitrogen) for 1 hour at 150 V. The gel was transferred to a nitrocellulose 

membrane using an iBlot Transfer Device (Invitrogen). The nitrocellulose membrane was 

blocked with Odyssey Blocking Buffer (LI-COR) for 30 minutes. We incubated the membrane in 

Anti-FLAG mouse monoclonal Antibody (Sigma, F3166) and V5 rabbit polyclonal antibody 

(Santa Cruz, sc-83849-R) at a 1:2500 dilution for 2 hours at room temperature to detect the 

protein. We visualized the protein by incubating the membrane in 1:17,500 dilution of both 

IRDye 800CW Goat anti-Rabbit IgG (LI-COR, 925-32210) and IRDYE 680DR Goat anti-Mouse 

IgG (LI-COR, 925-68070) for 1 hour at room temperature followed by imaging on a LICOR 

Odyssey. 

RNA was purified from the ProK elution sample and an RNA-Seq library was constructed as 

previously described77. Briefly, after proK elution, the RNA was dephosphorylated (Fast AP) 

and cyclic phosphates removed (T4 PNK) and then cleaned up on Silane beads as previously 

described77. The RNA was then ligated to an RNA adapter containing a RT primer binding site. 

The ligated RNA was reverse transcribed (RT) into cDNA, the RNA was degraded using NaOH, 

and a second adapter was ligated to the single stranded cDNA. The DNA was amplified and 

Illumina sequencing adaptors were added by PCR using primers complementary to the 3’ and 5’ 
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adapters. The molarity of PCR amplified libraries was measured by Agilent Tapestation High 

Sensitivity DNA screentapes and all samples were pooled at equal molarity. The pool was then 

purified and size selected on a 2% agarose gel and cut between 150-700 nts. The final libraries 

were measured by Agilent Bioanalyzer and Qubit high sensitivity DNA to determine the loading 

density of the final pooled sample. Pooled samples were paired-end sequenced on an Illumina 

HiSeq 2500 with read length 35 x 35nts. 

Sequencing reads were trimmed to remove adaptor sequences and any bases containing quality 

scores <10 using Trimmomatic78. Read-pairs where either read was trimmed to <25 nucleotides 

were filtered. PCR duplicates were excluded using the FastUniq tool83. The remaining reads 

were then aligned to Ribosomal RNAs (rRNAs) using the Tagdust program84 with a database of 

18S, 28S, 45S, 5S, 5.8S sequences. TagDust was chosen because it allowed more permissive 

alignments to rRNA reads that contained mismatches and indels due to RT errors induced by 

rRNA post-transcriptional modifications. The remaining reads were then aligned to the mouse 

(mm9) genomes using STAR aligner79. Only reads that mapped uniquely in the genome were 

kept for further analysis. SHARP CLAP performed from transiently transfected HEK293T cells 

was processed in a similar manner. Peaks and input-normalized enrichments were called using 

CLIPCLAPEnrichment javascript pipeline. Targets ultimately presented in Figure 4C were 

selected based on initial screen of peaks based on window-normalized p-value cut off of < e-5 

that were pooled between two biological replicates and additionally curated based on visual 

examination of pile-ups to remove repetitive element artifacts and comparisons between cell type 

datasets. Enrichment figures were made from mm10 aligned (mouse) or hg19 aligned files 

(human). 

 



 

 

143 

SPRITE 2.0: RNA and DNA SPRITE  

SPRITE 2.0 is an adaptation of our initial SPRITE protocol with significant improvements to the 

RNA molecular biology steps that enable generation of higher complexity RNA libraries76,80. It 

was performed as follows: 

Crosslinking, chromatin isolation, and chromatin digestion. Cells were crosslinked at room 

temperature with 2mM disuccinimidyl glutarate (DSG) for 45 minutes followed by 3% 

formaldehyde for 10 minutes to preserve RNA and DNA interactions in situ. After crosslinking, 

the formaldehyde crosslinker was quenched with addition of 2.5M glycine for final concentration 

of 0.5M for 5 minutes, cells were spun down, and isolated in 1x PBS + 0.5% RNAse Free BSA 

(AmericanBio #AB01243-00050) and flash frozen at -80C for storage. When using BSA to 

isolate cells, we found that using RNAse-Free BSA was critical to avoid RNA degradation. 

RNase Inhibitor (1:40, NEB Murine RNAse Inhibitor or Thermofisher Ribolock) was added to 

all lysis buffers to avoid degradation. After lysis, cells were sonicated at 4-5W of power for 1 

minute (pulses 0.7 second on, 3.3 seconds off) using the Branson Sonicator and chromatin was 

fragmented using DNAse digestion to obtain DNA of approximately ~150-1kb in length. 

Estimating molarity. After DNase digestion, crosslinks were reversed on approximately 10 µl of 

lysate in 82 µL of 1X Proteinase K Buffer (20 mM Tris pH 7.5, 100 mM NaCl, 10 mM EDTA, 

10 mM EGTA, 0.5% Triton-X, 0.2% SDS) with 8 µL Proteinase K (NEB) at 65C for 1 hour. 

RNA and DNA were purified using Zymo RNA Clean and Concentrate columns per the 

manufacturer’s specifications (>17nt protocol) with minor adaptations, such as binding to the 

column with 2X volume RNA Binding Buffer combined with by 1X volume 100% EtOH to 

improve yield. Molarities of the RNA and DNA were calculated by measuring the RNA and 
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DNA concentration with the Qubit Fluorometer (HS RNA kit, HS dsDNA kit) and the average 

RNA and DNA sizes were estimated using the RNA High Sensitivity Tapestation and Agilent 

Bioanalyzer (High Sensitivity DNA kit). 

NHS bead coupling. RNA and DNA molarity estimated in the lysate was used to calculate the 

total number of RNA and DNA molecules per microliter of lysate. We coupled the lysate to 

NHS-activated magnetic beads (Pierce) in 1x PBS + 0.1% SDS combined with 1:40 dilution of 

NEB Murine RNase Inhibitor overnight at 4C as previously described76. We coupled at a ratio of 

0.5 molecules per bead to reduce the probability of simultaneously coupling multiple 

independent complexes to the same bead (which would lead to their association during the split-

pool barcoding process). Because multiple molecules of DNA and RNA can be crosslinked in a 

single complex, this estimate is a more conservative estimate of the number of molecules to 

avoid collisions on individual beads. After NHS coupling overnight, the reaction was quenched 

in 0.5M Tris pH 7.5 and beads were washed as previously described76. 

Because the crosslinked complexes are immobilized on NHS magnetic beads, several enzymatic 

steps can be performed by adding buffers and enzymes directly to the beads and performing 

rapid buffer exchange between each step on a magnet. All enzymatic steps were performed with 

shaking at 1200 rpm (Eppendorf Thermomixer) to avoid bead settling and aggregation, and all 

enzymatic steps were inactivated by adding 1 mL of SPRITE Wash buffer supplemented with 50 

mM EDTA and 50 mM EGTA to the NHS beads instead of Modified RLT buffer. 

DNA End Repair and dA-tailing. DNA ends are repaired to enable ligation of tags to each 

molecule. Specifically, we blunt end and phosphorylate the 5′ ends of double-stranded DNA 

using two enzymes. First, T4 Polynucleotide Kinase (NEB) treatment is performed at 37C for 1 
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hr, the enzyme is quenched using 1 mL Modified RLT buffer, and then buffer is exchanged with 

two washes of 1 mL SPRITE Detergent Buffer to beads at room temperature. Next, the 

NEBNext End Repair Enzyme cocktail (containing T4 DNA Polymerase and T4 PNK) and 1x 

NEBNext End Repair Reaction Buffer is added to beads and incubated at 20C for 1 hr, and 

inactivated and buffer exchanged as specified above. DNA was then dA-tailed using the Klenow 

fragment (5′-3′ exo-, NEBNext dA-tailing Module) at 37C for 1 hr, inactivated, and buffer 

exchanged as specified above. Note, we do not use the combined End Repair/dA tailing modules 

as the temperatures in the protocol are not compatible with SPRITE (the higher temperature will 

reverse crosslinks). To prevent degradation of RNA, each enzymatic step is performed with the 

addition of 1:40 NEB Murine RNAse Inhibitor or Thermofisher Ribolock. 

Ligation of the DNA Phosphate Modified (“DPM”) Tag. After end repair and dA-tailing of 

DNA, we performed a pooled ligation with “DNA Phosphate Modified” (DPM) tag that contains 

certain modifications that we found to be critical for the success of SPRITE 2.0. Specifically, (i) 

the phosphothiorate modification prevents enzymatic digestion by Exo1 in subsequent RNA 

steps and (ii) the internal biotin modification facilitates an on-bead library prep post reverse-

crosslinking. The DPM adaptor also contains a 5’phosphorylated sticky end overhang to ligate 

tags during split-pool barcoding. Ligation was performed as previously described using Instant 

Sticky End Mastermix (NEB) except that all ligations were supplemented with 1:40 RNAse 

inhibitor (ThermoFisher Ribolock or NEB Murine RNase Inhibitor) to prevent RNA degradation. 

Because the T4 DNA Ligase included in Instant Sticky End Mastermix ligates double-stranded 

DNA, the unique DPM sequence enables identification between RNA and DNA molecules 

during sequencing. 
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Ligation of the RNA Phosphate Modified (“RPM”) Tag. To map RNA and DNA interactions 

simultaneously, we ligated an RNA adaptor containing the same 7nt 5’phosphorylated sticky end 

overhang as the DPM adaptor used to ligate tags to both RNA and DNA during split-pool 

barcoding. To do this, the 3’end of RNA is first modified to have a 3’OH for ligation of RPM. 

Specifically, RNA overhangs are repaired with T4 Polynucleoide Kinase (NEB) with no ATP at 

37C for 20 min. RNA is subsequently ligated with a “RNA Phosphate Modified” (RPM) as 

previously described using High Concentration T4 RNA Ligase I81. Because T4 RNA Ligase 1 

ligates single-stranded RNA, ligation of RNA with the unique RPM sequence enables 

identification between RNA and DNA molecules during sequencing. After RPM ligation, RNA 

was converted to cDNA using Superscript III at 42C for 1 hour using the “RPM bottom” RT 

primer that contains an internal biotin to facilitate on-bead library prep as above and a 5’end 

sticky end to ligate tags during SPRITE. Excess primer was digested with Exonuclease 1. All 

ligations were supplemented with 1:40 RNAse inhibitor (ThermoFisher Ribolock or NEB 

Murine RNase Inhibitor) to prevent RNA degradation. 

Split-and-pool barcoding to identify RNA and DNA interactions. The beads were then 

repeatedly split-and-pool ligated over four rounds with a set of “Odd,” “Even,” and “Terminal” 

tags (see SPRITE Tag Design in reference 76). Both DPM and RPM contain the same 7 

nucleotide sticky end that will ligate to all subsequent split-pool barcoding rounds. All split-pool 

ligation steps and reverse crosslinking were performed for 45min to 1 hour at 20C as previously 

described72. All ligations were supplemented with 1:40 RNAse inhibitor (ThermoFisher 

Ribolock or NEB Murine RNase Inhibitor) to prevent RNA degradation. 

Reverse crosslinking. After multiple rounds of SPRITE split-and-pool barcoding, the tagged 

RNA and DNA molecules were eluted from NHS beads by reverse crosslinking overnight (~12-
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13 hours) at 50C in NLS Elution Buffer (20mM Tris-HCl pH 7.5, 10mM EDTA, 2% N-

Lauroylsarcosine, 50mM NaCl) with added 5M NaCl to 288mM NaCl final combined with 5uL 

Proteinase K (NEB).   

Post reverse-crosslinking library preparation. AEBSF (Gold Biotechnology CAS#30827-99-7) 

is added to the Proteinase K (NEB Proteinase K #P8107S; ProK) reactions to inactive the ProK 

prior to coupling to streptavidin beads. Biotinylated barcoded RNA and DNA are bound to 

streptavidin beads. To improve recovery, the supernatant is bound again to 20 ul of streptavidin 

beads and combined with the first capture. Beads are washed in 1X PBS + RNase inhibitor and 

then resuspended in 1x First Strand buffer to prevent any melting of the RNA:cDNA hybrid. 

Beads were pre-incubated at 40C for 2 min to prevent any sticky barcodes from annealing. A 

second reverse transcription is performed by adding Superscript III (without primer) to extend 

the cDNA through the areas which were previously crosslinked. The second RT ensures that 

cDNA recovery is maximal, particularly if RT terminated at a crosslinked site prior to reverse 

crosslinking. After generating cDNA, the RNA is degraded by addition of RNaseH and RNase 

cocktail, and the 3’end of the resulting cDNA is ligated to attach an dsDNA oligo containing 

library amplification sequences for subsequent library amplification.  

Previously, we performed cDNA (ssDNA) to ssDNA primer ligation which relies on the two 

reactants coming together for conversion to a product that can then be amplified for library 

preparation. To improve the efficiency of cDNA molecules ligated with the Read1 Illumina 

priming sequence, here we performed a “splint” ligation, which involves a partially ssDNA 

partially dsDNA primer that contains a random 6mer annealing to the 3’ end of the cDNA and 

brings the 5’ phosphorylated end of the cDNA adapter directly together with the cDNA via 
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annealing. This ligation is performed with 1x NEB Instant Sticky End Master Mix at 20C for 1 

hour. This greatly improves the cDNA tagging and overall RNA yield. 

Libraries were amplified using Q5 Hot-Start Mastermix (NEB) with primers that add the full 

Illumina adaptor sequences. After amplification, the libraries are cleaned up using 0.8X SPRI 

(AMPure XP) and then gel cut using the Zymo Gel Extraction Kit selecting for sizes between 

280 bp - 1.3 kb. 

Sequencing. Sequencing was performed on an Illumina NovaSeq S4 paired-end 150x150 cycle 

run. For the mES RNA-DNA SPRITE 2.0 data in this experiment, 144 different SPRITE 

libraries generated from two replicate SPRITE experiments were sequenced. Each SPRITE 

library corresponds to a distinct aliquot during the Proteinase K reverse crosslinking step which 

is separately amplified with a different barcoded primer to provide an additional round of 

SPRITE barcoding. 

Primers Used for RPM, DPM, and Splint Ligation (IDT):  

1. RPM top: /5Phos/rArUrCrArGrCrACTTAGCG TCAG/3SpC3/ 

2. RPM bottom (internal biotin): /5Phos/TGACTTGC/iBiodT/GACGCTAAGTGCTGAT 

3. DPM Phosphorothioate top: /5Phos/AAGACCACCAGATCGGAAGAGCGTCGTG*T* 

A*G*G* /32MOErG/  *Denotes Phosphorothioate bonds 

4. DPM bottom (internal biotin): 

/5Phos/TGACTTGTCATGTCT/iBioT/CCGATCTGGTGGTCTT 

5. 2Puni splint top: TACACGACGCTCTTCCGATCT NNNNNN/3SpC3/ 

6. 2Puni splint bottom: /5Phos/AGA TCG GAA GAG CGT CGT GTA/3SpC3/ 
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Annealing of adaptors. A double-stranded DPM oligo and 2P universal splint oligo were 

generated by annealing the complementary top and bottom strands at equimolar concentrations. 

Specifically, the oligos were annealed in 1x Annealing Buffer (0.2 M LiCl2, 10 mM Tris-HCl pH 

7.5) by heating to 95C and then slowly cooling to room temperature (-1C every 10 sec) using a 

thermocycler. 

Assessing molecule to bead ratio. First, we ensured that SPRITE clusters represent bona fide 

interactions that occur within a cell by mixing human and mouse cells and ensuring that virtually 

all SPRITE clusters (~99%) represent molecules exclusively from a single species. Specifically, 

we separately crosslinked HEK293T cells performed a human-mouse mixing SPRITE 2.0 

experiment and identified conditions with low interspecies mixing (molecules =  RNA+DNA 

instead of DNA). Specifically, for SPRITE clusters containing 2-1000 reads, the percent of 

interspecies contacts was: 2 beads:molecule = 0.9% interspecies contacts, 4 beads:molecule = 

1.1% interspecies contacts, 8 beads:molecule = 1.1% interspecies contacts. We used the 2 

beads:molecule ratio for the SPRITE 2.0 data set generated in this paper. 

SPRITE 2.0 processing pipeline 

Adapter trimming. Adapters were trimmed from raw paired-end fastq files using Trim Galore! 

v0.6.2 and assessed with Fastqc v0.11.9. Subsequently, the DPM (GATCGGAAGAG) and RPM 

(ATCAGCACTTA) sequences are trimmed using Cutadapt v2.5 from 5’ end of R1 along with 

the 3’ end DPM sequences that result from short reads being read through into the barcode 

(GGTGGTCTTT, GCCTCTTGTT, CCAGGTATTT, TAAGAGAGTT, TTCTCCTCTT, 

ACCCTCGATT)82. The additional trimming improves read mapping in the end-to-end alignment 

mode. The SPRITE barcodes of trimmed reads are later identified using Barcode ID v1.2.0 and 
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the ligation efficiency is assessed. Reads with an RPM or a DPM barcode are split into two 

separate files, to process RNA and DNA reads individually downstream, respectively. 

Processing RNA reads. RNA reads were aligned to GRCm38.p6 with the Ensembl GRCm38 

v95 gene model annotation using Hisat2 v2.1.0 with a high penalty for soft-clipping --sp 

1000,1000. Unmapped and reads with a low MapQ score (samtools view -bq 20) were filtered 

out for downstream realignment. Mapped reads were annotated for gene exons and introns with 

the featureCounts tool from the subread package v1.6.4 using Ensembl GRCm38 v95 gene 

model annotation and the Repeat and Transposable element annotation from the Hammel lab83. 

Filtered reads were subsequently realigned to our custom collection of repeat sequences using 

Bowtie v2.3.5, only keeping mapped and primary alignment reads84. 

Processing DNA reads. DNA reads were aligned to GRCm38.p6 using Bowtie2 v2.3.5, filtering 

out unmapped and reads with a low MapQ score (samtools view -bq 20). Data generated in F1 

hybrid cells (psm33 - C57BL and 129S1 or psm44 – CAST and 129S1) were assigned the allele 

of origin using SNPsplit v0.3.485. RepeatMasker regions with milliDev <= 140 and blacklisted 

v2 regions were filtered out using Bedtools v2.29.086-87. RNA and DNA reads were merged, and 

a cluster file was generated for all downstream analysis. MultiQC v1.6 was used to aggregate all 

reports88. 

Masked bins. In addition to known repeat containing bins, we manually masked the following 

bins (mm10 genomic regions: chr2:79490000-79500000, chr11:3119270-3192250, 

chr15:99734977-99736026, chr3:5173978-5175025, chr13:58176952-58178051) because we 

observed a major overrepresentation of reads in the input samples. 
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Kcnq1ot1 protein binding, perturbations, and gene expression measurements 

Kcnq1ot1 CRISPR interference. dCas9-4XSID cells were transfected using multiplexed gRNA 

vector constructs containing an episomal polyoma origin of replication, puromycin resistance 

driven by a PGK promoter and four tandem U6-gRNA cassettes (allowing for simultaneous 

expression of four sgRNAs). Negative control gRNA sequences recognizing the Saccharomyces 

cerevisiae Upstream Activation Sequence (UAS) and the Tetracycline Response Element (TRE) 

were multiplexed together (referred to as sgTUUT; gRNAs are follows:  

TCTCTATCACTGATAGGGAG, GAGGACAGTACTCCGCTCGG, 

GCGGAGTACTGTCCTCCGAG, and TCTCTATCACTGATAGGGAG). Four gRNA 

sequences targeting the Kcnq1ot1 promoter were multiplexed together (referred to as 

sgKcnq1ot1; gRNAs are as follows: GCCTAGCCGTTGTCGCTAGG, 

GCCCTGTACTGCATTGAGGT, GCCTGCACAGTAGGATTCCA, and 

GGAGGATGGGTCGAGTGGCT).  

dCas9-4XSID cells were transfected with either sgTUUT or sgKcnq1ot1 and selected for three 

days with 1µg/ml of puromycin in standard 2i culture conditions. Cells were subsequently 

passaged and maintained in 0.5µg/ml puromycin for an additional 7 days prior to RNA 

harvesting. Data presented are from two separate transfections and biological replicates. 

Genetic deletion of SHARP Binding Site. F1 2-1 line cells were CRISPR-targeted with gRNAs 

targeting the SHARP-Binding Site identified previously via Covalent Linkage Affinity 

Purification Sequencing (SHARP Binding Site Coordinates: mm10 – chr7:143,295,789-

143,296,455; gRNA sequences were ATGCACCATCATAGACCACG and 

TCATAGCCTCCCCCTCCTCG). Following selection using 1µg/ml of puromycin in standard 2i 
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culture conditions, transfected cells were allowed to recover in standard 2i media prior to sub-

cloning. Clone were subsequently screened using genomic DNA PCR with primers flanking the 

deletion region (CAGCATCTGTCCAATCAACAG and GCAAAATACGAGAACTGAGCC 

respectively). In contrast to the wild type 1048bp band, successfully targeted alleles produced a 

305bp band. Sub-clones homozygous for the targeted allele were subject to RT-qPCR and 

GAPDH-normalized gene expression was further normalized to the F1 parent line).  

SHARP Knockout Line Generation. Mouse ES cell lines with doxycycline-inducible Xist 

expression were CRISPR-targeted using pool of gRNAs selected against the Spen gene body. 

Subclones were screened using RT-qPCR using primer pairs selected against regions upstream, 

within, and downstream of gRNA targeting (gRNAs were GGAGACCGAGACCTCCGCA, 

TATGAGCGGAGACTCGATG, and GACTGGGAGAACTAACACA, 

TTCTGCCGATACGGACCTG). Subclones were identified based on the combination of 

absence of targeted region and upregulation of flanking upstream and downstream regions, 

matching the previously observed targeting signature observed by Montfort et al.6   

Primer pairs used for RT-qPCR screening were as follows: (SHARP Exon 1-2: 

CATTTCAAACGATATGGCCG and CTTTCTGTGCACTTTTGATGTC; SHARP Exon 3-5: 

CACTGACAGTAGCGACTCC and TAAGGCTTGTGTCTGTAGAGC; SHARP Exon 8-10: 

CTGTGGTAAAGGTGGTGTTTG and TGCAAAGTCCACCTTAATCTTATTC; and SHARP 

Exon 14-16: GAGAATGACAGTGGAAACCGA and GTAGGCAGGCTGATTGGAG.) 

Knockout subclones B1 and D5 were used for subsequent experiments. 

SHARP Rescue Experiments. Knockout subclones B1 and D5 were transfected with membrane-

mCherry plasmid alone (gift from J. Jachowicz) or co-transfected with membrane-mCherry and 
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CAG-Halo-SHARP, sorted for mCherry+ cells 48 hours post transfection, and harvested for 

RNA, PolyA-selection RNA-library preparation, and ultimately high-throughput sequencing. 

Transfection and sorting experiments were performed in biological duplicate, beginning at 

transfection. 

HDAC inhibitor treatment. The inducible Kcnq1ot1 cell line was treated with either DMSO 

(control) or 5µM TSA in fresh 2i media or 2µg/ml doxycycline in standard 2i. RNA was 

extracted, reverse transcribed, and qPCR was performed. CT values were normalized to GAPDH 

to compare gene expression differences between induced and non-induced samples within the 

same pharmacologic condition (i.e. GAPDH-normalized “Induced DMSO” to GAPDH-

normalized “Non-Induced DMSO Vehicle”) to generate fold gene expression ratios. RT-qPCR 

data presented is summarized from two separate replicate experiments. 

Kcnq1ot1 Synthetic Recruitment. Piggy-bac transposon modified e14 ES cells were analyzed 

using mean fluorescence intensity of tGFP reporter using flow cytometry. Mean fluorescence 

activity was normalized to mCherry control, with standard deviation representing inter-

experimental variability between two replicate experiments.  
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7.0 FIGURES 

Figure 1 

 
 
 
Figure 1: SHARP Covalent Linkage Affinity Purification reveals interaction with lncRNA 

Kcnq1ot1. (A) Diagram of the functional domains in full length (FL) SHARP (also referred to as 

Spen) protein. SHARP contains four RNA recognition motif (RRM, blue) domains and one Spen 

paralogue and orthologue C-terminal (SPOC, orange) domain. The region in between the RRM 

and SPOC domains are referred to as Intrinsically Disordered Domains (IDR). (B) SHARP 

preferentially binds to the 0-2kb region of the Xist lncRNA. (C) SHARP protein binding on the 

entire 84,000 nucleotide Kcnq1ot1 lncRNA (top), and a zoom in on the first 5,000 nucleotides of 

the lncRNA (bottom). We define a region called the SHARP binding site (SBS) shown as a black 

box. (D) Confocal 3D image reconstruction of mouse embryonic stem cell, visualized with 

SHARP immunostaining and Kcnq1ot1 RNA-FISH. 
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Figure 2 

 
  
Figure 2: Kcnq1ot1 is necessary and sufficient to seed an RNA-mediated compartment over 

its imprinted target genes. (A) Weighted DNA-DNA contacts within SPRITE clusters 

containing the Kcnq1ot1 RNA. Vertical dashed lines indicate the boundaries of the Kcnq1ot1-

enriched spatial compartment. (Zoom out) Genomic locations in this domain of the Kcnq1ot1 

gene (burgundy) and imprinted target genes Kcnq1, Slc22a18, Cdkn1c, and Phlda2 (black) and 

non-imprinted neighboring genes Nap1l4 and Cars (gray). (B) Changes in mean gene expression 

upon CRISPR inhibition (CRISPRi) of the Kcnq1ot1 lncRNA. Genes contained within the 

Kcnq1ot1-associated domain (e.g. Cdkn1c, Phlda2, Slc22a18) are shown in black and genes 

outside the domain (e.g. Cars, Nap1l4) are shown in gray. Error bars represent standard 

deviation. (C) Changes in mean gene expression upon doxycycline mediated induction (+Dox) 

of Kcnq1ot1 relative to cells with no doxycycline (-Dox). Genes contained within the Kcnq1ot1-

associated domain (e.g. Cdkn1c, Phlda2, Slc22a18) are shown in black and genes outside the 
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domain (e.g. Cars, Nap1l4) are shown in gray. Error bars represent standard deviation. RNA-

FISH of inducible line with or without addition of doxycycline; probes aligned against two 

separate regions of Kcnq1ot1 lncRNA in two separate colors. 

  



 

 

167 

Figure 3 

 
Figure 3: Kcnq1ot1 transcriptionally silences imprint-target genes in a SHARP-dependent 

manner. (A) RT-qPCR analysis of two lines engineered to have homozygous deletions of the 

SHARP binding site (Delta SBS) within Kcnq1ot1. (B) Mean gene expression differences of 

Kcnq1ot1-regulated and Kcnq1ot1-non-regulated genes between induced (+Dox) and non-

induced (-Dox) samples treated with DMSO (left) or the HDAC inhibitor, Trichostatin A (TSA) 
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(right). Error bars represent standard deviation. (C and D) CDKN1C is repressed by SHARP in a 

SHARP-dependent manner. Data presented is GapdH-normalized gene expression to parent 

control line (SHARP Deletion) and relative fold change from sequencing data between control 

and rescue (SHARP Rescue). Primer targeting SHARP was designed against gRNA-targeted 

region (SHARP Exon 3-5). (E) Cartoon of Kcnq1ot1-mediated compartmentalization of SHARP 

in the Kcnq1 topological associated domain. (F) Flow cytometry analysis of synthetic 

recruitment of select RNAs to PGK-tGFP locus. Data is presented as normalized mean 

fluorescence intensity, with experimental conditions normalized to mCherry control. Standard 

deviation is presented as inter-experimental variability between two replicate experiments. 
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Figure 4 
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Figure 4: SHARP-RNA interactions are pervasive throughout the nucleus. (A) Input 

normalized enrichment plot of SHARP CLAP-Seq to Dleu2 and 2610035D17Rik lncRNAs, 

along with confocal 3D image reconstruction of mouse embryonic stem cell, visualized with 

SHARP immunostaining and Dleu2 RNA-FISH. (B) Input-normalized enrichment plot of 

SHARP CLAP-Seq to Rbm25 and Eif4e mRNA. (C) Representation of SHARP-RNA 

interactions identified from mouse embryonic stem cell SHARP CLAP-Seq. (D) Input-

normalized enrichment plot of SHARP CLAP-Seq to Zc3h11a, Jarid2, and Spen (SHARP) 

mRNAs across mouse (blue) and human (red). (E and F) Genome-wide localization of 

individual (E) SHARP-interacting lncRNAs (blue) and (F) SHARP-interacting pre-mRNAs 

(red). Malat1, while not a SHARP-interacting lncRNA, is included to contrast cis versus trans 

localization on chromatin.  
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Figure 5 

 
Figure 5: SHARP aggregates in a RRM- and IDR-dependent Manner. (A) (Top) 3D-

Structural Illumination Microscopy 125 nm optical sections of FL-SHARP (left) and Delta 

RRM-SHARP (right) and z-projections (bottom) Halo-tagged FL- and Delta RRM- 

SHARPJF646. FL-SHARP localizes in foci throughout the nucleus (zoom in panels 1-2), while 

Delta RRM-SHARP leads to diffusive localization. Bar: 5µm, insets: 0.5µm (magnifications). 

Intensities are depicted in 16-color grading from black (minimum) to white (maximum). 

Diagram of the functional domains of the Delta RRM SHARP mutant, generated by deletion of 

the first 591 amino acids is shown above. B) Images representing localization of meGFP-tagged 

FL-SHARP, Delta RRM-SHARP, Delta IDR-SHARP, as well as controls, in transiently 

transfected HEK293T cells. Images shown as max projections; scale bars show 10 µm. 
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Table 1: List of High Confidence SHARP-Interacting RNAs 
 
RNA 
Class Gene Symbol Name 
mRNA Aebp2 AE binding Protein 2 
mRNA Alg13 Asparagine-Linked Glycosylation 13 
mRNA Arl15 ADP-Ribosylation Factor-like 15 
mRNA Eif4e Eukaryotic Translation Initiation Factor 4E 
mRNA Fkbp3 FK506 Binding Protein 3 
mRNA HnrnpC Heterogeneous Nuclear Ribonucleoprotein C 
mRNA Jarid2 Jumonji, AT- Rich Interactive Domain 2 
mRNA Luc7l2 Luc7-like 2 
mRNA Mbtd1 MBT Domain Containing 1 
mRNA Psme4 Proteasome Activator Subunit 4 
mRNA Rbm25 RNA Binding Motif Protein 25 
mRNA Serbp1 Serpine1 mRNA Binding Protein 1 
mRNA Smg1 SMG1 Homolog, Phosphatidylinositol 3-kinase related kinase 
mRNA Spen Split Ends Transcriptional Repressor (SHARP) 
mRNA Sumo2 Small Ubiquitin-like Modifier 2 
mRNA U2surp U2 snRNP-Associated SURP Domain Containing 
mRNA Ube2d3 Ubiquitin-conjugating enzyme E2D 
mRNA Ubxn2a UBX Domain Protein 2A 
mRNA Zc3h11a Zinc Finger CCCH Type Containing 11A 
mRNA Zfp42 Zinc Finger Protein 42, Rex-1 

lncRNA 2610035D17Rik 
Embryonic stem cell SHARP-Associated Long Coding 
Transcript 1, eSalt1 

lncRNA 1810026B05Rik Chaserr (CHD2 adjacent suppressive regulatory RNA) 

lncRNA Dleu2 Deleted In Lymphocytic Leukemia 2 

lncRNA Kcnq1ot1 KCNQ1 overlapping transcript 1 

lncRNA Pvt1 Pvt1 oncogene 

lncRNA Xist X inactive specific transcript 
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1. ABSTRACT 

During early T-cell development, multipotent hematopoietic progenitor cells systematically lose 

alternative cell fate potential and acquire components of the T-cell developmental program. 

Notch signaling is critical for early T-cell development and lineage commitment, however in 

spite of this essential role, the transcriptional regulation and downstream targets of Notch 

signaling remain unknown. One important regulator of Notch signaling is the SMRT/HDAC1 

Associated Repressor Protein (SHARP), which has been demonstrated to act as a transcriptional 

repressor and negative regulator of the pathway in other contexts. In contrast to Notch pathway 

gain of function (which results in ectopic T-cell differentiation and tumorigenesis), SHARP 

deficiency results in stage-specific developmental delay. This suggests that SHARP’s 

relationship to Notch activity may be more nuanced in early T-cell development. Here we 

demonstrate that SHARP acts to buffer a Notch-mediated Incoherent Feedforward Loop. By 

repressing a key negative regulator of Notch activity, Notch-Regulated Ankyrin Repeat Protein 

(Nrarp), SHARP exerts an overall positive influence on the circuit. SHARP is also a well-defined 

RNA-binding protein. We demonstrate that SHARP can recognize its own pre-mRNA and 

participate in RNA-mediated autofeedback, suggesting that RNA-binding may add an additional 

layer of regulatory complexity to developmentally sensitive circuits and processes. 

2.0 INTRODUCTION 

2.1 NOTCH SIGNAL TRANSDUCTION AND EARLY T-CELL DEVELOMPENT 

Early T-cell development is a highly stereotyped biological process, through which multipotent 

hematopoietic progenitor cells systematically lose alternative cell fate potential and acquire 
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components of the T-cell developmental program1. Notch signaling is critical for early T-cell 

development and lineage commitment, and dysregulation of the pathway has been linked to a 

variety of hematologic and solid malignancies, including T-Acute lymphoblastic leukemia and 

pancreatic cancer etc..1-4 

At its core, Notch signaling relies on the interactions between Notch-family receptors and their 

cognate, transmembrane-bound Delta-like/Jagged family ligands. Upon ligand recognition and 

binding, Notch receptors undergo a series of proteolytic cleavage events. This results in the 

release and translocation of Notch intracellular domain (NotchICD) into the cell nucleus. Within 

the nucleus, NotchICD can then interact with its DNA-binding partner, Recombination Signal 

Binding Protein-Jk (RBPJk, also known as CSL or SuH), to activate expression of target genes 

(Figure 1)3-6. Despite the essential role for Notch signaling in early T-cell development, its 

transcriptional regulation and downstream targets remain critical mysteries in the field. 

2.2 THE RELATIONSHIP BETWEEN SHARP AND NOTCH PATHWAY REGULATION IS 

COMPLEX 

One important regulator of Notch signaling is SMRT/HDAC1 Associated Repressor Protein 

(SHARP), also known as Split Ends Transcriptional Repressor (Spen) or Msx2-Interacting 

Nuclear Target Protein (Mint)7-10.  SHARP is a member of the Split Ends protein family, which 

consists of SHARP, RBM15, and RBM15B11. It is an approximately 3600 amino acid protein 

and contains four N-terminal RNA-Recognition Motifs and a C-terminal Spen Paralog and 

Ortholog C-terminal (SPOC) domain, demonstrated to be responsible for recruitment of SMRT 

(Silencing Mediator for Retinoid or Thyroid-Hormone Receptor, also known as Nuclear 

Receptor Co-Repressor 2 or NCOR2) and ultimately transcriptional silencing12-13. 
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SHARP has been shown to compete with NotchICD for RBPJk binding and suppress Notch-

mediated gene activation; it is thought to act as a transcriptional repressor, recruiting co-

repressive complexes to remodel chromatin and repress genomic loci9,14-16,12. Moreover, SHARP 

has been demonstrated to regulate several Notch-mediated processes, including marginal vs. 

follicular B-cell choice16. Despite evidence supporting SHARP’s role as a negative regulator of 

Notch in other developmental contexts, its relationship to Notch signaling is unclear in early T-

cell development. In contrast to Notch pathway gain of function which results in ectopic T-cell 

differentiation and tumorigenesis, SHARP deficiency results in stage-specific developmental 

delay15,17. What is the relationship between SHARP and Notch signaling in early T-cell 

development, and what are possible impacts of SHARP’s ability to recognize RNA? 

3.0 RESULTS 

3.1 RESULTS: SHARP DEFICIENCY DOES NOT STRICTLY PHENOCOPY NOTCH GAIN 

OF FUNCTION  

We first aimed to recapitulate the developmental phenotype associated with SHARP 

deficiency15. Cas9-expressing E13.5 fetal liver progenitors were retrovirally transduced with 

pools of guide RNA retroviruses targeting either Luciferase (SgControl), IL2r⍺ (CD25, 

SgIL2r⍺), or Spen, the gene body for SHARP (SgSpen). Transduced cells were sorted and later 

differentiated on OP9-Dl1 stromal layer with supportive cytokines for 4 and 7 days prior to 

analysis via flow cytometry (see Methods). We specifically looked for differences in the 

proportions of early pro-T cell progenitors (hereby referred to as DN1: CD44+CD25-; DN2: 

CD44+CD25+; DN3: CD44-CD25+; and DN4: CD44-CD25-)18-19. We observed an enriched 

DN1 compartment in SgSpen samples compared to SgControl samples, recapitulating the 
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development delay observed in Tsuji et al 2007 (Figure 2A)15. This trend continued on day 7 of 

analysis (Figure 2B). 

To complement our primary cell experiments, we repeated CRISPR/Cas9-based targeting in 

SCID.adh.2c2 cells, a DN3-like T-cell leukemia line originally isolated and subcloned from a 

Severe Combined Immunodeficiency T-cell lymphoma20. In comparison to ex vivo differentiated 

primary hematopoietic progenitors, SCID.adh.2c2 cells exhibit gamma-secretase-dependent, 

stromal-layer independent activation of Notch signaling. SCID.adh.2c2 cells are much more 

robust than primary cells and are more amenable to downstream genetic, pharmacologic, and 

biochemical manipulation.  

After transducing SCID.adh.2c2 cells with retroviruses encoding Cas9 and gRNAs as before, we 

performed flow cytometry against Il2r⍺ (CD25), an established Notch responsive cell-surface 

marker21-22. Surprisingly, we did not initially observe a change in CD25 cell-surface expression 

upon SHARP knockout. To rule out the possibility that phenotypes associated with SHARP 

deficiency were outside the sensitivity range of our system, we repeated CRISPR/Cas9 targeting, 

but additionally cultured cells in media supplemented with either DMSO vehicle or titrated 

amounts of Gamma Secretase Inhibitor (GSI) prior to flow cytometry analysis. We observed a 

modest decrease in CD25 signal in SHARP knockout cells compared to control, which became 

more pronounced with increasing concentration of GSI (Figure 2C). As with previous studies of 

Notch signaling and SHARP in early T-cell development, this GSI Hypersensitivity phenotype 

was in stark contrast to those observed upon over-expression of dominant active Notch 

(NotchICD) (Figure 2D)17,15. 
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3.2 SHARP NEGATIVELY REGULATES NRARP 

We wanted to better understand the genetic circuitry underlying SHARP deficiency and the 

observed GSI Hypersensitivity phenotype. To address this, we performed RNA-Sequencing in 

SHARP knockout and control cells, cultured with various concentrations of GSI. Among the 

most statistically significant, differentially expressed genes was Notch-Regulated Ankyrin 

Protein (Nrarp), a well-characterized negative regulator of Notch-mediated transactivation 

(Figure 2A)23. Nrarp has been shown to form a ternary complex with NotchICD and SuH, and it 

has been postulated to reduce NotchICD protein levels23-24. Interestingly, Tsuji et al also observed 

Nrarp up-regulation in SHARP knockout DN1 cells in their 2007 study, and Yun et al. 

demonstrated that Nrarp is sufficient to induce a DN1-DN2 developmental delay in early pro-T-

cells, similar to those observed by Tsuji et al. and by our group15,25. Given the strict requirement 

for Notch pathway signaling in early T-cell development and the regulatory relationship between 

Nrarp and Notch, this is an example of a Notch-mediated Incoherent Feedforward Loop, with 

SHARP-repression of Nrarp exerting an overall positive input on Notch signaling and 

developmental progression. In addition to Nrarp, several other SHARP-regulated genes appear to 

be Notch pathway-regulated, including Cpa3 (Carboxypeptidase A3, Mast Cell) and Sla (Src-like 

Adaptor) (Table 1 and 2). It should be noted that there are only 13 differentially expressed, 

statistically significant genes upon SHARP deficiency, which may reflect incomplete knockout 

or severe fitness deficits (Figure 2A). Therefore, the full expression overlap between SHARP 

deficiency and Notch-regulation remains to be determined. 
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3.3 NRARP IS SUFFICIENT FOR GSI HYPERSENSITIVITY 

Since Yun et al. demonstrated that Nrarp is sufficient to phenocopy the developmental delay 

observed with SHARP deficiency, we wanted to test if this were also true with respect to the GSI 

Hypersensitivity phenotypes observed25. To do this, we retrovirally transduced SCID.adh.2c2 

cells with either Empty Vector Control or an Nrarp over-expression vector and subjected cells to 

the GSI hypersensitivity assay. We observed downregulation of CD25 upon Nrarp over-

expression, mimicking the deficits observed upon SHARP knockout and demonstrating that 

Nrarp is sufficient to induce GSI Hypersensitivity (Figure 3B). 

3.4 SHARP ACTS IN AN NRARP-DEPENDENT MANNER 

To test if SHARP acts in an Nrarp-dependent manner, we isolated Cas9- and gRNA-expressing 

subclones (targeting either Luciferase or Spen) and additionally transduced subclones with 

retroviruses encoding gRNAs targeting Luciferase or Nrarp, along with an NGFR cell-surface 

receptor for gating. We subsequently repeated the GSI Hypersensitivity Assay in these cells and 

were able to effectively compare single knockout (Spen: SgSpen + SgControl ; Nrarp: 

SgControl + SgNrarp), double knockout (SgSpen + SgNrarp), and no knockout (SgControl + 

SgControl) conditions. Although we encountered slight baseline differences in Notch pathway 

activation between SgControl and SgSpen samples in the DMSO vehicle condition, we reasoned 

that this was due to genetic drift from subcloning. We focused instead on the 0.1µM GSI 

condition, since it had enabled us to look at more subtle differences in Notch-mediated gene 

expression previously (Figures 2C and 3B). We observed reversion of GSI Hypersensitivity in 

the SHARP/Nrarp double knockout condition, demonstrating that Nrarp is downstream of 
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SHARP in this circuit and ultimately that SHARP acts to positively buffer Notch signaling in an 

Nrarp-dependent manner (Figure 3C). 

3.5 SHARP PARTICIPATES IN RNA-MEDIATED AUTOFEEDBACK 

SHARP is a well-characterized RNA-binding protein that has been studied extensively within the 

context of nuclear hormone signaling and X-chromosome inactivation12,26-29. Many RNA-

binding proteins exhibit autoregulation, including alternative splicing-coupled nonsense-

mediated decay, poison cassette exon inclusion, RNA destabilization, and control of 3’end 

processing, among other mechanisms30-35. Given its interaction with RNA in other contexts, we 

were interested in characterizing SHARP-RNA interactions within the context of early T-cell 

development. 

To do this, we performed Covalent Linkage Affinity Purification in SCID.adh.2c2 lines 

engineered to express Halo-epitope tagged SHARP and identified interactions between the 

protein and its own mRNA transcript (Spen) within intron 2. This binding interaction was 

conserved among cell types (mouse embryonic stem cell and SCID.adh.2c2) and species (mouse 

and human), leading us to hypothesize that SHARP negatively regulates its own production in 

early T-cell development (Figure 4A, Chapter 3 – Figure 4D). To test the significance of this 

interaction, we generated homozygous SHARP Binding Site deletion lines in mouse embryonic 

stem cells and measured Spen mRNA using RT-qPCR. We observed an increase in steady state 

Spen transcript levels compared to parent line control, demonstrating that SHARP participates in 

autofeedback (Figure 4B). We independently confirmed this finding by analyzing recently 

published RNA-Seq datasets from Dossin et al, who had generated mouse embryonic stem cells 

with SHARP tagged with an auxin-inducible degron13 (Figure 4D). 



 

 

181 

Based on SHARP’s interactions with SMRT and HDAC3 in Xist-mediated silencing, we 

reasoned that HDAC inhibition would also result in an increase of steady state Spen mRNA. To 

test this prediction, we exposed SCID.adh.2c2 cells to several histone de-acetylase inhibitors, 

including Suberoylanilide Hydroxamic Acid (SAHA), RGFP966 (an HDAC3-specific Inhibitor), 

and Trichostatin A (TSA), and observed an increase in steady state Spen levels compared to the 

DMSO vehicle (Figure 4C)36-38. While the effects of deleting the SHARP Binding Site within 

Spen in SCID.adh.2c2 cells or hematopoietic progenitors remain to be explicitly determined, 

these data support the claim that SHARP participates in RNA-mediated autofeedback and match 

previous reports of SHARP’s stable expression profile across T-cell development84. 

 
4.0 DISCUSSION: IMPLICATIONS FOR GENE REGULATORY NETWORKS 

Taken together, our data supports a gene circuit architecture whereby SHARP simultaneously 

buffers a Notch-mediated Incoherent Feedforward Loop and its own production (Figure 5). 

Incoherent Feedforward Loops are named because they contain two branches with opposing 

actions on a particular process. They are a commonly used regulatory architecture, documented 

in bacteria, mouse embryonic stem cells, hematopoietic stem cells, innate immune regulation, fly 

eye development, and downstream of Notch signaling, among other contexts39-49. Incoherent 

Feedforward Loops, like the circuit discussed above, can be used for several different purposes, 

including improving stability and dynamics of a conjoined negative feedback loop, increasing 

gene-regulatory network response time and expression pulsatility, biphasic expression responses, 

fold-change detection, and adaptive tuning of gene expression39,42,49-60. With respect to Notch 

signaling during early T-cell development, SHARP establishes a threshold for the repressor 

Nrarp, which in turn allows sustained Notch signaling15 (Figure 3A). In the absence of SHARP-
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mediated inhibition, upregulated (Notch-induced) Nrarp causes loss of sustained Notch signal 

intensity, resulting in robust developmental delay15,25 (Figure 2A and 2B). 

RNA has already been implicated in Incoherent Feedforward Loops. Several studies examining 

the use of small inhibitory RNAs point towards their utility in establishing homeostatic 

robustness in response to change (rather than generation of expression pulses61-72,49). Through the 

ability to detect their respective mRNA, RNA-binding chromatin regulatory proteins can offer an 

additional layer of regulatory complexity to developmentally sensitive circuits and processes. As 

an example, Notch signal transduction can have variable transcriptional after-effects, based on 

degree of pulsatility73. Circuits stabilized by RNA-binding proteins could off-set 

environmentally variable inputs (as potentially observed with Delta-like ligand availability 

during progenitor migration within the thymic microenvironment) or establish a band-pass 

filtering for sustained effective signal over time. The specific consequences of SHARP’s 

interaction with its own mRNA for regulation of Notch signaling remain to be determined, as 

does the extent to which such a regulatory mechanism may occur in broader development. 

 

5.0 MATERIALS AND METHODS 

 

Experimental Animal Lines and Protocols 

 

Mice: C57BL/6 and B6.Gt(ROSA)26Sortm1.1(CAG-cas9*,- EGFP)Fezh/J (Cas9) mice were 

purchased from the Jackson Laboratory.  All animals were bred and maintained in the California 

Institute of Technology Laboratory Animal Facility under specific pathogen free conditions. The 

protocol supporting animal breeding for this work was reviewed and approved by the Institute 
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Animal Care and Use Committee of the California Institute of Technology (Protocol #1445, 

entitled “Conventional and Immunodeficient Mouse Breeding. Developmental Control of 

Transcription Factors”). 

For primary cell CRISPR knockout experiments, we used F1 progeny of B6 and Cas9 mice. 

Fetal mice were collected from pregnant females at embryonic day 13.5 for fetal liver cell 

collection. Fetal livers were dissected from E13.5 (day of plug, E0.5) C57BL/6 animals. Pooled 

suspensions of FL cells were stained for lineage markers using biotin-conjugated lineage 

antibodies (CD11c, Gr1, TER-119, NK1.1, CD19, F4/80), incubated with streptavidin-coated 

magnetic beads (Miltenyi Biotec), and passed through a magnetic column (Miltenyi Biotec) prior 

to freezedown in media containing 40% Serum and 10% DMSO; male and female embryos were 

pooled together and used in experiments74. 

 

Cell Culture Conditions 

 

SCID.adh.2c2: Scid.adh.2c2 cells were cultured in RPMI1640 with 10% fetal bovine serum 

(Sigma-Aldrich), sodium pyruvate, non-essential amino acids, Pen-Strep-Glutamine and 50 µM 

β-mercaptoethanol as previously described74.  

OP9-Dl1: OP9-Dl1 were cultured as previously described75.  

Mouse Embryonic Stem Cells (mESC): All mouse ES cell lines were cultured in serum-free 

2i/LIF medium as previously described83. SHARP-Binding Site targeting was performed in F1 2-

1 parent line, a F1 hybrid wild-type mouse ES cell line derived from a 129 × castaneous cross 

(provided by K. Plath). 
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Retroviral Infection: Non-TC treated plates were coated overnight at 4C with 500µl of 50ug/ml 

Retronectin (Takara) in 1X Sterile Filtered PBS per well. On the following day, wells were 

briefly rinsed with 1ml of sterile-filtered 1X PBS, before being exposed to MCSV-based 

retroviral supernatants. Retroviral coated plates were centrifuged at 2000G X 2 hrs X 32C and 

excess unbound virus was rinsed away with 1ml of sterile-filtered 1X PBS. 250-500K 

SCID.adh.2c2 cells were then added to each respective well, centrifuged at 800 RPM X 20 

minutes X 32C, and then left to incubate with virus for 24hrs at 37C prior to further downstream 

experiments. For primary cell experiments, Lin- Fetal Liver Precursors (FLPs) were cultured in 

OP9 media supplemented with 5ng/ml Flt3, Il7, and SCF for 6-12 hours prior to retroviral 

infection. Cells were subsequently transferred to retrovirus-coated wells as previously described, 

centrifuged at 800 RPM X 20 minutes X 32C, and left to incubate with retrovirus for 48hrs at 

37C prior to fluorescence activated cell sorting (FACS). 

OP9-Dl1 Co-Culture and Pro-T Cell Ex vivo Differentiation: Following FACS for Lin-, 

mTurquoise2+, CD27+, cKIT+ precursors, cells were seeded onto prepared OP9-Dl1 stromal 

layers, with media supplemented with 5ng/ml Flt3 and Il7. Cells were analyzed on Day 4 of co-

culture and re-seeded to new OP9-Dl1 stromal layers with media supplemented with 1ng/ml Il7. 

Cells were subsequently analyzed on Day 7 of co-culture. Co-culture experiments were 

performed in replicate, starting from retroviral infection and sorting through Day 7 co-culture 

flow cytometry. Data presented in Figure 1 is representative of both co-culture series.  

Gamma Secretase Inhibition (GSI): GSI (InSolution γ-Secretase Inhibitor X - EMD Millipore) 

was administered to SCID.adh.2c2 cells as previously documented in Del Real, 201375. GSI 

dosages were titrated by diluting 2000X stock solutions with additional Dimethyl-sulfoxide 

vehicle prior to 2000-fold dilution in media to working concentrations. Retrovirally transduced 
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SCID.adh.2c2 cells were resuspended and plated in SCID.adh.2c2 media containing working 

concentrations of GSI and allowed to culture for 48hrs prior to flow cytometry analysis or RNA 

harvesting post-FACS. 

Histone De-Acetylase Inhibitor Administration: RGFP966, SAHA, and TSA were diluted in 

DMSO solvent to generate stock concentrations and further diluted in SCID.adh.2c2 media for 

final working concentrations of 0.1µM SAHA, 5µM RGFP966, and 10nM TSA. Cells were 

grown in HDAC Inhibitor media for 48hrs prior to RNA harvesting for RT-qPCR. GapdH-

normalized gene expression was fold-normalized to DMSO Vehicle and averaged across three 

separate Spen-targeting primer pairs. 

Generation of Halo-tagged SHARP SCID.adh.2c2 Line: To generate an N-terminal Halo-

tagged SHARP mammalian expression construct, a LR-compatible pB-Halo-DEST-IRES-eGFP 

destination vector was first generated. Generation of this destination vector made use of the pB-

TAG-ERN backbone (a gift from Knut Woltjen; Addgene plasmid # 80476; 

http://n2t.net/addgene:80476 ; RRID:Addgene_80476) and the coding sequence for the Halo 

epitope (gift from Ward Walkup IV)76. Resulting expression vectors drive protein expression by 

a dox-inducible promoter, contain the rtTA needed for dox induction, and produce an N-

terminally-tagged Halo fusion protein. LR recombination was subsequently performed using the 

Full Length SHARP entry clone (Sp22, gift from Alexander Shiskin) to generate the pB-Halo-

SHARP,IRES-eGFP expression vector. SCID.adh.2c2 cells were transfected using the pB-Halo-

SHARP,IRES-eGFP, along with piggybac transposase (gift from Xun Wang), using a previously 

published Lonza/Amaxa Nucleofection (Solution-V, program D-19) method77. Cells with stable 

integration of the construct were selected using repeated cycles of 2µg/ml doxycycline 

administration, eGFP FACS, and doxycycline removal to generate polyclonal Halo-SHARP 
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SCID.adh.2c2 lines.  

Deletion of SHARP Binding Site in Spen: F1 2-1 line were CRISPR-targeted with gRNAs 

targeting the SHARP-Binding Site identified previously via Covalent Linkage Affinity 

Purification Sequencing (SHARP Binding Site Coordinates: mm10 - chr4:141,520,614-

141,521,890; gRNA sequences were TCTACCGGGAGATCACATGG and 

ACTGTGCCAGGTATCCACTG). Following selection using 1µg/ml of puromycin in standard 

2i culture conditions, transfected cells were allowed to recover in standard 2i media prior to sub-

cloning. Clone were subsequently screened by genomic DNA PCR using primers flanking the 

deletion region (GGAGACGGAAGTTATTTCTATCC and GTTTCTCACTTAACCTGGAGC 

respectively). In contrast to the wild type 1833bp band, successfully targeted alleles would 

produce a 215bp band. Sub-clones homozygous for the targeted allele were subject to RT-qPCR 

and GAPDH-normalized gene expression was further normalized to the F1 parent line. 

Flow Cytometry: Flow cytometry was performed as previously discussed75. More specifically 

for Day 4 and Day 7 Ex Vivo Differentiation studies, cells were stained against cKit, CD45, 

CD44, and CD25 cell-surface markers, as well as 7-AAD to assess viability. For GSI 

Hypersensitivity assays, SCID.adh.2c2 samples were stained against CD25 and NGFR cell-

surface marker and viability was assessed using 7-AAD. 

 

Molecular Biology Protocols 

 

Retroviral Cloning: The NRARP open reading frame was cloned into the pMX-IRES-eGFP 

(MIG, gift from X. Wang and H. Hosokawa) backbone (pMX-NRARP). NotchICD expression 
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vector was also a gift from H. Hosokawa. All retroviruses were packaged as previously 

described81. 

gRNA Retroviral Vector Cloning: gRNA sequences were cloned and packaged as discussed 

previously, with the following modifications74. To enable selection of SHARP and NRARP 

double knockouts, E42 dTet-CFP was modified to replace the CFP selection marker with 

Truncated Human Nerve Growth Factor Receptor (NFGR) (coding sequence from Addgene 

plasmid #27489, a gift from Warren Pear; http://n2t.net/addgene:27489 ; RRID:Addgene_27489) 

to generate E42 dTet-NGFR78. gRNA sequences targeting the Spen gene body were cloned into 

E42 dTet-CFP (GGAGACCGAGACCTCCGCA, TATGAGCGGAGACTCGATG, and 

GACTGGGAGAACTAACACA). Control gRNA sequence, as well as gRNA sequences 

targeting Nrarp gene body were cloned into E42 dTet-NGFR. Nrarp-targeting gRNAs were 

TACACCAGTCAGTCATCGA, GTGCGCAAGGGCAACACGC, and 

GTCTGTGGCGCCGAGCAGG). 

RT-qPCR: Total RNA was extracted from cultured SCID.adh.2c2 or mESCs with Silane beads 

(Sigma) according to manufacturer’s conditions and treated with Turbo DNase (Life 

Technologies) for 15min at 37C to remove genomic DNA. RT reactions were performed 

according to the Superscript II protocol (Thermo Fisher Scientific #18064022) with random 

9mers. qPCRs were performed in technical replicates using a Roche Lightcycler. Plots were 

generated using GraphPad software. ddCt values were calculated by normalizing to GAPDH and 

to samples transfected with control treatment or parent line to compare fold gene expression 

differences between samples82. 

mRNA and RNA-seq library preparation: RNA and RNA-Seq libraries were processed as 

discussed previously74. Total RNA was isolated using an RNAeasy MicroKit (Qiagen) according 
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to manufacturer’s recommendations. Libraries were constructed using NEBNext Ultra RNA 

Library Prep Kit for Illumina (NEB #E7530) from ~1 µg of total RNA following manufacturer’s 

instructions. Libraries were sequenced on an Illumina HiSeq2500 in single read mode with the 

read length of 50 nt according to manufacturer's instructions74. 

SHARP Covalent Linkage Affinity Purification (CLAP): CLAP and associated library-

preparation were performed as previously described (Chapters 2 and 3), with the following 

modifications for suspension SCID.adh.2c2 cells: Halo-SHARP SCID.adh.2c2 cells were 

resuspended in media supplemented with 2µg/ml doxycycline for 48 hours prior to harvesting. 

Cells were washed with 1X PBS, transferred to a 15cm plate and crosslinked on ice using 0.25 J 

cm−2 (UV2.5k) of UV at 254 nm in a Spectrolinker UV Crosslinker. Following UV-cross 

linking, cells were transferred from a culture dish to a 50ml conical vial, washed once with PBS, 

pelleted by centrifugation at 1,500g for 4 min and flash-frozen in liquid nitrogen for storage at     

-80C. 

 

Quantification and Statistical Analysis 

 

Flow cytometry Analysis: When available, median fluorescence intensities were averaged 

between replicate wells within a given experiment. Mean fluorescence intensities were then 

internally normalized to a reference control for fold normalized intensity (please see legend for 

respective reference control used for each experiment). Normalized intensity was then averaged 

between experimental series replicates, with standard deviation representing inter-experimental 

variability. 
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Differential Gene Expression: Calls were made according to previously documented pipelines 

and software packages74. Use of the DeSeq2 package is denoted in respective figure legends, 

with false discovery rate set to 0.05. High Confidence Notch target genes were determined by 

comparing between two separate Notch pathway perturbations: GSI inhibition treatment (0.1µM 

GSI: CD25+ versus CD25- subsets) and over-expression of NotchICD (CD25+ subsets from 

NotchICD versus Empty Vector Control). Notch-dependent genes (GSI-repressed and NotchICD-

enhanced) and Notch-repressed genes (GSI-enhanced and NotchICD-repressed) are presented in 

Tables 1 and 2. Calls were made using DeSeq2 pipeline, with FDR set to 0.05. 

RNA-seq data used in Figure 4D was adapted from Dossin et al., where mouse-ES cells were 

engineered to express SHARP tagged with an auxin-inducible degron13. Fastq files were trimmed 

using skewer and pseudoaligned using Salmon to mm10 using the latest transcripts from 

Gencode (GRCm38_p6)85-86. TPM’s were calculated using Salmon for untreated and 28-hour 

auxin treated samples (3 replicates for each condition)85. TPMs were furthered averaged across 

aligned transcript isoforms and presented in Figure 4D.  

For analysis performed for Chapter 5 - Figure 1, comparing SHARP-mediated differential gene 

expression (log-2 fold change after auxin treatment against untreated control) versus Spen RNA 

localization on chromatin from RNA-DNA SPRITE, log-2 fold changes for each gene with a 1 

Mb window around SHARP, excluding genes that had a mean TPM of zero in either condition 

were plotted on the left y-axis. Weighted SHARP-RNA to DNA contacts from the RNA-DNA 

SPRITE data were counted in 50kb bins around the SHARP locus and plotted on the right y-axis.  

 

CLAP Peaks: Calls and input-normalized enrichments were made using CLIPCLAPEnrichment 

javascript pipeline. Enrichment figures were made with alignments to mm10. 
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7.0 FIGURES 

Figure 1 

 

 

Figure 1: Classic model of Notch signaling. Upon ligand-interaction between Notch receptor 

and its cognate cell-surface bound receptors, Notch Receptor undergoes proteolytic cleavage, 

releasing its intracellular domain to translocate to the nucleus and convert RBP-Jk from 

transcriptional repressor to activator. In this model, SHARP negatively regulates Notch-mediated 

gene expression6,80-81. 
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Figure 2 

 

Figure 2: SHARP deficiency does not functionally phenocopy Notch gain of function. A and 

B) Flow cytometric analysis of ex vivo differentiated Cas9-targeted fetal liver progenitors (FLP). 

Cas9-eGFP expressing E13.5 FLPs were retrovirally transduced with pools of guide RNA 

retroviruses targeting either Luciferase (Control), IL2r⍺, and Spen. Transduced cells were 

differentiated on OP9-Dl1 stromal layer with supportive cytokines for (A) 4 and (B) 7 days prior 

to flow cytometry analysis. (C) Quantification of flow cytometry against Il2r⍺ (CD25) from 

GSI Hypersensitivity Assay Notch Gain of Function

A B

C D
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Gamma Secretase Inhibitor Hypersensitivity Assay from SgControl and SgSpen SCID.adh.2c2 

experimental conditions. Internally normalized to SgControl DMSO vehicle condition (see 

methods) and average of two biological experimental series. (D) Quantification of CD25 flow 

cytometry in SCID.adh.2c2 cells retrovirally infected with Empty Vector Control or Dominant 

Active Notch (NotchICD). Internally normalized to Empty Vector Control DMSO vehicle 

condition and average of two biological experimental series. 
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Figure 3 

Figure 3: SHARP regulates Notch-mediated gene expression in a NRARP-dependent 

manner. (A) Heat map representation of RNA-Sequencing data comparing DMSO exposed 

CD25+ subsets from SgControl and SgSpen transduced SCID.adh.2c2 cells. Average of two 

biological experimental series. Data is represented in log2 fold change. (B) Quantification of 

CD25 flow cytometry from Gamma Secretase Inhibitor Hypersensitivity Assay from Empty 

Vector Control or Nrarp Over-expression vector. Internally normalized to Empty Vector Control 

DMSO vehicle condition (see methods) and average of two biological experimental series. 

(C) Quantification of CD25 flow cytometry from Gamma Secretase Inhibitor Hypersensitivity 

Assay from subcloned SgControl and SgSpen lines, additionally transduced with SgControl, 
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NGFR or SgNrarp, NGFR. Internally normalized to SgControl + SgControl, DMSO vehicle 

condition (see methods) and average of three biological experimental series. 
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Figure 4 

 

Figure 4: SHARP exhibits negative auto-regulation. (A) Input normalized enrichment plots of 

SHARP CLAP-Seq of Spen pre-mRNA transcript, performed in both mouse embryonic stem 

cells and in Halo-SHARP SCID.adh.2c2 lines. Comparison between mouse embryonic stem cell 

and Human Embryonic Kidney 293T SHARP CLAP-Seq is included in Figure 4D of Chapter 3 

of this dissertation. (B) RT-qPCR analysis of two different mouse embryonic stem cell clones, 

harboring homozygous deletion of the SHARP binding site (Delta SBS) within Spen. Expression 

normalized to WT, average of 3 separate primer pairs. (C) RT-qPCR analysis of SCID.adh.2c2 

cells treated with histone de-acetylase inhibitor treatment for 48 hours. Normalized to DMSO 
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vehicle and average of two biological experimental series. (D) RNA-Seq analysis of published 

dataset from Dossin et al. 202013. Authors generated mouse embryonic stem cell harboring 

auxin-degron tagged-SHARP and compared differential gene expression between parent and 

auxin lines, with or without Auxin exposure. Presented are isoform-averaged TPM values of 

Spen transcript, averaged between biological triplicate. 
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Figure 5 

 

 

Figure 5: SHARP positively buffers a Notch-mediated Incoherent Feedforward Loop. In 

early T-cell development, Notch signaling promotes the DN1-DN2 developmental transition, as 

well as production of Nrarp, which simultaneously inhibits this developmental process. SHARP 

negatively regulates Nrarp production, exerting a net positive effect. SHARP negatively auto-

regulates itself, additionally buffering the transcriptional circuit. 

  

SHARP

Notch Signaling

Nrarp

DN1 DN2



 

 

207 

Table 1: List of High Confidence Notch-Dependent Target Genes in SCID.adh.2c2 
 
Gene Symbol Name 
2700054A10Rik Putative Non-Coding RNA 
Afdn Adherens Junction Formation Factor 
Agfg1 Arf-GAP Domain and FG Repeats-Containing Protein 
Agtr1a Angiotensin II Receptor, Type 1A 
Aldh1b1 Aldehyde Dehydrogenase 1 Family, member B1 
Alp1 Alkaline Phosphatase, Intestinal 
Arhgef10l Rho Guanine Nucleotide Exchange Factor 10-like 
Arsi Arylsulfatase i 
Capn5 Calpain 5 

Colq 
Collagen-like Tail Subunit (single strand of homotrimer) of 
asymmetric acetylcholinesterase 

Deptor DEP Domain Containing MTOR-interacting Protein 
Dlg1 Discs Large MAGUK Scaffold Protein 1 
Dsc2 Desmocollin 2 
Dtx1 Deltex 1, E3 Ubiquitin Ligase 
Fkbp5 FK506 Binding Protein 5 
Frmd4a FERM Domain Containing 4A 
Il2ra Interleukin 2 Receptor, Alpha Chain (CD25) 
Itga9 Integrin Alpha 9 
Nav2 Neuron Navigator 2 
Notch1 Notch 1 
Nrarp Notch-regulated Ankyrin Repeat Protein 
Shb SRC Homology 2 Domain-Containing Transforming Protein B 

Slc16a10 
Solute Carrier Family 16 (monocarboxylic acid transporters), 
member 10 

Svep1 
Sushi, von Willebrand factor Type A, EGF, and Pentraxin 
Domain Containing 1 

Tcof1 Treacle Ribosome Biogenesis Factor I 
Tnfrsf8 Tumor Necrosis Factor Receptor Superfamily, member 8 
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Table 2: List of High Confidence Notch-Repressed Target Genes in SCID.adh.2c2 
 
Gene Symbol Name 
5830411N06Rik SCART 2 
Btg2 B cell translocation gene 2, anti-proliferative 
Cpa3 Carboxypeptidase A3, Mast Cell 
Ctsl Cathepsin L 
Dok2 Docking Protein 2 
Fam214a Family with Sequence Similarity 214, Member A 
Glcci1 Glucocorticoid Induced Transcript 1 
Il21r Interleukin 21 Receptor 
Lztfl1 Leucine Zipper Transcription Factor-like 1 
Minpp1 Multiple Inositol Polyphosphate Histidine Phosphatase 1 
Nr3c1 Nuclear Receptor Subfamily 3, Group C, Member 1 
Pdcd4 Programmed Cell Death 4 
Pik3r3 Phosphoinositide-3-kinase Regulatory Subunit 3 
Ptprc Protein Tyrosine Phosphatase, Receptor Type, C 
Rora RAR-Related Orphan Receptor Alpha 
Sdc4 Syndecan 4 
Sla Src-like Adaptor 
Slc22a3 Solute Carrier Family 22 (organic cation transporter), member 3 
Synpo2l Synaptopodin 2 like 

Sys1 
SYS1 Golgi-Localized Integral Member Protein Homology (S. 
cerevisiae) 
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C h a p t e r  5  

CONCLUSION 

 

 

 

A.K. Banerjee and M. Guttman 

 

Modified versions of this conclusion were published as “Banerjee, A. K., Blanco, M. R., Bruce, E. 

A., Honson, D. D., Chen, L. M., Chow, A., Bhat, P., Ollikainen, N., Quinodoz, S. A., Loney, C., 

Thai, J., Miller, Z. D., Lin, A. E., Schmidt, M. M., Stewart, D. G., Goldfarb, D., De Lorenzo, G., 

Rihn, S. J., Voorhees, R. M., Botten, J. W., … Guttman, M. (2020). SARS-CoV-2 Disrupts 

Splicing, Translation, and Protein Trafficking to Suppress Host Defenses. Cell, S0092-

8674(20)31310-6. Advance online publication. https://doi.org/10.1016/j.cell.2020.10.004” ;  

“Quinodoz, S.A., Bhat, P., Ollikainen, N., Jachowicz, J., Banerjee, A.K., Chovanec, P., Blanco, 

M.R., Chow, A., Markaki, Y., Plath, K. and Guttman, M. (2020). RNA promotes the formation of 

spatial compartments in the nucleus. bioRxiv 2020.08.25.267435; doi: 

https://doi.org/10.1101/2020.08.25.267435” ; and  

“Blanco, M.R., Walkup IV, W.G., Bonesteele, G., Banerjee, A.K., Peyda, P., Amaya, E., Guo, J., 

Chow, A., Trinh, V., and Guttman, M. (in submission/review). Denaturing purifications 

demonstrate that PRC2 and other chromatin proteins do not bind directly to RNA in vivo.”  
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1.0 DISCUSSIONS AND IMPLICATIONS 

 

RNA-binding interactions are critical to core cellular function. It is important then to be able to 

accurately identify bona fide RNA-protein interactions. In Chapter 2, we demonstrated that the 

current gold standard approach, Crosslinking Immunoprecipitation (CLIP), does not fully 

exclude interactions that occur in solution (in vitro associations). These artifacts can overshadow 

true interactions or lead to further inaccurate studies. In contrast, we showed that Covalent 

Linkage Affinity Purification (CLAP) can simultaneously identify true interactions while 

resolving in vitro association artifacts and provides a critical new framework for studying bona 

fide RNA-protein interactions in vivo. 

In response to the current COVID-19 pandemic, we used CLAP to ask if RNA is a central target 

of host cell takeover by SARS-CoV-2 and observed that the virus uses at least three RNA-

mediated mechanisms to blunt the innate immune system’s ability to engage the interferon 

pathway. More specifically, we identified interactions between SARS-CoV-2 NSP16 with the 

U1 and U2 snRNAs to inhibit pre-mRNA splicing, NSP1 with the 18S ribosomal RNA to inhibit 

mRNA translation, and NSP8/9 with 7SL RNA to inhibit protein trafficking. We expect that 

mechanistic insights gained from these three examples, as well as the comprehensive RNA 

binding maps of the SARS-CoV-2 proteins presented in Chapter 2, will be a critical resource for 

the larger scientific community working to develop therapeutic strategies and dissect 

mechanisms of viral protection. More generally, global mapping of RNA binding by viral 

proteins via CLAP could be a generally applicable strategy for rapidly characterizing 

mechanisms and potential therapeutic strategies for newly emerging pathogenic RNA viruses, as 

well as defining new targets for well-established viruses. 
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In Chapter 3, we examined the role of RNA-binding interactions in gene regulation. More 

specifically, we leveraged the CLAP method to study a key, RNA-binding, chromatin regulatory 

protein called SHARP. We demonstrated that the paternally imprinted long non-coding RNA 

(lncRNA) Kcnq1ot1 acts to transcriptionally repress targets in a SHARP-dependent manner, 

similar to the activity of Xist lncRNA during X-chromosome inactivation. This work supports a 

broader model of RNA-mediated gene regulation in the nucleus, where RNA can recruit and 

concentrate proteins to defined chromatin territories to spatially amplify local regulatory signals 

in cis1-2. Kcnq1ot1 recruits SHARP to a defined gene cluster to silence target genes. Through its 

avidity to RNA and its intrinsically disordered domains, SHARP can then aggregate and 

compartmentalize over this chromatin territory. Control over the entire gene cluster and RNA-

mediated compartment can therefore be coordinated from a single cis regulatory DNA element: 

the Kcnq1ot1 promoter (also known as the Kcnq1 Imprint Control Region)3-4. 

What was most surprising to us from this dataset was the identification of SHARP/pre-mRNA 

interactions, which actually outnumber the SHARP/lncRNA interactions observed. Many of 

these pre-mRNAs localize broadly to chromatin in a similar manner to lncRNAs. These data 

suggest that RNA-mediated compartmentalization of effector proteins may act more pervasively 

to coordinate gene regulation across the nucleus. While the reasons underlying SHARP’s 

interaction with chromatin-retained pre-mRNAs and possible gene regulation in cis are currently 

unknown, it is interesting to note that several pre-mRNA targets are documented to be 

haploinsufficient or have pathologies sensitive to dosage5-8. If these SHARP/pre-mRNA 

interactions are capable of seeding functional regulatory compartments within the nucleus (as 

suggested by preliminary data from SHARP’s interaction with Spen mRNA on expression of 

neighboring genes adjacent to Spen) it questions a fundamental dichotomy within RNA biology 
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(that is regulatory RNA and coding RNA are mutually exclusive) and expands the field’s 

definition of functional regulatory RNAs (Figure 1). 

In Chapter 4, we dissected a SHARP-mediated transcriptional circuit in early T-cell 

development. Given previous evidence demonstrating SHARP to be a negative regulator of 

Notch signaling in other hematopoietic contexts, we were surprised to observe that SHARP loss 

of function does not functionally phenocopy Notch gain of function in this system9-10. Through a 

series of targeted perturbations, we demonstrated that SHARP negatively regulates a negative 

regulator of Notch (Nrarp) and in extension, positively buffers a Notch-mediated Incoherent 

Feedforward Loop11. We also identified an interaction between SHARP and its mRNA using 

CLAP and showed that SHARP autoregulates its own transcription. 

Incoherent Feedforward Loops, like the circuit discussed above, are commonly used regulatory 

circuits that can be used for several different purposes, including improving stability and 

dynamics of a conjoined negative feedback loop, increasing gene-regulatory network response 

time and expression pulsatility, biphasic expression responses, fold-change detection, and 

adaptive tuning of gene expression12-25. Although the specific consequences of SHARP’s 

interaction with its own mRNA on Notch signaling remains to be experimentally determined, 

circuits stabilized by RNA-binding proteins could off-set environmentally variable inputs (as 

potentially observed with Delta-like ligand availability for progenitors as they migrate within the 

thymic microenvironment) or establish a band-pass filtering for sustained effective signal over 

time.  
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2.0 FUTURE DIRECTIONS 

As stated very eloquently by Alan Chalmers regarding the progress of scientific understanding, 

“[w]e start off confused and end up confused on a higher level”26. While the three presented 

studies illustrate the diversity of roles played by RNA-interactions in development, cellular 

homeostasis, and disease, our data poses many additional questions for discussion and further 

investigation.  

To begin, what is the implication of an interaction between RNA and an RNA-binding protein? 

Important clues for tackling such questions include the function of the specific RNA or RNA-

binding protein in question (if available), localization of these components within the cell (if 

available), nucleotide resolution localization of the RNA-binding protein on its interacting RNA, 

and context of identification. For some interactions, interpretation may be clear. For example, in 

Chapter 2 we observed specific interactions between NSP16 and the U1 and U2 snRNAs, 

specifically at the splice site recognition sequence of U1 and adjacent to the branch point 

recognition sequence of U2; given the importance of these snRNAs in pre-mRNA splicing, it 

was straightforward to hypothesize the implications of such a viral protein/host RNA 

interaction27.  

While it is tempting to apply a reductionist framework to viral protein/host RNA interactions and 

assume that all interactions must promote viral fitness, such hypothesis may not be justified. For 

example, we do not understand the reasons underlying interactions between NSP12 and JUN 

mRNA, NSP9 and COPS5 mRNA, or those between the Nucleocapsid protein and a specific 

subset of 83 host mRNAs. Further study is required to determine the role, if any, that these 

interactions play in viral propagation. 
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There are many cases where cellular context is not as clear (Figure 2). For example, Lamin B 

Receptor (LBR) protein plays a key role in tethering the inactive X-chromosome to the nuclear 

lamina and also has annotated sterol reductase enzymatic activity28-29. Given the interaction 

between LBR and Dsg2 (Desmoglein 2) pre-mRNA or Ttc28 (Tetratricopeptide Repeat Domain 

28) pre-mRNA, it may or may not be reasonable to assume all LBR interactions act in a similar 

manner. While the CLAP method has enabled genome-wide, high-specificity identification of 

RNA-binding interactions, it is now equally (if not more) important to develop massively 

multiplexed, hypothesis-agnostic, experimental perturbation systems to dissect their significance 

without reliance on a priori knowledge. 

Historically, much has been learned by bootstrapping upon previously characterized biological 

mechanisms and using this approach to understand SHARP is no exception. The interactions of 

SHARP with RNA, as well as its role in gene regulatory networks and chromatin regulation are 

well known; SHARP is therefore amenable to carefully designed experiments with clear, logical 

and testable predictions9,30-37. Its functional interactions with the Kcnq1ot1 lncRNA, along with 

the identification of several more targets, point towards pervasive mechanisms of RNA-mediated 

gene regulation and compartment formation within the nucleus. However, this raises several new 

questions to be explored.  

First given the similarities between Xist- and Kcnq1ot1-mediated silencing, it remains to be 

determined why Xist is capable of establishing durable transcriptional memory, while Kcnq1ot1 

is not38-40. Second as discussed in Chapter 4 within the context of Incoherent Feedforward Loops, 

transcriptional circuits stabilized by RNA can promote robustness in response to change, 

potentially off-setting environmentally variable inputs or establishing band-pass filtering25,41-52. 
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SHARP autoregulates its transcription. Therefore, the role of SHARP autoregulation in 

compartment robustness and crosstalk remains to be explored (Figure 3).  

We began discussing the advantages of RNA as a flexible biomolecule with exclusive 

capabilities based on its unique attributes. We showed that RNA plays a key role in core cellular 

machinery, such as pre-mRNA splicing and translation, and as such, is the target of host-cell 

takeover by SARS-CoV-2. We showed that RNA can spatially amplify regulatory signals within 

the nucleus to coordinate gene regulation in cis and speculate that it has yet uncharacterized roles 

in nuclear compartment stabilization and crosstalk. It is therefore appropriate to conclude with a 

simple yet open-ended question: How deep does the RNA rabbit hole go? 
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4.0 FIGURES 
 

Figure 1 

 
Figure 1: Preliminary evidence of cis gene regulation by SHARP/pre-mRNAs. Comparison 

of SHARP-mediated differential gene expression, published in Dossin et al., with localization of 

Spen RNA on chromatin from RNA-DNA SPRITE (both datasets aligned to mm10)37,53. Data is 

presented along linear chromatin distance, with genes centered around Spen gene body 

(displayed in red). Differential gene expression for individual genes is plotted in black, while 

localization of Spen RNA on chromatin is plotted in blue. For quantification methods used, 

please refer to Chapter 4 Materials and Methods section. 
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Figure 2 

 
Figure 2: CLAP reveals a growing number of uncharacterized RNA-protein interactions. 

Input normalized enrichment plot of LBR CLAP-Seq to Dsg2 and Ttc28 pre-mRNAs, performed 

using mouse embryonic stem cell lines engineered with endogenous integrations of Spy-V5 tags 

into the LBR gene body. 
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Figure 3 
 
 

 
 
Figure 3: Shared effector proteins enable compartment cross-talk. Upon Xist-mediated 

silencing, SHARP is dynamically recruited and concentrated to the inactive X-chromosome. 

Recruitment of SHARP away from its own locus would lead to de-repression and lack of 

autoregulation, resulting increased Spen transcription and SHARP protein production to re-

establish autoregulation. 

 
 

 

 

 


