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ABSTRACT 

Early T-cell development converts multipotent precursors to committed pro-T cells, 

silencing progenitor genes while inducing T-cell genes. However, both the underlying steps 

of developmental progression and the regulations involved have remained obscure. Although 

some of the expressions of important regulators in early T-cell development have been 

studied in bulk populations, the nature of heterogeneity in this constantly refreshed 

developmental continuum makes it difficult to understand the developmental trajectories that 

the cells have undergone using bulk analysis, both in natural conditions and under gene 

perturbations.  

Combining droplet-based single cell RNA sequencing (scRNA-seq), deep-sequenced whole-

transcript scRNA-seq, and seqFISH for key regulatory genes, we established regulatory 

phenotypes of sequential ETP subsets; confirmed initial co-expression of progenitor- with 

T-cell specification genes; defined stage-specific relationships between cell-cycle and 

differentiation; and generated a pseudotime model from ETP to T-lineage commitment, 

supported by RNA velocity and transcription factor perturbations. This model was validated 

by developmental kinetics of ETP subsets at population and clonal levels. The results imply 

that multilineage priming is integral to T-cell specification in natural developing pro-T cells 

in the thymus.  

Moreover, we examined the functional implications of some of the transcription factors (TFs) 

through bone marrow (BM) derived ex-vivo differentiation systems. Using scRNA-seq, Cell 

Hashing, and a pool-based CRISPR/Cas9 perturbation system, we established the normal 

and perturbed developmental trajectories before and after the T-lineage commitment stages. 

Our analysis revealed that, without the essential lineage commitment TF, Bcl11b, the 

developing early T cells immediately realized the lack of the essential regulator around the 

proliferating late DN2a stage. But instead of pushing the developmental path backwards to 

resemble the earlier stage of uncommitted cells, cells lacking Bcl11b underwent a diverging 

route of accumulation of ‘non-T’ genes that are not naturally expressed in earlier stages, 

potentially leading to the eventual loss of Notch responses. Our results also revealed the 
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complex regulations by TFs that set up the earliest T-lineage progression and commitment 

conditions. The SCENIC analysis suggested that Gata3 and Tcf7, despite both being 

important regulatory factors for T-lineage progression, have very different regulatory roles 

in controlling proliferation and suppressing myeloid lineages. Furthermore, pseudotime 

analysis also showed that some of the stem and progenitor genes and ‘multilineage’ 

associated genes expressed by early pro-T cells potentially hold back the T-lineage 

differentiation speed. In summary, our study leveraged both in vivo thymic pro-T cells’ 

developmental trajectory obtained through single-cell analysis and ex-vivo derived T cells 

for internal-controlled perturbations, and revealed some profound roles of TFs in regulating 

early T-cell differentiation processes. 
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1 
C h a p t e r  1  

INTRODUCTION 

In vertebrates, hematopoietic stem and progenitor cells generate an exceptional diversity 

of cell types throughout life, and this poses a series of challenges for explanation of 

developmental dynamics, developmental choice hierarchies, and their underlying 

mechanisms of regulations. T cells develop in a continuous flux well into adulthood (rev. 

in Rothenberg, 2019), and they are also of particular interest as one of the ‘central players’ 

in the adaptive immune system of mammals. Under the thymic signaling environment, 

lymphoid-primed multipotent precursors begin their differentiation ‘journey’ to cells that 

will irreversibly activate the transcriptional program that confers T-cell identity and 

excludes other lineage possibilities, this process is termed as ‘early T-cell development’. 

Therefore, early T-cell development is a particularly accessible and functionally relevant 

system for studying the sequence of regulatory changes through which stem and progenitor 

cells resolve their multipotency to select a differentiation pathway.  

The Classic Understandings of Hematopoiesis 

Hematopoietic cells have traditionally been divided into erythroid/megakaryocytic 

(platelets and erythrocytes), myeloid (i.e. monocytes, macrophages, neutrophils, other 

granulocytes, mast cells, and dendritic cells), and lymphoid (T cells, B cells, NK cells, 

nonkiller ILCs) branches. For many years, T cells have been considered a subspecies of 

lymphoid fate and closely related to B cells, as shown in Figure 1 (Orkin and Zon, 2008). 

The author will revisit the topic about where exactly T cells should be positioned among 

the hematopoietic lineages, but it is important to acknowledge that many early lineage 

decisions in this hematopoiesis map shown in Figure 1 have been extensively studied and 

validated.  
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Figure 1. The Classic View of Hematopoiesis Hierarchy and the Regulators (adapted from Orkin 

and Zon, 2008). The arrows represent the hierarchical relationship between progenitors and different 

populations. Red bars indicate the stages where hematopoietic development is blocked in absence 

of a given TF, as determined by conventional gene knockouts. LT-HSC, long-term hematopoietic 

stem cell; ST-HSC, short-term hematopoietic stem cell; CMP, common myeloid progenitor; CLP, 

common lymphoid progenitor; MEP, megakaryocyte/erythroid progenitor; GMP, 

granulocyte/macrophage progenitor; RBC, red blood cell. 
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On the very top of the hematopoietic hierarchy is the hematopoietic stem cell (HSC). 

HSCs are defined operationally by their well-known capacity to reconstitute the entire 

blood system of a recipient. As intrinsic determinants of cellular phenotype, transcription 

factors (TFs) provide an entry point for resolving how different lineages are related and 

how lineage-restricted differentiation is programmed (Orkin, 2000; Orkin and Zon, 2008).   

HSCs express many non-HSC specific TFs that are shared with different lineages, which 

include Runx1 (runt-domain protein), Scl/tal1 (the basic helix-loop-helix (bHLH) factors), 

Lmo2 (LIM domain-containing protein), Mll (SET-domain containing histone 

methyltransferase), GATA-2 (zinc finger transcription factor), and several others. The 

lineage specification process involves fundamental changes of the cell’s gene expression 

program regulated and ‘coordinated’ through essential lineage associated-TFs, some as 

summarized in Figure 1 (Orkin and Zon, 2008). It is important to note that these TFs’ 

regulatory modules, partially due to the nature of their regulatory requirements, in addition 

to the involvement of cytokines and various signaling components, survival and ‘self-

renewal’ is often intertwined with the TF-regulated differentiation process. And for reasons 

like this, hematopoietic cell fate is also intertwined with the origins of leukemias.  

It is also important to point out that lineage restricted TFs are more or less limited to their 

own subtree. For instance, GATA-1 is highly expressed in megakaryocytic/erythroid 

progenitors (namely MEPs) that give rise to megakaryocyte and red blood cell precursors, 

whereas a “myeloid factor,” such as PU.1 and C/EBPα, is present in GMPs. However, 

upper in the hierarchy, like HSCs or cells at other transient or stable multipotent stages, 

can co-express genes associated with multiple lineages, even within single cells, albeit 

generally at low levels – a phenomenon termed ‘multilineage priming’ (Hu et al., 1997; 

Miyamoto et al., 2002; Ng et al., 2009; Olsson et al., 2016; Orkin, 2003). Multilineage 

priming suggests that the fate of these immature cells is not ‘sealed’, and that lineage 

selection is likely a process in which alternative possibilities are eliminated. The 

coexistence of transcription factors representing different lineages within a common 

progenitor cell could also offer the potential for immediate “crosstalk” between different 
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fates at the molecular level, or to simply delay the differentiation choice to allow proper 

‘additional regulatory apparatus’ to be established. In Chapter 2, the author will expand the 

discussion and significance of multilineage priming in the early T developmental system 

in depth. 

The Current View of Where The ‘T-Lineage’ Resides on the Hematopoiesis Map 

In regards of the T lymphocytes’ position on the hematopoiesis map, as seen in Figure 1, 

T lymphocytes have been often grouped with B lymphocytes and both considered derived 

from common lymphoid progenitors (CLP). The classic view has been based on the unique 

antigen receptor generation strategy that T and B cells share, i.e. RAG-mediated 

recombination, same RAG1/2 enzymes and selection mechanisms, so it was predicted that 

early separation had occurred between precursors that could generate lymphocytes and 

precursors that could generate all other hematopoietic cell types. However, a finer picture 

of cell type identity and of lineage relationships has emerged in the past decade as 

increasing knowledge has been gained about the newly characterized cell populations, 

dynamics of lineage-specific developmental processes, and the transcriptional regulatory 

apparatus that drives them. First, some effector functions of T cells are extensively shared 

with the NK cells and ILCs, but not with B cells, which do not use the RAG-mediated 

recombination mechanisms at all (rev. in Rothenberg, 2019). Second, the cell fate decisions 

do not fall into a strict hierarchy: unlike classic C/EBP(myeloid) vs. GATA1(MEPs) 

hematopoiesis subtrees, the order in which lymphocyte fates subdivide as compared to the 

order in which they separate from macrophage, granulocyte, and dendritic cell fates is 

surprisingly dependent on their cell fate chosen (Rothenberg et al., 2016).  

In addition, it was known that in the B-cell differentiation pathway, the myeloid potential 

is excluded early on, but not the T-lineage potential (Mansson et al., 2010; Welinder et al., 

2011; Zandi et al., 2012). In contrast, in the T-differentiation pathway, the B-cell potential 

is excluded much early on, leaving plenty of residual myeloid potential to be suppressed in 

later stages both in vivo and in vitro (Allman et al., 2003; Bell and Bhandoola, 2008; 

Heinzel et al., 2007; Wada et al., 2008). Thus, it is clearly not a simple hierarchical 
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relationship between the lymphoid cell fate and myeloid cell fate, or between T cells and 

B cells, as illustrated in Figure 2 (adapted from Rothenberg, 2019).  

 
Figure 2. Relationships of the T-cell program to other hematopoietic fates (adapted from 

Rothenberg, 2019). (A) The diagram shows that T cells share a common mechanism for receptor 

gene diversification with B cells and share similar set of killer and helper functions with NK and 

ILCs. (B) Persistence of alternative lineage potentials in T-cell precursors after entry into the 

thymus. Dash arrows indicate the last developmental stages at which isolated T-cell precursors can 

still give rise to the indicated alternative fates, provided that they are removed from the thymic 

microenvironment. Note that access to the B-cell option is lost a few stages before access to NK 

and dendritic cell options, unlike the hierarchical structure shown in Figure 1. Mac, Macrophage; 

DC, dendritic cell; Neut, neutrophilic granulocyte; CLP, common lymphoid progenitor (“ALP” 

indicates a CLP that is not B-lineage-biased); LMPP, lymphoid-primed multipotent progenitor 

maintaining myeloid as well as lymphoid potential (similar to “MPP4”); MPP, multipotent 

precursor.  
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Early T-cell developmental stages have been intensely studied and are generally well 

distinguished by combinations of cell-surface markers, which broadly correlate with 

stereotyped gene expression changes on bulk levels (Yui and Rothenberg, 2014, also 

discussed in depth in Chapter 2).  In mouse systems, the stage markers have been validated 

by in vivo and in vitro transfer experiments, differentiation assays under distinct 

environmental conditions, and targeted genetic perturbation studies.  However, individual 

T-cell precursors in the same thymic cohort can have varied developmental potentials and 

can go on to divergent fates. What molecular mechanisms control these different 

developmental outcomes?  Also, due to this non-hierarchical position of T-lineage with 

respect to the hematopoiesis map, and the lack of clear trajectory models for early T-cell 

development in the primary thymic environment, it remains unclear of how many types of 

thymic T-cell progenitors there actually are, and the exact steps that they undergo to initiate 

T-lineage commitment. Are all the precursor cells coming to the thymus capable of giving 

rise to T cells? What are the steps they need to go through to prepare for lineage 

commitment? And why do the precursors take a long time to make the T-cell fate choice?  

Essential TFs in the Play of T-lineage Establishment—TCF1, GATA3, and Bcl11b 

TCF1 (encoded by Tcf7 gene) and GATA3 are indispensable TFs for early T-cell 

development, and their expressions are known to be induced in response to Notch signaling 

in the thymic environment. TCF1 or GATA3 KO result in losses in population size of T 

cells even in the earliest stage of T cells, e.g. ETP stage (Germar et al., 2011; Hattori et al., 

1996; Hosoya et al., 2009; Scripture-Adams et al., 2014; Ting et al., 1996; Weber et al., 

2011). TCF1 positively regulates Gata3, the DN2 stage marker Il2ra, and a commitment 

marker Bcl11b, as well as genes encoding signaling components in early DN cells and a 

vital TCR complex (Weber et al., 2011). Unlike many other required T-cell factors, an 

artificial high-level expression of TCF1 from an early stage can instruct T-lineage 

differentiation, accelerating many T-cell developmental genes’ expression, even in pre-

thymic precursors without concomitant Notch signaling (Weber et al., 2011). GATA3, 

similarly to TCF1, is needed for early T populations in fetal as well as adult mice (Hattori 

et al., 1996; Hosoya et al., 2009; Hozumi et al., 2008; Scripture-Adams et al., 2014; Ting 
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et al., 1996), although overexpression of GATA3, in contrast to TCF1, is not tolerated by 

pro-T cells (Taghon et al., 2007; Xu et al., 2013). Later in the DN2 stage, arguably the most 

critical process in early T-cell development occurs – commitment to T-cell fate, which 

coincide with the upregulation of the expression of TF, Bcl11b. Bcl11b was discovered in 

2010 as a factor required for T-cell commitment by three groups in parallel (Ikawa et al., 

2010; Li et al., 2010a, 2010b), and its regulatory functions were further studied with 

expression profiles with bulk RNA-seq and binding activities with ChIP-seq (Hosokawa et 

al., 2018; Longabaugh et al., 2017). In vivo, Bcl11b is required for the survival of the 

development of αβ T cells through β selection, and some γδ cells, despite not being strictly 

required for viability in the way like TCF1 and GATA3.  

Moreover, although much previous effort on understanding the roles of important TFs has 

been performed with bulk RNA-seq and ChIP-seq assays, the kinetics of differentiation, 

population distributions, and trajectory topologies of the early perturbation outcomes are 

completely missing. Perturbations of regulatory genes can lead to the emergence of new 

minor populations of cell type or state, disappearance of some old cell populations, shifting 

in distributions on the differentiation trajectory, or alternations in gene expressions among 

the entire population studied. These effects need to be examined in a systematic and 

internally controlled way with consistent input and experimental setups, and they cannot 

be observed with bulk assays. 

The fine single-cell expression profile of these three TFs together with other regulatory 

genes are going to be discussed throughout this thesis. And specifically, the perturbation 

outcomes of these three important TFs and a few more TFs are going to be examined in 

detail on the single-cell level in Chapter 3. 

The Revolution with Single-Cell Tools 

The classical understandings of lineage hierarchy and relationships in hematopoiesis have 

been built on the cell type definition system by cell surface markers analyzed through 

multicolored fluorescence-activated cell sorting (FACS) and combined with functional 

assays. However, as mentioned above, because these analyses were conducted on bulk 



 

 

8 
samples, they can neglect the heterogeneity in the defined population as well as unknown 

transitional states during the cell fate decision process. Over the past 5-6 years, the rapid 

development of single-cell tools, mainly single-cell RNA sequencing (scRNA-seq), 

provided unprecedented opportunities to re-define cell taxonomy, to impute or track 

differentiation hierarchy, and to uncover transcriptional networks at single-cell resolution 

for any given isolatable heterogeneous cell population, particularly in the hematopoietic 

system (Drissen et al., 2016; Giladi et al., 2018; Olsson et al., 2016; Paul et al., 2015).  

One of the major advantages of this approach is the potential to bypass the need for a priori 

markers that define progenitor populations, and the sensitivity to detect rare or even 

transient transcriptional states de novo, given sufficient sample size. For example, recent 

scRNA-seq have re-defined the transcriptional states of myeloid subtypes and other stem 

and progenitor populations in the bone marrow (Drissen et al., 2016; Giladi et al., 2018; 

Nestorowa et al., 2016; Olsson et al., 2016; Paul et al., 2015; Schlitzer et al., 2015; See et 

al., 2017; Tusi et al., 2018), suggesting that the differentiation from HSCs is actually more 

complex and less sequential than the classical model, similarly to the non-hierarchical 

position of the T-cell ‘branch’ aforementioned. With these single-cell studies, it became 

more accepted that rather than a stepwise progression of HSCs following a tree-like 

hierarchy of oligo-, bi-, and unipotent progenitor paths, individual HSCs may gradually 

acquire lineage biases along multiple directions without necessarily passing through 

discrete hierarchically organized progenitor populations, forming a so-called 

‘developmental continuum’ (Giladi et al., 2018; Velten et al., 2017). It is fair to conclude 

that single-cell methods over the past years have revolutionized our understanding of 

hematopoiesis and the definition of hematopoietic trajectories. 

Single-Cell Technical and Analytical Challenges of the Developmental Continuum 

and the Regulators Involved 

In single-cell analysis, there has always been a tradeoff between the number of features 

(i.e. dimensions) measured and the number of cells measured. The conceptual predecessors 

of single-cell transcriptome profiling are flow cytometry and mass cytometry, which are 
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typically restricted to very limited predefined markers, but they can easily profile millions 

of cells. Single cell RNA profiling techniques like scRNA-seq, in contrast, often do not 

require prior knowledge of predefined markers, and can measure up to 104 genes 

simultaneously in each cell. However, the platform and method of choice does heavily 

influence the sensitivity, drop-out rate, and technical noise of genes measured, as well as 

the throughput of the assays (Svensson et al., 2017). For example, high throughput methods 

(e.g. droplet-based methods like Drop-Seq, InDrop, and 10X Chromium platforms) often 

detect 1000-3000 expressed genes per cell (depending on the sequencing saturation), but 

can easily assay 104 cells per experiment (Klein et al., 2015; Macosko et al., 2015; Zheng 

et al., 2017); whereas commonly used low-throughput methods (e.g. plate-based methods 

like Smart-Seq2, C1-Fluidigm system, CelSeq2) are used to profile a few hundred cells per 

sample, but can detect 5000 genes per cell (Hashimshony et al., 2016; Picelli et al., 2014). 

Another single-cell RNA profiling method with increasing popularity and can preserve the 

spatial information, which is independent of enzymatic preparation and subsequent 

sequencing steps, is single molecule fluorescent in-situ hybridization (smFISH) based 

quantification, such as seqFISH (Lubeck et al., 2014; Raj et al., 2008; Shah et al., 2016). 

In the review by Svensson et al. in 2017, the estimated CelSeq sensitivity of mRNA 

transcript (UMI) measurement was 5-10% compared to the ‘gold-standard’ smFISH. This 

review also discussed the sequencing depth needed to detect lowly expressed genes, which 

is essential for coverage of TFs (Svensson et al., 2017). The most up-to-date detection limit 

of droplet-based methods is up to about 30% detection efficiency (with 10X V3 

Chemistry). In Chapter 2, the author also compared mRNA count measured by seqFISH 

and measured by scRNA-seq in the same samples, confirming that the detection rate in the 

10X V2 method is roughly 10%, and therefore the author took advantage of seqFISH’s 

sensitivity for quantification of important regulators such as TFs. 

Why is sensitivity and tradeoff a relevant topic for studying hematopoiesis, developmental 

continuum, or early T-cell development specifically? And why is developmental 

continuum analysis particularly challenging? First, developmental systems usually exhibit 

a fast turnover: as scRNA-seq offers a snapshot of cells and their expression states that we 
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use to infer the relationship between them, it is important to sample enough cells of 

interest and capture the genes that can differentiate these states. Second, because of the 

‘snapshot’, the temporal information is missing, therefore we rely on single-cell expression 

profiles in high-dimensional spaces to generate the transcriptional landscape which 

encodes information on developmental stage transitions, and enables the ordering of cells 

along pseudotime, from immature progenitors towards more differentiated states (Bendall 

et al., 2014; Qiu et al., 2017; Trapnell et al., 2014). This is conceptually exciting but 

technically difficult, especially for a tightly connected developmental continuum, in a 

completely unsupervised manner. Questions regarding developmental continuum are 

fundamentally more challenging than the ‘cell type classification problems’ in other classic 

scRNA-seq settings, which can be dealt with clustering and marker identifications, because 

the genes that differentiate developmentally relevant states are often lowly expressed. In 

contrast to developmentally relevant genes like TFs, the readily detectable variable and 

highly expressed genes like cell cycle associated genes can often be confounding factors 

when one is trying to infer trajectory and pseudotime in reduced dimensional spaces (e.g. 

PCA, tSNE, UMAP).  

It is also important to note that there are assumptions in using single-cell methods to 

compute developmental trajectories and pseudotime, which should be considered 

preferably at the design stage of the study. These assumptions include: 1) Coverage of 

precursor, mature cells, and transitional stages along the differentiation process. If 

harvested from primary animals, it assumes differentiation happens asynchronously and is 

a continuous process. Detection of ‘jumps’ between cell states is difficult. 2) The cells’ 

movement is unidirectional, and additional knowledge is needed to determine the start and 

finish of the trajectory. 3) Cell state information is complete and accurately represented in 

the low dimensional spaces. This step may require a fine feature selection or feature 

‘engineering’ step to avoid segregation or dominant spread due to unwanted features, such 

as cell cycle. 4) Many analytical methods require additional assumptions, such as a tree-

like structure of the data, where cells undergo potential bifurcations during differentiation, 

or absence of oscillations between cell states such as cell cycle, which clearly can be 
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problematic. In 2018, La Manno et. al. came up with an RNA velocity analysis in 

scRNA-seq, using the ratio between intron-mapped reads and exon-mapped reads to infer 

the time derivative of expression states in a static low dimensional representation (La 

Manno et al., 2018). This provided an additional tool to investigate the potential precursor-

product relationship on a trajectory, but the parameters, especially for imputing the sparse 

intron-mapped read matrix, still need to be closely attended for different datasets.  

In later chapters, our studies also calculated trajectory and pseudotime inferences, and in 

Chapter 2, our study, for the first time in the field, validated the significance of pseudotime 

by the ex-vivo culture of FACS sorted population according to pseudotime, examined both 

the T-lineage developmental speed and alternative lineage potentials, and mapped the 

sorted populations’ expression profile back onto the pseudotime trajectory.  

A Deeper Dive Using Single-Cell Analysis 

Various advanced methods that were built upon scRNA-seq opened up more opportunities 

for further deep dives into understanding mechanisms using single-cell analysis. Cell 

Hashing enabled pooling of multiple samples into one experiment (Stoeckius et al., 2018), 

which can hugely improve the experimental design by not only incorporating biological 

replicates in the same scRNA-seq reactions, but also avoiding the potential confounder 

effect issues by enabling having both experimental and control samples in the same 

reaction. Computationally, alignment methods for batch and multi-modal integrations, 

such as canonical correlation analysis (CCA (Butler et al., 2018) or MultiCCA for more 

than 2 samples (Stuart et al., 2019)), mutual nearest-neighbor (MNN) correction 

(Haghverdi et al., 2018), nonnegative matrix factorization (NMF) (Yang and Michailidis, 

2015), Harmony (Korsunsky et al., 2019), allowed cross-validation between methods, 

multi-modal analysis, comparison between organisms, and multiple experimental batch 

integrations. A good understanding of these technological advancements and their 

associated assumptions should guide a proper experimental design and usage of single-cell 

analysis to maximize the yield of insights to the scientific problems of interest. For 

example, CCA identifies shared aspects of variation between paired datasets, and 
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multiCCA does integration by iteratively applying CCA; MNN builds MNN graphs 

between cells from different datasets, where two cells are connected in the graph if they 

are transcriptionally similar. Most of these methods have the underlying assumption that 

the datasets being integrated have similar ‘variable features’ and spread. In other words, all 

the cell states or clusters should be covered in all the datasets being integrated. This makes 

it important to utilize integration methods not for comparing the differences between 

different conditions, but rather comparing the similarity between datasets being integrated, 

or one needs to have internal controls for proper establishments of ‘variable features’ or 

low dimensional spaces within individual datasets prior to integration.  

Furthermore, ‘Perturbseq’ and its derivatives enabled the CRISPR/Cas9 based gene 

interruptions to be performed together with scRNA-seq, which allows identification of 

which gene is being perturbed in individual cells as well as the transcriptome information 

associated within the same cells being ‘perturbed’ (Dixit et al., 2016). However, due to 

some technical challenges that ‘perturbseq’-based methods faced, such as the viral 

recombination problem that potentially dis-associated the sgRNA with the barcode being 

sequenced (Xie et al., 2018), the pool based perturbation studies in scRNA-seq have been 

technically challenging and still mainly in the technique demonstration land (Datlinger et 

al., 2017; Gasperini et al., 2019; Replogle et al., 2020). Nevertheless, the ‘perturbseq’ 

concept in single-cell analysis has opened up a new dimension of experimental perturbation 

assays, enabling potentials for dissection of molecular mechanisms, and reaching beyond 

the ‘descriptive analysis’. As discussed earlier, understanding the perturbation outcomes 

on population distributions of developing T cells will heavily rely on a consistent and 

internally controlled experimental setup, and unbiased transcriptomic measurements. 

Therefore, our study has utilized the single-cell perturbation tools extensively, in a pool-

based and batch-controlled manner, which will be discussed in Chapter 3. 

Gene regulatory network modeling has played a major role in advancing the understanding 

of developmental systems, as the mechanism of development is based on ordered 

activations of gene regulatory networks, turning on cascades of regulators and generating 
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an irreversible path of differentiation (Davidson, 2010; Peter and Davidson, 2015). 

Classically, GRN inference has been based on analyzing steady-state data corresponding 

to gene knockout experiments, where one gene is silenced and changes in the steady-state 

expressions of other genes are observed. However, it can be difficult to know if steady 

states are achieved in a heterogeneous population. In addition, carrying out knockout 

experiments on a large number of genes is costly and technically difficult. Gene regulatory 

network inference has been conducted in numerous bulk gene expression profile studies, 

using computational tools such as weighted gene co-expression network analysis 

(WGCNA), or combining transcriptome and epigenome data (Chai et al., 2014; Langfelder 

and Horvath, 2008; Thompson et al., 2015). Many of the tools are based on the assumption 

that genes that are highly correlated in expression between different samples should be co-

regulated. Therefore, in theory, scRNA-seq data can be simply treated as samples of bulk 

RNA-seq to infer regulatory structures. However, there are two immediate challenges in 

using just single-cell expression profiling applications for GRN inferences: 1) Correlation 

does not infer the direction of regulation. 2) Due to the technical noise in scRNA-seq, 

network inference needs to be carried out in similar cell types or states, and closely 

attended. Recently, Aibar et al., 2017 developed the SCENIC method to perform GRN 

inference based on co-expression of TFs from single cells’ expression profiles using an 

ensemble tree based method (GENIE3, Huynh-Thu et al., 2010) and the TF-binding site 

search near transcription start sites of all their co-expressed genes. They demonstrated a 

robust prediction between TFs and target genes using single-cell data (Aibar et al., 2017). 

In Chapter 3, the author will show our explorations of SCENIC analysis on the scRNA-seq 

data from our perturbation studies, and will also discuss the limitations and a few newer 

tools in Chapter 4. 

In summary, this thesis will focus on using single-cell analysis to understand the 

fundamentals of regulations in early T-cell development. The second chapter provides a 

thorough characterization of in vivo thymocytes’ single-cell expression profile using 

complementary single-cell tools, revealing the dynamic expression changes leading to T-

lineage commitment. The third chapter focuses on the effects of perturbations of key TFs 
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in early T-cell development. Combining different types of ex-vivo differentiation assays 

and additional efforts in optimizing single-cell pool-based perturbation strategies, normal 

and perturbed differentiation trajectories will be presented, as well as the inferred 

regulatory changes in the different perturbation conditions.  
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C h a p t e r  2  

SINGLE-CELL ANALYSIS REVEALS REGULATORY GENE 
EXPRESSION DYNAMICS LEADING TO LINEAGE COMMITMENT 

IN EARLY T CELL DEVELOPMENT 

This chapter is adapted from the published article:  
Zhou, W., Yui, M.A., Williams, B.A., Yun, J., Wold, B.J., Cai, L., and Rothenberg, E.V. (2019). 
Single-cell analysis reveals regulatory gene expression dynamics leading to lineage commitment 
in early T-cell development. Cell Systems 9, 321-337.e9. DOI: 10.1016/j.cels.2019.09.008 

W.Z. performed most of the experiments, analyzed the data, and wrote the paper. 
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SUMMARY 

Intrathymic T-cell development converts multipotent precursors to committed pro-T cells, 

silencing progenitor genes while inducing T-cell genes, but the underlying steps have 

remained obscure. Single-cell profiling was used to define the order of regulatory changes, 

employing single-cell RNA-seq for full transcriptome analysis, plus multiplex single-

molecule fluorescent in situ hybridization (seqFISH) to quantitate functionally important 

transcripts in intrathymic precursors. Single-cell cloning verified high T-cell precursor 

frequency among the immunophenotypically-defined “early T-cell precursor” (ETP) 

population; a discrete committed granulocyte precursor subset was also distinguished. We 

established regulatory phenotypes of sequential ETP subsets; confirmed initial co-

expression of progenitor- with T-cell specification genes; defined stage-specific 

relationships between cell-cycle and differentiation; and generated a pseudotime model 

from ETP to T-lineage commitment, supported by RNA velocity and transcription factor 

perturbations. This model was validated by developmental kinetics of ETP subsets at 

population and clonal levels. The results imply that multilineage priming is integral to T-

cell specification.  

Graphic Abstract 
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Introduction  

The generation of T cells begins in postnatal mice as multipotent precursor cells enter the 

thymus from the bone marrow and undergo multiple rounds of proliferation and 

differentiation events before T-lineage commitment (Porritt et al., 2003; Rothenberg et al., 

2008; Taghon et al., 2005; Yui et al., 2010). While many key regulators of T-cell 

specification and commitment are known (Yui and Rothenberg, 2014), the types of thymic 

T-cell progenitors and the steps that they undergo to initiate commitment remain unclear. 

Early T-cell progenitors (ETPs), cells double-negative (DN) for CD4 and CD8 that are 

Kit+ CD44+ CD25-, represent the earliest defined stage in each cohort of mouse 

thymocytes. After ~1 wk of proliferation and differentiation under the influence of 

environmental signals, including Notch ligands and cytokines from the thymic stroma, 

ETPs asynchronously progress into the DN2a stage, marked by upregulation of surface 

CD25 (Il2ra) (Porritt et al., 2003) (Fig. 1a). Commitment follows in a separate step, 

coinciding with the up-regulation of transcription factor Bcl11b and global changes in 

chromatin landscapes (Hu et al., 2018; Ikawa et al., 2010; Kueh et al., 2016; Li et al., 

2010). However, ETPs themselves are poorly characterized before they progress to DN2a 

stage. While single-cell colony assays show that many ETPs are individually multipotent 

as well as T-cell competent (Bell and Bhandoola, 2008; Wada et al., 2008), none of the 

ETP markers are exclusive to T cells, so “ETPs” could also include committed non-T-

lineage precursors. In addition, T-cell precursors can migrate to the thymus from different 

hematopoietic precursor states (CLP and LMPP) (Saran et al., 2010) (Fig. 1a). Thus, in a 

‘snapshot’ of single ETP transcriptomes, there could be heterogeneity due to different 

input origins, different developmental stages, and/or contamination with cells committed 

to alternative fates.  

The expression of important regulators in early T-cell development has mostly been 

studied in bulk populations. Notch1 signaling (Besseyrias et al., 2007; Pui et al., 1999; 

Radtke et al., 1999) and transcription factors GATA3 and TCF1 (encoded by Tcf7) play 
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indispensable roles to establish T-cell identity from the earliest stages (García-Ojeda et 

al., 2013; Germar et al., 2011; Hosoya et al., 2009; Schilham et al., 1998; Scripture-Adams 

et al., 2014; Ting et al., 1996; Weber et al., 2011). With Notch1, Gata3, and Tcf7, other 

regulators more widely shared (Myb, Gfi1, Runx1, Tcf3) are also essential for cells starting 

the T-cell pathway. Expression of these genes is readily detectable in the ETP population 

by bulk RNA analysis, but in an unknown fraction (De Obaldia and Bhandoola, 2015; 

Mingueneau et al., 2013; Yui and Rothenberg, 2014; Yui et al., 2010; Zhang et al., 2012). 

Further, many legacy “non-T” genes, associated with “stemness” and/or non-T-lineage 

fates, are also expressed at low levels in early pro-T cell populations, including several 

with potential gene network interactions with the “T-cell” regulators (Longabaugh et al., 

2017; Yui and Rothenberg, 2014). It is unclear if they are an integral part of the T-lineage 

program or merely expressed in contaminating cells. If the former, the expressions of stem 

and progenitor “non-T” genes may be indicators of multi-lineage priming and/or 

important regulatory network relationships between the declining stem cell program and 

ongoing T-cell specification. The single-cell expression patterns of these genes relative to 

T-cell genes are essential to elucidate the significance of their expression in T-cell 

development. 

Single cell transcriptional profiling by RNAseq (scRNA-seq) has transformed our 

understanding of hematopoietic differentiation and heterogeneity (Boudil et al., 2013; 

Giladi et al., 2018; Ishizuka et al., 2016; Karamitros et al., 2018; Knapp et al., 2018; 

Olsson et al., 2016; Paul et al., 2015; Pina et al., 2012; Tusi et al., 2018; Velten et al., 

2017; Zandi et al., 2012; Zheng et al., 2018), providing nominally unbiased full-

transcriptome information and effectively separating distinct cell types within complex 

populations. However, in most scRNA-seq applications the accuracy and robustness of 

measurement are biased towards highly expressed genes, which mostly characterize 

already-diverged developmental end states. Here, the goal is to resolve a continuum of 

changing transcriptome states within a developmental pathway, and relate them to 

changes in the controlling regulatory network state. This demands accurate, statistically 

robust quantitation of regulatory genes encoding key transcription factors (TFs), which 
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are often expressed at low RNA copy numbers per cell. Therefore, we have taken 

advantage of recent advances in single-molecule fluorescence in situ hybridization (Raj et 

al., 2006), which visualizes and counts individual mRNA transcripts directly in individual 

cells at very high sensitivity. Recently, a version incorporating a temporal barcoding 

scheme, “seqFISH”, has been developed that uses a limited set of fluorophores but can 

detect hundreds to thousands of distinct sequences in the same cells (Lubeck et al., 2014; 

Shah et al., 2016a, 2016b), and another similar strategy, “merFISH”, has also been 

described (Chen et al., 2015). We have used the highly sensitive seqFISH technique to 

quantify transcripts of a curated panel of 65 regulatory and developmental state marker 

genes in pro-T cells.  

Thus, combining droplet-based scRNA-seq, deep-sequenced whole-transcript scRNA-seq, 

and seqFISH for key regulatory genes, together with developmental assays of sorted 

subsets and clones from sorted founders, we have characterized the sequence of gene 

expression transitions in early intrathymic mouse T-cell precursors and regulatory gene 

dynamics of T-cell specification. Our results show an unexpectedly complex, multistep 

progression through which the cells shed stem cell characteristics and approach T-cell 

lineage commitment. The results give new insights into the transition from multipotency 

to commitment and how it is controlled.  
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RESULTS 

Single-cell developmental competence and bulk population phenotype of ETPs 

Broad outlines of mouse T-cell development are well-studied, but the initial events upon 

entry of T-cell precursors into the thymus remain obscure. Most uncertain are events that 

occur within the ETP population and in transition to DN2a. While later stages are clearly 

defined as shown in Fig. 1a, ETPs are rare, individually multipotent and poorly separable 

by flow cytometry from other, irrelevant multipotent precursors. However, vital 

regulatory events including the exclusion of B-cell potential (Heinzel et al., 2007) and 

epigenetic priming of the cells for later commitment (Kueh et al., 2016; Ng et al., 2018) 

occur during the ETP stage(s). Thus, we have investigated whether different precursors 

contribute functional ETP starting state(s); their precise sequence of regulatory state 

changes leading to T-lineage commitment; and whether they develop by single or 

branched pathways. In Fig. S1 a-b, we summarize the logical sequence of questions 

addressed, the experimental approaches, and the data- handling pipeline. 

To characterize the earliest mouse thymic T-cell progenitors through T-lineage 

commitment, we used fluorescence-activated cell sorting (FACS) of DN cells to isolate 

the ETP and DN2a subsets (cf.1a). Only a tiny fraction of total thymocytes (<0.01%) at 

steady state are uncommitted ETP and DN2a cells, distinguished from all others by their 

expression of growth factor receptor c-Kit. Expression of a Bcl11b-YFP knock-in reporter 

(Kueh et al., 2016) that distinguishes uncommitted (YFP-) from newly committed (YFP+) 

DN2a cells was used to mark the commitment milestone (Fig. 1b,c; Table S1). Another 

growth factor receptor, Flt3, has been reported to characterize the least mature ETPs 

(Ramond et al., 2014; Sambandam et al., 2005), and in many experiments we used it to 

subdivide ETPs either by FACS or in silico. 

To estimate the fraction of “ETPs” that actually possess T-lineage developmental potential, 

we carried out single-cell clonal culture experiments. Individual ETP cells were plated in 

microwells and tracked by live imaging in T-cell development culture conditions to 

determine how many could generate progeny that reach DN2 stage and undergo 
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commitment (Fig. 1b, top, see Methods). Of 78 founder ETPs, 66 survived and were 

tracked for 6 days. Almost all clones generated cells expressing CD25 and Bcl11b-YFP 

by day 6 (Fig. 1b, bottom). Two of the 66 clones only produced small non-T lineage cells 

resembling granulocytes, consistent with alternative lineage affiliation, as discussed 

below. Thus, >90% of viable clonogenic ETPs possessed T-lineage precursor activity. 

Bulk RNA expression patterns showed that ETP populations were clearly distinct from 

DN2a populations, with many of the differences reflecting downregulation of ETP-

expressed genes in DN2a (Fig. 1c,d). ETP populations expressed many characteristic 

“non-T” genes, including genes expressed in mature granulocytes, macrophage, dendritic 

cells, NK cells, and stem cells, but not in mature T cells (www.immgen.org) (Fig. 1c), 

consistent with previous bulk RNA expression studies (Mingueneau et al., 2013) [rev. by 

(Rothenberg et al., 2016; Yui and Rothenberg, 2014)]. Both uncommitted and committed 

DN2a cells expressed lower levels of multipotent progenitor-associated genes Flt3, Lmo2, 

and Mef2c than ETPs, although the DN2a cells continued to express another multipotency-

associated gene, Spi1 (encoding transcription factor PU.1) (Fig. 1c, d). In contrast, sorted 

Flt3+ and Flt3- ETP populations appeared similar, and both expressed the essential T-cell 

regulatory genes Gata3 and Tcf7, implying that at least some ETPs have started the T-

lineage specification (Fig. 1d). Such population-level analysis raised the question of how 

many substates were comprised in ETPs, how homogeneously cells progressed through 

them, and which states reflected the presence of contaminating cells with no T-cell 

potential.  

To determine the sequence of developmental changes in these earliest pro-T cells, we 

FACS-purified Kithigh thymocytes across the ETP-DN2 developmental continuum, and 

analyzed their single-cell transcriptomes and also their developmental potentials (Fig. 

S1c). To anchor the developmental direction, for most analyses we also added a small 

number of purified committed DN3 cells (Fig. S1c). The transcriptomes of these samples 

were defined by three methods: seqFISH, whole-transcriptome 3’-end biased sequencing 

(10X Chromium), and whole-transcriptome full-transcript sequencing (Fluidigm C1-
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SmartSeq2). Results from these methods were highly concordant, but highlighted 

different aspects of the gene expression programs. 

Sensitive monitoring of developmentally important regulatory genes in single cells 

by seqFISH 

Expression in ETP populations of the essential T-cell regulatory genes, Gata3 and Tcf7, 

appeared in accord with their high clonogenic T-cell precursor frequency overall, but 

single-cell methods were needed to determine which ETP subsets activate these T-cell 

regulators. First, we sought to determine whether the ETPs expressing characteristic 

multipotent progenitor-associated regulatory genes included the individual cells entering 

the T-cell pathway. However, as shown in Table S1 and in previous studies, regulatory 

genes have bulk RNAseq signals measured at <10 FPKM, below the robust detection limit 

of common single-cell approaches (also see below). We therefore applied a targeted 

seqFISH approach, focused on a curated set of regulatory and lineage-informative genes. 

Most of these 65 genes are known to be functionally significant in early T or multipotent 

progenitor cells (Hosokawa et al., 2018a; Rothenberg et al., 2016; Yui and Rothenberg, 

2014), while others are distinctive markers for stages in T and non-T pathways (genes and 

criteria for selection shown in Table S2). Probes for 54 genes with low to medium 

expression level were used in barcoding rounds of seqFISH with hybridization chain 

reaction (HCR seqFISH), followed by sequential rounds of non-barcoding HCR single 

molecule FISH (HCR smFISH) to detect the remaining genes, including highly 

expressed genes, controls, and genes with shorter transcripts, and finally followed by 

immunofluorescent staining (Fig. 2a; see STAR Methods). Analyses used sorted 

populations of ETP-DN2a from mice of 3 different ages (4 wk, 2874 cells; 5 wk, 4413 

cells; 8 wk, 1736 cells) (Fig. S2a, c), plus similar numbers of DN3s from the same animals 

imaged in separate lanes of hybridization-cells. 

As detailed in Fig. S2a-c, seqFISH measurements were sensitive and reproducible across 

all three ages tested in independent experiments without batch correction. It faithfully 

detected critical genes like Tcf7 and Notch1 that were hard to detect consistently in ETPs 
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with 10X Chromium scRNA-seq (Fig. S2b, d). Furthermore, protein and seqFISH RNA 

expression (c-Kit, PU.1 and TCF-1 protein vs. Kit, Spi1 and Tcf7) correlated in the same 

cells (Fig. S2e,f).  

SeqFISH reveals co-expression of stem/progenitor and T-cell regulators in 

individual ETPs 

SeqFISH confirmed regulatory state differences between Kit-high cells categorized as 

ETP or DN2 based on expression of Il2ra (CD25). DN2s expressed lower levels of 

multiple ETP-associated genes (Flt3, Cd34, Mpo, Lmo2) while a subset expressed much 

higher levels of the commitment-associated gene Bcl11b (Fig. 2b). Pairwise coexpression 

patterns of the seqFISH gene set among all ETP-DN3 cells sampled (Fig. 2c) clearly 

distinguished a “T-associated” group of genes, including a subset highly coexpressed in 

DN3s (Ptcra, Rag1, Cd3e, Cd3g, Spib, Tcf12, and Lef1), from at least two other gene 

groups containing coexpressed ‘Stem and Progenitor’ genes (Kit, Spi1, Lyl1, Bcl11a, 

Runx3, Pim1, Erg, Cd34, Hhex, Lmo2, and Cd44). Each of these stem/progenitor groups 

also contained genes normally associated with non-T cells (e.g. Mpo, Irf8, Pdgfrb) (Fig. 

2c). In addition, other separate gene subgroups contained Gata3 and Ikaros (Ikzf) family 

TFs, plus their interaction partners found in T and innate-lymphoid cells (Zfpm1, Gfi1, 

and Zbtb16). These “T/ILC” groups of genes showed intermediate correlation both with 

the stem/progenitor genes and with the T-associated genes.  

The seqFISH results enabled the cells to be resolved into 9 clusters (Fig. 2d,e), based on 

high-dimensional analysis using Smart Local Moving (SLM) clustering (Waltman and 

van Eck, 2013). Clusters were provisionally ordered by known “endpoint” genes, starting 

from the earliest ETP cells, identified by Flt3 and Cd34 enrichment, to committed DN3 

cells, marked by high Ptcra, Cd3e and Cd3g. This initial clustering was broadly consistent 

with results from previous bulk RNA analysis. However, it revealed that progenitor- or 

alternative-lineage genes were not all co-expressed, but instead displayed distinct 

although overlapping patterns. Among the earliest cells, for example, Lmo2 and Flt3 were 

co-expressed in a more restricted developmental pattern (mainly cluster 2), than Kit and 
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Spi1. Cells in DN3 split into 3 clusters, two of which represented DN3a stages with 

high levels of Bcl11b, Ets1, Ptcra, Cd3g, Cd3e, and Rag1 (clusters 6 & 0, mainly 

distinguished by different levels of Tcf7). The third DN3 cluster (cluster 7) could be 

identified as DN3b cells that had passed the b-selection checkpoint based on the T-cell 

receptor expression (see Fig. 1a), with enrichment of Lef1, Id3, Tcf7, and Pgk1 but 

downregulation of DN3a genes. Only one small ETP subpopulation, low in Tcf7 

expression (Fig. 2d,e, cluster 8) and highly coexpressing Mpo, Spi1, Cebpa, Lmo2, and 

Irf8, but not other progenitor genes, appeared to be discontinuous from the others. This 

outgroup population was seen in every analysis we performed, and is identified below. 

Note that, in each of the seven clusters spanning Flt3+ ETP to DN3a, the expression of 

key regulatory genes such as Spi1, Tcf7, and Bcl11b was relatively homogeneous; 89-100% 

of cells expressed >3 copies/cell in relevant clusters (Fig. S2g).  

Given the distinctive expression of progenitor-associated genes among ETPs, a central 

question was whether the cells expressing these genes are representative of the cells 

entering the T-cell program. We used seqFISH to assess which legacy stem and progenitor 

genes are coexpressed with Gata3 and Tcf7 in individual cells. Gata3 activation began in 

ETPs with varying levels of Tcf7 transcripts, and became concordant in DN2-DN3 stages 

(Fig. 2f). As expected (Kueh et al., 2016), the T-lineage commitment gene Bcl11b was 

activated exclusively in cells that express Tcf7, and almost completely within the DN2 

stage (Fig. 2f).  

To ask directly how ETPs expressing Notch-induced Gata3 and/or Tcf7 differ from ETPs 

not expressing these genes, we compared the transcript counts of all other seqFISH genes 

between ETP cells with and without expression of Gata3 (>10 transcripts vs. £3 

transcripts) and/or Tcf7 (>20 transcripts vs. £5 transcripts) (Table S3). The seqFISH 

results confirmed that ETPs activating Gata3 and/or Tcf7 were markedly different from 

committed, Bcl11b-expressing DN2s in their expression levels of >30 genes (p values 

<10-6, two-tailed T test, unequal variances). However, ETPs expressing Gata3 and/or Tcf7 

differed very little from ETPs lacking expression of both Gata3 and Tcf7. ETPs with and 
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without Gata3 and/or Tcf7 expression were statistically indistinguishable in their 

expression of Notch1, or of stem/progenitor-associated genes Spi1, Cd34, Mpo, Mef2c, or 

Bcl11a, which were expressed by the great majority of both (Table S3). Only Gfi1b and 

Runx3 differed with p <10-6, while Flt3 and Lmo2 were slightly lower in expression, and 

T-promoting genes, including Hes1 and Ets1, were slightly higher in the cells expressing 

Gata3 and/or Tcf7 than in those without Gata3 or Tcf7. Overall, these seqFISH results 

show that there is continuity between the stem/progenitor gene expression patterns in 

those individual ETPs starting T-cell development and most other ETPs. 

Individual ETPs in fact spanned boundaries of the gene-set co-expression clusters seen in 

the overall ETP—DN3 population (cf. Fig. 2c). For example, the myeloid-associated gene, 

Mpo, encoding myeloperoxidase, was expressed at higher levels in ETPs than either 

Gata3 or Bcl11b, but a major fraction of Mpo-expressing cells also clearly expressed Tcf7 

(>20 copies/cell) (Fig. 2f). The growth-promoting gene Pim1, which marked intermediate 

clusters (Fig. 2d, clusters 3,5), was activated in both Tcf7-low and Tcf7-high ETPs and 

then increased in DN2 cells with varied Tcf7 expression. These results suggest that 

although not expressed in mature T cells, Mpo as well as Pim1 were substantially 

expressed within cells initiating the T-cell program and are not from contaminants.  

Deep-sequencing confirms stem/progenitor and “non-T” associated regulatory 

genes co-expressed with Gata3 and Tcf7 in individual ETPs 

To extend this inquiry to a sensitive genome-wide analysis of single cells, we carried out 

whole-transcript Smartseq2 scRNA-seq analysis (from C1 Fluidigm; “C1”) of highly 

purified ETP-DN2a cells (n=193 cells) (Fig. 3). Despite the low cell numbers, semi-

supervised clustering of the C1 dataset (based on differentially expressed genes described 

in Fig.1c and Table S1) yielded high-quality gene expression patterns that supported and 

extended those seen in seqFISH. DN3 endpoint cells could not be included, but the results 

again separated ETP-DN2a cells expressing combinations of multipotent progenitor-

associated genes from the cells more highly expressing T-lineage associated genes (Fig. 

3a-e; Table S4, “C1_supervised_markers”). Again, one small outgroup was found with a 
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highly divergent program (Fig. 3a, PC2) lacking T-cell gene expression, apparently 

among cells with a “Flt3- ETP” phenotype (Fig. 3b-e; cluster 9). Nevertheless, in the rest 

of the cells, C1-Smartseq data confirmed that multipotency-associated genes Spi1, Flt3, 

Lmo2, Mef2c, Cd7 and Irf8, were all frequently co-expressed with Tcf7 and Gata3 in 

individual ETPs, sometimes continuing into DN2s. But whereas Spi1 could still be co-

expressed with the late DN2a gene Bcl11b, in contrast Irf8, Lmo2, and Flt3 expression 

was almost dichotomous with Bcl11b (Fig. 3f,g). This supports the interpretation that 

expression of these stem/progenitor genes selectively characterizes most ETPs as they 

enter the T-cell developmental program. 

10x scRNA-seq shows tightly connected ETP-DN2 cell populations 

The seqFISH and C1 results indicated that the regulatory states of most ETP cells are 

within the continuum of the T-cell specification trajectory. We therefore dissected this 

trajectory in depth by whole-transcriptome analyses of thousands of enriched ETP-DN2a 

cells, again with DN3 cells as an internal reference, using 10X Chromium v2 (10X). 

Samples of 4627 (replicate1) and 7076 (replicate2) ETP-DN2 cells plus 10% DN3 cells 

yielded 3’ end-enriched transcriptome profiles with UMI quantitation. Upon dimensional 

reduction (tSNE or UMAP), RNA expression phenotypes separated the cells into 2-3 

distinct clusters. These corresponded respectively to a large mix of ETP-DN2 cells, DN3 

cells, and a small outgroup (Figure 4a,b), judged by expression patterns of genes 

characterizing different developmental stages or lineages (e.g., Elane (granulocytes), Mpo 

(macrophages), Klrd1 (NK cells))(Fig. 4c, highlighted in red). Within the ETP-DN2 

continuum, stage-defining genes such as Kit (ETP-DN2), Il2ra (DN2-DN3), and Bcl11b 

(committed DN2-DN3) were localized to different regions but not well-separated. Again, 

the small outgroup expressed granulocyte-associated genes, e.g. Elane (Fig. 4c) along 

with some progenitor-associated genes (Kit, Spi1, Lmo2), as in the seqFISH (cluster 8 in 

Fig. 2g, h) and C1 analyses (cluster 9, Fig. 3b-e). Highly concordant results were found 

in an independent 10X experiment (Fig. S3a-d), and the 10X results overall agreed well 

with the C1 and seqFISH results after CCA scaling (Fig. S3e). 
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Fine resolution unsupervised clustering by SLM distinguished 14 sub-clusters of cells 

across the ETP-DN3 range (Fig. 4a,b,d; Table S4, “10X unsupervised”). Bcl11b 

expression again marked clusters of recently committed cells (Fig. 4d, clusters 5, 2, 9, 11). 

The spiked-in DN3 cells again included both pre-β-selection DN3a cells (cluster 9: high 

Ptcra, Cd3g, Cd3d, and Cd3e, non-proliferative) and DN3b cells that had begun β-

selection (cluster 11: high levels of Lef1 and proliferative markers). The Elane-expressing 

outgroup was cluster 13. This left the clusters of greatest interest, representing earlier, pre-

commitment pro-T cells (clusters 0, 10, 4, 6, 7, 8, 12, 1), provisionally identified by their 

expression of progenitor-associated genes such as Cd34, Lmo2 and Mef2c. However, 

among these earlier clusters, the ordering was ambiguous in unsupervised clustering, and 

the relationship to cluster 13 was still unclear. This was partly because transcripts of key 

T-cell genes Notch1, Gata3, and Tcf7 did not change sharply enough to be identified as 

highly enriched in any particular ETP-DN2a cluster(s). Another source of ordering 

ambiguity among ETP-DN2a cells was the prominence of multiple states associated with 

cell cycle, in both biological replicates (Fig. 4d, Fig. S3d). Cells expressing S- or G2+M 

related genes (e.g. Birc5, Mki67) were found in clusters apparently representing different 

stages along the early-to-late developmental continuum.  

Distinct T-cell differentiation kinetics and identification of committed granulocyte 

precursors among ‘ETPs’ 

To confirm which gene expression clusters were associated with T- or non-T- lineage 

potential and to verify which were more or less advanced in T-lineage progression, we 

used marker genes that distinguished some of these clusters to fractionate ETPs by FACS, 

and then directly compared their developmental kinetics and fates under T-cell and non-

T cell developmental conditions (Fig. S4a). We also sought to resolve whether the Elane-

positive cells (Fig. 2e, cl. 8; Fig. 3, cl. 9; Fig. 4d, cl. 13) were part of the T-cell 

developmental pathway or a separate lineage. These cells uniquely expressed several 

granulocyte-associated genes, including Elane, Ms4a3, Ly6c2, and Prtn3, but lacked 

expression of Notch1 or Notch-induced genes (Hes1, Dtx1), possibly resembling a bone 

marrow early pre-neutrophil precursor (Evrard et al., 2018). Distinctively, these cells co-
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expressed surface receptors, CD63 and Ly6c2, detectable with antibodies that were used 

to purify them away from other ETP subsets for developmental tests.  

We first confirmed that Flt3+ ETPs were indeed more immature than the Flt3- ETPs. Flt3+ 

and Flt3- ETPs (excluding CD63+ Ly6c+ cells) and DN2a (CD25+Bcl11b-YFP-) cells were 

co-cultured with OP9-DL1 stroma to provide T-cell differentiation conditions (Fig. S4b). 

Their progression was scored by two T-cell milestones: onset of CD25 expression, 

denoting transition from ETP to DN2a, and the subsequent expression of Bcl11b-YFP. 

Then, to test the developmental potential of the Elane+ cells, CD63+ Ly6c+ cells were 

sorted and compared with CD63- Ly6c- ETPs. Unlike other ETPs, CD63+ Ly6c+ cells 

could not turn on CD25 or Bcl11b-YFP in T-cell culture conditions. Instead, they turned 

on the granulocyte marker Gr1 after 4-5 days (Fig. S4c-d). These populations were also 

tested for their ability to generate alternative lineages in non-T conditions, in the absence 

of Notch signaling and with cytokines supporting myeloid differentiation. Under these 

conditions, while other subsets of ETPs generated multiple types of non-T cells, CD63+ 

Ly6c+ cells exclusively gave rise to Gr1+ granulocytes (Fig. S5). Thus, the CD63+Ly6c+ 

cluster in the thymic ‘ETP compartment’ is a committed granulocyte precursor, has no T 

potential, and differentiates independently of Notch signaling. Thus, expression of Elane 

and Prtn3 in single-cell and bulk ETP RNA-seq is attributable to a distinct non-T- lineage 

population rather than to expression by uncommitted T-cell precursors. 

Developmental progression shows stage-dependent relationships to cell cycle 

states 

We could now address the gene regulatory states associated with T-cell specification per 

se, in the 10X data. To gain better resolution of possible component processes by topology 

on a more complex developmental manifold, we applied a force-directed layout algorithm 

using SPRING, visualizing long-distance as well as nearest-neighbor relationships of cells 

across three reduced dimensions (Weinreb et al., 2018) (Fig. S6). The SPRING graph 

revealed an ordered developmental continuum from ETP (Il2ra negative), through DN2a 

(Il2ra positive) and committed DN2 cells (Bcl11b positive), and into the separated DN3a 
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and DN3b cells (offset Bcl11b high populations) (Fig. S6a-b), roughly progressing from 

top right to bottom left (arrow in Fig. S6b). Within the main zones, the early ETP marker 

Flt3 highlighted the top right edge, while ETP-DN2 gene Spi1 lit up a distinctly larger 

area of the ETP-DN2 cluster, and the T-lineage commitment gene Bcl11b was activated 

only at the edge away from the Flt3-enriched zone and continuing into the offset DN3a 

and DN3b cells (Fig. S6a), consistent with known developmental relationships. However, 

the cells also varied strongly along an axis orthogonal to the developmental direction (Fig. 

S6). This second axis was represented by proliferative and cell cycle state markers as 

annotated in Fig. S6a. The resolution of two biologically meaningful but orthogonal axes 

of variance suggests that cells transition through multiple cell cycles as they progress 

through successive differentiation states, rather than confining cell cycling to a single state.  

Notably, expression of many functionally important genes was not uniform across each 

band of cells along the “developmental axis”. The G1-associated ETP-DN2 region (upper 

left) had a concentration of cells expressing Gata3 and Tcf7, yet this region was also most 

enriched for cells expressing high levels of Spi1, Cd7, and Tyrobp, genes characteristic of 

non-T cells. Depending on the actual trajectory the cells take, this state could represent a 

developmental branch point, an alternative entry point for precursors, or a transiently 

induced upregulation of non-T genes even along the T-cell pathway.  

RNA velocity analysis maps the developmental flux from ETP through DN2 and 

commitment 

To elucidate the developmental fluxes between populations in the ETP-DN2 transition, 

we used RNA velocity analysis (Velocyto)(La Manno et al., 2018)(Fig. S7; Fig. 5a, b). 

This algorithm uses the ratio of unspliced, presumably nascent, pre-mRNAs to mature 

mRNAs to estimate the rate of RNA production change, and therefore the direction of 

regulatory change in low-dimensional transcriptome space, for cells moving through 

development. Indeed, 17% of reads in the 10X scRNA-seq data mapped to intronic regions 

of the genome (Fig. S7a, b). Data from the 10X analysis, omitting DN3b and granulocyte 

precursors, were plotted on a principal component space (PC1 and 2 shown in Fig. 5a,b), 
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with RNA velocity-based differentiation vectors superimposed on the same axes (Fig. 

5b). Similarly to the SPRING layout, expression of known genes showed that cells 

separated orthogonally with cell cycle differences most evident along PC1 and 

developmental stage differences more along PC2 (Fig. 5a, b). Notably, though, despite 

this cell-cycle correlation, differences in cell cycle genes did not drive the velocity vector 

patterns, for the velocity vectors were nearly identical even when cell cycle genes were 

excluded from the calculation (Fig. S7c). 

The velocity vector map indicated complex, PC1-biased differentiation trends within the 

ETP compartment distinct from those in DN2, and suggested that transition from ETP to 

DN2a occurred from a preferential regulatory state (Fig. 5b). While velocity vectors 

indicated that DN2 cells in all cell cycle states were uniformly progressing toward DN3 

(central band of downward pointing arrows), the early ETPs (along the topmost zone, 

colocalized with Flt3) had velocity vectors suggesting two different attractors with distinct 

cell cycle states. Velocity vectors for the Birc5+ ETPs (extreme top right, presumably in 

G2+M) appeared to be pointing to the left, toward another ETP state, where a subset of 

these Birc5+ ETPs appeared to be developmentally static (dots or shortest arrows). Of note, 

these more static ETPs, possibly representing a self-renewing subset, also showed the 

highest ongoing transcription of Hoxa9, a homeobox gene associated with prethymic 

progenitor specification and leukemia (Gwin et al., 2013)(Fig. S7d). In contrast, ETPs 

with differentiation velocity vectors pointing toward an Il2ra+Bcl11b- early DN2a state 

(down) were on the left, among Birc5-nonexpressing ETPs. Here, transitions from a Cd7-

high ETP subset (extreme upper left) were most prominent. The velocity data suggest that 

the immediate precursors of DN2a cells were among particularly Spi1-high G1 phase ETP 

cells, many also transiently Cd7 high, in the process of downregulating Flt3 (Fig. 5a, Fig. 

S7e).  

Supervised analysis of 10X data reveals a developmental trajectory from ETP 

through T-lineage commitment  
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The RNA velocity analysis was reinforced by the topology obtained when we used the 

10X datasets to construct a developmental gene expression trajectory. The curated list of 

seqFISH genes (Table S2) was now used for supervised analysis of the whole 

transcriptome data, with DN3b cells and granulocyte precursors excluded (Fig. S8a,b; 

clusters in Table S4, “10X_supervised_markers”). DDRtree (Qiu et al., 2017a) was used 

to obtain a connected developmental trajectory and pseudotime staging of the cells (Fig. 

5c-e, Fig. S8). From the independent replicates of the 10X analysis, 763 genes were 

significantly differentially expressed along the pseudotime axis in both (qval <10-8), and 

these genes were clustered according to their expression patterns in a heat map (Fig 5f; 

listed in order in Table S5). Fig. 5f also indicates approximate subdivisions and regulatory 

landmarks; the pattern of expression in pseudotime of the curated genes themselves is 

shown in Fig. S8c. While the pseudotime model clearly supported the distinction between 

ETP and DN2a stages (approx. between subdivisions B & C, Fig 5f), additional substages 

were present, in accord with the seqFISH analysis (cf. Fig. S1), and these were not based 

on cell cycle gene clusters. Instead of monotonic increases or decreases in gene expression 

across the trajectory, another group of progenitor-associated genes (e.g. Spi1, Cd7, Mpo, 

and Tyrobp) was predicted to rise transiently upon down-regulation of Flt3 within the 

ETPs (Il2ra negative), followed by their own down-regulation at a later DN2 stage. This 

implication also accorded with the unsupervised RNA velocity analysis. Similarly, in 

second or third waves during the ETP-DN2 transition and DN2 stages (subdivisions C & 

D-E, Fig 5f), other groups of genes including Pim1 were predicted to undergo transient 

expression changes before the final committed DN3 regulatory state. 

These predicted pseudotime trends were generally consistent with known regulatory 

relationships between landmark TFs, Bcl11b and PU.1 (encoded by Spi1) and individual 

target genes, based on perturbation experiments that defined targets of these factors 

genome-wide (Hosokawa et al., 2018a, 2018b; Ungerbäck et al., 2018). These 

perturbation tests defined 326 PU.1-upregulated genes, 237 PU.1-repressed genes, 394 

Bcl11b-dependent genes, and 747 Bcl11b-repressed genes. Bcl11b and/or PU.1 targets 

represented 214 of the 763 pseudotime-indicator genes (Table S5), so we compared the 
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changes in these genes in pseudotime with changes in expression of Bcl11b and Spi1 

themselves. Fig. 5g shows the fractions of genes in individual pseudotime expression 

clusters that were significantly repressed by or dependent on PU.1 or Bcl11b (pattern 

details in Table S5). PU.1 indeed positively regulated genes in several distinct early 

clusters, particularly in the early transient wave (Fig. 5g, orange margin), but negatively 

regulated genes in late (DN3-associated) clusters. Bcl11b primarily activated genes 

upregulated late in pseudotime. Bcl11b repression targets were concentrated among early 

and intermediate pseudotime-expressed genes, especially in the two intermediate 

expression waves (Fig. 5g, groups with green and orange margins). These genes had been 

deduced to be Bcl11b repression targets because acute deletion of Bcl11b caused their 

expression to increase even in committed pro-T cells that had already reached DN2b. This 

supports the interpretation that the genes upregulated in the intermediate wave are 

expressed within the T-lineage specification pathway, and that their expression is then 

truncated by Bcl11b.  

In vitro culture supports the single-cell trajectory and multilineage priming model 

These intermediate expression waves were unpredicted (Mingueneau et al., 2013; Yui and 

Rothenberg, 2014), and might either reflect a succession of transient regulatory states 

during T-cell development or be computational artifacts of forcing branched gene 

expression changes into a single pathway. Specifically, in the DDRtree model, the end 

stage ETPs exhibited a small branch going off the trajectory, associated with upregulation 

of Spi1, Hhex, Cd7, and Tyrobp, genes strongly affiliated with myeloid, NK, or DC 

alternative fates. In pseudotime, however, these genes were modeled as transiently up-

regulated in ETP. In support of the pseudotime model, ETPs expressing high levels of 

these genes (G1-enriched ETPs) were identified in the velocity analysis within the region 

most likely to transition to DN2 (Figure 5b). In seqFISH and C1 distribution analysis, we 

had also confirmed that these genes are expressed by a substantial population of cells (Fig. 

2-3). Thus, two hypotheses can explain this early wave or branch pattern (Fig. 6a): 1. 

lineage branching, where levels of these non-T-cell associated transcripts are accumulated 

in a subset of cells that have branched off towards alternative fates; or 2. multilineage 
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priming, in which genes associated with alternative lineages are expressed transiently 

in early stages, reflecting the intrinsic regulatory network structure and phenotypic 

plasticity of uncommitted early T-cell stages. If lineage branching were true, then the 

pseudotime model expression pattern of transiently upregulated genes in late ETP would 

be inaccurate.  

To test the two hypotheses functionally, we used the pseudotime analysis to identify 

markers that could distinguish between ETP subpopulations. We then FACS-purified ETP 

subsets based on their expression of these markers, and followed their T-lineage 

developmental kinetics, as well as their alternative lineage potentials, through in vitro 

culture (Fig. 6b). Whereas Flt3 marks earlier ETPs (Fig. 2, Fig. S4), the cell surface 

marker HSA (Cd24a) was predicted in pseudotime to be gradually up-regulated during 

late ETP stages, followed by Ly6d up-regulation (Fig. 5f). Unfortunately, CD7 could not 

be used for subset enrichment due to lack of a specific antibody. We therefore sorted ETPs 

into 6 sub-populations according to Flt3, HSA, and Ly6d expression (Fig. S8d), and tested 

them in OP9 co-culture systems with and without Notch ligand to compare their 

developmental potentials and speeds of T-lineage progression, as measured by 

upregulation of the Bcl11b-YFP reporter. In this T-lineage developmental assay, after 4 

days, these 6 populations showed a clear range of T-lineage developmental speeds (Fig. 

6c-d). The most advanced population repeatedly appeared to be Ly6d+ Flt3- ETPs (pop. 6, 

approximately late substage B, Fig. 5f), and the least advanced population, the Flt3+ Ly6d- 

HSA- cells (pop. 1), in good agreement with the single-cell pseudotime trajectory model. 

In tests of non-T lineage potential using co-culture without Notch ligand, Flt3+ cells (pops. 

1-3) differentiated readily into dendritic cells (DCs), macrophages, natural killer cells 

(NKs), and some granulocytes, as expected for uncommitted precursors. However, despite 

their association with higher expression of myeloid-affiliated genes  Spi1, Hhex, Tyrobp, 

and Mpo, all the Flt3- subpopulations (pops. 4-6) revealed less potential to give rise to 

DCs and macrophages than the Flt3+ ones, although similar to Flt3+ ETPs in their output 

of NKs (Fig. 6e). This agreed with the different outputs of Flt3+ and Flt3- ETP subsets 

when myeloid potential was promoted with alternative cytokines, omitting Flt3 ligand 
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(Fig. S5b). Thus, potential towards DC and macrophage development is reduced, not 

increased, in ETPs when they turn off Flt3.  

Finally, to determine whether the developmental potentials of individual cells truly match 

the transcriptome features of the pseudotime model, we repeated this experiment at the 

clonal level. First, we determined the distribution of developmental states from Bcl11b- 

DN2a to Bcl11b+ DN2a to DN2b, within clones generated by single precursors from 

sorted ETP subsets 1-6 (Fig. 6f). The results showed that nearly all cells in clones from 

all subsets of input cells had crossed the ETP-DN2 boundary in five days (Fig. 6f, top). In 

accord with the sorted bulk population results (Fig. 6d), clones seeded by precursors from 

subsets 1 and 2 were slower than the rest and those seeded from subsets 5 and 6 were 

faster than the rest at turning on Bcl11b-YFP and progressing to DN2b (Fig. 6f, middle, 

bottom). However, despite these differences, >75% of the individual subset 3 and 4 

precursors generated clones in which at least 30%-50% of the cells had turned on Bcl11b-

YFP by day 5 (Fig. 6f), confirming the T-lineage potential of the founders. To determine 

how homogeneously the transcriptomes of these sorted subsets were actually distributed 

in pseudotime, at single-cell level, we used Cell Hashing for scRNA-seq of 5 populations 

simultaneously, combining barcoded antibodies with 10X analysis (Stoeckius et al., 

2018)(Fig.6b, also see Methods). Purified ETP subsets 1, 3, 4, and 6 and a reference ETP-

DN3 population were labeled and pooled for 10x single-cell transcriptome analysis. A 

new DDRTree and a new ‘ETP-enriched’ pseudotime analysis were calculated from the 

results (Fig. 6g,h, Fig. S8e), and the distinct subset features were deconvolved from the 

data by sample cell hashing barcode. The separation and spread of the clonal 

developmental assay and the transcriptomic pseudotime profiles of precursors from sorted 

gates were in good agreement. Cells in the Flt3- subsets 4 and 6 resolved to different 

pseudotime positions particularly well, and both subsets were distinct from subsets 1 and 

3 (Fig. 6g,h). Fig. S8e confirms that their enhanced T-lineage differentiation relative to 

subsets 1 and 3 was indeed correlated with their higher expression of “non-T” genes Spi1, 

Hhex, Cd7, Mpo, and Tyrobp, as predicted by RNA velocity results. 
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These results thus confirm that ETPs advance toward T-lineage progression as they turn 

off Flt3, but that strong multipotency regulators and non-T markers are transiently 

elevated in these cells relative to earlier T-cell precursors. This result favors the 

multilineage-priming model and indicates that the transient upregulation of these “non-T” 

genes is an integral feature of the early T-cell developmental program. 
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DISCUSSION 

The T-lineage commitment transition has been much studied, but the events leading up to 

commitment have been poorly understood until now. Here, we have dissected the gene 

regulatory changes and associated developmental potentials during this process, 

encompassing ETP to DN2a stages, at the single-cell level (Fig. S1a), with results 

summarized in Figure 7. This analysis has provided evidence for an ordered sequence of 

at least three transient regulatory states leading toward T-lineage commitment. Evidence 

that these transient states are truly within the T-cell developmental progression and not 

representing cells of different lineages comes from the high T-lineage precursor frequency 

in the starting ETP population, from the relative differentiation kinetics of the candidate 

intermediate populations, and from the robust coexpression of T-lineage specification TFs 

(Tcf7, Gata3) together with genes specific for the intermediate states within individual 

cells. This study thus provides insight into gene expression dynamics of the earliest T-cell 

precursors, essential for more accurate modeling of the underlying T-cell specification 

gene regulatory network. 

The results of this study were greatly strengthened by the complementary contributions 

from three single-cell transcriptome analysis approaches. Genome-wide transcriptome 

profiles based on 10X Chromium droplet-based sequencing had to be supplemented with 

highly sensitive seqFISH measurements to obtain accurate relationships between 

regulatory genes expressed in the same cells, while deep sequencing of a smaller number 

of cells with C1-SmartSeq2 provided full-transcript corroboration. We validated the 

biological predictions of the pseudotime trajectory using primary cell culturing assays to 

test directly the T and other lineage differentiation potentials among sub-populations of 

ETPs. The pseudotime model of gene expression dynamics in early T-cell differentiation 

was also consistent with recent empirical knock-out studies of known regulatory factors, 

PU.1 (Spi1) and Bcl11b (Hosokawa et al., 2018a, 2018b; Ungerbäck et al., 2018), which 

activate and repress target genes that cluster appropriately relative to Bcl11b and PU.1 

expression changes.  
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Transcriptome clustering and RNA velocity analyses indicated that developmental 

progression could be initially linked with cell cycle control in ETPs, later becoming cell 

cycle-unrestricted in DN2s. Through RNA velocity and pseudotime analysis, we 

identified the most likely phenotype of the immediate DN2 precursors within the ETP 

population. Notably, these cells were particularly enriched for expression of Spi1 and 

other genes that are not specific for the T-cell pathway, supporting multilineage priming. 

This population was distinct from an outgroup of granulocyte-committed precursors found 

in every population of ETPs analyzed. Finally, primitive populations of ETPs with 

unusually high Hoxa9 transcription were detectable by cell cycle and distinctive 

regulatory gene expression velocity (Fig. S6e), and could represent an ETP subset with 

augmented self-renewal potential. 

Using seqFISH and C1 data, we showed that within the ETP state the majority of 

individual cells co-express legacy progenitor genes with the critical Notch-induced T-cell 

regulatory genes, Gata3 and Tcf7. This demonstrates rigorously that intra-thymic Notch 

signaling does not immediately shut down expression of stem and progenitor genes, even 

as it turns on T-cell genes, and that the two regulatory networks operate together in the 

same cells throughout ETP and even into DN2 stages, implying timescales of days (Kueh 

et al., 2016). This also suggests the possibility of crossover regulatory network 

connections, which remain to be determined but may help to explain the observed transient 

regulatory states. Previous studies suggested that hematopoietic stem cells (HSCs) 

maintain low-level expression of lineage-associated genes to stay poised for multilineage 

blood production while balancing self-renewal and differentiation, a state termed 

multilineage priming (Hu et al., 1997; Mercer et al., 2011; Orkin, 2003; van Galen et al., 

2014). Seemingly-overlapping patterns of expression of Spi1, Bcl11a, Cebpa and T-cell 

specification genes at the population level have been suggested to explain the persistence 

of multilineage differentiation potential in ETP-DN2a cells under conditions of Notch 

withdrawal (Del Real and Rothenberg, 2013; Franco et al., 2006; Kueh et al., 2016; Laiosa 

et al., 2006; Wang et al., 2014; Yui et al., 2010), but this has previously been a hypothesis. 

The results shown here are the first to demonstrate this co-expression in individual ETPs. 
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Furthermore, in ETPs, even some “effector” genes representative of non-T cell lineages, 

such as Mpo, were also robustly co-expressed with Gata3 and Tcf7 at the single-cell level, 

in populations showing a high T-lineage precursor frequency; the seqFISH data ruled out 

possible doublets. This pattern of coexpression strongly supports multilineage priming in 

many individual ETP (and even DN2a) cells rather than contamination with cells lacking 

T-lineage potential.  

In summary, we have established a detailed model of single-cell transcriptome dynamics 

during the transition from multipotentiality to T-cell lineage commitment, with single-cell 

sequencing tools, bolstered by highly sensitive seqFISH analysis, and supported by in 

vitro differentiation kinetics and the results of acute transcription factor perturbation 

studies. This study provides new potential regulatory steps to explore and validate. For 

the first time, the complexity and regulatory substructure within the first phase of T-cell 

development can be perceived. 
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MAIN FIGURES 

 
Figure1. High T-cell precursor frequency in ETP cells and bulk population gene 

expression comparison with DN2a cells. A) Schematics of early T-cell developmental 

stages, checkpoints, associated key developmental markers, and previously unresolved 

questions addressed in this study. B) Diagram of clonal culture and imaging methods for 

following the development of individual sorted ETP cells and a representative false color 
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image of the progeny of an ETP clone (top). Histogram plots showing the numbers of 

ETP clones with different percentages of CD25+ (magenta) or Bcl11b+ (cyan) cells on 

day 6 of culture (n = 66 viable clones) (bottom). c-d) Heatmaps of bulk RNAseq 

measurements on Flt3+ and Flt3- ETP and Bcl11b- (uncommitted) and Bcl11b+ 

(committed) DN2a sorted populations. Color scales indicate raw expression levels as 

log(FPKM+0.1), without row normalization. Some samples were sequenced with pre-

amplification, indicated (o) (see Methods). C) Clustered expression heatmap of bulk 

RNAseq measurements for genes differentially expressed between all ETP and committed 

Bcl11b+ DN2a cells (n≥3, adj. pval<0.05, fold change ≥ 2 either way, also see Table S1). 

Representative non-T or stem/progenitor genes are labeled. D) Selected key genes 

involved in T development, on the same populations as in (c).  
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Figure 2 High sensitivity measurement and coexpression of key regulatory genes in single 

early pro-T cells using seqFISH.  A) Experimental design for seqFISH analysis with 

FACS enriched cells. B) Transcript distributions of genes in thymic ETP (cKithigh, Kit 

transcript ≥5, Il2ra transcript ≤3, N=890) and DN2 (cKithigh, Kit transcript ≥5, Il2ra 

transcript >3, n=1984) cells, in cells from 4 week-old-animals as detected by seqFISH. C) 
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Gene-Gene Pearson distance heatmap of co-expression of genes measured based on 

2963 ETP-DN2 cells plus 1587 DN3 cells. D-E) Clustering analysis of seqFISH data for 

4550 cells across ETP-DN3 stages. The Smart Local Moving (SLM) algorithm was used 

based on PC 1-6 of size-normalized data for 65 genes. Heatmap of genes enriched in 

expression in each sub-cluster, ordered based on connectivity in tSNE and reflecting 

developmental progression (Wilcoxon rank sum test with threshold of 0.2 and minimum 

fraction of expressing cells ≥0.2 using Seurat 2). E) Annotated tSNE display generated 

using PC1-6, colored by clusters. F) Pair-wise scatter plots, overlaid with color-coded 

density contours, of copy numbers of transcripts for Tcf7 against those of T-specification 

genes Gata3 and Bcl11b and of “non-T” gene Mpo and growth-control gene Pim1. ETP 

and DN2 cells are defined as in (B), displayed on sqrt+1 scale.  
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Figure 3. Semi-supervised C1 Fluidigm (C1) analysis of single cells in the ETP-

DN2a developmental continuum supports co-expression hierarchy of T-lineage and 

progenitor-associated genes. A) Principal component (PC) loading of first 2 PCs 
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of the analysis based on genes that are differentially expressed in bulk RNAseq 

shown in Table S1. B) PC1-2 display of 193 cells measured by C1, colored by stage 

categorization of Flt3, Il2ra (ETP vs. DN2a), and Bcl11b positivity. C) tSNE 

display of C1 data with SLM clusters color projected. Both tSNE and clustering 

with SLM were performed with PC 1-10. D) tSNE display with expression patterns 

of specific genes as indicated overlaid in red. E) Heatmap of expression patterns of 

selected genes (‘non-T’ genes and ‘T-associated’ genes). The clusters are ordered 

by approximate T developmental order, according to C) and D). Also see Table S4 

for the list of feature genes that are enriched in individual clusters. F) Bi-plots of 

expression patterns of two non-T lineage markers Irf8 and Mpo, against T-

specification genes Tcf7 and Bcl11b, showing the pattern of overlap of Mpo and 

both T-specification genes. Irf8, on the other hand, overlaps with early T-

specification gene, Tcf7, but minimally with Bcl11b, which is expressed at a later 

stage. The dots are colored by expression of Il2ra (CD25) on a log transformed 

color scale. G) Co-expression patterns of stem and progenitor genes and T-

specification genes Tcf7, Gata3 and Bcl11b. n= 228 total cells measured, n= 193 

cells were shown in this figure after filtering for single cells with a minimum of 

3600 genes and a mitochondrial gene fraction under 0.11. 
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Figure 4. A dense developmental continuum of gene expression in early DN pro-T cells 

based on 10x Chromium scRNA-seq analysis. A-B) UMAP(A) and tSNE(B) displays of 

10X Chromium data, colored by sub-clusters. Clustering performed with SLM algorithm 

using PC1-10. C) UMAP display with expression patterns of genes that characterize 

different developmental stages (Flt3, Kit, Il2ra, Spi1, Bcl11b, Rag1) or different lineages 
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[Elane (granulocytes, GN), Mpo (macrophages, MP), Klrd1 (NK cells, NK)] overlaid 

in red. D) Heatmap displaying the top 10 enriched genes in each sub-cluster ordered by 

approximate developmental progression based on gene expression and connectivity in low 

dimensional displays. (Seurat 2 pipeline with minimum fraction of expressing cells ≥0.2, 

Wilcoxon rank sum test with threshold of 0.2; see Table S4). n=4627 cells: ~90% ETP-

DN2 and ~10% DN3 cells. 
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Figure 5. Stage ordering by RNA velocity and pseudotime modeling from supervised 

analysis of 10X scRNA-seq data: evidence for gene expression waves during early T-cell 

differentiation. A-B) RNA velocity analysis on trimmed data using Velocyto (excluding 

granulocyte precursor and DN3b clusters). A) mRNA expression patterns for key genes 
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on PC1-2: higher expression, darker green. B) Grid arrows indicating relative transition 

probabilities based on un-spliced/spliced transcript calculations (imputation with k = 90, 

displayed on PC1-2) using Velocyto. Also see Fig. S7. C-D) DDRtree display analyzed 

with Monocle 2 and based on the curated instructive gene list (Table S2), overlaid with 

pseudo-time staging (C), and branching state (D). Granulocyte precursor and DN3b 

clusters excluded, n=4438 cells. E-F) Gene expression patterns along pseudo-time. E) 

Relative expression patterns of representative regulatory genes across pseudo-time, 

colored by DDRtree ‘state’ (legend in (D)). Also see Fig.S8C. F) Clustered expression 

heatmap of 763 genes that are differentially expressed along the pseudo-time (Monocle 2, 

with qval<10-8, in both biological replicates). Red= high expression level, blue = low 

expression level, on a relative scale normalized to each gene. Dashed vertical lines are 

positioned for descriptive purposes, hierarchical clustering based on expression using the 

“complete” method. G) Summary table of fractions of pseudotime-differentially 

expressed genes in each cluster that overlap with regulatory targets activated (act) or 

repressed (rep) by key TFs PU.1 and Bcl11b in perturbation assays, and the total number 

of genes in each cluster. Also see Table S5. Red font highlights fractions above 10% (0.1).  
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Figure 6. In vitro test of ETP developmental staging favors a multilineage-priming model 

for gene expression waves. A) Diagram of two hypotheses to explain the branch or early 

wave patterns observed in the DDRtree and pseudotime analyses. B) Diagram of the in 
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vitro developmental culture assays and ETP subset scRNA-seq setups. C-E) ETPs 

(stages A and B, Fig 6D) were subdivided into 6 populations according to surface markers 

Flt3, HSA, and Ly6d, and analyzed for their developmental progression after 4-7 days. C) 

Representative flow cytometry plots of the development of sorted ETP populations after 

4 days of culture on OP9-DL1. D) Bar-graphs showing the fraction of committed T cells 

(measured by Bcl11b-YFP upregulation) after 4 days in OP9-DL1 culture, ordered 

according to the pseudo-time pattern. (n=3 independent biological replicates, 3rd replicate 

(Rep3) an average of 2 technical replicates.) E) non-T lineage potential of individual 

sorted populations after 7d of culture on OP9-Control (no Notch ligand, non-T conditions) 

with lymphoid supporting cytokines. n≥4. F) Summary plots of percentage of cells passing 

T-developmental milestones in individual clones from individual FACS sorted precursors 

(gates same as in (C)-(E)) cultured 5 days on OP9-DL1. Whiskers represent 5-95 

percentiles. n=55, 62, 63, 58, 58, 44 live clones in ETP pop1 through 6, respectively. G-

H) Reconstructed transcriptome single-cell pseudotime trajectory with 4 ETP subsets 

(pops 1, 3, 4, 6 from (C)-(F)) and an ETP-DN3 control group tagged with antibody 

barcodes. G) DDRtree with pseudotime coloring and highlighted ETP subsets. H) 

Pseudotime distribution of individual cells from the 4 sorted subpopulations. (Analyzed 

with Monocle 2 and based on the curated instructive gene list). n= 1333, 1144, 1044, 823, 

3172 cells in ETP pop1, 3, 4, 6 and control, respectively. 
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Figure 7. Summary of key findings in this study.  

Data imply sequential sub-stages within the ETP compartment before transition to DN2a, 

not only marked by asynchronous downregulation of progenitor genes but also by 

transient activation of gene waves as the cells progress toward commitment. The 

frequency of T-lineage potential is very high in ETPs overall, and although some 

transiently activated genes are otherwise associated with non-T fates (multilineage 

priming), alternative lineage potential in pro-T cells decreases monotonically as the cells 

progress from Flt3+ ETP to Flt3- ETP to DN2a to commitment.  
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SUPPLEMENTARY FIGURES 

 
Supplementary Figure S1, related to Figs. 1, 2, 3, 4, 5, 6, and 7. Summary 

schematics of biological questions addressed, and analysis pipelines used.  

a) Summary: logic flow of central biological questions in this study, how each step 

provides the rationale for the next, and breakdown of specific technologies and 
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analyses used to address the specific questions. Questions are highlighted in 

red boxes, and results are shaded in gray boxes. Techniques and analysis used 

are described in italic text and colored in background with blue shading indicating 

analysis using single-cell transcription profiling tools, purple shading indicating 

bulk RNA analysis, and orange shading indicating cell culturing assays. b) 

Summarizes relationships between methods, gene and cell filters being used, and 

data analytical pipelines used in this study. c) Sorting gates and logistics for 

purifying Kithi ETP-DN2a and DN3 cells for single-cell analyses.  
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Supplementary Figure S2, related to Fig. 2. Highly sensitive seqFISH provides 

reproducible and robust RNA transcript quantitation for regulatory genes.  

a) Scatterplot comparison between mean values of expression measured in a 

comparable population (Flt3+ ETP) in different seqFISH experiments with 
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thymocytes from 4, 5, 8-week old animals. b) Scatterplot comparison between 

mean values of expression, measured in seqFISH and 10X Chromium, of genes 

listed in Table S2. Mean values taken from cells in comparable cell populations 

(Flt3+ ETPs). Patterns were broadly correlated, but seqFISH detected 

approximately 10 molecules of RNA for each UMI count in the 10X analysis 

(seqFISH: n=1656, from 3 replicates. 10X: n=863, from replicate1). The result is 

consistent with the previously described 10% sampling rate of 10X Chromium v2 

scRNA-seq, at the sequencing depth being used (Islam et al., 2014; Kolodziejczyk 

et al., 2015) c) tSNE plots with combined 3 seqFISH replicates, including Kit 

positive and DN3 populations, colored in each panel to indicate the distribution of 

Kit positive cells from one of the individual replicates. The samples from different 

experiments and ages are interspersed without batch corrections. d) Detected 

transcript distribution comparison between seqFISH and 10X Chromium 

experiment on key regulatory genes in ETP-DN2 cells. (seqFISH: n=2524, 10X: 

n=4234.) SeqFISH detected the expression of Notch1, Tcf7, and Runx1 in almost 

all ETP-DN2 cells, in agreement with their known functional roles whereas 10X 

had a high false negative rate. e) Scatterplots of antibody staining and RNA 

transcript count correlations, colored by the cell size estimation (area of image 

segmentation). f) Transcript and antibody distribution of cells at different stages 

(binned by Il2ra, Bcl11b transcripts). c-Kit and TCF1 agree well with Kit and Tcf7 

expression at all stages. Note that arrows indicating the PU.1 protein (encoded 

by Spi1) and Spi1 RNA disagree at DN2b stage, as Spi1 RNA drops in expression 

between DN2a-b stage while PU.1 protein appears to persist longer. This is likely 

a reflection of the extreme stability of PU.1 protein, as reported previously (Kueh 

et al., 2013). The antibody signals were plotted in arbitrary units on linear scales, 

with signal quantitation described in Methods. g) Developmentally ordered 

clusters of seqFISH transcript distribution. Clusters shown here were as 
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presented in Figure 2f, excluding DN3b (cluster 7) and the ‘outlier’ myeloid 

cluster (cluster 8).  

Supplementary Figure S3, related to Fig. 4. 10X Chromium scRNA-seq replicates 

confirm the similar continuity and heterogeneity of cell states and lineage 

progression within the purified early T-cell population. 
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a-b) Scatterplot comparison between mean values of expression measured in 

comparable population (early Flt3+ ETPs) in two 10X Chromium scRNA-seq 

replicates (n=863 cells replicate1, n=1442 cells replicate2). c) tSNE display of 10X 

replicate2 (7076 cells) colored by cluster. Clustering was performed with SLM 

algorithm, using PC 1 to 10. d) Heatmap of feature genes enriched in each sub-

cluster analyzed in 10X replicate 2, ordered by approximate developmental state. 

Yellow=high expression, purple=low expression. Compare with similar clustering 

for replicate 1, shown in Fig. 4d. e) Alignment of seqFISH, 10X, and C1 datasets 

after CCA scaling, shown in principal components 1-2. 
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Supplementary Figure S4 (previous page), related to Figs. 2-4. Discrete 

granulocyte precursor subset in the ETP compartment.  

a) Experimental plan to test developmental potential. Purified Lin-DN thymocyte 

subsets were sorted into wells (25 or 50 cells/well into 96 well plate) for co-culture 

with pre-plated OP9 stroma, with Notch ligands (OP9-DL1) or without, and then 

stained and FACs analyzed at indicated timepoints. b) Flt3+, Flt3- ETPs, and 

DN2a cells cultured on OP9-DL1 for 4 days, then analyzed for developmental 

markers, CD44 and CD25, and Bcl11b-YFP. c) CD63+ Ly6c+, and CD63- Ly6c- 

ETP cells cultured on OP9-DL1 for 4d, then analyzed for markers of T-cell 

progression, CD25, and granulocytes (Gr1). d) Summary plot of percentages of 

CD25+ cells and Gr1+ cells after 4-5d culture with OP9-DL1 stromal cells. 

Thymocytes from Bcl2 transgenic mice were used to enhance cell survival. Also 

see Fig. S5. 

 
Supplementary Figure S5, related to Figs. 2-4. Commitment assays under 

conditions lacking Notch signaling to test ETP subsets for alternative lineage 

potentials. 
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Subsets of ETPs and DN2a cells were sorted according to surface marker 

expression patterns indicated and tested for developmental potential under 

conditions favoring myeloid development. Assays were performed with cells 

isolated from Bcl2-tg mice to promote survival. 25 or 50 cells/well were plated into 

96 well plate with pre-seeded OP9-control stroma cells, cultured for 7 days under 

myeloid conditions, and analyzed by flow cytometry as shown. One representative 

culture is shown from each subset except Flt3- ETPs, which are represented by 

two different cultures. Here, subsets are shown with data from the most advanced 

T-lineage precursors, Bcl11b-YFP+ DN2a cells, which are already T-lineage 

committed. a) Gating strategies and representative flow cytometry analysis for 

alternative lineage assays at day 7 of culture. Cells were gated on FSC and SSC, 

7AAD negative and CD45 positive for live lymphocytes (top two rows), and then 

separated by anti-NK1.1 + anti-Dx5 and anti-Gr1 for NK cells (NK) and 

Granulocytes (Gr1+ cells) respectively (third row). The non-NK and non-

Granulocyte population (lower left of panels in third row) was further separated 

using anti-CD11b and anti-CD11c for Macrophage (MP) and Dendritic cells (DC), 

respectively. The cells that were negative for all alternative-lineage markers in the 

staining panels were categorized as ‘unknown’. The cell numbers generated from 

individual categories were divided by the input cell number and displayed in 

stacked bar graphs in b) and also in Fig. 6e. b) Summary graphs for results of 

alternative lineage potential assays of ETP subsets distinguished by Flt3, CD63 

and Ly6c expression, compared with DN2a cells separated into Bcl11b-YFP- and 

Bcl11b-YFP+. Isolated cells were cultured on OP9-Control stroma, under myeloid 

lineage supporting cytokine conditions for 7 days (see STAR Methods). The 

stacked bar-graphs represent the developmental potentials of each ETP subset 

to generate cells of non-T lineages under these permissive conditions. Top panel 

shows results from Ly6c-CD63- ETP cells subdivided by Flt3, and DN2a cells 

subdivided by Bcl11b-YFP. The bottom panel shows results from Ly6c and CD63 

single and double positive ETP populations. Under these conditions, CD63- Ly6c- 

ETPs generated multiple types of cells of alternative non-T lineages, including 



 

 

66 
Gr1+ granulocytes (magenta) (top). However, Ly6c+ CD63+ double positive cells 

gave rise exclusively to Gr1+ granulocytes, while CD63+ or Ly6d+ single positive 

cells generated Gr1+ cells as well as other lineages (bottom). Individual replicates 

are presented in separate bars. 
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Supplementary Figure S6 (previous page), related to Fig. 4. Developmental 

connectivity coupled with orthogonal spread of cell cycle signatures in SPRING 

analysis.  

a-b) SPRING display of expression topology of ETP-DN2-DN3 cells. (Performed 

with PC1-20, and k=5 on raw 10x dataset with cells filtered by minimum 2500 UMI 

counts, but not by mitochondrial content, and genes filtered by 60th percentiles 

for variability) a) Expression levels of key genes are highlighted in green on 

relative scales. The key genes were categorized as early developmental genes 

(Flt3, Lmo2, and Mef2c, early ETPs; Spi1, all ETP and DN2a cells)  and later 

genes (Il2ra, ETP to DN2a transition marker; Fgf3, DN2a-specific; Bcl11b, 

commitment marker; Rag1, upregulated in DN3a) for marking the developmental 

direction. The second orthogonal axis was represented by proliferative and cell 

cycle state markers, with G2/M-active genes Birc5 and Mki67 (similarly with 

Top2a and Cenpa, not shown) expressed by cells at the lower right with the 

highest UMI counts, with G1-to-S phase cyclin Ccne2 immediately adjacent, and 

G1-expressed gene Samhd1 concentrated at the other end). The committed 

granulocyte precursor population appeared as a spur (upper right) away from the 

main distribution (Elane). b) Developmental stages and axes annotated based on 

overall marker expression patterns, with total UMI counts displayed on red-yellow 

scale as shown. 
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Supplementary Figure S7, related to Fig. 5. Supporting analysis for RNA velocity 

using Velocyto.  

a) Fraction of 10X Chromium reads mapped to different genomic regions: “spliced” 

represents exonic reads, “unspliced” represents intronic reads. b) Mean and 

variable filter of genes that are used in velocity analysis: red dots highlight the 

gene filter (‘spliced’) for PCA analysis. c) PC1-2 display with arrows indicating the 

transition probability of cells (imputation and transitioning probability estimation 

with k=90, quiver scale=0.7, scale type = “relative”.). The vector calculation was 
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performed with (top) and without (bottom) including cell cycle genes (as defined 

by gene ontology annotation (using Goatools), used in (La Manno et al., 2018)). 

d) Scatterplots (left panels) display the un-spliced vs spliced isoform distributions 

after imputation, and gamma fit of the rates of RNA processing for individual 

genes. Red-blue heatmaps (center plots) highlight the unspliced fraction of the 

individual genes, indicating active synthesis of transcripts (red), and apparently 

decreasing synthesis (blue), on PC1-2 displays as shown in (c). Green (right-hand 

plots) highlight spliced transcripts on the same axes.  e) PC2-3 display with arrows 

indicating the transition probability of cells as described in the top panel of (c)(and 

Fig. 5b) plus corresponding gene plots as described in (d). 
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Supplementary Figure S8, related to Fig. 6.  
Supervised analysis of 10X Chromium data: low dimensional representation 

based on the curated, instructive gene list in Table S2. a) PC loading of first 2 

PCs with supervised analysis. b) PC (PC1 vs. PC2) and tSNE (tSNE2 vs. tSNE3) 

displays of 10X data (replicate 1, 4627 cells) with clusters color projected. tSNE 

and the SLM clustering algorithm were performed based on PC1-6 (same as 

seqFISH analysis). c) Clustered expression patterns of members of the curated 

instructive gene list (Table S2) on pseudo-time (same pseudo-time scale and 
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calculations as in Fig. 5; displayed are genes that were detected in ≥11 cells). 

Colored by log transformed and row normalized relative expression level. d) 

FACS gating strategy for ETP sub-population sorts in Fig. 6, both on population 

level and single-cell level. e) Precursors in individual gates shown in (d) were 

profiled for transcriptome expression and pseudotime prediction using Cell 

Hashing. Top panel labels the mean and interquartile ranges of individual-cell 

pseudotime predictions from each subpopulation. Bottom heatmap displays the 

key genes’ expression pattern on this recalculated, ‘ETP-enriched’ pseudotime 

scale, aligned to the top panel. Note enrichment of Tyrobp, Mpo, Cd7, Spi1, and 

Hhex expression corresponding to the sorted ETP subsets 4 and 6. 
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METHODS 

LEAD CONTACT AND MATERIALS AVAILABILITY 
All sequence data generated in this study have been deposited in Gene Expression 

Omnibus and all genotypes of mice used in this study were crossed from strains available 

from Jackson Laboratories, or from strains we reported previously (Kueh et al., 2016), 

which are available upon reasonable requests.  Further information and requests for 

resources and reagents should be directed to and will be fulfilled by the Lead Contact, 

Ellen V. Rothenberg (evroth@its.caltech.edu).   

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Animals 

Mice of a variety of genotypes were used exclusively as sources of primary cells to be 

analyzed ex vivo in these studies. B6.Bcl11byfp/yfp reporter (Kueh et al., 2016) mice were 

used for bulk RNAseq analysis, in vitro developmental assays, and ETP subpopulation 

Cell Hashing 10X scRNA-seq. This nomenclature is used for animals which have a 

nondisruptive insertion of IRES-mCitrine into the 3’-untranslated region of Bcl11b, so that 

they have wildtype Bcl11b function despite simultaneously expressing the yellow 

fluorescent protein. C57BL/6(B6) mice (stock originally from Jackson Laboratories) were 

used for seqFISH and all other scRNA-seq analysis. B6.ROSA26-mTom;Bcl11b-YFP 

mice were used for clonal imaging analysis. They were generated by crossing and 

backcrossing B6.129(Cg)-Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J mice, which express 

ubiquitous membrane Tomato (Jackson Laboratories), with the B6.Bcl11byfp/yfp reporter 

mice until both loci were homozygous. Eμ-Bcl-2-25(Bcl2-tg) (Strasser et al., 1991) and 

B6.Bcl11byfp/yfp;Bcl2-tg mice were used for specific culturing assays as indicated below. 

B6.Bcl11byfp/yfp;Bcl2 mice were generated through crossing B6.Bcl11byfp/yfp x Bcl2-tg until 

the Bcl11b locus was homozygous. All adult animals used were mice between 4 and 8 

weeks of age, and all samples within experiments were pools from multiple age and sex-

matched animals. Animals used for these experiments were bred and maintained at the 

Animal Facilities at California Institute of Technology under conventional Specific 

Pathogen-Free conditions, and animal protocols were reviewed and approved by the 

Institute Animal Care and Use Committee of California Institute of Technology (Protocol 
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#1445-18G). To maximize both the thymus population sizes and fertility of the mice in 

the colony, care was taken to protect these animals from stress throughout their lifetimes 

to the greatest extent possible. 

Cell lines 

To provide a microenvironment that supports T-lineage differentiation in vitro, we co-

cultivated primary cells with the OP9-DL1 stromal cell line (Schmitt and Zúñiga-Pflücker, 

2002), which was obtained from Dr. Zúñiga-Pflücker (Sunnybrook Research Institute, 

University of Toronto) and maintained in our laboratory as described in the original 

reference. Control OP9 cells not expressing the Notch ligand DL1 were used to establish 

a microenvironment to support non-T cell developmental pathways of primary cells. The 

OP9-control cells were also obtained from Dr. Zúñiga-Pflücker. Both OP9-DL1 and OP9-

control cell lines were tested and found to be negative for mycoplasma contamination. For 

live imaging experiments, a derivative of the OP9-DL1 cells was used, OP9-DL1-

delGFP1, in which the GFP marker in the cell line had been removed by Cas9-mediated 

disruption as described elsewhere (Olariu et al., 2021). Details of the differentiation 

cultures are given below under Method Details.  

 

METHOD DETAILS 

Primary Cell Purification 

Early stage thymocytes were purified from thymi removed from 4- to 8-week-old animals 

prior to flow cytometry analysis or fluorescence-activated cell sorting (FACS). Harvested 

thymi were mechanically dissociated to make single-cell suspensions that were re-

suspended in Fc blocking solution with 2.4G2 hybridoma supernatant (prepared in the 

Rothenberg lab), followed by depletion of mature T and non-T lineage cells using a biotin-

streptavidin-magnetic bead removal method. Briefly, thymocyte suspensions were labeled 

with biotinylated lineage marker antibodies (CD8α, TCRβ, TCRγδ, Ter119, CD19, 

CD11c, CD11b, NK1.1), incubated with MACS Streptavidin Microbeads (Miltenyi, 

Biotec) in HBH buffer (HBSS (Gibco), 0.5% BSA (FractionV), 10 mM HEPES, (Gibco)), 

pre-filtered through nylon mesh, and passed through a magnetic column (Miltenyi Biotec) 
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on a cell separation magnet (BD Biosciences) to obtain enriched DN cells. Then, the 

DN cells were stained with conjugated fluorescent cell surface antibodies (See STAR Key 

Resources Table) to purify the ETP, DN2a, and DN3 populations.  ETP: Kithigh CD44high 

CD25neg. DN2a: Kithigh CD44high CD25+.  DN2b: Kitintermed CD44high/intermed CD25+.  DN3: 

Kitlow CD44low CD25+.  Where the Bcl11b-YFP allele is present, the onset of Bcl11b-YFP 

expression distinguishes T-lineage committed DN2a cells from earlier, uncommitted 

DN2a cells (Kueh et al., 2016). 

Flow Cytometry and Cell Sorting 

Unless otherwise noted, flow cytometry analysis and FACS of all samples were carried 

out using the procedures outlined. Briefly, cultured cells on tissue culture plates and 

primary cells from thymus were prepared as single-cell suspensions, incubated in 2.4G2 

Fc blocking solution, stained with respective surface cell markers as indicated (See STAR 

Key Resources Table), resuspended in HBH, and filtered through a 40 μm nylon mesh. 

They were then analyzed using a benchtop MacsQuant flow cytometer (Miltenyi Biotec, 

Auburn, CA) or sorted with a Sony Synergy 3200 cell sorter (Sony Biotechnology, Inc, 

San Jose, CA) for most of the single-cell transcriptome analyses and seqFISH samples, or 

with a FACSAria Fusion cell sorter (BD Biosciences) for the culture assays and ETP sub-

population Cell Hashing scRNA-seq. All antibodies used in these experiments are 

standard, commercially available monoclonal reagents widely established to characterize 

immune cell populations in the mouse; details are given in the STAR Key Resources Table. 

Acquired flow cytometry data were all analyzed with FlowJo software (Tree Star). 

Cell Cultures 

Subsets of primary DN thymocytes FACS-purified as described above were cultured on a 

OP9-DL1 or OP9-control stromal monolayer system (Schmitt and Zúñiga-Pflücker, 2002) 

at 37°C in 7% CO2 conditions with standard culture medium [80% αMEM (Gibco), 20% 

Fetal Bovine Serum (Sigma-Aldrich), Pen-Strep-Glutamine (Gibco), 50 μM β-

mercaptoethanol (Sigma)] supplemented with appropriate cytokines (Lymphoid condition: 
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Flt3L (Pepro Tech Inc.) 10 ng/mL, Human IL7 (Pepro Tech Inc.) 5 ng/mL; Myeloid 

condition: M-CSF(Pepro Tech Inc.), GM-CSF(Miltenyi Biotec), and IL-6(Pepro Tech Inc.) 

each at 5 ng/mL, SCF(Pepro Tech Inc.) at 1 ng/mL, and IL-3 (Pepro Tech Inc.) at 0.1 

ng/mL.  

Bulk RNAseq Analysis 

Kithi CD44hi cells purified from B6.Bcl11byfp/yfp animals were subdivided into 

Flt3highCD25low ETP, Flt3lowCD25low ETP, Bcl11b-YFPnegCD25hi DN2a, and Bcl11b-

YFPposCD25hi DN2a. fractions, followed by RNA purification following the instructions 

of the RNeasy Micro Kit (Qiagen 74004). cDNA from each sample was prepared with or 

without pre-amplification as indicated in Fig. 1. Pre-amplified samples were prepared with 

SMART-Seq v4 Ultra Low Input RNA Kit (Takara 634888) and Nextera XT library 

preparation kits (FC-131-1096) for Illumina sequencing, column 2, 6, 8,11 in Fig1b-c). 

Samples without pre-amplification were prepared using NEBNext Ultra RNA Library 

Prep Kit for Illumina (E7530, NEB). All bulk libraries were sequenced on Illumina 

HiSeq2500 in single read mode with the read length of 50 nt. Base calls were performed 

with RTA 1.13.48.0 followed by conversion to FASTQ with bcl2fastq 1.8.4 and produced 

approximately 30 million reads per sample. 

 

RNA-seq reads were mapped onto the mouse genome build GRCm38/mm10 using STAR 

(v2.4.0) and were post-processed with RSEM (v1.2.25; http://deweylab.github.io/RSEM/) 

according to the settings in the ENCODE long-rna-seq-pipeline 

(https://github.com/ENCODE-DCC/long-rna-seq-

pipeline/blob/master/DAC/STAR_RSEM.sh), with the minor modifications that the 

setting ‘–output-genome-bam–sampling-for-bam’ was added to rsem-calculate-

expression. STAR and RSEM reference libraries were created from genome build 

GRCm38/mm10 together with the Ensembl gene model file Mus_musculus.GRCm38.gtf. 

The resulting bam files were used to create HOMER tag directories (makeTagDirectory 

with –keepAll setting). For analysis of statistical significance among DEGs, the raw gene 
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counts were derived from each tag directory with ‘analyzeRepeats.pl’ with the ‘–noadj 

-condenseGenes’ options, followed by the ‘getDiffExpression.pl’ command using EdgeR 

(v3.6.8; http://bioconductor.org/packages/release/bioc/html/edgeR.html). For data 

visualization, RPKM normalized reads were derived using the ‘analyzeRepeats.pl’ 

command with the options ‘–count exons –condenseGenes –rpkm’; genes with an average 

of RPKM ³1 across samples were kept, and their RPKM values were processed by log 

transformation. The normalized datasets were then hierarchically clustered with R hclust 

function based on Euclidean distance and ‘complete’ linkage. The heatmap is visualized 

with R pheatmap with log2 transformed RPKM data (after adding 0.1 to all values). 

Clonal Imaging Assay of Individual ETPs 

To follow individual ETP clones by microscopic imaging, Kithi CD44hi CD25- ETP cells 

were purified from B6.ROSA26-mTom;Bcl11b-YFP mice (generated as described in the 

Animal sections above). Sorted ETP cells were plated onto OP9-DL1 stromal cells lacking 

GFP (OP9-DL1-delGFP1) in 24-well glass bottom plates with black 8mm circular 

poly(dimethyl siloxane) PDMS micromeshes with multiple microwells 250µM wide x 

100 µM deep, custom fabricated by Microsurfaces (Australia). Cells were cultured in OP9 

culture medium prepared as previously described except for the omission of the pH 

indicator, phenol red, from the medium, and with the addition of 10mM Hepes buffer to 

stabilize the pH of the wells during imaging, plus 10 ng/ml Flt3L, 5 ng/ml IL-7, and 0.05 

µg/ml CD25-AlexaFluor647 (BioLegend), for detection of CD25 surface expression. 

Wells were imaged daily for 6 days on a Leica 6000 wide-field fluorescence inverted 

microscope with Metamorph software and an incubation chamber preset to 37oC, 7% CO2. 

Wells found to have exactly one mTomato positive cell on either day 1 or 2 were followed 

subsequently and scored for CD25 and Bcl11b-YFP fluorescence.  

SeqFISH  

      Experimental Design 
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Using seqFISH, single transcripts can be robustly detected and localized in 3D in light-

scattering tissue or in samples of thousands of cells. The strategy detects each targeted 

gene with up to 24 probes per gene using Hybridization Chain Reaction (HCR) 

amplification, in which all the probes against a given gene share the same HCR 

amplification handle and are detected in repeated sequential rounds of color-coded HCR 

in which each gene is decoded by a different sequence of colors (Shah et al., 2016a). 

Signals can be aligned by keeping the sample immobile under the microscope throughout 

all rounds of processing. This technique enables detection of transcripts even < 1 kb in 

size, with a fidelity comparable to conventional single molecule FISH (smFISH), and can 

be sequentially multiplexed (Shah et al., 2016b, 2016a).  

T cells have relatively small cytoplasm compared to many cell lines and other cell types, 

and it was observed that smFISH analysis was relatively hard to perform due to the high 

relative content of cytoplasmic membrane and nuclear membrane sandwiching the small 

cytoplasm, yielding relatively dim fluorescent signals. To amplify the signal, therefore, 

we designed a 5-color-sequential barcoding scheme of HCR-seqFISH, using an error 

correction scheme that tolerates 1 round of signal dropout or inaccuracy as described 

before (Shah et al., 2016b). We applied HCR-seqFISH against 54 genes on FACS sorted 

and immobilized early T cells, followed by additional targeted HCR smFISH analyses and 

immunostaining on the same samples. Targeted HCR smFISH analyses, of only five genes 

at a time, were used for functionally important genes with particularly short transcripts 

which required maximal sensitivity, or for those particularly abundant transcripts which 

can obstruct detection of other species in the barcoding rounds. Briefly, 14-24 primary 

probes incorporating designed hairpin initiation sequence handles (hyb1) were hybridized 

to mRNA transcripts of genes of interest, followed by HCR signal amplification in 5 

colors against the “handles”. Targeted mRNAs detected by amplified signals appear to be 

individual bright dots in microscope images, and were recorded and registered in space. 

Without moving the slide on the microscope, primary probes and readout hairpins were 

then digested with DNaseI, leaving mRNAs intact, and the second hybrization round of 

primary probes, with attached handles permuted (hyb2), were hybridized again. After 
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HCR amplification, the second round of amplified signals in 5 colors were collected 

and registered to the previous hybridization. The steps were repeated until the completion 

of the designed sequential rounds of hybridization. The individual mRNA molecules were 

represented by the sequence of colors that appeared in the same registered spots. The 

identities of the mRNAs were encoded in the color sequence (color barcode details in 

Table S6). 

 

      SeqFISH Probe Design and Synthesis 

The curated gene set that we selected as targets for seqFISH analysis consisted of 

regulatory genes that were judged likely to be functionally important in early T and 

lymphomyeloid development, based on previous genetic perturbation evidence, and 

lineage-associated genes that would be particularly informative as developmental state 

indicators (www.immgen.org) (Mingueneau et al., 2013) [reviewed in (Longabaugh et al., 

2017; Rothenberg et al., 2016; Yui and Rothenberg, 2014)], as detailed in Table S2. The 

final list included 65 genes. 

Gene-specific primary probes (35 nt long) were designed as previously described (Shah 

et al., 2016b), where 5 pairs of dye-coupled HCR hairpins (IR800, Alexa 647, Alexa 594, 

Cy3b, and Alexa 488) were used for signal amplification and readout from primary probes, 

and the 405nm channel was used for segmentation. Probes to be used in barcoding 

seqFISH were first subjected to stringent screening to avoid cross-reactivity, using the 

probe design software previously described (Shah et al., 2016b) with the following 

settings for this study.  First, all candidate probes were BLASTed against the mouse 

transcriptome, and expected copy numbers of off-target probe hits were calculated using 

predicted RNA counts in the ENCODE database for murine thymocytes. BLAST hits with 

a 15-nt match on any sequences other than the target gene were considered off-target hits. 

For each target gene, any candidate probe that hit an expected cumulative total off-target 

copy number exceeding a threshold >0.1% of total was dropped, and candidate probes 

were sequentially dropped until no off-target gene was hit by more than 6 individual 
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probes from the entire pool. At this stage, all of the “viable” probes for each gene had 

been identified. For the final probe set, the best possible subset from the viable probes was 

selected such that the final probes were non-overlapping and at least 2-nt bases apart from 

each other. The choice between which of two overlapping candidate probes to keep was 

based on their respective distances from the target GC content (55% in this case). As a 

final step to minimize cross-hybridization between probe sets, a local BLAST database 

was constructed from all the viable probe sequences, and all of the probes (including 

“handle” sequences) were queried against it. All matches of 17 nt or longer between 

probes were removed by dropping the matched probe from the larger probe set. The final 

probe set size for barcoding seqFISH was 14-24 probes per gene. For targeted, non-

barcoding smHCR, 8-24 probes per gene were used, and genes were analyzed in groups 

of 5 per HCR round, with groups based on similar probe numbers per gene. 

The template oligos were generated from array-synthesized oligopools from Oligoarray 

or Twist Bioscience, and amplified as described by Chen et al., 2015 and Shah et al., 

2016b. To balance the probes’ concentrations, each of the template oligos were 

synthesized 3 times in the oligo pool, and probe pools for individual hybridizations were 

assigned a validated primer and assembled according to the following template (complete 

list in Table S6): 

5’ -[Primer 1] - [KpnI] - [“TAG”] - [primary probe] - [HCR initiator] - [“GAT”] - [EcoRI] 

- [Primer 2] - 3’ 

List of amplification primers: 

Name  Primer1 Primer2 Pool # 

Barcode hyb 

1 

AATTGAGCAGCTCGGGCC

AC 

GGCGATGGAAGCCTGCAAC

T 

1 

Barcode hyb 

2 

CCGCACGCCGTCCTTAAAT

C CTTTCCGTGCTGCCGGATCT 

1 
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Barcode hyb 

3 

GACGCACATATGCGGGCA

AG  GGCATCTTCGTGACTGCGGA 

1 

Barcode hyb 

4 

ATTGAGGGTCTTCGCGTGC

C GTAACCGGCGCTTTGCAACC 

1 

smHCR hyb 

1 

TGTGCGCTCCGATTGTCCT

C 

GCAAATGGGGTCTGTTGGC

C 

1 

smHCR hyb 

2 

TGCAGCTCCGCGAAATGA

AG CGCTGCCTGTCTGTGCCATT 

1 

smHCR hyb 

3 

TCAGGGCACGAGGACATT

CG 

TCCGGCAAGATTGCTCTCCC 2 

smHCR hyb 

4 

ATGCGCTGCAACTGAGAC

CG 

TTGTGCCAGCCTTGGTCGAG 2 

 

      SeqFISH Experimental Procedures and Imaging 

The DN cells were purified as described in “Cell Purification” above, the ETP-DN2 

population was FACS-sorted as a continuum as shown in Fig. S1c, and an equal number 

of DN3 cells was sorted separately, each population into tubes containing HBH buffer. 

Next, the isolated DN cell fractions were crosslinked with 4% Formaldehyde 

(ThermoScientific 28908) in 1X PBS for 10min. Then, cells were spun onto an amino-

silane modified coverslip in hyb-cells (Grace Bio-Labs, RD478685-M). They were then 

crosslinked again with 4% Formaldehyde (ThermoScientific 28908) in 1× PBS for 10min, 

and permeabilized in 70% EtOH overnight at 4oC. Samples were imaged first to record 

the surface antibody signals, followed by briefly bleaching away antibody signals through 

incubation in 0.1% NaBH4 (Sigma 452882) in 1× PBS for 10min. Then, the samples were 

washed with PBS and pretreated with DNaseI (Roche Cat. #04716728001) at 1 U/µl for 

2 hrs at 37°C, and washed 3 times with 50% Hybridization Buffer (50% HB: 2× SSC 

(Invitrogen 15557-036), 50% Formamide (v/v) (Ambion AM9344), 10% Dextran Sulfate 

(Sigma D8906) in Ultrapure water (Invitrogen 10977-015)). Following pre-treatment, 

samples were (1) hybridized overnight at 37°C with primary intron probes at 

concentrations of 1 nM each oligo in 50% Hybridization Buffer, then (2) washed in 50% 

Wash Buffer (2´ SSC, 50% Formamide (v/v), 0.1% Triton-X 100 (Sigma X-100)) for 20 
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minutes, followed by incubation in 2´ SSC for 10 minutes. The samples were then (3) 

incubated with HCR hairpins in Amplification Buffer (2´ SSC, 10% Dextran Sulfate in 

Ultrapure water) for 30 minutes followed by (4) washing in 2× SSC for 5 min, and then 

in 10% Wash Buffer (2× SSC, 10% Formamide (v/v), 0.1% Triton-X 100 (Sigma X-100)) 

for 10 minutes. Before imaging, brief DAPI staining was performed for cell background 

registration and segmentation (DAPI 5µg/mL, 1min, Sigma D8417), then (5) imaged as 

described below. After image acquisition, (6) the samples were incubated with 1 U/µl 

DNaseI (Roche) for 3 hours at 37°C, and the remaining enzymes were washed out by 30 

min incubation with 50% wash buffer at 37°C. The procedures (3)-(6) constituted one 

round and were repeated until the completion of all rounds of barcoding and non-

barcoding HCR seqFISH.  

Post RNA profiling, additional immunostaining with antibodies was performed in some 

experiments to quantitate transcription factor proteins. Specifically, samples were blocked 

with 1 × PBS, 1% BSA for 1 hour at room temperature, followed by incubation with anti-

PU.1 or anti-TCF1, and anti-CD44 (not shown) (See STAR Key Resources Table) at 

1:100 for 2 hours at room temperature, then washed in PBS 3 times, and then imaged. 

Note that antibodies used for surface staining, e.g. anti-cKit, were imaged before 

hybridization as described above. 

Samples were imaged in an anti-bleaching buffer (20 mM Tris-HCl, 50 mM NaCl, 0.8% 

glucose, saturated trolox (Calbiochem 648471), pyranose oxidase (OD405 = 0.05) (Sigma 

P4234), and catalase at a dilution of 1/1000 (Sigma C3155)). Sample port covers were 

closed with a glass coverslip or a transparent polycarbonate sheet to exclude oxygen. The 

images were acquired with a microscope (Leica, DMi8) equipped with a confocal scanner 

unit (Yokogawa CSU-W1), sCMOS camera (Andor Zyla 4.2 PLUS), 40x oil objective 

lens (Leica NA 1.30), and a motorized stage (ASI MS2000). Lasers from CNI and filter 

sets from Semrock were used. Snapshots were acquired with 0.5 μm z steps for more than 

30 positions per sample.  

      Image Processing and Analysis  



 

 

82 
The images were first corrected to remove the uneven illumination profiles in each 

channel, the effects of chromatic aberration, and registered for shift across all 

hybridizations as described before (Shah et al., 2016b). 

For cell segmentation, the cell background taken in the DAPI channel without staining 

was first maximum z projected and blurred using a 2D Gaussian blur with a sigma of 1 

pixel. The ImageJ-FIJI built in default dark thresholding algorithm was then used to 

separate out the cell boundary from background. Finally, the thresholded image was run 

through a watershed algorithm to demarcate individual cells. The obtained individual cell 

masks were further filtered by size (number of pixels between 600-3000) and circularity 

(between 0.7 to 1). The subsequent segmentation results were manually curated and 

corrected to obtain a final accurate segmentation of images. 

The potential mRNA signals were then found by LOG filtering the registered images and 

finding points of local maxima above a specified threshold value. Once all potential points 

in all channels of all hybridizations were obtained, dots were matched to potential barcode 

partners in all other channels of all other hybridizations using a 3-pixel search radius to 

find symmetric nearest neighbors. The number of each barcode was then counted in each 

of the assigned segmented cells. Signals were decoded using the designed sequences of 

colors that should uniquely represent each targeted gene (Table S6). 

The antibody staining quantification was performed with maximum z-projections for each 

channel. Average pixel intensities were quantified within individual cell segmentations, 

subtracted by average background intensity acquired in dummy segmentations (no cells) 

in the same fields of view, and multiplied by area to estimate the total signal. Because the 

quantification was performed after subtraction of background intensity, the total signal 

quantitation is not sensitive to segmentation accuracy or area size. 

C1TM-Fluidigm Smartseq2 Single Cell RNA-seq 
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ETP-DN2a cells were purified as a continuum as described above (Fig. S1c), except 

that no DN3 cells were pooled in for C1 analysis. The cells were then washed and 

resuspended to 250,000 cells/mL concentration in HBH buffer; 12 µL of this suspension 

was added to 8 µL of Fluidigm Cell Suspension Reagent for loading on the Fluidigm IFC 

(5-10 µm size).  Cells were visually inventoried for doublets and empty chambers, and 

returned to the C1 for lysis, reverse transcription and amplification using the SMART-

Seq v4 protocol.  All amplified cDNA samples were quantified on Qubit and a subset were 

selected for BioAnalyzer sizing based on yield and chamber occupancy.  The cDNA 

libraries were then tagmented using the Nextera XT DNA sample prep kit and Nextera 

XT indices.  After tagmentation and amplification, libraries were pooled, cleaned up with 

Ampure XP beads (0.9× volume), quantified on Qubit and sized on the BioAnalyzer. 

Following the library preparation, the sequencing was performed with single read 

sequencing of 50nt on HiSeq2500 with a sequencing depth of 1.5x106 reads per cell. The 

reads were mapped onto the GRCm38/mm10 mouse genome assembly. 

10X Chromium V2 Single Cell RNA-seq 

The DN thymocytes were enriched as described above, the ETP-DN2 population was 

sorted together as a continuum as shown in Fig. S1c, and DN3 cells were sorted separately. 

A small aliquot of DN3 cells representing ~10% of the total ETP-DN2 cells was added 

into the ETP-DN2 sample as a developmental endpoint internal reference. The sample 

was then washed and resuspended to 1 million cells/mL concentration in HBSS 

supplemented with 10% FBS and 10 mM HEPES, 17,400 cells were loaded into each 10X 

Chromium v2 lane, and the subsequent preparation was conducted following the 

instruction manual of 10X Chromium v2. The cDNA library and final library after index 

preparation were checked with bioanalyzer (High Sensitivity DNA reagents, Agilent 

Technology #5067-4626; Agilent 2100 Bioanalyzer) for quality control. Following the 

library preparation, the sequencing was performed with paired-end sequencing of 150nt 

each end on one lane of HiSeq4000 per sample, by Fulgent Genetics, Inc. (Temple City, 

CA). The reads were mapped onto the mouse genome Ensembl gene model file 
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Mus_musculus.GRCm38.gtf using a standard CellRanger pipeline. Cells were 

sequenced to an average depth of 40,000-50,000 reads per cell (target 4x108 reads per 

lane). 

Cell Hashing with Single Cell RNAseq  

DN cells were purified as described above, pooling thymus from eight female 

B6.Bcl11byfp/yfp mice, 5.5-weeks old. The 4 subsets of ETP cells (pops 1, 3, 4, 6) were 

sorted 4-way using the gates described in Fig. S8d. The sorted cells (total yield ~2000 per 

gate) were concentrated and each subset was incubated individually with TotalSeq A 

(Biolegend) anti-Mouse Hashtag 1, 2, 3, or 4 (1:50), respectively. A sorted reference 

population of ETP-DN2 continuum plus 10%DN3 cells, as in Fig. S1c, was tagged in 

parallel with anti-Mouse Hashtag 5. The samples were then washed 3 times with HBSS 

supplemented with 10% FBS and 10 mM HEPES, and pooled to load onto one lane of a 

10X Chromium V3 chip. The cDNA preparation was performed following the instruction 

manual of 10X Chromium v3, and the hashtag library was prepared following the 

Biolegend TotalseqA guide. The cDNA, tag library, and final library after index 

preparation were checked with bioanalyzer (High Sensitivity DNA reagents, Agilent 

Technology #5067-4626; Agilent 2100 Bioanalyzer) for quality control. The cDNA final 

library was sequenced on NovaSeq 6000, and the tag library was sequenced on HiSeq4000, 

by Fulgent Genetics, Inc.. Cells were sequenced to an average depth of ~50,000 reads per 

cell for cDNA and ~2,500 reads per cell for hashtags. 

Single-Cell Expression Profile Data Analysis 

Analytical Pipelines 

The analysis methods applied and the relationships between different datasets and 

methods are abbreviated in the schematics in Fig.S1b. Specifically, the software/packages 

Seurat v2.3.4 and 3.0.1 (Butler et al., 2018; Stuart et al., 2019), Monocle v2 (Qiu et al., 

2017a, 2017b), Velocyto v0.17.8 (La Manno et al., 2018), and SPRING (Weinreb et al., 

2018) were used in this study, and 10X raw reads were mapped and assigned by Cell 
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Ranger. Unsupervised analysis of low dimensional representations (tSNE, UMAP, 

SPRING), RNA velocity, and clustering were performed with gene sets filtered as 

described below.  

Supervised clustering and pseudotime analysis of 10X data were performed based on the 

curated list of genes in Table S2, using quality control (QC)-trimmed 10X datasets from 

which the DN3b and granulocyte precursor clusters were computationally removed. For 

trajectory analysis, this improves developmental connectivity and T-lineage relevance. 

For seqFISH analysis, data from the cells were QC trimmed as described below, and for 

high dimensional analysis, the expression was further normalized by RNA content/size, 

as described below. 

Gene and Cell Filtering: Quality Control 

In seqFISH analysis, cells with less than 250 barcoded transcripts detected (total from 54 

barcoded genes) were omitted. In PCA and clustering analysis, similar to scRNA-seq, the 

cells were first size-normalized to estimated RNA content. The RNA content in individual 

cells was estimated by total number of mRNA signals detected in one barcoding 

hybridization round without decoding. Applying the Quality Control (QC) filter resulted 

in 4551 cells from 4-week-old animals, 7150 cells from 5-week-old animals, and 2598 

cells from 8-week-old animals being presented in this study. 

The C1 Fluidigm-Smartseq2 analysis was performed based on data filtered on cells that 

visually appeared to be single cells observed under the microscope in the Fluidigm chip, 

with at least 3600 genes expressed, less than 11% mitochondrial content, and with 

detectable expression of genes that are differentially expressed in bulk analysis described 

in Fig. 1d. The filter resulted in 193 cells presented in this study. 

Unless otherwise specified, both supervised and unsupervised analysis of 10X Chromium 

V2 scRNA-seq was based on data filtered on cells with at least 1200 genes expressed 

(transcript count over 1); outliers with more than 4500 genes were also removed (potential 

doublet), and only genes that were found expressed in at least 3 cells were kept in the 
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analysis. For clustering, the cells were further cleaned to keep only cells with 

mitochondrial content of less than 5%, with signals normalized to total number of UMI 

and mitochondrial content as recommended by Seurat2. The QC filter resulted in 4627 

cells in replicate 1 and 7076 cells in replicate 2 being presented in this study. The RNA 

velocity and pseudo-time analysis with Velocyto and Monocle 2, respectively, were 

performed on the cells that passed the filtering steps described above, and also with the 

DN3b cluster and granulocyte precursor cluster removed (cluster 13 in unsupervised 

analysis, both replicates).  

Unsupervised clustering analysis of 10X scRNA-seq data was performed after log 

normalization and scaling, with 4307 variable genes identified in Seurat2 (average 

expression between 0.0125 and 3, and minimum dispersion of 0).  Note that the dispersion 

filter was set low to allow capture of subtle features of the developmental continuum.  

 

Inter-technique Comparison 

We calculated the average raw gene expression levels in comparable cell input populations 

between different techniques in their own measurement units. The general expression 

levels were found to agree, allowing that the target genes mainly encode transcription 

factors and are expressed at very low levels. Overall, seqFISH was approximately tenfold 

more sensitive than 10X Chromium v2, in terms of estimated transcript counts per gene 

(Fig. S2b) and in a greatly reduced dropout rate, as shown for the functionally essential 

developmental regulatory genes in Fig. S2d. This finding is consistent with the previously 

described 10% sampling rate of 10X Chromium v2, at the sequencing depth being used 

(Islam et al., 2014; Kolodziejczyk et al., 2015). The discrepancies between the C1-

Smartseq2 and 10X systems (Spearman correlation=0.68, Pearson correlation=0.57) are 

likely due to the difference in UMI and non-UMI based measurement unit, as 

amplification steps in Smartseq2 could result in biased readout of some genes. Aside from 

sensitivity differences, the biggest qualitative differences between sequencing-based (C1-

Smartseq2 and 10X) and seqFISH measurements on the selected genes are likely due to 
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the fact that seqFISH by-passes any poly(A)-based reverse transcription-amplification 

step and probes directly at the exon regions of mRNAs. This can lead to the following: a) 

seqFISH can also probe the pre-mRNAs of genes of interest that have not been poly-

adenylated; b) when the reverse transcription step in scRNA-seq is inefficient that will 

lead to dropouts, such that sequencing would more robustly detect genes that are expressed 

at high levels; and c) miscalling of transcripts in seqFISH can occur due to crowded 

transcript signals in limited-sized lymphocytes. Indeed, the expression patterns of genes 

between seqFISH and 10X showed general agreement but were still only moderately 

correlated, as represented by Spearman correlation of 0.73 and Pearson correlation of 0.45 

on the lowly-expressed regulatory gene transcripts (Fig S2b).  

 

PU.1 and Bcl11b Perturbation data 

The pseudotime model is compared with recently determined functional targets of PU.1 

and Bcl11b, in Table S4 and Fig. 5f. Lists of genes activated or repressed by PU.1 were 

taken from the overlap of acute perturbation data for PU.1 gain and loss of function in 

DN2a-DN2b pro-T cells [Table S6B in (Ungerbäck et al., 2018)]. Specifically, the 326 

PU.1-activated genes showed both enhanced activation 48h after exogneous PU.1 was 

introduced into DN2b cells and reduced expression 4d after endogenous Spi1 was 

disrupted from DN2a cells (p.adj<0.1). The 237 PU.1-repressed genes showed both 

downregulation in response to the exogenous PU.1 and upregulation when endogenous 

Spi1 was disrupted (p.adj<0.1). The 747 Bcl11b-repressed genes and 394 Bcl11b-

dependent genes were defined from the intersection of genes responding significantly 

(p.adj < 0.05, at least twofold change) in the same direction in at least two different types 

of loss of function perturbations affecting DN2b-stage cells: in vivo deletion by Vav1-

iCre, in vivo deletion by pLck-Cre, and/or in vitro acute deletion by Cas9 and guide RNA 

in DN2b cells [Supplementary Table 3 in (Hosokawa et al., 2018a)].  

QUANTIFICATION AND STATISTICAL ANALYSIS 
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Experiments and techniques were carried out independently at least twice. Three 

independent seqFISH experiments were carried out, two independent 10X analyses were 

carried out on completely separate biological samples, and cell hashing 10X analysis of 

ETP subsets was carried out on a third completely independent biological sample. C1 data 

were pooled from ETP-DN2a cells sorted onto the chips in three separate experiments. 

While analyses shown in the paper are primarily from one of the three seqFISH replicates 

(in most cases the 4 wk old mouse sample) or one of the two 10X replicates (mostly 

replicate 1, which yielded greater sequencing depth per cell), the data were highly 

consistent between independently generated samples using the same technique, and highly 

consistent with the C1 analysis, as shown in Figs. S2 and S3. Cell culture experiments 

were carried out three to four times independently with concordant results as indicated in 

Fig.6 and Supplementary Figures S4, S5, and S8.  Only the single-cell sorted experiments 

in Fig. 6f-h, which corroborate other data in Figs. 5, 6c-e, and S8, were not repeated as 

such. Cloning data in Fig. 1 (>60 clones) and Fig. 8f (>300 clones) each came from one 

experiment. 

The statistical tests and specific settings used for each comparison are indicated in the 

individual figure and table legends.  

DATA AND CODE AVAILABILITY 

All sequence data generated in this study have been deposited in Gene Expression 

Omnibus and are available under accession numbers GSE130812 and GSE137165.  

Sources for code used in this study are indicated in the Key Resources Table. 

LIST OF SUPPLEMENTARY MATERIAL 

SUPPLEMENTARY TABLES  

Supplementary Table S1: related to Fig. 1 

Supplementary Table S2: related to Fig. 2 and Fig. 5 
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Supplementary Table S3: related to Fig. 2 

Supplementary Table S4: related to Figs. 3, 4, and S8 

Supplementary Table S5: related to Fig. 5 

Supplementary Table S6: related to Fig. 2 and STAR Methods 

 

SUPPLEMENTARY FIGURES 

Figure S1: related to Figs. 1, 2, 3, 4, 5, 6, and 7 

Figure S2: related to Fig. 2 

Figure S3: related to Fig. 4 

Figure S4: related to Figs. 2, 3, and 4 

Figure S5: related to Figs. 2, 3, and 4 

Figure S6: related to Fig. 4 

Figure S7: related to Fig. 5 

Figure S8: related to Fig. 6 
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SUPPLEMENTARY TABLE TITLES AND LEGENDS 

Supplementary Table S1, related to Fig. 1. Bulk RNAseq data of genes differentially 

expressed between all ETP samples and Bcl11b-YFP+ DN2a samples. Genes with the 

average RPKM larger than 1, expression fold change larger than 2 either way and adjusted 

pval < 0.05 are shown. Values in RPKM. 

Supplementary Table S2, related to Fig. 2 and Fig. 5. Curated regulatory and marker 

genes used in seqFISH analysis and supervised 10X Chromium analysis. Table indicates 

gene names and the combinations of criteria used for selecting each of these genes as 

particularly informative, based on their genetically defined functional importance or use 

as developmental state indicators (www.immgen.org) (Mingueneau et al., 2013) 

[reviewed in (Longabaugh et al., 2017; Rothenberg et al., 2016; Yui and Rothenberg, 

2014)].  

Supplementary Table S3, related to Fig. 2.  SeqFISH raw transcript data and analysis 

of transcript distribution comparison between different stages of pro-T cells. Populations 

being compared are Gata3- (£3 transcripts) and Tcf7- (£5 transcripts) double negative 

ETPs, Gata3+ (>10 transcripts) or Tcf7+ (>20 transcripts) ETPs, and Bcl11b+ (> 5 

transcripts) DN2s. Thresholds for binning were drawn to identify clear positives and 

negatives and avoid ambiguous intermediate levels of expression. Highlighted are p 

values <10-6, two-tailed T test, unequal variances. Analysis performed from the 4-week-

animal dataset. 

Supplementary Table S4 , related to Fig. 3, Fig. 4, and Fig. S8. C1 and 10X marker 

genes  identified in each sub-cluster in the analyses shown. Clustering based on SLM, 

markers identified with minimum fraction of 0.2 in the cluster and threshold of 0.2 using 

Wilcoxon rank sum test in Seurat 2. C1 supervised analysis was performed as shown in 

Fig.3. 10X unsupervised analysis was performed in Seurat 2 as shown in Fig. 4. 10X 
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supervised analysis was performed as described in Fig. S8. pct.1, pct.2: weightings in 

principal components 1, 2 respectively. 

Supplementary Table S5, related to Fig. 5. Differentially expressed genes identified by 

supervised pseudo-time analysis from 10X analysis (intersection of both independent 10X 

replicates, qval<1E-08). The genes are ordered and clustered based on the pseudotime 

expression pattern as shown in Fig. 5. The crosses mark the individual genes that overlap 

with perturbation assays, which were shown to be significantly regulated by PU.1 or 

Bcl11b, as described in Fig. 5f-g. Lists of genes regulated by PU.1 or by Bcl11b were 

from published data (Hosokawa et al., 2018a, 2018b; Ungerbäck et al., 2018) as described 

in STAR Methods. 

Supplementary Table S6, related to Fig. 2 and STAR methods. Designed oligo probe 

template pools and sequential color barcode used for seqFISH experiments. 

 

  



 

 

92 
KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
Anti-human/mouse CD44 PE eBioscience Cat#12-0441-83 
Anti-mouse CD117 (cKit) APC eBioscience Cat#17-1171-82 
Anti-mouse CD25 eFluor-450 eBioscience Cat#48-0251-82 
Anti-mouse CD25 APCe780 eBioscience Cat#47-0251-82 
Anti-mouse CD25-Alexa Fluor 647 Biolegend  
Anti-mouse CD45 PECy7 eBioscience Cat#25-0451-82 
Anti-mouse CD11b PE eBioscience Cat#12-0112-85 
Anti-mouse CD11b AF488 eBioscience Cat#53-0112-82 
Anti-mouse CD11b APCe780 eBioscience Cat#47-0118-42 
Anti-mouse CD11c e450 eBioscience Cat#48-0114-82 
Anti-mouse CD11c APCe780 eBioscience Cat#47-0114-82 
Anti-mouse CD63 PE Biolegend Cat#143903 
Anti-mouse Ly6c PE Biolegend Cat#128008 
Anti-mouse Ly6c Alexa Fluor 647 Biolegend Cat#128010 
Anti-mouse CD135 (Flt3) BV421 Biolegend Cat#135313 
Anti-mouse CD24(HSA) APC Biolegend Cat#138506 
Anti-mouse Ly6d PE Biolegend Cat#138603 
Anti-mouse Gr1 APC Biolegend Cat#108412 
Anti-mouse NK1.1 PE eBioscience Cat#12-5941-83 
Anti-mouse Dx5 PE eBioscience Cat#12-5971-83 
Anti-mouse NK1.1 Biotin eBioscience Cat#13-5941-85 
Anti-mouse CD19 Biotin eBioscience Cat#13-0193-85 
Anti-mouse Ter119 Biotin eBioscience Cat#13-5921-85 
Anti-mouse CD11b Biotin eBioscience Cat#13-0112-86 
Anti-mouse CD11c Biotin eBioscience Cat#13-0114-85 
Anti-mouse CD8a Biotin eBioscience Cat#13-0081-86 
Anti-mouse TCRγδ Biotin eBioscience Cat#13-5711-85 
Anti-mouse TCRβ Biotin eBioscience Cat#13-5961-85 
Streptavidin PerCP-Cy5.5 eBioscience Cat#45-4317-82 
PU.1 (9G7) Rabbit mAb (Alexa Fluor 647 
conjugate) Cell Signaling Cat#2240 
TCF1/TCF7 (C63D9) Rabbit mAb (Alexa Fluor 647 
conjugate) Cell Signaling Cat#6709 
Totalseq-A0301 anti-mouse Hashtag1 Biolegend Cat#155801 
Totalseq-A0301 anti-mouse Hashtag2 Biolegend Cat#155803 
Totalseq-A0301 anti-mouse Hashtag3 Biolegend Cat#155805 
Totalseq-A0301 anti-mouse Hashtag4 Biolegend Cat#155807 
Totalseq-A0301 anti-mouse Hashtag5 Biolegend Cat#155809 
   
Biological Samples   
Primary murine thymocytes This work  
   
Chemicals, Peptides, and Recombinant Proteins 
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MEM Alpha GIBCO Cat#12561-056 
Fetal Bovine Serum SigmaAldrich Cat#F7305 
Human IL-7 PeproTech Inc Cat#200-07 
Human FLT-3-Ligand PeproTech Inc Cat#300-19 
Stem Cell Factor PeproTech Inc Cat#250-03 
Murine M-CSF PeproTech Inc Cat#315-02 
Mouse GM-CSF Miltenyi Biotec Cat#130-095-739 
Murine IL3 PeproTech Inc Cat#213-13 
Murine IL6 PeproTech Inc Cat#216-16 
HBSS GIBCO Cat#14175-095 
HEPES GIBCO Cat#15630-080 
Pen Strep Glutamine GIBCO Cat#10378-016 
MACS Streptavidin Microbeads Miltenyi Biotec Cat#130-048-101 

37% formaldehyde 
ThermoFisher 
Scientific Cat#28908 

7AAD eBioscience Cat#00-6993-50 
b-mercaptoethanol SigmaAldrich Cat#M6250 
NaBH4 SigmaAldrich Cat#452882 
DNaseI recombinant, RNase-free Roche Cat#4716728001 
20´ SSC Invitrogen Cat#15557-036 
Formamide Ambion  Cat#AM9344 

HCR amplification hairpins 
Molecular 
Instruments Custom order 

Dextran Sulfate SigmaAldrich Cat#D8906 
Trolox Calbiochem Cat#648471 
Pyranose oxidase  SigmaAldrich Cat#P4234 
Catalase SigmaAldrich Cat#C3155 
   
Critical Commercial Assays 
Illumina Nextera DNA preparation Kit Illumina Cat#FC-121-1030 
Nextera Index Kit (96 indexes, 384 samples) Illumina Cat#FC-121-1012 
RNeasy Micro Kit QIAGEN Cat#74004 
C1™ Single-Cell mRNA Seq IFC, 5–10 µm Fluidigm Cat#100-5759 
Chromium i7 Multiplex Kit 10X Genomics Cat#120262 
Chromium Single Cell 3′ Library & Gel Bead Kit v2 10X Genomics Cat#120267 
Chromium Single Cell A Chip Kit 10X Genomics Cat#1000009 

High Sensitivity DNA Kit 
Agilent 
Technologies Cat#5067- 4626 

Qubit dsDNA HS Kit 
ThermoFisher 
Scientific Cat#Q32854 

SPRIselect reagent kit Beckman Coulter Cat#B23318 
Chromium Single Cell 3′ GEM, Library & Gel Bead 
Kit v3 

10X Genomics Cat#1000092 

Chromium Chip B Single Cell Kit 10X Genomics Cat#1000074 
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Deposited Data 

Bulk RNA-seq data This work 

Gene Expression 
Omnibus 
GSE130812 

Two samples, 10X Chromium RNA-seq This work 

Gene Expression 
Omnibus 
GSE130812 

C1 Smartseq2 RNA-seq, 226 cells This work 

Gene Expression 
Omnibus 
GSE130812 

10X Chromium RNA-seq cell hashing sample, 5 
cell fractions barcoded This work 

Gene Expression 
Omnibus 
GSE137165 

   
Experimental Models: Cell Lines 
OP9-DL1 Schmitt et al., 2002 N/A 
OP9-DL1 dGFP Olariu et al., 2021 N/A 
OP9-control Schmitt et al., 2002 N/A 
   
Experimental Models: Organisms/Strains 

Mouse: C57BL/6 
Jackson 
laboratories Stock NO: 664 

Mouse: B6.Cg-Tg(BCL2)25 Wehi/J (Bcl2-tg) 
Jackson 
laboratories Stock NO: 002320 

Mouse: Bcl11b-YFP Kueh et al., 2016 N/A 
Mouse: Bcl11b-YFP x BCL2 This work N/A 
Mouse: B6.ROSA26-mTom;Bcl11b-YFP  This work N/A 
   
Oligonucleotides 
Listed in Table S6   
   
Software and Algorithms 

Bedtools (v.2.17.0) 
Quinlan and Hall, 
2010 

http://bedtools.rea
dthedocs.io/en/lat
est/ 

Bioconductor (v3.4) N/A 
http://bioconductor
.org/ 

DESeq2 (v.1.14.1) Love et al., 2014 

https://www.bioco
nductor.org/packa
ges/devel/bioc/ht
ml/DESeq2.html 

EdgeR (v.3.16.5) 
Robinson et al., 
2010 

http://bioconductor
.org/packages/rele
ase/bioc/html/edg
eR.html 

FlowJo (v10.0.8) N/A 
https://www.flowjo
.com/ 

Ggplot2 (v.2.2.1) N/A http://ggplot2.org/ 
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HOMER (v4.8) Heinz et al., 2010 
http://homer.ucsd.
edu/homer/ 

MATLAB (R2016a) N/A 

https://www.math
works.com/produc
ts/matlab.html 

R (v3.4.2) N/A 
https://www.r-
project.org/ 

RSEM (v1.2.25) Li and Dewey, 2011 
http://deweylab.git
hub.io/RSEM/ 

Rstudio (v1.1.383) N/A 
https://www.rstudi
o.com/ 

Samtools (v0.1.19-96b5f2294a) Li et al., 2009 
http://samtools.so
urceforge.net/ 

STAR (v2.4.0; v2.5.2a) Dobin et al., 2013 

https://github.com/
alexdobin/STAR/r
eleases 

Python(v3.6) N/A 
https://www.pytho
n.org 

Custom probe design software Shah et al., 2016b Long Cai lab 

Velocyto.py (v0.17.8) 
La Manno et al., 
2018 

http://velocyto.org/
velocyto.py/ 

Seurat (v2.3.4; v3.0.1) 
Butler et al., 2018; 
Stuart et al. 2019 

https://satijalab.or
g/seurat/ 

SPRING Weinreb et al., 2018 

https://kleintools.h
ms.harvard.edu/to
ols/spring.html 

Monocle v2 
Qiu et al., 2017a, 
2017b 

http://cole-
trapnell-
lab.github.io/mono
cle-release/ 

   
Other 
BD FACS Aria II Cell Sorter BD Bioscience N/A 
Illumina HiSeq 2500 Illumina N/A 
Illumina HiSeq 4000 Illumina N/A 
iCyt Mission Technology Reflection Cell Sorter Sony N/A 
BD FACSARIA FUSION Cell Sorter BD Bioscience N/A 
Miltenyi Biotech MACSQuant 10 Flow Cytometer Miltenyi Biotec N/A 
hyb-cells Grace Bio-Labs RD478685-M 
Microscope Leica DMi8 
Confocal Scanner Unit Yokogawa CSU-W1 
sCMOS camera Andor Zyla 4.2 PLUS 
40x Oil Objective Lens NA1.30 Leica N/A 
Motorized stage MS2000 ASI N/A 
Leica wide-field fluorescence inverted 
microscope Leica 6000 
Black PDMS micromesh inserts Microsurfaces MMA-0250-100-08-

01 
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ABSTRACT 

The establishment of T-cell identity involves a series of signal-modulated gene network 

steps. In the previous study (Chapter2), while we established a detailed model of single-

cell transcriptome dynamics during the transition from multipotentiality to T-cell lineage 

commitment, the functional roles of many of these genes remain obscure. In this study, 

we leveraged the ex-vivo differentiation systems, combined scRNA-seq with batch 

indexing and different perturbation strategies, to unravel the differentiation paths upon 

perturbations of single transcription factors (TFs) that are involved in setting up the early 

T-cell identity. Specifically, we examined the choices faced by the cells during 

commitment, under the control of an important TF Bcl11b. We found that cells without 

this critical TF quickly ‘realized’ the abnormality, around the stage where it is first 

expressed. And rather than a simple developmental block or regression to an earlier stage 

on the developmental trajectory, the cells took a diverging path to ‘exit’ the T-lineage. We 

also examined the more complexed regulatory network of early TFs that may be involved 

in controlling the alternative lineage suppression and T-lineage progression early on, 

which set up the population dynamic topology leading up to T-lineage commitment. Our 

results revealed the diverse and multi-module-spanning regulatory roles of these TFs in 

controlling the kinetics and differentiation outcomes of the earliest T cells. 
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INTRODUCTION 

 

The establishment of T-cell identity emerges from multipotent precursors through a series 

of signal-modulated gene network steps (Porritt et al., 2003; Rothenberg et al., 2008; 

Taghon et al., 2005; Yui and Rothenberg, 2014; Yui et al., 2010). Commitment to the T-

cell lineage begins in the thymus from the precursors trafficked from the bone marrow 

and is induced by complex spatiotemporal interactions between precursor T cells and 

thymic epithelial cells, among which Notch signaling from ligands on the thymic stroma 

is playing critical roles to suppress alternative lineage possibilities, as well as regulating 

cell proliferation (García-Peydró et al., 2006; Porritt et al., 2003; Romero-Wolf et al., 2020; 

Taghon et al., 2005). While this process takes place naturally in the thymus, it can also be 

replicated in ex-vivo cell culture systems such as OP9-DL1 monolayer co-culture (Schmitt 

and Zúñiga-Pflücker, 2002) and recently in a 3D serum-free artificial thymic organoid 

culture system, M-ATO (with DLL4) (Montel-Hagen et al., 2020). 

The key remaining questions in the early T-cell developmental process are how the 

differentiation kinetics and population distributions are regulated by the gene regulatory 

network in early T cells. Unlike developing embryos, the differentiation timing from stem 

cells is not strictly deterministic. In vivo, individual hematopoietic stem/progenitor cells 

can make rather stochastic decisions about when to become activated (Busch et al., 2015; 

Naik et al., 2013). With the help of ex-vivo cell culture systems, we can more conveniently 

control the time and duration of signaling environment encounter. However, after days of 

differentiation, we will still yield cells in heterogeneous developmental states, due to the 

reasons discussed above. This makes bulk profiling techniques inadequate to study 

regulatory outcomes of population distributions and the topology of developmental 

trajectories. Therefore we combined scRNA-seq with Cell Hashing for sample and batch 

indexing (Stoeckius et al., 2018), and different perturbation strategies, to unravel the 

differentiation paths upon perturbation of single transcription factors that are involved in 

setting up early T-cell identity. 

This paper uses single-cell transcriptome analyses of genetic perturbations to dissect two 

different phases of pro-T cell programming: (1) the choices faced by the cells during 
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commitment, under the control of the Bcl11b transcription factor, and (2) the more 

complex, previously obscure early gene regulatory network that guides hematopoietic 

precursors into the beginning of the T-cell program, which plays integrated roles in setting 

up the population dynamic topology leading up to T-lineage commitment. 

First, the transcription factor Bcl11b is well known to be required for the development of 

αβ T cells and most γδ T cells, and its normal expression initiates precisely during 

commitment to the T-cell lineage in the thymus (Kueh et al., 2016; Liu et al., 2010; Shibata 

et al., 2014; Wakabayashi et al., 2003). Previous studies have shown that the progression 

towards the T-lineage is blocked or highly abnormal in cells that lack Bcl11b (Ikawa et 

al., 2010; Li et al., 2010a, 2010b; Longabaugh et al., 2017), including being prone to 

differentiate into natural killer (NK) cells in reduced Notch environment, and retaining 

abnormal expression of ‘immature’ or ‘non-T’ genes associated with stem, or other 

lineages (Hosokawa et al., 2018a; Li et al., 2010a, 2010b; Longabaugh et al., 2017). 

Although much previous work has identified differential expressed genes (DEGs) through 

bulk RNA-seq (Hosokawa et al., 2018a; Longabaugh et al., 2017), the pattern is quite 

abnormal compared to normal pro-T cells and does not appear to represent a simple 

developmental block. Our study first used the ATO with scRNA-seq to resolve the single-

cell normal and defective developmental trajectories, revealing a ‘realization’ process in 

which the cells are fully set up to differentiate into T cells, but lack the critical 

transcription factor Bcl11b. Specially, we wanted to ask if these Bcl11b-absent-cells 

regress backwards in differentiation trajectory and resemble earlier cells, or do they 

bifurcate to an abnormal developmental trajectory? When do the ‘abnormal genes’ come 

up? Are the ‘non-T’ genes expressed in all Bcl11b-absent-cells or just a subset of them? 

Second, we wanted to understand how the earliest transcription factors set up the cells to 

support or control differentiation and commitment, both in terms of speed and 

differentiation outcomes. Our recent study has characterized the fine gene expression 

pattern of murine pro-T cells prior to lineage commitment (Zhou et al., 2019). Importantly, 

we found that many ‘multilineage’ and ‘stem’ genes are expressed in distinct patterns in 

early stages, but their functional impacts were obscure. Are the stem and progenitor genes 

involved in establishing the normal differentiation speed and population distributions? 
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Meanwhile, TFs such as TCF1 (encoded by Tcf7, referred to as “Tcf7” below) and 

Gata3, two important regulators involved in early T-cell fate decisions [rev. in Yui and 

Rothenberg, 2014], are upregulated during the early stage (ETP) in normal development. 

Will the loss of Gata3 and Tcf7 result in an immediate change in earliest lineage decisions? 

What are the regulatory components involved? Our study optimized a strategy based on 

CRISPR/Cas9 KO ‘perturbseq’ system (Dixit et al., 2016), and took advantage of the 10X 

Chromium V3 chemistry’s direct gRNA capture capability (Replogle et al., 2020), to 

resolve this finest detail of regulatory networks in primary ex-vivo derived early pro-T 

cells. 
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RESULTS 

Fine comparison of time-controlled differentiation kinetics between BM derived ex-

vivo culture systems and thymic early T cells 

To choose a robust and precise time window that would be suitable for investigation of 

gene regulation during the murine T-cell commitment processes, we compared fine sub-

populations of early pro-T cells generated from Bone Marrow (BM) precursors through 

different ex-vivo differentiation methods, as well as their in vivo thymocytes (Thy) 

counterparts (Figure 1A). Specifically, purified Lin- BM from C57BL/6 mice were either 

seeded on OP9-DLL1/DLL4 monolayer stroma culture with the standard serum condition, 

or aggregated with MS5-mDLL1/mDLL4 and deployed on culture inserts at the air-liquid 

interface, forming artificial thymic organoids (ATO) under serum-free conditions 

(Montel-Hagen et al., 2020). DN1, DN2a populations (sub-divided by Bcl11b-YFP 

positive and negative, indicated by “maturation steps” at the top of the heatmap) derived 

from different co-culture systems were sorted and sequenced through bulk RNA-seq. The 

gene expression profiles of the early pro-T populations generated through ex-vivo 

differentiation assays exhibited strong agreement on the important regulatory genes 

between different conditions, as well as agreement with their in vivo thymocyte 

counterparts (Figure 1B). The heatmap not only shows the agreement on the ‘early-to-late 

stage’ dynamic pattern ranges of expression, but also the absolute level of expression in 

FPKM values, that ex-vivo differentiated T cells in OP9-DLL1, ATO-DLL1, and ATO-

DLL4 systems recapitulated accurately the thymic pro-T developmental regulations.  

 

Despite the general agreement on important developmentally curated regulators, the 

transcriptome-level differentially gene expression analysis did show some differences 

between thymocytes and ex-vivo derived cells (Fig.S1A). Among all the conditions, ATO-

DLL4 most closely recapitulated the thymic populations in both DN1 and DN2 stages, 

shown by the least number of differentially expressed genes compared to thymic 

counterparts (Fig.S1A-B). The only clear deviation from normal pro-T populations, 

among all eight tests performed, was the DN1 population derived from our OP9-DLL4 

cultures, as it expressed many more myeloid genes than other samples. Also, the cells 
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derived from OP9-DLL systems generally express more Id2 than other systems (Figure 

1B), which encodes an important transcription factor promoting innate lineages such as 

NK, NKT, and ILCs. 

 

Single-cell analysis aligns cells differentiated from BM to thymic early pro-T, in a 

continuum covering a good spectrum of early T differentiation 

To determine whether the ex-vivo (in vitro) cultures gave full coverage of the fine 

population topology, we also performed a proof-of-concept scRNA-seq analysis with LSK 

derived pro-T cells and aligned with our previously published thymic T-cell data (Figure 

1 C-D). We performed standard canonical correlation analysis (CCA) with 3000 anchor 

features using Seurat3, resulting in the well-aligned and intermixed ex-vivo derived and 

in vivo thymic early T-cell low dimensional representation (Figure 1D). Further cell cycle 

regression was performed to reveal only the fine developmental-related distribution of ex-

vivo derived vs in vivo thymic cells (Fig S1C-E). It was striking to find that a rather pure 

precursor population (LSK) could give rise to a full spectrum of DN1-DN2b pro-T cells 

within 6 days under the controlled ex-vivo culture environment (Fig. S1F), and almost 

entirely recapitulating the thymic pro-T cell gene expression profiles on single-cell levels 

(Fig S1G). 

 

The fine RNA-seq profiles together with the experience in previous cell culture assays (W. 

Z., M. R.-W., data not shown) helped us strategize the use of ex-vivo system for 

perturbation experiments at different stages to optimize cell output. We noticed that ATOs 

are good at generating consistent results and providing adequate numbers of cells at day 

6 and beyond, while the OP9-DL1 system supports better proliferation and cell recovery 

early, especially under conditions that require viral vector delivery. Hence, we have 

utilized both ATO-DLL4 and OP9-DLL1 for the two different stages in which we 

investigated TF gene regulation using scRNA-seq for the rest of the study.  

 

Differentiation kinetics and outcomes without an important T-lineage transcription 

factor – Bcl11b 
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We first wanted to use single-cell analysis to examine how the loss of Bcl11b alters 

the developmental trajectory of pro-T cells during commitment. Bcl11b is not expressed 

in the cells until they reach the commitment transition, after which it is expressed in all 

committed T-lineage cells(Kueh et al., 2016; Zhou et al., 2019). From previous bulk 

studies(Hosokawa et al., 2018a; Longabaugh et al., 2017), Bcl11b KO pro-T cells not only 

failed to suppress some of the early ‘immature’ or ‘non-T’ associated genes during 

commitment, but also abnormally turned on genes that were not active in normal 

precursors before Bcl11b expression onset. Therefore, loss of Bcl11b does not appear to 

represent a simple developmental block, but rather enables the cells to be diverted to an 

aberrant alternative differentiation pathway or pathways which have been completely 

uncharacterized until now. The genes upregulated in these Bcl11b KO cells appear to be 

a mixture of genes associated with various hematopoietic lineages raising the question of 

whether there is one abnormal trajectory promoted or several. Therefore, bulk studies have 

been unable to resolve the differentiation trajectory of the normal and abnormal 

differentiation process. It was also unclear whether the abnormal expression of different 

immature and alternative lineage-associated genes were occurring in the same cells or in 

different sub-populations of the Bcl11b KO cells. We utilized the long-term culture 

capability of the ATO system to compare the WT and Bcl11b knock out (referred as 

‘Bcl11b KO’ or ‘11b KO’ hereafter) differentiation processes at single-cell resolution, 

with two staggered timepoints, starting from LSK precursors purified from multiple 

individual animals (Figure 2A). For the Bcl11b KO, we used a conditional knockout strain 

with Bcl11bflx/flx and Vav1-iCre, which deletes the main functional coding domains of 

Bcl11b during early hematopoiesis before T-cell development begins. In each experiment, 

cells derived from different animals were tagged with different antibody-oligonucleotide 

conjugates using a “cell hashing” technique to give different barcodes to cells from each 

donor (Stoeckius et al., 2018). They were then pooled for scRNA-seq to serve as 

biological replicates or for control vs experimental comparisons within a single 10X v3 

run.  

First, the surface staining phenotype of ATOs consistently recapitulated thymic 

phenotypes of the Bcl11b KO pro-T cells (Figure 2B, S2A). We sorted Lin- CD45+ 
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CD25+ cells from ATOs derived from LSK precursors from the two different 

genotypes, and the Bcl11b KO cells clearly exhibited higher cKit surface staining 

compared to WT, consistent with previous studies (Hosokawa et al., 2018a; Ikawa et al., 

2010; Li et al., 2010a, 2010b; Longabaugh et al., 2017). The separation between KO and 

WT was more dramatic in the D13 culture compared to D10 (Figure 2B). Using the 

scRNA-seq data, we first compared the datasets in a 2-genotype-2-timepoints ‘pseudo-

bulk’ analysis, testing the genes that were differentially expressed between D10 and D13 

in the WT cells and in the Bcl11b KO cells, respectively (Figure 2C). Interestingly, among 

the genes that were differentially expressed between D10 and D13 in WT (total 1775 

genes), 721 genes were not among the differentially expressed genes in Bcl11b KO; 

whereas among the genes that were differentially expressed between D10 and D13 in 

Bcl11b KO (total 1995 genes), 941 were not observed differentially expressed in WT 

(Figure 2C-D). This result indicates that a large fraction of genes that were differentially 

regulated, representing the differentiation progression happening between D10 and D13, 

were diverging between the two genotypes. We then looked more closely at the genes that 

were significantly differentially expressed in both genotypes between the two timepoints, 

as shown in Figure 2E. Most of the differential expression patterns of these genes agreed, 

although some were more highly expressed in the WT at both stages (Fig. 2E, cyan) and 

others always more highly expressed in the KO at both these stages (dark blue). However, 

a small group of abnormal genes were discordantly regulated from D10 to D13 (Fig. 2E, 

red). Some were up-regulated in Bcl11b KO but down-regulated in WT, including Cd63, 

Tyrobp, Cd244, Cpa3; and another small group of genes were down-regulated in Bcl11b 

KO but up-regulated in WT, including Cd3g and Pcna (Figure 2E). The genes that were 

completely differentially expressed in one but not the other are discussed in detail below. 

 

Single-cell analysis: shifts in patterns in low dimensional space and the further WT-

KO divergence at day 13 

To ensure reproducibility, the single-cell analyses were performed through two separate 

scRNA-seq experiments, each with 6-8 hashtagged samples. To integrate the results, we 

first performed CCA integration for the two experiments, and subsequent clustering and 
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demultiplexing of the Cell Hashing index (Figure 2F,G, S2B). Upon demultiplexing, 

it was clear that the assay provided excellent reproducibility after integration, both on the 

biological replicate level across experiments, and between different animals of the same 

genotypes (Fig S2B-D). Although there was still substantial overlap between Bcl11b KO 

and WT patterns in D10, in UMAP 1 and 2, it was striking to see that the two genotypes 

took very different paths in D13 (Figure 2G, Fig. S2B). Based on gene expression patterns 

in these clusters (Fig. S2G, also from Zhou et al 2019(Zhou et al., 2019)), at D10 there 

were still many cells representing the most immature states present in both cultures 

(clusters 12, 6, 3), and many cells at intermediate stages showing enrichment for cell cycle 

genes (clusters 7, 5). By D13, the putative immature clusters were depleted, while WT 

cells increasingly shifted to more mature stages in clusters 4, 2, 9, and 10 (based on genes 

shown in Fig. S2G), whereas the Bcl11b KO cells showed a strong enrichment in clusters 

0, 1, and 8 instead. 

To more accurately measure the low dimensional space patterns and cluster distributions 

of all individual samples, we calculated the pair-wise Kullback-Leibler (KL) divergence 

between all the samples based on each sample’s cluster distributions, as shown in the 

heatmap in Figure 2H. First, the KL divergence confirmed the pattern agreements between 

all the experimental and biological replicates, and the contrast between WT and Bcl11b 

KO samples. Second, the KL divergence calculation also agreed with the visual pattern 

that there was further divergence between WT and Bcl11b KO progressing with time. The 

shifts of cluster distributions with genotype could be investigated sample by sample, in 

experiment 2, where two timepoints were collected (Fig.S2 E-F). Because KL divergence 

is calculated based on each sample’s cluster distributions, it is important to pinpoint which 

were the most quantitatively important clusters that describe the genotype differences. 

Scatterplots of cluster proportions between WT and Bcl11b KO showed that in both D10 

and D13, cluster 2 was always enriched in WT and cluster 0 was always enriched in the 

KO (Figure 2I). Indeed, a finer look at each cluster’s expression profile (Fig S2G) and 

each sample’s UMAP 1 and 2 pattern suggested that the clusters 0 and 2 potentially 

indicated where WT and Bcl11b KO were ‘branching’ into the 2 different directions. We 

also performed differential gene expression analysis between clusters 0 and 2, and the 
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expression pattern of top 20 genes enriched in either cluster are shown in the heatmap 

(Figure 2J). It is particularly interesting to see that the cluster 2 enriched genes were 

mostly T-lineage associated genes while the cluster 0 enriched genes were ’immature’ or 

‘innate immune’ cell associated genes, and many were known Bcl11b repression targets 

(Hosokawa et al., 2018a; Longabaugh et al., 2017). These genes were clearly differentially 

expressed between clusters 0 and 2, but even more differentially expressed further down 

the ‘branches’ (clusters 2,9,10 for WT and 0,1,8 for Bcl11b KO, respectively). 

 

The beginning of divergence between genotypes happened in clusters with high cell 

cycle activities, and the differentially expressed genes have different timing 

The potential differentiation trajectories of WT and Bcl11b KO could be sketched 

manually, based on the connectivity in UMAP 1 and 2 and expression patterns of lineage 

markers (Figure 3A-C, S2G). Of special interest was cluster 5, which was enriched for 

proliferation-associated genes (Fig. S2G), had a loop-like topology, and was represented 

in both genotypes at both timepoints. Interestingly, when we highlighted the cells in 

cluster 5, we observed that the WT and Bcl11b KO formed parallel but slightly separate 

loops (Figure 3B). This suggested that the branching of the WT vs KO trajectory may 

happen earlier, around the seemingly mixed ‘proliferation stage’, before branching further 

into cluster 0 and cluster 2, as discussed before (Figure 3A). To test this hypothesis, we 

performed differential gene expression analysis between WT and Bcl11b KO, only on 

cells within cluster 5 (Figure 3D). To our surprise, a large number of genes were 

significantly differentially expressed between WT and Bcl11b KO in cluster 5 only, 

clearly substantiating the separation observed in Figure 3B. These differentially expressed 

genes overlapped largely with genes noted to be differentially expressed between cluster 

0 and cluster 2 (cf. Fig. 2J). Moreover, we observed that even within the same cluster 

which was present at both timepoints, namely cluster 5, WT to KO difference at D13 could 

still be bigger than in D10. For example, expressions of Ikzf2 (same for S100a10 and 

Itga4), in D10 Bcl11b KO cells were not very different compared to D10 WTs, while at 

D13 these genes were dramatically upregulated in Bcl11b KO cells in cluster 5, compared 

to WT cells in cluster 5. Thus, clearly the ‘branching’ between WT and Bcl11b KO 
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already occurred earlier in the trajectory, at cluster 5, despite the close proximity in 

low dimensional space.  The genotype-specific differentially expressed genes in cluster 5 

are shown in Fig. 3D. In addition, the added time resolution in the heatmap Figure 3D 

showed that the accumulation of subtle abnormal expression features can precede 

substantial movement between discrete clusters in low dimensional space. 

 

The destiny of cells after the realization of their inability to become T cells 

Although Bcl11b KO cells have previously been noted to express ‘immature’ or ‘non-T’ 

genes (Hosokawa et al., 2018a; Longabaugh et al., 2017), it was unknown whether the 

abnormally expressed  B-, NK-, other innate-, stem-associated genes were all expressed 

in the same cells or segregated among different cells that lack Bcl11b. Our data now 

showed that cells most highly expressing, NK (Il2rb) and ILC (Rora, Zbtb16) genes were 

concentrated at the 10 o’clock ‘tip’ within the UMAP1-UMAP2 space (cluster 8) which 

seems to be the ‘exit’ point of the Bcl11b KO developmental progression (Figure 3C). 

Myo1e, a B cell and ILC-associated gene, was more spread across cluster 1 and cluster 8. 

Cd163l1, a gene associated with the TCRgd cell lineage, highlighted cluster 8 and far left 

of cluster 1. Fig. S3C-F shows a detailed analysis of the expression patterns of many of 

these genes within the Bcl11b KO cells specifically. Although the different genes 

upregulated in Bcl11b KO cells were found more or less spread across the population 

distribution, nearly all reached their highest levels at the same ‘tip’. Therefore, the Bcl11b 

KO developmental pathway appeared to progress toward a major single endpoint, distinct 

from the T-cell program, not several diverse alternative states. 

To gain more insight into the processes that drive the program for Bcl11b KO cells, we 

computationally subset only Bcl11b KO cells, and performed co-regulated ‘gene module’ 

analysis with Monocle3, extracting modules of genes which help to further sub-define the 

component states within the Bcl11b KO population (Fig S3A-D). In Bcl11b KO only 

UMAP 1-3 (Fig S3E), with this fine resolution visualization, we observed that the ‘tip of 

exit’ showed sign of loss of Notch response genes, such as Nrarp, Il2ra. Cells around the 

tip further upregulated Gata3, Id2, Ikzf2, while downregulating Rag1. The orthogonal 

UMAP 1-2 space also showed a small cluster, shown in Fig. S3F (also seen in Figure 2F, 
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S2G cluster 13), has a small distinct cell cluster with the expression of interferon-

response genes, Ifit1 and Ifit3. Thus, the end stage of the Bcl11b KO pathway may involve 

the upregulation effort of many ‘multi-lineage’ genes, but at the end, it was clear that the 

D13 terminus of the Bcl11b KO program ‘exiting point’ involved at least partial 

downregulation of Notch signaling.  

These results thus show that pro-T cells reaching the threshold of commitment, when they 

would normally upregulate Bcl11b, respond to the lacking of Bcl11b by gradually 

accumulating ‘early stage’ genes that would normally be turned-off around this stage, and 

progressively upregulate ‘abnormal’ genes in a uni-lineage path diverging from the 

normal developmental trajectory. The cells lack Bcl11b do not regress back along the 

normal developmental trajectory, but rather go on an aberrant branch that would finally 

lead to a small fraction of cells ‘exiting’ the ‘T-programs’ through the downregulation of 

Notch signaling responses and further upregulation of the innate lineage associated 

expression features.  

 

TFs with early stage dynamic expression patterns are examined through batch 

controlled dual gRNA direct capture perturb-seq 

Many regulatory network changes seem to precede the T-lineage commitment 

decision(Zhou et al., 2019), but the basis of their regulation has been poorly understood. 

This is partly due to the rarity of the cells in these stages and to the overlap between TFs 

expressed in the earliest T-cell precursors and those used in other hematopoietic 

precursors. To reveal the underlying network topology, we examined the effects on 

differentiation speed and outcomes when we knocked out candidate regulators of these 

early events, specifically candidate TFs for regulatory functions that also exhibit dynamic 

expression pattern changes during early stages in differentiation (Figure 4A). In particular, 

Bcl11a, Spi1, Hoxa9, Meis1, and Erg encode stem-progenitor associated factors, whereas 

Tcf7 and Gata3 encode T-lineage associated factors, and we focused on these for targeted 

KO studies. Note that several of these genes have previously been shown to be important 

for viability of early T-cell precursors (Champhekar et al., 2015; Germar et al., 2011; 

Hosokawa et al., 2018b; Scripture-Adams et al., 2014; Yu et al., 2012), but we ensured 
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maximum retrieval of viable perturbed cells by including a Bcl2 transgene in the Cas9 

mice. KO effects were examined by introducing 2-3 sgRNAs against the gene of interest, 

delivered through retrovirus, to Lin- or LSK prethymic precursor cells from bone marrow 

that were purified from mice with constitutive expression of Cas9 proteins. After 

transduction, the cells were then cultured in either ATO-DLL4 or OP9-DLL1 systems to 

initiate the T-cell program (details in Methods; see Figs S1, S2). Interestingly, in various 

experimental settings in preliminary studies, KOs of ‘stem’-related genes, Bcl11a or 

Meis1, promoted a ‘faster’ developmental phenotype promoting the DN2a to DN2b 

transition, as indicated by surface marker combinations of CD44, cKit and CD25. Erg KO 

increased the rate of DN1 to DN2 transition (examples shown in Figure 4B). KO of Spi1, 

encoding PU.1, a pioneer factor which is important for myeloid vs lymphoid decision, 

was previously shown to accelerate DN2 to DN3 progression if deleted after T-cell 

development was initiated (Champhekar et al., 2015; Hosokawa et al., 2018b; Scripture-

Adams et al., 2014). Here, with earlier deletion, it lowered the CD44 level in all CD25+ 

cells, but retained a population that is CD25-CD44+. However, we did often observe 

variations in infection rates, cell number yields, and phenotype inconsistency (between 

culture systems or experiments during screens of different knockouts). Therefore, to 

combat variability and non-autonomous effects, we designed a definitive, highly-

controlled scRNA-seq assay to determine whole-transcriptome effects of these 

perturbations, using a pool-synthesized, batch-controlled dual gRNA system (Figure 4C-

D). 

Briefly, paired gRNAs (each pair designed against the same exon of the same gene to 

ensure sufficient KO) were synthesized through array-based oligo synthesis, then the oligo 

pool was PCR amplified and Gibson assembled to generate the paired dual gRNA insert 

pool, and subsequently incorporated into retroviral backbone and packaged into the final 

retroviral vector library. The paired gRNAs being expressed were compatible with direct 

capture of both gRNA sequences in scRNA-seq using 10X Chromium V3 chemistry 

(‘Cap1’ and ‘Cap2’ in Figure 4C, details and description of quality controls and titration 

given in Methods; Figs. S4A, S4B).  Importantly, each packaged retroviral pool was 

titered on the same type of primary cells to precisely target multiplicity of infection (MOI), 



 

 

117 
0.5-1 in this study, to ensure single gene effects (Fig S4B, Methods). Here, we used 

CRISPR/Cas9 in the KO context, similarly to the original perturbseq setup(Dixit et al., 

2016). FACS sorted precursor LSK cells were infected with retroviral pools at MOI of 

0.5-1, then cultured on OP9-DL1 for 5 days differentiation before FACS sorting to purify 

the infection positive populations for scRNA-seq (Figure 4D, details in Methods). To 

further minimize batch variations, we multiplexed multiple batches of biological 

replicates using antibody-conjugated cell-hashing technique (Stoeckius et al., 2018). After 

sequencing libraries of cDNA, gRNA, and hashtags yielded from the same experiment, 

the three respective FASTQ files were aligned with CellRanger3 (for cDNA) and an in-

house pipeline (for gRNA and hashtags, Fig S4C-D, details in Methods). We also 

performed additional validation experiments of dual gRNA in our primary cell 

differentiation system, showing that two gRNAs in the same vector did improve upon 

single gRNA KO effect (Fig S4E-F). The multiple replicate infections, multiple sgRNA 

pairs against the same target, and pooled sequencing of all in the same 10X v3 analysis 

yielded a high quality, internally controlled resource of data in which to identify specific 

perturbation effects. 

 

Dramatic changes in topology with single TF perturbations 

It is important to note that the 5-day-culture of LSK with Notch signaling is aiming to 

look at the immediate loss of function effect at the very early stage of differentiation 

(before any identity establishment), as normally 5 days post infection, the majority of LSK 

cells are still in DN1 stage by surface markers. However, the scRNA-seq result revealed 

that some of the individual TF perturbations already resulted in dramatic shifts in low 

dimensional representation (Figure 4E-G, Fig. S4G). While control cells spread across the 

UMAP1 and 2 space, forming a sparse differentiation continuum (Figure 4F left), cells 

expressing sg.Tcf7 or sg.Gata3 stalled at the more un-differentiated stage; cells expressing 

sg.Spi1 shifted towards more differentiated stage but slightly veering from the control 

trajectory; and cells expressing sg.Erg formed a distinct cluster, aligned parallel to the 

‘normal’ trajectory with some DN2 signature genes enriched (Figure 4F-G, S4G, S5D). 

In the entire pool of cells, more sg.Erg expressing cells were detected than any other cells, 
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implying that Erg loss may enhance proliferation (Figure 4H). In contrast, Tcf7 and 

Meis1 perturbations slightly suppressed proliferation despite the presence of anti-

apoptotic Bcl2, as all pairs of gRNAs of these genes showed consistent cell number 

differences compared to the control vectors (Figure 4H). For simplicity, hereafter, we refer 

to the integrated effect of all sg.RNA against the same genes as ‘KO’. 

To describe the cluster distribution relationships of different KOs, pair-wise KL 

divergence was calculated. This showed that KOs of Tcf7, Erg, and Spi1 exhibited 

dramatic cluster pattern differences among each other, and they were also very distinct 

from the control (Figure 4I, individual pairs of gRNA’s cluster distribution in Fig S5A). 

However, except for the clusters specific for the Erg KO cells, most of the KO and controls 

still shared the same common clusters, although their distributions among these clusters 

varied greatly, as shown in Figure 4E. In light of the results previously shown for the 

Bcl11b KO in the later-stage cells (Fig. 3A, B, D), we wondered whether the gene 

expression profiles of KO and control within the same ‘common clusters’ were different 

here. However, here the representative scatter plots (Fig S5B), correlation heatmaps (Fig 

S5C), and differential gene expression analysis (not shown) between Cont and KOs all 

showed that for cells within the same ‘common’ clusters, the gene expression patterns 

between control and KOs were rather similar, in contrast to the behavior described 

previously for cluster 5 of the Bcl11b KO cells and WT cells. Therefore, we conclude that 

the effects of these early KO perturbations were mostly described by the shifts between 

clusters in low dimensional space, not by subtle changes of individual genes’ expression 

in the same shared clusters. 

 

Differentially expressed genes between different KOs are partially explained by the 

early to late progression in control cells 

The key questions we sought to answer in knocking out TFs were a) what target genes 

they regulated and b) what their potential functional implications were during this early 

differentiation process. To first examine the regulated targets, we performed differential 

expression analysis looking at the top up- and down- regulated genes in response to each 

of the KOs. All KOs except Hoxa9 and Meis1 showed many significantly differentially 
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expressed genes in response to the KOs (Figure 5A-B).  The Bcl11a KO up-regulated 

‘late’ genes and down-regulated the ‘stem’ genes, while the Spi1 KO partially overlapped 

with the Bcl11a KO’s differential expression pattern but induced more innate-immune 

genes such as S100a6 and Ifitm2, and also upregulated transcripts of the T-cell receptor g 

locus, Tcrg-C4. Erg KO cells upregulated many cytoskeleton- and growth/signaling-

related genes, and downregulated Ctla2a and Myl10. Tcf7 KO cells showed expression 

enriched for stem-related genes such as Sox4 and Mef2c, as well as Malat1, a lncRNA 

known for involvement of nuclear-speckle and mRNA splicing. While Gata3 KO cells 

were also enriched for some stem-related genes, they were not enriched for expression of 

Sox4; instead, they noticeably upregulated DC and macrophage-related genes, as well as 

cell cycle related genes which will be discussed later. 

We then asked if the genes up-regulated and down-regulated in each of the KOs and shifts 

of the KO cells from control or ‘normal’ differentiation trajectories could explain each 

other. To resolve this, we compared each knockout with a differential expression analysis 

of the control cells only, defined by the gene expression changes that occur normally in 

the stages from early DN1 to late DN2b, i.e. (in only the Cont) between early clusters 

(7,1,11) and late clusters (0,6,5,8,9,14), as shown in Fig S5F.  For example, Bcl11a and 

Spi1 KOs both pushed the cells away from clusters representing the most un-differentiated 

states (Figure 4F, S4G); Were all the genes these cells up-regulate essentially ‘late’ or 

‘DN2’ genes, such as Cpa3 and Fgf3? Tcf7 and Gata3 KO both had stalled differentiation 

at different stages (Figure 4F, Fig. S4G). Was this why both KO conditions seemed to 

have enriched expressions of at least some ‘stem’-related genes, such as Mef2c and Bcl11a? 

To generalize, could most of the differentially expressed genes be simply explained by 

the shifts of ‘early’ to ‘late’ stages that normally happen during differentiation? The results 

of this comparison showed that while many changes in Tcf7 knockouts seemed to follow 

predictions of a simple developmental block (Fig. S5E), many of the differentially 

expressed genes in other KO conditions changed in ways that are not explained purely by 

the early to late transition expression profile changes in control (Fig.S5E-I, dark brown 

dots). 
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KOs resulted in dramatic changes in cell cycles and different lineage program 

regulations 

To further understand the potential changes of regulatory activities induced by deletion of 

these TFs, we used SCENIC (Aibar et al., 2017) algorithm to identify groups of genes 

correlated with, and potentially regulated by the same “central” factors. The SCENIC 

analysis was performed on the computationally separated individual KOs (Fig.S6), and 

we found that these predicted “central” factors and their potential target genes responded 

distinctively in the different individual KOs. SCENIC infers probable network 

connections from the enrichment of the target motif for TFs in genomic regions near TSS’s 

of genes co-expressed with those TFs, and integrate the expressions of the potential target 

genes as the predicted TF activities, namely ‘regulons’. Among the most significant 

regulon activities identified by SCENIC, it revealed several coherent regulons that 

responded in markedly different ways in our KOs (Fig. 5E). Interestingly, SCENIC 

predicted a ‘central’ TF, Ybx1, governing a prominent regulon in all samples (shown in 

Fig S6), the function of which has not been extensively studied in hematopoietic systems. 

However, inferred Ybx1 activity appeared strongly correlated with cell cycle: among the 

genes co-expressed with Ybx1, links between Ybx1, cytoskeleton genes and 

G2/S/proliferation markers, such as Birc5 and Hmgb1, were discovered (Figure 5C-E, 

detailed in Fig S6 and S7C-D). Moreover, the distribution across the cell 

cycle/proliferative stages changed dramatically upon perturbations of some of the genes, 

as shown in Figure 5C-E. The Erg KO shifted cells to a highly proliferative stage, and the 

Gata3 and Bcl11a KOs also seemed to promote proliferation, whereas the Spi1 and Tcf7 

KOs seemed to suppress proliferation (Figure 5C). Both Gata3 and Erg KO further 

induced a ‘new’ Hmgb1 module which potentially further extends the cell cycle and 

cytoskeleton regulation. The observation on cell cycle regulation in pair-wise plots and 

SCENIC analysis substantiated the earlier transcriptome-wide differential expression 

analysis in Figure 5A, where Gata3 KO upregulated Mki67 and Top2a, two canonical 

G2/S/proliferative markers, which are profoundly downregulated in Tcf7 KO. Moreover, 

SCENIC predicted that integrated Myc ‘regulon’ activities are significantly decreased in 

Tcf7 and Meis1 KOs, but significantly increased in Erg KO (Figure S7A). Cell cycle 
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stages, RNA contents, and expression of cytoskeleton genes were further compared 

between control and all KOs, and the results support these findings on Erg, Gata3, Meis1, 

and Tcf7 KO effects (Figure S7B-D). 

Besides cell cycle, cytoskeleton, and Myc related regulations, we focused on 

developmental and lineage-associated regulons. Although Gata3 and Tcf7 both showed a 

‘stalled phenotype’ on differentiation space, their up-regulated and down-regulated genes 

had minimum overlaps. The Gata3 KO seemed to be more encouraging for innate lineages, 

upregulating S100a4, Ifitm1, and Ifitm3d, whereas cells without Tcf7 downregulated these 

genes, and upregulated Tyrobp and Sox4 instead (Figure 5A). Indeed, the SCENIC 

summarized TF-target regulation prediction showed evidence for differential regulation 

of Spi1 (PU.1), Irf8, and C/EBP family TF activities upon deletion of Tcf7, Gata3, and 

Erg (Summarized in Figure 5E, details in Fig S6). Loss of Gata3 immediately promoted 

all myeloid programs including upregulating Irf8 (DC) and C/EBP family genes (MF), 

while supporting proliferation (Olsson et al., 2016). However, loss of Tcf7 only retained 

Irf8 and Spi1 expressions, but surprisingly did not promote a MF/GN module involving 

Spi1 and C/EBP family TF activities (Figure 5E, S7E-H). Moreover, it is not surprising 

that Tcf7 KO completely abolished the T-lineage regulatory module (Figure 5E). The Erg 

KO not only suppressed the myeloid regulating modules, but also the stem module (Figure 

5E). Therefore, it was clear that KOs of individual TFs could lead to complexed changes 

in regulatory activities in developing early T cells, including proliferation, Myc activity, 

alternative lineage programs, and T-lineage programs.  

 

KO of individual TF shifts cells in T differentiation pseudotime trajectory 

To better describe the differentiation continuum along T fate lineage, we performed 

trajectory and pseudotime analysis with Monocle3 in 3D UMAP space, as shown in Figure 

5F. The predicted T developmental pseudotime of individual cells from different KOs are 

represented in Figure 5G. Kruskal-Wallis test has shown the significant pseudotime 

acceleration shift of Bcl11a, Spi1, and Erg KOs from control, and significant deceleration 

of Gata3 and Tcf7 KOs from control. The results indicate the expression of Spi1, Bcl11a 

and Erg in early T cells slows down the differentiation process, while expression of Gata3 
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and Tcf7 are used (or required) for the advancement T-lineage, which agrees with 

previous studies (Champhekar et al., 2015; Scripture-Adams et al., 2014; Weber et al., 

2011). The unsupervised trajectory and pseudotime analysis based on full transcriptome 

profiles further substantiated that these TFs are involved in regulating the differentiation 

speed. Clearly, these genes expressed in the early stage of T cells are functionally relevant 

in setting up the proper proliferative state and differentiation speed of the cells. Our results 

revealed the diverse and multi-module-spanning regulatory roles of these TFs in 

controlling the kinetics of early T-lineage differentiation. 
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DISCUSSION 

The perception of cell fate commitment is usually a discrete and irreversible decision point 

made by the multipotent cells, resulting in the acute loss of alternative lineage potentials. 

However, for a stem cell population that is regulated under a non-fully deterministic gene 

regulatory network, we need to view the process as a developmental or decision 

continuum, that are potentially coupled by multi-module regulations, in order to 

understand the requirement for cell fate commitment ‘event’ and the modulators for the 

speed of the differentiation process. Indeed, many previous studies have shown that 

hematopoietic differentiation processes often involve gradual exclusions of alternative 

lineages. But in T cells, the process does not seem to be regulated by any single ‘master 

regulator’ (Longabaugh et al., 2017; Mingueneau et al., 2013; Naito et al., 2011; 

Thompson and Zúñiga-Pflücker, 2011; Yui and Rothenberg, 2014; Zhang et al., 2012).  

Previous studies have shown perturbations of some of the regulators either in later stages 

of development or in slightly different settings, such as fetal liver precursors (Champhekar 

et al., 2015; García-Ojeda et al., 2013; Germar et al., 2011; Hosokawa et al., 2018a, 2018a, 

2018b; Longabaugh et al., 2017; Scripture-Adams et al., 2014; Weber et al., 2011; Yu et 

al., 2012). Most importantly, the lack of single-cell resolution has previously made it 

impossible to understand the full developmental continuum and trajectory topology; any 

interpretation of bulk RNA-seq perturbation data could have been an averaging effect of 

mixed regulatory outcomes on single-cell levels. In this study, we used scRNA-seq 

coupled with different carefully designed- and optimized- perturbation strategies to 

further examine the loss of function outcomes of regulators to this early T-cell 

differentiation continuum. Specifically, two different stages of the cell fate decision 

process were focused: with Bcl11b KO – around and right after lineage commitment; and 

with selected TF-‘perturbseq’ – prior and leading up to lineage commitment. 

Our results showed a clear branching developmental trajectory through the lineage 

commitment stage of WT and Bcl11b KO precursors. The loss of Bcl11b impacted cells 

early on after Bcl11b would normally begin to be expressed, in the proliferative DN2 stage, 

where immediate divergence of normal and defective trajectory occurs. Despite the 
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clustering algorithm assignment of WT and KO to the same cluster, the changes in the 

expression pattern preceded their shifts in low dimensional space. Furthermore, the cells 

without Bcl11b seemed to undergo a major uni-lineage path of accumulation of many 

‘abnormal’ genes in the same cells over time, through which some of the Notch response 

genes were transiently upregulated, but eventually lost. Notably, upon the final loss of 

Notch signaling, many NK or ILC-associated genes were turned on together, potentially 

representing the ‘exiting’ path to become ‘NK-like’ or ‘innate immune’ cells observed in 

previous studies (Hosokawa et al., 2018a; Li et al., 2010b). 

Previous study of in vivo thymocytes, using the highly sensitive imaging-based seqFISH 

method, showed that within the ETP state, the majority of individual cells co-express 

legacy progenitor genes with the critical Notch-induced T-cell regulatory genes, Gata3 

and Tcf7 (Zhou et al., 2019). This implies that the stem and Notch-induced regulatory 

modules operate together to potentially set up lineage progression to DN2 stage, which 

later leads to lineage commitment. This study examined individual TF perturbations, 

including Gata3 and Tcf7 themselves, around the ETP equivalent stage. First, our result 

showed that deletion of some stem-related genes, like Bcl11a and Spi1, shifted cells to a 

more differentiated state, and Erg KO shifted the cells to an aberrant proliferative DN2 

state. Second, SCENIC analysis suggested that some of the TFs are controlling not only 

the differentiation state but also are involved, directly or indirectly, in controlling 

proliferation, cytoskeleton and Myc activity modules. Our results showed surprising 

contrast of myeloid and proliferation modules regulated by Gata3 and Tcf7: Gata3 was 

involved in suppressing many myeloid lineages and promoting T-lineages; whereas Tcf7 

was absolutely required for setting up the T-lineage program at the earliest stage, but did 

not appear directly to suppress myeloid lineages. Although Gata3 and Tcf7 are both 

known, essential T-cell regulatory factors, our analysis showed that the presence of Gata3 

normally seemed to suppress proliferation while Tcf7 seemed to promote proliferation. 

Finally, it was clear that perturbation of individual TFs can significantly shift 

differentiation kinetics, indicated through pseudotime calculations. Bcl11a, Spi1, and Erg 

KOs accelerated the differentiation process while Gata3 and Tcf7 KOs stalled it. The 
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results imply that some of the stem related genes naturally hold back the differentiation 

speed, while Gata3 and Tcf7 at least are promoting the differentiation process. 

It is fair to conclude that developmental timing is initially restrained through a network of 

positively cross-regulating transcription factors that actively maintain stem-like properties, 

which are expressed in the progenitors. The differentiation progression then results from 

the tipping of the balance between the differentiation-promoting gene network regulators 

and the stem-like gene network regulators. Therefore, some of the early stage transcription 

factors are likely controlling the balance, hence differentiation kinetics.  

In summary, we presented a detailed single-cell study of the population distributions, 

trajectory topology, and differentiation kinetics upon knocking out important regulators 

during or before the T-cell identity establishment. 
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MAIN FIGURES 

 
Figure 1. BM derived early T cells’ expression profiles recapitulated in vivo thymic early 

T cells’, on bulk and single-cell levels.  

A) Illustration of early T cells harvested from thymus or derived from bone marrow (BM) 

precursors. The ex-vivo culture systems include both the OP9-DL co-culture system with 
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OP9-DLL1 or OP9-DLL4 stroma cells, and the 3D artificial thymic organoid (ATO) 

system with MS5-mDLL1 or MS5-mDLL4 stroma cells, as detailed in Methods. B) 

Clustered expression heatmap of bulk RNA-seq measurements comparing early T cells 

harvested in vivo and early T cells derived from BM as illustrated in A). All genes plotted 

are from a list of curated important regulatory gene list described in the previous study 

(Zhou et al., 2019). Color scales indicate raw expression levels as log(FPKM+0.1), 

without row normalization. C) Illustration of sample purification procedures and FACS 

sorting strategies for the scRNA-seq experiments, comparing in vivo and ex-vivo derived 

early T cells’ single-cell expression profiles. D) Aligned in vivo and ex-vivo derived 

scRNA-seq profiles after CCA scaling, shown in UMAP1-2. More detailed analysis of the 

aligned scRNA-seq profile and comparisons are shown in Figure S1.  
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Figure 2. (Previous page) Single-cell population distributions of Bcl11b knockouts 

revealed time-progressed abnormality compared to wild type.  

A) Schematics showing the experimental design and setup of internal controlled scRNA-

seq experiments comparing wildtype (WT) and Bcl11b knockout (11b KO). B) Top panels 

describe the FACS purification strategy for the Bcl11b scRNA-seq experiments. Bottom 

panels summarize the surface staining phenotype of cKit levels in WT and Bcl11b KO 

(noted as FF for flx/flx, details in Methods). C-E) Differential expression analysis of 

expression profiles from cells that were harvested on D10 and D13, in WT and Bcl11b 

KO, separately. C) Volcano plots of genes with differential expression between D10 and 

D13 (x axis represent the ‘estimates’ from the generalized linear model fit of gene 

expression with respect to time), and their adjusted p-values (qval, on a log10 scale). The 

dot color represents whether the identified gene’s differential expression is also tested 

differential in the other genotype. D) Venn diagram showing the number of differentially 

expressed genes’ overlaps between the two genotypes. E) Scatterplot showing the genes 

that were significantly differential expressed in both of the genotypes. Comparing the WT 

and Bcl11b KO’s ‘estimates’, showing whether the directions of differential expression 

regulations with respect to time agreed in both of the genotypes. Red dots represent the 

genes that were regulated in opposite directions; Blue dots show the genes expressed 

higher in WT (≥1.7 fold difference in ‘estimates’, and the ‘estimate’ in at least one of the 

genotype ≥0.1); Purple dots showed the genes expressed higher in Bcl11b KO (≥1.7 fold 

difference in ‘estimates’, and the ‘estimate’ in at least one of the genotype ≥ 0.1). F) Left 

panel shows the aligned two experiments of Bcl11b scRNA-seq profiles after CCA scaling, 

as ‘Bcl11b_run1’ and ‘Bcl11b_run2’, in UMAP1-2. Note that ‘Bcl11b_run1’ samples 

were only collected in D10. Right panel shows the Louvain clustering of the integrated 

samples (details in Methods). G) Samples subset according to the hashtag demultiplexed 

genotype and time of harvest, and displayed in UMAP1-2, colored by the same clustering 

annotation from Fig.2F. (Also see Fig.S2B). H) Heatmap showing the KL divergence of 

all integrated samples, calculated based on cluster distributions (as shown in Fig.2G and 

Fig.S2B). I) Pair-wise cluster distribution scatterplots comparing WT and Bcl11b KO. 

Red arrows indicate the most dramatic and consistent difference between the two 
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genotypes in both time points, cluster 0 and 2. J) Heatmap showing the top 20 

differentially expressed genes between cluster 0 and cluster 2, in both directions. 

(Wilcoxon Rank Sum test, filtered by minimally expressed by 25% cells in of one of the 

clusters, and adjusted p-val < 1e-50). 
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Figure3. Trajectory divergence between WT and Bcl11b knockout occurred immediately 

after the normal-Bcl11b expressing proliferating late DN2a stage.  

A-B) UMAP 1-2 colored by different demultiplexed samples. A) The hand-sketched 

inferred trajectories of differentiation of WT and Bcl11b KO. B) The zoom-in view of the 
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subset of cells only in cluster 5 from Fig.2F, showing a slight separation of genotypes. 

The same color map shown in B) is used in panel A), B), and D). C) Selected genes 

highlighted on UMAP 1-2, marking T differentiation stages (Il2ra, Bcl11b, Lef1), and 

alternative lineage associated genes (Neurl3, Cd163l1, Rora, Zbtb16, Il2rb, Myo1e).  D) 

Heatmap of differentially expressed genes between WT and Bcl11b KO in only the cells 

from cluster 5 (Fig.3B), revealing the gene expression differences that caused the 

separation shown in fig3B. (Wilcoxon Rank Sum test, filtered by minimally expressed by 

25% cells in of one of the clusters, and adjusted p-val < 1E-20, top and bottom 20 genes 

ranked by average log expression differences (‘avg_logFC’ in Seurat) are displayed, 

calculated using Seurat v3.) Red dots label the genes that are enriched in Bcl11b KO 

compared to WT, but more dramatically in D13 than D10. 
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Figure 4. Pool-based batch-controlled TF perturbseq revealed deletions of TF resulted in 

dramatic changes on population distributions on UMAP.  
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A) Gene expression dynamics of selected TFs with known or potential regulatory roles 

in early T-cell development, and illustrations of different lineage potentials as described 

from the previous study (Zhou et al., 2019). B) Representative surface expression 

phenotypes analyzed by flow cytometry. Different developmental kinetics were resulted 

from acute TF deletions on precursors prior to Notch signaling encounter (details in 

Methods), and cultured for 6 days with OP9-DLL1, and developmentally staged by 

surface expression of CD44 and CD25. C) Illustration of pool-based dual gRNA cloning 

strategy used in the following experiments in this study. D) Internal- and batch-controlled 

cell biology experimental setup for the single-cell perturbation (perturbseq) experiment. 

E-G) UMAP 1-2 on the scRNAseq data based on PC 1-16, the analysis was performed 

with the expression data after being scaled to UMI counts, mitochondrial content, and cell 

cycle stages (using Seurat v3(Butler et al., 2018)). E) The cells are colored by clustering 

result using PC 1-16 and Louvain clustering algorithm. F-G) The cells are colored by 

sgRNA assignment. 3 pairs of dual sgRNAs against the same gene were aggregated 

together. F) The purple-colored dots highlight individual gene’s KO effect, compared with 

the Cont. Trajectory was sketched by hand according to marker gene expressions in each 

cluster, as shown in Fig.S5D. More genes are plotted in Fig.S4G. G) Merged 

representation with labels showing the centroids of different KO distributions on UMAP1-

2. H) The cell number recovered from the scRNA-seq pool separated by genes being 

perturbed. Each dot represents cell number recovered from one of paired gRNA vectors. 

Statistical significance showed t-test analyzed between Control and KOs. (**: p-val<0.01, 

*: p-val<0.05). I) Heatmap showing the KL divergence of all WT and KO samples of each 

genes. 
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Figure 5. (Previous page) TFs involved in multi-lineage and multi-module gene 

regulations, affecting cell number, lineage decisions and differentiation kinetics of early 

T cells. A) Top 15 up-regulated genes in each KO (the top 15 was defined by average log 

expression differences (avg_logFC in Seurat3), test was performed with Wilcoxon Rank 

Sum test, filtered by minimally expressed by 5% cells in either the control or the KO, 

minimum average log expression difference cutoff of 0.1, and adjusted p-val < 1E-2). The 

right-angle brackets indicate the top differential expressed genes. Note some overlapping 

genes that were differentially expressed in more than one KO conditions were also 

indicated through the bracket annotations. B) Top 10 down-regulated genes in each KO 

(similarly to Fig.5A with minimum average log expression difference cutoff of 0.1, and 

adjusted p-val < 1E-4). C-D) Pairwise scatterplots of the transcript distributions and 

correlations, separated by different KOs. C) Transcript distributions of Hmgb1 and Birc5, 

which indicate the cell cycle and proliferative stage of cells. (G2/M or proliferative cells 

express Birc5). D) Transcript distributions of Spi1 and Mef2c, showing these stem and 

progenitor genes’ expression level in the different KOs. E) Summary cartoon of findings 

from the ‘regulon activity’ of SCENIC analysis, as detailed in Fig.S6 and S7 and Methods. 

F) 3D UMAP colored by inferred pseudotime. The pseudotime was calculated with 

Monocle 3, based on the trajectory inference from 3D UMAP built using the size and cell 

cycle scaled data as described in Fig.4E, details in Methods. G) Pseudotime distributions 

of cells from different KO, showing that KOs of Erg, Spi1, and Bcl11a exhibit faster 

differentiation speed compared to the control; KOs of Gata3 and Tcf7, on the other hand, 

had slowed or stalled developmental progression according to pseudotime distributions. 

In order for pseudotime to reflect only the T-lineage progression relevance, the alternative 

lineage population at the bottom of F) was excluded. For statistical significance, Kruskal-

Wallis test of multiple comparisons was performed, comparing each KO to Cont. Level 

of statistical significance: ** marks adj.p-val<1E-2, **** marks adj.p-val <1E-4, by the 

Kruskal-Wallis test. The asterisk colors indicate the direction of peudotime change 

compared to Cont. 

 



 

 

138 
SUPPLEMENTARY MATERIALS 
 
 
 
SUPPLEMENTARY FIGURES 



 

 

139 

 



 

 

140 
Supplementary Figure S1 (previous page), related to Fig.1. Full bulk and single-cell 

RNA-seq analysis of in vivo and ex-vivo derived early T cells. A-B) Volcano plots showing 

the full differential expression analysis of bulk RNA-seq profiles, comparing between in 

vivo thymic early T cells and ex-vivo BM derived early T-cell populations. The total 

number of differentially expressed genes were labeled on each plot, which was analyzed 

with EdgeR and filtered by log2 Fold change larger than 1 and adjusted p.val <1E-3. A) 

Differential gene analysis between thymic ETP and ex-vivo derived DN1, in the 4 culture 

conditions. B) Differential gene analysis between thymic DN2 and ex-vivo derived DN2, 

in the 4 culture conditions. C-F) Single-cell analysis of in vivo and ex-vivo derived T cells, 

aligned with CCA scaled data, as shown in Fig.1C. The data is shown on UMAP1-3 for 

the clear separation on developmental stages. C) Cells colored by origin of sample, i.e. 

‘Thy’ for in vivo thymocytes and ‘ATO’ for T cells derived from ATO-DLL4 as discussed 

in Fig.1C. D) Cells colored with clustering assignment on integrated data. E) T 

developmental marker genes expression pattern. F) Heatmap displaying the top 10 

enriched genes in each sub-cluster ordered by approximate developmental progression 

based on gene expression and connectivity in low dimensional displays. (Seurat 3 pipeline 

with minimum fraction of expressing cells ≥ 0.25, Wilcoxon rank sum test with 

avg_logFC threshold of 0.3). G) Within the early, middle and late developmental sub-

clusters, the average gene expression level (size and log normalized transcript count data) 

comparison between thymic T-cell data (Thy) and the ex-vivo derived T cells (ATO). Off-

diagonal outlier genes were labeled. Note that the ‘Thy’ data was obtained from female 

mice whereas the ‘ATO’ data was derived from LSKs of male mice, hence the Xist 

expression on ‘Thy’ data only. 



 

 

141 

 

A

B

C

D

E

F

G



 

 

142 
Supplementary Figure S2 (previous page), related to Fig. 2 and 3. Surface and 

expression profiles of WT and Bcl11b KO (labeled as ‘FF’ for Bcl11b homozygous flx/flx 

locus) single-cell samples. A) Flow cytometry profiles of WT and Bcl11b KO cells 

collected from ATO-DLL4 culture system at 2 different time points. Compared to WT 

control, the cells missing Bcl11b can still similarly turn off CD44, but failed to down 

regulate cKit expression levels. In D13, the cKit was further up regulated compared to 

D10 in Bcl11b KO samples. B) UMAP 1-2 display of the integrated scRNA-seq data, 

separated by individual samples. C-D) Cluster distributions (shown in proportions), 

comparing different biological replicates of cells derived from BM of the same animal 

origin. This shows great replicability of ex-vivo derivation and scRNA-seq experimental 

setups. E-F) Cluster distributions comparing samples harvested from different time points 

of the same animal origins. Cluster assignment same as described in Fig. 2F and Fig. S2G. 

G) Heatmap displaying the top 5 enriched genes in each sub-cluster ordered by 

approximate developmental trajectories of WT and Bcl11b KO, based on gene expression 

and connectivity in UMAP displays. (Seurat 3 pipeline with minimum fraction of 

expressing cells ≥ 0.25, Wilcoxon rank sum test with avg_logFC threshold of 0.3). 
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Supplementary Figure S3 (previous page), related to Fig.3. A fine look of only the 

Bcl11b KO trajectory revealed accumulation of abnormal gene expressions, and the 

potential ‘exiting point’ of T-lineage. A-B) UMAP1-2 and 1-3 of only the cells derived 

from Bcl11b KO animals from both experiments (computational subset by the hashtag 

assignments). A) Cells colored by clustering analysis of Bcl11b KO cells only, performed 

with Monocle3 (Cao et al., 2019) with PhenoGraph algorithm (Levine et al., 2015). B) 

Cells colored by time point of sample collection, showing Bcl11b KO samples’ 

distribution changes with respect to time, on UMAP1-3. Note that the lower clusters 5 and 

6, as shown in Fig.S3A and here, are exclusively expressed by D10 samples and represent 

mostly cells before the normal Bcl11b expression. For display clarity, the cluster 5 and 6 

will be removed in the panels below. C) Heatmap showing the Monocle3 inferred co-

regulated gene modules based on the scRNA-seq data, and the aggregated expression level 

in the clusters mentioned above in Fig.S3B. D) The list of genes in the inferred ‘gene 

module’ 2, 18 and 15, which are most enriched in the most differentiated abnormal cells. 

E-F) Selected genes’ expression patterns on the ‘Bcl11b KO only’ UMAP1-2, and 1-3. E) 

The expression of Notch response genes, such as Nrarp and Il2ra, were down regulated 

at the bottom left ‘tip’ of this UMAP 1-3 display. Many genes potentially involved in 

alternative lineages gradually accumulate as the cells progress toward the bottom left ‘tip’, 

where more NK and ILC marker genes started to be up regulated. This implies that the 

‘non-T’ genes slowly accumulate in Bcl11b KO cells in a rather homogeneous fashion, 

e.g. there are no major bifurcations of the Bcl11b KO trajectory, and the final ‘departure’ 

from the T-lineage involves loss of Notch signaling responses. F) Some interferon 

response genes (Ifit3b, Ifit1, and Ifit3) uniquely highlighted the minor cluster of cells at 

the bottom left on Bcl11b KO only UMAP 1-2.   
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Supplementary Figure S4 (previous page), related to Fig.4. Technical and analytical 

details of dual gRNA perturbseq. A) The qPCR ct values of selected vectors, which sample 

the evenness of plasmid vector backbones in the cloned dual-gRNA pool. The result 

showed an evenly synthesized pool of plasmids that was used for viral packaging. B) 

Multiplicity of infection (MOI) titration with the viral pools containing dual gRNA 

vectors. All the batches of viral titers were tested separately on primary BM cells, to target 

precisely MOI of 0.5-1 for the scRNA-seq experiment (viral usage ~ 40-64% of the 

plateau). Because of the inferior infectivity of pool 3, only pool 1 and pool 2 were used in 

this study. C) In house bioinformatic processing pipeline to align the dual gRNA with 

both Cap1 and Cap2 information (detailed in Methods). D) Pearson correlation of UMI 

counts from guide1 and guide2 assignment. E-F) The validation experiment of dual gRNA 

effectiveness of acute gene perturbation. E) Due to the low recovery of guide2-cap2 counts 

(from pos2 on the illustration), we designed the experiment to validate whether the gRNAs 

from pos2 are adding effectiveness to the acute perturbation in our system. Here, CD25 

(encoded by Il2ra) were targeted by two gRNA with switching positions. F) Flow 

cytometry analysis of the dual gRNA validation test. The result surprisingly showed that 

the same gRNA sequence in pos2 was more effective in perturbation compared to pos1. 

But most importantly, the dual gRNA perturbation efficiency towards the same gene is 

consistently better than a single gRNA. G) Additional KOs’ single-cell distribution 

patterns highlighted on UMAP 1-2, as discussed in Fig.4F. 
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Supplementary Figure S5 (previous page), related to Fig. 4 and Fig. 5. Low 

dimensional representations and clustering assignments mostly represent the differences 

between genotypes (KOs). A) Heatmap of cluster distributions of individual dual gRNA 

perturbations. The result showed that there was a general agreement of cluster 

distributions of perturbations against the same genes, with a few exceptions, such as Erg.3 

(3rd pair of gRNAs targeting Erg). B) Scatterplots of average gene expressions between 

KOs and Cont, in the shared early common clusters (7,1,11 in sub-clusters defined in 

Fig.4E). The result showed surprising similarity of the gene expressions between KOs and 

Cont in the same ‘common clusters’. C) The heatmaps of Pearson correlations of average 

expressions in the shared ‘common clusters’ between different perturbations. (The 4 

‘common clusters’ were defined as: ‘early clusters’: 7, 1, 11; ‘mid clusters’: 0, 6; ‘late 

clusters’: 9, 5, 8; ‘Erg clusters’: 4, 3, 2 sub-clusters defined in Fig.4E, respectively.) Note 

that the color scale of heatmap represents Pearson correlation of 0.97 to 1. This implies 

that within the same ‘common clusters’, the expression profile between KOs and Cont are 

very similar. D) Heatmap displaying the top 10 enriched genes in each sub-cluster ordered 

by approximate developmental trajectories. Note that Erg KO formed a parallel trajectory 

in the UMAP display from the main trajectory of other cells. (Seurat 3 pipeline with 

minimum fraction of expressing cells ≥ 0.25, Wilcoxon rank sum test with avg_logFC 

threshold of 0.3). E-I) Volcano plots showing the differential expressed genes between 

Cont and KOs, the color of dots represent if the gene was differentially expressed in Cont 

cells only during the normal developmental progression (transition from ‘early clusters’ 

to ‘mid’ and ‘late’ clusters, as annotated in F.) Specifically, genes that were upregulated 

during normal early to late transition in Cont cells are labeled as cyan, and the 

downregulated genes are labeled as magenta. Genes that were differentially expressed 

between KOs and Cont but not differentially regulated in this normal development 

transition are labeled as dark red. The color labels help visualize whether the differential 

expression between WT and KOs were merely reflecting a developmental acceleration or 

a stalled progression.  
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Supplementary Figure S6, related to Fig5. Inferred TF activities and regulatory 

connections by SCENIC. SCENIC was performed on subsets of individual KOs. The font 

sizes of the gene labels reflect the number of edges shown in the graph, showing the most 

prominent TF regulators. The detailed analysis is described in Methods.  
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Supplementary Figure S7, related to Fig. 5. Detailed evidence of TF regulated 

activities on developing T cells. A) Myc regulon activity distributions from SCENIC 

analysis. The result showed an upregulated Myc activity by Erg KO cells and 

downregulated Myc activity by Meis1 and Tcf7 KOs. B) Distributions of number of genes 

detected, number of transcripts detected, and inferred cell cycle stages, according to genes 

perturbed. C-D) Scatterplots of transcript distributions of cell cycle and cytoskeleton 

related genes, separated by genes perturbed. E) Transcript distributions of Spi1 and a 

known DC marker and Spi1 downstream target, Bex6. The clear downshift of the density 

in Spi1 KO, compared to all other KOs and Cont, substantiated the effectiveness of 

perturbation in this experiment. F-H) Transcript distributions of some stemness and 

myeloid program markers. 
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EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Animals 

C57BL/6J, B6.Cg-Tg(BCL2)25Wehi/J(Bcl2-tg), Vav1-iCre mice (B6N.Cg-

Commd10Tg(Vav1–icre)A2Kio/J)  and B6.Gt(ROSA)26Sortm1.1(CAG-cas9*,- EGFP)Fezh/J 

(Cas9) mice were purchased from the Jackson Laboratory. B6.Bcl11byfp/yfp reporter 

mice(Kueh et al., 2016) were used for bulk RNAseq analysis, and B6.Bcl11bfl/fl 

mice(Hosokawa et al., 2018a; Longabaugh et al., 2017) were both reported previously. 

All mice were maintained on the B6 background. For CRISPR/Cas9 experiments, BCL2 

transgenic mice and Cas9 mice were crossed to generate B6-Cas9/+; +/Bcl2 heterozygotes 

for each experiment. For Bcl11b experiments, B6.Bcl11bfl/+ Vav1-iCre heterozygous mice 

were bred to obtain Bcl11b+/+ and Bcl11bfl/fl ROSA26R-YFP mice with Vav1-iCre, as 

previously described(Hosokawa et al., 2018a), annotated as WT and Bcl11b KO. Animals 

used for these experiments were bred and maintained at the Animal Facilities at California 

Institute of Technology under conventional Specific Pathogen-Free conditions, and 

animal protocols were reviewed and approved by the Institute Animal Care and Use 

Committee of California Institute of Technology (Protocol #1445-18G).  

 

Cell lines 

To provide a microenvironment that supports T-lineage differentiation in vitro, we co-

cultivated purified BM cells with the OP9-DL1, OP9-DL4 stromal cell line (Schmitt and 

Zúñiga-Pflücker, 2002), which were obtained from Dr. Zúñiga-Pflücker (Sunnybrook 

Research Institute, University of Toronto), or MS5-mDLL1 or MS5-mDLL4 (Montel-

Hagen et al., 2020), which were obtained from Dr. Gay Crook (UCLA) and maintained in 

our laboratory as described in the original reference. Details of the differentiation cultures 

are given below under Method Details.  

 

METHOD DETAILS 

Primary Cell Purification 
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For in vitro (ex-vivo) differentiation of pro-T cells, bone marrow hematopoietic 

progenitors were used for input. Bone marrow (BM) was removed from the femurs and 

tibiae of 10-12 week-old mice. Suspensions of BM cells were prepared and stained for 

lineage markers using biotin-conjugated lineage antibodies: CD3ɛ (eBioscience, clone 

145-2C11), CD19 (eBioscience, clone 1D3), B220 (eBioscience, clone RA3-6B2), NK1.1 

(eBioscience, clone PK136), CD11b (eBioscience, clone M1/70). CD11c (eBioscience, 

clone N418), Gr1 (eBioscience, clone RB6-8C5), and Ter119 (eBioscience, clone TER-

119), then incubated with streptavidin-coated magnetic beads (Miltenyi Biotec), and 

passed through a magnetic column (Miltenyi Biotec), denoted as ‘Lin- BM’. For all 

scRNA-seq experiments, the Lin- BM cells were immediately further FACS sorted for live 

(7AADnegative), CD45positiveLSK (LinnegativeScalhighcKithigh), detailed as below. All the BM 

precursors (Lin- or LSK) were frozen down in liquid nitrogen for storage in freeze down 

medium containing 10% DMSO, 40% FCS, and 50% OP9 medium, before further 

differentiation assays. 

Flow Cytometry and Cell Sorting 

Unless otherwise noted, flow cytometry analysis and FACS of all samples were carried 

out using the procedures outlined. Briefly, cultured cells on tissue culture plates and 

primary cells from thymus were prepared as single-cell suspensions, incubated in 2.4G2 

Fc blocking solution, stained with respective surface cell markers as indicated, 

resuspended in HBH, and filtered through a 40 μm nylon mesh. They were then analyzed 

using a benchtop MacsQuant flow cytometer (Miltenyi Biotec, Auburn, CA) or sorted 

with a Sony Synergy 3200 cell sorter (Sony Biotechnology, Inc, San Jose, CA) or with a 

FACSAria Fusion cell sorter (BD Biosciences). All antibodies used in these experiments 

are standard, commercially available monoclonal reagents widely established to 

characterize immune cell populations in the mouse. Acquired flow cytometry data were 

all analyzed with FlowJo software (Tree Star). 

BM Cell Differentiation 
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Upon usage, the hematopoietic progenitors were thawed and either cultured on OP9-

DLL1 or OP9-DLL4 monolayers using OP9 medium (α-MEM, 20% FBS, 50 μM β-

mercaptoethanol, Pen-Step-Glutamine) supplemented with 10 ng/ml of IL-7 (Pepro Tech 

Inc) and 10 ng/ml of Flt3L (Pepro Tech Inc); or aggregated to artificial thymic organoids 

with ATO-mDLL1 or ATO-mDLL4, seated at the air-medium interface on a culture insert 

(Millipore Sigma) in serum-free ATO medium (DMEM-F12, 2X B27, 30 μM Ascorbic 

acid, Pen-Step-Glutamine) supplemented with 5 ng/ml of IL-7 (Pepro Tech Inc) and 5 

ng/ml of Flt3L (Pepro Tech Inc). If required viral delivery of gRNA, thawed BM 

precursors were incubated for 20-24 hours in OP9 medium supplemented with 10 ng/ml 

of SCF (Pepro Tech Inc), 10 ng/ml of IL-7 (Pepro Tech Inc) and 10 ng/ml of Flt3L (Pepro 

Tech Inc), without stroma cells, detailed as below in the ‘CRISPR/Cas9-mediated Acute 

Deletion’ section. 

Cloning 

The retroviral vector backbone used for sgRNA expression cloning was based on 

previously published E42-dTet(Hosokawa et al., 2018b) with the following modifications: 

1) Capture sequence 1 (Cap1) was added to the sgRNA scaffold before the termination 

signal. 2) One nucleotide ‘G’ was deleted before the sgRNA protospacer insertion site 

(two AarI restriction enzyme cutting sites) to allow compatibility with dual sgRNA vector 

cloning. The cloning was achieved through high-fidelity PCR (primers as shown below) 

and Gibson assembly, the final cloned product, containing the human U6 (hU6) promoter, 

two AarI cutting sites, gRNA backbone with Cap1 sequence and mTurquoise2 fluorescent 

marker, was as shown in the bottom middle in Fig. 4c. 

For dual sgRNA cloning, a ‘donor’ sequence containing gRNA backbone and mouse U6 

(mU6) promoter were obtained from a plasmid modified from Vidigal and Ventura, 2015. 

Specifically, the capture sequence 2 (Cap2) was added prior to the termination signal of 

the sgRNA scaffold backbone; we also found that the linker sequence between gRNA 

backbone and mU6 promoter contained a partial sgRNA backbone sequence that hinders 

the PCR capability and Gibson assembly accuracy, therefore we cloned to remove the 
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partial repeat sequence in the linker region. The cloning was performed through 

sequential high-fidelity PCR (primers as listed below) and blunt end ligation. 

The pool-based dual gRNA cloning was performed similarly to the protocol described by 

Vidigal and Ventura, 2015 with the modified vector and plasmids above (workflow shown 

in Figure 4C), with minor protocol modifications: 1) the ‘Donor sequence’ containing 

gRNA scaffold - Cap2 - modified linker – mU6 were obtained through PCR with the 

modified plasmid, rather than enzymatic digestion. 2) All gel purification steps were 

avoided, and purifications were achieved with Ampure XP or SPRIselect beads (Beckman 

Coulter) instead. 3) Selected gRNAs from the oligopool were qPCR quantified before and 

after the pool-based vector cloning process (Figure S4A) for quality control, ensuring the 

amplification evenness of the final plasmid pool. 4) A retroviral vector was used instead 

of lentiviral vectors. 

 

       

Primers used in cloning  

 

Primers for E42 modification and addition of Cap1 
backbone_fwd gctttaaggccggtcctagcaatttttttctcgagtggctc 
backbone_rev tgtgttcacctgcgagcggtgtttcgtcctttccacaag 
insert and loop_fwd accgctcgcaggtgaacacaaca 
insert and loop_rev ttgctaggaccggccttaaagcgcaccgactcggtgccac 
Primers for donor mU6 modifications and addition of Cap2 
pD_mU6_rev_cap2_blunt gctaataggtgagcGCACCGACTCGGTGCCAC 
pD_mU6_fwd_cap2_blunt ggctaaggTTTTTTGTTTTAGAGCTAGAAATAGCAAGTTAAAAT

AAGGCTAGTC 
rev_del_partial_primer aaaaaaCCTTAGCCGCTAATAGGTGAG 
fwd_del_partial_primer tttagcgcgtgcgccaattc 
Primers for pool-based dual gRNA vector assembly 
Fwd lib amp primer GTTTTGAGACTATAAATATGCATGCGAGAAAAGCCTTGTT  
Rev lib amp primer GACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC 
FWD pDonor opening gttttagagctagaaatagcaagtt 
REV pDonor opening caaacaaggcttttctcgca 

 

CRISPR/Cas9-mediated Acute Deletion in Precursor Cell Cultures 
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To generate input cells, Cas9 mice were first bred to Bcl2-tg mice to generate 

heterozygotes for both transgenes. LSK or Lin-BM cells from these Cas9;Bcl2-tg animals 

were purified and stored as described above. 20-24 hours after thawing and recovery in 

cytokines, the cells were transduced with retroviral vectors encoding reporters (CFP) and 

the indicated guide RNAs (sgRNAs) as detailed below, and then seeded to a OP9-DLL1 

stromal culture. The methods used to generate the virus supernatant and infecting BM 

cells were described previously(Hosokawa et al., 2018b). For infecting LSK precursors 

for scRNA-seq (‘perturbseq’), different batches of viruses were tested on primary BM 

precursors prior to the ‘perturbseq’ experiments to determine the accurate titers (Figure 

S4B), and delivered to target a precise multiplicity of infection (MOI) of 0.5-1. For 

phenotypical assays, cells were analyzed after 2-6 days after culture. For scRNA-seq, 

retrovirus infected Lin-CD45+c-KithiCFP+ cells were sorted on a FACSAria Fusion cell 

sorter (BD Biosciences). 

Bulk RNAseq Analysis 

Lin- BM cells were harvested from B6.Bcl11byfp/yfp animals, and cultured in differentiation 

conditions as described above. Upon harvesting, cells were subdivided into CD25low for 

DN1, Bcl11b-YFPnegCD25hi DN2a, and Bcl11b-YFPposCD25hi DN2a. fractions, followed 

by RNA purification following the instructions of the RNeasy Micro Kit (Qiagen 74004). 

cDNA from each sample was prepared using NEBNext Ultra RNA Library Prep Kit for 

Illumina (E7530, NEB). All bulk libraries were sequenced on Illumina HiSeq2500 in 

single read mode with the read length of 50 nt. Base calls were performed with RTA 

1.13.48.0 followed by conversion to FASTQ with bcl2fastq 1.8.4 and produced 

approximately 30 million reads per sample. 

 

RNA-seq reads were mapped onto the mouse genome build GRCm38/mm10 using STAR 

(v2.4.0) and were post-processed with RSEM (v1.2.25; http://deweylab.github.io/RSEM/) 

according to the settings in the ENCODE long-rna-seq-pipeline 

(https://github.com/ENCODE-DCC/long-rna-seq-
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pipeline/blob/master/DAC/STAR_RSEM.sh), with the minor modifications that the 

setting ‘–output-genome-bam–sampling-for-bam’ was added to rsem-calculate-

expression. STAR and RSEM reference libraries were created from genome build 

GRCm38/mm10 together with the Ensembl gene model file Mus_musculus.GRCm38.gtf. 

The resulting bam files were used to create HOMER tag directories (makeTagDirectory 

with –keepAll setting). For analysis of statistical significance among DEGs, the raw gene 

counts were derived from each tag directory with ‘analyzeRepeats.pl’ with the ‘–noadj -

condenseGenes’ options, followed by the ‘getDiffExpression.pl’ command using EdgeR 

(v3.6.8; http://bioconductor.org/packages/release/bioc/html/edgeR.html). For data 

visualization, RPKM normalized reads were derived using the ‘analyzeRepeats.pl’ 

command with the options ‘–count exons –condenseGenes –rpkm’; genes with an average 

of RPKM ³1 across samples were kept, and their RPKM values were processed by log 

transformation. The normalized datasets were then hierarchically clustered with R hclust 

function based on Euclidean distance and ‘complete’ linkage. The heatmap is visualized 

with R pheatmap with log2 transformed RPKM data (after adding 0.1 to all values). 

Single Cell RNA-seq (10X Chromium V2) 

Note that only the scRNA-seq data from Figures 1 and S1 was obtained through 10X 

Chromium V2, the rest of the scRNA-seq data were obtained through the V3 chemistry. 

The early T cells derived in ATO-DLL4 from LSK were sorted as shown in Figure 1C 

(bottom). The sample was then washed and resuspended to 1 million cells/mL 

concentration in HBSS supplemented with 10% FBS and 10 mM HEPES, 17,400 cells 

were loaded into a 10X Chromium v2 lane, and the subsequent preparation was conducted 

following the instruction manual of 10X Chromium v2. The cDNA library and final 

library after index preparation were checked with bioanalyzer (High Sensitivity DNA 

reagents, Agilent Technology #5067-4626; Agilent 2100 Bioanalyzer) for quality control. 

Following the library preparation, the sequencing was performed with paired-end 

sequencing of 150nt each end on one lane of HiSeq4000 per sample, by Fulgent Genetics, 

Inc. (Temple City, CA). The reads were mapped onto the mouse genome Ensembl gene 
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model file Mus_musculus.GRCm38.gtf using a standard CellRanger pipeline. Cells 

were sequenced to a targeted depth of 50,000 reads per cell. 

Single Cell RNA-seq (10X Chromium V3) on Bcl11b Samples with Cell Hashing 

LSK from Bcl11b WT and KO animals were obtained, aliquoted into 6-7k cell/tube, and 

stored in liquid nitrogen as described above (individual animals were not pooled). To setup 

the culture, cells were thawed and aggregated with MS5-mDLL4 (800-1000 LSK and 

150k MS5-DLL4 cells per ATO), and seeded on culture inserts as described above. The 

ATO medium was changed every 3-4 days. After culturing for 10-13 days (note 

experiment 1 had only D10, and experiment 2 had both D10 and D13), the ATO was 

mechanically disrupted and ex-vivo derived T cells were prepared for FACS sorting as 

described above. Specifically, cells derived from each animal and each time point were 

stained with a biotin-conjugated lineage cocktail (TCRγδ (eBioscience, clone GL-3), 

CD19, NK1.1, CD11b, CD11c, and Gr1). Secondary surface staining was performed with 

fluorescently conjugated streptavidin, CD45, cKit (eBioscience, clone 2B8), CD44 

(eBioscience, clone IM7), CD25 (eBioscience or Biolegend, clone PC61.5), and TotalSeq 

A (Biolegend) anti-Mouse Hashtag 1-8 (1:50, in separate samples). A viability dye 7AAD 

(eBioscience) was applied to exclude dead cells. The sorted cells 

(CD45positiveLinlow7AADnegativeCD25positive), washed 2 times with HBSS supplemented 

with 10% FBS and 10 mM HEPES, were pooled to target an equal cell number from each 

Hash-tagged sample, and loaded onto one lane of a 10X Chromium V3 chip. The cDNA 

preparation was performed following the instruction manual of 10X Chromium v3, and 

the hashtag library was prepared following the Biolegend TotalseqA guide. The cDNA, 

tag library, and final library after index preparation were checked with the bioanalyzer 

(High Sensitivity DNA reagents, Agilent Technology #5067-4626; Agilent 2100 

Bioanalyzer) for quality control. The cDNA final libraries was sequenced on HiSeq4000 

or NovaSeq 6000, and the tag library was sequenced on HiSeq4000, by Fulgent Genetics, 

Inc. Cells were sequenced to an average depth of 50,000-70,000 reads per cell for cDNA 

and ~2,500 reads per cell for hashtags. 
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Direct-capture Perturbation scRNA-seq (with 10X Chromium V3)  

LSK were purified, recovered in cytokines and infected with MOI 0.5-1, and cultured with 

OP9-DL1 as described above. Note that multiple packages of the viral pools were infected 

in parallel, in separate wells, to serve as biological replicates. The medium was changed 

on day 3. On day 5, the cells were harvested through scrapping, and filtered and prepared 

for FACS sorting as described above. Specifically, cells derived from each animal and 

each time point were stained with a biotin-conjugated lineage cocktail (TCRβ (ebioscience, 

clone H57-597), TCRγδ (eBioscience, clone GL-3), CD19, NK1.1, CD11b, CD11c, and 

Gr1). Secondary surface staining was performed with fluorescently conjugated 

streptavidin, CD45, cKit (eBioscience, clone 2B8), CD44 (eBioscience, clone IM7), 

CD25 (eBioscience or Biolegend, clone PC61.5), and TotalSeq A (Biolegend) anti-Mouse 

Hashtag 1-6 (1:50, in separate infected samples). A viability dye 7AAD (eBioscience) 

was again applied to exclude dead cells. The sorted cells 

(CD45positiveLinlow7AADnegativeCFPhighcKitpositive) were washed 2 times with HBSS 

supplemented with 10% FBS and 10 mM HEPES, pooled to target equal cell number from 

each Hash-tagged sample, and loaded onto one lane of a 10X Chromium V3 chip. The 

cDNA preparation was performed following the instruction manual of 10X Chromium v3 

for perturbation with minor modifications, and the hashtag library was prepared following 

the Biolegend TotalseqA guide. The cDNA, gRNA library, Hashtag library, and final 

libraries after index preparation were checked with bioanalyzer (High Sensitivity DNA 

reagents, Agilent Technology #5067-4626; Agilent 2100 Bioanalyzer) for quality control. 

All libraries were sequenced on HiSeq4000, by Fulgent Genetics, Inc. Cells were 

sequenced to at least medium depth of 50,000 reads per cell for cDNA, 20M reads/sample 

for hashtags and 20M reads/sample for gRNAs. 

 

Data Analysis 

Mapping of scRNA-seq Sequences, Hashtag, and gRNA Identification 
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Single-cell RNA-seq data were processed using 10X Cellranger 3.0.0 software. 

Standard cellranger-mm10-3.0.0 reference annotations were loaded to the pipeline for 

read mapping and gene quantification. 

To process single-cell hashtag and guide RNA sequencing data, two ultrafast in-house 

tools (hashtag_tool and guiderna_tool) 

(https://github.com/gaofan83/single_cell_perturb_seq/) were developed to process raw 

fastq data and generate count tables (Fig.S4C). The results are typically delivered within 

one minute. Downstream R codes can be used to binarize the count tables for identity 

assignment using Gaussian Mixed Modeling. 

As note, the guiderna_tool was specifically developed for our dual-guide system with 

two guide-RNA sequences (targeting different sequences) in engineered in the viral vector 

backbones. Based on 10X bead chemistry, Capture1 (5'-

GCTTTAAGGCCGGTCCTAGCAA-3') and Capture2 (5'- 

GCTCACCTATTAGCGGCTAAGG-3') sequences recognize 

expressed Guide1 and Guide2 RNA molecules that have reverse complement capture 

sequences inserted. Specifically, Capture1 and Capture2 sequences should pair 

with Guide1 and Guide2, respectively. From in-house single-cell guideRNA data, UMI 

counts can be calculated for the Guide1 list of barcodes and the Guide2 list of barcodes. 

As note, the guiderna_tool uses both capture sequences in R1 reads and template 

switching oligo sequence (TSO) in R2 read for read filtering and sorting; then 

potential protospacer sequences in R2 reads (after 5' TSO sequence) are mapped against 

the corresponding guide library (Guide1 or Guide2) for quantification. In 

contrast, Cellranger finds a constant region after protospacer region in R2 first, 

then protospacer abundances in R2 are calculated. Since guiderna_tool utilizes both R1 

and R2 read information for filtering, it is expected to be more accurate.   

 

Gene and Cell Filtering, Data Alignment, and Clustering Analysis 

10X Chromium V2 scRNA-seq (Figure1 and S1) analysis was based on data filtered on 

cells with at least 1200 genes expressed (transcript count over 1); outliers with more than 
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4300 genes or 23k unique transcripts were also removed (potential doublet) from the 

ATO scRNA-seq dataset, and outliers with more than 4400 genes or 27k unique transcripts 

were also removed from thymocyte dataset (10X V2 run1 from chapter 2), and only genes 

that were found expressed in at least 3 cells were kept in the analysis. The cells were 

further filtered to keep only cells with mitochondrial contents of less than 7.5-9%. The 

QC filter resulted in 6167 cells in the ATO scRNA-seq sample and 4783 cells in the 

thymocyte sample, which were being presented in Figure 1 and S1. The top 3000 variable 

features were identified from each of the two datasets and integrated with the CCA 

algorithm using the 3000 anchor features and 20 dimensions in Seurat v3 (Stuart et al., 

2019). The principal component analysis was performed on the integrated dataset, and the 

UMAP display was analyzed based on PCs 1-20. For clustering, Louvain clustering was 

performed on the first 20 PCs with the resolution set to be 0.7, and the top 10 enriched 

genes in each cluster were calculated with Wilcoxon Rank Sum test, shown in the heatmap 

(Figure S1F). 

10X Chromium V3 scRNA-seq (all scRNA-seq dataset except in Figures 1 and S1) 

analysis was based on data filtered on cells with at least 1300 genes expressed (transcript 

count over 1). The doublet elimination was guided through Cell Hashing. Specifically, 

number of features vs. number of unique transcripts detected were plotted, and cells with 

more than 1 Cell Hashing tags were considered doublet and highlighted on the scatterplot. 

Both the ‘cell hashing identified doublets’ and outliers with only one hashtag identified 

but fell in the region of high feature and transcripts content similarly to ‘cell hashing 

doublets’, were dropped. The subsequent integration and clustering analysis were 

performed similarly described above.  

Unless specified, the trajectory and pseudo-time analysis with Monocle 3 were all 

performed on the cells that passed the filtering steps described above.  

 

SCENIC Analysis and Visualization Graphics 
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We performed SCENIC (Aibar et al., 2017) analysis by starting from the raw counts 

of the computationally subset ‘genotype’ of WT and individual TF KOs (described above), 

and following the proposed workflow using the default parameters in SCENIC R setup. 

The co-expression network was generated using GENIE3(Huynh-Thu et al., 2010), and 

potential direct-binding targets (regulons) were based on DNA-motif analysis. AUC, 

which identifies and scores gene regulatory networks or regulons in single cells, was 

calculated using AUCell as previously desribed(Aibar et al., 2017). The motif bindings 

were inferred based on publicly available motif binding databases provided by the Aerts 

lab. The regulon output where the co-expression weight attributed to each predicted TF-

target interaction, was used to filter the graphic display, retaining interactions with a co-

expression weight above 0.05 and with ‘high confidence annotations’. The retained 

interaction edgelist was used to generate graphs using the igraph R library, which was in 

turn visualized as plots using the ggraph library (‘sugiyama’ or ‘stress’ layout, Figure S6, 

left and middle panels). To further examine TF-TF interactions, predicted interactions 

between TFs with a co-expression weight above 0.01 and with ‘high confidence 

annotations’ were visualized with hive plots with ggraph in R. The axis on hive plots 

represent the categories curated with genes enriched in different cell types or states, 

according to RNA-seq datasets on the Immgen website (The Immunological Genome 

Project Consortium et al., 2008). 

 

Software Details 

The analyses were performed mainly in R (version 4.0.2) with the following packages: 

ggplot2(v3.3.2), dplyr(v1.0.2), cowplot(1.1.0), Seurat(v3.2.2), AUCell(v1.10.0), 

RcisTarget(v1.8.0), GENIE3(v1.10.0) SCENIC(v1.2.2), monocle3(v0.2.3.0), 

ggraph(v2.0.4), igraph(v1.2.6). 
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 C h a p t e r  4  

OPPORTUNITIES, CHALLENGES, AND PERSPECTIVES 

In this thesis, we first established a detailed model of single-cell transcriptome dynamics 

during the transition from multipotentiality to T-cell lineage commitment, with single-cell 

sequencing tools, bolstered by highly sensitive seqFISH analysis, and supported by in vitro 

differentiation kinetics. To further understand the functional relevance of TFs that exhibit 

these dynamic gene expression patterns, we optimized a few ex-vivo culture systems to 

derive cohorts of early T cells from bone marrow precursors, with and without 

perturbations, and examined the outcomes of population distributions and trajectory 

topologies upon perturbations using single-cell analysis. For the first time, we revealed the 

complexed roles of TFs in regulating the topology of early T-cell differentiation trajectory, 

cell cycle state, alternative lineage potentials, and differentiation kinetics. In this chapter, 

the author will discuss some additional technical opportunities and challenges in using 

single-cell analysis for future understanding of regulatory mechanisms with respect to our 

T-cell development system, or to developmental processes in general. 

 

Does Deeper Sequencing Solve More Problems? 

In earlier chapters, we have briefly mentioned the underlying problem of high dropout rate 

for droplet-based scRNA-seq techniques, e.g. 10X Genomics. Yet, the ease of large-scale 

sample preparation, the compatibility of Cell Hashing and direct capture ‘perturbseq’ make 

the usage of the 10X platform still more accessible among other single-cell tools. In fact, 

the author has shown that even with this presumably ‘zero-inflated’ transcript count data 

matrix, we could still resolve many interesting biological questions in the early T-cell 

developmental continuum. One underlying question that affects all scRNA-seq strategy and 

budget allocation, which the author has not touched upon, is sequencing depth. Should 

deeper sequencing of fewer cells or shallower sequencing of more cells be favored: a 

practical limit in the total number of reads that can be sequenced per experiment. There is 

no consensus or general rules for sequencing depth requirement, and in reality, this is likely 
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highly question dependent and system dependent. While the 10X V3 recommends a 

minimum coverage of 20k reads/cell, the most recently published data vary hugely – single-

cell datasets for relevant questions in developmental biology or hematopoiesis only, from 

<10k reads/cell (Bulaeva et al., 2020; Hawkins et al., 2020; Naganuma et al., 2021) to, less 

commonly, 100k reads/cell (Holloway et al., 2020). Interestingly, the conclusions made by 

various groups regarding the sequencing depths, using computational tools and datasets 

from different platforms, are rather controversial. In 2014, Jaitin et al. suggested that 20k 

reads per cell with the plate-UMI-based MARS-seq tool, only unambiguously define 200 to 

1500 distinct RNA molecules, could accurately represent cell types. Other computational 

groups also supported the idea of shallower sequencing of more cells, for example, Zhang 

et al. suggested optimal sequencing coverage of ‘1 read per gene per cell’, and Svensson et 

al. showed potentially marginal return of deeper sequencing beyond 15k reads/cell. 

However, as shown in Chapter 2, at the sequencing depth of 50k/cell using 10X V2, we 

knew that we were detecting ~10% of the lowly expressed molecule, comparing to seqFISH, 

and clearly agreeing with many published studies (Islam et al., 2014; Kolodziejczyk et al., 

2015; Svensson et al., 2017; Torre et al., 2018). Also, as shown in Figure1 (adapted from 

Svensson et al. 2017 and Mereu et al., 2020, and from data generated in house), it is clear 

that 20k reads/cell does not saturate the detection limit. In fact, 20k reads/cell is even further 

from saturation in data generated from 10X Chromium V3 chemistry (Figure 1d). For all of 

the experiments the author performed and discussed in the previous chapters, the author had 

recovered a minimum of 50-60k reads/cell (median). The questions are: Would the low 

dimensional representations change if the author had sequenced less? And would it be worth 

it to sequence less cells in exchange for deeper sequencing (twice as deep at 120k reads/cell 

or four times at 200k+ reads/cell)?  
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Figure 1. Sequencing Depth’s Influence of Genes Detected and Sequencing Saturation in 

Previous Studies and in The Developing Early T cells. (Panel a and b were modified from 

Svensson et al. 2017, panel c was modified from Mereu et al., 2020, and panel d was 

generated in house.) (A) Accuracy is marginally dependent on sequencing depth beyond 

100k reads/cell. Saturation occurs at 270,000 reads per cell in the model (dashed red line). 

Protocol names are ordered by performance on the basis of predicted correlation (R) at 1 

million reads. (B) Depending on the techniques, sensitivity (i.e. detection limit for lowly 

expressed transcripts) can be critically dependent on sequencing depth. Saturation occurs at 

4.6 million reads per cell (dashed red line). The gain from 1 to 4 million reads per sample is 

marginal, whereas moving from 100,000 reads to 1 million reads corresponds to an order-

of-magnitude gain in sensitivity (dashed black lines). Protocols are ordered by performance 

on the basis of predicted detection limit (#M, number of molecules at 1 million reads). (C) 

Number of detected genes at down-sampled sequencing depths. Points represent the average 

number of detected genes as a fraction of all cells of the corresponding cell type at the 

corresponding sequencing depth. (D) Saturation curves generated with CellRanger, 

representing detection of additional transcripts with down-sampled sequencing depth. The 
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left and right panels represent thymic early pro-T cell scRNA-seq data generated with 

10X Chromium V2 and 10X Chromium V3, respectively. While with 10X V2 chemistry, 

the saturation is close to be achieved at 80k reads/cell, the saturation is less than 70% using 

10X V3 chemistry at the same sequencing depth, inferring that a better sensitivity can 

certainly be achieved through deeper sequencing. 

Generally, the low dimensional representations, as shown by Svensson et al. (2019), are 

unlikely to change if the sequencing depth were slightly lower. This is partially due to the 

fact that dimension reductions are usually performed based on well-expressed and highly 

variable genes only. Also, the clustering and trajectory formed through complete 

unsupervised analysis are usually less sensitive to lowly expressed genes that are around the 

detection limit. This usually means if the sample actually contains multiple discrete cell 

types, or very distinct highly expressed features across the trajectory, a slightly shallower 

sequencing would give the same results. However, we found that the complete unsupervised 

clustering and trajectory with highly expressed variable genes do not accurately represent 

developmental trajectories in our developing early T cells. A more accurate developmental 

trajectory can be obtained through the usage of a curated list of genes for building the 

connected graph in low dimensional space and for ordering the cells in pseudotime. Some 

of the genes in the curated list, however, are lowly expressed. Therefore, the sequencing 

depth was likely needed for trajectory analysis in populations with subtle expression 

changes. The latter question regarding decreasing cell number in exchange for further 

increase of depth, also depends on the situation. For heterogeneous population that may 

contain rare cell population of interest, or pool-based ‘perturbseq’ assays, a decrease in cell 

number coverage will reduce the statistical confidence, therefore it certainly will not be 

preferred. In addition, from past experiences, most sequencing reads are mapped to genes 

encoding cell cycle related processes and ribosomal proteins. The increased read depth will 

again mostly map against these already highly expressed genes that is of less interest, 

resulting in a huge waste of resource. However, there are potential workarounds for using 

the new targeted sequencing technology with the 10X platform (Replogle et al., 2020) ; or 

using seqFISH for even better accuracy of detection for TFs (Zhou et al., 2019, or chapter 
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2). The only limitations are that the list needs to be curated before the acquisition, and 

potential data analytical challenges to integrate datasets with different sets of genes 

measured in different experiments. 

Moreover, imputation methods for dropouts have been developed by many computational 

groups over the past 3-4 years. For example, MAGIC (van Dijk et al., 2018) imputes missing 

expression values by sharing information across similar cells, resulting in an essentially 

smoothening effect. This smoothening concept is also heavily used in RNA velocity (La 

Manno et al., 2018) calculation, as intron-mapped reads are not intentionally captured 

through single end (3’ or 5’ end of the mRNA transcripts) scRNA-seq methods, therefore 

they are very sparse. While imputation can efficiently bring up the real dropout, it can often 

lead to the ‘over-smoothing’ problem and loss of biologically relevant information, such as 

stochasticity or other variability. Filling in the dropout should not be a computational effort 

alone. Further improvement of the chemistry for better capture efficiency, combinations of 

targeted gene panel (Replogle et al., 2020), potentially targeted splicing variant or intron 

panel in the future, or using imaging-based methods such as intron seqFISH (Shah et al., 

2018) and seqFISH+ (Eng et al., 2019), will not only decrease the need for imputation, but 

also preserve more biologically meaningful variances. In short, if one knows the genes of 

interest (or intronic regions of interest), targeted panel single-cell sequencing or imaging-

based tools offer great opportunity to improve the sequencing depth vs. cell number 

problem, and will potentially improve the quality of developmental trajectory inference, 

GRN inference, and RNA velocity analysis.  

How Does a New Dataset Align with the Previous Data?  

Another challenge in the field of single-cell analysis is the so-called ‘unified analysis’. 

Samples collected across different methods, platforms, experimental setups, animals 

/patients, and batches can be extremely challenging to compare with. Obviously, these 

‘batch effects’ can lead to false discovery, and also the identification of shared cell types or 

states can be very complicated. As discussed and demonstrated in earlier chapters, ideally, 

careful experimental design using multiplexed scRNA-seq to pool cells into a same batch 
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of sequencing is desired. However, this may not be practical due to logistical limitations 

concerning sample preparation, time constraints, etc. As many single-cell atlas projects are 

in progress including a most recent organoid atlas project (Regev et al., 2017; Rozenblatt-

Rosen et al., 2017; the Human Cell Atlas ‘Biological Network’ Organoids et al., 2020), how 

can new researchers take proper usage of atlas single-cell data as references?  

In Chapter 1, the author has briefly mentioned some commonly used computational 

alignment methods for different datasets and some of their underlying assumptions (e.g. 

multiCCA, MNN, Harmony). In fact, Seurat (a well-known and widely used software 

package for scRNA-seq analysis) V4 was just released around the time the author was 

drafting this thesis (Hao et al., 2020), using a ‘weighted-nearest neighbor’ (WNN) approach 

to integrate atlas style scRNA-seq data. In order to map a new dataset to the atlas reference, 

a ‘supervised PCA analysis’ can be performed to identify a projection of the transcriptome 

dataset that maximally captures the structure defined in the atlas WNN graph. This method 

can potentially ‘supervise’ the analysis of gene expression data to ignore the variables that 

are irrelevant to the WNN graph of interest, improving cell type identification and robust 

positioning on developmental trajectories for new datasets. 

Around the same time, a few approaches based on deep learning methods started to emerge, 

leveraging the advances in wet lab capability of generating large scale data and the increase 

of computing power. For example, DCA (Eraslan et al., 2019) utilizes the autoencoder 

concept to denoise the data, returning the scaled gene by cell matrix, which is the exact same 

size as the input. scVI (Lopez et al., 2018) uses deep generative modeling based on a 

hierarchical Bayesian model (with the assumption of a zero-inflated negative binomial 

transcript count distribution obtained by scRNA-seq methods), removing unwanted factors 

(e.g. batch effects), and returning latent space vectors that can serve as input to downstream 

analysis. In contrast, SAUCIE (Amodio et al., 2019) uses a deep neural network in which 

some of the layers are designed to perform cluster annotation and 2D visualization, returning 

the output of cluster annotation and low dimensional visualization directly. However, 

because some of the output latent space obtained from deep neural network methods are not 
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as interpretable as methods like PCA or NMF, they can be susceptible to overfitting and 

other technical issues. Lately, more tools were developed using generative adversarial 

networks (GANs) for scRNA-seq imputation, in silico data generation and augmentation 

(Marouf et al., 2020; Xu et al., 2020), aiming to boost the robustness of detecting 

biologically interesting variable features against technical noises and batch effects. 

Around the time when we published our early T-lineage single-cell study in mouse systems 

(Zhou et al. 2019, presented in chapter 2), several other groups also published similar single-

cell profiles of mouse and human, with the focuses on different stages and cell populations. 

In mouse systems, a comprehensive, dynamic single-cell analysis of hematopoietic and 

stromal cells during thymic organogenesis in the mouse fetus was published by Kernfeld et 

al. in 2018, and this was complemented by single-cell dissections of thymic stromal cell 

types by Bornstein et al. in 2018. In human systems, Zeng et al., 2019; Lavaert et al., 2020; 

and Le et al., 2020 also published valuable single-cell analyses on human early T 

lymphopoiesis and thymic stromal cell development. There are unprecedented opportunities 

to discover new scientific insights by comparing these single-cell datasets through 

integration methods mentioned above. 

In summary, with the increasing availability of public datasets and advancement of 

computational tools, one should not overlook the power of prior knowledge from these old 

datasets. Perhaps, in the future, the easiest and most straightforward usage of ‘prior 

knowledge’ is pre-experimental data analysis with publicly available single-cell data of 

similar cell types, regardless of the platform of data acquisition. Not only will future 

experimental design processes benefit from the datamining process, but also the collections 

of data may increase the statistical power and the confidence for the conclusions being 

drawn on the new datasets. 

Going Beyond Descriptive Single-Cell Analysis 

There are a few commonly accepted stages of data analytic maturity, often used in areas 

such as statistics and business analytics. Although the exact terminology may differ, the 

analytical stages often include these 3 levels in a progressing manner: “descriptive analysis”, 
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“predictive analysis”, and “prescriptive analysis”. While descriptive analysis is often 

used to quantify relationships between different features of the samples or samples 

themselves, predictive analysis leverages predictive models to analyze a specific 

performance in a sample and one or more measured features in the same sample. The 

objective for the latter model is to assess the likelihood that similar features in a different 

sample will exhibit the same performance. Prescriptive analytics suggest the decision 

options to take advantage of the results of the descriptive and predictive analysis. This 

concept is easily applicable to single-cell analysis. The major use of single-cell analysis up 

to this point has focused on descriptive analytics, e.g. identifying cell types or states, 

differential expression analysis, integrating datasets, denoting new markers in clusters, etc. 

Much effort in the single-cell analytical field has been put to extend the single analysis to 

tackle some non-trivial problems, and to explore the usage of predictive analytics. In 

previous chapters, we also went beyond the usage of classical single-cell descriptive 

analysis through trajectory inference which we later experimentally validated, and the GRN 

inferences based on the internal-controlled perturbation scRNA-seq data using SCENIC. 

However, some of the newer tools promise a further integration of multi-modal single-cell 

data (e.g. scATAC-seq) or previous knowledge on GRN topology, thereby leveraging a 

better predictive power of single-cell analysis. CellOracle is a machine learning-based tool 

to infer GRNs via the integration of different single-cell data modalities (i.e. transcriptome 

and chromatin accessibility profiles), and can also potentially integrate prior knowledge via 

regulatory sequence analysis to infer TF-target gene interactions (Kamimoto et al., 2020). 

Note that the major difference between SCENIC and CellOracle is that SCENIC calculates 

the potential target of TF through a motif search near transcription start sites (up to 10kb) 

of co-expressed genes; CellOracle builds on the SCENIC strategy, but expands motif search 

to co-accessible regions of the chromatin of the transcription start sites (from scATAC-seq 

data) (Kamimoto et al., 2020). Note that regulatory regions of the genes can easily be 

megabases away from the transcription start sites, therefore CellOracle’s expansion of the 

regulatory region search may be very important to better identify the TF targets. Moreover, 

some TFs may lack the known binding motifs, therefore it may be helpful in the future to 

incorporate custom TFs’ ChIP-seq profiles to further assist GRN inferences from scRNA-
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seq data, rather than having the target gene lists determined completely based on motif 

search. Moreover, CellOracle can also leverage the inferred GRN to simulate gene 

expression changes in response to TF perturbations, in silico. In silico perturbation is a truly 

exciting concept and a promising usage for predictive analytics of single-cell field, 

especially on the arguably most important governors of developmental biology – TF 

regulated processes. In fact, a few other groups have also demonstrated the predictive 

potentials with existing single-cell datasets (Dibaeinia and Sinha, 2020; Sun et al., 2020; 

Tian et al., 2020; Zhang et al., 2019). SERGIO (Dibaeinia and Sinha, 2020) simulates 

stochastic gene expressions in steady-state or differentiating cells according to a user-

provided GRN. It is worth noting that Dibaeinia and Sinha, 2020 demonstrated an in silico 

perturbations of some of the interesting TFs leveraging our single-cell seqFISH data 

presented in Chapter 2 and Zhou et al. 2019, and using GENIE3 (Huynh-Thu et al., 2010) 

predicted GRN as well as the GRN information from Longabaugh et al. 2017. First, they 

demonstrated using either GRN calculated through GENIE3 or published GRN annonation 

(Longabaugh et al., 2017), SERGIO could very nicely simulate the profiles that resembled 

the seqFISH data. Interestingly, they also generated “in silico knockout” of Tcf7, Runx1, 

Hes1, Bcl11b, Spi1, Lmo2, Gata3, and Gfi1b, many of which have recently been 

experimentally persued by other members of our lab (Romero-Wolf et al., 2020, Shin et al. 

in press) or the author herself (presented in Chapter 3). Among the genes being in silico 

knocked out, Tcf7 KO seemed to exhibit an agreement of our experimental results discussed 

in Chapter 3. However, although they showed that perturbation resulted in alterations of 

developmental trajectories, some of the other KOs did not seem to reflect our experimental 

observations, such as Gata3, Bcl11b, Hes1 (Romero-Wolf et al., 2020), and Runx1(Shin et 

al. in press). This could be largely due to the incomplete knowlegde of the underlying GRNs 

and limited number of genes included in the seqFISH panel. However, in silico 

perturbations with SERGIO, CellOracle, or other co-expression focused predictive methods 

alike (Sun et al., 2020; Tian et al., 2020), may help refine a shorter list for potential 

perturbation targets of interest for experimental validations, assisting the ‘next-generation’ 

single-cell experimental design, offering a glance of the ‘prescriptive’ power of single-cell 

analysis.  
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