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ABSTRACT

Early T-cell development converts multipotent precursors to committed pro-T cells,
silencing progenitor genes while inducing T-cell genes. However, both the underlying steps
of developmental progression and the regulations involved have remained obscure. Although
some of the expressions of important regulators in early T-cell development have been
studied in bulk populations, the nature of heterogeneity in this constantly refreshed
developmental continuum makes it difficult to understand the developmental trajectories that
the cells have undergone using bulk analysis, both in natural conditions and under gene

perturbations.

Combining droplet-based single cell RNA sequencing (scRNA-seq), deep-sequenced whole-
transcript scRNA-seq, and seqFISH for key regulatory genes, we established regulatory
phenotypes of sequential ETP subsets; confirmed initial co-expression of progenitor- with
T-cell specification genes; defined stage-specific relationships between cell-cycle and
differentiation; and generated a pseudotime model from ETP to T-lineage commitment,
supported by RNA velocity and transcription factor perturbations. This model was validated
by developmental kinetics of ETP subsets at population and clonal levels. The results imply
that multilineage priming is integral to T-cell specification in natural developing pro-T cells

in the thymus.

Moreover, we examined the functional implications of some of the transcription factors (TFs)
through bone marrow (BM) derived ex-vivo differentiation systems. Using scRNA-seq, Cell
Hashing, and a pool-based CRISPR/Cas9 perturbation system, we established the normal
and perturbed developmental trajectories before and after the T-lineage commitment stages.
Our analysis revealed that, without the essential lineage commitment TF, Bcll1b, the
developing early T cells immediately realized the lack of the essential regulator around the
proliferating late DN2a stage. But instead of pushing the developmental path backwards to
resemble the earlier stage of uncommitted cells, cells lacking Bc//1b underwent a diverging
route of accumulation of ‘non-T’ genes that are not naturally expressed in earlier stages,

potentially leading to the eventual loss of Notch responses. Our results also revealed the
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complex regulations by TFs that set up the earliest T-lineage progression and commitment

conditions. The SCENIC analysis suggested that Gata3 and Tcf7, despite both being
important regulatory factors for T-lineage progression, have very different regulatory roles
in controlling proliferation and suppressing myeloid lineages. Furthermore, pseudotime
analysis also showed that some of the stem and progenitor genes and ‘multilineage’
associated genes expressed by early pro-T cells potentially hold back the T-lineage
differentiation speed. In summary, our study leveraged both in vivo thymic pro-T cells’
developmental trajectory obtained through single-cell analysis and ex-vivo derived T cells
for internal-controlled perturbations, and revealed some profound roles of TFs in regulating

early T-cell differentiation processes.
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Chapter 1

INTRODUCTION

In vertebrates, hematopoietic stem and progenitor cells generate an exceptional diversity
of cell types throughout life, and this poses a series of challenges for explanation of
developmental dynamics, developmental choice hierarchies, and their underlying
mechanisms of regulations. T cells develop in a continuous flux well into adulthood (rev.
in Rothenberg, 2019), and they are also of particular interest as one of the ‘central players’
in the adaptive immune system of mammals. Under the thymic signaling environment,
lymphoid-primed multipotent precursors begin their differentiation ‘journey’ to cells that
will irreversibly activate the transcriptional program that confers T-cell identity and
excludes other lineage possibilities, this process is termed as ‘early T-cell development’.
Therefore, early T-cell development is a particularly accessible and functionally relevant
system for studying the sequence of regulatory changes through which stem and progenitor

cells resolve their multipotency to select a differentiation pathway.

The Classic Understandings of Hematopoiesis

Hematopoietic cells have traditionally been divided into erythroid/megakaryocytic
(platelets and erythrocytes), myeloid (i.e. monocytes, macrophages, neutrophils, other
granulocytes, mast cells, and dendritic cells), and lymphoid (T cells, B cells, NK cells,
nonkiller ILCs) branches. For many years, T cells have been considered a subspecies of
lymphoid fate and closely related to B cells, as shown in Figure 1 (Orkin and Zon, 2008).
The author will revisit the topic about where exactly T cells should be positioned among
the hematopoietic lineages, but it is important to acknowledge that many early lineage
decisions in this hematopoiesis map shown in Figure 1 have been extensively studied and

validated.
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Figure 1. The Classic View of Hematopoiesis Hierarchy and the Regulators (adapted from Orkin
and Zon, 2008). The arrows represent the hierarchical relationship between progenitors and different
populations. Red bars indicate the stages where hematopoietic development is blocked in absence
of a given TF, as determined by conventional gene knockouts. LT-HSC, long-term hematopoietic
stem cell; ST-HSC, short-term hematopoietic stem cell; CMP, common myeloid progenitor; CLP,
common MEP, GMP,

lymphoid  progenitor; megakaryocyte/erythroid  progenitor;

granulocyte/macrophage progenitor; RBC, red blood cell.
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On the very top of the hematopoietic hierarchy is the hematopoietic stem cell (HSC).

HSCs are defined operationally by their well-known capacity to reconstitute the entire
blood system of a recipient. As intrinsic determinants of cellular phenotype, transcription
factors (TFs) provide an entry point for resolving how different lineages are related and

how lineage-restricted differentiation is programmed (Orkin, 2000; Orkin and Zon, 2008).

HSCs express many non-HSC specific TFs that are shared with different lineages, which
include Runx1 (runt-domain protein), Scl/tall (the basic helix-loop-helix (bHLH) factors),
Lmo2 (LIM domain-containing protein), MIll (SET-domain containing histone
methyltransferase), GATA-2 (zinc finger transcription factor), and several others. The
lineage specification process involves fundamental changes of the cell’s gene expression
program regulated and ‘coordinated’ through essential lineage associated-TFs, some as
summarized in Figure 1 (Orkin and Zon, 2008). It is important to note that these TFs’
regulatory modules, partially due to the nature of their regulatory requirements, in addition
to the involvement of cytokines and various signaling components, survival and ‘self-
renewal’ is often intertwined with the TF-regulated differentiation process. And for reasons

like this, hematopoietic cell fate is also intertwined with the origins of leukemias.

It is also important to point out that lineage restricted TFs are more or less limited to their
own subtree. For instance, GATA-1 is highly expressed in megakaryocytic/erythroid
progenitors (namely MEPs) that give rise to megakaryocyte and red blood cell precursors,
whereas a “myeloid factor,” such as PU.1 and C/EBPa, is present in GMPs. However,
upper in the hierarchy, like HSCs or cells at other transient or stable multipotent stages,
can co-express genes associated with multiple lineages, even within single cells, albeit
generally at low levels — a phenomenon termed ‘multilineage priming’ (Hu et al., 1997,
Miyamoto et al., 2002; Ng et al., 2009; Olsson et al., 2016; Orkin, 2003). Multilineage
priming suggests that the fate of these immature cells is not ‘sealed’, and that lineage
selection is likely a process in which alternative possibilities are eliminated. The
coexistence of transcription factors representing different lineages within a common

progenitor cell could also offer the potential for immediate “crosstalk” between different
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fates at the molecular level, or to simply delay the differentiation choice to allow proper

‘additional regulatory apparatus’ to be established. In Chapter 2, the author will expand the
discussion and significance of multilineage priming in the early T developmental system

in depth.

The Current View of Where The ‘T-Lineage’ Resides on the Hematopoiesis Map

In regards of the T lymphocytes’ position on the hematopoiesis map, as seen in Figure 1,
T lymphocytes have been often grouped with B lymphocytes and both considered derived
from common lymphoid progenitors (CLP). The classic view has been based on the unique
antigen receptor generation strategy that T and B cells share, i.e. RAG-mediated
recombination, same RAG1/2 enzymes and selection mechanisms, so it was predicted that
early separation had occurred between precursors that could generate lymphocytes and
precursors that could generate all other hematopoietic cell types. However, a finer picture
of cell type identity and of lineage relationships has emerged in the past decade as
increasing knowledge has been gained about the newly characterized cell populations,
dynamics of lineage-specific developmental processes, and the transcriptional regulatory
apparatus that drives them. First, some effector functions of T cells are extensively shared
with the NK cells and ILCs, but not with B cells, which do not use the RAG-mediated
recombination mechanisms at all (rev. in Rothenberg, 2019). Second, the cell fate decisions
do not fall into a strict hierarchy: unlike classic C/EBP(myeloid) vs. GATA1(MEPs)
hematopoiesis subtrees, the order in which lymphocyte fates subdivide as compared to the
order in which they separate from macrophage, granulocyte, and dendritic cell fates is

surprisingly dependent on their cell fate chosen (Rothenberg et al., 2016).

In addition, it was known that in the B-cell differentiation pathway, the myeloid potential
is excluded early on, but not the T-lineage potential (Mansson et al., 2010; Welinder et al.,
2011; Zandi et al., 2012). In contrast, in the T-differentiation pathway, the B-cell potential
is excluded much early on, leaving plenty of residual myeloid potential to be suppressed in
later stages both in vivo and in vitro (Allman et al., 2003; Bell and Bhandoola, 2008;
Heinzel et al., 2007; Wada et al., 2008). Thus, it is clearly not a simple hierarchical
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relationship between the lymphoid cell fate and myeloid cell fate, or between T cells and

B cells, as illustrated in Figure 2 (adapted from Rothenberg, 2019).

A Self-renewal
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Figure 2. Relationships of the T-cell program to other hematopoietic fates (adapted from
Rothenberg, 2019). (4) The diagram shows that T cells share a common mechanism for receptor
gene diversification with B cells and share similar set of killer and helper functions with NK and
ILCs. (B) Persistence of alternative lineage potentials in T-cell precursors after entry into the
thymus. Dash arrows indicate the last developmental stages at which isolated T-cell precursors can
still give rise to the indicated alternative fates, provided that they are removed from the thymic
microenvironment. Note that access to the B-cell option is lost a few stages before access to NK
and dendritic cell options, unlike the hierarchical structure shown in Figure 1. Mac, Macrophage;
DC, dendritic cell; Neut, neutrophilic granulocyte; CLP, common lymphoid progenitor (“ALP”
indicates a CLP that is not B-lineage-biased); LMPP, lymphoid-primed multipotent progenitor
maintaining myeloid as well as lymphoid potential (similar to “MPP4”); MPP, multipotent

precursor.
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Early T-cell developmental stages have been intensely studied and are generally well

distinguished by combinations of cell-surface markers, which broadly correlate with
stereotyped gene expression changes on bulk levels (Yui and Rothenberg, 2014, also
discussed in depth in Chapter 2). In mouse systems, the stage markers have been validated
by in vivo and in vitro transfer experiments, differentiation assays under distinct
environmental conditions, and targeted genetic perturbation studies. However, individual
T-cell precursors in the same thymic cohort can have varied developmental potentials and
can go on to divergent fates. What molecular mechanisms control these different
developmental outcomes? Also, due to this non-hierarchical position of T-lineage with
respect to the hematopoiesis map, and the lack of clear trajectory models for early T-cell
development in the primary thymic environment, it remains unclear of how many types of
thymic T-cell progenitors there actually are, and the exact steps that they undergo to initiate
T-lineage commitment. Are all the precursor cells coming to the thymus capable of giving
rise to T cells? What are the steps they need to go through to prepare for lineage

commitment? And why do the precursors take a long time to make the T-cell fate choice?

Essential TFs in the Play of T-lineage Establishment—TCF1, GATA3, and Bcll1b

TCF1 (encoded by Tcf7 gene) and GATA3 are indispensable TFs for early T-cell
development, and their expressions are known to be induced in response to Notch signaling
in the thymic environment. TCF1 or GATA3 KO result in losses in population size of T
cells even in the earliest stage of T cells, e.g. ETP stage (Germar et al., 2011; Hattori et al.,
1996; Hosoya et al., 2009; Scripture-Adams et al., 2014; Ting et al., 1996; Weber et al.,
2011). TCF1 positively regulates Gata3, the DN2 stage marker //2ra, and a commitment
marker Bcll1b, as well as genes encoding signaling components in early DN cells and a
vital TCR complex (Weber et al., 2011). Unlike many other required T-cell factors, an
artificial high-level expression of TCF1 from an early stage can instruct T-lineage
differentiation, accelerating many T-cell developmental genes’ expression, even in pre-
thymic precursors without concomitant Notch signaling (Weber et al., 2011). GATA3,
similarly to TCF1, is needed for early T populations in fetal as well as adult mice (Hattori

et al., 1996; Hosoya et al., 2009; Hozumi et al., 2008; Scripture-Adams et al., 2014; Ting



.
et al., 1996), although overexpression of GATA3, in contrast to TCF1, is not tolerated by

pro-T cells (Taghon et al., 2007; Xu et al., 2013). Later in the DN2 stage, arguably the most
critical process in early T-cell development occurs — commitment to T-cell fate, which
coincide with the upregulation of the expression of TF, Bcll 1b. Bell 1b was discovered in
2010 as a factor required for T-cell commitment by three groups in parallel (Ikawa et al.,
2010; Li et al., 2010a, 2010b), and its regulatory functions were further studied with
expression profiles with bulk RNA-seq and binding activities with ChIP-seq (Hosokawa et
al., 2018; Longabaugh et al., 2017). In vivo, Bcll1b is required for the survival of the
development of oy T cells through f selection, and some 9 cells, despite not being strictly

required for viability in the way like TCF1 and GATA3.

Moreover, although much previous effort on understanding the roles of important TFs has
been performed with bulk RNA-seq and ChIP-seq assays, the kinetics of differentiation,
population distributions, and trajectory topologies of the early perturbation outcomes are
completely missing. Perturbations of regulatory genes can lead to the emergence of new
minor populations of cell type or state, disappearance of some old cell populations, shifting
in distributions on the differentiation trajectory, or alternations in gene expressions among
the entire population studied. These effects need to be examined in a systematic and
internally controlled way with consistent input and experimental setups, and they cannot

be observed with bulk assays.

The fine single-cell expression profile of these three TFs together with other regulatory
genes are going to be discussed throughout this thesis. And specifically, the perturbation
outcomes of these three important TFs and a few more TFs are going to be examined in

detail on the single-cell level in Chapter 3.

The Revolution with Single-Cell Tools

The classical understandings of lineage hierarchy and relationships in hematopoiesis have
been built on the cell type definition system by cell surface markers analyzed through
multicolored fluorescence-activated cell sorting (FACS) and combined with functional

assays. However, as mentioned above, because these analyses were conducted on bulk
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samples, they can neglect the heterogeneity in the defined population as well as unknown

transitional states during the cell fate decision process. Over the past 5-6 years, the rapid
development of single-cell tools, mainly single-cell RNA sequencing (scRNA-seq),
provided unprecedented opportunities to re-define cell taxonomy, to impute or track
differentiation hierarchy, and to uncover transcriptional networks at single-cell resolution
for any given isolatable heterogeneous cell population, particularly in the hematopoietic

system (Drissen et al., 2016; Giladi et al., 2018; Olsson et al., 2016; Paul et al., 2015).

One of the major advantages of this approach is the potential to bypass the need for a priori
markers that define progenitor populations, and the sensitivity to detect rare or even
transient transcriptional states de novo, given sufficient sample size. For example, recent
scRNA-seq have re-defined the transcriptional states of myeloid subtypes and other stem
and progenitor populations in the bone marrow (Drissen et al., 2016; Giladi et al., 2018;
Nestorowa et al., 2016; Olsson et al., 2016; Paul et al., 2015; Schlitzer et al., 2015; See et
al., 2017; Tusi et al., 2018), suggesting that the differentiation from HSCs is actually more
complex and less sequential than the classical model, similarly to the non-hierarchical
position of the T-cell ‘branch’ aforementioned. With these single-cell studies, it became
more accepted that rather than a stepwise progression of HSCs following a tree-like
hierarchy of oligo-, bi-, and unipotent progenitor paths, individual HSCs may gradually
acquire lineage biases along multiple directions without necessarily passing through
discrete hierarchically organized progenitor populations, forming a so-called
‘developmental continuum’ (Giladi et al., 2018; Velten et al., 2017). It is fair to conclude
that single-cell methods over the past years have revolutionized our understanding of

hematopoiesis and the definition of hematopoietic trajectories.

Single-Cell Technical and Analytical Challenges of the Developmental Continuum
and the Regulators Involved

In single-cell analysis, there has always been a tradeoff between the number of features
(i.e. dimensions) measured and the number of cells measured. The conceptual predecessors

of single-cell transcriptome profiling are flow cytometry and mass cytometry, which are
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typically restricted to very limited predefined markers, but they can easily profile millions

of cells. Single cell RNA profiling techniques like scRNA-seq, in contrast, often do not
require prior knowledge of predefined markers, and can measure up to 10* genes
simultaneously in each cell. However, the platform and method of choice does heavily
influence the sensitivity, drop-out rate, and technical noise of genes measured, as well as
the throughput of the assays (Svensson et al., 2017). For example, high throughput methods
(e.g. droplet-based methods like Drop-Seq, InDrop, and 10X Chromium platforms) often
detect 1000-3000 expressed genes per cell (depending on the sequencing saturation), but
can easily assay 10* cells per experiment (Klein et al., 2015; Macosko et al., 2015; Zheng
et al., 2017); whereas commonly used low-throughput methods (e.g. plate-based methods
like Smart-Seq2, C1-Fluidigm system, CelSeq2) are used to profile a few hundred cells per
sample, but can detect 5000 genes per cell (Hashimshony et al., 2016; Picelli et al., 2014).
Another single-cell RNA profiling method with increasing popularity and can preserve the
spatial information, which is independent of enzymatic preparation and subsequent
sequencing steps, is single molecule fluorescent in-situ hybridization (smFISH) based
quantification, such as seqFISH (Lubeck et al., 2014; Raj et al., 2008; Shah et al., 2016).
In the review by Svensson et al. in 2017, the estimated CelSeq sensitivity of mRNA
transcript (UMI) measurement was 5-10% compared to the ‘gold-standard” smFISH. This
review also discussed the sequencing depth needed to detect lowly expressed genes, which
is essential for coverage of TFs (Svensson et al., 2017). The most up-to-date detection limit
of droplet-based methods is up to about 30% detection efficiency (with 10X V3
Chemistry). In Chapter 2, the author also compared mRNA count measured by seqFISH
and measured by scRNA-seq in the same samples, confirming that the detection rate in the
10X V2 method is roughly 10%, and therefore the author took advantage of seqFISH’s

sensitivity for quantification of important regulators such as TFs.

Why is sensitivity and tradeoff a relevant topic for studying hematopoiesis, developmental
continuum, or early T-cell development specifically? And why is developmental
continuum analysis particularly challenging? First, developmental systems usually exhibit

a fast turnover: as scCRNA-seq offers a snapshot of cells and their expression states that we
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use to infer the relationship between them, it is important to sample enough cells of

interest and capture the genes that can differentiate these states. Second, because of the
‘snapshot’, the temporal information is missing, therefore we rely on single-cell expression
profiles in high-dimensional spaces to generate the transcriptional landscape which
encodes information on developmental stage transitions, and enables the ordering of cells
along pseudotime, from immature progenitors towards more differentiated states (Bendall
et al., 2014; Qiu et al., 2017; Trapnell et al., 2014). This is conceptually exciting but
technically difficult, especially for a tightly connected developmental continuum, in a
completely unsupervised manner. Questions regarding developmental continuum are
fundamentally more challenging than the ‘cell type classification problems’ in other classic
scRNA-seq settings, which can be dealt with clustering and marker identifications, because
the genes that differentiate developmentally relevant states are often lowly expressed. In
contrast to developmentally relevant genes like TFs, the readily detectable variable and
highly expressed genes like cell cycle associated genes can often be confounding factors
when one is trying to infer trajectory and pseudotime in reduced dimensional spaces (e.g.

PCA, tSNE, UMAP).

It is also important to note that there are assumptions in using single-cell methods to
compute developmental trajectories and pseudotime, which should be considered
preferably at the design stage of the study. These assumptions include: 1) Coverage of
precursor, mature cells, and transitional stages along the differentiation process. If
harvested from primary animals, it assumes differentiation happens asynchronously and is
a continuous process. Detection of ‘jumps’ between cell states is difficult. 2) The cells’
movement is unidirectional, and additional knowledge is needed to determine the start and
finish of the trajectory. 3) Cell state information is complete and accurately represented in
the low dimensional spaces. This step may require a fine feature selection or feature
‘engineering’ step to avoid segregation or dominant spread due to unwanted features, such
as cell cycle. 4) Many analytical methods require additional assumptions, such as a tree-
like structure of the data, where cells undergo potential bifurcations during differentiation,

or absence of oscillations between cell states such as cell cycle, which clearly can be
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problematic. In 2018, La Manno et. al. came up with an RNA velocity analysis in

scRNA-seq, using the ratio between intron-mapped reads and exon-mapped reads to infer
the time derivative of expression states in a static low dimensional representation (La
Manno et al., 2018). This provided an additional tool to investigate the potential precursor-
product relationship on a trajectory, but the parameters, especially for imputing the sparse

intron-mapped read matrix, still need to be closely attended for different datasets.

In later chapters, our studies also calculated trajectory and pseudotime inferences, and in
Chapter 2, our study, for the first time in the field, validated the significance of pseudotime
by the ex-vivo culture of FACS sorted population according to pseudotime, examined both
the T-lineage developmental speed and alternative lineage potentials, and mapped the

sorted populations’ expression profile back onto the pseudotime trajectory.

A Deeper Dive Using Single-Cell Analysis

Various advanced methods that were built upon scRNA-seq opened up more opportunities
for further deep dives into understanding mechanisms using single-cell analysis. Cell
Hashing enabled pooling of multiple samples into one experiment (Stoeckius et al., 2018),
which can hugely improve the experimental design by not only incorporating biological
replicates in the same scRNA-seq reactions, but also avoiding the potential confounder
effect issues by enabling having both experimental and control samples in the same
reaction. Computationally, alignment methods for batch and multi-modal integrations,
such as canonical correlation analysis (CCA (Butler et al., 2018) or MultiCCA for more
than 2 samples (Stuart et al., 2019)), mutual nearest-neighbor (MNN) correction
(Haghverdi et al., 2018), nonnegative matrix factorization (NMF) (Yang and Michailidis,
2015), Harmony (Korsunsky et al., 2019), allowed cross-validation between methods,
multi-modal analysis, comparison between organisms, and multiple experimental batch
integrations. A good understanding of these technological advancements and their
associated assumptions should guide a proper experimental design and usage of single-cell
analysis to maximize the yield of insights to the scientific problems of interest. For

example, CCA identifies shared aspects of variation between paired datasets, and
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multiCCA does integration by iteratively applying CCA; MNN builds MNN graphs

between cells from different datasets, where two cells are connected in the graph if they
are transcriptionally similar. Most of these methods have the underlying assumption that
the datasets being integrated have similar ‘variable features’ and spread. In other words, all
the cell states or clusters should be covered in all the datasets being integrated. This makes
it important to utilize integration methods not for comparing the differences between
different conditions, but rather comparing the similarity between datasets being integrated,
or one needs to have internal controls for proper establishments of ‘variable features’ or

low dimensional spaces within individual datasets prior to integration.

Furthermore, ‘Perturbseq’ and its derivatives enabled the CRISPR/Cas9 based gene
interruptions to be performed together with scRNA-seq, which allows identification of
which gene is being perturbed in individual cells as well as the transcriptome information
associated within the same cells being ‘perturbed’ (Dixit et al., 2016). However, due to
some technical challenges that ‘perturbseq’-based methods faced, such as the viral
recombination problem that potentially dis-associated the sgRNA with the barcode being
sequenced (Xie et al., 2018), the pool based perturbation studies in scRNA-seq have been
technically challenging and still mainly in the technique demonstration land (Datlinger et
al., 2017; Gasperini et al., 2019; Replogle et al., 2020). Nevertheless, the ‘perturbseq’
concept in single-cell analysis has opened up a new dimension of experimental perturbation
assays, enabling potentials for dissection of molecular mechanisms, and reaching beyond
the ‘descriptive analysis’. As discussed earlier, understanding the perturbation outcomes
on population distributions of developing T cells will heavily rely on a consistent and
internally controlled experimental setup, and unbiased transcriptomic measurements.
Therefore, our study has utilized the single-cell perturbation tools extensively, in a pool-

based and batch-controlled manner, which will be discussed in Chapter 3.

Gene regulatory network modeling has played a major role in advancing the understanding
of developmental systems, as the mechanism of development is based on ordered

activations of gene regulatory networks, turning on cascades of regulators and generating
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an irreversible path of differentiation (Davidson, 2010; Peter and Davidson, 2015).

Classically, GRN inference has been based on analyzing steady-state data corresponding
to gene knockout experiments, where one gene is silenced and changes in the steady-state
expressions of other genes are observed. However, it can be difficult to know if steady
states are achieved in a heterogeneous population. In addition, carrying out knockout
experiments on a large number of genes is costly and technically difficult. Gene regulatory
network inference has been conducted in numerous bulk gene expression profile studies,
using computational tools such as weighted gene co-expression network analysis
(WGCNA), or combining transcriptome and epigenome data (Chai et al., 2014; Langfelder
and Horvath, 2008; Thompson et al., 2015). Many of the tools are based on the assumption
that genes that are highly correlated in expression between different samples should be co-
regulated. Therefore, in theory, sScRNA-seq data can be simply treated as samples of bulk
RNA-seq to infer regulatory structures. However, there are two immediate challenges in
using just single-cell expression profiling applications for GRN inferences: 1) Correlation
does not infer the direction of regulation. 2) Due to the technical noise in scRNA-seq,
network inference needs to be carried out in similar cell types or states, and closely
attended. Recently, Aibar et al., 2017 developed the SCENIC method to perform GRN
inference based on co-expression of TFs from single cells’ expression profiles using an
ensemble tree based method (GENIE3, Huynh-Thu et al., 2010) and the TF-binding site
search near transcription start sites of all their co-expressed genes. They demonstrated a
robust prediction between TFs and target genes using single-cell data (Aibar et al., 2017).
In Chapter 3, the author will show our explorations of SCENIC analysis on the scRNA-seq
data from our perturbation studies, and will also discuss the limitations and a few newer

tools in Chapter 4.

In summary, this thesis will focus on using single-cell analysis to understand the
fundamentals of regulations in early T-cell development. The second chapter provides a
thorough characterization of in vivo thymocytes’ single-cell expression profile using
complementary single-cell tools, revealing the dynamic expression changes leading to T-

lineage commitment. The third chapter focuses on the effects of perturbations of key TFs
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in early T-cell development. Combining different types of ex-vivo differentiation assays

and additional efforts in optimizing single-cell pool-based perturbation strategies, normal
and perturbed differentiation trajectories will be presented, as well as the inferred

regulatory changes in the different perturbation conditions.
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Chapter 2

SINGLE-CELL ANALYSIS REVEALS REGULATORY GENE
EXPRESSION DYNAMICS LEADING TO LINEAGE COMMITMENT
IN EARLY T CELL DEVELOPMENT

This chapter is adapted from the published article:

Zhou, W., Yui, M.A., Williams, B.A., Yun, J., Wold, B.J., Cai, L., and Rothenberg, E.V. (2019).
Single-cell analysis reveals regulatory gene expression dynamics leading to lineage commitment
in eatly T-cell development. Cell Systems 9, 321-337.¢9. DOL: 10.1016/j.cels.2019.09.008

W.Z. performed most of the experiments, analyzed the data, and wrote the paper.
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SUMMARY

Intrathymic T-cell development converts multipotent precursors to committed pro-T cells,
silencing progenitor genes while inducing T-cell genes, but the underlying steps have
remained obscure. Single-cell profiling was used to define the order of regulatory changes,
employing single-cell RNA-seq for full transcriptome analysis, plus multiplex single-
molecule fluorescent in situ hybridization (seqFISH) to quantitate functionally important
transcripts in intrathymic precursors. Single-cell cloning verified high T-cell precursor
frequency among the immunophenotypically-defined “early T-cell precursor” (ETP)
population; a discrete committed granulocyte precursor subset was also distinguished. We
established regulatory phenotypes of sequential ETP subsets; confirmed initial co-
expression of progenitor- with T-cell specification genes; defined stage-specific
relationships between cell-cycle and differentiation; and generated a pseudotime model
from ETP to T-lineage commitment, supported by RNA velocity and transcription factor
perturbations. This model was validated by developmental kinetics of ETP subsets at
population and clonal levels. The results imply that multilineage priming is integral to T-
cell specification.
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Introduction

The generation of T cells begins in postnatal mice as multipotent precursor cells enter the
thymus from the bone marrow and undergo multiple rounds of proliferation and
differentiation events before T-lineage commitment (Porritt et al., 2003; Rothenberg et al.,
2008; Taghon et al., 2005; Yui et al,, 2010). While many key regulators of T-cell
specification and commitment are known (Yui and Rothenberg, 2014), the types of thymic

T-cell progenitors and the steps that they undergo to initiate commitment remain unclear.

Early T-cell progenitors (ETPs), cells double-negative (DN) for CD4 and CD8 that are
Kit® CD44" CD25, represent the earliest defined stage in each cohort of mouse
thymocytes. After ~1 wk of proliferation and differentiation under the influence of
environmental signals, including Notch ligands and cytokines from the thymic stroma,
ETPs asynchronously progress into the DN2a stage, marked by upregulation of surface
CD25 ({I2ra) (Porritt et al., 2003) (Fig. 1a). Commitment follows in a separate step,
coinciding with the up-regulation of transcription factor Bcl//1b and global changes in
chromatin landscapes (Hu et al., 2018; Ikawa et al., 2010; Kueh et al., 2016; Li et al.,
2010). However, ETPs themselves are poorly characterized before they progress to DN2a
stage. While single-cell colony assays show that many ETPs are individually multipotent
as well as T-cell competent (Bell and Bhandoola, 2008; Wada et al., 2008), none of the
ETP markers are exclusive to T cells, so “ETPs” could also include committed non-T-
lineage precursors. In addition, T-cell precursors can migrate to the thymus from different
hematopoietic precursor states (CLP and LMPP) (Saran et al., 2010) (Fig. 1a). Thus, in a
‘snapshot’ of single ETP transcriptomes, there could be heterogeneity due to different
input origins, different developmental stages, and/or contamination with cells committed

to alternative fates.

The expression of important regulators in early T-cell development has mostly been
studied in bulk populations. Notchl signaling (Besseyrias et al., 2007; Pui et al., 1999;
Radtke et al., 1999) and transcription factors GATA3 and TCF1 (encoded by 7¢f7) play
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indispensable roles to establish T-cell identity from the earliest stages (Garcia-Ojeda et

al.,2013; Germar et al., 2011; Hosoya et al., 2009; Schilham et al., 1998; Scripture-Adams
et al., 2014; Ting et al., 1996; Weber et al., 2011). With Notchl, Gata3, and Tcf7, other
regulators more widely shared (Myb, Gfil, Runxi, Tcf3) are also essential for cells starting
the T-cell pathway. Expression of these genes is readily detectable in the ETP population
by bulk RNA analysis, but in an unknown fraction (De Obaldia and Bhandoola, 2015;
Mingueneau et al., 2013; Yui and Rothenberg, 2014; Yui et al., 2010; Zhang et al., 2012).
Further, many legacy “non-T” genes, associated with “stemness” and/or non-T-lineage
fates, are also expressed at low levels in early pro-T cell populations, including several
with potential gene network interactions with the “T-cell” regulators (Longabaugh et al.,
2017; Yui and Rothenberg, 2014). It is unclear if they are an integral part of the T-lineage
program or merely expressed in contaminating cells. If the former, the expressions of stem
and progenitor “non-T” genes may be indicators of multi-lineage priming and/or
important regulatory network relationships between the declining stem cell program and
ongoing T-cell specification. The single-cell expression patterns of these genes relative to
T-cell genes are essential to elucidate the significance of their expression in T-cell

development.

Single cell transcriptional profiling by RNAseq (scRNA-seq) has transformed our
understanding of hematopoietic differentiation and heterogeneity (Boudil et al., 2013;
Giladi et al., 2018; Ishizuka et al., 2016; Karamitros et al., 2018; Knapp et al., 2018;
Olsson et al., 2016; Paul et al., 2015; Pina et al., 2012; Tusi et al., 2018; Velten et al.,
2017; Zandi et al., 2012; Zheng et al., 2018), providing nominally unbiased full-
transcriptome information and effectively separating distinct cell types within complex
populations. However, in most scRNA-seq applications the accuracy and robustness of
measurement are biased towards highly expressed genes, which mostly characterize
already-diverged developmental end states. Here, the goal is to resolve a continuum of
changing transcriptome states within a developmental pathway, and relate them to
changes in the controlling regulatory network state. This demands accurate, statistically

robust quantitation of regulatory genes encoding key transcription factors (TFs), which
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are often expressed at low RNA copy numbers per cell. Therefore, we have taken

advantage of recent advances in single-molecule fluorescence in situ hybridization (Raj et
al., 2006), which visualizes and counts individual mRNA transcripts directly in individual
cells at very high sensitivity. Recently, a version incorporating a temporal barcoding
scheme, “seqFISH”, has been developed that uses a limited set of fluorophores but can
detect hundreds to thousands of distinct sequences in the same cells (Lubeck et al., 2014;
Shah et al., 2016a, 2016b), and another similar strategy, “merFISH”, has also been
described (Chen et al., 2015). We have used the highly sensitive seqFISH technique to
quantify transcripts of a curated panel of 65 regulatory and developmental state marker

genes in pro-T cells.

Thus, combining droplet-based scRNA-seq, deep-sequenced whole-transcript sScRNA-seq,
and seqFISH for key regulatory genes, together with developmental assays of sorted
subsets and clones from sorted founders, we have characterized the sequence of gene
expression transitions in early intrathymic mouse T-cell precursors and regulatory gene
dynamics of T-cell specification. Our results show an unexpectedly complex, multistep
progression through which the cells shed stem cell characteristics and approach T-cell
lineage commitment. The results give new insights into the transition from multipotency

to commitment and how it is controlled.
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RESULTS

Single-cell developmental competence and bulk population phenotype of ETPs

Broad outlines of mouse T-cell development are well-studied, but the initial events upon
entry of T-cell precursors into the thymus remain obscure. Most uncertain are events that
occur within the ETP population and in transition to DN2a. While later stages are clearly
defined as shown in Fig. la, ETPs are rare, individually multipotent and poorly separable
by flow cytometry from other, irrelevant multipotent precursors. However, vital
regulatory events including the exclusion of B-cell potential (Heinzel et al., 2007) and
epigenetic priming of the cells for later commitment (Kueh et al., 2016; Ng et al., 2018)
occur during the ETP stage(s). Thus, we have investigated whether different precursors
contribute functional ETP starting state(s); their precise sequence of regulatory state
changes leading to T-lineage commitment; and whether they develop by single or
branched pathways. In Fig. S1 a-b, we summarize the logical sequence of questions

addressed, the experimental approaches, and the data- handling pipeline.

To characterize the earliest mouse thymic T-cell progenitors through T-lineage
commitment, we used fluorescence-activated cell sorting (FACS) of DN cells to isolate
the ETP and DN2a subsets (cf.1a). Only a tiny fraction of total thymocytes (<0.01%) at
steady state are uncommitted ETP and DN2a cells, distinguished from all others by their
expression of growth factor receptor c-Kit. Expression of a Bc/l 1b-YFP knock-in reporter
(Kueh et al., 2016) that distinguishes uncommitted (YFP-) from newly committed (YFP+)
DN2a cells was used to mark the commitment milestone (Fig. 1b,c; Table S1). Another
growth factor receptor, FIt3, has been reported to characterize the least mature ETPs
(Ramond et al., 2014; Sambandam et al., 2005), and in many experiments we used it to

subdivide ETPs either by FACS or in silico.

To estimate the fraction of “ETPs” that actually possess T-lineage developmental potential,
we carried out single-cell clonal culture experiments. Individual ETP cells were plated in
microwells and tracked by live imaging in T-cell development culture conditions to

determine how many could generate progeny that reach DN2 stage and undergo



27
commitment (Fig. 1b, top, see Methods). Of 78 founder ETPs, 66 survived and were

tracked for 6 days. Almost all clones generated cells expressing CD25 and Bcll1b-YFP
by day 6 (Fig. 1b, bottom). Two of the 66 clones only produced small non-T lineage cells
resembling granulocytes, consistent with alternative lineage affiliation, as discussed

below. Thus, >90% of viable clonogenic ETPs possessed T-lineage precursor activity.

Bulk RNA expression patterns showed that ETP populations were clearly distinct from
DN2a populations, with many of the differences reflecting downregulation of ETP-
expressed genes in DN2a (Fig. 1c,d). ETP populations expressed many characteristic
“non-T” genes, including genes expressed in mature granulocytes, macrophage, dendritic

cells, NK cells, and stem cells, but not in mature T cells (www.immgen.org) (Fig. 1c¢),

consistent with previous bulk RNA expression studies (Mingueneau et al., 2013) [rev. by
(Rothenberg et al., 2016; Yui and Rothenberg, 2014)]. Both uncommitted and committed
DN2a cells expressed lower levels of multipotent progenitor-associated genes Fit3, Lmo2,
and Mef2c than ETPs, although the DN2a cells continued to express another multipotency-
associated gene, Spi/ (encoding transcription factor PU.1) (Fig. lc, d). In contrast, sorted
F1t3" and F1t3- ETP populations appeared similar, and both expressed the essential T-cell
regulatory genes Gata3 and Tcf7, implying that at least some ETPs have started the T-
lineage specification (Fig. 1d). Such population-level analysis raised the question of how
many substates were comprised in ETPs, how homogeneously cells progressed through
them, and which states reflected the presence of contaminating cells with no T-cell

potential.

To determine the sequence of developmental changes in these earliest pro-T cells, we
FACS-purified Kit"e" thymocytes across the ETP-DN2 developmental continuum, and
analyzed their single-cell transcriptomes and also their developmental potentials (Fig.
Slc). To anchor the developmental direction, for most analyses we also added a small
number of purified committed DN3 cells (Fig. S1c). The transcriptomes of these samples
were defined by three methods: seqFISH, whole-transcriptome 3’-end biased sequencing

(10X Chromium), and whole-transcriptome full-transcript sequencing (Fluidigm CI1-



28
SmartSeq2). Results from these methods were highly concordant, but highlighted

different aspects of the gene expression programs.

Sensitive monitoring of developmentally important regulatory genes in single cells

by seqFISH

Expression in ETP populations of the essential T-cell regulatory genes, Gata3 and Tcf7,
appeared in accord with their high clonogenic T-cell precursor frequency overall, but
single-cell methods were needed to determine which ETP subsets activate these T-cell
regulators. First, we sought to determine whether the ETPs expressing characteristic
multipotent progenitor-associated regulatory genes included the individual cells entering
the T-cell pathway. However, as shown in Table S1 and in previous studies, regulatory
genes have bulk RNAseq signals measured at <10 FPKM, below the robust detection limit
of common single-cell approaches (also see below). We therefore applied a targeted
seqFISH approach, focused on a curated set of regulatory and lineage-informative genes.
Most of these 65 genes are known to be functionally significant in early T or multipotent
progenitor cells (Hosokawa et al., 2018a; Rothenberg et al., 2016; Yui and Rothenberg,
2014), while others are distinctive markers for stages in T and non-T pathways (genes and
criteria for selection shown in Table S2). Probes for 54 genes with low to medium
expression level were used in barcoding rounds of seqFISH with hybridization chain
reaction (HCR seqFISH), followed by sequential rounds of non-barcoding HCR single
molecule FISH (HCR smFISH) to detect the remaining genes, including highly
expressed genes, controls, and genes with shorter transcripts, and finally followed by
immunofluorescent staining (Fig. 2a; see STAR Methods). Analyses used sorted
populations of ETP-DN2a from mice of 3 different ages (4 wk, 2874 cells; 5 wk, 4413
cells; 8 wk, 1736 cells) (Fig. S2a, c¢), plus similar numbers of DN3s from the same animals

imaged in separate lanes of hybridization-cells.

As detailed in Fig. S2a-c, seqFISH measurements were sensitive and reproducible across
all three ages tested in independent experiments without batch correction. It faithfully

detected critical genes like 7c¢f7 and Notchl that were hard to detect consistently in ETPs
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with 10X Chromium scRNA-seq (Fig. S2b, d). Furthermore, protein and seqFISH RNA

expression (c-Kit, PU.1 and TCF-1 protein vs. Kit, Spil and Tcf7) correlated in the same
cells (Fig. S2e,f).

SeqFISH reveals co-expression of stem/progenitor and T-cell regulators in

individual ETPs

SeqFISH confirmed regulatory state differences between Kit-high cells categorized as
ETP or DN2 based on expression of //I2ra (CD25). DN2s expressed lower levels of
multiple ETP-associated genes (Flt3, Cd34, Mpo, Lmo2) while a subset expressed much
higher levels of the commitment-associated gene Bcll1b (Fig. 2b). Pairwise coexpression
patterns of the seqFISH gene set among all ETP-DN3 cells sampled (Fig. 2¢) clearly
distinguished a “T-associated” group of genes, including a subset highly coexpressed in
DN3s (Ptcra, Ragl, Cd3e, Cd3g, Spib, Tcf12, and LefI), from at least two other gene
groups containing coexpressed ‘Stem and Progenitor’ genes (Kit, Spil, Lyll, Bcllla,
Runx3, Piml, Erg, Cd34, Hhex, Lmo2, and Cd44). Each of these stem/progenitor groups
also contained genes normally associated with non-T cells (e.g. Mpo, Irf8, Pdgfrb) (Fig.
2¢). In addition, other separate gene subgroups contained Gata3 and Ikaros (Zkzf) family
TFs, plus their interaction partners found in T and innate-lymphoid cells (Zfpm1, Gfil,
and Zbtb16). These “T/ILC” groups of genes showed intermediate correlation both with

the stem/progenitor genes and with the T-associated genes.

The seqFISH results enabled the cells to be resolved into 9 clusters (Fig. 2d,e), based on
high-dimensional analysis using Smart Local Moving (SLM) clustering (Waltman and
van Eck, 2013). Clusters were provisionally ordered by known “endpoint” genes, starting
from the earliest ETP cells, identified by F/¢3 and Cd34 enrichment, to committed DN3
cells, marked by high Ptcra, Cd3e and Cd3g. This initial clustering was broadly consistent
with results from previous bulk RNA analysis. However, it revealed that progenitor- or
alternative-lineage genes were not all co-expressed, but instead displayed distinct
although overlapping patterns. Among the earliest cells, for example, Lmo2 and Flt3 were

co-expressed in a more restricted developmental pattern (mainly cluster 2), than Kif and
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Spil. Cells in DN3 split into 3 clusters, two of which represented DN3a stages with

high levels of Bclllb, Etsl, Ptcra, Cd3g, Cd3e, and Ragl (clusters 6 & 0, mainly
distinguished by different levels of 7¢f7). The third DN3 cluster (cluster 7) could be
identified as DN3b cells that had passed the -selection checkpoint based on the T-cell
receptor expression (see Fig. la), with enrichment of Lefl, 1d3, Tcf7, and Pgkl but
downregulation of DN3a genes. Only one small ETP subpopulation, low in 7cf7
expression (Fig. 2d,e, cluster 8) and highly coexpressing Mpo, Spil, Cebpa, Lmo2, and
Irf8, but not other progenitor genes, appeared to be discontinuous from the others. This
outgroup population was seen in every analysis we performed, and is identified below.
Note that, in each of the seven clusters spanning Flt3" ETP to DN3a, the expression of
key regulatory genes such as Spil, Tcf7, and Bcll1b was relatively homogeneous; 89-100%

of cells expressed >3 copies/cell in relevant clusters (Fig. S2g).

Given the distinctive expression of progenitor-associated genes among ETPs, a central
question was whether the cells expressing these genes are representative of the cells
entering the T-cell program. We used seqFISH to assess which legacy stem and progenitor
genes are coexpressed with Gata3 and 7T¢f7 in individual cells. Gata3 activation began in
ETPs with varying levels of T¢f7 transcripts, and became concordant in DN2-DN3 stages
(Fig. 2f). As expected (Kueh et al., 2016), the T-lineage commitment gene Bcll1b was
activated exclusively in cells that express 7cf7, and almost completely within the DN2

stage (Fig. 2f).

To ask directly how ETPs expressing Notch-induced Gara3 and/or Tcf7 differ from ETPs
not expressing these genes, we compared the transcript counts of all other seqFISH genes
between ETP cells with and without expression of Gata3 (>10 transcripts vs. <3
transcripts) and/or 7c¢f7 (>20 transcripts vs. <5 transcripts) (Table S3). The seqFISH
results confirmed that ETPs activating Gata3 and/or Tcf7 were markedly different from
committed, Bclllb-expressing DN2s in their expression levels of >30 genes (p values
<1079, two-tailed T test, unequal variances). However, ETPs expressing Gata3 and/or Tcf7

differed very little from ETPs lacking expression of both Gata3 and Tc¢f7. ETPs with and
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without Gata3 and/or Tcf7 expression were statistically indistinguishable in their

expression of Notchl, or of stem/progenitor-associated genes Spil, Cd34, Mpo, Mef2c, or
Bcll la, which were expressed by the great majority of both (Table S3). Only Gfil/b and
Runx3 differed with p <10, while Flt3 and Lmo2 were slightly lower in expression, and
T-promoting genes, including Hes! and Ets/, were slightly higher in the cells expressing
Gata3 and/or Tcf7 than in those without Gata3 or Tcf7. Overall, these seqFISH results
show that there is continuity between the stem/progenitor gene expression patterns in

those individual ETPs starting T-cell development and most other ETPs.

Individual ETPs in fact spanned boundaries of the gene-set co-expression clusters seen in
the overall ETP—DN3 population (cf. Fig. 2c). For example, the myeloid-associated gene,
Mpo, encoding myeloperoxidase, was expressed at higher levels in ETPs than either
Gata3 or Bcll 1b, but a major fraction of Mpo-expressing cells also clearly expressed Tcf7
(>20 copies/cell) (Fig. 2f). The growth-promoting gene Pim I, which marked intermediate
clusters (Fig. 2d, clusters 3,5), was activated in both 7Tc¢f7-low and Tcf7-high ETPs and
then increased in DN2 cells with varied 7c¢f7 expression. These results suggest that
although not expressed in mature T cells, Mpo as well as Piml were substantially

expressed within cells initiating the T-cell program and are not from contaminants.

Deep-sequencing confirms stem/progenitor and ‘“non-T” associated regulatory

genes co-expressed with Gata3 and Tcf7 in individual ETPs

To extend this inquiry to a sensitive genome-wide analysis of single cells, we carried out
whole-transcript Smartseq2 scRNA-seq analysis (from C1 Fluidigm; “C1) of highly
purified ETP-DN2a cells (n=193 cells) (Fig. 3). Despite the low cell numbers, semi-
supervised clustering of the C1 dataset (based on differentially expressed genes described
in Fig.1c and Table S1) yielded high-quality gene expression patterns that supported and
extended those seen in seqFISH. DN3 endpoint cells could not be included, but the results
again separated ETP-DN2a cells expressing combinations of multipotent progenitor-
associated genes from the cells more highly expressing T-lineage associated genes (Fig.

3a-e; Table S4, “C1_supervised markers”). Again, one small outgroup was found with a
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highly divergent program (Fig. 3a, PC2) lacking T-cell gene expression, apparently

among cells with a “FI1t3- ETP” phenotype (Fig. 3b-e; cluster 9). Nevertheless, in the rest
of the cells, C1-Smartseq data confirmed that multipotency-associated genes Spil, Flit3,
Lmo2, Mef2c, Cd7 and Irf8, were all frequently co-expressed with 7cf7 and Gata3 in
individual ETPs, sometimes continuing into DN2s. But whereas Spi/ could still be co-
expressed with the late DN2a gene Bcl/l1b, in contrast [rf8, Lmo2, and Flt3 expression
was almost dichotomous with Bcll1b (Fig. 3f,g). This supports the interpretation that
expression of these stem/progenitor genes selectively characterizes most ETPs as they

enter the T-cell developmental program.

10x scRNA-seq shows tightly connected ETP-DN2 cell populations

The seqFISH and C1 results indicated that the regulatory states of most ETP cells are
within the continuum of the T-cell specification trajectory. We therefore dissected this
trajectory in depth by whole-transcriptome analyses of thousands of enriched ETP-DN2a
cells, again with DN3 cells as an internal reference, using 10X Chromium v2 (10X).
Samples of 4627 (replicatel) and 7076 (replicate2) ETP-DN2 cells plus 10% DN3 cells
yielded 3’ end-enriched transcriptome profiles with UMI quantitation. Upon dimensional
reduction (tSNE or UMAP), RNA expression phenotypes separated the cells into 2-3
distinct clusters. These corresponded respectively to a large mix of ETP-DN2 cells, DN3
cells, and a small outgroup (Figure 4a,b), judged by expression patterns of genes
characterizing different developmental stages or lineages (e.g., Elane (granulocytes), Mpo
(macrophages), Kirdl (NK cells))(Fig. 4c, highlighted in red). Within the ETP-DN2
continuum, stage-defining genes such as Kit (ETP-DN2), //12ra (DN2-DN3), and Bcl11b
(committed DN2-DN3) were localized to different regions but not well-separated. Again,
the small outgroup expressed granulocyte-associated genes, e.g. Elane (Fig. 4c) along
with some progenitor-associated genes (Kit, Spil, Lmo?2), as in the seqFISH (cluster 8 in
Fig. 2g, h) and C1 analyses (cluster 9, Fig. 3b-e). Highly concordant results were found
in an independent 10X experiment (Fig. S3a-d), and the 10X results overall agreed well
with the C1 and seqFISH results after CCA scaling (Fig. S3e).
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Fine resolution unsupervised clustering by SLM distinguished 14 sub-clusters of cells

across the ETP-DN3 range (Fig. 4a,b,d; Table S4, “10X unsupervised”). Bcllib
expression again marked clusters of recently committed cells (Fig. 4d, clusters 5,2, 9, 11).
The spiked-in DN3 cells again included both pre-p-selection DN3a cells (cluster 9: high
Ptcra, Cd3g, Cd3d, and Cd3e, non-proliferative) and DN3b cells that had begun B-
selection (cluster 11: high levels of Lef7 and proliferative markers). The Elane-expressing
outgroup was cluster 13. This left the clusters of greatest interest, representing earlier, pre-
commitment pro-T cells (clusters 0, 10, 4, 6, 7, 8, 12, 1), provisionally identified by their
expression of progenitor-associated genes such as Cd34, Lmo2 and Mef2c. However,
among these earlier clusters, the ordering was ambiguous in unsupervised clustering, and
the relationship to cluster 13 was still unclear. This was partly because transcripts of key
T-cell genes Notchl, Gata3, and Tcf7 did not change sharply enough to be identified as
highly enriched in any particular ETP-DN2a cluster(s). Another source of ordering
ambiguity among ETP-DN2a cells was the prominence of multiple states associated with
cell cycle, in both biological replicates (Fig. 4d, Fig. S3d). Cells expressing S- or G2+M
related genes (e.g. Birc5, Mki67) were found in clusters apparently representing different

stages along the early-to-late developmental continuum.

Distinct T-cell differentiation kinetics and identification of committed granulocyte

precursors among ‘ETPs’

To confirm which gene expression clusters were associated with T- or non-T- lineage
potential and to verify which were more or less advanced in T-lineage progression, we
used marker genes that distinguished some of these clusters to fractionate ETPs by FACS,
and then directly compared their developmental kinetics and fates under T-cell and non-
T cell developmental conditions (Fig. S4a). We also sought to resolve whether the Elane-
positive cells (Fig. 2e, cl. 8; Fig. 3, cl. 9; Fig. 4d, cl. 13) were part of the T-cell
developmental pathway or a separate lineage. These cells uniquely expressed several
granulocyte-associated genes, including Elane, Ms4a3, Ly6c2, and Prtn3, but lacked
expression of Notchl or Notch-induced genes (Hes 1, Dtx1), possibly resembling a bone

marrow early pre-neutrophil precursor (Evrard et al., 2018). Distinctively, these cells co-
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expressed surface receptors, CD63 and Ly6c¢2, detectable with antibodies that were used

to purify them away from other ETP subsets for developmental tests.

We first confirmed that FIt3" ETPs were indeed more immature than the F1t3- ETPs. Flt3*
and F1t3- ETPs (excluding CD63" Ly6c¢* cells) and DN2a (CD25Bcl1 1b-YFP) cells were
co-cultured with OP9-DL1 stroma to provide T-cell differentiation conditions (Fig. S4b).
Their progression was scored by two T-cell milestones: onset of CD25 expression,
denoting transition from ETP to DN2a, and the subsequent expression of Bcll1b-YFP.
Then, to test the developmental potential of the Elane™ cells, CD63" Ly6c” cells were
sorted and compared with CD63- Ly6¢c™ ETPs. Unlike other ETPs, CD63" Ly6c™ cells
could not turn on CD25 or Bcll1b-YFP in T-cell culture conditions. Instead, they turned
on the granulocyte marker Grl after 4-5 days (Fig. S4c-d). These populations were also
tested for their ability to generate alternative lineages in non-T conditions, in the absence
of Notch signaling and with cytokines supporting myeloid differentiation. Under these
conditions, while other subsets of ETPs generated multiple types of non-T cells, CD63*
Ly6c” cells exclusively gave rise to Grl* granulocytes (Fig. S5). Thus, the CD63+Ly6c¢c+
cluster in the thymic ‘ETP compartment’ is a committed granulocyte precursor, has no T
potential, and differentiates independently of Notch signaling. Thus, expression of Elane
and Prtn3 in single-cell and bulk ETP RNA-seq is attributable to a distinct non-T- lineage

population rather than to expression by uncommitted T-cell precursors.

Developmental progression shows stage-dependent relationships to cell cycle

states

We could now address the gene regulatory states associated with T-cell specification per
se, in the 10X data. To gain better resolution of possible component processes by topology
on a more complex developmental manifold, we applied a force-directed layout algorithm
using SPRING, visualizing long-distance as well as nearest-neighbor relationships of cells
across three reduced dimensions (Weinreb et al., 2018) (Fig. S6). The SPRING graph
revealed an ordered developmental continuum from ETP (//2ra negative), through DN2a

({12ra positive) and committed DN2 cells (Bcll1b positive), and into the separated DN3a
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and DN3D cells (offset Bcll 1b high populations) (Fig. S6a-b), roughly progressing from

top right to bottom left (arrow in Fig. S6b). Within the main zones, the early ETP marker
Flt3 highlighted the top right edge, while ETP-DN2 gene Spi/ lit up a distinctly larger
area of the ETP-DN2 cluster, and the T-lineage commitment gene Bcll1b was activated
only at the edge away from the Flt3-enriched zone and continuing into the offset DN3a
and DN3b cells (Fig. S6a), consistent with known developmental relationships. However,
the cells also varied strongly along an axis orthogonal to the developmental direction (Fig.
S6). This second axis was represented by proliferative and cell cycle state markers as
annotated in Fig. S6a. The resolution of two biologically meaningful but orthogonal axes
of variance suggests that cells transition through multiple cell cycles as they progress

through successive differentiation states, rather than confining cell cycling to a single state.

Notably, expression of many functionally important genes was not uniform across each
band of cells along the “developmental axis”. The G1-associated ETP-DN2 region (upper
left) had a concentration of cells expressing Gata3 and Tcf7, yet this region was also most
enriched for cells expressing high levels of Spil, Cd7, and Tyrobp, genes characteristic of
non-T cells. Depending on the actual trajectory the cells take, this state could represent a
developmental branch point, an alternative entry point for precursors, or a transiently

induced upregulation of non-T genes even along the T-cell pathway.

RNA velocity analysis maps the developmental flux from ETP through DN2 and

commitment

To elucidate the developmental fluxes between populations in the ETP-DN2 transition,
we used RNA velocity analysis (Velocyto)(La Manno et al., 2018)(Fig. S7; Fig. 5a, b).
This algorithm uses the ratio of unspliced, presumably nascent, pre-mRNAs to mature
mRNAs to estimate the rate of RNA production change, and therefore the direction of
regulatory change in low-dimensional transcriptome space, for cells moving through
development. Indeed, 17% of reads in the 10X scRNA-seq data mapped to intronic regions
of the genome (Fig. S7a, b). Data from the 10X analysis, omitting DN3b and granulocyte

precursors, were plotted on a principal component space (PC1 and 2 shown in Fig. 5a,b),
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with RNA velocity-based differentiation vectors superimposed on the same axes (Fig.

5b). Similarly to the SPRING layout, expression of known genes showed that cells
separated orthogonally with cell cycle differences most evident along PC1 and
developmental stage differences more along PC2 (Fig. 5a, b). Notably, though, despite
this cell-cycle correlation, differences in cell cycle genes did not drive the velocity vector
patterns, for the velocity vectors were nearly identical even when cell cycle genes were

excluded from the calculation (Fig. S7c).

The velocity vector map indicated complex, PC1-biased differentiation trends within the
ETP compartment distinct from those in DN2, and suggested that transition from ETP to
DN2a occurred from a preferential regulatory state (Fig. 5b). While velocity vectors
indicated that DN2 cells in all cell cycle states were uniformly progressing toward DN3
(central band of downward pointing arrows), the early ETPs (along the topmost zone,
colocalized with FI¢3) had velocity vectors suggesting two different attractors with distinct
cell cycle states. Velocity vectors for the Birc5" ETPs (extreme top right, presumably in
G2+M) appeared to be pointing to the left, toward another ETP state, where a subset of
these Birc5" ETPs appeared to be developmentally static (dots or shortest arrows). Of note,
these more static ETPs, possibly representing a self-renewing subset, also showed the
highest ongoing transcription of Hoxa9, a homeobox gene associated with prethymic
progenitor specification and leukemia (Gwin et al., 2013)(Fig. S7d). In contrast, ETPs
with differentiation velocity vectors pointing toward an //2ra*Bcll1b™ early DN2a state
(down) were on the left, among Birc5-nonexpressing ETPs. Here, transitions from a Cd7-
high ETP subset (extreme upper left) were most prominent. The velocity data suggest that
the immediate precursors of DN2a cells were among particularly Spi/-high G1 phase ETP
cells, many also transiently Cd7 high, in the process of downregulating F/¢3 (Fig. 5a, Fig.
S7e).

Supervised analysis of 10X data reveals a developmental trajectory from ETP

through T-lineage commitment
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The RNA velocity analysis was reinforced by the topology obtained when we used the

10X datasets to construct a developmental gene expression trajectory. The curated list of
seqFISH genes (Table S2) was now used for supervised analysis of the whole
transcriptome data, with DN3b cells and granulocyte precursors excluded (Fig. S8a,b;
clusters in Table S4, “10X_supervised markers’). DDRtree (Qiu et al., 2017a) was used
to obtain a connected developmental trajectory and pseudotime staging of the cells (Fig.
5c-e, Fig. S8). From the independent replicates of the 10X analysis, 763 genes were
significantly differentially expressed along the pseudotime axis in both (qval <10®), and
these genes were clustered according to their expression patterns in a heat map (Fig 5f;
listed in order in Table S5). Fig. 5f also indicates approximate subdivisions and regulatory
landmarks; the pattern of expression in pseudotime of the curated genes themselves is
shown in Fig. S8c. While the pseudotime model clearly supported the distinction between
ETP and DN2a stages (approx. between subdivisions B & C, Fig 5f), additional substages
were present, in accord with the seqFISH analysis (cf. Fig. S1), and these were not based
on cell cycle gene clusters. Instead of monotonic increases or decreases in gene expression
across the trajectory, another group of progenitor-associated genes (e.g. Spil, Cd7, Mpo,
and Tyrobp) was predicted to rise transiently upon down-regulation of F/¢3 within the
ETPs (/I2ra negative), followed by their own down-regulation at a later DN2 stage. This
implication also accorded with the unsupervised RNA velocity analysis. Similarly, in
second or third waves during the ETP-DN2 transition and DN2 stages (subdivisions C &
D-E, Fig 5f), other groups of genes including Pim/ were predicted to undergo transient

expression changes before the final committed DN3 regulatory state.

These predicted pseudotime trends were generally consistent with known regulatory
relationships between landmark TFs, Bell1b and PU.1 (encoded by Spi/) and individual
target genes, based on perturbation experiments that defined targets of these factors
genome-wide (Hosokawa et al., 2018a, 2018b; Ungerbiack et al., 2018). These
perturbation tests defined 326 PU.1-upregulated genes, 237 PU.1-repressed genes, 394
Bcll1b-dependent genes, and 747 Bcll 1b-repressed genes. Bell1b and/or PU.1 targets
represented 214 of the 763 pseudotime-indicator genes (Table S5), so we compared the
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changes in these genes in pseudotime with changes in expression of Bc/l1b and Spil

themselves. Fig. 5g shows the fractions of genes in individual pseudotime expression
clusters that were significantly repressed by or dependent on PU.1 or Bclllb (pattern
details in Table S5). PU.1 indeed positively regulated genes in several distinct early
clusters, particularly in the early transient wave (Fig. 5g, orange margin), but negatively
regulated genes in late (DN3-associated) clusters. Bclllb primarily activated genes
upregulated late in pseudotime. Bell 1b repression targets were concentrated among early
and intermediate pseudotime-expressed genes, especially in the two intermediate
expression waves (Fig. 5g, groups with green and orange margins). These genes had been
deduced to be Bcll1b repression targets because acute deletion of Bclllb caused their
expression to increase even in committed pro-T cells that had already reached DN2b. This
supports the interpretation that the genes upregulated in the intermediate wave are
expressed within the T-lineage specification pathway, and that their expression is then

truncated by Bcell 1b.

In vitro culture supports the single-cell trajectory and multilineage priming model

These intermediate expression waves were unpredicted (Mingueneau et al., 2013; Yui and
Rothenberg, 2014), and might either reflect a succession of transient regulatory states
during T-cell development or be computational artifacts of forcing branched gene
expression changes into a single pathway. Specifically, in the DDRtree model, the end
stage ETPs exhibited a small branch going off the trajectory, associated with upregulation
of Spil, Hhex, Cd7, and Tyrobp, genes strongly affiliated with myeloid, NK, or DC
alternative fates. In pseudotime, however, these genes were modeled as transiently up-
regulated in ETP. In support of the pseudotime model, ETPs expressing high levels of
these genes (G1-enriched ETPs) were identified in the velocity analysis within the region
most likely to transition to DN2 (Figure 5b). In seqFISH and C1 distribution analysis, we
had also confirmed that these genes are expressed by a substantial population of cells (Fig.
2-3). Thus, two hypotheses can explain this early wave or branch pattern (Fig. 6a): 1.
lineage branching, where levels of these non-T-cell associated transcripts are accumulated

in a subset of cells that have branched off towards alternative fates; or 2. multilineage
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priming, in which genes associated with alternative lineages are expressed transiently

in early stages, reflecting the intrinsic regulatory network structure and phenotypic
plasticity of uncommitted early T-cell stages. If lineage branching were true, then the
pseudotime model expression pattern of transiently upregulated genes in late ETP would

be inaccurate.

To test the two hypotheses functionally, we used the pseudotime analysis to identify
markers that could distinguish between ETP subpopulations. We then FACS-purified ETP
subsets based on their expression of these markers, and followed their T-lineage
developmental kinetics, as well as their alternative lineage potentials, through in vitro
culture (Fig. 6b). Whereas FIt3 marks earlier ETPs (Fig. 2, Fig. S4), the cell surface
marker HSA (Cd24a) was predicted in pseudotime to be gradually up-regulated during
late ETP stages, followed by Ly6d up-regulation (Fig. 5f). Unfortunately, CD7 could not
be used for subset enrichment due to lack of a specific antibody. We therefore sorted ETPs
into 6 sub-populations according to FIt3, HSA, and Ly6d expression (Fig. S8d), and tested
them in OP9 co-culture systems with and without Notch ligand to compare their
developmental potentials and speeds of T-lineage progression, as measured by
upregulation of the Bcll1b-YFP reporter. In this T-lineage developmental assay, after 4
days, these 6 populations showed a clear range of T-lineage developmental speeds (Fig.
6¢-d). The most advanced population repeatedly appeared to be Ly6d* FIt3- ETPs (pop. 6,
approximately late substage B, Fig. 5f), and the least advanced population, the FIt3" Ly6d-
HSA" cells (pop. 1), in good agreement with the single-cell pseudotime trajectory model.
In tests of non-T lineage potential using co-culture without Notch ligand, F1t3* cells (pops.
1-3) differentiated readily into dendritic cells (DCs), macrophages, natural killer cells
(NKs), and some granulocytes, as expected for uncommitted precursors. However, despite
their association with higher expression of myeloid-affiliated genes Spil, Hhex, Tyrobp,
and Mpo, all the FIt3- subpopulations (pops. 4-6) revealed less potential to give rise to
DCs and macrophages than the FIt3* ones, although similar to F1t3* ETPs in their output
of NKs (Fig. 6¢). This agreed with the different outputs of FIt3" and FIt3- ETP subsets

when myeloid potential was promoted with alternative cytokines, omitting FIt3 ligand
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(Fig. S5b). Thus, potential towards DC and macrophage development is reduced, not

increased, in ETPs when they turn off Fl¢3.

Finally, to determine whether the developmental potentials of individual cells truly match
the transcriptome features of the pseudotime model, we repeated this experiment at the
clonal level. First, we determined the distribution of developmental states from Bcll 1b-
DN2a to Bclllb* DN2a to DN2b, within clones generated by single precursors from
sorted ETP subsets 1-6 (Fig. 6f). The results showed that nearly all cells in clones from
all subsets of input cells had crossed the ETP-DN2 boundary in five days (Fig. 6f, top). In
accord with the sorted bulk population results (Fig. 6d), clones seeded by precursors from
subsets 1 and 2 were slower than the rest and those seeded from subsets 5 and 6 were
faster than the rest at turning on Bcll1b-YFP and progressing to DN2b (Fig. 6f, middle,
bottom). However, despite these differences, >75% of the individual subset 3 and 4
precursors generated clones in which at least 30%-50% of the cells had turned on Bcll 1b-
YFP by day 5 (Fig. 6f), confirming the T-lineage potential of the founders. To determine
how homogeneously the transcriptomes of these sorted subsets were actually distributed
in pseudotime, at single-cell level, we used Cell Hashing for scRNA-seq of 5 populations
simultaneously, combining barcoded antibodies with 10X analysis (Stoeckius et al.,
2018)(Fig.6b, also see Methods). Purified ETP subsets 1, 3, 4, and 6 and a reference ETP-
DN3 population were labeled and pooled for 10x single-cell transcriptome analysis. A
new DDRTree and a new ‘ETP-enriched’ pseudotime analysis were calculated from the
results (Fig. 6g,h, Fig. S8e), and the distinct subset features were deconvolved from the
data by sample cell hashing barcode. The separation and spread of the clonal
developmental assay and the transcriptomic pseudotime profiles of precursors from sorted
gates were in good agreement. Cells in the FIt3- subsets 4 and 6 resolved to different
pseudotime positions particularly well, and both subsets were distinct from subsets 1 and
3 (Fig. 6g,h). Fig. S8e confirms that their enhanced T-lineage differentiation relative to
subsets 1 and 3 was indeed correlated with their higher expression of “non-T” genes Spi/,

Hhex, Cd7, Mpo, and Tyrobp, as predicted by RNA velocity results.



41
These results thus confirm that ETPs advance toward T-lineage progression as they turn

off Flt3, but that strong multipotency regulators and non-T markers are transiently
elevated in these cells relative to earlier T-cell precursors. This result favors the
multilineage-priming model and indicates that the transient upregulation of these “non-T”

genes is an integral feature of the early T-cell developmental program.
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DISCUSSION

The T-lineage commitment transition has been much studied, but the events leading up to
commitment have been poorly understood until now. Here, we have dissected the gene
regulatory changes and associated developmental potentials during this process,
encompassing ETP to DN2a stages, at the single-cell level (Fig. Sla), with results
summarized in Figure 7. This analysis has provided evidence for an ordered sequence of
at least three transient regulatory states leading toward T-lineage commitment. Evidence
that these transient states are truly within the T-cell developmental progression and not
representing cells of different lineages comes from the high T-lineage precursor frequency
in the starting ETP population, from the relative differentiation kinetics of the candidate
intermediate populations, and from the robust coexpression of T-lineage specification TFs
(Tcf7, Gata3) together with genes specific for the intermediate states within individual
cells. This study thus provides insight into gene expression dynamics of the earliest T-cell
precursors, essential for more accurate modeling of the underlying T-cell specification

gene regulatory network.

The results of this study were greatly strengthened by the complementary contributions
from three single-cell transcriptome analysis approaches. Genome-wide transcriptome
profiles based on 10X Chromium droplet-based sequencing had to be supplemented with
highly sensitive seqFISH measurements to obtain accurate relationships between
regulatory genes expressed in the same cells, while deep sequencing of a smaller number
of cells with C1-SmartSeq2 provided full-transcript corroboration. We validated the
biological predictions of the pseudotime trajectory using primary cell culturing assays to
test directly the T and other lineage differentiation potentials among sub-populations of
ETPs. The pseudotime model of gene expression dynamics in early T-cell differentiation
was also consistent with recent empirical knock-out studies of known regulatory factors,
PU.1 (Spil) and Bcell1b (Hosokawa et al., 2018a, 2018b; Ungerbéack et al., 2018), which
activate and repress target genes that cluster appropriately relative to Bell1b and PU.1

expression changes.
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Transcriptome clustering and RNA velocity analyses indicated that developmental

progression could be initially linked with cell cycle control in ETPs, later becoming cell
cycle-unrestricted in DN2s. Through RNA velocity and pseudotime analysis, we
identified the most likely phenotype of the immediate DN2 precursors within the ETP
population. Notably, these cells were particularly enriched for expression of Spi/ and
other genes that are not specific for the T-cell pathway, supporting multilineage priming.
This population was distinct from an outgroup of granulocyte-committed precursors found
in every population of ETPs analyzed. Finally, primitive populations of ETPs with
unusually high Hoxa9 transcription were detectable by cell cycle and distinctive
regulatory gene expression velocity (Fig. S6e), and could represent an ETP subset with

augmented self-renewal potential.

Using seqFISH and C1 data, we showed that within the ETP state the majority of
individual cells co-express legacy progenitor genes with the critical Notch-induced T-cell
regulatory genes, Gata3 and Tcf7. This demonstrates rigorously that intra-thymic Notch
signaling does not immediately shut down expression of stem and progenitor genes, even
as it turns on T-cell genes, and that the two regulatory networks operate together in the
same cells throughout ETP and even into DN2 stages, implying timescales of days (Kueh
et al., 2016). This also suggests the possibility of crossover regulatory network
connections, which remain to be determined but may help to explain the observed transient
regulatory states. Previous studies suggested that hematopoietic stem cells (HSCs)
maintain low-level expression of lineage-associated genes to stay poised for multilineage
blood production while balancing self-renewal and differentiation, a state termed
multilineage priming (Hu et al., 1997; Mercer et al., 2011; Orkin, 2003; van Galen et al.,
2014). Seemingly-overlapping patterns of expression of Spil, Bcllla, Cebpa and T-cell
specification genes at the population level have been suggested to explain the persistence
of multilineage differentiation potential in ETP-DN2a cells under conditions of Notch
withdrawal (Del Real and Rothenberg, 2013; Franco et al., 2006; Kueh et al., 2016; Laiosa
et al., 2006; Wang et al., 2014; Yui et al., 2010), but this has previously been a hypothesis.

The results shown here are the first to demonstrate this co-expression in individual ETPs.
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Furthermore, in ETPs, even some “effector” genes representative of non-T cell lineages,

such as Mpo, were also robustly co-expressed with Gata3 and Tcf7 at the single-cell level,
in populations showing a high T-lineage precursor frequency; the seqFISH data ruled out
possible doublets. This pattern of coexpression strongly supports multilineage priming in
many individual ETP (and even DN2a) cells rather than contamination with cells lacking

T-lineage potential.

In summary, we have established a detailed model of single-cell transcriptome dynamics
during the transition from multipotentiality to T-cell lineage commitment, with single-cell
sequencing tools, bolstered by highly sensitive seqFISH analysis, and supported by in
vitro differentiation kinetics and the results of acute transcription factor perturbation
studies. This study provides new potential regulatory steps to explore and validate. For
the first time, the complexity and regulatory substructure within the first phase of T-cell

development can be perceived.
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Figurel. High T-cell precursor frequency in ETP cells and bulk population gene

expression comparison with DN2a cells. A) Schematics of early T-cell developmental

stages, checkpoints, associated key developmental markers, and previously unresolved

questions addressed in this study. B) Diagram of clonal culture and imaging methods for

following the development of individual sorted ETP cells and a representative false color
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image of the progeny of an ETP clone (top). Histogram plots showing the numbers of

ETP clones with different percentages of CD25+ (magenta) or Bcll1b+ (cyan) cells on
day 6 of culture (n = 66 viable clones) (bottom). c-d) Heatmaps of bulk RNAseq
measurements on FIt3* and FIt3- ETP and Bclllb (uncommitted) and Bclllb*
(committed) DN2a sorted populations. Color scales indicate raw expression levels as
log(FPKM+0.1), without row normalization. Some samples were sequenced with pre-
amplification, indicated (o) (see Methods). C) Clustered expression heatmap of bulk
RNAseq measurements for genes differentially expressed between all ETP and committed
Bcll1b" DN2a cells (n>3, adj. pval<0.05, fold change > 2 either way, also see Table S1).
Representative non-T or stem/progenitor genes are labeled. D) Selected key genes

involved in T development, on the same populations as in (c).
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Figure 2 High sensitivity measurement and coexpression of key regulatory genes in single

early pro-T cells using seqFISH. A) Experimental design for seqFISH analysis with

FACS enriched cells. B) Transcript distributions of genes in thymic ETP (cKit"eh, Kit

transcript >5, I[2ra transcript <3, N=890) and DN2 (cKithe", Kiz transcript >5, 1l2ra

transcript >3, n=1984) cells, in cells from 4 week-old-animals as detected by seqFISH. C)
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Gene-Gene Pearson distance heatmap of co-expression of genes measured based on

2963 ETP-DN2 cells plus 1587 DN3 cells. D-E) Clustering analysis of seqFISH data for
4550 cells across ETP-DN3 stages. The Smart Local Moving (SLM) algorithm was used
based on PC 1-6 of size-normalized data for 65 genes. Heatmap of genes enriched in
expression in each sub-cluster, ordered based on connectivity in tSNE and reflecting
developmental progression (Wilcoxon rank sum test with threshold of 0.2 and minimum
fraction of expressing cells >0.2 using Seurat 2). E) Annotated tSNE display generated
using PC1-6, colored by clusters. F) Pair-wise scatter plots, overlaid with color-coded
density contours, of copy numbers of transcripts for 7c¢f7 against those of T-specification
genes Gata3 and Bcll1b and of “non-T” gene Mpo and growth-control gene Pimi. ETP
and DN2 cells are defined as in (B), displayed on sqrt+1 scale.
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Figure 3. Semi-supervised C1 Fluidigm (C1) analysis of single cells in the ETP-
DN2a developmental continuum supports co-expression hierarchy of T-lineage and

progenitor-associated genes. A) Principal component (PC) loading of first 2 PCs
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of the analysis based on genes that are differentially expressed in bulk RNAseq

shown in Table S1. B) PC1-2 display of 193 cells measured by C1, colored by stage
categorization of FIt3, II2ra (ETP vs. DN2a), and Bcll1b positivity. C) tSNE
display of C1 data with SLM clusters color projected. Both tSNE and clustering
with SLM were performed with PC 1-10. D) tSNE display with expression patterns
of specific genes as indicated overlaid in red. E) Heatmap of expression patterns of
selected genes (‘non-T’ genes and ‘T-associated’ genes). The clusters are ordered
by approximate T developmental order, according to C) and D). Also see Table S4
for the list of feature genes that are enriched in individual clusters. F) Bi-plots of
expression patterns of two non-T lineage markers /rf8 and Mpo, against T-
specification genes 7c¢f7 and Bcll1b, showing the pattern of overlap of Mpo and
both T-specification genes. Irf8, on the other hand, overlaps with early T-
specification gene, 7c¢f7, but minimally with Bcll1b, which is expressed at a later
stage. The dots are colored by expression of I12ra (CD25) on a log transformed
color scale. G) Co-expression patterns of stem and progenitor genes and T-
specification genes Tc¢f7, Gata3 and Bcll1b. n= 228 total cells measured, n= 193
cells were shown in this figure after filtering for single cells with a minimum of

3600 genes and a mitochondrial gene fraction under 0.11.
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[Elane (granulocytes, GN), Mpo (macrophages, MP), Kirdl (NK cells, NK)] overlaid

in red. D) Heatmap displaying the top 10 enriched genes in each sub-cluster ordered by
approximate developmental progression based on gene expression and connectivity in low
dimensional displays. (Seurat 2 pipeline with minimum fraction of expressing cells >0.2,
Wilcoxon rank sum test with threshold of 0.2; see Table S4). n=4627 cells: ~90% ETP-
DN2 and ~10% DN3 cells.



'l mRNA expression

DN3/Late <€— PC2—» ETP/Early

46

Component 2

U
M '
e
i
Tyrgbp_)t !
Pim1—> :

Cpa3—>3l‘

—
[
112ra > —
Cd24a | ==
P —
(HSA)

Ly6d >
Bcl1b>

Hes1
P —
Notch1 Fit3y

G1 and some
progenitor

1
Sp'i1é,

Il2ra
(DN2/DN3)

Bcl11b

(committment)

<« PC1—>

Bcl11b?

Pseudo-time ——»

G2 and

D

Component 2

proliferation

*10407010

State #2598 ¢ 11

©306°9

G
F

/|

Ml |

il

e

0
Component 1

2

RNA velocity

o Bt S
0.00 0.00 0.00 0.00 5

0.03

0.13

0.06

0.15

0.05
0.08
0.00
0.00

0.31
0.12

0.10
0.00

0.01

0.00

0.05

0.03

0.00

0.00
0.08
0.05
013

0.02
0.00

0.03
0.00

0.10

0.06

0.09

0.1

0.04

0.14
0.33
0.09
0.13

0.04
0.00

0.05
0.00

0.1

0.00

0.21

0.1

0.09

0.13
0.00
0.08
0.00
0.00

0.13
0.19

0.13
0.00

0.04

0.01

0.00

33

88

137

156

Relative Expression

53

EilR

DN2

Bdifa

Lmo2

Mef2c

Pseudo-time

Figure 5. Stage ordering by RNA velocity and pseudotime modeling from supervised

analysis of 10X scRNA-seq data: evidence for gene expression waves during early T-cell

differentiation. A-B) RNA velocity analysis on trimmed data using Velocyto (excluding

granulocyte precursor and DN3b clusters). A) mRNA expression patterns for key genes
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on PC1-2: higher expression, darker green. B) Grid arrows indicating relative transition

probabilities based on un-spliced/spliced transcript calculations (imputation with k = 90,
displayed on PC1-2) using Velocyto. Also see Fig. S7. C-D) DDRtree display analyzed
with Monocle 2 and based on the curated instructive gene list (Table S2), overlaid with
pseudo-time staging (C), and branching state (D). Granulocyte precursor and DN3b
clusters excluded, n=4438 cells. E-F) Gene expression patterns along pseudo-time. E)
Relative expression patterns of representative regulatory genes across pseudo-time,
colored by DDRtree ‘state’ (legend in (D)). Also see Fig.S8C. F) Clustered expression
heatmap of 763 genes that are differentially expressed along the pseudo-time (Monocle 2,
with qval<10%, in both biological replicates). Red= high expression level, blue = low
expression level, on a relative scale normalized to each gene. Dashed vertical lines are
positioned for descriptive purposes, hierarchical clustering based on expression using the
“complete” method. G) Summary table of fractions of pseudotime-differentially
expressed genes in each cluster that overlap with regulatory targets activated (act) or
repressed (rep) by key TFs PU.1 and Bcll1b in perturbation assays, and the total number
of genes in each cluster. Also see Table S5. Red font highlights fractions above 10% (0.1).
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Figure 6. In vitro test of ETP developmental staging favors a multilineage-priming model
for gene expression waves. A) Diagram of two hypotheses to explain the branch or early

wave patterns observed in the DDRtree and pseudotime analyses. B) Diagram of the in
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vitro developmental culture assays and ETP subset scRNA-seq setups. C-E) ETPs

(stages A and B, Fig 6D) were subdivided into 6 populations according to surface markers
FIt3, HSA, and Ly6d, and analyzed for their developmental progression after 4-7 days. C)
Representative flow cytometry plots of the development of sorted ETP populations after
4 days of culture on OP9-DLI1. D) Bar-graphs showing the fraction of committed T cells
(measured by Bclllb-YFP upregulation) after 4 days in OP9-DL1 culture, ordered
according to the pseudo-time pattern. (n=3 independent biological replicates, 3" replicate
(Rep3) an average of 2 technical replicates.) E) non-T lineage potential of individual
sorted populations after 7d of culture on OP9-Control (no Notch ligand, non-T conditions)
with lymphoid supporting cytokines. n>4. F) Summary plots of percentage of cells passing
T-developmental milestones in individual clones from individual FACS sorted precursors
(gates same as in (C)-(E)) cultured 5 days on OP9-DLI1. Whiskers represent 5-95
percentiles. n=55, 62, 63, 58, 58, 44 live clones in ETP pop1 through 6, respectively. G-
H) Reconstructed transcriptome single-cell pseudotime trajectory with 4 ETP subsets
(pops 1, 3, 4, 6 from (C)-(F)) and an ETP-DN3 control group tagged with antibody
barcodes. G) DDRtree with pseudotime coloring and highlighted ETP subsets. H)
Pseudotime distribution of individual cells from the 4 sorted subpopulations. (Analyzed
with Monocle 2 and based on the curated instructive gene list). n= 1333, 1144, 1044, 823,

3172 cells in ETP popl, 3, 4, 6 and control, respectively.
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Figure 7. Summary of key findings in this study.

Data imply sequential sub-stages within the ETP compartment before transition to DN2a,
not only marked by asynchronous downregulation of progenitor genes but also by
transient activation of gene waves as the cells progress toward commitment. The
frequency of T-lineage potential is very high in ETPs overall, and although some
transiently activated genes are otherwise associated with non-T fates (multilineage
priming), alternative lineage potential in pro-T cells decreases monotonically as the cells

progress from Flt3" ETP to FIt3- ETP to DN2a to commitment.
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Supplementary Figure S1, related to Figs. 1, 2, 3, 4, 5, 6, and 7. Summary
schematics of biological questions addressed, and analysis pipelines used.
a) Summary: logic flow of central biological questions in this study, how each step

provides the rationale for the next, and breakdown of specific technologies and
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analyses used to address the specific questions. Questions are highlighted in

red boxes, and results are shaded in gray boxes. Techniques and analysis used
are described in italic text and colored in background with blue shading indicating
analysis using single-cell transcription profiling tools, purple shading indicating
bulk RNA analysis, and orange shading indicating cell culturing assays. b)
Summarizes relationships between methods, gene and cell filters being used, and
data analytical pipelines used in this study. c) Sorting gates and logistics for
purifying Kit" ETP-DN2a and DN3 cells for single-cell analyses.
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Supplementary Figure S2, related to Fig. 2. Highly sensitive seqFISH provides
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reproducible and robust RNA transcript quantitation for regulatory genes.
a) Scatterplot comparison between mean values of expression measured in a

comparable population (FIt3+ ETP) in different seqFISH experiments with
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thymocytes from 4, 5, 8-week old animals. b) Scatterplot comparison between

mean values of expression, measured in seqFISH and 10X Chromium, of genes
listed in Table S2. Mean values taken from cells in comparable cell populations
(FIt3+ ETPs). Patterns were broadly correlated, but seqFISH detected
approximately 10 molecules of RNA for each UMI count in the 10X analysis
(seqFISH: n=1656, from 3 replicates. 10X: n=863, from replicate1). The result is
consistent with the previously described 10% sampling rate of 10X Chromium v2
scRNA-seq, at the sequencing depth being used (Islam et al., 2014; Kolodziejczyk
et al., 2015) c) tSNE plots with combined 3 seqFISH replicates, including Kit
positive and DN3 populations, colored in each panel to indicate the distribution of
Kit positive cells from one of the individual replicates. The samples from different
experiments and ages are interspersed without batch corrections. d) Detected
transcript distribution comparison between seqFISH and 10X Chromium
experiment on key regulatory genes in ETP-DN2 cells. (seqFISH: n=2524, 10X:
n=4234.) SeqFISH detected the expression of Notch1, Tcf7, and Runx1 in almost
all ETP-DN2 cells, in agreement with their known functional roles whereas 10X
had a high false negative rate. e) Scatterplots of antibody staining and RNA
transcript count correlations, colored by the cell size estimation (area of image
segmentation). f) Transcript and antibody distribution of cells at different stages
(binned by //2ra, Bcl11b transcripts). c-Kit and TCF1 agree well with Kit and Tcf7
expression at all stages. Note that arrows indicating the PU.1 protein (encoded
by Spi1) and Spi1 RNA disagree at DN2b stage, as Spi71 RNA drops in expression
between DN2a-b stage while PU.1 protein appears to persist longer. This is likely
a reflection of the extreme stability of PU.1 protein, as reported previously (Kueh
et al., 2013). The antibody signals were plotted in arbitrary units on linear scales,
with signal quantitation described in Methods. g) Developmentally ordered

clusters of seqFISH transcript distribution. Clusters shown here were as
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presented in Figure 2f, excluding DN3b (cluster 7) and the ‘outlier’ myeloid

cluster (cluster 8).
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Supplementary Figure S3, related to Fig. 4. 10X Chromium scRNA-seq replicates
confirm the similar continuity and heterogeneity of cell states and lineage
progression within the purified early T-cell population.
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a-b) Scatterplot comparison between mean values of expression measured in

comparable population (early Flt3+ ETPs) in two 10X Chromium scRNA-seq
replicates (n=863 cells replicate1, n=1442 cells replicate2). c) tSNE display of 10X
replicate2 (7076 cells) colored by cluster. Clustering was performed with SLM
algorithm, using PC 1 to 10. d) Heatmap of feature genes enriched in each sub-
cluster analyzed in 10X replicate 2, ordered by approximate developmental state.
Yellow=high expression, purple=low expression. Compare with similar clustering
for replicate 1, shown in Fig. 4d. e) Alignment of seqFISH, 10X, and C1 datasets

after CCA scaling, shown in principal components 1-2.
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Supplementary Figure S4 (previous page), related to Figs. 2-4. Discrete

granulocyte precursor subset in the ETP compartment.

a) Experimental plan to test developmental potential. Purified Lin"DN thymocyte
subsets were sorted into wells (25 or 50 cells/well into 96 well plate) for co-culture
with pre-plated OP9 stroma, with Notch ligands (OP9-DL1) or without, and then
stained and FACs analyzed at indicated timepoints. b) FIt3*, FIt3- ETPs, and
DN2a cells cultured on OP9-DL1 for 4 days, then analyzed for developmental
markers, CD44 and CD25, and Bcl11b-YFP. c) CD63+ Ly6¢c+, and CD63- Ly6e-
ETP cells cultured on OP9-DL1 for 4d, then analyzed for markers of T-cell
progression, CD25, and granulocytes (Gr1). d) Summary plot of percentages of
CD25+ cells and Gr1+ cells after 4-5d culture with OP9-DL1 stromal cells.
Thymocytes from Bcl2 transgenic mice were used to enhance cell survival. Also
see Fig. S5.
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Supplementary Figure S5, related to Figs. 2-4. Commitment assays under
conditions lacking Notch signaling to test ETP subsets for alternative lineage

potentials.
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Subsets of ETPs and DN2a cells were sorted according to surface marker

expression patterns indicated and tested for developmental potential under
conditions favoring myeloid development. Assays were performed with cells
isolated from Bcl2-tg mice to promote survival. 25 or 50 cells/well were plated into
96 well plate with pre-seeded OP9-control stroma cells, cultured for 7 days under
myeloid conditions, and analyzed by flow cytometry as shown. One representative
culture is shown from each subset except FIt3- ETPs, which are represented by
two different cultures. Here, subsets are shown with data from the most advanced
T-lineage precursors, Bcl11b-YFP* DN2a cells, which are already T-lineage
committed. a) Gating strategies and representative flow cytometry analysis for
alternative lineage assays at day 7 of culture. Cells were gated on FSC and SSC,
7AAD negative and CD45 positive for live lymphocytes (top two rows), and then
separated by anti-NK1.1 + anti-Dx5 and anti-Gr1 for NK cells (NK) and
Granulocytes (Gr1* cells) respectively (third row). The non-NK and non-
Granulocyte population (lower left of panels in third row) was further separated
using anti-CD11b and anti-CD11c for Macrophage (MP) and Dendritic cells (DC),
respectively. The cells that were negative for all alternative-lineage markers in the
staining panels were categorized as ‘unknown’. The cell numbers generated from
individual categories were divided by the input cell number and displayed in
stacked bar graphs in b) and also in Fig. 6e. b) Summary graphs for results of
alternative lineage potential assays of ETP subsets distinguished by FIt3, CD63
and Ly6c expression, compared with DN2a cells separated into Bcl11b-YFP- and
Bcl11b-YFP®. Isolated cells were cultured on OP9-Control stroma, under myeloid
lineage supporting cytokine conditions for 7 days (see STAR Methods). The
stacked bar-graphs represent the developmental potentials of each ETP subset
to generate cells of non-T lineages under these permissive conditions. Top panel
shows results from Ly6c'CD63" ETP cells subdivided by FIt3, and DN2a cells
subdivided by Bcl11b-YFP. The bottom panel shows results from Ly6c and CD63
single and double positive ETP populations. Under these conditions, CD63" Ly6c
ETPs generated multiple types of cells of alternative non-T lineages, including
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Gr1* granulocytes (magenta) (top). However, Ly6¢c* CD63* double positive cells

gave rise exclusively to Gr1* granulocytes, while CD63" or Ly6d"* single positive
cells generated Gr1* cells as well as other lineages (bottom). Individual replicates

are presented in separate bars.

Bcl11b

Samhd1

total UMI
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Supplementary Figure S6 (previous page), related to Fig. 4. Developmental

connectivity coupled with orthogonal spread of cell cycle signatures in SPRING
analysis.

a-b) SPRING display of expression topology of ETP-DN2-DN3 cells. (Performed
with PC1-20, and k=5 on raw 10x dataset with cells filtered by minimum 2500 UMI
counts, but not by mitochondrial content, and genes filtered by 60th percentiles
for variability) a) Expression levels of key genes are highlighted in green on
relative scales. The key genes were categorized as early developmental genes
(FIt3, Lmo2, and Mef2c, early ETPs; Spi1, all ETP and DN2a cells) and later
genes (/[2ra, ETP to DNZ2a transition marker; Fgf3, DNZ2a-specific, Bcl11b,
commitment marker; Rag1, upregulated in DN3a) for marking the developmental
direction. The second orthogonal axis was represented by proliferative and cell
cycle state markers, with G2/M-active genes Birc5 and Mki67 (similarly with
Top2a and Cenpa, not shown) expressed by cells at the lower right with the
highest UMI counts, with G1-to-S phase cyclin Ccne2 immediately adjacent, and
G1-expressed gene Samhd1 concentrated at the other end). The committed
granulocyte precursor population appeared as a spur (upper right) away from the
main distribution (Elane). b) Developmental stages and axes annotated based on
overall marker expression patterns, with total UMI counts displayed on red-yellow

scale as shown.
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Supplementary Figure S7, related to Fig. 5. Supporting analysis for RNA velocity
using Velocyto.

a) Fraction of 10X Chromium reads mapped to different genomic regions: “spliced”
represents exonic reads, “unspliced” represents intronic reads. b) Mean and

variable filter of genes that are used in velocity analysis: red dots highlight the

gene filter (‘spliced’) for PCA analysis. c) PC1-2 display with arrows indicating the

transition probability of cells (imputation and transitioning probability estimation

with k=90, quiver scale=0.7, scale type = “relative”.). The vector calculation was
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performed with (top) and without (bottom) including cell cycle genes (as defined

by gene ontology annotation (using Goatools), used in (La Manno et al., 2018)).
d) Scatterplots (left panels) display the un-spliced vs spliced isoform distributions
after imputation, and gamma fit of the rates of RNA processing for individual
genes. Red-blue heatmaps (center plots) highlight the unspliced fraction of the
individual genes, indicating active synthesis of transcripts (red), and apparently
decreasing synthesis (blue), on PC1-2 displays as shown in (c). Green (right-hand
plots) highlight spliced transcripts on the same axes. e) PC2-3 display with arrows
indicating the transition probability of cells as described in the top panel of (c)(and
Fig. 5b) plus corresponding gene plots as described in (d).
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Supplementary Figure S8, related to Fig. 6.
Supervised analysis of 10X Chromium data: low dimensional representation

based on the curated, instructive gene list in Table S2. a) PC loading of first 2
PCs with supervised analysis. b) PC (PC1 vs. PC2) and tSNE (tSNE2 vs. tSNE3)
displays of 10X data (replicate 1, 4627 cells) with clusters color projected. tSNE
and the SLM clustering algorithm were performed based on PC1-6 (same as
seqFISH analysis). c) Clustered expression patterns of members of the curated

instructive gene list (Table S2) on pseudo-time (same pseudo-time scale and
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calculations as in Fig. 5; displayed are genes that were detected in 211 cells).

Colored by log transformed and row normalized relative expression level. d)
FACS gating strategy for ETP sub-population sorts in Fig. 6, both on population
level and single-cell level. e) Precursors in individual gates shown in (d) were
profiled for transcriptome expression and pseudotime prediction using Cell
Hashing. Top panel labels the mean and interquartile ranges of individual-cell
pseudotime predictions from each subpopulation. Bottom heatmap displays the
key genes’ expression pattern on this recalculated, ‘ETP-enriched’ pseudotime
scale, aligned to the top panel. Note enrichment of Tyrobp, Mpo, Cd7, Spi1, and
Hhex expression corresponding to the sorted ETP subsets 4 and 6.
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METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

All sequence data generated in this study have been deposited in Gene Expression
Omnibus and all genotypes of mice used in this study were crossed from strains available
from Jackson Laboratories, or from strains we reported previously (Kueh et al., 2016),
which are available upon reasonable requests. Further information and requests for
resources and reagents should be directed to and will be fulfilled by the Lead Contact,
Ellen V. Rothenberg (evroth@its.caltech.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals

Mice of a variety of genotypes were used exclusively as sources of primary cells to be
analyzed ex vivo in these studies. B6.Bcll b7 reporter (Kueh et al., 2016) mice were
used for bulk RNAseq analysis, in vitro developmental assays, and ETP subpopulation
Cell Hashing 10X scRNA-seq. This nomenclature is used for animals which have a
nondisruptive insertion of IRES-mCitrine into the 3’-untranslated region of B¢/l 1b, so that
they have wildtype Bclllb function despite simultaneously expressing the yellow
fluorescent protein. C57BL/6(B6) mice (stock originally from Jackson Laboratories) were
used for seqFISH and all other scRNA-seq analysis. B6.ROSA26-mTom,Bcll1b-YFP
mice were used for clonal imaging analysis. They were generated by crossing and
backcrossing B6.129(Cg)-Gt(ROSA)26Sor™¥ACTB-tdTomato~-EGFP)Luo/J mjce, which express
ubiquitous membrane Tomato (Jackson Laboratories), with the B6.Bcll b/ reporter
mice until both loci were homozygous. Eu-Bel-2-25(Bcl2-tg) (Strasser et al., 1991) and
B6.Bcll1b7%P; Bcl2-tg mice were used for specific culturing assays as indicated below.
B6.Bcll 1hP%P; Bel2 mice were generated through crossing B6.Bcl11b7P% x Bel2-tg until
the Bcll1b locus was homozygous. All adult animals used were mice between 4 and 8
weeks of age, and all samples within experiments were pools from multiple age and sex-
matched animals. Animals used for these experiments were bred and maintained at the
Animal Facilities at California Institute of Technology under conventional Specific
Pathogen-Free conditions, and animal protocols were reviewed and approved by the

Institute Animal Care and Use Committee of California Institute of Technology (Protocol
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#1445-18G). To maximize both the thymus population sizes and fertility of the mice in

the colony, care was taken to protect these animals from stress throughout their lifetimes
to the greatest extent possible.

Cell lines

To provide a microenvironment that supports T-lineage differentiation in vitro, we co-
cultivated primary cells with the OP9-DLI1 stromal cell line (Schmitt and Zaniga-Pfliicker,
2002), which was obtained from Dr. Zudiga-Pfliicker (Sunnybrook Research Institute,
University of Toronto) and maintained in our laboratory as described in the original
reference. Control OP9 cells not expressing the Notch ligand DL1 were used to establish
a microenvironment to support non-T cell developmental pathways of primary cells. The
OP9-control cells were also obtained from Dr. Zufiiga-Pfliicker. Both OP9-DL1 and OP9-
control cell lines were tested and found to be negative for mycoplasma contamination. For
live imaging experiments, a derivative of the OP9-DL1 cells was used, OP9-DL1-
delGFP1, in which the GFP marker in the cell line had been removed by Cas9-mediated
disruption as described elsewhere (Olariu et al., 2021). Details of the differentiation

cultures are given below under Method Details.

METHOD DETAILS

Primary Cell Purification

Early stage thymocytes were purified from thymi removed from 4- to 8-week-old animals
prior to flow cytometry analysis or fluorescence-activated cell sorting (FACS). Harvested
thymi were mechanically dissociated to make single-cell suspensions that were re-
suspended in Fc blocking solution with 2.4G2 hybridoma supernatant (prepared in the
Rothenberg lab), followed by depletion of mature T and non-T lineage cells using a biotin-
streptavidin-magnetic bead removal method. Briefly, thymocyte suspensions were labeled
with biotinylated lineage marker antibodies (CD8a, TCRP, TCRyd, Terl19, CDI19,
CDllec, CDI11b, NKI1.1), incubated with MACS Streptavidin Microbeads (Miltenyi,
Biotec) in HBH buffer (HBSS (Gibco), 0.5% BSA (FractionV), 10 mM HEPES, (Gibco)),

pre-filtered through nylon mesh, and passed through a magnetic column (Miltenyi Biotec)
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on a cell separation magnet (BD Biosciences) to obtain enriched DN cells. Then, the

DN cells were stained with conjugated fluorescent cell surface antibodies (See STAR Key
Resources Table) to purify the ETP, DN2a, and DN3 populations. ETP: Kithigh CD44hieh
CD25"¢, DN2a: Kithigh CD44Pieh CD25". DN2b: Kitintermed CD44highvintermed CH2 5+ DN3:
Kit'v CD44°¥ CD25". Where the Bcll1b-YFP allele is present, the onset of Bcll 1b-YFP
expression distinguishes T-lineage committed DN2a cells from earlier, uncommitted

DN2a cells (Kueh et al., 2016).
Flow Cytometry and Cell Sorting

Unless otherwise noted, flow cytometry analysis and FACS of all samples were carried
out using the procedures outlined. Briefly, cultured cells on tissue culture plates and
primary cells from thymus were prepared as single-cell suspensions, incubated in 2.4G2
Fc blocking solution, stained with respective surface cell markers as indicated (See STAR
Key Resources Table), resuspended in HBH, and filtered through a 40 um nylon mesh.
They were then analyzed using a benchtop MacsQuant flow cytometer (Miltenyi Biotec,
Auburn, CA) or sorted with a Sony Synergy 3200 cell sorter (Sony Biotechnology, Inc,
San Jose, CA) for most of the single-cell transcriptome analyses and seqFISH samples, or
with a FACSAria Fusion cell sorter (BD Biosciences) for the culture assays and ETP sub-
population Cell Hashing scRNA-seq. All antibodies used in these experiments are
standard, commercially available monoclonal reagents widely established to characterize
immune cell populations in the mouse; details are given in the STAR Key Resources Table.

Acquired flow cytometry data were all analyzed with FlowJo software (Tree Star).
Cell Cultures

Subsets of primary DN thymocytes FACS-purified as described above were cultured on a
OP9-DL1 or OP9-control stromal monolayer system (Schmitt and Zufiiga-Pfliicker, 2002)
at 37°C in 7% CO, conditions with standard culture medium [80% aMEM (Gibco), 20%
Fetal Bovine Serum (Sigma-Aldrich), Pen-Strep-Glutamine (Gibco), 50 pM B-

mercaptoethanol (Sigma)] supplemented with appropriate cytokines (Lymphoid condition:
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FIt3L (Pepro Tech Inc.) 10 ng/mL, Human IL7 (Pepro Tech Inc.) 5 ng/mL; Myeloid

condition: M-CSF(Pepro Tech Inc.), GM-CSF(Miltenyi Biotec), and IL-6(Pepro Tech Inc.)
each at 5 ng/mL, SCF(Pepro Tech Inc.) at 1 ng/mL, and IL-3 (Pepro Tech Inc.) at 0.1
ng/mL.

Bulk RNAseq Analysis

Kith CD44h cells purified from B6.BcllIpP4% animals were subdivided into
Flt3hiehCD25Y ETP, Flt3'°“CD25"% ETP, Bcll1b-YFP™eCD25" DN2a, and Bcll1b-
YFPPsCD25" DN2a. fractions, followed by RNA purification following the instructions
of the RNeasy Micro Kit (Qiagen 74004). cDNA from each sample was prepared with or
without pre-amplification as indicated in Fig. 1. Pre-amplified samples were prepared with
SMART-Seq v4 Ultra Low Input RNA Kit (Takara 634888) and Nextera XT library
preparation kits (FC-131-1096) for Illumina sequencing, column 2, 6, 8,11 in Figlb-c).
Samples without pre-amplification were prepared using NEBNext Ultra RNA Library
Prep Kit for Illumina (E7530, NEB). All bulk libraries were sequenced on Illumina
HiSeq2500 in single read mode with the read length of 50 nt. Base calls were performed
with RTA 1.13.48.0 followed by conversion to FASTQ with bcl2fastq 1.8.4 and produced

approximately 30 million reads per sample.

RNA-seq reads were mapped onto the mouse genome build GRCm38/mm10 using STAR
(v2.4.0) and were post-processed with RSEM (v1.2.25; http://deweylab.github.io/RSEM/)
according to  the settings in the ENCODE long-rna-seq-pipeline
(https://github.com/ENCODE-DCC/long-rna-seq-
pipeline/blob/master/DAC/STAR_RSEM.sh), with the minor modifications that the
setting  ‘—output-genome-bam—sampling-for-bam’ was added to rsem-calculate-
expression. STAR and RSEM reference libraries were created from genome build
GRCm38/mm10 together with the Ensembl gene model file Mus_musculus. GRCm38.gtf.
The resulting bam files were used to create HOMER tag directories (makeTagDirectory

with —keepAll setting). For analysis of statistical significance among DEGs, the raw gene
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counts were derived from each tag directory with ‘analyzeRepeats.pl” with the ‘—noadj

-condenseGenes’ options, followed by the ‘getDiffExpression.pl’ command using EdgeR
(v3.6.8; http://bioconductor.org/packages/release/bioc/html/edgeR.html).  For  data
visualization, RPKM normalized reads were derived using the ‘analyzeRepeats.pl’
command with the options ‘—count exons —condenseGenes —rpkm’; genes with an average
of RPKM 2>1 across samples were kept, and their RPKM values were processed by log
transformation. The normalized datasets were then hierarchically clustered with R hclust
function based on Euclidean distance and ‘complete’ linkage. The heatmap is visualized

with R pheatmap with log2 transformed RPKM data (after adding 0.1 to all values).
Clonal Imaging Assay of Individual ETPs

To follow individual ETP clones by microscopic imaging, Kit" CD44" CD25" ETP cells
were purified from B6.ROSA26-mTom, Bcll1b-YFP mice (generated as described in the
Animal sections above). Sorted ETP cells were plated onto OP9-DL1 stromal cells lacking
GFP (OP9-DL1-delGFP1) in 24-well glass bottom plates with black 8mm circular
poly(dimethyl siloxane) PDMS micromeshes with multiple microwells 250uM wide x
100 uM deep, custom fabricated by Microsurfaces (Australia). Cells were cultured in OP9
culture medium prepared as previously described except for the omission of the pH
indicator, phenol red, from the medium, and with the addition of 10mM Hepes buffer to
stabilize the pH of the wells during imaging, plus 10 ng/ml FIt3L, 5 ng/ml IL-7, and 0.05
png/ml CD25-AlexaFluor647 (BioLegend), for detection of CD25 surface expression.
Wells were imaged daily for 6 days on a Leica 6000 wide-field fluorescence inverted
microscope with Metamorph software and an incubation chamber preset to 37°C, 7% COx.
Wells found to have exactly one mTomato positive cell on either day 1 or 2 were followed

subsequently and scored for CD25 and Bcll1b-YFP fluorescence.
SeqFISH

Experimental Design
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Using seqFISH, single transcripts can be robustly detected and localized in 3D in light-

scattering tissue or in samples of thousands of cells. The strategy detects each targeted
gene with up to 24 probes per gene using Hybridization Chain Reaction (HCR)
amplification, in which all the probes against a given gene share the same HCR
amplification handle and are detected in repeated sequential rounds of color-coded HCR
in which each gene is decoded by a different sequence of colors (Shah et al., 2016a).
Signals can be aligned by keeping the sample immobile under the microscope throughout
all rounds of processing. This technique enables detection of transcripts even < 1 kb in
size, with a fidelity comparable to conventional single molecule FISH (smFISH), and can

be sequentially multiplexed (Shah et al., 2016b, 2016a).

T cells have relatively small cytoplasm compared to many cell lines and other cell types,
and it was observed that smFISH analysis was relatively hard to perform due to the high
relative content of cytoplasmic membrane and nuclear membrane sandwiching the small
cytoplasm, yielding relatively dim fluorescent signals. To amplify the signal, therefore,
we designed a 5-color-sequential barcoding scheme of HCR-seqFISH, using an error
correction scheme that tolerates 1 round of signal dropout or inaccuracy as described
before (Shah et al., 2016b). We applied HCR-seqFISH against 54 genes on FACS sorted
and immobilized early T cells, followed by additional targeted HCR smFISH analyses and
immunostaining on the same samples. Targeted HCR smFISH analyses, of only five genes
at a time, were used for functionally important genes with particularly short transcripts
which required maximal sensitivity, or for those particularly abundant transcripts which
can obstruct detection of other species in the barcoding rounds. Briefly, 14-24 primary
probes incorporating designed hairpin initiation sequence handles (hyb1l) were hybridized
to mRNA transcripts of genes of interest, followed by HCR signal amplification in 5
colors against the “handles”. Targeted mRNAs detected by amplified signals appear to be
individual bright dots in microscope images, and were recorded and registered in space.
Without moving the slide on the microscope, primary probes and readout hairpins were
then digested with DNasel, leaving mRNAs intact, and the second hybrization round of
primary probes, with attached handles permuted (hyb2), were hybridized again. After
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HCR amplification, the second round of amplified signals in 5 colors were collected

and registered to the previous hybridization. The steps were repeated until the completion
of the designed sequential rounds of hybridization. The individual mRNA molecules were
represented by the sequence of colors that appeared in the same registered spots. The
identities of the mRNAs were encoded in the color sequence (color barcode details in

Table S6).

SeqFISH Probe Design and Synthesis

The curated gene set that we selected as targets for seqFISH analysis consisted of
regulatory genes that were judged likely to be functionally important in early T and
lymphomyeloid development, based on previous genetic perturbation evidence, and
lineage-associated genes that would be particularly informative as developmental state
indicators (www.immgen.org) (Mingueneau et al., 2013) [reviewed in (Longabaugh et al.,

2017; Rothenberg et al., 2016; Yui and Rothenberg, 2014)], as detailed in Table S2. The

final list included 65 genes.

Gene-specific primary probes (35 nt long) were designed as previously described (Shah
et al., 2016b), where 5 pairs of dye-coupled HCR hairpins (IR800, Alexa 647, Alexa 594,
Cy3b, and Alexa 488) were used for signal amplification and readout from primary probes,
and the 405nm channel was used for segmentation. Probes to be used in barcoding
seqFISH were first subjected to stringent screening to avoid cross-reactivity, using the
probe design software previously described (Shah et al., 2016b) with the following
settings for this study. First, all candidate probes were BLASTed against the mouse
transcriptome, and expected copy numbers of off-target probe hits were calculated using
predicted RNA counts in the ENCODE database for murine thymocytes. BLAST hits with
a 15-nt match on any sequences other than the target gene were considered off-target hits.
For each target gene, any candidate probe that hit an expected cumulative total off-target
copy number exceeding a threshold >0.1% of total was dropped, and candidate probes

were sequentially dropped until no off-target gene was hit by more than 6 individual
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probes from the entire pool. At this stage, all of the “viable” probes for each gene had

been identified. For the final probe set, the best possible subset from the viable probes was
selected such that the final probes were non-overlapping and at least 2-nt bases apart from
each other. The choice between which of two overlapping candidate probes to keep was
based on their respective distances from the target GC content (55% in this case). As a
final step to minimize cross-hybridization between probe sets, a local BLAST database
was constructed from all the viable probe sequences, and all of the probes (including
“handle” sequences) were queried against it. All matches of 17 nt or longer between
probes were removed by dropping the matched probe from the larger probe set. The final
probe set size for barcoding seqFISH was 14-24 probes per gene. For targeted, non-
barcoding smHCR, 8-24 probes per gene were used, and genes were analyzed in groups

of 5 per HCR round, with groups based on similar probe numbers per gene.

The template oligos were generated from array-synthesized oligopools from Oligoarray
or Twist Bioscience, and amplified as described by Chen et al., 2015 and Shah et al.,
2016b. To balance the probes’ concentrations, each of the template oligos were
synthesized 3 times in the oligo pool, and probe pools for individual hybridizations were
assigned a validated primer and assembled according to the following template (complete

list in Table S6):

5’ -[Primer 1] - [Kpnl] - [“TAG”] - [primary probe] - [HCR initiator] - [“GAT”] - [EcoRI]
- [Primer 2] - 3’

List of amplification primers:

Name Primer1 Primer2 Pool #
Barcode hyb | AATTGAGCAGCTCGGGCC | GGCGATGGAAGCCTGCAAC |1

1 AC T

Barcode hyb | CCGCACGCCGTCCTTAAAT 1

2 C CTTTCCGTGCTGCCGGATCT
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Barcode hyb | GACGCACATATGCGGGCA 1
3 AG GGCATCTTCGTGACTGCGGA
Barcode hyb | ATTGAGGGTCTTCGCGTGC 1
4 C GTAACCGGCGCTTTGCAACC
smHCR hyb | TGTGCGCTCCGATTGTCCT | GCAAATGGGGTCTGTTGGC |1
1 C C

smHCR hyb | TGCAGCTCCGCGAAATGA 1
2 AG CGCTGCCTGTCTGTGCCATT
smHCR hyb | TCAGGGCACGAGGACATT | TCCGGCAAGATTGCTCTCCC |2
3 CG

smHCR hyb | ATGCGCTGCAACTGAGAC | TTGTGCCAGCCTTGGTCGAG |2
4 CG

SeqFISH Experimental Procedures and Imaging
The DN cells were purified as described in “Cell Purification” above, the ETP-DN2
population was FACS-sorted as a continuum as shown in Fig. Slc, and an equal number
of DN3 cells was sorted separately, each population into tubes containing HBH buftfer.
Next, the isolated DN cell fractions were crosslinked with 4% Formaldehyde
(ThermoScientific 28908) in 1X PBS for 10min. Then, cells were spun onto an amino-
silane modified coverslip in hyb-cells (Grace Bio-Labs, RD478685-M). They were then
crosslinked again with 4% Formaldehyde (ThermoScientific 28908) in 1x PBS for 10min,
and permeabilized in 70% EtOH overnight at 4°C. Samples were imaged first to record
the surface antibody signals, followed by briefly bleaching away antibody signals through
incubation in 0.1% NaBH4 (Sigma 452882) in 1x PBS for 10min. Then, the samples were
washed with PBS and pretreated with DNasel (Roche Cat. #04716728001) at 1 U/ul for
2 hrs at 37°C, and washed 3 times with 50% Hybridization Buffer (50% HB: 2x SSC
(Invitrogen 15557-036), 50% Formamide (v/v) (Ambion AM9344), 10% Dextran Sulfate
(Sigma D8906) in Ultrapure water (Invitrogen 10977-015)). Following pre-treatment,
samples were (1) hybridized overnight at 37°C with primary intron probes at
concentrations of 1 nM each oligo in 50% Hybridization Buffer, then (2) washed in 50%
Wash Buffer (2x SSC, 50% Formamide (v/v), 0.1% Triton-X 100 (Sigma X-100)) for 20
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minutes, followed by incubation in 2x SSC for 10 minutes. The samples were then (3)

incubated with HCR hairpins in Amplification Buffer (2x SSC, 10% Dextran Sulfate in
Ultrapure water) for 30 minutes followed by (4) washing in 2% SSC for 5 min, and then
in 10% Wash Buffer (2x SSC, 10% Formamide (v/v), 0.1% Triton-X 100 (Sigma X-100))
for 10 minutes. Before imaging, brief DAPI staining was performed for cell background
registration and segmentation (DAPI 5Spug/mL, 1min, Sigma D8417), then (5) imaged as
described below. After image acquisition, (6) the samples were incubated with 1 U/ul
DNasel (Roche) for 3 hours at 37°C, and the remaining enzymes were washed out by 30
min incubation with 50% wash buffer at 37°C. The procedures (3)-(6) constituted one
round and were repeated until the completion of all rounds of barcoding and non-

barcoding HCR seqFISH.

Post RNA profiling, additional immunostaining with antibodies was performed in some
experiments to quantitate transcription factor proteins. Specifically, samples were blocked
with 1 x PBS, 1% BSA for 1 hour at room temperature, followed by incubation with anti-
PU.1 or anti-TCF1, and anti-CD44 (not shown) (See STAR Key Resources Table) at
1:100 for 2 hours at room temperature, then washed in PBS 3 times, and then imaged.
Note that antibodies used for surface staining, e.g. anti-cKit, were imaged before

hybridization as described above.

Samples were imaged in an anti-bleaching buffer (20 mM Tris-HCI, 50 mM NacCl, 0.8%
glucose, saturated trolox (Calbiochem 648471), pyranose oxidase (OD405 = 0.05) (Sigma
P4234), and catalase at a dilution of 1/1000 (Sigma C3155)). Sample port covers were
closed with a glass coverslip or a transparent polycarbonate sheet to exclude oxygen. The
images were acquired with a microscope (Leica, DMi8) equipped with a confocal scanner
unit (Yokogawa CSU-W1), sCMOS camera (Andor Zyla 4.2 PLUS), 40x oil objective
lens (Leica NA 1.30), and a motorized stage (ASI MS2000). Lasers from CNI and filter
sets from Semrock were used. Snapshots were acquired with 0.5 pm z steps for more than

30 positions per sample.

Image Processing and Analysis
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The images were first corrected to remove the uneven illumination profiles in each

channel, the effects of chromatic aberration, and registered for shift across all

hybridizations as described before (Shah et al., 2016b).

For cell segmentation, the cell background taken in the DAPI channel without staining
was first maximum z projected and blurred using a 2D Gaussian blur with a sigma of 1
pixel. The ImageJ-FIJI built in default dark thresholding algorithm was then used to
separate out the cell boundary from background. Finally, the thresholded image was run
through a watershed algorithm to demarcate individual cells. The obtained individual cell
masks were further filtered by size (number of pixels between 600-3000) and circularity
(between 0.7 to 1). The subsequent segmentation results were manually curated and

corrected to obtain a final accurate segmentation of images.

The potential mRNA signals were then found by LOG filtering the registered images and
finding points of local maxima above a specified threshold value. Once all potential points
in all channels of all hybridizations were obtained, dots were matched to potential barcode
partners in all other channels of all other hybridizations using a 3-pixel search radius to
find symmetric nearest neighbors. The number of each barcode was then counted in each
of the assigned segmented cells. Signals were decoded using the designed sequences of

colors that should uniquely represent each targeted gene (Table S6).

The antibody staining quantification was performed with maximum z-projections for each
channel. Average pixel intensities were quantified within individual cell segmentations,
subtracted by average background intensity acquired in dummy segmentations (no cells)
in the same fields of view, and multiplied by area to estimate the total signal. Because the
quantification was performed after subtraction of background intensity, the total signal

quantitation is not sensitive to segmentation accuracy or area size.

C1™.-Fluidigm Smartseq2 Single Cell RNA-seq
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ETP-DN2a cells were purified as a continuum as described above (Fig. Slc), except

that no DN3 cells were pooled in for C1 analysis. The cells were then washed and
resuspended to 250,000 cells/mL concentration in HBH buffer; 12 uL of this suspension
was added to 8 pL of Fluidigm Cell Suspension Reagent for loading on the Fluidigm IFC
(5-10 um size). Cells were visually inventoried for doublets and empty chambers, and
returned to the C1 for lysis, reverse transcription and amplification using the SMART-
Seq v4 protocol. All amplified cDNA samples were quantified on Qubit and a subset were
selected for BioAnalyzer sizing based on yield and chamber occupancy. The cDNA
libraries were then tagmented using the Nextera XT DNA sample prep kit and Nextera
XT indices. After tagmentation and amplification, libraries were pooled, cleaned up with
Ampure XP beads (0.9x volume), quantified on Qubit and sized on the BioAnalyzer.
Following the library preparation, the sequencing was performed with single read
sequencing of 50nt on HiSeq2500 with a sequencing depth of 1.5x10° reads per cell. The

reads were mapped onto the GRCm38/mm10 mouse genome assembly.
10X Chromium V2 Single Cell RNA-seq

The DN thymocytes were enriched as described above, the ETP-DN2 population was
sorted together as a continuum as shown in Fig. S1c, and DN3 cells were sorted separately.
A small aliquot of DN3 cells representing ~10% of the total ETP-DN2 cells was added
into the ETP-DN2 sample as a developmental endpoint internal reference. The sample
was then washed and resuspended to 1 million cells/mL concentration in HBSS
supplemented with 10% FBS and 10 mM HEPES, 17,400 cells were loaded into each 10X
Chromium v2 lane, and the subsequent preparation was conducted following the
instruction manual of 10X Chromium v2. The cDNA library and final library after index
preparation were checked with bioanalyzer (High Sensitivity DNA reagents, Agilent
Technology #5067-4626; Agilent 2100 Bioanalyzer) for quality control. Following the
library preparation, the sequencing was performed with paired-end sequencing of 150nt
each end on one lane of HiSeq4000 per sample, by Fulgent Genetics, Inc. (Temple City,

CA). The reads were mapped onto the mouse genome Ensembl gene model file
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Mus_musculus. GRCm38.gtf using a standard CellRanger pipeline. Cells were

sequenced to an average depth of 40,000-50,000 reads per cell (target 4x10® reads per

lane).
Cell Hashing with Single Cell RNAseq

DN cells were purified as described above, pooling thymus from eight female
B6.Bcl11b7%P mice, 5.5-weeks old. The 4 subsets of ETP cells (pops 1, 3, 4, 6) were
sorted 4-way using the gates described in Fig. S8d. The sorted cells (total yield ~2000 per
gate) were concentrated and each subset was incubated individually with TotalSeq A
(Biolegend) anti-Mouse Hashtag 1, 2, 3, or 4 (1:50), respectively. A sorted reference
population of ETP-DN2 continuum plus 10%DN3 cells, as in Fig. Slc, was tagged in
parallel with anti-Mouse Hashtag 5. The samples were then washed 3 times with HBSS
supplemented with 10% FBS and 10 mM HEPES, and pooled to load onto one lane of a
10X Chromium V3 chip. The cDNA preparation was performed following the instruction
manual of 10X Chromium v3, and the hashtag library was prepared following the
Biolegend TotalseqA guide. The cDNA, tag library, and final library after index
preparation were checked with bioanalyzer (High Sensitivity DNA reagents, Agilent
Technology #5067-4626; Agilent 2100 Bioanalyzer) for quality control. The cDNA final
library was sequenced on NovaSeq 6000, and the tag library was sequenced on HiSeq4000,
by Fulgent Genetics, Inc.. Cells were sequenced to an average depth of ~50,000 reads per

cell for cDNA and ~2,500 reads per cell for hashtags.
Single-Cell Expression Profile Data Analysis

Analytical Pipelines
The analysis methods applied and the relationships between different datasets and
methods are abbreviated in the schematics in Fig.S1b. Specifically, the software/packages
Seurat v2.3.4 and 3.0.1 (Butler et al., 2018; Stuart et al., 2019), Monocle v2 (Qiu et al.,
2017a, 2017b), Velocyto v0.17.8 (La Manno et al., 2018), and SPRING (Weinreb et al.,
2018) were used in this study, and 10X raw reads were mapped and assigned by Cell
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Ranger. Unsupervised analysis of low dimensional representations (tSNE, UMAP,

SPRING), RNA velocity, and clustering were performed with gene sets filtered as

described below.

Supervised clustering and pseudotime analysis of 10X data were performed based on the
curated list of genes in Table S2, using quality control (QC)-trimmed 10X datasets from
which the DN3b and granulocyte precursor clusters were computationally removed. For
trajectory analysis, this improves developmental connectivity and T-lineage relevance.
For seqFISH analysis, data from the cells were QC trimmed as described below, and for
high dimensional analysis, the expression was further normalized by RNA content/size,

as described below.

Gene and Cell Filtering: Quality Control
In seqFISH analysis, cells with less than 250 barcoded transcripts detected (total from 54
barcoded genes) were omitted. In PCA and clustering analysis, similar to sScRNA-seq, the
cells were first size-normalized to estimated RNA content. The RNA content in individual
cells was estimated by total number of mRNA signals detected in one barcoding
hybridization round without decoding. Applying the Quality Control (QC) filter resulted
in 4551 cells from 4-week-old animals, 7150 cells from 5-week-old animals, and 2598

cells from 8-week-old animals being presented in this study.

The C1 Fluidigm-Smartseq2 analysis was performed based on data filtered on cells that
visually appeared to be single cells observed under the microscope in the Fluidigm chip,
with at least 3600 genes expressed, less than 11% mitochondrial content, and with
detectable expression of genes that are differentially expressed in bulk analysis described

in Fig. 1d. The filter resulted in 193 cells presented in this study.

Unless otherwise specified, both supervised and unsupervised analysis of 10X Chromium
V2 scRNA-seq was based on data filtered on cells with at least 1200 genes expressed
(transcript count over 1); outliers with more than 4500 genes were also removed (potential

doublet), and only genes that were found expressed in at least 3 cells were kept in the
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analysis. For clustering, the cells were further cleaned to keep only cells with

mitochondrial content of less than 5%, with signals normalized to total number of UMI
and mitochondrial content as recommended by Seurat2. The QC filter resulted in 4627
cells in replicate 1 and 7076 cells in replicate 2 being presented in this study. The RNA
velocity and pseudo-time analysis with Velocyto and Monocle 2, respectively, were
performed on the cells that passed the filtering steps described above, and also with the
DN3b cluster and granulocyte precursor cluster removed (cluster 13 in unsupervised

analysis, both replicates).

Unsupervised clustering analysis of 10X scRNA-seq data was performed after log
normalization and scaling, with 4307 variable genes identified in Seurat2 (average
expression between 0.0125 and 3, and minimum dispersion of 0). Note that the dispersion

filter was set low to allow capture of subtle features of the developmental continuum.

Inter-technique Comparison

We calculated the average raw gene expression levels in comparable cell input populations
between different techniques in their own measurement units. The general expression
levels were found to agree, allowing that the target genes mainly encode transcription
factors and are expressed at very low levels. Overall, seqFISH was approximately tenfold
more sensitive than 10X Chromium v2, in terms of estimated transcript counts per gene
(Fig. S2b) and in a greatly reduced dropout rate, as shown for the functionally essential
developmental regulatory genes in Fig. S2d. This finding is consistent with the previously
described 10% sampling rate of 10X Chromium v2, at the sequencing depth being used
(Islam et al., 2014; Kolodziejczyk et al., 2015). The discrepancies between the Cl1-
Smartseq2 and 10X systems (Spearman correlation=0.68, Pearson correlation=0.57) are
likely due to the difference in UMI and non-UMI based measurement unit, as
amplification steps in Smartseq2 could result in biased readout of some genes. Aside from
sensitivity differences, the biggest qualitative differences between sequencing-based (C1-

Smartseq2 and 10X) and seqFISH measurements on the selected genes are likely due to
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the fact that seqFISH by-passes any poly(A)-based reverse transcription-amplification

step and probes directly at the exon regions of mRNAs. This can lead to the following: a)
seqFISH can also probe the pre-mRNAs of genes of interest that have not been poly-
adenylated; b) when the reverse transcription step in scRNA-seq is inefficient that will
lead to dropouts, such that sequencing would more robustly detect genes that are expressed
at high levels; and c¢) miscalling of transcripts in seqFISH can occur due to crowded
transcript signals in limited-sized lymphocytes. Indeed, the expression patterns of genes
between seqFISH and 10X showed general agreement but were still only moderately
correlated, as represented by Spearman correlation of 0.73 and Pearson correlation of 0.45

on the lowly-expressed regulatory gene transcripts (Fig S2b).

PU.1 and Bcll1b Perturbation data

The pseudotime model is compared with recently determined functional targets of PU.1
and Bcll1b, in Table S4 and Fig. 5f. Lists of genes activated or repressed by PU.1 were
taken from the overlap of acute perturbation data for PU.1 gain and loss of function in
DN2a-DN2b pro-T cells [Table S6B in (Ungerbick et al., 2018)]. Specifically, the 326
PU.1-activated genes showed both enhanced activation 48h after exogneous PU.1 was
introduced into DN2b cells and reduced expression 4d after endogenous Spil was
disrupted from DN2a cells (p.adj<0.1). The 237 PU.l1-repressed genes showed both
downregulation in response to the exogenous PU.1 and upregulation when endogenous
Spil was disrupted (p.adj<0.1). The 747 Bclllb-repressed genes and 394 Bclllb-
dependent genes were defined from the intersection of genes responding significantly
(p-adj <0.05, at least twofold change) in the same direction in at least two different types
of loss of function perturbations affecting DN2b-stage cells: in vivo deletion by Vavi-
iCre, in vivo deletion by pLck-Cre, and/or in vitro acute deletion by Cas9 and guide RNA
in DN2b cells [Supplementary Table 3 in (Hosokawa et al., 2018a)].

QUANTIFICATION AND STATISTICAL ANALYSIS
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Experiments and techniques were carried out independently at least twice. Three

independent seqFISH experiments were carried out, two independent 10X analyses were
carried out on completely separate biological samples, and cell hashing 10X analysis of
ETP subsets was carried out on a third completely independent biological sample. C1 data
were pooled from ETP-DN2a cells sorted onto the chips in three separate experiments.
While analyses shown in the paper are primarily from one of the three seqFISH replicates
(in most cases the 4 wk old mouse sample) or one of the two 10X replicates (mostly
replicate 1, which yielded greater sequencing depth per cell), the data were highly
consistent between independently generated samples using the same technique, and highly
consistent with the C1 analysis, as shown in Figs. S2 and S3. Cell culture experiments
were carried out three to four times independently with concordant results as indicated in
Fig.6 and Supplementary Figures S4, S5, and S8. Only the single-cell sorted experiments
in Fig. 6f-h, which corroborate other data in Figs. 5, 6¢c-e, and S8, were not repeated as
such. Cloning data in Fig. 1 (>60 clones) and Fig. 8f (>300 clones) each came from one

experiment.

The statistical tests and specific settings used for each comparison are indicated in the

individual figure and table legends.
DATA AND CODE AVAILABILITY

All sequence data generated in this study have been deposited in Gene Expression
Omnibus and are available under accession numbers GSE130812 and GSE137165.

Sources for code used in this study are indicated in the Key Resources Table.
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Supplementary Table S2: related to Fig. 2 and Fig. 5
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Supplementary Table S4: related to Figs. 3, 4, and S8
Supplementary Table S5: related to Fig. 5
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SUPPLEMENTARY FIGURES

Figure S1: related to Figs. 1,2, 3,4, 5, 6,and 7
Figure S2: related to Fig. 2

Figure S3: related to Fig. 4

Figure S4: related to Figs. 2, 3, and 4

Figure S5: related to Figs. 2, 3, and 4

Figure S6: related to Fig. 4

Figure S7: related to Fig. 5

Figure S8: related to Fig. 6
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SUPPLEMENTARY TABLE TITLES AND LEGENDS

Supplementary Table S1, related to Fig. 1. Bulk RNAseq data of genes differentially
expressed between all ETP samples and Bcll1b-YFP® DN2a samples. Genes with the
average RPKM larger than 1, expression fold change larger than 2 either way and adjusted
pval <0.05 are shown. Values in RPKM.

Supplementary Table S2, related to Fig. 2 and Fig. 5. Curated regulatory and marker
genes used in seqFISH analysis and supervised 10X Chromium analysis. Table indicates
gene names and the combinations of criteria used for selecting each of these genes as
particularly informative, based on their genetically defined functional importance or use

as developmental state indicators (www.immgen.org) (Mingueneau et al., 2013)

[reviewed in (Longabaugh et al., 2017; Rothenberg et al., 2016; Yui and Rothenberg,
2014)].

Supplementary Table S3, related to Fig. 2. SeqFISH raw transcript data and analysis
of transcript distribution comparison between different stages of pro-T cells. Populations
being compared are Gata3- (<3 transcripts) and 7c¢f7- (<5 transcripts) double negative
ETPs, Gata3+ (>10 transcripts) or Tcf7+ (>20 transcripts) ETPs, and Bclllb+ (> 5
transcripts) DN2s. Thresholds for binning were drawn to identify clear positives and
negatives and avoid ambiguous intermediate levels of expression. Highlighted are p
values <10, two-tailed T test, unequal variances. Analysis performed from the 4-week-

animal dataset.

Supplementary Table S4, related to Fig. 3, Fig. 4, and Fig. S8. C1 and 10X marker
genes identified in each sub-cluster in the analyses shown. Clustering based on SLM,
markers identified with minimum fraction of 0.2 in the cluster and threshold of 0.2 using
Wilcoxon rank sum test in Seurat 2. C1 supervised analysis was performed as shown in

Fig.3. 10X unsupervised analysis was performed in Seurat 2 as shown in Fig. 4. 10X
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supervised analysis was performed as described in Fig. S8. pct.1, pct.2: weightings in

principal components 1, 2 respectively.

Supplementary Table S5, related to Fig. 5. Differentially expressed genes identified by
supervised pseudo-time analysis from 10X analysis (intersection of both independent 10X
replicates, qval<lE-08). The genes are ordered and clustered based on the pseudotime
expression pattern as shown in Fig. 5. The crosses mark the individual genes that overlap
with perturbation assays, which were shown to be significantly regulated by PU.1 or
Bclllb, as described in Fig. 5f-g. Lists of genes regulated by PU.1 or by Bcll1b were
from published data (Hosokawa et al., 2018a, 2018b; Ungerbick et al., 2018) as described
in STAR Methods.

Supplementary Table S6, related to Fig. 2 and STAR methods. Designed oligo probe

template pools and sequential color barcode used for seqFISH experiments.
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KEY RESOURCES TABLE
REAGENT or RESOURCE | SOURCE | IDENTIFIER
Antibodies
Anti-human/mouse CD44 PE eBioscience Cat#12-0441-83
Anti-mouse CD117 (cKit) APC eBioscience Cat#17-1171-82
Anti-mouse CD25 eFluor-450 eBioscience Cat#48-0251-82
Anti-mouse CD25 APCe780 eBioscience Cat#47-0251-82
Anti-mouse CD25-Alexa Fluor 647 Biolegend
Anti-mouse CD45 PECy7 eBioscience Cat#25-0451-82
Anti-mouse CD11b PE eBioscience Cat#12-0112-85
Anti-mouse CD11b AF488 eBioscience Cat#53-0112-82
Anti-mouse CD11b APCe780 eBioscience Cat#47-0118-42
Anti-mouse CD11c e450 eBioscience Cat#48-0114-82
Anti-mouse CD11c APCe780 eBioscience Cat#47-0114-82
Anti-mouse CD63 PE Biolegend Cat#143903
Anti-mouse Ly6c PE Biolegend Cat#128008
Anti-mouse Ly6c Alexa Fluor 647 Biolegend Cat#128010
Anti-mouse CD135 (FIt3) BV421 Biolegend Cat#135313
Anti-mouse CD24(HSA) APC Biolegend Cat#138506
Anti-mouse Ly6d PE Biolegend Cat#138603
Anti-mouse Gr1 APC Biolegend Cat#108412
Anti-mouse NK1.1 PE eBioscience Cat#12-5941-83
Anti-mouse Dx5 PE eBioscience Cat#12-5971-83
Anti-mouse NK1.1 Biotin eBioscience Cat#13-5941-85
Anti-mouse CD19 Biotin eBioscience Cat#13-0193-85
Anti-mouse Ter119 Biotin eBioscience Cat#13-5921-85
Anti-mouse CD11b Biotin eBioscience Cat#13-0112-86
Anti-mouse CD11c Biotin eBioscience Cat#13-0114-85
Anti-mouse CD8a Biotin eBioscience Cat#13-0081-86
Anti-mouse TCRYd Biotin eBioscience Cat#13-5711-85
Anti-mouse TCRp Biotin eBioscience Cat#13-5961-85
Streptavidin PerCP-Cy5.5 eBioscience Cat#45-4317-82
PU.1 (9G7) Rabbit mAb (Alexa Fluor 647
conjugate) Cell Signaling Cat#2240
TCF1/TCF7 (C63D9) Rabbit mAb (Alexa Fluor 647
conjugate) Cell Signaling Cat#6709
Totalseq-A0301 anti-mouse Hashtag1 Biolegend Cat#155801
Totalseq-A0301 anti-mouse Hashtag?2 Biolegend Cat#155803
Totalseq-A0301 anti-mouse Hashtag3 Biolegend Cat#155805
Totalseq-A0301 anti-mouse Hashtag4 Biolegend Cat#155807
Totalseq-A0301 anti-mouse Hashtag5 Biolegend Cat#155809
Biological Samples
Primary murine thymocytes This work

Chemicals, Peptides, and Recombinant Proteins
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MEM Alpha GIBCO Cat#12561-056
Fetal Bovine Serum SigmaAldrich Cat#F7305
Human IL-7 PeproTech Inc Cat#200-07
Human FLT-3-Ligand PeproTech Inc Cat#300-19
Stem Cell Factor PeproTech Inc Cat#250-03
Murine M-CSF PeproTech Inc Cat#315-02
Mouse GM-CSF Miltenyi Biotec Cat#130-095-739
Murine IL3 PeproTech Inc Cat#213-13
Murine IL6 PeproTech Inc Cat#216-16
HBSS GIBCO Cat#14175-095
HEPES GIBCO Cat#15630-080
Pen Strep Glutamine GIBCO Cat#10378-016

MACS Streptavidin Microbeads

Miltenyi Biotec

Cat#130-048-101

ThermoFisher

37% formaldehyde Scientific Cat#28908
7AAD eBioscience Cat#00-6993-50
[B-mercaptoethanol SigmaAldrich Cat#M6250
NaBH4 SigmaAldrich Cat#452882
DNasel recombinant, RNase-free Roche Cat#4716728001
20x SSC Invitrogen Cat#15557-036
Formamide Ambion Cat#AM9344
Molecular
HCR amplification hairpins Instruments Custom order
Dextran Sulfate SigmaAldrich Cat#D8906
Trolox Calbiochem Cat#648471
Pyranose oxidase SigmaAldrich Cat#P4234
Catalase SigmaAldrich Cat#C3155
Critical Commercial Assays
lllumina Nextera DNA preparation Kit lllumina Cat#FC-121-1030
Nextera Index Kit (96 indexes, 384 samples) lllumina Cat#FC-121-1012
RNeasy Micro Kit QIAGEN Cat#74004
C1™ Single-Cell mMRNA Seq IFC, 5-10 ym Fluidigm Cat#100-5759
Chromium i7 Multiplex Kit 10X Genomics Cat#120262
Chromium Single Cell 3' Library & Gel Bead Kit v2 | 10X Genomics Cat#120267
Chromium Single Cell A Chip Kit 10X Genomics Cat#1000009

High Sensitivity DNA Kit

Agilent
Technologies

Cat#5067- 4626

ThermoFisher

Qubit dsDNA HS Kit Scientific Cat#Q32854

SPRIselect reagent kit Beckman Coulter Cat#B23318

Chromium Single Cell 3' GEM, Library & Gel Bead | 10X Genomics Cat#1000092
Kit v3

Chromium Chip B Single Cell Kit 10X Genomics Cat#1000074
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Deposited Data

Gene Expression
Omnibus

Bulk RNA-seq data This work GSE130812
Gene Expression
Omnibus
Two samples, 10X Chromium RNA-seq This work GSE130812
Gene Expression
Omnibus
C1 Smartseg2 RNA-seq, 226 cells This work GSE130812
Gene Expression
10X Chromium RNA-seq cell hashing sample, 5 Omnibus
cell fractions barcoded This work GSE137165
Experimental Models: Cell Lines
OP9-DL1 Schmitt et al., 2002 | N/A
OP9-DL1 dGFP Olariu et al., 2021 N/A
OP9-control Schmitt et al., 2002 | N/A

Experimental Models: Organisms/Strains

Jackson
Mouse: C57BL/6 laboratories Stock NO: 664
Jackson
Mouse: B6.Cg-Tg(BCL2)25 Wehi/J (Bcl2-tg) laboratories Stock NO: 002320
Mouse: Bcl11b-YFP Kueh et al., 2016 N/A
Mouse: Bcl11b-YFP x BCL2 This work N/A
Mouse: B6.ROSA26-mTom;Bcl11b-YFP | This work N/A

Oligonucleotides

Listed in Table S6

Software and Algorithms

Bedtools (v.2.17.0)

Quinlan and Hall,
2010

http://bedtools.rea
dthedocs.io/en/lat
est/

Bioconductor (v3.4)

N/A

http://bioconductor
.org/

https://www.bioco
nductor.org/packa

ges/devel/bioc/ht
DESeqg2 (v.1.14.1) Love et al., 2014 ml/DESeqg2.html
http://bioconductor
.org/packages/rele
Robinson et al., | ase/bioc/html/edg
EdgeR (v.3.16.5) 2010 eR.html
https://www.flowjo
FlowdJo (v10.0.8) N/A .com/
Ggplot2 (v.2.2.1) N/A http://ggplot2.org/
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HOMER (v4.8)

Heinz et al., 2010

http://homer.ucsd.
edu/homer/

https://www.math
works.com/produc

MATLAB (R2016a) N/A ts/matlab.html
https://www.r-
R (v3.4.2) N/A project.org/

RSEM (v1.2.25)

Li and Dewey, 2011

http://deweylab.git
hub.io/RSEM/

https://www.rstudi

Rstudio (v1.1.383) N/A o.com/
http://samtools.so
Samtools (v0.1.19-96b5f2294a) Li et al., 2009 urceforge.net/

STAR (v2.4.0; v2.5.2a)

Dobin et al., 2013

https://github.com/
alexdobin/STAR/r
eleases

https://www.pytho

Python(v3.6) N/A n.org
Custom probe design software Shah et al., 2016b Long Cai lab
La Manno et al., | http://velocyto.org/

Velocyto.py (v0.17.8)

2018

velocyto.py/

Seurat (v2.3.4; v3.0.1)

Butler et al., 2018;
Stuart et al. 2019

https://satijalab.or
g/seurat/

https://kleintools.h
ms.harvard.edu/to

SPRING Weinreb et al., 2018 | ols/spring.html
http://cole-
trapnell-

Qiu et al.,, 2017a, | lab.github.io/mono

Monocle v2 2017b cle-release/

Other

BD FACS Aria Il Cell Sorter BD Bioscience N/A

lllumina HiSeq 2500 lllumina N/A

lllumina HiSeq 4000 lllumina N/A

iCyt Mission Technology Reflection Cell Sorter Sony N/A

BD FACSARIA FUSION Cell Sorter BD Bioscience N/A

Miltenyi Biotech MACSQuant 10 Flow Cytometer | Miltenyi Biotec N/A

hyb-cells Grace Bio-Labs RD478685-M

Microscope Leica DMi8

Confocal Scanner Unit Yokogawa CSU-W1

sCMOS camera Andor Zyla 4.2 PLUS

40x Oil Objective Lens NA1.30 Leica N/A

Motorized stage MS2000 ASI N/A

Leica wide-field fluorescence inverted

microscope Leica 6000

Black PDMS micromesh inserts

Microsurfaces

MMA-0250-100-08-
01




96
BIBLIOGRAPHY

Bell, J.J., and Bhandoola, A. (2008). The earliest thymic progenitors for T cells possess myeloid
lineage potential. Nature 452, 764—767.

Besseyrias, V., Fiorini, E., Strobl, L.J., Zimber-Strobl, U., Dumortier, A., Koch, U., Arcangeli,
M.-L., Ezine, S., MacDonald, H.R., and Radtke, F. (2007). Hierarchy of Notch—Delta
interactions promoting T' cell lineage commitment and maturation. J. Exp. Med. 204, 331-343.

Boudil, A., Skhiri, L., Candéias, S., Pasqualetto, V., Legrand, A., Bedora-Faure, M., Gautreau-
Rolland, L., Rocha, B., and Ezine, S. (2013). Single-cell analysis of thymocyte differentiation:
Identification of transcription factor interactions and a major stochastic component in ab-
lineage commitment. PLoS One 8, ¢73098.

Butler, A., Hoffman, P., Smibert, P., Papalexi, E., and Satija, R. (2018). Integrating single-cell
transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36,
411.

Chen, K.H., Boettiger, A.N., Moffitt, J.R., Wang, S., and Zhuang, X. (2015). RNA imaging.
Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090.

De Obaldia, M.E., and Bhandoola, A. (2015). Transcriptional regulation of innate and adaptive
lymphocyte lineages. Annu Rev Immunol 33, 607-642.

Del Real, M.M., and Rothenberg, E.V. (2013). Architecture of a lymphomyeloid developmental
switch controlled by PU.1, Notch and Gata3. Dev. Camb. Engl. 740, 1207-1219.

Evrard, M., Kwok, .W.H., Chong, S.Z., Teng, K.W.W., Becht, E., Chen, ]., Sicow, J.L., Penny,
H.L., Ching, G.C,, Devi, S., et al. (2018). Developmental Analysis of Bone Marrow Neutrophils

Reveals Populations Specialized in Expansion, Trafficking, and Effector Functions. Immunity
48, 364-379.¢8.

Franco, C.B., Scripture-Adams, D.D., Proekt, 1., Taghon, T., Weiss, A.H., Yui, M.A., Adams,
S.L., Diamond, R.A., and Rothenberg, E.V. (2006). Notch/Delta signaling constrains
reengineering of pro-T cells by PU.1. Proc. Natl. Acad. Sci. U. S. A. 703, 11993-11998.

Garcfa-Ojeda, M.E., Klein Wolterink, R.G.J., Lemaitre, F., Richard-Le Goff, O., Hasan, M.,
Hendriks, R.W., Cumano, A., and Di Santo, J.P. (2013). GATA-3 promotes T-cell specification
by repressing B-cell potential in pro-T cells in mice. Blood 727, 1749-1759.

Germar, K., Dose, M., Konstantinou, T., Zhang, J., Wang, H., Lobry, C., Arnett, K.L.,
Blacklow, S.C., Aifantis, 1., Aster, J.C., et al. (2011). T-cell factor 1 is a gatekeeper for T-cell
specification in response to Notch signaling. Proc. Natl. Acad. Sci. U. S. A. 708, 20060—200065.



97
Giladi, A., Paul, F., Herzog, Y., Lubling, Y., Weiner, A., Yofe, L., Jaitin, D., Cabezas-
Wallscheid, N., Dress, R., Ginhoux, F., et al. (2018). Single-cell characterization of

haematopoietic progenitors and their trajectories in homeostasis and perturbed haematopoiesis.
Nat. Cell Biol. 20, 836—846.

Gwin, K.A., Shapiro, M.B., Dolence, ].J., Huang, Z.L., and Medina, K.L.. (2013). Hoxa9 and
Flt3 signaling synergistically regulate an eatly checkpoint in lymphopoiesis. J. Immunol. Baltim.
Md 1950 791, 745-754.

Heinzel, K., Benz, C., Martins, V.C., Haidl, I.D., and Bleul, C.C. (2007). Bone marrow-derived
hemopoietic precursors commit to the T cell lineage only after arrival in the thymic
microenvironment. | Immunol 778, 858—868.

Hosokawa, H., Romero-Wolf, M., Yui, M.A., Ungerbick, J., Quiloan, M.L.G., Matsumoto, M.,
Nakayama, K.I., Tanaka, T., and Rothenberg, E.V. (2018a). Bcl11b sets pro-T cell fate by site-
specific cofactor recruitment and by repressing Id2 and Zbtb16. Nat. Immunol. 79, 1427—-1440.

Hosokawa, H., Ungerbick, J., Wang, X., Matsumoto, M., Nakayama, K.I., Cohen, S.M.,,
Tanaka, T., and Rothenberg, E.V. (2018b). Transcription factor PU.1 represses and activates
gene expression in early T cells by redirecting partner transcription factor binding. Immunity
49, 782.

Hosoya, T., Kuroha, T., Moriguchi, T., Cummings, D., Maillard, I., Lim, K.-C., and Engel, ].D.
(2009). GATA-3 is required for early T lineage progenitor development. J. Exp. Med. 206,
2987-3000.

Hu, G, Cui, K., Fang, D, Hirose, S., Wang, X., Wangsa, D., Jin, W., Ried, T., Liu, P., Zhu, J.,
et al. (2018). Transformation of accessible chromatin and 3D nucleome underlies lineage
commitment of early T cells. Immunity 48, 227-242.e8.

Hu, M., Krause, D., Greaves, M., Sharkis, S., Dexter, M., Heyworth, C., and Enver, T. (1997).
Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev. 77,
774-785.

Ikawa, T., Hirose, S., Masuda, K., Kakugawa, K., Satoh, R., Shibano-Satoh, A., Kominami, R.,
Katsura, Y., and Kawamoto, H. (2010). An essential developmental checkpoint for production
of the t cell lineage. Science 329, 93-96.

Ishizuka, I.E., Chea, S., Gudjonson, H., Constantinides, M.G., Dinner, A.R., Bendelac, A., and
Golub, R. (2016). Single-cell analysis defines the divergence between the innate lymphoid cell
lineage and lymphoid tissue-inducer cell lineage. Nat Immunol 77, 269-276.

Islam, S., Zeisel, A., Joost, S., La Manno, G., Zajac, P., Kasper, M., Lonnerberg, P., and
Linnarsson, S. (2014). Quantitative single-cell RNA-seq with unique molecular identifiers. Nat.
Methods 77, 163-166.



98
Karamitros, D., Stoilova, B., Aboukhalil, Z., Hamey, F., Reinisch, A., Samitsch, M., Quek,
L., Otto, G., Repapi, E., Doondeea, J., et al. (2018). Single-cell analysis reveals the continuum
of human lympho-myeloid progenitor cells. Nat. Immunol. 79, 85-97.

Knapp, D.J.H.F., Hammond, C.A., Hui, T., van Loenhout, M.T.J., Wang, F., Aghaeepour, N.,
Miller, P.H., Moksa, M., Rabu, G.M., Beer, P.A,, et al. (2018). Single-cell analysis identifies a
CD33+ subset of human cord blood cells with high regenerative potential. Nat. Cell Biol. 20,
710-720.

Kolodziejczyk, A.A., Kim, J.K., Svensson, V., Marioni, J.C., and Teichmann, S.A. (2015). The
Technology and Biology of Single-Cell RNA Sequencing. Mol. Cell 58, 610-620.

Kueh, H.Y., Champhekar, A., Champhekhar, A., Nutt, S.L., Elowitz, M.B., and Rothenberg,
E.V. (2013). Positive feedback between PU.1 and the cell cycle controls myeloid differentiation.
Science 347, 670-673.

Kueh, H.Y., Yui, M.A.,, Ng, K.K,, Pease, S.S., Zhang, J.A., Damle, S.S., Freedman, G., Siu, S.,
Bernstein, I.D., Elowitz, M.B., et al. (2016). Asynchronous combinatorial action of four
regulatory factors activates Bcll1b for T cell commitment. Nat Immunol 77, 956-965.

La Manno, G., Soldatov, R., Zeisel, A., Braun, E., Hochgerner, H., Petukhov, V., Lidschreiber,
K., Kastriti, M.E., Lonnerberg, P., Furlan, A., et al. (2018). RNA velocity of single cells. Nature
560, 494-498.

Laiosa, C.V., Stadtfeld, M., Xie, H., de Andres-Aguayo, L., and Graf, T. (2006). Reprogramming
of committed T cell progenitors to macrophages and dendritic cells by C/EBP alpha and PU.1
transcription factors. Immunity 25, 731-744.

Li, L., Leid, M., and Rothenberg, E.V. (2010). An early T cell lineage commitment checkpoint
dependent on the transcription factor Bcll1b. Science 329, 89.

Longabaugh, W.J.R., Zeng, W., Zhang, J.A., Hosokawa, H., Jansen, C.S., Li, L., Romero-Wolf,
M, Liu, P., Kueh, H.Y., Mortazavi, A., et al. (2017). Bcll11b and combinatorial resolution of cell
fate in the T-cell gene regulatory network. Proc. Natl. Acad. Sci. 774, 5800-5807.

Lubeck, E., Coskun, A.F., Zhiyentayev, T., Ahmad, M., and Cai, L. (2014). Single-cell in situ
RNA profiling by sequential hybridization. Nat Methods 77, 360-361.

Mercer, E.M., Lin, Y.C., Benner, C., Jhunjhunwala, S., Dutkowski, J., Flores, M., Sigvardsson,
M., Ideker, T., Glass, C.K., and Murre, C. (2011). Multilineage priming of enhancer repertoires

precedes commitment to the b and myeloid cell lineages in hematopoietic progenitors.
Immunity 35, 413-425.

Mingueneau, M., Kreslavsky, T., Gray, D., Heng, T., Cruse, R., Ericson, J., Bendall, S., Spitzer,
M.H., Nolan, G.P., Kobayashi, K., et al. (2013). The transcriptional landscape of af T cell
differentiation. Nat. Immunol. 74, 619-632.



99
Ng, K K., Yui, MA., Mehta, A., Siu, S., Irwin, B., Pease, S., Hirose, S., Elowitz, M.B.,
Rothenberg, E.V., and Kueh, H.Y. (2018). A stochastic epigenetic switch controls the dynamics
of T-cell lineage commitment. ELife 7.

Olariu, V., Yui, M.A., Krupinski, P., Zhou, W., Deichmann, J., Andersson, E., Rothenberg,
E.V., and Peterson, C. (2021). Multi-scale dynamical modeling of T cell development from an
early thymic progenitor state to lineage commitment. Cell Rep. 34, 108622.

Olsson, A., Venkatasubramanian, M., Chaudhri, V.K., Aronow, B.J., Salomonis, N., Singh, H.,
and Grimes, H.L. (2016). Single-cell analysis of mixed-lineage states leading to a binary cell fate
choice. Nature 537, 698—702.

Orkin, S.H. (2003). Priming the hematopoietic pump. Immunity 79, 633—634.

Paul, F., Arkin, Y., Giladi, A., Jaitin, D.A., Kenigsberg, E., Keren-Shaul, H., Winter, D., Lara-
Astiaso, D., Gury, M., Weiner, A., et al. (2015). Transcriptional heterogeneity and lineage
commitment in myeloid progenitors. Cell 763, 1663—1677.

Pina, C., Fugazza, C., Tipping, A.]., Brown, J., Soneji, S., Teles, J., Peterson, C., and Enver, T.
(2012). Inferring rules of lineage commitment in haematopoiesis. Nat Cell Biol 74, 287-294.

Porritt, H.E., Gordon, K., and Petrie, H.T. (2003). Kinetics of steady-state differentiation and
mapping of intrathymic-signaling environments by stem cell transplantation in nonirradiated
mice. J. Exp. Med. 79§, 957-962.

Pui, J.C., Allman, D., Xu, L., DeRocco, S., Karnell, F.G., Bakkour, S., Lee, ].Y., Kadesch, T.,
Hardy, R.R., Aster, ].C., et al. (1999). Notchl expression in early lymphopoiesis influences B
versus T lineage determination. Immunity 77, 299-308.

Qiu, X., Mao, Q., Tang, Y., Wang, L., Chawla, R., Pliner, H.A., and Trapnell, C. (2017a).
Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 74, 979—
982.

Qiu, X., Hill, A., Packer, J., Lin, D., Ma, Y.-A., and Trapnell, C. (2017b). Single-cell mRNA
quantification and differential analysis with Census. Nat. Methods 74, 309-315.

Radtke, F., Wilson, A., Stark, G., Bauer, M., van Meerwijk, J., MacDonald, H.R., and Aguet, M.
(1999). Deficient T cell fate specification in mice with an induced inactivation of Notchl.
Immunity 70, 547-558.

Raj, A., Peskin, C.S., Tranchina, D., Vargas, D.Y., and Tyagi, S. (2006). Stochastic mRNA
synthesis in mammalian cells. PLoS Biol 4, ¢309.

Ramond, C., Berthault, C., Butlen-Defranoux, O., de Sousa, A.P., Guy-Grand, D., Vieira, P.,
Pereira, P., and Cumano, A. (2014). Two waves of distinct hematopoietic progenitor cells
colonize the fetal thymus. Nat Immunol 75, 27-35.



100
Rothenberg, E.V., Moore, J.E., and Yui, M.A. (2008). Launching the T-cell-lineage
developmental programme. Nat. Rev. Immunol. §, 9-21.

Rothenberg, E.V., Ungerbick, J., and Champhekar, A. (2016). Forging T-Lymphocyte Identity:
Intersecting Networks of Transcriptional Control. Adv. Immunol. 729, 109—174.

Sambandam, A., Maillard, 1., Zediak, V.P., Xu, L., Gerstein, R.M., Aster, J.C., Pear, W.S., and
Bhandoola, A. (2005). Notch signaling controls the generation and differentiation of early T
lineage progenitors. Nat. Immunol. 6, 663.

Saran, N., Lyszkiewicz, M., Pommerencke, J., Witzlau, K., Vakilzadeh, R., Ballmaier, M., von
Boehmer, H., and Krueger, A. (2010). Multiple extrathymic precursors contribute to T-cell
development with different kinetics. Blood 775, 1137-1144.

Schilham, M.W., Wilson, A., Moerer, P., Benaissa-Trouw, B.J., Cumano, A., and Clevers, H.C.
(1998). Critical involvement of Tcf-1 in expansion of thymocytes. J. Immunol. Baltim. Md 1950
161, 3984-3991.

Schmitt, T.M., and Zuniga-Pflicker, J.C. (2002). Induction of T cell development from
hematopoietic progenitor cells by Delta-like-1 in vitro. Immunity 77, 749—756.

Scripture-Adams, D.D., Damle, S.S., Li, L., Elihu, K.J., Qin, S., Arias, A.M., Butler, R.R.,
Champhekar, A., Zhang, J.A., and Rothenberg, E.V. (2014). GATA-3 dose-dependent
checkpoints in eatly T cell commitment. J. Immunol. Baltim. Md 1950 793, 3470-3491.

Shah, S., Lubeck, E., Schwarzkopf, M., He, T.F., Greenbaum, A., Sohn, C.H., Lignell, A., Choi,
H.M., Gradinaru, V., Pierce, N.A,, et al. (2016a). Single-molecule RNA detection at depth by
hybridization chain reaction and tissue hydrogel embedding and clearing. Development 743,
2862-2867.

Shah, S., Lubeck, E., Zhou, W., and Cai, L. (2016b). In situ transcription profiling of single cells
reveals spatial organization of cells in the mouse hippocampus. Neuron 92, 342-357.

Stoeckius, M., Zheng, S., Houck-Loomis, B., Hao, S., Yeung, B.Z., Mauck, W.M., Smibert, P.,
and Satija, R. (2018). Cell Hashing with barcoded antibodies enables multiplexing and doublet
detection for single cell genomics. Genome Biol. 79.

Strasser, A., Harris, A.W., and Cory, S. (1991). bcl-2 transgene inhibits T cell death and perturbs
thymic self-censorship. Cell 67, 889—899.

Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., Hao, Y.,
Stoeckius, M., Smibert, P., and Satija, R. (2019). Comprehensive Integration of Single-Cell Data.
Cell 777,1888-1902.e21.

Taghon, T.N., David, E.S., Zuaniga-Pflicker, J.C., and Rothenberg, E.V. (2005). Delayed,
asynchronous, and reversible T-lineage specification induced by Notch/Delta signaling. Genes
Dev 79, 965-978.



101
Ting, C.N., Olson, M.C., Barton, K.P., and Leiden, J.M. (1996). Transcription factor
GATA-3 is required for development of the T-cell lineage. Nature 384, 474—478.

Tusi, B.K., Wolock, S.L., Weinreb, C., Hwang, Y., Hidalgo, D., Zilionis, R., Waisman, A., Huh,
JR., Klein, A.M., and Socolovsky, M. (2018). Population snapshots predict -early
haematopoietic and erythroid hierarchies. Nature 555, 54—60.

Ungerbick, J., Hosokawa, H., Wang, X., Strid, T., Williams, B.A., Sigvardsson, M., and
Rothenberg, E.V. (2018). Pioneering, chromatin remodeling, and epigenetic constraint in early
T-cell gene regulation by SPI1 (PU.1). Genome Res. 28, 1508-1519.

van Galen, P., Kreso, A., Wienholds, E., Laurenti, E., Eppert, K., Lechman, E.R., Mbong, N.,
Hermans, K., Dobson, S., April, C, et al. (2014). Reduced Lymphoid Lineage Priming
Promotes Human Hematopoietic Stem Cell Expansion. Cell Stem Cell 74, 94-106.

Velten, L., Haas, S.IF,, Raffel, S., Blaszkiewicz, S., Islam, S., Hennig, B.P., Hirche, C., Lutz, C.,
Buss, E.C., Nowak, D., et al. (2017). Human haematopoietic stem cell lineage commitment is a
continuous process. Nat. Cell Biol. 79, 271-281.

Wada, H., Masuda, K., Satoh, R., Kakugawa, K., Ikawa, T., Katsura, Y., and Kawamoto, H.
(2008). Adult T-cell progenitors retain myeloid potential. Nature 452, 768—772.

Waltman, L., and van Eck, N.J. (2013). A smart local moving algorithm for large-scale
modularity-based community detection. Eur. Phys. J. B 86.

Wang, H., Zang, C., Taing, L., Arnett, K.L.., Wong, Y J., Pear, W.S., Blacklow, S.C., Liu, X.S.,
and Aster, J.C. (2014). NOTCH1-RBPJ complexes drive target gene expression through
dynamic interactions with superenhancers. Proc. Natl. Acad. Sci. U. S. A. 777, 705-710.

Weber, B.N., Chi, A.W.-S., Chavez, A., Yashiro-Ohtani, Y., Yang, Q., Shestova, O., and
Bhandoola, A. (2011). A critical role for TCF-1 in T-lineage specification and differentiation.
Nature 476, 63—68.

Weinreb, C., Wolock, S., and Klein, A.M. (2018). SPRING: a kinetic interface for visualizing
high dimensional single-cell expression data. Bioinforma. Oxf. Engl. 34, 1246—1248.

Yui, M.A., and Rothenberg, E.V. (2014). Developmental gene networks: A triathlon on the
course to T cell identity. Nat Rev Immunol 74, 529-545.

Yui, M.A,, Feng, N., and Rothenberg, E.V. (2010). Fine-Scale Staging of T Cell Lineage
Commitment in Adult Mouse Thymus. J. Immunol. 785, 284-293.

Zandi, S., Ahsberg,]., Tsapogas, P., Stjernberg, J., Qian, H., and Sigvardsson, M. (2012). Single-
cell analysis of early B-lymphocyte development suggests independent regulation of lineage
specification and commitment in vivo. Proc Natl Acad Sci U A 709, 15871-15876.



102
Zhang, J.A., Mortazavi, A., Williams, B.A., Wold, B.]., and Rothenberg, E.V. (2012).
Dynamic transformations of genome-wide epigenetic marking and transcriptional control
establish T cell identity. Cell 749, 467—-482.

Zheng, S., Papalexi, E., Butler, A., Stephenson, W., and Satija, R. (2018). Molecular transitions
in early progenitors during human cord blood hematopoiesis. Mol. Syst. Biol. 74, e8041.



103
Chapter 3

SINGLE-CELL ANALYSIS OF THE TRANSCRIPTION FACTOR
CONTROLLED EARLY T CELL DIFFERENTIATION DYNAMICS
AND TRAJECTORY TOPOLOGY



104
ABSTRACT

The establishment of T-cell identity involves a series of signal-modulated gene network
steps. In the previous study (Chapter2), while we established a detailed model of single-
cell transcriptome dynamics during the transition from multipotentiality to T-cell lineage
commitment, the functional roles of many of these genes remain obscure. In this study,
we leveraged the ex-vivo differentiation systems, combined scRNA-seq with batch
indexing and different perturbation strategies, to unravel the differentiation paths upon
perturbations of single transcription factors (TFs) that are involved in setting up the early
T-cell identity. Specifically, we examined the choices faced by the cells during
commitment, under the control of an important TF Bcll1b. We found that cells without
this critical TF quickly ‘realized’ the abnormality, around the stage where it is first
expressed. And rather than a simple developmental block or regression to an earlier stage
on the developmental trajectory, the cells took a diverging path to ‘exit’ the T-lineage. We
also examined the more complexed regulatory network of early TFs that may be involved
in controlling the alternative lineage suppression and T-lineage progression early on,
which set up the population dynamic topology leading up to T-lineage commitment. Our
results revealed the diverse and multi-module-spanning regulatory roles of these TFs in

controlling the kinetics and differentiation outcomes of the earliest T cells.
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INTRODUCTION

The establishment of T-cell identity emerges from multipotent precursors through a series
of signal-modulated gene network steps (Porritt et al., 2003; Rothenberg et al., 2008;
Taghon et al., 2005; Yui and Rothenberg, 2014; Yui et al., 2010). Commitment to the T-
cell lineage begins in the thymus from the precursors trafficked from the bone marrow
and is induced by complex spatiotemporal interactions between precursor T cells and
thymic epithelial cells, among which Notch signaling from ligands on the thymic stroma
is playing critical roles to suppress alternative lineage possibilities, as well as regulating
cell proliferation (Garcia-Peydro et al., 2006; Porritt et al., 2003; Romero-Wolfet al., 2020;
Taghon et al., 2005). While this process takes place naturally in the thymus, it can also be
replicated in ex-vivo cell culture systems such as OP9-DL1 monolayer co-culture (Schmitt
and Zuniga-Pfliicker, 2002) and recently in a 3D serum-free artificial thymic organoid
culture system, M-ATO (with DLL4) (Montel-Hagen et al., 2020).

The key remaining questions in the early T-cell developmental process are how the
differentiation kinetics and population distributions are regulated by the gene regulatory
network in early T cells. Unlike developing embryos, the differentiation timing from stem
cells is not strictly deterministic. /n vivo, individual hematopoietic stem/progenitor cells
can make rather stochastic decisions about when to become activated (Busch et al., 2015;
Naik et al., 2013). With the help of ex-vivo cell culture systems, we can more conveniently
control the time and duration of signaling environment encounter. However, after days of
differentiation, we will still yield cells in heterogeneous developmental states, due to the
reasons discussed above. This makes bulk profiling techniques inadequate to study
regulatory outcomes of population distributions and the topology of developmental
trajectories. Therefore we combined scRNA-seq with Cell Hashing for sample and batch
indexing (Stoeckius et al., 2018), and different perturbation strategies, to unravel the
differentiation paths upon perturbation of single transcription factors that are involved in
setting up early T-cell identity.

This paper uses single-cell transcriptome analyses of genetic perturbations to dissect two

different phases of pro-T cell programming: (1) the choices faced by the cells during
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commitment, under the control of the Bell1b transcription factor, and (2) the more

complex, previously obscure early gene regulatory network that guides hematopoietic
precursors into the beginning of the T-cell program, which plays integrated roles in setting
up the population dynamic topology leading up to T-lineage commitment.

First, the transcription factor Bell1b is well known to be required for the development of
afy T cells and most yd T cells, and its normal expression initiates precisely during
commitment to the T-cell lineage in the thymus (Kueh et al., 2016; Liu et al., 2010; Shibata
et al., 2014; Wakabayashi et al., 2003). Previous studies have shown that the progression
towards the T-lineage is blocked or highly abnormal in cells that lack Bclllb (Ikawa et
al., 2010; Li et al., 2010a, 2010b; Longabaugh et al., 2017), including being prone to
differentiate into natural killer (NK) cells in reduced Notch environment, and retaining
abnormal expression of ‘immature’ or ‘non-T’ genes associated with stem, or other
lineages (Hosokawa et al., 2018a; Li et al., 2010a, 2010b; Longabaugh et al., 2017).
Although much previous work has identified differential expressed genes (DEGs) through
bulk RNA-seq (Hosokawa et al., 2018a; Longabaugh et al., 2017), the pattern is quite
abnormal compared to normal pro-T cells and does not appear to represent a simple
developmental block. Our study first used the ATO with scRNA-seq to resolve the single-
cell normal and defective developmental trajectories, revealing a ‘realization’ process in
which the cells are fully set up to differentiate into T cells, but lack the critical
transcription factor Bcelllb. Specially, we wanted to ask if these Bcll1b-absent-cells
regress backwards in differentiation trajectory and resemble earlier cells, or do they
bifurcate to an abnormal developmental trajectory? When do the ‘abnormal genes’ come
up? Are the ‘non-T’ genes expressed in all Bcll 1b-absent-cells or just a subset of them?
Second, we wanted to understand how the earliest transcription factors set up the cells to
support or control differentiation and commitment, both in terms of speed and
differentiation outcomes. Our recent study has characterized the fine gene expression
pattern of murine pro-T cells prior to lineage commitment (Zhou et al., 2019). Importantly,
we found that many ‘multilineage’ and ‘stem’ genes are expressed in distinct patterns in
early stages, but their functional impacts were obscure. Are the stem and progenitor genes

involved in establishing the normal differentiation speed and population distributions?
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Meanwhile, TFs such as TCF1 (encoded by 7cf7, referred to as “Tcf7” below) and

Gata3, two important regulators involved in early T-cell fate decisions [rev. in Yui and
Rothenberg, 2014], are upregulated during the early stage (ETP) in normal development.
Will the loss of Gata3 and Tcf7 result in an immediate change in earliest lineage decisions?
What are the regulatory components involved? Our study optimized a strategy based on
CRISPR/Cas9 KO ‘perturbseq’ system (Dixit et al., 2016), and took advantage of the 10X
Chromium V3 chemistry’s direct gRNA capture capability (Replogle et al., 2020), to
resolve this finest detail of regulatory networks in primary ex-vivo derived early pro-T

cells.
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RESULTS

Fine comparison of time-controlled differentiation kinetics between BM derived ex-
vivo culture systems and thymic early T cells

To choose a robust and precise time window that would be suitable for investigation of
gene regulation during the murine T-cell commitment processes, we compared fine sub-
populations of early pro-T cells generated from Bone Marrow (BM) precursors through
different ex-vivo differentiation methods, as well as their in vivo thymocytes (Thy)
counterparts (Figure 1A). Specifically, purified Lin- BM from C57BL/6 mice were either
seeded on OP9-DLL1/DLL4 monolayer stroma culture with the standard serum condition,
or aggregated with MS5-mDLL1/mDLL4 and deployed on culture inserts at the air-liquid
interface, forming artificial thymic organoids (ATO) under serum-free conditions
(Montel-Hagen et al., 2020). DN1, DN2a populations (sub-divided by Bcll1b-YFP
positive and negative, indicated by “maturation steps” at the top of the heatmap) derived
from different co-culture systems were sorted and sequenced through bulk RNA-seq. The
gene expression profiles of the early pro-T populations generated through ex-vivo
differentiation assays exhibited strong agreement on the important regulatory genes
between different conditions, as well as agreement with their in vivo thymocyte
counterparts (Figure 1B). The heatmap not only shows the agreement on the ‘early-to-late
stage’ dynamic pattern ranges of expression, but also the absolute level of expression in
FPKM values, that ex-vivo differentiated T cells in OP9-DLL1, ATO-DLLI1, and ATO-

DLL4 systems recapitulated accurately the thymic pro-T developmental regulations.

Despite the general agreement on important developmentally curated regulators, the
transcriptome-level differentially gene expression analysis did show some differences
between thymocytes and ex-vivo derived cells (Fig.S1A). Among all the conditions, ATO-
DLL4 most closely recapitulated the thymic populations in both DN1 and DN2 stages,
shown by the least number of differentially expressed genes compared to thymic
counterparts (Fig.SIA-B). The only clear deviation from normal pro-T populations,
among all eight tests performed, was the DN1 population derived from our OP9-DLL4

cultures, as it expressed many more myeloid genes than other samples. Also, the cells
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derived from OP9-DLL systems generally express more /d2 than other systems (Figure

1B), which encodes an important transcription factor promoting innate lineages such as

NK, NKT, and ILCs.

Single-cell analysis aligns cells differentiated from BM to thymic early pro-T, in a
continuum covering a good spectrum of early T differentiation

To determine whether the ex-vivo (in vitro) cultures gave full coverage of the fine
population topology, we also performed a proof-of-concept scRNA-seq analysis with LSK
derived pro-T cells and aligned with our previously published thymic T-cell data (Figure
1 C-D). We performed standard canonical correlation analysis (CCA) with 3000 anchor
features using Seurat3, resulting in the well-aligned and intermixed ex-vivo derived and
in vivo thymic early T-cell low dimensional representation (Figure 1D). Further cell cycle
regression was performed to reveal only the fine developmental-related distribution of ex-
vivo derived vs in vivo thymic cells (Fig S1C-E). It was striking to find that a rather pure
precursor population (LSK) could give rise to a full spectrum of DN1-DN2b pro-T cells
within 6 days under the controlled ex-vivo culture environment (Fig. S1F), and almost
entirely recapitulating the thymic pro-T cell gene expression profiles on single-cell levels

(Fig S1G).

The fine RNA-seq profiles together with the experience in previous cell culture assays (W.
Z., M. R.-W., data not shown) helped us strategize the use of ex-vivo system for
perturbation experiments at different stages to optimize cell output. We noticed that ATOs
are good at generating consistent results and providing adequate numbers of cells at day
6 and beyond, while the OP9-DL1 system supports better proliferation and cell recovery
early, especially under conditions that require viral vector delivery. Hence, we have
utilized both ATO-DLL4 and OP9-DLLI1 for the two different stages in which we
investigated TF gene regulation using scRNA-seq for the rest of the study.

Differentiation kinetics and outcomes without an important T-lineage transcription

factor — Belllb
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We first wanted to use single-cell analysis to examine how the loss of Bell 1b alters

the developmental trajectory of pro-T cells during commitment. Bcll1b is not expressed
in the cells until they reach the commitment transition, after which it is expressed in all
committed T-lineage cells(Kueh et al., 2016; Zhou et al., 2019). From previous bulk
studies(Hosokawa et al., 2018a; Longabaugh et al., 2017), Bcl11b KO pro-T cells not only
failed to suppress some of the early ‘immature’ or ‘non-T’ associated genes during
commitment, but also abnormally turned on genes that were not active in normal
precursors before Bcll1b expression onset. Therefore, loss of Bell1b does not appear to
represent a simple developmental block, but rather enables the cells to be diverted to an
aberrant alternative differentiation pathway or pathways which have been completely
uncharacterized until now. The genes upregulated in these Bcll1b KO cells appear to be
a mixture of genes associated with various hematopoietic lineages raising the question of
whether there is one abnormal trajectory promoted or several. Therefore, bulk studies have
been unable to resolve the differentiation trajectory of the normal and abnormal
differentiation process. It was also unclear whether the abnormal expression of different
immature and alternative lineage-associated genes were occurring in the same cells or in
different sub-populations of the Bclllb KO cells. We utilized the long-term culture
capability of the ATO system to compare the WT and Bcll1b knock out (referred as
‘Belllb KO’ or ‘11b KO’ hereafter) differentiation processes at single-cell resolution,
with two staggered timepoints, starting from LSK precursors purified from multiple
individual animals (Figure 2A). For the Bcll1b KO, we used a conditional knockout strain
with Bcll16™/* and VavI-iCre, which deletes the main functional coding domains of
Bcll1b during early hematopoiesis before T-cell development begins. In each experiment,
cells derived from different animals were tagged with different antibody-oligonucleotide
conjugates using a “cell hashing” technique to give different barcodes to cells from each
donor (Stoeckius et al., 2018). They were then pooled for scRNA-seq to serve as
biological replicates or for control vs experimental comparisons within a single 10X v3
run.

First, the surface staining phenotype of ATOs consistently recapitulated thymic
phenotypes of the Bcll1b KO pro-T cells (Figure 2B, S2A). We sorted Lin- CD45+
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CD25+ cells from ATOs derived from LSK precursors from the two different

genotypes, and the Bclllb KO cells clearly exhibited higher cKit surface staining
compared to WT, consistent with previous studies (Hosokawa et al., 2018a; Ikawa et al.,
2010; Li et al., 2010a, 2010b; Longabaugh et al., 2017). The separation between KO and
WT was more dramatic in the D13 culture compared to D10 (Figure 2B). Using the
scRNA-seq data, we first compared the datasets in a 2-genotype-2-timepoints ‘pseudo-
bulk’ analysis, testing the genes that were differentially expressed between D10 and D13
in the WT cells and in the Bcll 1b KO cells, respectively (Figure 2C). Interestingly, among
the genes that were differentially expressed between D10 and D13 in WT (total 1775
genes), 721 genes were not among the differentially expressed genes in Bcll1b KO;
whereas among the genes that were differentially expressed between D10 and D13 in
Bcell1b KO (total 1995 genes), 941 were not observed differentially expressed in WT
(Figure 2C-D). This result indicates that a large fraction of genes that were differentially
regulated, representing the differentiation progression happening between D10 and D13,
were diverging between the two genotypes. We then looked more closely at the genes that
were significantly differentially expressed in both genotypes between the two timepoints,
as shown in Figure 2E. Most of the differential expression patterns of these genes agreed,
although some were more highly expressed in the WT at both stages (Fig. 2E, cyan) and
others always more highly expressed in the KO at both these stages (dark blue). However,
a small group of abnormal genes were discordantly regulated from D10 to D13 (Fig. 2E,
red). Some were up-regulated in Bcll1b KO but down-regulated in WT, including Cd63,
Tyrobp, Cd244, Cpa3; and another small group of genes were down-regulated in Bell1b
KO but up-regulated in WT, including Cd3g and Pcna (Figure 2E). The genes that were

completely differentially expressed in one but not the other are discussed in detail below.

Single-cell analysis: shifts in patterns in low dimensional space and the further WT-
KO divergence at day 13

To ensure reproducibility, the single-cell analyses were performed through two separate
scRNA-seq experiments, each with 6-8 hashtagged samples. To integrate the results, we

first performed CCA integration for the two experiments, and subsequent clustering and
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demultiplexing of the Cell Hashing index (Figure 2F,G, S2B). Upon demultiplexing,

it was clear that the assay provided excellent reproducibility after integration, both on the
biological replicate level across experiments, and between different animals of the same
genotypes (Fig S2B-D). Although there was still substantial overlap between Bcll1b KO
and WT patterns in D10, in UMAP 1 and 2, it was striking to see that the two genotypes
took very different paths in D13 (Figure 2G, Fig. S2B). Based on gene expression patterns
in these clusters (Fig. S2G, also from Zhou et al 2019(Zhou et al., 2019)), at D10 there
were still many cells representing the most immature states present in both cultures
(clusters 12, 6, 3), and many cells at intermediate stages showing enrichment for cell cycle
genes (clusters 7, 5). By D13, the putative immature clusters were depleted, while WT
cells increasingly shifted to more mature stages in clusters 4, 2, 9, and 10 (based on genes
shown in Fig. S2G), whereas the Bell1b KO cells showed a strong enrichment in clusters
0, 1, and 8 instead.

To more accurately measure the low dimensional space patterns and cluster distributions
of all individual samples, we calculated the pair-wise Kullback-Leibler (KL) divergence
between all the samples based on each sample’s cluster distributions, as shown in the
heatmap in Figure 2H. First, the KL divergence confirmed the pattern agreements between
all the experimental and biological replicates, and the contrast between WT and Bcell1b
KO samples. Second, the KL divergence calculation also agreed with the visual pattern
that there was further divergence between WT and Bcll1b KO progressing with time. The
shifts of cluster distributions with genotype could be investigated sample by sample, in
experiment 2, where two timepoints were collected (Fig.S2 E-F). Because KL divergence
is calculated based on each sample’s cluster distributions, it is important to pinpoint which
were the most quantitatively important clusters that describe the genotype differences.
Scatterplots of cluster proportions between WT and Bcll 1b KO showed that in both D10
and D13, cluster 2 was always enriched in WT and cluster 0 was always enriched in the
KO (Figure 2I). Indeed, a finer look at each cluster’s expression profile (Fig S2G) and
each sample’s UMAP 1 and 2 pattern suggested that the clusters 0 and 2 potentially
indicated where WT and Bcll1b KO were ‘branching’ into the 2 different directions. We

also performed differential gene expression analysis between clusters 0 and 2, and the
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expression pattern of top 20 genes enriched in either cluster are shown in the heatmap

(Figure 2J). It is particularly interesting to see that the cluster 2 enriched genes were
mostly T-lineage associated genes while the cluster 0 enriched genes were ’immature’ or
‘innate immune’ cell associated genes, and many were known Bcll1b repression targets
(Hosokawa et al., 2018a; Longabaugh et al., 2017). These genes were clearly differentially
expressed between clusters 0 and 2, but even more differentially expressed further down

the ‘branches’ (clusters 2,9,10 for WT and 0,1,8 for Bcll1b KO, respectively).

The beginning of divergence between genotypes happened in clusters with high cell
cycle activities, and the differentially expressed genes have different timing

The potential differentiation trajectories of WT and Bclllb KO could be sketched
manually, based on the connectivity in UMAP 1 and 2 and expression patterns of lineage
markers (Figure 3A-C, S2G). Of special interest was cluster 5, which was enriched for
proliferation-associated genes (Fig. S2G), had a loop-like topology, and was represented
in both genotypes at both timepoints. Interestingly, when we highlighted the cells in
cluster 5, we observed that the WT and Bcell1b KO formed parallel but slightly separate
loops (Figure 3B). This suggested that the branching of the WT vs KO trajectory may
happen earlier, around the seemingly mixed ‘proliferation stage’, before branching further
into cluster 0 and cluster 2, as discussed before (Figure 3A). To test this hypothesis, we
performed differential gene expression analysis between WT and Bcll1b KO, only on
cells within cluster 5 (Figure 3D). To our surprise, a large number of genes were
significantly differentially expressed between WT and Bcll1b KO in cluster 5 only,
clearly substantiating the separation observed in Figure 3B. These differentially expressed
genes overlapped largely with genes noted to be differentially expressed between cluster
0 and cluster 2 (cf. Fig. 2J). Moreover, we observed that even within the same cluster
which was present at both timepoints, namely cluster 5, WT to KO difference at D13 could
still be bigger than in D10. For example, expressions of lkzf2 (same for S/00al0 and
Itga4), in D10 Bcll1b KO cells were not very different compared to D10 WTs, while at
D13 these genes were dramatically upregulated in Bell 1b KO cells in cluster 5, compared

to WT cells in cluster 5. Thus, clearly the ‘branching’ between WT and Bcll1b KO
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already occurred earlier in the trajectory, at cluster 5, despite the close proximity in

low dimensional space. The genotype-specific differentially expressed genes in cluster 5
are shown in Fig. 3D. In addition, the added time resolution in the heatmap Figure 3D
showed that the accumulation of subtle abnormal expression features can precede

substantial movement between discrete clusters in low dimensional space.

The destiny of cells after the realization of their inability to become T cells

Although Bcll1b KO cells have previously been noted to express ‘immature’ or ‘non-T’
genes (Hosokawa et al., 2018a; Longabaugh et al., 2017), it was unknown whether the
abnormally expressed B-, NK-, other innate-, stem-associated genes were all expressed
in the same cells or segregated among different cells that lack Bcll1b. Our data now
showed that cells most highly expressing, NK (//2rb) and ILC (Rora, Zbtb16) genes were
concentrated at the 10 o’clock ‘tip” within the UMAP1-UMAP2 space (cluster 8) which
seems to be the ‘exit’ point of the Bcll1b KO developmental progression (Figure 3C).
Mpyole, a B cell and ILC-associated gene, was more spread across cluster 1 and cluster 8.
Cdl16311, a gene associated with the TCRyd cell lineage, highlighted cluster 8 and far left
of cluster 1. Fig. S3C-F shows a detailed analysis of the expression patterns of many of
these genes within the Bclllb KO cells specifically. Although the different genes
upregulated in Bell1b KO cells were found more or less spread across the population
distribution, nearly all reached their highest levels at the same ‘tip’. Therefore, the Bcll1b
KO developmental pathway appeared to progress toward a major single endpoint, distinct
from the T-cell program, not several diverse alternative states.

To gain more insight into the processes that drive the program for Bell1b KO cells, we
computationally subset only Bcl11b KO cells, and performed co-regulated ‘gene module’
analysis with Monocle3, extracting modules of genes which help to further sub-define the
component states within the Bclllb KO population (Fig S3A-D). In Bcelllb KO only
UMAP 1-3 (Fig S3E), with this fine resolution visualization, we observed that the ‘tip of
exit’ showed sign of loss of Notch response genes, such as Nrarp, 1/2ra. Cells around the
tip further upregulated Gata3, 1d2, Ikzf2, while downregulating Ragl. The orthogonal
UMAP 1-2 space also showed a small cluster, shown in Fig. S3F (also seen in Figure 2F,
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S2G cluster 13), has a small distinct cell cluster with the expression of interferon-

response genes, Ifit] and Ifit3. Thus, the end stage of the Bcll 1b KO pathway may involve
the upregulation effort of many ‘multi-lineage’ genes, but at the end, it was clear that the
D13 terminus of the Bclllb KO program ‘exiting point’ involved at least partial
downregulation of Notch signaling.

These results thus show that pro-T cells reaching the threshold of commitment, when they
would normally upregulate Bcl/l1b, respond to the lacking of Bclllb by gradually
accumulating ‘early stage’ genes that would normally be turned-off around this stage, and
progressively upregulate ‘abnormal’ genes in a uni-lineage path diverging from the
normal developmental trajectory. The cells lack Bell1b do not regress back along the
normal developmental trajectory, but rather go on an aberrant branch that would finally
lead to a small fraction of cells ‘exiting’ the ‘T-programs’ through the downregulation of
Notch signaling responses and further upregulation of the innate lineage associated

expression features.

TFs with early stage dynamic expression patterns are examined through batch
controlled dual gRNA direct capture perturb-seq

Many regulatory network changes seem to precede the T-lineage commitment
decision(Zhou et al., 2019), but the basis of their regulation has been poorly understood.
This is partly due to the rarity of the cells in these stages and to the overlap between TFs
expressed in the earliest T-cell precursors and those used in other hematopoietic
precursors. To reveal the underlying network topology, we examined the effects on
differentiation speed and outcomes when we knocked out candidate regulators of these
early events, specifically candidate TFs for regulatory functions that also exhibit dynamic
expression pattern changes during early stages in differentiation (Figure 4A). In particular,
Bcllla, Spil, Hoxa9, Meisl, and Erg encode stem-progenitor associated factors, whereas
Tcf7 and Gata3 encode T-lineage associated factors, and we focused on these for targeted
KO studies. Note that several of these genes have previously been shown to be important
for viability of early T-cell precursors (Champhekar et al., 2015; Germar et al., 2011;
Hosokawa et al., 2018b; Scripture-Adams et al., 2014; Yu et al., 2012), but we ensured
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maximum retrieval of viable perturbed cells by including a Bcl2 transgene in the Cas9

mice. KO effects were examined by introducing 2-3 sgRNAs against the gene of interest,
delivered through retrovirus, to Lin" or LSK prethymic precursor cells from bone marrow
that were purified from mice with constitutive expression of Cas9 proteins. After
transduction, the cells were then cultured in either ATO-DLL4 or OP9-DLL1 systems to
initiate the T-cell program (details in Methods; see Figs S1, S2). Interestingly, in various
experimental settings in preliminary studies, KOs of ‘stem’-related genes, Bc/lla or
Meisl, promoted a ‘faster’ developmental phenotype promoting the DN2a to DN2b
transition, as indicated by surface marker combinations of CD44, cKit and CD25. Erg KO
increased the rate of DN1 to DN2 transition (examples shown in Figure 4B). KO of Spi/,
encoding PU.1, a pioneer factor which is important for myeloid vs lymphoid decision,
was previously shown to accelerate DN2 to DN3 progression if deleted after T-cell
development was initiated (Champhekar et al., 2015; Hosokawa et al., 2018b; Scripture-
Adams et al., 2014). Here, with earlier deletion, it lowered the CD44 level in all CD25+
cells, but retained a population that is CD25:CD44". However, we did often observe
variations in infection rates, cell number yields, and phenotype inconsistency (between
culture systems or experiments during screens of different knockouts). Therefore, to
combat variability and non-autonomous effects, we designed a definitive, highly-
controlled scRNA-seq assay to determine whole-transcriptome effects of these
perturbations, using a pool-synthesized, batch-controlled dual gRNA system (Figure 4C-
D).

Briefly, paired gRNAs (each pair designed against the same exon of the same gene to
ensure sufficient KO) were synthesized through array-based oligo synthesis, then the oligo
pool was PCR amplified and Gibson assembled to generate the paired dual gRNA insert
pool, and subsequently incorporated into retroviral backbone and packaged into the final
retroviral vector library. The paired gRNAs being expressed were compatible with direct
capture of both gRNA sequences in scRNA-seq using 10X Chromium V3 chemistry
(‘Capl’ and ‘Cap2’ in Figure 4C, details and description of quality controls and titration
given in Methods; Figs. S4A, S4B). Importantly, each packaged retroviral pool was
titered on the same type of primary cells to precisely target multiplicity of infection (MOI),
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0.5-1 in this study, to ensure single gene effects (Fig S4B, Methods). Here, we used

CRISPR/Cas9 in the KO context, similarly to the original perturbseq setup(Dixit et al.,
2016). FACS sorted precursor LSK cells were infected with retroviral pools at MOI of
0.5-1, then cultured on OP9-DL1 for 5 days differentiation before FACS sorting to purify
the infection positive populations for scRNA-seq (Figure 4D, details in Methods). To
further minimize batch variations, we multiplexed multiple batches of biological
replicates using antibody-conjugated cell-hashing technique (Stoeckius et al., 2018). After
sequencing libraries of cDNA, gRNA, and hashtags yielded from the same experiment,
the three respective FASTQ files were aligned with CellRanger3 (for cDNA) and an in-
house pipeline (for gRNA and hashtags, Fig S4C-D, details in Methods). We also
performed additional validation experiments of dual gRNA in our primary cell
differentiation system, showing that two gRNAs in the same vector did improve upon
single gRNA KO effect (Fig S4E-F). The multiple replicate infections, multiple sgRNA
pairs against the same target, and pooled sequencing of all in the same 10X v3 analysis
yielded a high quality, internally controlled resource of data in which to identify specific

perturbation effects.

Dramatic changes in topology with single TF perturbations

It is important to note that the 5-day-culture of LSK with Notch signaling is aiming to
look at the immediate loss of function effect at the very early stage of differentiation
(before any identity establishment), as normally 5 days post infection, the majority of LSK
cells are still in DN1 stage by surface markers. However, the scRNA-seq result revealed
that some of the individual TF perturbations already resulted in dramatic shifts in low
dimensional representation (Figure 4E-G, Fig. S4G). While control cells spread across the
UMAPI1 and 2 space, forming a sparse differentiation continuum (Figure 4F left), cells
expressing sg. Tcf7 or sg.Gata3 stalled at the more un-differentiated stage; cells expressing
sg.Spil shifted towards more differentiated stage but slightly veering from the control
trajectory; and cells expressing sg.Erg formed a distinct cluster, aligned parallel to the
‘normal’ trajectory with some DN2 signature genes enriched (Figure 4F-G, S4G, S5D).

In the entire pool of cells, more sg.Erg expressing cells were detected than any other cells,
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implying that Erg loss may enhance proliferation (Figure 4H). In contrast, Tcf7 and

Meisl perturbations slightly suppressed proliferation despite the presence of anti-
apoptotic Bcl2, as all pairs of gRNAs of these genes showed consistent cell number
differences compared to the control vectors (Figure 4H). For simplicity, hereafter, we refer
to the integrated effect of all sg.RNA against the same genes as ‘KO’.

To describe the cluster distribution relationships of different KOs, pair-wise KL
divergence was calculated. This showed that KOs of Tcf7, Erg, and Spil exhibited
dramatic cluster pattern differences among each other, and they were also very distinct
from the control (Figure 41, individual pairs of gRNA’s cluster distribution in Fig S5A).
However, except for the clusters specific for the Erg KO cells, most of the KO and controls
still shared the same common clusters, although their distributions among these clusters
varied greatly, as shown in Figure 4E. In light of the results previously shown for the
Bclllb KO in the later-stage cells (Fig. 3A, B, D), we wondered whether the gene
expression profiles of KO and control within the same ‘common clusters’ were different
here. However, here the representative scatter plots (Fig S5B), correlation heatmaps (Fig
S5C), and differential gene expression analysis (not shown) between Cont and KOs all
showed that for cells within the same ‘common’ clusters, the gene expression patterns
between control and KOs were rather similar, in contrast to the behavior described
previously for cluster 5 of the Bell1b KO cells and WT cells. Therefore, we conclude that
the effects of these early KO perturbations were mostly described by the shifts between
clusters in low dimensional space, not by subtle changes of individual genes’ expression

in the same shared clusters.

Differentially expressed genes between different KOs are partially explained by the
early to late progression in control cells

The key questions we sought to answer in knocking out TFs were a) what target genes
they regulated and b) what their potential functional implications were during this early
differentiation process. To first examine the regulated targets, we performed differential
expression analysis looking at the top up- and down- regulated genes in response to each

of the KOs. All KOs except Hoxa9 and Meis1 showed many significantly differentially
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expressed genes in response to the KOs (Figure SA-B). The Bcellla KO up-regulated

‘late’ genes and down-regulated the ‘stem’ genes, while the Spil KO partially overlapped
with the Bcllla KO’s differential expression pattern but induced more innate-immune
genes such as S700a6 and Ifitm?2, and also upregulated transcripts of the T-cell receptor y
locus, Tcrg-C4. Erg KO cells upregulated many cytoskeleton- and growth/signaling-
related genes, and downregulated Ctla2a and Myl10. Tcf7 KO cells showed expression
enriched for stem-related genes such as Sox4 and Mef2c, as well as Malatl, a IncRNA
known for involvement of nuclear-speckle and mRNA splicing. While Gata3 KO cells
were also enriched for some stem-related genes, they were not enriched for expression of
Sox4; instead, they noticeably upregulated DC and macrophage-related genes, as well as
cell cycle related genes which will be discussed later.

We then asked if the genes up-regulated and down-regulated in each of the KOs and shifts
of the KO cells from control or ‘normal’ differentiation trajectories could explain each
other. To resolve this, we compared each knockout with a differential expression analysis
of the control cells only, defined by the gene expression changes that occur normally in
the stages from early DNI1 to late DN2b, i.e. (in only the Cont) between early clusters
(7,1,11) and late clusters (0,6,5,8,9,14), as shown in Fig S5F. For example, Bcll1la and
Spil KOs both pushed the cells away from clusters representing the most un-differentiated
states (Figure 4F, S4G); Were all the genes these cells up-regulate essentially ‘late’ or
‘DN2’ genes, such as Cpa3 and Fgf3? Tcf7 and Gata3 KO both had stalled differentiation
at different stages (Figure 4F, Fig. S4G). Was this why both KO conditions seemed to
have enriched expressions of at least some ‘stem’-related genes, such as Mef2c and Bcll1a?
To generalize, could most of the differentially expressed genes be simply explained by
the shifts of ‘early’ to ‘late’ stages that normally happen during differentiation? The results
of this comparison showed that while many changes in Tcf7 knockouts seemed to follow
predictions of a simple developmental block (Fig. S5E), many of the differentially
expressed genes in other KO conditions changed in ways that are not explained purely by
the early to late transition expression profile changes in control (Fig.S5E-I, dark brown

dots).
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KOs resulted in dramatic changes in cell cycles and different lineage program

regulations

To further understand the potential changes of regulatory activities induced by deletion of
these TFs, we used SCENIC (Aibar et al., 2017) algorithm to identify groups of genes
correlated with, and potentially regulated by the same “central” factors. The SCENIC
analysis was performed on the computationally separated individual KOs (Fig.S6), and
we found that these predicted “central” factors and their potential target genes responded
distinctively in the different individual KOs. SCENIC infers probable network
connections from the enrichment of the target motif for TFs in genomic regions near TSS’s
of genes co-expressed with those TFs, and integrate the expressions of the potential target
genes as the predicted TF activities, namely ‘regulons’. Among the most significant
regulon activities identified by SCENIC, it revealed several coherent regulons that
responded in markedly different ways in our KOs (Fig. 5E). Interestingly, SCENIC
predicted a ‘central’ TF, Ybx1, governing a prominent regulon in all samples (shown in
Fig S6), the function of which has not been extensively studied in hematopoietic systems.
However, inferred Ybx1 activity appeared strongly correlated with cell cycle: among the
genes co-expressed with Ybx1, links between Ybxl, cytoskeleton genes and
G2/S/proliferation markers, such as Birc5 and Hmgbl, were discovered (Figure 5C-E,
detailed in Fig S6 and S7C-D). Moreover, the distribution across the cell
cycle/proliferative stages changed dramatically upon perturbations of some of the genes,
as shown in Figure 5C-E. The Erg KO shifted cells to a highly proliferative stage, and the
Gata3 and Bcll la KOs also seemed to promote proliferation, whereas the Spil and Tcf7
KOs seemed to suppress proliferation (Figure 5C). Both Gata3 and Erg KO further
induced a ‘new’ Hmgbl module which potentially further extends the cell cycle and
cytoskeleton regulation. The observation on cell cycle regulation in pair-wise plots and
SCENIC analysis substantiated the earlier transcriptome-wide differential expression
analysis in Figure 5A, where Gata3 KO upregulated Mki67 and Top2a, two canonical
G2/S/proliferative markers, which are profoundly downregulated in Tcf7 KO. Moreover,
SCENIC predicted that integrated Myc ‘regulon’ activities are significantly decreased in
Tcf7 and Meisl KOs, but significantly increased in Erg KO (Figure S7A). Cell cycle
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stages, RNA contents, and expression of cytoskeleton genes were further compared

between control and all KOs, and the results support these findings on Erg, Gata3, Meisl,
and Tcf7 KO effects (Figure S7B-D).

Besides cell cycle, cytoskeleton, and Myc related regulations, we focused on
developmental and lineage-associated regulons. Although Gata3 and Tcf7 both showed a
‘stalled phenotype’ on differentiation space, their up-regulated and down-regulated genes
had minimum overlaps. The Gata3 KO seemed to be more encouraging for innate lineages,
upregulating S700a4, Ifitm1, and Ifitm3d, whereas cells without Tcf7 downregulated these
genes, and upregulated 7Tyrobp and Sox4 instead (Figure 5A). Indeed, the SCENIC
summarized TF-target regulation prediction showed evidence for differential regulation
of Spil (PU.1), Irf8, and C/EBP family TF activities upon deletion of Tcf7, Gata3, and
Erg (Summarized in Figure SE, details in Fig S6). Loss of Gata3 immediately promoted
all myeloid programs including upregulating Irf8 (DC) and C/EBP family genes (MF),
while supporting proliferation (Olsson et al., 2016). However, loss of Tc¢f7 only retained
Irf8 and Spil expressions, but surprisingly did not promote a MF/GN module involving
Spil and C/EBP family TF activities (Figure SE, STE-H). Moreover, it is not surprising
that Tcf7 KO completely abolished the T-lineage regulatory module (Figure SE). The Erg
KO not only suppressed the myeloid regulating modules, but also the stem module (Figure
5E). Therefore, it was clear that KOs of individual TFs could lead to complexed changes
in regulatory activities in developing early T cells, including proliferation, Myc activity,

alternative lineage programs, and T-lineage programs.

KO of individual TF shifts cells in T differentiation pseudotime trajectory

To better describe the differentiation continuum along T fate lineage, we performed
trajectory and pseudotime analysis with Monocle3 in 3D UMAP space, as shown in Figure
SF. The predicted T developmental pseudotime of individual cells from different KOs are
represented in Figure 5G. Kruskal-Wallis test has shown the significant pseudotime
acceleration shift of Bcll 1a, Spil, and Erg KOs from control, and significant deceleration
of Gata3 and Tcf7 KOs from control. The results indicate the expression of Spil, Bcllla

and Erg in early T cells slows down the differentiation process, while expression of Gata3
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and Tcf7 are used (or required) for the advancement T-lineage, which agrees with

previous studies (Champhekar et al., 2015; Scripture-Adams et al., 2014; Weber et al.,
2011). The unsupervised trajectory and pseudotime analysis based on full transcriptome
profiles further substantiated that these TFs are involved in regulating the differentiation
speed. Clearly, these genes expressed in the early stage of T cells are functionally relevant
in setting up the proper proliferative state and differentiation speed of the cells. Our results
revealed the diverse and multi-module-spanning regulatory roles of these TFs in

controlling the kinetics of early T-lineage differentiation.
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DISCUSSION

The perception of cell fate commitment is usually a discrete and irreversible decision point
made by the multipotent cells, resulting in the acute loss of alternative lineage potentials.
However, for a stem cell population that is regulated under a non-fully deterministic gene
regulatory network, we need to view the process as a developmental or decision
continuum, that are potentially coupled by multi-module regulations, in order to
understand the requirement for cell fate commitment ‘event’ and the modulators for the
speed of the differentiation process. Indeed, many previous studies have shown that
hematopoietic differentiation processes often involve gradual exclusions of alternative
lineages. But in T cells, the process does not seem to be regulated by any single ‘master
regulator’ (Longabaugh et al., 2017; Mingueneau et al., 2013; Naito et al., 2011;
Thompson and Zudiga-Pfliicker, 2011; Yui and Rothenberg, 2014; Zhang et al., 2012).
Previous studies have shown perturbations of some of the regulators either in later stages
of development or in slightly different settings, such as fetal liver precursors (Champhekar
etal., 2015; Garcia-Ojeda et al., 2013; Germar et al., 2011; Hosokawa et al., 2018a, 2018a,
2018b; Longabaugh et al., 2017; Scripture-Adams et al., 2014; Weber et al., 2011; Yu et
al., 2012). Most importantly, the lack of single-cell resolution has previously made it
impossible to understand the full developmental continuum and trajectory topology; any
interpretation of bulk RNA-seq perturbation data could have been an averaging effect of
mixed regulatory outcomes on single-cell levels. In this study, we used scRNA-seq
coupled with different carefully designed- and optimized- perturbation strategies to
further examine the loss of function outcomes of regulators to this early T-cell
differentiation continuum. Specifically, two different stages of the cell fate decision
process were focused: with Bell1b KO — around and right after lineage commitment; and
with selected TF-‘perturbseq’ — prior and leading up to lineage commitment.

Our results showed a clear branching developmental trajectory through the lineage
commitment stage of WT and Bcll1b KO precursors. The loss of Bell1b impacted cells
early on after Bcl11b would normally begin to be expressed, in the proliferative DN2 stage,

where immediate divergence of normal and defective trajectory occurs. Despite the
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clustering algorithm assignment of WT and KO to the same cluster, the changes in the

expression pattern preceded their shifts in low dimensional space. Furthermore, the cells
without Bclllb seemed to undergo a major uni-lineage path of accumulation of many
‘abnormal’ genes in the same cells over time, through which some of the Notch response
genes were transiently upregulated, but eventually lost. Notably, upon the final loss of
Notch signaling, many NK or ILC-associated genes were turned on together, potentially
representing the ‘exiting’ path to become ‘NK-like’ or ‘innate immune’ cells observed in
previous studies (Hosokawa et al., 2018a; Li et al., 2010b).

Previous study of in vivo thymocytes, using the highly sensitive imaging-based seqFISH
method, showed that within the ETP state, the majority of individual cells co-express
legacy progenitor genes with the critical Notch-induced T-cell regulatory genes, Gata3
and Tcf7 (Zhou et al., 2019). This implies that the stem and Notch-induced regulatory
modules operate together to potentially set up lineage progression to DN2 stage, which
later leads to lineage commitment. This study examined individual TF perturbations,
including Gata3 and Tcf7 themselves, around the ETP equivalent stage. First, our result
showed that deletion of some stem-related genes, like Bcllla and Spil, shifted cells to a
more differentiated state, and Erg KO shifted the cells to an aberrant proliferative DN2
state. Second, SCENIC analysis suggested that some of the TFs are controlling not only
the differentiation state but also are involved, directly or indirectly, in controlling
proliferation, cytoskeleton and Myc activity modules. Our results showed surprising
contrast of myeloid and proliferation modules regulated by Gata3 and Tcf7: Gata3 was
involved in suppressing many myeloid lineages and promoting T-lineages; whereas Tcf7
was absolutely required for setting up the T-lineage program at the earliest stage, but did
not appear directly to suppress myeloid lineages. Although Gata3 and Tcf7 are both
known, essential T-cell regulatory factors, our analysis showed that the presence of Gata3
normally seemed to suppress proliferation while Tcf7 seemed to promote proliferation.
Finally, it was clear that perturbation of individual TFs can significantly shift
differentiation kinetics, indicated through pseudotime calculations. Bell 1a, Spil, and Erg

KOs accelerated the differentiation process while Gata3 and Tcf7 KOs stalled it. The
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results imply that some of the stem related genes naturally hold back the differentiation

speed, while Gata3 and Tcf7 at least are promoting the differentiation process.

It is fair to conclude that developmental timing is initially restrained through a network of
positively cross-regulating transcription factors that actively maintain stem-like properties,
which are expressed in the progenitors. The differentiation progression then results from
the tipping of the balance between the differentiation-promoting gene network regulators
and the stem-like gene network regulators. Therefore, some of the early stage transcription
factors are likely controlling the balance, hence differentiation kinetics.

In summary, we presented a detailed single-cell study of the population distributions,
trajectory topology, and differentiation kinetics upon knocking out important regulators

during or before the T-cell identity establishment.
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Figure 1. BM derived early T cells’ expression profiles recapitulated in vivo thymic early
T cells’, on bulk and single-cell levels.
A) Nlustration of early T cells harvested from thymus or derived from bone marrow (BM)

precursors. The ex-vivo culture systems include both the OP9-DL co-culture system with
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OP9-DLLI or OP9-DLL4 stroma cells, and the 3D artificial thymic organoid (ATO)

system with MS5-mDLL1 or MS5-mDLL4 stroma cells, as detailed in Methods. B)
Clustered expression heatmap of bulk RNA-seq measurements comparing early T cells
harvested in vivo and early T cells derived from BM as illustrated in A). All genes plotted
are from a list of curated important regulatory gene list described in the previous study
(Zhou et al., 2019). Color scales indicate raw expression levels as log(FPKM+0.1),
without row normalization. C) Illustration of sample purification procedures and FACS
sorting strategies for the sScRNA-seq experiments, comparing in vivo and ex-vivo derived
early T cells’ single-cell expression profiles. D) Aligned in vivo and ex-vivo derived
scRNA-seq profiles after CCA scaling, shown in UMAP1-2. More detailed analysis of the

aligned scRNA-seq profile and comparisons are shown in Figure S1.
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Figure 2. (Previous page) Single-cell population distributions of Bell1b knockouts

revealed time-progressed abnormality compared to wild type.

A) Schematics showing the experimental design and setup of internal controlled scRNA-
seq experiments comparing wildtype (WT) and Bcll1b knockout (11b KO). B) Top panels
describe the FACS purification strategy for the Bell 1b scRNA-seq experiments. Bottom
panels summarize the surface staining phenotype of cKit levels in WT and Bell1b KO
(noted as FF for flx/flx, details in Methods). C-E) Differential expression analysis of
expression profiles from cells that were harvested on D10 and D13, in WT and Bcll1b
KO, separately. C) Volcano plots of genes with differential expression between D10 and
D13 (x axis represent the ‘estimates’ from the generalized linear model fit of gene
expression with respect to time), and their adjusted p-values (qval, on a logio scale). The
dot color represents whether the identified gene’s differential expression is also tested
differential in the other genotype. D) Venn diagram showing the number of differentially
expressed genes’ overlaps between the two genotypes. E) Scatterplot showing the genes
that were significantly differential expressed in both of the genotypes. Comparing the WT
and Bcll1b KO’s ‘estimates’, showing whether the directions of differential expression
regulations with respect to time agreed in both of the genotypes. Red dots represent the
genes that were regulated in opposite directions; Blue dots show the genes expressed
higher in WT (=1.7 fold difference in ‘estimates’, and the ‘estimate’ in at least one of the
genotype >0.1); Purple dots showed the genes expressed higher in Bell1b KO (>1.7 fold
difference in ‘estimates’, and the ‘estimate’ in at least one of the genotype > 0.1). F) Left
panel shows the aligned two experiments of Bell 1b scRNA-seq profiles after CCA scaling,
as ‘Bclllb runl’ and ‘Belllb run2’, in UMAPI-2. Note that ‘Bclllb runl’ samples
were only collected in D10. Right panel shows the Louvain clustering of the integrated
samples (details in Methods). G) Samples subset according to the hashtag demultiplexed
genotype and time of harvest, and displayed in UMAP1-2, colored by the same clustering
annotation from Fig.2F. (Also see Fig.S2B). H) Heatmap showing the KL divergence of
all integrated samples, calculated based on cluster distributions (as shown in Fig.2G and
Fig.S2B). I) Pair-wise cluster distribution scatterplots comparing WT and Bell1b KO.

Red arrows indicate the most dramatic and consistent difference between the two
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genotypes in both time points, cluster 0 and 2. J) Heatmap showing the top 20

differentially expressed genes between cluster 0 and cluster 2, in both directions.
(Wilcoxon Rank Sum test, filtered by minimally expressed by 25% cells in of one of the

clusters, and adjusted p-val < 1e-50).
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Figure3. Trajectory divergence between WT and Bcll 1b knockout occurred immediately
after the normal-Bcl11b expressing proliferating late DN2a stage.

A-B) UMAP 1-2 colored by different demultiplexed samples. 4) The hand-sketched
inferred trajectories of differentiation of WT and Bcll1b KO. B) The zoom-in view of the
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subset of cells only in cluster 5 from Fig.2F, showing a slight separation of genotypes.

The same color map shown in B) is used in panel A), B), and D). C) Selected genes
highlighted on UMAP 1-2, marking T differentiation stages (//2ra, Bclllb, Lefl), and
alternative lineage associated genes (Neurl3, Cd163l1, Rora, Zbtb16, 112rb, Myole). D)
Heatmap of differentially expressed genes between WT and Bcll1b KO in only the cells
from cluster 5 (Fig.3B), revealing the gene expression differences that caused the
separation shown in fig3B. (Wilcoxon Rank Sum test, filtered by minimally expressed by
25% cells in of one of the clusters, and adjusted p-val < 1E-20, top and bottom 20 genes
ranked by average log expression differences (‘avg logFC’ in Seurat) are displayed,
calculated using Seurat v3.) Red dots label the genes that are enriched in Bcll1b KO

compared to WT, but more dramatically in D13 than D10.
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A) Gene expression dynamics of selected TFs with known or potential regulatory roles

in early T-cell development, and illustrations of different lineage potentials as described
from the previous study (Zhou et al., 2019). B) Representative surface expression
phenotypes analyzed by flow cytometry. Different developmental kinetics were resulted
from acute TF deletions on precursors prior to Notch signaling encounter (details in
Methods), and cultured for 6 days with OP9-DLL1, and developmentally staged by
surface expression of CD44 and CD25. C) Illustration of pool-based dual gRNA cloning
strategy used in the following experiments in this study. D) Internal- and batch-controlled
cell biology experimental setup for the single-cell perturbation (perturbseq) experiment.
E-G) UMAP 1-2 on the scRNAseq data based on PC 1-16, the analysis was performed
with the expression data after being scaled to UMI counts, mitochondrial content, and cell
cycle stages (using Seurat v3(Butler et al., 2018)). E) The cells are colored by clustering
result using PC 1-16 and Louvain clustering algorithm. F-G) The cells are colored by
sgRNA assignment. 3 pairs of dual sgRNAs against the same gene were aggregated
together. F) The purple-colored dots highlight individual gene’s KO effect, compared with
the Cont. Trajectory was sketched by hand according to marker gene expressions in each
cluster, as shown in Fig.S5D. More genes are plotted in Fig.S4G. G) Merged
representation with labels showing the centroids of different KO distributions on UMAP1-
2. H) The cell number recovered from the scRNA-seq pool separated by genes being
perturbed. Each dot represents cell number recovered from one of paired gRNA vectors.
Statistical significance showed t-test analyzed between Control and KOs. (**: p-val<0.01,
*: p-val<0.05). I) Heatmap showing the KL divergence of all WT and KO samples of each

genes.
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Figure 5. (Previous page) TFs involved in multi-lineage and multi-module gene

regulations, affecting cell number, lineage decisions and differentiation kinetics of early
T cells. 4) Top 15 up-regulated genes in each KO (the top 15 was defined by average log
expression differences (avg_logFC in Seurat3), test was performed with Wilcoxon Rank
Sum test, filtered by minimally expressed by 5% cells in either the control or the KO,
minimum average log expression difference cutoff of 0.1, and adjusted p-val < 1E-2). The
right-angle brackets indicate the top differential expressed genes. Note some overlapping
genes that were differentially expressed in more than one KO conditions were also
indicated through the bracket annotations. B) Top 10 down-regulated genes in each KO
(similarly to Fig.5A with minimum average log expression difference cutoff of 0.1, and
adjusted p-val < 1E-4). C-D) Pairwise scatterplots of the transcript distributions and
correlations, separated by different KOs. C) Transcript distributions of HmgbI and Birc),
which indicate the cell cycle and proliferative stage of cells. (G2/M or proliferative cells
express Bircy). D) Transcript distributions of Spi/ and Mef2c, showing these stem and
progenitor genes’ expression level in the different KOs. £) Summary cartoon of findings
from the ‘regulon activity’ of SCENIC analysis, as detailed in Fig.S6 and S7 and Methods.
F) 3D UMAP colored by inferred pseudotime. The pseudotime was calculated with
Monocle 3, based on the trajectory inference from 3D UMAP built using the size and cell
cycle scaled data as described in Fig.4E, details in Methods. G) Pseudotime distributions
of cells from different KO, showing that KOs of Erg, Spil, and Bcllla exhibit faster
differentiation speed compared to the control; KOs of Gata3 and Tcf7, on the other hand,
had slowed or stalled developmental progression according to pseudotime distributions.
In order for pseudotime to reflect only the T-lineage progression relevance, the alternative
lineage population at the bottom of F) was excluded. For statistical significance, Kruskal-
Wallis test of multiple comparisons was performed, comparing each KO to Cont. Level
of statistical significance: ** marks adj.p-val<lE-2, **** marks adj.p-val <l1E-4, by the
Kruskal-Wallis test. The asterisk colors indicate the direction of peudotime change

compared to Cont.
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Supplementary Figure S1 (previous page), related to Fig.1. Full bulk and single-cell

RNA-seq analysis of in vivo and ex-vivo derived early T cells. 4-B) Volcano plots showing
the full differential expression analysis of bulk RNA-seq profiles, comparing between in
vivo thymic early T cells and ex-vivo BM derived early T-cell populations. The total
number of differentially expressed genes were labeled on each plot, which was analyzed
with EdgeR and filtered by log> Fold change larger than 1 and adjusted p.val <I1E-3. 4)
Differential gene analysis between thymic ETP and ex-vivo derived DN1, in the 4 culture
conditions. B) Differential gene analysis between thymic DN2 and ex-vivo derived DN2,
in the 4 culture conditions. C-F) Single-cell analysis of in vivo and ex-vivo derived T cells,
aligned with CCA scaled data, as shown in Fig.1C. The data is shown on UMAP1-3 for
the clear separation on developmental stages. C) Cells colored by origin of sample, i.e.
“Thy’ for in vivo thymocytes and ‘ATO’ for T cells derived from ATO-DLL4 as discussed
in Fig.1C. D) Cells colored with clustering assignment on integrated data. E) T
developmental marker genes expression pattern. /) Heatmap displaying the top 10
enriched genes in each sub-cluster ordered by approximate developmental progression
based on gene expression and connectivity in low dimensional displays. (Seurat 3 pipeline
with minimum fraction of expressing cells > 0.25, Wilcoxon rank sum test with
avg logFC threshold of 0.3). G) Within the early, middle and late developmental sub-
clusters, the average gene expression level (size and log normalized transcript count data)
comparison between thymic T-cell data (Thy) and the ex-vivo derived T cells (ATO). Off-
diagonal outlier genes were labeled. Note that the ‘Thy’ data was obtained from female
mice whereas the ‘ATO’ data was derived from LSKs of male mice, hence the Xist

expression on ‘Thy’ data only.
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Supplementary Figure S2 (previous page), related to Fig. 2 and 3. Surface and

expression profiles of WT and Bell1b KO (labeled as ‘FF’ for Bell 1b homozygous flx/flx
locus) single-cell samples. 4) Flow cytometry profiles of WT and Bclllb KO cells
collected from ATO-DLL4 culture system at 2 different time points. Compared to WT
control, the cells missing Bcll1b can still similarly turn off CD44, but failed to down
regulate cKit expression levels. In D13, the cKit was further up regulated compared to
D10 in Belllb KO samples. B) UMAP 1-2 display of the integrated scRNA-seq data,
separated by individual samples. C-D) Cluster distributions (shown in proportions),
comparing different biological replicates of cells derived from BM of the same animal
origin. This shows great replicability of ex-vivo derivation and scRNA-seq experimental
setups. E-F) Cluster distributions comparing samples harvested from different time points
of the same animal origins. Cluster assignment same as described in Fig. 2F and Fig. S2G.
G) Heatmap displaying the top 5 enriched genes in each sub-cluster ordered by
approximate developmental trajectories of WT and Bcll 1b KO, based on gene expression
and connectivity in UMAP displays. (Seurat 3 pipeline with minimum fraction of

expressing cells > 0.25, Wilcoxon rank sum test with avg logFC threshold of 0.3).
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Supplementary Figure S3 (previous page), related to Fig.3. A fine look of only the

Bcell1b KO trajectory revealed accumulation of abnormal gene expressions, and the
potential ‘exiting point’ of T-lineage. 4-B) UMAPI1-2 and 1-3 of only the cells derived
from Bcll1b KO animals from both experiments (computational subset by the hashtag
assignments). 4) Cells colored by clustering analysis of Bcll1b KO cells only, performed
with Monocle3 (Cao et al., 2019) with PhenoGraph algorithm (Levine et al., 2015). B)
Cells colored by time point of sample collection, showing Bclllb KO samples’
distribution changes with respect to time, on UMAP1-3. Note that the lower clusters 5 and
6, as shown in Fig.S3A and here, are exclusively expressed by D10 samples and represent
mostly cells before the normal Bcll1b expression. For display clarity, the cluster 5 and 6
will be removed in the panels below. C) Heatmap showing the Monocle3 inferred co-
regulated gene modules based on the scRNA-seq data, and the aggregated expression level
in the clusters mentioned above in Fig.S3B. D) The list of genes in the inferred ‘gene
module’ 2, 18 and 15, which are most enriched in the most differentiated abnormal cells.
E-F) Selected genes’ expression patterns on the ‘Bcll 1b KO only’ UMAP1-2, and 1-3. E)
The expression of Notch response genes, such as Nrarp and 1/2ra, were down regulated
at the bottom left ‘tip’ of this UMAP 1-3 display. Many genes potentially involved in
alternative lineages gradually accumulate as the cells progress toward the bottom left ‘tip’,
where more NK and ILC marker genes started to be up regulated. This implies that the
‘non-T” genes slowly accumulate in Belllb KO cells in a rather homogeneous fashion,
e.g. there are no major bifurcations of the Bell1b KO trajectory, and the final ‘departure’
from the T-lineage involves loss of Notch signaling responses. /) Some interferon
response genes (Ifit3b, Ifitl, and Ifit3) uniquely highlighted the minor cluster of cells at
the bottom left on Bcll1b KO only UMAP 1-2.
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Supplementary Figure S4 (previous page), related to Fig.4. Technical and analytical

details of dual gRNA perturbseq. 4) The qPCR ct values of selected vectors, which sample
the evenness of plasmid vector backbones in the cloned dual-gRNA pool. The result
showed an evenly synthesized pool of plasmids that was used for viral packaging. B)
Multiplicity of infection (MOI) titration with the viral pools containing dual gRNA
vectors. All the batches of viral titers were tested separately on primary BM cells, to target
precisely MOI of 0.5-1 for the scRNA-seq experiment (viral usage ~ 40-64% of the
plateau). Because of the inferior infectivity of pool 3, only pool 1 and pool 2 were used in
this study. C) In house bioinformatic processing pipeline to align the dual gRNA with
both Capl and Cap2 information (detailed in Methods). D) Pearson correlation of UMI
counts from guidel and guide2 assignment. £-F) The validation experiment of dual gRNA
effectiveness of acute gene perturbation. £) Due to the low recovery of guide2-cap2 counts
(from pos2 on the illustration), we designed the experiment to validate whether the gRNAs
from pos2 are adding effectiveness to the acute perturbation in our system. Here, CD25
(encoded by [/2ra) were targeted by two gRNA with switching positions. F) Flow
cytometry analysis of the dual gRNA validation test. The result surprisingly showed that
the same gRNA sequence in pos2 was more effective in perturbation compared to posl1.
But most importantly, the dual gRNA perturbation efficiency towards the same gene is
consistently better than a single gRNA. G) Additional KOs’ single-cell distribution
patterns highlighted on UMAP 1-2, as discussed in Fig.4F.



Color Key

A B

cluster distribution

clusters
cluster®
cluster12
cluster11
cluster1d
cluster13
clustert4
clusterf
cluster5
clusterd
cluster2
cluster4
clustert
cluster?
clusterd

||
I

Perturbed Genes
Perturbed Genes

Avg Correlation in 'Erg’ Clusters

Perturbed Genes
Perturbed Genes

Avg Correlation in Mid Clusters

=
]
= 2-

Early Clusters

a

@D 2-

Tyl
Iftm1
oopd
0 i 2 3
Cont
Early Clusters
1 Malalt
L Tiews
Lgalat
2 3
Cont
A N N Q

30 4
T .
3 . “
S0
5] Gsn &
g-' . Tgm3 f % o
10 s1d Rgs2,_ . -
_? Ci cl9 4

[ itdss FamM107b
-1 0 1
. . ‘ U‘?\APJ
Contenriched Tcf7 KO enriched
40 . 20
. Cpad
—g 30 ® j—;f
Q - A 20
= 215 =
gm “Paiyrpt g
e Cdag_lugar2, 2
o * Dok’ *Cpas D10
o Sige L) e
<10 o’ Benz” .f iffﬁh : ket
i ¥
-1 0 1 -1
Cont enriched Bcl11a KO enriched Cont enriched

147

Early Clusters

44
It
o 3 .
z: iyl X
8 S g Hbn bt
9. . Seid
4 0 i b 3 4
Cont
Early Clusters
4- Hbirbt
® 3
52
@
1
o-
i o 4
° 9 9 SR

|
|
il
i

|

Expreasion
Down regulated in Cont ;
* Not explained by Cont "
* Up regulated in Cont .
+5100a4
50
=l .
;40 Hbb-bt e,
530 Gnas Acadl
< Erp29° tf
S Vamp8—__Ngf1 Citegé %/ Marcks  *
52 BCU35044~ PlaZgda I:uﬂgs%d\ Cllaza
S Aldoa =y Fiar242-04 o *1
- Gng2——Paox &
10 Cend1-S1Z5
Vamp5!
0 Prss2 Cels

y
Gata3 KO enriched

3 <«  —>
Cont enriched Spi1 KO enriched



148
Supplementary Figure S5 (previous page), related to Fig. 4 and Fig. 5. Low

dimensional representations and clustering assignments mostly represent the differences
between genotypes (KOs). A) Heatmap of cluster distributions of individual dual gRNA
perturbations. The result showed that there was a general agreement of cluster
distributions of perturbations against the same genes, with a few exceptions, such as Erg.3
(3" pair of gRNAs targeting Erg). B) Scatterplots of average gene expressions between
KOs and Cont, in the shared early common clusters (7,1,11 in sub-clusters defined in
Fig.4E). The result showed surprising similarity of the gene expressions between KOs and
Cont in the same ‘common clusters’. C) The heatmaps of Pearson correlations of average
expressions in the shared ‘common clusters’ between different perturbations. (The 4
‘common clusters’ were defined as: ‘early clusters’: 7, 1, 11; ‘mid clusters’: 0, 6; ‘late
clusters’: 9, 5, 8; ‘Erg clusters’: 4, 3, 2 sub-clusters defined in Fig.4E, respectively.) Note
that the color scale of heatmap represents Pearson correlation of 0.97 to 1. This implies
that within the same ‘common clusters’, the expression profile between KOs and Cont are
very similar. D) Heatmap displaying the top 10 enriched genes in each sub-cluster ordered
by approximate developmental trajectories. Note that Erg KO formed a parallel trajectory
in the UMAP display from the main trajectory of other cells. (Seurat 3 pipeline with
minimum fraction of expressing cells > 0.25, Wilcoxon rank sum test with avg logFC
threshold of 0.3). E-I) Volcano plots showing the differential expressed genes between
Cont and KOs, the color of dots represent if the gene was differentially expressed in Cont
cells only during the normal developmental progression (transition from ‘early clusters’
to ‘mid’ and ‘late’ clusters, as annotated in F.) Specifically, genes that were upregulated
during normal early to late transition in Cont cells are labeled as cyan, and the
downregulated genes are labeled as magenta. Genes that were differentially expressed
between KOs and Cont but not differentially regulated in this normal development
transition are labeled as dark red. The color labels help visualize whether the differential
expression between WT and KOs were merely reflecting a developmental acceleration or

a stalled progression.
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Supplementary Figure S6, related to Fig5. Inferred TF activities and regulatory
connections by SCENIC. SCENIC was performed on subsets of individual KOs. The font
sizes of the gene labels reflect the number of edges shown in the graph, showing the most

prominent TF regulators. The detailed analysis is described in Methods.
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Supplementary Figure S7, related to Fig. 5. Detailed evidence of TF regulated

activities on developing T cells. 4) Myc regulon activity distributions from SCENIC
analysis. The result showed an upregulated Myc activity by Erg KO cells and
downregulated Myc activity by MeisI and Tcf7 KOs. B) Distributions of number of genes
detected, number of transcripts detected, and inferred cell cycle stages, according to genes
perturbed. C-D) Scatterplots of transcript distributions of cell cycle and cytoskeleton
related genes, separated by genes perturbed. E) Transcript distributions of Spi/ and a
known DC marker and Spil downstream target, Bex6. The clear downshift of the density
in Spil KO, compared to all other KOs and Cont, substantiated the effectiveness of
perturbation in this experiment. F-H) Transcript distributions of some stemness and

myeloid program markers.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals

C57BL/6J, B6.Cg-Tg(BCL2)25Wehi/J(Bcl2-tg), Vavi-iCre mice (B6N.Cg-
Commd](TeVavi=ieroAKio 1) and B6.Gt(ROSA)26Sortm1.1(CAG-cas9*,- EGFP)Fezh/J
(Cas9) mice were purchased from the Jackson Laboratory. B6.Bcll1b"4# reporter
mice(Kueh et al.,, 2016) were used for bulk RNAseq analysis, and B6.Bcll1b"!
mice(Hosokawa et al., 2018a; Longabaugh et al., 2017) were both reported previously.
All mice were maintained on the B6 background. For CRISPR/Cas9 experiments, BCL2
transgenic mice and Cas9 mice were crossed to generate B6-Cas9/+; +/Bc¢l2 heterozygotes
for each experiment. For Bell1b experiments, B6.Bcl11b%"* Vav/-iCre heterozygous mice
were bred to obtain Bcll1b"" and Bcll1b"" ROSA26R-YFP mice with Vavi-iCre, as
previously described(Hosokawa et al., 2018a), annotated as WT and Bcll 1b KO. Animals
used for these experiments were bred and maintained at the Animal Facilities at California
Institute of Technology under conventional Specific Pathogen-Free conditions, and
animal protocols were reviewed and approved by the Institute Animal Care and Use

Committee of California Institute of Technology (Protocol #1445-18G).

Cell lines

To provide a microenvironment that supports T-lineage differentiation in vitro, we co-
cultivated purified BM cells with the OP9-DL1, OP9-DL4 stromal cell line (Schmitt and
Zuniga-Pfliicker, 2002), which were obtained from Dr. Zufniga-Pfliicker (Sunnybrook
Research Institute, University of Toronto), or MS5-mDLL1 or MS5-mDLL4 (Montel-
Hagen et al., 2020), which were obtained from Dr. Gay Crook (UCLA) and maintained in
our laboratory as described in the original reference. Details of the differentiation cultures

are given below under Method Details.

METHOD DETAILS

Primary Cell Purification



153
For in vitro (ex-vivo) differentiation of pro-T cells, bone marrow hematopoietic

progenitors were used for input. Bone marrow (BM) was removed from the femurs and
tibiae of 10-12 week-old mice. Suspensions of BM cells were prepared and stained for
lineage markers using biotin-conjugated lineage antibodies: CD3e (eBioscience, clone
145-2C11), CD19 (eBioscience, clone 1D3), B220 (eBioscience, clone RA3-6B2), NK1.1
(eBioscience, clone PK136), CD11b (eBioscience, clone M1/70). CD11c (eBioscience,
clone N418), Grl (eBioscience, clone RB6-8C5), and Terl19 (eBioscience, clone TER-
119), then incubated with streptavidin-coated magnetic beads (Miltenyi Biotec), and
passed through a magnetic column (Miltenyi Biotec), denoted as ‘Lin- BM’. For all
scRNA-seq experiments, the Lin" BM cells were immediately further FACS sorted for live
(7TAADregaive)  CD45positive] SK (Lin"egiveScalPiehcKithieh), detailed as below. All the BM
precursors (Lin- or LSK) were frozen down in liquid nitrogen for storage in freeze down
medium containing 10% DMSO, 40% FCS, and 50% OP9 medium, before further

differentiation assays.
Flow Cytometry and Cell Sorting

Unless otherwise noted, flow cytometry analysis and FACS of all samples were carried
out using the procedures outlined. Briefly, cultured cells on tissue culture plates and
primary cells from thymus were prepared as single-cell suspensions, incubated in 2.4G2
Fc blocking solution, stained with respective surface cell markers as indicated,
resuspended in HBH, and filtered through a 40 um nylon mesh. They were then analyzed
using a benchtop MacsQuant flow cytometer (Miltenyi Biotec, Auburn, CA) or sorted
with a Sony Synergy 3200 cell sorter (Sony Biotechnology, Inc, San Jose, CA) or with a
FACSAria Fusion cell sorter (BD Biosciences). All antibodies used in these experiments
are standard, commercially available monoclonal reagents widely established to
characterize immune cell populations in the mouse. Acquired flow cytometry data were

all analyzed with FlowJo software (Tree Star).

BM Cell Differentiation
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Upon usage, the hematopoietic progenitors were thawed and either cultured on OP9-

DLL1 or OP9-DLL4 monolayers using OP9 medium (a-MEM, 20% FBS, 50 uM B-
mercaptoethanol, Pen-Step-Glutamine) supplemented with 10 ng/ml of IL-7 (Pepro Tech
Inc) and 10 ng/ml of FIt3L (Pepro Tech Inc); or aggregated to artificial thymic organoids
with ATO-mDLL1 or ATO-mDLLA4, seated at the air-medium interface on a culture insert
(Millipore Sigma) in serum-free ATO medium (DMEM-F12, 2X B27, 30 uM Ascorbic
acid, Pen-Step-Glutamine) supplemented with 5 ng/ml of IL-7 (Pepro Tech Inc) and 5
ng/ml of FIt3L (Pepro Tech Inc). If required viral delivery of gRNA, thawed BM
precursors were incubated for 20-24 hours in OP9 medium supplemented with 10 ng/ml
of SCF (Pepro Tech Inc), 10 ng/ml of IL-7 (Pepro Tech Inc) and 10 ng/ml of FIt3L (Pepro
Tech Inc), without stroma cells, detailed as below in the ‘CRISPR/Cas9-mediated Acute

Deletion’ section.

Cloning

The retroviral vector backbone used for sgRNA expression cloning was based on
previously published E42-dTet(Hosokawa et al., 2018b) with the following modifications:
1) Capture sequence 1 (Capl) was added to the sgRNA scaffold before the termination
signal. 2) One nucleotide ‘G’ was deleted before the sgRNA protospacer insertion site
(two Aarl restriction enzyme cutting sites) to allow compatibility with dual sgRNA vector
cloning. The cloning was achieved through high-fidelity PCR (primers as shown below)
and Gibson assembly, the final cloned product, containing the human U6 (hU6) promoter,
two Aarl cutting sites, gRNA backbone with Capl sequence and mTurquoise2 fluorescent
marker, was as shown in the bottom middle in Fig. 4c.

For dual sgRNA cloning, a ‘donor’ sequence containing gRNA backbone and mouse U6
(mU6) promoter were obtained from a plasmid modified from Vidigal and Ventura, 2015.
Specifically, the capture sequence 2 (Cap2) was added prior to the termination signal of
the sgRNA scaffold backbone; we also found that the linker sequence between gRNA
backbone and mU6 promoter contained a partial sgRNA backbone sequence that hinders

the PCR capability and Gibson assembly accuracy, therefore we cloned to remove the
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partial repeat sequence in the linker region. The cloning was performed through

sequential high-fidelity PCR (primers as listed below) and blunt end ligation.

The pool-based dual gRNA cloning was performed similarly to the protocol described by
Vidigal and Ventura, 2015 with the modified vector and plasmids above (workflow shown
in Figure 4C), with minor protocol modifications: 1) the ‘Donor sequence’ containing
gRNA scaffold - Cap2 - modified linker — mU6 were obtained through PCR with the
modified plasmid, rather than enzymatic digestion. 2) All gel purification steps were
avoided, and purifications were achieved with Ampure XP or SPRIselect beads (Beckman
Coulter) instead. 3) Selected gRNAs from the oligopool were qPCR quantified before and
after the pool-based vector cloning process (Figure S4A) for quality control, ensuring the
amplification evenness of the final plasmid pool. 4) A retroviral vector was used instead

of lentiviral vectors.

Primers used in cloning

Primers for E42 modification and addition of Cap1l

backbone_fwd gctttaaggccggtectageaatttttttctcgagtggcete
backbone_rev tgtgttcacctgcgageggtgtttcgtectttccacaag
insert and loop_fwd accgctcgcaggtgaacacaaca

insert and loop_rev ttgctaggaccggcecttaaagegcaccgactcggtgecac
Primers for donor mU6 modifications and addition of Cap2

pD_mU6_rev_cap2_ blunt

gctaataggtgagcGCACCGACTCGGTGCCAC

pD_mU6_fwd _cap2_blunt

ggctaagg TTTTTTIGTTTITAGAGCTAGAAATAGCAAGTTAAAAT
AAGGCTAGTC

rev_del_partial_primer

222232aCCTTAGCCGCTAATAGGTGAG

fwd_del_partial_primer

tttagcgcgtgegecaattc

Primers for pool-based dual gRNA vector assembly

Fwd lib amp primer

GTTTTGAGACTATAAATATGCATGCGAGAAAAGCCTTGTT

Rev lib amp primer

GACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC

FWD pDonor opening

gttttagagctagaaatagcaagtt

REV pDonor opening

caaacaaggcttttctcgca

CRISPR/Cas9-mediated Acute Deletion in Precursor Cell Cultures
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To generate input cells, Cas9 mice were first bred to Bcl2-tg mice to generate

heterozygotes for both transgenes. LSK or Lin'BM cells from these Cas9;Bcl2-tg animals
were purified and stored as described above. 20-24 hours after thawing and recovery in
cytokines, the cells were transduced with retroviral vectors encoding reporters (CFP) and
the indicated guide RNAs (sgRNAs) as detailed below, and then seeded to a OP9-DLL1
stromal culture. The methods used to generate the virus supernatant and infecting BM
cells were described previously(Hosokawa et al., 2018b). For infecting LSK precursors
for scRNA-seq (‘perturbseq’), different batches of viruses were tested on primary BM
precursors prior to the ‘perturbseq’ experiments to determine the accurate titers (Figure
S4B), and delivered to target a precise multiplicity of infection (MOI) of 0.5-1. For
phenotypical assays, cells were analyzed after 2-6 days after culture. For scRNA-seq,
retrovirus infected Lin"CD45%¢c-Kit"CFP* cells were sorted on a FACSAria Fusion cell

sorter (BD Biosciences).
Bulk RNAseq Analysis

Lin" BM cells were harvested from B6.Bc/1 15”7/ animals, and cultured in differentiation
conditions as described above. Upon harvesting, cells were subdivided into CD25"°% for
DN, Bell 1b-YFP™eCD25M DN2a, and Bell 1b-YFPPSCD25M DN2a. fractions, followed
by RNA purification following the instructions of the RNeasy Micro Kit (Qiagen 74004).
cDNA from each sample was prepared using NEBNext Ultra RNA Library Prep Kit for
[lumina (E7530, NEB). All bulk libraries were sequenced on Illumina HiSeq2500 in
single read mode with the read length of 50 nt. Base calls were performed with RTA
1.13.48.0 followed by conversion to FASTQ with bcl2fastq 1.8.4 and produced

approximately 30 million reads per sample.

RNA-seq reads were mapped onto the mouse genome build GRCm38/mm10 using STAR

(v2.4.0) and were post-processed with RSEM (v1.2.25; http://deweylab.github.io/RSEM/)
according to  the settings in the ENCODE  long-rna-seq-pipeline

(https://github.com/ENCODE-DCC/long-rna-seq-
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pipeline/blob/master/DAC/STAR_RSEM.sh), with the minor modifications that the

setting  ‘—output-genome-bam—sampling-for-bam’ was added to rsem-calculate-
expression. STAR and RSEM reference libraries were created from genome build
GRCm38/mm10 together with the Ensembl gene model file Mus_musculus. GRCm38.gtf.
The resulting bam files were used to create HOMER tag directories (makeTagDirectory
with —keepAll setting). For analysis of statistical significance among DEGs, the raw gene
counts were derived from each tag directory with ‘analyzeRepeats.pl’ with the ‘—noadj -
condenseGenes’ options, followed by the ‘getDiffExpression.pl” command using EdgeR
(v3.6.8; http://bioconductor.org/packages/release/bioc/html/edgeR.html).  For  data
visualization, RPKM normalized reads were derived using the ‘analyzeRepeats.pl’
command with the options ‘—count exons —condenseGenes —rpkm’; genes with an average
of RPKM 2>1 across samples were kept, and their RPKM values were processed by log
transformation. The normalized datasets were then hierarchically clustered with R hclust
function based on Euclidean distance and ‘complete’ linkage. The heatmap is visualized

with R pheatmap with log2 transformed RPKM data (after adding 0.1 to all values).

Single Cell RNA-seq (10X Chromium V2)

Note that only the scRNA-seq data from Figures 1 and S1 was obtained through 10X
Chromium V2, the rest of the scRNA-seq data were obtained through the V3 chemistry.
The early T cells derived in ATO-DLL4 from LSK were sorted as shown in Figure 1C
(bottom). The sample was then washed and resuspended to 1 million cells/mL
concentration in HBSS supplemented with 10% FBS and 10 mM HEPES, 17,400 cells
were loaded into a 10X Chromium v2 lane, and the subsequent preparation was conducted
following the instruction manual of 10X Chromium v2. The ¢cDNA library and final
library after index preparation were checked with bioanalyzer (High Sensitivity DNA
reagents, Agilent Technology #5067-4626; Agilent 2100 Bioanalyzer) for quality control.
Following the library preparation, the sequencing was performed with paired-end
sequencing of 150nt each end on one lane of HiSeq4000 per sample, by Fulgent Genetics,

Inc. (Temple City, CA). The reads were mapped onto the mouse genome Ensembl gene
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model file Mus_musculus.GRCm38.gtf using a standard CellRanger pipeline. Cells

were sequenced to a targeted depth of 50,000 reads per cell.
Single Cell RNA-seq (10X Chromium V3) on Bcell1b Samples with Cell Hashing

LSK from Bcll1b WT and KO animals were obtained, aliquoted into 6-7k cell/tube, and
stored in liquid nitrogen as described above (individual animals were not pooled). To setup
the culture, cells were thawed and aggregated with MS5-mDLL4 (800-1000 LSK and
150k MS5-DLLA4 cells per ATO), and seeded on culture inserts as described above. The
ATO medium was changed every 3-4 days. After culturing for 10-13 days (note
experiment 1 had only D10, and experiment 2 had both D10 and D13), the ATO was
mechanically disrupted and ex-vivo derived T cells were prepared for FACS sorting as
described above. Specifically, cells derived from each animal and each time point were
stained with a biotin-conjugated lineage cocktail (TCRyd (eBioscience, clone GL-3),
CDI19,NK1.1,CDI11b, CDl1l1c, and Grl). Secondary surface staining was performed with
fluorescently conjugated streptavidin, CD45, cKit (eBioscience, clone 2B8), CD44
(eBioscience, clone IM7), CD25 (eBioscience or Biolegend, clone PC61.5), and TotalSeq
A (Biolegend) anti-Mouse Hashtag 1-8 (1:50, in separate samples). A viability dye 7AAD
(eBioscience) was applied to exclude dead «cells. The sorted cells
(CD45positive]_jplow7 A ADregativeCD25positive) - washed 2 times with HBSS supplemented
with 10% FBS and 10 mM HEPES, were pooled to target an equal cell number from each
Hash-tagged sample, and loaded onto one lane of a 10X Chromium V3 chip. The cDNA
preparation was performed following the instruction manual of 10X Chromium v3, and
the hashtag library was prepared following the Biolegend TotalseqA guide. The cDNA,
tag library, and final library after index preparation were checked with the bioanalyzer
(High Sensitivity DNA reagents, Agilent Technology #5067-4626; Agilent 2100
Bioanalyzer) for quality control. The cDNA final libraries was sequenced on HiSeq4000
or NovaSeq 6000, and the tag library was sequenced on HiSeq4000, by Fulgent Genetics,
Inc. Cells were sequenced to an average depth of 50,000-70,000 reads per cell for cDNA
and ~2,500 reads per cell for hashtags.
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Direct-capture Perturbation scRNA-seq (with 10X Chromium V3)

LSK were purified, recovered in cytokines and infected with MOI 0.5-1, and cultured with
OP9-DLI1 as described above. Note that multiple packages of the viral pools were infected
in parallel, in separate wells, to serve as biological replicates. The medium was changed
on day 3. On day 5, the cells were harvested through scrapping, and filtered and prepared
for FACS sorting as described above. Specifically, cells derived from each animal and
each time point were stained with a biotin-conjugated lineage cocktail (TCRJ (ebioscience,
clone H57-597), TCRyd (eBioscience, clone GL-3), CD19, NK1.1, CD11b, CDl1lc, and
Grl). Secondary surface staining was performed with fluorescently conjugated
streptavidin, CD45, cKit (eBioscience, clone 2B8), CD44 (eBioscience, clone IM7),
CD25 (eBioscience or Biolegend, clone PC61.5), and TotalSeq A (Biolegend) anti-Mouse
Hashtag 1-6 (1:50, in separate infected samples). A viability dye 7AAD (eBioscience)
was again  applied to  exclude dead cells. The sorted cells
(CD45positive]_jplow7 A ADnegativeCEPhighc K jtPositive)  were washed 2 times with HBSS
supplemented with 10% FBS and 10 mM HEPES, pooled to target equal cell number from
each Hash-tagged sample, and loaded onto one lane of a 10X Chromium V3 chip. The
cDNA preparation was performed following the instruction manual of 10X Chromium v3
for perturbation with minor modifications, and the hashtag library was prepared following
the Biolegend TotalseqA guide. The cDNA, gRNA library, Hashtag library, and final
libraries after index preparation were checked with bioanalyzer (High Sensitivity DNA
reagents, Agilent Technology #5067-4626; Agilent 2100 Bioanalyzer) for quality control.
All libraries were sequenced on HiSeq4000, by Fulgent Genetics, Inc. Cells were
sequenced to at least medium depth of 50,000 reads per cell for cDNA, 20M reads/sample
for hashtags and 20M reads/sample for gRNAs.

Data Analysis

Mapping of scRNA-seq Sequences, Hashtag, and gRNA Identification
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Single-cell RNA-seq data were processed using 10X Cellranger 3.0.0 software.

Standard cellranger-mm10-3.0.0 reference annotations were loaded to the pipeline for
read mapping and gene quantification.

To process single-cell hashtag and guide RNA sequencing data, two ultrafast in-house
tools (hashtag_tool and guiderna_tool)
(https://github.com/gaofan83/single cell perturb seq/) were developed to process raw
fastq data and generate count tables (Fig.S4C). The results are typically delivered within
one minute. Downstream R codes can be used to binarize the count tables for identity
assignment using Gaussian Mixed Modeling.

As note, the guiderna_tool was specifically developed for our dual-guide system with

two guide-RNA sequences (targeting different sequences) in engineered in the viral vector

backbones. Based on 10X bead chemistry, Capturel (5'-
GCTTTAAGGCCGGTCCTAGCAA-3") and Capture2 (5'-
GCTCACCTATTAGCGGCTAAGG-3") sequences recognize

expressed Guidel and Guide2 RNA molecules that have reverse complement capture
sequences inserted. Specifically, Capturel and Capture2 sequences should pair
with Guidel and Guide2, respectively. From in-house single-cell guideRNA data, UMI
counts can be calculated for the Guidel list of barcodes and the Guide2 list of barcodes.
As note, the guiderna_tool uses both capture sequences in R1 reads and template
switching oligo sequence (TSO) in R2 read for read filtering and sorting; then
potential protospacer sequences in R2 reads (after 5' TSO sequence) are mapped against
the corresponding guide library (Guidel or Guide2) for quantification. In
contrast, Cellranger finds a constant region after protospacer region in R2 first,
then protospacer abundances in R2 are calculated. Since guiderna_tool utilizes both R1

and R2 read information for filtering, it is expected to be more accurate.

Gene and Cell Filtering, Data Alignment, and Clustering Analysis

10X Chromium V2 scRNA-seq (Figurel and S1) analysis was based on data filtered on

cells with at least 1200 genes expressed (transcript count over 1); outliers with more than
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4300 genes or 23k unique transcripts were also removed (potential doublet) from the

ATO scRNA-seq dataset, and outliers with more than 4400 genes or 27k unique transcripts
were also removed from thymocyte dataset (10X V2 runl from chapter 2), and only genes
that were found expressed in at least 3 cells were kept in the analysis. The cells were
further filtered to keep only cells with mitochondrial contents of less than 7.5-9%. The
QC filter resulted in 6167 cells in the ATO scRNA-seq sample and 4783 cells in the
thymocyte sample, which were being presented in Figure 1 and S1. The top 3000 variable
features were identified from each of the two datasets and integrated with the CCA
algorithm using the 3000 anchor features and 20 dimensions in Seurat v3 (Stuart et al.,
2019). The principal component analysis was performed on the integrated dataset, and the
UMAP display was analyzed based on PCs 1-20. For clustering, Louvain clustering was
performed on the first 20 PCs with the resolution set to be 0.7, and the top 10 enriched
genes in each cluster were calculated with Wilcoxon Rank Sum test, shown in the heatmap

(Figure S1F).

10X Chromium V3 scRNA-seq (all scRNA-seq dataset except in Figures 1 and S1)
analysis was based on data filtered on cells with at least 1300 genes expressed (transcript
count over 1). The doublet elimination was guided through Cell Hashing. Specifically,
number of features vs. number of unique transcripts detected were plotted, and cells with
more than 1 Cell Hashing tags were considered doublet and highlighted on the scatterplot.
Both the ‘cell hashing identified doublets’ and outliers with only one hashtag identified
but fell in the region of high feature and transcripts content similarly to ‘cell hashing
doublets’, were dropped. The subsequent integration and clustering analysis were

performed similarly described above.

Unless specified, the trajectory and pseudo-time analysis with Monocle 3 were all

performed on the cells that passed the filtering steps described above.

SCENIC Analysis and Visualization Graphics
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We performed SCENIC (Aibar et al., 2017) analysis by starting from the raw counts

of the computationally subset ‘genotype’ of WT and individual TF KOs (described above),
and following the proposed workflow using the default parameters in SCENIC R setup.
The co-expression network was generated using GENIE3(Huynh-Thu et al., 2010), and
potential direct-binding targets (regulons) were based on DNA-motif analysis. AUC,
which identifies and scores gene regulatory networks or regulons in single cells, was
calculated using AUCell as previously desribed(Aibar et al., 2017). The motif bindings
were inferred based on publicly available motif binding databases provided by the Aerts
lab. The regulon output where the co-expression weight attributed to each predicted TF-
target interaction, was used to filter the graphic display, retaining interactions with a co-
expression weight above 0.05 and with ‘high confidence annotations’. The retained
interaction edgelist was used to generate graphs using the igraph R library, which was in
turn visualized as plots using the ggraph library (‘sugiyama’ or ‘stress’ layout, Figure S6,
left and middle panels). To further examine TF-TF interactions, predicted interactions
between TFs with a co-expression weight above 0.01 and with ‘high confidence
annotations’ were visualized with hive plots with ggraph in R. The axis on hive plots
represent the categories curated with genes enriched in different cell types or states,
according to RNA-seq datasets on the Immgen website (The Immunological Genome

Project Consortium et al., 2008).

Software Details
The analyses were performed mainly in R (version 4.0.2) with the following packages:
ggplot2(v3.3.2), dplyr(v1.0.2), cowplot(1.1.0), Seurat(v3.2.2), AUCell(v1.10.0),
RcisTarget(v1.8.0), GENIE3(v1.10.0) SCENIC(v1.2.2), monocle3(v0.2.3.0),
ggraph(v2.0.4), igraph(v1.2.6).
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Chapter 4

OPPORTUNITIES, CHALLENGES, AND PERSPECTIVES

In this thesis, we first established a detailed model of single-cell transcriptome dynamics
during the transition from multipotentiality to T-cell lineage commitment, with single-cell
sequencing tools, bolstered by highly sensitive seqFISH analysis, and supported by in vitro
differentiation kinetics. To further understand the functional relevance of TFs that exhibit
these dynamic gene expression patterns, we optimized a few ex-vivo culture systems to
derive cohorts of early T cells from bone marrow precursors, with and without
perturbations, and examined the outcomes of population distributions and trajectory
topologies upon perturbations using single-cell analysis. For the first time, we revealed the
complexed roles of TFs in regulating the topology of early T-cell differentiation trajectory,
cell cycle state, alternative lineage potentials, and differentiation kinetics. In this chapter,
the author will discuss some additional technical opportunities and challenges in using
single-cell analysis for future understanding of regulatory mechanisms with respect to our

T-cell development system, or to developmental processes in general.

Does Deeper Sequencing Solve More Problems?

In earlier chapters, we have briefly mentioned the underlying problem of high dropout rate
for droplet-based scRNA-seq techniques, e.g. 10X Genomics. Yet, the ease of large-scale
sample preparation, the compatibility of Cell Hashing and direct capture ‘perturbseq’ make
the usage of the 10X platform still more accessible among other single-cell tools. In fact,
the author has shown that even with this presumably ‘zero-inflated’ transcript count data
matrix, we could still resolve many interesting biological questions in the early T-cell
developmental continuum. One underlying question that affects all scRNA-seq strategy and
budget allocation, which the author has not touched upon, is sequencing depth. Should
deeper sequencing of fewer cells or shallower sequencing of more cells be favored: a
practical limit in the total number of reads that can be sequenced per experiment. There is

no consensus or general rules for sequencing depth requirement, and in reality, this is likely
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highly question dependent and system dependent. While the 10X V3 recommends a

minimum coverage of 20k reads/cell, the most recently published data vary hugely — single-
cell datasets for relevant questions in developmental biology or hematopoiesis only, from
<10k reads/cell (Bulaeva et al., 2020; Hawkins et al., 2020; Naganuma et al., 2021) to, less
commonly, 100k reads/cell (Holloway et al., 2020). Interestingly, the conclusions made by
various groups regarding the sequencing depths, using computational tools and datasets
from different platforms, are rather controversial. In 2014, Jaitin et al. suggested that 20k
reads per cell with the plate-UMI-based MARS-seq tool, only unambiguously define 200 to
1500 distinct RNA molecules, could accurately represent cell types. Other computational
groups also supported the idea of shallower sequencing of more cells, for example, Zhang
et al. suggested optimal sequencing coverage of ‘1 read per gene per cell’, and Svensson et
al. showed potentially marginal return of deeper sequencing beyond 15k reads/cell.
However, as shown in Chapter 2, at the sequencing depth of 50k/cell using 10X V2, we
knew that we were detecting ~10% of the lowly expressed molecule, comparing to seqFISH,
and clearly agreeing with many published studies (Islam et al., 2014; Kolodziejczyk et al.,
2015; Svensson et al., 2017; Torre et al., 2018). Also, as shown in Figurel (adapted from
Svensson et al. 2017 and Mereu et al., 2020, and from data generated in house), it is clear
that 20k reads/cell does not saturate the detection limit. In fact, 20k reads/cell is even further
from saturation in data generated from 10X Chromium V3 chemistry (Figure 1d). For all of
the experiments the author performed and discussed in the previous chapters, the author had
recovered a minimum of 50-60k reads/cell (median). The questions are: Would the low
dimensional representations change if the author had sequenced less? And would it be worth
it to sequence less cells in exchange for deeper sequencing (twice as deep at 120k reads/cell

or four times at 200k+ reads/cell)?
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Figure 1. Sequencing Depth’s Influence of Genes Detected and Sequencing Saturation in
Previous Studies and in The Developing Early T cells. (Panel a and b were modified from
Svensson et al. 2017, panel ¢ was modified from Mereu et al., 2020, and panel d was
generated in house.) (4) Accuracy is marginally dependent on sequencing depth beyond
100k reads/cell. Saturation occurs at 270,000 reads per cell in the model (dashed red line).
Protocol names are ordered by performance on the basis of predicted correlation (R) at 1
million reads. (B) Depending on the techniques, sensitivity (i.e. detection limit for lowly
expressed transcripts) can be critically dependent on sequencing depth. Saturation occurs at
4.6 million reads per cell (dashed red line). The gain from 1 to 4 million reads per sample is
marginal, whereas moving from 100,000 reads to 1 million reads corresponds to an order-
of-magnitude gain in sensitivity (dashed black lines). Protocols are ordered by performance
on the basis of predicted detection limit (#M, number of molecules at 1 million reads). (C)
Number of detected genes at down-sampled sequencing depths. Points represent the average
number of detected genes as a fraction of all cells of the corresponding cell type at the
corresponding sequencing depth. (D) Saturation curves generated with CellRanger,

representing detection of additional transcripts with down-sampled sequencing depth. The



170
left and right panels represent thymic early pro-T cell scRNA-seq data generated with

10X Chromium V2 and 10X Chromium V3, respectively. While with 10X V2 chemistry,
the saturation is close to be achieved at 80k reads/cell, the saturation is less than 70% using
10X V3 chemistry at the same sequencing depth, inferring that a better sensitivity can

certainly be achieved through deeper sequencing.

Generally, the low dimensional representations, as shown by Svensson et al. (2019), are
unlikely to change if the sequencing depth were slightly lower. This is partially due to the
fact that dimension reductions are usually performed based on well-expressed and highly
variable genes only. Also, the clustering and trajectory formed through complete
unsupervised analysis are usually less sensitive to lowly expressed genes that are around the
detection limit. This usually means if the sample actually contains multiple discrete cell
types, or very distinct highly expressed features across the trajectory, a slightly shallower
sequencing would give the same results. However, we found that the complete unsupervised
clustering and trajectory with highly expressed variable genes do not accurately represent
developmental trajectories in our developing early T cells. A more accurate developmental
trajectory can be obtained through the usage of a curated list of genes for building the
connected graph in low dimensional space and for ordering the cells in pseudotime. Some
of the genes in the curated list, however, are lowly expressed. Therefore, the sequencing
depth was likely needed for trajectory analysis in populations with subtle expression
changes. The latter question regarding decreasing cell number in exchange for further
increase of depth, also depends on the situation. For heterogeneous population that may
contain rare cell population of interest, or pool-based ‘perturbseq’ assays, a decrease in cell
number coverage will reduce the statistical confidence, therefore it certainly will not be
preferred. In addition, from past experiences, most sequencing reads are mapped to genes
encoding cell cycle related processes and ribosomal proteins. The increased read depth will
again mostly map against these already highly expressed genes that is of less interest,
resulting in a huge waste of resource. However, there are potential workarounds for using
the new targeted sequencing technology with the 10X platform (Replogle et al., 2020) ; or
using seqFISH for even better accuracy of detection for TFs (Zhou et al., 2019, or chapter
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2). The only limitations are that the list needs to be curated before the acquisition, and

potential data analytical challenges to integrate datasets with different sets of genes

measured in different experiments.

Moreover, imputation methods for dropouts have been developed by many computational
groups over the past 3-4 years. For example, MAGIC (van Dijk et al., 2018) imputes missing
expression values by sharing information across similar cells, resulting in an essentially
smoothening effect. This smoothening concept is also heavily used in RNA velocity (La
Manno et al., 2018) calculation, as intron-mapped reads are not intentionally captured
through single end (3’ or 5’ end of the mRNA transcripts) scRNA-seq methods, therefore
they are very sparse. While imputation can efficiently bring up the real dropout, it can often
lead to the ‘over-smoothing’ problem and loss of biologically relevant information, such as
stochasticity or other variability. Filling in the dropout should not be a computational effort
alone. Further improvement of the chemistry for better capture efficiency, combinations of
targeted gene panel (Replogle et al., 2020), potentially targeted splicing variant or intron
panel in the future, or using imaging-based methods such as intron seqFISH (Shah et al.,
2018) and seqFISH+ (Eng et al., 2019), will not only decrease the need for imputation, but
also preserve more biologically meaningful variances. In short, if one knows the genes of
interest (or intronic regions of interest), targeted panel single-cell sequencing or imaging-
based tools offer great opportunity to improve the sequencing depth vs. cell number
problem, and will potentially improve the quality of developmental trajectory inference,

GRN inference, and RNA velocity analysis.

How Does a New Dataset Align with the Previous Data?

Another challenge in the field of single-cell analysis is the so-called ‘unified analysis’.
Samples collected across different methods, platforms, experimental setups, animals
/patients, and batches can be extremely challenging to compare with. Obviously, these
‘batch effects’ can lead to false discovery, and also the identification of shared cell types or
states can be very complicated. As discussed and demonstrated in earlier chapters, ideally,

careful experimental design using multiplexed scRNA-seq to pool cells into a same batch
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of sequencing is desired. However, this may not be practical due to logistical limitations

concerning sample preparation, time constraints, etc. As many single-cell atlas projects are
in progress including a most recent organoid atlas project (Regev et al., 2017; Rozenblatt-
Rosen et al., 2017; the Human Cell Atlas ‘Biological Network’ Organoids et al., 2020), how

can new researchers take proper usage of atlas single-cell data as references?

In Chapter 1, the author has briefly mentioned some commonly used computational
alignment methods for different datasets and some of their underlying assumptions (e.g.
multiCCA, MNN, Harmony). In fact, Seurat (a well-known and widely used software
package for scRNA-seq analysis) V4 was just released around the time the author was
drafting this thesis (Hao et al., 2020), using a ‘weighted-nearest neighbor’ (WNN) approach
to integrate atlas style sScRNA-seq data. In order to map a new dataset to the atlas reference,
a ‘supervised PCA analysis’ can be performed to identify a projection of the transcriptome
dataset that maximally captures the structure defined in the atlas WNN graph. This method
can potentially ‘supervise’ the analysis of gene expression data to ignore the variables that
are irrelevant to the WNN graph of interest, improving cell type identification and robust

positioning on developmental trajectories for new datasets.

Around the same time, a few approaches based on deep learning methods started to emerge,
leveraging the advances in wet lab capability of generating large scale data and the increase
of computing power. For example, DCA (Eraslan et al., 2019) utilizes the autoencoder
concept to denoise the data, returning the scaled gene by cell matrix, which is the exact same
size as the input. scVI (Lopez et al., 2018) uses deep generative modeling based on a
hierarchical Bayesian model (with the assumption of a zero-inflated negative binomial
transcript count distribution obtained by scRNA-seq methods), removing unwanted factors
(e.g. batch effects), and returning latent space vectors that can serve as input to downstream
analysis. In contrast, SAUCIE (Amodio et al., 2019) uses a deep neural network in which
some of the layers are designed to perform cluster annotation and 2D visualization, returning
the output of cluster annotation and low dimensional visualization directly. However,

because some of the output latent space obtained from deep neural network methods are not



173
as interpretable as methods like PCA or NMF, they can be susceptible to overfitting and

other technical issues. Lately, more tools were developed using generative adversarial
networks (GANSs) for scRNA-seq imputation, in silico data generation and augmentation
(Marouf et al.,, 2020; Xu et al., 2020), aiming to boost the robustness of detecting

biologically interesting variable features against technical noises and batch effects.

Around the time when we published our early T-lineage single-cell study in mouse systems
(Zhou et al. 2019, presented in chapter 2), several other groups also published similar single-
cell profiles of mouse and human, with the focuses on different stages and cell populations.
In mouse systems, a comprehensive, dynamic single-cell analysis of hematopoietic and
stromal cells during thymic organogenesis in the mouse fetus was published by Kernfeld et
al. in 2018, and this was complemented by single-cell dissections of thymic stromal cell
types by Bornstein et al. in 2018. In human systems, Zeng et al., 2019; Lavaert et al., 2020;
and Le et al., 2020 also published valuable single-cell analyses on human early T
lymphopoiesis and thymic stromal cell development. There are unprecedented opportunities
to discover new scientific insights by comparing these single-cell datasets through

integration methods mentioned above.

In summary, with the increasing availability of public datasets and advancement of
computational tools, one should not overlook the power of prior knowledge from these old
datasets. Perhaps, in the future, the easiest and most straightforward usage of ‘prior
knowledge’ is pre-experimental data analysis with publicly available single-cell data of
similar cell types, regardless of the platform of data acquisition. Not only will future
experimental design processes benefit from the datamining process, but also the collections
of data may increase the statistical power and the confidence for the conclusions being

drawn on the new datasets.

Going Beyond Descriptive Single-Cell Analysis
There are a few commonly accepted stages of data analytic maturity, often used in areas
such as statistics and business analytics. Although the exact terminology may differ, the

analytical stages often include these 3 levels in a progressing manner: “descriptive analysis”,
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“predictive analysis”, and “prescriptive analysis”. While descriptive analysis is often

used to quantify relationships between different features of the samples or samples
themselves, predictive analysis leverages predictive models to analyze a specific
performance in a sample and one or more measured features in the same sample. The
objective for the latter model is to assess the likelihood that similar features in a different
sample will exhibit the same performance. Prescriptive analytics suggest the decision
options to take advantage of the results of the descriptive and predictive analysis. This
concept is easily applicable to single-cell analysis. The major use of single-cell analysis up
to this point has focused on descriptive analytics, e.g. identifying cell types or states,
differential expression analysis, integrating datasets, denoting new markers in clusters, etc.
Much effort in the single-cell analytical field has been put to extend the single analysis to
tackle some non-trivial problems, and to explore the usage of predictive analytics. In
previous chapters, we also went beyond the usage of classical single-cell descriptive
analysis through trajectory inference which we later experimentally validated, and the GRN
inferences based on the internal-controlled perturbation scRNA-seq data using SCENIC.
However, some of the newer tools promise a further integration of multi-modal single-cell
data (e.g. scATAC-seq) or previous knowledge on GRN topology, thereby leveraging a
better predictive power of single-cell analysis. CellOracle is a machine learning-based tool
to infer GRNs via the integration of different single-cell data modalities (i.e. transcriptome
and chromatin accessibility profiles), and can also potentially integrate prior knowledge via
regulatory sequence analysis to infer TF-target gene interactions (Kamimoto et al., 2020).
Note that the major difference between SCENIC and CellOracle is that SCENIC calculates
the potential target of TF through a motif search near transcription start sites (up to 10kb)
of co-expressed genes; CellOracle builds on the SCENIC strategy, but expands motif search
to co-accessible regions of the chromatin of the transcription start sites (from scATAC-seq
data) (Kamimoto et al., 2020). Note that regulatory regions of the genes can easily be
megabases away from the transcription start sites, therefore CellOracle’s expansion of the
regulatory region search may be very important to better identify the TF targets. Moreover,
some TFs may lack the known binding motifs, therefore it may be helpful in the future to
incorporate custom TFs’ ChIP-seq profiles to further assist GRN inferences from scRNA-
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seq data, rather than having the target gene lists determined completely based on motif

search. Moreover, CellOracle can also leverage the inferred GRN to simulate gene
expression changes in response to TF perturbations, in silico. In silico perturbation is a truly
exciting concept and a promising usage for predictive analytics of single-cell field,
especially on the arguably most important governors of developmental biology — TF
regulated processes. In fact, a few other groups have also demonstrated the predictive
potentials with existing single-cell datasets (Dibaeinia and Sinha, 2020; Sun et al., 2020;
Tian et al., 2020; Zhang et al., 2019). SERGIO (Dibaeinia and Sinha, 2020) simulates
stochastic gene expressions in steady-state or differentiating cells according to a user-
provided GRN. It is worth noting that Dibaeinia and Sinha, 2020 demonstrated an in silico
perturbations of some of the interesting TFs leveraging our single-cell seqFISH data
presented in Chapter 2 and Zhou et al. 2019, and using GENIE3 (Huynh-Thu et al., 2010)
predicted GRN as well as the GRN information from Longabaugh et al. 2017. First, they
demonstrated using either GRN calculated through GENIE3 or published GRN annonation
(Longabaugh et al., 2017), SERGIO could very nicely simulate the profiles that resembled
the seqFISH data. Interestingly, they also generated “in silico knockout” of Tc¢f7, Runxl,
Hesl, Bclllb, Spil, Lmo2, Gata3, and Gfilb, many of which have recently been
experimentally persued by other members of our lab (Romero-Wolf et al., 2020, Shin et al.
in press) or the author herself (presented in Chapter 3). Among the genes being in silico
knocked out, 7cf7 KO seemed to exhibit an agreement of our experimental results discussed
in Chapter 3. However, although they showed that perturbation resulted in alterations of
developmental trajectories, some of the other KOs did not seem to reflect our experimental
observations, such as Gata3, Bcll1b, Hes1 (Romero-Wolf et al., 2020), and Runx(Shin et
al. in press). This could be largely due to the incomplete knowlegde of the underlying GRNs
and limited number of genes included in the seqFISH panel. However, in silico
perturbations with SERGIO, CellOracle, or other co-expression focused predictive methods
alike (Sun et al., 2020; Tian et al., 2020), may help refine a shorter list for potential
perturbation targets of interest for experimental validations, assisting the ‘next-generation’
single-cell experimental design, offering a glance of the “prescriptive’ power of single-cell

analysis.
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