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ABSTRACT

We present a novel experimental platform for quantum and precision science: single
strontium atoms trapped in arrays of optical tweezers. We demonstrate develop-
ment of this platform along three important fronts: single-atom trapping, imaging,
and cooling; coherent control of the ultra-narrow clock transition; and inter-atom
entanglement via Rydberg interactions.

In the context of single-atom physics, we demonstrate trapping in tweezer arrays of
one- and two-dimensions as well as cooling to the motional ground state. We fur-
thermore show high-fidelity single-atom imaging with extremely low loss, allowing
us to image the same atoms thousands of times before losing them and in principle
allowing for the assembly of defect-free atom arrays of several hundred sites.

Notably, we show these results in tweezers that are at a magic wavelength for
strontium’s clock transition. This feature allows us to perform high-fidelity state
rotations on the clock transition. We also demonstrate operation of a single-site
resolved atomic-array optical clock — a new atomic clock platform that combines
several benefits of optical lattice and single-ion clocks.

From the metastable clock state, we drive the atoms to highly-excited Rydberg states
to introduce interactions between nearby atoms. Using a Rydberg blockade in an
assembled array of atom pairs, we demonstrate generation of two-atom entangled
Bell states with a fidelity of >98%, or >99% with correction for state preparation
and measurement errors. Furthermore, we demonstrate an auto-ionization state-
detection scheme for Rydberg atoms which improves on the infidelity of previous
Rydberg state-detection schemes by over an order of magnitude.

We conclude with several outlooks, including preliminary data on light-cone corre-
lation spreading in a system of 17 interacting atoms. We also discuss prospects for
implementing quantum gates, operating a spin-squeezed clock, increasing system
size, quantifying many-body state fidelity, and reducing sources of infidelity.



v

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] Madjarov, I.S., Covey, J.P., Shaw, A.L. et al. High-fidelity entanglement and
detection of alkaline-earth Rydberg atoms. Nature Physics 16, 857–861 (2020).
https://doi.org/10.1038/s41567-020-0903-z.

[2] Madjarov, I.S., Cooper, A., Shaw, A.L. et al. An Atomic-Array Optical
Clock with Single-Atom Readout. Physical Review X 9, 041052 (2019).
https://doi.org/10.1103/PhysRevX.9.041052.

[3] Covey, J.P., Madjarov, I.S., Cooper, A. and Endres, M. 2000-Times Repeated
Imaging of Strontium Atoms in Clock-Magic Tweezer Arrays, Physical Review
Letters 122, 173201 (2019). https://doi.org/10.1103/PhysRevLett.122.173201.

[4] Cooper, A., Covey, J.P., Madjarov, I.S. et al. Alkaline-Earth
Atoms in Optical Tweezers. Physical Review X 8, 041055 (2018).
https://doi.org/10.1103/PhysRevX.8.041055.

For all publications listed here, the author of this thesis contributed to the experimen-
tal design and build, data collection, data analysis, andmodeling.

https://doi.org/10.1038/s41567-020-0903-z
https://doi.org/10.1103/PhysRevX.9.041052
https://doi.org/10.1103/PhysRevLett.122.173201
https://doi.org/10.1103/PhysRevX.8.041055


vi

TABLE OF CONTENTS

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Published content and contributions . . . . . . . . . . . . . . . . . . . . . . v
Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation and goals . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Landscape of previous work . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Two-electron atoms . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Single-atom physics . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Entanglement via Rydberg interactions . . . . . . . . . . . . 7

1.3 Overview of our experiment . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Summary of our novel results . . . . . . . . . . . . . . . . . . . . . 12

Chapter 2: Single-atom physics with strontium . . . . . . . . . . . . . . . . . 14
2.1 Intro to strontium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Choice of isotope . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Level structure . . . . . . . . . . . . . . . . . . . . . . . . 15

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . 15
Intercombination lines . . . . . . . . . . . . . . . . . . . . 16
Transitions of interest . . . . . . . . . . . . . . . . . . . . . 16

2.2 Optical tweezers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Electric field conventions . . . . . . . . . . . . . . . . . . . 19

2.3 Light shifts & optical trapping . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Polarizability . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Spherical tensor decomposition . . . . . . . . . . . . . . . . 26

Reduced dipole matrix elements . . . . . . . . . . . . . . . 28
2.3.3 Polarizability tuning . . . . . . . . . . . . . . . . . . . . . 29

Polarization ellipticity . . . . . . . . . . . . . . . . . . . . 30
Competing magnetic and optical eigenstates . . . . . . . . . 32
Dominant magnetic field . . . . . . . . . . . . . . . . . . . 32
Stability considerations . . . . . . . . . . . . . . . . . . . . 33

2.3.4 Polarizability in strontium . . . . . . . . . . . . . . . . . . 34
Near 515 nm . . . . . . . . . . . . . . . . . . . . . . . . . 35
Near 813 nm and beyond . . . . . . . . . . . . . . . . . . . 38
Tunability of 5s5p 3P1 . . . . . . . . . . . . . . . . . . . . 39

2.4 Preparing single atoms . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4.1 Loading multiple atoms from a MOT . . . . . . . . . . . . 44

Thermal considerations . . . . . . . . . . . . . . . . . . . . 44
Overlapping tweezers with a red MOT . . . . . . . . . . . . 47
Experimental results & atom number estimates . . . . . . . 48

2.4.2 Pairwise loss . . . . . . . . . . . . . . . . . . . . . . . . . 48



vii

2.4.3 Schemes for increased filling . . . . . . . . . . . . . . . . . 50
Approach 1: multiple loading cycles . . . . . . . . . . . . . 51
Approach 2 (speculative): molecular dynamics . . . . . . . 53

2.5 Cooling in a tweezer . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.5.1 Sideband cooling . . . . . . . . . . . . . . . . . . . . . . . 54

Motional transitions . . . . . . . . . . . . . . . . . . . . . . 54
Decay and cooling . . . . . . . . . . . . . . . . . . . . . . 56
Fundamental temperature limit . . . . . . . . . . . . . . . . 58
Conversions between thermal quantities . . . . . . . . . . . 59

2.5.2 A Sisyphus mechanism in a differential trap . . . . . . . . . 59
Trap-induced motional transitions . . . . . . . . . . . . . . 60
State-dependent resonance conditions . . . . . . . . . . . . 62
Attractive and repulsive Sisyphus cooling . . . . . . . . . . 63

2.5.3 Heating sources & practical cooling limits . . . . . . . . . . 64
Cooling laser phase/frequency noise . . . . . . . . . . . . . 64
Trap intensity noise . . . . . . . . . . . . . . . . . . . . . . 66
Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.5.4 Temperature measurement and experimental results . . . . . 67
2.6 Single-atom imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.6.1 Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.6.2 Imaging beam . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.6.3 Dipole radiation pattern . . . . . . . . . . . . . . . . . . . . 75
2.6.4 EMCCD camera . . . . . . . . . . . . . . . . . . . . . . . 79
2.6.5 Atomic point-spread function . . . . . . . . . . . . . . . . . 82
2.6.6 Detection and binary thresholding . . . . . . . . . . . . . . 85
2.6.7 Figures of merit . . . . . . . . . . . . . . . . . . . . . . . . 86

Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Survival . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Model-free calculation of fidelity and survival . . . . . . . . 89

2.6.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
For traps at 515.2 nm . . . . . . . . . . . . . . . . . . . . . 91
For traps at 813.4 nm . . . . . . . . . . . . . . . . . . . . . 94
Lifetimes at 813.4 nm . . . . . . . . . . . . . . . . . . . . . 96
Imaging on the red transition . . . . . . . . . . . . . . . . . 97

2.7 Tweezer arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.7.1 Generation via acousto-optic deflectors . . . . . . . . . . . 98

Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Acoustic signal and choice of phase . . . . . . . . . . . . . 102
Optical interference and overlap . . . . . . . . . . . . . . . 103

2.7.2 Uniformization . . . . . . . . . . . . . . . . . . . . . . . . 104
2.7.3 Rearrangement . . . . . . . . . . . . . . . . . . . . . . . . 106

Moving tweezers . . . . . . . . . . . . . . . . . . . . . . . 107
1D rearrangement algorithm . . . . . . . . . . . . . . . . . 108
Rearrangement system size limits . . . . . . . . . . . . . . 109

Chapter 3: The clock state . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



viii

3.1 The clock transition in bosonic strontium . . . . . . . . . . . . . . . 112
3.1.1 Admixture with magnetic field . . . . . . . . . . . . . . . . 113
3.1.2 Systematic energy shifts . . . . . . . . . . . . . . . . . . . 114

Magnetic shift . . . . . . . . . . . . . . . . . . . . . . . . . 114
Probe light shift . . . . . . . . . . . . . . . . . . . . . . . . 114
Trap light shifts . . . . . . . . . . . . . . . . . . . . . . . . 115

3.1.3 State detection . . . . . . . . . . . . . . . . . . . . . . . . 116
3.2 Coherent excitation and its limits . . . . . . . . . . . . . . . . . . . 117

3.2.1 Thermal and motional effects . . . . . . . . . . . . . . . . . 118
3.2.2 Trap light scattering . . . . . . . . . . . . . . . . . . . . . . 120
3.2.3 Technical noise . . . . . . . . . . . . . . . . . . . . . . . . 121

Laser phase/frequency noise . . . . . . . . . . . . . . . . . 122
Intensity noise . . . . . . . . . . . . . . . . . . . . . . . . . 122
Magnetic field noise . . . . . . . . . . . . . . . . . . . . . 123

3.2.4 Results for c-fidelity . . . . . . . . . . . . . . . . . . . . . 123
3.3 Principles of clock operation . . . . . . . . . . . . . . . . . . . . . . 125

3.3.1 Atomic feedback, sensitivity, and noise . . . . . . . . . . . . 125
3.3.2 Quantifying performance & Allan deviation . . . . . . . . . 127

3.4 An atomic-array optical clock with single-atom readout . . . . . . . 131
3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.4.2 Functional principle . . . . . . . . . . . . . . . . . . . . . . 134
3.4.3 In-loop spectroscopic results . . . . . . . . . . . . . . . . . 136
3.4.4 Self-comparison for evaluation of systematic shifts from

tweezer trapping . . . . . . . . . . . . . . . . . . . . . . . 137
3.4.5 Self-comparison for stability evaluation . . . . . . . . . . . 139
3.4.6 Monte Carlo clock simulations . . . . . . . . . . . . . . . . 141

Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Generating frequency noise traces . . . . . . . . . . . . . . 142
Frequency noise model . . . . . . . . . . . . . . . . . . . . 143

3.4.7 Outlook on atomic-array optical clocks . . . . . . . . . . . . 143
Chapter 4: Entanglement and Rydberg physics . . . . . . . . . . . . . . . . . 145

4.1 Excitation and readout . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.1.1 Clock state initialization . . . . . . . . . . . . . . . . . . . 147
4.1.2 Rydberg excitation . . . . . . . . . . . . . . . . . . . . . . 148

Quantum defects . . . . . . . . . . . . . . . . . . . . . . . 149
Transition wavelengths and frequencies . . . . . . . . . . . 150
Transition matrix elements . . . . . . . . . . . . . . . . . . 150

4.1.3 Auto-ionization detection . . . . . . . . . . . . . . . . . . . 153
Auto-ionization mechanism and rates . . . . . . . . . . . . 154
Experimental results . . . . . . . . . . . . . . . . . . . . . 156
State detection fidelity . . . . . . . . . . . . . . . . . . . . 156
Experimental measurement of bright state decay . . . . . . . 157

4.1.4 Systematic shifts . . . . . . . . . . . . . . . . . . . . . . . 158
DC electric field . . . . . . . . . . . . . . . . . . . . . . . . 158
Magnetic field: Zeeman and diamagnetic effects . . . . . . . 164



ix

(Anti)-trapping light shifts . . . . . . . . . . . . . . . . . . 166
Probe light shift . . . . . . . . . . . . . . . . . . . . . . . . 169
AOM-induced alignment-detuning correlation . . . . . . . . 171

4.2 Interactions, blockade, and entanglement . . . . . . . . . . . . . . . 173
4.2.1 Pair dipole interaction . . . . . . . . . . . . . . . . . . . . . 173
4.2.2 Systematic shifts of the interaction . . . . . . . . . . . . . . 175
4.2.3 Rydberg array Hamiltonian . . . . . . . . . . . . . . . . . . 177
4.2.4 Rydberg blockade & Bell state generation . . . . . . . . . . 178

4.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 180
4.3.1 Single-atom & two-atom blockade oscillations . . . . . . . . 180
4.3.2 Bell-state fidelity bound . . . . . . . . . . . . . . . . . . . 183

4.4 Sources of error in dynamics . . . . . . . . . . . . . . . . . . . . . 187
4.4.1 Decay and blackbody radiation . . . . . . . . . . . . . . . . 187

Spontaneous decay . . . . . . . . . . . . . . . . . . . . . . 188
BBR transitions . . . . . . . . . . . . . . . . . . . . . . . . 190

4.4.2 Motional and thermal effects . . . . . . . . . . . . . . . . . 190
Initial state . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Motional effects on internal qubit dynamics . . . . . . . . . 192
Recapture . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

4.4.3 Technical noise . . . . . . . . . . . . . . . . . . . . . . . . 197
Intensity noise . . . . . . . . . . . . . . . . . . . . . . . . . 197
Laser phase/frequency noise . . . . . . . . . . . . . . . . . 199
Field noise . . . . . . . . . . . . . . . . . . . . . . . . . . 199

4.5 Summary of = scaling . . . . . . . . . . . . . . . . . . . . . . . . . 200
Chapter 5: Outlooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

5.1 Novelty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
5.1.1 Quantum simulation . . . . . . . . . . . . . . . . . . . . . 201
5.1.2 Quantum gates . . . . . . . . . . . . . . . . . . . . . . . . 203
5.1.3 Spin-squeezed clock . . . . . . . . . . . . . . . . . . . . . 206

5.2 Quantity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
5.3 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Appendix A: The apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
A.1 Experimental chamber . . . . . . . . . . . . . . . . . . . . . . . . . 211

A.1.1 Atom source . . . . . . . . . . . . . . . . . . . . . . . . . . 211
A.1.2 Glass cell and surrounding assembly . . . . . . . . . . . . . 214
A.1.3 Vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Pumps and gauge measurements . . . . . . . . . . . . . . . 216
Assembly and bake . . . . . . . . . . . . . . . . . . . . . . 216

A.2 Magnetic coils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
A.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
A.2.2 High-field coils . . . . . . . . . . . . . . . . . . . . . . . . 219
A.2.3 H-bridge and current stabilization circuit . . . . . . . . . . . 223
A.2.4 Low-field coils . . . . . . . . . . . . . . . . . . . . . . . . 228

A.3 Microscope objectives . . . . . . . . . . . . . . . . . . . . . . . . . 229
A.3.1 Future objective upgrade . . . . . . . . . . . . . . . . . . . 229



x

A.4 Laser systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
A.4.1 Blue laser . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
A.4.2 Red laser . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
A.4.3 Clock laser . . . . . . . . . . . . . . . . . . . . . . . . . . 232
A.4.4 Rydberg laser . . . . . . . . . . . . . . . . . . . . . . . . . 234
A.4.5 Trapping laser . . . . . . . . . . . . . . . . . . . . . . . . . 235
A.4.6 Auto-ionization laser . . . . . . . . . . . . . . . . . . . . . 235
A.4.7 Repump lasers . . . . . . . . . . . . . . . . . . . . . . . . . 236
A.4.8 Wavelength meter stabilization . . . . . . . . . . . . . . . . 236

A.5 Arbitrary waveform generator (AWG) and acousto-optic deflector
(AOD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Appendix B: Sources of polarizability data . . . . . . . . . . . . . . . . . . . 238
Appendix C: Non-paraxial effects . . . . . . . . . . . . . . . . . . . . . . . . 241
Appendix D: Rydberg dipole matrix elements . . . . . . . . . . . . . . . . . 244
Appendix E: State preparation and measurement (SPAM) errors & corrections 246

E.1 Preparation, excitation, and measurement processes . . . . . . . . . 246
E.2 Determining SPAM probabilities . . . . . . . . . . . . . . . . . . . 248
E.3 Correcting the single-atom excitation probabilities . . . . . . . . . . 250
E.4 Correcting the two-atom excitation probabilities . . . . . . . . . . . 250

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255



1

Chapter 1

INTRODUCTION

This work presents a new quantum platform based on strontium atoms trapped in
arrays of optical tweezers. In this chapter, we present the motivation for such a
platform (Sec. 1.1), the relevant body of work that has preceded it (Sec. 1.2), an
overview of the experiment (Sec. 1.3), and a summary of the novel scientific results
that we will present in later chapters (Sec. 1.4).

1.1 Motivation and goals

The goal of our work in general terms is to engineer control over a large-scale
quantum mechanical system. What does this mean, why is it a worthwhile goal, and
why do we want to use strontium atoms to accomplish it?

To answer these questions, we begin by considering the essential differences between
a classical and quantum system. In each case, we consider an object that, when
observed, can produce only one of two possible observations — say, up or down.
Assuming no statistical uncertainty, in the classical case, the state of the object can
only be one of two discrete values: up or down. In the quantum case, the object
can also be in the states up or down, labeled as |↑〉 or |↓〉. However, these are not
the only states available to the object under quantum mechanics. The principle of
superposition demands that the object can also be in the state

|k〉 = cos
\

2
|↑〉 + 48q sin

\

2
|↓〉 (1.1)

for any \, q on the unit sphere. A convincing argument on why such a state space
is necessary to describe objects in our universe can be found in a discussion of the
foundational Stern-Gerlach experiment [1] in Chapter 1 of Ref. [2].

Computationally speaking, this means that the state of the classical object can be
entirely represented by a single binary bit, whereas the state of the quantum object
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needs two real numbers. We will henceforth call the classical object a bit and the
quantum object a qubit.

The discrepancy in state representation becomes even greater when # copies of the
bit and qubit are considered. For the classical case, each state is now represented
by # binary bits — i.e., the system’s information content scales linearly with the
system size. For the qubits, one might be tempted to guess that there is a similar
scaling. This would be the case if the qubits were completely independent systems.
However, when they are all taken together as one system, quantum mechanics
demands that we also allow for states of the system that are entangled amongst
the various qubits. These are states that cannot be factorized into a product of
single-qubit states. For example, the state |↑↓〉+ |↓↑〉 is entangled. The existence of
entangled states can be seen as an extension of the superposition principle to many-
qubit states, and is required to explain observable phenomena such as violations of
Bell’s inequalities [3, 4].

With entangled states, the computational representation of a quantum state requires
2(2# − 1) real numbers. This is an exponential scaling with number of qubits,
and immediately suggests that numerically simulating a generic quantum system
becomes impossible beyond some finite number of qubits. To get some sense of
what this number might be, consider a real floating-point number computationally
represented by ? bits, or ?/8 bytes. The state of # qubits then generically requires
?

4 (2
# − 1) bytes to be represented. For a typical ? = 32-bit representation, an

# = 40 state already requires about 9 terabytes to be represented. For # = 50, the
requirement is 9 petabytes.

The attitude of contemporary quantum science is to look at this situation in the
opposite direction: instead of being an impossible simulation task, large quantum
systems are an incredible computational resource. If one can map a certain com-
putationally challenging real-life problem onto the state evolution of a quantum
system — and if one had sufficient control over this state evolution — then one
could use the quantum system to solve this problem. For large enough quantum
systems, one could even solve problems that are impossible to solve on classical
computers. This is the general goal of the related fields of quantum computation
and quantum simulation. In the former, one attempts to implement an algorithm on
a set of qubits using discrete operations, while in the latter, one attempts to evolve a
certain physical Hamiltonian on a set of qubits.

One of the main difficulties with qubits is their necessarily analog nature, making
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them susceptible to noise. Unlike classical bits, which can take on one of two very
distinct values that are robust to noise, qubits can take on a continuum of values —
and therefore a continuum of errors. In a classical electronic bit, applying 4.9 V
instead of 5 V will not result in a state error: the bit will still read logical high.
In a qubit, a similar imperfection in, for example, the phase angle q will produce
a commensurate error in the desired state. While there exist schemes for quantum
error correction [5] where a more robust logical qubit is formed from a number of
bare qubits, such schemes generally also require a very low error rate in their bare
qubits.

The challenge of quantum science is therefore to engineer a system of qubits with two
somewhat contradicting requirements: a large degree of control over the quantum
state afforded to the experimentalist with simultaneously a large degree of isolation
from the surrounding noisy environment. Several platforms have risen over the
years to take on this challenge, with the leading platforms generally considered to
be trapped ions [6–8] and superconducting qubits [9, 10].

The quantumplatform that thisworkwill detail is based on arrays of optically trapped
neutral atoms. In particular, we will trap neutral strontium in arrays of optical
tweezers, which are essentially tightly focused laser beams. Atoms have several
desirable properties for quantum science. One is that atoms of the same species
are, by design of nature, all completely identical. Furthermore, a gas of millions
of them can be generated and trapped by laser light in some tens of milliseconds.
Therefore, unlike with superconducting qubits, no fabrication is necessary, there is
no issue with qubits being defective or inhomogeneous, and the qubit ensemble can
be scaled and reconfigured on demand to the extent allowed for by the optics. Atoms
are also typically non-interacting (at least at long range), which allows for an ease
of scalability, reconfiguration, and single-particle control that may be otherwise
difficult with ions, which are always strongly interacting at long range. In fact, a
large component of this work and of recent work in neutral atom quantum science
is inducing long-range electrostatic interactions (known as Rydberg interactions) in
neutral atoms, as this is a necessary ingredient for generating entangled states.

Although this work is certainly not the first to develop neutral Rydberg atoms as
a quantum platform (for a summary of such previous work, see Sec. 1.2.3), it is
among the first to do so with two-electron atoms (in our case, with strontium).
Two-electron atoms have two electrons in their outer valence shell, and are therefore
similar in electronic structure to helium. But what benefits might a second valence



4

electron have for quantum science? In short, the gambit of this work is that the
added complexity of a second electron will open up new techniques that produce
significant advantage over one-electron atoms. These new opportunities include
things such as better control over the atom’s motion (Sec. 2.5), new pathways to
long-range interactions (Sec. 4.1), and better schemes for reading out the atom’s
internal state (Sec. 4.1.3).

Onemore unique property of two-electron atoms—whichwill be the basis for a large
component of this work on its own— is the existence of an optical clock transition.
Atoms in general are extremely good metrological devices due to their identical
nature and precise internal transitions. In fact, the current SI second is defined via
a hyperfine transition in cesium. However, atomic clocks based on two-electron
atoms such as strontium [11, 12] and ytterbium [13, 14] have significantly surpassed
even the cesium standard in both accuracy and precision. This is primarily due to
the existence of ultra-narrow clock transitions that are in the optical domain, and
thus have a significantly higher frequency [15] than the microwave clock transitions
found in one-electron atoms such as cesium. Although we are not in a position to
advance the state-of-the-art in terms of atomic clock performance, we will exploit
our new strontium array platform to demonstrate one of the first single-atom-resolved
neutral atomic clocks (Sec. 3.4). The clock transition will play a large role in our
research outside of clock operation as well, acting as an important state-preparation
mechanism for entangling operations and as a potential qubit in itself. We will
therefore give an in-depth discussion of this transition and of our efforts in driving
it with a high degree of control. Finally, the combination of this thread of research
with that of single-atom control and many-atom entanglement has the interesting
prospect of creating a spin-squeezed atomic clock [16, 17] (Sec. 5.1.3), which
leverages entanglement to beat classical limits of clock precision.

1.2 Landscape of previous work

Our work combines the advances of three vanguard fronts in modern atomic physics:
(1) two-electron atoms, (2) the control and detection of single atoms, and (3) the
generation of entanglement between atoms via long-range Rydberg interactions. In
this section, we discuss the crucial previous work on these three fronts that has
enabled our research.
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1.2.1 Two-electron atoms

A magneto-optical trap (or MOT, the first step in generating a cold cloud of atoms
in practically all atomic experiments) of strontium was reported alongside a calcium
MOT in 1990 in Ref. [18], just three years after the first ever MOT [19] in 1987.
However, the full potential of laser cooling in two-electron atoms was not realized
until 1998 when the first ever narrow-lineMOTwas demonstrated in strontium [20].
Such a MOT exploits the narrow intercombination transitions in a two-electron
atom (Sec. 2.1.2) and allows for cooling to the photon recoil limit [21]. This was
an important advance as sub-Doppler cooling techniques that are otherwise readily
available in alkali atoms [22] are not available in the ground states of two-electron
atoms. For a more in depth review of the cooling of various two-electron atoms
(including down to quantum degeneracy), we point the reader to Ref. [23].

In the mid 2000s, interest grew in two-electron atoms as an atomic reference for
a new breed of optical lattice clocks [24–26] that were expected to eventually
beat microwave-based clocks in systematic uncertainty. Although single-ion opti-
cal clocks had already surpassed this milestone [27], atomic optical lattice clocks
promised to do so with significantly lower instability (see Sec. 3.3.2 for a definition
of instability and systematic uncertainty). A development that was crucial in this
effort was the elimination of systematic trap light shifts via a magic wavelength,
or a wavelength that induces an equal shift in both states of a transition. In 2008,
an optical lattice clock (based on strontium) was for the first time shown to have
lower systematic uncertainty than the best microwave clocks [28]. Optical lattice
clocks with two-electron atoms have since improved even further in terms of both
instability and systematic uncertainty [11–14], although a single-ion clock currently
holds the record for lowest systematic uncertainty [29].

In the mid 2010s, the first single-atom imaging of a two-electron atom (ytterbium)
was done in optical lattices [30, 31].

1.2.2 Single-atom physics

The first single trapped neutral atom (cesium) was observed in 1994 at Caltech
in a magneto-optical trap [32]. The first trapping and detection of single atoms
in microscopic optical traps (having a confinement of .1 `m) was performed in
2001 with cesium and rubidium [33, 34]. Perhaps even more importantly, Ref. [33]
showed that loading of multiple atoms into a tight optical trap could be suppressed
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by a collisional blockade process, significantly simplifying the process of preparing
single atoms. In the early 2010s, optical cooling of single atoms to the motional
ground state of optical tweezers was demonstrated with rubidium [35, 36].

In the meantime, several efforts were underway to trap and image multiple sin-
gle atoms simultaneously∗. This generally requires creating an optical trapping
landscape that has multiple local potential minima, such that each minimum can be
occupied by a single atom. One way to do this is with an optical lattice, which is gen-
erally created by retro-reflecting a far off-resonant beam such as to create a standing
wave. Site-resolved imaging of a truly large scale lattice of single atoms was demon-
strated in 2007 [37]. This was impressively done in a three-dimensional lattice with
sequential imaging of different layers, and the lattice spacingwas 4.9 `m. In the early
to mid 2010s, optical resolution and single-atom imaging techniques were pushed
to new highs in the development of the quantum gas microscope [30, 31, 38–43],
which allowed for the site-resolved imaging of single atoms in 2D optical lattices
with sub-micron lattice spacing.

Projected trap arrays are the other major class of large single-atom traps that have
been developed. These are usually in the form of optical tweezer arrays, which can
be generated via holographic projection via a spatial light modulator (SLM) [44–
46], beam deflection with an acousto-optic deflector (AOD, which we will use in
our work) [47, 48], or a microlens array [49]. An alternative to standard attractive
potential arrays is the generation of an array via projection of repulsive beams [50,
51].

A crucial development for single-atom platforms in the context of quantum science
was rearrangement, or sometimes called atom assembly. This is a technique that
takes an initially randomly loaded trap array and rearranges the atoms into an
arbitrary configuration, most usually into an array with no defects, or empty traps
between atoms. This is important for quantum science applications, as one would
like to have a fully connected qubit register with ideally zero randomness in the
position of the qubits. The very first atom rearrangement was shown in 2006 with a
dynamic optical tweezer moving atoms around in a static optical lattice [52]. Interest
in atom rearrangement picked up again in the mid 2010s [46, 48, 53], this time
directly in tweezer arrays. Rearrangement has also impressively been demonstrated
in a 3D optical lattice via an entirely different technique of polarization rotation [54].

∗It should be noted that when we discuss “single atoms,” we do not mean working with literally
only one atom, but instead we mean a circumstance where individual atoms can be resolved.
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1.2.3 Entanglement via Rydberg interactions

In order to generate an entangled state between qubits, some kind of interactions
between the qubits are necessary. Effectively zero-range interactions have been used
to entangle atoms that are allowed to occupy the same trap [55] and to simulatemany-
body Hubbard models [38, 39, 56–58]. However, ground state atoms are typically
non-interacting at long (�50 nm) range. Since our atoms will be in optical tweezers
spaced at several `m apart, we must induce long-range interactions. One approach
is to place the atoms in a cavity, which allows for photon-mediated interactions [59–
63].

Our approach to long-range interactions will instead be to drive atoms to highly
excited states, known as Rydberg states (Chap. 4). Atoms in these states can expe-
rience strong long-range induced dipole-dipole electrostatic interactions. Rydberg
interactions were proposed as a potential entangling resource for neutral atoms in the
early 2000s [64, 65]. Rydberg blockade, a mechanism for generating entanglement
between atoms, was observed in 2009 [66, 67], and was soon after used to generate
entanglement in hyperfine ground states [68, 69]. Rydberg interactions were later
used in optical lattices [70, 71] and for entangling operations [72] and quantum
simulation [73] in large arrays. Rydberg interactions have been most recently mar-
ried with the technique of array rearrangement [74–78], allowing for the study of
re-configurable, defect-free many-body entangled atomic arrays.

1.3 Overview of our experiment

We now summarize some key features of our new experiment. A more in-depth
discussion can be found in App. A, and a detailed report from the earlier stages of
our build can be found in Ref. [79]. See Fig. 1.1 for a brief visual overview.

All of our experimentation on atoms occurs in an ultra-high vacuum glass cell
(App. A.1.2). Two high-resolution objectives (App. A.3) surround the cell and
are responsible for both generating the optical tweezer arrays and for collecting
fluorescence from the atoms. Although both of these can be done through one
objective, having two objectives allows for the ability to image with one objective
the tweezers that are generated through the other, and potentially also allows for
imaging through both objectives simultaneously.

The general flow of our experimental cycles are as such:
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Figure 1.1: Overview of the experimental apparatus. (a) Rendering of the glass
vacuum cell in which atom trapping occurs (see Fig. A.3 for more). (b)Our vacuum
chamber along with relevant optics for the atom source (see App. A.1). The entire
vacuum chamber is on a linear translation stage. (c) Glass cell with a blue magneto-
optical trap of strontium, and surrounding optics. (d)Various lasers (see Sec. 2.1.2).

1. Generate a strontium MOT on the broad “blue” transition, then transfer it to a
much colder and denser MOT on the narrow “red” transition (see Fig. 2.1).

2. Load atoms from the red MOT into the tweezer array (Sec. 2.4.1).

3. Perform pairwise loss to ensure no more than one atom is in each tweezer
(Sec. 2.4.2).

4. (Optional) Re-load the array to increase filling fraction of atoms (Sec. 2.4.3).

5. Image the loaded array (while cooling, see Sec. 2.6) to determine which
tweezers contain an atom.

6. Cool atoms to near the motional ground state (Sec. 2.5).

7. If desired, rearrange the atoms into a desired configuration (Sec. 2.7.3,
Fig. 4.9), image again to verify success of rearrangement, and cool again.
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8. At this point, the actual “science” occurs. We can, for example, interro-
gate the clock transition (Sec. 3.4) or perform Rydberg excitation to induce
entanglement between atoms (Sec. 4.3).

9. Perform some state-selective detection operation. This can involve shelving
the atoms into a metastable state (see end of Sec. 2.5.4), blasting atoms of a
particular state out of the tweezers (Sec. 3.1.3), or auto-ionization (Sec. 4.1.3).

10. Image the remaining bright atoms. For each atommeasured, this gives a binary
value that, when averaged, informs on some state occupation probability that
we are interested in.

11. Either repeat from Item 1, or in some cases (Sec. 3.4) atoms can be recycled
such that we start again directly from Item 6.

The various laser beams that are used to accomplish these tasks are shown in
Figs. 1.2–1.3.
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Figure 1.2: Beam configuration around our glass cell for our blue and red magneto-
optical traps (MOTs). Circularly polarized beams are sent along three axes and
retroreflected while passing twice through a quarter wave plate. We send in two
beams at a shallow 65◦ angle to the vertical axis in order to avoid the objectives.
For the position of our magnetic quadrupole coils, see Apps. A.1.2 & A.2.2. We
overlap blue and red beams onto the same beampath using dichroic mirrors. A
pair of repump beams at 679 nm and 707 nm are also overlapped with one of the
diagonal axes (the one going down to up from left to right). Not shown: a pair of
blue absorption imaging beams in the horizontal plane and at 45◦ to the MOT beam
in that plane.
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Figure 1.3: Beam configuration around our glass cell after atoms have been loaded
into tweezers. Tweezer arrays are generated by sending beams with various angles
(pink beams) through the input of one objective. Atoms are cooled with a set of
three mutually orthogonal red beams: two in the horizontal plane at a 45◦ angle
to the glass cell, and one vertical beam that is sent through the objective in such a
way as to fill out the field of view. A blue beam in the horizontal plane is used for
fluorescence imaging of single atoms. Through the front of the glass cell, we send
in three converging beams, a Rydberg beam (light violet), an auto-ionization beam
(dark violet), and a clock beam (red). The only beam that may be retroreflected here
is the blue imaging beam, although this is not strictly necessary (Sec. 2.6.2). All
beams shown that do not go through the objective are in the horizontal plane. Inset:
an array of atoms trapped in optical tweezers in the focal plane of both objectives.
Not shown: a repump beam with 679 nm, 707 nm, and potentially 688 nm light
(shown in Fig. 1.2). In real life, laser beams don’t cast shadows.
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1.4 Summary of our novel results

We briefly highlight the most important novel results reported in this work:

Single-atom physics

1. The first single-atom imaging of strontium, the first trapping and imaging of
single two-electron atoms in optical tweezers (Sec. 2.6.8), and the extension
of these techniques to arrays of size up to 11 × 11 (Figs. 2.25 & 2.27).

2. An imaging scheme producing an imaging fidelity of 0.99991(1) and survival
probability of 0.99932(8) (Sec. 2.6.8) — the latter of which is a record for
single-atom imaging—allowing for thousands of repeated images of the same
atoms.

3. Optical cooling of single strontium atoms to near the motional ground state
of a tweezer (Sec. 2.5.4), and the experimental realization of a novel Sisyphus
cooling mechanism (Secs. 2.5.2, 2.6.8).

4. Rearrangement of 1D strontium atom arrays (Fig. 2.24 & 4.9), including a
fast and memory-efficient algorithm for rearrangement in 1D (Sec. 2.7.3).

5. Increased array loading via multiple filling cycles (Sec. 2.4.3).

6. Measurement of polarizabilities on strontium’s intercombination line at _ =
515.2 nm (Sec. 2.3.4 & App. B).

Clock state operations

1. Operation of an atomic-array optical clockwith single-atom resolution (Sec. 3.4),
including aMonte-Carlo approach tomodeling clock performance (Sec. 3.4.6).

2. Coherent excitation of the clock transition with an uncorrected c-fidelity of
0.985 (Sec. 3.2.4), with a total transfer fidelity of 0.998 possible with the
addition of optical pumping (Sec. 4.1.1).

Rydberg excitation and entanglement

1. An auto-ionization Rydberg state-detection scheme with a state-detection
fidelity of 0.9996(1), which improves on the infidelity of previous state-
detection schemes by at least one order of magnitude (Sec. 4.1.3).



13

2. Excitation of aRydberg qubit with an uncorrected (SPAMcorrected) c-fidelity
of 0.9951(9) (0.9967(9)) (Sec. 4.3).

3. Generation of entangledBell pair stateswith an uncorrected (SPAMcorrected)
fidelity of ≥0.980(3) (≥0.991(4)) via Rydberg blockade (Secs. 4.3.1 & 4.3.2),
a leading value for Rydberg atoms.

4. Realization of light-cone correlation spreading across an assembled array of
17 atoms (Fig. 5.3).
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Chapter 2

SINGLE-ATOM PHYSICS WITH STRONTIUM

In this chapter, we will look at the physics of trapping, cooling, and imaging single
strontium atoms in optical tweezers.

2.1 Intro to strontium

Strontium (Sr) is an alkaline-earth (group 2) atom of atomic number / = 38 with
four stable and naturally occurring isotopes. In this section, we review relevant
properties of strontium, its isotopes, its two-electron level structure, and certain key
transitions.

2.1.1 Choice of isotope

All work in this thesis was done with 88Sr, a bosonic∗ isotope. The other naturally
occurring isotopes are the fermionic 87Sr and the two other bosonic isotopes 84Sr
and 86Sr.

88Sr was chosen primarily for its large natural abundance (∼83%) [80] as well as
for the simplicity of its electronic structure. Whereas the fermionic isotope has a
rather large nuclear spin of � = 9/2, all bosonic isotopes of Sr have � = 0, resulting
in a lack of hyperfine structure. These two factors were favorable for a first study
of single-atom Sr physics, but we will note here some features of the other isotopes
that may be useful for future studies. 88Sr has a very small ground state scattering
length of about −100 [23] (where 00 is the Bohr radius), making it challenging
to evaporatively cool to degeneracy when compared to the other bosons which
have much larger scattering lengths. This was not a concern for this study as no

∗Letting � be the mass number, one can see that neutral atoms for which (−1)/+� is positive
(negative) are bosons (fermions).
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evaporative cooling was necessary, but it may be for other platforms. Furthermore,
the lack of hyperfine structure has potentially negative implications for systematics
during clock operation (Ch. 3.1.1) and precludes the use of nuclear states for certain
quantum computation schemes [81] or studies of (* (#) physics [82].

The spectral shifts between the four isotopes are within the range of acousto-optic
modulators (AOMs), so it is in principle possible to work with all four isotopes with
one apparatus and laser system [23]. Although we have to date worked with only
88Sr, we see no obvious reasons why the techniques presented in this thesis would
not be adaptable to the other isotopes, especially the bosons.

2.1.2 Level structure

Themost relevant property of Sr to us will be the level structure of its outer electronic
shell, which importantly has two electrons in an s2 configuration. This is a property
shared by all of the alkaline earth atoms (Be, Mg, Ca, Sr, Ba, Ra), but is not
exclusive to them. Helium, for example, is the quintessential and most basic two-
electron atom. Ytterbium is another example, notable for having recently developed
experimental techniques [83] that are similar to those we show in this work for Sr.
Yet more examples are mercury [84] and cadmium [85]. See Ref. [23] for a broad
review of work with two-electron atoms.

Nomenclature

Let ®B8, ®;8 be the spin and orbital angular momentum operators, respectively, for the 8th

outer-shell electron. We define ®( = ∑
8 ®B8, ®! =

∑
8
®;8, and ®� = ®( + ®!, with associated

quantum numbers of, e.g., | ®( |2 denoted by the same symbol without an arrow, e.g.,
(. For two outer-shell electrons, we have B1 = B2 = 1/2, so the possible values of (
are 0 and 1. The ( = 0 sector contains one (I state, so we call it a singlet, while the
( = 1 sector contains three, so we call it a triplet.

We index states of Sr with the following notation:

=1;1=2;2
2(+1!� (2.1)

or, in the case of both electrons occupying the same orbital, by =;2 2(+1!� , where
we use the spectroscopic alphabet (s, p, d, f,...) to index ; and the same but with
capital letters for !. So, for example, the ground state (which is a singlet) will be
referred to as 5s2 1S0, while a triplet state might be 5s5p 3P2.
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Intercombination lines

This notation suggests that ;8, !, (, and � are “good” quantum numbers, meaning
that the energy eigenstates they apply to are either exact or approximate eigenstates
of the operators associated with those quantum numbers. This arises when the
dominant angular momentum coupling is given by ®! · ®(, a situation that is called
!( coupling. This is indeed the case for (relevant) states of Sr. Of these quantum
numbers, however, only the total angular momentum quantum number � is exact∗

for all states, and this is due to the overall rotational symmetry of the atom.

The fact that ( is a “good but not exact” quantum number is a key feature of two-
electron atoms. Particularly, this becomes important when we look at electric dipole
(E1) transitions between states, such as the ones induced by laser light. Strictly
speaking, E1 transitions do not couple to electronic spin degrees of freedom, so we
have the selection ruleΔ( = 0. Onemight then conclude that E1 transitions between
singlet and triplet states are forbidden. However, mixing of atomic eigenstates of
equal � but different ( (due to weak ®;8 · ®B8 spin-orbit terms) makes some nominally
triplet states have weak singlet character and vice versa, making transitions between
the two sectors weakly allowed.

Practically what this means is that two-electron atoms have narrow E1 transitions
between singlet and triplet sectors called intercombination lines. These lines are
of great experimental utility as they allow for e.g. optical cooling to very low
temperatures, precise spectroscopy, and optical clock transitions.

Transitions of interest

Here we list some key transitions of Sr. These are also included in the level diagram
of Fig. 2.1.

Blue
5s2 1S0 ↔ 5s5p 1P1 | 460.9 nm | Γ = 2c × 30 MHz (g = 5.3 ns) [86]

This is the primary “strong” singlet ground-to-excited transition of Sr. It is com-
monly used for slowing, first-stage magneto-optical traps (MOTs), and imaging.
In this sense, it is similar to the D1 and D2 lines of alkali atoms; however, it is
significantly broader by about a factor of 5. This means its Doppler temperature

∗In the absence of external perturbing fields. In the case of nonzero nuclear spin �, only � is
exact for all states, where ®� = ®� + ®�.
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Figure 2.1: A to-scale energy level diagram of relevant states of Sr, with transitions
of interest shown. We show all states with ! ∈ {S, P, D} up to 5s7s 3S1 as well as
our Rydberg state 5s61s 3S1 and the ionization threshold. If a state has fine structure,
the � values are listed to the side of the relevant states. Dashed arrows highlight an
important decay channel (see Sec. 2.6.8). Not shown: the auto-ionizing state we
use for Rydberg state detection (Sec. 4.1.3).

()3 ∼ 730 `K) is higher by the same factor, and furthermore there is no obvious way
of achieving sub-Doppler cooling [22] on this transition as the 5s2 1S0 ground state
has no fine or hyperfine structure. This would have made cooling Sr to sufficiently
low temperatures impossible were it not for the red transition. The 5s5p 1P1 excited
state has a weak decay channel into the 5s4d 1D2 state, which subsequently decays
into the 5s5p 3P1,2 states. This is an important consideration for the blue MOT as
well as for single-particle imaging, as will be discussed in Sec. 2.6.8.



18

Red
5s2 1S0 ↔ 5s5p 3P1 | 689.4 nm | Γ = 2c × 7.5 kHz (g = 21 `s) [87]

This is an intercombination line (sometimes called the intercombination line) with
a linewidth small enough for a Doppler temperature of )3 ∼180 nK (although,
unusually, its recoil temperature is higher at )A ∼230 nK), but still large enough
for cooling to be practical. It does not scatter rapidly enough to make direct
cooling of a thermal beam into a MOT very practical, so usually this transition
is used for a second-stage red MOT after a blue MOT. Later, we will show that
this transition is very useful for cooling (Sec. 2.5) and diagnostic spectroscopy in
tweezers (Sec. 2.7.2). To actually take advantage of the narrow linewidth, one must
use a narrow laser locked to a high-finesse cavity (App. A.4.2).

Repumps
5s5p 3P0 ↔ 5s6s 3S1 | 679.3 nm | Γ = 2c × 1.3 MHz (g = 120 ns) [88]
5s5p 3P1 ↔ 5s6s 3S1 | 688.0 nm | Γ = 2c × 3.9 MHz (g = 41 ns) [89]
5s5p 3P2 ↔ 5s6s 3S1 | 707.2 nm | Γ = 2c × 6.7 MHz (g = 24 ns) [87]

These transitions allow for rapid incoherent population transfer between the 5s5p 3P�
states. For example, if it is desired to transfer population from 3P2 to 3P1, one can
simultaneously turn on the transitions at 679 nm and 707 nm. Then, 3P1 becomes
the only dark state in the manifold and, after potentially several scattering events
through 5s6s 3S1, it will be populated. This exact scheme is used to return atoms
into the singlet blue transition cycle if they have decayed to 5s5p 3P2 through the
weak 5s4d 1D2 channel. However, we will also find various other uses for these
transitions that will be described when appropriate.

Clock
5s2 1S0 ↔ 5s5p 3P0 | 698.4 nm | Γ→ 0 (g →∞) (See Sec. 3.1.1)

The ultra-narrow clock transition will be discussed at depth in Chap. 3. The prac-
tically zero decay rate of this transition is due to the � = 0 9 �′ = 0 and Δ( = 0
electric dipole selection rules. We will refer to 5s5p 3P0 as the clock state.

Rydberg
5s5p 3P0 ↔ 5s=s 3S1 | ∼317 nm (Table. 4.2) | See Sec. 4.4.1 for decay rate

This is a series of transitions from the clock state to highly-excited (i.e., Rydberg)
triplet states with = & 40 that will be used to induce interactions and entanglement
between atoms. These Rydberg transitions will be discussed at depth in Ch. 4. Note
that the wavelength quoted here assumes excitation from the clock state 5s5p 3P0.
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Auto-ionization
5s=s 3S1 ↔ 5p3/2=s1/2 | 407.9 nm | See Sec. 4.1.3 for discussion on decay rate

These are transitions from Rydberg states to states with an energy above the ion-
ization threshold of the neutral Sr atom where both valence electrons are excited.
Excitation of these transitions leads to rapid auto-ionization of the atom, which
allows for high-fidelity detection of Rydberg states. Note that, unlike all states we
have encountered so far, we use quantum numbers 98 (the total angular momentum
of each electron) to denote these auto-ionizing states. � = 1, 2 are possible for these
states and are practically degenerate. However, � = 1 is most desirable for rapid
auto-ionization, requiring some consideration of polarization (Sec. 4.1.3).

2.2 Optical tweezers

Electric field conventions

Differing electric field conventions are a common source of confusion, so here
we state ours explicitly.

The real time-dependent electric field of a monochromatic wave is given by

®� (®A, C) = Re
{ ®E(®A)4−8lC} (2.2)

where ®E is a complex vector. When ®� is understood to have a single, constant
polarization across all space, we can work with just a scalar complex quantity
E by writing ®E(®A) = n̂E(®A), where n̂ is a unit complex vector. E is sometimes
referred to as the complex amplitude of the electric field.

Intensity is then defined as
� = 1

22Y0 | ®E|2 (2.3)

with 2 the speed of light and Y0 the vacuum permittivity. Intensity has units of
power per area and is the quantity most easily determined in a lab.

In a different convention, one may instead define the positive frequency compo-
nent of the electric field as ®E (+) = 1

2
®E, and the negative frequency component

®E (−) by its complex conjugate. The positive and negative component conven-
tion is used heavily in Ref. [90], which we will cite often, and was used in our
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published work Ref. [89]. However, we will not use it in this work, and instead
use the complex amplitude everywhere.

Optical tweezers (or just tweezers for short) are optical dipole traps [91] with a small
volume (typically . 1 `m3) that are formed by tightly focusing a far off-resonant
beam of light through a high numerical aperture (NA) objective lens. The tight
spatial extent of tweezers allows for preparation of single atoms (Sec.2.4.2) as well
as for deep traps with large trap frequencies for relatively small optical powers.

We will analyze the optical profile of a tweezer by looking at how a lens focuses
light. We will for now work in the scalar and paraxial regime of optics, where
paraxial means that beams propagate only in small angles to the optical axis. In
App. C, we will see how these approximations begin to break down for high NA
systems. However, the corrections will be small, so for most purposes, a scalar
paraxial treatment is sufficient. The reader is pointed to Ref. [92] for more in-depth
discussions of the relevant derivations and approximations.

Consider an aberration-free lens of focal length 5 illuminated by an input field with
complex amplitude E8 (G′, H′). We let _ = 2c

:
be the wavelength, (G, H) and (G′, H′)

be coordinates in the focal and input planes, respectively, and I be the distance from
the focal plane. Then the output field near the focal plane of the lens is (up to an
overall phase)

E> (G, H, I) = 48:I
:

2c 5

∬
E8 (G′, H′)4

−8: GG
′+HH′
5 4

−8:I G
′2+H′2
2 5 2

3G′3H′ (2.4)

The integral is the Fourier transform of the input field times a radially quadratic
phase that scales linearly with I. This formula follows from Fresnel diffraction
up to a few approximations. Note that E> (G, H, I) satisfies the paraxial Helmholtz
equation: (∇2

⊥ + 28:mI + 2:2)E = 0. The solutions of this equation are often
written in terms of a basis of Gaussian modes, such as Hermite-Gaussian modes in
Cartesian coordinates or Laguerre-Gaussian modes in cylindrical coordinates. The
lowest order mode of both of these bases is the simple Gaussian beam, which we
will soon see is a close approximation of a tweezer.

When the input field has symmetry around the optical axis, we can simplify the
expression by working in cylindrical coordinates:

E> (A, I) = 48:I
:

5

∫ ∞

0
A′E8 (A′)�0( :5 AA

′)4−8:I
A ′2

2 5 2
3A′ (2.5)
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where A =
√
G2 + H2, A′ =

√
G′2 + H′2, and �= is the order = Bessel function of the first

kind. In the context of optical aberration theory, the quadratic phase in the integral
of Eq. 2.5 can be interpreted as a defocus aberration. It is in some sense not a “true”
aberration as it only represents a displacement from the focal plane. However,
higher order aberrations which are not trivial can be similarly represented by more
complex phase patterns (such as spherical aberrations, represented by fourth order
phase curvature). One often uses Zernike polynomials in this context, which form
an orthonormal basis for optical aberrations of all orders [93].

To form an optical tweezer, we send aGaussian beamofwaistF8 and central complex
amplitude E0,8 through a lens with aperture radius∗ '. Then the electric field of the
tweezer is given by

EC (A, I) = 48:I
:E0,8

5

∫ '

0
A′4
− A
′2

F2
8 �0( :5 AA

′)4−8:I
A ′2

2 5 2
3A′ (2.6)

There is generally not a clean analytical solution to this integral for finite apertures,
but the limits F8

'
� 1 and F8

'
� 1 are tractable and instructive. For F8

'
� 1, the

Gaussian input becomes approximately uniform on the aperture (although most of
the input power is not transmitted) and we drop the first Gaussian factor in Eq. 2.6.
For I = 0, this can be evaluated to give

EC (A, 0) |F8
'
�1 = E0,8

'

A
�1( :'5 A) (2.7)

This output pattern is called an Airy disk and is generally the “smallest” feature that
a lens can produce. It is very closely Gaussian near the center, but has rings on the
outside, the first and most prominent of which is peaked at A ∼ 5.14 5

:'
. Note that

limA→0 EC (A, 0) |F8
'
�1 = E0,8

:'2

2 5 .

For F8
'
� 1, the input Gaussian is much smaller than the aperture and practically all

input power goes through. To evaluate this, we let the upper bound of the integral
∗For a compound microscope objective, usually NA is specified instead of '. Then, we have

' = 5 × #�, where 5 is the effective focal length of the objective.



22

in Eq. 2.6 go to infinity. The result is simply another Gaussian:

EC (A, I) |F8
'
�1 = E0

F0
F(I) exp

(
− A2

F(I)2
)

exp
(
8:I + 8: A2

2'(I) − 8k(I)
)

(2.8)

F0 =
2 5
:F8

(2.9)

E0 =
F8

F0
E0,8 (2.10)

I' =
1
2 :F

2
0 (2.11)

F(I) = F0

(
1 +

( I
I'

)2) 1
2 (2.12)

'(I) = I
(
1 +

( I'
I

)2)
(2.13)

k(I) = arctan
( I
I'

)
(2.14)

This is indeed the general formula for any Gaussian beam, with waist F0, Rayleigh
range I', Radius of curvature '(I), and Gouy phase k(I).

For a general choice of F8
'
, the integral is not analytically tractable, but we can

study it numerically [94]. We will see in Sec. 2.3 that a far off-resonant optical
beam creates energy shifts proportional to its intensity∗, gradients of which can
create trapping motional potentials. For trapping, what is most relevant is what
happens near the point of maximum intensity. In particular, we are interested in a
trap depth *0 ≡ −* (®A = 0) ∝ |E0 |2, where * (®A) is the optical potential, as well
as the trap frequencies l8 ≡

√
1
<
m2
8
* |®A=0, where < is the atomic mass. We can

numerically compute these quantities for a real tweezer as a function of F8
'
at fixed

input power, with results shown in Fig. 2.2. Making a tight and deep tweezer with
a Gaussian input is a competition between getting high power transmission (which
favors smaller input waist) and a tight tweezer waist (which favors larger input
waist). A compromise is reached at about F8

'
∼ 1, though we see that radial trap

frequency, axial trap frequency, and depth have slightly different optima. We will
thus choose to work in a regime of F8

'
∼ 1, so these tweezers will be something in

between an Airy disk and a Gaussian.

When considering trapping, we will choose to model a tweezer potential as purely
Gaussian. We will assume an experimentally determined trap depth*0, along with
a fitted waist F0 and Rayleigh range I', which we will in general not constrain by
Eq. 2.11. The only time in which this approximation may not be sufficient is when

∗Up to small, usually unimportant caveats discussed in Sec. 2.3.3 and Sec. 3.1.2



23

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 2.2: Trap depth and trap frequencies for a tweezer generated by an input Gaus-
sian of waist F8 through an aperture of radius ', under the paraxial approximation.
The total power of the input beam before the aperture is kept fixed.

we consider two tweezers close together such that the non-Gaussian outer rings of
one overlap with the central region of the other. The outer structure of a real tweezer
is compared with that of a Gaussian and an Airy disk in Fig. 2.3.

Within the Gaussian approximation, the optical potential is given by

* (A, I) = −*0

1 + I2/I2
'

exp
(

−2A2

F2
0(1 + I2/I2

'
)

)
(2.15)

and we have the following useful formulas for radial and axial trap frequencies:

lG,H =

√
4*0

<F2
0

(2.16)

lI =

√
2*0

<I2
'

(2.17)

It is often useful in the lab to be able to compute the central intensity �0 of a Gaussian
beam given F(I) and the total power of the beam %. This is given by:

�0(I) =
2%

cF(I)2
(2.18)
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Figure 2.3: Comparison between “Real tweezer”, Airy, and Gaussian intensity
profiles at long distances, under the paraxial approximation. Note that these do
not result from the same input beam, but are rather constrained to the same peak
intensity and the same second derivative at zero. The purpose of this is to compare
different trap models far from the center under the same central conditions (i.e. the
same trap depth and trap frequency). The x-axis is in units of Gaussian waists.
Inset: A zoom-in around the outer ring features.

2.3 Light shifts & optical trapping

In this subsection, we will compute how a far off-resonant beam of light creates
energy shifts called light shifts in the atomic level structure proportional to the
light’s intensity. This allows us to directly interpret the intensity profile of a tweezer
(explored in Sec. 2.2) as a motional potential that we can use to trap an atom.

2.3.1 Polarizability

Within the electric dipole approximation, the Hamiltonian describing the interaction
of light with an atom at a particular point in space is

�3 (C) = − ®3 · ®� (C) (2.19)

where ®3 = −|4 |®A is the vector dipole operator. Note that if we choose our basis
{|8〉} to be eigenstates of parity (as atomic energy eigenstates are), then 〈8 | ®3 |8〉 = 0.
We will assume henceforth that such a basis is used. We will assume that ®� is
monochromatic withl far off-resonant from any atomic transitions of the states that
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we are interested in. Under this assumption, we will evaluate the dipole interaction
with perturbation theory. As our basis consists of parity eigenstates, first-order
energy perturbations vanish, so the leading perturbations will be second-order.

An important takeaway from this subsection will be that the second-order pertur-
bation generically leads to more than just an energy shift: one must also consider
mixing of states within the same (near-)degenerate manifold. For example, if we
consider the perturbation on a state |5s5p 3P1 <� = 0〉, we should not only ask how
the energy of this state shifts, but also how it mixes with |5s5p 3P1 <� = ±1〉. Such
state mixing generally happens when the electric field vector n̂ is not parallel to the
quantization axis, which might be fixed as parallel to a magnetic field.

The process that leads to an energy shift can be interpreted as a two-photon pro-
cess from a state |8〉 to a series of intermediate states | 9〉 and then back to |8〉.
Such processes are captured in second-order perturbation theory by terms such as
〈8 |�3 | 9〉〈 9 |�3 |8〉. If we let |8′〉 be another state in the same manifold as |8〉, the pro-
cess 〈8 |�3 | 9〉〈 9 |�3 |8′〉 may also be allowed and will produce an admixture between
these states. In principle, such a two-photon state admixture can happen between
any two states when allowed by selection rules, but admixtures between different
non-degenerate manifolds are usually strongly energetically suppressed and can be
ignored.

Therefore, we will compute more than just second-order energy shifts; we will in
fact compute an entire effective second-order perturbative Hamiltonian �eff

3
for

a degenerate manifold of states. We state the final result and refer the reader to
Ref. [90] Chapter 7.7 for a thorough derivation. First we define the Cartesian tensor
polarizability operator for a degenerate manifold of states |8〉:

U`a =
∑
9

2l 98

ℏ(l2
98
− l2)

3` | 9〉〈 9 |3a (2.20)

where `, a are Cartesian coordinate indices, 3` is the ` component of the vector
dipole operator ®3, and l 98 =

1
ℏ
(ℰ9 −ℰ8) whereℰ8 is the unperturbed atomic energy

of the degenerate manifold to which |8〉 belongs.

Then the effective second-order perturbative Hamiltonian is

�eff
3 = − �

22Y0

∑̀
,a

U`an
∗
`na (2.21)

where � is the intensity and n` is the ` component of the complex unit polarization
vector. Note that the time dependence of the original �3 (C) is gone.
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2.3.2 Spherical tensor decomposition

While Eqs. 2.20 & 2.21 in principle give the desired result, they can be rewritten in
a more elegant and insightful way. In particular, Eq. 2.20 requires one to choose a
coordinate basis in which to evaluate dipole matrix elements and is not immediately
transparent as to its dependence on polarization. We will remedy this by “factoring
out” an angular dependence, such that the final expression separates into something
that depends only on polarization and something that depends only on radial atomic
structure (which can be obtained from atomic data references, see Sec. 2.3.2).

The strategy will be to decompose U`a into spherical tensor components. A rank-2
Cartesian tensor such as U`a can be decomposed into rank-0,1, and 2 spherical
tensors known as the scalar, vector, and tensor components, respectively.

We will denote with Greek letters the parts of a state vector that refer to all but the
magnetic sub-level. That is, the full state can be specified by |V <�〉, where <� is
the magnetic quantum number.

The Wigner-Eckart theorem allows us to decompose the dipole matrix element
between two states |V <�〉 and |V′ <′�〉 with respective total angular momentum∗

quantum numbers � and �′ as:

〈V <� |3@ |V′ <′�〉 =
1

√
2� + 1

〈V | |3 | |V′〉〈� <� |�′ <′� ; 1 @〉 (2.22)

Here, 〈� <� |�′V <′� ; 1 @〉 is a Clebsch-Gordan coefficient and @ ∈ {−1, 0, 1} is a
spherical component index†. The quantity 〈V | |3 | |V′〉 is called the reduced dipole
matrix element (RDME), and is independent of polarization and quantization axis.
The RDME is in principle computed by an integral between radial wavefunctions,
and in practice determined experimentally (Sec. 2.3.2). Note that there is a difference
in convention of definition of the RDME between this work and Ref. [90], where
our definition has an additional factor of 1√

2�+1
in the right-hand side of Eq. 2.22.

This makes the RDME more symmetric in exchange of V and V′, and also makes it
consistent with our ownwork Ref. [89]. The final result for polarizabilities, however,
will agree and the formulas for polarizabilities will be modified to ensure this.

Nowwe are ready to give the spherical tensor decomposition of U`a. We assume that
U`a is an operator defined on a degenerate manifold |V〉 of total angular momentum

∗All discussions in this section apply equally to atoms with hyperfine structure; one just needs
to substitute � → �.

†We decompose ®3 into spherical components 3@ such that 30 = 3I and 3±1 = ∓(3G ± 83H)/
√

2.
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quantum number �. We will again simply state the result and refer to Ref. [90]
Chapter 7.7 for derivation:

U`a = UsX`a +
8Uv
�
Yf`a�f +

Ut
2� (2� − 1)

(
3(�`�a + �a�`) − 2� (� + 1)X`a

)
(2.23)

where

Us =
2

3(2� + 1)
∑
V′

lV′V |〈V | |3 | |V′〉|2

ℏ(l2
V′V − l2)

(2.24)

Uv =

√
6�

(� + 1) (2� + 1)
∑
V′
(−1)�+� ′+1

{
1 1 1
� � �′

}
lV′V |〈V | |3 | |V′〉|2

ℏ(l2
V′V − l2)

(2.25)

Ut =

√
40� (2� − 1)

3(� + 1) (2� + 1) (2� + 3)
∑
V′
(−1)�+� ′

{
1 1 2
� � �′

}
lV′V |〈V | |3 | |V′〉|2

ℏ(l2
V′V − l2)

(2.26)

Here, �a is the unitless spin-� operator along the a direction, X`a is a Kronecker delta,
Yf`a is a Levi-Civita symbol, and

{
. . .

}
is a Wigner 6- 9 symbol. The quantities Us,

Uv, and Ut are known as the scalar, vector, and tensor polarizabilities, respectively.
They are functions of the light frequency l and are specific to each degenerate
atomic manifold |V〉. Importantly, they do not depend on polarization of the light.

Finally, this allows us to write �eff
3

in the following coordinate-invariant form:

�eff
3 = − �

22Y0

(
Us +

8Uv
�
(n̂∗ × n̂) · ®� + Ut

2� (2� − 1)

(
3{n̂ · ®�, n̂∗ · ®�} − 2� (� + 1)

))
(2.27)

where {·, ·} is the anticommutator. Note that the cross product here is computed with
the standard algorithm ( ®0 × ®1)f =

∑
`,a Yf`a0`1a, and no conjugation is implied.

It is often convenient to write the term proportional to the vector polarizability
as that of an effective magnetic field ®�eff as its contribution to the Hamiltonian is
identical to that of a real magnetic field (when restricted to the degenerate manifold
in question). This can be done by defining

®�eff (Uv) ≡ −
8Uv�

22Y0`B6��
(n̂∗ × n̂) (2.28)

where `B is the Bohr magneton and 6� is the Landé 6-factor∗. Then the part of
�eff
3

proportional to Uv can be written as `B6� ®�eff (Uv) · ®�. This observation makes
∗The Landé 6-factor is 6� = 6! � (�+1)−( ((+1)+! (!+1)2� (�+1) + 6( � (�+1)+( ((+1)−! (!+1)2� (�+1) , where 6! ≈ 1 is

the orbital 6-factor and 6( ≈ 2 is the electron spin 6-factor.
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an intuitive connection between vector polarizability and magnetic fields. We note
that ®�eff can only be nonzero when the polarization is not linear; i.e. when it has
a circular component. Note that, like a magnetic field, a circular polarization is
anti-symmetric under time reversal.

�eff
3

is directly proportional to the intensity. So, at a fixed polarization and for a par-
ticular eigenstate |�〉 of �eff

3
, it makes sense to speak of a single, total polarizability

U�, such that the energy shift of the eigenstate is Δℰ� = − 1
22Y0

U��. This energy
shift is a light shift. A spatial gradient of such a shift (as would be produced by, e.g.,
a tweezer) produces a motional potential for an atom. As we will be trapping atoms
in intensity maxima, negative shifts (and positive polarizabilities) will be needed to
produce trapping potentials.

When �eff
3

is diagonal in the angular momentum basis |� <�〉, the vector part
produces shifts proportional to <� (indeed, as a magnetic field does) while the
tensor part produces shifts proportional to <2

�
(as a DC electric field does). The

scalar part shifts all sub-levels identically.

However, �eff
3

is sometimes not diagonal in any angular momentum basis. For
strictly elliptical polarization and finite tensor polarizability, there is in fact no
choice of quantization axis for which �eff

3
is diagonal in the angular momentum

basis. Another way to say this is that, in such cases, there is no choice of Î for which
[ ®� · Î, �eff

3
] = 0. To gain intuition as to why, note that an ellipse has no axis of

rotational symmetry. When the polarization is linear or circular, a diagonal choice
of Î does exist, but other fields — such as an external magnetic field—may point in
a different direction and make the total Hamiltonian again not diagonalizeable with
angular momentum states. We will explore diagonalization of �eff

3
and talk about

subtleties of adding in magnetic fields in Sec. 2.3.3.

Reduced dipole matrix elements

Reduced dipole matrix elements are listed in various ways in the wider literature
and it is often confusing to convert from one convention to the other. We will
not give a comprehensive review of all of them here (the reader is pointed to
Refs. [80] for more), but we will at least relate the RDME as defined in Eq. 2.22
to an unambiguous experimental quantity: the decay rate.
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For an allowed transition |V〉 ↔ |V′〉 where |V′〉 is higher in energy, there is
generally some decay rate ΓV′→V from |V′〉 to |V〉 (in NIST databases, ΓV′→V
is denoted by �:8). Note that this decay rate does not depend on magnetic
sub-level. Also, note that this may not be the total decay rate of |V′〉 if it decays
to states other than |V〉. Then the squared RDME between the two states is
given by:

|〈V | |3 | |V′〉|2 = 3cY0ℏ2
3

l3
V′V

(2�′ + 1)ΓV′→V [for �V′ > �V] (2.29)

Like for Eq. 2.22, note that our convention has a factor of (2�′ + 1) which is
not found in some other conventions, e.g. in that of Ref. [90]. See App. D
for further discussion on RDMEs in the context of Rydberg states, of particular
interest being how RDMEs relate to radial wavefunctions.

2.3.3 Polarizability tuning

The wavelength of light is the most important factor in the polarizability of a
state. Wavelengths tend to create positive polarizabilities (and trapping shifts) when
they are red-detuned from nearby atomic transitions, and tend to create negative
polarizabilities (and anti-trapping shifts) when they are blue-detuned from nearby
transitions. Of particular interest are wavelengths that give the same shifts for two
different states — these are so-called magic wavelengths.

However, commercially available high-power lasers may not always be available
at the exact wavelength that gives a desired set of shifts. Furthermore, it might
be necessary to dynamically tune the light shift of a state mid-experiment without
having to tune a laser over many nanometers, which is usually the scale on which
polarizabilities appreciably change. On the other hand, it may also be desirable
to have light shifts that are insensitive to parameters that may have fluctuations or
inhomogeneities. In either case, it is important to study how polarizability can be
tuned by polarization and magnetic fields.

We will consider a beam propagating in the +Î direction and assume that it has a
constant complex unit polarization n̂ . This latter assumption breaks down slightly
near the focal plane for high-NA systems (see App. C), but for most purposes this is
unimportant. We will parametrize the polarization as

n̂ (W) = cos(W)Ĝ + 8 sin(W) Ĥ (2.30)
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where W ∈ [− c4 ,
c
4 ] is an ellipticity parameter. Linear polarization (in Ĝ) is given by

W = 0 and fully circular polarization is given by W = ± c4 , with opposite handedness
for plus and minus. Note that this parametrization assumes that the polarization
major axis is along Ĝ, which is an arbitrary choice if we allow the external magnetic
field ®� to have components in all directions, which we will.

The first observation to make is that we can relate the effective magnetic field ®�eff

(Eq. 2.28) to W as
®�eff =

Uv�

22Y0`B6��
sin(2W) Î (2.31)

However, remember that ®�eff is just a convenient way of writing the vector polariz-
ability component already included in �eff

3
and that it is not an effect in addition to

it. We can write the full �eff
3

in terms of W as

�eff
3 (W) = −

�

22Y0

(
Us +

Uv
�

sin(2W)�I

+ Ut
� (2� − 1)

(
3
(
cos2(W)�2

G + sin2(W)�2
H

)
− � (� + 1)

))
(2.32)

Polarization ellipticity

Herewewill look at the eigenstates of�eff
3

as a function of the ellipticity parameter W.
We see that ®�eff is zero for linear polarization (Eq. 2.31), so the vector polarizability
only matters when the polarization is not linear. For a manifold with no tensor
polarizability, ®�eff and the scalar polarizability are the end of the story and we
would expect the magnetic sub-levels |� <�〉 to shift with ellipticity as they would
under the usual Zeeman shift [95].

For nonzero tensor polarizability, however, ellipticity has further effects [89, 96].
Here, we will show results only for � = 1 state manifolds. One reason for this is that
� = 1 is the simplest case where all of the scalar, vector, and tensor polarizabilities
are nonzero (� = 0 has only scalar polarizability while � = 1/2 has only scalar and
vector), so it is the simplest fully non-trivial case. Another reason is that for Sr, the
state for which this discussion will be most relevant is 5s5p 3P1, which has � = 1.

In the absence of an external magnetic field, the eigenenergies of �eff
3

for � = 1 are
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given by

ℰA(W) = −
(
Us − 1

2
(
Ut + 5 (W)

) ) �

22Y0
(2.33)

ℰB(W) = −
(
Us − 1

2
(
Ut − 5 (W)

) ) �

22Y0
(2.34)

ℰC = −(Us + Ut)
�

22Y0
(2.35)

where

5 (W) = sgn(Ut)
√

9U2
t cos2(2W) + 4U2

v sin2(2W) (2.36)

We see that one of the eigenenergies (ℰC) is insensitive to polarization ellipticity.
For linear polarization (W = 0), the tensor polarizability splitsℰA fromℰB andℰC.
For circular polarization (W = ± c4 ), the tensor polarizability splitsℰC fromℰA and
ℰB, while the vector polarizability splitsℰA fromℰB.

The polarization ellipticity is thus a potential knob for tuning light shifts. We can
define UA,B,C(W) ≡ −ℰA,B,C(W)/ �

22Y0
as the total polarizability of the corresponding

eigenstate for the given ellipticity.

For finite Ut and non-circular polarization, analytical formulas for the corresponding
eigenstates are given by

|A(W)〉 =
(
6−(W) |<I

�
= +1〉 − |<I

�
= −1〉

)
/
(
62
−(W) + 1

) 1/2 (2.37)

|B(W)〉 =
(
6+(W) |<I

�
= +1〉 + |<I

�
= −1〉

)
/
(
62
+(W) + 1

) 1/2 (2.38)

|C〉 = |<I
�
= 0〉 (2.39)

where

6±(W) =
5 (W) ± 2Uv sin (2W)

3Ut cos (2W) (2.40)

and <
`

�
is the magnetic quantum number projected in the ` direction. The

|C〉 = |<I
9
= 0〉 eigenstate is independent of ellipticity similarly to its corresponding

eigenvalue. Note that for strictly elliptical polarization and finite tensor polarizabil-
ity, |A(W)〉 and |B(W)〉 are not eigenstates of angular momentum for any choice of
quantization axis.

For circular polarization, or any polarization when Ut = 0, the eigenstates are

|Acirc〉 = |<I
�
= ±1〉 (2.41)

|Bcirc〉 = |<I
�
= ∓1〉 (2.42)

|C〉 = |<I
�
= 0〉 (2.43)
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For linear polarization, |�〉 and |�〉 are degenerate, so we are free to rotate our
eigenbasis in this subspace. Here, it will bemost convenient to choose a quantization
axis that is along the polarization (Ĝ). For this choice—andwith appropriate rotation
in the degenerate subspace — our eigenstates are

|Alin〉 = |<G� = 0〉 (2.44)

|Blin〉 = |<G� = ±1〉 (2.45)

|Clin〉 = |<G� = ∓1〉 (2.46)

Competing magnetic and optical eigenstates

In the presence of an external magnetic field ®�, the optical plus magnetic Hamilto-
nian is � = �eff

3
+ `B6� ®� · ®�.

When the polarization is elliptical, or when the external magnetic field is not parallel
to a linear polarization, or when the field is not in the Î direction under circular
polarization, the optical part and the magnetic part of the Hamiltonian generically
do not commute. When this happens and the Zeeman shift from the field is weak
compared to the maximum light shift, the eigenstates of the combined optical and
magnetic Hamiltonian may change significantly between the outside of an optical
beam (where the magnetic field dominates) and the center of that beam (where
the light dominates). In this scenario, not only is the intensity changing, but the
eigenstates themselves are changing with intensity. This effectively leads to a light
shift that is not linear in the intensity, and may in fact change the shape of a trap.
Similar effects will also be discussed in App. C.

We will henceforth assume that we work in a regime where optical and magnetic
eigenstates are not competing, either because the optical and magnetic eigenstates
align, or because the magnetic field is everywhere dominant.

Dominant magnetic field

Now we assume an external magnetic field ®� = �Î′, where Î′ is arbitrary and
� is large enough to produce a shift that is significantly larger than the maximal
light shift. In this case, we know a priori that the eigenstates are very nearly
|<I′

�
= 0,±1〉 everywhere, that they experience a Zeeman shift of ΔℰZ = `B6��<

I′

�
,

and that optical mixing between them is negligible regardless of the polarization.



33

In this scenario, we are justified in computing light shifts by simply taking the
expectation value Δℰls(<I′

�
) = 〈<I′

�
|�eff

3
|<I′

�
〉. Let us for brevity drop the I′ in the

magnetic quantum number, define cos2(\) = |n̂ · Î′|2 and cos(q) = Î · Î′ where Î is
still the direction of propagation of the light. Then, we get the following light shifts:

Δℰls(<�) = −
(
Us −

Uv
�

sin(2W) cos(q)<�

+ Ut
2� (2� − 1)

(
3
(
cos2(\) (3<2

� − 2) − <2
� + 2

)
− 2� (� + 1)

)) �

22Y0

(2.47)

This expression varies with the direction of the magnetic field, but not with its
magnitude. We stress again, however, that this is only valid when the eigenstates
are known a priori to be angular momentum eigenstates in Î′, which happens in
the limit of large magnetic field magnitude (ΔℰZ � Δℰls). If there is doubt about
the magnitude of a field not being sufficient, then diagonalization of the combined
optical plusmagnetic Hamiltonian is recommended. Note that when the polarization
is linear, the parameter \ can be interpreted as the angle between the polarization and
the magnetic field. However, \ is defined even in the case of elliptical polarization
where this geometric interpretation is not as well-defined.

Stability considerations

Experimentally, it is ideal to work with conditions that not only achieve the desired
light shifts, but are also robust to fluctuations in parameters. With this in mind,
one finds practically that maintaining a constant polarization across various optics
is challenging — especially for arrays of tweezers. In fact, it is ideal if the trapping
light passes through a polarizing optic close to the entrance of the focusing objective.
Therefore, tuning polarizability with ellipticity is not recommended for large arrays.

Tuning with a magnetic field [31, 97], when possible, does turn out to be more
convenient as magnetic fields can easily be made homogeneous across the extent
of a tweezer array (a few hundred microns). Furthermore, they are much easier
to change on the fly, with settling times of milliseconds or less. When working
in the regime of a dominant magnetic field, it is also most prudent to work with
the |<� = 0〉 state, as its energy is insensitive to fluctuations in the magnetic field
magnitude. It is worth writing down the light shift explicitly for |� = 1 <� = 0〉
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under a large field:

Δℰls(� = 1, <� = 0) = −
(
Us + Ut

(
1 − 3 cos2(\)

) ) �

22Y0
(2.48)

When \ = 0, Δℰls(\ = 0) = −(Us − 2Ut) �
22Y0

, and this is the same asℰA of Eq. 2.33
at linear polarization. When \ = c

2 , Δℰls(\ = c
2 ) = −(Us + Ut) �

22Y0
, and this is the

same asℰB of Eq. 2.34 at linear polarization and also the same asℰC of Eq. 2.35 at
any ellipticity.

Ideal insensitivity to polarization occurs for the |<� = 0〉 state with a large magnetic
field in the direction of propagation of the light (i.e. \ = c

2 , q = 0). Then, the
light shift is insensitive∗ to both polarization direction and ellipticity. However,
this configuration also precludes any field tunability, and if a magic condition is
required, then the wavelength is the only knob available. Such a condition occurs
for the red transition of Sr at 914 nm [98]. Another such condition is predicted to
occur at 500.65(50) nm [89] (Sec. 2.3.4). However, to our knowledge, this latter
wavelength has not been used for Sr trapping yet.

2.3.4 Polarizability in strontium

For Sr, the polarizabilities of the following states are of particular importance:

5s2 1S0: As this is the absolute ground state of Sr, the atom will be here “by
default” and this state must of course be sufficiently trapped (i.e. sufficiently positive
polarizability). As it is � = 0, only a scalar contribution will enter.

5s5p 3P1: Cooling will be done by driving to this state on the red transition. We will
see in Sec. 2.5 that the polarizability of this state relative to that of absolute ground
state has important implications for cooling. In fact, most of the discussion of light
shift tunability so far has been with this state in mind.

5s5p 3P0: This is the clock state, and for coherently driving the ultra-narrow clock
transition it is important that the light shift of this state is equal to that of the absolute
ground state. This state also only has a scalar contribution; however, with ultra-
narrow spectroscopy, it is in fact possible to resolve hyperpolarizability effects on
this state, which are fourth-order in perturbation theory. These are beyond the scope
of this section and will be discussed more in Sec. 3.1.2.

∗However, it is sensitive to drifts or inhomogeneities of the field direction or of the direction of
trap light propagation, but these are easier to control. Ultimately, there is no configuration that is
100% robust to everything.
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5s5p 3P2: This is another metastable state. While its exact polarizability is not
hugely important, it is important for it to be sufficiently trapped as the atom will
often have to occupy this state.

5s4d 1D2: This is a long-lived (few hundred `s) state which is a weak decay channel
for the blue transition. We will see in Sec. 2.6 that it is important for it to be
trapped in order to achieve high-survival imaging. This consideration unfortunately
is incompatible with the convenient trapping wavelengths 515 nm and 532 nm.

5s5p 1P1: This is the excited state which we will use for imaging. Its polarizability
is ultimately not too important — even if it is anti-trapped — because its lifetime is
very short (few ns). However, it is useful to know its polarizability relative to the
ground state so as to know how the trap shifts the blue transition.

5s6s 3S1: This is the excited state which we will use for pumping atoms between
the 5s5p 3P� triplet states. Its polarizability is also not hugely important due to its
short lifetime, but may play a role in heating during pumping. It is also useful to
know how the trap shifts the various repump transitions.

We will examine polarizabilities of Sr near the trapping wavelengths 515 nm and
813 nm, which are the two wavelengths used in this work. We will focus particularly
on the states involved in the red cooling transition, but we will mention other
polarizabilities as well. We will also note other wavelengths of interest, such as
500 nm, 532 nm, 914 nm, 1030 nm, and 1064 nm, where appropriate. App. B
discusses the data sources and methodology of our calculations.

Near 515 nm

515 nm is an interesting wavelength for trapping Sr because it is available at high
power (∼10 W) and is also power efficient due to being a relatively short wave-
length (leading to a tight tweezer waist) and having large ground state polarizability.
Furthermore, it offers transitions to both more weakly and more strongly trapped
sub-levels of 5s5p 3P1. If desired, 515 nm traps can also be tuned to a magic
condition for the red transition with polarization [89] or fields [97]. However, we
will see here and in Sec. 2.6 that 515 nm tweezers have unavoidable issues that lead
to atom loss at the percent level during imaging. Finally, 515 nm is not magic for
the clock transition (and cannot be made so), so highly coherent clock operation
with 515 nm traps is ruled out — however, see Ref. [99] for a hybrid 515 nm and
813.4 nm system.
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Figure 2.4: Total polarizabilities near 515 nm for the states involved in the red
transition at zero magnetic field and linear polarization along Ĝ, which is taken to
be the quantization axis. Magic wavelengths are predicted — but have not been
observed — at 500.65(50) nm and 520(2) nm [89].

We first look at the polarizabilities of the states involved in the red transition:
5s2 1S0 and 5s5p 3P1, shown in Fig. 2.4 for linear polarization. We see that our
modified sum-over-states model (App. B) closely reproduces the magic wavelengths
predicted at 500.65(50) nm and 520(2) nm in Ref. [89].

One of the main problems with 515 nm is the polarizability of the 5s4d 1D2 state,
which is populated via a small branching ratio decay of 5s5p 1P1. It unfortunately
turns out that 515 nm is very close to a transition of that state, particularly the
5s4d 1D2 ↔ 5s4f 1F3 transition at 515.75 nm. This makes the 5s4d 1D2 state
have large divergences in its polarizability at this wavelength, the implications of
which will be discussed in Sec. 2.6.8. Coincidentally, the same problem occurs
near 532 nm, another convenient high power wavelength: the 5s4d 1D2 ↔ 5s7p 1P1

transition occurs at 533.13 nm. These divergences are illustrated in Fig. 2.5.

We summarize the polarizabilities of these and other relevant states at 515.2 nm in
Table 2.1.
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Figure 2.5: Total polarizabilities near 515 nm for the various 5s4d 1D2 sub-states at
zero magnetic field and linear polarization. Note the divergences at the transition
wavelengths of 515.75 nm and 533.13 nm.

State |<G
�
| Total polarizability @ 515.2 nm [au]

5s2 1S0 0 941.8
5s5p 3P0 0 656.2
5s5p 3P1 0 990.4

1 658.9
5s5p 3P2 0 607.9

1 728.6
2 1091

5s4d 1D2 0 −1.166 × 104

1 −1.041 × 104

2 -6644
5s5p 1P1 0 -1335

1 -302.6
5s6s 3S1 0 160.2

1 158.0

Table 2.1: Summary of polarizabilities at 515.2 nm, linear polarization in Ĝ, and
zero magnetic field. Calculation methodology follows that described in App. B and
Table. B.1.
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Figure 2.6: Total polarizabilities near and beyond 813 nm for the states involved
in the clock and red transitions at zero magnetic field and linear polarization along
Ĝ, which is taken to be the quantization axis. The magic wavelength for the clock
transition is at 813.4 nm [88]. There is also a magic wavelength for the red transition
at 914 nm [98].

813.4 nm is particularly interesting for one key reason: it is a magic wavelength for
the clock transition. It is usually generated by titanium sapphire (Ti:sapph) lasers
with a typical maximum output power of 6 W. We will see that the ground state
polarizability at 813 nm is about 30% of that at 515 nm. Combined with the longer
wavelength (leading to less tight tweezer waist), one can expect overall only about
12% of the trap depth for an equivalent power at 813 nm as compared to 515 nm.
Nevertheless, 813 nm turns out to be a particularly good wavelength for Sr trapping
for many reasons (Sec. 2.6.8), beyond just its clock magic property. One of these is
the fact that 5s4d 1D2 and practically all states except the short-lived 5s6s 3S1 are
trapped.

The polarizabilities of the states involved in the clock and red transitions are plotted
in Fig. 2.6 for linear polarization. We summarize the polarizabilities of these and
other relevant states at 813.4 nm in Table 2.2.

We plot polarizabilities going well beyond 813 nm up to 1070 nm for a couple of
reasons. One is that we would like to highlight the magic wavelength for the red
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transition at 914 nm [98], which is similar to the one predicted at 500 nm in that it is
valid for all polarization ellipticities. The other reason is that high power (>100 W)
lasers exist at 1030 nm as well as 1064 nm, and these may be good alternatives
to 813 nm if its clock magic nature is not required. At 1064 nm, the ground state
polarizability is ×0.84 that at 813.4 nm. Another factor of about 0.58 is lost due
to the larger waist, leading to a total loss of trap depth of ×0.49. However, power
availability at 1064 nm should more than make up for this. No transitions exist
between 813 nm and 1064 nm for all relevant states, so no divergences exist in the
polarizabilities in this range and all states that are trapped at one wavelength are also
trapped at the other. However, all 5s5p 3P1 sub-levels have lower polarizabilities than
that of 5s2 1S0 at all wavelengths beyond 914 nm for linear polarization (Fig. 2.6).
This may have unfavorable implications for cooling (Sec. 2.5.2). However, it is also
possible with ellipticity to make one sub-level of 5s5p 3P1 attain an equal (magic) or
larger polarizability than that of 5s2 1S0 at 1064 nm (Fig. 2.8), which could remedy
this situation if it is found to be unfavorable.

State |<G
�
| Total polarizability @ 813.4 nm [au]

5s2 1S0 0 286.0
5s5p 3P0 0 286.0
5s5p 3P1 0 195.1

1 353.9
5s5p 3P2 0 464.3

1 391.6
2 173.8

5s4d 1D2 0 256.8
1 522.2
2 1318

5s5p 1P1 0 708.4
1 737.8

5s6s 3S1 0 -494.1
1 -481.9

Table 2.2: Summary of polarizabilities at 813.4 nm, linear polarization in Ĝ, and
zero magnetic field. Calculation methodology follows that described in App. B and
Table. B.1.

Tunability of 5s5p 3P1

The red transition 5s2 1S0↔ 5s5p 3P1 has a particularly narrow linewidth of 7.5 kHz.
Trap light shifts are usually larger than this, so a differential polarizability between
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these two states can usually bewell-resolved. It is often useful (e.g. for spectroscopy)
to work with zero differential polarizability (i.e. magic conditions). Furthermore,
the differential polarizability between the states of the red transition has qualitative
consequences for cooling (Sec. 2.5). Therefore, the tunability of differential po-
larizability of the red transition is of particular importance. While 5s2 1S0 has no
angular structure and no tunability besides with wavelength, the polarizability of
5s5p 3P1 can be tuned with either ellipticity or field.

A large component of the studies inRef. [89]was the dependence of the polarizability
of 5s5p 3P1 on polarization ellipticity. Although we ultimately found such tunability
inferior to magnetic tuning for tweezer arrays (Sec. 2.3.3), it is still instructive to
understand how it works. Furthermore, we will see that there are situations where
ellipticity offers tunability that amagnetic field does not and vice-versa. Fig. 2.7 plots
the polarizabilities of the states in the red transition near 515 nm under the magic
ellipticity angle for 515.2 nm and zero field. A large range of wavelengths between
the two linearly polarizedmagicwavelengths can bemademagic by ellipticity tuning
(though not quite the entire range). Fig. 2.8 plots the polarizabilities of the states in
the clock and red transitions near 813 nm and beyond under circular polarization
and zero field. We see that here ellipticity actually gives one of the sub-states
larger polarizability, making it have a larger polarizability than the ground state for
wavelengths at least up to 1070 nm.

Tunability with ellipticity and field is plotted in Fig. 2.9 at 515.2 nm and 813.4 nm.
We see that polarizabilities at one wavelength shift in the opposite direction as
compared to those at the other wavelength. While a magic ellipticity exists at zero
field for the red transition at 515.2 nm, one does not exist at 813.4 nm. However, a
magic field angle exists for both. Generally, a field angle can tune the polarizability
of the |<� = 0〉 state (with quantization axis defined by the field, assumed to be
dominant) anywhere from the polarizability of the |<G

�
= 0〉 state up to that of

the |<G
�
= ±1〉 states (for zero field and linear polarization in Ĝ). At 1030 nm

and 1064 nm, there are no magic field angles for |<� = 0〉, but there are magic
ellipticities at zero field.
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Figure 2.7: Total polarizabilities near 515 nm for the states involved in the red
transition at zeromagnetic field and at themagic polarization ellipticity for 515.2 nm.
Eigenstates for this configuration are not all angular momentum eigenstates, so we
label states with letters as in Eqns. 2.37-2.39. Note the splitting of the previously
degenerate B and C states, where the C state is insensitive to ellipticity. The
grey dashed line represents the polarizability of the |<G

�
= 0〉 state under linear

polarization, as in Fig. 2.4.



42

800 850 900 950 1000 1050

100

150

200

250

300

350

400

Figure 2.8: Total polarizabilities near and beyond 813 nm for the states involved
in the clock and red transitions at zero magnetic field and circular polarization
(W = 45◦), showing the full range of tunability. Here, the quantization axis is the
direction of propagation Î. The grey dashed line represents the polarizability of the
|<G

�
= 0〉 state under linear polarization, as in Fig. 2.6.
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Figure 2.9: Tunability of polarizabilities involved in the red transition with ellipticity
and magnetic field direction. (a,b) Total polarizabilities of 5s2 1S0 (black) and all
sub-states of 5s5p 3P1 (various colors) as a function of absolute ellipticity parameter
|W | at zero magnetic field at (a) 515.2 nm and (b) 813.4 nm. The color scheme is
consistent with that used in Figs. 2.7 & 2.8. We see that for 515.2 nm, a magic
condition is computed at |W | = 22.6◦ (measured as |W | = 24◦ [89]). However, no
such condition exists for 813.4 nm. (c,d) Total polarizabilities of 5s2 1S0 (black)
and 5s5p 3P1 |<� = 0〉 (red) under a dominant magnetic field that defines the
quantization axis at (c) 515.2 nm and (d) 813.4 nm. \ is the parameter from Eq. 2.47
which can be interpreted as the angle between field and polarization in case of linear
polarization. A magic angle is computed at 22.5◦ for 515.2 nm (measured as 24(1)◦
for 515.13 nm [97]). A magic angle is computed at 49.2◦ for 813.4 nm (measured
as 49◦ [100]).
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2.4 Preparing single atoms

A key feature of optical tweezer platforms is the ability to isolate only one atom
per tweezer. Not having to worry about short-range collisional or molecular inter-
actions or hopping from site to site makes the relevant physics relatively “clean.”
Furthermore, having one atom per site makes natural the treatment of tweezer arrays
as qubit registers (in a fashion similar to ion chains).

First, we will describe the loading of multiple atoms from a Sr red MOT into
tweezers (Sec. 2.4.1). Then, we will describe a technique for inducing pairwise
loss such that tweezers end up loaded with either one or zero atoms (Sec. 2.4.2).
From here, defect-free arrays can be assembled via rearrangement (Sec. 2.7.3). We
will conclude with some potential techniques for beating the standard 50% filling
fraction limit of pairwise loss (Sec. 2.4.3).

2.4.1 Loading multiple atoms from a MOT

We load atoms into tweezers from the “red” MOT of Sr, which is usually generated
as a second-stage MOT after a larger, hotter, and less dense “blue” MOT. The
techniques for generating these MOTs are well established and we point the reader
to Refs. [20, 23] for a further discussion on the preparation and subtleties of a Sr red
MOT.

Thermal considerations

It is illuminating to estimate the number of atoms in a MOT that end up within the
trapped phase space of a tweezer if the tweezer is instantaneously turned on. While
in principle any atom with negative motional energy will be trapped, it is sensible
to require a more stringent condition for trapping that will allow us to consider
only deeply trapped atoms localized close to the center of the tweezer. We will
consider only points in phase space with an energy below −(1 − ^)*0 where *0 is
the (positive) trap depth and ^ is a cutoff parameter.

Considering the classical Hamiltonian � (A, I, ?) = ?2

2< +* (A, I) with* (A, I) being
the tweezer potential from Eq. 2.15, we get the following bounds on the phase space
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variables for a cutoff parameter ^:

?max =
√

2<*0^ (2.49)

Imax(?) = I'

√
?2

max

^?2 + (1 − ^)?2
max
− 1 (2.50)

Amax(?, I) = F0

√√
1
2 (1 + I2/I2

'
) ln

(1 + I2
max(?)/I2

'

1 + I2/I2
'

)
(2.51)

We will assume that the momentum distribution in the MOT is thermal with a
temperature)" . We will further assume that the cutoff ^ is chosen sufficiently small
such that the tweezer volume is small as compared to the scale of density variations
of the MOT, such that we can assume that its atom number density is a constant
denoted by =()"). This is possible for a wide range of cutoff parameters as the
length scale of a tweezer is on the order of 1 `m or smaller, whereas aMOT typically
has a size of > 100 `m. We do not provide an explicit functional form of =()") as
the dependence on )" may be nontrivial — we only assume that =()") has been
experimentally determined at the temperature(s) of interest. Then the number of
atoms within the cut-off phase space upon instantaneous turn-on of the tweezer is

# inst =
8c2=()")
(2c<:B)")3/2

∫ ?max

0
3? ?2 exp

( −?2

2<:B)"

) ∫ Imax (?)

0
3I A2

max(?, I) (2.52)

This formula is not analytically tractable, but can be evaluated numerically. We
will assume “typical” tweezer parameters of *0 = :B × 500 `K, F0 = 800 nm,
and I' = 2.5 `m, and choose our cutoff to be ^ = 1/2. For the Sr red MOT, a
typical temperature and density are )" = 1 `K and = = 1011 cm−3. We can evaluate
Eq. 2.52 directly at these parameters to get # inst ∼ 0.25.

Another approach would be to note that )" � ^*0, in which case we can work
in the )" → 0 limit. Here, we essentially evaluate # inst by multiplying the MOT
density by the cut-off volume of the tweezer. We obtain

# inst
)"→0 =2c=(0)

∫ Imax (0)

0
3I A2

max(0, I)

=
2c
9
F2

0I'

( ( ^

1 − ^
) 3/2 + 6

( ^

1 − ^
) 1/2 − 6 arctan

( ( ^

1 − ^
) 1/2

))
=(0) (2.53)

→(14 − 3c)c
9

F2
0I'=(0) [for ^ → 1/2] (2.54)

Note that # inst
)"→0/=(0) is simply the volume of space in a tweezer with a potential

energy less than −(1 − ^)*0. Evaluating Eq. 2.54 at the parameters listed above
indeed gives a very similar answer of # inst

)"→0 ∼ 0.26.
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These numbers, although non-negligible, are much smaller than what can be
achieved if atoms are made to thermalize in the tweezer potential. Perhaps the
most important thermalization mechanism is laser cooling in the trap, which we will
discuss shortly. Collisional thermalization between atoms in the tweezers and atoms
in theMOT is in principle also possible, though could be slow for 88Sr given its small
ground state scattering length. However, Ref. [101] used collisional thermalization
between atoms in a light-shifted optical trap and atoms in a red MOT to achieve a
84Sr BEC. Adiabatic turn-on of the tweezer may also lead to thermalization, but we
have never found this to be necessary or beneficial.

Regardless of the thermalization mechanism, let us suppose it happens and that it
results in a temperature )C inside the tweezer. Assuming no atom-atom interactions,
such thermalization can be accounted for by modifying the formerly spatially con-
stant density =()") by a Boltzmann factor from the tweezer potential, such that the

density in the tweezer is now 4
−* (A,I)
:B)C =()"). We will eventually show that the red

transition leads to tweezer temperatures similar to those in a red MOT, such that )C
can be assumed to be on an order similar to )" . As tweezers can easily be made
much deeper than these temperatures (*0 ∼ 100’s of `K and beyond), we see that
this Boltzmann factor can easily be made enormous— so large as to essentially load
all atoms of the MOT into the tweezer.

This is of course not a guarantee that thermalization will happen, as many things can
prevent thermalization or make it too slow. One of these, as previously mentioned,
is differential light shifts due to the trap that can detune the cooling transition. More
generally, effects from the trap such as motional sidebands may qualitatively change
the cooling mechanism. Finally, the very high densities achievable in a tweezer
make atom-atom collisions and interactions highly non-negligible.

For the first two potential problems mentioned above, several solutions are possible.
One is to work with a magic condition on the red transition such that differential
light shifts are nullified. Another is to work with traps shallow enough such that
light shifts are small. This also mitigates worries about cooling mechanisms being
qualitatively different. We have empirically found that the most efficient loading
from a red MOT into _ = 813.4 nm tweezers, without using any additional beams or
detunings not already used for the MOT, occurs at about *0 ∼ 30 `K. Here, radial
motional sidebands are at lA ∼ 2c × 20 kHz and light shifts are approximated to be
170 kHz (though it is unclear how the magnetic gradient of the MOT affects these
shifts). A final strategy, if loading into deeper traps, is to use a separate beam (one
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is usually sufficient) detuned to an appropriate tweezer cooling frequency. We have
found all of these strategies to work well and ultimately find loading into tweezers
to be robust (assuming good MOT-tweezer overlap, see Sec. 2.4.1) even for small
MOT atom numbers.

As to atom-atom collisions and interactions, these likely eventually limit the number
of atoms that can be loaded into a trap. However, these are also the samemechanisms
that we will exploit to prepare single atoms, so their presence is overall welcome. At
least for 88Sr, we have found that numerous (see Sec. 2.4.1 for discussion on a lower
bound for such a number) atoms can be loaded into a tweezer simultaneously for
practically any tweezer parameters that we have used (_ = 515.2 nm at*0 = 1.4 mK
and _ = 813.4 nm at*0 as low as 30 `K to as high as 500 `K).

Overlapping tweezers with a red MOT

The low temperature and high density of a red MOT allows for efficient loading into
shallow tweezers. However, the red MOT is also only a few 100’s of `m in size and
must be well-aligned with the center of optical tweezers. This requirement becomes
even more stringent when an array of tweezers is used, which can have a size of a
similar length scale.

The best way to achieve and maintain alignment (after coarse alignment with optics)
is to use an externally applied magnetic field that can be tuned along all three spatial
dimensions. The magnetic quadrupole gradient used for the red MOT is usually on
the order of m� ∼ 3 G/cm or less (along the strong direction of the quadrupole, 1/2
as strong in the other two orthogonal directions). As the red MOT is centered at
the zero of the quadrupole field, applying an external field will shift the zero of the
quadrupole and thus the position of the red MOT. The magnitude of the gradient
m� determines the sensitivity of the position to an external field and therefore the
level of field stability required. If a spatial stability of XG is desired, a field stability
of X� = m� XG is required. For XG = 10`m and m� = 3 G/cm, a field stability of
X� = 3 mG should be ensured. With appropriate magnetic coils (see App. A.2),
this is easily achievable with commercially available current sources. Furthermore,
a dynamic range of at least 10 G should still be possible at these levels of stability,
allowing for position tuning of the red MOT up to ∼3 cm, well beyond what is
usually required.



48

Experimental results & atom number estimates

We find that atoms are robustly loaded into tweezers for a wide range of trapping
parameters. The presence of atoms in tweezers is determined by fluorescence imag-
ing, which will be thoroughly discussed in Sec. 2.6 and is only briefly summarized
here. In short, a trap is determined as occupied when the signal at its position on the
camera image surpasses some threshold, which is chosen to be sufficiently above
some background level (Sec. 2.6.6).

Onemay expect that the number of atoms in a trap can bemeasured by themagnitude
of the signal detected on a camera. While correlation between signal and atom
number is likely, we have found that peaks in the signal histogram from different
atom numbers are generally not well-resolved, likely due to the effects of light-
induced pairwise loss (Sec. 2.4.2) or other multi-body loss effects. Therefore, the
only reliable conclusion that we make from a single image is binary: the trap is
either occupied (with one or more atom) or not.

Nonetheless, we are able to put a lower bound on the average number of loaded
atoms via an assumption on the loading statistics. This assumption is that the
number of atoms that are loaded from the MOT into a tweezer follows a Poisson
distribution [33] — at least before any multi-body loss takes effect. For a Poisson
distribution of mean atom number #̄ , the probability of loading zero atoms is
%(0) = 4−#̄ . Experimentally, the fraction of images determined to contain an
unoccupied tweezer give an upper bound on %(0) (so long as false positives are not
significant). This measurement is generally an upper bound on %(0) as multiple
atoms can be rapidly lost before they scatter enough photons to be imaged. Via this
upper bound on %(0), we get a lower bound on the mean occupation number via
#̄ = − ln

(
%(0)

)
. In Ref. [89], which used _ = 515.2 nm and 1.4 mK deep tweezers,

we reported %(0) < 5 × 10−4. This placed a lower bound of #̄ > 7.6. Finally, we
will see in Sec. 2.4.2 that the filling fraction observed after pairwise loss can also
be used as an estimate of a lower bound for #̄ .

2.4.2 Pairwise loss

Our ultimate goal is to prepare one atom per tweezer. One strategy for this might
be to fine-tune the density of the red MOT or some other loading parameter such
as to maximize the probability of loading only one atom. While this is possible,
weakly-interacting atoms fill traps stochastically, usually following a Poisson dis-
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tribution [33]. The maximum possible probability of loading a single atom under
Poissonian statistics is only about 37% (occurring at a mean atom number of #̄ = 1).
For the rest of the tweezers, 37% would be empty and 26% would be loaded with
multiple atoms.

A more robust way of preparing single atoms is to initially fill tweezers with many
atoms and from there eliminate excess atoms. An ideal mechanism would expel
atoms one-by-one, but stop as soon as only one atom is left. While such schemes
have been realized to some extent in alkali atoms [102–105] and will be speculated
upon for Sr in Sec. 2.4.3, they involve a high degree of fine-tuning.

A mechanism which instead is most ubiquitously found in single-atom physics is
pairwise loss [33, 39, 48, 106, 107]. Pairwise loss is the simultaneous loss of pairs
of atoms, such that # → (# − 2). One can therefore see that the ultimate result of
pairwise loss is # 5 = #8 mod 2, where the subscripts stand for “final” or “initial”. In
other words, odd initial atom numbers end up at one, and even initial atom numbers
end up at zero. This is why the end result of pairwise loss is also sometimes called
parity projection.

The average number of atoms remaining at the end of pairwise loss is therefore
#̄ 5 = ?

odd
8

, where ?odd
8

is the probability of initially having an odd number of atoms.
Assuming #8 follows Poissonian statistics, this becomes

#̄ 5 =
1
2 (1 − 4

−2#̄8 ) (2.55)

This tends to 1
2 for increasing values of #̄8, and already for #̄8 = 4 there is only a

1.7×10−4 difference from #̄ 5 =
1
2 . By inverting this equation, one can also estimate

#̄8 (realistically, for values of #̄ 5 close to 0.5, this would give a lower bound limited
by the statistical error of the measurement).

In the context of a tweezer array, pairwise loss in the large #̄8 regime means each
trap will have a probability of 1

2 of ending up with a single atom or otherwise being
empty. If we then ask how many total single-atom filled tweezers we expect to have
in an array of #traps traps, the answer will be a binomial distribution with a mean of
#traps/2. This distribution has a standard deviation of

√
#traps/2.

The mechanism for pairwise loss in neutral atoms is usually excitation to two-atom
molecular states [108]. The specifics and subtleties of this process vary between
atoms and transitions, but an overall theme is that a pair of atoms in an electronically
excited molecular state gain a large amount of kinetic energy upon decay to the
electronic ground state — enough kinetic energy such that both atoms exit the trap.
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In experiment, we see evidence for pairwise loss when driving at certain frequencies
on the red transition [89]. In particular, we observe that a tweezer which is initially
occupied with very large probability (by, very likely, several atoms) is only occupied
50% of the time after appropriate driving on the red transition for a few 10’s of
ms (Fig. 2.10). Furthermore, the occupation saturates to this value and does not
reduce any further (at least not on any comparable timescales). This observation
is consistent with pairwise loss and strongly suggests that the end result is a single
atom.
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Figure 2.10: Pairwise loss (i.e. parity projection (PP)) for strontium in tweezers.
Data was produced by driving atoms on the red transition in a ∼1.4 mK magic-
ellipticity tweezer at _ = 515.2 nm with a radial trapping frequency of lA =
2c × 211 kHz. (a) Probability of finding an occupied tweezer after PP as a function
of drive frequency, with a pulse time of 60 ms. The horizontal axis is the frequency
offset (X/(2c) in the language of Eq. 2.57) from the free-space resonance of the red
transition. Inset: Probability of finding an occupied tweezer as a function of time
while driving at -226 kHz. (b) Probability of finding an occupied tweezer before
(blue) and after (red) a PP pulse, as a function of MOT loading time.

While we do not have a fully satisfactory model for the microscopic mecha-
nism of pairwise loss, we hypothesize that the molecular state at a frequency of
−435 kHz [109] plays a role. It is possible that cooling plays an important role dur-
ing pairwise loss (as a mechanism to increase phase-space density), thus biasing the
optimal frequency toward the trap frequency (where low-order motional sidebands
can be driven, see Sec. 2.5).

2.4.3 Schemes for increased filling

Here we discuss some potential strategies for obtaining single-atom array filling
fractions beyond the 0.5 provided by pairwise loss. We will present two distinct
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approaches: (1) loading the array multiple times (Sec. 2.4.3) and (2) a speculative
approach based on fine-tuning of molecular dynamics (Sec. 2.4.3). We have had
preliminary success with implementing strategy (1), while we only speculate on
strategy (2) for now based on previous work in alkali [102–105].

Approach 1: multiple loading cycles

In this approach∗, we load the array and perform pairwise loss as usual, and then
proceed to re-load any remaining empty tweezers while preserving the single atoms
in the tweezers already filled.

A procedure for accomplishing this is the following:

1. Load atoms into the array from a red MOT.

2. Perform pairwise loss.

3. Image the array to see which tweezers are empty.

4. Transfer atoms to the clock state (Sec. 4.1.1).

5. Decrease the depth of only the tweezers that contain an atom. This can be
done via altering the AOD signal (Eq. 2.122).

6. Load atoms into the array from a red MOT again.

7. Illuminate the array with both imaging (Sec. 2.6) and cooling (Sec. 2.5) light.
The imaging light will heat all atoms except the ones transferred to the clock
state. The cooling will prevent atoms in deep traps from being lost due to
heating, but will not prevent the loss of ground state atoms in shallow traps.

8. Return all tweezers to normal depth and perform pairwise loss (which may
already have been partially performed by Item 7).

9. Optional: repeat the procedure starting from Item 3.

Here, Item 7 crucially eliminates any new atoms that are loaded into tweezers that
were already prepared with a single atom in the previous loading cycle. It also does
so without removing those previously prepared atoms as they are in the clock state

∗We acknowledge Adam L. Shaw and Brandon Grinkemeyer for useful conversations regarding
these ideas.
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and therefore dark to the imaging light. Furthermore, Item 7 does not remove all
the atoms that were newly loaded into previously empty tweezers as those tweezers
are at the proper depth to experience effective cooling. It is possible to use tweezer
depth as a selective factor in this way for two reasons: one is that a trap light shift
can move the resonance of the cooling transition (see Eq. 2.81) and the other is that
atoms in shallower traps can be heated out faster.

Item 5 actually plays a double role in this scheme in both allowing for the aforemen-
tioned depth selection as well as extending the lifetime of atoms in the clock state.
One wants to minimize the depth as to minimize Raman scattering that can transfer
atoms out of the clock state (see Sec. 3.2.2). Typically, the process of creating and
loading from a red MOT lasts about ∼200 ms, so the lifetime of atoms in the clock
state needs to be significantly longer than this.

This scheme alone is enough to increase array loading, but there are also some
further tweaks that can improve the performance. One is to rearrange the initially
loaded array (see Sec. 2.7.3) such that all the loaded atoms are on one side. Then,
one can fine tune the position of the redMOT (see Sec. 2.4.1) during the next loading
cycle such that it overlaps mostly with the empty tweezers and avoids the already
filled tweezers. The red MOT is typically small enough (few hundred `m) to be
able to discriminate between one side of the array and the other. Finally, one can
use a red loading beam that has its detuning optimized to load into deep tweezers
(see discussion at end of Sec. 2.4.1).

We can quantify the performance of this scheme by asking what we expect the
array filling fraction to be after #! loading cycles. We can make two reasonable
simplifying assumptions: that all empty tweezers are loaded with a probability of
0.5 at any loading cycle and that no new atoms are loaded into tweezers that were
previously loaded (Item 7 ideally ensures this). Then the performance of the scheme
can be parametrized by a single variable ?B that is the probability that an initially
loaded atom remains in the trap until the end of the next loading cycle (atoms may be
lost by e.g., losses during imaging, unsuccessful transfer to the clock state, undesired
transfer out of the clock state, heating in the trap, etc.). Then, the average filling
fraction after #! loading cycles is:

5̄ (#!) ≡
#̄ 5 (#!)
#traps

=
1 − (?B − 1

2 )
#!

3 − 2?B
(2.56)

Note that #̄ 5 should be interpreted as the average of a binomial distribution and that
statistical fluctuations of # 5 and 5 will be present from run to run. An interesting
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limit is that of #! → ∞ where 5̄ (∞) = 1
3−2?B . Another is that of ?B → 1 where

lim?B→1 5̄ (#!) = 1 − 2−#! .

As a preliminary result, we measure a filling fraction of 5̄ (2) = 0.68 after two
loading cycles, suggesting that our ?B = 0.86. We thus expect our filling fraction to
saturate to 5̄ (∞) = 0.78 after many loading cycles with this level of performance.
Optimization of this performance is a matter of ongoing work.

The downside of this scheme is that it significantly increases the experimental cycle
time (unlike the speculative scheme we will present in Sec. 2.4.3) and that there are
diminishing returns with each added loading cycle. Weighing the importance of
having more atoms in the array versus that of having a fast cycle time depends on
the application and on the experimentalist’s discretion.

Approach 2 (speculative): molecular dynamics

Refs. [102–105] report the experimental realization of single-atom filling fractions
of greater than 0.5, reaching as high as ∼ 0.9 [103, 105]. These results are done with
alkali atoms and exploit molecular interactions. They start by loading traps with
more than one atom, just as we do before inducing pairwise loss. However, they
are able to then excite molecular states that, upon decay, release just enough kinetic
energy relative to the trap depth such that there is enough energy for one atom to
leave the trap but not both. This dynamical process requires finite center-of-mass
motion of the atom pair in order to bias the energy release into expelling only one
atom.

Such schemes have not currently been realized for Sr, but further study into this
topic may be fruitful. It may be particularly interesting to consider the molecular
states of a pair of atoms in the 5s2 1S0 – 5s5p 3P1 pair state, which are given in
Ref. [109]. We hypothesize that the most weakly-bound bound state at -435 kHz
plays a role in our pairwise loss (Sec. 2.4.2) and that it could be exploited to produce
filling fractions greater than 0.5. In particular, we foresee a possibility of tuning
the trap depth such that the energy released upon decay from such a state allows
for expelling only one of two atoms. Since atomic temperatures in Sr are typically
lower than those for alkali, it may be necessary to intentionally heat the atoms to
induce the finite center-of-mass motion necessary for such a process. We leave
further exploration of this topic to future work.
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2.5 Cooling in a tweezer

Having an atom that is not only trapped but also cold is of utmost importance
for practically every purpose. In this section, we will discuss how we use the
red transition to reach temperatures in a tweezer on the order of a few `K —
giving significant motional ground state occupation. We will discuss the various
mechanisms at play, how to measure temperature, and practical factors that limit
temperature.

We cool strontium by driving the narrow red transition. This transition already
allows us to reach ∼1 `K temperatures in the red MOT via Doppler cooling. In
this section, we will show how cooling on the red transition works in a trap. We
begin in Sec. 2.5.1 by exploring sideband cooling in a magic trap. The narrow
linewidth of the red transition will allow us to excite resolved sidebands with a
single-photon excitation to an optically excited state, similarly to certain ion trap
experiments [110]. This is to be contrasted with sideband cooling via a two-photon
Raman transition between ground hyperfine states, which is typically used in alkali
atoms [35], but has also been utilized in ion traps [111].

In Sec. 2.5.2, we will see that a Sisyphus cooling mechanism occurs in non-magic
traps.

2.5.1 Sideband cooling

Motional transitions

We begin by considering a two-level atom in a trap of potential* (®A) and driven by
a spatially uniform wave with wavevector ®: , Rabi frequency Ω, and detuning Δ . In
this section, we will assume the trap is magic, meaning that the trap potential is the
same in both the ground and excited state. We will see in Sec. 2.5.2 the implications
of having a non-magic trap.

Under these assumptions, the motional plus internal Hamiltonian (which does not
include excited state decay) in the rotating frame is given by

� =
®?2

2<
+* (®A) − ℏΔ |4〉〈4 | + 1

2ℏΩ
(
48
®: ·®A |4〉〈6 | + H.c.

)
(2.57)

We now assume that * (®A) is approximately harmonic near ®A = 0 (which is true
for tweezers) and that the atom is near this region. In this case, the 3D trap will
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have three geometric principal axes along which we can define trap frequencies
l8 ≡

√
1
<
m2
8
* |®A=0. Let us further assume one of these axes is parallel to ®: , and

let us call it Ĝ. The Hamiltonian in this harmonic region will now separate into a
sum of components along each direction, with only the component in Ĝ having non-
trivial coupling between motion and internal state. We define the harmonic ladder
operators as 08 ≡

√
<l8
2ℏ (A8 +

8
<l8

?8) and the dimensionless Lamb-Dicke parameters

[8 ≡ :8
√

ℏ
2<l8 . Focusing only on the Ĝ component of the Hamiltonian and dropping

subscripts, we get

�G = ℏl
(
0†0 + 1

2
)
− ℏΔ |4〉〈4 | + 1

2ℏΩ
(
48[(0+0

†) |4〉〈6 | + H.c.
)

(2.58)

The most interesting term in this Hamiltonian is 48[(0+0†) . One may recognize this
as the operator which displaces a wavefunction by ®: in momentum space. Here, this
is the result of a photon recoil. To see how this term affects the dynamics in a trap,
we can evaluate its matrix elements on a basis of eigenstates of = ≡ 0†0. The result
is given in Eq. 31 of Ref. [112] as∗:

〈=′|48[(0+0†) |=〉 =

√
=<!

(=< + |=′ − =|)!
(8[) |=′−=|4−

1
2[

2
!
|=′−=|
=<

(
[2) (2.59)

where =< = min(=, =′) and !U
V

(
H
)
is a generalized/associated Laguerre polynomial

function with argument H.

It is instructive to evaluate this particularly for the case of = = =′ (so-called carrier
transitions) and for = = =′ ± 1 (so-called first blue/red sidebands). Exact results are
plotted in Fig. 2.11, and expansions in powers of [ are given below:

〈=|48[(0+0†) |=〉 = 1 − 1
2[

2(2= + 1) +$ ([4) [carrier] (2.60)

〈= − 1|48[(0+0†) |=〉 = 8[
√
= +$ ([3) [first red sideband] (2.61)

〈= + 1|48[(0+0†) |=〉 = 8[
√
= + 1 +$ ([3) [first blue sideband] (2.62)

Note that only even powers of [ enter into parity-preserving transitions [(−1)= =
(−1)=′] while only odd powers of [ enter into parity-reversing transitions [(−1)= ≠
(−1)=′]. Also note that the physical parity % of these states is indeed given by the
mathematical parity of = by % |=〉 = (−1)= |=〉.

The term −ℏΔ |4〉〈4 | in the Hamiltonian of Eq. 2.58 also plays an important role
by allowing one to energetically target certain motional transitions by detuning the
driving laser. In particular, one can create a resonance condition for |=, 6〉 →
|= + <, 4〉 transitions by choosing Δ = <l.

∗Ref. [112] is also generally a very good review of this topic.
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Figure 2.11: Absolute matrix elements squared |〈=′|48[(0+0†) |=〉|2 for the carrier
(= → =), first blue sideband (= → = + 1), and first red sideband (= → = − 1), with
[ = 0.2.

Decay and cooling

3P1

1S0

Figure 2.12: Illustration of sideband cooling on the Sr red transition. A coherent
transition on the first red sideband drives the atom to a reduced motional state in
the electronic excited state. Upon spontaneous decay in the Lamb-Dicke regime
([ � 1), this atom returns to the same reduced motional state in the electronic
ground state.

A crucial element of sideband cooling we have not yet considered is spontaneous
decay. Let us now assume that |4〉 decays to |6〉 with a rate Γ. This can be modeled
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by the master equation

8ℏmCd = (�Γd − d�†Γ) + 8ℏΓ
∫

3Ω� (\, q)2\,qd2†\,q (2.63)

�Γ = � −
8

2
ℏΓ|4〉〈4 | (2.64)

2\,q = 4
−8 |: |D̂(\,q)·®A |6〉〈4 | (2.65)

Here, d is the density matrix of the electronic and motional state, �Γ is an effec-
tive non-Hermitian Hamiltonian, 2\,q is a jump operator representing spontaneous
emission in a particular direction, � (\, q) is a dipole radiation pattern (discussed
more in Sec. 2.6.3) and D̂(\, q) is a unit vector along the given direction. The
jump operators not only de-excite the atom, they also apply a momentum kick in a
random (dipole pattern distributed) direction. These random momentum kicks are
an intrinsic source of heating and play a role in the temperature limit of sideband
cooling (Sec. 2.5.1).

The final requirements for sideband cooling are certain conditions between l,Ω, Γ,
and [. Firstly, we would like to be able to tune Δ such that we can target a specific
= → = + < transition and to have all others be off-resonant. This requires us to be
in the sideband-resolved regime, which means that the separation between motional
levels is significantly larger than the power-broadened linewidth of the transition, or
l �

√
2Ω2 + Γ2. Secondly, we would like the momentum kick of the spontaneously

emitted photon to be small. In particular, we would like the kick to be small enough
such that its = → = matrix element is much larger than all other matrix elements
that change the motional state (at least for small =). We can see from Eq. 2.59
and its various approximations in Eqs. 2.60–2.62 that this is achieved when [ � 1.
This is known as the Lamb-Dicke regime, and is similar to the Mössbauer effect in
lattices [112]. Note that the sideband-resolved and Lamb-Dicke regimes can both
be satisfied by having a sufficiently large l, but they are not equivalent, and one
may be satisfied without the other being satisfied. We note finally that these two
requirements are essentially the major distinctions between sideband cooling and
Doppler cooling— in fact, Eq. 2.63 could just as well be used tomodel light-induced
forces in free-space by setting* = 0 in the Hamiltonian.

We can now present the full cycle of sideband cooling: an atom in |=, 6〉 is resonantly
excited by light detuned at Δ = −<l to the state |= −<, 4〉, with < > 0. We can do
this without resonantly exciting other motional transitions as we are in the sideband
resolved regime. Eventually, the atom spontaneously emits a photon while in
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|= − <, 4〉, and since it is in the Lamb-Dicke regime, it decays to |= − <, 6〉 with
high probability (again, this is true mainly for small =). The cycle then repeats to
|= − 2<, 6〉 and so on until a state |=′ < <, 6〉 is reached. This is now a dark state,
as there is no longer a state with quantum number =′ − <, and cooling stops. If we
wish to reach the motional ground state, we must ultimately choose < = 1 such that
the dark state that we reach is |0, 6〉. Such a cycle is illustrated in Fig. 2.12.

For a 3D trap, performing this process will cool the dimension along which the beam
is pointed. However, the spontaneous decay will produce momentum kicks in all
three directions, producing an overall heating effect in non-cooled directions [113].
In practice, this is mitigated by alternating cooling in all three directions (Sec. 2.5.4),
where pulses are alternated to avoid interference between beams.

Fundamental temperature limit

The sideband cooling cycle just describedmakes the approximation that themotional
and electronic ground state |0, 6〉 is completely dark to excitation as no red sideband
exists for this state. However, slow off-resonant excitation of the carrier and of
blue sidebands can still occur. Excitation of such transitions can lead to decay that
does not preserve the initial ground motional state. This creates a fundamental
lower-bound limit on the achievable motional energy (which we will measure by the
average vibrational number =̄).

Ref. [22] Sec. VE1 computes this limit for sideband cooling as =̄ = 5
16
Γ2

l2 . This
is achieved at X = −l and Ω � Γ, as this configuration minimizes off-resonant
excitation. However, this result assumes that the atom is unpolarized and that there
is collision-induced thermalization between all three motional degrees of freedom.
In our case, both of these assumptions are incorrect as we excite the atom to a
well-defined rotational sub-level and there is no collisional thermalization for single
atoms.

To compute the true limit in our configuration, we have to take into account the
dipole radiation pattern � (\, q) of spontaneously emitted photons and assume no
thermalization between motional directions. This is already done by Eq. 2.63.
We find the steady-state =̄ by numerically computing the d that satisfies mCd = 0.
Assuming a linear polarization orthogonal to the direction of motion and Ω � Γ,
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we numerically find that the fundamental limit to =̄ under these assumptions is

=̄ ≈ 0.17 × Γ
2

l2 (2.66)

Note, as mentioned in the previous section, that cooling only along one direction
will lead to heating in the orthogonal directions.

Conversions between thermal quantities

It is useful to be able to convert back and forth between various thermal quan-
tities: the ground state population ?0, the mean vibrational occupation =̄, and
the temperature ) . Here we give conversions between each (assuming thermal
equilibrium):

?0(=̄) =
1

1 + =̄ (2.67)

?0()) = 1 − 4−
ℏl
:B) (2.68)

=̄(?0) =
1
?0
− 1 (2.69)

=̄()) = 1

4
ℏl
:B) − 1

(2.70)

) (?0) = −
ℏl

:B ln
(
1 − ?0

) (2.71)

) (=̄) = ℏl

:B ln(1 + 1
=̄
)

(2.72)

2.5.2 A Sisyphus mechanism in a differential trap

Wewill now examine what happens when the ground and excited state have different
trapping potentials. This happens e.g. in Sr on the red transition when the trap is
not at a magic condition (Sec. 2.3.4). Two essential effects occur for an optically
driven atom in a non-magic trap: (1) a state-dependent potential and (2) a position-
dependent detuning, originating from a position-dependent differential light shift.
This situation is reminiscent of Sisyphus cooling schemes in alkali atoms [22], except
that in our case we have a detuning gradient instead of a polarization gradient.
The situation in our case was recognized as a Sisyphus mechanism and studied
theoretically in Refs. [114, 115].
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Trap-induced motional transitions

Wewill begin our analysis by re-writing theHamiltonian of Eq. 2.57with differential
trapping:

� =
®?2

2<
+*6 (®A) |6〉〈6 | +*4 (®A) |4〉〈4 | − ℏΔ |4〉〈4 | + 1

2ℏΩ
(
48
®: ·®A |4〉〈6 | +H.c.

)
(2.73)

We can once again make the harmonic approximation, this time with separate trap
frequencies and corresponding ladder operators for the ground and excited electronic
states. Wewill again assume that the interrogation beam is along one of the principle
axes Ĝ, but this time we will keep all three dimensions in our expression as we will
eventually see that all three dimensions have non-trivial dynamics:
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Dropping coordinate indices, we can relate 06 to 04 by a Bogoliubov transformation.
The easiest way to do this is to note that the position and momentum operators
are the same in both the ground and excited electronic states, so we have A =√

ℏ
2<l6 (06 + 0

†
6) =

√
ℏ

2<l4 (04 + 0
†
4) and ? = 8

√
ℏ<l6

2 (0
†
6 − 06) = 8

√
ℏ<l4

2 (0
†
4 − 04).

Solving these equations gives

04 =
1
2

(
(l4/l6)1/2(06 + 0†6) + (l6/l4)1/2(06 − 0†6)

)
(2.75)

Note that [6 (06 + 0†6) = [4 (04 + 0†4), so either factor can be used in the exponential
in Eq. 2.74.

We now compute the state overlaps 〈=6 |=4〉, where it should be understood that this
corresponds to the quantum numbers along only one dimension — with the full 3D
overlap given by the product of the overlap of each dimension. The strategy for
finding these is to first apply the excited annihilation operator to the excited ground
state, which must yield zero: 04 |04〉 = 0. By using the Bogoliubov transformation
of Eq. 2.75 and the normalization condition

∑ |〈=6 |04〉|2 = 1, we obtain:

〈06 |04〉 =
( ∞∑
<=0

(2< − 1)!!
(2<)!!

(l4 − l6
l4 + l6

)2<
)−1/2

(2.76)

〈=6 |04〉 = (−1)=6/2
√
(=6 − 1)!!
(=6)!!

(l4 − l6
l4 + l6

)=6/2
〈06 |04〉 [if =6 even] (2.77)

〈=6 |04〉 = 0 [if =6 odd] (2.78)
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We can then find overlaps for higher =4 by repeated application of the raising operator
0
†
4. The result can be stated in recursive form as

〈=6 |=4〉 =
1

2√=4

(
U+
√
=6〈=6 − 1|=4 − 1〉 + U−

√
=6 + 1〈=6 + 1|=4 − 1〉

)
(2.79)

where we define
U± ≡

(√
l4

l6
±

√
l6

l4

)
(2.80)

Note again that there is onlymixing between states of the sameparity, i.e. 〈=6 |=4〉 = 0
if (−1)=6 ≠ (−1)=4 . One can now go on to evaluate the matrix elements of the
exponential drive using a basis transformation and the result in Eq. 2.59. However,
the general result is overly cumbersome. In general, one can expect the matrix
elements we previously computed (e.g. in Fig. 2.11) to be modified.

Instead of computing how all matrix elements of the drive are modified, we will
focus on a qualitatively new phenomenon: the coupling of different motional states
that exists even in the limit of [ = 0. When we take lim[→0 4

8[(0+0†) = 1, the
only coupling between different motional states arises from state overlaps 〈=6 |=4〉
(analogous to Franck-Condon factors in molecular states), which as we have seen are
generically nonzero for a non-magic trap. This is in contrast to sideband transitions
in a magic trap (Sec. 2.5.1), where a nonzero [ is required for motional-state-
changing transitions. One can say that these [-dependent sideband transitions result
from amomentum transfer between the driving beam and the atom. When the trap is
non-magic, however, an atom that is electronically driven can experience motional-
state-changing transitions without momentum transfer from the driving beam, with
the “force” arising instead from differential trapping.

We will broadly call such differential-trapping-induced and [-independent motional
effects Sisyphus mechanisms. An important observation is that Sisyphus mech-
anisms are independent of the direction of the driving beam and affect motional
dynamics in all directions — even if the driving beam points along only one of
the principal axes of the trap. Note that when a trap is non-magic and when
[ ≠ 0, sideband and Sisyphus mechanisms are both present and arise from the same
Hamiltonian. In this case, it is difficult to treat them as separate phenomena.

It is nevertheless worth investigating dynamics when [ → 0 so that we can get
some insight into “purely Sisyphus” dynamics. Taking [ → 0 means taking either
l → ∞ or : → 0. The former can be done experimentally by using a tighter
trap, and we note that doing so does not change the state overlaps in Eqs 2.76–2.80
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and therefore also does not change the Sisyphus contributions to the drive matrix
elements — whereas it decreases the sideband contributions. The latter method
(: → 0) can be artificially realized by driving the atom with a beam orthogonal to
the relevant direction of motion (though note that spontaneous decay will still lead
to momentum kicks in all directions).

Let us now assume an [ = 0 regime. If the trap is non-magic, we can drive parity-
preserving Sisyphus transitions =6 → (= + 2<)4 in all directions, where < is any
integer, with a drive strength proportional to the 3D product of the state overlaps
in Eqs 2.76–2.80. By choosing < to be negative and detuning the laser to drive
that transition on resonance (assuming we are in a regime where these transitions
are energetically resolved), we can drive the atom to an electronic excited state with
reduced motional energy. For an l4

l6
ratio that is reasonably close to 1 and for states

near the ground state, the 〈=4 |=6〉 matrix element with =4 = =6 will be dominant, so
the dominant decay process will preserve the lowered motional state.

Therefore, Sisyphus mechanisms can be exploited for cooling in a way similar
to sideband cooling, and can produce cooling in any direction regardless of the
orientation of the drive beam. A significant difference, however, is that Sisyphus
transitions cannot change the parity of a motional state, so if an atom is “stuck” in an
odd parity motional state, a Sisyphus transition cannot bring it to the ground state.

State-dependent resonance conditions

Another major difference that appears between magic and non-magic traps is that
the resonance condition for an =6 → (= +<)4 transition depends not only on <, but
also on =. Indeed the resonance condition is given by

Δ res
=6→(=+<)4 = =6 (l4 − l6) + <l4 +

[
1
2 (l4 − l6) +

(
*4 (0) −*6 (0)

)
/ℏ

]
(2.81)

where the second term in brackets is a state-independent overall light-shift that
includes both the difference in zero-point energies as well as the difference in trap
depth (which we neglected in Eq. 2.74). When the trap is magic, l4 = l6 and
*4 = *6, and we return to the magic sideband resonance condition Δ res = <l.
Note that this resonance condition is true for all motional transitions, whether they
be sidebands, Sisyphus transitions, or some combination.

Practically, this means that for non-magic traps, there is no single laser detuning
that produces optimal cooling for all motional states. Whether this is a practical
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problem for cooling depends entirely on the severity of the situation. With the
typical parameters used in this work and sufficient array uniformity (Sec. 2.7.2),
we find that differential trapping is not a major hindrance to cooling even when
using only one static frequency, and going to magic conditions does not produce
significantly lower temperatures. However, this should not be taken as a definitive
statement for all parameters (note that laser noise plays a large role in our practical
cooling limit, see Sec. 2.5.3), and having access to magic conditions may in some
cases be beneficial for cooling. Finally, we note the possibility of using frequency
sweeps and/or multi-step cooling schemes with different frequencies.

Inversely, if a spectrum of motional states is measured on a thermal ensemble of
atoms, that spectrum will show smearing between different motional states. For
excited states that are more tightly trapped than the ground state (l4 > l6), the
spectrum exhibits an overall shift to negative detunings and thermally smears toward
positive detunings, with the opposite true forl4 < l6. The overall shift—especially
on narrow transitions like the red transition — can be very useful for measuring the
trap depth of a tweezer, which is especially useful for uniformizing an array [89]
(Sec. 2.7.2). The spectral smear can potentially be useful for measuring themotional
state of the ensemble, even without assumptions of thermal equilibrium.

Attractive and repulsive Sisyphus cooling

It is found experimentally and numerically that cooling in a non-magic trap produces
either an “attractor” or “repeller” in energy space. An attractor at a certain energy
tends to cool atoms above that energy, but tends to heat atoms below that energy,
hence “attracting” atoms towards itself. A repeller does the opposite: it heats atoms
above its energy and cools atoms below its energy, thus “repelling” atoms away
from itself. The location of the attrator/repeller in energy space is approximately
proportional to the detuning of the drive beam [89]. Note that this is not an additional
effect on top of the dynamics already discussed, but rather a heuristic effect resulting
from them.

For a more tightly trapped excited state (l4 > l6), an attractor is present [116],
and vice versa: for a less tightly trapped excited state (l4 < l6), a repeller is
present [89]. For practical cooling purposes, it therefore may be preferable to have
a more tightly trapped excited state rather than a more weakly trapped one, as this
is generally more stable in that it will not uncontrollably heat an atom out of a trap
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if it is on the “wrong” side of the repeller.

2.5.3 Heating sources & practical cooling limits

In this sub-section, we give a non-exhaustive list of common non-intrinsic experi-
mental sources of heating that go beyond fundamental limits.

Cooling laser phase/frequency noise

So far we have assumed that we can tune the Δ of our cooling laser with exact
precision and no noise. However, all lasers have frequency noise, and this becomes
especially important for the kinds of narrow transitions that we use for cooling. To
quantify frequency noise, we will need a power spectral density (PSD) of the laser
detuning fluctuations Xa(C) = XΔ (C)/(2c), which we will denote by (Xa ( 5 ). Wewill
also assume that we can produce representative noisy time traces Δ (C) = Δ + XΔ (C)
from this PSD (Ref. [117] and Sec. 3.4.6), such that we can perform Monte Carlo
simulations of cooling dynamics under a noisy laser.

We measure the frequency noise PSD by passing the in-loop error signal of the
laser lock through a spectrum analyzer [117]. However, the directly measured error
signal is attenuated at high modulation frequencies by a cavity roll-off factor, which
depends on the cavity linewidth (Ref. [118] Eq. 1.42). We therefore divide our
measured power spectral density by (the square of) this factor to obtain the true
frequency noise PSD.

The uncorrected PSD is still useful, however, as it directly tells us what frequency
PSD we can expect if we use the cavity transmission to seed a second laser that
is then used for cooling. Such a scheme would use the cavity as a filter to reduce
frequency noise [119]. While we have not yet implemented such a scheme, it is an
interesting future outlook.

Fig. 2.13 shows the measured (Xa ( 5 ) of the laser we use for cooling on the red
transition. We see that a significant amount of frequency noise exists at modulation
frequencies near ∼100 kHz, which is on the same order as typical trap frequencies.
One may reasonably expect that this would be bad for cooling in a trap, as the light
will have frequency components at the trap frequency and may excite unwanted
motional transitions. Fig. 2.13 also shows our prediction for how much this noise
may be reduced via cavity filtering.
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We note that such noise at high frequency is typically poorly captured in a measure
such as the laser linewidth, which is more sensitive to noise at lower modulation
frequencies (see Ref. [120]).
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Figure 2.13: One-sided power spectral density (Xa ( 5 ) of frequency noise for the
laser used for cooling on the red transition, measured via the in-loop error signal
of the laser lock [117]. The blue curve is the currently present noise, while the
red curve shows a potential improvement possible by cavity filtering [119]. The
resolution bandwidth is 100 Hz.

To quantify the effect of such noise on cooling, we numerically evolve the side-
band cooling master equation (Eq. 2.63) and average over an ensemble of laser
noise trajectories in the time domain generated from the measured power spectral
density [117]. The results are summarized in Table. 2.3.

Model Predicted =̄
Without filtering 9.9 × 10−2

With filtering 5.4 × 10−3

No noise 2.9 × 10−3

Table 2.3: Simulated steady-state values of =̄ for sideband cooling under the laser
frequency noise given in Fig. 2.13. The cooling parameters are l = 2c × 78 kHz,
X = −l, Ω = 2c × 16.8 kHz, and magic trapping conditions. Γ = 2c × 7.5 kHz
for the red transition. We choose Ω & Γ, which does not produce the optimal =̄ for
each configuration, but rapidly achieve a steady state that can be compared between
configurations.
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We see that the laser frequency noise is predicted to significantly contribute to a
non-fundamental cooling limit, and that filtering is expected to reduce this limit
by more than an order of magnitude in =̄. We leave experimental confirmation
of this prediction to future work. We note that our actual measured temperature
(Sec. 2.5.4) after cooling is still about a factor of 2.4 higher than predicted in the
“without filtering” model, suggesting that we are either underestimating our laser
noise or that there is another unexplained factor affecting our temperature limit.

Trap intensity noise

An optical trap with intensity fluctuations∗ can induce heating. A full treatment of
this kind of heating is given in Ref. [121] (including a treatment of heating due to
trap position fluctuations). Here we restate the main result, obtained via leading
order perturbation theory for a harmonic oscillator: fluctuations of the trap intensity
at twice the trap frequency create a heating rate proportional to =̄, such that

3

3C
=̄ = Γ� (=̄ + 1

2 ) (2.82)

Γ� = c
2a2(X� (2a) (2.83)

where a = l/(2c) and (X� ( 5 ) is the one-sided power spectral density of the fluc-
tuations in the intensity. Eq. 2.82 implies that heating will proceed exponentially:
=̄(C) =

(
=̄(0) + 1

2
)
4Γ� C − 1

2 . Eq. 2.83 implies that this heating is only nonzero for
intensity noise fluctuating at twice the trap frequency. However, keep in mind that
this result is only up to the leading order in perturbation theory.

Scattering

When an atom scatters a photon, it is liable to heat. Scattering may come either from
a near-resonant beam such as one used to image an atom, or from a far-off-resonant
beam such as the trap. An analytic treatment will be beyond the scope of this work,
and ultimately a numerical treatment (via master equation, quantum jump [113], or
semiclassical treatment [122, 123]) is often the most useful. Here we give some
guidance as to how to model heating from scattering.

A full model of near-resonant scattering should incorporate the effects of momentum
transfer from the drive beam, momentum transfer from spontaneous emission, and

∗Sometimes called relative intensity noise or RIN.
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differential trapping of the excited state. We note that such a model is essentially
identical to the ones already discussed by e.g. the master equation approach of
Eq. 2.63. These equations were first used to show cooling, so it is apparent that no
blanket statement can be made as to how a scattering event will affect temperature,
and that the resulting dynamics are highly dependent on parameters. This potentially
includes beam geometry, such as whether or not the drive beam is retro-reflected.
The presence or absence of a retro beam tends to become important when the
scattering rate is significantly higher than the trap frequency along the direction of
interrogation (see discussion in Sec. 2.6.2).

We note that all such heating from near-resonant scattering is proportional to the
scattering rate. For an effective two-level system, this is given by

ΓB =
Γ

2
B

1 + B + 4Δ2

Γ2

(2.84)

where

B = |n̂ · 4̂@ |2�/�B (2.85)

is the saturation parameter. Here, we assume a <� → <� + @ transition and n̂ · 4̂@
is the projection of the polarization onto the @th spherical basis vector (see footnote
following Eq. 2.22). We also use the saturation intensity

�B =
2c2ℏ2Γ

3_3 (2.86)

defined for the transition in question [21].

For far-off-resonant scattering such as from a trap, we point the reader to Refs. [91],
which argues that each scattering event heats the atom by 2�A , where �A = ℏ2:2

2<
is the recoil energy with : the wavevector of the beam. Ref. [124] is also a good
resource for computing trap scattering rates.

2.5.4 Temperature measurement and experimental results

There is one de facto “gold standard” for measuring near-ground-state temperatures:
sideband spectroscopy [35]. The true value of sideband spectroscopy is that it is
insensitive to a wide array of experimental parameters and that its analysis is simple
and depends on very few assumptions. A number of other techniques exist, such as
release-and-recapture (Sec. 4.4.2) and adiabatic rampdown [36, 125–128], which we
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have used in our experiment [89, 116]. While we find such techniques to be useful for
comparisons of temperature when, e.g., optimizing cooling parameters, their exact
results are often sensitive to the details of the trap outside its harmonic region as well
as to details of the procedure used (i.e. how fast the trap is turned/ramped up and
down). Furthermore, they convolve energy distributions along all three dimensions
(with release-and-recapture more sensitive to directions of tighter trapping and
adiabatic rampdownmore sensitive to directions ofweaker trapping), while sideband
spectroscopy can give information along all directions separately.

In this section, we will use spectroscopy of sidebands on a transition with no
differential light shift (i.e. with a trap that is magic for the given transition) to
determine temperature under an assumption of thermal equilibrium. We note that
similar techniques are possible for non-magic conditions with potentially greater
insight into the energy distribution in the trap, but the analysis of such situations is
more complicated and we will leave them beyond the scope of this work (though
see Appendix B2 of Ref. [89] for further discussion).

We perform spectroscopy on the red and blue motional sidebands and compare their
amplitude. In principle, all sidebands (and even the carrier, see Sec. 3.2.1) can
provide information about the motional state, but for simplicity here we will use
only the first red and first blue motional sidebands. For now, we will assume that all
spectroscopy is coherent, i.e., that there is no spontaneous decay while driving the
sidebands. We will come back to situations with spontaneous decay later.

Let %1 be the probability of exciting the first blue sideband at detuning Δ , and let %A
be the probability of exciting the first red sideband for the same interrogation time
and intensity, but at a detuning of −Δ . Then we have

%A

%1
=

∑∞
==1 ?=%=→(=−1) (−Δ)∑∞
==0 ?=%=→(=+1) (Δ)

(2.87)

where %=→< (Δ) is the probability of exciting an atom with vibrational number = to
< at a detuning X. Note that the sum in the numerator only starts from = = 1 as
there is no red sideband for = = 0. Now, note that %=→(=+1) (Δ) = %(=+1)→= (−Δ)
as we are assuming coherent dynamics and the r.h.s. is simply the reverse process.
Next, under the assumption of thermal equilibrium∗ in a harmonic trap, we have
?=+1 = 4

− ℏl
:B) ?=. By changing the sum index in the numerator to =′ = = − 1 and

∗We point the reader to Ref. [129] for an illuminating study of the excitation dynamics of
sidebands in non-thermal states.
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plugging the two aforementioned results into Eq. 2.87, the sum drops out and we
are left with

%A

%1
= 4
− ℏl
:B) (2.88)

=
=̄

=̄ + 1
(2.89)

or, inverting:

=̄ =
1

%1
%A
− 1

(2.90)

Note that we made no assumptions on the interrogation time, intensity, or even Δ ,
so long as the red sideband and blue sideband are interrogated at precisely opposing
detunings. For maximal signal, one should practically choose an interrogation
time that gives maximal excitation on the first red sideband. If Ω is the bare Rabi
frequency as defined in, e.g., Eq. 2.58, then to first order in [ and for small =̄ this
optimal interrogation time is approximately given by C = c

[Ω
. Furthermore, it is

possible to interrogate the red and blue sidebands at multiple |Δ | and take %A and
%1 to be integrated values, i.e. the area under the red and blue peaks — so long as
this is done symmetrically around Δ = 0. For this, it is useful to first ascertain the
position of the carrier. Note that when integrating experimental data, it is important
to first subtract off any constant baseline (due to readout infidelity or etc.). For our
readout method on the clock transition (destructive method detailed in Sec. 3.1.3),
the baseline is negligibly small, so we can skip this step.

In Sr, we have pursued two ways of performing sideband spectroscopy. One, which
has proven to be the most useful, is by using the clock transition in an 813.4 nm
clock-magic trap. Here, the process is highly coherent and the achievable sideband
resolution is extremely high. Linewidths can be kHz or much less, whereas typical
trap frequencies are tens of kHz. Readout can be done either by shelving excited
atoms in the clock state (in a non-destructive readout scheme like the one shown
in Ref. [116]), or by destructively blasting out ground state atoms with a strong
resonant beam on the blue transition.

Fig. 2.14 shows a typical sideband spectrum on the clock transition with read out
done via the blast-out scheme. It measures a radial temperature of =̄A = 0.24, which
is a typical value reached after optimization. A typical cooling procedure used to
achieve such temperatures is a set of 100 `s pulses on the red transition alternating
between cooling in one radial direction, the orthogonal radial direction, and the axial
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Figure 2.14: Sideband spectrum on the clock transition in clock-magic _ = 813.4 nm
tweezers. Red/blue data are the red/blue sidebands, respectively, and black is the
carrier (taken in a separate dataset and at a different interrogation time corresponding
to its c-time). The carrier Rabi frequency is Ω = 2c × 4 kHz, while the radial trap
frequency is l ∼ 2c × 82 kHz. The measured radial temperature is =̄A = 0.24. Note
that this includes contributions from two slightly non-degenerate orthogonal radial
directions, as can be seen from a double peak split by ∼2.5 kHz on the sidebands.
Data is averaged over a 61-tweezer array with 50% stochastic filling. No correction
or rescaling is performed for the vertical axis.

direction of the tweezer (with a collimated red beam sent through the objective).
This set of three alternating pulses is repeated ∼50 – 100 times. The detuning and
intensity of each beam is experimentally optimized. The results shown in Fig. 2.14
were achieved in a _ = 813.4 nm tweezer by exciting to a sub-state of the red
transition with a polarizability equal to that of the |<G

�
= ±1〉 states of Fig. 2.6.

That is, cooling was done under non-magic conditions such that the excited state is
more strongly trapped than the ground state. We do not find that going to magic
conditions improves the achievable temperature significantly (see a discussion about
uniformity in Sec. 2.7.2). We note that the temperature achieved ismore than a factor
of two higher than the predicted temperature limit from our measured laser noise
(Sec. 2.5.3). It is unclear what accounts for this discrepancy.

The other method we have used for sideband spectroscopy is directly with the red
transition itself [89]. This method is complicated by the presence of spontaneous
decay, however, and does not provide as much sideband resolution as the clock
transition. Interpreting the results of such a scheme requires referencing with
numerical simulations that include decay [89, 97]. Readout is done by rapidly
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shelving excited atoms to the clock state via the 688 nm and 707 nm transitions and
imaging without repumping the clock state [89]. Fig. 2.15 shows sideband spectra
on the red transition for both a radial and axial direction [89].
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Figure 2.15: Sideband spectra on the red transition in _ = 515.2 nm tweezers under a
magic ellipticity angle. Data is for a single tweezer. Insets show the same spectra but
before cooling. Red/blue and black dashed lines indicate the red/blue sidebands and
the carrier, respectively. Gray solid lines show results of comparison to numerical
simulations. For details on the interrogation sequence and the numerical analysis,
see Ref. [89]. (a) A radial sideband spectrum showing a temperature of =̄A = 0.25.
(b) An axial sideband spectrum showing a temperature of =̄0 = 0.92. In both plots,
the horizontal axis is Δ/(2c).
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2.6 Single-atom imaging

We will now discuss our method of detecting trapped atoms: fluorescence imaging.
This is a ubiquitous technique in atomic physics and specifically in single-atom
physics [30, 31, 33, 37–43]. Here we show its extension to single-atom physics
with strontium in particular. We will seek to do two things with very high fidelity:
(1) determine the presence or absence of an atom while (2) making sure that this
detection does not expel the atom from the trap. Point (2) will be highly important
to our ability to generate large, defect-free arrays (Sec. 2.7.3). Imaging a single
atom is a delicate process where every photon counts, and this requires us to think
about certain concepts more deeply than one would when imaging, for example, a
bulk gas.

2.6.1 Transitions

For a trapped atom to be detected with high fidelity, it needs to scatter a sufficient
amount of photons into an imaging system so as to be well-distinguished from a
background signal. Two processes can prevent this from happening: (1) leaving the
trap due to heating from fluorescence scatter and (2) the population of sufficiently
long lived dark and/or un-trapped states. Therefore, in addition to addressing the
atom with an imaging beam, we need to provide a mechanism for cooling as well as
one for ensuring that no unwanted states are populated.

Fig. 2.16 shows a typical imaging setup. Fluorescence is induced by a 461 nm
beam near-resonant with the blue transition while simultaneous cooling is done by
a beam at 689 nm. As argued in Sec 2.5.2, a single non-retroreflected cooling
beam is sufficient to cool all directions during imaging. Multiple (and possibly
retro-reflected) beams can be used [89], but care must be taken that interference
does not occur (by e.g. piezo modulating a mirror).

A repump beam at 707 nm is used to repump atoms out of the 5s5p 3P2 metastable
state into the 5s5p 3P1 state, which decays back into the imaging cycle. 5s5p 3P2

is populated via decay from 5s4d 1D2, which is in turn populated by a weak decay
channel from the excited state of the blue transition 5s5p 1P1. We will see in
Secs. 2.6.8 and 2.6.8 that the polarizability of 5s4d 1D2 at the trapping wavelength
is important. If this state is not sufficiently trapped, the atom can leave the trap
before it decays out of this state. Since 5s5p 3P2 is repumped via 5s6s 3S1, part
of the population ends up in 5s5p 3P0, so a 679 nm repump is needed to excite
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Figure 2.16: Imaging setup. (a) An atom in a tweezer is illuminated by a blue
(461 nm) imaging beam while being cooled by a red (689 nm) cooling beam. The
imaging beam may be retro-reflected or not (Sec. 2.6.2). One objective creates
the tweezer, and fluorescence can be imaged through either or both objectives.
Not shown: repump beams. (b) A level structure indicating the relevant transitions
during imaging. In addition to the imaging and cooling beams, two beams at 679 nm
and 707 nm are used to repump atom out of the 5s5p 3P2 and 5s5p 3P0 metastable
states.

these atoms back to 5s6s 3S1. The combination of the 707 nm and 679 nm beams
eventually repumps all population in the metastable 5s5p 3P0,2 states back to the
imaging/cooling cycle, typically on the timescale of a few `s. We further note that
both of these repumpwavelengths are also necessary when exciting the red (689 nm)
transition in a trap, as the trap light can cause Raman scattering between the various
states of the 5s5p 3P� manifold.

Finally, we note that it is entirely possible to use the red cooling beam as both a
cooling and imaging beam, i.e. such that red fluorescence is collected instead of
blue. This particularly simple imaging scheme will be discussed in Sec. 2.6.8.

2.6.2 Imaging beam

Here we give a few considerations for the blue imaging beam. First, we consider
whether it needs to be retro-reflected. One may suspect that a sideband-unresolved
beam pointed along only one direction can create an “unbalanced” radiation pressure
force � = ℏ:ΓB on the atom (with with ΓB the scattering rate) such that the atom is
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pushed away from the tweezer in that direction. However, we have found that for the
scattering rates we typically use that retro-reflection is not important. Classically,
such a force applied to a harmonically trapped particle simply shifts its equilibrium
position by ΔG = ℏ:ΓB

<l2 . If ΔG is small enough, this effect is unimportant. Nonethe-
less, this fact makes it prudent to point the imaging beam along the radial tweezer
direction (as in Fig. 2.16) so as to not apply a force along the weakly trapped axial
direction. In our typical regime, ΓB . 50 × 103 s−1 (limited to such values by other
heating mechanisms) is not large enough to necessitate retro-reflection. Indeed, we
find there to be little difference between imaging with and without retro-reflection.
If retro-reflection is used, care should be taken that no interference occurs by e.g.
modulating a piezo mirror.

We generally choose a detuning for the blue imaging beam of ∼2c × 30 MHz from
the resonance condition at the center of the trap. Furthermore, the sign of this
detuning is chosen to be such that when the atom heats and attains a higher energy
in the trap, its scattering rate goes down. This is heuristically done to reduce heating
for higher-temperature atoms. The actual sign of detuning that fulfills this condition
depends on the differential polarizability of the blue transition. At a trap wavelength
of 813.4 nm, the blue excited state 5s5p 1P1 is more strongly trapped than the ground
state, so a red detuning is used. At 515.2 nm, the situation is reversed, and in fact
here the excited state is anti-trapped. We point the reader to Refs. [40, 123] for
further discussion on why a large detuning is beneficial for an un- or anti-trapped
excited state. A larger magnitude detuning also provides greater uniformity of the
scattering rate across different positions in the trap (assuming it is non-magic for
the blue transition). However, a larger detuning also requires greater intensity to
achieve the same scattering rate (Eq. 2.84) so background scatter off of nearby
surfaces may increase. Ultimately, we find the detuning of the blue imaging beam
to be a relatively unimportant factor, and many choices of detuning can be made to
work.

As to the size of the beam, it is recommended to choose a beam large enough such
that it illuminates the entire tweezer array uniformly. However, larger beams also
produce greater background scatter. If possible, the beam should be made to avoid
scattering off of surfaces near the imaging objective.

For polarization considerations, see Sec. 2.6.3.
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2.6.3 Dipole radiation pattern

The scattering of fluorescence photons is not isotropic. The dipole radiation pattern
� (\, q) is a function defined on a sphere giving the probability that an atom will
scatter a photon in a particular direction. We note that the results presented here are
essentially identical to those of classical electrodynamics, particularly in the context
of electromagnetic radiation from oscillating dipoles.

We will follow a treatment given in Ref. [90] Chapter 7.6. For an excited state with
total angular momentum quantum number �4 decaying into a ground state with �6,
we define a dipole radiation pattern operator on the subspace of the excited manifold
as

D(\, q) =
(2�4 + 1
2�6 + 1

) ∑
@,@′∈{0,±1}

5@@′ (\, q)
∑
<4

|�4 <4〉〈�4 <4 + @ − @′| × . . .

· · · × 〈�6 <4 + @ |�4 <4 + @ − @′; 1 @′〉〈�6 <4 + @ |�4 <4; 1 @〉
(2.91)

where

5@@′ (\, q) =
1

4c

(
X@@′ − (−1)@

√
6c

(
1 1 2
−@ @′ @ − @′

)
.
@−@′
2 (\, q)

)
(2.92)

and .<
;
(\, q) is a spherical harmonic and the two-row matrix is a Wigner 3- 9

symbol. Note that when integrating over the entire sphere, we have
∫
3Ω 5@@′ (\, q) =

X@@′ [90]. This formalism allows one to compute the dipole radiation pattern for any
arbitrary state in the excited manifold by taking the expectation value, giving

� (\, q) = 〈k4 |D(\, q) |k4〉 (2.93)

Note that this result sums over all polarizations of the emitted photon, so applica-
tions where only one particular polarization is to be imaged will require a more
sophisticated analysis.

We will simplify our analysis of this situation by assuming that the atom is in an
energy eigenstate and that this eigenstate is also an eigenstate of angular momentum
along some quantization axis Î (remember that this may not be the case if an atom is
in an elliptically polarized trap, see Sec. 2.3.2). Since our excited states of interest
(both on the blue and red transition) have �4 = 1 with �6 = 0, we will also focus
only on this situation. Then only the @ = @′ = −<4 terms are nonzero and the dipole
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radiation pattern simplifies to

� (\, q) = 3
8c

sin2(\) [if <4 = 0] (2.94)

� (\, q) = 3
16c

(
1 + cos2(\)

)
[if <4 = ±1] (2.95)

where \ is the angle from the quantization axis Î.

This result has important implications for imaging, as it is prudent to orient the dipole
radiation pattern such that scattering into the imaging objective is maximized. For
an <4 = 0 state, this happens when the quantization axis is oriented such that the
objective is at \ = 90◦. For an <4 = ±1 state on the other hand, \ = 0◦ is optimal.

We will now compute the collection efficiency � for several (non-exhaustive) cases
and an objective with numerical aperture #� = sinU, where U is the maximal
collection angle as measured from the optical axis. We define collection efficiency
as the fraction of all photons scattered that end up being collected by the imaging
objective. We note that the realization of these scenarios requires excitation to an
appropriate |k4〉 (see Eq. 2.93), which requires an appropriate choice of imaging
beam polarization as well as consideration of any degeneracy-breaking fields such
as a magnetic field or optical trap.

Case (1): <4 = 0, objective at \ = 90◦

Here it is most convenient to rotate the coordinate frame by 90◦ by rotating the
Î axis into the Ĥ axis, where we now have new spherical coordinates \̃, q̃ such
that the objective is at \̃ = 0. One can show that in this new frame, sin2(\) =
cos2(\̃) + sin2(\̃) cos2(q̃). Then we have

�(1) (U) =
3

8c

∫ U

0

∫ 2c

0
sin(\̃)

(
cos2(\̃) + sin2(\̃) cos2(q̃)

)
3q̃3\̃ (2.96)

=
1
8

(
4 − cos(U)

(
3 + cos2(U)

) )
(2.97)

=
1
8

(
4 + (#�2 − 4)

√
1 − #�2

)
(2.98)

For #� = 0.5, we have �(1) = 0.094.

Case (2): <4 = ±1, objective at \ = 0◦
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This is straightforwardly evaluated in the original frame, giving

�(2) (U) =
3

16c

∫ U

0

∫ 2c

0
sin(\)

(
1 + cos2 \)3q3\ (2.99)

=
1
8

(
4 − cos(U)

(
3 + cos2(U)

) )
(2.100)

=
1
8

(
4 + (#�2 − 4)

√
1 − #�2

)
(2.101)

We see that Case (1) and Case (2) give identical collection efficiencies.

Case (3): <4 = 0, objective at \ = 0◦

This is the worst possible choice and should be avoided. We compute it here only
to demonstrate the worst case scenario.

�(3) (U) =
3

8c

∫ U

0

∫ 2c

0
sin(\) sin2(\)3q3\ (2.102)

=
(
2 + cos(U)

)
sin4 (

U
2
)

(2.103)

Writing this expression in terms of #� is overly cumbersome. For #� = 0.5, we
have �(3) = 0.013, so this is only about ∼14% of the efficiency of Cases (1) and (2).

Case (4): Isotropic emission
This situation is not realizable for an atom that has a well-defined angular momen-
tum, but we will use it as a reference case anyway. Here we evaluate the integral

�(4) (U) =
1

4c

∫ U

0

∫ 2c

0
sin(\)3q3\ (2.104)

= sin2 (
U
2
)

(2.105)

=
1
2

(
1 −

√
1 − #�2

)
(2.106)

For #� = 0.5, we have �(4) = 0.067.

These various cases are plotted as a function of #� in Fig. 2.17. We note that for
a dual-objective setup such that the second objective is on the other side of the first
objective, all of these collection efficiencies should simply be multiplied by 2.
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Figure 2.17: Collection efficiencies as a function of numerical aperture for the
various cases discussed in Sec. 2.6.3.
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2.6.4 EMCCD camera

The photons which are collected through the imaging objective are imaged onto
the sensor of an electron-multiplying charge-coupled device (EMCCD) camera
(Andor iXon Ultra 888). A CCD sensor detects photons by converting them to
electrons. The feature that distinguishes an EMCCD from a normal CCD is an
electron-multiplying (EM) gain before the readout register, which is important for
detecting a small number of photons. The EM gain multiplies each electron into
numerous electrons, which functions to overcome intrinsic readout noise in the
camera’s analog electronics. It is important to understand how this mechanism
works and in what situations it is useful. In particular, we will see that the EM gain
is only truly beneficial under circumstances of very low background counts, and that
it is therefore important to minimize background. We will follow a treatment given
in Ref. [130] as well as the technical manual Ref. [131].

We assume that = electrons are produced on a sensor pixel. In realistic imaging
conditions, = is a probability distribution, but to begin with, we will assume it is a
fixed number. The EM gain, whose strength will be parametrized by a number 6,
will multiply this number of electrons into a larger number B of signal electrons,
which then will be read out via the camera’s electronics. B will be given by a
distribution which depends on = [130]:

%
sig
= (B) =

B=−14
− B
6

6= (= − 1)!\ (B) [= > 0] (2.107)

%
sig
0 (B) = X(B) (2.108)

where \ (B) is a Heaviside-theta and X is a Dirac-delta. Eq. 2.108 is correct for the
gain of zero electrons under the assumption that no spurious electrons are produced
during the process of multiplication. If such an electron is produced, then it can be
multiplied as well, however it may see an effectively smaller gain as it is already
partway through the gain register (see Ref. [131] for details of the multiplication
process). Wewill however ignore such effects for now and assume the given formulas
are accurate.

These signal electrons are now counted by the camera’s analog electronics and
digitized to produce counts, which is the ultimate signal reported to the user∗. The
conversion from signal electrons to counts is not without noise, however. Indeed,

∗Up to some overall scaling and offset that is specific to the camera and its settings, see Ref. [131].
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the number of counts resulting from a given number of signal electrons is given by a
Gaussian distribution parametrized by some standard deviation f. The distribution
of counts as a function of original electrons = is therefore a convolution of a Gaussian
distribution with Eqs. 2.107–2.108. We will call this distribution of counts %ct

= (2).
We point the reader to Ref. [130] for a procedure on calibrating 6 and f.

We will now calculate the overlap between two count distributions, one produced
by = initial electrons and the other by < initial electrons. This will tell us how well
we can tell the difference between these two possible signals. We will define such
an overlap by the integral

Overlap(=, <) = 2
∫

%ct
= (2)%ct

< (2)
%ct
= (2) + %ct

< (2)
32 (2.109)

This value is zero when the two distributions are completely distinguishable and is
one when they are identical.
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Figure 2.18: Overlap between counts distributions %ct
= (2) and %ct

=+1(2) as a function
of the EM gain to readout noise ratio 6/f.

We plot this value in Fig. 2.18 as a function of 6/f for = ∈ {0, 1, 2} and< = =+1. We
see that increasing the EM gain 6 has the most significant effect when distinguishing
between 0 and 1 initial electrons, whereas for higher values of =, the effect is not
as pronounced and furthermore saturates at some value. Intuitively, this can be
explained as so: multiplying zero electrons will always (ideally) produce zero signal
electrons, whereas multiplying a finite number will always produce some number
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that scales with 6. So there is always a benefit of increasing gain when distinguishing
between zero and a finite number, whereas for two finite numbers the benefit is less
and eventually vanishes for high enough gain. Thus, to really take advantage of
the functionality of an EMCCD, background light should be minimized as much
as possible. Distinguishing between 0 background photons and 1 atomic photon
is much better than distinguishing between, e.g., 10 background photons and 10
background plus 1 atomic photons.

Minimizing background becomes even more important when we also realize that
the initial electron number = is itself is a distribution. There are several stochastic
processes that enter this: the number of photons scattered into the objective (either
by an atom or by background), the number of photons that pass through the collection
optics (characterized by some transmission efficiency), and the number of photons
striking the sensor that are actually converted to electrons (characterized by the
quantum efficiency of the camera sensor). All of these distributions are either
Poisson distributions or very close, and their convolution — giving = — is also
Poissonian. The overlap between two Poissonian distributions of mean _ and _ +<
is also minimized when _ is small.

Practically, the way to minimize background is to minimize scatter of the imaging
beam off surfaces near the imaging objective, to minimize the intensity of the beam
by selecting a detuning that is not too large (see Sec. 2.6.2), and to use narrow optical
filters in front of the camera. The filters should be especially good at rejecting
light at the trap wavelength, and also at the wavelengths used for cooling and
repumping such as 689 nm, 679 nm, and 707 nm. It is furthermore also important to
minimize background originating from dark counts on the camera, caused by things
like thermal excitations or so-called “clock-induced charges” [131]. These can be
minimized by cooling of the sensor to a sufficiently low temperature (a common
EMCCD feature) and optimizing readout parameters of the camera, such as the
readout speed.

Finally, we note that some EMCCD cameras are able to be used in a “photon
counting” mode [131] which may help with detecting a small number of photons.
The idea here is to take advantage of time resolution: instead of taking one image
of many photons, a time-series of many low-exposure images is taken such that it is
very unlikely that each pixel on each image is exposed to more than 1 photon. Then
each image ideally only records either 0 or 1 charges. If the EM gain is turned up
high, then each photon can be detected with very high fidelity. We do not use such
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a mode, but note that it may be useful in certain circumstances.

2.6.5 Atomic point-spread function

3.1µm

Figure 2.19: Typical measured point-spread functions of two atoms in tweezers
spaced by 3.1 `m. Each pixel corresponds to about 345 nm. The actual pixel size
is 13 `m and the magnification is ×37.5. The PSFs are significantly broader than
one would expect from a diffraction-limited imaging system, as shown in Fig. 2.20.

Although an atom is essentially a “point-source” in that its characteristic size is
much smaller than the wavelength that it emits, its fluorescence image will have
some intrinsic spread with a functional form sometimes called the point-spread
function or PSF. This size of the PSF is important as it gives a length scale beyond
which two atoms can be easily distinguished. This is one of the various limits on
how tightly spaced an atom array can be, though practically there are usually other
limits that become important at longer scales (see Sec. 2.7).

The physics of the PSF is practically identical to the discussion given in Sec. 2.2
regarding the diffraction of light through a finite aperture. Indeed the same procedure
can be applied simply by propagating in reverse the fluorescence light which scatters
into the solid angle collected by the imaging objective. Approximating the dipole
radiation pattern to be isotropic with no polarization gradients∗, the result is an Airy
disk as given by Eq. 2.7, such that the characteristic size of the ideal PSF scales
as 5

:'
∝ _/#�. We see from this result that imaging with shorter wavelengths

beneficially allows for a smaller PSF.
∗This approximation is usually sufficient, thoughwe point the reader to Ref. [132] for a discussion

on how elliptically polarized fluorescence may shift the PSF.
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This result assumes ideal, “diffraction-limited” imaging conditions. In practice, a
few things may degrade the PSF, such as defocus, optical aberrations, thermal spread
of the PSF by atomic motion, and pixelization on the camera sensor.

In our setup, we observe a fluorescence PSF that is significantly larger than what
the diffraction limit predicts. We have found that similar broadening is seen on
the camera even when imaging a test beam with a high-quality lens, suggesting
that much of our aberrations may be due to our camera (potentially from its sensor
window). We find that using larger magnification alleviates such broadening. Using
larger magnification accounts for the significant increase in resolution seen between
Fig. 2.25 and Fig. 2.19 (note length scales in each figure). However, we believe that
a further increase in magnification is necessary to fully overcome this broadening.

Fig. 2.19 shows typical PSFs of two atoms separated by 3.1 `m. Fig. 2.20 compares
the PSFs of an ideal, diffraction-limited point-source with our measured PSF. In
addition, it shows the expected PSF broadening due to thermal motion at typical
tweezer trap frequencies and ) = 50 `K. We expect this temperature (which is
one-tenth of our typical trap depth) to be a safe upper bound for the temperature of
our atoms during imaging as any temperature higher than this would likely cause
loss during imaging beyond what we measure (see Sec. 2.6.8). We see that thermal
broadening is not enough to explain the broadness of the PSF that we measure.
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Figure 2.20: Expected and measured point-spread functions when imaging with
_ = 461 nm light and an #� = 0.5 objective. Blue: Simulated diffraction-limited
PSF of a point source. We assume a uniform fluorescence pattern in the scalar and
paraxial regime, giving an Airy pattern as computed in Eq. 2.7. Corrections due to
breakdown of the aforementioned assumptions are expected to be small for at this
NA.Red: Simulated average of diffraction-limited PSFs (with the same assumptions
as for the blue curve) over an ensemble of point-sources whose positions in 3D space
are given by a classical thermal distribution with ) = 50 `K in a tweezer with radial
trap frequency lA = 2c × 80 kHz and axial trap frequency l0 = 2c × 12 kHz. We
reasonably expect this temperature to be an upper bound on the temperature of the
atoms during imaging. Computation of each component PSF includes effects of
defocus as prescribed by Eq. 2.6. Black: Measured point-spread function as given
by a radial average over an ensemble of many fluorescence images. Broadening
is suspected to arise from aberrations, in part due to the camera. Inset top: The
simulated diffraction-limited PSF (as in the blue curve) of two atoms separated
by 3.1 `m as would be seen on the pixelized camera sensor. Inset bottom: The
measured PSF of two atoms separated by 3.1 `m as seen on the camera sensor. Both
insets have each pixel corresponding to 345 nm.
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2.6.6 Detection and binary thresholding

When we obtain an image, we must ultimately decide whether or not an atom is
visible at the position of a particular tweezer. The result of this decision is binary:
an atom is either detected or it is not, and the actual number of photons that were
detected in order to make this conclusion is not important. Note that one does not
have to assume that only a single atom is occupying the tweezer, and we can still
make a binarization between an occupied tweezer and an unoccupied tweezer if
more than one atom is present.

The first step in detection is to determine where in the image an atom’s PSF actually
is. This usually requires taking several images, averaging them, and finding the
centroids of the various atomic PSFs in the array. We note that all of the techniques
discussed in this section assume that the PSF is stable and does not drift around or
defocus. For controlling defocus, it is useful to have the imaging objective be on a
piezo-controlled translation stage. Another strategy is to use the same objective for
both creating the tweezers and collecting fluorescence. Then, assuming there are
no significant chromatic aberrations, the atom will automatically be in focus.

The next step is to derive some kind of numerical signal from the image. In the
simplest case, this signal could be the number of counts on a single pixel. However,
since the PSF of an atom is often larger than a single pixel, this would make these
adjacent counts go to waste. A second pass attempt may then be to include all counts
in a sufficiently large region around the center of the PSF. However, this now runs
into the issue that it includes an increasingly large area of the image which is mostly
background and which will only add noise to the signal.

The choice of signal which we have found to be ideal is a weighted sum over
pixels, where we obtain the weights from the pixel values of the averaged PSF. We
empirically find this method to give the best imaging fidelity. Other methods that
might be used are fitting to an averaged PSF or using principal component analysis,
which we find to give roughly equivalent results. In the context of an array of atoms,
it is important to only sum over a region around the PSF small enough such that
counts from neighboring atoms do not start entering the region. For all data in
this work, we will be in a regime of sufficient atomic separation where PSFs do
not overlap and this is easy to do. If one must obtain a signal in a regime where
adjacent PSFs are not fully resolved, it is recommended to use principal component
analysis [51] as a deconvolution technique.
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Finally, we choose a classification threshold for the signal such that all signals
below this threshold correspond to “atom not detected” and all signals at or above
this threshold correspond to “atom detected.” This threshold can in principle be
chosen as anything, but we will see in Sec. 2.6.7 that there is in fact one choice
which optimizes imaging fidelity.

2.6.7 Figures of merit

Now that we have laid the groundwork for single-atom imaging, we can describe
the framework for benchmarking its performance. As stated in the beginning of
Sec. 2.6, we are looking to quantify two things: (1) what is the probability that we
are correct about the presence or absence of an atom and (2) what is the probability
that the atom will remain trapped after imaging. We call item (1) the fidelity of
imaging, and item (2) the survival probability. We will now discuss how to quantify
both.

Fidelity

After each image, we systematically classify (by the procedure described in Sec. 2.6.6)
the image as either “atom detected” or “atom not detected.” We define the imaging
fidelity � as the probability of this decision being true. That is, it is the probability
that we either decide that an atom is detected when one was present at the start of
the imaging process, or that we decide that an atom is not detected when one was
not present at the start of the image. This may also be termed the accuracy of our
binary classification. Note that it is important to specify that this definition applies
to the start of the image, as atoms may be lost during an image∗.

Determining imaging fidelity is a model-dependent process that makes a few as-
sumptions. For example, our prior knowledge about the probability of an atom being
present is important for determining imaging fidelity. If we had prior knowledge
that, for example, a tweezer contained an atom with probability 1, then we could
have unity fidelity by just deciding “atom detected” every time, regardless of what
an image says or whether an image was taken at all. Our actual prior knowledge —
based on modeling and observations (Sec. 2.4.2) — is that a tweezer contains an

∗In some circumstances, such as very tightly spaced arrays, atoms may also in fact appear in
tweezers where they originally were not by moving from tweezer to tweezer. However, for typical
array spacings (> 3 `m), we have never observed such an event and we will ignore this possibility.
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atom with probability 5 = 0.5. Note that this means that the lowest “reasonable”
(without intentionally trying to be wrong) imaging fidelity possible is 0.5 — you
can simply guess the result and be correct half the time.

We know that the signal histogram (such as the one in Fig. 2.22) is the sum of a
component coming from the absence of an atom and a component coming from
the presence of an atom. If we have a model for the functional form of these
contributions, we can compute the imaging fidelity by integrating the areas of both
contributions that are on the “correct” side of the chosen classification threshold
(see Sec. 2.6.6 for a definition of signal and classification threshold). In particular,
if %atom(G) is the model function for the histogram distribution of an atomic signal
and %bkd(G) is that of a no-atom background (with both distributions separately
normalized to an area of 1), then the imaging fidelity is

� = (1 − 5 )
∫ GC

−∞
%bkd(G)3G + 5

∫ ∞

GC

%atom(G)3G (2.110)

� =
1
2

( ∫ GC

−∞
%bkd(G)3G +

∫ ∞

GC

%atom(G)3G
)
[ 5 → 1

2
] (2.111)

where GC is the classification threshold.

The remaining problem is now to figure out proper functional forms for the two prob-
ability distributions and to fit them to the measured histogram. For reasonably good
imaging, the histogram often looks like two well defined peaks - one for background
and one for an atom. Often, Gaussians are used to model these peaks [37, 89]. How-
ever, a more accurate model (especially important when imaging a small number of
photons) should include a skew that arises from the camera gain (Sec. 2.6.4) as well
as the Poissonian nature of photon scattering and detection. One possible model is
a Gaussian convolved with Eqs. 2.107–2.108 and also convolved with a Poisson dis-
tribution of the = parameter of these distributions. Such a model takes into account
camera readout noise, camera gain, and Poissonian scattering/detection.

In certain circumstances, it might be necessary to add another contribution to
%atom(G). In particular, we find that when imaging at a trap wavelength of 515.2 nm,
every photon scattered by the atom entails a small probability of the atom being
immediately lost (Sec. 2.6.8). This results in an exponential distribution of the
number of photons that an atom scatters before it is lost. To account for this effect
in the imaging fidelity, we must add an exponential distribution to %atom(G). This
exponential distribution has a maximum at the signal value corresponding to one
scattered photon (counter-intuitively, it is most likely that an atom is lost at the
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very first scatter) and decreases exponentially until it reaches the atom signal peak
corresponding to atoms that were not lost. In principle, if imaging proceeds for a
long enough time, all atoms are lost and the entire atom signal histogram looks en-
tirely exponential (with some convolution of readout/detection distributions). Other
loss mechanisms, such as from heating, are generally not exponential but can also
contribute to some kind of smearing of the atom signal histogram.

Once a correct model is found and the histograms are properly fit, there should exist
a unique choice of classification threshold GC that maximizes the fidelity �.

Finally, we note that in addition to the overall fidelity �, we can define values �0

and �1 that are the probability of correctly identifying the absence/presence of an
atom, respectively. These are given by

�0 =

∫ GC

−∞
%bkd(G)3G (2.112)

�1 =

∫ ∞

GC

%atom(G)3G (2.113)

such that � = (1 − 5 )�0 + 5 �1. It is possible to adjust GC such as to favor one or
the other of these. For example, if one wants to avoid false positives as much as
possible but does not care about potentially “missing” some atoms (false negatives),
then GC can be increased beyond its optimal value for �.

Survival

If we care about the atom still being there after imaging (and in tweezer array
platforms we very much do care about this — see Sec. 2.7.3), then imaging fidelity
is only half the battle. We also need to optimize for survival: the probability that an
atom which was present at the start of the imaging process is still there after the end
of the imaging process. We will denote survival by (.

If we had an imaging scheme that had perfect fidelity (� = 1), this would be easy
to measure: one just takes two consecutive images and computes the probability
that an atom is detected in the second image, conditional on it being detected in
the first. We will call the result of such a measurement (0 (even if � < 1). If
� = 1, then ( = (0. If � < 1, as it realistically always is, then (0 needs to be
corrected for imaging errors before being interpreted as the true survival. We note
that in our works Ref. [89, 116], the reported value of survival was in fact (0 and
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not (. However, the fidelity � in both works was high enough for this to be a good
approximation.

(0 is given by the probability of positive detection in both images divided by the
probability of positive detection in the first image. Under the assumption of a filling
fraction 5 = 0.5, this is given by:

(0 =
�2

1 ( + �1(1 − �0) (1 − () + (1 − �0)2

�1 + (1 − �0)
(2.114)

where �0 and �1 are defined in Eqs. 2.112–2.113. Inverting for (, we get

( =
(�1 + 1 − �0) ((0 + �0 − 1)

�1(�0 + �1 − 1) (2.115)

This calculation assumes that both images have the same fidelities, but a similar
calculation is possible if that is not the case.

Finally, we note that survival itself may enter into the calculation of �1, as an
atom may be lost during imaging before it scatters enough photons to be positively
detected, which reduces �1. Such a situation requires an independent model for loss
(such as the exponential model described in Sec. 2.6.8).

Model-free calculation of fidelity and survival

We have so far discussed computing imaging fidelities �0, �1, and � by fit-
ting signal histograms. These values also enter into our corrected survival (.
However, this approach can be highly dependent on the functional form of the
histogram in its low-probability wings. Here we present an approach to com-
puting fidelities and true survival that does not depend on a model function.
Although we have not used this approach in our work, we confirm that it com-
putes fidelities and survivals at least as high as those reported in Ref. [116].
Note that a similar approach is outlined in Appendix B5 of Ref. [97].

Unlike the fitting approach, this approach requires two back to back images and
computes all of �0, �1, �, and ( directly and simultaneously. For some choice
of classification threshold, let G1 be one if an atom is detected in the first image
and zero otherwise, and let G2 be the same for the second image. Then we
define ?G1G2 as the probability of detecting the sequence G1G2. Enumerating all
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probabilities, we have

?11 = 5 �2
1 ( + (1 − 5 ) (1 − �0)2 + 5 �1(1 − () (1 − �0) (2.116)

?10 = 5 �1((1 − �1) + 5 �1(1 − ()�0 + (1 − 5 ) (1 − �0)�0 (2.117)

?01 = 5 (1 − �1)(�1 + 5 (1 − �1) (1 − () (1 − �0) + (1 − 5 )�0(1 − �0)
(2.118)

Note that ?00 = 1−
(
?11 + ?10 + ?01

)
and 5 is the filling fraction. Here we have

assumed that if an atom is not present (note, present is not the same as detected)
during the first image, it must also not be present during the second image. I.e.,
there is no hopping or filling of atoms after the initial filling. Furthermore, we
have assumed both images to have the same fidelities. A final subtle point is
that we have assumed no correlation between detection and survival in the first
image, which may not be entirely true.

One can now solve Eqs. 2.116–2.118 for �0, �1, ( in terms of ?11, ?10, ?01, and
5 . There will generally be two solutions, and typically one can be rejected as it
will indicate a fidelity below 0.5. Finally, one can define the overall fidelity by
� = 5 �1 + (1 − 5 )�0.

?11, ?10, ?01 are directly measurable for a given classification threshold, but 5
must be assumed (which is the same situation when using the fitting approach).
One typically assumes 5 = 0.5 on physical grounds (Sec. 2.4.2), however, the
resulting values of �0 and �1 can be highly sensitive to even small fluctuations
in 5 , and may even end up being higher than 1, which is unphysical. There
is typically a narrow domain of 5 for which the values of �0 and �1 are
both physical, which predicts a narrow range of possible physical values for
5 , �0, �1, �, and (.

2.6.8 Results

We now report on the results of our imaging at two different trap wavelengths:
515.2 nm [89] and 813.4 nm [116]. In both results, we will be imaging photons
on the blue (461 nm) transition while cooling on the red transition. However, in
Sec. 2.6.8 we will also discuss imaging on the red (689 nm) transition.
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For traps at 515.2 nm

Note: This section presents results from our publication Ref. [89].
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Figure 2.21: Results of imaging on the blue transition while cooling on the red
transition in _ = 515.2 nm tweezers at a trap depth of 1.4 mK. All data is for a single
tweezer. (a) A histogram of detected photons, showing well-defined zero-atom and
single-atom peaks. However, note that there is a small “bridge” of counts between
these two peaks, making them not fully resolved. We attribute this bridge to loss,
as will be discussed in this section. (b) Imaging fidelity and loss probability as a
function of imaging time for optimal imaging parameters. (c) Loss coefficient j
(defined in this section) as a function of relative red cooling frequency, where 0 is
the free-space resonance. Two regions are optimal, corresponding to magic cooling
(blue region) and non-magic cooling (purple region). The horizontal axis isΔ/(2c).
(d) Loss coefficient as a function of scattering rate. For small enough scattering
rates, the loss coefficient saturates to a minimal value. Beyond roughly 60×103 s−1,
heating begins to dominate loss (red region). Inset: Loss coefficient as a function
of imaging time at the scattering rate indicated by an arrow in the containing figure.

The high available power, large polarizability, and tight waist of 515.2 nm traps
allows for deep and tight traps. We are thus able to achieve relatively large trap depths
of 1.4 mK in this wavelength while still allowing for large array sizes (Sec 2.7.1).
However, note that the results reported in this section were obtained with a single
tweezer. Also note that this is the same tweezer as the one probed by sideband
spectroscopy in Fig. 2.15.
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Fig. 2.21 shows optimized results of imaging in _ = 515.2 nm tweezers under a
magic ellipticity for the red transition [89]. We measure an imaging fidelity of
� = 0.993(9) for sufficiently long imaging times (>20 ms). Fluorescence collection
of blue photons is done through the tweezer-generating objective, and in addition
fluorescence collected through the opposing objective is retro-reflected back to the
camera. Cooling is provided during imaging by retro-reflected and piezo-modulated
red beams in all three directions. We find there to be two regions of red detuning
that give optimal cooling, one in a narrow (∼100 kHz) range of red detunings, and
another in a much broader range (∼4 MHz) of blue detunings. We attribute the red-
detuned feature to magic sideband cooling to the |�(W)〉 state of the red transition,
while the broad blue-detuned feature is non-magic cooling to the |�(W)〉 state, which
is more weakly trapped than the ground state (see Sec. 2.3.4 for a definition of these
states). Thus, on the broad blue detuned cooling feature, we expect a repulsive
Sisyphus mechanism to exist (Sec. 2.5.2 & 2.5.2). This prediction is supported by
the fact that we observe similar fidelities when cooling with only a single beam
instead of the multiple beams which were used for recording of the reported data.

While the imaging fidelity achieved is appreciably high, the survival is unfortunately
not as remarkable. At an imaging time of 20 ms, we report an uncorrected survival
(Sec. 2.6.7) of (0 ∼ 0.97. Fig. 2.21 (b) shows that the loss (defined as 1 − (0 in the
language of Sec. 2.6.7) increases linearly as a function of time. We find that, below
a certain scattering rate, loss per scattered photon does not continue decreasing with
scattering rate (Fig. 2.21 (d)), suggesting that heating due to scattering is not the
limiting factor in this regime.

We ultimately find in this non-heating-dominated and cooling-optimized regime that
survival depends solely on the number of photons scattered # . In particular, we find
that survival is well-modeled by an exponential dependence on # by (0 = 4

−j# ,
where j is an experimentally determined loss coefficient. This exponential loss
manifests as a “bridge” between the zero-atom and single-atom peak in the histogram
of Fig. 2.21 (a) and prevents full resolution of the two peaks. Note that we take this
lossmodel into account in our calculation of the imaging fidelity, as briefly discussed
in Sec. 2.6.7. j = − ln((0/#) is the value plotted in Fig. 2.21 (c,d) (lower j →
higher survival). This value is computed by measuring (0 as well as an estimate of
the number of photons scattered by the atom during imaging obtained via the number
of photons detected on the camera and an estimate of the collection efficiency of
our imaging system (see Ref. [89] Appendix E2). The inset of Fig. 2.21 (d) shows
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that j is insensitive to the time that an atom is imaged for.

The observation of an exponential dependence of survival on the number of scattered
photons is consistent with a loss mechanism in which every scattered photon carries
with it a probability of losing the atom. This is again inconsistent with any kind
of heating or motional mechanism, as a single scattered photon should not be able
to expel an atom that is cooled to low temperatures. Indeed, for heating-dominated
loss, one finds that the loss rate is initially low while the atom is cold and then
rapidly increases once the atom’s energy becomes comparable to the trap depth.
This cannot be modeled by a simple exponential.

Our interpretation of such behavior is instead that each scattering event holds a
small probability of putting the atom in some unrecoverable electronic state. For the
blue transition in Sr, an immediately suspicious candidate is the small 5s5p 1P1 →
5s4d 1D2 leakage channel. Indeed, one finds that this state has a highly unfortunate
transition 5s4d 1D2 ↔ 5s4f 1F3 at 515.75 nm. For our trapping wavelength of
_ = 515.2 nm, this makes this state highly anti-trapped (Sec. 2.3.4). Furthermore,
the lifetime of 5s4d 1D2 is a fairly long∼300 `s [133], whereas numerical simulation
suggests that anti-trapping expels atoms from 5s4d 1D2 within a few `s. Therefore,
it is reasonable to expect that practically all atoms that decay to 5s4d 1D2 will be
lost.

If we assume all decay into 5s4d 1D2 results in loss, j−1 provides a lower bound for
the branching ratio 5s5p 1P1→5s2 1S0

5s5p 1P1→5s4d 1D2
. This is a lower bound as we have not ruled out

other loss mechanisms. Under optimized cooling and scattering rate parameters,
we measure j−1 to be in the range of 17(3) × 103 to 24(4) × 103. The source of
the systematic uncertainty is uncertainty of the collection efficiency of our imaging
system stemming from uncertainty in the dipole radiation pattern (see Ref. [89]
Appendix E2). Ab initio theory performed by our collaborators (Ref. [89] Appendix
A4) actually predicts a value for this branching ratio approximately equal to our
measured lower bound, which suggests that decay into 5s4d 1D2 is the dominant
loss mechanism. We note, however, that this branching ratio differs significantly
from the widely quoted value of 50 × 103 measured in Ref. [134]. We do not
claim a refutation of this previously reported value, and leave a resolution of this
disagreement to further study.

We note here the possibility of repumping 5s4d 1D2 before it has a chance to expel
the atom. We tried such a scheme by applying a beam at 717 nm, targeting the
5s4d 1D2 → 5s6p 1P1 transition which should quickly decay back to the ground
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state [133]. However, we saw no appreciable gain with this scheme, and attribute
its failure to the very large magnitude of anti-trapping. We also note that the laser
which was available to us at 515.2 nm was not tunable, and there is reason to believe
that tuning beyond the resonance at 515.75 nm may alleviate losses from 5s4d 1D2.
There is indeed no particular reason why 515.2 nm exactly should be used except
that high power lasers exist at that wavelength. Note that — very unfortunately —
532 nm suffers from an essentially identical problem (Sec. 2.3.4).

Finally, we note there are additional observed losses of 5s5p 3P1 (the excited state
of the red transition) at this trapping wavelength. These losses are most clearly
observed when exciting exclusively on the red transition, but are also in principle
present when cooling with the red during blue imaging. These losses are not
alleviated by the 679 nm and 707 nm repump beams. We note that Ref. [97] also
observes such losses and hypothesizes a plausible loss channel via 5s5d 3D1,2.

For traps at 813.4 nm

Note: This section presents results from our publication Ref. [116].

We now move to imaging at the clock-magic wavelength _ = 813.4 nm. Here,
5s4d 1D2 is trapped. Furthermore, the longer wavelength can be reasonably expected
to suppress losses on the red transition as it should be much further detuned from
any transitions.

Indeed, the results for imaging at this wavelength are highly positive. From a
dataset of 10,000 pairs of subsequent images at 50 ms exposure in an array of
25 atoms spaced at 7 `m, we measure [116] an array-averaged imaging fidelity of
� = 0.99991(1) and a survival of (0 = 0.99932(8) (with (0 as defined in Sec. 2.6.7).
The very high survival of this imaging scheme is exemplified in our ability to repeat
imaging of atoms more than 2000 times while only losing about half of them, as
shown in Fig. 2.22 (b). We note that between all subsequent images, there is a 29 ms
dead time of only cooling.

Cooling is provided by a single, non-retroreflected red beam along the radial tweezer
direction, as shown in Fig. 2.16 (a). The intensity of this red beam is estimated to
be at 1000 �sat. We find a broad range of red-detuned frequencies for the red
transition that provide effective cooling during imaging, as shown in Fig. 2.22 (c).
We excite on the red transition to the |<G

�
= ±1〉 excited states, which are more

trapped than the ground state for 813.4 nm tweezers (Sec. 2.3.4), resulting in an
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Figure 2.22: Results of imaging on the blue transition while cooling on the red
transition in _ = 813.4 nm tweezers at a trap depth of :B × 0.5 mK. All data is for a
50 ms exposure time, and all data except that in (a) is averaged over an array of 25
tweezers. (a) A histogram of detected photons from a single representative tweezer,
showing well-defined zero-atom and single-atom peaks. (b) Survival over multiple
images versus number of images taken. Light red lines indicate±1f statistical error.
There is a 29ms dead-time between subsequent images. (c) Survival during imaging
as a function of relative frequency of the red cooling beam. Zero is the free-space
resonance of the red transition. The horizontal axis is Δ/(2c). � ∼ 1000�sat. (d)
Survival as a function of estimated scattering rate of blue photons.

energy attractor during cooling (Sec. 2.5.2). Finally, excitation on the red transition
does not appear to induce any significant loss rate, and indeed continuous cooling on
the red transition allows for an observation of > 7 min lifetimes of trap occupation
(Sec. 2.6.8). Note that 679 nm and 707 nm repump beams are always on during
imaging and cooling, as shown in Fig. 2.16.

In conclusion, trapping at 813.4 nm — in addition to its benefit of being magic
for the clock transition — allows for significantly increased imaging fidelities and
survival over trapping at 515.2 nm, as well as elimination of the losses seen on the
red transition when trapping with 515.2 nm. The approximately percent-level gain
of fidelity and survival may not seem like much, but in fact it is highly important for
repeated imaging, for the preparation of large, defect-free arrays (Sec. 2.7.3), and
for minimizing state preparation and measurement errors in all applications such as
atomic clocks (Sec. 3.4.6) and quantum operations (Sec. E). We will therefore from
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this point forward assume all trapping is done with 813.4 nm.

A takeaway lesson to be had from the comparison of 515.2 nm and 813.4 nm is to
treat all “unproven” trapping wavelengths with suspicion until they are demonstrated
to work well, especially ones toward shorter wavelengths. Although we now know
about the problems with 5s4d 1D2 as well as those on the red transition, we had not
even considered them before beginning our explorations at 515.2 nm. One can try
one’s best to be as careful as possible in selecting a wavelength, but it is advised to
have an understanding that numerous unanticipated things can go wrong.

Lifetimes at 813.4 nm
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Figure 2.23: Trap occupation lifetimes in _ = 813.4 nm tweezers. Data is averaged
over a stochastically filled array of 25 tweezers. The red data corresponds to a
lifetime while cooling on the red transition with a single cooling beam. The blue
data corresponds to a lifetime while imaging and cooling under the parameters
discussed in Sec. 2.6.8. Curves are fits to exponential decay. For the red data, we
find a lifetime of 434(13) s, while for the blue we find 126(3) s.

The very high survival observed in Sec. 2.6.8 is a testament not only to the quality of
our imaging procedure, but also suggests that we have minimized all other processes
that may kick an atom out of a trap. One of these potential processes is collisions
with background gases. For optical traps, the achievable trap depths are typically
orders of magnitude smaller than the energy scales of collisions with background
gases. This means that any collision “event” expels an atom from the trap with
near 100% certainty, and that there is no way to mitigate this large energy transfer
with, e.g., cooling or making the trap deeper. This leads to an exponential decay
of trap occupation as a function of time, with a timescale we will call the vacuum
lifetime. For optical traps, the vacuum lifetime is purely a function of the quality of
the vacuum in the experimental chamber.
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Fig. 2.23 shows (in red) the lifetime for an atom to remain in the trap while being
cooled on the red transition (with a single non-retroreflected beam) and also illu-
minated by 679 nm and 707 nm repump beams. We measure [116] an exponential
lifetime of 434(13) s, or about 7.23(22) min. This provides a lower bound for our
vacuum lifetime, as we have not ruled out any other possible limiting timescales
(e.g., it is possible there is a very slow population of some unrecoverable state).
This value was re-measured a little over a year after its initial measurement and was
found to be reproducible.

The blue curve shows a similar measurement but this time while imaging under
the conditions discussed in Sec. 2.6.8. Here we measure an exponential lifetime of
126(3) s, showing that scattering blue photons does lead to a measurable amount
of excess loss. We have not determined whether this comes predominantly from
heating or from population of unrecoverable states. We note that our typical imaging
sequence involves only 50 ms of imaging. The lifetime measured under imaging
predicts a loss of 4 × 10−4 for a 50 ms pulse, whereas the value we measured with a
two-image sequence (uncorrected for imaging fidelity) was 6.8 × 10−4 (Sec. 2.6.8).
We note that the two-image scheme does have a 29 ms dead-time in between.

Finally, we discuss our measured lifetimes without cooling or imaging. That is,
the lifetime of just an atom in a trap. The first observation for this lifetime is that
it does not follow an exponential decay. Instead, we observe that the loss rate is
initially low and gradually becomes larger. This is consistent with loss via heating.
The timescale on which this loss reaches 50% is typically ∼20 s, but depends
strongly on trap parameters such as trap depth and spacing between neighboring
tweezers. This latter effect of array spacing matters due to interference between the
light of neighboring tweezers, creating intensity fluctuations that can heat an atom
(Sec. 2.5.3 and Sec. 2.7.1).

Imaging on the red transition

All discussion of imaging so far has been by use of a blue imaging beam and
the collection of blue (461 nm) photons on a camera. However, we have also
observed high-fidelity and high-survival imaging by simply illuminating an atom in
a _ = 813.4 nm trap with a single red beam and collecting red (689 nm) photons.

We find that a single beamwith a single detuning is sufficient to both scatter photons
and keep the atom from heating out of the trap— likely a benefit of having an energy
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attractor (Sec. 2.5.2) on the non-magic red transition. While we have not done a
thorough study on this regime and thus will not quote exact numbers for fidelity and
survival, our preliminary data suggests that they are at least comparable with the
numbers quoted in Sec. 2.6.8. We note the similarity of this scheme to the one used
for imaging single Ytterbium atoms in Ref. [83].

This incredibly simple imaging scheme does have a few drawbacks, however. The
first is that the maximal scattering rate of the red transition is only 23.6 × 103 s−1,
whereaswe have shown that high-fidelity-and-survival imaging on the blue transition
can support scattering rates of up to ∼75×103 s−1 at our trap depths (Fig. 2.22) (with
the maximal scattering rate of the blue transition being 94.2× 106 s−1). This means
that red imaging generically requires a longer imaging time than blue imaging to
achieve the same fidelity. However, for shallower traps where a very low scattering
rate is necessary anyway, red imaging may be a good choice.

Furthermore, the diffraction-limited size of the PSF on the 689 nm red transition is
1.5 times bigger than that on the 461 nm blue transition (Sec. 2.6.5).

Finally, we note that 679 nm and 707 nm repump beams (Fig. 2.6.1) are still
necessary when imaging (or exciting, in general) on the red transition as Raman
scattering can occur via the trap light from 5s5p 3P1 to 5s5p 3P0,2. These repump
wavelengths are unfortunately close to 689 nm and therefore may be a source of
background photons even when using a relatively narrow optical filter.

2.7 Tweezer arrays

We now turn our attention to the creation of multiple copies of a tweezer to create
a tweezer array. We will discuss techniques for generating arrays, for ensuring that
all tweezers in an array are as identical as possible (uniformization), and for moving
tweezers around (rearrangement). Rearrangement is a key feature of tweezer arrays,
particularly in the context of entanglement and many-body physics, as it allows us
to overcome the stochastic initial filling of tweezers (Sec. 2.4.2) to create an array
with a contiguous block of single atoms and no empty tweezers in between. We call
such arrays defect-free.

2.7.1 Generation via acousto-optic deflectors

Several technologies are available for generating tweezer arrays. The most com-
monly used are acousto-optic deflectors (AODs) [48, 83, 89, 97] and spatial-light
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modulators (SLMs) [45, 46, 135]. While we have been engaged in a parallel effort
to implement SLMs (see Ref. [136]), all results in this work were done using AODs
and that is what we will focus on in this section.

Figs. 2.24–2.25 show typical averaged atomic fluorescence images of a 1- and
2-dimensional array, respectively.

Figure 2.24: An averaged image of atomic fluorescence in a 1D array of 61 tweezers
spaced by 3.1 `m.

Figure 2.25: An averaged image of atomic fluorescence in a 2Darray of 11×11 = 121
tweezers spaced by 9 `m [89]. Note that the PSF in this image was significantly
broadened by aberrations from the camera window. This was later alleviated, as
shown in Fig. 2.24.

Principle

An AOD deflects an optical beam by creating a traveling acoustic wave inside a
crystal∗. The resulting diffraction can be analyzed with classical optics [137], but
for intuitive purposes it is easiest to envision the process as an interaction between
photons and phonons. Under an appropriate Bragg condition, the light, having an
angular frequency and wavevector l8 = 2 | ®:8 |, can either absorb or emit a phonon
of angular frequency and wavevector lB = 2B | ®:B |, where 2B is the speed of sound
in the crystal. In fact, this process can happen multiple times, and we call the net

∗AODs are very similar to acousto-optic modulators (AOMs), but are more optimized for beam
deflection.
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number of phonons absorbed the order of diffraction. For the purposes of array
generation, we will only consider the positive first order (i.e. one absorbed phonon),
but it should be kept in mind that other orders do exist.

By conservation of energy and momentum, the diffracted light must have angular
frequency l 5 = l8 +lB and wavevector ®: 5 = ®:8 + ®:B. Note that the Bragg condition
for this is

cos(\Bragg) = :̂8 · :̂B

=
1
2

(22
B − 22

22B

)lB
l8
+ 2B
2

(2.119)

For typical optical and acoustic parameters, this is usually very close to 90◦ and
varies very little with changing of lB over the typical dynamic range. For example,
with an 813.4 nm light beam, a center acoustic frequency oflB = 2c×100MHzwith
a spread of ΔlB = ±2c × 20 MHz, and a speed of sound of the TeO2 crystal’s shear
mode of 2B = 617 m/s, the central Bragg angle is \Bragg = 90.8◦ with a variation
over the dynamic range of lB of Δ\Bragg = 0.16◦. The finite variation of both :̂8 and
:̂B in the crystal allows for accommodation of this range of Bragg angles.

Of particular interest to us is the deflection of the angle of the incoming wavevector.
Since the Bragg angle is nearly 90◦, the deflection angle \ between ®:8 and ®: 5 is
given very nearly by

tan \ ≈ 2

2B

lB

l
(2.120)

For a typical center acoustic frequency of lB = 2c × 100 MHz at an optical
wavelength of 813.4 nm, this gives a deflection angle of 7.5◦. However, what
we really care about is small variations ΔlB around this center frequency and the
resulting further deflection Δ\ from this central deflection angle. Since all the
angles we are working with are sufficiently small, the sine and tangent functions
are both approximately linear. Dropping all approximation signs, we find that
sin(Δ\) = 2

2B

ΔlB
l

.

If we put the AOD at the focal plane of a lens of focal length 5 such that Δ\ = 0
is the direction along the lens’ optical axis, that lens will collimate the light ray
deflected at Δ\ to a ray which is parallel to the optical axis and which is at a distance
of ΔG = 5 sin(Δ\) from the optical axis. Finally, we obtain

ΔG = 5
2

2B

ΔlB

l
(2.121)
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Thus, if we put the crystal of the AOD (or optically map it) to the input focal point
of the objective that creates our tweezer, we can shift the position of the tweezer
along a direction orthogonal to the tweezer axis. The distance by which the tweezer
is shifted is directly proportional to the frequency of the applied acoustic wave.

AOD X

RF1

R
F2

A
O

D
 Y

Figure 2.26: Two AODs at an orthogonal angle producing a two-dimensional spread
of diffraction angles. RF1 and RF2 label the acoustic signals sent to both devices.
While the angle between the AODs here is 90◦, different angles can be used,
producing tweezer arrays of varying lattice geometries. In practice, it is best to
optically map the crystal of one AOD into the crystal of the second AOD, which can
be done by a one-to-one optical telescope between the two devices (not shown).

The creation of an array is only a simple extension of this principle. Instead of
driving the crystal with a sinusoidal signal of a single frequency, we drive it with a
signal that is a sum of several discrete frequencies. Assuming interference effects
are negligible (see discussion of phase in Sec. 2.7.1), the result will be an array
of tweezers, with each tweezer’s position corresponding to one acoustic frequency.
This can furthermore be extended to two dimensions by opticallymapping the crystal
of one AOD into a second AOD that is rotated by some angle. Fig. 2.26 illustrates
this concept.

Although we are in principle able to generate at least 100 tweezers in 1D, the
maximum workable size we have used is 81 tweezers [138] at a spacing of 2.5 `m,
and even here the small spacing introduces some issues (Sec. 2.7.1). Given the limit
on how tightly tweezers can be spaced, the limits to the array size come in part from
the bandwidth of our AOD, the field of view of our objective, and the available laser
power.
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Acoustic signal and choice of phase

Let us examine the signal �(C) sent to an AOD to produce a (1D) tweezer array of
#C tweezers:

�(C) =
#C∑
8=1

�8 cos
(
l8C + q8

)
(2.122)

We define such a signal digitally, and upload it to an arbitrary waveform generator
(AWG) for output to the AOD (App. A.5).

We have three degrees of freedom per tweezer (in 1D): the frequency l8 which
determines the position via Eq. 2.121, the amplitude �8 which determines the
intensity of the tweezer (by an ideally quadratic �8 ∝ |�8 |2 relation, up to saturation),
and the phase q8 which at first glance does not seem obviously important.

However, it is found in experiment that q8 must be chosen to be roughly uniformly
distributed in [0, 2c) to avoid severe non-uniformities and cross-talk (dependence
of one tweezer’s intensity on others) in the array. A plausible explanation for this
is that a choice of q8 which are mostly similar leads to large instantaneous spikes
in �(C). This then creates significant frequency mixing due to non-linearities in the
system.

Further optimization of phase choice may be made to explicitly minimize non-linear
mixing [48]. The idea here is that non-linearities (in the electronic or acoustic
domain) can mix the frequencies l8, l 9 to both (l8 +l 9 ) and (l8 −l 9 ). These can
then be further mixed back into the original domain. In this way, cross-talk between
different tweezers can happen. For example, assume that our signal has components
at 100 MHz, 101 MHz, and 102 MHz. One possibility is that the 101 MHz and
100 MHz components mix to produce a signal at 1 MHz. This is then mixed again
with the signal at 101 MHz to produce a second-order-mixed signal at 102 MHz,
interfering with and altering the amplitude of the original signal at 102 MHz. To
mitigate this, it is possible to choose the phases q8 to minimize such mixing. It
is furthermore possible to do this without a detailed knowledge of the non-linear
process by e.g. just assuming that it is approximately quadratic in amplitude. We
omit a discussion of a specific algorithm to do this, and point the reader to Ref. [48]
for a discussion.

Finally, it is important to ensure that there are no sudden jumps in the phase of the
waveform. An AWG realistically generates a finite length waveform that is then
repeated indefinitely. The length of this waveform should be chosen such that it is
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commensurate with all of the frequencies l8 so that the waveform does not have
a discontinuous phase jump when it repeats. We find that if this condition is not
met, heating and loss of atoms results due to deformation of the tweezers during the
phase jump.

Optical interference and overlap

A side-effect of AODs is that each tweezer’s optical frequency is slightly different,
as given byl 5 = l8+lB. For tweezer arrays spaced sufficiently far enough such that
optical interference is minimal, this shift usually has practically nomeasurable effect
on any relevant physics — with the notable exception of ultra-narrow spectroscopy
on the clock transition (Sec. 3.1.2, Fig. 3.6, and Refs. [100, 138]).

However, this does become an overall issue when the spacing between neighboring
tweezers becomes sufficiently small. It was shown in Fig. 2.3 that real tweezers
have outer rings in their optical profile, which can interfere with the central trapping
regions of neighboring tweezers, causing a fluctuation of the trap. Even though
these outer rings are fairly small in amplitude, this fluctuation can be significant
enough to heat atoms. It is particularly unfortunate that the slow frequency of this
fluctuation, which is given by l8+1 −l8, is usually close to twice the trap frequency
for spacings where interference becomes significant, which is especially bad for
heating (Sec. 2.5.3). Indeed, bringing tweezers close together typically increases
heating for two reasons: the optical overlap increases and the frequency difference
approaches twice the trap frequency. This can potentially be alleviated by using
shallower tweezers, though that of course brings its own problems.

We note that spatial light modulators (SLMs) in principle do not have such an
interference issue as they produce an array by imprinting a static phase pattern on
light, not by modulating it.

In addition to interference of the outer rings, the trapping regions of neighboring
tweezers may start significantly overlapping. This may allow sufficiently hot atoms
to leave the tweezer they were originally in and enter a neighboring one. This is
undesired. We have found that such events happen (rarely, but observably) when
imaging atoms in arrays of trap depth :B × 0.5 mK spaced below 3 `m. Mitigating
this could involve using deeper tweezers or using slower scattering rates so as to
keep atoms colder while imaging.
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Finally, we note that spatial resolution of the imaging system (Sec. 2.6.5) also
becomes a limiting factor at particularly small spacings (< 3 `m).

2.7.2 Uniformization
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Figure 2.27: Trap depths for tweezers in an 11 × 11 2D array (such as the one in
Fig. 2.25), measured by spectroscopy on the narrow red transition under a non-magic
condition [89]. Inset: a histogram of the relative deviation from the mean. The
standard deviation is 2%.

It is highly beneficial to have each tweezer in an array be as identical as possible.
There are three main things that can vary between tweezers in an array: (1) intensity,
(2) polarization, and (3) geometry such as the shape or orientation of a tweezer. In
this section we will focus on items (1) and (2), and only comment that (3) is a
function of the quality of the optical setup generating the tweezers. Inter-tweezer
spacing is also something that can potentially vary across an array, but is in principle
easily corrected by appropriate choice of AOD signal frequencies. Also notable is
that externally applied global fields, such as optical beams or magnetic fields, can
have local variation across the array.

Items (1) and (2) are particularly important in Sr, particularly in the context of
cooling on the red transition. As the red transition is fairly narrow (7.5 kHz), it can
be detuned significantly by even few-percent variations in the differential light shift
from the trap. We showed in Sec. 2.3.1 that the differential light shift is proportional
to intensity (at least in the case of non-magic traps), and in Sec. 2.3.3 we discussed
how tweezer polarization can also significantly affect the light shift. If either of
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these factors creates a significantly non-uniform differential light shift across the
array, cooling and generically exciting on the red transition will suffer.

We comment here on the potential appeal of choosing a magic-trapping condition
on the red transition (Sec. 2.3.4), such that the differential polarizability is zero for
all trap intensities. This can easily be done for a single tweezer at both 515.2 nm
and 813.4 nm wavelength tweezers by using a magnetic field with an appropriate
angle to the tweezer polarization. However, the burden of uniformity is now placed
entirely on the tweezer polarization (and to some extent on the field, though it is
relatively easy to homogenize on the length scales of an array). Furthermore, note
that the differential polarizability at a magic field angle may be more sensitive to
fluctuations in the tweezer polarization (Sec. 2.3.3). In practice, we find that even
with a nominally magic field angle and a careful optical setup, there are still typically
measurable light shifts originating from polarization non-uniformities.

Themain problemwith this is that tweezer polarizations are not individually tunable.
On the other hand, tweezer intensities are, and quite easily so: one simply needs
to adjust the �8 in the signal sent to the AOD (Eq. 2.122). This is easily done
digitally∗. Therefore, it can be argued that having a finite differential light shift is
actually beneficial to uniformizing an array, as it affords one a knob over which one
has a very high degree of control. As a final note on this, we note the existence of
wavelengths for which the red transition can in principle be made insensitive to both
intensity and polarization; for a discussion on this, see Sec. 2.3.3.

Therefore, we typically work in a regime where the differential light shift is finite
and tunable. To be explicit, we typically use a configuration where the tweezer
polarizations are orthogonal to a strong externally applied magnetic field, and this
field is also orthogonal to the direction of propagation of the tweezers. We then
target the Zeeman-insensitive state of the red transition for all cooling and excitation,
which has a polarizability equal to that of the states labeled |<G

�
= ±1〉 in Fig. 2.6 —

although the appropriate label of the state in this circumstance would be |<� = 0〉.

Uniformization of the differential light shift then proceeds as follows:

1. Measure a spectroscopic signal on the red transition that informs on the
differential light shift for each tweezer.

∗This would appear to work only for 1D arrays created by an AOD, as a 2D array generated by
crossed AODs does not provide amplitude control of each individual tweezer — only over rows and
columns. However, we experimentally find that an 11 × 11 2D array can be uniformized to within
2% standard deviation using only control over rows and columns (Ref. [89] and Fig. 2.27).
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2. Compute adjustment factors, which are numbers by which each tweezer’s
intensity should be multiplied in order to obtain a uniform differential light
shift, as well as the desired mean value of this shift.

3. Image the tweezer light (not the atom fluorescence) onto an auxiliary camera
and record the observed integrated intensity of each tweezer.

4. Adjust �8 (as defined in Eq. 2.122) until the intensities measured on the
camera are equal to the product of the originally imaged intensities times the
determined adjustment factors.

5. Repeat item (1) to verify uniformity. If uniformity is not sufficient, repeat the
process.

The “spectroscopic signal” of item (1)may be a number of things. For example, it can
be an excitation-and-shelving scheme as described in Sec. 2.5.4. More commonly,
since the optimization of cooling is actually the ultimate goal, the spectroscopic
feature we use is a cooling feature. We probe these by sweeping the detuning of
the red cooling laser and performing some kind of rapid one-point thermometry —
such as adiabatic rampdown, release-and-recapture [127, 128], or an adiabatic rapid
passage over a red sideband (Sec. 2.5.4) — at each point of the sweep.

The adjustment of �8 in item (4) generically requires some algorithmic approach.
A simple formula which calculates how much each �8 needs to change by is not
practical, as there is some level of non-linearity and cross-talk between tweezer
intensities. The algorithm we commonly use is simultaneously adjusting each
�8 using a PI (proportional-integral) feedback algorithm until their corresponding
tweezer intensities reach sufficiently close to the desired value. Phases may also be
simultaneously optimized as discussed in Sec. 2.7.1.

We routinely apply this procedure to our arrays (usually every few days) to maintain
uniformity, and typically achieve uniformities of the differential light shift at or
below the 2% level (as measured by standard deviation). Such a result is shown for
an 11 × 11 2D array in Fig. 2.27.

2.7.3 Rearrangement

One of the primary applications of tweezer arrays is realizing physics which involves
entanglement between many atoms (Sec. 5.1.1). This is typically realized via short-
range Rydberg interactions (Chap. 4), where the distance between two atoms is
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very important. As we want to perform such operations in a controlled manner, the
stochastic filling of tweezers described in Sec. 2.4.2 will not work for this purpose.

The development of tweezer rearrangement [46, 48, 52, 53] was crucial to the devel-
opment of tweezer arrays as a platform for quantum science. With this technique,
an initially stochastically loaded array can be rearranged to have atoms at desired
positions. Most notably, defect-free arrays can be achieved: ones that have an atom
at every site with no empty tweezers in between. We also note the development of
non-tweezer rearrangement schemes in optical lattices [54].

Moving tweezers

Themechanics of tweezer rearrangementwithAODs [48, 53] is a simple extension of
the results of Sec. 2.7.1 (see Ref. [46] for a purely SLM-based approach). We know
that the position of a tweezer along the axis of the AOD deflection is proportional
to the frequency of the acoustic wave applied (Eq. 2.121). Therefore, to obtain a
dynamical position ΔG(C), we simply apply a dynamical frequency.

Note that the definition of frequency for a cosine function is the time derivative of
the argument of the cosine. Therefore, the correct generalization of Eq. 2.122 to
dynamically moving tweezers is∗

�(C) =
#C∑
8=1

�8 cos
(
l2C + q8 (C)

)
(2.123)

where l2 is the center frequency of the AOD and

q8 (C) = q8 (0) + l
2B

2

1
5

∫ C

0
ΔG(C)3C (2.124)

See Eq. 2.121 for a definition of the remaining variables.

We find that cooling atoms on the red transition while moving them is important
to minimizing loss during rearrangement. For :B × 0.5 mK deep tweezers under
cooling, we find that atoms can be moved as fast as 3

3C
ΔG(C) ∼ 1 cm/s without

increased levels of loss.

∗A common mistake is to just modify the cosine as cos
(
l8C + q

)
→ cos

(
l8 (C)C + q

)
. This will

not give the desired result!
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1D rearrangement algorithm

(a)

(b)

Figure 2.28: Atomic fluorescence image of an array of 36 atoms (a) before and (b)
after rearrangement. The array spacing is 3.1 `m.

We now discuss how to actually achieve a 1D array with atoms in the desired
position. The first step is to prepare a stochastically loaded array of single atoms
(Sec. 2.4.2) and to image this array, determining which tweezers are occupied and
which are not. Then, one must compute a signal of the form Eq. 2.123 that moves
the occupied tweezers into their desired final positions. This must be done without
an occupied tweezer “colliding” with any other tweezers (occupied or not), and can
in principle involve discarding excess atoms. Of course, the initial number of atoms
must also be at least equal to the final desired number of atoms. We will focus only
on cases where the initial and final tweezer arrays are identical, such that the initial
and final static signals (Eq. 2.122) are identical — though of course atoms may have
moved around or been expelled in between.

Computing signals of the form Eq. 2.123 on-the-fly turns out to take a significant
amount of time (∼100 ms) for a contemporary computer. This is due to both
computation time and transfering to the AWG which outputs the signal to the AOD.
100 ms may not seem like a lot, but it is in fact a significant portion of a typical
experimental cycle time of a tweezer array experiment (typically <1 s). Furthermore,
it is beneficial to minimize waiting time as fixed-timescale lifetimes such as vacuum
collisions may limit the rearrangement success probability for large array sizes
(Sec. 2.7.3).

Therefore, it is beneficial to have rearrangement signals pre-computed and stored on
thememory of theAWG.However, enumerating every single possible rearrangement
of identical atoms naïvely requires computation and storage of

(2#C
#C

)
signals∗, where

#C is the number of tweezers. This is prohibitive for reasonably sized arrays, even
if restrictions are made on what moves can be reasonably expected to occur.

Therefore, we employ an iterative rearrangement algorithm that significantly reduces
the signal storage requirements such that all necessary signals can be reasonably

∗This assumes no excess atoms are to be expelled from the array. If this restriction is relaxed,
the number is even larger.
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stored directly on the AWG memory. The idea here is to sequentially move entire
subsets of the array either one move to the right or one move to the left. For example,
if we would like to create a defect-free array and there is an empty tweezer at position
: , we simultaneously move tweezers {1, ..., : − 1} → {2, ..., :}. Concurrently, we
extinguish the empty tweezer originally at : and re-illuminate a tweezer at position
1. This procedure is then repeated until there are no longer defects in the array. Such
a scheme requires only $ (#C) storage of signals for defect-free final arrays. For
arbitrary final arrays, the storage requirement is $ (#2

C ) [139]. Note that the exact
functional form of the shifting motion and of the extinguishing/relighting can be
arbitrary, so long as the tweezer array before the shift is identical to the one after the
shift. These functional forms are usually chosen to be some smooth function, with
amplitudes interpolated between neighboring tweezers. With these signals stored
on the AWGmemory, we only need to send a command sequence to the AWG telling
it which signals to execute in what order.

Finally, at the end of a rearrangement sequence and before proceeding with the
experiment, it is customary to verify that the rearrangement was successful by
imaging the rearranged array. Here, unsuccessful rearrangements can be post-
selected away. However, this does not guarantee that the array will continue to be
correct after the image, as loss may occur during this second image. We discuss
such limitations in the following Sec. 2.7.3.

Rearrangement system size limits

The success of rearrangement depends crucially on the probability that the atomwill
survive (1) the first image which determines the initial position of the stochastically
loaded atoms, (2) the actual rearrangement motion itself, and (3) the second image
which verifies the success of the rearrangement. Furthermore, the probability of
correctly identifying an atom (�1), as well as that of correctly identifying the lack of
an atom (�0), play a very important role in both the first and second image. These
values are the imaging fidelities discussed in Sec. 2.6.7. However, taking these into
account requires a more sophisticated analysis and we will leave this beyond the
scope of this work. We will therefore assume that �0 and �1 are large enough such
that errors in imaging are negligible. Note that this actually puts very stringent
requirements on these values if we insist that no errors are allowed for any atom in
the array.
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We already defined in Sec. 2.6.7 the imaging survival (. Here we will also define the
probability of surviving the rearrangement motion as (<. Then the total probability
of an atom surviving the entire rearrangement procedure is (A ≡ (2(< (assuming
that the first and second image have the same survival probability). We note that
(A is fundamentally limited to 4−C/g, where C is the time necessary for the entire
rearrangement procedure and g is the vacuum lifetime (Sec. 2.6.8).

The probability of all #0 atoms in an array being successfully rearranged is∗ (#0A .
Note that for large #0, this function is highly sensitive to even small deviations of
(A from 1.

We will now calculate the the probability of achieving a defect-free array of #0
atoms in an array of #C tweezers with an initial stochastic filling fraction of 5 ,
where typically 5 = 0.5. Note again that we are assuming perfect imaging fidelities
(Sec. 2.6.7) in both the first and second image. The result is

%(#0) =
(
1 −

#0−1∑
==0

(
#C

=

)
5 = (1 − 5 )#C−=

)
(#0A (2.125)

Here, we have assumed that if the initially stochastically loaded array has more than
#0 atoms, that the excess atoms are expelled with 100% probability from the array.
The first factor (in parenthesis) of Eq. 2.125 accounts for the probability of having
at least #0 initial atoms in a stochastically loaded array.

Let us assume we have sufficiently large #C such that the first factor of Eq. 2.125 is
effectively 1. Then %(#0) ≈ (#0A . Under this condition, we can now ask what is
the maximum defect-free array size #0 that has a success probability of at least 4−1.
The answer is

#max
0 = − ln((A)−1 (2.126)

≈ (1 − (A)−1 (2.127)

where Eq. 2.127 is valid for (1 − (A) � 1. Thus we see that the largest defect-free
array characteristically achievable is much more than a function of the number of
tweezers you can generate: it is also very much limited by the probability of a single
atom’s survival.

∗Here, we assume that (A does not depend on where in the array an atom is or where it is being
moved to. One can generalize to a trajectory-dependent (8A , where 8 indexes all the rearrangement
trajectories. Then the total success probability is

∏
8 (
8
A . We see that this number is limited by the

worst (8A .
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Let us also make the lax assumption that (< = 1, such that all loss occurs only from
imaging and %(#0) = (2#0 . Then Eq. 2.126 can be reduced to #max

0 = −1
2 ln(()−1.

From this analysis, we see that the imaging survival (0 = 0.99932 reported∗ for
_ = 813.4 nm tweezers in Sec. 2.6.8 limits our characteristic defect-free array size
to #max

0 = 735, which is significantly larger than the arrays that we can currently
reasonably generate. On the other hand, if we used the markedly worse survival
(0 ∼ 0.97 reported for _ = 515.2 nm tweezers in Sec. 2.6.8, we obtain #max

0 = 16,
a significant decrease. This analysis is the main reason why the loss reported in
Sec. 2.6.8 was determined to be such a major detriment for 515.2 nm tweezers. Note
once more that the limit we have presented here takes into account only survival,
and we do not account for further imperfections due to imperfect imaging fidelities.

∗We will make the approximation ( = (0, see Sec. 2.6.7.
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Chapter 3

THE CLOCK STATE

In this chapter, we examine the clock state of Sr: 5s5p 3P0. This state is inter-
esting to us for a few reasons. The first is its role in the clock transition of Sr,
5s2 1S0 ↔ 5s5p 3P0. This transition has been exploited to create some of the most
stable clocks in the world [11, 12, 15]. We will discuss in this chapter the application
of atomic arrays to optical clocks [99, 100, 138]. Additionally, the clock transition
is a promising candidate for a long-lived optical qubit in strontium (Sec. 5.1.2).

Another reason the clock state is interesting to us is its use as a “second ground
state” from which excitation to Rydberg states can follow. This will be discussed
more in depth in Chap. 4.

We will also discuss in the Outlook (Sec. 5.1.3) ideas about using Rydberg interac-
tions to generate spin-squeezed states on the clock transition as a pathway toward
entanglement-enhanced metrology.

3.1 The clock transition in bosonic strontium

In the bosonic isotopes of Sr (such as the oneweworkwith, 88Sr), the clock transition
5s2 1S0 ↔ 5s5p 3P0 is strictly dipole forbidden by both the � = 0 → �′ = 0 and
Δ( = 0 electric dipole selection rules. These selection rules are strict in the case of
the clock transition because both the � and ( quantum numbers of the clock state are
exact. For �, this is true of all states due to rotational symmetry. For (, spin-orbit
mixing with singlet states (as occurs for 5s5p 3P1, see Sec. 2.1.2) is only possible
between states of equal �. For the clock state, there is no � = 0 singlet state that
can be mixed with. Indeed, for all experimental purposes the unperturbed clock
transition in bosonic Sr can be assumed to have a natural linewidth of zero. The
actual value is theoretically predicted to be Γ = 2c × 8.8 × 10−13 Hz [140] via an
E1M1 decay channel to the ground state.
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3.1.1 Admixture with magnetic field

In order to drive the clock transition, we thus need to break rotational symmetry
and admix the unperturbed clock state with a state that has � = 1. We do this
with a magnetic field [141]. The perturbing Hamiltonian of a magnetic field ®� is
�Z = `B ®� · (6! ®!+6( ®(), where 6! ≈ 1 and 6( ≈ 2. We will choose our quantization
axis to point along ®�. This simplifies the Hamiltonian to �Z = `B�(6!<! + 6(<()
for states in the same |(, !〉 manifold, and zero otherwise.

�Z has no first-order shift on the clock state, but it does mix the clock state with
5s5p 3P1 <� = 0. Via perturbation theory, it can be shown [141] that the perturbed
clock state is

|kclock(�)〉 = |5s5p 3P0〉 +
`��

ℏΔ01
|5s5p 3P1〉 (3.1)

`� ≡
√

2
3 (6! − 6()`B (3.2)

where Δ01 = 2c × 5.6 THz is the splitting between 5s5p 3P0 (the clock state) and
5s5p 3P1. While Eq. 3.1 is not strictly normalized, we assume that `��

ℏΔ01
is small.

This admixture gives the perturbed clock state a finite decay rate to the ground state,
given by

Γclock(�) = Γ3P1

`2
�
�2

ℏ2Δ2
01

(3.3)

which is proportional to �2. We note that even for a large field of � = 1000 G,
this results in a very small decay rate of Γclock = 2c × 0.3 mHz (g = 530 s). We
also note for the sake of intuition that the clock transition in the fermionic 87Sr can
be thought of as experiencing a “natural” magnetic field due to its nonzero nuclear
spin of � = 9/2, giving the clock transition a finite decay even at zero external field.
On a more formal level, one can note that the strict restriction of � = 0 9 �′ = 0
and Δ( = 0 are relaxed in the fermion as the exact quantum numbers there are
� = �′ = 9/2 [142].

The admixture of the clock state with 5s5p 3P1 allows for a finite dipole coupling
to the Sr ground state 5s2 1S0. We can calculate the Rabi frequency on the clock
transition to be

Ωclock(�) =
`��

ℏΔ01

√
3Γ3P1_

3�

4c2ℏ2
(n̂ · �̂) (3.4)
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where � is the optical beam intensity, _ = 698.4 nm is the wavelength of the clock
transition, and n̂ · �̂ is the projection of the excitation beam’s polarization onto the
direction of the magnetic field. This can be derived from Eqs. 2.85–2.86 along with
the relation B = 2Ω2

Γ2 . Thus we see that Rabi frequency scales linearly with �.

3.1.2 Systematic energy shifts

The recommended value [143] of the vacuum wavelength and corresponding tran-
sition frequency of the unperturbed clock transition in 88Sr is

_clock = 698.445 608 419 382 nm (3.5)

aclock = lclock/(2c) = 429.228 066 418 007 THz (3.6)

This resonance can however shift due to external factors — these are often referred
to as systematic shifts in the context of metrology. Systematic shifts are not only
important as DC values, but also as sources of frequency noise (Sec. 3.2.3). Here
we will discuss magnetic shifts, probe shifts due to the light that excites the clock
transition, and trapping light shifts. Additional shifts that can be studied but are
beyond the scope of this work include blackbody radiation shifts [88, 144, 145], DC
electric shifts [88, 145], and background gas shifts [145, 146]. Interaction shifts
between trapped atoms are also an important topic for certain platforms, but are
ideally absent in a tweezer platform (Sec. 3.4).

Magnetic shift

We will continue the perturbation theory that gave us Eq. 3.1 to now calculate the
energy shift of the perturbed clock state. Since the ground state is unperturbed by a
magnetic field, this shift can also be interpreted as the shift of the clock resonance.
The result is

Δl� (�) = −
`2
�
�2

Δ01
(3.7)

Thus there is an energy shift that is proportional to �2. Numerically, this is approx-
imately a coefficient of −2c × 0.23 Hz/G2.

Probe light shift

The beam that excites the clock transition (which we will refer to as the probe beam)
induces a differential light shift on the clock transition. This differential shift results
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from both a shift on the ground state and on the clock state. A calculation of this
shift would involve a polarizability calculation for both states at _ = 698.4 nm, in
the vein of the analysis presented in Sec. 2.3.4. Note as both ground and excited
states are � = 0, these polarizabilities are purely scalar and have no dependence on
polarization. We forgo a full analysis and restate the result given in Ref. [141]:

Δl� (�) = ^� (3.8)

^ = −2c × 18 mHz/(mW/cm2) (3.9)

Note that Δl�/Ω ∝
√
�, so the magnitude of the shift relative to the linewidth grows

as
√
�.

Trap light shifts

Lastly, we discuss light shifts from trapping. In the context of polarizability as
discussed in Sec. 2.3, there exists a magic wavelength for the clock transition at
_magic = 813.427 nm (vacuum) [28]. Being at this wavelength would normally
eliminate light shifts; however, there are two practical issues that arise for the clock
transition when used at very narrow linewidths. The first is particular to tweezer
arrays generated by an AOD (Sec. 2.7.1). Each tweezer in an AOD-generated array
has an optical frequency shift from its neighbor on the order of a few hundred kHz
to a few MHz, depending on the array spacing. This means that each tweezer will
have a slightly different light shift than the others. These differences are usually far
too small to be noticeable in the light shift of any other transition, but can be seen
in narrow-line clock operation (Refs. [100, 138] and Fig. 3.6). This issue can be
solved by generating the array with an SLM instead.

The second potential issue is that it is possible to observe light shifts arising from
beyond-second-order perturbation theory (i.e. beyond the treatment of Sec. 2.3). The
next-leading perturbation is fourth order in the dipole Hamiltonian, and produces
an additional light shift that is proportional to �2 (Fig. 3.6), known as hyperpolariz-
ability [147]. With a nonzero hyperpolarizability, there is in fact no wavelength for
which the light shift is zero for all intensities, so a magic wavelength is in principle
defined only in the limit of zero trap intensity. However, for all trap intensities, one
can find a wavelength where the light shift is at a local extremum with respect to
intensity. This has been called an operationally magic configuration [148], and is
favorable as it produces a total light shift that is minimally sensitive to fluctuations
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or inhomogeneities in the trap intensities. Hyperpolarizability is, however, sensitive
to the trap’s polarization ellipticity, even for a � = 0 state like the clock state [149].
This may be a source of inhomogeneities in an array optical clock. Ultimately,
however, it is anyway favorable to operate high-stability clocks in as shallow a trap
as possible [99] where hyperpolarizability effects are small.

A formula for hyperpolarizability light shifts in a tweezer as a function of motional
state can be found in Eq. E1 of Ref. [138].

3.1.3 State detection

We will describe two ways to perform state detection on the clock transition, which
we will refer to as the destructive and non-destructive methods.

The destructive method is to push ground state atoms out of the trap by applying a
high-intensity beam resonant on the blue transition. This is ideally done in traps that
are relatively shallow (. 50 `K). The atoms remaining in the clock state are then
repumped into the imaging transition and imaged. We find that a push-out pulse as
short as 500 `s is sufficient to eliminate atoms in the ground state with a fidelity of
>99.99%. Furthermore, the speed of this scheme is fast compared to the timescale
of trap scattering of the clock state into the ground state. Thus, for tweezers less
than 50 `K deep, the fidelity of not pushing-out clock state atoms is also similarly
high. We forgo a full analysis of the state-detection fidelity, but note that we are
able to measure ∼99.8% clock state population when optically pumping to the clock
state instead of coherently driving (Ref. [150]), which places a lower bound on the
clock state detection fidelity of this scheme.

The non-destructive method is to simply image the ground state, leaving excited
atoms dark in the clock state. Here, we must leave the 679 nm repump off, however
(Fig. 2.16). There are two processes that produce infidelity in this scheme: (1)
Raman scattering out of the clock state and (2) leakage from the blue transition into
5s5p 3P2. For item (1), note that high-fidelity imaging favors relatively deep traps
and therefore higher Raman scattering rates. There is some uncertainty here as to
whether it is best to perform such detection with the 707 nm repump on or off. On
the one hand, it can put leakage from the imaging transition back into the imaging
cycle, but on the other hand it also gives rise to the possibility that Raman scattering
from the clock state into 5s5p 3P2 will also enter the imaging cycle. We forgo an
analysis on this question.
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The non-destructive scheme generally has an inferior state detection fidelity to the
destructive scheme (see Ref. [116] for a fidelity analysis) but does allow atoms to be
reused as no atoms are pushed out of the trap. This is useful for reducing dead-time
in clock operation (Sec. 3.4).

3.2 Coherent excitation and its limits

This section will explore one general question: “how well can we perform Rabi
oscillations on the clock transition?” The answer to this question is important for at
least two reasons: (1) preparing the atoms in the clock state with high fidelity for
subsequent Rydberg excitation and (2) the use of the clock transition as an optical
qubit.

The ideal Rabi Hamiltonian on a two-level system (TLS) is given by

�/ℏ = 1
2
(
ΩfG − ΔfI

)
(3.10)

where f` are Pauli operators∗, Ω is the Rabi frequency, and Δ is the detuning.
If the initial state is the ground state |6〉, the solution to this ideal Hamiltonian
on-resonance (Δ = 0) is |k(C)〉 = cos

( 1
2ΩC

)
|6〉 + sin

( 1
2ΩC

)
|4〉. A c-pulse at C = c

Ω

should thus ideally implement the state-flip unitary * = fG . How well a system
actually realizes this operation can be characterized by a c-fidelity given by 〈4 |d |4〉,
where d is the density matrix.

Although any two-level system is in principle described by the same Hamiltonian,
in this section we will examine effects that are most pertinent to specifically the
clock transition, which is characterized by narrow linewidths and long timescales.
In Sec. 4.4, we will answer very similar questions but for Rydberg transitions,
which typically have short timescales, broad linewidths, and other systematic con-
siderations. Our analysis in both sections should not be considered as absolutely
exhaustive, but will include all effects that we believe to be major contributions.

For completeness, here we list some effects we deem to be negligible. Blackbody
radiation coupling of the clock state to the nearby 5s4d 3D1 state is expected to
have a total scattering rate of time constant gBBR ≈ 170 s [99, 124], which is much
longer than the relevant timescales we will consider and therefore will be ignored
(but can become important for state-of-the-art clock systems). Scattering from the
clock (probe) beam is also deemed to be negligible at the typical intensities used.

∗fI = |4〉〈4 | − |6〉〈6 |, fG = |6〉〈4 | + |4〉〈6 |
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Finally, it is assumed that the rate of spontaneous decay is negligible, which is a
good approximation for the clock state (especially in the bosonic species).

3.2.1 Thermal and motional effects

The clock transition typically has a linewidth much smaller than all trap frequencies.
Thus, it is most convenient to discuss atomic motion in the language of the quantum
harmonic oscillator, as we did in Sec. 2.5.1. We will assume magic trapping
conditions throughout.

We know from Sec. 2.5.1 that motional transitions in the resolved-sideband regime
manifest as discrete resonances spaced at the trap frequencyl. The transition which
does not change the motional state is known as the carrier and the transitions which
do are known as sidebands. For coherent excitation, we choose to excite on the
carrier — not only to preserve the motional state, but because this transition is least
sensitive to motional dephasing.

However, it is not completely insensitive to motion. Looking at Fig. 2.11, we
see that the matrix element of this transition does depend on the motional state.
Quantitatively, we can rewrite Eq. 2.59 specifically for carrier (= = =′) transitions:

〈=8 |48[(08+0
†
8
) |=8〉 = 4−

1
2[

2
8 != ([2

8 ) (3.11)

where != (H) is a Laguerre polynomial, [8 = ( ®: · Â8)
√

ℏ
2<l8 where Â8 is the direction

along which the 08 operators are defined (assumed to be a principal axis of the trap),
and l8 is the trap frequency along this direction. An approximation to this equation
is given to second order in [ by Eq. 2.60.

The frequency of oscillations between |6〉 and |4〉 is proportional to this matrix
element. For an atom with motional state |=G , =H, =I〉, the oscillation frequency is
given by

Ω=G ,=H ,=I = Ω4
− 1

2 ([
2
G+[2

H+[2
I)!=G ([2

G)!=H ([2
H)!=I ([2

I ) (3.12)

where Ω is the Rabi frequency in the limit of an ideal TLS ([ → 0). Note that the
way we have defined [8 takes into account the projection of the wavevector ®: onto
each dimension.

Let us now simplify by assuming that ®: points along only one of the trap principal
axes, such that only the [ of one direction is nonzero. Note that != (0) = 1 for all
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=, so we can work with a single [ and = in this 1D case. For a thermal ensemble
of thermal occupation =̄, the averaged excitation probability for Rabi oscillations on
carrier resonance is

%4 (C) =
1

1 + =̄

∞∑
==0

( =̄

1 + =̄

)=
sin2 ( 1

2Ω=C
)

(3.13)

=
1

1 − 4−
ℏl
:B)

∞∑
==0

4
− ℏl=
:B) sin2 ( 1

2Ω=C
)

(3.14)

Note that this formula is only valid in the resolved sideband regime l � Ω.

Qualitatively, this thermal spread of the oscillation frequency results in an overall
slowing down of the Rabi oscillations as well as dephasing at early times, as shown
in Fig. 3.1. The rate of this dephasing can be used as a form of thermometry. Our
measured data closely reproduces the predicted dephasing at early times, and the
temperature extracted from thismethod agreeswellwith temperatures extracted from
sideband spectroscopy (Sec. 2.5.4). At later times, the oscillations can re-phase,
leading to a revival of the excitation probability.

For small =̄ and [, we can estimate the maximum achievable %4 as

%max
4 ≈ 1 − c

2

4
[4=̄ (3.15)

This occurs at a time slightly later than the c-time that would be predicted in a
non-thermal TLS. Note that this value is independent of Ω, so thermal dephasing
cannot (at least, in the sideband-resolved regime) be “beaten” with a faster Rabi
frequency. Indeed, thermal dephasing in the sideband-resolved regime is invariant
in the timescale. This is not the case in the regime of Ω � l, however, where
thermal dephasing can be beaten with faster Rabi frequency. That regime will be
used for Rydberg excitation (Sec. 4.4).

Note that Eq. 3.15 implies that the thermal c-infidelity scales as l−2. Therefore,
suppressing thermal dephasing calls for the use of tighter traps. This can be done by
using deeper (i.e. higher intensity) traps — however, this is at odds with c-fidelity
limits set by trap light scattering (Sec. 3.2.2), so a balance must be struck between
the two.

We will now briefly discuss infidelities in the Rabi oscillations due to off-resonant
excitation of motional sidebands. In other words, we will make an estimate of
the failure of the resolved-sideband regime. A quantitative treatment is best done
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Figure 3.1: Rabi oscillations on the clock transition. Red points are experimental
data, while the grey dashed line is the expected thermal dephasing for =̄ = 0.29,
as given by Eq. 3.13. The trap frequency is l = 2c × 82 kHz while the bare Rabi
frequency (without motional corrections) is Ω = 2c × 3.9 kHz. The magnetic field
is |� | ∼ 710 G. Data is averaged over 43 tweezers. No correction or rescaling is per-
formed for the vertical axis. The discrepancy between the data and the grey dashed
line at later times can be explained by a breakdown of the assumption that ®: only
points along one principal axis of the trap, and in particular if the trap frequencies
along the different directions are unequal. In fact, from sideband spectroscopy such
as in Fig. 2.14, we know that our clock beam does have components along both
radial axes and that they have a frequency splitting of ∼2c × 2.5 kHz. Although this
is not plotted here, it can be shown that such a situation leads to pushing out of the
revival to later times.

by numerical evolution, but we can make an estimate of the amplitude of off-
resonant excitations. The sidebands are detuned by l and oscillate at a frequency
of approximately [Ω. Thus their oscillation amplitude will be approximately ℏ:2Ω2

2<l3 .
For our typical parameters, this value is in the range of 10−4, so it is not typically
significant. However, it does pose an upper limit on how large Ω can be chosen in
the sideband-resolved regime. We note that such limits are not valid when Ω � l,
where it is again actually beneficial to choose larger Ω.

Finally, we note the possibility of dephasing due to thermal sampling of the clock
probe beam profile, which can lead to fluctuations in both the Rabi frequency and in
the detuning (Sec. 3.1.2). This becomes an especially important problem for smaller
probe beams that one would use to obtain large Rabi frequencies.

3.2.2 Trap light scattering

Atoms in either the ground or the clock state can scatter trap photons. The rate
of such scattering is directly proportional to the trap intensity �, or equivalently
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the trap depth∗ *0. Scattering generically reduces the fidelity of Rabi oscillations.
Furthermore, trap scattering continually depopulates the clock state even if it were
initially perfectly prepared.

Scattering in the ground state is dominated by the 5s5p 1P1 intermediate state, which
ultimately leaves the atom still in the ground state. On the other hand, atoms in
the clock state can scatter trap photons via a number of intermediate states, the
most significant of which are 5s6s 3S1, 5p2 3P1, and 5s5d 3D1. Scattering via these
intermediate states can either leave the atom in the clock state (Rayleigh scattering)
or transfer it to 5s5p 3P1,2 (Raman scattering). We neglect any other potential
processes that take the atom completely out of this manifold. If Raman scattering
transfers the clock state atom to 5s5p 3P1, the atom decays back to the ground state
on a relatively fast timescale (g = 21 `s).

If Raman scattering transfers the atom to 5s5p 3P2, it may stay there for a long time
as this state is also metastable. However, it too can scatter trap photons, and can
eventually return to either the clock state or 5s5p 3P1. We note that here the trap
polarization is important. For example, if the atom ends up in the “stretched state”
|5s5p 3P2 <� = ±2〉 while the trap polarization is purely f± (requiring a circularly
polarized trap), then scattering can no longer move the atom to any other state in
the 5s5p 3P� manifold. We note that this is a potentially interesting situation for the
realization of an excited state that is long-lived even under deep trapping.

A full model of these dynamics can become quite involved and we forgo such an
analysis. A simpler question is: “if an atom is prepared in the clock state, for how
long does it remain there?” To answer this, we refer to Ref. [124] which computes
a Rayleigh scattering rate from the clock state into the other 5s5p 3P� states of
ΓB = 7.82× 10−4 s−1 · (*0/�A), where �A = 2cℏ× 3.43 kHz is the recoil energy for
a _ = 813.4 nm trap. For a given trap depth *0, this rate can be used to compute
an exponential decay of the clock population. Such a treatment does not, however,
take into account scattering from 5s5p 3P2 back to the clock state.

3.2.3 Technical noise

We briefly discuss various types of technical noise that can detriment clock Rabi os-
cillations. We also point the reader to Sec. 4.4.3 which contains several elaborations

∗Here, there may be a small thermal correction such that hotter atoms see a smaller intensity and
therefore do not scatter as quickly, but we ignore this.
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that are also relevant here.

Laser phase/frequency noise

The first is laser phase (or frequency) noise. This noise is largely set by the cavity
to which the clock laser is stabilized, and to some extent the lock electronics. A
full model of how laser noise affects excitation is best performed via Monte Carlo
numerics (Ref. [117] and Sec. 3.4.6).

A general comment that can be made here is that Rabi dephasing due to laser
phase noise can typically be overcome by larger Rabi frequencies. This is because
laser frequency noise typically drops off at higher modulation frequencies (see,
e.g. Fig. 3.2.3), and it can be shown that Rabi dephasing is most sensitive to
frequency noise at a modulation frequency near the Rabi frequency [151]. Note that,
although laser frequency noise generally decreases with modulation frequency at
low modulation frequencies, there may be a region of increased noise at modulation
frequencies near or above the servo bandwidth of the laser lock. However, this is
typically at modulation frequencies on the order of a few hundred kHz (i.e. well
above typical clock Rabi frequencies).

Since clock Rabi frequencies are well within or below the acoustic range, mechanical
and vibrational noise in the optical setup may also produce significant phase noise.
For example, we have seen clear sidebands appear in the Rabi signal due to the
vibration of piezo mirrors on our optical table. Vibration of any fiber optics in
the setup may also produce phase noise. For this purpose, we use a fiber noise
cancellation (FNC) system [152].

On top of phase noise, there is usually also a highly linear drift of the cavity
resonance frequency with time. It is beneficial to negate this drift with a well-
calibrated feedforward mechanism.

Intensity noise

Intensity noise on the clock light is another potential problem. This manifests in
two ways: (1) noise in the Rabi frequencyΩ, but also by (2) noise in the detuning Δ .
As for (1), see Sec. 4.4.3 for a relevant discussion. As for (2), note Eq. 3.8, giving
XΔ = −^X�. As this produces noise in the detuning, it can be analyzed in a similar
way to laser frequency noise.
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We use active power stabilization via photodiode feedback to an AOM to minimize
intensity fluctuations.

Magnetic field noise

From Eqs. 3.4–3.7, we see that fluctuations in the � field may also be a source
of noise in Ω and Δ . For a fluctuation X� around a mean value of �, we have
XΔ =

2`2
�

Δ01
�X� and XΩ/Ω = X�/�. We use active stabilization of the current in our

magnetic coils to minimize noise in the magnetic field (App. A.2). Homogeneity of
the field is typically not a problem if the coils are sufficiently large and close to a
Helmholtz configuration.

3.2.4 Results for c-fidelity
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Figure 3.2: Resonant (Δ = 0) Rabi oscillation on the clock transition at Ω =

2c × 2.8 kHz. The magnetic field is |� | ∼ 710 G. Data is averaged over 61 tweezers
with radial trap frequencies of l = 2c × 82 kHz. No correction or rescaling is
performed for the vertical axis.

We typically achieve c-fidelities on the clock transition of ∼98.5%, as shown in
Fig. 3.2. These results are obtained for Rabi frequencies of Ω ∼ 2c × 2 − 4 kHz
with radial trap frequencies of l ∼ 2c × 80 kHz. Although the dephasing timescale
of our Rabi oscillations agrees quite well with that predicted by thermal dephasing
(Fig. 3.1), the c-fidelity is significantly lower than what would be predicted from
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thermal dephasing alone (which is ∼99.7%). We have yet to conclude on a mecha-
nism that accounts for this discrepancy and leave this to future work. This limit is
also not set by state detection fidelity (Sec. 3.1.3).
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3.3 Principles of clock operation

In this section, we shift our focus to a regime of very narrow linewidths for the
purposes of operating a precise optical clock. Wewill no longer be chiefly interested
in the fidelity of our Rabi oscillations (although this will still play a role to some
extent) and instead try to achieve as precise of a clock as possible.

A clock works by counting events and labeling the occurrence of each event as the
passage of some unit of time. One could count, e.g., how many times a pendulum
has swung or howmany times a quartz crystal has vibrated. These devices are called
local oscillators. In our case, our local oscillator is the electromagnetic oscillation
of laser light — namely of the light from our clock laser. The laser’s frequency
can, however, vary from device to device and can change over time. Here enter
atoms, whose identical nature and narrow electronic transitions act as a near ideal
universal reference for local oscillators to be calibrated against. By interrogating an
atom with a laser, we can measure how far the laser’s frequency is from the atom’s
transition and correct the frequency accordingly. This is the basic principle of an
atomic clock.

We will touch only very briefly on some key concepts behind clock operation, and
leave a more in-depth exposition beyond the scope of this work as there is already a
large body of more specialized literature on this topic. Namely, we point the reader
to Ref. [15] for an excellent review and starting point.

3.3.1 Atomic feedback, sensitivity, and noise

First, we describe how a laser is referenced to an atomic transition. Atoms are
driven by the clock laser such as to produce a narrow spectral peak. This can be
done either via a Rabi or Ramsey pulse sequence. By choosing probe detunings
a + Δa and a − Δa on two opposing sides of this spectral peak and measuring the
excitation probability % on each side, an error signal 4 = %(a + Δa) − %(a − Δa)
can be derived, providing feedback on how to tune the laser frequency a such that
the spectral feature remains centered around the two probes.

Therefore one converts a measure of an excitation probability into a measure of
frequency. The sensitivity of this conversion between excitation to frequency is 34

3a
,

the slope of the error signal versus frequency (assuming that we probe the peak on
its side, where %(a) is approximately linear). The greater this slope, the greater
the sensitivity of our probe. For a typical Rabi or Ramsey lineshape, this slope
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is inversely proportional to the linewidth (we point the reader to Ref. [153] for a
discussion of the exact evaluation of 34

3a
in ideal Rabi lineshapes.). Therefore, the

narrower our linewidth, the more sensitive our probe of the frequency.

A discussion of sensitivity would be unimportant, however, if the signal % we
measurewere noise-free. Indeed, with a perfectmeasurement of 4, even an extremely
broad line would be a perfect clock. However, if there is some noise X4 in the
measurement, this directly translates to a frequency imprecision of Xa = X4/ 34

3a
.

Thus, to minimize the frequency uncertainty, it is apparent that we want to maximize
the slope 34

3a
(by minimizing the linewidth) as well as minimize X4.

While there are a number of effects that can enter into the noise of 4, one is at the
most fundamental level: quantum projection noise, or QPN. QPN arises from the
fundamental fact that reading out the state of an atom can only give you a binary
answer: either the atom is measured in the ground state or it is measured in the
excited state. Its quantum state previous to measurement may have been described
by a state-vector with a continuously-variable excitation probability % ∈ [0, 1], but
a single measurement cannot return such a continuous value: it must produce either
the value zero or one. If we average # such measurements and we assume that the
measurements are uncorrelated, then the result will be a random variable whose
distribution has a standard deviation proportional to 1/

√
# . QPN in a Rabi lineshape

is illustrated in Fig. 3.3.
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Figure 3.3: Quantum projection noise in a Rabi lineshape. A simulated Rabi
oscillation with Rabi frequency Ω is evolved for a time C = c/Ω as a function of
detuningΔ . The initial state is the ground state and the final state has some excitation
probability %. The vertical axis plots the measured excited state population #4/# ,
where #4 is the number of atoms measured to be in the excited state (simulated by
sampling from a binomial distribution with mean #%) and # is the total number of
atoms. We show this for # ∈ {5, 25, 125}.

If we probe multiple atoms simultaneously, we can interpret # as the number of
atoms. Thus, we see that the number of atoms available for us to probe sets a
fundamental limit to the noise X4 and therefore to the precision of our frequency
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probe. Assuming QPN is the only source of noise in 4, we have Xa ∼ 1/(
√
# 34
3a
). If

we now also assume that the only source of spectral linewidth arises from the finite
interrogation time, then we also have 34

3a
∼ ) , where ) is the interrogation time. We

thus obtain in this idealized regime the relation Xa ∼ 1/()
√
#).

However, this scaling is only true up to some limit beyond which it is no longer
as beneficial to increase ) or # . For example, if the measurable linewidth of
the spectral feature is limited not by the interrogation time but rather by some
decoherence mechanism such as spontaneous decay, trap scattering (Sec. 3.2.2), or
frequency noise, then increasing ) will not produce a narrower feature and in fact
will only increase the dead-time between feedback cycles, which is detrimental to
clock performance [153–155]. Similarly, increasing # only has significant benefit
if QPN is the dominant source of noise in the measurement of 4 [156], and not
instead, e.g. frequency noise. Independent sources of noise add in quadrature, so
decreasing one source of noise has diminishing returns if it is already much lower
than other sources. We will show in our results in Sec. 3.4 that we reach such a
laser-noise-limited regime with as few as 10’s of atoms (Fig. 3.7).

We note that frequency noise enters as both a limit to the linewidth [120] and as
a noise source in measuring 4 (where it is sometimes referred to as Dick noise or
the Dick effect) [153–155]. Though it may come from noise in systematic factors
such as probe intensity or magnetic field (Sec. 3.1.2), frequency noise is usually
attributed to the laser itself. Therefore, the development of laser systems with
intrinsically lower noise (which mostly falls on the task of producing lower noise
reference cavities [157–159]) is highly important to creating better clocks, as we
see that an atomic clock can not only be limited by atomic decoherence, but also
by the intrinsic instability of its local oscillator. However, we point the reader to
Ref. [99] for a study in which long-lived atom-atom coherence is measured even in
the absence of equally long-lived atom-laser coherence.

3.3.2 Quantifying performance & Allan deviation

We will now discuss how to quantify the performance of a clock. Two values
are relevant here: systematic uncertainty (sometimes referred to as accuracy) and
instability. Systematic uncertainty is a measure of how well one has determined
the various systematic shifts of the atomic resonance. Determining systematic
uncertainty requires tabulating an error budget of various systematic shifts, such
as from a magnetic field, probe shift, blackbody radiation shift, and trap light
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shift. However, we leave a further discussion of this (noting that some concepts
are somewhat touched upon in Sec. 3.1.2) beyond the scope of this work and again
refer the reader to the review of Ref. [15] as well as to certain milestone results in
Refs. [12, 14, 29, 160] for more discussion.

Instability is a measure of how precisely the frequency of the local oscillator can be
determined, either absolutely or differentially to another oscillator. Measuring this
requires comparing the local oscillator’s frequency to that of another oscillator∗.
This can be done by, e.g., beating the two oscillators. Interestingly, a local oscillator
under feedback can also be compared to itself. For a laser, this is as simple as
splitting the light into two AOM paths and feeding frequency corrections to the
AOMs instead of the laser itself (which is usually done anyway). Then, instability
can bemeasured by comparing the frequencies of the twoAOMs. If there is only one
atomic reference, then the twoAOMs can be referenced to the atoms asynchronously,
which means that one AOM is referenced to the atoms and given feedback, then the
other, and the cycle repeats. In practice, this can also be done with just one AOM
that switches back and forth between two frequency “rails”.

What we end up with is a pair of frequency records taken at given times, a1,2(C: ).
If the two oscillators are of similar stability (or of identical stability in the case
of self-comparison of the same laser and atomic system), then the quantity we are
interested in is H(C: ) ≡ 1√

2
a2 (C: )−a1 (C: )

aclock
, where aclock is given by Eq. 3.6. We will call

this quantity the fractional frequency difference. Here, the factor of 1√
2
accounts for

the fact that we are comparing two equally noisy systems to each other.

We now define H̄8 (g) as the average of H(C: ) averaged over a block of time (indexed
by 8) that has a timespan of g. We then define the Allan variance of H as

f2
H (g) =

1
2

〈(
H̄8+1(g) − H̄8 (g)

)2
〉
8

(3.16)

and the Allan deviation† as fH (g) =
√
f2
H (g).

Intuitively, the Allan deviation tells you what the error on your measurement of H is
after averaging for a timespan g. There is a useful relation between power laws in
the power spectral density of H, which we will denote by (H ( 5 ) ∼ 5 U, and those in

∗There is also the notable “three-cornered hat” method of comparing three oscillators against
each other in such a way as to isolate the instability contributions of each oscillator [161].

†We note that there are a number of variants of these formula and evaluating any of them can
be practically tricky (especially when doing so with error bars), so it is recommended to use the
“industry standard” software Stable32 for this purpose [162].
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its Allan deviation, which we will denote by fH (g) ∼ gV, given by [161]

V = −1
2 (1 + U) (3.17)

One generally finds that for sufficiently long averaging, H̄8 follow a Gaussian white
noise (U = 0) spectrum. Thus, one often observes fH (g) ∼ 1/

√
g behavior in

the Allan deviation for long enough g. This makes sense, as the standard error
of a Gaussian distribution decreases as the inverse square root of the number of
measurements, and here g is proportional to the number of measurements. This
affirms our intuition that theAllan deviationmeasures “precision at a given averaging
time.” The instability of a clock is then often quoted as fH (g) = G/

√
g, where G is

the instability “at one second of averaging” (even if the 1/
√
g trend is not valid at

g = 1 s).

It should be noted, however, that the measured value of G in an AOM comparison
scheme (as described above) may not be exactly the correct value for the true Allan
deviation of the local oscillator, i.e., if H is defined as the frequency of the local
oscillator instead of as the AOM frequency under feedback. This can be the case
for both asynchronous and synchronous comparisons. In this case, it is necessary to
rely on a model to link the measured Allan deviation with the true Allan deviation
of the local oscillator (see, e.g., Refs. [11, 138] or Sec. 3.4.5).

The Allan deviation is also able to capture slow drifts in H, which may be caused
by drifts in systematic parameters between two clock systems. This will be seen
as the Allan deviation reaching a minimum at some late g and trending back up.
Unfortunately, this detection of long systematic drifts is not possible when doing a
self-comparison with a single laser and single atomic system, as long term drifts
will be common-mode to both “rails” and thus H cannot drift∗. Therefore, a full
self-comparison does not give full information as to the long-term instability of the
system.

Finally, note that a measurement of H may be useful not only as a measurement
of instability, but also as a measurement of systematic shifts. Instead of recording
a1(C: ) and a2(C: ) under nominally identical settings, we can intentionally create a
systematic shift in one of the rails (of a potentially unknown magnitude) by using
different experimental parameters (fields, etc) on that rail. Then, instead of H

∗Unless there is some systematic offset that oscillates with a period commensurate with the time
in between rails, and its differential value between the two rails somehow changes over time. This
is, however, a very unusual situation.
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averaging to (ideally) zero, it will average to some finite value which is ( 1√
2
times)

the fractional systematic shift. The Allan deviation of H (or rather, its inverse) tells
us how long we have to average for (in actual experimental time units) in order to
“resolve” a fractional systematic shift of a given magnitude.
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3.4 An atomic-array optical clock with single-atom readout

Note: This section is a partial reproduction of our publication Ref. [138] with
minor editing and certain sections of the publication’s Appendix omitted.

Currently, the most accurate and stable clocks use optical interrogation of either a
single ion or an ensemble of neutral atoms confined in an optical lattice. Here, we
demonstrate a new optical clock system based on an array of individually trapped
neutral atoms with single-atom readout, merging many of the benefits of ion and lat-
tice clocks as well as creating a bridge to recently developed techniques in quantum
simulation and computing with neutral atoms. We evaluate single-site resolved fre-
quency shifts and short-term stability via self-comparison. Atom-by-atom feedback
control enables direct experimental estimation of laser noise contributions. Results
agree well with an ab initio Monte Carlo simulation that incorporates finite tem-
perature, projective read-out, laser noise, and feedback dynamics. Our approach,
based on a tweezer array, also suppresses interaction shifts while retaining a short
dead time, all in a comparatively simple experimental setup suited for transportable
operation. These results establish the foundations for a third optical clock platform
and provide a novel starting point for entanglement-enhanced metrology, quantum
clock networks, and applications in quantum computing and communication with
individual neutral atoms that require optical clock state control.

3.4.1 Introduction

Optical clocks — based on interrogation of ultra-narrow optical transitions in ions
or neutral atoms — have surpassed traditional microwave clocks in both relative
frequency stability and accuracy [11, 14, 15, 29]. They enable new experiments
for geodesy [14, 163], fundamental physics [164, 165], and quantum many-body
physics [166], in addition to a prospective redefinition of the SI second [167].
In parallel, single-atom detection and control techniques have propelled quantum
simulation and computing applications based on trapped atomic arrays; in particular,
ion traps [168], optical lattices [169], and optical tweezers [74, 76]. Integrating
such techniques into an optical clock would provide atom-by-atom error evaluation,
feedback, and thermometry [144]; facilitate quantum metrology applications, such
as quantum-enhanced clocks [16, 61, 170, 171] and clock networks [172]; and
enable novel quantum computation, simulation, and communication architectures
that require optical clock state control combined with single atom trapping [81, 173,
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174].

As for current optical clock platforms, ion clocks already incorporate single-particle
detection and control [175], but they typically operate with only a single ion. Re-
search towards multi-ion clocks is ongoing [176]. Conversely, optical lattice clocks
(OLCs) [11, 14, 15] interrogate thousands of atoms to improve short-term stabil-
ity, but single-atom detection and control remains an outstanding challenge. An
ideal clock system, in this context, would thus merge the benefits of ion and lattice
clocks; namely, a large array of isolated atoms that can be read out and controlled
individually.

Here we present a prototype of a new optical clock platform based on an atomic
arraywhich naturally incorporates single-atom readout of currently∼40 individually
trapped neutral atoms. Specifically, we use a magic wavelength 81-site tweezer
array stochastically filled with single strontium-88 (88Sr) atoms [116]. Employing
a repetitive imaging scheme [116] (Sec. 2.6.8), we stabilize a local oscillator to the
optical clock transition [106, 141] with a low dead time of ∼100 ms between clock
interrogation blocks.

We utilize single-site and single-atom resolution to evaluate the in-loop performance
of our clock system in terms of stability, local frequency shifts, selected systematic
effects, and statistical properties. To this end, we define an error signal for single
tweezers which we use to measure site-resolved frequency shifts at otherwise fixed
parameters. We also evaluate statistical properties of the in-loop error signal,
specifically, the dependence of its variance on atomnumber and correlations between
even and odd sites.

We further implement a standard interleaved self-comparison technique [160, 177] to
evaluate systematic frequency shifts with changing external parameters – specifically
trap depth and wavelength – and find an operational magic condition [145, 148, 178]
where the dependence on trap depth is minimized. We also demonstrate a proof-
of-principle for extending such self-comparison techniques to evaluate single-site-
resolved systematic frequency shifts as a function of a changing external parameter.

Using self-comparison, we evaluate the fractional short-term instability of our
clock system to be 2.5 × 10−15/

√
g. To compare our experimental results with

theory predictions, we develop an ab initio Monte Carlo (MC) clock simula-
tion [179] (Sec. 3.4.6), which directly incorporates laser noise, projective readout,
finite temperature, and feedback dynamics, resulting in higher predictive power
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compared to traditionally used analytical methods [15]. Our experimental data
agree quantitatively with this simulation, indicating that noise processes are well
captured and understood at the level of stability we achieve here. Based on the MC
model, we predict a fractional instability of (1.9–2.2)×10−15/

√
g for single clock

operation, which would have shorter dead time than that in self-comparison.

We further demonstrate a direct evaluation of the 1/
√
#� dependence of clock

stability with atom number #�, on top of a laser noise dominated background,
through an atom-by-atom system-size-selection technique. This measurement and
the MC model strongly indicate that the instability is limited by the frequency noise
of our local oscillator. We note that the measured instability is comparable to OLCs
using similar transportable laser systems [180].

We note the very recent, complementary results of Ref. [100] that show seconds-long
coherence in a tweezer array filled with ∼5 88Sr atoms using an ultra-low noise laser
without feedback operation. In this and our system, a recently developed repetitive
interrogation protocol [116] (Sec. 2.6.8), similar to that used in ion clocks, provides
a short dead time of ≈100 ms between interrogation blocks, generally suppressing
the impact of laser noise on stability stemming from the Dick effect [153]. Utilizing
seconds-scale interrogation with such low dead times combined with the feedback
operation and realistic upgrade to the system size demonstrated here promises a
clock stability that could reach that of state-of-the-art OLCs [11, 13, 14, 181] in the
near-term future, as further discussed in the outlook section.

Concerning systematic effects, the demonstrated atomic array clock has intrinsically
suppressed interaction and hopping shifts: First, single atom trapping in tweezers
provides immunity to on-site collisions present in one-dimensional OLCs [182].
While three-dimensional OLCs [181] also suppress on-site collisions, our approach
retains a short dead time as no evaporative cooling is needed. Further, the ad-
justable and significantly larger interatomic spacing strongly reduces dipolar in-
teractions [183] and hopping effects [184]. We experimentally study effects from
tweezer trapping in Sec. 3.4.4, but leave a full study of other systematics, not specific
to our platform, and a statement of accuracy to future work. In this context, we
note that our tweezer system is well-suited for future investigations of black-body
radiation shifts via the use of local thermometry with Rydberg states [144].

The results presented here and in Ref. [100] provide the foundation for establish-
ing a third optical clock platform promising competitive stability, accuracy, and
robustness, while incorporating single-atom detection and control techniques in a
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natural fashion. We expect this to be a crucial development for applications requir-
ing advanced control and read-out techniques in many-atom quantum systems, as
discussed in more detail in the outlook section.

3.4.2 Functional principle
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Figure 3.4: Atomic array optical clock. (a)We interrogate ∼40 88Sr atoms, trapped
in an 81-site tweezer array, on the ultra-narrow clock transition at 698 nm and use
high-resolution fluorescence imaging at 461 nm to detect population changes in the
clock states (labeled |6〉 and |4〉) with single-atom resolution. This information is
processed by a central processing unit (CPU) and a feedback signal is applied to
the clock laser frequency using an acousto-optic modulator (AOM). (b) Tweezer-
averaged probability to remain in |6〉 as a function of frequency offset measured with
an in-loop probe sequence (circles). Dashed horizontal lines indicate state-resolved
detection fidelities [116]. To generate an error signal, we interrogate twice: once
below (A) and once above (B) resonance. (c) Tweezer-averaged error signal as a
function of frequency offset (circles). The shaded areas in (b) and (c) show results
from MC simulations. (d) Simplified experimental sequence, consisting of tweezer
loading and #-times-repeated AB feedback blocks followed by an optional probe
block, with # = 10 throughout. (e) To detect the clock state population in block A,
we take a first image before interrogation to identify which tweezers are occupied
and a second image after interrogation to detect which atoms remain in |6〉 (images
1 and 2). The same procedure is repeated for block B (images 3 and 4). We show
fluorescence images with identified atoms (circles) and examples of single tweezer
error signals 4 9 .

We generate a tweezer array with linear polarization and 2.5 `m site-to-site spacing
in an ultra-high vacuumglass cell using an acousto-optic deflector (AOD) and a high-
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resolution imaging system (Fig. 3.4a)[116]. The tweezer array wavelength is tuned
to a magic trapping configuration close to 813.4 nm, as described below. We load
the array from a cold atomic cloud and subsequently induce light-assisted collisions
to eliminate higher trap occupancies [89, 116]. As a result, ∼40 of the tweezers are
stochastically filled with a single atom. We use a recently demonstrated narrow-line
Sisyphus cooling scheme [116] to cool the atoms to an average transverse motional
occupation number of =̄ ≈ 0.66, measured with clock sideband spectroscopy. The
atoms are then interrogated twice on the clock transition, once below (A) and once
above (B) resonance, to obtain an error signal quantifying the frequency offset from
the resonance center (Fig. 3.4b,c). We use this error signal to feedback to a frequency
shifter in order to stabilize the frequency of the interrogation laser — acting as a
local oscillator — to the atomic clock transition. Since our imaging scheme has a
survival fraction of >0.998 [116] (Sec. 2.6.8), we perform multiple feedback cycles
before reloading the array, each composed of a series of cooling, interrogation,
and readout blocks (Fig. 3.4d). During clock interrogation, the magnetic field is
|� | ∼ 9 G and the probe intensity is � ∼ 1560 mW/cm2.

For state-resolved readout with single-shot, single-atom resolution, we use a de-
tection scheme composed of two high-resolution images for each of the A and B
interrogation blocks (Fig. 3.4e) [116]. A first image determines if a tweezer is
occupied, followed by clock interrogation. A second image, after interrogation,
determines if the atom has remained in the ground state |6〉. This yields an instance
of an error signal for all tweezers that are occupied at the beginning of both inter-
rogation blocks, while unoccupied tweezers are discounted. For occupied tweezers,
we record the |6〉 occupation numbers B�, 9 = {0, 1} and B�, 9 = {0, 1} in the images
after interrogation with A and B, respectively, where 9 is the tweezer index. The
difference 4 9 = B�, 9 − B�, 9 defines a single-tweezer error variable taking on three
possible values 4 9 = {−1, 0, +1} indicating interrogation below, on, or above reso-
nance, respectively. Note that the average of 4 9 over many interrogations, 〈4 9 〉, is
simply an estimator for the difference in transition probability between blocks A and
B.

For feedback to the clock laser, 4 9 is averaged over all occupied sites in a single AB
interrogation cycle, yielding an array-averaged error 4̄ = 1

#�

∑
9 4 9 , where the sum

runs over all occupied tweezers and #� is the number of present atoms. We add
4̄ times a multiplicative factor to the frequency shifter, with the magnitude of this
factor optimized to minimize in-loop noise.
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3.4.3 In-loop spectroscopic results
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Figure 3.5: Site-resolved error signal. (a) Repetition-averaged single-tweezer error
signal 〈4 9 〉 as a function of frequency offset measured with an in-loop sequence.
(b) Fitted zero-crossings as a function of tweezer index for our usual interrogation
trap depth of *1 = 245(31)�A where �A = ℎ × 3.43 kHz (circles). Solid lines
correspond to theory predictions, with the shaded area resulting from systematic
uncertainty in trap depth. (c) Ternary probability distribution for 4 9 for a selected
tweezer. The vertical dashed line shows the mean. (d) Variance of the error signal
as a function of atom number, calculated through post-selection. Solid line is a fit
with a 1/#� function plus an offset. Purple region is a MC simulation. (e) Plot of
correlations between the error signals of even and odd sites.

We begin by describing results for in-loop detection sequences. Here, feedback
is applied to the clock laser (as described before) and probe blocks, for which the
interrogation frequency is varied, are added after each feedback cycle. Using a
single probe block with an interrogation time of 110 ms (corresponding to a c-
pulse on resonance) shows a nearly Fourier-limited line-shape with full-width at
half-maximum of ∼7 Hz (Fig. 3.4b). We also use these parameters for the feedback
interrogation blocks, with the A and B interrogation frequencies spaced by a total
of 7.6 Hz. Using the same in-loop detection sequence, we can also directly reveal
the shape of the error signal by using two subsequent probe blocks spaced by this
frequency difference and scanning a common frequency offset (Fig. 3.4c). The
experimental results are in agreement with MC simulations, which have systematic
error denoted as a shaded area throughout, stemming from uncertainty in the noise
properties of the interrogation laser (Sec. 3.4.6).

Importantly, these data also exist on the level of individual tweezers, both in terms of
averages and statistical fluctuations. As a first example, we show a tweezer-resolved
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measurement of the repetition-averaged error signal 〈4 9 〉 for all 81 traps (Fig. 3.5a)
as a function of frequency offset.

Fitting the zero-crossings of 〈4 9 〉 enables us to detect differences in resonance
frequency with sub-Hz resolution (Fig. 3.5b). The results show a small gradient
across the array due to the use of an AOD: tweezers are spaced by 500 kHz in optical
frequency, resulting in an approximately linear variation of the clock transition
frequency. This effect could be avoided by using a spatial lightmodulator for tweezer
array generation [45]. We note that the total frequency variation is smaller than the
width of our interrogation signal. Such “sub-bandwidth” gradients can still lead to
noise through stochastic occupation of sites with slightly different frequencies; in
our case, we predict an effect at the 10−17 level. It is possible to eliminate this type
of noise in future clock iterations with a local feedback correction factor.

Before moving on, we note that 4 9 is a random variable with a ternary probability
distribution (Fig. 3.5c) defined for each tweezer. The results in Fig. 3.5a are the
mean of this distribution as a function of frequency offset. In addition to such
averages, having a fully site-resolved signal enables valuable statistical analysis. As
an example, we extract the variance of 4̄, f2

4̄ , for an in-loop probe sequence where
the probe blocks are centered around resonance.

Varying the number of atoms taken into account (via post-selection) shows a 1/#�
scaling with a pre-factor dominated by quantum projection noise (QPN) [15] on top
of an offset stemming mainly from laser noise (Fig. 3.5d). A more detailed analysis
reveals that, for our atom number, the relative noise contribution from QPN to f4̄ is
only ∼26%. A similar conclusion can be drawn on a qualitative level by evaluating
correlations between tweezer resolved errors from odd and even sites, which show
a strong common mode contribution indicative of sizable laser noise (Fig. 3.5e).

3.4.4 Self-comparison for evaluation of systematic shifts from tweezer
trapping

We now turn to an interleaved self-comparison [160, 177], which we use for stability
evaluation and systematic studies. The self-comparison consists of having two
feedback loops running in parallel, where feedback is given in an alternating fashion
to update two independent AOM frequencies 51 and 52 (Fig. 3.6a). This is used for
a lock-in type evaluation of clock frequency changes with varying parameters. As
a specific example, we operate the clock with our usual interrogation trap depth *1



138

Feedback f1 Feedback f2

-3

0

3

6 -71 MHz
-26 MHz
-7 MHz
20 MHz
65 MHz

110 MHz

Relative trap depth (U2/U1)
0 1 2 3 4 5 6 7 8 9 10

0
1
2
3
4
5

1 10 20 30 40 50 60 70 81
Tweezer index

5

4

3

2

Relative trap depth (U2/U1)
0 1 2 3 4 5 6 7 8 9 10

Figure 3.6: Systematic evaluation of clock shifts with tweezer depth andwavelength.
(a) Illustration of interleaved self-comparison, where two independent AOM fre-
quencies ( 51 and 52) are updated in an alternating fashion. Respective interrogation
blocks are set to two independent tweezer depths*1 and*2. (b) Average frequency
difference 52 − 51 as function of *2/*1, with *1 fixed to our usual interrogation
depth, for multiple frequency offsets of the trapping laser (see legend for color cod-
ing). We fit the data with a model for light shifts in optical tweezers (colored lines)
with only a single free parameter (for all data simultaneously), accounting for an
unknown frequency offset. Operational magic intensities are found at the minima
of these curves (gray squares and connecting line), which minimize sensitivity to
trap depth fluctuations. The trap laser frequency is tuned such that the minimum
coincides with our nominal depth. (c) Combining this technique with the single-
tweezer resolved error 〈4 9 〉, we can extract a frequency dependence with trap depth
for each tweezer (colored squares). Solid lines show the expected dependence for
the outermost and central tweezers. The data corresponds to the −7 MHz set in (b).
Inset: Local frequency shifts for*2/*1 = 10. The color coding of the inset defines
the color coding of its containing sub-figure.

during blocks for feedback to 51 and with a different trap depth *2 during blocks
for feedback to 52. The average frequency difference 52 − 51 now reveals a shift
of the clock operation frequency dependent on *2 (Fig. 3.6b). For optimal clock
operation, we find an “operationally magic” condition that minimizes sensitivity
to trap depth fluctuations [145, 148, 178] by performing two-lock comparisons for
different wavelengths (Fig. 3.6b). We note that this type of standard self-comparison
can only reveal array-averaged shifts.

In this context, an important question is how such lock-in techniques can be ex-
tended to reveal site-resolved systematic errors as a function of a changing external
parameter. To this end we combine the tweezer resolved error signal 〈4 9 〉 with inter-
leaved self-comparison (Fig. 3.6c). Converting 〈4 9 〉 to frequencies (using measured
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error functions, such as in Fig. 3.5a) yields frequency estimators X 51, 9 and X 52, 9
for each tweezer during 51 and 52 feedback blocks, respectively. These estimators
correspond to the relative resonance frequency of each tweezer with respect to the
center frequency of the individual locks. Plotting the quantity X 52, 9 − X 51, 9 + 52 − 51
then shows the absolute frequency change of each tweezer as a function of trap depth
(Fig. 3.6c).

3.4.5 Self-comparison for stability evaluation
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Figure 3.7: Stability results. (a) Fractional Allan deviation fH obtained via self-
comparison as a function of integration time g (circles). Fitting a 1/

√
g behavior

past an initial lock onset time (red solid line), we find 2.5 × 10−15/
√
g. The shaded

area denotes MC results. The purple solid line shows the quantum projection noise
limit obtained from MC by switching off all other noise sources. (b) Based on
atom-by-atom feedback control, we perform a series of self-comparisons with fixed
atom number #�. Shown is the Allan variance f2

H at one second (from a 1/
√
g fit)

as a function of #�. Inset: Allan variance f2
H as a function of 1/#�. Solid lines

show a fit with a functional form f2
H = f

2
∞ + f2

#�
, where f#� scales as 1/

√
#�.

We use the same self-comparison sequence to evaluate the fractional clock instability
by operating both locks with identical conditions (Fig. 3.7a). This approach follows
previous clock studies, where true comparison to a second, fully independent clock
system was not available [160, 177]. We plot the Allan deviation fH [185] of
H = ( 52− 51)/(a0

√
2) in Fig. 3.7a, where a0 is the clock transition frequency and the√

2 factor is introduced to take into account the addition of noise from two identical
sources. The results show a 1/

√
g behavior after a lock onset time, where g is the

averaging time in seconds. Fitting this behavior yields fH = 2.5 × 10−15/
√
g, in

excellent agreement with MC simulations (Fig. 3.7a).

Self-comparison evaluates how fast averaging can be performed for systematic
studies — such as the one shown in Fig. 3.6 — and reveals the impact of various
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noise sources on short-term stability; however, by design, this technique suppresses
slow drifts that are common to the 51 and 52 interrogation blocks. We performed
a separate stability analysis by locking 51 to the left half of the array and 52 to the
right half of the array [181], a method which is sensitive to slow drifts of gradients,
and found no long-term drift of gradients to within our sensitivity.

Having shown good agreement between our data and MC simulations, we are
able to further use the simulation to predict properties of our clock that are not
directly experimentally accessible. One of these properties is the true stability of
the local oscillator frequency, computed directly by taking the Allan deviation of the
simulated laser frequency time traces under feedback. This allows us to simulate
the stability of single clock operation, which has shorter dead time than the double
clock scheme that we use to evaluate stability in experiment. Following this protocol,
our simulations predict (1.9–2.2)×10−15/

√
g for the local oscillator stability during

single clock operation (Sec. 3.4.6). In this context, we note the results of Ref. [100],
where stability is evaluated by converting a spectroscopic signal into a frequency
record (without a closed feedback loop). Based on interrogation with an ultra-low
noise laser system, they achieve a short-term stability of 4.7×10−16/

√
g with ∼5

atoms in tweezers.

Generically, clock stability improves with increasing atom number as 1/
√
#�

through a reduction in readout-noise as long as atoms are uncorrelated. How-
ever, in the presence of laser noise — which is common mode to all atoms — a
limit to stability exists even for an infinite number of atoms [15]. Intriguingly, we
can directly extract such contributions by performing a series of self-comparisons
where we adjust the atom number one-by-one (Fig. 3.7b). To this end, we restrict the
feedback operation to a subset of atoms in the center of the array with desired size,
ignoring the remainder. We are able to achieve stable locking conditions for #� ≥ 3
with typical feedback parameters. We evaluate the Allan variance at one second as a
function of #� and fit the results with a function f2

H = f
2
∞ + f2

#�
, where f#� scales

as 1/
√
#�. We find f#� = 6.7×10−15/

√
#� · g and f∞ = 2.3×10−15/

√
g, the latter

being an estimator for the limit of our clock set by laser noise, in agreement with
MC simulation.
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3.4.6 Monte Carlo clock simulations

Operation

We compare the performance of our clock to Monte Carlo (MC) simulations. The
simulations include the effects of laser frequency noise, dead time during loading
and between interrogations, quantum projection noise, finite temperature, stochastic
filling of tweezers, and experimental imperfections such as state-detection infidelity
and atom loss. The effects of Raman scattering from the trap and of differential
trapping due to hyperpolarizability or trap wavelength shifts from the AOD are not
included as they are not expected to be significant at our level of stability.

Rabi interrogation is simulated by time evolving an initial state |6〉 with the time-
dependent Hamiltonian �̂ (C) = ℏ

(
Ω(G − (Δ (C) ± Δ>)(I

)
, where Ω is the Rabi

frequency, Δ> is an interrogation offset, and Δ (C) is the instantaneous frequency
noise defined such that Δ (C) = 3q(C)

3C
, where q(C) is the optical phase in the rotating

frame. The frequency noise Δ (C) for each Rabi interrogation is sampled from a pre-
generated noise trace (Secs. 3.4.6 & 3.4.6) with a discrete timestep of 10 ms. Dead
time between interrogations and between array refilling is simulated by sampling
from time-separated intervals of this noise trace. Stochastic filling is implemented
by sampling the number of atoms #� from a binomial distribution on each filling
cycle, and atom loss is implemented by probabilistically reducing #� between
interrogations.

To simulate finite temperature, a motional quantum number = is assigned to each
of the #� atoms before each interrogation, where = is sampled from a 1D thermal
distribution using our experimentally measured =̄ ∼ 0.66. Here, = represents the
motional quantum number along the axis of the interrogating clock beam. For each
of the unique values of = that were sampled, a separate Hamiltonian evolution is
carried out with a modified Rabi frequency given by Ω= = Ω4−

[2
2 != ([2) [112],

where [ = 2c
_2;>2:

√
ℏ

2<l is the Lamb-Dicke parameter, != is the =-th order Laguerre
polynomial, and Ω is the bare Rabi frequency valid in the limit of infinitely tight
confinement.

At the end of each interrogation, excitation probabilities ?4 (=) = |〈4 |k=〉|2 are com-
puted from the final states for each =. State-detection infidelity is simulated by
defining adjusted excitation probabilities ?̃4 (=) ≡ 54?4 (=) + (1 − 56) (1 − ?4 (=)),
where 56 and 54 are the ground and excited state detection fidelities [116], respec-
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Figure 3.8: Frequency noise spectrum of the clock laser. Power spectral density of
the frequency noise of our clock laser measured from a beat signal with a reference
laser over a 42-hour period (red trace). Our theoretical estimate of the thermal noise
contribution is plotted in yellow. Plotted also are our best- (purple) and worst- (blue)
case models for total frequency noise, as used in Monte Carlo simulations.

tively. To simulate readout of the 9-th atom on the 8-th interrogation, a Bernoulli
trial with probability ?̃4 (= 9 ) is performed, producing a binary readout value B 9 ,8.
An error signal 4̄ = 1

#�

∑
9 (B 9 ,8−1 − B 9 ,8) is produced every two interrogation cycles

by alternating the sign of X> on alternating interrogation cycles. This error signal
produces a control signal (using the same gain factor as used in experiment) which
is summed with the generated noise trace for the next interrogation cycle, closing
the feedback loop.

Generating frequency noise traces

Using a model of the power spectral density of our clock laser’s frequency noise
(Sec 3.4.6), we generate random frequency noise traces in the time domain [117]
for use in the Monte Carlo simulation. Given the power spectral density of
frequency noise (a ( 5 ), we generate a complex one-sided amplitude spectrum
�a ( 5 ) = 48q( 5 )

√
2(a ( 5 )Δ 5 , where q( 5 ) is sampled from a uniform distribution

in [0, 2c) for each 5 and Δ 5 is the frequency discretization. This is converted to a
two-sided amplitude spectrum by defining �a (− 5 ) = �∗a ( 5 ). Finally, a time trace
a(C) = F {�( 5 )}(C) + a; (C) is produced by taking a fast Fourier transform (FFT) of
�( 5 ) and adding an experimentally calibrated linear drift term a; (C).
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Frequency noise model

The power spectral density of the frequency noise of our clock laser is modeled
by the sum of contributions from random walk frequency modulation (RWFM)
noise ( 5 −2), flicker frequency modulation (FFM) noise ( 5 −1), and white frequency
modulation (WFM) noise ( 5 0), such that (a ( 5 ) = U 5 −2 + V 5 −1 + W 5 0. We obtain
these parameters through an estimation of the thermal noise of our reference cavity
and a fit of a partially specified frequency noise power spectral density obtained
via beating our laser with a reference laser (Fig. 3.8). Due to a remaining large
uncertainty in the white noise floor of our laser, we define a worst- and best-case
noise model. The range between these models is the dominant source of uncertainty
in our Monte Carlo simulations.

FFMnoise results from thermal mechanical fluctuations of the reference cavity [157,
158]. By estimating the noise contribution from the ultra-low expansion spacer,
fused silica mirrors, and their reflective coating, we estimate a fractional frequency
instability of fH = 1.6× 10−15 at 1 s, which corresponds to a frequency noise power
spectral density of V 5 −1 = 0.34 Hz2/Hz at 5 = 1 Hz.

As a worst case noise model, we assume a cross-over frequency from FFM to WFM
noise at 1 Hz (Fig. 3.8), such that W = V 5 −1 = 0.34 Hz2/Hz, and we estimate a
frequency noise power spectral density of U 5 −2 = 0.05 Hz2/Hz at 1 Hz for RWFM
noise. As a best case noise model, assuming no cross-over from FFM to WFM
noise (such that W = 0.00 Hz2/Hz), we estimate a frequency noise power spectral
density for RWFM noise of U 5 −2 = 0.08 Hz2/Hz at 5 = 1 Hz. We note that
the difference in predicted clock stability between the best and worst case model is
relatively minor. This indicates that dominant contributions to clock instability stem
from frequencies where we have experimental frequency noise data and where both
models exhibit similar frequency noise. This is confirmed by an analytical Dick
noise analysis [153] (not shown).

3.4.7 Outlook on atomic-array optical clocks

Our results merge single-particle readout and control techniques for neutral atom
arrays with optical clocks based on ultra-narrow spectroscopy. Such atomic array
optical clocks (AOCs) could approach the sub-10−16/

√
g level of stability achieved

with OLCs [11, 13, 14, 181] by increasing interrogation time and atom number.
Reaching several hundreds of atoms is realistic with an upgrade to two-dimensional
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arrays, while Ref. [100] already demonstrated seconds-long interrogation. A further
increase in atom number is possible by using a secondary array for readout, created
with a non-magic wavelength for which higher power lasers exist [89, 97]. We
also envision a system where tweezers are used to “implant” atoms, in a structured
fashion, into an optical lattice for interrogation and are subsequently used to provide
confinement for single-atom readout. Further, the lower dead time of AOCs should
help to reduce laser noise contributions to clock stability compared to 3dOLCs [181],
and even zero dead time operation [13, 181] in a single machine is conceivable by
adding local interrogation. Local interrogation could be achieved through addressing
with the main objective or an orthogonal high-resolution path by using spatial-light
modulators or acoustic-optic devices. For the case of addressing through the main
objective, atoms would likely need to be trapped in an additional lattice to increase
longitudinal trapping frequencies.

Concerning systematics, AOCs provide a fully site-resolved evaluation combined
with an essential mitigation of interaction shifts, while being ready-made for imple-
menting local thermometry using Rydberg states [144] in order to more precisely
determine black-body induced shifts [15]. In addition, AOCs offer an advanced
toolset for generation and detection of entanglement to reach beyond standard quan-
tum limit operation — either through cavities [61, 186] or Rydberg excitation [16]
— and for implementing quantum clock networks [172]. Further, the demonstrated
techniques provide a pathway for quantum computing and communication with neu-
tral alkaline-earth-like atoms [81, 166, 174]. Finally, features of atomic array clocks,
such as experimental simplicity, short dead time, and three-dimensional confine-
ment, make these systems attractive candidates for robust portable clock systems
and space-based missions [145].
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Chapter 4

ENTANGLEMENT AND RYDBERG PHYSICS

In this chapter we will explore how long-range interactions can be induced between
atoms in neighboring tweezers via excitation to Rydberg states. We will find that
such interactions can create entanglement between atoms with respect to the qubit
defined by the Rydberg transition. These concepts will be the basic building blocks
of more complex many-body models that we will explore in Sec. 5.1.1. Rydberg
states are particularly good candidates for quantum information tasks [187, 188] not
only because of their interactions, but because they can be coherently excited on
timescales much faster than their dephasing timescales (Sec. 4.4).

We note the related concept of Rydberg dressing [16, 189], where lower-lying states
are given a small admixture with Rydberg states and in which case the interacting
qubit is defined not on the Rydberg transition but on the lower-lying transition.
While such schemes are very much possible in our platform (most notably on the
clock transition [16]), we leave such explorations as an outlook (Chap. 5).

We begin with a description of how Rydberg states are excited, read out, and
detected (Sec. 4.1). We will then discuss how interactions arise between Rydberg
states, the phenomenon of Rydberg blockade, and how this leads to entanglement
between atoms (Sec. 4.2). We will show results for single- and two-atom excitation
and entanglement fidelities (Sec. 4.3), and finally discuss sources of error in these
quantities (Sec. 4.4).

4.1 Excitation and readout

Rydberg states are generally defined as states of large electronic principal number
=. These states often have a sufficiently large energy such that direct, single-
photon excitation to them from the ground state requires deep ultraviolet lasers
that are not very convenient to use. Therefore, one often uses a two-stage or two-
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Figure 4.1: Initialization, excitation, and readout of a Rydberg qubit. The qubit
itself is highlighted in a purple box. Atoms in the absolute ground state |0〉 are first
transferred to the clock state |6〉, and subsequently excited to a Rydberg state |A〉.
State detection is performed by exciting atoms in |A〉 to an auto-ionizing state |A∗〉
and imaging the remaining atoms.

photon excitation via an intermediate state. There are various such pathways to
reaching Rydberg states in Sr, such as excitation via singlet states [190] or via
5s5p 3P1 [191, 192].

Our approach, however, will be via the clock state 5s5p 3P0. Since this state can
be quite long-lived, we will not treat it as an “intermediate state” in a two-photon
transition, but in fact as a stable “ground state” from which Rydberg states are
accessible via a single photon. This fact that our excitation scheme is effectively
single-photon results in a few potential benefits over two-photon schemes typical of
previous work [119, 193], such as a larger Rabi frequency (which can help overcome
sources of dephasing such as laser frequency noise) and the lack of intermediate
state decay.

Our procedure will be a two-stage process: a transfer of atoms to the clock state
(Sec. 4.1.1) followed by single-photon excitation to a Rydberg state (Sec. 4.1.2), not
a simultaneous two-photon transition. In this context, we will refer to the clock
state as |6〉 — the ground state of the Rydberg qubit — and the Rydberg state as
|A〉. If we would like to refer to the absolute ground state 5s2 1S0, we will call it
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|0〉. We perform readout of |A〉 by exciting to an auto-ionizing state we will call |A∗〉
and imaging remaining atoms (Sec. 4.1.3). These various states and transitions are
summarized in Fig. 4.1. We note the existence of other schemes that define a qubit
between two different Rydberg states, driven by microwave pulses [194].

4.1.1 Clock state initialization

We initialize atoms in the clock state |6〉 from the absolute ground state |0〉 via a
two-step procedure: (1) a coherent transfer via the clock transition and (2) incoherent
transfer via optical pumping.

Transferring as many atoms as possible via coherent operations on the clock tran-
sition is desirable in order to ensure that atoms are not heated during the transfer.
This is an important consideration for minimizing errors in excitation, readout, and
interactions (Sec. 4.4.2). The optical cooling mechanisms we have available to
us (Sec. 2.5) ultimately leave cold atoms in the absolute ground state |0〉, and we
currently have no developed scheme for cooling atoms directly in the clock state |6〉.
By working in sideband-resolved and clock-magic (_ = 813.4 nm) tweezers, we can
selectively drive the carrier on the clock transition, thereby transfering atoms from
the ground state to the clock state with no change in the motional state. We perform
the transfer on the clock transition under a magnetic field of |� | = 710 G, which is
then reduced to |� | = 71 G for Rydberg excitation.

We find that it is beneficial to perform the c-pulse in initially deep (*0 ∼ :�×0.5mK
and lA ∼ 2c × 80 kHz) tweezers to avoid thermal dephasing (Sec. 3.2.1) and to
then immediately adiabatically ramp down the traps to about 1/10th of the initial trap
depth. This serves two purposes. The first is to minimize trap scattering (Sec. 3.2.2),
which can cause them to leave the clock state. The second is to adiabatically lower
the temperature so that the atoms have a high probability of being recaptured after
Rydberg excitation (see Sec. 4.4.2), during which we turn our traps off (it is also
possible to choose to leave the traps on, in which case it is still beneficial to work
with weak traps so as to minimize light shifts and the dephasing that ensues from
them [151]). An adiabatic change of the trap depth maintains a constant =̄ along all
directions (by definition) but changes the temperature as ) 5 =

l 5
l8
)8 (Sec. 2.5.1).

The time-profile of our ramp follows

*0(C) =
*0(0)
(1 + C/g)2

(4.1)
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where g � 1/l8 is a timescale chosen to be much longer than the inverse of l8, the
initial trap frequency. Ideally, l8 is that of the weakest trapping direction, which for
tweezers is the axial direction. We confirm via sideband spectroscopy that the mean
radial motional quantum number =̄A is preserved after the end of this ramp, but have
not made a similar confirmation for the axial motional quantum number.

As summarized in Sec. 3.2.4, we typically “only” reach∼98.5% transfer fidelity with
a c-pulse∗. While this is already fairly good, it can be increased by subsequently
optically pumping atoms out of the ground state and into the clock state. This can
be done by turning on 689 nm, 688 nm, and 707 nm beams at the same time. The
first two of these beams drive atoms along the pathway of 5s2 1S0 → 5s5p 3P1 →
5s6s 3S1. From here, atoms can decay into any of the states of the 5s5p 3P� manifold,
with the clock state (� = 0) being our target. The 707 nm beam cycles atoms out
of 5s5p 3P2, ultimately making the clock state the only dark state. Under optimized
parameters, atoms are typically fully pumped into the clock state in ∼10 `s.

After coherent transfer and optical pumping as described, wemeasure a state transfer
fidelity of 99.8% [150].

The downside of optical pumping is that the atoms which are transferred by this
method are expected to be hotter than atoms which were coherently transferred. We
have not conclusively measured or modeled this claim, but its truth is very likely
given the numerous photons that an atom needs to absorb and emit in order to reach
the clock state, as well as the time that it spends in differentially trapped states such
as 5s6s 3S1 and 5s5p 3P2. We discuss implications of temperature in Sec. 4.4.2. It is
furthermore possible that some atoms are not only heated, but are in fact lost from
the trap during pumping. This may be particularly problematic if pumping is done
in an already ramped-down trap (as we do). We expect such loss to play a role in
the residual 0.2% of our state transfer infidelity.

4.1.2 Rydberg excitation

From the clock state 5s5p 3P0, we can excite any Rydberg state with quantum
numbers 5s=s 3S1 or 5s=d 3D1. Practically all of our experimental results will be on
s states. There are a number of differences between the two series, such as different
matrix elements to the clock state, different systematics (Sec. 4.1.4), and different

∗We note the possibility of increasing the fidelity of coherent transfer via a non-trivial pulse
sequence on the clock transition such as an adiabatic rapid passage or some other optimized se-
quence [195].
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interaction strengths. Perhaps most notable of all, however, is the difference in the
angular pattern of their interaction potentials [196–198], where a pair of atoms in
s states typically have a nearly isotropic interaction whereas a pair in d states can
have strong angular dependence.

Quantum defects

Rydberg states can often be modeled as “modified” hydrogenic eigenstates. For a
Rydberg state of quantum numbers∗ 5s=; 2(+1!� , we can define a modified quantum
number =★ such that

=★(=, ;, (, �) = = − X(=, ;, (, �) (4.2)

where X is the quantum defect. One finds that many properties of the Rydberg
state match those of a hydrogenic state with effective principal quantum number
=★ [199]. For example, the energy of the Rydberg state (with respect to the ionization
threshold) is given by [197]

ℰ(=, ;, (, �) = − 2cℏ2'
=★(=, ;, (, �)2

(4.3)

where ' = (1 − <4
<
)'∞ with <4 the electron mass, < the mass of the neutral atom,

and '∞ = <44
4

64c3ℏ3Y2
02

the Rydberg constant. Note that this is identical to the formula
for the energy levels of hydrogen atom, where =★ = =.

So far this may seem like a practically useless reshuffling of variables as X still has
a dependence on =, but typically its dependence on = becomes negligible for large
=. This can be more formally stated by expanding X into the following series:

X(=, ;, (, �) =
∞∑
:=0

X2: (;, (, �)(
= − X0(;, (, �)

)2: (4.4)

The validity of this expansion is a result of quantum defect theory [196, 197, 200].
A consequence of this is that X(=, ;, (, �) ≈ X0(;, (, �) for = � X0. For further
precision at small =, higher order terms can be included. Finally, note that X
typically becomes small for ; > 2 [196, 199].

In Table 4.1, we reproduce from Ref. [196] the leading-order : = 0 quantum defect
coefficients for the 5s=s 3S1 and 5s=d 3D1 Rydberg series of Sr. Ref. [196] can be

∗We assume throughout that the non-excited inner electron is in its ground-state orbital 5s (except
when discussing auto-ionization, see Sec. 4.1.3). This implies ; = !. Rydberg states with an excited
inner electron are auto-ionizing.
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consulted for terms up to : = 4 and for the defects of other relevant Sr Rydberg
series.

Series X0 ≈ X
5s=s 3S1 3.371(2)
5s=d 3D1 2.658(6)

Table 4.1: Quantum defects X0 for relevant Rydberg states in Sr [196]. For the range
of = that we will be interested in (= ≥ 40), only X0 is really significant and we have
X ≈ X0.

We note that not all Rydberg series are so well-behaved and well-described by a
convergent set of coefficients. In particular, if there is a state in the midst of the
Rydberg series that does not belong to that series, it can perturb the series in such a
way that its properties no longer scale with =★ in a hydrogenic way for states in the
series near the perturber [201]. However, for the series in Sr and range of = that we
are interested in, there are not expected to be any significant perturbers [196].

Transition wavelengths and frequencies

Using the known energy of the clock state [87], the quantum defect coefficients given
in Table 4.1, and Eq. 4.3, we tabulate the transition wavelengths and frequencies for
clock to Rydberg transitions in Table 4.2 for = ∈ [40, 80], which is the typical range
of Rydberg states that we will consider in our work. Experimentally, we find these
predicted transition wavelengths to be accurate.

Transition matrix elements

To maximize c-fidelities during Rabi oscillations, it is generally favorable to drive
Rydberg transitions with as large a Rabi frequency (Ω) as possible. Doing so helps
beat several dephasing timescales: (1) spontaneous decay and blackbody transitions,
(2) laser noise, and (3) thermal dephasing. As to thermal dephasing, note that we are
assuming we are well into the sideband-unresolved regime (Ω � l), so the analysis
of Sec. 3.2.1 which was in the sideband-resolved regime and concluded that thermal
dephasing could not be beat with a largerΩ is not valid here. With a large enoughΩ,
one can beat these mechanisms and eventually enter an intensity-noise-dominated
regime that cannot be helped by largerΩ (in the same way as for the clock transition,
see Sec. 3.2.3). Dephasing mechanisms will be discussed further in Sec. 4.4. For
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5s=s 3S1 5s=d 3D1
= _vac [nm] 5 [THz] _vac [nm] 5 [THz]
40 317.1290 945.3327 317.0978 945.4258
41 317.0859 945.4613 317.0571 945.5472
42 317.0461 945.5800 317.0195 945.6595
43 317.0093 945.6899 316.9846 945.7635
44 316.9751 945.7918 316.9522 945.8601
45 316.9434 945.8864 316.9221 945.9499
46 316.9139 945.9744 316.8941 946.0336
47 316.8864 946.0564 316.8680 946.1116
48 316.8608 946.1330 316.8435 946.1846
49 316.8368 946.2046 316.8206 946.2529
50 316.8144 946.2717 316.7992 946.3169
51 316.7933 946.3345 316.7791 946.3770
52 316.7736 946.3936 316.7602 946.4335
53 316.7550 946.4491 316.7424 946.4867
54 316.7375 946.5013 316.7256 946.5367
55 316.7210 946.5506 316.7098 946.5840
56 316.7055 946.5970 316.6949 946.6286
57 316.6908 946.6409 316.6808 946.6707
58 316.6769 946.6824 316.6675 946.7106
59 316.6638 946.7217 316.6548 946.7484
60 316.6513 946.7589 316.6428 946.7842
61 316.6395 946.7942 316.6315 946.8182
62 316.6283 946.8277 316.6207 946.8505
63 316.6177 946.8595 316.6104 946.8812
64 316.6076 946.8898 316.6006 946.9105
65 316.5979 946.9186 316.5913 946.9383
66 316.5887 946.9460 316.5825 946.9648
67 316.5800 946.9722 316.5740 946.9901
68 316.5717 946.9971 316.5659 947.0142
69 316.5637 947.0210 316.5582 947.0373
70 316.5561 947.0437 316.5509 947.0593
71 316.5488 947.0655 316.5438 947.0804
72 316.5419 947.0863 316.5371 947.1006
73 316.5352 947.1062 316.5306 947.1199
74 316.5288 947.1253 316.5245 947.1384
75 316.5227 947.1436 316.5185 947.1561
76 316.5169 947.1611 316.5128 947.1732
77 316.5112 947.1779 316.5074 947.1895
78 316.5058 947.1941 316.5021 947.2052
79 316.5007 947.2096 316.4971 947.2203
80 316.4957 947.2245 316.4922 947.2348

Table 4.2: Transition wavelengths (in vacuum) and frequencies for clock to Rydberg
transitions, derived from quantum defect coefficients from Ref. [196] summarized
in Table. 4.1.
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now, we will focus on answering the question of what Rabi frequencies we can
expect on the Rydberg transition.

The Rabi frequency at intensity � and complex polarization n̂ of a dipole-allowed
transition from |6 <�6〉 to |A <�A 〉 is given by

Ω(�, n̂) = 1
ℏ

√
2�
2Y0
〈A <�A |n̂ · ®3 |6 <�6〉 (4.5)

=
1
ℏ

√
2�

(2�A + 1)2Y0
〈A | |3 | |6〉

1∑
@=−1

n@ 〈�A <�A |�6 <�6 ; 1 @〉 (4.6)

where ®3 = −4®A is the dipole operator, n@ is the @th spherical component∗ of n̂ , and
we decomposed the dipole operator via the Wigner-Eckart theorem (Eq. 2.22) into
an angular part given by Clebsch-Gordan coefficients and a reduced dipole matrix
operator (RDME) 〈A | |3 | |6〉. Note that we have defined our RDMEs via Eq. 2.22 to
be symmetric under 6 ↔ A (see also Sec. 2.3.2 for further relation of RDMEs to
other physical quantities).

Since we are looking at a �6 = 0 ↔ �A = 1 transition, all the Clebsch-Gordan
coefficients are 〈1 <�A |0 <�6 ; 1 @〉 = X@,(<�A −<�6 ) . Furthermore, let us assume that
the polarization n̂ is purely along the component that we want to drive and that our
driving beam is Gaussian with total power % and waist radius at the atoms of F (see
Eq. 2.18 for the central intensity of a Gaussian beam and Eq. 2.8 for the definition
of F). Then we can simplify to

Ω =
1
ℏ

2
F

√
%

3c2Y0
〈A | |3 | |6〉 (4.7)

[�6 = 0↔ �A = 1, polarization aligned, Gaussian beam]

Wenowneed to determine the value of theRDME 〈A | |3 | |6〉. Beforewe cite a specific
value for this, we first quote a highly useful approximate trend of ground-to-Rydberg
RDMEs [199, 201]:

〈A | |3 | |6〉 ∝ (=★)−3/2 (4.8)

where =★ is the modified principal quantum number (defined in Eq. 4.2) of the
Rydberg state |A〉. This result essentially follows from the scaling of the Rydberg
wavefunction at the origin with =★ under the assumption that the ground state

∗We decompose n̂ into spherical components n@ such that n0 = nI and n±1 = ∓(nG ± 8nH)/
√

2.
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wavefunction is almost entirely localized at the originwhen compared to theRydberg
wavefunction [199, 201].

So in principle, the determination of the RDME for one Rydberg transition lets us
determine (or at least, closely estimate) the RDMEs of all the ground-to-Rydberg
transitions in that series (assuming the series is “well-behaved” and there are no
significant perturbers).

We directly determine the value of the RDME for the clock∗ to 5s61s 3S1 transition
of Sr by measuring % and F of a well-aligned and polarization-optimized Gaussian
beam and the resulting resonant Rabi frequency Ω. For a beam waist radius of
F = 20 `m and a power of % = 120 mW, we measure a Rabi frequency of
Ω = 2c×13 MHz, implying an RDME of 〈5s61s 3S1 | |3 | |5s5p 3P0〉 = 4.6×10−3400,
where 4 is the elementary charge and 00 is the Bohr radius.

Applying Eq. 4.8, this implies†

〈5s=s 3S1 | |3 | |5s5p 3P1〉 = 2.0 ×
(
=★

)−3/2
400 (4.9)

We finally discuss matrix elements to the d series 5s=d 3D1, as this is the other series
accessible from the clock state. Ground p to Rydberg d transitions in Rubidium have
matrix elements approximately two times as large as those to s states (see Ref. [199]
Table B.5), and it is expected that a similar situation occurs in Sr. Although we
have not made precise measurements of Rabi frequencies at these transitions, we
have successfully driven them and observed that the Rabi linewidth is indeed about
a factor of two larger than that of s states. Therefore, if maximizing Rabi frequency
is desired, these states may be an option, though this does come at the cost of a
shorter radiative lifetime (Sec. 4.4.1). However, we will exclusively use s states for
our experimental results.

4.1.3 Auto-ionization detection

For a qubit to be useful, one must be able to read out its state in addition to simply
driving it. Since our ultimate array readout is fluorescence imaging, we would like

∗As a reminder, we are treating the clock state here as a “ground” state.
†One may wonder if this treatment runs into trouble with the validity of the dipole approximation

2cA/_ � 1. Indeed, Rydberg wavefunctions have a large characteristic radius A ∼100’s nm, and the
excitation light is a short wavelength of _ = 317 nm. However, the ground/clock state wavefunction
is still much smaller than _ and effectively bounds any overlap integral to a very small region in
which the dipole approximation should still be very much valid.
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to be able to map either the ground (i.e., clock) or the Rydberg state to some kind of
state that is dark to fluorescence imaging, while mapping the other state into a state
that is bright during imaging. The dark “state” may also be an expulsion of atoms
from the trap.

Whatever process one chooses to achieve this mapping must be significantly faster
than the timescale on which a Rydberg atom decays into any bright state (or any
state that gets mapped onto a bright state). Rydberg atoms typically have a decay
timescale of a few tens to hundreds of `s (see Sec. 4.4.1). This means that simply
pumping the clock state back into the imaging cycle and hoping Rydberg atoms will
remain dark is not an option, as reasonably achievable imaging times are at least in
the ms timescales. Rydberg atoms therefore must be either rapidly expelled from
the trap or shelved in some long-lived dark state.

Previous work with alkali Rydberg atoms has relied on anti-trapping [74, 202] or
trap photoionization [66, 203] to make Rydberg atoms dark. The timescales of these
processes is typically a few `s, resulting in typical state detection infidelities of a
few percent.

Auto-ionization mechanism and rates

Two-electron atoms offer a different mechanism: auto-ionization [204–207]. Auto-
ionization is a process that can occur when two electrons are excited to bound states
that have a combined energy greater than the ionization threshold of a single electron.
Then, bound-to-continuum coupling can drive one of the electrons out of its bound
state and into the continuum, thus ionizing the atom. This is to be distinguished
from photoionization, where the absorption of a photon directly drives an electron
into a continuum state. The appeal of auto-ionization processes is that they can be
very fast — much faster than the detection processes previously used for alkali.

The auto-ionizing transitions that we will use are the 5s=s 3S1 ↔ 5p3/2=s1/2 tran-
sitions, where = is the principal quantum number of the Rydberg electron. As
discussed in Sec. 2.1.2, the notation for the auto-ionizing excited state uses quan-
tum numbers 98 for each of electron independently, and there are two practically
degenerate options for the total angular momentum, which are � ∈ {1, 2}. How-
ever, the � = 1 states have a significantly faster auto-ionization rate than the � = 2
states [206, 208], which has important implications for the polarization of the beam
used to drive the auto-ionizing transition. In particular, one must keep in mind
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that the Clebsch-Gordan coefficient 〈1 <� + @ |1 <� ; 1 @〉 is zero for <� = @ (most
notably, even for <� = @ = 0). More specifically, when using a 5s=s 3S1 <� = 0
Rydberg sub-level, one must minimize the @ = 0 polarization component (i.e. the
component parallel to the quantization axis) of the auto-ionization beam in order to
maximize driving to the � = 1 auto-ionizing state.

The wavelength of these transitions is _ = 407.9 nm, and is nearly independent of =
for large enough =. Indeed, this is also the wavelength for the 5s1/2 ↔ 5p3/2 transition
in the Sr+ ion.

Auto-ionization rates scale with the square of the Rydberg electron wavefunction’s
value at the origin. By similar arguments as those cited for Eq. 4.8, one expects
an (=★)−3 scaling of the auto-ionization rate with effective principal quantum num-
ber [204]. Furthermore, auto-ionization rates drop rapidly with ; for ; > 3 [204],
where ; is the Rydberg electron orbital angular momentum quantum number.

Ref. [205] provides experimental measurements of the linewidths of the 5p3/2=s1/2 � =

1 states. Since auto-ionization is the dominant line-broadening mechanism of such
states, one can directly convert these linewidths to auto-ionization rates. Ref. [209]
fits these values and extracts a trend of:

Γ� (5p3/2=s1/2 � = 1) = 2c × 9.0 × 1014

(=★)3
s−1 (4.10)

For our = = 61 state, this predicts Γ� = 2c × 4.7 GHz.

This rate must be literally interpreted as the rate of auto-ionization when the atom
is fully in the auto-ionizing state. However, this is not the case when one is actually
driving the auto-ionizing transition. To obtain the experimentally realized rate of
auto-ionization, we consider three atomic states: the Rydberg state |A〉, the auto-
ionizing state |A∗〉, and the ionic dark state |ion〉. Let Γ8 be the rate of exponential
decay of |A∗〉 → |A〉. From Ref. [210], we have Γ8 = 2c × 22.4 MHz. ΓA (Eq. 4.10)
is the rate of exponential decay |A∗〉 → |ion〉. We define a Rabi frequency of the
|A〉 ↔ |A∗〉 transition as Ω = Γ8

√
�

2�B , where � is the auto-ionization beam intensity
and �B = 43.2 mW/cm2 is the saturation intensity of this transition.

We assume that the auto-ionization beam has appropriately chosen polarization (see
discussion above) and that Γ8 � Γ�,Ω. Then |ion〉 will be populated on a timescale
of approximately

gion ≈
(
Γ�

2
B�

1 + B�

)−1
(4.11)
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where B� = 2Ω2/Γ�. This result is verified by numerical evolution and is consistent
with the known result of the “continuous Quantum Zeno mechanism” [211, 212]
when Γ� � Ω. We use a 2.8 mW auto-ionization beam with a measured waist of
w = 16(1) `m at the position of the atoms [150], giving Ω = 2c × 3 GHz and an
expected gion,th ∼ 0.2 ns for n = 61.

Experimental results

Fig. 4.2 shows the results of auto-ionization. Atoms are prepared in the Rydberg
state via a c-pulse, then the auto-ionization beam is turned on for a variable amount
of time, and finally remaining atoms are returned to the clock state via a second
c-pulse on the Rydberg transition. We measure the population of remaining atoms
after this sequence and use it to determine the fraction of atoms that were auto-
ionized. We measure a 1/4 auto-ionization timescale of gion,meas = 35(1) ns [150].
This timescale is at least an order of magnitude faster than that of previously used
alkali Rydberg detection schemes [52, 74, 203] and is thus a significant advancement
in Rydberg state detection fidelity, which we will quantify shortly.

Nonetheless, our measured value of gion,meas is still about two orders of magnitude
slower than our predicted value of ∼0.2 ns. We hypothesize that this is attributable
to the finite rise time of the AOM that switches the auto-ionization beam on, which
we measure to be 250 ns. If the AOM rise time is indeed the limiting factor, then
the gion could conceivably be even further decreased by higher laser intensity and
faster beam switching, or by using a pulsed laser [207]. However, we also cannot
rule out some unforeseen intrinsic mechanism that limits gion.

State detection fidelity

If the decay of the Rydberg state into a bright (or bright-equivalent) state is given by
an exponential process of timescale g�, we can quantify the state-detection fidelity
� of a particular detection scheme by the formula

� =
1
g�

∫ ∞

0
4−C/g�%3 (C)3C (4.12)

where %3 (C) is the probability that the Rydberg atom has has been mapped to a
permanent dark state by time C. For illustration, if %3 (C) = (1 − 4−C/gion), then
� = 1

1+gion/g� ≈ 1 − gion
g�

, where the approximation is valid for gion � g�.
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Figure 4.2: The measured effect of auto-ionization for variable pulse time. Atoms
are prepared in the Rydberg state via a c-pulse, then the auto-ionization beam is
turned on for a variable amount of time, and finally remaining atoms are returned
to the clock state via a second c-pulse on the Rydberg transition. The probability
of measuring a remaining atom after this sequence is plotted on the vertical axis,
with the solid black line a fit (described in the text). C = 0 is calibrated to be such
that no measurable auto-ionization is seen before this time. The inset illustrates the
auto-ionization process.

We fit the data in Fig. 4.2 to a function of the form 2

(
1 − 4−(C/gion)0

)
where 2

accounts for a scaling factor on the y-axis and 0 is a generalized exponent that
allows us to phenomenologically model the rise time of the AOM. We identify
%3 (C) = 1 − 4−(C/gion)0 with fitted coefficients gion = 35(1) ns and 0 = 1.5(1).

In Ref. [150], we assumed for = = 61 a decay timescale into bright states of
g� = 80(20) `s. Using Eq. 4.12 and the measured %3 (C) in Fig. 4.2, this produces
a state-detection fidelity of � = 0.9996(1). The dominant uncertainty in this value
comes from the uncertainty of g�.

Experimental measurement of bright state decay

We now believe that 80 `s is actually an underestimate for g�, implying that the
true value of � is even higher than originally quoted. Namely, our estimation of
g� = 80 `s was based on a fit to the total depopulation rate of the singlet 5s=s 1S0

states given in Ref. [209]. However, this rate included both spontaneous decay
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and blackbody radiation. Blackbody radiation induces transitions to other Rydberg
states — which are still dark to our detection scheme — and thus it should not be
accounted for in g�. Furthermore, the spontaneous decay rate of the triplet Rydberg
series (which we work with) may be different than that of the singlet series.

We directly measure the timescale of decay of the 5s61s 3S1 state into bright states
to be g� = 168(14) `s. The procedure for this measurement was to prepare atoms
in the Rydberg state, wait a variable amount of time, apply an auto-ionization pulse,
and measure the fraction of atoms that were then bright. The initial rate of increase
of this fraction gives us g�. Our new measured value produces a state-detection
fidelity∗ of � = 0.99981(2).

4.1.4 Systematic shifts

We now explore several systematic effects that may shift the transition frequency
of the clock to Rydberg transition. While a constant shift in the Rydberg transition
frequency is on its own of little importance, variations in this shift can cause noise,
drifts, and infidelity in Rydberg Rabi oscillations (similarly to how systematic shifts
on the clock transition described in Sec. 3.1.2 are a potential cause of Rabi c-
infidelity, as discussed in Sec. 3.2.3). We will come back to the effect of systematic
effects on interactions in Sec. 4.2.2.

We will discuss the effects that we deem are most important. We will ignore
blackbody radiation shifts as they are very small [144]. We also point the reader to
Refs. [213, 214], which discusses shifts of Rydberg states and their interactions due
to RF fields, which we will not discuss here.

DC electric field

Here we describe how a DC electric field can shift the energy of a Rydberg state.
This is also known as a DC Stark shift. The treatment here essentially applies to
any atomic state, but as we will soon argue, such shifts are really only significant for
states of large principal quantum number =, with the effect scaling very sharply with
=. We will thus assume that the ground (clock) state does not shift significantly, so

∗While it is generally positive that � is larger than initially estimated, it implies slightly less
favorable SPAM correction (App. E). However, we have verified that this new � produces SPAM
corrected values identical to those published in Ref. [150] up to rounding.
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we may identically talk about the shift of the Rydberg state’s energy as we do about
the shift of the transition frequency.

We will show in Sec. 4.2.2 how a DC field can not only shift transition frequencies,
but also interaction strengths.

We will begin with a perturbative treatment. However, it is important to note that
electric fields achievable in a lab can cause shifts in Rydberg states that go far
beyond perturbation theory. After we describe the perturbative approach, we will
give a brief discussion on non-perturbative regimes.

The dipole Hamiltonian of an electric field ®� is

�3 = − ®3 · ®� (4.13)

with ®3 = −|4 |®A the dipole operator. We note, as we did in Sec. 2.3, that this
Hamiltonian only has nonzero matrix elements between states of different spatial
parity, so there are no first order energy shifts of bare atomic eigenstates and wemust
go directly to second order perturbation theory. Note that the spatial parity of a bare
atomic eigenstate is given by % = (−1)

∑
8 ;8 , where ;8 are the various electronic orbital

quantum numbers. For us, the inner electrons will always have even total parity, so
we have % = (−1); where ; is the Rydberg electron orbital quantum number.

Our perturbative treatment will in fact be nearly identical to that given for AC electric
fields in Sec. 2.3, and we again follow Ref. [90]. One may be tempted to simply take
the l → 0 limit of all the results in Sec. 2.3, and in fact this largely works — with
some small caveats. One is that it is no longer reasonable to work with an “intensity”
�, as in, e.g., Eqs. 2.21 & 2.27. To remedy this, note that all results in Sec. 2.3
are valid under the substitution �

22Y0
→ 1

2�
2
rms, where �rms is the time-domain root

mean square of the electric field. For a DC field∗ ®� , we simply have �rms = | ®� |.

We thus simply restate the relevant results of Sec. 2.3 here in the l → 0 limit and
with the prescription above. Furthermore, note that complex polarization is not
possible for a DC field, which simplifies certain formulas. In particular, there is no
vector polarizability term.

The Cartesian tensor polarizability operator for a degenerate manifold of states |8〉
is:

U`a =
∑
9

2
ℏl 98

3` | 9〉〈 9 |3a (4.14)

∗Whereas for a monochromatic AC field, the root mean square is 1√
2
of the absolute value of the

complex amplitude.
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where `, a are Cartesian coordinate indices, 3` is the ` component of the vector
dipole operator ®3, and l 98 =

1
ℏ
(ℰ9 −ℰ8) whereℰ8 is the unperturbed atomic energy

of the degenerate manifold to which |8〉 belongs.

Then the effective second-order perturbative Hamiltonian is

�eff
3 = −1

2
| ®� |2

∑̀
,a

U`an`na (4.15)

where n` is the ` component of the unit polarization vector n̂ , which is defined by
®� = | ®� |n̂ .

Performing a spherical tensor decomposition (Sec. 2.3.2), we have

�eff
3 = −1

2
| ®� |2

(
Us +

Ut
� (2� − 1)

(
3(n̂ · ®�)2 − � (� + 1)

))
(4.16)

Here, ®� is the unitless spin-� vector operator and

Us =
2

3(2� + 1)
∑
V′

|〈V | |3 | |V′〉|2
ℏlV′V

(4.17)

Ut =

√
40� (2� − 1)

3(� + 1) (2� + 1) (2� + 3)
∑
V′
(−1)�+� ′

{
1 1 2
� � �′

}
|〈V | |3 | |V′〉|2
ℏlV′V

(4.18)

where
{
. . .

}
is a Wigner 6- 9 symbol and we again use Greek letters V and V′

to indicate entire degenerate manifolds without specifying a particular sub-level.
The quantities Us and Ut are the DC scalar and tensor polarizabilities, respectively.
They are specific to each degenerate atomic manifold |V〉. Importantly, they do not
depend on the direction of the ®� field. Note that they are literally the l → 0 limit
of Eqs. 2.24 & 2.26.

The task remaining is to once again determine the RDMEs 〈V | |3 | |V′〉, however this
time the most relevant ones are those between Rydberg states, particularly those
closest in =. For an s Rydberg state, only those to p states are nonzero. Unlike
the RDMEs of common optical transitions, RDMEs between Rydberg states are
not often conveniently tabulated in a database. However, they are also relatively
easy to compute ab initio, owing that to their hydrogen-like property. We discuss
calculation of Rydberg-Rydberg RDMEs in App. D.

It is useful to discover how the polarizabilities scale with =. We begin with the
scaling of 〈A〉, where A is the radial electronic coordinate. This is a widely known
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result for hydrogenic wavefunctions, and a derivation can be found in Ref. [201]:

〈A〉 ∝ (=★)2 (4.19)

As the dipole operator is proportional to A , we infer that the RDME between nearby
Rydberg states also has a scaling exponent of 2, and thus its square (as it enters in
the polarizabilities) has an exponent of 4. Finally, note that for neighboring Rydberg
states we have

lV′V ∝ (=★)−3 [V, V′ neighboring] (4.20)

which can be inferred by differentiating Eq. 4.3 with respect to =★. This argument
is not very rigorous as often a major contribution in the polarizability is from states
of the same = but different ;. Nevertheless, Eq. 4.3 gives us a picture of how level
spacings in general scale with =★ and the end result turns out to be valid.

Taking all exponents into account, we ultimately have

UB,C ∝ (=★)7 (4.21)

which is confirmed in Refs. [199, 201]. This is quite a severe scaling with principal
quantum number and justifies ignoring any DC electric shifts of the ground state.

We compute UB,C via Eqs. 4.17–4.18 for 5s=s 3S1 states with = ∈ [50, 70] in Fig. 4.3.
We also plot (=★)7 trend lines with an overall scaling factor fixed at the value at
= = 61. We find

Us(=) = 2cℏ × 6.0 × 10−11 × (=★)7 MHz/(V/cm)2 (4.22)

Ut(=) = 2cℏ × 4.2 × 10−13 × (=★)7 MHz/(V/cm)2 (4.23)

We see that for the 3S1 series, Ut is much smaller than Us, which means that the
electric shift is approximately isotropic and well-approximated by Δℰ ≈ −1

2Us | ®� |2.
For higher ; states, this is usually no longer the case.

We now briefly touch on regimes beyond perturbation theory. For this, a full
diagonalization [197, 198, 215] of a subset of states is necessary. We perform
such a diagonalization, with the result shown near 5s61s 3S1 in Fig. 4.4. Note that
this calculation is mostly done for illustrative purposes and may be quantitatively
inaccurate at larger fields due to our truncation of summation only up to f states.
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Figure 4.3: Scalar and tensor DC polarizabilities of the 5s=s 3S1 series. Trend lines
are U(= = 61) × (=★)7 (Eqs. 4.22–4.23). While the vertical axis is on a logarithmic
scale, both polarizabilities are indeed positive. Note that by convention, Eq. 4.16
has a factor of −1

2 in front of | ®� |2.
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Figure 4.4: Non-perturbative diagonalization of DC electric shifts near = = 61.
The energy of the state that is adiabatically connected to the 5s61s 3S1 <� = 0
state at zero field is plotted in bold red. Energies are plotted as a shift with respect
to the unperturbed energy of this state. The electric field is oriented along the
quantization axis, and only <� = 0 states are plotted as other states do not couple.
The calculation includes states with = ∈ [54, 63] and ; ∈ {s, p, d, f}. This truncation
in ; may produce inaccuracies toward larger fields.
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Finally, we discuss the practical element of controlling DC electric fields in the lab.
As we see that even modest fields of . 1 V/cm can create relative large shifts on the
order of tens of MHz, such control can be very valuable. Ideally, this would be done
via dedicated electrodes that can create a tunable uniform field at the atoms in all
directions [216, 217]. However, we do not currently have such electrodes installed
in our apparatus. A less versatile but easier to implement option for controlling stray
fields (which, however, we have also yet to implement) is to illuminate any glass
near the atoms (of, e.g. the science cell) with ultraviolet light (see supplements of
Refs. [119, 217]).

Magnetic field: Zeeman and diamagnetic effects

A magnetic field ®� produces the following Hamiltonian:

�� = `B ®� · (6! ®! + 6( ®()︸                  ︷︷                  ︸
�Z

+ 1
8<4 | ®3 × ®� |

2︸        ︷︷        ︸
�dm

(4.24)

where `B is the Bohr magneton, 6! ≈ 1, 6( ≈ 2, <4 is the electron mass, and ®3 is
the vector dipole operator.

The first term, �Z, of Eq. 4.24 is the well-known Zeeman shift. For a regime in
which � and <� are good quantum numbers (which is always true for manifolds
without fine structure such as 3S1, and approximately true in low-field for manifolds
with fine structure), the Zeeman shift can also be written as �Z = `B6� ®� · ®�, where
6� is the Landé 6-factor of the state (see footnote after Eq. 2.28). For 3S1, we have
6� ≈ 2.

The second term, �dm, of Eq. 4.24 is the less-well-known diamagnetic shift [197].
Usually, such a term is completely ignored for low-lying states, but as we will soon
see it is yet another term which scales rapidly with principal quantum number,
making it important for Rydberg states. It is important to stress that while the
diamagnetic shift scales with | ®�|2, it is distinct from the quadratic Zeeman effect,
which is just an effect of �Z mixing different � levels, does not depend on dipole
matrix elements, and is only found in manifolds with fine structure. On the other
hand, �dm does depend on dipole matrix elements and is present even without fine
structure. Also note that the diamagnetic effect always results in positive energy
shifts.
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The first useful thing to note about this term is that its leading order perturbation is
first order. As it is proportional to | ®3 |2, it has nonzeromatrix elements between states
of the same parity, and more importantly it has nonzero diagonal matrix elements.
Knowing this and using Eq. 4.19, we can deduce that the diamagnetic shift has a
scaling of (=★)4.

It will be once again insightful to perform perturbation theory and a spherical
tensor decomposition to isolate the radial and angular parts of the perturbative
diamagnetic effect. We will not provide a full derivation, but give the following
useful facts. First, note that we can rewrite the diamagnetic Hamiltonian as �dm =

1
8<4

(
| ®3 |2 − ( ®3 · �̂)2

)
| ®� |2. Second, we can relate quadratic dipole matrix elements

(which may also be called quadrupole matrix elements) to dipole matrix elements
by

〈0 |3`3a |1〉 =
∑
:

〈0 |3` |:〉〈: |3a |1〉 (4.25)

Finally, we just follow the procedure for tensor decomposition outlined in Ref. [90]
(whichwas also used for the results in Secs. 2.3.2&4.1.4). The effective perturbative
Hamiltonian is

�eff
dm = −

1
2
| ®� |2

(
1s +

1t
� (2� − 1)

(
3(�̂ · ®�)2 − � (� + 1)

))
(4.26)

1s = −
1
<4

1
6(2� + 1)

∑
V′
|〈V | |3 | |V′〉|2 (4.27)

1t =
1
<4

√
5� (2� − 1)

24(� + 1) (2� + 1) (2� + 3)
∑
V′
(−1)�+� ′

{
1 1 2
� � �′

}
|〈V | |3 | |V′〉|2

(4.28)

Here, 1s and 1t are scalar and tensor coefficients, respectively. We have chosen their
overall scaling such as to have the form of Eq. 4.26 similar to that of Eq. 4.16. See
App. D for computing Rydberg-Rydberg RDMEs.

For the 3S1 series, the tensor component 1t is extremely small, so for this series
the diamagnetic interaction is to very good approximation purely scalar. Using our
computed value of 1s(= = 61) = −2cℏ × 5.5 kHz/G2 (note the factor of −1

2 in front
of | ®� |2 in Eq. 4.26) at = = 61 and the expected trend with =★, we have for the 3S1

series:

1s(=) = −2cℏ × 5.0 × 10−7 × (=★)4 kHz/G2 (4.29)
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where G is the Gauss unit, being equal to 10−4 T. As mentioned previously, the 3S1

series has no fine structure and therefore no quadratic Zeeman shift. Therefore, this
scalar diamagnetic shift will be the only magnetic shift that an <� = 0 state in this
series sees. However, for an <� = 0 Rydberg state in a series with fine structure
(such as 3D1), the quadratic Zeeman shift usually produces a quadratic shift on the
same order as that of the diamagnetic shift and must be accounted for as well.

A large magnetic field is often desirable when driving ground to Rydberg transitions
in order to minimize excitation to undesired sub-levels. One then often chooses
an <� = 0 state to be insensitive to the linear Zeeman shift. However, as the
diamagnetic shift is still present and as it is quadratic, the higher the chosen field,
the more sensitive the detuning of the transition becomes to fluctuations in the field.
We note, however, the interesting possibility of using an <� = −1 state at a field
where the opposite-signed Zeeman and diamagnetic effects create a local extremum
in the detuning as a function of magnetic field. For |= = 61 3S1 <� = −1〉, this
occurs at |� | = 504 G. This situation would then both provide a large magnetic field
while also having minimal sensitivity to magnetic fluctuations. However, we do not
currently use this scheme and instead use an <� = 0 state with an approximately
|� | ≈ 71 G field.

(Anti)-trapping light shifts

Here we discuss light shifts on Rydberg states arising from the trap. Trap light
shifts are important in their own right simply as systematic effects (and therefore as
a potential source of noise and dephasing), but are also important for the question
of whether or not a Rydberg atom remains trapped.

The treatment of light shifts and polarizabilities of Rydberg states requires the
consideration of a few subtleties not discussed in Sec. 2.3. To start with, since
Rydberg states are close to the ionization threshold, a large contribution to the
polarizability at optical wavelengths comes from coupling to continuum states.
Therefore, a discrete sum-over-states approach is no longer fully appropriate.

A widely used model for Rydberg polarizabilities is to separate the contributions of
the inner ion and of the Rydberg electron, and to assume that the contribution of
the Rydberg electron is described by the purely scalar ponderomotive polarizabil-
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ity [217–219]:

U? (l) = −
42

<4l
2 (4.30)

As for the contribution from the inner ion, we can apply all the same results from
Sec. 2.3. For our Rydberg states, the inner electron is in the 5s 2S1/2 (or more
briefly just 5s1/2) state of the Sr+ ion core. This state has nonzero scalar and vector
polarizabilities, but we will assume a linearly polarized trap such that only the scalar
polarizability enters.

Fig. 4.5 plots the predicted total polarizability at linear polarization for Sr Ry-
dberg states with the inner electron in 5s1/2, including both the ionic [210] and
ponderomotive contribution. We see that at _ = 813.4 nm, Rydberg states see an
anti-trapping polarizability of U = −203.5 au. Meanwhile, the clock and absolute
ground state have a trapping polarizability of U = 286.0 au [88]. Rydberg states
are predicted to be anti-trapped for all wavelengths _ > 590 nm, but trapped for
422 nm < _ < 590 nm.

Of particular interest may be the predicted trapping polarizabilities at _ = 515 nm
(U = 112 au) and at _ = 532 nm (U = 79 au).

We experimentally measure [150] the differential light shift between the clock
state and the 5s61s 3S1 Rydberg state at _ = 813.4 nm and linear polarization
parallel to a dominant magnetic field, with the results shown in Fig. 4.6. We find
a linear trend with trap depth/intensity of Δa(*) = 18.8(9) MHz × (*/*0), where
*0 ∼ :B × 0.5 mK is our typical maximal clock state trap depth (measured via light
shifts on the red transition). We can thus calculate an experimentally measured
total polarizability of this Rydberg state at this wavelength and at linear polarization
of Umeas = (1 − 2cℏΔa

*0
)Uclock = −230 au. The discrepancy between this measured

value and the predicted value discussed above can be explained by a roughly 5%
underestimation of our clock state trap depth, which is within what we estimate our
systematic error on this quantity to be. If we assume the theoretical value of U to be
correct, then we would have*0 = 0.53 mK.

However, this is not necessarily the end of the Rydberg trap light shift story. All
results discussed so far assume that the atom sees a uniform trap intensity across its
electronic wavefunction. However, the Rydberg electron wavefunction is typically
quite large (A on the order of 100’s of nm) with A scaling as =2. It is therefore entirely
possible to excite to a Rydberg state which has a Rydberg electron wavefunction
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Figure 4.5: Predicted total polarizability at linear polarization versus wavelength _
for Sr Rydberg states with inner electron in 5s1/2. Values are computed by summing
contributions from the inner ion and from the Rydberg electron’s ponderomotive
polarizability. The predicted value at _ = 813.4 nm is U = −203.5 au. Data
for RDMEs and energy levels is from Ref. [210]. The small contributions of
the core [220] and valence-core [88] polarizabilities are included, as discussed in
App. B.
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Figure 4.6: Measured differential light shift between the clock state and the 5s61s 3S1
Rydberg state at _ = 813.4 nm and linear polarization parallel to a dominant
magnetic field. * represents the variable trap depth and *0 ∼ 0.5 mK is our
typical maximal clock state trap depth. The grey line is a linear fit, producing
Δa(*) = 18.8(9) MHz × (*/*0).
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that extends far beyond the center of the trap [217, 221], thus reducing the effective
ponderomotive contribution. Ref. [217] shows that, with aF = 650 nmwaist tweezer
at _ = 532 nm, the Ytterbium 3S1 Rydberg series is anti-trapped for = . 60, but
becomes trapped as = increases beyond that, with the polarizability tending toward
that of just the trapped inner ion. Furthermore, it is shown that the anisotropic
geometry of a tweezer produces a tensor ponderomotive component.

We omit a full discussion of such a regime in our situation, noting that our tweezer
waist is larger at F ∼ 800 nm, so it is likely that such effects can only be observed at
commensurately larger =. Furthermore, we note that Sr Rydberg states are expected
to be trapped at 532 nm and 515 nm even at low =, as shown in Fig. 4.5.

Ultimately, we will choose to operate Rydberg excitation with the traps turned off,
as this minimizes dephasing due to light shifts. We can do this as Rydberg Rabi
oscillations are typically significantly faster than the timescale on which an atom
leaves the trapping region, though turning traps off does ultimately place some limit
on the length of the interrogation (Sec. 4.4.2). A configuration that traps both the
lower and Rydberg states could enable one to go beyond this limit [217].

Probe light shift

Here we discuss light shifts due to the beam which excites the Rydberg transition,
which we refer to as the probe beam.

It is important to understand why such a shift might even matter. Typically, beams
that are used to excite transitions (and not to act as traps) are not of a sufficiently high
intensity to produce light shifts that are significant compared to the linewidth (unless
one is probing an ultra-narrow transition like the clock transition, see Sec. 3.1.2).
Furthermore, even if there was a significant shift, one could typically expect to
compensate for it by appropriately detuning the beam, as is done during clock
interrogation.

However, it is possible that Rydberg excitation violates both of these assumptions
for high enough Rabi frequencies. As argued in Sec. 3.1.2, the ratio of the probe
differential light shift to the power-broadened linewidth goes as Δl/Ω ∝

√
� ∝ Ω.

This scaling would, again, not be a problem if we assume we can just compensate
for this shift by appropriate detuning. However, for the large Rabi frequencies that
we hope to achieve (Ω > 2c × 5 MHz), we run into the potential problem that the
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typical switching rise-times achievable by AOMs are limited to tens of nanoseconds
(a timescale set by the size of the beam in the AOM and on the speed of sound in
the crystal, typically 6 km/s). Let us refer to such an AOM rise time as gAOM.

The potential problem occurs when the light shift is both significant compared to
the Rabi linewidth and the Rabi frequency is fast as compared to the AOM rise
time. Then, the atom can experience a significant light shift that also varies with
time — while it is already well into executing Rabi oscillations. The dynamics of
such a process are non-trivial and require detailed modeling of the AOM rise profile
to fully capture. For attempted resonant oscillations, it can generally be expected
that the atomic state vector will end up precessing on the Bloch sphere with a “tilt,”
which will be measured as reduced contrast oscillations in the qubit basis. We note
that such undesired dynamics can also be expected to occur at the end of the pulse,
when the AOM switches the beam off. We do not rule out the possibility of using
some kind of time-dependent detuning in the AOM signal to compensate for these
effects, but this is of course an undesired complication.

Such dynamics can be avoided if one works in the regime

Ω �

√
1

^gAOM
(4.31)

where ^ is a coefficient of the probe differential light shift Δl such that Δl = ^Ω2.

We measure ^ for the clock to 5s61s 3S1 transition under the conditions of linear
probe polarization parallel to a strong magnetic field (i.e. with the probe beam
completely aligned to drive a c transition) [150]. We measured this shift using a
relatively low Rabi frequency, such as to ensure that no non-trivial dynamics due
to the AOM rise time enter our measurement. However, this also means that any
measurable light shift would be very small. Therefore, we chose to use a two-rail
lock self-comparison technique, described in the context of clock systematics in
Sec. 3.4.4, to efficiently measure this small signal. Here, we follow the frequencies
of two independent locks to the Rabi lineshape of the Rydberg transition, with one
lock set to a variable probe intensity. This method ideally isolates only the probe
shift and cancels any drifts that are common mode to both locks, thus allowing us
to average for a sufficiently long time to resolve even small shifts. The results are
shown in Fig. 4.7. We obtain a result of ^ = 5.1(7)/(2c) kHz/MHz2. To be clear,
this means that for a probe intensity that produces a resonant Rabi frequency of
Ω = 2c × 1 MHz with the probe polarization parallel to the magnetic field, one gets
a light shift of Δl = 2c × 5.1(7) kHz.
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Figure 4.7: Measured probe light shift for the clock to 5s61s 3S1 transition under
the conditions of linear probe polarization parallel to a strong magnetic field. The
shift is plotted as a function of Rabi frequency squared, which is proportional to
probe intensity. The grey line is a linear fit, giving ^ = 5.1(7)/(2c) kHz/MHz2.

Having measured a typical AOM rise time of gAOM ∼ 35 ns, we can thus expect the
condition of Eq. 4.31 to hold so long asΩ � 2c×30 MHz. While we will maintain
such a condition throughout this work, it is possible with future upgrades in laser
power that this limit will be approached.

A further potential problem with the probe light shift is that probe intensity noise
(which can come either from beam fluctuations or from thermal sampling of a small
probe beam, see Sec. 4.4.3) can produce noise in the detuning.

AOM-induced alignment-detuning correlation

In addition to the probe light shift and AOM rise time effects discussed in Sec. 4.1.4,
we discuss here another AOM-induced effect that can produce systematic shifts of
the laser detuning during the switch-on and switch-off of the excitation beam. In
particular, like the effect discussed in Sec. 4.1.4, the effect we will shortly discuss
is particularly significant for Rydberg excitation as the switch-on and switch-off
timescales of the AOM are commensurate with the timescale of the excitation
dynamics (i.e., the Rabi frequency).

An AOM diffracts a beam by an angle proportional to the frequency of the sound
wave in its crystal (see Sec. 2.7.1). The frequency of the sound wave is also equal
to the frequency shift that is imparted onto the diffracted light. However, at the
early stages of a pulse — when the sound wave is only beginning to traverse the
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optical beam (or at the end of pulse when the acoustic wave leaves the optical
beam) — the “frequency” of the sound wave as seen by the optical beam is not very
well-defined. To be more precise, in taking the Fourier transform of only the first
leading (or trailing) cycles of an acoustic wave, one does not obtain a sharp peak
in frequency space but rather a broad span of frequencies. This means that at the
times when only a few cycles of the acoustic wave cross the optical beam, the optical
beam is diffracted into a broad span of angles with a corresponding broad span of
optical frequencies (such that the angle is proportional to the frequency). At later
times, as the acoustic wave fully traverses the optical beam and the AOM frequency
becomes more well-defined, the angular spread of optical diffraction converges to
one well-defined angle with a well-defined frequency.

The implications this has on the experiment are the following: if the Rydberg
excitation beam is slightly misaligned along the plane of diffraction, then at the
beginning (and end) of the Rydberg pulse, the atoms will see a detuning that is
proportional to the misalignment. This detuning will then change as the AOM
frequency becomes well-defined in the “bulk” of the pulse, and finally change again
as the pulse is extinguished. This leads to undesired time-dependent detunings
in the excitation dynamics similar to those discussed in Sec. 4.1.4. Therefore,
precise alignment of the excitation beam becomes important not only formaximizing
Rabi frequency and minimizing intensity fluctuations, but also for eliminating such
systematic time-dependent detuning.

We observe such effects directly in our experiment. We use a 100 MHz AOM with
a beam waist radius of 200 `m at the position of the crystal, which is then focused
to an approximately 20 `m waist radius beam at the position of the atoms. Using a
piezo mirror, we can tune the beampath such that different AOM diffraction angles
are aligned to the atoms. Using a peak Rabi frequency of Ω ∼ 2c × 6 MHz (at
optimal alignment), we observe alignment-dependent detunings at short pulse times
(C ∼ c/Ω) spanning more than 2c × 10 MHz as the piezo mirror is tuned along
the plane of AOM diffraction. No such detunings are observed when the mirror is
moved orthogonally to the diffraction plane.

We further support our theory of this effect by imaging the excitation beam at short
pulse times and observing that it has an elongated cross-sectional profile along the
diffraction plane. After a sufficiently long pulse time, the cross-section collapses to
a radially symmetric one.

We overcome this effect by aligning precisely with piezo mirrors. We expect that
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this effect can be made less significant by using a higher frequency AOM.

4.2 Interactions, blockade, and entanglement

In this section, we discuss the long-range interactions between atoms in Rydberg
states. We will also look at how Rydberg interactions can be used to produce
entangled Bell states via Rydberg blockade.

4.2.1 Pair dipole interaction

While neutral atoms have no overall electric charge, they do havemultipole moments
(e.g. dipole, quadrupole, etc.) that can interact at long-range. We point the reader
to Refs. [196–198, 222, 223] for derivation and discussion of the generic multipolar
expansion of the interaction potential between a pair of neutral atoms.

The multipolar expansion is valid so long as the electron wavefunctions of the atom
pair have negligible overlap. The minimum length-scale for this criterion to hold is
known as the Le Roy radius [224], given by 'LR = 2

(
〈A2

1〉
1/2 + 〈A2

2〉
1/2) , where A8 is

the radial coordinate of the outer electron of the 8th atom. For the 5s61s 3S1 state
of Sr, we compute 'LR = 1.1 `m. We note that the Le Roy radius scales as (=★)2

(Eq. 4.19).

For us, the most relevant term will be the lowest order interaction of the multipole
expansion, the dipole-dipole pair interaction:

�33 =
1

4cY0

1
'3

(
®3 (1) · ®3 (2) − 3( ®3 (1) · '̂) ( ®3 (2) · '̂)

)
(4.32)

where ®3 (8) is the vector dipole operator of atom 8 and ®' is the interatomic axis vector,
extending from the center of one atom to that of the other. '̂ = ®'/' is a unit vector,
with ' = | ®' |.

An important observation is that 〈�33〉 = 0 for any pair states that are tensor products
of atomic eigenstates. This can be seen via parity argumentswith the dipole operator.
Therefore, nonzero interactions between atoms in unperturbed atomic states only
appear in second order under perturbation theory. We mention, but will not dive
further into, the possibility of engineering first order dipolar interactions by mixing
opposite parity states with an external electric field [225].

We will choose not to present a detailed discussion of the second-order perturbation
theory of �33 here, and instead point the reader to Refs. [196, 223] for more
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discussion on this topic. The reason for this decision is that we find it more useful and
generic to treat �33 via non-perturbative diagonalization numerics [197, 198, 215].
A non-perturbative approach not only allows one to study experimentally realizable
regimes of strong, non-perturbative interactions, but it also allows for straightforward
integration of externalmagnetic and electric fields, which are often present and affect
eigenstates and their interactions in ways that may not be fully transparent under
perturbation theory (see, e.g., Sec. 4.2.2).

We will, however, note some commonly-cited results of perturbation theory regard-
ing pair state interactions. Let us call + the interaction shift of a particular pair
state. First we discuss the scaling with interatomic separation '. Since we have
argued that the interaction arises in second order, we can conclude that + should
perturbatively scale as the square of �33 , and thus we have + =

�6
'6 in the per-

turbative limit, where �6 is an interaction coefficient. The �6 coefficient is state-
and sub-state-dependent, and can also be interpreted as having a dependence on the
angle between the interatomic axis and the quantization axis [196, 197] as defined
by a dominant external field.

We can infer the scaling of�6 with =★ by noting that �33 is proportional to the prod-
uct of two dipole operators, each of which scales with an exponent of 2 (Eq. 4.19).
Factoring in both of them and noting that the perturbation is second order, we have
an exponent of 8 from the dipole operators. In addition to this, we have a further
exponent of 3 from the level spacing (Eq. 4.20), giving a total scaling of

�6 ∝ (=★)11 (4.33)

such that

+ ∝ (=
★)11

'6 (4.34)

in the perturbative limit. This is a very rapid scaling with =★, and makes it obvious
why these interactions can be entirely ignored for low-lying states, but can become
very large for Rydberg states.

Ref. [196] predicts the �6 coefficients for several series in Sr, most notably for the
5s=s 3S1 <� = 1 series under the assumption that the quantization axis is parallel to
the interatomic axis. The value they give for this configuration for = = 61 is

�6 = 2c × 275 GHz `m6 (4.35)



175

The configuration we use for our experiments is slightly different, however. Specif-
ically, we use <� = 0 with the interatomic axis perpendicular to the quantization
axis (set by a 71 Gmagnetic field). We will nevertheless use Eq. 4.35 to estimate the
interaction strength + in our configuration. This approximation will be acceptable
for us because the s state interaction is nearly isotropic [196] and because the exact
value of + will not be incredibly important for the blockade experiments we will
show in Sec. 4.3.1.

Before moving on, we briefly mention higher-order pair interaction terms, with the
most notable being the quadrupole-quadrupole interaction. For a generic :1-pole-
:2-pole interaction (1 for dipole, 2 for quadrupole, etc.), the interaction Hamilto-
nian scales as '−(:1+:2+1) . Unlike the dipole-dipole interaction, the quadrupole-
quadrupole interaction has a first-order energy shift, making its scaling �5

'5 , with
�5 ∝ (=★)8. At the typical distances where pair interactions are large, this term is
significantly smaller than the dipole-dipole interaction, but can become the leading
term for particularly large interatomic spacings [196, 223]. Other multipolar inter-
actions (dipole-quadrupole, dipole-octupole, etc) are typically small in the regime
where the multipolar expansion is valid [223], though Ref. [197] contains some
interesting further discussion on these terms.

4.2.2 Systematic shifts of the interaction

We will now show that even a modest external electric field may drastically change
the pair interaction shift. Wewill do this by employing our numerical diagonalization
framework [197, 198, 215] and looking at the interaction shift of a particular pair
eigenstate as a function of external electric field.

In particular, we will look at the pair state adiabatically equivalent to the unperturbed
5s61s 3S1 <� = 0 pair state, and we will define its interaction shift + as the shift
between an interatomic separation of ' = 3.6 `m (our typical interatomic spacing)
and that at ' → ∞. We will look at this interaction shift as a function of electric
field magnitude, with the electric field oriented along the quantization axis. We
will also include a � = 71 G field along the quantization axis and we will orient
the interatomic axis perpendicular to the quantization axis, as we have in our
experiment.

The results are shown in Fig. 4.8. We see that the interaction shift drops significantly
for fields on the order of � ∼ 1 V/cm. Two effects are taking place here: the energy
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splittings between neighboring states coupled by the dipole operator are changing,
and the eigenstates themselves are being mixed. Two take-away messages are to be
had from this exercise: (1) uncontrolled electric fields — even on an ambient level
— can pose major problems and (2) the results of perturbation theory alone (i.e.
the oft-cited �6 coefficients) are only valid in particular circumstances, reaffirming
our recommendation that full numerical diagonalization is the more worthwhile
approach to computing pair interactions.
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Figure 4.8: Interaction shift + of the pair state (adiabatically equivalent to)
5s61s 3S1 <� = 0 as a function of electric field magnitude. The interatomic
spacing is ' = 3.6 `m. The electric field is oriented along the quantization axis
while the interatomic axis is perpendicular to both. A magnetic field of � = 71 G is
included along the quantization axis. + is defined as the shift between ' = 3.6 `m
and ' → ∞. Our basis of states for diagonalization includes = ∈ [60, 62] and
; ∈ {s, p, d}.

We point the reader to Ref. [187] Sec. IID for further exploration of systematic
effects on the interaction, as well as Refs. [213, 214] for an in-depth discussion of
the effect of RF fields on interactions.
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4.2.3 Rydberg array Hamiltonian

We will now remove our interest from the origin and computation of Rydberg
interactions and simply assume that there exists a certain two-body interaction shift
+8 9 between two Rydberg atoms at positions 8 and 9 in an array of potentially
many atoms∗. It is typically the case with perturbative Rydberg interactions that
+8 9 = �6'

−6
8 9
, but it is not necessary to make such an assumption (e.g., interactions

may be made first-order dipolar, giving a scaling of '−3, by the application of
external electric fields [225] or by going into a non-perturbative regime of very
close interatomic spacing). The only things we will assume about +8 9 is that it is
symmetric in exchange of 8 ↔ 9 and that +88 = 0.

We will now write down the Hamiltonian of a driven array of Rydberg qubits. The
basis will be {|68〉, |A8〉}, where for us |6〉 is the ground state of the Rydberg qubit,
|A〉 is the Rydberg state (see Fig. 4.1), and 8 indexes the atom at position 8. Note
that an interaction exists only between two atoms that are both in |A〉; interactions
between ground state pairs and between ground-Rydberg pairs are assumed to be
zero. There are two convenient ways to write the Hamiltonian. The first is more in
the style of “atomic physics”:

�/ℏ = 1
2

∑
8

(
ΩfG8 − ΔfI8

)
+ 1

2

∑
8, 9
8≠ 9

+8 9 |A8A 9 〉〈A8A 9 | (4.36)

where Ω is the Rabi frequency, Δ is the detuning, and f` is the Pauli operator in
the ` direction†. We can also rewrite � (up to constant offset) in a more “quantum
simulation” style as

�/ℏ = 1
2

∑
8

(
ΩfG8 − (Δ + Δ>8 )fI8

)
+ 1

8

∑
8, 9
8≠ 9

+8 9f
I
8
fI
9

(4.37)

Δ>8 = −1
2

∑
9
9≠8

+8 9 (4.38)

Here, Δ>
8
is an effective on-site detuning that arises from the rewriting of the

interaction term into an Ising-type fI
8
fI
9
term. Δ>

8
is mostly constant in the bulk of

a regular array and only has large variation near or at the edge sites. Therefore, this
∗And we will further assume that there are no three- or generally multi-body interactions.
†fI = |A〉〈A | − |6〉〈6 |, fG = |6〉〈A | + |A〉〈6 |. There is a subtlety here that we are writing fG in

the “laser frame,” i.e., we have rotated away any laser phase between atoms at different sites. This
rotation can always be done without consequence when atoms are assumed pinned in place, but ends
up producing Doppler terms if motional degrees of freedom are included, see Sec. 4.4.2.
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term can be interpreted as an “edge effect” and can sometimes be absorbed into a
site-independent Δ if only bulk physics is of interest. For some periodic systems
without an edge — or for systems of only two atoms — Δ>

8
is site-independent and

can be absorbed into Δ .

Note that we have also assumed that Ω and Δ have no site-dependent variation.
However, this may of course not be true — either intentionally or unintention-
ally. For example, variations in the beam intensity across the array will produce
inhomogeneities in Ω, and field gradients or site-addressing beams can produce
inhomogeneities in Δ .

For a 1D array of # regularly-spaced atoms with no externally-applied gradients,
� has reflection symmetry under 8 → # − (8 − 1) (assuming indexing starts from
8 = 1). If the array is regularly spaced and periodic (i.e. having a circular geometry),
� also has #-fold discrete rotational symmetry; i.e., 8 →

(
(8 + : − 1) mod #

)
+ 1

for integer : . Such symmetries can be useful to effectively reduce the size of the
Hilbert space when classically simulating �.

4.2.4 Rydberg blockade & Bell state generation

Consider two Rydberg qubits both initially in |6〉 and driven with some Rabi fre-
quency Ω and with Δ = 0. In the absence of Rydberg interactions, both qubits
would independently execute resonant Rabi oscillations between |6〉 and |A〉.

However, now let us assume that there are strong interactions between them, such
that + � Ω. In this case, excitation to the pair state |AA〉 becomes off-resonant and
is suppressed. This phenomenon where only one atom is “allowed” to occupy the
Rydberg state is known as Rydberg blockade [64–66].

An estimate of how well excitation to |AA〉 is suppressed can be given by adiabatic
elimination [187], with the result being that the maximum probability of double
excitation is (for + � Ω):

max
C
%AA ≈

1
2
Ω2

+2
8 9

(4.39)

If + = �:'−: , we can define a blockade radius

'� =

(�:
Ω

) 1/:
(4.40)
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which gives an estimate on the interatomic separation necessary for a Rydberg
blockade. If we take : = 6 and assume a scaling of Ω ∝ (=★)−3/2 (Eq. 4.8), then we
get the scaling '� ∝ (=★)25/12.

We now define two orthogonal Bell states

|,〉 = 1√
2
( |6A〉 + |A6〉) (4.41)

|�〉 = 1√
2
( |6A〉 − |A6〉) (4.42)

and we note that

〈66 |� |�〉 = 0 (4.43)

〈66 |� |,〉 = 1
2 (
√

2Ω) (4.44)

Therefore, the dynamics of a resonantly driven qubit pair starting from |66〉 in the
limit of Rydberg blockade are effectively those of a two-level system executing Rabi
oscillations between |66〉 ↔ |,〉 with an effective Rabi frequency of

Ω2 =
√

2Ω (4.45)

as the matrix element in Eq. 4.44 is
√

2 larger than it is for a normal two-level system
with Rabi frequency Ω.

Thuswe have shown that Rydberg interactions can be exploited to create an entangled
Bell state |,〉 between two atoms. The fidelity limit of this procedure imposed by
blockade violation is slightly different than that suggested by Eq. 4.39. In particular,
for + � Ω:

max
C
%, ≈ 1 − 5

8
Ω2

+2 (4.46)

which is a result that follows from perturbation theory [195] and is verified by
numerical diagonalization.

These results can be extended for # atoms that are mutually blockaded [74, 187].
Wewill not explore this in depth, but note that the result is a Rabi oscillation between

|6〉⊗# ↔ 1
√
#

#∑
8=1
|6162...A8 ...6#−16#〉 (4.47)

with an effective Rabi frequency of

Ω# =
√
#Ω (4.48)
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4.3 Experimental results

Note: This section presents results from our publication Ref. [150].

We now present the results of our Rydberg excitation scheme. In Sec. 4.3.1, we
show single-atom and two-atom blockaded oscillations. In Sec. 4.3.2, we present
a novel argument for estimating the Bell state fidelity of our blockaded oscillations
via a lower bound.

4.3.1 Single-atom & two-atom blockade oscillations

We excite our Rydberg qubits (Fig. 4.1) with two different array configurations: (a)
an effectively non-interacting configuration where single atoms are spaced by '1 =

10.8 `m, and (b) a strongly-interacting blockaded configuration where interacting
atoms are separated by '2 = 3.6 `m and the separation between adjacent pairs is at
least 10.8 `m. These configurations are illustrated in Fig. 4.9.

10.8 µm

3.6 µm

a

b

Figure 4.9: Averaged fluorescence images of two array configurations. (a) Non-
interacting array of 14 occupied tweezers spaced by 10.8 `m. A pictorial represen-
tation of two non-interacting atoms outside of each others’ blockade radii (not to
scale) is shown. (b)Array of strongly-interacting (blockaded) pairs of atoms. Atoms
within a pair are separated by 3.6 `m, while there is at least 10.8 `m between atoms
in adjacent pairs. 10 pairs of tweezers are pictured in the average image, though not
all of them are necessarily occupied in a given trial. A pictorial representation of
two blockaded pairs is shown, with the purple dot representing an atom in |A〉 while
the black dot represents an atom in |6〉. The Rydberg excitation beam propagates
along the array.

We use 5s61s 3S1 as our Rydberg state |A〉. By Eq. 4.35, we expect an interaction
shift of +2 ≈ 2c × 130 MHz for strongly-interacting pairs at '2 = 3.6 `m and only
+1 ≈ 2c × 170 kHz for “non-interacting” atoms at '1 = 10.8 `m. We will use a
Rabi frequency of Ω & 2c × 6 MHz throughout, which is safely in the blockaded
regime with respect to +2 as well as large enough to effectively make +1 negligible.
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As a point of reference, the blockade radius at Ω = 2c × 6.0 MHz and the �6 given
in Eq. 4.35 is '� = 6.0 `m (Eq. 4.40).

After verifying the presence of an atom and performing Rydberg excitation, we
measure either the absence (denoted by 0) or presence (denoted by 1) of an atom
at the end of the experiment (Sec. 2.6.6). For single atoms, we define %G as the
probability of measuring G, where G ∈ {0, 1}. For blockaded pairs, there are 2 bits
of binary information and thus four possible measurement outcomes. We define
%G1G2 as the probability of measuring the bitstring G1G2 in the atom pair. We also
define the symmetrized probability %{10} = %10 +%01 of measuring one but not both
of the atoms as 1 (which will be most useful in observing blockade oscillations), as
well as the anti-symmetrized %[10] = %10 − %01.

Due to our auto-ionization state-detection scheme (Sec. 4.1.3), our measurements of
0 or 1 infer the atomic state via the mapping 0→ |A〉 and 1→ |6〉. This mapping of
course assumes perfect state-preparation and measurement (SPAM), and we discuss
in App. E how to perform so-called SPAM correction to infer what the measured
populations of |6〉 and |A〉 would be without SPAM errors.

Fig. 4.10a shows %1 for a typical single-atom (array configuration (a)) Rabi oscil-
lation at early times for Ω = 2c × 6.8 MHz, while Fig. 4.10b shows 1 − %{10} for
a typical two-atom blockaded (array configuration (b)) oscillation under approx-
imately the same Ω. For the blockaded oscillations, we measure an oscillation
frequency of Ω2 = 2c × 9.8 MHz, which is close to

√
2Ω as anticipated by Eq. 4.45.

Table 4.3 lists measured values at the c and 2c times (as reported in Ref. [150]
Extended Data Table I). Note that

∑
%G1G2 = 1. We also list SPAM corrected values

(App. E).

Fig. 4.11 plots both single-atom and two-atom blockaded oscillations for long times
and allows us to measure coherence times for both oscillations. We find that both
oscillations dephase with an approximately Gaussian envelope. We believe this
dephasing is dominantly caused by a combination of intensity noise (see Sec. 4.4.3)
and residual interaction between neighboring atoms/pairs. For the single atom
oscillations, wemeasure a Rabi frequency ofΩ = 2c×6.0MHz and a 1/4 dephasing
time of ∼42 cycles. For the two-atom blockaded oscillations, approximately the
same Ω is used and we measure an effective two-atom Rabi frequency of Ω2 =

2c×8.5 MHz with a 1/4 dephasing time of ∼60 cycles. Again,Ω2 is approximately√
2 times larger than Ω, as anticipated by Eq. 4.45.
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Figure 4.10: Short-time single- and two-atom oscillations on the Rydberg transition.
(a) Single-atom Rabi oscillations on our Rydberg qubit (Fig. 4.1), measuring %1.
We measure a Rabi frequency of Ω = 2c × 6.80 MHz. (b) Two-atom blockaded
oscillations, measuring 1 − %{10} = 1 − (%10 + %01). We measure an effective Rabi
frequency of Ω2 = 2c × 9.8 MHz. Auto-ionization state-readout is used in both
(a) and (b), with an auto-ionization pulse length of 5 `s. Data is averaged over all
atoms/pairs in the array. The vertical axis is not SPAM corrected in either (a) or (b).
Inset illustrations correspond to the array configuration used (see Fig. 4.9).
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Variable Measured value SPAM corrected Notes
%0()c) 0.9951(9) 0.9967(9) Single-atom c-fidelity
%1()2c) 0.9951(9) 0.998(1) Single-atom 2c-return
%{10} ()c) 0.992(2) 0.996(2) Blockaded c-fidelity
%[10] ()c) 0.01(1) 0.01(1) Imbalance at c
%00()c) 0.0032(7) 0.0014(9) Blockade violation at c
%11()2c) 0.989(2) 0.996(3) Blockaded 2c-return
%[10] ()2c) 0.004(2) 0.004(2) Imbalance at 2c
%00()2c) 0.0036(7) 0.002(1) Blockade violation at 2c

Table 4.3: Measured and SPAM corrected values for single-atom as well as two-
atom blockaded oscillations at c and 2c times [150]. %{10} = %10 + %01 and
%[10] = %10 − %01. )c and )2c signify the c and 2c times, respectively. See App. E
for the SPAM correction procedure.
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Figure 4.11: Long-time single- and two-atom oscillations on the Rydberg transition.
(a) Single atom Rabi oscillations on our Rydberg qubit (Fig. 4.1), measuring %1. We
measure a Rabi frequency of Ω = 2c × 6.0 MHz and a 1/4 dephasing time of ∼42
cycles. (b) Two-atom blockaded oscillations, measuring 1−%{10} = 1− (%10+%01).
We measure an effective Rabi frequency ofΩ2 = 2c×8.5 MHz and a 1/4 dephasing
time of ∼60 cycles. Auto-ionization state-readout is used in both (a) and (b), with
an auto-ionization pulse length of 5 `s. Data is averaged over all atoms/pairs in the
array. The vertical axis is not SPAM corrected in either (a) or (b). Inset illustrations
correspond to the array configuration used (see Fig. 4.9).

4.3.2 Bell-state fidelity bound

We would now like to be able to determine how well our blockaded oscillations
prepare an entangled two-atom Bell state, as predicted in Sec. 4.2.4. Although
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observing a value of %{10} (see Sec. 4.3.1) close to 1 is highly suggestive of an
entangled Bell state, such a measurement is also fully compatible with a non-
entangled statistical mixture d = 1

2
(
|A6〉〈A6 | + |6A〉〈6A |

)
.

Specifically, we must assume that the quantum state of our atoms at a given time is
described by a generically non-pure density matrix d. We can label the entries of d
as d8, 9 , where 8, 9 ∈ {66, 6A, A6, AA}. We would then like to know the value of the
fidelity F defined as

F = max
q
〈,q |d |,q〉 (4.49)

=
1
2

(
d6A,6A + dA6,A6 + 2|d6A,A6 |

)
(4.50)

where

|,q〉 = 1√
2

(
|6A〉 + 48q |A6〉

)
(4.51)

Here, we generically allow our Bell state to have any given phase q and we are
content with defining the fidelity as the overlap of d with the |,q〉 that produces the
maximal overlap. This is justified as q can always be rotated via a frame rotation
(see footnote after Eq. 4.36).

We are mainly interested in the value of F at a blockaded c-pulse, where ideally F
should be close to 1. We can immediately identify the quantity d6A,6A+dA6,A6 = %{10},
which we directly measure. However, we have no direct access to the off-diagonal
quantity |d6A,A6 | in our measurement basis, so an ideal measurement of %{10} = 1
alone can at most give a lower-bound of F ≥ 1

2 .

In previous work, F was measured via parity oscillations [119, 226]. The idea
here would be to perform the blockaded c-pulse, locally rotate the phase of one
of the qubits in the pair by a variable angle q (i.e., applying the unitary operator
* = 4

8
1
2qf

I
1 ), and then perform another c-pulse (applying * = 4

8
1
2 c(f

G
1 +f

G
2 )). If the

initial state was an ideal |,〉 state, a rotation of q = c would produce a |�〉 state
(Eq. 4.42) that would then not rotate back to |66〉 after the applied c-pulse along fG .
Generically, an oscillating signal is expected as a function of q, and the contrast of
these oscillations measures F .

However, such a scheme requires the ability to perform locally-addressed fI rota-
tions. While we can potentially achieve this by using the light shift of the traps with
local addressing provided by the AOD, we chose to instead estimate F via a novel
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lower-bound argument∗ that makes certain assumptions on the time evolution of the
purity of d.

We begin with a simple mathematical proof bounding a particular off-diagonal
element |d0,1 | from below as a function of diagonal elements of d and the purity of
d (defined as Tr

{
d2}). The proof is as follows:

Tr
{
d2} = ∑

8 9

|d8, 9 |2 (4.52)

=
∑
8

d2
8,8 +

∑
8≠ 9

|d8, 9 |2 (4.53)

=
∑
8

d2
8,8 +

∑
8≠ 9

(8, 9)≠(0,1)
(8, 9)≠(1,0)

|d8, 9 |2 + 2|d0,1 |2 (4.54)

≤
∑
8

d2
8,8 +

∑
8≠ 9

(8, 9)≠(0,1)
(8, 9)≠(1,0)

d8,8d 9 , 9 + 2|d0,1 |2 [Cauchy′s inequality] (4.55)

=
∑
8

d2
8,8 +

∑
8≠ 9

d8,8d 9 , 9 − 2d0,0d1,1 + 2|d0,1 |2 (4.56)

=
∑
8 9

d8,8d 9 , 9︸      ︷︷      ︸
1

−2d0,0d1,1 + 2|d0,1 |2 (4.57)

= 1 − 2d0,0d1,1 + 2|d0,1 |2 (4.58)

This implies that

|d0,1 |2 ≥ 1
2 (Tr

{
d2} − 1) + d0,0d1,1 (4.59)

This expression allows us to bound the off-diagonal |d6A,A6 | with the purity of d as
well as the measurable d6A,6A and dA6,A6.

The purity of d is still, nevertheless, not a directly measurable quantity. However, it
can also be bounded from below by

Tr
{
d2} ≥∑

8

d2
8,8 (4.60)

where each term in the sum is a measurable quantity.

We now pause to see if these arguments have actually improved our bound on F ,
under the assumption that we have made ideal measurements of d6A,6A = dA6,A6 = 1

2
∗We credit this argument to Hannes Pichler.
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and d66,66 = dAA,AA = 0 at a particular time. Our bound on the purity from Eq. 4.60
is Tr

{
d2} ≥ 1

2 . This unfortunately leaves our lower bound on |d6A,A6 | at exactly
zero, so it appears that we have made no progress on our bound of F ≥ 1

2 .

If we were to instead make a measurement at a point in time where d has a diagonal
element close to 1, Eq. 4.60 would allow us to bound the purity at this time to a value
also very close to 1. Such a situation ideally occurs at the 2c time of a blockade
oscillation, where ideally we have d66,66 = 1 and all other entries zero. However,
this is also of course not anywhere close to an entangled Bell state.

The question now is this: Is there a way we can use the purity bound at the 2c time
to also bound the purity at the c time? Indeed, this is precisely the reason why we
chose to re-formulate the argument in terms of the purity: it is reasonable to assume
that the purity of d does not increase with time∗. If this assumption is made, then we
can bound from below the purity at the c time by the purity at the 2c time†, which
in turn can be tightly bounded by measurable quantities. To be precise, we have:

Tr
{
d2} ()c) ≥ Tr

{
d2} ()2c) ≥

∑
8

d2
8,8 ()2c) (4.61)

where )c and )2c are the c and 2c times, respectively.

Combining all our results, we end up with a lower bound on F ()c) of

F ()c) ≥
1
2

(
d6A,6A ()c) + dA6,A6 ()c)

+ 2
√

max
(
0,

( ∑
8 d8,8 ()2c)2 − 1

)
/2 + d6A,6A ()c)dA6,A6 ()c)

))
(4.62)

This procedure can potentially be interpreted as a parity oscillation with only a
single point at q = 0, where we bound the contrast of the would-be parity oscillation
using only its first point and an assumption of non-increasing purity.

Using our measured values in Table 4.3 with the mappings %00 → dAA,AA , %10 →
d6A,6A , %01 → dA6,A6, and %11 → dAA,AA , we get

∗However, there are certain situations where, e.g., coupling to the environment can actually
increase the purity. The easiest example is a single atom in a mixed state of ground and excited state
decaying to the ground state. We have considered such scenarios and present further arguments in
Ref. [150] Supplement D2 that show that a purity increase from spontaneous decay would — in the
worst case — negligibly affect our bound on F .

†It is actually unimportant that this later time be chosen at exactly 2c. More generally, it can be
any point at a time later than the c time at which the purity bound is maximized.
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Variable Measured value SPAM corrected
F ()c) ≥0.980(3) ≥0.991(4)

Table 4.4: Measured and SPAM corrected lower bounds for the Bell state fidelity
F ()c) at the c-time )c [150].

4.4 Sources of error in dynamics

We now discuss effects that produce undesired dynamics not captured by the ideal
Hamiltonian of Eqs. 4.36–4.38. We will generically refer to such effects as errors.
These will include decay and blackbody radiation (Sec. 4.4.1), thermal and motional
effects (Sec. 4.4.2), and technical noise (most notably that of laser intensity and
frequency noise) (Sec. 4.4.3).

Some effects that we will neglect to analyze include far off-resonant scattering of
photons (including potential photo/auto-ionization) by beams such as the trapping
beam (if it is left on during Rydberg excitation, which for us it is typically not) or
even by the excitation beam. We point the reader to Refs. [209, 217, 227] for further
discussion on these topics.

Note that this section will be specifically dedicated to effects that produce errors
in dynamics instead of errors in state preparation and measurement, which are
separately discussed in App. E.

4.4.1 Decay and blackbody radiation

One of the key features making Rydberg states a viable platform for coherent
quantum simulation is their relatively long radiative lifetimes. Compared to lower-
lying excited states, which have typical lifetimes of a few to tens of nanoseconds,
Rydberg states typically have lifetimes of tens to hundreds of microseconds. Of
course, the true figure of merit is not just the lifetime but the number of achievable
coherent cycles, which is approximately limited by the ratio Ω/Γ of the achievable
Rabi frequency Ω over the total depopulation rate Γ.

For a Rydberg state, two radiative depopulation rates are important: the sponta-
neous decay rate ΓB as a result of coupling to the electromagnetic vacuum, and the
blackbody radiation (BBR) transition rate ΓBBR()) as a result of coupling to the
finite photon occupation of certain modes at finite temperature ) . Unlike for lower-
lying states, BBR is significant for Rydberg states as room-temperature produces
non-negligible mode occupation at frequencies near the level separation between
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neighboring Rydberg states (typically tens of GHz). Furthermore, dipole matrix
elements between neighboring Rydberg states (App. D) are typically much larger
than those between low-lying states, owing to the scaling of Eq. 4.19.

Spontaneous decay

The scaling of the spontaneous decay rate ΓB of Rydberg states with =★ can be
approximately deduced from Eq. 4.8 by noting that ΓB is proportional to the square
of a dipole matrix element, as given by Eq. 2.29 (there is additionally a contribution
proportional to l3 where l is the transition frequency, but the variation of this
between Rydberg states is fractionally small and negligible). We thus approximately
have

ΓB ∝ (=★)−3 (4.63)

An absolutely fundamental limit to the number of achievable coherent cycles is thus
given by Ω/ΓB (assuming no other sources of error and zero temperature for BBR).
At a fixed laser intensity, this quantity scales as

Ω/ΓB ∝ (=★)3/2 (4.64)

While this trend may suggest that it is beneficial to work with larger = Rydberg
states, there are other effects that scale unfavorably with increasing = (Sec. 4.5)
which compel a compromise at a lower =.

It may be useful to determine not just the total spontaneous decay rate of a Rydberg
state, but also its branching ratio into various lower-lying states. We will attempt
to do this for the 5s61s 3S1 Rydberg state. We begin by combining Eq. 2.29 and
Eq. D.1 to get

ΓV′→V =
l3
V′V

3cY0ℏ23
|〈V | |3 | |V′〉|2

2�′ + 1
(4.65)

=
l3
V′V

3cY0ℏ23

(
4

∫ ∞

0
3AA3'∗=; (A)'=′; ′ (A)

)2
. . .

· · · × (2! + 1) (2!′ + 1)
(
! !′ 1
0 0 0

)2

. . .

· · · × X((′ (2� + 1)
{
� �′ 1
!′ ! (

}2

(4.66)
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where V is shorthand for the =, ;, (, � quantum numbers. Our excited state has
;′ = 0, (′ = 1, �′ = 1 and it will be able to decay into states with ; = 1, ( = 1, � ∈
{0, 1, 2}. When considering only such pathways, it can be shown that

ΓV′→V (;′ = 0, (′ = 1, �′ = 1) ∝ l3
V′V 5 (=, =

′) (2� + 1) (4.67)

where 5 (=, =′) is some function of =, =′ that is proportional to the square of the
radial wavefunction overlap between the two states. We have already argued that
5 (=, =′) ∝ (=′★)3 in Eq. 4.63. However, determining how 5 (=, =′) scales with =
(the principal quantum number of the lower state) is not so easy. Universal scaling
arguments such as quantum defect theory are at best dubious for lower-lying states,
and results are generally species-dependent.

Although data is available that allows one to deduce 5 (=, =′) for Rb [228], we have
not been able to find equivalent data for Sr. We therefore will not be able to compute
branching ratios to states of different =, although if the situation is similar to that in
Rb, we can estimate that approximately half of Rydberg atoms decay directly to the
5s5p 3P� manifold (although 5 (=, =′) is expected to increase with =, the decreasing
factor of l3

V′V dominates and makes decay to the lowest manifold the dominant
pathway).

We can nonetheless compute the branching ratio to the various states of the 5s5p 3P�
manifold. Using Eq. 4.67, we get a branching ratio of 1.00 : 2.95 : 4.73 for
� = 0, 1, 2, respectively. Using our measured value of the RDME between the clock
state and 5s61s 3S1 (Sec. 4.1.2), we compute (Eq. 4.65) decay rates of

Γ5s61s 3S1→5s5p 3P0 = 2c × 72 Hz (4.68)

Γ5s61s 3S1→5s5p 3P1 = 2c × 210 Hz (4.69)

Γ5s61s 3S1→5s5p 3P2 = 2c × 340 Hz (4.70)

The sum of these rates gives a timescale of 260 `s for direct decay into the 5s5p 3P�
manifold. We can compare this with our measurement of the decay timescale into
bright states of g� = 168(14) `s as reported at the end of Sec. 4.1.3. These two
numbers suggest that approximately 65% of the spontaneous decay into bright states
goes directly into the 5s5p 3P� manifold, while the rest goes into other lower-lying
states that subsequently decay into 5s5p 3P� (with the timescale of this subsequent
decay expected to be relatively rapid, i.e. � 1 `s).

Thus we see that in our excitation scheme, the dominant spontaneous decay pathway
of the Rydberg state is not in fact to its original ground state (the clock state), but
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that it is more likely to decay to states that are outside of the originally considered
Hilbert space. The implication of this is that the effects of decay in our scheme
is not well-captured by a simple two-level model. Qualitatively, a Rabi oscillation
between the clock and Rydberg state would show a damped oscillation whose mean
value tends toward zero excited state population instead of 1/2.

There is a further complication from decay into 5s5p 3P1,2 in that the Rydberg
excitation beam resonantly drives these states to continuum states just above the
ionization threshold, where photoionization rates are expected to be rapid. In
fact, we have measured this rate for 5s5p 3P2 to be Ω2 × 8 × 10−11 s, where Ω
is the Rabi frequency (in angular frequency units, as defined in Eq. 4.38) on the
5s5p 3P0 ↔ 5s61s 3S1 clock to Rydberg transition assuming optimal polarization
alignment. The implication of this effect is that atoms that decay from the Rydberg
state into nominally bright states may subsequently become dark to our detection
scheme if the Rydberg drive remains on subsequent to their decay.

BBR transitions

The rate of BBR transitions from a manifold |V′〉 to another manifold |V〉 is given
by [229]

ΓBBR, V′→V ()) =
1

exp
(
ℏ|lV′V |
:B)

)
− 1

|lV′V |3

3cY0ℏ23
|〈V | |3 | |V′〉|2

2�′ + 1
(4.71)

We note that this formula assumes an ideal and uniformBBR background. Using the
RDMEs computed inApp. D, we plot the BBR transition rates for |V′〉 = 5s61s 3S1 at
) = 300 K in Fig. 4.12. Summing over all available BBR transitions in = ∈ [45, 75],
we get a total BBR transition rate at ) = 300 K of ΓBBR(300 K) = 2c × 840 Hz.

Eq. 8 of Ref. [229] gives a scaling of

ΓBBR ∝ (=★)−2 (4.72)

for the total BBR transition rate.

4.4.2 Motional and thermal effects

The Hamiltonian of Eqs. 4.36–4.38 assumes that each atom is at a fixed point in
space and neglects motional degrees of freedom. Here we will explore several
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Figure 4.12: Blackbody radiation transition rates of the 5s61s 3S1 state to various
adjacent Rydberg states at ) = 300 K.

approaches to capturing errors due to motional degrees of freedom at generically
finite temperature. For simplicity (and since it is how we usually perform Rydberg
excitation), we will assume that the trap is extinguished during Rydberg excitation
(for further exploration with the trap left on, see Ref. [151]).

Initial state

The first question to answer is: what is the initial motional state of the atom imme-
diately after the trap is extinguished? We will assume that the trap is extinguished
on a timescale much faster than the initial trap frequency (i.e. diabatically). Then
the initial motional state is identical to the state immediately before extinguishing
the trap. We will assume that the atom was well inside the harmonic regime of
the trap and that immediately before the trap was extinguished, it had a set of trap
frequencies lA , lI (radial and axial, respectively). We will furthermore assume a
temperature ) (for conversion to or from other thermal quantities, see Sec. 2.5.1).
Then the initial motional state of the atom is a product of thermal states along each
direction, each of which is given by a density matrix

d0 =
1

1 − exp
(
− ℏl

:B)

) ∞∑
==0

4
− ℏl=
:B) |=〉〈=| (4.73)
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This density matrix can be evolved directly or used for Monte Carlo sampling of
pure initial states.

In the position basis, d0 can be rewritten as [230]

d0 =
1√

cℏ
<l

coth
(
ℏl

2:B)

) × . . .
· · · ×

∬
3G3G′ exp

(
<l

ℏ

(
csch

(
ℏl
:B)

)
GG′ − 1

2 cosh
(
ℏl
:B)

)
(G2 + G′2)

))
|G〉〈G′| (4.74)

Taking the diagonal elements of d0 in the position basis gives us the thermal
probability distribution of the position G, which ends up being a Gaussian:

%(G) = 1
fG
√

2c
exp

(
− G2

2f2
G

)
(4.75)

fG =

√
ℏ

2<l
coth

( ℏl

2:B)

)
(4.76)

A similar analysis can be done in momentum space, resulting in

%(?) = 1
f?
√

2c
exp

(
− ?2

2f2
?

)
(4.77)

f? =

√
ℏ<l

2
coth

( ℏl

2:B)

)
(4.78)

Motional effects on internal qubit dynamics

Next we ask: how does the ensuing motional dynamics affect internal Rydberg
qubit dynamics in an ensemble of atoms? Answering this question thoroughly
requires evolving the full (motional + internal) quantum state by the full Rydberg
Hamiltonian including motion given by

�/ℏ = 1
2

∑
8

(
| ®?8 |2
<
+ΩfG8 −

(
Δ + Δ> (®A8) + 1

<
®: · ®?8

)
fI
8

)
+ 1

8

∑
8, 9
8≠ 9

+ (®A8 9 )fI8 f
I
9

(4.79)

Δ> (®A8) = −1
2

∑
9
9≠8

+ (®A8 9 ) (4.80)
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where < is the atomic mass, ®: is the :-vector of the drive beam, and ®A8 9 = ®A8 − ®A 9 .
Note that here we are in the “laser frame”, which gauges away the spacial phase
variation of the driving beam and results in a Doppler detuning term. Such a
frame transformation is made from the lab frame to the laser frame by taking
®?laser = ®?lab − ℏ

2
®:fI and f±laser = 4

±8®: ·®Af±lab (for each atom). One can verify that
these transformations leave all commutation relations intact.

This is generically a highly complex quantum problem for which a numerical ap-
proach is likely not feasible for more than a few atoms (although we have had
preliminary success with the two-atom case when working in the center-of-mass
frame). We will therefore discuss two simplifying approaches that can make this
problem more tractable while still retaining much of the essential physics.

The first approach is to treat ®A8 and ®?8 semi-classically. Here, we replace these
quantum operators with their expectation values, which are then evolved via classical
dynamics. We point the reader to Ref. [122] for some ideas on this method.

The second, simpler, approach is to treat ®A8 and ®?8 as completely static quantities
that are Monte Carlo sampled from Eqs. 4.75 & 4.77. While this approach neglects
the dynamical evolution of these variables, it does still capture fluctuations of the
Doppler shift and of the interaction strength due to the fluctuations of atomic motion
(including zero-point fluctuations at zero temperature).

We give a brief analysis of interaction fluctuations predicted by this “static” model.
We assume that a pair of atoms begin interacting after being initialized from two
traps spaced by a separation ', each having radial/axial trap frequencies lA , lI and
a temperature) . We will assume that the interaction is isotropic and follows a power
law + = �:'

−: . We will also assume that the tweezers are separated along Ĝ and
that this is one of the principal axes of the traps. Then we have

+ (®A1, ®A2) = �:
(
(G1 − G2 + ')2 + (H1 − H2)2 + (I1 − I2)2

)−:/2 (4.81)

We can now sample G8, H8, I8 from Eq. 4.75. We assume : = 6, lA = 2c × 25 kHz,
lI = 2c × 4 kHz, ) = 730 nK (=̄A = 0.24) (which are realistic parameters after
adiabatic lowering of the trap) and plot X+/+̄ versus trap spacing ' in Fig. 4.13. We
also compare this typical finite temperature case to an ideal zero temperature case,
where there are still residual interaction fluctuations due to the finite extent of the
atomic wavefunctions.

We see that at the spacing of ' = 3.6 `K we used in Sec. 4.3, we estimate a
fractional fluctuation of the interaction strength of about 0.15. From the point of
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Figure 4.13: Fractional fluctuation of the interaction strength between a pair of
atoms initialized in traps separated by ' and having radial/axial trap frequencies of
lA = 2c × 25 kHz and lI = 2c × 4 kHz. The traps are separated along a radial axis.
The interaction is assumed isotropic with a scaling + = �6'

−6. Atomic positions
are sampled independently along three directions from Eq. 4.75. X+ is the standard
deviation of the sampled interaction strengths, while +̄ is their mean.

view of interaction fluctuations, it is actually beneficial to use tighter traps before
Rydberg excitation so as to localize the atoms better. However, this conflicts with
the benefits of using weaker traps in reducing Doppler dephasing, reducing Raman
scattering out of the clock state (Sec. 3.2.2), and increasing the available free-flight
time when releasing an atom from the trap (Sec. 4.4.2). Finding an optimal trap
frequency to use before Rydberg excitation would require a model that takes all of
these effects into account, which we leave to future work.

In addition to fluctuations X+ , atomic motion can also cause systematic shifts in
the mean interaction strength +̄ . Depending on trap frequencies and temperature,
this shift can be either positive or negative. As an example, for the trap frequencies
quoted above, a temperature of ) = 730 nK, and a trap separation of ' = 3.6 `m,
we predict +̄ = 0.96 × + , where + would be the interaction strength if the atoms
were pinned to the trap center. As this systematic shift is also dependent on ', it
can effectively cause a slight deviation from + ∼ '−6 scaling.
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Recapture

In addition to affecting excitation dynamics, motion can prevent recapture of the
atom once the trap is re-established at the end of the excitation sequence. In a
detection scheme such as ours that maps lack of atomic fluorescence to a Rydberg
state, situations where ground state atoms are unsuccessfully recaptured can lead to
detection errors∗.

Modeling this phenomenon is fairly straightforward in a non-interacting and non-
driven regime. For example, one can evolve d0 of Eq. 4.73 with the free-space
Hamiltonian

� =
?2

2<
(4.82)

= 1
4ℏl(20

†0 − 02 − 0†2) (4.83)

We note that this Hamiltonian only has matrix elements between harmonic oscillator
eigenstates of equal parity % = (−1)=.

In the position basis, one can use the free-space propagator to obtain

k(G, C) =
√

<

2c8ℏC

∫
k(G′, 0)4−

<(G−G′)2
28ℏC 3G′ (4.84)

After simulating the quantum dynamics, the recapture probability can then be cal-
culated by projecting the final state onto the subspace of bound states of the trap
(which can be modeled by, e.g., Eq. 2.15).

Classical evolution combined with Monte Carlo sampling of the initial state (using,
e.g., Eqs. 4.75 & 4.77) is also a viable approach [36, 125, 126, 128].

The probability of successfully recapturing an atom typically is very close to 1 for
short release times and then begins to more rapidly drop beyond some time and with
some rate that depend on the temperature ) (so an exponential decay is not a proper
model). Performing adiabatic cooling by slowly lowering the trap depth (Eq. 4.1)
before fully extinguishing the trap is beneficial to increasing the recapture timescale.
Note also that, for a tweezer geometry, the recapture timescale is mostly sensitive to
motion along the radial directions and is only weakly sensitive to axial motion [36].

∗Although this phenomenon is technically a SPAM error, we separate its discussion from that of
App. E since this is not an error that simply occurs during measurement, but one that depends on the
dynamics during excitation.
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In Fig. 4.14, we plot a numerically simulated release and recapture curve for a
2D isotropic Gaussian tweezer with trap depth *0 = :B × 50 `K, trap frequency
l = 2c × 25 kHz, and temperature ) = 730 nK (=̄ = 0.24), which are the typical
parameters we have along the radial directions in our traps after adiabatic lowering
and immediately before release. We see that in this case, it should be possible to
have practically 100% recapture probability for release periods of up to 20 `s. We
also compare this to an ideal ) = 0 case.
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Figure 4.14: Simulated recapture probability as a function of free-flight time for a
2D isotropic Gaussian tweezer with trap depth*0 = :B × 50 `K and trap frequency
l = 2c×25 kHz. The simulation is performed by evolving an initial thermal density
matrix in the harmonic oscillator basis (Eq. 4.73) by the Hamiltonian of Eq. 4.83.
The final state is projected onto the subspace of bound states of the Gaussian trap
to obtain the recapture probability. It suffices to perform the simulation in 1D, and
then to weigh each 1D bound state (indexed by = ∈ {0, 1, 2, . . . }) by the 2D density
of states factor = + 1.

We leave a discussion of driven and interacting regimes to future work.
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4.4.3 Technical noise

We finally discuss errors arising due to non-intrinsic factors — specifically, from
technical noise such as intensity and frequency noise. How noise affects dynamics
depends both on the magnitude and the spectrum of the noise, where spectrum refers
to how the noise is spread in the frequency domain. For example, certain dynamical
processes may have resonances at certain frequencies, or may be sensitive to noise
in certain frequency bands more than others. For this reason, it is often necessary
to not only specify a level of noise, but also to measure its power spectral density
(G ( 5 ), where G represents the noise variable.

Sometimes, it is also useful to roughly distinguish between shot-to-shot (slow) and
fast noise, where the shot-to-shot noise is effectively static during an excitation
period, but fluctuates significantly between excitation periods, while fast noise
fluctuates significantly within an excitation period.

Technical noise is often common-mode across an atomic array. Common-mode
noise that is also shot-to-shot may produce Rabi/Ramsey oscillations that appear
dephased when multiple experimental shots are averaged, even though individual
shots may show high contrast signals. Such a situation suggests that the apparent
dephasing is not due to intrinsic mechanisms, but is an artifact of averaging many
experimental shots with different experimental parameters. It is possible to analyze
how much of the observed dephasing comes from common-mode correlated noise
and how much is due to intrinsic uncorrelated errors by quantifying interatomic
correlations in the measured signal (similarly to what is done in Fig. 3.5e). However,
we will not delve into this topic further and instead point the reader to Ref. [99] for
one possible approach.

We point the reader to Ref. [151] for further discussion on technical noise during
Rydberg excitation.

Intensity noise

Intensity (�) noise enters into the Hamiltonian via noise on the Rabi frequency Ω.
Since Ω ∝

√
�, we have

XΩ

Ω
=

1
2
X�

�
(4.85)

The analysis of intensity noise in single-atomRabi oscillations becomes significantly
simplified if we assume that we work with zero detuning, i.e. Δ = 0. In this case,
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each excitation pulse can be fully described by a Rabi pulse area A given by

A =

∫ C

0
Ω(C′)3C′ (4.86)

where C is the length of the pulse and Ω(C′) is the time profile of the Rabi frequency
including its noise. Note that we assume Ω(C′) to be real and non-negative at all
times, i.e. there is no phase noise associated with Ω.

We will now assume that at each pulse length C, the pulse area is given by A(C) =
Ω0C (1 + G) where G is normally distributed around zero with a standard deviation of
fG (C). We choose to define a standard deviation that is a function of pulse length
as the same noise process can produce different fractional deviations of A(C) at
different pulse lengths.

The average excited state population %4 (C) over an ensemble of resonant Rabi drives
starting from the ground state will be

%4 (C) =
1

fG (C)
√

2c

∫ ∞

−∞
4
− G

2fG (C)2 sin2
(

1
2Ω0C (1 + G)

)
3G (4.87)

=
1
2

(
1 − 4−

1
2fG (C)

2Ω2
0C

2
cos(Ω0C)

)
(4.88)

If we assume that we have only shot-to-shot intensity noise, then fG is a constant
and not a function of pulse length C. Then, Eq. 4.88 predicts a Gaussian decay of
the shot-averaged Rabi signal as a function of pulse length C. This decay reaches its
1/4 value afterN =

√
2

2cfG full oscillation cycles
∗. We therefore see that shot-to-shot

intensity noise producing dephasing that is scale invariant with the Rabi frequency.
I.e., one cannot get more coherent cycles by using a faster Rabi frequency.

If instead we assume a white noise profile forΩ(C′), then we have fG (C) ∝ C−1/2, and
Eq. 4.88 predicts decay with a standard exponential profile as a function of C.

Unlike for clock excitation, it is difficult to stabilize a Rydberg pulse over the
timescale of excitation via an AOM. This is primarily due to the slow sound prop-
agation in the AOM crystal compared to the fast timescales of Rydberg excitation.
The situation can be helped by using a small beam that passes as close as possible to
the AOM actuator, but it is still difficult to obtain feedback bandwidths greater than
a few hundred kHz. We therefore use a sample-and-hold technique that stabilizes
the intensity of the beam via a monitor photodiode while the beam is blocked from

∗For emphasis, note that fG is the fractional standard deviation of the Rabi pulse area. A similar
result is stated for the fractional standard deviation of intensity in Ref. [150]
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the atoms by a shutter, after which the beam is turned off, the shutter is opened, and
the beam is pulsed at the same feedback voltage that was used immediately before
turning the beam off. A future setup could benefit from intensity control via an
EOM (elctro-optic modulator).

There are also sources of intensity fluctuations that are more difficult to stabilize
than overall power fluctuations. These include fluctuations in pointing and beam
shape (polarization fluctuations can also create noise in Ω despite not affecting
the intensity). Since our Rydberg beam is also relatively small (∼15–20 `m waist
radius), effective intensity fluctuations can also arise from thermal fluctuations in
the atomic position (Sec. 4.4.2), especially along the axial trapping direction.

We finally note that intensity noise also leads to a small amount of noise on Δ via
the probe light shift (Sec. 4.1.4).

Laser phase/frequency noise

Laser phase/frequency noise has been studied as a significant factor in Rydberg
decoherence in recent experiments [117, 119, 151]. Ref. [151] shows that Rabi
dephasing is particularly sensitive to phase noise which has a spectral frequency
close to the Rabi frequency. Typically, lasers that are actively stabilized have a
spectral region of increased phase noise (called a “servo bump”) at frequencies
just beyond the bandwidth of the lock, usually at a few hundred kHz to ∼1 MHz.
Therefore, it is important to choose Rabi frequencies significantly far away from the
servo bump or to otherwise minimize its magnitude. For example, Ref. [119] uses
a cavity filtering scheme to minimize high-frequency phase noise.

Field noise

Field noise from electric ormagnetic field fluctuations produces noise in the detuning
Δ and therefore can be treated similarly to laser frequency noise. We refer to
Secs. 4.1.4 & 4.1.4 for a treatment of how these fields produce shifts. For interacting
regimes, fluctuations in the electric field can also cause significant fluctuations in
the interaction strength (Sec. 4.2.2).
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4.5 Summary of = scaling

We summarize several important scaling laws of Rydberg state properties in Ta-
ble. 4.5. Similar tables are given in Refs. [199, 228].

Quantity Symbol =★ scaling exponent
Energy ℰ -2
Energy spacing ℰ=+1 −ℰ= -3
Mean radial coordinate 〈A〉 2
Rydberg-Rydberg RDME 〈=(; ± 1) | |3 | |=;〉 2
Ground-Rydberg RDME 〈=| |3 | |6〉 -3/2
Spontaneous decay rate ΓB -3
BBR transition rate ΓBBR -2
Auto-ionization rate of 5p=s Γ� -3
DC electric shift U 7
Diamagnetic shift 1 4
Short-range interaction �6 11
Long-range interaction �5 8
Blockade radius (for �6) '� 25/12

Table 4.5: Scaling of various properties of Rydberg states with effective principal
quantum number =★ (Eq. 4.2).
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Chapter 5

OUTLOOKS

We thus conclude the presentation of our new experimental platform, having de-
scribed its key conceptual principles and its performance in single-atom physics,
metrology, and Rydberg entanglement. We now turn to future applications and
improvements of this platform.

We divide potential future work into three fronts: (1) novelty, which is the imple-
mentation or exploration of new concepts, (2) quantity, which means increasing the
number of atoms that we can work with and/or the dimensionality of our system,
and (3) quality, which broadly refers to both quantifying and reducing the errors in
coherent operations as well as in state preparation and measurement.

5.1 Novelty

5.1.1 Quantum simulation

The dimension of the Hilbert space that the Hamiltonian of Eq. 4.38 acts on is 2# ,
where # is the number of atoms. The exact diagonalization of such Hamiltonians
via classical computation thus requires time and memory scaling exponentially
with # , and is already highly computationally demanding for as low as # ∼ 15.
Therefore, having access to a real quantum system that can execute the Hamiltonian
of Eq. 4.38 could allow for the exploration of its otherwise inaccessible physics∗.
This is the general idea of quantum simulationwith Rydberg atom arrays [73, 74, 76–
78, 188, 231].

∗Here we assume standard numerical diagonalization and that no “tricks” are played, such as
exploiting symmetries, eliminating energetically inaccessible subspaces, or using ansatz approxima-
tions. More broadly, the existence of classical algorithms for the efficient simulation of quantum
systems is a deep question far beyond the scope of this work.
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One of the more convenient aspects of atom arrays as platforms for quantum science
is the ease with which their system sizes and geometries can be reconfigured [46, 48,
53, 74]. In Sec. 4.3, we observed interactions and entanglement between pairs of
atoms. However, with only a change in the programming of the AWG rearrangement
waveforms, we can easily begin to observe quantum dynamics in systems of three
atoms, four atoms, etc., up to as many atoms as we can trap.

Here, we will show preliminary data on such few-to-many-body simulation per-
formed by our experiment. As a slow start, we simply go from two to three atoms in
a regime where only nearest-neighbors are blockaded. The 3-atom case is instruc-
tive to look at as it is large enough to have rich dynamics but small enough to be
easily classically simulated and small enough such that the probability of observing
each individual bitstring can be meaningfully tracked as a function of time.

We begin such an experiment by preparing atoms in the ground state of our Rydberg
qubit (Fig. 4.1) and applying a global drive that quenches the system to a particular
point in the parameter space of the Rydberg array Hamiltonian (Eq. 4.38). At the
end of the evolution, we perform auto-ionization and fluorescence imaging for state
detection, which gives us a particular bitstring as an output. The probability of
observing each bitstring in the 3-atom case is shown as a function of quench time
in Fig. 5.1, with the Hamiltonian parameters described in the figure caption.

We can just as easily expand to 5-atom systems. Here, there are already 25 = 32
possible bitstrings (although some of them are almost never accessed due to the
blockade restriction), so we instead look at the average magnetization 〈fI〉. We
look at this both averaged over the entire system and on an atom-resolved basis in
Fig. 5.2.

This class of Hamiltonians — where nearest neighbors are deeply blockaded —
realizes a 1D hard-boson model described in Ref. [232], sometimes called the
Fendley-Sengupta-Sachdev model. This model has a rich quantum phase diagram
(over the parameter space of +/Ω and Δ/Ω) containing several phases, critical
points, and first- and second-order phase transitions.

A particularly interesting region of this phase diagram is an integrable line, where
quench dynamics can bemapped onto the dynamics of free fermions. When quench-
ing to this line from an initial fI = −1 state, one expects to see light-cone spreading
of correlations throughout the entire system. For large systems, such correlation
spreading is an important test of the many-body coherence of the system. We show
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Figure 5.1: Evolution of bitstring probabilities in a 1D equally-spaced 3-atom
system. The Hamiltonian is given in Eq. 4.38, having parametersΩ = 2c×6.4 MHz
and Δ = 0. Nearest-neighbors are deeply blockaded, while next-nearest-neighbors
have an interaction strength of +=== = 2c × 2.3 MHz. Solid lines are comparison to
classical simulation. Data is averaged over several independent 3-atom systems and
over many experimental shots.

a preliminary measurement of such correlation spreading in a system of 17 atoms
in Fig. 5.3. Here, the experimental procedure is nearly identical to that described
for the 3- and 5-atom cases, except we quench to different Hamiltonian parameters
(described in the caption of Fig. 5.3).

Some other related outlooks that we will only mention in passing here include topics
such as quantum simulation in 2D [234], lattice gauge theories [235, 236], conformal
field theories [237, 238], confinement [233, 239], and thermalization [240].

5.1.2 Quantum gates

The physical principles and technical challenges of quantum computation are similar
to those of quantum simulation in that one attempts to exploit the exponential scaling
of a Hilbert space in order to solve classically inaccessible problems. However,
quantum computing refers to a broader paradigm where one attempts to implement
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Figure 5.2: Evolution of average magnetization 〈fI〉 in a 1D equally-spaced 5-
atom system. (a) is averaged over the whole system, while (b) is atom-resolved.
The Hamiltonian is given in Eq. 4.38, having parameters Ω = 2c × 6.4 MHz and
Δ = 0. Nearest-neighbors are deeply blockaded, while next-nearest-neighbors have
an interaction strength of +=== = 2c × 2.3 MHz. Solid lines are comparison to
classical simulation. Data is averaged over several independent 5-atom systems and
over many experimental shots.

a generic unitary over a set of qubits, with no regard as to whether such a unitary
simulates any particular physical model. The implementation of such unitaries in
quantum computation is typically done via operations (also known as gates) on
particular qubits or sets of qubits, instead of with a global drive as is common in
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3 and averaged over all 17 atoms 8. The Hamiltonian is given in Eq. 4.38, having
parametersΩ = 2c×0.9 MHz andΔ = 2c×2.2 MHz. Nearest-neighbors are deeply
blockaded, while next-nearest-neighbors have an interaction strength of +=== =
2c × 2.3 MHz. We compare experimental results on the left with simulated results
on the right. The red dashed line is 3 = 4ΩC, which is the expected speed of
correlation spreading [233] in the nearest-neighbor blockaded regime.

quantum simulation.

It can be shown that any many-qubit unitary can be decomposed into a product of
two-qubit gates [5]. It can furthermore be shown that any two-qubit unitary can be
arbitrarily approximated by a finite set of single- and two-qubit gates [5]. Such a
set of gates that can be used to approximate any two-qubit unitary is known as a
universal quantum gate set.

In the context of Rydberg atom arrays, the ground to Rydberg qubit that we used in
Chap. 4 is not amenable to being used as a qubit for quantum computation. Themain
reason for this is that interactions between atoms in the Rydberg state are always
present (though it is possible that interactions can be at least globally attenuated,
see Sec. 4.2.2) which interferes with the ability to perform single-qubit gates. For
quantum computing, one would therefore like to define a qubit between two non-
interacting states and to use Rydberg states only as auxiliary states for implementing
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two-qubit gates. Such schemes have been demonstrated between hyperfine ground
states in alkali Rydberg arrays [193, 241].

In strontium, there is no hyperfine structure in the absolute ground state, so a different
choice of qubit would be necessary. Our explorations of coherent operations on the
clock transition 5s2 1S0 ↔ 5s5p 3P0 in Sec. 3.2 foreshadow our intentions to use
this transition as a qubit, with Rydberg excitation from the clock state allowing for
two-qubit gates. Different qubit schemes may also be possible, such as between the
two metastable states 5s5p 3P0,2, and in the fermionic species between hyperfine
levels of 5s5p 3P2 or between nuclear magnetic sub-levels of the absolute ground
state [81].

5.1.3 Spin-squeezed clock

As discussed in Sec. 3.3.1, quantum projection noise (QPN) is a fundamental source
of noise in atomic clocks and scales as 1/

√
# for uncorrelated atoms, with #

the number of atoms. However, this scaling may no longer be valid when there are
correlations between atoms. In particular, there exist entangledmany-atom quantum
states known as spin-squeezed states for which QPN can scale more favorably with
# , up to as fast as the so-called Heisenberg limit of 1/# . Spin-squeezed states have
been demonstrated in numerous systems (including the particularly relevant case of
ytterbium [61]), a summary of which is given in Ref. [17]. For clocks where QPN
is a significant source of noise (and it is important to note that this may not be the
case for various systems, see discussion in Ref. [156]), using spin-squeezed states
can produce gains in precision.

Our platform is in a very natural position to attempt a spin-squeezed clock as we
have shown both clock operation (Sec. 3.4) and Rydberg entanglement from the
clock state (Sec. 4.3). Proposals for producing spin-squeezed states with Rydberg-
dressed interactions are given in Refs. [16, 170]. Generally, one uses an off-resonant
Rydberg beam to create a Rydberg state admixture in the clock state in order to
generate long-range interactions for clock state atoms.

One technical challenge that will have to be overcome is controlling the light shift
of the Rydberg beam on the clock transition, which is likely to fluctuate and thus
cause dephasing. A possible solution is to choose the detuning of the Rydberg beam
to be at a magic wavelength for the ground and clock state, such that the light shift
vanishes. However, this puts a constraint on what Rydberg detuning can be used,
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and therefore also puts a constraint on the strength of the dressed interactions that
can be achieved. For the magic wavelengths that we have predicted, it is not clear
whether the achievable interaction strengths will be sufficiently large for effective
spin squeezing. We leave further exploration to future work.

5.2 Quantity

Future work on our experiment will benefit greatly from an increase in system size
(i.e., the number of atoms). For example, larger system sizes allow for many-body
quantum evolution that is increasingly outside of the reach of classical computation.

A major limit to the number of atoms that we can work with is the available laser
power of our trapping laser. This problem is exacerbated by the relatively weak
polarizability of our trapping wavelength 813.4 nm (Sec. 2.3.4). In particular, traps
of several hundred `K are currently needed for cooling and imaging (and potentially
for suppressing thermal dephasing on the clock transition, see Sec. 3.2.1). Barring
any loosening of these requirements (such as by imaging with a lower scattering
rate, even potentially on the red transition, see Sec. 2.6.8), the available power from
our trapping laser (App. A.4.5) currently limits us to ∼100 traps, half of which
are typically filled with an atom (Sec. 2.4.2). We will discuss several possible
approaches for increasing this limit.

The first approach is a technical upgrade to our microscope objectives to increase
both their NA and their transmission at our trapping wavelength. This project is
already underway and is described further in App. A.3.1.

Another approach is to augment the trap geometry to add additional confinement.
One possibility here is to add an auxiliary lattice on top of the tweezers as is done
in Ref. [99]. Another possibility is to retro-reflect the tweezers back through the
second objective to create a lattice in the axial direction [242], which should increase
its confinement significantly.

It is also possible to use entirely different wavelengths where either the polarizability
is higher, more power is available, or both. Ref. [99] shows that atoms may be
cooled and imaged in 515 nm and then transferred to an 813 nm traps for clock
interrogation. However, loss during cooling and imaging at 515 nm is still a
problem here (Sec. 2.6.8). 1064 nm is a potentially interesting wavelength due
to the very large power available, despite its even lower polarizability and larger
diffraction-limited waist than 813 nm (see Sec. 2.3.4).
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The enhanced loading schemes discussed in Sec. 2.4.3 constitute another interesting
approach, in this case to increase the number of single-atoms that fill the traps
instead of increasing the number of traps.

Finally, there is the possibility of combining light from multiple lasers. An explo-
ration of this possibility is detailed in Ref. [151].

Going to higher dimensions (2D or 3D) is eventually also necessary, as there is
a limit to the number of atoms in a line that can be fit into the field-of-view of
a microscope objective. Higher dimensionality would also allow for greater qubit
connectivity and for quantum simulation of a wider array of phenomena [234].
While we have already demonstrated 11× 11 arrays at 515 nm using crossed AODs
(Sec. 2.7.1), a more robust approach to higher dimensions would be to use spatial
light modulators (SLMs) [46, 53, 243]. The benefit of SLMs is in their ability to
produce arbitrary geometries with a high degree of intensity uniformity [135]. See
Ref. [136] for further discussion of SLM-related efforts for our experiment.

5.3 Quality

Increasing system size begins to have diminishing returns if one is unable tomaintain
a high degree of control or fidelity over the entire system. As a concrete example,
we showed in Sec. 2.7.3 how the probability of successfully rearranging an array
decays exponentially with system size. For experiments on many-body quantum
states or for quantum computation, a similar trend applies because an error on a
single qubit can ruin the entire many-body state. This is the general difficulty of
quantum systems: their computational power increases exponentially with system
size, but so does their error rate (at least, without some kind of error correction,
though this also has stringent requirements on fidelities [5]). Therefore, the future
of this experiment (and of all quantum platforms) cannot be only a dash towards
novelty and quantity, but must include an effort on the front of quality as well.

In the context of many-body quantum physics, a major challenge is quantifying how
close the experimental quantum state is to the state which one would have assuming
no errors (i.e. the desired state). Mathematically, this is expressed as the state overlap
〈k |d |k〉, where d is the experimentally realized many-body density matrix and k
is the desired pure many-body quantum state. However, actually measuring this
overlap requires full state tomography which is generally not feasible for many-body
states. Instead, we are working toward the estimation of many-body state overlap
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via cross-entropy benchmarking [10]. This involves comparing a histogram of
the experimentally measured bitstrings with the histogram of the desired quantum
state’s bitstrings. Such histograms are expected to exhibit a speckle pattern for
coherent quantum states that are sufficiently scrambled in the computational basis.
The degree to which the speckle patterns of the experimental and desired quantum
states agree can be used to quantify the state overlap.

In addition to quantifying the overlap between our measured and desired quantum
states, we are working on a fully integrated numerical model that simulates the effect
of all expected noise and error effects (such models were already partially utilized
in Refs. [138, 150]). Such a model is crucial to understanding which effects are
actually limiting, quantifying their individual error contributions, and predicting
how much can be gained by improving them. To this end, we will now summarize
the major potential sources of error and infidelity that we have discussed in this work
(for both clock and Rydberg excitation), which can be generally divided into errors
of preparation, dynamics, and measurement. Preparation and measurement errors
are also discussed in the context of Rydberg excitation in App. E.

Possible sources of preparation error include:

• Imaging infidelity (Sec. 2.6.7)

• Imaging loss (Sec. 2.6.7)

• State transfer infidelity (Sec. 4.1.1)

Possible sources of dynamics error include:

• Decay and blackbody radiation (Sec. 4.4.1)

• Thermal and motional effects (Sec. 3.2.1, Sec. 4.4.2)

• Trap scattering (Sec. 3.2.2)

• Laser phase/frequency noise (Sec. 3.2.3, Sec. 4.4.3)

• Laser intensity noise (Sec. 3.2.3, Sec. 4.4.3)

• Field noise (Sec. 3.2.3, Sec. 4.4.3)

• Vacuum collisions (Sec. 2.6.8)
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Possible sources of measurement error include:

• State-shelving infidelity (Sec. 3.1.3, Sec. 4.1.3)

• Imaging infidelity (Sec. 2.6.7)

Although this work has demonstrated various state-of-the-art results with regards
to, e.g., imaging fidelities, Rydberg detection fidelities, and entanglement fidelities,
future work in understanding and taming the various effects listed above is still
crucial if our platform is to realize its full potential.
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Appendix A

THE APPARATUS

In this appendix, we describe the physical aspects of the experimental apparatus that
was used to obtain the data presented in this work. A more concise summary of the
key elements was already given in Sec. 1.3. We also point the reader to Ref. [79]
for more information on this topic from the earlier stages of the experiment’s build.

A.1 Experimental chamber

Our experimental chamber is composed of three ultra-high vacuum sections: an
atom source, a glass cell where all “science” is done, and an intermediate pumping
section that joins them. Rendered representations of the chamber are shown in
Figs. A.1 & A.2.

One highly useful feature of this experiment is that the entire chamber rests on top
of a linear translation stage (LinTech 251242). This allows us to move the glass cell
out of its operational position for, e.g., beam alignment, access to the objectives,
and other maintenance procedures. The chamber can then be reproducibly moved
back in for experimental operation.

A.1.1 Atom source

The atom source section of our chamber (everything from left to right up to and
including the gate valve in Fig. A.2) is an AOSense Beam II strontium atomic beam
source. This package includes an oven, Zeeman slower, two 2D MOTs, a small ion
pump (Gamma TiTan 3S), two non-evaporable getters (NEGs) (SAES), an angle
valve, and a gate valve. This entire package was delivered to us already baked and
under ultra-high vacuum.
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Figure A.1: Rendered representation of our experimental chamber. An atom source
(rear) generates an atomic beam that passes through the pumping section (middle)
and eventually reaches the glass cell (front). These stages are in turn mounted
onto a monolithic 1.5 in thick vertical aluminum breadboard. The entire chamber
rests on a 2-inch thick aluminum breadboard which is in turn secured to a large
linear translation stage that allows us to move the chamber back from its operational
position. A1/2-inch aluminumbreadboard also rests on top of the 2-inch breadboard,
allowing for sufficient space for the optics necessary for the atom source.

Atoms originate from a sample of solid strontium in the oven, which can have a
mass up to 3.5 g. Upon heating, atoms vaporize and are collimated into an atomic
beam via a capillary array. We typically run our oven at a modest temperature of
420 ◦C, for which AOSense quotes an atomic flux of 3.3 × 1012 atoms/s. For an
atomic sample of 3.5 g under this temperature, we estimate that the sample will not
run out for 230 years. The oven temperature can be pushed to at least as high as
520 ◦C, where the flux is quoted to rise to 6.9 × 1013 atoms/s. However, note that
only about 1/100th of the atomic flux out of the oven actually ends up as a useful
cold atomic beam (see below).

The atomic beam then passes through a Zeeman slower (see Ref. [21] Sec. 6.2.2).
This reduces the velocity of a fraction of the atomic beam to speeds that can be more
easily captured by a magneto-optical trap (MOT). All of the necessary magnetic
gradients for this slower are internally generated by permanent magnets, which are
surrounded by magnetic shielding. An anti-reflection coated window along the
atomic beam axis (Fig. A.2) allows for illumination by a blue slowing beam. This
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Figure A.2: Top view rendered representation of our chamber with labels of key
components.

window also has in-vacuum heating such as to prevent a film of strontium of forming
on it. We typically keep this window at 380 ◦C.

After the Zeeman slower, the atomic beam enters two back-to-back 2DMOTs. These
not only cool the atomic beam in the transverse direction, but also serve the very
useful function of angling the cold atomic beam away from its initial direction of
propagation. This effectively separates colder strontium atoms from hotter ones
(in particular, ones that were not sufficiently decelerated by the Zeeman slower) as
well as from any hot background gas beam (of, e.g., H2) produced by the oven.
Therefore, only colder strontium atoms are sent toward the science section of our
chamber (i.e. the glass cell) and flux from hot atoms or hot background gases is
suppressed. This is likely to play a positive role in achieving good vacuum in the
glass cell. Furthermore, since there is no direct line-of-sight from the glass cell to
the oven, blackbody radiation from the oven is likely suppressed. Finally, the 2D
MOTs act as a convenient and fast optical switch for turning the atomic flux to our
glass cell on and off, requiring no mechanical shutters.

All retro-reflection/polarization optics necessary for the 2D MOTs are internally
contained — we only provide two elliptical beams as input. All necessary magnetic
fields are internally generated by permanent magnets. Since in our chamber design
we place a large ion pump (containing its own large permanent magnet) close to the
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location of the 2D MOTs, we wrap the 2D MOT section of the atom source with a
few layers of magnetic shielding material.

Finally, the cold atomic beam that is angled toward the glass cell passes through a
differential pumping channel of length 101.6 mm (4 in) and inner diameter 6.2 mm,
which restricts the vacuum conductance between the atom source and the rest of the
chamber.

The atom source can be completely sealed away from the rest of the chamber by
closing a gate valve after the differential pumping channel.

A.1.2 Glass cell and surrounding assembly

At the end of the path of the cold atomic beam is our glass cell. This is where we
perform practically all experimentation, including 3DMOTs (blue and red), tweezer
trapping, single-atom imaging, clock and Rydberg excitation, etc.

Figure. A.3 shows a rendering of the glass cell and some key surrounding compo-
nents. Two microscope objectives (App. A.3), used for single-atom imaging and
tweezer generation, are mounted above and below the cell. An assembly of four
pairs of magnetic coils (App. A.2) surround the cell and the objectives. An actual
picture of this assembly (minus the objectives) is shown in Fig. A.6.

The cell itself is made of optically contacted quartz and is manufactured by Japan
Cell. It is AR coated only on the outside bottom surface for 461 nm–915 nm. A
glass-to-metal transition of approximate length 13 cm and inner diameter 1.8 cm
joins the science section of the cell to a 2-3/4" fixed CF flange. The dimensions of
the glass cell (without the transition section) are summarized in Fig. A.4.

The assembly around the glass cell is designed to allow for a large amount of
optical access. For example, the coil shapes are chosen to be in either an elliptical
or diamond shape and their mounts have strategically placed cuts to maximize
accessible angles. In the horizontal plane, the assembly is designed to allow for
at least a 60◦ beam angle from normal incidence (this is quoted as an angle at the
position of the atoms, i.e., taking into account refraction due to the glass). In the
vertical plane (containing the objective axis and the direction normal to the atom
beam propagation), the possible angle ranges up to 33.7◦ from normal (again taking
into account refraction), which is limited by the dimensions of the glass cell. While
we do not currently use the full extent of such angles, they allow for future flexibility
in, e.g., creating optical lattices.
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Figure A.3: Rendered representation of our glass cell with surrounding compo-
nents. Two objectives (App. A.3) are mounted above and below the cell, both on
independent 5-axis picomotor stages. Four pairs of magnetic coils, one high-field
pair (App. A.2.2) and three low-field pairs (App. A.2.4) surround the glass cell. The
low-field coils are held in place by 3D-printed plastic spools, and are represented in
this rendition as copper textures on the surfaces of the white plastic spools. However,
in reality these coils have finite thickness (See Fig. A.6).
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Figure A.4: Dimensions of the glass cell (excluding the glass-to-metal transition
and the CF flange). All dimensions in mm. The 3.5 mm thickness windows are
the windows through which the microscope objectives are aimed. Not shown: the
glass-to-metal transition cylinder that connects the cell to its flange. The approximate
dimensions of this cylinder are an inner diameter of 1.8 cm and a length of 13 cm.
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A.1.3 Vacuum

Here we describe how we attain ultra-high vacuum (UHV) in our experimental
chamber.

Pumps and gauge measurements

Our chamber has a total of two ion pumps, two non-evaporable getters (NEGs), and
one titanium sublimation (Ti sub) pump. The two ion pumps also act as vacuum
gauges and are the only gauges we have installed. In general, ion pumps are expected
to perform better at removing inert gases such as N2, while passive pumps such as
NEGs and Ti subs are expected to perform better at removing H2 gas. We note that
strontium itself is expected to be an effective getter material.

We first describe the pumps in the atom source section of the chamber. One small
3 L/S ion pump (GammaTiTan 3S) is located very close to the atomic oven (Fig.A.2).
Right next to it is a 50 L/s SAES NEG. A bit further down the atom path at the
position of the 2D MOT there is another 5 L/s NEG. Both NEGs were delivered to
us pre-activated by AOSense.

After the differential pumping channel of the atom source and the flexible bellows
connecting it to the rest of the chamber, we have a home-built section of our chamber
in between the glass cell and the atom source dedicated to vacuum pumping. This
section features a cylindrical section containing Ti sub filaments (Gamma 360819)
that can sputter titanium over a surface area of approximately 550 cm2. Connected
to this cylindrical section via a right angle is a 75 L/s ion pump (Gamma TiTan 75S
CVX). The right angle ensures that titanium will not be sputtered directly into the
ion pump, which may damage the ion pump.

We routinely measure pressures of no greater than 1.0 × 10−11 Torr with the small
ion pump near the atomic oven — which is in fact as low as the pump can measure
— even at oven temperatures of 420 ◦C. With the large ion pump, we routinely
measure pressures of 1–3×10−11 Torr.

Assembly and bake

We now describe the procedure by which the chamber was assembled, baked, and
pumped down. We performed two bakes: one “pre-bake” of just the stainless steel
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parts of our chamber at ∼400–450 ◦C for ∼9 days, and a final bake of the fully
assembled chamber at ∼300 ◦C for about 20 days.

We first assembled all parts of the intermediate pumping section that were purely
stainless steel and blanked off their open ports. Note that we use silver-coated copper
gaskets in the vacuum joints to prevent gaskets from becoming stuck to the flanges
when components are removed. This intermediate stainless steel assembly was then
pumped down with a combination roughing/turbo pump (Pfeiffer HiCube 80 Eco).
After pumping down, the assembly (including sections leading up to the turbo pump)
was wrapped in a layer of UHV-compatible aluminum foil (for thermal conductivity)
and covered with resistive fiberglass insulated heat tape∗. Thermocouples were also
placed at points of interest along the assembly to monitor the temperature. One
more layer of UHV foil was placed on top of the heat tape for conductivity, followed
by a layer of fiberglass insulation (meant for car exhausts) and a final layer of UHV
foil. After 9 days of this pre-bake at ∼400–450 ◦C, this assembly was brought down
to room temperature.

About a month and a half later, all chamber components including the atom source
(which came to us already under vacuum and baked), the pre-baked stainless steel
sections, the large ion pump, the Ti sub filaments, a couple of monitor viewports,
and the glass cell were assembled. Metallic elements were wrapped in a similar
way as during the pre-bake, except for the atom source which was already baked
and was valved-off from the rest of the setup. Special care was taken for the glass
cell, which could not be directly wrapped and furthermore needed a highly uniform
temperature profile. We built a custom “bake garage” for the cell that allowed us to
wrap heat tape around the cell with about a 1-inch air gap. Three thermocouples
were placed inside this garage at different locations to ensure homogeneity of the
temperature.

For this final bake, the chamber was pumped down with the turbo pump and the
temperature was slowly ramped (ensuring no more than 3 ◦C/min changes) to about
300 ◦C, which is a limit imposed by the glass cell†. Before the end of the bake, the
large ion pump was turned on to 7 kV in order to degas it while the bake is still on.
After the pressure settled again, the ion pump was turned off and each of the three

∗As a health precaution, it is advised to use respiratory protection when working with such
fiberglass tape to prevent from breathing in fiberglass dust.

†Certain other components had lower limits that we also accommodated locally, such as the ion
pump at 250 ◦C (to avoid demagnetization of its permanent magnets) and 120 ◦C at the closed gate
valve to the atom source.
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filaments of the Ti sub were degassed in turn, once at 25 A for 60 s and once at 50 A
for 60 s. The ion pump was turned on again, and in a few days this Ti sub degassing
procedure was repeated.

After about 20 days of baking, the chamber was slowly brought back down to room
temperature. While still pumping with the turbo, one of the Ti sub filaments (the
one that was the last to be previously fired) was fired twice at 50 A for 120 s (with
the ion pump off) to provide the final layer of titanium for our vacuum, followed by
turning the ion pump back on. We have not needed to re-fire the TSP (or make any
other adjustments to the vacuum) in over three years of operation.

At this point the valve to the turbo pump was closed, leaving the chamber under
its own vacuum. The ion pump was then briefly run at a higher-than-usual voltage
of 11.5 kV to remove “whiskers” (metallic deposits on its electrodes that can cause
spurious discharges), and then brought back down to 7 kV. Finally, the gate valve to
the atom source was opened, completing the vacuum assembly.

At all stages where a turbo pump was used, a residual gas analyzer (SRS RGA100)
was also used to analyze the composition of the gases inside the vacuum and to track
their individual pressures over time. Such an analysis is useful for detecting certain
contaminants such as oils. We also used the RGA multiple times to check for leaks
by spraying the outside of the chamber with helium and looking for spikes in helium
detection. At the end of the bake, no measurable contaminants or leaks were found
by the RGA.

A.2 Magnetic coils

A.2.1 Overview

Magnetic fields are important to this experiment for several aspects such as exciting
to the clock state, tuning polarizabilities, and tuning the position of the red MOT.
We produce magnetic fields by running current through loops of wire (which we
will call magnetic coils) placed near our atoms.

The following criteria enter into the design of our magnetic coil system:

1. The ability to producemagnetic fields of> 500G in one direction for obtaining
large Rabi frequencies on the clock transition (Sec. 3.1.1).
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2. The ability to produce magnetic fields of at least a few Gauss in all three
directions for, e.g., tuning the position of the red MOT (Sec. 2.4.1), tun-
ing the polarizability of 5s5p 3P1 (Sec. 2.3.4), tuning quantization axes, or
compensating for background fields.

3. An acceptable level of uniformity of such fields across typical tweezer array
length scales (a few hundred `m).

4. The ability to produce magnetic quadrupole gradients of a few 10’s of G/cm
for generating MOTs.

5. The ability to stabilize all such fields via feedback.

6. Sufficient thermal stability for all coils.

7. A large degree of optical access around the glass cell.

In this Appendix, we present the coil system which we have designed and built to
meet these criteria.

We divide our system into two sets of coils. The first is a pair of water-cooled
high-field coils (App. A.2.2) that can produce large fields along one direction and
can be switched via an H-bridge (App. A.2.3) to produce gradients. The second
is a set of three pairs of smaller, non-cooled low-field coils (App. A.2.4) that can
produce small independent fields in all three directions. Themounting and assembly
of these coils is pictured in Figs. A.5–A.6.

It will be useful to define three orthogonal axes: the objective axis along the axis
of the objectives (see Fig. A.3), the chamber axis which points along the long
dimension of the glass cell toward the vacuum chamber, and the diamond axis
which is orthogonal to the first two (we call it the diamond axis because the high-
field coils are shaped like a diamond, and this is the axis along which they create a
large magnetic field).

A.2.2 High-field coils

Our high-field coils were manufactured by Custom Coils, Inc. Each coil is made
of a 4x6 winding of insulated hollow-core copper wire. The cross-section of the
conducting part of the wire is a square of side length 0.183 in with a circular hollow
core of 0.1 in diameter for water cooling. Including the insulation, the cross-section
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Figure A.5: A picture of our high-field coils and their mount. The mount allows for
translation in all three directions as well as for rotation along one axis. Great care
is taken that conductive loops near the coil are minimized: note the acrylic spacers
bridging the two coils (also note the horizontal cut in the vertical breadboard in
Fig. A.3). Furthermore, non-magnetic materials such as aluminum or brass are used
for all elements of the mount, including screws.
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Figure A.6: A picture of our full coil assembly around the glass cell. The high-field
coil mount shown in Fig. A.5 also mounts several 3D-printed plastic spools (white)
that hold our low-field coils (thin copper wires).

of the wire increases to about 0.2 in square length. We find that we are able to
achieve a water flow rate of 8 gallons/hour through each coil (with the water cooling
hooked up in parallel) using a differential pressure of about 45 psi.

We chose a rhombus (a.k.a. diamond) shape for the high-field coils as we predicted
such a geometry to produce a particularly good combination of high field and optical
access. Fig. A.7 shows a drawing of their approximate dimensions. The separation
between the nearest opposing faces of the two coils is about 40 mm, allowing for
about 2.5 mm of an air gap between the coils and the glass cell on either side (see
Fig. A.4).

We drive current through these coils using a Keysight N8732A power supply capable
of producing up to 10 V and up to 330 A. We run current through the two coils in
series to ensure an equal current in both. At room temperature, we measure a total
resistance through both coils of ' = 30 mOhm and an inductance of ! = 155 `H,
giving a time constant of g = !/' = 5.2 ms. Note that the measured ' is almost
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Figure A.7: Approximate dimensions of one of the high-field coils, in mm. The
separation between the nearest opposing faces of the pair of coils is about 40 mm
(not shown).

exactly equal to the ratio of the max voltage to the max current achievable by the
power supply.

When the coils are configured to produce magnetic fields of the same direction/sign
(which we will refer to as a Helmholtz configuration), we measure at the center
of the coil pair a linear relationship between the current and the field magnitude
of 3.2 G/A. With our power supply, this allows us to in principle achieve fields
exceeding 1000 G — however, this number will be reduced to about 750 G when
we include transistors in series with the coils (App. A.2.3).

When the coils are configured to produce magnetic fields of the opposite direc-
tion/sign (which we will refer to as an anti-Helmholtz configuration), the coils
produce a quadrupole gradient at their center. Such a quadrupole generically has
three principal axes, which in our case are the objective, chamber, and diamond axes
(defined at the end of App. A.2.1). The values of the gradients along the three major
axes must sum to zero in order to satisfy Gauss’s law for magnetism. We summarize
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the measured linear scaling of these gradients along with other important values for
the high-field coils in Table. A.1.

Property Value
Resistance (') 30 mOhm
Inductance (!) 155 `H
g = !/' 5.2 ms
Number of turns (per coil) 4 × 6 = 24
Wire gauge 0.183 in SQ, 0.1 in Ø bore
Nearest separation 40 mm
Helmholtz field (diamond) 3.2 G/A
Anti-Helmholtz gradient (objective) 0.28 (G/cm)/A
Anti-Helmholtz gradient (chamber) 0.21 (G/cm)/A
Anti-Helmholtz gradient (diamond) -0.49 (G/cm)/A

Table A.1: Measured properties of the high-field coil pair (at room temperature).
The axis nomenclature (objective, chamber, diamond) is defined at the end of
App. A.2.1.

A.2.3 H-bridge and current stabilization circuit

Wenow describe an analog electronic system designed to control the current through
the high-field coils. This system performs two main functions: (1) electroni-
cally switching the polarity of the high-field coils between a Helmholtz and anti-
Helmholtz configuration and (2) stabilizing the current through the high-field coils
via feedback.

The implementation of such a system involves several elements:

1. Four insulated-gate bipolar transistors (IGBTs) in an H-bridge configuration
with the high-field coils.

2. A driver circuit that controls the gate voltage of the four IGBTs.

3. A Hall sensor that measures the current through the coils.

4. A servo that produces an error signal and feedback voltage based on our
desired current and the current measured by Hall sensor.

We begin by describing the IGBTH-bridge setup. The setup is shown as an electrical
schematic in Fig. A.8. Four N-channel IGBTs (Semikron SKM900GA12E4), each
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water-cooled and supporting a current of up to 900 A, are connected around one of
the coils in an H-bridge configuration. We label the IGBTs as HHI, HLO, AHHI,
and AHLO, where H stands for Helmholtz, AH stands for anti-Helmholtz, HI means
higher voltage, and LO means lower voltage. If the two H IGBTs are turned on (i.e.
given a large gate voltage) while the two AH IGBTs are turned off (i.e. given 0 gate
voltage), then current is sent through the second coil such that it produces a field
in the same direction as the first coil. If instead the H IGBTs are off while the AH
IGBTs are on, the current through the second coil is reversed and the coil pair now
produces a magnetic quadrupole gradient.
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IGBT AHHI

IGBT HLO

GND

Coil PS

0V(HHI) 0V(AHHI)
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Figure A.8: Electrical schematic of the high-field coil pair and the four-IGBT
H-bridge. HHI, AHHI, AHLO, HLO, GND, 0V(HHI), and 0V(HHI) are to be
connected with their corresponding lines in Fig. A.9. Varistors are placed across
the coils and diodes are placed across the IGBTs for dissipating transient voltage
spikes.

In addition to controlling the polarity of the coil pair via an essentially digital on/off
voltage applied to the IGBT gates, we can also control the current flowing through
the coils by making analog adjustments to the IGBT gate voltage. We do this
specifically by adjusting the LO-side gate voltages, while leaving the HI-side gates
either completely on or completely off. Therefore, the HI-side gates can be either
off (0 V) or on (15 V), while the LO-side gates can be either off (0 V) or on (variable
voltage).

We therefore need an electrical circuit that outputs an appropriate gate voltage to
each of the four IGBTs when given a digital input (0 or 5V) determining the polarity
of the coil pair as well as an analog feedback input determining the gate voltage of
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the LO-side gates. We furthermore would like this circuit to ensure total electrical
isolation of the coils from the rest of our electronics, including the electronics that
produce the digital polarity input and the analog feedback input. In addition to
isolating the coils from our other electronics, we also need to independently drive
each of the HI-side IGBT gates with their own floating power supplies, as it turns out
to be impossible to drive all the gates using a common ground. Such a scheme could
be possible if the HI-side IGBTs were both P-channel IGBTs (while the LO-side
were still N-channel); however, we have not been able to find P-channel IGBTs of
similar capabilities to the N-channel ones we use.

The driver circuit that we use to achieve this is partially shown as an electrical
schematic in Fig. A.9. The digital input to our circuit is first split off into two, one
path for H and one path for AH, with one path going through a logical inverter
(CD40106B). Both paths are then passed through 150 mA power buffers (LT1010).
Each of the H and AH paths are then further individually split into two again, one
for HI and one for LO.

Both HI paths are then sent into an ILQ2 optocoupler, and both LO paths are sent
into another ILQ2. These ICs convert an electrical current on their inputs into an
optical signal that switches on or off a transistor at the output, therefore allowing for
electrically isolated switching of a signal on the output side. They are furthermore
able to perform such switching in only a few microseconds, despite being optically
actuated.

TheHI-side ILQ2 switches on and off fixed 15V voltages provided by two separately
floating external power supplies. These voltages, appropriately switched, are then
sent as an output to the HI-side IGBTs.

The LO-side ILQ2 switches on and off a single variable voltage that is sent, ap-
propriately switched, as an output to the LO-side IGBTs. This variable voltage
comes from the analog feedback input (whose isolation we will discuss shortly),
although some convenient modifications to this voltage are first made by our circuit.
In particular, we first pass the analog feedback through an op-amp (LF412) with a
trimpot-tunable gain in case amplification is desired. We then add a trimpot-tunable
voltage to the amplified analog feedback via a variable voltage regulator (LM317)
and another fixed gain op-amp (LF412). The reason for this is that the IGBT gates
have a “dead zone” from about 0 to 5 V where they are essentially completely closed
and no tunability is available. In order to not have this dynamic range be wasted,
we simply add an offset voltage to the amplified analog feedback that already puts it
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Figure A.9: Electrical schematic of the driver circuit for the four IGBT gates.
TTLIN is the digital polarity input while FEEDBACK(ISOLATED) is the post-
isolation analog feedback input. 0V(L) represents the reference voltage for the 5 V
logic power supply. Resistors at the gate outputs (R19-22) are 1 Ohm. 16 V Zener
diodes at the gate outputs protect against over-voltage. Not shown: AD215 isolation
amplifier for the analog feedback input, 5 V voltage regulator for logic IC supply.

close to the end of the dead zone (although note that if an IGBTs is digitally closed,
its gate voltage is set to exactly 0 V).

Electrical isolation of the analog feedback input is achieved with an AD215 isolation
amplifier, which is not shown in Fig. A.9.

This entire setup ultimately requires at least five different power supplies. The
first is the power supply that actually runs current through the coils. The second,
which shares a common ground with the coil power supply (labeled as GND in
Figs. A.8 & A.9), powers the output side of the AD215 isolation amplifier as well as
the LM317 and 2xLF412s in the driver circuit. This supply needs to have a bipolar
dual output as both the AD215 and the LF412 require negative supply voltages
(despite no negative signal being used). The third and fourth power supplies provide
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independent floating 15 V voltages for the HI-side gates. The fifth power supply
powers the input side of the AD215 isolation amplifier and also supplies the ICs that
deal with the digital input (CD40106B and LT1010). This fifth supply also needs to
have a bipolar dual output for the AD215, and should have its positive output passed
through a 5 V voltage regulator before being sent to the digital ICs (such a voltage
regulator is not shown in Fig. A.9).

We now discuss how we stabilize the current through the coils and how the analog
feedback input is actually produced. We begin with the measurement of the current.
The current through the coils is measured by a DaniSense DS400IDSA Hall probe
that is placed around the current-carrying cable leading into the coils. This Hall
probe produces a current at its output that is proportional to the current passing
through its measurement loop. We read this output current by passing it through a
Vishay VPR221SZ 50 Ohm precision resistor and reading out the resulting voltage
on an INA103 instrumentation amplifier.

This measured voltage is then sent to a Newport LB1005 servo. The servo compares
the measured voltage to a given setpoint voltage, and produces an error signal that is
output as out analog feedback signal. This is subsequently sent through the AD215
isolation amplifier and into the rest of our driver circuit, as previously outlined.

We run our coil power supply (Keysight N8732A) in constant voltage mode and
rely on our IGBTs and feedback circuit for current stabilization. However, different
current setpoints require different power supply voltages in order to achieve stability.
This is due to the nonlinear response of an IGBT’s effective resistance to both the
gate voltage and the collector-emitter voltage. In practice, we find that setting the
power supply’s voltage to slightly higher than the minimum necessary for a certain
current produces the best stability.
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A.2.4 Low-field coils

Our low-field coils consist of three pairs of home-made coils wound around 3D-
printed plastic spools that are attached to the outside of the high-field coil mounting
cage (Fig. A.6). Each coil is made of 16 AWG insulated round copper wire. We
drive and control current through the coils with three separate Thorlabs LDC240C
4 A 5 V laser diode drivers∗. No explicit cooling is provided for these coils.

The key properties of the three pairs of coils are summarized in Table. A.2.

Property Objective axis Chamber axis Diamond axis
Resistance (') 918 mOhm 436 mOhm 610 mOhm
Inductance (!) 588 `H 266 `H 289 `H
g = !/' 641 `s 610 `s 474 `s
Number of turns (per coil) 36 23 24
Wire gauge 16 AWG 16 AWG 16 AWG
Nearest separation 123 mm 180 mm 94 mm
Helmholtz field 2.3 G/A 0.82 G/A 2.3 G/A

Table A.2: Measured properties of the three low-field coil pairs (at room tempera-
ture). The axis nomenclature (objective, chamber, diamond) is defined at the end of
App. A.2.1.

The objective axis coils have a rectangular shape with inner side lengths 162 mm
and 100 mm. The nearest separation between the two coils is 123 mm. A slight
curvature is present on the long side of the rectangle to allow an exit route for the
high-field coil leads (See Figs. A.3 & A.6).

The chamber axis coils have a rectangular shape (with a bow, see Fig. A.6) with
inner side lengths 125 mm and 99 mm. The nearest separation between the two
coils is 180 mm. The furthest separation, at the outer apex of the bow, is 239 mm.

The diamond axis coils have an elliptical shape with an inner full major axis of
194 mm and inner full minor axis of 103 mm. The nearest separation between the
two coils is 94 mm.

∗In hindsight, these drivers are not the best choice for coils as they have an internal protection
that shuts the unit off if it detects an open circuit. This is easily tripped by rapidly switching an
inductive load such as a coil. We get around this problem by placing 4.7 V Zener diodes across the
output of these supplies.
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A.3 Microscope objectives

Our microscope objectives are a pair of Mitutoyo G Plan Apo 50X objectives. These
are placed above and below our glass cell and are used for focusing of the tweezer
arrays, imaging the tweezers themselves for diagnostic purposes, and collecting
atomic fluorescence.

These objectives have a numerical aperture (NA) of #� = 0.5with an effective focal
length of 5 = 4 mm. The working distance (distance between the objective and
atoms) is 15.08 mm and assumes 3.5mm glass thickness, for which the objectives
are aberration-corrected.

A downside of these objectives for our purposes is their poor transmission (quoted at
58%) at our trapping wavelength 813.4 nm. Our experiment was initially designed
for a trapping wavelength of 515.2 nm, for which these objectives have a quoted
transmission of 88%. For our fluorescence wavelength of 461 nm, these objectives
have a quoted transmission of 83%.

A.3.1 Future objective upgrade

We have obtained a new pair of custom-made objectives from Special Optics that we
hope will be an all-around improvement on our current objectives for future work.
These new objectives are designed to have similar physical dimensions and working
distance to our current objectives such as to be interchangeable with minimal extra
work.

The several ways the new objectives improve on our current ones include increased
transmission at 813.4 nm (quoted at and measured to be 92%), an increased NA of
#� = 0.55 (at the same effective focal length of 5 = 4 mm), and a no-metal Ultem
plastic construction. Our tests of these new objectives have shown them capable of
generating tweezers through 3.5 mm glass with a very low level of aberration and
nearly diffraction-limited waist.

A.4 Laser systems

A.4.1 Blue laser

We use a Toptica TA-SHG pro laser system to generate our 461 nm (blue) light. An
external cavity diode laser (ECDL) produces a fundamental tone at 922 nm which
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is then amplified through a tapered amplifier (TA) and then frequency doubled to
461 nm in a second harmonic generation (SHG) bow tie cavity with a nonlinear
crystal. The doubling cavity is maintained in resonance with the light by feedback
to a piezo that controls the cavity’s length. Sidebands are imprinted on the light
before the cavity in order to generate a Pound-Drever-Hall (PDH) signal [244] from
which the feedback error signal is derived.

We reference this laser’s frequency to the blue transition of strontium via a home-
built strontium vapor cell (initially designed for locking the red laser, see Ref. [23]
App. B). The vapor cell produces a spectral absorption feature, and an error signal
is generated from this feature by phase modulating the light going into the cell with
an EOM. A Toptica PDD 110/F module generates the modulation signal and also
demodulates the measured signal into a DC error signal. We use Toptica’s DLC pro
Lock software to lock the laser’s frequency to this error signal.

The typical power obtained from the output of this laser is about 600 mW at 461 nm.

A.4.2 Red laser

We use a Toptica DL pro ECDL to generate our 689 nm (red) light. This laser
was purchased as part of a larger narrow-linewidth stabilization system from Stable
Laser Systems.

Part of the output of the laser is picked off and sent through a high-finesse cavity
for stabilization. Before going through the cavity, this light is passed through a
phase-modulating fiber EOM. This EOM creates two sets of sidebands on the light.
The first set of sidebands are at several hundred MHz and are used to tune the lock
frequency (instead of, e.g., tuning the cavity length). The second set of sidebands
are at 5 MHz and are used to generate a PDH from the cavity reflection. A Toptica
Fast Analog Linewidth Control (FALC 110) box generates an error signal from the
PDH signal and feeds back to the laser current and grating piezo (via a Toptica DLC
ext module) using a PID servo.

The cavity has a length of 10 cm, a linewidth (FWHM) of 32 kHz, and a finesse
of 47, 000 (measured via cavity ringdown spectroscopy [245]). It is housed inside
of a thermally insulated vacuum chamber at 1 × 10−7 Torr. The cavity is thermally
stabilized at 25.0 ◦C, which is the temperature measured by Stable Laser Systems
at which the cavity frequency is minimally sensitive to temperature (i.e. it is a
zero-crossing of the thermal expansion coefficient).
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Fig. A.10 provides an Allan deviationmeasurement (see Sec. 3.3.2) of our red laser’s
frequency after stabilization, as measured by Stable Laser Systems.

Figure A.10: Allan deviation of our red laser’s frequency after stabilization, as
measured by Stable Laser Systems.

The cavity stabilization provides a sufficiently narrow linewidth for our laser in
order to effectively drive the red transition (however, see Sec. 2.5.3 for further
discussion of laser noise not fully captured by the linewidth). However, the cavity
also has a highly linear drift of about 3.5 kHz per day. We compensate for this
drift by calibrating the lock frequency to our atoms once every day. We do this by
generating a red MOT (which is fairly insensitive to the exact frequency), turning
off the MOT beams and magnetic gradients, applying a magnetic field of a few
Gauss, exciting the atomic cloud with a single red beam in the horizontal direction,
quickly pumping the excited atoms to the metastable 5s5p 3P0,2 states, and imaging
the remaining atoms. When done as a function of red frequency, this procedure
produces a depletion spectral feature of about 50 kHz FWHM (limited in part by
Doppler broadening). The signal-to-noise on this feature is typically sufficient to
calibrate the lock frequency to within 1 kHz.

As discussed in Sec. 2.5.3, a future upgrade to this laser system could include
injection locking another laser diode with the transmission of the cavity [119] in
order to generate red light with suppressed fast frequency noise.

The typical power obtained from the output of this laser is about 15 mW. This is
then sent through a home-built TA (based on a design from the David Weld group
at UCSB) that outputs powers of a few hundred mW.
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A.4.3 Clock laser

We restate some specifications given in Ref. [138] App. B2:

Our clock laser is based on a modified portable clock laser system (Stable Laser
Systems) composed of an ECDL (Moglabs) stabilized to an isolated, high-finesse
optical cavity using the PDH scheme and electronic feedback to the laser diode
current and piezoelectric transducer. The optical cavity is a 50mmcubic cavity [246]
made of ultra-low expansion glass, with its mirror substrates made of fused silica.
The cavity is maintained at its zero-crossing temperature of 40.53 ◦C inside a
thermally insulated vacuum chamber at a pressure of 5 × 10−9 Torr. It has a finesse
of � > 300, 000 at 698 nm.

The clock laser light passes through a first AOM in double-pass configuration, injects
an anti-reflection coated laser diode (Sacher Lasertechnik GmbH, SAL-0705-020),
passes through a second AOM, and goes through a 10 m long fiber to the main
experiment with a maximum output optical power of 20 mW. The first AOM is used
for shifting and stabilizing the frequency of the clock laser, whereas the second
AOM is used for intensity-noise and fiber-noise cancellation.

Fig. A.11 provides an Allan deviation measurement (see Sec. 3.3.2) of our clock
laser’s frequency after stabilization, asmeasured by Stable Laser Systems via beating
with another similar leaser. The power spectral density of this beat signal is shown
in Fig. 3.8.
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Figure A.11: Allan deviation of our clock laser’s frequency after stabilization, as
measured by Stable Laser Systems via beating with another similar laser. The
vertical axis is the Allan deviation of the quantity 1

5

(
51(C) − 52(C)

)
/
√

2, where 58 is
the frequency of laser 8 and 5 = 429.228 THz. The factor of 1/

√
2 accounts for the

frequency noise of the similarly noisy reference laser. A linear drift is removed.
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A.4.4 Rydberg laser

We use a Toptica TA-FHG pro laser system to generate our Rydberg excitation light.
An ECDL produces a fundamental tone at about 1266 nm which is then amplified
through a TA. This light is then frequency doubled to about 633 nm in an SHG
bow tie cavity with a nonlinear crystal. This is then once again doubled to about
316.5 nm by a fourth harmonic generation (FHG) cavity that is very similar to the
SHG cavity.

The SHG and FHG cavities are maintained in resonance with the light by feedback
to piezos that control their lengths. Sidebands are imprinted on the light before the
cavities in order to generate a PDH signal from which the feedback error signals are
derived. For this laser, we generate these sidebands via EOMs placed before each
cavity. The modulation frequencies for these sidebands are 20 MHz and 25 MHz
before the SHG and FHG, respectively. We estimate that the cavities have linewidths
of 7 MHz (with finesse of 150).

We find that the output power of the FHG tends to degrade over time. We also find
that moving the nonlinear crystal in the cavity such that the light hits it at a different
spot tends to regain some of the output power. These observations suggest that
the light gradually degrades the crystal, but only in the localized spot around the
beam. The crystal is made of beta barium borate (BBO), and similar observations
have been made about BBO in previous work; e.g., in Ref. [247] p.104–107. This
reference also reports that flowing oxygen over the crystal helps to prevent such
damage. However, we use no such flow (of oxygen or any other gas) in our system.

We lock the Rydberg laser to a high-finesse cavity purchased from Stable Laser
Systems (very similar to the cavity described in App. A.4.2). The light sent to the
cavity is of the fundamental tone at 1266 nm. Before going through the cavity, this
light is passed through a phase-modulating fiber EOM. This EOM creates two sets
of sidebands on the light. The first set of sidebands are at several hundred MHz and
are used to tune the lock frequency. The second set of sidebands are at 20 MHz
and are used to generate a PDH from the cavity reflection. A Toptica Fast Analog
Linewidth Control (FALC 110) box generates an error signal from the PDH signal
and feeds back to the laser current and grating piezo (via a Toptica DLC ext module)
using a PID servo.

The cavity has a length of 10 cm, a linewidth (FWHM) of 110 kHz, and a finesse
of 13, 600 (measured via cavity ringdown spectroscopy [245]). It is housed inside
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of a thermally insulated vacuum chamber at 2 × 10−7 Torr. The cavity is thermally
stabilized at 30.5 ◦C, which is its zero-crossing temperature.

We use picked-off 633 nm light from after the SHG to monitor the laser wavelength
with our wavelength meter (App. A.4.8).

Under optimal conditions, the power obtained from the output of this laser reaches
about 400 mW at 316.6 nm.

We note that we have operated this laser at outputwavelengths of as high as 318.5 nm,
which is in the range of wavelengths for the transitions 5s5p 3P1 ↔ 5s=s 3S1.
However, we do not currently work with these transitions.

A.4.5 Trapping laser

The majority of the results in this work are done at a trapping wavelength of
_ = 813.4 nm, which is a magic wavelength for the clock transition. We use an
M Squared SolsTiS PSX-F titanium-sapphire (Ti:sapph) laser to produce this light.
This laser produces light at the desired wavelength by pumping a Ti:sapph crystal
inside a bow tie cavity with 532 nm light produced by an auxiliary pump laser
(Sprout G18). At 813.4 nm, this laser can produce up to about 6 W of optical power.

This laser can produce a large range of wavelengths (at least 725 nm to 975 nm),
which can be tuned by three mechanisms offering varying degrees of dynamic range.
The most coarse tunability comes from the rotation of an intracavity birefringent
filter. The next finer level of tunability is provided by tuning the spacing of an
intracavity etalon, which also ensures single cavity mode operation. The finest level
of tunability is provided by piezo modulation of the cavity length. We lock the
laser’s wavelength by modulating this piezo with a feedback signal produced by our
wavelength meter (App. A.4.8).

Some of our earlier work (e.g., in Sec. 2.6.8) was done at a trapping wavelength of
_ = 515.2 nm. For this wavelength, we used an AzurLight ALS-515 laser. This
laser produces 515 nm light (of up to 10 W) by doubling a 1030 nm fundamental
stage. However, it offers no wavelength tunability.

A.4.6 Auto-ionization laser

For our auto-ionization light at 408 nm, we use aMoglabs LDLECDLwith an output
power of around 20 mW. Since the auto-ionization feature is very broad (Sec. 4.1.3),
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we either leave this laser unlocked or very coarsely reference it to a Moglabs MWM
wavemeter (which is separate from our higher resolution wavemeter described in
App. A.4.8).

A.4.7 Repump lasers

We have three repump lasers at 679 nm, 688 nm, and 707 nm. The 679 nm and
707 nm lasers are Toptica DL 100 ECDLs while the 688 nm laser is a Moglabs
CEL Cateye ECDL. All of them output powers near 10–20 mW.We lock all of these
lasers using a feedback signal generated from our wavemeter (App. A.4.8) and sent
to their piezos.

A.4.8 Wavelength meter stabilization

We use a HighFinesse WS7 wavelength meter (or wavemeter) along with an 8-
channel switch to monitor and stabilize the wavelengths of several of our lasers.
This wavemeter has a quoted resolution of 2 MHz. Using an add-on option, this
wavemeter can produce feedback voltages for stabilizing laser wavelengths to a
desired value. We use this feature to stabilize the wavelength of our 813 nm
trapping laser as well as our 679 nm, 688 nm, and 707 nm repump lasers. In terms
of accuracy, we periodically calibrate this wavemeter by referencing it to our 689 nm
laser, whose wavelength can itself be calibrated to an atomic signal to within 1 kHz
(App. A.4.2).

In addition to this high-resolution wavemeter, we use a lower-resolution Moglabs
MWM wavemeter for monitoring and stabilizing the auto-ionization laser’s wave-
length.

A.5 Arbitrary waveform generator (AWG) and acousto-optic de-
flector (AOD)

We use a Spectrum M4i.6622-x8 arbitrary waveform generator to produce the poly-
chromatic RF tones that generate and rearrange our tweezer arrays (Eqs. 2.123).
This card offers a 4-channel output with a bandwidth of 212 MHz, sampling rate of
625 MS/s, 16-bit resolution, and 2 giga-sample on-board memory. It plugs directly
into a x8 PCIe slot of a computer motherboard and is controlled via a MATLAB
SDK.
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The center frequency of our array signal is near 100 MHz and spans up to about
20 MHz in each direction. We pass the output of the AWG through a voltage-
variable attenuator for analog control of the signal amplitude, useful when doing
overall ramps of the trap depth. We then pass the signal through a 50 MHz high-
pass filter and a 150 MHz low-pass filter to remove harmonics. Finally, the signal is
amplified with a Mini Circuits ZHL-03-5WF+ 5 W RF amplifier.

This amplified signal is ultimately sent into our acousto-optic deflector (AOD), an
AA Opto-Electronic DTSX-400 coated for 800-850 nm wavelengths. This AOD
has a central frequency of about 100 MHz and a bandwidth of 36 MHz. It has
a relatively large aperture of 7.5 mm diameter. Its crystal is made of TeO2. The
acoustic wave excites the shear mode of this crystal, and has a speed of sound of
617 m/s.
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Appendix B

SOURCES OF POLARIZABILITY DATA

The formulas we have described for calculating polarizabilities (Sec. 2.3.1) in prin-
ciple require one to sum over all atomic states. However, RDMEs are generally only
known for a limited subset of states, with their values varying widely in the literature
and with large error. While a truncated sum-over-states approach using approximate
RDMEs can decently approximate most polarizabilities, it is often not sufficiently
accurate for determining or reproducing fine-tuned features such as magic wave-
lengths. Other, more advanced polarizability calculation methods [88, 89, 248, 249]
can produce more accurate results with an ab initio treatment, but are beyond the
scope of this work. We will, however, do our best to accurately reproduce certain
known results for polarizabilities in Sr with a sum-over-states approach.

For the states involved in the red transition (5s2 1S0 and 5s5p 3P1) near 515 nm, we
will attempt to reproduce the results from Ref. [89], which contains experimental
data from our group and is supplemented by ab initio polarizability calculations by
theory collaborators Marianna S. Safronova and Sergey G. Porsev.

Three experimental results regarding polarizabilities are notable from this work,
which used a trapping wavelength of 515.2 nm: (1) there is a magic ellipticity
parameter Wmagic = ±24◦ for the red transition, (2) the absolute ratio of vector to
tensor polarizability for 5s5p 3P1 was measured as |Uv |/|Ut | = 0.10(4), and (3) the
&-value was measured as &exp = −5.1(3), where its definition is:

& =
Us(1S0) − (Us(3P1) + Ut(3P1))
Us(1S0) − (Us(3P1) − 2Ut(3P1))

(B.1)

These three values are particularly amenable to experimentalmeasurement as they do
not require knowledge of the exact beam intensity or magnitudes of polarizabilities:
they all only depend on ratios of polarizabilities.
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The theory calculations in Ref. [89] give a recommended value (where “recom-
mended” means taking into account both ab initio theory results and previously
ascertained experimental results) of &th = −5.8+1.8−4.2, where relatively large frac-
tional uncertainty in & arises from only 2% uncertainty in polarizabilities. Thus,
the theoretical model and experimental results are consistent even with tight bounds
on theoretically determined polarizability contributions. We will therefore use the
theoretically determined RDMEs in Appendix Table I of Ref. [89].

A hindrance here is that RDMEs are given only up to certain low-lying states,
leaving significant polarizability contributions unattributed to any particular state
(this is not because the enumeration is incomplete, but because it becomes difficult to
attribute polarizability contributions to specific higher-lying states using the ab initio
model [250]). Accounting for these “other” contributions is easy at the particular
wavelength for which they are given, but it is unclear how to extend their contribution
to other wavelengths. Our approach will be to just add these “other” polarizability
contributions as wavelength-independent contributions within a particular window
of wavelengths. This is an admittedly crude approximation, but since the “other”
contributions come from higher-lying states, it is reasonable to assume that their
contributions vary slowly at wavelengths significantly longer than their resonance
wavelength.

Furthermore, vector polarizability values are not given for “other” states. We will
remedy this for 5s5p 3P1 near 515 nm by adding a wavelength-independent vector
polarizability such that |Uv |/|Ut | agrees with our experimentally measured value (the
sign of Uv will not be important to our discussions). After all of these modifications,
our model will predict a magic ellipticity parameter for 515.2 nm of 22.6◦ —
reasonably close to the experimentally measured 24◦.

A similar treatment will be done for the ground and clock states near 813 nm, this
time using data from Ref. [88]. As for 5s5p 3P1 near 813 nm, we will continue to
use data from Ref. [89], however the “other” contributions will be adjusted slightly
to match the known magic wavelength with 5s2 1S0 at 914 nm [98]. Namely, we
will decrease the “other” contribution to Us (which makes sense, as this contribution
should get smaller at longer wavelengths). The “other” contributions to Uv and Ut

—which are already small at 515 nm — will be neglected near 813 nm.

One more minor modification we add for all wavelengths is a “core polarizabil-
ity”, which is to good approximation purely scalar, wavelength-independent, and
state-independent [220]. A further, smaller correction is the “valence-core polariz-
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ability” [88] which is also approximately scalar and wavelength-independent, but is
state-dependent.

All sources of data and modifications made are summarized in Table. B.1. The
atomic unit of polarizability is au = 4202

0
�h

, where 00 is the Bohr radius and �h is the
Hartree unit of energy.

Values for... Sources Notes
495 nm – 535 nm
5s2 1S0 [89] Uother

s = 7.3 au included
5s5p 3P1 [89] Uother

s = 66.9 au,
Uother

t = 0.2 au included,
|Uv | corrected

Other states [89], [88], [87]
800 nm – 1070 nm
5s2 1S0 [88] Uother

s = 2.4 au included
5s5p 3P0 [88] Uother

s = 34.1 au included
5s5p 3P1 [89] Us corrected for

_magic = 914 nm [98]
Other states [89], [88], [87]
All wavelengths
Core polarizability [220] 5.4 au
Valence-core polarizability [88] -0.11 au (5s2)

0.15 au (All 5s5p states)

Table B.1: Summary of RDME and energy data used to calculate polarizabilities
presented in the following sections. For multiple sources, order determines prece-
dence in case of contradicting values (highest precedence → lowest precedence).
The atomic unit of polarizability is au = 4202

0
�h

, where 00 is the Bohr radius and �h is
the Hartree unit of energy.
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Appendix C

NON-PARAXIAL EFFECTS

The assumption that the polarization of a beam is the same at all points in space
is a good approximation for paraxial systems, which are optical systems whose
®:-vectors only form small angles to a common optical axis. In other words, this is
valid for small numerical aperture (NA) lenses. However, forming tight and deep
tweezers calls for high NA, so the paraxial approximation comes under question
here. In this section we will show how to compute aparaxial effects for high NA
systems and that such effects lead to distortions of the electric field profile as well
as polarization gradients near the focal plane. Our conclusion will be that for the
#� ∼ 0.5 used for this work, these effects can usually be ignored. However, higher
NA systems may require further consideration.

Non-paraxial fields near the focal plane of a lens are computed in Ref. [251], and
we restate the central result here. Two key factors differentiate this treatment from
the paraxial one: (1) converging wavefronts after the lens are treated as spherical
(instead of parabolic as in the paraxial approximation) and (2) polarization after
the lens is not assumed constant but instead everywhere tangent to the spherical
wavefronts, which introduces polarization in all components.

We assume an input Gaussian with central complex amplitude E0,8, waist F8, and
polarization n̂ (W) = cos W + 8 sin W. We will use the notation of Sec. 2.2, and further
define the cylindrical angle coordinate q as the angle from Ĝ. We let U be the angle
between the optical axis and a line from the edge of the aperture to the focus, such



242

that #� = sin(U). Now we define some integrals:

I0(A, I) =
∫ U

0
4
− 5

2 sin2 (\)
F2
8 48:I cos(\) cos1/2(\) sin(\)

(
1 + cos(\)

)
�0

(
:A sin(\)

)
3\

(C.1)

I1(A, I) =
∫ U

0
4
− 5

2 sin2 (\)
F2
8 48:I cos(\) cos1/2(\) sin2(\)�1

(
:A sin(\)

)
3\ (C.2)

I2(A, I) =
∫ U

0
4
− 5

2 sin2 (\)
F2
8 48:I cos(\) cos1/2(\) sin(\)

(
1 − cos(\)

)
�2

(
:A sin(\)

)
3\

(C.3)

Using these, the complex electric field near the focal plane is given (up to overall
phase) by [251]

®Ef (A, q, I; W) =
((

cos(W)
(
I0 + I2 cos(2q)

)
+ 8 sin(W)I2 sin(2q)

)
Ĝ

+
(

cos(W)I2 sin(2q) + 8 sin(W)
(
I0 − I2 cos(2q)

) )
Ĥ

−28I1
(
cos(W) cos(q) + 8 sin(W) sin(q)

)
Î

)
: 5

2 E0,8 (C.4)

We see that the electric field now has polarization components in all directions
despite the input having purely Ĝ polarization. Note that ®E 5 satisfies the full, non-
paraxial Helmholtz equation (∇2+:2)E = 0 for all of its components. In the paraxial
#� � 1 limit, I1 and I2 are negligible and I0 is the only contribution, returning
the focal field to purely n̂ polarization everywhere. Furthermore, one can show that
in this limit, the field amplitude reduces to that given by Eq. 2.6.

It is also interesting to calculate the intensity∗ � 5 =
1
22Y0 | ®E 5 |2, which would be the

only quantity of interest for trapping in the absence of vector and tensor polarizabil-
ities:

� 5 (A, q, I; W) =
(
|I0 |2 + |I2 |2 + 2 cos(2W) cos(2q)Re(I∗0 I2)

+4|I1 |2
(
cos2(W) cos2(q) + sin2(W) sin2(q)

) ) 2Y0:
2 5 2

8 |E0,8 |2 (C.5)

We note that this quantity is generically not axially symmetric — except for circular
input polarization (W = ± c4 ). This leads to an ellipticity in the trap shape that will
cause trap frequencies in two orthogonal radial directions to be slightly different.

∗Here, we maintain our definition of intensity as defined only by the electric field. However,
other conventions may define it as the total power density of the beam. In the non-paraxial regime,
these quantities are not exactly the same, see the coming discussion.



243

However, the total power density of the focal beam including contributions from the
magnetic field (not shown) is always axially symmetric [251].

The implications for trapping are mainly relevant for states with finite vector and/or
tensor polarizabilities, where changes in polarization across the trap can lead to
spatially varying polarizabilities, leading to trap light shifts that are effectively
nonlinear in the intensity. Given that these light shifts are also sub-state-dependent,
further complication arises if two states are otherwise degenerate and the polarization
gradients are the only source of degeneracy-lifting. Both of these concerns, if
troublesome, can be alleviated by adding a large external field that dominates over
such gradients, as was done in Ref. [36]. Ultimately, we have not found such
considerations to be important to this work, and a large magnetic field is often
desirable for other reasons anyway (Sec. 2.3.3).

As a final quantitative analysis, we plot I1/I0 and I2/I0 as a function of A at the
focal plane (I = 0), where non-paraxial effects are most significant. We do this
for #� = 0.5 and F8 equal to the aperture radius, which are the parameters most
commonly used for trapping in this work. The results are shown in Fig. C.1. We see
that, within regions where the atomic wavefunction is usually found (A much less
than a waist), these quantities are small.
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Figure C.1: Non-paraxial factors at the focal plane I = 0 as a function of A/F0,
where F0 = 2 5 /(:F8) = 2/(: #�) is the waist of the approximately Gaussian focal
field with F8 equal to the aperture radius, and #� = 0.5. The plot is independent of
choice of : .
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Appendix D

RYDBERG DIPOLE MATRIX ELEMENTS

Here we compute the dipole matrix elements between Rydberg states.

We begin with a general formula for reduced dipole matrix elements (RDMEs):

〈=, ;, (, � | |3 | |=′, ;′, (′, �′〉 =
(
− |4 |

∫ ∞

0
3AA3'∗=; (A)'=′; ′ (A)

)
. . .

· · · ×
√
(2! + 1) (2! + 1)

(
! !′ 1
0 0 0

)
. . .

· · · × (−1)1+(′+� ′X((′
√
(2� + 1) (2�′ + 1)

{
� �′ 1
!′ ! (

}
(D.1)

where 4 is an elementary charge and '=; (A) is a radial wavefunction such that the
full wavefunction of an electron orbital is given by

Ψ=;<; (A, \, q) = '=; (A).
<;
;
(\, q) (D.2)

with .<;
;

a spherical harmonic.

'=; (A) is difficult to compute for low-lying states, but there are several well-known
approaches for Rydberg states [196, 197, 199, 252]. We follow the approach of
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Ref. [252], which computes the integral directly:∫ ∞

0
3AA3'∗=; (A)'=′; ′ (A) = 3

200q=
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q = 60(B)
(
1 + W2 (1 + B

2
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+ 61(B)W(1 + W2) − sin(cB)
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W2 (D.6)

W = (;′ − ;) (;2/=2) (D.7)

B = =★ − =′★ (D.8)

60(B) =
1
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61(B) = −
1
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(D.10)

�U (G) =
1
c

∫ c

0
cos(U\ − G sin \)3\ (D.11)

where 00 is the Bohr radius and =★ is the effective principal quantum number
(Eq. 4.2).

Having computed the RDME, we can apply Eq. 2.22 to get the spherical components
of the full dipole vector operator:

〈=, ;, (, �, <� |3@ |=′, ;′, (′, �′, <� ′〉

=
1

√
2� + 1

〈=, ;, (, � | |3 | |=′, ;′, (′, �′〉〈� <� |�′ <′� ; 1 @〉 (D.12)

where 〈� <� |�′ <′� ; 1 @〉 is a Clebsch-Gordan coefficient and @ ∈ {−1, 0, 1}.

If desired, this vector operator can be transformed from spherical to Cartesian
components via

3I = 30 (D.13)

3G =
1√
2
(3−1 − 31) (D.14)

3H = − 1
8
√

2
(3−1 + 31) (D.15)
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Appendix E

STATE PREPARATION AND MEASUREMENT (SPAM) ER-
RORS & CORRECTIONS

Note: This appendix is an edited reproduction of Supplement C of our publication
Ref. [150].

At the end of a Rydberg excitation and auto-ionization sequence, we perform state
readout by imaging the absence (0) or presence (1) of atoms. We infer the final state
of the atom bymapping this binary detection value to the atomic state as 0→ |A〉 and
1 → |6〉. However, imperfections in state preparation, imaging fidelity, and state-
selective readout produce errors in thismapping. State preparation andmeasurement
(SPAM) correction attempts to isolate quantities of the pertinent physics (in this
case, Rydberg excitation) from such errors. In particular, we attempt to answer the
following question: Assuming an atom is perfectly initialized in the ground state
|6〉, what is the probability that it is in |A〉 after a certain Rydberg excitation pulse?

E.1 Preparation, excitation, and measurement processes

We begin by assuming that an atom/pair has been registered as present via imaging
at the start of the experiment and that it has no detected neighbors within a two-
tweezer spacing. If an atom/pair does not fulfill this criterion, it is omitted from
our data. For the sake of simplicity, we will assume that there are no errors in this
initial detection stage. In particular, the combination of high imaging fidelity and
high array rearrangement fidelity make errors in this stage exceptionally unlikely.

Imaging an atom involves a small probability that the atom will be lost, even if
it scatters enough photons to be detected. We denote by ( the probability that
a detected atom survives the first image. After this image, surviving atoms are
transferred from the absolute ground state |0〉 to the clock state |6〉 (the ground state
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Figure E.1: Probability tree for single-atom SPAM correction. Atomic states are
color-coded as blue for |0〉 (absolute ground state), red for |6〉 (clock state), purple
for |A〉 (Rydberg state), and dark-gray for lost. Quantities above arrows indicate
probabilities. The SPAM corrected quantity of interest, %2A , is highlighted in a
purple box.

of our Rydberg qubit) with a probability of successful transfer denoted by  . There
is a small probability ! that during this transfer, atoms are lost. The rest, which are
not lost but not successfully transferred, remain in |0〉 with a probability 1− ! −  .
The possibilities enumerated up to this point are represented graphically in Fig. E.1
under “Preparation.”

At this point, atoms that have been successfully prepared in |6〉 undergo Rydberg
excitation. In the single atom case, they end up in the Rydberg state |A〉 with
a probability %2A . For the two-atom case, assuming that both atoms have been
successfully prepared, there are four possible states in the two-qubit space, with
probabilities given by %2AA , %2A6, %26A , %266. Our ultimate goal will be to solve for these
values, which we call “SPAM-corrected,” indicated here with a superscript 2.

In the two-atom case, there is the possibility that one atom is successfully prepared
while the other is not. In this case, we expect the successfully prepared atom to
execute single-atom dynamics. In the case of Rabi oscillations, the Rabi frequency
will be reduced by a factor of

√
2. We can thus estimate the Rydberg excitation
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probability of the prepared atom as %2A∗ ≡ %2A |ΩC=c cos2(ΩC/2), where Ω is the
single-atom Rabi frequency and C is the pulse length. Of particular interest are the
cases ΩC = c/

√
2 and ΩC = 2c/

√
2, corresponding to the two-atom c and 2c pulses,

respectively.

After excitation follows measurement, which involves making Rydberg atoms dark
to imaging (i.e., either putting them in a state that scatters no photons or expelling
them from the trap) and imaging the remaining bright atoms. In our case, we make
Rydberg atoms dark via auto-ionization. We denote by � the probability that a
Rydberg atom is successfully made dark to imaging. Furthermore, we denote by
�0 the probability of correctly imaging the absence of a bright atom (true negative)
and by �1 the probability of correctly imaging the presence of a bright atom (true
positive). 1 − �0 gives the probability of a false positive, and 1 − �1 gives the
probability of a false negative.

Let%1 be the probability of an atombeing detected as present (bright) at the end of the
experiment, and similarly let %00, %01, %10, %11 be the corresponding probabilities
for atom pairs (with the sum of these being 1). These are the raw, measured values
referred to as “uncorrected” hereafter.

E.2 Determining SPAM probabilities

We now discuss the determination of the various probabilities discussed. While
some of these quantities are directly measurable, some must be estimated from
measurements that themselves need SPAM correction. All probabilities entering
into SPAM correction calculations are summarized in Table E.1.

Probability Symbol Value
Imaging true negative �0 0.99997(5)
Imaging true positive �1 0.9988(7)
Uncorrected survival (0 0.9979(3)
Corrected survival ( 0.9991(7)
Uncorrected |6〉 transfer  0 0.997(1)
Raman scattering to |0〉 ' 0.00104(1)
Corrected |6〉 transfer  0.998(1)
Loss during |6〉 transfer ! 0.0008(8)
Rydberg state detection � 0.9996(1)

Table E.1: SPAM probabilities entering our calculations.
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We determine �0 and �1 by analyzing the histogram of detected photons from a
typical set of images, similarly to the method described in Ref. [89]. The histograms
have a zero- and one-atom peak, and we determine false positives and false negatives
by the area of these peaks that extends beyond the binary detection threshold. Loss
during imaging that leads to false negatives is also taken into account in �1 [89].
Error bars are given by the standard deviation across the array.

We determine ( by taking two consecutive images. We measure the value (0,
defined as the probability of detecting an atom in the second image conditional on
its detection in the first. Obtaining the true value of ( from (0 requires correcting
for false positives and false negatives in the second image (where we assume that
false positives in the first image are negligible). One can write (0 as the sum of
atoms that survived and were correctly positively identified and that did not survive
and were incorrectly positively identified. Solving for ( gives:

( =
(0 + �0 − 1
�0 + �1 − 1

(E.1)

Note again that here we assume a 100% probability of an atom being present in
the first image due to rearrangement (instead of the 50% probability assumed in
Eq. 2.115).

By a similar procedure, we determine  from a value  0 measured by performing
state transfer, using a ground-state push-out pulse as described in Sec. 3.1.3, re-
pumping to the ground state, and measuring the probability of detecting an atom
in a subsequent image. To obtain the true  , we correct  0 for imaging errors
as well as survival probability after imaging. We furthermore modify  with the
probability ' that a successfully transferred atom goes back to |0〉 due to trap Raman
scattering in the time delay between state transfer and Rydberg excitation. We esti-
mate ' = 0.00104(1) by a measure of the lifetime in the clock state at our tweezer
depth [116]. We obtain:

 =
 0 + �0 − 1
(0 + �0 − 1

(1 − '). (E.2)

We note that the total clock state preparation fidelity, an important quantity on its
own, can be expressed as F SP = ( = 0.997(1). To measure the transfer loss
probability !, we perform state transfer without a push-out pulse, then repump
atoms to the ground state, and measure how many were lost (again correcting for
imaging loss and imaging errors).
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Finally, we determine � by comparing the measured auto-ionization timescale to
an estimate of the Rydberg lifetime, as described in Sec. 4.1.3.

E.3 Correcting the single-atom excitation probabilities

We are now ready to solve for %2A in terms of the uncorrected value %1 and the
various SPAM probabilities. For clarity, it will be convenient to define variables for
the populations of the four possible single-atom states that an atom can be in at the
end of Rydberg excitation: lost, |0〉, |6〉, and |A〉. We will call these populations ?; ,
?0, ?6, and ?A , respectively, with their values determined by the probability tree in
Fig. E.1 and summarized in Table E.2.

We can write %1 as a sum of true positive identifications of bright states plus false
positive identification of dark states (see “Measurement” in Fig. E.1). In terms of
the values defined so far, we have:

%1 = (?0 + ?6 + ?A (1 − �))�1 + (?; + ?A�) (1 − �0). (E.3)

Substituting in the full expression for the populations from Table E.2 and solving
for %2A , we obtain:

%2A =
(�1 + (1 − () (1 − �0) − !((�0 + �1 − 1) − %1

 (� (�0 + �1 − 1) . (E.4)

For the single-atom short-time Rabi oscillations reported in Table 4.3, we observe
the bare values of %1(c) = 0.0049(9) and %1(2c) = 0.9951(9), yielding SPAM-
corrected pulse fidelities of F SPAM(c) = %2A (c) = 0.9967(9) and F SPAM(2c) =
1 − %2A (2c) = 0.998(1), respectively.

E.4 Correcting the two-atom excitation probabilities

For the two-atom case, there are 16 possible states for an atom pair. Similarly
to Table E.2, we can write the populations of each of these states in terms of the
survival and transfer fidelities in Table E.1, as shown in Table E.3.

State Symbol Value
Lost ?; (1 − () + (!
|0〉 (absolute ground state) ?0 ((1 − ! −  )
|6〉 (clock state) ?6 ( (1 − %2A )
|A〉 (Rydberg state) ?A ( %2A

Table E.2: Possible states for a single atom. Note that the sum of these populations
equals unity.
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We now write the experimentally measured quantities %10, %00, and %11 in terms of
the values in Tables E.1 and E.3. For notational simplicity, we define �̄0 ≡ (1−�0),

States Symbol Value
Lost, Lost ?;;

(
(1 − () + (!

)2

{Lost, |0〉} ?;0
(
(1 − () + (!

)
((1 − ! −  )

{Lost, |6〉} ?;6
(
(1 − () + (!

)
( (1 − %2A∗)

{Lost, |A〉} ?;A
(
(1 − () + (!

)
( %2A∗

|00〉 ?00 (2(1 − ! −  )2
{|06〉} ?06 ((1 − ! −  )( (1 − %2A∗)
{|0A〉} ?0A ((1 − ! −  )( %2A∗
|66〉 ?66 (2 2(1 − %2A6 − %26A − %2AA)
|6A〉 ?6A (2 2%26A
|A6〉 ?A6 (2 2%2A6
|AA〉 ?AA (2 2%2AA

Table E.3: Possible states for two atoms. Note that the sum of these populations
equals unity. Terms inside {} have an implied symmetric partner, e.g. ?0; ≡ ?;0.
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and similarly for �1 and �:

%10 =?;; (�̄0�0)
+?;0 (�̄0�̄1)
+?0; (�1�0)
+?;6 (�̄0�̄1)
+?6; (�1�0)
+?;A (�̄0�0� + �̄0�̄�̄1)
+?A; (�̄0��0 + �1�̄�0)
+?00 (�1�̄1)
+?06 (�1�̄1)
+?60 (�1�̄1)
+?0A (�1��0 + �1�̄�̄1)
+?A0 (�1�̄�̄1 + �̄0��̄1)
+?66 (�1�̄1)
+?6A (�1��0 + �1�̄�̄1)
+?A6 (�1�̄�̄1 + �̄0��̄1)
+?AA (�1�̄�0� + �̄0��̄1�̄ + �̄0�0�

2 + �1�̄1�̄
2),

(E.5)
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%00 =?;; (�2
0 )

+?;0 (�0�̄1)
+?0; (�̄1�0)
+?;6 (�0�̄1)
+?6; (�̄1�0)
+?;A (�2

0� + �0�̄1�̄)
+?A; (�2

0� + �̄1�̄�0)
+?00 (�̄1

2)
+?06 (�̄1

2)
+?60 (�̄1

2)
+?0A (�̄1�0� + �̄1

2
�̄)

+?A0 (�̄1
2
�̄ + �0��̄1)

+?66 (�̄1
2)

+?6A (�̄1�0� + �̄1
2
�̄)

+?A6 (�̄1
2
�̄ + �0��̄1)

+?AA (�̄1
2
�̄2 + �0��̄1�̄ + �2

0�
2 + �̄1�̄�0�),

(E.6)
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%11 =?;; (�̄0
2)

+?;0 (�̄0�1)
+?0; (�1�̄0)
+?;6 (�̄0�1)
+?6; (�1�̄0)
+?;A (�̄0

2
� + �̄0�1�̄)

+?A; (�̄0
2
� + �1�̄�̄0)

+?00 (�2
1 )

+?06 (�2
1 )

+?60 (�2
1 )

+?0A (�1�̄0� + �2
1 �̄)

+?A0 (�2
1 �̄ + �̄0��1)

+?66 (�2
1 )

+?6A (�1�̄0� + �2
1 �̄)

+?A6 (�2
1 �̄ + �̄0��1)

+?AA (�2
1 �̄ + �̄0��1�̄ + �̄0

2
�2�̄ + �1�̄�̄0�).

(E.7)

Note that %01 = 1 − %10 − %00 − %11. Thus, with the three above equations, we can
solve for %266, %2A6, %26A , and %2AA in terms of the experimentally measured values %00,
%{10}, %[10] , and %11 (reported in Table 4.3). The full analytic expressions for these
solutions are cumbersome and not shown.
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