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FORTVORD

Methods of investigation of pure torsion differ
in many wzys from the general method of procedure for other
types of stresses, First it is very difficult to subject a bo-
dy to a pure torsion without superposing bending moments; sec-
ond the exact determination of twisting moment is in most cases
very doubtful; third, a body subjected to torsional shearing
stresses in general does not deform according to a simple law,
out this deformation is ususlly a function of the geometry of
the hody.

It is convenient to study the torsion of iso=~
tropic bodies under - three different types:

a) Fodies of solid section where the stresses are
distributed throughout the area in seccordance
with a certzin law,

b) Podies of cylindrical shell type where the stress-
es are a function of the boundary only, or in
other words the thickness of.the shell 1is small

in comparison with the other dimensions, so that



the assumption of uniform stress distribution
over the thickness of the shell is reason:bly
Justified,

¢) Ruilt-up sections where the individual parts

; of

=

can be anzlyrsed separately ane vy tae lav
superposition or the method ol least work the
stresses and the deformations of the vhoule bo-
dy can be determined,

One of the problems of designing is to determine
the rigidity of the given structure and at what approximate
load failure will occur,

hxperiments have shown that in the type b) and c¢)
we have two distinct cases: First, it has been found that
up to a certain loading the geometrical characteristics of
these bodies are not changed and the deformations remain
small, and when additional load is apylied a sudden incr-
ease of deformation is observed accompanied by buckling.
This state 1s generally called the first stability limit.
Second, the other limiting load can be defined as that at
which permanent deformation remsins after the load has been
removed, The above leads ué directly to the problem of an
elastic stability which has not yet been solved,

Lack of the exact theory by which we can predict
even the first stability limit prevents an engineer from

predicting at what load failure of the structure may occur,



In the type a) it is safe to assume that the failure gene-
rally will occur when the shearing stresses have reached

a certain value which is charactericstic of the given mateir=~
ial, but in the types b) and e) stability is the primary
cause oi failure.

The aim of this paper is to give to the desigh-
er semi-empirical formulae by which he can judge the rela-
tive magnitude of the stresses and defornations of vari-
Cus types of airfoils under the assumption that the tor=-
sional stresses are taken by the\skin alone and to show
that this assumption is reasonably justified and that the
order of magnitude of the computed values for deformution
agrees.with the order of magnitudes of experimental data.
Furthermore, it should be noted that this analysis holds

only up to the first stability linit,



WWTEODS OF ITVESTIAATION

It has been shown by J,R.%Wheatley ( .4.C.A.
Technical Tote ; 366) that the best method of analysis is

Prandtl's Ifembrane inalogy which gives the formula:

g t o= (1)

Furthermore the angle of twist in radians 1s given by:

8= 2 (2]

- (2A)

where S is the unit shearing stress; t the thickness of
the shell, M the torsionsl moment, Anthe total area of the
crosgs section, B thne angle of twisf in radians per length
L, G the shear mogulus and P the total perimeter of the
section.

It can be seen from equation (1) that the stress
is a function of the area, and from equation (2) that ©
ig a function of the area and the perimeter,

In order to simplify engineering computaticns
in the case of airfoils the two variables A and P can be
expresced in terms of different parameters which can be
more readily obtained. In order to do this 14 of the most
commonly used zirfoils have been investigated, namely:
Clark V=21, Clark Y-18, Clark Y-15, Clark Y, G-387, -6
17-12, USA-35-4, USA-35-B, USA-27, USA-5, RAF-15, -9, and

N-10, Tach section has been plotted, using 100 ingh chord,



The areas were measured by the planimeter and the peri-
meters were scgled by dividers, the tabulated results
being the mean of four readings, and are correct with one
rer cent, Investigations were carried out:
a) for total cross section, C to 1005
chord, table I and figure 1,
b) for the front part of the section up
to 30% chord, table II and figure 2,
c¢) for the middlé part of the section
from 307 to 65% chord, table III fig.3

d) from 65% to 100% chord, table IV fig.4



Airfoil

C-Y-21
0-Y-18

C-Y=-15

146

12
USA-35-4
USA=35-B
USA=27
USA-5
RAF-~15
N-9

N-10

M -

TABLE

I

0-100% Chord

21
18

11,7
15,15
12
11.85
18,18
11.58
11,04
6,58
6.38
8.46
11,22

i

FT

- M
S t3x L =3X 0L XnXC ~ +/14 nxge

g = ML P NI
Gt (2A*G t T[ax.701xnxC)t -

A kp Al Zerr, I%
1457 ,694 1470 -0.o 210.1
1249 .694 1260 <-0,9 208.4
1040 (694 1050 =0.9 206.9

810 .693 820 -1.2 204.8
1015 .668 1060 - -4.2 207.9

855 .712 841 41.6 204.2

837 .706 831 40.7 204.1
1226 .676 1274 -3.8 209.8

799 673 8l2 =4.,1 205.5

811 .734 774 £4.8 205,0

463 734 448 43,3 202.6

475 745 448 ¥6,0 202.4

586 .693 592 ~-1,0 203.0

782,700 784 *0,2 204,3

k=701 205.0

= (3)
_ ML _2.05C 104 ML
CitrnrxC
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Figure 1.

h is the maximum ordinate, t is the thickness, A is the
total area, k) is the coefficient of area and is defined
: . - A
ATk, Cxh . In our case ks TO0XE
are plotted against h and the straight line is drown thru

On figure 1A the areas

all the points, the slope of which come out to be ,701,
This value corresponds to the mean value of all the kA's.
A' is equal to k¥ C h or ,701 Can,

In each case the percentage of error in A' have been com-
puted by the formula % err=2rA-X100, which is tubula-
ted in the column 5, Pt is the total perimeter, the mean
value of which for all sectiohs considered may be set at
2,05 C, Substituting the above wvalues for arsa and the
perimeter in the equations (1) and {2) we obtain the equ-

tions (3) and (4).



Airfoil

C-Y-21
c-Y-18
C-Y-15
Cc-Y
G-387
M-6
M-12
USA-35-A
USA=35-3
USA-27
USA-5
RAF-15
N-9

N-10

= M.
St=gm = 2x,82

M
e T

TABLE II

0-30% Chord

Gt

h A k' A'  Zerr. E !
21 513 .815 517 -0.8 88,5 1,735
18 441 ,816 443 ~0.5 84,4 1,757
15 365 .815 369 <-1,0 80.2 1,780
11,7 286 .216 288 =0,7 75.2 1,800
15,15 377 .829 373 4.0 81,3 1,800
12 284 ,790 295 -2,8. 75,4 1,795
11,85 281 ,790 202 =-2,8 75.2 1,795
18,18 452 .829 447 +l.4 85,5 1,775
11,58 287 .826 285 +0.7 75.8 1.820
11,04 273 ,825 272 +0,4 74,8 1,815

6,38 162 .847 157 +3,0 68,6 1.800

6.38 165 .£63 157 +5,0 67.9 1,865

8,46 208 .8l9 208 0.0 70.9 1,840
11.22 274 .615 276 0.7 74.4 1.806

K =,820 p=1,805
SEYE T O EXD (5)
B gty =67 B (6)
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Table II is computed 1n the similar way as

the table I, except that k' is defined Xk's hAb
b
b is used because it seem to be more logical parameter

then C, Py is the total perimeter insluding ordinate &t
~el
30%

chord, and p' is defined by Ptz p' (b4 b)), and p is

the mean value of p*,

Again the above values are substituted in the

equations (1) and (2} and we get equations (5) and (&)



Airfoil

C=Y=-21
C-Y=-18
C-Y-15

M=-12
USA-35«A
USA=35-B
USA=27
USA=-5
RAF=15
K=-9

¥-10

21
18
15
11,7
15,1¢
12
11,85
le.18
11,58
11,04
6,38
5,9
8,46

11.22

TABLE III

14,8
12,67
10,58
8,25
79,84
8.8
.8,8
11,36
7.56
8,64
4.8
5,0
5,76
7.81

M

2X1,051 hxb

M1 2,005(h+Db)

7=60% Chord

17.2 662 1,056
15,33 570 1,061
12.79 478 1,066

9.97 366 1,048
12,51 487 1,043
10.4 391 1,073
10,3 379 1,051

14,77 551 1.065

9,57 352 1,050
9,84 353 1,040
5,59 197 1,007
5,45 187 1,033
7.11 264 1,062
9.56 355 1,062

rmt—.

k =1,051

3
= 416

hab

Gt (2Xx1.06L n o)t - *

453

A'  Zerr,
659 +0.7
564 41,0
471 41,5
367 -0,2
471 .3.0
383 12,0
379 0.0
544 31,4
352 0,0
362 -1,0
206 -~4,0
200 1.8
262 +0,7
352 = 0,7
(7)
(b)) ¥L
hY b+ G

-

.
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Just as the tables I and II table III ie compu-
ted except that h is taken as the mean value of hzg and hgg

The equations obtain are {7) and (8).



TABLZ IV

657=100% Chord

2

86,7
84,1
817
79.3
8l,.2
79.9
79.3
?5.4
78,6
79.6
75.2
75.2
76.2
76,6

1

—
w

Airfoil  n" Awt k' A%a Zerr.
C-Y-21  14.8 282 ,544 290 -2.7
C-Y-18 12,67 238 ,536 249 -3.6
c-¥-15  10.58 197 ,532 207 —4.8
c-Y 8,25 154 ,533 162 4.9
3-387 9,84 181 ,528 193 -5.8
-6 3.8 180 .584 193 +4.9
1-12 8.8 177 ,575 173 +2.,0
USA-35#A 11,36 223 .560 223 0,0
USA-35-B  7.56 140  ,522 148 -5,6
JSA-27 8.64 180 ,594 170 +5.9
USA-5 4,8 104 ,620 95 +9.5
RAF-15 5.0 113 ,646 98 +15.2
N-9 5.76 114 ,556 113 =-0.9
¥-10 7.81 153 ,560 153 0.0
k =, 560
St= ?f 2X.56thb = 892 o
0= 7% (gA‘)" P = .ol =

Gt‘ﬁb*hbq

(10)
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Table IV.is obtained in previously described
manner, But it is felt that percentage of errcr involve
in A' ig¢ high and in praoticekhe ares of a given section

cen be estimted better directly then paremetricly.



14.

SAPIRININTAL CHBCT OF PRANDTL'S FORIULA

Tirst attempt to check the validity of DPrandtl's
formula has been made by using experimental cata published
by S.von Fakla in the ITuftfghrtforschung, vol.4, book 1,
rage 3¢; Iunchen, 19236,

The wing tested was 190 cn, long Wiﬁﬁ 1w wpars
and 20 ribe evenly spaced, The other properties of the sec~-
tion are given in figure 6, Curve (1) gives the angle in
degrees ¢f twist per 180 cnm., of the model without the skin.
The curve (2) gives the angle of twist with the paper co-
ver over the ribs, The curve (3) givés the sngle using
.08 cm, plywood cover,

| It can be deduced from the character of the
curves that theé.spars and the ribs contribuﬁivery little
to the regidity of the model.

If we tzke the following values;

¥ = 10 cm.=-Kg, C = 20 cm, h=1.7 cu
t = .08 cm, G =30000 Kg/em. L = 150en.

and substitute in the equation (2) we get

e° ~ 1.04X10X57,3%150 — .642 degrees

30000 X.08 X (1.7)EX20 —

This is too low, The curve gives zbout 3 degrees, but
with the spars and ribs included, hence we should expect

slightly more than 3 degrees,



For the second eet of experimentsl data the autor is iu-
debted to the Morthrop Aircraft Co., Burbank, Cal,

A full size wing of the Alphae plane hove been
tested. The wing was of monocoque constiuction having ¢
ribs and longitudinsl stiffeners., The _lan of the wing is
showvn by dotted line on figure &, At the root C-¥Y-13 sec-
tion was.used with 100" chord, The wing has gradually ta-

per bvoth in the 3

[

lan and the thickness so that at the tip

t

the section was C-Y-11,7 with the chord of 66 inches.
For the purpose of this analysis it hus been
assumed that the wing isbbuilt-up of hollow cylinders .
which a constant cross section between édjacent ribs and
egual to the section which corresponds to the stations
# 1, #2, 4 3, etc. It is also assumed that the sileron
has no effect on rigidity of the wing.
Table ¥V was computed in the following manner:
Column 2) C" is the chord ir inches
3) h" is the maximum ordinate in inches,
4) A is the totul area of the cross section cou~
puted by the formuls A 1.694 Ch ( this coeff-
icient corresponds to fhe Clark Y family of airfoils.
E) is the perimeter invper cent of chord., Values

are obtailed from Dr, Xlein's charts.

8) T" is the perimeter in inches
7) A' is the area of theaileron zsction. It has

been found that th.oaileron is located at 83.9%

chord and the areas were computed on the assum-



8)

Column 9)

11)

12)

13)

14)

v

'....l

ption of triangular cross section.
is the effective area, and is eguzl to the dif-
ference between column 4) =nd colurmn 7).
Table VA

ig the rib number
is the thickness of the shell, Up to the rib 3
for 74.5% chord t egusls ,040 in, and 125.5%
cherd 1is 0,032 in, or average t is ,035 in.
From rib 3 to rib 5 the average t is ,C357;
and from rib 5 to the tip t is ,028l inches.
Twisting moments applied to the wing are shown
on figure 5, ¥ is the total moment in in-lbs.
at given section,

B‘ is the angle in radians and was obtaled
by using equation (2)
is the totsl angle of twist for a given section.

It can be seen that the total deformation at. the

riv 8 is ,0085230 radians. Since there is no momemt between

rib 8 and rib 9 the same deflection is assumed for the tip,

The chord at the tip is 66 inches long, therefore the def-

l%k&on should be ,0C5230 X66 or ,345 inches. The experi-

mentsl value is .70 inches,

~~
v

€



17.

L
/)
I
10

IS | N

!

| 21040 in-lb

12
IR - E

/

14
)

-~
= =
£ c
Q .L,
2 N
e 1y
N -
# == _
_ I B S
! ! =2
! _ <
! : P T—
i ! ] -
l 1 |
[ | |
i 1 |
I | |
| | |
= o | __ ]

S |i ! |
= O”L o .o“ < 5“ o
tur»ﬂ_ |

als |
p el | _
ujo | !
1

1 | _

I i :

I ] |

] 1 i

i | i

i el ——
P o i T
@
e—23.5 —e— 235 —m«— 235 -

in by

<— 235 > 23.§ =1+ 235

-1 235

e 23,625 —

188.125"

m.mw 5.

66"




1

Sta.
4]

jav]

© O 2 O O, s~ W,

10
1l
12
13
14
15
16

o
o
100,00
97.88
95,75
95,62
91,50
89437
87.25
85,12
83,00
80,87
.75
76,62
74.50
72,37
70,25
88.12
66,00

1250
1183
1094
1022
952
886
824
769
708
653
602
565

465
424
386

363

TABLE V

PIC
207.8
207.5
207.3
207.0
206,9
189,6
179.1
178.8
178.,4
178,1
177,7
177,3
177,.0
176,7
176,3
176,90

175,7

pr
207.8
203,1
198,4
193.7
189,2
160.6
156,2
152,0
148,0
144,0
139.8
135,7
131.8
127.8
123,9
119.9

115.¢9

18.
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10
(24

)7.
5598000
4178000
2849000
2144000
1563000
1201000

785000

ll
-tl'

TABL® VA

12

L"

2345

13

v AL
M- i

130840

82680
82680
47110
47110
21040
21040

14 15

6 rad. Gkrad.
.000930 .000930
000695 .001625
. 000877 .002802
.200629 .003131
.001032 004163
.000568 004731
.000499 005230
.005230

1lg,
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DISCUSSICY OF RESULTS

All conmputed values of deflection are much
smaller then those which have been found experimentszly,
The author feels that data obtzined by Fakla are not re-
liable, In his report there is a lack of description of
the set up and the manner in which the experiments were
performed, All that can be inferred is that the testing
model was in a horizontal position, that the loads were
applied at one edge of the free end and that the other
edge was attached to the celing by means of a spring bs-
lace, Such a set up implies that the elastic center is
at mid=-point of the section, It is however known that this
ig not generally the case for airfoils, There is then a
posibility that a verticszl component of force was present
when the coupnle was applied., Farthermore the questicn of
fixed end is not discussed properly, and it is not known
haw rigidly the modelkswas attached, And finally the dimen-
sions of the model wowdd seem to be ocut of proportion., A
specimen which is 150 cm. long and only 20 cm. wide and
of 1,7 cm, maximum thicimness and made out of wood,; propab-
ly is too flexible for this experiment,

On this bases it is very doubtful Fakla's
data can be used as an experimental check of Prandlt's

formula,

el.
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In the case of the Worthrop wing thie calcu-
lated value is about 509 smaller than the observed value,

Zut in Northrop report it is stated thut due to the set up

of the experiment it is poszible that from 257 to 507 of the

observed deflection is in the supporting Jjig and not in the
wing, There is another possibility of experimental error,
Two equal forces in opposite directioc were applied at the
leading ancd the trailing edge respectively. Hence the assum-
ption that the elastic center is at the mid-point of the
section is also made in this case. Due to this method of
loading we can not be certain that the two forces are ex-
actly equal, therefore a linear deflection may occcur in ben-
ding, which would greatly incresse the apparent angular
twist, This would be further agcrivated by the fact that

readings were taken at rib 9 in place of rib 8 for which

computations were made,



