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ABSTRACT

In Euclidean space Rn, a set is convex if the set contains every
straight line segment whose endpoints are in the given set. Suppose
that a set C consisted of convex sets in Rn, and that for any choice of
n+1 sets in C the n+1 sets had a point in common. Then Helly's
theorem states that any finite number of sets in C have a common point.
(n+1) is known as the Helly number of convex sets in R". One may ask
if unions of k convex sets have a similar Helly's number. This paper
puts convexity in the abstract, and imposes conditions on a set A
(consisting of sets that are unions of k convex sets) such that A can be
shown to have a Helly's number. This paper also considers an abstraction
of the notion of ""polygonally connected sets' from an abstract convexitist's
point of view.

In showing that certain sets of unions of convex sets have an a
Helly's number, a special case of a generalized pigeon hole principle
is used. This paper also proves two generalized pigeon hole principles,
and in many cases gives the best possible results. Both generalized
pigeon hole principles make the following assumptions on a matrix A:

(1) there are n rows

(2) each row has at most £ zero's

(3) every submatrix of A, that does not have any zero entries,

has at most k distinct (not identical) rows

(4) that numbers h and/or t are given.

One generalized pigeon hole principle states there exists a function

xa(h, k, £) such that if n > xa(h, k, £), then there must exist some h+1
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columns such that along every row of the matrix those h +1 columns
have the same entry with possibly ¢ exceptions. The other generalized
pigeon hole principle states that there exists a function xe(h, k, £, t) such
that if n = xe(h,k, £, t), then there must exist some sh +t (s > 0) columns
that can be partitioned into s sets of columns such that it is possible to
make suitable changes to the zero entries in each of these sh +t columns
in order to make those s sets of columns into s sets of equal columns.
It is also shown that for certain values of h, k, ¢, and t that

xa(h, k, £) = hk+1 and xe(h, k, £,t) = kh +t +(k-1)2. It is also shown that
there exists examples such that xe(h, k, £,t) > hk +t +(k-1)£.



In any Euclidean space, a set is convex if the set contains all
line segments whose endpoints are in the set. In an n-dimensional
Euclidean space, the intersection of all the sets in a finite collection
of convex sets is not empty if and only if every intersection of n+1
(or fewer) convex sets in the collection of convex sets is not empty
(Helly's theorem). If (n+1) had been replacéd with any smaller number,
the previous sentence would not have been a true statement. (n+1) is
known as the Helly's number for convex sets in an n-dimensional
Euclidean space. The question arises asking if collections of sets
that are unions of two (or three, or four) convex sets have a Helly's
number in an n-dimensional Euclidean space. Unless those collections
of unions of k (1 < k < =) convex sets have some additional condi-
tions imposed on them, the answer in genefal is no. Drs. Motzkin
and Griinbaum, were the first to impose conditions on collections of
unions of two convex sets that implied the collection had a Helly s
number. Drs. Griinbaum and Motzkin proved their results in an
abstract setting, and showed that their results were the best possible
given only their given conditions. They imposed similar conditiéns
on collections of unions of three (or four, or five, etc.) and conjectured
that they also had a Helly number, and furthermore they conjectured
what the best possible results would be. Their conjecture was
obvious for one-dimensiénal Euclidean spaces. Dr. Larman showed
that their conjectures were true for unions of three convex sets in

Euclidean space. This paper, among other things, proves in the
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abstract both of Grinbaum and Motzkin's conjectures, except for
(ironically) the special case of the best possible results when the
Euclidean analog of our abstract space is one~dimensional. This
paper also relaxes the conditions imposed by Drs. Griinbaum and
Motzkin, and proves results that are more general than those
originally conjectured.

This paper is divided into two chapters. The first chapter
proves an extension of the pigeon hole principle. A special case of
the pigeon hole principle (Section 4, Chapter I) will be used to prove
an extension of Helly's theorem (see previous paragraph). The
second chapter will extend the notation of polygonally connected sets.
The second chapter will also prove the indicated extension of Helly's
theorem, and give some indications of the differences between the
conditions I imposed and the conditions imposed in Drs. Motzkin and
Grinbaum's conjectures. In this paper, the extended Helly's theorem
looks like a contrived application of an extended pigeon hole principle
developed in Chapter I, but the extended Helly's theorem was con-
jectured first. I will admit, however, that I decided on a method of
proof before trying to prove the extended Helly's theorem. [I was
working under the assumption that a reasonable line of reasoning
would either lead to a proof or to a counter example.] My method of
proof tacitly led to proving or assuming that a special case (Section
4, Chapter I) of the extended pigeon hole principle was true.
Eventually I proved the extended Helly's theorem and was urged to

expand and if possible prove the extended pigeon hole principles that I
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had used to prove the extended Helly's theorem. I succeeded,
and obtained better results than I had at first expected to be

true.
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ERRATA

Through both Chapter I and II, my typists read my « (the Greek
letter Kappa) as a script K. Hence K (A ]X) is an integral valued function
and not a set of sets.

In Theorem 23 P; = {Hi, (Z ~ Hi), ¢}

The leading paragraph of explanation in Section 3 of Chapter I
should have been deleted. It was a leftover from a constructive grind-
out proof using Algorithm #1 and Algorithm #2 instead of a simplified

inductive proof.
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CHAPTER I: A Generalization of the Pigeon Hole Principle
Introduction:

The classical pigeon hole principle can be stated in many forms.
Two forms of the pigeon hole principle are of particular importance

to us in the sequel, they are:

Form 1: Assume that n letters have been delivered to at most k
addresses. If n = hk + 1 then one addressee has at least
(h + 1) letters.

Form 2: Assume that n letters have been placed in at most k mailboxes,
and subsequently up to h letters have been removed from each
of those mailboxes. If n = hk +t (t > 0), then at least t

letters are remaining in the mailboxes.

A generalization of this principle will be proven in this chapter,
and a special case of this generalized pigeon hole principle will be
used in Chapter II to help prove a conjecture made by Dr. Griinbaum
and Dr. Motzkin. This generalization of the pigeon hole principle will
be stated in the second section of Chapter I. This generalization will
have two forms that will correspond to Form I, and Form 2 respectively.
The rest of this introdﬁction will reformulate the classical pigeon hole
principle in several ways. Eventually, the reformulations of the
pigeon hole principle will lead to the generalized forms of the pigeon

hole principle that will be presented in this paper.



If the columns of a matrix are identified with the letters to
be delivered, and if the entries in each row of a column correspond to
part of the address that column's letter was sent to (i.e., every mail-
box would have its own special r-digit zip code, and listing the
sequence of digits uniquely identifies the mailbox the letter was sent
to), then Form 1 and Form 2 can be rewritten in the following two
forms:

Both forms assume a matrix with n columns (letters),. which

contains at most k unequal columns (different addresses).

Form 3: If n = hk + 1, then at least (h + 1) columns of the matrix are
equal to each other.

Form 4: If n = hk +t (t > 0), then for some positive integer s, there
exists (sh + t) columns of the matrix for which the submatrix
consisting of those (sh + t) columns contains at most s

unequal columns.

The next reformulation is based on the fact that a matrix has
at most k unequal columns iff every one of its submatrices has at
most k unequal columns. The common assumption of Form 3 and
Form 4 can thus be changed to read:

Both forms assume a given matrix of n columns, for which
every submatrix of the matrix contains at most k unequal columns.

The final reformulation has no change in content, and again

affects only the common assumptions.



Common assumptions: A matrix is assumed
(1) to be zero free (i.e., no entry equals zero)
(2) to have n columns
(3) to have no zero-free submatrix with more than k unequal

columns.

Conclusions: The same as Form 3 and Form 4.

The mention of zero-entries points to the generalization at
the pigeon hole principle. The given matrix will be allowed to have
exceptional entries, which for convenience may as well be zero. Part
(3) of the common assumptions will then have more (at least different)

significance.

The Generalized Pigeon Hole Princigle

In addition to the three positive integer valued parameters n,
k, and t, used to describe the classical pigeon hole principle, a
further (non-negative) integer valued parameter ¢ is introduced. The
classical pigeon hole principle will correspond to the value ¢ = 0.

The generalized principle will consist of two forms, which are

based on the same assumptions.

Common assumptions: A matrix is assumed with the three conditions,
(1) Each row has at most f zero entries
(2) The matrix has n columns
(3) Each zero free submatrix contains at most k different

columns.



To facilitate an explanation of the conclusions, two definitions are
introduced.

-

Let U, Vpy..., up be p column vectors, with the components

Vi(j)’ 1= 1,---;q-

Definition 1: The vectors 7, ... ,'u'p are 'essentially' equal if for
each component j, the values vi(j) are equal to a common value, or

zero; i.e., for all j, and all i, i,
vy () vy @) (v G) = vy () = 0.

Definition 2: The vectors 7;,..., '17p are (#)-essentially equal if there
exists a vector ¥ whose components are all non~zero, and such that

for each component j,

T/‘i(j) = v(j) except for at most ¢ values of i.

Form A: Under the common assumptions, if n =kh + 1, and if h is
sufficiently large (compared to some functionofk and £), thenthe matrix

must contain (h + 1) columns which are (£)-essentially equal (Def. 2).

Form B: Under the common assumptions, if n=kh+t+ (k - 1)¢
and if h is sufficiently large (compared to some function of k and £)
then for some positive integer s, the matrix contains some (sh + t)
columns that can be partitioned into s-sets of 'essentially' equal

columns.



A set of columns of which any two columns are'essentially
equal' can be considered either as (1) a submatrix (with no rows deleted
from the original matrix) of which no zero~free sub-submatrix contains
two unequal columns or (2) a submatrix (with no rows deleted from the
original matrix) at which it is possible to change all the zero-entries
(individually) of the submatrix so that the columns all become equal to
each other.

A set of (f)-essentially equal columns can be considered as
a submatrix (with no rows deleted from the original matrix) such that
by changing at most ¢-entries in every row (the entries need not be
zero) of the submatrix, the columns all become equal to each other.

In both Form A and Form B, h must be greater than some
function of k and 2 In Chapter I, such functions will be constructed.
For Form B, a counter example will show that form B is not true for
all h. However, for both form A and form B, there exists finite
functions gA(h,k, 2), and gB(h, k, #,t) such that if T 2 gA(h, k, ¢) (or
if n=gp (h,k, #,t)) the conclusions of form A (as form B) remain true

for any choice of h (independent of k and £).
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Section 0. Notation

Elements of a set will be represented by small italicized Roman
letters. The letters h through t (inclusive) will always stand for
integers. Functions, whose range is the set of integers, will be
denoted by Greek letters.

Sets (that do not contain sets) will be represented by capital
Roman letters. The letters I and J will be reserved for sets of
integers. Functions, whose range is a set of sets will be represented
by combinations of Roman letters, the first of which will be capitalized.

Sets of sets will be represented by italicized capital Roman
letters. Functions whose range is a set of sets of sets will be represented
by a combination of script (or italicized) Roman letters, the first letter
of which will be capitalized.

Sets of sets of sets will be represented by double capital q
Roman letters. Functions whose range is a set of sets of sets of sets
will be represented by a combination bf double Roman letters, the
first two of which will be capitalized.

Normal set notation will be used. A <B (or AC B, or AA CBB)
means that A(or A, or AA) is a subset of B(or B, or BB). The inter-
section of two sets A & B (or A & F, or AA & BB) will be written as
AN B (or ANB, or AA N\ BB). The union of two sets A & B, etc., will
be written as AU B. Finally the set containing all the points of a set
A (or A, or AA) that are not contained in the set B(or B, or BB) will be
written as A~ B (or A ~ B, or AA ~ BB); i.e., A~ B is the set such
that (A ~ B) CACBVU(A ~ B) and BN (A ~ B) = ¢, (and ¢ represents the

null set),



Basic Partition Theory

Definition 1: The cardinal number of a set A will be denoted by IA l .
The cardinal number of ANX will be denoted by |A IX = |aANnx].

Definition 2: A collection P of sets is said to be a partion if:
(1) ¢e P
(2) V A, Be P, either ANB =¢ or A = B.

Definition 3: The support of any nonempty set A of sets is defined to
be
Supp(4) = U A
Ae A

The support of the null set is the null set (i.e., Supp(¢) = ¢). Also
the following notation will be used: Supp(4 IX) = Supp(4) N X.

Definition 4: (a) A partion P is said to partition X if X Supp(P).
(b) A partion P is said to be an incomplete partition of X if Supp(P)c X.

Definition 5: The residue, Res(P IX), of a set P of sets with respect
to a set X is the set X ~ Supp(P), i.e., Res(P |X) = X ~ Supp(P) =
X ~ Supp(P |X).

Definition 6: If Pis a partion, and ifx € Supp(P), then Mat(x; P) is
the set such thatx € Mat(x; P) € P. If Pis a partion, and if
y § Supp(P), then Mat(y; P) = ¢.



Note: By definition 2, Mat(z; P) is both uniquely defined and a member
of the set P.

Several incomplete partions of a set X will have to be con-
sidered simultaneously. It is convenient to consider a collection AA
of incomplete partitions of a set X as a matrix. The columns cor-
respond to the elements of X. Each row corresponds to an incomplete
partition in AA. The entry, in the column corresponding to an
element x € X, and in the row corresponding to a partion Pe AA,
will be Mat(x; P). Note that two elements of a row are equal iff the
corresponding elements of X both belong either to the same set P of
the partion P of AA, or to the set Res(P IX). In the introduction of
Chapter I, zero was used in the matrix instead of the null set since
introducing the notion of a matrix whose entries were sets would have
unnecessarily complicated the introduction.

If P is a partion,then P induces an incomplete partition of X
for any set X. This incomplete partition is obtained by intersecting
each set of P with the set X. In particular, if X ¢ Supp(P), then the
induced incomplete partition of X partitions X. In any case, the

induced incomplete partition will be written as PA[ X].

Definition 7: Let AA be a collection of partions. We define the inter-~

section of all the partions of AA as

A P ={R|R= N Mat(x; P), x € V Supp(P)}VU{¢}
P e AA Pe AA Pe AA



Note to the reader: If you are following the matrix concept

ReN\P
Pe AA

if, for the matrix induced by AA and for

x =\ Supp(P)
Pe AA

R is the intersection of all the sets in a column of the induced matrix.

Theorem 1: The intersection of a collection AA of partions is a

partion.

Proof of theorem 1:
(1) ¢ € /\ P, by definition
Pe AA
(2) Suppose R, € A P, and R, €e AP, and R, "R, # ¢.
P e AA Pe AA

Let X € R,NR,, then ¥ Pe AA, R, Cc Mat(x; P) and R, C Mat(x; P).

(by the uniqueness of the Mat(x; P) function) and furthermore

R, = N\ Mat(x; P) = R, Q.E.D.
Pe AA
Theorem 2: For any collection AA of partions, and for any set X:

(1) Supp (AP) = NSupp(P); Supp(AP |X) = N Supp(P |X).
Pe AA Pe AA Pe AA Pe AA.
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(2) Res (A P|X) = U Res(P|X)
Pe AA Pe AA

Proof of theorem 2: Suppose

x € Supp(/A\ P), then JReAP
P e AA Pe AA

such that x € R. Thus

x € R=NMat(x;P)c N Supp(P) = x € Supp(P) Y P e AA.
Pe AA Pe AA

Suppose
x € NSupp(P), then x e NMat(x; P)e NP .". Supp(N P) = N Supp(P).
Pe AA Pe AA Pe AA Pe AA Pe AA

Both
Supp(A P |X) = N Supp(P |X), and
Pe AA Pe AA

Res( A P|X) = U Res(P|X)
Pe AA Pe AA

follow from DeMorgan's Laws.

Definition 8: If P is a partion, then a ~ b(mod P) if there exists a
P € P such that both a and b are elements of P. Note, if y ¢ Supp(P),
theny # y (mod P).
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Theorem 3: =~ (mod P) is an equivalence relation over the support of

P for any partion P.

Proof of theorem 3: If a, b € Supp(P), then a ~ b (mod P) iff
Mat(a; P) = Mat(b; P). Q.E.D.

Theorem 4: For any collection AA of partions,

a~b mod\P)& V Pe AA, a=b (Mod P).
Pe AA

Proof is obvious.

Note to reader: In the matrix notation, two columns (neither of which
has the null set as an entry) are equivalent iff for every row of the
matrix the two columns have the same entry (this notion of equivalence

should be of no surprise to anyone).

Definition 9: For any collection of sets P, and for any set Y, we

define (P)y as (P)y = |Res(P|Y)|.

Theorem 5: For any pair of partions Pand @, and for any set Y
(PA @y + |Y ~ (Supp(P) U Supp(@))| = (P)y + (@ y-

Proof of theorem 5:

(*) Res(PA @ |Y) = Res(P |Y) V Res(Q |Y) by theorem 2
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|Res(PAQ |Y) =|Res(P |Y)URes(@ |Y) | =

= [Res(P|¥)| + |Res(@ [¥)| - |Res(P [¥) | [Res(@ V)], i.e.,
(PAQX+ |(Y ~ Supp(P)) N (Y ~ Supp(@)) | = (PYy + (@) y, i.e.,

PAQ)_+ |Y ~ (Supp(P) U Supp(@))] = (Pry + (@)y-

Corollary to theorem 5: For any pair of partions P and @, and for
any set Y,

(PAQ),= (PYy + (Q)y.

Corollary to theorem 2: For any pair of partions P and @, and any

set Y
(PAQ)y = max ((P) vy, (Q)Y) (see *previous page).

Definition 10: If Y is any set, then [ Y] = {¢}\U{Y}. Note that [Y]
is a partion, and Supp ([ Y]) =Y. Also note that [X] A [Y] =

[X NY]. Further note that if Pis an incomplete partion of Y, then
P=PA[Y] -i.e., [Y] is a unitary incomplete partition of Y.

Definition 11: For any partion P, and for any set Y.
[Py = leAlYD ~ {o}].

Note, that when working with a collection of incomplete partions of
a setZ, occasionally | |P| IZ will be written as l |P| | In any case
|| P|| will alwaysbe ||P|| = ||P]| lSupp(P): Definition 11 will
also be applied to any set F of sets if RU {¢} is a partion.
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Theorem 6: If IYI < e, and P is any partion, then

[1P|lg=0 & Py =y,

Proof of theorem 6: If ||P| IY = 0, then PA[ Y]={¢},or Supp(P)N
Y=¢. - Res(P|Y)=Y = (P)y = |Y].

It (P)y = |Y|, then |[Res(P|Y)| = [Y| = |[Res(P|Y)| + [YNSupp(P)|
. [¥YNsupp(P)| =0 2 YNsupp(P) = 63 AN[Y] = {0} > ||P][ = 0.

Theorem 7: For any pair of partions P and @, and for any set Y, the

following must be true:

(1) (PAQAILY] =V (QA[PNY]) =U(PAR NY]).
PeP Qe @

@ [1PAQlly= 2= |lQllpny= = [IPllgny
PeP Qe@

(In (1) I'm treating partions as if they were sets, and they are sets.)

Proof of theorem 7: Suppose R € (PAQ)/A[Y], then there exists both
aPe P, andaQe @suchthat R = PNQNY ¢ PA[QNY] >
(PAQNLY] c v (PA[QNY]).
Qe @
Suppose R € V (PA[QNY]), then there exist both a P € P, and a
QeQ@
Q € Q such that R = PN QNY € (PAQA[Y] - .. PAQALY] =
V (PAIQNY]). Similarly PAQN[Y] = V(QA\[PNY]) and (1) follows.
Qe PeP

Since the members of any partion are pairwise disjoint, it follows that
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[[PAQlly =z [[Pligny=2 ll@llpny-
QeQ PeP

Definition 12: For any pair of partions P and @, and for any set Y,
pE@if PA[Y] = @A[Y].

Obviously X is an equivalence relation for partions.

Theorem 8: If P and @ both partition the set Y, then either

1) ||PA@ ||y >max(|[P]]y, [IQ@[ly) or
2) PL P\@ o
(3) Ql PA\Q must be true.

Proof of theorem 8: By the corollary to theorem 2 (after the corollary
to theorem 5), | |PN@ | lY = max(| | P | IY’ Q]| IY).

. Either (1) is true or w.l.o.g. | |PAQ | 'Y = ||p| IY’

But

[1PAQlly = = ll@llpay= Z ll@llpay =2z 1=[P]ly
PeP Pe P PeP

PNY # ¢ PAY + ¢

(the next to last step is true since Supp(Q) NPNY = PNY 2 ¢,
implies that | |Q | |P Ny = 1 by theorem 6).

HQHP/\Y= 1, Y Pe Psuchthat PNY + ¢.
> [PNY]AQ =[ PAY] (since $< Res(Q |PNY) CRes(P |Y) = ¢).
= PAQAY =.QA(PA[YD = V(@@A[PNY]) =V (PNY]) = PA[Y].
PeP Pe P
PNY # ¢ PNY = ¢
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oY
. PL PAQ. Q.E.D.

Theorem 9: Given
(1) Supp(P |Y) = Supp(@ IY) for partions P and Q.
(2) YV a, b € Supp(P IY), a=b (mod P) ~ a=~b (mod Q).

Conclusion: P hd Q.

Proof of theorem 9: Suppose that Pe PA[Y], then all the elements
of P are equivalent (mod P) to each other (theorem 3). By hypothesis
all the elements of P are equivalent to each other (mod @). There-
fore there must exist a Q € Q/A\[Y] such that P< Q. Similarly there
exists a P’ € PA[Y] suchthat Pc Q c P/, If P # ¢, then PN\P’ =
P+¢>P=P'>P=Q. ..Pe QA[Y]. Thus PA[Y] c @A[Y]
and similarly QA[Y] < PA[Y] . @ A[Y] = P<[Y].

Note that if Y D Supp(P)V Supp(®) in theorem 9, the conclusion is
P=@.

Theorem 10: If for all Y c X, | IP| IY = | IQ | lY for partions P and @,
then PZ Q.

Proof of theorem 10:

o=||P] lRes(P |X) = Q| lRes(P %) .. Res(P |X) c Res(Q |X)

and similarly, Res(Q |X) c Res(P |X) 3 Supp(P |X) = Supp(@ | X).
Suppose Pe PA[X], then ||P| IP = ||@]| IP =1, i.e., there exists
a Qe @A[X] such that P © Q. Similarly, there must exist a

P'e PA[X] suchthat Pc Qc P’. If P# ¢, then P=PNP’' =Q >
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PA[X] c @ A[X]. Similarly QA[X] ¢ PA[X] .. PZe.
Q.E.D.

Theorem 11: Given:
(1) a collection AA of partions,

(2) a partion @,

(3) asetY
(4) Y c Supp(/\ P) (5)1<||/\PHY=k<oo
P e AA Pe AA
6) N PAQ,=A P M k> ||g|ly=2=1.
PeAA Pe AA

Conclusion: 3 BB C AA such that |BB| = k - ¢ and that

N PAQ, AP
Pe BB Pe AA

Proof of theorem 11:

A PAQ L A P, .. Y=YN(NSupp(P)) c Supp(Q, |¥)
Pe AA Pe AA Pe AA

so @, partitionsY, and by (4) all P € AA partitions Y. Either there
exists a P, € AA such that [|Q, A P ||y > [, | IY or by theorem 8,
V Pe AA,

PAQ, X @, 3 @ XAPAQ, LN P
Pe AA Pe AA

> 119, | lY =[N Pp| IY (a contradiction).
Pe AA
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" Let@=P,A\ Q. [Remember that ||Q, A P[]y > [[Q ]|y It
is also obvious that
A PAQ =APAQ, LAP.
Pe AA PeAA PeAA
Having found P, @, P,, @,, P, Q3"“’13+1’ Qj+1(Qi+1 = QiAPi+1’
[@qlly> 1@ ||y for 0 =i=j. Also ||Q ||y = 2+1, and
N\ P/\Qiy_—/\P for
Pe AA Pe AA

0=i=j+1). Either | IQj+ll | =k, or we may replace @, with
Qj+1 in the above argument and find a Pj+2 and a Qj+2. Since
0+j< I IQj +1| |Y’ it can be assumed that the above process stops
with some j < k - ¢. Then | le+1| IY = k. But by theorem 8,
@1y = INPAQ |y =k, so |[Q]ly=k. % foran
PeAA, | IQ].+1/\ Plly=| IQ].+1| |y» then for all P e AA must

Y
Qj+1 N\ P= Qj+1'
j+1
A\ PA Qj+1 Z Qj.,.]_ = @ N\ (APi)'
Pe AA 1=}

Let BB={Pi|]l=i=< j+1=k- }, then |[BB|=j+1=<k- g, and

N PAQ, =Qj+1§ A P.

P € BB P e BB

Q.E.D.
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Corollary to theorem 11: Given
(1) A collection AA of partions
(2) A set Y c Supp(A P).
P e AA
@) [[AP[ly=k>1
P e AA

Conclusion: There exists a set BB c AA such that
4) |BB|< k
(5) N\ PY A Pi

Pe BB Pe AA

Proof of corollary to theorem 11: Let @, = [Y]. [ IQO l IY =1,
By theorem 11, 3 BB c AA, |BB| = k - 1 < k such that

AN PA[Y] X AP>APL AP  Q.E.D.
Pe BB Pe AA Pe BB Pe AA

In the remaining sections of Chapter I, theorem 11 and the corollary
to theorem 5 will probably be the most useful facts that were derived

in Section 1.
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Section 2

The Generalized Pigeon Hole Principles. Formulation and Useful

Counter Examples

In this section, unless specified otherwise, AA will be a

collection of partions; X, Y, Z will be sets such that X T Z and Y C Z.

Definition 13: 7(AA[2Z) = max (P, = max |Res(P |2)]
Pe AA  PeAA

Note to Reader: To those of you that who the matrix notation useful,
N(AA |Z) counts the maximum number of times the null set (or zero)
appears in any row of the matrix induced by the set Z and the collection
AA of partions. Hence,

n(AA|Z) = max |{z |z €Z, Mat(z; P) = ¢} |.
P e AA

Theorem 12: n(AA|X) < n(AA|Z). If BB is any collection of partions,
then

n(AA|Z) < n(AAV BB|Z).
Theorem 12 is quite obvious, and the proof is omitted.

Definition 14: K(AA|Z) = max|[|A P[],
BBCAA P e BB

Note to the reader: In the matrix induced by the set Z and the collection

AA of partions, K(AA | Z) is the maximal number of non-equivalent
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columns of any submatrix not containing the null set as an entry, (i.e.,

zero-free).

Theorem 13: K(AA |X) < K(AA|Z). If CC is any collection of partions,
then K(AA |Z) < K(AAV CC |Z).

Theorem 13 is also obvious, and the proof will be omitted.
Definition 15: Fa(AA|Z) ={F|F <z, and

V PeAA, APeP 5 |F~ P|< n(AA|2)}.
Definition 16: Fe(AA|Z) ={F|F<Z, and ||P||p <1 VPe AA}.

Theorem 14: Fa(AA|X) C Fa(AA|Z).
Fe(AA |X) C Fe(AA|Z).

The proof of theorem 14 is obvious and is omitted.
Theorem 15: Fe Fe(AA|Z) iff VP e AA, HPe P 5F < (PV Res(P|Z))NZ.

Proof of theorem 15: If for a set F, and if for all P € AA there exists

a Pe P such that F < (PV Res(P|Z)NZ, then obviously ( V Pe AA)
® F<zand @ |1Plp < 1Pl oy pescrlz) < | 1Pl 1p+ 1Pl kes(alz)
=1+0 =1

so by definition, F € Fe(AA).
If F e Fe(AA|Z), then | |P||p <1 VP e AA. That means there can

exist at most one P € P such that FNAP = ¢. (If no such P exists, then
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F c Res(P IZ) = (¢\J Res(P IZ))/\ Z. One may as well assume that
such a P exists). For that P € P, FN(Supp(P) ~P)=¢;but Fc Z
so then F ¢ PV (Z ~ Supp(P)), i.e., F c(PURes(P|Z)UP)NZ.
.V PeAA, I P € Psuch that F c (Res(P|Z)UP)NZ. Q.E.D.

Definition 17: If Pe AA, and if F, & F, are both members of
Fe(AA |Z), then F, ~ F, (Mod P) if there exists both a f, € F, and a
f, € F, such that f, ~ £, (mod P).

Note: F, ~ F, (Mod P) is an extention of the notion of a ~ b (mod P)
since (1) a ~ b (mod P) iff {a} =~ {b} (Mod P) and (2) F € Fe(AA|Z) iff
Supp(F) ¢ Mat(f;P) for all P € AA and for all f € Supp(P IF). For the
set M= {M|M € Fe(AA|Z), M & Res(P |Z)}, =~ (Mod P) is an equiva-
lence relation. If BB ¢ AA, and if

B=./\P ’
Pe BB

then definition 17 may also be used to define ~ (Mod B).

Theorem 16: If both F & G are members of Fe(AA IZ), then either
(1) (FUG) e Fe(AA|Z), or
2) apeAA3|[P||FUG:2=>F;£G(ModP).

Proof of theorem 16:
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F, G, € Fe(AA|Z), so both I[PHFS 1 and ||P||G$1 V Pe AA.

S VPeAA, ||P|lpyg s lIPlg+IPllg =<2

.". Either (1) | IPIIFUG <1V Pe AA = (FNG) € Fe(AA|Z) or

(2) d Pe AA such that IlPIIFUG=2. Q.E.D.

Theorem 17: Fe(AAIZ) C Fa (AAIZ).

Proof of theorem 17: Suppose F € Fe(AA IZ) and that Pe AA. Then
by theorem 15, there exists a P € P such that F c (PU Res(P |Z))/\ Z.

. .F~Pc [(PURes(P|Z))NZ] ~ P = (Res(P|Z)NZ) ~ P
F~P c Res(P|Z) ~ P = Res(P |Z).
.. |F~P[ < |Res(P|2)| = (P), < n(AA[Z) SF € Fa(aa|2)
= Fe(AA |Z) c Fa(AA |Z). Q.E.D.

Theorem 18: Given:
(1) F & H are both members of Fe(AAIZ).
2) |H|=h+m (1 <m <5(AA|Z))
3) FNH=¢
@) |F|> nAA|Z) - m.

Conclusion:
Either (5) M € Fa(AA|Z), |M|> h+%(AA|2Z)
or (6)  Pe AA, F # H (Mod P) and Supp(P |H) <h.
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Proof of theorem 18: Suppose (6) is not true, then let X ¢ F such
that |X| =n(AA|Z) + 1 - m, and let M = HUX. Note that
IM| =h +7(AA|Z) + 1 > h + n(AA|Z).

Casel: Pe€ AA, H ~ F (Mod P). Then there exists a P € P such
that [M ~P| = |M ~ Supp(P)| < |Z ~ Supp(P) | < n(AA|Z).

Case II: P e AA, F # H (Mod P), but |Supp(P|H)| > h. Then there

exists a P € P suchthat [P N H| > h+1, hence |M~P|= |M]| -

[PNH|- [XNH| < (h+n(AA]Z)+1) - (h+1) - 0 < 7(AA|Z).
Therefore, for all Pe AA there exists a P € P such that

IM ~ P| <7(AA|Z), so M e Fa(AA|Z).

Note to reader: Theorems 16 and 18 are simple but powerful. In
Section 3, applying these two theorems in Algorithm No. 2 is essential

in proving this papers generalized pigeon-hole principles.

Theorem 19: Suppose AA and BB are both collections of partions,
then |

(1) Fa(AA |Z) N\ Fa(BB|Z) c Fa(AAVBB|Z)

2) Fe(AA|Z)N Fe(BB|Z) = Fe(AAV BB|Z).
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Proof of theorem 19: Obviously 7(AA\JBB IZ) = max(n(AA IZ),
n(BB|Z)). Suppose that F € Fa(AA|Z)NFa(BB|Z). Then (a) F c Z,
and (b) VPeAA, 3P e P 3|F~P| <n(AA|Z) < 7n(AAUBB|Z), and
(c) VPeBB, HPe P ?|F~P| < (BB |Z) < n(AAUBB|Z), so we
have (d,1) F c Z, and (d,2) VPe AAUBB, 3P e P >|F~ P| <
1n(AAVU BB |Z) which by definition implies that F € Fa(AA\) BB |Z).
Suppose that F < Fe(AA |Z) NFe(BB|Z) then if Pe AA, ||P| IF <1,
or it P< BB, ||P||p < 1. Therefore, if P € AAU BB, then

|| P] |FS 1. Since F € Fe(AA|Z), then F C Z, so we now have by
definition that F € Fe(AAUBB |Z). Suppose that F € Fe(AA\ BB |Z),
then if Pe AAVBB, then ||P || <1. But F cZ, and AA CAAUBB,
and BB C AA U BB, so F € Fe(AA|Z) and F € Fe(BB |Z) and finally
F € Fe(AA|Z)N\Fe(BB|Z). Q.E.D.

Definition 18:

(a) ua(AAIZ) = maximum IF|
F € Fa (AAIZ)
(b) ue (AA |Z) = maximum |F|

F € Fe (AA|Z).
Corollary to theorem 17: ua(AA[Z) < pe (AA|Z).

Definition 19:

(a) GGem(AA|Z) = {G|G c Fe(AA|Z), (GV {¢) is a partion}.

(b) GGet(O;AA|Z) = {G |G € GGem(AA |Z), and if both G, and G, are in
G with G, # ¢ # G,, then (G,V G,) € Fe(AA|Z)& G, = G, }.
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(c) GGet (r; AA|Z) ={G |G € GGet(o;AAlz), G| =2r VG e G}.

Note: It is obvious that if r < s, then GGet(s; AA |Z) c GGet(r;AA ]Z).
Also, ¢ € GGet(r; AA |Z) for any cardinal r.

Definition 20: 7(h;AA|Z) = max Z (|G| ~ h), over all G € GGem(AA|Z).
GeG

Note: It should be obvious that if G € GGem (AA |Z) and if
T (|G| = h) = 7(h; AA|Z) then G € GGet(h; AA|Z).
GeG
Furthermore, there always exists a G € GGet(h + 1; AA |Z) such that
* (|G| - h) = 7(h; AA|Z).
GeG

Theorem 20: GGem(AAIX) C GGem(AAIZ).
GGet(r,‘AAIX) C GGet(r; AA IZ) for any cardinal r.

Theorem 21: 7(h;AA|X) < 7(h; AA|Z).

Definition 21: o(r;AA|2Z) = maximum ||G || .
G € GGet(r;AA |Z)

Theorem 22:If G € GGet(r;AA |Z), then (if r > 0)
|Supp(G) | < o(r;AA|Z)- h + 7(h;AA |Z).

Proof of theorem 22:
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7(;AA|Z) 22 (|G| -h)= = |G|~ Zh = [Supp(G)|-h-0(r;AA|Z).
GeG GeG GeG

lSupp(G)I < 0 (r;AA |Z) ‘h + 7(h;AA IZ).

The next two definitions define this paper's generalized pigeon
hole principle, for finite cases. Infinite cases will not be discussed
in this paper (and to do such would require a few minor changes in
my previous definitions), but infinite cases are quite doable (with use

of the axiom of choice).

Definition 22: xa(h,Kk, £) is the minimal integer such that if (1)
|z | = xa(b,k, ¢), and if (2) K(AA |Z) < k, and if (3) 7(AA|z) < ¢, then
a(AA | Z) must be greater than h(ua(AA | Z) > h).

Definition 23: xe(h,k, £,t) is the minimal integer such that if (1)
|z | =xe(n,k, g,t),and if (2) K(AA|Z) <k, and if (3) n(AA|Z) < g,
then 7(h;AA |Z) must be at least t (r(h;AA|Z) >

Note: It will always be assumed that h =0, k >0, ¢ =0, and t > 0.
Both xa(h,k, £) and xe(h, k, £,t) are non~decreasing in each of their

variables.
Theorem 23: (A counter example) xa(h,k, #) = hk + 1.

Proof of theorem 23: Take anyk pairwise disjoint sets H;, Hp,..., H.
such that |H,| = [H,| = += [H | =h. Let
k

z =() H,.
i=1
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Let AA = {{Hi, (Z ~Hi), ¢} 1<is<k}. Obviously K(AA|Z) = k,
and 7(AA |Z) = 0< 0. Suppose F € Fa(AA|Z), then there exists an i
such that FN\Hi # ¢ (or F = ¢). But ||P, || <1, so F CHi (since
n(AA|Z) = 0 > Res(Pi |Z) = ¢). .. |F| < |Hi| <h. .. pa(AA|Z) < h.
Therefore, by definition of xa(h, k, ¢), hk = ‘Z[ < x a(h,k, ¢), which

proves theorem 23.

Theorem 24: xa(h,k,0) = hk + 1. Suppose we have a set Z, |Z]| =
kh + 1, and that we have a collection AA of partions with the two
properties of K(AA |Z) <k and 7(AA|Z) = 0. We must now show that
pa(AA|Z) > h. Let

R= AP.

Pe AA

Note that | |R||,< K(AA|Z) <k and furthermore that V P € AA,
RAP=R. 7(AA|Z) =0, so V Pe AA, Res(P|Z) = ¢. -’ (By theorem
2), Res(R|Z) = ¢ > R partitions Z and
z =\} R
R € RA\[Z].

By theorem 8, ||R||, = K(AA|Z) <k. LetR e RA[Z], then
"V Pe AA, ||P] |R < | IP/\RHR =1, soR € Fe(AA|Z). We now
have the |Z | = kh + 1 elements of Z partitioned into K(AAIZ) <k
non-void disjoint sets of R/A[ Z], so by the classical pigeon hole
principle (and this is the tie-in) there exists an R* € R/\[ Z] such that

|R* |> h and furthermore (since R*e Fe(AA|Z) c Fa(AA |Z))
pa(AA|Z) = |R*| >h. Q.E.D.
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Theorem 25: (Another counter example). If h = £, xe(h,k, £,t) =

kh+t+ (k-=-1)¢.
Proof of theorem 25: Take pairwise disjoint sets H,, H, .. .,Hk -1’
Ly,...,Ly_y, suchthat (1) [H,| =h+t-1, (2) [Hi| =hfor 1 <i<k,

and (3) Li=¢for 1 <i<k. LetL, =¢, let
k-1
z =\/ ®=iULI),
i=0

let P; = {Li, (Z ~ Li), ¢} for 1 <i<k, let Qi ={z ~ Hi\JLi)), Hi, ¢}
for 1 i<k, and let AA = {Pili <i<k}U{Qi|l <i<k}. Obviously,
PiAQi=Qi, n(AA|Z) = £, and K(AA|Z) <K. (K(AA|Z) < k is not

So obvious, but rests on the fact that for all P € AA and for any i > 0,
either H, ~ Hi (Mod P) or Li CRes(P ‘Z). This is also true for any
partion that is the intersection of the partions in an arbitrary subset

of AA. Sofor any arbitrary intersection A of partions in AA, and for
any i >0, ||4] IHOU LiUgi < 2 which implies that

||A|] <1 +(k-1)=k. Suppose F € Fe(AA|Z).

Case I: FNLi = ¢ for some i. By theorem 15, (and the fact that
Pi€AA) Fc LiVRes(Pi|Z) =LiVo = |F| < |Li| = £ < h.

Case II: FNHi = ¢ (i > 0). By theorem 15 we have
(1) Fic (Z ~ Li)VRes(Pi|Z) = Z ~ Li and
(2) Fi c HiURes(Qi|z) = HULI.
¢ Fc(Z~Li)NHVLI) =Hi = |F| < [Hi|=h.
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Case Ill: F C H,.
By the note after definition 20, 7(h; AA|Z) = |H,| -h=t-1<t
sxe(h,k, 0,t) > |Z| =hk+ (t - 1) + (k - 1)¢ for all h = §.

Important note to the reader: This paper will eventually show in
Section 3 that for h sufficiently large (k and ¢ fixed) that xa(h,k, ¢) =
hk + 1 (Theorem 35) and that xe(h,k, ¢,t) = hk + t + (k-1)¢ (Theorem
34). To show that xe(h,Kk, £,t) is not always hk + t + (k-1)¢ we have the

following theorem.

Theorem 26: (Another counter example) for k = 2,

xe(e,k, £,1) =2 2k0 +1 > (2k-1)2 + 1).

Proof of theorem 26: Let L, L,,..., L2k be pairwise disjoint sets
such that ILil =g for 1 <is<2k. LetL, =Lor.1 and and let L, =

Loy yo- Set

Let Pi={Li, ¢, Z ~ (LiVL; , )} for 1 <i <2k +1. Let
AA ={Pi|1 =i=2k}. By construction, n(AA|Z) = 2. Also by

construction, if BB ¢ AA, then

| P||<|BB|+1and || P||<2k- |BB].
Pe BB Pe BB
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Therefore

[ %(2k+1)] =k,

BB C AA, || P[] <[4([BB[+1+2k- [BB])]
Pe BB

2, K(AA|Z) sk. If Fe FR(AA|Z), and if F = ¢, then there exists an
Li (1 <1i =< 2k) such that FNLi = ¢. By theorem 15, (1) F ¢ LiV
Res(Pi|Z) = LiVUL;,; and furthermore (2) F C (Z ~ (Ly,{ VL, 5)VU
Res(Pi+1|Z)=Z~ Li,1- -+ FC (LiVL, )N(Z~ L, ) =Li>
VFeF(AA|Z), |F|=297(4,AAZ)=0, xe(L,k, #,1)>|Z F2k0. Q. E.D.

Note: In the previous theorem, the trouble with K =1 is that it is

assumed that Li c Z ~ (Li +1V Ly but fork =1, Z ~ (LiV L.,

T 2)’ 1)

=¢ = ¢=LicC ¢, but that is not possible.

Theorem 27: xe(h,k,0,t) = hk +t. Suppose Z is a set and AA is a
collection of partions such that (1) IZ | > hk +t, (2) K(AA|Z) <k,
and (3) 7(AA |Z) = 0. We must show that 7(h;AA |Z) = t. As in
theorem 24, let

R= N\P.
Pe AA
As in theorem 24, it can be shown that Supp (R |Z) = 2, ||R||, =
K(AA|Z) <k, and that (RA[Z] ~ {6} € GGem(AA |Z). .". 7(h;AA|Z) =
3([R| - h) = Supp(R |Z) -~ h+- K(AA|Z) = (kh +t) ~-kh = t. Q.E.D.
R € RA[Z]) ~ {¢}.

Note to Reader: Again for 7(AA|Z) = 0, the fact that Supp(R |Z) = Z,
and the fact that (RA[Z]) ~ {¢} € GGem(AA |Z) implies that the
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points of Z were split up between at most k disjoint sets of Fe(AA |Z),
so the pigeon hole principle had to apply and the result followed

immediately.
Theorem 28: xa(h,1, £) = h+1, xe(h,1,¢, t) =h +t.

Proof of theorem 28: Suppose we have a set Z, and any collection of
partions such that K(AA|Z) = 1. Then VPe AA, ||P||, <K(aA|Z) = 1.
.. Z € Fe(AA|Z) & na(AA|Z) = |Z]| and 7(h, AA|Z) = max(O, |Z| - h).
c.pa(AA|Z) >hiff [Z]> h (> xa(h,1,0 =h+1). .. r(h;AA|Z) = t,

iff [Z| 2h+t(=>xb(h,1,0t) =h+t). QE.D.
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Section 3

Proof of the Generalized Pigeon Hole Principles

The proofs of the generalized pigeon hole principle will be basically
an induction on ¢ in nature. Eventually, an initial set X, and an
initial collection AA, of partions will be given, from which will be
constructed an X,, AA,;; X,, AA,, X,, AA,; etc., such that Xi+1 =
X, AAj,q C AAL, n(AA, [X,, ) < n(AAL|Xi), and T(h;AA 4 [X; )
= 7(h;AAi IXi). (h will be specified to be at least so large in this

process).

Theorem 29: Let AA and BB be collections of partions and let X be
a set. Let
B=AN\P
P e BB
Assume that:
(1) BB c AA
@ ||B|lg=K@®A[X)
(3) 0< n(AA[Z) < =
(4) n(BB|X)=0(i.e.Y P e BB, (P)y =0).

Then there exists an AA*, X* such that:
(5) BB Cc AA* C AA
(6) X*c X
(7) n(AA*|X¥) < n(AA[X)
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(8) Fe(AA*|X*) = Fe(AA|X*) c Fe(AA|X).
9 [x~x*[=[|{B|B€ B, [Blx=rn@al|x}]||y

Proof of theorem 29: For every B € B such that O < |B IX = n(AA |X),
delete an element of BN X from X. The remaining set is X*. Pro-
perties (6) and (9) are obviously true. Let AA* = {P|Pe€ AA,

Res(P |X*)|< n(AA |X)}. Properties (5) and (7) are obvious, and (8)
is the only property which remains to be proven. Since VY Pe BB
Res(P |X) = 0, theorem 15 implies that F ¢ Fe(BB IX) iff 4 B such
that F c B € BA[X].

Lemma: If B e BA[X], and if P € AA ~ AA*, then (P)< |B].
CaseI: |B| > n(AA|X), then (P)y = n(AA[B) = n(aA|x) < [B|.

Case II: |B| < 7(AA|X). But P e (AA ~ AA¥), so (P) gx =

NAA[X). But (P) g yx= (Pdy = (P)yu = 1(AA[X) - n(AA[X) = o,
e« (P) X~Xk = 0 and (X ~ X*) c Supp(P). By construction,

BN (X~ X*) # ¢, so ¢+ BNSupp(P) & Res(P[B) # B..". (P)p # [B|.

End of lemma.

Lemma: If B e BA[X], and if P € (AA ~ AA¥), then [|P || = 1.

By theorem 6, (if B # ¢) and by the previous lemma, Y Pe (AA ~ AA¥),
||P| IB > 1.V P € (AA ~AA™), we have (Theorem 7) that,

[[BAP|lx= 2 [|P|Ig= =z 1=|[[B|l}=KMAA[
Be BA[X] Be BA[X]
B+¢
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.V PeAA~AA% [|[BAP||y = K(AA]X). Since equality holds,
the applications of theorem 7 yields that HPHB =1 for all
Be BA[X](B# ¢). Endof Lemma.

Proof of property (8). The lemma just proved implies that
Fe(BB |X) c Fe(AA ~ AA* IX). By theorem 19 we have Fe(AA IX*) =
Fe(AA ~ AA*|X) N Fe(AA*|X*). Hence

Fe(AA |X*) D> Fe(BB|X*) | Fe(AA* |X*) D Fe(AA |X*).

Equality must hold, and the proof is complete.

Theorem 30: For all h,k, ¢,t finite, xe(h,k, ¢,t)is finite. Furthermore,
xe(h,k, ¢+1,t) = (k-1)(£+1) + xe(h,k, £,t) for h> ¢ = 0.

Proof of theorem 30: (By induction on §).

xe(h,k,0,t) = hk + t by theorem 27. Suppose xe(h, Kk, £,t) is finite.
Suppose AA is a collection of partions, and that Z is a set such that
K(AA|Z) =k, n(AA|Z) = g+ 1, and 7(h;AA|Z) < t.

Let BB* ¢ AA by any set such that

[IA P, = KaA|Z).
Pe BB

By the corollary to theorem 11, there exists a BB < BB* such that
(1) |BB|< K (AA|Z) and (2)

[IAP|], = K@AA|2)

Pe BB
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Let X = ZNSupp( A P

P BB
then

|Z~ X| = |RestA\P|Z) | = |URes(P|Z) | < |BB |+ n(BB|Z) < (k-1)(&1)
~ PeBB Pe BB
Note that (3) BB < AA is a set of partions such that n(BB |X) = 0, and
(4) ||A P||y= K(AA|X)
PeBB
By theorem' 29, there exists a X; CX, and an AA, < AA such that
(5) X~ X, |<|{B|Be AP |Bly<nAA|X)}]]y
FPeBB
and that (6) R(AA, [X,)CR(AA |X), and (7) 7(AA |X,) < n(AA|X) = £ + 1.
Since 7(h;AA, |X,) < 7(h;AA |X) < 7(h;AA|Z) < t, we must have |X, | <
X,(h,k,¢,t). Combining all this information, we have:
Z] =]z ~ x|+ [X~ X[+ |x]
(7) |2]|<(k-1)(e+1)+ | [B[BeAR |B[y <n(AA[Z)} | |5 + xe(h, k, & 1)
Pe BB
2| < (k-1)(2+1) + || A P| |5 +xelh, k, &)
Pe BB
1Z | < (k-1)(&+1) + K(AA|Z) + xe(h,k, £,t)

(8) |Z | < (k-1)(2+1) + k + xe(j,k, £,1).

We now know that if for some Z, ]Z | > (k-1)(£+1) + k + xe(h, k, 0,1),

and that if for some collection of partions, n(AA |Z) =f+1
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and K (AA |Z) =k, then 7(h;AA|Z) =t. That implies that V 2= 0
xe(h, k, 0+1,t) = (k=1)(£+1) + k + xe(h, k, £, t) which implies that for
all £ =0, xe(h,k, ¢,t) is finite.

Special case: Before, we assumed that IX - Xll = K(AA |Z) =k. But
if IX| = k(£+1)+1, then by the ordinary pigeon hole principle,
IBeN\P
Pe BB
such that |B IX > # + 1 (since there are at most
kB'se \P
Pe BB
such that |B|y =0, and that
Bly = Ix])
Be/\P
Pe BB

That would imply that [X ~ X’ | =K (AA|X) - 1 =<k - 1 and that one

could reduce the estimate by one.

But for Z with |Z| = hk + t + (k-1)(£+1) - (the minimal possible value

of xe(h,k, #+1,t) for h > € by theorem 25) - [X|must be at least kh + t.
But kh+t = k(# + 1) + 1 whenever h > (. .- If h > ¢ =0, then

xe(h,k, #+1,t) = (k~1)(£+2) + xe(h,k, £,t). (The same estimate as before

except that it's been reduced by one). Q.E.D.

Corollary: xe(h,k, #,t) =hk +t + 3(k-1)2(£+3) for h = #. [In fact, the
above can also be shown to be true whenever kh + t + 3(k-1)(2-1)(£+2)

=k + 1. ]
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Corollary: xa(h,k, ¢) is finite for all finite h,k, ¢. (Since
xa(h, k, £) = xe(h,k, £, 1)).

The rest of this section is devoted to showing that for h
sufficiently large (compared to some function of k and ), xa(h+¢,k, )
=k(h+£) + 1 and xe(h,k, £,t) =kh + t + (k~1). First we will assume
a useful condition on a set X, and a collection AA, of partions. Next,
we obtain a set X, C X, and a collection AA, ¢ AA, of partions. X,
and AA, will have the same useful condition, and 7 (AA, 1x,) <
n(AA, |X,). Next we prove (by induction) size estimates of |X, |.

This size estimate of |X1| will be eventually used to estimate both
xe(h,k, £,t) and xa(h,k, ). Next, a process giving from a set Z and
a collection AA of partions to a set X ¢ Z and the collection AA at
partions, such that X and AA have the useful condition that we had
previously only assumed. The process will give the indicated results
for xe(h, k, ¢,t);and with a little more investigation of the process,

the indicated result for xa(h,k, #) will be obtained.

Definition 24: A triplet *AA, BB, X* consisting of two collections
AA and BB of partions, and a set X is called acceptable of type r if:
(1) BB CAA, BB# ¢
(2) 7(BB|X) =0
@) ||B||x =K (aA[X) =1, for B= AP, Pe BB.
@ le|=1IBllgypp(e) ¥ G € GGetlr;AA[x).
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Algorithm No. 1: If *AA, BB, X* is an acceptable triplet of type r,
and 7(AA |X) > 0, do the following (If n(AA ]X) = 0, do nothing).

Step 1: Choose YCX such that if B € /A P, then
Pe BB

1if 0 < [Bly < n(AA[X)
B~Y]|-=
0 otherwise

Step 2: Let AA’ ={P|PeAA, [Res(P|Y) < n(AA|X)} .

(Note that Step 1 and Step 2 are both done in theorem 29. Since
7n(BB |X) =0, we must have BBTAA').

Step 3: Choose BB’ such that (1) BBTBB CTAA’,
@ [N Py = &@aA" )
Pe BB’
and (3) |BB’ ~ BB| is minimal over all choices of BB’ satisfying (1)
and (2).

Step 4: Let X’ = Supp(/A\ PA[Y])
Pe BB’

End of Algorithm.

Algorithm No. 1 starts with AA, BB, and X and ends with AA’, BB,

and X' . We shall abbreviate Algorithm No. 1 as:

#1,r
—_—

*AA, BB, X* *AA’ BB’ , X' *
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Theorem 31: If *AA, BB, X* is acceptable of type r, and if n(AA |X) >0,
then *AA’ , BB, X' * from *AA, BB, X* TLTs*AA’ | BB’ , X' * is an

acceptable triplet of type r.

Proof of theorem 31:
(1) BB’TAA’, BB’ ODBB # ¢ by construction.
(2) n(BB’ |X’) =0 since X' < Supp(A\ P
Pe BB’
3) |IAP|lg = ||AP|ly =KAA" |Y) > KAA |K) > ||A Py
Pe BB’ Pe BB Pe BB’
(4) Suppose G € GGet(r;AA’ IX')CGGet(r;AA ]X)

(since by theorem 29, Fe(AA’ |X’ Y Fe(AA |X), which implies that
GGet(r;AA | X' ) CGGet(r;AA |X).

Colel = 1IN Pllgyppie)
Pe BB

Now

1~ Pl lsupier < 2 11~211< 3 1= 16
PeBB GeG PeBB GeG

But | NP | |Supp(G) > ||~P| ISupp(G) = |G| (see Theorem 8).
PeBB’ PeBB

Note: In going from *AA, BB,X* to a *AA’, BB', X' * via Algorithm 1,

*AA’, BB’, X', is not necessarily unique. Since we have
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GGet(r,AA’ [X')CGGet(r,AA' IX’), we must also have o(r;AA’ ]X’) &
o(r;AA |X) ;

Theorem 32: If *AA, BB, X* is acceptable of type
r > K(AA |X) - 7(AA |X), then there exists an s, 0 < s < o(r;AA 1),
such that

|X| <sh+7(AA |X)+ (K(AA |X) - 5) - [H(AAIX) 2(’7§AA|X) 1) 4y -ﬂ

Proof of theorem 32: (By induction on £ = (AA lX).) If =0, then
N\ P e GGem(AA|X)

PeBB

and,

X=yyBNX =(UBNX) Ul(UBNX)

B e/\P B e/ \B Be/AP
Pe BB Pe BB PeBB
Blg<r Bly >t

Now | {B|B €A P, |B|X > r} | Ixzs < o(r;AA |X),
Pe BB
and
|{B[B e AP, [Blg <r||=K(AA[X) -s
Pe BB
s |UBNX| < (K(AA|X) - s) (r - 1); and since
Be/AP

Pe BB
|B|X<r
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{B|B e AP, [BBIX > r} € GGem(AA |X), then
PeBB
IU (BN X) l < 7(h;AA |X) + sh. Therefore, for £=0

BeAP
PeBB
|B|X>r

|X| < sh+ 7(h;AA|X) + (K(AA|X) - s)(r - 1).

Now suppose that theorem 32 is true as long as 5(AA ]X) < . Also
suppose that *AA, BB, X* is acceptable of type r >(£)* K(AA IZ) with
n(AA IX) =0 +1. Apply Algorithm # 1 to obtain another acceptable
*AA’, BB', X' * with 5j(AA’ |X) <f0. Lets,-= o(r;AA]X), and let

s, = ofr;AA’ IX’) <s,. Let's take a closer look at *AA, BB, X*
ﬂLr—)» *AA’', BB’, X' *. In step 1, it is obvious that (s, + IX - Y|) <
|A PIX = K(AA |X).

PeBB

Also, in step one, it is clear that GGet(r;AA ]Y) = GGet(r;AA |X) since
r > K(AA|X) 7(AA|X) = n(AA|X).

Let sy’ = maximum | |G| |y, <s,. Now by step 3 of algorithm No. 1, and
G € GGet(r;AA |X)

by theorem 11, |BB’ ~BB| < K(AA|Y) - s{ < K(AA|X) - s!. Combining

that information with steps 2, 3, and 4, we have

Y~ X'| = (APy < |BB’ ~ BB| - n(AA’ |¥) < (K(AA|X) - s3) - ¢
P e BB

but (A P) 2(So"So')rz‘)r'(so'So')s(K(AAIX)'So')l<r
s (8 =8,7) =03 Y~ X' | = (K(AA[X) - s,)L.
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By our induction hypothesis, there exists an s, 0 <s < s,, such that

|X’ | <sh + 7T(h!AA" |X') + 3(K(AA' |X) - s)-[n(AA |X)- ({AA |X) + 1) + r-1]
|X'| <sh+ Hh;AA X + 2K(AA|X) - 8).[¢- (L +1) +r-1].
Y~ X' | <0UK(AA|X) - 59 < (K(AA [X) - 5,)2<(K(AA|X)-5)-2

|X~ Y| <K(AA|X) - 5, < K(AA|X) - s.
But
X| = [x=x]+ [T-%X |+ [X|; 90

IX[ <sh + T(h;AA’ IX') + (K(AAIX) - s)[:u’L 1)2(1+ 2) +r- 1] Q.E.D.

Algorithm No. 2: Given a set Z, a collection AA of partions, and h and r
such that (h + 1) > r > K(AA |Z)-n(AA|Z), and a G, € GGet(r;AA |Z) such
that |G,| = o (r;AA|Z). Do the following.

Step 1: Order the members of G, (G, = {Gill £ 1< o(r;AA IZ})

Step 2: Find a P, (see theorem 16) such that G, ¢ G, (mod P).
If |G,| >h and pa(AA|Z) < h+ ¢, be sure that Supp(P, |G,) <h

(see theorem 18).

Step 3: Having found B, P,,..., Pn’ choose any i <n such that for
2 <j <n, Gi e Gn+1 (mod P].). (If no such i exists, leti =n).
The value of i is uniquely determined. Choose a Pn+1 such that

Gy # G ,q (mod P {). X |G .{|>h, and if pa(AA|Z) <h + g,

n+1
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be sure that Supp(P 4 |G

n+1 < h.

Step 4: Choose a BB C AA such that (1) Pi € BB,2 <i < o(r; AA IZ)
|| g\B P HX =K AA|Supp 1{\2 P)) where s, = 0(r; AA]Z), and
where (3) BB[ is minimum over all choice of BB that satisfy (1)
and (2).
Step 5: Let X = Supp( N PIZ).
PeBB

Theorem 33: For the AA, BB, and X produced in Algorithm #2,
*AA, BB, X* is acceptable of type r if K(AAlZ) > 1.

Proof of Theorem 33: Obviously BB C AA, and BB # ¢ ifK(AAIZ) > 1.

By construction

X C Supp(/N P) = n(BB|X) =
PeBB

AA[X) 1, as long as X # ¢. X can be the empty set iff

X = Res /\Plz ,
i=2

but X = ¢ implies either that
SO
Ser < (/\Pi|Z) < (sp-1L < sgr ,
i=2

and if o(r; AA|Z) > 0 (that is impossible), or that
0= |X| = K(AA|Z) > 0 (which impossible) if o(r; AA|Z) = 0. There-
fore, K(AA[X) > 1. By constryetion

|/~ P

K(AA|X
PBB'X AR
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All that remains to be shown is that if G € GGet (r; AA |X), that

= N

Since
Supp(G) < Supp(”™ P),then |G |= P
PeBB’ 6! lPle BB| supp(c)

unless there exists a {F,, F,} € GGet (r; AA|X) such that F, ~ F,
(Mod ” P). By construction, there can be at most one G € G, such
that G~ F; ~ F, (Mod P,) for 2 <i < s,. If such a G exists, let

G,= {F, F,} VG,~ {G}. Otherwise, letG,= {F,, F,} VG, In
either case, G, € GGet(r;AA|Z), but |Gll > IG1| = o(r;AAIZ) which
is a contradiction to the definition of o(r; AA I Z). Hence, for all

. — | 2\
G € GGet(r; AA|X), |G| = |P€B1]>3|Supp(c).

Theorems 34 and 35: (34) xe(h,k, £, t) =kh+t+(k-1)¢ for h = k£ +3£(£+3)
(35) xa(h+L,k, £) = k(h+£) +1 for h = ke +10(2+3).

Proof of Theorems 34 and 35: Suppose we are given any set Z, and a
collection AA of portions such that 5(AA IZ) < £ and K(AA | 7Z) < k.

Choose any G, € GGet(kf+1; AA|Z) such that (1) |G,| = o(k€+1; AA|Z) = s,;
(2) that for all x € Res(G,|Z) there does not exist a G € G, such that

G U {x}€ Fe(AA|Z), and (3) that |{H|H € G,, |H| > h}| is maximal
over all choices of G, that satisfy just (1) and (2). Apply Algorithm

#2 to obtain an *AA, BB, X* that is acceptable of type (k£+1). Let's
estimate |Z i XI. Let

S¢ = maximum |G |y y
G € GGet(ke+1;AA | Z)
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and let s; = o(k¢+1;AA |X). By Theorems 11 and 33,

|Z ~ X| < (so-1)2 + (k-sp)L. But |Z ~ X| = (so-s4) (k€+1), hence
(So-80) (k&+1) < (k-1)2 + (so-8¢)L. Therefore, (so-sg)[(k-1)2+1]

< (k-1)2, which implies that s, = s,. Furthermore |Z ~ X| < (k-1).
By Theorem 32, we have that there exists an s, 0 < s < s, such that
|X| < sh +7(h;AA|X) + (k-8)[3£(£+3) +k¢]. But |Z|=]|2 ~ X| + |X|,
hence ]Zl < (k-1)2 +sh + (k-s) [32(£+3) +k ] + 7(h;AA IX), or in other
words, T(h;AA|X) = |Z| - (k-1)L - kh + (k-s)[h-20(2+3) -ke]. If

h > 30(2+3) +k¢, then 7(h;AA |X) = |Z| - (k-1)£ - kh. Furthermore,
if |Z| = kh +t + (k-1)¢, then we have that 7(h;AA |Z) = 7(h;AA|X) >t,
which proves Theorem 34. If |Z| = k(h +£) +1, then 7(h;AA | Z) =42 +1.
Suppose that ua(AA|Z) < h + £, then for 'r(h;AAIZ) = £ +1 to be
true,o(h+1;AA|Z) > 2. (Otherwise na(AA|Z) > pe(AA|X)

> h+7(h;AA|X) > h+2+1.) Let Hy € GGet(h+1;AA|2Z), |H,| =2. It

is possible that for one H* € H, that

H* ~ G,(e G,) (Mod N P) ,
PeBB

but for any other H(# H*) € H,,

H # G, (Mod ™ P) .
PeBB

But there must exist a G € G, such that

H~G (Mod ™ P) .
PeBB

(Otherwise G, v {H } € GGet(ke+1;AA | Z), which would imply the con-
tradictory fact that |G, V{H}| > |G,| = s,). Furthermore, for that
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G € G, such that

H ~ G(Mod P), |G| >h.
PeBB

(Otherwise, (G, V {H}) ~ {G} would indicate that G, did not satisfy
(3).) Whatis |[HNG|? If [HNG| > ¢, then HU G € Fe(AA|Z). Since
IH ~ G| = 1 (by step 3 of Algorithm #2, we would have a contradiction
that BB satisfied (2)). Hence |H/1 G| < £. Consider the set H ~ G.
Now [H~ G| = [H| - [HNG| > (h+1) - £ > k¢ +1. But for all
G'e€G, G'U(H~G)¢ Fe(AA|Z), and G'N (H ~t) = ¢. Hence

G, U {H ~ G} € GGet(k¢+1;AA|Z), but this contradicts the fact that BB
satisfies (1). Hence for |Z| 2> k(h+t) +1, ua(AAIZ) >h+4£, and

Theorem 35 is proved.
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Section 4

Special Case: Evaluating xe(h, k, 1,t) and xa(h, k, 1)

Theorems 36 and 37: (36) xe(h,k,1,t) =kh +t+k -1 for h> 2
(37 xa(h,k,1) =kh +1 for h >3

Proof of Theorems 36 and 37: Given: AA, Z,n(AA | Z) =1,
k(AA[Z) <k, |Z| < e, Choose any BB C AA such that for E="\ P
PeBB
(1) [|B ||, =K(AA|X) and
2) ||{B|B€ B, IBIZ < IHZ = m is minimal over all choices of
BB that satisfy (1).
Theorem 11 insures us that BB can also be chosen to satisfy

(3) |BB| <K(AA|Z) <k.

Lemma: If pa(AA | Z) <h +1, then BB can be chosen to satisfy
(4) 7(h;AA |Supp(B |Z)) < 1.

Proof of Lemma: Take any BB that satisfies (1), (2), and (3). Sup-
pose that H C Supp(B), that H € Fe(AA|Z), and that |H| =h+1. By

Theorem 18, V X € (Z ~ H), there exists an P € AA such that

X, H
H # {x} (Mod P x, 1) 2nd that Supp(Py p |H) = h. (Note that for

this special case of n(AA | Z) = 1, that H ~ Supp(P = Res(PX H I Z).)

X, H)
In particular, we can conclude that if x € (Supp(B) ~ H), that

{x} # H (Mod B). (Otherwise ||Px’H ~B||; > ||B||; = K(AA|Z), a
contradiction to the definition of K(AA |[Z).) Hence H € B/ [Z]. Let

H,= {H|H C Supp(B), H € Fe(AA|Z), |H|=h+1}. It is obvious that
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H, € GGet(h+1;AAlZ). It is also obvious that IHO] = o(h+1;AA |Supp(B)).
Applying Algorithm #2 to Supp(B), AA, H,, r =h+1, h = h (ignoring
the restriction on r), one obtains a set BB,* such that for

Byt = NP

PeBB,

||B°*||Supp(H0) = |H,|, and that v Hj, H; € Hy (i <J) H; # H; (Mod By ")
(the ordering of the members of H, was done by Algorithm #2), and that
IHll =h+1; |H1| =h for i > 1. (Again the fact that 'r)(AAIZ) =1
uniquely determines |Res(B," |H,)| and |Res(B,*|(Z ~ Supp(H,)))|.)
Hence, ||B ™ B, || = ||B|| = K(AA|Z) and furthermore,
{B|Be (BN E*N[z)), |B| <1} = {B|Be BA [2], |B| <1}.
Theorem 11, insures us that there exists a BB,, with BB,* ¢ BB, C

BBO* U BB such that BB, satisfies (1), (2), and (3). Let

Bl = A P .
PeBB,

Again if H € H,, and if x € Z ~ H there exist a PX., H € AA such that
{x} # H (Mod Px, g)> and such that Supp(Px’ H |H) = h. From which we
can conclude that for any such Px, p ifh=>2, then HPX’ g™ B,||

= K(AAIZ) + (B,) Ix} (2 - <BI>HU{x }). In particular, if

x € (Supp(B,) ~ H), then x £ H (Mod B,). In other words, V H € H,,

H n Supp(B,) € B,/ [Z]. LetH, = {H|H C Supp(B,), H € Fe(AA|2Z),
|H| =h+1}~{H,} (H, € H, and was so named H, by the application of
Algorithm #2). For all H € H,, H N Supp(H,) = ¢ by construction. And

as before, 17 |Ho VH, |, ||H, VA, || =

”BIHSupp [HO UHI)
= 0(h+1;AA|Supp(H°UH1) ), HyVH, € GGett(h +1;AA|Z). Again, we
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may apply a watered-down version of Algorithm #2 (ignoring the
restriction on r), one obtains a BB," such that BB,* c BB, (by
appropriate ordering of H, U H, and choosing the Pi appropriately to
correspond to the previous time Algorithm #2 was applied). This in
turn generates a B,*, and finally a BB,, BB," C BB, C AA that
satisfy (1), (2), and (3). In a like manner, one can proceed to find

a H,, BB,, etc. Since
0
U H. v{¢
A7 G Hegy

is an incomplete portion of Z, then

sl

z |Supp(Hi)| = |Z| <
i=1

Therefore, there exists anH , n < o such that H = ¢. Then for BBn

(and B, = N P)
PeBBrl

BB, satisfies (1), (2), and (3), and also
(4) 7(h;AA |Supp(B_|Z)) = |H,| - h = 1. (Here I tacitly assumed that
H, + ¢; otherwise (4) T(h;AAISupp(B IZ)) = 0).

End of Lemma.

Having found a BB, and B that satisfy (1), (2), (3), and perhaps even
(4) (if pa(AA|Z) < h+1) let

X= 4 B
BeBN([Z ]
IB| >1
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and let AA’ = {P|P € AA, (P)y = 0}. By Theorem 29,
Fb(AA'|X) = Fb(AA|X) C Fb(AA|Z), and ||B|| = K (AA|Z) - m.
Since n(AA’|X) = 0, then

|| ™ P || =K(AA'|X) .
PeAA’

By Theorem 11, there exist a BB’ ¢ AA’ such that
(5) BB C BB/,

(6) ~p ¥ ~Ap | and
PeBB’ PeAA’

(7) BB’ ~ BB| <K(AA’|X) +m - K(AA|Z) .
By construction,

B' = /\AIZ N [X] € GGet(0;AA’|X) C GGet(0;AA[Z) .
Pe

Let BY = Ap
PeBB

Lemma;: N p = K(AA|Z).
e HPEBB'HZ |

Proof of Lemma;: ||B*||Z = ||BAB*HZ

= Z ”B*HB/\Z> [llB*l|X+(m-<B*>Supp(B))
BeB _

. K(aA|2Z) = ||B*|| > ||B*||x +m - |BB’ ~ BB|
> K(AA'|X) +m - [K(AA|Z)] = K(AA|2Z) .

End of Lemma.
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By construction, ||{B|B e B*, |B|Z < 1}||Z 2m. Ifh=>1, (and
since B’ € GGet(0;AA|Z)), then

Supp(B*|Z) < m +h- (K(AA|Z) - m) + 7(h;AA’|X)

Supp(B*IZ) <m+h- (K(AAIZ) -m) + T(h;AAIX) 2

But |Z| < |Res(B*|2)| + |Supp(B*|2) |
< |BB’| + [m + (K(AA|Z) -m) - h + 7(h;AA|X) ]
< [|BB| +|BB’ ~ BB|] +m + (K(AA|Z) -m)h + 7(h;AA |X)
< [K(AA|Z)-1] £? [K(AA|X) +m -K(AA|Z)] +m
+ (K(AA|2Z) - m)h + 7(h;AA|X)
< [K(AA|X)-1] +h- K(AA|Z) - m(h-2) + 7(h;AA |X)
Z| < K(AA|Z-1 +h-K(AA|Z) + 7(h;AA|X) if h > 2.

Hence, 7(h;AA|Z) > 7(h;AA|X) = |Z| - K(AA|2Z) - h - [K(AA|Z) - 1]
for h > 2. Therefore if |Z| > kh+t+k-1), and if K(AA|Z) <K, then
7(h;AA|Z) 2 t. (Theorem 36).

In particular if |Z| > k(h+1) +1 = kh +2 +(k-1), then 7(h;AA|X) > 2.
., (4) cannot hold, and hence p.a(AA|Z) > h+1 for h = 2 (Theorem 37).
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Conjectures and Other Remarks

Chapter I, definitely showed that for h > (k-1)£ + 3£(£+3) that
xa(h+Z, k, £) = k(h+£) +1 and that xe(h, k, £,t) = hk +t + (k-1)£. Not
presented at this time are results that show
(1) ifh > 30(£+3) + 2¢ then xe(h,k, £,t) = kh +t + (k-1)¢, and
(2) h > 30(0+3) + (k-1)345 4+ 0(k32%), then xa(h, k, £) = hk +1, and
(3) if h < ¢, then xe(h, k, & 1) > k(h +2).

I would like to conjecture on even better results:

Conjecture #1: xa(h,k,1) = hk +1 for all h.
Conjecture #2: xe(h,k, £, t) = kh +t + (k-1)¢ for all h = 3£4(2+3)

(and perhaps for allh = 24.)
Conjecture #3: xe(h,k, £,t) <kh +t +k¢ for all h.
Conjecture #4: For some values of h, k, and £, xe(h, k, £, t) will not be
a polynomial in t (i.e., there is some nontrivial t dependence).
Conjecture #5: There does not exist a function a(, t) such that for
k > 1 that xe(h, k, £,t) = kh +t + (k-1)£ iff h > a(4,t). [Iexpect some-
thing freaky in either the range 2 < k <2¢ or the range 2 < k < $£(£+3).
I also expect this strange behavior to differentiate between small values
of k and medium values of k. ]
Conjecture #6: There exists a function a(k, £, t) such that
(1) xe(h,k,2,t) = kh +t + (k-1)2 iff h > a(k, £, t)

(2) a(k, £,t) is a nonincreasing function of t.
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CHAPTER II: '"An Abstraction of Polygonally Connected Sets' and

"On the Unions of Convexly Disjoint Convex Sets'"

This chapter is mainly concerned with Griinbaum and Motzkin's
conjecture on the Helly's number of certain special collections of unions
of convex sets. In Griinbaum and Motzkin's original paper, it is by no
means clear what the unions of convex sets should look like, or even
what the convex sets themselves could be. To alleviate that difficulty, I
place no conditions on the convex sets themselves other than that the system
of convex sets must be closed under finite intersection, and I develop in
detail my definition of convexly disjoint sets. In an Euclidean space, it
turns out that two nonvoid convex sets C, and C, are convexly disjoint
iff their union is not polygonally connected. For a finite-dimensional
Euclidean space, it turns out that two convex sets C, and C, are convexly
disjoint iff C,N C, = C, N C, = ¢, where C, and C, are the topological
closures of C, and C,, respectively. In Euclidean spaces, unions of
three, four, five, etc., nonvoid convex sets can be similarly defined.

In developing my definition of convexly disjoint sets, I proceed to develop
the abstract notion of polygonally connected sets. I do not know whether
anyone else has developed the abstract notion of polygonally connected
sets, and I do not know if any of the theorems concerning polygonally
connected sets (in the abstract sense) is original in this paper.

The notations of Chapter I will also be used in Chapter II. All
the theorems and definitions (occasionally slightly reworded) of Chapter I
will be assumed in Chapter II. Also, the notation for the power set

QX = {Y|Y € X} will be used.



54

Definition 25: C C QX is said to be an abstract convexity of X if the
membefs of C are closed under finite intersection (i.e., if

A and B € C, then AN B € (), and if both ¢ and X € C. Elements of C
will be called convex sets or abstract convex sets. Unless otherwise
indicated, any abstract convexity will be an abstract convexity of the

set X.

Definition 26: A C %X is said to be a collection of convexly disjoint sets
(with respect to some abstract convexity C) if A has the following
properties:

(1) A is an incomplete partition of X.

(2) ¥C CSupp(A), where C € C, there exists an A € Asuchthat Ce A.

Note: (2) can also be written as vC C Supp(A) (with C € C), and
Vv ce C, CC Mat(c;A).

Theorem 38: If A and B are both collections of convexly disjoint sets,

then R = (A ”\ B) is also a collection of convexly disjoint sets.

Proof of Theorem 38: By Theorem 1, D is an incomplete partion of X.
If C C Supp(R), and if C € C, then C C Supp(A) N Supp(B). Hence

C C Supp(A) and C C Supp(B). But both A and B are collections of
convexly disjoint sets, so there exists an A € A and a B € B such that
C C A and C C B. Therefore, C C (AN B) € R, which is all that was

needed to be shown.

Theorem 39: For all Y € X, and for any abstract convexity of X,

[Y] is a collection of convexly disjoint sets.
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Proof of Theorem 39 is obvious.

Corollary to Theorems 38 and 39: If A is a collection of convexly dis-
joint sets, andif Y C X, then B= AN [Y]={B|B=ANY, Ac Alis

also a collection of convexly disjoint sets.

Theorem 40: If A is a collection of convexly disjoint sets, and if B is
an incomplete partition of X such that for all B € B there
exists an A’ C A such that B = Supp(A’), then B is a collection of con-

vexly disjoint sets.

Proof of Theorem 40: Suppose that C € C, and that C C Supp(B), then
C C Supp(B) C Supp(A). Therefore for a.ny c € C, C C Mat(c; A). But
Mat(x; A) C Mat(x; B) for all x € Supp(B), therefore for any c € C,

C C Mat(c; A) € Mat(c; B). Q.E.D.

Theorem 41: If A is a collection of convexly disjoint sets such that

Supp(A4) € C (where C is the abstract convexity), then A = [Supp(A4) ].

Proof of Theorem 41: Supp(A) € C, and A is a collection of convexly
disjoint sets; so, v a € Supp(A), Supp(4) C Mat(a; A) C Supp(4).
Hence Supp(A) € A. But A is a partion, and it is obvious that

A = [Supp(4) ], since Supp(A) € A.

Definition 27: A set D is connected in a topology T, if in the relative
topology Ty = {T|T =SND, S € T }the set D cannot be represented by

the union of two disjoint non-void sets of T p-
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Definition 28: F is a collection of relatively open sets in a topology T

if for all F € F, there exist a T € T such that F = T /) Supp(F).

Theorem 42: If all the members of C (an abstract convexity) are con-
nected in a topology 7, and if A is an incomplete partition of X, and
if A is a collection of relatively open sets in 7, then A is a collection

of convexly disjoint sets.

Proof of Theorem 42: Suppose C € C, and C CSupp(A), then [C]/\ A
is a collection of relatively open sets. But C is connected, so there

exists an A € A such that C C A = theorem.

Definition 29: E is a unit set if [E ] is the only collection A of convexly

disjoint sets such that E = Supp(A).

Note: The notion of unit sets is my abstraction of 'polygonally connected
sets'. All convex sets are unit sets. The tie-in of unit sets with

polygonally connected sets will become obvious.

Theorem 43: If all the members of C are connected in some topology T,

and if Y is a unit set, then Y is connected in 7.

Proof of Theorem 43: Suppose Y = Supp(Z) where Z is an incomplete
portion of Y and where Z is a collection of relatively open sets. By
Theorem 42, Z is a collection of convexly disjoint sets. By Definition

29, Z= [Y]={p}U{Y} .. Yis connectedin T.

Theorem 44: If all the members of C are connected in some topology

T, and if for A C gLX (|A| < @) A is not a collection of convexly disjoint
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sets then either there exists an A € A such that A N (Supp(A ~ [A] # ¢
(where A is the closure of the set A in the topology T) or ¢ ¢ A.

Proof of Theorem 44: Suppose for all A € A, A N Supp(A ~ {A]) = ¢.
For all A € A, Ext(A) = (X ~A) is open. For all other A’ € A (A% A),
A’ c Supp(A~ {A}) C Ext(A). Hence

Alc N Ext(A)
AeA

AzA’

But since |A| is finite

N\ Ext(A) e T
AeA

A#A’

Therefore A is a collection of relatively open sets. But

AN Supp(A~ {A)) = ¢ implies that for all A’€ A (A’ # A) that
A'N A c Supp(A~ {APN A= ¢. Hence, AU {¢}is an incomplete
partition of X. By Theorem 42, A U {¢} is a collection of convexly
disjoint sets. We must then conclude that ¢ g{ A. Q.E.D.

Restating Theorem 44: If all the members of a convexity C are con-
nected in a topology 7, and if A is a collection of sets such that
V Aec A, ANnSupp(A~{A) = ¢, then (AU {¢}) is a collection of con-
vexly disjoint sets.
Note: For convex sets in Rm(Euclidean space) the condition
j#i

for 1 <1i < n is both a necessary and sufficient condition that
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1+ T Cp @ } be a collection of convexly disjoint convex sets. In

general, it is not necessary that

Ein(u Cj):cp (1 <i=sn)
j#i

for {C,, C,, ..., C,, ¢} to be a collection of convexly disjoint sets when-
ever the convexity C has a topology T such that all the members of C are
connected. (As an example, in R’ let the set of convex sets be rectangles
whose edges are either parallel to the x-axis or to the y-axis. An open
rectangle sharing a corner with a closed rectangle would be a pair of
convexly disjoint connected convex sets that doesn't satisfy

C.NC,=¢=C,NCy.)

Definition 30: For any abstract convexity C of X, and for any Y C X,

define
"
x} if xeY
Gp(x; Y) = ¢
if x¢Y
" ¢
] ucC if xeY
Gp,(x;Y) = < xeCeC,CCY
¢ if x¢Y
o
forn> 1, -
*.
VeR.(&SY) i Gp (V) # ¢
Gp,, (x;Y) = (X €Gp (x;7)
¢ if  Gp,(x;Y)= ¢
-~
©0
Gpa(x;Y) = V Gp; (x; Y)
i=0
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Note that: Gpn(x; Y) C Gp, +1(x; Y)s

Theorem 46: Ify € Gpn(x; Y), then

(1) xe€ Gpn(y;Y) and
(2) Gp(y;Y) € Gp, , (%;Y) Vk > 0.

The proof of Theorem 46 is obvious.
Theorem 47: Gpa(x;Y) is a unit set.

Proof of Theorem 47:

CaseI: x ¢ Y, then Gpa(x;Y) = ¢ € C. .. Gpa(x;Y) is a unit set.

Case II: x € Y. Suppose Gpa(x;Y) = Supp(A) where A is a collection of
convexly disjoint sets. Let A = Mat(x; A). Suppose that A # Gpa(x;Y),

then there exists an n (< «) such that Gpn(x; Y) C A, but Gpn+1(x;Y) Z A.

(Otherwise Gpa(x;Y) = A). Letze Gp,_ 1(x;Y)~A # ¢. But by defini-

n+l
tion, there exists an x* e Gpn(x;Y) and there exists a C € C such that
(1)zeC, x*€ C, and (2) C CY. Hence x* £ z (Mod A) =

2= ||All x*, z} < HAHC = 1. (A contradiction.) Hence A = Gpa(x;Y),

and A = [A]. Hence Gpa(x;Y) is a unit set.

Theorem 48: If A is a collection of convexly disjoint sets, and if

a€ A e A, then Gpa(a; Supp(A)) C A.

Proof of Theorem 48: A A [Gpa(a;Supp(4)] is a collection of

convexly disjoint sets. But Gpa(a; Supp(A)) € Supp(A A[Gpa(a; Supp(A4)])
C Gpa(a;Supp(4)). Since Gpa(a;A) is a unit set, (and since

A A [Gpa(a; Supp(4) ] is a
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collection of convexly disjoint sets), A /\ [Gpa(a;A)]= [Gpa(a;A) ].
Hence Gpa(a;Supp(4)) = A /N Gpa(a; Supp(4) ), which yields that
Gpa(a;Supp(4)) C A. Q.E.D.

Theorem 49: If z € Gpa(x;Y), then Gpa(x;Y) = Gpa(z;Y).

Proof of Theorem 49: If z € Gpa(x;Y), then there exists an n < « such
that z € Gpn(x; Y). By Theorem 46, x € Gpn(z; Y), and furthermore for

all k > 0, Gp, (x;Y) C ka(z;Y) and Gpn+k(z;Y) C ka(x;Y). Hence

+k
Gpa(x;Y) C Gpa(z;Y) and Gpa(z;Y) C Gpa(x;Y). Therefore

Gpa(x; Y) = Gpa(z;Y). Q.E.D.

Theorem 50: For all Y C X, there exists a unique collection A of

convexly disjoint unit sets such that Y = Supp(4).

Proof of Theorem 50: By Theorem 48, it suffices to show that
A={p}v {Gpa(y;Y)|y € Y}. Suppose that (1) C € C, that (2) C C Y,
and that (3) C N Gpa(x;Y) # ¢. Then there exists a z € C N Gap(x;Y).
By Theorem 50, Gpa(z;Y) = Gpa(x;Y). By definition

C C Gp,(z;Y) C Gpa(z;Y). Also if Gpa(a; Y)N Gpa(b;Y) # ¢, again
Theorem 50 assures us that Gpa(a;Y) = Gpa(b;Y). Hence A is a col-

lection of convexly disjoint unit sets.

Definition 31: For a given convexity C, and a set Y C X, let

PH(Y) = {¢ } U {Gpa(y;Y)|y € Y}.

Corollary to Theorem 50: Suppose A is the union of some collection of
convexly disjoint sets, then the convexly disjoint convex sets of which A

is the union are uniquely determined.
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Proof: Convex sets are unit sets.

Theorem 51: Suppose both A and B are unions of two (not necessarily
different) collections of convexly disjoint sets, then

Pt(A) /™ Pt(B) = Pt(A N B).

Proof of Theorem 51: By Theorem 50, both Pt(A) and Pt(B) are col-
lections of convexly disjoint convex sets. Since C is closed under finite
intersection, Pt(A) /N Pt(B) is a collection of convexly disjoint convex
sets. Obviously, AN B = Supp(Pt(A) /\ Pt(B)) = Supp(Pt(A N B)). The
uniqueness property in Theorem 50 insures us that

Pt(A) /N Pt(B) = Pt(A N B).

Theorem 52: For any sets A and B € g,x, and any point x € X,
(1) Gpa(x; A n B) C Gpa(x; A) N Gpa(x; B)
(2) Gpa(x; A) U Gpa(x; B) C Gpa(x; A V B).

Proof of Theorem 52: (1) follows from Theorems 50 and 38.
From (1) it follows that if Y C Z, then
(1.5) Gpa(x;Y) € Gpa(x; Z), hence
Gpa(x; A) C Gpa(x; A U B)
Gpa(x; B) C Gpa(x; A U B)
.. (2) Gpa(x;A) V Gpa(x; B) C Gpa(x; A U B).

Note: Theorems 43, 44, 50, and 52 are the main reasons why I con-
sider my unit sets to be an abstraction of the notion of polygonally

connected sets.
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Definition 32: A collection A of indexed sets that are unions of convexly
disjoint sets is said to have property [k, m ] (m = k) if for all

m
Dozl’ Daz’ ey Dam (the a; are pairwise different) € A,Hl/:\1 Pt(Dai) H < k.

Definition 33: A collection of sets S has Helly's #h if there does not

exist a finite subcollection R C S such that

1) NR = ¢ and
ReR

(2) for all R’ C R(|R'| =h), NR,# ¢.
ReR

Note: The minimum Helly's number for the set of convex sets in R"

(Euclidean space) is h = n +1.

Theorem 53: (The generalized Helly's theorem). Suppose that A was
a collection of indexed sets which were unions of convexly disjoint
convex sets (of some abstract convexity C), and that A had property

[k, m] (m > k). Also suppose that C had Helly's number h = 2. Then
the set A has Helly's number q = max(hk, m+k) for h = 3 and the set
has Helly's number q = max(3k-1, k+m) for h = 2.

Note: For h = 2, theorem 53 is not the best result possible.

Proof of theorem 53: We may as well assume that we are given C
with Helly's #h, and a collection A of sets with property [k,m]. And
for the appropriate q (determined by h, k, and m), we may further

assume that for all ¢, a,, ..., ag (the a; are pairwise disjoint) that

q
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(the Aai € A of course). It is sufficient to show that there does not
exist an a,, a,, ..., @, (n < =) such that the a; are pairwise distinet

and such that

For n < q, we have already assumed the above statement to be true.
We shall assume the statement in question is true so long as n < p
and proceed to show the statement is true for n = p+1 (i.e., an
induction proof). Choose any A, A,, ..., Ap+1 € A. We may assume

that the A; are pairwise distinct (otherwise

p+l p
N A =N A_ #¢
i=1 ! 4 @i

by the induction assumption). For eachi (1 <i < p+1) choose an

x; € N A]. (# ¢ by the induction hypothesis). Let Z = {x; |1 <i<p+1}.
j#i

Let AA = {Pt(A,)|1 <i <p+1}. Note that for 1 <i<p+l,

(Pt(Ai))Z <1. If <Pt(Ai)>Z = 0, for some i, then

(and that would prove the theorem). So, we may as well assume that

{x;}= Res(Pt(A,)|Z) for 1 < i < p+1.

Lemma: K (AA|Z) < k.
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Proof of Lemma: Suppose that there existed a BB C AA such that for
B= AP, ||B HZ > k. Then there exists a set I of integers such

Pe
that |I =k+1 = ||B||{X T By theorem 11, we may as well assume

|1€I
that ||BB|| <k < m. Since |Z| > p+1 = q+1 > k+m +1, then there
exists a set of integers J such that 1N J = ¢, such that [J| = m, and
such that BB < {Pt(A. )|3 €J}. LetX={x|iel}. Both B and A P

jed
partition X. Now 1B 'X = k+1, so by the corollary to heorem 3,

/\P = ||\NP./\B > k+1
1,2yl = A 2y~ 5l

But this violates the assumption that A had property [k, m]. Hence
K(AA[Z) < k. End of Lemma.

We have now reached the conclusion that either theorem 53 is true, or
thatK(AAIZ) < Kk, n(AA|Z) =1. Since |Z| > xa(h, k, 1) (note that
xa(h, k, 1) -1 is the first term in the maximum function that determines
the Helly #), there exists aH C Z, |H| = h +1 such that for

1 <1i < p+1 there exists an C; € Pt(Ai) such that IC. lH 2 h. By con-
struction, for any I, (|I| <h, Ic {i|]l ci<p+1}), N C,# ¢. By

iel
the assumption that C had Helly's #h,

p+1
N Ci + ¢ .
f=
Hence,
p+1 p+l
¢+ N CC N A

i=1 i=1

Q.E.D.
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Note to Readers: When I was deciding on a probable method of proof of
the generalized Helly's Theorem, I was very much impressed with
Radon's proof of Helly's Theorem. The emphasis in Chapter I and II on
sets labeled H was due to the anticipated use of a set H, with
IH’ =h+1, etc., in the final part of the proof of the generalized Helly's
Theorem. In fact, if I had been proving the generalized Helly's
Theorem just for unions of convex sets in Euclidean space, I could have
used Radon's Theorem for convex sets instead of Helly's Theorem for
convex sets.

The next few remarks and definitions are to compare Griinbaum's
and Motzkin's original definitions and conditions with my corresponding

definitions and conditions. (See Bibliography)

Definition 34: A convexity C is y -non-additive (for a finite of infinite
cardinal y = 2) if for every subfamily C’ C C, with 1 < ||C'|| <y +1,
such that C’ is a partition, we have that C’ is a collection of convexly
disjoint sets. The family C is non additive if it is y -non-additive for
efrery cardinal y = 2.

Off hand, it looks like y -non-additive is no better than a condition
that guarantees that unions of disjoint convex sets are actually unions
of convexly disjoint sets. On the other hand, a collection A of unions
of convexly disjoint convex sets with property [k, m ] can always be
imbedded into a convexity that is non-additive. (But the non-additive
convexity would really be a convexity on &X instead of a convexity on

X.)
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Definition 35: A family C has the '"Helly property of order h' with
limit y (h, y cardinals with 2 < h <) If for each subfamily C' ¢ C
with |C’| < y+1 the condition

"NC # ¢ forall C* c C’, with [C*| <h+1"
cec*

implies that N C’ # ¢. The family C has unlimited Helly property of'
order h if it(ileag the Helly property of order h with limit ¢ for every
y > h.

In theorem 53, I could have added the condition that the
Convexity C had Helly's property with limit y > 8,, and then concluded
that A with property [k, m ] also had Helly's property with limit y. To
prove that additional bit of information, it would be a simple exercise
in using the axiom of choice. Since I have not made any use of families

with Helly's property of limit y, I decided just mentioning that property

in passing would suffice in this paper.

Concluding remarks: In theorem 53, for h = 2 it is possible that

q = max(2k, k+m) = k+m without xa(2,k, 1) = 2k +1. In the proof of
Theorem 53, I only used the fact that: if I could find three points such
that each set A of A contained at least two points in a convex set C C A,
then the intersection of any finite subcollection of A is not empty. I

never considered the fact that if I could find 2n +1 point such that each

set A € A contained at least n +1 points in a convex set C C A, then the
intersection of any finite subcollection of A is not empty. Many other such

possibilities exist (a countable set of them in fact). It is possible to
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construct a set X and a convexity C of X such that the minimal Helly's
number is determined solely by those enumerated possibilities. (Note
to convexitists: for that constructed set X and constructed convexity
C, it is possible to include in the construction that the abstract con-

vexity C admits no finite Radon's number nor a finite Carathéodory's

number. )
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