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ABSTRACT 

Existing paradigms for stroke diagnosis typically involve computed tomography (CT) or 

magnetic resonance (MR) imaging to classify ischemic versus hemorrhagic stroke variants, as 

treatment for these subtypes varies widely.  Delays in diagnosis and issues related to transport of 

unstable patients may worsen neurological status.  As such, translational medical devices that 

accelerate time to treatment in the field or hospital setting have the potential to lower morbidity 

and mortality in stroke patients. We demonstrated feasibility of rapid and accurate bedside stroke 

detection using a novel, handheld portable eddy current damping imaging device in laboratory 

benchtop as well as live human clinical ischemic and hemorrhagic stroke settings.  We show that 

diagnosis of stroke may potentially be reduced from several hours to minutes, with additional 

spatial localization of intracranial hemorrhage, thereby rapidly guiding time-sensitive medical 

decisions for clinical intervention such as tissue plasminogen activator (tPA). The sensor 

additionally detects ischemic and hemorrhagic lesions located deep inside the brain, and its range 

can be selectively tuned during sensor design and fabrication. 
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CHAPTER 1: BACKGROUND 

Stroke continues to be the second leading cause of death worldwide and results in upwards of 5.5 

million casualties per year [1, 2]. The high prevalence and rates of disability associated with stroke 

cost the United States healthcare system more than $71 billion per year, and recent studies from 

the Center for Medicare and Medicaid Innovation (CMMI) Bundled Payments for Care 

Improvement (BPCI) initiative suggest that stroke may be contributing towards healthcare losses 

due to high rates of readmission and complications [3, 4]. As such, the high rates of morbidity and 

mortality following stroke continue to inspire contemporary research with hopes of reducing the 

time to treatment, expanding diagnostic technologies, and facilitating patient triage to minimize 

post-stroke complications. 

This thesis aims to develop a novel medical device to accelerate stroke diagnosis and classification. 

The work described here aims to describe the clinical profile of ischemic and hemorrhagic stroke, 

explain the bottlenecks in current diagnostic technologies, and propose a contemporary solution 

for rapid stroke diagnosis and patient triage. The solution described here utilizes a portable eddy 

current damping (ECD) magnetic sensor to allow for rapid bedside diagnosis and imaging of 

stroke. Interdisciplinary collaboration dovetailing medicine, electrical engineering, mechanical 

engineering, and computational science may allow for the development of novel medical devices 

capable of reshaping the paradigms used in current stroke diagnosis and management.  



 

 

2 
Chapter 1 presents the clinical picture of stroke and discusses the current paradigm for treatment 

of stroke subtypes. Chapter 2 explains the operating principles of the ECD sensor. This discussion 

includes the underlying physics and construction of the biodevice. Further, it is here that we discuss 

optimization of our sensor circuitry and limitations that we faced during the development phase. 

Chapter 3 marks the start of the results and includes the benchtop experimentation performed with 

this sensor. Tuning curves are discussed with respect to the sensitivity to volume and distance for 

each sensor. In addition, preliminary experiments demonstrating device feasibility with plastic 

skull models are described and image production methodology is outlined. From here, Chapter 4 

demonstrates the translational capabilities of the ECD sensor, moving from benchtop experiments 

to human cadaver experimentation. The success of these cadaver experiments allowed for 

Institutional Review Board (IRB) approval and testing on live human stroke patients, outlined in 

Chapter 5. Output from the ECD sensor is compared to that of computed tomography (CT) 

scanning for a number of stroke patients, allowing for the discussion of device accuracy. Chapter 

6 gives some insight into the theoretical limits of the ECD sensor through finite element modeling 

(FEM) and explores mechanical optimization of the device. Lastly, Chapter 7 provides a 

conclusion, summarizing the advancements, results, and limitations seen in the previous chapters. 

Prior to human testing, several experiments were conducted using cadaveric human heads. I would 

like to thank the donors who were generous enough to donate their bodies for the advancement of 

science. In addition, I would also like to thank the many live human stroke patients, as well as their 

families, who agreed to be a part of this study. There is something to be said about the character 

of individuals who participate in medical research knowing that while they face no potential 
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benefits, their involvement may allow for the creation of a device that can help others who may 

face a similar situation. We thank you all for your kindness and generosity. 

1.1 Structure of the Brain 

On average, the length of a human head length is approximately 19.7cm for males and 18.7cm for 

females, and the average height is approximately 23.2cm for males and 21.6cm for females. The 

tissue of the scalp is organized into five distinct layers: skin, dense connective tissue, epicranial 

aponeurosis, loose areolar connective tissue, and periosteum [5]. Within the scalp, most of the 

neurovasculature can be found within the dense connective tissue. Additionally, body mass index 

(BMI) and sex-dependent variations in adipose tissue may be found within the dense connective 

tissue of the scalp. Similarly, the average skull thicknesses for frontal, parietal, and occipital skull 

regions are 6.58mm, 5.37mm, and 7.56mm respectively for males and 7.48mm, 5.58mm, and 

8.17mm respectively for females [6]. Below the skull lie the meningeal layers, which include the 

dural, arachnoid, and pial layers respectively. 
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Figure 1-1. Anatomy of the human brain. Created with BioRender.com 

The brain is organized into three main components: the cerebrum, cerebellum, and brainstem 

(Figure 1-1). Each component is bilaterally symmetrical and the empty space within each 

component forms the ventricular spaces, which contain cerebrospinal fluid (CSF). The anterior 

cerebral artery (ACA) supplies most of the anterior cerebrum (frontal lobe), the middle cerebral 

artery (MCA) supplies most of the medial cerebrum (parts of the frontal and temporal/parietal 

lobes), and the posterior cerebral artery (PCA) supplies most of the posterior cortex (occipital 

lobe). Deeper brain structures are supplied by a mix of the main cerebral arteries and other arterial 

branches, including those from the basilar and vertebral arteries.  

1.2 Intracranial Pathology: Ischemic Stroke 
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Ischemic stroke occurs when an intracerebral vessel is obstructed by a thrombus or embolus, 

resulting in ischemia-driven neuronal damage. As such, ischemic strokes involving the MCA occur 

most frequently due to the high number of bifurcations from the MCA to supply blood to a large 

territory of the brain [7].  Ischemic strokes are further subdivided by etiology, with large artery 

thrombotic strokes due to atherosclerosis making up 20% of cases, small artery (lacunar) strokes 

due to microatheromas making up 25% of cases, cardiogenic embolic stroke making up 15% of 

cases, cryptogenic strokes of unknown origin making up 5-10% of cases, and strokes associated 

with other causes (such as drug use) making up 20-25% of cases [2].  

Risk factors for ischemic stroke include both lifestyle and genetic contributors. Lifestyle factors 

including tobacco use, alcohol use, diabetes mellitus, and high fat diets may increase the risk for 

the occurrence of an ischemic stroke [8, 9]. Further, prior studies have shown that a family history 

of ischemic stroke may increase the risk for both large and small-vessel ischemic stroke [10]. 

Deeper investigation into specific genetic polymorphisms resulting in familial transmission of 

ischemic stroke have revealed that factor V Leiden Arg506Gln (OR, 1.33; 95% CI, 1.12-1.58), 

methylenetetrahydrofolate reductase C677T (OR, 1.24; 95% CI, 1.08-1.42), prothrombin 

G20210A (OR, 1.44; 95% CI, 1.11-1.86), and angiotensin-converting enzyme insertion/deletion 

(OR, 1.21; 95% CI, 1.08-1.35) may be responsible for the increased risk of ischemic stroke [11]. 

Lastly, several medical conditions may increase an individual’s risk of ischemic stroke. Individuals 

with a prior history of transient ischemic attack (TIA) have been shown to have an increased odds 

of experiencing an ischemic stroke due to their similar neurovascular disease origins [8, 12]. Also, 

individuals with atrial fibrillation are at a higher risk for embolism production due to variable local 

hemostasis, and the production of emboli increases the risk for cardiogenic embolic stroke [13, 
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14]. Thus, the multifaceted etiology of ischemic stroke has resulted in difficulties in prevention 

and management. 

When an individual experiences an ischemic stroke, several characteristic symptoms are often 

present. Sudden weakness of the face or limbs, confusion, difficulty speaking, visual disturbances, 

difficulty walking, impaired coordination, and headache are all common symptoms experienced 

during an ischemic stroke [15]. Oftentimes these symptoms present unilaterally on one side of the 

body. Because the nervous system is organized such that one side of the brain controls the motor 

and sensory function of the contralateral body, many times it is possible to identify the laterality 

of the stroke based on the side of the body affected. If an ischemic stroke occurs in a deeper brain 

region, such as the brainstem, the presenting symptoms may be much more severe and include 

problems with vital functions, including breathing.  

Diagnosis of ischemic stroke involves clinical suspicion and diagnostic imaging procedures, which 

include either magnetic resonance imaging (MRI) or CT imaging. For patients with suspected 

stroke, CT imaging is often preferred over MRI because of its increased temporal resolution. An 

example noncontrast CT image of an ischemic stroke is seen in Figure 1-2.   
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Figure 1-2. Coronal representation of ischemic stroke on noncontrast CT imaging 

On CT imaging, early ischemic changes appear as areas of hypodensity, with loss of gray-white 

matter differentiation and sulcal effacement resulting from tissue swelling [16]. However, the 

presentation of ischemic stroke on imaging may vary as a function of time following ictus. In the 

hyperacute phase (0-6 hours following ictus), clinical imaging may not accurately pick-up regions 

of ischemia. However, as the ictus transitions from the hyperacute phase to acute (6-24 hours), 

subacute (1-7 days), and chronic (>1 month) phases, the lesion may become increasingly apparent 

on CT imaging [17]. As such, repeat imaging following ischemic stroke occurs frequently to best 

manage the changing landscape surrounding the ictus.  
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Lastly, once an ischemic stroke has been identified, the current mainstay for treatment involves 

intravenous thrombolysis with tissue-type plasminogen activator (tPA) within 4.5 hours of stroke 

onset [18, 19]. Administration of tPA outside of this time window may reduce drug efficacy and 

result in severe drug-mediated complications, including intracerebral hemorrhage (ICH) [20, 21]. 

Additionally, endovascular thrombectomy (EVT) provides another treatment option for patients 

diagnosed with ischemic stroke [22]. EVT entails either using stents to recanalize and retrieve the 

thrombus or using endovascular suction devices to suck the thrombus out of the vessel. The safety 

of both techniques has been proven and several studies have demonstrated that both EVT 

techniques yield similar patient outcomes [23, 24]. However, treatment with EVT is still highly 

time-dependent, and the current recommendations mandate EVT treatment within 3-4.5 hours in 

anterior circulation strokes and within 24 hours for posterior circulation strokes for best patient 

outcomes [22, 25–27]. Thus, it is clear that rapid diagnosis of stroke may yield the best potential 

outcomes by facilitating timely treatment. 

1.3 Intracranial Pathology: Hemorrhagic Stroke 

Hemorrhagic stroke, also known as ICH, is defined as a rupture in a weak intracranial artery 

resulting in bleeding within the brain. While hemorrhagic strokes (~13% of cases) are less common 

than ischemic strokes (~87% of cases)[28], they are associated with significant higher rates of 

morbidity and mortality. As such, ischemic stroke has been associated with a 60% one-year 

survival rate and ICH has been associated with a 38% one-year survival rate [29]. Oftentimes, 

hemorrhagic stroke is subdivided by the location of the ICH into one of four categories: epidural 

hematomas (above the dura mater but below the skull) account for 5-15% of all hemorrhagic stroke 
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mortalities and often occur in the context of skull fracture and head injury, subdural hematoma 

(below the dura mater but above the arachnoid mater) occurs in 5-25% of patients with head injury 

and affects males twice as often as females, subarachnoid hemorrhages (between the brain and 

arachnoid mater) account for about 5% of all hemorrhagic strokes, and intraparenchymal 

hemorrhages (within the brain parenchyma) account for 10-20% of all hemorrhagic strokes and 

often occur in elderly patients [30].  

Risk factors for ICH are similar to those of ischemic stroke and include tobacco use, alcohol use, 

diabetes mellitus, and a high-fat diet [31–33]. However, hypertension has been shown to be the 

most significant risk factor for ICH, with inadequate blood pressure control having a hazard ratio 

of 3.53 in lobar ICH and 4.23 in nonlobar ICH [34]. Furthermore, a family history of ICH has been 

shown to increase the risk of both lobar ICH (odds ratio: 3.9) and nonlobar ICH (odds ratio: 5.4), 

and previous studies have hypothesized that the familial inheritance of Apolipoprotein E4 may 

confer this increased risk [35]. 

Several medical diagnoses may also increase the risk of ICH in certain patient cohorts. Unruptured 

cerebral aneurysms are found in roughly 3% of the population and are formed as an outpouching 

of an arterial wall [36]. Although many aneurysms go unruptured, they are significant risk factors 

for the development of a hemorrhagic stroke, and they contribute significantly towards the 

incidence of subarachnoid hemorrhage [37]. An example of the turbulent flow seen within an 

unruptured aneurysm may be seen in Figure 1-3. In addition, arteriovenous malformations 

(AVMs), defined as a cluster of abnormally formed blood vessels, may increase the risk of ICH in 

patients of all ages, but especially in children [38]. Lastly, patients on anticoagulant (blood-
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thinning) medication may be at an increased risk for hemorrhagic stroke because these drugs 

reduce the clotting ability of the blood and make bleeding into the brain more likely [39]. 

 

Figure 1-3. Diagram of the blood flow seen within an unruptured aneurysm. 

Individuals who experience hemorrhagic stroke may present with several characteristic symptoms 

at the clinic. Acute onset headaches, sometimes described as “thunderclap headaches” in the 

context of aneurysmal subarachnoid hemorrhage, have been shown to affect roughly 92.4% of all 

patients with hemorrhagic stroke [40, 41]. Similarly, agitation has been described in roughly 17.4% 

of all patients and mydriatic pupils have been observed in 86.8% of all patients with hemorrhagic 

stroke [41]. In addition, the Glasgow Coma Scale (GCS) serves as a standard assessment for the 

level of consciousness of patients following hemorrhagic stroke, with the best possible score being 

15 (oriented, following commands, eyes open spontaneously) and the worst score being 3 (no eye 

movement, no verbal response to painful stimuli, no motor responses) [42]. In many cases of 

hemorrhagic stroke, significant decline in GCS scoring is reported [43]. These drops in GCS are 

mostly due to the etiology of ICH in which the increased intracranial pressure (ICP) resulting from 

the hematoma cannot expand against the rigid skull bones, thus compressing the brain parenchyma. 
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Diagnosis of hemorrhagic stroke often involves clinical suspicion following the onset of 

symptoms. As such, patients with suspected hemorrhage may receive diagnostic imaging with 

MRI or CT scanning. Similar to ischemic stroke, most patients are imaged using CT scanning 

rather than MRI because of its high temporal resolution. An example noncontrast CT image of an 

ischemic stroke is seen in Figure 1-4.   

 

Figure 1-4. Axial representation of hemorrhagic stroke on noncontrast CT imaging 

On CT imaging, ICH immediately appears as a region of hyperdensity similar to the signal 

generated by bone and the subtype of hemorrhagic stroke may be characterized by the location of 

the hematoma. Unlike ischemic stroke, ICH is visible on CT imaging immediately following the 
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cerebrovascular event [44]. The presence of a “spot” sign on CT imaging, which is defined as a 

small enhancing foci within the hematoma, has been recognized to predict hematoma enlargement 

[45]. Between 1 and 6 weeks, hematomas become isodense with brain parenchyma and chronic 

hematomas older than 6 weeks appear hypodense on CT imaging [44].  

Finally, the treatment of ICH heavily depends on the size and depth of the lesion within the brain 

parenchyma. Many large and superficial hematomas are neurosurgical evaluated and evacuated to 

prevent pressure-driven brain damage in the patient. However, small (<10mL) and deep 

hematomas are rarely evacuated based off of established surgical recommendations [46]. 

Regardless of bleed size, the blood pressure of all patients is closely monitored to prevent a 

secondary ICH or ischemia. Stroke guidelines recommend a systolic blood pressure <160 mmHg 

or a mean arterial pressure (MAP) below 110 mmHg in patients following hemorrhagic stroke 

[47]. Obviously, hypertension is not ideal following ICH because high arterial pressures may 

increase the risk of a secondary bleed. Conversely, if the blood pressure is precipitously reduced, 

cerebral perfusion will directly decrease and there will be a risk of perihematomal ischemia at the 

site of the ICH [48]. As such, management of patient blood pressure following ICH is critical and 

necessary steps must be taken to ensure adequate blood pressure without the risk of a secondary 

hemorrhage or ischemia. Similarly, ICP must be managed following hemorrhagic stroke to prevent 

pressure-driven brain damage. Elevation of the bed to 30-degrees, sedation, osmotic diuresis 

(mannitol), CSF drainage via ventriculostomy, and hyperventilation may all act to reduce ICP 

following hemorrhagic stroke [44]. 

1.4 Current Stroke Diagnostic Paradigm 
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As previously discussed, the current stroke diagnostic paradigm relies on mostly CT imaging, and 

sometimes MRI imaging, to confirm the stroke subtype, location, and characteristics prior to 

treatment.  Because patient transport to the hospital is required prior to imaging, current estimates 

suggest that the average time to treatment following stroke may be 2 hours because MRI/CT 

imaging is required prior to treatment [49–51]. In addition, neurological examination by a 

physician and radiologist interpretation of the head scan is required prior to treatment. On the same 

note, hospitals with limited imaging resources and high patient demand may not be able to 

immediately scan all patients with suspected stroke, further lengthening the time to diagnosis and 

treatment in patients based on which hospital they are transported to. During this time, the rate of 

neuronal death is constant, contributing to the high rates of morbidity and mortality classically 

seen following hemorrhagic stroke [52]. A general timeline for the diagnosis and treatment of 

stroke may be seen in Figure 1-5. 

 

Figure 1-5. Timeline for stroke diagnosis and treatment 

Furthermore, previous studies have described the disadvantages of traditional stroke imaging 

methods [50, 51, 53]. Namely, newer imaging procedures boast increased spatial resolution with 
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a hefty time cost and financial burden [53]. Furthermore, although head CT imaging produces only 

small amounts of radiation, exposure to radiation through CT scanning has been linked to an 

increased rate of cancer over long time periods [54–56]. However, in the context of a 

cerebrovascular emergency, the potential benefits of CT imaging to diagnose stroke definitely 

outweigh the potential harms associated with exposure to radiation. As such, translational medical 

devices that allow for rapid stroke detection without the risk of radiation continue to be 

investigated with hopes of increasing the safety and efficiency of stroke diagnosis. 

In addition, both CT and MRI imaging devices are extremely expensive and require trained 

technicians to operate these machines, further adding to the expenses associated with 

neuroimaging. MRI machines are purchased at the cost of roughly $1.5 million US dollars, and 

this cost can increase significantly depending on the strength (number of Teslas) of the MRI 

machine [57]. CT machines cost, on average, $150,000 but may cost several million dollars 

depending on the capabilities of the machine [58, 59]. Furthermore, studies evaluating the 

economics of hospital diagnostic imaging procedures have found that CT scanning is associated 

with $51 in expenses and $1,565 in charges and MRI scanning is associated with $165 in expenses 

and $2,048 in charges per scan [60]. From this data, it is clear that diagnostic imaging in hospital 

systems with high patient numbers will be undeniably associated with astronomical operating 

costs. 

As of late, the hospital system of the United States has begun investigating bundled payment 

systems for medical diagnoses and treatments. Within a bundled healthcare plan, a health system 

will receive a diagnosis-dependent lump sum once a patient is admitted, which will be drawn from 
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to cover the costs of diagnostic imaging, physician case, medications, etc. If the patient is 

discharged with little complications, the health system keeps the profits of the lump sum and 

distributes it accordingly to all providers who participated in taking care of the patient. However, 

as patients are readmitted for various complications following initial treatment, associated costs of 

care are deducted from the initial lump sum. As such, bundled payment systems require participant 

providers to assume risk and encourage health systems to treat patients as well as possible to reduce 

complication rates, allowing healthcare providers to maintain net profits as patients are discharged 

from their facilities. In the case of stroke, recent studies evaluating the CMMI BPCI have found 

that hospitals lose money when using the bundled payment system because stroke is associated 

with high rates of post-discharge complications and readmissions [4]. Thus, translational medical 

devices that reduce the time to treatment may reduce patient morbidity and mortality following 

stroke, allowing for savings within the healthcare system, increased payment to patient providers, 

and reduced complication rates in stroke patients.  

1.5 Novel Approaches to Stroke Diagnosis 

Several novel medical devices have been investigated with hopes of reducing the time to treatment 

in stroke care. Technologies using near-infrared spectroscopy (NIRS) to detect intracranial 

hematomas have been developed and have been granted Food and Drug Administration (FDA) 

approval as a class II device [61–63]. However, such devices are limited by the penetration of 

infrared waves through dense skull bone and brain parenchyma, so only bleeds located within less 

than 2.5cm of the brain surface may be detected [61, 62, 64, 65]. In addition, NIRS devices are 

unable to probe for cerebral ischemia and thus may not be able to differentiate strokes by subtype. 
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Furthermore, current devices only have the capacity to probe four areas on each hemisphere of the 

brain for hematomas and are unable to support continuous scanning and imaging [61, 62, 64, 65]. 

The ECD sensor described in this study demonstrates several advantages compared to NIRS 

technology, which is shown in Table 1-1. 

Table 1-1. Advantages of ECD sensor compared to similar modalities 

Similarly, a device using volumetric impedance phase shift spectroscopy (VIPS) to detect large 

vessel occlusion and hemorrhage have also been granted FDA approval as a class II device [62]. 

While such a device shows promise in stroke classification, it still does not allow for image 

production and does not afford an affordable alternative to traditional diagnostic imaging. Another 

approach that has been investigated is the use of microwave-based detection of stroke [66]. While 

this approach boasts similar accuracy as VIPS, it has several limitations, one of which being that 

such devices do not support continuous scanning but rather scan several points within the brain 

[67]. As such, it is possible that small strokes that do not align with the sensor array may go 

unnoticed. 
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Furthermore, previous studies have explored blood-based detection of stroke through the use of 

RNA and protein biomarkers. Protein biomarkers that may suggest the presence of an ischemic 

stroke include S100 calcium binding protein B (S-100B), neuron-specific enolase (NSE), myelin 

basic protein (MBP), and glial fibrillary acidic protein (GFAP)[68]. In addition, nonspecific 

protein biomarkers of inflammation have been explored as biomarkers of ischemic stroke, 

including C-reactive protein (CRP), interleukin-6 (IL-6), tissue necrosis factor-alpha (TNF-α), 

vascular cell adhesion protein 1 (VCAM 1), intercellular adhesion molecule 1 (ICAM 1), N-

methyl-d-aspartate (NMDA) receptor antibodies and matrix metalloproteinases (MMPs), D-

Dimer, and von-Willebrand factor (vWF)[68]. RNA biomarkers of ischemic stroke focus on the 

variations in gene expression within cells of the peripheral circulation following ischemic stroke, 

seizures, hypoglycemia, and hypoxia [69]. While many of these protein biomarkers show promise 

in detecting ischemic stroke, the current standard of care still emphasizes diagnostic imaging 

because many of these biomarkers are nonspecific to stroke and may be elevated following 

traumatic brain injury (TBI) or systemic illness. In addition, visualization of the stroke is necessary 

prior to treatment in order to ensure proper treatment. Because ischemic strokes are often treated 

with EVT and hemorrhagic strokes are often treated with neurosurgical evacuation, accurate 

localization of the ischemic or hemorrhagic lesion is necessary to guide timely medical 

intervention. As such, diagnostic imaging continues to be the current standard of care. 

Lastly, there has been a large push towards developing mobile CT and MRI imaging devices to 

facilitate in-hospital stroke triage as well as mobile ambulances with diagnostic imaging modalities 

on board. Mobile CT imaging devices have been adopted by a number of hospitals to facilitate 

diagnostic imaging without the need for patient transport. Although these devices may reduce the 
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time to diagnosis, they have the same limitations of CT machines and use radiation, incur operating 

costs, and are expensive to purchase. In addition to these limitations, mobile CT imaging devices 

have additional limitations including a limited range of technique protocols (fixed 120 kV), helical 

pitch (fixed 1.4), and the need to select reconstruction filters prior to the scan (without opportunity 

to re‐reconstruct with a different filter) [70]. Similar portable MRI devices have been demonstrated 

on benchtop extensively but continue to be much more difficult to develop as a portable or mobile 

device because of the high sensitivity to surrounding magnetic noise and the large magnetic field 

that must be generated prior to diagnostic imaging [71]. 

Although many creative solutions have been developed to reduce the time to treatment and 

diagnosis in stroke patients, further experimentation, methodologies, and novel medical devices 

are warranted to develop a solution with minimal limitations. No doubt, cheap and portable 

translational medical devices capable of detecting stroke, differentiating stroke subtypes, 

producing an image, and providing information on the depth/volume of the lesion may play a large 

role in facilitating stroke diagnosis and treatment. 

1.6 Conclusion 

The high metabolic demand of the brain makes it particularly susceptible to injury. Stroke, 

including both ischemic and hemorrhagic subtypes, continue to represent a large cause of mortality 

within the United States and globally. One factor that continues to contribute towards the high 

morbidity and mortality of stroke is the long time to treatment experienced by many stroke patients. 

Therefore, novel translational medical devices capable of reducing this time to treatment may 

facilitate stroke diagnosis and treatment with hopes of reducing the degree of acute brain injury. 
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Current work evaluating novel diagnostic strategies for stroke have proposed several creative 

approaches, including the use of VIPS, NIRS, microwave-based diagnosis, and blood-based 

biomarker assays to diagnose and classify stroke. However, none of these novel techniques allow 

for stroke visualization, and many of these approaches lack the granularity required to diagnose 

stroke prior to treatment. In addition, many of these novel approaches are associated with 

significant costs to the patient, further limiting widespread use. 

As such, cheap, portable, and rapid stroke diagnosis and classification devices would allow for 

rapid patient diagnosis, triage, and treatment. This thesis will discuss an ECD sensor capable of 

producing high-fidelity stroke localization and diagnosis with hopes of reducing the time to 

treatment. 
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CHAPTER 2: SENSOR PRINCIPLES & DEVELOPMENT 

2.1 Introduction 

Sensors detect, measure, and record the physical properties of a target, and modern sensor 

advancements have introduced sensing devices in virtually every setting including hospitals.  In 

the case of the stroke sensor described in this thesis, conductivity is the physical property of interest 

and relevant circuitry must be designed in such a way to maximize signal generation. As such, the 

purpose of this chapter is to discuss the physics underlying the eddy current damping sensor, 

considerations to increase the signal-to-noise ratio (SNR), circuit architecture, and future circuit 

considerations to improve sensing capabilities.  

2.2 Background of Eddy Current Damping 

The magnetic field generated by the inductor produces an electromotive force (EMF) that creates 

a looping ‘eddy’ current in the conductive material described through Ohm’s law: 

𝐽 = 𝜎𝐸&⃗ 	  

where 𝐽 is the current density, σ is the conductivity, and 𝐸$⃗  is the electric field. When a conductor 

is in close proximity with such a time-varying magnetic field, eddy currents are generated within 

the conductive material. In accordance with Lenz’s Law, the looping eddy currents are in the 

direction opposite to the magnetic field, thus creating a repulsive force. 
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The unique electromagnetic properties associated with ECD have resulted in several precedent 

devices, primarily used for industrial applications. ECD automobile braking systems have been 

developed that utilize the counteracting magnetic fields generated within the conductive target to 

slow vehicles. The advantages of ECD braking include, but are not limited to, contactless 

implementation, rapid response, small number of parts, and easy implementation of controllers 

[72]. Similarly, the reliability of the ECD phenomenon has also seen its use in automobile 

suspension systems, roller coaster braking, and elevator braking [73–76].  

Furthermore, nondestructive testing (NDT) has historically been utilized in the inspection and 

diagnosis of cracks and corrosion in the aerospace industry [77]. The current paradigm of airplane 

inspection involves NDT eddy current testing of aircraft wheels, fuselage, and layered structures 

with inductive sensors similar to the one described in this thesis for stroke sensing. Additionally, 

contemporary evidence suggests that arrays of ECD sensors may be implemented to detect cracks 

in aircraft tubes with millimeter resolution and a tolerance of ±20% [78]. 

2.3 ECD Sensor Circuit 

The ECD sensor equivalent circuit model consists of a sensor coil paired with a capacitor to form 

an electrical resonant circuit, which is significantly from the architecture of previous ECD sensors 

used in industry for metal detection and crack inspection consisting of a bridge circuit that 

measures the sensor coil impedance [79, 80]. Thus, the sensor operates as a coil carrying an 

alternating current (AC), which produces a time-varying magnetic field in accordance to Faraday’s 

Law: 
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𝛻✕𝐸&⃗ = !"#⃗

!%
  

where 𝛻 is the curl operator, 𝐸$⃗  is the electric field as a function of position and time, and 𝐵$⃗  is the 

magnetic field as a function of position and time. This resonant circuit, or LC tank, may then 

experience a change in resonant frequency (Rf) and coil impedance following the introduction of 

materials with varying conductivity profiles into the coil sensor’s magnetic field. The circuit 

used to record ECD signals consists of a capacitor in parallel with an inductor which can be seen 

in Figure 2-1.  
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Figure 2-1. Sensor circuit 

As seen in the figure above, L1 represents the inductance of the sensor, C1 represents the capacitor 

paired with the inductor to form an LC tank, and R1 represents the internal resistance of the coil 

sensor. Similarly, L2 represents the inductance of the target and R2 represents the resistance 

associated with the target. Placing the coil sensor in proximity with the target generated coupling 

between L1 and L2, resulting in the characteristics changes in inductance and Rf measured by the 

circuit.  

2.4 ECD Sensor Physics 

When eddy currents are produced within the coil sensor, they generally flow in a manner that 

increases coil resistance and decreases coil inductance, a change that may be measured through 
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the use of a precise frequency counter. As eddy currents are generated within our coils, we use the 

Texas Instruments LDC 1101 chip to convert signals from our coils into computer readout [81]. 

Each coil was connected to its own LDC 1101 chip, and sensor outputs were recorded in series 

from each chip and stored on a local computer for analysis.  

In accordance with the previous theory, when a conductive target is placed in proximity with the 

coil sensor, the generation of eddy currents in the target will produce a counteracting magnetic 

field that will decrease coil inductance and increase coil resistance. Conversely, when a 

nonconductive target is placed in proximity with the coil sensor, the counteracting magnetic field 

may increase coil inductance and decrease coil resistance compared to baseline values. As such, it 

is theoretically possible to obtain unique, proximity-dependent electrical signals based off of the 

subtype of stroke present in the patient. 

Additionally, the EMF generated by the counteracting magnetic fields in the target hinder current 

flow within the coil sensor and increase the resulting AC resistance. This phenomenon is described 

by the equation: 

	𝑅! =
𝐿

𝑅𝐶
 

where Rp is the parallel resistance, L is the inductance, R is the resistance, and C is the capacitance. 

As seen in the equation, the parallel resistance of the electrical circuit is inversely related to the 

coil’s AC resistance. Thus, external targets that lower coil resistance will increase Rp, while targets 

that increase resistance will decrease Rp. 
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Any changes in coil resistance can be quantified by using a precise power meter to measure the 

power dissipation in the coil.  Assuming the skull can be modeled as a flat, two-layer structure, 

then the coil’s AC resistance is related to the tissue conductivity implicitly and can be modeled by 

a set of analytical solutions described by Dodd and Deeds [82].  The LDC integrated circuit (IC) 

chip provided heterodyne downshifting utilization to achieve higher frequency readout than the 

~40 samples per second [81]. It was possible to achieve even higher sampling rates (>200 samples 

per second) by downshifting the coil voltage to a lower frequency (~1kHz) through the use of a 

frequency mixer. This signal could then be sampled by an analog-to-digital converter, bandpass-

filtered, and conditioned by digital signal processing to recover the original resonant frequency. 

2.5 Stroke Sensor Manufacturing 

At first, individual coils of different sizes were constructed using plastic cylinders of varying sizes 

as scaffolds, with 46 AWG Litz wires with a diameter of 0.7cm wrapped around them to create 

solenoid coils. In our experiment, we constructed three solenoid coils with varying diameters and 

number of turns with the largest coil having an outer diameter of 11.4cm and 6 turns, the middle 

having an outer diameter of 4.5cm and 15 turns, and the smallest having an outer diameter of 1.5cm 

and 35 turns.  The magnetic field of a solenoid can be derived from Biot-Savart’s Law, yielding 

the following equation:  

𝐵 =
𝜇0𝑁𝐼𝑟2

2(𝑥2 + 𝑟2)
3
2
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where r is the radius of the solenoid, I is the current in the solenoid, µ0 is the absolute permeability 

of free space, x is the distance of the target from the center of the coil, and N is the number of turns 

in the coil. The use of the Litz wires minimized the coil resistance, and the varying diameters and 

number of turns allowed increasing magnetic field penetration depth from the smallest to largest 

coil, with turn number N directly proportional to the length and diameter of the coil [83]. In 

addition, Litz wire minimized the potential for capacitive coupling between different coils. Each 

of the three coils was circumferentially wrapped with ferrite sheets with the aim of redirecting the 

magnetic field distribution toward the target and blocking the electromagnetic interference from 

external sources. The average relative permeability of the ferrite sheet (MULL12060-000, Laird 

Technologies Inc.) is approximately 135 from 1MHz to 10MHz, which encapsulates the frequency 

range used in this study [84]. Data was recorded and saved to a computer using a wired USB 

connection with a maximum possible current of 0.0027 Amperes. Photographed and computer 

rendered images of the coil sensor may be seen below in Figure 2-2, 2-3, 2-4, and 2-5.  
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Figure 2-2: Computer rendering of the assembled sensor. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

Figure 2-3: Computer rendering of disassembled sensor. 
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Figure 2-4: Assembled sensor in a laboratory setting. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-5: Assembled sensor on a plastic skull replica. 
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2.6 Sensor Heating 

Electrical circuits are not perfect at utilizing energy and often emit heat radiation as they 

operate. The temperature of the circuit often varies as a function of several variables, of which the 

most important is the operating time of the sensor. Overheating of a sensor may lead to significant 

disturbances of the sensor output, since heating a metal conductor makes it more difficult for 

electricity to flow through it. This phenomenon may lead to incorrect resistance and inductance 

reading that would undoubtedly risk stroke misdiagnosis.  

To evaluate whether circuit heating may play a significant effect in sensor operations, we 

evaluate the specific heat equation which states: 

𝑄 = 𝑚𝑐𝛥𝑇 

where Q is the specific heat, m is the mass of the material, c is the specific heat of the material, 

and 𝛥𝑇is the change in temperature. Plugging in pertinent values for the sensor we get: 

𝑄 = (50𝑔)(0.385	
𝐽

𝑔 ∗℃)(1℃) = 19.25𝐽 

As such, we find that 19.25J are required for a temperature change of 1℃ within our coil sensor. 

We then combine the preceding equation with equation for electric power which states: 

𝑃 = 𝐼𝑉 

where P is the power in Watts, I is the current, and V is the voltage. Plugging in pertinent values 

for our sensor we get: 

𝑃 = (0.0027𝐴)(2.6𝑉) = 0.00702	
𝐽
𝑠 
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Lastly, to solve for the time required to induce a 1℃ within our coil sensor based off of its unique 

power requirements, we can divide Q by P: 

𝑡 =
𝑄
𝑃 =

19.25𝐽

0.00702	 𝐽𝑠
= 2,742.17𝑠 

Thus, we find that the time required to induce a 1℃ within our coil sensor is 2,742.17 seconds 

(45.70 minutes). Because the time required to scan patients with the sensor is on the order of 

several minutes and coils are turned on and off one-by-one in series for testing and scanning, it is 

highly unlikely that coil heating and related temperature fluctuations play a role in sensor noise 

and output. Likely, the noise produced as a function of heating in such a coil sensor is negligible. 

2.7 Guide Rails for Scanning 

In order to achieve accurate location-dependent scanning, guide rails for stroke sensor 

scanning were developed. On benchtop skull experimentation, a set of eight plastic tubes were 

arranged horizontally on the skull starting at the forehead and ending at the occiput. All eight rows 

were equidistant, and a plastic silicone attachment was fastened onto the bottom of the sensor to 

allow for movement along the plastic tube. These guide rails are visualized on benchtop models in 

Figure 2-6, 2-7, 2-8, and 2-9. 
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Figure 2-6: Computer model of benchtop skull and guide rails. 

 

 

 

 

 

 

 

 

 

Figure 2-7: Opaque computer model of benchtop skull and guide rails. 
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Figure 2-8: Benchtop skull model and guide rails. 

 

  

 

 

 

 

 

 

 

 

Figure 2-9: Interaction between silicone groove on sensor with guide rail. 
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Similarly, to accommodate cadaveric and live human scanning with the sensor, the guide 

rails were translated onto a wearable hat device that 1) prevented direct patient contact with the 

sensor device, allowing for hygienic scanning of multiple patients and 2) allowed for patient 

specific adjustments based off of individual head shape and size. These advantages allowed for a 

quick setup and scanning environment that could be portable and deliverable at a patient’s bedside. 

The portable hat sensor is illustrated in Figure 2-10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-10: Wearable hat setup for stroke sensor scanning. 

The purple cushion seen below the chin in Figure 2-10 prevents compression of the patient’s neck 

by the plastic tubing, ensuring that the experimental setup is comfortable for the patient. In 
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addition, to minimize friction when maneuvering the stroke sensor with silicon base across the 

plastic guide rails, WD-40 lubricant spray was occasionally applied. This low conductivity 

synthetic lubricant allowed for improved sensor hand scanning and significantly reduced the time 

required for patient scanning as well as the margin for error due to movement or the sensor being 

stuck. 

2.8 LDC 1101 Signal-To-Noise 

SNR is defined as the ratio of signal obtained by the sensor to that of the noise inherently 

present within the sensor output. As such, sensors with high SNR are preferred because they can 

accurately ascertain signal from noise, ensuring the validity of the sensor output for clinical 

decision making. 

All three coils of the stroke sensor were found to resonate at around 1MHz, and the SNR 

was calculated for each sensor using the LDC 1101 chip. This was done by dividing the magnitude 

of the coil’s signal by the standard deviation over several thousand time points. The small coil was 

found to have an SNR of 9.34, the medium coil was found to have an SNR of 8.81, and the large 

coil was found to have an SNR of 7.92. The average SNR for all three coils was 8.69. The trends 

in SNR as a function of coil diameter may be seen in Figure 2-11 below. 
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Figure 2-11: SNR as a function of coil diameter. 

The SNRs generated for each coil are adequate in distinguishing signals from noise. 

However, further investigation was required to investigate the sources of noise within the sensor. 

After trying different types of wire, including wire of different diameters, strand numbers, and 

orientations, SNR was not found to vary. In addition, Section 2.6 demonstrated that noise was also 

not likely due to overheating of the sensor during its operational phase. As such, we hypothesized 

that much of the noise within the sensor may be a result of the limitations of the LDC 1101 chip 

itself. Because this is a commercial chip, we were unable to modify the circuit during its 

development phase to fully understand its potential sources of internal noise. As such, we 

developed an LC tank capable of detecting conductivity changes. 

In addition, noise-equivalent distance and volume were explored for the sensors. Noise-

equivalence distance/volume is defined as the distance/volume at which the SNR is equal to 1.00. 



 

 

36 
As described previously, the ECD signals generated within the sensors are a function of both 

conductivity and distance. Resultantly, both of these factors are important to be considered when 

calculating noise-equivalence. The noise-equivalent distance in the small coil was 5.1cm for 

volumes between 20 and 50mL, that for the medium coil was 4.7cm for volumes between 20 and 

50mL, and that for the large coil was 9.6cm for volumes between 20 and 50mL. A result of the 

raw data is shown in Table 1-1.  

Table 1-1: Noise-equivalent volume and distance 

2.9 Developing an LC Tank 

 To develop the LC tank, 46 AWG Litz wire was wound around a hollow plastic cylinder with an 

internal diameter of 11.4cm 6 times to create an inductor. The inductance of the coil was found to 

be 11.02 μH. To determine the capacitance required to generate resonance at 1MHz, the following 

equation was utilized: 

𝑅𝑓 =
1

2𝜋√𝐿𝐶
 

Plugging in relevant values from our inductor, we get: 

1 ∗ 106𝐻𝑧 =
1

2𝜋P(11.02	𝜇𝐻)𝐶	
⇒ 	𝐶 = 2.3𝑛𝐹 
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As such, a 2.3nF capacitor was connected in parallel with the inductor to create an LC tank. To 

determine the coil’s quality factor (Q), an oscilloscope was connected in parallel with the LC tank, 

as seen in Figure 2-12. 

 

 

 Figure 2-12: Oscilloscope output for the LC tank. 

The approximation of Q in such a setting is the product of 2π and the number of oscillations 

seen on the oscilloscope output. Because the oscilloscope shows 24 oscillations, the approximate 

Q for this sensor is 150, which is relatively high and appropriate for lesion detection.  
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Through combining several points of theory regarding the physics underlying the LC tank, 

it was possible to devise an apparatus capable of quantifying changes in Rf due to local 

conductivity changes while preserving Q. The first point stems from the definition of Rf, which 

states that at Rf inductive reactance (XL) is equivalent to capacitive reactance (XC). Thus, at Rf 

impedance simplifies to: 

(𝑍) = P𝑅& + (𝑋' − 𝑋()& = P𝑅2 = 𝑅 

In accordance with the above equation, when the Rf is achieved the circuit is able to absorb 

and/or dissipate the maximum amount of energy. As a result, the current (I) is maximum at Rf. 

Lastly, the following equation describes the final piece necessary to devise our experimental setup: 

𝑉' = 𝐼'х𝑍' 

where 𝑉!is the voltage of the inductor, 𝐼!is the current of the inductor, and 𝑍!is the impedance of 

the inductor. Since current reaches a maximum at Rf, we expect voltage to also reach a maximum 

at Rf. 

Thus, the experimental setup involved the LC tank, a precise frequency counter, an oscilloscope, 

and a function generator. All components were wired in parallel directly to the LC tank to reduce 

stray capacitance/inductance and to maximize Q. A sine wave was generated by the function 

generator, and as the function generator frequency changed, so did the voltage output on the 

oscilloscope screen. To achieve Rf, the function generator frequency was tuned until the sine wave 

shown on the oscilloscope screen reached a global maximum. This frequency was then recorded 

as the Rf of the coil, and this value changed as the conductivity of local objects changed. More 

conductive materials were hypothesized to increase the Rf, and less conductive materials were 

hypothesized to decrease the Rf. 
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To calculate the SNR of the LC tank, a Fast Fourier Transform (FFT) was taken of the oscilloscope 

output. This output is seen below in Figure 2-13. 

 

Figure 2-13: FFT of oscilloscope signal. 

Taking into account the noise floor and signal amplitude of the FFT signal, the approximate SNR 

of the LC tank is 14, which marks a small but significant increase from the SNRs of the coils paired 

with LDC 1101 circuits. This finding suggests that the internal resistance of the LDC 1101 circuit 

may play a role in reducing the SNR of the sensor, and the future sensor iterations that rely on 

custom circuits with low internal noise may be even better at detecting intracranial lesions.  

2.10 Similar Stroke Devices 
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Advances in diagnostic technologies that can quickly and non-invasively detect brain 

hemorrhages would streamline stroke management and reduce delays to diagnosis and treatment 

in the hospital setting. Technologies using NIRS to detect intracranial hematomas, VIPS to detect 

large vessel occlusion and hemorrhage, and blood tests and microwaves to classify strokes have 

been developed, with some achieving FDA approval as a class II device [61–63]. However, such 

devices are limited by the penetration of infrared and radio waves through dense skull bone and 

brain parenchyma, and thresholds exist with regard to the size and distance of lesions capable of 

being detected by this technology [61, 62, 64, 65]. Furthermore, current devices are incapable of 

producing images of the brain and corresponding lesions following scanning [61, 62, 64, 65]. 

Furthermore, NIRS technology is severely limited by the depth of penetration of infrared light, 

limiting scanning to the most superficial 2.5cm of the brain.  

The physical properties of ECD sensors described in this chapter make them uniquely 

capable of avoiding many of the limitations imposed by previous stroke sensors. In addition, the 

lack of radiation and low magnetic field utilized by the ECD sensor allow it to scan, image, and 

predict stroke subtype accurately, safely, and efficiently. 

2.11 Conclusion 

Overall, sensor analysis and optimization are critical parts of medical device development. 

The stringent requirements of the United States FDA require sound medical device theory in 

conjunction with experimental evidence, which will be outlined in the next few chapters. 

Specifically, medical sensors that are developed for neurocritical conditions, including but 

not limited to hemorrhagic and ischemic strokes, must demonstrate a high level of accuracy, 

sensitivity, and specificity to prevent mistakes. While false positives may waste medical provider 
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time and energy in rushing healthy patients to the emergency room, false negatives are absolutely 

contraindicated and may make the difference between life and death. This is why SNR must be 

optimized, to ensure that the signal generated by a hemorrhage or area of ischemia always 

outweighs the local noise generated through coil operation and environmental factors.  

To further increase SNR in future iterations of the stroke sensor, avenues of coil 

automatization must be explored. Currently, the coil is scanned across the eight rows by hand. 

Hand scanning, although at times sufficient, is not the optimal setup in such a device because 

discrepancies between operators may result in additional noise within the sensor output. In 

addition, any jewelry worn by the scanner including bracelets and watches may further add to the 

noise of the sensor recordings and diminish the signal generated by the lesion. 
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CHAPTER 3: BENCHTOP EXPERIMENTATION 

3.1 Introduction 

As mentioned in previous chapters, the goal of this project is to develop a handheld ECD 

sensor for rapid stroke detection, localization, and classification. However, in order to establish 

the basic principles of the ECD sensor, several key benchtop experiments were performed. As 

such, these experiments were necessary to first establish the safety and feasibility of the sensor 

prior to translating the device to more complicated models.  

First, the theoretical limits of the ECD sensor were explored. These included the range of 

detection, volume sensitivity, and postprocessing requirements. Next, the finalized ECD sensor 

was explored on benchtop stroke models. Through these experiments, scanning protocols were 

determined and software was developed to accurately represent the lesions as a two-dimensional 

image. Lastly, circuit optimization was explored to investigate the maximum SNR possible with 

such a sensor. 

While the true translational potential of the ECD sensor will be explored in later chapters, 

a background of the benchtop experiment results is critical in fully assessing the potential of ECD 

scanning in stroke care. 

3.2 Sensitivity to Distance 

 We moved spherical saline-filled balloons of various volumes at a constant rate towards 

the large, medium, and small coils, and we were able to discern when a signal was detected with 
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the threshold signal being defined as 10% of the change from baseline to endpoint. Since increasing 

coil sizes and turn numbers intrinsically correlate with increasing magnetic field strength, we 

created tuning curves for each coil. In order to minimize capacitive coupling and reduce the noise 

of our sensor, we covered each sensor with ferrite sheets, leaving the end facing the target 

unshielded.  The use of magnetic shielding with ferrite material helped to redirect the magnetic 

field distribution toward the target and block the electromagnetic interference from external 

sources.  

Movement at a constant rate was achieved by fixing the balloon to a syringe pump with 

plastic rods, such that both the balloon and sensor were far from any metal. The syringe pump was 

pre-programmed to move the balloon at 0.503 mL per minute towards the sensor. Data was 

recorded and stored on a local computer during the duration of the experiment until the balloon 

touched the surface of the stational ECD sensor. The experimental setup may be seen in Figure 3-

1. 
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Figure 3-1: Tuning curve experimental setup. 

The most prominent tuning curve generated for the ECD sensor involved a 50mL spherical 

balloon, and correlated changes in distance with changes in resistance values ("#
#

). Analysis of the 

tuning curves demonstrated that the large coil had the largest range of detection (4.97cm), followed 

by the medium sized coil (3.99cm), and lastly the small coil (2.29cm). Per the physics of ECD 

described in Chapter 2, it makes sense that the largest coil had the greatest scanning depth, and the 

smallest coil had the smallest scanning depth (Figure 3-2). 
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Figure 3-2: Distance tuning curve for ECD sensor. 

 

3.3 Sensitivity to Volume 

Furthermore, balloons of different volumes were used to create volume-dependent tuning 

curves (Figure 3-3). As seen in these curves, the coil sensors have a reproducible volume-

dependent resistance change, with larger and more conductive lesions eliciting an increased 

resistance change and smaller and less conductive lesions eliciting a decreased resistance change. 

Thus, we can use these tuning curves to approximate the depth and volume of a signal-producing 

lesion by understanding which coils are able to detect a signal in series coil measurements.  It then 
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follows that a multi-coiled sensor design may not only be able to localize lesions, but it also may 

provide important clinical information about the depth of the lesion within the brain. 

Figure 3-3: Volumetric tuning curve for 3cm ECD sensor. 

 

 

In addition, the volume tuning curve shown above successfully demonstrates that ECD 

signals generated within the model are directly proportional to the size of the lesion, further 

bolstering the claim that more conductive lesions (hemorrhagic stroke) may be easily differentiated 
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from less conductive areas of ischemia (ischemic stroke). Because these changes in volume reflect 

relative increases or decreases based on the baseline conductivity values of normal control human 

adult brain, we hypothesized that differential scanning may be necessary to fully interpret point-

by-point conductivity values. 

3.4 Sensitivity to Shape 

To investigate whether the shape of the hemorrhage or infarct may influence the sensitivity 

at which the ECD operates, we compared signal changes between utilizing a classic spherical 

saline-filled balloon and a disk-shaped saline-filled whoopie cushion. Small, medium, and large 

coils were then positioned, and either the spherical or disk-shaped balloon was moved towards the 

coil. Parallel resistance was recording for balloons of different sizes, including 20mL, 30mL, and 

40mL. The signals generated by either balloon subtype were then plotted together for each coil, 

and the resulting tuning curves may be seen in Figure 3-4. 
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Figure 3-4: Shape tuning curve for three ECD sensors. 
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As seen in the curves above, the shape of the lesion may result in reproducible changes in Rp. In 

all graphs, blue lines represent a spherical balloon and red lines represent a disk-shaped whoopie 

cushion. Namely, our benchtop experiments suggest that the small and medium coils may be more 

sensitive to lesions that are more spherical in shape, and that the large coil may be more sensitive 

to lesions that are disk-shaped. Because ICH may present heterogeneously, with well 

circumscribed lesions having a spherical shape and epidural lesions having more of a disk/egg 

shape, it is important to understand which lesion types may be detected most accurately. 

Importantly, all three coils are sensitive to lesions of both shapes, though one shape prevails over 

the other. It then follows that series coil measurements with all three coils may allow for the most 

accurate lesion detection. 

3.5 Saline Vs Deionized Water 

To confirm that a more conductive saline target yields a greater degree of ECD signals 

compared to non-conductive deionized (DI) water, several experiments were developed for each 

sensor. The first of the experiments involved letting the sensor run for several seconds, then placing 

a bottle of either DI water or 0.9% saline directly in front of the sensors. The second experiments 

involved placing a saline-filled balloon on a non-conductive surface, and scanning across the 

surface starting one foot away from the balloon, directly over the balloon, the one foot in the other 

direction on the non-conductive surface. The third experiment was the most complex and involved 

placing an inflatable balloon inside a bath of 0.09% saline solution. The balloon was inflated with 

0.9% saline solution twice in each experiment. The y-axis for all graphs was in the units of Rp and 

the x-axis unit was time as a function of the sensors’ sampling rate. The results of all three 
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experiments are shown for the large, medium, and small coils in Figure 3-5, 3-6, and 3-7 

respectively. 
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Figure 3-5: Demonstrating Feasibility of Large Coil - DI Water vs Saline. 
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Figure 3-6: Demonstrating Feasibility of Medium Coil - DI Water vs Saline. 
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Figure 3-7: Demonstrating Feasibility of Small Coil - DI Water vs Saline. 
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These preliminary sensor experiments teach us several things. Primarily, when the ECD sensors 

are operating in air with no target, they are sufficiently stable with little drift, as seen in Experiment 

1 for all coils. However, the introduction of a relatively non-conductive DI water solution may 

decrease coil resistance slightly, and the introduction of conductive saline will significantly 

decrease coil resistance. Predictably, the degree of damping seen in each coil was positively 

correlated with the size of the coil, with larger diameter coils boasting greater damping. 

Furthermore, all three coils were successfully able to detect the saline-filled balloon while 

scanning in Experiment 2. The output from each ECD sensor demonstrated an inverted Bell curve, 

with the trough of the curve achieved when the sensor was directly above the balloon and 

maximum damping was achieved. These experimental data confirm the idea of utilizing ECD 

sensors to scan the head, since regions of increased conductivity may result in the highest damping 

values, while regions of decreased conductivity may result in the lowest damping values through 

differential scanning. 

Lastly, the results from Experiment 3 demonstrate that ECD scanning may still be achieved in non-

air media. 0.09% saline has a conductivity value of roughly 0.16 S/m, which is comparable to that 

of the human brain (0.20 S/m). Thus, because accurate sensing is achieved with the inflation of a 

saline balloon in a relatively less conductive media, it is feasible to assume that the translational 

properties of our ECD sensor may hold when applied to experimental stroke models. 

3.6 Constructing a Benchtop Brain Model 

Construction and testing with benchtop human brain models was necessary to demonstrate 

the feasibility of the sensor prior to translation to human models. Store-bought gelatin was added 

to 1000mL of DI water following the formula developed by Kandadai et al. and brought to a boil 
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[85]. A plastic bag was placed within the plastic skull model such that the opening of the bag exited 

the foramen magnum on the skull. Once all of the gelatin had dissolved, it was allowed to cool, 

and the conductivity was measured. Table salt was added to the solution to bring the conductivity 

to 0.2 S/m. The skull was then placed in the refrigerator until several hours before experimentation, 

at which point it was removed and allowed to warm to room temperature (Figure 3-8). 

 

 

 

 

 

 

 

 

 

Figure 3-8: Constructing a gelatin brain model. 

To demonstrate the feasibility of our sensor, we developed a benchtop intracranial hemorrhage 

model. We developed this model using a plastic life-sized skull replica, gelatin brain parenchyma, 

and diluted saline to mimic blood.  The gelatin brain was confirmed to have the same uniform 

conductivity at room temperature as its in vivo counterpart, which is 0.2 S/m [85, 86].  Saline was 

diluted to a conductivity of 0.65 S/m to mimic blood and injected into several latex balloons, with 

the volume of each balloon ranging from roughly 20mL to 200mL.  Eight equidistant horizontal 

scanning rows were marked onto the skull with flexible tubing, with the first row just above the 

eyebrows and the last row at the occiput as described in Section 2.7, along which the sensor moved 
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to measure and record Rp values. A third-party placed one of the balloons within the skull, and the 

individuals scanning were blinded to hemorrhage size and location (Figure 3-9).  

 

 

 

 

 

 

 

 

 

 

Figure 3-9: Placing a saline hemorrhage mimic in the model. 

The design of this model allowed us to confirm the repeatability of each experiment, and 

it allowed us to test several different sized coils for each hemorrhage volume and location. 

Feasibility of benchtop models allowed for a smooth transition to live human experimentation. 

3.7 Point-Scanning Model 

Preliminary experiments with the ECD sensor focused on point-scanning of the skull. To 

accomplish this goal, 11 points were marked on the plastic skull model including front, back, left, 

right, top, top right, top left, back right, back left, front right, and front left. Each sensor was placed 

at each location to record data. Data was recorded twice per point: once for control values with no 

saline blood mimic in place, and then again when the saline balloon was placed. Differential 
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scanning was implemented, and the points with the lowest Rp values predicted the greatest 

probability of hemorrhage since higher conductive areas correspond to higher damping, and thus 

reduced Rp. Two point-scanning experiments were conducted to demonstrate the feasibility of 

ECD stationary scanning through the plastic skull and to show that all three sensors may detect 

superficial lesions. Data was recorded in series from the large, medium, and small sensors 

respectively to reduce the degree of capacitive coupling taking place between the sensors when 

more than one sensor was active at a time. Diagrams for the two experiments may be seen in Figure 

3-10 and 3-11. 
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Figure 3-10: Demonstration of the first point-scan benchtop model. 

Figure 3-11: Demonstration of the second point-scan benchtop model. 

The experiments above demonstrate feasibility of an ECD sensor in detecting hemorrhages within 

the head model. Point-scanning showed reasonable accuracy in locating two intracranial lesions. 
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The large, medium, and small coils in the first experiment (Figure 3-10) suggest that the 50mL 

hemorrhage may be located at either the top left, front left, or front of the head respectively. 

Inspection revealed that the hemorrhage was located between the top left and front left of the brain. 

In the second experiment (Figure 3-11), the large, medium, and small coils suggested that the 

50mL hemorrhage was located at the right, front right, and front of the head respectively. Further 

inspection revealed that the hemorrhage was closest to the front right area of the head. 

Several hypotheses were considered as to why all three coils did not agree about the location of 

the hemorrhage. First, point-scanning introduces a great amount of empty space between each 

scanning point, and lesions located within these “empty spaces” may not be accurately resolved. 

Furthermore, when point-scanning is implemented, the degree of damping and resistance change 

within the sensor is proportional to the degree of superimposition between the sensor coils and the 

balloons. Because the skull is a convex hemisphere, point-scanning does not fully consider the 

geometric considerations of the skull or the variety of placement of an intracranial lesion. 

With these limitations in mind, additional scanning techniques were considered. Continuous 

scanning presented an opportunity to avoid the limitations of point-scanning while achieving 

greater spatial resolution than previous techniques. 

3.8 Continuous Scanning Model 

The second iteration of the benchtop skull model involved the development of continuous 

scanning techniques. As described in Section 2.7, guide rails with eight equidistant scanning paths 

were developed to facilitate scanning across the skull model. Each scanning path was traversed 

with each ECD sensor from right to left while data was recorded. Polytetrafluoroethylene (PTFE) 
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teflon spray was utilized to minimize the coefficient of friction between the silicon attachment on 

the sensor and the plastic tubing utilized to create the rows.  

Following completion of scanning, the >40,000 data points collected by each sensor for 

each row were downsampled to eight averaged points per scanning row. Interpolation was 

implemented to fill in the gaps between each data point. This step was performed to filter out high 

frequency noise and any anomalous data that may arise as an artifact of hand scanning. The results 

of the continuous scanning may be seen in Figure 3-12. 

 

 

 

 

 

 

 

 



 

 

61 
 

Figure 3-12: Demonstration of benchtop continuous scanning. 

 

 

Scanning the head model with the ECD sensor, we are able to create composite images that 

predict bleed location. More conductive areas are shown brighter, and less conductive areas are 
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shown darker. With reference to Figure 3-12, the raw data collected after scanning along 8 

scanning paths of a brain with a 40mL, 30mL, and 50mL hemorrhage is converted to an image in 

(a), (b), and (c) respectively. Using thresholding methods, we clean the data to produce the images 

seen in (d), (e), and (f). Actual bleed locations can be seen in (g), (h), and (i) by the red circles. 

Excellent spatial resolution is achieved in all cases on a centimeter scale as based on the overlap 

between the actual and predicted 2D rendered images. 

The thresholding methodology utilized in our benchtop experiments acted to preserve the 

highest 5% of all conductivity values (i.e., greatest amount of damping) while setting the remaining 

95% of data to the lowest local conductivity values. As such, the areas with the highest probability 

of conductive hemorrhage (or non-conductive ischemia) may be highlighted through the use of 

thresholding.  

In all benchtop skull experiments (n=16), it was possible to approximate the location of the 

hemorrhage with centimeter resolution. The average time spent scanning across the entire head 

with one sensor was 2.43 minutes, at which point enough data was collected to produce a predictive 

conductivity map. This potentially marks a drastic reduction (~50 times less) in the time-to-

diagnosis in potential stroke patients and establishes the feasibility of the ECD device as a 

hemorrhage sensor. 

 

3.9 Optimizing Image Production 

The optimal sampling dimensions of data to produce two-dimensional images with the 

ECD sensor sensor were thoroughly explored. Configurations involving 2x2, 4x4, 8x8, 16x16, and 

31x31 heatmaps were each created following scanning the head model with a 50mL bleed placed 
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in the right superior medial frontal lobe for the medium coil and right anterior frontal lobe for the 

large coil.  

Each scanning configuration involved the placement of additional scanning rows on the 

head. For example, for the 16x16 configuration, 16 equidistant scanning paths were drawn on the 

skull and plastic guide rail tubing was glued to ensure accurate scanning. More than 40,000 data 

points were collected for each of the 16 rows during the scanning process. Following data 

collection, all data was post processed and downsampled to produce a total of 16 averaged and 

equally sampled points for each of the 16 rows. 

At this point, heatmaps were generated using the 16x16 data to predict the location of the 

lesion. Lighter boxes indicated a higher conductivity, while darker boxes indicated a lower 

conductivity. Through this process, it was possible to determine which configuration resulted in 

the highest accuracy of signal while maintaining reliable spatial resolution (Figure 3-13). 
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Figure 3-13: Optimized imaging dimensions. 
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Overall, each scanning dimension was successfully able to locate the approximate region 

of the balloon. However, some scanning dimensions performed better than others. When 

determining the optimal scanning dimension, it is important to consider both the accuracy of the 

predicted location and the noise level generated within the figure. 

For example, while the 4x4 dimensional grid did successfully locate both balloons using 

the medium and large coils, it failed to provide additional spatial data regarding accurate lesion 

location. Conversely, the sampling procedure necessary to produce the 31x31 dimensional grid 

failed to average out some of the additional noise picked up by the sensor, resulting in erroneously 

non-conductive points on both medium and large coil heatmaps. As a result, the rest of the points 

are erroneously shown as having higher conductivity values than expected. This noise is likely due 

to the limitations of hand scanning and the innate noise produced within the commercial chips 

attached to the sensor. 

Thus, we considered the 8x8 and 16x16 configurations as our optimal scanning protocol. 

In the end, we opted to go with the 8x8 over the 16x16 because scanning 8 rows takes half the time 

of scanning 16 rows. By reducing the scanning time with the sensor, it is possible to then reduce 

the time-to-diagnosis which is critical in the case of neurovascular emergencies such as stroke.  

Following post hoc sampling to produce 8x8 grids after scanning, interpolation may be 

used to smoothen the heatmap and generate the final prediction map seen in Figure 3-12.  

3.10 LC Tank vs LDC 1101 Circuits 

As previously mentioned, the LDC 1101 commercial inductance-to-digital chip had a non-

optimal amount of internal noise (SNR<10), and we decided to pursue the development of our own 

LC tank for scanning with a higher SNR (SNR=14). To achieve this goal, the circuitry developed 
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in Section 2.9 was utilized to scan a 30mL saline-filled balloon placed within a benchtop skull 

model. Scanning took place, and data was recorded for analysis. Table 3-1 displays the sensor 

output for the 30mL scan seen in Figure 3-12. 

Table 3-1: Raw data using the LDC 1101. 

In the table above, the lowest Rp (highest conductivity) is seen in the sixth row, second 

column. Following 95% thresholding, this point is the one that will light up as seen in the 30mL 

example of the associated figure. However, it is clear that the entire matrix associated with the 

produced image contains a lot of noise and thresholding is necessary to fully establish the location 

of the lesion. 

The use of an LC tank in detecting an intracranial lesion is based on a different set of 

principles. As previously discussed, introduction of a conductive balloon would increase the coils’ 
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maximum operating Rf. The circuitry is much less noisy as well, and data obtained from the LC 

tank for the identification of a 30mL lesion in the same position is shown in Table 3-2. 

Table 3-1: Raw data using the LC tank. 

The data in the table above demonstrates a 0.04 MHz increase in Rf at the location of the 

balloon following differential scanning. In addition, the noise floor in the case of the LC tank is 

much more homogeneous and accurate in differentiating signal from noise. Importantly, data 

tables this clean may be achieved prior to thresholding methods, rendering 95% thresholds useless 

in the case of a LC tank circuit for stroke scanning. 

In addition, the table representing the output from the LC tank is measured in the units of 

Rf while the table representing the output from the LDC 1101 sensor is in the units of Rp. However, 

several advantages still favor the use of commercial sensors. First, the LC tank currently only 

supports point-scanning because the Rf must be tuned and determined at each point while 

scanning. As such, the LDC 1101 sensor allows for faster scanning. Furthermore, the sensor was 
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also attached to a network/spectrum analyzer to measure the magnitude of the input signal against 

the frequency of the instrument. The graph of impedance and θ may be seen in Figure 3-14 below. 

 

 

 

 

 

 

 

 

 

Figure 3-14: Spectrum analysis of impedance and θ. 

A similar analysis was also performed using the spectrum analyzer to determine the inductance 

and resistance profiles of the sensor over a 1MHz frequency range. This figure may be seen as 

Figure 3-15 below. 
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Figure 3-15: Spectrum analysis of impedance and resistance. 

In both cases shown here, the network/spectrum analyzer was tuned immediately prior to 

characterization. However, because the equipment is several decades old, it is possible that some 

of the values were slightly different than what we expected while using the oscilloscope, signal 

generator, and frequency counter. Regardless, the general waveforms for the two experiments 

shown above demonstrate adequate performance around 1MHz, confirming previous experiments 

investigating the efficacy of LC tanks for stroke detection. 

Further advancements of the LC tank allowing for automated readout, Rf maximization, and data 

saving to the computer may favor the LC tank over the LDC sensor. Undoubtedly, the LC tank 

demonstrates a greater SNR with accurate and intuitive noise floors and signal outputs that are 

highly responsive to changes in conductivity. Lastly, signal characterization using a 

network/spectrum analyzer confirmed the robust capacity of the LC tank. 



 

 

70 
3.11 Conclusion 

Benchtop experimentation with the ECD sensor demonstrated feasibility in detecting, 

localizing, classifying, and imaging stroke subtypes. Through the creation of tuning curves for 

distance, volume, and shape, we demonstrate the possibility of providing information regarding 

these variables following head scanning. In addition, both point-scanning and continuous scanning 

were successful in localizing intracranial lesions. However, continuous scanning boasted higher 

accuracy and minimized scanning time and efforts. Lastly, both image production and the sensor 

circuit were evaluated and optimized to increase accuracy and SNR while reducing unwanted 

noise. 

Overall, these benchtop experiments demonstrated the feasibility of the ECD sensors for 

stroke diagnostic applications. The next few chapters will focus on the translational potential of 

the ECD sensors for human applications. The problems solved during the benchtop 

experimentation phase allowed for a more seamless transition into more sophisticated experiments 

and reduced the time spent during the iterative sensor design process. Finally, much of the software 

developed at this stage was retrofitted and improved for all subsequent experiments described in 

this thesis. 
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CHAPTER 4: CADAVER EXPERIMENTATION 

4.1 Introduction 

Translational medical innovation encompasses sufficient benchtop experimentation and 

development that can be easily translated into clinical models and applications. With any medical 

device, the ultimate goal for development is clinical use with live human patients. However, such 

a goal requires incremental transitioning through the use of more complicated and realistic models 

to demonstrate device safety and efficacy.  

To demonstrate the clinical efficacy of the ECD stroke sensor, cadaver modeling and 

testing was explored following successful benchtop experimentation, as described in Chapter 3. 

The goal of this chapter is to demonstrate the potential effectiveness of the stroke sensor when 

applied to a likelike human cadaver ICH model. In addition, this chapter allows for innovation on 

a human head model and a thorough understanding of potential limitations with clinical scanning, 

which will greatly inform the protocols developed to scan live human patients in Chapter 5. 

4.2 Cadaver Model Development 

A plethora of cadaver models have been used in clinical medicine to practice a variety of 

multiple surgical procedures, to train surgical residents, and to innovate novel procedures and 

devices for live human use [87–91]. Such cadaveric simulation models have been popularly 

adopted by surgical training programs for clinically accurate testing due to the preserved anatomy 
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of specimens. In addition, the optimal haptic feedback provided by such models allows for accurate 

modeling of surgical techniques and instrumentation. 

As a consequence, the realistic properties of cadaveric simulation modeling provided an 

opportunity to translate the ECD sensor to an intermediate human setting prior to full-on live 

human clinical testing. Several pilot cadaveric studies have confirmed the feasibility of an ECD 

sensor for intracranial hemorrhage detection and imaging. Using the translated experimental setup 

involving a wearable skull cap with eight equidistant scanning paths made of flexible tubing, each 

cadaver head was scanned. The cadaveric simulation models consisted of fresh frozen, unfixed 

human cadaver heads with no history of cerebrovascular disease. All experiments took place at the 

Keck School of Medicine of USC Surgical Skills Simulation and Education Center. 

A right supraorbital skin incision and skull burr hole are made with the cadaver in supine 

position. The quality of the brain was evaluated to ensure that it still retained properties of a live 

human brain. Frozen uncoagulated porcine blood was thawed, and a various volume of blood was 

injected directly through the burr hole, 7cm deep into the brain parenchyma (Figure 4-1 & 4-2).  
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Figure 4-1: ICH cadaver model of blood insertion. Created with Biorender.com. 
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Figure 4-2: Actual ICH cadaver model. 

Scanning the cadaveric head with the large, medium, and small sized coils allowed for 

image production, and a composite image was created by adding the three heatmaps. The image 
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analysis and thresholding process used here is the same workflow used in the benchtop 

experiments. The presence of a signal in all coils suggests that the hemorrhage falls within the 

detection distance of all three coils, which predicts that the hematoma is less than 2.29cm from the 

sensor surface (Figure 4-3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-3: Flowchart outlining the binary decision tree used to approximate lesion depth. 

4.3 ECD Sensor Cadaver Testing 
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With an established protocol for the cadaver model, the ECD sensor was utilized to scan 

to collect conductivity data. Prior to a 30mL ICH injection, each coil was used to scan the head, in 

series. Data collected at this stage were saved for use as control measurements for the cadaver 

heads. Following 30mL hemorrhage placement within the right lobe of the brain, each coil was 

used to scan the cadaver head once more to calculate the post-lesion conductivity values. The 

approximate area of hemorrhage injection is seen in Figure 4-4a. The composite image generated 

at this point is shown in Figure 4-4b. 

Figure 4-4: (a) Injected location of 30mL porcine hemorrhage (b) Image produced by 

ECD sensor of 30mL porcine hemorrhage. 

As seen in the figure above, the spot lighting up on the mid-right side of the brain correlated 

well with the ICH injection point. However, an additional signal lit up on the ECD image in the 

bottom left side of the head near the nape of the neck. To fully understand what was happening 

within the confined of the ICH model cadaver head, the experiment was repeated with noncontrast 
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CT imaging to confirm the location of the lesion (Figure 4-5a). Each sensor was utilized to scan 

the head, 60mL of porcine blood was injected into the left cerebral hemisphere, and each sensor 

was used to scan the head once more. 

Interpreting the conductivity map, we expected the bleed to be positioned at the posterior-

left corner of the head, just behind the left ear. To confirm the actual location of the hemorrhage, 

noncontrast CT imaging was used to create axial, sagittal, and coronal sections with 1mm 

thickness, as it represents the current gold standard for the diagnosis of hemorrhagic stroke and 

other intracerebral hemorrhages. CT imaging corroborated the presence of a hemorrhage in the 

posterior-left corner of the head, in the same location detected by our sensor (Figure 4-5b). 

Furthermore, the estimated hemorrhage depth beneath the skull is roughly 1.5cm, which is far less 

than the detection limit for either of the sensors. Bone contrast enhancement and windowing were 

also performed with CT to confirm that the hyperdense structure seen on CT was in fact blood, 

and not a bony abnormality (Figure 4-6). 
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Figure 4-5: (a) CT scanning of 60mL porcine hemorrhage (b) Image produced by ECD 

sensor of 60mL porcine hemorrhage. 
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Figure 4-6: CT imaging in all dimensions, in addition to bone contrast enhancement. 

As seen in the example above, the lesion was successfully captured using the sensor. 

However, the same phenomenon seen in Figure 4-4 is also seen in Figure 4-5 in which a large 

signal is produced in the bottom left side of the head near the nape of the neck. Further 

investigation demonstrated that the porcine hemorrhage mimic utilized in this study lacked clotting 

factors, which are classically present during an acute neurological event. The lack of such factors 

decrease the clotting capabilities of blood, resulting in a permanent liquid state. As such, gravity 

tends to draw the liquid to the lowest point in the skull, which happens to be the back of the head 

at the occiput near the nape of the neck. This phenomenon likely happened in both cases shown 

above, and is further confirmed by the CT imaging seen in Figure 4-5. 
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Successful demonstration of the ECD sensor solidified the hypothesis that such a sensor 

may be applicable for applications of acute aberrations in cerebral conductivity, including but not 

limited to strokes. ECD sensing may accurately detect ICH and produce an image in real-time, 

even through thick cortical bone. Several limitations, in addition to the lack of clotting factors, 

became apparent while performing cadaver modeling experiments. Primarily, the quality of 

porcine hemorrhage blood mimics did not fully match those of actual blood seen during an ICH. 

Thus, an analysis of the porcine blood conductivity revealed a value of 0.42 S/m. Since normal 

human blood has a conductivity of 0.65 S/m, the reduced conductivity of porcine hemorrhage 

mimic inherently resulted in diminished signal production. As a result, the potential for signal 

generation may be greater than that shown in these experiments since the physics underlying the 

sensor suggest that increased conductivities generate larger signals. 

Furthermore, while preliminary inspection revealed that the cadaver brain was in good 

condition and that the cause of death was not from a neurological disorder or cerebrovascular 

accident, CT imaging revealed that there was still a good amount of air pockets following thawing 

for fresh frozen cadaver heads. Since the conductivity of air is roughly 0, increased air pockets 

may further increase noise within the system and reduce the specificity of our ECD images. 

Additionally, the development of cadaveric simulation models requires a significant amount of 

time and effort. First, the cadaveric specimens must be purchased and procured, often at a price of 

several thousand dollars per head. Next, experienced neurosurgeons with available neurosurgical 

equipment are necessary to drill burr holes and inject porcine ICH. Lastly, ample funding is 

necessary to support radiography with a CT scanner.  

4.4 Significance of Preliminary Cadaver Results 
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Previous clinical trials, including the Surgical Trial in Intracerebral Hemorrhage (STICH), 

as well as the follow up STICH II, failed to demonstrate a statistically significant difference 

between patients treated with early surgical ICH evacuation and those treated with best medical 

management [92, 93]. However, the results of the STICH trials have been heavily criticized 

because they exclude patients with brain herniation, in which neurosurgical intervention is a life-

saving procedure, and who may be the patients who show the greatest improvement with 

juxtaposition to those treated with medical management alone. Similar clinical trials include the 

MIND and ENRICH trials, which continue to investigate the efficacy of minimally invasive ICH 

evacuation.  

With continuing investigation regarding the optimal treatment of ICH, diagnostic strategies 

that reduce the time-to-intervention following cerebrovascular accidents continue to be critical. 

The results of our cadaver experimentation bolster the claim that ECD sensors may allow for rapid 

triage and stroke imaging and provide diagnostic information accurately in acute neurovascular 

lesions.  

Furthermore, there are two main paths to clinical studies for medical devices pending 

approval in the United States. First, the traditional route to device production involves 

collaboration with the FDA to conduct agency testing, pre-clinical experimentation, and first-in-

man trials. The second, however, involves early feasibility experimentation with small patient 

numbers. Feasibility may be accomplished through the demonstration of preclinical data, including 

but not limited to mathematical modeling, in-vitro testing, benchtop testing, animal 

experimentation, and cadaver experimentation. With these studies, it is possible to demonstrate the 

efficacy and clinical feasibility of a sensor prior to the implementation of extensive human clinical 

testing and examination. 
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As such, the implementation of cadaveric simulation and testing provided an opportunity 

to obtain a plethora of feasibility data. The human cadaver heads utilized during cadaver simulation 

were the most accurate models for human ICH experimentation with respect to both anatomy and 

conductivity distributions within the specimen. The development of cadaveric simulation models 

spearheaded a smooth transition towards live human first-in-man clinical testing through the 

demonstration of device safety and feasibility. 

4.5 Conclusion 

Overall, intermediate experimentation was required to demonstrate the feasibility of the 

ECD stroke sensor following successful benchtop experimentation and prior to first-in-man live 

human experimentation. Because animal models of ICH are difficult to recreate accurately without 

the use of blunt force trauma, we opted to perform several experiments using fresh-frozen cadaver 

tissue. 

The results of the cadaver simulation experiments were two-fold. First, we successfully 

demonstrated the efficacy and reproducibility of modeling ICH in a simulated fresh-frozen cadaver 

head specimen. By doing so, many opportunities arise in utilizing these cadaver models to test 

novel stroke technologies in addition to their use in neurosurgical and neurological training. 

Second, we successfully demonstrated the feasibility of the ECD stroke sensor within the context 

of an accurate human cadaveric simulation model. ICH was resolved in all experiments with 

reasonable accuracy and heatmaps predicted lesion location very well. 

However, one limitation of our cadaveric simulation was the difficulty in simulating 

ischemic stroke. In the case of an infarct, local blood flow distal to the embolus or thrombus is 

disrupted while proximal blood flow remains intact. In addition, the ischemic penumbra following 
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an infarct changes in a time-dependent manner. This phenomenon is difficult to recreate using 

cadaveric simulation, and either animal or human models are necessary due to the complex 

physiology underlying these phenomena.  

As such, the promising results from the cadaveric simulation trials allowed for live human 

testing protocol development. In these human trials, we implement testing with both hemorrhagic 

and ischemic stroke patients and aim to demonstrate the real-world efficacy of the sensor. 
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CHAPTER 5: LIVE HUMAN EXPERIMENTATION 

5.1 Introduction 

The pinnacle of device feasibility, for any novel medical device, is successful testing in 

live human patients diagnosed with a disease of interest. However, to reach this step, it is crucial 

to demonstrate successful experimentation in pre-clinical models, including benchtop validation, 

animal model experiments, or cadaveric model simulation. In this thesis, Chapter 1 through 

Chapter 4 described the safety, efficacy, and feasibility of the stroke sensor using a variety of 

laboratory and cadaveric experimental models. Following successful validation of previous 

checkpoints, this chapter describes the results of first-in-man clinical testing of the stroke sensor. 

At this point in the iterative design process of the stroke sensor, the main outcomes of 

interest included accuracy in detecting lesion location and ability to differentiate between ischemic 

and hemorrhagic stroke subtypes. As such, a prospective cohort study was conducted to recruit 

stroke patients in a blinded fashion. 

5.2 Study Design and Protocol 

IRB approval was obtained at the Keck School of Medicine of the University of Southern 

California. Inclusion criteria included all patients aged 18-80 who had experienced a TBI, 

hemorrhagic stroke, and ischemic stroke, in addition to normal volunteers. Pregnant women, 

neonates, prisoners, children, and institutionalized individuals were all excluded from this study. 

Also, patients with neurological diseases, neurological cancer, medical implants near the head, 
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metal implants, or previous strokes/TBI were excluded from the study. These criteria applied to 

both healthy volunteers and individuals with stroke/TBI. 

The study was designed as a prospective, non-randomized, blinded proof-of-concept study 

to assess alternative methods of stroke subtyping, TBI detection, and imaging in a perioperative 

setting using non-invasive inductive-damping sensors. For control participants, the device was 

used to collect data, and our results will be compared to that of the standard imaging. The device 

was not used for clinical decision making and was used in conjunction with the normal standard 

of care. The device resembled a headpiece, as described in the previous chapter, and the sensor 

was moved over the headpiece several times to fully scan and image the patients’ head. Healthy 

volunteers were entirely recruited through word of mouth, and received scanning with our device. 

However, they did not receive MRI or CT scanning. The purpose of including healthy controls 

was to: 1) better understand where healthy control values lie in a healthy brain, 2) determine how 

vascular variability influences conductivity variability in a healthy brain and, 3) acquire control 

data to facilitate differential scanning to amplify signal in stroke/TBI patients. Controls were also 

between 18 and 80 years old. 

Patients experiencing stroke symptoms were admitted and given a workup according to the 

traditional standard of care. Imaging studies were conducted (CT scanning) to determine the 

location, depth, volume, and type of injury in accordance with the normal standard of care. 

Immediately after imaging, the test device was used to collect data, and the results were compared 

to that of the standard imaging. The test device resembled a headpiece similar to the 

aforementioned device. Patient files were accessed to view CT scans and compare them to the 

images produced by the device. 
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Adverse event data collection and reporting, which are required as part of every clinical 

trial, were performed to ensure the safety of all subjects enrolled in the studies as well as those 

who will enroll in future studies using similar devices. Adverse events were reported in a routine 

manner at scheduled times during a trial. Additionally, certain adverse events were required to be 

reported in an expedited manner to allow for optimal monitoring of patient safety and care. Of note 

is that the only anticipated adverse event possible as a result of participating in this study was 

discomfort from wearing the hat sensor. The original data collection forms and all other study 

documents were kept in secure file cabinets in the allocated office and clinic space.  These offices 

had limited access and were only available to authorized personnel. At the time of registration, 

signed and dated copies of the patient Informed Consent with the Human Rights and the HIPAA 

authorization were given to each patient. Institutional policy regarding distribution and location of 

original consent documents were fully followed.  The original form was kept in the patient research 

chart maintained by the research coordinator. 

5.3 Hemorrhagic Stroke Detection 

Using the same technique described above in scanning the head model, a wearable head 

cap with eight equidistant scanning paths was developed for live human testing at the Keck 

Hospital of USC. The entire process—which included obtaining consent, positioning each patient, 

and scanning with the sensors—took roughly 15 minutes from start to end for each participant 

enrolled in our study (n=8). 

 Patient #1 was a 32-year-old woman who presented with left-sided hemiparesis and placed 

on stroke protocol. CT imaging showed a 15cc lesion in the right basal ganglia with the presence 

of moderate right intraventricular hemorrhage (IVH) (Figure 5-1a). Large, medium, and small coils 
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were all used to collect data from the patient at bedside following CT imaging and all necessary 

stroke interventions. Two-dimensional (Figure 5-1b) and three-dimensional (Figure 5-1c) images 

of the lesion were produced. Both the 2D and 3D images produced by the sensor corroborated the 

presence of a hemorrhage in the right lobe of the patient, and the range of the large coil (4.97cm) 

allowed it to detect the right IVH. Both the small and medium coils were unable to detect the IVH 

likely due to their shorter scanning ranges, demonstrating their ability to provide depth information 

(Figure 5-2). By interpreting the readings of the coils, we predicted that the IVH was between 

4.97cm and 3.99cm from the surface of the skull, which was the confirmed depth range of the IVH 

at the right occipital horn of the lateral ventricle. 

 

Figure 5-1: a) CT imaging showing a right basal ganglia ICH and associated IVH. b) Two-

dimensional data gathered from the ECD sensor. Of note, the Large Coil has the largest magnetic 

field depth, and thus was able to detect both hemorrhages. c) Three-dimensional projections of 

each coil. 3D graphics can be created in real-time to rapidly guide clinical judgement and reduce 

time-to-treatment. 
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Figure 5-2: 2D and 3D output for medium and small coils. While only the large coil is used for 

image production, the medium and small coils provide information regarding lesion depth, which 

can be seen in this example. While both coils pick up the larger basal ganglia hemorrhage, they 

both fail to detect the IVH. However, IVH was detected by the large coil with the deeper 

scanning depth.  
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Patient #2 was a 78-year-old man who presented with right hemiparesis and loss of consciousness. 

CT imaging showed an 80cc left parietal lobar hemorrhage. Scanning with the large ECD sensor 

was performed, and image production corroborated the findings of the CT image (Figure 5-3). 

Comprehensive scanning with the medium and small coils can be seen in Figure 5-4. 

Figure 5-3: a) CT imaging showing a left parietal lobar ICH b) Two-dimensional data gathered 

from ECD sensor scanning. c) Three-dimensional projections of the lesion. 
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Figure 5-4: 2D and 3D output for medium and small coils. The relative similarity between these 

scans and the large coil confirms that the bleed extends superficially and can be detected by all 

coils.  

Patient #3 was a 71-year-old woman with sudden onset loss of consciousness and coma. 

CT imaging revealed severe bifrontal, right greater than left ICH and subarachnoid hemorrhage 

(SAH) due to an aneurysmal rupture. Scanning with the ECD sensor revealed a diffuse hematoma, 

with the largest region of bleeding located in the right frontal lobe (Figure 5-5). Due to the diffuse 

nature of her ICH, the ECD sensor was able to best detect the bleed at the area of maximum 

hemorrhage, as seen in the 2D and 3D images generated from the large coil. Both small and 

medium coils were able to locate the hemorrhage near the area of maximum hemorrhage but failed 

to locate smaller regions of bleeding due to limited scanning depth (Figure 5-6). 
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Figure 5-5: a) CT imaging showing bilateral ICH, right greater than left b) Two-dimensional data 

gathered from ECD sensor scanning. c) Three-dimensional projections of the lesion. The lesion 

crosses the midline, so two images are provided with left (top) and right (bottom) profiles. 
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Figure 5-6: 2D and 3D output for medium and small coils in the setting of a large SAH. Both 

coils (especially the medium coil) produce the largest signal at the point of maximal hemorrhage 

diameter or at points that extend superficially.  
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5.4 Ischemic Stroke Detection 

Patient #4 was a 50-year-old man with right arm weakness and aphasia, who presented 

with a left middle cerebral artery (MCA) occlusion, resulting in developed regions of infarct and 

edema on CT imaging (Figure 5-7a-c & Figure 5-8). The ECD sensor successfully localized the 

area of infarct to the left temporal and frontal region. 

Patient #5 was a 77-year-old man with left hemiparesis and a large right MCA territory 

infarct on CT imaging. Scanning with the ECD provided localization of the lesion, shown in Figure 

5-7d-f. Additional scans with medium and small coils are provided as Figure 5-9. 
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Figure 5-7: a) CT imaging showing left MCA ischemic stroke. b) Two-dimensional data 

gathered from ECD sensor scanning from Patient #4. c) Three-dimensional projections of the 

maximal point of the lesion. d) CT imaging showing right MCA ischemic stroke. e) Two-

dimensional data gathered from ECD sensor scanning from Patient #5. f) Three-dimensional 

projections showing the maximal region of the ischemic lesion. 
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Figure 5-8: 2D and 3D output for medium and small coils in the setting of a left MCA occlusion. 

While the large coil is more sensitive to areas of ischemia (hence why it is used for image 

production), the small and medium coils both suggest that the left MCA might be involved per 

the signal generated above the left ear.  

 

 



 

 

96 

 Figure 5-9: 2D and 3D output for medium and small coils in the setting of a right MCA 

occlusion. While the large coil is more sensitive to areas of ischemia (hence why it is used for 

image production), the small and medium coils both suggest that there might be areas of 

ischemia on the right side of the patient.  

Although both infarcts occupy large cortical stroke territories in both patients, the images 

produced from the ECD sensor highlight the area of maximal ischemia, which in both cases 

happens to be just above the ear ipsilateral to the lesion. This phenomenon is explored in Chapter 

6, but is likely due to the magnitude of ECD occurring as a result of larger conductivity regimes 

at the maximum diameter of the lesion. In addition, filtering algorithms developed to remove noise 
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from the images may confuse areas of lower conductivity with noise, thus reducing signal intensity 

in these regions. 

5.5 Future Advancements 

While the feasibility of the stroke sensor has been demonstrated in distinguishing ischemic 

and hemorrhagic stroke variants, future research is planned to efficiently distinguish between 

subtypes. Several deep learning algorithms may be used to develop automated disease classification 

guidelines. To develop the most powerful classification algorithm, statistical measures of performance 

(specificity, sensitivity, positive predictive value, and negative predictive value) of both support vector 

machines (SVMs) and neural networks (NN) must be gauged. SVMs are non-parametric models that use 

maximal margins and kernel weighting to identify unique, predictive features in a training set. NNs are 

parametric algorithms that contain multiple hidden layers capable of pinpointing identifying characteristics 

of a training group. Furthermore, it may be possible to explore the realm of unsupervised machine learning, 

including methods such as principal component testing and k-cluster analysis. Specifically, multilayered 

perceptron (MLP) models may show the greatest promise in using conductivity values to differentiate 

between normal brain, ischemic stroke, hemorrhagic stroke, and TBI. The successful use of MLP in 

radiographic image analysis has been demonstrated in several studies, and it has even been used to 

differentiate glioblastoma from primary central nervous system lymphoma on MRI [94]. To develop 

training sets, conductivity measurements from each disease group may be processed in MATLAB and 

separated into their own datasets. These datasets can be fed into the model for training, and as prospective 

testing continues, testing sets will be established and fed into algorithms to gauge accuracy. Confusion 

matrices and statistical testing will be used to evaluate predictive value of our models. 

Furthermore, the main outcome measure to demonstrate the efficacy of the ECD sensor is a receiver 

operating characteristic (ROC) curve, with a corresponding area under curve (AUC) value. Such a curve 

may be constructed by collecting additional patient data and comparing sensor outputs directly to data 
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obtained from CT imaging. A ROC curve with a high AUC is desirable, as this indicates high device 

sensitivity to strokes. 

In order to achieve either of these future goals, a high number of patients must be recruited and 

analyzed. Future advancements are geared towards software development and improvement of circuit SNR.  

5.6 Conclusion 

The stroke sensor is shown to safely and accurately provide information regarding stroke subtypes 

in live human patients diagnosed and admitted to the hospital with a stroke. In addition, continuous scanning 

allowed for accurate imaging of the patient brain and lesion, providing additional information necessary for 

clinical decision making and operative planning. Future advancement may be aimed at developing 

automatic stroke subtyping and detection through the use of machine learning algorithms once a large pool 

of patient data is secured. Through such advancements, the time-to-diagnosis may be further reduced, and 

sensor accuracy may improve through model creation.  
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CHAPTER 6: COMPUTATIONAL MODEL DEVELOPMENT 

6.1 Introduction 

Computational model generation represents an important tool for feasibility studies and 

study optimization, especially when designing and testing complex devices or methodologies. As 

such, computational models in neuroscience have gained a great deal of traction because they allow 

rapid prototyping and testing without the need for live human subjects, thereby reducing the risk 

of patient harm while advancing the device's iterative designing process [95, 96]. In addition, 

computational models allow for theoretical testing of completely novel devices, highlighting yet 

unexplored avenues for device production [97, 98]. 

        Our aim in this chapter is to develop computational models to evaluate the feasibility of 

microtesla-level magnetic brain scanning, including detection of ICH. The current paradigm for 

ICH detection involves either MRI or CT imaging, both of which involve expensive and non-

portable equipment [99–101]. ICH involves relative increases in local blood concentration 

compared to steady state, non-active brain, and wearable medical devices capable of detecting 

local changes in blood concentration may facilitate rapid prediction of hemorrhage. Here, we use 

finite element modeling (FEM) software to develop computational models for a wearable 

electromagnetic device capable of detecting hemodynamic changes within the brain.  

6.2 FEM Methodology 
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Using COMSOL Multiphysics version 5.5 (COMSOL Inc., Burlington, MA), we generated 

both three-dimensional (3D) and two-dimensional (2D) models of hemodynamic changes within 

a human head model, in addition to one-dimensional (1D) modeling of magnetic field decay as a 

function of distance. Text files of coordinate data from MRI head scanning were imported as an 

interpolation curve and organized in sectionwise format, and lofting of the closed curve allowed 

for the generation of a solid object roughly 20 cm in height and 10 cm in width [102, 103]. A novel 

material with a density of 2000 kg/m3, electrical conductivity of 0.4 S/m, relative permeability of 

1, and relative permittivity of 568 was added to simulate the properties of a human head. An 

ellipsoid with dimensions of 0.035 m in the a-axis, 0.045 m in the b-axis, and 0.025 m in the c-

axis was added within the head to simulate the brain. A novel material with a density of 1000 

kg/m3, electrical conductivity of 0.2 S/m, relative permeability of 1, and relative permittivity of 

827 was added to simulate the properties of the human brain. Lastly, a smaller ellipsoid with 

dimensions of 0.014 m in the a-axis, 0.018 m in the b-axis, and 0.010 m in the c-axis was added 

within the head to simulate an area of increased blood concentration. A novel material with a 

density of 1,060 kg/m3, electrical conductivity of 0.65 S/m, relative permeability of 1, and relative 

permittivity of 3,030 was added to simulate an area of increased blood concentration [104, 105]. 

Using the simplified formula for intracerebral hemorrhage volume, which estimates blood volume 

as half the product of all three ellipsoid semiaxes (ABC/2), we determined our small ellipsoid to 

represent a local increase of 1.26 mL of blood [106–109]. This volume was decided because 

previous studies have established that local brain activation may increase local blood concentration 

by approximately 1.5mL [110]. 

        Two scenarios were explored with reference to magnetic coil design: 1) a small handheld coil 

with 12.1 cm external diameter that could be moved across the head and 2) a larger coil with an 
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external diameter of 27 cm that resembles a headband and is placed on the head circumferentially. 

Both scenarios shared the following parameters: peak current of 0.0027 amperes, 6 coil turns, coil 

width of 4.2 cm, and material properties including copper wire with a density of 8960 kg/m3, 

electrical conductivity of 5.998x107 S/m, relative permeability of 1, and relative permittivity of 1. 

An infinite element with the material properties of air and modeled as a sphere was added 

encapsulating the entire head and sensor model. 

        Ampere’s Law was implemented to calculate the electric current density as the curl of the 

magnetic field. Electrical conductivity was modeled through Ohm’s Law. Lastly, magnetization 

and dielectric models were included, which utilized the relative permeability and permittivity 

values respectively to solve their corresponding equations. Testing frequency was set at 1 MHz 

and a stationary solver was implemented and finite elements included in the model utilized fine 

meshing with a total of 286,184 degrees of freedom in the small coil and 314,478 degrees of 

freedom in the larger coil. 

6.3 Model Results 

Using Biot-Savart’s Law, we can calculate the expected magnetic fields produced by both 

the small and large coils. These values can then be compared to those obtained through COMSOL 

modeling. For the smaller coil, the maximum magnetic field flux densities at the sensor (x=0) and 

5 cm away from the sensor (x=5) are 0.1682μT and 0.0771μT respectively. For the larger coil, the 

maximum magnetic field flux densities at the sensor (x=0) and 5 cm away from the sensor (x=5) 

are 0.0754μT and 0.0622μT respectively. 

We evaluated the magnetic flux density generated within a head model when a small 

solenoid coil was placed concentrically above an elliptical volume of increased blood 
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concentration. Both contour and volume plots are shown in Figure 6-1, where the microtesla-level 

magnetic fields generated by the sensor are sufficient to generate magnetic flux within the volume 

of blood, suggesting a measurable ECD signal is produced. In addition, the magnetic fields 

generated within the head model are comparable to those calculated via Biot-Savart’s Law, 

suggesting that the computational model accurately represents the expected physical phenomena. 

 

 

Figure 6-1: COMSOL multiphysics 3D simulations of the large coil on a human head model. 

The 3D model was projected on a 2D surface to better visualize the magnetic flux density 

profile generated by the small coil. As seen in Figure 6-2, the magnetic flux decays as a function 

of distance, with the strongest magnetic flux being produced at the apex of the lesion. This finding 
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suggests that microtesla magnetic sensors may be most sensitive to the hemodynamic changes 

closest to the sensor. Furthermore, the magnetic flux density suggests that the greatest magnetic 

flux is generated when both the coil and volume of blood are concentrically placed. 

Figure 6-2: COMSOL multiphysics 2D simulation of the large coil on a human head model. 

To investigate the effects of distance on magnetic flux density, the head model was used 

to generate the 1D plot seen in Figure 6-3. The bottom of the head is represented at x=0.0 m and 

the surface of the coil is represented at x=0.60 m, and the arc length used to generate this plot 

passed through the center of the head and coil model. As expected, the areas adjacent to the coil 

will produce the largest magnetic flux, which will decay as a function of distance. The ellipsoid 

representing the volume of blood was located roughly 5 cm away from the sensor (x=0.55) and 

from Figure 6-3 we would expect a magnetic flux density of roughly 0.07μT. Calculations using 



 

 

104 
Biot-Savart’s Law predicted a magnetic flux density of 0.0771μT at 5 cm, supporting the accuracy 

of our model. 

Figure 6-3: COMSOL multiphysics 1D simulation of the large coil on a human head model. 

The 3D model was generated with the extra-large coil circumferentially wrapping around 

the head model. Both contour and volume plots are shown in Figure 6-4. The extra-large coil elicits 

a higher degree of magnetic flux within the head model. However, due to the high degree of head 

surface area scanned by the circumferential design, most of the magnetic flux density changes, and 

thus ECD signals, are produced by interactions with the tissue of the head and not the volume of 

hemorrhage. 
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Figure 6-4: COMSOL multiphysics 3D simulations of the extra-large coil on a human head. 

To investigate the large surface area interactions introduced by a circumferential design, a 

2D projection of the 3D head model was developed. A uniform magnetic field is seen in Figure 6-

5 throughout the entirety of the head model, with the greatest magnitude of magnetic flux at the 

edges closest to the coil. Further, little magnetic flux is seen within the elliptical blood model. 
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Figure 6-5: COMSOL multiphysics 2D simulation of the extra-large coil on a human head. 

            To investigate the effects of distance on magnetic flux density, the head model was used 

to generate the 1D plot seen in Figure 6-6. The bottom of the head is represented at x=0.0 m and 

the surface of the coil is represented at x=0.55 m, and the arc length used to generate this plot 

passed through the center of the head and coil model. Interestingly, the maximum magnetic flux 

density produced by the extra-large coil was lower than that of the large coil, consistent with our 

Biot-Savart calculations. 

 



 

 

107 

Figure 6-6: COMSOL multiphysics 1D simulation of the extra-large coil on a human head. 

6.4 Model Interpretation 

The benefits of low-energy portable magnetic coils for brain scanning are quite clear in the 

realm of clinical neuroscience, neurology and neurosurgery. Current estimates suggest that the 

average time to treatment following ICH may be 2 hours because MRI/CT imaging is required 

prior to treatment to rule out ischemic stroke, localize hemorrhage location, and plan for 

neurosurgical evacuation [49–51]. During this time, the rate of neuronal death is constant, 

contributing to the high rates of morbidity and mortality classically seen following hemorrhagic 

stroke [52]. Translational portable medical devices capable of accelerating the time to treatment 
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in the field or at the patient bedside may potentially reduce the short and long-term complications 

following an ICH. 

From our computational modeling, we can also determine that the use of microtesla-level 

magnetic brain scanning poses little to no physiological harm. MRI imaging and transcranial 

magnetic stimulation (TMS) devices typically operate on the order of several teslas and have 

achieved FDA approval with little potential for physical harm [111, 112]. As such, reduction of 

the SMF to the microtesla scale further reduces the risk of such a device. In addition, prior studies 

have established that EMFs in the millitesla range may interact with neuronal signaling, thus 

impairing walking in some experiments with locusts [113]. However, the threshold for 

physiological disturbances has been well studied and is believed to be set at 4mT for motor 

disturbances [113] and at 38mT for evoking miniature endplate potential (mepp) inhibition [114, 

115]. Thus, the risk of adverse physiologic events or mepp disturbance is extremely low when 

using microtesla magnetic fields at 1MHz. 

Not surprisingly, much of the sensor developments described in Chapters 1-5 are bolstered by the 

findings of the FEMs. Specifically, ICH detection and classification through the use of an ECD 

sensor is feasible on both computational and experimental models. In addition, the predicted and 

actual magnetic field magnitudes for each coil are quite similar, further strengthening the 

feasibility of the stroke sensor.  

6.5 Conclusion 

Computational models can be developed to test the feasibility of novel medical devices and 

facilitate device development without risk to human participants. Models generated for microtesla-

level devices show that they may be able to detect hemodynamic changes within the brain as a 



 

 

109 
function of changes in magnetic flux density and ECD. These models almost exactly mirror the 

experimental results described previously in this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

110 

CHAPTER 7: ADDITIONAL SENSOR APPLICATIONS 

7.1 Introduction 

In light of the coronavirus disease 2019 (COVID-19) pandemic, additional sensor 

considerations for the stroke sensor were investigated. We were curious to see if it would be 

possible to predict changes in pulmonary waveforms, volumes, and/or region-dependent 

conductivities using the large coil of the stroke sensor previously described. Additional sensor 

applications suggest that ECD-based sensors may be implemented in a variety of medical 

subspecialties for a variety of clinical diagnoses and conditions.  

7.2 Respiratory Sensor Background 

Pulmonary function testing (PFT) involves comprehensive evaluation of the lungs to 

provide objective and quantifiable metrics for pulmonary function. Oftentimes, PFTs are indicated 

when the clinician suspects obstructive lung disease, such as chronic obstructive pulmonary 

disease (COPD) and asthma, or restrictive lung disease, such as pulmonary fibrosis or sarcoidosis. 

In contemporary clinical practice, PFTs are most commonly performed using spirometry, and 

occasionally with lung plethysmography [116–118]. However, the American Thoracic Society and 

many comparable international societies have recommended postponing PFTs during the COVID-

19 pandemic, due to the high risk of COVID-19 transmission during the outpatient testing visit 

[119–123]. While these restrictions were put in place through expert guidance to prevent the spread 

of disease, they have made it difficult to gauge pulmonary function in patients with previously 
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diagnosed lung disease as well as those recovering from COVID-19 pneumonia who require close 

follow-up examination. 

        As such, wearable continuous pulmonary biosensors may play a unique role in evaluating 

pulmonary function without requiring direct inpatient or outpatient examination. In fact, several 

pulmonary biosensors have been previously described in the literature. Devices utilizing 

accelerometers have been shown to accurately characterize the respiratory waveform through 

anteroposterior displacement of the thorax during breathing [124]. Other groups have developed 

acoustic-based sensors that monitor air movement near the nose, or air moving through an airway, 

to monitor respiration [125, 126]. Similarly, mechanical strain sensors, placed on the chest like a 

piece of tape, have been implemented by some groups to accurately measure the respiratory 

waveform in addition to approximation of non-statistically significant ratios of forced expiratory 

volume in one second (FEV1) and forced vital capacity (FVC) [127]. However, many of these 

sensors are unable to accurately gauge respiration volume and relevant pulmonary metrics, and 

strain-based sensors require calibration and tight contact with the patient’s skin to yield accurate 

results. 

        With current limitations in mind, our group describes the development of a non-contact, 

wearable, and continuous pulmonary function sensor capable of detecting both respiratory 

waveforms and volumes. The sensor relies on the generation of microtesla-level magnetic fields 

and the ECD phenomenon to track changes in conductivity during the respiratory cycle. As non-

conductive air enters the lungs during inspiration, local measured conductivity decreases; 

conversely, expiration decreases the anteroposterior dimension of the chest, putting the sensor in 

closer proximity to conductive vasculature and tissue within the thoracic cavity. We demonstrate 

that our wearable electromagnetic sensor is safe and can continuously measure relevant pulmonary 
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function with a high degree of accuracy through clothing. Additionally, implementation of 

conductivity-based scanning allowed for crude imaging of the thoracic cavity due to the wide range 

of conductivities of organs contained within. The development of such a device may allow for 

efficient non-contact PFTs during the COVID-19 pandemic, provide relevant respiratory metrics 

for remote clinical assessment, and monitor conductivity changes within the lungs resulting from 

edematous or inflammatory lung pathologies. 

7.3 Respiratory Sensor Testing Methodology 

        For our experiments, we constructed a solenoid coil with an outer diameter of 11.4cm and 6 

turns out of 46 AWG Litz wire. The coil was wound around a non-conductive plastic scaffold and 

connected to the Texas Instruments LDC 1101 inductance-to-digital converting chip [81]. Non-

destructive techniques based on the ECD phenomenon are widely used to test the presence, 

quantity, and integrity of various conductive materials, most commonly metals [79]. Eddy currents 

generated by a conductive material flow in the direction that decreases coil inductance and coil 

parallel resistance (Rp), which may be used to quantify the degree of ECD produced. As a result, 

this change in resistance then becomes proportional to the conductivity of the material placed in 

front of the sensor. 

        The sensor was designed to have a resonant frequency at 1 megahertz (MHz), which was 

confirmed through analysis with the LDC 1101 graphical user interface (GUI). In order to 

minimize capacitive coupling and reduce the noise of our sensor, we covered the lateral sensor 

border with thin ferrite sheets, leaving the end facing the target unshielded.  The use of magnetic 

shielding with ferrite material helped to redirect the magnetic field distribution toward the target 

and block the electromagnetic interference from external sources. The average relative 
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permeability of the ferrite sheet (MULL12060-000, Laird Technologies Inc.) is approximately 135 

from 1MHz to 10MHz, which encapsulates the frequency range used in this study [84]. Prior to 

testing, the sensor sampling rate was found to be 6,660 Hz and the signal-to-noise ratio of the 

sensor was found to be 9.4. Characterization of the sensor magnetic field using both Biot-Savart’s 

law (0.1786μT) and multiphysics modeling (0.1μT) confirmed a magnitude of several microteslas. 

        All data was converted into digital signals using the inductance-to-digital converting chip and 

stored on a local laptop for analysis in MATLAB. Savitzky-Golay and simple Gaussian filters 

from the Signal Processing Toolbox were implemented to smooth the respiratory time series 

waveforms and to remove high frequency noise. Local maxima and minima were located within 

the respiratory diagrams and the difference between the peaks and troughs were averaged for each 

individual trial, yielding the average change in Rp per breath. The total number of breathing cycles 

within the data, defined as one inhalation paired with one exhalation, as well as the scanning time 

were utilized to predict the respiratory rate of volunteers according to the following equation: [60 

Seconds]/[Scanning Time (Seconds)]*[Number of Cycles]. Sensor calibration was not required 

prior to scanning volunteers to achieve the results described in this study. 

        Using COMSOL Multiphysics version 5.5 (COMSOL Inc., Burlington, MA), we generated 

two-dimensional (2D) models of magnetic flux density changes within the magnetic field space 

when the chest is placed near the sensor. All models utilized a peak current of 0.0027 amperes, 6 

coil turns, diameter of 11.4cm, and material properties including copper wire with a density of 

8,960 kg/m3, electrical conductivity of 5.998x107 S/m, relative permeability of 1, and relative 

permittivity of 1. The skin/bone (0.4 S/m) and underlying vasculature (0.65 S/m) were modeled 

with appropriate electrical conductivity values.     
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        IRB approval was obtained at the California Institute of Technology (IRB Number: 20-1005) 

for non-randomized human feasibility testing of the respiratory sensor. All participants tested 

negative for COVID-19 before data collection, and patients with any pulmonary pathology were 

ineligible for recruitment. Consent and scanning data were obtained by S.S., and a total of 4 

participants were recruited (two participants tested twice). Each participant was asked to lay prone 

on a non-conductive surface while 8 vertical scans were obtained across the chest. In addition, the 

patient's chest was recorded with the sensor while sitting straight up. In all trials, participants were 

instructed to breathe through their nose with regular, non-labored respiratory rhythms. It was 

ensured that each patient was not wearing any metallic items (jewelry, clothing, etc.) and that the 

immediate surrounding was void of any metallic items to minimize interference with the 

electromagnetic sensor. 

        The Medical International Research (MIR) Spirobank II® spirometer was utilized to record 

baseline PFTs for each volunteer in the study according to instructions of use. Spirometry was 

recorded immediately following scanning with the sensor. This device was utilized to obtain the 

FEV1 and FVC of each participant to compare with the results obtained with the ECD sensor 

described in this study. 

        The anterior chest was scanned using 8 equidistant vertical scanning paths, starting at the left 

midaxillary line to the right midaxillary line. The length of each scan spanned from the lower rib 

border up to the clavicles/sternal notch. Data from the sensors was filtered to remove high 

frequency noise. The data collected from each row was down-sampled from >50,000 data points 

collected during scanning to eight averaged points. We use the eight data points from the eight 

scanning rows to create an 8x8 interpolated conductivity heatmap of the chest, with brighter areas 
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indicating higher probability of more conductive organs or regions and darker areas indicating a 

higher probability of air or non-conductive tissue. 

        Basic demographics and relevant values were visualized using GraphPad Prism 8. Statistical 

analysis was performed in MATLAB and aimed to establish the accuracy of sensor resistance 

values in predicting pulmonary volume changes. Specifically, regression analyses were performed 

to investigate the correlation between spirometry, respiratory rates, and ECD sensor values. Both 

p-values and R-squared values were reported for each regression model to evaluate goodness-of 

fit. P-values <0.05 were considered statistically significant. 

7.4 Respiratory Sensor Results 

        Chest movement produced with inspiration and expiration displaced the sensor in the 

anteroposterior direction with the chest wall, with each inhaled breath replacing conductive tissue 

and vasculature within the sensor magnetic field space with non-conductive room air.  Eddy 

currents generated due to the decrease in local conductivity during inhalation resulted in increased 

Rp measurements taken by the chip (Figure 7-1A). Upon exhalation, non-conductive air in the 

lungs is released and the corresponding reduction in chest diameter brings conductive tissue back 

into the range of the sensor, thus increasing eddy currents and decreasing Rp measurements (Figure 

7-1B). 
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Figure 7-1: Correlation between resistance and lung air volume. A, As the volume of air in the 
lungs increases during inhalation, so do the parallel resistance values queried by the sensor. This 

is because room air is non-conductive, resulting in reduced eddy current damping and thus, 
increased parallel resistance. B, Conversely, exhalation decreases the volume of air within the 
thoracic cavity, reducing lung air volume and parallel resistance. Created with BioRender.com 

 

In contrast to similar biosensors that require calibration or tight contact with the individual 

to produce accurate results, our pulmonary sensor required no calibration and generated pulmonary 
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waveforms through the shirt after being freely placed on the chest of participants (Figure 7-2A). 

As such, the anteroposterior motion of the chest during the breathing cycle results in a sinusoidal 

change in coil Rp, which is converted to digital signals and stored on a local computer for analysis. 

        Through signal processing and smoothing, it is then possible to generate an approximate 

respiratory waveform using the sensor. By subtracting the lower Rp resulting from expiration from 

the higher Rp resulting from inspiration, it is possible to approximate the amount of signal 

generated from each breath (Figure 7-2B). This change in resistance is directly proportional to the 

amount of ECD generated or lost with each exhalation or inhalation, respectively. Changes in Rp 

for each breath may then be averaged across the respiratory time-series of participants to yield the 

mean change in Rp per breath. 

        The sensor architecture developed for this application consists of a sensor coil paired with a 

capacitor to form an electrical resonant circuit, which is significantly different from the 

architecture of previous ECD sensors used in industry for metal detection and crack inspection 

consisting of a bridge circuit that measures the sensor coil impedance [79]. Opting for the simplest 

sensor achievable, our device is constructed from 6 loops of Litz copper wire wound as a solenoid 

on a plastic scaffold connected to a commercial inductance-to-digital converter for digital readout 

into a local computer (Fig. 2C). 

        When the sensor is brought in close proximity with a conductive material, such as the heart, 

aorta, liver, and vessels of the chest, the magnetic field generated within the solenoid coil will 

generate eddy currents in the target, which will produce a counteracting magnetic field resulting 

in a decrease in coil inductance and Rp (Figure 7-2D). The magnitude of counteracting magnetic 

fields is directly proportional to the conductivity of the target material and the orthogonal distance 
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between the sensor and the target [82]. Because lung pathology is characterized as either 

obstructive or restrictive, changes in the pulmonary time-series waveform generated by such a 

sensor may provide clinically relevant patterns aiding in diagnosis following alveolar damage 

(Figure 7-2E). Continuous monitoring over long periods of time may be able to detect slow 

progression of lung disease using non-contact methods, which is particularly of interest for specific 

lung pathologies including pulmonary fibrosis and COVID-19 acute respiratory distress syndrome 

(ARDS). 

Figure 7-2: Experimental setup and sensor principles. A, During static pulmonary testing, the 
sensor is placed on the mid-chest, with data recorded and stored on a local computer. B, 

Fluctuations in parallel resistance during scanning result in a sinusoidal time-series waveform, 
with inspiration resulting in local maxima and expiration resulting in local minima. The 

difference between maxima and minima yield parallel resistance changes per breath. C, The 
sensor is constructed as a solenoid with 6 turns on a plastic scaffold connected to a commercial 
inductance-to-digital converting chip which is powered via a USB connection. D, The magnetic 

field generated by the solenoid induced eddy currents within the target proportional to target 
conductivity, which produce counteracting magnetic fields that influence coil resistance. E, 

Alveolar damage, following COVID-19 for example, presents with varying degrees of damage 
which may present differently. Early-stage pulmonary dysfunction may be queried with such a 

sensor. Created with BioRender.com 
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To determine the respiratory waveform and respiratory rate (RR) of participants, 15-25 

seconds worth of data was recorded from the sensor while it was placed directly on the sternum 

(Figure 7-2A). Other scanning sites on the chest were investigated, but placement on the sternum 

generated the greatest and most consistent signal, while allowing for data collection from both 

lung fields simultaneously. Signals generated by respiration were collected in real-time, and post-

collection data processing was implemented to visualize smooth transitions between inhalation 

and exhalation. 

        Pulmonary waveforms following human testing were generated for each trial. (Figure 7-3A 

to 7-3F). Between all volunteers, the approximate Rp range for respiratory cycles ranged between 

a minimum of 13.4 ohms and a maximum of 14.1 ohms. For most samples, basic data smoothing 

resulted in periodic waveforms, while others showed some small amounts of hysteresis or sensor 

drift over time.  Basic demographics for all participants were recorded, including age and body 

mass index (BMI) (Figure 7-4A & Figure 7-4B). The predicted RR was also calculated using the 

time-series of each trial and compared to the actual participant RRs (Figure 7-4C). As previously 

described, differences were taken between local maxima and minima in the sensor output time-

series waveforms to estimate the mean change in Rp breath (Figure 7-4F) per trial. 

Immediately following scanning with our sensor, PFTs were recorded using the MIR Spirobank 

II®, which is a commercially available spirometer. Previous studies have shown that the Spirobank 

II® is an accurate and appropriate research tool for pulmonary testing [128]. Through this step, 

the FEV1 and FVC of each participant was queried for comparison with Rp changes seen using the 

sensor (Figure 7-4D & Figure 7-4E). FEV1 to FVC ratios less than 80% have been highly 

correlated with obstructive lung disease due to a greater decrease in FEV1 than FVC [129, 130]. 
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As such, it was ensured that the ratio of FEV1 to FVC was >80% for all patients, with a mean of 

97.7% in the cohort. 

Figure 7-3: Sensor respiratory waveform output. A-F, Each waveform shows the unique 
pulmonary waveform, as generated by the sensor, for each trial in this study. 
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Figure 7-4: Participant variables and demographics. A, Age of participants by trial. B, Body 
mass index (BMI) of participants by trial. C, Respiratory rate of participants by trial. D, Forced 
vital capacity (FVC) of participants by trial. E, Forced expiratory volume in one second (FEV1) 

of participants by trial. F, Change in Rp of participants by trial. 
 

            Statistical regression analysis was performed to demonstrate the accuracy of sensor output 

as a predictor for RR, FEV1, and FVC. Correlation between mean change in Rp per breath and all 

three pulmonary variables demonstrated a statistically significant positive correlation, with RR 

showing the greatest predictive value (R2=1.00, p-value<0.0001; Figure 7-5C). With respect to 

pulmonary volume metrics, regression analysis demonstrated that mean change in Rp per breath 

was more closely correlated with FEV1 (R2=0.94, p-value=0.0012; Figure 7-5B) than FVC 

(R2=0.90, p-value=0.0039; Figure 7-5A). 
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Figure 7-5: Regression analyses. A, Linear regression analysis correlating mean change in 

parallel resistance per breath and FVC. B, Linear regression analysis correlating mean change in 

parallel resistance per breath and FEV1. C, Linear regression analysis correlating predicted and 

actual respiratory rates. 

To achieve preliminary conductivity-based imaging of the thoracic cavity, the sensor was 

scanned vertically across 8 equidistant rows on the chest. Scanning the anterior chest wall started 

at the left mid-axillary line (row 1) and continued to the right mid-axillary line (row 8), vertically 

from the inferior border of the ribs to the clavicles superiorly. Real-time data was collected during 

each scan and data from all 8 scans were normalized, smoothed, and plotted as a heatmap (Figure 

7-6A). 

        According to the underlying physics of the sensor, more conductive regions will result in 

lower Rp values while less conductive regions will result in higher Rp values. Within the thoracic 

cavity, large vessels branching off of the aorta and the heart would be expected to generate the 

largest ECD changes, while the air-filled lungs would produce the smallest ECD. On the same 

note, previous studies have found that the liver has the same conductivity as the heart at 1MHz 

(~0.3 S/m), and as a result, the liver would be expected to be visualized as well [86]. By overlaying 
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relevant thoracic organs in their appropriate locations, the conductivity-based heatmap can be 

better interpreted and understood (Figure 7-B). It is then clear that more conductive organs 

generate smaller signals on the heatmap, thus confirming our hypothesis. 

        In addition, finite element modeling (FEM) can be implemented to better understand the 

degree of ECD when the sensor is dynamically scanned across the chest. The magnetic flux 

densities generated within the thoracic cavity are greatest at the points nearest the sensor, although 

significant signal continues to be produced when the conductive target is 5cm from the sensor coil 

(Figure 7-C & Figure 7-D). Similarly, empty areas (modeled by air) generate little to no ECD 

signals within the model. This phenomenon is analogous to inhalation, during which the lungs and 

thoracic cavity are full of non-conductive room air. 
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Figure 7-6: Heatmap images and finite element modeling. A, Heatmap generated using Rp values 
during dynamic scanning of the chest. More conductive regions are shown brighter, while less 

conductive regions are shown darker. B, Heatmap of the chest with overlaid anatomical 
landmarks. C, Finite element model (FEM) surface plot demonstrating magnetic flux density 

changes when the coil sensor is placed near skin and tissue. Red colors demonstrate the greatest 
damping, while blue colors demonstrate minimal damping. D, FEM arrow surface plot 

demonstrating magnetic flux density changes when the coil sensor is placed near skin, tissue, and 
vasculature. Larger arrows indicate the highest eddy current damping. Created with 

BioRender.com 
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7.5 Respiratory Sensor Discussion 

        Our characterization of a continuous wearable ECD pulmonary function sensor suggests 

translational feasibility and utility for high-risk patients or pulmonary conditions. In a series of 

first-in-man experiments using a static sensor, we demonstrate statistically significant linear 

correlations between sensor output and critical pulmonary metrics, including RR, FEV1, and FVC. 

Changing to a dynamic scanning mode allowed for point-by-point conductivity measurements and 

heatmap-facilitated rudimentary imaging of the thoracic cavity, which can be further honed to 

provide near real-time imaging of the thoracic cavity in the field setting. FEM analysis confirmed 

our hypothesized magnetic field distributions and sensor behavior near conductive targets. Device 

safety was further confirmed as the sensor operated at 1MHz and generated magnetic fields of 

microtesla magnitudes. 

        The unique electromagnetic properties associated with ECD have resulted in several 

precedent devices, primarily used for industrial applications. ECD automobile braking systems 

have been developed that utilize the counteracting magnetic fields generated within the conductive 

target to slow vehicles. However, the ECD phenomenon has not yet been fully investigated within 

the context of biomedical research. Our investigation suggests that ECD sensors may accurately 

track changes in local conductivity, resulting from accumulation or removal of biological fluids or 

tissues. In addition, one major advantage of the sensor circuit is the low power consumption, which 

is of great importance for wearable sensors. In all trials, the sensor was powered via USB 

connection with a laptop, with a maximum current of 0.0027 amperes. On the same note, ECD 

sensors demonstrate an astounding price-to-accuracy tradeoff, and the sensor utilized in this study 
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cost less than $30 to construct, with a majority of the cost consumed by the commercial inductance-

to-digital converter. 

        Recent work has described a mix of linear and non-linear relationships between bioimpedance 

and respiratory metrics, such as RR, with the general consensus being that the two are linearly 

correlated [131–136]. This attitude within the general pulmonary literature allowed for accurate 

model selection, as seen in the linear regression models shown as Figure 7-5. In fact, linear 

modeling demonstrated a statistically significant relationship between sensor output and 

pulmonary metrics, further supporting the nature of this relationship. 

        With regard to sensor construction, previous studies have investigated a wide range of sensors 

utilizing a vast array of physical phenomenon to predict pulmonary function. Specifically, acoustic 

biosensors have been developed for pulmonary diagnosis, RR, and wheeze detection [125, 137, 

138], mechanical biosensors have been designed to measure strain during respiration [127], and 

electrical impedance tomography (EIT) has been shown to be an accurate method for non-invasive 

cardiopulmonary investigation [139, 140]. While each methodology boasts its own unique 

advantages and disadvantages, the sensor developed in this study is the first reported pulmonary 

ECD sensor in the literature. In addition, the sensor architecture described in this study allows for 

cheap, real-time, non-contact, wearable, continuous, and accurate biosensing and crude imaging 

that can easily interface with electronic health records or with a physician through telehealth 

services. 

        Of particular timely concern is COVID-19 and the wide range of presentations of ARDS 

following infection with the virus. Although PFTs are often not performed in acutely ill patients, 
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chronic pulmonary sequelae following COVID-19 ARDS may be accurately tracked with such a 

sensor. In addition, management of patients with chronic COVID-19 cannot rely on PFTs due to 

the high risk of respiratory droplet transmission of virus following forced expiration during 

spirometry [141]. As such, clinical understanding of PFTs in patients diagnosed with chronic 

COVID-19 sequelae continues to be limited, and non-contact wearable sensors may be able to 

provide additional patient-specific information regarding disease progression, and continuous 

sensing may hold information regarding reduced pulmonary functioning prior to clinical 

manifestations. To further minimize patient contact, these devices can be placed externally on the 

patients’ clothing or interwoven within the shirt fabric, with Bluetooth transmission to a local 

computer for storage and analysis. 

        Furthermore, since March 2020, COVID-19 has reduced the number of inpatient and elective 

outpatient procedures in hospitals worldwide in an effort to limit disease spread [142]. Novel 

biosensors capable of monitoring pulmonary function accurately may present a distinct benefit 

during these times.  Additional uses for lung transplant patients who require frequent PFTs and 

diagnosis of traumatic thoracic injury such as, hemothorax, pneumothorax, or hemidiaphragm may 

be possible in the field setting in the future with additional development of the ECD device. For 

all non-traumatic indications, continuous recording and digital interfacing provided by the sensor 

allow for remote PFT monitoring so that chronically ill patients can stay at home, thus minimizing 

potential COVID-19 exposure by reducing the frequency of hospital visits. 

        Limitations of this work include the requirement for the ECD sensor to be isolated from 

metallic objects and magnetic fields when scanning and a small series of participants. However, 

the number of volunteers recruited in this study was subject to Institutional limitations stemming 
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from the COVID-19 pandemic to prevent contact-based disease transmission. Furthermore, the 

resolution of heatmap-based images produced by the sensor is currently low and approximate due 

to the resolution of data output possible with the commercial sensor. Despite these limitations, our 

data shows robust evidence of the capacity of such a sensor for point-of-care pulmonary 

monitoring. Future work with a larger patient series aims at improving the circuit signal-to-noise 

ratio to improve sensor accuracy and boost the resolution of dynamic heatmap images produced 

through scanning. By doing so, such a device may provide information regarding critical lung 

metrics in sick and high-risk patients. 

7.6 Conclusion 

        Overall, the same ECD sensor developed for stroke applications was also quite efficacious in 

measuring pulmonary waveforms, volumes, and conductivities. In light of the COVID-19 

pandemic, ECD pulmonary sensors may allow for non-contact PFTs and lung monitoring in 

patients with COVID-19 or serious pulmonary illnesses. In addition to stroke detection and 

respiratory measurements, ECD sensors should be explored for a variety of medical conditions 

that may result in changes in bodily volumes or conductivities. 
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CHAPTER 8: CONCLUSION 

This work demonstrates the role of ECD sensors in detecting, diagnosing, and imaging 

strokes. The proposed device has been tested and proven safe and efficacious within laboratory 

benchtop, human cadaver, and live human settings. In addition, rigorous mathematical and 

computational analysis of the developed sensor has been performed to ensure that the predicted 

sensor behavior matches its expected physical behavior. 

Based on the findings of this thesis, future research evaluating ECD stroke sensors is 

warranted and may yield a potential alternative to CT and MRI imaging for stroke subtyping and 

triage. In fact, rapid, portable, and affordable stroke diagnosis and triage may facilitate patient 

management and accelerate time-to-treatment.  

In addition, the same ECD sensor was evaluated for quantification of respiratory metrics, 

inspired by the COVID-19 pandemic which took place during this thesis. We demonstrate accurate 

and effective quantification of respiratory waveforms and volumes within seconds, allowing for 

non-contact PFTs in a time of social distancing and separation. 
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