
Contract-based Design:
Theories and Applications

Thesis by
Tung Phan-Minh

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2021
Defended December 18, 2020

ii

© 2021

Tung Phan-Minh
ORCID: 0000-0002-1403-5197

All rights reserved except where otherwise noted

iii

ACKNOWLEDGEMENTS

I am much obliged to Richard M. Murray, Joel W. Burdick, John C. Doyle, and K.
Mani Chandy for serving on my thesis committee. I would like to thank Richard,
my doctoral advisor, for teaching, inspiring, and generously supporting me in my
quest to become a researcher. I am grateful to Prof. Burdick for his advice and
encouragement during the early years of my PhD and Mani for his insights on the
Rules of the Road work. It has been a great honor to learn from all of you.

This journey would have beenmuch less enjoyable had it not been for my friends and
collaborators. In particular, I would like to thank Ioannis Filippidis and Sumanth
Dathathri for introducing me to “the world of LTL” and providing general ad-
vice/mentorship. I would like to thank Eric Wolff and the prediction team at Ap-
tiv/nuTonomy (now Motional), especially Elena Corina Grigore, Freddy Boulton,
for two fun and fruitful summer internships. It has also been my greatest pleasure
to work with Karena Cai, Yuxiao Chen, Josefine Gräbener, Steve Guo, and Bastian
Schürmann in the various projects that led to this dissertation.

I owe a lot of the decision to go seek a PhD to Art Moore and his way of convincing
students of the beauty of mathematics and physics. I am beholden to the Jack
Kent Cooke Foundation for enabling and generously providing financial support
for my undergraduate and graduate studies. I also would like to convey my deep
appreciation to the NSF VeHICaL program and DENSO North America for directly
funding my research. Last but not least, I wish to thank the Mechanical and Civil
Engineering Department staff, Claudia Andrade, and Monica Nolasco for their
excellent organizational support throughout the years.

It goes without saying that I am forever indebted to my father Tri.nh, my mother
Thúy, my grandparents, uncles, aunts, siblings, cousins, my wife and her parents for
their love and unconditional support.

iv

ABSTRACT

Most things we know only exist in relation to one another. Their states are strongly
coupled due to dependencies that arise from such relations. For a system designer,
acknowledging the presence of these dependencies is as crucial to guaranteeing
performance as studying them. As the roles played by technology in fields such as
transportation, healthcare, and finance continue to be more profound and diverse,
modern engineering systems have grown to be more reliant on the integration of
technologies across multiple disciplines and their requirements. The need to en-
sure proper division of labor, integration of system modules, and attribution of
legal responsibility calls for a more methodological look into co-design consider-
ations. Originally conceived in computer programming, contract-based reasoning
is a design approach whose promise of a formal compositional paradigm is re-
ceiving attention from a broader engineering community. Our work is dedicated to
narrowing the gap between the theory and application of this yet nascent framework.

In the first half of this dissertation, we introduce a model interface contract theory
for input/output automata with guards and a formalization of the directive-response
architecture using assume-guarantee contracts and show how these may be used
to guide the formal design of a traffic intersection and an automated valet parking
system respectively. Next, we address a major drawback of assume-guarantee
contracts, i.e., the problem of a void contract due to antecedent failure. Our proposed
solution is a reactive version of assume-guarantee contracts that enables direct
specification at the assumption and guarantee level along with a novel synthesis
algorithm that exposes the effects of failures on the contract structure. This is
then used to help optimize, adapt, and robustify our design against an uncertain
environment.

In light of ongoing development of autonomous driving technologies and its potential
impact on the safety of future transportation, the second half of this work is dedicated
to the application of the design-by-contract framework to the distributed control of
autonomous vehicles. We start by defining and proving properties of “assume-
guarantee profiles,” our proposed approach to transparent distributed multi-agent
decisionmaking and behavior prediction. Next, we provide a local conflict resolution
algorithm in the context of a quasi-simultaneous game which guarantees safety and
liveness to the composition of autonomous vehicle systems in this game. Finally,
to facilitate the extension of these frameworks to real-life urban driving settings,

v

we also supply an effective method to predict agent behavior that utilizes recent
advances in machine learning research.

vi

PUBLISHED CONTENT AND CONTRIBUTIONS

Cai, Karena X., Tung Phan-Minh, Soon-Jo Chung, and Richard M. Murray (2021).
“Rules of the Road: Towards Safety and Liveness Guarantees for Autonomous
Vehicles.” Submitted.
TP-M made key contributions to the conceptual framework, problem formulation,
theoretical approach and proofs.

Graebener, Josefine B., Tung Phan-Minh, and Richard M. Murray (2021). “Failure-
Tolerant Contract-Based Design of an Automated Valet Parking System using a
Directive-Response Architecture.” Submitted.
TP-M made key contributions to the conceptual framework, problem formulation
and proofs.

Phan-Minh, Tung and Richard M. Murray (2021). “Contracts of Reactivity.” Sub-
mitted.
TP-M developed the theoretical framework, solution approaches and case study.

Chen,Yuxiao, SumanthDathathri, Tung Phan-Minh, andRichardM.Murray (2020).
“Counter-example Guided Learning of Bounds on Environment Behavior.” In:
Conference on Robot Learning, pp. 898–909. url: http://proceedings.mlr.
press/v100/chen20b.html.
TP-M provided a derivation for the learning algorithm and contributes to a case
study.

Phan-Minh, Tung, Elena Corina Grigore, Freddy A. Boulton, Oscar Beĳbom, and
Eric M. Wolff (2020). “Covernet: Multimodal Behavior Prediction using Trajec-
tory Sets.” In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 14074–14083. doi: 10.1109/CVPR42600.2020.
01408.
TP-M made key contributions to the problem reformulation, solution approach,
implementation and experimentation.

Phan-Minh, Tung,KarenaX.Cai, andRichardM.Murray (2019). “TowardsAssume-
Guarantee Profiles for Autonomous Vehicles.” In: 2019 IEEE 58th Conference on
Decision and Control (CDC). IEEE, pp. 2788–2795. doi: 10.1109/CDC40024.
2019.9030068.
TP-M made key contributions to the conceptual framework, problem formulation,
theoretical approach and proofs.

Phan-Minh, Tung, Steve Guo, Bastian Schuermann, Matthias Althoff, and Richard
M.Murray (2019). “AModal Interface Contract Theory for Guarded Input/Output
Automata with an Application in Traffic System Design.” In: 2019 American
Control Conference (ACC). IEEE, pp. 1704–1711. doi: 10.23919/ACC.2019.
8814789.
TP-M made key contributions to the theory, proofs and demonstration.

vii

CONTENTS

Acknowledgements . iii
Abstract . iv
Published Content and Contributions . vi
Contents . vi
Chapter I: Introduction . 1

1.1 History . 2
1.2 Contributions . 3
1.3 Outline of Thesis . 4

Chapter II: The Contract Metatheory . 6
2.1 What is a contract? . 6
2.2 An Example: Contracts on Image Annotating Functions 8
2.3 Properties . 11

Chapter III: A Model Interface Theory for Guarded Input/Output Automata . 13
3.1 Introduction . 13
3.2 Interface Contract Theory . 14
3.3 An Application in Traffic Control 27
3.4 Conclusion . 32

Chapter IV: Directive-response Assume-guarantee Contracts for an Auto-
mated Valet Parking System1 . 34
4.1 Introduction . 34
4.2 Theoretical Background . 35
4.3 Mathematical Formulation . 37
4.4 AVP Contracts . 44
4.5 System Design . 51
4.6 Conclusion . 59

Chapter V: Reactive Contracts . 62
5.1 Introduction . 62
5.2 Systems and Contracts . 63
5.3 Reactive Contracts . 66
5.4 Reactive Contracts for GR(1) Games 75
5.5 Case Study: a Reactive GR(1) Contract on 3 Islands 78
5.6 Conclusion . 82

Chapter VI: Assume-guarantee Profiles2 . 85
6.1 Introduction . 85
6.2 Overview . 86
6.3 Evaluator and Evaluated Structure 87
6.4 Consistency and Coverage . 96
6.5 Assume-Guarantee Profiling . 98
6.6 Some Examples and the Definition of Completeness 100

viii

6.7 Conclusion . 103
Chapter VII: Rules of the Road3 . 106

7.1 Introduction . 106
7.2 Overview . 108
7.3 Quasi-Simultaneous Discrete-Time Multi-Agent Game 109
7.4 Agent Protocol . 112
7.5 Safety Guarantees . 125
7.6 Liveness Guarantees . 128
7.7 Simulation . 131
7.8 Conclusion . 132

Chapter VIII: Multi-modal Trajectory Prediction:
a Set Cover Approach4 . 135
8.1 Introduction . 135
8.2 Related Work . 136
8.3 Method . 138
8.4 Trajectory Sets . 141
8.5 Experiments . 144
8.6 Conclusion . 151

Chapter IX: Conclusions . 155
9.1 Summary . 155
9.2 Future Directions . 155

1

C h a p t e r 1

INTRODUCTION

“I don’t spend my time
pontificating about high-concept
things; I spend my time solving
engineering and manufacturing
problems.”

Elon Musk

Many systems we build have to interact with the world around them. Their operation
usually depends on other systems that they have no control over: a solar (photo-
voltaic) module does not control the amount of sunlight it gets. As a solar module
alone often does not produce sufficient power, a solar panel system often includes
multiple solar modules, arranged in a particular way. To provide a reliable supply of
useful energy, it also needs, among others, an inverter, a battery, a battery regulator,
and wires to connect these components together. Every single one of these systems
is, by itself, an open system. This means they require one another to produce the
expected behavior, namely, harvesting and storing energy.

Co-design is a process that often proceeds as follows. Some engineers in different
areas of expertise want to build a product. They get together, draft up a plan, build
the parts, then integrate their designs, hoping that the final product will meet their
expectations. How long does it take for this to happen? When it does, how do
they guarantee its performance? The answers depend on a lot of factors, the most
important of which are experience, ingenuity, and sometimes luck. When there is
insufficient knowledge in the subsystems and the room for mistakes is small, the
co-design problem becomes even more difficult. It is true that people have been
building many systems by trial and error and accomplished a lot from so doing
and that experiments and testing are indeed necessary to discover new knowledge
about the world. However, at a certain point, when sufficient knowledge has already
been attained, it proves worthwhile to be methodological when specifying systems.
Especially, in the long run, extra benefits such as customizability, component re-use,
and drastic cuts in costs may outweigh the initial time investment.

2

Writing specifications for system modules is a nontrivial task. Common approaches
include “top-down,” “bottom-up,” and the “V-process” which can be seen as a com-
bination of the first two. The top-down approach puts an emphasis on organization
and a thorough understanding of the system while the bottom-up approach is all
about implementation and early testing/validation. In the top-down approach, we
begin with a high-level description of the system, and decompose it into descrip-
tions of its modules. Each of these descriptions may then be refined by adding more
details as appropriate depending on the local environment they are intended for,
and optionally further decomposed, until they are ready for implementation. In the
top-down approach, the testing of the modules is delayed until the design is done.
In bottom-up approach, modules may be implemented without much regard as to
how they interact with other parts of the system. There are many frameworks for
specifying open systems. All require knowledge and skills for correct execution as
specifications are delicate and often open to “loopholes” and unexpected meanings.

A common theme to open system specifications is that the system being specified is
nearly always described with two separate sets of properties. One of them is called
the assumption, and the other the guarantee. The former describes the environments
of the system and the latter specifies its obligations. Describing a component with
an assumption and a guarantee effectively constrains the design space to a favorable
region while leaving enough room for other systems to operate in given constraints
that are already present such as the laws of physics and mathematics. This also
enables said system to be thought of as a black box, a critical requirement for
modular design. The assume-guarantee paradigm plays an essential role in the
design-by-contract framework, a brief history of which is now in order.

1.1 History
There are a few early variants of the assume-guarantee formalism attempting to
capture the conditional dependence of components. One of the earliest attempts to
formalize this method of reasoning is Hoare logic (Hoare, 1969). This makes use
of triples consisting of a pre-condition, a program description, and a post-condition
to prove invariants. Misra and Chandy introduced the rely-guarantee approach
for safety properties of distributed networks (Misra and Chandy, 1981). In this
approach, each component (process) in the network is described with a pair of
assertions that are similar to pre- and post-conditions of Hoare logic. The verifi-
cation of the assembled network is reduced to the application of inference rules to
the components’ specifications. Meyer can be credited with being the first to use

3

the phrase “design-by-contract” (Meyer, 1992b). The related object-oriented Eiffel
programming language supports its philosophy by allowing the use of assertions
and an approach to inheritance that is based on the notion of subcontracting (Meyer,
1992a). The last decade or so has seen an increase in contract theories and appli-
cations in cyber-physical systems (Sangiovanni-Vincentelli, Damm, and Passerone,
2012; Nuzzo, 2015; Kim, Arcak, and Seshia, 2015; Censi, 2016a; Filippidis, 2019;
Foster et al., 2020). Prominent among these is a contract metatheory by Benveniste
et al. that tries to unify many forms of compositional thinking with algebraiza-
tion (Benveniste et al., 2015).

1.2 Contributions
Recent interests in contract theories from researchers in cyber-physical systems
have sparked off multiple definitions for what a contract is. Depending on the
applications of interest, these formulations can vary from continuous to discrete
time, with components assuming various forms that range from concrete (e.g., black
boxes with input/output ports connectable to one another through wires) to abstract
(e.g., sets of variables with constraints) (Censi, 2016b; Filippidis, 2019). In terms
of applications, while some systems like aircraft electric power system (Nuzzo et al.,
2013) exist, “non-toy” examples are still quite limited. These facts motivate us to
adopt the general contract perspective given by metatheory of contracts and further
back it by showing how objects in the metatheory get mapped to some contract
theories and applications that are of engineering interests. Specifically, we provide
an example involving a traffic coordinator and relatively complex control system
for a parking garage with different levels of commands. We also focus on an often
neglected theme in contract theory which is reaction to failures. Our introduction of
“reactive contracts” directly generalizes attempts to address this issue from earlier
works (Kim, Arcak, and Seshia, 2017; Kim, Sadraddini, et al., 2017). Lastly,
we formulate an assume-guarantee framework for self-driving cars in response to
recent and ongoing discussions about safety and responsibility for these types of
systems (Shalev-Shwartz, Shammah, and Shashua, 2017). From this, we present a
discrete model of autonomous vehicles and road networks that is provably consistent
and complete. We also offer an effective learning-based trajectory predictionmethod
to help generalize this framework to more practical settings.

4

1.3 Outline of Thesis
In Chapter 2, some background on the contract metatheory is presented. This will
serve as a guiding theoretical basis for the rest of the dissertation. In Chapter 3, we
construct a metatheory-compliant contract theory for modal interface input/output
automata with guards and apply it to the design of a correct-by-construction traffic
intersection control system. Next, in Chapter 4, we develop an assume-guarantee
contract framework to model the directive-response architecture of components of
an automated valet parking system. Then in Chapter 5, we introduce the theory of
reactive contracts and associated algorithms to allow for meta-specifications at the
assume-guarantee level. This directly addresses the problem of a non-enforceable
contract due to an expected failure invalidating one of its pre-conditions. The sec-
ond half of the thesis focuses on the application of the contract framework to the
development of autonomous driving technologies, specifically the distributed con-
trol of autonomous vehicles. In Chapter 6, we lay out a theoretical framework for
transparent distributed multi-agent decision making and behavior prediction using
“assume-guarantee profiles.” In Chapter 7, a provably correct distributed conflict
resolution algorithm for quasi-simultaneous games is provided to guarantee safety
and liveness for a composed system of autonomous vehicle agents. In Chapter 8,
we propose a competitive neural-network based multi-modal behavior prediction
technique as a step toward extending our contract-based frameworks to real-world
systems. Finally, some conclusions and a discussion of possible future directions
are provided in Chapter 9.

References

Benveniste, Albert, Benoît Caillaud, Dejan Nickovic, Roberto Passerone, Jean-
Baptiste Raclet, Philipp Reinkemeier, Alberto Sangiovanni-Vincentelli, Werner
Damm, Tom Henzinger, and Kim G. Larsen (July 2015). Contracts for Systems
Design: Theory. Research Report RR-8759. Inria Rennes Bretagne Atlantique ;
INRIA, p. 86. url: https://hal.inria.fr/hal-01178467.

Censi, Andrea (2016a). “A class of co-design problems with cyclic constraints and
their solution.” In: IEEE Robotics and Automation Letters 2.1, pp. 96–103.

– (Sept. 2016b). A Mathematical Theory of Co-Design. Tech. rep. Submitted and
conditionally accepted to IEEETransactions onRobotics. Laboratory for Informa-
tion andDecision Systems,MIT.url: https://arxiv.org/abs/1512.08055.

Filippidis, Ioannis (2019). “Decomposing formal specifications into assume-guarantee
contracts for hierarchical system design.” PhD thesis. California Institute of Tech-
nology.

5

Foster, Simon, Ana Cavalcanti, Samuel Canham, Jim Woodcock, and Frank Zeyda
(2020). “Unifying theories of reactive design contracts.” In:Theoretical Computer
Science 802, pp. 105–140.

Hoare, Tony (1969). “An axiomatic basis for computer programming.” In:Commun.
ACM 12, pp. 576–580.

Kim, Eric S., Murat Arcak, and Sanjit A. Seshia (2015). “Compositional controller
synthesis for vehicular traffic networks.” In: 2015 54th IEEE Conference on
Decision and Control (CDC). IEEE, pp. 6165–6171.

– (2017). “A small gain theorem for parametric assume-guarantee contracts.” In:
Proceedings of the 20th International Conference on Hybrid Systems: Computa-
tion and Control, pp. 207–216.

Kim, Eric S., Sadra Sadraddini, Calin Belta, Murat Arcak, and Sanjit A. Seshia
(2017). “Dynamic contracts for distributed temporal logic control of traffic net-
works.” In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC).
IEEE, pp. 3640–3645.

Meyer, Bertrand (1992a). “Applying Design by Contract.” In: Computer 25.10,
pp. 40–51.

– (1992b). “Design by Contract.” In: IEEE Computer 25, p. 10.

Misra, Jayadev and K. Mani Chandy (1981). “Proofs of Networks of Processes.”
In: IEEE Transactions on Software Engineering SE-7.4, pp. 417–426. doi: 10.
1109/TSE.1981.230844.

Nuzzo, Pierluigi (Aug. 2015). “Compositional Design of Cyber-Physical Systems
UsingContracts.” PhD thesis. EECSDepartment, University of California, Berke-
ley. url: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-
2015-189.html.

Nuzzo, Pierluigi, Huan Xu, Necmiye Ozay, John B Finn, Alberto L Sangiovanni-
Vincentelli, Richard M Murray, Alexandre Donzé, and Sanjit A Seshia (2013).
“A contract-based methodology for aircraft electric power system design.” In:
IEEE Access 2, pp. 1–25.

Sangiovanni-Vincentelli, Alberto, Werner Damm, and Roberto Passerone (2012).
“Taming Dr. Frankenstein: Contract-based design for cyber-physical systems.”
In: European journal of control 18.3, pp. 217–238.

Shalev-Shwartz, Shai, Shaked Shammah, and Amnon Shashua (2017). “On a formal
model of safe and scalable self-driving cars.” In:arXiv preprint arXiv:1708.06374.

6

C h a p t e r 2

THE CONTRACT METATHEORY

Various works in the contract literature are not in complete agreement when it comes
to the precise meaning of the word “contract”. To avoid this confusion, we adopt
the following relatively general definitions from the metatheory.

2.1 What is a contract?
Two main types of objects that the metatheory concerns itself with are components
and contracts. For components, composability is identified as the key property.
Syntax-wise, for any two composable components "1 and "2, we will denote their
composition as "1 ⊕ "2. In the metatheory, we require ⊕ to be an associative and
commutative binary operator on the set of components. These requirements enable
a simple yet powerful perspective of composition that can be understood roughly as
an agreement on the values of shared variables. Effectively, when we compose two
components, we are restricting what they can do by constraining the behavior that
they experience to be the same. A component is defined to be closed if it cannot be
composed with any other component, otherwise it is open.

Each contract C is defined to be a tuple (IC , EC) where IC and EC are two sets
of components. These are referred to as the set of implementations and the set of
environments of C, respectively. It is further required that any pair of elements not
from the same set are composable. A contract therefore has a “built-in” assume-
guarantee semantics in the sense that a set of implementations is paired to a set of
“intended” environments.

The sizes of the sets of implementations and environments of a contract can be used
to establish how coarse or fine it is. This allows us to talk about the descriptiveness
of a contract, a useful concept for vertical design where we often want to refer to
more specific implementations than the ones in question.

Definition 2.1.1 (Refinement). We say that C1 refines C2 and write C1 � C2 if and
only if IC1 ⊆ IC2 and EC2 ⊆ EC1 .

Observe that the more refined contract C1 in Definition 2.1.1 has a smaller imple-
mentation set since it is more specific. At the same time, having fewer implemen-

7

tations may relax the composability constraint. Thus, it is allowed to have a larger
environment set. Clearly, � effectively defines a partial order on the set of contracts.

The contract conjunction operator is used to enforce two aspects of a design. It
describes the coarsest contract that simultaneously refines two given contracts and
is useful when we would like to fuse requirements from those contracts.

Definition 2.1.2 (Conjunction). The conjunction C1 ∧ C2 of C1 and C2 is the largest
contract with respect to the refinement ordering � that refines both C1 and C2.

Conversely, the contract disjunction is used to describe alternatives or expand the
set of qualified implementations in a controlled way.

Definition 2.1.3 (Disjunction). The disjunction C1 ∨C2 of C1 and C2 is the smallest
contract with respect to the refinement ordering � that is refined by both C1 and C2.

Composing contracts is the most important operation of the metatheory. It char-
acterizes the specifications for the larger system that results from coupling the
specifications of two open systems that are supposed to interact with one another.
It is required that the composition of any two implementations of contracts C1, C2

should implement their composition C1 ⊗ C2, and any environment for C1 ⊗ C2

composed with an implementation for C1, should give an environment for C2 and
vice-versa. Formally, we have the following.

Definition 2.1.4 (Composition). The composition C1 ⊗ C2 is the smallest contract
C = (EC ,IC) that has the composition property, namely, for any"1 ∈ IC1 ,"2 ∈ IC2 ,
and � ∈ EC , we have "1 ⊕ "2 ∈ IC , "1 ⊕ � ∈ EC2 , and "2 ⊕ � ∈ EC1 .

Finally, the quotient operator allows us to find the missing specifications for an
unspecified part of a given system.

Definition 2.1.5 (Quotient). The quotient C1/C2 is the largest contract C such that
C ⊗ C2 � C1.

These operators form the basis of the canonical metatheory. Recently, more opera-
tors have been found/defined, enabling more expressiveness (Passerone, Íncer, and
Sangiovanni-Vincentelli, 2019; Íncer et al., 2020).

Each contract “flavor” of the metatheory is defined by a set of components and how
they can be composed through ⊕. To concretize these definitions, we will follow up
with an informal example.

8

Figure 2.1: An element of ℑ in the example from Section 2.2.

Figure 2.2: The result of composing an element of ℑ and an element of % in the
example from Section 2.2.

2.2 An Example: Contracts on Image Annotating Functions
Let ℑ be a set of images like the one shown in Figure 2.1. Let % be a set of functions
each of which takes each image in ℑ and returns an annotated image in ℑ. By
“annotating”, we mean a process that adds an extra layer of information to an image.
For each ? ∈ % and 8 ∈ ℑ, we will denote by ? ⊕ 8 or 8 ⊕ ? the result of annotating
8 with ?. An example of this is shown in Figure 2.2, in which the original image
in Figure 2.1 was annotated with a red bounding box around the sole vehicle in the

9

Figure 2.3: A possible visualization of ?1 ⊕ ?2 ⊕ 8 from 2.2.

scene.

For any two such functions ?1 and ?2 in %, we define their composition ?1⊕ ?2 to be
simply the function that adds both annotations from ?1 and ?2 to each image from
ℑ. For example, if ?1 is the function that annotates any image from ℑ by putting a
rectangular box around each vehicle in it and ?2 is the function that annotates each
image from ℑ with yellow arrows that describe potential future trajectories for each
vehicle, then the function ?1 ⊕ ?2 would return an image like the one in Figure 2.3
assuming the input is again the image 8 from Figure 2.1. Assuming the order of
annotations does not matter, we can see that ⊕ is associative and commutative on
the set of components defined as % ∪ ℑ as long as the composition is well-defined
(that is, if it contains at most one element from ℑ).

Now, let

• ℑunannotated be a subset of ℑ such that each element of ℑunannotated is unan-
notated.

• ℑfreeway be a subset of ℑunannotated such that each element of ℑfreeway is a
picture of freeway traffic.

• Iprog,car be a set of computer programs that annotate each freeway image with
a bounding box around each car that is present in it.

10

• Iprog,bike be a set of computer programs that annotate each freeway image
with a bounding box around each motorbike that is present in it.

• Inn,box be a set of neural networks that annotate each image with a bounding
box around each traffic agent (car, motorbike, bicycle, pedestrian. . .) that is
present in it.

The specifications “Design a program that puts bounding boxes around each car on
freeways” and “Design a program that puts bounding boxes around each motorbike
on freeways” may correspond to the contracts C1 = (ℑfreeway,Iprog,car) and C2 =

(ℑfreeway,Iprog,bike), respectively.

The contract conjunction C1∧C2 exists and corresponds to the specification “Design
a program that puts bounding boxes around every car and motorbike on freeways”
while the disjunction C1 ∨ C2 corresponds to “Design a program such that, for
each (unannoted) freeway image, it either 1) consistently annotates every car with a
bounding box or 2) consistently annotates every motorbike with a bounding box”.
Note that consistency means that for all images in ℑfreeway, the program must either
box all the cars or all the bikes. That is, there exists no pair of images where one
of them has all the cars boxed but not all the bikes while the other has all the bikes
boxed but not all the cars.

On the other hand, the specification “Implement a neural network that puts a bound-
ing box around each traffic agent” may correspond to C3 = (ℑunannotated,Inn,box).
We can see that C3 is a more specific contract than even the conjunction of C1 and
C2, namely, C3 � C1 ∧ C2 because Inn,box ⊆ Iprog,car ∩ Iprog,bike.

Lastly, consider the specification “Implement a neural network that, given an unan-
noted image, puts a bounding box around each traffic agent and provides for
that same agent a predicted trajectory”, which corresponds to a contract C =

(ℑunannotated,Inn,box+pred). Let ℑunboxed be a subset of ℑunannotated consist-
ing of images with no bounding boxes. Let us assume that a contract C4 =

(ℑunboxed,Inn,box) has been assigned to a team for implementation, namely they
must, for each image in ℑunboxed, provide the bounding box for each agent in it.
What should our implementation satisfy in order for us to reuse whatever imple-
mentation the other team comes up with, in the sense that their composition would
satisfy C? By the metatheory, we only need to satisfy any refinement of contract
C/C4. In particular and as may be expected, (ℑunpred,Inn,pred) where ℑunpred is a

11

subset of ℑ with no predicted trajectories and Inn,pred is the set of neural networks
that add a predicted trajectory to each agent present in any image from ℑunpred.

2.3 Properties
The definitions from the metatheory immediately result in the following properties
(their proofs can be found in (Benveniste et al., 2015)).

The first two are clear from the definitions of refinement and conjunction.

Proposition 1. If C1 � C2, then

1. Any implementation of C1 is an implementation of C2.

2. Any environment of C2 is an environment of C1.

Proposition 2 (Shared refinement). The following is true for the conjunction of two
contracts.

1. Any contract that refines C1 ∧ C2 also refines C1 and C2.

2. Any implementation of C1 ∧ C2 is a shared implementation of C1 and C2.

3. Any environment of C1 or C2 is an environment of C1 ∧ C2.

The next proposition says that it is safe to refine constituent contracts independently.

Proposition 3 (Independent implementability). If C′1 � C1 and C′2 � C2, then
C′1 ⊗ C

′
2 � C1 ⊗ C2.

The contract composition definition also allows for flexibility in how contracts
for subsystems are grouped and ordered for composition. If four subsystems are
supposed to complement each other, we can frame the design problem as that which
involves composing any two larger subsystems, each of which is a composition of
two of the original subsystems.

Proposition 4 (Architecture flexibility). (C1⊗C2)⊗(C3⊗C4) = (C1⊗C3)⊗(C2⊗C4).

Additionally, the following relation about composing and conjoining systems im-
plies that composing two systems with “functionally congruent” subsystems can be
reduced (or refined) to fusing the requirements of each pair of congruent subsystems
and composing the results afterwards.

12

Proposition 5 (Sub-distributivity). (C1 ∧C3) ⊗ (C2 ∧C4) � (C1 ⊗ C2) ∧ (C3 ⊗ C4).

The following follows from the definition of the quotient operator. It is consistent
with the intuition that composing a refinement of a quotiented out contract with the
already existing part should refine the original contract for the composite system.

Proposition 6 (Quotient). C � C1/C2 ⇔ C ⊗ C2 � C1.

References

Benveniste, Albert, Benoît Caillaud, Dejan Nickovic, Roberto Passerone, Jean-
Baptiste Raclet, Philipp Reinkemeier, Alberto Sangiovanni-Vincentelli, Werner
Damm, Tom Henzinger, and Kim G. Larsen (July 2015). Contracts for Systems
Design: Theory. Research Report RR-8759. Inria Rennes Bretagne Atlantique ;
INRIA, p. 86. url: https://hal.inria.fr/hal-01178467.

Íncer, Íñigo, LeonardoMangeruca, TizianoVilla, andAlberto Sangiovanni-Vincentelli
(Sept. 2020). The Quotient in Preorder Theories. Tech. rep. UCB/EECS-2020-
179. EECS Department, University of California, Berkeley. url: http://www2.
eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-179.html.

Passerone, Roberto, Íñigo Íncer, and Alberto Sangiovanni-Vincentelli (2019). “Co-
herent Extension, Composition, and Merging Operators in Contract Models for
SystemDesign.” In:ACMTransactions on Embedded Computing Systems (TECS)
18, pp. 1–23.

13

C h a p t e r 3

A MODEL INTERFACE THEORY FOR GUARDED
INPUT/OUTPUT AUTOMATA

3.1 Introduction
The growth in scale and complexity of engineering systems has created stronger
demands for formal approaches tomodular design (Baldwin and Clark, 2006; Huang
andKusiak, 1998). Generally speaking, modular designmeans breaking up a system
into more or less standalone modules for a reduction in complexities. To guarantee
correct product integration, it is therefore not only a matter of convenience but also
of necessity for design choices intended for a module to be made available to others.
One way of dealing with this dependency is to divide tasks of designing a module
into two parts: specifying an interface and ensuring that the implementation satisfies
it. The interface of a module contains all information about the interactions it can
offer to other modules. An implementation should satisfy the specifications of the
interface. The idea is that changes to an implementation of a module should not
affect the overall behavior of the assembled system as long as the implementation
still satisfies the requirements of the interface.

A lightweight automata-theoretic approach to represent interfaces was introduced
by de Alfaro and Henzinger (2001), in which the temporal behavior of an interface is
described by a game-based model in the form of an input/output (I/O) automaton, a
formalism by Lynch and Tuttle (1987). This was soon followed by modal specifica-
tions by Larsen (1989), which can state whether an action is optional or obligatory.
Later Raclet unified modal specifications and interface automata, paving the way
for a preliminary theory of modal interface contracts (Raclet et al., 2009). More
recently, Benveniste et al. subsumed this theory under the metatheory (Benveniste,
Benoit Caillaud, et al., 2012). In the application domain, however, the semantics
of the theory is limited by a lack of clear restrictions on when a transition can trig-
ger and by a peculiar rule for composing actions, namely, requiring that the action
obtained from composing an input action with an output action to be an output
action, which, while preserving the “interface” semantics, obscures the distinction
between open and closed interfaces/systems. These drawbacks make it difficult and
sometimes impossible to specify systems whose variables assume a large or infinite

14

Figure 3.1: A snapshot of an implementation of a networked control system of traffic
presented in (Phan-Minh, 2018).

set of values.

With an aim to bringing the benefits of the theory of modal interface contract
automata to more real-time systems, inspired by symbolic transducers (Veanes,
Hooimeĳer, Livshits, et al., 2012), we develop a new theory that includes Boolean
guards, a more intuitive definition of how the I/O actions interact, an introduction of
a special state that enriches the semantics of the contract object, and a simplification
in the definitions of interfaces. In addition, we prove that the algebraic operations
defined for our contract theory also have metatheoretic properties, implying com-
patibility with many existing contract frameworks. We then implement a set of tools
that carry out the contract algebra in a similar manner to Mica, which implements
the modal interface contract in (Raclet et al., 2011). As an illustrative example
application of our theory, we introduce a method for setting up an autonomous
traffic system where various interfaces communicate with each other while abiding
by the contract protocol. Our concrete case study involves a real-time simulation
of a traffic intersection (see Fig. 3.1) whose components interact with each other in
accordance with the contract objects we devise.

3.2 Interface Contract Theory
Many real-world applications ranging from online payment services to autonomous
robots require networking protocols to control sequential exchanges of information
between many subsystems or participating agents. By “sequential” we mean that
the interactions must occur in a well-specified, agreed upon temporal order. A good

15

Components

Interfaces

Contracts

Figure 3.2: Contract design hierarchy pyramid.

implementation of these protocols presupposes the notion of a set of rules for each
subsystem that not only restricts what action the subsystem can perform from a
certain state at a certain time, but can also be compared to or combined with other
sets of rules corresponding to other subsystems. To illustrate these ideas, we will
provide definitions for three formal objects, arranged in the hierarchy pyramid in
Fig. 3.2 by their level of abstraction. The higher the object sits, the more abstract it is
and the fewer ways there are to implement it. First, we will introduce the interface.

Interface
Our formalism rests upon the assumption that each state of the universe fixes the
values for a master set of variables U whose temporal and algebraic behaviors are
governed by mathematical and physical laws. The interface of a component (or
interface for short) may be described by a subset ofU (these are called its reference
variables), and can interact with the rest of the universe (i.e., one of its environments)
through a set of actions. Any action from this interface may belong to exactly one
of the following three classes. An input action of an interface corresponds to the
receiving of mass or energy from its environment. An output action, on the other
hand, corresponds to sending mass or energy to its environment. An internal or
rendezvous action represents an interconnection. Intuitively, an interconnection
implies the existence of at least one input and one output action and we can think of
it as being internally exchanged within the component. As a syntactic reminder, we
will prefix input actions with an exclamation mark (!), output actions with a question
mark (?), and rendezvous actions with a hash symbol (#).

An interface is closed if and only if its corresponding set of actions is empty or only
consists of rendezvous actions. An interface is called open otherwise. For example,
the universe, in its entirety has a closed interface. A wireless router has an open
interface because it takes inputs from a modem and emits radiowaves.

For any set of variables V ⊆ U, a valuation 4 of V denoted by 4[V] is a legal

16

assignment of values to each of the variables in V. By legal, we mean that each
variable is assigned a value that is in the value set specified by its type (e.g., the
reals). In mathematical logic terms, 4 is a ground substitution of variables in V.
The set �V B {4 | 4 is a valuation ofV} contains all possible valuations of V.
Since one of our interests is in “connecting” different interfaces, it is important to
specify the conditions under which this can happen. For this purpose and also to
obtain a compact automaton representation of interfaces, we will invoke the notion
of guards.

Definition 3.2.1 (Guard). Let > B True and ⊥ B False. A guard 6 defined on
a set of variables V is a predicate on the variables in this set, namely, 6 : �V →
{>,⊥}. The set of all predicates onV is denoted by �V .

For example, when V is a set of Boolean variables, then a guard on V is a map
from 2V to {>,⊥}. Below, we will use the tilde symbol ∼ as a wild card character
that acts as a placeholder for one of !, ?, and #.

Definition 3.2.2 (Interface). Each interface " is defined by a set of reference
variablesV and a tuple A = ((, B0,F, �,→) where

(i) (is a finite set of operational states

(ii) B0 ∈ (is the start state

(iii) F ∉ (is the failure state

(iv) � is a set of actions. We will often write � as the partition

� = ?� ∪ !� ∪ #�,

where ?�, !�, #� are the smallest sets containing all the input, output, and
internal actions of �, respectively.

(v) →⊂ (× [�V | �] × (̄ is a guarded transition relation with (̄ = (∪ {F} (note
the asymmetry between the start and end sets). For all B1, B2, 6, 0 such that
B1× [6 | ∼0] × B2 ∈→, we say that the action ∼0 is only available to " in those
states of the universe where 6 evaluates to>. We also require the transitions to
be deterministic by requiring that, from each state, there is only one transition
per unmasked (namely, disregarding ?, !, or #) action.

17

We will be writing @
[6 |U]
−−−−→ ? in place of @ × [6� | U] × ? ∈→ as a predicate. The

fact that our interfaces are deterministic allows us also to use the shorthand @
[6 |U]
−−−−→

to say with little ambiguity that there exists a state ? ∈ (̄ such that @
[6� |U]−−−−−→ ?. Now

we are ready to define the interface composition operator, which we will denote by
the symbol ×. Intuitively, given two interfaces "1 and "2, let us assume that "1 is
currently in state B1 and "2 is in B2. If, for example, from B1, "1 has a transition
[61 | ?0] to some state B′1 and from B2, "2 has a transition [62 | !0] to state B′2, then
if "1 and "2 were to be composable, it would make sense to require "1 and "2 to
exchange the action 0 with one another. This then reduces to checking if 61 ∧ 62 is
satisfiable (there exists a valuation of the variables in 61 ∧ 62 that makes it evaluate
to True). If there is at least one satisfying assignment, then the two interfaces must
handshake or “rendezvous” on it, otherwise, they are not composable.

Definition 3.2.3 (Composition of Transitions). The composition of two transitions
C1 = @1

[61 |∼01]−−−−−−→ @′1 and C2 = @2
[62 |∼02]−−−−−−→ @′2, from automata"1 and"2, respectively,

is possible if 61 ∧ 62 is satisfiable and 01 = 02. If these conditions are satisfied, the
composed transition is given by C = (@1, @2)

[6 |0]
−−−−→ (@′1, @

′
2), where 6 B 61 ∧ 62 and

0 := ∼01 + ∼02 where + is a binary operator acting on ∼01 and ∼02 such that,

∼01 + ∼02 B

#01 (∼01 ∈ !�1 ∧ ∼02 ∈ ?�2)

∨(∼02 ∈ !�2 ∧ ∼01 ∈ ?�1)

∨∼01 = #01

∨∼02 = #02

?01 ∼01 ∈ ?�1 ∧ ∼02 ∈ ?�2

!01 ∼01 ∈ !�1 ∧ ∼02 ∈ !�2.

Any input supplied to an automaton that is an output of the other becomes a ren-
dezvous action of the composed automaton since the composed automata should
represent the interconnection of the two automata. Observe also that input (or output)
actions that compose with themselves are not converted to rendezvous actions, but
rather remain unchanged. For convenience, we define D to be a universal “unmask-
ing” function that maps all prefixed actions to pure actions, namely, D : ∼0 ↦→ 0.
As an abuse of notation, for a set � of prefixed actions, we write D(�) to mean the
set {D(0) : 0 ∈ �}. The composition " of two interfaces "1 and "2 is defined as
follows:

18

Definition 3.2.4 (Interface Composition). For two interfaces "1 defined by V1

and ((1, B0,1,F2, �1,→1) and "2 defined by V2 and ((2, B0,2,F2, �2,→2), their
composition " = "1 × "2 is defined byV B V1 ∪V2 and ((, B0,F, �,→) such
that

(i) (B (1 × (2

(ii) B0 B B0,1 × B0,2

(iii) � is partitioned into #� ∪ !� ∪ ?�, with

#� B #�1 ∪ #�2

2⋃
8=1

#(D(?�8) ∩ D(!�3−8))

?� B ?�1 ∪ ?�2

!� B !�1 ∪ !�2

(iv) → is the Cartesian product of transitions in →1 and →2 with respect to
composition as defined in definition 3.2.3. More specifically,∀C1 ∈ (1×[�V1 |
�1]×(̄1, C2 ∈ (2×[�V2 | �2]×(̄2 such that C1 and C2 are composable, C1×C2 ∈→.

(v) associate each (reachable) composite state in {F1} × (2 ∪ (1 × {F2} with the
failure state F.

Observe that due to Definition 3.2.4(iv) and the fact that each constituent interface
is deterministic, from each composite state there can be at most one transition per
unmasked action, so the composition is also a deterministic interface.

Proposition 1 (Associativity and Commutativity). The interface composition oper-
ator (×) is associative and commutative. Namely, for all interfaces "1, "2, "3, we
have

"1 × "2 = "2 × "1 (3.1)

and
("1 × "2) × "3 = "1 × ("2 × "3). (3.2)

Proof. (3.1) easily follows from Definitions 3.2.3 and 3.2.4. To see why (3.2) holds,
first we note that it is trivial to show that the resulting sets of operational states,

19

the initial states, and the sets of states that eventually become the failure state from
both sides of Equation (3.2) are equal. In what follows, we will be referring to the
constituents (e.g., action set) of each interface "8 by their standard notations. Now
observe from the last two items in Definition 3.2.4(iii), that the input and output
action sets of the resulting interfaces on both sides of Equation (3.2) are equal. For
the internal action set, a direct calculation with an application of the set distributive

law shows that either side of (3.2) can be reduced to
3⋃
8=1

#�
3⋃

9=1, 9≠8
#(D(?�8)∩D(!� 9)).

By Definition 3.2.4(iv), it remains to be shown that the transition sets are identical,
which is to prove

∀C1, C2, C3.
3∧
8=1
(C8 ∈→8) =⇒ (C1 × C2) × C3 = C1 × (C2 × C3). (3.3)

By Definition 3.2.3, we can assume that 01 = 02 = 03 = 0. Let us suppose that the
resulting action of (C1 × C2) × C3 is an internal action (the cases for input and output
actions are straightforward). Then either

• at least one of ∼01 or ∼02 or ∼03 is an internal action, in which case the
resulting action of C1 × (C2 × C3) must also be an internal action since #
“absorbs” any other type of action.

• or among ∼01, ∼02, ∼03, there are exactly two types of actions, namely, input
and output, in which case, the resulting action of C1×(C2×C3) is also an internal
action.

Both cases show that (3.3) holds. �

Below, whenever we make a reference to an interface"8 and later a contract, we will
be using the same notations used in their respective definitions with the appropriate
subscripts to talk about their constituents (set of actions, start states etc.). Given two
interfaces, knowledge of whether they are comparable to one another can be very
useful. One way to enable this comparison is to check whether one interface can
“imitate” or simulate the other.

Definition 3.2.5 (Simulation). Let "1 and "2 be two interface automata. For
8 = 1, 2, let @8 be a state of "8. @2 simulates @1, written @1 . @2, if for all U ∈ �

@1
[61 |U]−−−−→ @′1 =⇒ ∃@′2 : @2

[62 |U]−−−−→ @′2 ∧ (61 =⇒ 62) ∧ (@′1 . @
′
2). (3.4)

"2 simulates "1, written "1 . "2, when B0,1 . B0,2.

20

The following fact will be useful later when we define contract composition.

Proposition 2. If "1 . "2 and "3 . "4, then "1 × "3 . "2 × "4.

Proof. The start state of "1 × "3 can be written as (@1, @3) where @1 and @3 are
start states of "1 and "3. By Definition 3.2.5, the start states @2, @4 of "2 and
"4 satisfy @1 . @2 and @3 . @4. We claim (@1, @3) . (@2, @4). Suppose for some
@′1, @

′
3 such that (@1, @3)

[61∧63 |U]−−−−−−−→ (@′1, @
′
3) where @1

[61 |U1]−−−−−→ @′1, @3
[63 |U2]−−−−−→ @′3 and

U = U1 + U2. By Definition 3.2.5, we have @2
[62 |U1]−−−−−→ @′2 ∧ (61 ⇒ 62) ∧ @′1 .

@′2 and @4
[64 |U2]−−−−−→ @′4 ∧ (63 ⇒ 64) ∧ @′3 . @′4. These two yield the transition

(@2, @4)
[62∧64 |U1+U2]−−−−−−−−−−−→ (@′2, @

′
4) in"2×"4 and 61∧63 ⇒ 62∧64. By performing this

argument inductively, we have (@′1, @
′
3) . (@

′
2, @
′
4) and therefore @1 × @3 . @2 × @4,

from which the claim follows. �

Component
While the interface is a mathematical object that specifies actions a module can
exchange with its environment, a component is any structure (e.g., hardware or
software, or human) that satisfies the promises of the interface for that module.
To keep the interface representation compact, it is helpful to maintain a small
action alphabet. In applications, this may be done by appropriately mapping the
numerous actions (due to parametrization or the fact that they stem from different
structures) to a small number of classes that represent the actions in the alphabet
of the corresponding interface. For a set of actions �2, an action alphabet �,
a component , and Q : �2 → � be an action equivalence map, we have the
following definition.

Definition 3.2.6 (Component). We say a component models an interface" under
the action equivalence map Q and write |=Q2><? " if there exists a state machine
representation ̄ of modulo Q such that ̄ . " .

Immediately from the definition, we have for all interfaces "1 and "2, "1 .

"2 =⇒ "1 |=I2><? "2, where I is the identity map.

Contract
At the top of the contract design hierarchy is the contract object, which is defined
as follows:

21

Definition 3.2.7 (Guarded Modal Interface Contracts). A guarded modal interface
contract C consists of a set of reference variables V and a tuple of the form
A = ((, B0,F, �,→,d), where (, B0,F, � are defined as in the interface automaton
object. → and d are two transition relations called must and may, respectively.
Intuitively, a may transition with guard 6 and action U in the interface contract
specifies that any interface implementing the contract is allowed but not required
to perform U as long as the guard is satisfied. On the other hand, a must transition
in the interface contract specifies a transition that any interface implementing it is
required to include. Clearly, this implies that any must transition is also required to
be a may transition, namely for @ ∈ (, 61, 62 ∈ �V , and U ∈ �, we have

(@
[61 |U]−−−−→ =⇒ @

[62 |U]
99999K) ∧ (61 =⇒ 62). (3.5)

(3.5) says that the existence of a must transition implies the existence of a may
transition with a weaker guard. A modal interface contract C naturally induces
two interface automata "must and "may with only→ andd as transition relations,
respectively, and fixes a set of environments of the contract, denoted by �C . An
environment � ∈ �C is an interface automaton such that � × "may is closed (by
(3.5), � × "must is also closed) and for each reachable state (@� , @") ∈ � × "may

and any (unprefixed) action 0

@�
[6� |!0]−−−−−→ =⇒ @"

[6" |?,#0]−−−−−−−→ ∧(6� =⇒ 6"), (3.6)

@�
[6� |?0]−−−−−−→ =⇒ @"

[6" |!,#0]−−−−−−−→ ∧(6� =⇒ 6"). (3.7)

Here ?, # indicate that U can be either input or internal. Together, these mean that
any time the environment is only willing to emit an output or request an input if
"may can accept it. C also fixes a set of interfaces "C that implement �, such that
" ∈ "C if

"must . " . "may. (3.8)

which is essentially stating that all reachable must transitions must be included in" ,
and" can only usemay transitions of the contract. Below, wewill use as a shorthand
.may(must) as the simulation relationwith respect to themay (must) transitions only in
the contract object. Contract refinement, conjunction, and composition are defined
as follows

Definition 3.2.8 (Modal Refinement). Let C1 and C2 be two guardedmodal interface
contracts. Then C2 refines C1, written C2 � C1 if and only if

"2,may . "1,may, (3.9)

22

"1,must . "2,must. (3.10)

Proposition 3. A more refined contract allows for more environments, namely

C2 � C1 =⇒ �C2 ⊇ �C1 . (3.11)

Proof. Let � ∈ �C1 . By Definitions 3.2.5 and 3.2.8, we have "2,may . "1,may

and for any reachable state (@� , @2) of � × "2,may, there exists a reachable state
(@� , @1) in � ×"1,may such that @2 . @1. So for any outgoing transition of (@� , @2)
in � × "2,may doing an action U, there is a corresponding transition from (@� , @1)
in � × "1,may that also does U. Since � × "1,may is closed, U must be an internal
action. Therefore � × "2,may is also closed. Furthermore,

@�
[6� |!0]−−−−−→

�∈�C1
=⇒ @1

[61 |?,#0]−−−−−−→
(3.9)
=⇒ @2

[62 |?,#0]−−−−−−→

and 6�
�∈�C1
=⇒ 61

(3.9)
=⇒ 62

satisfying (3.6). Similarly, (3.7) also holds, implying � ∈ �C2 . �

Proposition 4. A contract is more refined than another if and only if its implemen-
tations are also the other’s implementations:

C2 � C1 ⇐⇒ "C2 ⊆ "C1 . (3.12)

Proof. (⇒) : Let " ∈ "C2 , by (3.9) we have " . "2,may . "1,may. By (3.10),
we have "1,must . "2,must and therefore "1,must . " . This proves that " has
property (3.8).
(⇐) : First, we have "2,may ∈ "C2 ⊆ "C1 =⇒ "2,may . "1,may. On the
other hand, "2,must ∈ "C2 ⊆ "C1 and hence "1,must . "2,must. This shows that
C2 � C1. �

Propositions (3) and (4) immediately yield

Corollary 1. Modal refinement and metatheoretic refinement are equivalent.

Contract refinement allows us to compare levels of abstractions of contracts; for
instance, a contract that involves details on how to perform local control actions may
refine a contract for a car driving safely into a traffic intersection. The conjunction
of two contracts C1 and C2 is defined as the greatest common lower bound (GCLB)
of C1 and C2, or in other words, the most abstract contract C that refines both C1

and C2.

23

Definition 3.2.9 (Contract Conjunction). Conjunction is defined for two modal in-
terface contracts C1 and C2 if �1 and �2 are equal and have the same decomposition.
Then the pre-conjunction C1∧C2 has states (= (1 × (2, start state B0,12 = B0,1 × B0,2,
and the same alphabet as C1 and C2, with transitions defined by the following rela-
tions, assuming for any subscript 8, if a transition from @8 to @′8 does not exist, then
we add it in with a False guard

(@1, @2)
[61∧62 |U]
9999999K (@′1, @

′
2) ⇔ @1

[61 |U]
99999K @′1 ∧ @2

[62 |U]
99999K @′2, (3.13)

@1
[61 |U]−−−−→ @′1 ∨ @2

[62 |U]−−−−→ @′2 ⇔ (@1, @2)
[61∨62 |U]−−−−−−−→ (@′1, @

′
2). (3.14)

A state (@1, @2) of C1∧C2 is illegal if it is inconsistent, that is, the “must implies
may” condition in (3.5) does not hold. Specifically, if there exists U ∈ � such
that (@1, @2)

[61 |U]−−−−→ ∧(@1, @2)
[62 |U]
99999K but 61 ; 62, then we prune it by deleting

all may transitions leading to (@1, @2); if (@1, @2) is a start state, it will simply get
removed. Repeating this procedure and deleting all non-may reachable states yields
the conjunction C1 ∧ C2 (note that the deletion must terminate because the number
of states is finite).

Proposition 5. C1 ∧ C2 has a start state if and only if C1 and C2 have a common
lower bound.

Proof. (⇒) : We prove C1 ∧ C2 � C1, C2, by showing (3.9) and (3.10). Letting
(@1, @2) be the start state of C1∧C2, we have for 8 ∈ {1, 2} and any (@′1, @

′
2) in C1∧C2

such that (@1, @2)
[6′1∧6

′
2 |U]

9999999K (@′1, @
′
2), we have by (3.13) that @8

[6′
8
|U]

99999K @′
8
and

continuing inductively, we conclude (@1, @2) .may @8. Fixing 8, for any @′′8 , V such

that @8
[6′′
8
|V]

−−−−−→ @′′
8
, by (3.14), (@1, @2)

[6′′1 ∨6
′′
2 |V]−−−−−−−−→ (@′′1 , @

′′
2) in C1∧C2. Since (@1, @2)

is not illegal, so is (@′′1 , @
′′
2), because otherwise, the may transition that performs V

from (@1, @2) to (@′′1 , @
′′
2) would have been deleted during pruning, violating (3.5)

for (@1, @2). This shows that @8 .must (@1, @2).
(⇐) : Suppose C � C1, C2. Instead of showing that the start state of C1 ∧ C2 is
not pruned, we will prove a stronger result, namely that C � C1 ∧ C2. Indeed,
if @ is the start state of C, then by definition, the start state @8 of C8 for 8 = 1, 2

satisfies for U ∈ �, (@
[6′ |U]
99999K @′ ⇒ @8

[6′
8
|U]

99999K @′
8
) ∧ (6′ ⇒ 6′

8
) ∧ (@′ .may @

′
8
).

Thus @
[6′ |U]
99999K @′ ⇒ (@1

[6′1 |U]
99999K @′1 ∧ @2

[6′2 |U]
99999K @′2) with 6

′ ⇒ 6′1 ∧ 6
′
2 and

@′ .may @
′
8
. By (3.9), we have @

[6′ |U]
99999K @′ ⇒ (@1, @2)

[6′1∧6
′
2 |U]

9999999K (@′1, @
′
2) where

24

(@1, @2) and (@′1, @
′
2) are states of C1∧C2. Fixing 8, for any V

@8
[6′′
8
|V]

−−−−−→ @′′8 ⇒ @
[6′′ |V]
−−−−−→ @′′ ∧ (6′′8 ⇒ 6′′) ∧ (@′′8 .must @

′′).

Also by (3.14)
(@1, @2)

[6′′1 ∨6
′′
2 |V]−−−−−−−−→ (@′′1 , @

′′
2).

Since @ is not illegal, there is an U ∈ � such that V = U and also 6′′ ⇒ 6′; then
by determinism @′ = @′′ and @′

8
= @′′

8
. Clearly, 6′′1 ∨ 6

′′
2 ⇒ 6′′ ⇒ 6′ ⇒ 6′1 ∧ 6

′
2

so that the must transition from (@1, @2) to (@′1, @
′
2) doing V is also legal. Finally,

continuing this chain of inductive reasoning, we obtain (3.9) and (3.10) for C and
C1 ∧ C2, proving the claim. �

Proposition 5 and the stronger result shown in the reverse direction of its proof imply
the following.

Proposition 6. Modal conjunction and metatheoretic conjunction are equivalent,
that is, the modal conjunction of two contracts is their GCLB.

Definition 3.2.10 (Contract Composition). Contract composition is denoted by the
operator ⊗. The pre-composition C1⊗C2 of two contracts C1 and C2 is given by

"1⊗2,<DBC = "1,<DBC × "2,<DBC ,

"1⊗2,<0H = "1,<0H × "2,<0H .

A state (@1, @2) of C1⊗C2 is illegal if one automaton attempts to supply an input,
but the other refuses it. Furthermore, state (@1, @2) is illegal if it is impossible for
the guards to match in input/output matching, resulting in the input being rejected.
Define (�)V to be the set of satisfiable predicates overV. For 8 ∈ {1, 2}, assuming
68 is satisfiable, then (@8, @3−8) is illegal if there exists U8 ∈ �8 such that

(@8
[68 |U8]
99999K ∧U8 ∈?�3−8) ; @3−8

[63−8 |U8]−−−−−−→ ∧(68 ∧ 63−8 ∈ (�)V).

Pruning of states is done as in contract conjunction. This new contract is C1 ⊗ C2.
And we have the following result.

Proposition 7. Modal composition is equivalent to metatheoretic contract compo-
sition.

Proof. It suffices to show that, for "1 ∈ "C1 , "2 ∈ "C2 ,

25

1. "1 × "2 ∈ "C1⊗C2 .

2. For all � ∈ �C1⊗C2 , � × "2 ∈ �C1 and � × "1 ∈ �C2 .

3. C1 ⊗ C2 is the least contract with respect to refinement that satisfies these.

First we show that C1 ⊗ C2 satisfies conditions 1 and 2. Let C = C1 ⊗ C2. Then
condition 1 is equivalent to "must . "1 × "2 . "may. Since, for 8 ∈ {1, 2},
"8 ∈ "C8 , "8,must . "8 . "8,may, the desired result immediately follows from
Proposition 2. Next consider some � ∈ �C1⊗C2 , so � × ("1,may × "2,may) is
closed. It follows that (� × "1,may) × "2,may and (� × "2,may) × "1,may are also
closed. By definition, "1 . "1,may and "2 . "2,may, so (� × "1) × "2,may and
(�×"2)×"1,may are closed. It then remains to show that �×"1 and �×"2 satisfy
(3.6) and (3.7) of Definition 3.2.7. First, since � is an environment of C1 ⊗ C2, we
have for any reachable state (@� , @1⊗2) in � × "1⊗2,may

@�
[6� |!U]−−−−−→⇒ @1⊗2

[61⊗2 |?,#U]−−−−−−−−→ ∧(6� ⇒ 61⊗2),

@�
[6� |?U]−−−−−−→⇒ @1⊗2

[61⊗2 |!,#U]−−−−−−−−→ ∧(6� ⇒ 61⊗2).

Note that since "1⊗2,must = "1,must × "2,must, these are equivalent to

@�
[6� |!U]−−−−−→⇒ @1

[61 |∼1U]−−−−−−→ ∧@2
[62 |∼2U]−−−−−−→ ∧(6� ⇒ 61 ∧ 62),

@�
[6� |?U]−−−−−−→⇒ @1

[61 |∼1U]−−−−−−→ ∧@2
[62 |∼2U]−−−−−−→ ∧(6� ⇒ 61 ∧ 62).

where∼1 and∼2 are action types such that their compositionmatches that of C1⊗C2.
The following chart demonstrates possible action types of this transition.

� C1 C2 � × "1,must � × "2,must

! ? ? # #
! # # # #
! # ? # #
! # ! # !
? ! ! # #
? # # # #
? # ! # #
? # ? # ?

26

The proof proceeds as follows. For "1 implementing C1 and "2 implementing C2,
note that for 8 ∈ {1, 2}

@8
[68 |?U]−−−−−→⇒ @"8

[6"8 |?U]−−−−−−→ ∧(68 ⇒ 6"8).

So in �×"1, state (@� , @"1) is reachable if state (@� , @1) is reachable in �×C1,<DBC .
Consider the first row of the chart, where the environment is outputting U. Then
from our result above, we have

@�
[6� |!U]−−−−−→⇒ @"1

[6"1 |?U]−−−−−−−→ ∧@2
[62 |?U]−−−−−→ ∧(6� ⇒ 6"1 ∧ 62),

so the composition of the transitions from @� and @"1 in � × "1 yields

@ (�,"1)
[6�∧6"1 |#U]−−−−−−−−−−→⇒ @2

[62 |?U]−−−−−→ ∧(6� ∧ 6"1 ⇒ 62)

and the equivalent result for � × "2 yields

@ (�,"2)
[6�∧6"2 |!U]−−−−−−−−−−→⇒ @1

[61 |?U]−−−−−→ ∧(6� ∧ 6"2 ⇒ 61).

The latter result is precisely (3.7) with respect to � × "2 and C1. It can be easily
verified in a similar manner that the rest of the combinations yield similar results.
For condition 3, it suffices to show that C1 ⊗ C2 is the greatest lower bound of all
contracts that satisfy conditions 1 and 2. Thus, for any C∗ satisfying 1 and 2, then
C1 ⊗ C2 . C∗. This follows immediately from condition 1 and Proposition 2, since
"1 × "2 ∈ "C∗ yields, as desired

"∗,must . "1 × "2 . "∗,may

⇒ "∗,must . "1,must × "2,must . "1 × "2

. "1,may × "2,may . "∗,may

⇒ "∗,must . "1⊗2,must . "1⊗2,may . "∗,may.

�

So far, we have only defined contract operations for contracts withmatching alphabet
conditions. Alphabet equalization is achieved via the same procedure described in
(Benveniste, Benoît Caillaud, et al., 2015). May self-loops are temporarily added
during the computation of the conjunction andmust self-loops added for composition
both having > as their guards.

27

3.3 An Application in Traffic Control
Wewill apply the developed theory to the contract-based design of the real-time net-
worked control traffic system illustrated in Fig. 3.1. A full simulation of this system
is available in (Phan-Minh, 2018). This system consists of 4 interacting components
whose temporal behaviors are described by the contracts Clights, Cpedestrian, Cvehicle,
and Cscheduler shown in Fig. 3.3. These specify the desired models for pedestrians,
traffic lights, cars, and a scheduler in the intersection. We note that the many contin-
uous variables involved in the timers and execution conditions of these components
would have made producing and deciphering their contracts in the vanilla modal
interface framework significantly more challenging due to the need for numerous
potentially confounding auxiliary states and actions.

The traffic lights, in addition to some timing constraints on the duration of the
“red,” “green,” “yellow” signals, are also required to have an “all red” phase that
lasts for t_c seconds, a period long enough for cars to clear the intersection before
the walk signal with duration t_w is turned on. Pedestrians should only attempt
to cross when they are capable of successfully landing on the other island for the
duration of the walk signal. All (or at least some) vehicles involved are robots that
can be informed by a centralized planner on how to proceed past the intersection
without causing accidents. These directions must be requested by the robots upon
entrance. The traffic lights and the pedestrians form a subsystem Clights ⊗ Cpedestrian
that operates orthogonally to the subsystem Cvehicle⊗Cscheduler defined by the cars and
the scheduler. By orthogonality, the overall system is simply (Clights ⊗ Cpedestrian) ∧
(Cvehicle ⊗ Cscheduler).

To simplify the process of writing the interface contract for the traffic lights, we
specify and compose two separate subcontracts for traffic lights in each direction,
Chorizontal_lights and Cvertical_lights, for the east-west and north-south directions re-
spectively, that is Clights = Chorizontal_lights ⊗ Cvertical_lights. Since Chorizontal_lights and
Cvertical_lights are symmetric with the exception of the start state (the former starts
at node 0 while the latter starts at node 3), we only show the former in Fig. 3.3.
The variables for Chorizontal_lights are h, h’, h_timer, which represent the traffic
lights’ current state, the next state after performing a related action and a special
timer to specify the minimum durations to allow for vehicles to finish clearing the
intersection t_c and for the walk signal t_w. The traffic light states are r for red,
y for yellow, and g for green. The output actions are !r_h and !h_walk which
serve to announce that the current state is red or that the walk sign for lanes in the

28

north-south directions is on. The input signal is ?r_v, denoting a safety check with
the state of the lights in the north-south direction. As can be seen in the automaton,
via the may transition, we also allow the traffic lights to potentially bypass the yellow
phase in transitioning from green to red. The contract Cpedestrian is more simple.
Its variable is t_cross which denotes the minimum time it takes the pedestrian
to cross the street and the input actions are ?h_walk and ?v_walk which, in that
order, denote a crossing action in the north-south and east-west directions of the
pedestrian (both of these actions need to synchronize with a walk signal from the
corresponding traffic lights). Note that both transitions in this contract are optional.
The composition Chorizontal_lights ⊗ Cvertical_lights was computed automatically with
the code in (Phan-Minh, 2018) and shown in Fig. 3.4. Though not included here
to economize space, composing this with Cpedestrian closes all the remaining output
actions in Fig. 3.4.

The scheduler contract automaton has access to a variable len(request_queue),
which is the length of the request queue. In addition, Cscheduler has one input
action, ?request, which denotes a check for whether there is a new request from a
vehicle trying to travel through the intersection. Its output actions are !reject and
!accept denoting whether the scheduler decides to accept or reject the request, and
!primitives denoting the sending of controlling signals to the requesting vehicle.
The internal action is #processing, corresponding to the internal computation of
the controller. Observe that the scheduler must be able to accept requests under any
condition (by the True guard), but can only process the request if the queue length
is greater than 0. Cvehicle has a variable not_done which keeps track of whether
the original request has been carried out to completion. As can be expected, the car
can make a request with !request and receive signals from the scheduler with the
action ?reject, ?accept, and ?primitives. Composing Cscheduler with Cvehicle
yields the third system shown in Fig. 3.3. Observe that this system is also closed.

By Definition 3.2.6, checking that an implementation is a component whose inter-
face satisfies the corresponding contract involves finding action equivalence maps
between the implementation and the interface. To illustrate this process, con-
sider the action of sending and receiving primitive commands of the scheduler
and the vehicle, !primitives and ?primitives. For a reasonable autonomous
traffic intersection, the class of actions that qualify as the action primitives are
those control signals that result in a safe and deadlock-free operation of all ve-
hicles. We propose an implementation based on computing robust controllers or

29

“primitives” that can restrict the vehicles to a waypoint graph structure even in the
presence of stochastic disturbance. In particular, the vehicle dynamics are given
by ¤E = 0 + F1, ¤\ = E

!
tan(X + F2), ¤G = E cos(\), ¤H = E sin(\), with velocity E,

orientation \, positions G and H as state variables; acceleration 0 ∈ [−9.8, 9.8] m
s2

and steering angle X ∈ [−0.9, 0.9] rad
s as controllable inputs; F1 ∈ [−1.1, 1.1] m

s2

and F2 ∈ [−0.065, 0.065] rad
s2 as uncontrollable disturbances; and vehicle length

! = 2.8m.

We use a formal, set-based algorithm (Schürmann and Althoff, 2017a; Schürmann
and Althoff, 2017b; Schürmann, Heß, et al., 2017) to obtain controllers that steer
cars from one node to another on the waypoint graph with each node being a set
of states of the car’s dynamics around a nominal state. The reason a set of states
is used is because of the disturbance present. This low-level controller ensures the
satisfaction of input constraints and provides the occupancy sets of the vehicles, each
of which represents a directed edge in the graph. The set-based controller computes
a reference trajectory, a feedback controller to track this reference trajectory, and
the corresponding reachable set of states. For any states ?, @ of the vehicle, let
X0(?) and X5 (@) denote the initial and final sets around ? and @, respectively. By
construction, the primitive controller steers in a fixed time C1,2 from the initial set
X0(?1) around a nominal waypoint ?1 to a final setX5 (?2) around ?2. Constraining
X5 (?2) ⊆ X0(?2) allows any trajectory in the edge that starts fromX0(?1) and ends
inX5 (?2) to be concatenatedwith any trajectory starting inX0(?2). In this way, long
chains of primitive commands that span multiple (directed) edges can be formed
from unit commands spanning a single edge, which justifies treating the scheduling
problem as a graph routing problem to which we propose Algorithm 1 as a solution.
In Algorithm 1, the schedule(A4@D4BC_@D4D4, C8<4C01;4) function, taking two
variables representing a queue of requests and a scheduling timetable is called
repeatedly to rendezvous with new requests. Each time, it extracts the request from
a certain car in the form of a starting configuration and an ending configuration.
From this information, the scheduling algorithm finds a path in the primitive graph
that connects these configurations and consults with the scheduling timetable to see
if the path is safe and legal. If it is, the scheduler will send the primitives (each one
of a fixed, known time length) to the requesting car; otherwise, to improve efficiency,
it will attempt to find a safe and legal transit node along the path to temporarily send
the car to. If such a node is found, it will send the corresponding primitives. If not,
the request will be rejected. Proof details regarding the correctness of this algorithm
mainly rely on the use of the timetable to avoid conflicts and illegal actions. Under

30

Figure 3.3: Reading from left to right, then top to bottom: Cscheduler, C20A , Cscheduler⊗
C20A , Chorizontal_lights, Cpedestrian.

31

Figure 3.4: Clights = Chorizontal_lights ⊗ Cvertical_lights

this algorithm, !primitives and ?primitives actions therefore correspond to
the 2 send_primitives(·) calls in the pseudocode.

Algorithm 1 The scheduling algorithm
function schedule(A4@D4BC_@D4D4, C8<4C01;4)

?0Cℎ, 20A ← extract_request(A4@D4BC_@D4D4)
if is_safe(?0Cℎ, C8<4C01;4) then

send_primitives(?0Cℎ, 20A, C8<4C01;4)
else if exists_transit_node(?0Cℎ, C8<4C01;4) then

CA0=B8C ← find_transit_path(?0Cℎ, C8<4C01;4)
send_primitives(CA0=B8C, 20A, C8<4C01;4)
A4@D4BC_@D4D4.add_leg(?0Cℎ, 20A, CA0=B8C)

else
A4@D4BC_@D4D4.readd(?0Cℎ, 20A)

32

3.4 Conclusion
In this chapter, we introduce a theory of guarded modal interface contracts that is
compliant with themetatheory. We further demonstrated how this theory can be used
to specify in a compact manner various components involved in a traffic intersection
with variables taking on a continuous range of values. In Chapter 4, we will explore
another contract-based design example with assume-guarantee contracts.

References

Alfaro, Luca de andThomasAHenzinger (2001). “InterfaceAutomata.” In:ESEC/FSE,
pp. 109–120.

Baldwin, Carliss Y. and Kim B. Clark (2006). “Modularity in the design of complex
engineering systems.” In: Complex engineered systems. Springer, pp. 175–205.

Benveniste, Albert, Benoit Caillaud, Dejan Nickovic, Roberto Passerone, Jean-
Baptiste Raclet, et al. (Nov. 2012). Contracts for System Design. Research Report
RR-8147. INRIA, p. 65. url: https://hal.inria.fr/hal-00757488.

Benveniste, Albert, Benoît Caillaud, Dejan Nickovic, Roberto Passerone, Jean-
BaptisteRaclet, et al. (July 2015).Contracts for SystemsDesign:Methodology and
Application cases. Research Report RR-8760. Inria Rennes Bretagne Atlantique
; INRIA, p. 63. url: https://hal.inria.fr/hal-01178469.

Huang, Chun-Che and Andrew Kusiak (1998). “Modularity in design of products
and systems.” In: IEEE Transactions on Systems, Man, and Cybernetics-Part A:
Systems and Humans 28.1, pp. 66–77.

Larsen, Kim Guldstrand (1989). “Modal specifications.” In: International Confer-
ence on Computer Aided Verification. Springer, pp. 232–246.

Lynch, Nancy A. and Mark R. Tuttle (1987). “Hierarchical correctness proofs for
distributed algorithms.” In: Proceedings of the sixth annual ACM Symposium on
Principles of distributed computing. ACM, pp. 137–151.

Phan-Minh, Tung (2018).Traffic Intersection.https://github.com/tungminhphan/
traffic-intersection.

Raclet, Jean-Baptiste, Eric Badouel, Albert Benveniste, Benoit Caillaud, et al.
(2009). “Modal interfaces: unifying interface automata andmodal specifications.”
In: Proceedings of the seventh ACM international conference on Embedded soft-
ware. ACM, pp. 87–96.

– (2011). “A modal interface theory for component-based design.” In: Fundamenta
Informaticae 108.1-2, pp. 119–149.

Schürmann, Bastian and Matthias Althoff (2017a). “Guaranteeing Constraints of
Disturbed Nonlinear Systems Using Set-Based Optimal Control in Generator
Space.” In: Proc. of the 20th IFAC World Congress, pp. 12020–12027.

33

Schürmann, Bastian and Matthias Althoff (2017b). “Optimal Control of Sets of
Solutions to Formally Guarantee Constraints of Disturbed Linear Systems.” In:
Proc. of the American Control Conference, pp. 2522–2529.

Schürmann, Bastian, Daniel Heß, Jan Eilbrecht, Stursberg, et al. (2017). “Ensur-
ing Drivability of Planned Motions Using Formal Methods.” In: Proc. of the
Intelligent Transportation Systems Conference, pp. 1661–1668.

Veanes,Margus, Pieter Hooimeĳer, Benjamin Livshits, et al. (Jan. 2012). “Symbolic
Finite State Transducers: Algorithms and Applications.” In: SIGPLAN Not. 47.1,
pp. 137–150. issn: 0362-1340. doi: 10.1145/2103621.2103674. url: http:
//doi.acm.org/10.1145/2103621.2103674.

34

C h a p t e r 4

DIRECTIVE-RESPONSE ASSUME-GUARANTEE CONTRACTS
FOR AN AUTOMATED VALET PARKING SYSTEM1

4.1 Introduction
Formally guaranteeing safe and reliable behavior for modern cyber-physical systems
has a scalability problem (Benveniste et al., 2018). Managing these highly complex
architectures requires a design process that explicitly defines the dependencies and
interconnections of system components to enable guaranteed safe behavior of the
implemented system (Censi, 2015). Contract-based design reduces the complexity
of the design and verification process by decomposing the system tasks into smaller
tasks for the components to satisfy. From the composition of these components,
overall system properties can be inferred or proved. Contract-based architectures
have been demonstrated for several cyberphysical systems applications (Damm,
Hungar, et al., 2011; Damm, Votintseva, et al., 2005; Nuzzo et al., 2013; Maasoumy,
Nuzzo, and A. Sangiovanni-Vincentelli, 2015). Our goal here is to adapt and extend
this framework to model a directive-response architecture on an automated valet
parking system with the following features:

1. Discrete and continuous decision making components, which have to interact
with one another.

2. Different components have different temporal requirements.

3. A natural hierarchy between the different components in our system that may
be thought of as different layers of abstraction.

4. The system involves both human and non-human agents, the number of which
is allowed to change over time.

One example of industry efforts to commercialize such a system is the automated
valet parking system developed by Bosch in collaboration with Mercedes-Benz,
which has been demonstrated in the Mercedes-Benz Museum parking garage in
Stuttgart, Germany. Bosch and Daimler also later announced in 2020 that they

1The material in this chapter comes from joint work with Josefine B. Graebener and Richard M.
Murray.

35

would set up a commercially operating AVP at the Stuttgart airport (Bosch, 2020a).
Another commercial AVP system is planned to be set up by Bosch in downtown
Detroit as a collaboration with Bedrock and Ford (Bosch, 2020b). Other examples
include efforts by Siemens (Siemens, 2020) and DENSO (Yamazaki et al., n.d.).
Our contributions include the formulation of a formal contract structure for an
automated valet parking system with multiple layers of abstraction with a directive-
response architecture for failure-handling. By implementing this system in Python,
we aim to bridge the gap between the abstract contract metatheory and such non-
trivial engineering applications. In addition, we incorporated error handling into the
contracts and demonstrated the use of this architecture and approach towards writing
specifications in the context of the automated valet parking example. Finally, we
proved that the composed implementation satisfies the composite contract, adding
this example of a large scale control system, involving a dynamic set of agents
that are allowed to fail, to the small and slowly growing list of examples of formal
assume-guarantee contract-based design.

4.2 Theoretical Background
Directive-Response Architecture
In a centralized approach for contingency management, recovery from failures is
achieved by communicating with nearly every module in the system from a central
module, hence increasing the system’s complexity and potentially making it more
error-prone (Wongpiromsarn andMurray, 2008). TheMission Data system (MDS),
developed by JPL as a multi-mission information and control architecture for robotic
exploration spacecraft, was an approach to unify the space system software design
architecture. MDS includes failure handling as an integral part of the design (Dvorak
et al., 2000; Ingham et al., 2005). It is based on the state analysis framework, a
system engineering methodology that relies on a state-based control architecture
and explicit models of the system behavior. Fault detection in MDS is executed
at the level of the modules, which report if they cannot reach the active goal and
possible recovery strategies. Resolving “expected” failures is one of the tasks the
system was designed in advance to be capable of (Dvorak et al., 2000; Rasmussen,
2001). Another architecture based on the state analysis framework is the Canonical
Software Architecture (CSA) used on the autonomous vehicle Alice by the Caltech
team in the DARPA Urban Challenge in 2007. The CSA enables decomposition of
the planning system into a hierarchical framework, respecting the different levels
of abstraction at which the modules are reasoning, and the communication between

36

Figure 4.1: Snapshot from our AVP implementation showing human agents and
vehicles as well as the parking lot topology.

the modules is via a directive-response framework (Burdick et al., 2007). This
framework enables the system to detect and react to unexpected failure scenarios,
whichmight arise from changes in the environment or hardware and software failures
in the system (Wongpiromsarn and Murray, 2008). We are trying to capture the
MDS and CSA approaches by incorporating directive-response techniques into a
contract framework.

Directive-Response Contract Framework
We propose a contract-based design framework incorporating a directive-response
architecture to enable reactivity to failures in the system. System components can be
abstracted as black boxes constrained by assume-guarantee contracts that specify the
behavior of the integrated system. Components communicate with one another by
exchanging directives and responses, potentially acting according to a contingency
plan that specifies how to react to possible failures. The higher module sends a

37

directive, and the lower module chooses its responses according to its status in
achieving the directive’s intended goal. The system components are composed to
satisfy the overall system requirements while interacting with the environment, such
as safety and liveness specifications.

4.3 Mathematical Formulation
Geometry

Definition 4.3.1 (Path). A path is a continuous map ? : [0, 1] → R2. ?(0) is called
the start point of ? and ?(1) is called the end point of ?. For each path ?, let
?ℎ : [0, 1] → (−180, 180] be such that ?ℎ (B) is the heading angle measured in
degrees from the abscissa to ?′(B), the derivative vector of ? with respect to B. For
C ∈ [0, 1], let ?̃(C) denote the element ?(C) × ?ℎ (C) of R3.

We will denote the set of all paths by P and, by abuse of notation, we will also use
? to denote ?([0, 1]), the image of [0, 1] under ?.

Definition 4.3.2 (Curvature feasibility). Given ^ > 0 and a path ?, ^-feasible(?)
is set to True if and only if ? is twice differentiable on [0, 1], and its curvature
|det(?′(B),?′′(B)) |
‖?′(B)‖3 < ^ for B ∈ [0, 1].

Definition 4.3.3 (X-corridor). Let B B {True, False}. If ? ∈ P, and X : P ×
[0, 1] × R3 → B is such that the corresponding subset:

ΓX (?) B
⋃
B∈[0,1]

ΓX (?, B),

where ΓX (?, B) B {(G, H, \) ∈ R3 | X(?, B, (G, H, \)) = True} such that ΓX (?, B) is
open and contains ?̃(B), then we say that ΓX (?) is a X-corridor for ?.

AVP World
Building Blocks

In this section, we will introduce naming symbols for objects that exist in the AVP
world.

Definition 4.3.4 (AVP World). The AVP world consists of the following:

1. A distinguished set of indexing symbols T := {C, C′, C′′, ...} denoting time.

2. A set of typed variablesU to denote actions, states, channels, etc.

38

3. The following set of constants: C, G where

a) C, a set of symbols, is called the customer set.

b) G, a set of symbols, is called the garage set containing the following
constant values:

i. G.3A8E01;4_0A40 ⊆ R3, the set of configurations that vehicles are
allowed to be in;

ii. G.F0;:01;4_0A40 ⊆ R2, the area that pedestrians are allowed to
walk on;

iii. G.4=CAH_2>= 5 86DA0C8>=B ⊆ R3, a set of configurations that the
customers can deposit their car in;

iv. G.A4CDA=_2>= 5 86DA0C8>=B ⊆ R3, a set of configurations that the
car should be returned in;

v. G.?0A:8=6_B?>CB ∈ N, the number of parking spots available in
the parking lot;

vi. G.8=C4A8>A ⊆ R2, the area inside the parking garage.

Directive-Response Message Types

Each channel in the system is associated with a unique message type. The following
are all the message types in our AVP system.

1. A(·), directive types:

a) A(CustomerInterface) B {Park, Retrieve},

b) A(Supervisor) B R6,

c) A(Planner) B P,

d) A(Tracker) B I ⊆ R2, the set of all control inputs.

2. B(·), response types:

a) B(CustomerInterface) B {Failed},

b) B(Supervisor) B {Rejected, Accepted, Returned},

c) B(Planner) = B(Tracker) B {Blocked, Failed, Completed}.

For each type T, we will denote by T̃ the product type T × C which will be used to
associate a message of type T with a specific customer in C. In addition, we will
use Id to denote the set of message IDs.

39

Behavior

For each variable D ∈ U, we denote by type(D) the type of D, namely, the set of
values that it can take. The types of elements of T are taken to be R≥0.

Definition 4.3.5 (Behavior). Let / be an ordered subset of variables in U. A
/-behavior is an element of B(/) B (∏I∈/ type(I))R≥0 . Given f/ ∈ B(/) and
g ∈ T, we will call f/ (g) the valuation of / at time g. If I ∈ / , we will also denote
by I(g) the value of I at time g.

Note that each behavior in / ⊆ U can be “lifted” to a set of behaviors inU by letting
variables that are not contained in / assume all possible values in their domains.
Additionally, the set of behaviors B(/) can be lifted to a set of behaviors in B(U)
in a similar way. To ease notational burden for the reader, we will take the liberty of
not explicitly making any reference to the “lifting” operation when they are in use
unless there is any ambiguity that may result from doing so.

Definition 4.3.6 (Constraint). A constraint : on a set of variables / is a function
that maps each behavior of / to an element of B, the Boolean domain. In other
words, : ∈ BB(/) .

Note that by “lifting”, a constraint on a set of variables / is also a constraint onU.

Definition 4.3.7 (Channel variables). For each component - and another component
. , we can define two types of channel variables:

• -←. , denoting an incoming information flow from . to - ,

• -→. , denoting an outcoming information flow from - to . .

In this work, we assume that -→. is always identical to.←- . Each channel variable
must have a well-defined message type and each message < has an ID denoted by
id(<) ∈ Id. If the message has value E, then we will denote it by [E, id(<)], but we
will often refer to it as [E] whereby we omit the ID part to simplify the presentation.
Intuitively, given a behavior, a channel variable G is a function that maps each time
step to the message the associated channel is broadcasting at that time step.

Definition 4.3.8 (System). A system " consists of a set of each of the following

1. internal variables/constants var"
-
,

40

2. output channel variables var"
.
,

3. input channel variables var"
*
,

4. constraints con" on var"
-
∪ var"

.
∪ var"

*
.

A behavior of a system " is an element of the set of behaviors that correspond to
var"

-
∪ var"

.
∪ var"

*
subject to con" . This is denoted by B(").

Directive-response

Before introducing directive-response systems, for any predicates � and �, we define
the following syntax:

� { � B ∀C :: �(C) ⇒ ∃C′ ≥ C :: �(C′). (“leads to”)

� � � B ∀C :: �(C) ⇒ ∃C′ ≤ C :: �(C′). (“precedes”)

�≥C� B ∀C′ ≥ C :: �(C′). (“always from C”)

starts_at(�, C) B �(C) ∧ ∀C′ < C :: ¬�(C′). (4.1)

If " is a set-valued variable, then we define

persistent(") B ∀C :: ∀< :: < ∈ " (C) ⇒ �≥C (< ∈ "). (4.2)

Definition 4.3.9 (Directive-response system). A directive-response system " is a
system such that for each output (resp., input) channel variable 2ℎ0= there is an
internal variable send2ℎ0= (resp., receive2ℎ0=) whose domain is a collection of sets
of messages that are of the type associated with 2ℎ0=. If 2ℎ0= is an output channel
variable, there is a causality constraint :2ℎ0= ∈ con" defined by

:2ℎ0= B < ∈ send2 � < = 2ℎ0=. (4.3)

That is, a message must be sent before it shows in the channel. Otherwise if 2ℎ0=
is an input channel variable, then

:2ℎ0= B < = 2ℎ0= � < ∈ receive2ℎ0=. (4.4)

Namely, a message cannot be received before it is broadcasted.

41

Definition 4.3.10 (Lossless directive-response system). Alossless directive-response
system is a directive-response system such that if 2ℎ0= is an output channel, then

persistent(send2ℎ0=) ∧ (< ∈ send2ℎ0= { < = 2ℎ0=), (4.5)

and if 2ℎ0= is an input channel

persistent(receive2ℎ0=) ∧ (< = 2ℎ0= { < ∈ receive2ℎ0=). (4.6)

Definition 4.3.11 (Assume-guarantee contracts for directive-response systems). An
assume-guarantee contract C for a directive-response system " consists of a pair
of behaviors �, � of " and denoted by C = (�, �). An environment for C is any
set of all behaviors that are contained in � while an implementation of C is any set
of behaviors that is contained in � ⇒ �. C is said to be saturated if the guarantee
part satisfies � = (¬� ∨ �) = (�⇒ �).

Note that any contract can be converted to the saturated form without changing its
sets of environments and implementations. The saturated form is useful in making
contract algebra less cumbersome in general. If " is a system, then we say "
satisfies C if B(") ⊆ (� ⇒ �). Furthermore, the system composition "1 × "2

of "1 and "2 is a system whose behavior is equal to B("1) ∩ B("2).

Definition 4.3.12 (Customer). A customer is an element of C. Corresponding to
each 2 ∈ C is a set of U variables var(2) that include 2.G, 2.H (the coordinates of
the customer him/herself), 2.20A.G, 2.20A.H, 2.20A.\ (the coordinates and heading
of the customer’s car), 2.20A.ℎ40;CℎH, whether the car is healthy, 2.2>=CA>;B.E,
2.2>=CA>;B.i (the velocity and steering inputs to the vehicle), 2.20A.ℓ (the length of
the car), 2.20A.C>F43 (whether the car is being towed). We will use the shorthand
2.20A.BC0C4 to mean the 3-tuple (2.20A.G, 2.20A.H, 2.20A.\).

For each behavior in B(U), we require each 2 ∈ C for which 2.20A.C>F43 is False
to satisfy the following constraints that describe the Dubins car model:

3 (2.20A.G)
3C

(C) = 2.2>=CA>;B.E(C) cos(2.20A.\ (C))
3 (2.20A.H)

3C
(C) = 2.2>=CA>;B.E(C) sin(2.20A.\ (C))

3 (2.20A.\)
3C

(C) = 2.2>=CA>;B.E(C)
2.20A.ℓ

tan(2.2>=CA>;B.i(C)).

(4.7)

42

Table 4.1: CustomerInterface directive-response system.

Internal variables/constants var-
C The set of all customers in the AVP world.
Outputs var.
CustomerInterface→Supervisor An output channel of type Ã(CustomerInterface).
Inputs var*
CustomerInterface←Supervisor An input channel of type B̃(Supervisor).
CustomerInterface←Tracker An input channel of type Ã(Tracker).
Constraints con"
Vehicle dynamics See (4.7)
Car and pedestrian limits (4.8) and (4.9).

AVP System
By treating the CustomerInterface as an external component, the AVP system con-
sists of three internal components: Supervisor, Planner , and Tracker. These
systems are described below.

CustomerInterface

The environment in which the system shall operate consists of the customers and
the pedestrians which we will call a CustomerInterface. A customer drops off the
car at the drop-off location and is assumed to make a request for the parked car back
from the garage eventually. The pedestrians are also controlled by the environment.
When a pedestrian was generated by the environment, they start walking on the
crosswalks. Pedestrians are confined to the pedestrian path, meaning they will not
leave the crosswalk and walkway areas and their dynamics are continuous, meaning
no sudden jumps. The cars move according to their specified dynamics. This
includes a breaking distance depending on their velocity and maximum allowed
curvature. For a formal description, refer to Table 4.1. Below are some constraints
we impose on this module.

∀2 ∈ C :: �(Emin ≤ 2.2>=CA>;B.E ∧ 2.2>=CA>;B.E ≤ Emax

∧imin ≤ 2.2>=CA>;B.i ∧ 2.2>=CA>;B.i ≤ imax)
(4.8)

∀2 ∈ C :: ∀B.
(3 (2.G)

3C
(B), 3 (2.H)

3C
(B)

) ≤ E?43,max. (4.9)

Supervisor

A Supervisor component is responsible for the high level decision making in the
process. It receives the CustomerInterface: requests and processes them by sending

43

Table 4.2: Supervisor directive-response system.

Internal variables/constants var-
G.∗ All G objects.
=D<_02C8E4_2DBC><4AB The number of cars currently being served in the

parking lot.
Outputs var.
Supervisor→CustomerInterface An output channel of type B̃(Supervisor).
Supervisor→Planner An output channel of type Ã(Supervisor).
Inputs var*
Supervisor←CustomerInterface An input channel of type Ã(CustomerInterface).
Supervisor←Planner An input channel of type B̃(Planner).
Constraints con"
Parking lot topology Any specific geometric constraints on G.∗.
Number of active customers =D<_02C8E4_2DBC><4AB must be equal to the num-

ber of cars that have been accepted but not yet left
the parking lot.

Table 4.3: Planner directive-response system.

Interval variables/constants var-
G.∗ All G objects.
{2.20A.G, 2.20A.H, 2.20A.\ | 2 ∈ C} The configurations of all cars in AVP world.
^ Maximum allowable curvature.
Outputs var.
Planner→Supervisor An output channel of type B̃(Planner).
Planner→Tracker An output channel of type Ã(Planner).
Inputs var*
Planner←Supervisor An input channel of type Ã(Supervisor).
Planner←Tracker An input channel of type B̃(Tracker).
Constraints con"
Parking lot topology Any specific geometric constraints on G.∗.
^ Maximum allowable curvature given car dynamics

and input constraints.

the appropriate directives to the Planner to fulfill a task. A Supervisor determines
whether a car can be accepted into the garage or rejected. It also receives responses
from the Planner. A Supervisor is to be aware of the reachability, the vacancy, and
occupied spaces in the lot, as well as the parking lot layout. Formally, a Supervisor
is a lossless directive-response system described by Table 4.2.

Planner

A Planner system receives directives from the Supervisor to make a car reach a
specific location in the parking lot. A Planner system may have access to a planning
graph determined from the parking lot layout, and thus can generate executable
trajectories for the cars to follow. The Planner is aware of the locations of the agents
and the obstacles in the parking lot from the camera system. A Planner is a lossless
directive-response system described by Table 4.3.

44

Table 4.4: Tracker directive-response system.

Interval variables/constants var-
X Corridor map.
Ymin,20A Minimum safety distance to other cars.
Ymin, ?4>?;4 Minimum safety distance to pedestrians.
Outputs var.
Tracker→Planner An output channel of type B̃(Tracker).
Tracker→CustomerInterface An output channel of type Ã(Tracker).
Inputs var*
Tracker←Planner An input channel of type Ã(Planner).
Constraints con"
Corridor constraints In our implementation, we define the X-corridor for

any path ? to be the open set containing points whose
distance to the closest point in ? does not exceed 3
meters.

Ymin,20A , Ymin, ?4>?;4 These values are determined based on the dynamics
and the uncertainty Δ�0A .

l

Figure 4.2: Contracts between the components of the AVP system.

Tracker

A Tracker system is responsible for the safe control of cars that are accepted into
the garage by a Supervisor. It receives directives from a Planner consisting of
executable paths to track and send responses based on the task status to a Planner.
See Table 4.4.

4.4 AVP Contracts
In this section we will define the contracts for each of the modules in our system.
These contracts are the guidelines for the implementation, and will be used to verify
each of the components, as well as the composed system. In Figure 4.2, the green
arrows represent directive-response assume-guarantee contracts, solid black arrows
represent communication, and dashed black arrows represent passive information
flow (observing movement of the agents). The Δ in the car component represents
the possibility of failure and uncertainty.

45

Contract 1 (CCustomerInterface). The following is the contract for the CustomerInter-
face.

• Assumes

– If theCustomerInterface sends a request to the Supervisor, then theywill receive
a response from the Supervisor:

∀2 ∈ C :: ([<, 2] ∈ sendCustomerInterface→Supervisor {

∃A ∈ B(Supervisor) :: [A, 2] ∈ receiveCustomerInterface←Supervisor).
(4.10)

– If the car is healthy and accepted by the garage, it will be returned after being
summoned:

∀2 ∈ C :: (�≥0(2.20A.ℎ40;CℎH)

∧([Accepted, 2] ∈ receiveCustomerInterface←Supervisor∧

[Retrieve, 2] ∈ sendCustomerInterface→Supervisor) {

[Returned, 2] ∈ receiveCustomerInterface←Supervisor).

(4.11)

• Guarantees

– When the request is accepted, the CustomerInterface should not tamper with
the car controls until the car is returned (i.e., control signals should match the
directive) :

∀2 ∈ C :: ∀C :: ∀(E, i) ∈ I ::

([Accepted, 2] ∈ receiveCustomerInterface←Supervisor (C)

∧¬([Returned, 2] ∈ receiveCustomerInterface←Supervisor (C)) ⇒

([(E, i), 2] ∈ receiveCustomerInterface←Tracker (C)

∧∀C ′ < C :: [(E, i), 2] ∉ receiveCustomerInterface←Tracker (C
′) ⇒

2.2>=CA>;B.E(C) = E ∧ 2.2>=CA>;B.i(C) = i)).

(4.12)

– When the CustomerInterface is not receiving any new input signal, then it
keeps the control inputs at zero:

∀2 ∈ C :: ∀C ::

([Accepted, 2] ∈ receiveCustomerInterface←Supervisor (C)

∧¬([Returned, 2] ∈ receiveCustomerInterface←Supervisor (C)) ⇒

(∀(E, i) ∈ I :: [(E, i), 2] ∈ receiveCustomerInterface←Tracker (C)

⇒ ∃C ′ < C :: [(E, i), 2] ∈ receiveCustomerInterface←Tracker (C
′)) ⇒

2.2>=CA>;B.E(C) = 0 ∧ 2.2>=CA>;B.i(C) = 0))).

(4.13)

46

– From sending a request until receiving a response, the car must stay in the
deposit area:

∀2 ∈ C :: �≥0([Park, 2] ∈ sendCustomerInterface→Supervisor

∧[Accepted, 2] ∉ receiveCustomerInterface←Supervisor

∧[Rejected, 2] ∉ receiveCustomerInterface←Supervisor

⇒ 2.20A.BC0C4 ∈ G.4=CAH_2>= 5 86DA0C8>=B).

(4.14)

– After the car is deposited, the customer will eventually summon it:

∀2 ∈ C :: [Accepted, 2] ∈ receiveCustomerInterface←Supervisor {

[Retrieve, 2] ∈ sendCustomerInterface←Supervisor .
(4.15)

– Pedestrians will only walk on “walkable” area:

∀2 ∈ C :: �≥0((2.G, 2.H) ∈ G.F0;:01;4_0A40). (4.16)

– Pedestrians will not stay on crosswalks forever:

∀2 ∈ C :: ((2.G, 2.H) ∈ G.F0;:01;4_0A40 ∩G.3A8E01;4_0A40

{ (2.G, 2.H) ∉ G.F0;:01;4_0A40 ∩G.3A8E01;4_0A40).
(4.17)

– If the car is not healthy and not towed, it cannot move:

∀2 ∈ C :: �≥0(¬2.20A.ℎ40;CℎH ∧ ¬2.20A.C>F43 ⇒

2.2>=CA>;B.E = 0 ∧ 2.2>=CA>;B.i = 0).
(4.18)

– Sending aRetrievemessagemust always be preceded by receiving anAccepted
message from the Supervisor:

∀2 ∈ C :: [Accepted, 2] ∈ receiveCustomerInterface←Supervisor

� [Retrieve, 2] ∈ sendCustomerInterface→Supervisor .
(4.19)

– If a customer receives Rejected or Returned from the Supervisor, then they
must leave the lot forever:

∀2 ∈ C :: ∀C :: [Rejected, 2] ∈ receiveCustomerInterface←Supervisor (C)

∨[Returned, 2] ∈ receiveCustomerInterface←Supervisor (C) ⇒

∃C ′ > C :: �≥C′ ((2.20A.G, 2.20A.H) ∉ G.8=C4A8>A).

(4.20)

Contract 2 (CSupervisor). The contract for the Supervisor is as follows.

• Assumes

47

– Towing eventually happens after the Supervisor is alerted of car failure:

∀2 ∈ C :: ∀C :: [Failed, 2] ∈ receiveSupervisor←Planner (C) ⇒

∃C ′ :: �≥C′ (2.20A.C>F43 ∧ (2.20A.G, 2.20A.H) ∉ G.8=C4A8>A).
(4.21)

– If a car fails, then the Planner reports Failed:

∀2 ∈ C :: ¬2.20A.ℎ40;CℎH { [Failed, 2] ∈ receiveSupervisor←Planner . (4.22)

– Cars making requests are deposited correctly by the customer:

∀2 ∈ C :: �≥0([Park, 2] ∈ receiveSupervisor←CustomerInterface

∧([Accepted, 2] ∉ sendSupervisor→CustomerInterface

∨[Rejected, 2] ∉ sendSupervisor→CustomerInterface)

⇒ 2.20A.BC0C4 ∈ G.4=CAH_2>= 5 86DA0C8>=B).

(4.23)

– If a car is healthy and summoned, then it will eventually appear at the return
area and the Planner will send a Completed signal to the Supervisor:

∀2 ∈ C :: (�≥02.20A.ℎ40;CℎH ∧ [Retrieve, 2] ∈ receiveSupervisor←Planner

{ ([Completed, 2] ∈ receiveSupervisor←Planner∧

2.20A.BC0C4 ∈ G.A4CDA=_2>= 5 86DA0C8>=B)).
(4.24)

• Guarantees

– All requests from customers will be replied:

∀2 ∈ C :: ([<, 2] ∈ receiveSupervisor←CustomerInterface {

∃A ∈ B(Supervisor) :: [A, 2] ∈ sendSupervisor→CustomerInterface).
(4.25)

– The Supervisor cannot send a Returned message to the CustomerInterface
unless it has received a Completedmessage from the Planner and the car is in
the return area:

∀2 ∈ C :: [Completed, 2] ∈ receiveSupervisor←Planner

∧2.20A.BC0C4 ∈ G.A4CDA=_2>= 5 86DA0C8>=B �

[Returned, 2] ∈ sendSupervisor→CustomerInterface .

(4.26)

– If a car is healthy and a Retrieve message is received, then the last thing sent
to the Planner should be a directive to the return area (the second configuration

48

should be one of the return configurations).

∀2 ∈ C :: (�≥02.20A.ℎ40;CℎH ⇒ [Retrieve, 2] ∈ receiveSupervisor←Planner∧

∃?0, ?1 ∈ R3 :: [(?0, ?1), 2] ∈ sendSupervisor→Planner ∧ ∀?
′
0, ?
′
1 ∈ R

3 ::

[(?′0, ?
′
1), 2] ∈ sendSupervisor→Planner � [(?0, ?1), 2] ∈ sendSupervisor→Planner

⇒ ?1 ∈ G.A4CDA=_2>= 5 86DA0C8>=B.
(4.27)

– If the car is healthy and if it is ever summoned, then the Supervisor will send a
Returned message to its owner:

∀2 ∈ C :: (�≥02.20A.ℎ40;CℎH ⇒

[Retrieve, 2] ∈ receiveSupervisor←CustomerInterface {

[Returned, 2] ∈ sendSupervisor→CustomerInterface).

(4.28)

– If there is a not-yet-responded-to Park request and the parking lot capacity is
not yet reached, then the Supervisor should accept the request:

∀2 ∈ C :: ∀C :: ∃[Park, 2] ∈ receiveSupervisor←CustomerInterface (C)

∧∀C ′ ≤ C :: [Rejected, 2] ∉ sendSupervisor→CustomerInterface (C
′)

∧[Accepted, 2] ∉ sendSupervisor→CustomerInterface (C
′)

∧=D<_02C8E4_2DBC><4AB(C) < G.?0A:8=6_B?>CB

⇒ ∃C ′′ > C :: [Accepted, 2] ∈ sendSupervisor→CustomerInterface (C
′′).

(4.29)

– For every Accepted to or Retrieve from the CustomerInterface or Blocked
from the Planner, the Supervisor sends a pair of configurations to the Planner,
the first of which is the current configuration of the car and such that there exists
a path of allowable curvature :

∀2 ∈ C :: [Accepted, 2] ∈ sendSupervisor→CustomerInterface

∨[Retrieve, 2] ∈ receiveSupervisor←CustomerInterface

∨[Blocked, 2] ∈ receiveSupervisor←Planner {

∃:0, :1 ∈ R3 :: [(:0, :1), 2] = Supervisor→Planner

∧:0 = 2.20A.BC0C4 ∧ ∃? ∈ P :: ^-feasible(?)

∧?̃(0) = :0 ∧ ?̃(1) = :1.

(4.30)

Contract 3 (CPlanner). The contract for the Planner is as follows:

• Assumes

49

– When the Tracker completes its task according to the corridor map X, it should
send a report to the Planner:

∀2 ∈ C :: ∃? ∈ P :: ∀?′ ∈ P ::

[?′, 2] ∈ sendPlanner→Tracker � [?, 2] ∈ sendPlanner→Tracker∧

2.20A.BC0C4 ∈ ΓX (?, 1) { [Completed, 2] ∈ receivePlanner←Tracker .

(4.31)

– If the Tracker sees a failure, it should report to the Planner:

∀2 ∈ C :: ¬2.20A.ℎ40;CℎH { [Failed, 2] ∈ receivePlanner←Tracker . (4.32)

• Guarantees

– When receiving a pair of configurations from the Supervisor, thePlanner should
send a path to the Tracker such that the starting and ending configurations of the
path match the received configurations, or if this is not possible, send Blocked
to the Supervisor:

∀2 ∈ C :: ∃(?0, ?1) ∈ R6 :: [(?0, ?1), 2] ∈ receivePlanner←Supervisor

{ (∃? ∈ P :: ?̃(0) = ?0 ∧ ?̃(1) = ?1 ∧ [?, 2] ∈ sendPlanner→Tracker

∨[Blocked, 2] ∈ sendPlanner→Supervisor).

(4.33)

– Only send safe paths with ^-feasible curvature:

∀2 ∈ C :: ∃? ∈ P :: [?, 2] ∈ sendPlanner→Tracker ⇒

^-feasible(?) ∧ ΓX (?) ⊆ G.3A8E01;4_0A40.
(4.34)

– If receiving a task status update from the Tracker, eventually forward it to the
Supervisor:

∀2 ∈ C :: [<, 2] ∈ receivePlanner←Tracker

∧< ∈ {Failed, Completed} {

[<, 2] ∈ sendPlanner→Supervisor .

(4.35)

– If the Planner receives a Blocked signal from the Tracker, it attempts to fix it,
otherwise forwards it to the Supervisor:

∀2 ∈ C :: ∀C :: [Blocked, 2] ∈ receivePlanner←Tracker (C) ⇒

∃Y ∈ R≥0 :: (∃? ∈ P :: [?, 2] ∈ sendPlanner→Tracker (C + Y)∧

∀C ′ < C + Y :: [?, 2] ∉ sendPlanner→Tracker (C ′)

∨[Blocked, 2] ∈ sendPlanner→Supervisor (C + Y)).

(4.36)

Contract 4 (CTracker). The contract for the tracking component is as follows:

50

• Assumes

– Any path command from the Planner is always ^-feasible, the corresponding
corridor is drivable, and the car configuration upon receiving the command is
in the initial portion of the corridor:

∀2 ∈ C :: ∀? ∈ P :: ∀C :: starts_at([?, 2] ∈ receiveTracker←Planner , C)∧

^-feasible(?) ∧ 2.20A.BC0C4(C) ∈ ΓX (?, 0) ∧ ΓX (?) ⊆ G.3A8E01;4_0A40.
(4.37)

– Commands are not modified by the CustomerInterface:

See (4.12) and (4.13). (4.38)

• Guarantees

– Make sure car stays in the latest sent ?’s corridor ΓX (?):

∀2 ∈ C :: ∀C :: ∃? ∈ P :: ∀?′ ∈ P ::

(([?, 2] ∈ receiveTracker←Planner (C) ∧ [?′, 2] ∈ receiveTracker←Planner (C)) ⇒

([?′, 2] ∈ receiveTracker←Planner � [?, 2] ∈ receiveTracker←Planner)) ⇒

2.20A.BC0C4(C) ∈ ΓX (?).
(4.39)

– Tracking command inputs are compatible with cars:

∀2 ∈ C :: �≥0([(E, i), 2] ∈ sendTracker→CustomerInterface ⇒

Emin ≤ E ∧ E ≤ Emax ∧ imin ≤ i ∧ i ≤ imax).
(4.40)

– Never drive into a dynamic obstacle (customer or car):

∀21, 22 ∈ C :: �≥0((21 ≠ 22 ⇒

‖(21.20A.G, 21.20A.H) − (22.20A.G, 22.20A.H)‖ ≥ Ymin,20A)∧

‖(21.20A.G, 21.20A.H) − (22.G, 22.H)‖ ≥ Ymin, ?4>?;4)).

(4.41)

– If a car fails, it must report to the Planner:

∀2 ∈ C :: ¬2.20A.ℎ40;CℎH { [Failed, 2] ∈ sendTracker←Planner . (4.42)

– If a car is healthy, then it must “track” the last sent path from the Planner:

∀2 ∈ C :: �≥02.20A.ℎ40;CℎH ∧ ∃? ∈ P :: ∀?′ ∈ P ::

[?′, 2] ∈ receiveTracker←Planner � [?, 2] ∈ receiveTracker←Planner

⇒ ∃C :: 2.20A.BC0C4(C) ∈ ΓX (?, 1).

(4.43)

51

Figure 4.3: Implementation of the Planner component.

– When the Tracker completes its task according to a corridor map X, it should
send a report to the Planner module:

See (4.31). (4.44)

– If a car is blocked (i.e., there is a failed car in its current corridor), then the
Tracker must report Blocked to the Planner:

∀2 ∈ C :: ∀C :: ∃? ∈ P :: ([?, 2]receiveTracker←Planner (C) ::

∀?′ ∈ P :: [?′, 2] ∈ receiveTracker←Planner (C ′)

⇒ [?′, 2] ∈ receiveTracker←Planner � [?, 2] ∈ receiveTracker←Planner) ⇒

(∃2′ ∈ C :: 2′ ≠ 2 ∧ ¬2′.20A.ℎ40;CℎH ∧ 2′.20A.BC0C4(C) ∈ ΓX (?)

{ [Blocked, 2] ∈ sendTracker→Planner).

(4.45)

4.5 System Design
Simulation Environment and Implementation
The proposed design framework was demonstrated via simulation of an automated
valet parking (AVP) system (Graebener, 2020). It consists of the layout of a parking
lot (Fig. 4.1), aswell asmultiple cars that arrive at the drop off location of the parking
lot and are parked in one of the vacant spots by the AVP system. Once the customer
requests their car, it is returned to the pick-up location. The asynchronicity is
captured by modeling each component as a concurrent process using Python async
library Trio (Smith, 2017). The communication between the layers is implemented
using Trio’s memory_channel. In particular, each channel is a first-in-first-out
queue which ensures losslessness. The architecture is described in Figure 4.2. In
this setup, the cars may experience failures and report them to the Tracker module.
The failures considered in this demonstration are a blocked path, a blocked parking
spot, and a total engine failure resulting in immobilization. The benefit of the
directive-response architecture becomes apparent when failures are introduced into

52

the system. Upon experiencing a failure, a component that is higher in the hierarchy
will be alerted through the response it receives. If possible, the failure will be
resolved, e.g., through the re-planning of the path or assigning a different spot.
Every layer has access to its contingency plan, consisting of several predetermined
actions according to the possible failure scenarios and corresponding responses it
receives. In some cases (e.g., complete blockage of a car), when no action can
resolve the issue, the cars have to wait until the obstruction is removed. We assume
that only broken cars can be towed, and when a car breaks down, it will take a
specified amount of time until it is towed.

CustomerInterface Modeling
In our simulation, customers are responsible for driving their cars into the parking
garage and depositing them at the drop-off area with an admissible configuration
before sending a Park directive to the Supervisor and stay there until they get a
response. This is satisfied as long as the customer drops off their vehicle behind
the green line such that the heading of the vehicle is within the angle bounds U and
U as shown in Figure 4.4 with the projection F of the vehicle onto the green edge
of the blown-up entrance box shown in Figure 4.5. Therefore, CustomerInterface
satisfies �(4.14). If the Park directive is Rejected by the Supervisor, the customer
is assumed to be able to leave the garage safely (satisfying �(4.20)). If the car
is Accepted, then the customer will leave the control of the car to the Tracker
(satisfying �(4.12) and �(4.13)). The customer is assumed to always eventually send
a Retrieve directive to the Supervisor, after their car is Accepted (satisfying
�(4.15) and �(4.19)). Once the vehicle is Returned, the customer is assumed to
be able to pick it up and drive safely away. All pedestrians in the parking lot
are customers, and they are constrained to only walk on the walkable area and
never stay on a crosswalk forever (thus satisfying �(4.16) and �(4.17)). When a car
fails, it becomes immobilized until it is towed (�(4.18)). From this, it follows that
CustomerInterface satisfies CCustomerInterface.

Supervisor Implementation
At any time, the Supervisor knows the total number of cars that have been accepted
into the garage, which is represented by the variable =D<_02C8E4_2DBC><4AB, and
is designed to accept new cars when this number is strictly less than the total number
of parking spots G.?0A:8=6_B?>CB. This implies that �(4.29) is satisfied. Overall,
this ensures that all directives will get a response, yielding �(4.25). Whenever the

53

Supervisor receives a Completed signal, it will check if the car is in the return area.
If it is, then the Supervisor will send a Returned signal to the CustomerInterface
in compliance with �(4.26). If the Supervisor ever accepts a new car, or receives
a Blocked signal from the Planner, or a Retrieve request, it will send a start
configuration compatible with the car’s current state as well as an end configuration
to one of the parking spaces in the former case and to a place in the return area in
the latter. This guarantees �(4.30).

Proposition 7. "Supervisor satisfies CSupervisor.

Proof. Let " denote our implementation of the Supervisor and f ∈ " . We want
to show that

f ∈
4.24∧
8=4.21

�(8) ⇒ f ∈
4.30∧
8=4.25

� (8) .

From the description of the Supervisor implementation, we conclude that f ∈
�(4.25) ∧ �(4.26) ∧ �(4.27) ∧ �(4.29) ∧ �(4.30). Since f ∈ �(4.24) and because in our
implementation whenever the Supervisor receives a Completed signal it will alert
the customer of the corresponding status, our implementation satisfies �(4.28). �

Planner Implementation
The Planner computes paths that cover the parking spots, as well as the entry and
exit areas of the parking garage, which are ^-feasible for a car that satisfies (4.7)
such that the corresponding X-corridor is on G.3A8E01;4_0A40. Given a maximum
allowable curvature, a grid discretization scheme is based on a planning grid whose
size is computed to provide full lot coverage and satisfy the curvature bounds, as
depicted in Figure 4.3. For every specified grid size, the algorithm will check if the
planning graph is appropriate by determining how well the parking lot is covered.
Only a grid size that provides full coverage of the lot is chosen for path planning.
The dynamical system specified in (4.7) is differentially flat (Fliess et al., 1995). In
particular, it is possible to compute all states and inputs to the system, given the
outputs G, H, and their (in this case, up to second order) derivatives. Specifically, the
steering input is given by

i(C) = arctan(ℓ^(C)), (4.46)

where ^(C) is the curvature of the path traced by the midpoint of the rear axle at time
C given by

^(C) = ¥H(C) ¤G(C) − ¥G(C) ¤H(C)(
¤G2(C) + ¤H2(C)

) 3
2
. (4.47)

54

The task of tracking a given path can be shown to depend only on how i(C) is
constrained. For practical purposes, let us assume |i(C) | ≤ � for some � > 0. Then
by Equation (4.46), tracking feasibility depends on whether the maximum curvature
of that path exceeds tan(�)

ℓ
. For our implementation, this is assumed to be 0.2 <−1.

This problem has been studied in (Cowlagi and Tsiotras, 2011) in the context of
rectangular cell planning. We apply the algorithm described therein for a Type 1
path (CBTA-S1) to a rectangular cell while constraining the exit configuration to a
heading difference of ±5◦ and a deviation of ±0.5 < from the nominal path. The
setup and the resulting initial configuration, for which traversal is guaranteed, are
shown in Figure 4.4 and Figure 4.5. The initial car configuration can be anywhere on
the grid segment entry edge, as long as it is between the lower bound U and the upper
bound U. By passing through this initial funnel segment, the car will transition itself
onto the planning grid. Therefore, it remains to be verified that each path generated
from the grid is guaranteed to have a maximum curvature that is smaller than ^. An
example path and its curvature are provided in Figure 4.5. Combining the parking
lot coverage, initial grid segment traversability, and the curvature analysis, a grid
size is determined to be 3.0 < for the path planner, according to Figure 4.3. The
synthesized grid size and path smoothing technique used in our Planner guarantee
that all trajectories generatedmeet this maximum curvature requirement. In addition
to satisfying �(4.35), any execution of the Planner also satisfies �(4.33) and �(4.34)

because either the Planner can generate a feasible path or it will send a Blocked
signal to the Supervisor. When the Planner receives a Blocked signal from the
Tracker, it will either attempt to find a different path on the planning graph or report
this to the Supervisor. This satisfies �(4.36).

Tracker Implementation
The Tracker receives directives from the Planner consisting of trackable paths and
sends responses according to the task status to the Planner. The Tracker sees all
agents in G.8=C4A8>A and guarantees no collisions by sending a brake signal when
necessary to ensure a minimum safe distance is maintained at all times. The tracking
algorithm that we use is an off-the-shelf MPC algorithm from (Sakai et al., 2018).

To ensure that the vehicles stay in the X-corridors, given knowledge of the vehicle’s
dynamics, we can synthesize motion primitives that are robust to a certain distur-
bance set Δ�0A (see Figure 4.2). Algorithms for achieving this have been proposed
and implemented, for example, in (Schürmann and Althoff, 2017) for nonlinear,
continuous-time systems and for affine, discrete-time systems in (Filippidis et al.,

55

Figure 4.4: Possible initial car configuration along the entrance region (green)
corresponding to a grid square as defined in Fig. 4.5.

Figure 4.5: Example path through the parking lot and corresponding curvature and
initial grid segment layout.

56

2016).

By �(4.37), any new path command [?, 2] sent down from the Planner module is
assumed to be ^-feasible and have a drivable X-corridor, the initial portion of which
contains 2.20A at that time. In our implementation, we ensure that every time this
happens, 2.20A is stationary. And under this condition, we were able to confirm
by testing that a car controlled by the MPC algorithm can track the corresponding
X-corridors of a diverse enough set of paths, thus satisfying �(4.39) and �(4.43).
The MPC algorithm is configured to output properly bounded control inputs, thus
satisfying �(4.40). In addition, our implementation satisfies �(4.42), �(4.44), and
�(4.45) by construction. And finally, we can guarantee �(4.41) by Property 4.48.

Correctness of the Composed System
As a final verification step, we will be taking the composition of the system contracts
and showing that our overall system implementation satisfies this composition. This
will imply that the composition is consistent.

Given two saturated contracts C1 and C2, their composition C1 ⊗ C2 = (�, �) given
by (Benveniste et al., 2018):

� = �1 ∧ �2 and � =
∨
�′∈A

�′,

where

A =

�′ ∧ �2 ⇒ �1

�′ and

�′ ∧ �1 ⇒ �2.

A nice property of the composed contract is that if "1 satisfies C1 and "2 satisfies
C2, then "1 × "2 satisfies C1 ⊗ C2. Using the fact that the composition operator ⊗
is associative and commutative, a straightforward calculation yields the following
more explicit form for the composition of # saturated contracts (�8, �8)#8=1.

� =

#∧
8=1
�8 and � =

#∧
8=1

�8 ∨ ¬
(#∧
8=1
�8

)
If � ≠ ∅, then the composed contract is compatible. The contract is consistent if
there exists an implementation for it, namely � ≠ ∅ if it is saturated. For our AVP
system, we will show that our composed implementation also satisfies the composed
contract in a non-vacuous way, meaning it satisfies all guarantees of the component
contracts simultaneously. In the composition, an acceptable behavior satisfies the
following properties:

57

1. If rejected, then by �(4.20), the car will have to leave the parking garage.

2. For any customer, if their car never fails, they can by �(4.14) send a Park
request to the Supervisor while the car is at the deposit area, thus satisfying
�(4.23) while waiting for a response from the Supervisor, which is guaranteed
by �(4.25) and satisfies �(4.10). One of the following can happen:

a) Accepted, no contingency: which is guaranteed to happen by�(4.28) if the
parking lot capacity has not been reached. Then the CustomerInterface
has to leave the control of the car to the Tracker by �(4.12) and �(4.13),
thus satisfying �(4.38). After this, the Supervisor must send a directive
in the form of a pair of configurations to the Planner �(4.30), which in
turn must send to the Tracker a safe and feasible path (satisfying �(4.37))
such that the starting and ending configurations of the path match the
received configurations (�(4.33), �(4.34)). Upon receiving the path from
the Planner, the Tracker ensures that the car stays in the corridor of
the path �(4.39) and ensures that it will make progress on that path (this
satisfies�(4.43)). It will accomplish this while sending compatible inputs
to the customer’s car �(4.40) and not driving it into people and other
cars �(4.41). By �(4.19), the CustomerInterface may send a Retrieve
command after being accepted by the Supervisor. The above process
repeats with the Supervisor, which ensures that the last configuration is
in the return area, thus satisfying �(4.27). If this is the last sent path,
then upon reaching the end of the path, it should notify the Planner
module that it has completed the task by �(4.44) which satisfies �(4.24),
�(4.29), and �(4.31). The Supervisor alerts the CustomerInterface of the
completed return by �(4.26), satisfying �(4.11). Then by �(4.15), the car
will be picked up by the CustomerInterface.

b) Accepted, with problems: If the car is accepted and at any time during
the above process:

i. If the car fails (hence, cannot move by�(4.18)), the Trackerwill send
a Failed message to the Planner by �(4.42) satisfying �(4.32), and
by �(4.35), this will be forwarded to the Supervisor. This satisfies
�(4.22), which together with �(4.21), will imply that the failed car
will eventually be towed.

ii. If the car is Blocked, the Tracker will report to the Planner by
�(4.45), which will try to resolve or alert the Supervisor satisfying

58

�(4.36).

We will show specifically that the composed system satisfies the following two
properties (�(4.41) and �(4.28)):

Property 1 (Safety).

∀21, 22 ∈ C :: �((21 ≠ 22 ⇒
‖(21.20A.G, 21.20A.H) − (22.20A.G, 22.20A.H)‖ ≥ Ymin,20A)∧

‖(21.20A.G, 21.20A.H) − (22.G, 22.H)‖ ≥ Ymin,?4>?;4)).

(4.48)

Proof (Sketch). For each vehicle in the parking lot, the following invariance is
maintained. There will be no collisions, as the Tracker checks the spatial region in
front of the car and brings it to a full stop in case the path is blocked by another
agent (car or pedestrian). The minimum distance to an obstacle is determined by
a minimum braking distance. Furthermore, the environment does not take actions,
which will lead to an inevitable collision due to the constraints on the pedestrian
dynamics 4.8. �

Property 2 (Liveness).

∀2 ∈ C :: (�2.20A.ℎ40;CℎH ⇒
[Retrieve, 2] ∈ receiveSupervisor←CustomerInterface {

[Returned, 2] ∈ receiveCustomerInterface←Supervisor).

(4.49)

Proof (Sketch). Consider the parking lot topology shown in Figure 4.1. Let 2 ∈ C
and 2.20A.ℎ40;CℎH. Assume that 2 sends a Retrieve message to the Supervisor .
For each C, let us define 5 (C) to be the number cars between 2.20A and its destination.
Clearly, 5 (C) ≥ 0 for any C and 5 (C) is well-defined because for the topology being
considered, we can trace out a line that starts from the entrance area, going to any
one of the parking spots and ending at the return area without having to retrace
our steps at any time. We will show that there exists a C′ ≥ C such that 5 (C′) = 0,
implying that there is no longer any obstacle between 2 and its destination. Next,
we claim that ∀C, C′ :: C′ > C :: 5 (C) ≥ 5 (C′). This is true because:

• The parking lot topology and the safety measures do not allow for overtaking.

• The area reservation strategy implemented in the Supervisor prevents an
increase in 5 upon re-routing to avoid a failed car. A notable detail is that

59

if 2.20A is trying to back out of a parking spot, a stream of cars passing by
can potentially block it forever. This is resolved by having 2.20A reserve the
required area so that once any other car has cleared this area, 2.20A is the only
one that has the right to enter it.

Finally, we will show that∀C :: ∃C′ :: C′ > C :: 5 (C) > 5 (C′). Let 2′ be such that 2′.20A
is between 2.20A and its destination. By the dynamical constraint on pedestrians and
by assumptions �(4.16) and �(4.17), they will not block cars forever. Our algorithm
guarantees that one of the following will happen at some time C′ > C:

1. 2′.20A is picked up by 2′.

2. 2′.20A is parked and 2.20A drives past it

3. 2′.20A drives past 2.20A’s destination.

4. 2′.20A breaks down and by �(4.21) is eventually towed.

It is easy to see that each of these events implies that 5 (C) > 5 (C′). Since 5 is an
integer and cannot drop below 0, the result follows. �

4.6 Conclusion
We have formalized an assume-guarantee contract variant with communication via
a directive-response framework. We then used it to write specifications and verified
the correctness of an AVP system implementation (Graebener, 2020). This was
done separately for each module and everything together as a complete system. The
application of this framework in the AVP can be extended to more agent types, for
example, human-driven cars and pedestrians that do not necessarily follow traffic
rules at all times. A contract between the valet driven cars and the human-driven cars
will be needed to ensure the safe operation of the parking lot, and in the event that
a human-driven car violates the contract, cars controlled by the system need to be
able to react to this situation safely. More failure scenarios such as communication
errors (message loss, cyberphysical attacks etc.) may also be included.

60

References

Benveniste, Albert, Benoit Caillaud, Dejan Nickovic, Roberto Passerone, Jean-
Baptiste Raclet, Philipp Reinkemeier, Alberto L Sangiovanni-Vincentelli, Werner
Damm, Thomas A Henzinger, Kim G Larsen, et al. (2018). “Contracts for system
design.” In: Foundations and Trends in Electronic Design Automation 12.2-3,
pp. 124–400.

Bosch (2020a). Automated valet parking service. url: https://www.bosch-
mobility-solutions.com/en/products-and-services/passenger-
cars-and-light-commercial-vehicles/automated-parking/automated-
valet-parking/.

– (2020b). Ford, Bedrock and Bosch are exploring highly automated vehicle tech-
nology in Detroit to help make parking easier. url: https://www.bosch-
presse . de / pressportal / de / en / ford - bedrock - and - bosch - are -
exploring-highly-automated-vehicle-technology-in-detroit-to-
help-make-parking-easier-217984.html.

Burdick, Joel W., Noel du Toit, Andrew Howard, Christian Looman, Jeremy Ma,
Richard M. Murray, and Tichakorn Wongpiromsarn (2007). Sensing, navigation
and reasoning technologies for theDARPAUrbanChallenge. Tech. rep. California
Institute of Technology and Jet Propulsion Lab.

Censi, Andrea (2015). “A mathematical theory of co-design.” In: arXiv preprint
arXiv:1512.08055.

Cowlagi, Raghvendra V. and Panagiotis Tsiotras (2011). “Hierarchical motion plan-
ning with dynamical feasibility guarantees for mobile robotic vehicles.” In: IEEE
Transactions on Robotics 28.2, pp. 379–395.

Damm, Werner, Hardi Hungar, Bernhard Josko, Thomas Peikenkamp, and Ingo
Stierand (2011). “Using contract-based component specifications for virtual inte-
gration testing and architecture design.” In: 2011 Design, Automation & Test in
Europe. IEEE, pp. 1–6.

Damm, Werner, Angelika Votintseva, Alexander Metzner, Bernhard Josko, Thomas
Peikenkamp, and Eckard Böde (2005). “Boosting re-use of embedded automo-
tive applications through rich components.” In: Proceedings of Foundations of
Interface Technologies.

Dvorak, Daniel, Robert Rasmussen, Glenn Reeves, and Allan Sacks (2000). “Soft-
ware architecture themes in JPL’sMissionData System.” In:2000 IEEEAerospace
Conference. Proceedings. Vol. 7. IEEE, pp. 259–268.

Filippidis, Ioannis, Sumanth Dathathri, Scott C. Livingston, Necmiye Ozay, and
Richard M Murray (2016). “Control design for hybrid systems with TuLiP: The
temporal logic planning toolbox.” In: 2016 IEEE Conference on Control Appli-
cations (CCA). IEEE, pp. 1030–1041.

61

Fliess, Michel, Jean Lévine, Philippe Martin, and Pierre Rouchon (1995). “Flat-
ness and defect of non-linear systems: introductory theory and examples.” In:
International Journal of Control 61.6, pp. 1327–1361.

Graebener, Josefine (2020). Automated Valet Parking Simulation. url: https:
//youtu.be/dtDz9zlj46w.

Ingham, Michel D., Robert D. Rasmussen, Matthew B. Bennett, and Alex C. Mon-
cada (2005). “Engineering complex embedded systems with state analysis and
the mission data system.” In: Journal of Aerospace Computing, Information, and
Communication 2.12, pp. 507–536.

Maasoumy, Mehdi, Pierluigi Nuzzo, and Alberto Sangiovanni-Vincentelli (2015).
“Smart buildings in the smart grid: Contract-based design of an integrated energy
management system.” In: Cyber Physical Systems Approach to Smart Electric
Power Grid. Springer, pp. 103–132.

Nuzzo, Pierluigi, Huan Xu, Necmiye Ozay, John B Finn, Alberto L Sangiovanni-
Vincentelli, Richard M Murray, Alexandre Donzé, and Sanjit A Seshia (2013).
“A contract-based methodology for aircraft electric power system design.” In:
IEEE Access 2, pp. 1–25.

Rasmussen, Robert D. (2001). “Goal-based fault tolerance for space systems using
the Mission Data System.” In: 2001 IEEE Aerospace Conference Proceedings
(Cat. No. 01TH8542). Vol. 5. IEEE, pp. 2401–2410.

Sakai, Atsushi, Daniel Ingram, Joseph Dinius, Karan Chawla, Antonin Raffin, and
Alexis Paques (2018). “Pythonrobotics: a python code collection of robotics
algorithms.” In: arXiv preprint arXiv:1808.10703.

Schürmann, Bastian and Matthias Althoff (2017). “Guaranteeing constraints of dis-
turbed nonlinear systems using set-based optimal control in generator space.” In:
IFAC-PapersOnLine 50.1, pp. 11515–11522.

Siemens (2020). Improving Autonomous Valet Parking with simulation and testing.
url: https://blogs.sw.siemens.com/simcenter/autonomous-valet-
parking-using-simulation-and-testing-for-safe-and-robust-
system-and-algorithms-developments/.

Smith, Nathaniel J. (2017). “Trio: a friendly Python library for async concurrency
and I/O.” In: https://trio.readthedocs.io/en/latest/, accessed 03/24/2020.

Wongpiromsarn, Tichakorn and Richard M Murray (2008). “Distributed mission
and contingency management for the DARPA urban challenge.” In: International
Workshop on Intelligent Vehicle Control Systems (IVCS). Vol. 5.

Yamazaki, Akio, Yuki Izumi, Katsuya Yamane, Tetsuya Nomura, and Yasushi Seike
(n.d.).Development of Control Technology for Controlling Automated Valet Park-
ing. url: https://www.denso-ten.com/business/technicaljournal/
pdf/Vol03-03.pdf.

62

C h a p t e r 5

REACTIVE CONTRACTS

5.1 Introduction
A premise central to formal methods is the idea that the model being verified is a
correct description of the system in question. Oftentimes, especially for physical
systems, this is not the case since adding too many details would make the model too
large to be verified efficiently, if at all (Henzinger et al., 1998). Model uncertainties,
environmental disturbances, simplifying assumptions etc. must be accounted for
separately, often using heuristics. In the reactive synthesis setting (Bloem, 2015),
attempts have been made to automatically generate systems that satisfy specifi-
cations with some measure of robustness to certain classes of uncertainties. For
instance, (Livingston et al., 2013) exploits “locality” to compute modal `-calculus
fixpoints (Arnold and Niwinski, 2001) that enable patching system strategies in
the presence of updated information about the game graph. Similarly, (Dathathri,
Livingston, andMurray, 2017) discusses a way to recover from a finite number of un-
expected actuation or sensing errors with pre-computed safe strategies that attempt
to bring the system back to the nominal control trajectory. In addition to making
specific assumptions on the environment, these methods also rely on the fact that
such recovery strategies are always feasible for the original set of objectives. On the
specification side of things, (Azzopardi, Pace, and Schapachnik, 2014) represents
an elementary and direct means to add “reparation” handling to contract automata.
Unfortunately, the obligation to define contract states and transitions explicitly does
not make the automaton approach amenable to expressing and extracting complex
properties.

Consider an assume-guarantee specification i(for a parking garage system (op-
erated by robot valets of the form i(B � ⇒ � (see (Phan-Minh, 2019b) for
a concrete specification in TLA+), where � encodes a set of input constraints or
assumptions such as garage characteristics, quantity of valets, how fast they can
park and retrieve cars, and � consists of guarantees the system must provide in the
event that the constraints in � are satisfied, such as an upper bound on the maximum
wait times for customers. Under this assume-guarantee framework, any system that
satisfies the requirement

63

unless a constraint in � is violated, all guarantees in � are provided

is said to implement the contract. In practice, we tend to come up with an
assumption-guarantee pair that is

1. fragile: suppose that a car has a flat tire and thereby invalidates the assumption
on the performance of the valet assigned to it, are other valets suddenly
allowed to indiscriminately abandon their responsibilities? According to i(,
the answer is yes even though the “intuitively correct” answer is that they
should not.

2. underpromising: the guarantee must often be very conservative when it must
hold against worst case assumptions such as a single abnormally slow valet in
the fleet that biases the worst wait time.

3. maladaptive: with only one assume-guarantee pair, the implementation does
not have to adapt when the current environment “slightly” deviates from
the assumption. Even if more pairs are specified and combined using, for
example, the “contract conjunction” operator, there is no clear procedure on
how to specify controlling or switching between specific assumptions and
guarantees when such an opportunity arises.

To address these issues, we propose a contract formalism that explicitly takes into
account the notion of uncertainty in the system being modelled and emphasizes its
obligation to adapt to possible changes in the behavior of the environment. The
structure of the chapter is as follows: in Section 5.2, basic notations are defined and
a formal definition of assume-guarantee contracts is given as a point of reference.
In Section 5.3, our theory of reactive contracts is presented and contrasted with
the non-reactive formalism. In Section 5.4, we specialize this theory to the context
of GR(1) games and derive a procedure for formulating and synthesizing their
reactive contracts. In Section 5.5, we apply results from Section 5.4 to a concrete
example/simulation and explore notions of optimal and robust reactivity.

5.2 Systems and Contracts
To keep things concise without losing generality, we will only cover assume-
guarantee contracts defined over a common set of Boolean variables V called
the alphabet. For any set - , let -l be the set of infinite sequences generated from
- , namely {〈G8〉∞8=0 = 〈G0, G1, . . .〉 | G8 ∈ -}, -∗ be the set of finite sequences, and

64

2- be the powerset of - . Define -∞ as -∗ ∪ -l. In implementations a contract.
accordance with the metatheory, we term any pair of collections of environments
and implementations a contract. The theory of assume-guarantee contracts is a
model of the metatheory and can be described as follows.

Definition 5.2.1 (Behaviors and Assertions). A behavior f is an element of B B
(2V)l. An assertion � is a subset of B, namely, � ∈ 2B .

We lift the set of all assertions 2B to a Boolean algebra by defining a unary operator
¬ and two binary operators∧,∨ on it in the standard way: if �, �1, �2 are assertions,
then ¬� B B \ �, �1 ∨ �2 B �1 ∪ �2, �1 ∧ �2 B �1 ∩ �2. The induced partial
ordering relation ≤ on 2B is simply the subset relation ⊆. Additionally, we define a
secondary binary operator⇒ in �1 ⇒ �2 as a shorthand for ¬�1 ∨ �2.
A component " is an assertion designated as such. Via locality assumptions, the
assertion characterizing a component is often restricted to a subset of V (with no
constraints on variables outside the set). If "1 and "2 are components, the inter-
connection binary operator ⊕ is defined by "1 ⊕ "2 B "1 ∧ "2. That is, the set
of behaviors of the interconnection consists only of those common to (or witnessed
by) both implementations. We note that depending on how the variables and asser-
tions making up the components being interconnected are defined, ⊕ can assume
the meaning of either a parallel, series, coproduct, or feedback connection (Censi,
2015). In fact, contracts and the corresponding algebra can be used to constrain
components satisfying them so that the meaning of their interconnection will be
clear.

Definition 5.2.2 (Contracts). An assume-guarantee contract C is a pair of asser-
tions (�, �), called the assumption and the guarantee respectively. The set of
environments of C, denoted by EC , captures all components � such that

� ≤ �. (5.1)

In other words, EC = 2�. The set of implementations of C, denoted byMC , consists
of all components " such that

∀� ∈ EC ." ⊕ � ≤ �. (5.2)

Example 5.2.1. LetV = {G, H}, C = (�, �) where � B {f | G ∈ f8 ⇔ 8 mod 2 =
0}, � B {f | H ∈ f8 ⇔ 8 mod 2 ≠ 0}, f1 B 〈{G}, {H}, {G},∅, {G},∅, . . .〉 and
f2 B 〈{G}, {H}, {G}, {H}, . . .〉. If � B {f1, f2}, then � ∈ EC because f1, f2 ∈ �.

65

Let "1 B {f1} and "2 B {f2}. Then "1 ∉ MC because "1 ⊕ � = {f1} ∉ �.
However, one can check that "2 ∈ MC . Note that if "3 B ∅, then "3 ∈ MC as
well. The interpretation here is that "3 satisfies the assume-guarantee semantics of
C vacuously.

Since 2B is a Boolean algebra, we infer from inequality (5.2) and the definition of
⊕ that " is an implementation if ∀� ∈ EC ." ≤ ¬� ∨ �. Choosing � = � in
inequality (5.1) gives " ≤ ¬� ∨ �. Conversely, satisfying " ≤ ¬� ∨ � implies
that " is an implementation because ¬� ∨ � is antitone in � . Thus, we have the
following proposition.

Proposition 8. Given C = (�, �), a component " satisfies " ∈ MC if and only if

" ≤ �⇒ �. (5.3)

Proposition 8 characterizes implementations " of C as those components whose
behaviors either do not conform to the behaviors specified in � or are compatible
with �. Specifically, it says thatMC = 2�⇒� . Furthermore, since

�⇒ (�⇒ �) = ¬� ∨ (¬� ∨ �) = ¬� ∨ � = �⇒ �, (5.4)

inequalities (5.1) and (5.3) yield the following proposition.

Proposition 9. If C = (�, �) and C∗ = (�, � ⇒ �), then MC = MC∗ and
EC = EC∗ .

It may be seen from equation (5.4) why any assume-guarantee contract of the
form C = (�, � ⇒ �) is called saturated. By the metatheory, we will consider
contracts that have the same sets of environments and implementations to be equal,
and so by Proposition 9, every contract C has a unique saturated canonical form
C∗. This saturated form makes contract algebra more convenient and sheds light
on the meaning of the conjunction operation, which motivates our development of
“reactive contracts.” To describe the conjunction, we will need the idea of contract
refinement whose definition is repeated here for ease of reference.

Definition 5.2.3. We say contract C1 = (�1, �1) refines a contract C2 = (�2, �2)
and write C1 � C2 ifMC1 ⊆ M�2 and E�2 ⊆ E�1 .

The conjunction of two contracts C1 and C2, denoted by C1 ∧ C2, is a contract that
is their largest lower bound (or meet) with respect to �. For any contract C, we

66

have EC = 2� andMC = 2�⇒� . Therefore, if C ≤ C1, C2, then by Definition 5.2.3,
MC ⊆ MC1 ∩MC2 = 2�1⇒�1 ∩ 2�2⇒�2 = 2(�1⇒�1)∧(�2⇒�2) and 2�1∨�2 = 2�1 ∪
2�2 = EC1 ∪ EC2 ⊆ EC (since the intersection/union of powersets of two sets is the
powerset of their intersection/union). By the fact that (�1 ⇒ �1) ∧ (�2 ⇒ �2) is
saturated, we have C1 ∧ C2 = (�1 ∨ �2, (�1 ⇒ �1) ∧ (�2 ⇒ �2)). By induction,
we can conclude the following:

Proposition 10. If for 8 = 1, 2, . . . , =, �8 are assume-guarantee contracts, then

∧=8=1C8 = (∨
=
8=1�8,∧

=
8=1�8 ⇒ �8). (5.5)

Note thatwe can apply an analogous argument to the disjunction of contracts (defined
as their join) to conclude that the set of all saturated contracts forms a complete
lattice. Equation (5.5) shows that the “parametric contract” formalism given in
(Kim, Arcak, and Seshia, 2017) is exactly the result of applying the conjunction
operation to the constituent contracts. That is, if " is an implementation of the
conjunction ∧8C8 containing f such that f ∈ � where � is an environment of ∧8C8,
then there exists at least a : ∈ {1, 2, . . . , =} such that f ∈ �: and for all such : ,
f ∈ �: . In other words, for any behavior f in which the environment satisfies
any assumption �: in {�1, �2, . . . , �=}, the system must react by providing the
corresponding guarantee �: . Thus in contract conjunctions, 1) the reactions are
defined by pairing each �: with the corresponding �: , and 2) �: ⇒ �: must hold
over the sequence f in its entirety. The second restriction is partially relaxed in the
“dynamic contract” formalism, used for instance in (Kim, Sadraddini, et al., 2017),
where assumptions are allowed to change over fixed time intervals. Our reactive
contract framework will 1) remove the one-to-one restriction to allow for a more
flexible assumption-guarantee pairing process, 2) enforces immediate guarantee
reactions to assumption changes directly on each element f ∈ B, and 3) enables
automated synthesis.

5.3 Reactive Contracts
Reactivity
For each f ∈ B, and 8, 9 ∈ N0 : 8 < 9 , we denote by f8→ 9 the subsequence of
f spanning from f8 up to but not including f9 , namely 〈f8〉 9−1

:=8
, and by f8→∞ the

infinite sequence 〈f:〉∞:=8. For � ⊆ B and : ≥ 0, denote by Pref: (�) the set
of all prefixes of behaviors in � of length : , Pref: (�) B {f0→: | f ∈ �} and
Pref(�) B ∪∞

:=1Pref: (�), the set of all prefixes of �. Let · be the standard string

67

sequence concatenation operatormapping from (Pref(B)×Pref(B))∪(Pref(B)×B)
to Pref(B) ∪ B.

Definition 5.3.1 (Witness). Let f ∈ B, � ⊆ B and 8, 9 ∈ N0 ∪ {∞} : 8 < 9 . We say
that f is awitness for � from 8 up until 9 and write f |=8→ 9 � if f8→ 9 ∈ Pref(�)∪�.
If 9 ≠ ∞, we consider the witness relation as being strict and write f |=B

8→ 9
� if

f |=8→ 9 �, but f 6 |=8→ 9+1 �. If 9 = ∞, the witness relation is always strict.

To describe and keep track of assumption changes, we appeal to the notion of
assigning signatures (or labels) to each behavior that undergoes those changes.

Definition 5.3.2 (Signature). Given a set of assertions A ⊆ 2B , an A-signature
is any nonempty assertion sequence U = 〈U:〉<:=0 ∈ A

∞ where < ∈ N ∪ {∞}. If
< < ∞, we say f ∈ B is a witness for U and put f |= U if there exists a partitioning
sequence 〈8:〉<:=0 in N0 satisfying 0 = 80 < 81 < . . . < 8< such that with 8<+1 B ∞,
we have

∀: ∈ {0, 1, . . . , <}.f |=8:→8:+1 U: . (5.6)

We say that f is a strict witness for the signature U and write f |=B U if the witness
relation in equation (5.6) is strict. Analogously, if < = ∞, then f |= U if there
exists a (strictly monotone) partitioning sequence 〈8:〉∞:=0 inN0 satisfying 80 = 0 and
equation (5.6) with {0, 1, . . . , <} replaced by N0.

In general, a given f ∈ B may be a strict witness for more than one signature
in A∞. For example, if A = {�1, �2} where �1 ∩ �2 ≠ ∅, then any behavior
f ∈ �1 ∩ �2 satisfies f |=B 〈� 9 〉 for 9 ∈ {1, 2}. This may still be the case even
when �1 ∩ �2 = ∅. For V = {G, H}, �1 = {〈{G}〉∞8=0} and �2 = {〈{H}〉∞8=0} ∪ {f}
where f satisfies f: = {G} for : = 0 and f: = {H}, otherwise. Then f |=B 〈�1, �2〉
and f |=B 〈�2〉. This non-uniqueness makes it unclear as to which assumption
change sequence should be considered and how/when to properly react to it. Being
able to restrict the set of assumptions so that this does not happen is necessary
because in order to react at all, the system must be able to consistently detect which
assumption to operate under next. The following proposition gives a necessary and
sufficient condition.

Proposition 11. Let A be a collection of assertions, then

∀U, V ∈ A∞.∀f ∈ B.(f |=B U ∧ f |=B V) ⇒ U = V, (5.7)

68

if and only if

∀�1, �2 ∈ A.�1 ≠ �2 ⇒ Pref1(�1) ∩ Pref1(�2) = ∅. (5.8)

Proof. First, assume thatA does not satisfy Formula (5.8). Let �1, �2 be such that
�1 ≠ �2 and Pref1(�1) ∩Pref1(�2) ≠ ∅. Observe that for any : ∈ N0 and f ∈ B, if
f0→:+1 ∈ Pref:+1(�1) ∩ Pref:+1(�2) then f0→: ∈ Pref: (�1) ∩ Pref: (�2). Hence,
either �1∩ �2 ≠ ∅, in which case (5.7) clearly does not hold, or there exists a :′ ≥ 1
such that Pref: ′ (�1)∩Pref: ′ (�2) ≠ ∅ and Pref: ′+1(�1)∩Pref: ′+1(�2) = ∅. Letf′ ∈
Pref: ′ (�1) ∩ Pref: ′ (�2) and f1 ∈ �1, f2 ∈ �2 be such that f10→: ′ = f20→: ′ = f

′.
If for all 0 < 8 < :′, we have f′

8
= f′0, then 〈f

′
0〉
∞
8=0 |=

B 〈�1〉 or 〈f′0〉
∞
8=0 |=

B 〈�1〉∞8=0
while 〈f′0〉

∞
8=0 |=

B 〈�2〉 or 〈f′0〉
∞
8=0 |=

B 〈�2〉∞8=0. On the other hand, if there is an
0 < : < :′ such that f′

:
≠ f′0, then for f′′ B f′0→:+1 · f

′
0→:+1 · . . ., we have

f′′ |=B 〈�1〉∞8=0 and f
′′ |=B 〈�1〉∞8=0. Both of these cases contradict Formula (5.7).

For the other direction, assume thatA satisfies (5.8). Let U, V ∈ A∞ and f ∈ B be
such that f |=B U and f |=B V. Let < ∈ N ∪ {∞} be the length of U. By the fact
that f0 ∈ Pref1(U0) ∩Pref1(V0) and ∀� ∈ A.� ≠ U0 ⇒ Pref1(�) ∩Pref1(U0) = ∅,
we conclude that U0 = V0. Suppose that up to = < <, U: = V: for all : satisfying
0 ≤ : ≤ =. We will show that U=+1 and V=+1 are defined and equal to one another.
Indeed, since = < <, the (= + 1)th term of U, U=+1, exists. Let 〈8:〉<:=0 be a
partitioning sequence for f |=B U given by Definition 5.3.2. By strictness and the
induction hypothesis, we have f8=→(8=+1+1) 6 |= U= = V=. Since f |=B V, it follows
that V=+1 exists as well. From f |=B U, if = + 2 ≤ <, we have f |=B

8=+1→8=+2 U=+1

and, in particular, f8=+1 ∈ Pref1(U=+1) ∩ Pref1(V=+1), which by Formula (5.8) yields
U=+1 = V=+1. If = + 2 > <, then f |=B

8=+1→∞ U=+1, arguing similarly, we arrive at the
additional conclusion that V also has length <. This implies Formula (5.7). �

AnyA that satisfies (5.8) is called initially disjoint. Hence, Proposition 11 says that
A is a set of assertions that are initially disjoint if and only if any behavior is a strict
witness for at most one A-signature. Let BA B {f ∈ B | ∃U ∈ A∞.f |=B U}, the
set of behaviors that have A-signatures. If A is initially disjoint, then the function
UA : BA → A∞ mapping each f ∈ BA to the unique signature UA (f) ∈ A∞

for which it is a witness is well-defined. Lastly, for any " ⊆ BA , we denote by
UA (") the set of signatures generated by " , namely, {UA (f) | f ∈ "}.

69

Contracts

Definition 5.3.3 (Reactive contracts). A reactive assume-guarantee contract C is a
4-tuple (A,G,Δ, ') where

1. A,G ⊆ 2B are called the assumption and guarantee sets, respectively. A is
required to be initially disjoint.

2. Δ ⊆ A∞ is called the contingency set, consisting of assumption change
scenarios that may happen.

3. ' ⊆ (A × G)∞ is called the reaction set.

Observe thatA and G are not necessarily of the same cardinality and that from each
A ∈ ', we can obtain a unique A-signature by “projecting away the G dimension.”
We denote the projection function by ΠA : ' → A∞ so that ΠA (〈�: , �:〉<:=0) B
〈�:〉<:=0 for any 〈�: , �:〉<:=0 ∈ '.

Definition 5.3.4 (Environment). An environment for C = (A,G,Δ, ') is any � ⊆
BA such that UA (�) ⊆ Δ, namely each f ∈ � is a strict witness for some A-
signature in Δ.

Thus, for a reactive contract, assumptions about its environment’s behaviors are
allowed to change according to the contingency specified inΔ. As these assumptions
change, the system should provide the corresponding guarantees as specified by the
reaction set '. We characterize ' via the following definitions.

Definition 5.3.5 (Reactive satisfaction). Let f ∈ B, A = 〈(�: , �:)〉<:=0 ∈ '. We
say that f reactively satisfies A and write f |=d A if the following hold

1. f |=B ΠA (A) with the partitioning sequence 〈8:〉<:=0.

2. a) If < < ∞, then ∀: ∈ {0, 1, . . . , <}.f8:→8:+1 |= �: with 8<+1 B ∞;

b) otherwise, ∀: ∈ N0.f8:→8:+1 |= �: .

Definition 5.3.6 (Implementation). An implementation of a reactive contract C =
(A,G,Δ, ') is any " ⊆ B such that for any environment � of C, we have

∀f ∈ (" ∩ �).∃A ∈ '.f |=d A ∧ ΠA (A) = UA (f).

70

Intuitively, an implementation consists of all behaviors f in which either the as-
sumptions do not change according to Δ, i.e., UA (f) ∉ Δ, or the system reacts
according to instructions specified by the set ', namely there exists a reaction A ∈ ',
such that f reactively satisfies A, in which the system must satisfy the guarantee cor-
responding to the current assumption for as long as the latter holds and is required to
immediately adapt to any new assumption by committing itself to the corresponding
new obligation. Let us compare this formalism to “standard” assume-guarantee
contracts. First, we mention that the following holds.

Proposition 12. Corresponding to each standard assume-guarantee contract C =
(�, �) is a reactive assume-guarantee contract CA = (A,G,Δ, ') with A =

{�},G = {�},Δ = {〈�〉}, and ' = {〈(�, �)〉} such that C = CA in the sense
that they have same sets of environments and implementations.

Recall that any parametric assume-guarantee contract is a standard assume-guarantee
contract obtained by taking the conjunction of a set of standard assume-guarantee
contracts. Therefore, by Proposition 12, each parametric assume-guarantee contract
has a reactive version. In particular, when all assumptions are initially disjoint, we
have the following generalization of Proposition 12.

Proposition 13. If = ≥ 1, {�1, �2, . . . , �=} is a set of initially disjoint assertions
and for 8 ∈ {1, 2, . . . , =}, C8 = (�8, �8) are assume-guarantee contracts, then there
exists a reactive assume-guarantee contract CA such that ∧=8=1C = CA .

Proof. Let CA = (A,G,Δ, ') be defined with

• A B {�1, �2, . . . , �=},

• G B {�1, �2, . . . , �=},

• Δ B {〈�1〉, 〈�2〉, . . . , 〈�=〉},

• ' B {〈(�1, �1)〉, 〈(�2, �2)〉, . . . , 〈(�=, �=)〉}.

Then, � ∈ EC if and only if

∀f ∈ �.f ∈ ∨=8=1�8

⇔ ∀f ∈ �.∃8 ∈ {1, 2, . . . , =}.f ∈ �8
⇔ ∀f ∈ �.∃8 ∈ {1, 2, . . . , =}.UA (f) = 〈�8〉 ⊆ Δ

71

which holds if and only if � ∈ ECA . Also, " ∈ MC ⇔ ∀f ∈ ".f ∈ ∧=8=1(�8 ⇒
�8). Since the �8’s are initially disjoint, and therefore disjoint, there are two
cases: either f ∈ ∧=

8=1¬�8, in which case UA (f) ∉ Δ, or there is an �8 such that
f ∈ �8∧�8, in which case, f |=d 〈(�8, �8)〉 andUA (f) = ΠA (〈(�8, �8)〉) = 〈�8〉.
This implies " ∈ MCA . On the other hand, " ∈ MCA implies ∀f ∈ " , either
f |=d 〈(�8, �8)〉 for some 8 ∈ {1, 2, . . . , =}, which by Definition 5.3.5, shows that
f ∈ �8 ∧ �8, orUA (f) ∉ Δ, which implies that f ∈ ∧=

8=1¬�8. �

The following example shows the greater flexibility offered by reactive contracts
over parametric ones.

Example 5.3.1. Let �1, �2 be initially disjoint and C = (�1 ∨ �2, (�1 ⇒ �1) ∧
(�2 ⇒ �2)) and C̃A = (Ã, G̃, Δ̃, '̃) where Ã = {�1, �2}, G̃ = {�1, �2}, Δ̃ =

{〈�1〉, 〈�2〉, 〈�1, �2〉}, '̃ = {〈(�1, �1)〉, 〈(�2, �2)〉, 〈(�1, �1), (�2, �2)〉}. We
can verify that C̃A � C using the fact that by Proposition 13, C = CA = (A,G,Δ, ')
where � = Ã, � = G̃, Δ = {〈�1〉, 〈�2〉}, and ' = {〈(�1, �1)〉, 〈(�2, �2)〉}. With
the inclusion of 〈(�1, �1), (�2, �2)〉 in '̃, C̃A is receptive to environments whose
behaviors exhibit a change in assumptions from �1 to �2 and requires implementa-
tions to adapt accordingly by changing their guarantee from �1 to �2. On the other
hand, CA only specifies the set of implementations to be those behaviors in which
either neither �1 or �2 is satisfied or at least a pair (�8, �8) is always satisfied.

Algebra
Let A be a set of initially disjoint assumptions and G be a set of guarantees. We
can construct an algebra on the set ℭ(A,G) of all reactive contracts obtained from
A and G as follows. Let ℜ B (A × G)∞, the set of all (A × G)-signatures and
Δ⇒ ' B {A | A ∈ ℜ ∧ ΠA (A) ∉ Δ} ∪ ', the set of all (A × G)-signatures that are
either a reaction in ' or have an assumption change sequence not specified in the
contingency Δ. Also, let '↓Δ = {A ∈ ' | ΠA (A) ∈ Δ} and Δ\R = {X ∈ Δ | ∀A ∈
'.ΠA (A) ∉ Δ}. From these definitions, we have:

Proposition 14. IfC = (A,G,Δ, ') is a reactive contract, thenC★ B (A,G,Δ,Δ⇒
') satisfies C★ = C.

Proof. First, by Definition 5.3.4, it is clear that EC = EC★. Also, " ∈ MC is

72

equivalent to

∀� ∈ EC .∀f ∈ (" ∩ �).∃A ∈ '.f |=d A ∧ ΠA (A) = UA (f)
⇔ ∀� ∈ EC★ .∀f ∈ (" ∩ �).∃A ∈ '.f |=d A ∧ ΠA (A) = UA (f)
⇔ ∀� ∈ EC★ .∀f ∈ (" ∩ �).∃A ∈ Δ⇒ '.f |=d A ∧ ΠA (A) = UA (f)

which is equivalent to " ∈ MC★. Note that the forward direction of the last “⇔”
follows from the fact that ' ⊆ Δ⇒ '. The reverse direction holds because for any
f ∈ " ∩ � where � ∈ EC★ = EC , we haveUA (f) ∈ Δ, which implies that for any
A′ ∈ {A | A ∈ ℜ ∧ ΠA (A) ∉ Δ}, we obtain f 6 |=B ΠA (A′) by the initial disjointness
of A. By the first condition of Definition 5.3.5, we have f 6 |=d A′. Therefore, the A
that satisfies Δ⇒ ' must satisfy A ∈ '. �

In light of this, we will say that a reactive contract C = (A,G,Δ, ') is in canonical
form if ' = Δ⇒ '. Wewill also denote by �C,max the set {4 ∈ B | ∃X ∈ Δ. 4 |=B X}.
Observe thatMC B {< ∈ B | < ∉ �C,max ∨ (< ∈ �C,max ∧ ∃A ∈ '.< |=d A}) =
B − {< ∈ B | < ∈ �C,max ∧ ¬(∃A ∈ '.< |=d A)} = B − {< ∈ �C,max | ¬(∃A ∈
'.< |=d A)}. In the following, for 8 ∈ {1, 2}, let C8 = (A,G,Δ8, '8) be canonical
reactive contracts. The next lemma follows from the fact thatA is initially disjoint:

Lemma 1. Δ2 ⊆ Δ1 ⇔ �C2,max ⊆ �C1,max.

Proof. Assume that �C2,max ⊆ �C1,max. For any X ∈ Δ2, choose a f ∈ B such that
f |=B X. By Definition 5.3.4, f ∈ �C2,max and therefore f ∈ �C1,max. Since A is
initially disjoint, by Proposition 5.8, any X′ ∈ Δ1 such that f |=B X′ must satisfy
X = X′. Thus, X ∈ Δ1. The other direction follows directly from the definition of the
�C8 ,max’s. �

Proposition 15. (Δ2 ⊆ Δ1 ∧ '1 ⊆ '2) ⇒ C1 � C2.

Proof. We have � ∈ EC2 ⇔ � ⊆ �C2,max
!4<<0 1⇒ � ⊆ �C1,max ⇔ � ∈ EC1 . On the

other hand, " ∈ MC1 ⇔ " ∈ B − {< ∈ �C1,max | ¬(∃A ∈ '1.< |=d A)}
!4<<0 1⇒

" ∈ B − {< ∈ �C2,max | ¬(∃A ∈ '1.< |=d A)}
'1⊆'2⇒ " ∈ B − {< ∈ �C2,max |

¬(∃A ∈ '2.< |=d A)} ⇔ " ∈ MC2 . �

Lemma2. C1 � C2 ⇒ ∃C′2 ∈ ℭ(�,�) .EC′2 = EC2∧MC′2 =MC2∧Δ′2 ⊆ Δ1∧'1 ⊆ '′2.

Proof. We claim that C′2 can be obtained by letting Δ′2 B Δ2 and '′2 B '1 ∪ '2.
Then, clearly, EC′2 = EC2 , '1 ⊆ '′2. Since C1 � C2, we have EC2 ⊆ EC1 , and in

73

particular, �C2,max ∈ EC1 . This implies that �C2,max ⊆ �C1,max as ∀� ∈ EC1 .� ⊆
�C1,max. Hence Δ′2 = Δ2 ⊆ Δ1. Now sinceMC1 ⊆ MC2 , we have {< ∈ �C2,max |
¬(∃A ∈ '2.< |=d A)} ⊆ {< ∈ �C1,max | ¬(∃A ∈ '1.< |=d A)}. In particular,
because �C2,max ⊆ �C1,max, ∀< ∈ �C2,max.¬(∃A ∈ '2.< |=d A) ⇒ ¬(∃A ∈ '1.< |=d

A). Therefore ∀< ∈ �C2,max.¬(∃A ∈ '2.< |=d A) ⇔ ¬(∃A ∈ '1 ∪ '2.< |=d A).
Therefore,MC′2 =MC2 . �

A reaction set R is said to be unambiguous for a contingency set Δ if for each X ∈ Δ,
there is at most one A ∈ ' with ΠA (A) = X.

Proposition 16. If '1↓Δ1 ∪ '2↓Δ2 is unambiguous for Δ1 ∪ Δ2, then C = C1 ∧ C2 B

(A,G,Δ1 ∪ Δ2, '1 ∩ '2) is the infimum for C1 and C2 in ℭ(A,G) .

Proof. It is not hard to see that C is a canonical reactive contract in ℭ(�,�) . The
main thing to check here is that if A ∈ ℜ and ΠA (A) ∉ Δ1 ∪ Δ2, then A ∈ '1 ∩ '2.
Indeed, since ΠA (A) ∉ Δ1 ∧ΠA (A) ∉ Δ2, we have A ∈ '1 ∧ A ∈ '2 since C1 and C2

are canonical. By Proposition 15, we have C � C1 and C � C2. Next, we will show
that, if f is a behavior such that {f} ∈ MC1 ∩ MC2 , then {f} ∈ MC . Because
any subset of an implementation is also an implementation, this will imply that
MC1 ∩MC2 ⊆ MC and henceMC1 ∩MC2 =MC . If f ∉ BA orUA (f) ∉ Δ1∪Δ2,
then this is obvious. Suppose therefore that UA (f) ∈ Δ1 ∪ Δ2. Consider the
following cases:

1. Without loss of generality, suppose that f ∈ Δ1 and f ∉ Δ2. Then since
{f} ∈ MC1 , there is an A ∈ '1 such that f |=d A. Since ΠA (A) ∉ Δ2 by the
initial disjointness of A and '2 is in canonical form, we have A ∈ '2 and
therefore A ∈ '1 ∩ '2.

2. f ∈ Δ1∩Δ2, then there are A1 ∈ '1 and A2 ∈ '2 such that f |=d A1∧f |=d A2.
By the unambiguity assumption, we have A1 = A2. Therefore, {f} ∈ MC .

Let C′ = (A,G,Δ′, '′) be such that C′ � C1 and C′ � C2. This implies that
MC′ ⊆ MC1 ∩MC2 . By the initial disjointness ofA, we have Δ1 ∩ Δ2 ⊆ Δ′. Since
C satisfiesMC =MC1 ∩MC2 and Δ1 ∩Δ2 = Δ and EC′ is monotone in Δ′, we have
C′ � C. �

Proposition 17. C = C1 ∨ C2 B (A,G,Δ1 ∩ Δ2, '1 ∪ '2) is the supremum for C1

and C2 in ℭ(A,G) .

74

Proof. Let C′ = (A,G,Δ′, '′) be such that C1 � C′ and C2 � C′. Applying (the
proof of) Lemma 2 twice, we obtain the contract (A,G,Δ′, '′ ∪ '1 ∪ '1) that is
equal to C. In addition, since EC′ ⊆ EC1 and EC′ ⊆ EC2 , Δ′ ⊆ Δ1 ∩ Δ2. By
Proposition 15, we have C1 � C, C2 � C, and C � C′. Since C′ is an arbitrary
upper bound, we are done. �

Finally, for composing reactive contracts, we have the following proposition.

Proposition 18. If '1↓Δ1 ∪ '2↓Δ2 is unambiguous for Δ1 ∪ Δ2, then C = C1 ⊗ C2 B

(A,G, (Δ1 ∩ Δ2) ∪ Δ1\'1 ∪ Δ2\'2), '1 ∩ '2) is the least contract that has the
composition property, namely, for any "1 ∈ MC1 , "2 ∈ MC2 , and � ∈ EC , we
have "1 ⊕ "2 ∈ MC , "1 ⊕ � ∈ EC2 , and "2 ⊕ � ∈ EC1 .

Proof. Let f ∈ "1 ⊕"2 and X ∈ (Δ1∩Δ2) ∪Δ1\'1 ∪Δ2\'2 such that f |=B X. Then
as f ∈ "1 and f ∈ "2, X ∈ Δ1 ∩ Δ2, and there exist A1 ∈ '1 and A2 ∈ '2 such that
f |=d A1 with ΠA (A1) = X and f |=d A2 with ΠA (A2) = X. By the initial disjointness
of A and the unambiguity assumption on C1 and C2, we have A1 = A2 ∈ '1 ∩ '2.
Therefore {f} ∈ MC . This implies "1 ⊕ "2 ∈ MC . Now, let f ∈ "1 ⊕ � . Then
there exists X ∈ (Δ1 ∩ Δ2) ∪ Δ2\'2 such that f |=B X. As (Δ1 ∩ Δ2) ∪ Δ2\'2 ⊆ Δ2,
clearly {f} ∈ EC2 , which implies "1 ⊕ � ∈ EC2 . Arguing similarly, we also have
"2 ⊕ � ∈ EC1 . This shows that C has the composition property. Suppose that C′

also has the composition property, then Δ′ ⊆ Δ. Indeed, suppose that there is a
X ∈ Δ′ such that X ∉ (Δ1 ∩ Δ2) ∪ Δ1\'1 ∪ Δ2\'2 . Let f |=B X. If X ∉ Δ1 ∪ Δ2.
Then clearly, {f} ∈ MC1 ∩ EC′. However, f ∉ EC2 . Suppose on the other hand
that X ∈ Δ1 ∪ Δ2. Without loss of generality, assume that X ∈ Δ1. Then the fact that
X ∉ Δ1 ∩ Δ2 implies X ∉ Δ2 and {f} ∉ EC2 . Furthermore, f ∉ Δ1\'1 means that
{f} ∈ MC1 ∩ EC′, a contradiction. Next, we will show thatMC ⊆ MC′. Indeed,
the requirement that for any "1 ∈ MC1 and "2 ∈ MC2 , "1 ⊕ "2 ∈ MC′ (implying
MC1 ∩MC2 ⊆ MC′) will enforce this. It suffices to show that for any f ∈ B such
that {f} ∈ MC , we have {f} ∈ MC1 ∩MC2 . We will prove the contrapositive. Let
f ∈ B be such that {f} ∉MC1 ∩MC2 . Let us show {f} ∉MC . Without loss of
generality, assume that {f} ∉ MC1 . Then there is a X ∈ Δ1\'1 such that f |=B X.
But this implies that there exists no A ∈ '1 ∩ '2 such that f |=d A. Therefore,
{f} ∉MC . Thus, C′ satisfiesMC ⊆ MC′ and Δ′ ⊆ Δ. Since EC′ is monotone in
Δ′, C is indeed the least contract with the composition property. �

75

In the next section, we will show how this formalism can be applied to reactive
synthesis.

5.4 Reactive Contracts for GR(1) Games
Reactive synthesis refers to the automatic correct-by-construction synthesis of a re-
active system from formal specifications. Linear temporal logic (LTL) is a language
whose formulae are built from a finite set of logical (e.g, ¬,∧,∨), temporal (e.g.,
�, ♦ for “always” and “eventually”) operators and atomic propositions (Clarke Jr.
et al., 2018). An LTL formula can be used to check a system trace for satisfaction
of properties such as “always eventually atom_prop will be true” (�♦atom_prop)
or “atom_prop must always hold” (�atom_prop). In general, synthesis from
LTL specifications is 2EXPTIME-complete in the length of the formula (Piterman,
Pnueli, and Sa’ar, 2006). Fortunately, an expressive subset of LTL has been identi-
fied and shown to allow for relatively efficient synthesis algorithms with cubic time
complexity (Maoz and Ringert, 2015). This subset is called General Reactivity of
Rank 1, or GR(1), and offers the following specification format:

(\4 ∧ �d4 ∧ ∧0≤8≤<�♦�
4
8)︸ ︷︷ ︸

�

⇒ (\B ∧ �dB ∧ ∧0≤8≤=�♦�
B
8)︸ ︷︷ ︸

�

. (5.9)

Formula (5.9) is to be interpreted on a 2-player turn-based game between an envi-
ronment 4 and a system (implementation) B over a set of variables V that can be
decomposed as V4 ∪ V B. A round of the game consists of two turns with the first
being taken by the environment to set values for variables in V4 and the second
taken by the system to set values for variables inV B. By the end of each round, all
variables in V will have been assigned a value. Such a valuation of V defines a
game state. A play is an infinite sequence of states. In Formula (5.9), for ? ∈ {4, B},
\? is a constraint over the set of initial states, d? is a safety constraint over the
current and the next states, and � ?

8
is a liveness constraint specifying a set of states

that are required to always eventually be visited. Without loss of generality, we
can assume the variables in V are Boolean, in which case the contract formalism
discussed earlier captures Formula (5.9) exactly. That is, the setB = (2V)l consists
of all possible plays of the game and Formula (5.9) is a GR(1) contract of the form
(�, �⇒ �) for which the powerset of the set of all plays in which the antecedent �
holds is the set of all environments and the powerset of the set of all plays in which
the antecedent � fails or the consequent � holds is the set of all implementations.
A GR(1) contract is said to be realizable if the system has a strategy such that no

76

matter what the environment does, the resulting plays are implementations of the
contract.

Being of the form (�, �⇒ �), GR(1) contracts are certainly not reactive: as men-
tioned, a play in which the system successfully incapacitates the environment from
fulfilling its obligations in the antecedent is considered to be an implementation.
This vacuous satisfaction may result in unintended behaviors: in fact, there has re-
cently been work aimed at finding “environmentally-friendly” implementations that
allow the environment to satisfy its promises (Majumdar, Piterman, and Schmuck,
2019). Of course, a designer may attempt to mitigate this problem by making the
contract reactive, to which end, they will need to somehow come up with a proper
characterization of the setsA, G, Δ, and '. Relatively speaking, the one that is often
the “easiest” to characterize among these isG because system designers usually have
some idea of a set of basic services the system should provide. In addition, they
can also think of a set of less desirable but still acceptable services that the system
may resort to when a failure occurs. The set A can be less straight forward to con-
struct because it is difficult to anticipate potential failures. In addition, the multiple
possible configurations (some may be unreachable) of the system/environment at
which a failure happens often determine the possibility of recovery and therefore
should be considered. For many such reasons, system designers may only come up
with a set of fragmentary, perhaps very specific and incomplete assumptions and
guarantees that they think may be relevant. In so far as A and G are fragmentary
and the relationships between their elements are unknown, one is not quite ready to
specify Δ and '. The contract synthesis question becomes: how do we synthesize
from these sets of coarse assumptions and guarantees a compact and fundamental
road map for specifying reactivity?
A key relation between elements of A and G is that of realizability since, after all,
including an unrealizable pair in a reaction from ' does not guarantee an imple-
mentation. More importantly, this relation can be efficiently computed for GR(1)
games as part of the same synthesis algorithm mentioned earlier. From this point
on, we will denote by R ⊆ A ×G the realizability relation that satisfies (�, �) ∈ R
if and only if (�, �) is realizable. From R, an answer to the above question may be
found in the form of a Galois connection between 2A and 2G .

Definition 5.4.1 (Galois connection). Given two partially ordered sets (�, ≤�) and
(�, ≤�), a (antitone) Galois connection between these two sets consists of a pair of

77

maps ∗ : �→ � and ∗ : � → � such that for any 0 ∈ � and 6 ∈ �

0 ≤� 6∗ ⇔ 6 ≤� 0∗

where 0∗ and 6∗ denote the applications of ∗ and ∗ to 0 ∈ � and 6 ∈ �.

Define the “forward” map ∗ by ∗ : (A ↦→ {� | ∀� ∈ (A .(�, �) ∈ R} and the
“pullback” map ∗ by ∗ : (G ↦→ {� | ∀� ∈ (G .(�, �) ∈ R}. One can verify that
these maps satisfy the requirement of Definition 5.4.1 and therefore form a Galois
connection. It is well know that the compositions of Galois connection operators,
namely, ∗◦∗ and ∗◦∗ are dual closure operators and give rise to fixpoint pairs that
form isomorphic complete lattices when ordered by set inclusion (Denecke, Erné,
and Wismath, 2013). In our case, the one that comes from the coarse assumptions
will be called the assumption lattice and the other the guarantee lattice.

Each of these fixpoint pairs is of the form ((A , (G) where (A is the largest subset
of A, each element of which is realizable with all guarantees in the subset (G of
G and vice versa. Observe that since each assumption in (A is realizable with
all guarantees in (G , we can take the disjunction of all fragmentary assumptions
in (A to form a single new assumption that is also realizable with any guarantee
from (G . Dually, when actions taken in the GR(1) games are reversible (hence the
ability to satisfy two liveness goals separately implies the ability to satisfy them
jointly), we can get a single guarantee from (G by taking the conjunction of all
its guarantees. In fact, we can get a smaller representation of the fixpoints with
some more refactoring. We can simplify (G ((A) to (′G ((′A) by subtracting from
it all guarantees (assumptions) contained in any descendant (ancestor) of the node
corresponding to (G ((A) on the guarantee (assumption) lattice. Note that operation
may result in an empty set (and if that is the case, we will denote it by the symbol
“∧” (“∨”) as in Fig. 5.3. Thus, these new and compact fixpoints ((′A , (

′
G) allow us

to define new sets of assumptions and guarantees A′ and G′ with complete lattice
structures that can be used to specify Δ and '. On the assumption lattice, the greater
elements represent assumptions that are more favorable to the system and conversely
on the guarantee lattice, the greater elements are more “difficult” for the system to
satisfy (see Fig. 5.3). In other words, descending any chain from the assumption
lattice is equivalent to experiencing more and more restrictive assumptions that may
be associated with more severe failures. A chain on the guarantee lattice however
represents all possible guarantees that can be realizable if the largest element of the
chain is realizable.

78

Figure 5.1: A screenshot of a simulation trace. At this point, no failure has occured.
The red robot is holding down a red button for the crate-carrying blue robot to cross.
The simulation and synthesis code is available at (Phan-Minh, 2019a).

Note that the most costly step in the described procedure is the computation of the
realizability relation R which has time complexity $ (|R|=3) where = is the length
of the longest GR(1) formula. However, this should be done offline during the
design/planning process. It is, nevertheless, easy to parallelize and also optimize this
computation using a priori knowledge about A and G. In addition, full knowledge
of R may not be necessarily for most applications and for that reason it can be
incrementally refined. The following case study will demonstrate this method.

5.5 Case Study: a Reactive GR(1) Contract on 3 Islands
Fig. 5.1 and 5.2 are two screenshots from a simulation in (Phan-Minh, 2019a)
that captures a reactive GR(1) game involving two land robots that navigate and
manipulate an uncertain gridworld environment consisting of 3 islands connected
by 2 bridges in order to satisfy some liveness objectives. In Fig. 5.1, the blue
“transporter” robot (r1) is shown carrying a crate across the black bridge, which
only deploys when at least one of the red buttons (which may unexpectedly fail and
turn grey in the animation) is held down by either robot, which in this scene, is
the red “supervisor” robot (r2). The brown bridge is always available but, like the
buttons, can suddenly go out of service (see Fig. 5.2). The crate (movable only by
the transporter robot) can only be picked up from the black square patch (a factory

79

Figure 5.2: The brown bridge broke, the two robots are stranded.

that is home to these robots) and deposited at either the silver or yellow square
patches (shipping ports), after which it will respawn at the black patch. The set of
coarse guarantees G consists of 7 elements:

• �♦box_r2_far (resp., �♦box_r2_near): the supervisor robot r2 stands on
the yellow (resp., silver) square patch to supervise the dropping off of the crate
there by the other robot infinitely often.

• �♦box_far (resp., �♦box_near): the crate gets dropped off at the yellow
(resp., silver) square patch infinitely often (possibly without the supervisor
robot being present).

• �♦r2_far (resp., �♦r2_near, �♦r2_home): the supervisor robot patrols the
yellow (resp., silver, black) square patch infinitely often.

The setA that coarsely characterizes possible operating scenarios is constructed by
taking the conjunction of all variables appearing in elements of the product set ob-
tained from the sets {r1_home, r1_near, r1_far}, {r2_home, r2_near, r2_far},
and 2{�bridge,�button1,�button2}. An element of A can be r1_home ∧ r2_far ∧
�bridge ∧ �button1, denoting the condition that the transporter robot r1 starts
on the “home” island (the one with the black patch), the supervisor robot r2 starts
on the “far” island (yellow patch), and the button on the island with the silver patch,

80

Figure 5.3: Order isomorphic assumption/guarantee lattices of Galois fixpoints
computed for the 3 island scenario. See Table 5.1 for details on each �′

8
/�′

8
.

button2, is broken. We observe that A has 72 elements and is initially disjoint.
The Galois connection calculation will reduce this relatively large number of cases
to only 9 in A′ as can be seen from Fig. 5.3.

A calculation of R on A × G (which has 72 × 7 elements) using slugs, a GR(1)
synthesis tool (Ehlers and Raman, 2016), on a laptop with an Intel i7-4720HQ
processor and 16GB of RAM took approximately 40 minutes (not parallelized). It
took about 3 seconds to generate the lattices using a fixpoint calculation algorithm
from (Outrata and Vychodil, 2012). Note also that since all actions performed by
the two robots in this example are reversible, if under an assumption, two liveness
guarantees can be realized separately, their conjunction will also be realizable. This
observation will also be used to synthesize one of the most basic forms of reactive
contracts, namely: an “optimal” reactive contract, in which the reaction ' is defined
to consist of all finite and infinite sequences whose elements are of the form (U, W)
where U is an assumption from a node on the assumption lattice and W is the
conjunction of the corresponding guarantee on the guarantee lattice together with
all guarantees contained in its descendant nodes. The contigency Δ is defined to be
the sequences obtained by projecting away W from any sequence in '. In Fig. 5.3,
if U = �bridge ∧ (r2_far ∨ r2_near), then W = �♦r2_near ∧ �♦r2_far.

Consider a scenario in which we are given the lattices A′ and G′ and a set � ⊆ F
where F consists of Boolean variables encoding all impending failures (in the 3 is-
land scenarios, F = {�button1,�button2,�bridge}) along with a set 6min ⊆ G′

consisting of baseline guarantees that we would like the system to maintain. Algo-
rithm 2 shows how one can use the assume-guarantee lattices to find an implemen-

81

Table 5.1: Assume-guarantee lattice data for Fig. 5.3.

8 �′
8

� ′
8

1 �bridge∧�button2∧ (�button1∨ r1_far∨ r1_near∨ r2_far∨
r2_near)

�♦box_r2_far

2 �button2∧(r1_home∨r1_near)∧(r2_home∨r2_near)∧(r2_home∨
r2_near) ∧ (�button1 ∨ r1_near ∨ r2_near)

�♦box_r2_near

3 �bridge ∧ �button1 ∧ (r1_home ∨ r2_home) �♦box_far
4 �button1∧(r1_home∨r1_near)∧(r1_home∨r2_home)∧(r2_home∨
r2_near)

�♦box_near

5 �bridge ∧ (r2_far ∨ r2_near) ∅ (or ∧)
6 r2_home �♦r2_home
7 r2_near �♦r2_near
8 r2_far �♦r2_far
9 ∅ (or ∧) ∅ (or ∨)

tation that is robust against � while maintaining at least 6min starting from an initial
configuration �init. In line 2 of the algorithm, a check is performed to see if the

Algorithm 2 Find robust reactive GR(1) implementation for prioritized failures
1: function findRobustImplementation(A′,G′, �init, �, 6min)
2: if �init ∉ ∪U∈A ′U then
3: error out: “initial state is not in contract!”
4: else
5: W ← sup≤G′ 6min
6: U← the A′ node corresponding to W
7: Uinv ← U∨ (∨0∈ancestors(U)0) with variables in � replaced by False and

variables in F \ � replaced by True
8: if isRealizable(�init, W ∧ Uinv) then
9: W′← largest guarantee such that isRealizable(�init, W′ ∧ Uinv)
10: return getStrategy(�init, W′ ∧ Uinv)
11: else
12: error out: “robust strategy doesn’t exist!”

initial configuration �init is a valid assumption; if not, an error will be thrown (line
3). In line 5, the algorithm finds the least node on G′ such that W and its descendants
contain 6min (this always exists and is unique by the completeness of G′). Line
6 defines U as the corresponding node to W on A′. Hence, U ∨ (∨0∈ancestors(U)0)
corresponds to the most relaxed assumption for which 6min can be guaranteed. In
other words, all configurations from which 6min can be satisfied are contained in
it. In line 7, an invariant constraint Uinv is computed from U ∨ (∨0∈ancestors(U)0) by
assuming that all failures in � have occurred. This represents configurations from
which W can still be guaranteed. In line 8, a check is performed to see if it is possible
to satisfy W while maintaining Uinv. If the answer is yes, the algorithm attempts
to find a better guarantee than W (possibly using bisection) and will return a robust

82

strategy that guarantees it (lines 9− 10); otherwise it will throw an error saying that
such a robust strategy does not exist (line 12).

In the 3 island example, if we start out at an initial configuration where at least
one robot is not on the home island, 6min is anything, and � = {�button1}, then
algorithm 2 will return a robust strategy with W′ = G′ (all guarantees) which never
allows both robots to be on the “home” island at the same time (because if button1
fails, then the robots will not be able to leave the home island). In particular, if
6min = {�♦box_r2_far}, then Uinv will be equal to r1_far∨r1_near∨r2_far∨
r2_near.

5.6 Conclusion
In this chapter, we have developed a metatheory-compatible contract framework
that focuses on specifying a system’s reactions to antecedent failures and related it
to a reactive synthesis setting involving GR(1) contracts. We have also looked at
automating the process of synthesizing and simplifying reactive contracts by com-
puting fixpoint pairs of a certain Galois connection between the system’s assumption
and guarantee sets and carried out a simulated case study that concretizes our ideas.
There are potentials in 1) exploring and developing methods to automate the process
of finding coarse assumptions with (Alur, Moarref, and Topcu, 2013; Chen et al.,
2020) as good starting points, and 2) studying compositions of systems specified by
reactive contracts as well as the propagation of failures through these compositions.

References

Alur, Rajeev, Salar Moarref, and Ufuk Topcu (2013). “Counter-strategy guided
refinement of GR (1) temporal logic specifications.” In: 2013 Formal Methods in
Computer-Aided Design. IEEE, pp. 26–33.

Arnold, André and Damian Niwinski (2001). Rudiments of calculus. Vol. 146.
Elsevier.

Azzopardi, Shaun, Gordon J. Pace, and Fernando Schapachnik (2014). “Contract
Automata with Reparations.” In: JURIX. Vol. 271. Frontiers in Artificial Intelli-
gence and Applications. IOS Press, pp. 49–54.

Bloem, Roderick (Sept. 2015). “Reactive synthesis.” In: 2015 Formal Methods in
Computer-Aided Design (FMCAD), pp. 3–3. doi: 10.1109/FMCAD.2015.
7542241.

Censi, Andrea (2015). “A mathematical theory of co-design.” In: arXiv preprint
arXiv:1512.08055.

83

Chen,Yuxiao, SumanthDathathri, Tung Phan-Minh, andRichardM.Murray (2020).
“Counter-example Guided Learning of Bounds on Environment Behavior.” In:
Conference on Robot Learning, pp. 898–909. url: http://proceedings.mlr.
press/v100/chen20b.html.

Clarke Jr., EdmundM., Orna Grumberg, Daniel Kroening, Doron Peled, and Helmut
Veith (2018). Model checking. MIT press.

Dathathri, Sumanth, Scott C. Livingston, and Richard M. Murray (2017). “Enhanc-
ing tolerance to unexpected jumps in GR(1) games.” In: Proceedings of the 8th
International Conference on Cyber-Physical Systems, ICCPS 2017, Pittsburgh,
Pennsylvania, USA, April 18-20, 2017. Ed. by Sonia Martínez, Eduardo Tovar,
Chris Gill, and Bruno Sinopoli. ACM, pp. 37–47. doi: 10.1145/3055004.
3055014. url: https://doi.org/10.1145/3055004.3055014.

Denecke, Klaus, Marcel Erné, and Shelly L. Wismath (2013). Galois connections
and applications. Vol. 565. Springer Science & Business Media.

Ehlers, Rüdiger and Vasumathi Raman (2016). “Slugs: Extensible gr (1) synthesis.”
In: International Conference on Computer Aided Verification. Springer, pp. 333–
339.

Henzinger, Thomas A., Peter W. Kopke, Anuj Puri, and Pravin Varaiya (1998).
“What’s decidable about hybrid automata?” In: Journal of computer and system
sciences 57.1, pp. 94–124.

Kim, Eric S., Murat Arcak, and Sanjit A. Seshia (2017). “A Small Gain Theorem
for Parametric Assume-Guarantee Contracts.” In: Proceedings of the 20th Inter-
national Conference on Hybrid Systems: Computation and Control. HSCC ’17.
Pittsburgh, Pennsylvania, USA: ACM, pp. 207–216. isbn: 978-1-4503-4590-3.
doi: 10.1145/3049797.3049805. url: http://doi.acm.org/10.1145/
3049797.3049805.

Kim, Eric S., Sadra Sadraddini, Calin Belta, Murat Arcak, and Sanjit A. Seshia
(2017). “Dynamic contracts for distributed temporal logic control of traffic net-
works.” In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC).
IEEE, pp. 3640–3645.

Livingston, Scott C., Pavithra Prabhakar, Alex B. Jose, and Richard M. Murray
(May 2013). “Patching task-level robot controllers based on a local `-calculus
formula.” In: 2013 IEEE International Conference on Robotics and Automation,
pp. 4588–4595. doi: 10.1109/ICRA.2013.6631229.

Majumdar,Rupak,Nir Piterman, andAnne-Kathrin Schmuck (2019). “Environmentally-
friendly GR(1) Synthesis.” In: arXiv preprint arXiv:1902.05629.

Maoz, Shahar and JanOliver Ringert (2015). “GR (1) synthesis for LTL specification
patterns.” In: Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering. ACM, pp. 96–106.

84

Outrata, Jan and Vilem Vychodil (2012). “Fast algorithm for computing fixpoints of
Galois connections induced by object-attribute relational data.” In: Information
Sciences 185.1, pp. 114–127.

Phan-Minh, Tung (2019a).ReactiveContracts.https://github.com/tungminhphan/
reactive_contracts, accessed April 30 2019.

– (2019b). TLA+ specifications for an Automated Valet Parking Garage. https:
//github.com/tungminhphan/reactive_contracts/blob/master/
scenarios/AutomatedValetParking.tla, accessed May 2 2019.

Piterman, Nir, Amir Pnueli, and Yaniv Sa’ar (2006). “Synthesis of reactive (1) de-
signs.” In: International Workshop on Verification, Model Checking, and Abstract
Interpretation. Springer, pp. 364–380.

85

C h a p t e r 6

ASSUME-GUARANTEE PROFILES1

6.1 Introduction
Autonomous vehicles will certainly have to function alongside humans—that is,
unless or until a fully-automated transportation infrastructure can be built. The
interaction between self-driving cars and humans will inevitably result in unforeseen
safety and legality situations. Self-driving car manufacturers are expected to be
responsible for ensuring that the behavior of their carsminimizes the risk of collision.
However, the current rules are often designed heuristically on a case by case basis,
lacking transparency, predictability, and performance (Paden et al., 2016; Shalev-
Shwartz, Shammah, and Shashua, 2017).

If self-driving cars were to agree to restrict their state space to a region defined by
some behavioral contract, there would be less uncertainty in behavior prediction,
thereby making it significantly easier to choose mutually beneficial and safe actions.
The process of identifying the party responsible for an accident would also be
simplified. Furthermore, car manufacturers could even begin to optimize their car
behavior to refine and customize driving preferences.

Formal methods offer many tools and frameworks for designing and proving speci-
fications that guarantee high-level behaviors such as safety and liveness in complex
systems like self-driving cars. However, in related approaches, specifications for
self-driving cars are often scenario-specific and are formulated independently of
one another (Shalev-Shwartz, Shammah, and Shashua, 2017). State space explo-
sion also greatly limits the scalability of these methods (Baier and Katoen, 2008;
Wongpiromsarn, Karaman, and Frazzoli, 2011).

Amore general approach involves designing “rulebooks” for self-driving cars (Censi
et al., 2019). These rulebooks order the set of rules for self-driving cars according
to a hierarchy taking the form of a preorder, which intentionally leaves ambiguity in
their behaviors. The authors in (Censi et al., 2019) do not consider allowing agents
to make assumptions about one another. As a consequence, they do not address how
to accommodate for the unpredictable and law-evasive nature of human drivers. In
light of these issues, we propose a framework that can be used to:

1The material in this chapter comes from joint work with Karena X. Cai and Richard M. Murray.

86

1. Identify high-level specifications and their relationships as part of a hierar-
chical structure that describes a self-driving car’s desirable behavior on the
road.

2. Define consistency, coverage, and completeness for a set of specifications.

3. Introduce an assume-guarantee contract formalism for specification structures
and notions of rationality and blame.

4. Present a basic and consistent set of axioms for self-driving cars that can be
refined and built upon.

5. Demonstrate with game-theoretic examples how rational autonomous vehicle
behaviors can be computed/agreed upon under the assumption that they are
aware of each other’s specification structures.

We ultimatelywant to be able to guarantee that self-driving carswill behave correctly
and not be responsible for accidents. This chapter offers a step in that direction.

6.2 Overview
In a dynamic and interactive environment, the problem of providing guarantees for a
single agent without making any assumption on the behaviors of other agents is ill-
posed. We show the inherent coupling between the assumptions on the environment
and the system’s guarantees in Fig. 6.1. Our framework of assume-guarantee profiles
is intended to explicitly address this issue.

Definition 6.2.1 (Assume-guarantee profile). An assume-guarantee profile for an
agent is a 2-tuple (A,G) where

• A is a set of behavioral preferences or characteristics that the agent assumes
its environment to have.

• G is a set of behavioral preferences or characteristics that it is obligated to
behave according to as long as its environment makes decisions in accordance
with A.

To model the sets of behavioral preferences or characteristics mentioned in Defi-
nition 6.2.1, we propose a mathematical object termed specification structure that
describes a hierarchy on sets of what we call dimensional properties. A property

87

Figure 6.1: A high-level system architecture capturing the inherent coupling of the
behavioral specifications for an agent and its environment is shown in the bottom
figure. The details of each agent’s architecture for defining its behavior are shown
in the top. Each agent identifies the best action to take by using the oracle to define
which specifications will be satisfied if an action is taken, and using a consistent
evaluator to rank those actions based on a hierarchical ordering defined in the
specification structure.

is a desirable attribute that can either be satisfied or not satisfied. A dimensional
property is a property whose satisfaction is independent of the satisfaction of other
properties. Examples of dimensional properties include safety, lawfulness, cour-
tesy, and comfort. Safety does not necessarily imply comfort and vice versa. The
guarantee we make in our assume-guarantee contract is that the self-driving car
will act in accordance with the specification structure. Intuitively, this means of all
subsets of specifications that the car can satisfy, it will choose to satisfy the one that
is ranked highest in priority with respect to the specification structure. We define
this more rigorously in the next section.

6.3 Evaluator and Evaluated Structure
Before presenting the formal definition of a specification structure, we make the
following assumption about the predictive capabilities of a self-driving car.

Assumption 1 (Oracle). We assume that each autonomous agent relies on an oracle
(Sipser, 2012) that provides predictions to its queries about the satisfaction of
dimensional properties of interest for any action or strategy that it is considering.
The input to the oracle is a set of dimensional properties, a potential action or strategy

88

the car can choose to take, and the current world state configuration. The output of
the oracle is some prediction of what specifications (dimensional properties) will
be satisfied if a strategy is followed. In the simplest case, the oracle could return a
valuation of a set of a Boolean variables, each indicating whether or not a property
is violated.

Although many decision/optimization problems currently posed for autonomous ve-
hicles are of high computational complexities, not to mention undecidable (Madani,
Hanks, and Condon, 2003; Papadimitriou and Tsitsiklis, 1987), we expect future
technology to be capable of approximating the oracle to an acceptable level of fi-
delity (see (Lefèvre, Vasquez, and Laugier, 2014) for a sample of related methods).
If a set of dimensional properties is simply partially ordered, then there may not be
enough structure to uniquely identify which action should be taken.

Example 6.3.1. Consider a set (= {0, 1, 2, 3, 4} that is partially ordered (a poset)
such that 1 ≺ 0, 2 ≺ 0, 3 ≺ 2, and 4 ≺ 2. Here, each element in the set represents
a dimensional property like safety, the law, performance, etc. By this partial order,
the node 1 cannot be compared to 2 or 3 or 4. For a self-driving car, any action
will result in satisfying a subset of the dimensional properties. Since 1 cannot be
compared to 2 or 3 or 4, it is ambiguous whether a self-driving car should take an
action that satisfies the properties 0, 1, and 2 or an action that satisfies 0, 1, and 3.

With only a partial ordering on the dimensional properties, there can be ambiguity
in choosing the best subset of properties that can be satisfied. In order to resolve
this, we introduce the idea of consistent evaluators, which are a class of functions
that can endow some posets with a unique weak order on their powersets. Being
weakly ordered means that all subsets are comparable, but some subsets may have
equal values to each other (these are considered indistinguishable). Any of these
evaluators must, in addition to basing its evaluations on the original partial order,
somehow try its best to resolve any apparently missing information in a transparent
and consistent way.

In a practical setting, if a self-driving carmanufacturer wanted to impose a total order
instead of a weak order on the powerset, they would have to face the challenging task
of defining how any one set of dimensional properties is strictly better or worse than
another set of dimensional properties. This is arguably not only impractical because
of the exponential growth in the size of the powerset, but also because sometimes
a strict comparison among sets of properties is simply unnecessary. A consistent

89

evaluator, which allows for sets in the powerset to have equal value, therefore allows
for a more practical way of resolving comparisons between subsets of specfications.

We refer to chains (antichains) of partially-ordered sets in our definitions and proofs,
so we present the definitions here.

Definition 6.3.1 (Chain/Antichain). A chain (antichain) is a subset of a partially
ordered set such that any two distinct elements in the subset are comparable (incom-
parable).

Definition 6.3.2 (Consistent evaluator). Given a set of dimensional properties P
and its powerset 2P , we say that 5 : 2P →) , where) is a totally ordered set with ≤
as the ordering relation, is a consistent evaluator for P if for all subsets %1, %2 ⊆ P,
the following hold:

1. %1 ≠ ∅ ⇒ 5 (∅) < 5 (%1).

2. ∀?1 ∈ %1 :: ∀?2 ∈ %2 :: 5 ({?1}) = 5 ({?2}) ⇒ (5 (%1) ≤ 5 (%2) ⇒
5 (%1 − {?1}) ≤ 5 (%2 − {?2})).

3. (∀?1 ∈ %1 :: ∀?2 ∈ %2 :: 5 ({?1}) ≠ 5 ({?2})) ⇒ (max
?∈%1

5 ({?}) <
max
@∈%2

5 ({@}) ⇒ 5 (%1) < 5 (%2)).

If P is partially ordered by � and A(%,�) is the set of all antichains of P, we further
require that for any ?1, ?2 ∈ P

4. ?1 ≺ ?2 ⇒ 5 ({?1}) < 5 ({?2}).

5. ({?1, ?2} ∈ A(%,�) ∧ 5 ({?1}) < 5 ({?2})) ⇒ ∃B, C ∈ P :: ?1 ≺ B∧ 5 ({B}) ≤
5 ({?2}) ∧ 5 ({?1}) ≤ 5 ({C}) ∧ C ≺ ?2.

Intuitively, the conditions in Definition 6.3.2 mean

1. The evaluator will assign the worst value when no property is satisfied. This
ensures that every property included in P matters to the evaluator.

2. Properties of equal value to the evaluator can be disregarded without affecting
the result of the evaluation.

3. For sets that do not have properties with the same values, the one with the
most highly valued property is preferable.

90

4. If there exists a pre-imposed hierarchy between some of the properties, then
the evaluator must respect it.

5. Given a pre-imposed hierarchy on the properties, the evaluator must be impar-
tial: it will only assign different values to two properties whose relationship
is not defined in the hierarchy when they are comparable via two “proxies.”

Example 6.3.2. Consider a partially ordered set& in which ? is the greatest element
and all other elements belong to an antichain. Then we can define 5 as the function
5 (&̃) B 1?∈&̃ |& | + |&̃ − {?}| for all &̃ ⊆ & where 1 is the indicator function. This
function evaluates any subset with the maximal element in it as the cardinality of &
plus the dimension of the subset with the element ? thrown out. It also evaluates
any subset without the maximal element as the dimension of that subset. One can
easily verify that 5 is a consistent evaluator for &.

Figure 6.2: A poset that does not admit a consistent evaluator. The values in
parentheses denote the value of the singleton set containing that node given by the
evaluator 58. In both cases, requirement 5 is violated.

Example 6.3.3 (Poset without consistent evaluator). Consider the poset with the
structure shown in Fig. 6.2 and for simplicity, assume) = N0. We cannot define
a consistent evaluator that satisfies all five requirements on this partially-ordered
set. In order to satisfy requirement 4, such that the partial order established in
the poset is preserved, the consistent evaluator function 51 on the left and 52 on
the right can, WLOG, assign all nodes on the right branch of the poset with the
values shown in Fig. 6.2. To respect the partial order, by requirements 4 and 5
of consistent evaluators, ?2 must be assigned a value in {0, 1}. The left figure
shows what happens if the function takes on the value 1 for the left node, i.e.,
51({?2}) = 1. If this happens, then 51({?1}) < 51({?2}), but there is no proxy
node that is comparable to ?2 in the poset and has a value equal to 51({?1}). This
clearly violates requirement 5. The right figure shows what happens if the function

91

takes on the value 0, i.e. 52({?1}) = 0. A similar violation is incurred by 52

(see (Phan-Minh, Cai, and Murray, 2019)).

Through the previous examples, we see that not all posets admit a consistent evalu-
ator. The natural question to ask is: what makes posets consistently evaluable? The
next theorem will answer this question. Before stating the theorem, we will give
one more definition. First observe that for any set of maximal antichains A of a set
partially ordered by �, there exists an induced total preorder← (i.e., a preorder in
which any two elements are comparable) defined by:

∀�1, �2 ∈ A :: �1 ← �2 ⇒ ∃01 ∈ �1 :: ∃02 ∈ �2 :: 01 ≺ 02.

Observe that← is indeed a total preorder because of the maximality assumption on
the antichains.

Theorem 1. A finite poset % of dimensional properties has a consistent evaluator if
and only if it can be partitioned by a set A of # maximal antichains such that

1. A’s induced total preorder is a total order.

2. For each dimensional property, there exists a maximal chain containing it of
length # .

Lemma 3. Condition 1 of Theorem 1 is equivalent to the fact that the maximal
antichains can be assigned ranks in such a way the partial order is respected.

Proof (Sketch). Define the ranks in accordance with the induced total order on the
antichains and verify. �

We are ready to give a proof for Theorem 1.

Proof. (⇒): Suppose that % is a poset of dimensional properties with the ordering
relation � such that % has a consistent evaluator 5 . Since % is finite, the set
5% B { 5 ({?}) | ? ∈ %} is also finite. Furthermore, the range of 5 being totally
ordered implies that we can write 5% = {I1, I2, . . . , I=} for = = | 5% | such that
I1 < I2 < . . . < I=. For each I8 ∈ 5%, let 5 −1(I8) ⊆ % be defined by 5 −1(I8) B
{? | ? ∈ % ∧ 5 ({?}) = I8}. Observe that requirement 4 of Definition 6.3.2
implies that for each 8, 5 −1(I8) is an antichain. Consequently, the 5 −1(I8)’s form
a partition of % by antichains. By ranking each 5 −1(I8) by the corresponding I8,

92

it also follows that the antichains respect the partial order defined by �. To show
maximality, suppose that there exists 9 ∈ [=] such that 5 −1(I 9) is not a maximal
antichain. This implies that there exists : ∈ [=] − { 9} and there is a property
@★ ∈ 5 −1(I:) such that {@★} ∪ 5 −1(I 9) is an antichain. WLOG, suppose 9 < :

so that I 9 < I: implies ∀@ ∈ 5 −1(I 9) :: 5 ({@}) < 5 ({@★}). If : = 9 + 1, the
existence of any @̃ ∈ 5 −1(I 9) such that 5 (@̃) < 5 (@★) implies, by requirement 5
of Definition 6.3.2, that there exists @′ ∈ 5 −1(I 9) such that @′ ≺ @★. But this
contradicts the assumption that {@★} ∪ 5 −1(I 9) is an antichain. Suppose up to
: = C with : + 1 ≤ C < =, there exists no @★ ∈ 5 −1(I:) such that {@★} ∪ 5 −1(I 9)
is an antichain. We will show that this also holds for : = C + 1. Indeed, by the
induction hypothesis, @★ can only potentially come from 5 −1(IC+1). Since for any
@ ∈ 5 −1(I 9), 5 ({@}) < 5 ({@★}), by requirement 5, there is @1 and @2 such that
@ ≺ @1 and @2 ≺ @★ while 5 ({@1}) ≤ 5 ({@★}) and 5 ({@}) ≤ 5 ({@2}). By
requirement 4, @2 must belong to one of 5 −1(I 9), 5 −1(I 9+1), . . . , 5 −1(IC+1). By the
induction hypothesis, there is a @′ ∈ 5 −1(I 9) such that @′ ≺ @2. Thus @′ ≺ @★, a
contradiction. From this, we conclude Lemma 3 and hence 1) hold.

To see that 2) holds, observe that any property ? ∈ 5 −1(I 9), if 9 ≠ = and = ≥ 2,
then by requirement 5 and the antichain property of the 5 −1(I 9), there exists @ ∈
5 −1(I 9+1) such that ? ≺ @. Similarly, if 9 ≠ 1 and = ≥ 2, there exists A ∈ 5 −1(I 9−1)
such that A ≺ ?. Applying this argument to A and/or @ inductively yields a chain of
length = that contains @. This chain is maximal by the contradiction resulting from
applying the pigeonhole principle to the assignment of properties from any chain of
greater length to the maximal antichains.
(⇐): We can easily verify that requirements 1-4 of a consistent evaluator are
satisfied. Now, we show that requirement 5 holds as well. Let us show this by
contradiction. Consider that there exists a node ?1 and ?2 such that 5 ({?1}) <
5 ({?2}), but there does not exist a node B or C such that ?1 ≺ B, C ≺ ?2, and
5 ({?2}) = 5 ({B}) and 5 ({?1}) = 5 ({C}). WLOG, consider ?1 to be a node where
there does not exist a node B such that ?1 ≺ B and 5 ({?2}) = 5 ({B}). Since there
is no node that is directly comparable to ?1 in the antichain with value equal to
5 ({?2}), there exists a maximal chain containing ?1 that has length strictly less than
<. This is a violation of property 2) characterizing the poset %. �

Is it possible that there may be multiple such decompositions of maximal antichains,
making the ordering that is induced via the corresponding rankings non-unique and

93

hence the “consistent evaluator” not very consistent? Luckily, the answer is a
reassuring negative.

Theorem 2. The partition in Theorem 1 is unique.

Proof. Suppose that %1, %2, . . . , %< is also a partition of maximal antichains of %
with ranks A (%1) < A (%2) < . . . < A (%<) that respect the partial order. Suppose that
< ≠ = where = = | 5% |. If < > =, then by 2) of Theorem 1, there is a chain of length
<. However, assigning these < properties to the 5 −1(I8) means by the pigeonhole
principle that there are at least two properties that are assigned to the same 5 −1(I 9)
for some 9 , implying that 5 −1(I 9) is not an antichain, namely, a contradiction. It
follows that < ≤ =. Similarly, we can argue that < ≥ = and therefore < = =. Now,
we claim that %8 = 5 −1(I8) for all 8 ∈ {1, 2, . . . , =}. Suppose this is not the case,
then there exists ? ∈ %: such that ? ∈ 5 −1(Iℎ) for : ≠ ℎ. Then by 2), there are two
chains of length =: ?1 ≺ ?2 ≺ . . . ≺ ?= and 51 ≺ 52 ≺ . . . ≺ 5= such that ?8 ∈ %8
and 58 ∈ 5 −1(I8). We also have ?: = 5ℎ = ?. WLOG, assume ℎ < : . This implies
that ?1 ≺ ?2 ≺ . . . ≺ ?: = ? = 5ℎ ≺ 5ℎ+1 ≺ . . . ≺ 5=. However, this chain has
length : + = − ℎ > = since : > ℎ. This contradicts the fact that % can be partitioned
into = antichains. �

We have defined the necessary and sufficient properties posets need to have so they
can be consistently evaluated. It turns out that not all of these posets are “intuitive”
as shown in Example 6.3.4. This prompts us to introduce a class of posets that are
consistently evaluable but also easier to deal with.

Figure 6.3: Both posets admit consistent evaluators. The value the consistent
evaluator assigns on each singleton that consists of the node is written in parentheses.
Note that the poset on the left has the additional graded property while the one on
the right does not.

Example 6.3.4. Consider the posets in Fig. 6.3. Any evaluator 5 that assigns the
values according to the values in the parentheses, shown in the figure, can easily

94

be verified to have properties 1-4 of consistent evaluation. On the left poset, we
can also see that property 5 is also satisfied since for every pair of nodes such that
5 (?1) < 5 (?2) implies that there exist proxy nodes B and C such that 5 (?1) = 5 (C),
5 (?2) = 5 (B), ?1 ≺ B, and ?2 ≺ C. This relation can be easily seen for the nodes ?1

and ?2 in Fig. 6.3. The same statement applies to the poset on the right.

Definition 6.3.3 (Specification structure). A specification structure is a finite,
graded, partially ordered set of dimensional properties P. Namely, if � is the
ordering relation for P and ≺ is the strict version thereof satisfying G ≺ H ⇔ (G �
H ∧ G ≠ H), then there exists a ranking function d : P → N such that

1. ?1 ≺ ?2 ⇒ d(?1) < d(?2).

2. ?1 l ?2 ⇒ d(?2) = d(?1) + 1.

3. ? is a minimal element of P ⇒ d(?) = 0.

where l denotes the covering relation on P that satisfies

?1 l ?2 ⇔ ?1 ≺ ?2 ∧ ∀? ∈ P :: ¬(?1 ≺ ? ∧ ? ≺ ?2).

We immediately have the following corollary.

Corollary 2. Any specification structure can be consistently evaluated.

Proof. This follows directly from Theorem 1 and the fact that any graded poset has
properties 1) and 2) defined therein. �

The following lemma is a standard result.

Lemma 4. A poset is graded if and only if all of its maximal chains have the same
length.

It turns out that any consistently evaluable poset can be reduced to a “canonical”
form that has the graded property and the same exact consistent evaluation.

Theorem 3. Each consistently evaluable poset can be turned into a graded poset
that is equivalent under consistent evaluation.

95

Proof (Sketch). This is achieved by removing all “edges” that span more than 2
levels of antichains in the unique partition of Theorem 1. One can without much
difficulty verify that doing so will remove all maximal chains with length strictly
less than the total number of these antichains, which by Lemma 4 implies that
the resulting poset is graded. Since the other antichains are not affected by these
operations, the resulting evaluation is not affected either. �

Figure 6.4: This shows how the consistent evaluator function , works on a speci-
fication structure. The function W computes a tuple for each subset, and compares
the elements from most significant to least significant digits (left to right).

Example 6.3.5 (Evaluating a specification structure). Let S, L, ND, FE, Cf, C be
dimensional properties denoting safety, lawfulness, no deadlock, fuel efficiency,
comfort, and courtesy respectively. Let % B {S, L, ND, FE, Cf, C}. The partial
order on these dimensional properties is shown in Fig. 6.4. Given the current world
configuration, we assume that the oracle can determinewhich subset of specifications
will be satisfied by taking a given action. Let %U B {S, ND, L} denote the subset
of specifications satisfied by taking action U. Similarly, let %V B {S, Cf, C}. To
compare the actions U and V, given %U, %V, we use the evaluator , defined in
the proof of Theorem 1 to make the comparison. , (%U) = [1, 1, 1] since there
is one specification from each rank that can be satisfied by taking the action U,
and , (%V) = [1, 0, 2] since there are two properties with rank 0 and one property
with rank 2 that can be satisfied by taking action V. Therefore, to evaluate their
relative importance, the most significant figure corresponds to the left-most element
in the tuple since that element has the highest rank. We begin our comparison there.
Note that ,8 represents the 8th the element of the tuple. Since ,0(%U) = 1 and
,0(%V) = 1, we have to keep comparing elements in the tuple to determine which
one has higher ordering. We find,1(%U) > ,1(%V). Therefore, %U dominates %V

96

by the weak order imposed by the , evaluator, and therefore, the action U should
be chosen over V.

6.4 Consistency and Coverage
We would like to introduce the ideas of consistency and coverage of a set of speci-
fications that are hierarchically-ordered in a specification structure. In this context,
consistency is defined as the ability to be uniquely and consistently evaluable. Cov-
erage is defined by the extent of the dimensional properties specified. A specification
structure that has more dimensional properties (i.e. encompasses a broader range
of specifications) therefore has more coverage.

Consistency
The notion of consistency comes from Theorem 4, which says that there is a unique
weak order on the powerset of a specification structure regardless of the consistent
evaluator used.

Theorem 4 (Consistency implies uniqueness). If P is a poset with an ordering
relation � that can be consistently evaluated, then all consistent evaluators of P
are equivalent. That is, for any pair of consistent evaluators 50, 51 of P, for all
%1, %2 ⊆ P, we have

50 (%1) ≤ 50 (%2) ⇔ 51 (%1) ≤ 51 (%2).

Proof. By symmetry, it is sufficient to prove the (⇒) direction. Suppose 50 (%1) ≤
50 (%2). Now since P is consistently evaluable, by Theorems 1 and 2, it can be
partitioned by a unique set of maximal antichains {�A}'A=1. By requirement 4 of
Definition 6.3.2, one can show that any consistent evaluatorwill rank these antichains
the same way. Namely, any consistent evaluator 5 of P can be assumed, WLOG, to
satisfy the following conditions

1. 5 ({?1}) < 5 ({?2}) < . . . < 5 ({?'}), for ?A ∈ �A , A ∈ {1, . . . , '}.

2. 5 ({@8}) = 5 ({A8}), for any @A , AA ∈ �A , A ∈ {1, . . . , '}.

Condition 2 above implies that all pairs of nodes that are of equal value to 50 are
also of equal value to 51 and vice versa. So by requirement 2 of Definition 6.3.2,
we can assume that %1 and %2 do not overlap in property values due to either 50 or
51. If %1 = ∅, then by requirement 1, we have 51 (%1) < 51 (%2). Otherwise, by

97

requirement 3, let ?★
8
∈ %8 be the property that maximizes the value of 5 on %8, we

have 50 (%1) ≤ 50 (%2), which implies that ?★1 ≺ ?
★
2 since 50 (?★1) ≠ 50 (?★2) due to

%1 and %2 not overlapping in property values and therefore 51 (%1) < 51 (%2). �

Coverage
While the placement of the edges of the directed graph presenting a specification
structure determines its consistency, inclusion (or exclusion) of nodes determines its
coverage. In order to increase the coverage of an existing specification structure, we
must be able to refine the graph in a consistent manner. Refinement is equivalent to
adding dimensional properties (nodes) or comparisons (edges) to the specification
structure in a way that preserves the gradedness property of a specification structure.
We now define how to properly add a node or edge into the specification structure
in a way that preserves the specification structure’s mathematical properties. The
following is a direct corollary of Lemma 4.

Corollary 3 (Proper mode or edge refinement). If a node (or an edge) is added to the
specification structure such that its relationship to the other nodes (the comparison
it makes) is defined in a way that all maximal chains have the same length, then the
resulting partially ordered set is also a specification structure.

Examples for proper (and improper) ways of adding a new node as well as examples
of making minimal modifications to accommodate for an inconsistently-added node
are included in (Phan-Minh, Cai, and Murray, 2019).

Example 6.4.1. Here, we give a very simple specification structure: lawfulness (L)
≺ no deadlock (ND) ≺ safety (S). We consider the consistent evaluator, (presented
in the proof of Theorem 1). , will have the ordering , ({L}) < , ({ND}) <
, ({S}) < , ({S, L}) < , ({S, ND}) < , ({S, L, ND}). The ordering intuitively
means that a car should always prioritize taking actions that satisfy all three types
of specifications. However, if there is a situation where a car cannot ensure safety
without breaking the law, then it should break the law to maintain safety since
, ({S}) > , ({L}). Also, this hierarchy says if there is a situation where the car
is in a deadlock, it can break the law since, ({S, ND}) > , ({S, L}) as long as the
action is still safe.

As long as the car chooses behaviors that respect the weak order from the consistent
evaluator on the specification structure, the system will satisfy the guarantees part
of the assume-guarantee contract, and therefore perform actions that are “correct.”

98

Figure 6.5: The assumptions are based on a set of specifications structures that
satisfy some constraints, which is shown on the left. The guarantees are based on a
single specification structure that is shown on the right.

We now introduce how assumptions can be defined with respect to the specification
structure.

6.5 Assume-Guarantee Profiling
While each autonomous vehicle should only guarantee that it will behave according
to a single specification structure, we want our assumptions on the environment
(other agents) to accommodate for the diverse behaviors displayed by human drivers
who may not follow the law all the time. This implies that other agents might choose
to follow any one of a large number of possible specification structures. In order to
make any guarantees about safety, we have to make some assumptions on how other
agents might behave. We constrain the set of specifications structures of other agents
to always prioritize safety first. Since other agents presumably follow the law most
of the time, we also include a relative ordering constraint where safety is prioritized
before the law. We have only defined a relative ordering between safety and law in
the assumptions since we do not exactly know where other dimensional properties
will fit within that agent’s specification structure. Therefore, our assumptions on the
environment can be defined as follows:

Definition 6.5.1 (Assumption set). Let (denote the set of all specification structures.
Let % be a set of dimensional properties. Let ? ∈ %. The assumptions in the assume-
guarantee contract is defined as:

�spec = {(8 ∈ (| (safety ∈ (8) ∧ (lawfulness ∈ (8) ∧ (∀? ∈ (8 :: ? � safety)}.

It is the set of all specification structures that both safety and lawfulness are in-

99

cluded in the specification structure and that safety has the highest rank out of all
dimensional properties included in the specification structure.

The following revised assume-guarantee definition of Definition 6.2.1 characterizes
the set of specification structures agents in the environment can be assumed to have
and the specifications that an individual self-driving car can guarantee.

Definition 6.5.2 (Assume-guarantee profiling revised). An assume-guarantee con-
tract C defined for an agent is a pair (A,G), where

1. A is a set of specification structures for the agent’s environment that is a
subset of the set generated by Definition 6.5.1.

2. G is the guarantee of the agent in the form of a single, pre-defined specification
structure.

This assume-guarantee profiling is shown in Fig. 6.5. Let J be the index set for a set
of agents. For C9 = (A 9 ,G9), let 9 be the index of an agent,A 9 be the assumptions
that agent 9 is making about its environment, and G9 be its guarantees. We say that
the group of agents indexed by J are compatible if

∀ 9 ∈ J :: ∀8 ∈ J − { 9} :: G9 ∈ A8 .

This says that the guarantees of agent 9 must be included in the assumptions of
all other agents in the compatible set. If one agent 8 has guarantees corresponding
to a specification structure that is not included in another agent :’s assumptions,
then correct behavior cannot be guaranteed. Assuming that all agents’ assumptions
and guarantees are compatible, we can formulate the notion of a blame-worthy
action/strategy.

Definition 6.5.3 (Blameworthy action). A blameworthy action/strategy is one in
which an agent violates its guarantees, thereby causing another agent’s assumptions
not to be satisfied and thus resulting in an unwanted situation where blame must be
assigned.

In order to show an example of an assume-guarantee contract that might be legally
imposed for self-driving cars, we present a set of axioms for the road. The spec-
ification structures defined in the assumptions and guarantees of this contract are
intentionally left unrefined, since it would ultimately be up to a car-manufacturer to
determine the remaining ordering of specification properties.

100

no collision

no delay well-being

courtesy

lawfulness

no collision

no dead/live-lock

lawfulness

comfort no delay courtesy

fuel economy local etiquette

Figure 6.6: Two examples of refined assumption (left) and guarantee (right) spec-
ification structures. Dimensional properties of the root structures are in bold text.
The left structure may correspond to that of an ambulance while the right structure
may correspond to a civilian vehicle.

A1 Other agents will not act such that collision is inevitable.

A2 Other agents will often act corresponding to traffic laws, but will not always
follow them.

G1 An agent will take no action that makes collision inevitable.

G2 An agent will follow traffic laws, unless following them leads to inevitable
collision.

G3 An agent may violate the law if that can safely get it out of a dead/live-lock
situation.

We can see from Fig. 6.6 how these axioms have a direct mapping to a specification
structure. We argue that this sort of root structure might be imposed by a governing
body to ensure the safe behaviors of self-driving cars.

6.6 Some Examples and the Definition of Completeness
The assume-guarantee contract over specification structures allows us to formally
characterize the set of correct behaviors for self-driving cars and human-operated
vehicles. In this section, we present some preliminary examples of how these types
of high-level behavioral specifications might be applied in some traffic scenarios
and use them to motivate the definition of completeness. Under the simplified
assumption that each agent has a single specification structure (i.e. agents are not
human), each agent will have a well-defined ordering of which actions have higher

101

value, and will therefore have a well-defined utility function over actions. Game
theory provides a mathematical model of strategic interaction between rational
decision-makers that have known utility functions (Fudenberg and Tirole, 1991).
We can therefore use game-theoretic concepts to analyze which pair of actions will
be jointly advantageous for the agents given their specification structures.

Example 6.6.1. Consider the case where there are two agents, each of whose
specification structures are specified in Fig. 6.7. In this game, Player Y encounters
some debris, and must choose an action. Player Y can either choose to stay in its
current location, or do a passing maneuver that requires it to break the law. Player X
represents a car moving in the opposite direction of Player Y. In this case, Player X
can either move at its current velocity or accelerate. The move and accelerate action
make Player X move one and two steps forward, respectively. The, function is the
same as one in the proof of Theorem 1.

Figure 6.7: The game scenario when Player Y encounters debris on its side of the
road. The specification structures of each of the agents are given by (G and (H.

,G is evaluated on the specification structure (G shown on the left side of Fig. 6.7
and,H is evaluated on (H. Assuming there is a competent oracle who gives the same
prediction for both agents, the resulting payoff matrix according to the specification
structures are given in Table 6.1 (note that an equivalent decimal conversion of the
scores is given for ease of reading).

Table 6.1: Obstacle game.

playerX/playerY Stay Pass

Move ,G (1, 1, 0) ∼ 6
,H (1, 0, 1) ∼ 3

,G (1, 1, 0) ∼ 6
,H (1, 1, 0) ∼ 6

Accelerate ,G (1, 1, 1) ∼ 7
,H (1, 0, 1) ∼ 3

,G (0, 0, 0) ∼ 0
,H (0, 0, 0) ∼ 0

From the table, we can see that there are two Nash equilibria in this game scenario.
The two equilibria are Pareto efficient, meaning there are no other outcomes where
one player could be made better off without making the other player worse off.

102

Since there are two equilibria, there is ambiguity in determining which action each
player should take in this scenario despite the fact that the specification structures
are known to both players. This shows that compatibility is not enough to have
completeness.

There is a whole literature on equilibrium selection (Fudenberg and Tirole, 1991).
The easiest way to resolve this particular stand-off, however, would be to either
1) communicate which action the driver will take or 2) define a convention that
all self-driving cars should have when such a situation occurs. In this particular
scenario, however, Player X can certainly avoid accident by choosing to maintain
speed while Player Y can also avoid accident by staying. Any “greedy” action of
either Player X or Y may pose the risk of crashing depending on the action of the
other player. This suggests a risk-averse resolution in accident-sensitive scenarios
like this one. Alternatively, we can define new rules/specifications to refine the
agents’ specification structures so that their optimal actions either imply one of the
two cases above.

Example 6.6.2. For this chapter, we have abstracted the perception system of the
self-driving car to the all-knowing oracle. We first consider the case where the
oracles on each of the cars are in agreement, and then consider the potential danger
when the oracles of the cars differ. In this scenario, we assume that there are two cars
that are entering an intersection with some positive velocity, as shown in Fig. 6.8.

Figure 6.8: The game scenario where two cars are approaching an intersection, but
have different beliefs about the state of the traffic light.

In the case where both vehicles’ oracles agree on the same information, i.e. that
the yellow light will remain on for long enough for both vehicles to move past the
intersection, the best action for both Player X and Player Y is to move forward.

Now, consider the case where the oracles are giving incompatible beliefs about the
environment, namely, the state of the traffic signal. Let X have the erroneous belief
the traffic light will turn red very soon, and it assumes that Y’s oracle believes the

103

Table 6.2: Red light game 1.

playerX/playerY Slow Move

Slow ,G (1, 1, 0) ∼ 6
,H (1, 1, 0) ∼ 6

,G (0, 1, 0) ∼ 2
,H (0, 0, 0) ∼ 0

Move ,G (1, 0, 1) ∼ 3
,H (1, 1, 0) ∼ 6

,G (1, 0, 1) ∼ 3
,H (1, 0, 1) ∼ 3

same thing. X’s oracle gives rise to Table 6.2, according to which the conclusion
that Player X will make is that both of the cars should choose to slow down.

Assume that Y has a perfect oracle that predicts that the traffic light will stay yellow
for long enough such that Y would also be able to make it through the intersection.
If Y assumes that X has the same information (see Table 6.3), then the best choice
for both is to move forward into the intersection.

Table 6.3: Red light game 2.

playerX/playerY Slow Move

Slow ,G (1, 1, 0) ∼ 6
,H (1, 1, 0) ∼ 6

,G (0, 1, 0) ∼ 2
,H (0, 0, 0) ∼ 0

Move ,G (1, 1, 1) ∼ 7
,H (1, 1, 0) ∼ 6

,G (1, 1, 1) ∼ 7
,H (1, 1, 1) ∼ 7

The incompatible perception information will thus cause Player X to stop and Player
Y to move forward, ultimately leading to collision. This particular collision is
not defined by incorrectly-specified behavior, but is instead caused by errors in the
perception system.

These examples motivate the following definition of completeness.

Definition 6.6.1 (Completeness). A set of specification structures of a group of
agents are complete if in all scenarios, assuming perfect sensor input, the optimal
action returned by the oracle for each agent with respect to their respective spec-
ification structure can be chosen without compromising safety (no collision) and
liveness (each agent will eventually reach its goal).

6.7 Conclusion
To summarize, we have introduced a framework that allows us to formulate specifi-
cations that govern high-level behaviors of autonomous vehicles. If specifications
are hierarchically ordered into a specification structure, actions and strategies can

104

be compared to one another in a consistent manner. Furthermore, the coverage of
specification structure can be increased by properly defining new properties and
relations. We introduce the idea of having assume-guarantee contracts defined over
these specification structures that serve as profiles for implicit agreement. A contract
essentially says that if the environment can be assumed to behave according to some
softly-constrained specification structure, then the self-driving car can guarantee
that it will behave according to its own specification structure. Blame is defined
as the case where a car does not act according to its assumed specification struc-
ture. Finally, we provide some examples of how cars following these specification
structures might behave in game-theoretic experiment settings.

In the next chapter, we will present an application of this framework to a sys-
tem of autonomous (vehicles) agents in which liveness and safety can be formally
guaranteed.

References

Baier, Christel and Joost-Pieter Katoen (2008). Principles of Model Checking. Cam-
bridge, Massachussetts: MIT Press.

Censi, Andrea, Konstantin Slutsky, Tichakorn Wongpiromsarn, Dmitry Yershov,
Scott Pendleton, James Fu, and Emilio Frazzoli (Feb. 2019). “Liability, Ethics,
and Culture-Aware Behavior Specification using Rulebooks.” In: arXiv e-prints,
arXiv:1902.09355.

Fudenberg, Drew and Jean Tirole (1991). Game Theory. MIT Press.

Lefèvre, Stéphanie, Dizan Vasquez, and Christian Laugier (2014). “A survey on
motion prediction and risk assessment for intelligent vehicles.” In: ROBOMECH
1.1, p. 1.

Madani, Omid, Steve Hanks, and Anne Condon (2003). “On the undecidability of
probabilistic planning and related stochastic optimization problems.” In:Artificial
Intelligence 147.1-2, pp. 5–34.

Paden, Brian, Michal Cap, Sze Z. Yong, Dmitry Yershov, and Emilio Frazzoli (Mar.
2016). “A Survey of Motion Planning and Control Techniques for Self-Driving
Urban Vehicles.” In: T-IV 1.1, pp. 33–55. issn: 2379-8904.

Papadimitriou, ChristosH. and JohnN.Tsitsiklis (1987). “The complexity ofMarkov
decision processes.” In: Mathematics of operations research 12.3, pp. 441–450.

Phan-Minh, Tung, Karena X. Cai, and Richard M. Murray (2019). Towards Assume-
Guarantee Profiles for Autonomous Vehicles. Tech. rep. https://www.cds.
caltech.edu/\%7emurray/preprints/pcm19-acc_tr_s.pdf, accessed
March 2019. California Institute of Technology.

105

Shalev-Shwartz, Shai, Shaked Shammah, and Amnon Shashua (Aug. 2017). “On
a Formal Model of Safe and Scalable Self-driving Cars.” In: arXiv e-prints,
arXiv:1708.06374, arXiv:1708.06374. arXiv: 1708.06374 [cs.RO].

Sipser, Michael (2012). Introduction to the Theory of Computation. Cengage Learn-
ing.

Wongpiromsarn, Tichakorn, Sertac Karaman, and Emilio Frazzoli (Oct. 2011).
“Synthesis of provably correct controllers for autonomous vehicles in urban en-
vironments.” In: ITSC, pp. 1168–1173.

106

C h a p t e r 7

RULES OF THE ROAD1

7.1 Introduction
It is difficult to imagine that autonomous vehicles will ever be integrated into our
society unless we can be assured of their safety and efficacy. The current prevailing
methodology used for proving safety of these vehicles is simulating and test-driving
these vehicles for millions of miles, which is a practice that lacks both formal
verifiability and scalability.

Formal methods offers tools for designing provably correct control strategies for
complex systems like autonomous vehicles that satisfy high-level behavioral spec-
ifications like safety and liveness (Baier and Katoen, 2008) for each individual
vehicle. The algorithms used for synthesizing formally-correct strategies for the ve-
hicles, however, cannot guarantee global safety since they do not make the assump-
tions that must hold on other vehicle behaviors explicit (Wongpiromsarn, Karaman,
and Frazzoli, 2011; Censi, Slutsky, et al., 2019; Tumova et al., 2013).

Instead of reasoning about safety on the individual agent level, Shoham and Ten-
nenholtz introduced the idea of reasoning about safety as a property of a collection
of agents (Shoham and Tennenholtz, 1995). In particular, they introduce the idea
of social laws, which are a set of rules imposed upon all agents in a multiagent
system to ensure some desirable global behaviors like safety or progress (Shoham
and Tennenholtz, 1995; van Der Hoek, Roberts, andWooldridge, 2007). The design
of social laws is intended to achieve the desirable global behavioral properties in a
minimally-restrictive way (Shoham and Tennenholtz, 1995). The problem of auto-
matically synthesizing useful social laws for a set of agents for a general state space,
however, has been shown to be NP-complete (Shoham and Tennenholtz, 1995).

The Responsibility-Sensitive-Safety (RSS) framework (Shalev-Shwartz, Shammah,
and Shashua, 2017) adopts a similar top-down philosophy for guaranteeing safety
by providing a set of rules, which if followed by all agents, guarantees no collisions.
In the case of an accident, the responsible party can be identified. This frame-

1The material in this chapter comes from joint work with Karena X. Cai, Soon-Jo Chung, and
Richard M. Murray.

107

work, however, does not take into account the progress of vehicles towards their
destinations.

The problem of fully guaranteeing safety and liveness of decision-making agents
is especially challenging since 1) agents are often competing for the same set of
resources (some region of the road network) and 2) agents must reason about
highly-coupled and complex interactions with other agents. Historically, interactive
partially observable Markov Decision Processes (I-POMDPs) have been proposed
to model these complex interactions—but these methods lack scalability (Gmy-
trasiewicz and Doshi, 2005; Papadimitriou and Tsitsiklis, 1987). More recently,
learning approaches have been proposed, but they require large amounts of data
while failing to provide any safety or liveness guarantees (Sadigh, Sastry, et al.,
2016; Fisac et al., 2019; Finn, Levine, and Abbeel, 2016; Sadigh, Dragan, et al.,
2013).

The process for resolving multiple conflicting processes in a local, decentralized
manner is addressed in the Drinking Philosopher problem, which provides a mech-
anism for resolving issues arising from synchronous decision-making (Chandy and
Misra, 1984). The solution to the Drinking Philosopher problem is an algorithm
that assigns precedence among a set of agents that have conflicting goals. The al-
gorithm preserves acyclicity and fairness in the precedence graph, thereby ensuring
consistency and fairness among all agents in the game. Our work is an adaptation of
the Drinking Philosopher problem to the multi-agent collision-avoidance problem
on a road network, where the resource agents compete for road occupancy. We
design a decision-making strategy that defines how agents choose their actions.
Minimal communication among agents allows each agent to consistently establish
precedence and resolve conflicts in a local, decentralized manner. Unlike previous
work by Sahin and Ozay (2020), our framework leverages the structure of the driving
road network and takes into account the inertial properties of agents. Furthermore,
we can guarantee safety and liveness if all agents operate according to the specified
decision-making strategy. Lastly, our approach is closely related to the token-based
conflict resolution analysis for interactions between autonomous agents that was
studied in (Censi, Bolognani, et al., 2019), but does not only consider pairwise
interactions.

The main contributions of this chapter are as follows:

1. The introduction of a newgameparadigm,whichwe term the quasi-simultaneous

108

discrete-time multi-agent game.

2. The definition of an agent protocol that defines local rules agentsmust follow in
two different contexts on a road network (i.e. road segments and intersections).

3. Safety and liveness proofs when all agents operate according to these local
rules.

4. A simulated environment that serves as a proof of concept for the safety and
liveness guarantees.

7.2 Overview
In this overview, we give a high-level presentation of the main contributions in
this work. All the terms will be formalized and described in further depth in later
sections of the chapter.

The Quasi-Simultaneous Discrete-Time Game
In this chapter, we introduce the quasi-simultaneous discrete-timemulti-agent game.
The quasi-simultaneous game is amodification of turn-based games so that turn order
is defined locally and induced by the agent states as opposed to being fixed and/or
predefined. This newgame format leverages the structure of the game environment to
assign precedence among agents. In this way, it partially constrains the set of actions
an agent can choose from based on the agent environment (via the order the agent
gets to take its turn in). The quasi-simultaneous game models the agent’s decision-
making process in a multi-agent game differently than traditional simultaneous or
turn-based games found in (Gmytrasiewicz andDoshi, 2005) and (Fisac et al., 2019),
and to the best of the authors’ knowledge have not been introduced in the literature
before.

The Agent Protocol
The Agent Protocol is defined to establish local rules agents must follow while
making decisions on the road network.

109

��������

��������

��������

�����
������

�����������

�����
������

	����
�����

�������
����������������

���������

����������

����������
�������������

�

������
��������
��������

����������

������
����������
����������

����������
���������������

�� ��������

�������������

�������������������������
��
��������
��	����������
���������������

�� �
������
���������
��������

�� ���������

���������������������������������

Figure 7.1: Agent Protocol Architecture.

The novelty of our work is the introduction of a single backup plan action that all
agents rely on. Dependence on this backup plan action is what ultimately allows
for the decoupling of agent dependencies when reasoning about one another, while
still allowing for strong global guarantees on safety and liveness. The following is
an overview of the Agent Protocol. For each time step of the game, each agent first
assigns local precedence according to the rules described in Section 7.4, thereby
establishing a consistent turn order (in a local manner). Then, each agent evaluates a
set of actions and chooses the best one according to their own Agent Profile (thereby
selecting their intended action), described in Section 7.4. Since the turn-order does
not fully resolve ambiguity regarding which agents should be allowed to take their
intended action at a given time, the action selection strategy, based on 1) what
actions agents ahead of it (in turn) have taken and 2) the results of the conflict-
cluster resolution described in 7.4, defines how agents should ultimately decide
which action to select. The next sections of this chapter will formalize these ideas
and go into greater depth of how these ideas work for a specific class of agents with
a particular set of dynamics. Note that specific assumptions specified in Sections
7.5 and 7.6 must hold on the road network for the guarantees to hold.

7.3 Quasi-Simultaneous Discrete-Time Multi-Agent Game
We formalize the definition of a quasi-simultaneous discrete-time multi-agent game
as follows. A state associated with a set of variables is an assignment of values
to those variables. A game evolves by a sequence of state changes. A quasi-
simultaneous game has the following two properties regarding state changes: 1)
Each agent will get to take a turn in each time-step of the game and 2) Each agent
must make their turn in an order that emerges from a locally-defined precedence

110

assignment algorithm (where locality is described in Section 7.4). Thus, the state-
change is simultaneous yet locally sequential because each agent must make a state-
change in a given time step, but it must “wait” for its turn according to turn order
(defined based on the locally-defined precedence assignment algorithm) during this
time-step. Let us define some preliminaries before formally defining the game.

We define a quasi-simultaneous game where all agents act in a local, decentralized
manner as follows

G = 〈A,Y, �2C [·] , d[·] , g[·] , %〉 (7.1)

where

• A is the set of all agents in the game G.

• Y is the set of all variables in the game G.

– Let U be the set of all Y-states, i.e. all possible assignment of values
(states) of the game.

– Given a subset . ⊆ Y, denote by U |. the projection of U onto . , i.e.
all possible states of the variables in the set . .

• For each agent Ag ∈ A, let:

– (Ag be the setU |VAg that contains all possible states of Ag.

– �2CAg be the set of all possible actions Ag can take.

– gAg : (Ag × �2CAg → (Ag. gAg be the transition function that defines the
state an agent will transition to when taking an action 0 ∈ �2CAg from a
given state.

– dAg : (Ag → 2�2CAg be a state-precondition function that defines a set of
actions an agent can take at a given state.

• % : U → PolyForest(A), is the precedence assignment function where
PolyForest is an operator that maps a set - to the set of all forests (undi-
rected graphs whose connected components are trees) defined on the set - .
The polyforest defines the global turn order (of precedence) of the set of all
agents A ∈ G based on the agent states.

Note, the transition function gAg and the state-precondition function dAg must be
compatible for any agent Ag. In particular,

∀Ag ∈ A.∀B ∈ (Ag.Domain(gAg(B, ·)) = dAg(B).

111

Agent Game Environment
Let us introduce the game environment for the agents.

Definition 7.3.1 (Road Network). A road networkℜ is a graphℜ = (�, �) where�
is the set of grid points and � is the set of edges that represent immediate adjacency
in the Cartesian space among grid points. Note that each grid point 6 ∈ � has a
set of associated properties P, where P = {?, 3, lo} which denote the Cartesian
coordinate, drivability of the grid point, and the set of legal orientations allowed on
the grid point, respectively. Note, ? ∈ Z2, 3 ∈ {0, 1} and lo is a set of headings q;
where each q; ∈ {north, east, south, west}.

Let us define ℜ|legal = (�, � |legal) to be a road network where a directed edge
4 = (61, 62) implies a legal (based on legal orientations) and dynamically-feasible
transition (according to d�6) exists between the grid points 61, 62 ∈ �.

Special Grid Point Sets

Grid points where specific properties hold are given special labels, which can be
seen in Fig. 7.2. These labels and the associated properties are defined as follows:

• Ssources, (Ssinks): A set of grid points designated for Ag to enter (or leave) the
road network ℜ from. Any B ∈ Ssources (B ∈ Ssinks) must be a grid point with
no inbound (outbound) edges in ℜ |legal.

• Sintersection: A set of grid points that contains all grid points with more than
one legal orientation.

• Straffic light: A set of grid points that represent the traffic light states in the
vertical or horizontal direction via its color (for every intersection).

Road Network Decomposition

The road network is hierarchically decomposed into lanes and bundles, which are
defined as follows:

• Lanes and Bundles: Let lane !0(6) define a set of grid points that contains
6 and all grid points that form a line going through 6. Let �D(6) be a set of
grid points that make up a set of lanes that are adjacent or equal to the lane
containing 6 and have the same legal orientation.

112

• Road Segments '(: Each bundle can be decomposed into a set of road
segments (separated by intersections). For each bundle, let us define a graph
�'(= (�, �) where � is a set of grid points and � is a set of edges between
any two grid points 61, 62 where 61, 62 ∉ Sintersection and �D(61) = �D(62).
Road segments 'B(6) is the set of all grid points that are in the same connected
component as the grid point 6 in the graph �'(.

������
����

������������

����������������
��
�	����
��
����

���� �����
���� ���	 ���� ����

������������

������
�����

����

����

	����
���

Figure 7.2: Road network decomposition where each box represents a grid point.

We introduce the following graph since it will be used in the liveness proof:

Definition 7.3.2 (Road Network Dependency Graph). We define a dependency
graph �dep = ('(, �), '(is the set of road segments in ℜ, and a directed edge
4 : (A1, A2) for A1, A2 ∈ '(implies that an agent Ag whose G − H position is
(B.G�6, B.H�6) ∈ A1 depends on the clearance of some agent Ag′ whose G − H
position (B.G�6′, B.H�6′) ∈ A2, where B.G�6 and B.H�6 are the x and y positions of
agent �6 and are defined formally in Section 7.4.

For clarity of the road network decomposition, refer to Fig. 7.2.

7.4 Agent Protocol
In the following section, we present the set of attributes agents must have and the
set of rules agents must adhere to in order to satisfy our proposed Agent Protocol.

Agent Attributes
Each agent Ag is characterized by a set of variablesVAg such that

{IdAg, TcAg, GoalAg} ⊆ VAg

113

where IdAg, TcAg, and GoalAg are the agent’s ID number, token count, and goal,
respectively, where the token count and ID are used in the conflict-cluster resolution
defined in Section 7.4.

In this chapter, we only consider car agents such that if Ag ∈ A, thenVAg includes
GAg, HAg, \Ag, EAg, namely its absolute coordinates, heading, and velocity. VAg also
has parameters:

0minAg ∈ Z, 0maxAg ∈ Z, EminAg ∈ Z and EmaxAg ∈ Z

which define the minimum and maximum accelerations and velocities, respectively.

The agent control actions are defined by two parameters: 1) an acceleration value
accAg between 0minAg and 0maxAg, and 2) a steer maneuver WAg ∈{left-turn,
right-turn, left-lane change,
right-lane change, straight}.

The discrete agent dynamics works as follows. At a given state B at time C, for a
given control action (acc�6, W�6), the agent first applies the acceleration to update its
velocity B.E�6,C+1 = B.E�6,C + accAg. Once the velocity is applied, the steer maneuver
(if at the proper velocity) is taken and the agent occupies a set of grid-points,
specified in Fig. 7.3, while taking its maneuver.

Agent grid point occupancy is defined as follows. Note that agents occupy a single
grid point at a given time, but when taking an action, they may occupy a set of grid
points. More formally:

Definition 7.4.1 (Grid Point Occupancy). The notion of grid point occupancy is
captured by the definitions of the following maps for each Ag ∈ A. To define the
grid point an agent is occupying at a given time, we use the map: GAg,C : (Ag → 2� ,
mapping each agent to the single grid point the agent occupies. By a slight abuse of
notation, we let G�6,C : (Ag× �2CAg → 2� be a function that maps each B ∈ (Ag and
0 ∈ dAg(B) to denote the set of all nodes that are occupied by the agent Ag when it
takes an allowable action 0 from state B at the time-step C.

The occupancy grids associated with each of the maneuvers allowed for the agents,
and the velocity that the agent has to be at to take the maneuver are shown in Fig. 7.3.

114

�������������������
������� ���������������������

������� ������� ������ �������

Figure 7.3: Shows different grid point occupancy associated with different discrete
agent maneuvers.

Note, the safety and liveness guarantees will hold for any choice of agent dynamic
parameters (i.e. 0<8=, 0<0G , E<8=, E<0G), but only under the condition that all agents
have the same set of dynamic parameters. The maneuvers must be the ones specified
above.

With slight abuse of notation, we let !0(Ag) refer to the lane ID associated with the
grid point (B.GAg, B.HAg), and �D(Ag) mean the bundle ID associated with the lane
!0(Ag).

Motion-Planning Algorithm

We assume that any graph planning algorithm can be used to specify an agent’s
motion plan. The motion plan must be divided into a set of critical points along
the graph that the agent must reach in order to get to its destination, but should not
specify the exact route agents must take to get to these critical points. It should
be noted that the liveness guarantees rely on the assumption that rerouting of the
agent’s motion plan is not supported.

Agent Backup Plan Action
A backup plan is a reserved set of actions an agent is entitled to execute at any time
while being immune to being at fault for a collision if one occurs. In other words,
an agent will always be able to safely take its backup plan action. We show that if
each agent can maintain the ability to safely execute its own backup plan (i.e. keep
a far enough distance behind a lead agent), the safety of the collective system safety
is guaranteed.

The default backup plan adopted here is that of applying maximal deceleration until
a complete stop is achieved, which is defined as:

115

Definition 7.4.2 (Backup Plan Action). The backup plan action 01? is a control
action where 0 = max(0min,−B.E�6), and WAg = straight. Note, the max is
because applying the deceleration (0min) should not push the car velocity below 0.
Note 0min is less than 0.

Note, it may takemultiple time-steps for an agent to come to a complete stop because
of the inertial dynamics of the agent.

Limits on Agent Perception
In real-life, agents make decisions based on local information. We model this
locality by defining a region of grid points around which agents have access to the
full (state and intention) information of the other agents.

Road Segments

For road segments, the region around which agents make decisions cannot be arbi-
trarily defined. In fact, an agent’s bubble must depend on its state, and the agent
attributes and dynamics of all agents in the game. In particular, the bubble can be
defined as follows:

Definition 7.4.3 (Bubble). Let Ag with state B0 ∈ SAg. Let agent Ag′ be another
agent. Then the bubble of Ag with respect to agents of the same type as Ag′ is given
byBAg/Ag′ (B0). The bubble is the minimal region of space (set of grid points) agents
need to have full information over to guarantee they can make a decision that will
preserve safety under the defined protocol. Since all �6 considered in this chapter
have the same attributes, for ease of notation, we refer to the bubble of �6 as BAg.

Figure 7.4: Bubble if all Ag ∈ A have the Agent Dynamics specified in Section 7.4.

116

For our protocol, the bubble contains any grid points in which another agent Ag′

occupying those grid points can interfere with at least one of Ag’s next possible
actions and the backup plan it would use if it were to take any one of those next
actions. With a slight abuse of notation, we say Ag′ ∈ BAg(B) if (B.GAg’, B.HAg’) is
on a grid point in the set BAg(B).

Intersections

The locality of information agents are restricted to is relaxed at intersections because
agents can presumably see across the intersection when making decisions about
crossing the intersection. More precisely, any Ag must be able to know about any
Ag′ ∈ A that is in the lanes of oncoming traffic (when performing an unprotected
left-turn). The computation of the exact region of perception necessary depends on
the agent dynamics. Locality for the local-precedence assignment algorithm is also
extended to this larger region at intersections as well.

Precedence Rules
The definition of the quasi-simultaneous game requires agents to locally assign
precedence, i.e. have a set of rules to define how to establish which agents have
higher, lower, equal, or incomparable precedence to it. Our precedence assignment
algorithm is motivated by capturing how precedence among agents is generally
established in real-life scenarios on a road network. In particular, since agents are
designed to move in the forward direction, we aim to capture the natural inclination
of agents to react to the actions of agents visibly ahead of it.

Before presenting the precedence assignment rules, we must introduce a few defini-
tions. Let us define: proj�long : A→ Z ∪ {∅} as proj�long(Ag) = the projection of the
Ag’s state onto the bundle � if Ag is in � and otherwise proj�long(Ag) = ∅. In other
words, proj�long(�6) is the mapping from an agent to its scalar projection onto the
longitudinal axis of the bundle � the agent Ag is in. If proj�long(Ag

′) < proj�long(Ag),
then the agent Ag′ is behind Ag in �.

117

�����������������
��������
���������
����������
���������

�����������������
��������������
��������������������
������������

��
�������������
�����������������������
����	������������������
������������

Figure 7.5: Rules for precedence assignment.

For every agent Ag′, the agent Ag defines the precedence relation between Ag and
Ag′ using the following set of precedence rules:

Local Precedence Assignment Rules

1. If proj�long(Ag
′) < proj�long(Ag) and �D(Ag

′) = �D(Ag), then Ag′ ≺ Ag, i.e.
if agents are in the same bundle and Ag is longitudinally ahead of Ag′, Ag has
higher precedence than Ag′.

2. If proj�long(Ag
′) = proj�long(Ag) and �D(Ag

′) = �D(Ag) , then Ag ∼ �6′, and
we say that Ag and Ag′ are equivalent in precedence.

3. If Ag′ andAg are not in the same bundle, then the two agents are incomparable.

Each agent Ag ∈ A only assigns precedence according to the above rules locally
to agents within its perception region (e.g. bubble on road segments and a slightly
larger region at intersections, defined in Section 7.4) when making a decision of
which action to take. Thus, we must show if all agents locally assign precedence
according to these rules, a globally-consistent turn precedence among all agents is
established. In particular, we need to prove the following lemma.

Lemma 5. If all agents assign precedence according to the local precedence as-
signment rules to agents in their respective bubbles, then precedence relations will
induce a polyforest on A/∼ (the quotient set of (by ∼).

Proof. Suppose there is a cycle � in A/∼. For each of the equivalent classes in �
(� must have at least 2 to be a cycle), choose a representative from A to form a
set '� . Let Ag ∈ '� be one of these representatives. Applying the second local

118

precedence assignment rule inductively, we can see that all agents in '� must be
from Ag’s bundle. By the first local precedence assignment rule, any � edge must
be from an agent with lower projected value to one with a higher projected value in
this bundle. Since these values are totally ordered (being integers), they must be the
same. This implies that � only has one equivalence class, a contradiction. �

The acyclicity of the polyforest structure implies the consistency of local agent
precedence assignments. Note, the local precedence assignment algorithm estab-
lishes the order in which agents are taking turns. Even when this order is established,
it is ambiguous what agents should do either when 1) agents of equal precedence
have conflicting intentions, since they select their actions at the same time or 2)
an agent’s intended action is a lane-change action and requires agents of lower or
equivalent precedence to change their behavior so the lane-change action is safe.
The additional set of rules introduced to resolve this ambiguity is what we refer to
as conflict cluster resolution, defined in Section 7.4.

Assume-Guarantee Profile
An assume-guarantee profile, introduced in Chapter 6, is a mechanism for ordering
agent specifications into a specific hierarchy so the process for choosing an agent’s
preferred action is transparent and safe. The concept is related to the concepts of
minimum-violation planning (Tumova et al., 2013; Censi, Slutsky, et al., 2019).

In this work, each agent uses an assume-guarantee profile to propose an intended
action. From Chapter 6, the assume-guarantee profile requires defining a set of
agent specifications. For completeness, we define how specifications are evaluated
in the game. Let A ∈ ' denote a specification for an agent and Ag ∈ A. For the
specification A , an oracle evaluates whether an agent taking an action in the current
joint state game configuration will satisfy the specification. More formally, the
oracle is defined as follows OAg,C : ' × (Ag × �2CAg × U → B where B = {T, F}
and the subscript C denotes the time-step the oracle is evaluated. These evaluations
can easily be refactored to accommodate specifications that are more continuous in
nature.

In this work, each agent has a total of ten different specifications, three of whose
oracles are defined as follows:

1. $�6,C,dynamic safety(B, 0, D) returns T when the action 0 from state B will not
cause Ag to either collide with another agent or end up in a state where the

119

agent’s safety backup plan 01? is no longer safe with respect to other agents
(assuming other agents are not simultaneously taking an action).

2. $�6,C,unprotected left-turn safety(B, 0, D) returns Twhen the action 0 from the state
Bwill result in the complete execution of a safe, unprotected left-turn (invariant
to agent precedence). Note, an unprotected left turn spans over multiple time-
steps. The oracle will return T if Ag has been waiting to take a left-turn (while
traffic light is green), traffic light turns red, and no agents in oncoming lanes.

3. $�6,C,reachability preservation progress(B, 0, D) returns T if the action 0 from the
state B will allow Ag′B planned path to remain reachable.

4. $static safety(B, 0, D) returns T when the action 0 from state B will not cause the
agent to collide with a static obstacle or end up in a state where the agent’s
safety backup plan 01? with respect to the static obstacle is no longer safe.

5. $traffic light(B, 0, D) returns T if the action 0 from the state B satisfies the traffic
light laws (not crossing into intersection when red. It also requires that Ag be
able to take 01? from B′ = gAg(B, 0) and not violate the traffic-light law.

6. $legal orientation(B, 0, D) returns T if the action 0 from the state B follows the
legal road orientation.

7. $traffic intersection clearance(B, 0, D) returns T if the action causes the agent to
enter the intersection and leave it when the traffic light turns red and if the
action causes the agent to end up in a state where if it performs its backup
plan action, it will still be able to leave the intersection.

8. $traffic intersection lane change(B, 0, D) returns T if the action is such that
W�6 = {left-lane change, right-lane change} and the agent either
begins in an intersection or ends up in the intersection after taking the action.

9. $maintains progress(B, 0, D) returns T if the action 0 from the state B stays the
same distance to its goal.

10. $forward progress(B, 0, D) returns T if the action 0 from the state B will improve
the agent’s progress towards the goal.

120
��������
������

������������
�������

������
������

���������
� ������������������� �������������������
������

�����������

�����������
����
�	�����

���������
��������

�

�������
��������

������

������

������

������

Figure 7.6: Assume-guarantee profile that shows ordering of specifications, where
specifications on the same tier are incomparable to one another.

The ordering of the specifications that each agent must follow is shown in Fig. 7.6.
In Chapter 6, the consistent-evaluating function , evaluates each action based on
the number of specifications it satisfies in each tier, where actions satisfying more
specifications in the higher tiers are valued more highly. The action with the highest
value is then selected as the action the agent takes. For this work, the agent profile
is used to define the agent’s intended action 08 and the agent’s best straight action
0BC which is defined in Section 7.4. Note, the dynamic safety oracle is not included
in the selection of the intended action 08–otherwise an agent might never propose
a lane-change action (since it would require other agents to yield in order for the
lane-change action to be safe).

Conflict-Cluster Resolution
At every time-step C, each agent will know when to take its turn based on its
local precedence assignment algorithm. Before taking its turn, the agent will have
selected an intended action 08 using the Agent profile. When it is the agent’s turn to
select an action, it must choose whether or not to take its intended action 08. When
the intended actions of multiple agents conflict, the conflict-cluster resolution is a
token-based querying method used to help agents determine which agent should get
to take its action.

Under the assumption that agents have access to the intentions of other agents within
a local region as defined in Section 7.4, agents can use the following criteria to define
when it conflicts with another agent.

Definition 7.4.4 (Agent-Action Conflict). Let us consider a Y-state in which an
agent Ag currently at state B ∈ (Ag and wants to take action 0 ∈ d�6 and an agent
Ag′ at state B′ ∈ (Ag′ that wants to take action 0′ ∈ d�6′. We say that an agent-action

121

conflict between Ag and Ag′ for 0 and 0′ occurs and write (Ag, B, 0) † (Ag′, B′, 0′)
if either of the following conditions holds:

• GAg,C (B, 0) ∩ GAg’,C (B′, 0′) ≠ ∅,

• Let BC+1 = gAg(B, 0) and B′C+1 = gAg′ (B
′, 0′):

If !0(BC+1) = !0(B′C+1) and 3 (BC+1, B
′
C+1) ≤ 60?req,

where 3 (BC+1, B′C+1) defines the ;2 distance between two states in the same lane and
60?req is the minimum distance between two agents in the same lane so that if the
agent in front applies their backup plan, the agent behind will be able to apply their
own backup plan without colliding with the former. 60?req can easily be computed
depending on the agent dynamics.

In the case that an agent’s action does conflict with another agent, the agent must
send a conflict request that ultimately serves as a bid the agent is making to take its
intended action. It cannot, however, send requests to any agent (e.g. agents in front
of it). The following criteria are used to determine the properties that must hold in
order for an agent Ag to send a conflict request to agent Ag′:

Criteria that Must Hold for Agent Ag to Send Conflict Request to Agent Ag’

• Ag’s intended action 08 is a lane-change action.

• Ag′ ∈ B�6 (B), i.e. Ag′ is in agent Ag’s bubble.

• Ag′ - �6, i.e. Ag has equal or higher precedence than Ag′.

• B.\�6 = B.\�6′, i.e. the agents have the same heading.

• (�6, 08) † (�6′, 0′8): agents’ intended actions are in conflict with one another.

• FAg(D, 08) = F, where FAg(D, 08) is the max-yielding-not-enough flag and is
defined below.

Definition 7.4.5 (maximum-yielding-not-enough flag). The maximum-yielding-
not-enough flag FAg : U × �2CAg → B that is defined as follows:

FAg(D, 08) =
{
T if ∃Ag′ ∈ B�6 (B)B.C.((Ag, 08) † (Ag′, 0bp))
F otherwise.

122

When the flag is set, it indicates a configuration in which even if Ag′ maximally
yielded to Ag, if Ag did a lane-change, it would violate the safety of Ag′’s backup
plan action.

We note that if FAg(D, 08) is set, Ag cannot send a conflict request by the last
condition. Even though Ag does not send a request, it must use the information that
the flag has been set in the agent’s Action Selection Strategy.

After a complete exchange of conflict requests, each agent will be a part of a cluster
of agents that define the set of agents it is ultimately bidding for its priority (to take
its intended action) over. These clusters of agents are defined as follows:

Definition 7.4.6 (Conflict Cluster). A conflict cluster for an agent Ag is defined as
C�6 = {�6′ ∈ A | �6 send Ag′ or �6′ send �6}, where Ag send �6′ implies
Ag has sent a conflict request to Ag′. An agents’ conflict cluster defines the set of
agents in its bubble that an agent is in conflict with.

����������
�� ��� ��
���
��
���
�

���
��

������������
�� ���	
�����������

���������	
���
��������

�
�
�
�
�
�

�
�
�
�
�

�

�

�
�

Figure 7.7: Conflict clusters

Once the conflict requests have been sent and an agent can thereby identify the
other agents in its conflict cluster, it needs to establish whether or not the conflict
resolution has resolved in its favor, as shown in Fig. 7.7.

Token Resolution

The conflict resolution strategy must be fair, meaning each agent always eventually
wins a conflict resolution. The resolution is based on the agents’ token counts Tc,
which is updated by agents to represent how many times an agent has been unable
to take a forward progress action.

Given the assumption that all agents can query the token counts of all other agents,
let us define the conflict resolution strategy. For each Ag ∈ A, letWAg ∈ B be an

123

indicator variable for whether or not the agent has won in its conflict cluster. Let
Tc�6 represent the token count of the agent when it has sent its request. Let Id�6
represent a unique ID number of an agent. The conflict cluster resolution indicator
variableWAg is determined as follows:

WAg B ∀Ag′ ∈ BAg(B) :: (TcAg′ < TcAg) ∨ ((TcAg′ = TcAg) ∧ IdAg′ < IdAg).

The agent with the highest token count is defined as the winner of the agents’ conflict
cluster and any ties are broken via an agent ID comparison.

The following lemma, which comes from the definition of the conflict-cluster reso-
lution scheme, is helpful for proving safety of the agent protocol.

Lemma 6. At most one agent will win in each agent’s conflict cluster.

Proof (Sketch). This follows from the definition of conflict clusters (i.e. all agents
will only send and receive requests from agents within their bubble), and the winner-
takes-all conflict-cluster resolution. �

The next section defines how each agent uses information from the conflict cluster
resolution to ultimately select an action.

Action Selection Strategy
The purpose of the agent Action Selection Strategy is to define whether or not an
agent is allowed to take its intended action 08 and if it is not, which alternative action
it should take. The action-selection strategy is defined to coordinate agents so that
lane-change maneuvers can be performed safely.

In the case where an agent is not allowed to take 08, the agent is restricted to take
either: the best straight action 0BC , which is defined in 7.4.7, or its backup plan
action 01?. The action-selection process that determines which of the three actions
an agent Ag will choose is determined by the following five conditions:

1. 08, the agent’s and other agents’ (in its bubble) intended actions, which have
been selected via the agent profile and the consistent evaluating function
defined in Section 7.4.

2. Ag’s role in conflict request cluster being:

• A conflict request sender (∃Ag′ ∈ BAg(B) : Ag send Ag′).

124

• A conflict request receiver (∃Ag′ ∈ BAg(B) : Ag′ send Ag).

• Both a sender and a receiver of conflict requests.

• Neither a conflict request sender or receiver.

3. The agent’s conflict cluster resolutionWAg.

4. Evaluation of $Ag,C,dynamic safety(B, 08, D).

5. FAg(D, 08) for Ag is raised, where FAg(D, 08) is the maximal-yielding-not-
enough flag defined in Section 7.4.

The Action Selection Strategy decision tree, shown in Fig. 7.8, defines how agents
should select which action to take based on the five different conditions.

�������������

���������������

������

�������

������������

�������������

�������������
�������������������������

�� ��� �
�

��

��

�������	�����

Figure 7.8: Agent action selection strategy.

The best straight action 0BC , one of the three allowable actions the agent can take
according to the action-selection strategy, is defined as follows:

Definition 7.4.7 (Best Straight Action). Let us consider Ag and its associated ac-
tion set dAg(B). Let us define d�6 (B) |stB {0 ∈ dAg(B) | WAg = straight},
i.e. the set of all allowable straight actions of Ag. The best straight action
0BC = arg max0∈dAg (B) |st,Ag(0), where , is the consistent evaluating function de-
fined with respect to the agent profile in Fig. 7.6, with the dynamic safety oracle
($Ag,C,dynamic safety(B, 0, D)) included.

When an agent is both a receiver of a conflict request and a loser in its conflict
cluster, it must yield to the agent that it received the conflict request from. The
Action Selection Strategy requires the agent to take its backup plan action 01? in
these scenarios, where the backup plan action 01? is the control action defined in
Definition 7.4.2.

125

Token Count Update

The token count updates according to the agent’s chosen action, in particular, if Ag
selects action 0:

TcAg =

{
TcAg + 1 if $forward progress(B, 0, D) = F
0 otherwise.

.

7.5 Safety Guarantees
Safety is guaranteed when agents do not collide with one another. An agent causes
collision when it takes an action that satisfies the following conditions.

Definition 7.5.1 (Collision). An agent Ag that takes an action 0 ∈ �2CAg will cause
collision if either of the following conditions hold:

1. GAg,C (B, 0) ∩ (∪Ag′GAg′ (B′, 0′)) ≠ ∅.

2. GAg,C (B, 0) ∩ $st) ≠ ∅, where $st = {6 ∈ � | 6.3 = 0}, i.e. the set of all
undrivable grid points.

In other words, when Ag’s action 0 causes it to overlap in the occupancy grid with
another agent’s occupancy grid or a static obstacle. Note when the agent Ag′ is
not simultaneously taking an action with Ag, the occupancy set GAg′ (B′, ·) is the
singleton set for the agent Ag′, representing the single grid point Ag’ is occupying.

A strategy where agents simply take actions that avoid collision in the current time-
step is insufficient for guaranteeing safety because of the inertial properties of the
agent dynamics. The Agent Protocol is thus also defined to avoid violating the safety
of its own and any other agent’s backup plan action 01? defined in Section 7.4. An
agent’s backup plan action 01? is evaluated to be safe when the following conditions
hold:

Definition 7.5.2. [Safety of a Backup Plan Action] Let us define the safety of an
agent’s backup plan action (Ag,1? : U = B, whereB = {T, F} is an indicator variable
that determines whether an agent’s backup plan action is safe or not. It is defined as
follows:

(�6,1? (D) = ∧>∈$>(B, 01?, D),

where the set $ is the set of all oracles in the top three tiers of the agent profile
defined in Section 7.4.

126

An agent Ag takes an action 0 ∈ �2CAg that violates the safety backup plan action
of another agent Ag′ when the following conditions hold:

Definition 7.5.3 (Safety Backup PlanViolationAction). Let us consider an agent Ag
that is taking an action 0 ∈ �2CAg, and another agent Ag′. The action (Ag, 0)⊥Ag′,
i.e. agent Ag violates the safety backup plan of an agent Ag′when by taking an action
0 where D′ is the state of the game after Ag has taken its action, then (Ag′,1? (D′) = F.

Note, when Ag ≠ Ag′, then Ag can only violate the backup plan action of the agent
Ag′ with its action 0 if the following conditions hold:

1. GAg(B, 0) ∩ GAg′ (B′, 0′) ≠ ∅,

2. Let BC+1 = g�6 (B, 0) and B′C+1 = g�6′ (B
′, 0′): If GAg(BC+1),GAg′ (BC+1) are in the

same lane and if 3 (BC+1, B′C+1) < 60?req,

where 3 (BC+1, B′C+1) and 60?req are the same as defined in Section 7.4.4.

The safety proof is based on the premise that all agents only take actions that do
not collide with other agents and maintain the invariance of the safety of their own
and other agents’ safety backup plan actions. The safety theorem statement and the
proof sketch are as follows.

We can treat the quasi-simultaneous game as a program, where each of the agents
are separate concurrent processes. A safety property for a program has the form
%⇒ �&, where % and& are immediate assertions. This means if the program starts
with % true, then & is always true throughout its execution (Owicki and Lamport,
1982).

Theorem 5 (Safety Guarantee). If all agents Ag ∈ A in the quasi-simultaneous
game select actions in accordance to the Agent Protocol specified in Section 7.4,
then we can show the safety property %⇒ �&, where the assertion % is an assertion
that the state of the game is such that ∀�6, (Ag,1? (B, D) = T, i.e. each agent has a
backup plan action that is safe, as defined in Section 7.5.2. We denote %C as the
assertion over the state of the game at the beginning of the time-step C, before agents
take their respective actions. & is the assertion that the agents never occupy the
same grid point in the same time-step (e.g. collision never occurs when agents take
their respective actions during that time-step). We denote&C as the assertion for the
agent states/actions taken at time-step C.

127

Proof. To prove an assertion of this form, we need to find an invariant assertion �
for which i) %⇒ �, ii) � ⇒ ��, and iii) � ⇒ & hold. We define � to be the assertion
that holds on the actions that agents select to take at a time-step. We denote �C to be
the assertion on the actions agents take at time C such that ∀�6, Ag takes 0 ∈ �2CAg
where 1) it does not collide with other agents, and 2) ∀Ag, (Ag,1? (D′) = T where
B′ = gAg(B, 0), and D′ is the corresponding global state of the game after each Ag
has taken its respective action 0.

It suffices to assume:

1. Each Ag ∈ A has access to the traffic light states.

2. There is no communication error in the conflict requests, token count queries,
and the agent intention signals.

3. All intersections in the road network ' are governed by traffic lights.

4. The traffic lights are designed to coordinate traffic such that if agents respect
the traffic light rules, they will not collide.

5. Agents follow the agent dynamics defined in Section 7.4.

6. For C = 0, ∀Ag ∈ A in the quasi-simultaneous game is initialized to:

• Be located on a distinct grid point on the road network.

• Have a safe backup plan action 01? such that (Ag,1? (B, D) = T.

We can prove %⇒ �& by showing the following:

1. %C ⇒ �C . This is equivalent to showing that if all agents are in a state where
% is satisfied at time C, then all agents will take actions at time C where the
� holds. This can be proven using arguments based on the Agent Protocol
showing each agent will always take actions that 1) do not collide with other
agents and 2) will not violate the safety of its own or other agents’ backup
plan action.

2. � ⇒ ��. If agents take actions at time C such that the assertion �C holds, then
by the definition of the assertion �, agents will end up in a state where at time
t+1, assertion % holds, meaning �C ⇒ %C+1. Since %C+1 ⇒ �C+1 from 1, we get
� ⇒ ��.

128

3. � ⇒ &. This is equivalent to showing that if all agents take actions according
to the assertions in �, then collisions will not occur. This follows in the
immediate time-step from Condition 1, and the fact that all Ag have a safe
backup plan action 01? to choose from when Condition 2 holds, and will
always be able to (and will) take an action from which it can avoid collision
in future time steps.

�

Proof of safety alone is not sufficient reason to argue for the effectiveness of the
protocol, as all agents could simply stop for all time and safety would be guaranteed.
A liveness guarantee, i.e. proof that all agents will eventually make it to their final
destination, is critical. In the following section, we present liveness guarantees.

7.6 Liveness Guarantees
Note, we introduce the definition of liveness, from (Owicki and Lamport, 1982), as
follows:

Definition 7.6.1 (Liveness). A liveness property asserts that program execution
eventually reaches some desirable state.

Here, the eventual desirable state for each agent is to reach is its respective final
destination. Proving fairness, as described in (Owicki and Lamport, 1982), is
proving that each action will always terminate, and is fundamental for proving
liveness. Additionally for liveness, the absence of 1) deadlocks and 2) collisions
also need to be proved. Deadlock occurs when agents indefinitely wait for resources
held by other agents (Reveliotis and Roszkowska, 2010). Since the Manhattan grid
road network has loops, agents can enter a configuration in which each agent in the
loop is indefinitely waiting for a resource held by another agent. When the density
of agents in the road network is high enough, deadlocks along these loops will
occur. We can therefore guarantee liveness only when certain assumptions hold on
the density of the road network.

Definition 7.6.2 (Sparse TrafficConditions). Let" denote the number of grid points
in the smallest loop (defined by legal orientation) of the road network, not including
grid points 6 ∈ Sintersections. The sparsity condition must be such that # < " − 1,
where # is the number of agents in the road network. Note, these sparsity conditions

129

are conservative because it is a bound defined by the worst possible assignment of
agents and their destinations (i.e. where all agents enter the smallest loop).

Now, we introduce the liveness guarantees under these sparse traffic conditions.
The proof of liveness is based on the fact that 1) agent profile includes progress
specifications and 2) conflict precedence is resolved by giving priority to the agent
that has waited the longest time (a quantity that is reflected by token counts).

Theorem 6 (Liveness Under Sparse Traffic Conditions). Under the Sparse Traffic
Assumption given by Definition 7.6.2 and given all agents Ag ∈ A in the quasi-
simultaneous game select actions in accordance to the Agent Protocol specified in
Section 7.4, liveness is guaranteed, i.e. all Ag ∈ A will always eventually reach
their respective goals.

Proof (Sketch). It suffices to assume:

1. ∀Ag ∈ A, ∀Ag′ ∈ B�6 in road segments, and ∀�6′ within a local region
around the agent as defined in Section 7.4 at intersections, �6 has access to
other agents’ state and intended action.

2. Each Ag ∈ A has access to the traffic light states.

3. There is no communication error in the conflict requests, token count queries,
and the agent intention signals.

4. For C = 0, ∀Ag ∈ A in the quasi-simultaneous game is initialized to:

• Be located on a distinct grid point on the road network.

• Have a safe backup plan action 01? such that (Ag,1? (D) = T.

5. The traffic lights are red for a window of time ΔCtl such that Cmin < ΔCtl < ∞,
and Cmin is defined so that agents are slowed down sufficiently long such
that an agent waiting to make a lane-change to a critical tile is such that its
max-yielding-flag is not always set to T.

6. The static obstacles are not on any grid point 6 where 6.3 = 1.

7. Each Ag treats its respective goal Ag.g as a static obstacle.

8. Bundles in the road network ℜ have no more than 2 lanes.

130

9. All intersections in the road network ℜ are governed by traffic lights.

and prove:

1. The invariance of a no-deadlock state follows from the sparsity assumption
and the invariance of safety (no collision) follows from the safety proof.

2. Inductive arguments related to control flow are used to show that all Ag will
always eventually take 0 ∈ �2CAg where $forward progress(B, 0, D) = T.

a) Let us consider a road segment A ∈ '(that contains grid point(s)
6 ∈ Ssinks, i.e. the road segment contains grid points with sink nodes.
Inductive arguments based on the agents’ longitudinal distance to des-
tination grid points are used to show that every Ag ∈ A will be able to
always eventually take 0 ∈ �2CAg for which
$forward progress(B, 0, D) = T.

b) Let us consider a road segment AB ∈ '(. Let us assume ∀AB ∈
'(, ∃(AB, AB′) ∈ �dep, i.e. the clearance of AB depends on the clearance
of all AB′. Inductive arguments based on agents’ longitudinal distance
to the front of the intersection are used to show that any Ag on AB will
always eventually take 0 ∈ �2CAg where $forward progress(B, 0, D) = T.

c) For anyℜwhere the dependency graph�dep (as defined in Section 7.3.2)
is a directed-acyclic-graph (DAG), inductive arguments based on the
linear ordering of road segments AB ∈ �dep are used to prove all Ag ∈ A
will always eventually take 0 ∈ �2CAg forwhich$forward progress(B, 0, D) =
T.

d) When the graph�dep is cyclic, the Sparsity Assumption 7.6.2 breaks the
cyclic dependency and allows for the similar induction arguments in 2c
to apply.

3. By the above inductive arguments and the definition of the forward progress
oracle $forward progress(B, 0, D), all Ag will always eventually take actions that
allow them to make progress towards their respective destinations.

�

131

Features of the Agent Protocol, like fairness from the conflict-cluster resolution and
eventual satisfaction of all oracles in the agent profile are used for the arguments in
the proof.

7.7 Simulation
In order to streamline discrete-time multi-agent simulations, we have built a traffic
game simulation platform called Road Scenario Emulator (RoSE). This emulator
offers an easy-to-use, simple, and modular interface. We use RoSE to generate
different game scenarios and simulate how agents will all behave if they each follow
the agent strategy protocol introduced in this chapter. We simulate the game with
randomized initialization of spawning agents at the source nodes for three different
road network environments: 1) the straight road segment, 2) small city blocks grid,
and 3) large city blocks grid. A snapshot of a small city blocks grid simulation
is shown in Fig. 7.9. The agent attributes are as follows: Emin = 0, Emax = 3,
0min = −1, and 0max = 1. For each road network environment, we simulate the
game 100 times for C = 250 time-steps.

Figure 7.9: Simulation.

For all simulation trials collision does not occur. Although liveness is only guar-
anteed in sparse traffic conditions, we simulate for a number of agents # > " − 1

132

specified in the sparsity condition and deadlock does not occur. In particular, for the
straight road segment, on average 77%, 36%, and 43% made it to their respective
destinations on the respective maps by the end of the 250 time-steps.

7.8 Conclusion
In this chapter, we have proposed a novel paradigm for designing safety-critical
decision-making modules for agents whose behavior is extremely complex and
highly-coupled with other agents. The main distinction of our proposed architecture
from the existing literature is the shift from thinking of each agent as separate,
individual entities, to agents as a collectivewhere all all agents adopt a common local,
decentralized protocol (where additional customization can be built in later). The
protocol defines the agent attributes, the region it must reason over (i.e. the bubble),
how the agent chooses its intended action, and how it ultimately selects which action
to take. With this protocol, we are able to formally guarantee specifications safety
and liveness (under sparse traffic conditions) for all agents. We validate the safety
and liveness guarantees in a randomized simulation environment.

The current work still lacks 1) liveness guarantees in all scenarios, 2) robustness
to imperfect sensory information and 3) does not account for other agent types like
pedestrians and cyclists. Future work may involve modifying the agent strategy
architecture to prevent the occurrence of the loop deadlock introduced in Section
7.6 from occurring. In addition to providing stronger liveness guarantees, the
architecture must be modified in a way to effectively accommodate impartial and
imperfect information. We also hope to accommodate a diverse, heterogenous set
of car agents and also other agent types like pedestrians and cyclists. Although the
work needs to be extended to make it more applicable to real-life systems, we believe
this work is a first step towards defining a comprehensive method for guaranteeing
safety and liveness for all agents in an extremely dynamic and complex environment.

References

Baier, Christel and Joost-Pieter Katoen (2008). Principles of Model Checking. Cam-
bridge, Massachussetts: MIT Press.

Censi, Andrea, Saverio Bolognani, Julian G. Zilly, Shima S. Mousavi, and Emilio
Frazzoli (2019). “Today Me, Tomorrow Thee: Efficient Resource Allocation in
Competitive Settings using Karma Games.” In: 2019 IEEE Intelligent Trans-
portation Systems Conference (ITSC). Auckland, New Zealand: IEEE, pp. 686–
693.

133

Censi, Andrea, Konstantin Slutsky, Tichakorn Wongpiromsarn, Dmitry Yershov,
Scott Pendleton, James Fu, and Emilio Frazzoli (Feb. 2019). “Liability, Ethics,
and Culture-Aware Behavior Specification using Rulebooks.” In: arXiv e-prints,
arXiv:1902.09355.

Chandy, K. Mani and Jayadev Misra (1984). “The drinking philosophers problem.”
In: ACM Transactions on Programming Languages and Systems (TOPLAS) 6.4,
pp. 632–646.

Finn, Chelsea, SergeyLevine, and PieterAbbeel (2016). “Guided cost learning:Deep
inverse optimal control via policy optimization.” In: International conference on
machine learning. New York, New York, USA: JMLR, pp. 49–58.

Fisac, Jaime F., Eli Bronstein, Elis Stefansson, Dorsa Sadigh, Shankar Sastry, and
Anca D. Dragan (2019). “Hierarchical game-theoretic planning for autonomous
vehicles.” In: 2019 International Conference on Robotics and Automation (ICRA).
Montreal, Canada: IEEE, pp. 9590–9596.

Gmytrasiewicz, Piotr J. and Prashant Doshi (2005). “A framework for sequential
planning in multi-agent settings.” In: Journal of Artificial Intelligence Research
24, pp. 49–79.

Owicki, Susan and Leslie Lamport (1982). “Proving liveness properties of concur-
rent programs.” In: ACM Transactions on Programming Languages and Systems
(TOPLAS) 4.3, pp. 455–495.

Papadimitriou, ChristosH. and JohnN.Tsitsiklis (1987). “The complexity ofMarkov
decision processes.” In: Mathematics of operations research 12.3, pp. 441–450.

Reveliotis, Spyros A. and Elzbieta Roszkowska (2010). “On the Complexity of
Maximally Permissive Deadlock Avoidance in Multi-Vehicle Traffic Systems.”
In: IEEE Transactions on Automatic Control 55.7, pp. 1646–1651.

Sadigh, Dorsa, Anca D. Dragan, Shankar Sastry, and Sanjit A. Seshia (2013).
“Active Preference-Based Learning of Reward Functions.” In: Robotics: Science
and Systems (RSS). Berlin, Germany.

Sadigh, Dorsa, Shankar Sastry, Sanjit A. Seshia, and Anca D. Dragan (2016). “Plan-
ning for autonomous cars that leverage effects on human actions.” In: Robotics:
Science and Systems (RSS). Vol. 2. Ann Arbor, MI, USA.

Sahin, Yunus E. and Necmiye Ozay (2020). “From Drinking Philosophers to Wan-
dering Robots.” In: arXiv preprint arXiv:2001.00440.

Shalev-Shwartz, Shai, Shaked Shammah, and Amnon Shashua (Aug. 2017). “On
a Formal Model of Safe and Scalable Self-driving Cars.” In: arXiv e-prints,
arXiv:1708.06374, arXiv:1708.06374. arXiv: 1708.06374 [cs.RO].

Shoham, Yoav and Moshe Tennenholtz (1995). “On social laws for artificial agent
societies: off-line design.” In: Artificial intelligence 73.1-2, pp. 231–252.

134

Tumova, Jana, Gavin C. Hall, Sertac Karaman, Emilio Frazzoli, and Daniela L.
Rus (2013). “Least-violating control strategy synthesis with safety rules.” In:
Proceedings of the 16th international conference on Hybrid systems: computation
and control. Philadelphia, Pennsylvania, USA: ACM, pp. 1–10.

van Der Hoek, Wiebe, Mark Roberts, and Michael Wooldridge (2007). “Social laws
in alternating time: Effectiveness, feasibility, and synthesis.” In: Synthese 156.1,
pp. 1–19.

Wongpiromsarn, Tichakorn, Sertac Karaman, and Emilio Frazzoli (Oct. 2011).
“Synthesis of provably correct controllers for autonomous vehicles in urban en-
vironments.” In: ITSC, pp. 1168–1173.

135

C h a p t e r 8

MULTI-MODAL TRAJECTORY PREDICTION:
A SET COVER APPROACH1

8.1 Introduction
Previous chapters have discussed contract frameworks and algorithms that can pro-
vide provable guarantees to a set of simulated systems of autonomous vehicles. A
key assumption that we often use in these examples is that at anytime, the set of
available actions for each agent is available to us. In the real world, where the
environments are dynamic, interactive, and uncertain, this assumption needs to be
addressed. Therefore, in this chapter, we focus on the problem of predicting the
behavior of vehicles navigating in an urban environment, where the road must be
shared with a diverse set of other agents, including other vehicles, bicyclists, and
pedestrians. In this context, reasoning about the possible future states of agents is
critical for safe and confident operation. Effective prediction of future agent states
depends on both road context (e.g., lanes geometry, crosswalks, traffic lights) and
the recent behavior of other agents.

We treat the behavior prediction problem effectively as predicting future trajectories
of a vehicle. Trajectory prediction is inherently challenging due to awide distribution
of agent preferences (e.g., a cautious vs. aggressive driver) and intents (e.g., turn
right vs. go straight). Useful predictions must represent multiple possibilities and
their associated likelihoods. Furthermore, we expect that predicted trajectories are
physically realizable.

Multimodal regression models appear naturally suited for this task, but may de-
generate during training into a single mode. Careful considerations are required
to avoid this “mode collapse” (Cui, Radosavljevic, et al., 2019; Chai et al., 2019;
Hong, Sapp, and Philbin, 2019). Additionally, most state-of-the-art methods predict
unconstrained positions (Cui, Radosavljevic, et al., 2019; Chai et al., 2019; Hong,
Sapp, and Philbin, 2019; Rhinehart, McAllister, et al., 2019), which may result in
trajectories that are not physically possible for the agent to execute ((Cui, Nguyen,
et al., 2019) is a recent exception). Our main insights leverage domain-specific

1The material in this chapter comes from joint work with Elena Corina Grigore, Freddy A.
Boulton, Oscar Beĳbom, and Eric M. Wolff.

136

knowledge to effectively structure the output representation to address these con-
cerns. Our first insight is that there are relatively few distinct actions that can be
taken over a reasonable time horizon. Dynamic constraints considerably limit the set
of reachable states over a standard six-second prediction horizon, and the inherent
uncertainty in agent behavior renders small approximation errors inconsequential.
We exploit this insight to formulate the multimodal, probabilistic trajectory predic-
tion problem as classification over a trajectory set. This formulation avoids mode
collapse and lets the user design the trajectory set to meet specific requirements
(e.g., dynamically feasible, coverage guarantees).

Our second insight is that predicted trajectories should be consistent with the current
dynamic state. Thus, we formulate our output as motions relative to our initial state
(e.g., turn slightly right, accelerate). When integrated with a dynamics model,
the output is converted to an appropriate sequence of positions. Beyond helping
to ensure physically valid trajectories, this dynamic output representation ensures
that the outputs are diverse in the control space across a wide range of speeds.
While (Cui, Nguyen, et al., 2019) exploit a similar insight for regression, we extend
the use of a dynamic representation to classification and anchor-box regression.

We now summarize our main contributions on multimodal, probabilistic trajectory
prediction with CoverNet:

• introduce the notion of trajectory sets for multimodal trajectory prediction,
and show how to generate them in both a fixed and dynamic manner;

• compare state-of-the-art methods on nuScenes (Caesar et al., 2019), a public,
real-world urban driving benchmark;

• empirically show the benefits of classification on trajectory sets over multi-
modal regression.

8.2 Related Work
We focus on trajectory prediction approaches based on deep learning, and refer the
reader to (Lefèvre, Vasquez, and Laugier, 2014) for a survey of more classical
approaches. The approaches below typically use convolutional neural networks
(CNN) to combine agent history with scene context, and vary significantly in their
output representations. Depending on the method, the scene context will include
everything from the past states of a single agent to the past states of all agents along
with high-fidelity map information.

137

Stochastic approaches encode choice over multiple possibilities via sampling ran-
dom variables. One of the earliest works on motion forecasting frames the problem
as learning stochastic 1-step policies (Kitani et al., 2012). R2P2 (Rhinehart, Kitani,
and Vernaza, 2018) improves sample coverage for such policies via a symmetric
Kullback–Leibler divergence (KL) loss. Recent work has considered the multi-
agent setting (Rhinehart, McAllister, et al., 2019) and uncertainty in the model
itself (Henaff, LeCun, and Canziani, 2019). Other methods generate samples us-
ing correlated variational auto-encoders (CVAEs) (Hong, Sapp, and Philbin, 2019;
Lee et al., 2017; Bhattacharyya, Schiele, and Fritz, 2018; Ivanovic et al., 2018) or
generative adversarial networks (GANs) (Sadeghian et al., 2019; Gupta et al., 2018;
Zhao et al., 2019). Stochastic approaches can be computationally expensive due to
a) repeated 1-step rollouts (in the 1-step policy approach), or b) due to requiring
a large number of samples for acceptable performance (often hard to determine in
practice).

Unimodal approaches output a single future trajectory per agent (Luo, Yang, and Ur-
tasun, 2018; Casas, Luo, and Urtasun, 2018; Djuric et al., 2018; Alahi et al., 2016).
A single trajectory is often unable to adequately capture the possibilities that exist
in complex scenarios, even when predicting Gaussian uncertainty. Furthermore,
these approaches typically average over behaviors, which may result in nonsensical
trajectories (e.g., halfway between making a right turn and going straight).

Multimodal approaches output either a distribution over multiple trajectories (Chai
et al., 2019; Cui, Radosavljevic, et al., 2019; Hong, Sapp, and Philbin, 2019; Deo
and Trivedi, 2018) or a spatial-temporal occupancy map (Hong, Sapp, and Philbin,
2019; Bansal, Krizhevsky, and Ogale, 2019; Zeng et al., 2019). Spatial-temporal
occupancy maps flexibly capture multiple outcomes, but often have large memory
requirements to grid the output space at a reasonable resolution. Additionally,
sampling trajectories from a spatial-temporal occupancy map is a) not well defined,
and b) adds additional compute at the inference stage. Multimodal regression
approaches can easily suffer from “mode collapse” to a single mode, leading (Chai
et al., 2019) to use a fixed set of anchor boxes to mitigate the issue.

Most trajectory prediction algorithms do not explicitly encode constraints on object
motion, andmay predict trajectories that are physically infeasible (a recent exception
is (Cui, Nguyen, et al., 2019)). By careful choice of our output representation, we
are able to exclude all trajectories that would be physically impossible to execute.

Graph search is a classic approach to motion planning (LaValle, 2006), and often

138

used in urban driving applications (Buehler, Iagnemma, and Singh, 2009). Amotion
planner grows a compact graph (or tree) of possible motions, and computes the best
trajectory from this set (e.g., max clearance from obstacles). Since we do not know
the other agent’s goals or preferences, we cannot directly plan over the trajectory
set. Instead, we implicitly estimate these features and directly classify over the set
of possible trajectories. There is a fundamental tension between the size of the
trajectory set and the coverage of all potential motions (Branicky, Knepper, and
Kuffner, 2008). Since we are only trying to predict the motions of other vehicles
well enough to drive, we can easily accept small errors over moderate time horizons
(3 to 6 seconds).

Comparing results on trajectory prediction for self-driving cars in urban environ-
ments is challenging, largely due to the wide variety of datasets. Numerous papers
are evaluated purely on internal datasets (Cui, Radosavljevic, et al., 2019; Zeng
et al., 2019; Casas, Luo, and Urtasun, 2018; Bansal, Krizhevsky, and Ogale, 2019),
as common public datasets are either relatively small (Geiger, Lenz, and Urtasun,
2012), purely focused on highway driving (Colyar and Halkias, 2007), and/or are
tangentially related to driving (Robicquet et al., 2016). While there are encouraging
new developments in public datasets for trajectory prediction (Chang et al., 2019;
Hong, Sapp, and Philbin, 2019), there is no standard. To help provide clear and
open results, we evaluate our models on nuScenes (Caesar et al., 2019), a recent
public self-driving car dataset focused on urban driving.

8.3 Method
CoverNet computes a multimodal, probabilistic prediction of the future states of
a given vehicle using i) the current and past states of all agents (e.g., vehicles,
pedestrians, bicyclists) and ii) a high-definition map.

We assume access to the state outputs of an object detection and tracking system
of sufficient quality for self-driving. We denote the set of agents that a self-driving
car interacts with at time C by IC and B8C the state of agent 8 ∈ IC at time C. Let
s8<:= =

[
B8<, . . . , B

8
=

]
where < < = and 8 ∈ IC denote the discrete-time trajectory of

agent 8 for times C = <, . . . , =. Without loss of generality, denote the current state
of agent 8 by B80, its past trajectory s8

<:0 (where < < 0), and its future trajectory s81:#
(where # ≥ 1). In the remainder, we drop the agent index when referring to the
agent for which we are currently making a prediction.

Furthermore, we assume access to a high-definition mapM. The mapM includes

139

lane geometry, crosswalks, drivable area, and other relevant information.

Let x = {⋃8 B
8
<:0;M} denote the scene context over the past < steps (i.e., map and

partial history of all agents).

Figure 8.1: CoverNet overview. We generate a trajectory set (fixed or dynamic
based on current state) that we classify over. The input and backbone follow (Cui,
Radosavljevic, et al., 2019).

Figure 8.1 overviews our model architecture. It largely follows (Cui, Radosavljevic,
et al., 2019), with the key difference in the output representation (see Section 8.3).
We use ResNet-50 (He et al., 2015) given its effectiveness in this domain (Cui,
Radosavljevic, et al., 2019; Chai et al., 2019).

While our network only computes a prediction for a single agent at a time, our
approach can be extended to simultaneously predict for all agents in a similar
manner as (Chai et al., 2019). We focus on single agent predictions (as in (Cui,
Radosavljevic, et al., 2019)) both to simplify the presentation and focus on our main
contributions.

The following sections detail our input and output representations. Our core in-
novations are in our output representations, specifically the dynamic encoding of
trajectories, and in treating the problem as classification over a diverse set of trajec-
tories.

Input representation
Similar to (Djuric et al., 2018), we rasterize the scene for each agent as an RGB
image. We start with a blank image of size (�, , , 3) and draw the driveable
area, crosswalks, pedestrian crossings, and walk ways using a distinct color for each
semantic category.

We rotate the image so that the agent’s heading faces up, and place the agent on
pixel (;, F), measured from the top-left of the image. We assign a different color

140

to vehicles and pedestrians and choose a different color for the agent so that it is
distinguishable. In our experiments, we use a resolution of 0.1 meters per pixel and
choose ; = 400 and F = 250. Thus, the model can “see” 40 meters ahead, 10 meters
behind, and 25 meters on each side of the agent.

We represent the sequence of past observations for each agent as faded bounding
boxes of the same color as the agent’s current bounding box. We fade colors by
linearly decreasing saturation (in HSV space) as a function of time.

Although we have only used one input representation in these experiments, our
novel output representation can work with the input representations of (Bansal,
Krizhevsky, and Ogale, 2019; Zeng et al., 2019).

Output representation
Due to the relatively short trajectory prediction horizons (up to 6 seconds) and
inherent uncertainty in agent behavior, we approximate all possible motions with a
set of trajectories that gives sufficient coverage of the space.

Let R# (B0) be the set of all states that can be reached by an agent with current
state B0 in # seconds (purely based on physical capabilities). We approximate this
set by a finite number of trajectories S1:# = {B:1:# }

:=1, to define a trajectory set

(: is over a single agent). Define a dynamic trajectory set generator as a function
5# : B0 → S1:# , which allows the trajectory set to be consistent with the current
dynamics. This is in contrast to a fixed generator which does not use information
about the current state, and thus returns the same trajectories for each instance. We
discuss construction trajectory sets in Section 8.4.

We encode multimodal, probabilistic trajectory predictions by classifying over the
appropriate trajectory set given an agent of interest and the scene context x. As is
common in the classification literature, we use the softmax distribution. Concretely,
the probability of the :-th trajectory is given as ?(B:1:# |x) =

exp 5: (x)∑
8 exp 58 (x) , where

58 (x) ∈ R is the output of the network’s penultimate layer.

In contrast to previous work (Cui, Radosavljevic, et al., 2019; Chai et al., 2019),
we choose not to learn an uncertainty distribution over the space. While it is
straightforward to addGaussian uncertainty along each trajectory in a similarmanner
to (Chai et al., 2019), the density of our trajectory sets reduces its benefit compared
to the case when there are a only a handful of modes.

141

8.4 Trajectory Sets
In this section, we outline the main contribution of the chapter: a novel method
for trajectory set generation. An ideal trajectory set always contains a trajectory
that is close to the ground truth. We consider two broad categories of trajectory
set generation functions: fixed and dynamic (see Figure 8.2). In both cases, we
normalize the current state to be at the origin, with the heading oriented upwards
(see Section 8.3).

(a) fixed (b) dynamic

Figure 8.2: Overview of trajectory set generation approaches.

Fixed trajectory sets
We consider a trajectory set to be “fixed” if the trajectories that it contains do not
change as a function of the agent’s current dynamic state or environment. Intuitively,
this makes it easy to classify over since it allows for a fixed enumeration over the set,
but may result in many trajectories that are poor matches for the current situation.

Given a set of representative trajectory data, the problem of finding the best fixed
trajectory set of size |K | can be cast as an instance of the NP-hard set cover prob-
lem (Cormen et al., 2009). Approximating a dense trajectory set by a sparse
trajectory set that still maintains good coverage and diversity has been studied in the
context of robot motion planning (Branicky, Knepper, and Kuffner, 2008). In this
work, we use a coverage metric X defined as the maximum point-wise Euclidean
distance between trajectories. Specifically, given two trajectories B1:# and B′1:# ,
X(B1:# , B

′
1:#) B max#

:=1 ‖B: − B
′
:
‖ where the norm is ℓ2. Thus, we will also be

referring to this metric as the maximum point-wise ℓ2 distance. Our trajectory set
construction procedure starts with subsampling a reasonably large set K of trajec-

142

tories (ours have size 20,000) from the training set. Selecting an acceptable error
tolerance Y, we proceed to find the solution to

argmin
S1:#

|S1:# |

subject to S1:# ⊆ K,
∀: ∈ K .∃; ∈ S1:# .X(:, ;) ≤ Y.

(8.1)

We employ a simple greedy approximation algorithm to solve (8.1), which we refer
to as the “bagging” algorithm. In this procedure, we cherrypick the best among
candidate trajectories to place in a bag of trajectories that will be used as the
covering set. We propose two variants of this algorithm based on how we choose
candidate trajectories. The first version repeatedly considers as candidates those
trajectories that have not yet been covered and chooses the one that covers the most
uncovered trajectories (ties are broken arbitrarily). The second variant makes a
weighted random choice based on how many uncovered trajectories the candidates
are covering until there are nomore trajectories to cover. The latter (random) version
can be repeated many times to obtain multiple bags, and we can choose the cover
set based on the smallest number of elements. For simplicity, we use the former
(deterministic) version in this work. Standard results (without using the specialized
structure of the data) show that the deterministic greedy algorithm is suboptimal
by a factor of at most log (|K |) (see Chapter 35.3 (Cormen et al., 2009)). In our
experiments, we were able to obtain decent coverage (specifically, under 2 meters
in maximum point-wise ℓ2 distance for 6 second trajectories) with fewer than 2,000
elements in the covering set.

Dynamic trajectory sets
We consider a trajectory set to be dynamic if the trajectories that it contains change
as a function of the agent’s current dynamic state. This construction guarantees that
all trajectories in the set are dynamically feasible.

We now describe a simple approach to constructing such a dynamic trajectory
set, focused on predicting vehicle motion. We use a standard vehicle dynamical
model (LaValle, 2006) as similar models are effective for planning at urban (non-
highway) driving speeds (Kong et al., 2015). Our approach, however, is not limited

143

to vehicles or any specific model. The dynamical model we use is:

¤G = E cos \

¤H = E sin \

¤\ = E

!
tan(DBC44A)

¤E = D0224;

with states: G, H (position), E (speed), \ (yaw); controls: DBC44A (steering angle),
D0224; (longitudinal acceleration); and parameter: ! (wheelbase).

The dynamics model, controls sequence, and current state determine a trajectory
B1:# by forward integration. We create a dynamic trajectory set (1:# based on
the current state B0 by integrating forward with our dynamic model over diverse
control sequences. Such a dynamic trajectory set has the possibility of being sparser
than a fixed set for the same coverage, as each control sequence maps to multiple
trajectories (as a function of the current state).

We parameterize the controls (output space) by a diverse set of constant lateral and
longitudinal accelerations over the prediction horizon. Using lateral acceleration
instead of steering angle is a way of normalizing the output over a range of speeds
(a desired lateral acceleration will correspond to different steering angles as a
function of speed). We convert the lateral acceleration into a steering angle assuming
instantaneous circular motion 0;0C = E2^ with curvature ^ = tan(DBC44A)/!. This
conversion is ill-defined when the speed is near zero, so we use max (E, 1) in
place of E. Note that it is straightforward to expand the controls (output space) to
includemultiple lateral and longitudinal accelerations over a non-uniform prediction
horizon.

We can further prune the dynamic trajectory set construction in a similar manner
to how we handled the fixed trajectory sets in Section8.4. The main difference is
that the covering set here is constructed from the set of control input profiles as
opposed to elements of K itself. Namely, we use an analogous greedy procedure to
cover the set of sample trajectories with a subset of control profiles (e.g., lateral and
longitudinal accelerations as a function of time). Note that unlike the case of fixed
trajectories, the synthetic nature of the dynamic profile may not guarantee 100%
coverage of K. To counter this problem, we can also create a hybrid trajectory set
by combining a fixed and dynamic set. Particularly, we find a covering subset for
the elements ofK that cannot be covered by the dynamic choices, and combine this

144

subset with the dynamic choices. When the dynamic set is well-constructed, this
can result in a smaller covering set as may be seen from Figure 8.3.

Figure 8.3: Number of trajectories needed for Y coverage (in meters, see Section 8.4)

8.5 Experiments
We now present our empirical results on trajectory prediction of other vehicles in
urban environments. The following sections describe the baselines, metrics, and ur-
ban self-driving datasets that we considered. We used the same input representation
and model architecture across our models and baselines.

Baselines
Physics oracle. We introduce a simple and interpretable model that extends classic
physics-based models. We use the track’s current velocity, acceleration, and yaw
rate to compute the following predictions: i) constant velocity and yaw, ii) constant
velocity and yaw rate, iii) constant acceleration and yaw, and iv) constant acceleration
and yaw rate. The oracle is the minimum average point-wise Euclidean distance
over the four models.

Regression baselines and extensions. We compare our contribution to state-of-
the-art methods by implementing two main types of regression models: multimodal
regression to coordinates (Cui, Radosavljevic, et al., 2019) and multimodal regres-
sion to residuals from a set of anchors (Chai et al., 2019) (ordinal regression). We
overview these methods for completeness and to provide context for novel variations
that we introduce.

145

Multimodal regression to coordinate

Our implementation follows the details ofMultiple-Trajectory Prediction (MTP) (Cui,
Radosavljevic, et al., 2019), adapted for the datasets we use. This model predicts
a fixed number of trajectories (modes) and their associated probabilities. The per-
agent loss (agent 8 at time C) is defined as:

L")%8C =

|K |∑
:=1

1:=:̂ [−log ?8: + U! (B
8C
1:# , B̂

8C
1:#)], (8.2)

where 1(·) is the indicator function that equals 1 only for the “best matching” mode,
: represents a mode, ! is the regression loss, and U is a hyper-parameter used to
trade off between classification and regression. The original implementation (Cui,
Radosavljevic, et al., 2019) uses a heuristic based on the relative angle between each
mode and the ground truth. We select a mode uniformly at random when there are
no modes with an angle below the threshold.

Multimodal regression to anchor residuals

Our implementation follows the details of MultiPath (MP) (Chai et al., 2019). This
model implements ordinal regression by first choosing among a fixed set of anchors
(computed a priori) and then regressing to residuals from the chosen anchor. The
proposed per-agent loss is (8.2) where U = 1 and the :-th trajectory is the sum of the
corresponding anchor and predicted residual. To remain true to the implementation
in (Chai et al., 2019), we choose our best matching anchor byminimizing the average
displacement to the ground truth.

Fixed anchors. We compute the set of fixed anchors by employing the same
mechanism described in Section 8.4. Note that this set of trajectories is the same for
all agents in the dataset. We then regress to the residuals from the chosen anchor.

Dynamic anchors. We compute dynamic anchors by employing a similar approach
as described in Section 8.4. The set of anchors is thus a function of the agent’s
current speed, which helps ensure that anchors are dynamically feasible. We then
regress to the residuals from the chosen anchor.

Our models
CoverNet (fixed). One of our classification approaches where there is a set of |K |
fixed trajectories.

146

CoverNet (dynamic). One of our classification approaches where the set of |K |
trajectories is a function of the initial state of the agent.

MultiPath with dynamic anchors. This is the MultiPath (sec. 8.5), extended to
utilize dynamic anchors.

Implementation details
Our implementation setup follows (Cui, Radosavljevic, et al., 2019) and (Chai et al.,
2019), with key differences highlighted below.

We implemented ourmodels usingResNet-50 (He et al., 2015) as our backbone, with
pre-trained ImageNet (Russakovsky et al., 2015) weights downloaded from (Con-
tributors, 2019). We read the ResNet “conv5“ feature map and apply a global
pooling layer. We then concatenate the result with an agent state vector (including
speed, acceleration, yaw rate), as detailed in (Cui, Radosavljevic, et al., 2019). We
then add a fully connected layer, with dimension 4096.

The output dimension of CoverNet is equal to the number of modes, namely |K |.

For the regression models, our outputs have dimension |K |× (|®G | ×# +1), where |K |
represents the total number of predicted modes, | ®G | represents the number of features
we are predicting per point, # represents the number of points in our predictions,
and the extra output per mode is the probability associated with each mode. For
our implementations, # = � × �, where � represents the length of the prediction
horizon, and � represents the sampling frequency. For each point, we predict (G, H)
coordinates, so | ®G | = 2.

The comparative datasets have � = 10 �I, while the publicly available nuScenes
is sampled at � = 2 �I. We include results on two different prediction horizon
lengths, namely � = 3 seconds and � = 6 seconds.

The loss functions we use are the same across all of our implementations: for any
classification losses, we utilize cross-entropy with positive samples determined by
the element in the trajectory set closest to the actual ground truth in minimum
average of point-wise Euclidean distances, and for any regression losses, we utilize
smooth ℓ1. For our MTP implementation, we place equal weighting between the
classification and regression components of the loss, setting U = 1, similar to (Cui,
Radosavljevic, et al., 2019).

For our classification models, we utilize a fixed learning rate of 1e−4. For our
regression models, we utilize a learning rate of 1e−4, with a drop by 0.1 after epoch

147

31 for models with lower numbers of modes (one and three modes), and after epoch
7 for models with higher number of modes (16 and 64).

Metrics
There are multiple ways of evaluating multimodal trajectory prediction. Common
measures include log-likelihood (Chai et al., 2019; Rhinehart, McAllister, et al.,
2019), average displacement error, and hit rate (Hong, Sapp, and Philbin, 2019).
We focus on the a) displacement error, and b) hit rate, both computed over a subset
of the most likely modes.

For insight into trajectory prediction performance in scenarios where there are
multiple plausible actions, we use the minimum average displacement error (ADE).
TheminADEk ismin:∈ 1

)

∑)
C=1 | |BC−B:C | |, where is the set of : most likely modes.

We also analyze the final displacement error (FDE), which is | |BC − B∗) | |, where B∗ is
the most likely mode.

In the context of planning for a self-driving vehicle, the above metrics may be hard
to interpret. We use the notion of a hit rate (see (Hong, Sapp, and Philbin, 2019)) to
simplify interpretation of whether or not a prediction was “close enough.” We define
a Hit:,X for a single instance (agent at a given time) as 1 if min:∈ max)

C=1 | |BC−B
:
C | | ≤

X, and 0 otherwise. When averaged over all instances, we refer to it as the HitRate:,X.

Large comparative self-driving dataset
For comparison purposes, we will include results from (Phan-Minh et al., 2020)
on a dataset obtained by collecting 60 hours of real-world, urban driving data in
Singapore. Raw sensor data is collected by a car outfitted with cameras, lidars,
and radars. A highly-optimized object detection and tracking system filters the raw
sensor data to produce tracks at a 10 Hz rate. Each track includes information
regarding its type (e.g., car, pedestrian, bicycle, unknown), pose, physical extent,
and speed, with quality sufficient for fully-autonomous driving. Additionally, access
is to high-definition maps with semantic labels of the road such as the drivable area,
lane geometry, and crosswalks is available.

Each ego vehicle location at a given timestamp is considered a data point. They
do not predict on any tracks that are stationary over the entire prediction horizon.
This large compartive dataset contains around 11 million usable data points but for
this analysis we created train, validation, and test sets with 1 million, 300,000, and
300,000 data points, respectively.

148

Figure 8.4: Best models of each type on the comparative dataset (6-second horizon).
CoverNet models significantly outperform others.

nuScenes
We also report results on nuScenes (Caesar et al., 2019), a public self-driving car
dataset. nuScenes consists of 1000 scenes, each 20 seconds in length. Scenes are
taken from urban driving in Boston, USA, and Singapore. Each scene includes
hand-annotated tracks and high-definition maps. Tracks have 3D ground truth
annotations, and are published at 2 Hz. We processed each of the vehicles in the
nuScenes train-val split to train, validation, and test sets such that the number of
vehicles operating in left-hand and right-hand driving locations was equal. We
removed vehicles that are stationary. This leaves us with 37,714 observations in the
train set, 8,064 observations in the validation set, and 7,790 observations in the test
set. We use this split to make both three-second and six-second predictions.

Ablation study: Matching ground truth
We analyzed different methods for matching the ground truth to the most suitable
trajectory in the trajectory set. Table 8.1 compares performance using the max,
average, and root-mean-square of the point-wise error vector of Euclidean distances

149

Method minADE1 minADE5 minADE10 minADE15

max ℓ2 1.0 0.67 0.64 0.64
average ℓ2 0.96 0.66 0.64 0.64
RMS of ℓ2 0.96 0.66 0.64 0.63

Table 8.1: Ground truthmatching for fixed trajectory set (150modes) on comparative
dataset (3 sec horizon).

(a) Cover (fixed Y = 2) (b) Cover (hybrid) (c) Cover (dynamic Y = 3)

(d) MTP (3 modes) (e) MP (dynamic templates,
16 modes)

(f) MP (fixed templates, 64
modes)

Figure 8.5: Examples of predicted trajectories. The top row includes our CoverNet
models, ranging from fixed to dynamic. The bottom row includes the baselines we
compare against, as well as our dynamic templates variation.

for matching ground truth to the “best” trajectory in a fixed trajectory set of size
150. Performance is relatively consistent across all three choices, so we picked the
average point-wise ℓ2 norm to better align with related regression approaches (Chai
et al., 2019).

Discussion
The main results are summarized in Table 8.2. Qualitative results are shown in
Figure 8.5.

150

M
et
ho
d

M
od
es

m
in
A
D
E 1
↓

m
in
A
D
E 5
↓

m
in
A
D
E 1

0
↓

m
in
A
D
E 1

5
↓

FD
E
↓

H
itR

at
e 5

,2
m
↑

C
on
st.

ve
l.
&

ya
w

N
/A

3.
75

(3
.6
3)

3.
75

(3
.6
3)

3.
75

(3
.6
3)

3.
75

(3
.6
3)

9.
44

(9
.8
6)

0.
19

(0
.2
2)

Ph
ys
ic
so

ra
cl
e

N
/A

2.
79

(1
.8
8)

2.
79

(1
.8
8)

2.
79

(1
.8
8)

2.
79

(1
.8
8)

7.
18

(5
.7
2)

0.
23

(0
.3
1)

M
TP

(C
ui
,R

ad
os
av
lje
vi
c,
et
al
.,
20
19
)

1
4.
37

(1
.8
8)

4.
37

(1
.8
8)

4.
37

(1
.8
8)

4.
37

(1
.8
8)

9.
84

(5
.2
2)

0.
10

(0
.2
4)

M
TP

(C
ui
,R

ad
os
av
lje
vi
c,
et
al
.,
20
19
)

3
4.
98

(2
.0
1)

3.
73

(1
.7
3)

3.
73

(1
.7
3)

3.
73

(1
.7
3)

10
.9
1
(5
.4
5)

0.
18

(0
.2
8)

M
TP

(C
ui
,R

ad
os
av
lje
vi
c,
et
al
.,
20
19
)

16
5.
38

(3
.1
5)

4.
01

(2
.4
8)

3.
90

(2
.4
3)

3.
86

(2
.4
2)

11
.4
6
(7
.7
9)

0.
21

(0
.2
5)

M
TP

(C
ui
,R

ad
os
av
lje
vi
c,
et
al
.,
20
19
)

64
5.
47

(3
.2
1)

3.
97

(2
.6
3)

3.
83

(2
.5
1)

3.
77

(2
.4
7)

11
.4
7
(7
.7
4)

0.
21

(0
.2
7)

M
ul
tiP

at
h
(C
ha
ie
ta
l.,

20
19
)

16
4.
76

(2
.3
4)

2.
66

(1
.7
1)

2.
61

(1
.7
1)

2.
60

(1
.7
0)

10
.9
1
(5
.8
3)

0.
17

(0
.2
4)

M
ul
tiP

at
h
(C
ha
ie
ta
l.,

20
19
)

64
4.
84

(2
.3
0)

2.
22

(1
.4
2)

1.
96

(1
.3
6)

1.
89

(1
.3
4)

10
.2
1
(5
.6
3)

0.
22

(0
.2
7)

M
ul
tiP

at
h
(C
ha
ie
ta
l.,

20
19
)(
dy
n.
)

16
4.
24

(2
.0
6)

2.
46

(1
.4
7)

2.
40

(1
.4
6)

2.
38

(1
.4
6)

9.
80

(5
.7
6)

0.
28

(0
.3
0)

M
ul
tiP

at
h
(C
ha
ie
ta
l.,

20
19
)(
dy
n.
)

64
4.
20

(2
.2
3)

2.
38

(1
.5
3)

2.
19

(1
.4
6)

2.
12

(1
.4
4)

9.
67

(6
.1
7)

0.
28

(0
.2
8)

C
ov
er
,fi

xe
d,
Y
=8

64
(6
4)

4.
71

(2
.7
7)

2.
41

(1
.9
8)

2.
13

(1
.9
3)

2.
07

(1
.9
3)

10
.1
6
(6
.6
5)

0.
05

(0
.0
6)

C
ov
er
,fi

xe
d,
Y
=5

23
2
(2
08
)

4.
98

(2
.3
2)

2.
31

(1
.3
5)

1.
85

(1
.2
5)

1.
69

(1
.2
2)

10
.7
1
(5
.6
7)

0.
13

(0
.3
1)

C
ov
er
,fi

xe
d,
Y
=4

41
5
(3
74
)

4.
87

(2
.2
7)

2.
37

(1
.2
9)

1.
84

(1
.1
5)

1.
65

(1
.1
0)

10
.3
8
(5
.8
5)

0.
30

(0
.3
5)

C
ov
er
,fi

xe
d,
Y
=3

84
4
(7
47
)

5.
29

(2
.2
8)

2.
61

(1
.3
2)

1.
94

(1
.1
3)

1.
69

(1
.0
7)

11
.2
0
(5
.9
2)

0.
33

(0
.3
3)

C
ov
er
,fi

xe
d,
Y
=2

22
06

(1
93
7)

5.
88

(2
.1
6)

3.
28

(1
.1
6)

2.
49

(0
.9
3)

2.
14

(0
.8
4)

12
.1
3
(5
.5
3)

0.
34

(0
.5
7)

C
ov
er
,d
yn
.,
Y
=3

35
7
(3
42
)

4.
89

(2
.0
6)

2.
70

(1
.1
7)

2.
18

(0
.9
7)

1.
93

(0
.8
8)

11
.6
8
(5
.9
0)

0.
35

(0
.5
2)

C
ov
er
,d
yn
.,
Y
=1

.7
5

n/
a
(3
13
)

n/
a
(2
.0
3)

n/
a
(1
.2
6)

n/
a
(1
.0
4)

n/
a
(0
.9
4)

n/
a
(5
.7
0)

n/
a
(0
.5
2)

C
ov
er
,h
yb
rid

77
4
(1
02
4)

4.
71

(2
.1
8)

2.
42

(1
.2
4)

1.
80

(0
.9
9)

1.
52

(0
.8
8)

10
.6
8
(5
.8
4)

0.
38

(0
.5
5)

Table 8.2: nuScenes and comparative datasets (6-second horizon). Results listed as
nuScenes (comparative). Smaller minADEk and FDE is better. Larger HitRate5, 2m
is better. Dyn. = dynamic, vel. = velocity, const. = constant, Y is given in meters.

151

Across the 6 metrics and the 2 datasets, CoverNet outperforms previous methods
and baselines in 7 out of 12 cases. However, there are big differences in method
ranking depending which metric is considered.

CoverNet method represents a significant improvement on the HitRate5, 2m metric
achieving 38% on nuScenes using the hybrid trajectory set. The next best model is
MultiPath, where our dynamic grid extension represents a large improvement over
the fixed grid used by the authors (28% vs. 22%). MTP performs worse achieving
18% HitRate5, 2m, slightly lower than the constant velocity baseline.

A similar pattern is seen on the comparative dataset with CoverNet outperforming
previous methods and baselines. Here, the fixed set with 1937 modes performs best
(57%), closely followed by the hybrid set (55%). Among previous methods, again
MultiPath with dynamic set works the best at (30%) HitRate5, 2m. Figure 8.4 shows
that CoverNet significantly outperforms previous methods as the hit rate is expanded
over more modes.

CoverNet also performs well according the Average Displace Error minADEk met-
rics. In particular for : ∈ {5, 10, 15}. For minADE15, the hybrid CoverNet with
fixed set and 2206 modes performs best with minADE15 =0.84, 4x better than the
constant velocity baseline and 2x better than the MTP and MultiPath. For lower : ,
such as minADE1 the regression methods performed the best. This is not surprising
since for low : , it is more important to have one trajectory very close to the ground
truth, a metric paradigm that favors regression over classification.

A notable difference between nuScenes and comparative is that the HitRate5, 2m and
minADEk continues to improve for larger sets, while it plateaus, or even decreases
at around 500-1000 modes on nuScenes. We hypothesize that this is due to the
relatively limited size of nuScenes.

8.6 Conclusion
We introduced CoverNet, a novel method for multimodal, probabilistic trajectory
prediction in real-world, urban driving scenarios. By framing this problem as
classification over a diverse set of trajectories, we were able to a) ensure a desired
level of coverage of the state space, b) eliminate dynamically infeasible trajectories,
and c) avoid the issue of mode collapse. We showed that the size of our trajectory
sets remains manageable over realistic prediction horizons. Dynamically generating
trajectory sets based on the agent’s current state further improved performance. We
compared our results to multiple state-of-the-art methods on real-world self-driving

152

datasets, and showed that it outperforms similar methods.

References

Alahi, Alexandre, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li
Fei-Fei, and Silvio Savarese (June 2016). “Social LSTM: Human Trajectory
Prediction in Crowded Spaces.” In: 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

Bansal, Mayank, Alex Krizhevsky, and Abhĳit Ogale (June 2019). “ChauffeurNet:
Learning toDrive by Imitating the Best and Synthesizing theWorst.” In:Robotics:
Science and Systems (RSS).

Bhattacharyya, Apratim, Bernt Schiele, and Mario Fritz (June 2018). “Accurate and
Diverse Sampling of Sequences Based on a “Best of Many” Sample Objective.”
In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Branicky, Michael S., Ross A. Knepper, and James J. Kuffner (May 2008). “Path
and trajectory diversity: Theory and algorithms.” In: 2008 IEEE International
Conference on Robotics and Automation.

Buehler,Martin, Karl Iagnemma, and Sanjiv Singh (2009). TheDARPAUrbanChal-
lenge: Autonomous Vehicles in City Traffic. 1st. Springer Publishing Company.

Caesar, Holger, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong,
QiangXu,AnushKrishnan,YuPan,GiancarloBaldan, andOscarBeĳbom (2019).
“nuScenes: A multimodal dataset for autonomous driving.” In: arXiv preprint
arXiv:1903.11027.

Casas, Sergio,Wenjie Luo, and Raquel Urtasun (Oct. 2018). “IntentNet: Learning to
Predict Intention from Raw Sensor Data.” In: Proceedings of The 2nd Conference
on Robot Learning, pp. 947–956.

Chai, Yuning, Benjamin Sapp, Mayank Bansal, and Dragomir Anguelov (2019).
“MultiPath: Multiple Probabilistic Anchor Trajectory Hypotheses for Behavior
Prediction.” In: 3rd Conference on Robot Learning (CoRL). Osaka, Japan.

Chang, Ming-Fang et al. (June 2019). “Argoverse: 3D Tracking and Forecasting
With Rich Maps.” In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Colyar, James and John Halkias (2007). US highway 101 dataset.

Contributors, Torch (2019). TORCHVISION.MODELS. url: https://pytorch.
org/docs/stable/torchvision/models.html.

Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein
(2009). Introduction to Algorithms, Third Edition. 3rd. The MIT Press.

Cui, Henggang, Thi Nguyen, Fang-Chieh Chou, Tsung-Han Lin, Jeff Schneider,
David Bradley, and Nemanja Djuric (2019). Deep Kinematic Models for Physi-
cally Realistic Prediction of Vehicle Trajectories. arXiv: 1908.00219 [cs.RO].

153

Cui, Henggang, Vladan Radosavljevic, Fang-Chieh Chou, Tsung-Han Lin, Thi
Nguyen, Tzu-Kuo Huang, Jeff Schneider, and Nemanja Djuric (2019). “Mul-
timodal Trajectory Predictions for Autonomous Driving using Deep Convolu-
tional Networks.” In: 2019 International Conference on Robotics and Automation
(ICRA), pp. 2090–2096.

Deo, Nachiket and Mohan Trivedi (June 2018). “Convolutional Social Pooling for
Vehicle Trajectory Prediction.” In: The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, pp. 1549–15498.

Djuric, Nemanja, Vladan Radosavljevic, Henggang Cui, Thi Nguyen, Fang-Chieh
Chou, Tsung-Han Lin, and Jeff Schneider (2018). Short-term Motion Prediction
of Traffic Actors for Autonomous Driving using Deep Convolutional Networks.
arXiv: 1808.05819.

Geiger, Andreas, Philip Lenz, and Raquel Urtasun (2012). “Are we ready for Au-
tonomous Driving? The KITTI Vision Benchmark Suite.” In: Conference on
Computer Vision and Pattern Recognition (CVPR).

Gupta, Agrim, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre Alahi
(June 2018). “Social GAN: Socially Acceptable Trajectories With Generative
Adversarial Networks.” In: The IEEEConference onComputer Vision and Pattern
Recognition (CVPR).

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2015). “Deep Residual
Learning for Image Recognition.” In: 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 770–778.

Henaff, Mikael, Yann LeCun, and Alfredo Canziani (2019). “Model-predictive pol-
icy learning with uncertainty regularization for driving in dense traffic.” In: 7th
International Conference on Learning Representations (ICLR).

Hong, Joey, Benjamin Sapp, and James Philbin (June 2019). “Rules of the Road:
Predicting Driving Behavior With a Convolutional Model of Semantic Interac-
tions.” In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Ivanovic, Boris, Edward Schmerling, Karen Leung, and Marco Pavone (Oct. 2018).
“Generative modeling of multimodal multi-human behavior.” In: Proceedings of
the International Conference on Intelligent Robots and Systems (IROS).

Kitani, Kris M., Brian D. Ziebart, J. Andrew Bagnell, and Martial Hebert (2012).
“Activity Forecasting.” In:TheEuropeanConference onComputerVision (ECCV).

Kong, Jason, Mark Pfeiffer, Georg Schildbach, and Francesco Borrelli (June 2015).
“Kinematic and dynamic vehicle models for autonomous driving control design.”
In: 2015 IEEE Intelligent Vehicles Symposium (IV).

LaValle, Steven M. (2006). Planning Algorithms. New York, NY, USA: Cambridge
University Press. isbn: 0521862051.

154

Lee, Namhoon, Wongun Choi, Paul Vernaza, Chris Choy, Philip Torr, and Man-
mohan Chandraker (July 2017). “DESIRE: Distant Future Prediction in Dynamic
Scenes with Interacting Agents.” In: The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 2165–2174.

Lefèvre, Stéphanie, Dizan Vasquez, and Christian Laugier (2014). “A survey on
motion prediction and risk assessment for intelligent vehicles.” In: ROBOMECH
1.1, p. 1.

Luo, Wenjie, Bin Yang, and Raquel Urtasun (2018). “Fast and Furious: Real Time
End-to-End 3DDetection, Tracking andMotion Forecasting with a Single Convo-
lutional Net.” In: The IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR).

Phan-Minh, Tung, Elena Corina Grigore, Freddy A. Boulton, Oscar Beĳbom, and
Eric M. Wolff (2020). “Covernet: Multimodal Behavior Prediction using Trajec-
tory Sets.” In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 14074–14083. doi: 10.1109/CVPR42600.2020.
01408.

Rhinehart, Nicholas, Kris M. Kitani, and Paul Vernaza (Sept. 2018). “R2P2: A
ReparameteRized Pushforward Policy for Diverse, Precise Generative Path Fore-
casting.” In: The European Conference on Computer Vision (ECCV).

Rhinehart, Nicholas, Rowan McAllister, Kris Kitani, and Sergey Levine (2019).
“PRECOG: PREdiction Conditioned On Goals in Visual Multi-Agent Settings.”
In: International Conference on Computer Vision.

Robicquet, Alexandre, Amir Sadeghian, Alexandre Alahi, and Silvio Savarese
(2016). “Learning Social Etiquette: Human Trajectory Prediction In Crowded
Scenes.” In: European Conference on Computer Vision (ECCV).

Russakovsky, Olga et al. (Dec. 2015). “ImageNet Large Scale Visual Recognition
Challenge.” In: Int. J. Comput. Vision 115.3, pp. 211–252.

Sadeghian,Amir,VineetKosaraju,Ali Sadeghian,NoriakiHirose,HamidRezatofighi,
and Silvio Savarese (June 2019). “SoPhie: An Attentive GAN for Predicting Paths
Compliant to Social and Physical Constraints.” In: The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR).

Zeng,Wenyuan,Wenjie Luo, Simon Suo, Abbas Sadat, Bin Yang, Sergio Casas, and
Raquel Urtasun (June 2019). “End-To-End Interpretable Neural Motion Planner.”
In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Zhao, Tianyang, Yifei Xu, Mathew Monfort, Wongun Choi, Chris Baker, Yibiao
Zhao, Yizhou Wang, and Ying Nian Wu (2019). “Multi-Agent Tensor Fusion for
Contextual Trajectory Prediction.” In: CVPR.

155

C h a p t e r 9

CONCLUSIONS

9.1 Summary
A variety of theoretical frameworks and cyber-physical system applications of the
contract-based design paradigm were considered in this thesis.

First, we constructed a metatheory-compliant contract theory for modal interface
input/output automata with guards, and presented an application of the frame-
work in the design of a traffic intersection control system. Then, we developed an
assume-guarantee contract framework to model the directive-response architecture
of components of an automated valet parking system to capture communication
between subsystems with a vertical hierarchy. To restrict implementations from
being “opportunistic” in the presence of a potential environment failure while not
sacrificing performance, we introduced the theory of reactive contracts and provided
contract synthesis algorithms involving meta-specifications at the assume-guarantee
level. These led to a more fine-grain adaptive control of the specifications.

In the second half of thesis, we formulated a behavior contract framework for
autonomous agents and showed how to apply it to the development of autonomous
driving technologies, specifically the distributed control of autonomous vehicles.
We gave a theoretical framework for transparent distributed multi-agent decision
making and behavior prediction using “assume-guarantee profiles.” A provably
correct distributed conflict resolution algorithm for quasi-simultaneous games was
provided to guarantee safety and liveness for a composed system of autonomous
vehicle agents. Finally, we proposed a neural-network based probabilistic multi-
modal behavior prediction technique as a step toward extending our contract-based
frameworks to real-world engineering systems.

9.2 Future Directions
Within the context of cyber-physical systems, there remain many exciting oppor-
tunities and open challenges for contract-based design. A limiting/ultimate chal-
lenge is achieving a unified formal specification language for the implementations
of engineering systems and their contracts. Though expressive frameworks like
TLA+ (Lamport, 2015) and supporting tools are available, the sheer variety of ap-

156

plications means that mapping and translating these contracts either by hand or in an
automated manner between different domains is and will remain difficult even if we
have a good understanding of the underlying systems. The following is an outline
of potential directions for future investigation.

• Specialized contract theories: a gradual approach to address the above prob-
lem involves first “decomposing” it into specialized contract theory instances
corresponding to settings where domain knowledge is abundant. The benefits
of contract-based reasoning will be most strongly felt when we are to identify
and categorize classes of systems for which there are known efficient decision
algorithms for contract realizability and compliance. We can further take ad-
vantage of these specialized structures to develop contract-based verification
and synthesis methods such as automated refinement to obtain realizability
certificate, as has been done with SMT solvers in (Gacek et al., 2015).

• Learning contracts and implementations from data: when domain knowl-
edge is incomplete or difficult to obtain, it also makes sense to try learning
and verifying contracts and implementations from data. This can be done in
the form of learning assumptions as in our previous work (Chen et al., 2020),
guarantees as in (DeCastro et al., 2018), or (more generally) input-output
relations (Seshia et al., 2018)

With regard to the Rules of the Road portion of this work, we propose the following.

• Pushing for a complete set of road rules: the completeness of our framework
is predicated upon including continuous behaviors, more road structures and
agent types like bicyclists and pedestrians. It is also important to evaluate
its robustness in the presence of failures and uncertainty and address how
communication assumptions may be relaxed while still guaranteeing liveness.
The completeness of specification structures depends on whether we can
incorporate all edge cases. One interesting direction involves leveraging
learning approaches (You et al., 2019).

References

Chen,Yuxiao, SumanthDathathri, Tung Phan-Minh, andRichardM.Murray (2020).
“Counter-example Guided Learning of Bounds on Environment Behavior.” In:
Conference on Robot Learning, pp. 898–909. url: http://proceedings.mlr.
press/v100/chen20b.html.

157

DeCastro, Jonathan, Lucas Liebenwein, Cristian-Ioan Vasile, Russ Tedrake, Sertac
Karaman, and Daniela Rus (2018). “Counterexample-guided safety contracts for
autonomous driving.” In: InternationalWorkshop on the Algorithmic Foundations
of Robotics. Springer, pp. 939–955.

Gacek, Andrew, Andreas Katis, MichaelW.Whalen, John Backes, and Darren Cofer
(2015). “Towards realizability checking of contracts using theories.” In: NASA
Formal Methods Symposium. Springer, pp. 173–187.

Lamport, Leslie (2015).TheTLA+Hyperbook.http://lamport.azurewebsites.
net/tla/hyperbook.html.

Seshia, Sanjit A., Ankush Desai, Tommaso Dreossi, Daniel J Fremont, Shromona
Ghosh, Edward Kim, Sumukh Shivakumar, Marcell Vazquez-Chanlatte, and Xi-
angyu Yue (2018). “Formal specification for deep neural networks.” In: Inter-
national Symposium on Automated Technology for Verification and Analysis.
Springer, pp. 20–34.

You, Changxi, Jianbo Lu, Dimitar Filev, and Panagiotis Tsiotras (2019). “Advanced
planning for autonomous vehicles using reinforcement learning and deep inverse
reinforcement learning.” In: Robotics and Autonomous Systems 114, pp. 1–18.

