
Assuring Safety under Uncertainty in Learning-Based
Control Systems

Thesis by
Richard Cheng

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2021
Defended December 15, 2020

ii

© 2021

Richard Cheng
ORCID: 0000-0001-8301-9169

All rights reserved except where otherwise noted

iii

ACKNOWLEDGEMENTS

I am deeply grateful for the guidance of my advisor Joel Burdick, who has been an
extremely patient and caring advisor. His trust in me has given me the confidence to
move forward in themost challenging periods of graduate school. I alsowant to thank
my co-advisor Richard Murray, who has fundamentally shaped my way of thinking
and doing research. I am grateful to him for always pushing me intellectually
at critical junctures of my academic journey. I also want to thank Aaron Ames
and Yisong Yue for being great mentors during my PhD and serving on my thesis
committee.

I want to thank everyone from the Burdick group, AMBER lab, and the NCS group,
who have been a significant source of inspiration as well as a great sounding board.
My collaborators have also been critical to my growth over the past 5 years; in
particular, I’d like to thank Yanan Sui, who provided me with much guidance and
support early in my PhD, as well as Abhinav Verma, Ellen Novoseller, Daniel Pastor
Moreno, and many others who helped me develop and improve my ideas.

The PhD journey has had many highs and lows, and I am grateful to all of my friends
who celebrated the highs with me and kept me going during the lows. I must thank
my officemates in GT 235 who have often made the office exciting and fun (and
only slightly less productive). I also want to express my gratitude to all my Caltech
friends across MCE, GALCIT, and CMS, as well as my Princeton “frands”, who
helped me put a pause on my PhD research whenever I needed to and brought me
to love Pasadena.

I wouldn’t be where I am today without my family. Mom, Dad, Kevin - thank you
for the love you have shown me in the last 5 years, which helped me push through
the toughest times. Last but not least, I’d like to thank my partner, Hanna, who has
been a constant source of strength and support throughout the PhD.

iv

ABSTRACT

Learning-based controllers have recently shown impressive results for different
robotic tasks in well-defined environments, successfully solving a Rubiks cube and
sorting objects in a bin. These advancements promise to enable a host of new
capabilities for complex robotic systems. However, these learning-based controllers
cannot yet be deployed in highly uncertain environments due to significant issues
relating to learning reliability, robustness, and safety.

To overcome these issues, this thesis proposes new methods for integrating model
information (e.g. model-based control priors) into the reinforcement learning frame-
work, which is crucial to ensuring reliability and safety. I show, both empirically
and theoretically, that this model information greatly reduces variance in learning
and can effectively constrain the policy search space, thus enabling significant im-
provements in sample complexity for the underlying RL algorithms. Furthermore,
by leveraging control barrier functions and Gaussian process uncertainty models,
I show how system safety can be maintained under uncertainty without interfering
with the learning process (e.g. distorting the policy gradients).

The last part of the thesis will discuss fundamental limitations that arise when
utilizing machine learning to derive safety guarantees. In particular, I show that
widely used uncertaintymodels can be highly inaccuratewhen predicting rare events,
and examine the implications of this for safe learning. To overcome some of these
limitations, a novel framework is developed based on assume-guarantee contracts in
order to ensure safety in multi-agent human environments. The proposed approach
utilizes contracts to impose loose responsibilities on agents in the environment,
which are learned from data. Imposing these responsibilities on agents, rather than
treating their uncertainty as a purely random process, allows us to achieve both
safety and efficiency in interactions.

v

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] RichardCheng,KrishnaShankar, and JoelWBurdick. “Learning anOptimal
Sampling Distribution for Efficient Motion Planning”. In: 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE.
2020. url: https://ras.papercept.net/proceedings/IROS20/
1807.pdf.
R.C developed the algorithm, implemented and analyzed the method, con-
ducted the experiments, and wrote the manuscript.

[2] Richard Cheng et al. “Safe multi-agent interaction through robust control
barrier functions with learned uncertainties”. In: IEEE 59th Conference on
Decision and Control (CDC). IEEE. 2020. url: https://arxiv.org/
abs/2004.05273.
R.C developed the algorithm, implemented and analyzed the method, con-
ducted the simulations, and wrote the manuscript.

[3] MaeganTucker et al. “HumanPreference-BasedLearning forHigh-dimensional
Optimization of Exoskeleton Walking Gaits”. In: 2020 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE. 2020.
url: https://arxiv.org/abs/2003.06495.
R.C participated in development of the learning algorithm and helped con-
duct human experiments.

[4] Richard Cheng et al. “Control Regularization for Reduced Variance Rein-
forcement Learning”. In: International Conference on Machine Learning.
2019, pp. 1141–1150. url: http://proceedings.mlr.press/v97/
cheng19a.html.
R.C developed the algorithm, implemented and analyzed the method, con-
ducted many of the simulations, and wrote the manuscript.

[5] Richard Cheng et al. “End-to-end safe reinforcement learning through bar-
rier functions for safety-critical continuous control tasks”. In: Proceedings
of the AAAI Conference on Artificial Intelligence. Vol. 33. 2019, pp. 3387–
3395. url: https://www.aaai.org/ojs/index.php/AAAI/article/
view/4213/4091.
R.C developed the algorithm, implemented and analyzed the method, con-
ducted the simulations, and wrote the manuscript.

[6] Richard Cheng et al. “Motor control after human SCI through activation
of muscle synergies under spinal cord stimulation”. In: IEEE Transactions
on Neural Systems and Rehabilitation Engineering 27.6 (2019), pp. 1331–
1340. url: https://ieeexplore.ieee.org/abstract/document/
8704925.
R.C developed the muscle synergy extraction method, conducted the data
analysis, and wrote the manuscript.

vi

[7] Richard Cheng and Joel W Burdick. “Extraction of muscle synergies in
spinal cord injured patients”. In: 2018 40th Annual International Confer-
ence of the IEEE Engineering in Medicine and Biology Society (EMBC).
IEEE. 2018, pp. 2623–2626. url: https://ieeexplore.ieee.org/
abstract/document/8512763.
R.C developed the muscle synergy extraction method, conducted the data
analysis, and wrote the manuscript.

[8] Richard Cheng et al. “On Muscle Activation for Improving Robotic Re-
habilitation after Spinal Cord Injury”. In: 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE. 2018, pp. 798–
805. url: https://ieeexplore.ieee.org/abstract/document/
8593973.
R.C conducted the data analysis and wrote the manuscript.

vii

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . iv
Published Content and Contributions . v
Table of Contents . vi
List of Illustrations . viii
List of Tables . xiii
Chapter I: Introduction . 1

1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Related Work . 3
1.4 Contributions and Structure of this Thesis 10

Chapter II: Background and Preliminaries 13
2.1 Reinforcement Learning . 13
2.2 Control Barrier Functions . 15
2.3 Gaussian Process Models . 16
2.4 Mathematical Notation . 19

Chapter III: Control Regularization for Reinforcement Learning 20
3.1 Reducing Variance in RL through Control Regularization 21
3.2 Control Theoretic Stability Guarantees 30
3.3 Empirical Results . 35
3.4 Conclusion . 40

Chapter IV: Safe Reinforcement Learning through Control Barrier Functions . 47
4.1 Enforcing Safety during Learning through CBFs 48
4.2 Guiding Exploration in RL through CBFs 52
4.3 Simulation Results: RL-CBF . 59
4.4 Robust Safety in Uncertain, Multi-Agent Interactions 64
4.5 Simulation Results: Multi-agent CBF 75
4.6 Conclusion . 76

Chapter V: Safety Guarantees under Learned Models of Human Behavior . . 80
5.1 Accuracy of Learned Models of Human Uncertainty 81
5.2 Guaranteeing Safety among Humans through Behavioral Contracts . 94
5.3 Conclusion . 110

Chapter VI: Conclusion . 114
6.1 Future Work . 115

Bibliography . 116

viii

LIST OF ILLUSTRATIONS

Number Page
3.1 Learning curves for 6 separate learning trials when using the RL

algorithm DDPG [150] to solve the CartPole task in the OpenAI gym
environment. All hyperparameters are kept constant, with only the
random seed changed between trials. However, significant variance
is seen in learning performance, with one of the trials completely
unable to improve on the task. 20

3.2 Illustration of optimal trajectory vs. control-theoretic trajectory with
the explorable set SBC . (a) With high regularization, set SBC is small,
making it impossible to learn the optimal trajectory. (b) With lower
regularization, set SBC is larger so it is possible to learn the optimal
trajectory. However, this also enlarges the policy search space. 29

3.3 Stability region for CartPole under mixed policy. (a) Illustration of
the stability region for different regularization, _. For each _ shown,
the trajectory goes to and remains within the corresponding stability
set throughout training. (b) Size of the stability region in terms of
the angle \, and position G. As _ increases, the system trajectory is
guaranteed to remain closer to the equilibrium point during learning. 36

3.4 Learning results for CartPole, Car-Following, and TORCS RaceCar
Problems using DDPG. (a) Reward improvement over control prior
with different set values for _ or an adaptive _. The right plot is a
zoomed-in version of the left plot without variance bars for clarity.
Values above the dashed black line signify improvements over the
control prior. (b)Performance and variance in the reward as a function
of the regularization _, across different runs of the algorithm using
random initializations/seeds. Dashed lines show the performance
(i.e. reward) and variance using the adaptive weighting strategy.
Variance is measured for all episodes across all runs. Adaptive _ and
intermediate values of _ exhibit best learning. Again, performance
is baselined to the control prior, so any performance value above 0
denotes improvement over the control prior. 37

ix

3.5 Learning results analogous to Figure 3.4, with PPO used as the RL
algorithm. TORCS environment excluded because the PPO agent
could not complete a lap during the learning stage. 38

3.6 Learning results analogous to Figure 3.4, with TRPO used as the RL
algorithm. TORCS environment excluded because the TRPO agent
could not complete a lap during the learning stage. 38

4.1 Control architecture combining model-free RL policy with model-
based CBF to guarantee safety. (a) Initial architecture that uses CBF
to compensate for unsafe control actions, but does not guide learning
and exploration. (b) Architecture that uses CBF to guide exploration
and learning, as well as ensure safety. 49

4.2 Illustration of policy iteration process, where the goal is to learn
the optimal safe policy, c>?C . (a) Policy optimization with barrier-
compensating policy. Next policy is updated around the previous RL
policy c'!

\:
; (b) Policy optimization with barrier-guided policy. Next

policy is updated around previous deployed policy c: 55
4.3 (Top)Maximumangle (rad) of the pendulum throughout each episode.

Values above the dashed black line represent exits from the safe set
at some point during the episode. (Bottom) Comparison of accumu-
lated reward from inverted pendulum problem using TRPO, DDPG,
TRPO-CBF, and DDPG-CBF. 61

4.4 Representative pendulum trajectory (angle vs. time) using first policy
vs. last policy. The left plot and right plot show results from TRPO-
CBF and DDPG-CBF, respectively. The trajectory for the first policy
(blue) goes to edge of the safe region and stays there, while the
trajectory for the last policy (red) quickly converges to the upright
position. 62

4.5 (Top) Minimum headway between cars during each learning episode
using DDPG, TRPO, DDPG-CBF, and TRPO-CBF. Values below
the dashed black line represent exits from the safe set, and values
below 0 represent collisions. The curve for DDPG has high negative
values throughout learning, and is not seen. (Bottom) Comparison
of reward over multiple episodes from car-following problem using
TRPO, TRPO-CBF, and DDPG-CBF (DDPG is excluded because it
exhibits very poor performance). 63

x

4.6 Diagram overviewing the control structure. The proposed approach
guarantees safety by utilizing a Bayesian Inference Module to learn
dynamic uncertainties, and handles them with the proposed Robust
CBF module. 65

4.7 Sample path of a multi-agent system based on the nominal CBF (cf.
[27]) and the proposed Robust CBF. The robot (blue) tries to navigate
from a start position to random goal position while avoiding colli-
sions with other agents (red). Approximately half of the other agents
blindly travel towards their own randomly chosen goal, while the rest
exhibit varying degrees of collision-avoidance behavior (the robot
does not know their behavior a priori). (a) Initial robot/environment
configuration, (b) Intermediate configuration, (c) Intermediate con-
figuration showing that the nominal CBF controller experiences col-
lision (top), while the robust CBF avoids collision (bottom). (d)
Final configuration before robot reaches its goal position (star). See
https://youtu.be/hXg5kZO86Lw for the simulation videos. 75

5.1 (Left) In this example, the red carmust take into account the blue car’s
trajectory – and its uncertainty – in its plan to progress safely through
the intersection. The dashed yellow curves denote the boundary of
a tube that defines the X confidence bound over trajectories. The
white circle depicts a distribution over trajectories. The blue lines
are example trajectories. (Right) Simplified illustration of different
stages of the control pipeline. While every stage (prediction, plan-
ning, tracking) is crucial to guaranteeing safety, this paper focuses
exclusively on the yellow box, prediction. 82

5.2 Prediction error vs. safety threshold, X, using Gaussian mixture
models on the highD dataset, considering a 2B re-planning horizon.
 denotes the number of mixtures used, with = 1 denoting a
standard Gaussian distribution. The dashed black line represents a
perfect prediction model. 85

5.3 Example of a car’s trajectory, along with the approximate 5f confi-
dence bound computed from the training trajectories, given the car’s
target lane 8 seconds in the future. 86

xi

5.4 Prediction error vs. safety threshold, X using computed quantile
bounds or Gaussian uncertainty model on the highD dataset (assum-
ing 2B re-planning horizon). The dashed black line represents a
perfect prediction model. 87

5.5 (a) Smallest accurate X versus amount of data collected. The trend is
highly linear (A2 ≈ 0.995), and holds across different sections of the
dataset. (b) Projection showing the expected amount of data required
to obtain an accurate safety threshold X<8=. The dashed lines show
the number of kilometers driven in California in 2019 by Waymo,
Cruise, and Nuro. 88

5.6 Plot of confidence bounds over the car’s future trajectory, where the
car’s target lane is known. The car’s positional history is shown by the
red circles, and training data is taken from equivalent scenarios in the
highD dataset. Calculations show that there is a 97.1% probability
that a new trajectory falls within the blue confidence bounds at 2, 4,
and 6 seconds in the future. 90

5.7 Synthetic data is generated from two different modes: (mode 1 – blue,
mode 2 – red). The confidence intervals below denote where a point
would have to lie in order to classify it, with confidence X = 10−8, as
coming from either mode 1 or mode 2. For example, if a new point
falls in the interval covered by the blue bar, it can be classified as
coming from mode 1 with confidence X ≤ 10−8. If it falls anywhere
in the gray interval, its mode cannot be deduced (assuming a uniform
prior). 91

5.8 Toy example illustrating that treating uncertainty in human actions
can lead to unintuitive, inefficient plans. The image on the left shows
a simplified example of two cars that must safely interact when given
3 potential actions. If they both choose the same action, a collision
will occur. On the right, different scenarios on what actions could
be safely taken are outlined based on how the “other” agent’s action
is predicted (the “other” agent’s potential actions are denoted by the
blue stars and “our” agent’s safe action is denoted by the yellow star). 95

5.9 Overview of the signaled intentions considered in this work. The
obligations map these signaled intentions to a specific option (set of
actions), described in each row. 97

xii

5.10 Diagram depicting the overall framework for the proposed safe inter-
active planning algorithm. 98

5.11 (a)Diagram showing how each signaled intention is associated with a
different part of the action space, which defines the agent’s obligation
(though agents are not always required to fulfill these obligations).
(b) Diagram showing probabilistic bounds that lower bound or upper
bound each obligation 1 with a specified probability X. 103

5.12 Top and bottom represent two example instances of simulated cars
driving along the highway while running the proposed planner. Each
snapshot shows the state of the cars 25 time steps apart, progressing
in time from left to right. While the left-most snapshot represents
the full multi-agent system, for clarity, only two agents (the ones
outlined by the red boxes in the left snapshots) are highlighted in the
remaining snapshots. These two agents are used to highlight safe
interactive behavior. 108

5.13 Prediction error vs. safety threshold, X, using a Gaussian uncertainty
model on synthetic 2D data generated from 3 different distributions.
The dashed black line represents a perfect prediction model. Signif-
icant prediction error arises when the underlying data distribution is
non-Gaussian. 111

5.14 Prediction error vs. safety threshold, X under computed quantile
bounds on synthetic 2D data. The dashed black line represents a
perfect prediction model. 112

5.15 (a) Smallest accurate X versus amount of data using synthetic 2D
data. The trend is highly linear (A2 = 0.979), (b) Projection showing
the expected amount of data required to obtain an accurate safety
threshold X<8=. 113

xiii

LIST OF TABLES

Number Page
4.1 Performance statistics for the robust vs. nominal multi-agent CBF

across 1000 randomized trials. For fair comparison, the robust and
nominal CBFs were tested in the same randomized 1000 trials. Col-
lision Rate: Percentage of trials that ended in collision. Distance
to Collision: For trials without collision, the robot’s margin from
collision. The closer the robust CBF is to the nominal CBF, the less
conservativeness is introduced by the uncertainty prediction. 76

5.1 Different model classes for capturing human trajectory uncertainty,
used in previous safe planning algorithms in order to guarantee safety
with probability 1 − X. The right column shows the lowest safety
threshold, X, found used in the literature (in simulation or hardware
experiments) for each model class. There is no entry for generative
models, as these models have not yet been utilized to provide explicit
safety guarantees during planning, though there is surely a trend in
this direction. 81

1

C h a p t e r 1

INTRODUCTION

1.1 Motivation
Over the past couple decades, significant progress has been made in the realm
of robot planning and control, with many successes in areas such as warehouse
automation [54], autonomous driving [175], and robotic manipulation [75, 124].
Many recent advancements have been enabled by the advent of machine learning
and in particular, deep neural networks. Their ability to accurately capture extremely
complex mappings directly from data and their impressive generalization to unseen
scenarios have led to their widespread study in robotic systems. Indeed, much
high-profile progress has leveraged these tools to learn complex behaviors from
data and/or simulations [80, 151]. For example, reinforcement learning has recently
been used to solve a Rubiks cube using a multi-fingered hand [9], and train robotic
arms to autonomously pick up and sort a wide variety of objects [94]. While these
successes are still limited to highly structured and controlled environments, the
hope is that one day, robotic systems will be able to safely and reliably learn and
execute complex behaviors in uncertain, unstructured environments (e.g. a crowded
mall/street).

However, while there is great promise in leveraging machine learning approaches
to enable new robotic capabilities directly from data or interactions, significant
roadblocks still prevent widespread adoption. One of these roadblocks, which is
the focus of this thesis, is certifying safety and improving reliability of learning-
based control systems. While many recent works have shown impressive results
using reinforcement learning to accomplish difficult tasks, widespread adoption
will require much higher system reliability and formal guarantees of safety. For
example, in the Rubiks cube example mentioned above, the robotic hand succeeded
in solving the Rubiks cube 20% of the time [9]; in the sorting example, the system
made a successful grasp 96% of the time [94]. In the self-driving car space,
there have been notable high-profile safety failures, leading to significant injury
and/or death, which have significantly damaged public trust. Therefore, while these
previous advancements are extremely impressive, they are not sufficient to enable
widespread deployment. In most applications, a robot that fails 1% of the time

2

will be frustrating to use; a robot that causes harm 0.01% of the time will not be
acceptable. Therefore, the goal of this thesis is to explore how to leverage the high
performance of reinforcement learning (and machine learning in general), while
overcoming issues related to poor reliability and lack of safety guarantees arising
from their black-box nature.

1.2 Problem Statement
The work in this thesis aims to improve reliability and guarantee safety in learning-
based robotic control systems operating in uncertain environments, such that robots
can be confidently deployed in more unstructured environments. This thesis exam-
ines two sub-areas of this problem, which are detailed below.

1.2.1 Ensuring Safety and Reliability in Reinforcement Learning
Reinforcement learning (RL) is a general technique aimed at finding an agent’s
optimal policy (i.e. controller) that maximizes long-term accumulated reward. In
RL, the agent repeatedly observes its state/environment, takes an action according
to its current policy, and receiving a reward. Over many iterations, the agent is
able to modify its policy based on its experiences in order to maximize its long-
term reward [161]. This method has seen recent success when applied to different
robotic control tasks, learning to stabilize/operate complex robots in both simulation
and the real world [9, 109, 148]. The appeal of reinforcement learning is that it
can enable computation of controllers directly from high-dimensional observations
and interactions with the environment, bypassing the need for accurate models or
hand-crafted controller design.

However, these methods are also known to be unreliable (failing in many instances
of learning) [136] and unsafe [13]. This stems from the mostly black-box treatment
of most RL policies, making them uninterpretable, difficult to provide formal guar-
antees for, and highly susceptible to misspecified rewards. These difficulties raise
mistrust of RL systems, and slow their adoption, regardless of the impressive tasks
they may be able to accomplish. This has sparked significant interest in interpretable
and safe RL (see Section 1.3 for an overview of such works).

In this thesis, I argue that some model information (i.e. prior knowledge of the robot
and/or environment) is necessary to providing formal guarantees for and improve re-
liability of learning-based control systems. The thesis illustrates how to incorporate
limited model information effectively into the model-free RL framework in order to
improve learning reliability (Chapter 3), provide formal safety guarantees (Chapter

3

4), and guide the exploration process, thereby improving sample complexity. As
opposed to most model-based RL methods (see Section 1.3.1), this work advocates
for using model information to only constrain the action search space (rather than
utilizing model-based learning updates). This allows us to leverage many of the
benefits of model-based RL without being as susceptible to model inaccuracies.

1.2.2 Assuring Safety under Learned Models of Human Behavior
The latter half of this thesis focuses on assuring robot safety in multiagent human
environments. As there is significant interest in adopting robots into many human
environments, there has been much recent work looking at how to (a) learn accurate
models of human behavior in complex, multiagent environments (see Section 1.3.3),
and (b) provide probabilistic guarantees of safety using these learned behavior
models (see Section 1.3.4). Much progress has been made in recent years on both
of these fronts, in large part due to improved modeling using deep learning paired
with large datasets, which can provide prediction of distributions over future human
behavior. Therefore, this work studies how these models can be utilized to guarantee
safety in safety-critical applications, and how/why they currently fail to do so.

While this topic has significant overlap with the previous topic (ensuring safety in
RL), there is a fundamental difference between human uncertainty and any other
types of uncertainty (e.g. dynamic uncertainty), which will be explored in depth.
However, most works dealing with safety guarantees in human interaction do not
make this distinction, which I argue leads to inaccurate models and suboptimal
plans.

The first half of Chapter 5 examines different uncertainty models used to predict
human behavior and guarantee safety in multiagent settings; it discusses how and
why these models fall short in safety-critical applications, due to the unique nature
of human uncertainty. The second half of Chapter 5 explores how to leverage and
encode prior knowledge about human behavior and intention in order provide safety
guarantees in multiagent, human settings based on more accurate, interpretable
modeling assumptions.

1.3 Related Work
1.3.1 Reinforcement Learning for Planning and Control
In recent years, several works have studied reinforcement learning applied to con-
tinuous control tasks, leading to impressive results in both simulation and the real
world [74, 109, 147]. As RL is a very general technique for solving the above

4

problem, there are many different classes of algorithms that fall under its umbrella.
Most algorithms used for control tasks can be classified into two categories: (1)
model-free RL, and (2) model-based RL.

Model-FreeReinforcement Learning: Model-free RL refers to approaches where
the policy (most often parameterized by a neural network) is learned/optimized based
on observed experiences. Typically, these approaches learn a value function, directly
learn a policy, or both. Many works have shown that learning a value function (i.e. a
complex function that represents the long-term value of taking any action) can lead
to very good planners (e.g. Q-learning, SARSA), particularly in the discrete action
domain [43, 137]. More recently, many of these methods have been combined
with deep neural networks (to parameterize the value function), and have shown
impressive results with the resulting planners [47, 120]. However, the problem of
synthesizing a controller from an accurate Q-function is non-trivial.

Therefore, policy gradient methods have become extremely popular for continuous
control tasks, as they allow direct optimization of the policy/controller (rather than
having to go through a value function). In one of the earliest formulations of the
policy gradient, Williams [178] showed that an unbiased estimate of the policy
gradient could be directly and easily computed from sampled data/trajectories.
Therefore, in a given learning episode, data would be gathered, the policy gradient
could be computed, the policy would be updated; then new data would be gathered
with the updated policy. Silver [150] introduced deterministic policy gradients for
deterministic policies.

While elegant, these policy gradients exhibited extreme variance, limiting their use-
fulness [186]. However, it was found that this variance could be reduced without
introducing bias by subtracting a baseline from the reward function in the policy
gradient [79, 176], and the action-value function could provide an optimal base-
line [24, 159]. Therefore, an improved policy gradient was formulated to include
the action-value function [159]. However, this helped the variance problem, but
introduced the new issue of getting a good value function estimate.

This gave rise to many well-performing actor-critic methods, where an actor repre-
sents the policy/controller for the system and the critic represents the estimate of a
value function or some variant. These methods utilize the critic as a baseline for
variance reduction for updates of the actor [146]. Alternating updates are made to
both functions; while this may cause learning instabilities, such methods have led
to many successful algorithms [84, 147, 148, 179].

5

As reinforcement learning methods struggle with sample complexity, many meth-
ods have attempted to boost data efficiency by saving data from previous learning
iterations (e.g. in a “replay-buffer”) [14, 109, 145]. These methods are referred to
as off-policy methods, as they rely on data gathered based on a separate policy to
update the current policy. In contrast, on-policy methods only rely on data gathered
based on the current policy to update the current policy [147].

However, despite the successes of model-free reinforcement learning, many have
noted that variance still remains problematically high in reinforcement learning,
making learning unreliable [88, 90, 136]. Furthermore, while these techniques
bypass the need for complex controller synthesis based on an accurate system
model, they typically exhibit poor sample complexity [136].

Model-Based Reinforcement Learning: In contrast, model-based RL algorithms
learn a model of the environment, which they leverage to learn the optimal policy
(or value function) [122]. There are several different types of model-based RL
algorithms, which depend on (a) how the environment model is learned, and (b)
how that model is leveraged for planning.

The first part of a model-based method learns an environment model, which can be
accomplished with a variety of methods, from linear regression to neural networks
[171]. There are a wide variety of different dynamical system models, which allow
us to predict future system states and potentially the uncertainty in these states
(e.g. neural network with dropout [70], Gaussian process [44]) –– see [122] for an
extensive review.

Once this model has been learned, there are several approaches to utilizing it for
planning. Most methods fall into three main categories:

• Use the model for approximate dynamic programming to obtain the system’s
value function [51, 107];

• Sample additional data from model, which can then be used for standard
model-free updates [160];

• Use the model for gradient-based planning (e.g. compute policy gradient
by differentiating through the dynamics model) [44, 184]. Other work uses
Bayesian optimization for policy updates based on the learned model [21].

6

A more extensive review on these methods and model-based reinforcement learning
can be found in [121]. While model-based RL methods enable better sample
complexity, model accuracy has a significant impact on the learning task, making
performance susceptible to slight model errors.

Hybrid Methods: In this thesis, the main focus is on ways to intelligently incor-
porate model information into the model-free RL framework, in order to realize the
benefits of model-free RL while overcoming its major limitations (i.e. safety, relia-
bility, sample complexity). Along this line, work by [92, 152] adds a control prior
during learning, and empirically demonstrates improved performance. Researchers
in [59, 125] used model-based priors to produce a good initialization for their RL
algorithm, but did not use regularization during learning. Another approach [106]
uses a model-based controller to guide the robot to areas where the model is poor,
where model-free learning takes over. Other works incorporate model information
only to filter the learned policy to guarantee safety [65], but do not consider the
impact of this filtering on learning. Discussion of these works is left to the following
subsection on safe RL.

1.3.2 Safe Reinforcement Learning for Control
Safe RL is a subfield of reinforcement that focuses on learning a policy that maxi-
mizes the expected return, while also ensuring (or encouraging) the satisfaction of
some safety constraints [71]. Model-free approaches to safe reinforcement learning
include policy optimization with constraints [6, 72, 123, 170], or teacher advice [4,
5, 163]. These methods have demonstrated that they can quickly learn to satisfy
specified constraints after a short period of learning. However, these model-free
approaches do not guarantee safety during learning – safety is only approximately
guaranteed after a sufficient learning period (e.g. guaranteed in expectation [6]).
The fundamental issue with model-free safe reinforcement learning is that without
a model, safety must be learned through environmental interactions, which means
it may be violated during those interactions.

Model-based approaches have utilized Lyapunov-based methods [25, 38, 133] or
model predictive control [99] to guarantee safety under system dynamics during
learning. Bayesian inference was utilized in [56, 97, 131, 173] to learn system
dynamics in an online manner while ensuring probabilistic safety using Control
Barrier Functions. However, these works do not consider the issue of RL exploration
and performance optimization. They capture uncertainty in the system dynamics

7

(typically using a Gaussian model), and design a controller that is robust to this
uncertainty. Similarly, recent methods rely on Hamilton-Jacobi reachability in order
to incorporate model information into model-free RL algorithms to ensure safety
during exploration [65, 76]. These approaches directly filter the control action of
the RL controller to guarantee safety, but do not consider interaction between the
learner and the model-based safety-filter, which can distort the learning process (as
will be discussed in Chapter 4). Short-term predictions and rule-based priors can
also constrain the action set [119]. Some works have looked at guaranteeing safety
by switching between backup controllers [115, 133]. It is also possible to add a
collision penalty in the objective based on the model’s predicted probability (and
uncertainty) of collision [93] .

The work in this thesis relies heavily on control barrier functions (CBFs) for safety
assurances [11, 12, 128] (see Section 2.2 for technical background). CBFs use
Lyapunov-like arguments to ensure safety through set invariance, but they are more
suited to safety requirements as they deal with set stability rather than point-wise
stability. They have been used to guarantee collision avoidance inmultiagent settings
by projecting desired actions, to the closest (in least-squares sense) safe actions
according to a CBF condition [39, 156, 182]. Recent works have looked at learning
CBFs for general systems, either implicity or explicitly [83, 157]. A multi-agent
CBF was defined explicitly for multi-agent systems in the case of continuous-time
linear dynamics [27, 172]. While most work in this area has focused on continuous-
time dynamics, some recent work has also examined discrete-time control barrier
functions [7, 8], which will be leveraged in this thesis.

While CBFs enable formal guarantees of safety for dynamical systems in a com-
putationally efficient manner, most works rely on a known model of the system
dynamics. However, given the need to deal with environmental uncertainty, many
recent works have looked at developing robust control barrier functions or incorpo-
rating uncertainty into the CBF formulation for probabilistic safety guarantees [37,
114, 153, 154].

1.3.3 Uncertainty Modeling in Safe Control
Almost all approaches for guaranteeing safe control in the presence of uncertainty
rely on an assumed or learned model that approximates that uncertainty as a random
process (e.g. deviations from a nominal dynamics model are drawn i.i.d. from
some probability distribution). These uncertainty models help capture noise and

8

the effects of unobserved variables, and they enable probabilistic safety guarantees
by placing bounds on the uncertainty that our agent may face and must be robust to.
This section provides an overview of these uncertainty models, which can almost
all be placed into one or more of the following categories:

• Gaussian Process (GP): These approaches model other agents’ trajectories
as Gaussian processes, which treat trajectory uncertainty as a multivariate
Gaussian [15, 37, 53, 86, 140]. There are several extensions, such as the
IGP model [165] (which accounts for interaction between multiple agents),
or others [60, 110]. However, they all treat uncertainty as a multivariate
Gaussian.

• Gaussian Noise with Dynamics Model: These approaches use a dynamics
model with additive Gaussian noise; noise can also be added in state observa-
tions. This induces a Gaussian distribution over other agents’ future trajectory
(or a situation amenable to moment-matching) [68, 78].

• Quantile Regression: This approach computes quantile bounds over the
trajectories of other agents at a given confidence level, X. This approach is
beneficial in that it does not assume an uncertainty distribution over trajectories
[57, 162].

• Scenario Optimization: This approach computes a predicted set over other
agents’ actions based on samples of previously observed scenarios [30]. This
is a distribution-free approach (i.e. does not assume a parametric uncertainty
distribution) [31, 32, 36, 144].

• Noisy Rational (i.e. Boltzmann Rational) model: This model treats the
human as a rational actor who takes “noisily optimal” actions according
to a distribution in the exponential family, shown in Equation (5.5). The
uncertainty in the action is captured by this distribution, which relies on an
accurate model of the human’s value function [63, 69, 102, 108, 141].

• Generative Models (e.g. CVAE, GAN): These models learn an implicit
distribution over trajectories. They do not provide an explicit distribution,
but can generate random trajectories that attempt to approximate the true
distribution [81, 138, 143].

9

• Hidden Markov Model (HMM) / Markov Chain: These models differ in
that they capture uncertainty over discrete sets of states/intentions (e.g. goal
positions) – as opposed to capturing uncertainty over trajectories. Thus,
the objective is to infer the other agents’ unobserved state/intention (from a
discrete set) with very high certainty, 1 − X [19, 95, 104, 111, 116, 139, 164].

• Uncertainty Quantifying (UQ) Neural Networks: These approaches do
not constitute a separate class of uncertainty models, but simply refer to
methods that train a neural network to capture the distribution over other
agents’ trajectories [77, 93, 117]. They are listed separately due to their
popularity. Most often these networks output a Gaussian distribution or
mixture of Gaussians (e.g. Bayesian neural networks [26], deep ensembles
[103],Monte-Carlo dropout [70]). Thesemodels can also quantify uncertainty
over discrete states (i.e. infer the hidden state in HMMs) [46, 89].

Among these, the Gaussian uncertainty model is the most popular, and most
uncertainty-quantifying neural networks that aim to learn some dynamic uncer-
tainty will output a Gaussian distribution or GMM. Once an uncertainty class is
chosen, and the uncertainty is learned from data, it can be incorporated into one of
several safety mechanisms that exist to guarantee safety (e.g. integrating uncertainty
into chance constraints).

1.3.4 Assuring Safety in Human Multi-Agent Scenarios
Multi-agent collision avoidance has been a long-studied problem with different ap-
proaches proposed for enabling safe control in varying situations. Velocity obstacles
is a popular approach that involves limiting control actions to a set of “safe” actions,
though its assumption of constant velocity with linear dynamics is limiting [62,
167]. Related works in this direction have loosened these assumptions, but require
significant sampling of the action space and do not incorporate dynamic uncertainty
[22, 177]. More recently, Buffered Voronoi Cells (BVC) have been proposed as a
tool to provide safety guarantees with only positional information, though safety
guarantees are provided only under linear dynamics and without uncertainty [174,
187]. Also, [20, 34, 67] provide safety guarantees, under worst case disturbances, by
solving the Hamilton-Jacobi-Isaacs equation to obtain a minimally invasive control
law. However, the heavy computational expense prohibits applicability to large-scale
multi-agent systems.

10

Reinforcement learningmethods have emerged recently formultiagent planning/control,
which directly learn actions in multi-agent settings in response to the observed envi-
ronment [35, 55]. However, these methods provide no formal guarantees of safety,
and as such are prone to collision in novel environments. Furthermore, they have
not been shown to scale to settings with many agents. Lotjens [112] provides safety
RL in the presence of humans, but only considers epistemic model uncertainty with
collision probability penalized in the objective function. Zhang [185] combined
a safe backup policy with the learned policies. Recent work has also looked at
generative models in order to predict other agents’ future trajectories and encourage
safety with respect to them, and these generative models have shown promising
results though they lack formal safety guarantees [130].

Another approach treats the planning problem as a Partially Observable Markov
Decision Process (POMDP), where the goal or intention of the other agents is
unobserved. By considering a finite set of goals/intentions, the goal/intention can
be probabilistically inferred [19, 29, 42, 118]. Some works have integrated this
with the safe RL framework [28]. Such a formulation is nice, because it naturally
incorporates human intention (and its uncertainty) into the MDP framework.

Methods based on inverse reinforcement learning (IRL), which aims to learn other
agents’ reward function in order to implicitly understand their goals, have also shown
promise for safe human-robot interaction [188]. These IRL methods are loosely
inspired by psychology studies suggesting that humans behave (noisily) optimally
with respect to some metric [41, 45]. After learning this reward function, a game
can be solved between the primary agent to be controlled and the other agent(s)
in order to compute the optimal trajectory [18, 50, 85, 141, 142]. Many of these
works model interaction as a Markov Game, while others [66, 108, 183] utilize a
Stackelberg dynamic game. The game-theoretic formulation is a nice mathematical
formulation in that it allows us to consider optimality of the entire community, and
allows us to leverage the influence one agent’s actions have on others. [69] has
shown that safety guarantees can be made by considering that the uncertainty obeys
the “noisy rational” model of the human. Other recent work has considered risk
awareness under a set of reward functions [102].

1.4 Contributions and Structure of this Thesis
The main contributions of this thesis can be summarized as follows:

• I develop a method for integrating a model-based controller into the reinforce-

11

ment learning framework, and show (both theoretically and empirically) that
this significantly reduces variance in learning with minimal bias introduced.
This approach is proven to be equivalent to constraining the policy search
space, and it is also proven that robustness properties of the control prior can
be inherited by the RL policy.

• I develop a framework that utilizes limited model information to guarantee
safety by leveraging discrete-time control barrier functions and Gaussian pro-
cess uncertainty models. It is shown that policy gradient distortion occurs
under naive inclusion of these control barrier functions (or any safety filter),
and this work proposes a method that accounts for the policy gradient distor-
tion. I prove that this method both guides the exploration process of learning
and allows for probabilistic safety guarantees.

• An in-depth analysis is conducted, evaluating the accuracy of major uncer-
tainty models in predicting the distribution of human behavior. In particular,
by examining human driving behavior, it is shown that all these uncertainty
models perform very poorly (exhibiting very low accuracy) when predicting
the probabilities of rare events. It is further shown that the amounts of data
required to obtain accurate predictions for the probabilities of these rare events
is currently infeasible.

• To overcome the issues associated with inaccurate uncertainty models, a new
method based on assume-guarantee contracts is proposed for guaranteeing
safety in human environments. A framework is developed for learning the
main components of these contracts, and it is proven that under certain as-
sumptions on the behavior of agents, safety is always guaranteed when these
contracts are satisfied. This also enables us to assign responsibility for safety
violations by examining contract violations.

Chapter 2 provides technical background on topics related to themajor themes of this
thesis. Chapters 3 and 4will focus on the issues of reliability and safety, respectively,
in deep reinforcement learning. Chapter 3 dives into the extreme variance that results
from inevitable random exploration in reinforcement learning, and how it can be
alleviated by using limited model information, while also improving robustness
and sample complexity. Chapter 4 focuses on providing probabilistic guarantees
of safety in reinforcement learning through the use of and how this can also guide
the exploration/learning process. The first half of Chapter 5 conducts an analysis

12

into the uncertainty models used to guarantee safety throughout the literature, and
shows that for safety-critical robotic applications (e.g. self-driving), these models
are highly inaccurate and cannot provide reliable safety guarantees. The second
half of Chapter 5 introduces a novel planning approach based on assume-guarantee
contracts that attempts to deal with the aforementioned inaccuracy in uncertainty
models.

13

C h a p t e r 2

BACKGROUND AND PRELIMINARIES

This chapter introduces the main concepts and mathematical background that un-
derpins the rest of this thesis.

Let us model the system of interest by an infinite-horizon discounted Markov deci-
sion process (MDP) with dynamics defined by the tuple ((, �, 5 (0) , A, W), where
(⊆ R= is the state space, � ⊆ R< is the action space, 5 (0) : (× � → (

describes the nonlinear system dynamics (which may be unknown to the agent),
A (B, 0) : (× � → R is the reward function, and W ∈ (0, 1) is the discount factor.
The evolution of the system is given by the following dynamical system and its
continuous-time analogue,

BC+1 = 5 (0) (BC , 0C),
¤B = 5

(0)
2 (B, 0),

(2.1)

where ¤B denotes the continuous time-derivative of the state B, and 5 (0)2 (B, 0) denotes
the continuous-time analogue of the discrete time dynamics 5 (0) (BC , 0C).

2.1 Reinforcement Learning
Define a stochastic policy (i.e. controller) c\ (0 |B) : (× � → [0, 1] parameterized
by \. The overarching aim of RL is to find the policy (i.e. parameters, \) that
maximizes the expected accumulated reward, � (\), for the MDP defined above,
where

� (\) = Eg∼c\ [
∞∑
C=0

WCA (BC , 0C)] . (2.2)

Here, g ∼ c\ is a trajectory g = {BC , 0C , ..., BC+=, 0C+=} whose actions and states are
sampled from the policy distribution c\ (0 |B) and the dynamics (2.1), respectively.

Under the reinforcement learning umbrella, there are a diverse set of methods that
have been proposed for learning controllers from interactions with the environment.
An overview of such methods was provided in Section 1.3.1, but for now let us focus
on policy gradient methods (PGM), as they are one of the most popular tools for
learning control tasks. PGMs will be leveraged extensively in Chapters 3 and 4.

14

The policy gradient,∇\� (c\), provides a very simpleway to iteratively update/optimize
the policy c\ from one learning iteration to the next:

\:+1 = \: + U∇\� (c\). (2.3)

The challenge is that∇\� (c\) is notoriously difficult to accurately estimate/compute.
In 1992,Williams [178] showed that the following expression represents an unbiased
estimator for the policy gradient,

∇\� (c\) = Eg∼c\
[
∇\ log c\ (g)'(g)

]
(2.4)

where '(g) = ∑∞
C=0 A (BC , 0C). Intuitively, this gradient can be viewed as simply

updating the policy parameters, \, to increase the probability of taking actions that
led to higher reward and vice versa. However, though (2.4) can be used to compute
an unbiased estimate of the policy gradient, it was found to have extremely high
variance, leading to poor performance in practice.

To address this issue, it was shown that the reward '(g) can be replaced with the
action-value function, &c\ [159] (or the advantage function [148]), which reduces
the variance in the policy gradient estimates. Therefore, the policy gradient can be
estimated as,

∇\� (c\) = Eg∼c\
[
∇\ log c\ (g)&c\

]
, (2.5)

where the action-value function, value function, and advantage function are defined
as,

&c (BC , 0C) = EBC+1,0C+1,...
[∞∑
;=0

W;A (BC+; , 0C+;)
]
, 0 9 ∼ c(B 9)

+c (BC) = E0C ,BC+1,0C+1,...
[∞∑
;=0

W;A (BC+; , 0C+;)
]
, 0 9 ∼ c(B 9)

�c (BC , 0C) = &c (BC , 0C) −+c (BC).

(2.6)

With a perfectly accurate action-value function &c\ , (2.5) is an unbiased estimator;
with a reasonably accurate &c\ , (2.5) is a low-bias estimator. Therefore, while the
action-value function helps reduce the variance in the policy gradient, it introduces
its own problem, which is: how does one estimate &c\ (especially when it depends
explicitly on c\)? This gives rise to the widely used/studied actor-critic methods
[84, 147].

Remark 1. Different algorithms may replace &c\ in (2.5) with a different quantity
(e.g. the advantage function [146]) for variance reduction. However, the policy
gradient concept remains unchanged.

15

Let us refer to the policy c\ as the “actor” and the action-value function &c\ as the
“critic.” Actor-critic methods alternately make incremental updates to the actor c\ ,
using the policy gradient (2.5) (or some variant of it), and then the critic &c\ . The
critic updates are typically made using temporal-difference error or Monte-Carlo
estimates, though examples of other variants can be found in [161]. Some of the
most impressive results in reinforcement learning for control have been achieved by
leveraging actor-critic methods. However, due to the tight dependency between the
actor and critic, the update step sizes must be chosen carefully to avoid learning
instability. Furthermore, these methods still suffer from poor reliability and can
often exhibit unsafe behavior, which will be the main focus of Chapters 3 and 4.

2.2 Control Barrier Functions
Control barrier functions are a useful method used to ensure safety in nonlinear
control systems by guaranteeing set invariance [11]. Let us consider an arbitrary
safe set, C, defined by the super-level set of a smooth function ℎ : R= → R,

C : {B ∈ R= : ℎ(B) ≥ 0}. (2.7)

System safety is maintained if and only if the system state, B, remains within the safe
set C for all time (i.e. the set C is forward invariant under the flow of the controlled
system). Examples include keeping a manipulator within a given workspace, or
ensuring that a robot avoids obstacles. Control barrier functions utilize a Lyapunov-
like argument to provide a sufficient condition for ensuring forward invariance of
the safe set C under controlled dynamics, and are therefore a natural tool to enforce
safety and synthesize safe controllers [11].

Definition 1. Given a set C ∈ R= defined by (2.7), the smooth function ℎ : R= → R
is a discrete-time control barrier function (CBF) for dynamical system (2.1) if there
exists [∈ [0, 1] such that for all BC ∈ �,

sup
0C∈�

[
ℎ

(
5 (0) (BC , 0C)

)
+ ([− 1)ℎ(BC)

]
≥ 0, (2.8)

where [represents how strongly the control barrier function “pushes” the state
inwards within the safe set.

For convenience, let us define the control barrier condition (CBC) corresponding
to the CBF, ℎ, as follows,

ℎ

(
5 (0) (BC , 0C)

)
+ ([− 1)ℎ(BC) ≥ 0, (2.9)

16

The existence of a CBF implies that there exists a deterministic controller D��� :
(→ � such that the set C is forward invariant with respect to the system dynamics
(2.1) [7, 12]. Given a CBF and known system dynamics, one can synthesize such
a controller by formulating and solving an optimization problem that enforces the
CBC (2.9) as follows,

0C = argmin
0∈�

‖0‖2

s.t. ℎ
(
5 (0) (BC , 0)

)
+ ([− 1)ℎ(BC) ≥ 0

08;>F ≤ 0
8 ≤ 08ℎ86ℎ for 8 = 1, ..., <

(2.10)

where the constraints on 08C encode actuator limits. The solution to this optimization
problem implicitly defines a safe controller D��� , since it satisfies the CBC (2.9) for
all B ∈ C, thereby rendering C forward invariant. One of the goals in Chapter 4 will
be to efficiently incorporate CBF-based controllers into the RL framework in order
to both improve learning efficiency and guarantee safety.

Multi-agent CBF: In general, a valid control barrier function can be difficult to
compute and is highly problem-specific. However, for multi-agent, continuous-time
linear systems, Borrman et al. [27] proposed the following CBF,

ℎ(B) = Δ?
)ΔE

‖Δ?‖ +
√

2D<0G (‖Δ?‖ − �B) , (2.11)

where D<0G represents each robot’s maximum acceleration, �B is the collision
margin, Δ? is the positional difference between agents, and ΔE is the velocity
difference between agents. Chapter 4.4 will extend this multiagent CBF to discrete-
time systems with potentially non-linear control-affine dynamics.

Remark 2. In general, the nonlinear optimization problem (2.10) is difficult to solve
in a computationally efficient manner, especially when the dynamics 5 (0) are com-
plex and uncertain. Chapter 4 will discuss some of the simplifications/assumptions
made in the CBF literature that can simplify the optimization (2.10) to a quadratic
program, and propose a method for achieving this with multi-agent CBFs (2.11).

2.3 Gaussian Process Models
Any controller that provides safety guarantees under uncertaintymust capture/approximate
that uncertainty in some way. While there are several different models of uncer-
tainty, each with their own benefits and drawbacks, this thesis will draw heavily on
the Gaussian process model (see Section 1.3.3 for a summary of other uncertainty
models).

17

A Gaussian process (GP) is a nonparametric regression method for estimating
functions and their uncertain distribution from data or observations [135]. For
example, suppose our robot dynamics are 1-dimensional and uncertain, such that
the dynamics are described by BC+1 = 3 (BC), where 3 is unknown. Then a GP
can provide an evolving model of the uncertain function 3 (B), by a mean estimate
function, `3 (B), and an uncertainty function, f2

3
(B). The GPmodel is able to do this

by treating every set of observations as being drawn from a multivariate Gaussian
randomvariable. Therefore, themodel is fully specified by a kernel function : (B, B′),
which defines the similarity between any two states B, B′ ∈ (. A common kernel
function, and the one that is primarily used in this thesis, is the squared exponential
kernel,

^(B8, B 9) = f2 exp
(−‖B8 − B 9 ‖2

2;2
)
, (2.12)

where f and ; are kernel hyperparameters. However, there are many possible
choices of kernel functions, and more details about them can be found in [135].

Given this kernel function ^, one can infer a distribution over the function 3 (B)
based solely on previous measurements of that function, 3̂ (B). Suppose that #
measurements 3[#] := [3̂ (B1), 3̂ (B2), ..., 3̂ (B#)] are taken at sampling points B[#] :=
[B1, . . . , B#], subject to independent Gaussian noise a=>8B4 ∼ N(0, f2

=>8B4
). Since

any finite number of data points form a multivariate normal distribution in the GP,
then the following holds,[

3[#]

3 (B∗)

]
= N

(
0,

[
 (B[#] , B[#]) + f2

=>8B4
� (B[#] , B∗)

 (B∗, B[#]) ^(B∗, B∗) + f2
=>8B4

])
(2.13)

where (B[#] , B[#]) ∈ R#×# with [(B[#] , B[#])]8, 9 = ^(B8, B 9), and (B∗, B[#]) ∈
R1×# with [(B∗, B[#])]8 = ^(B∗, B8), and f2

=>8B4
is the variance of additive measure-

ment noise. Based on (2.13), one can then obtain the posterior distribution of 3 (B∗)
at any query state B∗ ∈ (by conditioning on the past measurements. The mean
`3 (B∗) and variance f2

3
(B∗) of the function 3 at the query state, B∗, are calculated

as,

`3 (B∗) =) (B[#] , B∗) ((B[#] , B[#]) + f2
=>8B4 �)−13[=] ,

f2
3 (B∗) = : (B∗, B∗) −

) (B[#] , B∗) ((B[#] , B[#]) + f2
=>8B4 �)−1 (B[#] , B∗),

(2.14)

With this model of the posterior distribution over 3 (B), high probability confidence
intervals on the function can be easily computed,

`3 (B) − :Xf3 (B) ≤ 3 (B) ≤ `3 (B) + :Xf3 (B), (2.15)

18

with probability (1 − X) where :X is a design parameter that determines X. There-
fore, by learning `3 (B) and f3 (B) in tandem with the controller, high probability
confidence intervals on the unknown dynamics can be found, and these intervals
adapt/shrink as more information (i.e. measurements) on the system is obtained.
With more collected data, `3 (B) becomes a better estimate of 3 (B), and the uncer-
tainty, f2

3
(B), of the dynamics decreases.

Matrix-Variate Gaussian Processes: The GP model described above infers the
posterior over 1-dimensional functions. This limitation is easily overcome by uti-
lizing a separate GP model for each dimension of the output function, 3 [173].
However, this approach ignores correlations between the components of a multi-
variate uncertainty 3 (B) ∈ R=. To extend the model to the multivariate setting
and account for potential correlations, the Matrix-Variate Gaussian Process (MVG)
model can be utilized to infer a multivariate distribution over 3 (B) from data. First,
let us define the MVG distribution [82, 97, 113, 158] over a random variable (by
the following probability density function,

?(S; M,Σ,Ω) :=
exp

(
−1

2 tr
[
Ω−1(S −M)>Σ−1(S −M)

])
(2c)=</2 det(Σ)=/2 det(Ω)#/2

, (2.16)

where" ∈ R#×= denotes the mean, andΣ ∈ R#×# encodes the covariance matrix of
the rows, and Ω ∈ R=×= encodes the covariance matrix of the columns. In this case,
one can write S ∼ MN(M,Σ,Ω), or equivalently vec(S) ∼ N (vec(M),Σ ⊗ Ω),
where vec(S) ∈ R=< is the vectorization of (, obtained by stacking the columns of
(, and ⊗ is the Kronecker product.

Without loss of generality, assume a zero mean function for the MVG with positive
semi-definite parameter covariance matrix Ω ∈ R=×=, and kernel ^ : R= × R= → R
(e.g. the squared exponential kernel (2.12)). Therefore, in order to model 3 (B) with
the MVG, let us assume the following,

vec(3 (B1), . . . , 3 (B#)) ∼ N (0, Σ(B[#]) ⊗ Ω), (2.17)

where Σ ∈ R#×# with Σ8, 9 = ^(G8, G 9). As in the univariate GP case, the training
observations 3[#] at sampling points B[#] and the predictive target 3 (B∗) at query
test point B∗ are assumed to be jointly Gaussian such that,[

3[#]

3 (B∗)

]
∼ MN

(
0,

[
 (B[#] , B[#]) (B∗, B[#]))

 (B∗, B[#]) ^(B∗, B∗)

]
,Ω

)
, (2.18)

19

where (B[#] , B[#]) ∈ R#×# with [(B[#] , B[#])]8, 9 = ^(B8, B 9), and (B∗, B[#]) ∈
R1×# with [(B∗, B[#])]8 = ^(B∗, B8). Thus, the posterior distribution over 3 can be
computed as follows:

3 (B∗) ∼N
(
"̂ , Σ̂ ⊗ Ω̂

)
"̂ = (B∗, B[#])) (B[#] , B[#])−13[#]

Σ̂ = ^(B∗, B∗) − (B[#] , B∗)) (B[#] , B[#])−1 (B[#] , B∗)
Ω̂ = Ω

(2.19)

Remark 3. The Gaussian process models every set of observations as being drawn
from a multivariate (or matrix-variate) Gaussian random variable. This powerful
assumption allows one to predict a distribution over 3 (B) for some unobserved
state B based on other observed states, (B1, ..., B=). However, if this assumption is
inaccurate, then the predicted distribution over 3 (B) may also be inaccurate. The
accuracy of these models is discussed in Chapter 5.1.

Remark 4. In applications involving large amounts of data, training the GP becomes
problematic since computing thematrix inverse in Equations (2.14) and (2.19) scales
poorly (typically #3 in the number of data points). There are several methods to
alleviate this issue, such as using sparse inducing inputs or local GPs [129, 155].
This work bypasses this issue by batch training the GP model with only the latest
batch of data points of limited size.

2.4 Mathematical Notation
This section introduces miscellaneous mathematical notation that will be used.
Throughout the thesis, D will denote deterministic controllers D : (→ �, while
c will denote stochastic policies c : (× � → [0, 1]. Therefore, a controller, D,
can be drawn from a policy c. Let ∗ be the convolution operator, which will be
used to combine policies. If D1 ∼ c1 and D2 ∼ c2, then the combined controller
DC>C = D1 + D2 can be seen as being drawn from DC>C ∼ c1 ∗ c2. Let � ! (? |@)
and �)+ (? |@) denote the Kullback-Leibler divergence, and total variation distance,
respectively, between probability distributions ? and @.

20

C h a p t e r 3

CONTROL REGULARIZATION FOR REINFORCEMENT
LEARNING

As discussed in Chapter 1, despite impressive demonstrations in recent years, model-
free RL still faces significant issues with reliability, safety, and sample complexity.
Complex tasks can take millions of iterations to learn. More importantly, the
variation over learning runs can be very high, meaning some runs of an RL algorithm
succeed while others fail, depending on randomness in initialization and sampling.
Several studies have noted this high variability in learning as a significant hurdle for
the application of RL, since learning becomes unreliable [17, 88, 136]. All policy
gradient algorithms face this same issue, which is illustrated in Figure 3.1.

Figure 3.1: Learning curves for 6 separate learning trialswhen using theRLalgorithmDDPG
[150] to solve the CartPole task in the OpenAI gym environment. All hyperparameters
are kept constant, with only the random seed changed between trials. However, significant
variance is seen in learning performance, with one of the trials completely unable to improve
on the task.

This chapter focuses on how to incorporate limited model information into the
model-free RL framework in order to reduce learning variance, improve sample
complexity, and avoid significant bias. In addition to provably reducing learning
variance, I show that the proposed algorithm can also improve controller robustness
in certain applications.

To illustrate the root of the variance issue inherent in reinforcement learning, recall
the problem defined in Equation (2.2), which is to find the optimal policy that

21

maximizes an agent’s long-term reward. In the learning problem, one must estimate
the gradient of the expected return � (\) with respect to the policy based on sampled
trajectories. Recall from Section 2.1 that this gradient, ∇\�, can be estimated as,

∇\� (\) = Eg∼c\
[
∇\ log c\ (g)&c\ (g)

]
≈

#∑
8=1

)∑
C=1
[∇\ log c\ (B8,C , 08,C)&c\ (B8,C , 08,C)] .

(3.1)

However, the estimated policy gradient has very high variance (even when using
the action-value function &c\), because the expectation in (3.1) must be estimated
using a finite set of sampled trajectories. This high variance in the policy gradient,
var[∇\� (\:)], translates to high variance in the updated policy, var[c\:+1], as seen
below,

\:+1 = \: + U∇\� (\:),

c\:+1 = c\: + U
3c\:

3\
∇\� (\:) + O(Δ\2),

var[c\:+1] ≈ U2 3c\:
3\

var[∇\� (\:)]
3c\:

3\

)

for U � 1,

(3.2)

where U is the user-defined learning rate. It is important to note that the variance of
interest is with respect to the gradient estimate ∇\� arising from randomness in the
sampled trajectories.

3.1 Reducing Variance in RL through Control Regularization
To address the aforementioned issue, I propose a policy gradient algorithm, CORE-
RL (COntrol REgularized Reinforcement Learning), that utilizes a functional regu-
larizer around a, typically suboptimal, control prior (i.e. a controller designed from
any prior knowledge of the system). It is shown below that this approach signif-
icantly lowers variance in the policy updates, greatly improves sample efficiency
of learning, and leads to higher performance policies when compared to both the
baseline RL algorithm and the control prior. In addition, this policy is proven to
maintain control-theoretic stability guarantees of the control prior throughout the
learning process.

Theories and procedures exist to design stable controllers for the vast majority of
real-world physical systems (from humanoid robots to robotic grasping to smart
power grids). However, conventional controllers for complex systems can be highly
suboptimal and/or require great effort in system modeling and controller design.

22

It would be ideal then to leverage simple, suboptimal controllers in RL to reliably
learn high-performance policies, which is the focus of this chapter.

Before proceeding, recall the distinction between controllers D : (→ �, which are
deterministic mappings from state to action, and policies c : (× �→ [0, 1], which
are stochastic mappings from which are controllers are drawn. This distinction will
be re-emphasized throughout this chapter.

Suppose we have access to a (suboptimal) control prior, D?A8>A : (→ �, and want to
combine an RL policy, c\: , with this control prior at each learning stage, : . Let us
define D\: : (→ � to represent the realized controller sampled from the stochastic
RL policy c\: (0 |B). I propose to combine the RL policy with the control prior as
follows,

D: (B) =
1

1 + _D\: (B) +
_

1 + _D?A8>A (B), (3.3)

where the action space, �, is assumed to be convex. Note that D: (B) is the realized
controller sampled from stochastic policy c: , whose distribution over actions has
been shifted by D?A8>A such that c:

(
1

1+_0 +
_

1+_D?A8>A

��� B) = c\: (0 |B). The controller
D: in Equation (3.3) is said to be the mixed controller, and D\: is termed the RL
controller (drawn from c: and c\: , respectively).

Utilizing the mixed controller (3.3) is equivalent to placing a functional regularizer
D?A8>A on the RL controller, D\: , with regularizer weight _. Let c\: (0 |B) be Gaussian
distributed: c\: = N(D\: ,Σ), where Σ describes the user-induced exploration noise,
resulting in following expression,

D: (B) =
1

1 + _D\: (B) +
_

1 + _D?A8>A (B).
(3.4)

The control prior, D?A8>A can be interpreted as a Gaussian prior on the mixed con-
troller, as shown in the following Lemma. Let us define the norm ‖D1 − D2‖Σ =
(D1 − D2))Σ−1(D1 − D2).

Lemma 1. The controller D: (B) in Equation (3.4) is the solution to the following
regularized optimization problem,

D: (B) = arg min
D

D − D\: (B)

Σ

+ _ | |D − D?A8>A (B) | |Σ, ∀B ∈ (,
(3.5)

which can be equivalently expressed as the constrained optimization problem,

D: (B) = arg min
D

D − D\: (B)

Σ

s.t. | |D − D?A8>A (B) | |Σ ≤ ˜̀(_) ∀B ∈ (,
(3.6)

23

where ˜̀ constrains the policy search. Assuming convergence of the RL algorithm,
D: (B) converges to the solution,

D: (B) = arg min
D

D − arg max
D̄\

Eg∼D̄
[
A (B, 0)

]

Σ

+ _ | |D − D?A8>A (B) | |Σ, ∀B ∈ (as : →∞
(3.7)

Proof. To prove this Lemma, first equivalence between (3.4) and (3.5) is proven.
Then it is shown that convergence of (3.5) to (3.7) directly follows. Finally, equiva-
lence between (3.5) and (3.6) is proven.

Equivalence between (3.4) and (3.5) : Let c\: (0 |B) be a Gaussian distributed
policy with mean D\: (B): c\: (0 |B) ∼ N (D\: (B),Σ). Thus, Σ describes exploration
noise. From the mixed policy definition (3.4), the following Gaussian distribution
is obtained describing the mixed policy:

c: (0 |B) = N(
1

1 + _D\: +
1

1 + _D?A8>A ,Σ)

=
1
2#
N

(
D\: (B), (1 + _)Σ

)
· N

(
D?A8>A (B),

1 + _
_

Σ

)
,

(3.8)

where the second equality follows based on the properties of products of Gaussians.
Let us define ‖D1 − D2‖Σ = (D1 − D2))Σ−1(D1 − D2), and let |Σ| be the determinant
of |Σ|. Then, distribution (3.8) can be rewritten as the product,

P(- (B)) = −21 exp(− 1
2(1 + _) ‖- (B) − D\: (B)‖Σ) ×

− 21_
:
2 exp(− _

2(1 + _) ‖- (B) − D?A8>A (B)‖Σ)

21 =
1

2#
√
(2c): (1 + _): |Σ|

(3.9)

where - (B) is a random variable with P(- (B)) representing the probability of taking
action - from state B under policy (3.4). Further simplifying this PDF, one obtains:

P(- (B)) = 22 exp
(
− ‖- (B) − D\: (B)‖Σ

− _‖- (B) − D?A8>A (B)‖Σ
)

22 =
_
:
2

2# (2c): (1 + _): |Σ|

(3.10)

Since the probability P(- (B)) is maximized when the argument of the exponential in
Equation (3.10) isminimized, then themaximumprobability policy can be expressed

24

as the solution to the following regularized optimization problem,

D: (B) = arg min
D

(B) ‖D(B) − D\: (B)‖Σ +

_‖D(B) − D?A8>A (B)‖Σ, ∀B ∈ (.
(3.11)

Therefore the mixed policy D: (B) from Equation (3.4) is the solution to Problem
(3.5).

Convergence of (3.5) to (3.7): Note that D\: and c\: are parameterized by the same
\: and represent the iterative solution to the optimization problemarg max\ Eg∼D:

[
A (g)

]
at the latest policy iteration. Thus, assuming convergence of the RL algorithm, prob-
lem (3.11) can be rewritten as follows,

D: = arg min
D

D(B) − arg max
D\:

Eg∼D:

[
A (B, 0)

]

2

+ _ | |D(B) − D?A8>A (B) | |2, ∀B ∈ (.
(3.12)

Equivalence between (3.5) and (3.6) : Finally, let us show that the solutions
for regularized problem (3.5) and the constrained optimization problem (3.6) are
equivalent.

First, note that Problem (3.5) is the dual to Problem (3.6), where_ is the dual variable.
Clearly problem (3.5) is convex in D. Furthermore, Slater’s condition holds, since
there is always a feasible point (e.g. trivially D(B) = D?A8>A (B)). Therefore strong
duality holds. This means that ∃_ ≥ 0 such that the solution to Problem (3.6) must
also be optimal for Problem (3.5).

To show the other direction, fix _ > 0 and define '(D) = ‖D(B) − D\: (B)‖2 and
� (D) = | |D(B) − D?A8>A (B) | |2 for all B ∈ (. Let us denote D∗ as the optimal solution
for Problem (3.5)with� (D∗) = g > ˜̀ (note that ˜̀ can be chosen). However, suppose
D∗ is not optimal for Problem (3.6). Then there exists D̃ such that '(D∗) < '(D̃)
and � (D̃) ≤ ˜̀. Denote the difference in the two rewards by '(D̃) − '(D∗) = '38 5 5 .
Thus the following relations hold,

'(D̃) + _� (D̃) < '(D∗) + _� (D∗) + '38 5 5 + _
[

˜̀ − g
]
. (3.13)

This leads to the conditional statement,

'38 5 5 + _
[

˜̀ − g
]
≥ 0

⇒ '(D̃) + _� (D̃) < '(D∗) + _� (D∗).
(3.14)

25

For fixed _, there always exists ˜̀ > 0 such that the condition '38 5 5 + _
[

˜̀ − g
]
≥ 0

holds. However, this leads to a contradiction, since it was assumed that D∗ is optimal
for Problem (3.5). One can then conclude that ∃ ˜̀ such that the solution to Problem
(3.5) must be optimal for Problem (3.6). Therefore, Problems (3.5) and (3.6) have
equivalent solutions. �

The equivalence between (3.4) and (3.5) illustrates that the control prior acts as a
functional regularization (recall that D\: solves the reward maximization problem
appearing in (3.7)). The policy mixing (3.4) can also be interpreted as constraining
policy search near the control prior, as shown by (3.6). More weight on the control
prior (higher _) constrains the policy search more heavily. In certain settings, the
problem can be solved in the constrained optimization formulation [105].

3.1.1 CORE-RL Algorithm
The learning algorithm is described in Algorithm 1. At the high level, the process
can be described as:

• First compute the control prior based on prior knowledge (Line 1). See Section
5 for a controller synthesis example.

• For a given policy iteration, compute the regularization weight, _, using the
strategy described in Section 3.1.3 (Lines 7-9). The algorithm can also use a
fixed regularization weight, _ (Lines 10-11).

• Deploy the mixed controller (3.3) on the system, and record the resulting
states/action/rewards (Lines 13-15).

• At the end of each policy iteration, update the policy based on the recorded
state/action/rewards (Lines 16-18).

3.1.2 Bias-Variance Tradeoff
Theorem 1 below formally states that mixing the policy gradient-based controller,
c\: , with the control prior, D?A8>A , decreases learning variability. However, the mix-
ing may introduce bias into the learned policy that depends on the (a) regularization
_, and (b) sub-optimality of the control prior. Bias is defined in (3.15) and refers
to the difference between the mixed policy and the (potentially locally) optimal RL
policy at convergence.

Theorem 1. Consider the mixed policy (3.3) where c\: is a policy gradient-based
RL policy, and denote the (potentially local) optimal policy to be c>?C . The variance

26

Algorithm 1 Control Regularized RL (CORE-RL)
1: Compute the control prior, D?A8>A using the known model 5 :=>F= (B, 0) (or other

prior knowledge)
2: Initialize RL policy c\0

3: Initialize array D for storing rollout data
4: Set : = 1 (representing : Cℎ policy iteration)
5: while : < Episodes do
6: Evaluate policy c\:−1 at each timestep
7: if Using Adaptive Mixing Strategy then
8: At each timestep, compute regularization weight _
9: for the control prior using the TD-error from (3.23).
10: else
11: Set constant regularization weight _
12: end if
13: Deploy mixed policy c:−1 from (3.3) to obtain
14: rollout of state-action-reward for T timesteps.
15: Store resulting data (BC , 0C , AC , BC+1) in array D.
16: Using data in D, update policy using any policy
17: gradient-based RL algorithm (e.g. DDPG, PPO)
18: to obtain \: .
19: : = : + 1
20: end while
21: return Policy c\: , D?A8>A B Overall controller

(3.2) of the mixed policy arising from the policy gradient is reduced by a factor
(1

1+_)
2 when compared to the RL policy with no control prior.

However, the mixed policy may introduce bias proportional to the sub-optimality
of the control prior. Letting �BD1 = �)+ (c>?C , c?A8>A), then the policy bias (i.e.
�)+ (c: , c>?C)) is bounded as follows,

�)+ (c: , c>?C) ≥ �BD1 −
1

1 + _�)+ (c\: , c?A8>A)

�)+ (c: , c>?C) ≤
_

1 + _�BD1 as : →∞
(3.15)

where �)+ (·, ·) represents the total variation distance between two probability
measures (i.e. policies). Thus, if �BD1 and _ are large, this will introduce policy
bias.

Proof. Let us define the stochastic action (i.e. random variable)A02C
:+1 ∼ c\:+1 (0 |B).

Then recall from Equation (3.2) that assuming a fixed, Gaussian distributed policy,

27

c\: (0 |B),

var[A02C
:+1 |B] ≈ U

2 3c\:
3\

var[∇\� (\:)]
3c\:

3\

)

. (3.16)

Based on the mixed policy definition (3.3), the following relation between the
variance of c: and c\: (the mixed policy and RL policy, respectively) is obtained,

var[c:+1] = var
[1
1 + _A

02C
:+1 +

_

1 + _D?A8>A |B
]

=
1

(1 + _)2
var[A02C

:+1 |B]

=
U2

(1 + _)2
3c\:

3\
var[∇\� (\:)]

3c\:

3\

)

.

(3.17)

Compared to the variance (3.2), a variance reduction is observed when utilizing the
same learning rate U. Taking the same policy gradient from (3.2), var[∇\� (\:)],
then the variance is reduced by a factor of (1

1+_)
2 by introducing policy mixing.

Lower variance comes at a price – potential introduction of bias into policy. Let us
define the policy bias as �)+ (c: , c>?C), and let us denote �BD1 = �)+ (c>?C , c?A8>A).
Since total variational distance, �)+ is a metric, the triangle inequality can be used
to obtain:

�)+ (c: , c>?C) ≥ �)+ (c?A8>A , c>?C) − �)+ (c?A8>A , c:). (3.18)

The term �)+ (c?A8>A , c:) can be further broken down:

�)+ (c?A8>A , c:)

= sup
(B,0)∈(x�

���c?A8>A − 1
1 + _c\: −

_

1 + _c?A8>A
���

=
1

1 + _ sup
(B,0)∈(x�

|c\: − c?A8>A |

=
1

1 + _�)+ (c\: , c?A8>A).

(3.19)

This holds for all : ∈ N. Utilizing (3.18) and (3.19) results in the lower bound in
(3.15), which is restated below,

�)+ (c: , c>?C) ≥ �BD1 −
1

1 + _�)+ (c\: , c?A8>A)

To obtain the upper bound, let the policy gradient algorithm with no control prior
achieve asymptotic convergence to the (locally) optimal policy c>?C (as proven for

28

certain classes of function approximators in [159]). Denote this policy as c(?)
\:

, such
that c(?)

\:
→ c>?C as : → ∞. In this case, the total variation distance between the

mixed policy (3.3) and the optimal policy can be computed as follows,

�)+ (c>?C , c(?):)

= sup
(B,0)∈(x�

|c>?C −
1

1 + _c
(?)
\:
− _

1 + _c?A8>A |

=
_

1 + _ sup
(B,0)∈(x�

|c>?C − c?A8>A | as : →∞

=
_

1 + _�)+ (c>?C , c?A8>A) as : →∞

=
_

1 + _�BD1 as : →∞.

(3.20)

Note that this represents an upper bound on the bias, since it assumes that c(?)
\:

is
uninfluenced by c?A8>A during learning. It shows that c(?)

\:
is a feasible policy, but

not necessarily optimal when accounting for regularization with c?A8>A . This results
in the following upper bound, completing the proof:

�)+ (c>?C , c:) ≤ �)+ (c>?C , c(?):)

=
_

1 + _�BD1 as : →∞.
(3.21)

�

Recall that c?A8>A is the stochastic analogue to the deterministic control prior D?A8>A ,
such that c?A8>A (0 |B) = 1(0 = D?A8>A (B)) where 1(G) is the indicator function
returning 1 if G is true. Note that the bias/variance results apply to the policy – not
the accumulated reward.

Intuition: Figure 3.2 is used to provide some intuition for the control regularization
discussed above. Note the following:

1) The explorable region of the state space is denoted by the set SBC , which grows
as _ decreases and vice versa. This illustrates the constrained policy search
interpretation of regularization in the state space.

2) The difference between the control prior trajectory and optimal trajectory (i.e.
�BD1) may bias the final policy depending on the explorable region SBC (i.e. _).
Figure 3.2 shows this difference, and its implications, in state space.

3) If the optimal trajectory is within the explorable region, then it is possible to learn
the corresponding optimal policy – otherwise the policy will remain suboptimal.

Points 1 and 3 will be further addressed in Section 3.2.

29

Figure 3.2: Illustration of optimal trajectory vs. control-theoretic trajectory with the ex-
plorable set SBC . (a)With high regularization, set SBC is small, making it impossible to learn
the optimal trajectory. (b) With lower regularization, set SBC is larger so it is possible to
learn the optimal trajectory. However, this also enlarges the policy search space.

3.1.3 Computing the mixing parameter _
A remaining challenge is the automatic tuning of parameter _, especially as more
training data is acquired. While setting a fixed _ can perform well, intuitively, _
should be large when the RL controller is highly uncertain, and it should decrease
with higher confidence in the learned controller.

In themultiplemodel adaptive control (MMAC) framework, a set of controllers (each
based on a different underlying model) is generated. A meta-controller computes
the overall controller by selecting the weighting for different candidate controllers,
based on how close the underlying system model for each candidate controller is
deemed to be to the “true” model [101]. Inspired by this approach, the RL controller
is weighted proportional to the confidence in its model. This confidence should
be state-dependent (i.e. low confidence in areas of the state space where little data
has been collected). However, since the RL controller does not utilize a dynamical
system model, confidence in the RL controller is measured via the magnitude of the
temporal difference (TD) error,

|Xc (BC) | = |AC+1 + W&c (BC+1, 0C+1) −&c (BC , 0C) |, (3.22)

where 0C ∼ c(0 |BC), 0C+1 ∼ c(0 |BC+1). This TD error measures how poorly the
RL algorithm predicts the value of subsequent actions from a given state. A high
TD-error implies that the estimate of the action-value function at a given state is
poor, so the controller should rely more heavily on the control prior (a high _ value).
In order to scale the TD-error to a value in the interval _ ∈ [0, _<0G], the negative

30

exponential of the TD-error, computed at run-time, is chosen as a useful value of _

_(BC) = _<0G
(
1 − 4−� |X(BC−1) |

)
. (3.23)

The parameters� and _<0G are tuning parameters of the adaptive weighting strategy.
Note that Equation (3.23) uses X(BC−1) rather than X(BC), because computing X(BC)
requires measurement of state BC+1. Thus the method relies on the reasonable
assumption that X(BC) ≈ X(BC−1), since BC should be very close to BC−1 in practice.

Equation (3.23) yields a low value of _ if the RL action-value function predictions
are accurate. This measure is chosen because the (explicit) underlying model of the
RL controller is the value function (rather than a dynamical system model). The
experiments presented below show that this adaptive scheme based on the TD error
allows better tuning of the variance and performance of the policy.

3.2 Control Theoretic Stability Guarantees
In many controls applications, it is crucial to ensure dynamic stability, not just
high rewards, during learning. This is particularly important if the reward function
used by the learning algorithm is misspecified. When a (crude) dynamical system
model is available, classic controller synthesis tools (i.e. LQR, PID, etc.) can be
utilized to obtain a stable control prior in a region of the state space. This section
utilizes a well-established tool from robust linear control theory (H∞ control), to
analyze system stability under the mixed policy (3.3), and prove stability guarantees
throughout learning when using a robust control prior.

The results in this chapter are built upon the idea that the control prior should max-
imize robustness to disturbances and model uncertainty. Hence, the RL controller,
D\: , can be treated as a performance-maximizing “disturbance” to the control prior,
D?A8>A . The mixed policy then takes advantage of the stability properties of the ro-
bust control prior, and the performance optimization properties of the RL algorithm.
Principles fromH∞ control [49] can yield a robust control prior.

Recall that in the MDP model (2.1), the system dynamics were described by the
mapping 5 (0) : (× � → (, which is unknown to the learning agent. However,
suppose that the model can be decomposed into a nominal known part and an
unknown part. Then the system evolution can be represented by the following
dynamical system and its continuous-time analogue,

BC+1 = 5 (0) (BC , 0C) = 5 :=>F= (BC , 0C) + 5 D=:=>F= (BC , 0C),
¤B = 5

(0)
2 (B, 0) = 5 :=>F=2 (B, 0) + 5 D=:=>F=2 (B, 0),

(3.24)

31

where 5 :=>F= captures the nominal dynamics model, 5 D=:=>F= represents the system
unknowns, ¤B denotes the continuous time-derivative of the state B, and 52 (B, 0)
denotes the continuous-time analogue of the discrete time dynamics 5 (BC , 0C). A
control prior can typically be designed from the known part of the system model,
5 :=>F=.

For the nonlinear dynamical system (3.24), linearize the known part of the model
5 :=>F=2 (B, 0) around a desired equilibrium point to obtain the following,

¤B = �B + �1F + �20

I = �1B + �11F + �120,
(3.25)

where F ∈ R<1 is the disturbance vector, and I ∈ R?1 is the controlled output.
This analysis focuses on the continuous-time dynamics rather than discrete-time
equivalents, since all mechanical systems have continuous time dynamics that can
be discovered through analysis of the system Lagrangian. However, similar analysis
can be done for discrete-time dynamics. The following standard assumption –
conditions for its satisfaction can be found in [48]–is assumed to hold.

Assumption 1. A H∞ controller exists for linear system (3.25) that stabilizes the
system in a region of the state space.

Stability here means that system trajectories are bounded around the origin or a
setpoint. An �∞ controller DH∞ (B) = − B, can be synthesized using established
techniques described in [48]. The resulting controller is robust with worst-case
disturbances attenuated by a factor Z: before entering the output, where Z: < 1 is a
parameter returned by the synthesis algorithm. See Appendix B for further details
onH∞ control and its robustness properties.

Having synthesized a robust H∞ controller for the linear system model (3.25), let
us now focus on how those robustness properties (e.g. disturbance attenuation by
Z:) influence the uncertain nonlinear system (3.24) controlled by the mixed policy
(3.3). The system dynamics (3.24) can be expressed in terms of the linearization
(3.25) plus a disturbance term as follows,

¤B = 52 (B, 0) = �B + �20 + 3 (B, 0), (3.26)

where 3 (B, 0) gathers together all dynamic uncertainties and nonlinearities. Feed-
back linearization based on the nominal nonlinear model (3.24) can be used to bound
this uncertainty to a smaller value.

32

The stability of the nonlinear system (3.26) under the mixed policy (3.3) can now be
analyzed usingLyapunov theory [96]. Consider theLyapunov function+ (B) = B)%B,
where a value of % is obtained during the synthesis of the H∞ controller (see
Appendix B). If a closed region, SBC , can be defined around the origin, such that
¤+ (B) < 0 outside that region, then by standard Lyapunov analysis, SBC is forward
invariant and asymptotically stable (note ¤+ (B) is the time-derivative of the Lyapunov
function). Since the H∞ control law satisfies an Algebraic Riccati Equation, one
obtains the following relation,

Lemma 2. For any state B, satisfaction of the condition,

2B)%
(
3 (B, 0) + 1

1 + _�2D4

)
< B) (�)1�1 +

1
Z2
:

%�1�
)
1%)B, (3.27)

implies that ¤+ (B) < 0.

Proof. Recall the Lyapunov function + (B) = B)%B, where P is taken from the
Algebraic Riccati Equation,

�)% + %� + �)1�1 +
1
W2
:

%�1�
)
1% − %�2�

)
2% = 0. (3.28)

Take the time derivative of the Lyapunov function as follows:

¤+ (B) = 3+
3B
¤B = 2B)%

(
�B + �20 + 3 (B, 0)

)
= B) (−�)1�1 −

1
W2
:

%�1�
)
1%)B + 2B)%3 (B, 0) + 2

1 + _ B
)%�2(D\: − D?A8>A)

= B) (−�)1�1 −
1
W2
:

%�1�
)
1%)B + 2B)%

(
3 (B, 0) + 1

1 + _�2D4

)
.

(3.29)

The second equality comes from the Algebraic Riccati Equation (3.46), which the
dynamics satisfy by design of the H∞ controller. From these results, it follows
directly that if,

2B)%
(
3 (B, 0) + 1

1 + _�2D4

)
< B) (�)1�1 +

1
W2
:

%�1�
)
1%)B,

then ¤+ (B) < 0. �

Note that D4 = D\ − DH
∞ denotes the difference between the RL controller and

control prior, and (�, �1, �2, �1) come from (3.25). Let us bound the RL control

33

output such that ‖D4‖2 ≤ �c, and define the set C = {(B, D) ∈ ((, �)
��� ‖D4‖2 ≤

�c, �
∞ control is stabilizing}. It is also possible to bound the “disturbance”

‖3 (B, 0)‖2 ≤ �� , for all B ∈ C, and define the minimum singular value f< (Z:) =
f<8= (�)1�1 + 1

Z2
:

%�1�
)
1%), which reflects the robustness of the control prior (i.e.

larger f< imply greater robustness). Then using Lemma 2 and Lyapunov analy-
sis, one can derive a conservative set that is guaranteed asymptotically stable and
forward invariant under the mixed policy, as described in the following theorem.

Theorem2. Assume a stabilizing�∞ control priorwithin the setC for the dynamical
system (3.26). Then asymptotic stability and forward invariance of the set SBC ⊆ C

SBC : {B ∈ R= : ‖B‖2 ≤
1

f< (Z:)

(
2‖%‖2�� +

2
1 + _ ‖%�2‖2�c

)
, B ∈ C}, (3.30)

is guaranteed under the mixed policy (3.3) for all B ∈ C. The set SBC contracts as
(a) robustness of the control prior is increased (by increasing f< (Z:)), (b) dynamic
uncertainty/nonlinearity�� is decreased, or (c) the weighting _ on the control prior
is increased.

Proof. The proof is divided into two steps,

Step (1): Find a set in which Lemma 2 is satisfied.

Consider the condition in Lemma 2. Since the right-hand side is positive (quadratic),
a bound on the stability condition can be computed as follows,

|2B)%3 (B, 0) + 2
1 + _ B

)%�2D4 | < B) (�)1�1 +
1
W2
:

%�1�
)
1%)B. (3.31)

Clearly any set of B that satisfy condition (3.31) also satisfy the condition in Lemma
2. To find such a set, the terms in Condition (3.31) are bounded as follows,

|2B)%3 (B, 0) + 2
1 + _ B

)%�2D4 |

≤ 2|B)%3 (B, 0) | + 2
1 + _ |B

)%�2D4 |

≤ 2‖B‖2‖%‖2�� +
2

1 + _ ‖B‖2‖%�2‖2�c,

(3.32)

where the first inequality follows from the triangle inequality; the second inequality
uses the bounds on the disturbance, �� , and control input difference �c, as well
as the Cauchy-Schwarz inequality. Now consider the right-hand side of Condition

34

(3.31). Recall that f< (W:) = f<8= (�)1�1 + 1
W2
:

%�1�
)
1%), the minimum singular

value. Then the following holds,

f< (W:)‖B‖22 ≤ B
) (�)1�1 +

1
W2
:

%�1�
)
1%)B (3.33)

Using the bounds in (3.32) and (3.33), Condition (3.31) is guaranteed to be satisfied
if the following holds,

2‖B‖2‖%‖2�� +
2

1 + _ ‖B‖2‖%�2‖2�c < f< (W:)‖B‖22 (3.34)

The set for which condition (3.34) is satisfied can be described by,

C\SBC : {B ∈ R= : ‖B‖2 >
1

f< (W:)

(
2‖%‖2�� +

2
1 + _ ‖%�2‖2�c

)
, B ∈ C}. (3.35)

Recall that C is the set wherein H∞ is a stabilizing controller. From Lemma 2,
¤+ (B) < 0 for all B ∈ C \ SBC described by the set (3.35).

Step (2): Establish stability and forward invariance of SBC .

The Lyapunov function + (B) = B)%B decreases towards the origin, and it was
already established that the time derivative of the Lyapunov function is negative for
B in set (3.35). Therefore, any state B described by the set (3.35) (intersected with
C) must move towards the origin (i.e. towards SBC). This follows directly from the
properties of Lyapunov functions. Therefore, the set SBC described in (3.30) must
be asymptotically stable and forward invariant for all B ∈ C. �

Put simply, Theorem2 says that all states inCwill converge to (and remainwithin) set
SBC under the mixed policy (3.3). Therefore, the stability guarantee is stronger if SBC
has smaller cardinality. The set SBC is drawn pictorally in Figure 3.2, and essentially
dictates the region that can be explored while maintaining system stability. Note
that SBC is not the region of attraction.

Theorem 2 highlights the tradeoff between the robustness parameter, Z: , of the
control prior, the nonlinear uncertainty in the dynamics, �� , and the utilization of
the learned controller, _. If a more robust control prior (higher f< (Z:)) is available
or one has better knowledge of the dynamics (smaller��), the learned controller can
be heavily weighted (lower _) during the learning process, while still guaranteeing
stability.

While shrinking the set SBC and achieving asymptotic stability along a trajectory
or equilibrium point may seem desirable, Figure 3.2 illustrates why this is not

35

necessarily the case in a reinforcement learning context. The optimal trajectory
for a desired task will likely deviate from the nominal trajectory (i.e. the control
theoretic-trajectory), as shown in Figure 3.2 – the set SBC illustrates the explorable
region under regularization. Figure 3.2(a) shows that strict stability of the nominal
trajectory is not always desired, and instead limited flexibility (a sufficiently large
SBC) to explore is preferred. Increasing the weighting on the learned policy c\:
(decreasing _) expands the set SBC and allows for greater exploration around the
nominal trajectory (at the cost of stability), as seen in Figure 3.2(b).

Remark 5. This section does not advocate for H∞ control as a general-purpose
method for controller prior synthesis in RL algorithms; indeed, the set of problems
it can be applied to is much smaller than the set of problems that can be tackled with
reinforcement learning. The main message is that in the synthesis of a control prior,
robustness should be prioritized over performance (e.g. H∞ over LQG), since RL
is excellent at learning high-performance controllers, but notoriously bad at finding
robust ones. This allows the interpretation of the idea proposed in this chapter: the
RL policy can be viewed as a performance-maximizing “disturbance.”

3.3 Empirical Results
To illustrate the characteristics of the CORE-RL Algorithm, it is applied to three
problems: (1) cartpole stabilization, (2) car-following control with experimental
data, and (3) racecar driving with the TORCS simulator. The existing algorithms
DDPG, PPO or TRPO [109, 147, 148] are used as policy gradient RL algorithms,
though any similar RL algorithm could be used. All code can be found at [1].

Note that the results presented below focus on reward rather than bias. Bias (as
defined in Section 3.1.2) assumes convergence to a (locally) optimal policy, and
does not include many factors influencing performance (e.g. slow learning, failure
to converge, etc.). In practice, Deep-RL algorithms often do not converge (or take
very long to do so). Therefore, reward better demonstrates the influence of control
regularization on performance, which is of greater practical interest.

3.3.1 The CartPole Problem
The CORE-RL algorithm is applied to the control of the cartpole from the OpenAI
gym environment (CartPole-v1). The CartPole environment was modified so that it
takes a continuous input, rather than discrete input, and the chosen reward function
encourages the cartpole to maintain its G−position while keeping the pole upright.
Further details on the environment and reward function are in Appendix A. To obtain

36

a control prior, a crude physical model (i.e. linearization of the nonlinear dynamics
with ≈ 60% error in the mass and length values) is assumed, and from this an H∞

controller can be synthesized. Using this control prior, Algorithm 1 is deployed
with several different regularization weights, _. For each _, CORE-RL is run 6
times with different random seeds.

Figures 3.4a, 3.5a, 3.6a plot reward improvement over the control prior, which shows
that the regularized controllers perform much better than the baseline RL algorithm
(either PPO, TRPO, DDPG) in terms of variance, reward, and learning speed. It
can also be seen that intermediate values of _ (i.e. _ ≈ 4) result in the best learning,
demonstrating the importance of policy regularization.

Figure 3.4b, 3.5b, 3.6b better illustrate the performance-variance tradeoff. For small
_, high variance and poor performance are seen. Intermediate values _ result in
higher performance and lower variance. As the value of _ is further increased,
variance continues to decrease, but the performance also decreases since policy
exploration is heavily constrained. The adaptive mixing strategy performs very
well: it exhibits low variance through learning, and converges on a high-performance
policy.

Figure 3.3: Stability region for CartPole under mixed policy. (a) Illustration of the stability
region for different regularization, _. For each _ shown, the trajectory goes to and remains
within the corresponding stability set throughout training. (b) Size of the stability region in
terms of the angle \, and position G. As _ increases, the system trajectory is guaranteed to
remain closer to the equilibrium point during learning.

While Lemma 2 proved that the mixed controller (3.4) has the same optimal solution
as optimization problem (3.5), when computational experiments were tried using
the loss in Equation (3.5), the performance (i.e. reward) was found to be worse than
CORE-RL and still suffered high variance. In addition, learning with pre-training

37

on the control prior likewise exhibited high variance and had worse performance
than CORE-RL.

Figure 3.4: Learning results for CartPole, Car-Following, and TORCS RaceCar Problems
using DDPG. (a) Reward improvement over control prior with different set values for _ or
an adaptive _. The right plot is a zoomed-in version of the left plot without variance bars
for clarity. Values above the dashed black line signify improvements over the control prior.
(b) Performance and variance in the reward as a function of the regularization _, across
different runs of the algorithm using random initializations/seeds. Dashed lines show the
performance (i.e. reward) and variance using the adaptive weighting strategy. Variance is
measured for all episodes across all runs. Adaptive _ and intermediate values of _ exhibit
best learning. Again, performance is baselined to the control prior, so any performance
value above 0 denotes improvement over the control prior.

Importantly, according to Theorem 2, the system should maintain stability (i.e.
remain within an invariant set around a desired equilibrium point) throughout the
learning process, and the stable region should shrink as _ is increased. Simulations
exhibit exactly this property, as seen in Figure 3.3, which shows the maximum
deviation from the equilibrium point across all episodes. The system converges
to a stability region throughout learning, and this region contracts with increasing
_. Therefore, regularization not only improves learning performance and decreases
variance, but can capture stability guarantees from a robust control prior.

38

Figure 3.5: Learning results analogous to Figure 3.4, with PPO used as the RL algorithm.
TORCS environment excluded because the PPO agent could not complete a lap during the
learning stage.

Figure 3.6: Learning results analogous to Figure 3.4, with TRPO used as the RL algorithm.
TORCS environment excluded because the TRPO agent could not complete a lap during the
learning stage.

3.3.2 Experimental Car-Following
This section applies the CORE-RL framework to experimental data obtained from
a chain of 5 cars following each other on an 8-mile segment of a single-lane public
road. Position (via GPS), velocity, and acceleration data was recorded from each of
the cars, and the acceleration/deceleration of the 4Cℎ car in the chain is controlled.
The goal is to learn an optimal controller for this car that maximizes fuel efficiency

39

while avoiding collisions. The experimental setup and data collection process are
described in [73]. The control prior is a bang-bang controller that (inefficiently)
tries to maintain a large distance from the car in front and behind the controlled car.
The reward function penalizes fuel consumption and collisions (or near-collisions).
Specifics of the control prior, reward function, and experiments are in Appendix A.

The experimental data is split into 10 second “episodes.” The episode data is
shuffled, and CORE-RL is applied six times with different random seeds (for several
different _).

Figures 3.4a, 3.5a, 3.6a show again that the regularized controllers perform much
better than the baseline RL algorithm for the car-following problem, and demon-
strates that regularization leads to performance improvements over the control prior
and gains in learning efficiency. Figures 3.4b, 3.5b, 3.6b reinforce that intermediate
values of _ (i.e. _ ≈ 5) exhibit optimal performance. Low values of _ exhibit signif-
icant deterioration of performance, because the car must learn (with few samples)
in a much larger policy search space; the RL algorithm does not have enough data
to converge on an optimal policy. High values of _ also exhibit lower performance
because they heavily constrain learning. Intermediate _ allow for the best learning
using the limited number of experiments.

An adaptive strategy for setting _ (or alternatively tuning to an optimal _) yields
high-performance policies that improve upon both the control prior and RL baseline
controller. The variance is also low, so that the learning process reliably learns a
good controller.

3.3.3 Simulated Driving in the TorcsEnvironment
Finally, CORE-RL is used to generate controllers for cars in The Open Racing Car
Simulator (Torcs) [180]. The simulator provides readings from 29 sensors, which
describe the environment state. The sensors provide information like car speed,
distance from track center, wheel spin, etc. The controller decides values for the
acceleration, steering, and braking actions taken by the car.

A simple PID-like linearized controller for each action can be used as a control prior
for this environment similar to the one described in [168]. These types of controllers
are known to have sub-optimal performance, while still being able to drive the car
around a lap. All experiments use the CG-Speedway track in Torcs. For each value
of _, the algorithm is applied 5 times with different initializations and random seeds.

For Torcs, laptime improvement over the control prior is recorded so that values

40

above zero denote improved performance over the prior. The laps are timed out
at 150s, and the objective is to minimize lap-time by completing a lap as fast as
possible. Due to the sparsity of the lap-time signal, a pseudo-reward function was
used during training that provides a heuristic estimate of the agent’s performance at
each time step during the simulation (details in Appendix A).

Once more, Figure 3.4a shows that regularized controllers perform better on average
than the baseline RL algorithm, and improves upon the control prior. Figure 3.4b
shows that intermediate values of _ exhibit good performance, but using the adaptive
strategy for setting _ in the TORCS setting yields the highest-performance policy
that significantly beats both the control prior and RL baseline. Also, the variance
with the adaptive strategy is significantly lower than for the RL baseline, which
again shows that the learning process reliably learns a good controller.

Note that PPO or TRPO results are not shown for the TORCS Racecar because the
baseline PPO or TRPO learning agents could not complete a lap during the learning
process. The code for the PPO, TRPO, and DDPG agent for each environment can
be found at [1].

3.4 Conclusion
A significant criticism of RL is that it is unreliable and fragile [90] (i.e. not
robust); running multiple learning iterations with random seeds can produce vastly
different behaviors, limiting the application of RL to real-world systems. Intuitively,
it makes a lot of sense that an algorithm that tries to learn complex behaviors in
an extremely large search space will have extreme variability in learned behaviors
based on randomness in early exploration. Therefore, this chapter proposed control
regularization as a means to intelligently constrain this search space.

Through theoretical results and experimental validation, the proposed method of
control regularization substantially alleviates the aforementioned problems, enabling
significant variance reduction as well as sample complexity improvements in RL.
This method also allows the dynamic stability and robustness properties from a
robust control prior to guarantee stability during the learning process, and has the
added benefit that it can easily incorporate different RL algorithms (e.g. PPO,
DDPG, etc.).

The main limitation of the proposed approach is that it relies on the existence of a
control prior. However, in most robotic applications, access to such a control prior
is a reasonable assumption. For example, it may be very difficult for a robot arm to

41

reliably complete a precision insertion task, but a control prior that brings the arm to
the general vicinity of the goal can be easily synthesized. Furthermore, with limited
expert data, this control prior could even be obtained through imitation learning.

42

Appendix A: Description of Experiments
Experimental Car-Following
In the original car-following experiments, a chain of 8 cars followed each other on
an 8-mile segment of a single-lane public road. Position (via GPS), velocity, and
acceleration data were recorded from each of the cars. This data was cut into 4
sets of chains of 5 cars, in order to maximize the data available to learn from. This
was further cut into 10 second “episodes” (100 data points each). These training
episodes were then randomly shuffled before each run and fed to the algorithm,
which learned the controller for the 4Cℎ car in the chain.

The reward function used in learning is described below:

A = −¤Emin(0, 0) − 100|�1(B) | − 50�2(B),

�1(B) =


1

B 5 A>=C−B2DAA if B 5 A>=C − B2DAA ≤ 10
1

B2DAA−B102: if B2DAA − B102: ≤ 10

0 otherwise

�2(B) =


1 if B 5 A>=C − B2DAA ≤ 2

1 if B2DAA − B102: ≤ 2

0 otherwise

(3.36)

where B2DAA , B 5 A>=C , and B102: denote the position of the controlled car, the car in
front of it, and the car behind it. Also, 0 denotes the control action (i.e. accelera-
tion/deceleration), and ¤E denotes the velocity of the controlled car. Therefore, the
first term represents the fuel efficiency of the controlled car, and the other terms
encourage the car to maintain headway from the other cars and avoid collision.

The control prior utilized is a simple bang-bang controller that (inefficiently) tries
to keep us between the car and front and back. It is described by,

0 =


2.5 if ?ΔB + 3ΔE > 0

−5 if ?ΔB + 3ΔE < 0

0 otherwise

ΔB = B 5 A>=C − 2B2DAA − B102:
ΔE = E 5 A>=C − 2E2DAA − E102:

(3.37)

where E2DAA , E 5 A>=C , and E102: denote the velocity of the controlled car, the car in
front of it, and the car behind it. The constants were set as ? = 0.4 and 3 = 0.5.

43

Essentially, the control prior tries to maximize the distance from the car in front and
behind, taking into account velocities as well as positions.

TORCS Racecar Simulator
In its full generality Torcs provides a rich environment with input from up to 89
sensors, and optionally the 3D graphic from a chosen camera angle in the race. The
controllers have to decide the values of up to 5 parameters during game play, which
correspond to the acceleration, brake, clutch, gear and steering of the car. Apart
from the immediate challenge of driving the car on the track, controllers also have
to make race-level strategy decisions, like making pit-stops for fuel. A lower level
of complexity is provided in the Practice Mode setting of Torcs. In this mode,
all race-level strategies are removed. Currently, state-of-the-art DRL models are
capable of racing only in Practice Mode, and this is also the environment considered
in this work. In this mode, the input from 29 sensors is considered and used to
decide values for the acceleration, steering, and brake actions.

The control prior utilized is a linear controller of the form:

 ? (n − >8) + 8
8∑

9=8−#
(n − > 9) + 3 (>8−1 − >8), (3.38)

where >8 is the most recent observation provided by the simulator for a chosen
sensor, and # is a predetermined constant. One controller is used for each of the
actions, acceleration, steering, and braking.

The pseudo-reward used during training is given by:

AC = + cos(\) −+ sin(\) −+ |trackPos|. (3.39)

Here, + is the velocity of the car, \ is the angle the car makes with the track axis,
and trackPos provides the position on the track relative to the track’s center. This
reward captures the aim of maximizing the longitudinal velocity, minimizing the
transverse velocity, and penalizing the agent if it deviates significantly from the
center of the track.

44

CartPole Stabilization
The CartPole simulator is implemented in the OpenAI gym environment (’CartPole-
v1’). The dynamics are the same as in the default, as described below,

\C+1 = GC + ¤Gg,

¤\C+1 = ¤\C +
("6 sin \ − � cos \ − <; ¤\2 sin \ cos \

4
3"; − <; cos2 \

)
g,

GC+1 = GC + ¤Gg,

¤GC+1 = ¤GC +
(� + <; ¤\2 sin \ − <; ¥\ cos \

"

)
g,

(3.40)

where the onlymodificationmade is that the force on the cart can take on a continuous
value, � ∈ [−10, 10], rather than 2 discrete values, making the action space much
larger. Since the control prior can already stabilize the CartPole, the reward is also
modified to characterize how well the control stabilizes the pendulum. The reward
function is stated below, and incentivizes the CartPole to keep the pole upright while
minimizing movement in the x-direction:

A = −100|\ | − 2G2. (3.41)

Appendix B: Control Theoretic Stability Guarantees
This section in the appendix provides more background on the material in Section
3.2, going into further detail on the H∞ problem definition. Consider the linear
dynamical system described by:

¤B = �B + �1F + �20

I = �1B + �11F + �120

H = �2B + �21F + �220

(3.42)

where F ∈ R<1 is the disturbance vector, D ∈ R<1 is the control input vector, I ∈ R?1

is the error vector (controlled output), H ∈ R?2 is the observation vector, and B ∈ R=

is the state vector. The system transfer function is denoted,

%B (B) =
(
%B11 %B12
%B21 %B22

)
=

(
�11 �12

�21 �22

)
+

[
�1

�2

]
(B� − �)−1

[
�1 �2

]
,

(3.43)

where �, �8, �8, �8 9 are defined by the system model (3.42). Let us make the
following assumptions,

45

• The pairs (�, �2) and (�2, �) are stabilizable and observable, respectively.

• The algebraic Riccati equation �)% + %� +�)1�1 + %(�2�
)
2 −

1
W2
:

�1�
)
1)% = 0

has positive-semidefinite solution %.

• The algebraic Riccati equation �%. +%. �) +�)1�1 = %. (�2�
)
2 −

1
W2
:

�1�
)
1)%.

has positive-semidefinite solution %. .

• The matrix W� − %.% is positive definite.

Under these assumptions, existence of a stabilizing linear H∞ controller, DH∞ =
− B, is guaranteed [48]. The closed-loop transfer function from disturbance, F, to
controlled output, I, is:

)FI = %
B
11 + %

B
12 (� − %

B
22)

−1%B21. (3.44)

Let f(·) denote the maximum singular value of the argument, and recall that
‖)FI‖∞ := supF f()FI (9F)). Then the �∞ controller solves the problem,

min

sup
F

f()FI (9F)) = W: , (3.45)

to give us controller DH∞ = − B. This generates the maximally robust controller so
that the worst-case disturbance is attenuated by factor W: in the system before enter-
ing the controlled output. The �∞ controller can be synthesized using techniques
described in [48].

The �∞ controller is defined as DH∞ = −�)2%G, where % is a positive symmetric
matrix satisfying the Algebraic Riccati equation,

�)% + %� + �)1�1 +
1
W2
:

%�1�
)
1% − %�2�

)
2% = 0, (3.46)

where (�, �1, �2, �1) are defined in (3.42). The result is that the control law DH∞

stabilizes the system with disturbance attenuation ‖)FI‖∞ ≤ W: .

Since the system being considered is nonlinear, one must consider a modification to
the dynamics (3.42) that linearizes the dynamics about some equilibrium point and
gathers together all non-linearities and disturbances,

¤B = 52 (B, 0) = �B + �20 + 3 (B, 0), (3.47)

where 3 (B, 0) captures dynamic uncertainty/nonlinearity as well as disturbances. To
keep this small, one could use feedback linearization based on the nominal nonlinear
model (3.24), but this is outside the scope of this work.

46

Consider the Lyapunov function + (B) = B)%B, where P is taken from Equation
(3.46). Stability of the uncertain system (3.26) can be analyzed under the mixed
policy (3.3) using Lyapunov analysis. Lemma 2 is used to compute a set SBC such
that ¤+ (B) < 0 in a region outside that set. Satisfaction of this condition guarantees
forward invariance of that set [96], as well as its asymptotic stability (from the
region for which ¤+ (B) < 0). By bounding terms as described in Section 3.2, one can
conservatively compute the set SBC for which ¤+ (B) < 0, which is shown in Theorem
2.

47

C h a p t e r 4

SAFE REINFORCEMENT LEARNING THROUGH CONTROL
BARRIER FUNCTIONS

Even if one were able to guarantee reliable, sample-efficient reinforcement learning
(RL), such a guarantee will often not be sufficient for real-world deployment of RL.
Inmany applications, it is important to guarantee, with very high confidence, that the
controlled system will be safe (e.g. remain stable, avoid collisions) throughout its
operation, including the learning stage. However, since RL focuses predominantly
on maximizing long-term reward, it is likely to explore unsafe behaviors during
its learning process. This issue will be exacerbated if the reward function is even
slightly misspecified. This is problematic for any RL algorithm that will be deployed
on hardware, as exploring unsafe policies during the learning or deployment phases
could damage the hardware or bring harm to a human. If a robot performs its
task flawlessly for 120 hours, but breaks someone’s arm every 121BC hour, very few
people would find such performance acceptable.

The first half of this chapter develops a framework for integrating existing reinforce-
ment learning algorithms with control barrier functions (CBF) to both guarantee
safety and improve exploration efficiency in RL, even with uncertain model informa-
tion. The CBF requires a (potentially poor) nominal dynamics model, but ensures
online safety of nonlinear systems during the entire learning process and can help
guide exploration of the policy space. An on-line process learns a more accurate
model of the governing dynamical system over time. This methodology effectively
constrains the policy exploration process to a set of safe polices defined by the CBF.

It is important to note that direct inclusion of a safety shield/filter [10, 66] (e.g. CBF,
HJI) into most RL frameworks will lead to a distortion of any RL policy updates,
likely leading to poor learning. Therefore, an important issue tackled in this chapter
is how to properly integrate safety mechanisms or shields into most reinforcement
learning frameworks, while accounting for (and taking advantage of) distortion of
the policy updates.

The second half of the chapter (Sections 4.4 and 4.5) extends these results to consider
a more general class of multi-agent CBFs with correlated, multivariate uncertainty.
This approach enables improved applicability to robots operating in multi-agent,

48

uncertain environments.

4.1 Enforcing Safety during Learning through CBFs
Recall the MDP defined in Section 2. Our goal is to learn an optimal policy c
with respect to that MDP while maintaining safety throughout the learning process
under uncertain knowledge of the system dynamics. However, let us now consider
control-affine dynamics (a good assumption when dealing with robotic systems),
such that the time evolution of the system can be given by

BC+1 = 5 (=) (BC , 0C) = 5 (BC) + 6(BC)0C + 3 (BC), (4.1)

where 5 : (→ R= is the nominal unactuated dynamics, 6 : (→ R=,< is the nominal
actuated dynamics, and 3 : (→ R= is the unknown system dynamics. Therefore,
5 and 6 compose a known nominal model of the dynamics, and 3 represents the
uncertainty. In practice, the nominal model may be quite bad (e.g. a robot model
that ignores friction and compliance), and a much better dynamic model must be
learned from data.

Given the simplification of these dynamics, the discrete-time control barrier function
from Section 2.2 is redefined as follows.

Definition 2. Given a set C ∈ R= defined by (2.7), the smooth function ℎ : R= → R
is a discrete-time control barrier function (CBF) for dynamical system (4.1) if there
exists [∈ [0, 1] such that for all BC ∈ �,

sup
0∈�

[
ℎ

(
5 (BC) + 6(BC)0 + 3 (BC)

)
+ ([− 1)ℎ(BC)

]
≥ 0, (4.2)

where the associated control barrier condition (CBC) corresponding to CBF, ℎ, is

ℎ

(
5 (BC) + 6(BC)0 + 3 (BC)

)
+ ([− 1)ℎ(BC) ≥ 0. (4.3)

In this section, let us restrict attention to affine control barrier functions of form
ℎ = ?) B + @, (? ∈ R=, @ ∈ R), which will enable more efficient CBF computations.
However, this methodology could support more general control barrier functions,
and the following section will examine a broader set of multi-agent control barrier
functions.

As discussed in the introduction, the CBF in Definition 2 can be used to formulate
an optimization problem (similar to (2.10)) that implicitly defines a safe controller,

49

D��� , which guarantees forward invariance of set C. However, since the goal is
to leverage an RL controller, it may be desirable to use the CBF to only filter the
proposed RL action. Therefore, let us define the following policy/controller,

D: (B) = D'!\: (B) + D
���
: (B, D'!\:),

c: (0 |B) = c'!\: (0 |B) ∗ c
���
: (0 |B, c'!\:),

(4.4)

where c���
:
(0 |B) = (0 = D���

:
(B)) with 1(G) being the indicator function and ∗

being the convolution operator. The policy/controller in (4.4) combines a model-
free RL policy (parameterized by \:) and a CBF-based controller in the architecture
shown in Figure 4.1a.

(a)

(b)
Figure 4.1: Control architecture combining model-free RL policy with model-based CBF
to guarantee safety. (a) Initial architecture that uses CBF to compensate for unsafe control
actions, but does not guide learning and exploration. (b) Architecture that uses CBF to
guide exploration and learning, as well as ensure safety.

Remark 6. Note that C indexes timestepswithin each policy iteration or trial, whereas
: indexes the policy iterations (which contain trajectories with several time steps).
The CBF controller generates control updates throughout the task (computed at
each time step, C), whereas the RL policy and GP model update at episodic policy
iteration intervals indexed by : .

For the overall controller D: (B) to be safe, one need only enforce the CBC condition
for 0C = D: (BC) at each time step, as demonstrated in the following optimization

50

problem,

(0C , nC) = argmin
0∈�

‖0‖2 + nn

s.t. ?) 5 (BC) + ?)6(BC)
(
0 + D'!\: (BC)

)
+ ?)3 (BC)

+ @ ≥ (1 − [)ℎ(BC) − n
08;>F ≤ 0

8 + D'!,8
\:
(BC) ≤ 08ℎ86ℎ for 8 = 1, ..., <,

(4.5)

where n is a slack variable in the safety condition, and n is a large constant that
penalizes safety violations. The optimization is not sensitive to the n parameter as
long as it is very large (e.g. 1010), such that safety constraint violations are heavily
penalized. Note that this optimization problem is now a quadratic program (QP) as
the CBC constraint is linear in the control action, enabling efficient computation of
D��� (B).

However, recall that 3 (B) is unknown, and therefore must be estimated before it can
be included in (4.5). As described in Section 2.3, an updating GPmodel can be used
to directly estimate the posterior distribution over function, 3 (B), frommeasurement
data. Given a sequence ofmeasurements (BC , 0C , BC+1) over a horizon) , one can easily
compute the uncertain variable, 3C−) , ..., 3C−1 over that horizon using the dynamics
model (4.1) (i.e. 3 (BC) = BC+1− 5 (BC) −6(BC)0C). Using these measurements, one can
directly estimate the mean `3 (B) and variance f2

3
(B) at query point B from (2.14).

From Equation (2.15), it is known that |`3 (B) − 3 (B) | ≤ :Xf3 (B) with probability
(1 − X). Therefore, given a desired safety threshold X, one can bound the CBC
utilized in (4.5) while accounting for the uncertainty in 3 (B). The QP defining D���

can then be formulated as,

(0C , nC) = argmin
0∈�,n∈R+

‖0‖2 + nn

s.t. ?) 5 (BC) + ?)6(BC)
(
0 + D'!\: (BC)

)
+ ?)`3 (BC)−

:X |? |)f3 (BC) + @ ≥ (1 − [)ℎ(BC) − n
08;>F ≤ 0

8 + D'!,8
\:
(BC) ≤ 08ℎ86ℎ for 8 = 1, ..., <

(4.6)

The solution to this optimization problem (4.6) enforces the safety condition (4.3)
as best as possible with minimum control effort, even with uncertain dynamics.
Accounting for the dynamics uncertainty through GP models allows us to certify
system safety, even with a poor nominal model.

Define the set Cn : {B ∈ R= : ℎ(B) ≥ − n
[
}. Then the following lemma can be proved.

51

Lemma 3. For dynamical system (4.1), if there exists a solution to (4.6) for all B ∈ C
with n = 0, then the controller derived from (4.6) renders set C forward invariant
with probability (1 − X).

However, suppose instead that there exists B ∈ C such that (4.6) has solution with
n = n<0G > 0. If for all B ∈ Cn , the solution to (4.6) satisfies n ≤ n<0G , then the
larger set Cn is forward invariant with probability (1 − X).

Proof. The first part of the lemma follows directly from Definition 2 and the prob-
abilistic bounds on the uncertainty obtained from GPs shown in equation (2.15).

For the second part, the property of GPs in equation (2.15) implies that with prob-
ability (1 − X), the following inequality is satisfied under the system dynamics
(4.1):

ℎ(BC+1) ≥ ?)
(
5 (BC) + 6(BC)0C + `3 (BC)

)
−

:X |? |)f3 (BC) + @.
(4.7)

Therefore, the constraint in problem (4.6) ensures that:

ℎ(BC+1) ≥ (1 − [)ℎ(BC) − n,
?) BC+1 + @ ≥ (1 − [) (?) BC + @) − n,

?) BC+1 + @ +
n

[
≥ (1 − [) (?) BC + @ +

n

[
).

(4.8)

Define ℎn (B) = @ + n
[
+ ?) B, so that (4.8) simplifies to

ℎn (BC+1) ≥ (1 − [)ℎn (BC). (4.9)

By Definition 2, the set Cn defined by ℎn (B) = ℎ(B) + n
[
≥ 0 is forward invariant

under system dynamics (4.1). �

Intuitively, Lemma 3 states that when possible, D��� provides the minimal control
intervention that maintains safety. However, if such a control does not exist (e.g. due
to torque constraints), then the CBF policy provides the control that keeps the state
as close as possible to the safe set. Furthermore, even with dynamics uncertainty,
one can make high-probability statements about system safety using GP models
with CBFs.

52

To summarize, the model-free RL policy c'!
\:
(0 |B) proposes a control action that

attempts to optimize long-term reward, but may be unsafe. Before deploying the RL
policy, a CBF controller D���

:
(B) filters the proposed control action and provides the

minimum control intervention needed to ensure that the overall policy, c: (0 |B), keeps
the system state within the safe set. Essentially, the CBF policy c���

:
(0 |B, c'!

\:
)

“projects” the RL policy c'!
\:
(0 |B) into the set of safe policies. In the case of

an autonomous car, this action may enforce a safe distance between nearby cars,
regardless of the action proposed by the RL policy.

Remark 7. Note that (4.6) includes a CBC constraint for a single CBF. However,
one can easily combine multiple CBF constraints into the optimization to define
polytopic safe regions.

The concept behind controller (4.4) is akin to shielded RL [10, 65], since the
CBF controller compensates for the RL policy to ensure safety. However, this
naive application of shielding may run into issues when integrated into many RL
frameworks, because it does not account for the interplay between D'!

\:
and D��� .

This may lead to distortion in the policy gradient. A more intuitive description of
this issue is that the RL policy being updated, c'!

\:
(0 |B), is not the policy deployed

on the agent, c: (0 |B). For example, suppose that in an autonomous driving task,
the RL policy inadvertently proposes to collide with an obstacle. The CBF policy
compensates to drive the car around the obstacle. The next learning iteration should
update the policy around the safe deployed policy c: (0 |B), rather than the unsafe
policy c'!

\:
(0 |B) (which would have led to an obstacle collision). However, RL

algorithms are designed to update around their original policy, c'!
\:
(0 |B) (typically

limited to a trust region), as illustrated in Figure 4.2a.

4.2 Guiding Exploration in RL through CBFs
In order to achieve safe and efficient learning, one should learn from the deployed
policy c: , since it operates in the safe region C, rather than learning around c'!

\:
,

which may operate in an unsafe, irrelevant area of state space. The RL-CBF
algorithm described in this section incorporates this goal. However, before jumping
into the algorithm, let us go on a slight tangent to describe the issues arising from
filtering the reinforcement learning policy, as done with policy (4.4).

53

4.2.1 Policy Gradient Distortion
Recall that the reinforcement learning algorithm is designed to optimize the policy
by updating the parameters \,

\'!:+1 = \
'!
: + U∇\� (\

'!
:) such that � (c'!\:+1) > � (c

'!
\:
), (4.10)

where the policy gradient ∇\� (\) is defined as,

∇\� (\'!) = Eg∼c'!
\

[
∇\ log c'!\ (g)&c'!

\ (g)
]

=
∑
B∈(

3c
'!
\ (B)

∑
0∈�

c'!\ (0 |B)&c'!
\ (B, 0)

∇\c'!\ (0 |B)
c'!
\
(0 |B)

.
(4.11)

However, note that the policy gradient is computed assuming that g ∼ c'!
\

. This
can pose an issue since the deployed policy c = c'!

\
∗ c��� . Therefore, the actual

computed policy gradient will look like the following,

∇\� (\'!) = Eg∼c
[
∇\ log c'!\ (g)&c'!

\ (g)
]

=
∑
B∈(

3c (B)
∑
0∈�

c(0 |B)&c'!
\ (B, 0)

∇\c'!\ (0 |B)
c'!
\
(0 |B)

=
∑
B∈(

3c
'!
\
∗c��� (B)

∑
0∈�

(
c'!\ (0 |B) ∗ c��� (0 |B)

)
&c'!

\ (B, 0)
∇\c'!\ (0 |B)
c'!
\
(0 |B)

,

(4.12)

which implies that � (c'!
\:+1
∗ c���

:
) > � (c'!

\:
∗ c���

:
). The distinction is subtle,

but clearly expressions (4.11) and (4.12) are not equivalent due to the convolution
c'!
\
∗c��� . Both represent the policy gradient for the RL policy c'!

\
, but expression

(4.12) considers the fact that trajectories are drawn from the safe policy c. To show
the implications of this difference, suppose the policy gradient (4.12) is used to
update the RL policy at every iteration while using the policy (4.4). At every
iteration, the following would hold,

� (c'!\:+1) − � (c:) = � (c
'!
\:+1
) − � (c'!\: ∗ c

���
:), (4.13)

which is not ideal due to the inclusion of c���
:

.

54

4.2.2 Leveraging the Policy Gradient Distortion
To account for the distortion in the policy gradient, inspired by (4.12), let us define
the following guided policy,

c
5 8;C4A

:
(0 |B) = c���0 (0 |B) ∗ ... ∗ c���: (0 |B)

c
?A>?

\:
(0 |B) = c'!\: (0 |B) ∗ c

5 8;C4A

:−1 (0 |B)

c: (0 |B) = c'!\: (0 |B) ∗ c
5 8;C4A

:
(0 |B),

(4.14)

where c: is the safe deployed policy. See Equation (4.24) for the deterministic
analogue to (4.14), defining controllers drawn from these distributions. Recall that
c���
:
(0 |B) = 1(0 = D���

:
(B)) with 1(G) being the indicator function. Although

D���
:
(B) is a deterministic controller, for convenience, I will refer to it as policy

c���
:
(0 |B) for the rest of this chapter.

As a concrete example, consider an initial RL-based policy c'!
\0
(0 |B) (for iteration

: = 0). The CBF policy c���0 (0 |B) is determined from (4.6) to obtain c0(0 |B) =
c'!
\0
(0 |B) ∗ c���0 (0 |B). Then for every following policy iteration, I define the overall

policy to incorporate all previous CBF policies, as in (4.14). Using this policy (as
opposed to the policy in (4.4)), at every iteration the following difference can be
defined

� (c?A>?
\:+1
) − � (c:) = � (c'!\:+1 ∗ c

5 8;C4A

:
) − � (c'!\: ∗ c

5 8;C4A

:
), (4.15)

whose performance is optimized by the computed policy gradient (4.12) (see proof
of Theorem 3 for more details on how the modified policy c: in (4.14) leverages
these computed policy gradients).

The dependence of the overall policy c: (in (4.14)) on all prior CBF policies (see
Figure 4.1b) is critical to enhancing learning efficiency and avoiding distortion of the
policy gradients. Defining the policy in this fashion leads to policy updates around
the previously deployed policy, which adds to the efficiency of the learning process
by encouraging the policy to operate in safe areas of the state space. This idea is
illustrated in Figure 4.2b. The intuition is that at iteration : = 0, the RL policy
proposed actions D'!

\0
(B), but it took safe actions D'!

\0
(B) + D���0 (B). To update the

policy based on the safe actions, the “guided” RL policy c?A>?
\:

at the next iteration
(: = 1) should be c'!

\1
(0 |B) ∗ c���0 (0 |B) (i.e. c���0 (0 |B) is now part of the RL

policy). To ensure safety, this guided RL policy is then filtered by the CBF policy
c���1 (0 |B). For example at policy iteration : , one can consider c'!

\:
∗c���0 ∗...∗c���

:−1
to be the guided RL policy (proposing potentially unsafe actions), which is rendered
safe by c���

:
.

55

(a)

(b)
Figure 4.2: Illustration of policy iteration process, where the goal is to learn the optimal
safe policy, c>?C . (a) Policy optimization with barrier-compensating policy. Next policy
is updated around the previous RL policy c'!

\:
; (b) Policy optimization with barrier-guided

policy. Next policy is updated around previous deployed policy c: .

To ensure safety after incorporating all prior CBF policies, they must be included
into the governing QP:

(0C , n) = argmin
0∈�,n∈R+

‖0‖2 + nn

s.t. ?) 5 (BC) + ?)6(BC)
(
D'!\: (BC) +

:−1∑
9=0
D���9 (BC) + 0

)
+ ?)`3 (BC) − :X |? |)f3 (BC) + @ ≥ (1 − [)ℎ(BC) − n

08;>F ≤ 0
8 + D'!,8 (BC) +

:−1∑
9=0
D
���,8
9
(BC) ≤ 08ℎ86ℎ

for 8 = 1, ..., <.

(4.16)

The solution to (4.16) defines the CBF policy c���
:
(0 |B) = X(0−D���

:
(B)) in (4.14),

which ensures safety by satisfying the control barrier condition (4.3).

Let n<0G = maxB∈C n from (4.16) represent the largest violation of the barrier
condition for any B ∈ C.

56

Theorem 3. Using the policy c: (B) from (4.14), if there exists a solution to problem
(4.16) such that n<0G = 0, then the safe set C is forward invariant with probability
(1 − X). If n<0G > 0, but the solution to problem (4.16) satisfies n ≤ n<0G for
all B ∈ Cn , then the policy will render the larger set Cn forward invariant with
probability (1 − X).

Furthermore, if one uses TRPO for the RL algorithm, then the guided RL policy
c
?A>?

\:
(0 |B) from (4.14) achieves the performance guarantee � (c?A>?

\:
) ≥ � (c:−1) −

2_W
(1−W)2 Xc, where _ = maxB |E0∼c?A>?

\:

[�c:−1 (B, 0)] |.

Proof. The first part of the theorem follows directly from Definition 2 and Lemma
3. The only difference from Lemma 3 is that the control includes the RL policy and
all previous CBF controllers (D���0 , ..., D���

:−1).

To prove the performance bound in the second part of the theorem, consider the
property of the advantage function from equation (4.17) below:

� (c:) = � (c:−1) + Eg∼c:
[∞∑
C=0

WC�c:−1 (BC , 0C)
]
, (4.17)

where BC+1 ∼ %(BC+1 |BC , 0C). As derived in [148], one can then obtain the following
inequality:

� (c:) ≥ � (c:−1) +
1

1 − WE
BC∼c:−1
0C∼c:

[∞∑
C=0

WC�c:−1 (BC , 0C)

− 2W_
1 − W�)+ (c:−1, c:)

]
,

(4.18)

where �)+ (c:−1, c:) is the total variational distance between policies c:−1 and
c: , and _ = maxB |E0∼c: [�c:−1 (B, 0)] |. Note that the CBF controllers are all
deterministic, so let us redefine D10AA84A

:−1 =
∑:−2
9=0 D

���
9
+ D���

:−1 =
∑:−1
9=0 D

���
9

. Based
on this definition and equation (15), rewrite/define the following controllers:

D:−1(B) = D'!\:−1
(B) + D10AA84A:−1 (B),

c:−1(0 |B) = c'!\:−1
(0 − D10AA84A:−1 (B) | B),

(4.19)

57

D
?A>?

:
(B) = D'!\: (B) + D

10AA84A
:−1 (B),

c
?A>?

:
(0 |B) = c'!\: (0 − D

10AA84A
:−1 (B) | B).

(4.20)

Plug in the above relations for c:−1 and c?A>?
:

into inequality (4.18), to obtain the
following bound (plug in c?A>?

:
for c:):

� (c?A>?
:
) ≥ � (c:−1) +

1
1 − WE

BC∼c:−1
0C∼c?A>?:

[∞∑
C=0

WC�c:−1 (BC , 0C)

− 2W_
1 − W�)+ (c

'!
\:−1
(0 − D10AA84A:−1), c'!\: (0 − D

10AA84A
:−1))

]
,

(4.21)

where the policies’ dependence on the state B is dropped for compactness. Due to
the shift invariance of the total variational distance, �)+ , this simplifies to:

� (c?A>?
:
) ≥ � (c:−1) +

1
1 − WE

BC∼c:−1
0C∼c?A>?:

[∞∑
C=0

WC�c:−1 (BC , 0C)

− 2W_
1 − W�)+ (c

'!
\:−1

, c'!\:)
]
.

(4.22)

Because c:−1 is a feasible point of the TRPOoptimization problem (4)with objective
value 0, the solution c?A>?

:
satisfies the following:

E BC∼c:−1
0C∼c?A>?:

[∞∑
C=0

WC�c:−1 (BC , 0C)
]
≥ 0.

Since the optimization problem (4) specifies the bound �)+ (c'!\:−1
, c'!

\:
) ≤ Xc, then

it follows that:

� (c?A>?
:
) ≥ � (c:−1) −

2_W
(1 − W)2

Xc, (4.23)

where _ = maxB |E0∼c?A>?
:
[�c:−1 (B, 0)] |. The realization of the policy c?A>?

:
(0 |B)

is:

D
?A>?

:
(B) = D'!\: (B) + D

10AA84A
:−1 (B) = D: (B) − D���: (B).

58

Therefore, utilizing the policy D: (B) − D���:
(B), one can obtain the performance

bound in equation (4.23).

�

RL-CBF provides high-probability safety guarantees during the learning process
and guides the RL policy exploration (as exemplified by the performance guarantees
with TRPO). If there is no uncertainty in the dynamics, then safety is guaranteed
with probability 1. Note that the performance guarantee in Theorem 3 is for policy
c
?A>?

\:
(0 |B), which is not the deployed policy, c: (0 |B). However, this does not pose a

significant issue, since D���
:
(B) rapidly decays to 0 with increasing iterations. This

limit is reached because the guided RL policy quickly learns to operate in the safe
region, so the CBF controller D���

:
(B) becomes inactive.

4.2.3 Computationally Efficient Algorithm
This section describes an efficient algorithm to implement the framework described
above, since a naive approach would be too computationally expensive in many
cases. To see this, let us write out the realized control law drawn from the stochastic
policy c: in (4.14):

D: (B) = D'!\: (B) +
:−1∑
9=0
D���9 (B, D'!\0

, ..., D'!\ 9−1
)

+ D���: (B, D'!\: +
:−1∑
9=0
D���9).

(4.24)

The first term in (4.24) may be represented by a neural network that is parameterized
by \: , which has a standard implementation. The third term is just a quadratic
program with dependencies on the other terms; it does not pose a computational
burden. However, the summation in the 2nd term poses a challenge, since every
term in

∑:−1
9=0 D

���
9
(B, D'!

\0
, ..., D'!

\ 9−1
) depends on a different previous RL controller

D'!
\ 9

. Therefore, one would need to store :−1 neural networks corresponding to each
previous RL controller. In addition, this would require solving : − 1 separate QPs
in sequence to evaluate each CBF controller. Such a brute-force implementation
would be impractical.

To overcome this issue, approximate D10A
q:
(B) ≈ ∑:−1

9=0 D
���
9
(B, D'!

\0
, ..., D'!

\ 9−1
), where

D10A
q:

is a feedforward neural network parameterized by q. Thus, at each policy
iteration, the neural network D10A

q:
(B) is fit to data of

∑:−1
9=0 D

���
9
(B, D'!

\0
, ..., D'!

\ 9−1
)

59

collected from trajectories of the previous policy iteration. Then one obtains the
controller:

D: (B) = D'!\: (B) + D
10A
q:
(B) + D���: (B, D'!\: + D

10A
q:
). (4.25)

Note that even with this approximation, safety with probability (1 − X) is still
guaranteed. This is because the above approximation only affects the guided
RL policy/controller D'!

\:
(B) + ∑:−1

9=0 D
���
9
(B, D'!

\0
, ..., D'!

\ 9−1
). The CBF controller

D���
:
(B, D'!

\:
+ D10A

q
) still solves (4.16), which provides the safety guarantees in The-

orem 3 by satisfying the CBF condition (4.3). Furthermore, it is now necessary to
store only two NNs and solve one QP for the controller. The tradeoff is that the per-
formance guarantee in Theorem 3 does not necessarily hold with this approximation.
The algorithm is outlined in Algorithm 2.

4.3 Simulation Results: RL-CBF
I implement two versions of the RL-CBF algorithm with existing model-free RL
algorithms: TRPO-CBF, derived from TRPO [148], and DDPG-CBF, derived from
DDPG [109]. DDPG is an off-policy actor-critic method that computes the policy
gradient based on sampled trajectories and an estimate of the action-value function.
It alternately updates the action-value function and the policy as it samples more
and more trajectories. TRPO is an on-policy policy gradient method that maximizes
a surrogate loss function, which serves as an approximate lower bound on the true
loss function. It adapts gradient step sizes to ensure that the next parameter update
falls within a “trust region.” The code for these examples can be found at [2].

4.3.1 Inverted Pendulum
The RL-CBF algorithm is first applied to the control of a simulated inverted pen-
dulum from the OpenAI gym environment (pendulum-v0), which has mass < and
length, ;, and is actuated by torque, D. The safe region is defined to be \ ∈ [−1, 1]
radians, and define the reward function A = \2 +0.1 ¤\2 +0.001D2 to learn a controller
that keeps the pendulum upright. The true system dynamics are defined as follows,

\C+1 = \C + ¤\CXC +
36
2;

sin(\C)XC2 +
3
<;2

DXC2,

¤\C+1 = ¤\C +
36
2;

sin(\C)XC +
3
<;2

DXC,

(4.26)

with torque limits D ∈ [−15, 15], and< = 1, ; = 1. To introduce model uncertainty,
the nominal model assumes < = 1.4, ; = 1.4 (40% error in model parameters).

60

Algorithm 2 RL-CBF algorithm

1: Initialize RL Policy c'!0 , state B0 ∼ d0, measurement array �̂, action array �̂
2: for C = 1, . . . ,) do
3: Sample (but do not deploy) control D'!

\0
(BC)

4: Solve for D���0 (BC) from optimization problem (4.16)
5: Deploy controller D0(BC) = D'!\0

(BC) + D���0 (BC)
6: Store state-action pair (BC , D���0) in �̂
7: Observe (BC , D0, BC+1, AC) and store in �̂
8: end for
9: Collect Episode Reward,

∑)
C=1 AC

10: Update GP model using (2.14) and measurements �̂
11: Set : = 1 (representing : Cℎ policy iteration)
12: while : < Episodes do
13: Do policy iteration using RL algorithm based on previously observed

episode/rewards to obtain c'!
\:

14: Train D10A
q:

to approximate prior CBF controllers (D10A
q:

= D���0 + ... + D���
:−1)

using �̂
15: Initialize state B0 ∼ d0
16: for C = 1, . . . ,) do
17: Sample control D'!

\:
(BC) + D10Aq:

(BC)
18: Solve for D���

:
(BC) from problem (4.16)

19: Deploy controller D: (BC) = D'!\: (BC) + D
10A
q:
(BC) + D���:

(BC).
20: Store state-action pair (BC , D10Aq:

+ D���
:

) in �̂
21: Observe (BC , D: , BC+1, AC) and store in �̂
22: end for
23: Collect Episode Reward,

∑)
C=1 AC

24: Update GP model using (2.14) and measurements �̂
25: : = : + 1
26: end while
27: return c'!

\:
, D10A
q:
, D���

:
BOverall policy composed of all 3 subcomponents

Figure 4.3 compares the accumulated reward achieved during each episode us-
ing TRPO, DDPG, TRPO-CBF, and DDPG-CBF. The two RL-CBF algorithms
converge near the optimal solution very rapidly, and significantly outperform the
corresponding baseline algorithms without the CBFs. Note that TRPO and DDPG
sometimes converge on a high-performance policy (comparable to TRPO-CBF and
DDPG-CBF), though this occurs less reliably and more slowly, resulting in the
poorer learning curves. More importantly, the RL-CBF policies maintain safety
(i.e. never leave the safe region) throughout the learning process, as also seen in
Figure 4.3. In contrast, TRPO and DDPG severely violate safety while learning the

61

optimal policy.

Figure 4.4 shows the pendulum angle during a representative trial under the first
policy versus the last learned policy deployed for TRPO-CBF and DDPG-CBF. For
the first policy iteration, the pendulum angle is maintained near the edge of the safe
region – the RL algorithm has proposed a poor control action so the CBF controller
provides the minimum intervention necessary to keep the system safe. By the last
iteration though, the CBF controller is completely inactive (D��� = 0), since the
guided RL policy (D'!

\:
(B) + D10A

q:
(B)) is already safe.

Figure 4.3: (Top) Maximum angle (rad) of the pendulum throughout each episode. Values
above the dashed black line represent exits from the safe set at some point during the
episode. (Bottom) Comparison of accumulated reward from inverted pendulum problem
using TRPO, DDPG, TRPO-CBF, and DDPG-CBF.

4.3.2 Simulated Car Following
Consider a chain of five cars following each other on a straight road. The RL
policy controls the acceleration/deceleration of the 4Cℎ car in the chain, and the goal
is to train the policy to maximize fuel efficiency during traffic congestion while
avoiding collisions. Each car utilizes the dynamics shown in equation (4.27), and
the controlled car attempts to optimize the reward function (4.28). The car dynamics

62

Figure 4.4: Representative pendulum trajectory (angle vs. time) using first policy vs.
last policy. The left plot and right plot show results from TRPO-CBF and DDPG-CBF,
respectively. The trajectory for the first policy (blue) goes to edge of the safe region and
stays there, while the trajectory for the last policy (red) quickly converges to the upright
position.

and reward function are inspired by previous work [87].

[
¤B(8)

¤E (8)

]
=

[
0 1
0 −:3

] [
B(8)

E (8)

]
+

[
0
1

]
0 :3 = 0.1. (4.27)

A = −
)∑
C=1

[
E
(4)
C max((0 (4)C), 0) +

4∑
8=3

�8

(500
B
(8)
C − B

(8+1)
C

)]
.

�< (G) =

|G | if B(<) − B(<+1) ≤ 3

0 otherwise

(4.28)

The first term in the reward optimizes fuel efficiency, while the other term encourages
the car to maintain a 3-meter distance from the other cars (soft constraint). For the
RL-CBF controllers, the CBF enforces a 2-meter safe distance between cars (hard
constraint).

The 4Cℎ car has access to every other cars’ position, velocity, and acceleration, but
it only has a crude model of its own dynamics (:3 = 0) and an inaccurate model
of the drivers behind and in front of it. In addition, Gaussian noise is added to
the acceleration of each car. The idea is that the 4Cℎ car can use its crude model
to guarantee safety with high probability, and improve fuel efficiency by slowly
building and leveraging an implicit model of the other drivers’ behaviors.

From Figure 4.5, it is shown that there were no safety violations between cars during
the simulated experiments when using either of the RL-CBF controllers. When
using TRPO and DDPG alone without CBF safety, almost all trials had collisions,

63

even in the later stages of learning. Furthermore, as seen in Figure 4.5, TRPO-CBF
learns faster and outperforms TRPO (DDPG-CBF also outperforms DDPG, though
neither algorithm converged on a high-performance controller in the experiments).
It is important to note that in some experiments, TRPO finds a comparable controller
to TRPO-CBF, but this is often not the case due to randomness in seeds (relating to
the variance issue discussed in Chapter 3).

Although DDPG and DDPG-CBF failed to converge on a good policy, Figure 4.5
shows that DDPG-CBF (and TRPO-CBF) always maintained a safe controller. This
is a crucial benefit of the RL-CBF approach, as it guarantees safety independent of
the system’s learning performance and regardless of misspecified rewards.

Figure 4.5: (Top) Minimum headway between cars during each learning episode using
DDPG, TRPO, DDPG-CBF, and TRPO-CBF. Values below the dashed black line represent
exits from the safe set, and values below 0 represent collisions. The curve for DDPG has high
negative values throughout learning, and is not seen. (Bottom) Comparison of reward over
multiple episodes from car-following problem using TRPO, TRPO-CBF, and DDPG-CBF
(DDPG is excluded because it exhibits very poor performance).

64

4.4 Robust Safety in Uncertain, Multi-Agent Interactions
So far, this chapter has looked at guaranteeing safety and guiding exploration in
RL using discrete-time control barrier functions. However, the results in the pre-
vious sections were limited to affine control barrier functions, as more complex
CBFs might not allow a quadratic program formulation for the optimization prob-
lem (4.16). Furthermore, the Gaussian process model used to learn the dynamics
uncertainties, 3, considers each element independently (i.e. does not model inter-
dependencies between the different components of 3). These restrictions can be
limiting in many scenarios. Therefore, this section looks at overcoming these
two restrictions, specifically in the context of guaranteeing safety during uncertain,
multi-agent navigation.

Collision-free robot navigation in natural multi-agent environments is vital for a
myriad of robotic applications, such as self-driving cars, navigation in crowds, etc.
However, placing robots in rapidly evolving, uncertain environments introduces
many challenges in guaranteeing safety [25, 64, 91, 98, 169]. Uncertainty in
the prediction of other agents’ trajectories is inevitable (human trajectories remain
notoriously difficult to predict and are highly stochastic [23]), and robots must learn
and account for this uncertainty to ensure safe operation. Therefore, the overarching
goal of this section is to (1) learn uncertainty bounds offline and online from agents’
observed trajectories, and (2) incorporate those uncertainty bounds into amulti-agent
CBF [27] while maintaining computational efficiency of the underlying controller
(i.e. a quadratic program).

The proposed approach focuses first on learning high-confidence polytopic bounds
on the, possibly coupled, uncertainties in both the robot dynamics and other agents’
dynamics. To achieve this, I utilize matrix-variate Gaussian processes (MVG) and
optimize their hyperparameters offline from interaction data; this allows for the
prediction of ellipsoidal uncertainty in the dynamics online, which can be converted
to an uncertainty polytope given a desired confidence level. Using these polytopic
bounds, a robust CBF can be formulated as amin-max optimization problem over the
robot controls and the potential uncertainties, respectively. This min-max problem
is then transformed into a quadratic program that can be efficiently solved to find a
safe control action that is robust with respect to the estimated uncertainty. Figure
4.6 provides an overview of the proposed approach.

65

Figure 4.6: Diagram overviewing the control structure. The proposed approach guarantees
safety by utilizing a Bayesian Inference Module to learn dynamic uncertainties, and handles
them with the proposed Robust CBF module.

4.4.1 Multi-Agent Problem Setup
Let us consider the system dynamics (4.1) but now explicitly include position, ?
and velocity, E in the state,

BC+1 =


?C+1

EC+1

IC+1

 =

5? (BC)
5E (BC)
5I (BC)

︸ ︷︷ ︸
5 (BC)

+

6? (BC)
6E (BC)
6I (BC)

︸ ︷︷ ︸
6(BC)

0C +

3? (BC)
3E (BC)
3I (BC)

︸ ︷︷ ︸
3 (BC)

,
(4.29)

where ? ∈ R2, E ∈ R2, and I ∈ R=−4 denote position, velocity, and other states,
respectively. Here, 5 9 , 6 9 , and 3 9 are real-valued functions, for 9 ∈ {?, E, I}.
Assume that this system has relative degree 2 with respect to the positional output
?; in discrete time, this directly implies that 6? (G) = 02×2. Similarly, let us represent
the other agents within the multi-agent system with dynamics,

G
(8)
C+1 =


?
(8)
C+1
E
(8)
C+1
I
(8)
C+1

 =

5
(8)
? (BC)
5
(8)
E (BC)
5
(8)
I (BC)

︸ ︷︷ ︸
5 (8) (BC)

+

3
(8)
? (BC)
3
(8)
E (BC)
3
(8)
I (BC)

︸ ︷︷ ︸
3 (8) (BC)

, (4.30)

where 8 ∈ N indexes each of the other agents in the system. It is assumed that the
control input for other agents are an (uncertain) function of their state at the given
time, so control inputs are not included explicitly in (4.30).

Since the robot interacts with other unknown agents, it will be important to account
for the uncertainties, 3, 3 (8) , when considering safety via CBFs. The rest of this

66

chapter assumes that each agent’s current state BC is perfectly observed, but that the
uncertain dynamics 3 (BC) and 3 (8) (BC) are unknown, but can be estimated over time.

4.4.2 Robust Multi-Agent CBF
Our goal is to ensure safety by defining/utilizing a discrete-time CBF for the system.
Inspired by themulti-agent CBFproposed in [27] (discussed in Section 2.2), consider
the following CBF for the discrete time system,

ℎ(B) :=
Δ?)ΔE

‖Δ?‖ +
√
D<0G (‖Δ?‖ − �B) , (4.31)

where �B is the collision margin, Δ? = ? − ? (8) is the positional difference between
the agents, and ΔE = E − E (8) is the velocity difference between the agents. D<0G will
be defined later in (4.32), but intuitively it represents the robot’s max acceleration
in any potential collision direction.

ExtendingMulti-Agent CBF to Discrete-Time, Nonlinear Systems: This subsec-
tion shows that under proper assumptions, ℎ(B) defined in (4.31) is a discrete-time
CBF for a restricted set of discrete-time nonlinear systems (4.29), (4.30). The
tradeoff is the additional conservativeness in D<0G introduced by the following as-
sumption. Intuitively, this assumption ensures that the robot can accelerate in any
direction relative to the other agents, as proved in Lemma 4.

Assumption 2. Assume that for all G ∈ C, 6E (G) is invertible and ‖VE (G)‖
f<8= (6E (G))0<0G < 1,

where VE (G) = 5E (G) + 3E (G) − 5 (8)E (G) − 3 (8)E (G) − ΔEC , f<8= (6E (G)) is the minimum
singular value of 6E (G), and 0<0G is themaximumactuation authority in the dynamics
(4.29).

Remark 8. This assumption ensures controllability and places restrictions on the
agent’s dynamicswith relation to its actuator authority. If 0<0G is large, the restriction
is minimal, and vice-versa. As a simple example, a car at rest would not satisfy
this assumption, though a moving car would likely satisfy this assumption (with a
higher velocity corresponding to larger D<0G).

Lemma 4. Under Assumption 2, which places controllability restrictions on the
dynamics, the expression (4.31), defining set C, represents a discrete-time CBF for

67

system (4.29), with

D<0G = min
G

[
f<8= (6E (G))0<0G − ‖VE (G)‖

]
> 0. (4.32)

Proof. To prove Lemma 4, it suffices to show that the following statements are true:

• Set C defined by expression (4.31) is control invariant for the dynamics (4.29),
given that the robot has acceleration authority in any direction of at least 0<0G
for all G ∈ C.

• Under Assumption 2, 0<0G > 0 for all G ∈ C.

The proof of the first point relies on the same proof structure found in [27], with
the main difference being that the problem is formulated with discrete-time (rather
than continuous-time) dynamics.

Let ΔÊ(GC) denote the component of velocity E(GC) in the direction of collision.

ΔÊ(GC) =
Δ?)ΔE

‖Δ?‖ . (4.33)

Collision can be avoided if the robot can match the other agent’s velocity (i.e.
ΔE = 0) by the time the robot reaches that agent. If one assumes that the robot
can accelerate by 0<0G in any direction, it is guaranteed that the robot can achieve
ΔE = 0 within time)2 = −ΔÊ(GC)0<0G

. In the discrete-time formulation, the following
condition implies collision avoidance:

ΔÊ(GC))2 + ‖Δ?‖ ≥ �B,

− ΔÊ
2(GC)
0<0G

+ ‖Δ?‖ ≥ �B,(Δ?)ΔE
‖Δ?‖

)2
≤ 0<0G (‖Δ?‖ − �B).

(4.34)

Note that this constraint is only active when two agents are moving closer to each
other (ΔÊ < 0), and no constraint is needed when two agents are moving away from
each other (ΔÊ ≥ 0). Therefore, collision is always avoided under the following
condition,

−Δ?
)ΔE

‖Δ?‖ ≤
√
0<0G (‖Δ?‖ − �B). (4.35)

68

Therefore, the function ℎ = Δ?) ΔE

‖Δ?‖ +
√
0<0G (‖Δ?‖ − �B) is a discrete-time control

barrier function, under the assumptions made above, that the robot can accelerate
by at least 0<0G in any direction.

To address the second point: one must show that for all G ∈ C and any unit vector
4̂, it holds that supD∈U ‖

(
EC+1(G, D) − EC (G)

))
4̂‖ ≥ 0<0G > 0.

sup
D∈U
‖
(
EC+1(G, D) − EC

))
4̂‖ = sup

D∈U
‖
(
VE (G) + 6E (G)D

))
4̂‖

= sup
D∈U
‖4̂) VE (G) + 4̂)6E (G)D‖

≥ sup
D∈U
‖4̂)6E (G)D‖ − ‖4̂) VE (G)‖

≥ sup
D∈U
‖4̂)6E (G)D‖ − ‖VE (G)‖

≥ f<8= (6E (G))D<0G − ‖VE (G)‖.

(4.36)

This directly implies the following,

0<0G = min
G

[
f<8= (6E (G))D<0G − ‖VE (G)‖

]
, (4.37)

which is positive based on Assumption 2. �

IncorporatingRobustness into theCBF:While uncertainty in robot/environmental
dynamics can be directly incorporated into the Control Barrier Condition (CBC) for
simple discrete-time systems/constraints (as shown in the previous sections of this
chapter), this is not the case for the multi-agent CBF with discrete-time dynamics.

Consider the CBF (4.31) and the dynamics defined in (4.29) and (4.30). Based on
these, the following CBC can be computed with respect to each other agent 8:

��� (8) (BC , 0C) =
〈 5? (BC) + 6? (BC)0C + 3? (BC) − 5 (8)? (BC) − 3 (8)? (BC)
‖ 5? (BC) + 6? (BC)0C + 3? (BC) − 5 (8)? (BC) − 3 (8)? (BC)‖

,

5E (BC) + 6E (BC)0C + 3E (BC) − 5 (8)E (BC) − 3 (8)E (BC)
〉
+

√
D<0G (‖ 5? (BC) + 6? (BC)0C + 3? (BC) − 5 (8)? (BC) − 3 (8)? (BC)‖ − �B) +

([− 1)
√
D<0G (‖Δ?C ‖ − �B) + ([− 1)

Δ?)C ΔEC

‖Δ?C ‖
.

(4.38)

If one can (a) determine bounds on the dynamic uncertainties, 3, in (4.29) and (4.30),
and (b) compute control actions that satisfy ��� (G, D) ≥ 0 in an online fashion,

69

then robust safety can be guaranteed by utilizing the multi-agent CBF. Ideally, one
could incorporate (4.38) into an efficiently solvable program as follows,

0C = argmin
0∈�

‖0 − 034B‖2

s.t. min
3 (BC)

��� (8) (BC , 0, 3C) ≥ 0 ∀ 8 = 1, ..., "

where 3 (BC) ∈ D
‖0‖2 ≤ 0<0G ,

(4.39)

where 034B can be any, potentially unsafe, proposed control action (e.g. D'!
\

), D is
some bound on the uncertainty (further discussed in the following subsection), and
" is the number of other agents. Note that the CBC constraint (4.38) in (4.39) is
clearly not linear nor convex. Furthermore, the minimization over actions 0 must
be done considering all 3 ∈ D. Therefore, the resulting program is non-convex
and cannot be efficiently solved at high frequency for adequate safety assurances.
However, recall that the dynamical system has relative degree 2, which allows us to
derive the following bound,

��� (BC , 0C , 3C) ≥ :2 (BC) − �1(BC)3C − 0)C �2(BC)3C − �3(BC)0C , (4.40)

70

where the definitions of (:2, �1, �2, �3) are provided below.

�1 (1 × %) =
[
−

5E (G) − 5 ℎE (G)
‖ 5? (G) − 5 ℎ? (G)‖ − Z? (G) − Zℎ? (G)

,

−
5? (G) − 5 ℎ? (G)

‖ 5? (G) − 5 ℎ? (G)‖ − Z? (G) − Zℎ? (G)
,

5E (G) − 5 ℎE (G)
‖ 5? (G) − 5 ℎ? (G)‖ − Z? (G) − Zℎ? (G)

,

5? (G) − 5 ℎ? (G)
‖ 5? (G) − 5 ℎ? (G)‖ − Z? (G) − Zℎ? (G)

]

�2 (" × %) =
[
− 6E (G)
‖ 5? (G) − 5 ℎ? (G)‖ − Z? (G) − Zℎ? (G)

, 0 ,

6E (G)
‖ 5? (G) − 5 ℎ? (G)‖ − Z? (G) − Zℎ? (G)

, 0
]

�3 (1 × ") =
[
−

(5? (G) − 5 ℎ? (G))) 6E (G)
‖ 5? (G) − 5 ℎ? (G)‖ + Z? (G) + Zℎ? (G)

]

:2 = min
((5? (G) − 5 ℎ? (G))) (5E (G) − 5 ℎE (G))
‖ 5? (G) − 5 ℎ? (G)‖ ±

(
Z? (G) + Zℎ? (G)

))+
√
0<0G (‖ 5? (G) − 5 ℎ? (G)‖ − Z? (G) − Zℎ? (G) − �B) +

([− 1)
√
0<0G (‖Δ?C ‖ − �B) + ([− 1)

Δ?)C ΔEC

‖Δ?C ‖
−

Z? (G)ZE (G) + Z? (G)ZℎE (G) + ZℎE (G)Zℎ? (G) + ZE (G)Zℎ? (G)
‖ 5? (G) − 5 ℎ? (G)‖ − Z? (G) − Zℎ? (G)

.

(4.41)

The derivation of bound (4.40) can be found at the end of this chapter (Appendix C).
For the remainder of the section, the index 8 is dropped for notational convenience.

The following lemma allows us to utilize CBC bound (4.40) to obtain safety guar-
antees under polytopic uncertainties.

Lemma 5. Suppose the uncertainty in the system dynamics, 3, is bounded in the

71

polytope {3 ∈ R= | �3 ≤ 6}. Then the action, D, obtained from solving the following
optimization problem (4.42) robustly satisfies the CBC condition (4.38) (i.e. renders
the set C forward invariant).

min
0∈A,b∈R4=

+

‖0 − 034B‖2

s.t. �3(BC)0 + b6 ≤ :2 (BC)
�1(BC) + 0)�2(BC) = b�
b ≥ 0

‖0‖2 ≤ 0<0G (actuation limits) .

(4.42)

Proof. The robust optimization problem (4.42) can be equivalently represented by
the following optimization problem (i.e. (4.42) is the dual to (4.43) with no duality
gap [33] where b is the dual variable):

min
0∈A

‖0 − 034B‖2

s.t. ∀3 ∈ {3 ∈ R= | �3 ≤ 6}
�1(BC)3 + 0)�2(BC)3 + �3(BC)0 ≤ :2 (BC)
‖0‖2 ≤ 0<0G (actuation limits) ,

(4.43)

where 0 is the decision vector, 3 is the uncertainty variable, and {3 ∈ R= | �3 ≤ 6}
is the uncertainty bound. If the inequality in (4.43) is satisfied such that �13 +
D)�23 + �3D ≤ :2, then it follows directly from (4.40) that the CBC condition is
satisfied for all 3 in the polytopic uncertainty set. Therefore, the set C is rendered
forward invariant. �

This lemma shows that if 3 (BC) is bounded within a polytope, the robust multi-agent
CBF (4.39) can be transformed into a quadratic program (4.42), which yields a
computationally efficient way to provide robust guarantees of safety under robot and
environment uncertainties. Hence, the following section examines the problem of
learning accurate polytopic bounds on the uncertainty 3 in an online fashion.

4.4.3 Learning Uncertainty Bounds
To learn accurate confidence supports for the uncertainties 3 and 3 (8) (for all agents 8)
in an online manner, Matrix-Variate Gaussian Processes are utilized, which provide
multivariate Gaussian distributions over the uncertainties, 3 and 3 (8) . Recall from

72

Section 2.3 that given a set of # measurements, B[#] , one can infer the posterior
distribution 3 (B∗) at target state B∗ as follows,

3 (B∗) ∼N
(
"̂ , Σ̂ ⊗ Ω̂

)
"̂ = (B∗, B[#])) (B[#] , B[#])−13[#]

Σ̂ = ^(B∗, B∗) − (B[#] , B∗)) (B[#] , B[#])−1 (B[#] , B∗)
Ω̂ = Ω.

(4.44)

Using (4.29), it follows that 3 (BC) = BC+1 − 5 (BC) − 6(BC)0C . A similar relation
holds based on (4.30) for other agents. Thus, given a sequence of measurements
(BC , 0C , BC+1) over a horizon) , the uncertain variables, 3C−) , ..., 3C−1, are computed
over that horizon. Then a distribution over the query point, 3C (i.e. next time point),
can be inferred as described in Equation (4.44).

Optimizing Kernel Hyperparameters Offline: However, direct application of
the MVG (4.44) to the multi-agent setup will be problematic without accurately
trained model hyperparameters. This is easy to see by noting that the covariance,
Σ(B[#]) ⊗ Ω, does not depend on the observed values, 3[#] . Furthermore, the
coupling between uncertainties, captured by Ω, is completely independent of the
online measurements. Instead, much of the uncertainty prediction is baked into the
kernel parameters, ^(;, f), and matrix Ω. Thus, to obtain accurate estimates of
3, the MVG model parameters must be learned offline from data. In other words,
some agents might behave predictably and others might behave more erratically,
and hyperparameter optimization is necessary to capture these uncertainty profiles
in the Bayesian inference process.

Based on the probability density function (2.16), the negative log-likelihood of a
given set of training data - is

! (X, Y; ,Ω) = − ln ?(X, Y; ,Ω) =
#=

2
ln(2c) + =

2
ln | | + #

2
ln |Ω| + 1

2
tr[()−1.Ω−1.)],

(4.45)

which is optimized (over Σ,Ω) using Stochastic Gradient Descent [40] (see hyper-
parameter optimization in Figure 4.6). Recall that # denotes the number of training
samples in the batch, and = denotes the dimension of the output 3. The optimization
is initialized at different states to decrease the chance of getting stuck in poor local
optima. The gradient expressions are shown in Equation (4.46) below. Projected
gradient updates are used to find Ω, in order to enforce the condition that Ωmust be
positive definite.

73

3!

3;
=
=

2
tr

(
 −1 3

3;

)
+ 1

2
tr

(
− −1 3

3;
 −1.Ω−1.)

)
3!

3f
=
=

2
tr

(
 −1 3

3f

)
+ 1

2
tr

(
− −1 3

3;
 −1.Ω−1.)

)
3!

3Ω
=
#

2
Ω−1 − 1

2
Ω−1.) −1.Ω−1.

(4.46)

Converting GP Uncertainty to a Polytopic Bound: After learning the kernel
parameters, one can compute the mean, `3 = "̂ , and variance, Σ3 = Σ̂ ⊗ Ω̂, from
data observed online based on the multivariate Gaussian Process (2.19). Then, the
uncertainties should follow the distribution,

(3 − `3))Σ−1
3 (3 − `3) ∼ j

2
= , (4.47)

where j2
= represents the chi-squared distribution with n degrees of freedom (equal

to dimension of 3). This expression allows us to obtain the confidence support,

(3 − `3))Σ−1
3 (3 − `3) ≤ :X with probability 1 − X. (4.48)

However, this set defines an ellipsoid over 3 rather than a polytope, which is required
for the robust optimization. While the ellipsoidal constraint could be used directly,
this approach would not lead to an efficiently solvable QP. A polytope is found by
computing the minimum bounding box surrounding the uncertainty ellipsoid.

Lemma 6. Suppose the robot/environment uncertainty can be described by anMVG
model (described by the distribution (4.47)). With probability 1 − X, the following
polytopic bound on the uncertainty 3 holds:

−
√
:X_8 + h)8 `3 ≤ h)8 3 ≤

√
:X_8 + h)8 `3 , (4.49)

where h8 and _8 represent the eigenvectors and eigenvalues of Σ3 , respectively.

Proof. Since Σ3 is a positive symmetric covariance matrix, the eigendecomposition
of Σ3 exists: Σ3 = Ψ)ΛΨ, where Λ is a diagonal matrix containing positive

74

eigenvalues of Σ3 and Ψ is the orthogonal eigenvector matrix. Thus, (4.48) can be
rewritten as follows:[

Ψ) (3 − `3)
])
Λ−1

[
Ψ) (3 − `3)

]
≤ :X w.p. 1 − X. (4.50)

The left-hand side can be bounded as:[
Ψ) (3 − `3)

])
Λ−1

[
Ψ) (3 − `3)

]
=

∑
8

[
h)8 (3 − `3)

])
_−1
8

[
h)8 (3 − `3)

]
≥

[
h)8 (3 − `3)

])
_−1
8

[
h)8 (3 − `3)

]
∀ 8 = 1, ..., #,

(4.51)

where h8 represent the eigenvectors of Σ3 contained inΨ, and _8 are the eigenvalues
of Σ3 contained in Λ. Therefore, with probability at least 1 − X, the following
relations hold, resulting in the polytopic bound,[

h)8 (3 − `3)
])
_−1
8

[
h)8 (3 − `3)

]
≤ :X ∀ 8 = 1, ..., #

−
√
:X_8 + h)8 `3 ≤ h)8 3 ≤

√
:X_8 + h)8 `3 for 8 = 1, ..., #.

(4.52)

�

High-Confidence Safety Guarantee: Combining the uncertainty bound on 3 with
the previous result encapsulated in Lemma 5 leads to the main result, summarized
in the following Theorem.

Theorem 4. Using the polytopic bounds (4.49), the control action obtained from the
quadratic program (4.42) guarantees robust safety (i.e. collision avoidance between
agents) with probability at least 1 − X.

Proof. Equation (4.49) can be represented in the form {�3 ≤ 6}; therefore, with
probability 1 − X, the uncertainty 3 is contained in the set {3 ∈ R= |�3 ≤ 6} (by
Lemma 6). From Lemma 5 and Equation (4.40), if one solves the quadratic program
(4.42), it is guaranteed that ��� (G, D, 3) ≥ :2 − �13 − D)�23 − �3D ≥ 0 for all
3 ∈ {3 ∈ R= |�3 ≤ 6}. Therefore, the CBF condition is satisifed with probability
1− X, so safety is guaranteed with probability at least 1− X (by Definition 1 and the
forward invariance property of CBFs [11]). �

75

4.5 Simulation Results: Multi-agent CBF
The algorithm is tested in a simulated multi-agent environment in which the robot,
with nonlinear dynamics satisfying Assumption 2, navigates from a start to a goal
position while avoiding collisions, in the presence of a random number of other
agents (3-12 agents). Each of the other agents has a randomized (unknown) goal.
Approximately half of these agents blindly travel from their start to the goal posi-
tion without accounting for the movements of others, while the other half exhibit
some collision avoidance behavior through their own control barrier functions (with
random CBF parameters). An example simulation instance is shown in Figure 4.7.
See the code (referenced below) for further simulation details/parameters and agent
dynamics.

I simulate several instances of the other agents moving and interacting, and use this
data for hyperparameter optimization of an MVG model as described in Section
4.4.3. The robot is then equipped with the robust CBF described in Section 4.4.2,
using the optimized MVG for uncertainty prediction.

Figure 4.7: Sample path of a multi-agent system based on the nominal CBF (cf. [27]) and
the proposed Robust CBF. The robot (blue) tries to navigate from a start position to random
goal position while avoiding collisions with other agents (red). Approximately half of the
other agents blindly travel towards their own randomly chosen goal, while the rest exhibit
varying degrees of collision-avoidance behavior (the robot does not know their behavior
a priori). (a) Initial robot/environment configuration, (b) Intermediate configuration, (c)
Intermediate configuration showing that the nominal CBF controller experiences collision
(top), while the robust CBF avoids collision (bottom). (d) Final configuration before robot
reaches its goal position (star). See https://youtu.be/hXg5kZO86Lw for the simulation
videos.

By running 1000 simulated tests in randomized environments, it is found that
the robust CBF avoids collision in 98.5% of cases (when X = 0.05 [cf. (4.48)]),

76

performing much better than the nominal multi-agent CBF (cf. [27]), which avoids
collisions in 85.0% of cases. The simulation results are summarized in Table 4.1.

Robust Multi-
Agent CBF

Nominal Multi-
Agent CBF

Collision
Rate 1.5 % 15.0%

Distance to
Collision 7.4 ± 2.3 7.3 ± 2.1

Table 4.1: Performance statistics for the robust vs. nominal multi-agent CBF across 1000
randomized trials. For fair comparison, the robust and nominal CBFs were tested in the
same randomized 1000 trials. Collision Rate: Percentage of trials that ended in collision.
Distance to Collision: For trials without collision, the robot’s margin from collision. The
closer the robust CBF is to the nominal CBF, the less conservativeness is introduced by the
uncertainty prediction.

Robustness must always come at the cost of performance (e.g. the robot can reach
the goal faster if it does not care about collisions). However, the results in Table
4.1 show that the robust CBF only introduces slight conservativeness, as the margin
from collision (in instances where the CBF was active) was very similar when
utilizing the robust CBF vs. the nominal CBF.

The code for implementing the robust multi-agent CBF in the simulated envi-
ronment can be found online [3]. A video of the simulations can be found at
https://youtu.be/hXg5kZO86Lw.

4.6 Conclusion
This chapter examined how discrete-time CBFs could be effectively integrated with
reinforcement learning to guarantee safety, while avoiding distortion of the policy
gradient (thereby improving exploration efficiency). This chapter also showed
how uncertainty in system/environment dynamics could be captured using GPs,
and efficiently incorporated into a safe learning framework. Sections 4.1 and 4.2
looked specifically at polytopic CBFs with uncertainty modeled by multivariate GPs
(dynamic uncertainty for each dimension is independent). Section 4.4 expanded this
approach to the multiagent scenario with uncertainty modeled by MVGs.

The results in this chapter illustrate that CBFs are a promising tool for leveraging
limited model information to guarantee safety under uncertainty in learning-based
systems and guide RL exploration. Furthermore, their independence of the reward

77

function ensures safe operation regardless of any misspecification of the reward,
which is known to be a significant issue in RL.

However, there is still much work to be done in expanding this methodology to
more complex CBFs. This is not a huge issue when utilizing continuous-time
CBFs, but discrete-time CBFs do not lend themselves as easily to QP formulations
(which becomes an issue since almost all RL problems are defined with respect to
discrete dynamics). Furthermore, while the proposed framework is not limited to
considering uncertainty modeled by a GP – it can use any model approximation
method that provides quantifiable uncertainty bounds (e.g. neural networks with
dropout) – finding the right uncertainty model is an extremely challenging task.
In particular, the assumption underlying GP models, discussed in Remark 3, is
an extremely strong one. Therefore, providing more reliable safety guarantees for
uncertain systems may necessitate moving away from GPs and discovering higher-
fidelity uncertainty models, which will be discussed extensively in the next chapter.

78

Appendix C: Derivation of CBC lower bound (4.40)
Begin by expanding out the full CBC condition in (4.38), using the assumption of a
relative degree 2 system. This leads to the following expression:

��� (G, D, 3) =
(5? (G) − 5 ℎ? (G))) (5E (G) − 5 ℎE (G))
‖ 5? (G) + 3? (G) − 5 ℎ? (G) − 3ℎ? (G)‖

+ (W − 1)Δ?
)ΔE

‖Δ?‖

√
0<0G (‖ 5? (G) + 3? (G) − 5 ℎ? (G) − 3ℎ? (G)‖ − �B) + (W − 1)

√
0<0G (‖Δ?‖ − �B) +

[(5? (G) − 5 ℎ? (G)))6E (G)
‖ 5? (G) + 3? (G) − 5 ℎ? (G) − 3ℎ? (G)‖

,
5E (G) − 5 ℎE (G)

‖ 5? (G) + 3? (G) − 5 ℎ? (G) − 3ℎ? (G)‖
,

5? (G) − 5 ℎ? (G)
‖ 5? (G) + 3? (G) − 5 ℎ? (G) − 3ℎ? (G)‖

, −
5E (G) − 5 ℎE (G)

‖ 5? (G) + 3? (G) − 5 ℎ? (G) − 3ℎ? (G)‖
,

−
5? (G) − 5 ℎ? (G)

‖ 5? (G) + 3? (G) − 5 ℎ? (G) − 3ℎ? (G)‖

]
×

[
D' , 3? , 3E , 3

ℎ
? , 3

ℎ
E

])
+

D)'

[6E (G)
‖ 5? (G) + 3? (G) − 5 ℎ? (G) − 3ℎ? (G)‖

, 0 ,

−6E (G)
‖ 5? (G) + 3? (G) − 5 ℎ? (G) − 3ℎ? (G)‖

, 0
]
×

[
3? , 3E , 3

ℎ
? , 3

ℎ
E

])
+

[
0 ,

1
‖ 5? (G) + 3? (G) − 5 ℎ? (G) − 3ℎ? (G)‖

,
−1

‖ 5? (G) + 3? (G) − 5 ℎ? (G) − 3ℎ? (G)‖
,

1
‖ 5? (G) + 3? (G) − 5 ℎ? (G) − 3ℎ? (G)‖

,
−1

‖ 5? (G) + 3? (G) − 5 ℎ? (G) − 3ℎ? (G)‖

]
×

[
D)'D' , 3

)
?3E , 3

)
?3

ℎ
E , 3

ℎ
E 3

ℎ
? , 3

)
E 3

ℎ
?

])
.

(4.53)

By bounding the positional uncertainty terms ‖3? (G)‖ ≤ Z? (G) and ‖3ℎ? (G)‖ ≤

79

Z ℎ? (G), a lower bound on ��� (G, D, 3) is obtained:

��� (G, D, 3) ≥ min
((5? (G) − 5 ℎ? (G))) (5E (G) − 5 ℎE (G))
‖ 5? (G) − 5 ℎ? (G)‖ ±

(
Z? (G) + Z ℎ? (G)

))+
√
0<0G (‖ 5? (G) − 5 ℎ? (G)‖ − Z? (G) − Z ℎ? (G) − �B) + (W − 1)

√
0<0G (‖Δ?‖ − �B) +

(W − 1)Δ?
)ΔE

‖Δ?‖ +
[(5? (G) − 5 ℎ? (G)))6E (G)
‖ 5? (G) − 5 ℎ? (G)‖ + Z? (G) + Z ℎ? (G)

,

5E (G) − 5 ℎE (G)
‖ 5? (G) − 5 ℎ? (G)‖ − Z? (G) − Z ℎ? (G)

,
5? (G) − 5 ℎ? (G)

‖ 5? (G) − 5 ℎ? (G)‖ − Z? (G) − Z ℎ? (G)
,

−
5E (G) − 5 ℎE (G)

‖ 5? (G) − 5 ℎ? (G)‖ − Z? (G) − Z ℎ? (G)
, −

5? (G) − 5 ℎ? (G)
‖ 5? (G) − 5 ℎ? (G)‖ − Z? (G) − Z ℎ? (G)

]
∗

[
D' , 3? , 3E , 3

ℎ
? , 3

ℎ
E

])
+ D)'

[6E (G)
‖ 5? (G) − 5 ℎ? (G)‖ − Z? (G) − Z ℎ? (G)

, 0 ,

−6E (G)
‖ 5? (G) − 5 ℎ? (G)‖ − Z? (G) − Z ℎ? (G)

, 0
]
×

[
3? , 3E , 3

ℎ
? , 3

ℎ
E

])
−

Z? (G)ZE (G)
‖ 5? (G) − 5 ℎ? (G)‖ − Z? (G) − Z ℎ? (G)

−
Z? (G)Z ℎE (G)

‖ 5? (G) − 5 ℎ? (G)‖ − Z? (G) − Z ℎ? (G)
−

Z ℎE (G)Z ℎ? (G)
‖ 5? (G) − 5 ℎ? (G)‖ − Z? (G) − Z ℎ? (G)

−
ZE (G)Z ℎ? (G)

‖ 5? (G) − 5 ℎ? (G)‖ − Z? (G) − Z ℎ? (G)
.

(4.54)

Grouping terms, this can be rewritten as follows with the parameters defined in
(4.41):

��� (G, D, 3) ≥ :2 (G) − �1(G)d − u)�2(G)d − �3(G)u. (4.55)

80

C h a p t e r 5

SAFETY GUARANTEES UNDER LEARNED MODELS OF
HUMAN BEHAVIOR

Chapter 4 addressed specifically the question of how to integrate a safety filter
(CBF) into the reinforcement learning framework in order to guarantee safety under
uncertainty, without distorting the learning process. Using learned uncertainty
models, it is possible to provide probabilistic safety guarantees at some desired
probability level, 1 − X. However, it is crucial to note that all guarantees of safety
rely on accurate models of the uncertainty. Indeed, all current research that utilizes
machine learning to guarantee safety relies on the paradigm of

1. learning/modeling the uncertainty in the system/environment, and

2. designing a controller/planner that is robustly safe with respect to that uncer-
tainty.

This chapter discusses the limitations of this paradigm and probabilistic uncertainty
modeling in many safety-critical applications (Section 5.1), and then proposes an
alternative approach to considering human uncertainty and ensuring safety when
interacting with human agents (Section 5.2).

Before proceeding, let us consider what requirements might be necessary for safety-
critical applications involving human interaction. In particular, if we want to obtain
probabilistic safety guarantees for the system, what safety threshold X would be
acceptable?

Suppose a robot/car is guaranteed safe with probability X across every 2B planning
horizon. Given a safety threshold X ≈ 0.001, one could expect a safety violation
every hour; with a safety threshold X ≈ 10−6, one could expect a safety violation
every 3 weeks. For reference, based on NHTSA data [127], human drivers would

have an effective safety threshold of X ≤ 10−8 under this analysis.

While the choice of the safety threshold value, X, is highly application-specific and
subjective, based on the simple calculations above, it can readily be argued that

81

safety-critical robotic applications should strive for extremely low safety thresholds,
on the order X ≤ 10−8 [149]. However, looking at the safety thresholds considered
in the literature, as seen in Table 5.1, one finds that across different methods and
different models of uncertainty, X is almost always chosen such that X ≥ 0.001.
For many applications, this tolerance is wholly inadequate (e.g. would you ride
in any autonomous vehicle that was guaranteed to have at most one collision per
hour?). As discussed in the following section, the restriction to large X arises due to
fundamental limitations in data-driven modeling of uncertainty.

Uncertainty Model Class Example Works Min. Safety
Threshold

Gaussian Process [15, 37, 66, 86] X ≥ 0.001
Dynamics w/ Gaussian
Noise [68, 140, 181] X ≥ 0.001

Bayesian NN [58, 93, 117] X ≥ 0.05
Noisy Rational Model [69] X ≥ 0.01
Hidden Markov Model /
Markov Chain [111, 139] X ≥ 0.01

Quantile Regression [57] X ≥ 0.05
Scenario Optimization [32, 36, 144] X ≥ 0.01
Generative Models (e.g.
GANs) [81, 138, 143] N/A

Table 5.1: Different model classes for capturing human trajectory uncertainty, used in
previous safe planning algorithms in order to guarantee safety with probability 1 − X. The
right column shows the lowest safety threshold, X, found used in the literature (in simulation
or hardware experiments) for each model class. There is no entry for generative models, as
these models have not yet been utilized to provide explicit safety guarantees during planning,
though there is surely a trend in this direction.

5.1 Accuracy of Learned Models of Human Uncertainty
This section shows that the prevalent model classes of uncertainty (see Table 5.1) fail
to accurately capture human behavior at safety-critical probability levels (which this
work defines as X ≤ 10−8). These failures are revealed by testing prevalent modeling
assumptions on real-world driving data from the highD driving dataset [100], which
captures trajectory data from human-driven vehicles on German highways.

From the highD dataset, all trajectories of length 10 seconds are extracted, g[0,10] ,
along with their corresponding environmental context, Eg (i.e. position/velocity of
surrounding cars). The trajectories are then split into a training set, (g(CA08=)[0,10] , E

(CA08=)
g) ∈

DCA08=, and test set, (g(C4BC)[0:10] , E
(C4BC)
g) ∈ DC4BC . For every test trajectory, (g(C4BC)[0:10] , E

(C4BC)
g) ∈

82

Figure 5.1: (Left) In this example, the red car must take into account the blue car’s
trajectory – and its uncertainty – in its plan to progress safely through the intersection. The
dashed yellow curves denote the boundary of a tube that defines the X confidence bound
over trajectories. The white circle depicts a distribution over trajectories. The blue lines
are example trajectories. (Right) Simplified illustration of different stages of the control
pipeline. While every stage (prediction, planning, tracking) is crucial to guaranteeing safety,
this paper focuses exclusively on the yellow box, prediction.

DC4BC , all trajectories in the training set in equivalent scenarios are collected,

M(g(C4BC)[0:10] , E
(C4BC)
g) =

{
g[0:10]

��� (g[0:10] , Eg) ∈ DCA08= ,

‖g[0:2] − g(C4BC)[0:2] ‖∞ < n , ‖Eg − E
(C4BC)
g ‖∞ < nE

}
.

(5.1)

Equivalent scenarios are defined as the set of trajectories with similar environ-
mental context that are n-close (n = 2ft) over their first 2 seconds. Therefore,
M(g(C4BC) , E (C4BC)g) denotes the set of scenarios (within the training set, DCA08=) that
are equivalent to (g(C4BC) , E (C4BC)g). The choice of a past observation horizon of 2B
follows [46], but the observed trends did not change considerably when using 1B or
3B for the past observation horizon.

For every test trajectory, (g(C4BC) , E (C4BC)g) ∈ DC4BC , optimal parameters for an uncer-
taintymodel (e.g. Gaussian) are fit to the equivalent training scenarios,M(g(C4BC) , E (C4BC)g),
and observe where the test trajectory falls with respect to the computed distribution
or bounds. By iterating through all trajectories in DC4BC , it is possible to compute
statistics analyzing how well the test trajectories fit to models predicted from the
training trajectories.

Intuition in equations: To clarify this method and make clear the assumptions, let
us now outline this approach in terms of different distribution errors. Let us define
an agent’s state G = (g[0:2] , Eg), and its action, 0, as its future trajectory 0 = g[2:10] .

83

Given that the future trajectory is drawn from someuncertain distribution, 0 ∼ A(G),
the goal is to learn a model �̂ (G) that accurately approximates this distribution over
trajectories, A(G), minimizing the following error,

!>DC = E
[
<

(
A(G)‖�̂ (G)

)]
, (5.2)

where < defines some metric over probability distributions (e.g. total variation
distance). The model �̂ is trained on data from the training set DCA08=. Since it
is not possible to access to the true distribution, the expectation in (5.2) can be
approximated using the test set, DC4BC , yielding the error functions,

!D=B44= =
1

#D=B44=

∑
G∈�C4BC

[
<

(
Â(G)‖�̂ (G)

)]
,

!B44= =
1

#B44=

∑
G∈�C4BC∩DCA08=

[
<

(
Â(G)‖�̂ (G)

)]
,

(5.3)

where Â(G) represents the approximation ofA(G) based onDC4BC , and#D=B44=, #B44=
are normalizing factors denoting the number of trajectories being considered.
!D=B44= can be interpreted as the test error, capturing how well the model �̂ captures
the action distribution Â from states it did not train on. On the other hand, !B44=

captures how well �̂ captures the action distribution, �̂, from states it has trained
on. In general, the relationship between these errors follows,

!>DC ≥︸︷︷︸
distribution gap

!D=B44= ≥︸︷︷︸
generalization gap

!B44=. (5.4)

The analysis in this chapter focuses on !B44=. As this error ignores any generalization
or distribution gap, it benchmarks the best potential performance of each model
class. The distribution gap quantifies how the change from the true trajectory
distribution to the test distributionDC4BC affects model accuracy. The generalization
gap quantifies how out-of-distribution test examples affect the model accuracy.

Accounting for replanning: Most motion planning algorithms re-plan their trajec-
tory at some fixed frequency (e.g. 1Hz). To account for this, prediction error (e.g.
violation of the X−uncertainty bound) is examined only within a short re-planning
horizon. I.e. the prediction must only be accurate within this replanning horizon.
The horizon is set to 2 sec.

Incorporating conservative assumptions: To further highlight the fundamental
limitations of learning uncertainty models of human behavior, since many predic-
tion algorithms leverage goal inference, let us assume that an oracle provides the

84

target lane of every trajectory. Note that the aim is to illustrate limitations of learned
probabilistic models, even under ideal conditions. Therefore, these strong assump-
tions (though unrealistic) help us reason about the best-case scenario for each model
class, providing an upper-bound on performance.

Summarizing, this analysis of model uncertainty considers that: (a) there is no
distribution gap, (b) there is no generalization gap, and (c) the target lane of every
trajectory is given.

If the models perform poorly under these extremely generous assump-
tions, reasonable performance in realistic settings cannot be expected.

Remark 9. The results in this section focus on in-distribution error (i.e. aleatoric
uncertainty), rather than out-of-distribution error. In other words, this analysis
highlights the fundamental inability of uncertainty models to accurately capture
distributions at very low X, regardless of generalization to unseen scenarios.

Remark 10. It is important to distinguish motion predictors from uncertainty mod-
els. While recent performance of motion predictors has drastically improved [81],
they all leverage an underlying uncertainty model (see Table 1) to capture the prob-
ability of uncommon events. E.g. most neural network motion predictors output
a Gaussian uncertain prediction. This section examines errors associated with
uncertainty models, which propagate to the motion predictors.

5.1.1 Gaussian Uncertainty Models
Let us first analyze the popular Gaussian uncertainty model, used in most UQ neural
networks [117], Gaussian process models [15], and robust regression [110, 126].
These approaches model the data and its uncertainty with a Gaussian distribution
(see top 3 rows in Table 1).

Using the procedure outlined at the beginning of this section, I compute the best-fit
Gaussian distribution, �̂, over the training trajectoriesDCA08=, and observe how well
it captures the in-distribution test trajectories inDC4BC (i.e. minimizes !B44=). Figure
5.2 (= 1) shows the ratio of observed to expected violations in the test set at each
safety threshold, X. A violation is defined when the test trajectory lies outside the
X-uncertainty bound (within a 2s re-planning horizon) for a specified X. If the data
followed a perfect Gaussian distribution, each curve in Figure 5.2 would track the
dotted black line (i.e. keep a ratio near 1). However, the results show that while

85

the Gaussian model might be valid for X ≥ 0.01, it is highly inaccurate outside this
range, posing a problem for safety-critical applications.

Figure 5.2: Prediction error vs. safety threshold, X, using Gaussian mixture models on the
highD dataset, considering a 2B re-planning horizon. denotes the number of mixtures
used, with = 1 denoting a standardGaussian distribution. The dashed black line represents
a perfect prediction model.

Gaussian mixture models (GMM): One might point out that problems with the
Gaussian model could be alleviated using GMMs over a discrete set of goals (e.g.
left versus right turn). For example, interacting Gaussian processes (IGP) leverage
this tool to alleviate the freezing robot problem [165]. However, when GMMs were
trained on the same data with different numbers ofmixtures (= 2, ..., 4), prediction
performance on test data did not improve for low X (see Figure 5.2). These results
illustrate limitations of any Gaussian-based uncertainty model (IGP, GMM, etc.),
by highlighting that human behavioral variation is inherently non-Gaussian.

In addition to the issue of inaccurate distributional assumptions, the confidence
bounds at level X ≈ 10−8 become very large, making planning around these bounds
difficult or potentially infeasible. Figure 5.3 shows the 5f confidence tube projecting
the position of a car forward in time, based on the training data. Note that the 5f
ellipsoid (corresponding to X < 10−6) encroaches on each lane, making it difficult
for other cars to drive alongside it. This is because, although the car will typically
stay in its lane, in rare instances (as shown in Figure 5.3) it will unexpectedly swerve
into the other lane. This illustrates the difficulty of balancing the safety-efficiency
tradeoff, as accounting for very rare events may be necessary for safety-critical
applications, but this also introduces extreme conservatism.

86

Figure 5.3: Example of a car’s trajectory, along with the approximate 5f confidence bound
computed from the training trajectories, given the car’s target lane 8 seconds in the future.

To further emphasize fragility of the Gaussian model at low X, I generated synthetic
2D data from different, known distributions, and examined how well the best fit
Gaussian predicted violations at a given X. Even with perfectly i.i.d. training/test
data, the error at low X was significant. Details and results can be found in Appendix
D at the end of this chapter.

5.1.2 Noisy Rational Model
The noisy rational model considers that humans behave approximately optimally
with respect to some reward function. It has enabled significant progress in inverse
reinforcement learning (IRL) by allowing researchers to learn reward functions from
human data [141], and compute explicit uncertainty intervals over human agents’
actions [69]. However, the noisy rational model adopts an underlying model of
uncertainty in the exponential family, which places a strong assumption on the
shape of the uncertainty distribution and assumes that there is a single “optimal”
trajectory:

P(GC+1 | V) =
4V&� (GC+1)∑
G̃C+1 4

V&� (G̃C+1)
. (5.5)

In the driving scenario, the optimal model simplifies to the Gaussian distribution,
since &� = ‖GC+1 − ĜC+1‖Σ for some Σ (i.e. the best fit to the data is sought). As
a result, the issues illustrated in Figures 5.2 and 5.3 are exactly faced by the noisy
rational model (i.e. the shape of the underlying distribution does not match the
assumed distribution). Thus, even in the best case – known target lane, optimal
data fit, no generalization gap – these models are ill-equipped to provide safety
guarantees for safety-critical systems (e.g. X < 10−8).

5.1.3 Quantile Regression
Quantile regression is an appealing alternative as it does not require strong assump-
tions on the underlying uncertainty distribution [57]. It is only concerned with

87

computing tubes such that 1− X proportion of trajectories are within that tube and X
are outside. To demonstrate its performance, quantile bounds are computed for each
trajectory in the test set of the HighD dataset, using the equivalent scenarios from
the training set. These quantile bounds are approximated as the smallest convex tube
containing 1 − X proportion of trajectories, which optimizes the expected mutual
information between the state, G, and action, 0 [132].

Figure 5.4: Prediction error vs. safety threshold, X using computed quantile bounds or
Gaussian uncertainty model on the highD dataset (assuming 2B re-planning horizon). The
dashed black line represents a perfect prediction model.

Figure 5.4 shows the ratio of the observed to expected number of test trajectories out-
side each quantile at safety threshold X. As seen in the plot, the quantile regression
model performs much better than the Gaussian model for X > 0.1. However, per-
formance rapidly deteriorates as X decreases, making estimated confidence bounds
meaningless, since they fail to predict violation probabilities.

This result makes sense, as obtaining accurate quantile bounds at the X-confidence
level relies on splitting the data: X percent of points should be outside the quantile
bound with the rest inside those bounds. However, little (if any) data is available
outside the quantile bound for very low X. Put differently, to observe a one-in-a-
million event, at least a million trajectories must be observed. To reliably predict
those events, many more trajectories are needed.

Improving Accuracy with Increasing Data: Given the availability of increasingly
large robotics datasets, one should ask if it is possible to reach good accuracy at

88

desired safety thresholds, X, by using more data. To answer this, define the smallest
accurate safety threshold, X<8=, as follows,

X<8= = min X such that

�����log

(
expected(X)
observed(X)

)����� ≤ Y . (5.6)

Here, Y = 0.5, where Y represents the vertical distance between each curve in Figure
5.4 and the dotted black line. Thus, X<8= represents the smallest X such that the
computed quantile bounds are Y-accurate. Note that X<8= is computed with respect
to a given set of data. Therefore, by varying the size of the training set, one can
capture how X<8= varies with the amount of training data, shown in Figure 5.5a. The
trend shown in Figure 5.5a is surprisingly linear (A2 = 0.995), which held across
different sections of the dataset (i.e. different highways). This scaling is consistent
with the lower bound on sample complexity derived in [52], shown in Equation (5.7)
and discussed further below.

Figure 5.5: (a) Smallest accurate X versus amount of data collected. The trend is highly
linear (A2 ≈ 0.995), and holds across different sections of the dataset. (b) Projection showing
the expected amount of data required to obtain an accurate safety threshold X<8=. The dashed
lines show the number of kilometers driven in California in 2019 by Waymo, Cruise, and
Nuro.

While initially promising, if this linear trend is extended down to X<8= ≈ 10−8, it can
be seen that the amount of data required to reach safety-critical thresholds is far from
feasible. Figure 5.5b shows that trillions of kilometers of driving data are needed to
achieve accurate quantile bounds, even under extremely generous assumptions (e.g.
perfect generalization). For reference, in 2018, approximately 5 trillion kilometers
were driven in total across all cars/trucks in the U.S. [127].

The same analysis was conducted on synthetic 2D data, and found the same trends
seen in Figures 5.4 and 5.5. Details and results can be found in Appendix E at the
end of this chapter.

89

Quantile Regression as a Fundamental Limitation: One might be tempted to
conclude from Figure 5.5b that we should look for alternative methods (to quantile
regression) that have better data efficiency / sample complexity. Note that all
methods providing confidence bounds over trajectories at a specified safety threshold
X can be fundamentally viewed as classification problems; one must classify 1 − X
trajectories within some learned bounds, with the rest outside those bounds. By
viewing this as a classification problem, it is possible to leverage results from VC-
analysis that lower bound the data required, # , to reach a given prediction confidence
[52]: to guarantee Pr(error) ≤ X, it is necessary that 1

(X, ") = Ω
(1
X

ln
(1
X

)
+ VCdim(")

X

)
, (5.7)

where VCdim(M) is the VC dimension of the utilized model " (see [52] for proof).
The linear trend in Figure 5.5 (showing # (X) ∝ 1

X<8=
) fits very nicely with the lower

bound (5.7), given that the second term dominates the first (i.e. the VC dimension
is large). Note that if the first term dominated the second term, worse data scaling
would be expected.

This analysis suggests that alternative methods cannot provide con-
fidence bounds with better data scaling than shown in Figure 5.5.

5.1.4 Scenario Optimization Model
Scenario Optimization is an appealing approach because (like quantile regression)
it does not assume an underlying distribution over the data [144]. It relies only on
the assumption that the data is drawn i.i.d. from some fixed (unknown) distribution.
Therefore, one can obtain a high-confidence bound on the probability that a new
trajectory is inside or outside a computed tube, without strong assumptions on the
underlying distribution.

With this approach, the safety threshold, X, is a direct function of the amount of
observed data [30]; in other words X = X(#), where # is the number of training
trajectories or “samples.” Therefore, arbitrarily small confidence levels (e.g. X =
10−8) cannot be chosen. While this prevents users from applying the approach
inappropriately, it requires very large amounts of data to yield low enough confidence
levels for safety-critical applications. For example, with 40,000 trajectories, it is

1The argument of Big-Omega Ω here represents a lower bound on the asymptotic sample
complexity.

90

possible to approach X ≈ 10−4 (after this point, computational feasibility became
an issue). This suggests it is not feasible to reach desired X levels given realistic
datasets.

Using the highD dataset and treating the trajectories in the training set as observed
samples, high-confidence bounds were obtained (computed as the convex hull of the
training trajectories) such that new trajectories should lie within those bounds with
probability at least 1 − X. For example, Figure 5.6 shows the predicted confidence
bounds for an example driving instance; the scenario optimization approach predicts
that the future trajectory of each car should fall within the blue confidence bounds
at 2, 4, 6 seconds in the future with 97.1% probability.

Figure 5.6: Plot of confidence bounds over the car’s future trajectory, where the car’s target
lane is known. The car’s positional history is shown by the red circles, and training data
is taken from equivalent scenarios in the highD dataset. Calculations show that there is a
97.1% probability that a new trajectory falls within the blue confidence bounds at 2, 4, and
6 seconds in the future.

To test the accuracy of the computed confidence bounds, I examined how often
trajectories in the test set actually remained within those bounds in the highD dataset
(over a 2 second horizon). The ratio of observed violations to expected violations
was smaller than expected (i.e. the method was conservative), which is reassuring
for safety. Specifically, the observed vs. expected percentage of violations was
approximately 4% vs. 15%.

However, the safety threshold X(#) was always large (X ∈ [0.02, 0.44]) and unable

91

to be arbitrarily defined, which makes the scenario optimization approach currently
inapplicable to many safety-critical applications. This is consistent with the conclu-
sion in the quantile regression section that much more data is necessary to obtain
reliable, probabilistic bounds.

5.1.5 Hidden Markov Models
Rather than reasoning about uncertainty only over trajectories, many methods in the
POMDP literature reason about uncertainty over discrete intentions. Most often,
these discrete intentions denote different goal positions for the agent, but they could
also denote different operational modes (e.g. yield vs. no yield). Hidden Markov
models enable an agent’s most likely intention to be computed, which proves useful
in solving many challenging problems. However, when guaranteeing safety with
safety threshold X, intention must be correctly inferred with probability 1−X. Issues
arise when the intention must be inferred with very high confidence X ≤ 10−8.

Figure 5.7: Synthetic data is generated from two different modes: (mode 1 – blue, mode
2 – red). The confidence intervals below denote where a point would have to lie in order
to classify it, with confidence X = 10−8, as coming from either mode 1 or mode 2. For
example, if a new point falls in the interval covered by the blue bar, it can be classified as
coming from mode 1 with confidence X ≤ 10−8. If it falls anywhere in the gray interval, its
mode cannot be deduced (assuming a uniform prior).

This brief analysis is illustrated with a 1D toy problem using synthetic data. I
generated 1000 i.i.d. data points from two distinct distributions (mode 1 and mode
2), and computed the best fit Gaussian for each of these distributions. Note that the
results did not change when increasing the amount of data. I then computed the
intervals in which a new point would have to lie in order for us to classify it in either
mode 1 or mode 2 with 1 − X confidence. This was done by applying Bayes rule,

92

assuming a uniform prior over the modes,

P(mode | G) = P(G | mode) P(mode)
P(G) . (5.8)

Figure 5.7 shows these intervals when the points were generated from either a
Gaussian distribution or a uniform distribution. The interval covered by the gray
line denotes the interval in which one can not classify (with X confidence) a point’s
mode. Note that the gray line extends across a significant portion of the data
range, but is reasonable when the underlying distribution of points in each mode
is perfectly Gaussian. However, when the generated data is uniformly random, the
uncertainty interval stretches across the entire range of data. This suggests that
inferring intention or hidden “modes” under uncertainty will often be infeasible
when considering very low safety thresholds, X, especially since it was shown above
that human behavioral variation is non-Gaussian. Furthermore, it is not possible
to compensate for this non-Gaussian variation as accurate knowledge of the true
underlying distribution is not available.

5.1.6 Generative Models
Generative models have garnered significant interest in trajectory prediction because
of their ability to implicitly learn the distribution A(G) = ?(0 |G). However, there
are two significant issues with these approaches, the first of which is the time
required to utilize these models in safety-critical situations. For example at best, a
single prediction takes ≈ 0.05B with Social-GAN [81], or ≈ 0.001B with Trajectron
[143]. In order to guarantee safety with probability X = 0.01, it would be necessary
to generate 100 trajectories taking > 0.1B. To guarantee safety with probability
X = 10−8, 108 trajectories must be generated, taking > 100, 000B (> 1 day), which is
not suitable for real-time operation. While computational cost will surely decrease
over time, it is unclear whether this modeling approach will be feasible in the near
future.

However, more importantly, there are no guarantees that the uncertainty distribution
implicitly captured by generative models provides any reasonable approximation
to the true uncertainty distribution. It has been shown – both empirically and
theoretically – that GANs can fail to learn the true distribution (suffering frommode
collapse), even when their training objective nears optimality [16]. Furthermore,
the theoretical data efficiency bound described by Equation (5.7) suggests that
the implicit distribution learned by such models will be inaccurate (at the safety
thresholds being considered) without currently infeasible amounts of data.

93

Note on Uncertainty Qualification (UQ) Neural Networks: UQ neural networks
have not been discussed because neural networks do not compose a distinct class
of uncertainty models. Instead, they only provide a functional representation of the
uncertainty in a given class (e.g. UQ neural networks typically output a Gaussian
distribution [56]). The results provided above highlight best-case performance
bounds for each class of model uncertainties, given optimal fit to the data. Thus,
using neural networks to parameterize the model uncertainty will only yield worse
performance.

5.1.7 Section Summary
Themainmessage of this section is that even under extremely generous assumptions,
current models of human uncertainty are unable to extend safety guarantees to the
confidence levels, e.g. X < 10−8, that are needed for widespread adoption of
safety-critical autonomy in human environments.

Learned uncertainty distributions become highly inaccurate at low X, undermining
any claimed guarantees of safety.

There is a fundamental limitation tomodeling human uncertainty purely as a random
process. Data-driven methods (i.e. machine learning) are designed to capture
prominent patterns in data and predict likely events; they are not suited to predict rare
events. Intuitively, a million samples are needed to observe a one-in-a-million event,
and many more samples are required to reliably predict those events. While it is
theoretically possible that huge datasets could eventually enable accurate prediction
of rare events, this analysis shows that such amounts of data are far from feasible in
the near future (even ignoring generalization issues and computational cost).

Human uncertainty vs. sensor-based uncertainties: Even if a system must be
certified safe with X = 10−8, it is uncommon to require any single module to have a
failure probability less than 10−8. Instead, redundancy with multiple, independent
modules can help certify system safety. For example, in a robotic system, two
different modules (one using LIDAR and one using stereo cameras) might predict
an obstacle’s current position, each with confidence 1 − 10−4. Then the overall
system can reason about the obstacle’s position with confidence 1 − 10−8. The key
is that the modules must be independent. While this may be a fair assumption for
sensing uncertainty, it is not fair for human behavior prediction. However, this could
be a promising avenue of research: to simultaneously learn multiple predictors [61],
while enforcing independence between their predictions.

94

5.2 Guaranteeing Safety among Humans through Behavioral Contracts
From the analysis in the previous section, one might be tempted to draw the conclu-
sion that either much more data must be gathered or that better parameterizations
for human behavioral uncertainty must be devised. However, this section advocates
instead for a shift away from modeling trajectory uncertainty as a purely random
process, arguing that assumptions on human intention must be intelligently incor-
porated into uncertainty prediction. I propose that assume-guarantee contracts
with learned components be used as a formal framework for guaranteeing safety of
robots interacting with humans, which will allow human uncertainty to be naturally
bounded by considering human intentions, and imposing some responsibility upon
human agents. Indeed, if human uncertainty is treated entirely as a random pro-
cess, then extremely rare events must always be accounted for, making interactive
navigation in many scenarios impossible [166].

Let us consider a simple thought exercise to illustrate the necessity of an assume-
guarantee contract framework. Consider an agent that interacts with a single other
agent and has 3 abstract actions it can take, with different rewards for each action.
However, if both agents take the same action (e.g. collision), they each receive a
large penalty. This scenario is depicted in Figure 5.8 (where the illustration on the
left provides a concrete example of what these actions could be).

If a distribution over the actions of the other agent is learned from data, one would
find that there is a non-trivial probability that it will take either action 02 or 03,
meaning action 01 must be taken in order to guarantee safety with probability
> 80%. However, this is clearly non-sensical – just because we have observed other
agents in the past take an aggressive left turn does not mean we must plan assuming
the other agent will do so!

Even if it were possible to estimate the other agent’s reward function, one would
find that both actions 02 and 03 belong to valid nash equilibria, meaning the only
“safe” action for the main agent to respond with would again be 01. There is a
rich literature built on inverse reinforcement learning (see Section 1.3.4) dealing
with learning and leveraging other agents’ reward functions to interact with them.
However, uncertainty modeling is very difficult with these approaches (in addition
to accurate reward learning).

The fundamental issue is that no responsibility is placed on the other agent in
this interactive navigation scenario – since their uncertainty is treated as a random
variable, the other agent may take any available action as long as it passes a certain

95

Figure 5.8: Toy example illustrating that treating uncertainty in human actions can lead to
unintuitive, inefficient plans. The image on the left shows a simplified example of two cars
that must safely interact when given 3 potential actions. If they both choose the same action,
a collision will occur. On the right, different scenarios on what actions could be safely
taken are outlined based on how the “other” agent’s action is predicted (the “other” agent’s
potential actions are denoted by the blue stars and “our” agent’s safe action is denoted by
the yellow star).

threshold of probability (even if that action is a one-in-a-million event). In reality,
humans agents are non-random; their uncertainty is bounded by social rules and
obligations.

The big question then is: how should these rules and obligations be encoded? For
example, some works assume that other agents are always incentivized to avoid
collisions when possible [165]. Another approach is to consider that the reward
function of other agents can be learned, and therefore their actions can be backed
out by solving for an optimal solution of some game [69, 141]. Other works show
that safety can be guaranteed if all agents obey strict rules on the ordering and
coordination of decisions [134]. However, current approaches impose overly strict
assumptions (e.g. agents always avoid collision, follow preset rules, obey learned re-
ward function), are uninterpretable, and/or utilize inaccurate models of uncertainty.
This section argues that assume-guarantee contracts with learned subcomponents
provide an interpretable way to encode rules and obligations that are not overly
strict, helping agents to balance safety and efficiency.

96

5.2.1 Problem Setup:
Consider a multi-agent environment with agents �6 = -, 1, ..., " , where - indexes
the controlled agent. We want to plan a safe, efficient trajectory for agent �6-
from its current position to a goal position in the presence of " other unknown
agents (�61, ..., �6"). Suppose that perfect observations of the environment, > =
(>- , >1, ..., >"), are available, where >8 denotes the position/velocity/acceleration
of agent 8. Let 0 = (0- , 01, ..., 0") denote the action of all agents, such that 08
denotes the position of agent 8 over time horizon) (i.e. 08 = (?C+18

, ?C+2
8
, ..., ?C+)

8
)).

DefineA- (>-) andA8 (>8) as the set of all feasible actions for agent - and agent 8,
respectively, given the observations >- , >8. The goal is to infer accurate restrictions
on the other agents’ actionsW8 (>) ⊆ A8 (>8), such that it is possible to plan safe
and efficient actions for agent 0- ∈ A- (>-) by avoidingW8 (>). Define a binary
collision-checking function 2>;; : A- × A8 → {0, 1}, such that safety is violated
between agent - and 8 if and only if 2>;; (0- , 08) = 1.

Note that the aim is not to accurately predict the behavior of the other agents
(i.e. inferW8), but rather it is only to ensure that predictions enable safe, efficient
interactions. For example, in the scenario depicted in Figure 5.8, we do not care if
the other agent took action 01 (instead of the predicted action 03) as long as it did
not conflict with action 02 of agent - .

5.2.2 Preliminaries
Agent Signaled Intentions: Signaled intentions,Q, dictate the interaction between
two agents. Every agent 9 has a signaled intention with respect to every other agent
8 at each time step C, @ (C)

8, 9
∈ Q, which constrains the set of actions agent 9 can

take. This work considers the set of intentions Q = { distracted, yielding,
aggressive, adversarial }, which describes the way in which one agent intends
to interact with another (though this set of signaled intentions can be much more
general). Since this signaled intention is not explicitly communicated, let Q̂ (C)

8, 9
denote

agent 8’s belief over @ (C)
8, 9

(i.e. the set of signaled intentions agent 9 might have with
respect to agent 8 at time C). For example, we might have @ (C)

8, 9
= distracted, but

Q̂ (C)
8, 9
= {distracted, aggressive} since agent 8 is uncertain about @ (C)

8, 9
.

Options: Options Y ⊆ P(A) denote learned higher-level sets of actions (i.e.
macro-actions) that correspond to agents’ different signaled intentions. These op-
tions are learned based on relationships between (1) agents’ expected actionsA (4G?)

8
,

(2) agents’ reasonable action A (A40B)
8

, and (3) agents’ feasible action A (5 40B)
8

. The

97

Figure 5.9: Overview of the signaled intentions considered in this work. The obligations
map these signaled intentions to a specific option (set of actions), described in each row.

limited set of options used in this work are defined below, though many others could
be defined for more refined restrictions.

H38BC8 (>) := A4G? (>8)
H
066A

8
(>) := AA40B (>8)

H03E8 (>) := A 5 40B (>8)
H
H84;3

8
(>) := {0 ∈ AA40B (>8) | 3

(
>C8 , A4G? (>C−1

-)
)
+ nH84;3 <

3
(
A4G? (>C−1

8) , A4G? (>C−1
-)

)
}.

(5.9)

Obligations: Obligations, B : & × $ → Y, map signaled intentions and obser-
vations to options (i.e. allowable sets of actions). For example, an agent that is
distracted has a smaller set of allowable actions (i.e. more restrictive option) than an
agent that is aggressive (see Figure 5.9). Inference of these obligations will enable
safe, efficient planning by constraining the sets of actions that agents around us can
take.

The relation between signaled intention, options, and obligations is summarized in
Figure 5.9. All of these components (signaled intentions, options, obligations) make
up an ordered contract automaton (defined below), which will form the backbone
of the proposed modeling framework for capturing multiagent interaction. Figure
5.10 provides an overview of the proposed approach to safe multi-agent interaction.

Definition 3. An ordered contract automaton is a tuple (&,B,Y,A,)@, �, & (0)),
where

• Q is the set of possible signaled intentions;

98

Figure 5.10: Diagram depicting the overall framework for the proposed safe interactive
planning algorithm.

• Q (0) is the set of initial signaled intentions an agent could have;

• A represents the set of agent actions;

• Y ⊆ P(A) represents the set of agent options;

• B is the set of obligations, 1 : & ×$ → Y, defining constraints over agents’
actions given signaled intention. An action 0 ∈ A satisfies obligation 1 under
signaled intention @ if and only if 0 ∈ 1(@, >);

•)@ is a deterministic transition function)@ : &× � ×P(Y) → &;

• � is a partial order over options Y.

It is required that for all H ∈ Y:

∀(@, H1, @1), (@, H2, @2) ∈)@ : H1 ≠ H2 → (H1 ≺ H2 | | H1 � H2). (5.10)

This condition ensures that there is a unique outgoing transition for every action,
which is determined based on the partial ordering �.

99

5.2.3 Behavioral Contracts
The core of the safety guarantees provided by the proposed framework stem from
behavioral contracts. They allow us to systematically and interpretably divide re-
sponsibility between agents for the actions they are allowed to take when interacting
with others. When all agents satisfy their behavioral contracts, safety is guaran-
teed. When they do not, the contracts allow us to identify blameworthy actions
[134] that point to why an accident occurred and who was responsible, providing
interpretability.

Behavioral Contracts: A behavioral contract is defined as a special case of the
more general assume-guarantee (A/G) contract, which is composed of (a) a set of
assumption variables, (b) a set of guarantee variables, (c) a relation between the
assumptions and guarantees. Such a contract, (A,G) is defined by A, specifications
over the assumption variables, and G, specifications over the guarantee variables.
Behavioral contracts are defined as follows:

Definition 4. A behavioral contract between agent 8 and another agent 9 is a 2-tuple
(A8, 9 ,G8, 9) where,

• A8, 9 : The assumption that agent 8 makes regarding agent 9 is that either (1)
0 9 ∈ 1(@ (C)8, 9 , > 9) or (2) 2>;; (0 9 , H

066A

8
) = 0 and 0 9 ∈ 1(@C+18, 9

, > 9).

• G8, 9 : The guarantee that agent 8 makes to agent 9 is that 2>;; (08, 1(@8, 9 , > 9)) =
0 and either (1) 08 ∈ 1(@ 9 ,8, >8) or (2) 2>;; (08, H066A9

) = 0 and 08 ∈ 1(@C+19 ,8 , >8).

The contract (A8, 9 ,G8, 9) is satisfied (i.e. (0 9 , 08) � (A8, 9 ,G8, 9)) if and only if 0 9 � A
and 08 � G. Otherwise, either agent 8 or agent 9 (or both) must have violated their
end of the contract. I provide a more intuitive translation of the assumptions and
guarantees of each agent below:

• Assumption A: If agent 9’s action violates its obligation, this action must
reflect its new signaled intention @ (C+1)

9 ,8
and avoid collision with any of agent

8’s reasonable actions.
• Guarantee G: Agent 8 guarantees that both,

– Agent 8’s action avoids collision with agent 9’s obligation,

– If agent 8’s action violates its obligation, this action must reflect its
new signaled intention @C+1

8, 9
and avoid collision with any of agent 9’s

reasonable actions.

100

Our approach tomotion planning for a given agent �6- is to (a) estimate each agent’s
signaled intention with respect to �6- , (b) determine the corresponding obligations
1(@-,8, >8) that each agent has to �6- , (c) synthesize a trajectory for �6- that is safe
with respect to the obligations of all other agents 1(@-,8, >8), and accurately reflects
its signaled intention @8,- . Taking this approach, Section 5.2.4 shows that the safety
of the resulting multiagent system is guaranteed under these behavioral contracts.

Remark 11. It is NOT necessary that each agent always satisfy its obligations
(08 ∈ 1(@-,8, >8)). In fact, agents are expected to frequently violate those obligations.
Instead, it is necessary that obligation violations accurately reflect new signaled
intentions.

The missing pieces then are: (1) given an agent’s intentions, how are its obliga-
tions/options learned from data (i.e. learn the mapping 1(@8, 9 , >8)), and (2) how are
agents’ intentions @8, 9 accurately inferred?

Learning Bounds on Obligations

Let us suppose that at every time step, agent �6- has a conservative belief over
agent 8’s signaled intention, Q̂ (C)

-,8
, such that @-,8 ∈ Q̂ (C)-,8. Based on the defined

obligations, this conservative belief allows us to consider obligation satisfaction as
08 ∈ 1(Q̂ (C)-,8, >8), where

1(Q̂ (C)
-,8
, >8) =

⋃
@-,8∈Q̂ (C)-,8

1(@-,8, >8). (5.11)

However, the important question now is: how do we learn 1 such that our behavioral
contract is valid?

Learning Contract Components from Data: Since expressions (5.9) define the
one-to-one mapping between intentions and options, only the action sets A4G? (>8),
AA40B (>8) need to be learned. This approach vastly simplifies the learning problem
– rather than having to learn a distribution over each agents’ actions, it is now only
necessary to classify whether an action is “expected,” “reasonable,” or “feasible.”
Below, these sets are defined based on intuition and prior knowledge regarding
human behavior.

101

Definition 5. An agent’s reasonable action setAA40B (>) is the smallest set of actions
such that the probability an agent takes an action within this set is greater than 1− n :

AA40B (>) = arg min
C

| C |

s.t. P(0 ∈ C) > 1 − n . ∀0 ∈ A.
(5.12)

An agent’s expected action set A4G? (>) is the smallest set of actions such that it is
more likely that the agent takes an action within A4G? (>) than outside it:

A4G? (>) = arg min
C

| C |

s.t. P(0 ∈ C) > 1
2
∀0 ∈ A.

(5.13)

Note that these sets are defined independent of the multiagent context.

Given a discrete action set A, let 0 (1) , . . . , 0 (|A|) be the possible actions, with
cardinality |A|. In order to estimate A4G? and AA40B, let us define a probability
distribution over the agents’ discrete actions as follows:

?8 = P(08) for 8 = 1, ..., |A| p = [?1, ..., ? |A|]
|A|∑
8=1

?8 = 1 (5.14)

Since p is uncertain, let us model it as a random variable P drawn from a generalized
Bernoulli distribution. Suppose that associated with a given observation, >, =
actions are observed from a dataset D (i.e. an agent is observed = times at the
position/velocity >). Then by considering a uniform Dirichlet distribution as a
prior, the posterior distribution is readily computed:

P ∼ �8A
(
|A| ,

[
1 + #̂ (1)D , ... , 1 + #̂ (|A|)D

])
. (5.15)

where #̂ (8)D (>) denotes the number of times an agent was observed taking action 0 (8)

given observation >, and �8A represents the Dirichlet distribution. This distribution
is also used in the analogous problem of modeling the number of times a dice will
come up on different numbers.

Note that P ∼ P(p | D) fully specifies the action sets A4G?, AA40B based on
Equations (5.12) and (5.13). Therefore, by drawing several samples of P, one can

102

compute an under- and over-approximation of the sets A4G?, AA40B as follows,

A4G?

;>F4A
(>) = {0 ∈ A | 0 ∈

#
4G?

X⋂
8=1
A4G? (P8, >)}

A4G?
D??4A (>) = {0 ∈ A | 0 ∈

#
4G?

X⋃
8=1
A4G? (P8, >)}

AA40B
;>F4A (>) = {0 ∈ A | 0 ∈

#A40B
X⋂
8=1
AA40B (P8, >)}

AA40B
D??4A (>) = {0 ∈ A | 0 ∈

#A40B
X⋃
8=1
AA40B (P8, >)}

(5.16)

where #A40B
X
≥ log(X)

log(1−n) and #
4G?

X
≥ log(X)

log(0.5) .

Lemma 7. Given datasetD of trajectories that are drawn i.i.d. from the underlying
distribution of human behavior, the following bounds onA4G? andAA40B hold with
probability 1 − X:

A4G?

;>F4A
(X) ⊆ A4G? ⊆ A4G?

D??4A (X)
AA40B
;>F4A (X) ⊆ A

A40B ⊆ AA40B
D??4A (X).

(5.17)

From Lemma 7 and the options definitions (5.9), it is possible to obtain analogous
probabilistic upper and lower bounds over the obligations 1 that agents should fulfill,
shown below in Equation (5.18). These bound on obligations, placing restrictions
over an agent’s action set, are depicted in Figure 5.11.

1;>F4A
(
@8, 9 , > 9 | X

)
⊆ 1

(
@8, 9 , > 9

)
⊆ 1D??4A

(
@8, 9 , > 9 | X

)
. (5.18)

Remark 12. Section 5.1 argued the limitations of probabilistic guarantees, so it may
seem odd that this section considers probabilistic bounds on the obligations (5.18).
However, note that these probabilistic bounds consider randomness in the dataset
D, not randomness in human actions (i.e. D is treated as a random variable rather
08 being treated as a random variable).

Inferring Intention

Once one has computed the (probabilistic) obligations of different agents given
their signaled intention, it is necessary to examine how to estimate those intentions.

103

Figure 5.11: (a)Diagram showing how each signaled intention is associated with a different
part of the action space, which defines the agent’s obligation (though agents are not always
required to fulfill these obligations). (b) Diagram showing probabilistic bounds that lower
bound or upper bound each obligation 1 with a specified probability X.

Recall that at every time step, agent 8 has a signaled intention @ (C)
-,8

with respect to
�6- that it must obey (or safely violate). Since @ (C)

-,8
is not explicitly communicated,

it must be estimated from agent 8’s actions.

Let us maintain a belief over @ (C)
-,8
, which is denoted by the set Q̂ (C)

-,8
. The goal is to

continuously update Q̂ (C)
-,8

at every time step C, while ensuring that @ (C)
-,8
∈ Q̂ (C)

-,8
.

Updating belief over intentions: In the proposed framework, intention is commu-
nicated through satisfaction/violation of obligations. For example, an agent signals
a change in intention from distracted to aggressive by taking unexpected ac-
tions (i.e. violating the obligation associated with a distracted intention) that bring
it closer to collision (i.e. satisfying the obligation associated with an aggressive
intention). Given this, the following algorithm shows how one can conservatively
estimate the belief over intentions Q̂-,8.

• Set Q̂ (C+1)
-,8

= ∅
• Observe agent’s action 08
• For @-,8 ∈ Q̂ (C)-,8,

– If 08 ∈ 1D??4A (@-,8, >8), then Q̂ (C+1)-,8
= Q̂ (C+1)

-,8
∪ @8

– If 08 ∉ 1;>F4A (>) (@-,8, >8),

∗ Compute &B = {@ ∈ & | 08 ∈ 1D??4A (@-,8, >8) , @ ≠ @-,8}.
∗ Obtain @+ = max� &B (i.e. the highest-order intention that satisfies

the contract).

∗ Q̂ (C+1)
-,8

= Q̂ (C+1)
-,8
∪ @+

104

Therefore, after observing 08, one can update the belief over agent 8’s signaled
intention Q̂ (C+1)

-,8
. In the following section, it is proven that the intention update

algorithm outlined above guarantees that @ (C+1)
-,8
∈ Q̂ (C+1)

-,8
.

Synthesizing a Controller

The previous sections have defined a mechanism for accurately obtaining signaled
intentions Q̂ (C)

-,8
, as well as learning their corresponding obligations 1(Q̂ (C)

-,8
, >8).

Examining the overall planning framework in Figure 5.10, the remaining step is
to synthesize a plan for agent - that satisfies its end of the behavioral contract to
guarantee system safety.

0- = arg min
0

� (0, goal)

s.t. 2>;; (0, 1D??4A (Q̂ (C)-,8, >8)) = 0 for 8 = 1, ..., "

2>;; (0, 0102:D?
8

) = 0 for 8 = 1, ..., "

0 ∈ 1(Q̂ (C)
8,-
, >-) OR 2>;; (0,AA40B

D??4A (>8)) = 0

0 ∈ AA40B
;>F4A (>-),

(5.19)

where 0102:D? is a pre-defined stopping action, and � (0, goal) denotes some cost
function encouraging progress to some self-defined goal.

All the components described above (learning obligations, inferring intention, syn-
thesizing controller) are put together within our framework as described in Algo-
rithm 3 below and depicted in Figure 5.10. The following section proves the safety
of the trajectories generated by this algorithm, and clearly outlines the necessary
assumptions that underly the results.

5.2.4 Guaranteeing Safety
The proposed framework centered around the ordered contract automaton, and the
derived motion planning algorithm (Algorithm 3), generates safe, efficient motion
plans while accounting for other agents’ uncertain/changing intentions. The under-
lying principle is that even though agents may not act cooperatively, their actions are
communicative and reflective of intent. For example, agents may take aggressive,
unexpected actions, but doing so provides a signal of their intention to others. The
main assumptions underlying this framework are summarized as follows:

Assumption 3. A dataset of agent trajectories,D, is available. The trajectories are
drawn i.i.d. from an underlying distribution of human behavior.

105

Algorithm 3 Learning Algorithm
1: Initialize belief over intentions for all agents

(i.e. Q̂ (0)
-,8
= {distracted, yielding} for 8 = 1, ..., ").

2: Measure >(0) =
[
>
(0)
1 , ..., >

(0)
"

]
3: Compute lower/upper bounds on action setsA4G? (>(0)

8
),AA40B (>(0)

8
) from Def-

inition 5 for 8 = 1, ..., "
4: for t = 1:T do
5: Observe action that each agent took 0 (C−1) =

[
0
(C−1)
1 , ..., 0

(C−1)
"

]
.

6: Measure >(C) =
[
>
(C)
1 , ..., >

(C)
"

]
7: for i=1:M do
8: Check obligation satisfaction of 0 (C−1)

8
with respect to 1(@, >(C−1)) for all

@ ∈ &
9: Update belief over intentions Q̂ (C)

-,8
from Q̂ (C−1)

-,8
based on intention inference

process outlined above
10: Re-compute lower/upper bounds on action sets A4G? (>(C)

8
), AA40B (>(C)

8
)

from Definition 5
11: Estimate contractual obligations 1(Q̂ (C)

-,8
, >(C)) based on options (5.9)

12: end for
13: Synthesize safe motion plan by solving optimization problem (5.19)
14: end for

Assumption 4. Upon initial observation, each agent’s signaled intention must be
distracted or yielding (i.e. @ (0)

8, 9
∈ {distracted, yield}).

Assumption 5. A fixed backup action 0102:D? (i.e. braking) is always safe with
respect to human agents and other agents’ backup action.

Lemma 8. If every agent obeys their behavioral contract (see Definition 4), then
with probability 1 − X,

@
(C)
-,8
∈ Q̂ (C)

-,8
, ∀C ∈ Z+ (5.20)

In other words, agent 8’s signaled intention with respect to agent - , @ (C)
-,8
, is a subset

of agent -’s belief over their signaled intention, Q̂ (C)
-,8
.

Proof. This lemma is proved by induction. As a base case, it is know that @ (0)
-,8
⊆

&̂
(0)
-,8

by Assumption 4. Assume that @ (C)
-,8
∈ Q̂ (C)

-,8
. The goal then is to show that

@
(C+1)
-,8
∈ Q̂ (C+1)

-,8
. To do this, let us assume that @ (C+1)

-,8
∉ Q̂ (C+1)

-,8
, and show that this

results in a contradiction.

Since it is assumed that @ (C+1)
-,8

∉ Q̂ (C+1)
-,8

, then let us consider two possibilities: (1)
@
(C+1)
-,8
∈ Q̂ (C)

-,8
, or (2) @ (C+1)

-,8
∉ Q̂ (C)

-,8
.

106

• Suppose @ (C+1)
-,8
∈ Q̂ (C)

-,8
. Then this means that @ (C+1)

-,8
∈ Q̂ (C)

-,8
\ Q̂ (C+1)

-,8
. By our

intention update law, this can occur only if 0 (C) ∉ 1D??4A (@ (C+1)-,8
, >8), which

means that with probability 1 − X, 0 (C) ∉ 1(@ (C+1)
-,8

, >8). However, this action
would violate the behavioral contract, leading to a contradiction.

• Suppose @ (C+1)
-,8

∉ Q̂ (C)
-,8
. Since @ (C+1)

-,8
∉ Q̂ (C)

-,8
but @ (C)

-,8
∈ Q̂ (C)

-,8
, then clearly

@
(C+1)
-,8

≠ @
(C)
-,8
. Based on each agent’s behavioral contract, it must hold that

08 ∈ 1(@ (C+1)-,8
, >8) \ 1(@ (C)-,8, >8). Let us consider the following two cases:

– @
(C+1)
-,8

∈ Q̂ (C)
8
: Therefore 0 (C) ∈ 1(@ (C+1)

-,8
, >8). By Lemma 7, 0 (C) ∈

1D??4A (@ (C+1)-,8
, >8) with probability 1− X. However, this would imply that

@
(C+1)
-,8
∈ Q̂ (C+1)

-,8
, which contradicts our initial assumption.

– @
(C+1)
-,8

∉ Q̂ (C)
8
: Since 0 (C) ∈ 1(@ (C+1)

-,8
, >8) \ 0 (C) ∉ 1(@ (C)-,8, >8), by Lemma

7, it is known that 0 ∈ 1D??4A (@ (C+1)-,8
, >8) and 0 ∉ 1;>F4A (@ (C)-,8, >8) with

probability 1 − X. However, by our update law, this only occurs if
@
(C+1)
-,8
∈ Q̂ (C+1)

-,8
, contradicting our initial assumption.

In all cases, a contradiction is reached (that @ (C+1)
-,8

∈ Q̂ (C+1)
-,8

) with probability at
least 1 − X, which indicates that our original assumption @ (C+1)

-,8
∉ Q̂ (C+1)

-,8
must be

false. Therefore, @ (C+1)
-,8
∈ Q̂ (C+1)

-,8
. This completes the final step of the induction, and

finishes the proof. �

Lemma 9. The backup action 0102:D? (i.e. stopping) is always safe with respect to
other autonomous agents.

Proof. The controller (5.19) renders every other agent’s backup action 0102:D? safe
by definition. If (5.19) is infeasible, the agent will take 0102:D?, which is guaranteed
safe by Assumption 5. �

Theorem 5. With probability 1− X, our autonomous agent can have a collision with
another agent only if that agent violates its behavioral contract (see Definition 4).

Proof. Let us denote our agent as agent - and the other agent as agent 8. By the
definition of the behavioral contracts, at least one of the following two conditions
hold under the contract:

• Action 08 ∈ 1(@ (C)-,8, >8),

107

– Under this condition, it follows from Lemma 8 that 08 ∈ 1(@ (C)-,8, >8) ⊆
1(Q̂ (C)

-,8
, >8) with probability at least 1 − X. Based on Algorithm 3, it is

known that either:

∗ 2>;; (0- , 1(Q̂ (C)-,8)) = 0, such that our planned paths do not collide
and safety is guaranteed, or

∗ the program (5.19) does not have a solution. In this case, agent -
can take backup action 0102:D?

-
, which by Assumption 5 and Lemma

9 is guaranteed to be safe.

• 2>;; (08,AA40B (>-)) = 0 (i.e. no collision with respect to other agents’
reasonable actions),

– Since AA40B
;>F4A

⊆ AA40B with probability at least 1 − X, then under this
condition, agent - can take any action 0 ∈ AA40B

;>F4A
(or 0102:D?

-
) without

causing collision. At the next time step, agent 8’s intention will have been
revealed, and it will be subject to a new set of obligations 1(Q̂ (C+1)

-,8
, >8).

We see that under each of the two conditions (one of which must be satisfied under
the behavioral contracts), the controller (5.19) avoids collision with probability 1−X.
Therefore, with probability 1 − X, collision can occur only if an agent violates its
contract. �

Remark 13. It is important to point out that this framework will not guarantee safety
always. Indeed this requirement may be too onerous given the unpredictable nature
of human agents. Rather, this framework enables us to say that a collision can occur
only if an agent broke its behavioral contract. In most applications, being able to
point to such a contract violation as the cause of a collision will be more acceptable
than declaring that such a violation occurred due to a low probability event.

5.2.5 Preliminary Results
The proposed safe motion planning algorithm was tested in a simulated highway
driving example with multiple agents, as shown in Figure 5.12. Agents were
initialized in random lanes with random velocity, and were given a random target
lane they would try to safely reach. As agents exited the highway scene (at the top
the highway), new agents would be randomly added at the bottom of the highway. In
a single randomized trial, the number of agents in the scene was chosen uniformly
randomly to be between 2-9, and this number of agents was kept constant throughout

108

(a) First example instance. Two cars (one in the left lane and one in the right) attempt to merge into
the middle lane at a similar time. Because the right agent happens to do its intention inference first,
it recognizes the right agent’s aggressive intent and slows down, yielding to the left agent. The left
agent picks up on this yielding intention during its intention inference update, and merges in front,
thus completing this successful negotiation.

(b) Second example instance. The agent on the right begins to merge into the middle lane, and
observes a braking action from the agent on its left. Therefore, it infers that the other agent has
signaled a yielding intention, and merges in front of it.

Figure 5.12: Top and bottom represent two example instances of simulated cars driving
along the highway while running the proposed planner. Each snapshot shows the state of the
cars 25 time steps apart, progressing in time from left to right. While the left-most snapshot
represents the full multi-agent system, for clarity, only two agents (the ones outlined by
the red boxes in the left snapshots) are highlighted in the remaining snapshots. These two
agents are used to highlight safe interactive behavior.

the trial. Each trial lasted 1000 time steps (representing approximately 5 highway
passes from bottom to top for each agent depending on its velocity).

I first briefly summarize the results, and then provide further details on the different
simulation components. To test the algorithm, 100 randomized trials were run, and
during those trials, no collisions (i.e. safety violations) occurred. Furthermore,
agents were able to reach their target lane over 90% of the time, and were able
to safely and successfully negotiate lane changes, even in close proximity to many
other agents.

Remark 14. The realized safety of agents in the simulations is encouraging, but
should not be surprising given that all agents were designed to satisfy the assump-

109

tions outlined in Section 5.2.4. Thus, a major test will be whether those assumptions
continue to be satisfied if we allow human control of one or more cars.

Action Space: A discrete action space was considered, which was represented
as a voxel grid (0 ∈ {0, 1}21×21×6), where the first 2 dimensions represent spatial
position (G, H) and the 3A3 dimension represents time. Therefore, a “1” in a given
voxel means that the agent’s position was within that grid cell at that moment in the
future.

Obligations: Using the trajectory data from dataset D, consisting of observa-
tion/action pairs (>, 0), the action sets A4G? and AA40B were computed based on
Definition 5 with n = 0.1. This yielded several data pairs (>,A4G?), (>,AA40B),
which were used to train separate neural networks using a sigmoidal cross-entropy
loss function; these neural networks map observations to these action sets. With
A4G? (>) and AA40B (>) learned, these could be used to directly compute agent
obligations for the different signaled intentions.

The obligations computed for the different agents provide their potential future
actions that must be accounted for. These occupied voxels denote regions that must
be avoided in the optimization problem (5.19) (i.e. 1(Q̂-,8, >8)). Note that in our
preliminary simulations, probabilistic bounds on the obligations were not computed
(i.e. we used # (X) = 1). Further simulations with probabilistic bounds are left to
future work.

Dynamics: The cars in the environment are considered to have control-affine dy-
namics as described below.

GC+1

HC+1

EC+1

\C+1


=


GC + EC sin(\C)ΔC
GC + EC cos(\C)ΔC

EC

\C


+


0 0
0 0
ΔC 0
0 ΔC


[
D1

D2

]
(5.21)

where (G, H) denotes the agent’s position, E denotes its velocity, and \ denotes its
heading angle. The control inputs are D1 and D2. Bounds on velocity and control
input are imposed:

5 ≤ E ≤ 16 ,

−35 ≤ D1 ≤ 15 ,

−1 ≤ D2 ≤ 1 .

(5.22)

110

5.3 Conclusion
Section 5.1 in this chapter examined the limitations of currently used uncertainty
models in accurately predicting rare events. In the case of driving, it was found
that the distribution of human driving trajectories was poorly captured by all these
uncertainty models. Even for uncertainty models that do not assume a distribution
(e.g. quantile regression), it was shown that the amount of data needed to provide
accurate bounds at probability levels required for safety-critical applications is cur-
rently infeasible. Therefore, it seems that safety guarantees derived based on these
models of uncertainty may only be valid when the probability levels considered are
not very low (i.e. X > 0.001), limiting their application in safety-critical systems.

However, Section 5.2 argues that it is not accurate to model uncertainty in human
actions as a random process, and doing so leads to extreme sacrifices in efficiency
in order to achieve safety. Instead, certain responsibilities must be imposed on all
agents in a multi-agent environment, which bounds the uncertainty in their actions.
A framework is introduced that utilizes assume-guarantee contracts to encode agent
responsibilities, requiring that agents signal their intention to each other prior to
taking dangerous actions and defining certain obligations that they have. Under
clearly outlined assumptions, it is proven that the framework guarantees safety
provided agents satisfy their contracts, and this is verified through preliminary
simulation results. Furthermore, any safety violations can be traced back to specific
contract(s) violation.

The preliminary results in Section 5.2 are promising, but they beg the main question:
do human agents tend to satisfy the behavioral contracts that have been defined?
Therefore, future work will involve computing probabilistic bounds over agent obli-
gations, and testing whether human agents tend to respect the behavioral contracts
associated with these obligations.

111

Appendix D: Fragility of Gaussian Uncertainty Model (Synthetic Data)
The Gaussian uncertainty model was tested on a synthetic 2D data set, using the
same process detailed in Section 5.1. Each 2D data point is analogous to a trajectory,
0 = g[2:10] ∼ A, in the highD driving dataset. Therefore, the goal is still to learn the
model �̂ that best matches the data distributionA, minimizing<(A||F̂). However,
using synthetic data allows us to test the accuracy of the uncertainty model with
respect to a known underlying probability distribution, A.

I randomly generated 10,000 2D points for training data (further increasing the
amount of training data did not improve performance) from 3 different distributions:
(a) perfect Gaussian, (b)Gaussian with uniform noise (magnitude of noise was 30%
of the data range), and (c) Gaussian with symmetric non-uniform noise (also 30%
magnitude). For each of these training datasets, the best-fit Gaussian was computed.
Then 10,000,000 2D points were generated for the test data following the exact same
distribution as the training data, and I analyzed how well the computed Gaussian
uncertainty model captured the test data.

Figure 5.13: Prediction error vs. safety threshold, X, using a Gaussian uncertainty model on
synthetic 2D data generated from 3 different distributions. The dashed black line represents
a perfect prediction model. Significant prediction error arises when the underlying data
distribution is non-Gaussian.

Figure 5.13 shows that the learned uncertainty model performed very well when
the underlying data distribution was Gaussian (blue curve). However, it performed
poorly (off by an order-of-magnitude) at low X when the underlying distribution was
non-Gaussian. When the underlying distribution was Gaussian with added uniform
noise (orange curve), the observed violations were much lower than the expected
violations (i.e. the model was conservative). This is good for safety, but would

112

clearly lead to overly conservative behavior, especially since the model is off by
orders of magnitude.

However, more concerning is the case when the underlying distribution is Gaussian
with non-uniform noise (green curve). In this case, the observed violations were
much higher than the expected violations (greater by an order of magnitude), posing
a clear risk for safety-critical applications. This reinforces the results in Section 5.1
by illustrating that significant prediction error inevitably arises, regardless of the
amount of training data, when the underlying data distribution is non-Gaussian.

Appendix E: Quantile Regression (Synthetic Data)
The quantile regression experiments from Section 5.1 were repeated using synthetic
2D data rather than real-world driving data. This allowed us to observe how well
the uncertainty model performed under ideal conditions when the training/testing
data were perfectly i.i.d. I randomly generated 1,000,000 2D training data points
(analogous to 1,000,000 trajectories) following a Gaussian distribution, and com-
puted X-quantile bounds following the same procedure described in Section 5.1 (i.e.
computing the smallest convex set containing 1 − X points). Then 10,000,000 2D
test data points were generated following the exact same distribution as the training
data, and I analyzed how well the computed quantile bounds captured the test data.

Figure 5.14: Prediction error vs. safety threshold, X under computed quantile bounds on
synthetic 2D data. The dashed black line represents a perfect prediction model.

Figure 5.14 shows the prediction error (i.e. ratio between expected and observed
proportion of trajectories outside each quantile) versus the safety threshold X. The
quantile regression model performed very well up to X ≥ 0.001. However, perfor-

113

(a) (b)
Figure 5.15: (a) Smallest accurate X versus amount of data using synthetic 2D data. The
trend is highly linear (A2 = 0.979), (b) Projection showing the expected amount of data
required to obtain an accurate safety threshold X<8=.

mance rapidly deteriorated as X decreased, meaning the model failed to accurately
predict violation probabilities at those safety thresholds.

Using the synthetic data, I computed the smallest accurate safety threshold, X<8=,
as a function of the amount of training data, # . This threshold X<8= was defined as
follows,

X<8= = min X such that

�����log

(
expected(X)
observed(X)

)����� ≤ Y . (5.23)

where Y = 0.5, which represents the vertical distance between the blue curve in
Figure 5.14 and the dotted black line. Therefore, X<8= represents the smallest X
such that the computed quantile bounds are Y-accurate (as described in Section 3C).
Figure 5.15a shows the same inverse linear trend (X<8= ∝ 1

#
) on the synthetic data

that was seen with the real driving data. Figure 5.15b shows the extrapolation of
this trend towards lower X<8=. This result reinforces the point made in Section 5.1
that quantile regression can be very accurate for larger X, but it may not be feasible
to collect enough data to reach safety thresholds X<8= ≤ 10−8.

114

C h a p t e r 6

CONCLUSION

This thesis has focused on the issue of improving reliability and safety in learning-
based controllers, in order to bring them closer to widespread deployment beyond
the lab and leverage their impressive performance in solving complex robotics tasks.
The central theme across the thesis is that clearer assumptions and limited model
information are crucial to achieving good reliability and assurances of safety for any
learning-based controllers.

In Chapter 3, it was shown that integration of model information, in the form of
a model-based control prior, into the RL framework effectively constrains the vast
policy search space. It is shown, both theoretically and empirically, that constraining
this search space greatly reduces variance in learning with minimal bias introduced.

In Chapter 4, it was shown that integration of model information, introduced through
discrete-time control barrier functions, into the RL framework effectively constrains
the explorable action space to the set of safe agent actions. Uncertainty in the system
dynamics, estimated using Gaussian process uncertainty models, can be incorpo-
rated into the control barrier functions, providing probabilistic safety guarantees
under uncertainty. It is also shown that naive inclusion of a safety filtering mech-
anism can lead to distortion of the policy gradient in RL, and a new framework is
proposed that accounts for this distortion and guides the learning process. In the
last section of Chapter 4, the results on discrete-time control barrier functions are
extended to multiagent settings with correlated, multivariate uncertainties, thereby
showing that the previous safety guarantees can be obtained with a broader class of
multiagent settings and a higher-fidelity model of uncertainty.

However, in Section 5.1, widely used uncertainty models were analyzed in depth,
and it was found that these uncertainty models can be highly inaccurate when
considering probability levels X < 0.001, casting doubt on their ability to be used
in safety-critical applications. Based on these results, I argued that for safety-
critical applications dealing with human environments, there is a clear need to shift
away from the previous paradigm of learning an uncertain distribution over human
actions (treating them as random variables), and designing a controller that is robust
to such uncertainty. Treating human actions as random is flawed. Therefore, a

115

novel framework was proposed in Section 5.2 that imposes loose responsibilities
on agents, encoded through assume-guarantee contracts. The components of these
assume-guarantee contracts (i.e. obligations) can be learned from data, and can
be leveraged to guarantee safety of complex multi-agent systems under contract
satisfaction.

6.1 Future Work
Discovering reasonable assume-guarantee contracts: As discussed above, human
actions are not random, and in order to balance safety and efficiency in a satisfac-
tory manner, they should not be treated as random. The framework introduced in
Section 5.2 attempts to address this issue using behavioral contracts, but there is
still significant work to design obligations that human agents respect. In particular,
the definitions of “expected” and “reasonable” actions described in Definition 5 are
constructed based on prior intuition, and may require modification. Furthermore,
tests with human agents must be conducted in order to see if they do indeed tend to
satisfy the assume-guarantee contracts that have been constructed.

Leveraging robust control priors: In Chapter 3, a strategy for adapting the regular-
ization term, _, weighing the control prior vs. the learned controller, was proposed
based on the TD-error during learning. However, in many cases, a different adaptive
strategy may be appropriate and provide better learning. Furthermore, this work
considered a fixed control prior. However, an adaptive control prior may also allow
for more sample efficient learning, as data collected online may enable computation
of a more optimal/robust control prior. Incorporating an adaptive control prior is
not a trivial task though, as updates to the control prior will interfere with learning
of the RL controller. Addressing this issue is left for future work.

116

BIBLIOGRAPHY

[1] url: https://github.com/rcheng805/CORE-RL/.

[2] url: https://github.com/rcheng805/RL-CBF/.

[3] url: https://github.com/rcheng805/robust_cbf/.

[4] Pieter Abbeel, Adam Coates, and Andrew Y. Ng. “Autonomous helicopter
aerobatics through apprenticeship learning”. In: International Journal of
Robotics Research (2010). issn: 02783649. doi:10.1177/0278364910371999.
arXiv: 0911.4714 [astro-ph.HE].

[5] Pieter Abbeel and Andrew Y. Ng. “Apprenticeship learning via inverse rein-
forcement learning”. In: Twenty-first international conference on Machine
learning - ICML ’04. 2004. isbn: 1581138285. doi: 10.1145/1015330.
1015430. arXiv: 1206.5264.

[6] Joshua Achiam et al. “Constrained Policy Optimization”. In: arXiv preprint
arXiv:1705:10528 (2017).

[7] Ayush Agrawal and Koushil Sreenath. “Discrete Control Barrier Functions
for Safety-Critical Control of Discrete Systems with Application to Bipedal
Robot Navigation”. In: Robotics science and systems (RSS) (2017). issn:
2330765X. doi: 10.15607/RSS.2017.XIII.073.

[8] Mohamadreza Ahmadi et al. “Barrier functions for multiagent-pomdps with
dtl specifications”. In: arXiv preprint arXiv:2003.09267 (2020).

[9] Ilge Akkaya et al. “Solving rubik’s cube with a robot hand”. In: arXiv
preprint arXiv:1910.07113 (2019).

[10] Mohammed Alshiekh et al. “Safe Reinforcement Learning via Shielding”.
In: arXiv preprint arXiv:1708.08611 (2017). arXiv: 1708.08611. url:
http://arxiv.org/abs/1708.08611.

[11] AaronD.Ames, JessyW.Grizzle, and Paulo Tabuada. “Control barrier func-
tion based quadratic programs with application to adaptive cruise control”.
In: 53rd IEEE Conference on Decision and Control. 2014. isbn: 978-1-
4673-6090-6. doi: 10.1109/CDC.2014.7040372.

[12] Aaron D. Ames et al. “Control Barrier Function Based Quadratic Programs
for Safety Critical Systems”. In: IEEE Transactions on Automatic Control
(2017). issn: 00189286. doi: 10.1109/TAC.2016.2638961. arXiv: 1609.
06408.

[13] Dario Amodei et al. “Concrete problems in AI safety”. In: arXiv preprint
arXiv:1606.06565 (2016).

[14] Marcin Andrychowicz et al. “Hindsight experience replay”. In: Advances in
neural information processing systems 30 (2017), pp. 5048–5058.

117

[15] Georges S. Aoude et al. “Probabilistically safe motion planning to avoid
dynamic obstacles with uncertain motion patterns”. In: Autonomous Robots
35.1 (2013), pp. 51–76.

[16] Sanjeev Arora, Andrej Risteski, and Yi Zhang. “Do GANs learn the dis-
tribution? Some Theory and Empirics”. In: International Conference on
Learning Representations. 2018.

[17] Kai Arulkumaran et al. Deep reinforcement learning: A brief survey. 2017.
doi: 10.1109/MSP.2017.2743240. arXiv: 1708.05866.

[18] Chris L. Baker, Rebecca Saxe, and Joshua B. Tenenbaum. “Action under-
standing as inverse planning”. In: Cognition (2009).

[19] Tirthankar Bandyopadhyay et al. “Intention-aware motion planning”. In:
Springer Tracts in Advanced Robotics. 2013.

[20] Somil Bansal et al. “Hamilton-jacobi reachability: A brief overview and
recent advances”. In:Conference onDecision and Control, CDC 2017. isbn:
9781509028733. doi: 10.1109/CDC.2017.8263977. arXiv: 1709.07523.

[21] Somil Bansal et al. “MBMF:Model-Based Priors forModel-Free Reinforce-
ment Learning”. In: arXiv:1709:03153 (2017).

[22] Daman Bareiss and Jur Van Den Berg. “Generalized reciprocal collision
avoidance”. In: International Journal of Robotics Research (2015). issn:
17413176. doi: 10.1177/0278364915576234.

[23] Federico Bartoli et al. “Context-Aware Trajectory Prediction”. In: Interna-
tional Conference on Pattern Recognition. 2018. isbn: 9781538637883. doi:
10.1109/ICPR.2018.8545447. arXiv: 1705.02503.

[24] Jonathan Baxter and P.L. Bartlett. “Reinforcement learning in POMDP’s via
direct gradient ascent”. In: International Conference on Machine Learning
(2000).

[25] Felix Berkenkamp et al. “Safe Model-based Reinforcement Learning with
StabilityGuarantees”. In:Neural InformationProcessing Systems (NeurIPS).
2017.

[26] Charles Blundell et al. “Weight Uncertainty in Neural Networks”. In: In-
ternational Conference on Machine Learning. Vol. 37. PMLR, July 2015,
pp. 1613–1622. arXiv: 1505.05424 [stat.ML].

[27] Urs Borrmann et al. “Control Barrier Certificates for Safe SwarmBehavior”.
In: IFACConference on Analysis andDesign of Hybrid Systems (2015). issn:
24058963. doi: 10.1016/j.ifacol.2015.11.154.

[28] Maxime Bouton et al. “Safe reinforcement learning with scene decomposi-
tion for navigating complex urban environments”. In: 2019 IEEE Intelligent
Vehicles Symposium (IV). IEEE. 2019, pp. 1469–1476.

118

[29] Frank Broz, Illah Nourbakhsh, and Reid Simmons. “Planning for Human-
Robot Interaction in Socially Situated Tasks: The Impact of Representing
Time and Intention”. In: International Journal of Social Robotics (2013).

[30] M. C. Campi and S. Garatti. “Wait-and-judge scenario optimization”. In:
Mathematical Programming (2018).

[31] Ashwin Carvalho et al. “Automated driving: The role of forecasts and un-
certainty - A control perspective”. In: European Journal of Control. Vol. 24.
2015, pp. 14–32.

[32] G. Cesari et al. “Scenario Model Predictive Control for Lane Change Assis-
tance and Autonomous Driving on Highways”. In: IEEE Intelligent Trans-
portation Systems Magazine 9.3 (2017), pp. 23–35.

[33] Changan Chen et al. “Crowd-robot interaction: Crowd-aware robot navi-
gation with attention-based deep reinforcement learning”. In: IEEE ICRA.
2019.

[34] Mo Chen and Claire J. Tomlin. “Hamilton–Jacobi Reachability: Some Re-
cent Theoretical Advances and Applications in Unmanned Airspace Man-
agement”. In:Annual Review of Control, Robotics, and Autonomous Systems
(2018). issn: 2573-5144. doi: 10.1146/annurev-control-060117-
104941.

[35] Yu Fan Chen et al. “Socially awaremotion planning with deep reinforcement
learning”. In: IEEE IROS. 2017.

[36] Yuxiao Chen et al. “Counter-example Guided Learning of Bounds on Envi-
ronment Behavior”. In: Proceedings of the Conference on Robot Learning.
Vol. 100. PMLR, Nov. 2020, pp. 898–909.

[37] Richard Cheng et al. “Safe Multi-Agent Interaction through Robust Control
Barrier Functions with Learned Uncertainties”. In: arXiv (2020).

[38] Yinlam Chow et al. “A Lyapunov-based Approach to Safe Reinforcement
Learning”. In: arXiv preprint arXiv:1805.07708 (2018).

[39] AndrewClark. “Control barrier functions for complete and incomplete infor-
mation stochastic systems”. In: 2019 American Control Conference (ACC).
IEEE. 2019, pp. 2928–2935.

[40] Stephane Crepey and Matthew F. Dixon. “Gaussian Process Regression for
Derivative Portfolio Modeling and Application to CVA Computations”. In:
arXiv (2019).

[41] Gergely Csibra and György Gergely. “’Obsessed with goals’: Functions and
mechanisms of teleological interpretation of actions in humans”. In: Acta
Psychologica (2007).

119

[42] Alexander G. Cunningham et al. “MPDM: Multipolicy decision-making in
dynamic, uncertain environments for autonomous driving”. In: IEEE ICRA.
2015.

[43] Richard Dearden, Nir Friedman, and Stuart Russell. “Bayesian Q-learning”.
In: AAAI/IAAI. 1998, pp. 761–768.

[44] Marc Peter Deisenroth, Carl Edward Rasmussen, and Dieter Fox. “Learning
to control a low-cost manipulator using data-efficient reinforcement learn-
ing”. In: Robotics: Science and Systems VII (2011), pp. 57–64.

[45] Yiannis Demiris. Prediction of intent in robotics and multi-agent systems.
2007.

[46] Wenchao Ding, Jing Chen, and Shaojie Shen. “Predicting vehicle behaviors
over an extended horizon using behavior interaction network”. In: Interna-
tional Conference on Robotics and Automation (ICRA). 2019, pp. 8634–
8640.

[47] Xingping Dong et al. “Hyperparameter optimization for tracking with con-
tinuous deep q-learning”. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition. 2018, pp. 518–527.

[48] J.C. Doyle et al. “State-space solutions to standard H/sub 2/ and H/sub infin-
ity / control problems”. In: IEEE Transactions on Automatic ControlTrans-
actions on Automatic Control (1989). issn: 00189286. doi: 10.1109/9.
29425.

[49] John Doyle. “Robust and Optimal Control”. In: Conference on Decision and
Control. 1996.

[50] Anca D. Dragan. “Robot Planning with Mathematical Models of Human
State and Action”. In: arXiv (2017).

[51] Yonathan Efroni,MohammadGhavamzadeh, and ShieMannor. “Multi-Step
Greedy and Approximate Real Time Dynamic Programming”. In: arXiv
preprint arXiv:1909.04236 (2019).

[52] Andrzej Ehrenfeucht et al. “A general lower bound on the number of exam-
ples needed for learning”. In: Information and Computation (1989).

[53] D. Ellis, E. Sommerlade, and I. Reid. “Modelling pedestrian trajectory pat-
terns with Gaussian processes”. In: IEEE 12th International Conference on
Computer Vision Workshops, ICCV Workshops. 2009, pp. 1229–1234.

[54] John J Enright and Peter R Wurman. “Optimization and coordinated auton-
omy in mobile fulfillment systems”. In: Workshops at the twenty-fifth AAAI
conference on artificial intelligence. Citeseer. 2011.

[55] Michael Everett, Yu Fan Chen, and Jonathan P. How. “Motion Planning
amongDynamic,Decision-MakingAgentswithDeepReinforcement Learn-
ing”. In: IEEE IROS. 2018.

120

[56] David D Fan et al. “Bayesian Learning-Based Adaptive Control for Safety
Critical Systems”. In: arXiv preprint arXiv:1910.02325 (2019).

[57] David D. Fan, Ali Agha-mohammadi, and Evangelos A. Theodorou. “Deep
Learning Tubes for Tube MPC”. In: arXiv (2020). arXiv: 2002.01587
[cs.RO].

[58] David D. Fan et al. “Bayesian Learning-Based Adaptive Control for Safety
Critical Systems”. In: IEEE International Conference on Robotics and Au-
tomation (ICRA). 2020, pp. 4093–4099.

[59] Farbod Farshidian,Michael Neunert, and Jonas Buchli. “Learning of closed-
loop motion control”. In: IEEE International Conference on Intelligent
Robots and Systems. 2014.

[60] Sarah Ferguson et al. “Real-time predictive modeling and robust avoidance
of pedestrians with uncertain, changing intentions”. In: Algorithmic Foun-
dations of Robotics XI: Selected Contributions of the Eleventh International
Workshop on the Algorithmic Foundations of Robotics. Springer Interna-
tional Publishing, 2015, pp. 161–177.

[61] Angelos Filos et al. “Can Autonomous Vehicles Identify, Recover From,
and Adapt to Distribution Shifts?” In: International Conference on Machine
Learning. 2020.

[62] Paolo Fiorini and Zvi Shiller. “Motion planning in dynamic environments
using velocity obstacles”. In: International Journal of Robotics Research
(1998). issn: 02783649. doi: 10.1177/027836499801700706.

[63] Jaime Fisac et al. “Probabilistically Safe Robot Planning with Confidence-
Based Human Predictions”. In: Robotics: Science and Systems. 2018.

[64] Jaime F Fisac et al. “A general safety framework for learning-based control
in uncertain robotic systems”. In: IEEE Transactions on Automatic Control
(2018).

[65] Jaime F. Fisac et al. “A General Safety Framework for Learning-Based
Control inUncertainRobotic Systems”. In: arXiv preprint arXiv:1705.01292
(2018).

[66] Jaime F. Fisac et al. “Hierarchical game-theoretic planning for autonomous
vehicles”. In: International Conference on Robotics and Automation (ICRA).
2019, pp. 9590–9596. doi: 10.1109/ICRA.2019.8794007.

[67] Jaime F. Fisac et al. “Reach-avoid problems with time-varying dynamics,
targets and constraints”. In: International Conference on Hybrid Systems:
Computation and Control, HSCC. 2015. isbn: 9781450334334. doi: 10.
1145/2728606.2728612. arXiv: 1410.6445.

[68] Mojtaba Forghani et al. “Design of driver-assist systems under probabilistic
safety specifications near stop signs”. In: IEEE Transactions on Automation
Science and Engineering 13.1 (2016), pp. 43–53.

121

[69] David Fridovich-Keil et al. “Confidence-aware motion prediction for real-
time collision avoidance”. In: International Journal of Robotics Research
39.2-3 (Mar. 2020), pp. 250–265. issn: 0278-3649. doi:10.1177/0278364919859436.

[70] Yarin Gal and Zoubin Ghahramani. “Dropout as a Bayesian Approxima-
tion: Representing Model Uncertainty in Deep Learning”. In: International
Conference on Machine Learning. 2016.

[71] Javier García and Fernando Fernández. “A Comprehensive Survey on Safe
ReinforcementLearning”. In: Journal ofMachineLearningResearch (2015).
issn: 15337928. doi: 10.1109/TNNLS.2017.2654539.

[72] Chris Gaskett. “Reinforcement Learning in Circumstances Beyond its Con-
trol”. In: CIMCA. 2003.

[73] Jin I. Ge et al. “Experimental validation of connected automated vehicle
design among human-driven vehicles”. In: Transportation Research Part C:
Emerging Technologies (2018).

[74] DibyaGhosh et al. “Divide-and-Conquer Reinforcement Learning”. In:Neu-
ral Information Processing Systems (NeurIPS). Vol. abs/1711.09874. 2018.

[75] Tom Gibson. “Recycling Robots”. In:Mechanical Engineering 142.01 (Jan.
2020), pp. 32–37. issn: 0025-6501. doi: 10.1115/1.2020-JAN2. url:
https://doi.org/10.1115/1.2020-JAN2.

[76] JeremyH. Gillula and Claire J. Tomlin. “Guaranteed safe online learning via
reachability: Tracking a ground target using a quadrotor”. In: Proceedings
- IEEE International Conference on Robotics and Automation. 2012. isbn:
9781467314039. doi: 10.1109/ICRA.2012.6225136.

[77] Tobias Gindele, Sebastian Brechtel, and Rüdiger Dillmann. “A probabilis-
tic model for estimating driver behaviors and vehicle trajectories in traffic
environments”. In: 13th International IEEEConference on Intelligent Trans-
portation Systems. 2010, pp. 1625–1631.

[78] Andrew Gray et al. “Stochastic predictive control for semi-autonomous
vehicles with an uncertain driver model”. In: 2013 IEEE Intelligent Vehicles
Symposium (IV). 2013, pp. 2329–2334.

[79] Evan Greensmith, Pl Bartlett, and J Baxter. “Variance reduction techniques
for gradient estimates in reinforcement learning”. In: JMLR (2004).

[80] Shixiang Gu et al. “Deep reinforcement learning for robotic manipulation
with asynchronous off-policy updates”. In: IEEE international conference
on robotics and automation (ICRA). IEEE. 2017, pp. 3389–3396.

[81] Agrim Gupta et al. “Social GAN: Socially Acceptable Trajectories With
Generative Adversarial Networks”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). June 2018.

122

[82] Arjun K Gupta and Daya K Nagar. Matrix variate distributions. Chapman
and Hall/CRC, 2018.

[83] Thomas Gurriet et al. “Realizable set invariance conditions for cyber-
physical systems”. In: Proceedings of the American Control Conference.
2019. isbn: 9781538679265. doi: 10.23919/acc.2019.8815332.

[84] Tuomas Haarnoja et al. “Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor”. In: arXiv preprint
arXiv:1801.01290 (2018).

[85] Dylan Hadfield-Menell et al. “Cooperative inverse reinforcement learning”.
In: Advances in Neural Information Processing Systems. 2016.

[86] Astghik Hakobyan and Insoon Yang. “Learning-Based Distributionally Ro-
bust Motion Control with Gaussian Processes”. In: arXiv (2020).

[87] Chaozhe R. He, Jin I. Ge, and Gabor Orosz. “Data-based fuel-economy
optimization of connected automated trucks in traffic”. In: Annual American
Control Conference (ACC) (2018).

[88] Peter Henderson et al. “Deep Reinforcement Learning that Matters”. In:
AAAI Conference on Artificial Intelligence. 2018.

[89] Yeping Hu, Wei Zhan, and Masayoshi Tomizuka. “Probabilistic Prediction
of Vehicle Semantic Intention and Motion”. In: IEEE Intelligent Vehicles
Symposium. Vol. 2018-June. 2018, pp. 307–313.

[90] Riashat Islam et al. “Reproducibility of Benchmarked Deep Reinforcement
Learning of Tasks for Continuous Control”. In: Reproducibility in Machine
Learning Workshop. 2017.

[91] Lucas Janson, Tommy Hu, and Marco Pavone. “Safe Motion Planning in
Unknown Environments: Optimality Benchmarks and Tractable Policies”.
In: Robotics: Science and Systems. Pittsburgh, USA, June 2018.

[92] Tobias Johannink et al. “Residual Reinforcement Learning for Robot Con-
trol”. In: arXiv e-prints, arXiv:1812.03201 (Dec. 2018), arXiv:1812.03201.
arXiv: 1812.03201 [cs.RO].

[93] Gregory Kahn et al. “Uncertainty-Aware Reinforcement Learning for Col-
lision Avoidance”. In: arXiv (2017).

[94] Dmitry Kalashnikov et al. “Qt-opt: Scalable deep reinforcement learning for
vision-based robotic manipulation”. In: arXiv preprint arXiv:1806.10293
(2018).

[95] Richard Kelley et al. “Understanding Human Intentions via Hidden Markov
Models inAutonomousMobileRobots”. In:Proceedings of the 3rdACM/IEEE
International Conference on Human Robot Interaction. Amsterdam, The
Netherlands: Association for Computing Machinery, 2008, pp. 367–374.
isbn: 9781605580173. doi: 10.1145/1349822.1349870.

123

[96] Hassan K. Khalil. Nonlinear Systems (Third Edition). Prentice Hall, 2000.

[97] Mohammad Javad Khojasteh et al. “Probabilistic safety constraints for
learned high relative degree systemdynamics”. In:arXiv preprint arXiv:1912.10116
(2019).

[98] Torsten Koller et al. “Learning-based model predictive control for safe ex-
ploration”. In: 2018 IEEE Conference on Decision and Control (CDC).
IEEE. 2018.

[99] Torsten Koller et al. “Learning-based Model Predictive Control for Safe Ex-
ploration andReinforcementLearning”. In:arXiv preprint arXiv:1803.08287
(2018).

[100] Robert Krajewski et al. “The highD Dataset: A Drone Dataset of Natural-
istic Vehicle Trajectories on German Highways for Validation of Highly
Automated Driving Systems”. In: International Conference on Intelligent
Transportation Systems (ITSC). 2018.

[101] Matthew Kuipers and Petros Ioannou. “Multiple model adaptive control
with mixing”. In: IEEE Transactions on Automatic Control (2010).

[102] Minae Kwon et al. “When Humans Aren’t Optimal: Robots That Collab-
orate with Risk-Aware Humans”. In: Proceedings of the 2020 ACM/IEEE
International Conference on Human-Robot Interaction. Cambridge, United
Kingdom: Association for Computing Machinery, 2020, pp. 43–52. isbn:
9781450367462. doi: 10.1145/3319502.3374832.

[103] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. “Simple
and Scalable Predictive Uncertainty Estimation using Deep Ensembles”. In:
Advances in Neural Information Processing Systems 30. 2017, pp. 6402–
6413. arXiv: 1612.01474 [stat.ML].

[104] Chi Pang Lam and S. Shankar Sastry. “A POMDP framework for human-
in-the-loop system”. In: IEEE Conference on Decision and Control. 2014.

[105] Hoang M Le, Cameron Voloshin, and Yisong Yue. “Batch policy learn-
ing under constraints”. In: International Conference on Machine Learning.
2019.

[106] Michelle A Lee et al. “Guided Uncertainty-Aware Policy Optimization:
Combining Learning and Model-Based Strategies for Sample-Efficient Pol-
icy Learning”. In: arXiv preprint arXiv:2005.10872 (2020).

[107] Sergey Levine and Vladlen Koltun. “Guided Policy Search”. In: Proceed-
ings of the 30th International Conference on Machine Learning (ICML).
2013. isbn: 9781479969227. doi: 10.1109/ICRA.2015.7138994. arXiv:
arXiv:1501.05611v1.

[108] Nan Li et al. “Hierarchical reasoning game theory based approach for eval-
uation and testing of autonomous vehicle control systems”. In: IEEE Con-
ference on Decision and Control. 2016.

124

[109] Timothy P. Lillicrap et al. “Continuous control with deep reinforcement
learning”. In: arXiv preprint arXiv:1509.02971 (2015). issn: 1935-8237.
doi: 10.1561/2200000006. arXiv: 1509.02971.

[110] Anqi Liu et al. “Robust Regression for Safe Exploration in Control”. In:
vol. 120. PMLR, June 2020, pp. 608–619.

[111] Wei Liu et al. “Situation-aware decision making for autonomous driving
on urban road using online POMDP”. In: 2015 IEEE Intelligent Vehicles
Symposium (IV). 2015, pp. 1126–1133.

[112] Björn Lötjens, Michael Everett, and Jonathan P How. “Safe reinforcement
learning with model uncertainty estimates”. In: 2019 International Confer-
ence on Robotics and Automation (ICRA). IEEE. 2019, pp. 8662–8668.

[113] Christos Louizos and Max Welling. “Structured and efficient variational
deep learningwithmatrix gaussian posteriors”. In: International Conference
on Machine Learning. 2016, pp. 1708–1716.

[114] Wenhao Luo and Ashish Kapoor. “Multi-Robot Collision Avoidance un-
der Uncertainty with Probabilistic Safety Barrier Certificates”. In: arXiv
preprint arXiv:1912.09957 (2019).

[115] Tommaso Mannucci et al. “Safe Exploration Algorithms for Reinforce-
ment Learning Controllers”. In: IEEE Transactions on Neural Networks and
Learning Systems (2018). issn: 21622388. doi: 10.1109/TNNLS.2017.
2654539.

[116] Catharine L.R. McGhan, Ali Nasir, and Ella M. Atkins. “Human intent
prediction using Markov decision processes”. In: Journal of Aerospace
Information Systems (2015).

[117] Rhiannon Michelmore et al. “Uncertainty Quantification with Statistical
Guarantees in End-to-End Autonomous Driving Control”. In: IEEE Inter-
national Conference on Robotics and Automation (ICRA). 2020, pp. 7344–
7350.

[118] Chen Min. “TRUST AND INTENTION IN HUMAN-ROBOT INTERAC-
TION: A POMDP FRAMEWORK”. PhD thesis. National University of
Singapore, 2018.

[119] Branka Mirchevska et al. “High-level decision making for safe and reason-
able autonomous lane changing using reinforcement learning”. In: 21st In-
ternational Conference on Intelligent Transportation Systems (ITSC). IEEE.
2018, pp. 2156–2162.

[120] Volodymyr Mnih et al. “Playing atari with deep reinforcement learning”. In:
arXiv preprint arXiv:1312.5602 (2013).

[121] Thomas M Moerland, Joost Broekens, and Catholĳn M Jonker. “A frame-
work for reinforcement learning and planning”. In:arXiv preprint arXiv:2006.15009
(2020).

125

[122] Thomas M Moerland, Joost Broekens, and Catholĳn M Jonker. “Model-
based reinforcement learning:A survey”. In: arXiv preprint arXiv:2006.16712
(2020).

[123] Teodor Mihai Moldovan and Pieter Abbeel. “Safe Exploration in Markov
Decision Processes”. In: arXiv preprint arXiv:1205.4810 (2012).

[124] Douglas Morrison et al. “Cartman: The low-cost cartesian manipulator that
won the amazon robotics challenge”. In: IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2018, pp. 7757–7764.

[125] Anusha Nagabandi et al. “Neural Network Dynamics forModel-Based Deep
Reinforcement Learning with Model-Free Fine-Tuning”. In: arXiv e-prints,
arXiv:1708.02596 (Aug. 2017), arXiv:1708.02596. arXiv: 1708 . 02596
[cs.LG].

[126] Yashwanth Kumar Nakka et al. “Chance-Constrained Trajectory Optimiza-
tion for Safe Exploration and Learning of Nonlinear Systems”. In: arXiv
(2020).

[127] National Highway Traffic Safety Administration. Traffic Safety Facts Annual
Report. 2019.

[128] Quan Nguyen and Koushil Sreenath. “Exponential control barrier func-
tions for enforcing high relative-degree safety-critical constraints”. In: 2016
American Control Conference (ACC). IEEE. 2016, pp. 322–328.

[129] Duy Nguyen-Tuong, Matthias Seeger, and Jan Peters. “Local Gaussian Pro-
cess Regression for Real Time Online Model Learning and Control”. In:
Advances in neural information processing systems. 2009. isbn: 978-1-
4244-2057-5. doi: 10.1163/016918609X12529286896877.

[130] Haruki Nishimura et al. “Risk-Sensitive Sequential Action Control with
Multi-Modal Human Trajectory Forecasting for Safe Crowd-Robot Interac-
tion”. In: arXiv preprint arXiv:2009.05702 (2020).

[131] Motoya Ohnishi et al. “Safety-aware Adaptive Reinforcement Learning with
Applications to Brushbot Navigation”. In: arXiv preprint arXiv:1801.09627
(2018).

[132] Kristiaan Pelckmans et al. “Support and Quantile Tubes”. In: arXiv (2008).

[133] Theodore J Perkins and Andrew G Barto. “Lyapunov design for safe re-
inforcement learning”. In: Journal of Machine Learning Research (2003).
issn: 15324435. doi: 10.1162/jmlr.2003.3.4-5.803.

[134] Tung Phan-Minh, Karena X Cai, and RichardMMurray. “Towards Assume-
Guarantee Profiles for Autonomous Vehicles”. In: 2019 IEEE 58th Confer-
ence on Decision and Control (CDC). IEEE. 2019, pp. 2788–2795.

[135] Carl EdwardRasmussen andChristopherK.I.Williams.Gaussian Processes
for Machine Learning. 2006.

126

[136] Benjamin Recht. “A Tour of Reinforcement Learning: The View from Con-
tinuous Control”. In: Annual Review of Control, Robotics, and Autonomous
Systems 2.1 (2019), pp. 253–279.

[137] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using con-
nectionist systems. Vol. 37. University of Cambridge, Department of Engi-
neering Cambridge, UK, 1994.

[138] Amir Sadeghian et al. “SoPhie: An attentive GAN for predicting paths
compliant to social and physical constraints”. In: IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 2019, pp. 1349–1358.

[139] D. Sadigh et al. “Data-driven probabilistic modeling and verification of
human driver behavior”. In: AAAI Spring Symposium. 2014, pp. 56–61.

[140] Dorsa Sadigh and Ashish Kapoor. “Safe control under uncertainty with
Probabilistic Signal Temporal Logic”. In: Robotics: Science and Systems.
Vol. 12. 2016.

[141] Dorsa Sadigh et al. “Planning for autonomous cars that leverage effects on
human actions”. In: Robotics: Science and Systems. 2016.

[142] Dorsa Sadigh et al. “Planning for cars that coordinatewith people: leveraging
effects on human actions for planning and active information gathering over
human internal state”. In: Autonomous Robots (2018).

[143] Tim Salzmann et al. “Trajectron++: Multi-Agent Generative Trajectory
ForecastingWith Heterogeneous Data for Control”. In: arXiv (2020). arXiv:
2001.03093.

[144] Hossein Sartipizadeh and Behçet Açıkmeşe. “Approximate convex hull
based scenario truncation for chance constrained trajectory optimization”.
In: Automatica 112 (2020).

[145] TomSchaul et al. “Prioritized experience replay”. In: arXiv preprint arXiv:1511.05952
(2015).

[146] John Schulman et al. “High-Dimensional Continuous Control Using Gen-
eralized Advantage Estimation”. In: International Conference on Learning
Representations (2016).

[147] John Schulman et al. “Proximal Policy Optimization Algorithms”. In: arXiv
e-prints, arXiv:1707.06347 (July 2017), arXiv:1707.06347. arXiv: 1707.
06347 [cs.LG].

[148] John Schulman et al. “Trust Region Policy Optimization”. In: International
Conference on Machine Learning (ICML). 2015.

[149] Shai Shalev-Shwartz, Shaked Shammah, andAmnon Shashua. “On a Formal
Model of Safe and Scalable Self-driving Cars”. In: arXiv (2017).

127

[150] David Silver et al. “Deterministic Policy Gradient Algorithms”. In:Proceed-
ings of the 31st International Conference on Machine Learning (ICML-14)
(2014). issn: 1938-7228.

[151] David Silver et al. “Mastering the game of go without human knowledge”.
In: Nature 550.7676 (2017), pp. 354–359.

[152] TomSilver et al. “Residual policy learning”. In: arXiv preprint arXiv:1812.06298
(2018).

[153] Andrew Singletary et al. “Online Active Safety for Robotic Manipula-
tors”. In: 2020. isbn: 9781728140049. doi: 10.1109/iros40897.2019.
8968231.

[154] Andrew Singletary et al. “Safety-critical rapid aerial exploration of unknown
environments”. In: 2020 IEEE International Conference on Robotics and
Automation (ICRA). IEEE. 2020, pp. 10270–10276.

[155] EdwardSnelson andZoubinGhahramani. “Local and global sparseGaussian
process approximations”. In: Proceedings of the International Conference
on Artificial Intelligence and Statistics (AISTATS) (2007). issn: 15324435.

[156] Mohit Srinivasan, Nak-seung PHyun, and Samuel Coogan. “Weighted Polar
Finite Time Control Barrier Functions With Applications To Multi-Robot
Systems”. In: IEEE Conference on Decision and Control. 2019.

[157] Mohit Srinivasan et al. “Synthesis of Control Barrier Functions using a
Supervised Machine Learning Approach”. In: arXiv (2020).

[158] ShengyangSun,ChangyouChen, andLawrenceCarin. “Learning Structured
Weight Uncertainty in Bayesian Neural Networks”. In: International Con-
ference on Artificial Intelligence and Statistics (AISTATS). 2017, pp. 1283–
1292.

[159] Richard Sutton et al. “Policy Gradient Methods for Reinforcement Learning
with Function Approximation”. In: Advances in Neural Information Pro-
cessing Systems (1999). arXiv: 1609.06838.

[160] Richard S Sutton. “First results with Dyna, an integrated architecture for
learning, planning and reacting”. In:Neural networks for control 179 (1990).

[161] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An In-
troduction. Vol. 2. 3. MIT press Cambridge, MA, 2006.

[162] Natasa Tagasovska and David Lopez-Paz. “Single-Model Uncertainties for
Deep Learning”. In: Neural Information Processing Systems. 2018.

[163] Jie Tang et al. “Parameterized maneuver learning for autonomous helicopter
flight”. In: Proceedings - IEEE International Conference on Robotics and
Automation. 2010. isbn: 9781424450381. doi: 10.1109/ROBOT.2010.
5509832.

128

[164] Duy Tran et al. “A Hidden Markov Model based driver intention predic-
tion system”. In: IEEE International Conference on Cyber Technology in
Automation, Control, and Intelligent Systems (CYBER). 2015, pp. 115–120.

[165] Pete Trautman et al. “Robot navigation in dense human crowds: Statistical
models and experimental studies of human-robot cooperation”. In: The In-
ternational Journal of Robotics Research 34.3 (2015), pp. 335–356. doi:
10.1177/0278364914557874.

[166] Peter Trautman and Andreas Krause. “Unfreezing the robot: Navigation in
dense, interacting crowds”. In: IEEE IROS. 2010.

[167] Jur Den Van Berg, Ming Lin, and Dinesh Manocha. “Reciprocal velocity
obstacles for real-timemulti-agent navigation”. In:Proceedings - IEEE Inter-
nationalConference onRobotics andAutomation. 2008. isbn: 9781424416479.
doi: 10.1109/ROBOT.2008.4543489.

[168] AbhinavVerma et al. “Programmatically InterpretableReinforcementLearn-
ing”. In: International Conference on Machine Learning (ICML). 2018.

[169] Kim P Wabersich and Melanie N Zeilinger. “Safe exploration of nonlinear
dynamical systems: A predictive safety filter for reinforcement learning”.
In: arXiv preprint arXiv:1812.05506 (2018).

[170] Akifumi Wachi et al. “Safe Exploration and Optimization of Constrained
MDPs using Gaussian Processes”. In: 32nd AAAI conference on Artificial
Intelligence (AAAI) (2018).

[171] Niklas Wahlström, Thomas B Schön, and Marc Peter Deisenroth. “From
pixels to torques: Policy learning with deep dynamical models”. In: arXiv
preprint arXiv:1502.02251 (2015).

[172] Li Wang, Aaron Ames, and Magnus Egerstedt. “Safety barrier certificates
for heterogeneous multi-robot systems”. In: Proceedings of the American
Control Conference. 2016. isbn: 9781467386821. doi: 10.1109/ACC.
2016.7526486. arXiv: 1609.00651.

[173] Li Wang, Evangelos A Theodorou, and Magnus Egerstedt. “Safe learning of
quadrotor dynamics using barrier certificates”. In: International Conference
on Robotics and Automation (ICRA). IEEE. 2018.

[174] Mingyu Wang et al. “Safe Distributed Lane Change Maneuvers for Mul-
tiple Autonomous Vehicles Using Buffered Input Cells”. In: International
Conference on Robotics and Automation. 2018. isbn: 9781538630815. doi:
10.1109/ICRA.2018.8460898.

[175] Waymo Safety Report. Waymo. 2020.

[176] Lex Weaver and Nigel Tao. “The Optimal Reward Baseline for Gradient-
Based Reinforcement Learning”. In: Uncertainty in Artificial Intelligence
(UAI). 2001.

129

[177] DavidWilkie, Jur Van Den Berg, and DineshManocha. “Generalized veloc-
ity obstacles”. In: International Conference on Intelligent Robots and Sys-
tems. 2009. isbn: 9781424438044. doi: 10.1109/IROS.2009.5354175.

[178] Ronald J. Williams. “Simple statistical gradient-following algorithms for
connectionist reinforcement learning”. In: Machine Learning (1992).

[179] Cathy Wu et al. “Variance Reduction for Policy Gradient with Action-
Dependent Factorized Baselines”. In: International Conference on Learning
Representations. 2018.

[180] Bernhard Wymann et al. TORCS, The Open Racing Car Simulator. 2014.

[181] WendaXu et al. “Motion planning under uncertainty for on-road autonomous
driving”. In: IEEE ICRA. 2014.

[182] Guang Yang, Calin Belta, and Roberto Tron. “Self-triggered control for
safety critical systems using control barrier functions”. In: 2019 American
Control Conference (ACC). IEEE. 2019, pp. 4454–4459.

[183] Je Hong Yoo and Reza Langari. “A stackelberg game theoretic driver model
for merging”. In: ASMEDynamic Systems and Control Conference (DSCC).
2013.

[184] Marvin Zhang et al. “Solar: Deep structured representations for model-
based reinforcement learning”. In: International Conference on Machine
Learning. PMLR. 2019, pp. 7444–7453.

[185] Wenbo Zhang, Osbert Bastani, and Vĳay Kumar. “MAMPS: Safe Multi-
Agent Reinforcement Learning via Model Predictive Shielding”. In: arXiv
e-prints, arXiv:1910.12639 (Oct. 2019), arXiv:1910.12639. arXiv: 1910.
12639 [eess.SY].

[186] Tingting Zhao et al. “Analysis and improvement of policy gradient estima-
tion”. In: Neural Networks (2012).

[187] Dingjiang Zhou et al. “Fast, On-line Collision Avoidance for Dynamic Ve-
hicles Using Buffered Voronoi Cells”. In: IEEE Robotics and Automation
Letters (2017). issn: 23773766. doi: 10.1109/LRA.2017.2656241.

[188] Brian D. Ziebart et al. “Maximum entropy inverse reinforcement learning”.
In: Proceedings of the National Conference on Artificial Intelligence. Vol. 3.
2008, pp. 1433–1438.

