
Data-Driven Protein Engineering

Thesis by
Zachary Wu

In Partial Fulfillment of the Requirements for the
Degree of

Chemical Engineering

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2021
Defended June 25, 2020

ii

© 2021

Zachary Wu
ORCID: 0000-0003-2429-9812

All rights reserved

To my parents, Tsui-Feng Chang and Chang-Nien Wu, for their love and nurturing

and to Andrea Wu, my sister and life-long best friend

"All models are wrong, but some are useful."

George E. P. Box

v

ACKNOWLEDGEMENTS

Caltech has the smallest campus I’ve ever seen. The annual 5K run actually requires
two laps around campus, which I discovered after spending all my energy on the first.
Despite its compactness, it’s quite easy to get lost in the sheer quantity of exciting
research, especially considering the passion of those conducting it.

Therefore, I must thank first and foremost my advisor, Frances Arnold, for guiding
me on this journey. Frances has an uncanny ability to discern not only what is
interesting research, but useful as well, and that is only one angle by which she is
able to challenge and sharpen ideas and their implementation. I am deeply grateful
for both the freedom she has given to me and the (mostly) gentle direction needed to
put it to good use.

Caltech is filled with numerous instructors to guide the students and research. I
am particularly grateful for Yisong Yue, who is a patient and insightful teacher
that has guided me both in all of my machine learning coursework and in project
design. My meetings with Yisong have become less regular over the years, but
each provided ample guidance for months. Zhen-Gang Wang and Tom Miller
gave me an appreciation for statistical thermodynamics that enabled a smoother
transition to machine learning, and Justin Bois taught me how to think carefully
about experimental data. Justin Bois and Mike Vicic are two of the most passionate
individuals I’ve met in mentoring students, and they are my role models for teaching.
Caltech is much brighter with them leading. I am also grateful for the chair of my
thesis committee, David Tirrell, who has a sharp insight with breathtaking scope that
is always ready to challenge and improve ideas in any field.

I thank Amazon Web Services, BASF, the NIH, and the NSF for funding various
portions of my projects. I am particularly grateful to Alex Ford and Michael Liszka
for their irreplaceable help in collaborations with the first two companies, and to
Kimberly Mayer for showing me how to communicate science effectively in writing.

The Arnold group is an excellent place to meet some of the most talented and caring
people, and I am immensely thankful to Oliver Brandenberg, my rotation mentor,
for getting me started. I am grateful to have overlapped with many members of the
Arnold group, but particularly thankful to have met Grzegorz Kubik, Rusty Lewis,
Jennifer Kan, David Romney, Tina and Brad Boville, and Xiongyi Huang. Of course,
Sabine Brinkmann-Chen and Nat Goldberg, who keep us all happy and safe (an often

vi

thankless job), deserve special mention. I am also incredibly grateful for finding a
crew that I could always count on in Samuel Ho, Kari Hernandez, and Kelly Zhang.
I’m happy that we’re still navigating adulthood together even after you’ve all left me
in Pasadena. Kelly deserves special mention, as she has challenged me and supported
me in ways I didn’t know I needed.

The Arnold group has a long history of convincing proteins to improve with machine
learning. I was very fortunate to spend most of my graduate career with Kevin Yang.
I couldn’t ask for a better colleague and friend, and this field is much cozier knowing
he’s a part of it. Sometimes I forget he’s graduated given the amount we keep up,
but there’s so many interesting things coming out to talk about! Within our growing
machine learning subgroup, I am particularly grateful to have worked with Alycia
Lee, Bruce Wittmann, and Kadina Johnston. I hope I’ve been able to give back a
fraction of what you’ve taught me.

I must also thank the communities I was so fortunate to be a part of in Pasadena,
including pickup basketball, chamber music, and Epicentre. I will miss you all
dearly.

Most importantly, I thank my family for their never-ending support. My parents and
sister have showered me with unconditional love in ways that still amaze me. It’s
been a crazy journey since I left our cozy town, but my home will always be with
you.

vii

ABSTRACT

Directed evolution has enabled the adaptation of natural protein sequences for an
endless variety of human applications. Given a starting point — a sequence with
measurable activity — directed evolution is able to improve protein sequences by
iteratively accumulating beneficial mutations. However, directed evolution requires
investing large experimental effort, which continues to be the major bottleneck in
efficient protein optimization. To this end, we describe a framework for incorporating
machine learning in the directed evolution process to maximize the utility of generated
experimental data in Chapter 2. In Chapter 3, we then show that this framework
outperforms traditional directed evolution methods on an empirical fitness landscape.
However, directed evolution is fundamentally limited by its need for a starting point,
or a sequence with measurable activity. To tackle this issue, we test the ability
of nascent deep learning techniques for generating short, functional amino acid
sequences in Chapter 4. Encouraged by this success, we attempted to generate full
length enzymatic sequences for desired substrates without success. However, we
were able to apply this deep learning approach to model other aspects of enzymatic
protein sequences in Chapter 5. Finally, the field of data-driven protein sequence
generation is enjoying a recent surge in interest, and we provide an updated review
of protein engineering with machine learning, focusing on recent work in deep
generative modeling in Chapter 1.

viii

PUBLISHED CONTENT AND CONTRIBUTIONS

1. Wu, Z. et al. Signal Peptides Generated by Attention-Based Neural Networks.
ACS Synthetic Biology 9, 2154–2161. doi:10.1021/acssynbio.0c00219
(2020).
Z.W. conceived and directed this study. Z.W. participated in analyzing the gen-
erative model results and planning the experimental validation. Z.W. analyzed
the experimental results and wrote the manuscript.

2. Wu, Z., Kan, S. B. J., Lewis, R. D., Wittmann, B. J. & Arnold, F. H. Machine
learning-assisted directed protein evolution with combinatorial libraries. Proc
Natl Acad Sci USA. doi:10.1073/pnas.1901979116 (2019).
Z.W. conceived the study and performed all experiments, simulations, and data
analysis.

3. Yang,K.K.,Wu, Z.&Arnold, F. H.Machine-learning-guided directed evolution
for protein engineering. Nature Methods 16, 687–694. doi:10.1038/s41592-
019-0496-6 (2019).
Z.W. participated in the writing of this review.

http://dx.doi.org/10.1021/acssynbio.0c00219
http://dx.doi.org/10.1073/pnas.1901979116
http://dx.doi.org/10.1038/s41592-019-0496-6
http://dx.doi.org/10.1038/s41592-019-0496-6

ix

TABLE OF CONTENTS

Acknowledgements . v
Abstract . vii
Published Content and Contributions . viii
Table of Contents . viii
List of Illustrations . xi
List of Tables . xvii
Chapter I: Engineering Protein Sequences with Deep Learning 1

1.1 Abstract . 1
1.2 Introduction . 1
1.3 Learned Representations in Regression Models 2
1.4 Generative Models: Introduction 3
1.5 Optimization with Generative Models 10
1.6 Conclusions and Future Directions 12
1.7 Bibliography . 14

Chapter II:Machine Learning-GuidedCombinatorialMutagenesis for Evolving
Stereodivergence . 19
2.1 Abstract . 19
2.2 Introduction . 19
2.3 Results . 21
2.4 Discussion . 29
2.5 Materials and Methods . 31
2.6 Supplemental Information . 36
2.7 Bibliography . 57

Chapter III: Comparing Evolutionary Strategies on an Empirical and Epistatic
Fitness Landscape . 61
3.1 Abstract . 61
3.2 Introduction . 61
3.3 Results . 63
3.4 Discussion . 68
3.5 Materials and Methods . 69
3.6 Supplemental Information . 70
3.7 Bibliography . 73

Chapter IV: Signal Peptides Generated by Attention-Based Neural Networks . 76
4.1 Abstact . 76
4.2 Introduction . 76
4.3 Results . 78
4.4 Discussion . 87
4.5 Materials and Methods . 88
4.6 Supplemental Information . 92

x

4.7 Bibliography . 132
Chapter V: Language Modeling for Enzyme-Substrate Interactions 135

5.1 Abstract . 135
5.2 Introduction . 135
5.3 Background and Related Work . 136
5.4 Training Data Collection and Representation 138
5.5 Training Task and Model . 139
5.6 Results . 142
5.7 Conclusions and Future Work . 145
5.8 Bibliography . 146

xi

LIST OF ILLUSTRATIONS

Number Page
1.1 (A) Variational Autoencoders (VAEs) are tasked with encoding se-

quences in a structured latent space. Samples from this latent space
may then be decoded to functional protein sequences. (B) Generative
Adversarial Networks (GANs) have two networks locked in a Nash
equilibrium: the generative network generates synthetic data that
look real, while the discriminative modelvdiscerns between real and
synthetic data. (C) autoregressive models predict the next amino acid
in a protein given the amino-acid sequence up to that point. 4

2.1 (A) Directed evolution with single mutations. If limited to single
mutations, identifying optimal amino acids for N positions requires
N rounds of evolution. (B) Machine learning-assisted directed evo-
lution. Due to increased throughput provided by screening in silico,
four positions can be explored simultaneously in a single round, en-
abling a broader search of sequence-function relationships and deeper
exploration of epistatic interactions. 22

2.2 Carbon–silicon bond formation catalyzed by heme-containing ni-
tric oxide dioxygenase from R. marinus to form individual product
enantiomers with high selectivity. 23

2.3 Structural homology model of Rma NOD and positions of mutated
residues made by SWISS-MODEL (B) Evolutionary lineage of the
two rounds of evolution. (C) Summary statistics for each round. . . . 24

2.4 A library’s fitness values can be visualized as a 1-dimensional distri-
bution, in this case as kernel density estimates over corresponding
rug plots. This figure shows subplots for each library illustrating the
changes between input (lighter) and predicted (darker) libraries for
the (S)- (cyan) and (R)-enantiomers (red). The initial input library
for Set I is shown in gray. The predicted (darker) libraries for each
round are shifted toward the right and left of the distributions for the
(S)- and (R)-enantiomers, respectively. For reference, dotted lines are
shown for no enantiopreference (0 % ee). 28

2.5 Predicted vs measured values for ee from Set I. 41

xii

2.6 Predicted vs measured values for ee from position Set II from GSSG. 42
2.7 Predicted vs Measured Values for ee from Position Set II from VCHV. 43
2.8 Input versus predicted sequences for modeling position Set I. 45
2.9 Input versus predicted sequences for modeling Set II from GSSG. . . 46

2.10 Input versus predicted sequences for modeling Set II from VCHV. . . 46
2.11 Summary of Chiral SFC trace. All the ee values of synthesized

organosilicon products were determined using automatic peak integra-
tion from chiral SFC. The traces for racemic and enzymatic products
are shown with summarized integration. 47

3.1 Top: Traditional directed evolution. After experimentation, only
the best variant(s) are kept for future rounds of evolution. Bottom:
Machine Learning-Assisted Directed Evolution. Information from all
experiments is used to train a supervised machine learning model and
used to identify the best variant(s) in a round of in silico testing . . . 63

3.2 (A) Highest fitness values found by directed evolution and directed
evolution assisted by machine learning. The distribution of fitness
peaks found by iterative site-saturation mutagenesis from all labeled
variants (149,361 out of 204 possible covering four residues) is
shown in red. The distribution of fitness peaks found by 10,000
recombination runs with an average of 570 variants tested is shown in
blue. The distribution of the highest fitnesses found from 600 runs
of the machine learning-assisted approach is shown in green. In all
approaches, 570 variants are tested. For reference, the distribution of
all measured fitness values in the landscape is shown in gray. (B) The
same evolutionary distributions are shown as empirical cumulative
distribution functions, where the ordinate at any specified fitness value
is the fraction of evolutionary runs that reach a fitness less than or equal
to that specified value. Machine learning-assisted evolution walks are
more likely to reach higher fitness levels compared to conventional
directed evolution. 67

3.3 Highest fitnesses found with less accurate models. 72
3.4 Highest fitnesses found with other directed evolution approaches. . . 73
4.1 Sequence-to-sequence modeling for signal peptide (SP) amino acid

sequences. During training, the first 100 amino acids of the protein
are tokenized and embedded. 79

xiii

4.2 Generated signal peptides enable secreted enzyme activities that are
comparable to natural SPs. The highest-performing natural (labeled
“pos”) and machine-generated (labeled “gen”) SPs are shown for the
7 enzymes where both were tested. Of these 7 enzymes, 4 exhibited
the same or higher supernatant activity with generated SPs (top row),
and 3 exhibited higher supernatant activity with native Bacillus SPs
(bottom row). P-values are provided for reference for a two-sided
t-test with unequal variance for two independent samples of scores,
where the null hypothesis is that the samples have identical expected
values. 83

4.3 a) Percent sequence identity of various SPs to the closest matching
natural SPs in Swiss-Prot, including 1) Functional Generated SPs
(73% ± 9%), 2) Nonfunctional Generated SPs (70% ± 8%), and 3) a
withheld set of 256 Natural SPs (82% ± 10%). Functional generated
SPs have statistically significant lower percent identity (p-value =
3.3 × 10−7). b) Multiple sequence alignment of the most diverse
functional generated SP (58% identity to closest natural SP) with
native SPs. Color groups follow those in ClustalW. 85

4.4 a) Receiver Operating Characteristic (ROC) curve for the prediction
of functional constructs with machine-generated SPs. The SignalP
5.0 web server, an exemplary tool for natural SP annotation, performs
poorly on this task, with AUC=0.59 (compared to 0.50 for random
guess). b) Probability predictions for functional and nonfunctional
generated SP constructs. Most constructs are predicted to be functional
with high probability. 87

4.5 Probability of generated sequences as predicted by SignalP 5.0 The
sequences are generated by either a pHMM, heuristic-based approach,
VAE, or Transformer model. Results are summarized in the table below. 97

4.6 Experimental validation of Protease 5. 100
4.7 Experimental validation of Amylase 1. 101
4.8 Experimental validation of Amylase 4. 102
4.9 Experimental validation of Amylase 2. 103

4.10 Experimental validation of Amylase 3. 104
4.11 Experimental validation of Amylase 15. 105
4.12 Experimental validation of Lipase 5. 106
4.13 Experimental validation of Protease 3. 107

xiv

4.14 Experimental validation of Xylanase 3. 108
4.15 Experimental validation of Xylanase 4. 109
4.16 Experimental validation of Amylase 1 at higher dilution. 110
4.17 Experimental validation of Amylase 2 at higher dilution. 111
4.18 Experimental validation of Amylase 3 at higher dilution. 112
4.19 Experimental validation of Amylase 4 at higher dilution. 113
4.20 Experimental validation of Amylase 15 at higher dilution. 114
4.21 Experimental validation of Xylanase 3 at higher dilution. 115
4.22 Experimental validation of Xylanase 4 at higher dilution. 116
4.23 MSA for MGFRLKALLVGCLIFLAVSSAIA 118
4.24 MSA for MIKTLLVSSILIPCLATGA 118
4.25 MSA for MIRLKRLLAGLLLPLFVTAFG 118
4.26 MSA for MKCCRIMFVLLGLWFVFGLSVPGGRTEA 119
4.27 MSA for MKFFNPFKVIALACISGALATAQA 119
4.28 MSA for MKFLILATLSIFTGILA 119
4.29 MSA for MKFLSTAFVLLIALVAGCSTA 119
4.30 MSA for MKFQDLTLVLSLSTALA 120
4.31 MSA for MKKKIAITLLFLSLLNRA 120
4.32 MSA for MKKKIVAVLTLSVVLA 120
4.33 MSA for MKKLLILACLLISSLES 120
4.34 MSA for MKKLLVIAALACGVATAQA 121
4.35 MSA for MKKRLHIGLLLSLIAFQAGFA 121
4.36 MSA for MKKRVISALAALWLSVLGAPAVLA 121
4.37 MSA for MKKSLISFLALGLLFGSAFA 121
4.38 MSA for MKKTGFIGKTLALVIAAGMAGTAAFA 122
4.39 MSA for MKLIPNKKTLIAGILAISTSFAYS 122
4.40 MSA for MKLKKLGVILAICLGISSTFA 122
4.41 MSA for MKLLTSFVLIGALAFA 122
4.42 MSA for MKLSQSLTYLAVLGLAAGANA 123
4.43 MSA for MKMRTGKKGFLSILLAFLLVITSIPFTLVDVEA 123
4.44 MSA for MKNFATLSAVLAGATALA 123
4.45 MSA for MKVFTLAFAIICQLFASA 123
4.46 MSA for MKVFTLAFFLAIIVSQA 124
4.47 MSA for MLKKLAMAVGAMLTSISFLLPSSAQA 124
4.48 MSA for MLKRFLTLFLGFLALASSLA 124
4.49 MSA for MLKRFVKLAVIALAFAYVSA 124

xv

4.50 MSA for MNIRLGALLAGLLLSAMASAVFA 125
4.51 MSA for MNKKFKTIMALAIATLSAAGVGVAHA 125
4.52 MSA for MQKKTAIAIAAGTAIATVAAGTQA 125
4.53 MSA for MRLIVFLATSATSLFASLA 125
4.54 MSA for MRRLFLLSSLASLSVASA 126
4.55 MSA for MSNKPAKCLAVLAAIATLSATQA 126
4.56 MSA for MTKFLLSLIFITIASALA 126
4.57 MSA for MTKLLAVIAASLMFAASTFA 126
4.58 MSA for MTRSLFIFSLLALAIFSGVSASA 127
4.59 MSA for MTSYEFLLVILGVLLSGA 127
4.60 MSA for MVSFKSALFAAAAVATVADA 127
4.61 MSA for MVSFSSLLAAASLAVVNA 127
4.62 MSA for MVSFSSLNALFLATVLA 128
4.63 MSA for MVSNKRVLALSALFGCCSLASA 128
4.64 MSA for MVTMKLRLIALAVCLCTFINASFA 128
4.65 MSA for MYSLIPSLAVLAALSFAVSA 128
5.1 The architecture diagram for our enzyme-substrate model. We use

three heterogeneous data sources: the protein primary sequence,
the substrate, and the functionality relationship flag. We directly
embed the 21 unique amino acids in the protein primary sequence,
as well as the binary function flag. For each substrate, we use the
tree-based molecular decomposition from Jin et al to form connection
graphs of identified molecular subunits, and embed each of these 568
nodes. Because substrates have relatively few nodes, we represent
their graphical structure with the binary connection matrix, with each
node containing an embedding with 3ℎ8334= equal to the maximum size
of the connection. We then tile each 1D embedding in the horizontal
and vertical directions to form 2D matrices of the same shape as the
connection matrix. Each position in these matrices is then convolved
to a linear representation of length 45 to return an embedding of
the substrate. After concatenating, we use the sinusoidal positional
embedding, followed by # = 6 layers of self-attention. We have one
final linear layer to predict the output. 141

xvi

5.2 ROC curve for reactant/non-reactant classification of functional
protein-substrate pairs new to BRENDA’s July 2019 release compared
to BRENDA January 2019. Of the 3730 explicit true protein-substrate
new pairs, 2900 (78%) are correctly identified as functional. 143

5.3 Sample generated amino acid sequences given SMILES strings. Se-
quences were generated by beam search from left to right, with a beam
size of five, given a starting Methionine (M). The structures of the
molecules as well as the common name are also shown. Generated
protein sequences are prone to repetition, suggesting that the model
has not learned positional information. 145

xvii

LIST OF TABLES

Number Page
2.1 Summary of the most (S)- and (R)-selective variants in the input

and predicted libraries in Set I (K32, F46, L56, L97). The parent
sequences used for Set II for (S)- and (R)-selectivity are shown in
cyan and red, respectively. 26

2.2 Summary of the most (S)- and (R)-selective variants in the input and
predicted libraries in Position Set II (P49, R51, I53). Mutations that
improve selectivity for the (S)-enantiomer appear in the background
of [32V, 46C, 56H, 97V (VCHV)] and for the (R)-enantiomer are in
[32G, 46S, 56S, 97G (GSSG)]. Activity increase over the starting
variant, 32K, 46F, 56L, 97L (KFLL), is shown for the final variants.
The parent sequences used for evolving for (S)- and (R)-selectivity are
highlighted in cyan and red, respectively. 27

2.3 Sample Prediction Frequency Table 36
2.4 Summary of starting activity observed in Rma NOD variants. 37
2.5 Test errors for Set I from predicted (R)- and (S)- libraries 38
2.6 Test errors for Set II from predicted (R)- library 38
2.7 Test errors for Set II from predicted (S)- library 39
2.8 Relative activity compared to starting sequence - Set I 39
2.9 Relative activity compared to starting sequence - Set II 40

2.10 Activity is significantly improved over starting variant KFLL 48
2.11 Enantioselectivity in Set II is significantly improved over starting

variant GSSG . 48
2.12 Enantioselectivity in Set II is significantly improved over starting

variant VCHV . 49
3.1 Expected value for fitness reached and fraction of simulated evolutions

that reach the maximum fitness value of various evolutionary strategies. 71
4.1 Summary of protein-SP constructs that are functional. 82
4.2 Primers used to generate linear DNA fragments. 92
4.3 Enzymatic reaction conditions . 93
4.4 Enzyme production strains. 94
4.5 Distribution of Protein and SP lengths, as obtained from Swiss-Prot. . 94

xviii

4.6 Distribution of SignalP Probabilities for sequences generated by a
profile Hidden Markov Model, heuristics, a variational autoencoder,
and a Transformer model. 97

4.7 Comparing normalized log likelihood on withheld validation set
between a trained VAE and Transformer. 98

4.8 Comparing sample sequences generated by a VAE versus Transformer 98
4.9 Comparing longest repeating substrings of ' unique characters be-

tween a trained VAE and Transformer. 98
4.10 Comparing physicochemical properties of functional vs nonfunctional

generated SPs. 117
4.11 Enzyme sequences used for testing 130
4.12 Sequences of Generated SPs . 131
5.1 Results on the functionality classification for human cytochrome

P450 (CYP450) isoforms with data splits obtained from CypReact.
CypReact trained individual supervised models for each CYP450
isoform with 1632 substrates for a total of 14688 training data, and
various features derived from molecular fingerprints and physical
properties. Our EnzPred model was trained on data parsed from
BRENDA v2019.1, which contained 32 explicit CYP450-substrate
pairs, and 612 pairs inferred by matching substrated within each EC
class to each CYP variant. 144

1

C h a p t e r 1

ENGINEERING PROTEIN SEQUENCES WITH DEEP LEARNING

Contributions Statement: Zachary Wu performed the literature review and wrote the
initial draft. Sabine Brinkmann-Chen, Kadina Johnston, and Kevin Kaichuang Yang
provided helpful suggestions and edits.

1.1 Abstract
Protein engineering seeks to identify protein sequences with optimized properties.
When guided by machine learning, protein sequence generation methods can draw on
prior knowledge and experimental efforts to improve this process. In this chapter, we
highlight recent applications of machine learning in generation of protein sequences,
focusing on the emerging field of deep generative methods. The first section, learned
representations in regression models, is a logical progression to the work we present
in Chapters 2 and 3. By pre-training models to learn representations on all protein
sequences, regression models have reduced burden in modeling downstream protein
tasks. We attempt a similar approach to co-representing proteins and small molecules
in Chapter 5. The next section, generative models, discusses popular methods for
functional sequence generation, including our recent work published in Chapter 4.
We end this review chapter with recent research in optimizing with deep generative
models, which captures the protein engineer’s desire for identifying fitness optima to
these emerging approaches.

1.2 Introduction
Proteins are highly-regarded as the workhorse molecules of natural life, and they are
quickly being adapted for human-designed purposes as well. These macromolecules
are encoded as linear chains of amino acids, which then fold into dynamic 3-
dimensional structures that accomplish a staggering variety of functions. To improve
proteins for human purposes and new-to-nature reactions, protein engineers have
developed a variety experimental and computational methods for designing their
sequences and structures [1–4]. A developing paradigm, machine learning-guided
protein engineering, promises to leverage the information obtained from wet-lab
experiments with data-driven models [5–7].

Much of the early work has focused on incorporating regressive models trained on

2

fitness measurements related to specific tasks to guide protein engineering [5]. As
protein engineering is an optimization process for improving protein properties (such
as selectivity or stability), other optimization methods also have strong potential.
Specifically, unsupervised learning approaches are improving the protein engineering
paradigm. While studies incorporating knowledge of protein structure are becoming
increasingly powerful [8–11], they are beyond the scope of this review, and we focus
on deep generative models of protein sequence.

We discuss three applications of deep generative models in protein engineering. In
the first section, we briefly highlight the incorporation of learned protein sequence
embeddings in downstream supervised engineering tasks, an important improvement
to an established framework for protein engineering. In the second, we highlight
examples of protein sequence generation through popular generative models. Finally,
we highlight emerging examples of optimization with generative models in protein
sequence design. Where possible, these methods are introduced with case studies
that have validated these generated sequences in vitro.

1.3 Learned Representations in Regression Models
An established framework for applying machine learning to guide protein engineering
is through the training and application of supervised regression models for specific
tasks, which is better reviewed elsewhere [5, 6]. Early examples of this approach were
developed by Fox [12] and Liao [13] in learning the relationship between cyanation
and hydrolysis activity (respectively). Briefly, in this approach, sequence-function
experimental data are used to train regressive models. These models are then used
as estimates for the true experimental value, and can be used to search through and
identify beneficial sequences in silico. In training these regressive models, one-hot
encodings are a powerful baseline for representing protein sequences. However,
embeddings learned by deep learning have the potential to provide more informative
encodings.

For example, Biswas and coauthors recently applied learned representation from a
Long Short-Term Memory (LSTM) network to encode protein sequences [14]. First,
they train an LSTM to predict the next amino acid in a protein given the previous
amino acids using sequences in UniRef50 [15]. They fine-tune this representation on
evolutionarily related sequences, and then use the activations from the penultimate
layer to represent each position in an input protein sequence. The authors propose that
this approach is capable of generating meaningful encodings for protein sequences.

3

The desired advantage of this approach over directly embedding physicochemical
properties [16] is that the deep representation includes contextual information, such
that the downstream supervised model does not have to see examples of a position’s
mutations in order to make accurate predictions at that position. While this ideal may
never be achieved, Biswas and coauthors show promising results when applied to two
tasks: improving the fluorescence activity of Aequorea victoria green fluorescent
protein (avGFP) and in optimizing TEM-1 β-lactamase. After training on just
24 randomly selected sequences, this approach consistently outperforms one-hot
encodings with 5 to 10 times the hit rate (defined as the fraction of proposed sequences
with activity greater than wild type).

1.4 Generative Models: Introduction
While discriminative models are useful in cases with fewer than thousands of labeled
examples, generative models provide a powerful alternative when there is sufficient
data to learn from. By modeling the distribution by which the data are generated,
generative models enable direct identification of new sequences. While generative
models typically require large amounts of data (∼ 105), advances in deep mutational
scanning [17] and recently plate assays [18], are enabling these approaches. Here,
we describe three popular generative models, variational autoencoders, generative
adversarial networks, and autoregressive models, and provide examples of their
applications to protein sequences. These models are summarized in Figure 1.1.

4

Decoder
μ

σ
Encoder

Variational Autoencoders

Generator
N
O
I
S
E

Discriminator

MTIKEMPQPK
MEPFVVLVLC
MRMPTGSELW
MALIPDLAME
MDSLVVLVLC

AIAMINACID
FAKEPRTEIN
MGENCHAINS
DETASHEETS
ALFAHELIKS

Generated
Sequences

Real
Sequences

Real

Generated
or

Generative Adversarial Networks

E V IL N ? ?T H

Model

A

E V IL N ?T H

Model

L

A

t = n

t = n+1

Deep Conditional Generative Models

A

B

C

Figure 1.1: (A) Variational Autoencoders (VAEs) are tasked with encoding sequences
in a structured latent space. Samples from this latent space may then be decoded
to functional protein sequences. (B) Generative Adversarial Networks (GANs)
have two networks locked in a Nash equilibrium: the generative network generates
synthetic data that look real, while the discriminative modelvdiscerns between real
and synthetic data. (C) autoregressive models predict the next amino acid in a protein
given the amino-acid sequence up to that point.

5

Variational Autoencoders: Background
To provide an intuitive introduction to Variational Autoencoders, we first introduce
the concept of autoencoders [19–21], which are comprised of an encoder and a
decoder. The encoder, @(I |G), maps each input G8 into a latent representation I8. This
latent representation is comparatively low dimension to the initial encoding, creating
an information bottleneck that forces the autoencoder to learn a useful representation.
The decoder, ?(G |I), reconstructs each input G8 from its latent representation I8.
During training, the goal of the model is to maximize the probability of the data
?(G), which can be determined by marginalizing over I:

?(G) =
∫

?(G |I)?(I)3I (1.1)

However, direct evaluation of this integral is intractable and is instead bounded using
variational inference. It can be shown that a lower bound of ?(G) can be written as
the following [19]:

log ?(G) ≥ E [log ?(G |I)] − D ! [@(I |G) | |?(I)] (1.2)

where D ! is the Kullback-Leibler divergence, which can be interpreted as a
regularization term that measures the amount of lost information when using @ to
represent ?, and the first expectation E term represents reconstruction accuracy.
Thus, variational autoencoders aim for accurate reconstruction while maintaining
structure in the latent space through regularization. Variational autoencoders impose
the added constraint that the latent representation are well approximated by Gaussian
normal distributions, such that ?(I) = Normal(0, 1). Intuitively, this constraint
enables smooth interpolation between points in the latent representation, enforcing
structure in an otherwise arbitrary encoding.

Variational Autoencoders: Examples
VAEs can be employed in a variety of ways. For example, after training on an
alignment of similar sequences, the predicted probability of a sequence can be used
as a proxy for the relative fitness of that sequence, which can correlate well with
various sequence-function datasets obtained through deep mutational scans [22, 23].
Alternatively, generating a new sequence from a VAE is as simple as generating a
random (Gaussian) latent vector and passing it through the decoder. This random

6

sequence is expected to be a non-linear interpolation of the sequences used to train
the VAE.

More powerfully, as discrete protein sequences are now represented in a continuous
and compressed latent space, optimization of these sequences can be reinterpreted
as optimization in the latent space. Specifically, a simple downstream supervised
model can be trained on protein sequence-function relationships, where the protein
sequence is input as its latent encoding. In BioSeqVAE, the latent representation was
learned from 200,000 sequences obtained from SwissProt between 100 and 1000
amino acids in length [24]. The authors demonstrate that a simple random forest
classifier from scikit-learn [25] can be used to learn the relationship between roughly
60,000 sequences (represented by the autoencoder) and their protein localization and
enzyme classification (by Enzyme Commission number). By optimizing for either
property through the downstream models in latent space, and converting this latent
representation to a protein sequence, the authors generate examples that have either
or both desired properties. While the authors did not validate the generated proteins
in vitro, they did observe sequence homology between their designed sequences and
natural sequences with the desired properties.

Sequences are typically designed for a specific task, and task-specific information
can be incorporated in the training process [26]. For example, the decoder can be
conditioned on the identity of the metal cofactors bound [27]. After training on
145,000 enzyme examples in MetalPDB [28], the authors find a higher fraction
of desired metal-binding sites observed in generated sequences. Additionally, the
authors show that 11% of 1000 sequences generated for recreating a removed copper-
binding site identified the correct binding amino acid triad. The authors also applied
this approach to designing for specified protein folds, validating their results with
Rosetta and molecular dynamics simulations.

A comparatively small body of literature has successfully tested VAE sequences
with wet-lab validation, but Hawkins-Hooker and coauthors have succeeded after
careful consideration of protein alignment [29]. The authors consider two methods
of approaching protein sequences: 1) by computing the alignment first and training a
VAE (MSA VAE) and 2) by introducing an autoregressive component to the decoder
to learn the unaligned sequences (AR VAE). Motivated by a similar model used for
text generation [30], the decoder of the AR VAE contains an up-sampling component,
which converts the compressed representation to the length of the output sequence,
and a recurrent neural network, which we discuss later. Both models were trained

7

with roughly 70,000 luciferase sequences (∼360 residues) and were quite successful:
21/23 and 18/24 variants generated with the MSA VAE and AR VAE (respectively)
showing measurable functionality. The authors suggest that the lower fraction of
functional variants generated by AR VAE is due to difficulty in modeling long-range
dependencies. While none of the generated variants showed brighter luminescence
than wild type, the authors incorporate a solubility conditioning tag to generate
variants with higher solubility.

Generative Adversarial Networks: Background
Generative Adversarial Networks (GANs) are comprised of a generator network �
tasked with generating examples and an adversarial discriminator � that is tasked
with discriminating between generated and real examples [31]. As the generator
learns to generate examples that are increasingly similar to real examples, the
discriminator must also learn to distinguish between them. This equilibrium can be
written as a minimax game between the Generator � and Discriminator �, where
the loss function is:

min
�

max
�
! (�,�) = EG∼?A40; (G) [log� (G)] + EI∼?(I) [log(1 − � (� (I)))] (1.3)

where the discriminator is trained to maximize the probability � (G) when G comes
from a distribution of real data, and minimize the probability that the data point is
real (� (� (I))) when the data is generated (� (I)). While simple in concept, and
often generating samples that are less noisy than VAEs [32, 33], the Nash equilibrium
between the two networks can be notoriously difficult to obtain in practice [34, 35].

Generative Adversarial Networks: Examples
Nonetheless, the authors of ProteinGAN successfully trained a GAN to generate
functional malate dehydrogenases [36]. After training with nearly 17,000 unique
sequences (average length: 319), 24% of 20,000 sequences generated by ProteinGAN
display wild-type level activity, including a variant with 106 mutations to the closest
known sequence. Interestingly, although the positional entropy of the final set of
sequences closely matches that of the initial input, the generated sequences expand
into new structural domains as classified by CATH, suggesting structural diversity in
the generated results.

While GANs succeed in generating similar examples to the dataset, it is not immedi-
ately apparent how to condition this generation for desired properties, as there is no

8

compressed representation that can be searched. One approach is to separate training
into two stages [37]. In the first, all available sequences are used for training, while
in the second, a subset of available sequences enriched in the desired property is
used to further train and bias the GAN. Amimemeur and coauthors train Wasserstein
GANs [38] on 400,000 heavy or light chain sequences from human antibodies to
generate 148 length regions of the respective chain. After initial training, by biasing
further input data on desired properties (length, size of a negatively-charged region,
isoelectronic point, and estimated immunogenicity), the estimated properties of
the generated examples shifts in the desired direction. While it is difficult to get
a sense for what fraction of the 100,000 generated constructs is functional from
the experimental validation, extensive biophysical characterization of two of the
successful designs show promising signs of retaining the designed properties in vitro.
Notably, this approach of controlling the properties of GAN-generated sequences by
biasing the input data can be implemented in a feedback loop, as shown in feedback
GAN (FBGAN) for designing DNA sequences. The authors of FBGAN augment the
GAN training cycle by introducing an additional component, a black box "function
analyser", that checks sequences for desired properties before input to the critic,
replacing older sequences that are less enriched in the desired property [39].

Conditional Generative Models: Background
An emerging class of models from language processing has developed from self-
supervised learning of sequences. After masking portions of sequences, deep neural
networks are tasked with generating the masked portions correctly, as conditioned
on the unmasked regions. In the autoregressive generation setting, models are
tasked with generating subsequent tokens based on previously generated tokens.
The probability of a sequence can then be factorized as a product of conditional
distributions:

?(x) =
#∏
8=1

?(G8 |G1, ..., G8−1) (1.4)

The main challenge is in capturing long-range dependencies. Three popular ar-
chitectures, dilated convolution networks, recurrent neural networks (RNNs), and
Transformer-based models, take different approaches. Dilated convolution networks
include convolutions with defined gaps in the sequence in order to capture information
across larger distances [40, 41]. RNNs attempt to capture positional information
directly in the model state [42, 43], and an added memory layer is introduced in

9

Long Short-Term Memory (LSTM) networks to account for long-range interactions
[44–46]. Finally, Transformer networks based on the attention mechanism, which
computes a soft probability contribution over all positions in the sequence [47,
48], were also developed for language modeling to capture all possible interactions
[49–51].

Conditional Generative Models: Applications
While there are many examples of using these approaches in prediction tasks [10,
23, 52–54], there are fewer examples in generation and even less with experimental
validation, This likely results from the delay in physically verifying computational
predictions, and we anticipate more examples of experimentally validated generation
emerging soon.

Recently, Riesselman and coauthors applied autoregressive generative models to
generate single domain antibodies (nanobodies) [55]. As the antibody’s comple-
mentarity determining region (CDR) is difficult to align due to its high variation, an
autoregressive strategy is particularly advantageous. With information from 100,000s
of antibody sequences, the authors trained a residual dilated convolution network over
250,000 updates. While recurrent architectures (including an LSTM) were tested,
exploding gradients were encountered, as is common in these recurrent architectures.
After training, the authors generate over 37,000,000 new sequences by sampling
amino acids at each new position in the sequence (ancestral sampling). Further
clustering, diversity selection, and removal of motifs that may make expression more
challenging (such as glycosylation sites and sulfur residues) enabled the researchers
to winnow this number below 200,000, for which experimental results are pending.

For attention-based generative models, our group has applied the Transformer
encoder-decoder model [49] to generating signal peptides [56]. Signal peptides are
short (15-30 amino acid) sequences prepended to target protein sequences that signal
the transport of the target sequence. After training with 25,000 pairs of target and
signal peptide sequences, we then generated signal peptide sequences to test in vitro,
finding that roughly half of the generated sequences secrete functional enzymes
in Bacillus subtilis. While this work suffices as an early experimentally verified
examples, there are many improvements that can be made, such as by introducing
information by which to condition generation. In ProGen, an attention-based protein
language model, Madani and coauthors have incorporated conditioning tokens that
captures this relevant metadata, such as a protein’s annotated function or organism

10

[57]. While this work does not (yet) have functional experimental validation, after
training on 280 million sequences and their annotations from various databases, the
authors show that computed Rosetta energies of the generated sequences are similar
to that of natural sequences.

1.5 Optimization with Generative Models
While much of the existing work is designed to test the validity of generated
sequences, eventually, the protein engineer expects improved sequences. An emerg-
ing approach to this optimization problem is to optimize with generative models
[angermuelle2020rmodel, 58]. Instead of generating viable examples, this frame-
work challengesmodels to generate optimized sequences by optimizing the parameters
\ by which sequences are generated. Thus, the objective function is:

arg max
\

E?(G |\) [%((|G)] (1.5)

where the search model denoted by ?(G |\) is a generative model distribution (such
as a VAE) from which samples G can be generated as parameterized by \, and %((|G)
is a black box ("oracle") that maps sequences (G) to desired property values ((). This
oracle can be experimental {G8, H8} data or an alternate model trained on {G8, H8} used
to simulate ground truth data.

Design by Adaptive Sampling (DbAS)
Two difficulties arise in directly optimizing Equation 1.5: the parameter (\) to
be optimized appears in the expectation function, and the desired property set (
will typically be small, which means %((|\) will be small and difficult to estimate.
Brookes and coauthors address these issues through their Design by Adaptive
Sampling (DbAS) algorithm by iteratively proposing parameters and property sets
that converge on the maximal \ and desired property set ([58, 59]. During training,
the DbAS algorithm iterates through cycles of sequence generation (by sampling
G ∼ ?(G |\) from the generative model), evaluating the samples (by the oracle),
and updating \, in close analogy to directed evolution. The authors validate this
approach on synthetic ground truth data by training models (of a different type)
on real biological data. They then show that generated sequences outperform
traditional evolutionary methods (and the previously mentioned FBGAN) when
restricted to a budget of 10,000 sequences. Recent refinements restrict ?(G |\) to
avoid untrustworthy regions [59], focus the oracle as design moves between regions

11

of sequence space [60], or emphasize sequence diversity in generations [61].

Reinforcement Learning
An alternative approach [angermuelle2020rmodel] to model-based optimization
has roots in reinforcement learning (RL) [62]. The RL framework is typically applied
when a decision maker is asked to choose an action, 0, that is available given the
current state, B. From this action, the state changes through the transition function
?0 (B, B′), with some reward, A . When a given state and action are independent of all
previous states and actions (the Markov property), the system can be modeled with
Markov decision processes. This requirement is satisfied by interpreting the protein
sequence generation as a process where the sequence is generated from left to right.
Thus, at each time step: the current state corresponds to the sequence as generated
so far; the action to choosing the next amino acid; the transition function to adding
this amino acid; and the reward to 0 until generation is complete, when the reward
becomes the the fitness measurement. The action can then be decided by a policy
network, which is trained to output a probability over all available actions based on
the reward. Notably, the transition function is simple (adding an amino acid), so only
the reward function needs to be approximated.

The major challenge under the RL framework is then determining the expected
reward. To tackle this issue, Angermueller and coauthors use a panel of machine
learning models, each learning a surrogate fitness function 5̂ 9 based on available
data from each round of experimentation. The subset of models from this panel that
pass some threshold accuracy as empirically evaluated by cross validation is selected
for use in estimating the reward, and the policy network is then updated based on
the estimated reward. Thus, this algorithm enables a panel of models to potentially
capture various aspects of the fitness landscape, but only use the models that have
sufficient accuracy to update the policy network. The authors also incorporate a
diversity metric by including a term in the expected reward for a sequence that counts
the number of similar sequences previously explored.

The authors applied this framework to various biologically motivated synthetic
datasets, including an antimicrobial peptide (8 - 75 amino acids) dataset as simulated
with random forests. With eight rounds testing up to 250 sequences each, the authors
show higher obtained fitness values compared to other methods, including DbAS
and FBGAN. However, the authors also show that the proposed sequence diversity
quickly drops and only the diversity term added to the expected reward prevents

12

it from converging to zero. In the future, balancing increased sequence diversity
against staying within each model’s trusted regions of sequence space [59, 61] will
be necessary.

1.6 Conclusions and Future Directions
Machine learning has shown preliminary success in protein engineering, enabling
researchers to access optimized sequences with unprecedented efficiency. These
approaches allow protein engineers to efficiently sample sequence space without
being limited to nature’s accumulation of single amino acid mutations. As we
continue to explore sequence space, expanding from the points that nature has kindly
prepared, there is hope that we will find diverse solutions for myriad problems [63].

Many of machine learning’s advances have been driven by data collection. For
example, a large contribution to the current boom in deep learning can be traced
back to ImageNet, a database of well-annotated images used for classification tasks
[64]. For proteins, a well-maintained database of structures is the Protein Databank
[65]. A well-organized biannual competition for protein structure prediction known
as CASP (Critical Assessment of Protein Structure Prediction) [66] enabled machine
learning to offer its contributions to the field [67]. A large database of protein
sequences also exists [68] with reference clusters provided [15, 69]. However, these
sequences are rarely coupled to fitness measurements and if so, are collected in
diverse experimental conditions. While databases like ProtaBank [70] promise to
organize data collected along with their experimental conditions, protein sequence
design has yet to experience its ImageNet moment.

Fortunately, a wide variety of tools are being developed for collecting large amounts
of data, including deep mutational scanning [17] and methods involving continuous
evolution [71–73]. These techniques contain their own nuances and data artifacts
that must be considered [74], and unifying across studies must be done carefully [75].
While these techniques currently apply to a subset of desired protein properties that
are robustly measured, such as survival, fluorescence, and binding affinity, we must
continue to develop experimental techniques if we hope to model and understand
more complex traits such as enzymatic activity.

In the meantime, machine learning has enabled us to generate useful protein
sequences on a variety of scales. In low to medium throughput settings, protein
engineering guided by discriminative models enables efficient identification of
improved sequences through the learned surrogate fitness function. In settings

13

with larger amounts of data, deep generative models have various strengths and
weaknesses that may be leveraged depending on design and experimental constraints.
In any case, by integrating machine learning with rounds of experimentation (as
shown in the next chapters of this thesis), data-driven protein engineering promises to
maximize the efforts from expensive lab work, enabling protein engineers to quickly
design useful sequences.

14

1.7 Bibliography
References

1. Romero, P. A. & Arnold, F. H. Exploring protein fitness landscapes by directed
evolution. Nature Reviews Molecular Cell Biology 10, 866–876. doi:10.1038/
nrm2805 (2009).

2. Arnold, F. H. Directed evolution: bringing new chemistry to life. Angewandte
Chemie International Edition 57, 4143–4148 (2018).

3. Huang, P.-S., Boyken, S. E. & Baker, D. The coming of age of de novo protein
design. Nature 537, 320–327. doi:10.1038/nature1994 (2016).

4. Garcia-Borrás, M., Houk, K. N. & Jiménez-Osés, G. Computational design
of protein function. Computational Tools for Chemical Biology 3, 87. doi:10.
1039/9781788010139-00087 (2017).

5. Yang,K.K.,Wu, Z.&Arnold, F. H.Machine-learning-guided directed evolution
for protein engineering. Nature Methods 16, 687–694. doi:10.1038/s41592-
019-0496-6 (2019).

6. Mazurenko, S., Prokop, Z. & Damborsky, J. Machine Learning in Enzyme
Engineering. ACS Catalysis (2019).

7. Volk, M. J. et al. Biosystems Design by Machine Learning. ACS Synthetic
Biology (2020).

8. Ingraham, J., Garg, V., Barzilay, R. & Jaakkola, T. Generative models for
graph-based protein design in Advances in Neural Information Processing
Systems (2019), 15794–15805.

9. Sabban, S. & Markovsky, M. RamaNet: Computational de novo helical protein
backbone design using a long short-term memory generative adversarial neural
network. F1000Research 9, 298 (2020).

10. Bepler, T. & Berger, B. Learning protein sequence embeddings using informa-
tion from structure (2019).

11. Anand, N., Eguchi, R. R., Derry, A., Altman, R. B. & Huang, P. Protein
sequence design with a learned potential. bioRxiv (2020).

12. Fox, R. J. et al. Improving catalytic function by ProSAR-driven enzyme
evolution. Nature Biotechnology 25, 338 (2007).

13. Liao, J. et al. Engineering proteinase K using machine learning and synthetic
genes. BMC Biotechnology 7, 16 (2007).

14. Biswas, S., Khimulya, G., Alley, E. C., Esvelt, K. M. & Church, G. M. Low-N
protein engineering with data-efficient deep learning. bioRxiv (2020).

15. Suzek, B. E. et al. UniRef clusters: a comprehensive and scalable alternative for
improving sequence similarity searches. Bioinformatics 31, 926–932 (2015).

http://dx.doi.org/10.1038/nrm2805
http://dx.doi.org/10.1038/nrm2805
http://dx.doi.org/10.1038/nature1994
http://dx.doi.org/10.1039/9781788010139-00087
http://dx.doi.org/10.1039/9781788010139-00087
http://dx.doi.org/10.1038/s41592-019-0496-6
http://dx.doi.org/10.1038/s41592-019-0496-6

15

16. Xu,Y. et al.ADeepDive intoMachine LearningModels for Protein Engineering.
Journal of Chemical Information and Modeling (2020).

17. Fowler, D. M. & Fields, S. Deep mutational scanning: a new style of protein
science. Nature Methods 11, 801. doi:10.1038/nmeth.3027 (2014).

18. Wierbowski, S. D. et al. A massively parallel barcoded sequencing pipeline en-
ables generation of the first ORFeome and interactomemap for rice.Proceedings
of the National Academy of Sciences USA. doi:10.1073/pnas.1918068117
(2020).

19. Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. arXiv (2013).

20. Rezende, D. J., Mohamed, S. & Wierstra, D. Stochastic backpropagation and
approximate inference in deep generative models. arXiv (2014).

21. Doersch, C. Tutorial on variational autoencoders. arXiv (2016).

22. Sinai, S., Kelsic, E., Church, G. M. & Nowak, M. A. Variational auto-encoding
of protein sequences. arXiv (2017).

23. Riesselman, A. J., Ingraham, J. B. & Marks, D. S. Deep generative models of
genetic variation capture the effects of mutations. Nature Methods 15, 816–822
(2018).

24. Costello, Z. & Garcia Martin, H. How to Hallucinate Functional Proteins. arXiv
(2019).

25. Pedregosa, F. et al. Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research 12, 2825–2830 (2011).

26. Sohn, K., Lee, H. & Yan, X. Learning structured output representation
using deep conditional generative models in Advances in Neural Information
Processing Systems (2015), 3483–3491.

27. Greener, J. G., Moffat, L. & Jones, D. T. Design of metalloproteins and novel
protein folds using variational autoencoders. Scientific Reports 8, 1–12 (2018).

28. Andreini, C., Cavallaro, G., Lorenzini, S. & Rosato, A. MetalPDB: a database
of metal sites in biological macromolecular structures. Nucleic Acids Research
41, D312–d319 (2012).

29. Hawkins-Hooker, A. et al. Generating functional protein variants with varia-
tional autoencoders. bioRxiv (2020).

30. Semeniuta, S., Severyn, A. & Barth, E. A hybrid convolutional variational
autoencoder for text generation. arXiv (2017).

31. Goodfellow, I. et al. Generative adversarial nets in Advances in Neural Infor-
mation Processing Systems (2014), 2672–2680.

32. Theis, L., Oord, A. v. d. & Bethge, M. A note on the evaluation of generative
models. arXiv (2015).

http://dx.doi.org/10.1038/nmeth.3027
http://dx.doi.org/10.1073/pnas.1918068117

16

33. Dumoulin, V. et al. Adversarially learned inference. arXiv (2016).

34. Salimans, T. et al. Improved techniques for training gans in Advances in Neural
Information Processing Systems (2016), 2234–2242.

35. Mescheder, L., Geiger, A. & Nowozin, S. Which training methods for GANs
do actually converge? arXiv (2018).

36. Repecka, D. et al.Expanding functional protein sequence space using generative
adversarial networks. bioRxiv, 789719 (2019).

37. Amimeur, T. et al.Designing Feature-ControlledHumanoidAntibodyDiscovery
Libraries Using Generative Adversarial Networks. bioRxiv (2020).

38. Arjovsky, M., Chintala, S. & Bottou, L. Wasserstein gan. arXiv (2017).

39. Gupta, A. & Zou, J. Feedback GAN for DNA optimizes protein functions.
Nature Machine Intelligence 1, 105–111 (2019).

40. Yu, F. & Koltun, V. Multi-scale context aggregation by dilated convolutions.
arXiv preprint arXiv:1511.07122 (2015).

41. Oord, A. v. d. et al. Wavenet: A generative model for raw audio. arXiv preprint
arXiv:1609.03499 (2016).

42. Mikolov, T., Karafiát, M., Burget, L., Černocký, J. & Khudanpur, S. Recurrent
neural network based language model in Eleventh Annual Conference of the
International Speech Communication Association (2010).

43. Kalchbrenner, N. & Blunsom, P. Recurrent continuous translation models
in Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing (2013), 1700–1709.

44. Hochreiter, S.&Schmidhuber, J. Long short-termmemory.Neural Computation
9, 1735–1780 (1997).

45. Sutskever, I., Vinyals, O. & Le, Q. V. Sequence to sequence learning with
neural networks in Advances in Neural Information Processing Systems (2014),
3104–3112.

46. Cho, K. et al. Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv (2014).

47. Bahdanau, D., Cho, K. & Bengio, Y. Neural machine translation by jointly
learning to align and translate. arXiv (2014).

48. Luong, M.-T., Pham, H. & Manning, C. D. Effective approaches to attention-
based neural machine translation. arXiv (2015).

49. Vaswani, A. et al. Attention is all you need in Advances in Neural Information
Processing Systems (2017), 5998–6008.

50. Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv (2018).

17

51. Radford, A. et al.Languagemodels are unsupervisedmultitask learners.OpenAI
Blog 1, 9 (2019).

52. Alley, E. C., Khimulya, G., Biswas, S., AlQuraishi, M. & Church, G. M. Unified
rational protein engineering with sequence-only deep representation learning.
bioRxiv, 589333. doi:https://doi.org/10.1101/589333 (2019).

53. Rives, A. et al. Biological structure and function emerge from scaling unsuper-
vised learning to 250 million protein sequences. bioRxiv, 622803 (2019).

54. Rao, R. et al. Evaluating protein transfer learning with TAPE in Advances in
Neural Information Processing Systems (2019), 9686–9698.

55. Riesselman, A. J. et al. Accelerating Protein Design Using Autoregressive
Generative Models. bioRxiv, 757252 (2019).

56. Wu, Z. et al. Signal Peptides Generated by Attention-Based Neural Networks.
ACS Synthetic Biology 9, 2154–2161 (2020).

57. Madani, A. et al. ProGen: Language Modeling for Protein Generation. arXiv
(2020).

58. Brookes, D. H. & Listgarten, J. Design by adaptive sampling. arXiv (2018).

59. Brookes, D. H., Park, H. & Listgarten, J. Conditioning by adaptive sampling
for robust design. arXiv (2019).

60. Fannjiang, C. & Listgarten, J. Autofocused oracles for model-based design.
arXiv preprint arXiv:2006.08052 (2020).

61. Linder, J., Bogard, N., Rosenberg, A. B. & Seelig, G. A Generative Neural
Network for Maximizing Fitness and Diversity of Synthetic DNA and Protein
Sequences. Cell Systems 11, 49–62 (2020).

62. Sutton, R. S. & Barto, A. G. Reinforcement learning: An introduction (MIT
press, 2018).

63. Nobeli, I., Favia, A. D. & Thornton, J. M. Protein promiscuity and its implica-
tions for biotechnology. Nature Biotechnology 27, 157–167 (2009).

64. Deng, J. et al. Imagenet: A large-scale hierarchical image database in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(2009), 248–255.

65. Berman, H.M. et al.The protein data bank.Nucleic Acids Research 28, 235–242
(2000).

66. Moult, J., Pedersen, J. T., Judson, R. & Fidelis, K. A large-scale experiment to
assess protein structure prediction methods. Proteins: Structure, Function, and
Bioinformatics 23, ii–iv (1995).

67. Senior, A. W. et al. Improved protein structure prediction using potentials from
deep learning. Nature, 1–5 (2020).

http://dx.doi.org/https://doi.org/10.1101/589333

18

68. Consortium, U. UniProt: a worldwide hub of protein knowledge. Nucleic Acids
Research 47, D506–d515 (2019).

69. Suzek, B. E., Huang, H., McGarvey, P., Mazumder, R. & Wu, C. H. UniRef:
comprehensive and non-redundant UniProt reference clusters. Bioinformatics
23, 1282–1288 (2007).

70. Wang, C. Y. et al. ProtaBank: A repository for protein design and engineering
data. Protein Science 27, 1113–1124. doi:10.1002/pro.3406 (2018).

71. Esvelt, K. M., Carlson, J. C. & Liu, D. R. A system for the continuous directed
evolution of biomolecules. Nature 472, 499–503 (2011).

72. Morrison, M. S., Podracky, C. J. & Liu, D. R. The developing toolkit of
continuous directed evolution. Nature Chemical Biology 16, 610–619 (2020).

73. Zhong, Z. et al. Automated continuous evolution of proteins in vivo. ACS
Synthetic Biology (2020).

74. Eid, F.-E. et al. Systematic auditing is essential to debiasing machine learning
in biology. bioRxiv (2020).

75. Dunham, A. & Beltrao, P. Exploring amino acid functions in a deep mutational
landscape. bioRxiv. doi:10.1101/2020.05.26.116756 (2020).

http://dx.doi.org/10.1002/pro.3406
http://dx.doi.org/10.1101/2020.05.26.116756

19

C h a p t e r 2

MACHINE LEARNING-GUIDED COMBINATORIAL
MUTAGENESIS FOR EVOLVING STEREODIVERGENCE

1. Wu, Z., Kan, S. B. J., Lewis, R. D., Wittmann, B. J. & Arnold, F. H. Ma-
chine learning-assisted directed protein evolution with combinatorial libraries.
Proceedings of the National Academy of Sciences USA (2019).

Contributions Statement: Z.W. performed all experiments and data analyses.

2.1 Abstract
To reduce experimental effort associated with directed protein evolution and to
explore the sequence space encoded by mutating multiple positions simultaneously,
we incorporate machine learning into the directed evolution workflow. Combinatorial
sequence space can be quite expensive to sample experimentally, but machine-
learning models trained on tested variants provide a fast method for testing sequence
space computationally. We provide an example application in evolving an enzyme
to produce each of the two possible product enantiomers (i.e., stereodivergence) of
a new-to-nature carbene Si–H insertion reaction. The approach predicted libraries
enriched in functional enzymes and fixed seven mutations in two rounds of evolution
to identify variants for selective catalysis with 93% and 79% ee (enantiomeric excess).
By greatly increasing throughput with in silicomodeling, machine learning enhances
the quality and diversity of sequence solutions for a protein engineering problem.

2.2 Introduction
Nature provides countless proteins with untapped potential for technological appli-
cations. Rarely optimal for their envisioned human uses, nature’s proteins benefit
from sequence engineering to enhance performance. Successful engineering is no
small feat, however, as protein function is determined by a highly tuned and dynamic
ensemble of states [1]. In some cases, engineering to enhance desirable features
can be accomplished reliably by directed evolution, in which beneficial mutations
are identified and accumulated through an iterative process of mutation and testing
hundreds to thousands of variants in each generation [2–4]. However, implementing
a suitable screen or selection can represent a significant experimental burden.

20

Given that screening is the bottleneck and most resource intensive step for the
majority of directed evolution efforts, devising ways to screen protein variants in
silico is highly attractive. Molecular dynamics simulations, which predict dynamic
structural changes for protein variants, have been used to predict changes in structure
[5] and protein properties caused by mutations [6]. However, full simulations are also
resource intensive, requiring hundreds of CPU hours for each variant, a mechanistic
understanding of the reaction at hand, and ideally, a reference protein structure. A
number of other, less computationally intensive physical models have also been
used to identify sequences likely to retain fold and function for further experimental
screening [7–9].

An emerging alternative for screening protein function in silico is machine learning,
which comprises a set of algorithms that make decisions based on data [10]. By
building models directly from data, machine learning has proven to be a powerful,
efficient, and versatile tool for a variety of applications, such as extracting abstract
concepts from text and images or beating humans at our most complex games
[11, 12]. Previous applications of machine learning in protein engineering have
identified beneficial mutations [13] and optimal combinations of protein fragments
[14] for increased enzyme activity and protein stability, as reviewed recently [15].
Here we use machine learning to enhance directed evolution, using combinatorial
libraries of mutations to explore sequence space more efficiently than conventional
directed evolution with single mutation walks. The size of a mutant library grows
exponentially with the number of residues considered for mutation and quickly
becomes intractable for experimental screening. However, by leveraging in silico
models built based on sampling of a combinatorial library, machine learning assists
directed evolution to make multiple mutations simultaneously and traverse fitness
landscapes more efficiently.

In the machine learning-assisted directed evolution strategy presented here, multiple
amino acid residues are randomized in each generation. Sequence-function informa-
tion sampled from the large combinatorial library is then used to predict a restricted
library with an increased probability of containing variants with high fitness. The
best-performing variants from the predicted libraries are chosen as the starting
points for the next round of evolution, from which further improved variants are
identified. Here, we use machine learning-assisted directed evolution to engineer an
enzyme for stereodivergent carbon–silicon bond formation, a new-to-nature chemical
transformation.

21

2.3 Results
Machine Learning in Directed Evolution
In directed evolution, a library of variants is constructed from parental sequences,
screened for desired properties, and the best variants are used to parent the next
round of evolution; all other variants are discarded. When machine learning assists
directed evolution, sequences and screening data from all the variants can be used
to train a panel of models (covering linear, kernel, neural network, and ensemble
methods (SI Appendix, Model Training)). The models with highest accuracy are then
used to screen variants in a round of in silico evolution, where the models simulate
the fitness values of all possible sequences and rank the sequences by fitness. A
restricted library containing the variants with the highest predicted fitness values is
then constructed and screened experimentally.

This work explores the full combinatorial space of mutations at multiple positions.
Figure 2.1 illustrates the approach considering a set of four mutated positions.
In a conventional directed evolution experiment with sequential single mutations,
identifying optimal amino acids for N positions in a set requires N rounds of evolution
(Figure 2.1A). Machine learning-assisted evolution samples the combinatorial space
of co-mutated poitions in silico, enabling larger steps through sequence space in
each round (Figure 2.1B). In this approach, data from a random sample of the
combinatorial library, the input library, are used to train machine learning models.
These models are used to predict a smaller set of variants, the predicted library,
which can be encoded with degenerate codons to test experimentally [16]. The
best-performing variant is then used as the parent sequence for the next round of
evolution with mutations at new positions.

22

Directed Evolution: Single Mutation Walk

Make all
single mutants

Fix the
optimal mutation

Repeat for remaining
positions in set

A = Library at position

Repeat for next set of positions

Machine Learning-Assisted Directed Evolution

Randomly sample
combinatorial library

Train from
measured variants

Test predictions
B

Repeat for next set of positions

Figure 2.1: (A) Directed evolution with single mutations. If limited to single muta-
tions, identifying optimal amino acids for N positions requires N rounds of evolution.
(B) Machine learning-assisted directed evolution. Due to increased throughput
provided by screening in silico, four positions can be explored simultaneously in
a single round, enabling a broader search of sequence-function relationships and
deeper exploration of epistatic interactions.

Application to Evolution of Enantiodivergent Enzyme Activity
We next used machine learning-assisted directed evolution to engineer an enzyme
to produce each of two possible product enantiomers. For the purpose of this
demonstration, we selected the reaction of phenyldimethyl silane with ethyl 2-
diazopropanoate (Me-EDA) catalyzed by a putative nitric oxide dioxygenase from
Rhodothermus marinus (Rma NOD), as shown in Figure 2.2. Carbon–silicon bond
formation is a new-to-nature enzyme reaction [17], and Rma NOD with mutations
Y32K and V97L catalyzes this reaction with 76% ee for the (S)-enantiomer in
whole-cell reactions (Table 2.4.

Silicon has potential for tuning the pharmaceutical properties of bioactive molecules
[18, 19]. Because enantiomers of bioactive molecules can have stark differences
in their biological effects [20], access to both is important [21]. Screening for
enantioselectivity, however, typically requires long chiral separations to discover
beneficial mutations in a low-throughput screen [22]. We thus tested whether machine

23

Figure 2.2: Carbon–silicon bond formation catalyzed by heme-containing nitric
oxide dioxygenase from R. marinus to form individual product enantiomers with
high selectivity.

learning-assisted directed evolution can efficiently generate two catalysts to make
each of the product (S)- and (R)-enantiomers starting from a single parent sequence.

We chose the parent Rma NOD (UniProt ID: D0MGT2) [23] enzyme for two reasons.
First, RmaNOD is native to a hyperthermophile and should be thermostable. Because
machine learning-assisted directed evolution makes multiple mutations per iteration,
a starting sequence capable of accommodating multiple potentially destabilizing
mutations is ideal [24]. Second, while we previously engineered a cytochrome c (Rma
cyt c) to >99% ee for the (R)-enantiomer, wild-type Rma cyt c serendipitously started
with 97% ee [17]. We hypothesized that a parent enzyme with less enantiopreference
(76% ee for the (S)-enantiomer in whole cells) would be a better starting point for
engineering enantiodivergent variants.

During evolution for enantioselectivity, we sampled two sets of amino acid positions:
Set I contained mutations to residues K32, F46, L56, and L97, and Set II contained
mutations to residues P49, R51, and I53 after fixing beneficial mutations identified
from Set I. For both sets, we first tested and sequenced an initial set of randomly
selected mutants (the input library) to train models. We next tested a restricted set
of mutants predicted to have high selectivity (the predicted library). The targeted
positions are shown in a structural homology model in Figure 2.3A. Set I positions
were selected based on proximity to the putative active site, while Set II positions
were selected based on their proximity to the putative substrate entry channel.

Machine learning models are more useful when trained with data broadly distributed
across input space, even if those data are noisy [26]. When designing a training set

24

Starting
32K 46F 56L 97L
76% ee for (S)

32V 46C 56H 97V
86% ee for (S)

32G 46S 56S 97G
62% ee for (R)

32V 46C 56H 97V
49Y 51V 53V

32G 46S 56S 97G
49P 51R 53L

79% ee for (R)

93% ee for (S)

A B

Position Set II
Residues 49, 51, 53

Position Set I
 Residues 32, 46, 56, 97

C

Figure 2.3: (A) Structural homology model of Rma NOD and positions of mutated
residues made by SWISS-MODEL [25]. Set I positions 32, 46, 56, and 97 are shown
in red, and Set II positions 49, 51, and 53 are shown in blue. (B) Evolutionary lineage
of the two rounds of evolution. (C) Summary statistics for each round, including the
number of sequences obtained to train each model, the fraction of the total library
represented in the input variants, each model’s Leave-One-Out Pearson correlation,
and the number of predicted sequences tested.

for machine learning-assisted directed evolution, it is thus important to maximize the
input sequence diversity by avoiding disproportionate amino acid representation (e.g.
from codon usage). We therefore used NDT codons for the input libraries. NDT
libraries encode 12 amino acids having diverse properties with 12 unique codons
[22], thus minimizing the probability that an amino acid is overrepresented in the
initial training set [27]. Notably, the parent amino acid at a site is still considered by
the model even if it is not encoded by the NDT codons, as sequence-function data
are available for the parent sequence.

The evolution experiment is summarized in Figure 2.3B. In the first round, Rma
NOD Y32K V97L (76% ee) was used as a parent for NDT mutagenesis at the Set I
positions. From 124 sequence–function relationships sampled randomly, models
were trained to predict a restricted set of selective variants. Specifically, a variety
of models covering linear, kernel, shallow neural network, and ensemble methods
were tested on each library, from which the optimum models were used to rank every

25

sequence in the theoretical library by its predicted fitness. Under strict limitations
in experimental throughput, and with one 96-well plate as the smallest batch size,
we settled on two plates of input data for each round of evolution, and one plate of
tested predictions. However, increased throughput allows for increased likelihood of
reaching the landscape’s optimum as discussed in Chapter 3. The lower numbers of
variants input in Figure 2.3 compared to two full 96-well plates of sequencing reflect
failed DNA sequencing reads of these two plates.

From the predicted libraries for both enantiomers, two variants, called VCHV (93%
ee) and GSSG (62% ee) for their amino acids at positions 32, 46, 56, and 97, were
identified by screening 90 variants for each. Variants VCHV and GSSG were then
used as the parent sequences for the second round of mutation at the three positions
in Set II. VCHV was the most selective variant in the initial screening, but it was
less selective in final validation. The approach of experimentally testing a library
predicted by models trained on a randomly sampled input library was repeated. From
those predicted libraries, we obtained two variants with measured enantioselectivities
of 93% and 79% ee for the (S)- and (R)-enantiomers, respectively. These two
enantioselective enzymes were achieved after obtaining 445 sequence-function
relationships for model training and testing an additional 360 predicted variants, for
a total of 805 variants tested experimentally covering seven positions, as summarized
in Figure 2.3C.

Machine Learning Identifies Diverse Improved Sequences
While a comparison on an empirical landscape in Chapter 3 shows that machine
learning-assisted directed evolution is more likely than directed evolution alone to
identify improved variants, yet another benefit of this approach is the ability to identify
a diverse set of sequences for accomplishing a specific task. Having diverse solutions
is attractive as some of those variants may satisfy other design requirements, such
as increased total activity, altered substrate tolerance, specific amino acid handles
for further protein modification, or sequence diversity for intellectual property
considerations [28]. By enabling exploration of the combinatorial space, machine
learning-assisted directed evolution is able to identify multiple solutions for each
engineering objective.

Table 2.1 and Table 2.2 summarize the most selective variants in the input and
predicted libraries for position Sets I and II. The input library for Set I is the same
for both product enantiomers. The parent sequences for Set II, VCHV and GSSG,

26

are highlighted in cyan and red, respectively, in the tables. The improvement in total
activity measured in whole E. coli cells compared to the starting variant (32K, 46F,
56L, 97L) obtained after two rounds of machine learning-assisted directed evolution
is also shown in Table 2.2. Although evolved for enantioselectivity, the variants have
increased levels of activity in whole-cells. Negative controls with cells expressing
non-heme proteins yield a racemic mixture of product enantiomers, due to a low
level of nonselective background activity from free heme or heme proteins. For the
screen to report higher selectivity, the protein variant must not only exhibit higher
selectivity, but do so with enough activity to overcome the background racemic
activity. Thus, enhanced activity in the presence of mild selectivity is one path to
higher selectivity. The two variants most selective for the (S)-enantiomer, 49P 51V
53I and 49Y 51V 53V from VCHV, differ by less than 1% in ee. However, the
49P 51V 53I variant has 14% higher total activity under screening conditions. By
providing multiple solutions in a combinatorial space for a single design criterion,
machine learning is able to identify variants with other beneficial properties.

The solutions identified by this approach can also be non-obvious. For example,
the three most (S)-selective variants in the initial input for Position Set I are YNLL,
CSVL, and CVHV. The three most selective sequences from the restricted, predicted
library are VGVL, CFNL, and VCHV. If only considering the last residue in bold, the
predicted library can be sampled from the top variants in the input library. However,
for each of the other three positions, there is at least one mutation that is not present
in the top three input sequences.

Table 2.1: Summary of the most (S)- and (R)-selective variants in the input and
predicted libraries in Set I (K32, F46, L56, L97). The parent sequences used for Set
II for (S)- and (R)-selectivity are shown in cyan and red, respectively.

Set I: Residues 32, 46, 56, and 97
Input Variants Predicted Variants

Residue Selectivity Residue Selectivity
32 46 56 97 % ee 32 46 56 97 % ee
Y N L L 84 % (S) V G V L 90 % (S)
C S V L 83 % (S) C F N L 90 % (S)
C V H V 82 % (S) V C H V 86 % (S)
C R S G 56 % (R) G S S G 62 % (R)
I S C G 55 % (R) G F L R 24 % (R)
N V R I 47 % (R) H C S R 17 % (R)

27

Table 2.2: Summary of the most (S)- and (R)-selective variants in the input and
predicted libraries in Position Set II (P49, R51, I53). Mutations that improve
selectivity for the (S)-enantiomer appear in the background of [32V, 46C, 56H, 97V
(VCHV)] and for the (R)-enantiomer are in [32G, 46S, 56S, 97G (GSSG)]. Activity
increase over the starting variant, 32K, 46F, 56L, 97L (KFLL), is shown for the final
variants. The parent sequences used for evolving for (S)- and (R)-selectivity are
highlighted in cyan and red, respectively.

Set II: Residues 49, 51, 53
Input Variants Predicted Variants

Residue Selectivity Residue Selectivity Cellular activity
49 51 53 % ee 49 51 53 % ee increase over KFLL

Evolved P R I 86 % (S) Y V V 93 % (S) 2.8-fold
from Y V F 86 % (S) P V I 93 % (S) 3.2-fold
VCHV N D V 75 % (S) P V V 92 % (S) 3.1-fold
Evolved P R I 62 % (R) P R L 79 % (R) 2.2-fold
from Y F F 57 % (R) P G L 75 % (R) 2.1-fold
GSSG C V N 52 % (R) P F F 70 % (R) 2.2-fold

Predicted Regions of Sequence Space are Enriched in Function
While directed evolution assisted with machine learning-assisted is more likely to
reach sequences with higher fitness than without, as demonstrated in Chapter 3,
there may well be instances where other evolution strategies serendipitously discover
variants with higher fitness more quickly. Therefore, since the purpose of library
creation is to increase likelihood of finding an improved variant, we caution against
focusing solely on examples of individual variants with higher fitness and propose
an alternative analysis.

Sequence-fitness landscapes are typically represented with fitness values on the
vertical axis, dependent on some ordering of the corresponding protein sequences.
Representing this high-dimensional space, even when it is explored with single
mutations, is complicated and requires sequencing each variant [29]. However, in
functional protein space, the engineer is primarily concerned with fitness. Therefore,
an alternative representation of a library is a 1-dimensional distribution of fitness
values sampled at random for each encoded library. In other words, the sequences
are disregarded for visualization, and the library is represented by the distribution of
its fitness values. This is the critical paradigm shift presented by this visualization.
While protein engineers design in sequence space, the ultimate goal is to achieve
higher fitness. To this end, a library can be visually represented by plotting only their
fitness values, which can be well approximated by obtaining random samples from

28

the library.

We apply this visualization to each subplot in Figure 2.4, which plots experimentally
obtained measurements for both the input libraries (lighter color) and the predicted
libraries (darker color). In addition to the individual selectivity values plotted as
a rug plot along the abscissa, we provide Gaussian kernel density estimates as
visualizations of the fitness distribution in each library. In the ideal case for each
subplot, the darker predicted regions should be shifted toward higher selectivity, as
compared to the lighter regions describing the input libraries. This representation
is able to show the main benefit of incorporating machine learning into directed
evolution, which is the ability to focus expensive experiments on regions of sequence
space enriched in desired variants.

ee ee

Me
OEt

O
H

Si
Ph

(S)

Me
OEt

O
H

Si
Ph

(R)

Position Set I Position Set II

Lighter = Input
Darker = Predicted

ee ee

Figure 2.4: A library’s fitness values can be visualized as a 1-dimensional distribution,
in this case as kernel density estimates over corresponding rug plots. This figure
shows subplots for each library illustrating the changes between input (lighter)
and predicted (darker) libraries for the (S)- (cyan) and (R)-enantiomers (red). The
initial input library for Set I is shown in gray. The predicted (darker) libraries
for each round are shifted toward the right and left of the distributions for the (S)-
and (R)-enantiomers, respectively. For reference, dotted lines are shown for no
enantiopreference (0 % ee).

In applying this visualization to our evolution strategy, a few conclusions may be
drawn. First, the distribution of random mutations made in the input libraries is

29

shifted toward (R)- and (S)-selectivity depending on the starting variant, as has been
shown previously [30]. In other words, randommutations made from an (R)-selective
variant are more likely to be (R)-selective. More importantly, the machine-learning
algorithm is able to focus its predictions on areas of sequence space that are enriched
in high fitness, as can be seen in the shift in distribution from the lighter input
libraries to the darker predicted libraries toward higher selectivity values. Notably,
the machine learning algorithms appear to have more pronounced benefits in Position
Set II, likely due to the smaller number of positions explored and larger number of
sequence-function relationships obtained. Nonetheless, machine learning optimized
directed evolution by sampling regions of sequence space dense in functionality.

2.4 Discussion
We have shown that machine learning can be used to quickly screen a full recombina-
tion library in silico using sequence-fitness relationships randomly sampled from the
library. The predictions for the most-fit sequences are useful when incorporated into
directed evolution. By sampling large regions of sequence space in silico to reduce in
vitro screening efforts, we rapidly evolved a single parent enzyme to generate variants
that selectively form both product enantiomers of a new-to-nature C–Si bond-forming
reaction. Rather than relying on identifying beneficial single mutations as other
methods such as ProSAR do [13], we modeled epistatic interactions at the mutated
positions by sampling the combinatorial sequence space directly and incorporating
models with nonlinear interactions.

Machine learning increases effective throughput by providing an efficient compu-
tational method for estimating desired properties of all possible proteins in a large
library. Thus we can take larger steps through sequence space by identifying combi-
nations of beneficial mutations, circumventing the need for indirect paths [31] or
alterations of the nature of selection [29], and potentially avoiding negative epistatic
effects resulting from the accumulation of large numbers of mutations [32] that
require reversion later in the evolution [33]. This gives rise to novel protein sequences
that would not be found just by recombining the best amino acids at each position.
Allowing simultaneous incorporation of multiple mutations accelerates directed
evolution by navigating different regions of the fitness landscape concurrently and
avoiding scenarios where the search for beneficial mutations ends in low-fitness
regions of sequence space.

Importantly, machine learning-assisted directed evolution also results in solutions

30

that appear quite distinct. For example, proline is conserved at residue 49 in two of
the most (S)-selective variants. Proline is considered unique for the conformational
rigidity it confers and at first may seem structurally important, if not critical for
protein function. However, tyrosine and arginine are also tolerated at position 49
with less than 1% loss in enantioselectivity. This suggests that there are diverse
solutions in protein space for specific properties, as has also recently been shown in
protein design [8]. Computational models make abstractions to efficiently model
physical processes, and the level of abstraction must be tailored to the task, such as
protein structure prediction [34]. While predictive accuracy could be improved by
more computationally expensive simulations or by collecting more data for machine
learning, improved variants can already be identified by sampling from a space
predicted to be dense in higher fitness variants. Nevertheless, full datasets collected
with higher throughput methods such as deep mutational scanning [35] serve as
valuable test beds for validating the latest machine-learning algorithms for both
regression [36, 37] and design [38] that require more data.

An evolution strategy similar in spirit to that described here was recently applied
to the evolution of GFP fluorescence [39]. However, the implementations are quite
different. Saito and coworkers used Gaussian processes to rank sequences based on
their probability of improvement, or the probability that a variant outperforms those
in the training set .We take a different approach of identifying the optimal variants,
focusing efforts in the area of sequence space with highest fitness. Additionally,
because it is difficult to know a priori which models will be most accurate for
describing a particular landscape, we tested multiple types of models, from linear
to ensemble models, to predict the optimal sequences. Modeling the effects of
previously identified single amino acid mutations has also recently been studied for
evolution of enantioselectivity of an enzyme [40]. This study and others focused on
increasing the accuracy of protein modeling by developing other physical descriptors
[41, 42] or embedded representations [43] suggest that machine learning will assist
directed evolution beyond the baseline implementation employed here.

By providing an efficient estimate for desired properties, machine learning models
are able to leverage the information from limited experimental resources to model
proteins, without the need for a detailed understanding of how they function. Machine
learning-assisted directed evolution with combinatorial libraries provides a tool for
understanding the protein sequence-function relationship and for rapidly engineering
useful proteins. Protein engineers have been sentenced to long treks through sequence

31

space in the search for improved fitness. Machine learning can help guide us to the
highest peaks.

2.5 Materials and Methods
Library Cloning, Expression, and Characterization of Rma NOD
The gene encoding Rma NOD was obtained as a gBlock and cloned into pET22b(+)
(Novagen catalog number 69744). Standard PCR amplification and Gibson assembly
were used for libraries with degenerate codons specified by SwiftLib [16]. Encoded
versus sequenced codon distributions are shown in Figure 2.8. Expression was
performed in 96-well deep-well plates in 1-mL HyperBroth (AthenaES) using
Escherichia coli BL21 E. cloni EXPRESS (Lucigen) with 100 µL/mL ampicillin
from a 20-fold dilution of overnight culture. Expression cultures were induced after
2.5 h of outgrowth with 0.5 mM IPTG (Isopropyl β-D-1-thiogalactopyranoside), and
heme production was enhanced with supplementation of 1 mM 5-aminolevulinic
acid.

The relative product activity was measured using 10 mM Me-EDA and 10 mM
PhMe2SiH with whole E. coli cells resuspended in 400 µl nitrogen-free M9-N
buffer, pH 7.4 (47.7 mM Na2HPO4, 22.0 mM KH2PO4, 8.6 mM NaCl, 2.0 mM
MgSO4, and 0.1 mM CaCl2). Reactions were incubated anaerobically at room
temperatures for 6 hr, before extraction into 600 µl cyclohexane. Enantiomeric excess
was measured by running the organic solution on a JACSO 2000 series supercritical
fluid chromatography (SFC) system with a Chiralcel OD-H (4.6 mm x 25 cm) chiral
column (95% CO2, 5% isopropanol, 3 minutes).

Rma NODModel Training and Prediction Testing
Screening information was paired with protein sequence data obtained from rolling
circle amplification followed by sequencing by MCLab. The sequence-function
pairs, available on ProtaBank [44], were used to train a panel of models with
default hyperparameters in the scikit-learn Python package [45], including K-nearest
neighbors, linear (including Automatic Relevance Detection, Bayesian Ridge, Elastic
Net, Lasso LARS, and Ridge), decision trees, random forests (including AdaBoost,
Bagging, and Gradient Boosting), and multilayer perceptrons. The top 3 model
types were selected, and gridsearch cross-validation was used to identify the optimal
hyperparameters. The top 3 hyperparameter sets for the top 3 model types were used
to identify the top 1000 sequences in each predicted library. Degenerate codons
encoding amino acids occurring with highest frequencies in every model at each

32

position were identified by Swiftlib [16], and 90 random variants were tested in vitro.
This random sampling differs from that in the empirical fitness landscape, where all
sequences have been enumerated and can be easily tested. While sampling randomly
means we may not have tested the optimal sequence as identified in trained models,
we are able to generate fitness distributions as in Figure 2.4 to describe this space.

(A) Plasmid construction

All variants described in this study were cloned and expressed using the pET22(b)+
vector (MilliporeSigma, St. Louis, MO). The gene encoding wild-type Rhodothermus
marinus putative nitric oxide dioxygenase (Rma NOD, UniProt ID [23]: D0MGT2
_RHOM4) was obtained as a single gBlock (Integrated DNATechnologies, Coralville,
IA), codon-optimized, and cloned using Gibson assembly [46] into pET22(b)+ with
a 6xHisTag appended at the C-terminus. This plasmid was transformed into E. cloni
EXPRESS BL21(DE3) cells (Lucigen, Middleton, WI).

DNA coding sequence of Rma NOD 32K 97L with a C-terminal 6xHisTag:

ATGGCGCCGACCCTGTCGGAACAGACCCGTCAGTTGGTACGTGCG
TCTGTGCCTGCACTGCAGAAACACTCAGTCGCTATTAGCGCCACG
ATGTATCGGCTGCTTTTCGAACGGTATCCCGAAACGCGGAGCTTAT
TTGAACTTCCTGAGAGACAGATACACAAGCTTGCGTCGGCCCTGT
TGGCCTACGCCCGTAGTATCGACAACCCATCGGCGTTACAGGCGG
CCATCCGCCGCATGGTGCTTTCCCACGCACGCGCAGGAGTGCAGG
CCGTCCATTATCCGCTGGTTTGGGAATGTTTGAGAGACGCTATAA
AAGAAGTCCTGGGCCCGGATGCCACCGAGACCCTTCTGCAGGCGT
GGAAGGAAGCCTATGATTTTTTAGCTCATTTACTGTCTACCAAGGA
AGCGCAAGTCTACGCTGTGTTAGCTGAACTCGAGCACCACCACCA
CCACCACTGA

Amino acid sequence of Rma NOD 32K 97L with a C-terminal 6xHisTag

MAPTLSEQTRQLVRASVPALQKHSVAISATMYRLLFERYPETRSLFEL
PERQIHKLASALLAYARSIDNPSALQAAIRRMVLSHARAGVQAVHYP
LVWECLRDAIKEVLGPDATETLLQAWKEAYDFLAHLLSTKEAQVYA
VLAELEHHHHHH

33

(B) Protein expression

Single colonies from Luria Broth (LB)-ampicillin (100 µg/mL) agar plates were
picked using sterile toothpicks and grown in 600 µL LB-ampicillin in 2-mL 96-
well deep-well plates at 37 °C, 250 rpm, 80% humidity overnight (12—18 hours).
Multi-channel pipettes were used to transfer 50 µL of overnight culture into four
deep-well plates containing 1 mL Hyperbroth (HB, AthenaES) each. Four replicates
of each well position were made to minimize variability in cell culture and maximize
accuracy for downstream modeling. The expression plate were incubated at 37 °C,
250 rpm, 80% humidity for 2.5 h. The plates were then chilled on ice for 30 minutes
and induced with 0.5 mM isopropyl β-D-1-thiogalactopyranoside and supplemented
with 1 mM 5-aminolevulinic acid to increase heme production. The plate was
incubated at 22°C and 220 rpm overnight. The plate was then centrifuged at 3000g
for 10 minutes at 4 °C. Each individual well was resuspended in 100 µL M9-N buffer
(pH 7.4, 47.7 mM Na2HPO4, 22.0 mM KH2PO4, 8.6 mM NaCl, 2.0 mM MgSO4,
and 0.1 mM CaCl2). The four replicates were combined for 400 µL total in M9-N
buffer.

(C) Biocatalytic reaction and assay

In an anaerobic chamber, 10 µL of 400 mM PhMe2SiH (in acetonitrile) and 10 µL of
400 mM ethyl-2-diazopropanoate (Me-EDA, in acetonitrile) were added to 380 µL
whole cells resuspended in M9-N buffer. The final concentrations in each well were
10 mM Me-EDA and 10 mM PhMe2SiH in each 400 µL reaction mix. The reaction
plate was covered with a foil cover (USA scientific) and shaken at 1000 rpm for 4 h.
Six hundred µL of cyclohexane were added with a multi-channel pipette to each well
to quench the reaction and extract the reaction products, which have been previously
characterized [17]. Plates were centrifuged to remove cells (3000 g, 10 minutes) and
enantiomeric excess was measured by running the organic solution on a JACSO 2000
series supercritical fluid chromatography (SFC) system with a Chiralcel OD-H (4.6
mm x 25 cm) chiral column (95% CO2, 5% isopropanol, 3 minutes). Final variants in
Table 2.1 and Table 2.2 were expressed and tested in biological triplicate (in addition
to the previous protocol of combining four replicates). Automatic integration was
performed in ChemStation.

34

(D) Model training

Machine-learning models were trained with sequencing information from MCLAB
Inc and enantiomeric data obtained by SFC. To model the data, the following
regressors from the superlative scikit-learn package [45] were used: K-nearest
neighbors, linear (including Automatic Relevance Detection, Bayesian Ridge, Elastic
Net, Lasso LARS, and Ridge), decision trees, random forests (including AdaBoost,
Bagging, and Gradient Boosting), and multilayer perceptrons, as it is difficult to
know a priori which model will best fit the landscape. For example, if the selected
positions are truly non-interactive, we can expect much of the landscape’s variance
to be explained by a linear model. However, for more epistatic landscapes, we must
account for this nonlinearity. Therefore, many different model classes were tested, all
of which can be run (with hyperparameter optimization) on a personal MacBook Pro
in less than one day. The three model types with highest Pearson correlation from
a Leave-One-Out cross validation (LOO CV) with default hyperparameters were
selected for gridsearch hyperparameter optimization. From this gridsearch, the three
sets of hyperparameters with highest LOO CV Pearson correlation were selected, for
a total of nine models in order to capture different characteristics of the landscape
with relatively low accuracy models. The models were retrained on the full dataset
and used for predicting a restricted library, discussed in the section below.

(E) Model predictions

Directly synthesizing theDNAencoding the top variants is quite expensive. Therefore,
we interpret our models’ predictions by the frequency of each amino acid’s occurrence
in a top fraction (the top 1000) of the library, which we are able to encode efficiently
with degenerate codon libraries. An example is shown in Table 2.3. For cloning
purposes, at this point the sequence information predicted from the models is lost, as
each position is considered independently to reduce DNA synthesis and subcloning
costs. Additionally, we elected to include all 20 amino acids in the predictions even
though less than 20 were encoded in the input libraries, to provide an estimate for
when the models may be predicting high fitness based on mutations at other positions.
A full description of this step is provided with the accompanying Table 2.3.

(F) Experimental validation of predictions

The top amino acids at each position are encoded by degenerate codons identified by
SwiftLib [16]. All nine models are considered when choosing amino acids to encode,

35

in case some models are capturing different characteristics of the sequence-function
relationship. While the optimal combinations of amino acids identified by the
model are retained in this library, there may be non-optimal combinations that result
from this procedure. However, we have developed this method to balance these
experimental costs with being able to access the restricted libraries. The degenerate
codons used to encode the predicted libraries are shown in Figure 2.8. The predicted
libraries were tested in the same manner as above.

36

2.6 Supplemental Information
Sample prediction frequency table – position Set II (S)-
A sample predicted frequency table from position Set II for the (S)-enantiomer is
provided below in Table 2.3. At this step, the exact combinations predicted by the
machine learning models are lost and instead interpreted as frequencies at individual
amino acid positions to encode with degenerate codons. The alternative (ordering
and cloning the top sequences individually) can be quite expensive, but tractable
if screening costs significantly outweigh DNA synthesis costs. All 20 canonical
amino acids are enumerated, although each library does not contain all 20 in the
input library. Amino acids that are not present in the input library, but predicted
to be high functioning, can be used as indicators for when the frequencies may be
relying on amino acids at other positions to make predictions. In other words, they
serve as cut-offs above which the amino acids should be considered.

Table 2.3: Sample Prediction Frequency Table

AA1 Freq1 AA2 Freq2 AA3 Freq3
Y 153 V 203 I 302
N 115 F 123 V 288
R 91 I 80 L 93
G 81 Y 54 S 73
Q 50 Q 48 F 51
S 49 W 46 M 27
T 47 H 45 Q 21
W 47 M 43 K 19
K 47 L 43 T 19
E 46 A 43 P 19
A 45 E 40 A 18
H 37 K 40 W 17
V 37 T 37 E 13
M 36 R 36 G 9
C 35 P 36 H 9
D 31 S 32 Y 7
F 21 C 27 N 6
L 12 N 10 C 5
P 11 G 8 D 2
I 9 D 6 R 2

For example, the first amino acids that were not present in the input dataset for each of
the three positions are Q, Q, M as NDT encodes: {N, S, I, H, R, L, D, G, V, Y, C, F}.
The amino acids occurring significantly more frequently in the top 1000 sequences

37

are then [Y, N, R, G], [V, F, I], and [I, V, L, S, F]. This process is repeated for the top
three models determined by default hyperparameters, and then 3 hyperparameter
sets are used for each optimal, for a total of nine models (in an attempt to capture
different portions of the landscape with inaccurate models).

In the described approach, this step can be tuned to consider more or less sequences
(such as the top 20% or top 1%) depending on the protein engineer’s discretion con-
sidering the following: screening throughput, sequencing cost, cloning capabilities,
desired fitness improvement, model accuracy, theoretical size of the predicted library,
ease of encoding with codon degeneracy, and an interpretation of the landscape
(how many variants are expected to be near the fitness peak). As DNA synthesis
costs continue to fall, the ideal is to be able to sample the top sequences directly
(as was simulated in Chapter 3 with data from a full recombination library of four
positions) without resorting to this approach to interpret the models’ predictions with
degenerate codons.

Variant Starting Activity
Although WT has slightly lower enantioselectivity (and thus may reach both enan-
tiomers more easily), we started with a previously engineered variant, Y32K V97L,
for its significantly higher activity, which we hypothesized would make data collection
more reproducible. Activity and selectivity are reported in biological triplicate.

Table 2.4: Summary of starting activity observed in Rma NOD variants.

(S)-enantiomer (R)-enantiomer Enantiomeric
Excess Area (mAU*s) Area (mAU*s) Excess

Rma NOD WT 1350 ± 90 340 ± 30 59 %
Rma NOD Y32K V97L 2710 ± 50 370 ± 20 76%

38

Modeling Statistics for Rma NOD
The accuracy for the nine models of each Set, as well as the average values of the
nine models, is shown for the data obtained by screening the predicted libraries.
The corresponding predicted versus measured values can be found in the following
section for Set I (Table 2.5), Set IIR (Table 2.6), and Set IIS (Table 2.7).

Table 2.5: Test errors for Set I from predicted (R)- and (S)- libraries

Position Set I Kendall tau MAE Pearson r
Model_0 0.32518 30.01188 0.480996
Model_1 0.32518 30.0119 0.480996
Model_2 0.32518 30.01191 0.480996
Model_3 0.382935 22.62033 0.471391
Model_4 0.452322 27.23348 0.548192
Model_5 0.347679 32.51843 0.428702
Model_6 0.362329 30.58998 0.514802
Model_7 0.365468 30.38801 0.516186
Model_8 0.404083 17.22301 0.508073
Average 0.390582 26.07764 0.517561

Table 2.6: Test errors for Set II from predicted (R)- library

Position Set II (R)- Kendall tau MAE Pearson r
Model_0 0.608254 0.44737 0.822691
Model_1 0.608254 0.447369 0.822691
Model_2 0.595273 0.446588 0.818083
Model_3 0.28028 0.223076 0.385406
Model_4 0.626798 0.194871 0.827613
Model_5 0.626798 0.196244 0.821946
Model_6 0.598982 0.410763 0.823711
Model_7 0.598982 0.410763 0.823711
Model_8 0.598982 0.410763 0.823711
Average 0.610108 0.285607 0.820453

39

Table 2.7: Test errors for Set II from predicted (S)- library

Position Set II (S)- Kendall tau MAE Pearson r
Model_0 -0.03104 0.230254 -0.04925
Model_1 0.020243 0.209426 0.072554
Model_2 0.041835 0.216491 0.098214
Model_3 0.22807 0.109102 0.342213
Model_4 0.265857 0.123463 0.363029
Model_5 0.063428 0.139915 0.118149
Model_6 0.086663 0.215941 0.144677
Model_7 0.086663 0.215941 0.144677
Model_8 0.086663 0.215941 0.144677
Average 0.060729 0.1903 0.108533

Activity of Final Variants compared to Starting
The relative activity compared to KFLL is shown for the top 3 variants from each
input and predicted round.

Table 2.8: Relative activity compared to starting sequence - Set I

Set I: Residues 32, 46, 56, and 97
Input Variants Input Variants

Residue Activity Rel Residue Activity Rel
32 46 56 97 to KFLL 32 46 56 97 to KFLL
Y N L L 2.0 V G V L 1.9

(S)- C S V L 1.7 C F N L 2.1
C V H V 2.4 V C H V 2.5
C R S G 2.2 G S S G 2.7

(R)- I S C G 2.0 G F L R 1.1
N V R I 2.3 H C S R 0.9

40

Ta
bl
e
2.
9:

Re
la
tiv

e
ac
tiv

ity
co
m
pa
re
d
to

st
ar
tin

g
se
qu
en
ce

-S
et
II

Se
tI
I:
Re

si
du

es
49

,5
1,

an
d
53

In
pu

tV
ar
ia
nt
s

Pr
ed
ic
te
d
Va

ria
nt
s

Re
si
du

e
En

an
tio

se
le
ct
iv
ity

A
ct
iv
ity

Re
l.

Re
si
du

e
En

an
tio

se
le
ct
iv
ity

A
ct
iv
ity

Re
l.

49
51

53
%

S-
is
om

er
%

R-
is
om

er
to

K
FL

L
49

51
53

%
S-
is
om

er
%

R-
is
om

er
to

K
FL

L
(S
)-
se
le
ct
iv
e

P
R

I
93

7
2.
5

Y
V

V
97

3
2.
8-
fo
ld

fr
om

Y
V

F
93

7
1.
5

P
V

I
96

4
3.
2-
fo
ld

V
C
H
V

N
D

V
87

13
0.
8

P
V

V
96

4
3.
1-
fo
ld

(R
)-
se
le
ct
iv
e

P
R

I
19

81
2.
7

P
R

L
11

89
2.
2-
fo
ld

Fr
om

Y
F

F
22

78
0.
8

P
G

L
13

87
2.
1-
fo
ld

G
SS

G
C

V
N

24
76

0.
6

P
F

F
15

85
2.
2-
fo
ld

41

Predicted vs Measured Values for All Libraries
The predicted versus measured values for sequence-verified variants in the predicted
libraries are shown for each library. Figure 2.5 contains predicted values for position
Set I. Figure 2.6 contains predicted values for position Set II from GSSG, and Figure
2.7 for Set II from VCHV. A linear regression is shown for these values.

Figure 2.5: Predicted vs measured values for ee from Set I.

42

Figure 2.6: Predicted vs measured values for ee from position Set II from GSSG.

43

Figure 2.7: Predicted vs Measured Values for ee from Position Set II from VCHV.

44

Input sequences versus encoded predictions
To verify that the distribution of amino acids in the predicted libraries differs from that
of the input, heat maps of encoded amino acids are shown for each round comparing
the two. (These ratios are often represented with sequence logo maps, which are
better visualizations when a few amino acids dominate.) The input libraries are
NDT libraries, which represent N, S, I, H, R, L, D, G, V, Y, C, F. Input libraries
also contain proline at position 49 from WT. The degenerate codons used to encode
amino acids at each position are provided for reference. Sequence-function data is
available on Protabank [44]. In these tables, residues in bold were not part of the
predicted library but had to be included with the degenerate codon cloning method.

45

1R Predictions 1S Predictions
Position Codon Encoded Position Codon Encoded

32 AAA; GTA; TRC K; V; C, Y 32 GGA; YWC G; F, H, L, Y

46 DRC;
TTM

C, D, G, N, S, Y;
F, L 46 HDC C, F, H, I, L, N, R,

S, Y

56 VDC D, G, H, I, L, N,
R, S, V 56 GAC;

YBC
D;

C, F, L, P, R, S
97 STA; TAC L, V; Y 97 RGA G, R

Figure 2.8: Input versus predicted sequences for modeling position Set I.

46

Position Codon Encoded
49 CCA; TGC P, C
51 NDT F, V, Y, N, R, G, I, H, L, D, C, S
53 RSA; TTM L, F, G, R, T; S, C

Figure 2.9: Input versus predicted sequences for modeling Set II from GSSG.

Position Codon Encoded
49 HMC; RGA Y, N, R; S, P, G
51 DTC V, F, I
53 AGC; NTC I, V, L; S, F

Figure 2.10: Input versus predicted sequences for modeling Set II from VCHV.

47

Chiral SFC traces for racemic and enzymatically synthesized organosilicon
products

Chiralcel OD-H (4.6 mm x 25 cm), 5% isopropanol in CO2, 3 mL/min, 210 nm

Racemic

Variant VCHVYVV

Variant GSSGPRL

rac VCHVYVV GSSGPRL
Retention
Time (min)

Area
(mAU*S)

Area % Retention
Time (min)

Area
(mAU*S)

Area
%

Retention
Time (min)

Area
(mAU*S)

Area
%

2.275 119.2 49.4% 2.19 418.3 3.8% 2.204 6903.2 90.4%
2.439 121.9 50.6% 2.377 10498.3 96.2% 2.362 733.6 9.6%

Total 241.1 Total 10916.6 Total 7636.8

Figure 2.11: Summary of Chiral SFC trace. All the ee values of synthesized
organosilicon products were determined using automatic peak integration from chiral
SFC. The traces for racemic and enzymatic products are shown with summarized
integration.

48

Experimental uncertainty in best Rma NOD variants
Although the protein GB1 case study is presented as proof of principle, we also
provide evidence that this approach results in significantly improved variants over
the input proteins for Position Set II. However, we would like to reiterate that while
we have shown this method is more likely to find better variants on an empirical
method, this method does not guarantee identifying protein variants that are better
than the best identified in the input library. A simple case example is serendipitously
identifying the fitness maximum in the input library. The p-values obtained from
Welch’s t-test are shown below.

Table 2.10: Activity is significantly improved over starting variant KFLL

Variant Mean ± StDev p-value
KFLLPRI 3290 ± 360 —
VCHVYVV 9330 ± 1780 3.77E-02
VCHVPVI 10670 ± 520 2.26E-04
VCHVPVV 7820 ± 1820 6.84E-04
GSSGPRL 7380 ± 190 2.27E-05
GSSGPGL 7020 ± 230 3.37E-05
GSSGPFF 7300 ± 440 6.06E-04

Comparisons for enantioselectivity are best done with a different metric than what
is typically reported (ee). Enantiomeric excess refers to the positive ratio of the
following: |'−(|('+() . A key assumption of the t-test is that each population has a normal
distribution, therefore we first convert ee to ΔΔ� by taking ln('/() where R is the
major product or ln((/') in the opposite case.

Table 2.11: Enantioselectivity in Set II is significantly improved over starting variant
GSSG

Variant Mean ± StDev of ln(S/R) p-value
GSSGPRI 1.484 ± 0.090 —
GSSGPRL 2.152 ± 0.063 1.65E-03
GSSGPGL 1.925 ± 0.034 1.21E-02
GSSGPFF 1.731 ± 0.062 3.93E-02

49

Table 2.12: Enantioselectivity in Set II is significantly improved over starting variant
VCHV

Variant Mean ± StDev of ln(R/S) p-value
VCHVPRI 2.596 ± 0.070 —
VCHVYVV 3.386 ± 0.103 1.48E-03
VCHVPVI 3.213 ± 0.152 1.62E-03
VCHVPVV 3.128 ± 0.010 7.54E-03

Model performance and selection
In the first pass for model selection, the LOO Pearson r of the regressors with default
hyperparameters are used. The models ultimately selected are subsequently shown
for each round.

Set I Initial Models

0.512212499 GradientBoostingRegressor(alpha=0.9, criterion=’friedman_mse’,
init=None, learning_rate=0.1, loss=’ls’, max_depth=3, max_features=None,
max_leaf_nodes=None, min_impurity_split=1e-07, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, presort=’auto’,
random_state=None, subsample=1.0, verbose=0, warm_start=False)

0.478097911 RandomForestRegressor(bootstrap=True, criterion=’mse’, max_depth=None,
max_features=’auto’, max_leaf_nodes=None, min_impurity_split=1e-07,
min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=10, n_jobs=1, oob_score=False, random_state=None, verbose=0,
warm_start=False)

0.460760125 LinearSVR(C=1.0, dual=True, epsilon=0.0, fit_intercept=True, in-
tercept_scaling=1.0, loss=’epsilon_insensitive’, max_iter=1000, random_state=None,
tol=0.0001, verbose=0)

0.447166856 ARDRegression(alpha_1=1e-06, alpha_2=1e-06, compute_score=False,
copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300, nor-
malize=False, threshold_lambda=10000.0, tol=0.001, verbose=False)

0.423793421 KernelRidge(alpha=1, coef0=1, degree=3, gamma=None, kernel=’linear’,
kernel_params=None)

0.419172462 BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False,
copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300, nor-
malize=False, tol=0.001, verbose=False)

50

0.406655665 BaggingRegressor(base_estimator=None, bootstrap=True, boot-
strap_features=False, max_features=1.0, max_samples=1.0, n_estimators=10, n_jobs=1,
oob_score=False, random_state=None, verbose=0, warm_start=False)

0.396791771 LassoLarsCV(copy_X=True, cv=None, eps=2.2204460492503131e-16,
fit_intercept=True, max_iter=500, max_n_alphas=1000, n_jobs=1, normalize=True, posi-
tive=False, precompute=’auto’, verbose=False)

0.37899373 DecisionTreeRegressor(criterion=’mse’, max_depth=None, max_features=None,
max_leaf_nodes=None, min_impurity_split=1e-07, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0, presort=False, random_state=None,
splitter=’best’)

0.371734032 SGDRegressor(alpha=0.0001, average=False, epsilon=0.1, eta0=0.01,
fit_intercept=True, l1_ratio=0.15, learning_rate=’invscaling’, loss=’squared_loss’,
n_iter=5, penalty=’l2’, power_t=0.25, random_state=None, shuffle=True, verbose=0,
warm_start=False)

0.366256085 KNeighborsRegressor(algorithm=’auto’, leaf_size=30, metric=’minkowski’,
metric_params=None, n_jobs=1, n_neighbors=5, p=2, weights=’uniform’)

0.338423931 ElasticNet(alpha=1.0, copy_X=True, fit_intercept=True, l1_ratio=0.5,
max_iter=1000, normalize=False, positive=False, precompute=False, random_state=None,
selection=’cyclic’, tol=0.0001, warm_start=False)

0.202908183 AdaBoostRegressor(base_estimator=None, learning_rate=1.0, loss=’linear’,
n_estimators=50, random_state=None)

-0.082371549 LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normal-
ize=False)

-0.766587492 NuSVR(C=1.0, cache_size=200, coef0=0.0, degree=3, gamma=’auto’, ker-

nel=’rbf’, max_iter=-1, nu=0.5, shrinking=True, tol=0.001, verbose=False)

Set I Selected Models

ARDRegression(alpha_1=0.01, alpha_2=0.1, compute_score=False, copy_X=True,
fit_intercept=True, lambda_1=0.01, lambda_2=0.01, n_iter=300, normalize=False, thresh-
old_lambda=10000.0, tol=0.0001, verbose=False)

ARDRegression(alpha_1=0.01, alpha_2=0.01, compute_score=False, copy_X=True,
fit_intercept=True, lambda_1=0.01, lambda_2=0.01, n_iter=300, normalize=False, thresh-
old_lambda=10000.0, tol=0.0001, verbose=False)

51

ARDRegression(alpha_1=0.01, alpha_2=0.0001, compute_score=False, copy_X=True,
fit_intercept=True, lambda_1=0.01, lambda_2=0.01, n_iter=300, normalize=False, thresh-
old_lambda=10000.0, tol=0.0001, verbose=False)

GradientBoostingRegressor(alpha=0.3, criterion=’mse’,
init=None,learning_rate=0.9, loss=’quantile’, max_depth=3,max_features=None,
max_leaf_nodes=None,min_impurity_split=1e-07, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,n_estimators=500, presort=’auto’,
random_state=None, subsample=1.0, verbose=0, warm_start=False)

GradientBoostingRegressor(alpha=0.5, criterion=’mse’,
init=None,learning_rate=0.7, loss=’huber’, max_depth=10,max_features=None,
max_leaf_nodes=None,min_impurity_split=1e-07, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,n_estimators=1000, presort=’auto’,
random_state=None,subsample=1.0, verbose=0, warm_start=False)

GradientBoostingRegressor(alpha=0.5, criterion=’mse’,
init=None,learning_rate=0.7, loss=’huber’, max_depth=10,max_features=None,
max_leaf_nodes=None,min_impurity_split=1e-07, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,n_estimators=100, presort=’auto’,
random_state=None,subsample=1.0, verbose=0, warm_start=False)

LinearSVR(C=50, dual=True, epsilon=0, fit_intercept=True,intercept_scaling=1.0,
loss=’epsilon_insensitive’, max_iter=10000,random_state=None, tol=0.0001, verbose=0)

LinearSVR(C=50, dual=True, epsilon=0.1, fit_intercept=True,intercept_scaling=1.0,
loss=’epsilon_insensitive’, max_iter=10000,random_state=None, tol=0.0001, verbose=0)

LinearSVR(C=1.0, dual=True, epsilon=0.0, fit_intercept=True,intercept_scaling=1.0,
loss=’epsilon_insensitive’, max_iter=1000,random_state=None, tol=0.0001, verbose=0)

Set IIS Initial Models

0.609011 ARDRegression(alpha_1=1e-06, alpha_2=1e-06, compute_score=False,
copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300, nor-
malize=False, threshold_lambda=10000.0, tol=0.001, verbose=False)

0.60823 NuSVR(C=1.0, cache_size=200, coef0=0.0, degree=3, gamma=’auto’, kernel=’rbf’,
max_iter=-1, nu=0.5, shrinking=True, tol=0.001, verbose=False)

0.598652 LinearSVR(C=1.0, dual=True, epsilon=0.0, fit_intercept=True, inter-
cept_scaling=1.0, loss=’epsilon_insensitive’, max_iter=1000, random_state=None,
tol=0.0001, verbose=0)

52

0.587369 KernelRidge(alpha=1, coef0=1, degree=3, gamma=None, kernel=’linear’, ker-
nel_params=None)

0.584004 BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False,
copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300,
normalize=False, tol=0.001, verbose=False)

0.578776 GradientBoostingRegressor(alpha=0.9, criterion=’friedman_mse’, init=None,
learning_rate=0.1, loss=’ls’, max_depth=3, max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, presort=’auto’,
random_state=None, subsample=1.0, verbose=0, warm_start=False)

0.577483 LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)

0.564136 BaggingRegressor(base_estimator=None, bootstrap=True, boot-
strap_features=False, max_features=1.0, max_samples=1.0, n_estimators=10, n_jobs=1,
oob_score=False, random_state=None, verbose=0, warm_start=False)

0.549607 RandomForestRegressor(bootstrap=True, criterion=’mse’, max_depth=None,
max_features=’auto’, max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1, oob_score=False, ran-
dom_state=None, verbose=0, warm_start=False)

0.503091 MLPRegressor(activation=’relu’, alpha=0.0001, batch_size=’auto’, beta_1=0.9,
beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(100,), learn-
ing_rate=’constant’, learning_rate_init=0.001, max_iter=200, momentum=0.9, nes-
terovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, solver=’adam’,
tol=0.0001, validation_fraction=0.1, verbose=False, warm_start=False)

0.499812 DecisionTreeRegressor(criterion=’mse’, max_depth=None, max_features=None,
max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, presort=False,
random_state=None, splitter=’best’)

0.438121 LassoLarsCV(copy_X=True, cv=None, eps=2.2204460492503131e-16,
fit_intercept=True, max_iter=500, max_n_alphas=1000, n_jobs=1, normalize=True,
positive=False, precompute=’auto’, verbose=False)

0.437293 SGDRegressor(alpha=0.0001, average=False, epsilon=0.1, eta0=0.01,
fit_intercept=True, l1_ratio=0.15, learning_rate=’invscaling’, loss=’squared_loss’,
max_iter=None, n_iter=None, penalty=’l2’, power_t=0.25, random_state=None, shuf-
fle=True, tol=None, verbose=0, warm_start=False)

53

0.430372 KNeighborsRegressor(algorithm=’auto’, leaf_size=30, metric=’minkowski’, met-
ric_params=None, n_jobs=1, n_neighbors=5, p=2, weights=’uniform’)

0.399228 AdaBoostRegressor(base_estimator=None, learning_rate=1.0, n_estimators=50,

random_state=None, loss=’linear’)

Set IIS Selected Models

GradientBoostingRegressor(alpha=0.1, criterion=’mse’, init=None, learn-
ing_rate=0.7, loss=’lad’, max_depth=3, max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, presort=’auto’,
random_state=None, subsample=1.0, verbose=0, warm_start=False)

GradientBoostingRegressor(alpha=0.5, criterion=’friedman_mse’, init=None, learn-
ing_rate=0.9, loss=’quantile’, max_depth=3, max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, presort=’auto’,
random_state=None, subsample=1.0, verbose=0, warm_start=False)

GradientBoostingRegressor(alpha=0.3, criterion=’friedman_mse’, init=None, learn-
ing_rate=0.3, loss=’quantile’, max_depth=3, max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, presort=’auto’,
random_state=None, subsample=1.0, verbose=0, warm_start=False)

ARDRegression(alpha_1=0.1, alpha_2=1e-08, compute_score=False, copy_X=True,
fit_intercept=True, lambda_1=0.1, lambda_2=1e-06, n_iter=3000, normalize=False, thresh-
old_lambda=10000.0, tol=0.0001, verbose=False)

ARDRegression(alpha_1=0.1, alpha_2=1e-08, compute_score=False, copy_X=True,
fit_intercept=True, lambda_1=0.1, lambda_2=1e-06, n_iter=300, normalize=False, thresh-
old_lambda=10000.0, tol=0.0001, verbose=False)

ARDRegression(alpha_1=0.1, alpha_2=1e-06, compute_score=False, copy_X=True,
fit_intercept=True, lambda_1=0.1, lambda_2=1e-06, n_iter=3000, normalize=False, thresh-
old_lambda=10000.0, tol=0.0001, verbose=False)

LinearSVR(C=50, dual=True, epsilon=0, fit_intercept=True, intercept_scaling=1.0,
loss=’epsilon_insensitive’, max_iter=10000, random_state=None, tol=0.0001, verbose=0)

LinearSVR(C=100, dual=True, epsilon=0, fit_intercept=True, intercept_scaling=1.0,
loss=’epsilon_insensitive’, max_iter=10000, random_state=None, tol=0.0001, verbose=0)

54

LinearSVR(C=1000, dual=True, epsilon=0, fit_intercept=True, intercept_scaling=1.0,
loss=’squared_epsilon_insensitive’, max_iter=10000, random_state=None, tol=0.0001, ver-
bose=0)

Set IIR Initial Models

0.651306 GradientBoostingRegressor(alpha=0.9, criterion=’friedman_mse’, init=None,
learning_rate=0.1, loss=’ls’, max_depth=3, max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, presort=’auto’,
random_state=None, subsample=1.0, verbose=0, warm_start=False)

0.635081 ARDRegression(alpha_1=1e-06, alpha_2=1e-06, compute_score=False,
copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300, nor-
malize=False, threshold_lambda=10000.0, tol=0.001, verbose=False)

0.631197 BayesianRidge(alpha_1=1e-06, alpha_2=1e-06, compute_score=False,
copy_X=True, fit_intercept=True, lambda_1=1e-06, lambda_2=1e-06, n_iter=300,
normalize=False, tol=0.001, verbose=False)

0.626982 KernelRidge(alpha=1, coef0=1, degree=3, gamma=None, kernel=’linear’, ker-
nel_params=None)

0.625465 AdaBoostRegressor(base_estimator=None, learning_rate=1.0, loss=’linear’,
n_estimators=50, random_state=None)

0.61362 NuSVR(C=1.0, cache_size=200, coef0=0.0, degree=3, gamma=’auto’, kernel=’rbf’,
max_iter=-1, nu=0.5, shrinking=True, tol=0.001, verbose=False)

0.612285 LassoLarsCV(copy_X=True, cv=None, eps=2.2204460492503131e-16,
fit_intercept=True, max_iter=500, max_n_alphas=1000, n_jobs=1, normalize=True,
positive=False, precompute=’auto’, verbose=False)

0.608155 RandomForestRegressor(bootstrap=True, criterion=’mse’, max_depth=None,
max_features=’auto’, max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1, oob_score=False, ran-
dom_state=None, verbose=0, warm_start=False)

0.595166 MLPRegressor(activation=’relu’, alpha=0.0001, batch_size=’auto’, beta_1=0.9,
beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(100,), learn-
ing_rate=’constant’, learning_rate_init=0.001, max_iter=200, momentum=0.9, nes-
terovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, solver=’adam’,
tol=0.0001, validation_fraction=0.1, verbose=False, warm_start=False)

55

0.583177 BaggingRegressor(base_estimator=None, bootstrap=True, boot-
strap_features=False, max_features=1.0, max_samples=1.0, n_estimators=10, n_jobs=1,
oob_score=False, random_state=None, verbose=0, warm_start=False)

0.552808 LinearSVR(C=1.0, dual=True, epsilon=0.0, fit_intercept=True, inter-
cept_scaling=1.0, loss=’epsilon_insensitive’, max_iter=1000, random_state=None,
tol=0.0001, verbose=0)

0.542432 SGDRegressor(alpha=0.0001, average=False, epsilon=0.1, eta0=0.01,
fit_intercept=True, l1_ratio=0.15, learning_rate=’invscaling’, loss=’squared_loss’,
max_iter=None, n_iter=None, penalty=’l2’, power_t=0.25, random_state=None, shuf-
fle=True, tol=None, verbose=0, warm_start=False)

0.479498 DecisionTreeRegressor(criterion=’mse’, max_depth=None, max_features=None,
max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, presort=False,
random_state=None, splitter=’best’)

0.473718 KNeighborsRegressor(algorithm=’auto’, leaf_size=30, metric=’minkowski’, met-
ric_params=None, n_jobs=1, n_neighbors=5, p=2, weights=’uniform’)

0.242713 LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)

Set IIR Selected Models

GradientBoostingRegressor(alpha=0.1, criterion=’friedman_mse’, init=None, learn-
ing_rate=0.1, loss=’ls’, max_depth=3, max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, presort=’auto’,
random_state=None, subsample=1.0, verbose=0, warm_start=False)

GradientBoostingRegressor(alpha=0.5, criterion=’mse’, init=None, learn-
ing_rate=0.1, loss=’ls’, max_depth=3, max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=500, presort=’auto’,
random_state=None, subsample=1.0, verbose=0, warm_start=False)

GradientBoostingRegressor(alpha=0.7, criterion=’friedman_mse’, init=None, learn-
ing_rate=0.1, loss=’ls’, max_depth=3, max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, presort=’auto’,
random_state=None, subsample=1.0, verbose=0, warm_start=False)

56

ARDRegression(alpha_1=1, alpha_2=1e-08, compute_score=False, copy_X=True,
fit_intercept=True, lambda_1=1e-08, lambda_2=0.1, n_iter=10000, normalize=False, thresh-
old_lambda=10000.0, tol=0.0001, verbose=False)

ARDRegression(alpha_1=1, alpha_2=0.0001, compute_score=False, copy_X=True,
fit_intercept=True, lambda_1=1e-08, lambda_2=0.1, n_iter=10000, normalize=False, thresh-
old_lambda=10000.0, tol=0.0001, verbose=False)

ARDRegression(alpha_1=1, alpha_2=1e-08, compute_score=False, copy_X=True,
fit_intercept=True, lambda_1=0.0001, lambda_2=0.1, n_iter=10000, normalize=False,
threshold_lambda=10000.0, tol=0.0001, verbose=False)

BayesianRidge(alpha_1=0.1, alpha_2=1e-08, compute_score=False, copy_X=True,
fit_intercept=True, lambda_1=1e-08, lambda_2=0.1, n_iter=10000, normalize=False,
tol=0.0001, verbose=False)

BayesianRidge(alpha_1=0.1, alpha_2=1e-08, compute_score=False, copy_X=True,
fit_intercept=True, lambda_1=1e-08, lambda_2=0.1, n_iter=3000, normalize=False,
tol=0.0001, verbose=False)

BayesianRidge(alpha_1=0.1, alpha_2=1e-08, compute_score=False, copy_X=True,
fit_intercept=True, lambda_1=1e-08, lambda_2=0.1, n_iter=300, normalize=False,
tol=0.0001, verbose=False)

57

2.7 Bibliography
References

1. Dušan, P. & Lynn, K. S. C. Molecular modeling of conformational dynamics
and its role in enzyme evolution. Current Opinion in Structural Biology 52,
50–57 (2018).

2. Romero, P. A. & Arnold, F. H. Exploring protein fitness landscapes by directed
evolution. Nature Reviews Molecular Cell Biology 10, 866–876. doi:10.1038/
nrm2805 (2009).

3. Goldsmith, M. & Tawfik, D. S. Enzyme engineering: reaching the maximal
catalytic efficiency peak. Current Opinion in Structural Biology 47, 140–150
(2017).

4. Zeymer, C. & Hilvert, D. Directed evolution of protein catalysts. Annual Review
of Biochemistry 87, 131–157 (2018).

5. Garcia-Borrás, M., Houk, K. N. & Jiménez-Osés, G. Computational design
of protein function. Computational Tools for Chemical Biology 3, 87. doi:10.
1039/9781788010139-00087 (2017).

6. Lewis, R. D. et al. Catalytic iron-carbene intermediate revealed in a cytochrome
c carbene transferase. Proceedings of the National Academy of Sciences USA
115, 7308–7313 (2018).

7. Dahiyat, B. I. & Mayo, S. L. De novo protein design: fully automated sequence
selection. Science 278, 82–87 (1997).

8. Khersonsky, O. et al. Automated design of efficient and functionally diverse
enzyme repertoires. Molecular Cell 72, 178–186 (2018).

9. Amrein, B. A. et al. CADEE: Computer-aided directed evolution of enzymes.
IUCrJ 4, 50–64 (2017).

10. Murphy, K. P.Machine learning: a probabilistic perspective (MIT press, 2012).

11. Jordan, M. I. & Mitchell, T. M. Machine learning: Trends, perspectives, and
prospects. Science 349, 255–260 (2015).

12. Silver, D. et al.Mastering chess and shogi by self-play with a general reinforce-
ment learning algorithm. arXiv 550, 354–359 (2017).

13. Fox, R. J. et al. Improving catalytic function by ProSAR-driven enzyme
evolution. Nature Biotechnology 25, 338 (2007).

14. Romero, P. A., Krause, A. & Arnold, F. H. Navigating the protein fitness
landscape with Gaussian processes. Proceedings of the National Academy of
Sciences USA 110, e193–e201. doi:10.1073/pnas.1215251110 (2013).

15. Yang,K.K.,Wu, Z.&Arnold, F. H.Machine-learning-guided directed evolution
for protein engineering. Nature Methods 16, 687–694. doi:10.1038/s41592-
019-0496-6 (2019).

http://dx.doi.org/10.1038/nrm2805
http://dx.doi.org/10.1038/nrm2805
http://dx.doi.org/10.1039/9781788010139-00087
http://dx.doi.org/10.1039/9781788010139-00087
http://dx.doi.org/10.1073/pnas.1215251110
http://dx.doi.org/10.1038/s41592-019-0496-6
http://dx.doi.org/10.1038/s41592-019-0496-6

58

16. Jacobs, T. M., Yumerefendi, H., Kuhlman, B. & Leaver-Fay, A. SwiftLib: rapid
degenerate-codon-library optimization through dynamic programming. Nucleic
Acids Research 43, e34–e34 (2015).

17. Kan, S. J., Lewis, R. D., Chen, K. & Arnold, F. H. Directed evolution of
cytochrome c for carbon–silicon bond formation: Bringing silicon to life.
Science 354, 1048–1051 (2016).

18. Showell, G. A. & Mills, J. S. Chemistry challenges in lead optimization: silicon
isosteres in drug discovery. Drug Discovery Today 8, 551–556 (2003).

19. Franz, A. K. & Wilson, S. O. Organosilicon molecules with medicinal applica-
tions. Journal of Medicinal Chemistry 56, 388–405 (2013).

20. Shi, S.-L., Wong, Z. L. & Buchwald, S. L. Copper-catalysed enantioselective
stereodivergent synthesis of amino alcohols. Nature 532, 353–356 (2016).

21. Finefield, J. M., Sherman, D. H., Kreitman, M. &Williams, R. M. Enantiomeric
natural products: occurrence and biogenesis. Angewandte Chemie International
Edition 51, 4802–4836 (2012).

22. Reetz, M. T. Controlling the enantioselectivity of enzymes by directed evolution:
practical and theoretical ramifications. Proceedings of the National Academy
of Sciences USA 101, 5716–5722 (2004).

23. Consortium, U. UniProt: the universal protein knowledgebase. Nucleic Acids
Research 45, d158–d169. doi:10.1093/nar/gkw1099 (2017).

24. Bloom, J. D., Labthavikul, S. T., Otey, C. R. & Arnold, F. H. Protein stability
promotes evolvability. Proceedings of the National Academy of Sciences USA
103, 5869–5874 (2006).

25. Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein struc-
tures and complexes. Nucleic Acids Research 46,W296–w303 (2018).

26. Fox, R. J. et al. Optimizing the search algorithm for protein engineering by
directed evolution. Protein Engineering 16, 589–597 (2003).

27. Kille, S. et al.Reducing codon redundancy and screening effort of combinatorial
protein libraries created by saturation mutagenesis. ACS Synthetic Biology 2,
83–92 (2013).

28. Lissy, N. A. Patentability of chemical and biotechnology inventions: A dis-
crepancy in standards. Washington University of Law Quarterly 81, 1069
(2003).

29. Steinberg, B. & Ostermeier, M. Environmental changes bridge evolutionary
valleys. Science Advances 2, e1500921 (2016).

30. Drummond, D. A., Iverson, B. L., Georgiou, G. & Arnold, F. H. Why high-
error-rate randommutagenesis libraries are enriched in functional and improved
proteins. Journal of Molecular Biology 350, 806–816 (2005).

http://dx.doi.org/10.1093/nar/gkw1099

59

31. Wu, N. C., Dai, L., Olson, C. A., Lloyd-Smith, J. O. & Sun, R. Adaptation
in protein fitness landscapes is facilitated by indirect paths. Elife 5, e16965.
doi:10.7554/eLife.16965 (2016).

32. Bershtein, S., Segal,M., Bekerman, R., Tokuriki, N.&Tawfik,D. S. Robustness–
epistasis link shapes the fitness landscape of a randomly drifting protein. Nature
444, 929–932 (2006).

33. Zhang, R. K. et al. Enzymatic assembly of carbon–carbon bonds via iron-
catalysed sp 3 C–H functionalization. Nature 565, 67–72 (2019).

34. Kim, D. E., DiMaio, F., Yu-Ruei Wang, R., Song, Y. & Baker, D. One contact
for every twelve residues allows robust and accurate topology-level protein
structure modeling. Proteins: Structure, Function, and Bioinformatics 82, 208–
218 (2014).

35. Fowler, D. M. & Fields, S. Deep mutational scanning: a new style of protein
science. Nature Methods 11, 801. doi:10.1038/nmeth.3027 (2014).

36. Sinai, S., Kelsic, E., Church, G. M. & Nowak, M. A. Variational auto-encoding
of protein sequences. arXiv (2017).

37. Riesselman, A. J., Ingraham, J. B. & Marks, D. S. Deep generative models of
genetic variation capture the effects of mutations. Nature Methods 15, 816–822
(2018).

38. Brookes, D. H. & Listgarten, J. Design by adaptive sampling. arXiv (2018).

39. Saito, Y. et al. Machine-Learning-Guided Mutagenesis for Directed Evolution
of Fluorescent Proteins. ACS Synthetic Biology 7, 2014–2022. doi:10.1021/
acssynbio.8b00155 (2018).

40. Cadet, F. et al. A machine learning approach for reliable prediction of amino
acid interactions and its application in the directed evolution of enantioselective
enzymes. Scientific Reports 8, 1–15 (2018).

41. Carlin, D. A. et al. Kinetic characterization of 100 glycoside hydrolase mutants
enables the discovery of structural features correlated with kinetic constants.
PloS One 11, e0147596. doi:10.1371/journal.pone.0147596 (2016).

42. Barley, M. H., Turner, N. J. & Goodacre, R. Improved descriptors for the
quantitative structure–activity relationship modeling of peptides and proteins.
Journal of Chemical Information and Modeling 58, 234–243. doi:10.1021/
acs.jcim.7b00488 (2018).

43. Yang, K. K., Wu, Z., Bedbrook, C. N. & Arnold, F. H. Learned protein
embeddings for machine learning. Bioinformatics 34, 2642–2648. doi:10.
1093/bioinformatics/bty178 (2018).

44. Wang, C. Y. et al. ProtaBank: A repository for protein design and engineering
data. Protein Science 27, 1113–1124. doi:10.1002/pro.3406 (2018).

http://dx.doi.org/10.7554/eLife.16965
http://dx.doi.org/10.1038/nmeth.3027
http://dx.doi.org/10.1021/acssynbio.8b00155
http://dx.doi.org/10.1021/acssynbio.8b00155
http://dx.doi.org/10.1371/journal.pone.0147596
http://dx.doi.org/10.1021/acs.jcim.7b00488
http://dx.doi.org/10.1021/acs.jcim.7b00488
http://dx.doi.org/10.1093/bioinformatics/bty178
http://dx.doi.org/10.1093/bioinformatics/bty178
http://dx.doi.org/10.1002/pro.3406

60

45. Pedregosa, F. et al. Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research 12, 2825–2830 (2011).

46. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several
hundred kilobases. Nature Methods 6, 343–345 (2009).

61

C h a p t e r 3

COMPARING EVOLUTIONARY STRATEGIES ON AN
EMPIRICAL AND EPISTATIC FITNESS LANDSCAPE

1. Wu, Z., Kan, S. B. J., Lewis, R. D., Wittmann, B. J. & Arnold, F. H. Ma-
chine learning-assisted directed protein evolution with combinatorial libraries.
Proceedings of the National Academy of Sciences USA (2019).

Contributions Statement: Z.W. performed all experiments and data analyses.

3.1 Abstract
Machine learning is able to guide directed evolution to enriched regions of the
protein fitness landscape. However, directed evolution on its own is similarly capable
of reaching local optima in these landscapes. In this chapter, we demonstrate
that machine learning-guided directed evolution finds variants with higher fitness
than those found by other directed evolution approaches, even when using naïve
implementations of machine learning. This approach is validated on a large,
previously published empirical fitness landscape for human GB1 binding protein.

3.2 Introduction
Directed evolution techniques have enabled the adaptation of natural sequences
to human applications [1, 2]. By relying on data generated for desired tasks,
and less so on biophysical models and computation, directed evolution has been
able to circumvent our inability to accurately model physical processes and enable
engineering of any measurable property. However, the major bottleneck in directed
evolution is the experimental burden: testing hundreds to thousands of variants
remains the rate limiting step in protein engineering. While biology is fortunate
to have Moore’s Law applied to both DNA synthesis [3] and sequencing [4],
experimentation is unlikely to follow on the same trajectory, although improvements
to experimental work flow and screening throughput optimization are being made
constantly [5].

Limited by screening capacity, most traditional directed evolution campaigns rely
on the identification and accumulation of beneficial single mutations, where single
mutations are defined as mutations to specific amino acids at specific positions [6].

62

In these approaches, these single mutations are identified in greedy walks through
Maynard Smith’s proverbial protein fitness landscape [7], with the assumption
that accumulating these single mutations is generally safe. This approach works
particularly well in smooth landscapes, where the contributions of mutations are
additive such that accumulating beneficial single mutations allows for steady climbs
continuously to local optima.

However, it is well established that proteins are epistatic molecules [8, 9]. In other
words, there are non-additive contributions to protein fitness for each amino acid.
Unfortunately, current screening capabilities do not allow directly sampling the
combinatorial epistatic landscape, where the number of possible sequences grows
with 20# , # being the number of positions under consideration. Instead, protein
engineers are restricted to exploring single mutations, where the number of sequences
scales with 20# . While this approach reduces the amount of experimental burden, it
does not adequately sample epistatic landscapes.

To address this limitation, we have developed a method incorporating machine
learning to steer directed evolution campaigns by leveraging all of the generated
experimental data (Figure 3.1 bottom), where previously, only the best variants were
used (Figure 3.1 top). I outlined the machine learning-assisted strategy outlined
in Chapter 2, and give further validation here: in this approach, multiple amino
acid residues are randomized in each generation, enabling sampling of the epistatic
landscape. Sequence-function relationships are then used to train a predictive
algorithm, which is tasked with performing a round of in silico evolution. Thus, the
experimental burden of combinatorial landscapes, which is too high for physical
exploration, is moved to computational resources.

In Chapter 2, we applied this approach to the evolution of an enzyme without prior
knowledge of the landscape. In this chapter, we test this approach against others on
an empirical fitness landscape obtained for protein binding [10] obtained by deep
mutational scanning [11]. On this landscape, we show that a naïve implementation of
this method is sufficient to outperform other methods by reaching the global fitness
optimum at a higher rate (8.2%, compared to 4.9% in the next best method). It also
offers a higher expected fitness from the evolutionary campaign (6.42, compared to
5.93 in the next best method), given equal experimental burden. While this evidence
is empirical and limited to one protein fitness landscape, we have limited the machine
learning approach to provide a (low) base comparison to existing evolutionary
methods and expect many improvements to come.

63

Figure 3.1: Top: Traditional directed evolution. After experimentation, only the
best variant(s) are kept for future rounds of evolution. Bottom: Machine Learning-
Assisted Directed Evolution. Information from all experiments is used to train a
supervised machine learning model and used to identify the best variant(s) in a round
of in silico testing

.

3.3 Results
Evolutionary Approaches to Protein Engineering
To validate the developed machine learning-assisted approach, we compare it to
other evolutionary methods on the large empirical fitness landscape obtained on a
protein G domain B1(GB1) binding to an antibody [10]. Specifically, we compare

64

the final fitnesses reached by simulated directed evolution with and without machine
learning, based on testing the same number of variants. The empirical landscape
used here consists of measurements of 149,361 out of a total 204 = 160, 000 variants
from NNK/NNS saturation-mutagenesis libraries at four positions known to interact
epistatically. The fitness of protein GB1 was defined as the enrichment of folded
protein bound to the antibody IgG-Fc, measured by coupling mRNA display with
next-generation sequencing and normalized to the parent sequence, which had a
fitness value of 1.0. The landscape contains a fitness maximum at 8.76, and 19.7%
of variants at a reported value of 0 (dead variants). On this landscape, the simulated
single-mutant walk (described below) reached 869 local optima, 533 of which
outperformed the wild-type sequence and 138 of which had fitness less than 5%
of the wild-type fitness. For a full description of the epistatic landscape, see the
thorough analysis of Wu and coworkers [10].

We first simulated single-mutation evolutionary walks starting from each of the
149,361 variants reported. The algorithm proceeded as follows:

1. In each single-mutation walk, all possible single amino acid mutations were
tested at each of the four mutated positions.

2. The best amino acid was then fixed at its observed position, and that position
was restricted from further exploration.

3. Repeat the first two steps with the remaining positions until an amino acid is
fixed at each position.

As a greedy search algorithm that always follows the pathwith strongest improvements
in fitness, this single mutation walk has a deterministic solution for each starting
variant. Assuming each amino acid occurs with equal frequency and that the library
has complete coverage, applying the 3-fold oversampling rule to obtain roughly 95%
library coverage [12, 13] results in a total of 570 variants screened. We provide
further explanation for this number in the following section.

Another technique widely used in directed evolution is recombination. For a given
set of positions to explore, one method is to randomly sample the combinatorial
library and recombine the mutations found at each position in the top M variants.
This process is shown in Figure 2.1. For N positions, the recombinatorial library
then has a maximum of MN variants and we selected the top three variants for a
maximum recombinatorial library size of 81. An alternative recombination approach

65

is to test all possible single mutants from a given parent sequence and recombine
the top three mutations at each position for a fixed recombinatorial library size of
81. However, this alternative recombination does not perform as well on the GB1
data set (Figure 3.4). Compared to these recombination strategies, the machine
learning-assisted approach has the distinct advantage of providing estimates for the
variability at each position (as opposed to taking the top three mutations at each).

Experimental Burden for Single-Mutation Walks
The comparison of the number of variants necessary for a single-mutation walk is a
central argument of the main text and deserves extra explanation. Protein engineers
often aim for 95% library coverage (9, 10), or in other words a 95% probability of
seeing a particular variant in the library. Assuming equal frequency of each amino
acid, this number is roughly 3-fold the library size, which is often used in practice
(9). Therefore, for 19 mutations away from one of the 20 canonical amino acids,
19×3=57 variants are needed for roughly 95% coverage. The single-mutation walk
to identify mutations at four positions has 4 + 3 + 2 + 1 = 10 such libraries, for a total
of 570 variants.

However, a different analysis without making these assumptions can be completed for
this particular library by using expressions developed by Bosley and Ostermeier (11).
From this work, the probability %8 of a particular sequence 8 is given below, where #
is the number of tested variants and 58 is the frequency at which the sequence 8 is
expected to be present.

%8 = [1 − (1 − 58)#] (3.1)

Rearranged to give

=
ln(1 − %8)
ln(1 − 5) (3.2)

As stated previously, a typical desired library coverage is %8 = 0.95 for 95% coverage,
but the choice of codons can have a strong effect on the value of 58. Assuming
equal representation of the 19 codons gives # ≈ 55.4, or 554 variants for the 10
libraries needed. However, the authors of the landscape used NNS/NNK codons,
which encode for 20 amino acids with 32 codons. The least frequent amino acid
encoded with these codons (methionine) occurs at a frequency of 1/32, requiring
≈ 94.4, or 944 variants. To balance the degenerate codon complexity and amino
acid coverage, protein engineers employ the use of NDT/VHG/TGG codons, also

66

known as the 22c-trick [14], in which methionine occurs 1/22 times for # ≈ 64.4, or
644 variants over 10 libraries.

From a protein engineer’s perspective, a comparison to 644 variants is likely the
most pertinent. However, to provide directed evolution with a stronger baseline for
comparison, we have used 570 variants as a more stringent comparison with less data
available, which is obtained from applying the 3-fold oversampling rule [12] to 10
libraries containing 19 desired variants. In any case, we empirically observe that the
single-mutation walk performs similarly to the ML approach trained with 300–400
variants (Figure 3.3), which is significantly fewer than the number of variants shown
in the main text.

Comparison between Evolutionary Approaches
To compare the distribution of fitness values of the optimal variants found by the
described directed evolution methods, shallow neural networks were trained with
470 randomly selected input variants. From this, 100 predictions were tested, for
a total screening burden equivalent to the single-mutation walk. In this work, the
number of variants tested was determined by comparison to another method (a
single-mutant walk) in the previous section and the ratio of training variants versus
predicted variants was set through experimental convenience (the size of a 96-well
deep-well plate). However, from a modeling perspective, these design choices could
be optimized to increase the expected fitness improvement (Figure 3.3). Specifically,
the number of rounds and the number of variants tested in each round Histograms
of the highest fitnesses found by these approaches are shown in Figure 3.2A and
reiterated as empirical cumulative distribution functions in Figure 3.2B.

As shown in Figure 3.2, with the same number of variants screened, machine
learning-assisted evolution reaches the global optimum fitness value in 8.2% of
600 simulations, compared to 4.9% of all starting sequences reaching the same
value through a single-mutant walk and 4.0% of simulated recombination runs.
Additionally, on this landscape the machine-learning approach requires about 30%
fewer variants to achieve final results similar to the single-mutant walk with this
analysis. Perhaps more importantly, a single-mutant walk is much more likely to end
at low fitness levels compared to approaches that sample the combinatorial library
directly. To this end, the machine learning approach has an expected fitness value
of 6.42, compared to 5.41 and 5.93 for the single step walk and recombination,
respectively. These differences are statistically significant (p-values of 3.3 × 10−62

67

Figure 3.2: (A) Highest fitness values found by directed evolution and directed
evolution assisted by machine learning. The distribution of fitness peaks found by
iterative site-saturation mutagenesis from all labeled variants (149,361 out of 204
possible covering four residues) is shown in red. The distribution of fitness peaks
found by 10,000 recombination runs with an average of 570 variants tested is shown
in blue. The distribution of the highest fitnesses found from 600 runs of the machine
learning-assisted approach is shown in green. In all approaches, 570 variants are
tested. For reference, the distribution of all measured fitness values in the landscape
is shown in gray. (B) The same evolutionary distributions are shown as empirical
cumulative distribution functions, where the ordinate at any specified fitness value
is the fraction of evolutionary runs that reach a fitness less than or equal to that
specified value. Machine learning-assisted evolution walks are more likely to reach
higher fitness levels compared to conventional directed evolution.

.

68

and 2.3 × 10−18, respectively) as determined by a one-tailed t-test with unequal
variance.

Interestingly, the accuracy of the machine learning models as determined on a test
set of 1000 random variants not found in the training set can be quite low (Pearson’s
r = 0.41 with stdev 0.17). However, this level of accuracy as measured by Pearson’s r
appears to be sufficient to guide evolution. Although perfect accuracy does not seem
to be necessary, if the accuracy of the trained model is so low that predictions are
random guesses, this approach cannot be expected to outperform a single mutant walk
(Figure 3.3). As an algorithm, evolution is focused on identifying optimal variants,
and developing a measure of model accuracy biased toward correctly identifying
optimal variants will likely improve model selection. This validation experiment gave
us confidence that machine learning-assisted directed evolution can find improved
protein variants efficiently.

3.4 Discussion
On an empirical protein fitness landscape, we have validated a machine learning-
guided directed evolution approach, demonstrating its increased efficacy of both
discovering the fitness maximum and in increasing the expected improvement after
evolution. However, it is important to stress that this is simply one application and
that this landscape was initially obtained because it was known to contain epistatic
mutations [10]. This allowed us to validate our models’ ability to capture epistatic
landscapes, and provided a ground truth test bed for comparing engineering methods.
In this proof of concept work, we heavily restrict modeling to base machine learning
models available in scikit-learn [15] and have made design constraints that are heavily
influenced by current workflows in protein engineering.

Nonetheless, there are many improvements that can be made when applying this
method to directed evolution campaigns. While the immediate improvement that
comes to mind may be to test more exotic machine learning models, every step
of this process can be fine-tuned. The distribution of initial sequences that serve
as the training set can be selected to be more informative. The manner in which
these sequences are encoded (either through physicochemical properties [16, 17]
or learned embeddings [18, 19]) can capture stronger prior information. The
distribution of the number of sequences used to train and test (and the number of
rounds of experimentation) can be adjusted and guided by active learning [1]. These
improvements are actively being explored by our group and others.

69

A particularly important improvement that warrants further discussion is in the
evaluation of predictive models. Much of the current literature in applying machine
learning to protein engineering focuses on increased accuracy for existing data in
regression tasks, and two superlative examples comparing multiple approaches may
be found by Xu and Rao [17, 19]. However, it is not immediately clear that increasing
predictive model accuracy in these cases will enable the design of new sequences
with higher fitness. This remains an open question to the field [20], and current
approaches are summarized in Chapter 1. Nevertheless, as machine learning is
increasingly applied to protein engineering [21], it will be ever more important to
understand the mechanisms that generate these data, whether driven by nature or
humans.

3.5 Materials and Methods
Fitness values were provided for 149,361 out of 160,000 total possible sequences
covering four positions in human protein GB1, where fitness was defined as the
enrichment of folded protein bound to IgG-Fc antibody as measured by coupling
mRNA display with next-generation sequencing [10]. We only use measured
sequences and did not incorporate imputed values of variants that were not measured
directly. Three directed evolution approaches were simulated on this landscape: A) a
single mutation walk, B) simulated recombination, and C) directed evolution with
machine learning.

For A), the single mutation walk, the algorithm proceeds as follows:

1. From a starting sequence, every possible single mutation (19N variants for N
positions) is made and evaluated.

2. The best single mutation is fixed in the reference sequence, and the position it
was found in is locked from further editing.

3. Steps 1. and 2. are repeated until every position has been tested, for a total of
four rounds to cover four positions.

For B), simulated recombination proceeds by selecting 527 random variants and
recombining the mutations found in the top three variants, for an average of 570
variants tested over 10,000 simulations.

For C), directed evolution with machine learning proceeds as follows:

70

1. 470 randomly selected sequences in the combinatorial space are used to train
shallow neural networks with randomized hyperparameter search from 4-fold
cross-validation based on Pearson’s r. The scikit-learn implementation of
multilayer perceptrons is used [15] with one-hot encodings of amino acid
sequence. Errors are then calculated based on 1000 randomly selected variants
that were not present in the training set.

2. The optimal model is used to predict the top 100 sequences, or roughly the
screening capacity of a plate.

3. The highest true fitness value in this predicted set of 100 sequences and the
training set of 470 is the maximum fitness value found.

This process was repeated with different numbers of random sequences in step 1
to simulate lower model accuracies, the results of which can be seen in Figure 3.3.
In Figure 3.4, 100 variants were used as the size of the predicted library test for its
similarity to the screening capacity of a 96-well plate. With 570 total variants (SI
Appendix, Library Coverage), this leaves 470 variants for the input library in step I
for an equal screening burden, assuming 95% coverage of 19 mutations from wild
type at each position.

3.6 Supplemental Information
Additional comparison to other evolutionary techniques
Empirical Cumulative Distribution Functions (eCDFs) are shown for increasing
amount of data input in Supporting Figure 3.3. In Supporting Figure 3.3, 200
simulated evolutions are tested for each of the machine learning-assisted methods,
with the exception of N=470, where 600 simulations are performed, as this example
is directly related to the experimental burden of the iterative single-site saturation
approach.

In Supporting Figure 3.4, we compare the results of various alternative evolutionary
methods that are less efficient. This is a direct extension of Figure 3.2B in the main
text, but we leave the abridged version in the main text for simplicity.

In Figures 3.3 and 3.4, lines shifted toward the right are more likely to identify
sequences with higher fitness. The cumulative fraction is shown on the ordinate axis,
and fitness value on the abscissa. The highest fitness value from the top 100 sequences
(roughly the smallest batch size, as screening is typically done in 96-well deep-well
plates) from each model trained with N sequences is shown to demonstrate the effect

71

of increased training data. Therefore, the total screening burden for each line is
+ 100. With 570 sequences measured (in black), the machine learning-assisted
evolution approach reaches the global optimum fitness value in 8.4% of simulations,
compared to 4.9% of all starting sequences (in blue). The machine learning-assisted
evolution approach only requires between 300 and 400 total tested sequences to
perform similarly to directed evolution (570 sequences). Therefore, the directed
evolution approach requires about 42% more variants tested to achieve similar results
on this landscape. However, perhaps a more important metric is the expected fitness
value obtained by each method, summarized below in Table 3.1.

Table 3.1: Expected value for fitness reached and fraction of simulated evolutions
that reach the maximum fitness value of various evolutionary strategies.

Expected Fitness Reached Fraction of Runs that
(equivalent screening) reach the Maximum

ProSAR 3.00 0.20%
Recombining 3 Best Single Mutations at Each Position 4.07 1.18%

1000 Random Combinatorial Sequences 5.04 0.40%
Single Step Mutation Walk 5.41 4.91%

DE+ML (300 total sequences) 5.46 3.5%
DE+ML (400 total sequences) 5.74 2.0%

Testing random sequences, and recombining the top 3 5.93 4.03%
DE+ML (570 total sequences) 6.42 8.17%

Other controls included in Supporting Figure 3.4 are for random combinatorial
sequences, from which the highest fitness from 1000 random samples is provided (in
gray); two different methods of recombination (in cyan and gold); and a ProSAR-like
algorithm (in red). In cyan, recombination from the top 3 single mutants at each
position from a reference parent are shown. The top 3 mutants from a random
combinatorial search of all positions is shown in gold (with an average of 570
sequences searched).

Our implementation of ProSAR is based on the Partial Least Squares (PLS) algorithm
for a linear model for single mutations established by Fox and coworkers [22, 23].
Specifically, the PLS implementation by scikit-learn is trained with data from 569
random sequences (optimized over the number of components kept). From the
PLS decomposition, the coefficients for the linear contribution from each mutation
is determined, and the most positive mutation at each position is kept. We call
this approach “ProSAR-like”, as the exact implementation of ProSAR can be fairly
subjective. See Supporting Information (Detailed description of a round): in
Improving catalytic function by ProSAR-driven enzyme evolution by [23].

72

Figure 3.3: Highest fitnesses found with less accurate models.

The low performance of ProSAR on this landscape is worth discussing. ProSAR
was developed to analyze previously identified mutations at different positions, such
that each position typically only has one (maybe two) mutations to consider. A
base model with linear contributions at these positions supported their evolution.
However, in our recombination landscape of a small number of positions with known
epistasis (nonlinear effects), thus ProSAR should not be expected to find optimal
solutions (and does not outperform other methods tested).

73

Figure 3.4: Highest fitnesses found with other directed evolution approaches.

3.7 Bibliography
References

1. Romero, P. A. & Arnold, F. H. Exploring protein fitness landscapes by directed
evolution. Nature Reviews Molecular Cell Biology 10, 866–876. doi:10.1038/
nrm2805 (2009).

2. Cheng, F., Zhu, L. & Schwaneberg, U. Directed evolution 2.0: improving and
deciphering enzyme properties. Chemical Communications 51, 9760–9772
(2015).

3. Schuster, S. C. Next-generation sequencing transforms today’s biology. Nature
Methods 5, 16–18 (2008).

4. Goldberg, M. BioFab: applying Moore’s law to DNA synthesis. Industrial
Biotechnology 9, 10–12 (2013).

5. Diefenbach, X. W. et al. Enabling biocatalysis by high-throughput protein
engineering using droplet microfluidics coupled to mass spectrometry. ACS
Omega 3, 1498–1508 (2018).

6. Packer, M. S. & Liu, D. R. Methods for the directed evolution of proteins.
Nature Reviews Genetics 16, 379–394 (2015).

http://dx.doi.org/10.1038/nrm2805
http://dx.doi.org/10.1038/nrm2805

74

7. Smith, J. M. Natural selection and the concept of a protein space. Nature 225,
563–564 (1970).

8. Bershtein, S., Segal,M., Bekerman, R., Tokuriki, N.&Tawfik,D. S. Robustness–
epistasis link shapes the fitness landscape of a randomly drifting protein. Nature
444, 929–932 (2006).

9. Starr, T. N. & Thornton, J. W. Epistasis in protein evolution. Protein Science
25, 1204–1218 (2016).

10. Wu, N. C., Dai, L., Olson, C. A., Lloyd-Smith, J. O. & Sun, R. Adaptation
in protein fitness landscapes is facilitated by indirect paths. Elife 5, e16965.
doi:10.7554/eLife.16965 (2016).

11. Fowler, D. M. & Fields, S. Deep mutational scanning: a new style of protein
science. Nature Methods 11, 801. doi:10.1038/nmeth.3027 (2014).

12. Reetz, M. T., Kahakeaw, D. & Lohmer, R. Addressing the numbers problem in
directed evolution. ChemBioChem 9, 1797–1804 (2008).

13. Bosley, A. D. & Ostermeier, M. Mathematical expressions useful in the
construction, description and evaluation of protein libraries. Biomolecular
Engineering 22, 57–61 (2005).

14. Kille, S. et al.Reducing codon redundancy and screening effort of combinatorial
protein libraries created by saturation mutagenesis. ACS Synthetic Biology 2,
83–92 (2013).

15. Pedregosa, F. et al. Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research 12, 2825–2830 (2011).

16. Cadet, F. et al. A machine learning approach for reliable prediction of amino
acid interactions and its application in the directed evolution of enantioselective
enzymes. Scientific Reports 8, 1–15 (2018).

17. Xu,Y. et al.ADeepDive intoMachine LearningModels for Protein Engineering.
Journal of Chemical Information and Modeling (2020).

18. Yang, K. K., Wu, Z., Bedbrook, C. N. & Arnold, F. H. Learned protein
embeddings for machine learning. Bioinformatics 34, 2642–2648. doi:10.
1093/bioinformatics/bty178 (2018).

19. Rao, R. et al. Evaluating protein transfer learning with TAPE in Advances in
Neural Information Processing Systems (2019), 9686–9698.

20. Brookes, D. H. & Listgarten, J. Design by adaptive sampling. arXiv (2018).

21. Yang,K.K.,Wu, Z.&Arnold, F. H.Machine-learning-guided directed evolution
for protein engineering. Nature Methods 16, 687–694. doi:10.1038/s41592-
019-0496-6 (2019).

22. Fox, R. J. et al. Optimizing the search algorithm for protein engineering by
directed evolution. Protein Engineering 16, 589–597 (2003).

http://dx.doi.org/10.7554/eLife.16965
http://dx.doi.org/10.1038/nmeth.3027
http://dx.doi.org/10.1093/bioinformatics/bty178
http://dx.doi.org/10.1093/bioinformatics/bty178
http://dx.doi.org/10.1038/s41592-019-0496-6
http://dx.doi.org/10.1038/s41592-019-0496-6

75

23. Fox, R. J. et al. Improving catalytic function by ProSAR-driven enzyme
evolution. Nature Biotechnology 25, 338 (2007).

76

C h a p t e r 4

SIGNAL PEPTIDES GENERATED BY ATTENTION-BASED
NEURAL NETWORKS

1. Wu, Z. et al. Signal Peptides Generated by Attention-Based Neural Networks.
ACS Synthetic Biology 9, 2154–2161 (2020).

Contributions Statement: Z.W. conceived and directed this study. K.K.Y., A.L.,
and Z.W. obtained training data and trained the models. Z.W., M.J.L., and D.
Wernick planned the in vivo experimental validation. M.J.L., and A.B. performed
the experimental validation. Z.W. analyzed the experimental results.

4.1 Abstact
Short (15-30 residue) chains of amino acids at the amino termini of expressed
proteins known as signal peptides (SPs) specify secretion in living cells. We trained
an attention-based neural network, the Transformer model, on data from all available
organisms in Swiss-Prot to generate SP sequences. Experimental testing demonstrates
that the model-generated SPs are functional: when appended to enzymes expressed
in an industrial Bacillus subtilis strain, the SPs lead to secreted activity that is
competitive with industrially used SPs. Additionally, the model-generated SPs are
diverse in sequence, sharing as little as 58% sequence identity to the closest known
native signal peptide and 73% ± 9% on average.

4.2 Introduction
For cells to function, proteins must be targeted to their proper locations. Over
one-third of the bacterial proteome that is synthesized in the cytoplasm is exported
outside of it, and as a core requirement, the pathways that control localization
are highly conserved across all domains of life [1]. To direct a protein through
secretion pathways, organisms encode instructions in a leading short peptide sequence
(typically 15-30 amino acids) called a signal peptide (SP) [2]. SPs direct peptide
chains to various export pathways, including the well-characterized Sec-[3–5] and
Tat-mediated pathways [6, 7].

SPs have been engineered for a variety of industrial and therapeutic purposes,
including increased export for recombinant protein production [2, 8] and increasing the

77

therapeutic levels of proteins secreted from industrial production hosts [9]. Secretion
facilitates protein production by removing stress caused by protein accumulation in
the cytoplasm, as well as by placing the burden of separation on the cells, which
simplifies downstream processing [10].

Due to the utility and ubiquity of protein secretion pathways, a significant amount of
work has been invested in identifying SPs in natural protein sequences. Much of this
work was pioneered by the groups behind the SignalP web server, which first used
artificial neural networks [11] and hidden Markov models [12] and now leverages
modern deep learning architectures to model SPs [13]. An additional tool from the
SignalP team, TargetP, is capable of identifying SP sequences and classifying them
by the pathway used and the targeted intracellular or extracellular location [13].

While this is a significant step toward modeling SP sequences from proteomic
data, the challenging task of generating a SP sequence has yet to be validated in
vivo. Indeed, the task of generating protein sequences of any kind is just beginning
to be tackled [14–18]. Given a desired protein to target for secretion, there is
no universally-optimal directing SP [19, 20] and there is no reliable method for
generating a SP with measurable activity. Instead, libraries of naturally-occurring SP
sequences from the host organism or phylogenetically-related organisms are tested
for each new protein secretion target [20, 21]. That these libraries give functional
SPs for new proteins is due to inherent “transferability” of SP sequences among
multiple targets: empirically, roughly 50% [20] to 68% [19] of natural SPs paired to
a protein secretion target produce measurable activity.

Although at one time the space of functional SP sequences was hypothesized to be
quite large under the helical hairpin hypothesis [22], subsequent research found that
nature has designed SP sequences to interact with the necessary translocons in various
pathways [23]. While researchers have attempted to generalize our understanding of
SP–protein pairs by developing general SP design guidelines, those guidelines are
heuristics at best and are limited to modifying existing SPs, not designing new ones
[2, 24, 25].

Here we present a machine translation model for generating SP sequences that have
a high probability of being functional. Specifically, we trained a Transformer model
[26] to predict SPs given the mature protein sequences of proteins annotated with
SPs in Swiss-Prot [27] from all available organisms. These generated sequences
are predicted by SignalP to have high probability of functioning as SPs. Upon
in vivo validation in a gram-positive production organism, we find that 48% of

78

constructs with generated SPs lead to secreted enzyme activity comparable to SPs
used industrially. The functional generated sequences share as little as 58% sequence
identity to the closest natural SP.

4.3 Results
Model Description
We cast the SP generation problem as a translation problem by using the mature
protein with the SP sequence removed as the source and the corresponding SP
sequence as the output sequence. We employ the Transformer encoder-decoder
architecture as first described by Vaswani et al. [26] that leverages an attention
mechanism [28] which weights different positions over the entire sequence in order to
determine a representation of that sequence, and remains a state-of-the-art architecture
for machine translation between human languages [29, 30]. Recent work has also
applied the Transformer model to extract information from protein sequences for use
in downstream protein function prediction and engineering tasks [31, 32].

Training Objective
We apply the Transformer architecture to SP prediction by treating each of the amino
acids as a token (cf. machine translation, where words, characters, or subwords
are tokens). The Transformer encoder maps an input sequence of tokens (the
protein amino acids) to a sequence of continuous representations. Given these
representations, the decoder then generates an output sequence (the SP amino acids)
one token at a time. Each step in this generation depends on the generated sequence
elements preceding the current step and continues until a special <END OF SP>
token is generated. Figure 4.1 illustrates the modeling scheme. During training, we
pass the decoder the true target SP. Training details can be found in Methods.

79

softmax AA

prediction

M

A

N

Q

R

STOP

M

R

T

T

A

PROT

Transformer
(× N)

Protein
to secrete

Generated
signal peptide

embed

Figure 4.1: Sequence-to-sequence modeling for signal peptide (SP) amino acid
sequences. During training, the first 100 amino acids of the protein are tokenized
and embedded.

.

Training Data
From Swiss-Prot [27] we were able to extract over 40,000 SP–protein pairs from
all domains of life. Protein secretory pathways are highly conserved, and others
have found that incorporating data from all available organisms boosts accuracy in
secretion prediction [13]. Additionally, we elect to train with SP-protein sequences
over SP sequences alone, as experimental evidence suggests strong dependence on
the protein sequence [2, 13, 19]. We selected sequence length maximum cutoffs of
70 amino acids and 105 amino acids for the SP and protein, respectively, to capture
important motifs while keeping sequences short for more efficient training.

Model inputs are one-hot encodings of amino acid sequences of proteins to be
secreted without their corresponding signal peptide. Mature proteins were padded or
truncated to 105 residues, by observing that the loss during training did not decrease
with longer input protein sequences, and the memory and computation required by
the Transformer architecture scales quadratically with the sequence length. After
truncation and removing duplicates, 25,000 SP–protein pairs remained, which were
split randomly into training (80%) and validation (20%) sets. While we chose to
restrict our search to the reviewed portion of UniProt (Swiss-Prot), most of the SPs
returned were identified by computational annotation, and a future alternative is to

80

incorporate sequences identified in TrEMBL, allowing a larger training set for better
model prediction. Model outputs are one-hot encodings of signal peptide amino acid
sequences, which are padded or truncated to 70 residues.

In addition to training on the full dataset, we also trained on filtered subsets of the full
dataset for which we removed sequences with ≥ 75%, 90%, 95%, or 99% sequence
identity to 28 enzymes from 4 families we selected for experimental validation
(further described below) in order to test the model’s ability to generalize to distant
protein sequences. The Transformer model was then trained on each of these filtered
datasets and used to generate sequences.

Machine Sequence Generation
Given a trained model that predicts sequence probabilities, there are many methods
by which protein sequences can be generated [14, 16]. One such method is beam
search [33], which generates a sequence by taking the most probable amino acid
additions from the N-terminus. In traditional beam search, the size of the beam refers
to the number of unique hypotheses with highest predicted probability for a specific
input that are tracked at each generation step. For example, a beam size of 5 generates
hypotheses from the N to C terminus, keeping the 5 most probable sequences as the
sequence grows. In this study, we attempt to generate “generalist” SPs, which have
higher probability of functioning across multiple input protein sequences. To this
end, we employed an alternate form of beam search, which we call “mixed input
beam search” with a beam size of 5 over the decoder in identifying SPs. Our mixed
input beam search generates SP hypotheses for multiple protein inputs, keeping the
SP sequences with highest predicted probabilities. This generation process reflects
the natural SPs’ transferability between proteins to secrete, as 50-68% of natural
SPs from related species exhibit measurable function when tested against specific
enzymes [19, 20]. By providing the Transformer model with multiple enzymes, the
model has an opportunity to generate a sequence with high likelihood given multiple
inputs, rather than being forced to generate a SP for an input it is unsure about.

For this study, we aimed to identify novel SPs (new amino acid sequences) and test
them for secretion of ten enzymes across four families (amylases, lipases, proteases,
and xylanases) in an industrial gram-positive bacterial (Bacillus subtilis) host. In
addition to the ten enzymes tested, we also provided 31 other enzymes as inputs
to generate SPs, in an effort to increase the transferability of generated SPs to
multiple enzymes. The enzymes and the SPs generated for them can be found in

81

Supplementary Section VII. Predictions were made based on models trained on the
four cutoffs for sequence identity described above. The generated SP sequences
from each cutoff (4 SPs for each target enzyme) were appended to different protein
target sequences to test with SignalP. The generated SPs also showed high probability
of functioning as predicted by SignalP 5.0 (average probability 90.4% ± 17.1%,
Supplemental Section II) and also contain many of the motifs common to SPs
(positively charged N-terminus, hydrophobic core, and terminal AXA motif). While
these heuristics could also be used to generated SPs, we find that the machine-learning
approach generates SPs with significantly higher predicted probability of functioning
than those generated by heuristics (p-value = 5 × 10−28; Supplemental Section II),
which agrees with reported experimental difficulty in applying heuristics to designing
SPs [23]. We also provide comparisons to sequences generated by HMMER [34]
and a variational autoencoder [35] in Supplemental Section II.

Secreted Enzyme Activity Validation
We then tested the predicted SPs by expressing SP-protein pairs in a Bacillus subtilis
host strain used for secretion of industrial enzymes. We expressed ten enzymes: 5
amylases, 1 lipase, 2 proteases, and 2 xylanases. Functional secretion was determined
by testing fermentation supernatants with the corresponding enzyme activity assay,
as described in Supplemental Table 4.3.

For the ten enzymes, we tested 1) SPs generated by the Transformer model 2)
industrial SPs native to Bacillus subtilis (positive controls) and 3) SPs generated
using random source amino acid sequences¬¬¬. The sequences for 1) and 2) can
be found in Supplementary File 1. For the positive controls, we used six SPs
represented in previous studies for industrial levels of protein secretion (AprE, LipB,
YbdG, YcnJ, YkvV, and YvcE) [19, 20, 36]. For 3), output SPs were generated by
the Transformer model for input protein sequences, which were made by drawing
randomly from random amino acid distributions following a) the Bacillus amino
acid distribution, b) the bacterial amino acid distribution, and c) a uniform amino
acid distribution. The sequences can be found in Supplemental Section I, and the
functional classification results are summarized in Table 4.1. The measured enzyme
activities for each construct, as well as details for their functional classification, can
be found in Supplemental Section III. A total of 163 unique constructs were tested.

Functional classification is summarized in Supplemental Section III, where enzyme
activity in the supernatant is plotted for visual comparison. SPs Generated for

82

Table 4.1: Summary of protein-SP constructs that are functional.

Num Functional Num Tested Percent
Functional

SPs Generated for Random Inputs 1 18 6%
Natural SPs 27 34 79%

Generated SPs 53 111 48%

Random Inputs were generated by the Transformer model given randomized amino
acid sequences for the target protein, as detailed in Methods. Positive controls are
naturally occurring Bacillus signal peptides. Generated SPs were generated for 41
proteins through mixed input beam search.

Using native SPs, 79% of constructs with 6 commonly used SPs resulted in secreted
activity. We were pleased to find that a substantial fraction (48%) of the constructs
containing a generated SP also resulted in significant secreted activity. SPs generated
for random protein inputs were much less likely to lead to secreted activity. Only one
construct containing an SP generated given random amino acid sequences gave some
supernatant activity (Protease 05, Supplemental Section III), which indicates that, in
general, a real protein sequence is required for generating a sensible SP and the model
is not relying on other artefacts for generation. Additionally, for the 21 generated
functional SPs that were tested with multiple proteins, all 21 were functional for all
proteins with which they were tested.

Generated SP-Enzyme Constructs Exhibit Activity Comparable to Natural Constructs.
The model-generated SP-enzyme constructs are not only functional; they also exhibit
activity similar to that of constructs with natural SPs. This is shown in Figure
4.2, which illustrates the highest performing natural and generated SP for each
enzyme tested with both. Activities for all generated constructs can be found for
comparison in Supplemental Section IV. Of the tested enzymes, approximately half
exhibited higher or comparable secreted activity with machine-generated SPs. Thus,
the generated SPs offer comparable and sometimes significantly higher activity
compared to natural SPs, even with a generative model that was not specifically
trained to optimize secretion levels.

83

Fi
gu

re
4.
2:

G
en
er
at
ed

si
gn

al
pe
pt
id
es

en
ab
le
se
cr
et
ed

en
zy
m
e
ac
tiv

iti
es

th
at
ar
e
co
m
pa
ra
bl
e
to

na
tu
ra
lS

Ps
.
Th

e
hi
gh

es
t-p

er
fo
rm

in
g

na
tu
ra
l(
la
be
le
d
“p
os
”)

an
d
m
ac
hi
ne
-g
en
er
at
ed

(la
be
le
d
“g
en
”)

SP
s
ar
e
sh
ow

n
fo
rt
he

7
en
zy
m
es

w
he
re

bo
th

w
er
e
te
st
ed
.
O
ft
he
se

7
en
zy
m
es
,4

ex
hi
bi
te
d
th
e
sa
m
e
or

hi
gh
er

su
pe
rn
at
an
ta
ct
iv
ity

w
ith

ge
ne
ra
te
d
SP

s(
to
p
ro
w
),
an
d
3
ex
hi
bi
te
d
hi
gh
er

su
pe
rn
at
an
ta
ct
iv
ity

w
ith

na
tiv

e
Ba

ci
llu

sS
Ps

(b
ot
to
m

ro
w
).
P-
va
lu
es

ar
e
pr
ov
id
ed

fo
rr
ef
er
en
ce

fo
ra

tw
o-
si
de
d
t-t
es
tw

ith
un

eq
ua
lv
ar
ia
nc
e
fo
rt
w
o
in
de
pe
nd

en
t

sa
m
pl
es

of
sc
or
es
,w

he
re

th
e
nu

ll
hy
po

th
es
is
is
th
at
th
e
sa
m
pl
es

ha
ve

id
en
tic

al
ex
pe
ct
ed

va
lu
es
.

84

Generated Constructs Are Diverse in Sequence
The generated SPs occupy regions of sequence space that are not known to have been
explored by naturally occurring SPs. The input protein sequences were removed
at various sequence identity cutoffs from the training set to ensure that predictions
were made for enzyme sequences that the trained model had never seen before.
However, we did not specifically select for SP sequences that met a specified diversity
threshold, as can be done to ensure sequence diversity [37]. Interestingly, functional
generated SPs share on average 73% ± 9% and as little as 58% sequence identity to
the closest SP in Swiss-Prot (Figure 4.3A). For comparison, we also withheld 256
random natural SPs (82% ± 10%) and found that the functional generated SPs are
significantly more diverse than these natural SPs (p-value = 3.3 × 10−7). Multiple
sequence alignments (MSAs) for each of the best generated SPs identified for each
enzyme can be found in Supplemental Section VI. We show the MSA for the most
distant sequence in Figure 4.3B. In general, the generated SP retains characteristics
of other natural SPs, such as a positively charged N-terminus, hydrophobic core, and
AXA motif, while sharing low sequence identity (as low as 58%).

85

a b

Fi
gu

re
4.
3:

a)
Pe
rc
en
ts
eq
ue
nc
e
id
en
tit
y
of

va
rio

us
SP

s
to

th
e
cl
os
es
tm

at
ch
in
g
na
tu
ra
lS

Ps
in

Sw
is
s-
Pr
ot
,i
nc
lu
di
ng

1)
Fu

nc
tio

na
l

G
en
er
at
ed

SP
s
(7
3%

±
9%

),
2)

N
on

fu
nc
tio

na
lG

en
er
at
ed

SP
s
(7
0%

±
8%

),
an
d
3)

a
w
ith

he
ld

se
to

f2
56

N
at
ur
al

SP
s
(8
2%

±
10

%
).

Fu
nc
tio

na
lg
en
er
at
ed

SP
sh

av
e
sta

tis
tic

al
ly
si
gn

ifi
ca
nt

lo
w
er

pe
rc
en
ti
de
nt
ity

(p
-v
al
ue

=
3.

3
×

10
−7
).
b)

M
ul
tip

le
se
qu
en
ce

al
ig
nm

en
to

ft
he

m
os
td

iv
er
se

fu
nc
tio

na
lg

en
er
at
ed

SP
(5
8%

id
en
tit
y
to

cl
os
es
tn

at
ur
al
SP

)w
ith

na
tiv

e
SP

s.
C
ol
or

gr
ou

ps
fo
llo

w
th
os
e
in

C
lu
st
al
W

[3
8]
.

86

SignalP Does Not Discriminate Between Functional and Non-Functional Con-
structs with Generated Signal Peptides
Interestingly, the functional classification accuracy of the best server, SignalP 5.0 [13]
on the generated SPs is quite low. Figure 4.4 shows a receiver-operating curve (ROC)
that displays true positive rate versus false positive rate for secretion probabilities
generated by SignalP. As a reminder, random guessing gives an Area Under the
Curve (AUC) of 0.50. SignalP performs quite poorly, with an AUC of only 0.59.
However, there are a few differences in our modeling and validation approaches
worth noting. First, our model is based on the Transformer architecture, whereas
SignalP relies on bidirectional long short-term memory (LSTM) cells for longer
range sequence interactions. Empirically, attention-based models currently have
generally higher accuracy than LSTMs for protein tasks [31]. Additionally, our
specific validation task of secreting functional enzyme in Bacillus subtilis differs
from that of SignalP, which aims to assign a probability for sequences functioning as
SPs from genomic data across many domains of life. Therefore, although SignalP
may have the ability to discern natural SPs from other sequences, it does not appear to
classify machine-generated SPs in Bacillus well, as previously shown by Brockmeier
and coworkers [19]. This low accuracy may result from an inability to predict
expression in the desired host, which SignalP is not trained for. In the future, SignalP
may be adapted for specific production organisms in a feedback loop with our
model, which is capable of generating functional sequences to test. We attempted
to identify general protein properties from Biopython [39] that differed between
the functional and nonfunctional SPs, but were unable to identify any statistically
significant differences (Supplemental Section V).

87

Figure 4.4: a) Receiver Operating Characteristic (ROC) curve for the prediction
of functional constructs with machine-generated SPs. The SignalP 5.0 web server,
an exemplary tool for natural SP annotation, performs poorly on this task, with
AUC=0.59 (compared to 0.50 for random guess). b) Probability predictions for
functional and nonfunctional generated SP constructs. Most constructs are predicted
to be functional with high probability.

4.4 Discussion
We describe the application of a sequence-to-sequence model to generate functional
peptide sequences that have not been identified in nature. These sequences accomplish
the same function of directing enzyme secretion to theB. subtilis supernatant, yet they
share as little as 58% sequence identity, and on average 73% ± 9%, to the closest-
aligned recorded SP and thus explore new regions of sequence space. Enzymes with
machine-generated SPs are expressed with activity levels comparable to those of
natural SPs used in industrial enzyme production, despite not having been explicitly
designed to maximize secretion levels.

This work builds upon existing efforts in protein sequence generation with deep
learning by providing in vivo validation of predictions. In one other case in which
predictions were validated experimentally, 24% of the malate dehydrogenase enzymes
from a generative adversarial network (GAN) by in-sample generation were functional
[17]. Our approach uses a sequence-to-sequence approach trained with SP-protein
pairs. We were pleased to find that a high fraction of generated constructs (98%) were
predicted to be functional by SignalP (Supplemental Section II), and a significant

88

fraction (48%) of constructs were in fact functional in vivo. While SignalP is
optimistic in its predictions, the lower fraction that is functional in vivo and the
volume of heuristics developed for modifying existing SPs [2, 24, 25] suggest this
remains a challenging engineering task.

Interestingly, the leading existing model trained for identifying SPs are not able
to accurately distinguish functional machine-generated SP sequences from those
that are not functional. Because our model generates sequences that an advanced
critic (SignalP) is not able to discriminate among, coordinating these two systems in
an adversarial approach could increase accuracy for both sequence generation and
discrimination.

Important for both natural and synthetic SPs is whether they are transferable between
secretion targets and host organisms. In this study, limited to a single round of
experimentation, we used a generation strategy with multiple protein inputs with the
goal of maximizing the probability of the SP functioning for any protein sequence.
Of the functional generated SPs tested with multiple proteins, all 21 were classified
as functional when prepended to all tested proteins. With knowledge that the
Transformer model can generate functional protein sequences, probing the accuracy
with which this translation strategy is able to generate SPs specific to desired secretion
proteins and whether these specific SPs are transferable are potential future directions.
Additionally, augmenting the generation process by conditioning on desired metadata,
such as the host species, as outlined recently by Madani and coworkers [16] may
allow tuning SP sequences to different production organisms.

As the protein modeling field moves toward machine generation of protein sequences,
our understanding of protein similarity must evolve as well. Similarities have
historically been measured by a weighted alignment of linear sequences. However,
we are finding that machine learning is capable of interpolating in modeled latent
space to reach regions of sequence space that nature has yet to explore, as nature
has significant physical limitations on its engineering strategies (and our databases,
although large, are woefully incomplete). By challenging and supplementing nature’s
generation strategy with machine-generated sequences to more fully sample sequence
space, we can unlock sequences with new properties and functions.

4.5 Materials and Methods
Model training. We trained a Transformer Encoder-Decoder with 5 layers and a
hidden dimension of 550. Each layer had 6 attention heads. The model was trained

89

for 100 epochs with a dropout rate of 0.1 in each attention head and after each
position-wise feed-forward layer. Following the original Transformer paper, we used
periodic positional encodings and the Adam optimizer. We increased the learning
linearly for the first 12500 batches from 0 to 1e-4 and then decayed by =_BC4?B−0.03

after the linear warmup. Models were trained on 1 NVIDIA V100 GPU through a
generous grant from the Caltech Amazon Web Services Compute program.

Data augmentation. We used varying sub-sequences of the mature protein sequences
as source sequences in order to augment our training dataset, to diminish the effect
of choosing one specific length cutoff, and to make the model more robust. For
mature proteins of length L < 105, the model receives the first L – 10, L – 5, and
L residues as training inputs. For mature proteins of L >= 105, the model receives
the first 95, 100, and 105 amino residues as training inputs. Data for signal peptides
were collected from UniProt.

Bacterial strains, DNA design, and library construction. The expression vector was
constructed from the Bacillus subtilis shuttle vector pHT01 by removal of the BsaI
restriction sites and replacing the inducible Pgrac promotor with the constitutive
promotor Pveg. However, IPTG was included during expression to ensure no residual
or off-site inhibition from the LacI fragment still included on the pHT vector. Signal
peptide sequences predicted from the model were reverse translated into DNA
sequences for synthesis using JCat [40] for codon optimization with Bacillus subtilis
(strain 168). Each gene of interest was modeled at four homology cut-offs resulting
in 4 predicted signal peptides. These 4 signal peptides were synthesized as a single
DNA fragment with spacers including the BsaI restriction sites. 8 individual colonies
were picked from each group of 4 predicted signal peptides. Protein sequences
were selected from literature reports of enzymes expressed in Bacillus host systems.
Supplemental Section VII lists the enzymes used in this work and their reported
amino acid sequence. Signal peptide and protein DNA sequences were ordered from
Twist Biosciences and cloned into their E. coli cloning vector. Bacillus subtilis PY97
was the base strain used for the expression of enzymes. Native enzymes that could
interfere with measurement were knocked out as indicated in Supplemental Table
4.4.

The expression vector backbone, gene of interest, and SP fragments were amplified
via PCR with primers including BsaI sites and assembled through Golden Gate
Assembly, with a linker GGGGCT sequence (encoding Glycine and Alanine) between
the generated SP and the target protein. Primers used to amplify each fragment

90

are listed in Supplemental Table 4.2. Each linear DNA fragment was agarose gel
purified for use in Golden Gate assembly reactions. The Golden Gate reactions were
performed with 700ng vector PCR product, 100ng signal peptide group PCR product,
and 300 ng gene of interest PCR product in 20µl reactions (2µl 10x T4 Ligase Buffer,
2µl 10x BSA, 0.8µl BsaI-HFv2, 1µl T4 Ligase). The reactions were cycled 35 times
(10min, 37°C; 5 min, 16°C) then heat inactivated (5 min, 50°C; 5min, 80°C) before
being stored at 4°C for use directly.

Enzyme expression and functional characterization. All Bacillus strains were
transformed by natural competency as previously described [41]. Transformations
were plated on LB agar (10 g/l tryptone, 5 g/l yeast extract, 10 g/l NaCl, 15g/l agar)
supplemented with 5µg/ml chloramphenicol and grown overnight at 37°C. Single
colonies were picked and grown overnight in 96-well plates (Whatman #7701-5200)
with LB containing 17 µg/ml chloramphenicol then stored as glycerol stocks. For
enzyme expression, cultures were seeded from glycerol stocks into 100 µl LB media
and grown overnight at 37 °C. A 10 µl aliquot of the overnight culture was transferred
into 500 µl of 2xYT media (16 g/l Tryptone, 10 g/l yeast extract, 5 g/l NaCl)
containing 1 mM IPTG and incubated for 48 hrs at either 30 °C, or 37 °Cwith shaking
(900 rpm, 3 mm throw). Culture supernatants were clarified by centrifugation (4000
rpm, 10 min) and used directly in enzyme activity assays. Strains were grown and
expressed in at least three biological replicates from each original picked colony.

Enzyme expression quantification was attempted via SDS-PAGE (BioRad Criterion
10-20 % Tris-HCl) but the observed expression level was below a quantifiable limit.
Enzyme expression was too low to reliably quantify with SDS-PAGE, so the relative
expression of each enzyme was approximated by activity measurements. Enzyme
activity was measured in the linear response range for each substrate and reaction
condition as listed in Supplemental Table 4.3. Intracellular enzyme expression
was assessed by washing the cell pellet after the supernatant was removed, and
then resuspending in 500 µl of 50 mM HEPES buffer with 2 mg/ml Lysozyme and
incubated for 30 minutes at 37 °C. The resuspended material was centrifuged again
and used directly in enzyme activity assays.

SPs Generated for Random Inputs. SPs were generated by the trained Transformer
model with 99% sequence identity cutoff for randomized protein inputs following a)
the Bacillus amino acid distribution, b) the bacterial amino acid distribution, and c)
a uniform amino acid distribution. The same mixed input beam search generation
approach was used as detailed in Machine Sequence Generation. These sequences

91

can be found below in Supplemental Section I.

92

4.6 Supplemental Information
Supporting Tables

Table 4.2: Primers used to generate linear DNA fragments.

Primer Sequence
pHT vector fwd CAGACTTTCTAGAGGTCTCATAGCGCAGCC
pHT vector rev TGAGCTCCTCGAGGGTCTCTATATAGAGTC
Signal Peptide fwd TCCGCCTGACCTCCATGGGGTCTCAATATG
Signal peptide rev CTCCACCTAGCCTGATATCGGTCTCTAGCC
Gene of Interest fwd ATTCCGCCTGACCTGGTCTCAGGCTG
Gene of Interest rev CTGAGCCTCCACCTAGCCTGGTCTCTGCTA

93

Table 4.3: Enzymatic reaction conditions, where CAPS is
N–cyclohexyl –3-aminopropane– sulfonic acid

Enzyme
Class

Substrate Buffer Reaction Conditions

Amylase Red Starch
(Megazyme)

50 mMNaCl,
50 mM BTP,
50mM citric
acid, 50 mM
CAPS, pH
7.0

20 µl of the cell supernatant were
added to 10 µl of 2% (w/v) Red
Starch substrate in buffer and the
mixturewas incubated at 40 °Cfor
30min. Reactionswere quenched
with 50 µl of 95% ethanol and
the assay plate was centrifuged
at 4000 rpm for 10 min. The
absorbance was measured in 60
µl of the supernatant solution at
510 nm.

Lipase C8-PNP (4-
Nitrophenyl
octanoate,
Sigma)

100 mM
HEPES, pH
7.5, 100
mM NaCl,
20 mM
CaCl2, 0.1%
Triton-100

10 µl of the cell supernatant were
added to 90 µl of 0.8 mM C8-
PNP substrate in buffer. The ab-
sorbance was measured at 405
nm kinetically for 15 min at a
31 sec interval. The initial reac-
tion rate was calculated from the
linear portion of the kinetic read.

Protease AAPF
(N-Succinyl-
Ala-Ala-
Pro-Phe p-
nitroanilide,
Sigma)

100 mM
HEPES
buffer, pH
7.5

10 µl of the cell supernatant were
added to 90 µl of 2mMAAPF sub-
strate in buffer. The absorbance
was measured at 410 nm kineti-
cally for 15 min at a 31 sec inter-
val. The initial reaction rate was
calculated from the linear portion
of the kinetic read.

Xylanase Azo-Xylan
Birchwood
(Megazyme)

50mM NaCl,
50mM Bis-
tris propane
(BTP),
50mM Citric
acid, 50 mM
CAPS, pH
7.0

20 µl of the cell supernatant were
added to 20 µl of 2% (w/v) Azo-
Xylan substrate in buffer and was
incubated at 40 °Cfor 30 min. Re-
actions were quenched with 100
µl of 95% Ethanol and the assay
plate was centrifuged at 4000 rpm
for 10 min. The absorbance was
measured in 90 µl of the super-
natant solution at 590 nm.

94

Table 4.4: Enzyme production strains.

Strain Modifications Reference
Bacillus subtilis
PY79 base strain

∆nprE ∆aprE ∆epr ∆mpr ∆nprB ∆vpr
∆bpr ∆sigF ∆skfA ∆xpf ∆lytC ∆sdpC

Provided by
BASF

BS – Prot PY79 base strain ∆skfA ∆spbC ∆skfA Provided by
BASF

BS – Amy PY79 base strain ∆skfA ∆spbC ∆skfA
∆AmyE

Provided by
BASF

BS – Xyl PY79 base strain ∆skfA ∆spbC ∆skfA
∆xynA ∆xynC

Provided by
BASF

BS – Lip PY79 base strain ∆skfA ∆spbC ∆skfA
∆estA ∆estB

Provided by
BASF

Table 4.5: Distribution of Protein and SP lengths, as obtained from Swiss-Prot.

Length (Amino Acids) Signal Peptide Protein
Mean ± StDev 23.5 ± 6.2 422.5 ± 454.1
Minimum 10 21
Median 22 323

Maximum 69 13076

95

I: Signal peptides generated from randomized protein sequences
The following sequences were drawn randomly fromBacillus, bacterial, and a uniform
amino acid distribution, respectively to serve as inputs to the trained Transformer
model.

• Bacillus DTTRFTAIEIFTTHWSGMVLFMSIIIVVFFSIGDSGVGDANIF
YHQARLFKADKIANVQTLKGVYSNPLDYYFNHDLPRSGRLNLGNSH
HIQLNKLQILF

• Bacterial SEVHPENTYQEGLPGIKALRIQFMTATIVHEGSTIDEVVRK
KALTQTTCIPYLIAASIIVSSGEDMHIIVIKHMAQQVLPKLISCAMEHF
VGPSHAEASE

• Uniform DIVPSLYPPAKSDERKVELTSKQSELNSENLKATQQILKDG
YATPGRVRKIDAETKKQLNLIKHTYRTVRKQEDKGVYQASNPRNFK
FIVPQLVQYKGRN

Using the mixed input beam search for these three inputs, as described in the main
text, generated the following three sequences:

• MKLLVLLILILIPVVAWA

• MNWLVIMFAIGLACSTSLA

• MEHTLRILVCSLLFTVAIWG

96

II: Comparing various generation approaches
In this section, we compare four methods of generating SP sequences for their
efficacy: (1) a profile Hidden Markov Model (pHMM), (2) a heuristic-based
generation approach, (3) a variational autoencoder (VAE) [35] trained on just SP
sequences, and (4) the Transformer-based approach. In the first round of comparison,
we query the SignalP 5.0 server with these SP sequences prepended to protein
sequences to obtain SignalP’s probability of functioning.

1. pHMM: We first generated an alignment with Clustal Omega [42] of SPs
from our training. We used 4000 randomly selected SPs, as Clustal Omega is
limited to 4000 sequences. From this point on, we use default settings in S.
Eddy’s HMMER package [34]. From the Clustal Omega alignment, we then
use HMMER’s hmmbuild to build a profile HMM. From this profile HMM,
we use HMMER’s hmmemit to generate protein samples. As HMMs typically
follow the first order Markov property, the HMMs do not have a concept of
length, and can generate longer sequences. We generate 1024 constructs by
emitting 1024 SP sequences from hmmemit, each of which is prepended to
one of the 41 enzymes tested.

2. Heuristics: We follow the following heuristics from a recent review by Owji,
Hajar, et al [25]. The N-region (1-6 residues) contains at least 1 positive
residue (KR). The H-region (7-15 residues) contains hydrophobic residues
(AILMFWYV). The C Region (3-7 residues) contains uncharged residues
(STNQAVILMFYW) followed by an AXA motif, where X is not in C/P/A.
768 SPs were generated by heuristics and randomly matched to one of the 41
input proteins.

3. VAE: We train a VAE [35] with fully connected layers and ReLU activation
on SP sequences. The sizes of the hidden layers are 400 and 20 each for the
mean and variance of the latent encoding. We then randomly sample 1024 SP
sequences, each of which is prepended to one of the 41 enzymes tested.

4. Transformer: As described in the main text.

We then query these constructs with SignalP v5.0 to obtain the probability of
containing a Signal Peptide in gram-positive hosts [43]. The results are shown
visually in the figure below, and summarized in its accompanying table.

97

Figure 4.5: Probability of generated sequences as predicted by SignalP 5.0 The
sequences are generated by either a pHMM, heuristic-based approach, VAE, or
Transformer model. Results are summarized in the table below.

Table 4.6: Distribution of SignalP Probabilities for sequences generated by a profile
Hidden Markov Model, heuristics, a variational autoencoder, and a Transformer
model.

Method Mean SignalP Probability
pHMM 15.6% ± 19.2%
heuristic 70.8% ± 25.3%
VAE 92.4% ± 15.2%

Transformer 90.4% ± 17.1%

The VAE and Transformer significantly outperform the other two methods (p-value <
10−20), but are not statistically different from each other (p-value = 0.251). As both
are predicted to function with high probability by SignalP, we turn to other methods
of analysis below.

98

First, we compare the position-normalized log-likelihood on an identical, withheld
validation set of 5707 SP sequences for the VAE and Transformer, which are
comparable between the two methods, although the VAE is more accurate by this
metric.

Table 4.7: Comparing normalized log likelihood on withheld validation set between
a trained VAE and Transformer.

Method Log likelihood on Validation Set
VAE -2.86

Transformer -3.01

However, in closer examination of the sequences generated by the VAE and Trans-
former, an issue of repeated residues begins to emerge:

Table 4.8: Comparing sample sequences generated by a VAE versus Transformer

Sample VAE Sequences Sample Transformer Sequences
MRKRLLALALAALSLLLLLSFGVKALAGSGA MKFTQAVLSLLGSAATALA
MRLLLLLLLVLLLAAPAPPGLS MKLKKLGVILAICLGISSTFA
MKLLLLLVTLLTSVLALQA MRVLSATAFLALLAFGLSGATA
MRLLLLALLAAAAVALASA MLFKSVLLALASAGVAVNA
MASSSSSLFVVLAVLLLLLLLTLSSA MNISIFVGKLALAALGSALVA

Namely, the hydrophobic region appears to be particularly saturated in repeating
residues for VAE sequences. For a more comprehensive comparison, we determined
the average length of substrings with maximum ' repeating residues (e.g.: an
example of ' = 1 is LLLLLLL, ' = 2 is LLLILIL, ' = 3 is LALLAI).

Table 4.9: Comparing longest repeating substrings of ' unique characters between a
trained VAE and Transformer.

Average longest substring
from VAE Seqs

Average longest substring
from Transformer Seqs

' = 1 3.9 ± 1.9 2.1 ± 0.6
' = 2 7.2 ± 3.0 4.0 ± 1.0
' = 3 10.7 ± 3.5 6.3 ± 1.5

As biological sequences rarely contain such long repeats, we elect to proceed with
the Transformer generated sequences in experimental validation.

99

III: Functionality classification from experimental validation
SP-enzyme constructs were generated stochastically and tested in biological replicates.
Thus, some random SP-enzyme constructs contain the same SP and enzyme but are
not part of the same set of biological replicates.

An SP-enzyme construct is classified as functional if any set of biological replicates
satisfies two conditions (p-value and effect size):

1. The p-value for the set of replicates compared to the negative controls (con-
structs without either an SP or enzyme) was less than 0.05 in a two-sided
t-test with unequal variance for two independent samples of scores. Biological
replicates are grown from the same colony, after which they are processed
separately. The null hypothesis is that these two independent samples have
identical expected values. The scipy.stats implementation (ttest_ind) was used.
(p-value)

2. The difference between the mean of the replicates and the mean of the
incorrect constructs is greater than 2 times the difference between the mean
of the incorrect constructs and the highest measured activity of the incorrect
constructs. (effect size)

The second condition is incorporated to gain some concept of effect size: the activity
of the SP-enzyme construct must be high, not just statistically significant.

In the following plots, constructs classified as functional are to the left of the
“incorrect constructs”, which are shown in black. For functional constructs, some
sets of replicates (picked from the same colony) would have been classified as
nonfunctional. These are shown in blue. The functional sets of replicates are shown
in green. Finally, constructs classified as nonfunctional are shown in grey. Summary
statistics and notes highlighting important points are also provided.

All generated Signal Peptides can be found in Supplemental Section VII.

100

Figure 4.6: Experimental validation of Protease 5.

Construct Functionality Classification Summary

0.33 : 1 out of 3 constructs with SPs generated for random inputs functional*

0.83 : 5 out of 6 constructs with natural SPs functional

0.50 : 4 out of 8 constructs with generated SPs functional

Assay information is provided in Supplemental Table 4.3.

*The SP sequence for the control generated for a randomized input that was classified
as functional isMEHTLRILVCSLLFTVAIWG.

101

Figure 4.7: Experimental validation of Amylase 1.

Construct Functionality Classification Summary

0.00 : 0 out of 3 constructs with SPs generated for random inputs functional

0.83 : 5 out of 6 constructs with natural SPs functional

0.42 : 5 out of 12 constructs with generated SPs functional

Assay information is provided in Supplemental Table 4.3.

102

Figure 4.8: Experimental validation of Amylase 4.

Construct Functionality Classification Summary

No constructs with SPs generated for random inputs tested.

No constructs with natural SPs tested.

0.50 : 7 out of 14 constructs with generated SPs functional

Assay information is provided in Supplemental Table 4.3.

103

Figure 4.9: Experimental validation of Amylase 2.

Construct Functionality Classification Summary

No constructs with SPs generated for random inputs tested.

No constructs with natural SPs tested.

0.70 : 7 out of 10 constructs with generated SPs functional

Assay information is provided in Supplemental Table 4.3.

104

Figure 4.10: Experimental validation of Amylase 3.

Construct Functionality Classification Summary

0.00 : 0 out of 3 constructs with SPs generated for random inputs functional

1.00 : 5 out of 5 constructs with natural SPs functional

0.33 : 4 out of 12 constructs with generated SPs functional

Assay information is provided in Supplemental Table 4.3.

105

Figure 4.11: Experimental validation of Amylase 15.

Construct Functionality Classification Summary No constructs with SPs generated
for random inputs tested.

1.00 : 1 out of 1 constructs with natural SPs functional

0.70 : 7 out of 10 constructs with generated SPs functional

Assay information is provided in Supplemental Table 4.3.

106

Figure 4.12: Experimental validation of Lipase 5.

Construct Functionality Classification Summary

0.00 : 0 out of 3 constructs with SPs generated for random inputs functional

0.80 : 4 out of 5 constructs with natural SPs functional

0.58 : 7 out of 12 constructs with generated SPs functional

Assay information is provided in Supplemental Table 4.3.

107

Figure 4.13: Experimental validation of Protease 3.

Construct Functionality Classification Summary

No constructs with SPs generated for random inputs tested.

No constructs with natural SPs tested.

0.18 : 2 out of 11 constructs with generated SPs functional

Assay information is provided in Supplemental Table 4.3.

108

Figure 4.14: Experimental validation of Xylanase 3.

Construct Functionality Classification Summary

0.00 : 0 out of 3 constructs with SPs generated for random inputs functional

0.50 : 3 out of 6 constructs with natural SPs functional

0.20 : 2 out of 10 constructs with generated SPs functional

Assay information is provided in Supplemental Table 4.3.

109

Figure 4.15: Experimental validation of Xylanase 4.

Construct Functionality Classification Summary

0.00 : 0 out of 3 constructs with SPs generated for random inputs functional

0.80 : 4 out of 5 constructs with natural SPs functional

0.67 : 8 out of 12 constructs with generated SPs functional

Assay information is provided in Supplemental Table 4.3.

110

IV: Activity assays at higher dilution
While the previous section shows activity data for identifying functional constructs,
we found that some amylase and xylanase constructs were outside of the linear range
(activity was too high) to make accurate comparisons between the high functioning
constructs. To address this, we performed the assays at higher dilution (10x for
amylase, 50x for xylanase) to obtain data in the linear range of the assay.

Figure 4.16: Experimental validation of Amylase 1 at higher dilution.

111

Figure 4.17: Experimental validation of Amylase 2 at higher dilution.

112

Figure 4.18: Experimental validation of Amylase 3 at higher dilution.

113

Figure 4.19: Experimental validation of Amylase 4 at higher dilution.

114

Figure 4.20: Experimental validation of Amylase 15 at higher dilution.

115

Figure 4.21: Experimental validation of Xylanase 3 at higher dilution.

116

Figure 4.22: Experimental validation of Xylanase 4 at higher dilution.

117

V: Characteristics of functional vs nonfunctional generated SPs
We attempted to identify general characteristics of functional versus nonfunctional
signal peptides that may help in discerning whether a signal peptide is functional or
not. To do so, we separated the 27 signal peptides that are only present in functional
constructs, and 30 signal peptides that are only present in nonfunctional constructs,
and attempted to identify a distinguishing property. No property was identified for
distinguishing between functional and nonfunctional constructs (p-value < 0.05)
and SignalP 5.0 was also not able to discern between functional and nonfunctional
generated SPs (ROC=0.59).

Table 4.10: Comparing physicochemical properties of functional vs nonfunctional
generated SPs.

Protein Property p-value
Length 0.9229

Hydrophobicity Index 0.387
Hydrophilicity Index 0.2126

Molecular Weight (MW) 0.7963
Average MW 0.117
Aromaticity 0.9935

Instability Index 0.9748
Isoelectric Point 0.3243

118

VI: All MSAs for functional SPs
MSAs for the top 10 closest matching natural Signal Peptides (by sequence identity)
to each of the 43 generated SPs that were functional in any construct are provided.
Alignments are sorted by closest sequence identity to the generated natural Signal
Peptide (shown first).

All generated Signal Peptides can be found in Supplemental Section VII.

M G R L C T K - - - F L T S V G C L I L L L V T G S G S -
M K K L - - - - - - T L V L F G M L F L A S S A H A - - -
M G R L - - - - - - L A L V V G A A L V S S A C - - - - -
M G F T K I L V - - T F F L V G L L V I S S S P Q N A I A
M R F R P S I V A L L S V C F G L L T F L Y S G S A F A -
M K Y R I L M A T L L A V C L G I F S L S A P A F A - - -
M R V L P - - - - - L A L L V G L L A V S D A - - - - - -
M L I R K W K - - - A G L L A G L S I L A L A S S A D A -
M G L K V S S - - - S L L C L T I L L A V S S I V S A - -
M K R L - - - - - - S A L L L T C L L S A V S S L S A L A
M G F R L - - - - - K A L L V G C L I F L A V S S A I A -

5 10 15 20 25

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.23: MSA for MGFRLKALLVGCLIFLAVSSAIA

- M R V S T L V L S T S I I P I A T A - - - - - - -
- - - M K K T L L A S S L I A C L S I A S V N V Y A
M V F M N K T L L V S S L I A C L S I A S V N V Y A
M N I K L T L L V L I S I I N L M I I Q P I Q T L A
- - - M K K L L L T A S I I C L A S A G L A - - - -
- - M I A T L L S S L L L T G P I S A G A - - - - -
- - - M K K T L L G S L I L L A F A T N A - - - - -
- - - M K K L L L A A S I I C L A S A G L A - - - -
- M K R N T L L A L V L V I L I F P T L S T A - - -
- M I I K T L L A S V A I M L I A T V N A - - - - -
- - M I K T L L V S S I L I P C L A T G A - - - - -

5 10 15 20 25

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.24: MSA for MIKTLLVSSILIPCLATGA

- M L G R S L L A L L P F V G L A F S - - - -
- - M H G L L L A G L L A L P L N V L A - - -
M I L R R L L L A G S L L L A T S F T S A - -
- M C R L R V L - - L L L L P L A F V S S S A
- - M H G L L L A G L L A L P L N V F A - - -
- - - - M K L L K S S L L L L L P F V T A - -
- M L R K L T P L A L A L L P L V A G - - - -
M I L R R L V L A G S L L L A T A F T S A - -
M I L R R L L L A G S L L L A T A F T S A - -
M I L R R L L L A G S L L L A - S F A T A - -
- M I R L K R L L A G L L L P L - F V T A F G

5 10 15 20

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.25: MSA for MIRLKRLLAGLLLPLFVTAFG

119

M K - - K A A A V L L S L G L V F G F - S Y G A G H V A E A
- - - - M G R F I F V S F G L L V V F - L S L S G - - S E A
- - - - M G R F I F V S F G L L V V F - L S L R G - - T G A
- - - - M G R I I F V S F G L L V V F - L S L S G - - T G A
M K R V R V K V I F V S F G L L V V F - L S L S G - - T A A
M K - - K V R F I F L - - A L L F F L - A S P E G - - A M A
- - - - M G R F I F V S F G L L V M F - L S L S G - - T E A
- - - - M G R F I F V S F G L L V V F - I S L S G - - T E A
- - - - M G R F I F V S F G L L V V F - L S L S G - - T E A
M K - - C C R I M F V L L G L W F V F G L S V P G G R T E A
M K - - C C R I M F V L L G L W F V F G L S V P G G R T E A

5 10 15 20 25 30

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.26: MSA for MKCCRIMFVLLGLWFVFGLSVPGGRTEA

M K F S - - - - - - - - - L S V A L S L A A A T A Q A
M K F F A Y F A V - I A L S S A S L I N L F K R A T A
M S F S N Y K V I A M P V L V A N F V L G A A T A W A
M K N W - - - - - - I K V A V A A I A L S A A T V Q A
M Q F K - - - - - - N V A L A A S V A A L S A T A S A
M K F L - - - - - - - - T A L S A I G A L V A T A T A
M K N K K R V L I A S S L S C A I L L L S A A T T Q A
- - M F T R K I Q K T A L A M L I S G A M A G T A Y A
M K S F - - - - - - T V I A L A A V A L L A T L G Q A
M R A F K - - - - - W A L A I G A T L A L P L T A Q A
M K F F N P F - - - K V I A L A C I S G A L A T A Q A

5 10 15 20 25

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.27: MSA for MKFFNPFKVIALACISGALATAQA

- - - - M R F L I L F L T L S - - - L G G I - D A
- - - - M K T F L I - L A L L A I V A T T A R I A
- - - - M K V L T A - I A L S A I A F T G A - V A
- - - - M K F L I L - T A L C A V T L A - - - - -
- - - - M A V F L L - - A T S T I M F P T K I E A
M K L L S K T F L I - L T L T F F F F G I A - L A
M W L K I Q V F L L A I T L I T L G I Q A - - - -
- - - - M K F L N I - L T L A - - F I T G M A S A
- - - - M K F L V I - L T L C - - - I A G A - I A
- - - - M K F Q L L - - - - T L V S I A T T T L A
- - - - M K F L I L - A T L S - - I F T G I - L A

5 10 15 20 25

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.28: MSA for MKFLILATLSIFTGILA

M K L S T V L L S A G L A S T T L A - - -
M K L T L V I L A L V A C V T A - - - - -
M K F S L I A A V A L L A L A Q G S F A -
M K R L F L S F V A - L A L L A G S I A A
M K F S L V A T I V L L A L A Q G S F A -
M K I L L F V T L I A L A F V A L C S A -
M K F L T A L S A I G A L V A T A T A - -
M K F L S L A F V L G L L A L A N A - - -
M K F L I A F A V L A L V A C I N A - - -
M K F L S T A A A L L V C L A P V S T T A
M K F L S T A F V L L I A L V A G C S T A

5 10 15 20

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.29: MSA for MKFLSTAFVLLIALVAGCSTA

120

M K F R L T A L A V A A L L T S T A S F A
- - M K F L Q I I P V L L S L T S T T L A
- - M R S L T - L L L S L S T A L R S V A
- - M K F L T - - - - - L A L S A T A T A
M K I K L L T - L A V A S L V S V N A L A
- - M K F L S - S L V V L G L S A Q A L A
- - M K L F Q I F P L L L S L T S V T L A
M K F Q L L T - - - - L V S I A T T T L A
- - M K F L T - - - - P L V L S S L A S A
- - M K Y L T - - - - L L T V L S T A L A
M K F Q D L T - - - - L V L S L S T A L A

5 10 15 20

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.30: MSA for MKFQDLTLVLSLSTALA

M K K N I - - I A G C L F S L F S L S A L A - -
M K K N I - - F I T S L L I L L L L L S S - - -
M K R K I - - I A I S L F L Y I P L S N A - - -
M K K T T - - L K F A A L T L L G L S N L A L A
M K K A K A I F L F I L I V S G F L L V A - - -
M K K K I P S L A L G I L L V F L L Q Y L V A G
M K K T L - - I I L T V L L L S V L T A A - - -
M K K K L - - K L T S L L G L S L L I M T A - -
M K K Q I - - F F T L I L L I S G L A R A - - -
- M K K I - - V A I F L V F L G S L W A - - - -
M K K K I - - - A I T L L F L S L L N R A - - -

5 10 15 20

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.31: MSA for MKKKIAITLLFLSLLNRA

M K S S K I V A I L L A S L F S G S V L A
M V K K T I A A I F S V L V L S T V L T A
- - M K I V A L T L V A F V A L A G A - -
M V K K T I A A I F S V L V L S S V L T A
- M K L I I L V A L T L A A V V A - - - -
M K N K F A A L V I T L F V L V L A - - -
M K L K L I V L A L T M S V V T A Q A - -
M K K I I V V S L F A L V V V L A G - - -
M K K K I F A G A V T L L S V A V L A A -
M K K K I V A G A V T L L S V A V L A A -
- M K K K I V A V L T L S V V L A - - - -

5 10 15 20

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.32: MSA for MKKKIVAVLTLSVVLA

M K K L L P I L I G L S L S G F S S L S Q A
M K K S L T L L I L L L C S L L F S T V L S
- M N K L F L I L L L I F S H E V F S - - -
M K L K L L L I P L L G S S L L L S A - - -
M K N K S K L L A C C L M A L P I S S F S -
M K L W A I L A V C I L L L S S V S S - - -
- M K W I T L I C L L I S S S F I E S - - -
M K K L L F I T A P L L L S V L T A S - - -
- M K W I T L I C L L I S S T L I E S - - -
M K L K S L L I A C L L S S L S F S A L A -
- M K K L L I L A C L L I S S L E S - - - -

5 10 15 20

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.33: MSA for MKKLLILACLLISSLES

121

M K K - - - - T A I A L A V A L A G F A T V A Q A
M K S - - - L L V V A A V L A V G A L A Q G D D A
M K R - - - - K V L A L V I P A L L A A G A A H A
M K F - - - - - F V L V A I A F A L L A C V A Q A
M K K L A T L T A L A G A L T M A - V A T A A Q A
M K K - - - - T A I A I T V A L A G F A T V A Q A
M K K - - - - T A I A I A V A L A G F A T V A Q A
M K K L L V A S S A S A A L F A V G V G A N A H A
M K K - - - - - T L L A A A L L A G F A G A A Q A
M K T - - - - - - K L L V L A V A L S V A S A Q A
M K K - - - - - - L L V I A A L A C G V A T A Q A

5 10 15 20 25

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.34: MSA for MKKLLVIAALACGVATAQA

- M K K L K I T G L S L I I S G L - - - - L M A Q A Q A
M K K R L P T L L A S L I G S A L - - - - Y S Q Q A L A
- - - - - - - M L L G L L V L S L - - - - A F Q G T L A
- M I R - - - L L I A L F L L L A - - - - S V A P G F A
- M K K - R G A F L G L L L V S - - - - - A C A S V F A
- M I K - R T L T V S L L S L S L G A M F A S A G V M A
- M K K - R L C A V L L A S P L L - - - - F S A A V F A
- M K R - - - L V T G L L A L S L - - - - F L A A - - -
- M K K - R A L A I A F L L A S L - - - - I P S A A Q A
- M K K - - - L V T G L L A L S L - - - - F L A A - - -
- M K K - R - L H I G L L L S L I - - - - A F Q A G F A

5 10 15 20 25

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.35: MSA for MKKRLHIGLLLSLIAFQAGFA

- M K K L T V A I S A V A A S V L M A M S A Q A - -
- M K K N L R I V S A - A A A A L L A V A P V A A S
- M K K V V N S V L A - - S A L A L T V A P M A F A
M K G R S A L L R A L W I A A L S F G L G G V A V A
- M K I S I Y A T L A - - - A L S L A L P A V A - -
- M K K L L I S A V S - - - - A L V L G S G A A L A
- M T R Y V I S R L S - A I A L L A L A P A L A L A
- M K K R F I S V C A I A I A L F V S L T P A A L A
- M M K S F F S A A A - - L L L G L V A P S A V L A
- M K K R F I S V C A I A I A L L V S L T P A A L A
- M K K R V I S A L A - A L W L S V L G A P A V L A

5 10 15 20 25

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.36: MSA for MKKRVISALAALWLSVLGAPAVLA

M K K N L - L G F T L - - - A S L L F T - T G S A V A
M K K H L - L A - - - - - - L G L L L A G V S P A Q A
M K K H L - L A - - - - - - L G L L L V G V S P A Q A
M K K L L - I S A V - - - - S A L V L G - S G A A F A
M K K R F - S L I M M - - - T G L L F G L T S P A F A
M I N K I K I L F S F - - - L A L L L S F T S Y A K A
M K K R L - L G I A L - - - G S L L F T - T G S A V A
M K S S L - H W F L I S S S L A L P L S L N F S A F A
- M K S L - L P I S S - - - L L V L L G - S A S A F A
M K K F L K S T A A L A L G L S L T F G L F S P A Q A
M K K S L - I S F L A - - - L G L L F G - - - S A F A

5 10 15 20 25

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.37: MSA for MKKSLISFLALGLLFGSAFA

122

M K V K K T Y G F R K S K I S K T L C G A V L G T V A A V S V A G Q K - - V F A
- - - - - - - - - - - M M K K M T G K S F A L S A L V A A S F M A A G - - A M A
- - - - - - - - - - - - M K K T T I P T L S A L T L A M S L A F G G A - - A I A
- - - - - - - - - - - - M K K S L F C G V C L C A L V A - - - M G G T - - S F A
- - - - - - - - - - - - M F T R K I Q K T A L - A M L I S G A M A G T - - A Y A
- - - - - - - - - - - - M N K K H G F P L T L T A L A I A T A F P A Y - A A Q A
- - - - - - - - - - - - M K K K S L - A L V L A T G M A V T T F G G T G S A F A
- - - - - - - - - - - - - - M T T I V K R A L V A A G M V L A I G G A - - A Q A
- - - - - - - - - - - - M Q K K R I G K S V V A A L A I I A M S A G T V A A W A
- - - - - - - - - - - M M K K M T G K T F A L S A L V A A S F M A A G - - A M A
- - - - - - - - - - - - M K K T G F I G K T L A L V I A A G M A G T A - - A F A

5 10 15 20 25 30 35 40

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.38: MSA for MKKTGFIGKTLALVIAAGMAGTAAFA

- - - M S N I T K K S L I A A G I L T A L - I A A S A A T A - -
M Y K I K H S F N K T L I A I S I S - - - - S F L S I A - - - -
- - - M K K L P N K S L I A L A L L S V S G A S F G H G Y V S A
- - M K S Q K I G S M I L L I G I L L A I - F N F A Y S - - - -
- - - M K - - - - R A P L I T G L L L I S - T S C A Y A - - - -
- - - M K N W - - K T L L L G I A M I A N - T S F A - - - - - -
- - M K K I I P T N L F K L I S I L F I L T P F F A W S - - - -
- - - M K L L K N K K V T F V A L L A I L - A V L S T Q S V S A
- - - M K N V - - K T L I A A A I L S S M - S F A S F A - - - -
- - M K R N A - - K T I I A G M I A L A I - S H T A M A - - - -
- - - M K L I P N K K T L I A G I L A I S - T S F A Y S - - - -

5 10 15 20 25 30

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.39: MSA for MKLIPNKKTLIAGILAISTSFAYS

M L R I V K K L W V I L F I S N I - - S I N S F A - - - - - - -
- - M L K K L G V L L S A I V L V - - I A S F F V T V T P A L A
- M A L K S K L V S L L F L I A T - - L S S T F A - - - - - - -
- M K L S S L P S G L G L A S L L G L I S S A T A - - - - - - -
- M K S A K K L L S V L C L G I F - - I L T F T A - - - - - - -
M K K L V S S V I L A L I L F G F S W V S P A F A - - - - - - -
- M A L K S K F L V G S I L A T F - - I L N G F S - - S P A Q A
M Q W L K M K L R F V N L I L L L - - I S S T C A - - - - - - -
- M K N L L K L S A I A I L A A S - - A V S T F A - - - - - - -
- M K R P L D F L L A I C L I L L - - R S S T F A - - - - - - -
- M K L K K L G V I L A I C L G - - - I S S T F A - - - - - - -

5 10 15 20 25 30

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.40: MSA for MKLKKLGVILAICLGISSTFA

M N L K K L L T S A V L S I S L C Q S A F A -
- M K K V L L L L F V L T I - - - G L A L S A
- M K L S L F S T F A A V I I G - A L A L P -
- - M K I L L F V T L I A L A F V A L C S A -
M L L R S L T S A F V L S A - - - G L A Q A -
- - M K F L S L A F V L G L L - - A L A N A -
- - M R L P L L S F V I F A L F - A L V F A -
- - M T P L L T L F L V A L I G L P L A Q A -
- - - M K F L L S F V V L A V F S A S A F A -
- - M R A L L F T S V V L L A L - A F V E A -
- - - M K L L T S F V L I G - - - A L A F A -

5 10 15 20

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.41: MSA for MKLLTSFVLIGALAFA

123

M K R L S - - L A M V T L L - A C A G A Q A
- M K L S - - V L S L A S L A S A A A L N A
- M K F - - - L S S L V V L G L S A Q A L A
- M L T S L S L T A L A L L - - - P S A N A
- M K L S Q I L T F A S L L - - - S G A L A
- M K L K L V A V A V T T L L A A G A V N A
M K S L S - - L L L A V A L G L A T A V S A
M K K L L S T L L L S L G L - A A G L A Q A
- M K F - - - L S L A F V L G L L A L A N A
M K K F N Q S L L A T A M L L A A G G A N A
- M K L S Q S L T Y L A V L G L A A G A N A

5 10 15 20

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.42: MSA for MKLSQSLTYLAVLGLAAGANA

M K V L A T S F V L G S L - G L A F Y L P L V V - - - - T T P K T L A
- - M K G G D K M K K L I - L L M L L L P I S L I - - - G C T D E E S
- - M R Q K A I F K I A V - L L A F I G L S L M V S S I Q L K N V E A
- M M K K L I Q L S F T V - M I I F T I L V L G V V A - - - - - - - -
- - - - - - M T K P F S V - L L A S L L V I T S T - - - V S P L A S A
- - M K S I T K I F L I L G L F A F L L V A F - - - - - A P S S S V A
- - - M K R K N K V L S I - L L T L L L I I S T T - - - S V N M S F A
M N Y K I G I M S L L V I T S I I F L F L - - - - - - - V P D K V E A
- - M S R S L K K F V S I - L L A A A L L I P I G R - - L A P V A E A
M K M R T G K K G F L S I - L L A F L L V I T S I P F - T L V D V E A
M K M R T G K K G F L S I - L L A F L L V I T S I P F - T L V D V E A

5 10 15 20 25 30 35

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.43: MSA for MKMRTGKKGFLSILLAFLLVITSIPFTLVDVEA

- - - M K F F A V L L - - - - - - - L A S L A A T - - S L A
- - - M K L N I A I L - - - - - - - L A A L A A T - - A S A
M K K T A I A L A V A - - - - - - - L A G F A T V - - A Q A
- - - M K F S L A C - - - - - - - - L L A L A G L Q A A L A
- - - M R F T A T V L S R V A T G L A L G L S M A T A S L A
M Q I K T F A L S A A - - - - - - - I A Q V A T L - - A L A
- - - M K F A - - - - - - - - - - - L L A L A A V - - A L A
- - M T R F L I - - - - - - - - - - L S A V L A G P - A L A
- - - M K F S S A L V - - - - - - - L S A V A A T - - A L A
- - - M A F A K L S A - - - - - - - F V L A L G A T V A L G
- - M K N F A T - - - - - - - - - - L S A V L A G A T A L A

5 10 15 20 25 30

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.44: MSA for MKNFATLSAVLAGATALA

M K F S T - L S T V A A I A A F A S A - - - -
M K N V K T L I A A A I L S S M S F A - S F A
M K F L I A F V A I A F F A C V S A - - - - -
M K L S V V L A L F I I F Q L G A A S - - - -
M K F T S V L A F F L A T L T A S A - - - - -
M K Y N I V F L F A I I A S L A C L Q L T F A
M K T L V F H I F I F A L V A F A S A - - - -
M K Y S T V F T A L T A L F A Q A S A - - - -
M K T Q L A F L A I T V I L M Q L F A Q T E A
M K K T A A I I S A C M L T F A L S A - - - -
M K V F T - L A F A I I C Q L F A S A - - - -

5 10 15 20

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.45: MSA for MKVFTLAFAIICQLFASA

124

- - M K F T R T L V L A S T F L L A T V A T S Q A
- - M K T V I L A - - - - L A L I V L A S S T Q A
M Q V K L F Y T - - - - - L A L W A P I L V S A -
- - M F N T R L A I - - - F L L L I V V S L S Q A
- - M K F I I R T I L I A L F L I A I I N E S Q C
- - M K A T - - - - - - - L I F F L L A Q V S W A
M K K T V F R L N F L T A C I S L G I V S Q A W A
- - M K K A V I L F S L F C F L C A I P V V Q A -
- - M K F T S V L - - - - A F F L A T L T A S A -
- - - - M A K V L F S L F S F L F L I I G V S A -
- - M K V F T L - - - - - A F F L A I I V S Q A -

5 10 15 20 25

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.46: MSA for MKVFTLAFFLAIIVSQA

- - - - M K K I A I V G A L L T S F V A S - - - - S V W A
- - M N L K K L L T S A V L S I S L C Q - - - - - S A F A
- - - M L K K S L A A L A L G T A L L S A G - - - Q A M A
- - - M K K T T L A M S A L A L S L G L A L S P L S A T A
- - - - M K K L A I M A A A S M I F T V G - - - - S A Q A
- - M K L K L I L A V A M L A F S L - - - - - - - P S Q A
- - - M L K K L I T T A V L A M L I F - - - - - - T L A A
- - - M K K S L L A V A V A G A V L L S S - - - - A V Q A
M G L G K K L S V A V A A S F M S L T I S L - P - G V Q A
M G L G K K L S V A V A A S F M S L S I S L - P - G V Q A
- - M L K K L A M A V G A M L T S I S F L L - P S S A Q A

5 10 15 20 25

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.47: MSA for MLKKLAMAVGAMLTSISFLLPSSAQA

- M L S L R S L L P H L - - - G - L F L C L A L H L S P S L S A
- - M K K L T L V L F - - - - G M L F L A S S A H A - - - - - -
- - M F K F A L A L T - - - - - - L C L A G A S L S L A - - - -
- - M F K F A L T L T - - - - - - L C L A G S L S L A - - - - -
- - M K R F A L S L L A - - - G L V A L Q A S A - - - - - - - -
- M L K K T L L G L T A - - - G A L L L N A S S A L A - - - - -
M A L K T L Q A L I F L - - - G - L F A A S C L A - - - - - - -
- - M R L Y F R K L W L - - - T N L F L G G A L A S S A - - - -
- - M K L F Q L T L F L L V N A F L A L A S S - - - - - - - - -
- - - M R F L T V A F - - - - - - L F L A L S A S A L A - - - -
- M L K R F - L T L F L - - - G F L A L A S S L A - - - - - - -

5 10 15 20 25 30

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.48: MSA for MLKRFLTLFLGFLALASSLA

- M R I K F L V V L A V I C L L A H Y A S A
- - M A R F T I V L A V L F A A A - L V S A
- - - M K F L I A F V A I A F F A - C V S A
- - - - M K F I V L V L F C A V A - Y V S A
- - - M Q L T Q V L A V A I L A A - G V S A
- M K Y N K L S V A V A A F A F A - A V S A
- M K Y K K L S V A V A A F A F A - A V S A
M L K M N V K K A L V I L V A L A - L V A A
- - - M K F S Q A V I A L A A A T - V V S A
- M R I K F L V V L A V I C L F A H Y A S A
- M L K R F V K L A V I A L A F A - Y V S A

5 10 15 20

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.49: MSA for MLKRFVKLAVIALAFAYVSA

125

- M Q R L G A T L - - - - L C L L L - - - A A A V P T A P
- M I R K G A A L - - - - A G L V L - - - - - M S P V I A
- M K T R L A L P C L - - L G S L L - - - - L S S A V H A
- M K K R L C A V L L - - A S P L L - - - - F S A A V F A
- M A R L G A L L L A A A L G A L L S F A L L A A A V A S
- M R S L G A L - - - - - - - L L L - - L S A C L A V S A
- M K K R G A F - - - - - L G R L L - - V S A C A S V F A
- M N K R G A L - - - - - L S L L F - - L S A S V S A F A
- M K K R G A F - - - - - L G L L L - - V S A C A S V F A
- M N K R G A L - - - - - L S L L L - - L S A S V S A F A
M N I R L G A L L - - - - A G L L L - - S A M A S A V F A

5 10 15 20 25

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.50: MSA for MNIRLGALLAGLLLSAMASAVFA

- - - - M K K G K I L A L A G - V A L L A T G - - - V L A A
- M K K T I M A S S L A V A L G V T G Y A A S T G H E A H A
- M N K K W L N I P A L I A L - L A A I A F G S V A P A E A
- M K L K K T I G A M A L A T - - L F A T M G - - - - A S A
M N M K K F V K K P L A I A V - L M L A S G G M V N M V H A
- - - M K K T L I A L A V A A - - S A A V S G - - - S V M A
M N F K K T V V S A L S I S A - L A L S V S G - - - V A S A
M N K P T K L F S T L A L A A G M T A A A A G G A G T I H A
- M K K T I M A S S L A V A L G V T G Y A A G T G H Q A H A
- - - M K K T L I A L A I A A - - - S A A S G - - - M A H A
M N K K F K T I M A L A I A T - L S A A G V G - - - V A H A

5 10 15 20 25 30

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.51: MSA for MNKKFKTIMALAIATLSAAGVGVAHA

- M K K I A T A - T I A T A G F A T I A I A S G N Q A H A
- M K K T L L A T A I A G A M A A S G A Q A - - - - - - -
- M Q K K Y I T A I I G T T A L S A L A S T - - - H A Q A
- M K K I A T A - T I A T A G I A T F A F A H - H D A Q A
- M K K T A I A L V V A G L A A A S V A Q A - - - - - - -
- M K K T A I A L A V A L V G F A T V A Q A - - - - - - -
- M K K T A I A L A V A L A G F A T V A Q A - - - - - - -
- M K K T A I A I T V A L A G F A T V A Q A - - - - - - -
- M K K T A I A I A V A L A G F A T V A Q A - - - - - - -
- M Q K K V I A A I I G T S A I S A V A A T - - - Q A N A
M Q K K T A I A - I A A G T A I A T V A A G - - - - T Q A

5 10 15 20 25

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.52: MSA for MQKKTAIAIAAGTAIATVAAGTQA

M K R K T L P L L A L V A T S L F L S A - - - - - -
- - M R S L H I L L V F T A S L L A S L T E S A K A
M H R I F L I T V A L A L L T A S P A S A - - - - -
M V K S V L A S A L F A V S A L A - - - - - - - - -
M L R L A I P L F L F A L C S F T L F S S A - - - -
- - M Q V I V L P L V F L A T F A T S G S L A - - -
- - M R L I V L S L L F T S T L A - - - - - - - - -
- - M R F T L I E A V A L T A V S L A S A - - - - -
- - M R F L T V A F L F L A L S A S A L A - - - - -
- M Y S L I K S L A T F A T L F S L T L A - - - - -
- - M R L I V F L A T S A T S L F A S L A - - - - -

5 10 15 20 25

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.53: MSA for MRLIVFLATSATSLFASLA

126

- - - - M R I F L L C L A L S L S V F A - - - -
- - - M R G L T L L S L A F - L G V C S A - - -
- - - M R S L V L L S S V L A L V A P S K G - -
M R L R E F T A L S S L L F S L L L L S A S A -
- - - M R Q L L L T L S L I S V S A S D A - - -
- M R N R L L S L V T L F L S L S V A T A V S A
- M S I R R L A C S L L L S S L A L P V L A A -
M R R L I P I L L G S L V L S L S I L V A P A -
- - - - M R S F L L A S L A S L S V I S V Y G -
- M R K L T L T L S A L A L A L S L N S V A D A
- - - M R R L F L L S S L A S L S V A S A - - -

5 10 15 20

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.54: MSA for MRRLFLLSSLASLSVASA

- M P S A K P - L F C L - - - A T L A G A A - L A A P - - - - -
- - - - M S P - T A C V - - - L V L A L A A - L R A T G - - - -
- M S F F T K - T A Q L V S G A A V A A T L - F T A T A Q A - -
- - M A Y S K - I T L L - - - A A L A A I A - Y A Q T Q A - - -
- - - - - - - - M K A K - - - L L V L L C A - L S A T D A - - -
- - M I S N K - I A I L - - - L A V L V V A - V A C A Q A - - -
- - - - M N K P S K F A - - - L A L A F A A - V T A S G V A S A
- - M K W C K R G Y V L - - - A A I L A L A - S A T I Q A - - -
- M K N W I K - - - - - - - - V A V A A I A - L S A A T V Q A -
M N K T W K K - A A T V - - - L A F A G I A - L S A T A - - - -
- - M S N K P - A K C L - - - A V L A A I A T L S A T Q A - - -

5 10 15 20 25 30

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.55: MSA for MSNKPAKCLAVLAAIATLSATQA

- M K Y S L I F I L T L A C L I A S S L A - -
- - - M K F L S V L S L A I T L A A A - - - -
M T K H A R F F L L P S F I L I S A A L I A G
- - - M K L L L V L I - - T L I I A A L A - -
- - - M K L L L V L L - - T I A S V A L A - -
- M L Q K F L I C L S L I F T L A S A - - - -
M M T K I K L L M L I I F Y L I I S A S A H A
- M K L F S I F L I F T I F I I A S A L V A A
M A K P L W L S L I L - - F I I P V A L A - -
M T K P L L L S L I F - - F I I P A A L A - -
- M T K F L L S L I F - - I T I A S A L A - -

5 10 15 20

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.56: MSA for MTKFLLSLIFITIASALA

- - - - M K N L L K L S A I A I L A A S A V S - - T F A
- - - - M K K T L L A V A I G G A M F A T S - - - A A A
- - - - M K R L S I A I T S L L M A A S A S - - - T I A
- - - - - M K K T L L I A A S L S F F S A S - - - A L A
- - - - - - - M K L S L S V A L S L A A S T - - - A Q A
- - M R T L K S L V I V S A A L L P F S A T - - - A F A
M K T T V T K L L A T V A A A S T I F G M S T L P A F A
- - - M K K Q L L S A L I G A S L L A P M A - - - A S A
- - - - - M K L L A I I S A S L A L A G F T - - - - T A
- - - M R K S L L A I L A V S S L V F S S A - - - S F A
- - - - M T K L L A V I A A S L M F A A S T - - - - F A

5 10 15 20 25

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.57: MSA for MTKLLAVIAASLMFAASTFA

127

M K Q R S F L S I L C F I L L A F G V A S V S A - -
- M T K P F S V L L A S L L V I T S T V S P L A S A
- M T K P F S V V L A S L L A I T S T V S P L A S A
M G I T R N L I L G L A C L A F V S I A K A - - - -
- M T R Y F S I V L S L L L A V S C V F L P V A S A
- M K K R F M M F T L L A A V F S G V A H A - - - -
- - - - M R L S V S L L A L A F G S L V A A - - - -
- M K T S I L F V I F S L A L L F A L S A A - - - -
M A F R V L L L F S L T A L L I F S A V S P S F A -
M I T R W L L I T S F L A L A I L S L S S A - - - -
- M T R S L F I F S L L A L A I F S G V S A S A - -

5 10 15 20 25

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.58: MSA for MTRSLFIFSLLALAIFSGVSASA

M A T S S C - F L L V T L G L L L H V Q Q A - - -
M T T S S Y - F L L V A L G L L L Y V C Q S - - -
M T T S S Y - F L L V A L G L L L Y V R Q S - F S
M T T S F Y - F L L V A L G L L L Y V C Q S - - -
M T T S S Y - F L L V T L G L L L Y V C R S S F G
M T T S S Y - F L L V A L G L L L Y V C Q S S F G
M K T S V F - V L V L G L V L L F A V S F A - - -
M T T S S Y - F L L V A L G L L L Y L C Q S S F G
M T T S S Y - F L L V A L G L L L Y V C R S S F G
M T T S S Y - F L L V A L G L L L Y V F Q S S F G
- - M T S Y E F L L V I L G V L L S G A - - - - -

5 10 15 20 25

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.59: MSA for MTSYEFLLVILGVLLSGA

- M S F I - - R S A L A A A A F V A L S I G A V Q T A S A
- M S F K T L S A L A L A L G A A V Q F A S A - - - - - -
M V S F - - - K S L L V A V S A L T G A L A - - - - - - -
M R V S - - - A F A L L A A A A T A A A - - - - - - - - -
M V S L - - - K S V L A A A T A V S S A I A - - - - - - -
M F K F - - - S A S L A A L A A L V P F V A A - - - - - -
M L S F V K K S I A L V A A L Q A V T A L A - - - - - - -
M L S F - - - K S L L A A A V V A S S A L A - - - - - - -
M V S K - - - S L F L A A A V N L A G V L A - - - - - - -
- M K F - - - G S A L V A A V A A V A G V A A - - - - - -
M V S F - - - K S A L F A A A A V A T V A D A - - - - - -

5 10 15 20 25

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.60: MSA for MVSFKSALFAAAAVATVADA

M V S F T Y L L A A V S A V T G A V A
M R V S S S L I A L A A L A V Q A L A
M V S F T S L L A G V A A I S G V L A
M V S F S S I L L A C S A A I G A L A
M V S F S S L A L A L S T V V G V L A
M V S F S S L V L A L S T V A G V L A
M V S F S S L L L A V S A V S G A L A
M V S K S L F L A A A V N L A G V L A
M V S F S S L L L A C S A V T - A F A
M V S F S S L V L A A S T V A G V L A
M V S F S S L L A A A S L A V - V N A

5 10 15

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.61: MSA for MVSFSSLLAAASLAVVNA

128

- M A V S S T P W A L V A L F L M A S S T V M A
M V A F S S L I - - - - - C A L T S I A S T L A
M V S F S S L L - - - - - L A V S A V S G A L A
- M S F S S L R R A L - - V F L G A C S S A L A
M V S F S S L V - - - - - L A A S T V A G V L A
M R V S S S L I - - - - - A L A A L A V Q A L A
M V S L K S L A A I L V A M F L A T G P T V L A
M V S F S S L V - - - - - L A L S T V A G V L A
M V S F S S C L - - - - - R A L A L G S S V L A
M V S F S S L A - - - - - L A L S T V V G V L A
M V S F S S L N A - - - - L F L - - - A T V L A

5 10 15 20

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.62: MSA for MVSFSSLNALFLATVLA

- - - M V S P V L A L F S A F - - - - L C H V A I A -
M V W A N A K M R L A L S L V T V F F G I S L A - - -
- - M N K T L I L A L S A L L - - - - - - G L A A - -
M K S R Y K R L T S L A L S L S M A L G I S L P A W A
- - - - M V K S V L A S A L F A - - - V S A L A - - -
M A I S K I A F L A L I A L S G - - - L C G L A S A -
M V S P R V R L A A L A L S V C A I L C L G M H A S A
- - - M R V S V P V L A L A F G - - - - - S L A A A -
- - - - - M K V L A L S A L L - - - - - - S L A S A A
- - - - - M K V L A L S A L L - - - - - - S L A S A -
- M V S N K R V L A L S A L F G - - - C C S L A S A -

5 10 15 20 25

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.63: MSA for MVSNKRVLALSALFGCCSLASA

M N T I F S A R I M K R L A L T T A L C T A F I S A A H A -
- - - - - - - - - - - - M K L L I L A L C F A A A S A - - -
- - - - - M I R M S K R L G V I L F V S C - I S I N S F A -
M K T P R L K K L A L V C A L G F A C I T F S A I N A V Q A
- - - - - - - - M K L L K A L A V L S L A T I S S H S F A -
- - - - - M M T M L R G W I T M L V M L T A I N A Q A - - -
- - - - - M D V T R L L L A T L L V C L C F F T A S S - - -
- - - - - M A K L I P T I A L V S V L L F I I A N A S F A -
- - - - - M V T M K L F A L V L L V S A S V F A - - - - - -
- - - - - - - - M K F R L T A L A V A A L L T S T A S F A -
- - - - - M V T M K L R L I A L A V C L C T F I N A S F A -

5 10 15 20 25 30

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.64: MSA for MVTMKLRLIALAVCLCTFINASFA

- - M S L R S V L - - V A A L A A L A V A - - - -
- - M K S L L P - - - L A I L A A L A V A A L C -
M A I S K L I P T - - L V L F V L F S F D V S V A
- - M K K I I S L - - A L A L A L S A S A - - - -
- - M K K L L P L A V L A A L S S V H V A S A Q A
- - M K K S L I A - - L A V L A A S G A A M A - -
- - M K S L L P I - - S S L L V L L G S A S V S A
- - M K Q T I C G - - L A V L A A L S S A P V F A
- - - - M S I R L - - I A V L S A A S I A V T S A
- - M S K S L A G - - L A V L A A L F I A V D A -
- - M Y S L I P S - - L A V L A A L S F A V S A -

5 10 15 20 25

nat_sp9
nat_sp8
nat_sp7
nat_sp6
nat_sp5
nat_sp4
nat_sp3
nat_sp2
nat_sp1
nat_sp0
gen_sp

Figure 4.65: MSA for MYSLIPSLAVLAALSFAVSA

129

VII: Test enzyme sequences and generated SPs
The sequences of both the (input) test enzymes and the (output) Transformer generated
SPs are provided below.

130

Ta
bl
e
4.
11

:E
nz
ym

e
se
qu
en
ce
su

se
d
fo
rt
es
tin

g

pr
ot
ein

id
pr
ot
ein

se
qu

en
ce

(tr
un

ca
te
d)

A
m
y_
01

A
N
LN

G
TL

M
Q
Y
FE

W
Y
M
PN

D
G
Q
H
W
K
R
LQ

N
D
SA

Y
LA

EH
G
IT
AV

W
IP
PA

Y
K
G
TS

Q
A
D
V
G
Y
G
AY

D
LY

D
LG

EF
H
Q
K
G
TV

RT
K
Y
G
TK

A
m
y_
02

D
G
LN

G
TM

M
Q
Y
Y
EW

H
LE

N
D
G
Q
H
W
N
R
LH

D
D
A
A
A
LS

D
A
G
IT
A
IW

IP
PA

Y
K
G
N
SQ

A
D
V
G
Y
G
AY

D
LY

D
LG

EF
N
Q
K
G
TV

RT
K
Y
G
TK

A
m
y_
03

A
SL

N
G
TL

M
Q
Y
FE

W
Y
M
PN

D
G
Q
H
W
K
R
LQ

N
D
SA

Y
LA

EH
G
IT
AV

W
IP
PA

Y
K
G
TS

Q
D
D
V
G
Y
G
AY

D
LY

D
LG

EF
H
Q
K
G
TV

RT
K
Y
G
TK

A
m
y_
04

ET
A
N
K
SN

EL
TA

PS
IK

SG
TI
LH

AW
N
W
SF

N
TL

K
LN

M
K
D
IH

D
A
G
Y
TA

IQ
TS

PI
N
Q
V
K
EG

N
Q
G
D
K
SM

SN
W
Y
W
LY

Q
PT

SY
Q
IG

N
R

A
m
y_
05

ET
A
N
K
SN

EL
TA

PS
IK

SG
TI
LH

AW
N
W
SF

N
TL

K
H
N
M
K
D
IH

D
A
G
Y
TA

IQ
TS

PI
N
Q
V
K
EG

N
Q
G
N
K
SM

SN
W
Y
W
LY

Q
PT

SY
Q
IG

N
R

A
m
y_
06

A
D
ER

EL
K
D
EL

IY
D
V
LV

D
RY

FN
K
K
ID

N
DY

EV
N
A
LD

PA
SF

N
G
G
D
FD

G
M
A
SE

LL
FV

K
EM

G
FT

A
LS

IG
PV

FS
TA

TY
D
G
K
RV

LD
Y

A
m
y_
07

EK
EY

EL
K
D
EL

IY
D
V
LV

D
RY

FN
K
K
ID

N
DY

EV
N
A
LD

PT
TF

N
G
G
D
FD

G
M
A
SE

LL
FV

K
D
M
G
FT

A
LS

IG
SV

FS
TE

TY
D
G
K
K
V
LD

Y
A
m
y_
08

EE
K
R
EW

R
D
EV

IY
SI
M
ID

R
FN

N
G
ES

K
N
D
K
Q
LD

V
G
N
LE

G
Y
Q
G
G
D
IR
G
II
K
R
LD

Y
IK

EM
G
FT

TI
M
LS

PL
FE

SE
K
Y
D
G
LS

V
R
N
F

A
m
y_
09

A
D
W
Q
D
D
A
IY

Y
V
M
V
D
R
FY

N
G
N
TQ

N
D
Q
EV

N
ID

D
M
N
TY

Q
G
G
D
FA

G
IT
EK

LD
Y
IK

EM
G
FT

A
IA

LN
PV

IQ
N
M
N
G
DY

TG
G
SP

H
D
FT

A
m
y_
10

K
EE

TP
EI
Q
N
ES

IY
D
V
LI
D
R
FF

D
K
N
V
EN

DY
N
IN

A
K
D
PK

A
FH

G
G
D
FD

G
IA
TK

LS
Y
FQ

D
LG

FT
M
LS

LG
SV

FS
SE

TY
D
G
Q
AV

V
D

A
m
y_
11

A
A
PF

N
G
TM

M
Q
Y
FE

W
Y
LS

C
D
PQ

SF
SE

PP
Q
C
EV

K
VA

N
LG

IT
A
LW

LP
PA

Y
K
G
TS

R
SD

V
G
Y
G
V
Y
D
LY

D
LG

EF
N
Q
K
G
AV

RT
K
Y
G
T

A
m
y_
12

A
A
PF

N
G
TM

M
Q
Y
FE

W
Y
LP

D
D
G
TL

W
TK

VA
N
EA

N
N
LS

SL
G
IT
A
LW

LP
PA

Y
K
G
TS

R
SD

V
G
Y
G
V
Y
D
LY

D
LG

EF
N
Q
K
G
TV

RT
K
Y
G
T

A
m
y_
13

A
Q
D
FR

A
R
A
PE

D
EV

IY
FV

LP
D
R
FE

N
G
D
K
A
N
D
RG

G
M
TG

D
R
LA

H
G
FD

PT
A
K
G
FY

H
G
G
D
LK

G
LM

A
R
LP

Y
IQ

SL
G
A
TA

IW
V
G
PI
F

A
m
y_
14

V
D
G
K
SM

N
PG

Y
K
TY

LM
A
PL

K
K
V
TD

Y
TT

W
EA

FE
N
D
LR

K
A
K
Q
N
G
FY

AV
TV

D
FW

W
G
D
M
EK

N
G
D
Q
Q
FD

FS
YA

Q
R
FA

Q
A
A
R
N
A
G
IK

A
m
y_
15

H
H
N
G
TN

G
TM

M
Q
Y
FE

W
H
LP

N
D
G
N
H
W
N
R
LR

D
D
A
A
N
LK

SK
G
IT
AV

W
IP
PA

W
K
G
TS

Q
N
D
V
G
Y
G
AY

D
LY

D
LG

EF
N
Q
K
G
TV

RT
K
Y
G

D
hg
_0
1

SP
N
PT

N
IH

TG
K
TL

R
LL

Y
H
PA

SQ
PC

R
SA

H
Q
FM

Y
EI
D
V
PF

EE
EV

V
D
IS
TD

IT
ER

Q
EF

R
D
K
Y
N
PT

G
Q
V
PI
LV

D
G
EF

TV
W
ES

VA
D
hg
_0
2

TE
LI
LD

FN
K
V
Q
M
R
SQ

Q
LA

PG
V
YA

H
LP

A
D
SA

EL
N
A
K
G
G
VA

G
TS

G
G
LI
V
G
TR

G
A
M
LI
ET

M
LN

R
R
LF

D
Q
V
Q
A
LA

K
K
EA

LG
LP

L
D
hg
_0
3

TY
TE

IV
TG

ST
PD

D
R
FD

N
LA

G
Y
PS

A
PH

Y
V
D
V
TA

G
D
TG

PL
R
M
H
Y
V
D
EG

PR
D
G
TP

V
V
LL

H
G
EP

TW
SY

LY
RT

M
IP
PL

A
A
G
G
C
RV

D
hg
_0
4

A
G
N
IT
PT

LA
N
W
ST

W
ET

FK
A
A
Q
Q
EI
V
LP

A
G
RV

V
H
IA
V
TI
RY

V
D
IG

EP
RW

G
TI
LL

M
H
G
IP
TW

G
C
LY

H
A
II
PP

LA
Q
A
G
Y
RV

IA
D
hg
_0
5

D
V
LR

TP
D
ER

FE
G
LA

D
W
SF

A
PH

Y
TE

V
TD

A
D
G
TA

LR
IH

H
V
D
EG

PK
D
Q
R
PI
LL

M
H
G
EP

SW
AY

LY
R
K
V
IA

EL
VA

K
G
H
RV

VA
PD

L
D
hg
_0
6

SE
IG

TG
FP

FD
PH

Y
V
EV

LG
ER

M
H
Y
V
D
V
G
PR

D
G
TP

V
LF

LH
G
N
PT

SS
Y
LW

R
N
II
PH

VA
PS

H
RC

IA
PD

LI
G
M
G
K
SD

K
PD

LD
Y
FF

Li
p_
01

EN
M
ST

TY
PI
V
LV

H
G
LS

G
FD

D
IV
G
Y
PY

FY
G
IR
D
A
LE

K
D
G
H
K
V
FT

A
SL

SA
FN

SN
EV

RG
EQ

LW
EF

V
Q
K
V
LK

ET
K
A
K
K
V
N
LI
G
H

Li
p_
02

A
TS

R
A
N
D
A
PI
V
LL

H
G
FT

G
W
G
R
EE

M
FG

FK
Y
W
G
G
V
RG

D
IE
Q
W
LN

D
N
G
Y
RT

Y
TL

AV
G
PL

SS
N
W
D
R
A
C
EA

YA
Q
LV

G
G
TV

DY
G
A
A

Li
p_
03

A
EH

N
PV

V
M
V
H
G
IG

G
A
SF

N
FA

G
IK

SY
LV

SQ
G
W
SR

D
K
LY

AV
D
FW

D
K
TG

TN
Y
N
N
G
PV

LS
R
FV

Q
K
V
LD

ET
G
A
K
K
V
D
IV
A
H
SM

G
G

Li
p_
04

ES
V
H
N
PV

V
LV

H
G
IS
G
A
SY

N
FF

A
IK

N
Y
LI
SQ

G
W
Q
SN

K
LY

A
ID

FY
D
K
TG

N
N
LN

N
G
PQ

LA
SY

V
D
RV

LK
ET

G
A
K
K
V
D
IV
A
H
SM

G
Li
p_
05

SP
IR
R
EV

SQ
D
LF

N
Q
FN

LF
A
Q
Y
SA

A
AY

C
G
K
N
N
D
A
PA

G
TN

IT
C
TG

N
A
C
PE

V
EK

A
D
A
TF

LY
SF

ED
SG

V
G
D
V
TG

FL
A
LD

N
TN

K
L

Li
p_
06

G
LF

G
ST

G
Y
TK

TK
Y
PI
V
LT

H
G
M
LG

FD
SI
LG

V
DY

W
Y
G
IP
SS

LR
SD

G
A
SV

Y
IT
EV

SQ
LN

TS
EL

RG
EE

LL
D
Q
V
EE

IA
A
IS
G
K
G
K

Li
p_
07

A
TG

SG
Y
TA

TK
Y
PI
V
LA

H
G
M
LG

FD
SL

LG
ID
Y
W
Y
G
IP
SA

LR
R
D
G
A
Q
V
Y
V
TE

V
SQ

LN
TS

EL
RG

EE
LL

A
Q
V
EE

IV
A
IS
G
K
PK

V
N

Li
p_
08

SP
V
R
R
EV

SQ
D
LF

D
Q
FN

LF
A
Q
Y
SA

A
AY

CA
K
N
N
D
A
PA

G
A
N
V
TC

RG
SI
C
PE

V
EK

A
D
A
TF

LY
SF

ED
SG

V
G
D
V
TG

FL
A
LD

N
TN

R
L

Li
p_
09

TT
A
M
PS

D
A
A
IV
A
LC

A
Q
IY

Q
PS

A
PD

A
FE

Y
FD

A
G
TD

D
G
IC
W
A
IK

R
LN

G
LD

V
V
V
LR

G
SR

TL
Q
D
W
LR

D
IH

A
FP

A
PS

R
IG

H
V
H
SG

Li
p_
10

A
FD

A
LF

A
R
D
VA

LP
LA

A
A
AY

SV
LG

G
SP

AV
LP

TG
FV

K
TA

LI
R
A
D
G
A
A
LT

A
M
TD

PH
PA

V
TA

M
TK

D
TD

LF
G
LL

G
H
N
PA

SR
TA

FV
Pr
o_
01

A
EE

K
V
K
Y
LI
G
FE

EE
A
EL

EA
FT

EE
ID

Q
V
G
V
FS

V
EE

Q
SV

A
ED

TL
D
ID
V
D
II
D
EY

DY
TD

V
LA

V
EL

D
PE

D
V
D
A
LS

EE
A
G
IS
FI
E

Pr
o_
02

A
G
K
SS

TE
K
K
Y
IV
G
FK

Q
TM

SA
M
SS

A
K
K
K
D
V
IS
EK

G
G
K
V
Q
K
Q
FK

Y
V
N
A
A
A
A
TL

D
EK

AV
K
EL

K
K
D
PS

VA
Y
V
EE

D
H
IA

H
EY

A
Q
S

Pr
o_
03

A
G
K
SN

G
EK

K
Y
IV
G
FK

Q
TM

ST
M
SA

A
K
K
K
D
V
IS
EK

G
G
K
V
Q
K
Q
FK

Y
V
D
A
A
SA

TL
N
EK

AV
K
EL

K
K
D
PS

VA
Y
V
EE

D
H
VA

H
AY

A
Q
S

Pr
o_
04

D
SA

SA
A
Q
PA

K
N
V
EK

DY
IV
G
FK

SG
V
K
TA

SV
K
K
D
II
K
ES

G
G
K
V
D
K
Q
FR

II
N
A
A
K
A
K
LD

K
EA

LK
EA

K
N
D
PD

VA
Y
V
EE

D
H
VA

H
A

Pr
o_
05

A
EE

A
K
EK

Y
LI
G
FN

EQ
EA

V
SE

FV
EQ

V
EA

N
D
EV

A
IL
SE

EE
EV

EI
EL

LH
EF

ET
IP
V
LS

V
EL

SP
ED

V
D
A
LE

LD
PA

IS
Y
IE
ED

A
E

Xy
l_
01

A
ST

DY
W
Q
N
W
TD

G
G
G
IV

N
AV

N
G
SG

G
N
Y
SV

N
W
SN

TG
N
FV

V
G
K
G
W
TT

G
SP

FR
TI
N
Y
N
A
G
V
W
A
PN

G
N
G
Y
LT

LY
G
W
TR

SP
LI
EY

Y
Xy

l_
02

SP
V
D
ID

SR
Q
A
SV

SI
D
A
K
FK

A
H
G
K
K
Y
LG

TI
G
D
Q
Y
TL

TK
N
SK

N
PA

II
K
A
D
FG

Q
LT

PE
N
SM

K
W
D
A
TE

PN
RG

Q
FS

FS
G
SD

Y
LV

N
Xy

l_
03

RT
IT
N
N
EM

G
N
H
SG

Y
DY

EL
W
K
DY

G
N
TS

M
TL

N
N
G
G
A
FS

A
G
W
N
N
IG

N
A
LF

R
K
G
K
K
FD

ST
RT

H
H
Q
LG

N
IS
IN

Y
N
A
SF

N
PG

G
N
SY

Xy
l_
04

A
TT

IT
SN

Q
TG

TQ
D
G
Y
DY

EL
W
K
D
SG

N
TS

M
TL

N
SG

G
A
FS

A
Q
W
SN

IG
N
A
LF

R
K
G
K
K
FD

ST
K
TH

SQ
LG

N
IS
IN

Y
N
A
TF

N
PG

G
N
S

Xy
l_
05

FP
SG

LT
Q
H
A
TG

D
LS

K
R
Q
SI
TT

SQ
TG

TN
N
G
Y
Y
Y
SF

W
TN

G
G
G
EV

TY
TN

G
D
N
G
EY

SV
TW

V
N
C
G
D
FT

SG
K
G
W
N
PA

N
A
Q
TV

TY
SG

131

Ta
bl
e
4.
12

:S
eq
ue
nc
es

of
G
en
er
at
ed

SP
s

sp
_i
d

se
qu
en
ce

sp
_i
d

se
qu
en
ce

sp
_i
d

se
qu
en
ce

sp
_i
d

se
qu
en
ce

sp
s1
-1

M
R
FF

G
IH

LA
LA

LA
TT

SF
A

sp
s1
1-
2

M
N
K
TI
V
LA

A
SL

LG
LF

SS
TA

LA
sp
s2
1-
3

M
LK

R
FV

K
LA

V
IA

LA
FA

Y
V
SA

sp
s3
1-
4

M
K
FL

IL
LI
TL

G
A
IA

A
TA

LA
sp
s1
-2

M
R
Q
LF

TS
LL

A
LL

G
V
C
SL

A
sp
s1
1-
3

M
LK

LI
LA

LC
FS

LP
FA

A
LA

sp
s2
1-
4

M
K
K
TG

FI
G
K
TL

A
LV

IA
A
G
M
A
G
TA

A
FA

sp
s3
2-
1

M
RV

TS
K
V
IL
TL

IA
A
TA

FA
TA

FT
W
SA

sp
s1
-3

M
K
LS

LK
SI
IL
LP

TV
A
T

sp
s1
1-
4

M
K
FT

Q
AV

LS
LL

G
SA

A
TA

LA
sp
s2
2-
1

M
K
LG

K
LL

A
SV

A
A
TL

G
V
SG

V
N
A

sp
s3
2-
2

M
K
K
FK

RT
IL
SG

LA
LA

M
SI
A
Q
A

sp
s1
-4

M
K
K
PL

G
K
IV
A
ST

A
LL

IS
VA

FS
SS

IA
SA

sp
s1
2-
1

M
G
FR

LK
A
LL

V
G
C
LI
FL

AV
SS

A
IA

sp
s2
2-
2

M
K
K
LL

IL
A
C
LL

IS
SL

ES
sp
s3
2-
3

M
LF

K
SV

LL
A
LA

SA
G
VA

V
N
A

sp
s2
-1

M
VA

TP
FY

LF
LP

W
G
V
VA

A
LV

R
SQ

A
sp
s1
2-
2

M
TS

Y
EF

LL
V
IL
G
V
LL

SG
A

sp
s2
2-
3

M
TK

FL
LS

LI
FI
TI
A
SA

LA
sp
s3
2-
4

M
K
LF

K
IL
TA

C
LF

IG
LL

N
V
SA

sp
s2
-2

M
K
FF

N
PF

K
V
IA

LA
C
IS
G
A
LA

TA
Q
A

sp
s1
2-
3

M
PM

TL
LV

LS
LL

A
TL

FG
SW

VA
sp
s2
2-
4

M
K
K
TI
LA

LA
LL

G
SL

A
A

sp
s3
3-
1

M
AV

M
R
FF

A
SL

PR
RV

A
sp
s2
-3

M
K
K
V
LL

A
TA

A
A
TL

SG
LM

A
A
H
A

sp
s1
2-
4

M
N
IR
LG

A
LL

A
G
LL

LS
A
M
A
SA

V
FA

sp
s2
3-
1

M
R
SL

G
FT

FL
IS
A
LF

G
V
SL

SA
sp
s3
3-
2

M
LK

R
A
A
FL

V
G
V
SL

AV
A
A
G
C
G
PA

Q
A

sp
s2
-4

M
IK

K
IP
LK

TI
AV

M
A
LS

G
C
TF

FV
N
G

sp
s1
3-
1

M
K
N
LL

FS
TL

TA
V
LI
TS

V
SF

A
sp
s2
3-
2

M
K
PA

C
R
LI
SL

LM
LA

V
SG

IA
SA

sp
s3
3-
3

M
TH

RT
FA

A
LP

A
A
A
LA

AV
SS

A
A
FA

sp
s3
-1

M
R
LI
V
FL

A
TS

A
TS

LF
A
SL

A
sp
s1
3-
2

M
K
K
FA

V
IC
G
LL

FA
C
IV

D
A

sp
s2
3-
3

M
M
LT

FF
IS
LL

FL
SS

A
LA

sp
s3
3-
4

M
K
LS

Q
SL

TY
LA

V
LG

LA
A
G
A
N
A

sp
s3
-2

M
FK

LK
D
IL
IG

LT
G
IL
LS

SL
FA

sp
s1
3-
3

M
N
K
K
FK

TI
M
A
LA

IA
TL

SA
A
G
V
G
VA

H
A

sp
s2
3-
4

M
TL

K
TT

IT
LF

FA
A
LS

A
N
A
A
FA

sp
s3
4-
1

M
A
SK

LA
FF

LA
LA

LA
A
A
A

sp
s3
-3

M
LH

VA
LL

LI
IG

TT
C
SS

IV
SA

sp
s1
3-
4

M
K
K
SL

IS
FL

A
LG

LL
FG

SA
FA

sp
s2
4-
1

M
R
A
K
A
LA

A
SL

A
G
A
LA

G
A
A
SA

sp
s3
4-
2

M
K
FL

SL
K
LV

V
LA

FY
VA

FQ
IN

A
sp
s3
-4

M
R
LA

K
IA
G
LT

A
SL

LF
SL

W
G
A
LA

sp
s1
4-
1

M
A
LA

N
K
FF

LL
VA

LG
LS

V
SG

sp
s2
4-
2

M
V
SL

SF
SL

VA
SA

V
TH

VA
SA

sp
s3
4-
3

M
A
K
LI
A
LV

LL
G
LA

A
A

sp
s4
-1

M
V
G
Y
ST

AW
LL

LL
A
A
SV

IA
SG

sp
s1
4-
2

M
V
IV

LT
SI
IL
A
LW

N
A
Q
A

sp
s2
4-
3

M
V
SF

SS
LN

A
LF

LA
TV

LA
sp
s3
4-
4

M
R
SL

LL
TL

LG
A
LL

R
A

sp
s4
-2

M
AV

N
TK

LI
G
V
SL

Y
SF

TP
FL

V
FA

sp
s1
4-
3

M
TK

FL
LS

LA
V
LA

TA
VA

SA
sp
s2
4-
4

M
K
FQ

D
LT

LV
LS

LS
TA

LA
sp
s3
5-
1

M
K
LN

IV
K
LL

V
LA

A
FA

Q
A
A
SA

sp
s4
-3

M
LG

RG
A
LT

A
A
IL
A
G
VA

TA
D
S

sp
s1
4-
4

M
K
FL

SI
V
LL

IV
G
LA

Y
G

sp
s2
5-
1

M
RV

LS
A
TA

FL
A
LL

A
FG

LS
G
A
TA

sp
s3
5-
2

M
IL
FY

V
LP

V
V
LA

LV
SG

sp
s4
-4

M
A
IL
V
LL

FL
LA

V
EI
N
S

sp
s1
5-
1

M
M
A
AV

V
R
AV

A
A
TL

IL
IL
C
G
A
EL

A
sp
s2
5-
2

M
K
FL

ST
A
FV

LL
IA

LV
A
G
C
ST

A
sp
s3
5-
3

M
K
K
N
LL

K
LT

LA
LI
SG

M
SQ

FA
sp
s5
-1

M
LL

PA
FM

LL
IL
PA

A
LA

sp
s1
5-
2

M
LP

TA
A
FL

SV
N
LL

LT
G
A
FF

G
CA

sp
s2
5-
3

M
LK

R
FL

TL
FL

G
FL

A
LA

SS
LA

sp
s3
5-
4

M
K
FL

IP
LF

V
LF

IV
FG

N
AY

A
sp
s5
-2

M
K
M
RT

G
K
K
G
FL

SI
LL

A
FL

LV
IT
SI
PF

TL
V
D
V
EA

sp
s1
5-
3

M
Y
SL

IP
SL

AV
LA

A
LS

FA
V
SA

sp
s2
5-
4

M
K
LL

TS
FV

LI
G
A
LA

FA
sp
s3
6-
1

M
K
RV

FS
LF

TA
V
C
G
LL

SV
SA

sp
s5
-3

M
SN

K
PA

K
C
LA

V
LA

A
IA
TL

SA
TQ

A
sp
s1
5-
4

M
FK

FV
LV

LS
V
LA

A
LA

SA
R
A

sp
s2
6-
1

M
LK

K
LA

M
AV

G
A
M
LT

SI
SF

LL
PS

SA
Q
A

sp
s3
6-
2

M
K
K
FS

IF
LV

LS
IT
V
LA

sp
s5
-4

M
K
M
RT

G
K
K
G
FL

SI
LL

A
FL

LV
IT
SI
PF

TL
V
D
V
EA

sp
s1
6-
1

M
RV

PY
LI
A
SL

LA
LA

V
SL

FS
TA

TA
sp
s2
6-
2

M
K
K
LL

V
IA

A
LA

C
G
VA

TA
Q
A

sp
s3
6-
3

M
K
K
K
IV
AV

LT
LS

V
V
LA

sp
s6
-1

M
K
LG

FL
TS

FV
AY

LT
SA

A
sp
s1
6-
2

M
K
K
IK

SI
LV

LA
LI
G
IM

SS
A
LA

sp
s2
6-
3

M
IK

TL
LV

SS
IL
IP
C
LA

TG
A

sp
s3
6-
4

M
K
K
RV

IS
A
LA

A
LW

LS
V
LG

A
PA

V
LA

sp
s6
-2

M
K
LS

TI
FV

R
FL

A
IA

LL
A
TM

ST
A
Q
A

sp
s1
6-
3

M
LG

A
K
FL

W
TV

LF
SL

SL
SL

A
H
A

sp
s2
6-
4

M
G
IQ

K
K
V
SI
LV

A
G
LF

M
A
TA

FA
TA

sp
s3
7-
1

M
G
V
FS

FL
TT

EA
M
AV

FL
A
G
LA

H
A

sp
s6
-3

M
Q
R
SL

FL
V
LS

LV
SS

VA
SA

sp
s1
6-
4

M
LT

FH
R
II
R
K
G
W
M
FL

LA
FL

LT
A
LL

FC
PT

G
Q
PA

K
A

sp
s2
7-
1

M
K
K
IV
A
LF

LV
FC

FL
A
G

sp
s3
7-
2

M
TM

K
G
LR

V
VA

LV
V
LA

SL
G
IF
A

sp
s6
-4

M
K
LF

TA
TI
AV

LG
AV

SA
TA

H
A

sp
s1
7-
1

M
LI
R
K
Y
LS

FA
IS
LL

IA
TA

LP
A
SA

sp
s2
7-
2

M
N
K
K
V
LA

A
IV

LG
M
LS

V
FT

SA
A
Q
A

sp
s3
7-
3

M
TK

FL
SA

SL
A
LL

SG
LA

TA
SS

D
A

sp
s7
-1

M
LK

N
FL

LA
SL

A
IC
V
TF

SA
TG

sp
s1
7-
2

M
EK

V
LL

R
LL

IL
LS

LL
A
G
A
LS

FA
sp
s2
7-
3

M
K
K
TA

IA
SA

LL
A
LP

FV
FA

sp
s3
7-
4

M
TQ

K
SL

LL
A
LT

AV
A
LV

SV
N
A

sp
s7
-2

M
V
K
N
FQ

K
IL
V
LA

LL
IV
C
C
SS

IS
LA

TF
A

sp
s1
7-
3

M
K
LG

SI
FL

FA
LF

LA
C
SA

EA
sp
s2
7-
4

M
K
K
TA

A
IA

A
LA

G
LS

FA
G
M
A
H
A

sp
s3
8-
1

M
N
R
LY

AV
FA

V
LC

FA
Q
V
LH

G
sp
s7
-3

M
K
LL

PA
FF

LI
TA

A
TV

A
SA

sp
s1
7-
4

M
N
LK

IL
FA

LA
LG

V
C
LA

A
sp
s2
8-
1

M
IS
A
N
K
IL
FL

IL
C
VA

C
V
SA

sp
s3
8-
2

M
K
K
LL

LQ
SL

IL
SE

LG
G
C
LA

sp
s7
-4

M
K
D
LF

R
LI
A
LL

SC
C
LA

LF
PL

TF
A

sp
s1
8-
1

M
TR

PA
PA

FR
LS

LV
IL
C
LA

IP
A
A
D
A

sp
s2
8-
2

M
V
K
LA

SI
LL

II
LA

G
ES

FA
sp
s3
8-
3

M
A
A
R
SV

LL
LA

LL
TL

AV
ST

A
sp
s8
-1

M
R
K
TA

V
SF

TV
CA

LM
LG

TA
M
A

sp
s1
8-
2

M
V
TM

K
LR

LI
A
LA

V
C
LC

TF
IN

A
SF

A
sp
s2
8-
3

M
IN

K
LI
A
LT

V
LF

SL
G
IN

A
sp
s3
8-
4

M
K
G
TL

A
FL

LV
FL

LN
LY

V
H
G

sp
s8
-2

M
K
K
FC

K
IL
V
IS
M
LA

V
LG

LT
PA

AV
A

sp
s1
8-
3

M
TK

LL
AV

IA
A
SL

M
FA

A
ST

FA
sp
s2
8-
4

M
VA

SL
W
SS

IL
PV

LA
FL

W
A
D
LS

A
G
A

sp
s3
9-
1

M
LS

ID
TS

ST
R
RV

V
PN

TA
LF

PN
TH

R
R
D
FA

TA
G
Q
LL

A
M
A
SA

V
LT

G
A
PA

H
A

sp
s8
-3

M
K
K
SL

SA
V
LL

G
VA

LS
AV

A
SS

A
FA

sp
s1
8-
4

M
V
SN

K
RV

LA
LS

A
LF

G
C
C
SL

A
SA

sp
s2
9-
1

M
K
FL

LF
IA

LS
LA

VA
TA

A
sp
s3
9-
2

M
N
IS
IF
V
G
K
LA

LA
A
LG

SA
LV

A
sp
s8
-4

M
K
SL

LL
TA

FA
A
G
TA

LA
sp
s1
9-
1

M
V
SF

K
SA

LF
A
A
A
AV

A
TV

A
D
A

sp
s2
9-
2

M
R
H
FL

SL
LL

Y
G
A
TL

V
SS

SA
C
S

sp
s3
9-
3

M
R
R
LF

LL
SS

LA
SL

SV
A
SA

sp
s9
-1

M
LS

LK
SL

FL
ST

LL
IV

LA
A
SG

FA
sp
s1
9-
2

M
Q
K
K
TA

IA
IA

A
G
TA

IA
TV

A
A
G
TQ

A
sp
s2
9-
3

M
K
FS

A
IV

LL
A
A
LA

FA
V
SA

sp
s3
9-
4

M
K
C
C
R
IM

FV
LL

G
LW

FV
FG

LS
V
PG

G
RT

EA
sp
s9
-2

M
K
K
R
LH

IG
LL

LS
LI
A
FQ

A
G
FA

sp
s1
9-
3

M
V
SF

SS
LL

A
A
A
SL

AV
V
N
A

sp
s2
9-
4

M
K
K
R
LL

IA
SV

A
LG

SL
FS

FC
A

sp
s4
0-
1

M
K
FL

IL
A
TL

SI
FT

G
IL
A

sp
s9
-3

M
K
LL

A
FI
FA

LF
LF

SI
A
R
A

sp
s1
9-
4

M
K
N
FA

TL
SA

V
LA

G
A
TA

LA
sp
s3
0-
1

M
SW

R
SI
FL

LV
LL

A
SI
D
FI
N
G

sp
s4
0-
2

M
K
V
FT

LA
FF

LA
II
V
SQ

A
sp
s9
-4

M
N
K
LF

Y
LF

M
LG

LA
A
FA

sp
s2
0-
1

M
K
LN

K
LL

SI
A
A
G
C
TV

LG
ST

YA
LA

sp
s3
0-
2

M
R
LP

SL
LL

PL
A
A
LI
A

sp
s4
0-
3

M
K
K
K
IA

IT
LL

FL
SL

LN
R
A

sp
s1
0-
1

M
K
FS

TI
LA

A
A
IL
V
G
V
R
A

sp
s2
0-
2

M
K
LK

K
LG

V
IL
A
IC
LG

IS
ST

FA
sp
s3
0-
3

M
K
V
LA

A
LV

LA
LV

A
TA

SA
sp
s4
0-
4

M
K
LL

K
V
IA
TA

FL
G
LT

SF
A
SA

sp
s1
0-
2

M
K
V
FT

LA
FA

II
C
Q
LF

A
SA

sp
s2
0-
3

M
K
K
LL

LA
A
C
V
LF

SL
A
SV

SA
sp
s3
0-
4

M
A
R
A

sp
s4
1-
1

M
PT

V
VA

LD
LA

TY
V
LQ

PS
K
R
A

sp
s1
0-
3

M
K
K
K
IA

II
LM

SL
LL

N
TI
A
ST

FA
sp
s2
0-
4

M
IR
LK

R
LL

A
G
LL

LP
LF

V
TA

FG
sp
s3
1-
1

M
R
K
LL

IW
LA

G
FL

V
LI
LK

T
sp
s4
1-
2

M
LM

V
PL

LL
A
LG

AV
A
A
G

sp
s1
0-
4

M
K
LK

IV
FA

VA
A
IA

PV
LH

S
sp
s2
1-
1

M
TR

SL
FI
FS

LL
A
LA

IF
SG

V
SA

SA
sp
s3
1-
2

M
R
K
FI
SS

LL
LG

LV
V
SI
A
TA

VA
sp
s4
1-
3

M
PA

A
R
R
LA

LF
A
AV

A
LA

AV
G
LS

PA
A
LA

sp
s1
1-
1

M
V
Y
TS

IL
LA

A
SA

A
TV

Q
A

sp
s2
1-
2

M
K
LI
PN

K
K
TL

IA
G
IL
A
IS
TS

FA
Y
S

sp
s3
1-
3

M
N
TL

FL
FT

SL
FL

FL
FA

K
V
TA

sp
s4
1-
4

M
R
SL

LL
TS

A
LA

A
LV

SL
A
A
A
SA

132

4.7 Bibliography
References

1. Tsirigotaki, A., De Geyter, J., Šoštaric, N., Economou, A. & Karamanou, S.
Protein export through the bacterial Sec pathway. Nature Reviews Microbiology
15, 21 (2017).

2. Low, K. O., Mahadi, N. M. & Illias, R. M. Optimisation of signal peptide for
recombinant protein secretion in bacterial hosts. Applied Microbiology and
Biotechnology 97, 3811–3826. doi:10.1007/s00253-013-4831-z (2013).

3. Driessen, A. J., Manting, E. H. & van der Does, C. The structural basis of
protein targeting and translocation in bacteria. Nature Structural Biology 8,
492–498 (2001).

4. Osborne, A. R., Rapoport, T. A. & van den Berg, B. Protein translocation by
the Sec61/SecY channel. Annual Review of Cell and Developmental Biology
21, 529–550 (2005).

5. Wickner, W., Driessen, A. J. & Haril, F.-U. The enzymology of protein
translocation across the Escherichia coli plasma membrane. Annual Review of
Biochemistry 60, 101–124 (1991).

6. Berks, B. C., Palmer, T. & Sargent, F. Protein targeting by the bacterial twin-
arginine translocation (Tat) pathway. Current Opinion in Microbiology 8, 174–
181 (2005).

7. Natale, P., Brüser, T. & Driessen, A. J. Sec-and Tat-mediated protein secretion
across the bacterial cytoplasmic membrane–distinct translocases and mecha-
nisms. Biochimica et Biophysica Acta (BBA)-Biomembranes 1778, 1735–1756
(2008).

8. Mori, A. et al. Signal peptide optimization tool for the secretion of recom-
binant protein from Saccharomyces cerevisiae. Journal of Bioscience and
Bioengineering 120, 518–525 (2015).

9. Zhang, L., Leng, Q. & Mixson, A. J. Alteration in the IL-2 signal peptide
affects secretion of proteins in vitro and in vivo. The Journal of Gene Medicine
7, 354–365 (2005).

10. Mergulhão, F., Summers, D. K. & Monteiro, G. A. Recombinant protein
secretion in Escherichia coli. Biotechnology Advances 23, 177–202 (2005).

11. Nielsen, H., Engelbrecht, J., Brunak, S. & von Heijne, G. Identification of
prokaryotic and eukaryotic signal peptides and prediction of their cleavage
sites. Protein Engineering 10, 1–6 (1997).

12. Nielsen, H. & Krogh, A. Prediction of signal peptides and signal anchors by a
hidden Markov model. in ISMB Proceedings 6 (1998), 122–130.

13. Armenteros, J. A. et al.Detecting Novel Sequence Signals in Targeting Peptides
Using Deep Learning. Life Science Alliance 2. doi:10.1101/639203 (2019).

http://dx.doi.org/10.1007/s00253-013-4831-z
http://dx.doi.org/10.1101/639203

133

14. Brookes, D. H., Park, H. & Listgarten, J. Conditioning by adaptive sampling
for robust design. arXiv (2019).

15. Costello, Z. & Garcia Martin, H. How to Hallucinate Functional Proteins. arXiv
(2019).

16. Madani, A. et al. ProGen: Language Modeling for Protein Generation. arXiv
(2020).

17. Repecka, D. et al.Expanding functional protein sequence space using generative
adversarial networks. bioRxiv, 789719 (2019).

18. Riesselman, A. J., Ingraham, J. B. & Marks, D. S. Deep generative models of
genetic variation capture the effects of mutations. Nature Methods 15, 816–822
(2018).

19. Brockmeier, U. et al. Systematic screening of all signal peptides from Bacillus
subtilis: a powerful strategy in optimizing heterologous protein secretion in
Gram-positive bacteria. Journal of Molecular Biology 362, 393–402 (2006).

20. Degering, C. et al. Optimization of protease secretion in Bacillus subtilis
and Bacillus licheniformis by screening of homologous and heterologous
signal peptides. Applied and Environmental Microbiology 76, 6370–6376.
doi:10.1128/aem.01146-10 (2010).

21. Hemmerich, J. et al. Use of a Sec signal peptide library from Bacillus subtilis
for the optimization of cutinase secretion in Corynebacterium glutamicum.
Microbial Cell Factories 15, 208 (2016).

22. Engelman, D. & Steitz, T. The spontaneous insertion of proteins into and across
membranes: the helical hairpin hypothesis. Cell 23, 411–422 (1981).

23. Duffy, J., Patham, B. & Mensa-Wilmot, K. Discovery of functional motifs in
h-regions of trypanosome signal sequences. Biochemical Journal 426, 135–145
(2010).

24. Freudl, R. Signal peptides for recombinant protein secretion in bacterial
expression systems. Microbial Cell Factories 17, 52 (2018).

25. Owji, H., Nezafat, N., Negahdaripour, M., Hajiebrahimi, A. & Ghasemi, Y. A
comprehensive review of signal peptides: Structure, roles, and applications.
European Journal of Cell Biology 97, 422–441 (2018).

26. Vaswani, A. et al. Attention is all you need in Advances in Neural Information
Processing Systems (2017), 5998–6008.

27. Consortium, U. UniProt: a worldwide hub of protein knowledge. Nucleic Acids
Research 47, D506–d515 (2019).

28. Bahdanau, D., Cho, K. & Bengio, Y. Neural machine translation by jointly
learning to align and translate. arXiv (2014).

http://dx.doi.org/10.1128/aem.01146-10

134

29. Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv (2018).

30. Liu, Y. et al. Roberta: A robustly optimized bert pretraining approach. arXiv
(2019).

31. Rao, R. et al. Evaluating protein transfer learning with TAPE in Advances in
Neural Information Processing Systems (2019), 9686–9698.

32. Rives, A. et al. Biological structure and function emerge from scaling unsuper-
vised learning to 250 million protein sequences. bioRxiv, 622803 (2019).

33. Graves, A. Sequence transduction with recurrent neural networks. arXiv (2012).

34. Eddy, S. R. Profile hidden Markov models. Bioinformatics 14, 755–763 (1998).
35. Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. arXiv (2013).

36. Zhang,W. et al.Optimal secretion of alkali-tolerant xylanase in Bacillus subtilis
by signal peptide screening. Applied Microbiology and Biotechnology 100,
8745–8756 (2016).

37. Bedbrook, C. N. et al. Machine learning-guided channelrhodopsin engineering
enables minimally invasive optogenetics. Nature Methods, 1–9 (2019).

38. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving
the sensitivity of progressive multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight matrix choice. Nucleic
Acids Research 22, 4673–4680 (1994).

39. Cock, P. J. et al. Biopython: freely available Python tools for computational
molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).

40. Grote, A. et al. JCat: a novel tool to adapt codon usage of a target gene to its
potential expression host. Nucleic Acids Research 33, W526–w531 (2005).

41. Koo, B.-M. et al. Construction and analysis of two genome-scale deletion
libraries for Bacillus subtilis. Cell Systems 4, 291–305 (2017).

42. Madeira, F. et al. The EMBL-EBI search and sequence analysis tools APIs in
2019. Nucleic Acids Research 47, W636–w641 (2019).

43. Armenteros, J. J. A. et al. SignalP 5.0 improves signal peptide predictions using
deep neural networks. Nature Biotechnology 37, 420–423 (2019).

135

C h a p t e r 5

LANGUAGE MODELING FOR ENZYME-SUBSTRATE
INTERACTIONS

Contributions Statement: Z.W. conceived of the idea. A.F., A.S., L.P., A.S., and V.N.
participated in its implementation. Z.W. identified and cleaned relevant datasets for
training and validation.

5.1 Abstract
While directed evolution has been remarkably successful in optimizing protein
sequences, it requires a starting point with measurable function. In this chapter, we
begin to address the issue of modeling the interactions between enzymes and their
substrates from a language modeling perspective. While we were able to predict
whether an enzyme has activity on a new substrate with some success, this approach
was not able to generate convincing enzyme sequences given a substrate. In the
future, incorporating data from alternative sources, including perhaps structural
information, is likely necessary for this approach to succeed.

5.2 Introduction
Enzymes have been engineered by nature to accomplish the reactions necessary
for life. To adapt these protein catalysts to human tasks, directed evolution [1]
has emerged as a simple yet powerful tool that mirrors natural optimization with
high success. However, directed evolution of functional enzymes is reliant on the
identification of a suitable starting point with measurable starting activity. While
domain experts supplemented by serendipity have developed the intuition necessary
for identifying this parent protein for specific reactions, engineering enzymeswith new
functionality from scratch remains a fundamental challenge despite its importance.
For example, predicting new substrates for a given protein has potential applications
in developing drug discovery panels [2], understanding enzymatic promiscuity [3],
designing metabolic pathways [4], and combating antibiotic resistance [5].

In this chapter, we begin to tackle the task of modeling the interactions between an
enzyme and its substrate and attempt to predict whether a new enzyme-substrate pair
will have activity. Specifically, we train a deep generative model for enzyme-substrate
pairs to simultaneously predict possible mutations in a given enzyme, alterations to

136

functional groups in a given substrate, and an interaction probability between the pair
that assesses how likely they are to interact. To compare these heterogeneous data
types, we use a three-component model that is jointly combined with multi-headed
self-attention:

1. Protein representation: We represent enzymes by their primary sequence,
learning an embedding for each of the 25 amino acids (including noncanonical
amino acids) present in BRENDA.

2. Substrate representation: We represent small molecule substrates as a
connection graph formed by a tree decomposition that avoids cycles, as
implemented by Jin et al [6] and inspired by earlier work in chemistry for
quantifying molecular similarity [7].

3. Interaction flag: We incorporate a binary variable describing whether the
enzyme and substrate are known to interact. Negative examples are generated
by randomly shuffling enzyme-substrate pairs in the input.

We train this model using self-supervised input recovery tasks, as analogous to various
natural language representation tasks [8, 9] and protein sequence representation tasks
[10–13] coupled to a multi-task loss function. We demonstrate that this learned
representation has some success in predicting whether an enzyme has activity for a
given substrate on two tasks. However, we discover that the trained model has not
learned a meaningful representation of protein sequence position when examining
the model more closely. While potential engineering improvements to training this
model exist [14, 15], we suspect that there is an insufficient amount of high quality
data to model the dynamic interactions between diverse enzyme families and their
substrates from sequence representations alone.

5.3 Background and Related Work
Enzymes are biologically encoded and synthesized as a linear chain of amino acids,
of which there are 20 canonical members. This linear chain then folds into a dynamic
3D structure to accomplish its biological purpose. There are two engineering
paradigms for adapting these sequences for human purposes: rational design and
directed evolution.

Rational design has recently emerged with tremendous success for proteins [16]
by computing the structure of designed proteins. However, small errors in energy

137

calculation can have critical effects in protein design [17]. This is particularly true for
enzymes, where small errors in atomic distances have large effects in corresponding
bond energies [18].

Alternatively, directed evolution has also enjoyed quite some success [19], but requires
a starting point with measurable activity. While trained protein engineers have been
able to identify potential starting points through deep mechanistic understanding and
high-throughput screening, there is a large enzymatic database with highly relevant
information that has yet to be fully leveraged called BRENDA [20]. We develop a
sequence-based model to learn a representation of enzymatic systems based on the
protein-substrate data that can be extracted from BRENDA.

An analog in deep learning research to our sequence modeling problem can be found
in natural language processing (NLP). Recently, the attention mechanism, which
models dependencies regardless of sequential distance, has become a dominating
force in language modeling [8, 9, 21]. We adapt the Transformer encoder to our
protein-substrate representation, forming a joint attention model to learn from both
components of the enzymatic system. By learning which positions in the sequence to
attend to, we hypothesized that the attention mechanism would accurately recapitulate
critical 3D dependencies in the physical enzymatic system.

Enzyme-substrate interactions have been modeled previously in efforts to predict
their Enzyme Commission (EC) number, the dominant enzyme classification scheme
established in 1961 that contains 4 layers of specificity in a classification tree [22].
There are currently two main strategies for classifying enzymes by EC number. One
approach is to focus on the substrate, and use the molecular similarity of enzyme
substrates to classify the enzyme [23]. An alternate strategy is to focus on the protein
sequence, and to use deep learning techniques to predict the EC number [24–27]. We
develop a representation that directly represents both components of an enzymatic
system, and eschew the EC number classification system in hopes of uncovering
physically meaningful intermediate representations.

Other machine learning methods have been applied to various protein engineering
tasks, which is better reviewed elsewhere [28]. However, recently a number of exciting
deep learning approaches have been applied to understanding protein sequences.
Self-supervised pre-training have been particularly useful across a range of protein
classification and annotation tasks [10, 11, 27, 29]. Their success attests to the ability
of deep learning models to model the exponentially-growing amounts of unlabeled
biological data being generated.

138

In small molecule modeling, Deep learning has had similar success in drug target
identification [30], materials discovery [31], and synthesis applications [32], which
are better reviewed elsewhere [33]. While small molecules can be represented
in the sequential SMILES format [34], this notation was developed to convert
3-dimensional molecules to ASCII form and was not designed to capture molecular
similarity. To this end, nearly identical molecules can have markedly different strings,
as cyclical substructures within molecules do not lend themselves to a linear ASCII
representation. Inspired by recent work [6, 33, 35, 36], we instead translate molecules
using deterministic mappings from RDKit [37].

To our knowledge, this work is among the first to directly embed an enzyme-substrate
representation for deep learning. While studies exists in protein-drug binding that
are similar in spirit [36, 38], these approaches typically separate the protein and
target encodings and, more importantly, are developed for protein binding, a simpler
modeling task as only a single optimal energy state must be modeled.

5.4 Training Data Collection and Representation
We obtained enzyme reaction information from the BRENDA database [20].
BRENDA categorizes reactions by EC number (example: EC 1.1.1.1), where
each BRENDA record contains references to member proteins and reaction substrates
and products. Within each BRENDA record, each protein is matched to each sub-
strate by protein identifiers unique to that record. While some proteins are explicitly
matched to substrates by protein identifiers, we elect to match all proteins to all
substrates within each BRENDA record by their respective identifiers to generate
sequence-substrate pairs.

Our data processing pipeline converts BRENDA records into collections of sequence-
substrate pairs via the Uniprot protein sequence database and substrate-smiles
databases. To resolve protein sequences, we extract Uniprot accession keys when
possible from within the BRENDA protein identifier and pair this accession key to
the Uniprot90 cluster and sequence from the Uniprot database. For substrates, we
extract common names from substrate lines and then convert to SMILES strings via
a collection of available dictionaries. If the reaction line contains the {r} reversibility
tag, we also extract the labeled products as substrates; we do not assume all reactions
are reversible.

We processed theBRENDA2019.1 (January) release and extracted 671,438 individual
protein-substrate functional pairs with this pipeline. We selected and withheld 251

139

random UniRef90 clusters and 99 protein-substrate pairs from downstream validation
tasks as an out-of-sample test partition (200130_test) containing 6313 test records.
All remaining entries were included as a training set (200130_train) containing
665,125 training records. This training set was randomly subdivided into 80/10/10
in-sample train/test/validation partitions.

If the protein-substrate pair does not already exist as a functional pair, we specify
this as nonfunctional to augment the dataset of functional protein-substrate pairs,
assuming that there is a low probability that a random combination of protein-substrate
is unreactive. With 27322 unique protein sequences and 15059 unique molecules,
there is a total of over 400 million possible pairs. We select a 1:1 ratio of functional
protein-substrate pairs and randomly-generated nonfunctional protein-substrate pairs
to be generated during training.

The data representation cused is a concatenation of 1) the protein sequence as
amino acids, 2) molecular tree (detailed below), and 3) a binary functionality token
(<TRUE> or <FALSE>) for whether a protein-substrate pair exists in BRENDA.
The concatenated representation has 1281 tokens, with 1024 amino acid characters
for the protein, 45 molecular tree characters for the substrate, and 1 binary token
specifying whether the enzyme has activity on the substrate.

The molecular tree representation is adapted from a tree decomposition implemented
by Jin et al [35], as shown in 5.1. After the tree decomposition, the approach diverges
from that of Jin, who uses message passing networks to embed the molecular tree.
We instead directly encode the molecular adjacency graph as a 2D connection matrix
with 1D embeddings for each node. 569 unique nodes were identified from the
January 2019 BRENDA release. These 1D embeddings are then tiled for each node
in both vertical and horizontal directions, to form two 2D representations for each
node. These 2D representations are then stacked with the 2D connection matrix,
and the stacked channels are upsampled to the hidden dimension of the attention
sequence, while the 2D representation is convolved down to a 1D with a series of
(3x1), (3x1), and (5x1) convolutions. Originally, we attempted to use the embedded
SMILES string representation of a molecule. However, we were did not observe a
decrease in loss during training, and proceeded with this graphical representation.

5.5 Training Task and Model
Self-supervision and multitask loss: To be useful for enzymatic systems, a
predictive model must capture the interactions between protein mutations and

140

molecular substrate changes. To form our self-supervised training procedure, we
randomly remove 15% of the input enzyme and replace those tokens with a MASK
token. At the start of training, an equal amount of data for nonfunctional protein-
substrate pairs is generated by randomly pairing proteins and substrates present in
BRENDA. Any true functional pairs generated are passed over. These records are
assigned a probability of 0.001 in a form of label smoothing.

We use a four-part loss function that uses cross-entropy to fit the sequence recovery
task on the enzyme !?A>C , the molecular adjacency matrix !<0C , the molecular node
identity recovery task on the substrate !=>34B, and the prediction of substrate-enzyme
functionality ! 5 D=2. The final total loss is a weighted summation of the individual
cross entropy losses. With the exception of ! 5 D=2, each individual loss component
is roughly scaled to the starting training loss of the protein loss by scaling !<0C up
by 10-fold. Due to the importance of ! 5 D=2 in specifying interactions, this loss was
initially scaled to be approximately 2 times that of the protein training loss. The
scaling factor for !<0C and !=>34B is scaled every 10 epochs to contribute equally to
!?A>C , while ! 5 D=2 is scaled to contribute twice that of !?A>C . In other words, every
10 epochs, scaling factors f are set such that:

f<0C × !<0C = !?A>C

f=>34B × !=>34B = !?A>C
f 5 D=2 × ! 5 D=2 = 2!?A>C

Architecture: Our model architecture is described in Fig.5.1. To summarize, each
component of the enzymatic system (the enzyme, substrate, and flag) is embedded in
some manner with the identical number of hidden dimensions. The exact embeddings
are described previously in the Data Collection and Representation section. These are
then passed through # = 6 layers of self-attention as implemented in the Transformer
encoder [8], and a final linear layer to make the final token predictions for each
respective portion.

Model Training: We train our model on 1 V100 GPU, with batch size of 14. We
use the Adam optimizer, with linear warm-up over 1 × 101 steps to a learning rate of
4 × 10−5. The learning rate then proceeds through a cyclical cosine annealing step
with cycles of 4.2 × 105 steps and a final value of 4 × 10−7.

141

M F W L E

if
 m
ol
ec
ul
e
re
ac
ts

wi
th
 p
ro
te
in

1

el
se

0

0
1

0

1
0

1

0
1

0

N
od

e
Id

en
tit

ie
s

N
od

e
C

on
ne

ct
io

n
M

at
rix

Ti
le

C
on

vs

M
ol

ec
ul

ar

D
ec

om
po

si
tio

n

0
1

0

1
0

1

0
1

0

+
co
nc
at

+
co
nc
at

Jo
in
t

At
te
nt
io
n

M
od

el

Tr
an

sf
or
m
er

(×
N
)

M F W L E

0
1

0

1
0

1

0
1

0

Re
cr

ea
te

In

pu
ts

Pr
ot

ei
n

Su
bs

tra
te

O
n/

O
ff

Fu
nc

tio
na

lit
y

N

C
l

H
N

C
l

H

Pr
ot

ei
n

Em
be

dd
in

g

0
1

0

1
0

1

0
1

0

Fi
gu

re
5.
1:

Th
e
ar
ch
ite

ct
ur
e
di
ag
ra
m

fo
ro

ur
en
zy
m
e-
su
bs
tra

te
m
od

el
.W

e
us
e
th
re
e
he
te
ro
ge
ne
ou

s
da
ta
so
ur
ce
s:

th
e
pr
ot
ei
n
pr
im

ar
y

se
qu
en
ce
,t
he

su
bs
tra

te
,a
nd

th
e
fu
nc
tio

na
lit
y
re
la
tio

ns
hi
p
fla

g.
W
e
di
re
ct
ly

em
be
d
th
e
21

un
iq
ue

am
in
o
ac
id
s
in

th
e
pr
ot
ei
n
pr
im

ar
y

se
qu
en
ce
,a
sw

el
la
st
he

bi
na
ry

fu
nc
tio

n
fla

g.
Fo

re
ac
h
su
bs
tra

te
,w

e
us
e
th
e
tre

e-
ba
se
d
m
ol
ec
ul
ar

de
co
m
po

si
tio

n
fr
om

Ji
n
et
al

[3
5]

to
fo
rm

co
nn
ec
tio

n
gr
ap
hs

of
id
en
tifi

ed
m
ol
ec
ul
ar

su
bu
ni
ts
,a
nd

em
be
d
ea
ch

of
th
es
e
56
8
no
de
s.
B
ec
au
se

su
bs
tra

te
sh

av
e
re
la
tiv

el
y
fe
w
no
de
s,

w
e
re
pr
es
en
tt
he
ir
gr
ap
hi
ca
ls
tru

ct
ur
e
w
ith

th
e
bi
na
ry

co
nn

ec
tio

n
m
at
rix

,w
ith

ea
ch

no
de

co
nt
ai
ni
ng

an
em

be
dd

in
g
w
ith

3
ℎ
83
3
4
=
eq
ua
lt
o

th
e
m
ax
im

um
si
ze

of
th
e
co
nn
ec
tio

n.
W
e
th
en

til
e
ea
ch

1D
em

be
dd
in
g
in

th
e
ho
riz

on
ta
la
nd

ve
rti
ca
ld

ire
ct
io
ns

to
fr
om

2D
m
at
ric

es
of

th
e
sa
m
e
sh
ap
e
as

th
e
co
nn

ec
tio

n
m
at
rix

.
Ea

ch
po

si
tio

n
in

th
es
e
m
at
ric

es
is
th
en

co
nv
ol
ve
d
to

a
lin

ea
rr
ep
re
se
nt
at
io
n
of

le
ng

th
45

to
re
tu
rn

an
em

be
dd
in
g
of

th
e
su
bs
tra

te
.A

fte
rc

on
ca
te
na
tin

g,
w
e
us
e
th
e
si
nu
so
id
al
po
si
tio

na
le
m
be
dd
in
g[
8]
,f
ol
lo
w
ed

by
#
=

6
la
ye
rs
of

se
lf-
at
te
nt
io
n.

W
e
ha
ve

on
e
fin

al
lin

ea
rl
ay
er

to
pr
ed
ic
tt
he

ou
tp
ut
.

142

5.6 Results
Predicting functionality of enzyme-substrate pairs
The ability to predict whether a substrate reacts with a protein is critical for both
genomic annotation and directed evolution. In genomic annotation, a large amount of
sequence informationmust be parsed in order to identify which proteins andmetabolic
pathways may exist. For directed evolution, a starting point with measurable activity
for the target reaction must be identified. This is typically accomplished by screening
large, in-house compilation plates of sequences evolved for various tasks, and can be
greatly expedited with a predictive model.

BRENDA

An initial test for the unsupervised learning task is to infer the identity of the ablated
functionality flag. To test the performance of our model in generating protein
sequences and functional tags, we train the model on the January 2019 release of
BRENDA, and ask themodel to predict functional protein sequences and functionality
tags new to the July 2019 release. This time-based train/test split was inspired by
BridgIt [23], which uses a substrate molecular representation to model similarity
between proteins, and validates through various releases of an alternate database we
were unable to access.

Therefore, as a test set, 3730 new BRENDA records present in the 2019.2 release
that were not present in the 2019.1 release were used. In examining the new
enzyme-substrate pairs, we masked the identity of the functionality flag, and ask the
unsupervised model to predict <TRUE> or <FALSE>. Of these 3730 new records,
2900 (78%) were correctly identified as functional protein-substrate pairs.

As BRENDAonly labels <TRUE> enzyme-substrate pairs, we also randomly generate
3730 <FALSE> enzyme-substrate pairs by matching enzyme sequences to substrates
that are not within the same EC classification. The pool of possible pairs is restricted
to enzymes and substrates that are present in the new records added to the 2019.2
release. The resulting ROC curve is shown below in Figure 5.2 with an AUC of 0.789.
For comparison, we also show the results from a model trained without considering
the loss from the functionality flag.

Human cytochrome P450s

While BRENDA is a curated database for enzyme annotation, we also sought to
validate our predictions on an external task. For this, we chose CypReact, which

143

Figure 5.2: ROC curve for reactant/non-reactant classification of functional protein-
substrate pairs new to BRENDA’s July 2019 release compared to BRENDA January
2019. Of the 3730 explicit true protein-substrate new pairs, 2900 (78%) are correctly
identified as functional.

contains data on over 1700 substrates against the 9 most common human cytochrome
P450 (CYP450) isoforms [39]. Understanding CYP450 activity against diverse
substrates is particularly important as P450s are a major component of Phase I drug
metabolism [40, 41], and their bacterial homologs’ enzymatic promiscuity has been
heavily engineered for biocatalysis as well [42, 43]. To this end, the authors of
CypReact train independent models with 1632 substrates for each of 9 CYP450
variants, for a total of 14688 training data. Critically, this is one of the few enzymatic
databases that contains explicit non-reactant labels. For comparison, the BRENDA
2019.1 database contained 32 explicit protein-substrate pairs to the same 9 variants,
from which 612 implicit records were generated by matching the protein to other
substrates within the same EC classification.

AlthoughCypReact was trainedwith significantlymore data in a supervised prediction
model, we make the comparison with their test set in Table 5.1. We also compare
our results with CypReact’s implementation of a competing program, SmartCYP
[44], and a commercially-developed drug metabolism prediction software ADMET
Predictor [45]. EnzPred is competitive with some of the existing software despite
being trained with data obtained with an entirely different focus, although CypReact
remains dominant.

144

1A2 2A6 2B6 2C8 2C9 2C19 2D6 2E1 3A4
Model AUC
CypReact 86% 84% 86% 84% 83% 83% 87% 87% 92%
SmartCyp 51% 49% 60%
ADMET 79% 77% 74% 68% 74% 75% 81% 75% 75%
EnzPred 74% 66% 73% 72% 65% 66% 75% 56% 64%

Test Data Distribution
Reactants 24 6 4 12 28 20 21 6 32
Non 100 100 100 100 100 100 100 100 100

Table 5.1: Results on the functionality classification for human cytochrome P450
(CYP450) isoforms with data splits obtained from CypReact [39]. CypReact trained
individual supervised models for each CYP450 isoform with 1632 substrates for a
total of 14688 training data, and various features derived from molecular fingerprints
and physical properties. Our EnzPred model was trained on data parsed from
BRENDA v2019.1, which contained 32 explicit CYP450-substrate pairs, and 612
pairs inferred by matching substrated within each EC class to each CYP variant.

Protein Generation
We attempted to generate protein sequences given a desired small molecule on which
a desired enzymatic reaction is to occur. These molecules were converted to the
molecular graph representation, and beam search [46] was used to generate protein
sequences from a starting methionine, with a beam size of five. Sample substrate
molecular structures, and the first 20 generated amino acids are show in Figure 5.3.
Unfortunately, generated protein sequences are prone to repetition, suggesting that
the models are failing to learn meaningful position variation. While the number of
unique enzyme-substrate paired entries is high (over 600,000), we suspect that the
number of individual unique enzymes (27,322) is too low for the Transformer model.

145

S N
H

NH2

O
OHO

carbamoyl-L-methionine

C[C@@H](O)[C@H](N)C(O)=O

MKKKKKKKDKKKKKKKKKKK

OH

O

O

H
N O

O
benzyl (S)-((2-hydroxy-4-phenylbutanoyl)oxy)carbamate

MAQQQSLLVLLLLLLLLLLL
O[C@H(C(=O)ONC(OCC1=CC=CC=C1)=O)CCC1=CC=CC=C1

NH2

H
N

OH
O

N[C@H](Cc1c[nH]c2ccccc12)C(O)=O
MNNNKNNNNNNNNNNNNNNN

OH

NH2

HO

O

D-threonine
D-tryptophan

CSCC[C@H](NC(N)=O)C(O)=O

MLLLLLLLLLLLLLLSLLLL

Figure 5.3: Sample generated amino acid sequences given SMILES strings. Se-
quences were generated by beam search from left to right, with a beam size of five,
given a starting Methionine (M). The structures of the molecules as well as the
common name are also shown. Generated protein sequences are prone to repetition,
suggesting that the model has not learned positional information.

5.7 Conclusions and Future Work
In this chapter, we have developed and trained a model to jointly capture the
interactions between an enzyme’s amino acid sequence and its small molecule
substrate. While we were able to show some capabilities in predicting whether
enzymes and substrates interact, we ultimately found that this model did not capture
sufficient positional information for the enzyme sequence. We suspect this is due
to a low amount of available training enzymes available (27,322 sequences). In
the future, combining approaches where representations are first trained on large
databases of protein sequences and small molecules, such as UniRef [47] and ZINC
[48] respectively, may address this issue. Additionally, incorporating more detailed
structural information such as the estimated active site residues will likely improve
this approach. In any case, generating functional protein sequences is a monumental
task that we must continue to explore to adapt proteins to human applications.

146

5.8 Bibliography
References

1. Romero, P. A., Krause, A. & Arnold, F. H. Navigating the protein fitness
landscape with Gaussian processes. Proceedings of the National Academy of
Sciences USA 110, e193–e201. doi:10.1073/pnas.1215251110 (2013).

2. Principles of early drug discovery. British Journal of Pharmacology 162,
1239–1249. doi:10.1111/j.1476-5381.2010.01127.x (Mar. 2011).

3. Khersonsky, O. & Tawfik, D. S. Enzyme promiscuity: a mechanistic and
evolutionary perspective. Annual Revies of Biochemistry 79, 471–505. doi:10.
1146/annurev-biochem-030409-143718 (2010).

4. Wang, L., Dash, S., Ng, C. Y. &Maranas, C. D. A review of computational tools
for design and reconstruction of metabolic pathways. Synthetic and Systems
Biotechnology 2, 243–252. doi:https://doi.org/10.1016/j.synbio.
2017.11.002 (2017).

5. Moloney, M. G. Natural Products as a Source for Novel Antibiotics. Trends in
Pharmacological Sciences 37, 689–701. doi:https://doi.org/10.1016/j.
tips.2016.05.001 (2016).

6. Jin, W., Barzilay, R. & Jaakkola, T. Junction tree variational autoencoder for
molecular graph generation. arXiv (2018).

7. Rarey, M. & Dixon, J. S. Feature trees: a new molecular similarity measure
based on tree matching. Journal of Computer-Aided Molecular Design 12,
471–490 (1998).

8. Vaswani, A. et al. Attention is all you need in Advances in Neural Information
Processing Systems (2017), 5998–6008.

9. Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv (2018).

10. Rives, A. et al. Biological structure and function emerge from scaling unsuper-
vised learning to 250 million protein sequences. bioRxiv, 622803 (2019).

11. Rao, R. et al. Evaluating Protein Transfer Learning with TAPE. bioRxiv.
doi:10.1101/676825 (2019).

12. Luo, Y. et al. Evolutionary context-integrated deep sequence modeling for
protein engineering. bioRxiv (2020).

13. Riesselman, A. J. et al. Accelerating Protein Design Using Autoregressive
Generative Models. bioRxiv, 757252 (2019).

14. You, Y. et al. Large batch optimization for deep learning: Training bert in 76
minutes in International Conference on Learning Representations (2019).

15. Nguyen, T. Q. & Salazar, J. Transformers without tears: Improving the normal-
ization of self-attention. arXiv (2019).

http://dx.doi.org/10.1073/pnas.1215251110
http://dx.doi.org/10.1111/j.1476-5381.2010.01127.x
http://dx.doi.org/10.1146/annurev-biochem-030409-143718
http://dx.doi.org/10.1146/annurev-biochem-030409-143718
http://dx.doi.org/https://doi.org/10.1016/j.synbio.2017.11.002
http://dx.doi.org/https://doi.org/10.1016/j.synbio.2017.11.002
http://dx.doi.org/https://doi.org/10.1016/j.tips.2016.05.001
http://dx.doi.org/https://doi.org/10.1016/j.tips.2016.05.001
http://dx.doi.org/10.1101/676825

147

16. Huang, P.-S., Boyken, S. E. & Baker, D. The coming of age of de novo protein
design. Nature 537, 320–327. doi:10.1038/nature1994 (2016).

17. Dou, J. et al. Sampling and energy evaluation challenges in ligand binding
protein design. Protein Science 26, 2426–2437. doi:10.1002/pro.3317
(2017).

18. Garcia-Borrás, M., Houk, K. N. & Jiménez-Osés, G. Computational design
of protein function. Computational Tools for Chemical Biology 3, 87. doi:10.
1039/9781788010139-00087 (2017).

19. Romero, P. A. & Arnold, F. H. Exploring protein fitness landscapes by directed
evolution. Nature Reviews Molecular Cell Biology 10, 866–876. doi:10.1038/
nrm2805 (2009).

20. Jeske, L., Placzek, S., Schomburg, I., Chang, A. & Schomburg, D. BRENDA
in 2019: a European ELIXIR core data resource. Nucleic Acids Research 47,
D542–d549 (2018).

21. Liu, Y. et al. Roberta: A robustly optimized bert pretraining approach. arXiv
(2019).

22. Cornish-Bowden, A. Current IUBMB recommendations on enzyme nomencla-
ture and kinetics. Perspectives in Science 1, 74–87 (2014).

23. Hadadi, N., MohammadiPeyhani, H., Miskovic, L., Seijo, M. & Hatzimanikatis,
V. Enzyme annotation for orphan and novel reactions using knowledge of
substrate reactive sites. Proceedings of the National Academy of Sciences USA
116, 7298–7307 (2019).

24. Li, Y. et al. DEEPre: sequence-based enzyme EC number prediction by deep
learning. Bioinformatics 34, 760–769 (2017).

25. Dalkiran, A. et al. ECPred: a tool for the prediction of the enzymatic functions
of protein sequences based on the EC nomenclature. BMC Bioinformatics 19,
334 (2018).

26. Ryu, J. Y., Kim, H. U. & Lee, S. Y. Deep learning enables high-quality and
high-throughput prediction of enzyme commission numbers. Proceedings of
the National Academy of Sciences USA, 201821905 (2019).

27. Strodthoff, N., Wagner, P., Wenzel, M. & Samek, W. UDSMProt: Universal
Deep Sequence Models for Protein Classification. bioRxiv, 704874 (2019).

28. Yang,K.K.,Wu, Z.&Arnold, F. H.Machine-learning-guided directed evolution
for protein engineering. Nature Methods 16, 687–694. doi:10.1038/s41592-
019-0496-6 (2019).

29. Bileschi, M. L. et al. Using Deep Learning to Annotate the Protein Universe.
bioRxiv. doi:10.1101/626507 (2019).

30. Chen, H., Engkvist, O., Wang, Y., Olivecrona, M. & Blaschke, T. The rise of
deep learning in drug discovery. Drug Discovery Today 23, 1241–1250 (2018).

http://dx.doi.org/10.1038/nature1994
http://dx.doi.org/10.1002/pro.3317
http://dx.doi.org/10.1039/9781788010139-00087
http://dx.doi.org/10.1039/9781788010139-00087
http://dx.doi.org/10.1038/nrm2805
http://dx.doi.org/10.1038/nrm2805
http://dx.doi.org/10.1038/s41592-019-0496-6
http://dx.doi.org/10.1038/s41592-019-0496-6
http://dx.doi.org/10.1101/626507

148

31. Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine
learning for molecular and materials science. Nature 559, 547 (2018).

32. Kitchin, J. R. Machine learning in catalysis. Nature Catalysis 1, 230 (2018).
33. Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molecular design using

machine learning: Generative models for matter engineering. Science 361,
360–365 (2018).

34. Weininger, D. SMILES, a chemical language and information system. 1. Intro-
duction to methodology and encoding rules. Journal of Chemical Information
and Computer Sciences 28, 31–36 (1988).

35. Jin, W., Yang, K., Barzilay, R. & Jaakkola, T. Learning multimodal graph-to-
graph translation for molecular optimization. arXiv (2018).

36. Nguyen, T., Le, H. & Venkatesh, S. GraphDTA: prediction of drug–target
binding affinity using graph convolutional networks. bioRxiv, 684662. doi:10.
1101/684662 (2019).

37. Landrum, G. RDKit: Open-source cheminformatics.

38. Öztürk, H., Özgür, A. & Ozkirimli, E. DeepDTA: deep drug–target binding
affinity prediction. Bioinformatics 34, i821–i829 (2018).

39. Tian, S., Djoumbou-Feunang, Y., Greiner, R. & Wishart, D. S. CypReact: a
software tool for in silico reactant prediction for human cytochrome P450
enzymes. Journal of Chemical Information and Modeling 58, 1282–1291
(2018).

40. Sawayama, A. M. et al. A panel of cytochrome P450 BM3 variants to produce
drugmetabolites and diversify lead compounds.Chemistry–AEuropean Journal
15, 11723–11729 (2009).

41. Zanger, U. M. & Schwab, M. Cytochrome P450 enzymes in drug metabolism:
regulation of gene expression, enzyme activities, and impact of genetic variation.
Pharmacology and Therapeutics 138, 103–141 (2013).

42. Brandenberg, O. F., Fasan, R. & Arnold, F. H. Exploiting and engineering
hemoproteins for abiological carbene and nitrene transfer reactions. Current
Opinion in Biotechnology 47, 102–111 (2017).

43. Chen, K. & Arnold, F. H. Engineering new catalytic activities in enzymes.
Nature Catalysis, 1–11 (2020).

44. Rydberg, P., Gloriam, D. E. & Olsen, L. The SMARTCyp cytochrome P450
metabolism prediction server. Bioinformatics 26, 2988–2989 (2010).

45. Simulations Plus, I. ADMET Predictor Apr. 3, 2018.

46. Graves, A. Sequence transduction with recurrent neural networks. arXiv (2012).

47. Suzek, B. E. et al. UniRef clusters: a comprehensive and scalable alternative for
improving sequence similarity searches. Bioinformatics 31, 926–932 (2015).

http://dx.doi.org/10.1101/684662
http://dx.doi.org/10.1101/684662

149

48. Sterling, T. & Irwin, J. J. ZINC 15–ligand discovery for everyone. Journal of
Chemical Information and Modeling 55, 2324–2337 (2015).

	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	List of Tables
	Engineering Protein Sequences with Deep Learning
	Abstract
	Introduction
	Learned Representations in Regression Models
	Generative Models: Introduction
	Optimization with Generative Models
	Conclusions and Future Directions
	Bibliography

	Machine Learning-Guided Combinatorial Mutagenesis for Evolving Stereodivergence
	Abstract
	Introduction
	Results
	Discussion
	Materials and Methods
	Supplemental Information
	Bibliography

	Comparing Evolutionary Strategies on an Empirical and Epistatic Fitness Landscape
	Abstract
	Introduction
	Results
	Discussion
	Materials and Methods
	Supplemental Information
	Bibliography

	Signal Peptides Generated by Attention-Based Neural Networks
	Abstact
	Introduction
	Results
	Discussion
	Materials and Methods
	Supplemental Information
	Bibliography

	Language Modeling for Enzyme-Substrate Interactions
	Abstract
	Introduction
	Background and Related Work
	Training Data Collection and Representation
	Training Task and Model
	Results
	Conclusions and Future Work
	Bibliography

