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ABSTRACT

Active matter is a class of materials that has constituents capable of self-propulsion
through the conversion of energy into mechanical motion. The origin or specific
details of their method of locomotion is arich area of research, but is not important for
understanding some aspects of their dynamics. Our interest is in the single-particle
dynamics and the large-scale collective motion observed in these systems. Thus, we
use the minimal active Brownian particle (ABP) model to model self-propulsion.
The ABP model consists of particles of radius a that swim with an intrinsic speed Uy
in some direction q and reorients on a timescale 7z. Active motion is persistent in
that a particle will continue to swim in a direction until it reorients itself, giving rise
to a swim or persistence length £ = Uytg. This persistence leads to directed motion
at short times but has been shown to become diffusive at long times with a diffusivity
that originates from the random swim steps. I show that while these particles do
become diffusive at steady state, they display wavelike dynamics while relaxing from
an initial point source, which is shown by fluctuations in the number density. The
strength of these fluctuations is determined by the ratio of the swim diffusivity to
thermal diffusivity. Our resulting theory predicts these dynamics in other instances
where spatial gradients in number density are present. This motivated me to look
into fluctuations in interacting suspensions of ABPs by studying the “isothermal”
compressibility. Our theoretical perspective and simulation results show that the
compressibility behaves just like a thermodynamic response function, even though
these suspensions are driven far from equilibrium. As such, the compressibility
is capable of predicting the critical point for the motility induced phase separation
(MIPS). We then developed a machine learning (ML) model to predict particle phase
identity near the MIPS critical point in the coexistence region—where fluctuations
are large—to recreate the binodal. Our successful recreation of the binodal and
understanding of compressibility resulted in our attempt to define a Widom line
(an extension of the coexistence line) for ABPs. The Widom line is the collection
of points where density fluctuations are maximized and marks where supercritical
behavior goes from being more gas-like to more liquid-like. I conclude by discussing
current works in progress to further our understanding of the MIPS transition by
using ML to identify particles in the interface of the coexisting phases. From the
work on compressibility, we believe the interface plays a crucial role in describing

active phase behavior.
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Chapter 1

INTRODUCTION

This introductory chapter provides an overview of the basic concepts related to
active systems and their vast array of applications. We outline some of the open
questions which motivated this work and provide the necessary background to begin
to answer these questions. Subsequent chapters present our theoretical develop-
ments, computational evidence, and machine learning frameworks which motivate
our continuum and molecular perspectives on fluctuations and phase behavior in

colloidal-scale active matter systems.



1.1 Active Matter

The foundation of motion—whether in an artificial or biological context—is rooted
in mechanics. The distinction between motion in biological and artificial systems is
not predicated on the context of life but rather results from the method of locomotion
used by constituents of each system. Active matter is a class of materials in which the
constituents undergo self-propulsion by converting energy into mechanical motion
through some internal physicochemical processes. This generates internal stresses
driving the system far from equilibrium (in the absence of applied external forces) [1]
and results in a myriad of interesting phenomena such as spontaneous self-assembly
[2-6], phase separation [7-9], and other emergent collective behavior [10-14].
Active matter spans a large range of length scales from bacteria and colloidal Janus
particles to flocks of birds and schools of fish. We will focus on those at the colloidal
scale. (Some examples of which are depicted in Fig. 1.1.) These driven systems
have become increasingly enticing to biologists, chemists, material scientists, and
engineers alike for their potential to perform autonomous work [15], assist in drug

delivery [16, 17], and clean environmental hazards [18-25].

1.2 Active Dynamics

The distinction between colloidal-scale active matter and its passive counterpart
results from the differences in the forces that drive their motion. While passive
colloidal particles are driven strictly by thermal motion (in the absence of external
forces), active colloids possess an additional driving force from their internally
generated activity. This can be modeled simply using the minimal active Brownian
particle (ABP) model, where a particle of radius @ swims in direction q with an
intrinsic speed Uy and reorients itself on a timescale 7g. An example of this model

is depicted in Fig. 1.2.

This active motion is persistent since the particle will swim consistently in one
direction until it reorients itself, giving rise to a persistence or run length £ = Uytg.
Active reorientation can be modeled as a stochastic process governed by some rotary

diffusivity Dg = Tlgl

, similar to rotational Brownian motion though it need not be
thermal in origin. The propulsion direction creates an asymmetry in the particle,
even if the body itself is symmetric. At short times the active swimming motion
is directed, but if we look at sufficiently long timescales ¢ > 7g, each run length
looks like a step in a random walk process and the motion becomes diffusive with
diffusivity DS"'" = UgTR /[d(d—1)] where d is the number of rotational dimensions

[27-29]. We can then define an energy scale—in analogy to thermal energy—for
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the activity k Ty = { Dswim using a Stokes-Einstein-Sutherland relationship [27, 30].
This gives rise to dimensionless parameters not seen in passive systems through a
ratio of energy scales kT /k,T or through aratio of length scales Peg = a/{, which

measure how active or persistent the system is, respectively.

From this model, we can provide a microscopic framework to describe particle
dynamics by using the overdamped Langevin equations for the forces and torques in
the system. At the colloidal scale, self-propelled particles are in the Stokes regime,
meaning that inertial forces are dominated by viscous forces in the equations of
motion. This results in force-free (3 F = 0) and torque-free (3 L. = 0) motion. The
forces acting on an ABP are balanced by the drag force 0 = F¥4¢ + Fs"" L FB where
F*"im = [Uyq is the swim force, F? is the Brownian force, and ¢ is the translational
drag coefficient [29]. The torques acting on an ABP are 0 = L€ + LR where the
drag torque is balanced by the stochastic rotary torque from activity. This stochastic
torque can be the thermally driven Brownian torque or can come from an alternative
internal mechanism (such as the unwinding and bundling of flagella seen in some

biological systems).

A probabilistic description of the active dynamics is provided by the Smoluchowski

equation in position and orientation space [31-34]:

oP
E’l'v'jT"'VR'jR:O’ (11)

where P(X, q, ) is the probability distribution for a particle being located at position
X with orientation q at time ¢, jr is the translational flux, jz is the rotational flux,
and Vg = q X V, is the appropriate rotational gradient operator. For the simple
case of ABPs with no external forces or torques, we use constitutive laws for the
translational flux j7 = UpqP — D7VP and rotational flux jgr = —TI;1VRP, with

thermal diffusivity D7 giving an exact descroption for ideal ABPs.

Even in the simplest cases, Eq. (1.1) is not analytically tractable and must be
solved either numerically or through approximations. If one averages the probability
density over the orientations at steady-state, we see that the resulting equation for
the number density takes on the form of an advection-diffusion equation. This
advection-diffusion equation shows that active motion does become diffusive at
long times [34, 35].



(b)

Figure 1.1: (a) A schematic of motile bacteria Bacillus subtilis swimming around a
rotating particle [26]. (b) Stable bacterial concentration around the rotating particle
(left) and the concentration one second after cessation of rotation (right) (adapted
from Sokolov et al. [26]). (c¢) A suspension of light-activated, synthetic colloidal
hematite particles (middle inset) forming clusters while active (left) and melting
when activity is turned off (right) (adapted from Palacci et al. [8]).

TR

Figure 1.2: An active Brownian particle of size a that swims with speed Uy in
direction q and reorients itself on a timescale 7.



1.3 Motility-Induced Phase Separation

In addition to altering dynamic behavior, the persistent nature of active motion gives
rise to additional stresses. An ABP confined to a given volume will push against
the containing wall until it reorients and swims away from the boundary. While it is
oriented towards the container boundary it is imparting its swim force on the wall
generating a novel pressure, the swim pressure [27-29, 36]. The swim pressure
[I¥Vim = nfUZtg is the trace of the swim stress o™ = —n(xF™™) (the first

moment of the force), where X is the absolute position of the particle [27, 36].

If activity is sufficiently large and the suspension is dense enough, then active
particles will spontaneously separate into a dense and dilute phase, even in the
absence of attractive forces [7, 8, 10, 14, 30]. This motility-induced phase separation
(MIPS) results solely from the activity, but it is strikingly similar to vapor-liquid
coexistence seen in traditional equilibrium fluids. These similarities have led to
a large push from the active matter community to characterize this active phase
behavior by building phase diagrams [30, 37-42] and constructing nonequilibrium
thermodynamic frameworks for active matter [30, 42-46]. An example of the MIPS
phase diagram for two-dimensional ABPs on the Peg — ¢ plane is presented in the
bottom of Fig. 1.3, where Pegr = a/( is the ratio of length scales mentioned in
section 1.2 and ¢ = nma? is the packing fraction in two dimensions. The top portion
of the figure shows representative snapshots of Brownian dynamic (BD) simulations
at labeled parts of the phase diagram: (a) dense, (b) dilute, (c) near critical, and (d)

deep within the coexistence region.

While special attention has focused on thermodynamic analogues to quantities such
as entropy [30, 47, 48] and chemical potential [30, 43, 45], there is still debate as to
whether the current definitions are correct. For example, a chemical potential can be
defined for active systems and accurately describes the homogeneous supercritical
region, but it implies a Maxwell construction that overestimates the coexistence
pressure in the two-phase region [30], requiring alternative criterion for determining
coexistence [49]. Few studies extend beyond the coexistence region and focus on
the supercritical behavior of active systems to better characterize these systems
through critical phenomena and scaling exponents [50, 51] or through understanding

response functions [52].
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Figure 1.3: The active matter phase diagram (Bottom) for motility-induced phase
separation on the Peg — ¢ plane. The spinodal (dashed red) and binodal (dashed
blue) from Takatori and Brady [30] are shown along with the binodal computed
from slab simulations (blue solid). The labeled points correspond to simulation
snapshots (Top) at different points of the phase diagram.



1.4 Machine Learning in the Physical Sciences

Machine learning is widely used in computer vision, recommendation systems, and
autonomous applications [53-57]. Recently, machine learning has grown in popu-
larity in the physical sciences as well [58—66] thanks to its ability to find complex
nonlinear correlations between system variables and learn patterns. Developments
in deep learning methodologies like convolutional neural networks (CNNs) and
graphical neural networks (GNNs) have made it possible to draw information from
spatial structure in data. This makes machine learning an enticing tool for studies in
phase behavior [58, 62, 63, 67, 68]. The motility-induced phase transition in active
matter is difficult to predict using traditional means due to the fact that these systems
are far-from-equilibrium and traditional thermodynamic frameworks do not apply.
Additionally, it can be difficult to obtain analytic solutions for the dynamics in these
systems due to the active motion. Machine learning provides a way to overcome
these obstacles and gain insights into collective behavior through understanding

single particle features and local spatial structure.

1.5 Thesis Outline

In Chapter 2 of this thesis, I present our theoretical framework for predicting the
unique interplay between active and thermal motion in the relaxation behavior
of active colloidal suspensions. Using a simple theoretical model, we study the
classical problem of diffusion from a point source to better understand how directed
active motion affects short-time dynamics in active Brownian systems. We show that
activity results in wavelike dynamics at short times (see Fig. 2.3). Our theoretical
framework captures the ballistic motion at short times and the transition to diffusive
motion on timescales greater than the reorientation time. We corroborate our theory
with Brownian dynamic simulations and further investigate how this transition can
be delayed through the application of an external orienting field. We have shown
that the orientation autocorrelation is the dominant factor in producing wavelike
dynamics. The ballistic nature is dampened out as particle orientation begins to
decorrelate. As such, we find that the orientation can be recorrelated through
instantaneous density fluctuations—as is the case in the diffusion from a point

source and formation of noncritical nuclei in MIPS.

We expand on the notion of density fluctuations in Chapter 3 by shifting focus to the
compressibility of active systems. Using large-scale computer simulations our study
reveals that compressibility behaves like a “thermodynamic” response function in

active systems. Here, we show that compressibility computed via the mechanical
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definition or through the structure of the suspension is identical, as is the case for
equilibrium suspensions. We develop an active equivalent to the compressibility
equation via the collective diffusivity which gives our relationship between com-
pressibility and suspension structure. The equivalence in compressibility definitions
lends support to the notion of an analogue to chemical potential and subsequently,
free energy in active systems. It is known that a chemical potential derived via the
Gibbs-Duhem equation does not yield the correct coexistence pressure for MIPS,
but this does not preclude the existence of an alternative relationship between free

energy and compressibility.

The divergence of the compressibility near the critical point motivated us to examine
the coexistence region of MIPS near the critical point. In Chapter 4, I use machine
learning to predict which phase a particle belongs to in the coexistence region.
Taking structural and dynamic particle quantities gives information to determine
the phase identity and ultimately allow for the recreation of the binodal of the MIPS
transition. Our method uses graph-based learning to incorporate local structure
into our prediction allowing for more confident predictions in the region near the
critical point where density fluctuations are large. The machine-learned binodal
is compared to the binodal computed from slab simulations and illustrates that the

local state of a particle can be determined in this fashion.

In Chapter 5, I present the Widom line in active systems, which marks the extension
of the coexistence curve into the supercritical region. In equilibrium fluids, the
Widom line is defined as the collection of points of maximum isothermal com-
pressibility. I use computer simulations and our results from Chapter 3 to compute
the Widom line from our definition for “isothermal" compressibility, defined from
pressure and the fluid structure. The Widom line in equilibrium Lennard-Jones
fluids can additionally be defined as the collection of points of equal phase fraction.
From this perspective, the supercritical fluid is treated as a heterogeneous mixture
of liquid-like and gas-like microphases, and the point of equal phase fraction corre-
sponds to a maximum in the density fluctuations. We compare this to the behavior in
active suspensions using a machine learning model, similar to that used in Chapter
4. We use a nonequilibrium free energy argument to motivate what the balance of
phases should be for active systems and present the Widom line predicted from our

machine learning algorithm.

Finally, in Chapter 6 I conclude with my work studying the contribution of the

interface to MIPS. I extend our machine learning framework from Chapter 4 to
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predict which particles are a part of the phase interface for suspensions below the
MIPS critical point—in the coexistence region. From Chapter 3, we have evidence to
suspect that the interface is important for developing an accurate binodal. This idea
is further developed through a flux argument showing the necessary contribution
of the swim pressure. I present some initial predictions which show our progress
in capturing interfacial particles. I conclude by discussing the remaining steps
necessary to validate this work.
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Chapter 2

WAVES IN ACTIVE MATTER: THE TRANSITION FROM
BALLISTIC TO DIFFUSIVE BEHAVIOR

We highlight the unique wavelike character observed in the relaxation dynamics of
active systems via a Smoluchowski based theoretical framework and Brownian dy-
namic simulations. Persistent swimming motion results in wavelike dynamics until
the advective swim displacements become sufficiently uncorrelated, at which point
the motion becomes a random walk process characterized by a swim diffusivity,
Dsvim = U(%TR/ (d(d — 1)), dependent on the speed of swimming U, reorientation
time 7g, and reorientation dimension d. This change in behavior is described by a
telegraph equation, which governs the transition from ballistic wave-like motion to
long-time diffusive motion. We study the relaxation of active Brownian particles
(ABPs) from an instantaneous source, and provide an explanation for the nonmono-
tonicity observed in the intermediate scattering function (ISF). Using our simple
kinetic model we provide the density distribution for the diffusion of active particles
released from a line source as a function of time, position, and the ratio of the activity
to thermal energy. We extend our analysis to include the effects of an external field
on particle spreading to further understand how reorientation events in the active
force vector affect relaxation. The strength of the applied external field is shown
to be inversely proportional to the decay of the wavelike structure. Our theoretical

description for the evolution of the number density agrees with BD simulation data.

This chapter includes content from our previously published article:

[1] A.R.Dulaney and J. F. Brady, “Waves in active matter: The transition from
ballistic to diffusive behavior”, Phys. Rev. E 101,
A.R.D. participated in the conception of the project, performed the calcula-
tions, analyzed the data, performed the simulations, and participated in the
writing of the manuscript., 052609 (2020),
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2.1 Introduction

Active systems have garnered significant attention for their interesting phenomena
such as motility induced phase separation and spontaneous self-assembly [1, 2].
While much work has been done to study the steady-state behavior of active systems,
the time dependent nature of these systems and the interplay between their modes
of relaxation have not been studied in as much detail. Foundational work related to
this topic has been established [3—5], but with a focus on the intermediate scattering
function (ISF) [6-9]. Here, we focus on the fundamental difference in the relaxation
of active systems compared to their passive counterparts and how activity alters the
characteristics of their short time dynamics. The persistent swimming motion of
active particles results in fundamentally different modes of relaxation, which leads

to interesting phenomena not present in either purely advective or diffusive systems.

The initial relaxation response of a confined active system results in a ballistic
explosion, as observed by Takatori et al. [5]. When active Janus particles are
released from a trap they initially explode outward and eventually become diffusive
after several reorientation times. The initial directed motion results in a shock wave
in density that radiates outward from the trap until the persistent swimming motion
becomes uncorrelated. This wave motion is a direct result of the swimming and is

present in all active systems.

In simple passive colloidal systems, thermal diffusion is the only relaxation mode.
However, for active colloidal particles there is an additional mechanism that origi-
nates from the activity. When probing times less than the timescale for reorientation
of an active particle there is a directed and nonzero average for the active propul-
sive force. Since the reorientation process is stochastic, at times long compared to
the reorientation timescale the active force has zero mean and the ballistic motion

becomes diffusive and scales with the thermal energy plus the activity [10].

In this chapter we bring to light the inherent wavelike behavior exhibited by active
systems relaxing from perturbed states and provide a fundamental explanation for
this phenomena, as well as its mathematical origins. In Sec. 2.2 we provide a
general theoretical framework for describing active relaxation. In Sec. 2.3 & 2.4
we apply the theory for the release of active Brownian particles (ABPs) from an
instantaneous source in the limit of strong activity and when the thermal energy scale
becomes comparable to the activity, respectively. Then in Sec. 2.5 we characterize
the observed active waves in the presence of an external orienting field, and predict

further instances of wavelike behavior in active systems. Finally, in Sec. 2.6 we
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discuss the criterion necessary to observe wavelike behavior and provide concluding
remarks. Our analysis and characterization focuses on dilute colloidal suspensions of
ABPs that self-propel with an inherent swim speed Uy with orientation q and reorient
on a characteristic timescale 7. Interparticle and hydrodynamic interactions in the

suspension are neglected in this work.

2.2 Theoretical Framework

We define a simple model for ABPs using the Smoluchowski equation for the
probability distribution of particle positions and orientations. Unlike with pas-
sive, isotropic particles, the probability must be considered in positional (x) and

orientational (q) space at each instant in time:

0P(x,q,1)

V.i' +Vep-j¥=0. 2.1
ER +V-j +Vg-j (2.1)

Here, the translational and rotational fluxes are given by j' = UpqP — D7VP and
jR = —DgrVgP, respectively, where Vi = q X V, is the rotational gradient operator.
The contributions to the translational flux are from the advective swimming motion
UopqP and from thermal diffusion, where the translational diffusivity is defined using
the Stokes-Einstein-Sutherland relationship Dy = kT’ /{. The rotational flux is only

comprised of a diffusive piece with rotational diffusivity Dg = 1/7g.

Analytic solutions to Eq. (2.1) are elusive, but insight into the governing phenomena
and wavelike structure can be obtained by expanding the Smoluchowski equation in
orientational moments [11, 12]. The first two orientational moments of Eq. (2.1)

are governed by the conservation equations [13, 14]:

d
IV -j =0,
a1 2.2)
jn = U()m — DTVI’Z,
9
a—m+V~jm+(d—1)DRm:O,
! (2.3)

1
jm = U()Q + EUOHI - DTVm,

where n(x,t) = / P(x,q,1) dqis the number density, m(x, 7) = f qP(x,q,1) dqis
the polar-order field, Q(x, ) = / (qq —I/d)P(x,q,t) dq is the nematic order field,
and d is the orientational dimensionality (i.e. 2 for planar reorientations). Eqgs. 2.2



18

and 2.3 are left as an open set of coupled equations which depend on subsequent
orientational moments of P(x, q, ). A derivation of Egs. 2.2 and 2.3 can be found

in appendix 2.7 for completeness.

Intuitively we understand that translational Brownian motion only gives rise to diffu-
sion, which implies that the wavelike character must result from activity. Therefore
to isolate this facet of particle motion we first focus on the limit of high activity
relative to thermal energy, or when D7 — 0. As a first order approximation we
truncate the moment expansion by assuming the nematic order is isotropic, i.e.
Q(x,1) = 0, thus closing the above equations. Combining Egs. 2.2 and 2.3 gives
rise to a telegraph equation

n (d-1)on 1

T — gugvzn. (2.4)
For times short compared to the reorientation time 7z, Eq. (2.4) has a wave-like
character with wave speed ¢ = Up/Vd (similar to that obtained by Sevilla and
Villarreal [9]), but for times long compared to 7 the behavior is diffusive with the
swim diffusivity D™ = UgrR /d. Eq. (2.4) in this form is similar to the model
created by Alharbi and Petrovskii for population dynamics [15]. Fundamentally,
ABP dynamics exhibit both wavelike behavior at short times and diffusive behavior

at long times; this behavior is general for all active systems.

2.3 Waves From An Instantaneous Source

We consider the unsteady behavior of active systems from an instantaneous source.
That is, we focus on observing how the density of an active system in an open domain
relaxes from a localized point source disturbance back to a uniform distribution.
The point source can be thought of as an instantaneous, local addition of particles
to an empty domain or as a local addition of particles overtop a homogeneous
background concentration of particles. This problem’s historical relevance in the
field of diffusion and its potential to further the understanding of bacterial film
propagation on surfaces [16] make it a prime initial example for comparing relaxation
in active and passive systems. For brevity we will only consider sources in two spatial
dimensions as these are most experimentally relevant, but the following analyses are

readily extensible to three spatial dimensions.

The Green’s function for Eq. (2.4) in two dimensions with radial symmetry is
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_ 2
—r) (2.5)

_20(=n/VD)
2

n(r,t) Nrope 2’cosh(
—r

where 6(x) is the Heaviside function, r is the radial displacement from the source
normalized by run length, / = Uy7g, and ¢ is time normalized by 7z. The Green’s
function corresponds to the release of active particles from an instantaneous source
with randomly distributed initial orientations. Number density as a function of
radial displacement is shown in Fig. 2.1 at multiple time points. At short times,
t < 7R, particles swim outward from the origin, which leads to a sharp peak in
the density. When ¢ ~ 7, particles have reoriented, reducing the maximum in
the density. A small fraction of particles have retained a purely outward pointing
trajectory which pushes the leading edge of the density profile slightly in front
of the peak. The long wake is a result of the wavelike character dominating in the
short-time regime and is characteristic of symmetric wave propagation in two spatial
dimensions [17]. Ast > 7g the wavefront diminishes further and the density profile
more closely resembles that of a diffusive system at all points away from the leading
edge. When ¢ > 7 the density profile looks diffusive (not shown) for all positions
with a diffusion coefficient given by the swim diffusivity.

—_— t:TR/3
2r — 1 =41/3
. — =413
=
=1}
OO 1 2 3 4

r/l

Figure 2.1: Density as a function of radial position normalized by the run length, / =
UoTg, in the limit of D7 — 0 for the telegraph equation at times ¢/7g = 1/3,4/3, 4.

Evidence of wavelike motion has been experimentally observed in systems of active

Janus particles released from a two-dimensional, circular confining trap [5], but the
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the experimental data implies a faster transition to diffusive dynamics. We believe
the discrepancy between our simple model and these experimental data arises from
the closure approximation that we have chosen, as evidenced by Fig. 2.3 in the
following section. By neglecting the flux of polar order generated through nematic
alignment, we have limited the diffusive character of the activity on longer timescales
and thus prolonged the transition of the dynamics. This effect is exacerbated by the
lack of thermal diffusion, which provides an additional mechanism through which
the wavefront can relax, as will be seen in the following section. The telegraph
equation shows the essential features of the ballistic to diffusive behavior [15], but
it is not sufficient to quantitatively capture the transitional dynamics and is only

strictly valid in the limit of high activity.

2.4 The Effects of Diffusion

In this section, we revisit the relaxation of ABPs from an instantaneous source in the
limit of finite activity to examine the interplay between thermal and active energy
in the short-time dynamics. We again start with Eqs. 2.2 and 2.3, but keep the
translational diffusion terms. Scaling position and time by the particle run length
and reorientation time respectively, gives rise to a dimensionless parameter defined
by the ratio of thermal energy, kgT to activity, kT = ¢ UgTR /(d(d—-1)) ford > 2
[18]. As in Section 2.2 we formulate the set of scaled conservation equations as a
single expression for the number density. The telegraph structure is still readily seen
by Fourier transforming in position space, but now the first order time derivative

and Laplacian terms have k-dependent coefficients:

0%i
or?

kgT k) on g(kBT

[ _ = 24
kT, ) o1 ksTs’k)k " (2.6)

+f(

where 7i(k, t) is the transformed density and k is the dimensionless wavenumber.

The spatially-dependent coefficients are

2k*  [kgT
f=d-1+ (),
d(d — 1) \k,T, 27
[y, KeT k? (kBT)z]k2 '
E L T hr T ad- 02\, V-

The transformed number density follows as
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Figure 2.2: Intermediate scattering function 7i(k, ) of ABPs for different values
of dimensionless wavenumber, k/, as a function of dimensionless time, /7 for
different levels of activity: (a) k75 = 1 kgT, (b) kTy = 10 kT, and (¢) k;Ts = 100
kgT in two orientational dimensions.

(9=, k2 kpT d-1 1 d-1
A=e ( p +d(lccil)kffs)t{COSh(( 2 )Ft)+Fsinh(( > )Ft)}, (2.8)

where I = \/ 1 — 4k%/(d(d — 1)?). The spatially transformed density is equivalently
the intermediate scattering function (ISF) as given by the Van Hove correlation [19].

Our analytic form of the ISF is similar to that obtained by Sevilla and Villarreal [9],
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though we do not utilize a memory function for the active motion. There has been
broad interest in obtaining the ISF for active particles both experimentally [20-22]
through differential dynamic microscopy and analytically [6, 7, 23]. Kurzthaler et al.
numerically computed the ISF for anisotropic ABPs and anisotropic Brownian circle
swimmers from an infinite expansion of the Smoluchowski equation in spherical
harmonic functions [6-8], and Schwarz-Linek et al. solved the Smoluchowski
equation using a series of Mathieu functions to compute the ISF of E. coli [22].
Our results show good agreement with the aforementioned methods while offering
a more readily interpretable form. Figure 2.2 presents the ISF as a function of
time for various wavelengths at three different levels of activity. When activity is
comparable to thermal energy the ISF decays monotonically for all wavenumbers,
just as in a purely diffusive process (Fig. 2.2a). As activity increases the decay of
the ISF becomes nonmonotonic and has dampened oscillations at sufficiently large
wavenumbers (Fig. 2.2b, c¢). For large k the ISF decays monotonically and the onset
of the decay begins sooner. When £ is large, diffusion dominates over the ballistic
behavior of the active motion. As activity increases, the active contribution begins
to dominate over thermal diffusion at shorter times and larger wavenumbers, which
extends the range of oscillations. These features agree with the results obtained by

Kurzthaler et al. for anisotropic and circle swimmers.

The oscillations in the structure factor correspond to time-dependent density fluc-
tuations, and are equivalent to those observed for the sinc function, which yields a
dampened wave. As time increases towards the steady-state uniform distribution—
approximately an order of magnitude beyond the reorientation timescale—the swim-
ming motion becomes uncorrelated and each run length is a step in a random walk
process, with a diffusivity governed by activity [24]. This transition corresponds to
dampening of the oscillations observed in the decay of the ISF at small wavenumbers.
Mathematically, this transition is the point where the arguments of the hyperbolic
functions in Eq. (2.8) become imaginary. That is, I' becomes imaginary when
k > (d — 1)Vd/2 and results in a critical dimensionless wavenumber k¢’ =~ (.71
for our two dimensional system. This transition from monotonic to oscillatory be-
havior as a function of wavenumber can be observed in Fig. 2.2b-c by the change
in character from kI = 0.5(red) to k/ = 2.0 (black). We additionally computed
the transition point from correlated wavelike to diffusive motion as a function of

moment closure, the details of which are given in Appendix 2.8.

A key benefit of the moment expansion method over a full numerical solution is the
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availability of an analytic form for the ISF. Asymptotic analyses of this analytic form
provide insight into the physical nature of the observed phenomena beyond locating
the wave transition. For large displacements (kI — 0) the density fluctuations
decay as i1 ~ e Dt ith an effective diffusivity, De¢ff = Dy + 2DV where
DWi™ is the diffusivity—as presented in Sec. 2.2—that results when the swimming
motion becomes uncorrelated. For small displacements (kI — oo) the fluctuations

are governed by dampened oscillations:

= e_(@*'d(lziz—l) :?TZ)[{COS (%) + % sin (%)} (2.9)

These oscillations in density capture the nondiffusive behavior witnessed by Takatori
et al. [5].

In the short time limit 1 — 0, the mean-squared displacement (MSD) is (x?) ~
2dDrt + Uoztz, where the first term is the expected contribution from thermal motion
and the second term arises from the ballistic swimming motion. This form of the
MSD matches the results obtained by Ebbens ef al. for their experimental catalytic
swimmers [25]. The temporal scaling of each term explains the initial monotonicity
in the decay of the ISF for times ¢ < T as t > > and how this effect is reduced
when activity is large. The ballistic scaling from activity is responsible for the
“explosion” observed by Takatori et al. [5]. A full expression for the MSD is
presented in Appendix 2.10.

The realspace density profile for active particles diffusing from an instantaneous
source can also be calculated. For the following analysis we consider the case of
diffusion from an infinite line source for mathematical simplicity. Since this is
effectively a one-dimensional problem, the long wakes present in Fig. 2.1 are no
longer observed. The number density as a function of distance from the line source
is shown in Fig. 2.3 at several instances in time for different closures to the moment
hierarchy with an activity of k75 = 100kgT. While the first order closure to the
moment hierarchy works very well for the ISF calculation, the large gradients in the

initial density require a more sophisticated closure to obtain the realspace solution.

The transition from wavelike character is too slow with the simple Q = 0 closure,
and requires an additional mode of relaxation. We do this by adding the effects of
nematic order, which have thus far been neglected. In the presence of large spatial

gradients Q is nonzero and therefore contributes to the speed of the relaxation of
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the wave. We rely on two different closures: assuming Q is slaved to the gradient
of the polar order (solid lines) and assuming the third orientational moment B =
f (qqq—a-q/(d+2))P dqis zero (dashed lines), where « is the appropriate fourth
order isotropic tensor. The first alternative closure, Q ~ A : Vm ~ Vm, neglects
B and higher order gradients of Q, with constant tensor A = a — ((d + 2)/d)1I
(see Appendix 2.9 for the exact closure) whereas the second closure only neglects

B while retaining the effects of thermal diffusion on the nematic order.

For each closure, the density was calculated using a finite element method (FEM)
performed in FreeFem++ [26], and full Brownian dynamic (BD) simulations of ideal
particles were performed to corroborate our results. The details of our simulations
are outlined in Appendix 2.11. Slaving Q to Vm (solid lines) correctly captures the
short time behavior of the system, but still fails to relax the wavefront quickly enough.
Closing the expansion with B = 0 (dashed lines) matches the BD simulations well for
t > Tg, but fails to capture the strong wavelike character at short times. Correctly
capturing the behavior of the density for all times requires a more sophisticated

closure for the expansion.

Snapshots of a characteristic simulation of ABPs released from a point source with
ksT; = 100kpT are shown in Fig. 2.4. The dense wave (yellow) at short times
expands outward and spreads until the system reaches a uniform denisty (purple)
after several 7g. This representation is evidence for the production of a relaxing

wave that becomes diffusive, regardless of the dimensionality of the initial source.

Sokolov et al. observed similar wavelike behavior after cessation of rotation of a
particle in a suspension of bacteria [27]. The rotating particle creates a stagnation
zone wherein bacteria collect, which causes a large gradient in the radial density.
After cessation of the particle, the bacteria explode outward in a wave, as indicated
by Fig. 2f in [27] by the shifting peak in the density with time. We see in this
instance, similar to the example of diffusion from an instantaneous source, that the

wavelike behavior appears to result from large spatial disturbances in the density.

Thus far we have focused on suspensions of active Brownian particles released
from instantaneous sources and have shown that the initial relaxation is ballistic
and gets dampened out as the active motion becomes uncorrelated. As the motion
decorrelates the relaxation resembles that of a diffusive process. In the following
section we study the effects induced by the presence of an external orienting field

and how this alters the relaxation behavior.
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Figure 2.3: Number density of particles as a function of position from an infinite line
source with k Ty = 100kgT. The solid lines, dashed lines, and symbols represent
closures Q = A : Vm, B = 0, and BD simulations, respectively. The red, blue, and
black colors correspond to t = g /3, t = 41 /3, and t = 47, respectively.

2.5 Effects of an External Field

Consider the relaxation of active particles in the presence of an external orienting
field. It is known that certain synthetic and living swimmers can be controlled
through the application of external fields [28, 29], but these works have focused on
the steady-state regime [28], the strength of long-time response based on reorienta-
tion statistics [30], or how a strong perturbation to the field direction affects a single
swimmer [29]. To study the relaxation we modify the rotational flux of Eq. (2.1)
to include the effects of an external orienting field. The rotational flux expression

becomes

ir = Dr(xrq x HP — VgP), (2.10)

where H is the unit vector in the field direction and Xr = Q.7p is the Langevin
parameter with Q. being the magnitude of the angular velocity imposed by the field.
Taking orientational moments results in the same expression for density conservation

as before, but the expression for polar order becomes
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Density
Low IS High

Figure 2.4: BD simulation snapshots for a system of ideal ABPs released from a
two-dimensional point source with k,7Ty = 100 kT at (a) t = 1, (b) t = 27, (¢)
t = 31g, and (d) ¢t = 47g. A dense wave of particles (yellow) can be seen spreading
outward and diffusing until the system reaches a uniform density (purple).
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1
Jjm = UoQ + EU()nI — D7Vm.

We once again consider particles released from an infinite line source, with no initial
polar order, but at time ¢t = 0 we apply an external field in the positive x direction.
The density of particles as a function of position at times less than, comparable to,
and greater than 7p are presented in Fig. 2.5 for various values of the Langevin
parameter for a highly active system, k75 = 100kgT. When y is small (Fig. 2.5a)
the density distribution looks similar to that presented in Fig. 2.3 when ¢ < 7, but
with some asymmetry in the field direction. As time increases the peak moving
opposite to the field relaxes faster while the peak moving in the field direction persists
longer than it would in the absence of the field. As we increase the field strength
to yg = 10 (Fig. 2.5b) the particles initially moving opposite to the field direction
are quickly reoriented resulting in a slight tailing of the density distribution, and
when ¢ > 7 the particles have reoriented thus reducing the tailing. Importantly,
the spread in the density peak then is primarily from translational diffusion. When
xr = 100 (Fig. 2.5c¢) the alignment effect is further enhanced and all particles
are aligned in the field direction almost immediately after the field is turned on.
This strong alignment prevents fluctuations in orientation from activity resulting in
a more persistent wavefront. The spread of the distribution is almost exclusively
from thermal noise as evidenced by the mean and peak density speeds being equal
to the swim speed. A strong orienting field reduces the swim diffusivity in the
field direction as (Dﬂw"” ~ O( )(1;3) and as (D5"™y ~ O( X§2) in the transverse
direction, as shown by Takatori and Brady [28].

The persistence of the wave in the field direction and the dissipation of the wave
in the opposite direction are better understood by calculating the mean-squared

orientational displacement. The evolution for the average orientation is

(d-1)
TR

0 Ao
2@ = —~—— (@) - T ((qq - A - ). 2.12)
R

where angled brackets represent an ensemble average. In the linear response regime
(where yp is small) the rightmost term can be represented by ((qq - H- ﬁ) Yo =
f[(‘lq H- ﬁ)] dq=-(d - l)ﬁ/d. From this,



28

xR =1
)CRZIO
1 -
45F (¢ n xr = 100
Py —Z‘ITR/3
o 30 —t=413/3
= —1 =41
\ AN
-2 —1 0 1 2 3 4

x/1

Figure 2.5: The mean squared displacement as a function of time normalized by the
reorientation time at (a) yg = 1, (b) yg = 10, and (¢) yr = 100.

Q1)) = SR - 1] 4 gge (41, (2.13)

where qo = (q(0)). Multiplying Eq. (2.13) by qo and using ((q(¢) — q(0))?) =
(q*(¢) + q*(0) — 2q(¢) - q(0)) in the limit of f/7g << 1 gives a mean squared
orientational displacement of
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((q(t) —q(0))*) =2(d - 1)|1 - )%ﬁ -q(0)) Ti (2.14)
R

From Eqgs. 2.13 and 2.14 we see mean squared orientational displacement is greatly
reduced in the field direction and enhanced in the opposite direction, resulting in
the persistence and expedited dissipation of the two wavefronts, respectively. We
can validate this result by computing the change to the average swim diffusivity
(DSWimy ~ Liff/TR, where L. ~ (Up — (u))7g is the effective step size of a
particle. The average velocity is given by (u) = Uy(q), which is 0 in the absence of
an external field and is ygH/d with an external field in the linear response regime, as
shown by taking the long-time limit of Eq. (2.13). This gives the change in effective
step size as AL.yr ~ xrUpTg and a scaling for the change in swim diffusivity as
(AD*¥™)y ~ (UjTg) x%» Which is in agreement with the predictions by Takatori
and Brady [28]. Note that in the presence of an external orienting field the swim
diffusivity is (D*"m) ~ UgTR(l +O( )(123)) and is anisotropic.

2.6 Conclusions

We have provided a model for active dynamics that provides insight into the wavelike
behavior observed in active systems and have provided an explanation for how these
dynamics relax. This motion and its transition to the steady-state diffusive behavior
was shown through the relaxation of a dilute active system from an instantaneous
source. The results were corroborated through BD simulations and comparison of
the ISF with existing works [6, 7, 9, 23]. At short times a strong wavelike character
is present, and as the swimming motion becomes uncorrelated the overall motion
becomes diffusive with an effective diffusivity given by the sum of the translational,
D7, and swim, D*"" diffusivities and is described via the telegraph equation. The
wavelike behavior observed for small displacements is supported by oscillations
in density fluctuations in the system as predicted by the intermediate scattering
function. We have calculated and correctly captured this behavior using a simple
expansion of orientational moments with different closures: Q = 0, Q ~ Vm, and
B = 0. While the majority of the relaxation results focus on diffusion from a line

source, the methods shown readily extend to higher spatial dimensions.

The strength of an active wave can be maintained as shown by extension of the
instantaneous source diffusion problem through the addition of an external orienting
field. As the field strength increases, active constituents become unable to reorient,

which is the primary mode of wave relaxation, thus increasing the life of the wave and
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allowing for greater displacements through more directed motion. The mean squared
orientational displacement of active particles in the presence of an orientating field
compared to the unbiased case of free swimmers supports the claim in Takatori and
Brady [28] that the persistence of the ballistic motion is primarily dependent on how

correlated particle orientations are in time.

Given the observations presented we propose that the only criterion necessary
for wavelike behavior is the existence of a mechanism through which the particle
orientations can be recorrelated. This allows us to predict further instances wherein
waves could be observed in active systems. For example, active suspensions near
criticality should exhibit wavelike behavior as noncritical nuclei form and melt. The
formation of noncritical nuclei results in large fluctuations in the density and their
melting is analogous to the explosion of a ‘swimmer-crystal’ observed by Takatori
et al. [5] which, as previously discussed, clearly showcases a wave after release
of the trap. Through our work we believe that waves are an inherent part of many

active systems as they transition from a ballistic to diffusive motion.

Appendix
2.7 Orientational Moments

Starting with Eq. (2.1) from section 2.2 and integrating over orientation gives

on

E+V-jn—1DR/(q><vq)-(q><vq)1f> dq, (2.15)

where (q x V,) - (X Vy) =V, -V, [31] and j, = Uy [ qP dq — D7V [ P dq.
From periodicity we have f Vf[P dq = 0, which yields the resulting conservation

equation for the number density (Eq. (2.2)).

When computing the first moment, we need to first multiply the Smoluchowski
equation by q then integrate as was done for the zeroth moment. Doing so and using

our definitions for the polar and nematic orders gives

om . )
E+V‘Jm—DR/qVquq:0,

(2.16)
im=Uo / qqP dq — D7Vm,

where the third term has been simplified using equation A.44 from reference [31]—

as was done for the zeroth moment derivation. From here, it is helpful to write the
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integrand in Einstein notation as

o 0
qi——|[P] dq. 2.17)
/ 0q;0q;

Making use of the product rule and Eqs. A.25 and A.41 from reference [31], we

can simplify the expression as follows:

[argetsrda= [ 5ot da- [ @ da
~@-1) [ qfiaida-sy [ sida+ [ a0 dq

:d/QJ’ﬁQi dq—/fjdq
op
- [ aarg, da- /—dq

/8_q~(%qu) dq_/(((sij'_QiCIj)QiP dq

S

-1 / 4idiq;P dq - / 4P dq+ / 4;P dq

=d

(2.18)

/ (6ii —qiqi)q; P dq| -

=d

—(d—l)/qudq —(d—l)/qudq

~@-1 [ 4;p da
—(d-1)m,
where f; = P/dq; and d is the number of rotational dimensions. Substituting this

back into Eq. (2.16) and adding and subtracting In/d to the flux results in the polar

order conservation equation from Eq. (2.3).

This process can be repeated for subsequent moments. For reference, the conserva-

tion equations for the second and third moments are given below:



32

@ +V ~jQ + (2d)DRQ = O,

o (2.19)
Uy d+2 )

io =UpB ——II)-m-DVQ,

Jo=SB+ il *™ "4 ) m - DVQ
B
aa—t+V-jB+3(d+1)DRB:O,

1 (2.20)

ip = —03:Q - . - DrVB
i =UoC+ Uy 2(d+4)6 Q (d+2)a Q VB,

where C = / (qqqq— d(d]+2) o— 2(d]+4) B [qq— Clll] )P dq is the fourth orientational

moment and S is the appropriate sixth-order isotropic tensor given by

ﬁijklmn = 5ij6k16mn + 6ij6km61n + 6ij6kn61m + 6ik6j16mn + 5ik6jm61n
+0ik0 jnOim + 0i10 jkOmn + 0i10 jmOkn + 6i10 jnOkm + Oim0 jkOin (2.21)

+ 6im6jl(5kn + 5im5jn5kl + 6in5jk51m + 5in6j16km + 6in5jm6kl-

2.8 Wave Transition

Fourier transforming the conservation equations for the orientational moments of
the probability distribution function P(x,q,?) in space and subsequently Laplace
transforming in time generates a system of algebraic equations. The system of
equations can be rewritten as an explicit expression for 7i(k, s) with the following

structure:

i(k,s) = , (2.22)
aj
bo +
a
b1 +

b2+...

which can be represented in continued fraction form as

aj -1
Ak, s) = [bo + K;';lb—] , (2.23)
j

where s is the frequency. The terms a; and b are given by the series:
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D =3+ HURK?
(d—4+2j)(d-2+2j)’ (2.24)
b;=(s+k*Dr+j(d -2+ j)Dg),

aj

where a; comes from the isotropic definition of the (j + 1) moment in the jth

moment equation and b; comes from the sink term on the j’ " moment equation.

This expression for 7i(k, s) is used to calculate the transition from wavelike to
diffusive behavior. We demonstrate this by calculating the transition obtained from
choosing the simplest moment closure of Q = 0. From the first two moments we

obtain

ia(k,s) = éngz (2.25)

s+ Drk? +
T S+DTk2+(d— I)DR

for the transformed density. We then take the non-diffusive limit (lim Dy — 0),
and nondimensionalize the wavenumber and frequency by k = ki and § = s,

respectively. The number density expression then becomes

R(5+(d-1))
2+ (d-1)5+ L1k

(2.26)

A=
with poles given by

1-
2 +(d-1)5+ Ekz =0. (2.27)

The transition from wavelike to diffusive behavior occurs when the poles become

imaginary, whence,

(d-1) 1\/ _ 2_&‘2
T £y (-1 -k, (2.28)

§=-

and become imaginary when k> > d(d — 1)?/4, which matches the result we get

from our analytic expression for the Fourier transformed number density.
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2.9 Alternative Closure for Q

The conservation equation for the nematic order with a closure of B = 0 and

neglecting high order spatial derivatives of Q gives

N g [ Yo _(q- (d;rz)n).m)

y (2.29)
+—Q=0,
TR
which can be rewritten as
Q= _Lu - e‘ZdDR’)V(A : m) (2.30)
2d(d + 2)DR . ’ .

where A = a — ((d +2)/d)II and « is the appropriate isotropic fourth order tensor,

as defined in the main text.

2.10 Mean-Squared Displacement
The mean-squared displacement (MSD) is given by

(x?)y = =V Vi (K, 1)]x=0, (2.31)

for any instant in time. The full MSD expression with Q = 0 closure is

4 kpT
(x?) = _ ¥ e [(1 + L) cosh
d(d-1)? kT
| kaT (2.32)
+(1 __ 4B )sinha],
a sls
where a = @t and ¢ is normalized by the reorientation time 7z. A plot of the

MSD is presented in Fig. 2.6 for various levels of activity. For t << 1z the MSD
scales linearly with time because thermal diffusion wins out over active motion.
As time increases the MSD goes quadratically with time due to the persistent and
directed active swimming. For t > 7 the swimming motion becomes uncorrelated
and the active particles become diffusive with an effective diffusivity which is a

combination of the thermal diffusivity and swim diffusivity D"
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Figure 2.6: The mean squared displacement as a function of time normalized by the
reorientation time at different levels of activity.

2.11 Brownian Dynamic Simulations
We simulate suspensions of ideal ABPs using the overdamped Langevin equations

for translation and orientation:

0=-¢U+¢Uy+F5?, (2.33)
0=—rQ+LE. (2.34)

Here ¢ is the hydrodynamic resistance coupling translational velocity to force,
U is the translational velocity, Uy is the active—or swim—force [24], F® is the
random Brownian force, {r is the hydrodynamic resistance coupling angular velocity
to torque, Q is the angular velocity, and LR is the reorientation torque. The
Brownian force is modeled using the usual white-noise statistics with FB = 0 and
FB(O)FB(I) = 2kpT{6(1)1. The reorientation torque is modeled in similar fashion
with LE = 0 and LR(O)L. (1) = 2026(1)1/ 7x.
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Chapter 3

ACTIVE COMPRESSIBILITY

We demonstrate that the mechanically-defined “isothermal” compressibility behaves
as a thermodynamic-like response function for suspensions of purely-repulsive ac-
tive Brownian particles. The compressibility computed from the active pressure—a
combination of the collision and unique swim pressures—is capable of predict-
ing the critical point for motility induced phase separation, as expected from the
mechanical stability criterion. We relate this mechanical definition to the static
structure factor via an active form of the thermodynamic compressibility equation,
and find the two to be equivalent, as would be the case for equilibrium systems. This
equivalence indicates that compressibility behaves like a thermodynamic response
function, even when activity is large. Finally, we discuss the importance of the
phase interface when defining an active chemical potential. Previous definitions of
the active chemical potential are shown to be accurate above the critical point but
breakdown in the coexistence region. Inclusion of the swim pressure in the mechan-
ical compressibility definition suggests that the interface is essential for determining

phase behavior.

This chapter includes content from our previously published article:

[1] A.R. Dulaney, S. A. Mallory, and J. F. Brady, “The "isothermal" compress-
ibility of active matter”,
A.R.D. participated in the conception of the project, performed the calcula-

tions, analyzed the data, and participated in the writing of the manuscript.
(2020),
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3.1 Introduction

Response functions are central to thermodynamics and the study of critical phe-
nomena. These quantities, which are those most frequently probed in experiment
(or simulation), include various heat capacities, compressibilities, and magnetic
susceptibilities. Each response function serves as a metric on how a specific state
variable changes as other independent state variables are varied under controlled
conditions. For example, isothermal compressibility, one of the more prominent
response functions and the focus of this study, is a measure of the relative volume
change of a system in response to a change in pressure at constant temperature.
Isothermal compressibility has played a central role in unraveling the confounding
properties of water and more generally served as a means for identifying novel
phase transitions in complex fluids [1-3]. For an isotropic, homogeneous fluid at

equilibrium the isothermal compressibility takes a simple form

1 (oV 1 {0n
Xr=—<|== =—|=—= , 3.1
Vol )y n\dll)yy
where V is the volume of the system, II is pressure, and n is the number density

defined by n = N/V with N being the number of particles in the system.

From a statistical mechanical perspective, response functions offer a systematic way
of characterizing the magnitude of fluctuations and correlation lengths in a system.
In this context, the isothermal compressibility is a measure of local density fluctua-
tions. It is straight-forward to show for an isotropic, homogeneous, thermodynamic
system that the isothermal compressibility is given by

_{(AN)*) _ ({N?) = (N)?)

kgT x, = = , 3.2

where kpT is the thermal energy scale and ((AN)?) is the variance in number
density [4]. As this result can only be derived in the grand canonical ensemble,
N here is interpreted as the number of particles in a subsystem of macroscopic

dimension V, which is in equilibrium with a much larger thermodynamic system.

Equivalently, one can compute isothermal compressibility directly from the system
microstructure—as is often done in the study of liquids—via the compressibility

equation

nkgT x, = %i_r)%S(k) = (1 +n/ [g(r) — l]dr) , (3.3)
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where g(r) is the radial-distribution function and S(k) is the static structure factor.
Finally, one can also compute the compressibility by means of the free energy, or

more precisely, from the chemical potential p:

1 (on

XT = — (6_) , (3.4)
n=\OH}yr

where the partial derivative is taken at constant volume and temperature. For

thermodynamic consistency to hold in equilibrium systems, we have equivalency of

these three methods: mechanical, thermodynamic, and structural (see Fig. 3.1).

In this study, we explore whether the same equivalence and consistency exist for
an important class of nonequilibrium systems—active Brownian particles (ABPs).
The motivation for carrying out this work is multifold. ABPs have become a popular
minimal model for understanding the behavior of active or self-propelled colloids,
bacteria, and other living systems. The defining characteristic of an active col-
loid, which makes it unique relative to its purely passive Brownian counterpart,
is the driven and persistent nature of its motion. This difference in dynamics is
responsible for a wealth of interesting and novel behaviors including spontaneous
clustering [5], swarming, and motility-induced phase separation [6—10]. For this
reason, suspensions of active colloids have garnered interest from the material sci-
ence and engineering community as they represent a potentially innovative approach

to directed transport, self-assembly, and material design at the microscale [9, 11].

The collective behavior of these active matter systems is incredibly rich and has
aided the development of new nonequilibrium theories [12—-15]. Motility-induced
phase separation (MIPS) has been a particular focal point for many in the active
matter community. Surprisingly, a suspension of active colloids interacting solely
through their excluded volume undergoes a nonequilibrium phase transition into a
dilute and dense phase—akin to liquid-vapor coexistence in a typical equilibrium
liquid [7, 8, 16]. A great deal of effort has gone towards developing theories capable
of deducing the coexistence criterion for MIPS. Significantly less attention has been
paid to the behavior of active colloids above the critical point, where there remain a

number of open and important questions about this supercritical region [17-19].

Due to advances in experimental methods, there has been a resurgence of interest
in properties of equilibrium systems in the supercritical phase. The highly tunable
behavior of molecular supercritical fluids has lead to a number of industrial appli-

cations and the introduction of new theoretical concepts in liquid state theory such
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as the Fisher—-Widom line, the Widom line, and the Frenkel line [2, 20, 21]. These

lines, which are identified using various thermodynamic response function (for in-
stance, the Widom line is often identified by a peak in the isobaric heat capacity),
delineate characteristic regions within the supercritical region of the phase diagram.
It remains to be seen whether these ideas can be extended to suspensions of active
colloids. Given the similarity of the MIPS transition with liquid-gas condensation,
there is some optimism that supercritical active fluids can play as versatile a role as

their molecular counterparts.

A first step toward this aim is to consolidate the notion of isothermal compressibility
for active suspensions. Like many other microscopic systems, the structure factor
has become an important diagnostic for active systems. In one of the earliest papers
regarding MIPS, Fily et al. made use of the static structure factor to characterize
the phase behavior of ABPs about the MIPS critical point [8]. A recent study by
Chakraborti et al. introduced a notion of compressibility for active systems [22]. By
making use of a large deviation framework and assuming the property of additivity,
they define a nonequilibrium chemical potential u as the change in a nonequilibrium
free energy required to insert a particle into the system—as is done in equilib-
rium thermodynamics. Using this chemical potential and the partition function
for a given subvolume of the system, they derived the following expression for the

compressibility:

g—z = lim ‘1,(<AN>2) = lim $<<N2> - (N)?), (3.5)
where 7 is the system density and N is the number of particles within a subsystem
of volume V. This formulation is similar to the one used in the grand canonical
ensemble (see Eq. (3.2)). Through careful consideration of the number fluctuations
(AN)? within a given subvolume, the authors were able to predict the onset of
MIPS by looking at the fluctuations as a function of system density for increasing
levels of activity [22]. This study raises the natural question as to whether the
compressibility can be computed through the other aforementioned methods for
thermodynamic systems and whether the connections between these definitions—as

depicted in Fig. 3.1—exist for active systems.

Using a combination of large-scale simulation and analytical theory, we focus on
characterizing the compressibility of a suspension of active Brownian disks. The

manuscript is organized as follows. In section 3.2, we define our implementation



43

ACTIVE
COMPRESSIBILITY

NON-EQUILIBRIUM XT
THERMODYNAMICS STRUCTURE
1 /0n 1
2\ 9., —5(k
n? (3M)V,T ‘nkBTS(I | —0)
\/

Figure 3.1: A postulated diagram of the compressibility in purely active systems
with each method of calculation defined in the traditional thermodynamic sense.

of the active Brownian particle model and discuss all relevant details to perform-
ing large-scale simulation. In section 3.3, we introduce the notion of pressure and
“isothermal” compressibility in active systems and directly compute these quantities
from large scale simulation data for a wide range of volume fractions and activi-
ties. We explicitly demonstrate the divergence of the isothermal compressibility as
the MIPS critical point is approached. In section 3.4, we motivate the validity of
calculating isothermal compressibility from the definition of the structure factor for
active Brownian particles, which provides an independent approach to computing
compressibility directly from the fluid structure. In section 3.5, we present a com-
parison between the structural and mechanical definitions for compressibility and
address the relation to an active chemical potential. Lastly, we summarize our work

and discuss future directions in section 3.6.

3.2 Simulation Methods

We consider a suspension of monodisperse, athermal active particles of radii a. The
active motion is characterized by an intrinsic swim velocity Upq—where ¢ is the
particle orientation—and a timescale for reorientation 7z. We evolve the system

forward in time using overdamped Langevin dynamics
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0=—U; +F¥m 4 Z e, (3.6)
i#j
0=—(rQ; +LE, (3.7)

where U; is the velocity of particle 7, F;_V/.C“ is the interparticle force for pair ij,
F'™ = Upq; is the swim force, €; is the angular velocity of particle i, and ¢
and (r are the translational and rotational drag coeflicients, respectively. The
angular velocity relates to the evolution of particle orientations via dq; /0t = ; X q;.
Normalizing position and time in Egs. (3.6) and (3.7) by a and 7, respectively, gives
rise to the nondimensional reorientation Péclet number Peg = a/(Uytg), which
measures the ratio of a particle’s size to its run length /| = Uytg, the distance
traveled between reorientation events [7]. Here we assume reorientations occur
through a stochastic torque L® governed by white noise statistics with zero mean
and variance 27 1%(5 (t)/Tr and our particles interact via a Weeks-Chandler-Anderson
(WCA) potential with cutoff radius r.,; = (2a)2'/°. The depth of the potential is set
such that € = 200F*""q,

The primary aim in this work is to understand the behavior of active systems in the
supercritical region—above the critical point—and as such we explore phase space
by varying Peg. To avoid introducing an additional force scale, we hold Uy fixed
and tune the persistence by varying 7g. Importantly, as our active force is of finite
amplitude, a sufficiently strong choice for the repulsive force F*V““ will mimic a true
hard-particle potential. A choice of €/(F*""a) = 200 is found to result in hard-disk
statistics with an effective average particle diameter of 2!/6(2a). In this hard-disk
limit, the state of our system is independent of the amplitude of the active force and
is fully described by two geometric parameters: the area fraction ¢ = nw(2/%a)?
and the Péclet number Peg. Using 7g to vary Peg ensure a well-defined area
fraction for all activities, whereas variations in Uy does not. Each simulation, unless
otherwise specified, is run for 10,0007z with a total number of 40,000 particles. All
simulations were conducted using the HOOMD-Blue software package [23, 24].

3.3 Mechanical Compressibility
The mechanical pressure exerted by a suspension of active particles on its surround-

ings I1%¢! can be easily computed directly from the virial as
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1

where Fi is the total force acting on particle i, x; is the position of particle
i, and (...) denotes a time average. The total force acting on a given particle
Fio' = FfWi’" + FfOI arises from the particle’s swimming motion and interparticle
collisions (Ff"l =2 FZYV].C“), respectively. It follows naturally that the virial can be
decomposed into the individual pressure contributions:

, 1< . .
n = > [ - E™) 4 (x; - B
i

N N
TR swim 1 co (3.9)
=EZ(UZ-~FZ~ >+VZ[<X,--F,. H]

— stim + Hcoll

The first term is the so-called swim pressure [25] (defined via the impulse for-
mula [26, 27] in the second line) and the second is the typical collisional pressure as
computed from the microscopic virial. The total pressure [19“ defined this way is a
state function for spherical ABPs and its definition can be extended to unconfined
systems where IT%! is equal to the internal bulk pressure. From this we are able to
use this pressure from simulation at different points on the Peg — ¢ phase diagram

to calculate the mechanical compressibility.

Figure 3.2 illustrates the behavior of y (Eq. (3.1)) as a function of ¢ for different
Pep values. The compressibility is nondimensionalized by the ideal swim pressure
written in terms of the activity k7T = ¢ U%TR /2 [25]. The hard-disk compressibility
(dashed line) as calculated by the first 10-terms of the virial expansion is shown
for comparison. When Per > 1, the compressibility is similar to that of passive
hard-isk systems, even though no thermal translational motion is present. When
Peg < 1 the compressibility becomes nonmonotonic and eventually diverges. The
Pep value that is close to divergence is shown in the inset of Fig. 3.2. Here we
note that the maximum compressibility changes by several orders of magnitude for
a fractional change in Peg and thus we take this value to be the point of divergence.
The divergence of y; corresponds with the critical point, as supported by inspection
of our simulations and the critical point presented by Takatori and Brady [7], with

a critical Péclet number Pe™" ~ 0.04 and volume fraction ¢ ~ 0.58.



46

240
1e3 = Per=0.04
7.5f — Per =0.05
— Per =0.06
180k20f - Per=0.12
s 2.5} - Per=0.25
3 = Per=0.50
&~ - : R
< |99—0555 050 0.75 — Peg=1.00
= = Peg =5.00
o 120}
3 - HD
S
60F

02 03 04 05 06 07 03

¢

Figure 3.2: Mechanical compressibility y; of 2D ABPs for various Pep as a function
of volume fraction ¢. The compressiblity for hard disks (dashed line)—as calculated
by the 10-term virial expansion [28]—is shown for comparison. The inset shows
X+ for Peg =0.04 ~ Pef{’".

3.4 Structure Factor

For equilibrium systems, the low wavenumber limit of the structure factor is related
to isothermal compressibility via the compressibility equation (Eq. (3.3)). But this
form of the compressibility equation is ill-defined in a purely active system as there
is no notion of thermal energy. However, we can define the active compressibility

via

S(|k| — 0) = nk,Tx~, (3.10)

where the thermal energy kpT has been replaced with the activity k7 as this
is the relevant energy scale in the system. The form of Eq. (3.10) comes from a
mechanical argument relating the static structure factor to the particle flux, following
a similar framework outlined in [29]. (The full derivation can be found in Appendix
3.7.) Equation (3.10) can equivalently be written in terms of the radial distribution

function g(r)

nksTsx: =1 +n/[g(r) — 1]dr, (3.11)
\%4
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Figure 3.3: The static structure factor for a suspension of active Brownian particles
over a range of volume fractions at (a) Peg = 0.5 and (b) Peg = 0.05.

where the integral is over the volume of the system. The definition of static structure

factor does not rely on the detailed microscopic dynamics.

The static structure factor for two different values of Peg over a range of volume
fractions is presented in Fig. 3.3. In weakly active systems, Peg ~ 1, the structure
factor behaves similarly to that of a passive system and matches well with the results
presented by De Macedo Biniossek et al. [30] (see Fig. 3.3(a)). At this level of
activity S(|k| — 0) never diverges. However, as the activity increases towards the
critical activity level (Fig. 3.3b) S(Kk) begins to diverge as |k| — 0 at the same
critical density that was predicted in Fig. 3.2, indicating a phase transition. This
result is not surprising as the structure factor in this limit is a measure of the long-
range density fluctuations and should coincide with the mechanical compressibility

(Eq. (3.1)) as we approach the critical point.
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3.5 Compressibility Comparison

Thus far we have shown that compressibility computed from the fluid structure
matches the mechanical definition near the critical point, but we would like to know
how the two compare throughout the homogeneous supercritical regime for active
fluids. Figure 3.4 presents the compressibility computed via gradients in the active
pressure (solid lines; Eq. (3.1)) and from the static structure factor through the use
of Eq. (3.10) (symbols). Due to the finite size of our simulations, the Nyquist
sampling frequency dictates the minimum wavenumber value that can be probed
kmin = 27/ L, where L is the size of the system. Therefore, the structure factor in the
small wavenumber limit k — 0 was fit using the expansion S(k) = S(0)/(1 +§é Zkz),
where S(0) and &pz were used as fitting parameters, with £pz being the Ornstein-
Zernike correlation length [8, 31]. The error bars represent the 95% confidence
interval for the fitting parameter. The error increases as activity increases due
to larger long-range density fluctuations as the critical point is approached. The
uncertainty resulting from these fluctuations can be reduced with larger system size

as this lowers the minimum possible sampling frequency.

The strong agreement between the different definitions of compressibility shows
that there is meaning in the thermodynamic relations—even though the system is far
from equilibrium—when using the appropriate energy scale. This is also evidence
that compressibility behaves as a traditional thermodynamic response function even
for an active system. The notion that compressibility gives relevant information for
the phase behavior of the system also implies that the active pressure is the relevant

quantity necessary to construct an equation of state for active disks.

Until now we have not considered the proposed non-equilibrium definition via the
chemical potential for compressibility. Chakraborti et al. have shown—through
the property of additivity—the existence of a general scalar u““’(n) which is tied
to density fluctuations in the system [22]. As such, this scalar can be related to the
compressibility via the structure factor and, from the equivalence shown here, to the
pressure, giving rise to a “thermodynamics" of active matter (outlined in orange in
Fig. 3.1). From Egs. (3.1), (3.2), (3.4), and (3.5) it follows that

6 act aHact
n g‘n == (3.12)

an equation first proposed by Takatori and Brady [7] based on arguments of particle
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Figure 3.4: Compressibility of active systems at varying levels of activity Pegr =
0.071, ..., 0.042 computed mechanically from derivatives of the pressure (solid lines)
and structurally using the compressibility equation (symbols).

flux driven by stress gradients (see Appendix 3.7). !

This active chemical potential ‘" predicts the critical point [7] and the existence of
a binodal. Since the chemical potential agrees with the mechanical compressibility
above the critical point [7, 22], it implies that a thermodynamic relation can be
defined and used. However, the same relation does not hold below the critical point.
Equation (3.12) implies a Maxwell construction which overestimates the coexistence
pressure in the two-phase region [32]. The inaccuracy of the binodal prediction
indicates that the standard Gibbs-Duhem relation (Eq. (3.12)) is inadequate for

phase coexistence and that an additional contribution is needed.

From our comparison between the active compressibility computed via the structure
factor and the active pressure, we know that they are only equivalent if the swim
pressure is included in the equation of state. It is known that swim pressure jumps
at interfaces—Ilike those present at phase boundaries. This suggests that the non-
negligible jump in swim pressure at the phase interface must be accounted for to
accurately determine the phase behavior below the critical point, implying that the

interface acts as an extensive property for active Brownian particles, while it does

ITakatori and Brady considered ABPs in an incompressible fluid and therefore had a factor of
(1 = ¢) accounting for the flux of fluid in response to a flux of particles.
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not for passive particles. Including contributions from the phase interface when
constructing an active chemical potential should be required to arrive at the correct
coexistence pressure in the two-phase region, while simultaneously not altering

predictions above the critical point.

3.6 Conclusions and Future Work

We have computed the compressibility for an athermal, active suspension mechanically—
using pressure—and structurally from the static structure factor. In order to compute
compressibility for active systems from structure we have utilized a mechanical ar-
gument to motivate an active form of the compressibility equation. From this we
have shown that compressibility behaves like a thermodynamic response function,

as it does in equilibrium systems, so long as the swim pressure is accounted for

in the total system pressure. As activity varies, the compressibility continuously
deviates from the 2D hard-disk behavior and diverges at the onset of MIPS, thus
reinforcing the idea that the compressibility behaves like a response function and

can be used to determine phase behavior.

We have also discussed the existence of an active chemical potential which is linked
to number fluctuations in the system as shown in Chakraborti er al. [22]. This
active chemical potential, while useful in the region before the onset of phase
separation, does not accurately capture the location of the binodal. This result hints
at the importance of the phase interface to determine behavior in active systems,
as speculated by Solon et al. [33], a surprising requirement not observed in passive

systems.

While our focus has been on compressibility, its behavior as a thermodynamic re-
sponse function suggests that other response functions are worth exploring in active
systems. Compressibility serves as a natural starting point as it can be mechani-
cally defined, but perhaps there are active analogues to other familiar thermodynamic
response functions, especially considering the evidence for a non-equilibrium chem-
ical potential and thus a non-equilibrium free energy. There have been predictions
to the form of an active heat capacity [7], but to our knowledge there have been no

further explorations into active analogues to thermodynamic response functions.

Appendix
3.7 Active Compressibility Equation
Here we present the motivation for Eq. (3.10), the active compressibility equation.

Following the derivation outlined by Leshansky and Brady [29], we begin with
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the dynamic structure factor (DSF) F (K, 1) = (X, gexp[ik - (Xo(?) —x5(0))])/N,

where Kk is the wavenumber, the sum is over particle pairs («, ), and the angular
brackets denote an ensemble average. It has been shown that the collective diffusivity
of a suspension can be obtained by computing the time derivative of the DSF via
F —ik-U*F = -k - D! (k) F, where U* is the bulk average velocity at an arbitrary
point in the suspension and D (k) is the Fourier transform of the collective
diffusivity [29]. In the long wavelength limit (when density fluctuations persist for
longer than the size of a particle), as k — 0, F(k, ) ~ S(k) and D" is given by

. . 1 k- -

peoll _ lim S < QZ,,; M, pelk (o) xﬁ(z))>, (3.13)

t

1_o U'a(1)Up(2')dt’ is the mobility and U’y = U, —(U) is the config-

uration dependent velocity fluctuation of particle «, as presented by Leshansky and

where Mg =

Brady [29]. The velocities can be decomposed into contributions from interparticle
interactions and swimming U, = UL +U$"™_ which allows the velocity correlation
function to be decomposed into interparticle-interparticle, swim-swim, and swim-
interparticle components. The swim-swim correlation function results in the swim
diffusivity D™ = (UOZTR/ 2)I [25] because only self-terms are correlated, and the

interparticle-interparticle correlation goes to O for pairwise interactions. This gives

A 1 .
Dcoll — (DswzmI
S(k — 0)

+%<§/U(’j(t)U;W"m(t’)dt’».

It is important to note that were this a system of passive Brownian particles, then

(3.14)

D™ would be replaced by D7 and Brownian contributions would replace those
from swimming in the above correlation functions, with the interparticle-Brownian
velocity correlation function being 0. For simplicity we will assume the second
term on the right hand side of Eq. (3.14) is 0 as it would be for Brownian motion.

Now we can relate D/ to the pressure through a suspension momentum balance

0=—n(u, — (W) +V - o, (3.15)

where n(u, — (u)) = j ¢l is the relative flux, u, is the particle velocity, (u) =
éu, + (1 — ¢)uy is the suspension averaged velocity, uy is the fluid velocity, and

oP = —IlI is the particle stress written in terms of pressure. The relative flux is
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representable as a generalized Fick’s law j = — f Dol (x —x') - Vn(X/, t)dx’ with
a nonlocal diffusivity given by the collective diffusivity. Substituting this definition

into Eq. (3.15) gives

1
—/ Dl (x —x) - Vn(xX', 1)dx’ = ZV Noad

1 9oP (3.16)
=———-Vn.
{ On
Combining Eq. (3.14) and (3.16) in the limit k — 0 gives
. 1 /01 D*vimy
Dl(k — 0 :—(—) - - 3.17
k=0 =25 " sx=0 -17)

Using the definition for mechanical compressibility results in the well known com-

pressibility equation [3, 29, 34]

S(k — 0) = nZ D™y = nkTyxr, (3.18)

expressed in terms of the activity k7§ instead of the thermal energy kg7, as pre-
sented in Section 3.4. A more detailed discussion regarding this derivation and its

origins can be found in Leshansky and Brady [29].
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Chapter 4

MACHINE LEARNING FOR PHASE BEHAVIOR IN ACTIVE
MATTER SYSTEMS

We demonstrate that deep learning techniques can be used to predict motility induced
phase separation (MIPS) in suspensions of active Brownian particles (ABPs) by
creating a notion of phase at the particle level. Using a fully connected network
in conjunction with a graph neural network we use individual particle features to
predict to which phase a particle belongs. From this, we are able to compute the
fraction of dilute particles to determine if the system is in the homogeneous dilute,
dense, or coexistence region. Our predictions are compared against the MIPS
binodal computed from simulation. The strong agreement between the two suggests
that machine learning provides an effective way to determine the phase behavior of

ABPs and could prove useful for determining more complex phase diagrams.

This chapter includes content from our previously published article:

[1] A. R. Dulaney and J. F. Brady, “Machine Learning for Phase Behavior in
Active Matter Systems”,
A.R.D. participated in the conception of the project, developed the models,
analyzed the data, and participated in the writing of the manuscript. (2020),
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4.1 Introduction

Since its inception, the field of active matter has been dominated by studies of
motility-induced phase separation (MIPS). The majority of these studies focus on
developing a theoretical framework to describe clustering behavior and the accu-
mulation of active particles at boundaries. Due to the striking similarities between
classical and active phase behavior, the creation of thermodynamic-like frameworks
has been of particular interest but continues to be a source of debate [1-5]. A key
difficulty surrounding this approach is the lack of a well-defined notion of temper-
ature and free energy—as these systems are far from equilibrium—which results

from the intrinsic swimming motion of active particles.

Adhering to the structure of traditional thermodynamic frameworks has resulted in
several definitions of a non-equilibrium chemical potential [6—8], each of which
predicts an active binodal but fails to predict the correct coexistence pressure mea-
sured inside the phase envelope from simulation. The shortcomings with the current
chemical potential definitions do not preclude its existence but necessitate alternative
measures for determining the phase boundaries. Large scale computer simulations
provide a means to computing system pressure, which can provide insights into the
phase behavior through the mechanical instability criterion. While this method is
robust and has shown great success [2, 9, 10], it inherently has a steep trade-off
between accuracy and computational cost. Determination of the phase boundary
requires the change in system pressure with volume fraction to be zero. To make
such a judgment one either needs to finely sweep volume fraction space or rely on
fitting functions to smoothly fit the pressure data. Both methods are highly depen-
dent on the quality of the pressure data obtained at each point in phase space, and
large fluctuations in active pressure make this a difficult task, especially deep in the

coexistence region [2, 9].

To overcome these limitations we turn towards methods used to characterize other
inherently complex materials. Recently, there has been a surge of interest in using
machine learning algorithms to aid in material characterization [11-14]. While
early studies were predominantly interested in materials containing explicit sym-
metries or those confined to two-dimensional lattices [11, 12], there has been some

development in classifying amorphous materials [14].

In this study, we leverage the developments in machine learning to aid in charac-
terizing the observed phase behavior in suspensions of active Brownian particles

(ABPs). ABPs are an important minimal model system for determining the behavior
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of self-propelled colloids, bacteria, and other living organisms. The key feature that
distinguishes an active colloid from a passive one is the driven and persistent nature
of its motion. This distinct characteristic of its dynamics gives rise to a wealth of
interesting behaviors including self-assembly [15], clustering [16, 17], and motility-
induced phase separation [1-5]. As such, active materials have garnered interest
from the chemical and material science communities for novel drug delivery meth-
ods, remediation strategies, and material design methods at the microscale [15, 18,
19].

Due to the nonequilibrium nature of these systems, it is difficult to develop analytic
theories that can accurately predict the more complex collective behaviors. Thus,
we look towards machine learning to aid in this endeavor. Machine learning algo-
rithms are capable of discerning difficult—and potentially nonintuitive—nonlinear
relationships among system variables, which would otherwise go unnoticed. These
algorithms also have the benefit of readily handling multi-body correlations, which

are exceptionally taxing or intractable through traditional analytic means.

Using a combination of deep learning and large-scale simulation, we focus on
characterizing the phase behavior of particles in a suspension of active Brownian
disks. We use machine learning to predict particle phase at a per particle level
for simulations conducted at different regions in phase space. We then use these
phase labels to get an estimate for the fraction of particles in each phase present at
a given point in phase space. This fraction is then used to determine the system
phase behavior. The chapter is outlined as follows. In section 4.2 we define the
implementation of the active Brownian particle model used in our simulations.
We then outline the datasets generated for use in our machine learning model in
section 4.2. Here we also discuss the feature selection used for our machine learning
model. In section 4.2, we describe the machine learning model architecture used in
this work and provide details on the training procedures. In section 4.2, we discuss
the input features used for our model. In section 4.3, we discuss the representation
of our simulation snapshots as graphs. In section 4.4, we present our results in
the form of predictions of the phase behavior for suspensions of ABPs at different
regions in the phase diagram. Finally, in section 4.5 we discuss the implications of

this work and future directions.
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Simulation Details

Suspensions of monodispersed, purely active particles are modeled using the active
Brownian particle (ABP) model. The active motion is characterized by an intrinsic
swim velocity Ug = Upq—where q is the particle orientation—which reorients on
a timescale 7z. Particles of radius a interact through a Weeks-Chandler-Anderson
(WCA) potential with cutoff radius r.,; = (2a)21/ 6 and depth € = 200F*""q,
where F*"" = Uy is the magnitude of the force resulting from the product of the
translational drag { and swim velocity. Here we assume particles reorient via a
stochastic torque L* governed by zero-mean white noise statistics with variance
27 Izeé(t) /Tr, where (g is the rotational drag coefficient. Particle positions and

orientations can be evolved in time using overdamped Langevin dynamics

0=={U;+F"™+ %" FL, 4.1)
i£]

0=— g9 +LE, (4.2)

where FfWim = {Uyq; is the swim force of particle i, F{J’. is the interparticle force
between pair i, j, U; is the velocity, €; is the angular velocity, and { and (g are the
translational and rotational drags, respectively. The angular velocity is related to the
particle orientation by dq;/dt = Q; X ;. Normalizing position and time by a and 7,
respectively, results in the dimensionless reorientation Péclet number Per = a/l,
which is the ratio of a particle’s size to its persistence length [ = Uytg—the distance

traveled between reorientation events [2].

We performed independent simulations of 40,000 particles for 10,0007 for various
combinations of the two governing nondimensional parameters: the packing fraction
¢ and Peg. To avoid introducing an additional force scale Peg was varied by
changing 7z at a fixed value of Uy. All simulations were conducted using the
HOOMD-Blue software package [20, 21]. Hydrodynamic interactions have been
neglected.

Datasets
Our machine learning model is structured to predict phase identity at a per particle
level, similar to what was done by Ha et al. [22]. This results in a binary classification

task in which particles can be members of the gas phase or the dense phase. For
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simplicity, we ignore the second-order hexatic transition present in two-dimensional

hard disk systems and treat the hexatic phase as part of the dense phase.

We use the simulations outlined in section 4.2 to produce datasets for each point in
phase space represented by a (¢, Peg) pair. For each of these phase points, we look
at 6 snapshots spaced roughly 1,0007g apart. From these snapshots, we construct
a feature set for each phase point which consists of 240,000 entries. Predictions of
the phase behavior at each phase point are averaged across each of the 6 time points

to reduce bias from a single configuration.

Learning Framework
Here we give a brief overview of neural networks and describe the architecture and

training routine used in this work.

Neural networks have shown great potential for predicting particle phase for both
two-state and amorphous phase-separated systems [13, 14]. The most common
neural network employed is the fully connected feedforward network. Feedforward
networks are composed of layers of transformations modified by nonlinear functions.
These layers can be stacked resulting in the output of one layer acting as the input of
the following layer. The basic form for a layer f is f(x) = g(Wx+b), where g is the
nonlinear activation function, x is the vector input data, W is the weight matrix, and
b is a vector of biases. When constructing a fully connected network the activation
functions g for each layer need not be the same, and additional regularization terms
can be added to prevent overfitting to training data. Some common activation
functions are the sigmoid, hyperbolic tangent, and rectified linear unit (ReLU),
defined as g(x) = max(0,x). Once constructed, a network is given an objective,
or loss, function to minimize and updates the weight and bias terms through either
gradient descent ! or a more sophisticated algorithm like Adam [23]. Here we are
interested in a binary classification and thus use binary cross entropy to compute

loss

L =—(ylog(p)+ (1-y)log(l - p), (4.3)

where L is the loss, y is the binary indicator of whether the positive class is the

!Gradient descent is an iterative method for locating the local minimum of a function by
determining the steepest gradient of the function with respect to its independent variables. In this
context gradient descent is used with backpropagation, which relates the weights of each layer in the
neural network back to the loss function so the entire network can be updated during each iteration.
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correct label for a given observation, and p is the probability that an observation is

of the positive class.

Recent advances in machine learning have resulted in the adoption of graph con-
volutional neural networks (GNNs), which utilize graph theory to add information
on the spatial proximity of training data [24—26]. These are similar to traditional
convolutional neural networks (CNNs), which rely on convolution and connected
layers to make predictions. The primary uses for CNNs have been been in the areas
of computer vision and natural language processing, due to the inherent structure of
image and text data. Similarly, GNNs use convolutions and the inherent structure
of the data, but adjacent training points need not be distributed on a rectilinear grid
like an image or sequentially like in text [26]. In both architectures, the input ma-
trix is convolved with a set of matrices—the convolution layer—to produce output
matrices. These convolution layers are equivariant under translation and rotation,
making them highly effective at learning abstract features of an image or graph while

simultaneously reducing the number of parameters.

The amorphous configurations found in particle-based phase-separated systems can
benefit from traditional CNNs [14], but this requires spatial discretization of the
system which may vary with particles of different sizes. We avoid this when looking
at MIPS in active disks by using a GNN to provide information on the local structure

to the network.

Our training and model architecture is as follows. We first train a supervised deep
neural network (DNN) on data in the single-phase region above the critical point.
After the supervised network is trained, we predict particle labels for a simulation
of interest. These predictions are then taken and those that predict the phase with a
>90% confidence are used as seed labels in a semi-supervised GNN. We then take
the simulation snapshot and represent it as a graph, which we will discuss in more
detail in section 4.3. We then train a GNN for each graph. The training in this
step is structured as a transductive, or semi-supervised, learning problem. For each
graph we use the seeded particle (node) labels to propagate labels to the remainder
of the graph. We use the same features from the DNN, but instead of learning a very
general problem, we are using confidently labeled particles to influence the labels
given to their neighbors. In this work, we use the graph attention network (GAT)
architecture [25] for our GNNs implemented using the DGL software package [27].
The resulting prediction from the GNN is then weighted against the prediction
provided by the DNN in the first step.
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Figure 4.1: The learning architecture used in this work to predict particle phase
labels. First, a particle feature matrix is fed into a fully connected DNN. Simulta-
neously particles are connected to form a graph structure. The graph is partially
labeled using the most confident (>90%) labels from the DNN and is then used with
the feature matrix as inputs into a GNN consisting of three GAT convolution layers
with a final softmax activation function. The resulting label probabilities from the
GNN are then averaged with the label probabilities output from the DNN to achieve
the final label probabilities. Each particle is then given the most probable label.
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A flowchart of our learning process is outlined in Fig. 4.1. The purple, orange,
and teal lines of the GAT convolution represent the different attention heads for the
layer. Each attention head serves as a means to create feature abstractions [25].
The coeflicients a; ; are learned weight parameters which determine the weighted
importance of neighbor j on particle i. The attention heads from each node are
then concatenated or averaged to produce the layer output, which may be a label
probability or feature abstraction. Details of the GAT implementation can be found
in reference [25]. Further details of the model architecture used in this work are

presented in appendix 4.7.

Feature Selection

In order to label individual particles, our feature space is limited to quantities
that can be computed on a per-particle basis. This includes Voronoi volume, the
number of first shell Voronoi neighbors, and the average of first shell Voronoi
volumes. We repeat this averaging process for the second and third shell neighbors
as well to incorporate information about the local environment. We also include
the hexatic and translational order parameters defined as y¥¢(i) = 1/n Z;? P
and Ge(r;j) = Z’} Ye(i) - ¢ (j), respectively, where n is the number of Voronoi
neighbors, r;; is the vector connecting pair ij, 6;; is the angle between r;; and
the reference vector (0, 1), and ¢ (i) is the complex conjugate of the hexatic order
parameter. The Voronoi volumes and the hexatic and translational order parameters
were computed using the Freud analysis software [28]. In order to account for
some of the dynamics we include the force-orientation autocorrelation F; - ¢; and
the particle speed U; = F//(.

Our initial set of features is paired down using a boosted random forest to remove
highly collinear features in order of importance. The final feature set is comprised
of the Voronoi volume, number of third shell neighbors, hexatic order parameter,
translational order parameter, and the force-orientation autocorrelation in order
of importance. The process of removing collinear features is discussed further in
appendix 4.6 and the correlation matrices for the full and final feature sets are shown
in Fig. 4.5. Itis interesting to note that the number of third shell neighbors is ranked
highly in importance because the model might be learning the order-disorder hexatic
transition. Lastly, we take each of our features and average them across all first shell
neighbors to create an additional set of aggregate features. This aggregation step
improved the performance and training stability of our DNN in the first step of our

model.
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Figure 4.2: Simulation snapshots and respective graph structures for different re-
gions of phase space colored by particle Voronoi volume. We look at the weakly
active (Peg ~ 0.11) (a),(e) dilute and (b),(f) dense regions, (c),(g) the region near
the critical point (Pg ~ 0.047), and (d),(h) deep within the coexistence region
(Peg ~ 0.011).

4.3 Graph Representation

The MIPS transition is markedly similar to the liquid-vapor transition seen in tradi-
tional thermodynamic fluids with the two coexisting phases both being disordered.
In thermodynamic fluids one could measure local density and use spatial density
discontinuities to distinguish between the coexisting phases. However, this is diffi-
cult to do in practice as we are constrained to finite systems in simulations. Regions
close to the critical point are subject to large density fluctuations which make it
difficult to observe persistent macroscopic phase domains. Therefore, we need an
alternative way to gather this similar type of local structure in the system. We do

this by representing the system as a graph.

For each simulation snapshot, we represent the system as a graph where each
particle is a node in the graph and connections are made between first shell Voronoi
neighbors. With periodic boundaries, this results in a fully-connected graph. If
the edges are then constrained to be the distances between particles we obtain a

three-dimensional, toroidal shape as depicted in Fig. 4.2(e)—(h).

In Fig. 4.2, we present simulation snapshots at different points of the phase diagram
with their corresponding graph representations. Each particle and corresponding
graph node are colored based on the Voronoi volume fraction of that particle.
The graphs in each region of the phase diagram possess unique morphologies and

characteristics. The gas phase [see Fig. 4.2(a),(e)] is marked by a uniform graph
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with a rough surface. The disorder in the phase prevents a smooth surface from
forming and any structure present is short-range. If we next look at a primarily dense
system [Fig. 4.2(b),(f)], we see that the graph representation still has bumps on the
surface, but they are not as sharp. The increased system density causes jamming and
reduces the magnitude of fluctuations, which results in longer-range morphological
features. When we approach the critical point [see Fig. 4.2(c),(g)], the graph starts
to form "lumps" which are connected by coarse sections of the surface. This results
from mixing regions with dense and dilute phase features. We can think of the
connecting coarse regions as articulation points in the graph surface, which become
less pronounced with lower activity. As we go deep into the coexistence region, the
dense region is made up of a single large crystal providing clear spatial domains for
the two phases, as shown in Fig. 4.2(d). The distinctive regions manifest as a coarse
mesh for the dilute phase—similar to Fig. 4.2(e)—and a smooth surface for the

dense phase with perturbations resulting from crystalline defects [see Fig. 4.2(h)].

The clear distinction in graph structure in the different phase regions lends support
for the use of graph neural networks to aid in predicting particle phase. The use of
local structure also serves to help make decisions for particles near phase interfaces

and regions which may be marked by large density fluctuations.

4.4 Results

Here we present the results from our machine learning model. Our model was trained
on very dilute (¢ < 0.2) or very dense (¢ > 0.7) phase points above the critical
point and deep within the coexistence region. Training points from deep within the
coexistence region were labeled by inspection and particles near phase interfaces

were not used for training. The model was then used to predict particle phase below

crit
R

shown in Fig. 4.2(a)—(d) colored by their predicted phase labels. It can be seen that

the critical point (Pe"" ~ 0.047). Figure 4.3 presents the snapshots of particles
our model is highly capable of distinguishing particle phase in the homogeneous
phase and deep within the coexistence region. The most challenging region is near
the critical point as these particles are more difficult to readily distinguish from

inspection.

Therefore, to evaluate performance in this region we take the predicted particle
labels for each phase point and compute the fraction of dilute particles F, present
and average this across all T = 6 time points for a given (Peg,$) pair. This is

represented by
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Figure 4.3: Simulation snapshots for different regions of the phase diagram with
particles colored based on their predicted phase.

T N
Fg=%;(1—%;yj(t)), (44)

where y; is the predicted label of particle j and N is the total number of particles.
In our model the positive case is the dense phase (y; = 1) and the null case is the
dilute phase (y; = 0). To account for small fluctuations in prediction we consider a
point to be in the dilute region if F; >95% and to be in the dense region if Fy, <5%.
Any other value of F, is labeled as coexisting as we are only considering points

below the critical point (Pe§ ™ ~ 0.0468).

Figure 4.4 presents the MIPS phase diagram with points colored based on which
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Figure 4.4: The Per—¢ phase diagram for purely active Brownian particles. We
show the spinodal (black dash-dotted line) and binodal (purple dashed line) predicted
by Takatori and Brady [2] along with the binodal computed from slab simulations
(purple points). A fourth-order polynomial fit (solid purple line) is used to give a
more complete picture of the computed binodal. The shaded region represents one
standard deviation above and below the predicted fitting parameters. The remaining
points on the graph are colored based on their predicted region of phase space from
our machine learning model. We use a cutoff of >95% gas fraction to be considered
gas (purple) and <1% gas fraction to be considered in the dense phase (blue). Every
value for gas fraction between those values is considered within the coexistence
envelope. Here we show Pep values in the range 0.0468-0.0374.

phase the system is predicted to be in using our machine learning model. We compare
the predicted phase against the binodal predicted by Takatori and Brady [2] (purple
dashed line) and the binodal computed from slab simulations (purple points). The
solid purple line is a fourth-order polynomial fit of the computed binodal. The
shaded region represents the range of this fit 1 standard deviation for each fitting
parameter. The spinodal predicted by Takatori and Brady (black dash-dotted line)
is shown for completeness. We find remarkable agreement between the binodal

obtained from simulations and our machine learning predictions.

From Fig. 4.4 it is clear that predicting dilute particles is more challenging than

predicting dense particles. We suspect this difficulty arises from the large tail in the
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distribution of Voronoi densities for particles in the dilute phase. Ha ef al. observed
this type of large overlap for particle density distributions when studying the phase

behavior of a Lennard-Jones fluid [22].

4.5 Conclusions

We have created a machine learning model to predict the phase identity of individual
active Brownian particles. Our results indicate that single-particle parameters are
sufficient for learning particle phase when some amount of structure is included in
the system. We have also shown that the MIPS phase transition can be predicted
using this machine learning model. From our model optimization and feature
analysis, we conclude that kinematic features—such as particle speed or the force-
orientation correlation—are important for distinguishing the phases present in the
MIPS transition (see appendix 4.6 and Fig. 4.6), unlike the traditional liquid-vapor
transition present in thermodynamic fluids. The directed motion present in active
systems results in a stronger separation for particle speeds and longer correlation
lengths than would be seen in traditional systems when considering phase identity
near the critical point. Ha ef al. were able to successfully characterize particle phase
of a Lennard-Jones fluid with high accuracy using a convolutional neural network
and only three structural features [22], but we find that our model performance
steeply drops off near the critical point if we do not include at least one of the

kinematic features mentioned above.

We have demonstrated that the local structure plays an important role in determining
the phase behavior of active systems. Our graph representations of the system
possess unique characteristics specific to their region of the phase diagram—which
can be learned using a general graph neural network framework with attention. This
matches the results from Swanson ef al. and Ha ef al. who included structure
via a message-passing network and convolutional neural network, respectively, to

characterize amorphous materials [14, 22].

We believe machine learning can be used for more challenging classification prob-
lems. It would be straightforward to extend our framework to also distinguish
between the hexatic crystalline phase and the disordered dense phase to produce
a more complete phase diagram. Our model is already capable of learning the
importance of the third shell average Voronoi volumes, which act as a surrogate
for the third peak in the radial distribution function. This peak provides a way to

distinguish between liquid and solid phases. We also feel a more specific model
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could be created to directly predict which region of the phase diagram the system is
in by performing classification at the graph-level instead of the node-level (as was
done in this work). A graph-level classifier can then be readily generalized using
an unsupervised learning scheme, where the model is learning distinctions between

the present phases.

The learning architecture used here should also readily generalize to active systems
with thermal noise, polydispersity, or higher dimensionality. These deviations from
the problem focused on in this work would result in different distributions for feature
values, but should still maintain similar relationships between features. The graph
network can be further extended to include edge features, which would allow for
more complicated or varied interparticle interactions and should prove to be a useful

tool in the characterization of other amorphous systems.

Appendix

4.6 Feature Correlation and Importance

The correlation matrix for our full initial feature set is presented at the top of Fig. 4.5.
In the figure we have used a shorthand notation where ¢ is the Voronoi volume
fraction, ¢; is the Voronoi volume fraction averaged over the i’ shell neighbors,
N; is the number of neighbors in shell i, U is the particle speed, F - q is the force-
orientation correlation, 4 is the hexatic order parameter, and G is the translational
order parameter. The hexatic and translational order parameters are broken into their
real part, imaginary part, magnitude, and angular components represented by R (+),
I(), |- |, and (-)e g, respectively. Features were dropped in order of the strength of
the measured collinearity with other features. When considering a pair of collinear

features, the feature that contributes the least to the total importance is removed.

We use a simple boosted random forest to compute feature importance. Our random
forest classifier is made up of 1000 estimators, with a max decision tree depth
of 8, and trained for 30 epochs with early stopping. Our boosted random forest
is implemented in XGBoost. This classifier is then used to compute the SHAP
feature importance (see Fig. 4.6) [29]. The color in Fig. 4.6 indicates the value
of the feature in the line, and the actual SHAP value indicates how important a
feature value was for predicting the positive (dense) case. As an example, from
Fig. 4.6(top) we see that ¢3 is the most indicative feature, and large values of this
feature strongly indicate that the particle is dense, whereas very low values indicate

that the particle in question is likely dilute. The SHAP analysis for the full feature
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Figure 4.5: The correlation matrix for the (top) full and (bottom) reduced feature
sets. Strong positively (red) and negatively (blue) correlated features are removed
in the reduced feature set.
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Table 4.1: The specific model architecture of the trained deep neural network used
for the results presented in this work.

Layer Size  Activation  Batch Norm Dropout
1 128 ReLU - -
2 128 LeakyReLU? True 0.69

3 128 LeakyReLU? True 0.35
4 64 LeakyReLU? - 0.75

5 2 SoftMax - -

4LeakyReLU activation function with negative slope @ = 0.1.

Table 4.2: The architecture of the graph network portion of our model.

Layer Size  Activation Attention Heads
1 8  LeakyReLU? 2
2 8  LeakyReLU?* 2
3 8  LeakyReLU? 2

4 2 SoftMax -

4LeakyReLU activation function with negative slope @ = 0.2.

PThis is a fully-connected layer used to get the final prediction.

set is not very insightful due to the presence of strong collinearity, but it can still
be used to determine which feature to drop from a pair of highly collinear features.
After removing a feature the importance is recalculated as this can change as the
feature set changes. The final correlation matrix for the features used in this work is
shown at the bottom of Fig. 4.5, and the final feature SHAP values are shown in the
bottom of Fig. 4.6. There is greater diversity in the SHAP values obtained, and now
the volume fraction as the most important feature, which is in line with our physical

intuition.

4.7 Model and Training Details

The trained DNN used in this work is 5 layers with batch normalization and dropout
on some of the layers for regularization. The number of layers in the network,
size of each layer, batch normalization, and dropout values were determined from
1,500 rounds of hyperparameter optimization with the Hyperopt package [30]. The
hyperparameter optimization was performed in three stages, each of which was 500
rounds. We first optimize the learning rate to speed up future training as much
as possible. The optimal learning rate Ir = 3 x 107> was used for the remaining
optimization rounds with a batch size of 32. The next round of optimization focuses

on the number of neurons in the network, the number of layers, and the activation
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function used for the layer (between ReLLU and LeakyReLU). The final optimization
round is focused on regularization and tunes the batch normalization and dropout for

each layer in the network. Our final chosen parameters are presented in Table 4.1.

The GNN model architecture used in this work was explored manually. The graph
network is intentionally kept small as this was shown by Velickovi¢ et al. to be
effective at transductive learning [25]. The parameters of our GNN are shown in
Table 4.2. Each layer in the network is a GAT convolution layer except for the last

one, which is a fully-connected layer to give the outputs.
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Chapter 5

CHARACTERIZING SUPERCRITICAL ACTIVE FLUIDS

Using a combination of large-scale simulation, analytic theory, and machine learn-
ing, we characterize the supercritical behavior of a suspension of repulsive active
Brownian particles (ABPs). We use our previous work on the compressibility of ac-
tive matter to compute the Widom line in the supercritical region of the active phase
diagram. The identification of the Widom line provides insight into the relative
character of each phase (liquid or gas) present at each point in the phase diagram in
the supercritical regime. We use a machine learning classifier to identify gas-like
and liquid-like coexisting particles in the supercritical region, and from this, we

determine the location of the Widom line based on an equal fraction of each phase.
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5.1 Introduction

Active matter systems truly challenge our theoretical understanding of nonequilib-
rium phenomena and simultaneously represent a potentially innovative approach
to directed transport and material design at the microscale. In contrast to tradi-
tional nonequilibrium systems, where directional driving forces emerge as a result
of global changes in thermodynamic variables or boundary conditions, active sys-
tems are intrinsically out of equilibrium at the single-particle level. The inherent
nonequilibrium nature of these systems and their complex collective behavior have
inspired a large body of work in the area of nonequilibrium statistical mechanics

and soft condensed matter.

Particular focus has been placed on understanding the seemingly paradoxical phe-
nomenon of motility induced phase separation (MIPS), where a suspension of
purely-repulsive active particles exhibits behavior that is analogous in many ways
to liquid-vapor phase coexistence in equilibrium systems [1-7]. While a balance
between attractive and repulsive intermolecular forces is required to observe liquid-
vapor coexistence in classical fluids at equilibrium, the same is not true for MIPS—
which occurs with no attractive forces present. This startling discovery has resulted
in a vast majority of research on the subject focusing on coexistence and the two-
phase region (below the critical point), giving rise to multiple phase diagrams in

both two and three dimensions.

There has been significantly less work on the behavior of ABPs in the supercritical
region (i.e. above the critical point where there is no liquid-vapor phase separa-
tion) [8]. Most studies in this region have been centralized around the critical point
to determine the universality class of ABPs [7, 8] or more recently, to study response
functions in active suspensions [9]. There has yet to be substantial research into

supercritical active fluids.

Traditional supercritical fluids (SCFs) have been used in a wide range of applications
such as food extraction, pharmaceutical development, and environmental pollution
measurements [10—-12]. The key feature that has made SCFs such a useful tool
for separation and extraction processes is the ability to continuously tune their
properties while in a homogeneous state. Supercritical fluids have gas-like and
liquid-like properties that dominate different parts of the SCF regime [10-13] and

allow for selective and tunable separation processes based on the state of the fluid.

The variation in the parameters of a SCF can be viewed as the fluid becoming

more gas-like or more liquid-like depending on the state variables. The desire to
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distinguish between the regions of the supercritical phase led to the development of
the Widom line [14]. The Widom line is denoted as the line of maximum correlation
length or the local maxima of thermodynamic response functions [14]. These traits
are reminiscent of the divergent behavior at the vapor-liquid coexistence line, which
allows one to consider the Widom line as an extension of the coexistence line into
the supercritical phase. It was shown by Ha et al. [15] that the Widom line can be
described by the line of points where the phase fraction of liquid-like and gas-like
particles are equivalent thanks to an argument minimizing the free energy of the
system while maximizing the density fluctuations. This provides a method through
which the supercritical phase can be divided to give yield predominantly gas-like or
liquid-like behavior.

Our recent work showing that the “isothermal” compressibility behaves like a ther-
modynamic response function in suspensions of active Brownian disks creates an
excellent starting point through which we can explore the Widom line in these sys-
tems [9]. Through a combination of large-scale simulation and our recent machine
learning model [16], which classifies active particles based on the phase they be-
long to, we are also able to test whether the results obtained by Ha et al. [15] hold
for active systems by extending our model to classify particles in the supercritical

region.

This chapter is organized as follows. In section 5.2, we define our implementation
of the active Brownian particle model and discuss all relevant details to performing
large-scale simulations. In section 5.3, we discuss the phase phenomenology for
active Brownian systems in the supercritical region. Additionally, we identify several
active Widom line. In section 5.4, we introduce a machine learning model to predict
particle phase behavior in the supercritical region. In section 5.5, we provide an
argument for computing the Widom line from the equivalence of phase fraction in
the supercritical region. We also compute the Widom line using phase fraction,
predicted from our machine learning model. Lastly, we summarize our work and

draw comparisons between active and passive systems in section 5.6.

5.2 Simulation Framework

We simulate a suspension of monodisperse, athermal active particles of radii a. The
active motion is described by an intrinsic swim velocity Upq—where q is the particle
orientation—and a reorientation timescale 7g. The system is evolved forward in time

using overdamped Langevin dynamics
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0=—-{U;+F™™+ % FL, (5.1)
i*j
0= ¢rQ; +LF, (5.2)

where U; is the translational velocity of particle i, €; is the angular velocity,
FfWi’" = {Uyq; is the force from swimming, and { and {r are the translational
and rotational drags, respectively. The particle orientation evolves in time via
0q;/0t = Q; X ;. Reorientations occur through a stochastic torque Lf governed
by white noise statistics with zero mean and variance 2{1%5 (t)/tr. Normalizing
the length and timescale by £ = Uytr—the distance travelled between reorientation

events—and 15.

5.3 Active Widom Lines

Supercritical fluids can be thought of as heterogeneous mixtures of microphases,
each of which is present in the nearby two-phase coexistence region [17]. The
Widom line is defined as the maximum of a thermodynamic response function:
isobaric heat capacity, isothermal compressibility, and thermal expansivity to name
a few [17-21]. While there is a heat capacity prediction for active particles [22], we
focus on and compute the Widom line via “isothermal” compressibility y; [9]. The
compressibility can be defined in terms of the active pressure I1¢¢" = [T/ 4 TTsWim

as

Xv =~ (5.3)
n

1 ( on )
o114t ) N peg’

where IT*"" is the pressure that results from the activity [23], [T/ is the collisional

pressure, n is the number density, and N is the total number of particles. The

compressibility can also be defined from the static structure factor S(k) via the

active compressibility equation

Xt = S(k| — 0, (5.4)

nkT

where k;Ts = £ UgTR /2 is the activity [23] and k is the wavenumber. The Widom
line can then be calculated by the maximum of y, using either definition. Since

the Widom line was originally defined as the maximum correlation length, we can
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Figure 5.1: The maximum density fluctuation and compressibility Widom lines for
ABPs on the Pegp — ¢ plane. The beginning of each Widom line is close to the
critical point predicted by Takatori and Brady [1].

compute it in this way by expanding the static structure factor in the limit of small

wavenumber

S(0)

S(k| - 0) = —————,
(= 0) = ==

(5.5)
where £pz is the well-known Ornstein-Zernike correlation length [6, 24]. By
computing the static structure factor at different points in the phase diagram, we can
use the expansion in the low wavenumber limit to compute £pz from a regression,
as was done in [9]. The Widom line, along with the spinodal predicted by Takatori
and Brady [22], is presented in Fig. 5.1.

Figure 5.1 depicts the Widom line as computed from maximizing y. (defined using
Egs. (5.3) and 5.4) and maximizing the density fluctuations &; = (In/d11%")y pep,
along with the spinodal predicted by Takatori and Brady [1]. Each Widom line is
computed for discrete (Peg, ¢) pairs with dashed lines to draw the eye. There is
excellent agreement in the Widom line computed mechanically (blue squares) and

from the static structure factor (red circles), as expected from the equivalence of
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the two definitions for compressibility. The error (red shaded region) on the data
obtained using the active compressibility equation results from the discrete values
used in our simulation data. The maximum density fluctuations (green triangles)
deviate from the maximum compressibility due to the additional factor of n~!. Here
we see that each of the lines truncate at the critical packing fraction ¢’ ~ 0.58 [1]),
given by the black dashed line. Early truncation of the Widom lines resulting from
compressibility is due to the divergence of y: as ¢ — 0 from the leading factor
of n=!. As such, we have neglected to compute the Widom line for values of Peg
which result in a maximum near ¢ = 0, a practice which is not uncommon for certain
definitions of the Widom line [18].

The Widom line may also be computed using the maximum correlation length.
From Eq. (5.5), we obtain the Ornstein-Zernike correlation length, and the resulting
Widom line lies directly on the compressibility line computed using structure factor.

Thus, we have abstained from presenting this in Fig. 5.1.

5.4 Machine Learning Framework

Since the supercritical phase can be viewed as a heterogeneous mixture of gas-
like and liquid-like particles, it is impossible to ascertain the identity of the local
states through standard order parameters. We circumnavigate this difficulty through
the use of machine learning (ML). In our previous work [16] we were able to
classify the state of particles below the critical point—in the coexistence region—
and consequently recreate the MIPS binodal. Here we can rely on a similar strategy,
but now we will focus on predicting the local state of individual particles in the

supercritical region.

We are solving a binary classification problem using a combination of supervised
and semi-supervised ML frameworks. Our model is structured in two steps: the
first being a supervised deep neural network (DNN) and the second being a semi-
supervised graph neural network (GNN). The DNN takes particle features and
makes an initial prediction on the state of each particle given as a probability of
the particle being in the dense phase (positive case). The label probability is then
one-hot-encoded and compared against the true labels designated for each particle.
Our focus is on predicting in the supercritical region, which allows us to use the

homogeneous dense and dilute phases below the critical point for training data.

Once the DNN model is trained, we then predict on points of the phase diagram

in the supercritical region. From the initial prediction, we take the most confident
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labels—those with >90% probability of predicting a given phase—and use them
as the label. Next, we convert the simulation snapshot from which the feature data
was taken into a graph form (as was done in [16]). The confident labels from the
DNN, the graph, and the feature data are then used as inputs for the semi-supervised
GNN. The GNN uses a particle’s labeled neighbors to influence its predicted state.
Once a label is obtained, the probabilities for the label from each model are averaged
together to yield the final label prediction. The GNN step is important for making
final decisions because the distribution of features for each phase are expected to
be more similar in the supercritical region. We can formulate the problem in this
way because GNNs have a history of performing well on semi-supervised node
labeling problems like we have here [25-27]. Our GNN layers are based on the
graph attention network (GAT), which quantifies the importance of neighboring
nodes through self-attention [28]. For both models, our loss function is taken to be

binary cross-entropy (shown in Eq. (3) of [16]).

Particle Features

Particle features considered are presented in Table 5.1 The set of features cho-
sen include the Voronoi volume fraction computed from a Voronoi tessellation
@Yoo = na* /v, the number of neighbors in the k™" Voronoi shell, and the aver-

voro is the Voronoi

age volume fraction of particles in the k’" Voronoi shell, where v
volume of the particle of interest and k = 1,2,3. We also utilize the hexatic and
translational order parameters, Y6 and G¢(r;;) respectively, as a metric for structure
in the system. Both order parameters are split into their real R () and imaginary
J(-) parts, angular component (-)y, and absolute value | - |, turning each into four
distinct features. The order parameters and Voronoi analysis were carried out using
the Freud software package [29]. Additionally, we consider the particle speed U
and the correlation between the force acting on a particle and it’s orientation F; - q;.

Each feature, along with its description and formula are presented in Table 5.1.1

The initial set of features has been paired down using a boosted random forest and
feature importance analysis with XGBoost. We first rank features by importance and
remove highly collinear features of low importance. After a feature is removed the
importance is calculated again and the process is repeated until the most collinear

features have been removed while maintaining those which are highly important.

I'The order parameters are left as one feature each as dividing them into their components is
straightforward and requires no conceptual leaps.
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Table 5.1: The list of per particle features used to predict the local state of active
particles in the supercritical region.

Feature Description Formula
2
¢'°"  Voronoi volume fraction. P = s
Number of neighbors in k' Voronoi
Ny a _
shell.
groro Voronoi volume fraction averaged over groro = 3Nk groro
k k" shell Voronoi neighbors. k b
Force-orientation correlation of particle
Fi : ql i. -
Speed of particle i with drag coefficient
Ui gp P . Ui = ¢|Fi|
The hexatic order parameter of particle 1 <N _i66;:
LI Yo =y 2 e

The translational order parameter com-
Ge(r;j) puted for particle i and Voronoi Ge(r;;) = szv e (D))
neighborsj.¢ '

i < 3.

bp; j is the angle between the vector connecting particle i and neighbor j and reference angle
O, 1).

°r;; is the vector connecting particle pair i, j.

Training Data

The training data was obtained from simulations below the critical point either in
the coexistence region or within either single homogeneous phase. If a (Peg, ¢)
pair lay outside the binodal (see Fig. 5.2), then every particle in the corresponding
simulation was labeled according to the phase predicted from the phase diagram.
For phase points inside the binodal, we used an image labeling procedure to find
boundaries of the given dense and dilute regions, taking special care to stay far away
from interfaces or ambiguous data. This was used to balance the number of dense
particles used for training as the dense branch of the binodal is close to close-packing

(¢cp ~ 0.91). Our image labeling procedure is outlined in appendix 5.7.

5.5 Machine-Learned Widom Line
Now that we have a model to predict the local state of particles in the supercritical

region, we can investigate the Widom line from the perspective of phase fraction.
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Ha et al. [17] show that the Widom line exists at the point of equal phase fraction
using a free energy argument, based on the free energy of mixing. We can attempt
to do a similar thing here for active systems. If we take the free energy of mixing to
be

G = 3G + PG = TyAix S, (5.6)

where G?“! is the active, nonequilibrium Gibbs free energy of the mixture, Gg' is
the Gibbs free energy of the gas, G is the free energy of the liquid, A ;S is
the entropy of mixing, ¢, is the fraction of gas-like particles, ¢; is the fraction of
liquid-like particles, and 7§ has been factored out of the activity to make something
analogous to a temperature (we will see that splitting the activity in this manner
is not essential at the end of our analysis). Using the definition of entropy from
information theory gives an entropy of mixing in terms of the two phase fractions,
like in traditional thermodynamics. This allows us to write the mixing entropy
as ApiyS® = kg Y ¢ilng;, where i = g, represents a phase in the mixture.
If we minimize G““’—as should be the case for coexistence—then we can get
an expression for the difference between the free energies of each phase AG =
(G = G{") [ ksT in terms of the gas fraction

AG =1+2¢,+1n

! ;¢g). (5.7)

g
Since the Widom line can be thought of as an extension of coexistence, we can now
attempt to minimize AG, which gives the criterion for the Widom line as ¢, = 1/2,

just like what was shown for passive Lennard-Jones fluids [17].

Now that we have a phase fraction criterion we can attempt to predict where the
Widom line is located using our ML model. For each (Peg, ¢) pair, we predict
the phase of each particle in a simulation snapshot and compute the fraction of
each phase. This process is repeated for multiple time points (separated by at least
10007g). The predictions at the time points are then averaged—to minimize the
impacts of noise and instantaneous fluctuations—yielding a prediction of the phase

fraction at that particular phase-point.

Figure 5.2 presents our initial machine-learned Widom line (black circles) compared
to the Widom lines computed from our response functions (similar to Fig. 5.1).

When setting the phase fraction equal we see that the Widom line computed from
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Figure 5.2: The Widom line computed from the equal phase fraction of gas-like ¢, =
0.5 to liquid-like particles (black circles) compared to the Widom line computed
from maximum in the compressibility (red circle and blue square) and density
fluctuations (green triangle). The spinodal (black dash dotted line) and binodal
(purple dashed) from Takatori and Brady [1] is shown along with the binodal
computed from slab simulations (purple solid line).

phase fraction retains the same curvature as the line computed from the maximum
of compressibility but is shifted towards higher system densities. We notice that the
maximum compressibility line stays to the left of the critical isochore (¢<" ~ 0.58),
whereas the equal phase fraction and density fluctuation (&;) lines curve to the
right of this critical isochore (an increase in density) before eventually curving back
towards lower densities as activity decreases. Ha et al. showed that the equal phase
fraction criterion matches with the local maximum of the specific heat in Lennard-
Jones fluids [15], which also shows an increase in density as you move away from the
critical point before eventually decreasing back towards the critical isochore again
[18]. The curvature of the maximum y; lines behaves qualitatively similar to those
of Lennard-Jones [18] and van der Waals [18, 19] fluids on the temperature—density
plane. Similarly to equilibrium fluids, the active Widom lines converge near the

critical point but rapidly diverge as activity increases.
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5.6 Conclusions and Future Works

We have computed the Widom line in supercritical suspensions of ABPs using the
local maximum of compressibility and equal phase fraction of gas and liquid-like
particles motivated by a free energy of mixing argument. The Widom line shows
a decrease in density as activity increases, when computed from the maximum of
compressibility yr, just like in Lennard-Jones fluids as temperature increases. If the
supercritical phase is treated as a heterogeneous mixture of gas-like and liquid-like
particles, then one can create an additional criterion for the Widom line given by
when the fraction of each are equal. This balance of phase fraction is derived by
minimizing the free energy of mixing and subsequently minimizing the difference
in the free energy of each pure phase [15]. This serves as a proxy for maximizing the
density fluctuations in the system and is found to occur when the gas phase fraction
¢e =0.5.

To compute the phase fraction of the system, we have developed a machine learning
model which predicts the local state of each particle in the suspension based on
single-particle properties and local structure (similar to the procedure outlined in
[16]). From the predicted phase fractions, we predicted the Widom line based on the
aforementioned criteria. Our equal phase fraction Widom line shows an increase
in density as activity increases, followed by a decrease back towards the critical
isochore. Similar nonmonotonic behavior as a function of activity is seen in the
Widom line computed from the density fluctuations. This behavior shows good
qualitative agreement with the behavior observed in Lennard-Jones and van der
Waals fluids.

The Widom line may be defined using the local maximum of the correlation length
[24]. From this perspective, one could use the Ornstein-Zernike correlation length,
similarly to Brazhkin et al. [19], but this is not the true correlation length in the
system [24]. The true correlation length is found from the decay of the total
correlation function A(r) = g(r) — 1. We were unable to confidently compute the
correlation length in this fashion as g(r) did not fully decay in our simulations
due to finite-size effects. Long-range fluctuations become increasingly prominent
when activity increases, necessitating larger simulation boxes to allow the radial
distribution function to fully decay. As such a more in-depth study on the decay
of h(r) is required to compute the true correlation length and any resulting Widom

line for a supercritical active suspension.

Additionally, we suggest exploring the use of other response functions in active
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systems. We began with compressibility since it can be well defined and it behaves
like a thermodynamic response function [9]. Other traditional response functions
may have active analogues as well. Others have theorized the form of the heat
capacity of ABPs [1], but to our knowledge, there have been no further explorations

into these response functions.

Appendix

5.7 Labeling Difficult Data

We developed a pipeline for autonomously labeling dense particles using image
analysis to generate training labels for particles inside the coexistence envelope.
The procedure for analysis is as follows. First, we load the simulation trajectory.
We then render and save an image of the trajectory at the instance in time of interest,
with particles colored based on their Voronoi density (see Fig. 5.3). The scale for
the color at this stage is not important as the maximum and minimum values are
set based on the individual snapshot to provide the highest pixel contrast. Image
rendering and Voronoi calculations were performed using the Ovito visualization
tool [30].

100

200

300

400

500

600

Figure 5.3: A snapshot of a Brownian dynamic simulation, within the coexistence
region, colored by Voronoi density.
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20

Figure 5.4: The BD simulation snapshot Figure 5.5: Figure 5.4 rescaled such that

from Fig. 5.3 with color converted to a simulation box size can be mapped 1:1

scale from 0-256. to the image size in pixels and color is
normalized from O to 1.

Next, the image pixel values are converted from RGBA to RGB, then to grayscale
to give a single channel value for the pixel color (see Fig. 5.4). The simulation
trajectory is then scaled such that the simulation box size matches with the pixel size
of the image. This creates a 1:1 mapping from particle positions to pixel locations.
Figure 5.5 illustrates the scaling of Fig. 5.4, with the single-channel pixel values

normalized to be from O to 1.

Once the image has been rescaled we apply a 3 X 3 median-value filter to the image.
The filter takes the median value for pixels in a 3 by 3 box and applies that value
to each pixel in that box. The filter is then shifted over and the process is repeated
until the entire image has been masked. This filtering step coarsens the color values
slightly, removing fluctuations and dead pixel zones (see Fig. 5.6). After filtering,
we make a histogram for the pixel values to make thresholds based on high and
low-intensity regions. Figure 5.7 depicts the histogram for Fig. 5.6, with lower
threshold (green line) and upper threshold (red line). These thresholds are picked
such that they are outside local maximums on the histogram. These local maxima
can be thought to represent the phases in the system, with the two maxima on the
right side of the upper threshold representing the disordered dense and crystalline
populations, respectively. The lower threshold is determined by forcing a minimum
value difference between it and the upper threshold. This helps ensure that the lower

threshold does not contain any portion of the dense population.

We perform contour tracing using the determined thresholds to capture high-

intensity and low-intensity regions of the image (see Fig. 5.8). The contours encap-



Figure 5.6: Figure 5.5 after applying a
3 x 3 filter median value filter.

90

7 w
pixel value

Figure 5.7: Histogram of pixel intensity
of Fig. 5.6 with low (green line) and high
(red line) pixel intensity thresholds.

sulate regions of a specific pixel intensity that have a minimum pixel count (roughly

50 for low intensity and 120 for high-intensity regions). This prevents contours from

being placed around small regions in the image that may be rather ambiguous. Par-

ticles are then labeled based on which contour encapsulates them. Labeled particles

are shown overtop the grayscale, filtered image in Fig. 5.9. The visible regions of

gray are those which we neglect thanks to our separation of threshold values. By

Figure 5.8: Contours based on pixel in-
tensity cutoffs in Fig. 5.7, with red and
green contours surrounding high and low
intensity regions, respectively. Only con-
tours that contain more than 50 (low in-
tensity) or 125 (high intensity) pixels are
shown.

Figure 5.9: Particles in the BD simula-
tion snapshot labeled dense (red) or dilute
(green) based on the contour they are en-
cased by from Fig. 5.8 shown overtop
a grayscale representation of the filtered
image in Fig. 5.6.
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ensuring a large contrast difference, we have avoided the ambiguity presented by
the interface between the two phases. Also, we avoid rapidly fluctuating regions by
using minimum values for contour size. The particle labels are then saved and these
can be used as additional training data for our deep learning model mentioned in
section 5.4.
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Chapter 6

MACHINE LEARNING THE INTERFACE IN PHASE
SEPARATING ACTIVE MATTER

The novel swim pressure, while not a true pressure, is still critical for determining
the phase behavior of active Brownian particles (ABPs). In this chapter, we present
a mechanical argument highlighting that there is a jump in fluid pressure at the
phase interface of phase-separated ABPs, and we show that this pressure gradient
is balanced by the increase in swim pressure measured at the interface. We present
the initial steps in providing evidence for the importance of the interface. Using
machine learning we have shown that it is possible to predict whether a particle is a
part of the interface or either bulk phase. By classifying particles in the system as
such, it becomes possible to compute the particle phase pressure difference between
the bulk phases and the increase in swim pressure at the interface. We conclude
this chapter by discussing ideas for future works and further extensions into the

application of machine learning for active systems.
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6.1 Introduction

Phase behavior in active matter systems has been a prominent area of research
over the past decade with a growing body of computational and theoretically driven
work [1-12]. While the interest in developing a full nonequilibrium thermodynamic
framework to describe these systems remains a primary area of focus [11, 13, 14],
many have opted to focus strictly on mechanics as a means to characterize these
behaviors [4, 15—-17]. The well-defined forces, stresses, and dynamics present can
be readily computed even if the systems lie far from equilibrium. The active pressure
being a large contributor to much of the understanding of these systems [15, 18,
19], by describing the instability of expanding bacterial droplets [20], the stability
criteria for the motility-induced phase separation [4, 12, 21], and the partitioning
in confined active matter [22]. However, the use of the active pressure was found
to give a strongly negative surface tension between stable coexisting phases [16,
23]. This oddity led to the current understanding, that the novel swim pressure—a
portion of the active pressure—does not behave like a “true” pressure [17], even
though active particles exert a greater pressure on boundaries than their passive

counterparts.

In this chapter, I discuss the importance of the swim pressure for understanding
phase-separating active systems and show how it behaves like a typical pressure in
certain contexts of coexistence. This chapter is outlined as follows. In section 6.2, we
demonstrate—using mechanical arguments—how the swim pressure enters into the
coexistence criterion at the phase interface. In section 6.3, we discuss the machine
learning framework used to validate our mechanical perspective, which predicts
whether a particle is contributing to the dilute or dense phase or the interface. We
follow up in section 6.4 by showing our predictions for particle labels and discussing
how these labels allow us to compute the pressure independently in the bulk phases
or at the phase boundary. Finally, in section 6.5, we discuss our ongoing work
towards determining the role of the swim pressure in describing phase behavior
in active systems and outline future directions in which we can take the research

presented in this thesis.

6.2 Swim Pressure at the Interface

For two phases to coexist they must be at mechanical equilibrium, meaning the
pressure in each phase must be equal. The phase pressures can be written as
P; = p; +11} fori = I, g, where p} is the fluid pressure in phase i, IT;, is the particle

pressure of phase i, and / and g denote the liquid and gas phases, respectively.
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The particle pressure H;; = nkpT + H[‘;”l is the sum of the osmotic and collisional
pressures. For systems at equilibrium, we know that the chemical potential of the
fluid in each phase must be equal, which forces the fluid pressure of each phase to
be equal, leaving just the particle phase pressures to be balanced in our mechanical
equilibrium constraint. However, if the suspension is active, then there is a jump in
polar order at the phase boundary, causing a jump in the swim pressure. This jump
in swim pressure must be balanced by a jump in the fluid pressure to prevent net

fluid flow from the dense phase.

The mechanical reasoning for this fluid pressure increase is as follows. At low
Reynolds number, conservation of mass is given by the continuity equation V-u = 0,
where u = u,¢ +us(1 — ¢) is the velocity of the suspension, u, and uy are the
velocities of the particle and fluid phases, respectively, and ¢ is the volume fraction
of the particle phase. Conservation of momentum in the suspension gives V- = 0,
where the stress ¢ = o/ + o” is a sum of the fluid stress and particle stress.
The fluid stress o/ = —p 7I can be written in terms of the fluid phase pressure.
The particle phase stress o = —nkpT1 — n(xF”) comes from the osmotic pressure
and interparticle or collisional stress (given as the first moment of the interparticle
force), where (...) is an average over particles in the suspension. Next, we can
look at the conservation equation for the number density. We can start by writing a
Smoluchowski equation describing the evolution of probability density for particle

positions P(x, q) in position and orientation space at steady state

V-jr+Vgr-jr=0,
ir = uP + UpqP +uP — D;VP, 6.1)
Jr =—DRrVRP.

Here, U is the intrinsic swim speed, D7 is the translational thermal diffusivity, Dg
is the rotational diffusivity, and Vg = q X V, is the appropriate rotational gradient
operator. Averaging Eq. (6.1) over orientations gives a conservation equation for

the number density n

V . jn = 05
(6.2)
Jjo=un+Uym — DyVn,
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where j, is the number density flux and m = f qqP dqis the polar order. Multiplying

P(x,q) by q and integrating gives the polar order conservation equation

Ve jnu+d(d-1)Drm =0,
Us (6.3)
Jm =um+ UpQ + 7nI — D7Vm,

where j,, is the polar order flux, d is the number of rotational dimensions, and
Q= f [qq — (1/d)I]P dq is the nematic order tensor.

There is no net flux of particles or fluid across the phase boundary, giving j, = 0.
Now, if we rewrite D7Vn in terms of the particle stress we have 0 = un + Upm +
(1/2)V -o?, where ( is the translational drag coefficient. Solving for m in Eq. (6.3)
we getm = —1/[(d—1)Dg]|V-ju, which can be substituted into our number density
flux. The contribution from the fluid drops to zero because there is no net fluid flux.

The resulting flux expression is

1 {Uptr .
0=—(V.oP - 220k g5,

g( T Tdd-1 J) 64)
_lv.(ap_ {UotR ) '

where 7 = DI_el is the timescale for reorientation. The second term is the swim
stress V" = —Ugtr/[d(d = 1)]jm.

Combining the suspension stress balance with the flux expression from the number

density conservation, we get the following:

0=V.o,
=V.(c/ +0a?), (6.5)
-V. (O'f _ o_swim)’

which is rewritten to give
V.ol =V.g™"m

~Vps=V.o™m, (6.6)
fo — Vnswim
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where IT*"™ is the swim pressure [4, 18]. Thus, we see that the gradient in swim
pressure is balanced by a gradient in the fluid pressure in the opposite direction to
prevent the net flux of fluid. Our mechanical equilibrium constraint can then be

written as

P; = Py,
P+ 1,1 = p + 115,
(T, - 115) = —(p'; = p%),
VII, = -Vp/, (6.7)
VI, = —VIT™™,
I + T = IO 4+ T,

Hact,l — Hacl,g'

Now we have that the active pressure must be equal in both phases. However, Omar
et al. [17] showed that the swim pressure is not a true pressure, meaning that it is
not a pointwise defined surface force. Instead, we know that swim pressure arises
from the self-generated active force density on a particle. Our mechanical balance
then implies that this large surface force density must be balanced by the particle

phase pressure difference between the two bulk phases.

6.3 Multi-phase Machine Learning Model

To determine if this force density does balance the difference in bulk phase pressures,
we must find a way to determine whether a particle is contributing to the interface
or not. We turn towards machine learning as it has proven to be a useful tool
in determining the local state of particles in simulation [24, 25]. We will follow
a similar procedure to that done in [25], but we will be solving a multi-class
classification learning problem as opposed to a binary classification problem. Our
objective will be to label particles as belonging to the dense or dilute phase or the

interface.

Learning Framework
As we are attempting to predict three separate labels, we have chosen to use the
cross-entropy loss function, a generalization of the binary cross-entropy loss defined

by Eq. (4.3). The loss is written as



100

M
L==) Yoclnpoc (6.8)
c=1

where M is the total number of classes (three in our case), y, . is a binary indicator
determining if ¢ is the correct class for observation o, and p, . is the predicted

probability of observation o being of class c.

We frame this problem as a supervised learning problem, as was done in previous
chapters. However, we have not yet attempted the use of graph neural networks
(GNN:ss) for this classification problem. We expect the addition of a GNN to have
no loss in performance from the additional class label as they have shown excel-
lent ability to handle highly multi-labeled systems [26—29]. Our initial model is a
boosted random forest comprised of 90 predictors for 15 boosting rounds created
using the XGBoost software package [30]. Though our boosted random forest cur-
rently outperforms our neural networks, we have yet to perform any hyperparameter

optimizations for our neural network as of yet.

Particle Features and Data Sets

The features used in this work are identical to those used in Chapters 4 and 5, with
one additional feature. As we are adding another class to predict—and it is very
similar to the other two classes—it is useful to add a feature that helps isolate the
third class. While the addition of such a feature is not necessary, it does increase
prediction accuracy dramatically. As such, we have added the correlation between
the particle orientation and the spatial gradient of the number density q - Vn. This
feature isolates the interface particles as there is a noticeable increase in density
across the interface, whereas the density is fairly homogeneous out in the bulk of
either phase. Particles facing into the phase boundary will have positive values of
q - Vn, while those pointing out will have negative values. This provides a way to
distinguish between particles actively swimming into the boundary and those that

are about to leave. A schematic of the different cases is presented in Fig. 6.1.

To compute this order parameter we first need to approximate the density gradient
throughout the system. We start by computing the Voronoi number density of each
particle averaged with its first shell neighbors. Using the first-shell average smooths
out small fluctuations that are present from momentary particle collisions, as this
parameter must be computed for each time step. We then generate a two-dimensional

spline of the averaged number densities using a radial basis function interpolation,
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g Ny

Figure 6.1: Schematic of active Brownian particles in the dilute region (white space),
at the phase boundary (shown by a black outline), or in the dense phase (blue). The
value of q - Vn is given for each particle shown in green. The red line represents the
density profile as one moves from the dilute phase to the center of the dense phase
and back out.

taking the center of mass of each particle to be the location for its density value.
From this continuous approximation for the density we can compute the components
of the gradient by taking the difference of the density values at points +Ax or +Ay
(n(x + Ax,y) — n(x — Ax,y) and n(x,y + Ay) — n(x,y — Ay)) through a simple
finite-difference method, with Ax = Ay = 3a where a is the radius of a particle.

Similarly to what was described in Chapter 5, we use labeled Brownian dynamic
(BD) simulation data of 2-D suspensions of ABPs from different (Peg, ¢) pairs
from within the coexistence region, where Pegr = a/{ is the reorientation Péclet
number, £ = Uyty is the persistence length of ABPs, and ¢ = nma? is the packing
fraction (see Appendix 6.7 for details of our simulations). The difficulty here is
that we need to separate our training and testing data, but we are restricted to the
two-phase portion of the active phase diagram. We randomly select 60% of the

simulations in the coexistence region to be used for training, 20% to be used for
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validation, and the remaining 20% for testing. Once we have split the simulations
into these categories, we record which belongs to each to maintain consistency
during our modeling process. Fortunately, we are also able to use data outside of
coexistence as additional training points for dilute and dense phase particles. It is
important to consider the distribution of the labeled phases present in our training
and validation data. If the distribution of labels is unbalanced, then our model may
erroneously start to always predict the dominant label or never predict the minority
label to reduce the loss function. Since the interface is only present around the bulk
phases, we find that our number of interface training points is roughly 1e—3% of the
available data we have for either bulk phase. To avoid the issue of unbalanced data
we first undersample our majority phases, that is we randomly select a portion of the
data to use and throw the rest out. This is not the ideal scenario as it requires wasting
much of the data collected. Thus, we also use oversampling to bolster the number of
interface points. Oversampling is performed by creating an F'-dimensional response
surface in feature space (where F is the number of features) of interface particles and
interpolating within the space to generate synthetic data points. This is generally
a safe method for oversampling the data since the different classes are expected to
cluster together in feature space. We only oversample enough data to make 50% of

the actual data, ensuring that our collected data is the majority of what is learned.

6.4 Interfacial Prediction

Using the boosted random forest model mentioned in section 6.3, we have obtained
initial predictions for particle labels. Figures 6.2, 6.3, 6.4, and 6.5 present the
values for our order parameter q - Vz and our initial labels for systems in the dilute
phase, dense phase, near the critical point, and deep within the coexistence region,
respectively. The dilute and dense predictions (Figs. 6.2 and 6.3, respectively) show
that our model is capable of predicting the bulk phases even though the number of

possible classes has increased.

As activity increases just beyond the critical point, we see our model starts predicting
interfacial particles (see Fig. 6.4). For the homogeneous cases our interface-specific
feature looked fairly homogeneous, but once the system phase separates the interface
feature appears to outline all of the dense phase clusters. This trend is very clearly

learned, as the interface (red) predicted particles only appear around the dense phase.

Looking now at the interfacial feature for a strongly phase-separated system (see

Fig. 6.5 (left)) we see that the positive values form a shell around the dense phase—
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Figure 6.2: The q - Vn correlation (left) and phase predictions (right) for a repre-
sentative BD simulation at Peg = 0.045 and ¢ = 0.1.
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Figure 6.3: The q - Vn correlation (left) and phase predictions (right) for a repre-
sentative BD simulation at Peg = 0.5 and ¢ = 0.78.

as we saw for the weakly phase-separated system—but the shell is multiple particles
thick. From the predictions in Fig. 6.5 (right), it is clear that the dense and dilute
phase are well predicted, but the interface appears to be underrepresented. The shell
of interfacial particles predicted around the dense phase is not continuous around

the entire dense cluster.

It is clear that the lack of well-labeled interface particles is contributing to the failed
predictions for this class. As such, we propose adding a time-dependent labeling
scheme that involves looking at particle positions one time step before and after
the frame of interest to determine if a particle remains at the interface or not. This
should increase the number of labeled interface particles. Since we know the swim
pressure is caused by the net polar order at the boundary, it would also be helpful
to use local approximations for the polar order as an additional feature for use in

prediction. The goal is to capture the entire interface and not just the external
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Figure 6.4: The q - Vn correlation (left) and phase predictions (right) for a repre-
sentative BD simulation at Peg = 0.036 and ¢ = 0.44.
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Figure 6.5: The q - Vn correlation (left) and phase predictions (right) for a repre-
sentative BD simulation at Peg = 0.01 and ¢ = 0.3.

particles in contact with the dilute phase.

6.5 Conclusion

We have presented a mechanical argument for the necessary inclusion of the swim
pressure when determining phase behavior in repulsive ABPs. From this perspec-
tive, we have shown that even though we broadly neglect the fluid, it must be
considered as active particles continue to apply a force on the fluid even if they are
not moving. (Similarly, active particles moving on a substrate, or dry active matter,
would continue to apply a traction force on the substrate). Thus, the jump in swim
pressure at the phase boundary must be balanced by a fluid pressure jump to prevent
a net flux of fluid from one phase into another.

We have presented our initial effort for providing evidence about the importance of

the swim pressure at the interface. Our initial machine learning model is capable of
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predicting which particles are a part of the phase interface but still under predicts this
group (even for strongly phase-separated systems). The next steps for this work in
progress include refining this model using more sophisticated methods for labeling
training data and adding local structure into the model through the application of
graph neural networks (as was done in Chapters 4 and 5). Once we have a confident
model, we can compute the pressure from particles in either bulk phase and compare

their difference to the swim pressure measured in the interface.

6.6 Future Directions

The works presented in this thesis have laid a sturdy foundation upon which we can
build. The majority of our work involving machine learning has revolved around
making predictions at the particle level for the simplest case of phase separation in
ABPs. As such, we have neglected certain aspects in our considerations that can be
added. One such aspect is the inclusion of the hexatic transition. Two dimensional
hard disks undergo a continuous, crystalline phase transition driven by geometric
constraints. Once the system has become dense enough (¢ ~ 0.71), a crystalline
transition is seen forming a hexatic phase. This transition exists in active hard disks
as well. Some have included this transition in the construction of active phase
diagrams [31], but it is widely neglected. Adding such a transition would require a
machine learning model to learn the density-driven separation as well as an order-
disorder transition. Evidence to support this undertaking is presented in Chapter
4 by the learned importance of the third-shell Voronoi densities, which serve as a

proxy for the third shell in the radial distribution function.

In a similar vein, we can attempt to recreate this work for polydisperse systems.
With roughly 10% polydispersity, the hexatic transition does not occur. This would
provide a much cleaner representation of the dense branch of the MIPS binodal.
This also brings about an interesting challenge in that the densities—one of the most
informative features—are explained by an additional distribution as the particle
radius can vary. This variance also mildly affects the interparticle interactions, but

this is unlikely to cause much issue.

Lastly, we can approach the problem of phase separation at the system level as
opposed to the particle level. We currently use graph neural networks to make
node-level predictions, but we could as easily use them to predict labels for entire
graphs. Therefore, it should prove possible to—in an unsupervised framework—

predict whether a graph represents a homogeneous dilute, homogeneous dense, or
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phase-separated system. Graph neural networks generalize well for unsupervised
graph-level predictions [29] and can be used on graphs of different sizes. Once
predictions are made for each of the regions of the phase diagram, a clustering
algorithm can be used to determine the breakdown of the phases, which completely
avoids the labeling issue presented earlier in this chapter. This formulation can even
be adapted to an online learning structure where the clustering is adapted as more
data points are added. Allowing one to build the phase diagram incrementally as

data is acquired.

Appendix

6.7 Simulation Details

We simulate overdamped active Brownian particles. Each particle of radius a exerts
a self-propulsive force F*"" = [Uyq to move at speed Uy in a direction q through
a medium with resistance {. These particles undergo random reorientations via a
stochastic torque LR on a timescale 7. Particles interact with each other through a
repulsive Weeks-Chandler-Anderson (WCA) potential with a cutoff distance r.ut =
(2a)2'1/6) and potential depth of € = 200aF*"". The equations of motion are
given by the Langevin equations

0=-U; +FVim + FP (6.9)

1°

0= —{rQ; + LK, (6.10)

where U; is the speed of particle i, F¥ = i FIYVJ.“’ is the interparticle force given
by the sum of the pairwise WCA forces for of all particles j on particle i, {g is
the resistance from the medium against rotations, and €; is the angular velocity.
The angular velocity is related to particle orientations via dq;/dt = Q; X q;. The

stochastic torque is zero mean and has variance 2¢ I%é(t) /TR.
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