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ABSTRACT

Granular materials are ubiquitous in both nature and technology. They play a
key role in many applications ranging from storing food and energy to building
reusable habitats and soft robots. Yet, predicting the continuum mechanical
response of granular materials continues to present extraordinary challenges,
despite the apparently simple laws that govern particle-scale interactions. This
is largely due to the complex history dependence arising from the continuous
rearrangement of their internal structure, and the nonlocality emerging from
their self-organization. There is clearly an urge to develop methods that ad-
equately address these two aspects, while bridging the long-standing divide
between the grain- and the continuum scale.

This dissertation introduces novel theoretical and computational approaches
for behavior prediction in granular solids. To begin with, we develop a frame-
work for investigating their incremental behavior from the perspective of plas-
ticity theory. It relies on systematically probing, through level-set discrete
element calculations, the response of granular assemblies from the same ini-
tial state to multiple directions is stress space. We then extract the state-
and history-dependent elasticity and plastic flow, and investigate the evolu-
tion of pertinent internal variables. We specifically study assemblies of sand
particles characterized by X-ray computed tomography, as well as morpho-
logically simpler counterparts of the same systems. Naturally arising from
this investigation is the concept of a granular genome. Next, inspired by the
abundance of generated high-fidelity micromechanical data, we develop an al-
ternative data-driven approach for behavior prediction. This new multiscale
modeling paradigm completely bypasses the need to define a constitutive law.
Instead, the problem is directly formulated on a material data set, generated
by grain-scale calculations, while pertinent constraints and conservation laws
are enforced. We particularly focus on the sampling of the mechanical phase
space, and develop two methods for parametrizing material history, one ther-
modynamically motivated and one statistically inspired. In the remainder of
the thesis, we direct our attention to the understanding and modeling of non-
locality. We base our investigation on data derived from a discrete element
simulation of a sample of sand subjected to triaxial compression and undergo-
ing shear banding. By representing the granular system as a complex network,
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we study the self-organized and cooperative evolution of topology, kinematics
and kinetics within the shear band. We specifically characterize the evolu-
tion of fundamental topological structures called force cycles, and propose
a novel order parameter for the system, the minimal cycle coefficient. We
find that this coefficient governs the stability of force chains, which succumb
to buckling as they grow beyond a characteristic maximum length. We also
analyze the statistics of nonaffine kinematics, which involve rotational and
vortical particle motion. Finally, inspired by these findings, we extend the
previously introduced data-driven paradigm to include nonaffine kinematics
within a weakly nonlocal micropolar continuum description. By formulating
the problem on a phase space augmented by higher-order kinematics and their
conjugate kinetics, we bypass for the first time the need to define an internal
length scale, which is instead discovered from the data. By carrying out a
data-driven prediction of shear banding, we find that this nonlocal extension
of the framework resolves the ill-posedness inherent to the classical continuum
description. Finally, by comparing with available experimental data on the
same problem, we are able to validate our theoretical developments.
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C h a p t e r 1

INTRODUCTION

1.1 Objective

This dissertation focuses on the mechanics of granular materials composed
of arbitrarily shaped, rigid, cohesionless, and frictional particles. Within this
scope, the objective is to develop novel theoretical and computational method-
ologies for predicting material response, by linking micromechanical informa-
tion to macroscopic behavior. This includes:

• developing a high-fidelity discrete element framework for probing the
incremental continuum behavior, from the perspective of plasticity the-
ory, as a function of particle properties, configurational state, and past
history;

• establishing an alternative multiscale Data-Driven modeling paradigm,
in which material data are gleaned from discrete element computations;

• developing a complex network-based approach for probing nonlocal ma-
terial behavior specifically focusing on failure by shear banding;

• extending the Data-Driven modeling paradigm to weak nonlocality by
accounting for higher-order kinematics.

1.2 Approach

We shall confine our investigation to dry athermal granular materials, meaning
collections of particles interacting via frictional forces within a medium of
negligible viscosity such as air. Particles are considered large enough such that
adhesive forces (e.g Van der Waals forces) are negligible. Further, we restrict
our study to the quasistatic flow of such materials, close to jamming [220].
This is known as the granular solid regime, as opposed to the granular liquid
or gas regime [147], and is highly relevant to many scientific and technological
applications. These include the design of soft robotics [42], cushioning and
protective equipment [116], aleatory jammed architectures [171], packing of
food and pills [35], and, even, space exploration [166] (Fig. 1.1).
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(a) (b) (c)

(d) (e)

Figure 1.1: Applications of granular solids: a) Universal robotic gripper com-
posed of particles encased in a flexible membrane (Source: reprinted from [42]).
b) Bead-filled commercial shoe sole (Source: https://news.nike.com/). c)
Freestanding architectures composed of topologically entangled z-shaped par-
ticles (Source: reprinted from [240]). d) Food as a granular material e) Inter-
action of a rover wheel with Martian regolith (Source: NASA-JPL).

Granular solids exhibit an intriguing range of complex continuum behavior
[277, 124]. Their incremental stress-strain response is a function of their cur-
rent state [48], which is, in turn, a manifestation of the morphology of the
constituent particles and their interaction, in the presence of confining stress.
We shall refer to these grain-scale morphological and interaction properties
as the granular genome or 'DNA'. To accommodate changing boundary con-
ditions, granular materials continuously rearrange their internal state, which
gives rise to rich history-dependent behavior [297, 204]. The conventional
approach for modeling such material behavior relies on constitutive laws for-
mulated in the context of plasticity [318, 79]. However, these laws often rely
on postulates and internal variables that are not micromechanically justified
[332, 366], and are agnostic to the granular 'DNA' , despite clear evidence of
its importance [169]. Additionally, they tend to oversimplify, if not disregard,
nonlocal effects that govern material failure. We seek to address these short-
comings by developing novel methods that accurately account for i) history-,
state-, and constituent-dependence of the local stress-strain response, and ii)
nonlocal effects accompanying material failure. To do so, we employ a four-
pronged approach (Fig. 1.2).



3

Local
behavior

Nonlocal
behavior

Modeling granular solids

Complex 
network
analysis

III.

Data-Driven 
nonlocal 
mechanics

IV.

Stress probing 
for constitutive 
modeling

I.

Data-Driven 
multiscale 
modeling

II.

D

E
min min d(z,y)
z E y D 

Figure 1.2: Overview of the four-pronged approach for behavior prediction in
granular solids: I) Stress probing for identifying the incremental stress-strain
response. II) Data-Driven multiscale modeling framework. III) Complex-
network based description of nonlocal behavior. IV) Nonlocal extension of the
Data-Driven framework.

In the first part of the thesis, we systematically study the incremental behavior
of granular solids to motivate a new generation of micromechanically-inspired
constitutive laws. To this end, we develop a framework designed to system-
atically probe the local incremental response of granular assemblies from the
same initial state to multiple directions is stress space, in a process- termed
stress probing. We rely on the recently developed Level-Set Discrete Element
Method (LS-DEM) [170], which is able to resolve the interaction between par-
ticles of arbitrary 'DNA', and we control the expression of that 'DNA' to
a particular state through simulated packing protocols. By analyzing stress
probes carried out on different stress planes, we extract the reversible and elas-
tic response, quantify the irregular and nonassociative nature of the flow rule,
map the yield surface, and investigate work hardening and fabric evolution, all
of the above as a function of granular morphology, state and history. Such a
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detailed investigation has not been possible with previous numerical methods
[48, 115, 189] or physical experiments [303].

In the second part of the thesis, inspired by the abundance of generated high-
fidelity micromechanical data, we develop an alternative Data-Driven approach
for predicting material response, which completely bypasses the need to de-
fine a constitutive law. Earlier methods based on machine learning [121, 237]
are not thermodynamically consistent, rely on hidden representations devoid
of physical meaning, and have uncontrolled extrapolative properties. By con-
trast, the proposed framework is thermodynamically sound and makes eminent
physical sense. This new paradigm is based on the Data-Driven formulation
of mechanics [172], which we appropriately extend to a multiscale setting. We
particularly focus on optimally sampling the mechanical phase space through
micromechanical (LS-DEM) calculations, and also develop two methods for
parametrizing material history, one thermodynamically motivated and univer-
sal, and one statistically motivated and tailored to granular materials. Com-
parison with available experiments based on X-ray computed tomography are
carried out to validate the developments. This concludes the modeling of the
local history-dependent behavior undertaken in the first two parts of the thesis.

In the third part of the thesis, we direct our attention to understanding and
modeling nonlocality arising from the self-organization of granular materi-
als during failure. We particularly focus on establishing links between the
topological, kinematical, and force signature of shear banding, a prototypical
failure mode governed by nonlocal effects. This is made possible through a
complex network analysis of a simulated sample of angular sand undergoing
triaxial compression and failing by strain localization. We characterize the
stability of two mesoscale topological structures, force cycles and force chains,
and analyze the statistics of nonaffine kinematics. These aspects have not yet
been addressed in three-dimensional or non-idealized systems. We conclude
this part by analyzing the implications of our findings to strongly and weakly
nonlocal continuum theories.

In the final part of the thesis, inspired by the observations of nonaffine higher-
order kinematics governing the behavior during shear banding, we extend the
Data-Driven paradigm to include such kinematics within a micropolar frame-
work. The latter represents the prototypical example of a weakly nonlocal
continuum, while other types of continua in this taxonomy can be addressed
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in the same fashion. By formulating the problem on a phase space augmented
by higher-order kinematics and their conjugate kinetics, we bypass the need
to define an internal length scale, which is instead discovered from the data.
In fact, with the incorporation of a novel distance measure, the framework be-
comes entirely parameter-free and exhibits improved error convergence proper-
ties compared to its predecessor. Among other applications, we investigate the
physics-based regularization of the triaxial compression shear banding problem
addressed above.

1.3 Organization of the thesis

Chapter 2 provides the necessary background on the fundamentals of granu-
lar mechanics, and reviews the state-of-the-art in modeling of the quasistatic
flow of granular materials. It also serves to set the notation to be followed
throughout this thesis.

Chapter 3 describes the stress probing framework for studying the incremental
stress-strain response of granular materials, and establishes the notion of a
granular 'DNA'. The main results regarding elasticity and reversibility, yielding
and plastic flow, fabric evolution, as well as the influence of morphology and
state are presented and detailed.

Chapter 4 presents the local multiscale Data-Driven framework for general
materials focusing on the parametrization of material history, and the optimal
sampling of the mechanical state space. After a general introduction of the
theory, the scope of the framework is then restricted to granular materials,
and appropriately validated against experiments.

Chapter 5 concerns the complex network analysis of nonlocality. We discuss
the representation of a granular system undergoing shear banding as a network
or graph, and, on that basis, we study the cooperative evolution of topology,
kinematics, and forces.

Chapter 6 deals with the weakly nonlocal extension of the local Data-Driven
paradigm, especially focusing on the micropolar continuum, in accordance with
the observations of nonaffine kinematics in the previous chapter. Once again,
the theory is presented first in all generality before being restricted to granular
materials and validated against experiments.

Chapter 7 concludes with the main findings and provides a future outlook.
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C h a p t e r 2

BACKGROUND

2.1 Fundamentals of granular material behavior

Granular materials exhibit a wide range of complex nonlinear behavior, un-
dergoing a transition between three distinct states of matter (Fig. 2.1). In the
quasistatic regime, they behave as solids that can withstand significant shear
stresses through a dense network of force chains [207, 55, 88, 220]. Their in-
cremental stress-strain response depends on their microstructural state, which
encodes the complete history of their past deformation [277]. To model this
regime, physicists and engineers have predominantly relied on continuum anal-
ysis, specifically frictional rate-independent plasticity [297, 318, 353, 244, 79],
as well as multiscale analysis [18, 230, 249, 369].

Subject to increased shearing rate, granular materials undergo a transition to
an unusual non-Newtonian liquid regime [147, 52]. This state is characterized
by complex rate-dependence arising from pronounced particle velocity fluctua-
tions [76]. Researchers have been developing continuum rheological laws [315,
229, 160, 321, 114, 275, 19] in an ongoing effort to capture this regime.

Upon further increase of the rate of imposed shear, granular materials undergo
a second transition to a gas regime, where particles interact primarily through
inelastic collisions. Modeling of this state is largely based on kinetic theory,
originally introduced for classical gases [65], which is appropriately extended
by considering dissipative colisions and granular temperature [53, 317, 152,
216, 316, 368, 52].

Despite century-long research on granular materials [277], understanding and
predicting granular material behavior in any of these regimes continues to be
extremely challenging, and calls for a new generation of modeling paradigms.
In the following, we will briefly review the modeling of the quasistatic (solid)
regime of granular matter, which is of immediate interest to this study.
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(a) (b) (c)

Figure 2.1: Granular matter as a solid, liquid, and gas: a) Jammed entangled
architectures (ICD Stuttgart ActLab). b) Landslide in El Salvador (USGS).
c) Sand storm on Mars (European Space Agency).

2.2 Continuum modeling of granular materials

Before delving into the major developments in continuum modeling of granu-
lar materials in the quasistatic regime, we shall first briefly review the basic
framework of continuum mechanics of simple solids.

2.2.1 Brief summary of continuum mechanics

Kinematics

Presented here is a summary of the theory of continuum mechanics from a
Lagrangian perspective. It sets the basic framework, while establishing the
notation used throughout the thesis. Consider a simple body occupying a
domain B in a reference configuration, and subjected to a deformation mapping
ϕ to a deformed configuration ϕ(B). The motion of a material point X of the
body is given by x = ϕ(X, t). Assuming differentiability of ϕ, one can obtain
the deformation gradient F:

Fij(X, t) =
∂ϕi
∂Xj

(X, t). (2.1)

The linearization of F around the reference configuration leads to the usual
symmetric strain tensor:

εij =
1

2
(ui,j + uj,i) (2.2)

where u(x) denotes the displacement field.
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Principle of virtual work

Under body forces b(x) and tractions t̄(x) prescribed over ∂BN , the principle
of virtual work reads:∫

B

(
σijηi,j − ρbiηi)−

∫
∂BN

t̄iηidS = 0 (2.3)

for all admissible displacement fields η, resulting in the equilibrium equations:

σij,j + ρbi = 0 (2.4)

σijnj = t̄i on ∂BN (2.5)

where σ(x) is the Cauchy stress tensor field.

2.2.2 Constitutive modeling for simple continua

The constitutive description of material behavior provides a closure to Eqs. 2.2-
2.4, by postulating an analytical relation between stress and strain. The prin-
ciples constraining such a relation are furnished primarily by the first and
second law of thermodynamics, and secondarily by a set of well-established
observations about granular materials.

The first and second law of thermodynamics

The first thermodynamic principle furnishes the existence of an extensive quan-
tity U termed the internal energy density, which increases with mechanical
work and heat source density s, but decreases with heat flux h. In its local
form it reads:

ρU̇ = σij ε̇ij + ρs− hk,k. (2.6)

The second thermodynamic principle introduces the concept of entropy pro-
duction, and is equivalently furnished by the Clausius-Duhem inequality:

ρη̇ − ρs

T
+
hk,k
T
≥ 0 (2.7)

where η is the entropy density, and T the temperature.
In the absence of significant thermal dissipation as in the systems discussed in
this work, the above relations can be combined to yield the reduced Clausius-
Planck inequality:

ρη̇T − ρU̇ + σij ε̇ij ≥ 0. (2.8)
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Beyond the above thermodynamic constraints, we review two additional con-
straints for constitutive models of granular materials, namely critical state
theory and the stress-dilatancy relation.

Critical state

Perhaps the most important feature of the behavior of granular materials is the
extended memory of their past deformation. Under general loading paths, the
internal structure of granular materials evolves while retaining the memory of
their initial state. Yet, early experiments revealed the existence of an ultimate
state [297, 318, 34], at which the memory of their initial state is fully lost. The
Critical State Theory (CST), inspired by these experiments, suggests a unique
relation between the deviatoric stress q =

√
3/2sijsij (where sij = σij + pδij),

the mean pressure p and the void ratio e defined as:

q = µcsp (2.9)

e = e(p, pi) (2.10)

where µcs is the critical state friction coefficient and e(p, pi) is a well-defined
function of the mean pressure and a characteristic strength pi related to a
specific material. Upon continued shear deformation at that state, partic-
ulate materials remain at constant stress and constant volume. Traditional
CST assumed that, at critical state, any initial form of fabric (particle/con-
tact orientation) has disappeared, rendering the microstructure isotropic. Yet,
microstructural studies [251, 252, 280, 201] have revealed a particular fabric
formation at critical state. As a result, the so-called Anisotropic Critical State
Theory (ACST) [204] has recently been established, which sets the additional
requirement for attainment of critical state that an appropriately defined fab-
ric tensor F converges to a critical state value Fc. We will discuss such fabric
tensors later in Section 2.3.2.

Stress-dilatancy relation

Another fundamental aspect of granular material behavior is the relation be-
tween shear-induced volume change (dilatancy) and the mobilized friction,
typically termed the stress-dilatancy relation. Simple considerations of the to-
tal work W performed by shear and dilation during simple shear deformation
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led to the formulation of a stress-dilatancy relation [334, 302]. Specifically,
letting εv and εq be the volumetric and shear strain, one easily obtains an
expression for the mobilized friction angle η:

µ =
q

p
= − ε̇v

ε̇q
+
σij ε̇ij
pε̇q

. (2.11)

For constant shear rate, mean pressure, and rate of work, this relation estab-
lishes that the mobilized friction angle emerges from two mechanisms. The
first mechanism relates to the geometric constraints on particles due to shear
induced dilatancy D = − ε̇v

ε̇q
and has a linear contribution. On the other hand,

the second term is typically constant, and represents the mobilized friction
µcs = Ẇ

pε̇q
, at the state of zero dilatancy i.e. the critical state. Variations

of the relation have also been proposed [37, 205], which however retain the
fundamental implications for constitutive modeling.

To illustrate the above concepts and demonstrate some more of the intricacies
in the behavior of granular materials, let us consider the response of a dense
specimen under drained triaxial compression and that of a loose specimen
under undrained (constant-volume) triaxial compression (Fig. 2.2). A dense
sample will typically exhibit an initially contractive response which then tran-
sitions to a dilative response, in a process termed phase transformation. This
leads to a peak in the shear stress followed by softening before collapsing to
critical state. On the other hand, loose samples may not experience this tran-
sition. Instead, they experience a dramatic decrease in strength (liquefaction),
due to their tendency but inability to contract.

Peak

Critical state

Dense
LooseCritical state line

Phase 
transformation 
line

 

Figure 2.2: Response of dense (red lines) and loose (blue lines) specimen sub-
ject to triaxial compression.

Now that we have reviewed the essential constraints underlying the continuum
modeling of granular solids, we delve into a more detailed analysis of different
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families of available approaches. The vast majority of them rely on plasticity
theory taking several different forms.

Hyperelastoplasticity

Hyperelastoplasticity encompasses the internal variable formalism for rate in-
dependent material behavior. Within this formalism, it is typical to assume,
under athermal conditions, a free energy density of the form A = A(εij, qij)

where qij is an appropriately defined internal variable, encapsulating history
effects. Using standard thermodynamics arguments, one obtains the equilib-
rium relations:

σij = ρ
∂A
∂εeij

χij = −ρ ∂A
∂qij

(2.12)

where χij is a generalized stress-like kinetic quantity conjugate to the in-
ternal variable. Any irreversible dissipative processes are tied to the evolu-
tion of the internal variable. To describe the latter, a dissipation potential
d = d(χij(εij, qij), q̇ij) is introduced. The yield surface f emerges as the Leg-
endre transform of the dissipation potential, and the flow rule/internal variable
evolution law emerges as a generalized normality rule [140]:

f = χij q̇ij − d = 0 q̇ij = λ
∂f

∂χij
. (2.13)

The yield function and plastic flow emerge from the dissipation potential,
instead of being imposed [74], thereby ensuring thermodynamic consistency.

Classical elastoplasticity

Classical elastoplasticity is a more practical application of plasticity which
overcomes the modeling difficulties in describing complex material response
in terms of potentials [83], at the expense of not satisfying thermodynamic
consistency a priori. This framework defines the incremental material response
by postulating an additive decomposition of strain into elastic and plastic
components, an elasticity tensor Ce

ijkl, a yield surface f(σij, qij), and a plastic
potential g(σij, qij), all resulting in a closed set of equations:

σ̇ij = Ce
ijklε̇

e
kl εij = εeij + εpij (2.14)

f(σij, qij) = 0 ε̇pij = λ̇
∂g

∂σij
qij = qij(ε

p
ij) (2.15)
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where λ represents an appropriately defined Lagrange multiplier.
Many such theories have so far been developed that are able to predict many
essential features of granular material behavior, including pressure-dependent
and fabric-dependent elasticity, nonassociativity [193] and noncoaxiality (non-
coincidence of the principal axes of stress and plastic strain rate tensors),
shear-induced anisotropy [299, 300, 117, 132, 184], phase transformation [145],
critical state consistency [149, 17, 79]. Steps towards the extension of classical
plasticity have been taken with the introduction of multiple surfaces, as in the
bounding surface plasticity paradigm [223, 79, 204, 118], or corners of surfaces
as in the vertex based elastoplasticity model [67].

Hypoplasticity and incrementally nonlinear theories

The breakdown of some of the postulates introduced by the aforementioned
paradigms, such as the regularity of the flow rule [48], has led to the develop-
ment of a family of incrementally nonlinear theories. Characteristic examples
include hypoplasticity [179, 335, 377, 378] and generalized plasticity [267].
These theories do not explicitly depend on a yield function or a plastic poten-
tial nor do they require the additive decomposition of strain. The constitutive
relations typically take the general form [81, 332]:

σ̇ij = Dijkl

(
σij,

ε̇ij
‖ε̇ij‖

, qij
)
ε̇ij (2.16)

where D is a directionally variable elastoplastic tensor.

A nice classification of all the above theories can be achieved in terms of the
unifying concept of tensorial zones [130, 81]. Standard elastoplastic models
are considered bilinear and incorporate two tensorial zones corresponding to
loading and unloading [82], while incrementally nonlinear theories incorporate
a continuous dependence of the constitutive relation to the loading direction
[370, 84, 124].

Microstructural plasticity models

A separate family of constitutive models represents the continuum behavior
as the average of an appropriately defined set of micro-systems, such as a con-
tact network [61, 153, 206, 243, 329, 244, 64, 248, 365, 119] or a family of
slip systems or microplanes [382, 186]. These theories attempt to bypass the
need for continuum-scale postulates by upscaling a lower-order description of
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each micro-system through statistical homogenization. The fundamental prin-
ciples are the projection (localization) of macroscopic strain to microscopic
kinematics (contact/slip plane kinematics), the use of contact scale constitu-
tive laws towards a force distribution, and finally the homogenization of forces
towards the macroscopic stress response. Characteristic examples include the
microdirectional model [248], which draws similarities from earlier statistical
models [243, 244], which in turn can be considered as a generalization of the
double-sliding model [158, 226]. The fundamental challenge of this family of
methods is the construction of a realistic nonaffine strain projection (localiza-
tion) operator, which is an ill-posed problem. We refer to [266] for a relevant
review.

2.2.3 Instabilities

Granular materials are notoriously prone to instabilities in the form of localized
[354, 146, 87] or diffuse [85] failure modes. This has fundamental implications
regarding the non-uniqueness of the material response in the post-instability
regime [290, 36]. Especially the emergence of shear bands is tied to the math-
ematical concept of loss of ellipticity of the governing equation. The usual
criterion for continuum localized instability in the form of a shear band is the
loss of positiveness of the eigenvalues of the acoustic tensor [221, 290], in the
framework of bifurcation theory [304]:

detnijCijklnkl = 0 (2.17)

where n denotes the unit normal of the unstable direction. Another instability
criterion concerns the loss of positiveness of the second-order work [85, 247],
also known as Hill’s material instability criterion [138], which states:

d2W = σ̇ij ε̇ij > 0. (2.18)

This criterion examines both the stress and strain paths, and has been shown
to generalize all other known criteria [80]. From a thermodynamic perspective,
it is the loss of convexity of the dissipation potentials that leads to material
instability.

It is well established that simple continua fail to capture the post-localized
response, which instead calls for generalized or nonlocal theories [154]. The
latter effect a regularization of the problem by introducing an appropriate
length scale.
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2.2.4 Nonlocal modeling

Evidence of nonlocality

In the standard continuum description discussed so far, a solid body is decom-
posed into a set of infinitesimal material points, whose constitutive behavior
is independent from one another except via the exchange of linear momentum,
energy, and entropy. Nonlocality is the deviation from this idealized descrip-
tion, and is a manifestation of the internal microstructure of a material [154,
155]. Perhaps the most studied aspect of nonlocality in granular materials is
the one related to shear banding. The pioneering experiments in [296, 239]
first established the width of a shear band in granular materials at 8-10 particle
diameters. Additional evidence of nonlocality is furnished by the formation of
force chains [211, 282, 283, 238] and force communities [122] of characteristic
correlation length [219, 328], or the correlated nonaffine movement of particle
clusters [278, 274, 327] leading to vortices of characteristic sizes [269, 293].
These phenomena are associated with shear banding, with studies showing
the development of vortices inside an incipient shear band, which in turn [343]
induce force chain buckling [254, 345, 344]. Nonlocality also manifests itself
in several other forms, e.g. in nozzle jamming of silos [384] and thickness-
dependent repose angles in surface flows [273]. Studies suggest that nonlocal
effects are influenced and potentially enhanced by irregular particle shapes
[114].

A plethora of nonlocal theories have been developed that introduce a length
scale in an effort to capture these phenomena. These largely fall under two
main categories, strongly nonlocal and weakly nonlocal theories [294]. Strongly
nonlocal theories typically rely on an integral formulation [182, 33] or a consti-
tutive equation that is itself a PDE [7, 353, 161]. On the other hand, weakly
nonlocal theories, also known as gradient or generalized continuum theories,
enrich the constitutive description with gradients of local kinematic variables.
Due to the presence of these gradients, the response at a material point de-
pends on the response at a neighborhood of that point (Fig. 2.3).

As a general rule, many of these theories have been succesful in regularizing
the ill-posed local problem, but have not enjoyed general acceptance due to
their complex formulation or the lack of a sound micromechanical basis. Only
recently, the hypotheses inherent to some of these formulations have been
supported by micromechanics, through advanced homogenization techniques
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[94, 93, 29, 341, 210], kinematic models [343], and direct micromechanical
descriptions of order parameters [374].

Strongly nonlocal theories

The majority of strongly nonlocal theories rely on a constitutive equation
that is itself a PDE, instead of an ODE, as in local theories. This PDE
models the diffusion of an internal variable (e.g. plastic strain) or an additional
field variable (e.g. granular fluidity, order parameter, spot concentration, STZ
density) that represents the density g of a rearrangement event. It typically
takes the form of a Helmholtz-type differential equation:

g − `∇2g = gloc (2.19)

where ` is the length scale and gloc is the density g under the assumption of
locality. As a result, the length scale is identified as the characteristic length
scale of this diffusion process driven by the correlated motion of the mate-
rial neighborhood. These theories have been used to describe the unjamming
transition during shear banding or the related transition between the solid and
liquid granular flow regimes. We briefly review the major developments below.

One of the first theories of this family was developed in the context of gradient
plasticity, which introduces the Laplacian of the plastic shear strain in the

a) b) c)
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Figure 2.3: Modeling of granular solids: a) The classical (local) Cauchy con-
tinuum, b) the weakly nonlocal continuum, exemplified by the micropolar
description, and c) the strongly nonlocal continuum characterized by the dif-
fusion of the density of a local event (e.g. force fluctuation, temperature).
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yield function and flow rule [7, 353, 8]. In a different study, related to the
granular solid-fluid transition [21], a fluidization model was developed, which
is based on an additive decomposition of the stress tensor into a solid and
fluid part. The authors suggested that the order parameter defined as the ratio
between the two parts is governed by a Ginzburg-Landau equation of the above
type. A similar nonlocal model that is based on the self-activation processes
driven by velocity fluctuations was developed in [275]. In this model, granular
temperature or stress fluctuations may trigger a rearrangement of the grains
somewhere else. The nonlocal granular fluidity model of [161] is also similar
to the fluidization model and postulates the existence of a granular fluidity
field, which represents an inverse viscosity and enters the flow rule, again via a
similar diffusion equation. For a review of the concept of fluidity, the reader is
referred to [159, 40]. Finally, the Shear Transformation Zone (STZ) theory was
first developed in the general context of amorphous solids [222, 107] and then
applied to granular flow [106]. According to this theory, there exist regions of
characteristic size (STZs) that are susceptible to localized failure under shear.
In the context of granular materials, STZs are typically assumed as two-state
systems (jammed/flow state). The STZ theory also relies on the diffusion of
the granular temperature to drive these rearrangements, thereby introducing
an effective length scale for this process.

Weakly nonlocal theories (Generalized continua)

The most general description of weak nonlocality is furnished by the micro-
morphic continuum [101, 99], according to which, each material point in a
macroscopic body is itself considered a continuum at an appropriate scale of
observation, and is subject to its own microdeformation. The theory effec-
tively endows the material point with a director triad which, under the action
of a microdeformation, is mapped to its deformed configuration. This mathe-
matical assumption introduces additional degrees of freedom to each material
point beyond the translational ones present in the standard Cauchy contin-
uum. The properties (degrees of freedom) of the microdeformation induce a
hierarchy in the class of generalized continua [120, 113].

By restricting the microdeformation to an independent rigid microrotation,
one obtains the micropolar continuum [75, 98]. This results in a total of six
degrees of freedom for each material point, three translational ones and three
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rotational ones. A particular variation of the micropolar continuum, where
the microrotation is prescribed to be the same as the macroscopic rotation,
is known as the indeterminate couple-stress theory [347, 177]. Similarly, re-
stricting the microdeformation to the macroscopic deformation gradient, gives
rise to strain-gradient (or second-grade) theory [233, 111, 110]. The common
characteristic of these higher-order theories is the induced asymmetry of the
stress tensor and the presence of additional kinetics furnished by the couple
stress, in the case of micropolar theory, and the double-stress in the case of
strain gradient theory, that are conjugate to the microdeformation gradient.
These thermodynamic quantities are subject to their own balance equations.
We refer to [113] for a relevant review.

Several of the above formulations and their kinematical assumptions have been
explored in modeling granular materials. Perhaps the first breakthrough was
the observation that rotational and vortical motion is a major dissipation
mechanism in these materials [255, 253, 28] and affects macroscopic strength
[330]. This inspired the use of micropolar theory, in the context of plasticity,
for modeling shear banding [239, 336, 12]. On the other hand, the restricted
micropolar (couple-stress) assumption has so far not been validated by mi-
cromechanical studies. In another set of elaborate experiments [187], it was
shown that strain gradients also affect the response of granular materials, and
that a simple strain gradient model can predict the spacing of microbands in
some cases. Such strain-gradient models have also been obtained by upscaling
micromechanics-based descriptions [59]. Finally, researchers have modelled
granular materials as micromorphic continua [287]. Although micromorphic
theory is rich enough to capture the full range of behavior of granular materials,
it has not been rigorously proven that such a complex kinematic assumption
is indeed necessary.

2.3 Discrete modeling of granular materials

A major breakthrough in the understanding of granular materials was enabled
by the development of methods for particle-scale modeling and simulation.
These include the widely used Discrete Element Method (DEM) [78], which
we review below, as well as its non-regularized version, termed Non-Smooth
Contact Dynamics (CD) [235, 148].
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2.3.1 Discrete Element Method (DEM)

DEM was proposed by [78] and resolves the kinematics of rigid but locally
compressible particles whose interaction is modeled by spring and dashpot
systems. Essential ingredients of DEM include the representation of particle
morphology, the representation and detection of contact between particles,
and the contact laws. In the original formulation, particles are represented
as spheres. Each contact point c of each particle is characterized by a unit
vector n, which in turn describes the orientation of the normal contact force
f cn (Fig. 2.4 a)). Typically, either a nonlinear (Hertzian) or a linear (Hookean)
contact is assumed, that is capped by Coulomb friction. Assuming the latter,
the interparticle contact forces associated with a contact c is given by:

f c = f cn + f ct f cn = knδn f ct = − ∆s

‖∆s‖
min(kt‖∆s‖, µ‖f cn‖)

where kn (kt) is the normal (tangential) Hookean stiffness, related to the elastic
properties of the individual particles, δn is the interparticle penetration (local
contact deformation), ∆s is the accumulated tangential contact displacement,
and µ is the friction coefficient.

Once all contacts have been detected, and the total forces fi and moments
mi acting on each particle i have been computed, the particle dynamics are
updated through Newton’s equations of motion:

mi
dvi
dt

+ Cvi = fi +mig (2.20)

Ii
dωi
dt

= mi (2.21)

where mi,vi,ωi is the mass, velocity, and angular velocity of the particle i,
respectively, while C represents a global damping parameter. The equations
are usually integrated explicitly with a time step dependent on the spring
stiffness and particle mass [78]. In fact, the time increment needs to be small
enough to resolve the period in which particle collision occurs. After the new
contacts are established, the process is repeated.

DEM has been succesfully applied to study critical state mechanics, shear
localization [77, 27], yielding [338], stress-dilatancy relations [125], incremental
granular behavior [28, 48], grain crushing [66, 133], and many other aspects of
granular material behavior.
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Variations of DEM

Since its inception, the main criticism against DEM has been its inability to
capture complex shapes. To tackle this limitation, several variants of DEM
have been introduced that can model non-spherical particles. Polyhedral DEM
[242] is able to capture the interaction between arbitrary convex polytopes.
The multi-sphere method [250] uses clumping of spheres to represent shape.
Super-quadrics [272] extend the ability to detect contact to a wider variety of
shapes albeit at a higher computational cost. The same is true for the so-called
potential particles [263]. In the Level-Set Discrete Element Method [170], the
geometry of particles is defined by an implicit level set function, whose value
represents the distance from the particle surface. The method represents the
most versatile DEM framework to-date.

2.3.2 Granular texture

In this section, we briefly review the most common descriptors of the arrange-
ment of granular assemblies. These descriptors often furnish internal variables
adopted within continuum theories.

Packing density and coordination number

It is widely accepted that the most important factor determing the mechanical
response of a granular assembly is its packing density, or equivalently, its
packing fraction or void ratio. Early studies established a correlation between
the packing fraction and the coordination number Z [252]. The latter admits
several definitions [188, 338], the simplest of which being the mean number of
contacts per particle:

Z =
2Nc

N
(2.22)

where Nc is the total number of contacts and N the total number of particles
in the assembly. When Z is below a critical value Zc, then the assembly
is at a so-called isostatic state [137]. The critical coordination number Zc
is also the prototypical microstructural signature of the jamming transition
[281]. A treatment of isostaticity within rigidity theory and its consequences
in instabilities are given in [236], while connections between isostaticity and
critical state are drawn in [300, 183].
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Fabric

Beyond the isotropic description of packing furnished by the packing fraction,
the second most important descriptor of granular texture is the orientational
arrangement of the constituent particles, generally termed fabric [251]. Several
descriptions of fabric have been suggested in the literature [257, 311, 201], each
relying on the definition of a unit vector n describing the direction of a certain
microstructural property [313, 164] such as the particle major axis, branch
vectors, contact normal. Denoting as E(n) the orientational density function of
these microstructural quantities, we have

∫
Ω
P (n)dΩ = 1, and P (n) = P (−n)

due to the lack of intrinsic parity. A second order approximation of E(n) gives
rise to the usual (second-order) fabric tensor [256]:

F =

∫
Ω

E(n)n⊗ n dΩ (2.23)

or, in the usual discrete notation:

F =
1

N

N∑
k=1

nk ⊗ nk (2.24)

where N is the total number of contact points, in the case where n describes
the contact normals.

Several studies have shown that second order expansions can well approximate
both the orientational distribution of contact normals, as well as those of
normal and tangential contact forces [299]. The principal direction of contact
forces generally coincides with the principal stress axis, while the principal
direction of the contact normal fabric evolves in the presence of shear [153, 47]
such that it also aligns with the principal stress (and strain rate) axis [349,
201, 204]. This holds true in other types of fabric tensors e.g. those concerning
the orientation of elongated particles [38]. Fabric anisotropy is also intimately
related to the onset of yielding, and has been successfully used as an internal
variable within continuum plasticity theory [301, 281, 377, 204].

Network analysis

The coordination number and fabric are only a few examples of a far more gen-
eral tool for modeling granular systems, namely network analysis [265], whose
objective is the topological characterization of these systems. The most com-
mon network description of a granular system is one furnished by a graph with
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Figure 2.4: Modeling discrete systems: a) Interparticle contact. b) Force cycle.
c) Force chain. d) Representantive assembly. e) Graph representation of the
assembly.

grains serving as nodes and contacts between grains serving as edges (Fig. 2.4
e)). Binary graphs account for the mere presence of a contact, while weighted
graphs additionally account for the level of interparticle force. The contact
graph described above can also be complemented by the void graph, giving rise
to a dual description, often referred as a Satake-graph [313]. Graph theoretic
and complex network approaches to granular assemblies have been considered
in many studies [312, 314, 188, 361, 342]. Within network analysis, the concept
of degree distribution has generalized the notion of a coordination number [22],
and provided a measure of heterogeneity in granular systems. Studies of the
weighted (force) network have established several statistical properties such
as the distribution of contact forces [219, 209, 282] as well as relations with
bulk properties [299, 31, 258]. Complex networks analysis has also focused on
different centrality and clustering measures and their correlation with failure
nucleation [361]. Other studies have focused on identifying stable and unstable
mesoscale structures [314, 26, 188, 285, 213, 323, 342]. Finally, a plethora of
studies have focused on the identification of communities [270, 30, 342]. Of
these communities, two distinct families have monopolized the interest, quasi-
linear filamentary clusters, termed force chains [270] (Fig. 2.4 c)) and closed
loop clusters, termed force cycles [342] (Fig. 2.4 b)). We elaborate on these
two patterns in the following sections.

Force chains

The study of force chains has long attracted the interest of researchers [89,
55, 282, 270]. Photoelasticity and related techniques, as well as DEM have
provided the most popular force chain detection techniques [89, 209, 282, 142,
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270]. Before their detection, the presence of force chains was anticipated by
inspecting the distribution of contact forces in an assembly. Force chains
comprise the strong network that sustains any applied shear stress, while the
complementary weak network primarily contributes to the mean pressure [279].
The two networks have fundamentally different characteristics, with the forces
in the strong network (above average) exhibiting an exponential decay, and
the forces in the weak network (below average) exhibiting a power law decay.
The study of force chains have also given rise to several models explaining
the observed heterogeneities [238, 276], including a hyperbolic description of
granular systems [39] (as opposed to the usual elliptic nature of continuum
mechanics). According to this description, the stress propagates along char-
acteristic directions, which are the experimentally observed force chains in
granular configurations. Force chains have been shown to align with maxi-
mum compressive principal stresses [219] and are prone to buckling instability
[342]. The length of force chains was first studied in [270], and later in [305]
in relation to their coordination number, in [339] in relation to their confined
buckling, and in [379] with respect to their aging properties.

Force cycles

On the other hand, force cycles refer to the arrangement of particle contacts
in a closed loop [314, 26, 188, 342, 184] (Fig. 2.4 b)), and have not received
as much attention as force chains. Cycle size distributions have been analyzed
in [213, 346] in relation to their stability. In [342], the authors studied the
evolution of these cycles up to the onset of shear banding and found that
three-cycles provide the necessary lateral confinement for force chains. This
complemented earlier results of studies on the importance of cycles for the
stability of tilted granular packings [323]. Finally, the fabric and stress-strain
characteristics of these cycles have been investigated in [184, 246, 245, 51].
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2.3.3 Homogenization

Stress

The average macroscopic stress in an assembly of granular particles (Fig. 2.4
d)) is defined as [20]:

σ̄ =
1

Ω

Np∑
p=1

Ωpσ̄
p (2.25)

where Np is the number of particles in the assembly, and σ̄p is the average
stress in particle p obtained as:

σ̄p =
1

Ωp

Np
c∑

c=1

sym (f c ⊗ xc) (2.26)

where xc is the vector defined from the origin to the point of application of
the contact force f c at the contact point c (Fig. 2.4), with a total number of
contact points Np

c in a particle p.

Combining the two expressions and after some simple manipulations, one ob-
tains the following compact expression [68] for the average stress:

σ̄ =
1

Ω

Nc∑
c=1

sym (f c ⊗ lc) (2.27)

where lc is the so-called branch vector connecting the centroids of two particles
in contact, and Nc is the total number of contacts in the assembly. Note that
this interpretation of a stress tensor corresponds to a simple solid, where the
symmetry of σ is required to ensure moment equilibrium.

Strain

The homogenized description of strain is not as straightforward, and no widely
accepted formulation exists. Instead, several formulations have been proposed
[26, 185, 135], an evaluation of which may be found in [91]. According to the
equivalent continuum formulation [26]:

ε̄ =
1

V

∑
e

ue ⊗ de (2.28)
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where e represents edges of tetrahedra forming a Delaunay tesselation of the
assembly and de is the complementary area vector of the edge e(p, q), defined
as:

de =
1

12

Te∑
t=1

(bqt − bpt) (2.29)

with the summation being over all Te tetrahedra sharing the edge e(p, q).

2.3.4 Higher-order homogenization

Homogenization of discrete kinetics towards stresses and couple stresses has
been attempted from different perspectives. There is currently no overall con-
sensus regarding the form of the homogenized couple stress or its uniqueness.
In this section, we present the main three approaches in the literature, Hashin’s
principle approach [94], the principle of virtual work approach [29, 60], and
finally, the coarse graining approach [128].

The Hashin’s principle approach

Assuming rigid particle and point contact forces, and invoking equilibrium and
scale separation arguments (Hashin’s principle), Ehlers et al. [94] was able to
recover the stress in a form similar to that of [68]:

〈σij〉 =
1

V

∑
c∈∂R

f ci x
p(c)
j (2.30)

and obtain an expression for the couple stress:

〈mij〉 =
1

V

∫
∂R
mixjds =

1

V

∑
c∈∂R

εikll
c
kf

c
l x

p(c)
j . (2.31)

In the above expressions, xp(c) denotes the position of the center of the particle
on the RVE boundary corresponding to contact c (Fig. 2.4). The authors were
able to show that couple stresses can naturally arise from the eccentricity of
contact forces, and not necessarily from the existence of contact moments.
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The principle of virtual work approach

A different strategy for deriving micropolar and, generally, gradient kinetics,
was laid out in [29] (and later [64]). The authors first obtain expressions for
the discrete (grain-scale) virtual work and the equivalent continuum virtual
work. By equating the two, they were able to obtain the following expressions
for stress and couple stress:

〈σij〉 =
1

V

∑
c∈∂R

f ci x
p(c)
j =

1

V

∑
c∈R

f ci l
c
j (2.32)

〈mij〉+ εikl〈Σjkl〉 =
1

V

∑
c∈∂R

[
εijk(x

c
j − x

p(c)
j )f ck +mc

i

]
x
p(c)
j

=
1

V

∑
c∈R

[
εiklf

c
l

(
lcjx

c
k − J cjk

)
+mc

i l
c
j

]
(2.33)

where:

lcj = xmj − xnj (2.34)

J cjk = xmj x
m
k − xnj xnk , c ∈ R (2.35)

where xi is measured with respect to the RVE centroid. Note that this ap-
proach cannot yield separable expressions in terms of the couple stress m and
the stress moment Σ = x⊗ σ.

The coarse-graining approach

More recently, Goldhirsch [128] approached the issue of homogenization in
micropolar continua using coarse-graining. The latter approach relies on the
spatial averaging of grain scale dynamics, while assumptions include point
contacts and convex rigid particles. Imposing conservation of linear momen-
tum and taking the quasistatic limit, one obtains the average (coarse-grained)
stress in body-integral form:

〈σij〉 =
1

V

∑
c∈V

f ci l
c
j . (2.36)

Analogously, conservation of angular momentum yields the coarse-grained cou-
ple stress:

〈mij〉 =
1

2V

∑
c∈V

εiklx
c
kf

c
l l
c
j . (2.37)
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2.4 Multiscale modeling of granular materials

The complicated phenomenology of constitutive behavior, and, at the same
time, the developments in discrete mechanics and homogenization have paved
the way for the application of multiscale modeling. Multiscale methods are
typically thermodynamically consistent (satisfying micro-macro energy bal-
ance) and do not require complex calibration procedures. This is because these
methods obtain information from a lower scale material description, which is
inherently given in terms of fewer system parameters. Two major families can
be distinguished, hierarchical and concurrent methods.

2.4.1 Hierarchical methods

Hierachical models rely on the assumption of scale separation, in order to in-
troduce a Representative Volume Element (RVE) in the form of a granular as-
sembly (Fig. 2.5 a)). Micromechanical and statistical considerations determine
the size of the RVE, which must be significantly smaller than the characteristic
dimension of the macroscopic boundary value problem. A well-defined RVE is
one that undergoes homogeneous deformation under the influence of a uniform
boundary stress, and lacks sharp gradients over its width. The issue of scale
separation and its existence or lack thereof has been discussed in several stud-
ies [127, 126, 305, 123]. In [305], it was shown that a reasonable continuum
representation can be obtained at the level of the velocity correlation length.
The observation of stress plateaus over a range of scales at the linear regime
also imply some degree of scale separation [126].

Assuming that scale separation holds, the balance equations are then solved
in the RVE, subject to appropriate boundary conditions (BCs), usually by
means of DEM [78] or its variants. It has been shown that affine displacement
BCs render the RVE problem stiff, while the opposite effect is obtained for
stress-based BCs. Periodic BCs are widely considered as optimal [230], al-
though the so-called minimal kinematic BCs are also a promising alternative
[228]. Particular boundary conditions have also been developed specifically for
localization studies [144, 197, 70]. In any case, BCs are required to satisfy the
thermodynamic constraints furnished by the Hill-Mandel condition, which, in
the case of infinitesimal kinematics, reads:

〈σijεij〉 = 〈σij〉〈εij〉. (2.38)
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Once the RVE problem is solved, the next step is the application of an upscal-
ing procedure to the continuum level, where the continuum balance equations
are solved, for example, using FEM. This upscaling is typically furnished by
statistical homogenization [251, 68, 227, 313, 50, 95]. Hierarchical two-scale
models for general elastoplastic heterogeneous materials were initiated in [337,
231, 180]. In the context of granular materials, two-scale (DEM-FEM) models
for granular materials in the quasistatic regime was proposed by [230, 249] and
later by [131]. A different hierarchical approach was developed in [18], where
the upscaling procedure involves computing the effective frictional angle and
dilation angle of the granular assembly and passing that information to a sim-
ple macroscopic plasticity model. The implicit assumption in that approach
is that of isotropy.

Conventional homogenization techniques, developed in the context of simple
continua, only allow for first-order RVE deformation modes. In contrast, the
extension of these techniques to weakly nonlocal or generalized continua addi-
tionally account for microstructural (e.g. gradient) effects [112, 181, 93, 202,
203]. These extended schemes have been shown to relax the requirement for
separation of scales [198]. Most studies have focused on developing homoge-
nization and two-scale schemes for micropolar continua (e.g. [93]), in which
case the Hill-Mandel condition is appropriately extended to [112, 202].

〈σijεij + µijκij〉 = 〈σij〉〈εij〉+ 〈µij〉〈κij〉 (2.39)

2.4.2 Concurrent methods

Concurrent methods do not rely on scale separation, and do not assume the
existence of an RVE. Instead, these methods seek the solution of a boundary
value problem at both the continuum and the grain scales simultaneously and
use techniques such as handshake domains to exchange information between
the two scales (Fig. 2.5 b)). The developments relevant to granular materials
have been inspired by earlier developments in molecular dynamics [331, 32].
In [369], researchers developed a methodology that assumes both a continuum
and a discrete domain with a partial overlap and utilizes the Arlequin method
for the reconciliation/coupling of the two scales. Particle displacements are
split into a fine and coarse scale part, with the latter being forced to equal the
continuum solution. Similar overlapping domain methods have been developed
in [348, 371].
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2.5 Machine learning-based modeling of granular materials

In light of the many challenges encountered in the modeling of granular ma-
terials via continuum, discrete and multiscale methods, promising modeling
alternatives have surfaced in the form of machine learning and data-driven
techniques. These are driven by the increasing abundance of experimental
and high fidelity DEM data and the rapid progress in data science. The first
machine learning studies relied on standard feed-forward neural networks (NN)
trained with experimental data in order to predict the general mechanical be-
havior of materials [121]. This technique, along with support vector machines,
were quickly adapted to the modeling of granular materials, replacing con-
ventional constitutive models [268, 175]. Capabilities for modeling complex
history-dependent behavior were enhanced with the use of recurrent [380, 295],
and particularly Long Short-Term Memory (LSTM) neural networks [373].
Multiscale methods, where upscaling is furnished by means of deep learning,
have been developed in [367, 237] (Fig. 2.5 c)). In all of the above methods,
machine learning models trained with experimental or high-fidelity microme-
chanical simulation data are used as surrogates for constitutive laws. Only
very recently some of the developed techniques feature appealing properties
such as built-in invariance and thermodynamic consistency. In another set of
studies, machine learning techniques have been developed to predict specific
features of the micromechanical state. Stick slip events in sheared granular
materials were predicted using decision trees in [289], while in [134], local re-
arrangement events in amorphous packings of ellipses were characterized using
support vector machines.
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C h a p t e r 3

INVESTIGATING THE INCREMENTAL BEHAVIOR OF
GRANULAR MATERIALS WITH IN-SILICO EXPERIMENTS

K. Karapiperis, J. Harmon, E. Ando, G. Viggiani and J. E. Andrade. In-
vestigating the incremental behavior of granular materials with the level-set
discrete element method. Journal of the Mechanics and Physics of Solids 144
(2020), p. 104103.

Abstract
A computational framework is presented for high-fidelity virtual (in-silico) ex-
periments on granular materials. By building on i) the accurate mathematical
representation of particle morphology and contact interaction, ii) the full con-
trol of the initial state of the assembly, and iii) the discrete element simulation
of arbitrary stress paths, the proposed framework overcomes important limi-
tations associated with conventional experiments and simulations. The frame-
work is utilized to investigate the incremental response of sand through stress
probing experiments, focusing on key aspects such as elasticity and reversibil-
ity, yielding and plastic flow, as well as hardening and fabric evolution. It is
shown that reversible strain envelopes are contained within elastic envelopes
during axisymmetric loading, the yield locus follows approximately the Lade-
Duncan criterion, and the plastic flow rule exhibits complex nonassociativity
and minor irregularity. Hardening processes are delineated by examining the
stored plastic work and the fabric evolution in the strong and weak networks.
Special attention is given to isolating in turn the effect of particle shape and
interparticle friction on the macroscopic response. Interestingly, idealization
of particle shape preserves qualitatively most aspects of material behavior, but
proves quantitatively inadequate especially in anisotropic stress states. The re-
sults point to the importance of accurately resolving particle-scale interactions,
that allows macroscopic behavior to emerge free from spurious micromechan-
ical artifacts present in an idealized setting.
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3.1 Introduction

The continuum response of a granular assembly is encoded in the evolving kine-
matics of particles, driven by frictional forces at discrete interparticle contacts.
Decoding this response experimentally is fraught with difficulties mainly in
extracting interparticle forces, and creating reproducible conditions. The Dis-
crete Element Method (DEM) [78] has provided a numerical framework that
overcomes these difficulties, but at the same time introduces new limitations,
due to the idealization of granular shape or the incorporation of questionable
rolling dissipation [6]. Recently, a pivotal advancement that overcomes these
limitations has been achieved through the level-set characterization of the
morphology of individual grains using X-ray Computed Tomography (XRCT)
[356], and its utilization within the Level-Set DEM (LS-DEM) framework [170].
Even more recently, significant steps have been made in validating the method
[169, 200, 166], thus paving the way for a systematic investigation of granular
behavior through high-fidelity virtual experiments.

The cornerstone of experiments on granular matter is stress probing, which
relies on achieving multiple incremental stress paths originating from an iden-
tical initial state. Physical stress probing experiments are extremely hard to
conduct, which explains the scarcity of relevant studies [13, 303]. On the
other hand, numerical stress probing via conventional DEM (e.g. [28, 48, 332,
366]) has served as an effective platform for the investigation of constitutive
behavior in a qualitative sense. The first DEM stress probing experiments
were conducted by Bardet [28] using disks. Later, Calvetti and coworkers
carried out similar experiments with spheres, and used them to examine the
importance of preloading [48], inspect the underlying micromechanics [49], and
assess different classes of continuum theories [332]. In several occasions (e.g.
when probing from a preloaded state), they identified deviations from classical
plasticity in the form of a nonregular flow rule, which was interpreted as ev-
idence of thorough incremental nonlinearity (e.g. hypoplasticity) [333]. This
was in line with later observations in [366, 189]. The influence of triaxiality
on the regularity of the flow rule was investigated in [366], while the effect of
the rotation of principal stresses was discussed in [115]. A critical element in
analyzing results of numerical (or virtual) stress probing experiments is the
decomposition between elastic and plastic strains. These have been typically
extracted either by unloading to the initial state [28], or by carrying out ad-
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ditional simulations where dissipative mechanisms are inhibited [48, 49, 332].
Wan and Pinheiro [366] have suggested that the two approaches are equiv-
alent. On the other hand, Kuhn and Daouadji [190] observed that the two
approaches produce different decompositions, and examined the relevant im-
plications within the context of a thermodynamical framework, complementing
an earlier discussion in [73]. With the exception of a 2D polygon study in [10],
all the aforementioned studies involve highly idealized particle shapes (disks
or spheres).

The first objective of this paper is to introduce a new paradigm of virtual
experiments building on the recent development of LS-DEM (Section 2). The
framework incorporates an unprecedentedly accurate representation of particle
morphology and interaction, which jointly define a type of granular genome
or 'DNA'. By controlling the expression of that 'DNA' to a desired config-
urational state — a process intractable with preexisting techniques — and
evolving that state by imposing arbitrary stress paths, the proposed frame-
work is established. In Section 3, the framework is utilized to systematically
investigate the incremental response of an angular sand through multiple stress
probing experiments. In a first set of axisymmetric experiments, the elastic-
plastic and reversible-irreversible decompositions of strain are investigated,
and the properties of plastic flow are discussed as functions of the current
state and its history. We, then, shed light on the micromechanical processes
driving dissipation, hardening and fabric evolution, and briefly examine the
relevant role of fluctuations. Subsequent experiments focus on isolating the
effect of interparticle friction and particle morphology, and assessing the effect
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Figure 3.1: The concept of granular 'DNA'within virtual experiments.
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of the common spherical idealization. In a final set of deviatoric experiments,
we map the entire yield surface in 3D principal space and quantify the nonas-
sociativity of the flow rule as a function of the mean stress and Lode angle. A
discussion of the main findings and the future potential of virtual experiments,
in Section 4, concludes this paper.

3.2 In-silico experiments

Physical experiments of granular materials suffer from poor reproducibility and
limited control of initial and boundary conditions. They also inherently lack
the ability to measure interparticle forces, a key ingredient in understanding
the constitutive behavior. The proposed virtual experimentation framework
effectively bypasses these limitations by relying on a) the accurate mathemat-
ical description of particle morphology and interaction, b) the control of the
initial state of the assembly, and c) the enforcement of boundary conditions
following an experimental protocol.

3.2.1 Particle morphology and interaction

The mathematical representation of particle geometry is achieved through
mathematical objects termed level sets [170]. Given a local (particle) coordi-
nate system, the value of a level set function φ(x) is the signed distance from
a point x to the grain’s surface, described by the zero-level set {x |φ(x) = 0}.
Such functions may either be constructed using standard level set operations
[262] or extracted directly from XRCT images using level set imaging tech-
niques [356], given the increased resolution of modern 3D XRCT technology
[15, 69]. An example of extracting a level set of an angular sand grain is given
in Fig. 3.2. From a collection of grain morphologies, a distribution of geomet-
rical properties spanning multiple scales (e.g. sphericity, roundness) may be
obtained. Finally, this distribution can be sampled to produce granular clones
of similar morphology [44].

The granular 'DNA' can be described by these morphological distributions,
complemented by interparticle contact laws and associated grain-scale mate-
rial properties. A general description of interparticle contact is furnished by
thermodynamics; for a discrete contact point c, one can consider a Gibbs en-
ergy Gc(f c,qc, θ) as a function of the contact force f c, the temperature θ and
an internal variable qc related to dissipative events (sliding displacement/con-
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tact damage), and an associated contact dissipation potential ψc, in analogy
to continuum thermodynamics [381, 260, 259]. Presented in Appendix 3.A is
a simple formalism, from which various contact laws may be derived. Note
that the material properties on which they rely (e.g. interparticle friction,
contact stiffness) may now be directly measured at the grain-scale by means
of compressive [71], shearing [56, 319] and multidirectional [241] tribological
experiments conducted between individual particles.

150 μm

(a) (b) (c)

Figure 3.2: Particle morphology characterization: a) Hostun sand grain seg-
mented from XRCT, b) slice of grain level set (blue: interior, red: exterior),
and c) particle surface.

3.2.2 Control of initial state

Once the granular 'DNA' is fully characterized, the next step is to control its
expression to a configurational state, that includes initial stress, density, and
contact-/particle orientation-fabric. The state may be either obtained using
imaging techniques in an in-situ XRCT experiment [169], or, more generally,
it may be generated by simulating a preparation protocol designed to target
particular state properties. The latter relies on simulating particle interac-
tion, through a level-set based discrete element framework, termed LS-DEM
[170]. Similarly to the original DEM formulation [78], LS-DEM resolves the
kinematics of grains whose interaction is governed by contact mechanics, but
at the same time is able to represent realistic grain shape. At each time step
and contact point, the contact force f c is computed based on the interaction
law, and contributes to a moment mc about the particle’s center of mass.
Given the inertial properties of the particle, its kinematics are updated us-
ing an appropriate time integration scheme of Newton’s equations of motion.
For a detailed explanation of the LS-DEM framework, the interested reader is
referred to [170].
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Fig. 3.3 shows an example preparation protocol using LS-DEM, where grains
are being pluviated from an orifice into a cubical container. By controlling the
height and supply rate of pluviation, as well as the orientation of the container,
a desired packing fraction and fabric may be achieved. Importantly, the com-
plete description of fabric involves not only on the orientational distribution of
contacts — the most common way of quantifying fabric to date [263] - but also
on the distribution of particle orientations or voids, which is intractable with
conventional methods (e.g. DEM). We refer to Section 3.3.1 for an example
of fabric quantification within the proposed framework.

x

y
z

Figure 3.3: Stages of virtual pluviation of a sample of Hostun sand.

3.2.3 Testing protocol

The power of virtual experiments is fully exploited in the testing phase, since
they enable the exact replication of any generated initial state and the en-
forcement of arbitrary mixed boundary conditions. For example, true triax-
ial conditions (Section 3.3.9) can be easily established without the need for
complicated experimental design [286]. Before enforcing such conditions and
embarking on a systematic exploration of stress space, it is necessary to estab-
lish confidence in the method within conventional stress paths. Indeed, LS-
DEM has recently been validated against physical triaxial compression [169]
and shear experiments [200], where parameters were directly computed from
particle material properties and the initial state was replicated using level-
set imaging. The method was able to capture quantitatively the macroscopic
(stress-strain), mesoscopic (spatiotemporal prediction of onset and evolution of
a shear band and its kinematics), and particle-scale response (contact-normal
and force distribution, and friction mobilization).
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3.3 Stress probing
3.3.1 Setup

This section details the virtual experiment setup used to investigate the in-
cremental response of an angular sand. The model consists of 15625 virtual
Hostun sand grains1, whose morphology has been extracted from µ-XRCT data
(Section 3.2.1). The grain interaction follows a Hookean elastic – Coulomb fric-
tional law (Appendix 3.A), with the relevant properties given in Table 3.1. To
accelerate the approach to equilibrium, contact damping with a coefficient of
restitution of 0.6 is introduced in the interaction law. Additional experiments
verified that the results were insensitive to the choice of coefficient of restitu-
tion, under a sufficiently low dimensionless inertial number (I ≤ 10−3). We
employ LS-DEM to simulate both specimen preparation and stress probing.
Via dry pluviation, we construct a dense cubical assembly of virtual Hostun
sand particles (Fig. 3.4) of relative density Dr = 85% and corresponding void
ratio e = 0.55. To calculate the relative density, the minimum and maximum
void ratios were first estimated based on the following protocols. The dens-
est state was reached by pluviating particles into a container under gravity,
and subsequently subjecting the container to vertical sinusoidal vibration at
60 Hz under constant vertical load, until the void ratio plateaued to a value
emin = 0.51. This method is similar to that described in the ASTM stan-
dards [24, 63]. Accordingly, the loosest state was obtained by pluviation from
zero height [350, 23], followed by compression to the same vertical load for
consistency with the dense measurement, resulting in a void ratio emax = 0.74.

Parameter Value Units
Density (ρ) 2500 Kg/m3

Normal stiffness (kn) 3 · 104 N/m
Shear stiffness (kt) 2.7 · 104 N/m
Friction coefficient (µ) 0.4 -
Coefficient of restitution (c) 0.6 -

Table 3.1: Particle properties used in the virtual experiments.

After pluviation, each specimen is isotropically consolidated to state A by
applying a uniform confining pressure of pA = 50 kPa. Note that the sign
convention of solid mechanics (compression negative) is adopted here, and we

1Increasing sample sizes were used to ensure that the size of the unit cell is representative
(see Appendix 3.B).
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Figure 3.4: Specimen subjected to a loading protocol: a) Virtual specimen
of Hostun sand under three dimensional stress conditions. b) Imposed stress
states and probing protocol in p-q plane. c) Same in the Rendulic plane.

define p = −1/3 trσ, q =
√

3/2 s :s where s = σ + pI. The confining pres-
sure is applied using numerical servocontrol to adjust the displacement of the
surrounding walls, which are modelled as smooth frictionless elements2. This
ensures that the principal axes of stress and strain are coincident with the
axes of the cube (Fig. 3.4 a)) [48]. Afterwards a drained triaxial compression
along the z-direction is imposed at constant lateral stress σX = σY until an
anisotropic state B (qB = 50 kPa), termed the virgin state, is reached. Finally,
the samples are subjected to further drained triaxial compression to state C
(qC = 100 kPa), and unloaded to produce the preloaded state B′ (qB′ = 50

kPa). The packing and history at states A, B, and B′ are stored and cloned
[10], since each will serve as the initial condition of a subsequent axisymmetric
stress probing protocol (Fig. 3.4 b, c)). The latter consists of 32 axisymmet-
ric probes, uniformly distributed in the Rendulic angle α∆σ = arctan(∆σz/√

2∆σx) ∈ [0◦, 360◦), each with a Euclidean norm of 5 kPa (Fig. 3.5 a)).
Characteristic probes include: isotropic (IE), triaxial (TE), and deviatoric
(DE) extension, as well as isotropic (IC), triaxial (TC), and deviatoric (DC)
compression. The stress states and probing magnitudes/angles were chosen
such that the effect of anisotropy and history is adequately captured while
minimizing computational demands.

Before analyzing the stress probing response, we quantify the state of the sam-
ple beyond the isotropic measure of relative density discussed above. To this

2An alternative way to impose the stress state is through periodic boundary condi-
tions. This is avoided in this study since it imposes constraints on the sample preparation
procedure, which in this particular case is non-periodic.
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Figure 3.5: Stress, strain and fabric during probing: a) Top: Stress prob-
ing paths form a circle in the Rendulic plane of stress increments. Marked
characteristic paths: isotropic (IE), triaxial (TE), and deviatoric (DE) exten-
sion, isotropic (IC), triaxial (TC), and deviatoric (DC) compression. Bottom:
Sketch of the strain response in the Rendulic plane of strain increments. b)
Contact-normal and major particle axis orientation fabric at states A,B, and
B′.

end, Figure 3.5 b) shows the orientation histograms for the contact-normals
and major particle orientation axes at each state. The sample exhibits initially
(state A) only a slight vertical fabric anisotropy, which becomes increasingly
pronounced at the anisotropic states B and B′. On the other hand, the particle
orientation fabric remains approximately isotropic throughout the experiment.

3.3.2 Scope

In the remaining sections, we will focus on gaining insight into i) the strain re-
sponse due to stress probing, mathematically summarized as dε = S(σ,η,q) :

dσ, where η is the stress probing direction, and q is some representation of
the internal state, and ii) the evolution of the internal state due to probing,
succinctly given as dq = H(σ,η,q) : dσ.

3.3.3 Strain response

Fig. 3.6 a) shows two decompositions of the strain response considered in this
study. In order to define the elastic-plastic strain decomposition, we follow
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the work of Bardet [28], where the plastic strain is identified as the residual
strain upon unloading to a reference stress state. The elastic strain is, then,
recovered by subtracting the residual from the total strain. On the other
hand, the reversible-irreversible decomposition partitions the strain into that
arising from reversible and irreversible grain-scale mechanisms. The reversible
response is furnished by an additional set of stress probing experiments in
which frictional dissipation (slip) has been inhibited [48]. The irreversible
component follows by subtracting the reversible from the total strain response.

As illustrated schematically in Fig. 3.6 b), the elastic-plastic and the reversible-
irreversible decompositions may only coincide in a perfectly crystalline ar-
rangement. Indeed, in that case, the applied loading induces an affine de-
formation of the contacts, which is exactly reversed upon unloading. On the
contrary, during loading of an amorphous assembly, fluctuations are known to
develop [292], leading to some contacts behaving elastically, and others sliding
variably. Upon unloading, the contact deformations are not exactly reversed,
as shown in Appendix 3.C. This results in an altered configuration, and, hence,
the divergence between elastic and reversible response. Macroscopically, this
divergence manifests itself as elastic-plastic coupling [141, 73, 190].
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Figure 3.6: Elasticity versus reversibility of the material response: a) Elastic-
plastic (left) and reversible-irreversible strain decomposition (right). b) Incre-
mental response of a crystalline vs an amorphous assembly upon a loading-
unloading cycle.

Elastic-plastic strain decomposition

Figs. 3.7, 3.8, and 3.9 show the total, elastic, and plastic strain response en-
velopes [130] obtained in this manner for stress probes originating at states
A, B, and B′ respectively. The plot insets show the stress-strain response
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for specific probes, revealing different amounts of hysteresis depending on the
probing direction. A few observations can be made:

• To a first approximation, the total strain envelope at state A is given by
an ellipse, while the same envelopes at states B and B′ are given by two
sections of ellipses, one in the direction of deviatoric compression (DC)
and another in the direction of deviatoric extension (DE).

• The elastic envelopes form ellipses, which, for anisotropic states (B, B′),
are coincident with the corresponding total strain envelopes in the di-
rection of previous loading history, essentially corresponding to stress
reversal (DE and DC respectively).

• The elastic envelopes are approximately centered at the origin of the
Rendulic plane. Non-centricity is more pronounced in anisotropic states.

• An approximately unique plastic strain increment direction is observed,
which is distinct for each state, suggesting incremental bilinearity [48].
Yet, closer inspection reveals some degree of deviation in the form of
angle dependence for all states. Particularly, at state A, this deviation
could be attributed to the presence of a minor vertical fabric.

• The principal axes of the total, elastic, and plastic envelopes are non-
coaxial. This is related to the nonassociativity of the plastic flow rule
which is quantified for all three states in Fig. 3.10. The latter shows the
average orientation of the normal to the implied yield surface (intepreted
as the locus of stress states corresponding to the same norm of plastic
strain rate) and the orientation of the normal to the plastic potential
(i.e. the average orientation of the plastic strain rate). Their difference
is a measure of the nonassociativity of the flow, which appears to be
most pronounced in the anisotropic state B.

• By comparing the elastic envelopes at the three states (Fig. 3.11), we
observe an increase in elastic stiffness, and the development of elastic
anisotropy at states B and B′, compared to state A. The elastic re-
sponse in each state is quantified by fitting linear elastic isotropic and
transversely isotropic envelopes, as described in Appendix 3.D. The rel-
evant parameters are tabulated in Table 3.2.
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Figure 3.7: Total (black), elastic (green), and plastic (red) strain response en-
velopes for the dense specimen at isotropic state A. Insets: Loading/Unloading
stress-strain curves.
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Figure 3.8: Total (black), elastic (green), and plastic (red) strain response
envelopes for the dense specimen at virgin state B. Insets: Loading/Unloading
stress-strain curves.
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envelopes for the dense specimen at preloaded state B′. Insets: Loading/Un-
loading stress-strain curves.



41

Model Parameter A B B’
Isotropic
Elastic

E (MPa) 34.1 45.1 41.2
ν 0.149 0.113 0.106

Transversely
Isotropic
Elastic

Ex (MPa) 34.2 13.2 14.6
Ez (MPa) 34.1 48.2 45.8

νx 0.151 0.698 0.616
νzx 0.147 0.146 0.154

Table 3.2: Fitted parameters for isotropic and transversely isotropic elasticity.

Reversible-irreversible strain decomposition

Fig. 3.12 shows, for all states, the reversible, irreversible, and total strain
response envelopes obtained via inhibited-dissipation experiments. We observe
that:

• Reversible strain envelopes form ellipses that are very similar yet slightly
smaller than the elastic ones. They are generally contained within the
elastic envelopes.
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Figure 3.10: Average orientation of yield surface normals (blue) and plastic
potential normals (red) in the Rendulic stress plane for a) the isotropic state A,
b) the anisotropic state B, and c) the preloaded state B′. Blue dots represent
the trace of the yield surface.
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Figure 3.11: Elastic envelopes obtained from the virtual experiments compared
to the fitted linear elastic isotropic and transversely isotropic envelopes for a)
the isotropic state A, b) the anisotropic state B, and c) the preloaded state
B′.

• The difference between elastic and reversible strain, which can be iden-
tified as a coupled strain [190], is most pronounced along the directions
of (DC) and (DE).

• Irreversible strains generally arise for almost all Rendulic angles, with
the exception of isotropic compression (IE) and isotropic extension (IE).
The direction of the irreversible strain rate is only weakly dependent on
the probing angle, which defines a slightly irregular flow rule [366].

• For any given state, irreversible and plastic strain increment directions
generally coincide.

• Preloading leads to a stiffness increase along the (DC) direction, evi-
denced by the corresponding reduction in total strain. As a result, total
and irreversible strain envelopes become more symmetric at B′ compared
to B.
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Remark: In extracting the reversible response through such numerical exper-
iments, one needs to ensure that no irreversible changes occur in the contact
topology (creation and extinction of contacts). However, this condition cannot
be guaranteed a priori by only inhibiting interparticle dissipation (slip). Our
approach is to accept that some minor topological changes will occur, and then
quantify the extent of these topological changes on the response a posteriori.
To do so, we consider the stress increment during a probe [67]:

∆σ = σ′ − σ =
∑
c∈C′

f ′c ⊗ l′c −
∑
c∈C

fc ⊗ lc (3.1)

where fc, lc denote the force and branch vectors at the initial configuration, and
f ′c, l

′
c denote those at the configuration after probing. The sets C, C ′ represent

the sets of contacts at the two configurations. We can rewrite Eq. 3.1 to obtain
the following decomposition:

∆σ =
∑
c∈C∩C′

(f ′c ⊗ l′c − fc ⊗ lc) +
∑
c∈C′\C

f ′c ⊗ l′c −
∑
c∈C\C′

fc ⊗ lc (3.2)
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Figure 3.12: Total (black), reversible (blue), and irreversible (orange) strain
response envelopes in the Rendulic stress plane for a) the isotropic state A, b)
the anisotropic state B, and c) the preloaded state B′.
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where the first term arises from two reversible mechanisms: i) the change in
interparticle forces under fixed topology and ii) the change in fabric due to
dissipation-free particle rolling. The second and third terms are due to the
change in topology via creation and loss of contacts, respectively, and repre-
sent irreversible mechanisms. We find that these last two terms consistently
contribute less than 5% to the stress increment. Hence, we conclude that this
approach yields a good (slighty overestimated) approximation of the reversible
response.

In Appendix 3.E, two additional strategies for the estimation of the reversible
response are presented: i) a similar numerical construction where particle ro-
tations are also constrained, and ii) an analytical homogenization-based ap-
proach. These methods are shown to provide lower bounds for the reversible
response, and are not pursued further.

3.3.4 Hardening and stored plastic work

In order to shed light on hardening processes, we discuss here the thermo-
dynamics of deformation during a closed cycle. To do so, we compute the
change in the stored elastic energy A =

∑
cAc and the dissipation incre-

ment as dD =
∑

c dDc, where the summation takes place over all contacts.
Fig. 3.13 a) shows the frictional dissipation in the sample, normalized with
the initial stored elastic energy A0, against the Rendulic angle during loading
and unloading probes from the isotropic state A. We observe that dissipation
is present throughout all angles, yet attains its maximum in the (DC) and
(DE) directions at both loading and unloading. Fig. 3.13 b) shows the corre-
sponding normalized change of the elastic energy stored in the contacts at the
end of the loading-unloading cycle, and shows similar angle dependence as the
dissipation. This change in stored energy reflects the arrangement of contacts
and corresponds to the stored plastic work (hardening) in the system. The
same quantities are plotted for the anisotropic state B in Fig. 3.14. At this
state, maximum dissipation occurs near (DC), while almost no dissipation oc-
curs at (DE). During unloading, the situation is reversed, i.e. we observe most
dissipation near (DE). Finally, the distribution of stored plastic work reflects
processes occurring during both loading and unloading.
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3.3.5 Micromechanics

Fluctuation-dissipation observations

The goal of this section is to shed light on the nature of dissipation, and reveal
its relation to contact fluctuations. Radjai et al. [283] established that, in ide-
alized two-dimensional assemblies, full mobilization of friction predominantly
occurs in the so-called weak network. Fig. 3.15 a) verifies this observation in
our 3D granular assembly by plotting, for various probes, the rate of dissipa-
tion at each contact against the associated interparticle force. For large enough
contact force magnitudes, we observe an exponential decay of dissipation with
increasing contact force for all probes originating from all three initial states.

On the contrary, the relation of dissipation to contact fluctuations has not been
properly investigated, despite its importance. Fig. 3.15 b) shows the rate of
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Figure 3.13: Dissipation and hardening during probing from the isotropic state
A: a) Frictional dissipation during loading-unloading, and b) stored plastic
work in a cycle, both normalized with the initial stored elastic energy, and
plotted against the Rendulic angle.
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Figure 3.14: Dissipation and hardening during probing from the anisotropic
state B: a) Frictional dissipation during loading-unloading, and b) stored
plastic work in a cycle, both normalized with the initial stored elastic energy,
and plotted against the Rendulic angle.
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dissipation at each contact against the associated magnitude of the fluctuation
in the deformation of the contact (see Eq. 3.17), which is related to the force
fluctuation via the interparticle contact law. We observe a substantial increase
in the rate of dissipation with increasing fluctuation magnitude. In fact, fluc-
tuations that are lower than a threshold — dependent on the contact scale
parameters that govern the frictional limit — exhibit almost no dissipation
which lends credibility to the notion of elastic fluctuations (Appendix 3.E).
This observation may be verified pictorially by inspecting Figs. 3.16 a) and
b). Fig. 3.16 a) shows, for a two-dimensional cross-section of the dense spec-
imen, the contact deformation fluctuation vectors during probing (computed
via Eq. 3.17), while Fig. 3.16 b) shows the corresponding contours of frictional
dissipation rate at the same instant. One can observe active regions with both
pronounced frictional dissipation and large fluctuation magnitudes.
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Figure 3.15: Normalized dissipation versus a) normalized force magnitude,
and b) normalized contact fluctuation magnitude. Colors represent different
probes originating at state A.
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Mobilized friction and plastic debt

The focus of this section is to describe the evolution of the micromechanical
state of the sample in terms of mobilized friction at the contact scale. Fig. 3.17
shows the relationship between the magnitude of the tangential (ft) and normal
(fn) contact force for all contacts in the three considered states. Their ratio
represents the contact-scale mobilized friction η = ft/fn, bounded by the
Coulomb limit, while dashed lines represent the system average. Interestingly,
we identify a substantial percentage of contacts at the Coulomb limit at the
isotropic state — a departure from previous observations on spheres [49]. Not
surprisingly, the amount of sliding contacts increases in the anisotropic state B,
to accommodate the increasing level of macroscopic shear. This is also evident
by the increase in the average mobilized friction. At the preloaded state B′,
the magnitude of forces increases, while the mobilized friction decreases, in
accordance with previous observations in spheres [49].
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Figure 3.17: Tangential vs normal contact forces for the dense granular assem-
bly at states a) A, b) B, and c) B’.

Further information about the micromechanical state of the system can be
obtained by adopting the machinery of Calvetti, Viggiani, and Tamagnini
[49]. To this end, we introduce the scaled mobilized interparticle friction
ηµ = ft/(µfn), noting that ηµ ≤ 1 for conventional probes, while ηµ > 1 is
possible for reversible (inhibited-dissipation) probes. In the latter, the quan-
tity ∆fp = ft − µfn is interpreted as a plastic “debt” (as defined in [49]), that
would be required to bring sliding contacts back to the Coulomb limit. For
conciseness, we only present such measurements for two characteristic direc-
tions (DC and DE), at state B. In particular, Figure 3.18 shows the mobilized
interparticle friction as a function of the magnitude of normal contact force,
for both conventional and reversible probes. Substantial irreversible behavior
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Figure 3.18: Mobilized friction versus normal force for the dense granular
assembly during stress probing along a) deviatoric compression (DC), and b)
deviatoric extension (DE) at state B.
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Figure 3.19: Plastic debt vs contact orientation angle for the dense granular
assembly during probing along a) deviatoric compression (DC), and b) devia-
toric extension (DE) at state B. Dashed lines represent the weighted average
orientation of plastic debt at each quadrant.

emerges during the (DC) probe, which is evident by the development, in the
case of the reversible probes, of shear forces larger than those allowed by the
Coulomb condition. On the contrary, during the (DE) probe, only few con-
tacts experience shear forces above the frictional limit. For the same probes,
Figure 3.19 reports the plastic debt against the contact orientation angle pro-
jected in the x−z plane (θ), indicating some degree of preferred orientation
albeit with significant scatter. This is more clearly seen by the misalignment
of the weighted average orientation of plastic debt at each quadrant — repre-
sented by dashed lines — with the diagonal directions. A perfect alignment
would indicate a uniform (isotropic) orientational distribution.
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3.3.6 Fabric evolution

The change in structure revealed partially in Sections 3.3.4 using the isotropic
measure of stored energy, and in Section 3.3.5 using the concept of plastic
debt, is now further illuminated by investigating the evolution of fabric. Fig-
ure 3.21 shows the evolution of different measures of fabric, during probing
for the two characteristic probes (DE) and (DC) at state B. In particular,
(a1-a2) and (b1-b2) show the change in orientational distribution of contact
normals that belong to the strong and weak network, respectively, along a slice
in the x-z plane. Green and red colors are used to mark a positive (gain) and
negative (loss) change in the contact density, respectively. Further, (c1-c2)
show the orientational distribution of the magnitude of contact displacement
fluctuations. For both states and both probes, we observe that strong network
contacts are consistently gained in the direction of compressive loading. On
the other hand, the density of sliding contacts increases roughly in the per-
pendicular direction, and decreases in a direction almost parallel to the plastic
strain direction. Interestingly, at the isotropic state A while probing along
(DC), the sliding contact density gain is unimodal in nature, as opposed to
the bimodal gain in the case of the same probe at the anisotropic state B.
The same modality difference is observed when comparing the sliding contact
density loss for the (DE) probe at states A and B. For a related discussion
on the anisotropy of the weak network in biaxial experiments, we refer to
[10]. Finally, the orientation of maximum contact fluctuations appears to be
correlated with the direction of maximum loss of sliding contacts.

3.3.7 Effect of interparticle friction

In this section, we briefly investigate the effect of interparticle friction µ in the
incremental response. Fig. 3.22 compares the total, elastic, and plastic strain
response envelopes obtained during stress probing at state B for a range of
values µ ∈ [0.2, 1]. We identify an anticlockwise rotation and contraction of the
total and plastic strain response envelope with increasing interparticle friction.
Once the latter increases beyond a critical value µcr ≈ 0.8, the envelopes
converge to a well-defined shape, and the macroscopic response is completely
dictated, at that point, by particle morphology. These observations are in line
with studies showing that the macroscopic friction plateaus with increasing
interparticle friction [215]. The elastic envelopes remain essentially unaffected.
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3.3.8 Effect of particle shape

In this section, we focus on investigating the effect of particle shape on mapping
the grain-scale behavior to the incremental continuum response. In particu-
lar, we choose to address the effect of the common spherical idealization (e.g.
[28, 48, 49, 332, 115, 366]), by comparing the granular sample to an equiva-
lent spherical one; the investigation presented in this work could serve as the
backbone for a systematic study of particle morphology on the incremental
continuum response of granular media. Via the same dry pluviation proce-
dure (Section 3.3.1), we construct an idealized spherical counterpart of the
dense granular assembly. To this end, each grain is substituted by a sphere of
equal volume, while keeping particle material properties the same. Further,
in order to achieve a fair comparison between the spherical and granular as-
sembly, the same relative density (Dr = 85%) is imposed3. Note that this
consideration compensates partly for shape since it accounts for its effect on

3Experiments were also conducted for granular and spherical samples created at the
same void ratio rather than the same relative density, during which qualitatively similar
differences were observed.
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Figure 3.20: Incremental change in the fabric of contact normals in a) the
strong force network, and b) weak force network, and c) orientational distri-
bution of contact displacement fluctuations for probing at state A. Numbers
denote loading path (1: DE, 2: DC).
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Figure 3.21: Incremental change in the fabric of contact normals in a) the
strong force network, and b) weak force network, and c) orientational distri-
bution of contact displacement fluctuations for probing at state B. Numbers
denote loading path (1: DE, 2: DC).

emin, emax [309]. The latter were estimated as emin = 0.61 and emax = 0.75,
respectively, following the same protocol described in Section 3.3.1. The gran-
ular sample and its idealized spherical counterpart are depicted in Fig. 3.23.
The spherical specimen undergoes the same isotropic-triaxial compression his-
tory in order to achieve states A, B, and B′, which, then, serve as initial
conditions to the same stress probing protocols. Fig. 3.24 compares the strain
response envelopes (total, elastic, plastic, reversible, and irreversible) of the
idealized and granular assembly at state A, while Figs. 3.25 and 3.26 show the
same comparison at states B and B′, respectively. The following observations
ensue:

• The spherical assembly exhibits a similar strain response to the granular
one at the isotropic state. Yet, at the anisotropic and preloaded states,
the response deviates significantly.

• The spherical assembly undergoes larger plastic strains, which is consis-
tent with observations of increasing mobilized macroscopic friction angle
with increasing angularity [57].
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Figure 3.22: Effect of interparticle friction on the incremental response: a)
Total, b) elastic, and c) plastic strain response envelope for the dense granular
assembly at the anisotropic state B for varying interparticle friction.

Figure 3.23: Granular assembly and its idealized spherical counterpart.
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• At the isotropic state A, the difference in strain response due to particle
shape is small, which indicates reduced interlocking and mobilization of
friction at that state.

• At the virgin state B, we observe a substantial increase in magnitude
(∼ 35%), and a shift in the direction of plastic flow in the case of the
spherical assembly.

• Differences in macroscopic strain response are most pronounced at state
B′. Plastic strains for the spherical specimen are 6 times larger than the
granular specimen, while the asymmetry of the irreversible envelope of
the granular assembly is also more pronounced.

For completeness, Appendix 3.F extends these macroscopic observations of
shape to the grain scale, by comparing the statistics of micromechanical at-
tributes of the two assemblies.
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Figure 3.24: Effect of particle shape on the material response during probing
from the isotropic state A: a) Total, b) elastic, c) plastic, d) reversible, and e)
irreversible strain response envelope for the spherical and granular assembly.

Remark: Note that the above differences in the incremental response due to
particle morphology may be partially alleviated by incorporating rolling fric-
tion into the interaction between spheres, which, however, requires laborious
calibration (e.g. [48, 271]) and does not guarantee realistic behavior beyond
the calibrated stress paths.
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Figure 3.25: Effect of particle shape on the material response during probing
from the virgin state B: a) Total, b) elastic, c) plastic, d) reversible, and e)
irreversible strain response envelope for the spherical and granular assembly.
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Figure 3.26: Effect of particle shape on the material response during probing
from the preloaded state B′: a) Total, b) elastic, c) plastic, d) reversible, and
e) irreversible strain response envelope for the spherical and granular assembly.
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3.3.9 Yield surface and flow rule

The final section of this work focuses on quantifying yield and plastic flow in
3D principal stress space, which has only been investigated through physical
experiments or, computationally, for idealized assemblies [338]. To this end,
the specimen described in Section 3.3.1 is first subjected to isotropic compres-
sion followed by rectilinear deviatoric stress probes with uniformly distributed
Lode angle. The process is repeated for deviatoric planes corresponding to
multiple pressure levels, until a cone is covered in the principal stress space
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Figure 3.27: Quantifying yielding in 3D principal stress space: a) Rectilinear
deviatoric probes, and b) yield surface in principal stress space with surface
normals (blue arrows) and incremental plastic strain vectors (red arrows).
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Figure 3.28: Yielding and plastic flow in two planes: a) Deviatoric plane (p=90
kPa), and b) meridian plane (θ=0◦).
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(Fig. 3.27 a)). As opposed to previous studies [338, 48] who only considered a
sextant section of a deviatoric plane, here each plane is completely covered to
account for potential fabric effects. Throughout each probe, the evolution of
plastic strain rate is monitored. We interpret the yield surface as the locus of
stress states corresponding to the same value of the norm of plastic strain rate.
We find that beyond a value of ||ε̇p|| = 5·10−3, the surfaces essentially converge
to an ultimate yield surface, which is shown in 3D in Fig. 3.27 b). Fig. 3.28
a) shows in more detail a particular deviatoric plane (p = 90 kPa), where the
convergence of the sequence of yield surfaces is evident. In the same figure, the
plastic strain increments are compared to the yield surface normals, exhibiting
only minor nonassociativity (in regions of pronounced shear), verifying previ-
ous experimental and numerical observations [192, 13, 366]. Further, we find
that this minor degree of associativity is independent of pressure. Fig. 3.28 b)
shows a characteristic meridian plane corresponding to Lode angle θ = 30◦. In
this plane, we observe prominent nonassociativity in accordance with previ-
ous experimental evidence that normality tends to overpredict the volumetric
plastic strain. Upon closer observation, we can identify a small decrease in the
degree of associativity with increasing pressure. This is related to the curved
nature of the yield surface, highlighted in the same figure.
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Figure 3.29: Comparison of analyti-
cal yield loci with virtual experiment
data.

Naturally, the next step is to compare
these high fidelity results with com-
mon analytical yield loci. Fig. 3.29
compares the yield locus obtained by
the experiments against the Lade-
Duncan [193] (I3

1 − bI3 = 0), Mohr-
Coulomb (|σi−σj|/(2

√
σiσj)−tanφ =

0), Drucker-Prager [90] (I1 − aJ2 =

0) and Matsuoka-Nakai [225] (I1I2 −
cI3 = 0) loci, where I1, I2, I3 are the
first, second, and third stress invari-
ants, and J2 is the second deviatoric
stress invariant. The macroscopic fric-
tion angle under compression was cal-
ibrated for the Mohr-Coulomb criterion at φ ≈ 51◦. Then the following ex-
pressions produce the parameters that are consistent with the Mohr-Coulomb
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criterion:

a =
2 sinφ√

3(3− sinφ)
b =

(3− sinφ)3

cos2 φ(1− sinφ)
c =

9− sin2 φ

1− sin2 φ
.

For each of the criteria, we calculate the average pressure-normalized `2

error measure, given by e = 1/(pN)
∑N

i=1‖σLS-DEM
i − σModel

i ‖2, where
σLS-DEM
i ,σModel

i are the stress states corresponding to the virtual experiment
and particular model, respectively, at the ith point of the discretized yield
surface comprised of a total of N points. We obtain:

Model Drucker-Prager Mohr-Coulomb Lade-Duncan Matsuoka-Nakai
e 0.137 0.095 0.040 0.076

Among the available loci, the ultimate yield surface is best described by the
Lade-Duncan one.

3.4 Conclusions

We have presented an in-silico experimentation framework for granular mate-
rials, enabled by the accurate mathematical representation of the morphology
and interaction of particles, as well as the control of their collective state,
far beyond what has been accessible with preexisting techniques. Naturally
arising, within this new paradigm, is the concept of a granular 'DNA' and its
expression to an emergent macroscopic behavior that is largely free from ideal-
izations. The remainder of the paper focused on utilizing virtual stress probing
experiments towards a systematic investigation of the incremental behavior of
sand.

In a first set of axisymmetric experiments, we quantified the reversible (i.e.
those due to dissipation-free grain-scale mechanisms) and the elastic strains
(i.e. those recovered upon unloading) in the granular assembly due to ax-
isymmetric probing. We found that the reversible strain envelopes are slightly
smaller (and, hence, contained within) the elastic ones, and quantified the
anisotropy in the elastic response. In accordance with previous works, we
identified evidence of a nonassociative and slightly nonregular flow rule. Next,
we provided quantitative measurements of energy dissipation and contact fluc-
tuations, the decoding of which remains the cornerstone of granular mechanics,
and exhibited a threshold ‘elastic’ fluctuation above which the onset of yielding
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occurs. Finally, hardening processes were examined from the perspective of
the evolution of stored plastic work and fabric in the strong and weak contact
networks.

Subsequent experiments focused on quantifying the effect of particle friction
and morphology on the macroscopic response. Regarding the former, a com-
bined effect of rotation and contraction of the strain response envelopes was
identified upon increase of the interparticle friction. Beyond a critical value,
the envelopes converge to a stationary envelope dictated by particle morphol-
ogy. Remarkably, the idealized spherical counterpart of a granular assembly
could qualitatively capture almost all aspects of its incremental behavior. Yet,
from a quantitative perspective, we identified an important signature of mor-
phology at anisotropic and, in particular, preloaded states. More specifically,
experiments revealed a larger magnitude of plastic strain and a less pronounced
stiffness increase due to preloading in the spherical specimen compared to the
actual granular specimen.

A last set of deviatoric stress probing experiments furnished an important
application of the proposed framework, where the entire yield surface and
plastic potential was mapped in 3D principal stress space. We investigated
the influence of pressure and Lode angle on the nonassociativity of the plastic
flow, and found that, among the common analytical criteria, the failure surface
was best described by the Lade-Duncan criterion.

The evidence from this study highlights the importance of high fidelity char-
acterization and virtual testing for sands and potentially many other partic-
ulate materials. We are confident that such findings will help expand our
understanding of the behavior of granular materials, and eventually guide the
development of a new generation of constitutive theories. Interesting future
avenues involve more in-depth investigation of granular fabric as well as the in-
corporation of grain fracture and multiphysics coupling. Finally, we see great
potential in using virtual experiments to create a high-fidelity database for
different families of granular materials, to be leveraged by Data-Driven and
machine learning techniques.

Appendices
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Appendix 3.A

Presented here is a standard thermodynamic formalism of the discrete contact
interaction problem. In analogy to continuum thermodynamics [381, 260],
consider the Gibbs energy Gc at a contact:

Gc = Gc(f c,qc, θ) (3.3)

as a function of the contact force f c, the temperature θ, and an internal variable
qc related to dissipative events (e.g. sliding). Neglecting thermal effects, the
free energy vanishes at zero interparticle force. A convenient way to formulate
the energy is through the local compliance Cc at the contact:

Gc =
1

2
f c ·Ccf c + f c · qc. (3.4)

By construction, the internal variable qc represents the plastic deformation
δc,p that remains at the contact upon unloading to zero force,

qc =
∂Gc

∂f c

∣∣∣∣
fc=0

=: δc,p. (3.5)

The decomposition of the contact deformation into an elastic and plastic part
follows by duality:

δc =
∂Gc

∂f c
= δc,e + δc,p (3.6)

where:

δc,e = Ccf c or f c = Cc−1

δc,e = Kcδc,e (3.7)

where Kc is the inverse compliance (stiffness) at the contact.
Assuming Ziegler’s orthogonality condition, the dissipative force conjugate to
the internal variable is given by:

χc =
∂Gc

∂δc,p
= f c. (3.8)

Note in passing that the contact compliance is assumed to be independent of
internal processes (qc), for the sake of simplicity. Generalization towards con-
tact damage or aging [308] is easily achieved by dropping this assumption. In
order to obtain a closed set of equations, the above equilibrium relations need
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to be combined with appropriate kinetic relations [260]. Indeed, the existence
of a kinetic (dissipation) potential ψc follows from standard thermodynamic
arguments [259] such that:

δ̇
c,p ∈ ∂χcψc. (3.9)

In an algorithmic (incremental) setting, we obtain the equivalent relations:

dδc = dδc,e + dδc,p (3.10)

df c = Kcdδc,e (3.11)

dδc,p ∈ ∂χcψc. (3.12)

Finally, to fully determine the contact law, a specific form of the contact
stiffness and the kinetic potential needs to be identified. The prototypical
example, used in the stress probing experiments of Section 3.3, is that of a
Hookean stiffness with Coulomb friction. In this case, the contact stiffness is
given by:

Kc = C−1 = kcn nc ⊗ nc + kct (sc ⊗ sc + tc ⊗ tc) (3.13)

where (nc, sc, tc) form a local cartesian system at the contact c, and kcn, kct are
the normal and tangential stiffness respectively [4], while the kinetic potential
is given by the indicator function IC(f c) of the Coulomb cone C:

C = {f c | ‖f c − (f c · nc)nc‖ − µ(f c · nc) ≤ 0} (3.14)

where nc denotes the contact normal, and µ the interparticle friction.

Remark: The thermodynamic description provided herein is far from general.
Instead, the contact scale interaction is treated as ’standard’ material behav-
ior, which includes a specific form of the Gibbs free energy and the restrictive
statement of Ziegler’s orthogonality. This description can be appropriately
extended to allow for more complex interaction laws, by adapting relevant de-
velopments in the continuum thermodynamic modeling of frictional materials
[74] to our discrete system.

Appendix 3.B
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Figure 3.B.1: Effect of sample size
on the strain response envelope.

We verify the representativeness of the
granular assembly through a simple in-
vestigation of the effect of sample size.
Four samples of the same relative den-
sity (Dr = 85%) were constructed, that
comprised of an increasing number of
grains (4913, 9261, 15625, and 19683,
respectively). The samples were sub-
jected to drained triaxial compression
to the anisotropic state B, followed by
an axisymmetric stress probing protocol
(Section 3.3.1). We observe satisfactory convergence of the strain response to
a well defined envelope for sample sizes above 15625 grains.
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Appendix 3.C
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Figure 3.C.1: Transition of number
of contacts, normalized by number
of particles, that were sliding during
loading, plotted as a function of the
probing angle.

We provide evidence of the irreversibil-
ity of contact deformation upon un-
loading, similarly to a recent investi-
gation by Kuhn and Daouadji [190].
To do so, we track the contacts that
were sliding during loading for a prob-
ing experiment at state B. In partic-
ular, Fig. 3.C.1 shows the transition of
the number of such sliding contacts N c,
normalized by the number of particles
Np, upon unloading for various prob-
ing directions. We observe that a sig-
nificant proportion of sliding contacts
continue to slide during unloading, regardless of the direction of probing. This
evidence suggests that contact deformations are not reversed during unloading.

Appendix 3.D

We address the calculation of elasticity parameters in Table 3.2. First, a least-
squares fit is applied to solve for the components of the elastic stiffness tensor
C (in the principal plane) below:

∆σx

∆σy

∆σz

 =

C11 C12 C13

C21 C22 C23

C31 C32 C33


∆εx

∆εy

∆εz

 (3.15)

given the data pairs (∆σ,∆ε) for all probes at a specific state. By comparing
the fitted stiffness tensor C to the isotropic and transversely isotropic elasticity
tensors:

Ciso=

 1/E −ν/E −ν/E
−ν/E 1/E −ν/E
−ν/E −ν/E 1/E

 Ctra=

 1/Ex −νx/Ex −νzx/Ez
−νx/Ex 1/Ex −νzx/Ez
−νzx/Ez −νzx/Ez 1/Ez

 . (3.16)

we obtain the Young’s modulus E and Poisson’s ratio ν, in the case of isotropy,
as well as the transverse and longitudinal moduli Ex, Ez, and the associated
Poisson’s ratios νx(= νxy = νyx), νzx(= νxz), in the case of transverse isotropy.
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Appendix 3.E

We discuss alternative strategies for extracting the reversible strain response
of an assembly. As outlined in Section 3.3.3, by carrying out probes where
frictional dissipation has been inhibited, we obtain slightly overestimated re-
versible strain envelopes, due to the relaxation of the contact topology. Here
we compare these envelopes to those produced by two alternative strategies:
i) the inhibited-dissipation/rotation approach of Calvetti, Viggiani, and Tam-
agnini [48], and ii) an analytical homogenization-based approach.

The first method delivers the reversible response through a set of probes where
we inhibit not only frictional dissipation but also grain rotation [48]. This ad-
ditional constraint is introduced in order to preserve the contact topology,
yielding a purely reversible process. However, constraining rotations has the
undesired side-effect of stiffening (underestimating) the reversible response,
producing a loose lower bound for the true reversible strain response. Fur-
ther, rotational constraints induce external moments on the particles, which
lead to the development of couple stress. The latter is known to affect the
development of RVE-scale and meso-scale instabilities [253], and, hence, the
determination of the true material response. The second method, detailed in
the next section, extracts the reversible strain component by relying on an
analytical homogenization technique and a new closure relation, that extend
previous results on idealized elastic assemblies.

Fig. 3.E.1 compares the reversible response furnished by the inhibited dissi-
pation approach (Section 3.3.3) to that of the inhibited dissipation/rotation
approach, as well as the homogenization-based method, for all states consid-
ered in this study. The last two methods give very similar results, and tend
to equally underestimate the response, particularly in the (DC) and (DE)
directions.
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Figure 3.E.1: Comparison between reversible envelopes generated via free-
rotation (light blue) and constrained-rotation (blue) simulations, as well as
via homogenization-based approach (dark blue) for a) the isotropic state A,
b) the anisotropic state B, and c) the preloaded state B′.

Homogenization-based approach

dδn

Figure 3.E.2: 2D schematic of
deformed particle contact.

We derive a micromechanical expression for
the decomposed reversible and irreversible
strains in an assembly. To this end, con-
sider an RVE of arbitrarily shaped particles,
which is subject to an average strain incre-
ment dε and, thus, develops a stress incre-
ment dσ. At any contact c within the assem-
bly (Fig. 3.E.2) (between particles p, q), the
displacement dδc can be described [206] by a
projection of the average displacement gradi-
ent dε to the branch vector lc, corrected by a nonaffine displacement fluctua-
tion. In all generality :
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dδc = dε · lc + dδ̃
c

(3.17)

where lc is the contact branch vector, and dδ̃
c
is the fluctuation of the in-

cremental contact deformation. Invoking the decomposition of the contact
deformation (Eq. 3.10), we obtain:

dδc,e + dδc,p = dε · lc + dδ̃
c
. (3.18)

We shall decompose the strain into a reversible and an irreversible part:

dε = dεrev + dεirr. (3.19)

Remark: The total strain may be directly computed based on particle kine-
matics [25], but this is not true for its decomposition. By construction, the
reversible component represents the strain derived from reversible grain-scale
processes, which coincide with elastic processes at that scale.

The reversible strain will be used to define elastic contact displacement fluc-
tuations dδ̃

c,e
below:

dδc,e = dεrev · lc + dδ̃
c,e
. (3.20)

In analogy with previous analytical studies of purely elastic assemblies (e.g.
[234]), the elastic fluctuations in Eq. 3.20 are unknown, which calls for a closure
relation, relating those to the average strain. This relation is furnished in this
study by the incremental force balance of all particles in the assembly. For a
particle p sharing contacts Cp with its neighbors, we can write:

∑
c∈Cp

df c = 0 (3.21)∑
c∈Cp

Kcdδc,e = 0 (via Eq. 3.11) (3.22)∑
c∈Cp

Kc(dεrevlc + dδ̃
c,e

) = 0 (via Eq. 3.20) (3.23)

where Kc is the contact stiffness given by Eq. 3.13.
The linear system obtained by collecting the equilibrium equations for all par-
ticles is generally underdetermined (depending on the coordination number)
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and, therefore, needs to be supplemented by appropriate boundary conditions.
Consider the equilibrium of each of the two participating particles (p, q), as-
suming that i) contact c experiences an unknown fluctuation dδ̃

c,e
, and ii) the

first shell of contacts (i.e contacts between any of the participating particles
(p, q) and their neighbours (Cp and Cq, respectively)) undergo a different un-
known fluctuation dˆ̃δc,e. This simplifies the equilibrium equation of the two
participating particles to a solvable system:

∑
c′∈Cp\c

Kc′(dεrevlc
′
+ dˆ̃δc,e) + Kc(dεrevlc + dδ̃

c,e
) = 0 (3.24)

∑
c′∈Cq\c

Kc′(dεrevlc
′
+ dˆ̃δc,e) + Kc(−dεrevlc − dδ̃c,e

) = 0 (3.25)

where the sign change is due to change of reference (lpq = lc = −lqp). Solv-
ing Eq. 3.24 for dˆ̃δc,e and substituting into Eq. 3.25, we finally obtain, after
algebraic manipulations:

dδ̃
c,e

= −Γc · dεrev (3.26)

in terms of the fluctuation tensor:

Γc =

[(
I+∆

)
·Kc

]−1

·
[ ∑
c′∈Cp

Kc′ ⊗ lc
′ −∆ ·

∑
c′∈Cq

Kc′ ⊗ lc
′
]

(3.27)

and where:

∆ =
( ∑
c′∈Cp\c

Kc′
)( ∑
c′∈Cq\c

Kc′
)−1

. (3.28)

Combining Eqs. 3.26 and 3.20, we can solve for the elastic contact displace-
ment:

dδc,e = dεrev · lc − Γc : dεrev. (3.29)

The final ingredient required here is the incremental version of the well-established
virial stress relation [68, 26]:

dσ =
1

V

∑
c∈C

(df c ⊗ lc + f c ⊗ dlc). (3.30)
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Rearranging Eq. 3.30, and using Eq. 3.11:

1

V

∑
c∈C

Kcdδc,e ⊗ lc = dσ − 1

V

∑
c∈C

f c⊗dlc =: dσkt (3.31)

where the RHS represents the readily computable kinetic contribution to the
stress increment.
The extraction of the reversible strain is concluded by substituting for Eq.3.29
above, to obtain:

1

V

∑
c∈C

Kc(dεrev · lc − Γc : dεrev)⊗ lc = dσkt (3.32)

or:

dεrev =

[
1

V

∑
c∈C

(
lc⊗Kc⊗lc − lc⊗Kc ·Γc

)]−1

dσkt. (3.33)

Note that the RHS solely involves micromechanical quantities readily available
in a virtual experiment. Finally, the irreversible strain follows from Eq. 3.19
as dεirr = dε− dεrev.

Remark: Not surprisingly, this approach leads to the development of a non-
affine stiffness tensor (Eq. 3.33). It is similar in nature to the approach of
Froiio and Roux [115] who explicitly construct the stiffness of a disk assembly
by adopting [4], and also intimately related to previous studies, outside the
context of stress probing, that deal with the analytical determination of the
stiffness of an assembly of particles [58, 234, 206, 151, 150, 3, 4, 5, 340, 62, 64,
96, 248, 365, 284], most prominently the approach of Misra and Chang [234],
in the idealized setting and with a different closure relation.

Appendix 3.F

We extend here the macroscopic investigation of the influence of shape, given
in Section 3.3.8, to the grain scale. This is achieved by comparing microme-
chanical attributes of the granular assembly to those of its idealized spherical
counterpart. In particular, Fig. 3.F.1 plots the tangential contact force ft as
a function of the normal force fn for the three investigated states (A,B,B′),
with the dashed lines representing the average mobilized friction angles. In-
terestingly, the granular assembly consistently exhibits a higher mobilization
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of interparticle friction at any given state, while the distribution of forces of
the two samples is qualitatively similar. Analogous observations can be made
by inspecting Fig. 3.F.2 which compares the mobilized friction angle of the
two assemblies plotted against the magnitude of normal force for the conven-
tional and reversible (DC) probes at state B. Beyond the clear qualitative
agreement, we verify the emergence of a higher mobilized interparticle friction
for the granular assembly in the conventional probes. Measurements taken at
different states and stress paths led to the same conclusions, and were thus
omitted in this comparison.
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Figure 3.F.1: Tangential vs normal contact forces at states a) A, b) B, and c)
B′ for the granular and spherical assembly.
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Figure 3.F.2: Mobilized friction vs magnitude of normal contact force for the
granular and spherical assembly at the (DC) direction at state B for a) the
conventional, and b) the reversible (inhibited dissipation) simulation.
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C h a p t e r 4

DATA-DRIVEN MULTISCALE MODELING IN MECHANICS

K. Karapiperis, L. Stainier, M. Ortiz, and J. E. Andrade. “Data-Driven mul-
tiscale modeling in mechanics”. In: Journal of the Mechanics and Physics of
Solids (2020), p. 104239.

Abstract
We present a Data-Driven framework for multiscale mechanical analysis of
materials. The proposed framework relies on the Data-Driven formulation in
mechanics [172], with the material data being directly extracted from lower-
scale computations. Particular emphasis is placed on two key elements: the
parametrization of material history, and the optimal sampling of the mechan-
ical state space. We demonstrate an application of the framework in the
prediction of the behavior of sand, a prototypical complex history-dependent
material. In particular, the model is able to predict the material response
under complex nonmonotonic loading paths, and compares well against plane
strain and triaxial compression shear banding experiments.

4.1 Introduction

Traditionally, the mechanical behavior of history-dependent materials has been
described by empirical constitutive laws formulated within the framework of
continuum thermodynamics and plasticity theory [72, 291, 214]. In that con-
text, the material state is described by internal variables that are often phe-
nomenological and are subject to ad-hoc evolution laws (kinetic relations). Ad-
vancements in atomistic [2, 45] and micromechanical [78, 376] simulation have
inspired physics-based internal variables that encapsulate the microstructure
(e.g. density of defects/dislocations for heterogeneous solids [218, 325], fabric
tensors for granular materials [204], etc). Naturally, these developments also
gave rise to multiscale methods, which attempt to either pass information from
the fine to the coarse scale (hierarchical) [383, 108, 18, 249] or seamlessly con-
nect the two scales by modeling their interaction (concurrent/semi-concurrent)
[176, 331, 41, 360, 288].

Despite the relative success of these conventional paradigms, further progress
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has been hindered by many challenges. In the case of conventional constitu-
tive modeling, the process inherently induces uncertainty due to the imperfect
knowledge of the functional form of the constitutive laws [172] and their extrap-
olative properties beyond the finite data set used for calibration. Moreover,
the process of calibration itself can be challenging due to the continuously
increasing model complexity (e.g. [298, 79]). On the other hand, conventional
multiscale methods can be notoriously demanding in computational time and
memory. The data obtained from lower-scale simulations, carried out con-
currently or on-the-fly, are never reused, rendering the conventional paradigm
inherently inefficient.

In light of the aforementioned challenges, and driven by the progress in data
science, promising alternatives have surfaced in the form of machine learn-
ing and Data-Driven techniques. The first machine learning studies relied on
neural networks (NN) trained with experimental data in order to predict me-
chanical behavior [121]. With the increase in computation, deep learning has
found multiple applications in behavior prediction with tensor basis- [157],
hybrid graph- [357], and recurrent-NN [367, 237], used as surrogates for con-
stitutive laws or lower-scale simulations. Despite their efficiency and, in some
cases, their desired built-in invariance properties, the above machine learning
techniques leave a lot to be desired. They rely on a (hidden) mathemati-
cal representation of constitutive relations, therefore leading to extrapolation
from the training material data set, and often depend on application-specific
network architectures.

The Data-Driven paradigm for computational mechanics [172, 174] bypasses
any modeling step by formulating the problem directly on a given material
data set, while enforcing pertinent constraints and conservation laws. More
specifically, by defining a phase space of stress-strain field pairs, this approach
leads to a distance minimization problem between a given material data set
and the subset of field pairs that satisfy the conservation laws. Recently,
the Data-Driven paradigm was extended to dynamics [173] and inelasticity
[92]. Also, variations of the Data-Driven framework have been proposed that
consider locally linear [143] or locally convex embeddings [136].

In this study, we present a new multiscale Data-Driven paradigm as a com-
plement to conventional multiscale modeling. The framework departs from
previous developments in Data-Driven computing in that i) material data are
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directly extracted from lower-scale computations (e.g. molecular dynamics
(MD), discrete element method (DEM) and finite element method (FEM)),
ii) it enables optimal phase space sampling, offline or on-the-fly, and iii) it is
thermodynamically consistent without imposing any constraints on the nature
of history-dependence.

The paper is organized as follows. In Section 4.2 we review the general frame-
work of Data-Driven Inelasticity, which represents our study’s point of de-
parture. Section 4.3 addresses phase space sampling from lower-scale com-
putations, and briefly introduces optimal strategies. Next, in Section 4.4, we
discuss pertinent general representations of the material history that ensure
the consistency of the multiscale computation. Finally, Section 4.5 presents a
detailed application of the method in multiscale modeling of granular materi-
als. We conclude with a discussion of the proposed framework in Section 4.6.

4.2 Data-Driven inelasticity

Consider the purely mechanical problem of a body that is discretized in N

nodes and M material points (Fig 4.1 a)). The body is subject to applied
forces f = {fα}Nα=1, and undergoes displacements u = {uα}Nα=1 at its nodes.
The internal state is characterized by local stress and strain pairs {(εe,σe)}Me=1.
We consider the pair ze = (εe,σe) as a point in a local phase space Ze, and
z = {ze}Me=1 as a point in the global phase space Z. Within a time-discrete
formulation, the internal state of the system is subject to the following com-
patibility and equilibrium constraints:

εe,k = Beuk, e = 1, . . . ,M (4.1)
M∑
e=1

weB
T
e σe,k = fk (4.2)

where uk, fk, εk,σk denote the displacements, forces, strains, and stresses at
time tk, respectively, while {we}Me=1 are elements of volume, and Be is a discrete
strain operator for material point e. A constraint set Ek may be defined as:

Ek = {z ∈ Z | (4.1) and (4.2) } (4.3)
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and consists of all the compatible and equilibrated internal states, due to the
applied loads and displacements at time tk.

Instead of providing closure to Equations 4.1 and 4.2 by postulating a con-
stitutive relation σ = σ(ε), the Data-Driven formulation of the mechanical
problem relies directly on the material data. More specifically, the material
behavior is described by a material data set De,k of points ze,k ∈ Ze,k, that is
attainable at a material point given its past local history of deformation:

De,k = {(εe,k,σe,k) | (past local history) }. (4.4)

Accordingly, a global material data set may be defined as:

Dk = D1,k × . . .×DM,k.

The history-dependent Data-Driven problem consists of finding the compatible
and equilibrated internal state zk ∈ Ek that minimizes the distance to the
global material data set Dk at time tk. Equivalently, the problem consists of
finding the point yk in the material data at time that is closest to the constraint
set Ek+1 at time tk. To this end, the local phase spaces Ze are equipped with
the following metric:

|ze|e =
(
Ceεe · εe + C−1

e σe · σe
)1/2 (4.5)

where Ce are symmetric positive definite matrices, that are only introduced
as a numerical scheme, and do not represent actual material behavior. The
above norm induces a metrization of the global phase space Z, by means of
the norm:

|z| =
( M∑
e=1

we|ze|2e)1/2 (4.6)

with corresponding global distance:

d(z,y) = |z− y|. (4.7)

Consisely, the time discrete Data-Driven problem may be formulated as:

min
y∈Dk

min
z∈Ek

d(zk,yk) = min
z∈Ek

min
y∈Dk

d(zk,yk). (4.8)
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For fixed yk ∈ Dk, the closest point projection zk = PEk
yk involves minimizing

the quadratic function d2(·,yk) subject to the compatibility and equilibrium
constraints (Eqs 4.1-4.2). The former may be enforced directly, while the latter
may be enforced by means of Lagrange multipliers ηk, which represent virtual
displacements of the system. The resulting Euler-Lagrange equations read:

( M∑
e=1

weB
T
e CeBe

)
uk =

M∑
e=1

weB
T
e Ceε

∗
e,k (4.9)

( M∑
e=1

weB
T
e CeBe

)
ηk = fk+1 −

M∑
e=1

weB
T
e σ
∗
e,k (4.10)

σe,k = σ∗e,k + Ce

N∑
α=1

Beαηα,k (4.11)

where (ε∗e,k,σ
∗
e,k) is the unknown optimal local state in the material data set

for material point e.

4.2.1 Solution algorithm

The simplest Data-Driven solver involves the fixed point iteration:

z
(j+1)
k = PEk

PDk
z

(j)
k (4.12)

where j is the iteration number, PDk
z

(j)
k denotes the closest point projection

onto D (i.e. finding the point in the material data set that is closest to z
(j)
k ),

and PEk
y

(j)
k denotes the projection of a fixed yk ∈ Dk onto Ek. The algorithm

converges when the local states remain unchanged under the closest point
projection to the material data set [172], as shown in Algorithm 1.

Two key questions arise in a multiscale interpretation of the Data-Driven
framework: i) How can we efficiently sample the phase space, offline and on-
the-fly, using lower-scale computations? ii) How we can parametrize the ma-
terial history given the available data from these computations? We address
these questions in the following sections.
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Algorithm 1 Fixed-point solver
Require: Data sets De,1 (via offline phase space sampling: Algorithms 2,
3),

Strain operators Be (e=1, ...,M), Applied forces f1

for all time steps k = 1, ..., Nk do
i) Set iteration j = 0. Initial local data assignment:
for all e = 1, ...,M do
if k = 0 then
Choose (ε

∗,(0)
e,1 ,σ

∗,(0)
e,1 ) randomly from De,1

else
Set (ε

∗,(0)
e,k ,σ

∗,(0)
e,k ) = (ε∗e,k−1,σ

∗
e,k−1)

end if
end for
ii) Solve Equations (4.9), (4.10) for u

(j)
k and η(j)

k

iii) Compute local mechanical states:
for all e = 1, ...,M do
Solve Equations (4.1), (4.11) for ε(j)

e,k and σ(j)
e,k

end for
iv) Assign local material states:
for all e = 1, ...,M do
Choose (ε

∗,(j+1)
e,k ,σ

∗,(j+1)
e,k ) in De,k closest to (ε

(j)
e,k,σ

(j)
e,k)

end for
v) Compute global distance d via Eq. (4.7)
if d > tol then
Augment De,k via on-the-fly sampling: Algorithm 4

end if
vi) Test for convergence
if (ε

∗,(j+1)
e,k ,σ

∗,(j+1)
e,k ) = (ε

∗,(j)
e,k ,σ

∗,(j)
e,k ) then

Set uk = u
(j)
k , (εe,k,σe,k) = (ε

(j)
e,k,σ

(j)
e,k)

else
j ← j + 1, goto ii)

end if
vi) Compute De,k+1 using Equations (4.16), (4.17)

end for

4.3 Phase space sampling

The reliability of a multiscale Data-Driven prediction of mechanical behavior
is contingent upon the quality of the material data sets compiled from lower-
scale computations. The process of generating these data sets is termed phase
space sampling. We discuss here two types of methods: ‘offline’ sampling,
which relies on preexisting experimental data or the identification of a target
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subset of the phase space, and ‘on-the-fly’ sampling, which does not require
any prior information. Regardless of the method of sampling, a model for
micromechanical unit-cell calculations is required, which can be furnished for
example by Molecular Dynamics (MD), Discrete Element (DEM), or lower-
scale Finite Element (FEM) simulation, depending on the material at hand
(Fig. 4.1 b)). The generation of unit cells at a given initial state of a given
material has been addressed in multiple studies (e.g. [168] for athermal granu-
lar materials or [109] for thermalized MD systems in various ensembles.) The
micromechanical modelM takes as input components of a local state (e.g. ε
for a purely strain-driven calculation), and returns the remaining components
of the state (e.g. σ =M(ε)).

4.3.1 Offline sampling

Within offline sampling, we propose two methods, goal-oriented sampling and
minimax sampling, and provide simple algorithms for both. Goal-oriented
sampling takes advantage of experimental field data to generate the input to
the micromechanical calculations (Fig. 4.1 c)). In its simplest form, the input
is the strain measured (e.g. using DIC) on different parts of a discretized
deforming body. Algorithm 2 presents the simple steps involved.

Phase Space Sampling
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Figure 4.1: Overview of Data-Driven Multiscale Modeling: a) Discretized
macroscopic boundary value problem. b) Micromechanical model for unit-
cell calculations during sampling. c) Proposed phase space sampling methods
within the multiscale Data-Driven framework.
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Algorithm 2 Offline goal-oriented phase space sampling
Require: Micromechanical modelM, Experimental data
Calculate strains εi on L discrete points of the experimental deformed con-
figuration
for i = 1, ..., L do
Carry out unit-cell calculations with imposed εi

end for
Set De,1 = {(εi,M(εi))}i≤L, e = 1, ...,M

In the absence of experimental field data, one must resort to alternative sam-
pling techniques. Fortunately, the Data-Driven framework naturally lends
itself to optimal minimax sampling [156], due to its formulation in terms of
distances in phase space. In this case, we identify a target subset χ of the
phase space (heuristically or using expert knowledge), and seek the optimal
input to unit-cell calculations, under computational constraints (number of
calculations L), so as to cover χ. Without loss of generality, this input is
considered to be the strain (strain-driven calculations), and is determined by
the solution of the following problem:

min
εi

max
z∈χ

d(z, {(εi,M(εi))}i≤L). (4.13)

At the minimizers ε∗i , we obtain an optimal covering {(ε∗i ,M(ε∗i ))}i≤L of χ,
as shown in Fig. 4.1 c).

Algorithm 3 Offline minimax phase space sampling
Require: Micromechanical modelM, Target phase subspace χ
Solve (13) for the minimizers {εi}i≤L
Set De,1 = {(εi,M(εi))}i≤L, e = 1, ...,M

Remark: This process may involve computationally expensive evaluations of
M(ε). Therefore, these may be replaced with M̂(ε), where M̂ is an appro-
priate surrogate model or meta-model [322]. We require that the model be
simple to evaluate and able to capture essential aspects of material behavior
(e.g. simple plasticity models [90] or machine learning models such as Gaussian
Process regression [307] and Neural Networks), and that sufficient preexisting
data exist to train the meta-model.
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4.3.2 On-the-fly sampling

It is possible that no experimental data are available, and that we also cannot
easily identify the subset of interest in phase space. In this case, we introduce a
simple ‘on-the-fly’ sampling approach, that requires no prior information. The
basic principle is the utilization of the Data-Driven solution itself to inform new
unit-cell calculations, whenever the distance to the material data set surpasses
a chosen threshold. This indicates that the particular region of phase space
is not well covered by data and should be targeted by additional calculations.
The steps involved are shown in Algorithm 4. As before, without loss of
generality, we assume purely strain-driven calculations.

Algorithm 4 On-the-fly phase space sampling
Require: Micromechanical model M, Time step k, Iteration j, Data sets
D

(j)
e,k, e=1, . . . ,M

for all e = 1, ...,M do
Carry out unit-cell calculation imposing ε(j)

e,k (obtained in Algorithm 1 -
iii))
Augment local material data set: D(j+1)

e,k ← D
(j)
e,k + {(ε(j)

e,k,M(ε
(j)
e,k))}

end for

Note that, in the applications presented later in this study, and given the
presence of experimental data, we shall restrict our attention to offline goal-
oriented sampling. The analysis and implementation of the remaining phase
space sampling methods will be the subject of a future study.

4.4 History parametrization

The efficient and compact history parametrization is a major challenge for
materials with an extended memory of their deformation. The first discus-
sion on history parametrization within the Data-Driven formulation is due
to Eggersmann et al. [92], where various representational paradigms are ex-
plored, including the hereditary/history functional and the internal variable
formalism. Alternatively, a thermodynamically-motivated energy based rep-
resentation, where the local phase space is augmented with the free energy
and the dissipation, can be considered. These two parametrizations are par-
ticularly appealing within this multiscale paradigm: the energy-based, which
is material independent and universal, and the internal variable-based, which
must be tailored to a particular material.
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4.4.1 Energy-based parametrization

The energy-based approach effects a parametrization of history by enhancing
the state space with the free energy A and dissipation D, and considering their
implicit relation with the remaining state variables σ and ε. This relation is
furnished by the principle of conservation of energy and the second principle
(Clausius-Plank inequality):

Ḋ = σ : ε̇− Ȧ ≥ 0 (4.14)

or, in a time discrete setting and for material point e:

De,k+1 −De,k =
σe,k + σe,k+1

2
: (εe,k+1 − εe,k)− (Ae,k+1 −Ae,k) ≥ 0. (4.15)

We can, then, represent the local material data set at time tk+1 as:

De,k+1 = {(εe,k+1,σe,k+1) | (εe,k,σe,k), (4.15)}. (4.16)

The above expression implies that the admissible stress-strain pairs at time
tk+1 (i.e. the pairs looked up by the Data-Driven solver to find the closest point
projection to the material data set) are those that are thermodynamically con-
sistent with the previously converged state at time tk. The special case where
De,k+1−De,k = 0 defines a bounded equilibrium set (or elastic domain) on the
enhanced phase space. Note that, when dealing with experimental data, the
equality above will never be satisfied exactly, which calls for an appropriately
defined numerical threshold. As long as the state variables above are easily
computable from lower-scale simulations, this parametrization can be readily
obtained.

This is the first data-driven formulation where thermodynamic constraints
are explicitly imposed, as opposed to earlier models where these constraints
are implicitly imposed, for example using the internal variable formalism [92]
or the GENERIC formalism [129].

4.4.2 Internal-variable based parametrization

The second parametrization under investigation relies on enhancing the state
space with a set of internal variables tailored to the material at hand. In this
case, the local material data set admits the following representation [92]:
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De,k+1 = {(εe,k+1,σe,k+1) | (εe,k,σe,k, qe,k)} (4.17)

where qe,k defines an internal variable — or a collection thereof — encapsulat-
ing the material history. In other words, De,k+1 consists of stress-strain pairs
in phase space that are attainable from the initial state (εe,k,σe,k, qe,k) or any
other sufficiently neighboring state, with respect to an appropriately defined
metric. Implicit here is the assumption that neighboring states have under-
gone equivalent history.

Internal variables typically encode information about the microstructure of the
material. In several occasions, pertinent internal variables may be known and
directly computable from lower-scale simulation data. In the general case, they
may be derived through a statistical analysis of the microstructure followed by
appropriate dimensionality reduction [299, 43]. The objective is to optimally
encode the microstructural information in an internal variable of the lowest
possible order, thereby resulting in the lowest-dimensional state space. Most
importantly, the Data-Driven paradigm relies only on identifying the relevant
variables, while bypassing any need for definining analytical evolution laws.

4.5 Application to granular materials

Granular materials constitute an excellent candidate for exploring the perfor-
mance of the proposed framework, since they are known to exhibit complex
history-dependent continuum behavior [277]. Traditionally, the quasistatic be-
havior of granular materials has been described by empirical constitutive laws
that are formulated within the framework of plasticity [297, 318, 34, 239, 79,
261, 17], and are constrained by a set of principles known as the Critical State
Theory [297, 204]. Despite progress in their constitutive description, which was
inspired by the recently-enhanced access to grain-scale information (XRCT
[87], DEM [78], etc.), this conventional modeling approach breaks down dur-
ing the transition between different regimes, and often relies on prohibitively
many parameters [79].

In the remainder of the paper, we will systematically investigate the pro-
posed Data-Driven framework in the modeling of an angular sand. First, we
will briefly review the recently developed Level-Set Discrete Element Method
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which will serve as the machinery for phase space sampling. Then we will
explore the performance of the two history parametrizations, within mate-
rial point simulations involving nonmonotonic loading paths. Finally, we will
demonstrate the prediction of granular material behavior against experiments
in two boundary value problems.

4.5.1 In-silico experiments using LS-DEM

We rely on the recently developed Level-Set Discrete Element Method (LS-
DEM) [170] to generate granular material data sets. Similarly to the original
formulation of DEM [78], LS-DEM resolves the kinematics of athermal rigid
particles interacting through frictional contacts (Fig. 4.2), but also accounts for
accurate particle morphology, described by level set functions. For the purpose
of this study, we will assume a linear (Hookean) elastic contact law capped
by Coulomb friction, which has been shown to capture all essential aspects of
material behavior in sand [169]. Under these assumptions, the interparticle
force f c associated with a contact c (Fig. 4.2 c)) is given by:

f c = f cn + f ct (4.18)

f cn = knδnn (4.19)

f ct = − ∆s

‖∆s‖
min(kt‖∆s‖, µ‖fn‖) (4.20)

where kn(kt) is the normal (tangential) Hookean stiffness, related to the elastic
properties of the individual particles, δn is the interparticle penetration (local
contact deformation), n is the contact normal, ∆s the accumulated tangential
contact displacement, and µ is the friction coefficient. Note that this contact

(a) (b) (c)

f 
c

l 
c

Particle i

Particle j

Contact c

Figure 4.2: LS-DEM for granular material simulation: a) 2D and b) 3D gran-
ular assembly in LS-DEM. c) Frictional particle contact.
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law (and other more complex laws) may be described in terms of a free energy
Ac and kinetic potential ψc (or its associated dissipation function Dc) [168].
This consideration will help us seamlessly describe the energy-based history
parametrization. Finally, once all forces acting at a particle f =

∑
c∈Cp f c and

resulting moments m are known, then the particle’s dynamics are updated by
integrating Newton’s equations of motion, given its inertial properties.

4.5.2 Exploring history parametrizations via material point simu-
lations

In this section, we specify the two parametrizations of Section 4.4 for the case
of granular materials, and assess their performance in material point simu-
lations. In the interest of carefully assessing these parametrizations, we will
restrict ourselves to previously studied stress paths instead of using the optimal
phase space sampling strategy. Fig. 4.3 shows the three considered loading-
unloading paths, namely isotropic compression, simple shear, and constant-
volume biaxial compression. For each of these paths, we perform LS-DEM
experiments1 at regularly spaced levels of pressure p = −1/3 tr(σ) or devia-
toric stress q =

√
3/2s : s, where s = σ + pI. At each level, experiments are

repeated for multiple samples prepared at the same initial isotropic state. This
allows us to generate the data sets that will be used for the subsequent Data-
Driven material point predictions. Note that all simulations are nonmonotonic,
in order to assess the method’s ability to distinguish between loading and un-
loading paths.

We restrict our investigation to quasistatic deformation in these and all sub-
sequent experiments of this study. This is achieved by ensuring that the di-
mensionless inertial number I = γ̇d

√
ρ/p is kept below a value of 10−4 [229].

Further, in order to avoid boundary effects and satisfy the Hill-Mandel condi-
tion, we enforce periodic boundary conditions [263]. The 2D specimens used
for these experiments are comprised of Caicos sand particles characterized dur-
ing an earlier study [224] with elastic parameters E = 63.5 MPa, ν = 0.5, and
a friction coefficient of µ = 0.5. An example specimen is shown in Fig. 4.2 a).

The objective of the Data-Driven material point simulation is to determine the
path that minimizes the distance to an applied strain trajectory by navigating

1The term ‘experiments’ will be used throughout this section to refer to LS-DEM nu-
merical experiments.
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through the available data sets in a thermodynamically consistent manner.
This translates to a simplification of the Data-Driven problem of Eq. 4.8 to:

min
y∈Dk+1

d(zk+1,yk+1) (4.21)

where zk+1 is imposed2, rather than sought from a constraint set, and Dk+1 is
given by Eq. 4.16 or Eq. 4.17, depending on the parametrization.
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τxy
=-ε0
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Figure 4.3: Stress paths for the investigated material point simulations.

Energy-based parametrization

Adopting the energy-based representation requires access to each of the state
variables in Eq. 4.15. For this granular system, assuming quasistatic condi-
tions, the average stress is given by the Love-Christoffersen expression [68]:

σ̄ =
1

V

∑
c

f c ⊗ lc (4.22)

where the summation runs over each contact c in the assembly. Similarly, the
average strain ε̄ may be similarly obtained through homogenization [25] or
directly from the boundary deformation of the unit cell. Assuming periodic
boundary conditions, the Hill-Mandel macrohomogeneity condition [139] is
satisfied, allowing us to write:

dD = σ̄ : d̄ε− dA (4.23)

where dD derives from frictional contact dissipation:

dD =
∑
c

dDc =
1

V

∑
c

f ct · duc,slip (4.24)

2In fact, only the strain or stress is imposed, depending on whether it is a strain- or
stress-driven calculation.
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where duc,slip = (f c,tt − f c,t+dtt )/kt.

Finally, the free energy is due to the deformation of contacts under normal
and tangential loading:

A =
∑
c

Ac =
1

2V

∑
c

(
‖fcn‖2

kn
+
‖fct ‖2

kt

)
. (4.25)

Let us now explore the performace of this parametrization in material point
simulations. Fig. 4.4 shows the data collected from the isotropic compression
experiments up to a pressure of 100 kPa. Different colors represent different
sets of simulations, each carried out at a particular value of pressure or de-
viatoric stress. These represent the data points available to the Data-Driven
solver, and are termed ’Data’ in the plot legend. The initial compression of the
samples is accompanied by a small increase in pressure and a large increase in
dissipation, until the jamming transition [220] occurs at εvol ≈ −0.015. Com-
pressing beyond that point leads to a significant increase in pressure but only a
small increase in dissipation. Similarly, unloading induces negligible change in
volumetric strain or dissipation, therefore producing several equilibrium sets
(notice the almost horizontal segments in Fig. 4.4 b)). The same figure shows
the sequence of data points determined by the Data-Driven (DD) algorithm
for a strain-driven compression cycle at a peak pressure of 50 kPa, that lies in-
between the peak pressures of the available data sets. The success of the data
driven simulation is immediately verified upon comparison with a validation
experiment at the same peak pressure (’Validation’ in the plot legends). Both
loading and unloading branches and well captured. Note, in passing, that the
difference in terms of dissipation-free energy between different data sets and,
hence, between validation and Data-Driven simulation is larger than the same
difference in terms of stress-strain. In particular, dissipation is much more
sensitive to the initial contact arrangement and leads to larger deviations due
to its incremental calculation.

Similarly, Fig. 4.5 shows the data collected from the simple shear experiments
up to 2% shear strain starting from a compressed state of p0 = 100 kPa. Until
the samples experience yielding at approximately τ = 25 kPa, the response
is largely free of dissipation (Fig. 4.5 b)) producing once again equilibrium
sets. All subsequent loading and unloading branches are tied to significant
dissipation. Shown in the same figure is the Data-Driven simulation carried
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(a) (b)

Figure 4.4: Material data sets (colored), Data-Driven simulation (♦), and
validation experiment (�) in isotropic compression: a) Volumetric strain vs
Pressure. b) Free energy vs Dissipation.

(a) (b)

Figure 4.5: Material data sets (colored), Data-Driven simulation (♦), and
validation experiment (�) in simple shear: a) Shear strain vs Shear stress. b)
Internal energy vs Dissipation.

(a) (b) (c)

Figure 4.6: Material data sets (colored), Data-Driven simulation (♦), and val-
idation experiment (�) in constant-volume biaxial compression : a) Pressure
vs Stress Deviator. b) Strain components εxx vs εyy. c) Internal energy vs
Dissipation.
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out to an intermediate peak shear strain γ = 0.01 and followed by unloading
to zero shear stress. Once again, by comparison with a validation experiment
based on the same shear strain history, it is clear that the algorithm is able
to distinguish the best available data set at any point throughout both the
loading and unloading branches.

Finally, Fig. 4.6 shows the material data generated by the biaxial compression
experiments at various initial isotropic states. The samples initially experience
a decrease in pressure followed by a phase transition [79] to a critical state,
and later unload to zero deviator stress. Fig. 4.6 b) shows the applied strain
trajectory which is the input to the Data-Driven simulation, and is designed to
slightly depart from the constant volume strain trajectories readily available in
the data (shown as straight lines). The algorithm is able to transition between
sets, to produce a final trajectory in state space that compares well with the
validation simulation (Fig. 4.6 a)).

Internal variable-based parametrization

We now turn to the internal variable-based representation of material history.
A long history of studying and modeling granular matter has identified sev-
eral relevant internal variables such as the packing fraction and fabric tensor
[79, 281, 277]. Here, following the discussion in Section 4.4.2, we derive the
internal variables by analyzing the statistics of the internal microstructure,
and performing appropriate dimensionality reductions. In this system, the
microstructure may be described by the joint probability density of contact
normals and forces, q = Pnf (n, f)3. The former relates to the arrangement of
the contact structure, while the combination of normals and forces provides
the frictional history. Tractable low-order representations may be achieved
through a finite-dimensional approximation of the density. First, restricting
our attention to the marginal density Pn(n) and exploiting its symmetry, we
can accurately represent it by a second order Fourier expansion [299]:

Pn(n) =
1

4π
(1 + n ·αnn) (4.26)

3 A more general representation is given by the joint probability density of contact
normals, branch vectors, and contact forces, q = Pnlf (n, l, f). The combination of contact
normals and branch vectors encapsulates additional information about particle shape, and
becomes redundant for monodisperse spherical assemblies where n ≡ l.
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which reduces the problem to the determination of the 6 components of a sym-
metric contact anisotropy tensor αn. The trace of the tensor tr(αn) represents
the most important and lowest order description of state which is the packing
fraction φ, or equivalently the void ratio e [217, 281], followed by the remaining
5 components describing the contact anisotropy [313, 164, 299]. Once Pn(n) is
characterized, the description of the internal state is completed by describing
the conditional density Pf |n(f |n). The simplest way to proceed is through a
first-order (mean) description of this density, as 〈f(n)〉 = 〈fn(n)〉n + 〈ft(n)〉,
where fn and ft are the normal and tangential force components. For the
latter, accurate Fourier expansions are, once again, available [31, 326]:

〈fn(n)〉 = 〈f〉(1 + n ·αfnn) 〈ft(n)〉 = 〈f〉(αftn− (n ·αftn)n)

(4.27)

where αfn and αft are the normal and tangential force anisotropy tensors,
respectively.
Based on the above, we obtain the following set of relevant internal variables:

q = {αn,αfn ,αft}. (4.28)

Similarly to the energy-based representation (Section 4.5.2), these state vari-
ables (σ, ε,q) are directly accessible from the micromechanics. While a notion
of hierarchy of these variables was discussed above, a systematic investigation
of their relative importance for the macroscopic response is required in order
to potentially further reduce the dimensionality of the representation.

Let us now explore the performance of the internal variable-based parametriza-
tion in the same material point simulations as before. In each of the three cases
(isotropic compression, simple shear, biaxial compression), the corresponding
precompiled material data sets are now parametrized by the contact fabric,
normal force fabric, and tangential force fabric anisotropy tensors (Eqs. 4.17
and 4.28). The sum of Euclidean (Frobenius) norms of each of the three
tensors provides a simple metric for this set of internal variables. Finally, a
Data-Driven simulation is carried out and compared to a validation experi-
ment. Finally, a Data-Driven simulation is carried out and compared to a
validation experiment.
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Fig. 4.7 a) compares the Data-Driven simulation of isotropic compression to
the corresponding validation experiment. As in the case of the energy-based
parametrization, the algorithm is able to predict the pressure response of the
isotropically strained sample during both loading and unloading. Fig. 4.7 b)
shows the evolution of the internal variables in a low-dimensional subspace
spanned by the void ratio e and the second invariant of the contact fabric
anisotropy tensor αn. The latter represents the intensity of developing fabric,
which remains approximately zero during isotropic compression.

(a) (b)

Figure 4.7: Material data sets (colored), Data-Driven simulation (♦), and
validation experiment (�) in isotropic compression: a) Volumetric strain vs
Pressure. b) Void ratio vs Contact fabric anisotropy invariant.

(a) (b)

Figure 4.8: Material data sets (colored), Data-Driven simulation (♦), and
validation experiment (�) in simple shear: a) Shear strain vs Shear stress. b)
Void ratio vs Contact fabric anisotropy invariant.

Analogously, Fig. 4.8 a) compares the Data-Driven simulation of cyclic simple
shear to the corresponding validation experiment, exhibiting once again a good
agreement. Equally satisfactory agreement is obtained in the internal variable



88

space. Given the size of the space, we choose again to plot only a subspace
spanned by e and αn (Fig. 4.8 b)). Upon loading, we observe a sharp increase
in the contact fabric anisotropy, followed by a smaller increase in the void ratio
upon yielding. During unloading, both variables decay to produce an almost
isotropic but looser state.

Finally, we assess the performance of the parametrization in the undrained bi-
axial compression experiments. Fig. 4.9 a) shows the simulated pressure-stress
deviator response to the same strain trajectory as Fig. 4.6 b), showing excel-
lent agreement with the validation experiment. In terms of internal variables,
Fig. 4.9 b) shows the evolution of the invariants of the contact and force normal
fabric anisotropy tensors. Despite the departure of the simulated trajectory
from the available individual data sets, the algorithm is able to produce con-
sistent transitions between the data sets towards an overall good prediction of
the response. This illustrates the interpolating properties of the framework.

(a) (b)

Figure 4.9: Material data sets (colored), Data-Driven simulation (♦), and
validation experiment (�) in biaxial compression: a) Pressure vs Stress Devi-
ator. b) Contact fabric anisotropy invariant vs Normal force fabric anisotropy
invariant.

To summarize, it was shown that both the energy-based and the internal
variable-based parametrization perform well in two-dimensional material point
simulations of both simple and more complex nonmonotonic stress paths. The
first parametrization, furnished by thermodynamics, is universal and material
independent. On the other hand, the second parametrization was tailored
to granular materials by mathematically describing the microstructure and
performing appropriate reductions.
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4.5.3 Boundary value problems

We now investigate the performance of the multiscale Data-Driven paradigm,
in conjunction with the energy-based history parametrization, in predicting
the mechanical response in two boundary value problems: a) plane-strain
fault rupture through a dense granular layer, and b) shear banding in three-
dimensional triaxial compression. In the first problem, material data sets will
be obtained from the experiment itself, in a demonstration of ‘self-consistent’,
phase space sampling. On the other hand, in the second problem, material
data sets will be independently generated through unit cell simulations, in a
demonstration of the general phase space sampling approach.

Plane strain fault rupture

We consider a sandbox experiment inspired by the fault rupture study of Anas-
tasopoulos et al. [14]. In the latter, sand is pluviated into a rectangular con-
tainer to form a specimen of a 10m width and 30m height at prototype scale.
A piston underneath the sandbox forces the right part of the specimen to qua-
sistatically subside, inducing a fault rupture through the body of sand at a
30◦ angle to the horizontal (Fig. 4.10 b)).

We employ LS-DEM to simulate the experiment by replicating the boundary
conditions and using the model granular material described in [166]. A snap-
shot of the LS-DEM simulation along with the resulting contours of dissipation
is shown in Fig. 4.10 b). In accordance with similar observations in the phys-
ical experiment, both a primary rupture and an antithetic secondary rupture
are identified at angles 125◦ and 52◦ to the horizontal, respectively.

The virtual specimen is spatiotemporally sampled to produce material data
sets — including stress, strain, internal energy, and dissipation — in accor-
dance with the energy-based parametrization (Section 4.4.1). This is achieved
by superimposing a finite element mesh on the discrete element assembly to as-
sociate subassemblies to their nearest material point (Gauss integration point).
This results in a number of material data sets equal to the number of material
points. We refer to this type of phase space sampling as self-consistent since
it is in some sense equivalent to the self-consistent Data-Driven identification
from field data [199]. In contrast to the goal-oriented sampling discussed in
Section 4.3.1 and implemented in the next application, all components of the
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(a)

(b)

(c)

Figure 4.10: Plane strain fault rupture: a) Experimental setup adopted from
Anastasopoulos et al. [14]. b) LS-DEM simulation. c) Data-Driven simulation
and resulting shear bands.

local state are readily available, hence, no unit cell calculations are carried
out. The data sets are initially randomly assigned to each material point in
the discretized (FEM) model used for the Data-Driven simulation. Informed
by the evolving boundary constraint set, the algorithm is able to make cor-
rect associations and transitions between the available data sets, and, thus,
capture the mechanical response. Fig. 4.10 c) shows the resulting contours
of dissipation in the Data-Driven simulation, which compare well with those
of the LS-DEM experiment. In particular, both ruptures are predicted, al-
beit with angles 122◦ and 47◦, respectively. Finally, Fig. 4.11 compares the
evolution of surface settlement in the LS-DEM and Data-Driven simulation
verifying the good quantitative agreement.
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Figure 4.11: Evolution of surface settlement profile in LS-DEM and Data-
Driven simulations.

Shearing banding in triaxial compression

We now consider an in-situ triaxial compression experiment on a specimen of
angular (Hostun) sand, performed within an XRCT scanner, as described in
[16]. Fig. 4.12 a) shows a 2-dimensional slice of the scanned specimen, which
measures 11mm in diameter and 22mm in height, and is comprised of 53,939
angular grains. An encasing flexible latex membrane allows the sample to be
subjected to radial cell pressure, while a freely rotating platen in contact with
the top part of the sample can enforce a vertical compression. The specimen
is first compressed isotropically to 100 kPa, and then compressed triaxially by
keeping the cell pressure constant while prescribing a vertical displacement to
the platen under quasistatic conditions. Eventually, failure occurs through the
formation of a persistent shear band.

Recently, the experiment has been modelled using LS-DEM, where, for each
physical grain in the sample, an equivalent virtual grain is generated through
a level set imaging algorithm [169]. The resulting virtual specimen is then
subjected to the same boundary conditions, by modeling the membrane as
well as the kinematics of the platen. The deformed specimen at critical state
is shown in Fig. 4.12 b). LS-DEM is able to capture both the onset and
spatiotemporal evolution of the shear band, as reported in detail in a recent
publication [169].

We now simulate the experiment using the Data-Driven framework. In a first
simulation, the material data are directly gleaned from the LS-DEM calcula-
tion (Fig. 4.12 b)) in a self-consistent manner, as in Section 4.5.3. In a second
simulation, we choose instead to compile new material data sets by means of
periodic unit cell calculations, using goal-oriented sampling (Section 4.3.1).
To this end, we need to generate cells (Fig. 4.13 a)) that are representative
of the initial local states in the heterogeneous cylindrical specimen, and use
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them to sample the phase space. First, we compute the void ratio distribution
in the specimen, which is enough to fully characterize its heterogeneity given
the predominantly isotropic fabric. We then generate cells with void ratios
sampled from that distribution (Fig. 4.13 b)).

Finally, we need to identify the subset of the phase space that needs to be
sampled, i.e. the predominant loading paths to which we shall subject the
representative unit cells. We expect that, after triaxial compression to a peak
state and the associated onset of shear banding, a bifurcation of the response
occurs, with the exterior of the band unloading along the same stress path,
and the interior of the band undergoing locally approximately simple shear.

(a) (b) (c)

Figure 4.12: Sand specimen subjected to triaxial compression: a) XRCT at
the end of isotropic compression. b) LS-DEM simulation, and c) self-consistent
Data-Driven simulation of triaxial compression, both at critical state.
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Figure 4.13: Goal-oriented sampling: a) Example periodic cell used for sam-
pling. b) Initial heterogeneous local void ratio distribution in the cylindrical
specimen. c) Data clustering in p− q −D space.
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Indeed, we can identify these paths via a simple clustering analysis of the
experimental data. In particular, we employ the DB-SCAN algorithm [103]
equipped with the following distance:

d(z,y) = |{zk − yk}Nk=1| (4.29)

arising from the history-matching metric:

|{zk}Nk=1| =
( n∑
k=1

|zk|2)1/2 (4.30)

where |zn| is given by Eq. 4.5). The above metric induces trajectory clustering
on the data, which are plotted in terms of isotropic and deviatoric invariants
in Fig. 4.13 c). Two major clusters are obtained, one inside the shear band
(red), characterized by pronounced dissipation, and one outside the shear band
(blue), where the response remains almost ‘elastic’. Sampling 10 paths within
each cluster for a total of 20 unit cell calculations is enough to produce the
required data sets. In case we encounter a solution that lies unacceptably far
from the data set at any point, then additional sampling can be carried out.

In both types of simulations discussed above, the material data sets are parame-
trized following the energy-based approach, while FEM is used for the dis-
cretization of the macroscopic boundary value problem. Note that, in this
application, localization arises from the heterogeneity of the sample rather
than by a prescribed discontinuous boundary displacement (as in the fault
rupture experiment). Hence, we need to provide partial information about the
heterogeneous structure, in order to aid the convergence of the algorithm and
the onset of localization. This is achieved by attaching to a given material
point, an initial material data set that corresponds to a void ratio similar to
the initial void ratio of that material point in the experiment. This simply
serves as a starting point for the fixed point iterations of the solver. Upon
this initialization, all material data sets are available to each material point
subject to thermodynamic constraints.

Fig. 4.12 c) shows the deformed specimen obtained from the self-consistent as
well as the goal-oriented Data-Driven simulation at critical state. Upon com-
parison with the deformed LS-DEM specimen (Fig. 4.12 b)), it is clear that
the localized response is well captured. Finally, Fig. 4.14 compares the macro-
scopic response in terms of axial strain, principal stress ratio, and volumetric
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strain of the sample, as obtained from the experiment, LS-DEM, and the two
Data-Driven simulations, all showing good agreement.
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Figure 4.14: Comparison between physical experiment, LS-DEM simulation
and Data-Driven prediction (self-consistent and goal-oriented) in terms of a)
axial strain vs principal stress ratio and b) axial strain vs volumetric strain.

4.6 Conclusions

We have presented a new multiscale paradigm for the prediction of material
behavior. The proposed framework relies on the general inelastic formulation
of Data-Driven Mechanics, where the sampling of the phase space is achieved
through lower-scale computations, carried out offline or on-the-fly. The result-
ing material data-sets are appropriately parametrized to account for history-
dependence. We have demonstrated an application of the framework to gran-
ular materials, where grain-scale computations with the Level-Set Discrete
Element Method were used to generate the required data sets. Within this
application, we investigated the performance of two history parametrizations:
one thermodynamics-motivated and material-independent, and one internal
variable-based and tailored to granular materials. The framework was able to
capture the nonmonotonic and localized response in both plane-strain rupture
and triaxial compression boundary value problems.

It is worth briefly contrasting Data-Driven computing to machine learning-
based methods and conventional multiscale methods. Machine learning almost
always requires specifying ad hoc effective coordinates, or ‘features’, which
carry most of the information in the data. The identification of these features
is also often ad hoc, and reduces the overall modeling process to old-fashioned
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fitting or regression. In addition, the internal representation of the machine-
learned model is often hidden and devoid of physical meaning. By contrast,
Data-Driven methods use the data, all the data, and nothing but the data in
making predictions. In particular, no empirical or subscale information is lost
or manipulated in any way. The physical interpretation of the Data-Driven
solutions (that the admissible equilibrium and compatible states should be as
close to the data as possible) makes eminent physical sense, and the process of
solution is transparent with no hidden representations or manipulations. The
proposed Data-Driven multiscale paradigm is also superior to conventional
multiscale methods since the data are readily reusable for future predictions
involving the same material. Since searching a material database is typically
much faster than a new unit-cell calculation, as more and more data relevant
to a particular application are present in the dataset, the framework becomes
increasingly superior to conventional techniques.

To conclude, Data-Driven techniques will likely continue to gain popularity
in an era when data from high-fidelity simulations and high-resolution experi-
ments are becoming increasingly abundant, as long as these methods serve the
long-standing objective of minimizing uncertainty and improving predictive
capability. However, techniques such as the proposed framework should not
be viewed as a replacement for classical constitutive modeling paradigms that
have matured over the years, but rather as a complement in an emerging era of
Data-Driven computing. Uncovering and mathematically describing the laws
that emerge from the collective behavior of complex micromechanical systems
remains a fundamental research goal, and Data-Driven techniques can only
help towards that goal, by revealing how much of the rich micromechanical
data is relevant to the macroscopic behavior.
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C h a p t e r 5

NONLOCALITY IN GRANULAR COMPLEX NETWORKS:
LINKING TOPOLOGY, KINEMATICS, AND FORCES

K. Karapiperis and J. E. Andrade. “Nonlocality in granular complex networks:
Linking topology, kinematics and forces”. In: Extreme Mechanics Letters 42
(2020), p. 101041.

Abstract
Dry granular systems respond to shear by a process of self-organization that
is nonlocal in nature. This study reveals the interplay between the topologi-
cal, kinematical, and force signature of this process during shear banding in a
sample of angular sand. Using Level-Set Discrete Element simulations of an
in-situ triaxial compression experiment and complex networks techniques, we
identify communities of similar topology (cycles), kinematics (vortex clusters),
and kinetics (force chains), and study their cooperative evolution. We conclude
by discussing the implications of our observations for continuum modeling, in-
cluding the identification of mesoscale order parameters, and the development
of nonaffine kinematics models.

5.1 Introduction

The study of nonlocality in granular materials can be traced back to the pi-
oneering experiments of Roscoe [296] and, later, Mühlhaus and Vardoulakis
[239], establishing the characteristic width of a shear band in sand at 8-10
particle diameters. Further evidence of nonlocality has been identified in the
dynamic flow regime [229] for example in the form of nozzle jamming in si-
los [384] and thickness-dependent repose angles in surface flows [273, 320].
Later, advances in experimental techniques [87, 254, 355] as well as discrete
element (DEM) [78] and contact dynamics (CD) [235] simulations inspired
grain-scale studies in an effort to explain these emergent phenomena. Most
notably, photoelastic experiments and particle simulations helped identify the
heterogeneous nature of force transmission in an assembly in the form of force
chains [209, 282, 283]. Subsequent experiments conjectured force chain buck-
ling [254] as a mechanism for shear localization, which was later investigated
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through structural stability analyses enabled by DEM [345, 339]. Measure-
ments of force correlations were used in [219] to quantify the heterogeneous
nature of force networks under shear, yielding a consistent correlation length
of about 10 particle diameters. Similarly, the study of velocity correlations
has revealed the nonaffine nature of granular kinematics, termed granulence
[278, 274]. As a signature of these correlations, vortices of characteristic sizes
emerge [269, 162, 293], accompanied by intense particle rotations [255, 253,
28, 191, 9], eventually leading to the development of a shear band [188, 285,
1, 343]. Finally, the use of complex networks techniques [314, 188, 323, 22,
342, 361, 363, 364] has contributed to the identification of stable [342] and
unstable [54] mesoscale features and communities [122] and their topological
transformations.

Alongside these micromechanical studies, it was recognized that standard con-
tinuum theories failed to capture nonlocal effects [146, 275]. As a result, two
major families of theories have emerged: enhanced continua [99] and nonlo-
cal theories [163]. Enhanced (or weakly nonlocal [294]) continua depart from
the standard Cauchy assumption of affine deformation, by introducing higher-
order kinematics and their conjugate kinetics. Most notably, the micropolar
theory [75, 100], which equips the material point with rotational degrees of
freedom, has succesfully captured several aspects of shear bands in sands [239,
336]. On the other hand, (strongly) nonlocal theories introduce an additional
field that represents the (solid-like or fluid-like) state of the material locally [21,
163]. Characteristic examples include the Landau-type [196] order parameter
formulation termed partial fluidization theory [21], gradient plasticity [353,
351], and the nonlocal granular fluidity model [161]. In this family, the length
scale is typically identified as the characteristic length scale of the diffusion pro-
cess of a local microstructural event, such as a shear transformation [106], due
to the correlated motion of its neighbors. Recently, the hypotheses inherent to
some of these formulations have been supported by micromechanics, through
advanced homogenization techniques [94, 93, 29, 340, 210], kinematic mod-
els [343], and direct micromechanical descriptions of order parameters [374].
Yet, the micromechanical description of nonlocality within a sound theoretical
framework still remains largely an open question.

In this Letter, we investigate the emergent length scale in the quasistatic flow
of sand. To this end, we rely on three-dimensional Level-Set Discrete Element
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Method (LS-DEM) simulations of triaxial compression [169] of a sample of
angular sand characterized by X-ray computed tomography [15]. We utilize
complex network techniques, which have not received proper attention in 3D
systems, to reveal stable and unstable mesoscale topological structures, vortex
clusters, and force chains, which depart from earlier observations in idealized
and predominantly two-dimensional systems. Particular emphasis is placed
on the cooperative evolution of these features through distinct stages of the
experiment.

This Letter is organized as follows: Section 5.2 details the experiments and
simulations furnishing the micromechanical data to be subsequently analyzed.
In Sections 5.3-5.5, we present the methods used to analyze the topology,
kinematics, and forces in the system, respectively, and discuss the outcome of
each analysis. We conclude by summarizing our main findings, and discussing
their implications for continuum theory in Section 5.6.

5.2 Triaxial compression experiments and simulations

The data analyzed in this work are obtained from a high-fidelity discrete el-
ement simulation of a quasi-static in-situ triaxial compression experiment re-
ported in an earlier publication [169]. In the experiment, a cylindrical specimen
of angular Hostun sand, encased in a flexible latex membrane, is subjected to
a triaxial loading protocol [15]. Fig. 5.1 a) shows a 2-dimensional slice of the
XRCT scanned specimen, which measures 11mm in diameter and 22mm in
height, and is comprised of 53,939 angular grains. The specimen is first com-
pressed isotropically to 100 kPa. Next, keeping the radial pressure constant,
a freely rotating platen in contact with the top part of the sample enforces a
vertical compression until failure. Air can escape through a hole in the loading
platen, giving rise to drained conditions.

The experiment is computationally replicated using a variant of DEM [78]
termed LS-DEM [170]. Similarly to the original formulation, LS-DEM resolves
the kinematics of particles interacting through frictional contacts, but also
accounts for accurate particle morphology. In particular, for each physical
grain in the triaxial sample, a virtual grain is generated through a level set
imaging algorithm (Fig. 5.1 a)). The resulting virtual specimen is subjected
to identical boundary conditions, by modeling the membrane as well as the
kinematics of the platen. The deformed virtual specimen is shown in Fig. 5.1
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a), where the formation of a shear band can be identified. Note that the
friction coefficient (µ = 0.55) was calibrated against the experiment, but falls
within the range of experimental values [310]. For more details regarding the
LS-DEM simulation, the interested reader is referred to [169].

Figures 5.1 b) and c) compare the macroscopic response of the sample in
experiment and simulation, in terms of ratio of major to minor principal stress
σ1/σ3 and volumetric strain εv respectively. The sample exhibits a peak in the
macroscopic stress ratio (equivalently, friction angle), only to decay later to
a constant critical state value. In accordance with earlier experiments and
theory [318, 37], the peak state coincides with the maximal rate of dilation
of the shear band, while the volume remains constant at critical state. Note
that the volumetric strain in the simulation plateaus slightly earlier than in
the experiment, which can be attributed to the slightly premature attainment
of the peak state in the simulation, and to the different method of measuring
the volumetric strain in the experiment (3D DIC) and the simulation (change
of volume enclosed by the membrane). The peak and critical state regimes are
of particular interest to this study, and are highlighted in the figures.
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Figure 5.1: Triaxial compression problem analyzed in this study: a) LS-DEM
simulation of a sample of Hostun sand characterized by XRCT. b) Princi-
pal stress ratio plotted against axial strain. The peak and critical state are
indicated with dashed lines. c) Volumetric strain plotted against axial strain.
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5.3 Mesoscale topological evolution

5.3.1 Complex networks

The nonlocal response of the granular assembly to externally applied loads is
encoded in its evolving contact network structure. Motivated by the success of
complex network analysis in identifying the nonlocal topological evolution of
idealized two-dimensional systems [342], we proceed by considering the assem-
bly as a graph, where particles serve as nodes, and contacts or contact forces
serve as edges connecting the nodes (Fig. 5.2 a)). In particular, we study two
types of networks that are defined as follows. In the unweighted or binary net-
work B, edge weights Bij are zero-valued if no contact exists between particles
i and j, and unit-valued if the particles interact through at least one contact.
On the other hand, in the weighted network W, edge weights are given by the
normalized interparticle force Wij = fij/〈f〉, where fij is the total force aris-
ing from potentially multiple contact points. The unweighted and weighted
contact networks have been recently used to extract interesting features [265]
such as cycles [323, 22, 342] and communities [122], and to pinpoint shear
band nucleation [361, 363] and force chain development [178].

In this section, we restrict our attention to the unweighted network, while the
weighted network will be considered later in Section 5.5. In particular, we
focus on identifying and characterizing the evolution of mesoscale structures
during the shear-banding or unjamming transition. This is achieved through
a minimal cycle analysis of the network [86]. A cycle is a closed walk along
the graph edges, i.e. one that starts and ends at the same node. A cycle basis
is a set of simple (non-intersecting) cycles that forms a basis of the cycle space
of the graph. A minimum cycle basis is a basis with minimal total length of
cycles. Fig. 5.2 b) shows examples of minimal 3-, 4-, 5-, and 6-cycles that
pass through a given particle in the system. In a two-dimensional system, the
minimal cycles would simply correspond to the faces of the contact graph, i.e.
the regions formed by drawing the graph.

5.3.2 Results

The size of our network allows us to study the statistics of cycle sizes, since even
rare occasions of long minimal cycles can be accounted for. Fig. 5.2 c) shows
the probability density function (PDF) of cycle sizes Nc in the whole sample
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at peak and critical state. Interestingly, the density appears to decay super-
exponentially with cycle size and may be well approximated by P (Nc) ∼ e−αN

3
c ,

as shown in the same figure. In accordance with previous observations [342,
363], the density of longer cycles increases at critical state, which could be a
manifestation of dilatation.

We now turn our attention to the density of individual cycles inside the shear
band, where significant topological changes occur. Fig. 5.2 d) shows the evo-
lution of the density of 3-, 4-, 5-, and 6-cycles (constituting ∼80% of the total
number of cycles) as a function of the shear strain εs in the localized band. We
observe that 3-, 4-, and 5-cycles are almost equally populous in the initially
jammed configuration, hinting on their importance as stabilizing mesoscale
features. This lies in contrast to previous studies on idealized two-dimensional
[342] and three-dimensional [363] assemblies which showed that 3-cycles con-
stitute the clear majority in a jammed state, due to their high rotational
frustration. We conjecture that this is due to the pronounced asphericity and
irregularity of the sand grains, that enhance stability, in line with recent ev-
idence of the effect of particle morphology on the mechanical response [168].
Upon further deformation, 3-, 4-, and 5-cycles exhibit a power-law decay to a
common critical state density, also shared by 6-cycles, hinting on the existence
of a common steady state in cycle birth-and-death dynamics.

Inspired by the apparent importance of several classes of cycles in our system,
and in order to describe the ensuing phase transition, we introduce the average
cycle membership of a particle i, given by N̄c(i) =

∑
j jcj(i)/

∑
j cj(i), where

j ∈ [3,∞) is the cycle size and cj(i) is the number of minimal cycles of size
j that pass through node i. This measure in turn gives rise to the minimal
cycle coefficient D(i) = 3/N̄c(i). A highly stable particle entirely surrounded
by 3-cycles will have D=1, while a highly unstable particle will be surrounded
by long cycles such that D→ 0. The proposed coefficient is a generalization
of the local clustering coefficient C(i), which measures the density of 3-cycles
surrounding a particle, and similar higher order coefficients for longer cycles
[46].

We note that the minimal cycle coefficient D also bears resemblance to two
other measures in the complex networks literature: the loop coefficient [359,
358] and the subgraph centrality [104]. The former is given by L(i) = 1/(ki(ki−
1))
∑

j,k∈Γi
1/djk/i, where Γi is the local subgraph of neighbors of i where node
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i has been excluded, and djk/i is the shortest path length between particles
j and k within Γi. The second relevant measure is the subgraph centrality
SC(i) =

∑∞
k=0B

k
ii/k!, which measures the number of closed walks starting

and ending in node i. The difference with D is that SC includes trivial even-
sized walks and cycles that are not simple. It has been successfully used as
a proxy for fluctuating kinetic energy during failure of a granular assembly
[362].

Fig. 5.2 e) shows the evolution of the average minimal cycle coefficient 〈D〉
within the shear band, and compares it to that of the average coordination
number 〈Z〉, the prototypical order parameter for the jamming transition [208].
In both cases, we observe a similar decay to a critical state value. The large
Pearson’s correlation coefficient (∼0.6) between the particle-scale D and Z im-
plies that the minimal-cycle coefficient could serve as an equivalent mesoscale
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Figure 5.2: Evolution of topology: a) Graph representation of the sample at
critical state, with nodes colored by their minimal cycle coefficient. b) Example
minimal 3-,4-,5-, and 6-cycles passing through a given center node. c) PDF
of cycle size Nc in the sample, and fitted distribution. d) Evolution of density
of 3-, 4-, 5-, and 6-cycles inside the shear band. e) Evolution of the average
minimal cycle coefficient inside the shear band. Inset: Evolution of the average
coordination number.
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order parameter for this transition. In the next sections, we will address its
relevance to the kinematics and kinetics of the system.

5.4 Nonaffine kinematics

In this section, we characterize for the first time the kinematics that accompany
the topological changes within a three-dimensional shear band by studying the
formation and evolution of vortex clusters. Earlier kinematics studies have
either focused on two-dimensional systems [9, 1, 343], have relied on simplified
scalar measures of nonaffine deformation [105, 341, 54] or have not addressed
shear bands [264].

5.4.1 Vortex identification

We analyze the nonaffine particle displacements δui ≡ ui − ε · x̃i, where ui is
the displacement, and x̃i is the position of particle i with respect to a local
coordinate system aligned with the shear band. The affine (approximately
simple-shear) strain ε dominating the band’s deformation is found in a least-
squares sense [105] as:

min
ε

∑
i∈S

||ui − ε · x̃i||2 (5.1)

where the summation takes place among the set of particles S within the band.
We proceed to identify mesoscale vortex structures formed by the nonaffine dis-
placements. As opposed to two-dimensional systems [269, 293], where vorticity
is parallel to the out-of-plane axis, vortices can freely rotate in 3D systems and
form clusters [264]. To identify those clusters, we employ the methodology of
[264], by first computing the vorticity field:

ω(x) = ρ(x)−2
∑
i∈S

∑
j∈S

φi(x) [∇φj(x)× δuij] (5.2)

where φ(x) = e−||x−xi||2/d̄2 is the coarse-graining kernel [372], ρ(x) is the coarse-
grained number density field, and δuij = δui − δuj is the relative nonaffine
displacement between particles i and j. To identify a cluster, we choose a
particle within the shear band at random and traverse its contact network using
a breadth-first search algorithm. For contacting particles i, j, their normalized
vorticities, ω̃i, ω̃j, respectively, are compared by computing the angle of their
cosine similarity θij = cos−1(ω̃i · ω̃j). The particles are included in the same
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cluster if θij < θc = π/6, and the search continues until no more particles are
included in the cluster1.

5.4.2 Results

The nonaffine displacement field along with the identified vortex clusters are
shown in Fig. 5.3 a). In contrast to two-dimensional systems where there is
a clear geometrically defined length scale in the form of a vortex radius [293,
343], here the complex shape of vortices requires an alternative definition of
length scale. To this end, we compute the distribution of vortex cluster size Nv

throughout the stages of the experiment, and find, in accordance with [264],
that it is well described by a power law with exponential cutoff, P (Nv) ∼
N−αv e−Nv/νv , as shown in Fig. 5.3 b). By analyzing the exponential tails,
a characteristic vortex length scale `v ≡ ν

1/3
v of about 4 grain diameters is

obtained. Its evolution throughout the experiment is shown in the inset Fig. 5.3
b), where a slight increase with shear strain is identified.

Next, we characterize the vortex strength ωv, which we define as the average
vorticity in each cluster. As shown in Fig. 5.3 c), the average vortex strength
increases to a steady state value, while its density is well approximated by the
Boltzmann-Maxwell distribution P (ωv) ∼ ω2

ve
−ω2

v/2. Finally, we characterize
the directionality of these vortex clusters. This is achieved by computing
the average normalized vorticity of each cluster ω̃c, and comparing it to a
macroscopic director Ω that is orthogonal to both the direction of shear and
the normal to the shear band plane, as shown in Fig. 5.3 a). The distribution
of their cosine similarity cos χ̄ = ω̃c ·Ω is plotted is Fig. 5.3 d). We observe a
slightly anisotropic distribution with some degree of preferential alignment of
the vorticity with ±Ω, which would correspond to the primary (homothetic)
and secondary (antithetic) vortices observed in 2D systems [9, 1, 343]. Most
vortices appear to be arbitrarily oriented in space.

5.5 Forces

To shed light on the kinetics that accompany the kinematical (Section 5.4)
and topological (Section 5.3) transition, we will now characterize the evolving

1The critical angle is chosen as θc = π/6, following [264]. A sensitivity analysis showed
that cluster sizes decrease with increasing θc, yet their distribution consistently follows a
power law with exponential cutoff.
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Figure 5.3: Evolution of kinematics: a) Nonaffine displacement field and iden-
tified vortex clusters within the shear band. b) PDF of cluster size Nv and
fitted power laws with exponential cutoff. Inset: Evolution of characteristic
length `v as a function of the shear strain within the band. c) PDF of the
vortex strengths and fitted Maxwell-Botzmann distribution. d) PDF of the
orientational order parameter cos χ̄.

force chain architecture. Driven by the lack of general agreement on what con-
stitutes a force chain, we first reconcile the two major identification techniques
in the literature: network community detection [30] and ‘direct’ identification
[270]. We then proceed with observations on chain stability and establish
direct links with topology and kinematics.

5.5.1 Force chain extraction via community detection

Our point of departure is the characterization of the weighted and unweighted
contact networks outlined in Section 5.3. Following [30], we seek communities
{si} of grains strongly connected via intergranular forces of similar magnitude,
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by maximizing the modularity function:

Q =
∑
i,j

(Wij − γPij)δ(si, sj) (5.3)

where Wij is the weighted adjacency matrix, γ is the resolution parameter
controlling the size of communities, Pij is the so-called null model representing
the expected weight of the edge connecting nodes i and j, and δ(si, sj) is
the Kronecker delta. We adopt the geographical null model [30], given by
the unweighted adjacency matrix, Pij = Bij, in order to respect the spatial
connectivity constraints in the granular system.

5.5.2 Direct force chain identification

For the ‘direct’ extraction of force chains, we employ a three-dimensional ex-
tension of the detection algorithm described in [270]. Hereby, chains are iden-
tified as quasilinear sequences of particles that reside in the strong-force net-
work [282]. More specifically, let σ3,n3 denote the minor (most compressive)
principal stress and its direction, respectively, obtained from a spectral de-
composition of the particle stress. The latter is given by σ=1./V p

∑
c f c⊗xc,

where V p is the particle volume, and xc is the location of the contact force f c

with respect to the particle centroid. For a sequence of particles to constitute
a force chain S, its members must i) exhibit a compressive stress that is higher
than the sample average:

|σi3| >
1

N

N∑
j=1

|σj3|, ∀i ∈ S (5.4)

where N is the number of particles in the sample, and ii) be sufficiently colin-
ear:

lij · ni3
||lij|| · ||ni3||

> cosα, ∀i, j ∈ S (5.5)

where lij is the branch vector connecting consecutive particles i, j in the chain.
The angle α represents the maximum allowable angle between chain segments
which we take as α = 45◦.

5.5.3 Results

Fig. 5.4 a) shows the contact force network at critical state, along with the
resulting force chains obtained via direct identification and community detec-
tion, respectively. The latter is based on a resolution parameter γ∗ = 3.0
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(recall its definition in Section 5.5.1), optimized to generate chains maximally
similar to those identified ‘directly’. Similarity is assessed based on the coinci-
dence of member particles of chains determined by the two methods. We find
that, for γ = γ∗, the chains determined by the two methods share the majority
(∼ 60%) of their participating members.

Fig. 5.4 c) shows the PDF of community sizes Ncom for varying resolution
parameter γ. The sizes are found to follow a power law distribution P (Ncom) ∼
N−αcom, where α is almost linearly correlated with γ. On the other hand, in
accordance with earlier studies [270], the size of chains obtained by direct
identification follows an exponential distribution, as shown in Fig. 5.4 d). This
is further evidence that for large enough γ, the two identification methods are
reconciled.
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Figure 5.4: Evolution of forces: a) Force network, directly identified chains and
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a buckled chain using various descriptors. c) PDF of community size Ncom and
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Of particular importance to force transmission is the structural characteriza-
tion of force chains. Fig. 5.4 b) shows examples of a jammed (stable) and a
buckled force chain, along with several of their topological and kinematical at-
tributes. A chain is assumed to have buckled when two criteria are met [345]:
i) an increase in local chain curvature beyond a critical threshold, identified
via sensitivity analysis, and ii) a reduction of the potential energy A stored in
the deformed chain contacts. The latter is given by:

A =
1

2

∑
c

(
||f cn||2

kn
+
||f ct ||2

kt

)
(5.6)

where f cn and f ct are the resolved normal and tangential forces at a contact c,
while kn and kt are the normal and tangential contact stiffness, respectively. A
jammed chain is one that persists through loading without buckling. Fig. 5.4
e) shows the PDF of buckled chain segment sizes Nb throughout the experi-
ment, where we can also identify the longest segment that is prone to buckling
(Nb = 10). It appears that longer buckling wavelengths are not energetically
favorable. Note that, in contrast to earlier studies, the stability of force chains
is assessed here with no recourse to numerical proxies such as rolling friction,
but rather as an immediate consequence of morphology and interlocking.

Finally, we address the stability of chains in relation to the measures of topol-
ogy and kinematics investigated in Sections 5.3 and 5.4. To do so, we com-
pare these measures for buckled chains (occurring almost exclusively within
the band) and persistent stable chains. Under an increase in the stored elastic
energy and a loss of lateral support due to dilatation, a chain becomes increas-
ingly susceptible to buckling. With the help of nonconvex Voronoi tesselations
(Appendix 5.A), we can identify the critical local chain packing fraction φc

that induces instability in a chain, as shown in Fig. 5.5 a). Similarly, Fig. 5.5
b) compares the average minimal cycle coefficient Dc, in stable and buckled
chains, showing that buckling is associated with a significant increase in Dc.
Finally, Fig. 5.5 c) shows the minimum distance (in grain diameters) of stable
and buckled chains to the surface of the nearest vortex cluster. Interestingly,
all chains avoid forming in the interior of vortices, and most buckling events
happen on the surface of vortices. This is because the kinematics in the in-
terior of vortex clusters are unfavorable for force chain stability. At the same
time, there is no space for force chains to form further away from the surface
of clusters, since the latter densely occupy the shear band (Fig. 3 a)). Over-
all, this confirms that, along with topology, vortices also govern the formation



109

of chains, in accordance with recent observations in two-dimensional systems
[343].
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Figure 5.5: PDFs of a) packing fraction, b) minimal cycle coefficients and c)
minimal topological distance to the surface of the nearest vortex cluster, for
jammed and buckled chains.

5.6 Conclusions

Nonlocality is inherently linked to pattern formation such as shear banding.
The objective of this study is to reveal the topological, kinematical, and force
signature of shear banding of a sample of angular sand. We based our in-
vestigation on high-fidelity three-dimensional simulations using the Level-Set
Discrete Element Method and relied on complex network techniques to charac-
terize the emergent length scale. Several implications for improved predictive
capabilities arise from this investigation.

Regarding topology, we found that 4- and 5-cycles emerge as equally stabiliz-
ing mesoscale structures alongside the shorter well-documented 3-cycles [363].
We conjecture that this is due to particle asphericity and angularity, which
enhances topological interlocking, reduces rotations, and thus increases struc-
tural stability. By uncovering the evolution of the density of minimal cycles,
the prediction of shear banding becomes possible given information about the
current density and its rate of decay. We presented the first evidence of a
characteristic signature of cycle evolution that is determined by particle mor-
phology. Such a quantitative analysis has not been possible with methods
available so far. We also introduced the minimal cycle coefficient D, in order
to collectively account for the apparent importance of several families of cycles.

With regard to kinematics, we have provided evidence that dilatancy is the
result of the attrition of shorter (3-,4-,5-) cycles and the associated build up of
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longer cycles. Furthermore, we have revealed the nonaffine nature of mesoscale
kinematics by characterizing, for the first time, the strength and orientational
order of vortex clusters within the shear band, while extending previous find-
ings regarding their size distribution. Interestingly, the vortex strength of
these arbitrarily shaped clusters follows a Maxwell-Boltzmann distribution,
that converges to a well-defined critical state. In terms of their orientational
order, we identified a significant departure from the primary and secondary
vortices observed in earlier two-dimensional studies. These are all essential
descriptors of nonlocal kinematics in enhanced continuum theories.

To delineate the conjugate kinetics, we relied once again on complex networks.
First, we reconciled the definition of force chains as fundamental units of force
transmission, by comparing the two major identification techniques. We char-
acterized for the first time the distribution of the critical buckling wavelength
of force chains, which emerged from a high-fidelity representation of particle
morphology, and without recourse to proxies such as rolling friction. The width
of a shear band naturally arises as the maximum such wavelength. We also
found that buckling chains were characterized by significantly lower average
minimal cycle coefficient compared to stable chains, which confirms the high
relevance of this new coefficient.

There are several ways to incorporate these new observations into improved
predictive nonlocal continuum descriptions. The coarsest description would
rely on a mesoscale order parameter that collectively accounts for topological
rearrangements within a Landau-type framework [21]. The proposed minimal
cycle coefficient appears to be a promising candidate. Work towards this di-
rection would require systematically investigating its diffusive spatial coupling
and its relation to the local rheology. Perhaps a more detailed description
would rely on modeling, and subsequently coarse-graining, the coupled birth-
and-death dynamics of force chains, cycles, and vortices. We identified several
constraints that these dynamics must satisfy, such as their critical state densi-
ties and rates of decay. Additional work is required in order to understand the
dissipation that accompanies these birth-and-death processes. A final avenue
would be to explicitly model the nonaffine kinematic field within the shear
band [343]. Our characterization of the size, strength, and orientation of vor-
tices can form the basis for constructing admissible nonaffine fields. Which
theoretical framework can provide a consistent closure of these kinematics
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in terms of their conjugate kinetics remains an open question. Could this
be a modified micropolar framework or, perhaps, a gradient theory of self-
organization [352]? The road to a unified nonlocal continuum theory remains
long and challenging.

Appendix 5.A

Figure 5.A.1: Two nonconvex
Voronoi cells each comprised of
multiple convex subcells.

To calculate the local packing fraction in Sec-
tion 5.5.3, we need to compute the volume of
the cell associated to each particle. To do
so, we employ a generalization of the stan-
dard Voronoi tesselation [306] for the case of
arbitrarily-shaped and nonconvex particles.
This involves a standard Voronoi tesselation
of the particles’ discretized surface points. In
other words, the points at the surface mesh
of all particles are used as the input of a stan-
dard Voronoi computation [306], generating
the example subcells shown in Fig. 5.A.1.
Then, all subcells belonging to the same particle are conglomerated into the
nonconvex Voronoi super-cell attached to that particle. The accuracy of the
scheme depends on the density of the surface discretization of each particle.
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C h a p t e r 6

DATA-DRIVEN NONLOCAL MECHANICS

K. Karapiperis, M. Ortiz, and J. E. Andrade. “Data-Driven nonlocal mechan-
ics” (in preparation)

Abstract
Nonlocal effects permeate most microstructured materials, including granular
materials, metals, and foams. The quest for predictive nonlocal mechanical
theories with well-defined internal length scales has been ongoing for more
than a century since the seminal work of the Cosserat’s. We present here a
novel framework for the nonlocal analysis of material behavior that completely
bypasses the need to define such length scales. The proposed framework ex-
tends the Data-Driven paradigm, originally introduced for simple continua,
into generalized continua. The case of micropolar media is used as a vehi-
cle to introduce this paradigm, which can also be adapted to strain-gradient
and micromorphic media. The Data-Driven problem is formulated directly
on a material data set, comprised of higher-order kinematics and their con-
jugate kinetics, which are identified from experiments or inferred from lower
scale computations. Two applications are presented: a micropolar elastic plate
with a hole, which is used to demonstrate the convergence properties of the
method, and the shear banding problem of a triaxially compressed sample of
quartz sand, which is used to demonstrate the applicability of the method on
a complex problem involving history-dependent and noisy data.

6.1 Introduction

In the standard (Cauchy) continuum description, a solid body is decomposed
into a set of infinitesimal material points, whose constitutive behavior is inde-
pendent from one another except via the exchange of linear momentum, energy,
and entropy. As a result, the material response is invariant with respect to
spatial scaling. Any deviation from this behavior is termed nonlocality, and
is a manifestation of the material microstructure spanning a characteristic
length scale. Indeed, many natural and man-made materials exhibit nonlocal
behavior. Dense granular materials fail by forming localized shear bands of a
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characteristic width [239], marked by intense nonaffine deformation (grain ro-
tation, vortex formation) [269, 165]. Due to the presence of dislocations, thin
metal wires exhibit characteristic strain gradient hardening when subjected to
torsion [111]. A similar size effect of stiffening of slender specimens is reported
in many other materials including foams [194] and bones [195].

Continuum theories for the nonlocal mechanical analysis of materials are cat-
egorized into strongly nonlocal and weakly nonlocal [294]. Strongly nonlocal
theories typically rely on an integral formulation [182, 33] or a constitutive
equation that is itself a PDE [7, 353, 161]. On the other hand, weakly nonlo-
cal theories, also known as gradient or generalized continuum theories, enrich
the constitutive description with gradients of local kinematic variables. Due
to the presence of these gradients, the response at a material point depends
on the response at a neighborhood of that point. We will henceforth restrict
our attention to weakly nonlocal theories. The most general description of
weak nonlocality is furnished by the micromorphic continuum [99], according
to which the material points composing a macroscopic body are themselves
considered a continuum at an appropriate scale of observation, and are sub-
ject to their own microdeformation. This mathematical assumption endows
the material point with additional degrees of freedom beyond the translational
ones present in the Cauchy continuum. The number of additional degrees of
freedom induces a hierarchy in the class of generalized continua [120, 113]. For
example, by restricting the microdeformation to a rigid rotation, one obtains
the micropolar continuum [75, 101] and its constrained version termed couple-
stress continuum [111]. Analogously, prescribing the microdeformation to be
the same as the deformation gradient gives rise to strain-gradient theory [347,
232, 110].

Traditionally, weakly nonlocal modeling has relied on empirical constitutive
laws formulated within continuum thermodynamics [72, 291]. Despite their
success in regularizing the ill-posed local problem [239, 111], such formula-
tions rarely have a sound micromechanical basis, and are notoriously hard to
calibrate. Specifically, establishing a bridge between micromechanics and the
internal length scales required by those theories is very challenging, which is
why these length scales are typically defined in an ad-hoc manner [11, 375].
Similar challenges arise in choosing appropriate internal variables and their
evolution laws, in an effort to capture history dependence and other aspects
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of material behavior beyond nonlocality. Overall, the conventional modeling
process inherently induces uncertainty due to the imperfect knowledge of the
functional form of the constitutive laws [172], and their extrapolative proper-
ties beyond the finite data set used for calibration.

To overcome these long-standing challenges, we hereby propose a reformulation
of generalized continuum mechanics by extending the Data-Driven paradigm
originally introduced for local mechanics [172, 92, 167]. We specifically fo-
cus on the micropolar continuum as the prototypical example of generalized
continua. All other types of continua in this taxonomy can be addressed in
a similar fashion. The proposed framework bypasses any modeling step, by
formulating the problem directly on a given material data set, identified from
experiments or micromechanical simulations, while enforcing pertinent con-
straints and conservation laws. Being entirely parameter-free, the framework
avoids the need to define any constitutive relation, and hence, any internal
length scale, which is instead implicitly determined from the material data
set. The framework is capable of capturing any history-dependent but rate-
independent behavior in a thermodynamically consistent manner.

The paper is organized as follows. In Section 6.2, we briefly review the fun-
damentals of micropolar continua and the family of materials amenable to
this description. Next, in Section 6.3, we present the Data-Driven microp-
olar formulation along with a numerical solution algorithm. Its convergence
properties are studied based on a simple boundary value problem of an elastic
micropolar plate with a hole. Section 6.4 addresses the extension to inelastic
and history-dependent problems. In Section 6.5, we apply the extended frame-
work to the problem of shear banding of a cylindrical sample of quartz sand,
where the material database is compiled from discrete element computations.
We conclude with an overview and discussion in Section 6.6.

6.2 Fundamentals of micropolar theory

The micropolar continuum is a collection of infinitesimal point particles, each
of which is described by a position vector X in an appropriate reference config-
uration, and a rigid director triad Ξ representing the material microstructure
(Fig. 6.1). Similarly to the Cauchy continuum, a deformation mapping ϕ

maps each particle to its deformed configuration x = ϕ(X). Additionally,
a microrotation R(X) ∈ SO(3) maps Ξ to its rotated configuration ξ. The



115

microrotation tensor may be conveniently parametrized by a microrotation
vector θ. This description introduces three additional rotational degrees of
freedom (θi, i = 1, 2, 3) to each material point beyond the conventional three
translational ones (ui, i = 1, 2, 3) of the standard Cauchy continuum. In the
geometrically linear regime, the following measures of strain and curvature are
adopted [98, 100]:

εij = ui,j + εijkθk (6.1)

κij = θi,j. (6.2)

The balance equations are furnished by the conservation of linear and angular
momentum:

σij,j + ρbi = 0 (6.3)

µij,j + εijkσjk + ρci = 0 (6.4)

where σ is the Cauchy stress, µ is the couple stress, ε is the third-order per-
mutation tensor, ρ is the density, b is the body force, and c is the body couple.

The kinematic assumption discussed above is valid for several natural and man-
made materials. In the case of granular materials, the micropolar kinematics
succesfully separate the grains’ rotations from their translations. The rota-
tional motion of the grains determines the nonaffine kinematics that dominate
the material behavior within a shear band, and significantly affects dilatancy
[239, 252]. Chiral metamaterials [324, 212] are also conveniently described by
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Figure 6.1: Deformation of a discretized micropolar continuum body, and types
of microstructures amenable to the micropolar description.
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micropolar kinematics. This family of materials features internal rotational
units connected by ligaments to generate an auxetic lattice. Finally, the mi-
cropolar assumption has also been applied to the modeling of liquid crystals
[102], which are comprised of rod-like molecules embedded in a polymer net-
work, and interacting through short-range forces and couples.

6.3 Data-Driven micropolar elasticity

We consider the geometrically linear mechanical problem of an elastic micropo-
lar body that is discretized into N nodes andM material points (Fig 6.1). The
body is subject to applied forces f = {fα}Nα=1 and moments m = {mα}Nα=1, and
undergoes displacements u = {uα}Nα=1 and microrotations θ = {θα}Nα=1 at its
nodes. The internal state of the system is characterized by two conjugate pairs,
stress-strain {(εe,σe)}Me=1 and couple stress-curvature {(κe,µe)}Me=1. Collec-
tively, we consider ze = (εe,κe,σe,µe) as a point in the local phase space
Ze, and z = {ze}Me=1 as a point in the global phase space Z. The system is
subject to the following discretized compatibility and equilibrium constraints
(Equations 6.1-6.4):

εeij =
∑
α

(
N eα
,j u

α
i + εijkN

eαθαk
)
, e = 1, . . . ,M (6.5)

κeij =
∑
α

N eα
,j θ

α
i , e = 1, . . . ,M (6.6)

M∑
e=1

weσ
e
ijN

eα
,j = fαi , α = 1, . . . , N (6.7)

M∑
e=1

we
(
µeijN

eα
,j + εijkσ

e
jkN

eα
)

= mα
i , α = 1, . . . , N (6.8)

where N ea is the shape function of node α evaluated at the material point e
within an appropriate numerical approximation scheme (e.g. FEM), εijk is the
third-order permutation tensor, and {we}Me=1 are elements of volume. The set
of global states satisfying the above constraints define the equilibrium set E.

The classical formulation of micropolar mechanics provides closure to the above
equations by postulating constitutive relations of the form σe = σe(εe) and
µe = µe(κe). On the contrary, the Data-Driven formulation of the problem
consists of finding the global state z that satisfies the compatibility and equi-
librium constraints and, at the same time, minimizes the distance to a given
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material data set D. To this end, the local phase spaces Ze are equipped with
the following metric:

|ze| = min
κ,λ,µ>0
α,β,γ>0

Ce(κ, λ, µ) εe ·εe + De(α, β, γ)κe ·κe+

Ce−1

(κ, λ, µ)σe ·σe + De−1

(α, β, γ)µe ·µe (6.9)

where Ce, De are symmetric positive definite matrices, that are only introduced
as a numerical scheme, and do not represent actual material behavior. We
adopt here the isotropic micropolar elasticity tensors:

Cijkl = λδijδkl + (µ+ κ)δikδjl + (µ− κ)δilδjk (6.10)

Dijkl = αδijδkl + (γ + β)δikδjl + (γ − β)δilδjk. (6.11)

By minimizing with respect to the coefficients defining the metric, then any
nonlocal effects are optimally determined by the data. Under appropriate con-
straints on the material parameters (κ, µ, β, γ > 0, λ > −2µ/3, α > −2γ/3), it
is straightforward to verify that the minimization problem of Eq. 6.9 is convex.

The above norm induces a metrization of the global phase space Z by means
of the norm:

|z| =
N∑
e=1

we|ze|.

The Data-Driven problem is then mathematically formulated as:

min
y∈D
|z− y| ≡ min

z∈D
|z− y| (6.12)

s.t. z ∈ E s.t. y ∈ E.

The compatibility constraints can be enforced by direct substitution, while
the equilibrium constraints can be enforced by means of Lagrange multipliers,
resulting in the stationary problem:

δ

(∑
e

we|ze|
(∑

α

N eα
,j u

α
i +

∑
α

εijkN
eαθαk ,

∑
α

N eα
,j θ

α
i , σ

e
ij, µ

e
ij

)
−
∑
α

(∑
e

weσ
e
ijN

eα
,j − fαi

)
ηαi

−
∑
α

(∑
e

we(µ
e
ijN

eα
,j + εijkσ

e
jkN

eα −mα
i

)
ζαi

)
= 0. (6.13)



118

Taking all possible variations, we obtain the following system of coupled Euler-
Lagrange equations:

δuαi ⇒
∑
b

∑
e

we
(
Ce∗

ijklN
eα
,j N

eb
,l u

b
k + Ce∗

ijklN
eα
,j N

ebεklmθ
b
m

)
=∑

e

weC
e∗

ijklN
eα
,j ε

e∗

kl (6.14)

δθαi ⇒
∑
b

∑
e

we
(
Ce∗

ijklN
eαN eb

,l εijmu
b
k+
(
Ce∗

ijklεijmεklnN
eαN eb+De∗

mjnlN
eα
,j N

eb
,l

)
θbn
)

=
∑
e

we
(
Ce∗

ijklεijmN
eαεe

∗

kl +De∗

mjklN
eα
,j κ

e∗

kl

)
(6.15)

δσeij ⇒
(
Ce∗−1)

ijkl

(
σekl − σe

∗

kl

)
=
∑
α

N eα
,j η

α
i +

∑
α

εnijN
eαζαn (6.16)

δµeij ⇒
(
De∗−1)

ijkl

(
µekl − µe

∗

kl

)
=
∑
α

N eα
,j ζ

α
i (6.17)

δηai ⇒
∑
e

weN
eα
,j σ

e
ij = fαi (6.18)

δζai ⇒
∑
e

we
(
µeijN

eα
,j + εijkσ

e
jkN

eα
)

= mα
i (6.19)

where Ce∗

ijkl = Ce
ijkl(κ

∗, λ∗, µ∗) and De∗

ijkl = De
ijkl(κ

∗, λ∗, µ∗) are the optimal
metric tensors, and similarly, ze

∗
= (εe

∗
,κe

∗
,σe

∗
,µe

∗
) are the optimal local

data points in the data set De that result in the closest possible satisfaction
of the constraints.

Eqs. (6.16)-(6.19) may be manipulated to yield two coupled equations for the
Lagrange multipliers:∑
b

∑
e

we
(
Ce∗

ijklN
eb
,j N

eα
,l η

b
i + Ce∗

ijklεkijN
ebN eα

,l ζ
b
k

)
= fαk −

∑
e

weN
eα
,l σ

e∗

kl (6.20)∑
b

∑
e

weD
e∗

ijklN
eb
,j N

eα
,l ζ

b
i = mα

k −
∑
e

weN
eα
,l µ

e∗

kl −
∑
e

weεklmσlmN
eα (6.21)

Further, Eqs. (6.16) and (6.21) can be combined to yield:∑
b

∑
e

we
(
Ce∗

ijklN
eαN eb

,l εijmη
b
k +

(
Ce∗

ijklεijmεklnN
eαN eb +De∗

mjnlN
eα
,j N

eb
,l

)
ζbn
)

= mα
m −

∑
e

we
(
N eα
,l µ

e∗

ml + εmklN
eασe

∗

kl

)
. (6.22)

Upon inspection, we obtain two standard micropolar elasticity problems: one
in terms of u,θ as defined by Eqs. (6.14) and (6.15), and one in terms of η, ζ
as defined by Eqs. (6.20) and (6.22).
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6.3.1 Solution algorithm

The simplest Data-Driven solver involves the fixed point iteration:

z(j+1) = PEPDz(j) (6.23)

where j is the iteration number, PDz(j) denotes the closest point projection
onto D (i.e. finding the point in the material data set that is closest to z(j)),
and PEy(j) denotes the projection of a fixed y ∈ D onto E. The algorithm
converges when the local states remain unchanged under the closest point
projection to the material data set. The solution algorithm is shown below.

Algorithm 5 Fixed-point solver
Require: Data sets De, Shape functions N eα, Applied forces fαi , Applied
moments mα

i

where e=1, ...,M, α=1, ..., N, i = 1, 2, 3
i) Set j = 0. Initial local data assignment:
for all e = 1, ...,M do
Choose (εe

∗,(0),κe
∗,(0),σe

∗,(0),µe
∗,(0)) randomly from De

Initialize metric tensors Ce∗,(0),De∗,(0)

end for
ii) Solve coupled Equations (6.14), (6.15) for uα,(k)

i and θα,(k)
i

Solve coupled Equations (6.20), (6.22) for ηα,(k)
i and ζα,(k)

i

iii) Compute local mechanical states:
for all e = 1, ...,M do

Solve Equations (6.5), (6.6) for εe,(j),κe,(j)
Solve Equations (6.16), (6.17) for σe,(j),µe,(j)

end for
iv) Assign local material states:
for all e = 1, ...,M do
Choose (εe

∗,(j+1),κe
∗,(j+1),σe

∗,(j+1),µe
∗,(j+1))

closest to (εe,(j),κe,(j),σe,(j),µe,(j)) in De

Solve for optimal metric tensors Ce∗,(j+1),De∗,(j+1)

end for
v) Test for convergence
if (εe

∗,(j+1),κe
∗,(j+1),σe

∗,(j+1),µe
∗,(j+1)) = (εe

∗,(j),κe
∗,(j),σe

∗,(j),µe
∗,(j))

then
Set uαi = u

α,(j)
i , θαi = θ

α,(j)
i , (εe,κe,σe,µe) = (εe,(j),κe,(j),σe,(j),µe,(j))

else
j ← j + 1, goto ii)

end if
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6.3.2 Numerical analysis of convergence

To study the convergence of the Data-Driven solver with respect to the size
of the data set, we shall consider the problem of an isotropically stressed mi-
cropolar plate with a hole, as shown in Fig. 6.2 a). We will assume that
the material behavior obeys an isotropic micropolar linear elastic law. Due
to plane stress conditions, only a neighborhood of the subspace σ13 = σ31 =

σ23 = σ32 = σ33 = µ11 = µ12 = µ21 = µ22 = µ31 = µ32 = µ33 = 0 needs to
be covered by the data [97]. Hence, we sample the 6-dimensional hypercube
covering an appropriate region (σ11, σ12, σ21, σ22, µ31, µ32) in phase space with a
uniform grid. The corresponding strains and curvatures follow from isotropic
linear elasticity. We first solve the problem classically and, then, also solve
the problem using the Data-Driven solver with different discretizations along
each dimension of the hypercube, corresponding to different data set cardinal-
ities |D| ∈ [1, 107]. With finer data sets, we visually inspect the convergence
the Data-Driven solution to the classical solution, for example in the case of
rotations (cf. Fig. 6.2 b), c)).

(a)

σ

σ

u2=θ3=0

u 1
=θ

3=
0

x
y

(b) (c)

Figure 6.2: Micropolar plate with a hole: a) Simulation setup. b) Reference
rotation field corresponding to the classical solution (FEM). c) Rotation field
corresponding to the Data-Driven solution with a data set size |D| = 106.

Fig. 6.3 a) shows the reduction of the global distance between equilibrium set
and the material data set as a function of the size of the data set. We find that
the global distance decreases in the form of a power law with an exponent of
2.45. The convergence of the Data-Driven solution to the reference (classical)
solution is shown Fig. 6.3 b), where we plot two root mean square (RMS) error
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Figure 6.3: Results of convergence analysis: a) Global distance between con-
straint manifold and material data set plotted as a function of the number
of data points in each dimension. b) Number of iterations until convergence
plotted as a function of the number of data points in each dimension.

metrics defined as [172]:

RMSW =

(∑
eweW (ε− εref,κ− κref)∑

eweW (εref,κref)

)1/2

(6.24)

RMSW ∗ =

(∑
eweW

∗(σ − σref,µ− µref)∑
eweW

∗(σref,µref)

)1/2

(6.25)

where W is the energy density and W ∗ is the complementary energy. We
observe that the convergence is superlinear and, most importantly, the error is
equally split between kinematics (W ) and their conjugate kinetics (W ∗), as a
result of the novel distance measure of Eq. 6.9. Finally, Fig. 6.3 c) shows that
the number of fixed point iterations required until convergence approximately
coincides with the number of data points along each dimension of the uniformly
sampled data set.

6.4 Extension to inelasticity

Practical applications of Data-Driven computing often concern inelastic ma-
terials, whose behavior is history dependent and irreversible. To extend the
Data-Driven micropolar framework to inelasticity, we shall restrict our atten-
tion to a time-discrete formulation. Following [167], the Data-Driven problem
of at time tk+1 transforms to:

min
yk+1∈Dk+1

|zk+1 − yk+1| ≡ min
zk+1∈Dk+1

|zk+1 − yk+1| (6.26)

s.t. zk+1 ∈ Ek+1 s.t. yk+1 ∈ Ek+1
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where zk+1 = {zek+1}Me=1 ∈ Z and zek+1 = (εek+1,κ
e
k+1,σ

e
k+1,µ

e
k+1). The time-

dependent constraint set Ek+1 arises from the time-dependent applied forces
fk+1 and moments mk+1. Accordingly, the behavior at a material point is
described by a material data set De

k+1 of points that is attainable at time tk+1

given its past local history of deformation:

De
k+1 = {(εek+1,σ

e
k+1,κ

e
k+1,µ

e
k+1) | past history}. (6.27)

The global material data set then follows as:

Dk+1 = D1
k+1 × . . .×DM

k+1. (6.28)

The fixed point Data-Driven solver now takes the form:

z
(j+1)
k+1 = PEk+1

PDk+1
z

(j)
k+1 (6.29)

representing a time-dependent extension of Eq. 6.23. From the solution of the
Euler-Lagrange equations (Eqs (6.14),(6.15), 6.20,6.22), now arise the time-
discrete field variables uk+1,θk+1 and Lagrange mutipliers ηk+1, ζk+1.

It becomes clear that the main challenge is the parametrization of mate-
rial history, as we deal with evolving material data sets. In previous works,
various representational paradigms have been explored including the heredi-
tary/history functional and the internal variable formalism [92], as well as the
thermodynamically-motivated energy-based representation [167]. Adopted in
this work is the latter which is material-independent and universal.

To effect the energy-based history parametrization, we augment the phase
space with the free energy A and dissipation D, and consider their implicit re-
lation with the remaining state variables ε,σ,κ,µ. This relation is furnished
by the principle of conservation of energy and the second principle (Clausius-
Plank inequality):

Ḋ = σ : ε̇+ µ : κ̇− Ȧ ≥ 0 (6.30)

or in a local, time-discrete setting:

Dek+1−Dek=
σek+σek+1

2
:(εek+1−εek)+

µek+µek+1

2
:(κek+1−κek)−(Aek+1−Aek)≥0.

(6.31)



123

The local material data set at time tk+1 is then formalized as:

De
k+1 = {(εek+1,σ

e
k+1,κ

e
k+1,µ

e
k+1) | (εek,σek,κek,µek), (6.30)}. (6.32)

The above relation states that the admissible stress-strain pairs at time tk+1

are those that are thermodynamically consistent with the material state at
time tk. The special case where Dek+1−Dek = 0 defines a bounded equilibrium
set (or elastic domain) on the augmented phase space.

6.5 Application to granular materials

6.5.1 Micropolar homogenization

Granular materials are excellent candidates for exploring the performance of
the Data-Driven framework given their nonlocal and history-dependent be-
havior [168, 165]. Adopting the thermodynamics-based history representation
requires access to the generalized state variables in Eq. 6.31. Indeed, each of
these variables are micromechanically accessible. Assuming quasistatic condi-
tions, the average stress is given by the well-established Love-Christoffersen
expression [68]:

σ̄ =
1

V

∑
c∈Rc

f c ⊗ lc (6.33)

where the summation runs over the set of contacts Rc in a granular assembly
or representative volume element (RVE), f c is the contact force, and lc is the
contact branch vector (Fig 6.4).

On the other hand, the homogenized couple stress may be obtained in a body-
integral form through coarse graining [128], or in a more computationally
tractable manner through a surface integral form utilizing Hashin’s homoge-
nization principle [94]:

µ̄ =
1

V

∑
c∈∂Rc

(lc × f c)⊗ xp(c) (6.34)

where xp(c) denotes the position of the center of the particle of the RVE bound-
ary corresponding to contact c with respect to the RVE centroid, and ∂Rc

denotes the set of contacts of the RVE boundary particles with exterior parti-
cles. Note that couple stresses naturally arise from the eccentricity of contact
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Figure 6.4: Representative volume element for a granular assembly.

forces. The average strain ε̄ may be obtained through the homogenization of
the displacement gradient and microrotation [94]:

ε̄ = ∇u + ε · θ̄ =
1

V

( ∑
p∈∂Rp

up ⊗ np + ε ·
∑
p∈Rp

θpV p
)

(6.35)

where Rp, ∂Rp represent the set of RVE interior and boundary particles,
respectively.

Analogously, the homogenized curvature is given by:

κ̄ = ∇θ =
1

V

∑
p∈∂Rp

θp ⊗ np (6.36)

where np is the outward oriented normal vector on the RVE at the center of
bounding particle p.
Assuming kinematically and statically admissible boundary conditions for the
RVE, the micropolar Hill-Mandel macrohomogeneity condition [202] is satis-
fied, allowing us to write:

dD = σ̄ : d̄ε+ µ̄ : d̄κ− dA (6.37)

where dD derives from frictional contact dissipation [167]:

dD =
1

V

∑
c

f ct · duc,slip (6.38)

where duc,slip = (f c,tt − f c,t+dtt )/kt.
Finally, the free energy is due to the deformation of contacts under normal
and tangential loading:

Ā =
1

2V

∑
c

(
‖fcn‖2

kn
+
‖fct ‖2

kt

)
(6.39)
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where f cn = (f c ·nc) nc is the normal component of the contact force, f ct = f c−f cn

is the tangential component, and kn, kt are the normal and tangential contact
stiffness, respectively. It is implied that particle morphology is fully resolved
such that the contact interaction occurs through distributed contact forces and
in the absence of contact moments.

6.5.2 Shear banding in triaxial compression of sand

One of the most studied aspects of nonlocality in granular materials is shear
banding. Perhaps the most important breakthrough in understanding and
modeling shear bands was the observation that rotational motion governs the
bands’ formation and dissipative properties [255, 253]. This, in turn, inspired
the development of micropolar constitutive models typically within the frame-
work of plasticity [239, 336]. While these models have been relatively successful
in regularizing the shear banding problem, they are also subject to significant
limitations. These relate more generally to the issue of defining and calibrating
appropriate length scales and internal variables, but also to more specific chal-
lenges such as capturing the mechanisms of both homothetic and antithetic
rotations governing the nonaffine kinematics within a localized band [9].

In this section, we utilize the history-dependent version of the micropolar
Data-Driven framework to model shear banding of a triaxially compressed
cylindrical specimen of Hostun sand. In a previous study, an in-situ triaxial
experiment was carried out on such a specimen within an XRCT scanner [16].
The specimen is encased in a flexible membrane allowing it to be subjected
to radial cell pressure, while a platen in contact with the top part of the
specimen enforces a vertical compression. The specimen is first compressed
isotropically to 100 kPa, and then compressed triaxially by keeping the cell
pressure constant while prescribing a vertical displacement to the platen under
quasistatic conditions. Failure eventually occurs through the formation of a
shear band. The experiment was later modelled in a one-to-one fashion using
the Level-Set Discrete Element Method (LS-DEM) [169]. For each physical
grain in the sample, an equivalent virtual grain was generated through a level
set imaging algorithm. The resulting virtual specimen was, then, subjected
to the same boundary conditions by modeling the membrane as well as the
kinematics of the platen. LS-DEM was able to capture both the onset and
spatiotemporal evolution of the shear band [169]. We refer to [16, 169] for
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details on the experiments and simulations, respectively.

We now simulate the experiment using the Data-Driven framework, where
spatial discretization of the problem is achieved with a finite element mesh
(Fig. 6.5). The required material data are directly gleaned from the LS-DEM
calculation in a self-consistent manner. More specifically, the LS-DEM speci-
men is spatiotemporally sampled to produce data sets of stress, strain, couple
stress, curvature, internal energy, and dissipation, in accordance with Sec-
tion 6.5.1. This is achieved by superimposing the finite element mesh on the
discrete element assembly, to associate subassemblies (RVEs) to their nearest
material point (Gauss integration point). The data sets are initially assigned
to each material point in the Data-Driven model by randomly sampling from
the available data sets of similar initial packing fraction to the true material
data set sampled from that material point. This sampling procedure informs
the model about the initial heterogeneous structure (to aid the onset of lo-
calization in a comparable pattern), but also introduces some randomness in
the initial assignment. The Data-Driven calculation is carried out for both a
coarse and a fine mesh, composed of 6144 and 14784 material points, respec-
tively. We find that the algorithm is able to make correct associations and
transitions between the available data sets, informed by the evolving bound-
ary conditions and the evolving thermodynamically-constrained local material
data sets. Fig. 6.5 shows the resulting rotation fields in the LS-DEM and
fine-mesh Data-Driven calculation, showing good agreement.

(a) (b)

Figure 6.5: Undeformed cylindrical specimen and its deformed localized cross-
section in the case of a) LS-DEM simulation, and b) Data-Driven FEM calcu-
lation. Colors indicate contours of normalized rotation magnitude.
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Figure 6.6: Comparison between experiment, LS-DEM simulation, and Data-
Driven prediction in terms of a) axial strain vs volumetric strain, and b) axial
strain vs principal stress ratio.
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Figure 6.7: Rotation magnitude plot-
ted against the distance from the
shear band center d normalized by the
median particle diameter D50.

Figures 6.6 a) and b) compare the vol-
umetric response and principal stress
ratio, respectively, obtained in the ex-
periment, LS-DEM simulation, and
Data-Driven computation, all showing
reasonably good agreement. In par-
ticular, the coincidence of the coarse-
and fine-mesh Data-Driven solutions
verifies the mesh-insensitivity of the
approach in the post-localized regime.
Finally, Fig. 6.7 shows the normalized
rotation magnitude as a function of
the distance from the shear band (in multiples of median particle diameter),
as measured in the LS-DEM and Data-Driven computations. An excellent fit
is obtained, indicating that this characteristic length scale is correctly encoded
in the material data sets.

Remark:
We refer to [167] for an example of Data-Driven phase space sampling for
simple continua where material data sets are obtained from independent unit
cell calculations instead of the target boundary value problem itself. Such
an approach can also be extended to micropolar continua by introducing ap-
propriate generalized boundary conditions on the unit cell, which satisfy the
micropolar Hill-Mandel conditions [202].
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6.6 Conclusions

We presented a Data-Driven paradigm for the mechanical analysis of gener-
alized continua that accounts for nonlocality arising from the material mi-
crostructure. We focused on the micropolar continuum; yet, any other formu-
lation within the taxonomy of weakly nonlocal continua (e.g. second-gradient,
micromorphic) is readily addressable. By formulating the problem on a phase
space augmented by higher-order kinematics and their conjugate kinetics, we
bypass the need to define an internal length scale, in stark contrast with the
conventional approach based on constitutive modeling. In fact, the frame-
work is entirely parameter-free owing to the introduction of a novel distance
measure in phase space. The framework’s extension to history-dependent be-
havior was achieved in a thermodynamically consistent manner by further
augmenting the phase space with the free energy and dissipation. In terms of
applications, we first considered the problem of a micropolar plate with a hole,
which we used as a benchmark to verify the framework’s improved convergence
properties due to the incorporation of this new distance measure and despite
the involvement of higher order gradients. A second application featured the
shear banding problem of a specimen of sand subjected to triaxial compression.
The material database was populated through micropolar homogenization of
micromechanical LS-DEM calculations, which provides an example of appli-
cation of the Data-Driven approach in a multiscale analysis mode. Evidently,
the data set can also comprise experimental data in addition to micromechan-
ical data. We emphasize that strict reliance on fundamental data (stress and
strain) makes it possible to merge data sets from various provenances, which
facilitates building up and disseminating data repositories.
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C h a p t e r 7

CONCLUSIONS AND OUTLOOK

7.1 Main findings

In this thesis, we have introduced novel theoretical and computational ap-
proaches for predicting the history-dependent — local and nonlocal — be-
havior of granular solids. Naturally arising in this study is the concept of a
granular genome, which incorporates grain-scale properties, and expresses it-
self to an assembly-scale state. The latter is, in turn, mapped to an attainable
continuum behavior. To enable this mapping, a number of complementary
methodologies are developed, including homogenization methods, data-driven
computing, and complex network analysis. After a meticulous review of the
state-of-the-art, we embark on a four-pronged research approach.

In Chapter 3, we present a framework for in-silico stress probing experiments,
designed to reveal the nature of incremental constitutive equations, formu-
lated within plasticity theory. By relying on the Level-Set Discrete Element
Method, we systematically probe different directions in stress space originating
from the same initial state. We specifically study assemblies of sand particles,
characterized by X-ray computed tomography, as well as morphologically sim-
pler counterparts of the same systems. We extract and analyze the anisotropic
elasticity, elastic-reversible coupling, yielding, plastic flow, and the evolution
of internal variables as a function of genome and state. More specifically, in
the context of classical plasticity, we find that the yield surface departs from
the best available description in terms of the Lade-Duncan locus, and we accu-
rately quantify the nonassociativity and irregularity of the flow rule. Within
hyperplasticity, we characterize the change in internal energy and dissipation
as a function of probing direction and state. Finally, we quantify the incremen-
tal evolution of several novel descriptors of fabric, including the weak force,
strong force, and fluctuation fabric. All the above are essential ingredients of
a new generation of constitutive theories.

In Chapter 4, we depart from the conventional modeling approach, and intro-
duce a multiscale Data-Driven paradigm that completely bypasses the need to
define a constitutive law. The problem is formulated as a distance minimiza-
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tion between a material data set and an equilibrium manifold. Two major
challenges are identified and addressed: phase space sampling and history
parametrization. Optimal phase space sampling is achieved through grain-
scale computations, which are carried out either offline or on-the-fly. We
also develop two history parametrizations, one thermodynamics-based and
material-independent, and one statistically-informed and tailored to granular
materials. We find that both parametrizations perform well both in nonmono-
tonic material point simulations and complex boundary value problems, such
as the rupture through a dense layer of sand.

In Chapter 5, we turn our attention to understanding and modeling nonlocal
aspects of granular material behavior. Using complex networks, we analyze
a sample of angular sand undergoing shear banding, a prototypical failure
mode governed by nonlocal effects. We particularly focus on revealing the
cooperative evolution of topology, nonaffine kinematics and their conjugate
kinetics. Regarding topology, we find that force cycles, up to 6 particles long,
govern the onset and evolution of shear banding. This finding contradicts
earlier topological studies on spherical assemblies, hinting on the importance
of the granular genome. A new topological measure, termed minimal cycle
coefficient, is introduced, which serves as an order parameter for the system.
In terms of kinematics, we analyze the size, strength, and orientation of vortex
clusters within the shear band. This vorticity, which is accompanied with
intense particle rotation, furnishes a complete model of nonaffine kinematics.
Finally, we study the stability of force chains as a function of neighborhood
topology and kinematics. We find that buckling force chains arise at regions
of low average minimal cycle coefficient and high average rotation, and at the
edge of vortices.

Finally, in Chapter 6, driven by our observations of the importance of higher-
order kinematics, we extend the Data-Driven paradigm to the class of weakly
nonlocal continua. In particular, we focus on the micropolar continuum, in
which the material point is endowed with rotational degrees of freedom be-
yond the translational ones of the standard Cauchy continuum. This leads to
a coupled Data-Driven formulation on a phase space augmented with curvature
and couple stress. The extension also features a new distance measure that
improves the convergence properties of the original scheme, and renders it en-
tirely parameter-free. We show that, in this extended framework, the internal
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length scale of a shear banding problem is successfully encoded in the material
data set. This is verified by accurately capturing the post-localized softening
response of an in-situ triaxial experiment in a mesh-insensitive manner.

7.2 Outlook

A number of possibilities for future work arise as a result of this work. Re-
garding the first part of the thesis, the constitutive behavior can be probed
within a wider range of states than those investigated, for instance under ro-
tated principal stress states, which is important in many applications. Another
obvious way forward is the incorporation of the acquired information about
elasticity, coupling, flow, and hardening into a complete theory of plasticity.
Within the multiscale Data-Driven approach, it is worthwhile addressing the
dynamic (rate-dependent) and finite deformation regime, which would allow
us to tackle a wider range of interesting problems involving granular materials.
Addiitionally, the potential for using machine learning techniques to improve
the convergence properties of the method while relying on smaller data sets is
very promising. Similarly, the consideration of noisy history-dependent data
sets, merged from various provenances, would help improve the accuracy of
the approach.

Moving to the nonlocal part of the thesis, several questions remain with respect
to incorporating our complex network-derived observations to a complete non-
local continuum theory. For instance, the proposed minimal cycle coefficient
can be used as an order parameter within a Landau-type theory. This would
require additional analysis to study its diffusive spatial coupling and relation
to local rheology. In the last part of the study, regarding the extended Data-
Driven framework, the obvious way forward is to develop the theory for other
types of media beyond micropolar, such as strain gradient and micromorphic
media. This would open up many opportunities for modeling a wider range of
microstructured materials.

To conclude, the methodologies developed here are not tied to granular mate-
rials, but can also be used for other families of materials that exhibit a regime
of rate-independent behavior, and for which lower-scale simulation is possible
and efficient. This includes glass, foams, gels, and other materials. Moreover,
the capability to understand and predict material behavior naturally paves the
way to engineer a desired behavior. For example, our study enables the design
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of granular shape and mechanical properties (granular genome) to target a de-
sired stress-strain response. In this pursuit, machine learning and data-driven
methods such as those developed herein will likely prove very useful.



133

BIBLIOGRAPHY

[1] S. Abedi, A.L. Rechenmacher, and A.D. Orlando. “Vortex formation
and dissolution in sheared sands”. In: Granular Matter 14.6 (2012),
pp. 695–705.

[2] Farid F. Abraham et al. “Instability dynamics in three-dimensional
fracture: An atomistic simulation”. In: Journal of the Mechanics and
Physics of Solids 45.9 (1997), pp. 1461–1471.

[3] I. Agnolin and J.-N. Roux. “Internal states of model isotropic granular
packings. I. Assembling process, geometry, and contact networks”. In:
Physical Review E 76 (2007), p. 061302.

[4] I. Agnolin and J.-N. Roux. “Internal states of model isotropic granu-
lar packings. III. Elastic properties”. In: Physical Review E 76 (2007),
p. 061304.

[5] I. Agnolin and J.-N. Roux. “On the elastic moduli of three-dimensional
assemblies of spheres: Characterization and modeling of fluctuations in
the particle displacement and rotation”. In: International Journal of
Solids and Structures 45.3 (2008), pp. 1101–1123.

[6] Jun Ai et al. “Assessment of rolling resistance models in discrete element
simulations”. In: Powder Technology 206.3 (2011), pp. 269–282.

[7] E.C. Aifantis. “On the microstructural origin of certain inelastic mod-
els”. In: Journal of Engineering Materials and Technology 106.4 (1984),
pp. 326–330.

[8] E.C. Aifantis. “On the role of gradients in the localization of defor-
mation and fracture”. In: International Journal of Engineering Science
30.10 (1992), pp. 1279–1299.

[9] F. Alonso-Marroquín et al. “Effect of rolling on dissipation in fault
gouges”. In: Physical Review E 74 (2006), p. 031306.

[10] F. Alonso-Marroquín et al. “Role of anisotropy in the elastoplastic
response of a polygonal packing”. In: Physical Review E 71 (2005),
p. 051304.

[11] M.I. Alsaleh, G.Z. Voyiadjis, and K.A. Alshibli. “Modelling strain lo-
calization in granular materials using micropolar theory: mathematical
formulations”. In: International Journal for Numerical and Analytical
Methods in Geomechanics 30.15 (2006), pp. 1501–1524.

[12] K.A. Alshibli, M.I. Alsaleh, and G.Z. Voyiadjis. “Modelling strain lo-
calization in granular materials using micropolar theory: Numerical im-
plementation and verification”. In: International Journal for Numerical
and Analytical Methods in Geomechanics 30.15 (2006), pp. 1525–1544.



134

[13] A. Anandarajah, K. Sobhan, and N. Kuganenthira. “Incremental stress-
strain behavior of granular soil”. In: Journal of Geotechnical Engineer-
ing 121.1 (1995), pp. 57–68.

[14] I. Anastasopoulos et al. “Fault rupture propagation through sand: Finite-
element analysis and validation through centrifuge experiments”. In:
Journal of Geotechnical and Geoenvironmental Engineering 133.8 (2007),
pp. 943–958.

[15] E. Andò et al. “Experimental micro-mechanics of granular media stud-
ied by x-ray tomography: Recent results and challenges”. In: Géotech-
nique Letters 3.3 (2013), pp. 142–146.

[16] E. Andò et al. “Grain-scale experimental investigation of localised defor-
mation in sand: a discrete particle tracking approach”. In: Acta Geotech-
nica 7.1 (2012), pp. 1–13.

[17] J. E. Andrade and R. I. Borja. “Capturing strain localization in dense
sands with random density”. In: International Journal for Numerical
Methods in Engineering 67.11 (2006), pp. 1531–1564.

[18] J. E. Andrade and X. Tu. “Multiscale framework for behavior prediction
in granular media”. In: Mechanics of Materials 41.6 (2009). Advances
in the Dynamics of Granular Materials, pp. 652–669.

[19] J. E. Andrade et al. “On the rheology of dilative granular media: Bridg-
ing solid- and fluid-like behavior”. In: Journal of the Mechanics and
Physics of Solids 60.6 (2012), pp. 1122–1136.

[20] José E. Andrade and Carlos F. Avila. “Granular Element Method (GEM):
Linking inter-particle forces with macroscopic loading”. In: Granular
Matter 14.1 (2012), pp. 51–61.

[21] I.S. Aranson and L.S. Tsimring. “Continuum description of avalanches
in granular media”. In: Physical Review E 64 (2001), p. 020301.

[22] Roberto Arévalo, Iker Zuriguel, and Diego Maza. “Topology of the force
network in the jamming transition of an isotropically compressed gran-
ular packing”. In: Physical Review E 81 (2010), p. 041302.

[23] ASTM International. “ASTM D4254-16, Standard Test Methods for
Minimum Index Density and Unit Weight of Soils and Calculation of
Relative Density”. In: West Conshohocken, PA (2016).

[24] ASTM International. “Standard test methods for maximum index den-
sity and unit weight of soils using a vibratory table”. In: West Con-
shohocken, PA (2006).

[25] K. Bagi. “Analysis of microstructural strain tensors for granular assem-
blies”. In: International Journal of Solids and Structures 43.10 (2006),
pp. 3166–3184.



135

[26] K. Bagi. “Stress and strain in granular assemblies”. In: Mechanics of
Materials 22.3 (1996), pp. 165–177.

[27] J. P. Bardet and J. Proubet. “A numerical investigation of the structure
of persistent shear bands in granular media”. In: Géotechnique 41.4
(1991), pp. 599–613.

[28] J.P. Bardet. “Numerical simulations of the incremental responses of ide-
alized granular materials”. In: International Journal of Plasticity 10.8
(1994), pp. 879–908.

[29] J.P. Bardet and I. Vardoulakis. “The asymmetry of stress in granular
media”. In: International Journal of Solids and Structures 38.2 (2001),
pp. 353–367.

[30] Danielle S. Bassett et al. “Extraction of force-chain network architecture
in granular materials using community detection”. In: Soft Matter 11
(2015), pp. 2731–2744.

[31] Richard J. Bathurst and Leo Rothenburg. “Observations on stress-force-
fabric relationships in idealized granular materials”. In: Mechanics of
Materials 9.1 (1990), pp. 65–80.

[32] Paul T. Bauman et al. “On the application of the Arlequin method
to the coupling of particle and continuum models”. In: Computational
Mechanics 42.4 (2008), pp. 511–530.

[33] Z. Bazant, T. Belytschko, and T. Chang. “Continuum theory for strain–
softening”. In: Journal of Engineering Mechanics 100.12 (1984), pp. 1666–
1692.

[34] K. Been and M. G. Jefferies. “A state parameter for sands”. In: Géotech-
nique 35.2 (1985), pp. 99–112.

[35] Robert P Behringer and Bulbul Chakraborty. “The physics of jamming
for granular materials: A review”. In: Reports on Progress in Physics
82.1 (2018), p. 012601.

[36] D. Bigoni and T. Hueckel. “Uniqueness and localization: I. Associative
and non-associative elastoplasticity”. In: International Journal of Solids
and Structures 28.2 (1991), pp. 197–213.

[37] M. D. Bolton. “The strength and dilatancy of sands”. In: Géotechnique
36.1 (1986), pp. 65–78.

[38] T. Börzsönyi et al. “Shear-induced alignment and dynamics of elongated
granular particles”. In: Physical Review E 86 (2012), p. 051304.

[39] J.-P. Bouchaud et al. “Force chain splitting in granular materials: A
mechanism for large-scale pseudo-elastic behaviour”. In: European Phys-
ical Journal E 4.4 (2001), pp. 451–457.



136

[40] M. Bouzid et al. “Non-local rheology in dense granular flows”. In: The
European Physical Journal E 38.11 (2015), pp. 1–15.

[41] Jeremy Q. Broughton et al. “Concurrent coupling of length scales:
Methodology and application”. In: Phys. Rev. B 60 (1999), pp. 2391–
2403.

[42] Eric Brown et al. “Universal robotic gripper based on the jamming of
granular material”. In: Proceedings of the National Academy of Sciences
107.44 (2010), pp. 18809–18814.

[43] W. Michael Brown et al. “Algorithmic dimensionality reduction for
molecular structure analysis.” In: Journal of Chemical Physics 129.6
(2008), p. 064118.

[44] R. Buarque de Macedo, J. P. Marshall, and J. E. Andrade. “Granular
object morphological generation with genetic algorithms for discrete
element simulations”. In: Granular Matter 20.4 (2018), p. 73.

[45] V. Bulatov et al. “Connecting atomistic and mesoscale simulations of
crystal plasticity”. In: Nature 391.6668 (1998), pp. 669–672.

[46] Caldarelli, G., Pastor-Satorras, R., and Vespignani, A. “Structure of
cycles and local ordering in complex networks”. In: European Physical
Journal B 38.2 (2004), pp. 183–186.

[47] F. Calvetti, G. Combe, and J. Lanier. “Experimental micromechanical
analysis of a 2D granular material: relation between structure evolution
and loading path”. In: Mechanics of Cohesive-frictional Materials 2.2
(1997), pp. 121–163.

[48] F. Calvetti, G. Viggiani, and C. Tamagnini. “A numerical investigation
of the incremental behavior of granular soils”. In: Rivista Italiana di
Geotecnica 37 (2003), pp. 11–29.

[49] F. Calvetti, G. Viggiani, and C. Tamagnini. “Micromechanical inspec-
tion of constitutive modelling”. In: Constitutive Modelling and Analysis
of Boundary Value Problems in Geotechnical Engineering. Napoli, Italy
(2003), pp. 187–216.

[50] B. Cambou. “From global to local variables in granular materials”. In:
Powders and grains 93 (1993), pp. 73–86.

[51] B. Cambou, H. Magoariec, and E. Vincens. “State internal variables at
different scales for the modeling of the behavior of granular materials”.
In: Continuum Mechanics and Thermodynamics 27.1 (2015), pp. 223–
241.

[52] C. S. Campbell. “Granular material flows - An overview”. In: Powder
Technology 162.3 (2006), pp. 208–229.



137

[53] C. S. Campbell. “Rapid granular flows”. In: Annual Review of Fluid
Mechanics 22.1 (1990), pp. 57–90.

[54] Yixin Cao et al. “Structural and topological nature of plasticity in
sheared granular materials”. In: Nature Communications 9 (2018).

[55] M. E. Cates et al. “Jamming, force chains, and fragile matter”. In:
Physical Review Letters 81 (1998), pp. 1841–1844.

[56] I. Cavarretta, M. Coop, and C. O’Sullivan. “The influence of particle
characteristics on the behaviour of coarse grained soils”. In: Géotech-
nique 60.6 (2010), pp. 413–423.

[57] CEGEO et al. “Particle shape dependence in 2D granular media”. In:
EPL (Europhysics Letters) 98.4 (2012), p. 44008.

[58] C. S. Chang, Y. Chang, and M. G. Kabir. “Micromechanics modeling
for stress-strain behavior of granular soils. I: Theory”. In: Journal of
Geotechnical Engineering 118.12 (1992), pp. 1959–1974.

[59] C. S. Chang and J. Gao. “Second-gradient constitutive theory for gran-
ular material with random packing structure”. In: International Journal
of Solids and Structures 32.16 (1995), pp. 2279–2293.

[60] C. S. Chang and M. R. Kuhn. “On virtual work and stress in granular
media”. In: International Journal of Solids and Structures 42.13 (2005),
pp. 3773–3793.

[61] C. S. Chang and C. L. Liao. “Constitutive relation for a particulate
medium with the effect of particle rotation”. In: International Journal
of Solids and Structures 26.4 (1990), pp. 437–453.

[62] C. S. Chang, A. Misra, and K. Acheampong. “Elastoplastic Deformation
for Particulates with Frictional Contacts”. In: Journal of Engineering
Mechanics 118.8 (1992).

[63] Ching S. Chang, Yibing Deng, and Zhenning Yang. “Modeling of mini-
mum void ratio for granular soil with effect of particle size distribution”.
In: Journal of Engineering Mechanics 143.9 (2017), p. 04017060.

[64] C.S. Chang and P.-Y. Hicher. “An elasto-plastic model for granular
materials with microstructural consideration”. In: International Journal
of Solids and Structures 42.14 (2005), pp. 4258–4277.

[65] S. Chapman and T.G. Cowling. The mathematical theory of nonuniform
gases. Cambridge University Press, 1970.

[66] Y. P. Cheng, Y. Nakata, and M. D. Bolton. “Discrete element simulation
of crushable soil”. In: Géotechnique 53.7 (2003), pp. 633–641.

[67] J. Christoffersen and J.W. Hutchinson. “A class of phenomenological
corner theories of plasticity”. In: Journal of the Mechanics and Physics
of Solids 27.5 (1979), pp. 465–487.



138

[68] J. Christoffersen, M. M. Mehrabadi, and S. Nemat-Nasser. “A microme-
chanical description of granular material behavior”. In: Journal of Ap-
plied Mechanics 48.2 (1981), pp. 339–344.

[69] M.B. Cil, K.A. Alshibli, and P. Kenesei. “3D Experimental measure-
ment of lattice strain and fracture behavior of sand particles using syn-
chrotron x-Ray diffraction and tomography”. In: Journal of Geotechni-
cal and Geoenvironmental Engineering 143.9 (2017), p. 04017048.

[70] E.W.C. Coenen, V.G. Kouznetsova, and M.G.D. Geers. “Novel bound-
ary conditions for strain localization analyses in microstructural volume
elements”. In: International Journal for Numerical Methods in Engi-
neering 90.1 (2012), pp. 1–21.

[71] D. M. Cole and J. F. Peters. “A physically based approach to granular
media mechanics: grain-scale experiments, initial results and implica-
tions to numerical modeling”. In: Granular Matter 9.5 (2007), p. 309.

[72] Bernard D. Coleman and Morton E. Gurtin. “Thermodynamics with in-
ternal state variables”. In: The Journal of Chemical Physics 47.2 (1967),
pp. 597–613.

[73] I. F. Collins and I. Einav. “On the validity of elastic/plastic decompo-
sitions in soil mechanics”. In: Proceedings of Symposium on Elastoplas-
ticity for Prof. K. Hashiguchi Retirement Anniversary, Kyushu Univer-
sity, JAPAN (2005).

[74] I. F. Collins and G. T. Houlsby. “Application of thermomechanical
principles to the modelling of geotechnical materials”. In: Proceedings
of the Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences 453.1964 (1997), pp. 1975–2001.

[75] E. Cosserat and F. Cosserat. Theorie des corps deformables. Paris: Her-
man, 1909.

[76] F. da Cruz et al. “Rheophysics of dense granular materials: Discrete sim-
ulation of plane shear flows”. In: Physical Review E 72 (2005), p. 021309.

[77] P. A. Cundall. “Numerical experiments on localization in frictional ma-
terials”. In: Ingenieur-Archiv 59.2 (1989), pp. 148–159.

[78] P. A. Cundall and O. D. L. Strack. “A discrete numerical model for
granular assemblies”. In: Géotechnique 29.1 (1979), pp. 47–65.

[79] Y. F. Dafalias and M. T. Manzari. “Simple plasticity sand model ac-
counting for fabric change effects”. In: Journal of Engineering Mechan-
ics 130.6 (2004), pp. 622–634.

[80] A. Daouadji et al. “Diffuse failure in geomaterials: Experiments, theory
and modelling”. In: International Journal for Numerical and Analytical
Methods in Geomechanics 35.16 (2011), pp. 1731–1773.



139

[81] F. Darve, E. Flavigny, and M. Meghachou. “Yield surfaces and principle
of superposition: Revisit through incrementally non-linear constitutive
relations”. In: International Journal of Plasticity 11.8 (1995), pp. 927–
948.

[82] F. Darve and S. Labanieh. “Incremental constitutive law for sands
and clays: Simulations of monotonic and cyclic tests”. In: International
Journal for Numerical and Analytical Methods in Geomechanics 6.2
(1982), pp. 243–275.

[83] F. Darve and F. Laouafa. “Instabilities in granular materials and ap-
plication to landslides”. In: Mechanics of Cohesive-frictional Materials
5.8 (2000), pp. 627–652.

[84] F. Darve and F. Nicot. “On incremental non-linearity in granular me-
dia: Phenomenological and multi-scale views (Part I)”. In: International
Journal for Numerical and Analytical Methods in Geomechanics 29.14
(2005), pp. 1387–1409.

[85] F. Darve et al. “Failure in geomaterials: Continuous and discrete anal-
yses”. In: Computer Methods in Applied Mechanics and Engineering
193.27âĂŞ29 (2004). Computational Failure Mechanics for Geomateri-
als, pp. 3057–3085.

[86] Narsingh Deo, G. Prabhu, and M. S. Krishnamoorthy. “Algorithms for
generating fundamental cycles in a graph”. In: ACM Transactions on
Mathematical Software 8.1 (Mar. 1982), 26âĂŞ42.

[87] J. Desrues et al. “Void ratio evolution inside shear bands in triaxial
sand specimens studied by computed tomography”. In: Géotechnique
46.3 (1996), pp. 529–546.

[88] A. Donev et al. “Jamming in hard sphere and disk packings”. In: Journal
of Applied Physics 95.3 (2004), pp. 989–999.

[89] A. Drescher and G. de Josselin de Jong. “Photoelastic verification of a
mechanical model for the flow of a granular material”. In: Journal of
the Mechanics and Physics of Solids 20.5 (1972), pp. 337–340.

[90] D. C. Drucker and W. Prager. “Soil mechanics and plastic analysis
or limit design”. In: Quarterly of Applied Mathematics 10.2 (1952),
pp. 157–165.

[91] O. DurÃąn, N.P. Kruyt, and S. Luding. “Analysis of three-dimensional
micro-mechanical strain formulations for granular materials: Evaluation
of accuracy”. In: International Journal of Solids and Structures 47.2
(2010), pp. 251–260.

[92] R. Eggersmann et al. “Model-free Data-Driven inelasticity”. In: Com-
puter Methods in Applied Mechanics and Engineering 350 (2019), pp. 81–
99.



140

[93] W. Ehlers. “Homogenisation of discrete media towards micropolar con-
tinua: A computational approach”. In: AIP Conference Proceedings 1227.1
(2010), pp. 306–313.

[94] W. Ehlers et al. “From particle ensembles to Cosserat continua: Ho-
mogenization of contact forces towards stresses and couple stresses”. In:
International Journal of Solids and Structures 40.24 (2003), pp. 6681–
6702.

[95] F. Emeriault and B. Cambou. “Micromechanical modelling of anisotropic
non-linear elasticity of granular medium”. In: International Journal of
Solids and Structures 33.18 (1996), pp. 2591–2607.

[96] F. Emeriault, B. Cambou, and A. Mahboubi. “Homogenization for gran-
ular materials: Non-reversible behaviour”. In: Mechanics of Cohesive-
frictional Materials 1.2 (1996), pp. 199–218.

[97] A. Cemal Eringen. “Theory of micropolar plates”. In: Zeitschrift für
angewandte Mathematik und Physik ZAMP 18.1 (1967), pp. 12–30.

[98] A.C. Eringen. “Linear theory of micropolar elasticity”. In: Journal of
Mathematics and Mechanics. 15 (1966), 909âĂŞ–924.

[99] A.C. Eringen.Microcontinuum Field Theories: I. Foundations and Solids.
Springer New York, 1999.

[100] A.C. Eringen. “Theory of Micropolar Elasticity”. In: Microcontinuum
Field Theories: I. Foundations and Solids. New York, NY: Springer
New York, 1999, pp. 101–248.

[101] A.C. Eringen and E.S. Suhubi. “Nonlinear theory of simple micro-elastic
solids-I”. In: International Journal of Engineering Science 2.2 (1964),
pp. 189–203.

[102] A.Cemal Eringen. “An assessment of director and micropolar theories
of liquid crystals”. In: International Journal of Engineering Science 31.4
(1993), pp. 605–616.

[103] Martin Ester et al. “A Density-Based Algorithm for Discovering Clus-
ters a Density-Based Algorithm for Discovering Clusters in Large Spa-
tial Databases with Noise”. In: Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining. KDDâĂŹ96.
AAAI Press, 1996, pp. 226–231.

[104] Ernesto Estrada and Juan A. RodrÃŋguez-Velazquez. “Subgraph cen-
trality in complex networks”. In: Physical Review E 71.5 (2005).

[105] M. L. Falk and J. S. Langer. “Dynamics of viscoplastic deformation in
amorphous solids”. In: Physical Review E 57 (1998), pp. 7192–7205.

[106] M. L. Falk, M. Toiya, and W. Losert. “Shear transformation zone anal-
ysis of shear reversal during granular flow”. In: ArXiv e-prints (2008).



141

[107] M.L. Falk and J.S. Langer. “Deformation and failure of amorphous,
solidlike materials”. In: Annual Review of Condensed Matter Physics
2.1 (2011), pp. 353–373.

[108] FrÃľdÃľric Feyel and Jean-Louis Chaboche. “FE2 multiscale approach
for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti com-
posite materials”. In: Computer Methods in Applied Mechanics and En-
gineering 183.3 (2000), pp. 309–330.

[109] Giacomo Fiorin, Michael L. Klein, and JÃľrÃťme HÃľnin. “Using col-
lective variables to drive molecular dynamics simulations”. In:Molecular
Physics 111.22-23 (2013), pp. 3345–3362.

[110] N.A. Fleck and J.W. Hutchinson. “Strain gradient plasticity”. In: Ad-
vances in Applied Mechanics 33 (1997), pp. 295–361.

[111] N.A. Fleck et al. “Strain gradient plasticity: Theory and experiment”.
In: Acta Metallurgica et Materialia 42.2 (1994), pp. 475–487.

[112] S. Forest, R. Dendievel, and G. R. Canova. “Estimating the overall
properties of heterogeneous Cosserat materials”. In: Modelling and Sim-
ulation in Materials Science and Engineering 7.5 (1999), p. 829.

[113] S. Forest and R. Sievert. “Elastoviscoplastic constitutive frameworks
for generalized continua”. In: Acta Mechanica 160.1 (2003), pp. 71–111.

[114] Y. Forterre and O. Pouliquen. “Flows of dense granular media”. In:
Annual Review of Fluid Mechanics 40.1 (2008), pp. 1–24.

[115] F. Froiio and J.âĂŘN. Roux. “Incremental response of a model granular
material by stress probing with DEM simulations”. In: AIP Conference
Proceedings 1227.1 (2010), pp. 183–197.

[116] Kangjia Fu, Zhihua Zhao, and Lihua Jin. “Programmable granular
metamaterials for reusable energy absorption”. In: Advanced Functional
Materials 29.32 (2019), p. 1901258.

[117] P. Fu and Y.F. Dafalias. “Fabric evolution within shear bands of granu-
lar materials and its relation to critical state theory”. In: International
Journal for Numerical and Analytical Methods in Geomechanics 35.18
(2011), pp. 1918–1948.

[118] Z. Gao et al. “A critical state sand plasticity model accounting for fab-
ric evolution”. In: International Journal for Numerical and Analytical
Methods in Geomechanics 38.4 (2014), pp. 370–390.

[119] B. S. Gardiner and A. Tordesillas. “Micromechanical constitutive mod-
elling of granular media: Evolution and loss of contact in particle clus-
ters”. In: Journal of Engineering Mathematics 52.1 (2005), p. 93.



142

[120] P. Germain. “The method of virtual power in continuum mechanics.
Part 2: microstructure”. In: SIAM Journal on Applied Mathematics 25.3
(1973), pp. 556–575.

[121] J. Ghaboussi, J. H. Garrett, and X. Wu. “Knowledge-based modeling
of material behavior with neural networks”. In: Journal of Engineering
Mechanics 117.1 (1991), pp. 132–153.

[122] Chad Giusti et al. “Topological and geometric measurements of force-
chain structure”. In: Physical Review E 94 (2016), p. 032909.

[123] B. J. Glasser and I. Goldhirsch. “Scale dependence, correlations, and
fluctuations of stresses in rapid granular flows”. In: Physics of Fluids
13.2 (2001), pp. 407–420.

[124] J. D. Goddard. “Continuum modeling of granular media”. In: Applied
Mechanics Reviews 66.5 (2014), p. 050801.

[125] J.D. Goddard and A.K. Didwania. “Computations of dilatancy and
yield surfaces for assemblies of rigid frictional spheres”. In: The Quar-
terly Journal of Mechanics and Applied Mathematics 51.1 (1998), pp. 15–
44.

[126] C. Goldenberg et al. “Scale separation in granular packings: Stress
plateaus and fluctuations”. In: Physical Review Letters 96 (2006), p. 168001.

[127] I. Goldhirsch. “Rapid granular flows”. In: Annual Review of Fluid Me-
chanics 35.1 (2003), pp. 267–293.

[128] I. Goldhirsch. “Stress, stress asymmetry and couple stress: From dis-
crete particles to continuous fields”. In: Granular Matter 12.3 (2010),
pp. 239–252.

[129] David González, Francisco Chinesta, and Elías Cueto. “Thermodynam-
ically consistent data-driven computational mechanics”. In: Continuum
Mechanics and Thermodynamics 31.1 (2019), pp. 239–253.

[130] G. Gudehus. “A comparison of some constitutive laws for soils under
radially symmetric loading and unloading”. In: 3rd International Con-
ference of Numerical Methods in Geomechanics 4 (1979), pp. 1309–
1324.

[131] N. Guo and J. Zhao. “A coupled FEM/DEM approach for hierarchical
multiscale modelling of granular media”. In: International Journal for
Numerical Methods in Engineering 99.11 (2014), pp. 789–818.

[132] N. Guo and J. Zhao. “The signature of shear-induced anisotropy in
granular media”. In: Computers and Geotechnics 47 (2013), pp. 1–15.

[133] John M. Harmon et al. “Modeling connected granular media: Particle
bonding within the level set discrete element method”. In: Computer
Methods in Applied Mechanics and Engineering 373 (2021), p. 113486.



143

[134] Matt Harrington, Andrea J. Liu, and Douglas J. Durian. “Machine
learning characterization of structural defects in amorphous packings
of dimers and ellipses”. In: Physical Review E 99 (2019), p. 022903.

[135] Q.-C. He. “On the micromechanical definition of macroscopic strain and
strain-rate tensors for granular materials”. In: Computational Materials
Science 94 (2014). IWCMM23 Special Issue, pp. 51–57.

[136] Qizhi He and Jiun-Shyan Chen. “A physics-constrained data-driven ap-
proach based on locally convex reconstruction for noisy database”. In:
Computer Methods in Applied Mechanics and Engineering 363 (2020),
p. 112791.

[137] M. van Hecke. “Jamming of soft particles: Geometry, mechanics, scaling
and isostaticity”. In: Journal of Physics: Condensed Matter 22.3 (2010),
p. 033101.

[138] R. Hill. “A general theory of uniqueness and stability in elastic-plastic
solids”. In: Journal of the Mechanics and Physics of Solids 6.3 (1958),
pp. 236–249.

[139] R. Hill. “The essential structure of constitutive laws for metal com-
posites and polycrystals”. In: Journal of the Mechanics and Physics of
Solids 15.2 (1967), pp. 79–95.

[140] G. T. Houlsby and A. M Puzrin. Principles of Hyperplasticity. Springer,
2006.

[141] Tomasz Hueckel. “Coupling of elastic and plastic deformations of bulk
solids”. In: Meccanica 11.4 (1976), pp. 227–235.

[142] R. Hurley et al. “Extracting inter-particle forces in opaque granular
materials: Beyond photoelasticity”. In: Journal of the Mechanics and
Physics of Solids 63 (2014), pp. 154–166.

[143] Ruben Ibanez et al. “A manifold learning approach to Data-Driven com-
putational elasticity and inelasticity”. In: Archives of Computational
Methods in Engineering 25 (2018), pp. 47–57.

[144] H.M. Inglis, P.H. Geubelle, and K. Matous. “Boundary condition ef-
fects on multiscale analysis of damage localization”. In: Philosophical
Magazine 88.16 (2008), pp. 2373–2397.

[145] K. Ishihara, F. Tatsuoka, and S. Yasuda. “Undrained deformation and
liquefaction of sand under cyclic stresses”. In: Soils and Foundations
15.1 (1975), pp. 29–44.

[146] I.G. Vardoulakis J. Sulem. Bifurcation analysis in geomechanics. 1st
ed. Blackie Academic & Professional, 1995.

[147] H. M. Jaeger, S. R. Nagel, and R. P. Behringer. “Granular solids, liquids,
and gases”. In: Review of Modern Physics 68 (1996), pp. 1259–1273.



144

[148] M. Jean. “The non-smooth contact dynamics method”. In: Computer
Methods in Applied Mechanics and Engineering 177.3 (1999), pp. 235–
257.

[149] M. G. Jefferies. “Nor-Sand: A simple critical state model for sand”. In:
Géotechnique 43.1 (1993), pp. 91–103.

[150] J. Jenkins et al. “Fluctuations and the effective moduli of an isotropic,
random aggregate of identical, frictionless spheres”. In: Journal of Me-
chanics Physics of Solids 53 (2005), pp. 197–225.

[151] J. T. Jenkins and M.A. Koenders. “The incremental response of ran-
dom aggregates of identical round particles”. In: The European Physical
Journal E 13.2 (2004), pp. 113–123.

[152] J.T. Jenkins and S.B. Savage. “A theory for the rapid flow of iden-
tical, smooth, nearly elastic, spherical particles”. In: Journal of Fluid
Mechanics 130 (May 1983), pp. 187–202.

[153] J.T. Jenkins and O.D.L. Strack. “Mean-field inelastic behavior of ran-
dom arrays of identical spheres”. In: Mechanics of Materials 16.1âĂŞ2
(1993). Special Issue on Mechanics of Granular Materials, pp. 25–33.

[154] M. Jirasek and S. Rolshoven. “Localization properties of strain-softening
gradient plasticity models. Part I: Strain-gradient theories”. In: Inter-
national Journal of Solids and Structures 46.11 (2009), pp. 2225–2238.

[155] M. Jirasek and S. Rolshoven. “Localization properties of strain-softening
gradient plasticity models. Part II: Theories with gradients of inter-
nal variables”. In: International Journal of Solids and Structures 46.11
(2009), pp. 2239–2254.

[156] M.E. Johnson, L.M. Moore, and D. Ylvisaker. “Minimax and maximin
distance designs”. In: Journal of Statistical Planning and Inference 26.2
(1990), pp. 131–148.

[157] R. E. Jones et al. “Machine learning models of plastic flow based on rep-
resentation theory”. In: Computer Modeling in Engineering & Sciences
117.3 (2018), pp. 309–342.

[158] G. De Josselin de Jong. “The double sliding, free rotating model for
granular assemblies”. In: Géotechnique 21 (1971), pp. 155–163.

[159] P. Jop. “Rheological properties of dense granular flows”. In: Comptes
Rendus Physique 16.1 (2015). Granular physics / Physique des milieux
granulaires, pp. 62–72.

[160] P. Jop, Y. Forterre, and O. Pouliquen. “A constitutive law for dense
granular flows”. In: Nature 441.7094 (2006), pp. 727–730.

[161] K. Kamrin and G. Koval. “Nonlocal constitutive relation for steady
granular flow”. In: Physical Review Letters 108 (2012), p. 178301.



145

[162] K. Kamrin, C.H. Rycroft, and M. Z. Bazant. “The stochastic flow rule:
A multi-scale model for granular plasticity”. In: Modelling and Simula-
tion in Materials Science and Engineering 15.4 (2007), S449.

[163] Ken Kamrin. “Non-locality in granular flow: Phenomenology and mod-
eling approaches”. In: Frontiers in Physics 7 (2019), p. 116.

[164] Ken-Ichi Kanatani. “Distribution of directional data and fabric tensors”.
In: International Journal of Engineering Science 22.2 (1984), pp. 149–
164.

[165] K. Karapiperis and J.E. Andrade. “Nonlocality in granular complex
networks: Linking topology, kinematics and forces”. In: Extreme Me-
chanics Letters 42 (2021), p. 101041.

[166] K. Karapiperis, J.P. Marshall, and J.E. Andrade. “Reduced gravity ef-
fects on the strength of granular matter: DEM simulations versus exper-
iments”. In: Journal of Geotechnical and Geoenvironmental Engineering
146.5 (2020), p. 06020005.

[167] K. Karapiperis et al. “Data-Driven multiscale modeling in mechanics”.
In: Journal of the Mechanics and Physics of Solids (2020), p. 104239.

[168] Konstantinos Karapiperis et al. “Investigating the incremental behavior
of granular materials with the level-set discrete element method”. In:
Journal of the Mechanics and Physics of Solids 144 (2020), p. 104103.

[169] R. Kawamoto et al. “All you need is shape: Predicting shear banding
in sand with LS-DEM”. In: Journal of the Mechanics and Physics of
Solids 111 (2018), pp. 375–392.

[170] R. Kawamoto et al. “Level set discrete element method for three-dimensional
computations with triaxial case study”. In: Journal of the Mechanics
and Physics of Solids 91 (2016), pp. 1–13.

[171] Sean Keller and Heinrich M. Jaeger. “Aleatory architectures”. In: Gran-
ular Matter 18.2 (2016), p. 29.

[172] T. Kirchdoerfer and M. Ortiz. “Data-Driven computational mechan-
ics”. In: Computer Methods in Applied Mechanics and Engineering 304
(2016), pp. 81–101.

[173] T. Kirchdoerfer and M. Ortiz. “Data-Driven computing in dynamics”.
In: International Journal for Numerical Methods in Engineering 113.11
(2018), pp. 1697–1710.

[174] T. Kirchdoerfer and M. Ortiz. “Data-Driven Computing with noisy ma-
terial data sets”. In: Computer Methods in Applied Mechanics and En-
gineering 326 (2017), pp. 622–641.



146

[175] V. R. Kohestani and M. Hassanlourad. “Modeling the mechanical be-
havior of carbonate sands using artificial neural networks and sup-
port vector machines”. In: International Journal of Geomechanics 16.1
(2016), p. 04015038.

[176] S. Kohlhoff, P. Gumbsch, and H. F. Fischmeister. “Crack propagation
in b.c.c. crystals studied with a combined finite-element and atomistic
model”. In: Philosophical Magazine A 64.4 (1991), pp. 851–878.

[177] W. T. Koiter. Couple-stresses in the theory of elasticity. 1964.

[178] Jonathan E. Kollmer and Karen E. Daniels. “Betweenness centrality as
predictor for forces in granular packings”. In: Soft Matter 15 (2019),
pp. 1793–1798.

[179] D. Kolymbas. “An outline of hypoplasticity”. In: Archive of Applied
Mechanics 61.3 (1991), pp. 143–151.

[180] V. Kouznetsova, W. A. M. Brekelmans, and F. P. T. Baaijens. “An ap-
proach to micro-macro modeling of heterogeneous materials”. In: Com-
putational Mechanics 27.1 (2001), pp. 37–48.

[181] V. Kouznetsova, M. G. D. Geers, and W. A. M. Brekelmans. “Multi-
scale constitutive modelling of heterogeneous materials with a gradient-
enhanced computational homogenization scheme”. In: International Jour-
nal for Numerical Methods in Engineering 54.8 (2002), pp. 1235–1260.

[182] E. Kröner. “Elasticity theory of materials with long range cohesive
forces”. In: International Journal of Solids and Structures 3.5 (1967),
pp. 731–742.

[183] N. P. Kruyt. “Micromechanical study of plasticity of granular materi-
als”. In: Comptes Rendus Mecanique 338.10 (2010). Micromechanics of
granular materials, pp. 596–603.

[184] N. P. Kruyt and L. Rothenburg. “On micromechanical characteristics
of the critical state of two-dimensional granular materials”. In: Acta
Mechanica 225.8 (2014), pp. 2301–2318.

[185] N.P. Kruyt and L. Rothenburg. “Micromechanical definition of the
strain tensor for granular materials”. In: Journal of Applied Mechan-
ics 63.3 (1996), pp. 706 –711.

[186] E. Kuhl et al. “A comparison of discrete granular material models with
continuous microplane formulations”. In: Granular Matter 2.3 (2000),
pp. 113–121.

[187] M. R. Kuhn. “Are granular materials simple? An experimental study
of strain gradient effects and localization”. In: Mechanics of Materials
37.5 (2005), pp. 607–627.



147

[188] M. R. Kuhn. “Structured deformation in granular materials”. In: Me-
chanics of Materials 31.6 (1999), pp. 407–429.

[189] M. R. Kuhn and A. Daouadji. “Multi-directional behavior of granular
materials and its relation to incremental elasto-plasticity”. In: Interna-
tional Journal of Solids and Structures 152-153 (2018), pp. 305–323.

[190] M. R. Kuhn and A. Daouadji. “Quasi-static incremental behavior of
granular materials: Elastic-plastic coupling and micro-scale dissipation”.
In: Journal of the Mechanics and Physics of Solids 114 (2018), pp. 219–
237.

[191] Matthew R Kuhn and Katalin Bagi. “Contact rolling and deformation
in granular media”. In: International Journal of Solids and Structures
41.21 (2004). Granular Mechanics, pp. 5793–5820.

[192] P. V. Lade. “Elasto-plastic stress-strain theory for cohesionless soil with
curved yield surfaces”. In: International Journal of Solids and Structures
13.11 (1977), pp. 1019–1035.

[193] P.V. Lade and J.M. Duncan. “Cubical triaxial tests on cohesionless
soil”. In: Journal of Geotechnical and Geoenvironmental Engineering
101 (1973), pp. 491–493.

[194] Roderic S. Lakes. “Size effects and micromechanics of a porous solid”.
In: Journal of Materials Science 18.9 (1983), pp. 2572–2580.

[195] R.S. Lakes. “Dynamical study of couple stress effects in human compact
bone”. In: Journal of Biomechanical Engineering 104.1 (1982).

[196] L.D Landau and E.M Lifshitz. Statistical Physics. Pergamon, New York,
1980.

[197] F. Larsson et al. “Computational homogenization based on a weak for-
mat of micro-periodicity for RVE-problems”. In: Computer Methods in
Applied Mechanics and Engineering 200.1 (2011), pp. 11–26.

[198] R. Larsson and S. Diebels. “A second-order homogenization procedure
for multi-scale analysis based on micropolar kinematics”. In: Interna-
tional Journal for Numerical Methods in Engineering 69.12 (2007),
pp. 2485–2512.

[199] Adrien Leygue et al. “Data-based derivation of material response”. In:
Computer Methods in Applied Mechanics and Engineering 331 (2018),
pp. 184–196.

[200] L. Li, E. Marteau, and J.E. Andrade. “Capturing the inter-particle force
distribution in granular material using LS-DEM”. In: Granular Matter
21.3 (2019), p. 43.



148

[201] X. Li and X.S. Li. “Micro-macro quantification of the internal struc-
ture of granular materials”. In: Journal of Engineering Mechanics 135.7
(2009), pp. 641–656.

[202] X. Li, Q. Liu, and J. Zhang. “A micro-macro homogenization approach
for discrete particle assembly: Cosserat continuum modeling of granu-
lar materials”. In: International Journal of Solids and Structures 47.2
(2010), pp. 291–303.

[203] X. Li et al. “A mixed finite element procedure of gradient Cosserat
continuum for second-order computational homogenisation of granular
materials”. In: Computational Mechanics 54.5 (2014), pp. 1331–1356.

[204] X. S. Li and Y. F. Dafalias. “Anisotropic critical state theory: Role of
fabric”. In: Journal of Engineering Mechanics 138.3 (2012), pp. 263–
275.

[205] X. S. Li and Y. F. Dafalias. “Dilatancy for cohesionless soils”. In:
Géotechnique 50.4 (2000), pp. 449–460.

[206] C.-L. Liao et al. “Stress-strain relationship for granular materials based
on the hypothesis of best fit”. In: International Journal of Solids and
Structures 34.31 (1997), pp. 4087–4100.

[207] A.J. Liu and S.R. Nagel. “Nonlinear dynamics: Jamming is not just
cool any more”. In: Nature 396 (1998), pp. 21–22.

[208] Andrea J. Liu and Sidney R. Nagel. “The jamming transition and
the marginally jammed solid”. In: Annual Review of Condensed Matter
Physics 1.1 (2010), pp. 347–369.

[209] C. h. Liu et al. “Force fluctuations in bead packs”. In: Science 269.5223
(1995), pp. 513–515.

[210] Q. Liu. “A new version of Hill’s lemma for Cosserat continuum”. In:
Archive of Applied Mechanics 85.6 (2015), pp. 761–773.

[211] W.K. Liu, S. Jun, and Y.F. Zhang. “Reproducing kernel particle meth-
ods”. In: International Journal for Numerical Methods in Fluids 20.8-9
(1995), pp. 1081–1106.

[212] Xiaoning Liu and Gengkai Hu. “Elastic metamaterials making use of
chirality: A review”. In: StrojniÅąki vestnik - Journal of Mechanical
Engineering 62.7-8 (2016), pp. 403–418.

[213] G. Lois, A. LemaÃőtre, and J. M. Carlson. “Emergence of multi-contact
interactions in contact dynamics simulations of granular shear flows”.
In: EPL (Europhysics Letters) 76.2 (2006), p. 318.

[214] J. Lubliner. Plasticity theory. Dover, 1990.

[215] Stefan Luding. “Anisotropy in cohesive, frictional granular media”. In:
Journal of Physics: Condensed Matter 17.24 (2005), S2623–S2640.



149

[216] C.K. Lun et al. “Kinetic theories for granular flow: Inelastic particles in
Couette flow and slightly inelastic particles in a general flowfield”. In:
Journal of Fluid Mechanics 140 (Mar. 1984), pp. 223–256.

[217] Mahyar Madadi et al. “On the fabric tensor of polydisperse granular
materials in 2D”. In: International Journal of Solids and Structures 41.9
(2004), pp. 2563–2580.

[218] R. Madec, B. Devincre, and L. P. Kubin. “From dislocation junctions
to forest hardening”. In: Physical Review Letters 89 (2002), p. 255508.

[219] T.S. Majmudar and R.P. Behringer. “Contact force measurements and
stress-induced anisotropy in granular materials”. In: Nature 435 (2005),
pp. 1079–1082.

[220] T.S. Majmudar, M. Sperl, and R.P. Behringer. “Jamming transition in
granular systems”. In: Physical Review Letters 98 (2007).

[221] J. Mandel. “Conditions de Stabilité et Postulat de Drucker”. In: Rheol-
ogy and Soil Mechanics / Rhéologie et Mécanique des Sols: Symposium
Grenoble, April 1–8, 1964 / Symposium Grenoble, 1Er–8 Avril 1964.
Ed. by J. Kravtchenko and P.M. Sirieys. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1966, pp. 58–68.

[222] M. L. Manning, J. S. Langer, and J. M. Carlson. “Strain localization in
a shear transformation zone model for amorphous solids”. In: Physical
Review E 76 (2007), p. 056106.

[223] M. T. Manzari and Y. F. Dafalias. “A critical state two-surface plastic-
ity model for sands”. In: Géotechnique 47.2 (1997), pp. 255–272.

[224] Eloïse Marteau and José E. Andrade. “A novel experimental device for
investigating the multiscale behavior of granular materials under shear”.
In: Granular Matter 19.4 (2017), p. 77.

[225] H. Matsuoka and T. Nakai. “Stress-deformation and strength charac-
teristics of soil under three different principal stresses”. In: Proceedings
of the Japan Society of Civil Engineers 1974.232 (1974), pp. 59–70.

[226] M. M. Mehrabadi, B. Loret, and S. Nemat-Nasser. “Incremental con-
stitutive relations for granular materials based on micromechanics”. In:
Proceedings of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences 441.1913 (1993), pp. 433–463.

[227] M.M. Mehrabadi, S. Nemat-Nasser, and M. Oda. “On statistical de-
scription of stress and fabric in granular materials”. In: International
Journal for Numerical and Analytical Methods in Geomechanics 6.1
(1982), pp. 95–108.

[228] S.D. Mesarovic and J. Padbidri. “Minimal kinematic boundary condi-
tions for simulations of disordered microstructures”. In: Philosophical
Magazine 85.1 (2005), pp. 65–78.



150

[229] GDR MiDi. “On dense granular flows”. In: The European Physical Jour-
nal E 14.4 (2004), pp. 341–365.

[230] C. Miehe, J. Dettmar, and D. Zah. “Homogenization and two-scale sim-
ulations of granular materials for different microstructural constraints”.
In: International Journal for Numerical Methods in Engineering 83.8-9
(2010), pp. 1206–1236.

[231] C. Miehe, J. Schroeder, and J. Schotte. “Computational homogeniza-
tion analysis in finite plasticity: Simulation of texture development in
polycrystalline materials”. In: Computer Methods in Applied Mechanics
and Engineering 171.3 (1999), pp. 387–418.

[232] R. D. Mindlin. “Micro-structure in linear elasticity”. In: Archive for
Rational Mechanics and Analysis 16.1 (1964), pp. 51–78.

[233] R.D. Mindlin. “Second gradient of strain and surface-tension in linear
elasticity”. In: International Journal of Solids and Structures 1.4 (1965),
pp. 417–438.

[234] A. Misra and C. S. Chang. “Effective elastic moduli of heterogeneous
granular solids”. In: International Journal of Solids and Structures 30.18
(1993), pp. 2547–2566.

[235] J. J. Moreau. “Unilateral Contact and Dry Friction in Finite Freedom
Dynamics”. In: Nonsmooth Mechanics and Applications. Ed. by J. J.
Moreau and P. D. Panagiotopoulos. Springer Vienna, 1988, pp. 1–82.

[236] C.F. Moukarzel. “Granular Matter Instability: A Structural Rigidity
Point of View”. In: Rigidity Theory and Applications. Ed. by M. F.
Thorpe and P. M. Duxbury. Boston, MA: Springer US, 2002, pp. 125–
142.

[237] M. Mozaffar et al. “Deep learning predicts path-dependent plasticity”.
In: Proceedings of the National Academy of Sciences 116.52 (2019),
pp. 26414–26420.

[238] D.M. Mueth, H.M. Jaeger, and S.R. Nagel. “Force distribution in a
granular medium”. In: Physical Review E 57 (1998), pp. 3164–3169.

[239] H. B. Mühlhaus and I. Vardoulakis. “The thickness of shear bands in
granular materials”. In: Géotechnique 37.3 (1987), pp. 271–283.

[240] Kieran A. Murphy et al. “Freestanding loadbearing structures with Z-
shaped particles”. In: Granular Matter 18 (2016).

[241] V. Nardelli and M. R. Coop. “The experimental contact behaviour of
natural sands: normal and tangential loading”. In: Géotechnique 0.0
(2018), pp. 1–15.



151

[242] Benjamin Nassauer, Thomas Liedke, and Meinhard Kuna. “Polyhedral
particles for the discrete element method”. In: Granular Matter 15.1
(2013), pp. 85–93.

[243] S. Nemat-Nasser. “A micromechanically-based constitutive model for
frictional deformation of granular materials”. In: Journal of the Me-
chanics and Physics of Solids 48.6âĂŞ7 (2000), pp. 1541–1563.

[244] S. Nemat-Nasser and J. Zhang. “Constitutive relations for cohesionles
frictional granular materials”. In: International Journal of Plasticity 18
(2002), pp. 531–547.

[245] N.-S. Nguyen, H. Magoariec, and B. Cambou. “Local stress analysis in
granular materials at a mesoscale”. In: International Journal for Nu-
merical and Analytical Methods in Geomechanics 36.14 (), pp. 1609–
1635.

[246] N.S. Nguyen et al. “Analysis of structure and strain at the meso-scale in
2D granular materials”. In: International Journal of Solids and Struc-
tures 46.17 (2009), pp. 3257–3271.

[247] F. Nicot, F. Darve, and H. Dat Vu Khoa. “Bifurcation and second-
order work in geomaterials”. In: International Journal for Numerical
and Analytical Methods in Geomechanics 31.8 (2007), pp. 1007–1032.

[248] F. Nicot, F. Darve, and RNVO Group: Natural Hazards and Vulnera-
bility of Structures. “A multi-scale approach to granular materials”. In:
Mechanics of Materials 37.9 (2005), pp. 980–1006.

[249] M. Nitka et al. “Two-scale modeling of granular materials: a DEM-FEM
approach”. In: Granular Matter 13.3 (2011), pp. 277–281.

[250] G.T. Nolan and P.E. Kavanagh. “Random packing of nonspherical par-
ticles”. In: Powder Technology 84.3 (1995), pp. 199–205.

[251] M. Oda. “Initial fabrics and their relation to mechanical properties of
granular materials”. In: Soils and Foundations 12.1 (1972), pp. 17–36.

[252] M. Oda and K. Iwashita. Mechanics of granular materials: An intro-
duction. A.A. Balkena, Rotterdam, The Netherlands, 1999.

[253] M. Oda and K. Iwashita. “Study on couple stress and shear band devel-
opment in granular media based on numerical simulation analyses”. In:
International Journal of Engineering Science 38.15 (2000), pp. 1713–
1740.

[254] M. Oda, H. Kazama, and J. Konishi. “Effects of induced anisotropy on
the development of shear bands in granular materials”. In: Mechanics
of Materials 28.1 (1998), pp. 103–111.



152

[255] M. Oda, J. Konishi, and S. Nemat-Nasser. “Experimental microme-
chanical evaluation of strength of granular materials: Effects of particle
rolling”. In: Mechanics of Materials 1.4 (1982), pp. 269–283.

[256] M. Oda, J. Konishi, and S. Nemat-Nasser. “Some experimentally based
fundamental results on the mechanical behaviour of granular materials”.
In: Géotechnique 30.4 (1980), pp. 479–495.

[257] M. Oda, S. Nemat-Nasser, and J. Konishi. “Stress induced anisotropy
in granular masses”. In: Soils and Foundations 25.3 (1985).

[258] Corey S. O’Hern et al. “Force distributions near jamming and glass
transitions”. In: Physical Review Letters 86 (2001), pp. 111–114.

[259] Lars Onsager. “Reciprocal Relations in Irreversible Processes. I.” In:
Phys. Rev. 37 (1931), pp. 405–426.

[260] M. Ortiz. Continuum Mechanics Lecture Notes. California Institute of
Technology, 2012.

[261] M Ortiz and A Pandolfi. “A variational Cam-clay theory of plasticity”.
In: Computer Methods in Applied Mechanics and Engineering 193.27
(2004). Computational Failure Mechanics for Geomaterials, pp. 2645–
2666.

[262] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Sur-
faces. Springer Verlag, 2003.

[263] C. O’Sullivan. Particulate discrete element modelling: A geomechanics
perspective. CRC Press: New York, 2011.

[264] Norihiro Oyama, Hideyuki Mizuno, and Kuniyasu Saitoh. “Avalanche
interpretation of the power-law energy spectrum in three-dimensional
dense granular flow”. In: Physical Review Letters 122 (2019), p. 188004.

[265] L. Papadopoulos et al. “Network Analysis of Particles and Grains”. In:
ArXiv e-prints (Aug. 2017).

[266] E. Pasternak and H.-B. Mühlhaus. “Generalised homogenisation proce-
dures for granular materials”. In: Journal of Engineering Mathematics
52.1 (2005), pp. 199–229.

[267] M. Pastor, O. C. Zienkiewicz, and A. H. C. Chan. “Generalized plas-
ticity and the modelling of soil behaviour”. In: International Journal
for Numerical and Analytical Methods in Geomechanics 14.3 (1990),
pp. 151–190.

[268] Dayakar Penumadu and Rongda Zhao. “Triaxial compression behavior
of sand and gravel using artificial neural networks (ANN)”. In: Com-
puters and Geotechnics 24.3 (1999), pp. 207–230.

[269] J.F. Peters and L.E. Walizer. “Patterned nonaffine motion in granular
media”. In: Journal of Engineering Mechanics 139.10 (2013).



153

[270] J.F. Peters et al. “Characterization of force chains in granular material”.
In: Physical Review E 72 (2005), p. 041307.

[271] J.-P. Plassiard, N. Belheine, and F.-V. Donzé. “A spherical discrete
element model: calibration procedure and incremental response”. In:
Granular Matter 11.5 (2009), pp. 293–306.

[272] Alexander Podlozhnyuk, Stefan Pirker, and Christoph Kloss. “Efficient
implementation of superquadric particles in Discrete Element Method
within an open-source framework”. In: Computational Particle Mechan-
ics 4.1 (2017), pp. 101–118.

[273] O. Pouliquen. “Scaling laws in granular flows down rough inclined
planes”. In: Physics of Fluids 11.3 (1999), pp. 542–548.

[274] O. Pouliquen. “Velocity correlations in dense granular flows”. In: Phys-
ical Review Letters 93 (2004), p. 248001.

[275] O. Pouliquen and Y. Forterre. “A non-local rheology for dense granular
flows”. In: Philosophical Transactions of the Royal Society of London
A: Mathematical, Physical and Engineering Sciences 367.1909 (2009),
pp. 5091–5107.

[276] F. Radjai. “Force transmission in cohesive granular media”. In: Joint
IUTAM-ISIMM Symposium on Mathematical Modeling and Physical
Instances of Granular Flows (MPGF09), Reggio Calabria, Italy. (2009).

[277] F. Radjai, J. Roux, and A. Daouadji. “Modeling granular materials:
Century-long research across scales”. In: Journal of Engineering Me-
chanics 143.4 (2017), p. 04017002.

[278] F. Radjai and S. Roux. “Turbulentlike fluctuations in quasistatic flow
of granular media”. In: Physical Review Letters 89 (2002), p. 064302.

[279] F. Radjai, S. Roux, and J.J. Moreau. “Contact forces in a granular
packing”. In: Chaos 9.3 (1999), pp. 544–550.

[280] F. Radjai, H. Troadec, and S. Roux. “Key features of granular plas-
ticity”. In: Granular Materials: Fundamentals and Applications. Ed. by
S.J. Antony et al. The Royal Society of Chemistry, 2004, pp. 157–184.

[281] F. Radjai et al. “Fabric evolution and accessible geometrical states in
granular materials”. In: Granular Matter 14.2 (2012), pp. 259–264.

[282] F. Radjai et al. “Force distributions in dense two-dimensional granular
systems”. In: Physical Review Letters 77 (1996), pp. 274–277.

[283] Farhang Radjai et al. “Bimodal character of stress transmission in gran-
ular packings”. In: Physical Review Letters 80 (1998), pp. 61–64.

[284] L. La Ragione. “The incremental response of a stressed, anisotropic
granular material: loading and unloading”. In: Journal of the Mechanics
and Physics of Solids 95 (2016), pp. 147–168.



154

[285] A. L. Rechenmacher. “Grain-scale processes governing shear band initi-
ation and evolution in sands”. In: Journal of the Mechanics and Physics
of Solids 54.1 (2006), pp. 22–45.

[286] K. R. Reddy, S. K. Saxena, and J. S. Budiman. “Development of a true
triaxial testing apparatus”. In: Geotechnical Testing Journal (ASTM)
15.2 (1992), pp. 89–105.

[287] R. A. Regueiro. “On finite strain micromorphic elastoplasticity”. In:
International Journal of Solids and Structures 47.6 (2010), pp. 786–
800.

[288] Richard A. Regueiro and Beichuan Yan. “Concurrent Multiscale Com-
putational Modeling for Dense Dry Granular Materials Interfacing De-
formable Solid Bodies”. In: Bifurcations, Instabilities and Degradations
in Geomaterials. Ed. by Richard Wan, Mustafa Alsaleh, and Joe Labuz.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 251–273.

[289] C. X. Ren et al. “Machine learning reveals the state of intermittent fric-
tional dynamics in a sheared granular fault”. In: Geophysical Research
Letters 46.13 (2019), pp. 7395–7403.

[290] J. R. Rice. “The localization of plastic deformation”. In: in: W.T. Koiter
(Ed.), Theoretical and Applied Mechanics. North-Holland Publishing
Company, 1976, pp. 207–220.

[291] J.R. Rice. Continuum mechanics and thermodynamics of plasticity in
relation to microscale deformation mechanisms. Brown University, 1974.

[292] V. Richefeu, G. Combe, and G. Viggiani. “An experimental assessment
of displacement fluctuations in a 2D granular material subjected to
shear”. In: Géotechnique Letters 2.3 (2012), pp. 113–118.

[293] Pierre Rognon, Thomas Miller, and Itai Einav. “A circulation-based
method for detecting vortices in granular materials”. In: Granular Mat-
ter 17 (2015), pp. 177–188.

[294] D. Rogula. “Introduction to Nonlocal Theory of Material Media”. In:
Nonlocal Theory of Material Media. Springer Vienna, 1982, pp. 123–
222.

[295] Miguel P. Romo et al. “Recurrent and constructive: Algorithm networks
for sand behavior modeling”. In: International Journal of Geomechanics
1.4 (2001), pp. 371–387.

[296] K. H. Roscoe. “The Influence of Strains in Soil Mechanics”. In: Géotech-
nique 20.2 (1970), pp. 129–170.

[297] K. H. Roscoe, A. N. Schofield, and C. P. Wroth. “On the yielding of
soils”. In: Géotechnique 8.1 (1958), pp. 22–53.



155

[298] F. Roters et al. “Overview of constitutive laws, kinematics, homog-
enization and multiscale methods in crystal plasticity finite-element
modeling: Theory, experiments, applications”. In: Acta Materialia 58.4
(2010), pp. 1152–1211.

[299] L. Rothenburg and R. J. Bathurst. “Analytical study of induced anisotropy
in idealized granular materials”. In: Géotechnique 39.4 (1989), pp. 601–
614.

[300] L. Rothenburg and N.P. Kruyt. “Critical state and evolution of co-
ordination number in simulated granular materials”. In: International
Journal of Solids and Structures 41.21 (2004). Granular Mechanics,
pp. 5763–5774.

[301] S. Roux and F. Radjai. “Texture-Dependent Rigid-Plastic Behavior”.
In: Physics of Dry Granular Media. Ed. by H.J. Herrmann, J.-P. Hovi,
and S. Luding. Dordrecht: Springer Netherlands, 1998, pp. 229–236.

[302] P. W. Rowe. “The stress-dilatancy relation for static equilibrium of an
assembly of particles in contact”. In: Proceedings of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences 269.1339
(1962), pp. 500–527.

[303] P. Royis and T. Doanh. “Theoretical analysis of strain response en-
velopes using incrementally non-linear constitutive equations”. In: In-
ternational Journal for Numerical and Analytical Methods in Geome-
chanics 22.2 (1998), pp. 97–132.

[304] J.W. Rudnicki and J.R. Rice. “Conditions for the localization of de-
formation in pressure-sensitive dilatant materials”. In: Journal of the
Mechanics and Physics of Solids 23.6 (1975), pp. 371–394.

[305] C. H. Rycroft, K. Kamrin, and M. Z. Bazant. “Assessing continuum
postulates in simulations of granular flow”. In: Journal of the Mechanics
and Physics of Solids 57.5 (2009), pp. 828–839.

[306] C.H. Rycroft. “Multiscale modeling in granular flow”. Doctoral Disser-
tation. Massachusetts Institute of Technology, 2007.

[307] Jerome Sacks et al. “Design and analysis of computer experiments”. In:
Statistical Science 4.4 (Nov. 1989), pp. 409–423.

[308] Abouzar Sadrekarimi and Scott M. Olson. “Particle damage observed
in ring shear tests on sands”. In: Canadian Geotechnical Journal 47.5
(2010), pp. 497–515.

[309] Christophe Salot, Philippe Gotteland, and Pascal Villard. “Influence
of relative density on granular materials behavior: DEM simulations of
triaxial tests”. In: Granular Matter 11.4 (2009), pp. 221–236.



156

[310] C. S. Sandeep and K. Senetakis. “Exploring the micromechanical sliding
behavior of typical quartz grains and completely decomposed volcanic
granules subjected to repeating shearing”. In: Energies 10 (2017), pp. 1–
16.

[311] J. C. Santamarina and G. Cascante. “Stress anisotropy and wave prop-
agation: A micromechanical view”. In: Canadian Geotechnical Journal
33.5 (1996), pp. 770–782.

[312] M. Satake. Cosntitution of mechanics of granular materials through
graph representation. Tokyo University Press, Tokyo, 1978.

[313] M. Satake. “Fabric tensor in granular materials”. In: Proceedings of the
IUTAM Symposium on Deformation and Failure of Granular Materials.
Ed. by P. A. Vermeer and H. J. Luger. Amsterdam: A.A. Balkem, 1982,
pp. 63–68.

[314] M. Satake. “New formulation of graph-theoretical approach in the me-
chanics of granular materials”. In: Mechanics of Materials 16.1 (1993),
pp. 65–72.

[315] S. B. Savage. “Analyses of slow high-concentration flows of granular
materials”. In: Journal of Fluid Mechanics 377 (Dec. 1998), pp. 1–26.

[316] S. B. Savage. “Instability of unbounded uniform granular shear flow”.
In: Journal of Fluid Mechanics 241 (Aug. 1992), pp. 109–123.

[317] S.B. Savage and D.J. Jeffrey. “The stress tensor in a granular flow at
high shear rates”. In: Journal of Fluid Mechanics 110 (1981), pp. 255–
272.

[318] M.A. Schofield and C.P. Wroth. Critical State of Soil Mechanics. McGraw-
Hill: London, 1968.

[319] K. Senetakis, M. R. Coop, and M. C. Todisco. “The inter-particle co-
efficient of friction at the contacts of Leighton Buzzard sand quartz
minerals”. In: Soils and Foundations 53.5 (2013), pp. 746–755.

[320] L.E. Silbert, J. W. Landry, and G. S. Grest. “Granular flow down
a rough inclined plane: Transition between thin and thick piles”. In:
Physics of Fluids 15.1 (2003), pp. 1–10.

[321] Leonardo E. Silbert et al. “Rheology and contact lifetimes in dense
granular flows.” In: Physical Review Letters 99 (2007), p. 068002.

[322] T.W. Simpson, J.D. Poplinski, and J.K. Allen. “Metamodels for computer-
based engineering design: Survey and recommendations”. In: Engineer-
ing with Computers 17.2 (2001), pp. 129–150.

[323] A.G. Smart and J. M. Ottino. “Evolving loop structure in gradually
tilted two-dimensional granular packings”. In: Physical Review E 77
(2008), p. 041307.



157

[324] A. Spadoni and M. Ruzzene. “Elasto-static micropolar behavior of a chi-
ral auxetic lattice”. In: Journal of the Mechanics and Physics of Solids
60.1 (2012), pp. 156–171.

[325] Douglas E. Spearot, Karl I. Jacob, and David L. McDowell. “Non-
local separation constitutive laws for interfaces and their relation to
nanoscale simulations”. In:Mechanics of Materials 36.9 (2004), pp. 825–
847.

[326] Ishan Srivastava et al. “Flow-arrest transitions in frictional granular
matter”. In: Physical Review Letters 122 (2019), p. 048003.

[327] L. Staron. “Correlated motion in the bulk of dense granular flows”. In:
Physical Review E 77 (2008), p. 051304.

[328] L. Staron and F. Radjai. “Friction versus texture at the approach of a
granular avalanche”. In: Physical Review E 72 (2005), p. 041308.

[329] A. S. J. Suiker, R. de Borst, and C.S. Chang. “Micro-mechanical mod-
elling of granular material. Part 1: Derivation of a second-gradient
micro-polar constitutive theory”. In: Acta Mechanica 149.1 (2001), pp. 161–
180.

[330] A. S. J. Suiker and N. A. Fleck. “Frictional collapse of granular assem-
blies”. In: Journal of Applied Mechanics 71.3 (2004), pp. 350–358.

[331] E. B. Tadmor, M. Ortiz, and R. Phillips. “Quasicontinuum analysis of
defects in solids”. In: Philosophical Magazine A 73.6 (1996), pp. 1529–
1563.

[332] C. Tamagnini, X. Calvetti, and G. Viggiani. “An assessment of plastic-
ity theories for modeling the incrementally nonlinear behavior of gran-
ular soils”. In: Journal of Engineering Mathematics 52 (2005), pp. 265–
291.

[333] C. Tamagnini and G. Viggiani. “On the incremental nonlinearity of
soils. Part I: Theoretical aspects”. In: Rivista Italiana di Geotecnica
36.1 (2002), pp. 44–61.

[334] D.W. Taylor. Fundamentals of Soil Mechanics. John Wiley & Sons, Inc.
New York, N.Y., 1948.

[335] J. Tejchman and G. Gudehus. “Shearing of a narrow granular layer with
polar quantities”. In: International Journal for Numerical and Analyt-
ical Methods in Geomechanics 25.1 (2001), pp. 1–28.

[336] J. Tejchman andW.Wu. “Numerical study on patterning of shear bands
in a Cosserat continuum”. In: Acta Mechanica 99.1 (1993), pp. 61–74.

[337] K. Terada and N. Kikuchi. Nonlinear homogenization method for prac-
tical applications. Computational Methods in Micromechanics, 1995.



158

[338] C. Thornton. “Numerical simulations of deviatoric shear deformation
of granular media”. In: Géotechnique 50.1 (2000), pp. 43–53.

[339] A. Tordesillas, G. Hunt, and J. Shi. “A characteristic length scale in
confined elastic buckling of a force chain”. In: Granular Matter 13.3
(2011), pp. 215–218.

[340] A. Tordesillas and M. Muthuswamy. “A thermomicromechanical ap-
proach to multiscale continuum modeling of dense granular materials”.
In: Acta Geotechnica 3.3 (2008), pp. 225–240.

[341] A. Tordesillas, M. Muthuswamy, and S.D. Walsh. “Mesoscale measures
of nonaffine deformation in dense granular assemblies”. In: Journal of
Engineering Mechanics 134.12 (2008).

[342] A. Tordesillas, D.M. Walker, and Q. Lin. “Force cycles and force chains”.
In: Physical Review E 81 (2010), p. 011302.

[343] A. Tordesillas et al. “Granular vortices: Identification, characterization
and conditions for the localization of deformation”. In: Journal of the
Mechanics and Physics of Solids 90.Supplement C (2016), pp. 215–241.

[344] A. Tordesillas et al. “Structural stability and jamming of self-organized
cluster conformations in dense granular materials”. In: Journal of the
Mechanics and Physics of Solids 59.2 (2011), pp. 265–296.

[345] Antoinette Tordesillas and Maya Muthuswamy. “On the modeling of
confined buckling of force chains”. In: Journal of the Mechanics and
Physics of Solids 57.4 (2009), pp. 706–727.

[346] Antoinette Tordesillas et al. “Multiscale characterisation of diffuse gran-
ular failure”. In: Philosophical Magazine 92.36 (2012), pp. 4547–4587.

[347] R. A. Toupin. “Elastic materials with couple-stresses”. In: Archive for
Rational Mechanics and Analysis 11.1 (1962), pp. 385–414.

[348] Fubin Tu et al. “Generalized bridging domain method for coupling fi-
nite elements with discrete elements”. In: Computer Methods in Applied
Mechanics and Engineering 276 (2014), pp. 509–533.

[349] B. Utter and R.P. Behringer. “Transients in sheared granular matter”.
In: European Physical Journal E 14.4 (2004), pp. 373–380.

[350] Y. P. Vaid and D. Negussey. “Relative density of pluviated sand sam-
ples”. In: Soils and Foundations 24.2 (1984), pp. 101–105.

[351] K. C. Valanis. “A gradient theory of internal variables”. In: Acta Me-
chanica 116.1 (1996), pp. 1–14.

[352] K. C. Valanis. “A gradient thermodynamic theory of self-organization”.
In: Acta Mechanica 127.1 (1998), pp. 1–23.



159

[353] I. Vardoulakis and E.C. Aifantis. “A gradient flow theory of plasticity
for granular materials”. In: Acta Mechanica 87.3 (1991), pp. 197–217.

[354] I. Vardoulakis, M. Goldscheider, and G. Gudehus. “Formation of shear
bands in sand bodies as a bifurcation problem”. In: International Jour-
nal for Numerical and Analytical Methods in Geomechanics 2.2 (1978),
pp. 99–128.

[355] G. Viggiani, M. M. Küntz, and J. Desrues. “An experimental investiga-
tion of the relationships between grain size distribution and shear band-
ing in sand”. In: Continuous and Discontinuous Modelling of Cohesive-
Frictional Materials. Berlin, Heidelberg: Springer Berlin Heidelberg,
2001, pp. 111–127.

[356] I. Vlahinić et al. “Towards a more accurate characterization of granular
media: extracting quantitative descriptors from tomographic images”.
In: Granular Matter 16.1 (2014), pp. 9–21.

[357] Nikolaos Vlassis, Ran Ma, and WaiChing Sun. Geometric deep learning
for computational mechanics Part I: Anisotropic Hyperelasticity. 2020.

[358] I. Vragovic and E. Louis. “Network community structure and loop co-
efficient method”. In: Physical Review E 74 (2006), p. 016105.

[359] I. Vragovic, E. Louis, and A. Diaz-Guilera. “Efficiency of informational
transfer in regular and complex networks”. In: Physical Review E 71
(2005), p. 036122.

[360] Gregory J. Wagner and Wing Kam Liu. “Coupling of atomistic and con-
tinuum simulations using a bridging scale decomposition”. In: Journal
of Computational Physics 190.1 (2003), pp. 249–274.

[361] D. M. Walker and A. Tordesillas. “Topological evolution in dense granu-
lar materials: A complex networks perspective”. In: International Jour-
nal of Solids and Structures 47.5 (2010), pp. 624–639.

[362] David M.Walker, Antoinette Tordesillas, and Gary Froyland. “Mesoscale
and macroscale kinetic energy fluxes from granular fabric evolution”. In:
Physical Review E 89 (2014), p. 032205.

[363] David M. Walker et al. “A complex network analysis of granular fab-
ric evolution in three-dimensions”. English. In: Dynamics of Continu-
ous, Discrete and Impulsive Systems, Series B: Applications and Algo-
rithums 19.4-5 (2012), pp. 471–495.

[364] David M. Walker et al. “Structural templates of disordered granular
media”. In: International Journal of Solids and Structures 54 (2015),
pp. 20–30.

[365] S.D.C. Walsh, A. Tordesillas, and J.F. Peters. “Development of mi-
cromechanical models for granular media”. In: Granular Matter 9.5
(2007), p. 337.



160

[366] R. Wan and M. Pinheiro. “On the validity of the flow rule postulate for
geomaterials”. In: International Journal for Numerical and Analytical
Methods in Geomechanics 38.8 (2013), pp. 863–880.

[367] Kun Wang and WaiChing Sun. “A multiscale multi-permeability poro-
plasticity model linked by recursive homogenizations and deep learn-
ing”. In: Computer Methods in Applied Mechanics and Engineering 334
(2018), pp. 337–380.

[368] Y. Wang and K. Hutter. “Granular Material Theories Revisited”. In:
Geomorphological Fluid Mechanics. Ed. by N.J. Balmforth. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2001, pp. 79–107.

[369] C. Wellmann and P. Wriggers. “A two-scale model of granular mate-
rials”. In: Computer Methods in Applied Mechanics and Engineering
205–208 (2012). Special Issue on Advances in Computational Methods
in Contact Mechanics dedicated to the memory of Professor J.A.C.
Martins, pp. 46–58.

[370] W. Wu and D. Kolymbas. “Hypoplasticity Then and Now”. In: Consti-
tutive Modelling of Granular Materials. Ed. by D. Kolymbas. Springer
Berlin, 2000, pp. 57–101.

[371] Yonghao Yue et al. “Hybrid grains: Adaptive coupling of discrete and
continuum simulations of granular media”. In: ACM Transactions on
Graphics. 37.6 (2018).

[372] Jie Zhang, Robert P. Behringer, and Isaac Goldhirsch. “Coarse-graining
of a physical granular system”. In: Progress of Theoretical Physics Sup-
plement 184 (Mar. 2010), pp. 16–30.

[373] Pin Zhang et al. “An AI-based model for describing cyclic characteris-
tics of granular materials”. In: International Journal for Numerical and
Analytical Methods in Geomechanics 44.9 (2020), pp. 1315–1335.

[374] Qiong Zhang and Ken Kamrin. “Microscopic description of the granular
fluidity field in nonlocal flow modeling”. In: Physical Review Letters 118
(2017), p. 058001.

[375] Xu Zhang and Katerina Aifantis. “Interpreting the internal length scale
in strain gradient plasticity”. In: Reviews on Advanced Materials Science
41 (Jan. 2015), pp. 72–83.

[376] Caizhi Zhou, S. Bulent Biner, and Richard LeSar. “Discrete dislocation
dynamics simulations of plasticity at small scales”. In: Acta Materialia
58.5 (2010), pp. 1565–1577.

[377] H. Zhu, M. M. Mehrabadi, and M. Massoudi. “Incorporating the effects
of fabric in the dilatant double shearing model for planar deformation of
granular materials”. In: International Journal of Plasticity 22.4 (2006),
pp. 628–653.



161

[378] H. Zhu, M. M. Mehrabadi, and M. Massoudi. “The frictional flow of a
dense granular material based on the dilatant double shearing model”.
In: Computers & Mathematics with Applications 53.2 (2007). Recent
Advances in Non-Linear Mechanics, pp. 244–259.

[379] H. Zhu, F. Nicot, and F. Darve. “Meso-structure evolution in a 2D gran-
ular material during biaxial loading”. In: Granular Matter 18.1 (2016),
p. 3.

[380] Jian-Hua Zhu, Musharraf M Zaman, and Scott A Anderson. “Mod-
eling of soil behavior with a recurrent neural network”. In: Canadian
Geotechnical Journal 35.5 (1998), pp. 858–872.

[381] H. Ziegler. “An introduction to thermomechanics”. In: Applied Mathe-
matics and Mechanics 21 (1977).

[382] O.C. Zienkiewicz and G.N. Pande. “Time-dependent multilaminate model
of rocks: A numerical study of deformation and failure of rock masses”.
In: International Journal for Numerical and Analytical Methods in Ge-
omechanics 1.3 (1977), pp. 219–247.

[383] Tarek I. Zohdi, J.Tinsley Oden, and Gregory J. Rodin. “Hierarchical
modeling of heterogeneous bodies”. In: Computer Methods in Applied
Mechanics and Engineering 138.1 (1996), pp. 273–298.

[384] Iker Zuriguel et al. “Clogging transition of many-particle systems flow-
ing through bottlenecks”. In: Scientific Reports 4 (2014), p. 7324.


	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	List of Tables
	Introduction
	Objective
	Approach
	Organization of the thesis

	Background
	Fundamentals of granular material behavior
	Continuum modeling of granular materials
	Discrete modeling of granular materials
	Multiscale modeling of granular materials
	Machine learning-based modeling of granular materials

	Investigating the incremental behavior of granular materials with in-silico experiments
	Introduction
	In-silico experiments
	Stress probing
	Conclusions
	Appendix

	Data-Driven multiscale modeling in mechanics
	Introduction
	Data-Driven inelasticity
	Phase space sampling
	History parametrization
	Application to granular materials
	Conclusions

	Nonlocality in granular complex networks: Linking topology, kinematics, and forces
	Introduction
	Triaxial compression experiments and simulations
	Mesoscale topological evolution
	Nonaffine kinematics
	Forces
	Conclusions
	Appendix

	Data-Driven nonlocal mechanics
	Introduction
	Fundamentals of micropolar theory
	Data-Driven micropolar elasticity
	Extension to inelasticity
	Application to granular materials
	Conclusions

	Conclusions and outlook
	Main findings
	Outlook

	Bibliography

