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ABSTRACT 

Electrocatalysis provides a practical solution to the increasing global energy demand while 

maintaining a sustainable environment. Recently nanoscale catalysts (nanoparticles, 

nanowires, and dealloyed surfaces) have been shown to have experimentally far superior 

performance than metallic crystals at sustainable energy conversion. However, the surface 

feature of these improved catalysts is still unknown, as the detection of the active sites 

directly from experiment has not been possible.  

In this thesis work, we discuss using the quantum mechanics based muitiscale simulations 

and machine learning to understand the nature of these superior materials. We first studied 

jagged Pt nanowire (J-PtNW), which was shown to have performance at oxygen reduction 

reactions (ORR) 50 times better than Pt/C.  We used multiscale simulations (reactive force 

field, and density functional theory) to explain this remarkably accelerated ORR activity 

from an atomistic perspective. Next, we looked into the irregular gold surfaces and copper 

surfaces (nanoparticles and dealloyed surfaces), which showed dramatically improved 

performance at CO2 reduction reactions (CO2RR) and CO reduction reactions (CORR). We 

developed the strategy to combine the reactive force field, density functional theory, and 

machine learning to identify the active sites responsible for their improved performance. 

This approach provided the possibility to understand the highly irregular and disordered 

surface, which is impossible with surface science experiments or with quantum mechanics. 

The identification of the active sites provides insights into new design concepts (alloys, NP, 

NW, and electrolytes such as ionic liquids) aimed at increasing product selectivity and rates 

simultaneously with reducing energy requirements.  

  



 vi 
 

PUBLISHED CONTENT AND CONTRIBUTIONS 

Huang, Y.; Chen, Y.; Cheng, T.; Wang, L.-W.; Goddard, W. A. Identification of the 
Selective Sites for Electrochemical Reduction of CO to C 2+ Products on Copper 
Nanoparticles by Combining Reactive Force Fields, Density Functional Theory, and 
Machine Learning. ACS Energy Letters 2018, 2983–2988. doi: 10.1021/jacs.9b13218 

Chen, Y. participated in the conception of the project, performed the calculations, 
analyzed the data, and wrote the manuscript. 

Chen, Y.; Huang, Y.; Cheng, T.; Goddard, W. A. Identifying Active Sites for CO2 
Reduction on Dealloyed Gold Surfaces by Combining Machine Learning with Multiscale 
Simulations. J. Am. Chem. Soc. 2019, 141 (29), 11651–11657. doi: 10.1021/jacs.9b04956 

Chen, Y. came up with the concepts, performed all the quantum mechanics calculations, 
developed the machine learning algorithm, analyzed the data, and wrote the manuscript. 

Chen, Y.; Cheng, T.; Goddard III, W. A. Atomistic Explanation of the Dramatically 
Improved Oxygen Reduction Reaction of Jagged Platinum Nanowires, 50 Times Better 
than Pt. J. Am. Chem. Soc. 2020, 142 (19), 8625–8632. doi: 10.1021/acsenergylett.8b01933 

Chen, Y. came up with the concepts, performed the molecular dynamic simulations and 
quantum mechanics calculation, did the data analysis, and wrote the manuscript. 

 
 
 
 
 
 
 
	
 
 

 

 

 

 



 7 

TABLE OF CONTENTS 

Acknowledgements ........................................................................................... iii 
Abstract  ............................................................................................................... v 
Published Content and Contributions ................................................................ vi 
Table of Contents ................................................................................................ 7  
List of Illustrations  .............................................................................................. 8 
List of Tables  .................................................................................................... 10 
 
Chapter I: Introduction ...................................................................................... 11 

1.1 Statement of the Problem ...................................................................... 11 
1.2 Organization of the Thesis .................................................................... 12 
References ................................................................................................... 13 
 

Chapter II: Atomistic Explanation of the Dramatically Improved Oxygen  
Reduction Reaction of Jagged Platinum Nanowires .................................. 16 
2.1 Introduction ........................................................................................ ...16 
2.2 Results and Discussion ...................................................................... …18 
2.3 Conclusion ............................................................................................. 30 
References ................................................................................................... 31 
 

Chapter III: Identifying Active Sites for CO2 Reduction on Gold Nanoparticles  
and Dealloyed Gold Surfaces ............................................................................ 37 

3.1 Introduction ........................................................................................... 37 
3.2 Results and Discussion  ......................................................................... 38 
3.3 Conclusion ............................................................................................. 50 
References ................................................................................................... 52 

 
Chapter IV: Identification of the Active Sites for Reduction of CO to C2+  
Products on Copper Nanoparticles .................................................................... 58 

4.1 Introduction ........................................................................................... 58 
4.2 Results and Discussion  ......................................................................... 59 
4.3 Conclusion ............................................................................................. 67 
References ................................................................................................... 69 

 
Appendix A: Supporting Information for Chapter II ........................................ 72 
Appendix B: Supporting Information for Chapter III ....................................... 87 
Appendix C: Supporting Information for Chapter IV .................................... 105 
  



 8 

LIST OF ILLUSTRATIONS 

Figure Number                                                                                           Page  
      2-1. Bridge Nanocluster Model .................................................................. 20 
      2-2. Generating All Bridge Pairs for Data Sampling ................................ 21 
      2-3. d-OO Distribution ............................................................................... 22 
      2-4. Correlation Between d-OO and Reaction Rate .................................. 24 
      2-5. Temperature Dependence of Performance Improvement ................. 26 
      2-6. Identification Results of Barrier-Less Sites ....................................... 27 
      2-7. Statistics of Triangle Group ................................................................ 28 
      2-8. Statistics of Triangle Group ................................................................ 29 
      3-1. Overall Structure of Neural Network ................................................. 40 
      3-2. Neural Network Predictions on Testing Set ...................................... 43 

3-3. Neural network Predictions for All 11537 Lower Coordination            
       Surface Sites of AuNPs ....................................................................... 43 

      3-4. Active Sites Identification for AuNPs Surfaces ................................ 44 
      3-5. Normalized a-Value Distribution ....................................................... 47 
      3-6. Active Sites Identification for Dealloyed Au Surfaces ..................... 58 
      3-7. a-Value Mapping and Catalytic Activity Visualization .................... 50 
      4-1. Schematics of the Machine Learning Model ..................................... 60 
      4-2. CO Adsorption Energy Comparison .................................................. 62 
      4-3. DEOCCOH Comparison ..................................................................... 63 
      4-4. Illustration of Designed Structure with Twin Boundary ................... 65 
      4-5. Predicted Faradaic Efficiency (FE) of the Concave Site on the  

       Minimal Periodic Structure Compared to Experimental Data .......... 67 
      A-1. Surface Extraction using Surface Vector Based Methodology ....... 75 
      A-2. Structure Analysis of PtNW .............................................................. 75 
      A-3. Surface Sites Visualization by Coordination .................................... 76 

A-4. Benchmark Calculations for Bridge Nanocluster Model Parameter76 
A-5. Solvation Effect on d-OO .................................................................. 79 
A-6. Solvation Effect on d-OO .................................................................. 79 
A-7. d-OO and Free Energy Barrier (G" .................................................... 80 
A-8. Same Nanocluster with Pt-1 and Pt-2 Swapping Labels .................. 80 
A-9. Plotting Sampled Bridge Center Back on J-PtNW ........................... 81 
A-10. Sigmoid Function Fitting ................................................................. 81 
A-11. 15 Representative Structures of Triangle Group ............................ 82 
A-12. 15 Representative Structures of Concave-Up Rhombus Group .... 83 
A-13. Correlation between Strain and Free Energy Barrier ..................... 84 
B-1. 8 Å Nanocluster Model ...................................................................... 90 
B-2. Mapping Geometric Features to Symmetry Functions ..................... 90 
B-3. Structural Analysis of AuNP ............................................................. 91 
B-4. Training Log for CO Adsorption Energy, ∆E%& ............................... 91 
 



 9 

B-5.  Training Log for COOH Formation Energy,	∆E(&%&.....................92  
      B-6. Identification Results of 300 sites Randomly  .................................. 93 

B-7. DFT Verification of CO Adsorption Energy .................................... 94 
B-8. DFT Verification of HOCO Formation Energy  ............................... 95 
B-9. 12 Structures from Group of Step110. .............................................. 96 

      B-10. 12 Structures from Group of Step311 ............................................. 97 
      B-11. 12 Structures from Group of Step111 ............................................. 98 
      B-12. 12 Structures from Group of StepUnder111 ................................... 99 
      B-13. 12 Structures from Group of SurfaceDefect ................................. 100 
      B-14. 12 Structures from Group of StepTB ............................................ 101 
      B-15. 12 Structures from Group of StepUnderTB .................................. 102 
      C-1. RMSE of the Training Set and Validation Set  ............................... 108 

C-2. Distribution of the Energies Between the DFT Values and the NN 
Predicted Values  .............................................................................. 108 

C-3. Experimental C2H4:CH4 Ratio and the Reaction Energy of  
EOCCOH .......................................................................................... 109 

C-4. The Four Configurations of *OCCOH Binding at the Twin Boundary 
         of Copper ......................................................................................... 110 
 

 



 10 

LIST OF TABLES 

Table Number                                                                                           Page  
2-1. Correlation Between d-OO and Free Energy Barrier (G" ) at Room  

        temperature 298.15K ................................................................................. 23 
A-1. Benchmark Calculations for the Choice of Kinetic Energy Cut-off ...... 77 
A-2. Benchmark Calculations for the Choice of Spin-Polarization ............... 77 
A-3. Benchmark Calculations for the Choice of Simulation Box Size .......... 78 
B-1. Partition of Data Sets and Final RMSE for CO Adsorption Energy  
        Training, ∆𝐸*+ ........................................................................................ 92 
B-2. Partition of Data Sets and Final RMSE for HOCO Formation Energy, 
        ∆𝐸,+*+ .................................................................................................... 93 
B-3. Comparison of Top 300 Sites and Random 300 Sites ............................ 94 
C-1. Energy Ranges between DFT and Neural Network for the Training Set,  
        Validation Set, and Test Set ................................................................. 108 
C-2. RMSEs of the Training set, Validation set, and Test Set as Functions  
         of the Neural Network Sizes ................................................................ 109 

 
 
 



 11 

C h a p t e r  I  

INTRODUCTION 

1.1 STATEMENT OF THE PROBLEM 

Electrochemical reduction of CO2 to fuels and chemical products1-3, electrochemical 

conversion from hydrogen to electricity4-6 are promising techniques to fulfill the increasing 

global energy demand while still maintaining a sustainable environment. The key barrier 

for these sustainable energy conversions is the development of efficient, selective, and 

stable catalysts.  

Nanoscale catalysts have been shown to have experimentally far superior performance than 

metallic crystals. For example, Pt-alloy nanomaterials7-12, especially PtNi alloys13-14 have 

been shown to have enhanced performance. Researchers even observed dramatically 

improved performance in dealloyed Pt nanomaterials15. Similarly, the enhanced catalytic 

activity and selectivity have been observed at Copper nanomaterials for reducing CO to 

C2+ products16 and at Gold nanomaterials for reduction CO2 to CO17. However, 

experimental synthesis and characterization of such nanoscale systems are difficult. The 

detection of the active sites responsible for the dramatically enhanced performance directly 

from experiment has not been possible. 

Recently, the development of computational methods, such as density-functional theory, 

molecular dynamics etc., allows reliable prediction of material structures, energetics, and 

electronic properties of model systems. We and others have also recently demonstrated that 

machine learning methods provide a promising approach to enhance the link between 

experiments and computation in the surface sciences18-20. We discuss here to use the 

quantum mechanics based multi-scale simulations and machine learning to help us 

understand the nature of these superior nanomaterials. This can provide insights into new 

design concepts (alloys, NP, NW, and electrolytes such as ionic liquids) aimed at 

increasing product selectivity and rates simultaneously with reducing energy requirements. 
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1.2 ORGANIZATION OF THE THESIS 

Proton Exchange Membrane Fuel Cells (PEMFCs) utilizing hydrogen (H2) and oxygen 

(O2) to produce electricity is one of the most promising means to address the global 

renewable energy supply and clean environment. To develop high performance and low 

cost electrocatalysts of oxygen reduction reactions (ORR) is crucial for its large-scale 

commercialization. In Chapter II, we describe using multiscale simulations to explain the 

dramatically improved ORR performance of Jagged PtNW (50 times better)21. 

Electrochemical CO2 reduction to fuels and chemical products provides solutions to the 

renewable energy supply while remediating CO2. Among all the products of CO2 

reduction, CO is one of the most promising ones as it could serve as the intermediate to 

synthesize other hydrocarbon fuels. A significant improvement of Faraday Efficiency(FE) 

for reducing CO2 to CO at very low overpotentials has been demonstrated at AuNPs 

derived from Au oxide films. In Chapter III, we combine machine learning and multiscale 

simulations to identify active sites for CO2 reduction on nanoscale gold catalysts22. 

Copper is the only catalyst that can reduce CO or CO2 by more than two electrons to 

generate valuable products in nontrivial amounts. In Chapter IV, we then summarize the 

new methods of combining QM, ReaxFF reactive FF, and machine learning to explain 

improved selectivity and activity of Copper nanoparticle to reduce CO to C2+ Products23. 
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C h a p t e r  I I  

ATOMISTIC EXPLANATION OF THE DRAMATICALLY IMPROVED 
OXYGEN REDUCTION REACTION OF JAGGED PLATINUM 

NANOWIRES, 50 TIMES BETTER THAN PT 
 
 

ABSTRACT 

Pt is the best catalyst for the oxygen reduction reactions (ORR) but it is far too slow. Huang 

and coworkers showed that dealloying 5 nm Ni/Pt2 Nanowires (NW) led to 2 nm pure Pt 

Jagged NW (J-PtNW) with ORR 50 times faster than Pt/C. They suggested that the under-

coordinated surface Pt atoms, mechanical strain, and high electrochemically active surface 

area (ECSA) are the main contributors. We report here multiscale atomic simulations that 

further explain this remarkably accelerated ORR activity from the atomistic perspective. We 

used the ReaxFF reactive force field to convert the 5 nm Ni/Pt2 NW to the jagged 2 nm NW. 

We applied Quantum Mechanics to find that 14.4% of the surface sites are barrier-less for 

O"45 +	H8O"45 → 	2OH"45, the rate determining step (RDS). The reason is that concave 

nature of many surface sites pushes the OH bond of the H2O"45 close to the O"45, leading to 

a dramatically reduced barrier. We used this observation to predict the performance 

improvement of the J-PtNW relative to Pt (111). Assuming every surface site reacts 

independently with this predicted rate leads to a 212-fold enhancement at 298.15K, 

compared to 50 times experimental. The atomic structures of the active sites provide insights 

for designing high-performance electrocatalysts for ORR.  

2.1 INTRODUCTION 

Proton Exchange Membrane Fuel Cells (PEMFCs) provide the most promising means for 

addressing the global renewable energy supply and clean environment1–3. Currently the main 

impediment for large-scale PEMFCs commercialization is the sluggish oxygen reduction 

reactions (ORR), which dramatically increases catalyst costs. Extensive efforts are underway 

to develop electrocatalysts for ORR with much higher performance and lower cost4–6. Pt-

alloy nanomaterials show enhanced performance7–12, especially PtNi  alloys13–17. In 

particular, very dramatically improved performance has been observed in dealloyed Pt 
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nanomaterials18–22. Thus Debe and coworkers showed that Ni/Pt2 nanoparticles (NP) led to 

significantly improved ORR activity, 4 times higher than pure Pt and 60% higher than for 

the NSTF standard Pt;<Co8?Mn2  alloy23–26. However, no Ni  was observed in the XPS, 

suggesting the NP was a dealloyed Pt NP. Fortunelli and Goddard (FG) used the ReaxFF 

reactive force field27 to predict the structure of the dealloyed Debe NP and found that starting 

with 70% Ni led to a porous Pt with significant interior area exposed to the surface. FG found 

that the O"45	hydration reaction, 

O"45 +	H8O"45 → 	2OH"45 (1) 
which is the rate determining step (RDS) on Pt (111),  is dramatically accelerated on this 

porous NP compared to Pt (111)28.  

Later, Huang, Duan, Goddard, and co-workers29 showed that dealloying 5 nm Ni7Pt3 

Nanowires (NW) led to 2 nm Pt Jagged NW (J-PtNW) with 50 times faster ORR than current 

state-of-the-art Pt/C, but they found that all Ni was extracted! Building this dramatically 

improved performance into commercial fuel cells would be a game-changer, dramatically 

decreasing the costs of hydrogen fuel cells needed to extract the power from fuel generated 

and stored at solar power plants to provide practical transportation without CO2 emissions.  

Although several factors, such as under-coordinated surface Pt atoms, mechanical strain, and 

high electrochemically active surface area (ECSA), have been suggested to contribute to this 

remarkably accelerated ORR activity29, there was no atomistic explanation about which sites 

on this very complex surface are responsible, leaving no roadmap to build this activity into 

practical electrodes.  

To address this conundrum, we report here multiscale simulations to explain the dramatically 

improved performance and to characterize the atomic features of active sites responsible. 

Starting with the J-PtNW synthesized computationally using ReaxFF reactive force field, we 

selected randomly 500 of the more than 10,000 surface sites and carried out Quantum 

Mechanics (QM) Calculations on clusters within 8 Å of the surface site. Here we considered 

reaction (1), the RDS on Pt (111). We observed a strong correlation between OO Distance 

(the distance between O"45 and the O of H2O"45) and the free energy barrier for reaction (1). 

Indeed 14.4% of the 500 surface sites sampled are barrier-less of reaction (1) at room 

temperature, compared to 0.29 eV for Pt (111) and hence increased reaction rate. We then 
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modeled the reaction rates of all surface sites based on their OO Distances and estimated the 

performance of the whole J-PtNW. 

We found two distinct geometric patterns,  

o Triangles where the H2O binds to one vertex and O to the other two; 

o Concave-Up Rhombi where O binds to one edge and the H2O to one of the remaining 

two vertices. 

The atomic structure of these active sites provides insights on designing high-performance 

electrocatalysts for ORR. 

2. 2 RESULTS AND DISCUSSION 

2.2.1 Structure Analysis and Surface Extraction of J-PtNW 

Starting with the J-PtNW synthesized using ReaxFF reactive molecular dynamics (RMD) as 

in the previous work29, we identified all surface atoms using the surface vector based 

methodology. The detailed description of structure synthesis and surface vector based 

methodology are listed in A1 and A2 of Supporting Information. The nanowire has 6926 Pt 

atoms, with 3881 on the surface (surface ratio: 56.0%). We partitioned these surface sites 

into coordination groups based on the number of first-neighbor atoms, using a first-neighbor 

cut-off at 3.50 Å based on the radial distribution functions in Figure A-2(a) of Supporting 

Information. The J-PtNW showed broader peaks with the first peak located close to the first 

peak of Pt single crystal, as expected. We observed many under-coordinated and over-

coordinated sites both on the surface and in the bulk. The surface site distribution versus 

coordination is shown in Figure A-2(b) of Supporting Information. For better visualization, 

we plotted the surface in Figure A-3 of Supporting Information, with all surface sites colored 

by their coordination (ranging from 3 to 12). This structural analysis showed that the J-PtNW 

have an extremely disordered and irregular surface, making it challenging to characterize 

experimentally and computationally.  

2.2.2 Bridge Nanocluster Model 

To study the relationship between the structure and catalytic activity, we need to define a 

physical descriptor that might correlate with the performance (reaction rate). Based on the 

reaction mechanism revealed by earlier work30–32, we focused on the 	O"45  hydration, 



 19 

reaction (1). 

Our full solvent QM Metadynamics showed that this step is the rate determining step (RDS) 

for applied potentials of U £ 0.9 V reversible hydrogen electrode (RHE)30,33,34. Since this 

reaction requires two sites for water adsorption and oxygen adsorption, instead of the single 

site nanocluster model used in our previous machine learning studies for Copper35,36 and 

Gold37,38, we developed a new bridge nanocluster model in this work. As shown in Figure 2-

1, we generated the bridge nanocluster by cutting two spheres of size R around the Pt atom 

for water adsorption (Pt-1) and the Pt atom for oxygen adsorption (Pt-2). Then, we merged 

these two spheres to a single nanocluster. The choice of R was based on the benchmark 

calculations in A3 of Supporting Information. We found that 8.0 Å is already sufficient to 

provide 0.02 eV accuracy in the adsorption energy for both reactants and products. Therefore, 

we consider that 8.0 Å provides the best balance between accuracy and efficiency and used 

this cut-off throughout this work. 

2.2.3 OO Distance as Physical Descriptor 

We carried out DFT calculations39 for the 	O"45  hydration, reaction (1), using the bridge 

nanocluster model defined in Section 2.2.2. We chose the free energy barrier	(𝐺D)	of reaction 

(1) as the physical descriptor to evaluate the performance of each bridge nanocluster. We 

expect that sites with lower 	𝐺D	should have better ORR performance. With such a disordered 

and irregular surface, we might have to sample all bridging surface sites to be sure to properly 

represent the activity of the full NW. DFT calculations on the transition state reaction barrier 

for the whole J-PtNW, would require far too much computational resources40. Instead we 

defined a physical descriptor, OO Distance (d-OO), the distance between the O of H8O"45 

and the O"45. Then we showed that d-OO is highly correlated with the free energy barrier 

(𝐺D),  G"	 = GHI 	−	GKL"MN"ON5, but much faster to calculate. 

To obtain d-OO, we need only to optimize the structure of the reactants, H2O and O. We 

show in Figure A-7 of Supporting Information three examples illustrating the correlation 

between d-OO and	𝐺D at room temperature. By comparing to our reference case Pt	(111), 

which has 𝐺D = 0.29 eV and d-OO = 3.36 Å, we observed that shorter d-OO leads to much 

lower 𝐺D	(d-OO at 2.60 Å leads to 𝐺D = 0.00 eV) and larger d-OO leads to higher	𝐺D (d-OO 

at 3.98 Å leads to 𝐺D  = 0.35 eV). In addition, thermodynamic reaction energy (∆G =
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	GRST4UMN5	 − 	GKL"MN"ON5),	doesn’t correlate with 𝐺D, as expected. Therefore, we used d-OO 

as the physical descriptor to evaluate performance of each bridge nanocluster. All our 

calculations include solvation effect using the VASPsol implicit solvation model41. As shown 

in Figure A-5 and A-6 in Supporting Information, solvation affects d-OO in a non-negligible 

manner. The free energy barriers (𝐺D) at room temperature (298.15 K) are obtained by adding 

to the DFT electronic energy (E), the zero-point energy (ZPE), enthalpy and entropy 

contribution from vibrational modes of surface species. More computational details of d-OO 

and 𝐺D	are listed in A4 and A5 of Supporting Information. 

 
Figure 2-1. Bridge Nanocluster Model. We first cut two spheres of size R around Pt-1 (cyan 

atom) and Pt-2 (pink tom), where Pt-1 is specifically for water adsorption and Pt-2 is for 

oxygen adsorption. These two spheres are then merged to a single nanocluster. R here is 

optimized to 8 Å. This bridge nanocluster will later be used for DFT calculations. 

2.2.4 Data Sampling for DFT calculations (d-OO) 

To generate all possible bridge pairs from 3881 surface Pt atoms of the J-PtNW, we first 

examined Pt-1 for water adsorption of all surface Pt atoms. Then, for each Pt-1, we examined 

its first-neighbors on the surface to select Pt-2 for binding an O atom. This defines a bridge 

pair. The definition of Pt-1 and Pt-2 are the same as in Figure 2-1. Then, we cut the 

corresponding bridge nanoclusters from the NW. This generates the same nanocluster twice 

with Pt-1 and Pt-2 swapping the labels, but we consider them as different structures since Pt-

R

R

Pt-2

Pt-1

Pt-1	for	Water	Adsorption
Pt-2	for	Oxygen	Adsorption

Merge	Two	Spheres
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1 is specifically for water adsorption and Pt-2 is specifically for oxygen adsorption. The two 

Pts are not identical when binding adsorbates. An example of two nanoclusters of same 

coordinates but defined as different structures is shown in Figure A-8 of Supporting 

Information. 

In this way, we generated 21,057 bridge pairs. Since H2O binds weakly to high-coordination 

sites, we expect that they would be inactive for ORR. To test this, we selected randomly 50 

sites for which Pt-1 has a coordination larger than 9 and calculated water adsorption. We 

found water desorbed from all 50 sites. Therefore, we discarded the high-coordination bridge 

pairs (coordination of Pt-1 > 9), which leaves 12,400 bridge nanoclusters for further 

sampling. This procedure is Illustrated schematically in Figure 2-2. 

 

Figure 2-2. Generating All Bridge Pairs for Data Sampling. Starting from the J-PtNW with 

6926 Pt atoms, we identified 3881 surface atoms using surface vector methodology. Then, 

we iterated first over the whole surface for Pt-1 and for each Pt-1 we iterated over its 

surface neighbors for Pt-2. In this way, we generated a total number of 21,057 bridge pairs. 

We showed that sites with coordination larger than 9, cannot adsorb water. Discarding these 

bridge pairs with coordination of Pt-1 larger than 9 leaves 12,400 bridge pairs for data 

sampling. 

We then randomly sampled 500 bridge nanoclusters from these 12,400 pairs for DFT 

calculations. For each nanocluster, we put water on Pt-1 and oxygen on Pt-2, and then 

J-PtNW
6926	Pt	Atoms

Surfaces
3881	Pt	Atoms

All	Bridge	NanoClusters
21057	Pairs

Bridge	NanoClusters
for	Sampling

12400	Bridge	Pairs

Surface	Vector	
Method

• Iterate through all surface atom for Pt-1
• For each Pt-1, iterate all its surface

neighbors for Pt-2

Discard	High-
Coordination	Sites	(>9)

DFT	Calculations	
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optimized the structure to find the best conformation for the adsorbates. Solvation effect 

are included here using the VASPsol implicit solvation model. Additional DFT calculation 

details, including all benchmark calculations are listed in Section A.4, Table A-1~A-3 and 

Figure A-5~A-6 of Supporting Information. The sampled bridge centers are plotted back 

on the NW in Figure A-9 of Supporting Information. The bridge centers are distributed 

throughout the whole nanowire, indicating our sample is a good representation of the whole 

J-PtNW. 

The distribution of d-OO among 500 nanoclusters is shown in Figure 2-3. We see that d-OO 

ranges from 2.50 Å to 6.01 Å. However, 35.2% of the sites have d-OO distance shorter than 

the d-OO (3.36	Å) for Pt	 111 . We expect these sites to have much lower free energy barrier 

for 	O"45  hydration and hence to contribute significantly to the dramatically improved 

performance of J-PtNW at ORR. To help provide a better understanding of how the geometry 

of different sites affects d-OO and free energy barrier, several representative structures with 

different d-OO are also shown at the bottom of Figure 2-3. 

 

Figure 2-3. d-OO Distribution among 500 Sampled Bridge Nanoclusters. Our sample 

showed a broad range of d-OO, from 2.50 Å to 6.01 Å. The d-OO of Pt (111) is marked in 

the plot as the dashed line. We observed 35.2% of the sites lying to the left to Pt (111), 

showing much shorter d-OO. We expect these sites to have much lower energy barrier for 

𝑂DXY hydration, thus leading to higher ORR performance. Four representative structures 

with different d-OO are attached here for understanding the correlation between structure 

and catalytic activities. 
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2.2.5 Correlation of d-OO with Catalytic Activity 

To further understand the correlation between d-OO and the catalytic activity of each 

bridge site, we selected 18 structures with various d-OO and calculated the transition state 

and free energy barriers. The structures were selected randomly and independently but in 

such a way to ensure that we covered a broad range of d-OO. For each structure, we carried 

out the transition state search using the climbing image nudged elastic band (NEB) method 

with implicit solvation using VASPsol tool. The free energy barriers (G")  for the 	O"45 

hydration at room temperature (298.15 K) are then obtained by adding to the DFT 

electronic energy (E), the zero-point energy (ZPE), enthalpy and entropy contribution from 

vibrational modes of surface species. The data for the 18 structures, including d-OO and 

free energy barriers (G") at room temperature are listed in Table 2-1. More computation 

details toward the transition state search are included in A5 of Supporting Information. 

Table 2-1. Correlation Between d-OO and Free Energy Barrier (G" ) at Room temperature 298.15K 

d-OO/	Å	 G"(298.15𝐾, 𝑒𝑉)	 d-OO/	Å	 G"(298.15𝐾, 𝑒𝑉)	 d-OO/	Å	 G"(298.15𝐾, 𝑒𝑉)	
2.50	 0.00	 2.76	 0.01	 3.50	 0.20	
2.56	 0.00	 2.80	 0.06	 3.57	 0.19	
2.60	 0.00	 2.93	 0.12	 3.70	 0.14	
2.64	 0.00	 2.99	 0.10	 3.75	 0.40	
2.68	 0.00	 3.12	 0.16	 3.98	 0.35	
2.74	 0.01	 3.36	 0.29	 4.22	 0.28	

 

We observed a strong correlation between d-OO and 𝐺D, as shown in Table 2-1. The sites 

with small d-OO shows low free energy barriers, especially with d-OO <= 2.68 Å, 𝑂DXY 

hydration step becomes barrier-less. And with larger d-OO,  𝐺D generally becomes higher, 

but in a non-linear manner. Pt	(111) shows d-OO at 3.36 Å and 𝐺D at 0.29 eV, underlined in 

Table 2-1. To better correlate d-OO with catalytic activity, we used transition state theory 

(TST) to estimate the reaction rate as 𝑘 = (𝑘j𝑇 ℎ) 𝑒𝑥𝑝(−G" kpT).	The reaction rates are 

plotted versus d-OO of 18 structures in Figure 2-4. Here, we used the sigmoid function to fit 

the k(d-OO) curve at room temperature. The fitted curve is also shown in Figure 2-4 with 

𝑅	8at 0.9894. 

Therefore, we found that a large portion of sites on the J-PtNW surface exhibit dramatically 

improved performance toward O"45  hydration, the RDS. We claim that this is the main 
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contributor to the dramatically improved ORR performance. In addition, we showed that d-

OO is a good descriptor for evaluating catalytic activity of any specific bridge pair.  

 

Figure 2-4. Correlation Between d-OO and Reaction Rate. we used transition state theory 

(TST) to estimate the reaction rate as 𝑘 = (𝑘j𝑇 ℎ) 𝑒𝑥𝑝(−𝐺D 𝑘j𝑇)	 of 18 selected 

structures listed in Table 2-1. The reaction rates are plotted in the unit of (𝑘j𝑇/ℎ)	versus 

d-OO. We then used the sigmoid function to fit the k(d-OO) curve at room temperature, 

𝑘	 = 	𝐿	/	(1	 + 	𝑒𝑥𝑝	(𝐴	×	(𝑑	-𝑂𝑂 − 𝑥w))) + 𝑏 . The parameters at (𝐴  = 47.1056, 𝑥w	= 

2.7659, 𝑏 = 0.0003, 𝐿 = 0.9968) gives the 𝑅8=0.9894. 

2.2.6 Performance Prediction of the Whole J-PtNW 

Since our dataset is sampled randomly and independently, we consider it to be representative 

of the whole J-PtNW surface. Thus, we estimated the performance of the whole nanowire by 

mapping the statistics of our sample back to the full NW. The J-PtNW has 6926 Pt atoms 

with 3881 surface atoms, which leads to 21,057 bridge pairs. Among these 21,057 pairs, 8657 

are high-coordination involved pairs, which we assume are inactive. The remaining 12,400 

pairs should have the similar d-OO distribution as the 500 samples.  

To estimate the performance improvement at different temperatures, we first calculated the 

free energy barriers at different temperature, and refit the sigmoid functions. In other words, 

k(d-OO) is dependent of T. Three examples of fitting k(d-OO) at different temperatures are 

shown in Figure A-10 of Supporting Information. 
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𝑘(𝑑-𝑂𝑂|𝑇)	 = 	𝐿/	(1	 + 	𝑒𝑥𝑝	(𝐴	×	(𝑑-𝑂𝑂 − 𝑥w))) + 𝑏	(2) 

Then, the total performance of J-PtNW is calculated by mapping the sample statistic to 

total 12400 pairs:  

𝑝z{ 𝑇 = 𝑘 𝑑-𝑂𝑂||𝑇 		
z}

|~w
×	(

𝑁� − 𝑁�
𝑁�

)	(3)	

Where： 

1) the 𝑁�		is the total number of bridge pairs, 𝑁�		is the high coordination bridge pairs and 

𝑁Y		is the sampled bridge pairs. Here, 𝑁� = 21057,𝑁� = 8657,𝑁Y = 500; 

2)	𝑘(𝑑-𝑂𝑂|𝑇) is the fitted sigmoid function at temperature T. 

The experiments showed that the J-PtNW performance is 50 times better than Pt/C at room 

temperature at mass activity.  We considered that Pt/C is Pt (111) with 6926 surface Pt atoms, 

since the J-PtNW has 6926 Pt atoms in total with 3881 on the surface. In this way, we ensure 

the performance we are comparing is mass activity. This leads to 41,574 pairs. Therefore, the 

performance of Pt (111) can be estimated as following: 

𝑝��(���) 𝑇 = 𝑘 𝑑-𝑂𝑂w|𝑇 	×	𝑁w	(4) 

where 𝑁w = 41,574 is the total number of bridge pairs,	and 𝑘 𝑑-𝑂𝑂w|𝑇 	is the reaction rate 

for Pt (111) at temperature. 

We then define the improvement of the performance as PI(T), which is dependent of 

temperature and calculated by formula (5): 

𝑃𝐼(𝑇) 	= 	𝑝z{(𝑇)/𝑝��(���)(𝑇) (5) 

Figure 2-5 shows the temperature dependence of the estimated performance improvement. 

At room temperature, our model leads to PI = 212.21 for the J-PtNW. This is a factor of 4 

higher than the experimental PI=5029. We consider that this agreement validates our 

explanation. This model, allows us to predict the performance improvement of J-PtNW at 

increased temperatures. For example, low-temperature PEMFCs use a water-based acidic 

polymer membrane as the electrolyte, with platinum-based electrodes. Thus, the upper 

temperature limit is around 80 °C. Our model, estimates PI = 19.70 at 353.15 K (marked as 

red diamond in Figure 2-5). Correcting by the same factor 4, we predict the performance of 
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J-PtNW should be around 5 time better than Pt (111) at 80 ˚C. This may provide guidance in 

choosing optimal conditions for the real J-PtNW. 

 

Figure 2-5. Temperature Dependence of Performance Improvement. With increasing 

temperature, the performance improvement decreases. The PI at 298.15 K is marked in red, 

is PI=212.21 is 4 times larger than experimental = 50. The temperature limit of low-

temperature PEMFCs is also marked as red diamond, PI=19.70 at 353.15 K. 

2.2.7 Active Sites Identification 

To reveal the important features of the active sites and to provide insights for designing high-

performance electrocatalysts, we characterized the structures of barrier-less sites (d-OO <= 

2.68 Å).  They account for 72 out of the 500 bridge nanoclusters sampled. Among these 72 

structures, many share similar geometric features. Thus, we further partitioned them into 

three subgroups:  

I1) Concave-up Rhombus (30.8%); 

I2) Triangle (43.6%); 

I3) Others (25.6%). 

Figure 2-6, shows one representative structure from each group. We consider that the 

Triangle group and Concave-Up Rhombus group play an important role in the dramatically 
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improved performance. We summarized their geometry features and analyzed their statistics 

among the 500 structures in the following session. 

 

Figure 2-6. Identification Results of Barrier-Less Sites (d-OO <= 2.68 Å). Among the 72 

barrier-less sites, 30.8% of them are in the Concave-up Rhombus group and 43.6% of them 

are in the Triangle group. One representative structure of each group is attached with their 

d-OO marked as well. 

2.2.7.1 Triangle Group Statistics 

As shown in Figure 2-6, Triangle group I2 is an important part of barrier-less sites (43.6%). 

We define a structure as a triangle structure if its three Pts, the one binding water, and the 

other two binding O, form a closed ring, marked as cyan in Figure 2-6. Based on this 

definition, we picked out all triangle structures from the 500 sampled bridge nanoclusters 

and plotted their distribution toward d-OO in Figure 2-7. There are 143 triangles in sample 

with the main peak located at ~2.75 Å. Although several triangles showed large d-OO (one 

representative structure of a bad triangle is shown in Figure 2-7), we see that major 

percentage the triangles lead to dramatically improved performance of the J-PtNW. Thus, a 

synthetic strategy might focus on generating triangle structures. Additional Triangle 

structures with various d-OO are shown in Figure A-11 in Supporting Information. 

Others
2.56Å

Rhombus
2.60Å

Triangle
2.64Å
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Figure 2-7. Statistics of Triangle Group among 143 out of 500 Sampled Bridge 

Nanoclusters.  (a) There are 143 Triangles in total, and 87 of them show shorter d-OO than 

Pt (111). A small fraction of the triangles showed large d-OO, but the main peak is located 

way left from Pt (111), (dashed line in the plot). (b) Four representative structures of 

different d-OO. More structures are included in Figure A11 in Supporting Information. 

2.2.7.2 Concave-Up Rhombus Group Statistics 

We then examined all Concave-up Rhombus structures among the 500 sampled bridge 

nanoclusters. The Concave-Up Rhombus is defined as following: the three Pts, One Pt 

binding H2O, and the other two Pts binding O, cannot form a closed ring. Instead another 

surface Pt is required to close the ring, forming a concave-up rhombus. As shown in Figure 

2-8, we then define the dihedral angle of a rhombus as the dihedral angle between two 

surfaces defined by (Pt1, Pt2, Pt4) and (Pt2, Pt3, Pt4). Larger the dihedral angle is, the more 

concave-up the rhombus is. There are a total number of 234 rhombi out of 500 with different 

dihedral angles. We plotted the correlation between the dihedral angle and d-OO in Figure 

2-8(a), and we found the Concave-Up Rhombus with dihedral angle larger than 30° mostly 

show short d-OO. 

Thus, if we cut off the dihedral angle to 30°, the population of active Concave-Up Rhombic 

becomes 57 out of 500. Therefore, we define our active Concave-Up Rhombic as those with 

dihedral angle > 30˚. These 57 active Concave-Up Rhombi are plotted in the Figure 2-8(b), 

along with several representative structures shown in Figure 2-8(c). More structures with 

different d-OO distances are available in Figure A-12 in Supporting Information. 
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Figure 2-8. Statistics of Concave-Up Rhombus among 234 out of 500 Sampled Bridge 

Nanoclusters. (a) The correlation between dihedral angle and d-OO is shown in plot. Here 

dihedral angle is defined as the angle between two surfaces defined by (Pt1, Pt2, Pt4) and 

(Pt2, Pt3, Pt4). As we could see, the rhombus with dihedral angle larger than 30° mostly 

show short d-OO; (b) Statistics of Concave-up Rhombus with Dihedral Angle>30°. Most of 

structures in this group show the small d-OO with the main peak located at 2.6 Å; (c) Four 

representative structures with different d-OO are attached here and more structures are 

available in Figure A-12 in Supporting Information. 

2.2.8 Comparison with Previous Literature 

The above discussion, shows the atomistic explanation of the dramatically improved 

performance.  Thus, the jagged NW has many sites with a concave nature that pushes the OH 

bond of the H2ODXY toward the O"45, leading to a dramatically reduced energy barrier for 

O"45 hydration. Earlier, Huang and coworkers suggested that mechanical strain, high ECSA, 

and under-coordinated surface Pt atoms may affect this remarkably accelerated ORR 

activity29. Consistent with these previous literature results, our analysis also finds numerous 

under-coordinated Pt surface atoms and a high 56.0% surface atom ratio (Section 2.2.1), 

which will affect the ECSA.  

To correlate the mechanical strain with catalytic activity, we plotted the E" versus the strain 

of the selected 18 structures from Section 2.2.5. Here we used the average Pt-Pt bond length 

(a) (b)

Pt1
Pt2

Pt3 Pt4

(c)

2.60Å 4.92Å3.68Å2.52Å
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around the adsorption sites to represent the local strain. As shown in Figure A-13 of 

Supporting Information, there is a linear correlation between the catalytic activity and strain. 

In general, the sites with compressive strains show lower energy barriers and sites with 

tensile strains show higher energy barriers. The correlation is weak with small 𝑅8 at 0.46, 

but we agree that mechanical strain plays a role in reduced energy barrier of 𝑂DXY hydration. 

Our work, with overall agreement with experiment in NW structure characterization and 

performance prediction, explains the dramatically improved ORR of J-PtNW from a very 

different atomistic perspective. 

2.3 CONCLUSION 

Starting from the J-PtNW synthesized using the ReaxFF reactive force field, we developed 

the bridge nanocluster model for DFT calculations. Using sites randomly selected from the 

surface, we observed a strong correlation between d-OO and the free energy barrier 𝐺D of 

the RDS, 𝑂DXY	hydration. This dramatically reduced the computational cost but accurately 

described the performance of each bridge pair. We found 14.4% of the sampled surface sites 

are barrier-less for the RDS. Identification of these active sites led to two groups sharing 

similar geometrical patterns, the Triangle group and Concave-up Rhombus. Using the model 

developed above, we could predict the performance improvement of the whole J-PtNW. We 

report the atomistic structure of the active sites, which provide some insights in designing 

high-performance electrocatalysts for ORR.  
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C h a p t e r  I I I  

IDENTIFYING ACTIVE SITES FOR CO2 REDUCTION ON GOLD 
NANOPARTICLES AND DEALLOYED GOLD SURFACES 

 
 

ABSTRACT 

Gold nanoparticles (AuNPs) and dealloyed Au2Fe core−shell NP surfaces have been shown 

to have dramatically improved performance in reducing CO2 to CO (CO2RR), but the 

surface features responsible for these improvements are not known. The active sites cannot 

be identified with surface science experiments, and quantum mechanics (QM) is not practical 

for the 10 000 surface sites of a 10 nm NP (200 000 bulk atoms). Here, we combine machine 

learning, multiscale simulations, and QM to predict the performance (a-value) of all 

5000−10000 surface sites on AuNPs and dealloyed Au surfaces. We then identify the optimal 

active sites for CO2RR on dealloyed gold surfaces with dramatically reduced computational 

effort. This approach provides a powerful tool to visualize the catalytic activity of the whole 

surface. Comparing the a-value with descriptors from experiment, computation, or theory 

should provide new ways to guide the design of high-performance electrocatalysts for 

applications in clean energy conversion. 

3.1 INTRODUCTION 

The development of dramatically improved electrocatalysts is essential for economical 

renewable energy generation, energy storage, and utilization1,2. The search for new 

catalysts has motivated extraordinary efforts in experimental3–8 and computational9–12 

combinatorial assays to discover new alloys or composites with some successes. 

Complementing this are new generations of Quantum Mechanics that have provided 

remarkable accuracy for simple low index surfaces: 0.05 eV for free energy reaction 

barriers at 298K for oxygen reduction reaction (ORR) on Pt(111)13 and CO to ethane and 

ethanol on Cu(100)14,15 and onset potentials to 0.05V at 10meV/cm2 for CORR on 

Cu(111)16,17 and oxygen evolution reaction (OER) on Fe doped γ-NiOOOH18 and 

IrO2(110)19. However, with remarkable improvement of computational tools for low index 

surfaces, experiments have shown dramatically improved performance for nanoparticles 

(NP)20–25, and especially for dealloyed NP26–28. 
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Unfortunately, there are no available experimental techniques to identify the specific active 

sites for nanoparticles. We have been able to predict the structure of 10 nm NPs (200,000 

atoms) computationally using the ReaxFF reactive force field29 in CVD simulations30. 

However, the accuracy of ReaxFF is not better than 0.25 eV, whereas we need the 0.05 eV 

accuracy of QM to properly identify the active sites. Additionally, it would be quite 

impractical to use QM with cluster models of the 5 to 10 thousand surface sites.  

To solve this conundrum, we propose here a machine learning strategy that uses QM 

calculations with cluster models for hundreds of the 5 to 10 thousand surface sites of the 

ReaxFF grown NP, which we train iteratively to attain 0.05 eV accuracy. Then we use this 

ML predictive model to predict the performance of all 5 to 10 thousand surface sites. Then 

we analyze the sites with the highest predicted performance (a-value) to discover the 

specific sites responsible for the superior performance. These results can then be used as a 

guide for both experimental and computational attempts to maximize the number of sites 

having this performance. In addition, we can compare the predicted performance of all 5 

to 10 thousand sites with other properties that might be measured experimentally (XPS, 

electronic density of states, local character of s,p,d orbitals, work function) in order to 

identify descriptors that might be used in monitoring attempts to synthesize materials with 

a high density of high-performing sites.  

We illustrate this new methodology here for the case of Au NP. Our previous experimental 

studies of the dealloyed Au3Fe core-shell NP led to spectacular results, a 100-fold increase 

in mass activity compared with AuNP , a 500 meV improvement in the overpotential 

for >80% faradaic efficiency (FE) of CO2 to CO27 compared with Au foils.  Similar 

dramatic improvements from dealloying have also been observed in PtNi alloy catalysts 

that 2nm pure Pt NW formed by dealloying from 5nm Ni7Pt3 NW showing ORR 

performance 50 time better than Pt28. We expect that this must be related to the nature of 

the dealloyed surface. In this paper, we predict the performance of the sites achieved by 

dealloying. 

3.2 RESULTS AND DISCUSSION 

3.2.1 Synthesis and Structure Analysis of AuNPs  
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We synthesized the 10nm gold nanoparticle on the carbon nanotube support using ReaxFF 

reactive molecular dynamics as described in B1 of Supporting Information. Surface atoms 

and bulk atoms are distinguished based on the surface vector method using an 8 Å 

nanocluster model. We showed that in our earlier work30,31, such 8 Å  clusters already 

include the geometric features that determine the adsorption energy (to an accuracy of 0.02 

eV). More details are included in B2 of Supporting Information. The whole nanoparticle 

system has 211619 atoms with 43200 carbon atoms and 168419 gold atoms, from which 

we extracted 16919 surface atoms using our surface vector method. These 16919 surfaces 

sites are partitioned into six groups based on their coordination number, which range from 

six to eleven. Here, first-neighbor are defined as those lying within a distance of 3.3Å from 

center atom. We choose the cutoff distance according to the radial distribution functions in 

Figure B-3(a), where the first peak appears at the distance of 2.80 Å and second peak at 

4.20 Å. The surface sites distribution toward coordination number is also shown in Figure 

B-3(b). 

From the reaction mechanism revealed by our previous work32 and works from others33,34, 

we choose two physical descriptors for evaluating the activity of a given site:  

• CO adsorption energy ∆E*+   

∆E*+ 		= 	𝐸∗*+ −	𝐸∗ −	𝐸*+ 

• HOCO transition state formation energy (∆𝐸,+*+): 

∆𝐸,+*+ 	= 	E∗,+*+ −	𝐸∗ −	𝐸*+8 − 0.5	 ∗ 	𝐸,8		

These two descriptors have been proposed and used in other works30 as well. We expect 

that sites with high coordination (10 and 11) should be inactive for CO2RR since there is 

insufficient space to bind reactants, intermediates, or products. Therefore, we investigated 

these high coordination sites first by randomly selecting 50 sites from the group of 

coordination 10 and 50 sites from the group of coordination 11. We then carried out DFT 

calculations (B3 of Supporting Information) for ∆𝐸,+*+	on these 100 sites. Among these 

100 sites, 96 sites cannot even adsorb the important intermediate of the reaction (HOCO) 

and the other 4 sites show very high ∆𝐸,+*+. This shows that such high coordination sites 
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are not active. Thus, we narrowed our search to sites with coordination smaller than 10. 

Even so, there remain 11537 surface sites on the surface to be explored. 

 

Figure 3-1. Overall Structure of Neural Network.  We use two-body terms(C_2) and three-

body terms(C_3) to represent the local geometric feature of the selected surface atom (gray 

atom) extracted from 8 Å nanocluster model. A fully connected two-layer neural network 

with 30 nodes in the first layer and 50 nodes in the second layer are following to fit the 

physical descriptor, with the total number of 2801 model parameters. The training targets 

𝐸|  for two neural networks in this work are ∆𝐸*+	and ∆𝐸,+*+  with all training data 

generated from DFT calculations. 

3.2.2 Training Data Generation and Neural Network Model Implementation 

We trained two neural networks separately: CO adsorption energy ∆E*+   and HOCO 

transition state formation energy ( ∆𝐸+*+,) . The overall model topology is shown 

schematically in Figure 3-1. This type of feature representation method is derived from the 

work by Behler and Parrinello in 200735. Instead of using Gaussian functions, we choose 

another type of symmetry function: localized piecewise cosine function. This 

representative method has earlier been proposed and used by others36,37. We used an 8 Å 

nanocluster from the surface atom to extract local geometric features of selected surface 

sites as the neural network input through symmetry functions. In our model, we use 12 

symmetry functions for two-body terms and 3 symmetry functions for three-body terms, 

leading to 39 input features. We consider this to give the best balance between training 

dataset size and model complexity. Having defined a set of features, we used a fully 

connected two-layer neural network with 30 nodes in the first layer and 50 nodes in the 
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second layer for independently fitting two selected physical descriptors: ∆𝐸*+	and ∆𝐸,+*+. 

The total number of parameters in the model is 2801. Mathematical representations and 

more details about neural networks are included in B5 of Supporting Information.  

We first trained a neural network for ∆𝐸*+ using 1384 data from DFT calculations. This 

data was partitioned into 1104 in the training set, 140 in the validation set, and 140 in the 

testing set. We constrained the ratio of sites from different coordination groups to be equal 

within each of the three data sets, but all three sets are totally independent. The validation 

set is used to prevent overfitting (early-stop). Distributions and partitions of the data are 

listed in Table B-1 and the training trajectory is shown in Figure B-4. The root mean 

squared error (RMSE) of the validation set reached the minimum at the training epoch of 

19000 with the training set RMSE at 0.0563 eV and the validation set RMSE at 0.0591 eV. 

The prediction results for the independent testing set are shown in Figure 3-2(a) leading to 

RMSE = 0.0521 eV.  Using the same approach, we trained our second neural network for 

∆𝐸,+*+ using 1059 data points from DFT calculations. Distribution and partition of the 

data are listed in Table B-2 and the training trajectory is shown in Figure B-4(b). The 

validation set RMSE reached the minimum at the training epoch of 11000 with the RMSE 

of training set at 0.0616 eV and the validation set RMSE is 0.0591 eV. Figure 3-2(b) shows 

the prediction results on the independent testing set of ∆𝐸,+*+, showing RMSE = 0.0614 

eV. Our two machine learning models based on the neural network algorithm show RMSE 

of 0.0521 eV for CO adsorption energy and 0.0614 eV for HOCO formation energy on 

testing sets. To place our model accuracy in a more straightforward context, we compared 

our errors to a similar work in predicting CO adsorption energy in Thiolated Ag-alloyed 

Au nanoclusters38, which finds a much higher RMSE at ~0.17eV using over 2000 data 

points for training. Another work using machine learning for predicting adsorption energies 

of CH4 related species (CH3, CH2, CH, C, and H) on the Cu-based alloys39 reported the 

best performance of RMSEs around 0.3 eV after an extra tree regression algorithm. Our 

model complexity (determined by feature representation and neural network structure) and 

data set size have the best balance, giving much smaller errors compared to previous works. 

 



 42 

 

Figure 3-2. (a) Neural network predictions on the testing set for CO adsorption 

energy	(∆𝐸*+	) shows an RMSE of 0.0521 eV; (b) Neural network predictions on the 

testing set for HOCO formation energy ∆𝐸,+*+ shows an RMSE of 0.0614 eV. 

3.2.3 Model Application 

3.2.3.1 Identification of Active Sites on the AuNP Surface 

We used the two neural networks trained above to predict ∆𝐸*+	and ∆𝐸,+*+ for all 11537 

surface sites obtained as described in Section 3.2.1. The prediction results are shown in 

Figure 3-3, where ∆𝐸,+*+  is along the x axis and ∆𝐸*+ along the y axis. We show with 

different colors surface sites having different coordination.  We observe a correlation between 

catalytic behavior and coordination. The group with coordination six shows both strongest 

CO binding and lowest HOCO formation energy while the group with coordination nine 

shows the weakest CO binding and highest HOCO formation energy. We see a general linear 

relationship between ∆𝐸*+and ∆𝐸,+*+, which is consistent with earlier studies30,40.  

We mark the characteristics for two low index surfaces (Au(111) and Au(110)) in Figure 3-

3. The 111 surface is generally the most stable for Au while 110 Edge sites are proposed as 

the most active sites in earlier studies41. In general, the predicted performance of the other 

surface sites on AuNPs surround that of the low index surfaces since the nanoparticle surfaces 

are irregular and disordered. 

(a)

(b)

(a)

(b)
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Figure 3-3. Neural network predictions for all 11537 lower coordination surface sites of 

AuNPs. ∆𝐸*+ is placed along the y-axis and ∆𝐸,+*+ along the x-axis. All sites are colored 

based on their coordination number, with Au(111) and Au(110) marked for reference. The 

general linear relationship between ∆𝐸*+	 and ∆𝐸,+*+  remains and we observe a 

correlation between coordination and catalytic activity. 

To provide a quantitative measure of performance, we used the straight line connecting 

Au111 to Au110, which is ∆𝐸*+=1.4423*∆𝐸,+*+-0.9194. By moving this line upwards and 

downwards, we get a family of lines with the same slope (1.4423) but different intercepts: 

∆𝐸*+=1.4423*∆𝐸,+*++𝑎.  For each single surface site, with the neural network predicted 

∆𝐸*+	and	∆𝐸,+*+, the a-value can be calculated by: a=∆𝐸*+-1.4423*∆𝐸,+*+. According 

to the reaction mechanism of CO2RR on Cu100 surface32, the active sites we are looking for 

should have: low ∆𝐸,+*+, as this is the potential-determining step (PDS), lower ∆𝐸,+*+  

indicates higher CO2RR; high ∆𝐸*+ , as higher ∆𝐸*+  indicates that more sites will be 

released after the reaction. Thus, we expect that the a-value (defined by ∆𝐸*+	and ∆𝐸,+*+) 

will indicate the overall performance of a given surface site. Larger a-value means higher 

CO2RR while smaller a-value indicates poor performance. The top 300 sites ranked by their 

a-value are marked in the Figure 3-4. We found that top 300 sites (out of 11537) can be 

classified into seven groups, each with distinctive characteristics. We show in Figure 3-4 one 

representative structure of each group (more structures are attached in Figure B-9~B-15 of 
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the SI). We could not find a simple quantitative definition of each group, but we summarize 

the structure of each group as following: 

o Step111: Center atom has Au111 features but with steps around the center atom; 

o StepUnder111: Center atom has under-coordinated Au111 features but with steps 

around the center atom; 

o Step110: Center atom has 110 features but with steps around the center atom;  

o Step311: Center atom has 311 features but with steps around the center atom; 

o StepTB: Center atom has twin boundary features but with steps around the center atom; 

o StepUnderTB: Center atom has the under-coordinated twin boundary feature but with 

steps around the center atom; 

o SurfaceDefect: Au111 surface but with one or two missing atoms around the center 

atom. 

 

 

Figure 3-4. Active sites identification for AuNPs surfaces. We ranked the activity of all 

11537 surface sites based on their a-values and identified the top 300 sites. We classified 

these 300 sites into seven groups, as marked in the figure. The number of sites in each 

group is indicated in brackets next to the marker. A representative structure for each of the 

7 Active Groups are shown. The center atom is pink, while atoms at the same layer are 

white. Atoms in the layer below white atoms are gold, while atoms one layer above center 

atom are cyan. Atoms above cyan atoms are gray and twin boundaries are dashed line. 
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For better comparison, we randomly selected 300 sites from whole surface with the 

identification results showing in Figure B-6. The comparison between top 300 sites (Figure 

3-4) and randomly selected 300 sites are shown on Table B-3. Among 300 randomly selected 

sites, the majority do not belong to the seven active groups as defined above. Thus, only the 

seven active groups are concentrated above and around straight line with a-value = 0.9194. 

3.2.3.2 Dealloyed Gold Surface Modeling and Active Sites Identification 

Compared to AuNPs and Au foils, dealloyed Au surfaces have been shown experimentally 

to have dramatically improved performance in reducing CO2 to CO. Thus, starting with a 

Au3Fe NP and exposing to electrochemical conditions suitable for CO2 reduction, Wang, 

Goddard, and coworkers showed that a core-shell NP is formed in which Fe is depleted from 

the top layers. Remarkably this Au3Fe core-shell nanoparticle (CSNP) showed a 100-fold 

increase in mass activity compared with AuNP. Moreover it leads to >80% FE at - 0.2 V, 

which is 500 meV lower than for Au foils27! Using QM studies on the 111 surface of Au3M 

for 20 different M, Fe had been selected as best.  But these calculations did not suggest such 

dramatically improved performance. It must be that the nature of this dealloyed surface 

somehow dramatically improves the reduction of CO2 to CO, but the type of site that can do 

this remains completely mysterious.  

However, Similar dramatic improvements from dealloying have been observed previously 

in PtNi alloy catalysts for ORR. Here Debe and coworkers discovered that Ni7Pt3 NP leads 

to 4 times improved activity over Pt26, but their XPS studies could not find that any Ni 

remained, suggesting that it was fully dealloyed. Fortunelli and Goddard followed up using 

ReaxFF to show that the dealloyed 5nm Ni7Pt3 NP leads to a porous surface with a 

preponderance of low coordination sites42. They found that the surface area was doubled over 

a NP (in agreement with experiment) and that one important step in the reaction,	𝑂∗ 	+

𝐻2𝑂∗ → 2	𝑂𝐻∗, is dramatically accelerated on these sites. Later Huang, Duan, Goddard, and 

coworkers showed that 5nm Ni7Pt3 nanowires (NW) after dealloying under ORR conditions 

lead to 2nm pure Pt NW with ORR performance 50 time better than Pt28! The sites 

responsible for this dramatic improvement have not yet been identified. 
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To search for sites on the dealloyed Au NP surfaces responsible for the dramatic 

improvement in activity, we modelled the de-alloyed Au surface by cutting a 10 nm Au 

sphere from the single crystal and randomly removing 25% of the surface Au and then 

allowing the structure to relax using ReaxFF. More detailed description of the model and 

structure equilibration are included in B4 of Supporting Information. We assume in our 

calculations the extreme hypothesis that the catalytic activity is not affected by the Fe in the 

core, nor from electronic effects or strain effect caused by lattice mismatch. This assumption 

may be valid since the Fe may be too far from the surface in the experiments. Thus, we 

leached out Au just at the top layer of the system. We show below that this simplifying 

assumption may be sufficient because we do predict dramatically improved CO2RR based 

on this hypothesis.  If follow-up studies using QM on the structures we identify here turn out 

not to predict the dramatic 500 mV decrease in the onset potential for >80% FE, we will 

consider dealloying multiple layers using ReaxFF to relax the structures. If this does not 

explain the improvements, then we will add in ¼ Fe in the core. We expect that this sequence 

of studies combining QM, ReaxFF, and machine learning will eventually identify the 

mechanism. We show below that this simple model provides insights and reasonable 

hypotheses to explain the dramatically improved performance. 

Using the same methodology as in Section 3.2.3.1, we predicted the performance of this 

dealloyed Au surface using our neural networks. To have a more quantitative comparison, 

we define the active ratio(AR) as following first: 

𝐴𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑆𝑖𝑡𝑒𝑠	𝑤𝑖𝑡ℎ	𝑎 > 0.9194
𝑇𝑜𝑡𝑎𝑙	𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑆𝑢𝑟𝑓𝑎𝑐𝑒	𝑆𝑖𝑡𝑒𝑠

 

where	0.9194	is	the	a	value	of	Au(111)	and	Au(110). 

Figure 3-5 shows a normalized distribution of a-value comparisons, where the dashed line is 

the a-value for low index Au surfaces, Au(111) and Au(110). The red histogram is the 

distribution for AuNPs while the blue histogram is the distribution for dealloyed Au surfaces. 

AR is then the area lying at the right of   the dashed line, since the total area of each plot is 

normalized to 1. Comparing to low index Au surfaces (dashed line), AuNPs and de-alloyed 

Au surfaces both have increased numbers of active sites, with AR = 0.0836 for AuNPs and 
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AR= 0.1307 for the dealloyed surface. This is consistent with experimental studies 

showing that dealloyed surface exhibits much better performance than AuNPs, which in turn 

are better than Au foils. 

 

Figure 3-5. Normalized a-Value Distribution. The total area of each histogram is 

normalized to 1. As defined, AR (active ratio) is the area at the right of the dashed line for 

each plot. Both AuNPs and dealloyed surface have a number of active sites with a-value 

larger than 0.9194, which is the a-value of Au(111) and Au(110). The Dealloyed surface 

shows even better performance with AR at 0.1307 compared to the AR for AuNPs at 

0.0836. 

Active site identification for the dealloyed Au surface is shown in Figure 3-6. Among the 

Top 100 sites out of 3095 ranked by a-value,  

• 43 of them arise from the StepUnder111 group;  

• 23 of them are from the SurfaceDefect group.  

which we consider as the most promising. there are also 23 sites from Step111 group and 

small numbers of sites from the Step110 and Step311 groups, but we consider them as less 

likely contributors to the dramatically improved performance, partly because these kinds 

of sites may already be present before dealloying. We expect dealloying will naturally 
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create such structure defects as under-coordinated sites. Therefore, we expect the 

increased fraction of SurfaceDefect and StepUnder111 groups to be responsible for the 

improved performance.  

In this example, we illustrate how to apply machine learning model to analyze and 

understand extremely irregular and disordered systems. This leads to new structures that 

can be tested with realistic QM based studies to validate the predictions, the ultimate goal 

is to validate the success for our ML-QM-ReaxFF strategy. Here we eschew the exact 

modeling of the de-alloying process, which requires complicated and expensive 

calculations. To further verify neural network prediction results, we randomly selected 5 

sites from each of the 7 groups and carried out DFT cluster calculations (no solvation). 

Figure B-7 and Figure B-8 show that our predicted energy for both ∆𝐸*+ and for ∆𝐸,+*+ 

are mostly within the RMSE of the neural network predictions (0.0521eV for ∆𝐸*+ and 

0.0614 eV for ∆𝐸,+*+). This validates the accuracy of our ML model. It also validates that 

these seven groups are those sites with higher CO2RR.  

 

Figure 3-6. Active Sites Identification for Dealloyed Au Surfaces. The Top 100 sites out 

of 3095 are marked with the number in each group shown in brackets next to the marker. 

As Step110, Step 311 and Step111 may already be present before dealloying, we expect 

that the creation of increased StepUnder111 and SurfaceDefect sites by the dealloying 
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process is likely the main contributor to the dramatically improved performance of the 

dealloyed Au3Fe CSNP. 

3.2.3.3 a-Value Mapping and Catalytic Activity Visualization 

One important application of our machine learning model is to evaluate the performance of 

each single site even on a highly disordered and irregular surface. The catalytic activity can 

be visualized by mapping the a-value back on the particle. As shown in Figure 3-7, all the 

sites are colored based on its predicted a-value. The red sites are poor sites with small a-

values and the blue sites are active sites showing larger a-values. Three common surfaces of 

Au(111), Au(110), Au 100) are marked in Figure 3-7(a), showing that Au(111) and Au(110) 

with the color blue have better performance at CO2RR than Au(100) with the color green, 

which is consistent with earlier experimental and computational studies23,41. Two main 

contributors for the dramatically improved performance of dealloyed Au surfaces, 

SurfaceDefect and StepUnder111 sites, are also marked in Figure 3-7(b), with the color of 

blue to indicate they have high-performance. Our a-value mapping provides a powerful tool 

for catalytic activity visualization. 

We can also map descriptors from experiment, computation, or theory onto a companion 

diagram in order to provide guidance toward physical descriptors to design high-performance 

electrocatalysts for applications in electrocatalysis. 
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Figure 3-7. a-Value Mapping and Catalytic Activity Visualization. Each single site is given 

a a-value based on NN prediction. These a-values are then mapped back on the particle to 

visualize the catalytic activity of the whole surface. As indicated in the color bar, the red 

sites are inactive sites and the blue sites are active ones. (a) Catalytic Visualization for 

AuNPs. Au (111), Au (110) and Au(100) are marked; (b) Catalytic Visualization for 

Dealloyed Au surface. SurfaceDefect and StepUnder111 sites are marked with the color of 

blue, indicating they have high-performance at CO2RR. 

3.3 CONCLUSION 
In summary, we developed two neural network based machine learning models for accurate 

prediction of CO adsorption energy and HOCO formation energy on extremely irregular and 

disordered Au surfaces, showing the accuracy of 0.05 eV needed for catalyst development. 

StepUnder111

SurfaceDefect

Au100

Au111

Au110

Large	a-value(Good)Small	a-value(Bad)

(a)

(b)
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The model applications to Au nanoparticles and dealloyed Au surfaces allow us to identify 

the feature of active sites responsible for the dramatically improved CO2RR performance of 

such disordered and irregular surfaces. We also develop an a-value mapping methodology to 

construct and visualize the catalytic activity of whole surface. We expect that this can help 

guide the design of high-performance electrocatalysts for CO2RR to enable storing of solar 

generated energy and for CO2 free transportation. This provides an example of how to 

combine multiscale simulations, QM, and artificial intelligence to drive the discovery of new 

catalysts for clean energy conversion. 
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C h a p t e r  I V  

IDENTIFICATION OF THE SELECTIVE SITES FOR 
ELECTROCHEMICAL REDUCTION OF CO TO C2+ PRODUCTS ON 

COPPER NANOPARTICLES  
 
 

ABSTRACT 

Recent experiments have shown that CO reduction on oxide derived Cu nanoparticles (NP) 

are highly selective toward C2+ products. However, understanding of the active sites on 

such NPs is limited, because the NPs have ∼200 000 atoms with more than 10 000 surface 

sites, far too many for direct quantum mechanical calculations and experimental 

identifications. We show here how to overcome the computational limitation by combining 

multiple levels of theoretical computations with machine learning. This approach allows 

us to map the machine learned CO adsorption energies on the surface of the copper 

nanoparticle to construct the active site visualization (ASV). Furthermore, we identify the 

structural criteria for optimizing selective reduction by predicting the reaction energies of 

the potential determining step, ΔEOCCOH, for the C2+ product. Based on this structural 

criterion, we design a new periodic copper structure for CO reduction with a theoretical 

faradaic efficiency of 97%. 

4.1 INTRODUCTION 

Rapid progress is being made in developing new catalysts that are highly active and 

selective to electrochemically reduce CO or CO2 to specific chemical fuels and 

feedstocks1-2. Improved selectivity and activity in reducing CO2 and CO to valuable 

hydrocarbons and alcohols will enable the conversion of intermittent or remote renewable 

energies into complex chemical forms for storage and delivery3. At the same time, using 

sequestrated CO2 as the feedstock would reduce the amount of excess atmospheric CO2 

by completing the carbon cycle with carbon fixation via artificial photosynthesis or other 

forms of renewable energy sources4-5.  
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However, CO2 is quite stable, making it very challenging to optimize catalytic efficiency 

due to the difficulty in activating CO26. After decades of development, copper remains the 

only catalyst that can reduce CO or CO2 by more than two electrons to generate valuable 

products in nontrivial amounts. Recently, oxide derived copper nanoparticles (NP) have 

been shown to greatly improve both the activity and selectivity of CO and CO2 reduction 

towards C2+ products7. Based on early temperature programmed desorption (TPD) 

experiments, the improved performance of the oxide derived metal NP was hypothesized 

to arise from strong CO adsorption sites8. However, later experiments have found that 

selectivity correlated linearly with the grain boundary (GB) density9-10. In this work, we 

focus on elucidating which local Cu structures lead to the optimum properties for CO 

reduction to C2+ products.  

4.2 RESULTS AND DISCUSSION 

4.2.1 CO Adsorption 

We previously used Density functional theory (DFT) with full solvent and Grand 

Canonical techniques to determine the reaction mechanisms for CO reduction to C1 and 

C2 products on Cu (100) and Cu (111) surfaces, leading to an excellent agreement with 

experiments (over potentials within 0.05 V)11-12. However, the experimental 10nm NP 

involves ~200,000 atoms with ~10,000 possible surface sites, well beyond the capabilities 

of DFT. To circumvent the limitation of the direct application of DFT, we subsequently 

utilized the reactive force field (ReaxFF)13-14 to computationally grow the 10nm 

nanoparticles and then used DFT to sample only 84 surface sites for ∆ECO and 4 surface 

sites for ∆EOCCOH
15-16. In order to extract a quantitative understanding of the variations of 

the chemistry over the whole nanoparticle, we propose here a methodology to combine 

limited numbers of DFT calculations with machine learning to train a machine learning 

model that accurately predicts the binding energies for all sites. 
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Figure 4-1. Schematics of the machine learning model. For each surface site (red), we 

extract a copper cluster including all the atoms within 8Å from a copper NP. The 

adsorption energy is calculated using DFT and is used as the target property for training. 

We use Behler-Parrinello17 type neural network model. In this study, we describe the 

copper cluster by a set of 2-body and 3-body molecular descriptors about the surface atom. 

We then used these descriptors as input to a multilayer neural network for fitting.  

First, we used ReaxFF to computationally synthesize a 10 nm copper nanoparticle (NP) 

that closely resembles the experimental NP [C1.1 in SI]. The predicted structure leads to 

XRD spectra and TEM images that match those of the experimental NP structures. Next, 

we selected 400 random surface sites and calculated their CO adsorption energies using 

DFT [C1.2 in SI]. We previously found that including atoms up to 8Å from the surface 

site is sufficient to represent the local environment15. We integrated this local environment 

into a neural network in which the surrounding atoms are transformed into 12 two-body 

and 18 three-body molecular descriptors as inputs to a 2-layer neural network with 50 

nodes in each layer, as shown in Figure 4-1. Further details of the descriptor definition are 

in Section C1.3 of the Supporting Information. We partitioned the 400 surface sites into 

training set, validation set, and test set with an 8:1:1 ratio. Here the validation set is used 

to terminate the training sufficiently early to avoid overfitting. Section C2 of the 

Supporting Information shows that the root mean squared error (RMSE) of the CO binding 

energy (ΔECO) on the training set is 0.111eV while for the validation set RMSE= 0.117eV, 

and for the test set RMSE= 0.123eV. We refer to this as the ReaxQM-Machine Learning 
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strategy, or RxQM-ML. This is much lower than the RMSE=0.2eV for a similar study 

of the crystalline surface of the NiGa binary alloy.18  

After training this accurate neural network model, we used RxQM-ML to predict the CO 

adsorption energies for all 10,000 surface sites. The statistical distribution of the CO 

adsorption energies is shown in Figure 4-2(a). Overall, the CO adsorptions range from -

0.55 to -1.43 eV, showing the wide variety of surface sites on the copper NP. As expected, 

most energies are clustered around the values for such low index surfaces, as (111), (100), 

and (211)15. However, we find a significant number of surface sites with much stronger 

CO adsorption energies. This is shown by the distribution to the left of the (211) line. These 

results are consistent with the TPD experiments, which show a broad peak centered at 275K 

only for the copper NP, indicating that ~7-15% of the surface leads to stronger CO 

adsorptions than low index copper surfaces8. 

Furthermore, the low-cost of RxQM-ML model makes it possible to establish the 

quantitative structure-activity relationship (QSAR) such that the machine-learned CO 

adsorption energies can be remapped back to the copper nanoparticle, as shown in Figure 

4-2(b). Here, red indicates low DECO, white indicates moderate DECO, and blue indicates 

unfavorable DECO. The (100), (111), and (110) surfaces are all colored light blue, 

indicating that they are near the mean values of the adsorption energy distributions as in 

Figure 4-2(a). The sites in solid blue are not fully exposed, making them difficult for CO 

to bind. The sites in red are of most interest because they correspond to more favorable 

adsorptions of CO than the low-index surfaces. As shown in light red in the figure, the 

moderately strong CO adsorption sites are typically along the step edges, and as shown in 

solid red, the strong CO adsorption sites are mostly isolated surface sites or kink sites.  

The ASV in Figure 4-2 shows clearly that favorable CO adsorption sites are scattered 

across the whole nanoparticle surface. This is consistent with experimental observations 

that the surface areas corresponding to GBs are not sufficiently large to account for the 

number of strong CO adsorption sites8. Using RxQM-ML, we now can directly show that 

the strong CO adsorption energies are not just at GBs.  
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Figure 4-2. CO Binding Energy Analysis. (a) Distribution of CO binding energies (DECO) 

on the 10nm copper nanoparticle. The three vertical dashed lines correspond to the CO 

adsorption energies of single crystal surfaces of (211), (100) and (111)15. (b) Active site 

visualization (ASV) of the predicted CO adsorption energies on the nanoparticle. As 

indicated by the colored bar, the red sites correspond to strong CO adsorption, the white 

sites correspond to moderate CO adsorption, and the blue sites correspond to weak CO 

adsorption. The common surfaces of (100), (111), and (110) are indicated in the figure.  

4.2.2 From CO to C2 Products 

Although we have demonstrated that the CO binding energy is not necessary to correlate 

with GBs, there is a great deal of experimental evidence suggesting that increasing the GB 

density can significantly improve the C2+ selectivity. Another descriptor is needed to 

describe selectivity of these nanoparticles. As shown experimentally19 and theoretically20-

22, the selective step towards C2+ products involves C-C coupling in which *OCCOH is 

formed. Thus, the most plausible descriptor is the reaction energy for forming *OCCOH,  

DEOCCOH = E[*OCCOH] – E[*CO, *CO] – 0.5×E[H2],  

which we have shown previously to be the potential determining step for ethanol 

production. Then, we started with ~180 randomly sampled surface site and calculated the 

formation energy for *OCCOH, DEOCCOH. The distribution is shown in the blue histograms 
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in Figure 4-3(a). As shown in the figure, the range of DEOCCOH spans by more than 1eV, 

implying that some sites are much more selective than others. We could sample additional 

sites to develop a similar machine learning model for DEOCCOH. However, we examined 

the sites with the lowest DEOCCOH, and found that all of them are involved square sites, 

similar to those of the (100) surface. To test this hypothesis, we further sampled 100 square 

sites, leading to the distribution for DEOCCOH shown in orange in Figure 4-3(a). Comparing 

to the random sites on the surface of the copper nanoparticle, we found that the square sites 

were indeed more favorable, as shown by the shift in the distribution in DEOCCOH in Figure 

4-3(a).  

 

Figure 4-3. DEOCCOH Analysis. (a) Distributions of DEOCCOH on the surface of the copper 

nanoparticle. Blue: 180 random surface sites; orange: 100 random square sites. (b) The 

four squared structures with the lowest DEOCCOH sampled randomly from the copper 

nanoparticle. The dashed ellipses indicate the locations of the twin boundaries.  

With the new distribution of just the square sites, we extracted the common features of the 

most selective sites by further examining the square sites with the lowest DEOCCOH. We 

found that a step (111) surface is always next to these favorable square sites, as shown in 

Figure 4-3(b). These sites are similar to the Cu(S)[n(100) × (111)] edge step sites where 

the (111) surface and the (100) surface intersect. In fact, experiments23-24 showed that these 

step sites have higher selectivity than either the (100) and (111) surface. To confirm this 

theoretically, we calculated EOCCOH on (100), (111), (311), and (511) surfaces to be 
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0.44eV, 0.64eV, 0.52eV, and 0.41eV. The calculated trend agrees very well the 

experimental selectivity trend in which (511) > (100) > (311) > (111) [Section C3 in SI]. 

This comparison with experimental findings on the Cu(S)[n(100) × (111)] surfaces 

confirms the validity of using EOCCOH as the descriptor for the selectivity towards C2+ 

products. It is also consistent with our finding from sampling the NP that favorable sites 

for EOCCOH or C2+ selectivity must involve a (111) step surface next to a (100) site 

where *OCCOH is formed.  

In addition, twin boundaries are associated with the square surface sites having the lowest 

DEOCCOH. Figure 4-3(b) shows that these twin boundaries are all next to the site where 

*OCCOH is formed. This implies that the selectivity towards C2+ products is directly 

related to twin boundaries which are a special type of GBs.  

Building on the idea that the above common features lead to the best *OCCOH sites, we 

constructed the smallest periodic structure possessing these features. This is shown in 

Figure 4-4. We expect that this periodic surface will behave chemically in the same way as 

these selective sites. Because it is a smallest periodic structure containing these sites, the 

density of active sites will be much higher than the randomly and sparsely distributed active 

sites on a nanoparticle.  

This minimal periodic structure is shown in Figure 4-4(a). From the ABC stacking of the 

FCC copper, the smallest grain size must contain at least 6-layer, corresponding to 

ABCACB stacking, where the A layers are twin boundaries. Since the step surfaces 

involving the (100) and (111) are of interest, they are shown by double lines and dash lines 

in the figure.  

Based on the configurations of the adsorbed *OCCOH on the copper clusters, there are 4 

ways of placing the intermediate on this surface, as shown in Figure 4-4(b). The first two 

structures, (a) and (b), with the *OCCOH adsorbed in the cross sectional plane show 

unfavorable energies. Thus, the in-plane *OCCOH adsorption is not responsible for the 

increased in C2+ selectivity. On the other hand, *OCCOH adsorbed perpendicular to the 

page (or out-of-plane) are much more favorable, with only 0.41 eV for the convex site and 
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0.35 eV for the concave site, which is better than all the single crystal surface sites 

considered here. In fact, the same configuration is also found for the copper nanoparticle. 

As shown again in Figure 4-3(b), *OCCOH are all adsorbed perpendicular to the page. 

Thus, we predict that the (100)-like square sites next to a (111)-like step surface and on-

top of a twin boundary that binds *OCCOH parallel to the twin boundary will have the 

most favorable EOCCOH, which corresponds to the most selective sites.  

(a):  

 
(b):  
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Figure 4-4. Schematic of Designed Structure. (a) The shaded area is the minimal 

periodic structure of FCC copper containing the (100) planes, (111) planes, and twin 

boundaries. Terminating this structure to expose the (100) and (111) surfaces leads to sites 

that are concave or convex with respect to the (100) planes. (b) The four types of sites for 

adsorbed *OCCOH on the surface of the minimal periodic structure. The structure that is 

concave with respect to the (100) planes has the most favorable DEOCCOH for C2+ 

selectivity. The top and side views of this structure are shown on the right column of (b). 

More details on these sites are shown in Section C4 of the supporting information. Note, 

for structures (c) and (d), the other carbon and oxygen atoms are not shown since they 

overlap with the foreground atoms in the side view. The full *OCCOH structure for (c) is 

revealed in the top view, as shown on the right column.  

For the most favorable structure, the faradaic efficiency towards C2+ product is predicted 

to be 97% using experimental data in which the current density for C2+ production 

increases linearly as the density of GBs, and the current for hydrogen production remains 

the same10. The prediction is shown in Figure 4-5, which also includes a prediction for an 

experimental copper structure in which a high density of twin boundaries is synthesized25, 

assuming that the structure exposes the twin boundaries in the preferable configuration. 

Details of this prediction are summarized in section C4 of Supporting Information.  
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Figure 4-5. Predicted faradaic efficiency (FE) of the concave site on the minimal periodic 

structure compared to experimental data. An experimental copper structure with abundant 

twin boundaries25 is also extrapolated based on the densities of the boundaries.  

4.3 CONCLUSION 

In conclusion, we used machine learning to fit the structure-activity relationship between 

the local structures of the copper nanoparticle and the theoretical CO adsorption energies. 

By extrapolating the energies back to the nanoparticle, we found that strong CO adsorption 

energies are not just on GBs, implying that CO adsorption energies are not an appropriate 

descriptor for C2+ selectivity. Rather, we show that DEOCCOH, the transition state for 

forming ethanol of C2+ products in C-C coupling, is the appropriate descriptor. This 

explains the selectivity on Cu(S)[n(100) × (111)] surfaces and the twin-related step square 

sites on the nanoparticle. To illustrate how to use this information, we designed the minimal 

periodic structure. This minimal periodic structure has a super high density of selective 

sites that we expect will lead to near unity selectivity based on extrapolations of theoretical 

and experimental data.  
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A p p e n d i x  A  

SUPPORTING INFORMATION FOR CHAPTER II 

 

A1. J-PtNW Synthesis using ReaxFF Reactive Molecular Dynamics 

We used ReaxFF reactive molecular dynamics, to simulate the formation of dealloyed NiPt 

nanowire, J-PtNW. We mimicked the process of de-alloying in electrochemical condition by 

removing Ni atoms from initial FCC nanostructure, followed by local relaxation and 

equilibration. A similar approach was used in our previous work simulating Ni de-alloying 

of	Pt2Ni/ nanoparticles1.  

1)First, we built an infinite 1D NW from the FCC Pt crystal structures, placing the z axis of 

the NW along the (111) direction, and 13 Pt atoms along the x axis and 9 Pt atoms along the 

y axis. The periodic system is then made by replicating 220 individual unit cells along the 

axis of the NW. To ensure the Ni composition is consistent with experiment, we randomly 

replaced 85% of the Pt atoms with Ni atoms and minimized the structure; 

2) Then, we erased all the Ni atoms and performed a fixed-cell conjugate-gradient local 

relaxation using the ReaxFF force field. The convergence threshold criteria are 4×10¥;	eV 

on the energy and 4×10¥<	eV /Å on the gradient. A second local relaxation was performed 

to equilibrate the cell dimensions in the chain direction at a pressure of 1 atm. The 500 

ps	NPT MD simulation was carried out at 343 K, followed by 20 ps equilibration;  

3) Then we removed the least coordinated Pt atoms expected to be further leached away 

during ORR cycling, and performed an additional NPT Molecular Dynamics (MD) 

simulation for 520 ns (500 ps	 NPT at 343 K, followed by 20 ps  equilibration) to re-

equilibrate the system;  

4) Finally, another round of local relaxation was performed to obtain the final structure. 

The ReaxFF parameters we used in this work to describe the interactions in Pt clusters were 

fitted to reproduce DFT-derived structural and energetic quantities: the equation-of-state for 

various bulk structures (FCC, BCC, SC, and A-15), the stability of various surface 
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orientations, as well as finite Pt clusters (up to 35 atoms), with more details listed in the 

previous work2. And the full set of ReaxFF parameters are available in the Supporting 

Information of the referenced work2. 

The structural comparisons with experiments was illustrated in Figure 3 and Figure S11 of 

the supplementary material in our  previous work3, showing the final predicted structures 

consistent with the experimental structure and stable under electrochemical conditions.  

The J-PtNW has a total number of 7165 Pt atoms per periodic unit cell. Since we need to 

extract the bridge nanocluster for DFT calculations, the Pt atoms close to the NW cell 

boundary were not considered. We considered various cutoffs and found that Rcut-off = 8 Å, 

led to convergence. The final J-PtNW investigated in this work has a total number of 6926 

Pt atoms, obtained by excluding the Pt atoms within 8 Å from the NW cell boundaries.  

A2. Surface Vector Based Methodology for Surface Extraction 

Here we extracted Pt surface from Jagged Platinum Nanowires (J-PtNW) using a surface 

vector based methodology. Similar approach has been used in our earlier works for Copper 

and Gold Nanoparticles4,5. The procedure is shown in Figure A-1 and can be illustrated as 

following:  

i) Cut a sphere of 8 Å radius around selected Pt atom (cPt) from the whole nanowire; 

ii) Sum up all cPt-rPt vectors pointing from the center atom (cPt) to other atoms (rPt) in the 

nanocluster. Take the negative norm of this summed vector as surface vector; 

iii) If all the angles between cPt-rPt vectors and surface vector are smaller than the given cut-

off angle, the selected atom is defined as a surface atom, else a bulk atom. The angle cut-off 

is optimized to 30° in our system. 

A3. Benchmark Calculations for Bridge Nanocluster Model 

We showed in Figure A-4 the benchmark calculations toward bridge nanocluster model 

parameter, R. We randomly selected a nanocluster cut from the J-PtNW, and calculated the 

adsorption energy of the reactants (H2O and O) and products (OH and OH) of O"45 

hydration. With the largest cut-off radius at 13 Å, our results showed that 8.0 Å is already 

sufficient to provide the accuracy of adsorption energy at 0.02 eV. Therefore, we consider 
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that 8.0 Å provides the best balance of accuracy and efficiency and used this cut-off 

throughout this work. The calculation details are illustrated in A4 of Supporting Information. 

A4. DFT Calculations using VASP 

We used VASP package6 for density functional theory (DFT) calculations, using the PBE 

functional including the D3 London Dispersion correction with the projector augmented 

wave (PAW) method7. We used the Methfessel-Paxton smearing of second order with the 

width of 0.2 eV. We took the bridge nanocluster from Pt (111) surface for the benchmark of 

kinetic energy cut-off and found 400 eV provides an accuracy of 0.01 eV in the adsorption 

energy and 0.01 Å in d-OO (Table A-1). Thus, we set the kinetic energy cut-off to 400 eV.  

Calculations including spin –polarization were performed for three bridge nanoclusters, Pt 

(111) and two randomly selected from J-PtNW. The results are compared to those without 

spin-polarization in Table A-2. The consistence of the results ensures our systems are 

nonmagnetic systems. Therefore, the calculations in this work do not include spin-

polarization. All geometries were optimized until the force converged to 10¥8 eV/Å, and the 

convergence criterion are 10¥¨ eV differences for electronic energy. For cluster calculations, 

a 22 Å	box is used and all Pt atoms are fixed. The benchmark calculations toward the choice 

of box size are shown in Table A-3. We only considered gamma point in these calculations.  

We showed in Figure A-5 and A-6 the comparison of d-OO with and without solvation. As 

we could see, solvation affects d-OO in a non-negligible manner, especially for the structures 

showing larger d-OO in range [2.70 Å, 3.50 Å]. Therefore, all our calculations in this work 

include solvation effect using the VASPsol implicit solvation model8. 

A5. Transition State Search and Free Energy Barrier Calculation 

We used the climbing image nudged elastic band (NEB) method in the VASP-VTST code9 

for the transition state (TS) search. We first optimized the initial and final states geometries, 

then we inserted eight intermediate images along the reaction path and carried out search by 

constrained optimization. A climbing-image calculation was performed to get to the real 

saddle point. Then, Dimer10,11 calculations were performed to further search the 

conformations around the saddle point. Finally, we verified the vibrational frequency of the 

transition state generated by the climbing NEB method, showing a single negative curvature 
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in the Hessian. The solvation effect is included with implicit solvation using VASPsol tool. 

The free energy barriers (G") for the 	O"45 hydration at room temperature (298.15 K) are 

then obtained by adding to the DFT electronic energy (E), the zero-point energy (ZPE), 

enthalpy and entropy contribution from vibrational modes of surface species. 

 
Figure A-1. Surface Extraction using Surface Vector Based Methodology. The angle 

threshold is optimized to 30° here. cPt Atom: selected center Pt atom; rPt Atom: other 

atoms in the nanocluster; red vector: surface vector. 

 
Figure	 A-2.	 (a)	 Pt-Pt	 radial	 distribution	 function	 (RDF)	 for	 J-PtNW.	 The	 RDF	 of	 Pt	 single	

crystal	 is	also	plotted	for	better	comparison.	As	we	could	see,	J-PtNW	show	broader	peaks	

with	the	first	peak	located	very	close	to	Pt	single	crystal;	(b)	Surface	sites	classification	based	

on	number	of	first-neighbors.	Here	the	cut-off	of	first-neighbor	is	chosen	at	3.50	AL 	based	on	

the	RDF	of	 J-PtNW.	We	could	see	 there	are	many	under-coordinated	and	over-coordinated	

sites	both	on	the	surface	and	in	the	bulk,	indicating	that	the	J-PtNW	is	extremely	disordered	

and	irregular.	
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Figure A-3. Surface Sites Visualization by Coordination. We colored all surface sites by 

their number of first-neighbor (coordination). The surface is extremely disordered and 

irregular with the coordination raging from 3 (under-coordinated) to 12 (over-coordinated). 

 
 

 
Figure A-4. Benchmark Calculations for Bridge Nanocluster Model Parameter, R. (a) The 

adsorption energy convergence benchmark as a function of cut-off radius for reactants, 

𝐻2𝑂 and 𝑂; (b) The adsorption energy convergence benchmark as a function of cut-off 

radius for products, 𝑂𝐻  and 𝑂𝐻 . As we could see, for both reactants and products, the 

adsorption energy already converged at 8 Å (marked as red rectangular). Therefore, we 

consider 8 Å gives the best balance between efficiency and accuracy and we used it 

throughout this work. 
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Table A-1. Benchmark calculations for the choice of kinetic energy cut-off. The bridge 

nanocluster from Pt (111) surfaces with H2O"45 and O"45 is used to calculate the d-OO and 

adsorption energy with different kinetic energy cut-off. We found the kinetic energy cut-off 

at 400 eV already gave the accuracy of d-OO at 0.01 Å and adsorption energy at 0.01 eV. 

Therefore, we used 400 eV as the kinetic energy cut-off for all the calculation presented in 

this work. Here, d-OO is defined as the distance between the O of H8O"45 and the O"45, and 

adsorption energy is defined as  E"45 = 	E∗(8&©& - E∗- 𝐸,8+-0.5*𝐸+8. 

 

Table A-2. Benchmark calculations for the choice of spin-polarization. We performed 

calculations including spin polarization for three bridge nanoclusters, Pt (111) and two 

randomly chosen from J-PtNW. The results are compared to those without spin-

polarization. The consistence of the results shows our systems are nonmagnetic systems. 

Thus, all the calculations presented in this work don’t include spin-polarization. d-OO and 

adsorption energy are defined in the same way as in Table A-1. 

	 Pt	(111)	 Bridge	Nanocluster	1	 Bridge	Nanocluster	2	
Spin	

Polarization	
	

Yes	
	
No	

	
Yes	

	
No	

	
Yes	

	
No	

	
d-OO	(AL )	

	
3.16	

	
3.15	

	
4.03	

	
4.03	

	
2.49	

	
2.49	

	
Adsorption	
Energy	(eV)	

	
-2.02	

	
-2.03	

	
-2.81	

	
-2.81	

	
-2.82	

	
-2.82	

	
	

Structure	
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Table A-3. Benchmark calculations for the choice of simulation box size. We put Pt (111) 

and Bridge Nanocluster 1 in the cubic simulation box of different size and found 22 Å 

already reached the convergence of both d-OO and adsorption energy. Therefore, all the 

calculations presented in this work used the cubic simulation box of size 22 Å. Here, d-OO 

and adsorption energy are defined in the same way as in Table A-1 and A-2. And Pt (111) 

and Bridge Nanocluster 1 are the same as in Table A-2. 

	
Box	Size	a/	AL 	

Pt	(111)	 Bridge	Nanocluster	1 
d-OO	(AL ) Adsorption	

Energy	(eV) 
d-OO	(AL ) Adsorption	

Energy	(eV) 
	
22	

	
3.15	

	
-2.03	

	
4.03	

	
-2.82	

	
23	

	
3.15	

	
-2.02	

	
4.03	

	
-2.81	

	
24	

	
3.15	

	
-2.03	

	
4.03	

	
-2.81	

	
25	

	
3.15	

	
-2.03	

	
4.03	

	
-2.81	

	
26	

	
3.15	

	
-2.03	

	
4.03	

	
-2.81	

	
27	

	
3.15	

	
-2.02	

	
4.03	

	
-2.81	

	
28	

	
3.15	

	
-2.03	

	
4.03	

	
-2.81	

	
29	
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Figure A-5. Solvation effect on d-OO. We showed here eight examples about how solvation 

affects d-OO. Here, d-OO defined in the same way as above and is marked in figure as well. 

The d-OO for Pt (111) is 3.15 Å without solvation and 3.36 Å with solvation. We could 

conclude here that solvation effect cannot be ignored. Therefore, all our calculations in this 

work include solvation effect by using the VASPsol implicit solvation model. 

	

Figure A-6. Solvation effect on d-OO. We compared d-OO of all sampled 500 nanoclusters 

with and without solvation. Here, d-OO defined in the same way as above. As shown in 

above plot, we could conclude here that solvation effect cannot be ignored, especially for the 
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larger d-OO in range [2.70 Å, 3.50 Å]. Therefore, all our calculations in this work include 

solvation effect by using the VASPsol implicit solvation model. 

	
Figure A-7. d-OO and Free Energy Barrier (𝐺D). We showed here three examples with Pt 

(111) as reference case. We found the nanocluster with shorter d-OO showing lower G" , 

while ∆𝐺  doesn’t correlate with the free energy barrier. Thus, we choose d-OO as our 

physical descriptor for performance evaluation throughout this work. The free energy barrier 

is defined by:  𝐺D	 = 𝐺ª� 	−	𝐺«¬D­�D®�Y, and the thermodynamic reaction energy is defined 

by: ∆𝐺 = 	𝐺¯°±X²­�Y	 − 	𝐺«¬D­�D®�Y 

 
Figure A-8. Same nanocluster with Pt-1 and Pt-2 swapping labels. Using the iteration 

procedure, we might generate the same nanocluster twice, but they are considered to be 

different in our definition because when binding 𝐻2𝑂 or 𝑂, Pt-1 and Pt-2 are not identical 

anymore. 
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Figure A-9. Plotting Sampled Bridge Center Back on J-PtNW. We plotted back the center 

of sampled 500 bridge pairs on J-PtNW (shown as red). As we could see, bridge centers 

are distributed throughout all nanowires, indicating that our sample is a good representation 

of the whole J-PtNW. 

 

 
Figure A-10. We calculated the free energy barriers at different temperature, and refitted the 

sigmoid function, 𝑘(𝑑-𝑂𝑂|𝑇)	 = 	𝐿/	(1	 + 	𝑒𝑥𝑝	(𝐴	×	(𝑑 -𝑂𝑂 − 𝑥w))) + 𝑏. 	 The curves at 

different temperature (298.15 K, 303.15 K and 318.15 K) are showed above, all with high 

𝑅8. 

Sampled Bridge Center
Pt Atoms
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Figure A-11. 15 Representative Structures of Triangle Group with different d-OO.	 	
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Figure A-12. 15 Representative Structures of Concave-Up Rhombus Group (dihedral > 

30°) with different d-OO. 
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Figure A-13. Correlation between strain and free energy barrier. To correlate the mechanical 

strain with catalytic activity, we plotted the G" toward strains of the selected 18 structures 

from Section 2.2.5. We used the average Pt-Pt bond length around the adsorption sites to 

represent the strain. Here for Triangle structures, we took the average bond length of the three 

Pt atoms forming the triangle. And for Concave-Up Rhombi, we took the average bond 

length of the four rhombi vertices. And for others, we took the average bond length of Pt 

atoms which are directly interacting with H2O and O. In general, there is a linear correlation 

between the catalytic activity and strain. The sites with compressive strains show lower 

energy barriers and sites with tensile strain show higher energy barriers. The correlation is 

weak under our definition with small R8 at 0.4595, but mechanical strain does plays a role 

in reduced energy barrier of 𝑂DXY hydration. 
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A p p e n d i x  B  

SUPPORTING INFORMATION FOR CHAPTER III 

B1. Gold Nanoparticle Synthesis using ReaxFF Reactive Molecular Dynamics 

Using the same approach as in our earlier work1, the 10nm gold nanoparticle investigated here is 

computationally synthesized by carrying out ReaxFF reactive molecular dynamics, where a multiwall 

carbon nanotube (CNT) is used as the catalysis support. We use the Embedded-atom-model (EAM)2 

to describe the interactions between gold atoms, and the Lennard-Jones (LJ) potential to model the 

interaction between gold atoms and CNT. To best mimic experimental chemical vapor deposition 

(CVD), gold atoms are added to the simulation box with the deposition rate of 3.0 Å/ns for 35 ns (the 

CVD experiment deposition rate is 2 Å/s for 50 s) and simulated annealing with the peak temperature 

at 1164K is carried out to heal the defect afterwards. 20 ps reactive molecular dynamics3 at 300K is 

then carried out to refine the final structure after 63 annealing cycles. The predicted XRD spectra and 

TEM images show that the simulated structure agrees with experiment. All the simulations are carried 

out in LAMMPS. The predicted TEM image and atomic structure of synthesized AuNP on CNT are 

also shown in the earlier work1.  

B2. Surface Atoms Extraction using the Surface Vector Method 

Surface and bulk atoms are distinguished by the following procedure:  for each gold atom, 

we first cut a sphere of 8 Å radius around the selected atom(cAu) from whole nanoparticle, 

as shown in Figure B-1. Then we sum up all the cAu-nAu vectors pointing from the center 

atom(cAu) to other atoms(nAu) in the nanoclusters and take the negative norm of this 

summed vector as surface vector (red vector in Figure B-1). This selected Au atom is defined 

as a surface atom if all the angles between cAu-nAu vector and surface vector are larger than 

the given threshold, which is optimized to 30 degree in our system, otherwise it’s defined as 

a bulk atom. The same 8 Å nanocluster model will be used later for DFT calculations and 

feature extraction for neural network(NN) inputs. 

B3. Datasets Generation from DFT Calculations 

All datasets presented in this work are generated from density functional theory(DFT) 

calculations in VASP package4, using the PBE functional including the D3 London 
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Dispersion correction and the projector augmented wave (PAW) method5. We set the 

kinetic energy cutoff at 400 eV and the Methfessel-Paxton smearing of second order is used 

with the width of 0.2 eV. The convergence criteria are 10¥¨ eV differences for electronic 

energy and all geometries are relaxed until the force converged to 10¥8 eV/Å. Only gamma 

point is considered in these calculations. We use the 8 Å nanocluster as described above for 

DFT calculations. The cluster with different adsorbates (CO or HOCO) is put into a 20 Å 

cubic box with all Au atoms fixed. The two physical descriptors we use here for evaluating 

the activity of a site are ∆E%&	and ∆E(&%& as described in Section 3.2.1. 

B4. Modeling Dealloyed Gold Surfaces 

To model the dealloyed gold surfaces as in earlier work6, we first cut an 10nm gold sphere 

from gold single crystal and randomly remove 25% of Au atoms on the surface. Simulated 

annealing with the peak temperature at 1164K is carried out to equilibrate the structure 

afterwards. 100 ps ReaxFF reactive molecular dynamics at 300K is then carried out to refine 

the final structure after 10 annealing cycles. All calculations are carried out in LAMMPS.  

B5. Neural Network Based Machine Learning Model 

We use the neural network based machine learning algorithm in this work. The overall 

structure of model topology is shown schematically in Figure 3-2. For a nanocluster with N 

atoms taking the cAu atom as center, the Cartesian coordinates of all atoms in the cluster are 

given. We first calculate the N-1 interatomic distances (𝑅|³), and transform them to a set of 

symmetry function values, which we call input features. Two main parts of features are two-

body terms(C_2) and three-body terms(C_3). As shown in Figure B-2(B), two-body terms 

are constructed by summing over all nAu atoms in the systems and three-body terms are 

iterated through all triangles taking cAu atom in one corner. The mathematical representation 

of two-body terms and three-body terms are also shown in Equation 1 and 2, where 𝑓	is the 

symmetry function. This type of feature representation method is derived from the work by 

Behler and Parrinello in 20077. We use localized piecewise cosine function as symmetry 

functions instead of Gaussian functions, as in Equation 3. These piecewise cosine functions 

are more localized than Gaussian functions with the value of zero outside their cutoff 

distance8,9. For the three-body term, we no longer need the angle of dependence with three 
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sides treated equally, which is also one of the reasons why we are using this simplified 

version of Gaussian functions. In our model, we use 12 symmetry functions for two-body 

terms and 3 symmetry functions for three-body terms, leading to a total number of 39 input 

features. We consider this gives the best balance of dataset size and model complexity. 

Having defined a set of features, a fully connected two-layer neural network with 30 nodes 

in the first layer and 50 nodes in the second layer are followed to fit two selected physical 

descriptors:	∆E%&	and ∆E(&%& . The total number of model parameters is 2801. The main 

idea is to represent the physical descriptors as a function of two-body terms and three-body 

terms with the weight parameters w and bias parameters b, as in Equation 4. 

 

 

 

 

 

Where, 

C_2, C_3 are the symmetry functions of two-body terms and three-body terms, and m, n, l 

are indices of these symmetry functions; 

i is the index of surface atom, and j	and	k are the indices of nAu atom (Figure B-1); 

d¶		and r is the center and width of symmetry function as shown in Figure B-2(A); 

F··		is the neural network function taking the two-body terms and three-body terms as 

variables and in parameter of weights and bias. 

 

Two-Body Term:	𝐶_2º,| = ∑ 𝑓º(³ 𝑅|³), (1)	

Three-Body Term:	𝐶_3º®¼,| = ∑ 𝑓º½𝑅|³¾𝑓®(𝑅|¿)𝑓¼½𝑅³¿¾, (2)³¿  

	𝐸| = 𝐹zz½𝐶_2º,|, 𝐶_3º®¼,|}; 𝑤, 𝑏¾, (4) 

Basis Function (Localized Cosine Piecewise Function): 

𝑓º½𝑅|³¾ = Â
�
8
cos(

«ÄÅ¥XÆ
°

𝜋) + �
8
	, 		È𝑅|³ − 𝑑ºÈ < 𝑟;

0, 						𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (3) 
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Figure B-1. 8 Å nanocluster model, where we use surface vector method to distinguish 

whether the cAu atom is a surface atom or a bulk atom. Same model will be used later for 

DFT calculations and feature extraction for neural network inputs.  cAu Atom: center atom; 

nAu Atom: other atoms in the nanocluster. 

 

Figure B-2. Mapping geometric features to symmetry functions. (a) Localized piecewise 

cosine symmetry functions. 𝑑º		and 𝑟 are the center and width of symmetry function. In 

our model, 𝑅­²�±ÊÊ is set to 8 Å;(b) Illustration of Two-Body Term and Three-Body Term. 
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iterated through all triangles taking cAu atom in one corner. We use 12 symmetry 

functions for two-body terms and 3 symmetry functions for three-body terms, which leads 

to a total number of 39 input features to neural network. 

 
Figure B-3. (a) Au-Au radial distribution function for Au nanoparticles synthesized by 

reactive molecular dynamics. The first peak appears at 2.80 Å and the second peak appears 

at 4.20 Å. We choose first-neighbor cutoff at 3.30 Å here; (b) Surface sites classification 

based on first-neighbor. We classify all 16919 surface sites into six groups based on their 

number of first-neighbor (coordination). Sites with 10 or 11 first-neighbor are not active 

for CO2RR since they cannot adsorb HOCO or show very high HOCO formation energy. 
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Figure B-4. Training log for CO adsorption energy, ∆𝐸*+ . Validation set is used for 

preventing overfitting (early-stop). At epoch 19000, the RMSE of validation set reached 

minimum at 0.0591 eV with the RMSE of training set at 0.0563 eV, where we stop the 

training. 

 
Figure B-5. Training log for COOH formation energy,	∆𝐸,+*+. Validation set is used for 

early-stop and prevent overfitting. At epoch 11000, the RMSE of validation set reaches 

minimum at 0.0593 eV with the RMSE of training set at 0.0616 eV, where we stop the 

training. 

Data Sets Coordination Data Set 
Size 

Final RMSE/eV 

6 7 8 9 

Training Set 276 276 276 276 1104 0.0563 

Validation Set 35 35 35 35 140 0.0591 

Testing Set 35 35 35 35 140 0.0521 

Table B-1. Partition of data sets and final RMSE for CO adsorption energy training, ∆𝐸*+. 

To have a complete training set, we constrain the ratio of sites from each coordination 

group to be equal within each set. All surface sites within each group are selected randomly 

and all three sets are totally independent. 

Stop	Training
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0 Coordination Data Set 

Size 
Final RMSE/eV 

6 7 8 9 

Training Set 224 214 209 212 859 0.0616 

Validation Set 25 25 25 25 100 0.0593 

Testing Set 25 25 25 25 100 0.0614 

Table B-2. Partition of data sets and final RMSE for HOCO formation energy, ∆𝐸,+*+. To have a 

complete training set, we constrain the ratio of sites from each coordination group to be equal within 

each group. All surface sites within each group are selected randomly and all three sets are totally 

independent. 

 

Figure B-6. Identification results of 300 sites randomly selected from all surface sites with 

the number of sites shown in the bracket next to the markers. The majority of randomly 

selected 300 sites are not from seven active groups, indicating that the seven groups are 

only concentrated above the straight line with a-value at 0.9194. 
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Type of Sites Top 300 Sites Random 300 Sites 

Step110 66 13 

Step311 24 7 

Step111 47 24 

StepUnder111 115 18 

StepTB 34 6 

StepUnderTB 11 4 

SurfaceDefect 3 3 

Others 0 215 

Table B-3. Comparison of top 300 sites and random 300 sites. The majority of random 300 

sites are not from seven active groups (as marked as star in Figure B-6), which implies that 

seven active groups mainly concentrate above and around the straight line. 

 

Figure B-7. DFT verification of CO adsorption energy for seven active groups. RMSE of 

machine learning model for CO adsorption energy is 0.0521 eV (dashed line is the error 

bound). We randomly selected 5 sites from each group and as we could see most sites lie 
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within the error bound, which support our model is accurate and on the other hand 

validate the seven groups are the sites with better CO2RR performance. 

 
Figure B-8. DFT verification of HOCO formation energy for seven active groups. RMSE 

of machine learning model for HOCO formation energy is 0.0614 eV (dashed line is the 

error bound). We randomly selected 5 sites from each group and as we could see most sites 

lie within the error bound, which support that our model is accurate and on the other hand 

validates that the seven groups are the sites with better CO2RR performance. 
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Figure B-9. 12 structures from Group of Step110. The center atom is pink, while atoms at 

the same layer are white. Atoms in the layer below white atoms are gold, while atoms one 

layer above center atom are cyan. Atoms above cyan atoms are gray and twin boundaries 

are dashed line. 
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Figure B-10. 12 Structures from Group of Step311. The center atom is pink, while atoms 

at the same layer are white. Atoms in the layer below white atoms are gold, while atoms 

one layer above center atom are cyan. Atoms above cyan atoms are gray and twin 

boundaries are dashed line. 
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Figure B-11. 12 Structures from Group of Step111. The center atom is pink, while atoms 

at the same layer are white. Atoms in the layer below white atoms are gold, while atoms 

one layer above center atom are cyan. Atoms above cyan atoms are gray and twin 

boundaries are dashed line. 
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Figure B-12. 12 Structures from Group of StepUnder111. The center atom is pink, while 

atoms at the same layer are white. Atoms in the layer below white atoms are gold, while 

atoms one layer above center atom are cyan. Atoms above cyan atoms are gray and twin 

boundaries are dashed line. 
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Figure B-13. 12 Structures from Group of SurfaceDefect. The center atom is pink, while 

atoms at the same layer are white. Atoms in the layer below white atoms are gold, while 

atoms one layer above center atom are cyan. Atoms above cyan atoms are gray and twin 

boundaries are dashed line. 
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Figure B-14. 12 Structures from Group of StepTB. The center atom is pink, while atoms 

at the same layer are white. Atoms in the layer below white atoms are gold, while atoms 

one layer above center atom are cyan. Atoms above cyan atoms are gray and twin 

boundaries are dashed line. 
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Figure B-15. 12 Structures from Group of StepUnderTB. The center atom is pink, while 

atoms at the same layer are white. Atoms in the layer below white atoms are gold, while 

atoms one layer above center atom are cyan. Atoms above cyan atoms are gray and twin 

boundaries are dashed line. 
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A p p e n d i x  C  

SUPPORTING INFORMATION FOR CHAPTER IV 

C1. Methods 

C1.1 ReaxFF 

The copper nanoparticle investigated in this study is computationally synthesized in the 

same way as in previous work1. The embedded-atom model (EAM)2 was used to model 

the interactions between copper atoms. To simulate the chemical vapor deposition (CVD) 

synthesis, copper atoms are added to the simulation box in a rate of 3.2A/ns for 30ns. After 

the nanoparticle condenses, a total of 38 simulated annealing cycles is applied to relax the 

initially formed structure. Each cycle involves a heating step from 300K to 1200K in 5ps, 

high temperature step at 1200K for 5ps, cooling step from 1200K to 300K in 5ps, and room 

temperature step at 300K. At last, the final copper nanoparticle is relaxed using the reactive 

force field3 at 300K for 20ps. 

C1.2 DFT 

The density functional theory (DFT) calculations are performed in VASP4. The PBE 

functional5 is used to obtain electronic energy. The plane wave basis up to a kinetic energy 

cutoff of 400eV is used to describe the wave function. Since copper is metallic, the method 

of Methfessel-Paxton of order 1 is used for smearing. The smearing width is 0.2eV. The 

convergence criteria for electronic energies is 1e-5eV, and the geometries are optimized 

until the force converged to be within an error of 0.01eV/A. 

DECO and DEOCCOH are calculated in the same way as in previous work1: 

DECO	=	E*CO	–	E*	–	ECO	

DEOCCOH	=	E*OCCOH	–	E[*CO,	CO]	–	0.5×EH2	

C1.3 Neural Network Machine Learning Model 

The neural network used in this study is of the type by Behler and Parrinello6. However, 

instead of summing up contributions from all atoms, only the contribution from the target 
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surface atom is used. In this study, instead of the atomic energy, the quantity to be 

fitted using machine learning is the CO adsorption energy. 

As we have shown earlier1, 7, the CO adsorption energy can be sufficiently described on 

the surface of the nanoparticle by considering all the atoms within 8A of the surface site. 

Thus, a copper cluster of 8A radius about each surface atom is extracted from the 

nanoparticle to compute the CO adsorption energy. Subsequently, the same cluster is used 

as the input to the machine learning model. Since we are only considering the chemical 

behavior of the chosen surface site, only molecular descriptions about that site are used as 

input to the neural network. Similar to our previous model, two-body and three-body 

features are used. The overall structure of the neural network machine learning model is 

shown as below: 

And mathematically, the above model is represented as follows: 

𝐺|Ï(2)	=	𝛴³𝜙Ï(2)	(𝑝|³),	𝐺|Ò(3)	=	𝛴³¿𝜙Ò(3)	(𝑝|³, 𝑞|³¿)	(1)	

𝐸*+=𝐹zz({𝐺|Ï(2),	𝐺|Ò(3)};	w,	b)	(2)	

Where 𝐺|Ï (2) and 𝐺|Ò (3)	 are the 2- and 3-body descriptors from the 2- and 3-body 

geometrical features 𝑝|³ and 𝑞|³¿, e.g., the 2-body term can include the interatomic distance 

𝑝|³ = 𝑅|³, and the 3-body term can include the angle formed by three atoms 𝑞|³¿ = 𝜃|³¿. 

Finally, the function 𝐹zz (G; w, b) represents the network that transforms the input 

descriptors G into a single value using the parameters with weights w and biases b. The 

final value calculated from the whole model is the CO adsorption energy, as represented 

by equation (2).  

The molecular descriptors as input to the neural network can be extracted in many ways. 

In this study, the set of piecewise cosine functions is used because it is a more systematic 

way of constructing locally based symmetry functions.  

𝑅Ï¿	=	𝑅|®®¬°+(𝛼−1)ℎ¿			where	a	=	1,	2,	…,	𝑀¿	

𝜑Ï
(¿)(𝑅º¼)	=	{1/2	*	cos((𝑅º¼−𝑅Ï¿)/ℎ¿Û)+1/2,	|𝑅𝑚𝑙−𝑅Ï¿|<ℎ¿	,Otherwise	(3)	

𝐺Ï,¼
(8)	=	𝛴º𝜑Ï

(8)	(𝑅º¼)	(4)	
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𝐺ÏÒÜ,¼
(2) 	=𝛴º,®𝜑Ï

(2)(𝑅º¼)	𝜑Ò
(2)(𝑅®¼)	𝜑Ü

(2)(𝑅º®)	(5)	

where:		

𝜑Ï
(¿)(𝑅º¼)	is	the	piecewise	cosine	function	over	the	interatomic	distance	𝑅º¼	

k	=	2,3	corresponds	the	2-body	and	3-body	terms,	and		

ℎ¿	=	(𝑅±²�¬°		−	𝑅|®®¬°)/𝑀¿	is	the	width	of	the	piecewise	cosine	functions.		

The set of piecewise cosine functions are described by 4 quantities: the inner cutoff 𝑅|®®¬°, 

the outer cutoff 𝑅±²�¬°, the number of two-body functions 𝑀8, and the number of three-

body functions 𝑀2 . Here, the 𝑀8=12 and 𝑀2=3 are used, corresponding to a set of 30 

unique descriptors for each copper cluster. Because each cluster is only of 8 angstroms, we 

can include all the atoms in the descriptor. Thus, 𝑅±²�¬° is set to 8A. Since only 12 two-

body functions are used, the width of each piecewise cosine function is relatively large, 

thus, 𝑅|®®¬° can be set to 0. Once the input atomic descriptors are assembled about the 

target surface site, it is fed through a two-layer neural network each with 50 nodes to 

produce one output, which is then fitted to the adsorption energy.  

C2. Implementation and Training of the Neural Network Model  

Once the structure of the neural network is constructed, the weights and biases of the neural 

network model are initialized using the Xavier initializer8. Then using the 8:1:1 split of the 

data set for training, validation and testing, we obtain the following RMSE as a function of 

training iterations, as shown in Figure C-2(a). The final RMSE of the training set, 

validation set, and test set are 0.111eV, 0.117eV, and 0.123eV. The overall distributions 

between the DFT energies and the neural network predicted values also agree, as shown in 

Figure C-2(b).  
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Figure C-1. RMSE of the training set and validation set as functions of the training 
iterations.  
 

 

Figure C-2. Distribution of the energies between the DFT values and the neural network 

predicted values for the training set, validation set, and the test set.  

 

Table C-1. Energy ranges between DFT and neural network for the training set, validation 

set, and test set. Because CO does not adsorb on certain unfavorable sites, these sites are 

treated as high adsorption energies. Due to this, the upper end of the range has much larger 

error to include the unfavorable outliers than the lower end. However, NN predicts the 

lower end of the ranges very well, indicating that good CO adsorption sites are well 

identified.  
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Table C-2. RMSEs of the training set, validation set, and test set as functions of the neural 

network sizes. The notation nx2 indicates two hidden layers with n nodes are used in the 

neural network. Although the training set and validation set are fitted in similar accuracies 

between different sizes, the test set error is smaller when the size of the neural network 

increases. The neural network size of 50x2 is used to allow enough flexibility.  

C3. Relationship between EOCCOH and C2 products selectivity  

Hori et al. (2002)9 reported the selectivity for C2 products on different crystalline surfaces 

of copper. Using their reported values and our theoretical *OCCOH reaction energy, 

EOCCOH, we found that the log of the ratio between C2H4 and CH4 correlates almost 

linearly EOCCOH, as shown in the following figure. This is not surprising because the 

reaction rates are typically exponentially dependent on energy as in the Eyring equation or 

Arrhenius equation. However, the good fit between the selectivity and EOCCOH implies that 

EOCCOH is a good descriptor for the selectivity of C2 products.  

 

Figure C-3. Experimental C2H4:CH4 ratio and the reaction energy of EOCCOH. Note 

that the logarithm of the ratios is used for the y-axis.  
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C4. Surface terminations of the Twin boundaries  

Based on the configurations of the adsorbed *OCCOH on the copper clusters, there are 4 

ways of placing the intermediate on the surface, as shown in the following figure, Figure 

C-4. This is due to two factors. First, the (100) surfaces intersecting at the twin boundary 

can be concave or convex, as indicated by the purple figure in Figure 4-4(a) in the main 

text and the side view in Figure C-4. Second, the plane formed by the adsorbed *OCCOH 

can be in the same plane as the page, or perpendicular to the page, as shown in top view in 

Figure C-4.  

 



 

 

111 
Figure C-4. The four configurations of *OCCOH binding at the twin boundary of 

copper. (a): *OCCOH adsorbed in-plane at the concave site; (b): *OCCOH adsorbed in-

plane at the convex site; (c) *OCCOH adsorbed out-of-plane at the concave site; (d) 

*OCCOH adsorbed out-of-plane at the convex site.  

C5. Prediction of Faradaic Efficiencies  

The data for currents 𝐽*8©  and 𝐽,8  as functions of the grain boundary density 𝑑àj  are 

obtained from Figure 3(d) and (g) of reference 10. First, since 𝐽,8  does not depend on 𝑑àj, 

and the terminal value is 3.1 mA/cm2 for large 𝑑àj, we then keep 𝐽,8  constant for this 

approximation. For C2+ production, 𝐽*8© is fitted linearly as in the experimental data. Then 

we have:  

𝐽*8© = 0.18 * 𝑑àj  – 0.399  

𝐽,8 = 0.31  

Where 𝑑àj is in units of µm-1, 𝐽*8©  and 𝐽,8  are in units of mA/cm2.  

Our periodic structure has twin boundary density of 649.5 µm-1. Thus, the faradaic 

efficiency is then𝐽*8©   / (𝐽*8©   + 𝐽,8) = 97.4%  

Also, [11] reported a copper structure with a large abundance of twin boundary sites with 

spacing of 5~70nm, which corresponds to densities of 14.3 to 200 µm-1. The corresponding 

faradaic efficiencies are 41.2% to 92.0%.  

The results are summarized in Figure 4-5 of the main text.  
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