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Abstract

A number of organic molecular crystals contain
topologically linear chains of interactﬁng molecules,
coupled relatively weakly to the rest of the crystal
lattice. The hamiltonian operators for several systems
of this sort are represented as quadratic forms in Bose
or Fermi creation and annihilation operators. A
theorem is presented which permits the diagonalization
of these forms by linear canonical transformations of
the operators. This method is applied to the study
{using a guasi=boson approximation) of the low=-lying
energy states of a chain of spin-% ions with the

hamiltonian

+ Z J's.. s

H = 2 ‘JS”S s 2
i i even ? Tl

1 odd 1l
where J > J > 0. The effects of anisotropic coupling
and of an external magnetic field are included.
Qualitative agreement with existing experimental data

on crystals containing such chains is good. When
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J' = J, the system 1s the Heisenberg antiferromagnet:
the results obtained in thig limit =2re in good
guantitative agreement with theoretical tresatments of
that system.

A fefmﬁon repregsentation of the electronic
states of certain linear-chain molecular crystals is
developed. The method of canonical transformetions
can then be applied to crystals with strong inter-
molecular interactions due to dispersion forces or
to intermolecular charge transfer. The itrestment of
dispersion interactions extends the Davydov singlet
exciton theory into the range of strong coupling, whers
the elementary excitations of the system may have
unusually small energies and are associated with
distributed ferroelectric~type electronic polarization.
Change transfer effects in linear chaing of alternating
donor and acceptor molecules are treated, with cooper-
ative Coulomb effects included in a selfmconsistentt
field approximation. The energy spectrum of the current-
carrying elementary excitations 1s calculated. The
calculation is also applicable to the problem of the
electronic states of N/2 mobile electrons on a regular

linear array of N molecules.
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Chaptef I - Introduction

Much of the attention devoted to an understanding
of the solid state of matter has been concentrated on
inorganic crystals. Organic crystals, however, have
received comparatively little study; phenomena peculiar
to them are generally less completely understood. Power-
ful tools for the analysis of the electrical and magnetic
properties of inorganic crystals are provided by the high
symmetry of common periodic arrangements of simple mole=~
cules or ions, and the concepts of free or nearly=-free
electron theory have permitted at least a general under-
standing of the phenomena most frequently encountered in
these systems. These techniques are less satisfactory
for a complete understanding of the behavior of crystals
ﬁade up of complex organic molecules. The properties of
organic crystals are strongly influenced by the cooper=-
ative behavior of large numbers of their constituent
elements. A study of evén the simplest collective proper=—
ties of some organic molécular or free-radical crystals
shows striking effects of such cooperative behavior, and
can reveal, in fact, the existence of qualitatively new
phenomens.

It is a significant difference betweeh organic

and inorganic crystals that the former are composed



of‘generally less symmetrical units. As a consequence
the structures in which these units arrange themselves
tend to possess lower symmetry than the arrays most
tjpical of inorganic crystals. Many known aromatic
crystals exist, for example, each molecule

or ion of which interacts most strongly with only one

or two of its neighbors. Crystals with these properties
have been labelled class I and ciass II, respectively,
by McConnell and Lynden—Bell.(l) A class II crystal
contains topologically linear chains of ionsg, with
couplings albng each chain stronger than couplings of
the chain to its surroundings in the crystal. Such
systems present a number of appesling problems. The
mathematical representation and analysis of these
problems are simplified by their one—dimensional charac—
ter, The calculations presented here may provide insight
into the effects of more general three~dimensional
processes; at the same‘time they should be directly
applicable to actual physical systems.

In organic molecular or free=radical crystals,
the interactions between the molecules or ions are
generally small compared with their internal energies.
The simplest electronic excitationg of these gystems

correspond to excitations of single molecules or ions.



The presence of intermolecular interactions results in
the existence of non=zero matrix elements of the hamil-
tonian describing the system among states differing in
the locations of excited molecules. Consequently, the
degeneracies agsociated with the distribution of
exéitations are lifted, and the elementary excitations
of the system are distributed throughout the crystal.

A localized excitation intrecduced at a point in the
lattice will tend to move. Such mobile excitations

are known as excitons.

Another result of interactions between molecules
is that in general the number of excitations is not
conserved. The ground-state energy of the system is
lowered by a virtusl excitation and de-excitation of
the molecules. The lowering of the ground-state energy
may be thought of ss the zero=-point energy associated
with the elementary excitations of the system. The
elementary excitations are "collective” in the sense
that the virtusl processes introduce a more-than-pair-
wise correlated excitation distribution in the energy
eigenstates.

These general characteristics of the solutions
of the many=-body problems presented by molecular crystals

may be seen in the results of several calculations
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concerned with particularly simple physical systems.

The method used here for their investigation relies on
the fact that it is possible to represent the hamiltonian
operators governing the behavior of a number of systems
as guadratic forms in creation and annihilation operators
obeying either Bose or Fermi commutation relstions.
Quadratic forms in boson or fermion operators may be
diagonalized by linear canonical transformations of

the operators. Such transformations have been used

in treating many phenomena, notably those associsted

with superconductivity, superfluidity, etc. (27 The
following general theorem may be stated. Let Bi be a

a set of boson or fermion operators satisfying the

commutation relations

[Bi: Bjji =0 2
. ¢
[Bi’ Bj]i = aij .

Consider the hermitian fomm

F=F+L}\BB«~ 2@ B B 20*3’*3*
o i,J ijiJ 1,7iJ i3] 1,31531



with

The canonical transformation
B, u B +v*Bh 1
i° 2‘( ol p pip" ? (1)

with the conditions

Eu.=ZA..u %.
ppl ~ J Tijed 13703 ?
P pl 15 pj J 13 0J
puts F in the diagonal form
F=F = LE EB’r .
0 p,i P pl 2‘ p

The upper sign of the *'s refers to fermions, the lower
to bosons. The conditions ensuring that the transfor-
mation is canonical snd a proof of the theorem are given

in Appendices A and B.
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{A diagonelization process for Bose operators

(4)

similar to the above is referred to by Agranovich
as due to Tyablikcv. A book in Russian by Bogoliubov(5)
igs cited. The present author has been unable to locate

a copy; the material in the appendices was independently
derived.)

Canonical transformation of fermion operstors
having the form given in equation (1) are generally
known as Bogoliubov=Valatin transformations.(6’7) A
widely used specisl case of the general transformation
is one which mixes only specisl pairs of creation and

(3,8)

annihilation operators. From a given set of fermion

or boson operators Bk’ Bﬁ one may form new operators

(2)

which have the same nommutation relations as Bk, Bg if
W &'unkvk =0,
”~

2

The inverse transformation is
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B, = u » i gt
k = %™ T VP ¢
The single index k is written so that for each k there

is one other with the same magnitude and opposite sign.

This transformation may be used to diagonalize the form
F= Z?AkB;Bk v Z‘CkBkB-k * % G;B:kB;
with
Ay =A, end C =%C_ .
The eigenvalue equations are
(B, =4) w 22 Clv =0
(B - A) v 22C m =0

with solutions

B, = (a2 x4 o, P},



2 "% k
‘uk’ = E ?
2 k
E, = A
2 k
f v I =] I .
Ek

The diagonalized form may be written
) \
F = -é%mk -Ak‘; *%Ekﬁkﬁk .

It was first shown by Valatintg) that in the
fermion case the vacuum state of the new operators,

defined by

iﬁk ]cp)::O,

is given by
= ” {p% V*"f -
le>=yso (up > kB-kBk) 10>,

where | 0 > is the vacuum of the original operators:
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A similar representation for the new vacuum state in
the boson case is not difficult to find. We try a

similar product of commuting factors:

where

 t.n

T = Oank (B-kBk) -

k™ n

ni~—18

For k greater than zero we have

®

B 1o }0 (m*1)uf vi ™ )" o
Mk,k] > = by [im uran Lk T vkam,k] K o) 10>

E
which vanishes identically when

v * m
. _ 1 Vk \
m,k m! ui ok ’

The same condition ensures that

- 0 =O a
B T 10>

k



The state | ¢ > is normalized by regquiring that

3
< 0 T T O0>=1
| kk] s

which gives

The normalized vacuum state may then be written, to

within a phase factor, as

v*
k
> = 11 I ¢ Bt.Br 1) 10>,
ICP k> 0 ?Jk] XP[;-E -kk] 1

Both the simplified transformation of equation
{2) and the more general form in egquation (1) are used
in what follows to diagonalize quadratic forms which
represent the hamiltonian operators for a variety of
one-dimensional arrays of molecules undergoing inter-
actions typical of organic crystals. Chapters II and III
treat linear chains of free radicals coupled by the inter-
action of neighboring electronic spins, the strength of

the coupling alternating along the chains. Crystals
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containing such chaing are exemplified by Wurster?s blue
perchlorate. The ground=-gtate energy and the energies of
the simplest elementary excitations, which are triplet
{spin—one) excitons, are calculated in a quasi=boson
gpproximation. The isotropic part of the spin hamiltoni=-
an is treated in Chapter II; the effects of anisotropic
interactions are included in Chapter III. The results of
these calculations are relevant to the problem of the one-
dimensional Heisenberg antiferromagnet. Chapter IV ap-
plies some conclusions of the previous chapters to the
examination of a possible explanation for the observed
dimerization of elements in the chains at low tempera-
tures. In Chapter V is a treatment of linear systems in
which intramolecular charge resonance is found. The
fermion representation developed there permits the‘ex-
tension of the Davydov singlet exciton theory into the
region of strong dispersion forces, where several inter-
esting features appear. The final problem, considered in
Chapter VI, is concerned with the effects of intermolecu-
lar charge transfer in chains of alternating donor and
acceptor molecules. The cooperative Coulomb effects are
treated in a self-consistent Hartree-like gpproximation.
The calculation is also applicable to the problem of the
eleqtrgnic states of N/2 mobile electrons on a regular

linear array of N molecules.
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Chapter II - Triplet Excitons

A number of molecular crystals containing linear
chains of free radicals are found to have electron-spin-
resonance spectra characteristic of triplet excitons.

It is the purpose of this section to examine a model
which should represent a class of these physical systems.
In particular, the treatment should he applicable to
crystals of Wurster's blue perchlorate, a compound which
has been studied experimentally in some detail.

Wureter's blue perchlorate is a solid ionic free
radical salt. Its room=temperature crystal structure

has been determined by J. D. Turner and A. C. Albrecht.(g)

For the purposes »f this discussion, the most significant
feature of its structure is the presence of linear chains
of the Wurster's blue ion. This positive ion {known %o

chemists as the N,N,N',N' tetramethyl-p-phenylene diamine

cation),

(CH,)N N(CH,),
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carries a single unpaired electron, which resides es=-
sentially in p-orbitéls centered on the two nitrogen
atomgs. Figure 1 shows a projection of the crystal
structure at room temperature. The Wurster's blue
ions, seen edge—-on as straight lines, form regular
chains parallel to the axis labelled 8, Each WB ion
is surrounded by six perchlorate ions. The perchlorate
ions do not lie in the plane of the chains.

At a temperature of 186°K, WBP exhibits a phase
change. This is apparently due to a dimerigation of the
positive ions. The spacings of the ions along the chains

(10,11)

alternate at low temperatures. The transition is

marked by a sharp decrease in the magnetic susceptibili=
ty.(12’13) At low temperatures, the spin-resonance spectra
show absorption peaks corresponding to the existence of

S =1 excitations;(llﬁl3alh)

the absence of hyperfine
structure in the spectra indicates that the excitations
possess a high degree of mobility.

The interaction of adjacent ions in the chains
is dominated by the coupling of their electron spins.
This may be represented by the spin hamiltonian

2N 2N

2N
H=l J3S -8 + ) Ds%? 4 },E (s%® - g¥37 ).
d=1 i i i+l i=1 1 i i+l i=1 1 1 i+l i i+l
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Here g; repregsents the spin on the ith ion, and Ji >0
is the usual exchange integral. At high temperatures,
the quantities Ji’ Di and Ei are independent of i. The
gsystem is a class II crystal, and the spin hamiltonian
is that of a linear Heisenberg antiferromagnet. At low
temperatufes, where the interionic distances alternate
along each chain, the quantities Ji’ Di and Ei should
also alternate; the system is then in c¢lass I. It is
expected that under these conditions, the close pairs
tend to be in singlet configurations, which leads to the
observed decrease of the magnetic susceptibility. Each
chain may then be thought of as a (slass II) collection of
interacting ™molecules™ with singlet ground states and
triplet excited states. The transition between these
two structures is a cooperative one, since the formation
of one singlet pair encourages the pairing of its
neighbors: the phase change should be gquite abrupt.
We now wish to examine more closely the properties of
the crystal in its low~temperature configuration. In
a later section we shall consider a possible explanation
for the occurrence of the phase change.

The system described above may be studied in terms

of a formal representation which is similar to that

developed by Agranavich(h) for the study of general
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crystal excitations. Each chain is considered as an
array of N pairs of strongly coupled spins which inter-
act with neighboring pairs through a weaker spin couplinge.
For the moment we shall consider only the isotropic part
of the hamiltonien; the effects of anisotropy are easily

included later. The hamiltonian may be written

N N

He L H &+ L T (3)

p=1 P psp =1 P>’ 3

- —~
H = J S - S
2 psl  Tpor 3
> -—

V . = I J' S » S .

Jd > J'> 0 2

where r and 1 represent the right-hand (toward p = N)
and left-hand spins of the pairs. We take V =V

Nol 1,2
and assume cyclic boundary conditions. The eigenstates
of Hp are | o >, the antisymmetric singlet with energy
- 3/4 J3 and | B >, | fl >y | f, >, the symmetric triplet
states with spin projections 0, #l, =1 respectively and

energies * J.



A basis set of states describing the system is

ses N f_)oaa>' =1 XY N'fsa ffo
] P{ » P s » ; 38:1:2
There are four occupation numbers Np(f) for each value
of p. Each is unity if the pth pair is in the state f,
or zero if it is not. Since each pair can be in one and
only one state at a time, the occupation numbers must

satisfy the conditions

Z, ‘Np(f) = Z;f Np(f) =N . (4)

Following Agranovich, we define operators acting on these

states:

b

] : > omm G { ! | N "} - R °
ptf’ ]aa» Np{f}@s@) = Npg (f ) 13»9 lip(f} SP,p”ﬁf@f’ 298>

'bfaf'.’.> L)

P

AR N (£)eee> = (10 ()] o M AEDYE, o

A single bpf acting on a state which satisfies the con=-
ditions (4) will, of course, yvield a state which does not
satisfy these conditions. Any pair bpfb £ however,

P
preserves the properties (4), and all physically meaning-
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ful operators are made up of such pairs. It may be seen

that

bt b =N (f
pf pf p” ?

and that the operators obey Pauli statistics; that is,

fbpfa bpifij =0 3

[byes Bheprd = 0 for (p,f) # (p', £') ;

t +

The hamiltonian (3) may be written in terms of these

operators as

sz

psf p P
*’p)-‘nt f’%rfufnt< ££! prp, ]f"f'">b;fb;'f'bpf"bp'f'".
L ) ’ _
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The Pauli statistics of the operators bp

the natural ones for single-molecule excitations in a

£ are

crystal. The commutativity of operators with different
indices reflects the independence of the sites in the
original basis, while the unit anticommutator of an
operator with its hermitian conjugate follows from the
fact that each molecule is in one and only one state.
This mixture of boson- and fermion-llke proparties,
however, can make the application of many common field
theoretic techniques quite difficult. Two different
attacks on such difficulties have been made by H. L.
Davis (15) and by Mills, Kenan, and Korringa(lé) in
their treatments of the Heisenberg antiferromagnet.
Each method succeeds in making possible a more or less
direct use of formalismg developed originally for the
problems of quantum electrodynamies; both, however, pay
the price of increased computational complexity. An
interesting inversion of this point of view is provided
by Whitlock and 211361(17}, who approximate the effect
of hard-core potentials in dense boson systems by a
change from Bose to Pauli statistics. The techniques
uged here, while less general than those adapted from

field theory, are perhaps more clearly related to the



~1Q=

physically important processes occurring in our model
systems.

Let us define the approximately Bose operators:

T
P8 bpabps ?

“ws

_ oyt
Bpr, = PpoPpr,

B b b
pf2 Pa pf2

L}

These have the properties

T
Bpr

thfs Bpf3 =0 {5b)

-

&

, Bt = 1-2N1{f) - 4 N (£ . (5
thf Bpf] p( ) e p( ) {5¢)

{Here, and in what follows, we shall take the index f

not equal to a.)

All combinations which differ in the indices p and f

+
commite. The operator Bpf raises the pth pair of spins
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from their singlet ground state to the component of the
triplet specified by the index f. We may also introduce

the obvious notation

Z _ -

Sp = Jp(fl) Np(fz} ’

* . gt 4 pt

Sp = Ppr.Ppg ¥ Bpp Bpr, >

S et B . +3B'.B .
P ps “pf pf2 P8

L}

S 2,8 % - (s¥+8 7)/2, and 5.V = i(S” =57 )/2 are
p ? Sy = (S, +8,70/2, p (S5 =5 /2 ar
the spin components of the spin-one triplet excitation
of the pth pair of radicals.
The explicit representation of the isotropic

hamiltonian in terms of these operators is:

He=H) "H, *H (62)
=LE®+H +H »
f % p THg T Hg (6b)
\ +

H =JLB'B
B P PB p8

- (6¢)

-3 L (&t +3 ) (8t + B
L P { p8 p8 ( p*l,B P’*’l;B) ?



Ho=3) (8% B B'. B . )
£ Opf £ Bpg
£ P 1 P44 PI_P 2
by % {(Bpfl pr ) Ppu,e T Ppay,e ) (8
+ - gt
Bor = Bpe MBpaar = Bpup,s )} ;

Bo=d5 L s Bts . °
2 4 p p*l.a Cpe 41 |
ah + + =,
- - 5.8t
+2p Bpue, Bpfz_s_p_l *Blr Spr - Sp Blay,e)
/2 /2 /2 /2

+ hermitian conjugate ;

B85

»

-P“'C-o

P""l

Hl’ Hz, and H3 are of successively higher orders
in the operators Bpf and their hermitian conjugates. In

physical terms it can be said that Hl is of the order of

the occupation numbers Np(f), while H, and H, are of

2 3

higher orders. Thus at very low temperatures, where the
expectation value of any Np(f) is small, H, is the most
important part of the hamiltonian. There are three types

, . + . .
of terms in Hl’ The products Bprpf give the contri-
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bution to the crystal energy of the triplet excited
states of pairs of spins. Products such as B;pr*i,f
represent transfer processes, in which an excited
triplet gives up its energy to a neighboring pair.
These terms describe the mobility of the excitations
and lead in the usual way to a band structure in the
energy spectrum of the system. Products such as
B;fB;*Q,f represent directly the simultaneous exci-
tation of two adjacent pairs to their triplet states.
This process also affects the mobility of the exci=-
tations, even at very low excitation densities.

Hz represents processes in which a pair of spins
in its singlet state is excited to a triplet state next
to an already present excited pair. The spin state of
the latter pair may or may not change, depending on the
spin state of the newly excited triplet. HB’ finally,
represents the interaction of neighboring excited pairs.
The interaction hasg the'standard'§*§ form.

At very low temperatures, the operators Bpf
closely resemble boson operators, since the expectation
value of the right-hand side of squation (5¢) is very
nearly egqual to unity in 2ll the states of interest.

This fact suggests the use of the so-called "quasi=-boson™

approximation. Ve may define operators mpf which obey



exact Bose commutation relations:

iy LX) .N f) 288 >
?*Efﬂ I p{

= ,/ﬁp,(f ) 1 ava Np(f) - 6pp16ff1 200 > »

Thege operators are defined in a space which is much
larger than that of the cperators Bpf; states are in-
cluded which do not satisfy equations (4). An operator
ﬁpf {1 = m;fmpf), however, has the same matrix elements
as Bpf among the physically realizable states. If the
hamiltonian is rewritten with each Bpf replaced by

B 1 = m;f%pf), its matrix elements within the physical
space zre unchanged, and it connects physical states
only with other physical states. Furthermore, the non-
phygical states in the basis of the %pf's are in general
gstates with larger numbers of excitations. Thus one
would expect the lowest eigenstates of the new hamil-
tonian to lie mostly in the physical subspace of the
entire basis. In considerihg states with low excitation
densities, those that are important at low temperatures,
we may drop 2ll terms in the hamiltoniasn of higher than

second order in the operators ﬁpf and m;f. This procedure
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is formally equivalent to retaining Hl’ equation (6),
and sssuming the operators Epf are actually Bose oper-
ators.

We have now an approximate hamiltonian which
is a Hermitian quadratic form in operators obeying Bose
statistics. This may be diagonalized by & linear
canonical transformation; the general method is given
in the Appendices. We shall treat the two parts HB and
Hf separately. For the former, an appropriate trans-

formation is given by

ey 1kp
B . N Z;[ua(k) e~*¥p

- {k) e~ikpgt
P B

Bk sk 1.

The imposition of cyclic boundary conditions restricts

the wvalues of k to

kzo,;‘:ﬁﬂ, ﬁ&%a“*i%ﬂ for N odd ,

k=0, % %ﬂ 5> ves *N=2 5. 4 for N even .
N

The inverse transformation is

) eilp ok - '
Bog = N %e [ge(k) Bpg %(k) BPB 7 .
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The transformation is canonical==that is, the new oper=-

ators BZk s Bsk obey boson commutation relations—-when

ua(k) vgl=k) = u (k) v (k) ,

which we shall satisfy in this case by choosing uB(k)

and VB(k) each real and even in k; and when
2 , 2
lug ) 1% = v 0 12 m

The secular equations ensuring that HB is diagonzlized

by the transformation are

k -4l -4 o
EB{k) “g( ) = (g - cosk) uB(k) = cosk vglk) ;

-Ea(k) va(k)

L}

(J = ' cosk) v (k) = I cosk u_(k) .
2 B 2 B

Solutions are

Ea(k) = +/J° = J J'cosk 3 (72)

. P "
ug (k) = */_EB{?E*{L o= oosk v, (k) = sfu (K)°-1 .
‘ B {7v)
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Under this transformation HB becomes

- ) - | +
H %%[Es(k) I *% B () BLE .

It is instructive to perform the diagonslization

of Hf in two steps. We first introduce the operators

This transformation separates Hf into two forms, each

similar to HQ:

) .

pae]
i
o~
-5
]
<y
£ )
o~
w
-

=J LB B + 8t ) (B "
8 p PdPS LT pd 96‘}{9*136 Bp*lgﬁ



These are put in diagonal form by the transformations

B = N'% 2,[u (k) e1kP B + $ (k) e~ikp st ]
Py ko Yk ¥ vk

pr = N_% % [uﬁ'{k) 2ikp B * V (k) e 1kp

sk 6k ]

where uy(k) = uﬁik) = ua(k)
and *ﬁ‘é(k) = -‘Vy(k) = Ys(k}

The energy spectra of both forms are identical with that
of Hé

= E_(k) .

Ey(k) = B (k) 5

The three branches of H. may then be written

1
— ﬁ = T ?
= o h
1 %‘Ep e %[Ea(k) BexPex *E, ) BBy
(8)
T
+E (k) Bak sk ]l .
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The quantity ea represents the decresse of the
ground=-state energy below that of the vacuum state due
to the virtual creation and annihilation processes.

8k
as creation operators for the three types of spin-one

The new operators ng, B:k’ and B} may be considered

elementary excitations of the system, which 2are non-
interacting in this approximation. The energy degener-
acy of the three branches has not been removed, of
course, since the hamiltonian considered i1s isotropic.
Equation {8) has been left in its more explicit form,
however, since the inclusion of non-isotropic inter=-
action will affect the separate terms differently.

The constant terms in the preceding expression
for Hl represent the ground-state energy of the system.

They may be written explicitly as

A

S -
= = o
e %Ep reg == 9/L N +]

w~

Es {k) °

In the limit of large N {the approximation made can be
valid only for large N), the summation over k may be

replaced by integration,



and, since all terms are even in k, we have

™
g =-9 NJ + 3N 1 -9 cos k]% dk ,
4 2 o J

or

8NJ=-2*1V1*£.E 29" . {9)
L = J J +J°

Here E {A) is the complete elliptic integral of thé
second kind:
/2
E(x) = | 1 - A% 2in? x]% dx .

The ground-state energy given by equation {9) is plotted
in Figure 2 as a function of J'/J. Also shown in this

figure in the approximate ground-sgtate energy obtained
(18)

by Bulaevskii » using a representation of the
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hamiltonian quartic in fermion operators and a zero-
tempefature Hartree=Fock approximation. The curves are
gqualitatively alike, with the greatest differences
appearing for large J°',

Some care mustrbe taken in egtimating the accuracy
of this treatment. The approximate eigenstates obtained
do not lie wholly in the subspace which represents
possible physical states of the system; the admixture
of unphysical states increases as J' approaches J. The
method used here relies fundamentally on the fact that
there is a difference between J' and J. The greater
this difference, the tighter the binding of the singlet
states of pairg of spins relative to the triplet excited
states and to the interactions between pairs. One -
expects the results of the calculation to be most
accurate when J'/J is quite small compared to unity.

The following characteristics of the gsolutions obtained
give some indication of the applicability of the approxi-
mation techniques.

For small J', the predicted ground-state and
single-excitation energies agree with perturbation theory
results through quadratic terms in J'/J. The solution

ig, in this sense, exact in the limit of small J'. When
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J'/J becomes larger, the unphysical states in the space
spanned by the boson operators contribute more signifi-
cantly to the ground state. This unfortunately makes
impractical attempts to estimate higher-order corrections
to the energies, since the matrix elements of higher=
order terms among the non-physical states are overesti-
mated to a much greater extent than thoge of the
guadratic terms.

A measure of the consistency of the technique is
provided by the fraction of the N pairs which are in
triplet configurations in the calculated ground state.
This is given by

LN =3, 2

sample values of which are tabulated in Table {1). F{(iA)
is the complete elliptic integral of the first kind:



Table (1)

Fraction of spin pairs excited in the calculated ground

state versus J'/J.

J'/J Fraction excited
0 0

0.111 0.0021

0,250 0.0061

0.429 0.0198

0.667 0.0612

0.818 0.1242

0.980 0.4356

1.000 + ®
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o -\11 - 22 gin? x

It was assumed that this quantity was small; in fact

it remains reasonably small for a large range of J'/J,
even though it does Aiverge in the limit of equal J

and J'. Anciher indication of consistency is tha fact
that the energy of the lowest=lying excitation is
greater than zero for all J' less than J, so that at
very low temperatures the number of excitations should
be small. The ratio of J' to J in Wurster's blue
perchlorate at low temperatures is difficult to measure
experimentally. Comparison of the observed electron~
spin-resonance spectra with the results of a theoreti-~

(19) indicates that J'/J may

cal line-shape calculation
be a few percent at most, so that the present calcu-
lation should indeed be applicable to this system.

The results of‘this calculation are most open
to gquestion when J' a?proaches J» In this limit, the
system is simply the one~-dimensional Heisenberg anti=-
ferromagnet, which has been the subject of a great many

investigabions.{20°27) Comparison of the results obtained

above with various treatments in the literature is guite
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interesting. An approximate value for the ground=-state
energy of a linear antiferromagnet is given by equation
{9) with J' = J, and is listed together with the exact
énd approximate results of several different calcu=-
lations in Table {2). The agreement between the exact
value and the present approximation is surprisingly
good. The nature of the energy spectrum of the low-
lying states also agrees well with that found by other
authors. There is no gap in the spectrum for equal J
and J'. The dispersion relation for the}lowegt energy

band is found from equation (7a):
E(k) = /2 J ]cos% -

This may be compared with the approximate results of

Anderson,(zl)

E{k)

L}

J |cos k |
2

(18)

and Bulaevskii,

E (k)

]

»

(L +2)J Jcosk |
W 2
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Table {2)

Ground=-state energy of the linear Heisenberg antiferro-

magnet, as given by several different calculations.

Calculation = &/NJ

Radriguez(23) 0.8393

Oguchi(27) .862

Ruijgrok and <8646
Rodriguez(zh)

Bulaevekii (18) .870

Exact solutionize) 8863
Present work 8998
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and with the exact value proposed by des Cloizeau and

E k - ﬂ J cos _1: »

An advantage possessed by this calculation is the fact
that the correct degeneracy and spin of the lowest
excited states follow directly from the original repre=
sentation used. A final comparison with the exact
antiferromagnetic ground state, the calculation of the
short-range order, will be possible when the effects of
anisotropic interactions are included in the following
chapter. The agreement of the value found there for
the short=-range order parzmeter with the exact value
calculated by Orbach{zz) is very good.

All in all, it appears that many of the approxi=-
mate conclusions provided by this calculation are guite
accurate. The approximation technigue, however, was a
fairly crude one, ond several properties of the solutions
are patently wrong. The implication is that somehow the
total neglect of higher—order interactions was largely
compensated for by the introduction of erroneous

statistics in the gquasi-boson approximation. Why this
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should be so0 is far from clear; a satisfactory expla-
nation will probably not be found until the exact

solutions to this problem are better understood.
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Chapter III - Anisotropic Interactions

7 The spin~-gpin coupling considered in the pre-
ceding chapter was the isotropic Heisenberg interaction.
The effect of an anisotropy in the interaction may be

found by including in the spin hamiltonian terms of the

form
h)
- o & z
and 2N
H = s %s X .87 v . 0
E i Z'l Ei ( i i+ 1 Si Si + 1 ) (10v)

As before, we assume that Di and Ei alternate in

magnitude:
D i odd
D, =
1 D's D i even ,
E i odd
E. =

1 E'<E i even .

The new terms 1lift the degeneracy of the spin-pair

triplet states. The eigenstates of each single-site



-39~

hamiltonian Hp are |a>, | B>, |v> |58 >, as
defined in the previous chapter; their eigenvalues are
(=33/4 =D/4), (3/h =D/W), (J/4 *D/4 ¥E), and (J/4 *D/4
~E), respectively. The complete hamiltonian, in the

gquagsi-boson approximation, may be written

H=~=43"D) § & 2 H 3 {112)
4 M =By yo & M
i N
t +
i = BB + L b (B
' (11v)
N
+B_ B! )+ L. e (B, B + 8! B! )

C
PP +1l,u PELl uwdup +1,u PP * 1, u

The coefficients are tabulated below:

T
(!

o’ e
# it

(9]
fl
i i
€y
o . ol
e Ty o w
o
i -
*
ulg
& =
wd
!
Cg
. il
=l
B
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Each of the independent branches may be diagonalized

by a canonical tranaformation,

-2 _-ikp t
Bpk =N ;e [uu(k) Bpu - vp(k) Bou ] . {12v)

with the coefficients

X
E (k) #a, *2b, cos k| °
1 (k) = [»u . I :l » 1
H 2E (k) (132)
u
v, (k) = = u, (k) [as-t * 2b, cos k - B, (k) } , (13D)
2n
M

_ 2 -~ R _ .2 2,3 _
Eu{k) = [a“, + b,aubu cos k *+ 4 (bu C“ } cos“k]. {13c)

The transformation is convergent when all the Eu(k)

are real (otherwise the eigenvalues of the approximate

hamiltonian are not bounded below). The transformed
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hamiltonian is

H==2 + + 1 2 N t .
1, {3J + D) N =y Ep(k) kZ‘u Eu(k) Bk,uBk,u

In the limit of large N, the summation of the
eigenergies Ea(k) may be replaced by integration and
the ground=-state energy written in terms of complete
elliptic integrals of the first, second, and third
kinds. The reduction to standard form depends, how-
ever, on the relative sizes of the coefficients Jdy D,
E, etc.=--the rather cumbersome expressions that result
are omitted here.

The spin system is also affected in a non=-
isotropic fashion by its interaction with an externally

applied magnetic field. In a strong field (of magnitude

| /8Bg | ), the spin hamiltonian may be approximated by

2N | iN
_ , 3 .a 2 y
He  L,935:78 w1 Y5 £,0:5%5 41
(14)
N
+ A s &
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Here the z-direction is taken to be that of the magnetic
field. The gquantities Di are not the same as those
used before~~they represent an sppropriate average of
the previous D and E terms along the new z-axis, about

which the spins precess in the presence of the magnetic

field.
The simplest way to diagonalize equation (14)
is to start with the transformations defined above in

equations (12) and (13), but setting E = E* = 0 . Then

Ey(k) =E6(k) ;

uyik) = ué(k) M V‘Y(k) = = "3’5 (k) .

The interaction with the magnetic field may be written

A S% - %,B? B _+3Bt B
g By, Bos * Bos Bpyd

oy ,
= +
A Z, (BYk Bgyc Bak BYk),
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80 that the hamiltonian {14) becomes

iianlCM*DBN* %}(k *lmﬂds*

sl Bk
t g + *; t 4
Z’E () (Bl * BarBax! * & 8B * BiBl)

The last two terms may be rewritten in terms of

i (B, +B : B

Blk = J2 vk rSk) ?

(B

=1 -
2k = Fp \Byx 7 B

-

==32{3J #D) N + 1 E {k *“EICB*
He-fOran)wel Lo ;8()81{5%4

-~

Z‘{E (k) +a) B], B, %J{Ey(k) 3 BLB, . (15)

We see that the B-type excitations are unaffected by
the magnetic field, and that the other two branches
are displaced in energy by an amount proportional to
the field. It is easy to see that the elementary

excitations created by B11 and ng have z=projections



of their spins equal %o 1 and =1 respectively, since

L}

BT,

Z ot
[s% Blk] 1k

= = B!

el +
(87, Bypl==By -

It is instructive to write these operators more ex-

plicitly as

o1 + . gt = 4 ) ikp LI

B = = B B = = k) B v (k) B

11 f ( ] 5]) Jﬂ 2;6 [u i ) £ ( ) f2’
‘T —-l * o .? ——l i .1 l .1‘ L 4 3

le = 7? (B " Bﬁﬁ) = 7N }‘e P [uy(c) B*f vv{k} B f]

Thus sz creates excitons with spin ™up™ and annihilates

excitons with spin "down", and conversely for ng~ The
isotropic hamiltoniamltreated earlier could Jjust as well
have been diagonalized by a direct transformation to
these operators.

The ground-state energy in equation {15) becomes,

in the limit of large I,
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€ =230 *D) N +8 Yo(g 3" +d") E V2{J’ +D')
* n J +JY a»p?

\ *

+ 2 Y +2)wra +L2) £ 2J
Tt 2 2 |

J+J' fvg. ’

where E{\) is the elliptic integral defined earlier.
Using this expression, we may evaluate the short-range

order parameter,

This quantity is a measure of the extent to which the
spins of the system are arranged alternately ™up" and
"down", as they would be if the interaction were that
of the Ising model. For perfect alternation, m = =l.

Since

oD 1 odd i i +1
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and

al __Z s Z%g z

' Teven i 7i*1 O’

Feynman's theorem implies that in any eigenstate of

the hamiltonian

) Z - 3<H-> < H >
< ZJSiZSi wq > = h_gﬁ___ ¢Ah_gﬁr_. .

Specifically, in the ground state,

*D/2 ¢ 20" __
\J + J7+ D/2

,&V J_+D/2 F(V 2J"

J +J'" /2 J +® J'+ p/2

(18)

e YI(I +J'+ DY) g (y2'+D')
(q*+ D?) J +J'+p?

- J_JJ F Vng'* D') .
(J'+0") Vg + g+ D J + J'4D?
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Orbach has computed this quantity for the exact ground
state of the linear éntiferromagnetfané may obtain 2
value comparable with his in the limit of vanishing
anisotropy by letting D and D' vanish and taking J = J°'
in equation {16). Our result is -0.5996; Orbach's is
=-0.596. Again, this approximate calculation yields o
result in good accord with exact values. It is worthy
of note that this agreement suggests that not only the
energy, but also the nature of the ground state, are
predicted with some accuracy.

It is possible to diagonelize the approximste
hamiltonian describing this system under the influence
of both the general anisotropic interaction including
HD and HE’ equation {10), and an externsl magnetic
field of arbitrary strength in an arbitrary direction.
For convenience, we return to the coordinate system in

which %, ¥y, 2nd 2z 2re the principal axes of the spin-

spin interaction. The hamiltonian is

gl
A

= e . h Sx - 7 z .
H %,Ep + u =2B,v,6 Hu AK + Ays + AZS

The first terms on the right-hand side are those of

equation {11); the magnetic field terms may be written



a L(ts +3ts + Bt B _+Bl3
25 B Bos T PoeBpy) ik Z{ ovPpe T Bpelps’
+ ), B3 -3t .
by 5 ( pePoy T Bps PB)

The three branches are mixed by the field.
We seek a diagonalizing transformation of the

form

B = -3 ikp., » oikp ¥ + )
pu = ¥ 2, [e p(k) B * € vgau(k) Bpk]

The new branch index p takes on three values. The

ortho=-normality conditions on the coefficients are

z.r[upu(k) vwis-k) - uw(-k) vp_ (k) ] = »

2Iu K& W -v ¥ KI1=5 .
1 pu. Ol pu gl

21

Six eguationg inE , u  , end v provide for the
P (R IY) paid

diagonalization of the hsmiltonizn. To save space,

we do not write them out explicitly, they are obtained
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by the direct application of the genersl theorem of
Appendix B. The vanishing of the seculsr determinant
of the set yields a cubic equation for the squares of

the eigenenergies Ep:
£ 6 . T4 - & w2 2 4 A2 44 %
o p{ﬁﬁ EY g, (Ax AY Az)
+B 2lge 4gg +gg +2p 2e -y.)
D By Y o 878 X
2 2 2 2 2,2
* 20 "8 =y ) * 23 ~x.) +{a" +a° +p”)
Jooy XY z (gﬁ XB x v Z
%6:y§5 N gaxa 2Ay §§xy az E X

B8

5 4 4
» » -
B8y v a e v =0

In this eguation

£ =J% - J(J' +D") cos k ,

B
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?
Xg = (J QL%)Z -F° - (JI? %i + 2EE') cos k ,
g‘y = (J *%ﬂu E)2 - {J +% +E){J? - 2E') cos k

q
- 2J'E' cos®k ,

x =Jd(J *2 ) - (gg" #+dR" 4 DLy gpr _ g & DD
vy 2 2 2 2

~ED') cos k *+ (" +D") B! cos?k ,

and gé and X are the same as gy and xy, respectively,

but with E replaced by (-E) and E' by {-E').

Explicit solution for the eigenenergies and transfor-
mation coefficients would probably best be achieved
by numerical methods. As before, the transformation
is acceptable when the guantities Ea{k) are all reeal.

The diagonalized hamiltonian is

2
H= = % NiBJ hs D) - pzk Ep{k) ]vpk‘ * p;{Ep(k) ngBok :
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These calculations show that guite complicated
prcbiems may be handled using the gquasi-boson approxi-
mation. The uncertainties digcussed in the previous
chapter make precise estimates of the accuracy obtained
difficult. When the basic assumption of relatively
weak coupling among excitations and the restriction to
low=-energy states are justified, however, the technique
of canonical transformation provides a simple and
useful tool for understanding the effects of even

highly complex physical processes in molecular crystals.
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Chapter IV - Periodic Digtortion of Linear Chains

The dimerization of positive ions in crystals
of Wurster's blue perchlorate at low temperatures is
one example of a transition from a class II to a class
I crygtal. It has been suggested by McConnell and
Lyndeanellil} that such shifts may be guite common
in molecular aggresgates containing topologically linear
arrays of interacting elements. Several sorts of one=-
dimensional systems are known to be unstable with
respect to distortions yielding an alternation of inter-
particle spacings along the arrays.(zg'so) In this
chepter we present a calculation which suggests that
the cooperative effects induced by excitation transfer
and virtual creation processes in the linear chains of
interacting spins treated in the two previous chapters
actually make dimerization along the chaing energetical-
ly favoratle.

The starting point for this calculation is the
approximate ground~-state energy of the alternsting spin
system, expressed as a function of the stronger and

weaker coupling coefficients J and J':
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. P O/’“' : (17)

The rather surprising accuracy of this expression even
in the limit of equal J and J' suggests that it is close
to the true value everywhere. This makes it possible to
examine in some detail the tendency of this system to
undergo a periodic distortion, so thet the separations
between successive radicals alternate in size. We may
suppose, for example, that the individua2l spins of one
chain are bound harmonically at equally spaced points
along the chain, and that the magnitude of the coupling
. between two adjacent spins varies linearly with the
distance between them. A hamiltonian describing this

gituation is

oN oN
He 2 2 124 ) J (1 +bX.)3 +5§ .
i=12 i i=1 ©° i i i+l

Here Xi is the digplacement of the spacing between the
1%0 ong (i +1)st spins from its value when all couplings
are equal. We wish t0 compare the energies of states
in which the interparticle distances alternate with that

for a regular antiferromagnet (Xi =0), Let |x> =
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] X > represent the state in which the digplacements

alternate so that

i+ 1
xia-(-l) X .

In this state, we take the energy contribution from
the gpin-spin interaction to be given by equation (17),

where we put

Jd =4d (1 * x) M JY = J (1 bl K) »
o o
The ground-state energy of this configuration is then

2

<x |H]x>=NaX" *+NJ (1 *»x)-

ndl * x

.{..g.@«_mm E(m)}

which we may put in dimensionless form as

<H> = e(x,8) = 5x° —% (1 +x) *3L2y1 *+xE (\11 - x');
k11

NI
(18)
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The optimum value of x for each value of the
parameter S is given by the requirement that £{x, S)
be a minimum. We consider the set of pairs of corre-

sponding values x and S which satisfy equation (18)

and
26 =0 =2x8 - 2 + 22 1 Pl*)FVTT_
oxX A ks (1 - X) m x ( X )

{19)
-2ﬂ(ﬂﬁﬁﬁ}.

Here F()) is the complete elliptic integral of the first
kind, defined in Chapter II.

Two critical points divide the range of x . into
three parts, each corresponding to a different type
of solution to the physical problems. For x greater
than Xg» there exist local minima of & for some value
of S between zero and'SB,for which £{x, S) is less than
e{0, S). These represent stable distortions of the
chain. At x = x_, the minimum value of & equals the

B

value for no distortion. For x between KA and XB

{S between SA and SB) there exist local minima of ¢,

but they lie higher than the undistorted energy. For

these values of S, the ground state has no distortion,



-

but there is a "metastable" state with 2 finite dis=-
tortion. Finally, at x = X, the energy determined by
“equations {18) and (19) reaches a maximum. For x less
than Xy s the only local extrema of € are maxima; only
the undistorted state is stable, even with respect to
infinitesimal fluctuations. Values of S greater than
SA provide no extrema. The criteria for stability of
distorted states may therefore be summarized in terms
of S as follows:
For 0 < S < SB the distorted state with 1 > x > ¥p
ias stable.,
For SB £S5 g SA the distorted state with Xp 2 X %X,
is "metagtable™; |x =0 > is stable.
For 8 > 3, no distorted state 1s stable; | x =0 >
iz stable.
Table 3 presents values of x, S, £{x, S), and
the corresponding values of J'/J satisfying equations

(18) and {19). The critical values of S are

SA = 2.1 . XA = 0006

S = - - » '
B 1.5 XB 0.17
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Table 3: Stable distortions of the one-dimensional

antiferromagnet, linear variation of J.

Values of S in parentheses do not correspond

to minima of &€{(x,S).

0.000 ( =-w ) 1.000
0.01 §~7.265) 0.980
0.02 =1.395) -961
0.03 (*1.053) J942
g.gh % i.806i .gg%
° 5 Q?E IS L]
0006 2' 3 - 488?6 0887 A
@QO? 2%092 - 58898 0869
0008 20038 hand «»8906 u852 \ . .
0.10 1089? - -8912 .818 critical
O«.l2 1-751-!' - ~893l 0786 P’Oilﬂts
0.14 1.623 - .8952 <754 K/////
al ] _ 10 ; it U0 B '
Dal® 1.405 - Y
0020 10316 - 090!40 0667
0.30 0.9963 - 29233 .538
OOIPO 980214' - 0921—69 02%29
0.50 .6725 - .9730 +333
0.60 +5597 -1.0080 «250
On 70 05097 ""1 00301 0176
0.80 4549 -1.0611 111
0a90 .l;llz ""1 -0923 On053
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The greatest inaccuracies in the above calcu=-
lation lie in the assumption that the molecular binding
is exactly parabolic and that the variation of J is
linear. !More precisely, the former assumption requires
that

3/2

X < < 2a
V' (0) S% 3

]
2
0

where V"'(O)X3/33 is the neglected cubic term in the

binding energy; the latter requires that

2

X < < 2a’b

311 (0) 5 3% 2

where J'1(0) X2/2 is the first neglected term in the

expansion of

1 1 2
SRR AR EAR S TR DR S

It should be emphasigzed, however, that the expression
{17) for EO{J, J') is accurate to a few percent even

for J = J' and should be better as J and J' differ more
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greatly. Any dependences of the molecular binding and
the exchange integrals may be treated in an entirely
comparable way to provide accurate criteria for
distortional stability.

Since it seems likely that the linearity of J
is the least sure to be exact, a similar calculation

was carried out for an exponential dependence:
= X
J(X) = JePs

The energy for a given distortion and binding'is given

g =< H>_-9 xR - % e * 1 JecX 21 E 2 }.{20)
m .

%%z@:ZSX"%eKﬁ"z e F ..-.-2.—-. .(21)
T <X 41 ezx + 1
Here
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The gqualitative features of the locus described
by equations {20) and (21) are the same as before,
except for large x, where the dependence of £ becomes
exponential rather than gquadratic. In this region
£{x, S) can have only relative maxima, which occur for
larger and larger values of S as x increases. The
minimum value of S occurs at a point we denote by C.

As before, for 8 greater than SA no stable distortions
exist; for S between SA and Sy there 1s a "metastable”
distortion possible, but the ground state is undistorted:
for S between SB and SC the ground state has a finite
stable distortion. For S greater than SG’ however, the
exponential variation of J becomes dominant and the
predicted distortion is complete collapse of the pairs.
Such a collapse could not be expected physically, of
course, since for large x the molecular binding must
become strongly repulsive; the actual distortion would
be finite. The critical points of significance are
thus A zand B. The values of S and x at these points

are

S = 109 X = 0»31,7 »
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Table L4 presents values of %, S, £(x, S) and
J'/J given by equations (20) and (21). It is seen
- that the resﬁlts for an exponential variation of J
do not differ greatly from thogse for a linear variation.
One would seem justified in concluding that for values
of S greater than about three, no distortions will be
found, and that for 5 lesgs than about unity distortions
will occur.

Rough estimates of the binding forces and ex-
change integrals in Wurster's blue perchlorate{Bl)
suggest that in this crystal S is likely to be quite
small (a few percent) but might be as large as one.

As a matter of fact, the small value of S obtained from
these c¢rude estimates would correspond to a2 gquite small
value of J'/J, the order of magnitude of that suggested
by comparison of calculated and observed spin-resonance
line shapesailg) This should not be taken too serioug=
ly, since the corresponding distortion predicted is so
large that the harmonic binding approximation is
certainly not reasonable.

This calculation ignores, of course, all dynami=-
cal phonon effects. It is difficult, therefore, to

draw any conclusions as to whether the "metastable®
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Table 4: Stable distortions of the one-dimensional

antiferromagnet, exponential variation of J.

0.000 (= = ) 1.000
0.020 (= 0.9496) .960
0.030 (+ 1.496 ) -942
0.040 { 2.250 ) 923
0.050 ([ 2.472 ) - 905
0.060 (2. ) .987

3 O _g.5b2 bl .8896 tgbg A

.080 2480 - 8903 28O
00090 20!4'11 - -8905 0835
0.100 2.337 - 8912 .8.8
00121 29193 el 08929 »786
Ocll}l 29061 - m8951 a75£}-
0»161 lsghs il a8981 0721&

2 12893 = 28994 + VY B
0@203 10753 - 09052 0667
0'310 1011-36 el -9245 0538
0014»214. 19214-8 - .91#93 01’4.29
0+549 1.130 - 29767 »333
0.56093 1,056 ~1.1459 .250

[ - L C
1‘099 10019 =1 93 -
1.472 1.109

=2+4539 .053
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distortions predicted might actually be observed in
real crystal systems. The appearance of stable
distortions, for appropriate values of S, does seem
definitely indicated. More detailed calculations
concerned with phonon=exciton interactions(lg’Bl)
{which do not treat the spin-system energies so
explicitly) also show a tendency for dimerization

to occur, or if already present, to be increased.

I% is interesting that the present calculation predicts
that infinitely small distortions of the lattice are
never stable. In particular, this implies that J and
J' should differ by at least about ten percent for

any stable distortion, so that experimental searches
for distortions in other systema should give unambigu-
ous results. Of course, other mechanisms favoring
dimerization may be important in many actual crjstals;
this calculation suggests that, sven without them,

dimerization of linear chains should sometimes occur.
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Chapter V = Singlet Excitons: Intramoclecular Charge

Regonance

The preceding calculations, while concerned
with a rather special physical situation, yield results
in accord with very general ideas about the nature of
systems containing regular arrays of interacting
elements. The existence of long-range correlations in
the low-lying energy eigenstates of the system and the
nature of the spectrum of the (approximate) elementary
excitations are understandable in terms of the'csncepts
discussed earlier of the zero-point oscillations associ-
ated with mobile excitations. Furthermore, the gpecific
results obtained followed directly from simple and
fundamental properties of the hamiltonian of the system.
It is reasonable, then, to look about for other systems
with these same basic properties, which should be
amenable to similar analysis.

There are, in fact, several physical processes
frequently of importance in molecular crystals,
processes in which interactions between neighboring
elements of a crystal induce collective beshavior in
low=lying energy states. In some cases, the inter-

actions of significance involve only the two lowest
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energy configurations of each molecule or radical. In
treating problems with such a property in one-dimension-
al systems, it is possible to dispense with the quasi-
boson approximation used in earlier chapters. The
gtates of a linear chain of elements, each of which
is in either its ground state or a singlet excited
state, may be described completely by a set of second~-
quantization creation and annihilation operators with
Fermi commutation relations.(32’33)

To define such 2z representation, we may start
with a set of second=-guantized operators P;, Pn' P;
raises the n'™M element in 2 linear system to its lowest
excited state from its ground state. These operators
are equivalent to the operators 13'T

pf’
Chapter II, except that becsuse there is only one ex~

B . defined in
pf
cited state, £, they have Paulli commutation relations:

=0
[Pn” Pm]‘ ’
P, P%],: 0 form#Zn,

pp +ppPt =1 ,
nn non



We may now define fermion creation and annihilation

operators:
g
t o (1) P opt
g
= {=1) D
fo=1(<1) P
where
n_;\l n-{-l
— + _ +
cn”mélpmpm'mr.lfnfn )

It is easily verified that
£, £1,=0 ,

?

The relationship between the Pn?s and the fn's is 2

rather complicated one, because of the appearance of

the operators o it has, however, a very useful

n’
property. Any product of two Pauli operators corre=-
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sponding to the same or adjacent sites is equivalent

to a similar product of (only) two Fermi operators.

For example,
S L
}m Pm - im fn )
pl P =flf

n n+l} nn+tl

2

Pnpn*lznfnfn**l

This means that 2 hamiltonian which is quadratic in the
operators Pg, Pn and involves only nearest-neighbor
interactions is also quadratic in the fermion operators
f;: fn' Our method for diagonalizing fermion quadratic
forms thus enables us to diagonalize quadratic hamil-
tonian functions describing linear systems of singlet
excitons with nearest-neighbor interéctions. Further-
more, it is not necessary to impose restrictions on the
excitation density, as it was in the guasi-boson method:
a complete set of energy eigenstates is obtained. There
is, of course, a physical limitation on the applicability
of this method to highly excited states. Wnen the ex-

citation density of the system is sufficiently large,
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the neglect of all excited states of each element above
the'first is presumably no longer justifiable.

Two problems which lend themselves well to
analysis in terms of a fermion representation such as
that described above are considered in this and the
following chapter. We first treat the electronic states
of a linear molecular chain in which dispersion inter-
actions between molecules may be comparable in magnitude
to the single-molecule excitation energies.

{After the work described in the remainder of
thig chapter was completed, it was discovered that a
gsignificant part of the mathematical formalism is
equivalent to that used elsewhere for a physically
quite different problema(25) Since the present appli=-
cation of the mathematical formalism calls for the
investigation of different properties of the solutions,
as well as a totally new interpretation of their
physical significance, it is felt best to present the
complete analysis in a self-contained form. The calcu=-
lations of Chapter VI use those of this chapter as a
starting point;)

There exists an extensive literature on inter-

molecular forces due to dispersion or van der Waals
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interactionsm{th Although these interactions are
often regerded as weak, it may be anticipated that

in some molecular crystals these forces are so strong
that the electronic structures of the molecules in

the crystal lattice are grossly different from the
structures of the isolated molecules, even though no
conventional chemical bonds between the molecules are
formed. Here, and below, we shall use the terminology
"charge resonance" instead of "dispersion” or "van der
Waals"™, since these latter terms conventionally suggest
weak interactions.

Unusually strong charge resonance interactions
might be expected, for example, in crystsls containing
linear arrays of such elements as the cation (3, 3'~
diethyl=k, 5, 4', 5'~dibenzo-oxacarbocyanine) shown

below:

0 . 0

C'—CH=CH_CH:=C
N
1
C He

The positive charge on this radical is concentrated in

the vicinity of the two nitrogen nuclei. Symmetric and
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antigymmetric combinations of the "right-hand®" and
mleft-hand” locations of the charge characterize the
ground state and the lowest excited state. Coulomb
interactions of the charge on neighboring ions in a
linear chain would then tend to produce a collective
polarization of the radicals. The way in which the
radicals were arranged in the crystal would determine
whether the polarization would be ferroelectric or
antiferroelectric; the two extreme cases are sketched
below, with the charge distributions encouraged by the

interaction.

T S ST
ferroelsctric (b < O)

- = = e F

antiferroelectric (b > 0O)

We shall consider, then, & closed linear chain
of N identical equally=-spaced molecules, denoted by 1,
25 »0s Ns Only the ground electronic stete znd first

ginglet excited state of each molecule are considered,
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and are represented by wave functions 9, and @’n
respectively. Each molecule is assumed %o have a
center or symmetry that coincides with 8 center of
symmetry of the linear chain. ¢ is assumed to be
symmetric, and m’n antisymmetric with respect to
inversion, and ®py = @'n is a strong allowed electric
dipole transition. The hamiltonian for the problem

is chosen to be of the simple form

H =
n

0~

1 (Hp * vn, a+1) o (22)

where V =Y »
N,y +1F w,

neighboring molecules is neglected, and only nearest-

Electron exchange between

neighbor interactions are considered. H_ is the hamil-

n
nbh

tonian for the isolated molecule; V. is the
n, n +1

>
Coulomb interaction between molecules n and n *+ 1. The

zero of energy is choseh such that

L]
®

? 1
{QP n, anp n)
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| The charge distributions corresponding to @
and m‘n are assumed, for simplicity, to be identical.
This is, of course, never exactly true for two distinct
electronic states. However, it is expected that the
charge densities on atoms are relatively unaffected by
a transition to the first excited singlet states in
guch systems as neutral, even alternant aromatic mole~-
culeg, symmetrical cyanine dye molecules, and probably
other symmetrical molecules as well.

As a result of this assumed equivalence of the

charge distributiohs of P and m’n, the following

matrix elements are equal:

{wn@n * 12 vn,n + 1 PnPn o+ 1)

= len! 0! T ot
= lo n? n + lf Vn,n +1 %% n 1) *

Matrix elements of the form

v ?
(mn?n +1° 'non +1 % 0%+ l)

occur in pairs which always cancel out. The hamiltonian

can be written, to within an additive constant, in terms
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of matrix elements of the following two types:
? |
(o ntn + 1° vn,n +1 %% 0+ 1) >

1 Y .
(o0, 412 Vn,n*lmncpn*!‘l)

The first matrix element corresponds to excitation
trangfer, and the second to gxcitation-pair creation
and annihilation. These matrix elements are equal to
one another; their common value will be denoted by b.
With these simplifying assumptions, the eigen=-
states and excitation spectrum for the hamiltonian of
equation {22) are determined below for 2ll values of
e and b.
The hamiltonian,equation (22), can be written

in the second—gquantization representation as

N N=-1
- 1 " =T + =N
i enlenPn an’liPn*PnHPn*l Pn‘*l)

+o T +p )t »p ) .
N N 1 1
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In terms of the fermion operators defined above, this

N N -1
H=c¢ }d s + vy }; (£1e? +f £
n=1 nn n=1 nn+l n+*1ln
(23)
fn . lfn fnfn . l) (=1) b{fﬂfl fo1% £,y flfN)

Here o is the operator for the total excitation number

of the system:

The parity operator, {-1)%, commutes with any quadratic
form in fermion operators fn and f;, and conseguently
commutes with H. It then follows that all non-degenerate
eigenstates of the hamiltonian are necessarily eigen=
gstates of the parity operator, and that.we can choose

a complete set of states to be simultaneous eigenstates
of (~1)? and H. We shall call eigenstates of {(=1)° with
‘eigenvalue +1 even states, and those with eigenvalue =1

odd states. We introduce the two quadratic forms
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- + +

H =€ n-Z'l fn fn'* D n Z’l (fn n + 1 fn fn + 1
. ot

+.f £f o+ f £ )m(=1)™b(ets v pTgTe pTr S p o2 )
n*ln ‘n+lom VRIEE L L L T

Where ‘a = 1’ 20

Thig differs from equation {(23) in that o is a c~number,

whereas o appearing in equation (23) is an operator.
H(l) and H(z)

(1)

have the property that odd eigenstates of
and even eigenstates of H(Z) are eigenstates of
the hamiltonian H. '

(a)

It is convenient to represent H in terms of

new fermion operators F; and Fk:

{24)

The values assumed by k in this set of trans=-

formations are chosen so that elk}I = = {= l)a, and are
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given below for the four distinct cases that occur:

=
i

l, Neven %k =0, ® 2n/N, 2 4n/Nyeer * 1

a=1, Nodd k=0, % 2n/N, & bn/Nsse. 2 (¥=1) /N
* /Ny & 3n/Myeee * (N=1) m/N
2a/N, &3n/Nyeee + 1

a =2, N even k

#

6o =2, Nodd k

"

H(a) expressed in terms of F;, F, is

Ve r F

(@) 3 o it o w e e v nt
H = ;QE F. F, +ib sin k [F_k Py X

where Ez = ¢ * 2b cos k.

It is to be understood that equation (25) represents
four different guadratic forms, each with appropriate
k values which depend upon N and a.

‘H(a) can now be diagonalized by a Bogoliubov-
Valatin transformation to new fermion operators Gi and

Gk 3



This transformetion is canonical when
W Yy + Uy ¥ =0
| 2 2
and ]uk | < + }vk | =1 .

The inverse transformation is

H(a) is reduced to diagonal form when

uk(Eg - Ek) - 2ib sin kv, =0

k

)
3 1y > - = R
2ib sin k uk (Ek Ek} Ve 0



Sclutions are

E, = [(E§)2 * 4bR8ink]?

=1 €2 * 4b° + Le b cos k]é

(262)
and
= 2ib sin k (26b)
- F0)
VZEk (8, - E9)
vk = Ek - Eo!s s (26(}')
ZEk

Pogitive sguare roots are taken throughout. Under this

tranaformation equation {25) becomes

H(a) . N

where

Eype = ,-%; {Ek nEz) .

The eigenstates of the hamiltonian,equation (23),

are {only) the odd eigenstates of H(lJ and {only) the
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even eigenstates of (2], The parity operator, (- 1)°,
anticommutes with a single fn or f;, and therefore anti-
commutes with any G;» Thus, the parity of any eigen=-
state of H'%) with an odd number of Gl excitations will

k

be oppoéite to that of the corresponding Gk vacuum,
while states with an even number of excitations will
have the same parity as the vacuum. The parities of
the Gk vacuum states are determined below for the
several special cases that can occur.

Let | O > be the vacuum state of the Fk; i.é,,
F ]O0 > =0 for all k. This is an even gtate. Consider

the normalized state

T & &% 21 2h
1> = 0 <k« n(uk Y P Fk) 10> .« (27)

Then

G 12>=0, fork £O0, m .

For N even and o = 2, k is never O or w; thus | ¢ > is
the G, vacuum in this case. Since |$ > is an even

state, it is an eigenstate of the hamiltonian for even

Na
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Next, consider N odd and o = 2 so that 0 < | k|

< T » Here,

o]
Eﬂ:]Eﬂ}:\e~2b1 .
If ¢ - 2b > 0, we see from equations({26b) and (26c)
that Ve = 0, u, = i. Thus, for ¢ = 2b > 0, G, = ~iFW,
and G | ¢ > = O for all k, whence | $ > is again the
vacuum. If, however, ¢ = 20 < 0, u_ = 0, Ve = l, s0
that F;] $ > is the vacuum of i {2 for even N. The
state ng $ > is an odd eigenstate of H(z), and there~
fore not an acceptable eigenstate of the hamiltonian H.
Similar arguments can be used to determine the
vacuum states in the other cases. The results are
summarized in Table 5. Also given in Table 5 are the
eigenstates of the physical hamiltonian, H, associated
with each vacuum. These are obtained by selecting the

(1) (2)

odd eigenstates of and the even eigenstates of H

In the 1limit of large N, the differences between

(o) go to zero like 1/N, and

the vacuum eigenvalues of H
the spectra of H(l) and H(Z) become identical. It is
- for this limit that we now discuss the spectrum of the

hamiltonian equation {23), for the various ranges of
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the physical parameters ¢ and b. Without loss of
generality we may take ¢ 3 O.

When the molecular excitation energy is
greater than twice the charge resonance coupling,
e » 2| b], the ground state of the hamiltonian is
| ¢ > for both even and odd N, and is non~degenerate.
The excitation energy to the bottom of the first
exciton band is ¢=2 | b |, and the width of the first
band is 4 |b| . When ¢ >»2 | b | we get the usual
digpersion (van der Waals) stabilization of the
crystal ground state, and the results reduce to the
familiar singlet exciton theory of Davydov. As|b|
increases and approaches e¢/2, the gap to the bottom
of the first band approaches zero; the ground state
becomes doubly degenerate at ¢ = 2| b| . A sketch
of the exciton band, for large N, when e =2 | Db ], is
given in Figure 3. A crystal having molecular chains
with an excitation spectrum of this form would obvi=-
ously show unusual thermodynamic, transport, and
optical properties.

Even more unusual physical properties are
predicted for ¢ < 2| b| . Here, for all cases, all
eigenstates of the hamiltonian are {at least) two-

fold degenerate. Associated with this degeneracy is
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an electronic ferroelectric - or antiferrocelectric -
type polarization. The characteristics of the spectra
obtained in this range can be predicted for ¢ = 0 by
observing that the hamiltonian is then eguivalent to
the one-dimensional Ising hamiltonian. In this
representation, the electronic state (o * o, ")//2
corresponds to "spin up", end (o, - o.')//2 to "spin
down®". When b < 0, the ground state is evidently
ferroelectric; the two-fold degeneracy can be under=~
stood as corresponding to the two possible directions
of the ferroelectric electronic polarization. The gap
separating the ground state from the first bend is

41 b | =2¢ (in the 1imit of ¢ = 0, we observe that the
energy of an elementary excitation, 4 | b |, is the
energy required to reverse the direction of a single
molecular electronic moment in the ferroelectiric ground
state). The exciton band width is Z2e.

For 2b > ¢ 2 0, the degeneracy and excitation
spectrum can be easily understood in terms of the anti=-
ferroelectric linear chain’ When N is odd, and ¢ = 0,
the ground state is 2N-fold degenerate {as are all
excited states). When ¢ £ O these degenerate states

split into bands, each member of which remains doubly
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degenerate. The gap is zero in this case. The width
of each band is 2¢, and the separation between bands
- is 4b-2¢.

When 2b > ¢ > 0 and N is even, the {doubly
degenerate, antiferrocelectric) ground state is
separated from the first band by a gap of Lb=2¢; the
band width is again 2¢. In the range ¢ < 2| b ] the
crystal excitations may be thought of as running waves
of electrical polarization.

At present it is not certain what particular
molecular crystals may exhibit strong charge resonance
coupling, especially in the interesting region | 2b| >e.
Rough calculations indicate that such strong interactions
may well be found in crystals of large dye~like mole~-
cules, such as the example given above, and perhaps
even in molecular aggregates that play 2 role in photo-

synthesis or other biological phenomena.
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Ghapter'VI - Intermolecular Charge Transfer

Intermolecular charge transfer between aromatic
donor molecules, D, and acceptor molecules, A, in one=
to=-one DA complexes in solution has been widely
studied;(35} Molecular crystals of D and A molecules
are also known, and X-ray studies show that many of
these crystals contain regular linear chaing of alter-
nating D and A molecules in a tilted face-to=-face
arrangement. These linear chains may be represented

schematically,
mwmes DADADA mmmma

In a2 DA chain one may anticipate a cooperative inter-
molecular charge transfer. That is, if there is, say,
n10%" charge transfer from D to A in a particular
isolated 1:1 DA complex, then the extent of this

charge transfer may be significantly greater than

n10%" in the chain, since the neighbors of any given

DA pair have average charges that decrease the effective
excitation energy of the given DA pair to the ionized

state, p¥a-, Indeed, in some molecular crystals this



=86

bherge transfer may be so extensive as to yield almost
fully fonic chaing, ==-D"A™DYA"emmmm , even through
the corresponding isolated 1:1 DA complexes are not
fully ionic.

In many cases the problem of intermolecular
charge transfer in a DA chain can be considered to be
an "N-electron problem®. That is, in an N-molecule
chain (N/2 molecules of A, and N/2 molecules of D) one
mey for convenience consider only two kinds of molecular
orbitals: {1) the doubly-occupied, highest-energy non=-
degenerate orbital of an isolated D molecule in ita
electronic ground state, and (2) the lowest=-energy un=-
occupied non-degenerate orbital of an isolated A mole~-
cule in its electronic ground state. The state D A~
of a given DA pair has one electron in the molecular
orbital on D and one electron in the moleculsr orbital
on A.

In the present work intermolecular electron spin
exchange is neglected. Also, the method of fermion
operators used below cannot handle the spin degeneracy
for the N-electron problem where both D" ang AT have
spin S = #. Because of this difficulty we only consider
gpin states where the spin on Dw is always "up"” (S = %,

S, = #) and the spin on AT ig always "™down" (S = 3,
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S, = ~%). Thus, there are two approximations used
here in this N-glectron problems: a dynamical approxi-
mation in which intermolecular electron spin exchange

is neglected, and a gtatistical approximation in which
only 2 subset of all possible spin states are considered.
Although these approximations obviously falsify the
nagnetic properties of the system, it does appear that

the essential features of the interactions that lead to
molecular ionization and intermolecular charge resonance
are retained in the calculation.

We also consider an "N/2-slectron problem",
corresponding to a lattice of N orbitals, and N/2
electrons. It is known, for example, that certain
ionic free radicals based on the acceptor A = TCNQ with
the stochiometry X*izh are built up from linear chains
of A molecules with some {unknown) negative charge
distributioné such that there are N/2 electrons on N
molecules in the chainiBé) In our theoretical discussion
we assume that the chain is regular; i.e., all nearest
neighbor AA™ distances in the chain direction are the
same. (This may very well pnot be the case
in the known TCNQ ion radical salts.) In the N/2=electron

problem transitions to doubly charged molecules such as
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A¥ are neglected, so no gtatigtical approximation of
the type required above for the Nmeiectron problem is
necessary. The dynamical approximation does remain,
however, in this case. For clarity, we first develop
the mathematical notation for the N~electron problem,
and then show how it can be immediately applied to the
N/2=~electron problem.

We imagine a cyclic linear chain containing an
even number of molecules. Let the molecules be labelled
n=1, 2y aes , N: odd values of n correspond to A mole~
cules, and even values to D molecules. Let the state of
the ===DADA=--= chain in which 2ll molecules are neutral
be designated | O >. We define fermion creation and
annihilation operators, analogous to those of the pre-
ceeding section, which here describe the charge states
of the molecules: f; creates & negative ion (A7) on
gsite n if n is odd, and creates a posgitive hole (D*)
on site n if n is even. For the present problem the

excitation number
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is always even, a result of the conservation of charge,
and only even eigenstates of (= 1)° need be considered.

‘The hamiltonian mey be written

H=s L f£1f ~o¢ >i T
Dneven n 0 Anodd n'n

(28)
N 'j'l

S . St opt
B oA : o L b "‘” : ] i a
J n;;;z (fn fn#i fn*lfn) A (iN fl fl fN) Hint

E ] LRI

Here €p is the ionization potential of & D molecule in

a nentral DA zhainy e, is the electron affinity(eA
&1 ]

of an A molecule in the chain; and v is the matrix

> 0)
element:

+ oot
<OJH_ £ £l .|0> ,

where He is the complete Schrgdinger hamiltonian., v is
the fundamental intermolecular charge-resonance matrix
element.

Hint represents the Coulomb intersction among
the charges on ionized molecules, and is quartic in

fermion operators. We shall use a ™molecular field"™ or
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Hartree-type approximation to Hint:

p =<0 >/N a (29)

In thig approximation the charge on site n undergoes a
Coulomb interaction with the average charge distribution
in the whole three~dimensional crystal. This term thus
includes long=-range Coulomb forces both along an
individual chain and between different chains.

Since

L Ty = ) hr =% }. | e

ﬁ21’33590~ n n n=234,6amn nn n=1,2,30oa nn

in all the states under consideration, the hamiltonian
in equation {28) may be written
N N -1
+ 3 + oot
1 = \ P
i n Z’lig04€lp)fn fn Y é’l {fn fn + l$ fn * 1fn)

(30)
+ ot
-y (g £ v £ £,



where e = 2le. =€) o

Tt is expected that the coefficient €y is
negative in neafly all cases of physicel interest.

Ir 61 is negative, we may take the guaniity €5 + €. P
to be positive without loss of generality, by inter=-
changing the significance of fn and f; if necessary.
That is, if the electron affinity of the acceptors

is greater than the ionization potential of the donors
in the DA chain, we take 23 the zer@thnorder state

| 0 > the completely ionized state; the operstor fi
then de-ionizes the nth molecule.

The hamiltonian given by egquation {30) is also
appropriate for the "N/2-electron problem”. In this
case, the state |0 > is taken to be that in which the
odd~-numbered molecules are uncharged and the even-
numbered ones charged. The fermion operator f; then

produces & charge on the nth

gite if n is odd, and
degtroys one if n is even. Since the units of the chain
are equivalent, gy = €po As before, we represent Hint
by the Coulomb interaction of each ion with the average
charge distribution in the crystal. The charge transfer

terms are unchanged. The hamiltonian takes the form



H = 1= ) P e & ) (et ot 4
GO{ 2 n Z’l non Y n 2‘1 {fn fn * 1 fn & 1fn)

(31)

t ot
-y A .
Y (fN fl fl fN)

1-

“As before, we reguire that p = 1/ < %‘fn

f>o
n

This expression for the hamiltonian is equivalent to

equation (30) with € = = €oe

The diagonalization of the charge~transfer
hamiltonian equation {30)4follows clogely the treatment
of the charge—rescnance problem in Chapter V. The
quantity p is treated as 2 number during the diagonaliza-
tion, and then the requirement is impgsed that it be
equal to the expectation value of N”inf; f, in the
states obtained to ensure self-congistency. Fermion
operators F, and F; of the form given by equation {24)

are defined for

= 2w/, * 3n/N, aeey (N = 1) /N,

In terms of these operators, the hamiltonian is
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H _EJEOI“ Foo» x (7 7' -
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where

w
AN
et

o]
E = £ ‘*‘E ]
o %P (

As belore the hamiltonian is diagonal when expressed

in terms of the fermion operators

The coefficients Uy and v, are given by eguation
{(26) where E; is replaced by E® and b is replaced by v.
The eigenenergies are |

5 = [(E®)? sin® k1%

k

The vacuum state of the hamiltonian is the state |& >
given in equation {27). The desired eigenstates of the
hamiltonian are obtained by the application of an even

number of GE operators to this ground state.
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We now wish to impose the condition that the
guantity p in e{mation {32) is consistent with equation
{29). We observe that an arbitrary eigenstate
+ + +
G Oy sos Gy | & > has an energy

1 2 n
" = T & s
B Evac , 24 " _”Ek 3 (33a)
1
1 0 N
E = - v . ‘
vac e : alé‘ k By (33b)

The excitation density of such a state may be obtained
most simply by application of the Hellman-Feynman

theorem:?

o = 1/N < 21, f; > = 1/N < aH/aEO > = 1/N an’BEO s

from which

= * 1/8 E°/E, 3 ,
p=p / kik 2 (342)

o =% - 1/2N al% « EO/Ek . {34b)
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The problem of solving equations (33) and (34)
simultaneously for an arbitrary eigenstate of the
hamiltonian is difficult. We are primarily interssted,
however, in the state of lowest energy, which may or
may not by the vacuum state | & > . We show now that
for E° > 0 and € < 0, the vacuum is indeed the ground
gtate. Congider first a state with a fixed number of
excitations. We differentiste its energy, given by
equation (33), with respect to sin? ki’ where ki is
the wave number of one of the excitations present,

keeping ¢., €. and v fixed. The result may be written

0" 1

dE/d (sin® k) = 2y2ﬂzk {jl - p(E°)2/(Ek )2[250/g1* 1
i i '

s L (E'°93/(Ek>3~ v L w9/ )33':9,
kyskysees all k k

vy 0 - 3 3 .
For E” > 0 and ¢, < 0, this is always positive. There~

1
fore, of 211l states with a given number of excitations,

the state with the excitations having the smallest

2 k will have the lowest energy.

posaible values of sin
We now consider the lowest energy state with

wN excitations. The energy and excitation density of
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this state may be expressed, in the limit of large N,

by the equation,

E=20]y] [A"/A *1/n B2 = 2/w EGa)/A] 3 (35)

p = % & l/ﬂ’ )\' F(‘A) - 2/77 }-'F ()\,C{.) > ’ (36)

Here E{1,a) and F{r,a) are incomplete elliptic integrals:

a N
E(%,a) =f V1-2%sin® 6 a0 3
e]

a — a8
Fla,a) =~[ 1l -3 sin* ¢
o

E(\) ZE (a, m/2) 3 F(0) EF (x, n/2) .

Their arguments are given by

Vo=l =" hvz [(E°)? + hwzlml : (37)

e =(1=-yu)n/2.
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To find the optimum number of excitations, ul, we
seek the value of ¢ for which E in equation (35) is
2 minimum. |

The condition that E have an extremum may be

put-in the form
- eg/el =" E/2N ]y * oY (1 - A% sinRq) + 4 2%

{38)
+ 2223 /m gin o _cos g |
1l - Rg sin2 o

Numerical investigations of equations {35), (36), and
(37) show that the lowest value of E actually occurs
for w = 0 for the values of € and € being considered.
The ground state of the hamiltonian is the state with
no excitations.

The energy Ev and excitation density Pvac of

ac
the vacuum state are given by equations {33b) and (34b).
Figures (4) and (5) show self-consistent values of the

energy and‘excitation-density as a function of the para-
meter | vy | feo for the particular case that €1/€O == la

Such graphs are most simply constructed as follows:
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E and o are written in terms of elliptic
vac vac

integrals with argument A, as given by eguation {37).

Each value of A determines a value of p. When this

value of p is inserted in the expression for A, the
corresponding values of eljeﬂ and | vy ] /eo are easily

obtained.

For the ranges of SO and el under consideration,
the ground-state excitation density p is always between
zero and one-half, and increases monotonically with
lv/€0| » The ground~-state energy likewise becomes
more and more negative as | v ] increases. In general,
these properties result from the occurrence of resonant
excitation-deexcitation processes, intermolecular
correlations, and the consequent binding of the ground
state.

To find self-consistent solutions to equations
for an arbitrary excited state would be a complﬁcated
task. It is not difficult, however, to understand the
nature of the simplest elementary excitations above the
ground electronic sgtate. For this purpose we may assume
that the density of (real, not virtual) excitations
18 so small that the average charge density on each

molecule is egsentially the same as in the ground state.
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The excited states are then obtained by the application
1-

of pairs of operators G;, Gk » on the ground state

| 2 »>. These operators, being linear combinations of
fhe f; operators, produce a correlated change in the
charge distribution of the system; that is, they
introduce a transfer of charge. It ig not difficult
to isolate the particular combinations of the G;*é
which correspond to the simplest current-carrying

excitations. Consider the operators

‘ '!' o 3 .t . ;t
X = 75 in + e - ) mz k=2

Lot L okt L ) Geikm
o= e . e f
/2 k n odd , n k n even n ]

and

t = + _ gt
Dk:?%. (G = G _ ) nxkzO

1 ,% Y -ikn .4 3 -3kn
= - [ 2 e TR S S £ .
/2 n X n odd n .

Az jonizes the A molecules and de-ionizes the D mole~

cules; D; has the opposite effect. The operator
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representing the total charge on the chain can be

written as

A
q= - ;:{nl)n ele .
whence
[, AJl = = A]
and

A ta +
[9.? Dk]"- Dk »

.‘-
Thus, Ak decreases the net charge on the chain by one
unit, and D; increases it by the same amount.

Since the excitstion energy E, =8, _ o2 We can

write the hamiltonian as

E Y2 a+pf

* Lo B Wy Ay * Dy D)

vac k

v [~

The simplest current-~carrying states of the

chain can be written

Aii D; |8 >, A;aaq A£11 D;r Df

et Co
ki $ >,
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The states chosen are those with the same charge as

1% >. The state A;; D;] $ >, for example, contains
running waves of negative and positive charge, with

momenta 2k' and 2k respectively. Each running wave

carries unit charge. The dispersion relation for

each charge carrying excitation is simply E , and the

k
charge carrler band width is

JEZ)S whys = |E°] .

According to the present calculation, there is always
a finite energy gap for excitation to the charge-
carrying states, even in the special case where o = 2.
This is especially noteworthy for the N/2=electron
problem, where, in the conventional band approximation,
one expects metallic behaviour for a regular linear

chain.
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Appendix A: Canonical Transformations of Fermi or

Bose Operators

Given a set of operators satisfying the commu-

tation relations

A1) [B;s By) =0, [B;s Bj1 =8 .

A2) The transformation Bp = Z.(ﬁ B, * ¥ 3N
i

has an inverse if

1
o

A3) ) u ¥  *% u )
P pl pd pl pd

.
sie

e

Al fu 4, 2% v ,)=35,.
2 5 = plpd oi pJ i3

Proof: From equation (42),

B +% BTl (w | a

a

q ¥ v ) B,
pi’p  pip T3 ol pJ 3

v A -
pLl od

* Z; (% u *uo v,
pl pJd J

5 eipd
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A6)

A7)

A8)
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Equations (A3) and {A4) then imply

B.o=) w3 +3 87) .
1 0 pL p pL p
If furthermore EJ(u V.o ku v . ) =0,
T "ol ol ol pi

g )
Z(u i + X

I R S A S ’
3 pi ol pl ol pa

the transformation is canonical, i.e.

(B> Byl =03 [B»3Bl=s_ .

Proof: Eguation (A2) with (Al) implies

&k x ok
B ,B «-_'Z‘qw,u.iu.v, 5,. =0 by {(Ab):
( 0’ o ]t 3 { pi o] pi GJ) i3 y (A6);
t Yy 2
B, = %‘ uou 2y v )s,., =58 by {A7).
(BB, 1, = 44 (8 1% oioi’ %13 T %pe ¥

The following converse may be stated: If the trans-

- formation (A2) has an inverse and is canonical,
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then equations (A3), (A4), (A8), (A7) are
satisfied. |
Proof: We write the inverse as
B, = }.(a
1 P

B +3 ,B*) .
pL p pl p

Using equations (Al) and (A8),

. T ,t
‘ - +
A9) By, 3] Ls_, 13, B1,* o [Bs BT
' o5k sk ¥
=4Lu b [B,, B.] *v ,[B,, B,
%’ oJ (855 J]:: pd (B Jj_»:;
or

3%

ks 2 a2 ’T
11 . > | = =U, .
Al10) Similarly [Bi’ Bp]@ 03 ol

Equation {A5) follows.

Equations {43, 4, 5, 7) are obtained by direct
substitution of (A5) in {41) and (A2) in (A8).
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Appendix B: Diagonalization of Hermitian Quadratic

Forms

Any Hermitian guadratic form in Fermi or Bose operators

may be written

2

1 * 4
= | A * (. C,, BB, * L, -
Bl) F FO o Zj 13 BiBj zﬁ CiJ BlBJ Zb GlJ BJB

f
c:
=
]
S
S 3
(@]
i+
(o}
]
O

where F
°

. ¥*
The canonical transformation B_.L = Eiu B v

B2) with thecorditions E u . =-};A. u , *+ él C*¢v
p el J ij el J Jip

< * -
- = A v oY e R '
B3) Epvoi % 13 p3 zzacjlupj ?

diagonalizes F:

B) F=F - >_’E v JF + )5 ' .
o Pl p pt P P PP

Proof: Using the identity

[X0,2]. = X(T,2], * (%21, Y ,
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and equations {A9) and (A10), we may e¢valuate

Then, by virtue of equations (B2) and (B3),

F,BT =E>4'u B! +v .B.) =E BT .
[FaB . ﬂi{Dil_ﬂli} p o

It follows that F may be writien

F = >,E BfB + constant,
£ p DO

The constant is simply the expectation value of F

in the vacuum state of the operators B; :

A v ¥, ¥
J

<F>=F + L Voo Lo Cou v,
o T5J 1 o1 0 0sisd 1J o1 0]

P

>
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*
We multiply equation (B3) by V,i» Sum over i,
and add the result to its complex conjugate.

A sgimple rearrangement of indices yields

3y *
- 25923 hpi F = 2 ‘2

%
LA,y v L *CLu LY L
1:3( ij el pJ iJ7pi 0]

b 43

&+
“137p3%01

)

30 that

Fael = Z_" E l L2 F + LE B.TB ? q.enda
© psl P pt P PpePeP
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Legends to Figures

Projection of the room~temperature structure
of Wursterts blue perchlorate, taken from

the unpublished manuscript of J. D. Turner

‘and A. C. Albrecht with their kind permission.

Ground-state energy of the linear antiferro-
magnet vs the ratio of coupling strengths
J'/J, as calculated by Bulaevskii (dashed
line) and the present work {solid line).
The exact value at J'/J =1 45 due to
Orbach.

Digpersion curve for elementary excitation
energies of the intramolecular charge-
resonance system, when ¢ =2 |b|. The
energy gap vanishes for k = 0.

Ground-state energy of the intramolecular
charge-transfer hamiltonian vs | v | /ao for

0 1
Excitation density in ground state vs | v | /eo
fore ==¢. >0,

0 1l



e

s
B

/L@ /L




=114-

2 8unby4

“o01

po— mw.ll

— og' -

e e

6l-

"™/3



~115~-

e mkﬂmx.n-m

52/13



-116-~

¢ mw.Hsm._.nr.H




~117-




