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ABSTRACT 

“How did we get here?” is a long-standing question in planetary science. Characterizing the 

pre-biotic atmospheric environment in which life may emerge is critical and increasingly 

urgent. Given the fact that the Earth provides the only ground truth of habitable worlds, most 

of the characterizations are based on the current Earth. However, life did not emerge on the 

modern Earth. It instead took place in a prebiotic environment, which includes a nitrogen-

dominated, methane-abundant and oxygen-negligible reducing atmosphere. Therefore, this 

type of planetary atmospheres has great significance in the context of astrobiology and the 

search for life. Despite that real time observations can not be obtained for Early-Earth, 

spacecraft observations of the atmospheres of two icy worlds in the solar system, Titan and 

Pluto, can provide such valuable constraints. The theme of Chapter 2 and 3 of this thesis 

focus on this topic of investigating the atmospheres of Titan and Pluto using spectroscopic 

analysis. Chapter 4 studies the search for life also across the spectrum from a prospective the 

other way. It characterizes the Earth, the only known inhabited planet, as an exoplanet proxy, 

to derive observational benchmarks for habitability assessment. 

Chapter 2 studies Titan. It retrieves the hydrocarbon and nitrile species in Titan’s upper 

atmosphere using stellar occultation observations obtained by Cassini UltraViolet Imaging 

Spectrograph (UVIS) during its Titan flybys. An innovative method is introduced to consider 

the pointing issue of the instrument, which prevents most of the previous spectral analyses. 

Combing an instrument simulator for handling the pointing motion and the Markov-Chain 

Monte Carlo (MCMC) method for parameter searching, species abundances in Titan’s 

atmosphere are successfully retrieved during occultations with large pointing motions. The 

method also obtains the altitude range where the abundance of each species could be 

constrained.  

Chapter 3 studies Pluto. It investigates the morphology and microphysical processes of 

Pluto’s haze particles in the lower 50km of its atmosphere using observations obtained by 

multiple instruments onboard the New Horizons spacecraft during its Pluto flyby in 2015. It 

suggests that Pluto’s haze particles have a bimodal distribution: a large-size population of 
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~1μm fractal aggregates, which consists of ~20nm monomers, and a small-size one of 

~80nm. This result successfully addresses the disagreement among the instruments, and 

provides important constraints on transport and dimensional transition of haze particles in 

Pluto’s atmosphere. 

Chapter 4 studies exoplanets. It evaluates the observational baseline for Earth-like exoplanets 

using the Earth as a proxy. Observations of the Earth’s images obtained by the Deep Space 

Climate ObserVatoRy (DSCOVR) are integrated to one single point to generate light curves 

of the “proxy” planet. Using the singular value decomposition (SVD) method, we found that 

the surface information of the “proxy” planet is in the second principal component (PC) of 

its light curves, while the first PC mainly consists of that of clouds. Using the strong linear 

correlation between the time series of the second PC and the corresponding land fraction, we 

constructed the first two-dimensional surface map of the Earth seen from a hypothetical 

distant observer, an observer who treats the Earth as an exoplanet. 
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C h a p t e r  1  

Introduction 

“Are we alone?” is a fundamental question in planetary science. It was raised on the first day 

of this research field, and still remains as an open question. The search for life beyond Earth 

is among one of the ultimate goals for decades, which inspired a number of missions 

exploring solar system bodies and looking for signs of life in other planetary systems. After 

a decade of extensively discovering and characterizing exoplanet systems, more than four 

thousand exoplanets have been confirmed to date. Meanwhile, our knowledge on planetary 

system formation has undergone an explosive growth, which leads to a new era of 

astrobiology. For the next step, detecting biosignatures on exoplanets has become one of the 

primary goals of missions in the near future, e.g., James Webb Space Telescope (JWST), 

Habitable Exoplanet Imaging Mission (HabEx), and Large Ultraviolet Optical Infrared 

Surveyor (LUVOIR). Given the fact that the Earth provides the only ground truth of habitable 

worlds (Seager & Bains 2015), most biosignatures are proposed based on the current Earth 

(Schwieterman et al. 2018). However, life emerged in a prebiotic environment instead of 

modern Earth. The composition of the Earth’s atmosphere has evolved significantly through 

geological time, and Earth’s current atmosphere is representative of only ~13% of the total 

inhabited history (Figure 1.1). Due to the critical role of the prebiotic atmosphere, 

environments resembling the early Earth have greater significance in the context of 

astrobiology and the search for life. 

The early Earth is thought to have had a nitrogen-dominated reducing atmosphere, which 

contained abundant methane and negligible oxygen (Catling & Zahnle 2020). Solar UV 

photons initiated photochemistry and aerosol formation, which are both important to the 

emergence of life. The prebiotic photochemistry is important because it provided a pathway 

for small organic molecules to grow. Products of these chemical processes, especially the 

organic molecules with aromatic rings, provided the life building materials. Aerosol 

particles, macromolecular organic molecules, are also among the important products of 

chemistry and microphysics. Photochemistry was initiated by methane photolysis at the top 
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of the atmosphere. When transported downwards, the chemical products became larger and 

larger and finally formed aerosol particles through nucleation and coagulation. Aerosol is 

critical in providing a suitable environment for life emergence. It significantly influenced the 

energy budget of the Early-Earth through radiation, which results in a suitable temperature 

of Early-Earth, and also had UV shielding effect that avoid bio-harmful solar UV photons 

reaching the surface of the planet. 

Given the fact that it is impossible to obtain real-time observations of Paleo-Earth, analyses 

of the prebiotic environments are based on proxy measurements. Fortunately, a few solar 

system icy bodies in the outer solar system currently have similar nitrogen-dominated and 

methane-abundant reducing atmospheres. Among then, Pluto and Titan can provide fruitful 

and valuable constraints for prebiotic-like environments with spacecraft observations, which 

could significantly improve our understanding of the chemical and physical processes in 

prebiotic environments, and therefore the assessment of exoplanet habitability. 

Characterizing the atmospheres of Titan and Pluto is the subject of Chapter 2 and 3. 

Titan, the second largest moon in the solar system, has a substantial nitrogen-dominated 

Figure 1.1. Evolution of Earth’s atmosphere through geological time. (Credit: Giada 

Arney) 
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atmosphere with a surface pressure of ~1.5bar (Lindal et al. 1983). It includes methane at a 

few percent, which results in a natural laboratory for extraordinary organic chemical 

processes (Figure 1.2, Atreya et al. 2006), and therefore has significant prebiotic interest. At 

the top of Titan’s atmosphere, incoming solar UV flux dissociates methane molecules to 

form methyl radicals and excites nitrogen molecules. The small molecules react with each 

other to form large hydrocarbon and nitrile polymers, including chains and rings, and finally 

form haze particles in the atmosphere. To investigate and to constrain these chemical 

processes, observations of the chemical species are required. In early 1980s, the Voyager 1 

and 2 missions confirmed the presence of organic chemical species larger than methane 

(C2H2, C2H4, C2H6, C3H8, CH3C2H, C4H2, etc., Hanel et al. 1981, Kunde et al., 1981). 

Vertical profiles of the small hydrocarbon and nitrile species had not been obtained until the 

Cassini-Huygens mission in 2004 (Shemansky et al. 2005). Due to the spectral features of 

these chemical species, far-ultraviolet (FUV) is an ideal wavelength range for remote sensing 

to probe the chemical-interesting range of Titan’s atmosphere (400-1200km, Figure 1.3, 

Hörst 2017), as photons within this range are energetic enough to dissociate the organic 

molecules and therefore show spectral extinction features. Using observations during tens of 

Cassini’s flybys of Titan, seasonal variation of atmospheric dynamics and chemical change 

could be analyzed. However, due to a technical issue of instrument pointing motion, most of 

these observations cannot be analyzed until recently. Chapter 2 of this thesis proposes a new 

methodology of addressing this issue, and makes it feasible to study seasonal cycles of the 

middle and upper atmosphere of Titan. 

Figure 1.2. Photochemical scheme in Titan’s atmosphere. Taken from Atreya et al. 

(2006). 
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The existence of Pluto’s atmosphere was first confirmed using stellar occultation in late 

1980s (Elliot et al. 1989). Due to the large distance between Pluto and Earth, vertically 

resolvable observations of Pluto’s atmosphere were not available until the New Horizons’ 

flyby of Pluto in 2015 (Stern et al. 2015). The atmosphere of Pluto is thin and cold with a 

surface pressure of ~1Pa when the flyby took place (Gladstone et al. 2016). Nitrogen is at 

gas-solid equilibrium at the interface of Pluto’s atmosphere and surface, so the surface 

pressure may vary orders of magnitude due to the change of solar insolation. Pluto’s 

atmosphere has similar chemical compositions as that of Titan, which is also nitrogen-

dominated with a few percent of methane (Young et al. 2018). Photochemistry is therefore 

similar in Pluto’s atmosphere, except for gas condensation due to Pluto’s low temperature 

(Wong et al. 2017). Organic haze also forms as a product, which is one of the amazing 

discoveries made by the New Horizons mission (Cheng et al. 2017). The haze in Pluto’s 

atmosphere is thought to be important to the gas condensation, surface color and Pluto’s 

energy budget (Wong et al. 2017, Grundy et al. 2017, Zhang et al. 2017). However, the haze 

Figure 1.3. Representative temperature profile of Titan’s atmosphere, some of the 

major chemical processes, and the approximate altitude coverage of the instruments 

carried by Cassini-Huygens. Taken from Hörst (2017). 
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morphology still remains as a mystery five years after the flyby due to contradicting 

interpretations of haze observations obtained by different instruments. Therefore, to address 

the conflict and answer the fundamental question of Pluto’s haze, Chapter 3 conducts a joint 

retrieval of Pluto’s haze and searches for a solution that could include all available 

observations. 

In addition to characterizing prebiotic environments that resemble Early-Earth, studying the 

environment of the modern Earth, the only confirmed currently inhabited environment, from 

an exoplanet perspective could provide valuable observation benchmarks for assessing 

exoplanet habitability, which is as important and become increasingly urgent given the 

timeline of the near future missions. Analyzing distant observables of the Earth, which is 

treated as a proxy exoplanet in this case, can provide the answer to the fundamental “are we 

alone?” from the other way. Given the fact that current telescopes and those in the near future 

could not resolve exoplanets better than single points, photometric observations will remain 

as the major approach for a long time. Therefore, observations of single-point Earth when 

the Earth images are spatially integrated to single pixels have great significance in the 

benchmark analysis. The idea was first raised and performed in 1990s with a few snapshots 

of the Earth taken by the Galileo spacecraft (Sagan et al. 1993, Geissler et al. 1995), then 

followed by two one-day light curves obtained by the Deep Impact spacecraft (Cowan et al. 

2009, 2011). These results show that gases in the Earth’s atmosphere and surface features 

could be obtained by distant observers, even when the Earth is not spatially resolved. In 

Chapter 4, this approach is greatly extended using observations from a recent mission, Deep 

Space Climate Observatory (DSCOVR, Jiang et al. 2018). It provides benchmark 

observations with significant details which includes ten wavelength channels and a high time 

resolution of ~1-2 hours. Analysis of spatial features from single-point light curves and 

influence of their diurnal and seasonal changes becomes feasible. 
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C h a p t e r  2  

Retrieval of Chemical Abundances in Titan’s Upper Atmosphere  

from Cassini UVIS Observations with Pointing Motion 

Siteng Fan1, Donald E. Shemansky2, Cheng Li1, Peter Gao3,  

Linfeng Wan4, Yuk L. Yung1,5 

1California Institute of Technology, Pasadena, CA 91125. 

2Space Environment Technologies, Altadena, CA 91101. 

3University of California, Berkeley, CA 94720. 

4University of California, Santa Cruz, CA 95064. 

5Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109. 
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2.1 Abstract 

Cassini/UVIS FUV observations of stellar occultations at Titan are well suited for probing 

its atmospheric composition and structure. However, due to instrument pointing motion, 

only five out of tens of observations have been analyzed. We present an innovative retrieval 

method that corrects for the effect of pointing motion by forward modeling the 

Cassini/UVIS instrument response function with the pointing motion value obtained from 

the SPICE C-kernel along the spectral dimension. To illustrate the methodology, an 

occultation observation made during flyby T52 is analyzed, when the Cassini spacecraft 

had insufficient attitude control. A high-resolution stellar model and an instrument 

response simulator that includes the position of the point source on the detector are used 

for the analysis of the pointing motion. The Markov Chain Monte-Carlo method is used to 

retrieve the line-of-sight abundance profiles of eleven species (CH4, C2H2, C2H4, C2H6, 

C4H2, C6H6, HCN, C2N2, HC3N, C6N2, and haze particles) in the spectral vector fitting 

process. We obtain tight constraints on all of the species aside from C2H6, C2N2, and C6N2, 

for which we only retrieved upper limits. This is the first time that the T52 occultation was 

used to derive abundances of major hydrocarbon and nitrile species in Titan’s upper and 

middle atmosphere, as pointing motion prohibited prior analysis. With this new method, 

nearly all of the occultations obtained over the entire Cassini mission could yield reliable 

profiles of atmospheric composition, allowing exploration of Titan’s upper atmosphere 

over seasons, latitudes, and longitudes. 

2.2 Introduction 

Stellar occultation observations made by the Cassini Ultraviolet Imaging Spectrograph 

(UVIS, Esposito et al. 2004) are essential for constraining the photochemistry of Titan’s 

upper atmosphere, where hydrocarbon and nitrile species show spectral features in the 

ultraviolet (Hörst 2017). During the last decade, vertical profiles of these species have been 

derived from selected Titan flybys (Shemansky et al. 2005, Liang et al. 2007, Koskinen et 

al. 2011, Kammer et al. 2013), which have increased our understanding of physical and 

chemical processes in Titan’s atmosphere. Far-UV (FUV) observations are especially 



 

 

8 

important in constraining the abundances of hydrocarbons more complex than methane, 

as well as nitriles. However, FUV observations from only five (TB, T21, T41i, T41e, and 

T53) out of the tens of flybys have been used for retrievals to date (Shemansky et al. 2005, 

Koskinen et al. 2011, Capalbo et al. 2016) due to instrument pointing motion, which causes 

movement of the stellar image on the UVIS detector. Pointing motion is introduced by the 

spacecraft attitude control system, which frequently triggers thrusters during occultation 

observations (Chiang et al. 1993). Deadband of attitude control during stellar occultations 

is set as ±0.5 mrad (Pilinski & Lee, 2009), comparable to that of a spectral pixel (1.0 mrad 

× 0.25 mrad), which leads to a shift in the spectral structure. Consequently, the traditional 

method of analyzing extinction spectra obtained by dividing the nonzero optical depth 

target spectrum by the extinction-free target spectrum becomes inaccurate. The spectral 

distortion is non-linear due to UVIS internal instrument scattering. Attempts have been 

made to determine pointing motions for other instruments, e.g., Cassini/VIMS (Maltagliati 

et al., 2015), and similar issues arose for similar UV instruments when observing stellar 

occultations of Titan’s atmosphere (e.g. Voyager 1 UVS, Vervack et al. 2004). Using an 

instrument simulator for forward modeling is essential for evaluating spectra. 

Our proposed method uses a Cassini/UVIS simulator for forward modeling that combines 

the pointing information obtained from the SPICE C-kernel (NASA NAIF) and line-of-

sight (LOS) chemical abundances in Titan’s atmosphere to simulate spectra. The Markov 

Chain Monte-Carlo (MCMC) method (Foreman-Mackey et al. 2013) is used as the 

parameter search tool. Using our proposed method, we derive for the first time vertical 

profiles of hydrocarbon and nitrile species from flyby T52, which shows significant 

pointing motion during the entire duration of the observation.  

The remainder of this paper is organized as follows: in Section 2.3, the pointing motion 

during flyby T52 and its effects are demonstrated; detailed methodology is presented in 

Section 2.4; analysis of synthetic spectrum for method testing is in Section 2.5; spectral 

analysis results and vertical profiles of retrieved species are given in Section 2.6, together 

with brief discussions; our conclusions and the implications for applying this method are 
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discussed in Section 2.7. 

2.3 Compensating for pointing motion 

The instrument used in this work is the Cassini/UVIS FUV spectrograph. It covers the 

spectral range between 1115 and 1912 Å (Esposito et al. 2004). We select flyby T52 for 

demonstrating our new retrieval method, which took place on April 3rd, 2009, with the 

stellar source α Eri. The occultation observation during this flyby is divided into two 

segments due to different integration durations. We analyze the second segment (NASA 

PDS ID: FUV2009_093_23_55) in this work, which has an integration duration of 1.75 s 

for each image; the ray tangent height of incoming stellar light above Titan’s surface during 

this segment was within the critical range (0-1500 km) for atmospheric characterization. 

The geometry of this segment is given in Table 2.1, computed from the SPICE C-kernel 

(NASA NAIF).  

The image of α Eri is a point source compared to the pixel size on the slit. Five spatial 

pixels with indices 25 to 29 were electronically windowed to record the photon counts. 

Each pixel has a length of 1.0 mrad along the spatial dimension (length from upper left to 

lower right in Figure 2.1a) and the low resolution slit width was set to 1.5 mrad (width 

from upper right to lower left in Figure 2.1a). During the stellar occultation, the spacecraft 

navigation system controls pointing through a stellar/solar referenced 3-axis stabilized 

platform with a deadband of 0.5 mrad referenced to the UVIS FUV principal axis (Pilinski 

& Lee, 2009). The thrusters of the spacecraft attitude control system react only at the 

Table 2.1. Stellar occultation during T52. 

 Start Near 1000km Near 500km End 

Time 
2009-093 

23:55:27 

2009-094 

00:10:51 

2009-094 

00:16:51 

2009-094 

00:27:49 

Latitude (°) 32.6 35.6 37.1 39.1 

Longitude (°) 328.9 319.5 312.8 292.7 

Ray Height (km) 2347 999 502 -290 

*Latitude and longitude are computed for the impact parameter (radial vector from body 

center). It varied by a few degrees during the observation due to spacecraft motion. 
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deadband limit. Therefore, the star image shows motion on the slit (green line in Figure 

2.1a), which results in changes in photon count distributions among spatial pixels along 

the spatial dimension and spectrum distortions along the spectral dimension. The effect of 

star image motion along the spatial dimension can be eliminated by summing up the photon 

 

Figure 2.1. Pointing motion and its effects. (a) Spatial orientation of Cassini/UVIS 

detector pixels (color rectangles) with their centers (black points) and the star motion 

on the detector (green solid line) obtained from the SPICE C-kernel. The pixel with 

index 27 (blue rectangle) is the center pixel during the T52 occultation observation. The 

spatial dimension is along the length of the 5 pixels, with the spectral dimension being 

perpendicular to that. (b) Vertical profile of pointing motion above Titan’s surface along 

the spectral dimension (solid green line). Deadbands along this dimension at each end 

are denoted by two vertical black dashed lines. (c) Simulated photon count spectra from 

the T52 occultation at 754 km ray tangent height with pointing values along the spectral 

dimension of 0 (blue), -0.5 (red) and +0.5 mrad (green). The shaded area indicates the 

signature extinction feature of C2H2 near 1520 Å. Figure 2.S1 shows the full extent of 

the three spectra in the FUV wavelength range. (d) Extinction spectra of CH4 and C2H6 

with (green for CH4 and magenta for C2H6) and without (blue for CH4 and red for C2H6) 

taking into account instrument internal scattering. The LOS abundances for both species 

are set to 1018 cm-2, which is approximately the value for that of CH4 at 750 km. 
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counts received by all five spatial pixels after flat fielding. The windowed spatial pixels 

fully contain the stellar image during the entire T52 occultation. Motion of the star image 

along the spectral dimension, however, must be modeled to analyze the data, which is the 

focus of this work. 

The star image position on the slit along the spectral dimension as a function of the ray 

tangent height in Titan’s atmosphere during T52 is shown in Figure 2.1b. The star image 

moved at a constant rate within ±0.5 mrad between the deadband points, showing nominal 

function of the control system. This introduces strong distortions in the spectral dimension, 

as demonstrated in Figure 2.1c by the simulated spectra with different pointing motions. 

An extinction feature of C2H2 near 1520 Å is shifted by a few pixels due to the pointing 

motion, causing a difference in spectral structure between spectra that prevents 

constructing extinction spectra by dividing one spectrum by another. Moreover, due to the 

photon scattering effects in the instrument, a single spectral line is spread across a wide 

range of wavelengths, necessitating simultaneous modeling of a large swath of the 

spectrum. The full width at half maximum of a typical spectral line is ~1.5 Å, or 

approximately two spectral pixels, while the line wings extend hundreds of angstroms. This 

results in non-linearity in the spectrum. Figure 2.1d shows an example of internal photon 

scattering. Photon counts shortward of 1360 Å are mostly the result of internal scattering 

from longer wavelengths when CH4 extinction saturates this range. Therefore, it is not 

feasible to shift the spectrum back even if the value of the pointing motion were known. A 

forward instrument model is essential for extracting information from these distorted 

spectra. 

2.4 Methodology 

A detailed description of Cassini/UVIS data calibration and reduction is given in Chapter 

9 and 10 of the Cassini/UVIS Users Guide, available in NASA-PDS (2017). To improve 

statistical accuracy, spectra obtained during T52 are integrated over time intervals of 17.5 

s, covering an altitude range of ~25 km. The selected integration intervals are merged with 

pointing information obtained from the SPICE C-kernel (NASA NAIF), which is shown in 
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Figure 2.1b as the green path. The reference spectrum of the star (I0) is constructed by 

averaging the spectra when the ray tangent height is greater than 1500 km above Titan’s 

surface, where extinction by Titan’s atmosphere is negligible, and the pointing motion is 

less than 0.125 mrad (half of a pixel width). 

Our forward model combines an extinction model and an instrument simulator. The 

extinction model computes the intensity spectrum received by Cassini/UVIS, while the 

instrument simulator (Shemansky et al. 2005; Shemansky & Liu 2012) generates photon 

count observations based on the intensity spectrum, instrument internal scattering and 

pointing motion. The instrument simulator contains high resolution response functions for 

each pixel, which encapsulate the effects of instrument internal scattering that were 

measured in the lab and calibrated in flight. The core of the point spread function has a full 

width at half maximum of ~1.7 Å and the wings extend over a spectral range of 800 Å. 

Eleven hydrocarbon and nitrile species (CH4, C2H2, C2H4, C2H6, HCN, C4H2, C6N2, C6H6, 

haze, HC3N and C2N2), which have extinction features in the FUV, are considered in the 

forward model. We include two species in the retrieval, C2N2 and C6N2, which have not 

been detected previously, to examine the extent to which their abundances can be 

constrained, as photochemical models suggest their existence (e.g. Willacy et al. 2016). 

The cross sections of these species are obtained from laboratory work (Table 2.2), some of 

Table 2.2. Extinction cross sections. 

Species Reference Wavelengths (Å) 

CH4 
Kameta et al. (2002) 1115-1426 

Chen & Wu (2004) 1426-1490 

C2H2 Wu et al. (2001) 1115-1912 

C2H4 Wu et al. (2004) 1115-1912 

C2H6 
Au et al. (1993) 1115-1193 

Wu et al. (2004) 1199-1528 

HCN 
Nuth & Glicker (1982) 1115-1300 

Lee (1980) 1300-1568 

C4H2 Ferradaz et al. (2009) 1150-1912 

C6N2 Connors et al. (1974) 1115-1912 

C6H6 Pantos et al. (1978) 1115-1912 

HC3N Ferradaz et al. (2009) 1150-1560 

C2N2 Nuth & Glicker (1982) 1115-1701 
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Figure 2.2. (a) Photon count spectra of the T52 occultation at 754 km ray tangent height 

showing the observed spectrum (blue), the best fit simulated model spectrum (green) 

and the synthetic spectrum (red), which includes artificially introduced noise. (b)-(d) 

Detailed views of the photon count spectra split along the black dashed lines in (a). The 

y axes scales are different in (b)-(d) for the purpose of presentation. The spectral 

contribution of each species to this spectrum is shown in Figure 2.S2 in the supporting 

information. 
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which were conducted at room temperature. The differences in temperatures between 

that of the measurements and ambient conditions in Titan’s atmosphere may contribute 

~20% uncertainty to the LOS abundances. Pressure effects are negligible. Haze particles 

are assumed to be spherical with a radius of 12.5 nm and the same optical properties as 

their laboratory analogs (“tholin”; Khare et al. 1984), in line with Liang et al. (2007) and 

Koskinen et al. (2011). We combine the LOS abundances and cross sections to construct 

spectra based on a normalized I0.  

Retrieval is a multivariable inverse problem. Combining a proper retrieval algorithm with 

a forward model, physical properties can be derived from the observations. The MCMC 

method is used in this work to solve the inverse problem. It searches parameter space with 

the ability to extract asymmetric posterior probability density functions (PDFs) in a 

computationally feasible way. For each proposed parameter set, a spectrum is constructed 

with the procedure described above, and is then compared with the observed spectrum to 

determine the posterior probability of this parameter set. The cost function is defined as 

follows: 

ln(p) = −
1

2
∑ [

(𝐼𝑂𝑏𝑠𝑖
− 𝐼𝑀𝐶𝑀𝐶𝑖

)
2

𝜎𝑖
2 + 0.1

+ ln(𝜎𝑖
2 + 0.1)]

𝑖
        (2.1) 

where p is the posterior probability of one proposed parameter set; IObs and IMCMC are the 

photon counts from the observation and those calculated from the forward model during 

one MCMC attempt, respectively; and σi is the standard deviation of the spectral intensity 

at wavelength i, assumed to be the square root of the simulated photon count. A softening 

factor of 0.1 is added to the standard deviation at each wavelength to avoid dividing by 

zero when the intensity decreases to zero at some wavelengths at low altitudes. An example 

of IObs and IMCMC is shown in Figure 2.2 as blue and green lines, respectively. With this 

cost function, we use the emcee package (Foreman-Mackey et al. 2013) to conduct the 

MCMC parameter search. An MCMC procedure with 120 chains, selected according to the 

number of parameters, is used to search through parameter space. A bounded uniform prior 

in log space is set for each parameter, so abundances are retrieved with no prior knowledge 
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within 2 orders of magnitude of the predicted values from the latest results of the 

Caltech/JPL photochemical model KINETICS (Li et al. 2014, Li et al., 2015, Willacy et 

al. 2016). The bounds are adjusted by 2 orders of magnitude if necessary after each 2000 

steps according to the PDF of the parameter and the converging criterion. The MCMC 

procedure is extended for 2000 more steps after the final bound adjustment to generate the 

resulting PDFs.  

2.5 Synthetic spectrum analysis 

We analyze a synthetic spectrum (red line in Figure 2.2) to test the reliability of our method. 

We use the LOS abundances of all species obtained from fitting to the observation (green 

line in Figure 2.2) as well as the pointing motion (Figure 2.1b) to construct the synthetic 

spectrum. We then add noise on the level of the square root of the simulated photon count 

plus the softening factor to obtain the final synthetic spectrum (red line in Figure 2.2) with 

the same calibration procedure as the data. In other words, the synthetic spectrum is the 

same as the simulated spectrum used to fit the observations, except it includes noise. Figure 

2.2 shows that the noise level is slightly greater than the disagreements between the 

simulated spectrum and the observation, such that the analysis of the synthetic spectrum 

should give a lower limit to the reliability of our method. 

 Figure 2.3 shows the PDFs of the LOS abundances of hydrocarbon and nitrile species 

resulting from the synthetic spectrum analysis. The LOS abundance values used to 

construct the synthetic spectrum are shown as black dashed lines. The constraint on each 

LOS abundance is interpreted by fitting the PDFs with three types of functions, Gaussian, 

sigmoid, and constant, and the PDFs are categorized as such by comparing the residuals of 

the fit. LOS abundances with Gaussian-like PDFs are defined as well constrained (e.g., 

CH4, C2H2, C2H4, HCN, C4H2, C6H6 and HC3N in Figure 2.3). These species typically have 

distinct spectral features (Figure 2.S2) that allow for strong constraints. The retrieved LOS 

abundances of these species are all within ~1-σ of the true values, indicating that our 

retrieval method is stable to random noise. The LOS abundance PDFs of some other species 

(e.g., C2H6, C6N2, haze and C2N2 in Figure 2.3) show asymmetric behavior, and so can only 
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provide upper limits through fits to the sigmoid function. Interestingly, ethane (C2H6), one 

of the major hydrocarbons, belongs in this category due to overlapping spectral features  

with the most abundant hydrocarbon, methane (CH4, Figure 2.1d), whose LOS abundance 

is two orders of magnitude higher, resulting in the anti-correlation of these two PDFs 

(Figure 2.S3). The failure to retrieve ethane is consistent with previous results obtained 

above 700 km during flyby T41i (Koskinen et al. 2011). In some cases, the PDFs may be 

between Gaussian and sigmoid, such as that of C6N2 in this analysis, which shows a peak 

with poorly constrained lower limits; as the type of PDF is still determined by the value of 

 

Figure 2.3. Probability density functions (PDFs, blue solid lines) of the logarithm of 

LOS abundances retrieved from the synthetic spectrum (red line in Figure 2.2). The 

black dashed lines indicate the LOS abundances used to generate the synthetic 

spectrum, i.e. the “true” value. The best fit function to each PDF (Gaussian, sigmoid, 

and constant) is shown as black solid lines. The median and 1-σ confidence interval are 

denoted by blue and green dashed lines, respectively, for well-constrained species. For 

others, the upper limits are denoted by red dashed lines. The correlations among the 

parameters are shown in Figure 2.S3 in the appendix. 
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the residuals, the case of C6N2 and others like it would either have only upper limits 

(more sigmoid-like) or be constrained with relatively large uncertainties (more Gaussian-

like).  

 2.6 Results and discussion 

 An example spectrum from the T52 occultation observation at ~750 km is shown in Figure 

2.2, together with a simulated spectrum that best fits the observation. PDFs for the LOS 

 

Figure 2.4. Probability density functions (PDFs) of the logarithm of LOS abundances 

retrieved from a photon count spectrum at 754 km ray tangent height (blue solid lines). 

The best fit function to each PDF (Gaussian, sigmoid, and constant) is shown as black 

solid lines. The median and 1-σ confidence interval are denoted by blue and green 

dashed lines, respectively, for well-constrained species. For others, the upper limits are 

denoted by red dashed lines. The medians, 1-σ confidence intervals, and upper limits 

are also given atop each subplot. The correlations among the parameters are shown in 

Figure 2.S4 in the appendix. 
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abundances of hydrocarbon and nitrile species resulting from retrievals of this spectrum 

are shown in Figure 2.4. Most of the behavior of these PDFs are consistent with those in 

Figure 2.3. Six species (CH4, C2H2, C2H4, C4H2, C6H6, and HC3N) show Gaussian-like 

PDFs, and are thus well constrained with precise values for the LOS abundances and small 

uncertainties. It is worth noting that the uncertainties shown here are only from photon 

noise; another probable source of uncertainties is the presently unavailable temperature 

dependencies of extinction cross sections, which may introduce systematic errors. Three 

other species (C2H6, C6N2, and C2N2) have asymmetric PDFs more similar to the sigmoid 

function, with only well-defined upper limits. HCN and haze both have PDFs that are close 

to Gaussian, and as such are categorized as well constrained, but with large uncertainties  

(about a factor of 3). The third PDF type, a constant, is not shown in either Figure 2.3 or 

Figure 2.4, as all retrieved species are constrained to some extent at ~750 km. A constant 

PDF usually takes place only when the ray tangent height is either too high or too low in 

the atmosphere, where the LOS abundances of some species are either insufficient to be 

seen or overwhelmed by saturated absorption, respectively. In other words, flat PDFs 

would be returned when there is almost no information in the spectrum. 

Repeating the procedures outlined above for all available altitudes, we present the vertical 

profiles of LOS abundances of all eleven species in Figure 2.5 with error bars and arrows 

for well-defined constraints and upper limits, respectively. This is the first time that the 

LOS abundance profiles of these species are retrieved from a flyby with significant 

pointing motion. Comparison of the CH4, C2H2, C2H4, and HCN profiles with those 

retrieved from the TB (Shemansky et al. 2005) and T41i flybys (Koskenin et al. 2011) are 

given in Figure 2.S5. It shows general agreement between these three retrievals despite 

some differences at higher altitudes, which may result from the different seasons and/or 

latitudes. Among the major hydrocarbons (Figure 2.5a), only the most abundant species, 

CH4, is detectable above 1000 km, while all the others only exhibit upper limits. With 

decreasing altitude, concentrations of larger organic molecules increase due to 

photochemistry. All of the major hydrocarbons except C2H6 remain well constrained down 

to 400 km, where absorption saturates. Spectral features of C2H6 overlap with that of CH4 



 

 

19 

 

Figure 2.5. Vertical profiles of the logarithm of LOS abundances retrieved from T52 

occultation observations. Some species are offset by a few orders of magnitude for the 

purpose of presentation. Points with error bars denote well-constrained values, while 

arrows denote upper limits. The lengths of the arrows denote the width of each soft 

upper limit threshold. Haze particles are assumed to be 12.5 nm spheres with the same 

optical properties as their laboratory analog (“tholin”; Khare et al. 1984). Comparison 

of LOS abundances of CH4, C2H2, C2H4 and HCN with two previous flybys (TB and 

T41i) is given in Figure 2.S5. 
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for most of the altitude range, resulting in a failure to retrieve its abundance, as discussed  

in Section 2.4. Among nitriles, HCN is constrained with relatively large uncertainties 

between 700 and 1000 km, while HC3N is well constrained to much lower altitudes. Only 

upper limits for C6N2 and C2N2 are obtained, and so we do not claim a detection. Tighter 

constraints may be obtained from spectra with higher signal to noise ratio measured during 

a more stable flyby (e.g., T41i), which we will investigate in a future publication. Aside 

from the major hydrocarbon and nitriles, our new method can also identify the two long 

wavelength absorbers, benzene and haze. Benzene is well constrained below 900 km due 

to its distinguishable feature near 1790 Å, while haze particles can only be retrieved below 

750 km. The range of altitudes where haze is well constrained in our work is smaller than 

those of Liang et al. (2007) and Koskinen et al. (2011). Liang et al. (2007) retrieved the 

haze profile up to 1000 km from observations obtained during flyby TB by assuming that 

all extinction between 1850 to 1900 Å is caused by haze, as benzene was not included as a 

potential absorber. However, the current work shows that benzene can contribute up to 

50% of the extinction in this wavelength range, so the ambiguity of the two absorbers needs 

to be considered. Koskinen et al. (2011) also retrieved the haze profile up to 1000 km using 

observations obtained during two stable flybys T41i and T53, while assuming that the PDF 

of the LOS abundance of haze was Gaussian. Both the higher signal to noise ratio of these 

observations and the assumption of a Gaussian PDF could have contributed to a greater 

altitude range where haze LOS abundance can be constrained. Applying our method to 

these flybys may help to understand why these differences exist. 

LOS abundances of eight species (CH4, C2H2, C2H4, HCN, C4H2, C6H6, haze, and HC3N) 

are converted to number density profiles to allow for ease of comparison to photochemical 

models. Three species (C2H6, C2N2 and C6N2) are excluded, as their LOS abundances are 

not well constrained over most of the considered altitude range. The Abel inverse transform 

is used here, which assumes spherical symmetry, to compute the vertical profiles. A 

Bootstrap Monte Carlo (BSMC) method is used to evaluate the quality of conversion and 

provide uncertainties. BSMC has the advantage of being applicable to different types of 
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PDFs of the LOS abundances, which is necessary since a number of the PDFs are not  

Gaussian. The number density profiles of each species are computed individually since 

each species is independent of others. In each computation, a set of LOS abundances at all 

retrieving altitudes for the given species is sampled from their PDFs (e.g. one of the panels 

in Figure 2.4) at each BSMC step, from which we compute the corresponding vertical 

 

Figure 2.6. Number density profiles of selected species retrieved from T52 occultation 

observations. Black points with error bars denote well-constrained values, while grey 

arrows denote upper limits. The lengths of the arrows denote the width of each upper 

limit soft threshold. Haze particles are assumed to be 12.5 nm spheres with the same 

optical properties as their laboratory analog (“tholin”; Khare et al. 1984). 
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number density profile. As the distribution of species LOS abundances in the Markov 

chains obtained from the retrieval are identical to their PDFs when the MCMC procedure 

reaches equilibrium, we used the values in the last 1500 steps of each of the 120 chains as 

the sampling procedure for BSMC and generate 180000 number density profiles for each 

species. Therefore, at each altitude of an individual species, we obtain 180000 probable 

number densities, which form a number density PDF. To interpret these PDFs, we use the 

same method of fitting them with three types of functions (Gaussian, sigmoid, and 

constant) and categorized them by comparing the residuals as mentioned in Section 2.4. 

Number density profiles corresponding to well-constrained number densities and upper 

limits with positive values are shown in Figure 2.6. As the number density at each altitude 

is computed with contributions from both well and poorly constrained LOS abundances, 

the number densities have larger relative uncertainties and smaller ranges of altitudes 

where they are well constrained. Major hydrocarbons with large abundances and distinct 

spectral features (CH4, C2H2 and C2H4; Figure 2.6a-2.6c) are well constrained over a wide 

range of altitudes. In contrast, the number density of the most abundant nitrile, HCN, is 

poorly constrained for most of the altitude range considered (Figure 2.6d) due to its large 

LOS abundance uncertainty (Figure 2.5). Other minor species (Figure 2.6e-2.6h) are well 

constrained over at least some of the considered altitude range, and can thus provide 

constraints on Titan’s atmospheric chemistry. 

2.7 Conclusions 

A new method to correct for the effects of pointing motion of Cassini/UVIS has been 

developed using an instrument simulator and the MCMC method. The new approach is 

successfully applied to the T52 stellar occultation observations of Titan’s atmosphere to 

retrieve the LOS abundances and number densities of hydrocarbon and nitrile species, and 

allows for the quantification of how well each LOS abundance and number density can be 

constrained, facilitating the analysis of all Cassini/UVIS stellar occultations at Titan. 

Application of the present method to all available observations is expected to reveal 

seasonal and latitudinal variations in the atmospheric composition of Titan, thereby 
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providing useful constraints for photochemical and global circulation models. 

2.8 Appendix 

The influence of pointing motion on the distortion of the photon count spectrum of T52 at 

754 km ray tangent height is shown as Figure 2.S1. It is the same as Figure 2.1c in the main 

text, but expanded to include the entire FUV wavelength range. 

The spectral extinction contribution of each species to the spectrum of T52 at 754 km ray 

tangent height is shown as Figure 2.S2. Even though the zero-extinction spectrum does not 

exhibit a pointing drift, we add that of the spectrum at 754 km to allow for better inter-

comparison.   

Correlations among the probability density functions (PDFs) shown in Figures 2.3 and 2.4 

in the main text are plotted as Figures 2.S3 and 2.S4, respectively. Numbers and units in 

Figures 2.S3 and 2.S4 are the same as those shown in Figures 2.3 and 2.4. 

The LOS abundances of CH4, C2H2, C2H4, and HCN retrieved from T52 occultation 

observations and shown in Figure 2.5 are compared with those from two previous flybys 

(TB; Shemansky et al. 2005 and T41i; Koskinen et al. 2011) in Figure 2.S5.  
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Figure 2.S1. (a) Simulated photon count spectra from the T52 occultation at 754 km ray 

tangent height with pointing motion values along the spectral dimension of 0 (blue), -0.5 

(red) and +0.5 (green) mrad. (b)-(d) Detailed views of the photon count spectra split along 

the black dashed lines in (a). The y-axes scales are different in (b)-(d).  
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Figure 2.S2. (a) Photon count spectra from the T52 occultation. The spectra observed 

above Titan’s atmosphere (I0) without and with a pointing drift of 0.37 mrad, its value at 

754 km ray tangent height, are shown as black and red solid lines, respectively. The 

observed and best-fit model spectra at 754 km ray tangent height are shown as blue and 

green solid lines, respectively. The extinction contributions of each species are shown by 

the shaded areas between spectra. The y-axis is in log scale such that the area denoted for 

each species is proportional to their contributions to optical depth. (b)-(d) Detailed views 

of the photon count spectra split along the black dashed lines in (a). The y-axes scales are 

different in (b)-(d).  
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Figure 2.S3.  Probability density functions (PDFs) of the logarithm of LOS abundances, 

which are the same as those shown in Figure 2.3, and the correlations among them retrieved 

from the synthetic spectrum shown in Figure 2.2. Axes units are the same as those in Figure 

2.3.  
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Figure 2.S4.  Probability density functions (PDFs) of the logarithm of LOS abundances, 

which are the same as those shown in Figure 2.4, and the correlations among them retrieved 

from the observed photon count spectrum at 754 km ray tangent height shown in Figure 

2.2. Axes units are the same as those in Figure 2.4. 
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Figure 2.S5. Vertical profiles of the logarithm of LOS abundances retrieved from T52 

occultation observations (blue), compared to those retrieved from observations during TB 

(red; Shemansky et al. 2015) and T41i (green; Koskinen et al. 2011) by the cited works. 
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3.1 Abstract 

We present a joint retrieval of Pluto’s haze morphology and distribution in the lower 50km 

of its atmosphere, using observations from multiple instruments onboard the New Horizons 

spacecraft. Haze in Pluto’s atmosphere is one of the most distinctive features seen during 

New Horizons’ historic flyby in 2015. The haze was directly imaged at visible and near 

infrared wavelengths by the Long Range Reconnaissance Imager (LORRI), the Multispectral 

Visible Imaging Camera (MVIC), and the Linear Etalon Imaging Spectral Array (LEISA), 

and investigated in the ultraviolet (UV) by the Alice spectrograph using solar occultations. 

Contradictory conclusions have been drawn from observations by the different instruments. 

For example, forward and backward scattering at visible wavelengths cannot be reconciled 

with the observed UV extinction if only one haze particle population were assumed. Here, 

we present retrieval results of a bimodal distribution of haze particles, which consists of a 

small population with radius ~80nm and a large population with radius ~1μm. This result 

successfully addresses the disagreement among the instruments, and provides important 

constraints on local haze production and gas condensation in Pluto’s atmosphere.  

3.2 Introduction 

The existence of haze in Pluto’s atmosphere was confirmed by the New Horizons spacecraft 

during its flyby in July 2015 (Stern et al. 2015, Gladstone et al. 2016). Hypothesized to 

originate from photolysis of methane, nitrogen, and larger organic molecules in Pluto’s upper 

atmosphere, haze particles are thought to grow through coagulation of smaller particles as 

they sediment downwards (Gao et al. 2017), similar to processes in Titan’s atmosphere 

(Lavvas et al. 2013). Haze plays an important role in the Pluto system. The macromolecular 

particles serve as the condensation and/or sticking surface for chemical species in Pluto’s 

atmosphere (Wong et al. 2017; Luspay-Kuti et al. 2017). They may also dominate Pluto’s 

atmospheric energy budget in two ways. Haze particles likely significantly influence the 

temperature through radiative heating and cooling, which explains Pluto’s unexpected cold 

atmosphere (Zhang et al. 2017). After condensing onto the surface, haze particles alter its 

composition and therefore albedo by becoming darker due to solar radiation (Grundy et al. 
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2018). 

Despite the important role of haze in the Pluto system, however, the morphology of haze 

particles still remains a mystery to date. Observations of haze particles obtained by the 

Multispectral Visible Imaging Camera (MVIC, Reuter et al. 2008) at optical wavelengths 

present a bluish color, which suggests small particle radii compared to the observation 

wavelength (Gladstone et al. 2016). On the other hand, observations also show a strong 

forward scattering by haze (Gladstone et al. 2016, Cheng et al. 2017), which is an indication 

of large particles. Given these properties, the haze particles are likely fractal aggregates, 

highly porous and randomly shaped ~μm particles consisting of small ~10nm spheres, similar 

to haze in Titan’s atmosphere (Khare et al. 1984). Gao et al. (2017) used a numerical 

microphysics model to investigate haze formation and interpret the ultraviolet (UV) 

extinction vertical profiles obtained by the Alice UV Imaging Spectrograph (Stern et al. 

2008, Young et al. 2018). However, disagreement exists between the UV extinction and 

scattering phase functions at visible wavelengths obtained by the LOng-Range 

Reconnaissance Imager (LORRI, Cheng et al. 2008), such that no solution has been found 

that can explain both of sets of observations (Cheng et al. 2017). Besides observations by 

these three instruments, infrared (IR) spectra of haze particles at a forward scattering 

configuration were obtained by the Linear Etalon Imaging Spectral Array (LEISA, Reuter et 

al. 2008, Grundy et al. 2018), which have not been evaluated. Therefore, there is no unique 

solution for the morphology of Pluto’s haze that has been found to date that can explain the 

available observations. As a result, the nature of Pluto’s haze, and its importance to the Pluto 

system are loosely constrained. This is the subject of this work. 

In this work, we present a joint retrieval using observations obtained by all instruments 

onboard New Horizons spacecraft that observed Pluto’s haze, and conclude that a bimodal 

distribution of haze is the only solution after exhausting a number of scenarios. In Section 

3.3, we summarize the available observations of Pluto’s haze used in this work. The 

methodology including details of the forward model and parameter searching approach in 

the retrieval is shown in Section 3.4. A number of scenarios of haze particles morphology 
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are evaluated in Section 3.5. Discussion and summary follow as Section 3.6 and 3.7. 

3.3 Observations and Data Processing 

Observations of Pluto’s haze were obtained by multiple instruments onboard the New 

Horizons spacecraft during the flyby with wavelengths ranging from UV to IR. A summary 

of observations used in this work is given in Table 3.1 and Figure 3.1.  

3.3.1 Alice 

The Alice UV spectrograph is an imaging spectrograph with a bandpass from 52 to 187nm 

excluding a gap near Ly-α from 118 to 125nm (Stern et al. 2008). It obtained two UV 

extinction vertical profiles of Pluto’s atmosphere from ingress and egress of a solar 

occultation (Young et al. 2018). These two profiles are consistent despite the ingress (15.5°S, 

195.3°E) and egress (16.5°N, 13.3°E) points being on opposite sides of Pluto’s limb. In this 

work, we adapt the two haze extinction profiles that are derived and analyzed in detail in 

Young et al. (2018). 185nm is selected to be the representative wavelength as the haze’s 

extinction cross section varies less than 3% at wavelengths longer than 180nm when the 

haze’s optical constants are assumed to be the same as those of Titan tholins (Khare et al. 

1984). The extinction vertical profiles are binned every 5km, and uncertainties are computed 

through error propagation (Figure 3.1a). 

Table 3.1. Summary of Pluto’s haze observations. 

Instrument 
Wavelength 

(μm) 

Altitude Range 

(km) 

Phase Angle 

(degree) 
Reference 

Alice 0.165 0-300 Extinction Young et al. (2018) 

LORRI 0.608 

0-100 19.5 

Cheng et al. (2017) 
0-50 67.3 

0-75 148.3 

0-200 169.0 

LEISA 1.235-2.435 0-299 169.0 Grundy et al. (2018) 

MVIC 

0.624 

0.492 

0.861 

0.883 

0-50 

18.2 

38.8 

169.4 

This work 
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Figure 3.1. Comparison between observations obtained by instruments onboard New 

Horizons spacecraft (shaded areas) and model results with 1-σ uncertainties under the 

scenario of a bimodal distribution of haze particles (solid lines with error bars). (a) UV 

extinction coefficient at 0.185μm obtained by Alice spectrograph during solar occultation 

ingress (blue) and egress (green), taken from Young et al. (2018). (b) Local scattering 

intensity at 0.608μm derived from LORRI images at four phase angles of 19.5° (blue), 

67.3° (green), 148.3° (red), and 169.0° (magenta), processed using data from Cheng et 

al. (2017). (c) Local scattering intensity spectrum of each altitude bin at 1.235-2.435μm 

derived from LEISA observations at phase angle of 169.0°, processed using data from 

Grundy et al. (2018). (d) Local scattering intensity at 0.624, 0.492, 0.861, 0.883μm (from 

top to bottom) wavelength bands derived using MVIC images at three phase angles of 

18.2° (blue), 38.8° (red), 169.4° (green). 
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3.3.2 LORRI 

LORRI is a panchromatic visible imager with a wide bandpass from 350 to 850nm, and a 

pivot wavelength of 607.6 nm (Cheng et al. 2008). It imaged Pluto’s haze at a number of 

different phase angles. In these images, haze was found to be global and forming thin layers, 

and no temporal change was identified (Cheng et al. 2017). I/F profiles in images that are 

taken at several mean phase angles from 19.5° to 169.0° were extracted by Cheng et al. 

(2017) to analyze the property of haze particles. However, no solution was found that can 

simultaneously match both these I/F profiles and the UV extinction obtained by Alice. Here, 

we adapt four I/F profiles from Cheng et al. (2017) with the highest resolution into this work, 

covering phase angles from backward to forward scattering. The I/F profiles are binned to 

altitude bins with the same width as Alice, and uncertainties are computed as the standard 

deviation of I/F in each bin. As the I/F in the images are line-of-sight (LOS) integrated 

quantities, we use the Abel transform for noisy data to derive local densities (Figure 3.1b), 

whose details are given in Appendix 3.8.1. Given the small optical thickness of Pluto’s 

atmosphere, we assume the single scattering approximation and spherical asymmetry in the 

transform, although there exist some variations over large spatial scales (Cheng et al. 2017). 

As I/F values above the available observed altitudes are required in the transform, we fit a 

decreasing exponential function in geopotential, in line with Young et al. (2018). 

3.3.3 LEISA 

LEISA is a short-wavelength IR spectral imager in the Ralph instrument (Reuter et al. 2008). 

Its primary filter covers a wavelength range from 1.25 to 2.5μm. Despite its primary purpose 

of mapping the surface geology and composition, LEISA obtained an observation of Pluto’s 

haze at a forward scattering geometry with a phase angle of 169° (Grundy et al. 2018). We 

adapt the I/F profiles and spectra extracted from this image to place IR spectral constraints 

on the haze particles. The LOS integrated I/F profiles are also transformed to local scattering 

densities using the Abel transform (Figure 3.1c), and corresponding uncertainties are 

computed through error propagation (Appendix 3.8.1). 
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3.3.4 MVIC 

MVIC is a visible, near-infrared (NIR) imager in the Ralph instrument (Reuter et al. 2008). 

Besides optical navigation, it takes color images of the Pluto system using color arrays under 

time delay integration (TDI) mode. This allows it to obtain images in the blue (400-550nm), 

red (540-700nm), NIR (780-975nm) and a narrow methane absorption band (860-910nm). 

During the flyby of New Horizons, MVIC took a number of images of Pluto’s haze under 

this color TDI mode at different phase angles, which constitute a group of constraints. We 

select three observations with the highest resolutions, which are better than 5 km/pixel at 

mean phase angles of 18.2° 38.8° and 169.4°. The mission elapsed time (MET) of these 

observations are 0299162512, 0299178092, and 0299193157. Details of the MVIC data 

processing are given in Appendix 3.8.2, including the correction of Pluto’s disk glow and the 

extraction of the I/F profiles from the images. We compute the vertical I/F profiles and their 

uncertainties using the Abel transform (Figure 3.1d, Appendix 3.8.1), the same as that for 

the LORRI and LEISA observations. Kutsop et al. (in review) investigated haze properties 

using observations at three of the color filters and at seven phase angles across a much greater 

altitude range but at lower altitude resolution; they suggest that Pluto’s haze particles follow 

either a bimodal distribution or a power-law distribution, and that a monodisperse population 

may not be feasible. We combine these observations with those from other instruments to 

address the degeneracy between these two distributions.  

 
Figure 3.2. Illustration of fractal aggregate morphology with fractal dimensions (Df) of 

1.8, 2.0, and 2.2 (from left to right). The number of monomers is 100 in each of the 

aggregate. 
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3.4 Methodology 

Through data processing, we obtain extinction in the UV, scattering intensities at a few phase 

angles in the visible and NIR, and a scattering intensity spectrum in the IR at each altitude 

bin. The bins range from the surface to 50 km with a width of 5 km. To derive the haze 

morphology from these observations, we solve a multivariable inverse problem with a 

combination of a forward model and a retrieval algorithm. 

3.4.1 Aggregate Morphology 

Given the bluish color and strong forward scattering, haze particles are suggested to be fractal 

aggregates, highly porous and randomly shaped particles consisting of small subunits, 

“monomers”. To parameterize the morphology, we assume that the monomers within an 

aggregate are identical spheres, and the fractal aggregate can be described by three 

parameters, the fractal dimension (Df), monomer radius (rm) and number of monomers in 

each aggregate (Nm). The fractal dimension controls the porosity of the aggregate and relates 

the change in size of the aggregate with its change in mass. Figure 3.2 visually shows the 

influence of Df on aggregate morphology. Aggregates with larger Df are more compact. The 

relationship between aggregate effective radius (Ra) and these three parameters is 

𝑁𝑚 = (
𝑅𝑎

𝑟𝑚
)

𝐷𝑓

        (3.1) 

3.4.2 Scattering Models 

Light scattering of spherical haze particles and monomers in fractal aggregates is computed 

using Mie theory (Wiscombe 1979), as their radii are comparable to some of the observation 

wavelengths. The complex refractive index of these spheres, which is determined by the 

particle chemical composition, are assumed to be the same as those in Titan’s atmosphere 

due to the similarity between these two atmospheres, which are both nitrogen dominant 

atmospheres with trace organic molecules (Gladstone et al. 2016). We adapt the 

measurement of Khare et al. (1984) where optical properties of tholin-like particles were 
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produced under a pressure of 0.2mbar in the laboratory. Another more recent laboratory 

measurement (Ramirez et al. 2002) is not used in this work due to its high haze particle 

production pressure (2mbar), two orders of magnitude higher than Pluto’s surface pressure 

(~0.01mbar, Gladstone et al. 2016). 

We use the scattering model described by Tomasko et al. (2008) to estimate the phase 

function and cross sections of the parameterized fractal aggregate particles. The model was 

originally developed to constrain haze particle properties in Titan’s atmosphere. The 

scattering model uses empirical phase functions derived from averaging exact results of 

randomly produced aggregates, which significantly reduces the computational time, resulting 

in the feasibility of retrieval. It computes the phase function and cross sections at a given 

wavelength with three parameters describing an aggregate (Df, rm, and Nm) and the complex 

refractive index as described above. Another scattering model (Rannou et al. 1999) was 

tested but not used in this work due to its omission of polarization, which is not negligible 

when monomer number becomes large (~1000), although its disagreement with Tomasko et 

al. (2008) is less than 20% in our interested parameter space. The scattering model we used 

in this work is rigorously tested at Df=2 and mostly at Nm<103, but testing has shown that 

perturbation of Df is allowed (1.5<Df<2.5), and the extrapolation of Nm to ~104 is reasonable 

given the linear relationship in log-log scale between cross section and monomer number at 

the larger end of aggregate size (Tomasko et al. 2008). 

3.4.3 Retrieving Algorithm 

We choose the Markov chain Monte Carlo (MCMC) method (e.g. Foreman-Mackey et al. 

2013) as the parameter searching tool. It derives the posterior probability density function 

(PDF) of each parameter by comparing the posterior probabilities of proposed parameter 

sets. The cost function with posterior probability (p) is defined as follows which includes the 

value (μi) and uncertainty (σi) of each observation. 

ln(𝑝) = −
1

2
∑

(𝑋𝑖−𝜇𝑖)2

𝜎𝑖
2𝑖         (3.2) 
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where i is the index of the i-th observation, and Xi is the modeled i-th observation 

computed using a given proposed parameter set during one MCMC attempt. The Python 

package emcee (Foreman-Mackey et al. 2013) is used to implement the parameter searching 

algorithm. We initiate the MCMC process with 40 chains and flat priori for all parameters, 

and run the parameter search for 1000 steps. The last 500 steps are selected for the result 

analysis below, which is considered to be in the equilibrium state as the chains mostly 

converge near 200 steps. 

An advantage of using MCMC as the parameter searching tool is that it gives the extent to 

which a parameter can be constrained. The algorithm does not require any assumptions of 

the shape of the posterior PDFs, which are necessary for computing the gradient in parameter 

space in traditional approaches (e.g., Levenberg–Marquardt algorithm, Levenberg 1944). 

This is critical when the observation is barely sufficient to provide constraints as shown 

below, where well-constrained parameters have Gaussian-like PDFs, and poorly constrained 

ones have irregular, widely varying PDFs. The MCMC can also avoid convergence to local 

minima, which is important in this work as the relationship between the four fractal aggregate 

parameters are not linear, and therefore multiple local minima are expected.  

3.4.4 Surface reflection 

Suggested by studies of Triton’s haze (Hiller et al. 1990; 1991), surface reflection may have 

a non-negligible contribution to the observed haze brightness. We estimate this contribution 

in one of the tested scenarios as shown below. In line with Hiller et al. (1990) and (1991), 

we use the Hapke model (Hapke 1981) to simulate Pluto’s surface reflection. Due to the 

small optical opacity of Pluto’s atmosphere, attenuation of incoming and reflected light by 

the atmosphere is neglected. We assume Pluto’s surface scatters isotropically, so that the 

reflected light follows  

𝐼(𝜇0, 𝜇) = 𝐽
𝑤

4𝜋

𝜇

𝜇0+𝜇
𝐻(𝜇0)𝐻(𝜇)        (3.3) 

where I and J are the reflected and incoming intensities, respectively; w is the single 
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scattering albedo of the surface; μ0 and μ are the cosine of solar and viewing zenith angles, 

respectively; H(μ) is the Hapke function 

𝐻(𝜇) =
1+2𝜇

1+2√1−𝑤𝜇
        (3.4) 

We use the Hierarchical Equal Area isoLatitude Pixelization method (HEALPix; Górski et 

al. 2005) to discretize Pluto’s surface for the reflection computation. This technique divides 

the surface into pixels with the same area and distributed uniformly on the sphere. The 

parameter Nside in HEALPix is set to 16, which results in a 3072-pixel map with a spatial 

resolution of ~4°. 

3.5 Results 

Given the valuable but limited observations, degeneracy appears when the number of free 

parameters is too large. Therefore, we tested a number of scenarios of haze morphology in 

the retrieval (Table 3.2), which are compromises between fitting all the observations and 

limiting the degrees of freedom. The scenarios included in this work are (1) monodispersed 

fractal aggregates with variable dimension, (2) monodispersed fractal aggregates with 

variable dimension and surface reflection, (3) monodispersed fractal aggregates with variable 

dimension and monodispersed spheres, (4) two populations of monodispersed spheres, and 

Table 3.2. Summary of scenarios tested in this work. 

 Distribution Morphology 
Number of free 

parameters 

1 Monodispersed Aggregates with varying Df 4 

2 Monodispersed Aggregates with varying Df & Surface 4 

3 Bimodal 
Aggregates with varying Df & Spheres 

(Df=3) 
6 

4 Bimodal Spheres (Df=3) & Spheres (Df=3) 4 

5 Log-normal Spheres (Df=3) 3 

6 Power-law Spheres (Df=3) 2 

7 Exponential Spheres (Df=3) 2 

8 Log-normal Aggregates with Df=2 3 

9 Power-law Aggregates with Df=2 2 

10 Exponential Aggregates with Df=2 2 
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(5)-(10) log-normal, power-law or exponential distribution of two-dimensional aggregates 

or spheres. The first three scenarios are presented in this section and the rest seven are in 

Appendix 3.8.3. As shown below, scenario (3), a bimodal distribution consisting of large 

fractal aggregates and small particles, is the only one that can fit all the observations. 

3.5.1 Monodispersed fractal aggregates 

Under this scenario, we assume that there is a monodispersed population of haze particles at 

each altitude and include four free parameters. Three of them (Df, rm, Nm) describe the 

morphology of haze particles, and the fourth one (na) is the aggregate local number density. 

 
Figure 3.3. Vertical profiles of the free parameters: (a) fractal dimension, (b) monomer 

radius, (c) number of monomers in each aggregate, and (d) aggregate number density, 

and two derived quantities: (e) aggregate effective radius, and (f) total mass density 

assuming a material density of 1g/cm-3 in the retrievals under scenarios of monodispersed 

fractal aggregates constrained using all observations (green) and forward scattering only 

(blue). Results of the best-fit are denoted as solid lines, while those derived from 

probability density functions (PDFs) with 1-σ uncertainties are shown as shaded areas. 
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Vertical profiles of these four quantities that best fit the observations are shown in Figure 

3.3, and the corresponding simulated observables are given in Figure 3.4. The best-fit set of 

parameters is that which results in the maximal posterior probability as defined in Equation 

(2.2). The results show that the assumption of monodispersed fractal aggregates cannot fit 

all of the observations: it underestimates the backward scattering (Figure 3.4a and 3.4b) due 

to the forward-scattering dominated phase functions of fractal aggregates. This agrees with 

the discrepancy suggested by Cheng et al. (2017) that one population of fractal aggregates or 

spheres alone cannot explain both the forward and backward scattering in the visible and the 

extinction in the UV. 

3.5.2 Monodispersed fractal aggregates and surface reflection 

As fractal aggregates tend to underestimate the backward scattering, and surface reflection 

usually has larger backward scattering than forward, surface reflection may fill in the gap 

between observed backward scattering intensity and that scattered by aggregates. Here we 

test the scenario where these two factors are combined. The observed intensity above Pluto’s 

limb is assumed to consist of two parts: (1) sunlight scattered once by haze particles into 

New Horizon’s instruments, and (2) sunlight first reflected off of Pluto’s surface and then 

scattered once by the haze particles into New Horizon’s instruments.  

Given the fact that surface reflection usually contributes little when the viewing zenith angle 

is large, we first omit the backward scattering observables and only use the forward ones 

(LORRI at 148.3° and 169.0°, LEISA, and MVIC at 169.4°) together with the UV extinction 

to constrain the haze morphology. Results of the profiles of the four free parameters (Df, rm, 

Nm, na) are compared to the observations in Figure 3.3 and 3.4. The simulated forward 

scattering of haze particles agrees with observations well. All four parameters are well-

constrained across all the altitudes. The haze particles are ~1μm two-dimensional aggregates 

with ~20nm monomers at most of the altitudes (Figure 3.3b and 3.3e). Phase functions of 

these haze particles are forward scattering dominated, which explains the intense forward 

scattering observed. On the other hand, backward scattering by these particles is 
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Figure 3.4. Same as Figure 3.1, but the model results are under scenarios of 

monodispersed fractal aggregates. The best-fit of the results constrained using all 

observations are denoted as dashed lines, and the results with 1-σ uncertainties 

constrained using forward scattering only are shown as solid lines with error bars. 
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underestimated. The local scattering intensity of haze particles is less than the observed 

value by a factor of two (Figure 3.4b), which results in a LOS I/F difference of ~5*10-3 in 

the lower 50km. Therefore, we test the inclusion of surface reflection to try to fill this gap. 

The secondary scattering of light reflected off of Pluto’s surface by haze particles is 

computed using our retrieved haze morphology. We estimate an upper limit by computing 

the I/F contribution from this source when the incident and emission vectors are in the same 

specular plane. For each discretized point along the LOS, the secondary scattering is 

computed by summing up the reflected light from the pixelated Pluto surface multiplied by 

the haze scattering function with the corresponding geometry; integrating the secondary 

scattering along the LOS then provides the observables. Results for various surface single 

scattering albedos are shown in Figure 3.5, suggesting that even with the highest albedo 

(w=1), the maximum value of the LOS-integrated secondary scattering, which is around 90° 

 
Figure 3.5. I/F of secondary scattering by Pluto’s surface and then by haze particles 

integrated along line-of-sight (LOS) at an altitude of 7.5km under assumptions of surface 

material single scattering albedos of 0.0 (black), 0.5 (blue), 0.9 (red), 0.95 (green), 0.99 

(yellow), and 1.0 (magenta). 



 

 

44 

phase angle, is smaller than half of the gap between the primary scattering and observed 

I/F. Moreover, the maxima at the observed phase angles of LORRI (19.5°, 67.3°, 148.3°, and 

169.0°) are around or less than 2.5*10-3, so the upper limit of the secondary scattering is 

about one order of magnitude lower than the required backward scattering. 

3.5.3 Bimodal distribution 

As monodispersed fractal aggregates and surface reflection cannot reproduce the observed 

backward scattering, we consider a combination of a bimodal distribution of two haze 

particle populations with different sizes. Besides the aggregates as described in scenario (1), 

we include another population in the retrieval. The second population is assumed to be 

spheres, but the fractal dimension does not matter as will be discussed in Section 3.6. The 

 
Figure 3.6. Same as Figure 3.3, but for the scenario of a bimodal distribution of large 

fractal aggregates and small spheres. Parameters of fractal aggregates are denoted as blue, 

while those of spheres are shown as green. The total mass density in (f) consists of both 

aggregates and spheres. 



 

 

45 

spheres are parameterized with two variables, radius (rs) and number density (ns). 

Therefore, six free parameters in total are considered in the retrieval. After searching for the 

parameters using MCMC, vertical profiles of these six parameters are shown in Figure 3.6, 

and their PDFs at one of the altitudes are given in Figure 3.7. Similar to those in scenario (2), 

haze particles are ~1μm two-dimensional aggregates with ~20nm monomers across the 

altitude region, while the spheres have radii ~80nm. These two radii in the bimodal 

distribution are similar to those simulated in Titan’s atmosphere, which agrees well with 

observations (Lavvas et al. 2010). Comparison between the modeled observables and 

 
Figure 3.7. Probability density functions (PDFs) of the six free parameters and their joint 

distribution of the retrieval at 22.5km under the scenario of the bimodal distribution of 

aggregates and spheres. The values of the best-fit are denoted as solid black lines. 
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observations (Figure 3.1) indicates that under this scenario both the large forward and 

backward scattering and the UV extinction could be explained. The two types of haze 

particles have comparable UV extinctions with each dominating one of the forward and 

backward scattering at visible wavelengths (Figure 3.8).  

3.6 Discussion 

We investigate a number of scenarios in the retrieval, and conclude that the observed large 

forward and backward scattering intensities at visible wavelengths and UV extinction likely 

stem from a bimodal distribution of haze particles. The forward scattering observations of 

LEISA constrain the large population’s effective radius to ~1μm, while small particles 

(~80nm) dominate the backward scattering and contribute to approximately half of the UV 

 
Figure 3.8. Contributions of fractal aggregates (blue) and spheres (green) to (a) UV 

extinction and (b) scattering in visible. (a) Observations obtained by Alice spectrograph 

during solar occultation are denoted during ingress and egress are denoted as grey and 

black error bars. (b) Observations obtained by LORRI are denoted as black error bars. 

The solid black line is the total contribution of aggregates and spheres, which is also the 

sum of the shaded areas. The colored dashed lines represent the ratio of contribution from 

each component. 
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extinction (Figure 3.8a). Medium size particles are ruled out due to the fact that they do 

not possess strong forward and backward scattering with the same UV extinction. Therefore, 

power-law or exponential distributions cannot satisfy the observations. Our results break the 

degeneracy between bimodal and power-law distributions of haze particles suggested by 

Kutsop et al. (in review), who used only MVIC observations.  

A bimodal distribution of aerosols has also been found and simulated in Titan’s atmosphere 

using observations from Cassini/Huygens (Tomasko et al. 2008, Lavvas et al. 2010). Lavvas 

et al. (2010) successfully modeled it by including a high altitude monomer production region 

(~1000km above Titan’s surface) and a transition of aggregate dimension from spheres to 

two-dimensional aggregates near 520km. Due to different collision cross-sections and 

transport velocities of these two types of particles, the bimodal distribution forms near the 

transition region. The ultimate sizes of these two populations in Titan’s atmosphere (3.4μm 

and 84nm) are similar to those found in this work. Therefore, there may be a dimension 

transition in Pluto’s atmosphere as well. Another possible mechanism is 

condensation/sticking of gaseous species. Due to the low temperature, C2 species may 

condense/stick onto haze particles through gas/solid phase change (Wong et al. 2017) or gas-

haze incorporation (Luspay-Kuti et al. 2017). Proof or negation of these mechanisms requires 

further modeling investigations and is beyond the scope of this work. 

The fractal dimension of the small-particle population is assumed to be three in our retrieval 

for the purpose of simplicity and for reducing the number of free parameters. However, it 

cannot be constrained with currently available observations. The difference in scattering 

between a three-dimensional sphere and a two-dimensional aggregate with the same effective 

radius of 80nm is less than a factor of three (Figure 3.9), which is less than the observational 

uncertainty. Tighter constraints on the dimension of the small-particle population require 

scattering phase function observations at much shorter wavelengths that are comparable to 

the particle radius. 

The vertical profiles of the retrieved parameters show a possible change in the dimension of 

the aggregates below 15km (Figure 3.6a), while the agreement with the observations 
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simultaneously deteriorates (Figure 3.1b and 3.1d) as the observed backward scattering I/F 

increases rapidly towards the surface. This may come from some boundary effects, e.g. 

aerosols lifted by wind or some rapid change of atmospheric properties near the surface. In 

either case, more degrees of freedom need to be considered at these near-surface regions but 

the current limited observations may not be able to provide sufficient constraints. 

While the contribution of Pluto’s surface reflection is negligible on the observed I/F above 

Pluto’s limb, the retrieved haze optical properties can help improve the constraints on Pluto’s 

surface albedo (e.g., Buratti et al. 2017). Radiative transfer models (e.g., Spurr & Natraj 

2011) can also be deployed into this context. Constraints on the composition of Pluto’s 

surface may be considerably improved if the influence from the aerosols is removed. 

3.7 Summary 

We find that Pluto’s haze particles follow a bimodal distribution in the lower 50km through 

a joint retrieval of available observations obtained by multiple instruments onboard the New 

 
Figure 3.9. Local scattering intensity with unit UV extinction of 80nm spheres (black 

solid line) and two-dimensional aggregates with the same effective radius but different 

number of monomers (colored solid lines). The four phase angles 19.5°, 67.3°, 148.3°, 

and 169.0° of LORRI observations are shown as vertical solid grey lines. 
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Horizons spacecraft. The bimodal distribution consists of a population of ~1μm two-

dimensional aggregates with ~20nm monomers and a population of ~80nm particles. The 

fractal dimension of the small-particle population cannot be constrained using current 

observations. This distribution may come from a transition of haze particle fractal dimension 

in Pluto’s atmosphere. Surface reflection provides negligible contributions to haze brightness 

above the limb, but other surface-related mechanisms may affect the haze brightness in the 

lower 15km of the atmosphere. 

3.8 Appendix 

3.8.1 Abel transform of noisy data 

In remote sensing of planetary atmospheres, observables are usually line-of-sight (LOS) 

integrated quantities, necessitating it to convert these observables to local quantities for 

analysis of physical or chemical properties of the atmosphere. In the solar occultation by 

Alice, the observable is LOS optical depth. 

𝜏𝐿𝑂𝑆(𝑟) = ∫ 𝑛(𝑠)𝜎𝑒𝑥𝑡(𝑠)𝑑𝑠
+∞

−∞

        (3. S1) 

where τLOS is the LOS optical depth; r is the distance of Pluto’s center to LOS; n is the local 

number density; σext is the extinction cross section; s is the path along LOS. In the limb 

scattering geometry of the other three instruments, the observed I/F is an integration of local 

scattering intensity. 

𝐼 𝐹⁄ (𝑟) = ∫
1

4
𝑃(𝑐𝑜𝑠𝜃)𝑛(𝑠)𝜎𝑠𝑐𝑎(𝑠) 𝑑𝑠

+∞

−∞

        (3. S2) 

where σsca is the scattering cross section; θ is the scattering angle; P is the phase function, 

which is normalized to 4π. Given the same form of Equation (3.S1) and (3.S2), they can be 

unified as follows: 
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𝑁(𝑟) = ∫ 𝐷(𝑠) 𝑑𝑠
+∞

−∞

        (3. S3) 

where N is the observable; D is the corresponding local quantity. Assuming a spherical 

asymmetry, D is a function of r, and the equation becomes an Abel integral. 

𝑁(𝑟) = 2 ∫ 𝐷(𝑟′)
𝑟′

√𝑟′2 − 𝑟2
 𝑑𝑟′

+∞

𝑟

        (3. S4) 

where r’ is the distance of Pluto’s center to the point of each D in the integral. This equation 

shows that N only depends on D at altitudes higher than the impact parameter. Abel inverse 

transform suggests an exact solution (Roble and Hays, 1972). 

𝐷(𝑟′) = −
1

𝜋
∫

𝑑𝑁(𝑟) 𝑑𝑟⁄

√𝑟2 − 𝑟′2
 𝑑𝑟

+∞

𝑟′

        (3. S5) 

However, the exact solution is not a good option in the inversion of observations with noisy 

data, as the derivative of N in the integral is sensitive to noise. Therefore, instead of using 

the exact solution, we rewrite Equation (3.S4) with discrete altitude bins and solve the 

problem through linear regression. 

𝑁𝑖 = 2 ∑ 𝐷𝑗 ∫
𝑟′

√𝑟′2 − 𝑟𝑖
2

 𝑑𝑟′
𝑟2𝑗

𝑟1𝑗

𝑛

𝑗=1

        (3. S6) 

where i and j are the indices of altitude bins; n is the total number of bins; r1j and r2j are the 

lower and upper boundary of the j-th altitude bin, and r1(j+1) = r2j; Ni and Dj are the 

corresponding LOS and local quantities at the i-th and the j-th altitude bins, respectively. In 

this case, all the integrals form a geometry matrix A, which consists of element Aij for each 

pair of (i, j). 

𝐴𝑖𝑗 = ∫
𝑟′

√𝑟′2 − 𝑟𝑖
2

 𝑑𝑟′
𝑟2𝑗

𝑟1𝑗

        (3. S7) 
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A is an upper triangular matrix as Aij=0 when i>j. Including the observation noise, there is 

a linear relationship between vectors of N and D. 

𝑵 = 𝑨 ∙ 𝑫 + 𝜺        (3. S8) 

where N and D are column vectors which have Ni and Dj as the elements; ε is the vector with 

observation noise for each corresponding Ni. Then the linear problem can be solved as 

follows: 

𝑲 = (𝑨𝑇𝑪𝑵𝑨)−1 ∙ (𝑨𝑇𝑪𝑵
−1)        (3. 𝑆9) 

𝑫 = 𝑲 ∙ 𝑵        (3. 𝑆10) 

𝑪𝑫 = 𝑲 ∙ 𝑪𝑵 ∙ 𝑲𝑇        (3. S11) 

where CD is the covariance matrix of D; CN is the covariance matrix of N. Square root of the 

diagonal elements in CD serve as the uncertainties of local densities. Inversion through linear 

regression does not contain derivatives, so it is more robust against observation noise. Further 

regularization, which is not included in this work as the result is already acceptable, can also 

be added to decrease the influence of noise (Quémerais et al. 2006). 

The transform requires the upper boundary of the altitude bins to be sufficiently high so that 

the truncation from infinity to r2n in Equation (3.S6) can be neglected. However, some of the 

observations have limited altitude range due to the instrument field of view. The I/F profile 

obtained by LORRI at phase angle of 67.3° is limited to the lower 50km, which is the smallest 

altitude range among all observations, and therefore constrains the altitude range that we can 

conduct the analysis. Given the fact that Pluto’s haze extends up to ~200km above the surface 

with a densityscale height of ~50km (Gladstone et al. 2016), haze above the available 

observation range is not negligible. Due to the small radius of Pluto (1190km, Hinson et al. 

2017), the change of scale height with gravity needs to be considered in the extrapolation. 

We assume an exponential decay in geopotential of the local density, in line with that in 

Young et al. (2018). The first order approximation is as follows (Young 2009): 
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𝐻 = 𝐻0

𝑟2

𝑟0
2         (3. 𝑆12) 

𝐷 = 𝐷0𝑒
−

𝑟0
𝐻0

(1−
𝑟0
𝑟

)
        (3. S13) 

𝑁 = 𝑁0𝑒
−

𝑟0
𝐻0

(1−
𝑟0
𝑟

)
(

𝑟

𝑟0
)

3
2 1 +

9
8

𝐻
𝑟

1 +
9
8

𝐻0

𝑟0

        (3. 𝑆14) 

where H is the scale height; the subscript 0 indicates the surface value of corresponding 

variables. Through this approach, we extrapolate N to 2000km above Pluto’s surface by 

fitting Equation (3.S14) to observables. The ranges selected for the fitting are between 25km 

to the highest valid altitude, 25–75km and 15–50km for LORRI, LEISA and MVIC 

observations. 

The extrapolation results in two parts for the altitude bins, which requires Equation (3.S8) to 

be rewritten. 

[
𝑵1

𝑵2
] = [

𝑨11 𝑨12

0 𝑨22
] ∙ [

𝑫1

𝑫2
] + [

𝜺
0

]        (3. S15) 

where subscript 1 denotes the corresponding variables at altitudes with valid observations, 

while subscript 2 denotes those of extrapolation. We assume the extrapolation to be precise 

and neglect its uncertainty. Combining Equation (3.S15) with (3.S9-3.S11), we can finally 

derive the required local density and its uncertainty. 

𝑫2 = (𝑨22
𝑇 𝑨22)−1 ∙ (𝑨22

𝑇 𝑵2)        (3. S16) 

𝑲1 = (𝑨11
𝑇 𝑪𝑵1

𝑨11)
−1

∙ (𝑨11
𝑇 𝑪𝑵1

−1)        (3. S17) 

𝑫1 = 𝑲1 ∙ (𝑵1 − 𝑨12𝑫2)        (3. S18) 

𝑪𝑫1
= 𝑲1 ∙ 𝑪𝑵1

∙ 𝑲1
𝑇        (3. S19) 
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 where CD1 and CN1 are the covariance matrices of D1 and N1, respectively. D1 corresponds 

to the UV extinction coefficient, 𝑛𝜎𝑒𝑥𝑡, or local scattering intensity, 
1

4
𝑃𝑛𝜎𝑠𝑐𝑎 in the integral 

of Equation (3.S1) and (3.S2), respectively. 

3.8.2 MVIC data processing 

Details of the MVIC instrument design and operation are given in Reuter et al. (2008). 

Science operation of MVIC is under TDI mode with two panchromatic and four color arrays. 

We select the observations obtained by color arrays as they contain Pluto haze’s spectral 

characteristics. Level 2 data is used for analysis in this work, whose identifier on NASA PDS 

is New Horizons MVIC Pluto Encounter Calibrated Data v3.0 (Stern, 2018). The data 

contains bias-subtracted, flattened images, but it does not include corrections for scattered 

light, cosmic rays, geometric and motion distortion. We follow the New Horizons SOC to 

Instrument Pipeline ICD (NASA PDS) to convert the calibrated data number (DN) to I/F, 

then use the SPICE system (Acton 1996) to compute the geometry with navigation data 

(Figure 3.S1). With the geometry information, we determine the resolution and mean phase  

angle of each image. Three observations with resolution better than 5km/pixel are selected 

(Table 3.S1). As the geometry inferred by the navigation data does not perfectly locate Pluto 

in each image (Figure 3.S1), we conduct a further correction as the haze altitude needs to be   

accurate. A one pixel offset can result in an altitude difference as large as 5km, which is the 

bin interval selected in this work. To correct the Pluto location in each image, we select the 

points with the largest brightness gradient around the sun-lit edge (Figure 3.S1), then fit a 

circle to these points, which serve as the Pluto’s edge. Other geometries are offset according 

Table 3.S1. List of MVIC observations 

MET Time 
Phase Angle 

(degree) 

Distance 

(103km) 

Resolution 

(km) 

0299162512 
2015-07-14 

T06:50:12 
18.2 246.1 4.87 

0299178092 
2015-07-14 

T11:10:52 
38.8 33.1 0.67 

0299193157 
2015-07-14 

T15:20:58 
169.4 175.3 3.47 
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to the correction. Pluto is not a perfect sphere in the images, which may be due to the shape 

itself or the fast motion of the spacecraft at small distances. We select regions with the 

sharpest edge, as haze altitudes in these regions are computed with the best accuracy (Figure 

3.S1). 

 
Figure 3.S1. MVIC images of Charon and Pluto at mission elapsed time (MET) of 

0299162512, 0299178092, and 0299193157. Images at different channels are presented 

at each row, and the columns are for target and phase angles. Red and blue dashed circles 

denote the prediction of target locations and those derived by fitting the edge of targets 

using the green dots, respectively. The magenta curved boxes show the regions which are 

used for data analysis and presented in Figure S2. The yellow and which arrows denote 

the direction of the Sun and Pluto’s north. 
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Stray light is not negligible in the images, similar to that in LORRI observations (Cheng et 

al. 2017). It is especially important at backscattering configuration when the disk brightness  

is much higher than the haze. As the stray light is an instrument effect, it is a function of pixel 

distance above the limb of celestial bodies, which can also be seen around the airless Charon 

(Figure 3.S2). I/F profiles of Pluto’s haze in LORRI observation are corrected by subtracting 

the normalized stray light above Charon’s limb (Cheng et al. 2017). Here, we include the 

correction the same way. We compute the moving averages of I/F profiles as a function of 

pixel distance from Charon’s limb, then subtract them from Pluto’s. As Charon appears in 

only one of the observations (MET 0299162512), and the instrument effect should stay the 

same during the flyby, we assume the stay light influence is the same among images obtained 

 
Figure 3.S2. I/F profiles as a function of pixel distance above the limn. Sequence of the 

panels are the same as Figure 3.S1. Observed values are denoted as colored dots, and the 

vertical solid grey lines show the location of target limbs. Moving average of observations 

of Charon are shown as colored solid lines in (a), and used for stray light correction shown 

as black dashed lines in (b) and (c). Averaged observations of Pluto are denoted as black 

dots and solid lines in (b)-(d). A black bar showing the scale of 10km is at the lower left 

of each column. 



 

 

56 

by the same color array at different time, and apply the correction individually for each 

array (Figure 3.S2). The I/F profiles after this correction are used in the haze property 

analysis. 

3.8.3 Test of scenarios 

Besides the three scenarios presented in section 3.5, the rest seven are tested here to fit 

observations: (4) bimodal distribution of spheres (haze particles with Df=3), (5) log-normal 

distribution of spheres, (6) power-law distribution of spheres, (7) exponential distribution of 

spheres, (8) log-normal distribution of two-dimensional aggregates (haze particles with 

Df=2), (9) power-law distribution of two-dimensional aggregates, and (10) exponential 

distribution of two-dimensional aggregates. A comparison of the goodness among the 

scenarios, including those mentioned in section 3.5, is given in Figure 3.S3. We quantify the 

goodness using the maximal probability that can be reached under each scenario as defined 

in Equation (3.2). All of the seven scenarios show the goodness far worse than the bimodal 

distribution of large aggregates and small particles. 

Scenario (4) of a bimodal distribution of spheres contains four free parameters. They are the 

sphere radii and the two corresponding number densities. Scenario (5) contains three free 

parameters, which are the two parameters defining the log-normal distribution and the total 

number density. We include 30 size bins of spheres, covering a radius range from 1.3nm to 

1.0μm. Each bin is assumed to have particles that contains twice of the monomers of the 

previous, so the ratio between the radii between two consecutive bins is √2
3

. Therefore, the  

number density of particles in each bin is defined as follows. 

𝑛𝑖 = 𝑛0(𝐶𝐷𝐹(𝑟2𝑖) − 𝐶𝐷𝐹(𝑟1𝑖))        (3. S20) 

where i is the bin index; r, r1i, r2i are the radii at the bin center, lower and upper boundary of 

the i-th bin, respectively; ni is the number density of particles in the i-th bin; n0 is the total 

number density. CDF is the cumulative density function, which is defined as below for the 

log-normal distribution. 
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𝐶𝐷𝐹𝐿𝑁(𝑟) =
1

2
+

1

2
 𝑒𝑟𝑓 (

𝑙𝑛 𝑙𝑛 (𝑟)  − 𝜇

√2𝜎
)       (3. S21) 

where r is the particle radius; μ and σ are the mean and standard deviation of the logarithm 

of radius, respectively; erf is the error function. Under this scenario, n0, μ and σ are the three 

free parameters. Scenario (6) is the same as scenario (5) except for the CDF, which is defined 

as below. 

𝐶𝐷𝐹𝑃𝐿(𝑟) = 1 − 𝑟1−𝑝       (3. S22) 

where p is the power describing how fast the number density decreases with size. As the 

CDF is defined using one parameter, this scenario has two free parameters (n0 and p). 

 
Figure 3.S3. Comparison of the goodness of scenarios, quantified by the negative of the 

logarithm of the posterior probability: bimodal distribution of spheres (black dashed line), 

log-normal distribution of spheres (blue dashed line), power-law distribution of spheres 

(red dashed line), exponential distribution of spheres (green dashed line), bimodal 

distribution of aggregates and spheres (black solid line), log-normal distribution of 

aggregates (blue solid line), power-law distribution of aggregates (red solid line), and 

exponential distribution of aggregates (green solid line). 
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Similarly, scenario (7) has the CDF defined as below. 

𝐶𝐷𝐹𝐸𝑥𝑝(𝑟) = 1 − 𝑒−𝛼𝑟       (3. S23) 

where α is the exponent describing the decrease of number density with size. This scenario 

also has two free parameters (n0 and α). 

Scenarios (8)-(10) are the same with scenarios (5)-(7), respectively, except for the particle 

bins. A monomer size (rm) is assumed and fixed during each retrieval, and we tested a group 

of retrievals with monomer size from 1nm to 0.1μm. Monomer number ratio is still 2 between 

consecutive bins. As the fractal dimension is fixed to be 2, the effective radius ratio is √2. 

The smallest size bin contains 2 monomers, and the largest contains 230, which result in an 

effective radius ~3*105 times of that of the monomer. The optimal monomer sizes to reach 

the maximal probabilities are 20, 20, and 30nm under the scenarios (8)-(10), respectively. 

The comparison of the corresponding goodness is shown in Figure 3.S3.  
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4.1 Abstract 

Resolving spatially-varying exoplanet features from single-point light curves is essential for 

determining whether Earth-like worlds harbor geological features and/or climate systems 

that influence habitability. To evaluate the feasibility and requirements of this spatial feature 

resolving problem, we present an analysis of multi-wavelength single-point light curves of 

Earth, where it plays the role of a proxy exoplanet. Here, ~10,000 DSCOVR/EPIC frames 

collected over a two-year period were integrated over the Earth’s disk to yield a spectrally-

dependent point source and analyzed using singular value decomposition. We found that, 

between the two dominant principal components (PCs), the second PC contains surface-

related features of the planet, while the first PC mainly includes cloud information. We 

present the first two-dimensional (2D) surface map of Earth reconstructed from light curve 

observations without any assumptions of its spectral properties. This study serves as a 

baseline for reconstructing the surface features of Earth-like exoplanets in the future. 

4.2 Introduction 

Since the first exoplanet was detected (Campbell et al. 1988), approximately four thousand 

more have been confirmed (NASA Exoplanet Archive, exoplanetarchive.ipac.caltech.edu). 

Among these exoplanets, a number of them have similar properties to Earth, and may be 

habitable, e.g. TRAPPIST-1e (Gillon et al. 2017). However, existing measurements are still 

not adequate to determine whether these planets can support life. A geological and climate 

system that supports all three phases of water is critical to life on Earth’s surface. The 

presence of atmospheric water vapor, clouds, and surface oceans could therefore serve as 

biosignatures that can be observed from a distance, and are also among the indicators for 

habitability. Identifying surface features and clouds on exoplanets is thus essential in this 

context. 

Earth is the only known planet that harbors life. Remote sensing observations of Earth can 

therefore serve as proxies for a habitable exoplanet, as seen from the perspective of 

hypothetical distant observers. A number of such studies have been performed since the first 
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analysis of snapshots of Earth obtained by the Galileo spacecraft (Sagan et al. 1993, 

Geissler et al. 1995). Two observations of Earth’s light curve, each spanning one day, 

obtained by the Deep Impact spacecraft, were used to identify changes of surface features 

(land/ocean) and clouds (Cowan et al. 2009, 2011; Cowan & Strait 2013). Using principal 

component analysis (PCA), time series of disk-integrated spectra of Earth were decomposed 

into two dominant “eigencolors”, which contained 98% of the light curve variance. 

Land/ocean changes and cloud patterns were recently extracted from Earth’s light curves 

using two years of observations of the Earth’s bright side from the Deep Space Climate 

Observatory (DSCOVR, Jiang et al. 2018). Besides the Earth, other solar system planets (e.g. 

Jupiter, Ge et al. 2019) have also been treated as proxy exoplanets, with their light curves 

analyzed to provide baselines for exoplanet studies. 

Despite interference from clouds, two-dimensional (2D) surface maps of exoplanet surfaces 

can be constructed using time-resolved spectra together with orbital and viewing geometry 

information, which in principle can be derived from light curves and other observables. 

Spatial maps of hot Jupiter atmospheres have been constructed (e.g. Knutson et al. 2007, 

Louden & Wheatley 2015). However, the detection and mapping of potentially habitable 

Earth-like exoplanets remains a challenge, especially when surface features and clouds 

contribute strongly to light curves. Numerical models that simulate light curve observations 

of the Earth using known spectra of different surface types have been used to test methods 

for retrieving 2D maps (e.g. Fujii & Kawahara 2012, Cowan & Fujii 2017, Farr et al. 2018). 

Using two-day single-point light curves from NASA’s EPOXI mission, Cowan et al. (2009) 

presented the first retrieved longitudinal surface map of Earth’s surface. However, 2D 

surface maps have not yet been derived from actual single-point light curve observations, 

due to their low temporal or spatial resolutions. 

In this paper, we reanalyze the two-year DSCOVR/EPIC observations presented by Jiang et 

al. (2018) to study the Earth as a proxy exoplanet. We integrate over the disk of the Earth to 

reduce each image to a single point source, in order to simulate the light curve of a distant 

exoplanet. We report the first 2D surface map of this proxy cloudy exoplanet reconstructed 
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from its single-point light curves, without making any assumptions about its spectral 

features. 

4.3 Observations and labels 

Disk-integrated light curves analyzed in this work are derived from Earth’s images obtained 

by DSCOVR’s Earth Polychromatic Imaging Camera (EPIC; 

www.nesdis.noaa.gov/DSCOVR/spacecraft.html) during 2016 and 2017. The DSCOVR 

spacecraft is positioned at the first Sun-Earth Lagrangian point (L1), viewing the sunlit face 

of Earth from a distance of about 106 km. From this vantage point, DSCOVR views the entire 

disk of Earth, illuminated near local noon. This provides an ideal geometry for studying the 

Earth as a proxy exoplanet seen near opposition relative to its parent star. Since the 

observations are all near full-phase configuration, similar to those near secondary eclipse 

(when the planet is blocked by the star), the phase-angle effect (Jiang et al. 2018) is not 

considered in this work. The EPIC instrument images the Earth every 68–110 minutes, 

returning a total of 9740 frames over a two-year period (2016–2017), with a 2048×2048 

charge-coupled device (CCD) in 10 narrowband channels (317, 325, 340, 388, 443, 552, 680, 

688, 764 and 779nm), which are selected primarily for investigations of the Earth’s climate. 

A sample observation of reflectance in the 680nm channel at 9:27 UTC, 2017 February 8th 

is shown in Figure 4.1a. 

 We integrate the spatially-resolved images over the Earth’s disk to simulate observations of 

an exoplanet that is detected as a point source. This results in a mean reflectance of 0.22 for 

the image shown in Figure 4.1a. At each time step, reflectance images obtained sequentially 

from the 10 channels, with exposure time ranging from 22 ms to 654 ms, are combined to 

form a 10-point reflection spectrum. Since the surface materials and cloud distributions on 

an Earth-like exoplanet may be significantly different from those on Earth, we do not assume 

any known spectral features of the surface; instead, we label each reflection spectrum with 

disk-averaged fractions of land and clouds on the sunlit face of the Earth to evaluate the cause 

of the change in Earth’s light curves. The two fractions are computed as weighted averages, 

where the weights are proportional to the cosine of the solar zenith angle. Figure 4.1b shows 
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a land/ocean map as seen from the same viewing angle, with a land fraction of 0.33 as defined 

by the Global Self-consistent, Hierarchical, High-resolution Geography Database (Wessel et 

al. 1996). We use the Level-3 MODIS Atmosphere Daily Global Product (Platnick et al. 

2015) to compute the cloud fraction label at each time step. Cloud fractions are linearly 

interpolated between days, since there are multiple EPIC observations each day. This results 

in a 0.61 cloud fraction for the example observation shown in Figure 4.1c. 

In summary, using EPIC observations collected during 2016 and 2017 and the concomitant 

viewing geometry, we obtain a time series consisting of 10-point reflection spectra with two 

 

Figure 4.1. (a) Reflectance image in the 680nm channel of DSCOVR/EPIC obtained at 

9:27 UTC, 2017 February 8th. The average reflectance is 0.22. (b) Land/ocean map of the 

Earth for the same scenario as (a), using the GSHHG database (Wessel et al. 1996). The 

average land fraction is 0.33. (c) Cloud fraction map for the same scenario as (a), obtained 

from the Level-3 MODIS Atmosphere Daily Global Product (Platnick et al. 2015). The 

averaged cloud fraction is 0.61. (d) Median (black solid line), mean (black dots) and 

standard deviation (red line and dots) of reflectance in each channel for ~10,000 

DSCOVR/EPIC observations during the years 2016 and 2017. The grey shaded area 

shows the first and third quartiles of reflection spectra. (e) The first two principal 

components, PC1 (blue) and PC2 (green), of the scaled reflection spectrum time series. 
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coverage fraction labels, which are combined in Section 4.4 to analyze the time series of 

light curves and to recover the surface map of the proxy exoplanet. The mean and variance 

of the reflectance in each channel are shown in Figure 4.1d; clearly, there is considerable 

difference among the channels. In the following analysis, we normalize the time series of 

reflection spectra to yield zero means and unit standard deviations, since the singular value 

decomposition (SVD), presented in Section 4.4, is sensitive to the scaling between 

dimensions of the dataset. This is done in order to give each channel equal importance, since 

the wavelengths are likely to be different for future exoplanet observations. 

4.4 Time series analysis 

Time series of disk-averaged light signals carry information about the spectral variability of 

exoplanets. Analyzing such signals from Earth (in this case, serving as a proxy exoplanet) 

could provide a baseline for future exoplanet studies. Jiang et al. (2018) used the same dataset 

and analyzed irradiances from individual EPIC channels to correlate their changes with 

different types of reflective surfaces, using the original high-resolution images and known 

spectra of materials on Earth. In their analysis, Jiang et al. (2018) qualitatively explained the 

variations of single-point light curves for the years 2016 and 2017. However, for future 

exoplanet studies, Earth-like planets will only be resolved as disk-integrated point sources. 

Therefore, methods are needed to retrieve information about exoplanet environments from 

these disk-integrated, point-source observations. For Earth, the light curve is dominated 

primarily by the cloud cover and land/ocean fraction. Here, we adopt these two parameters, 

viz., the land and cloud fraction labels, as metrics for evaluating the success of our analysis 

technique. Therefore, all types of land surfaces are considered the same and an “averaged” 

land is used in the analysis. Spectra of any reflective surfaces are assumed to be unknown 

since those on exoplanets could be very different. 

We use SVD to decompose the time series into principal components (PCs), and then 

separate the influences of different reflective surfaces. The first two PCs of the scaled light 

curves, or “eigencolors” as defined by Cowan et al. (2009), are shown in Figure 4.1e. Given 

that the singular values are the square roots of the variance along corresponding dimensions, 
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the first two PCs contain 96.2% of the variation of the scaled light curves (Figure 4.2a). 

The ordering of the variance accounted for by the PCs depends on the contribution of the 

land and cloud fractions to the time series variance. Although the PCs are orthogonal, 

changes in land and cloud fraction are not independent from each other. Land and ocean are 

fixed to Earth’s surface, and appear periodically in the time series of the light curve. Clouds 

are variable; some parts of Earth are perennially covered by clouds (e.g., the southern 

oceans), while some others are always clear (e.g., the Sahara Desert). Therefore, some clouds 

may be synchronized with the rotation of Earth’s surface into and out of the instrument field 

of view, precluding the separation of these clouds from surface features based solely on 

single-point observations. Nevertheless, this information is encoded in the time series of the 

disk-integrated image. Information about the perennially cloud or perennially clear scenarios 

(hereafter referred to as surface-correlated clouds) is expected to be included in the same PC 

for land/ocean, while that of the rest of clouds would be in another PC. 

In order to interpret the physical meaning of the PCs, it is necessary to analyze the 

relationship between the two labels (land and cloud fractions) and the reflectance time series. 

We use a machine learning method, called Gradient Boosted Regression Trees (GBRT; 

 

Figure 4.2. (a) Singular values of the principal components (PCs, red) and their 

importance to land (blue) and cloud (green) fractions. The importance of PCs for each 

fraction is evaluated using a Gradient Boosted Regression Trees model. (b) Scatter plot 

of the second principal component, PC2, as a function of land fractions (blue). The best 

fit line is shown in black, with a correlation coefficient of r2=0.91. 
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Friedman 2001), to evaluate the importance of the PCs for each label (Figure 4.2a). This 

technique computes the relative importance of each PC and denotes them with weights, 

where the sum of the weights is normalized to unity. Further details on implementing the 

GBRT technique are presented in Appendix 4.7.1. Clearly, the first two PCs (hereafter, PC1 

and PC2) are the most critical, while the contributions from other PCs are negligible. They 

also have considerably different weights for the land and cloud fractions. For the land 

fraction, the weight of PC2 is 0.88, while that of PC1 is only 0.03 (Figure 4.2a). Changes in 

the land/ocean fraction are independent of PC1 and mostly correlated with PC2 (r2=0.91; 

Figure 4.2b). For the cloud fraction, the two PCs have comparable weights, 0.28 for PC1 and 

0.49 for PC2 (Figure 4.2a). Given the strong correlation between PC2 and surface features, 

the comparable importance of PC1 and PC2 for clouds suggests that the clouds consist of 

two types: surface-independent clouds and surface-correlated clouds. This confirms the 

conclusions of our qualitative analysis above that some changes in clouds can correlate 

temporally with the surfaces underneath. The importance of clouds in PC2 is likely to be due 

to these surface-correlated clouds. Conversely, PC1 contributes the largest variation to the 

 

Figure 4.3. (a) Time series of the first principal component, PC1 (blue points). The 

envelops of daily maxima and minima are denoted by black lines. (b) Power spectrum of 

the time series of PC1. Cycles of annual, semiannual, diurnal, and half-daily are denoted 

as black dashed lines. (c) and (d) are identical to (a) and (b), respectively, but correspond 

to PC2. 
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light curves via surface-independent clouds that are not correlated with the land/ocean 

fraction. 

The interpretation of the first two PCs is also supported by their time series (Figure 4.3). The 

time series for PC1 (Figure 4.3a) has more scatter than that for PC2 (Figure 4.3c). The 

envelope of daily maximum and minimum for PC2 changes gradually between consecutive 

days, while that for PC1 changes drastically, which indicates that PC2 is more likely to 

represent features that are surface-associated than detached. Moreover, PC2 peaks in 

summer, when the northern hemisphere is facing the sun and the spacecraft. The change of 

PC2 within a day is constant throughout most of the observations, due to the diurnal cycle 

and the Earth’s longitudinal land fraction asymmetry. Fourier analysis shows that both PC1 

and PC2 have annual, semi-annual, diurnal, and half-daily cycles (Figures 4.3b and 4.3d). 

The diurnal cycle of PC2 has the strongest signal in the power spectrum, while that of PC1 

is relatively weak. This may be due to the fact that land/ocean reappear with small changes 

between two consecutive days, while surface-independent clouds can be significantly 

different in the same time period. 

Although convoluted, information on the spatial distribution of different types of surfaces 

and clouds is fully contained in the time series of an observed planet’s light curves. As 

discussed above, we separate the clouds from surface features using SVD. Surface 

information about the Earth is mostly contained in PC2 with a strong linear correlation. Here 

we report the first 2D surface map of Earth (Figure 4.4a) that is reconstructed from single-

point light curves using the following assumptions. For the purpose of retrieving the map, 

the viewing geometry is assumed to be known in this work and obtained from DSCOVR 

navigation data based on maneuvers that took place during the two-year observation period. 

It can, in principle, also be derived using light curves and other data (e.g., radial velocity, 

transit timing) as discussed in more detail in Section 4.5. In the construction of Earth’s 

surface map, spectral features of reflective surfaces are assumed to be unknown in order to 

facilitate generalization for future Earth-like exoplanet observations. We make the minimal 
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assumptions that the incoming solar flux is uniform and known, and that the entire surface  

of the proxy exoplanet acts as a Lambertian reflector. Although Earth’s ocean is strongly 

non-Lambertian, we still employ the Lambertian assumption because we assume that the 

surface properties are unknown. This may overestimate the ocean contribution at large 

distances from the specular point (glint spot) and underestimate it at the specular point. With 

these assumptions, constructing the Earth’s surface map becomes a linear regression 

problem. Mathematical details are provided in Appendix 4.7.2, and uncertainty estimation is 

discussed in Appendix 4.7.3. We set the regularization parameter to be 10-3 for producing 

the optimal surface map; results for other values are given in Appendix 4.7.2. The quantity 

derived in the map is the value of PC2, which has a positive linear correlation with the land 

fraction as noted above. Coastlines in the reconstructed map are determined by the median 

value of PC2, which is consistent with the minimal assumption of the overall land fraction 

 

Figure 4.4. (a) 2D surface map of the Earth, treated as a proxy exoplanet, constructed 

using the PC2 time series. The contour of the median value is given by the black line, 

which serves as the coastline. The regularization parameter, λ, is 10-3 for constructing this 

map (see Appendix 3.7.2 for further details). (b) Global land/ocean map of the Earth. 
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being unknown. Compared with the true land/ocean map (Figure 4.4b), the retrieved map 

successfully recovers all of the major continents, while there exist some disagreements over 

oceans. This may be due to the fact that there is often significant cloud coverage over oceans, 

which reduces sensitivity to surface information in the observations. 

4.5 Discussion 

A critical requirement for constructing a 2D surface map for an exoplanet is the assumption 

that the surface information can be extracted from light curves. In the case of Earth, acting 

as a proxy exoplanet, SVD of light curves can successfully separate Earth’s surface from 

surface-independent clouds. However, the relationships between PCs and features may not 

be the same for Earth-like exoplanets. This will depend on whether the surface type or clouds 

introduce measurable variations in the light curves. For Earth, the surface-independent 

clouds contribute 70.3% of the total variance of scaled light curves; the contribution of the 

surface is 25.9% (Figure 4.2a). On an exoplanet with less cloud cover, the ratio of these two 

numbers can be different or even less than unity, which would result in a switch between the 

first two PCs. In extreme cases where an exoplanet is either cloudless or fully covered by 

clouds, there will be only one dominant PC instead of the two comparable ones found in this 

analysis. The third or fourth PC may also be comparable if there exist changes that are 

significant in spatial and/or spectral scales, e.g. large-scale hydrological processes on 

continents or another layer of clouds with different composition. Since there will be no 

ground truth for an exoplanet, spectral analysis may distinguish the PCs between surface and 

clouds using appropriate assumptions about atmospheric and surface compositions. This can 

also be addressed by evaluating their time series. The PC associated with surface-

independent features tends to have a more chaotic pattern in its time series (Figure 4.3a), 

while that associated with the surface is more likely to be periodic (Figure 4.3c). It is also 

worth noting that the surface features of an exoplanet, which are contained in one of the two 

PCs, will not necessarily be land and ocean. As long as two different surface types have a 

large albedo contrast and are non-uniformly distributed around the globe, one of the PCs 

would contain the changes. Materials that are detached from the surface, such as the surface-



 

 

70 

independent clouds in the case of the Earth, would also appear in one of the PCs if they 

have a large influence on the light curve. If these materials can be constrained by the 

reflection spectra, their fractions can be derived from the magnitude of the corresponding 

PC. 

Once the surface information is extracted from light curves, the surface map of the exoplanet 

can be recovered from the observational geometry without making any spectral assumptions. 

Besides orbital elements, which can be determined from light curve observations, the only 

two geometry assumptions required for constructing the 2D surface map are the 

summer/winter solstice and the obliquity. The rotation period of a clear or partially-cloudy 

exoplanet can be inferred from the power spectrum of PCs using a Fourier transform (Figure 

4.3d), which requires the observation frequency to be higher than that of the exoplanet’s 

rotation. Studies have been performed to identify a planet’s rotational period from light 

curves at different viewing geometries (e.g. Pallé et al. 2008). The summer/winter solstice 

would coincide with the maxima and minima of the PC time series as long as the asymmetry 

between the northern and southern hemispheres is noticeable, and the reflection changes 

monotonically with latitude when the sub-stellar point is near extremum. For the Earth, the 

peak of the time series of PC2 takes place on June 15th, 2016 (Figure 4.3c), which is within 

one week of the true value. The obliquity of an exoplanet could be derived through its 

influence on the light curves. A number of recent publications (e.g. Schwartz et al. 2016; 

Kawahara 2016) developed methods for deriving the obliquity using its influence on the 

amplitude and frequency of light curves. Although these inversion methods are mostly based 

on a cloudless Earth and known surface spectral features, our SVD analysis of separating 

clouds from the surface could fill the gap. 

Some issues exist in constructing and interpreting the retrieved Earth surface map. 

Degeneracy resulting from the convolution between pixel geometry and spectrum is the 

dominant factor affecting map construction quality. As discussed in Cowan & Strait (2013) 

and Fujii et al. (2017), light curves only cover a small portion of the PC plane, which results 

in a tradeoff between the spatial and spectral variation. Although only PC2 is used for 
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constructing the surface map in this work, its time series covers only a small range of all 

valid values, whose corresponding land fractions are between 0 and 1. Therefore, we 

introduce a regularization parameter, λ, when constructing the map, to constrain pixel values 

of PC2 within a reasonable range; the resulting effect is described in Appendix 4.7.2. We 

select the value of λ based on the ground truth of Earth’s surface map. Glints, features that 

are small in area but contribute significantly to the spectrum, may also influence the quality 

of the retrieved map. Their contributions to light curves are simulated and estimated in 

Lustig-Yaeger et al. (2018), and observational evidence in DSCOVR/EPIC images are 

reported by Li et al. (2018). In this work, the effect of glint is assumed to be on the “average 

ocean” and removed when scaling the light curves. 

4.6 Summary 

Spectrally-dependent, single-point light curves of the Earth were analyzed as observations 

of a proxy exoplanet. SVD analysis suggests that the majority of the information is captured 

by two principal components. The first captures the non-periodic behavior of surface-

independent clouds. The second describes more periodic surface albedo structure. Using the 

fact that SVD separates the clouds from the surface, we derive the first 2D surface map of 

the Earth, acting as a proxy exoplanet, from single-point light curves, assuming only that the 

surface acts as a Lambertian reflector. The geometry is assumed to be known in the analysis, 

but in principle, it can be derived directly from light curves. This study serves as a baseline 

for analyzing observations of Earth-like exoplanets with unknown surfaces and possible 

clouds, enabling future assessments of habitability. 

4.7 Appendix 

4.7.1 Gradient Boosted Regression Trees 

The decision tree model is a decision support tool, which is widely used in the field of 

machine learning. It uses a tree structure to classify data and make predictions. An example 

of decision trees used in this work is shown in Figure 4.S1. At each parent node, data points 
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are divided into two groups, called child nodes, by introducing a threshold for one of the 

PCs. The label of each child node, cloud fraction in this case, is computed as the mean value 

of data labels in this group. The mean squared error (MSE) between the prediction and 

individual labels in each node is evaluated accordingly. Given the finite number of probable 

ways to divide a parent node, there exists a best PC and a best threshold so that the average 

MSE of its two child nodes, weighted by their sample numbers, is minimized. Therefore, a 

decision tree can be constructed using this criterion from a root node, which contains all data 

points, and the labels are offset in order to have zero mean. For regularization, we introduce 

a maximum tree depth, a maximum total node number, and a minimum node size to avoid 

over-fitting. 

A machine learning technique, gradient boosting (Friedman 2001), is deployed to improve 

the model performance and reduce bias. Gradient boosting is an ensemble method that 

combines weak prediction models, shallow decision trees in this case, to make a final 

decision. The first decision tree is constructed using the original data points; starting from 

the second one, the decision tree fits the residual left by the previous tree. Therefore, the final 

decision is made as the sum of all decision trees. Since weak models tend to have large bias 

and small variance, while complex models have large variance and small bias, the boosting 

 

Figure 4.S1. The first decision tree in the Gradient Boosted Regression Trees (GBRT) 

model. The text in each node shows the criterion, the mean square error (MSE), the 

number of samples and the averaged label value of the node, respectively. The leaf nodes 

(nodes that do not have child nodes) only have the latter three. 
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technique strikes a balance to achieve the minimum error. We use a Python package 

developed for machine learning, scikit-learn (Pedregosa et al. 2011), to develop this GBRT 

model. DSCOVR observations from the years 2016 and 2017 serve as training data, while 

those from the year 2018 are used as test data. The MSE of the test data is used to select the 

regularization parameters. The final GBRT model has 250 shallow decision trees, and each 

decision tree has a maximum depth of 5, a maximum total node number of 20 and a minimum 

node size of 100. One of the advantages of decision trees is that they can evaluate the feature 

importance (PCs in this work). We compute the importance of each PC as the number of 

times they appear as the threshold in the decision tree nodes, weighted by the number of node 

samples, and normalized to have a unit sum. Results of using land and cloud fractions as the 

labels are shown in Figure 4.2a. PC2 shows dominant correlation to the land fraction, while 

PC1 and PC2 show comparable correlation for clouds. 

4.7.2 Surface map construction 

Given the assumptions discussed in Section 4.5, the averaged reflectance in the i-th channel, 

Ri, can be parameterized as follows: 

Ri = ∑ wpri,pp        (4.S1) 

where ri,p is the reflectance of the p-th pixel of an arbitrary map at the i-th wavelength; wp is 

the weight of the p-th pixel, which is determined by the viewing geometry and has the 

following form: 

wp = {
c cos(αp) cos(βp)

0
   

  when αp < 90° and βp < 90°

otherwise
        (4.S2) 

where αp, βp are the solar and the spacecraft zenith angles of the p-th pixel, respectively; c is 

a normalization term such that the weights, wp, sum to unity. The spacecraft is on a halo orbit 

around L1, which introduces differences between αp and βp. The sub-spacecraft point can 

have a solar zenith angle as large as ~7° at some time points. Due to the linearity of scaling 

and SVD, the averaged PC2 at each time point has the same form as the reflectance. 
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The observed time series of PC2, vt is given by: 

vt = ∑ wt,pxpp         (4.S3) 

where xp is the value of PC2 at the p-th pixel in the retrieved Earth map; wt,p has the same 

form as wp except that it varies with time. Including the entire time series, this becomes a 

linear regression problem: 

𝐖[T×P]𝐗[P×1] = 𝐕[T×1]        (4.S4) 

where W, X and V are the matrices with elements wt,p, xp and vt, respectively. A penalty 

term, the L2-norm of X, is added to the squared error as a regularization parameter to prevent 

xp from deviating too far from zero and therefore avoid over-fitting. The regularized square 

error, e, can be expressed as: 

e = |𝐖𝐗 − 𝐕|2
2 + λ|𝐗|2

2        (4.S5) 

where λ is the regularization parameter. Consequently, the solution to minimizing e is as 

follows: 

𝐗 = (𝐖T𝐖 + λ𝐈)−1𝐖T𝐕        (4.S6) 

where I is the identity matrix. 

We use the Hierarchical Equal Area isoLatitude Pixelization method (HEALPix; Górski et 

al. 2005) to pixelate the retrieved map. This technique divides the Earth's surface into pixels 

with the same area and distributed uniformly on the sphere, appropriate for the DSCOVR 

observing geometry. The parameter Nside in HEALPix is set to 16, which results in a 3072-

pixel map with a spatial resolution of ~4°. After solving the regularized linear regression 

problem, we construct the first 2D surface map of Earth (Figure 4.4a) from single-point light 

curves. 

The parameter λ is selected using synthetic data, where elements in V are replaced by time 
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series of the land fraction label. Three recovered maps using synthetic data are shown in 

Figure 4.S2, where λ has values of 10-4, 10-3 and 10-2, respectively. Comparing them with the 

ground truth, a value of 10-3 is seen to be optimal for λ. Due to the degeneracy in recovering 

maps from single-point observations and imperfect geometry assumptions, which includes 

unequal pixel weights and pixelization approximations, the map cannot be further improved 

even with perfect spectral observation. Fortunately, the map is not sensitive to λ near its 

optimal value; changing it by one order of magnitude only results in small changes in the 

coastlines (Figures 4.S2a and 4.S2c). Therefore, we propose that 10-3 is a good choice for the 

regularization parameter for Earth-like exoplanets if observations have comparable numbers 

of pixels and time steps. The value should be adjusted according to the ratio of the two terms 

on the right hand side of Equation (4.S5) when the number of pixels and/or time steps are 

different. 

When the land fraction is not known, the selection of λ becomes arbitrary, with the only 

constraint being that the resulting range of land fraction should be physically valid under the 

given assumptions. Two more possible maps reconstructed using time series of PC2 with 

different values of λ (10-4 and 10-2) are shown in Figure 4.S3. Comparing the maps recovered 

using the observations and known ground truth (Figures 4.4a, 4.S3, and 4.S2), it is evident 

that clouds over oceans contribute considerably to the differences, since the land fraction 

label is not affected by clouds. 

4.7.3 Surface map uncertainty 

We estimate the uncertainty in the retrieved Earth surface map (Figure 4.4a) in this section. 

The observation uncertainty is neglected, since at each time step ~106 pixels are averaged so 

that the observational uncertainty is reduced by a factor of ~103. Therefore, we mainly focus 

on the uncertainty in the linear regression presented in Appendix 4.7.2. 

 We rewrite Equation (4.S4) with a vector U for the “true values” of PC2 at each pixel as: 

𝐖[T×P]𝐔[P×1] + 𝛆[T×1] = 𝐕[T×1]        (4.S7) 
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where ε represents the noise at each time step, and is assumed to follow a Gaussian 

distribution, N (0, σ2I[T*T]). An unbiased estimate of σ2 can be obtained as follows: 

σ2 =
(𝐕−𝐖𝐗)T(𝐕−𝐖𝐗)

T−P
        (4.S8) 

 

Figure 4.S2. (a) Recovered land fraction map using synthetic observations, produced by 

averaging the ground truth of the land/ocean map given the viewing geometry. The 

contour of the median value is given by the black line. The regularization parameter, λ, is 

10-4 for constructing this map. (b), (c): Same as (a), but for λ=10-3 and 10-2, respectively. 
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where T and P are the total numbers of time steps and pixels. The difference between these 

two quantities is the degree of freedom. Combining Equations (4.S6) and (4.S7), X becomes 

a Gaussian vector: 

𝐗 = (𝐖T𝐖 + λ𝐈)−1(𝐖T𝐖)𝐔 + (𝐖T𝐖 + λ𝐈)−1𝐖T𝛆        (4.S9) 

Then, the expectation and covariance matrices of X can be derived as follows: 

𝐄[𝐗] = (𝐖T𝐖 + λ𝐈)−1(𝐖T𝐖)𝐔        (4.S10) 

𝐂𝐨𝐯[𝐗] = (𝐗 − 𝐄[𝐗])(𝐗 − 𝐄[𝐗])T = σ2(𝐖T𝐖 + λ𝐈)−1𝐖T𝐖(𝐖T𝐖 + λ𝐈)−1      (4.S11) 

The square root of the diagonal elements in the covariance matrix are the 1-sigma uncertainty 

values for the retrieved map (Figure 4.S4). The uncertainty map is consistent with the 

viewing geometry; since the sub-solar and the sub-spacecraft points are always near the 

 

Figure 4.S3. (a), (b): Same as Figure 4.4a, but for λ=10-4 and 10-2, respectively. 
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equator, pixels at lower latitudes have higher weights, and the uncertainties increase 

toward the poles. The uncertainty values are on the order of ~10% of the pixel values in the 

retrieved map (Figure 4.4a), which suggests a good quality of Earth surface map 

reconstruction.  
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C h a p t e r  5  

Conclusions and Future Directions 

The thesis has addressed a range of topics on characterizing astrobiology-relevant 

environments from prebiotic atmospheres to a currently inhabited planet. Understanding 

these environments are important and increasingly urgent given the timelines of near future 

planetary science missions. Chapters presented in this work have addressed several questions 

on chemical and physical processes in the prebiotic-like atmospheres, and provide 

benchmarks for observing potentially habitable exoplanets. 

Chapter 2 proposed a new methodology to retrieve vertical profiles of chemical species in 

Titan’s upper atmosphere, which can therefore be used to constrain photochemistry and 

atmospheric dynamics. During the entire Cassini mission, tens of stellar occultations are 

available to provide such information. Their time coverage spans from late summer to winter 

in the southern hemisphere of Titan. Therefore, immediate extension of applying the 

methodology to all available flybys could provide insights into seasonal changes in Titan’s 

atmosphere. The change of methane vertical profile is a tracer of atmospheric dynamics, 

which is a result of the variation of circulations in Titan’s atmosphere. Also, changes of larger 

organic molecules can provide indications of seasonal changes of chemistry, which is 

influenced by both of the solar radiation and transport in the atmosphere. Moreover, the 

results are also spatial-dependent. They can be used to constrain two dimensional general 

circulation models (GCMs), which can be further coupled with chemical models. This 

inspires the development of fully coupled atmospheric models of prebiotic atmospheres. The 

atmosphere of Titan is currently the only one that could provide such detailed observation 

constraints. 

Chapter 3 addressed a fundamental and important question of the morphology of Pluto’s 

haze, which is critical for studying the Pluto system. The bimodal distribution of haze 

particles satisfies all available observations obtained by the instruments onboard the New 

Horizons spacecraft, and it likely remains as the best solution until the next mission to Pluto. 
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The result inspires modeling of microphysical processes of haze formation in Pluto’s 

atmosphere. The bimodal distribution indicates possible dimension transition and/or gas 

condensation in the atmosphere. Moreover, the precise description of the haze morphology 

can greatly improve the current photochemical models where the haze particles serve as the 

condensation/sticking cores, as well as constraining Pluto’s surface color, which has 

indication of Pluto’s composition. Above all, observations of the atmosphere of Pluto 

provides constraints of a cold version of prebiotic-like atmospheres. It can complement 

observations of Titan’s atmosphere, and could be used to cross validate models of prebiotic 

atmospheres, which have significance in assessing habitability of prebiotic environments. 

Chapter 4 investigated the fundamental question “are we alone?” from the other way. It 

studied the only confirmed inhabited planet, the Earth, from an exoplanet perspective. The 

analysis showed that information of the spatial features of Early-like exoplanets are included 

in their light curves, which in principle can be derived even when the resolution is not better 

than a single pixel. Some questions still remain that the principal components with indices 

larger than two may be related to minor spatial features or the atmosphere, which are worth 

being investigated in following works. The progress of this work serves as a benchmark of 

characterizing Earth-like exoplanets using multi-wavelength single-point light curve 

observations, and inspires the real exoplanet observations by near future missions. It also 

provides a new approach for assessing the similarity between potentially habitable 

exoplanets and the Earth, and therefore their habitability. 

It is the author’s intention that the thesis will serve to motive continued investigation to the 

environments related to the emergence and existence of life. Notably, the characterization of 

Titan’s and Pluto’s using new observations calls for modeling work to understand the 

compelling and urgent scientific question about the chemistry and formation of haze in 

prebiotic atmosphere and their influence on the potentially detectable biosignatures. 

Moreover, combining such Early-Earth-like observations with those of the current Earth, a 

complete picture of the distant appearance of the Earth through geological time can be 
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obtained. It is a guidance for looking for habitable planets beyond solar system and 

illuminates the way to find the ultimate answer to the fundamental question “are we alone?”.  
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