
Online Learning from Human Feedback with
Applications to Exoskeleton Gait Optimization

Thesis by
Ellen Novoseller

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2021
Defended November 30th, 2020

ii

© 2020

Ellen Novoseller
ORCID: 0000-0001-5263-0598

Some rights reserved. This thesis is distributed under a Creative Commons
Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).

iii

ACKNOWLEDGEMENTS

I am deeply grateful to my advisors, Professors Joel Burdick and Yisong Yue, for
their support along my PhD journey. This thesis would not have been possible
without their constant advice, insights, patience, guidance, and encouragement.

I would also like to thank my committee members, Professors Aaron Ames, Dorsa
Sadigh, and Richard Murray, for taking time out of their busy schedules to provide
valuable suggestions and advice.

Also, I am extremely grateful to everyone with whom I have collaborated (in no
particular order): Maegan Tucker, Kejun Li, Myra Cheng, Claudia Kann, Richard
Cheng, Yibing Wei, Erdem Bıyık, Jeffrey Edlund, Charles Guan, Atli Kosson,
Solveig Einarsdottir, Sonia Moreno, and Professors Aaron Ames, Yanan Sui, Dorsa
Sadigh, and Dimitry Sayenko. I have learned a tremendous amount from you, and
this work would never have been possible if I had not had the opportunity to work
together with you.

I would like to thank all of my colleagues in Joel’s and Yisong’s groups; I have been
really fortunate to get to know you during my time at Caltech. I am also lucky to
have many great friends who have been there for me over the last six years and made
grad school more enjoyable.

Finally, I am grateful to my family for their love and for believing in me, particularly
my husband David, my parents, and my brother Michael.

iv

ABSTRACT

Systems that intelligently interact with humans could improve people’s lives in
numerous ways and in numerous settings, such as households, hospitals, and work-
places. Yet, developing algorithms that reliably and efficiently personalize their
interactions with people in real-world environments remains challenging. In partic-
ular, one major difficulty lies in adapting to human-in-the-loop feedback, in which
an algorithm makes sequential decisions while receiving online feedback from
humans; throughout this interaction, the algorithm seeks to optimize its decision-
making quality, as measured by the utility of its performance to the human users.
Such algorithms must balance between exploration and exploitation: on one hand,
the algorithm must select uncertain strategies to fully explore the environment and
the interacting human’s preferences, while on the other hand, it must exploit the
empirically-best-performing strategies to maximize its cumulative performance.

Learning from human feedback can be difficult, as people are often unreliable in
specifying numerical scores. In contrast, humans can often more accurately provide
various types of qualitative feedback, for instance pairwise preferences. Yet, sample
efficiency is a significant concern in human-in-the-loop settings, as qualitative feed-
back is less informative than absolute metrics, and algorithms can typically pose
only limited queries to human users. Thus, there is a need to create theoretically-
grounded online learning algorithms that efficiently, reliably, and robustly optimize
their interactions with humans while learning from online qualitative feedback.

This dissertation makes several contributions to algorithm design for human-in-
the-loop learning. Firstly, this work develops the Dueling Posterior Sampling (DPS)
algorithmic framework, a model-based, Bayesian approach for online learning in the
settings of preference-based reinforcement learning and generalized linear dueling
bandits. DPS is developed together with a theoretical regret analysis framework, and
yields competitive empirical performance in a range of simulations. Additionally,
this thesis presents the CoSpar and LineCoSpar algorithms for sample-efficient,
mixed-initiative learning from pairwise preferences and coactive feedback. CoSpar
and LineCoSpar are both deployed in human subject experiments with a lower-
body exoskeleton to identify optimal, user-preferred exoskeleton walking gaits. This
work presents the first demonstration of preference-based learning for optimizing
dynamic crutchless exoskeletonwalking for user comfort, andmakes progress toward
customizing exoskeletons and other assistive devices for individual users.

v

PUBLISHED CONTENT AND CONTRIBUTIONS

Novoseller, Ellen R. et al. “Dueling posterior sampling for preference-based re-
inforcement learning.” In: Conference on Uncertainty in Artificial Intelligence
(UAI). PMLR. 2020, pp. 1029–1038. url: http://proceedings.mlr.press/
v124/novoseller20a.html.
E.R.N. contributed to the conception of the project, developing the algorithm,
performing the theoretical analysis, conducting the simulation experiments, and
writing the manuscript.

Tucker, Maegan, Myra Cheng, et al. “Human preference-based learning for high-
dimensional optimization of exoskeleton walking gaits.” In: IEEE International
Conference on Intelligent Robots and Systems (IROS). 2020. url: https://
arxiv.org/pdf/2003.06495.pdf.
E.R.N. contributed to the conception of the project, developing the algorithm,
providing ongoing mentorship and direction for conducting the simulations, con-
ducting the exoskeleton experiments, and writing the manuscript.

Tucker, Maegan, Ellen R. Novoseller, et al. “Preference-based learning for ex-
oskeleton gait optimization.” In: IEEE International Conference on Robotics
and Automation (ICRA). 2020. doi: 10.1109/ICRA40945.2020.9196661.
url: https://ieeexplore.ieee.org/document/9196661.
E.R.N. contributed to the conception of the project, developing the algorithm, con-
ducting the simulation and exoskeleton experiments, analyzing the experimental
results, and writing the manuscript.

vi

CONTENTS

Acknowledgements . iii
Abstract . iv
Published Content and Contributions . v
Contents . v
List of Figures . viii
List of Tables . xvii
Chapter I: Introduction . 1

1.1 Motivation . 2
1.2 The Bandit and Reinforcement Learning Problems 3
1.3 Human-in-the-Loop Learning . 4
1.4 Lower-Body Exoskeletons for Mobility Assistance 6
1.5 Contributions . 8
1.6 Organization . 10

Chapter II: Background . 11
2.1 Bayesian Inference for Parameter Estimation 11
2.2 Gaussian Processes . 16
2.3 Entropy, Mutual Information, and Kullback-Leibler Divergence . . . 22
2.4 Bandit Learning . 24
2.5 Dueling Bandits . 36
2.6 Episodic Reinforcement Learning 41

Chapter III: The Preference-Based Generalized Linear Bandit and Reinforce-
ment Learning Problem Settings . 48
3.1 The Generalized Linear Dueling Bandit Problem Setting 48
3.2 The Preference-Based Reinforcement Learning Problem Setting . . . 51
3.3 Comparing the Preference-Based Generalized Linear Bandit and RL

Settings . 54
Chapter IV: Dueling Posterior Sampling for Preference-Based Bandits and

Reinforcement Learning . 55
4.1 The Dueling Posterior Sampling Algorithm 55
4.2 Additional Notation . 58
4.3 Posterior Modeling for Utility Inference and Credit Assignment . . . 58
4.4 Theoretical Analysis . 64
4.5 Empirical Performance of DPS . 95
4.6 Discussion . 102

Chapter V: Mixed-Initiative Learning for Exoskeleton Gait Optimization . . . 103
5.1 Introduction . 103
5.2 Background on the Atalante Exoskeleton and Gait Generation for

Bipedal Robots . 106
5.3 The CoSpar Algorithm for Preference-Based Learning 109

vii

5.4 Simulation Results for CoSpar . 114
5.5 Deployment of CoSpar in Human Subject Exoskeleton Experiments . 117
5.6 The LineCoSpar Algorithm for High-Dimensional Preference-Based

Learning . 119
5.7 Performance of LineCoSpar in Simulation 125
5.8 Deployment of LineCoSpar in Human Subject Exoskeleton Experi-

ments . 127
5.9 Discussion . 129

Chapter VI: Conclusions and Future Directions 131
6.1 Conclusion . 131
6.2 Future Work . 132

Bibliography . 135
Appendix A: Models for Utility Inference and Credit Assignment 149

A.1 Bayesian Linear Regression . 149
A.2 Gaussian Process Regression . 149
A.3 Gaussian Process Preference Model 155

Appendix B: Proofs of Asymptotic Consistency for Dueling Posterior Sampling158
B.1 Facts about Convergence in Distribution 160
B.2 Asymptotic Consistency of the Transition Dynamics in DPS in the

Preference-Based RL Setting . 160
B.3 Asymptotic Consistency of the Utilities in DPS 171
B.4 Asymptotic Consistency of the Selected Policies in DPS 190

Appendix C: Additional Details about the Dueling Posterior Sampling Ex-
periments in the Linear and Logistic Dueling Bandit Settings 192
C.1 Baselines: Sparring with Upper Confidence Bound (UCB) Algorithms192
C.2 Hyperparameter Optimization . 196

Appendix D: Additional Details about the Dueling Posterior Sampling Ex-
periments in the Preference-Based RL Setting 199

viii

LIST OF FIGURES

Number Page
1.1 The Atalante exoskeleton, designed byWandercraft (Wandercraft, n.d.). 8
4.1 Comparison of Poisson disk sampling and uniform random sampling

over the surface of the 3-dimensional unit sphere. Both plots show100
samples. While the uniformly random samples often cluster together,
the Poisson disk samples are more uniformly spaced over the sphere’s
surface. 84

4.2 Cumulative regret and estimated information ratio values in the linear
bandit setting with relative Gaussian feedback over pairs of actions.
Values are plotted over the entire learning process for three represen-
tative experimental repetitions (colors are identical for corresponding
experiment runs between the two plots). These three experiments use
3 = 3, _ = 1, f = 1, and � = 100. 85

4.3 Scatter plots of the maximum estimated information ratio value in
each of the 960 relative Gaussian bandit simulations (each dot corre-
sponds to one of these simulations). All 960 trials are shown in each
of the three plots. Values are color-coded according to: a) the action
space size �, b) f, and c) _. 86

4.4 Estimating the information ratio with different numbers of MCMC
warm-up steps. In each of the five DPS runs with 100 learning it-
erations each, the information ratio is independently estimated six
times per learning iteration, once with each of the following num-
bers of warm-up samples: {0, 5, 10, 50, 100, 500}. On the plot, each
color corresponds to one of the five simulation runs (i.e., for each
run, the six different numbers of warm-up samples are plotted in the
same color). Clearly, as the similarly-colored lines mostly overlap, the
number of warm-up samples does not heavily impact the information
ratio estimates. 87

ix

4.5 Corner plots comparing posterior samples from the Laplace approx-
imation and MCMC. The prior over utility vectors r = [A1, A2, A3])

is only supported on | |r | |2 ≤ 1. a)-b) Case 1: r = [0.7, 0.5, 0.2]) .
The true posterior is close to Gaussian, so the two approximations
appear similar. c)-d) Case 2: r = [0.8, 0.5, 0.1]) , which is closer
to the boundary of allowable utility vectors, | |r | |2 = 1. Because the
true posterior is highly non-Gaussian, the two approximations are
visibly different (compare A1 versus A2 in the plots). Importantly, the
MCMC posterior respects the constraint | |r | |2 ≤ 1, while the Laplace
approximation does not. 89

4.6 Corner plots comparing posterior samples from the Laplace approx-
imation and MCMC under small numbers of samples. The Laplace
and MCMC posteriors are visibly different, as the utility posterior is
highly non-Gaussian. The preference data was generated by running
DPS with 3 = 3, 2 = 4, _ = 1, and � = 10. 90

4.7 Cumulative regret and estimated information ratio values in the
preference-based linear bandit setting with posterior modeling via
MCMC. Values are plotted over the learning process for three rep-
resentative experimental repetitions (colors are identical for corre-
sponding experimental runs between the two plots). The experiments
in this plot use 3 = 10, _ = 1, and � = 10. 91

4.8 Scatter plot of the maximum information ratio estimates when run-
ning DPS in the linear dueling bandit setting with MCMC posterior
inference. Each dot corresponds to one of 120 simulation runs, and
values are color-coded according to the action space size, �. 91

4.9 Cumulative regret and information ratio estimates in the RL set-
ting with relative feedback, known dynamics, and posterior inference
via relative Gaussian feedback. Values are plotted over the learning
process for three representative experimental repetitions (colors are
identical for each experimental run between the two plots). These
experiments utilize _ = 1, f = 10, and MDP structure 1 (see Table
4.1), for which (= 3, � = 2, and ℎ = 4. 93

x

4.10 Scatter plots of the maximum information ratio estimates in each
of the 600 relative Gaussian RL simulations (each dot corresponds
to one of the 600 simulations). The x-axis labels indicate the MDP
labels 0-4 (from Table 4.1) and the values of 3 = (�. All 600 trials
are shown in both of the two plots. Values are color-coded according
to: a) f and b) _. In all cases, the information ratios are significantly
less than 3. 93

4.11 Cumulative regret and estimated information ratio values in the
preference-based RL setting with known dynamics and posterior in-
ference via MCMC. Values are plotted over the learning process for
three representative experimental repetitions (colors are identical for
corresponding simulation runs between the two plots). These exper-
iments use _ = 1 and MDP structure 4 (see Table 4.1), for which
(= 3, � = 3, ℎ = 2. The value of 2 is set to 2

√
2ℎ = 4

√
2. 94

4.12 Scatter plot of the maximum information ratio estimates for the
preference-based RL setting with known dynamics and MCMC pos-
terior inference. Each dot corresponds to one of the 80 simulation
runs, with the maximum taken over the 1,000 learning iterations.
The x-axis labels indicate the MDP structure labels (from Table 4.1)
and the values of 3 = (�. In all cases, the information ratios are
significantly less than 3. 95

4.13 Empirical performance of DPS in the generalized linear dueling ban-
dit setting (mean ± std over 100 runs). The plots show DPS with
utility inference via both Bayesian logistic and linear regression, and
under both logistic (a-i) and linear (j-l) user feedback noise. The
plots normalize the rewards for each simulation run such that the best
and worst actions in A have rewards of 1 and 0, respectively. For
both baselines, the hyperparameters were optimized independently
in each of the 12 cases, while for linear and logistic DPS, the plots
depict results for a single set of well-performing hyperparameters.
DPS is competitive against both baselines and is robust to the utility
inference method and to noise in the preference feedback. 98

xi

4.14 Empirical performance ofDPS; each simulated environment is shown
under the two least-noisy user preference models evaluated. The plots
show DPS with three credit assignment models: Gaussian process
regression (GPR), Bayesian linear regression, and a Gaussian process
preference model. PSRL is an upper bound that receives numerical
rewards, while EPMC is a baseline. Plots display the mean +/- one
standard deviation over 100 runs of each algorithm tested. Results
from the remaining user noise parameters are plotted in Appendix
D. For RiverSwim and RandomMDPs, normalization is with respect
to the total reward achieved by the optimal policy. Overall, DPS
performs well and is robust to the choice of credit assignment model. 101

5.1 Atalante Exoskeleton with and without a user. The user is wearing a
mask to measure metabolic expenditure. 104

5.2 Human subject experiments with the LineCoSpar algorithm explor-
ing six exoskeleton gait parameters: step length, step duration, step
width, maximum step height, pelvis roll, and pelvis pitch. 106

5.3 Leftmost: Cost of transport (COT) for the compass-gait biped at dif-
ferent step lengths and a fixed 0.2 m/s velocity. Remaining plots:
posterior utility estimates of CoSpar (= = 2, 1 = 0; without coactive
feedback) after varying iterations of learning (posterior mean +/- 2
standard deviations). The plots each show three posterior samples,
which lie in the high-confidence region (mean +/- 2 standard devi-
ations) with high probability. The posterior utility estimate quickly
converges to identifying the optimal action. 115

5.4 CoSpar models two-dimensional utility functions using preference
data. a) Example of a synthetic 2D objective function. b) Utility
model posterior learned after 150 iterations of CoSpar in simulation
(= = 1; 1 = 1; coactive feedback). CoSpar prioritizes identifying and
exploring the optimal region, rather than learning a globally-accurate
utility landscape. 116

xii

5.5 CoSpar simulation results on 100 2D synthetic objective functions,
comparing CoSpar with and without coactive feedback for three set-
tings of the parameters = and 1 (see Algorithm 13).Mean +/- standard
error of the objective values achieved over the 100 repetitions. The
maximal and minimal objective function values are normalized to 0
and 1. We see that coactive feedback always helps, and that = = 2,
1 = 0—which receives the fewest preferences—performs worst. . . . 117

5.6 Experimental results for optimizing step length with three subjects
(one row per subject). Columns 1-4 illustrate the evolution of the
preference model posterior (mean +/- standard deviation), shown at
various trials. CoSpar converges to similar but distinct optimal gaits
for different subjects. Column 5 depicts the subjects’ blind ranking of
the three gaits executed after 20 trials. The rightmost column displays
the experimental trials in chronological order, with the background
depicting the posterior preference mean at each step length. CoSpar
draws more samples in the region of higher posterior preference. . . . 119

5.7 Experimental results from two-dimensional feature spaces (top row:
step length and duration; bottom row: step length andwidth). Columns
1-4 illustrate the evolution of the preference model’s posterior mean.
Column 4 also shows the subject’s blind rankings of the three gaits
executed after 20 trials. Column 5 depicts the experimental trials in
chronological order, with the background as in Figure 5.6. CoSpar
draws more samples in the region of higher posterior preference. . . . 120

5.8 Experimental phase diagrams of the left leg joints over 10 seconds
of walking. The gaits shown correspond to the maximum, mean,
and minimum preference posterior values for both of subject 1’s 2D
experiments. For instance, Subject 1 preferred gaits with longer step
lengths, as shown by the larger range in sagittal hip angles in the
phase diagram. 120

5.9 Curse of dimensionality for CoSpar. Average time per iteration of
CoSpar versus LineCoSpar. The y-axis is on a logarithmic scale. For
LineCoSpar, the time is roughly constant in the number of dimensions
3, while the runtime of CoSpar increases exponentially. For 3 = 4,
the duration of a CoSpar iteration is inconvenient in the human-in-
the-loop learning setting, and for 3 ≥ 5, it is intractable. 121

xiii

5.10 Convergence to higher objective values on standard benchmarks.
Mean objective value ± standard deviation using H3 and H6, av-
eraged over 100 runs. Compared to CoSpar, LineCoSpar converges
to sampling actions with higher objective values at a faster rate, as
it employs an improved sampling approach and link function. It is
intractable to run CoSpar on a 6-dimensional action space. 126

5.11 Robustness to noisy preferences. Mean objective value ± standard
deviation of the action xmax with the highest posterior utility. This is
averaged over 100 runs of LineCoSpar on H6with varying preference
noise, as quantified by 2ℎ. Higher performance correlates with less
noise (lower 2ℎ). The algorithm is robust to noise up to a certain
degree (2ℎ ≤ 0.5). 126

5.12 Coactive feedback improves convergence of LineCoSpar. Mean ob-
jective value ± standard deviation of the sampled actions using ran-
dom objective functions. Results are averaged over 1,000 runs of
LineCoSpar over 100 randomly-generated six-dimensional functions
(3 = 6; 10 runs per synthetic function). The sampled actions con-
verge to high objective values in relatively few iterations, and coactive
feedback accelerates this process. 127

5.13 LineCoSpar experimental procedure.After setup of the subject-exoskeleton
system, subjects were queried for preferences between all consecutive
gait pairs, along with coactive feedback, in 30 gait trials (in total, at
most 29 pairwise preferences and 30 pieces of coactive feedback).
After these 30 trials, the subject unknowingly entered the validation
portion of the experiment, in which he/she validated the posterior-
maximizing gait, xmax, against four randomly-selected gaits. 128

5.14 Exploration versus exploitation in the LineCoSpar human trials. Each
row depicts the distribution of a particular gait parameter’s values
across all gaits that the subject tested. Each dimension is discretized
into 10 bins. Note that the algorithm explores different parts of the
action space for each subject. These visitation frequencies exhibit a
statistically-significant correlation with the posterior utilities across
these regions (Pearson’s p-value = 1.22e-10). 129

xiv

C.1 Hyperparameter sensitivity of DPS in the linear and logistic duel-
ing bandit settings (mean ± std over 20 runs). The plots show DPS
with utility inference via both Bayesian linear (a-c) and logistic (d-f)
regression. The learning curves compare several sets of hyperpa-
rameters among those evaluated, for several different action space
dimensionalities 3 and levels of logistic user feedback noise 2. The
plots normalize the rewards for each simulation run such that the best
action in A has a reward of 1, while the worst action has a reward
of 0. Overall, DPS performs well and is robust to the hyperparameter
values to a certain degree. 198

D.1 Empirical performance of DPS in the RiverSwim environment. Plots
display mean +/- one standard deviation over 100 runs of each al-
gorithm tested. Normalization is with respect to the total reward
achieved by the optimal policy. Overall, DPS performs well and is
robust to the choice of credit assignment model. 200

D.2 Empirical performance of DPS in the Random MDP environment.
Plots display mean +/- one standard deviation over 100 runs of each
algorithm tested. Normalization is with respect to the total reward
achieved by the optimal policy. Overall, DPS performs well and is
robust to the choice of credit assignment model. 203

D.3 Empirical performance of DPS in the Mountain Car environment.
Plots display mean +/- one standard deviation over 100 runs of each
algorithm tested. Overall, DPS performs well and is robust to the
choice of credit assignment model. 203

xv

D.4 Empirical performance of DPS in the RiverSwim environment for
different hyperparameter combinations. Plots display mean +/- one
standard deviation over 30 runs of each algorithm tested with lo-
gistic user noise and 2 = 0.001. Overall, DPS is robust to the
choice of hyperparameters. The hyperparameter values depicted in
each plot are (from left to right): for Bayesian linear regression,
(f, _) = {(0.5, 0.1), (0.5, 10), (0.1, 0.1), (0.1, 10), (1, 0.1)}; for
GP regression, (f2

5
, f2

=) = {(0.1, 0.001), (0.1, 0.1), (0.01, 0.001),
(0.001, 0.0001), (0.5, 0.1)}; for Bayesian logistic regression (special
case of the GP preference model), (_, U) = {(1, 1), (30, 1), (20, 0.5),
(1, 0.5), (30, 0.1)}; and additionally for the GP preference model,
2 ∈ {0.5, 1, 2, 5, 13}. See Table D.2 for the values of any hyperpa-
rameters not specifically mentioned here. 205

D.5 Empirical performance of DPS in the Random MDP environment
for different hyperparameter combinations. Plots display mean +/-
one standard deviation over 30 runs of each algorithm tested with
logistic user noise and 2 = 0.001. Overall, DPS is robust to the
choice of hyperparameters. The hyperparameter values depicted in
each plot are (from left to right): for Bayesian linear regression, (f, _)
= {(0.1, 10), (0.1, 0.1), (0.05, 0.01), (0.5, 20), (1, 10)}; for GP re-
gression, (f2

5
, f2

=) = {(0.05, 0.0005), (0.001, 0.0001), (0.05, 0.1),
(0.001, 0.0005), (1, 0.1)}; for Bayesian logistic regression (special
case of the GP preference model), (_, U) = {(0.1, 0.01), (1, 0.01),
(0.1, 1), (30, 0.1), (5, 0.5)}; and additionally for the GP preference
model, 2 ∈ {1, 10, 15, 19, 100}. See Table D.3 for the values of any
hyperparameters not specifically mentioned here. 206

xvi

D.6 Empirical performance of DPS in the Mountain Car environment for
different hyperparameter combinations. Plots display mean +/- one
standard deviation over 30 runs of each algorithm tested with logistic
user noise and 2 = 0.001. Overall, DPS is robust to the choice of
hyperparameters. The hyperparameter values depicted in each plot
are (from left to right): for Bayesian linear regression, (f, _) =
{(10, 1), (10, 10), (30, 0.001), (0.001, 10), (0.1, 0.1)}; forGP regres-
sion, (f2

5
, ;, f2

=) = {(0.01, 2, 10−5), (0.01, 1, 10−5), (0.1, 2, 0.01),
(1, 2, 0.001), (0.001, 3, 10−6)}; for Bayesian logistic regression (spe-
cial case of the GP preference model), (_, U) = {(0.0001, 0.01),
(0.1, 0.01), (0.0001, 0.0001), (0.001, 0.0001), (0.001, 0.01)}; and
additionally for theGPpreferencemodel, 2 ∈ {10, 300, 400, 700, 1000}.
See Table D.4 for the values of any hyperparameters not specifically
mentioned here. 207

xvii

LIST OF TABLES

Number Page
4.1 The labels 0-4 are assigned to the five MDP structures used in the RL

information ratio simulations. For each of the five MDP structures,
this table specifies the number of states (, the number of actions
�, and the episode horizon ℎ. For each ((, �, ℎ) triple, the total
numbers of deterministic policies and of distinct policy pairs (on
which information ratio computations depend) are also displayed. . . 92

5.1 Gait parameters optimizing LineCoSpar’s posterior mean (xmax) for
each able-bodied subject. 130

C.1 Hyperparameters in the linear and logistic dueling bandit experi-
ments. For the linear and logistic UCB algorithms, the hyperparam-
eters were optimized individually for each dimension 3 and prefer-
ence noise level. For each 3, the best-performing hyperparameters
are listed in the following order: logistic noise with 2 = 0.01, logistic
noise with 2 = 0.1, logistic noise with 2 = 1, and linear noise with
2 = 4. For each of the two versions of DPS, a single set of hyperpa-
rameters was found that performed well across the different values of
3 and noise levels considered. Hyperparameters were optimized by
performing 20 simulation runs of each candidate set of values. 197

D.1 Hyperparameters for theEPMCbaseline algorithm (Wirth andFürnkranz,
2013a). Each table element shows the best-performing U/[values
for the corresponding simulation environment and type of simulated
user feedback (logistic or linear noise). For preference feedback with
logistic noise, values of 2 are given in parentheses; larger values
correspond to noisier preference feedback. 201

D.2 Credit assignment hyperparameters tested for the RiverSwim Envi-
ronment. 202

D.3 Credit assignment hyperparameters tested for the Random MDP En-
vironment. 202

D.4 Credit assignment hyperparameters tested for the Mountain Car En-
vironment. 204

1

C h a p t e r 1

INTRODUCTION

We are quickly entering an era where digital and cyberphysical systems are increas-
ingly autonomous and can adapt to the specific needs of individuals. In particular,
there is an increasing focus on personalized medicine (Sui, Yue, and Burdick, 2017;
Sui, Zhuang, et al., 2018), autonomous driving (Basu, Bıyık, et al., 2019; Basu,
Yang, et al., 2017), and personalized education (Jain, Thiagarajan, et al., 2020).
Furthermore, intelligent robotic assistive devices that can adapt to each user’s limi-
tations could give increased independence to individuals with disabilities or limited
mobility (Harib et al., 2018; Donati et al., 2016).

Yet, creating principled algorithms that efficiently and reliably personalize their
interactions with people in real-world settings remains challenging. In particular,
one difficulty lies in adapting to human feedback via human-in-the-loop learning, in
which the algorithm seeks to optimize its interactions with people while receiving
sequential feedback from users.

The problem of sequential interaction with an unknown environment has been
studied extensively in the contexts of bandit learning and reinforcement learning
(RL). In these settings, an agent takes actions in the environment and typically
receives a reward signal reflecting the quality of those actions. The agent’s learning
goal is to maximize its cumulative reward over time, or equivalently, to minimize its
regret, that is, gap between the algorithm’s total reward and the total reward obtained
by executing the optimal action sequence.

To achieve low regret, algorithms must balance between exploration and exploita-
tion: locating optimal actions requires exploring actions with uncertain rewards,
while maximizing cumulative reward also requires exploiting the empirically-best-
performing actions.

In practice, people are typically unreliable in specifying numerical scores, but can
give more accurate qualitative information, for instance correctly answering prefer-
ence queries of the form, “Do you prefer trial A or B?” (Yue, Broder, et al., 2012),
or suggesting improvements to the presented trials, for instance via the coactive
feedback learning paradigm (Shivaswamy and Joachims, 2015).

2

This dissertation tackles the problem of online learning from sequential, qualitative
human feedback in order to minimize regret with respect to user satisfaction. Learn-
ing from qualitative feedback is challenging, as such data contains less information
than numerical rewards; for instance, a pairwise preference query yields only a
single bit of information. Furthermore, human-in-the-loop learning algorithms can
collect only limited data in practice, as each trial involves interacting with a human.
Human patience, energy, resources, and attention have limits. For instance, the total
time available in a clinical laboratory that can be directed to the process of adapting
an assistive medical device to a patient may be quite limited due to cost. For these
reasons, sample efficiency is a significant concern when learning from online human
feedback.

This thesis presents the Dueling Posterior Sampling (DPS) algorithmic framework
for online learning in the preference-based RL and generalized linear bandit settings,
together with a concurrently-developed theoretical analysis framework for bounding
the regret. This model-based approach learns a Bayesian posterior over the utility
function underlying the user’s feedback, which quantifies the user’s satisfaction with
the agent’s task performance. Furthermore, thiswork presents theCoSpar framework
for mixed-initiative learning in the bandit setting. The CoSpar algorithm is deployed
on a robotic exoskeleton platform to optimize exoskeleton walking gaits in response
to online human feedback, and achieves state-of-the-art performance in personalized
exoskeleton gait optimization.

1.1 Motivation
Robots that interact intelligently with humans could improve people’s lives in many
capacities, from performing everyday household tasks to improving surgical out-
comes for patients to assisting individuals with mobility impairments. Such devices
must interact with human users intuitively and adapt to people’s preferences quickly,
reliably, and safely.

Many online learning algorithms operate within the multi-armed bandits or rein-
forcement learning (RL) frameworks, which formalize the problem of learning to
maximize reward feedback over time. Yet, many bandit and RL algorithms rely upon
receiving a numerical reward signal, and humans are often unreliable in specifying
such absolute reward feedback. In practice, human-specified scores may drift over
time (Payne et al., 1993; Brochu, Brochu, and de Freitas, 2010), while misspecified
rewards can exhibit unintended side effects—for example, a robotmight knock over a

3

vase to clean an area more quickly—and reward hacking, in which the agent “games”
the objective function, finding a solution that achieves a high reward but perverts the
human’s intent (Amodei et al., 2016). For instance, in OpenAI’s widely-cited boat
racing example (Clark and Amodei, 2016), the agent fails to finish the race course
as intended; rather, it maximizes its reward by turning in a large circle repeatedly,
each time hitting three point-yielding targets just as they regenerate, crashing into
other objects, and catching on fire. In another example (Popov et al., 2017), an agent
fails to complete a simulated robotic block stacking task because it is rewarded for
raising the vertical coordinate of the block’s ground-facing side, and learns to do so
by flipping the block upside down (instead of picking it up).

While humans can have difficulty with assigning accurate numerical scores, how-
ever, people can often give qualitative feedback more reliably. Examples include
preference-based feedback, which poses queries of the form, “Do you prefer trial A
or B?” (Yue, Broder, et al., 2012; Sui, Zhuang, et al., 2017; Sui, Zoghi, et al., 2018);
coactive feedback, in which the user suggests an improvement following each trial
(Shivaswamy and Joachims, 2015; Shivaswamy and Joachims, 2012; Raman et al.,
2013); and ordinal feedback, in which users assign each trial to one of several dis-
crete, ordered categories (e.g., “bad,” “neutral,” and “good”) (Chu and Ghahramani,
2005a).

Thus, there is an increasing need to develop systematic algorithmic frameworks for
integrating and learning from different modalities of user feedback, that are both
theoretically-grounded and practical in real-world settings.

1.2 The Bandit and Reinforcement Learning Problems
This thesis considers human-in-the-loop learning problems that build upon the
standard bandit and reinforcement learning (RL) problem settings. Bandits and
RL are both sequential decision-making problems in which a learning agent takes
actions in an environment while seeking to maximize a numerical reward signal.

Firstly, in the standard multi-armed bandit setting (Robbins, 1952; Agrawal and
Goyal, 2012) an agent sequentially selects actions, and after each action it receives
a numerical reward reflecting the quality of that action. The agent’s goal is to
minimize its regret, that is, the gap between the algorithm’s total reward and the
reward obtained by repeatedly selecting the optimal action. Achieving low regret
requires both choosing the empirically-most-promising actions (exploitation) and
selecting actions with uncertain rewards, in case the optimal action has not yet been

4

discovered (exploration).

In the RL setting, meanwhile, the agent similarly takes actions and observes re-
wards, but in addition to generating rewards, these actions alter the environment’s
underlying state. After each step, the agent not only receives the reward signal, but
also observes the environment’s state. If the environment only has one state, then
RL reduces to the bandit problem. With more than one environment state, however,
the decision-making process must account for the state transition dynamics as well
as the rewards.

A number of strategies have been proposed for tackling the exploration-exploitation
trade-off in both the bandit and RL settings, including upper confidence bound
algorithms that predict reward information optimistically (Auer, Cesa-Bianchi, and
Fischer, 2002; Dann and Brunskill, 2015; Abbasi-Yadkori, Pál, and Szepesvári,
2011); posterior sampling, which learns a Bayesian model over the environment and
samples from it to select actions (Agrawal and Goyal, 2012; Agrawal and Jia, 2017;
Abeille and Lazaric, 2017; Osband, Russo, and Van Roy, 2013); and information-
theoretic approaches, which trade-off between choosing actions with high estimated
rewards and actions expected to yield significant new information (Russo and Van
Roy, 2014a; Kirschner and Krause, 2018; Nikolov et al., 2018).

1.3 Human-in-the-Loop Learning
This work considers several different paradigms of online learning from humans.
Unlike in the standard bandit and RL settings, the feedback signal is no longer
numerical, but rather qualitative. For example, in the dueling bandit setting (Yue,
Broder, et al., 2012; Yue and Joachims, 2011; Sui, Zhuang, et al., 2017; Sui, Zoghi,
et al., 2018), the agent chooses at least two actions in each learning iteration and
receives feedback in the form of pairwise preferences between the selected actions.
The notion of regret can be adapted to the dueling bandits problem: similarly
to the numerical-reward setting, the agent must balance between exploration and
exploitation to minimize the gap between its performance and that achieved by
repeatedly selecting the most-preferred actions.

Meanwhile, in the episodic preference-based RL setting, the agent executes trajecto-
ries of interaction with the environment, and receives pairwise preference feedback
revealing which of the trajectories are preferred. The RL problem is more challeng-
ing than the bandit problem, since instead of selecting individual actions, the agent
selects (potentially-stochastic) policies that govern action selection as a function of

5

the environment’s state. Thus, RL policies can be viewed analogously to actions
in the bandit setting. The environment’s dynamics then stochastically translate the
agent’s policies to the observed trajectories. While in the standard RL problem, the
agent receives rewards after every action, in preference-based RL, the agent only
receives preferences between entire trajectories of interaction.

Learning from trajectory-level preferences is in general a very challenging problem,
as information about the rewards is sparse (often just one bit), is only relative to
the pair of trajectories being compared, and does not explicitly include information
about actions within the trajectories. One approach is to infer the utilities of individ-
ual state-action pairs by solving the temporal credit assignment problem (Akrour,
Schoenauer, and Sebag, 2012; Zoghi, Whiteson, Munos, et al., 2014; Szörényi et
al., 2015; Christiano et al., 2017; Wirth, Fürnkranz, and Neumann, 2016; Wirth,
Akrour, et al., 2017), i.e., determining which of the encountered states and actions
are responsible for the trajectory-level preference feedback.

Preference-based learning algorithms have seen success in a number of domains.
In the bandit setting, preference-based algorithms have been deployed in several
real-world applications, including optimizing spinal cord injury therapy in clinical
trials (Sui, Zhuang, et al., 2018; Sui, Yue, and Burdick, 2017; Sui and Burdick,
2014), learning search result rankings in the information retrieval setting (Yue,
Finley, et al., 2007; Radlinski and Joachims, 2005), and optimizing parameters in
computer graphics design (Brochu, de Freitas, and Ghosh, 2008; Brochu, Brochu,
and de Freitas, 2010).

Preference-based RL algorithms, meanwhile, have demonstrated successful perfor-
mance applications including Atari games and the Mujoco environment (Christiano
et al., 2017; Ibarz et al., 2018), learning human preferences for autonomous driving
(Sadigh et al., 2017; Bıyık, Huynh, et al., 2020), and selecting a robot’s controller
parameters (Kupcsik, Hsu, and Lee, 2018; Akrour, Schoenauer, Sebag, and Souplet,
2014). Yet, there remains a lack of formal frameworks for theoretical analysis of
preference-based RL algorithms.

Much of the existing work in preference-based RL focuses on a different setting from
that considered in this thesis. While this work is concerned with online regret mini-
mization, several existing algorithms insteadminimize preference queries to the user
(Christiano et al., 2017; Wirth, Fürnkranz, and Neumann, 2016). Such algorithms
typically assume that many simulations can be executed inexpensively between pref-
erence queries. In many domains, however, experimentation is as time-intensive as

6

preference elicitation; for instance, in adaptive experiment design and human-robot
interaction, it could be infeasible to accurately simulate the environment.

As mentioned previously, sample complexity is an important concern when learning
from humans. Data collection is expensive, as the algorithm can only pose a limited
number of queries to the user. For instance, Brochu, de Freitas, and Ghosh (2008)
assert that “requiring more than 50 user queries in a real application would be
unacceptable.” One approach toward acquiring more data under a fixed trial budget
is to learn simultaneously from more than one type of user feedback, for instance
via mixed-initiative systems.

In particular, this work considers combining preferences with coactive feedback, in
which the user gives suggestions in response to each action that the algorithm selects.
Coactive feedback has been applied to web search and movie recommendation tasks
in simulation (Shivaswamy and Joachims, 2015), as well as to optimize trajectory
planning in robotic manipulation tasks such as grocery store checkout (Jain, Sharma,
et al., 2015).

1.4 Lower-Body Exoskeletons for Mobility Assistance
In the United States alone, various forms of paralysis affect nearly 5.4 million peo-
ple (Armour et al., 2016), with major causes including stroke, spinal cord injury,
multiple sclerosis, and cerebral palsy. While this group includes people with a range
of movement difficulties, in particular (in the United States), there are currently ap-
proximately 300,000 individuals with severe spinal cord injuries (Facts and Figures
at a Glance 2019), while every year, more than 795,000 people have a stroke (Stroke
Facts 2020). Such individuals could benefit significantly from assistive devices that
help to replace or restore lost motor function.

Lower-body exoskeletons are wearable assistive devices that can restore mobil-
ity to people suffering from lower-body mobility impairments such as paralysis.1
Exoskeleton-assisted walking can benefit patients in several ways. Firstly, while
wheelchairs are limited by obstacles such as stairs, exoskeletons are comparatively
less encumbered. Furthermore, continuous wheelchair use can result in pressure
sores and loss of bone mass. For instance, Goemaere et al. (1994) found that para-
plegic patients who regularly perform passive weightbearing standing with the aid
of a standing device have better-preserved bone mass in comparison to control sub-

1While exoskeletons can also be designed to augment function for healthy humans (Dollar
and Herr, 2008), this dissertation is concerned with exoskeletons for assisting mobility-impaired
individuals.

7

jects. In fact, a survey of wheelchair users and healthcare professionals working with
mobility-impaired individuals (Wolff et al., 2014) identified “health benefits” as the
most highly-recommended reason for using an exoskeleton. Respondents further
indicated a number of health benefits associated with exoskeleton use, including
pressure relief, increased circulation, improved bone density, improved bowel and
bladder function, and reduced risk of orthostatic hypotension.

Finally, multiple studies have demonstrated that exoskeletons have significant poten-
tial to assist in patient rehabilitation following spinal cord injuries and strokes (Gad
et al., 2017; Donati et al., 2016; Mehrholz et al., 2017). In Donati et al. (2016), eight
patients with chronic paraplegia spent 12 months training with an exoskeleton, and
regained voluntary motor control below the level of their spinal cord injuries; four
of these patients were upgraded from a complete to an incomplete paraplegia classi-
fication. Mehrholz et al. (2017) found that the combination of exoskeleton-assisted
gait training with physiotherapy improved stroke patients’ recovery of independent
walking compared to physiotherapy alone.

To improve users’ quality of life, exoskeleton devices must be comfortable, af-
fordable, safe, and enable users to engage in everyday activities. For lower-body
exoskeletons, designing comfortable walking gaits is a significant challenge, due to
the high cost of human trials, the enormous space of possible walking gaits, and the
need to ensure safety during learning. Furthermore, exoskeleton walking must be
personalized to each individual user.

This thesis applies human-in-the-loop learning to optimize gait parameters for the
Atalante lower-body exoskeleton, designed by the French company Wandercraft, to
identify user-personalized gaits that maximize comfort. The exoskeleton is pictured
in Figure 1.1.

The Atalante exoskeleton, first introduced in Harib et al. (2018), has 18 degrees of
freedom and 12 actuated joints: three at each hip, one at each knee, and two in each
ankle. Gurriet, Finet, et al. (2018) describe the device’s mechanical components and
control architecture in detail. Importantly, while other exoskeletons require users
to rely upon crutches for balance and stability (Dollar and Herr, 2008), Atalante
facilitates dynamically-stable, crutchless walking by leveraging the partial hybrid
zero dynamics framework to formally generate stable gaits (Gurriet, Finet, et al.,
2018).

8

Figure 1.1: The Atalante exoskeleton, designed by Wandercraft (Wandercraft, n.d.).

1.5 Contributions
This dissertation presents three main contributions to algorithm design for human-
in-the-loop learning. Firstly, it develops the Dueling Posterior Sampling (DPS)
framework for preference-based learning in the RL and generalized linear bandit
settings. Secondly, this thesis presents the CoSpar and LineCoSpar learning frame-
works for sample-efficient, mixed-initiative learning in the Gaussian process bandits
regime. Thirdly, the CoSpar and LineCoSpar algorithms are deployed on the Ata-
lante lower-body exoskeleton to learn personalized, user-preferred walking gaits.
Each of these contributions is further described below.

The DPS algorithm uses preference-based posterior sampling to tackle the regret
minimization problem in theBayesian regime. Posterior sampling (Thompson, 1933)
is aBayesianmodel-based approach to balancing exploration and exploitation,which
enables the algorithm to efficiently learn models of both the environment’s state
transition dynamics and reward function. Previous work on posterior sampling in
RL (Osband, Russo, and Van Roy, 2013; Gopalan and Mannor, 2015; Agrawal and
Jia, 2017; Osband and Van Roy, 2017) is focused on learning from absolute rewards,
while DPS extends posterior sampling to both elicit and learn from trajectory-level
preference feedback.

To elicit preference feedback, at every episode of learning, DPS draws two inde-
pendent samples from the posterior to generate two trajectories to duel against each
other. This approach is inspired by the SelfSparring algorithm proposed for the ban-
dit setting (Sui, Zhuang, et al., 2017), but has a quite different theoretical analysis,

9

due to the need to incorporate structured preference feedback over RL trajectories
and featurized actions.

DPS learns from preference feedback by internally maintaining a Bayesian model
over the environment. In the RL setting, this approach models both the transition
dynamics and rewards over state-action pairs. The reward model explains the prefer-
ences by solving the temporal credit assignment problem to determine which of the
encountered states and actions are responsible for the trajectory-level preferences.
This thesis presents several Bayesian approaches to credit assignment, including via
Bayesian linear regression and two Gaussian process-based methods.

In the bandit setting, the DPS framework provides a low-dimensional structure for
relating actions and user preferences in terms of the actions’ features (for instance,
the features could represent RL policy parameters). Thus, DPS can learn over large
or infinite action spaces, which would be infeasible for a learning algorithm that
models the actions’ rewards independently of each other.

Although the study of preference-basedRLhas seen increased interest in recent years
(Christiano et al., 2017; Wirth, Akrour, et al., 2017; Ibarz et al., 2018), it remains an
open challenge to design formal frameworks that admit tractable theoretical analysis.
This thesis develops DPS concurrently with an analysis framework for characteriz-
ing regret convergence in the episodic RL setting, based upon information-theoretic
techniques for bounding the Bayesian regret of posterior sampling (Russo and Van
Roy, 2016). The analysis depends upon upper-bounding a quantity called the in-
formation ratio, which balances between the expected instantaneous regret and the
information gained about the optimal action. This work conjectures an upper-bound
for the information ratio under a linear credit assignment model, which is supported
by an extensive set of simulations that estimate the information ratio empirically.
This result leads to a Bayesian no-regret rate for DPS under credit assignment via
Bayesian linear regression.

In summary, concurrently with developing the DPS algorithm, this work mathe-
matically integrates Bayesian credit assignment and preference elicitation within
the conventional posterior sampling framework, evaluates several credit assignment
models, and presents a regret analysis framework. Finally, experiments demonstrate
that DPS delivers competitive performance empirically.

This thesis also presents the CoSpar and LineCoSpar frameworks for efficient,
mixed-initiative learning, and applies them to optimize exoskeleton gaits for user

10

comfort. This work was conducted jointly with Dr. Aaron Ames’ research group, and
in particular with Maegan Tucker and Myra Cheng. Firstly, the CoSpar algorithm
relies on Gaussian process modeling and posterior sampling to infer each action’s
utility to the user and to select actions that achieve low regret under sequential
feedback. To increase sample efficiency, CoSpar integrates preference and coactive
feedback within a mixed-initiative system. CoSpar was experimentally deployed in
human subject trials with the Atalante exoskeleton to determine users’ preferred
walking parameters within a gait library. CoSpar successfully identified users’ pre-
ferred exoskeleton step lengths, durations, and widths, while also providing insights
into the users’ preferences for certain gaits.

This thesis also describes the LineCoSpar algorithm, which incorporates techniques
from high-dimensional Gaussian process Bayesian optimization (Kirschner, Mutny,
et al., 2019) to jointly optimize over larger numbers of gait parameters. LineCoSpar
delivers robust performance in simulation, and in human subject experiments, the
algorithm jointly optimizes user preferences over six exoskeleton gait parameters.
To our knowledge, LineCoSpar is the first algorithm for high-dimensional Gaus-
sian process learning under preference feedback. Furthermore, this line of work
demonstrates the first application of preference-based learning for optimizing dy-
namic crutchless walking. The results present progress for customizing exoskeleton
walking for user comfort, as well as for gaining an understanding of the mechanisms
underlying comfortable walking in an exoskeleton.

1.6 Organization
This dissertation is organized as follows. Chapter 2 reviews background material
on Bayesian inference, Gaussian processes, information theory, the bandit and RL
settings, and learning from qualitative feedback. Chapter 3 outlines the preference-
based bandit and RL settings considered within the DPS framework, and Chapter
4 presents the DPS algorithm along its theoretical analysis and experiments. Chap-
ter 5 discusses mixed-initiative learning for exoskeleton gait optimization. Finally,
Chapter 6 draws conclusions and considers possible avenues for future extension.

11

C h a p t e r 2

BACKGROUND

This chapter reviews background material that will be helpful for understanding
the following chapters. First, Sections 2.1-2.3 review mathematical concepts in
Bayesian inference, Gaussian processes, and information theory, respectively. Next,
Section 2.4 discusses bandit learning and Section 2.5 reviews preference-based
bandit learning. Finally, Section 2.6 surveys work in RL and preference-based RL.

2.1 Bayesian Inference for Parameter Estimation
Probability Theory
This subsection briefly introduces the concepts of a probability space, conditional
probability, and Bayes’ Theorem. A detailed exposition of these topics can be found
in Grimmett and Stirzaker (2001).

Probability theory formalizes the notion of chance. For instance, the outcome of
an experiment may be unknown in advance, and could be influenced by a number
of random factors. To analyze such a situation, one can begin by listing all of the
possible experimental outcomes, also known as events:

Definition 1 (Sample space). A sample space is the set of all possible outcomes of
an experiment, and is denoted by Ω.

For example, if the experiment consists of flipping a coin, then there are two possible
outcomes: heads and tails, denoted by � and) , respectively. Then, the sample space
is given by Ω = {�,)}. In another example, if the experiment involves asking a
person for a pairwise preference between two options (“Do you prefer � or �?”),
then the sample space includes the two possible preferences that the person could
give: Ω = {� � �, � � �}, where G � H denotes a preference for G over H.

In order to later define probabilities over collections of events, one must define event
collections that are closed under the operation of taking countable unions. Such a
collection of subsets of Ω is called a f-field, and is defined as follows:

Definition 2 (f-field). A f-field is a collection F of subsets of Ω that satisfies the
following three conditions:

12

A) The empty set belongs to F , that is, ∅ ∈ F .

B) For events �1, �2, . . ., if �1, �2, . . . ∈ F , then
⋃∞
9=1 � 9 ∈ F .

C) For any event � ∈ F , its complement Ω \ � also belongs to F .

For example, the smallest f-field associated with any sample space Ω is the collec-
tion: F = {∅,Ω}. Meanwhile, the power set of Ω is the set of all possible subsets
of Ω, and clearly must always be a f-field. For instance, the power set of the earlier
coin toss example, with Ω = {�,)}, is F = {∅,Ω, �,)}.

One can then define a probability measure over the members of a f-field F :

Definition 3 (Probabilitymeasures and spaces). A probabilitymeasure % on the tuple
(Ω, F) is a function % : F −→ [0, 1] that satisfies the following requirements:

A) The empty set has zero probability, and the entire sample space has a proba-
bility of one: %(∅) = 0 and %(Ω) = 1.

B) If �1, �2, . . . is a collection of members ofF that are disjoint, that is, �8∩� 9 =
∅ for all pairs 9 , : such that 9 ≠ : , then:

%
©­«
∞⋃
9=1

� 9
ª®¬ =

∞∑
9=1

%(� 9).

A probability space is a triple (Ω, F , %) consisting of a sample space Ω, a f-field
F of subsets of Ω, and a probability measure % on (Ω, F).

In many cases, it is useful to express an event’s probability given the occurrence of
a second event. This is formalized via the notion of conditional probability:

Definition 4 (Conditional probability). For two events � and �, if %(�) > 0, then
the conditional probability that event � occurs given that event � occurs is defined
as:

%(� | �) = %(� ∩ �)
%(�) . (2.1)

Symmetrically, it holds that %(� | �)%(�) = %(� ∩ �). By substituting this fact
into the right-hand side of Eq. (2.1), one obtains Bayes’ Theorem, which states that
for any two events � and �:

%(� | �) = %(� | �)%(�)
%(�) . (2.2)

13

Bayesian Inference
Assume that we aim to estimate a vector) ∈ R3 of unknown parameters belonging
to a model. One can use Bayesian inference to probabilistically estimate) given the
combination of data and any prior knowledge about) . In Bayes’ Theorem, given by
Eq. (2.2), replacing � by the model parameters) and � by the observed dataset D
yields:

%() | D) = %(D |))%())
%(D) . (2.3)

In Eq. (2.3), the quantity %() | D) is known as themodel posterior: this distribution
yields the probability of each possible value of) conditioned upon the observed
dataset. Meanwhile, %()) is known as the prior, and represents the prior belief about
) before data is observed. The term %(D |)) is called the likelihood, and quantifies
the probability of observing a dataset D given particular model parameters) .
Finally, the denominator of Eq. (2.3) contains the evidence, that is, the probability
of the dataset, %(D).

Themaximum a posteriori estimate)̂ , orMAP estimate, is defined as themode of the
posterior distribution. This is the parameter vector) which maximizes %() | D):

)̂ = argmax
)

%() | D) = argmax
)

%(D |))%())
%(D)

(0)
= argmax

)
%(D |))%()),

where (a) holds because the evidence %(D) does not depend on) . In many posterior
modeling situations, it is sufficient to use that %() | D) ∝ %(D |))%()), rather
than explicitly calculating the evidence.

Posterior Inference with Conjugate Priors
When the prior and posterior belong to the same family of probability distributions,
the prior %()) is said to be a conjugate prior for the likelihood, %(D |)). In such
cases, the posterior %() | D) can be straightforwardly calculated in closed-form.
This section lists several examples of conjugate prior and likelihood pairs, which
will appear at various future points in this dissertation.

In Murphy (2007), the author derives several conjugate priors for the Gaussian
likelihood. Notably, the Gaussian distribution is self-conjugate, such that a Gaussian
prior and likelihood result in aGaussian posterior. For instance, consider the problem
of estimating the mean ` of a univariate Gaussian distribution with known variance
f2; in this case, the unknown model parameter vector is) = ` ∈ R. A Gaussian
prior on ` takes the form ` | `0, f0 ∼ N(`0, f

2
0) for specified prior parameters `0

14

and f0. The likelihood assumes that observations are centered at ` with Gaussian
noise of variance f2, such that given ` and f, the 8th observation G8 is distributed as
G8 | `, f ∼ N(`, f2). Then, for observations D = {G1, . . . , G# }, the full likelihood
expression is:

%(D | `, f) =
#∏
8=1

?(G8 | `) =
#∏
8=1

1
√

2cf
4
− 1

2f2 (G8−`)2 . (2.4)

Under this prior and likelihood, Murphy (2007) shows that the posterior is also
Gaussian, with distribution:

?(` | D, f2, `0, f0) = N
(

1
#f2

0 + f2

(
f2`0 + f2

0

#∑
8=1

G8

)
,

f2f2
0

#f2
0 + f2

)
.

Next, consider Gaussian observations for which both the mean and variance are a
priori unknown. In this case, the likelihood of the 8th observation G8 can be written
as G8 ∼ N(`, _−1), where ` and the precision _ := f−2 are both unknown. The prior
probabilities for ` and _ can be jointly modeled via a normal-gamma distribution:

`, _ ∼ #� (`0, ^0, U0, V0), or equivalently,
_ ∼ Gamma(U0, rate = V0), ` ∼ N(`0, (^0_)−1).

It can be shown (Murphy, 2007) that under this normal-gamma prior and the Gaus-
sian likelihood in Eq. (2.4), the posterior also takes a normal-gamma form, with the
following parameters:

?(`, _ | D,`0, ^0, U0, V0) = #� (`# , ^# , U# , V#), where:

`# =
^0`0 + #G
^0 + #

, ^# = ^0 + #,

U# = U0 +
#

2
, V# = V0 +

1
2

#∑
8=1
(G8 − G)2 +

^0# (G − `0)2
2(^0 + #)

, and

G =
1
#

#∑
8=1

G8 .

While Gaussian distributions have infinite support, the beta distribution can serve
as a conjugate prior to model variables with support on the [0, 1] interval, such
as probabilities. Consider binomial data consisting of a series of Bernoulli trials

15

with an unknown success probability, \ ∈ [0, 1]. After any number of trials # ,
one observes some number , of positive results (“wins”) and some number � of
negative results (“failures”); thus, D = {,, �}, where , + � = # . Note that the
Bernoulli distribution is a special case of the binomial distribution, in which # = 1.

Because the success probability \ must lie within [0, 1], the beta distribution is
a reasonable prior: \ | U0, V0 ∼ Beta(U0, V0), for some prior hyperparameters
U0, V0 > 0. The beta prior is conjugate to the Bernoulli and binomial likelihoods
(Murphy, 2012), such that \ has the following exact posterior:

?(\ | D, U0, V0) = Beta(U0 +,, V0 + �).

In a final example, the Dirichlet distribution is a conjugate prior for the multinomial
likelihood. This fact generalizes the conjugacy of the beta and binomial distributions
to model multinomial data, in which each trial has one of possible outcomes for
some ≥ 2. Each trial exhibits outcome : with probability \: ∈ [0, 1], and so the
vector of unknown model parameters is) = [\1, . . . , \]) . The dataset D records
the number of trials #: corresponding to each outcome: D = {#1, . . . , # }.

One can place a Dirichlet prior distribution upon) . This distribution is supported
over the − 1 standard simplex, that is, over G1, . . . , G ≥ 0 such that

∑
:=1 G: =

1. With the prior) | U1, . . . , U ∼ Dirichlet(U1, . . . , U), for hyperparameters
U1, . . . , U > 0,) has the following model posterior:

?() | D, U1, . . . , U) = Dirichlet(U1 + #1, . . . , U + #).

Approximate Posterior Inference
In many real-world situations, model posteriors not only lack convenient conjugate
forms, but are analytically intractable and do not have closed-form representations.
Fortunately, there are many techniques for approximating model posteriors, includ-
ing the Laplace approximation (Murphy, 2012), expectation propagation (Minka,
2001; Minka and Lafferty, 2002), variational inference (Jordan, 1999; Wainwright
and Jordan, 2008), andMarkovChainMonte Carlo (Metropolis et al., 1953;Murphy,
2012). The remainder of this subsection reviews the Laplace approximation method
in detail.

The Laplace approximation to the posterior uses a second-order Taylor approx-
imation to model the posterior distribution as Gaussian. To derive the Laplace

16

approximation, first note that the posterior ?() | D) can be written as follows:

?() | D) = ?() ,D)
%(D) =

4−[− log ?() ,D)]

%(D) =
4−� ())

%(D) , (2.5)

where � ()) := − log ?() ,D). Performing a second-order Taylor approximation of
� ()) about the MAP estimate,)̂ = argmax) ?() | D), yields:

� ()) ≈ � ()̂) + () −)̂))
(
∇)� ())

��
)̂

)
+ 1

2
() −)̂))

(
∇2
)� ())

��
)̂

)
() −)̂). (2.6)

The second term in Eq. (2.6) must be zero, because:

)̂ = argmax
)

?() | D) = argmax
)

4−� ())

%(D) = argmax
)

4−� ()) = argmin
)

� ()), (2.7)

and ∇)� ()) = 0 in the place at which � ()) is minimized. Thus, Eq. (2.6) becomes:

� ()) ≈ � ()̂) + 1
2
() −)̂))� () −)̂),

where � := ∇2
)� ())

��
)̂
. Substituting this Taylor approximation into Eq. (2.5) yields:

?() | D) = 4
−� ())

%(D) ≈
4−� ()̂)4−

1
2 ()−)̂)

) � ()−)̂)

%(D) .

The numerator of this fraction is an unnormalized Gaussian density with mean)̂ and
covariance �−1. In order for the expression to be a normalized probability density,
one must set %(D) = 4−� ()̂) (2c) 32 |� |− 1

2 , where recall that 3 is the length of) .
Therefore, ?() | D) ≈ N ()̂ , �−1), where � := ∇2

)� ())
��
)̂
.

Note that � must be positive semidefinite for the approximated posterior covariance
matrix,�−1, to bewell-defined. Convexity of � ()) = − log ?() ,D) over the domain
of) is a necessary and sufficient condition for � to be positive semidefinite for
any)̂ . Thus, � ()) must be convex in order for the Laplace approximation to be
applicable. The MAP estimate in Eq. (2.7) can therefore be computed using any
convex optimization solver.

2.2 Gaussian Processes
Gaussian processes (GPs) provide a flexibleBayesian approach formodeling smooth,
nonparametric functions and for specifying probability distributions over spaces of
such functions. Rasmussen and Williams (2006) give an excellent introduction to
the use of Gaussian process methods in machine learning. This section reviews

17

the definition of a GP, as well as GP regression for modeling both numerical and
preference data.

As stated in Rasmussen and Williams (2006), a Gaussian process is defined as
a collection of random variables such that any finite subset of them have a joint
Gaussian distribution. In our case, these random variables represent the values of
an unknown function 5 : A → R evaluated over points x ∈ A, where A ⊂ R3 is
the domain of 5 . Then, the GP is fully specified by a mean function ` : A → R
and a covariance function K : A × A → R≥0. For any x, x′ ∈ A, the mean and
covariance functions are denoted as `(x) and K(x, x′), respectively. Then, if the
function 5 : A → R is distributed according to this GP:

5 (x) ∼ GP(`(x),K(x, x′)), where:
`(x) := E[5 (x)], and

K(x, x′) := E[(5 (x) − `(x)) (5 (x′) − `(x′))] .

Over any collection of points in the domain A, the mean and covariance functions
fully define the joint Gaussian distribution of 5 ’s values. To illustrate, define - :=
[x1, x2, . . . , x#]) ∈ R#×3 as a matrix in which x8 ∈ A for each 8 ∈ {1, . . . , #}.
For this collection of points in A, let `(-) := [`(x1), . . . , `(x#)]) be a vector
of the mean function values at each row in - , and let (-, -) ∈ R#×# be such
that [(-, -)]8 9 = K(x8, x 9). The matrix (-, -) is called the Gram matrix.
Furthermore, let 5 (-) := [5 (x1), . . . , 5 (x#)]) contain the values of 5 at each
point in - . Then,

5 (-) ∼ N (`(-), (-, -)).

Thus, the GP is fully specified by its mean and covariance functions, ` and K.
Furthermore, the specific choices of ` and K define a distribution over the space
of functions on A. A common choice of ` is `(x) := 0 for all x: assuming a
flat prior is reasonable without problem-specific knowledge, and setting it to zero
simplifies notation. This dissertation will only consider zero-mean GP priors, in
which `(x) := 0. Non-zero GP mean functions are discussed in Chapter 2.7 of
Rasmussen and Williams (2006), and can be useful in a number of situations, for
instance to express prior information or to enhance model interpretability.

The covariance function K, also called the kernel, defines the covariance between
pairs of points in A. The choice of K determines the strength of links between
points in A at various distances from each other, and therefore characterizes the

18

smoothness and structure of the functions 5 sampled from the GP. This thesis will
utilize the squared exponential kernel, which is defined as follows:

KB4 (x8, x 9) := f2
5 exp

(
− 1

2;2
| |x8 − x 9 | |2

)
,

where f2
5
is the signal variance and ; is the lengthscale. The variables f 5 and ; are

hyperparameters, which must be either obtained from expert domain knowledge or
learned, for instance via evidence maximization or cross-validation (discussed in
Rasmussen and Williams, 2006). The signal variance, f2

5
, reflects the prior belief

about the function 5 ’s amplitude, while the lengthscale ; captures 5 ’s sensitivity
across distances in A. Note that KB4 (x8, x 9) is maximized when x8 = x 9 , and that
as the distance between x8 and x 9 increases, KB4 (x8, x 9) decays exponentially.

The choice of the kernel and settings of its hyperparameter values influence the
types of functions likely to be sampled from the GP prior, and can convey expert
knowledge. It is assumed that nearby points in the domain A have similar target
values in 5 . In GP learning, the covariance kernel dictates this notion of nearness
or similarity. Aside from the squared exponential kernel, other common types of
kernels include the linear, periodic, and Matérn kernels.

When 3 > 1 (recall that 3 is the dimension of A), the squared exponential kernel
can be modified such that the lengthscale differs between dimensions; this is called
the automatic relevance determination (ARD) kernel, and will also appear later in
this thesis. It is defined as follows:

KB4,�'� (x8, x 9) := f2
5 exp

(
−1

2

3∑
:=1

([x8]: − [x 9]:
;:

)2
)
,

where [x]: denotes the : th element of x, and ;1, . . . , ;3 are 3 lengthscale hyperpa-
rameters. Under the ARD kernel, functions sampled from the GP vary more slowly
in some dimensions than others. If the lengthscales ;1, . . . , ;3 are learned from data,
then their resultant values yield insight into the relevance of each dimension (or fea-
ture) in the domainA to the output function; hence, the name “automatic relevance
determination.”

Importantly, an arbitrary function of two inputs will generally not be a valid co-
variance function. For a valid kernel, the Gram matrix (-, -) must be positive
semidefinite for any set of points - . Such a kernel, for which the Gram matrix is
guaranteed to be positive semidefinite, is called a positive semidefinite kernel. A

19

more complete discussion of this topic can be found in either Chapter 4 of Rasmussen
and Williams (2006) or Chapter 12 of Wainwright (2019).

Every positive semidefinite kernel function K(·, ·) corresponds to a unique repro-
ducing kernel Hilbert space (RKHS) HK of real-valued functions associated with
that kernel (Wainwright, 2019). The RKHS satisfies two properties: 1) for any fixed
x ∈ A, the functionK(·, x) belongs toHK , and 2) for any fixed x ∈ A, the function
K(·, x) satisfies the reproducing property, namely, that < 5 ,K(·, x) >HK= 5 (x) for
all 5 ∈ HK (Wainwright, 2019). The RKHS norm, | | 5 | |HK , captures information
about the smoothness of functions 5 in the RKHS; 5 becomes smoother as | | 5 | |HK
decreases (Kanagawa et al., 2018).

Gaussian Process Regression
Gaussian process regression performs Bayesian inference on an unknown function 5
with a GP prior, when noisy observations of 5 are available. This subsection outlines
the procedure for GP regression when the observations have Gaussian noise. The
material is summarized from Chapter 2.3 of Rasmussen and Williams (2006), and
additional details may be found therein.

First, assume that 5 has a GP prior: 5 (x) ∼ GP(`(x),K(x, x′)) for some ` and
K. Additionally, evaluations of 5 are observed, such that H8 denotes an observation
corresponding to the 8th data point location x8 ∈ A. In most real-world situations,
such observations are noisy. Assume that the observation noise is additive, Gaussian,
independent, and identically-distributed. Then, H8 = 5 (x8)+Y8, where Y8 ∼ N(0, f2

=).
The variable f2

= is called the noise variance, and is an additional hyperparameter
(alongside the kernel hyperparameters) which must either be learned from data
or given by domain knowledge. Note that a noise variance of f2

= = 0 indicates
noise-free observations.

GP regression makes predictions about the values of 5 , given a dataset of #
potentially-noisy function evaluations, {(x8, H8) | 8 = 1, . . . , #}. Let y := [H1, . . . , H#])

be the vector of observations. Recall that - is amatrix inwhich each row corresponds
to an observation location: - = [x1, . . . , x#]) . Let -∗ ∈ R"×3 be a matrix in which
each row corresponds to a point inA at which the value of 5 is to be predicted, and
let f∗ ∈ R" be a vector containing the values of 5 at the locations in -∗. Notationally,
for any two collections -� and -� of points in A, where -� =

[
x (�)1 , . . . , x (�)=

])
∈

R=×3 , -� =
[
x (�)1 , . . . , x (�)<

])
∈ R<×3 , define (-�, -�) ∈ R=×< as a matrix such

20

that the 8 9 th element is [(-�, -�)]8 9 = K
(
x (�)
8
, x (�)

9

)
. Then, y and f∗ have the

following joint Gaussian distribution:[
y

f∗

]
∼ N

(
0,

[
 (-, -) + f2

= � (-, -∗)
 (-∗, -) (-∗, -∗)

])
, (2.8)

where � is the #-dimensional identity matrix.

By the standard method for obtaining a conditional distribution from a joint Gaus-
sian distribution (e.g., see Appendix A in Rasmussen and Williams, 2006), the
distribution of f∗ conditioned upon the observations y is also Gaussian:

f∗ | -, y, -∗ ∼ N(` f∗ ,Σ f∗), where:
` f∗ = (-∗, -) [(-, -) + f2

= �]−1y

Σ f∗ = (-∗, -∗) − (-∗, -) [(-, -) + f2
= �]−1 (-, -∗).

Thus, the posterior over f∗ can be computed in closed-form using the data (-, H),
the kernel and its hyperparameters, and the noise variance f2

= . Note that the prior,
likelihood, and posterior are all Gaussian; this is because the Gaussian distribution is
self-conjugate, similarly to the case of univariate Gaussian data discussed in Section
2.1.

Gaussian Process Regression for Modeling Preference Data
In addition to regression, GPs have been applied toward a number of other modeling
domains, for instance binary classification (Rasmussen and Williams, 2006) and
ordinal regression (Chu and Ghahramani, 2005a). In particular, this subsection
details a GP approach first proposed in Chu and Ghahramani (2005b) for Bayesian
modeling of pairwise preference data, which will be applied later in this dissertation.
Preference data (further discussed in Sections 2.5-2.6) can be useful when labels
are given by humans: often, people cannot give reliable numerical scores, but can
accurately respond to queries of the form, “Do you prefer A or B?”

Chu andGhahramani (2005b) propose aGP-based approach inwhich preferences are
given between elements of a spaceA ⊂ R3 , and each element x ∈ A is assumed to
have a latent utility 5 (x) to the human user assigning the preferences. In other words,
there exists a latent utility function 5 : A −→ R that explains the preference data. A
GP prior with an appropriate kernel K is placed over 5 : 5 (x) ∼ GP(0,K(x, x′)).

Next, assume thatA is a finite set with cardinality � := |A|. The elements ofA can
then be indexed as x1, . . . , x�, and the values of 5 at the points inA can be written

21

in vectorized form: f := [5 (x1), 5 (x2), . . . , 5 (x�)]) . The GP prior over f can be
expressed as follows:

%(f) = 1
(2c)�/2 |Σ|1/2

exp
(
−1

2
f)Σ−1 f

)
,

where Σ ∈ R�×�, [Σ]8 9 = K(x8, x 9), and K is a kernel function of choice, for
instance the squared exponential kernel.

The datasetD consists of # pairwise preferences between points inA:D = {x:1 �
x:2 | : = 1, . . . , #}, where x:1, x:2 ∈ A and x:1 � x:2 indicates that the user
prefers action x:1 ∈ A to action x:2 ∈ A in the : th preference.

In modeling the likelihood %(D | f), the user’s feedback is assumed to reflect the
underlying utilities given by f , but corrupted by i.i.d. Gaussian noise: when pre-
sented with action x8, the user determines her internal valuation H(x8) = 5 (x8) + Y8,
where Y8 ∼ N(0, f2). Note that the preference noise parameter, f, is a hyperpa-
rameter that must either be learned from data or set via domain knowledge. The
likelihood of a specific preference given f is given by:

%(x:1 � x:2 | f) = %(H(x:1) > H(x:2) | 5 (x:1), 5 (x:2)) = Φ
(
5 (x:1) − 5 (x:2)√

2f

)
,

where Φ is the standard normal cumulative distribution function, and H(x: 9) =
5 (x: 9) + Y: 9 , 9 ∈ {1, 2}. Thus, the full expression for the likelihood is:

%(D| f) =
#∏
:=1

Φ

(
5 (x:1) − 5 (x:2)√

2f

)
.

Intuitively, the user can easily give a reliable preference between two options with
disparate utilities (i.e., 5 (x:1) and 5 (x:2) are far apart), while the closer the utilities
of the two options, the more difficult it becomes for the user to give a correct
preference. If the utilities of x:1 and x:2 are equal, then the user cannot distinguish
between them at all, and %(x:1 � x:2 | f) = Φ(0) = 0.5.

The full model posterior takes the following form:

%(f | D) ∝ %(D | f)%(f)

=
1

(2c)�/2 |Σ|1/2
exp

(
−1

2
f)Σ−1 f

) #∏
:=1

Φ

[
5 (x:1) − 5 (x:2)√

2f

]
.

Unlike the posterior for GP regression with numerical rewards, discussed previously,
the above posterior is non-Gaussian and lacks a tractable conjugate form. Because its

22

negative log-likelihood is convex, however, one can use the Laplace approximation
(see Section 2.1) to approximate %(f | D) as a multivariate Gaussian distribution.

2.3 Entropy, Mutual Information, and Kullback-Leibler Divergence
This section defines several information-theoretic measures—namely, entropy, mu-
tual information, and the Kullback-Leibler divergence—and states some of their
properties, which will appear later in this dissertation. All of the facts below are
proven for discrete random variables in Chapter 2 of Cover and Thomas (2012), and
all random variables in this section are likewise discrete.

In the following, - is a random variable that takes values over a finite set X (X is
called the alphabet of -); similarly, . and / are random variables with respective
alphabets Y andZ.

Firstly, entropy is ameasure of a randomvariable’s uncertainty. The Shannon entropy
of - is defined as:

� (-) := −
∑
G∈X

%(- = G) log %(- = G).

The entropy � (-) is non-negative and upper-bounded in terms of |X|:

Fact 1 (Non-negativity and upper-boundedness of entropy). It holds that:

0 ≤ � (-) ≤ log |X|.

Note that � (-) = 0 when the distribution of - is a point mass at a particular
element of X—i.e., the distribution is maximally certain—while � (-) = log |X|
when %(- = G) = 1

|X| for all G ∈ X, i.e., the distribution of - is maximally uncertain.

The entropy of - conditioned upon . = H is defined as:

� (- | . = H) := −
∑
G∈X

%(- = G | . = H) log %(- = G | . = H),

and the conditional entropy of - given . is:

� (- | .) =
∑
H∈Y

%(. = H)� (- | . = H)

= −
∑
H∈Y

%(. = H)
∑
G∈X

%(- = G | . = H) log %(- = G | . = H)

= E.

[
−

∑
G∈X

%(- = G | .) log %(- = G | .)
]
.

23

Next, the Kullback-Leibler divergence is an (asymmetric) measure of distance be-
tween two probability distributions. The Kullback-Leibler divergence between two
probability mass functions {%(- = G) | G ∈ X} and {&(- = G) | G ∈ X} is denoted
by � (% | | &) and is defined as:

� (%(-) | | &(-)) =
∑
G∈X

%(- = G) log
(
%(- = G)
&(- = G)

)
, (2.9)

where by convention, 0 log 0
0 = 0, 0 log 0

@
= 0, and ? log ?

0 = ∞. Importantly, the
Kullback-Leibler divergence is always non-negative:

Fact 2 (Non-negativity of Kullback-Leibler divergence).

� (%(-) | | &(-)) ≥ 0,

with equality if and only if %(- = G) = &(- = G) for all G ∈ X.

The mutual information of two random variables - and . quantifies the amount
of information learned about one of the variables when observing the value of the
other. It is defined as:

� (-;.) : =
∑

G∈X,H∈Y
%(- = G,. = H) log

(
%(- = G,. = H)
%(- = G)%(. = H)

)
= � (%(-,.) | | %(-)%(.)) = E-,.

[
log

(
%(-,.)
%(-)%(.)

)]
.

Because the mutual information can be expressed as a Kullback-Leibler divergence,
the following fact holds:

Fact 3 (Non-negativity of mutual information). � (-;.) ≥ 0, and � (-;.) = 0 if and
only if - and . are independent.

One can show that the mutual information can be written as a difference of entropies:

Fact 4 (Entropy reduction form of mutual information). The mutual information
between - and . can be written as � (-;.) = � (-) − � (- | .). Conditioned on a
third random variable, / , the mutual information between - and . can be written:
� (-;. | /) = � (- | /) − � (- | ., /).

The mutual information between - and a collection of random variables .1, . . . , .=

can be simplified via the chain rule for mutual information:

24

Fact 5 (Chain rule for mutual information).

� (-; (.1, . . . , .=)) =
=∑
8=1

� (-;.8 | .1 . . . , .8−1).

Next, the following result from Russo and Van Roy (2016) expresses the mutual
information in terms of a Kullback-Leibler divergence:

Fact 6 (Mutual information in terms of Kullback-Leibler divergence). The mutual
information between - and . can be expressed as:

� (-;.) = E- [� (%(. | -) | | %(.))] =
∑
G∈X

%(- = G)� (%(. | - = G) | | %(.)).

Finally, Russo andVanRoy (2016) applies Pinsker’s inequality to relate theKullback-
Leibler divergence to a difference of expectations:

Fact 7 (Relating theKullback-Leibler divergence to a difference of expectations; Fact
9 in Russo and Van Roy, 2016). Let % and & be two probability distributions such
that % is absolutely continuouswith respect to&, let - be any random variable taking
values on the set X, and let 6 : X −→ R be any function such that sup 6 − inf 6 ≤ 1.
Then, with E% and E& denoting the expectations under % and &:

� (% | |&) ≥ 2
(
E% [6(-)] − E& [6(-)]

)2
.

2.4 Bandit Learning
The multi-armed bandit problem, first studied in Robbins (1952), is a sequential
decision-making problem in which an agent interacts with an environment by taking
a series of actions in the environment. In each step, the agent observes a reward
corresponding to the action that it selected. This section first reviews the K-armed
stochastic bandit problem, and then discusses several extensions of this setting.

In the K-armed bandit setting (Auer, Cesa-Bianchi, and Fischer, 2002), the environ-
ment consists of an action space A with finite cardinality, |A| = �. The actions
are indexed such that A = {1, . . . , �}. In each learning iteration 8, the agent selects
a specific action 08 ∈ A and observes a reward '08 ,8 corresponding to action 08.
The rewards for a particular action 0 ∈ {1, . . . , �} at each time step are denoted
by '0,1, '0,2, . . ., and are assumed to be independent and identically distributed
(i.i.d.) samples from the distribution a0. Importantly, rewards for different actions
are independent, that is, '0,81 and '0′,82 are independent for any 81, 82 ≥ 1 and for

25

any 0 ≠ 0′ such that 0, 0′ ∈ A; thus, observing action 0’s reward does not reveal
information about any other actions’ rewards.1

Denote `0 to be the expected reward when selecting action 0: `0 := E['0,8] for all
8. Then, the index of the optimal action is 0∗ := argmax0∈{1,...,�} `0. Let `∗ be its
corresponding expected reward: `∗ := max0∈{1,...,�} `0 = `0∗ .

The agent seeks to maximize its cumulative reward over time:
∑)
8=1 '08 ,8. This is

equivalent to minimizing the regret, or the gap between the algorithm’s total reward
and the total reward accumulated by repeatedly choosing the optimal action 0∗. The
regret is defined as follows over) learning iterations:

Reg()) :=
)∑
8=1
[`∗ − `08] = `∗) −

)∑
8=1

`08 =

)∑
8=1
Δ08 ,

where Δ0 := `∗ − `0 is the expected per-iteration contribution to the regret when
choosing action 0, and is also known as the expected instantaneous regret under
action 0. In expectation,

E[Reg())] := E

[
)∑
8=1
Δ08

]
=

�∑
0=1

Δ0E[)0 ())],

where)0 (C) is the number of times that action 0 is selected in the first C steps, and
where the expectation is taken over any randomness in the action selection strategy
and in the rewards (which could affect future action selection).

The literature on the stochastic bandit problem can be divided into two approaches
toward analyzing regret, as discussed in Kaufmann, Cappé, and Garivier (2012):
frequentist and Bayesian. In the frequentist setting, the reward distributions for each
action are assumed to be fixed and deterministic. Meanwhile, under the Bayesian
viewpoint, the environment variables are assumed to be drawn from a prior over all
possible environments. In particular, in the K-armed bandit setting, the environment
is determined by the distributions {a1, . . . , a�}. While the frequentist perspective
assumes that {a1, . . . , a�} are fixed, unknown distributions, a Bayesian framework
would assume that each distribution a0 is defined by a parameter vector)0, which
is drawn from a prior distribution:)0 ∼ ?()0). The Bayesian regret is:

BayesReg()) := E

[
)∑
8=1
Δ08

]
=

�∑
0=1

Δ0E[)0 ())],

1There are many versions of the bandit setting in which different actions’ rewards are dependent
on one another; some of these will be discussed later.

26

where in addition to randomness in the rewards and in the action selection scheme,
the expectation is taken with respect to randomness in the environment, captured by
)0 ∼ ?()0) for 0 ∈ {1, . . . , �}.

The regretminimization problem in the bandit settingwas first formulated inRobbins
(1952) (regret is called “loss” in that work).

Bandit Algorithms
The first multi-armed bandit algorithm with an asymptotically-optimal regret guar-
antee was proposed in Lai and Robbins (1985). This seminal work demonstrated
that under mild assumptions on the reward distributions, within) total steps, any
suboptimal action 0 ≠ 0∗ is selected an asymptotically lower-bounded number of
times,)0 ()):

E[)0 ())] ≥
log)

� (a0 | | a∗)
, (2.10)

where a∗ = E0∗ is the reward distribution of the optimal action 0∗ and � (? | | @) is
the Kullback-Leibler divergence between continuous probability distributions ? and
@, defined as:

� (? | | @) :=
∫ ∞

−∞
?(G) log

(
?(G)
@(G)

)
3G,

where ? and @ are continuous distributions over the real numbers. In addition, Lai
and Robbins propose an algorithm for which E[)0 ())] ≤

(
1

� (a0 | | a∗) + >(1)
)

log) ,
where >(1) → 0 as) → ∞. Comparing with Eq. (2.10), one can see that this
approach is asymptotically optimal, and furthermore, that the optimal action 0∗ is
asymptotically selected exponentially more often than any suboptimal action.

While Lai and Robbins (1985) demonstrate that one can achieve logarithmic re-
gret asymptotically, Gittins (1974) and Gittins (1979) proposed a provably-optimal
dynamic programming strategy for the Bayesian setting with known priors and time-
discounted rewards, in which the algorithm seeks to maximize E[∑)

8=1 W
8−1'08 ,8] for

a discount factor W ∈ (0, 1). This computationally-intensive strategy uses dynamic
programming to compute dynamic allocation indices, or Gittins indices, for each
action at every step. Later, Auer, Cesa-Bianchi, and Fischer (2002) were first to
propose computationally-efficient algorithms for achieving logarithmic regret in fi-
nite time; their analysis only requires that the reward distributions have bounded
support. The following subsections detail several regret minimization strategies for
the bandit setting.

27

Tackling the Exploration-Exploitation Trade-Off
Every algorithm in the bandit settingmust balance between selecting actions thought
to yield high rewards and exploring actions whose outcomes are uncertain. There are
numerous strategies in the literature for tackling this trade-off between exploration
and exploitation; among others, these include upper confidence bound algorithms,
posterior sampling, and information-theoretic approaches. Each of these three algo-
rithmic design methodologies is reviewed below.

Upper-Confidence Bound Algorithms
Upper confidence bound algorithms leverage the principle of optimism in the face
of uncertainty, in which actions are selected as if all rewards are equal to their
maximum statistically-plausible values. The idea first appeared in Lai and Robbins
(1985), in which an upper confidence index is associated with each action; the
algorithm alternates between selecting the action whose confidence index is largest
and selecting the “leader,” that is, the action with the largest estimated mean among
sufficiently-observed actions. The procedure for computing the confidence indices
is computationally inefficient, however, and utilizes the entire history of rewards
observed for a given action.

Subsequent upper confidence bound approaches, for example the UCB1 and UCB2
algorithms introduced in Auer, Cesa-Bianchi, and Fischer (2002), select an action
08+1 at step 8 + 1 as follows:

08+1 = argmax
0∈{1,...,�}

[ˆ̀0,8 + f̂0,8],

where ˆ̀0,8 is the empirical mean reward observed for action 0 after 8 steps, while
f̂0,8 estimates the uncertainty in action 0’s reward. Thus, the first term prioritizes
selecting the actions that appear most promising, while the second term favors
actions with more uncertain reward distributions. There are a number of possible
definitions for f̂0,8. For instance, the UCB1 algorithm uses f̂0,8 =

√
2 log 8
)0 (8) , where

)0 (8) is the number of times that action 0 has been selected at step 8. The UCB1 and
UCB2 algorithms have expected regret values of $

(∑
0:`0<`∗

log)
Δ0
+∑�

9=1 Δ 9

)
and

$

(∑
0:`0<`∗

(
log(Δ2

0))
Δ0

+ 1
Δ0

))
, respectively.

More recently, a number of UCB-type algorithms have improved upon the regret
bounds given in Auer, Cesa-Bianchi, and Fischer (2002). These include Audibert,
Munos, and Szepesvári (2009), Audibert and Bubeck (2010), Garivier and Cappé
(2011), and Kaufmann, Cappé, and Garivier (2012).

28

Posterior Sampling
Posterior sampling, also known as Thompson sampling, is a Bayesian alternative
to the upper confidence bound approach. First proposed by Thompson (1933),
posterior sampling selects each action according to its probability of being optimal.
The method iterates between maintaining a posterior distribution over possible
environments and sampling from this posterior to inform action selection. Intuitively,
when the algorithm is less certain, it samples from diffuse distributions encouraging
exploration, while when it becomes more certain of the optimal action, it samples
from peaked distributions leading to exploitation.

In the strictly Bayesian setting, posterior sampling assumes that each action has a
prior probability distribution over its reward, which given reward observations, is up-
dated to obtain a model posterior over the rewards (e.g., Russo and Van Roy, 2016).
Importantly, however, the sampling distributions need not be exact Bayesian poste-
riors, and in a number of cases are not (e.g., Abeille and Lazaric, 2017; Agrawal and
Goyal, 2013; Sui, Zhuang, et al., 2017). In particular, Abeille and Lazaric (2017)
explain that posterior sampling does not necessarily need to sample from an ac-
tual Bayesian posterior: in fact, any probability distribution satisfying appropriate
concentration and anti-concentration inequalities will achieve low regret. As a re-
sult, although posterior sampling is an apparently-Bayesian approach, it can enjoy
bounded regret in the frequentist setting as well as the Bayesian setting.

To illustrate posterior sampling, consider the Bernoulli bandits problem, in which
the actions yield binary rewards: '0,8 ∈ {0, 1} for all 0 ∈ {1, . . . , �}, 8 ≥ 1. A
reward of 1 is regarded as a “success,” while a reward of 0 is a “failure.” This is
analogous to a game in which each action tosses a corresponding coin with unknown
probability of landing on heads. The player selects one coin to flip per step, and
receives a reward of 1 if it lands on heads, and 0 if it lands on tails. The player’s
total reward is thus the total number of times that a coin toss results in heads.

Let \0 = %(A0,8 = 1) denote action 0’s success probability (analogously, a coin’s
probability of landing on heads). The Beta distribution can be used to model the
algorithm’s belief over {\1, . . . , \�}:

\0 ∼ Beta(U0, V0), 0 ∈ {1, . . . , �},

where U0, V0 are prior parameters. Without any prior information about the rewards,
one could set U0 = V0 = 1 for each action 0 ∈ {1, . . . , �}; the Beta(1, 1) prior
distribution is equivalent to a uniform distribution over the interval [0, 1].

29

Algorithm 1 Posterior Sampling for Bernoulli Bandits (Agrawal and Goyal, 2012)
1: For each action 0 = 1, 2, · · · , �, set,0 = 0, �0 = 0.
2: for 8 = 1, 2, . . . do
3: For each action 0 = 1, 2, · · · , �, sample \0 ∼ Beta(,0 + 1, �0 + 1)
4: Execute action 08 := argmax0 \0, and observe reward A8 ∈ {0, 1}
5: ,08 ← ,08 + A8, �08 ← �08 + 1 − A8
6: end for

The Beta distribution is a convenient choice of prior: firstly, it is supported only on
the interval [0, 1], which is a necessary condition for modeling probabilities, and
secondly, it is conjugate to the Bernoulli and Binomial distributions. Thus, if a Beta
prior is coupled with Binomial data, then the posterior also has a Beta distribution.
For each action, the corresponding data consists of the numbers of successes and
failures observed for that action, and thus is naturally modeled via the Binomial
distribution. In particular, after observing,0 successes, or wins, and �0 failures, or
losses, one can show that the conjugate posterior takes the following form:

\0 ∼ Beta(U0 +,0, V0 + �0), 0 ∈ {1, . . . , �}. (2.11)

Algorithm 1 details the posterior sampling algorithm for this Bernoulli bandit prob-
lem, as given in Agrawal and Goyal (2012). The variables,0 and �0 keep track of
the numbers of successes and failures observed for each action. The algorithm then
alternates between sampling from the actions’ posteriors in Eq. (2.11), selecting the
action 08 with the highest sampled reward, and updating the posterior parameters
,08 and �08 given the observed reward.

Agrawal andGoyal (2012) also propose amore general posterior sampling algorithm
for the K-armed bandit setting, in which rewards are not necessarily Bernoulli, but
rather can lie in the entire [0, 1] interval. In this procedure, detailed in Algorithm
2, the algorithm similarly maintains variables,0 and �0 for each action and draws
samples from the posterior in Eq. (2.11). In contrast, however, after observing each
reward Ã8 ∈ [0, 1], the algorithm samples aBernoulli randomvariable A8 with success
probability Ã8, such that A8 ∼ Bernoulli(Ã8), and updates the counts,08 and �08 just
as in Algorithm 1. Note that Algorithm 1 is a special case of Algorithm 2, and also
that it is straightforward to adapt Algorithms 1 and 2 such that different actions have
different prior parameters U0 and V0.

A number of studies demonstrate that posterior sampling is not only empirically
competitive with upper confidence bound approaches, but it often outperforms them

30

Algorithm 2 Posterior Sampling for general stochastic bandits (Agrawal and Goyal,
2012)
1: For each action 0 = 1, 2, · · · , �, set,0 = 0, �0 = 0.
2: for 8 = 1, 2, . . . do
3: For each action 0 = 1, 2, · · · , �, sample \0 ∼ Beta(,0 + 1, �0 + 1)
4: Execute action 08 := argmax0 \0, and observe reward Ã8 ∈ {0, 1}
5: Sample A8 ∼ Bernoulli(Ã8)
6: ,08 ← ,08 + A8, �08 ← �08 + 1 − A8
7: end for

(Chapelle and Li, 2011; Granmo, 2010; May and Leslie, 2011; May, Korda, et
al., 2012). Granmo (2010) proves that Algorithm 1 with � = 2 is asymptotically
consistent, that is, its probability of selecting the optimal action approaches 1.

Agrawal and Goyal (2012) derive the first regret analysis for posterior sampling.
Firstly, for � = 2, the authors demonstrate that posterior sampling has an ex-
pected regret of $

(
log)
Δ
+ 1
Δ3

)
, where Δ = |`1 − `2 |. Secondly, for any num-

ber of actions �, the expected regret of posterior sampling is upper-bounded by

$

((∑
0:`0<`∗

1
Δ2
0

)2
log)

)
, where recall that Δ0 := `∗ − `0. These bounds have a

finite-time logarithmic dependence in the total time) , which matches the lower
bound for this setting.

Meanwhile, Russo and Van Roy (2016) present an information-theoretic perspective
on bounding the Bayesian regret of posterior sampling algorithms. In particular, this
work introduces a quantity called the information ratio, denoted by Γ8:

Γ8 :=
E[`∗ − `08 | H8]2
� (0∗; (08, '08 ,8) | H8)

, (2.12)

where H8 := {01, '01,1, . . . , 08−1, '08−1,8−1} is the history of actions and rewards
observed during the first 8−1 time-steps of running the algorithm. The numerator of
Γ8 is the squared expected instantaneous regret given the history, while the denomi-
nator is the mutual information between the optimal action 0∗ and the information
gained during the current iteration 8 (see Section 2.3 for the definition of mutual
information). Smaller values of Γ8 are preferred: intuitively, if the information ratio
is small, then in each iteration, the algorithm must either incur little instantaneous
regret or gain a significant amount of information about the optimal action. Thus, a
bounded information ratio directly balances between exploration and exploitation.

Russo and Van Roy (2016) upper-bound the Bayesian regret of the bandit problem

31

in terms of the information ratio:

BayesReg()) ≤
√
Γ� (0∗)), (2.13)

where � (0∗) is the entropy of the optimal action, and Γ is a uniform upper-bound
upon the information ratio. By Fact 1, � (0∗) ≤ log |A| = log �. Russo and Van Roy
(2016) demonstrate that in the K-armed bandit problem with � actions, posterior
sampling achieves Γ ≤ �

2 . This results in the following Bayesian regret bound for
posterior sampling in the K-armed bandit setting:

BayesReg()) ≤
√

1
2
�) log �.

This regret bound has an optimal dependence upon the number of actions � and
time steps) neglecting logarithmic factors, as Bubeck and Liu (2013) show that for
any) and �, there exists a prior over the environment such that BayesReg()) ≥
1
20
√
�) . Beyond the K-armed bandit problem, Russo and Van Roy (2016) analyze

the information ratio of posterior sampling in several more problem settings, one of
which will be discussed later.

Information-Theoretic Regret Minimization Approaches
This section discusses several information-theoretic approaches to guiding action
selection in the bandit problem. Firstly, the knowledge gradient algorithm makes a
series of greedy decisions targeted at improving decision quality. The approach, first
proposed in Gupta and Miescke (1996) and further studied in Frazier, Powell, and
Dayanik (2008) and Ryzhov, Powell, and Frazier (2012), at each step selects the ac-
tion predicted to maximally improve the expected reward of an exploit-only strategy
(i.e., a strategy which terminates learning and repeatedly chooses the predicted op-
timal action). As discussed in Russo and Van Roy (2014a), however, the knowledge
gradient algorithm lacks general theoretical guarantees, and one can construct cases
in which it fails to identify the optimal action.

Secondly, Russo and Van Roy (2014a) propose the information-directed sampling
framework, which uses the information ratio Γ8, defined in Eq. (2.12), to guide action
selection in the Bayesian setting. At each time step 8, information-directed sampling
selects the action which minimizes the information ratio, Γ8. The minimum-possible
Γ8 cannot exceed the upper-bound for Γ8 derived for posterior sampling in Russo
and Van Roy (2016). Therefore, using the relationship between regret and Γ8 given
by Eq. (2.13), one can argue that the regret bounds for posterior sampling proven

32

in Russo and Van Roy (2016) also hold for information-directed sampling. Empiri-
cally, however, information-directed sampling often outperforms posterior sampling
(Russo and Van Roy, 2014a). As discussed in Russo and Van Roy (2014a), under
certain types of information structures, information-directed sampling can be more
sample efficient than upper confidence bound or posterior sampling approaches.

While the analyses in Russo and Van Roy (2016) and Russo and Van Roy (2014a)
are restricted to the Bayesian regret setting, Kirschner and Krause (2018) define
a frequentist counterpart to the information ratio, termed the regret-information
ratio, and leverage it to develop a version of information-directed sampling with
frequentist regret guarantees.

Bandits with Structured Reward Functions
Strategies for the K-armed bandit setting assume that different actions’ outcomes
are independent; as a result, regret bounds depend polynomially on the number
of actions, and algorithms become highly-inefficient in large action spaces. While
such strategies are infeasible for learning over exponentially or infinitely-large ac-
tions sets, a number of efficient learning algorithms have been developed for cases
where rewards have a lower-dimensional structure. This subsection reviews work
corresponding to several such reward structures.

For example, in the linear bandits problem, each action is represented by a 3-
dimensional feature vector. The expected reward for executing action x ∈ A ⊂ R3

is denoted by '(x), and is a linear combination of these features:

E['(x)] = r)x,

where r ∈ R3 is an unknown model parameter vector defining the rewards. Note
that the action space A ⊂ R3 could potentially be infinite in this setting.

A number of works study upper confidence bound approaches for the linear bandits
problem (Dani, Hayes, and Kakade, 2008; Rusmevichientong and Tsitsiklis, 2010;
Abbasi-Yadkori, Pál, and Szepesvári, 2011) and derive frequentist regret bounds.
At a high level, these approaches maintain a confidence region R8 which contains
r with high probability at each step 8. Actions are then selected optimistically, such
that at each step 8, the algorithm selects action x8 via:

x8 = argmax
r∈R8 , x∈A

r)x. (2.14)

33

Among confidence-based linear bandit algorithms, smaller confidence regions R8
result in tighter regret bounds. In particular, Abbasi-Yadkori, Pál, and Szepesvári
(2011) introduced a novel martingale concentration inequality that enables a vastly-
improved regret guarantee in comparison to prior work, for instance in Dani, Hayes,
and Kakade (2008) and Rusmevichientong and Tsitsiklis (2010). In particular,
Abbasi-Yadkori, Pál, and Szepesvári (2011) develop the OFUL algorithm for the
linear bandit problem, and prove that with probability at least 1 − X, its regret satis-
fies Reg()) ≤ $ (3 log)

√
) +

√
3) log()/X)), where X is an algorithmic parameter.

The authors further prove a problem-dependent regret bound: with probability at
least 1 − X, Reg()) ≤ $

(
log(1/X)

Δ
(log) + 3 log log))2

)
, where Δ (as defined in

Dani, Hayes, and Kakade, 2008) can be intuitively understood as the gap in reward
between the best and second-best corner decisions.2 Formally, Δ is defined in terms
of the set of extremal points E, which consists of all the points in A that cannot
be expressed as a convex combination of any other points inA. The optimal action
x∗ = argmaxx∈A r)x is guaranteed to belong to E. Then, defining E− := E \ x∗, the
gap is given by:

Δ = sup
x∈E−

r)x∗ − r)x.

Meanwhile, posterior sampling algorithms for linear bandits (Agrawal and Goyal,
2013; Abeille and Lazaric, 2017) place a prior upon r, r ∼ ?(r), and maintain
a model posterior over r, ?(r | D), where D is the evolving dataset of agent-
environment interactions. For instance, this can be performed via Bayesian linear
regression. In each iteration, the algorithm samples r̃ ∼ ?(r | D), and chooses the
optimal action as if r̃ is the model parameter vector: x8 = argmaxx∈A r̃)x.

Agrawal and Goyal (2013) and Abeille and Lazaric (2017) both provide high-
probability frequentist regret bounds for posterior sampling-based algorithms for
the linear bandits problem. Both of these analyses upper-bound the)-step regret by
$̃ (33/2√)) with high probability, where the $̃-notation hides logarithmic factors.
More specifically, Agrawal andGoyal (2013) prove that with probability at least 1−X,
Reg()) ≤ $ (33/2√) (log)

√
log) + log(1/X))) and in addition, that Reg()) ≤

$ (3
√
) log �(log)

√
log) + log(1/X))).

Notably, in the linear bandit setting, posterior sampling is more computationally
efficient than confidence-based approaches; the latter involve solving the optimiza-
tion problem in Eq. (2.14), which is more costly than updating a model posterior

2Note that Δ is only well-defined for polytopic action spaces, and not, e.g., for spherical ones.

34

and sampling from it via the procedure in Agrawal and Goyal (2013) or Abeille and
Lazaric (2017).

While the preceding analyses upper-bound the frequentist regret with high probabil-
ity, Russo and Van Roy (2016) and Dong and Van Roy (2018) derive Bayesian regret
bounds for the linear bandits problem by upper-bounding the information ratio for
this setting. In particular, Dong and Van Roy (2018) derive a Bayesian regret bound

of BayesReg()) ≤ 3
√
) log

(
3 + 3

√
2)
3

)
, which is competitive with other results for

the Bayesian linear bandits setting, for instance the Bayesian regret analysis in Russo
and Van Roy (2014b).

More generally, the linear bandit problem is a special case of the generalized linear
bandit setting, in which the reward feedback '(x) for each action x ∈ A ⊂ R3 is
generated according to:

E['(x)] = 6(r)x),

where r ∈ R3 is an unknown model parameter vector, and 6 is a monotonically-
increasing link function satisfying appropriate conditions; for instance, a sigmoidal
6 results in the logistic bandit problem. For this setting, Filippi et al. (2010) provide a
regret bound for a confidence set approach, while Abeille and Lazaric (2017) bound
the regret for posterior sampling and Dong and Van Roy (2018) bound the Bayesian
regret for posterior sampling, again by deriving an upper bound for the problem’s
information ratio.

Meanwhile, in the Gaussian process bandit setting (Srinivas et al., 2010; Chowd-
hury and Gopalan, 2017), the reward function is assumed to be an arbitrary, non-
parametric, smooth function of the action space features. More formally, E['(x)] =
5 (x) for x ∈ A ⊂ R3 , and a Gaussian process prior is placed over the unknown
function 5 , such that 5 (x) ∼ GP(0,K(x, x′)). Smoothness assumptions about 5
are encoded through the choice of kernel,K; intuitively, actions with similar feature
vectors have similar rewards. Then, given reward observations, a Gaussan process
model posterior %(f | D) is fit to the data, D. Srinivas et al. (2010) introduced
the Gaussian Process Upper Confidence Bound (GP-UCB) algorithm for this set-
ting, and proved the first sub-linear regret guarantee for Gaussian process bandits.
Chowdhury and Gopalan (2017) proposed a confidence-based approach with tighter
regret bounds than Srinivas et al. (2010), and additionally introduced and derived
a regret bound for GP-TS, a posterior sampling Gaussian process bandit algorithm.
Because Gaussian processes can be represented in an infinite-dimensional linear

35

space defined by the kernel function K, the Gaussian process bandit setting can
be viewed as a generalization of the generalized linear bandit setting discussed
previously.

Other structural assumptions in the literature include banditswithLipschitz-continous
reward functions (Kleinberg, Slivkins, andUpfal, 2008) and convex reward functions
(Saha and Tewari, 2011; Hazan and Levy, 2014).

Related Problem Settings
Beyond the standard bandit problem, a number of related problem settings have been
studied. For instance, the active learning problem focuses exclusively on learning an
accurate model rather than maximizing the cumulative utility of decision-making
(Golovin and Krause, 2011; Sadigh et al., 2017; Houlsby et al., 2011; Brochu, de
Freitas, and Ghosh, 2008). Similarly, Bayesian optimization (Brochu, Cora, and de
Freitas, 2010; Hoffman, Brochu, and de Freitas, 2011) aims to identify the optimum
of an expensive-to-evaluate function within a limited budget of queries, rather than
minimize the regret:

max
x∈A⊂R3

5 (x).

Bayesian optimization is closely related to the Gaussian process bandit setting, as
many Bayesian optimization algorithms use Gaussian process methods to model the
objective function. Furthermore, approaches such as GP-UCB (Srinivas et al., 2010),
which have bounded regret in the multi-armed bandit setting, are also applicable to
Bayesian optimization; as Brochu, Cora, and de Freitas (2010) point out, a Bayesian
optimization problem can be cast as a bandit problem, such that its objective function
5 becomes the bandit problem’s reward function. Then, any bandit algorithm with
sublinear regret, for instance GP-UCB, must converge to identifying the objective
function’s optimum.Other approaches to Bayesian optimization includemaximizing
the expected improvement over the highest objective value observed so far (Jones,
Schonlau, andWelch, 1998), and entropy search (Hennig and Schuler, 2012), which
selects points to minimize the entropy, or uncertainty, of 5 .

Another related problem is the adversarial bandit setting (Saha and Tewari, 2011;
Hazan and Levy, 2014), in which rewards are selected by an adversary rather than
stochastically from fixed probability distributions, as in the stochastic bandit setting.

Meanwhile, the agent can receive reward information in many different ways. While
in the bandit setting, the agent only observes the reward corresponding to the specific
action selected, in the case of expert advice, all actions’ rewards are revealed in every

36

iteration (Cesa-Bianchi and Lugosi, 2006). In the semi-bandit feedback setting (Neu
and Bartók, 2013; Russo and Van Roy, 2016), the algorithm selects a subset of the
action space in each iteration, and the environment reveals the selected actions’ total
reward.

Environment feedback can also take various forms in addition to numerical rewards.
In particular, the following subsectionwill discuss learning from pairwise preference
feedback and review several other forms of feedback.

2.5 Dueling Bandits
In a number of real-world situations, absolute numerical feedback is unavailable. For
instance, as discussed in Chapter 1, humans often cannot reliably specify numerical
scores. Yet, in many cases, people can more accurately provide various forms
of qualitative feedback, and in particular, much of this thesis focuses on online
learning from pairwise preferences. In the bandit setting, preference-based learning
is called the dueling bandits problem and was first formalized in Yue, Broder, et al.
(2012). The dueling bandit setting is a sequential optimization problem, in which
the learning agent selects actions and receives relative pairwise preference feedback
between them. In other words, the agent poses queries of the form, “Do you prefer
A or B?” The dueling bandits paradigm formalizes the problem of online regret
minimization through preference-based feedback.

The dueling bandits setting is defined by a tuple, (A, q), in which A is the set of
possible actions and q is a function defining the feedback generation mechanism.
The setting proceeds in a sequence of iterations or rounds. In each iteration 8, the
algorithm chooses a pair of actions x81, x82 ∈ A to duel or compare, and observes
the outcome of that comparison (x81 and x82 can be identical).3 The outcome of each
duel between x, x′ ∈ A represents a preference between them, and is an independent
sample of a Bernoulli random variable. We denote a preference for action x over
action x′ as x � x′, and define the probability that x is preferred to x′ as:

%(x � x′) := q(x, x′) + 1
2
,

where q(x, x′) ∈ [−1/2, 1/2] denotes the stochastic preference between x and x′,
so that %(x � x′) > 1

2 if and only if q(x, x′) > 0.

In each learning iteration 8, the preference for the 8th query is denoted by H8 :=
I[x82�x81]− 1

2 ∈
{
−1

2 ,
1
2
}
, where I[·] denotes the indicator function, so that %

(
H8 =

1
2

)
=

3The actions are bolded because they could be represented by 3-dimensional vectors (i.e.,
A ⊂ R3); however, such a representation is not required.

37

1 − %
(
H8 = −1

2

)
= %(x82 � x81) = q(x82, x81) + 1

2 . The outcome H8 is always a
binary preference (not a tie), but preference feedback need not be received for every
preference query.

Bounding the regret of a bandit algorithm requires some assumptions on the tuple
(A, q). For instance, ifA is an infinite set and the outcomes associatedwith different
actions are independent—that is, observing x � x′ yields no information about any
action x′′ ∉ {x, x′}—then, it would be impossible to achieve sublinear regret. Thus,
eitherA must be finite, or there must be structural dependencies between outcomes
associated with different actions.4

In the dueling bandits setting, the agent’s decision-making quality can be quantified
using a notion of cumulative regret in terms of the preference probabilities:

RegDBq ()) =
)∑
8=1
[q(x∗, x81) + q(x∗, x82)] , (2.15)

where x∗ is the optimal action. Importantly, this regret definition assumes the exis-
tence of a Condorcet winner, that is, a unique action x∗ superior to all other actions
(Sui, Zoghi, et al., 2018); formally, x∗ ∈ A is a Condorcet winner if %(x∗ � x) > 1

2
for any x∗ ≠ x ∈ A. When the learning algorithm has converged to the best action
x∗, then it can simply duel x∗ against itself, incurring no additional regret. Intu-
itively, one can interpret Eq. (2.15) as a measure of how much the user(s) would
have preferred the best action over the ones presented by the algorithm.

The Multi-Dueling Bandits Setting
The multi-dueling bandits setting (Brost et al., 2016; Sui, Zhuang, et al., 2017)
generalizes the dueling bandits setting such that in each iteration, the algorithm
can select more than 2 actions. More specifically, in the 8th iteration, the algorithm
selects a set (8 ⊂ A of actions, and observes outcomes of duels between some pairs
of the actions in (8. These observed preferences could correspond to all action pairs
in (8 or to any subset. The number of actions selected in each iteration is assumed
to be a fixed constant, < := |(8 |. When < = 2, the problem reduces to the original
dueling bandits setting. For any < ≥ 2, the dueling bandits regret formulation in
Eq. (2.15) extends to:

RegMDB
q ()) =

)∑
8=1

∑
x∈(8

q(x∗, x). (2.16)

4Both of these conditions can also be true simultaneously.

38

The learning algorithm seeks action subsets (8 that minimize the cumulative regret
in Eq. (2.16). Intuitively, the algorithm must explore the action space while aiming
to minimize the number of times that it selects suboptimal actions. As the algorithm
converges to the best action x∗, then it increasingly chooses (8 to only contain x∗,
thus incurring no additional regret.

The multi-dueling setting could correspond to a number of different feedback col-
lection mechanisms. For example, in some applications it may be viable to collect
pairwise feedback between all pairs of actions in (8. In other applications, it is more
realistic to observe a subset of these preferences, for example the “winner” of (8,
that is, a preference set of the form, {x � x′ | x′ ∈ (8 \ x} for some x ∈ (8.

Algorithms for the Dueling (and Multi-Dueling) Bandits Setting
A number of algorithms have been proposed for the preference-based bandit setting,
many of which are equipped with regret bounds. Earlier work on dueling bandits
considered an “explore-then-exploit” algorithmic structure; examples include the
Interleaved Filter (Yue, Broder, et al., 2012), Beat-the-Mean (Yue and Joachims,
2011), and SAVAGE (Urvoy et al., 2013) algorithms. Confidence-based approaches
include RUCB (Zoghi, Whiteson, Munos, et al., 2014), MergeRUCB (Zoghi, White-
son, and Rĳke, 2015), and CCB (Zoghi, Karnin, et al., 2015). The RMED algorithm
(Komiyama et al., 2015), meanwhile, defines Bernoulli distributions whose param-
eters are actions’ probabilities of being preferred to one another. The approach
calculates Kullback-Leibler divergences between these distributions, and uses them
to estimate each action’s probability of being the Condorcet winner and to decide
whether actions have been sufficiently explored. RMED is optimal in the sense that
when a Condorcet winner exists, the constant factor in its regret matches the regret
lower bound for the dueling bandits problem.

Ailon, Karnin, and Joachims (2014) propose several strategies for reducing the
dueling bandits problem to a standard multi-armed bandit problem with numerical
feedback. In particular, this work introduces the Sparring method, in which two
multi-armed bandit algorithms are trained in parallel. These two algorithms could
be instances of any standard multi-armed bandit algorithm, for instance RUCB or
RMED. In every iteration, each of the two algorithms selects an action; let x81 and
x82 be the actions selected by algorithms 1 and 2 in iteration 8, respectively. These
two actions are dueled against each other. If x1 wins, then algorithm 1 receives a
reward of 1 and algorithm 2 receives a reward of 0; conversely, if x2 wins, then

39

Algorithm 3 IndependentSelfSparring (Sui, Zhuang, et al., 2017)
1: Input: < = the number of actions taken in each iteration, [= the learning rate
2: For each action 0 = 1, 2, · · · , �, set,0 = 0, �0 = 0.
3: for 8 = 1, 2, . . . do
4: for 9 = 1, . . . , < do
5: For each action 0 = 1, 2, · · · , �, sample \0 ∼ Beta(,0 + 1, �0 + 1)
6: Select 0 9 (8) := argmax0 \0
7: end for
8: Execute < actions: {01(8), . . . , 0< (8)}
9: Observe pairwise feedback matrix ' ∈ {0, 1, ∅}<×<
10: for 9 , ; = 1, . . . , < do
11: if A 9 ; ≠ ∅ then
12: ,0 9 (8) ← ,0 9 (8) + [· A 9 ; , �0 9 (8) ← �0 9 (8) + [(1 − A 9 ;)
13: end if
14: end for
15: end for

algorithm 1 receives a reward of 0 and algorithm 2 receives a reward of 1.

There are also a number of posterior sampling-based strategies for the dueling
bandit problem. The Relative Confidence Sampling algorithm, for instance, on
each iteration selects one action via posterior sampling and another via an upper
confidence bound strategy (Zoghi, Whiteson, De Rĳke, et al., 2014). Meanwhile,
the Double Thompson Sampling algorithm (Wu and Liu, 2016) selects both actions
in each iteration via posterior sampling; however, each action is selected from a
restricted set. The first action is selected among those thought to be relatively well
performing, while the second is chosen among actions with less certain priors.

In particular, SelfSparring (Sui, Zhuang, et al., 2017) is a state-of-the-art posterior
sampling framework for preference-based learning in the multi-dueling bandits
setting, inspired by Sparring (Ailon, Karnin, and Joachims, 2014). SelfSparring
maintains a distribution over the probability of selecting each action, and updates
it during each iteration based on the observed preferences. Actions are selected by
drawing independent samples from this probability distribution, and for each sample,
selecting the action with the highest sampled reward. Intuitively, a flatter sampling
distribution results in more exploration, while more peaked sampling distributions
reflect certainty about the optimal action and yield more exploitation.

Algorithm 3 describes SelfSparring for the case of a finite action set (|A| = �) with
independent actions, that is, observing a preference x � x′ does not yield information
about the performance of any action x′′ ∉ {x, x′}. SelfSparring maintains a Beta

40

posterior for each action, and updates it similarly to the Bernoulli bandit posterior
sampling algorithm (Algorithm 1). For each action 0, the variables ,0 and �0,
respectively, record the number of times that the action wins and loses against any
other action (possibly scaled by a learning rate, [). Actions are then selected by
drawing a sample for each action 0 ∈ A, \0 ∼ Beta(,0 + 1, �0 + 1), and choosing
the action for which \0 is maximized. Sui, Zhuang, et al. (2017) derive a no-regret
guarantee for Algorithm 3 when the actions have a total ordering with respect to the
preferences.

Additionally, Sui, Zhuang, et al. (2017) propose a kernel-based variant of Self-
Sparring called KernelSelfSparring, which leverages Gaussian process regression
to model dependencies among rewards corresponding to different actions. Other
dueling bandit approaches which handle structured action spaces include the Duel-
ing Bandit Gradient Descent algorithm for convex utility functions over continuous
action spaces (Yue and Joachims, 2009); the Correlational Dueling Bandits al-
gorithm, in which a large number of actions have a low-dimensional correlative
structure based on a given similarity function (Sui, Yue, and Burdick, 2017); and the
StageOpt algorithm for safe learning with Gaussian process dueling bandits (Sui,
Zhuang, et al., 2018).

The multi-dueling bandits setting is also considered in Brost et al. (2016), which
proposes a confidence interval strategy for estimating preference probabilities.

Related Problem Settings
Aside from pairwise preferences, a number of other forms of qualitative reward
feedback have also been studied. For instance, in the coactive feedback problem
(Shivaswamy and Joachims, 2015; Shivaswamy and Joachims, 2012; Raman et
al., 2013), the agent selects an action a8 in the 8th iteration, and the environment
reveals an action a′

8
which is preferred to a8. With ordinal feedback, meanwhile,

the user assigns each trial to one of a discrete set of ordered categories (Chu and
Ghahramani, 2005a; Herbrich, Graepel, and Obermayer, 1999). In the “learning to
rank” problem, an agent learns a ranking function for information retrieval using
feedback such as users’ clickthrough data (Burges, Shaked, et al., 2005; Radlinski
and Joachims, 2005; Burges, Ragno, and Le, 2007; Liu, 2009; Schuth, Sietsma,
et al., 2014; Schuth, Oosterhuis, et al., 2016; Yue, Finley, et al., 2007).

41

2.6 Episodic Reinforcement Learning
In the episodic reinforcement learning (RL) problem setting (Sutton and Barto,
2018; Dann and Brunskill, 2015; Osband, Russo, and Van Roy, 2013), an agent
interacts with an environment in a series of episodes, with the goal of maximizing
its cumulative reward over time. The RL setting differs from the bandit setting in
that the reward distributions depend upon the environment’s state, which changes
stochastically in each time step as a function of the previous state and the selected
action.

The tabular RL problem is formalized as a Markov decision process (MDP), defined
via the tupleM = (S,A, A, ?, ?0, ℎ), where the state space S and action space A
are finite sets with cardinalities (= |S| and � = |A|. At each time step C, the agent
observes the environment’s current state BC , takes an action 0C , and then observes
a reward AC and the subsequent state, BC+1. The episode’s initial state is sampled
from the distribution ?0 such that B1 ∼ ?0, while ? defines the transition dynamics:
BC+1 ∼ ?(·|BC , 0C). Because BC+1 does not depend on any states or actions prior to
time C, the environment is Markovian. Finally, A defines the expected reward given
a state and action: E[AC] = A (BC , 0C).5

The agent interacts with the environment through a sequence of episodes of length
ℎ, where ℎ is known as the episode horizon time. Each episode is a trajectory of
states, actions, and rewards of the form:

g = {B1, 01, A1, B2, 02, A2, . . . , Bℎ, 0ℎ, Bℎ+1}.

Many episodic RL algorithms select a single action selection policy per episode. In
this context, a policy c is a possibly-stochastic mapping from states and time indices
(within an episode) to actions: c : S × {1, . . . , ℎ} −→ A. In each iteration 8, the
agent selects a policy c8 and executes it to observe a trajectory, g8.

Given a policy c, the value function is defined as the expected total reward accrued
when starting in state B at step 9 , and following c for the rest of the episode:

+c, 9 (B) = E
[
ℎ∑
C= 9

A (BC , c(BC , C))
���� B 9 = B] . (2.17)

5Similarly, A could be defined as a function of just the current state, E[AC] = A (BC), or of the state,
action, and next state, E[AC] = A (BC , 0C , BC+1).

42

Similarly, the action-value function is the expected total rewardwhen starting in state
B at step 9 , taking action 0, and then following c until the episode’s completion:

&c, 9 (B, 0) = A (B, 0) + E


ℎ∑
C= 9+1

A (BC , c(BC , C))
���� B 9 = B, 0 9 = 0 .

An optimal policy c∗ is one which maximizes the expected total reward over the
episode:

c∗ =
∑
B∈S

?0(B) sup
c

+c,1(B),

where c is maximized over the set of all possible policies.

The agent’s learning goal is to minimize the regret, which is defined as the gap
between the total reward obtained when repeatedly executing c∗ and the total reward
accrued by the learning algorithm:

E[Reg())] = E
{ d)/ℎe∑

8=1

∑
B∈S

?0(B)
[
+c∗,1(B) −+c8 ,1(B)

]}
,

where) is the total number of time-steps of agent-environment interaction (i.e.,
the number of episodes multiplied by ℎ), and where the expected value is taken
with respect to randomness in the policy selection algorithm and randomness in the
rewards (which affect future policy selection). The Bayesian regret BayesReg())
is defined similarly, but the expected value is additionally taken with respect to
randomness in the MDP parameters ?, ?0, and A , which are assumed to be sampled
from a prior over MDP environments.

Remark 1. Note that the episodic RL setting stands in contrast to the infinite-
horizon RL problem. The latter is also defined as a Markov decision process, except
without the time horizon ℎ (since the interaction consists of a single, infinite-length
trajectory). The MDP is defined asM = (S,A, A, ?, ?0, W), where W ∈ (0, 1) is the
discount factor used to quantify the total reward. Unlike in the episodic setting, the
value does not depend on the initial state, the policy is time-independent, and the
discounted value function (Sutton and Barto, 2018) is also time-step-independent
and is defined as:

+c (B) = E
[∞∑
C=1

WC−1A (BC , c(BC))
]
.

While a number of infinite-horizon RL studies derive performance guarantees for the
discounted reward setting (Kearns and Singh, 2002; Lattimore and Hutter, 2012),

43

others consider the average reward setting (Jaksch, Ortner, and Auer, 2010; Bartlett
and Tewari, 2012; Agrawal and Jia, 2017), which removes the factor W and defines
+c (B) as follows:

+c (B) = lim
)→∞

1
)
E

[∞∑
C=1

A (BC , c(BC))
]
.

Using Value Iteration to Compute Optimal Policies
When the transition dynamics ? and rewards A are known, then it is possible to ex-
actly calculate the optimal, reward-maximizing policy via a dynamic programming
method called finite-horizon value iteration (Sutton and Barto, 2018). In practice,
the rewards and dynamics are typically unknown and must be learned, so that value
iteration is insufficient to obtain the best policy. As will be discussed in the next sub-
section, however, value iteration can still be a useful component within algorithms
that learn the optimal policy.

The value iteration procedure operates as follows. Firstly, the value function +c,C (B)
is defined as in Eq. (2.17) for each state and time-step in the episode. Because
the episode stops accruing reward at its completion, one can set +c,ℎ+1(B) := 0
for each B ∈ S. Then, successively for each C ∈ {ℎ, ℎ − 1, . . . , 1}, c(B, C) is set
deterministically to maximize the total reward starting from time C, and the Bellman
equation is used to calculate +c,C (B) given ? and A. Formally, for each C ∈ {ℎ, ℎ −
1, . . . , 1}:

c(B, C) = argmax
0∈A

[
A (B, 0) +

∑
B′∈S

%(BC+1 = B′ | BC = B, 0C = 0)+c,C+1(B′)
]
for all B ∈ S,

+c,C (B) =
∑
0∈A
I[c(B,C)=0]

[
A (B, 0) +

∑
B′∈S

%(BC+1 = B′ | BC = B, 0C = 0)+c,C+1(B′)
]
for all B ∈ S.

Note that value iteration results in only deterministic policies, of which there are
finitely-many (more precisely, there are �(ℎ).

Reinforcement Learning Algorithms
RL algorithms can be broadly divided into two categories: model-based and model-
free approaches.Model-based algorithms explicitly construct amodel of the environ-
ment as they interact with it, for instance storing information about state transitions
and rewards. Model-free algorithms, in contrast, do not attempt to directly learn the
MDP’s parameters, but rather only model value function information.

44

Both model-free and model-based RL algorithms have leveraged deep learning to
successfully execute tasks in such domains as Atari games (Mnih, Kavukcuoglu,
Silver, Graves, et al., 2013; Mnih, Kavukcuoglu, Silver, Rusu, et al., 2015; Kaiser et
al., 2019), simulated physics-based tasks in theMujoco environment (Lillicrap et al.,
2015; Chua et al., 2018), and robotics (Ebert et al., 2018; Ruan et al., 2019). Model-
based RL algorithms are often more sample-efficient than model-free algorithms
(Kaiser et al., 2019; Ebert et al., 2018; Plaat, Kosters, and Preuss, 2020), as they
explicitly build up a dynamics model of the environment.

There is also significant work on analyzing algorithmic performance in the tabular
RL setting, in which there are finite numbers of states and actions. In addition to
regret bounds, common performancemetrics include sample complexity guarantees,
which upper-bound the number of steps for which performance is not near-optimal.
In particular, a PAC sample complexity guarantee states that with probability at least
1 − X, in all but an upper-bounded number of time-steps, the values of the selected
policies are within n of the optimal policy’s value.

There has been extensive work on confidence and posterior sampling approaches
to RL (among other types of algorithms). These are both model-based methods, as
they require learning estimates of the state transition probabilities and rewards.

Confidence-based algorithms for the episodic RL setting include the Bayesian Ex-
ploration Bonus algorithm (Kolter andNg, 2009), which learns transition and reward
information to estimate the action-value function &(B, 0) at each state-action pair.
Actions are chosen greedily with respect to the sum of the &-function and an ex-
ploration bonus given to less-explored state-action pairs. The authors prove a PAC
sample complexity guarantee, specifically that with probability at least 1 − X, the
policy is n-close to optimal for all but (at most)$

(
(�ℎ6

n2 log
(
(�
X

))
time-steps. Mean-

while, Dann and Brunskill (2015) dramatically improve upon this ℎ6 dependence in
the analysis of their upper-confidence fixed-horizon RL algorithm (UCFH). UCFH
selects policies by optimistically estimating each policy’s value, or total reward,
and maximizing the expected total reward over an MDP confidence set contain-
ing the true MDP with high probability. This confidence region is constructed by
defining a confidence interval around the empirical mean of each reward and tran-
sition dynamics parameter in the MDP. The authors prove that with probability at
least 1 − X, UCFH selects policies that are n-close to optimal for all but (at most)
$̃

(
(�ℎ2�
n2 log

(
1
X

))
steps, where the $̃-notation hides logarithmic factors and � ≤ (

upper-bounds the number of possible successor states from any state in the MDP.

45

Algorithm 4 Posterior Sampling for Reinforcement Learning (PSRL) (Osband,
Russo, and Van Roy, 2013)
1: Initialize prior for 5? ⊲ Initialize transition dynamics model
2: Initialize prior for 5A ⊲ Initialize reward model
3: for 8 = 1, 2, . . . do
4: Sample p̃ ∼ 5? (·) ⊲ Sample transition dynamics from posterior
5: Sample r̃ ∼ 5A (·) ⊲ Sample rewards from posterior
6: c8 ←− optimal policy given p̃ and r̃ ⊲ Value iteration
7: for C = 1, . . . , ℎ do ⊲ Execute policy c8 to roll out a trajectory
8: Observe state BC and take action 0C = c8 (BC , C)
9: Observe subsequent state BC+1 and reward AC
10: end for
11: Update posteriors 5?, 5A given observed transitions and rewards
12: end for

Posterior sampling approaches to finite-horizon RL include the posterior sampling
for reinforcement learing (PSRL) algorithm (Osband, Russo, and Van Roy, 2013),
outlined in Algorithm 4. PSRL learns Bayesian posteriors over both the MDP’s
transition dynamics and rewards. In each learning iteration, the algorithm samples
both dynamics and rewards from their posteriors, and computes the optimal policy
for this sampledMDPvia value iteration. The resultant policy is executed to get a roll-
out trajectory, which is used to update the dynamics and reward posteriors. Osband,
Russo, and Van Roy (2013) derive a Bayesian regret bound of$ (ℎ(

√
�) log((�)))

for PSRL after) steps of agent-environment interaction. Notably, computational
results in Osband, Russo, and Van Roy (2013) demonstrate that posterior sampling
outperforms confidence-based approaches, andOsband andVanRoy (2017) theorize
further about the reasons behind this phenomenon.

Beyond finite-horizon RL, upper confidence bound methods (Jaksch, Ortner, and
Auer, 2010; Bartlett and Tewari, 2012) and posterior sampling techniques (Agrawal
and Jia, 2017; Ouyang et al., 2017; Gopalan and Mannor, 2015) have also been
demonstrated to perform well in the infinite-horizon RL domain.

Meanwhile, randomized least-squares value iteration (RLSVI), proposed in Osband,
Van Roy, and Wen (2016), is a model-free approach inspired by posterior sampling.
RLSVI maintains a distribution over plausible linearly-parameterized value func-
tions, and explores by randomly sampling from these distributions and selecting
the actions which are optimal under these value functions. The authors prove an
expected regret bound of $̃ (

√
ℎ3(�)).

Finally, information-directed sampling methods select actions by estimating the in-

46

formation ratio proposed in Russo and Van Roy (2016) and given by Eq. (2.12),
which can be adapted from the bandit setting to RL. As in the bandit setting, the in-
formation ratio can be intuitively understood as the squared expected instantaneous
regret divided by the current iteration’s information gain. Information-directed sam-
pling, first developed in Russo and Van Roy (2014a) for the bandit problem, selects
the actions that minimize the information ratio.

Zanette andSarkar (2017) propose both exact and approximatemethods for information-
directed RL. Their exact method identifies the true information-ratio-minimizing
policy, and has a Bayesian regret bound of (

√
1
2�) log �. This result is obtained by

assuming known transition dynamics and applying a result from Russo and Van Roy
(2016) for linear bandits. The method, however, is computationally intractable for
all but the smallest MDPs; thus, Zanette and Sarkar (2017) also propose several
approximations to the algorithm, for instance only optimizing the information ratio
over a reduced subset of policies in each episode, where the policies considered are
obtained using posterior sampling. In experiments, the approximate information-
directed sampling algorithm significantly outperforms PSRL.

Lastly, Nikolov et al. (2018) extend frequentist information-directed exploration to
the deep RL setting, and estimate the information ratio via a Bootstrapped DQN6

(Osband, Blundell, et al., 2016) that learns the action-value function. The resulting
algorithm uses information-theoreticmethods to account for heteroscedastic noise—
i.e., that the distribution of the reward noise varies depending on the state and
action—and outperforms state-of-the-art algorithms on Atari games.

Preference-Based Reinforcement Learning
Existing work on preference-based RL has shown successful performance in a num-
ber of applications, including Atari games and the Mujoco environment (Christiano
et al., 2017; Ibarz et al., 2018), autonomous driving (Sadigh et al., 2017; Bıyık,
Huynh, et al., 2020), and robot control (Kupcsik, Hsu, and Lee, 2018; Akrour,
Schoenauer, Sebag, and Souplet, 2014). Yet, the preference-based RL literature still
lacks theoretical guarantees.

Much of the existingwork in preference-based RL handles a distinct setting from that
considered in this thesis.While the work found in this thesis is concernedwith online
regret minimization, several existing algorithms instead minimize the number of
preference queries (Christiano et al., 2017; Wirth, Fürnkranz, and Neumann, 2016).

6Deep Q-Network.

47

Such algorithms, for instance those which apply deep learning, typically assume that
many simulations can be cheaply run between preference queries. In contrast, the
present setting assumes that experimentation is as expensive as preference elicitation;
this includes any situation in which a simulator is unavailable.

Existing approaches for trajectory-level preference-based RL may be broadly di-
vided into three categories (Wirth, 2017): a) directly optimizing policy parameters
(Wilson, Fern, and Tadepalli, 2012; Busa-Fekete et al., 2014; Kupcsik, Hsu, and Lee,
2018); b) modeling preferences between actions in each state (Fürnkranz, Hüller-
meier, et al., 2012); and c) learning a utility function to characterize the rewards,
returns, or values of state-action pairs (Wirth and Fürnkranz, 2013b; Wirth and
Fürnkranz, 2013a; Akrour, Schoenauer, and Sebag, 2012; Wirth, Fürnkranz, and
Neumann, 2016; Christiano et al., 2017). In c), the utility is often modeled as linear
in features of the trajectories. If those features are defined in terms of visitations to
each state-action pair, then utility directly corresponds to the total (undiscounted)
reward. Notably, under a), Wilson, Fern, and Tadepalli (2012) learn a Bayesian
model over policy parameters, and sample from its posterior to inform action selec-
tion. This is a model-free posterior sampling-inspired method; however, compared
to utility-based approaches, policy search methods typically require either more
samples or expert knowledge to craft the policy parameters (Wirth, Akrour, et al.,
2017; Kupcsik, Hsu, and Lee, 2018).

The work presented in this thesis adopts the third of these paradigms: preference-
based RL with underlying utility functions. By inferring state-action rewards from
preference feedback, one can derive relatively-interpretable reward models and em-
ploy such methods as value iteration. In addition, utility-based approaches may be
more sample efficient compared to policy search and preference relation methods
(Wirth, 2017), as they extract more information from each observation.

48

C h a p t e r 3

THE PREFERENCE-BASED GENERALIZED LINEAR BANDIT
AND REINFORCEMENT LEARNING PROBLEM SETTINGS

This chapter describes the problem formulations and key assumptions that are con-
sidered in Chapter 4, which introduces the Dueling Posterior Sampling framework
for preference-based learning. Below, Section 3.1 describes the generalized linear
dueling bandit setting, while Section 3.2 defines the tabular preference-based RL
setting. These interrelated problem settings formalize the challenge of learning from
preference feedback when the preferences are governed by underlying utilities of
the bandit actions and RL trajectories, and when these utilities are linear in features
of the actions and trajectories. Subsequently, Chapter 5 further extends the problem
settings presented in this chapter by allowing mixed-initiative user feedback and
considering kernelized utility functions.

3.1 The Generalized Linear Dueling Bandit Problem Setting
The generalized linear dueling bandit setting defines a low-dimensional structure
relating actions to preferences. This framework allows for large or infinite action
spaces, which would be infeasible for a learning algorithm that models each action’s
reward independently.

The setting is defined by a tuple, (A, q), in which A ⊂ R3 is a compact set of
possible actions and q is a function defining the preference feedback generation
mechanism. In each learning iteration 8, the algorithm chooses a pair of actions
x81, x82 ∈ A to duel or compare, and receives a preference between them. For two
actions x, x′ ∈ A, the function q defines the probability that x is preferred to x′:

%(x � x′) := q(x, x′) + 1
2
,

where q(x, x′) ∈ [−1/2, 1/2] denotes the stochastic preference between x and x′.
The outcome of the 8th preference query is denoted by H8 := I[x82�x81] − 1

2 ∈
{
−1

2 ,
1
2
}
,

so that %
(
H8 =

1
2

)
= 1 − %

(
H8 = −1

2

)
= q(x82, x81) + 1

2 .

Preferences are assumed to be governed by a low-dimensional structure, which
depends upon a model parameter r ∈ Θ ⊂ R3 for a compact set Θ. This structure
is defined by three main assumptions. Firstly, to guarantee that the rewards are

49

learnable, one must assume that they belong to a compact set. This is satisfied by
assuming that the reward vector r has bounded magnitude:

Assumption 1. For some known (A < ∞, | |r | |2 ≤ (A .

Secondly, each action has an associated utility:

Assumption 2. Each action x ∈ A has a utility to the user, which reflects the value
that the user places upon x. This utility, denoted by D(x), is bounded and given by
D(x) := r)x.

The third assumption defines the preference relation function q in terms of the
utilities D.

Assumption 3. The user’s preference between any two actions x, x′ ∈ A is given
by %(x � x′) = q(x, x′) + 1

2 , where q(x, x
′) is defined in terms of a link function

6 : R −→
[
−1

2 ,
1
2
]
: q(x, x′) := 6(D(x) − D(x′)) = 6(r) (x − x′)). The link function

6 must a) be non-decreasing, and b) satisfy 6(G) = −6(−G) to ensure that %(x �
x′) = 1 − %(x′ � x). Note that if D(x) = D(x′), then %(x � x′) = 1

2 , and that
%(x � x′) > 1

2 ⇐⇒ 6(D(x) − D(x′)) > 0⇐⇒ D(x) > D(x′).

Assumptions 2 and 3 are likely to hold in many real-world applications. The utility
could reflect a human user’s satisfaction with the algorithm’s performance, and it is
plausible that users would give more accurate preferences between actions that have
more disparate utilities. Furthermore, linear utility models have been applied in a
number of domains, including web search (Shivaswamy and Joachims, 2015), movie
recommendation (Shivaswamy and Joachims, 2015), autonomous driving (Sadigh
et al., 2017; Bıyık, Palan, et al., 2020), and robotics (Bıyık, Palan, et al., 2020).

There are many alternatives for the link function 6. For noiseless preferences,

6ideal(G) := I[G>0] −
1
2
, (3.1)

while the linear link function (Ailon, Karnin, and Joachims, 2014) is given by,

6lin(G) :=
G

2
, for 2 > 0 and G ∈

[
−2

2
,
2

2

]
. (3.2)

Under 6lin, %(x82 � x81) − 1
2 =

r) (x82−x81)
2

. Without loss of generality, 2 can be set to
1 by subsuming it into r. Alternatively, the logistic or Bradley-Terry link function is
defined as,

6log(G) := [1 + exp(−G/2)]−1 − 1
2
, with “temperature” 2 ∈ (0,∞). (3.3)

50

The noise in the 8th preference is defined as [8, so that H8 = E[H8] + [8 = %(x82 �
x81) − 1

2 + [8. Under the linear link function, for instance, [8 = H8 − r) (x82 − x81).
Lastly, define x8 := x82 − x81 as the observed feature difference vector in iteration 8.

In the utility-based setting, regret can be defined in two ways. The first approach,
which is typically used in the dueling bandits setting (Yue, Broder, et al., 2012; Sui,
Zhuang, et al., 2017), was previously presented in Eq. (2.15):

RegDBq ()) =
)∑
8=1
[q(x∗, x81) + q(x∗, x82)] ,

where x∗ ∈ A is the optimal action given r, that is, x∗ := argmaxx∈AD(x) =
argmaxx∈Ax) r. In the second approach, regret can also be defined with respect to
the underlying utilities, D, as the total loss in utility during the learning process:

RegDBD ()) =
)∑
8=1
[2D(x∗) − D(x81) − D(x82)] =

)∑
8=1

[
2r) (x∗ − x81 − x82)

]
. (3.4)

Remark 2. Note that unlike RegDBD ()), the non-utility-based regret RegDB
q ()) is

well-defined even when utilities do not exist. When the utilities exist and are defined
as above, however, RegDB

q ()) and RegDB
D ()) can be bounded in terms of each other

via the constants 6′min, 6
′
max ∈ (0,∞), which are, respectively, the minimum and

maximum derivatives of the link function 6 over its possible inputs:

6′max := sup
G∈[−D′,D′]

6′(G) and 6′min := inf
G∈[−D′,D′]

6′(G),

where D′ := supx,x′∈A [D(x) − D(x′)]. These facts can be derived as follows:

RegDB
q ()) =

)∑
8=1
[q(x∗, x81) + q(x∗, x82)] =

)∑
8=1
[6(D(x∗) − D(x81)) + 6(D(x∗) − D(x82))]

(0)
≤ 6′max

)∑
8=1
[D(x∗) − D(x81) + D(x∗) − D(x82)] = 6′maxRegDB

D ()), and similarly,

RegDB
q ()) =

)∑
8=1
[q(x∗, x81) + q(x∗, x82)] =

)∑
8=1
[6(D(x∗) − D(x81)) + 6(D(x∗) − D(x82))]

(1)
≥ 6′min

)∑
8=1
[D(x∗) − D(x81) + D(x∗) − D(x82)] = 6′minRegDB

D ()),

where (a) and (b) hold because D(x∗) − D(x) ≥ 0 for all x ∈ A.

51

Remark 3. The generalized linear dueling bandits setting straightforwardly extends
to the multi-dueling bandits paradigm discussed in Section 2.5, in which a set (8
of < ≥ 2 actions are selected in each learning iteration. Recall that the regret is
defined as in Eq. (2.15):

RegMDB
q ()) =

)∑
8=1

∑
x∈(8

q(x∗, x).

When the actions have associated utilities, the regret can also be defined with respect
to the loss in accumulated utility:

RegMDB
D ()) =

)∑
8=1

∑
x∈(8
[D(x∗) − D(x)] =

)∑
8=1

[
<D(x∗) −

∑
x∈(8

D(x)
]
. (3.5)

Just as in the dueling bandit setting, if utilities exist, then 6′minRegMDB
D ()) ≤

RegMDB
q ()) ≤ 6′maxRegMDB

D ()) (this can be shown as in Remark 2).

Finally, the Bayesian regret is defined as the expected regret, where the expectation
is taken over the algorithm’s action selection strategy, randomness in the outcomes,
and randomness due to the prior over r:

BayesRegDBq ()) = E
[
)∑
8=1
[q(x∗, x81) + q(x∗, x82)]

]
,

and similarly,

BayesRegDBD ()) = E
[
)∑
8=1

[
2r) (x∗ − x81 − x82)

]]
.

3.2 The Preference-Based Reinforcement Learning Problem Setting
In this setting, the agent interacts with fixed-horizon Markov Decision Processes
(MDPs), in which rewards are replaced by preferences over trajectories. This class of
MDPs can be represented as a tuple,M = (S,A, q, ?, ?0, ℎ), where the state space
S and action space A are finite sets with cardinalities (and �, respectively. The
agent episodically interacts with the environment in length-ℎ roll-out trajectories of
the form g = {B1, 01, B2, 02, . . . , Bℎ, 0ℎ, Bℎ+1}. In the 8th iteration, the agent executes
two trajectory roll-outs g81 and g82 and observes a preference between them; similarly
to the preference-based bandit setting, the notation g � g′ indicates a preference
for trajectory g over g′. The initial state is sampled from ?0, while ? defines the

52

transition dynamics: BC+1 ∼ ?(·|BC , 0C). Finally, the function q captures the preference
feedback generation mechanism: q(g, g′) := %(g � g′) − 1

2 ∈
[
−1

2 ,
1
2
]
.

A policy, c : S × {1, . . . , ℎ} −→ A, is a (possibly-stochastic) mapping from states
and time indices to actions. In each iteration 8, the agent selects two policies, c81
and c82, which are rolled out to obtain trajectories g81 and g82 and preference label
H8. Each trajectory is represented as a feature vector, where each feature records the
number of times that a particular state-action pair is visited. In iteration 8, rolled-out
trajectories g81 and g82 correspond, respectively, to feature vectors x81, x82 ∈ R3 ,
where 3 := (� is the total number of state-action pairs, and the : th element of x8 9 ,
9 ∈ {1, 2}, is the number of times that g8 9 visits state-action pair : . The preference
for iteration 8 is denoted by H8 := I[g82�g81] − 1

2 ∈
{
−1

2 ,
1
2
}
, where I[·] is the indicator

function, so that %
(
H8 =

1
2

)
= 1 − %

(
H8 = −1

2

)
= q(g82, g81) + 1

2 ; there are no ties in
any comparisons. Lastly, the 8th feature difference vector is written as x8 := x82− x81.

Analogously to the generalized linear dueling bandit setting discussed in Section 3.1,
preferences are assumed to be generated based upon underlying trajectory utilities
that are linear in the state-action visitation features, as formalized in the following
two assumptions. Firstly, the analysis assumes the existence of underlying utilities,
which quantify the user’s satisfaction with each trajectory:

Assumption 4. Each trajectory g has utility D(g), which decomposes additively:
D(g) ≡ ∑ℎ

C=1 A (BC , 0C) for the state-action pairs in g. Defining r ∈ R3 as the vector
of all state-action rewards, D(g) can also be expressed in terms of g’s state-action
visit counts x: D(g) = r)x.

Secondly, the utilities D(g) are stochastically translated to preferences via the noise
model q, such that the probability of observing g82 � g81 is a function of the difference
in the trajectories’ utilities. Intuitively, the greater the disparity in two trajectories’
utilities, the more accurate the user’s preference between them:

Assumption 5. For two trajectories g81 and g82, %(g82 � g81) = q(g82, g81) + 1
2 =

6(D(g82) − D(g81)) + 1
2 = 6(r

)x82 − r)x81) + 1
2 , where 6 : R −→

[
−1

2 ,
1
2
]
is a link

function such that:

a) 6 is non-decreasing, and

b) 6(G) = −6(−G) to ensure that %(g � g′) = 1 − %(g′ � g).

53

Note that if D(g) = D(g′), then %(g � g′) = 1
2 , and %(g82 � g81) >

1
2 ⇔ 6(r)x8) >

0⇔ r)x82 > r)x81.

Section 3.1 gives several examples of link functions, including the linear and logistic
link functions 6lin and 6log, which are respectively defined in Eq.s (3.2) and (3.3).
Similarly, the observation noise in iteration 8 is [8 := H8 − 6(r) (x82 − x81)). For the
linear link function, for instance, [8 := H8 − r) (x82 − x81).

Lastly, as in the bandit setting, the rewards must belong to a compact set. This is
satisfied by assuming the reward vector r has bounded magnitude:

Assumption 6. For some known (A < ∞, | |r | |2 ≤ (A .

Given a policy c, the standard RL value function is defined as the expected total
utility when starting in state B at step 9 , and following c:

+c, 9 (B) = E
[
ℎ∑
C= 9

A (BC , c(BC , C))
���� B 9 = B] . (3.6)

The optimal policy c∗ is then defined as one that maximizes the expected value over
all input states:

c∗ = sup
c

∑
B∈S

?0(B)+c,1(B).

Note that EB1∼?0

[
+c,1(B1)

]
≡ Eg∼c [D(g)]. Given fully-specified dynamics and re-

wards, ? and A, it is straightforward to apply standard dynamic programming ap-
proaches such as value iteration (Sutton and Barto, 2018) to arrive at the optimal
policy under ? and A. The learning goal, then, is to infer ? and A to the extent
necessary for good decision-making.

The learning agent’s performance is quantified via its cumulative)-step Bayesian
regret relative to the optimal policy:

BayesReg()) = E
{ d)/(2ℎ)e∑

8=1

∑
B∈S

?0(B)
[
2+c∗,1(B) −+c81,1(B) −+c82,1(B)

]}
. (3.7)

To minimize regret, the agent must balance exploration (collecting new data) with
exploitation (behaving optimally given current knowledge). Over-exploration of bad
trajectories will incur large regret, and under-exploration can prevent convergence
to optimality. In contrast to the standard regret formulation in RL, the regret of both
selected policies is measured in each iteration.

54

3.3 Comparing the Preference-Based Generalized Linear Bandit and RL Set-
tings

In both the preference-based bandit andRL settings discussed in Sections 3.1 and 3.2,
preferences are assumed to be governed by linear utilities of the form D(x) = r)x,
where in the bandit case, x ∈ R3 represents the features of an action, while in the RL
setting, x contains the features of a trajectory, which are the trajectory’s state-action
visitation counts. While in the bandit case, the algorithm directly selects actions x81
and x82 in each iteration 8, in the RL setting, the agent selects policies c81 and c82,
which stochastically map to the trajectory feature representations x81 and x82.

In both cases, the linear and logistic link functions’ analysis assumes a regular-
ity condition upon the observation noise, [8 = H8 − 6(r)x8). Namely, [8 must be
conditionally-'-sub-Gaussian, that is, there exists ' ≥ 0 such that ∀_ ∈ R:

E
[
4_[8

�� x1, . . . , x8, [1, . . . , [8−1
]
≤ exp

(
_2'2

2

)
.

One can see that this requirement is satisfied for ' = 1 as follows. Firstly, note
that bounded, zero-mean noise lying in an interval of length at most 2' is '-sub-
Gaussian (Abbasi-Yadkori, Pál, and Szepesvári, 2011). The noise [8 is by definition
conditionally-zero-mean, since given any r:

E[[8 | x1, . . . , x8, [1, . . . , [8−1] = E[H8 − 6(r)x8) | x1, . . . , x8, [1, . . . , [8−1]
= 6(r)x8) − 6(r)x8) = 0.

Secondly, [8 is bounded:

|[8 | =
��H8 − 6(r)x8)�� ≤ |H8 |+��6(r)x8)�� = 1

2
+

��E[H8 | x8]�� ≤ 1
2
+ 1

2
= 1.

Because [8 is zero-mean and [8 ∈ [−1, 1], it must be sub-Gaussian with ' = 1.

55

C h a p t e r 4

DUELING POSTERIOR SAMPLING FOR PREFERENCE-BASED
BANDITS AND REINFORCEMENT LEARNING

This chapter describes, analyzes, and evaluates the Dueling Posterior Sampling
(DPS) framework for preference-based bandits and reinforcement learning (RL).
The framework is applied to both the preference-based RL and generalized linear
bandit problem settings, which are defined in Chapter 3. Part of these results are
published in Novoseller et al. (2020b).

Below, Section 4.1 introduces the DPS algorithm, which extends the SelfSparring
framework from Sui, Zhuang, et al. (2017) to the preference-based generalized linear
bandit and RL settings. Section 4.3 then discusses several posterior inference strate-
gies that can be coupled with DPS. Subsequently, Section 4.4 presents a theoretical
analysis of DPS in two parts: 1) an asymptotic consistency result which holds when
preferences are modeled via both the linear and logistic link functions, and 2) a
regret analysis for the linear link function, which is based on empirically bounding
the information ratio introduced in Russo and Van Roy (2016) (defined in Section
2.3). Finally, Section 4.5 demonstrates the performance of DPS in simulation, and
Section 4.6 discusses the results and proposes some future directions.

4.1 The Dueling Posterior Sampling Algorithm
The Dueling Posterior Sampling (DPS) algorithm adapts the SelfSparring frame-
work from Sui, Zhuang, et al. (2017) to the preference-based RL setting, and as a
byproduct, to the generalized linear dueling bandits problem. SelfSparring applies
posterior sampling to preference-based bandit learning by maintaining a Bayesian
model posterior over the environment, and by drawing multiple samples from this
posterior to duel against each other for preference elicitation. This section first
introduces DPS in the preference-based RL setting, and then modifies it for the
generalized linear dueling bandit setting.

Dueling Posterior Sampling for Preference-Based RL
In the RL setting, DPS maintains Bayesian posteriors 5? and 5A over both the
transition dynamics and utilities r, respectively. As outlined in Algorithm 5, DPS
iterates among three steps: (a) sampling two policies c81, c82 from the Bayesian

56

Algorithm 5 Dueling Posterior Sampling (DPS) for Preference-Based RL
1: H0 = ∅ ⊲ Initialize history
2: Initialize prior for 5? ⊲ Initialize state transition model
3: Initialize prior for 5A ⊲ Initialize utility model
4: for 8 = 1, 2, . . . do
5: c81 ← Advance (5?, 5A)
6: c82 ← Advance (5?, 5A)
7: Sample trajectories g81 and g82 from c81 and c82
8: Observe feedback H8 = I[g82�g81] − 1

2
9: H8 = H8−1 ∪ (g81, g82, H8)
10: 5?, 5A = Feedback (H8 , 5?, 5A)
11: end for

Algorithm 6 Advance (RL): Sample policy from dynamics and utility models
1: Input: transition model 5?, utility model 5A
2: Sample p̃ ∼ 5? (·) ⊲ Sample MDP transition dynamics parameters from posterior
3: Sample r̃ ∼ 5A (·) ⊲ Sample utilities from posterior
4: Compute c = argmaxc+ (p̃, r̃) ⊲ Value iteration yields sampled MDP’s optimal policy
5: Return c

Algorithm 7 Feedback (RL): Update dynamics and utility models based on new
user feedback
1: Input: historyH , transition model 5?, utility model 5A
2: Apply Bayesian update to 5?, givenH ⊲ Update dynamics model given history
3: Apply Bayesian update to 5A , givenH ⊲ Update utility model given preferences
4: Return 5?, 5A

posteriors of the dynamics and utility models (Advance – Algorithm 6); (b) rolling
out c81 and c82 to obtain trajectories g81 and g82, and receiving a preference H8
between them; and (c) updating the posterior (Feedback –Algorithm7). In contrast to
conventional posterior sampling with absolute feedback, DPS samples two policies
rather than one during each iteration and solves a credit assignment problem to learn
from feedback.

Advance (Algorithm 6) selects a policy to execute by drawing samples from the
Bayesian posteriors of both the dynamics and utilities. The sampled dynamics and
utilities form an MDP, for which finite-horizon value iteration (Sutton and Barto,
2018) derives the optimal policy c under the sample. One can also view c as a
random function whose randomness depends on the sampling of the dynamics and
utility models. In the Bayesian setting, it can be shown that c is sampled according
to its posterior probability of being the optimal policy c∗ (Osband, Russo, and Van
Roy, 2013). Intuitively, peaked (i.e., certain) posteriors lead to less variability when

57

Algorithm 8 Dueling Posterior Sampling (DPS) for Generalized Linear Dueling
Bandits
1: H0 = ∅ ⊲ Initialize history
2: Initialize prior for 5A ⊲ Initialize utility model
3: for 8 = 1, 2, . . . do
4: x81 ← Advance (5A)
5: x82 ← Advance (5A)
6: Observe feedback H8 = I[x82�x81] − 1

2
7: H8 = H8−1 ∪ (x81, x82, H8)
8: 5A = Feedback (H8 , 5A)
9: end for

Algorithm 9 Advance (bandit): Sample policy from utility model
1: Input: utility model 5A
2: Sample r̃ ∼ 5A (·) ⊲ Sample utilities from posterior
3: x = argmaxx′∈A r̃

) x′ ⊲ Identify action with maximum sampled reward
4: Return x

Algorithm 10 Feedback (bandit): Update utility model based on new user feedback
1: Input: historyH , utility model 5A
2: Apply Bayesian update to 5A , givenH ⊲ Update utility model given preferences
3: Return 5A

sampling c, which implies less exploration, while diffuse (i.e., uncertain) posteriors
lead to greater variability when sampling c, implying more exploration.

Feedback (Algorithm 7) updates the Bayesian posteriors of the dynamics and utility
models based on new data. Updating the dynamics posterior is relatively straight-
forward, as the dynamics are assumed to be fully-observed. This work models the
dynamics prior via a Dirichlet distribution for each state-action pair; the observed
state transitions have a multinomial likelihood, leading to a conjugate Dirichlet
posterior (see Section 2.1). In contrast, performing Bayesian inference over state-
action utilities from trajectory-level feedback is much more challenging. A range
of approaches are therefore considered, as discussed in Section 4.3. In particular,
Bayesian linear regression was found to both perform well and to admit tractable
analysis within the theoretical framework presented.

Dueling Posterior Sampling for Generalized Linear Dueling Bandits
The bandit setting can be viewed as a special case of the RL problem in which
there is only one state. Thus, modeling state transition information is unnecessary,
and the environment posterior consists only of the utility model. Secondly, while
the RL setting stochastically maps policies to trajectories, in the bandit setting, the

58

concepts of a policy and a trajectory both reduce to the selected action. Thirdly,
each action is associated with a 3-dimensional vector, rather than with just an index
in {1, . . . , �}, as in tabular RL. While in the RL case, the utility vector r denotes
the utility of each state-action pair, in the generalized linear bandit case, it specifies
a linear weight on each action space dimension. With these modifications, DPS is
outlined in Algorithms 8-10.

4.2 Additional Notation
This thesis uses the following notation. In the RL setting, let p ∈ R(2� be the vector
containing all true state transition dynamics parameters, {%(BC+1 = B′ | BC = B, 0C =
0) | B, B′ ∈ S, 0 ∈ A}. Let p̃81, p̃82 ∈ R(

2� be the two posterior samples of the
transition dynamics p in iteration 8. Similarly, r ∈ R(� is the vector of true utility
parameters, while r̃81, r̃82 ∈ R(� are the posterior samples of r in iteration 8.

For a random variable - and a sequence of random variables (-=), = ∈ N, -=
�−→ -

denotes that -= converges to - in distribution. Similarly, -=
%−→ - denotes that -=

converges to - in probability.

For x ∈ R3 and positive definite matrix � ∈ R3×3 , the norm | |x | |� is defined as
| |x | |� :=

√
x)�x.

4.3 Posterior Modeling for Utility Inference and Credit Assignment
At the start of iteration =, the algorithm has observed = − 1 preferences. Recall that
in each learning iteration 8 ∈ {1, . . . , = − 1}, the algorithm observes a preference
H8 ∈

{
−1

2 ,
1
2
}
between two vectors x81, x82 ∈ R3 . Importantly, the quantities x81 and

x82 represent actions in the bandit problem, while they are trajectory feature vectors
(more specifically, state-action pair visitation counts) in the RL problem. Yet, in
both settings, the preference labels H8 are assumed to be generated according to the
same model:

%

(
H8 =

1
2

)
= %(x82 � x81) = 6(r)x8),

where 6 is the link function and x8 := x82 − x81. Although x8 has a different inter-
pretation in each of the two settings, the utility inference task takes the same form
in both: to estimate r given the dataset D= := {(x8, H8) | 8 = 1, . . . , = − 1}.

In theRL setting, utility inference is known as the credit assignment problem because
it involves identifying which state-action pairs are responsible for the observed
trajectory-level preferences.

59

Let -= ∈ R(=−1)×3 be the observation matrix after =− 1 preferences, in which the 8th

row contains observation x8 = x82− x81. Furthermore, define y= ∈ R=−1 as the vector
of corresponding preference labels, with its 8th element equal to H8 ∈

{
−1

2 ,
1
2
}
.

The following two subsections discuss Bayesian linear regression and Bayesian
logistic regression approaches to utility inference. In addition, AppendixA discusses
Gaussian process methods for posterior inference of the utilities.

Remark 4. The posterior inference methods discussed in this section also apply
to the multi-dueling setting (see Section 2.5), where in each iteration, more than 2
actions or policies can be sampled to yield multiple pairwise preferences. Posterior
inference simply translates a preference dataset to a posterior distribution; this
procedure is agnostic to the number of preference queries per iteration.

Utility Inference via Bayesian Linear Regression
Several different variants of Bayesian linear regression could be performed to infer
the utilities, r. Firstly, in standard Bayesian linear regression, one defines a Gaussian
prior over the reward vector r ∈ R3: r ∼ N(0, (_′)−1�). The likelihood of the data
conditioned upon r is also Gaussian:

?(y= |-=, r;f2) = 1
(2cf2) =−1

2
exp

(
− 1

2f2 | |y= − -=r | |
2
)
.

This conjugate Gaussian prior and likelihood pair result in the following closed-form
Gaussian posterior:

r |-=, y=, f2, _′ ∼ N
(
(-)= -= + f2_′�)−1-)= y=, f

2(-)= -= + f2_′�)−1
)
.

Defining _ := f2_′, this posterior can equivalently be written as:

r |D=, f2, _ ∼ N
(
r̂=, f

2"−1
=

)
, where (4.1)

"= := _� +
=−1∑
8=1

x8x
)
8 for _ ≥ 1, and r̂= := "−1

=

=−1∑
8=1

H8x8 . (4.2)

Note that r̂= is the MAP estimate of r, as well as a ridge regression estimate of r.

In the linear bandit setting, several posterior sampling regret analyses (Agrawal and
Goyal, 2013; Abeille and Lazaric, 2017) use a modification of this posterior, which
scales the covariance matrix by a factor that increases logarithmically in =:

r |D=, _ ∼ N
(
r̂=, V= (X)2"−1

=

)
, (4.3)

60

where r̂= and "−1
= are defined in Eq. (4.2), and V= (X) is given by:

V= (X) := '

√
2 log

(
det("=)1/2_−3/2

X

)
+
√
_(A ≤ '

√√√
3 log

(
1 + !2=

3_

X

)
+
√
_(A , (4.4)

where X ∈ (0, 1) is a failure probability to be discussed shortly, and ! is an upper
bound such that | |x= | |2 ≤ ! for all =. Note that in the RL setting, ! ≤ 2ℎ, since
| |x= | |2 = | |x=2 − x=1 | |2 ≤ ||x=2 − x=1 | |1 ≤ ||x=2 | |1 + ||x=1 | |1 = 2ℎ. Recall that
' ≤ 1 (see Section 3.3) due to the sub-Gaussianity of preference feedback, and that
| |r | |2 ≤ (A (see Assumptions 1 and 6).

In Agrawal and Goyal (2013) and Abeille and Lazaric (2017), the factor of V= (X)2

is leveraged to prove regret bounds for linear bandits with sub-Gaussian noise
in the feedback. In the current preference-based problem, meanwhile, scaling by
V= (X)2 will lead to an asymptotic consistency guarantee. This is shown in Section
4.4 by applying the following result from Abbasi-Yadkori, Pál, and Szepesvári
(2011), which arises from a martingale concentration inequality. This proposition
demonstrates that with high probability, r lies within a confidence ellipsoid centered
at r̂=:

Proposition 1 (Theorem 2 from Abbasi-Yadkori, Pál, and Szepesvári, 2011). Let
{�8}∞8=0 be a filtration, and let {[8}∞8=1 be a real-valued stochastic process such that
[8 is both �8-measurable and conditionally '-sub-Gaussian for some ' ≥ 0. Let
{x8} be an R3-valued stochastic process such that x8 is �8−1-measurable. Define
H8 := x)

8
r + [8, and assume that | |r | |2 ≤ (A and | |x8 | |2 ≤ !. Then, for any X > 0,

with probability at least 1 − X and for all 8 > 0, | | r̂8 − r | |"8 ≤ V8 (X), where r̂8, "8

and V8 (X) are defined in Eq.s (4.2) and (4.4).

Importantly, this result does not require the noise in the labels H8 to be Gaussian, but
instead only assumes that the noise is sub-Gaussian. Furthermore, preference noise
is sub-Gaussian as discussed in Section 3.3.

Note that while the distribution in Eq. (4.1) is an exact, conjugate posterior given a
Gaussian prior and likelihood, the scaled distribution inEq. (4.3) is no longer an exact
posterior, as it is not proportional to the product of a prior and likelihood. In fact, as
discussed in Agrawal and Goyal (2013) and Abeille and Lazaric (2017), posterior
sampling does not need to sample from an actual Bayesian posterior distribution;
rather, any distribution satisfying appropriate concentration and anti-concentration
inequalities will achieve low regret.

61

In fact, neither of the probability distributions in Eq.s (4.1) or (4.3) represents a true,
exact posterior for modeling preference data, as binary preference feedback does not
exhibit a Gaussian likelihood. Recall that H8 ∈

{
−1

2 ,
1
2
}
, such that H8 = 1

2 if x82 � x81

and H8 = −1
2 if x81 � x82. The exact posterior takes the form:

?(r | D=) ∝ ?(r)
=−1∏
8=1

%(H8 | x8, r) = ?(r)
=−1∏
8=1

[
2H8 r)x8 +

1
2

]
, (4.5)

where ?(r) is an appropriate prior for r and 2H8 r)x8 ∈ (−0.5, 0.5) ensures that
%(H8 | x8, r) ∈ [0, 1]. To guarantee that 2H8 r)x8 ∈ (−0.5, 0.5), the prior ?(r)
must have bounded support; possibilities include uniform and truncated Gaussian
distributions.

While the posterior in Eq. (4.5) lacks a closed-form representation and is therefore
intractable, one can sample from it via approximate posterior inference techniques
such as the Laplace approximation (Section 2.1) or Markov chain Monte Carlo
sampling. The Laplace approximation is only valid when the Hessian matrix of the
negative log posterior is positive definite. In this case, the negative log posterior is:

− log ?(r | D=) = − log ?(r) −
=−1∑
8=1

log
(
2H8 r)x8 +

1
2

)
+ �,

where � is a constant. Its Hessian matrix is:

� := ∇2
r [− log ?(r | D=)] = ∇2

r [− log ?(r)] +
=−1∑
8=1

x8x
)
8

(2H8 r)x8 + 0.5)2
.

Clearly, the terms containing x8x
)
8
are positive semidefinite. Thus, � � 0 holds,

provided that the selected prior satisfies ∇2
r [− log ?(r)] � 0. Under such a prior, the

Laplace approximation is given by:

?(r | D=) ≈ N
(
r̂=, �

−1��
r=r̂=

)
,

where r̂= = argminr [− log ?(r | D=)] and � = ∇2
r [− log ?(r | D=)].

Utility Inference via Bayesian Logistic Regression
One can also infer the utilities r ∈ R3 via Bayesian logistic regression, especially if
a logistic link function is thought to govern user preferences. Typically, one sets a
Gaussian prior over the utilities r: r ∼ N(0, _�), where _ > 0. As in the linear case,
the outcomes are H8 ∈

{
−1

2 ,
1
2
}
. Then, the logistic regression likelihood is:

?(D= |r) =
=−1∏
8=1

?(H8 |r, x8) =
=−1∏
8=1

1
1 + exp(−2H8x)8 r)

.

62

The posterior, ?(r | D=) ∝ ?(D= | r)?(r), can be approximated as Gaussian via the
Laplace approximation:

?(r | D=) ≈ N (r̂MAP
= , ΣMAP

=), where: (4.6)

r̂MAP
= = argmin

r
5 (r), 5 (r) := −log ?(D=, r) = −log ?(r) − log ?(D= |r),

(4.7)

ΣMAP
= =

(
∇2
r 5 (r)

���
r̂MAP
=

)−1
, (4.8)

and where the optimization problem in Eq. (4.7) is convex: similarly to the linear
case, one can show that the Hessian matrix of 5 (r), ∇2

r [5 (r)], is positive definite.

Note that the Laplace approximation’s inverse posterior covariance, (ΣMAP
=)−1, is

given by:

(ΣMAP
=)−1 = _� +

=−1∑
8=1

6̃(2H8x)8 r̂MAP
=)x8x)8 , (4.9)

where 6̃(G) :=
(
6′log (G)
6log (G)

)2
−
6′′log (G)
6log (G) , and 6log is the sigmoid function.

The posterior ?(r | D=) can also be estimated using other posterior approximation
methods, for instance Markov chain Monte Carlo.

Filippi et al. (2010) prove that for logistic regression, the true utilities r lie within
a confidence ellipsoid centered at the estimate r̂= with high probability, where r̂= is
the maximum quasi-likelihood estimator of r, projected onto the domain Θ:

r̂= = argmin
r∈Θ

�����
�����=−1∑
8=1

(
6log(x)8 r)x8 −

(
H8 +

1
2

)
x8

)�����
�����
"−1
=

, (4.10)

where "= is as defined in Eq. (4.2) and 6log is the sigmoidal function, 6log(G) =
(1 + 4−G)−1.1

Proposition 2 (Proposition 1 from Filippi et al., 2010). Let {�8}∞8=0 be a filtration,
and let {[8}∞8=1 be a real-valued stochastic process such that [8 is �8-measurable and
conditionally '-sub-Gaussian for some ' ≥ 0. Let {x8} be an R3-valued stochastic
process such that x8 is �8−1-measurable. The observations H8 ∈

{
−1

2 ,
1
2
}
are given

1The equation
∑=−1
8=1

(
6log (x)8 r)x8 −

(
H8 + 1

2

)
x8

)
= 0 is known as the likelihood equation, and

its unique solution is the maximum likelihood estimate of the logistic regression problem. This fact
is derived, for instance, on page 2 of Gourieroux and Monfort (1981). Because the typical form of
the likelihood equation assumes that the labels belong to {0, 1}, Eq. (4.10) adds 0.5 to the labels in
order to use this standard form, mirroring Filippi et al. (2010).

63

by H8 = 6log(x)8 r) + [8, where 6log is a sigmoidal function. Assume that | |x8 | |2 ≤ !,
6′min is a positive lower bound on the slope of 6log, and _ > 0 lower-bounds the
minimum eigenvalue of "8. Then, for any X > 0, with probability at least 1 − X and
for all 8 > 0, | | r̂8 − r | |"8 ≤ V8 (X), where:

V8 (X) =
2'
6′min

√
3 + 2 log

(
1 + 2!2

_

)√
23 log 8

√
log

(
3

X

)
. (4.11)

Recall from Eq. (4.2) that _ > 0 indeed lower-bounds "8’s minimum eigenvalue.

Remark 5. In fact, the result in Filippi et al. (2010) applies not only to logistic
regression on binary labels, but also to any generalized linear model. General-
ized linear models are a well-known statistical framework in which outcomes are
generated from distributions belonging to the exponential family, and are further
described in McCullagh and Nelder (1989).

Proof. The stated result is in fact a slightly-adapted version of Proposition 1 from
Filippi et al. (2010), which actually derives that |6(x)

8
r) −6(x)

8
r̂8) | ≤ V′8 (X) | |x8 | |"−1

8

for all 8 ≥ 1 and vectors x8 with probability 1 − X. The constant V′
8
(X) is related to

V8 (X) (defined above) by V′8 (X) =
(
'max
'

)
!6V8 (X), where !6 is the Lipschitz constant

of 6 (denoted by :` in Filippi et al., 2010) and where each reward lies in [0, 'max]
in the setting described in Filippi et al. (2010). To prove their result, Filippi et al.
(2010) use that |6(x)

8
r) − 6(x)

8
r̂8) | ≤ !6 |x)8 r − x)

8
r̂8 | by definition of Lipschitz

continuity, and then show that |x)
8
r − x)

8
r̂8 | ≤ 1

!6
V′
8
(X) | |x8 | |"−1

8
to obtain the result.

Therefore, as a byproduct, their analysis also proves that:

|x)8 r − x)8 r̂8 | ≤
1
!6
V′8 (X) | |x8 | |"−1

8

(0)
=
'max
'

V8 (X) | |x8 | |"−1
8
,

where (a) comes from substituting the relationship between V8 (X) and V′8 (X).

Also, the analysis in Filippi et al. (2010) begins with quantities in terms of ' instead
of 'max, and then replaces ' by 'max by using that ' ≤ 'max (which holds in their
setting). Therefore, their result is still valid when reverting from 'max to ', so that:

|x)8 r − x)8 r̂8 | ≤ V8 (X) | |x8 | |"−1
8
.

To adapt this result to the desired form, it suffices to show that the following two
statements are equivalent for any r1, r2 ∈ R3 , positive definite " ∈ R3×3 , and
V > 0: 1) |x) (r1 − r2) | ≤ V | |x | |"−1 for all x ∈ R3 , and 2) | |r1 − r2 | |" ≤ V.

64

Firstly, if 1) holds, then in particular, it holds when setting x = " (r1− r2). Substitut-
ing this definition of x into 1) yields: | (r1 − r2))" (r1 − r2) | ≤ V | |" (r1 − r2) | |"−1 .
Now, the left-hand side is | (r1 − r2))" (r1 − r2) | = | |r1 − r2 | |2" , while on the
right-hand side, | |" (r1 − r2) | |"−1 =

√
(r1 − r2))""−1" (r1 − r2) = | |r1 − r2 | |" .

Thus, the statement is equivalent to | |r1 − r2 | |2" ≤ V | |r1 − r2 | |" , and therefore
| |r1 − r2 | |" ≤ V as desired.

Secondly, if 2) holds, then for any x ∈ R3 ,

|x) (r1 − r2) | = |x)"−1" (r1 − r2) | =
�� < x, " (r1 − r2) >"−1

��
(0)
≤ ||x | |"−1 | |" (r1 − r2) | |"−1 = | |x | |"−1

√
(r1 − r2))""−1" (r1 − r2)

= | |x | |"−1 | |r1 − r2 | |"
(1)
≤ V | |x | |"−1 ,

where (a) applies the Cauchy-Schwarz inequality, while (b) uses 2).

This theoretical guarantee motivates the following modification to the Laplace-
approximation posterior, which will be useful for guaranteeing asymptotic consis-
tency:

?(r | D=) ≈ N (r̂=, V= (X)2("′=)−1), (4.12)

where r̂=, and V= (X) are respectively defined in Eq.s (4.10) and (4.11), and "′= is
given analogously to ΣMAP

= , defined in Eq.s (4.6) and (4.9), by simply replacing
r̂MAP
= with r̂= in the definition in Eq. (4.9):

("′=)−1 = _� +
=−1∑
8=1

6̃(2H8x)8 r̂=)x8x)8 ,

where 6̃(G) :=
(
6′log (G)
6log (G)

)2
−
6′′log (G)
6log (G) , and 6log is the sigmoid function.

4.4 Theoretical Analysis
This section begins by deriving several asymptotic consistency results for DPS, and
then motivates the use of an information-theoretic analysis inspired by Russo and
Van Roy (2016) to analyze the regret of DPS. The regret analysis is subsequently
discussed.

Asymptotic Consistency Results
Propositions 1 and 2 (derived in Abbasi-Yadkori, Pál, and Szepesvári, 2011 and
Filippi et al., 2010, respectively) prove that with high probability, the utilities r

65

lie within confidence ellipsoids centered at the estimators r̂=, defined in Eq.s (4.2)
and (4.10) for the linear and logistic link functions. These results can be leveraged
to prove asymptotic consistency of DPS when the algorithm draws utility samples
from the distributions in Eq.s (4.3) and (4.12), rewritten here:

?(r | D=) ≈ N (r̂=, V= (X)2"̃−1
=), (4.13)

where r̂= and V= (X) have different definitions corresponding to the linear and logistic
link functions, and "̃= = "= for the linear link function, while "̃= = "′= for the
logistic link function. This overloaded notation is useful because the asymptotic
consistency proofs are nearly-identical in the two cases.

The asymptotic consistency results are stated below, with detailed proofs given in
Appendix B.

Firstly, in the RL setting, the MDP transition dynamics model is asymptotically-
consistent, that is, the sampled transition dynamics parameters converge in distribu-
tion to the true dynamics. Recall from Section 4.2 that p̃81, p̃82 ∈ R(

2� are the two
posterior samples of the transition dynamics p in iteration 8, while p represents the
true transition dynamics parameters and �−→ denotes convergence in distribution.

Proposition 3. Assume that DPS is executed in the preference-based RL setting, with
transition dynamics modeled via a Dirichlet model, utilities modeled via either the
linear or logistic link function, and utility posterior sampling distributions given in
Eq. (4.13). Then, the sampled transition dynamics p̃81, p̃82 converge in distribution to
the true dynamics, p̃81, p̃82

�−→ p. This consistency result also holds when removing
the V= (X) factors from the distributions in Eq. (4.13).

Proof sketch. The full proof is located in Appendix B.2. Applying standard concen-
tration inequalities (i.e., Propositions 1 and 2) to the Dirichlet dynamics posterior,
one can show that the sampled dynamics converge in distribution to their true values
if every state-action pair is visited infinitely often. The latter condition can be proven
via contradiction: assuming that certain state-action pairs are visited only finitely
often, DPS does not receive new information about their rewards. Examining their
reward posteriors, one can show that DPS is guaranteed to eventually sample high
enough rewards in the unvisited state-actions that its policies will attempt to reach
them.

66

It can similarly be proven that the reward samples r̃81, r̃82 converge in distribution
to the true utilities, r. This phenomenon is first considered in the bandit setting, and
then extended to the RL case.

Proposition 4. When running DPS in the generalized linear dueling bandit setting,
with utilities given via either the linear or logistic link functions and with posterior
sampling distributions given in Eq. (4.13), then with probability 1 − X, the sampled
utilities r̃81, r̃82 converge in distribution to their true values, r̃81, r̃82

�−→ r, as 8 −→
∞.

Proof sketch. The full proof is located in Appendix B.3. By leveraging Propositions
1 and 2 (proven in Abbasi-Yadkori, Pál, and Szepesvári, 2011 and Filippi et al.,
2010), one obtains that under stated conditions, for any X > 0 and for all 8 > 0,
| | r̂8 − r | |"8 ≤ V8 (X) with probability 1 − X. This result defines a high-confidence
ellipsoid, which can be linked to the posterior sampling distribution. The analysis
demonstrates that it suffices to show that all eigenvalues of the posterior covariance
matrix, V8 (X)2"̃−1

8
, converge in distribution to zero. This statement is proven via

contradiction, by analyzing the behavior of posterior sampling if it does not hold.
The probability of failure, X, comes entirely from Propositions 1 and 2.

To extend these results to the preference-based RL setting (the proof can be found in
Appendix B.3), one can leverage asymptotic consistency of the transition dynamics,
as given by Proposition 3, to obtain:

Proposition 5. When running DPS in the preference-based RL setting, with utilities
given via either the linear or logistic link functions and with posterior sampling
distributions given in Eq. (4.13), then with probability 1 − X, the sampled utilities
r̃81, r̃82 converge in distribution to their true values, r̃81, r̃82

�−→ r, as 8 −→ ∞.

Finally, in the preference-based RL setting, one can utilize asymptotic consistency
of the transition dynamics and utility model posteriors to guarantee that the selected
policies are asymptotically consistent, that is, the probability of selecting a non-
optimal policy approaches zero. An analogous result holds in the generalized linear
dueling bandit setting if the action space A is finite.

Theorem 1. Assume that DPS is executed in the preference-based RL setting, with
utilities given via either the linear or logistic link function and with posterior
sampling distributions given in Eq. (4.13).

67

With probability 1 − X, the sampled policies c81, c82 converge in distribution to the
optimal policy, c∗, as 8 −→ ∞. That is, %(c81 = c∗) −→ 1 and %(c82 = c∗) −→ 1
as 8 −→ ∞.

Under the same conditions, with probability 1 − X, in the generalized linear duel-
ing bandit setting with a finite action space A, the sampled actions converge in
distribution to the optimal actions: %(x81 = x∗) −→ 1 and %(x82 = x∗) −→ 1 as
8 −→ ∞.

The proof of Theorem 1 is located in Appendix B.4.

Why Use an Information-Theoretic Approach to Analyze Regret?
Several existing regret analyses in the linear bandit domain (e.g., Abbasi-Yadkori,
Pál, and Szepesvári, 2011; Agrawal and Goyal, 2013; Abeille and Lazaric, 2017)
utilize martingale concentration properties introduced by Abbasi-Yadkori, Pál, and
Szepesvári (2011). In these analyses, a key step requires sublinearly upper-bounding
an expression of the form (e.g. Lemma 11 in Abbasi-Yadkori, Pál, and Szepesvári,
2011, Prop. 2 in Abeille and Lazaric, 2017):

=∑
8=1

x)8

(
_� +

8−1∑
B=1

xBx
)
B

)−1

x8, (4.14)

where _ ≥ 1 and x8 ∈ R3 is the observation in iteration 8. In the preference-based
feedback setting, however, the analogous quantity cannot always be sublinearly
upper-bounded. Consider the settings defined in Chapter 3, with Bayesian linear
regression credit assignment. Under preference feedback, the probability that one
trajectory is preferred to another is assumed to be fully determined by the difference
between the trajectories’ total rewards: in iteration 8, the algorithm receives a pair of
observations x81, x82, with x8 := x82 − x81, and a preference generated according to
%(x82 � x81) = r) (x82−x81)+ 1

2 . Thus, only differences between compared trajectory
feature vectors yield information about the rewards. Under this assumption, one can
show that applying the analogous martingale techniques yields the following variant
of Eq. (4.14):

=∑
8=1

2∑
9=1

x)8 9

(
_� +

8−1∑
B=1

xBx
)
B

)−1

x8 9 . (4.15)

This difference occurs because the expression within the matrix inverse comes from
the posterior, and learning occurs with respect to the observations x8, while regret
is incurred with respect to x81 and x82. In contrast, in the non-preference-based case

68

considered in Agrawal and Goyal (2013), Abeille and Lazaric (2017), and Abbasi-
Yadkori, Pál, and Szepesvári (2011), learning and regret both occur with respect to
the same vectors x8.

To see that Eq. (4.15) does not necessarily have a sublinear upper bound, consider
a deterministic MDP as a counterexample. For the regret to have a sublinear upper-
bound, the probability of choosing the optimal policy must approach 1. In a fully
deterministic MDP, this means that %(x81 = x82) −→ 1 as 8 −→ ∞, and thus
%(x8 = 0) −→ 1 as 8 −→ ∞. Clearly, in this case, the inverted quantity in Eq. (4.15)
acquires nonzero terms at a rate that decays in =, and so the expression in Eq. (4.15)
does not have a sublinear upper bound.

Intuitively, to upper-bound Eq. (4.15), one would need the observations x81, x82 to
contribute fully toward learning the rewards, rather than the contribution coming
only from their difference. Notice that in the counterexample, even when the optimal
policy is selected increasingly-often, corresponding to a low regret, Eq. (4.15)
cannot be sublinearly bounded. In contrast, Russo and Van Roy (2016) introduce a
more direct approach for quantifying the trade-off between instantaneous regret and
the information gained from reward feedback, as encapsulated by the information
ratio defined therein; the theoretical analysis of DPS is thus based upon this latter
framework.

Relationship between Information Ratio and Regret
This section extends the concept of the information ratio introduced in Russo and
Van Roy (2016) to analyze regret in the preference-based setting. In particular,
a relationship is derived between the information ratio and Bayesian regret; this
result is analogous to Proposition 1 in Russo and Van Roy (2016), which applies
to the bandit setting with absolute, numerical rewards. This section considers both
the preference-based generalized linear bandit setting and the preference-based RL
setting with known transition dynamics. In the former case, the action space A is
assumed to be finite.

Firstly, regarding notation, let a81, a82 denote DPS’s two selections in iteration 8.
More specifically, in the bandit setting, a81, a82 are actions in A, i.e., a81 = x81 and
a82 = x82; meanwhile, in RL they are policies, such that a81 = c81 and a82 = c82.
These variables are introduced to obtain a common notation between the bandit and
RL settings.

Secondly, for an action or RL policy a, let D(a) denote the total expected utility

69

of executing it. In the bandit setting, D(a) = r) a, while in RL, D(a) = r)Ex∼a [x],
where the trajectory features x are sampled by rolling out the policy a. The optimal
choice a∗ is the one which maximizes the utility (i.e., a∗ = x∗ in the bandit case,
and a∗ = c∗ in RL).

Define the algorithm’s history after 8 iterations as H8 = {/1, /2, . . . , /8}, where
/8 = (x82 − x81, H8). Note that the algorithm does not need to keep track of a81 and
a82 in its history, as the utility posterior is updated only with respect to (x82−x81, H8),
and in the RL setting, the transition dynamics are assumed to be known.

Analogously to Russo and Van Roy (2016), notation is established for probabilities
and information-theoretic quantities when conditioning on the history H8−1. In
particular, %8 (·) := %(· | H8−1) and E8 [·] := E[· | H8−1]. With respect to the history,
the entropy of a random variable - is �8 (-) := −∑

G %8 (- = G) log %8 (- = G).
Finally, conditioned on H8−1, the mutual information of two random variables -
and . is given by �8 (-;.) := �8 (-) − �8 (- |.).

The information ratio Γ8 in iteration 8 is then defined as follows:

Γ8 :=
E8 [2D(a∗) − D(a81) − D(a82)]2

�8 (a∗; (x82 − x81, H8))
. (4.16)

Analogously to Russo and Van Roy (2016), the numerator of the information ratio is
the squared expected instantaneous regret, conditioned on all prior knowledge given
the history. Meanwhile, the denominator is the expected information gain with
respect to the optimal action or policy a∗ upon receiving data /8 = (x82 − x81, H8)
in the current iteration. Intuitively, if the ratio Γ8 is small, then in iteration 8, DPS
either incurs little instantaneous regret or gains significant information about a∗.

The following result, analogous to Proposition 1 in Russo and Van Roy (2016),
assumes that the information ratio Γ8 has a uniform upper bound Γ, and shows that
the cumulative Bayesian regret can be upper-bounded in terms of Γ:

Theorem 2. In either the preference-based generalized linear bandit problem or
preference-based RL with known transition dynamics, if Γ8 ≤ Γ almost surely for
each 8 ∈ {1, . . . , #}, then:

BayesReg(#) ≤
√
Γ#� (a∗),

where # is the number of learning iterations, and � (a∗) is the entropy of a∗.

70

Proof. The Bayesian regret can be upper-bounded as follows:

BayesReg(#) = E
[
#∑
8=1
(2D(a∗) − D(a81) − D(a82))

]
(0)
= E

[
#∑
8=1
E8 [(2D(a∗) − D(a81) − D(a82))]

]
,

where (a) follows from the Tower property of expectation and the outer expectation
is taken with respect to the history. Substituting the definition of the information
ratio into the latter expression yields:

BayesReg(#) = E
[
#∑
8=1

√
Γ8 �8 (a∗; (x82 − x81, H8))

]
≤

√
Γ

#∑
8=1
E

[√
�8 (a∗; (x82 − x81, H8)

]
(0)
≤

√
Γ

#∑
8=1

√
E[�8 (a∗; (x82 − x81, H8)]

(1)
≤

√√√
Γ#

#∑
8=1
E[�8 (a∗; (x82 − x81, H8)],

where (a) applies Jensen’s inequality, and (b) holds via the Cauchy-Schwarz in-
equality. To upper-bound the sum

∑#
8=1 E[�8 (a∗; (x82 − x81, H8)], first recall that

/8 = (x82 − x81, H8) denotes the information acquired during iteration 8. Then, each
term in the summation can be written:

E[�8 (a∗; (x82 − x81, H8)] = E[�8 (a∗; /8)] = � (a∗; /8 | (/1, . . . , /8−1)),

where the last step follows from the definition of conditional mutual information.
Therefore:
#∑
8=1
E[�8 (a∗; (x82 − x81, H8)] =

#∑
8=1

� (a∗; /8 | (/1, . . . , /8−1))
(0)
= � (a∗; (/1, . . . , /8))

(1)
= � (a∗) − � (a∗ | /1, . . . , /8)

(2)
≤ � (a∗),

where (a) applies the chain rule for mutual information (Fact 5, Section 2.3), (b)
follows from the entropy reduction form of mutual information (Fact 4), and (c)
holds by non-negativity of entropy (Fact 1).

The desired result follows.

71

Note that the total number of actions selected is) = 2# in the dueling bandit case
and) = 2#ℎ for preference-based RL. Furthermore, the entropy � (a∗) can be
upper-bounded in terms of the number of actions or number of policies (for bandits
and RL, respectively) using Fact 1. For the bandit case, � (a∗) = � (x∗) ≤ log |A|;
under an informative prior, � (a∗) could potentially be much smaller than the upper
bound log |A|. In the RL scenario, meanwhile, the number of deterministic policies
is equal to �(ℎ, so that � (a∗) = � (c∗) ≤ log(�(ℎ) = (ℎ log �. This leads to the
following corollary to Theorem 2, specific to preference-based RL:

Corollary 1. In the preference-based RL setting with known transition dynamics, if
Γ8 ≤ Γ almost surely for each 8 ∈ {1, . . . , #}, then:

BayesReg(#) ≤
√
Γ#(ℎ log �.

Moreover, since) = 2#ℎ, the regret in terms of the total number of actions (or
time-steps) is:

BayesRegRL()) ≤

√
Γ)(log �

2
,

whereBayesRegRL()) is in terms of the total number of time-steps,whileBayesReg(#)
is in terms of the number of learning iterations.

Thus, Bayesian regret can be upper-bounded by showing that the information ratio
is upper-bounded, and then applying either Theorem 2 or Corollary 1.

Remark 6. Importantly, the relationship in Theorem 2 between the Bayesian regret
and information ratio only applies under an exact posterior (i.e., the posterior is an
exact product of a prior and likelihood); however, not all of the posterior sampling
distributions considered in Section 4.3 satisfy this criterion. For instance, while the
V= (X) factors in Eq. (4.13) were useful for deriving asymptotic consistency results,
they yield a sampling distribution that is no longer an exact posterior. To see that a
true posterior is indeed required, consider the following inequality, used in proving
Theorem 2:

#∑
8=1
E[�8 (a∗; (x82 − x81, H8)] ≤ � (a∗).

This inequality uniformly upper-bounds the sum of the information gains across
all iterations: intuitively, the total amount of information gained cannot exceed the
initial uncertainty about the optimal policy or action. Yet, the factor V= (X) increases

72

in =, so that multiplying the posterior covariance by V= (X)2 injects uncertainty into
the model posterior indefinitely. In such a case, the sum of the information gains
could not have a finite upper bound, thus the above inequality could not hold.

Estimating the Information Ratio Empirically
This thesis conjectures an upper bound to the information ratio Γ8 for the linear
link function by empirically estimating Γ8’s values. This subsection discusses the
procedure used to estimate the information ratio in simulation. The process is first
discussed for the preference-based bandit setting, and then extended to RL with
known transition dynamics.

Information ratio estimation for generalized linear dueling bandits. In the preference-
based generalized linear bandit setting, the information ratio can equivalently be
written as:

Γ8 :=
E8 [2D(x∗) − D(x81) − D(x82)]2

�8 (x∗; (x82 − x81, H8))
.

The following lemma, inspired by similar analyses in Russo and Van Roy (2016) and
Russo and Van Roy (2014a) for settings with numerical rewards, expresses both the
numerator and denominator of Γ8 in forms that are more straightforward to calculate
empirically.

Lemma 1. When running DPS in the preference-based generalized linear bandit
setting, the following two statements hold:

E8 [2D(x∗) − D(x81) − D(x82)] = 2
∑
x∈A

%8 (x∗ = x)x)
[
E8 [r | x∗ = x] − E8 [r]

]
, and

�8 (x∗; (x82 − x81, H8)) ≥ 2
∑

x,x′∈A
%8 (x∗ = x)%8 (x∗ = x′) (x − x′))

∗
{ ∑
x′′∈A

%8 (x∗ = x′′) (E8 [r | x∗ = x′′] − E8 [r]) (E8 [r | x∗ = x′′] − E8 [r]))
}
(x − x′).

73

Proof. To prove the first statement:

E8 [2D(x∗)−D(x81) − D(x82)]
(0)
= 2E8 [D(x∗) − D(x81)]

= 2
∑
x∈A

[
%8 (x∗ = x)E8 [D(x∗) | x∗ = x] − %8 (x81 = x)E8 [D(x81) | x81 = x]

]
(1)
= 2

∑
x∈A

%8 (x∗ = x)
[
E8 [D(x) | x∗ = x] − E8 [D(x)]

]
(2)
= 2

∑
x∈A

%8 (x∗ = x)
[
E8 [x) r | x∗ = x] − E8 [x) r]

]
= 2

∑
x∈A

%8 (x∗ = x)x)
[
E8 [r | x∗ = x] − E8 [r]

]
,

where (a) holds because x81 and x82 are independent samples from the model pos-
terior, and thus are identically-distributed; (b) holds because posterior sampling
selects each action according to its posterior probability of being optimal, so that
%8 (x∗ = x) = %8 (x81 = x); and (c) applies the definition of utility for generalized
linear dueling bandits.

Turning to the second statement, it is notationally-convenient to define a function
H : A × A →

{
−1

2 ,
1
2
}
, where for each pair of actions x, x′ ∈ A, H(x, x′) is the

outcome of a preference query between x and x′:
H(x, x′) = 1

2 with probability %(x � x′)

H(x, x′) = −1
2 with probability %(x ≺ x′).

Equipped with this definition, we can see that:

�8 (x∗; (x82 − x81, H8))
(0)
= �8 (x∗; x82 − x81) + �8 (x∗; H8 | x82 − x81)

(1)
= �8 (x∗; H8 | x82 − x81)

(2)
=

∑
x,x′∈A

%8 (x81 = x′)%8 (x82 = x)�8 (x∗; H8 | x82 − x81 = x − x′)

(3)
=

∑
x,x′∈A

%8 (x∗ = x′)%8 (x∗ = x)�8 (x∗; H(x, x′))

(4)
=

∑
x,x′∈A

%8 (x∗ = x′)%8 (x∗ = x)

∗
∑
x′′∈A

%8 (x∗ = x′′)� (%8 (H(x, x′) | x∗ = x′′) | | %8 (H(x, x′))),

where (a) applies the chain rule for mutual information (Fact 5), and (b) uses that
�8 (x∗; x82 − x81) = 0, which holds because conditioned on the history, x81, x82 are
independent samples from the posterior of x∗ that yield no new information about

74

x∗. Then, (c) holds by definition of conditional mutual information, and (d) holds
because posterior sampling selects each action according to its probability of being
optimal under the posterior, so that %8 (x∗ = x) = %8 (x81 = x). Finally, (e) applies
Fact 6 from Section 2.3 (which is also Fact 6 in Russo and Van Roy, 2016).

Next, to lower-bound the Kullback-Leibler divergence in terms of utilities, one can
apply Fact 7 from Section 2.3 (Fact 9 in Russo and Van Roy, 2016):

�8 (x∗; (x82 − x81, H8))
(0)
≥ 2

∑
x,x′,x′′∈A

%8 (x∗ = x)%8 (x∗ = x′)%8 (x∗ = x′′)

∗
[
E [H(x, x′) | x∗ = x′′] − E [H(x, x′)]

]2

(1)
= 2

∑
x,x′,x′′∈A

%8 (x∗ = x)%8 (x∗ = x′)%8 (x∗ = x′′)

∗
[
E[(x − x′)) r | x∗ = x′′] − E[(x − x′)) r]

]2

= 2
∑

x,x′,x′′∈A
%8 (x∗ = x)%8 (x∗ = x′)%8 (x∗ = x′′)

∗
[
(x − x′))

(
E[r | x∗ = x′′] − E[r]

)]2
,

where (a) applies Fact 7 and (b) applies the definition of the linear link function.

It is straightforward to rearrange the final expression into the form given in the
statement of the lemma.

Similarly to Russo and Van Roy (2014a), the information ratio simulations in fact
estimate an upper bound to Γ8, which is obtained by replacing its denominator in
Eq. (4.16) by the lower bound obtained in Lemma 1.

To estimate the quantities in Lemma 1, it is helpful to define the following notation.
Firstly, let -8 be the expected value of r at iteration 8:

-8 := E8 [r] .

Similarly, -(x)
8

is the expected value of r at iteration 8 when conditioned on x∗ = x:

-(x)
8

:= E8 [r | x∗ = x] .

The bracketed matrix in the statement of Lemma 1 is denoted by !8:

!8 :=
∑
x∈A

%8 (x∗ = x) (E8 [r | x∗ = x] − E8 [r]) (E8 [r | x∗ = x] − E8 [r])) .

75

Algorithm 11 Empirically estimating the information ratio in the linear dueling
bandit setting
1: Input: A = action space, a = posterior distribution over r, " = number of samples to

draw from the posterior
2: r1, . . . , r" ∼ a ⊲ Draw samples from utility posterior
3: -̂←− 1

"

∑
< r< ⊲ Estimate -8 = E8 [r]

4: Θ̂x ←− {< : x) r< = maxx′∈A (x′) r<)} ∀ x ∈ A ⊲ Samples r8 for which x is optimal
5: ?∗(x) ←− |Θ̂x |

"
∀ x ∈ A ⊲ Empirical posterior probability of actions being optimal

6: -̂ (x) ←− 1
|Θ̂x |

∑
r ∈Θ̂x

r ∀ x ∈ A ⊲ Estimate - (x)
8

= E8 [r | x∗ = x]
7: !̂ ←− ∑

x∈A ?
∗(x) (-̂ (x) − -̂) (-̂ (x) − -̂)) ⊲ Estimate !8

8: A∗ ←− ∑
x∈A ?

∗(x)x) -̂ (x) ⊲ Estimate posterior reward of optimal action
9: Δx1,x2 ←− 2A∗ − (x1 + x2)) -̂ ∀ x1, x2 ∈ A
10: Δ←− ∑

x1,x2∈A ?
∗(x1)?∗(x2)Δx1,x2 ⊲ Expected instantaneous regret

11: Ex1,x2 ←− (x2 − x1)) !̂ (x2 − x1) ∀ x1, x2 ∈ A
12: E ←− ∑

x1,x2∈A ?
∗(x1)?∗(x2)Ex1,x2 ⊲ Information gain lower bound

13: Γ̂←− Δ2

2E ⊲ Estimated information ratio

The matrix !8 can also be written in the following, more compact form:

!8 = E8
[
(E8 [r | x∗] − E8 [r]) (E8 [r | x∗] − E8 [r]))

]
= E8

[
(-x∗

8 − -8) (-x∗
8 − -8))

]
,

where the outer expectation is taken with respect to the optimal action, x∗.

Algorithm 11 outlines the procedure for estimating the information ratio in the
linear dueling bandit setting, given a posterior distribution %(r | D) over r from
which samples can be drawn. This procedure extends the one given in Russo and
Van Roy (2014a) in order to handle relative preference feedback. First, in Line 2,
the algorithm draws " samples from the model posterior over r. These are then
averaged to obtain an estimate -̂ of -8 (Line 3). By dividing the posterior samples
of r into groups Θx depending on which optimal action they induce, one can then
estimate each action’s posterior probability ?∗(x) of being optimal (Lines 4-5). Note
that the values of ?∗(x) also give the probability that DPS selects each action. The
procedure then uses these quantities to estimate -(x)

8
(Line 6) and !8 (Line 7). From

these, the instantaneous regret and information gain lower bound are both estimated,
using the forms given in Lemma 1. Finally, the information ratio is estimated; in
fact, the value calculated in Line 13 upper bounds the true information ratio Γ8, due
to the inequality in Lemma 1.

Information ratio estimation for preference-based RL with known dynamics. To ex-
tendAlgorithm11 to preference-basedRLwith known transition dynamics, onemust
replace the action spaceA with the set of deterministic policiesΠ, where |Π| = �(ℎ

76

(recall that (is the number of states in the MDP and ℎ is the episode length). While
the bandit case associates each action inA with a 3-dimensional vector, the present
setting analogously associates each policy cwith a known 3-dimensional occupancy
vector xc (recall that 3 = (�): in xc, each element is the expected number of times
that a particular state-action pair is visited under c. More formally, the occupancy
vector associated with c is given by,

xc = Ex∼c [x],

where x is a trajectory obtained by executing the policy c, and the expectation is taken
with respect to the known MDP transition dynamics and initial state distribution.
This subsection first discusses computation of the occupancy vectors, and then
shows that to extend Algorithm 11 to RL, one must simply replace the action space
A with Π, and replace the actions inA with the occupancy vectors associated with
the policies: {xc | c ∈ Π}. Each policy c can therefore be viewed as a meta-action
leading to a known distribution over trajectory feature vectors, whose expectation is
given by the occupancy vector xc.

The occupancy vector for a given deterministic policy c can be calculated as follows.
First, define sc (C) ∈ R(as a vector containing the probabilities of being in each
state at time-step C in the episode, where C ∈ {1, . . . , ℎ}. Further, the state at time C
is denoted by BC ∈ {1, . . . , (}. Then, for C = 1, sc (1) = [?0(1), . . . , ?0(()]) , where
?0(8) is the probability of starting in state 8, as given by the initial state probabilities
(assumed to be known). Also, define xc (C) ∈ R3 as the probability of being in each
state-action pair at time-step C. Then, for each C = 1, 2, . . . , ℎ:

1. Obtain xc (C) from sc (C): for each state-action pair (B, 0), the corresponding
element of xc (C) is equal to [sc (C)]BI[c(B,C)=0] , that is, the probability that the
agent visits state B at time C is multiplied by 0 or 1 depending on whether the
deterministic policy c takes action 0 in state B at time C.

2. Define the matrix %(C) such that: [%(C)]8 9 = %(BC+1 = 9 | B = 8, 0 = c(8, C)).

3. Calculate the probability of being in each state at the next time-step: sc (C+1) =
%(C) sc (C).

Finally, the expected number of visits to each state-action pair over the entire episode
is given by summing the probabilities of encountering each state-action pair at each

77

time-step:

xc =
ℎ∑
C=1

xc (C).

These occupancy vectors xc can be pre-computed for each policy c ∈ Π. Below,
Lemma 2 will show that these vectors can be used in place of action vectors in
Algorithm 11. Regarding implementation, it is convenient to index the policies
from 1 to |Π| = �(ℎ, and to convert between these policy indices and the policies’
parameters. To do so efficiently, one can represent each policy’s parameters as a
vector in {1, . . . , �}(ℎ, in which each element is the action taken in a specific state
and time-step. Then, one can treat each policy vector in {1, . . . , �}(ℎ as a base-
� integer, and convert between bases � and 10 as needed to interchange policy
parameters with policy indices.

Finally, the following lemma is analogous to Lemma 1 for the generalized linear
dueling bandit setting, but is adapted to the preference-based RL setting. Though
the proof of Lemma 2 is similar to that of Lemma 1, it requires several additional
steps. Recall that the utility of a policy c, given the state-action utilities r and known
dynamics, is defined as: D(c) := r)Ex∼c [x] = r)xc.

Lemma 2. When running DPS in preference-based RL with known transition dy-
namics and initial state probabilities, the following two statements hold:

E8 [2D(c∗) − D(c81) − D(c82)] = 2
∑
c∈Π

%8 (c∗ = c)x)c
[
E8 [r | c∗ = c] − E8 [r]

]
, and

�8 (c∗; (x82 − x81, H8)) ≥ 2
∑
c,c′∈Π

%8 (c∗ = c)%8 (c∗ = c′) (xc − xc′))

∗
{ ∑
c′′∈Π

%8 (c∗ = c′′) (E8 [r | c∗ = c′′] − E8 [r]) (E8 [r | c∗ = c′′] − E8 [r]))
}
(xc − xc′).

Proof. The first statement is proven as follows:

E8 [2D(c∗)−D(c81) − D(c82)]
(0)
= 2E8 [D(c∗) − D(c81)]

= 2
∑
c∈Π

[
%8 (c∗ = c)E8 [D(c∗) | c∗ = c] − %8 (c81 = c)E8 [D(c81) | c81 = c]

]
(1)
= 2

∑
c∈Π

%8 (c∗ = c)
[
E8 [D(c) | c∗ = c] − E8 [D(c)]

]
(2)
= 2

∑
c∈Π

%8 (c∗ = c)
[
E8 [x)c r | c∗ = c] − E8 [x)c r]

]
(3)
= 2

∑
c∈Π

%8 (c∗ = c)x)c
[
E8 [r | c∗ = c] − E8 [r]

]
,

78

where (a) holds because c81 and c82 are both sampled from the same posterior, and
thus are identically-distributed; (b) holds because posterior sampling selects each
policy according to its posterior probability of being optimal, so that %8 (c∗ = c) =
%8 (c81 = c); and (c) applies the definition of the utility under the linear link function.
Finally, (d) holds because the transition dynamics are known.

To prove the second statement, denote byΥ ⊂ R3 the set of all possible length-ℎ tra-
jectory feature vectors. Analogously to the bandit case, it is notationally-convenient
to define a function H : Υ × Υ→

{
−1

2 ,
1
2
}
, where for each pair of trajectory feature

vectors x, x′ ∈ Υ, H(x, x′) is the outcome of a preference query between x and x′:
H(x, x′) = 1

2 with probability %(x � x′)

H(x, x′) = −1
2 with probability %(x ≺ x′).

Using these definitions, one can see that:

�8 (c∗; (x82 − x81, H8))
(0)
= �8 (c∗; x82 − x81) + �8 (c∗; H8 | x82 − x81)

(1)
= �8 (c∗; H8 | x82 − x81)

(2)
=

∑
x,x′∈Υ

%8 (x81 = x′)%8 (x82 = x)�8 (c∗; H8 | x82 − x81 = x − x′)

=
∑

x,x′∈Υ
%8 (x81 = x′)%8 (x82 = x)�8 (c∗; H(x, x′))

=
∑
c,c′∈Π

∑
x,x′∈Υ

%8 (c81 = c′)%8 (c82 = c)

∗ %8 (x81 = x′ | c81 = c′)%8 (x82 = x | c82 = c)�8 (c∗; H(x, x′))
(3)
=

∑
c,c′∈Π

%8 (c∗ = c′)%8 (c∗ = c)

∗
∑

x,x′∈Υ
%(x81 = x′ | c81 = c′)%(x82 = x | c82 = c)�8 (c∗; H(x, x′))

(4)
=

∑
c,c′∈Π

%8 (c∗ = c′)%8 (c∗ = c)
∑

x,x′∈Υ
%(x81 = x′ | c81 = c′)%(x82 = x | c82 = c)

∗
∑
c′′∈Π

%8 (c∗ = c′′)� (%8 (H(x, x′) | c∗ = c′′) | | %8 (H(x, x′)))

(5)
≥ 2

∑
c,c′,c′′∈Π

%8 (c∗ = c′)%8 (c∗ = c)%8 (c∗ = c′′)

∗
∑

x,x′∈Υ
%(x81 = x′ | c81 = c′)%(x82 = x | c82 = c)

∗
[
E8 [H(x, x′) | c∗ = c′′] − E8 [H(x, x′)]

]2

79
(6)
= 2

∑
c,c′,c′′∈Π

%8 (c∗ = c′)%8 (c∗ = c)%8 (c∗ = c′′)

∗
∑

x,x′∈Υ
%(x81 = x′ | c81 = c′)%(x82 = x | c82 = c)

∗
[
E8

[
(x − x′)) r | c∗ = c′′

]
− E8

[
(x − x′)) r

]]2

(ℎ)
= 2

∑
c,c′,c′′∈Π

%8 (c∗ = c′)%8 (c∗ = c)%8 (c∗ = c′′)

∗
∑

x,x′∈Υ
%(x81 = x′ | c81 = c′)%(x82 = x | c82 = c)

∗
[
(x − x′)) (E8 [r | c∗ = c′′] − E8 [r])

]2

= 2
∑

c,c′,c′′∈Π
%8 (c∗ = c′)%8 (c∗ = c)%8 (c∗ = c′′)

∗ Ex∼c,x′∼c′
[[
(x − x′)) (E8 [r | c∗ = c′′] − E8 [r])

]2
]

(8)
≥ 2

∑
c,c′,c′′∈Π

%8 (c∗ = c′)%8 (c∗ = c)%8 (c∗ = c′′)

∗
[
Ex∼c,x′∼c′

[
(x − x′)) (E8 [r | c∗ = c′′] − E8 [r])

]]2

= 2
∑

c,c′,c′′∈Π
%8 (c∗ = c′)%8 (c∗ = c)%8 (c∗ = c′′)

∗
[
(xc − xc′)) (E8 [r | c∗ = c′′] − E8 [r])

]2
,

where (a) applies the chain rule for mutual information (Fact 5), and (b) uses
that �8 (c∗; x82 − x81) = 0, which holds because x81 and x82 are determined by
independently sampling two policies from the posterior of c∗ and rolling them
out (via known transition dynamics) to obtain two trajectories. Then, (c) holds
by definition of conditional mutual information, and (d) holds because posterior
sampling selects each policy according to its posterior probability of optimality, so
that %8 (c∗ = c) = %8 (c81 = c) for each c, and further uses that the probabilistic
mapping from policies to trajectories is known. Next, (e) applies Fact 6 from Section
2.3 (which is Fact 6 in Russo and Van Roy, 2016), and step (f) applies Fact 7 from
Section 2.3 (Fact 9 in Russo and Van Roy, 2016) to lower-bound the Kullback-
Leibler divergence in terms of utilities. Finally, (g) applies the definition of the
linear link function, (h) utilizes that the transition dynamics are known, and (i) holds
via Jensen’s inequality.

It is straightforward to rearrange the final expression into the form given in the
statement of the lemma.

80

Finally, Algorithm 12 details the procedure for estimating the information ratio for
RL with known dynamics. It is analogous to the procedure for the linear dueling
bandit setting, given by Algorithm 11.

Algorithm 12 Empirically estimating the information ratio in RL with known dy-
namics
1: Input: Π = policy space, a = posterior distribution over r, " = number of samples to

draw from the posterior, {xc | c ∈ Π} = set of occupancy vectors for each policy in Π
2: r1, . . . , r" ∼ a ⊲ Draw samples from utility posterior
3: -̂←− 1

"

∑
< r< ⊲ Estimate E8 [r]

4: Θ̂c ←− {< : x)c r< = maxc′∈Π(x)c′ r<)} ∀ c ∈ Π ⊲ Samples r8 for which c is optimal
5: ?∗(c) ←− |Θ̂c |

"
∀ c ∈ Π ⊲ Empirical posterior probability of policies being optimal

6: -̂ (c) ←− 1
|Θ̂c |

∑
r ∈Θ̂c

r ∀ c ∈ Π ⊲ Estimate E8 [r | c∗ = c]
7: !̂ ←− ∑

c∈Π ?
∗(c) (-̂ (c) − -̂) (-̂ (c) − -̂))

8: A∗ ←− ∑
c∈Π ?

∗(c)x)c -̂ (c) ⊲ Estimate posterior reward of optimal policy
9: Δc1, c2 ←− 2A∗ − (xc1 + xc2)) -̂ ∀ c1, c2 ∈ Π
10: Δ←− ∑

c1, c2∈Π ?
∗(c1)?∗(c2)Δc1, c2 ⊲ Expected instantaneous regret

11: Ec1, c2 ←− (xc2 − xc1)) !̂ (xc2 − xc1) ∀ c1, c2 ∈ Π
12: E ←− ∑

c1, c2∈Π ?
∗(c1)?∗(c2)Ec1, c2 ⊲ Information gain lower bound

13: Γ̂←− Δ2

2E ⊲ Estimated information ratio

Empirically Upper-Bounding the Information Ratio
This subsection presents a set of simulations which empirically estimate the infor-
mation ratio for DPS with a linear link function. Recall that under the linear link
function, the utility of a bandit action or RL trajectory x is given by D(x) = r) x

2
. All

of the simulation results support the following conjecture:

Conjecture 1. Consider running DPS in the linear dueling bandit setting and
in preference-based RL with known dynamics. With the linear link function, the
information ratio in Eq. (4.16) is upper-bounded as follows during all iterations
8 ∈ {1, . . . , #}:

Γ8 ≤ 3,

where in the bandit setting, 3 is the dimensionality of the action space, whereas
3 = (� in the preference-based RL setting.

This conjecture leads to the following bounds on the Bayesian regret of DPS:

Theorem 3. Combining Conjecture 1 with Theorem 2 yields the following upper
bound on the Bayesian regret of DPS in the linear dueling bandit setting as a function

81

of the number of learning iterations, #:

BayesReg(#) ≤
√
3#� (a∗) ≤

√
3# log �.

Furthermore, combining Conjecture 1 with Corollary 1 results in the following
Bayesian regret bound for DPS in the preference-based RL setting with known
transition dynamics, as a function of the number of learning iterations #:

BayesReg(#) ≤ (
√
�#ℎ log �.

Using that) = 2#ℎ, the Bayesian regret in terms of the total number of actions (or
time-steps)) is:

BayesRegRL()) ≤ (
√
�) log �

2
,

where BayesRegRL()) is expressed in terms of the total number of time-steps, while
BayesReg(#) is in terms of the number of learning iterations.

The remainder of this subsection presents empirical evidence for Conjecture 1. The
simulations span four cases, each of which will be further detailed below:

A) Linear bandit setting with relative feedback and a Gaussian prior, likelihood,
and posterior;

B) Linear preference-based bandit settingwith posterior approximation viaMCMC;

C) RL with known transition dynamics and relative feedback, with a Gaussian
prior, likelihood, and posterior; and,

D) Preference-based RL with known transition dynamics and posterior approxi-
mation via MCMC.

Before presenting the results corresponding to each of these four cases, this section
describes the posterior inference techniques utilized in the information ratio simu-
lations, and details the procedure for constructing the action space A in the bandit
simulations. Furthermore, all of the simulations use 10,000 posterior samples in
each iteration to estimate the information ratio (i.e., " = 10, 000 in Algorithm 11).

Among the four cases, two classes of model posterior are considered: a conjugate
Gaussian posterior in A) and C), and MCMC in B) and D). As explained in Remark

82

6, the information ratio-based regret analysis techniques assume that the posterior
is the exact product of a prior and likelihood. As discussed next, both the conjugate
Gaussian andMCMCposterior inference approaches indeed satisfy this requirement.

Conjugate Gaussian posterior inference. In the Gaussian posterior inference ap-
proach (A and C), the information ratio is estimated under relative feedback when
the prior, likelihood, and posterior are all Gaussian. Firstly, the utility vector is
assumed to be drawn from a Gaussian prior:

r ∼ N(0, _−1�), (4.17)

for some hyperparameter _ > 0. The likelihood of the outcome H8 given x81 and x82

is equal to its expectation with i.i.d, additive Gaussian noise:

%(H8 | x82 − x81, r) = r) (x82 − x81) + Y8, where Y8 ∼ N(0, f2), (4.18)

where f is a second hyperparameter, and 2 is subsumed into r without loss of
generality.

This Gaussian prior and likelihood yield a conjugate Gaussian posterior which can
be computed in closed-form, and is given in Eq.s (4.1)-(4.2).

Clearly, under the likelihood in Eq. (4.18), the feedback H8 is not binary. Similarly
to pairwise preferences, however, the feedback is determined with respect to the
difference of the two actions or trajectory feature vectors under comparison. Thus,
the feedback is relative to the selected pairs of actions or policies.

MCMC posterior inference. Secondly, in cases B) and D), the algorithm receives
binary preference feedback. Since with binary feedback, the exact posterior is no
longer Gaussian, this set of simulations performsMCMCposterior approximation to
both estimate the information ratio and select actions. Under the linear link function
model, the likelihood of each preference outcome H8 is given by:

%(H8 | x8, r) =
[
2H8 r)x8
2

+ 1
2

]
, (4.19)

where the parameter 2 > 0 must be large enough to guarantee that 2H8 r)x8 ∈
(−0.5, 0.5) for any x8 and r supported by the prior ?(r); this ensures that the
likelihood probabilities lie within (0, 1). Then, in the =th learning iterations, the
exact posterior takes the form :

?(r | D=) ∝ ?(r)
=−1∏
8=1

%(H8 | x8, r) = ?(r)
=−1∏
8=1

[
2H8 r)x8
2

+ 1
2

]
. (4.20)

83

Importantly, the utility prior ?(r) cannot be Gaussian as in A) and C), since the
linear link function’s posterior in Eq. (4.20) requires that 2H8 r)x8 ∈ (−0.5, 0.5).
Equivalently, we must have |r)x | < 1

2 for any vector r that is supported by the prior
over r. Thus, the prior for r must have bounded support. In this set of simulations,
a truncated Gaussian prior is placed over the utilities to enforce | |r | |2 ≤ 1:

?(r) ∝ N (0, _−1�)I[| |r | |2≤1] , (4.21)

for some parameter _ > 0.

In practice, one can easily sample from the truncated Gaussian distribution by
drawing samples from the Gaussian distribution N(0, _−1�), and using rejection
sampling to discard any sample r for which | |r | |2 > 1.

All MCMC simulations utilize the emcee Python package (Foreman-Mackey et al.,
2013) to perform the MCMC sampling. Each instance of MCMC uses 32 walkers
and an initial point sampled from N(r̂, 10−8) for each walker, where r̂ is equal to
the prior mean (0) in the first learning iteration, while in subsequent iterations, it is
the mean of the previous iteration’s MCMC samples.

Finally, as the simulations below will demonstrate, MCMC can estimate the model
posterior with significantly-higher fidelity than the Laplace approximation.

Action space construction for information ratio simulations in the bandit setting. In
the linear dueling bandit simulations, the action space consists of � = |A| vec-
tors sampled from the surface of the 3-dimensional unit sphere, given a specified
number of actions �. Rather than sampling the actions uniformly from the sphere’s
surface, the actions are sampled via Poisson disk sampling (Bridson, 2007), which
samples the actions sequentially and rejects candidate actions that are too close to
existing samples; this ensures that the samples are spread evenly over the sphere’s
surface, rather than clustered together (see Figure 4.1). In particular, this work uti-
lizes Mitchell’s approximation to the Poisson disk sampling distribution (Dunbar
and Humphreys, 2006), due to its simplicity of implementation. In this algorithm,
points are sampled sequentially; at each step, some number of candidate points are
uniformly sampled, and the one which is furthest away from any existing point is
added to the set of sampled points. For large-enough numbers of candidate samples,
this method is known to closely-approximate the Poisson disk sampling distribu-
tion (Dunbar and Humphreys, 2006). All of the simulations sample 1,000 candidate
points at each step to generate the action space via Mitchell’s approximation.

84

(a) Poisson disk samples (b) Uniform samples

Figure 4.1: Comparison of Poisson disk sampling and uniform random sampling
over the surface of the 3-dimensional unit sphere. Both plots show 100 samples.
While the uniformly random samples often cluster together, the Poisson disk samples
are more uniformly spaced over the sphere’s surface.

A) Linear bandit setting with posterior inference via relative Gaussian feedback. In
each simulation run, the action space is independently sampled using the Poisson
disk method described above. Each simulation run also independently samples the
utility vector r from the prior in Eq. (4.17): r ∼ N(0, _−1�). In each simulation, the
information ratio is estimated via Algorithm 11 in every learning iteration. Samples
are drawn from the Gaussian posterior (described above) to estimate Γ8 and to select
actions in DPS.

This set of simulations includes 20 repetitions of each of the following parameter
combinations:_ ∈ {0.1, 1}, f ∈ {0.1, 1}, 3 ∈ {3, 5, 10}, and � ∈ {3, 10, 100, 1000}.
These parameter combinations result in a total of 960 simulations with 10,000 learn-
ing iterations each. In each case, the same values of (_, f) are used to generate the
feedback (i.e., the outcomes H8) and as the hyperparameters that DPS uses to learn
the utilities; thus, the algorithm knows the true environment prior and likelihood.

Figure 4.2 displays the cumulative regret and estimated information ratio values for
three example simulation runs. One can see that values of Γ8 decrease as learning
progresses.

Figure 4.3 plots themaximum information ratio estimate from each simulation; more
specifically, for each of the 960 simulations, the information ratio value is calculated
at each of the 10,000 learning iterations, and the maximum of these values is added
to the plot. In all cases, the resulting information ratio estimates are strictly less than

85

(a) Cumulative regret (b) Estimated information ratio

Figure 4.2: Cumulative regret and estimated information ratio values in the linear
bandit setting with relative Gaussian feedback over pairs of actions. Values are plot-
ted over the entire learning process for three representative experimental repetitions
(colors are identical for corresponding experiment runs between the two plots).
These three experiments use 3 = 3, _ = 1, f = 1, and � = 100.

3, though they sometimes come extremely close. One can see from the figure that
the Γ8 estimates tend to be larger for larger action space sizes � and noise parameters
f, but are equivalent for the two tested values of _. Intuitively, the learning problem
is harder for larger f and �, and information ratios tend to be larger under higher
outcome uncertainty, as seen in Figure 4.2.

Finally, when estimating the information ratio with a sufficiently-concentrated utility
posterior ?(r | D8), it is possible that all 10,000 samples from this posterior—which
are used to estimateΓ8—induce the same optimal action. As a result, the probabilities
?∗(x) (Line 5 of Algorithm 11), which empirically estimate each action’s probability
of being optimal, will equal one for the predicted optimal action and zero for all
other actions. In this situation, Algorithm 11 is guaranteed to estimate that the
information gain is zero, and therefore to return a Γ8 estimate of either ∞ or NaN
(“not a number”). This phenomenon is guaranteed to occur after sufficiently many
iterations, since the posterior becomes increasingly concentrated over time, but it
only happens in a minority of steps for the simulations in this thesis. In these and
subsequent information ratio simulations (cases A, B, C, and D), any such learning
iterations are therefore excluded when identifying the maximum Γ8 estimate in the
simulation run (e.g., the values shown in Figure 4.3) and when conjecturing an upper
bound to Γ8.

B) Linear dueling bandits with posterior inference via MCMC.Similarly to caseA),

86

(a) Maximum information ratio values (b) Maximum information ratio values

(c) Maximum information ratio values

Figure 4.3: Scatter plots of the maximum estimated information ratio value in each
of the 960 relative Gaussian bandit simulations (each dot corresponds to one of
these simulations). All 960 trials are shown in each of the three plots. Values are
color-coded according to: a) the action space size �, b) f, and c) _.

each simulation run independently samples an action space and a utility vector r.
In this case, however, r is sampled from the truncated Gaussian prior given in Eq.
(4.21). The hyperparameter 2 in the posterior, given by Eq. (4.20), is set to 4 to
ensure that 2H8 r) x8

2
∈ (−0.5, 0.5) as needed. In each case, the same values of (_, 2)

are used to generate the preference feedback and as the hyperparameters that DPS
uses for utility inference (i.e., the algorithm knows the true environment prior and
likelihood).

MCMC sampling has a “burn-in” or “warm-up” phase, in which the sampler con-
verges to accurately drawing samples from the model posterior. To ensure that
sufficiently many warm-up steps are used to estimate Γ8, the estimates are first com-
pared across different numbers of warm-up steps, as shown in Figure 4.4. Each

87

color on the plot represents an experimental run, for five such runs. Within each
of the five runs, DPS is executed with _ = 1, 3 = 10, and � = 10; since none of
the information ratio simulations in either the bandit or RL settings exceed 3 = 10,
these simulations utilize the highest dimensionality considered in this work. In each
DPS learning iteration, the information ratio is estimated independently six times,
each with a different number of warm-up samples: {0, 5, 10, 50, 100, 500}. As seen
in the plot, the identically-colored lines from the same run mostly overlap. Thus, the
number of warm-up steps does not appear to strongly influence Γ8, perhaps because
a large-enough number of posterior samples (" = 10,000) is used to estimate each
information ratio.

Figure 4.4: Estimating the information ratio with different numbers of MCMC
warm-up steps. In each of the five DPS runs with 100 learning iterations each, the
information ratio is independently estimated six times per learning iteration, once
with each of the following numbers of warm-up samples: {0, 5, 10, 50, 100, 500}. On
the plot, each color corresponds to one of the five simulation runs (i.e., for each run,
the six different numbers of warm-up samples are plotted in the same color). Clearly,
as the similarly-colored lines mostly overlap, the number of warm-up samples does
not heavily impact the information ratio estimates.

In the remainder of this section (which also includes case D), all MCMC sampling
uses 500 warm-up steps in the first 50 learning iterations, and 250 warm-up steps
subsequently; after the first 50 steps, it is assumed that less warm-up is needed, as
the MCMC sampler will by then use an improved initial point.

Notably, the Laplace approximation to the posterior is less computationally-intensive

88

than MCMC; however, this work uses MCMC for utility posterior approximation to
estimate Γ8 values because it is more accurate than the Laplace approximation. To
illustrate, Figures 4.5-4.6 depict several examples of the differences between these
two posterior approximation methods.

Firstly, Figure 4.5 compares posterior samples from the Laplace approximation and
MCMC in two different cases. In these examples, the environment has dimension-
ality 3 = 3 and the learning algorithm uses _ = 1. Rather than sampling utility
vectors from the prior, two different choices of r are hard-coded: one that is close
to the utility prior ?(r)’s support boundary (recall that ?(r) is only supported on
| |r | |2 ≤ 1), and one that lies further from this boundary. In each of the two cases,
a dataset of actions and preference outcomes is randomly-generated: actions are
sampled uniformly-at-random from the surface of the unit sphere to obtain 10, 000
pairs of points, while pairwise preferences are generated via the linear link function
likelihood in Eq. (4.19). Within each comparison between the Laplace approxima-
tion and MCMC, the two posterior approximations are trained over the same data.
As seen in the figure, the MCMC and Laplace posteriors are similar when r is far
from the support boundary, since in this case, the true posterior is concentrated about
r in a Gaussian-like manner. When r is closer to the support boundary, however,
the MCMC posterior reflects the | |r | |2 ≤ 1 constraint, while the Gaussian Laplace
approximation fails to capture this facet of the posterior.

Furthermore, with small numbers of preferences, the posterior is typically highly
non-Gaussian. In these cases, theLaplace approximation is expected to be inaccurate.
To illustrate, Figure 4.6 displays the difference between the Laplace and MCMC
posteriors when running DPS after 10 and 100 preferences, respectively.

Now that the use of MCMC has been justified, a set of simulations are performed
to estimate Γ8 values for DPS in the linear dueling bandit setting. For each of the
following parameter combinations, 20 simulation runs of DPS are executed, each
with 1,000 learning iterations: _ = 1, 3 ∈ {3, 5, 10}, and � ∈ {10, 100}. This results
in a total of 120 simulation runs.

Figure 4.7 displays the cumulative regret and estimated information ratio values for
three example simulation runs. As before, the values of Γ8 tend to be highest at the
start of learning.

Lastly, for each of the 120 simulations, the maximum information ratio estimate is
identified: in each case, this maximum is taken over the 1,000 learning iterations.

89

(a) Laplace approximation, case 1 (b) MCMC, case 1

(c) Laplace approximation, case 2 (d) MCMC, case 2

Figure 4.5: Corner plots comparing posterior samples from the Laplace approxima-
tion and MCMC. The prior over utility vectors r = [A1, A2, A3]) is only supported
on | |r | |2 ≤ 1. a)-b) Case 1: r = [0.7, 0.5, 0.2]) . The true posterior is close to Gaus-
sian, so the two approximations appear similar. c)-d) Case 2: r = [0.8, 0.5, 0.1]) ,
which is closer to the boundary of allowable utility vectors, | |r | |2 = 1. Because the
true posterior is highly non-Gaussian, the two approximations are visibly different
(compare A1 versus A2 in the plots). Importantly, the MCMC posterior respects the
constraint | |r | |2 ≤ 1, while the Laplace approximation does not.

Figure 4.8 displays these numbers in a scatter plot. In every case, the maximum
information ratio is strictly less than 3 (though in some cases, it comes close.)

C) Preference-based RL with posterior inference via relative Gaussian feedback. In

90

(a) Laplace approximation, 10 preferences (b) MCMC, 10 preferences

(c) Laplace approximation, 100 preferences (d) MCMC, 100 preferences

Figure 4.6: Corner plots comparing posterior samples from the Laplace approx-
imation and MCMC under small numbers of samples. The Laplace and MCMC
posteriors are visibly different, as the utility posterior is highly non-Gaussian. The
preference data was generated by running DPS with 3 = 3, 2 = 4, _ = 1, and � = 10.

the RL simulations, MDP parameters are generated randomly and independently
for each simulation run. Firstly, the utilities r ∈ R3 , where 3 = (�, are generated
from a Gaussian distribution: r ∼ N(0, _−1�). Secondly, the MDP’s state transition
probabilities are sampled independently for each state-action pair from a Dirichlet
distribution of order (, with all (parameters equal to 1. This Dirichlet prior is in fact
a uniform distribution over all possible sets of (probabilities, ?1, . . . , ?(∈ [0, 1],

91

(a) Cumulative regret (b) Estimated information ratio

Figure 4.7: Cumulative regret and estimated information ratio values in the
preference-based linear bandit setting with posterior modeling via MCMC. Values
are plotted over the learning process for three representative experimental repetitions
(colors are identical for corresponding experimental runs between the two plots).
The experiments in this plot use 3 = 10, _ = 1, and � = 10.

Figure 4.8: Scatter plot of the maximum information ratio estimates when running
DPS in the linear dueling bandit setting with MCMC posterior inference. Each dot
corresponds to one of 120 simulation runs, and values are color-coded according to
the action space size, �.

such that
∑(
9=1 ?(= 1. Importantly, in this section, theMDP’s transition probabilities

are revealed to the algorithm, so that it must only infer the utilities. For each pair of
trajectories, relative feedback is generated via the Gaussian likelihood in Eq. (4.18)
just as in the bandit setting, for some parameter f.

92

For each of the following parameter combinations, 20 DPS simulation runs were
performed, with the information ratio estimated in each step: _ ∈ {0.1, 1}, f ∈
{0.1, 1, 10}, and the five settings of the MDP parameters ((, �, ℎ) listed in Table
4.1. This results in a total of 600 simulations with 1,000 learning iterations each.
In each case, the same values of (_, f) are used to generate the feedback and as
hyperparameters that DPS uses to learn the utilities (i.e., the algorithm knows the
true environment prior and likelihood). Note that larger MDP sizes than those in
Table 4.1 are not considered because calculating all the sums and differences of
the policies’ occupancy vectors (see Algorithm 11) requires considering

(|Π|
2
)
pairs

of distinct policies. Storing these quantities in advance of online learning creates
storage issues for larger MDPs (on a machine with 32 GB of RAM).

MDP label (� ℎ |Π| = �(ℎ
(|Π|

2
)

0 2 3 4 6,561 21,520,080
1 3 2 4 4,096 8,386,560
2 4 2 3 4,096 8,386,560
3 2 4 3 4,096 8,386,560
4 3 3 2 729 265,356

Table 4.1: The labels 0-4 are assigned to the five MDP structures used in the RL
information ratio simulations. For each of the fiveMDP structures, this table specifies
the number of states (, the number of actions �, and the episode horizon ℎ. For each
((, �, ℎ) triple, the total numbers of deterministic policies and of distinct policy
pairs (on which information ratio computations depend) are also displayed.

Figure 4.9 displays the cumulative regret and estimated information ratio values for
three example simulation runs. Figure 4.10 depicts the maximum information ratio
values for each simulation. One can see that higher values of f tend to correspond
to larger information ratios. Furthermore, as seen in the figure, all of the information
ratio values are less than 3 = (� by a significant margin.

D) Preference-based RL with posterior inference via MCMC. For each simulation
run, the MDP parameters are generated independently. The MDPs’ transition dy-
namics are sampled from Dirichlet distributions as in the Gaussian RL case (C), and
are similarly revealed to the algorithm. Meanwhile, as in the MCMC bandit case
(B), the utilities r are sampled from a truncated Gaussian prior to ensure that they
have bounded support: | |r | |2 ≤ 1.

The following set of simulations are performed to estimate the information ratio,
each with 1,000 learning iterations. For each of the MDP structures 1-4 in Table

93

(a) Cumulative regret (b) Estimated information ratio

Figure 4.9: Cumulative regret and information ratio estimates in the RL setting with
relative feedback, known dynamics, and posterior inference via relative Gaussian
feedback. Values are plotted over the learning process for three representative exper-
imental repetitions (colors are identical for each experimental run between the two
plots). These experiments utilize _ = 1, f = 10, and MDP structure 1 (see Table
4.1), for which (= 3, � = 2, and ℎ = 4.

(a) Maximum information ratio values (b) Maximum information ratio values

Figure 4.10: Scatter plots of the maximum information ratio estimates in each of
the 600 relative Gaussian RL simulations (each dot corresponds to one of the 600
simulations). The x-axis labels indicate the MDP labels 0-4 (from Table 4.1) and
the values of 3 = (�. All 600 trials are shown in both of the two plots. Values
are color-coded according to: a) f and b) _. In all cases, the information ratios are
significantly less than 3.

4.1, 20 repetitions are executed with _ = 1 and 2 = 2
√

2ℎ, to obtain 80 simulations
in total. This particular setting of 2 is selected to ensure that 2H8 r

) x8
2
∈ (−0.5, 0.5),

94

as required by the likelihood:�����2H8 r)x82

����� =
����� r)x82

����� (0)≤ 1
2
| |r | |2 | |x8 | |2

(1)
≤ 1
2
| |x8 | |2 =

1
2
| |x82 − x81 | |2

=
1
2

√√√ 3∑
9=1

(
[x82] 9 − [x81] 9

)2
=

1
2

√√√ 3∑
9=1

(
[x82]29 + [x81]29 − 2[x81] 9 [x82] 9

)
(2)
≤ 1
2

√√√ 3∑
9=1

(
[x82]29 + [x81]29

)
=

1
2

√
| |x82 | |22 + ||x81 | |

2
2
(3)
≤ 1
2

√
| |x82 | |21 + ||x81 | |

2
1

(4)
=

1
2

√
ℎ2 + ℎ2 =

1
2

√
2ℎ,

where (a) follows from the Cauchy-Schwarz inequality and (b) applies the prior
constraint that | |r | |2 ≤ 1. Next, (c) holds because in the RL setting, x81, x82 contain
state-action visitation counts, and so all of their elements are non-negative; thus,
[x81] 9 [x82] 9 > 0. Fourthly, (d) follows because | |x | |2 ≤ ||x | |1 holds for any vector
x ∈ R3 . Finally, (e) holds because the sum of a trajectory’s state-action visitation
counts must equal the episode horizon ℎ. Thus, the required condition is satisfied
by setting 1

2

√
2ℎ = 1

2 , resulting in 2 = 2
√

2ℎ.

(a) Cumulative regret (b) Estimated information ratio

Figure 4.11: Cumulative regret and estimated information ratio values in the
preference-based RL setting with known dynamics and posterior inference via
MCMC. Values are plotted over the learning process for three representative exper-
imental repetitions (colors are identical for corresponding simulation runs between
the two plots). These experiments use _ = 1 and MDP structure 4 (see Table 4.1),
for which (= 3, � = 3, ℎ = 2. The value of 2 is set to 2

√
2ℎ = 4

√
2.

In each case, the same values of (_, 2) are both used to generate the feedback and
given to DPS as hyperparameters for learning the utilities; thus, the algorithm knows
the true environment prior and likelihood.

95

Figure 4.11 displays the cumulative regret and estimated information ratio values for
three example simulation runs. As before, information ratio values tend to decrease
as learning progresses. Figure 4.12 depicts the maximum information ratio value
observed in each of the 80 simulations, with the maximum taken over the 1,000
learning iterations. All of the information ratio values are significantly less than the
dimensionality, 3 = (�.

Figure 4.12: Scatter plot of the maximum information ratio estimates for the
preference-based RL setting with known dynamics and MCMC posterior infer-
ence. Each dot corresponds to one of the 80 simulation runs, with the maximum
taken over the 1,000 learning iterations. The x-axis labels indicate theMDP structure
labels (from Table 4.1) and the values of 3 = (�. In all cases, the information ratios
are significantly less than 3.

4.5 Empirical Performance of DPS
This section presents empirical results of executingDPS in both the preference-based
generalized linear bandit and RL settings.

Generalized Linear Dueling Bandit Simulations
The empirical performance of DPS is first evaluated in the linear and logistic dueling
bandit settings, in which utility inference is respectively performed via Bayesian
linear regression and Bayesian logistic regression. The results demonstrate that DPS
generally performs well, and is competitive against baseline algorithms.

Experimental setup. Recall that in the linear and logistic dueling bandit settings,

96

DPS learns over an action spaceA ⊂ R3 of cardinality � = |A|. These experiments
evaluate DPS with action spaces of size � = 1, 000 and dimensionalities 3 ∈
{3, 5, 10}. For each dimension 3 considered, a set of 100 environmentswas randomly
and independently sampled. Each sampled environment consists of an action space
A ⊂ R3 and a utility vector r ∈ R3 . The action spaces were sampled from the
surface of the 3-dimensional unit sphere using the Poisson disk sampling method
described in the previous section and illustrated in Figure 4.1. The utility vectors
were sampled uniformly from the surface of the unit sphere.

Each simulation run consisted of 500 learning iterations, such that in each iteration,
the algorithm selected two actions from A and received a pairwise preference
between them. Preferences were generated in simulation by comparing the two
actions’ utilities, where the utility of an action x ∈ A is given by D(x) = r)x;
note that this utility information was hidden from the learning algorithm, which
only observed the pairwise preferences. For each action space dimensionality 3 ∈
{3, 5, 10}, preference feedback was generated via two different models: a) a logistic
model, in which for x, x′ ∈ A, %(x � x′) = {1+exp[−(D(x) −D(x′))/2]}−1, and b)
a linear model, %(x � x′) = (D(x) − D(x′))/2. In both cases, the temperature 2 > 0
controls the degree of noisiness, and for the linear model, 2 is assumed to be large
enough that %(x � x′) ∈ [0, 1]. Note that in ties where D(x) = D(x′), preferences
are generated uniformly-at-random.

Methods compared. With logistic preference feedback, the simulations consider
three values of 2 for each dimension 3: 2 ∈ {1, 0.1, 0.01}. With linear preference
feedback, meanwhile, the simulations use 2 = 4. This latter value of 2 ensures that
%(x � x′) ∈ [0, 1] for any x, x′ ∈ A, but yields significantly-noisier preference
feedback than the logistic feedback models considered.

For each combination of the three dimensionalities (3 ∈ {3, 5, 10}) and four types
of preference feedback (logistic with 2 ∈ {1, 0.1, 0.01} and linear with 2 = 4),
the following learning algorithms are considered. Firstly, DPS is tested with util-
ity inference via both Bayesian linear regression and Bayesian logistic regression.
While Bayesian linear and logistic regression are both introduced in Section 4.3,
implementation details of the exact Bayesian models considered in the experiments
are given in Appendices A.1 and A.3, respectively.

Furthermore, two baseline algorithms are considered for each combination of 3
and type of user feedback. Both of these baselines utilize the Sparring framework
introduced in Ailon, Karnin, and Joachims (2014), in which two standard bandit

97

algorithms that expect absolute reward feedback compete against one another. In
every learning iteration, each of the two bandit algorithms selects an action, and
these two actions are dueled against one another. The algorithm whose action was
preferred receives a reward of 1, while the algorithm whose action was dominated
receives a reward of 0. Sparring is coupled with two upper confidence bound (UCB)
algorithms: the linear UCB algorithm from Abbasi-Yadkori, Pál, and Szepesvári
(2011) and the generalized linear bandits UCB algorithm from Filippi et al. (2010),
specialized to the logistic link function (i.e., logistic UCB). To my knowledge, there
is no prior work combining Sparring with Linear or Logistic UCB; however, this
seems a natural confidence-based approach for the generalized linear dueling bandit
problem, against which DPS can be compared.

The implementation details for these two baseline algorithms are given in Appendix
C. Notably, for both baselines, the algorithmic hyperparameters were optimized
independently for each dimension 3 and user feedback model. In contrast, the linear
DPS and logistic DPS simulations each use a single set of hyperparameters, which
was found to be well-performing across all dimensions 3 and user feedback models
considered. In this respect, the UCB simulations were given an advantage over DPS.

Results. Figure 4.13 depicts performance curves for DPS with linear and logistic
utility inference over the different action space dimensions and user feedback mod-
els considered. Appendix C also contains details about the hyperparameter ranges
tested for the different methods and their performance. DPS yields robust perfor-
mance under noisy preference feedback, and performs favorably compared to the
two baselines considered. This may be because unlike DPS, Sparring involves two
competing learning algorithms, which each only receive information about whether
their actions “beat” the competing algorithms’ actions, but do not account for the
competing algorithm’s choices of action. For all algorithms tested, performance
tends to degrade as noise in the preference feedback increases.

Notably, with DPS, both the linear and logistic utility inference methods yield
competitive performance when the preference feedback is generated via linear and
logistic noise models. This suggests that the performance of DPS is not overly-
sensitive to the model by which feedback is generated. Overall, these results imply
that DPS yields promising performance in the generalized linear dueling bandit
setting, and is robust under various types of preference feedback.

98

(a) 3 = 3, logistic, 2 = 0.01 (b) 3 = 5, logistic, 2 = 0.01 (c) 3 = 10, logistic, 2 = 0.01

(d) 3 = 3, logistic, 2 = 0.1 (e) 3 = 5, logistic, 2 = 0.1 (f) 3 = 10, logistic, 2 = 0.1

(g) 3 = 3, logistic, 2 = 1 (h) 3 = 5, logistic, 2 = 1 (i) 3 = 10, logistic, 2 = 1

(j) 3 = 3, linear, 2 = 4 (k) 3 = 5, linear, 2 = 4 (l) 3 = 10, linear, 2 = 4

Figure 4.13: Empirical performance of DPS in the generalized linear dueling bandit
setting (mean ± std over 100 runs). The plots show DPS with utility inference via
both Bayesian logistic and linear regression, and under both logistic (a-i) and linear
(j-l) user feedback noise. The plots normalize the rewards for each simulation run
such that the best and worst actions in A have rewards of 1 and 0, respectively. For
both baselines, the hyperparameters were optimized independently in each of the 12
cases, while for linear and logistic DPS, the plots depict results for a single set of
well-performing hyperparameters. DPS is competitive against both baselines and is
robust to the utility inference method and to noise in the preference feedback.

99

Preference-Based Reinforcement Learning Simulations
The empirical performance of DPS for preference-based RL is validated in three
simulated domains with varying degrees of preference noise and using three alterna-
tive credit assignment models. The results show that generally, DPS performs well
and compares favorably against standard preference-based RL baselines. Python
code for reproducing the experiments in this section is located online (Novoseller
et al., 2020a).

Experimental setup. DPS is evaluated on three simulated environments: RiverSwim
and random MDPs (described in Osband, Russo, and Van Roy, 2013) and the
Mountain Car problem as detailed in Wirth (2017). The RiverSwim environment
has six states and two actions (actions 0 and 1); the optimal policy always chooses
action 1, which maximizes the probability of reaching a goal state-action pair.
Meanwhile, a suboptimal policy—yielding a small reward compared to the goal—is
quickly and easily discovered and incentivizes the agent to always select action 0.
The algorithm must demonstrate sufficient exploration to have hope of discovering
the optimal policy quickly.

The second environment consists of randomly-generated MDPs with 10 states and
5 actions. The transition dynamics and rewards are, respectively, generated from
Dirichlet (all parameters set to 0.1) and exponential (rate parameter = 5) distri-
butions. These distribution parameters were chosen to generate MDPs with sparse
dynamics and rewards. For each random MDP, the sampled reward values were
shifted and normalized so that the minimum reward is zero and their mean is one.

Thirdly, in the Mountain Car problem, an under-powered car in a valley must reach
the top of a hill by accelerating in both directions to build its momentum. The state
space is two-dimensional (position and velocity), while there are three actions (left,
right, and neutral). The implementation, which is as described in Wirth (2017),
begins each episode in a uniformly-random state and has a maximum episode length
of 500. The state space is discretized into 10 states in each dimension. Each episode
terminates either when the car reaches the goal or after 500 steps, and rewards are
-1 in every step.

In each environment, preferences between trajectory pairs were generated by (nois-
ily) comparing their total accrued rewards; this reward information was hidden from
the learning algorithm, which observed only the trajectory preferences and state
transitions. For trajectories g8 and g9 with total rewards D(g8) and D(g9), two models
were considered for generating preferences: a) a logistic model, %(g8 � g9) = {1 +

100

exp[−(D(g8) − D(g9))/2]}−1, and b) a linear model, %(g8 � g9) = (D(g8) − D(g9))/2,
where in both cases, the temperature 2 controls the degree of noisiness. In the linear
case, 2 is assumed to be large enough that %(g8 � g9) ∈ [0, 1]. Note that in ties
where D(g8) = D(g9), preferences are uniformly-random.

Methods compared. DPS was evaluated under three credit assignment models (de-
scribed in Appendix A): 1) Bayesian linear regression, 2) Gaussian process regres-
sion, and 3) a Gaussian process preference model. User noise was generated via the
logistic model, with noise levels 2 ∈ {10, 2, 1, 0.001} for RiverSwim and random
MDPs and 2 ∈ {100, 20, 10, 0.001} for the Mountain Car. Higher values of 2 were
selected for the Mountain Car because |D(g8) − D(g9) | has a wider range. Addition-
ally, the linear preference noise model was evaluated with 2 = 2ℎΔr, where Δr is
the difference between the maximum and minimum element of r for each MDP; this
choice of 2 guarantees that %(g8 � g9) ∈ [0, 1], but yields noisier preferences than
the logistic noise models considered.

As discussed in Section 2.6, many existing preference-based RL algorithms handle
a somewhat distinct setting from the one considered here, as they assume that
agent-environment interactions can be simulated between preference queries and/or
prioritize minimizing preference queries rather than online regret. As a baseline,
this work evaluates the Every-Visit Preference Monte Carlo (EPMC) algorithm
with probabilistic credit assignment (Wirth and Fürnkranz, 2013a; Wirth, 2017).
While EPMC does not require simulations between preference queries, it has several
limitations, including: 1) the exploration approach always takes uniformly-random
actionswith some probability, and thus, the authors’ plots do not depict online reward
accumulation, and 2) EPMC assumes that compared trajectories start in the same
state. Lastly, DPS is compared against the posterior sampling RL algorithm (PSRL)
fromOsband, Russo, and Van Roy (2013), which observes true numerical rewards at
each step, and thus upper-bounds the achievable performance of a preference-based
algorithm.

Results. Figure 4.14 depicts performance curves for the three environments, each
with two noise models; Appendix D contains additional experimental details, as
well as results for the other noise parameters and from varying the algorithm’s hy-
perparameters. DPS performs well in all simulations, and significantly outperforms
the EPMC baseline. Typically, performance degrades as noise in the user feedback
increases. In RiverSwim, however, most credit assignment models perform best
when receiving the second-to-least-noisy user feedback (logistic noise, 2 = 1), since

101

(a) RiverSwim, 2 = 0.0001 (b) Random MDPs, 2 = 0.0001 (c) Mountain Car, 2 = 0.0001

(d) RiverSwim, 2 = 1 (e) Random MDPs, 2 = 1 (f) Mountain Car, 2 = 0.1

Figure 4.14: Empirical performance of DPS; each simulated environment is shown
under the two least-noisy user preference models evaluated. The plots show DPS
with three credit assignment models: Gaussian process regression (GPR), Bayesian
linear regression, and a Gaussian process preference model. PSRL is an upper bound
that receives numerical rewards, while EPMC is a baseline. Plots display the mean
+/- one standard deviation over 100 runs of each algorithm tested. Results from the
remaining user noise parameters are plotted in Appendix D. For RiverSwim and
Random MDPs, normalization is with respect to the total reward achieved by the
optimal policy. Overall, DPS performs well and is robust to the choice of credit
assignment model.

it is harder to escape the local minimum under the least-noisy preferences. DPS is
also competitive with PSRL, which has access to the full cardinal rewards at each
state-action. Additionally, while the theoretical guarantees for DPS assume fixed-
horizon episodes, the Mountain Car results demonstrate that it also succeeds with
variable episode lengths. Finally, the performance of DPS is robust to the choice
of credit assignment model, and in fact using Gaussian processes (for which we do
not currently have a regret analysis) often leads to the best empirical performance.
These results suggest that DPS is a practically-promising approach that can robustly
incorporate many models as subroutines.

102

4.6 Discussion
This work investigates the preference-based reinforcement learning problem, in
which an RL agent receives comparative preferences instead of absolute real-valued
rewards as feedback. It develops the Dueling Posterior Sampling (DPS) algorithm,
which optimizes policies in a highly efficient and flexible way. DPS integrates
Bayesian credit assignment with preference-based feedback and posterior sampling,
and this work proposes and evaluates several credit assignment models for DPS.
The DPS framework also applies to the generalized linear dueling bandit setting,
and can straightforwardly be extended to the multi-dueling bandit and RL settings,
where in each iteration, the learning agent can select more than two actions or
policies to elicit more than one preference. This work applies information-theoretic
techniques introduced in Russo and Van Roy (2016) to analyze the regret of DPS.
This involves empirically evaluating the information ratio introduced therein to
conjecture that it is upper-bounded by the dimension of the observations. As a
result, this approach establishes regret bounds both in the generalized linear dueling
bandit setting and in preference-based RLwith known transition dynamics. DPS also
performs well in simulation, making it both a theoretically-justified and practically-
promising algorithm.

103

C h a p t e r 5

MIXED-INITIATIVE LEARNING FOR EXOSKELETON GAIT
OPTIMIZATION

This chapter describes the CoSpar and LineCoSpar frameworks for learning per-
sonalized exoskeleton walking gaits to maximize user comfort. This work develops
a mixed-initiative human-in-the-loop system that learns from both preference and
coactive feedback to achieve efficient online optimization. The framework is de-
ployed on the Atalante lower-body exoskeleton to learn customized, user-preferred
walking trajectories in human subject experiments.

This work was done jointly with Professor Aaron Ames’ research group, and in
particular, in collaboration with Maegan Tucker and Myra Cheng. In addition, it is
published in Tucker, Novoseller, et al. (2020b) and Tucker, Cheng, et al. (2020b).

5.1 Introduction
The field of human-robot interaction is receiving increasing attention in many appli-
cation domains, frommobility assistance to autonomous driving, and from education
to dialog systems. In many such domains, for a robotic system to interact optimally
with a human user, it must adapt to user feedback. In particular, learning from user
feedback could help to improve robotic assistive devices.

This work focuses on optimizing walking gaits for a lower-body exoskeleton, Ata-
lante (pictured in Figure 5.1), in order tomaximize user comfort. Atalante, developed
by Wandercraft (Wandercraft, n.d.), uses 12 actuated joints to restore mobility to
individuals with lower-limb mobility impairments. Previous work with Atalante
demonstrated dynamically-stable walking using the method of partial hybrid zero
dynamics (PHZD), originally designed for bipedal robots (Harib et al., 2018; Gur-
riet, Finet, et al., 2018; Agrawal, Harib, et al., 2017). While this method generates
stable bipedal locomotion, it lacks the ability to optimize for the user’s comfort;
yet, user comfort should be a critical objective of gait optimization for exoskeleton
walking. While existing methods (Ames, 2014) can generate human-like walking
gaits for bipedal robots, it is unlikely that these methods fulfill the preferences of
individuals using robotic assistance.

The exoskeleton gait optimization problem is challenging, as it involves search-

104

Figure 5.1: Atalante Exoskeleton with and without a user. The user is wearing a
mask to measure metabolic expenditure.

ing over the vast space of all possible walking trajectories, accounting for user
feedback reliability, and learning from limited data obtained from time-intensive
human trials. Several existing approaches for customizing walking with various ex-
oskeletons optimize quantitative metrics, including body parameters and targeted
walking speeds (Wu, Liu, et al., 2018; Ren et al., 2019) and metabolic expenditure
(Kim et al., 2017; Zhang et al., 2017). However, since the goal of this work is to
optimize for user comfort, our learning approach instead queries the user for pref-
erences between sequential gait trials. Directly incorporating personalized feedback
avoids making overly-strong assumptions about gait preference, or optimizing for a
numerical quantity not aligned to personalized comfort.

In many real-world settings that involve learning from human feedback, it is chal-
lenging or impossible for people to reliably specify numerical scores or to provide
demonstrations (Amodei et al., 2016; Argall et al., 2009; Basu, Yang, et al., 2017;
Joachims et al., 2005). In particular, this is true in the exoskeleton application,
as it is difficult for users to remember many gaits at once. In contrast, the users’
relative preferences can measure their comfort more accurately. Indeed, previous
studies have found preferences to be more reliable than numerical scores in a range
of domains, including information retrieval (Chapelle, Joachims, et al., 2012) and
autonomous driving (Basu, Yang, et al., 2017). In the exoskeleton domain, query-

105

ing users for pairwise preferences only requires them to remember the current and
previous gait trials. Conversely, prompting users for numerical scores requires them
to remember all gait trials to ensure that the scoring is consistent over time.

While interactive preference learning has previously been used to tune parameters
for an ankle exoskeleton in Thatte, Duan, and Geyer (2018), the presented approach
utilizes domain knowledge to narrow the search space before performing online
learning. To generate preference queries, Thatte et al. employ Double Thompson
Sampling (Wu and Liu, 2016). This algorithm operates in the K-armed dueling
bandit setting, in which outcomes corresponding to different actions are assumed to
be independent. Yet, pairwise preferences provide a sparse feedback signal, as the
algorithm only receives one bit of information per preference query. In contrast to
Thatte, Duan, and Geyer (2018), we aim to optimize gaits over large gait parameter
spaces without prior assumptions on the users’ preferences.

Building upon techniques from dueling bandits (Sui, Zhuang, et al., 2017; Sui,
Zoghi, et al., 2018; Yue, Broder, et al., 2012) and coactive learning (Shivaswamy
and Joachims, 2012; Shivaswamy and Joachims, 2015), this work proposes the
CoSpar algorithm to learn user-preferred exoskeleton gaits. CoSpar is a mixed-
initiative approach, which both queries the user for preferences and allows the user
to suggest improvements via coactive feedback. By combining multiple types of
user feedback within a Gaussian process-based learning framework, CoSpar is able
to identify well-performing gaits within relatively few trials. CoSpar is validated in
both simulation and in human subject experiments with the Atalante exoskeleton, in
which CoSpar finds user-preferred gaits within a gait library.

This work also presents the LineCoSpar algorithm, which integrates CoSpar with
techniques from high-dimensional Bayesian optimization (Kirschner, Mutny, et al.,
2019) to create a unified framework for performing high-dimensional preference-
based learning. In simulation, LineCoSpar exhibits sample-efficient convergence to
user-preferred actions in high-dimensional spaces. The algorithm is then deployed
experimentally to optimize exoskeleton walking over six gait parameters (shown in
Figure 5.2) for six able-bodied subjects.

In summary, the CoSpar and LineCoSpar algorithms perform sample-efficient,
mixed-initiative human-in-the-loop learning to identify preferred actions in pos-
sibly high-dimensional spaces. This work not only identifies exoskeleton users’
preferred walking trajectories, but can also provide insights into their preferences
for certain gaits. Such knowledge could potentially help to design more comfortable

106

Figure 5.2: Human subject experiments with the LineCoSpar algorithm exploring
six exoskeleton gait parameters: step length, step duration, step width, maximum
step height, pelvis roll, and pelvis pitch.

exoskeleton gaits in the future.

5.2 Background on the Atalante Exoskeleton andGait Generation for Bipedal
Robots

Atalante (Harib et al., 2018; Duburcq et al., 2019; Gurriet, Tucker, et al., 2019),
developed by Wandercraft and pictured in Figure 5.1, has 12 actuated joints: three
at each hip, one at each knee, and two in each ankle. Gurriet, Finet, et al. (2018)
describe the device’s mechanical components and control architecture in detail. In
the Atalante exoskeleton, walking is achieved using pre-computed walking gaits,
generated using the partial hybrid zero dynamics framework (Ames, 2014) and a
nonlinear constrained optimization process that utilizes direct collocation.

The configuration space of the human-exoskeleton system is modeled as q =

(p, 5, q1) ∈ R18, where p ∈ R3 and 5 ∈ SO3 denote the position and orienta-
tion of the exoskeleton floating base frame with respect to the world frame, and
q1 ∈ R12 denotes the relative angles of the actuated joints. The generated gaits are
realized on the exoskeleton using PD control at the joint level and a high-level con-
troller that adjusts joint targets based on state feedback. The controller is executed
by an embedded computer unit running a real-time operating system. Gaits are sent
to the exoskeleton over a wireless connection via a custom graphical user interface.

Many existing lower-body exoskeletons either require the use of arm-crutches (Ekso

107

Bionics, n.d.; ReWalk, n.d.; Indego, n.d.) or use slow static gaits with speeds around
0.05m/s (Rex Bionics, n.d.). Using the PHZDmethod, dynamic crutchless exoskele-
tonwalking has been demonstrated to generate dynamically-stable gaits. This section
briefly explains this method to illustrate how exoskeleton gaits can be adapted in
response to user preferences; for more details on the gait generation process, refer to
Harib et al. (2018), Gurriet, Finet, et al. (2018), and Agrawal, Harib, et al. (2017).

Partial Hybrid Zero Dynamics Method
Systems with impulse effects, such as ground impacts, can be represented as hy-
brid control systems (Westervelt, Grizzle, and Koditschek, 2003; Bainov and Sime-
onov, 1989; Ye, Michel, and Hou, 1998). Summarizing from Gurriet, Finet, et
al. (2018), the natural system dynamics can then be represented on an invariant
reduced-dimensional surface, termed the zero dynamics surface (Westervelt, Griz-
zle, Chevallereau, et al., 2018), by appropriately defining the virtual constraints and
using a feedback-linearizing controller to drive them to zero. Since the exoskeleton’s
desired forward hip velocity is constant and its actual velocity experiences a jump
at impact, the partial zero dynamics surface is considered. The virtual constraints
are defined as the difference between the actual and desired outputs:

H1(q, ¤q) = H01 (q, ¤q) − E3
H2(q,") = H02 (q) − H

3
2 (g(q),"),

where the actual outputs H01 and H02 are velocity-regulating and position-modulating
terms, respectively. The output H01 is driven to a constant desired velocity E3 , while
H02 is driven to a vector of desired trajectories, H

3
2 . The trajectories H

3
2 are represented

using a Bézier polynomial with coefficients " and a state-based timing variable
g(q).

According to Theorem 2 in Ames (2014), if there exist virtual constraints that
yield an impact-invariant periodic orbit on the partial zero dynamics surface, then
the outputs—when properly controlled on the exoskeleton—yield stable periodic
walking. The orbit is impact-invariant if it returns to the partial zero dynamics
surface PZ" after an impact event. To find the polynomials " that yield an impact-
invariant periodic orbit on the reduced-order manifold, we formulate an optimization

108

problem of the form:

"∗ = argmin
"

J ("), (5.1)

s.t. Δ(S ∩ PZ") ⊂ PZU, (5.2)

W8x ≤ 18, (5.3)

where J (") is a user-determined cost, Eq. (5.2) is the impact invariance condition,
Eq. (5.3) contains other physical constraints, S is the guard defining the conditions
under which impulsive behavior occurs, and Δ is the reset map governing the
system’s dynamical response to hitting the guard.

The optimization in Eq.s (5.1)-(5.3) produces a gait that can be altered by varying
the cost function J (") and/or adding physical constraints. In bipedal walking, this
cost is frequently the mechanical cost of transport defined by Eq.s (17)-(18) in Reher
et al. (2020). To create the desired motion, one must add physical constraints such
as step length and foot height.

Gait Generation Applied to Lower-Body Exoskeletons
To translate the gait generation process to lower-body exoskeletons, one must choose
an optimization cost function and physical constraints to obtain user-preferred gaits.
While it is possible to optimize generated gaits for mechanical properties such as the
cost of transport, currently, there is no well-understood relationship between user
preferences and the parameters of the optimization problem. Additionally, due to
the time-consuming nature of gait generation—including both the time to tune the
optimization problem’s constraints and the time to run the program—the problem
of generating human-preferred dynamically-stable walking gaits remains largely
unexplored.

Gait Library
It has become increasingly common to pre-compute a set of nominal walking gaits
over a grid of various parameters (Da, Hartley, and Grizzle, 2017). These pre-
computed gaits are combined to form a “gait library,” from which gaits can be
selected and executed immediately. For the purpose of exoskeleton walking, a gait
library allows the operator to select a gait that is comfortable for the user; however,
it is not yet clear how to select an appropriate walking gait to optimize user comfort
and preference. Thus, we consider learning from the users’ qualitative feedback, as
discussed below, to select their most-preferred gaits.

109

This work utilizes a pre-computed gait library, in which gaits are specified by
parameters that include (among others) step dimensions (step length, width, height),
step duration, and pelvis roll and pitch.

5.3 The CoSpar Algorithm for Preference-Based Learning
We leverage preference-based learning (e.g., does the user prefer gait A over gait
B?) to determine the gait parameters most preferred by the user (Sui, Zoghi, et
al., 2018; Yue, Broder, et al., 2012; Shivaswamy and Joachims, 2015; Fürnkranz
and Hüllermeier, 2010; Sadigh et al., 2017; Fürnkranz, Hüllermeier, et al., 2012),
since preference feedback has been shown to be much more reliable than absolute
feedback when learning from subjective human responses (Sui, Zoghi, et al., 2018;
Joachims et al., 2005). Thus, our goal to personalize the exoskeleton’s gait can be
framed as a dueling bandit (Sui, Zoghi, et al., 2018; Yue, Broder, et al., 2012) and
coactive learning (Shivaswamy and Joachims, 2012; Shivaswamy and Joachims,
2015) problem.

Our work builds upon the SelfSparring algorithm (Algorithm 3), a Bayesian duel-
ing bandits approach that enjoys both competitive theoretical convergence guaran-
tees and empirical performance (Sui, Zhuang, et al., 2017). SelfSparring learns a
Bayesian posterior over each action’s utility to the user and draws multiple samples
from the model’s posterior to “duel” or “spar” via preference elicitation. The SelfS-
parring algorithm iteratively: a) draws multiple samples from the posterior model of
the actions’ utilities; b) for each sampled model, executes the action with the highest
sampled utility; c) queries for preference feedback between the executed actions;
and d) updates the posterior according to the acquired preference data. Section 2.5
describes the SelfSparring algorithm in more detail.

To collect more feedback beyond just one bit per preference query, we also allow
the user to suggest improvements during their trials. This approach resembles the
coactive learning framework (Shivaswamy and Joachims, 2012; Shivaswamy and
Joachims, 2015), in which the user identifies an improved action as feedback to each
presented action. Coactive learning has been applied to robot trajectory planning
(Jain, Sharma, et al., 2015; Somers and Hollinger, 2016), but has not, to our knowl-
edge, yet been applied to robotic gait generation or in concert with either preference
learning or Gaussian processes.

To optimize exoskeleton gaits over the gait library (Section 5.2), we propose the
CoSpar algorithm, a mixed-initiative learning approach (Wolfman et al., 2001;

110

Algorithm 13 CoSpar
1: Input:A = action set, = = number of actions to select in each iteration, 1 = buffer size,
(Σpr, 2) = utility prior parameters, V = coactive feedback weight

2: D = ∅ ⊲ Initialize preference dataset
3: Initialize prior over A: (-0,Σ0) = (0,Σpr)
4: for 8 = 1, 2, . . . , # do
5: for 9 = 1, . . . , = do
6: Sample utility function 5 9 from (-8−1,Σ8−1)
7: Select action x 9 (8) = argmaxx∈A 5 9 (x)
8: end for
9: Execute = actions {x1(8), . . . , x= (8)}
10: Observe pairwise preference feedback matrix ' ∈ {0, 1, ∅}}=×(=+1)
11: for 9 = 1, . . . , =; : = 1, . . . , = + 1 do
12: if ' 9: ≠ ∅ then
13: Append preference to dataset D
14: end if
15: end for
16: for 9 = 1, . . . , = do
17: Obtain coactive feedback x′

9
(8) ∈ A ∪ ∅ ⊲ ∅ = no coactive feedback given

18: if x′
9
(8) ≠ ∅ then

19: Add to D: x′
9
(8) preferred to x 9 (8), weight V

20: end if
21: end for
22: Update Bayesian posterior over D to obtain (-8 ,Σ8)
23: end for

Lester, Stone, and Stelling, 1999) which extends the SelfSparring algorithm to incor-
porate coactive feedback. Similarly to SelfSparring, CoSpar maintains a Bayesian
preference relation function over the possible actions, which is fitted to observed
preference feedback. CoSpar updates this model with user feedback and uses it to
select actions for new trials and to elicit feedback. We first define the Bayesian
preference model, and then detail the steps of Algorithm 13.

Bayesian Modeling of Utilities from Preference Data
We adopt the preference-based Gaussian process model of Chu and Ghahramani
(2005b). Gaussian process modeling is beneficial, as it enables us to model a
Bayesian posterior over a class of smooth, non-parametric functions.

Let A ⊂ R3 be the finite set of available actions, with cardinality � = |A|. At
any point in time, CoSpar has collected a preference feedback dataset D = {x:1 �
x:2 | : = 1, . . . , #} consisting of # preferences, where x:1 � x:2 indicates
that the user prefers action x:1 ∈ A to action x:2 ∈ A in the : th preference.
Furthermore, we assume that each action x ∈ A has a latent, underlying utility to

111

the user, 5 (x). For finite action spaces, the utilities can be written in vector form:
f := [5 (x1), 5 (x2), . . . , 5 (x�)]) . Given preference dataD, we are interested in the
posterior probability of f :

%(f | D) ∝ %(D | f)%(f). (5.4)

We define a Gaussian prior over f :

%(f) = 1
(2c)�/2 |Σpr |1/2

exp
(
−1

2
f) [Σpr]−1 f

)
,

where Σpr ∈ R�×� is the prior covariance matrix, such that [Σpr] 9 : = K(x 9 , x:) for
a kernel function K, for instance the squared exponential kernel given in Eq. (A.4).

For computing the likelihood %(D | f), we assume that the user’s preference
feedback may be corrupted by noise:

%(x:1 � x:2 | f) = 6
(
5 (x:1) − 5 (x:2)

2

)
, (5.5)

where 6(·) ∈ [0, 1] is a monotonically-increasing link function, and 2 > 0 is a
hyperparameter indicating the degree of noise in the preferences. Note that the
likelihood in Eq. (5.5) generalizes the one given in Chu and Ghahramani (2005b),
which corresponds specifically to aGaussian noisemodel as described in Section 2.2.
The likelihood from Chu and Ghahramani (2005b) is obtained by setting 2 = 2

√
f

and 6 = Φ in Eq. (5.5), where Φ is the standard Gaussian cumulative distribution
function.

Thus, the full expression for the likelihood is:

%(D | f) =
#∏
:=1

6

(
5 (x:1) − 5 (x:2)

2

)
. (5.6)

The posterior %(f | D) can be estimated via the Laplace approximation as a mul-
tivariate Gaussian distribution; see Section 2.1 and Chu and Ghahramani (2005b)
for background on the Laplace approximation. The next subsection discusses math-
ematical details of the Laplace approximation for the specific posterior in Eq. (5.4),
and derives a condition on the link function 6 that is necessary and sufficient in
order for the Laplace approximation to exist.

Finally, in formulating the posterior, preferences can be weighted relatively to one
another if some are thought to be noisier than others. This is accomplished by

112

changing 2 to 2: in Eq. (5.6) to model differing values of the preference noise
parameter among the data points, and is analogous to weighted Gaussian process
regression (Hong et al., 2017).

The Laplace Approximation
The Laplace approximation yields a Gaussian distribution N(f̂ , Σ̂) centered at the
MAP estimate f̂ :

f̂ = argmin
f

[
− log%(f | D)

]
= argmin

f
((f), where:

((f) : =
1
2
f)Σpr f −

#∑
:=1

log
[
6

(
5 (x:1) − 5 (x:2)

2

)]
.

Note that ((f) simply drops the constant terms from −log%(f | D) that do not
depend on f . The Laplace approximation’s posterior covariance Σ̂ is the inverse of
the Hessian matrix of ((f), given by:

Σ̂ =

(
∇2

f ((f)
)−1

= (Σpr + Λ)−1,

where Λ : = ∇2
f

{
−

#∑
:=1

log
[
6

(
5 (x:1) − 5 (x:2)

2

)]}
,

[Λ] 9 ; =
1
22

#∑
:=1

B: (9)B: (;)

−6′′

(
5 (x:1)− 5 (x:2)

2

)
6

(
5 (x:1)− 5 (x:2)

2

) + ©­­«
6′

(
5 (x:1)− 5 (x:2)

2

)
6

(
5 (x:1)− 5 (x:2)

2

) ª®®¬
2 ,

and B: (9) =


1, 9 = :1

−1, 9 = :2,

0, otherwise

.

Thus, each term of [Λ] 9 ; is a matrix " with only four nonzero elements, of the
form: 

["]:1,:1 = ["]:2,:2 = 0

["]:1,:2 = ["]:2,:1 = −0

["] 9 ; = 0, otherwise,

, (5.7)

where 0 = 1
22


−6′′

(
5 (x:1)− 5 (x:2)

2

)
6

(
5 (x:1)− 5 (x:2)

2

) +
(
6′

(
5 (x:1)− 5 (x:2)

2

)
6

(
5 (x:1)− 5 (x:2)

2

))2 .

113

It can be shown that the matrix in Eq. (5.7) is positive semidefinite if and only if

0 > 0. Therefore, it suffices to show that:
−6′′

(
5 (x:1)− 5 (x:2)

2

)
6

(
5 (x:1)− 5 (x:2)

2

) +
(
6′

(
5 (x:1)− 5 (x:2)

2

)
6

(
5 (x:1)− 5 (x:2)

2

))2

≥ 0.

Since this condition must hold for all input arguments of 6(·), we arrive at the fol-
lowing final necessary and sufficient convexity condition for validity of the Laplace
approximation:

−6′′(G)
6(G) +

(
6′(G)
6(G)

)2
≥ 0, ∀ G ∈ R. (5.8)

Thus, in order to show that the Laplace approximation is valid for some candidate
link function 6, one must simply calculate its derivatives and show that they satisfy
the convexity condition in Eq. (5.8). Both the Gaussian link function 6 = Φ and the
sigmoidal link function 6log = (1 + 4−G)−1 satisfy Eq. (5.8).

The CoSpar Learning Algorithm
The tuple (Σpr, 2) contains the prior parameters of the Bayesian preference model,
as defined above. These parameters are, respectively, the covariance matrix of the
Gaussian process prior and a hyperparameter quantifying the degree of noise in
the user’s preferences. From these parameters, one obtains the prior mean and
covariance, (-0,Σ0) (Line 3 in Alg. 13). In each iteration 8, CoSpar updates the
utility model (Line 22) via the Laplace approximation to the posterior in Eq. (5.4)
to obtain N(-8,Σ8).

To select actions in the 8th iteration (Lines 5-8), the algorithm first draws = sam-
ples from the posterior, N(-8−1,Σ8−1). Each of these is a utility function 5 9 ,
9 ∈ {1, . . . , =}, which assigns a utility value to each action inA. The corresponding
selected action is simply the one maximizing 5 9 (Line 7): x 9 (8) = argmaxx∈A 5 9 (x)
for 9 ∈ {1, . . . , =}. The = actions are executed (Line 9), and the user provides pair-
wise preference feedback between pairs of these actions (the user can also state “no
preference”).

We extend SelfSparring (Sui, Zhuang, et al., 2017) to extract more preference
comparisons from the available trials by assuming that additionally, the user can
remember the 1 actions preceding the current = actions:

Assumption 7 (Recall buffer). The user remembers the 1 trials preceding the current
iteration, and can therefore give preferences (or state “no preference”) between any
pair of actions among the = trials in the current iteration and the 1 previous trials.

114

The user thus provides preferences between any combination of actions within the
current = trials and the previous 1 trials. For instance, with = = 1, 1 > 0, one can
interpret 1 as a buffer of previous trials that the user remembers, such that each new
sample is compared against all actions in the buffer. For = = 1 = 1, the user can
report preferences between any pair of two consecutive trials, i.e., the user is asked,
“Did you like this trial more or less than the previous trial?” For = = 1, 1 = 2,
the user would additionally be asked, “Did you like this trial more or less than the
second-to-last trial?” Compared to 1 = 0, a positive buffer size tends to extract more
information from the available trials.

We expect that setting = = 1 while increasing 1 to as many trials as the user can
accurately remember would minimize the trials required to reach a preferred gait. In
Line 9, the pairwise preferences from iteration 8 form a matrix ' ∈ {0, 1, ∅}=×(=+1);
the values 0 and 1 express preference information, while ∅ denotes the lack of a
preference between the actions concerned.

Finally, the user can suggest improvements in the form of coactive feedback (Line
17). For example, the user could request a longer or shorter step length. In Line 17, ∅
indicates that no coactive feedback was provided. Otherwise, the user’s suggestion is
appended to the dataD as preferred to the most recently executed action. In learning
themodel posterior, one can assign the coactive preferences a smaller weight relative
to pairwise preferences via the input parameter V > 0.

5.4 Simulation Results for CoSpar
CoSpar’s performance is evaluated in two sets of simulations, with: (1) the compass-
gait biped’s cost of transport,1 and (2) a set of synthetic optimization objective
functions.2 Both cases used aGaussian link function in their likelihood (8.4., 6 = Φ),
with a preference noise parameter of 2√

2
= f = 0.01 (where f is the standard

deviation of the Gaussian noise as described in Section 2.2). In both cases, CoSpar
efficiently converges to the optimum.

Python code for reproducing the experiments in this section is located on Github
(Tucker, Novoseller, et al., 2020a).

1Gaussian process kernel: squared exponential with lengthscale = 0.025, signal variance =
0.0001, noise variance = 1e-8.

2Gaussian process kernel: squared exponential with lengthscale = [0.15, 0.15], signal variance
= 0.0001, noise variance = 1e-5.

115

Optimizing the Compass-Gait Biped’s Cost of Transport
We first evaluate our approach with a simulated compass-gait biped, optimizing its
cost of transport over the step length via preference feedback (Figure 5.3). Prefer-
ences are determined by comparing cost of transport values, calculated by simulating
gaits for multiple step lengths, each at a fixed forward hip velocity of 0.2 m/s. These
simulated gaits were synthesized via a single-point shooting partial hybrid zero
dynamics method (Westervelt, Grizzle, Chevallereau, et al., 2018).

Figure 5.3: Leftmost: Cost of transport (COT) for the compass-gait biped at different
step lengths and a fixed 0.2 m/s velocity. Remaining plots: posterior utility estimates
of CoSpar (= = 2, 1 = 0; without coactive feedback) after varying iterations of
learning (posterior mean +/- 2 standard deviations). The plots each show three
posterior samples, which lie in the high-confidence region (mean +/- 2 standard
deviations) with high probability. The posterior utility estimate quickly converges
to identifying the optimal action.

We use CoSpar to minimize the one-dimensional objective function in Figure 5.3,
using pairwise preferences obtained by comparing cost of transport values for the
different step lengths. Here, we use CoSpar with = = 2, 1 = 0, and without coactive
feedback. Note that without a buffer or coactive feedback, CoSpar reduces to Self-
Sparring (Sui, Zhuang, et al., 2017) coupled with the Gaussian process preference
model from Chu and Ghahramani (2005b). At each iteration, two new samples are
drawn from the Bayesian posterior, and the resultant two step lengths are compared
to elicit a preference. Using the new preferences, CoSpar updates its posterior over
the utility of each step length.

Figure 5.3 depicts the evolution of the posterior preference model, where each
iteration corresponds to a preference between two new trials. With more preference
data, the posterior utility increasingly peaks at the point of lowest cost of transport.
These results suggest that CoSpar can efficiently identify high-utility actions from
preference feedback alone.

116

Optimizing Synthetic Two-Dimensional Functions
We next test CoSpar on a set of 100 synthetic two-dimensional utility functions,
such as the one shown in Figure 5.4a. Each utility function was generated from
a Gaussian process prior on a 30-by-30 grid. These experiments evaluate: 1) the
potential to scale CoSpar to higher dimensions, and 2) the advantages of coactive
feedback.

(a) Objective function (b) Model posterior

Figure 5.4: CoSpar models two-dimensional utility functions using preference data.
a) Example of a synthetic 2D objective function. b) Utility model posterior learned
after 150 iterations of CoSpar in simulation (= = 1; 1 = 1; coactive feedback).
CoSpar prioritizes identifying and exploring the optimal region, rather than learning
a globally-accurate utility landscape.

We compare three settings for CoSpar’s (=, 1) parameters: (2, 0), (3, 0), (1, 1). For
each setting—as well as with and without coactive feedback—we simulate CoSpar
on each of the 100 random objective functions. In each case, the number of objective
function evaluations, or experimental trials, was held constant at 150.

Coactive feedback suggests improvements to actions selected by the algorithm. In
simulation, such feedback is generated using a 2nd-order differencing approximation
to the objective function’s gradient. In each of the two dimensions, we chose the 50th

and 75th percentiles of the gradient magnitudes as thresholds to determine when to
give coactive feedback. If CoSpar selects a point at which both dimensions’ gradi-
ent components have magnitudes below their respective 50th percentile thresholds,
then no coactive feedback is given. Otherwise, we consider the higher-magnitude
gradient component, and depending on the highest threshold that it exceeds (50th or
75th), simulate coactive feedback as either a 5% or 10% increase in the appropriate
direction and dimension.

117

Figure 5.5 shows the simulation results. In each case, themixed-initiative simulations
involving coactive feedback improve upon those with only preferences. Learning is
slowest for = = 2, 1 = 0 (Figure 5.5), since that case elicits the fewest preferences.
Figure 5.4b depicts the utility model’s posterior mean for the objective function
in Figure 5.4a, learned in the simulation with = = 1, 1 = 1, and mixed-initiative
feedback. In comparing Figure 5.4b to Figure 5.4a, we see that CoSpar learns a
sharp peak around the optimum, as it is designed to converge to sampling preferred
regions, rather than giving the user undesirable options by exploring elsewhere.

Figure 5.5: CoSpar simulation results on 100 2D synthetic objective functions,
comparing CoSpar with and without coactive feedback for three settings of the pa-
rameters = and 1 (see Algorithm 13). Mean +/- standard error of the objective values
achieved over the 100 repetitions. The maximal and minimal objective function val-
ues are normalized to 0 and 1. We see that coactive feedback always helps, and that
= = 2, 1 = 0—which receives the fewest preferences—performs worst.

5.5 Deployment of CoSpar in Human Subject Exoskeleton Experiments
After its validation in simulation, CoSparwas deployed on a lower-body exoskeleton,
Atalante, in two personalized gait optimization experiments with human subjects.3
Both experiments aimed to determine gait parameter values that maximize user com-
fort, as captured by preference and coactive feedback. The first experiment,4 repeated
for three able-bodied subjects, used CoSpar to determine the users’ preferred step

3A video of the experimental results is located at Tucker, Novoseller, et al. (2020c).
4Gaussian process kernel: squared exponential with lengthscale = 0.03, signal variance = 0.005,

and noise variance = 1e-7. Preference noise hyperparameter: 2√
2
= f = 0.02.

118

lengths, i.e., optimizing over a one-dimensional feature space. The second experi-
ment5 demonstrates CoSpar’s effectiveness in two-dimensional feature spaces, and
optimizes simultaneously over two different gait feature pairs. Importantly, CoSpar
operates independently of the choice of gait features. The subjects’ metabolic ex-
penditure was also recorded via direct calorimetry as shown in Figure 5.1, but this
data was uninformative of user preferences, as users are not required to expend effort
toward walking.

Learning Preferences between Step Lengths
In the first experiment, all three subjects walked inside theAtalante exoskeleton, with
CoSpar selecting the gaits. We considered 15 equally-spaced step lengths between
0.08 and 0.18 meters, each with a precomputed gait from the gait library. Feature
discretization was based on users’ ability to distinguish nearby values. The users
decided when to end each trial, so as to be comfortable providing feedback. Since
users have difficulty remembering more than two trials at once, we used CoSpar
with = = 1 and 1 = 1, which corresponds to asking the user to compare each current
trial with the preceding one. Additionally, we queried the user for coactive feedback:
after each trial, the user could suggest a longer or shorter step length (±20% of the
range), a slightly longer or shorter step length (±10%), or no feedback. Coactive
feedback was added to the dataset and treated as additional preference feedback.

Each participant completed 20 gait trials, providing preference and coactive feedback
after each trial. Figure 5.6 illustrates the posterior’s evolution over the experiment.
After only five exoskeleton trials, CoSpar was already able to identify a relatively-
compact preferred step length subregion. After the 20 trials, three points along the
utility model’s posterior mean were selected: the maximum, mean, and minimum.
The user walked in the exoskeleton with each of these step lengths in a randomized
ordering, and gave a blind ranking of the three, as shown in Figure 5.6. For each
subject, the blind ranking matches the preference posterior obtained by CoSpar,
indicating effective learning of individual user preferences.

Learning Preferences over Multiple Features
We further demonstrate CoSpar’s practicality to personalize over multiple features,
by optimizing over two different feature pairs: 1) step length and step duration and
2) step length and step width. The protocol of the one-dimensional experiment

5Gaussian process kernel: same parameters as in 4 except for step duration lengthscale = 0.08
and step width lengthscale = 0.03.

119

Figure 5.6: Experimental results for optimizing step length with three subjects (one
row per subject). Columns 1-4 illustrate the evolution of the preference model
posterior (mean +/- standard deviation), shown at various trials. CoSpar converges
to similar but distinct optimal gaits for different subjects. Column 5 depicts the
subjects’ blind ranking of the three gaits executed after 20 trials. The rightmost
column displays the experimental trials in chronological order, with the background
depicting the posterior preference mean at each step length. CoSpar draws more
samples in the region of higher posterior preference.

was repeated for Subject 1, with step lengths discretized as before, step duration
discretized into 10 equally-spaced values between 0.85 and 1.15 seconds (with
10% and 20% modifications under coactive feedback), and step width into 6 values
between 0.25 and 0.30meters (20%and 40%modifications). After each trial, the user
was queried for both a pairwise preference and coactive feedback. Figure 5.7 shows
the results for both feature spaces. The estimated preference values were consistent
with a three-sample blind ranking evaluation, suggesting that CoSpar successfully
identified user-preferred parameters. Figure 5.8 displays phase diagrams of the
gaits with minimum, mean, and maximum posterior utility values to illustrate the
difference between preferred and non-preferred gaits.

5.6 TheLineCoSparAlgorithm forHigh-Dimensional Preference-BasedLearn-
ing

While the CoSpar algorithm reliably identifies user-preferred gaits in one and two-
dimensional action spaces, the preference-based gait optimization problem can be-
come intractable in larger action spaces. CoSpar must jointly maintain and sample
from a posterior over every action, resulting in a computational complexity that
increases exponentially in the action space dimension 3. Specifically, CoSpar opti-

120

Figure 5.7: Experimental results from two-dimensional feature spaces (top row: step
length and duration; bottom row: step length and width). Columns 1-4 illustrate
the evolution of the preference model’s posterior mean. Column 4 also shows the
subject’s blind rankings of the three gaits executed after 20 trials. Column 5 depicts
the experimental trials in chronological order, with the background as in Figure 5.6.
CoSpar draws more samples in the region of higher posterior preference.

Figure 5.8: Experimental phase diagrams of the left leg joints over 10 seconds
of walking. The gaits shown correspond to the maximum, mean, and minimum
preference posterior values for both of subject 1’s 2D experiments. For instance,
Subject 1 preferred gaits with longer step lengths, as shown by the larger range in
sagittal hip angles in the phase diagram.

mizes over the 3-dimensional action spaceA by discretizing the entire space before
beginning the learning process. With < uniformly-spaced points in each dimension
of A, this discretization results in an action space of cardinality � = |A| = <3 ,
where larger < enables finer-grained search at a higher computational cost. The
Bayesian preference model is updated over all � points during each iteration. This
update is intractable for higher values of 3, since computing the posterior over all �
points involves expensive matrix operations, such as inverting Σpr,Σ8 ∈ R�×�.

The LineCoSpar algorithm (Alg. 14) integrates the CoSpar framework with tech-
niques fromhigh-dimensionalGaussian process learning tomodel users’ preferences

121

in high-dimensional action spaces. Drawing inspiration from the LineBO algorithm
in Kirschner, Mutny, et al. (2019), LineCoSpar exploits low-dimensional structure
in the search space by sequentially considering one-dimensional subspaces from
which to sample actions. This allows the algorithm to maintain its Bayesian prefer-
ence relation function over a subset of the action space in each iteration. Compared
to CoSpar, LineCoSpar learns the model posterior much more efficiently and can
be scaled to higher dimensions. Figure 5.9 compares computation times for CoSpar
and LineCoSpar.

Algorithm 14 LineCoSpar
1: Input: A = action set; utility prior parameters (2 and kernel hyperparameters); < =

granularity of discretization
2: D = ∅,W = ∅ ⊲ D: preference data,W: actions in D
3: Set p1 to a uniformly-random action in A
4: for 8 = 1, 2, . . . , # do
5: L8 = random line through p8 , discretized via <
6: V8 = L8 ∪W ⊲ Points over which to update posterior
7: (-8 ,Σ8) = posterior over points inV8 , given D
8: Sample utility function 58 ∼ N(-8 ,Σ8)
9: Execute action x8 = argmaxx∈V8

58 (x)
10: Add pairwise preference between x8 and x8−1 to D
11: Add coactive feedback x′

8
� x8 to D

12: SetW =W ∪ {x8} ∪ {x′8} ⊲ Update set of actions in D
13: Set p8+1 = argmaxx∈V8

`8 (x)
14: end for

2 3 4 5 6

Dimensionality (d)

100

102

T
im

e
pe

r
ite

ra
tio

n
(s

) Comparison of time per iteration
LineCoSpar
CoSpar

Figure 5.9: Curse of dimensionality for CoSpar. Average time per iteration of CoSpar
versus LineCoSpar. The y-axis is on a logarithmic scale. For LineCoSpar, the time
is roughly constant in the number of dimensions 3, while the runtime of CoSpar
increases exponentially. For 3 = 4, the duration of a CoSpar iteration is inconvenient
in the human-in-the-loop learning setting, and for 3 ≥ 5, it is intractable.

This section provides background on existing approaches for high-dimensional
Gaussian process learning, and then describes the LineCoSpar algorithm, includ-

122

ing 1) defining the posterior updating procedure, 2) achieving high-dimensional
learning, and 3) incorporating posterior sampling and coactive feedback.

High-Dimensional Bayesian Optimization
Bayesian optimization is a powerful approach for optimizing expensive-to-evaluate
black-box functions. It maintains a model posterior over the unknown function, and
cycles through a) using the posterior to acquire actions at which to query the function,
b) querying the function, and c) updating the posterior using the obtained data. This
procedure is challenging in high-dimensional search spaces due to the computational
cost of the acquisition step (a), which often requires solving a non-convex optimiza-
tion problem over the search space, and maintaining the posterior in the update
step (c), which can require manipulating matrices that grow exponentially with the
action space’s dimension. Dimensionality reduction techniques are therefore an area
of active interest. Solutions vary from optimizing variable subsets (DropoutBO) (Li,
Gupta, et al., 2017) to projecting into lower-dimensional spaces (REMBO) (Wang
et al., 2016) to sequentially optimizing over one-dimensional subspaces (LineBO)
(Kirschner, Mutny, et al., 2019). We draw upon the approach of LineBO because
of its state-of-the-art performance in high-dimensional spaces. Furthermore, it is
especially sample-efficient in spaces with underlying low-dimensional structure. In
the case of exoskeleton walking, low-dimensional structure could appear as linear
relationships between two gait parameters in the user’s utility function, for instance,
users who prefer short step lengths also prefer short step durations.

The LineCoSpar Algorithm
Modeling Utilities Using Pairwise Preference Data. Similarly toCoSpar, LineCoSpar
uses pairwise comparisons to learn a Bayesianmodel posterior over the relative utili-
ties of actions (i.e., gait parameter combinations) to the user based upon theGaussian
process preference model in Chu and Ghahramani (2005b). We focus on Gaussian
process methods because they model smooth, non-parametric utility functions.

As previously, A ⊂ R3 represents the set of possible actions. In iteration 8 of the
algorithm, we consider a subset of the actions V8 ⊂ A, with cardinality +8 = |V8 |.
Though we will defineV8 later, we note that it includes all points in the dataset D;
the posterior is specifically modeled over points inV8. As in the CoSpar framework,
we assume that each action x ∈ A has a latent utility to the user, denoted as
5 (x). Throughout the learning process, LineCoSpar stores a dataset of all user
feedback, D = {x:1 � x:2 | : = 1, . . . , #}, consisting of # preferences, where

123

x:1 � x:2 indicates that the user prefers action x:1 to action x:2. The preference
data D is used to update the posterior utilities of the actions in V8. Defining f =

[5 (x81), 5 (x82), . . . , 5 (x8+8)]
) ∈ R+8 , where x8 9 is the 9 th action inV8, the utilities f

have posterior:

%(f | D) ∝ %(D | f)%(f). (5.9)

In each iteration 8, we define a Gaussian process prior over the utilities f of actions
inV8:

%(f) = 1
(2c)+8/2 |Σpr

8
|1/2

exp
(
−1

2
f) [Σpr

8
]−1 f

)
, (5.10)

where Σpr
8
∈ R+8×+8 is the prior covariance matrix, which must now be recalculated

in each iteration 8: [Σpr
8
] 9 : = K(a8 9 , a8:) for an appropriate kernel function K. Our

experiments use the squared exponential kernel.

The likelihood %(D | f) is calculated identically to the likelihood in CoSpar.
Importantly, V8 contains all points in the dataset D, and therefore the likelihood is
well-defined:

%(x:1 � x:2 | f) = 6
(
5 (x:1) − 5 (x:2)

2

)
,

where 6(·) ∈ [0, 1] is a monotonically-increasing link function, and 2 > 0 is a
hyperparameter indicating the magnitude of the preference noise.

While the previous CoSpar results utilize the Gaussian cumulative distribution func-
tion for 6, we empirically found that using the heavier-tailed sigmoid distribution,
6log(G) := 1

1+4−G , as the link function improves performance. The sigmoid link
function 6log(G) satisfies the convexity conditions for the Laplace approximation
described in Section 5.3 and has been used to model preferences in other contexts
(Wirth, Akrour, et al., 2017). The full likelihood expression becomes:

%(D | f) =
#∏
:=1

6log

(
5 (x:1) − 5 (x:2)

2

)
.

Aswith CoSpar, the posterior in Eq. (5.9) is estimated via the Laplace approximation
to yield a multivariate Gaussian distribution, N(-8,Σ8).

Sampling Approach for Higher Dimensions. Inspired by Kirschner, Mutny, et al.
(2019), LineCoSpar overcomes CoSpar’s computational intractability by iteratively
modeling the posterior over one-dimensional subspaces (lines), rather than con-
sidering the full action space A at once. In each iteration 8, LineCoSpar selects

124

uniformly-spaced points along a new random line L8 within the action space, which
lies along a uniformly-random direction and intersects the action p8 that maximizes
the posterior mean. Including p8 in the subspace L8 encourages exploration of
higher-utility areas. The posterior %(D | f) is calculated over V8 := L8 ∪ W,
whereW is the set of actions that appear in the preference feedback dataset D.

Critically, this approach reduces the model’s covariance matrices Σpr
8
,Σ8 from size

� × � to +8 × +8. Rather than growing exponentially in 3, which is impractical for
online learning, LineCoSpar’s complexity is constant in the dimension 3 and linear
in the number of iterations # . Since queries are expensive in many human-in-the-
loop robotics settings, # is typically low.

Posterior Sampling Framework. Utilities are learned using the SelfSparring (Sui,
Zhuang, et al., 2017) approach to posterior sampling. Specifically, in each iteration,
we calculate the posterior of the utilities f over the points in V8 = L8 ∪ W,
obtaining the posterior N(-8,Σ8) over V8. The algorithm then samples a utility
function 58 from the posterior, which assigns a utility to each action in V8. Next,
LineCoSpar executes the action x8 that maximizes 58: x8 = argmaxx∈V8 58 (x). The
user provides a preference (or indicates indifference, i.e. “no preference”) between
x8 and the preceding action x8−1.

In addition, for each executed action x8, the user can provide coactive feedback,
specifying the dimension, direction (higher or lower), and degree in which to change
x8. The user’s suggested action x′

8
is added toW, and the feedback is added to D

as x′
8
� x8. In each iteration, preference and coactive feedback each add at most

one action toW. Thus, in iteration 8, V8 contains at most < + 2(8 − 1) actions, so
its size is independent of the dimensionality 3. In the subsequent analysis, xmax is
defined as the action maximizing the final posterior mean after # iterations, i.e.,
xmax := argmaxx∈V8 `#+1(x).

Note that LineCoSpar can be generalized to include the = and 1 hyperparameters in
CoSpar, which respectively allow the algorithm to samplemultiple actions per learn-
ing iteration and to query the user for preferences between trials in non-consecutive
iterations. The LineCoSpar description in Algorithm 14 sets = = 1 = 1, since it is
hard for exoskeleton users to remember more than the current and previous gait trial
at any given time.

125

5.7 Performance of LineCoSpar in Simulation
We validate the performance of LineCoSpar in simulation using both standard
Bayesian optimization benchmarks and randomly-generated polynomials.6 The sim-
ulations show that LineCoSpar is sample-efficient, converges to sampling high-
valued actions, and learns a preference relation function such that actions with
higher objective values have high posterior utilities.

Python code for reproducing the LineCoSpar simulation results is available on
Github (Tucker, Cheng, et al., 2020c).

LineCoSpar Performance on Standard Bayesian Optimization Benchmarks
We evaluated the performance of LineCoSpar on the standard Hartmann3 (H3) and
Hartmann6 (H6) benchmarks (3 and 6 dimensions, respectively).We do not compare
LineCoSpar to other optimization methods because there are no other preference-
based Gaussian process methods that are tractable in high dimensions. We validate
LineCoSpar with noiseless preferences and then demonstrate its robustness to noisy
user preferences. Preferences are generated in simulation by comparing objective
function values.

Under ideal preference feedback, x:1 � x:2 if 5 (x:1) > 5 (x:2). The true objective
values 5 are invisible to the algorithm, which observes only the preference dataset
D. Compared to CoSpar, LineCoSpar converges to sampling actions with higher
objective values at a faster rate (Figure 5.10). Thus, LineCoSpar not only enables
higher-dimensional optimization, but also improves speed and accuracy of learning.

Since human preferences may be noisy, we tested the algorithm’s robustness to
noisy preference feedback. In simulation, this is modeled via %(x:1 � x:2) =(
1 + 4−

B:
2ℎ

)−1
, where B: = 5 (x:1) − 5 (x:2) and 2ℎ is a hyperparameter capturing

the noise level. As 2ℎ →∞, the preferences approach uniform randomness (i.e. be-
come noisier). Also, actions become less distinguishable when the distance between
5 (x:1) and 5 (x:2) decreases. This reflects human preference generation, since it is
more difficult to give consistent preferences between actions with similar utilities.
By simulating noisy preferences, we demonstrate that LineCoSpar is robust to noisy
feedback. Figure 5.11 displays the results.

6All experiments use the squared exponential Gaussian process kernel with lengthscale 0.15 in
every dimension, signal variance 1e−4, noise variance 1e−5, and preference noise 2 = 0.005 with a
sigmoidal link function.

126

0 20 40 60 80 100 120 140

Number of iterations (t)

0.0

0.2

0.4

0.6

0.8

1.0

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

(n
or

m
al

iz
ed

) Sampled values over time

CoSpar (H3)
LineCoSpar (H3)
LineCoSpar (H6)

Figure 5.10: Convergence to higher objective values on standard benchmarks. Mean
objective value ± standard deviation using H3 and H6, averaged over 100 runs.
Compared to CoSpar, LineCoSpar converges to sampling actions with higher ob-
jective values at a faster rate, as it employs an improved sampling approach and link
function. It is intractable to run CoSpar on a 6-dimensional action space.

Figure 5.11: Robustness to noisy preferences. Mean objective value ± standard
deviation of the action xmax with the highest posterior utility. This is averaged over
100 runs of LineCoSpar on H6 with varying preference noise, as quantified by 2ℎ.
Higher performance correlates with less noise (lower 2ℎ). The algorithm is robust
to noise up to a certain degree (2ℎ ≤ 0.5).

LineCoSpar Simulations with Randomly-Generated Objective Functions
We also tested LineCoSpar using randomly-generated 3-dimensional polynomials
(for 3 = 6) as objective functions: ?(x) = ∑3

;=1 U;
∑3
9=1 V 9G 9 , where G 9 denotes

the 9 th element of x ∈ A, and U 9 , V 9 , 9 ∈ {1, . . . , 3} are sampled independently
from the uniform distributionU(−1, 1). The dimensions’ ranges and discretizations
match those in the exoskeleton experiments, so that LineCoSpar’s performance in
these simulations approximates the number of human trials needed to find optimal

127

gaits.

Coactive feedback was simulated for each sampled action x8 by finding an action x′
8

with a higher objective value that differs from x8 along only one dimension. The ac-
tion x′

8
is determined by randomly choosing a dimension in {1, . . . , 3} and direction

(positive or negative), and taking a step from x8 along this vector. If the resulting
action x′

8
has a higher objective value, it is added to the dataset D as x′

8
� x8. This

is a proxy for the human coactive feedback acquired in the exoskeleton experiments
described below, in which the user can suggest a dimension and direction in which
to modify an action to obtain an improved gait.

Figure 5.12 displays LineCoSpar’s performance over 100 randomly-generated poly-
nomials (10 repetitions each) with computation time shown in Figure 5.9. The
results demonstrate that LineCoSpar samples high-valued actions within relatively
few iterations (≈ 20 trials with coactive feedback).

0 20 40 60 80 100 120 140

Number of iterations (t)
0.2

0.4

0.6

0.8

1.0

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

(n
or

m
al

iz
ed

) Sampled values over time

no coactive feedback
with coactive feedback

Figure 5.12: Coactive feedback improves convergence of LineCoSpar. Mean ob-
jective value ± standard deviation of the sampled actions using random objective
functions. Results are averaged over 1,000 runs of LineCoSpar over 100 randomly-
generated six-dimensional functions (3 = 6; 10 runs per synthetic function). The
sampled actions converge to high objective values in relatively few iterations, and
coactive feedback accelerates this process.

5.8 Deployment of LineCoSpar in Human Subject Exoskeleton Experiments
After LineCoSpar’s performance was demonstrated in simulation, the algorithm
was experimentally deployed on the lower-body exoskeleton Atalante (Figure 5.2)
to optimize six gait parameters for six able-bodied users. 7

7Please see Tucker, Cheng, et al. (2020a) for a video of the experimental results.

128

Experimental Procedure
LineCoSpar optimized exoskeleton gaits for six self-identified able-bodied subjects
over the six gait parameters shown in Figure 5.2: step length, step duration, step
width, maximum step height, pelvis roll, and pelvis pitch. These parameters were
chosen from the pre-computed gait library because they are relatively intuitive for
users to understand when giving coactive feedback. The parameter ranges, respec-
tively, are: 0.08-0.18 meters, 0.85-1.15 seconds, 0.25-0.3 meters, 0.065-0.075 me-
ters, 5.5-9.5 degrees, and 10.5-14.5 degrees. Figure 5.13 illustrates the experimental
procedure for testing and validating LineCoSpar.

Figure 5.13: LineCoSpar experimental procedure. After setup of the subject-
exoskeleton system, subjects were queried for preferences between all consecutive
gait pairs, along with coactive feedback, in 30 gait trials (in total, at most 29 pairwise
preferences and 30 pieces of coactive feedback). After these 30 trials, the subject
unknowingly entered the validation portion of the experiment, in which he/she
validated the posterior-maximizing gait, xmax, against four randomly-selected gaits.

All subjects were volunteers without prior exoskeleton exposure. For each subject,
the testing procedure lasted approximately two hours, with one hour of setup and
one hour of exoskeleton testing. The setup consisted of explaining the procedure
(including how to provide preference and coactive feedback), measuring subject
parameters, and adjusting the thigh and shank lengths of the exoskeleton to the
subject. During testing, the subjects had control over initiating and terminating each
instance of exoskeleton walking and were instructed to try each walking gait until
they felt comfortable giving feedback. The subjects could choose to test each gait
multiple times to confirm their preference. They could also specify “no preference”
between two trials, in which case no new preference was added to the dataset D.

After completing 30 trials (including trials with no preference, but excluding volun-
tary gait repetitions), the subject began a set of “validation” trials; the subject was not
informed of the start of the validation phase. Validation consisted of six additional
trials and yielded four pairwise preferences, each between the posterior-maximizing

129

action xmax and a randomly-generated action. This validation step verifies that xmax

is preferred over other parameter combinations across the search space.

Gait Optimization Results
Figure 5.14 shows that the LineCoSpar algorithm both explores across the gait
parameter space and exploits regions with higher posterior utility. Over time,
LineCoSpar increasingly samples actions concentrated in regions of the search
space that are preferred based on previous feedback. This results in a significant cor-
relation between visitation frequencies and posterior utilities across these regions
(Pearson’s p-value = 1.22e-10).

Figure 5.14: Exploration versus exploitation in the LineCoSpar human trials. Each
row depicts the distribution of a particular gait parameter’s values across all gaits
that the subject tested. Each dimension is discretized into 10 bins. Note that the al-
gorithm explores different parts of the action space for each subject. These visitation
frequencies exhibit a statistically-significant correlation with the posterior utilities
across these regions (Pearson’s p-value = 1.22e-10).

For each subject, Table 5.1 lists the parameters of the predicted optimal gaits, xmax,
identified by LineCoSpar. Table 5.1 also illustrates the results of the validation trials
for each subject. These results show that xmax was predominantly preferred over the
randomly-selected actions during validation. For four of the six subjects, all four
validation preferences matched the posterior, while the other subjects matched three
and one of the four preferences, respectively. Incorrect validation preferences may
be due to noise in the users’ preference feedback or because 30 trials is insufficient
to completely explore the entire gait parameter space.

5.9 Discussion
This work presents several contributions. Firstly, it develops the CoSpar interac-
tive learning framework for efficient, mixed-initiative learning from human pref-

130

Table 5.1: Gait parameters optimizing LineCoSpar’s posterior mean (xmax) for each
able-bodied subject.

Subject Step Length
(m)

Step Duration
(s)

Step Width
(m)

Max Step
Height (m)

Pelvis Roll
(deg)

Pelvis Pitch
(deg)

Validation
Accuracy (%)

1 0.0835 0.943 0.278 0.0674 6.38 10.9 75
2 0.136 1.04 0.285 0.0679 6.41 12.4 100
3 0.137 0.922 0.279 0.0688 8.56 11.4 100
4 0.127 0.989 0.268 0.065 6.68 12.7 25
5 0.161 1.05 0.258 0.0689 7.32 13.2 100
6 0.177 1.11 0.256 0.0663 7.71 13.5 100

erences and coactive feedback. Secondly, building upon the CoSpar algorithm,
we develop the LineCoSpar algorithm, which presents the first demonstration of
high-dimensional preference-based learning to our knowledge. We evaluate both al-
gorithms in simulation, showing that they learn to select optimal actions efficiently
and robustly.

Thirdly, CoSpar and LineCoSpar are deployed in human subject experiments with
the Atalante lower-body exoskeleton to learn personalized, user-preferred walking
gaits.8 In particular, LineCoSpar optimizes gaits over six gait parameters for six
able-bodied subjects. This work demonstrates the first application of preference-
based learning for optimizing dynamic crutchless walking. As seen in Figures 5.6
and 5.7, CoSpar successfully models the users’ preferences, identifying compact
subregions of preferred gaits. Furthermore, as seen in Table 5.1, different subjects
have varying most-preferred gaits, underscoring the importance of individualized
gait optimization and of studying the mechanisms underlying exoskeleton users’
preferences. This research presents promising advancements for human-in-the-loop
optimization in clinical trials and for the broader rehabilitation community.

8Videos of the experimental results can be seen at Tucker, Novoseller, et al. (2020c) and Tucker,
Cheng, et al. (2020a) for CoSpar and LineCoSpar, respectively.

131

C h a p t e r 6

CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Conclusion
This dissertation addresses the problem of learning from qualitative, human-in-the-
loop feedback, with the goal of developing algorithmic frameworks that robustly and
efficiently learn to optimize their interactions with humans in real-world settings.
Toward this goal, this thesis begins by presenting the Dueling Posterior Sampling
(DPS) framework for learning from human preferences in the generalized linear
dueling bandit and preference-based reinforcement learning (RL) settings. The DPS
framework integrates preference-based posterior sampling with Bayesian inference
of: 1) the utilities underlying the user’s preferences and 2) the environment’s tran-
sition dynamics in the RL setting. Several Bayesian credit assignment models are
developed and evaluated together with DPS.

In addition, the DPS algorithm is developed in concert with a theoretical analy-
sis framework, which adapts the information-theoretic posterior sampling analysis
in Russo and Van Roy (2016) to the preference-based feedback setting. This type
of analysis depends upon upper-bounding the information ratio, a quantity which
directly balances between exploration and exploitation. Experiments suggest that
DPS has a bounded information ratio when coupled with a linear link function, and
therefore, that it has a competitive, finite-time Bayesian regret guarantee. Further-
more, DPS performs well empirically in a range of simulations, making it both a
theoretically-grounded and practically-promising algorithm.

This thesis also presents the CoSpar and LineCoSpar algorithms for mixed-initiative
learning from pairwise preferences and coactive feedback, in which the user suggests
improved actions to the algorithm. These algorithms assume that the user’s feedback
is explained by an underlying utility function, and use Gaussian process modeling
to learn a Bayesian posterior over these utilities. These algorithms demonstrate
sample-efficient convergence to well-performing actions and are robust to noise
in the users’ preferences. Furthermore, the LineCoSpar algorithm reliably learns
over high-dimensional action spaces, and presents the first framework for high-
dimensional Gaussian process learning from preference feedback to our knowledge.

Both the CoSpar and LineCoSpar algorithms are deployed in human subject ex-

132

periments with the Atalante exoskeleton to identify gaits that optimize the users’
comfort. In particular, the LineCoSpar algorithmoptimizes exoskeletonwalking over
a six-dimensional gait parameter space for six subjects. These algorithms achieve
state-of-the-art performance in converging to personalized, user-preferred exoskele-
ton gaits within relatively few trials. This work provides the first demonstration of
preference-based learning for optimizing dynamic crutchless exoskeleton walking.

6.2 Future Work
Theoretical Analysis of Preference-Based RL
There are many interesting directions for extending the work on DPS. Because the
current regret analysis relies upon a conjectured upper bound for the information
ratio, deriving an analytical information ratio upper bound remains an unsolved
problem. It could also be interesting to develop techniques for relating the Bayesian
regret and information ratio when DPS uses a sampling distribution that is not an
exact Bayesian posterior.

Meanwhile, the presented regret analysis specifically considers the linear link func-
tion. Therefore, another direction involves studying regret under other models for
credit assignment and user feedback generation, for instance using Bayesian lo-
gistic regression or the Gaussian process credit assignment models discussed in
Appendix A. More broadly, I expect that DPS would likely perform well with any
asymptotically-consistent reward model that sufficiently captures users’ preference
behavior. Notably, Theorem 2, which relates the Bayesian regret and information
ratio, does not depend on a specific credit assignment model. Moreover, the tech-
niques for estimating the information ratio in simulation could be straightforwardly
adapted to other credit assignment models and link functions.

Another future direction involves estimating information ratio values for preference-
based RL with unknown MDP transition dynamics. In contrast to the current proce-
dure for estimating the information ratio (Algorithm 11), this would require drawing
samples from the transition dynamics posterior in addition to the utility posterior.
These dynamics samples would be used to estimate the occupancy vectors corre-
sponding to each policy (i.e., the expected number of visits to each state-action pair
in a trajectory roll-out), which are needed to estimate the policies’ posterior utilities.
Furthermore, to determine each policy’s posterior probability of optimality, one
would need to sample a large number of transition dynamics and utility parameters
from their respective posteriors. For each sampled environment, consisting of both

133

sampled dynamics and utility parameters, one would perform value iteration to de-
termine the optimal policy under that sample. Such results would be of interest, as
there is currently no work on applying the information-theoretical regret analysis
techniques from Russo and Van Roy (2016) to the RL setting with unknown MDP
transition dynamics.

Finally, simulating the information ratio in the RL setting is very computationally
intensive for all but the smallestMDPs, as the number of deterministic policies firstly
grows exponentially with the state space size and episode length, and secondly is
governed by a power relationship with respect to the number of actions. Therefore,
developing new techniques to estimate this ratio could also be beneficial.

Preference-Based Learning in More General Settings
DPS assumes that the users’ preferences are explained by underlying utilities, and
that these utilities govern their preferences via standard link functions. It would
be helpful to better understand in what situations these modeling assumptions are
valid, and to develop a more general framework that relaxes them. Meanwhile, our
team is developing an extension to DPS that is tractable with larger state and action
spaces, by incorporating kernelized input spaces and methods such as continuous
value iteration (Deisenroth, Rasmussen, and Peters, 2009) to further improve sample
efficiency.

Exoskeleton Gait Optimization
Future steps for exoskeleton gait optimization include conducting studies involving
patients with paraplegia, whose preferences likely differ from those of able-bodied
subjects. Additionally, user preferences could change over time; for instance, in the
exoskeleton experiments, we observed that able-bodied users often prefer slower
walking gaits when they are less accustomed to walking inside of an exoskeleton.
Thus, creating algorithms that account for such adaptations is another important
direction for future study. Thirdly, the CoSpar and LineCoSpar frameworks could
also be extended beyondworkingwith precomputed gait libraries to generate entirely
new gaits or controller designs.

The CoSpar and LineCoSpar algorithms both aim to minimize the regret of online
learning by converging to the optimal gait as quickly as possible; therefore, over
time, their gait samples become increasingly biased toward user-preferred gaits. For
instance, Figure 5.4 illustrates that in synthetic function simulations with 150 iter-
ations, CoSpar’s learned objective function posterior consists primarily of a sharp

134

peak at the optimum. While this behavior is desirable for the gait optimization prob-
lem, it does not yield data that helps to understand the mechanisms underlying the
users’ preferences. Since developing CoSpar and LineCoSpar, our team has devel-
oped an active learning approach (ROIAL) that aims to learn the user’s preference
landscape as accurately as possible, rather than converging to the optimal gait (Li,
Tucker, et al., 2020). This extension takes steps toward better understanding the
underlying mechanics of user-preferred walking and toward gaining insight into the
science of walking with respect to exoskeleton gait design.

Mixed-Initiative Systems
The work on CoSpar and LineCoSpar develops a mixed-initiative system that in-
tegrates preference and coactive feedback. It would be interesting to further study
the interaction between various types of user feedback in such systems, for instance
when different types of feedback queries—preferences, suggestions, ordinal feed-
back, demonstrations, etc.—should be used, and how their combination impacts the
learning process. Additionally, while developing mixed-initiative approaches, it is
important to construct theoretical analysis frameworks that account for integrating
multiple user feedback modalities. One could also develop frameworks that decide
among several different types of feedback queries at every step in order to extract
the most information under a limited query budget.

Human Feedback Modeling
The DPS, CoSpar, and LineCoSpar algorithms all learn a Bayesian posterior over
the utility function underlying the users’ feedback. To use such Bayesian approaches
under various types of qualitative feedback, algorithms must robustly model the pro-
cesses by which users generate such feedback. With coactive feedback, for instance,
it is not currently clear how tomodel the processes behind its generation, and further-
more, these processes could vary depending upon specific application domains and
could also depend upon on human psychology. In addition, as mentioned previously,
the users’ feedback could change over time.

Finally, sample efficiency could be further maximized via learning systems capable
not only of individualizing their interactions for different human users, but also
of generalizing across users, leveraging existing user feedback to accelerate the
learning process for new users.

135

BIBLIOGRAPHY

Abbasi-Yadkori, Yasin, Dávid Pál, and Csaba Szepesvári. “Improved algorithms
for linear stochastic bandits.” In: Conference on Neural Information Processing
Systems. 2011, pp. 2312–2320.

Abeille, Marc and Alessandro Lazaric. “Linear Thompson sampling revisited.” In:
Electronic Journal of Statistics 11.2 (2017), pp. 5165–5197.

Agrawal, Ayush, Omar Harib, et al. “First steps towards translating HZD control
of bipedal robots to decentralized control of exoskeletons.” In: IEEE Access 5
(2017), pp. 9919–9934.

Agrawal, Shipra and Navin Goyal. “Analysis of Thompson sampling for the multi-
armed bandit problem.” In: Conference on Learning Theory (COLT). 2012,
pp. 39–1.

– “Thompson sampling for contextual bandits with linear payoffs.” In: International
Conference on Machine Learning. 2013, pp. 127–135.

Agrawal, Shipra and Randy Jia. “Optimistic posterior sampling for reinforcement
learning: Worst-case regret bounds.” In: Conference on Neural Information Pro-
cessing Systems. 2017, pp. 1184–1194.

Ailon, Nir, Zohar Karnin, and Thorsten Joachims. “Reducing dueling bandits to car-
dinal bandits.” In: International Conference onMachine Learning. 2014, pp. 856–
864.

Akrour, Riad, Marc Schoenauer, and Michèle Sebag. “APRIL: Active preference
learning-based reinforcement learning.” In: Joint European Conference on Ma-
chine Learning and Knowledge Discovery in Databases. Springer. 2012, pp. 116–
131.

Akrour, Riad,Marc Schoenauer,Michèle Sebag, and Jean-Christophe Souplet. “Pro-
gramming by feedback.” In: International Conference on Machine Learning.
2014, pp. 1503–1511.

Ames, Aaron D. “Human-inspired control of bipedal walking robots.” In: IEEE
Transactions on Automatic Control 59.5 (2014), pp. 1115–1130.

Amodei, Dario et al. “Concrete problems in AI safety.” In: arXiv preprint arXiv:
1606.06565 (2016).

Argall, Brenna D. et al. “A survey of robot learning from demonstration.” In:
Robotics and Autonomous Systems 57.5 (2009), pp. 469–483.

Armour, Brian S. et al. “Prevalence and causes of paralysis—United States, 2013.”
In: American Journal of Public Health 106.10 (2016), pp. 1855–1857.

136

Audibert, Jean-Yves and Sébastien Bubeck. “Regret bounds and minimax policies
under partial monitoring.” In: The Journal of Machine Learning Research 11
(2010), pp. 2785–2836.

Audibert, Jean-Yves,RémiMunos, andCsabaSzepesvári. “Exploration–exploitation
tradeoff using variance estimates in multi-armed bandits.” In: Theoretical Com-
puter Science 410.19 (2009), pp. 1876–1902.

Auer, Peter, Nicolo Cesa-Bianchi, and Paul Fischer. “Finite-time analysis of the
multiarmed bandit problem.” In:Machine Learning 47.2-3 (2002), pp. 235–256.

Bainov, Dromi D. and Pavel S. Simeonov. Systems with Impulse Effect: Stability,
Theory and Applications. John Wiley & Sons, 1989.

Bartlett, Peter L. and Ambuj Tewari. “REGAL: A regularization based algorithm
for reinforcement learning in weakly communicating MDPs.” In: Conference on
Uncertainty in Artificial Intelligence. 2012.

Basu, Chandrayee, Erdem Bıyık, et al. “Active learning of reward dynamics from
hierarchical queries.” In: IEEE International Conference on Intelligent Robots
and Systems (IROS). 2019, pp. 120–127.

Basu, Chandrayee, Qian Yang, et al. “Do you want your autonomous car to drive
like you?” In: ACM/IEEE International Conference on Human-Robot Interaction.
IEEE. 2017, pp. 417–425.

Billingsley, P. Convergence of Probability Measures. John Wiley & Sons, 1968.

Bıyık, Erdem, Nicolas Huynh, et al. “Active preference-based Gaussian process
regression for reward learning.” In: arXiv preprint arXiv:2005.02575 (2020).

Bıyık, Erdem, Malayandi Palan, et al. “Asking Easy Questions: A User-Friendly
Approach to Active Reward Learning.” In: Conference on Robot Learning. 2020,
pp. 1177–1190.

Bridson, Robert. “Fast Poisson disk sampling in arbitrary dimensions.” In: SIG-
GRAPH Sketches 10 (2007), p. 1.

Brochu, Eric, TysonBrochu, andNando deFreitas. “ABayesian interactive optimiza-
tion approach to procedural animation design.” In: Proceedings of the 2010 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation. 2010, pp. 103–
112.

Brochu, Eric, Vlad M. Cora, and Nando de Freitas. “A tutorial on Bayesian opti-
mization of expensive cost functions, with application to active user modeling and
hierarchical reinforcement learning.” In: arXiv preprint arXiv:1012.2599 (2010).

Brochu, Eric, Nando de Freitas, and Abhĳeet Ghosh. “Active preference learning
with discrete choice data.” In: Conference on Neural Information Processing
Systems. 2008, pp. 409–416.

137

Brost, Brian et al. “Multi-dueling bandits and their application to online ranker
evaluation.” In: ACM Conference on Information and Knowledge Management.
2016, pp. 2161–2166.

Bubeck, Sébastien and Che-Yu Liu. “Prior-free and prior-dependent regret bounds
for Thompson sampling.” In: Conference on Neural Information Processing Sys-
tems. 2013, pp. 638–646.

Burges, Christopher, Tal Shaked, et al. “Learning to rank using gradient descent.”
In: International Conference on Machine Learning. 2005, pp. 89–96.

Burges, Christopher J., Robert Ragno, and Quoc V. Le. “Learning to rank with
nonsmooth cost functions.” In: Conference on Neural Information Processing
Systems. 2007, pp. 193–200.

Busa-Fekete, Róbert et al. “Preference-based reinforcement learning: Evolutionary
direct policy search using a preference-based racing algorithm.” In: Machine
Learning 97.3 (2014), pp. 327–351.

Cesa-Bianchi, Nicolo and Gábor Lugosi. Prediction, Learning, and Games. Cam-
bridge University Press, 2006.

Chapelle, Olivier, Thorsten Joachims, et al. “Large-scale validation and analysis
of interleaved search evaluation.” In: ACM Transactions on Information Systems
(TOIS) 30.1 (2012), 6:1–6:41.

Chapelle, Olivier and Lihong Li. “An empirical evaluation of Thompson sampling.”
In: Conference on Neural Information Processing Systems. 2011, pp. 2249–2257.

Chowdhury, Sayak Ray and Aditya Gopalan. “On kernelized multi-armed bandits.”
In: International Conference on Machine Learning. 2017, pp. 844–853.

Christiano, Paul F. et al. “Deep reinforcement learning from human preferences.”
In: Conference on Neural Information Processing Systems. 2017, pp. 4299–4307.

Chu, Wei and Zoubin Ghahramani. “Gaussian processes for ordinal regression.” In:
Journal of Machine Learning Research 6 (2005), pp. 1019–1041.

– “Preference learning with Gaussian processes.” In: International Conference on
Machine Learning. 2005, pp. 137–144.

Chua, Kurtland et al. “Deep reinforcement learning in a handful of trials using prob-
abilistic dynamics models.” In: Conference on Neural Information Processing
Systems. 2018, pp. 4754–4765.

Clark, Jack and Dario Amodei. Faulty Reward Functions in the Wild. https:
//openai.com/blog/faulty-reward-functions/. 2016.

Cover, ThomasM. and Joy A. Thomas. Elements of Information Theory. JohnWiley
& Sons, 2012.

138

Da, Xingye, Ross Hartley, and JessyW. Grizzle. “Supervised learning for stabilizing
underactuated bipedal robot locomotion, with outdoor experiments on the wave
field.” In: 2017 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2017, pp. 3476–3483.

Dani, Varsha, Thomas P. Hayes, and Sham M. Kakade. “Stochastic linear optimiza-
tion under bandit feedback.” In: Conference On Learning Theory. 2008, pp. 355–
366.

Dann, Christoph and Emma Brunskill. “Sample complexity of episodic fixed-
horizon reinforcement learning.” In: Conference on Neural Information Pro-
cessing Systems. 2015, pp. 2818–2826.

Deisenroth, Marc Peter, Carl Edward Rasmussen, and Jan Peters. “Gaussian process
dynamic programming.” In: Neurocomputing 72.7-9 (2009), pp. 1508–1524.

Dollar,AaronM. andHughHerr. “Lower extremity exoskeletons and active orthoses:
Challenges and state-of-the-art.” In: IEEE Transactions on Robotics 24.1 (2008),
pp. 144–158.

Donati, Ana R. C. et al. “Long-term training with a brain-machine interface-based
gait protocol induces partial neurological recovery in paraplegic patients.” In:
Scientific Reports 6 (2016), p. 30383.

Dong, Shi and Benjamin Van Roy. “An information-theoretic analysis for Thompson
sampling with many actions.” In: Conference on Neural Information Processing
Systems. 2018, pp. 4157–4165.

Duburcq, Alexis et al. “Online trajectory planning through combined trajectory op-
timization and function approximation: Application to the exoskeleton Atalante.”
In: arXiv preprint arXiv:1910.00514 (2019).

Dunbar, Daniel and Greg Humphreys. Using scalloped sectors to generate Poisson-
disk sampling patterns. University of Virginia, Department of Computer Science.
2006.

Ebert, Frederik et al. “Visual foresight: Model-based deep reinforcement learning
for vision-based robotic control.” In: arXiv preprint arXiv:1812.00568 (2018).

Ekso Bionics. https://eksobionics.com/, Last accessed on 2019-09-14.

Facts and Figures at a Glance. National Spinal Cord Injury Statistical Center.
Birmingham, AL: University of Alabama at Birmingham. https://www.sci-
info- pages.com/wp- content/media/NSCISC- 2019- Spinal- Cord-
Injury-Facts-and-Figures-at-a-Glance.pdf. 2019.

Filippi, Sarah et al. “Parametric bandits: The generalized linear case.” In:Conference
on Neural Information Processing Systems. 2010, pp. 586–594.

Foreman-Mackey, Daniel et al. “emcee: The MCMC hammer.” In: Publications of
the Astronomical Society of the Pacific 125.925 (2013), p. 306.

139

Frazier, Peter I., Warren B. Powell, and Savas Dayanik. “A knowledge-gradient
policy for sequential information collection.” In: SIAM Journal on Control and
Optimization 47.5 (2008), pp. 2410–2439.

Fürnkranz, Johannes and Eyke Hüllermeier. Preference Learning. Springer, 2010.

Fürnkranz, Johannes, Eyke Hüllermeier, et al. “Preference-based reinforcement
learning: A formal framework and a policy iteration algorithm.” In: Machine
Learning 89.1-2 (2012), pp. 123–156.

Gad, Parag et al. “Weight bearing over-ground stepping in an exoskeleton with
non-invasive spinal cord neuromodulation after motor complete paraplegia.” In:
Frontiers in Neuroscience 11 (2017), p. 333.

Garivier,Aurélien andOlivierCappé. “TheKL-UCBalgorithm for bounded stochas-
tic bandits and beyond.” In: Proceedings of the 24th Annual Conference on Learn-
ing Theory. 2011, pp. 359–376.

Gittins, John. “A dynamic allocation index for the sequential design of experiments.”
In: Progress in Statistics (1974), pp. 241–266.

– “Bandit processes and dynamic allocation indices.” In: Journal of the Royal
Statistical Society: Series B (Methodological) 41.2 (1979), pp. 148–164.

Goemaere, Stefan et al. “Bone mineral status in paraplegic patients who do or do
not perform standing.” In: Osteoporosis International 4.3 (1994), pp. 138–143.

Golovin, Daniel and Andreas Krause. “Adaptive submodularity: Theory and appli-
cations in active learning and stochastic optimization.” In: Journal of Artificial
Intelligence Research 42 (2011), pp. 427–486.

Gopalan, Aditya and ShieMannor. “Thompson sampling for learning parameterized
Markov decision processes.” In: Conference on Learning Theory. 2015, pp. 861–
898.

Gourieroux, Christian and Alain Monfort. “Asymptotic properties of the maximum
likelihood estimator in dichotomous logit models.” In: Journal of Econometrics
17.1 (1981), pp. 83–97.

Granmo, Ole-Christoffer. “Solving two-armed Bernoulli bandit problems using a
Bayesian learning automaton.” In: International Journal of Intelligent Computing
and Cybernetics 3.2 (2010), p. 207.

Grimmett, Geoffrey R. and David R. Stirzaker. Probability and Random Processes.
Oxford University Press, 2001.

Gupta, Shanti S. and Klaus J. Miescke. “Bayesian look ahead one-stage sampling
allocations for selection of the best population.” In: Journal of Statistical Planning
and Inference 54.2 (1996), pp. 229–244.

Gurriet, Thomas, Sylvain Finet, et al. “Towards restoring locomotion for para-
plegics: Realizing dynamically stable walking on exoskeletons.” In: International
Conference on Robotics and Automation. IEEE. 2018, pp. 2804–2811.

140

Gurriet, Thomas, Maegan Tucker, et al. “Towards variable assistance for lower body
exoskeletons.” In: IEEE Robotics and Automation Letters 5.1 (2019), pp. 266–
273.

Harib, Omar et al. “Feedback control of an exoskeleton for paraplegics: Toward
robustly stable, hands-free dynamicwalking.” In: IEEEControl SystemsMagazine
38.6 (2018), pp. 61–87.

Hazan, Elad and Kfir Levy. “Bandit convex optimization: Towards tight bounds.”
In: Conference on Neural Information Processing Systems. 2014, pp. 784–792.

Hennig, Philipp and Christian J. Schuler. “Entropy search for information-efficient
global optimization.” In: The Journal of Machine Learning Research 13.1 (2012),
pp. 1809–1837.

Herbrich, Ralf, Thore Graepel, and Klaus Obermayer. “Support vector learning for
ordinal regression.” In: International Conference on Artificial Neural Networks.
IET. 1999, pp. 97–102.

Hoffman, Matthew, Eric Brochu, and Nando de Freitas. “Portfolio allocation for
Bayesian optimization.” In: Proceedings of the Twenty-Seventh Conference on
Uncertainty in Artificial Intelligence. 2011, pp. 327–336.

Hong, Xiaodan et al. “AweightedGaussian process regression formultivariate mod-
elling.” In: 2017 6th International Symposium on Advanced Control of Industrial
Processes (AdCONIP). IEEE. 2017, pp. 195–200.

Houlsby, Neil et al. “Bayesian active learning for classification and preference
learning.” In: arXiv preprint arXiv:1112.5745 (2011).

Ibarz, Borja et al. “Reward learning from human preferences and demonstrations
in Atari.” In: Conference on Neural Information Processing Systems. 2018,
pp. 8011–8023.

Indego. http://www.indego.com/indego/en/home, Last accessed on 2019-09-
14.

Jain, Ashesh, Shikhar Sharma, et al. “Learning preferences for manipulation tasks
from online coactive feedback.” In: The International Journal of Robotics Re-
search 34.10 (2015), pp. 1296–1313.

Jain, Shomik, Balasubramanian Thiagarajan, et al. “Modeling engagement in long-
term, in-home socially assistive robot interventions for children with autism spec-
trum disorders.” In: Science Robotics 5.39 (2020). doi: 10.1126/scirobotics.
aaz3791. eprint: https : / / robotics . sciencemag . org / content / 5 /
39/eaaz3791.full.pdf. url: https://robotics.sciencemag.org/
content/5/39/eaaz3791.

Jaksch, Thomas, Ronald Ortner, and Peter Auer. “Near-optimal regret bounds for
reinforcement learning.” In: Journal of Machine Learning Research 11 (2010),
pp. 1563–1600.

141

Joachims, Thorsten et al. “Accurately interpreting clickthrough data as implicit
feedback.” In: SIGIR. 2005, pp. 154–161.

Jones, Donald R., Matthias Schonlau, and William J. Welch. “Efficient global opti-
mization of expensive black-box functions.” In: Journal of Global Optimization
13.4 (1998), pp. 455–492.

Jordan, Michael Irwin. Learning in Graphical Models. The MIT Press, 1999.

Kaiser, Lukasz et al. “Model-based reinforcement learning for Atari.” In: arXiv
preprint arXiv:1903.00374 (2019). Published as a conference paper at the Inter-
national Conference on Learning Representations (ICLR), 2020.

Kanagawa, Motonobu et al. “Gaussian processes and kernel methods: A review on
connections and equivalences.” In: arXiv preprint arXiv:1807.02582 (2018).

Kaufmann, Emilie, Olivier Cappé, and Aurélien Garivier. “On Bayesian upper
confidence bounds for bandit problems.” In: InternationalConference onArtificial
Intelligence and Statistics. 2012, pp. 592–600.

Kearns, Michael and Satinder Singh. “Near-optimal reinforcement learning in poly-
nomial time.” In: Machine Learning 49.2-3 (2002), pp. 209–232.

Kim, Myunghee et al. “Human-in-the-loop Bayesian optimization of wearable de-
vice parameters.” In: PloS One 12.9 (2017), e0184054.

Kirschner, Johannes and Andreas Krause. “Information directed sampling and ban-
dits with heteroscedastic noise.” In: Conference on Learning Theory. 2018,
pp. 358–384.

Kirschner, Johannes,MojmirMutny, et al. “Adaptive and safe Bayesian optimization
in high dimensions via one-dimensional subspaces.” In: International Conference
on Machine Learning. 2019, pp. 3429–3438.

Kleinberg, Robert, Aleksandrs Slivkins, and Eli Upfal. “Multi-armed bandits in
metric spaces.” In: Proceedings of the Fortieth Annual ACM Symposium on
Theory of Computing. 2008, pp. 681–690.

Kolter, J. Zico and Andrew Y. Ng. “Near-Bayesian exploration in polynomial time.”
In: Proceedings of the 26th Annual International Conference on Machine Learn-
ing. 2009, pp. 513–520.

Komiyama, Junpei et al. “Regret lower bound and optimal algorithm in dueling
bandit problem.” In: Conference on Learning Theory. 2015, pp. 1141–1154.

Kupcsik, Andras, David Hsu, andWee Sun Lee. “Learning dynamic robot-to-human
object handover from human feedback.” In: Robotics Research. Springer, 2018,
pp. 161–176.

Lai, Tze Leung and Herbert Robbins. “Asymptotically efficient adaptive allocation
rules.” In: Advances in Applied Mathematics 6.1 (1985), pp. 4–22.

142

Lattimore, Tor and Marcus Hutter. “PAC bounds for discounted MDPs.” In: Inter-
national Conference on Algorithmic Learning Theory. Springer. 2012, pp. 320–
334.

Lester, James C., Brian A. Stone, and Gary D. Stelling. “Lifelike pedagogical agents
for mixed-initiative problem solving in constructivist learning environments.” In:
User Modeling and User-Adapted Interaction 9.1-2 (1999), pp. 1–44.

Li, Cheng, Sunil Gupta, et al. “High dimensional Bayesian optimization using
dropout.” In: Proceedings of the 26th International Joint Conference on Artificial
Intelligence. 2017, pp. 2096–2102.

Li, Kejun, Maegan Tucker, et al. “ROIAL: Region of Interest Active Learning
for Characterizing Exoskeleton Gait Preference Landscapes.” In: arXiv preprint
arXiv:2011.04812 (2020).

Lillicrap, Timothy P. et al. “Continuous control with deep reinforcement learning.”
In: arXiv preprint arXiv:1509.02971 (2015). Published as a conference paper at
the International Conference on Learning Representations (ICLR), 2016.

Liu, Tie-Yan. “Learning to rank for information retrieval.” In: Foundations and
Trends® in Information Retrieval 3.3 (2009), pp. 225–331.

May, Benedict C., Nathan Korda, et al. “Optimistic Bayesian sampling in contextual-
bandit problems.” In: The Journal of Machine Learning Research 13.1 (2012),
pp. 2069–2106.

May, Benedict C. and David S. Leslie. “Simulation studies in optimistic Bayesian
sampling in contextual-bandit problems.” In: Statistics Group, Department of
Mathematics, University of Bristol 11.02 (2011).

McCullagh, Peter and John A Nelder. Generalized Linear Models. 2nd Edition.
London, UK: Chapman and Hall, 1989.

Mehrholz, Jan et al. “Electromechanical-assisted training for walking after stroke
(review).” In: Cochrane Database of Systematic Reviews 5 (2017). John Wiley &
Sons, pp. 1–125.

Metropolis, Nicholas et al. “Equation of state calculations by fast computing ma-
chines.” In: The Journal of Chemical Physics 21.6 (1953), pp. 1087–1092.

Minka, Thomas and John Lafferty. “Expectation-propagation for the generative
aspect model.” In: Proceedings of the Eighteenth Conference on Uncertainty in
Artificial Intelligence. 2002, pp. 352–359.

Minka, Thomas P. “Expectation propagation for approximate Bayesian inference.”
In: Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intel-
ligence. 2001, pp. 362–369.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Alex Graves, et al. “Playing
Atari with deep reinforcement learning.” In: arXiv preprint arXiv:1312.5602
(2013).

143

Mnih,Volodymyr,KorayKavukcuoglu,David Silver,AndreiA.Rusu, et al. “Human-
level control through deep reinforcement learning.” In: Nature 518.7540 (2015),
pp. 529–533.

Murphy, Kevin P. Conjugate Bayesian Analysis of the Gaussian Distribution. Tech.
rep. University of British Columbia, 2007.

– Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

Neu, Gergely and Gábor Bartók. “An efficient algorithm for learning with semi-
bandit feedback.” In: International Conference on Algorithmic Learning Theory.
Springer. 2013, pp. 234–248.

Nikolov, Nikolay et al. “Information-directed exploration for deep reinforcement
learning.” In: arXiv preprint arXiv:1812.07544 (2018). Published as a conference
paper at the International Conference on Learning Representations (ICLR), 2019.

Novoseller, Ellen R. et al. Dueling Posterior Sampling for Preference-Based Re-
inforcement Learning. Code for the DPS algorithm. Available at: https://
github.com/ernovoseller/DuelingPosteriorSampling. 2020.

– “Dueling posterior sampling for preference-based reinforcement learning.” In:
Conference onUncertainty inArtificial Intelligence (UAI). PMLR. 2020, pp. 1029–
1038. url: http://proceedings.mlr.press/v124/novoseller20a.html.

Osband, Ian, Charles Blundell, et al. “Deep exploration via bootstrapped DQN.” In:
Conference on Neural Information Processing Systems. 2016, pp. 4026–4034.

Osband, Ian, Daniel Russo, and Benjamin Van Roy. “(More) efficient reinforce-
ment learning via posterior sampling.” In: Conference on Neural Information
Processing Systems. 2013, pp. 3003–3011.

Osband, Ian and Benjamin Van Roy. “Why is posterior sampling better than op-
timism for reinforcement learning?” In: International Conference on Machine
Learning. 2017, pp. 2701–2710.

Osband, Ian, Benjamin Van Roy, and Zheng Wen. “Generalization and exploration
via randomized value functions.” In: International Conference onMachine Learn-
ing. 2016, pp. 2377–2386.

Ouyang, Yi et al. “Learning unknown Markov decision processes: A Thompson
sampling approach.” In: Conference on Neural Information Processing Systems.
2017, pp. 1333–1342.

Payne, John W. et al. The Adaptive Decision Maker. Cambridge University Press,
1993.

Plaat, Aske, Walter Kosters, and Mike Preuss. “Model-based deep reinforcement
learning for high-dimensional problems, a survey.” In: arXiv preprint arXiv:2008.05598
(2020).

Popov, Ivaylo et al. “Data-efficient deep reinforcement learning for dexterous ma-
nipulation.” In: arXiv preprint arXiv:1704.03073 (2017).

144

Radlinski, Filip and Thorsten Joachims. “Query chains: Learning to rank from
implicit feedback.” In: ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining. ACM. 2005, pp. 239–248.

Raman, Karthik et al. “Stable coactive learning via perturbation.” In: International
Conference on Machine Learning. 2013, pp. 837–845.

Rasmussen, Carl Edward and Christopher K. Williams. Gaussian Processes for
Machine Learning. The MIT Press, 2006.

Reher, Jacob P. et al. “Algorithmic foundations of realizingmulti-contact locomotion
on the humanoid robot DURUS.” In: Algorithmic Foundations of Robotics XII.
Springer, Cham, 2020, pp. 400–415. url: http : / / ames . caltech . edu /
reher2020algorithmic.pdf.

Ren, Shixin et al. “Personalized gait trajectory generation based on anthropometric
features using Random Forest.” In: Journal of Ambient Intelligence and Human-
ized Computing (2019), pp. 1–12. doi: https://doi.org/10.1007/s12652-
019-01390-3.

ReWalk. https://rewalk.com/, Last accessed on 2019-09-14.

Rex Bionics. https://www.rexbionics.com/, Last accessed on 2019-09-14.

Robbins, Herbert. “Some aspects of the sequential design of experiments.” In:
Bulletin of the American Mathematical Society 58.5 (1952), pp. 527–535.

Ruan, Xiaogang et al. “Mobile robot navigation based on deep reinforcement learn-
ing.” In: 2019 Chinese Control and Decision Conference (CCDC). IEEE. 2019,
pp. 6174–6178.

Rusmevichientong, Paat and John N. Tsitsiklis. “Linearly parameterized bandits.”
In: Mathematics of Operations Research 35.2 (2010), pp. 395–411.

Russo,Daniel andBenjaminVanRoy. “An information-theoretic analysis of Thomp-
son sampling.” In: The Journal of Machine Learning Research 17.1 (2016),
pp. 2442–2471.

– “Learning to optimize via information-directed sampling.” In: Conference on
Neural Information Processing Systems. 2014, pp. 1583–1591.

– “Learning to optimize via posterior sampling.” In: Mathematics of Operations
Research 39.4 (2014), pp. 1221–1243.

Ryzhov, Ilya O., Warren B. Powell, and Peter I. Frazier. “The knowledge gradient al-
gorithm for a general class of online learning problems.” In:Operations Research
60.1 (2012), pp. 180–195.

Sadigh, Dorsa et al. “Active preference-based learning of reward functions.” In:Con-
ference onRobotics: Science and SystemsXIII. July 12 - July 16, 2017, Cambridge,
Massachusetts, USA. 2017. url: http://www.roboticsproceedings.org/
rss13/p53.pdf.

145

Saha, Ankan and Ambuj Tewari. “Improved regret guarantees for online smooth
convex optimization with bandit feedback.” In: Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics. 2011, pp. 636–
642.

Schuth, Anne, Harrie Oosterhuis, et al. “Multileave gradient descent for fast online
learning to rank.” In: Proceedings of the Ninth ACM International Conference on
Web Search and Data Mining. 2016, pp. 457–466.

Schuth, Anne, Floor Sietsma, et al. “Multileaved comparisons for fast online evalua-
tion.” In: Proceedings of the 23rd ACM International Conference on Information
and Knowledge Management. 2014, pp. 71–80.

Shivaswamy, Pannaga and Thorsten Joachims. “Coactive learning.” In: Journal of
Artificial Intelligence Research 53 (2015), pp. 1–40.

– “Online structured prediction via coactive learning.” In: International Conference
on Machine Learning. 2012, pp. 59–66.

Somers, Thane and Geoffrey A. Hollinger. “Human–robot planning and learning for
marine data collection.” In: Autonomous Robots 40.7 (2016), pp. 1123–1137.

Srinivas, Niranjan et al. “Gaussian process optimization in the bandit setting: No re-
gret and experimental design.” In: International Conference onMachine Learning
(ICML). 2010, pp. 1015–1022.

Stroke Facts. Centers for Disease Control and Prevention. https://www.cdc.
gov/stroke/facts.htm. 2020.

Sui, Yanan and Joel W. Burdick. “Clinical online recommendation with subgroup
rank feedback.” In: Proceedings of the 8th ACM Conference on Recommender
Systems. 2014, pp. 289–292.

Sui, Yanan, Yisong Yue, and Joel W. Burdick. “Correlational dueling bandits with
application to clinical treatment in large decision spaces.” In: Proceedings of
the Twenty-Sixth International Joint Conference on Artificial Intelligence. 2017,
pp. 2793–2799.

Sui, Yanan, Vincent Zhuang, et al. “Multi-dueling bandits with dependent arms.”
In: Proceedings of the Conference on Uncertainty in Artificial Intelligence. Aug.
11-15, 2017, Sydney, Australia. 2017. url: http://auai.org/uai2017/
proceedings/papers/155.pdf.

– “Stagewise safe Bayesian optimization with Gaussian processes.” In: Interna-
tional Conference on Machine Learning. 2018, pp. 4781–4789.

Sui, Yanan, Masrour Zoghi, et al. “Advancements in dueling bandits.” In: Interna-
tional Joint Conference on Artificial Intelligence. 2018, pp. 5502–5510.

Sutton, Richard S. and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, 2018.

146

Szörényi, Balázs et al. “Online rank elicitation for Plackett-Luce: A dueling bandits
approach.” In: Conference on Neural Information Processing Systems. 2015,
pp. 604–612.

Thatte, Nitish, Helei Duan, and Hartmut Geyer. “A method for online optimization
of lower limb assistive devices with high dimensional parameter spaces.” In:
International Conference on Robotics and Automation. IEEE. 2018, pp. 1–6.

Thompson, William R. “On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples.” In: Biometrika 25.3/4 (1933),
pp. 285–294.

Tucker, Maegan, Myra Cheng, et al. Human Preference-Based Learning for High-
dimensional Optimization of Exoskeleton Walking Gaits. Video of the experi-
mental results for Tucker, Cheng, et al., “Human preference-based learning for
high-dimensional optimization of exoskeleton walking gaits,” IROS. Available at:
https://www.youtube.com/watch?v=c6a0kXMyML0&feature=youtu.be.
2020.

– “Human preference-based learning for high-dimensional optimization of ex-
oskeleton walking gaits.” In: IEEE International Conference on Intelligent Robots
and Systems (IROS). 2020. url: https://arxiv.org/pdf/2003.06495.pdf.

– LineCoSpar. Code for the LineCoSpar algorithm. Available at: https : / /
github.com/myracheng/linecospar. 2020.

Tucker, Maegan, Ellen R. Novoseller, et al. CoSpar: Online Learning from Human
Preference and Coactive Feedback. Code for the CoSpar algorithm. Available at:
https://github.com/ernovoseller/CoSpar. 2020.

– “Preference-based learning for exoskeleton gait optimization.” In: IEEE Interna-
tional Conference on Robotics and Automation (ICRA). 2020. doi: 10.1109/
ICRA40945 . 2020 . 9196661. url: https : / / ieeexplore . ieee . org /
document/9196661.

– Preference-Based Learning on Lower-Body Exoskeletons. Video of the experi-
mental results for Tucker, Novoseller, et al., “Preference-based learning for ex-
oskeleton gait optimization,” ICRA. Available at: https://www.youtube.com/
watch?v=-27sHXsvONE&feature=youtu.be. 2020.

Urvoy, Tanguy et al. “Generic exploration and k-armed voting bandits.” In: Interna-
tional Conference on Machine Learning (ICML). 2013, pp. 91–99.

Wainwright, Martin J. High-Dimensional Statistics: A Non-Asymptotic Viewpoint.
Vol. 48. Cambridge University Press, 2019.

Wainwright, Martin J. and Michael I. Jordan. “Graphical models, exponential fam-
ilies, and variational inference.” In: Machine Learning 1.1-2 (2008), pp. 1–305.

Wandercraft. http://www.wandercraft.eu/, Last accessed on 2017-09-15.

147

Wang, Ziyu et al. “Bayesian optimization in a billion dimensions via random em-
beddings.” In: Journal of Artificial Intelligence Research 55 (2016), pp. 361–
387.

Westervelt, EricR., JessyW.Grizzle, ChristineChevallereau, et al.FeedbackControl
of Dynamic Bipedal Robot Locomotion. CRC press, 2018.

Westervelt, Eric R., Jessy W. Grizzle, and Daniel E. Koditschek. “Hybrid zero
dynamics of planar biped walkers.” In: IEEE Transactions on Automatic Control
48.1 (2003), pp. 42–56.

Wilson, Aaron, Alan Fern, and Prasad Tadepalli. “A Bayesian approach for policy
learning from trajectory preference queries.” In: Conference on Neural Informa-
tion Processing Systems. 2012, pp. 1133–1141.

Wirth, Christian. “Efficient Preference-based Reinforcement Learning.” PhD thesis.
Technische Universität, 2017.

Wirth, Christian, Riad Akrour, et al. “A survey of preference-based reinforcement
learning methods.” In: The Journal of Machine Learning Research 18.1 (2017),
pp. 4945–4990.

Wirth, Christian and Johannes Fürnkranz. “A policy iteration algorithm for learning
from preference-based feedback.” In: International Symposium on Intelligent
Data Analysis. Springer. 2013, pp. 427–437.

– “EPMC: Every visit preference Monte Carlo for reinforcement learning.” In:
Asian Conference on Machine Learning. 2013, pp. 483–497.

Wirth,Christian, Johannes Fürnkranz, andGerhardNeumann. “Model-free preference-
based reinforcement learning.” In: Thirtieth AAAI Conference on Artificial Intel-
ligence. 2016, pp. 2222–2228.

Wolff, Jamie et al. “A survey of stakeholder perspectives on exoskeleton technology.”
In: Journal of Neuroengineering and Rehabilitation 11.1 (2014), p. 169.

Wolfman, StevenA. et al. “Mixed initiative interfaces for learning tasks: SMARTedit
talks back.” In: Proceedings of the 6th International Conference on Intelligent
User Interfaces. ACM. 2001, pp. 167–174.

Wu, Huasen and Xin Liu. “Double Thompson sampling for dueling bandits.” In:
Conference on Neural Information Processing Systems. 2016, pp. 649–657.

Wu, Xinyu, Du-Xin Liu, et al. “Individualized gait pattern generation for sharing
lower limb exoskeleton robot.” In: IEEE Transactions on Automation Science and
Engineering 15.4 (2018), pp. 1459–1470.

Ye, Hui, Anthony N. Michel, and Ling Hou. “Stability theory for hybrid dynamical
systems.” In: IEEE Transactions on Automatic Control 43.4 (1998), pp. 461–474.

Yue,Yisong, Josef Broder, et al. “The k-armed dueling bandits problem.” In: Journal
of Computer and System Sciences 78.5 (2012), pp. 1538–1556.

148

Yue, Yisong, Thomas Finley, et al. “A support vector method for optimizing average
precision.” In: International SIGIR Conference on Research and Development in
Information Retrieval. ACM. 2007, pp. 271–278.

Yue, Yisong and Thorsten Joachims. “Beat the Mean Bandit.” In: International
Conference on Machine Learning (ICML). 2011, pp. 241–248.

– “Interactively optimizing information retrieval systems as a dueling bandits prob-
lem.” In: InternationalConference onMachine Learning (ICML). 2009, pp. 1201–
1208.

Zanette, Andrea and Rahul Sarkar. Information Directed Reinforcement Learning.
Tech. rep. Stanford University, 2017.

Zhang, Juanjuan et al. “Human-in-the-loop optimization of exoskeleton assistance
during walking.” In: Science 356.6344 (2017), pp. 1280–1284.

Zoghi, Masrour, Zohar S. Karnin, et al. “Copeland dueling bandits.” In: Conference
on Neural Information Processing Systems. 2015, pp. 307–315.

Zoghi, Masrour, ShimonA.Whiteson,Maarten De Rĳke, et al. “Relative confidence
sampling for efficient on-line ranker evaluation.” In: Proceedings of the 7th ACM
International Conference on Web Search and Data Mining. 2014, pp. 73–82.

Zoghi, Masrour, Shimon A. Whiteson, Rémi Munos, et al. “Relative upper confi-
dence bound for the k-armed dueling bandit problem.” In: International Confer-
ence on Machine Learning. 2014, pp. 10–18.

Zoghi, Masrour, Shimon A. Whiteson, and Maarten de Rĳke. “MergeRUCB: A
method for large-scale online ranker evaluation.” In: ACM International Confer-
ence on Web Search and Data Mining (WSDM). 2015, pp. 17–26.

149

A p p e n d i x A

MODELS FOR UTILITY INFERENCE AND CREDIT
ASSIGNMENT

This appendix contains the mathematical details of the credit assignment mod-
els evaluated in the Dueling Posterior Sampling (DPS) experiments, presented in
Section 4.5. These Bayesian models can be used together with either the preference-
based generalized linear bandit or RL settings.

A.1 Bayesian Linear Regression
While Bayesian linear regression was already introduced in Section 4.3, this section
briefly reviews the details of the experimental implementation.

Define - ∈ R#×3 as the observation matrix after # preferences, in which the 8th row
contains observation x8 = x82 − x81, while y ∈ R# is the vector of corresponding
preference labels, with 8th element H8 ∈

{
−1

2 ,
1
2
}
.

Section 4.3 defines the Bayesian linear regression credit assignment models to which
the theoretical guarantees apply. Because the V8 (X) factor necessary for the asymp-
totic consistency guarantees results in a conservative covariance matrix leading to
over-exploration, the DPS simulations implement the more practical variant given
in Eq. (4.1) and restated here. A Gaussian prior is defined over the reward vector
r ∈ R3: r ∼ N(0, _−1�). The likelihood of the data conditioned upon r is also
Gaussian:

?(y |-, r;f2) = 1
(2cf2) #2

exp
(
− 1

2f2 | |y − - r | |
2
)
.

This conjugate prior and likelihood lead to the following closed-form posterior:

r |-, y, f2, _ ∼ N(-,Σ), where
- = (-)- + f2_�)−1-) y and Σ = f2(-)- + f2_�)−1.

A.2 Gaussian Process Regression
Credit assignment via Gaussian processes (Rasmussen and Williams, 2006) ex-
tends the linear credit assignment model in A.1 to larger numbers of features 3
by generalizing across similar features. For instance, in the RL setting, one could

150

learn over larger state and action spaces by generalizing across nearby states and
actions. This section and the following one consider two Gaussian process-based
credit assignment approaches.

To perform credit assignment via Gaussian process regression, one can assign binary
labels to each observation based on whether it is preferred or dominated. A Gaussian
process prior is placed upon the underlying utilities r; for instance, in the RL setting,
this prior is placed on the utilities of the individual state-action pairs. Using that
a bandit action or RL trajectory’s total utility is a sum over the utilities in each
dimension (e.g., over each state-action pair in RL), this section shows how to perform
inference over sums of Gaussian process variables to infer the component utilities
in r from the total utilities. As the total utility of each bandit action or RL trajectory
is not observed in practice, the obtained binary preference labels are substituted as
approximations in their place.

To avoid having to constantly distinguish between the bandit and RL settings, the
rest of this section adapts all notation and terminology for preference-based RL. For
instance, the dimensions of r are referred to as utilities of state-action pairs, while
in the bandit setting, they are utility weights corresponding to each dimension of
the action space. Similarly, in the RL setting, the observations x81, x82 correspond to
trajectory features, while in the bandit setting, these are actions. However, the derived
posterior update equations (Eq.s (A.2) and (A.3)) apply as-is to the generalized linear
dueling bandit setting, and the two cases are mathematically-identical with respect
to the methods introduced in this section.

Let {B̃1, . . . , B̃3} denote the 3 = (� state-action pairs. In this section, the data matrix
/ ∈ R2#×3 holds all state-action visitation vectors x:1, x:2, for DPS iterations
: ∈ {1, . . . , #}. (This contrasts with the other credit assignment methods, which
learn from their differences, x:2 − x:1.) Let z)

8
be the 8th row of / , such that

/ = [z1 . . . , z2#]) , and z8 = x: 9 for some DPS iteration : and 9 ∈ {1, 2}, that is, z8
contains the state-action visit counts for the 8th trajectory rollout. In particular, the
8 9 th matrix element I8 9 = [/]8 9 is the number of times that the 8th observed trajectory
z8 visits state-action B̃ 9 .

The label vector is y′ ∈ R2# , where the 8th element H′
8
is the preference label

corresponding to the 8th-observed trajectory. For instance, if x82 � x81, then x82

receives a label of 1
2 , while x81 is labelled −

1
2 . As before, A (B̃) denotes the underlying

utility of state-action pair B̃, with D(g) being trajectory g’s total utility along the

151

state-action pairs it encounters.1 To infer r, each total utility D(g8) is approximated
with its preference label H′

8
.

A Gaussian process prior is placed upon the rewards r: r ∼ GP(-r , A), where
-r ∈ R3 is the prior mean and A ∈ R3×3 is the prior covariance matrix, such
that [A]8 9 models the prior covariance between A (B̃8) and A (B̃ 9). The total utility of
trajectory g8, denoted D(g8), is modeled as a sum over the latent state-action utilities:
D(g8) =

∑3
9=1 I8 9A (B̃ 9). Let '8 be a noisy version of D(g8): '8 = D(g8) + Y8, where

Y8 ∼ N(0, f2
Y) is i.i.d. noise. Then, given rewards r:

'8 =

3∑
9=1

I8 9A (B̃ 9) + Y8 .

Because any linear combination of jointly Gaussian variables is Gaussian, '8 is a
Gaussian process over the values {I81, . . . , I83}. Let X ∈ R2# be the vector with
8th element equal to '8. This section will calculate the relevant expectations and
covariances to show that r ∼ GP(-r , A) and X have the following jointly-Gaussian
distribution: [

r

X

]
∼ N

([
-r

--r

]
,

[
 A A/

)

/)A / A/
) + f2

Y �

])
. (A.1)

The standard approach for obtaining a conditional distribution from a joint Gaussian
distribution (Rasmussen and Williams, 2006) yields r |X ∼ N(-,Σ), where:

- = -r + A/) [/ A/) + f2
Y �]−1(X − /-r) (A.2)

Σ = A − A/) [/ A/) + f2
Y �]−1/)A . (A.3)

In practice, the variable X is not observed. Instead, X is approximated with the
observed preference labels y′, X ≈ y′, to perform credit assignment inference.

Next, this section derives the posterior inference equations (A.2) and (A.3) used
in Gaussian process regression credit assignment. The state-action rewards r are
inferred given noisy observations X of the trajectories’ total utilities via the following
four steps, corresponding to the next four subsections:

1The concept of a trajectory’s total utility is analogous to a 3-dimensional action’s utility in the
bandit setting, r) x for an action x ∈ A. A state-action utility A (B̃) is equal to a particular component
of r: r) e 9 for some 9 , where e 9 is a vector with 1 in the 9 th component and zeros elsewhere. A
state-action utility A (B̃) corresponds to the utility weight of an action space dimension in the bandit
setting, which is also r) e 9 (for some 9).

152

A) Model the state-action utilities A (B̃) as a Gaussian process over state-action
pairs B̃.

B) Model the trajectory utilities X as a Gaussian process that results from sum-
ming the state-action utilities A (B̃).

C) Using the two Gaussian processes defined in A) and B), obtain the covariance
matrix between the values of {A (B̃) | B̃ ∈ 1, . . . , 3} and {'8 |8 ∈ 1, . . . , 2#}.

D) Write the joint Gaussian distribution in Eq. (A.1) between the values of
{A (B̃) | B̃ ∈ 1, . . . , 3} and {'8 |8 ∈ 1, . . . , 2#}, and obtain the posterior distribu-
tion of r over all state-action pairs given X (Eq.s (A.2) and (A.3)).

The State-Action Utility Gaussian Process
The state-action utilities r are modeled as a Gaussian process over B̃, with mean
E[A (B̃)] = `A (B̃) and covariance kernel Cov(A (B̃8), A (B̃ 9)) = KA (B̃8, B̃ 9) for all state-
action pairs B̃8, B̃ 9 . For instance, KA could be the squared exponential kernel:

KA (B̃8, B̃ 9) = f2
5 exp

(
−1

2

(| | 5 (B̃8) − 5 (B̃ 9) | |
;

)2
)
+ f2

= X8 9 , (A.4)

where f2
5
is the signal variance, ; is the kernel lengthscale, f2

= is the noise variance,
X8 9 is the Kronecker delta function, and 5 : {1, . . . , (} × {1, . . . , �} −→ R< maps
each state-action pair to an <-dimensional representation that encodes proximity
between the state-action pairs. For instance, in the Mountain Car problem, each
state-action pair could be represented by a position and velocity (encoding the state)
and a one-dimensional action, so that < = 3. Thus,

A (B̃8) ∼ GP(`A (B̃8),KA (B̃8, B̃ 9)).

Define -A ∈ R3 such that the 8th element is [-A]8 = `A (B̃8), the prior mean of state-
action B̃8’s utility. Let A ∈ R3×3 be the covariance matrix over state-action utilities,
such that [A]8 9 = KA (B̃8, B̃ 9). Therefore, the reward vector r is also a Gaussian
process:

r ∼ GP(-A , A).

153

The Trajectory Utility Gaussian Process
By assumption, the trajectory utilities X ∈ R2# are sums of the latent state-action
utilities via the following relationship between X and r:

'(z8) := '8 =
3∑
9=1

I8 9A (B̃ 9) + Y8,

where Y8 are i.i.d. noise variables distributed according to N(0, f2
Y). Note that

'(z8) is a Gaussian process over z8 ∈ R3 because {A (B̃ 9),∀ 9} are jointly normally
distributed by definition of a Gaussian process, and any linear combination of jointly
Gaussian variables has a univariate normal distribution. Next, the expectation and
covariance of X is calculated. The expectation of the 8th element '8 = '(z8) can be
expressed as:

E['8] = E

3∑
9=1

I8 9A (B̃ 9) + Y8
 =

3∑
9=1

I8 9E[A (B̃ 9)] =
3∑
9=1

I8 9`A (B̃ 9).

The expectation over X can thus be written as E[X(/)] = /-A . Next, the covariance
matrix of X is computed. The 8 9 th element of this matrix is the covariance of '(z8)
and '(z 9):

Cov('(z8), '(z 9)) = E['(z8)'(z 9)] − E['(z8)]E['(z 9)]

= E

[(
3∑
:=1

I8:A (B̃:) + Y8

) (
3∑
<=1

I 9<A (B̃<) + Y 9

)]
−

(
3∑
:=1

I8:`A (B̃:)
) (

3∑
<=1

I 9<`A (B̃<)
)

=

3∑
:=1

3∑
<=1

I8: I 9<E[A (B̃:)A (B̃<)] + E[Y8Y 9] −
3∑
:=1

3∑
<=1

I8: I 9<`A (B̃:)`A (B̃<)

=

3∑
:=1

3∑
<=1

{
I8: I 9< [Cov(A (B̃:), A (B̃<)) + `A (B̃:)`A (B̃<)] − I8: I 9<`A (B̃:)`A (B̃<) + f2

Y I[8= 9]
}

=

3∑
:=1

3∑
<=1

I8: I 9<Cov(A (B̃:), A (B̃<)) + f2
Y I[8= 9]

=

3∑
:=1

3∑
<=1

I8: I 9<KA (B̃: , B̃<) + f2
Y I[8= 9] = z)8 A z 9 + f2

Y I[8= 9] .

One can then write the covariance matrix of X as ', where:

[']8 9 := Cov('(z8), '(z 9)) = z)8 A z 9 + f2
Y I[8= 9] .

154

From here, it can be seen that ' = / A/) + f2
Y � :

/ A/
) =


z)1
z)2
...

z)2#


 A

[
z1 z2 . . . z2#

]
=


z)1 A z1 . . . z)1 A z2#
...

. . .
...

z)2# A z1 . . . z)2# A z2#

 = ' −f
2
Y � .

Covariance between State-Action and Trajectory Utilities
This subsection considers the covariance between r and X, denoted A,':

[A,']8 9 = Cov([r]8, [X] 9) = Cov(A (B̃8), '(z 9)).

This covariance matrix can be expressed in terms of /, A , and -A :

[A,']8 9 = Cov(A (B̃8), '(z 9)) = Cov

(
A (B̃8),

3∑
:=1

I 9 :A (B̃:) + Y 9

)
= E

[
A (B̃8)

3∑
:=1

I 9 :A (B̃:) + Y 9A (B̃8)
]
− E[A (B̃8)]E

[
3∑
:=1

I 9 :A (B̃:) + Y 9

]
=

3∑
:=1

I 9 :E[A (B̃8)A (B̃:)] − [`A (B̃8)] [z)9 -A]

=

3∑
:=1

I 9 : {Cov(A (B̃8), A (B̃:)) + E[A (B̃8)]E[A (B̃:)]} − `A (B̃8)z)9 -A

=

3∑
:=1

I 9 : [KA (B̃8, B̃:) + `A (B̃8)`A (B̃:)] − `A (B̃8)z)9 -A

=

3∑
:=1

I 9 :KA (B̃8, B̃:) + `A (B̃8)z)9 -A − `A (B̃8)z)9 -A =
3∑
:=1

I 9 :KA (B̃8, B̃:) = z)9 [A])8,:,

where [A])8,: is the column vector obtained by transposing the 8th row of A . It is
evident that A,' = A/) .

Posterior Inference over State-Action Utilities
Merging the previous three subsections’ results, one obtains the following joint
probability density between r and X:[

r

X

]
∼ N

([
-A

/-A

]
,

[
 A A/

)

/)A / A/
) + f2

Y �

])
.

This relationship expresses all components of the joint Gaussian density in terms
of /, A , and -A , or in other words, in terms of the observed state-action visitation

155

counts (i.e., /) and the Gaussian process prior on r. The standard approach for
obtaining a conditional distribution from a joint Gaussian distribution yields r |X ∼
N(-,Σ), where the expressions for - and Σ are given by Eq.s (A.2) and (A.3) above.
By substituting y′ for X, the conditional posterior density of r can be expressed in
terms of / , y′, A , and -r , that is, in terms of observed data and the Gaussian process
prior parameters.

A.3 Gaussian Process Preference Model
Lastly, this section shows how to extend the preference-based Gaussian process
model defined in Chu andGhahramani (2005b) from the dueling bandit setting to the
preference-basedRL setting to perform credit assignment. As in the previous section,
the notation and terminology is adapted to the preference-based RL setting; however,
the same mathematics apply to the generalized linear dueling bandit problem.

Similarly to Section A.2, this approach places a Gaussian prior over possible utility
vectors r; in contrast, however, this method explicitly models the likelihood of the
observed preferences given r, and thus it is a more theoretically-justified approach
for handling preference data.

After # preferences have been elicited, the algorithm has collected a preference
feedback dataset D = {(x81, x82, H8) | 8 = 1, ..., #}, where H8 = 1

2 indicates that
x82 � x81, that is, trajectory g82 is preferred to g81 in preference 8. As before, each
state-action pair B̃ 9 , 9 ∈ {1, . . . , 3}, is assumed to have a latent, underlying utility
A (B̃ 9). In vector form, these are written: r = [A (B̃1), A (B̃2), ..., A (B̃3)]) . A Gaussian
process prior is defined over the utilities r:

?(r) = 1

(2c)
3
2 |Σ|

1
2

exp
(
−1

2
r)Σ−1r

)
, (A.5)

where Σ ∈ R3×3 and [Σ]8 9 = K(A (B̃8), A (B̃ 9)) for some kernel function K, such
as the squared exponential kernel defined in Eq. (A.4). Next, the likelihood of
the 8th preference given utilities r is assumed to take the following form, where
H′
8
= 2H8 ∈ {−1, 1}:

%(g82 � g81 | r) = %(x82 � x81 | r) = 6
(
H′8 ∗

D(g82) − D(g81)
2

)
,

where 6(·) is a monotonically-increasing link function with a range within [0, 1],
and 2 > 0 is a model hyperparameter controlling the degree of preference noise.
The total return D(g81) of trajectory g81 can be written in terms of the corresponding

156

state-action visit counts, x81: D(g81) = r)x81. Thus, the full likelihood expression is:

%(D | r) =
#∏
8=1

6(I8), (A.6)

I8 : =
H′
8
(D(g82) − D(g81))

2
=
H′
8
r) (x82 − x81)

2
=
H′
8
r)x8

2
.

Given the preference dataset D, one can model the posterior probability of r:

?(r | D) ∝ %(D | r)?(r),

where the expressions for the prior ?(r) and likelihood %(D | r) are given by
Eq.s (A.5) and (A.6), respectively. This posterior can be estimated by the Laplace
approximation, from which samples r̃ of the utilities r can easily be drawn:

r̃ ∼ N(r̂MAP, UΣMAP), where: (A.7)

r̂MAP = argminr((r), (A.8)

ΣMAP =
(
∇2
r((r) | r̂MAP

)−1
, (A.9)

and ((r) := 1
2 r
)Σ−1r −∑#

8=1 log 6(I8) is the negative log posterior, neglecting con-
stant termswith respect to r; lastly, U > 0 is a tunable hyperparameter that influences
the balance between exploration and exploitation. In order for the Laplace approxi-
mation to be valid, ((r) must be convex in r: this guarantees that the optimization
problem in Eq. (A.8) is convex and that the covariance matrix defined by Eq. (A.9)
is positive definite, and therefore a valid Gaussian covariance matrix. Convexity of
((r) can be established by demonstrating that its Hessian matrix is positive definite.
It can be shown that for any r, ∇2

r((r) = Σ−1 + Λ, where:

[Λ]<= :=
1
22

#∑
8=1
[x8]< [x8]=

[
−6
′′(I8)
6(I8)

+
(
6′(I8)
6(I8)

)2
]
, (A.10)

for x8 = x82 − x81. Because the prior covariance Σ is positive definite, to show that
∇2
r((r) is positive definite, it suffices to show that Λ is positive semidefinite. From

Eq. (A.10), one can see that:

Λ =
1
22

#∑
8=1

[
−6
′′(I8)
6(I8)

+
(
6′(I8)
6(I8)

)2
]
x8x

)
8 .

Clearly, x8x)8 is positive semidefinite, and thus, the following statement is a sufficient
condition for convexity of ((r):[

−6
′′(I)
6(I) +

(
6′(I)
6(I)

)]
≥ 0 for all I ∈ R.

157

In particular, this condition is satisfied for the Gaussian link function, 6Gaussian(·) =
Φ(·), where Φ is the standard Gaussian CDF, as well as for the sigmoidal link
function, 6log(G) := f(G) = 1

1+exp(−G) . In this work, the experiments utilize the
sigmoidal link function.

Bayesian Logistic Regression
Notably, the Bayesian logistic regression inference model discussed in Section 4.3
is a special case of the Gaussian process preference model, in which 2 = 1, 6 is the
sigmoidal link function, and the prior covariance matrix is diagonal, i.e. Σ = _�;
for instance, the latter condition occurs with the squared exponential kernel defined
in Eq. (A.4) when its lengthscale ; is set to zero. In this thesis, a number of the
experiments with the Gaussian process preference model fall under the special case
of Bayesian logistic regression, and therefore, this model is briefly reviewed here.

In Bayesian logistic regression, the Gaussian prior over possible reward vectors
r ∈ R3 is: r ∼ N(0, _�), where _ > 0. Setting the 8th preference label H8 equal to 1

2
if x82 � x81, while H8 = −1

2 if x81 � x82, the logistic regression likelihood is:

?(D|r) =
#∏
8=1

?(H8 |r, x8) =
#∏
8=1

1
1 + exp(−2H8x)8 r)

.

The experiments approximate the posterior, ?(r | D) ∝ ?(D | r)?(r), as Gaussian
via the Laplace approximation:

?(r | D) ≈ N (r̂MAP, UΣMAP), where:
r̂MAP = argmin

r
5 (r), 5 (r) := −log ?(D, r) = −log ?(r) − log ?(D|r),

(A.11)

ΣMAP =
(
∇2
r 5 (r)

���
r̂

)−1
,

where the optimization in Eq. (A.11) is convex, and U > 0 is a tunable hyperpa-
rameter that influences the balance between exploration and exploitation. Note that
multiplying the covariance by a well-tuned U is more practical than using the V8 (X)
parameters considered in the asymptotic consistency analysis (Section 4.4), as the
latter results in overly-conservative covariance matrices in practice.

158

A p p e n d i x B

PROOFS OF ASYMPTOTIC CONSISTENCY FOR DUELING
POSTERIOR SAMPLING

This appendix proves the asymptotic consistency results stated in Section 4.4. The
details are organized into three sections, which prove:

1. In the preference-based RL setting, samples from the model posterior over
transition dynamics parameters converge in distribution to the true transition
probabilities.

2. In both the preference-based generalized linear bandit and RL settings, sam-
ples from the utility posterior converge in distribution to the true utilities.

3. DPS’s selected policies converge in distribution to the optimal policy in the
preference-based RL setting. DPS’s selected actions converge to the optimal
action in the generalized linear bandit setting with a finite action space A.

Please refer to Section 4.2 to review relevant notation, e.g. for the posterior samples
drawn in each iteration. In addition, the following notation is used for the value
function and for policies given by value iteration:

Definition 5 (Value function given transition dynamics, rewards, and a policy).
Define + (p, r, c) as the value function over a length-ℎ episode—i.e., the expected
total reward in the episode—under transition dynamics p ∈ R(2�, rewards r ∈ R(�,
and policy c:

+ (p, r, c) =
∑
B∈S

?0(B)E
[
ℎ∑
C=1

A (BC , c(BC , C))
��� B1 = B, p = p, r = r

]
.

Definition 6 (Optimal deterministic policy given transition dynamics and rewards).
Define cE8 (p, r) := argmaxc+ (p, r, c) as the optimal deterministic policy given
transition dynamics p ∈ R(2� and rewards r ∈ R(� (breaking ties randomly
if multiple deterministic policies achieve the maximum). Note that cE8 (p, r) can
be found via finite-horizon value iteration: defining +c,C (B) as in Eq. (3.6), set
+c,ℎ+1(B) := 0 for each B ∈ S and use the Bellman equation to calculate +c,C (B)

159

successively for C ∈ {ℎ, ℎ − 1, . . . , 1} given p and r:

c(B, C) = argmax0∈A

[
A (B, 0) +

∑
B′∈S

%(BC+1 = B′ | BC = B, 0C = 0)+c,C+1(B′)
]
,

+c,C (B) =
∑
0∈A
I[c(B,C)=0]

[
A (B, 0) +

∑
B′∈S

%(BC+1 = B′ | BC = B, 0C = 0)+c,C+1(B′)
]
.

As value iteration results in only deterministic policies, of which there are finitely-
many (more precisely, there are �(ℎ), the maximum argument cE8 (p, r) := argmaxc
+ (p, r, c) is taken over a finite policy class.

Recall that "= := _� + ∑=−1
8=1 x8x

)
8
(see Eq. (4.2)). For the linear link function, the

posterior sampling distribution’s covariance is given by Σ(8) = V= (X)2"−1
= . For the

logistic link function, the posterior covariance is given by Σ(8) = V= (X)2"′=, where

"′= = _� +
∑=−1
8=1 6̃(2H8x)8 r̂=)x8x)8 , 6̃(G) :=

(
6′log (G)
6log (G)

)2
−
6′′log (G)
6log (G) comes from the Laplace

approximation, and 6log is the sigmoid function.

As in Section 4.4, it is notationally convenient to define a matrix "̃= ∈ R3×3 such
that:
"̃= = "= = _� +

∑=−1
8=1 x8x

)
8

for the linear link function, and

"̃= = "
′
= = _� +

∑=−1
8=1 6̃(2H8x)8 r̂=)x8x)8 for the logistic link function.

(B.1)

Then, under either link function, the posterior sampling distribution has covariance
Σ(=) = V= (X)2"̃−1

= .

Finally, notation is defined for the eigenvectors and eigenvalues of the matrices "8

and "̃8:

Definition 7 (Eigenvalue notation). Let a(8)
9

refer to the 9 th-largest eigenvalue of
"8, and u(8)

9
denote its corresponding eigenvector. Similarly, let _(8)

9
refer to the 9 th-

largest eigenvalue of "̃8, and v (8)
9

denote its corresponding eigenvector. Note that
"−1
8

also has eigenvectors u(8)
9
, with corresponding eigenvalues 1

a
(8)
9

. Because "8 is

positive definite, the eigenvectors {u(8)
9
} form an orthonormal basis, and a(8)

9
> 0 for

all 8, 9 . The equivalent statements also hold for "̃8, which is also positive definite
because 6̃(G) > 0 for all possible inputs.

160

B.1 Facts about Convergence in Distribution
Before proceeding with the asymptotic consistency proofs, two facts about conver-
gence in distribution are reviewed; these will be applied later.

Recall that for a random variable - and a sequence of random variables (-=), = ∈ N,
-=

�−→ - denotes that -= converges to - in distribution, while -=
%−→ - denotes

that -= converges to - in probability.

Fact 8 (Billingsley, 1968). For random variables x, x=, ∈ R3 , where = ∈ N, and any
continuous function 6 : R3 −→ R, if x=

�−→ x, then 6(x=)
�−→ 6(x).

Fact 9 (Billingsley, 1968). For random variables x= ∈ R3 , = ∈ N, and constant
vector c ∈ R3 , x=

�−→ c is equivalent to x=
%−→ c. Convergence in probability

means that for any Y > 0, %(| |x= − c | |2 ≥ Y) −→ 0 as = −→ ∞.

B.2 AsymptoticConsistency of theTransitionDynamics inDPS in thePreference-
Based RL Setting

DPS models state transition dynamics independently for each state-action pair. For
a given state-action pair, a Dirichlet model estimates the probability of transitioning
to each possible subsequent state. The prior and posterior distributions are both
Dirichlet; because the Dirichlet and multinomial distributions are conjugate (see
Section 2.1), each state-action pair’s posterior can be updated easily using the
observed transitions from that state-action. Each time that DPS draws a sample from
the dynamics distribution, values are sampled for all (2� transition parameters,
{%(BC+1 = B′ | BC = B, 0C = 0) | B, B′ ∈ S, 0 ∈ A}.

To demonstrate convergence in distribution of the sampled transition dynamics
parameters, first, Lemma 3 shows that if every state-action pair is visited infinitely
often, the desired result holds. Then, Lemma 6 completes the argument by showing
that DPS indeed visits each state-action pair infinitely often.

Lemma 3. If every state-action pair is visited infinitely often, then the sampled tran-
sition dynamics parameters converge in distribution to their true values: p̃81, p̃82

�−→
p as 8 −→ ∞, where �−→ denotes convergence in distribution.

Proof. Denote the 3 = (� state-action pairs as B̃1, . . . , B̃3 . At a particularDPS episode,
let = 9 be the number of visits to B̃ 9 and = 9 : be the number of observed transitions
from B̃ 9 to the : th subsequent state. For the 9 th state-action pair at iteration 8, let p (9) ,
p̃ (9) , p̂ (9) , p̂′(9) ∈ R(be the true, sampled, posterior mean, andmaximum likelihood

161

dynamics parameters, respectively (hiding the dependency on the DPS episode 81
or 82 for the latter three quantities); thus, [p (9)]: denotes the true probability of
transitioning from state-action pair B̃ 9 to the : th state, and analogously for the : th

elements of p̃ (9) , p̂ (9) , and p̂′(9) . Then, from the Dirichlet model,

[p̂ (9)]: =
= 9 : + U 9 :,0

= 9 +
∑(
<=1 U 9<,0

,

where the prior for p (9) is 1∑(
<=1 U 9<,0

[U 91,0, . . . , U 9(,0]) for user-defined hyperparam-

eters U 9 :,0 > 0. Meanwhile, the maximum likelihood is given by [p̂′(9)]: =
= 9:

max(= 9 ,1)
(this is equivalent to [p̂ (9)]: , except with the prior parameters set to zero). Consider
the sampled dynamics at state-action pair B̃ 9 . For any Y > 0,

%
(
| | p̃ (9) − p (9) | |1 ≥ Y

)
= %

(
| | p̃ (9) − p̂ (9) + p̂ (9) − p̂′(9) + p̂′(9) − p (9) | |1 ≥ Y

)
(0)
≤ %

(
| | p̃ (9) − p̂ (9) | |1 + || p̂ (9) − p̂′(9) | |1 + || p̂′(9) − p (9) | |1 ≥ Y

)
≤ %

(
| | p̃ (9) − p̂ (9) | |1 ≥

Y

3

⋃
| | p̂ (9) − p̂′(9) | |1 ≥

Y

3

⋃
| | p̂′(9) − p (9) | |1 ≥

Y

3

)
(1)
≤ %

(
| | p̃ (9) − p̂ (9) | |1 ≥

Y

3

)
+ %

(
| | p̂ (9) − p̂′(9) | |1 ≥

Y

3

)
+ %

(
| | p̂′(9) − p (9) | |1 ≥

Y

3

)
,

(B.2)

where (a) holds due to the triangle inequality and (b) follows from the union bound.
This proof will upper-bound each term in Eq. (B.2) in terms of = 9 and show that it
decays as = 9 −→ ∞, that is, as B̃ 9 is visited infinitely often. For the first term, this
bound is achieved via Chebyshev’s inequality:

%

(
| | p̃ (9) − p̂ (9) | |1 ≥

Y

3

)
≤ %

(
(⋃
:=1

{���[p̃ (9)]: − [p̂ (9)]: ��� ≥ Y

3(

})
(0)
≤

(∑
:=1

%

(���[p̃ (9)]: − [p̂ (9)]: ��� ≥ Y

3(

) (1)
≤

(∑
:=1

9(2

Y2 Var
[
[p̃ (9)]:

]
,

where (a) follows from the union bound and (b) is an application of Chebyshev’s
inequality. For a Dirichlet variable - with parameters (U1, . . . , U(), U: > 0 for each
: , the variance of the : th component -: is given by:

Var[-:] =
Ũ: (1 − Ũ:)

1 +∑(
<=1 U<

≤ 1
2
∗ 1

1 +∑(
<=1 U<

,

where Ũ: := U:∑(
<=1 U<

. In the DPS algorithm, p̃ (9) is drawn from a Dirichlet distribu-

162

tion with parameters (U 91, . . . , U 9() = (U 91,0 + = 91, . . . , U 9(,0 + = 9(), so that,

Var
[
[p̃ (9)]:

]
≤ 1

2
∗ 1

1 +∑(
<=1 U 9<

=
1
2
∗ 1

1 +∑(
<=1(U 9<,0 + = 9<)

≤ 1
2
∗ 1

1 +∑(
<=1 = 9<

=
1

2(1 + = 9)
.

Thus,

%

(
| | p̃ (9) − p̂ (9) | |1 ≥

Y

3

)
≤

(∑
:=1

9(2

Y2
1

2(1 + = 9)
=

9(3

2Y2(1 + = 9)
.

Considering the second term in Eq. (B.2),

%

(
| | p̂ (9) − p̂′(9) | |1 ≥

Y

3

)
≤ %

(
(⋃
:=1

{���[p̂ (9) − p̂′(9)]:
��� ≥ Y

3(

})
(0)
≤

(∑
:=1

%

(���[p̂ (9)]: − [p̂′(9)]: ��� ≥ Y

3(

) (1)
≤

(∑
:=1

%

(
U 9 :,0 +

∑(
<=1 U 9<,0

= 9 +
∑(
<=1 U 9<,0

≥ Y

3(

)
,

where (a) holds via the union bound and (b) follows for = 9 ≥ 1 because when = 9 ≥ 1:���[p̂ (9)]: − [p̂′(9)]: ��� = ����� = 9 : + U 9 :,0
= 9 +

∑(
<=1 U 9<,0

−
= 9 :

= 9

����� =
����� U 9 :,0

= 9 +
∑(
<=1 U 9<,0

−
= 9 :

∑(
<=1 U 9<,0

= 9 (= 9 +
∑(
<=1 U 9<,0)

�����
≤

U 9 :,0

= 9 +
∑(
<=1 U 9<,0

+
= 9 :

= 9

∑(
<=1 U 9<,0

= 9 +
∑(
<=1 U 9<,0

≤
U 9 :,0 +

∑(
<=1 U 9<,0

= 9 +
∑(
<=1 U 9<,0

.

For the third term in Eq. (B.2), one can apply the following concentration inequality
for Dirichlet variables (see Appendix C.1 in Jaksch, Ortner, and Auer, 2010):

%(| | p̂′(9) − p (9) | |1 ≥ Y) ≤ (2(− 2) exp

(
−= 9Y2

2

)
.

Therefore:

%

(
| | p̂′(9) − p (9) | |1 ≥

Y

3

)
≤ (2(− 2) exp

(
−= 9Y2

18

)
.

Thus, to upper-bound the right-hand side of Eq. (B.2), for any Y > 0:

%
(
| | p̃ (9)− p (9) | |1 ≥ Y

)
≤ 9(3

2Y2(= 9 + 1)
+

(∑
:=1

%

(
U 9 :,0 +

∑(
<=1 U 9<,0

= 9 +
∑(
<=1 U 9<,0

≥ Y

3(

)
+(2(−2) exp

(
−= 9Y2

18

)
.

On the right hand side, the first and third terms clearly decay as = 9 −→ ∞. The
middle term is identically zero for = 9 large enough, since the U 9 :,0 values are user-
defined constants. Given this inequality, it is clear that for any Y > 0, as = 9 −→ ∞,

163

%
(
| | p̃ (9) − p (9) | |1 ≥ Y

)
−→ 0. If every state-action pair is visited infinitely often,

then = 9 −→ ∞ for each 9 , and therefore, p̃ (9) converges in probability to p (9):
p̃ (9)

%−→ p (9) . Convergence in probability implies convergence in distribution, the
desired result.

To continue proving that DPS’s model of the transition dynamics converges, this
analysis uses that the magnitude of the utility estimator | | r̂= | |2, the mean of the utility
posterior sampling distribution, is uniformly upper-bounded; in other words, there
exists 1 < ∞ such that | | r̂= | |2 ≤ 1.

Lemma 4. When preferences are given by a linear or logistic link function, across
all = ≥ 1, there exists some 1 < ∞ such that estimated reward at DPS trial = is
bounded by 1: | | r̂= | |2 ≤ 1.

Proof. Firstly, if the link function is logistic, the desired result holds automatically
by the definition of r̂= given in Eq. (4.10): the quantity is projected onto the compact
set Θ ⊂ R3 of all possible values of r, and a compact set on R3 must be bounded.

Secondly, the result is proven in the case of a linear link function. In this case, recall
that the MAP reward estimate r̂= is the solution to a ridge regression problem:

r̂= = arg inf r

{
=−1∑
8=1
(x)8 r − H8)2 + _ | |r | |22

}
= arg inf r

{
=−1∑
8=1

[
(x)8 r − H8)2 +

1
= − 1

_ | |r | |22
]}
.

(B.3)

The desired result is proven by contradiction. Assuming that there exists no upper
bound 1, the proofwill identify a subsequence (r̂=8) ofMAP estimateswhose lengths
increase unboundedly, but whose directions converge. Then, it will show that such
vectors fail to minimize the objective in Eq. (B.3), achieving a contradiction.

Firstly, the vectors x8 = x82 − x81 have bounded magnitude: in the bandit case,
x81, x82 ∈ A, and the action spaceA is compact, while in the RL setting, | |x8 9 | |1 = ℎ
for 9 ∈ {1, 2}. The binary labels H8 are also bounded, as they take values in

{
−1

2 ,
1
2
}
.

Note that for r = 0, (x)
8
r − H8)2 + 1

=−1_ | |r | |
2
2 =

1
4 . The desired statement is proven

by contradiction: assume that there is no 1 < ∞ such that | | r̂= | |2 ≤ 1 for all =.
Then, the sequence r̂1, r̂2, . . . must have a subsequence indexed by (=8) such that
lim8−→∞ | | r̂=8 | |2 = ∞. Consider the sequence of unit vectors r̂=8

| | r̂=8 | |2
. This sequence

lies within the compact set of unit vectors in R3 , so it must have a convergent
subsequence; we index this subsequence of the sequence (=8) by (=8 9). Then, the

164

sequence (r̂8 9) is such that lim 9−→∞ | | r̂8 9 | |2 = ∞ and lim 9−→∞
r̂8 9
| | r̂8 9 | |2

= r̂D=8C , where

r̂D=8C ∈ R3 is a fixed unit vector.

For any x8 such that |x)
8
r̂D=8C | ≠ 0, lim=8 9−→∞(x

)
8
r̂=8 9 − H8)

2 = ∞, and thus, the
corresponding terms in Eq. (B.3) approach infinity. However, a lower value of
the optimization objective in Eq. (B.3) can be realized by replacing r̂=8 9 with the
assignment r = 0. Meanwhile, for any x8 such that |x)

8
r̂ | = 0, replacing r̂=8 9 with

r = 0 would also decrease the value of the optimization objective in Eq. (B.3).
Therefore, for large 9 , r = 0 results in a smaller objective function value than r̂=8 9 .
This is a contradiction, proving that the elements of the sequence r̂=8 9 cannot have
arbitrarily large magnitudes. Thus, the elements of the original sequence r̂8 also
cannot become arbitrarily large, and | | r̂8 | | ≤ 1 for some 1 < ∞.

The next intermediate result relates the matrix "̃=, defined in Eq. (B.1), and the
matrix "= = _� +

∑=−1
8=1 x8x

)
8
.

Lemma 5. On iteration = of DPS, the posterior covariance matrix for the rewards is
Σ(=) = V= (X)2"̃=; if the link function 6 is linear, then "̃= = "=, while if 6 is logistic,
then "̃= = _� + ∑=−1

8=1 6̃(2H8x)8 r̂=)x8x)8 . In both cases, there exist two constants
<min, <max such that 0 < <min ≤ <max < ∞ and <min"= � "̃= � <max"=.

Proof. Firstly, if 6 is linear, then "̃= = "=, so the desired result clearly holds with
<min = <max = 1.

If 6 is logistic, the desired statement is equivalent to:

<min

(
_� +

=−1∑
8=1

x8x
)
8

)
� _� +

=−1∑
8=1

6̃(2H8x)8 r̂=)x8x)8 � <max

(
_� +

=−1∑
8=1

x8x
)
8

)
.

By definition of 6̃, 6̃(G) ∈ (0,∞) for all G ∈ R. Moreover, the domain of 6̃ has
bounded magnitude, since all possible inputs to 6̃ are of the form 2H8x)8 r̂=, in which
|H8 | = 1

2 , x8 belongs to a compact set, and | | r̂= | | ≤ 1 by Lemma 4. Therefore, all
possible inputs to 6̃ belong to a compact set. A continuous function over a compact
set always attains its maximum and minimum values; therefore, there exist values
6̃min, 6̃max such that 0 < 6̃min ≤ 6̃(G) ≤ 6̃max < ∞ for all possible inputs G to 6̃(G).

165

Therefore,

_� +
=−1∑
8=1

6̃(2H8x)8 r̂=)x8x)8 � _� +
=−1∑
8=1

6̃minx8x
)
8 � min{6̃min, 1}

[
_� +

=−1∑
8=1

x8x
)
8

]
, and

_� +
=−1∑
8=1

6̃(2H8x)8 r̂=)x8x)8 � _� +
=−1∑
8=1

6̃maxx8x
)
8 � max{6̃max, 1}

[
_� +

=−1∑
8=1

x8x
)
8

]
,

which proves the desired result for <min = min{6̃min, 1} and <max = max{6̃max, 1}.

To finish proving convergence of the transition dynamics Bayesian model, Lemma
6 demonstrates that every state-action pair is visited infinitely often.

Lemma 6. Under DPS with preference-based RL, assume that the dynamics are
modeled via a Dirichlet model and that the utilities are modeled either via the linear
or logistic link functions, with posterior sampling distributions given in Eq. (4.13).
Then, every state-action pair is visited infinitely often.

This consistency result also holds when removing the V= (X) and V′= (X) factors from
the distributions in Eq. (4.13).

Proof. The proof proceeds by assuming that there exists a state-action pair that is
visited only finitely-many times. This assumption will lead to a contradiction1: once
this state-action pair is no longer visited, the posterior sampling distribution for
the utilities r is no longer updated with respect to it. Then, DPS is guaranteed to
eventually sample a high enough reward for this state-action that the resultant policy
will prioritize visiting it.

First, note that DPS is guaranteed to reach at least one state-action pair infinitely
often: given the problem’s finite state and action spaces, at least one state-action
pair must be visited infinitely often during DPS execution. If all state-actions are not
visited infinitely often, there must exist a state-action pair (B, 0) such that B is visited
infinitely often, while (B, 0) is not. Otherwise, if all actions are selected infinitely
often in all infinitely-visited states, the finitely-visited states are unreachable (in
which case these states are irrelevant to the learning process and regretminimization,

1Note that in finite-horizon MDPs, the concept of visiting a state finitely-many times is not the
same as that of a transient state in an infinite Markov chain, because: 1) due to a finite horizon, the
state is resampled from the initial state distribution ?0 (B) every ℎ timesteps, and 2) the policy—
which determines which state-action pairs can be reached in an episode—is also resampled every ℎ
timesteps.

166

and can be ignored). Without loss of generality, this state-action pair (B, 0) is labeled
as B̃1. To reach a contradiction, it suffices to show that B̃1 is visited infinitely often.

Let r1 be the utility vector with a reward of 1 in state-action pair B̃1 and rewards
of zero elsewhere. From Definition 6, cE8 (p̃, r1) is the policy that maximizes the
expected number of visits to B̃1 under dynamics p̃ and utility vector r1:

cE8 (p̃, r1) = argmaxc+ (p̃, r1, c),

where + (p̃, r1, c) is the expected total reward of a length-ℎ trajectory under p̃, r1,
and c, or equivalently (by definition of r1), the expected number of visits to state-
action B̃1.

Next, it will be shown that there exists a d > 0 such that %(c = cE8 (p̃, r1)) > d

for all possible values of p̃. That is, for any sampled parameters p̃, the probability
of selecting policy cE8 (p̃, r1) is uniformly lower-bounded, implying that DPS must
eventually select cE8 (p̃, r1).

Let Ã 9 be the sampled utility (also referred to as reward) associated with state-
action pair B̃ 9 in a particular DPS episode, for each state-action 9 ∈ {1, . . . , 3},
with 3 = (�. The proof will show that conditioned on p̃, there exists E > 0 such
that if Ã1 exceeds max{EÃ2, EÃ3, . . . , EÃ3}, then value iteration returns the policy
cE8 (p̃, r1), which is the policy maximizing the expected amount of time spent in
B̃1. This can be seen by setting E := ℎ

d1
, where ℎ is the time horizon and d1 is the

expected number of visits to B̃1 under cE8 (p̃, r1). Under this definition of E, the event
{Ã1 ≥ max{EÃ2, EÃ3, . . . , EÃ3}} is equivalent to {Ã1d1 ≥ ℎmax{Ã2, Ã3, . . . , Ã3}}; the
latter inequality implies that given p̃ and r̃, the expected reward accumulated solely
in state-action B̃1 exceeds the reward gained by repeatedly (during all ℎ time-steps)
visiting the state-action pair in the set {B̃2, . . . , B̃3} having the highest sampled
reward. Clearly, in this situation, value iteration results in the policy cE8 (p̃, r1).

Next, it is shown that E = ℎ
d1

is continuous in the sampled dynamics p̃ by showing
that d1 is continuous in p̃. Recall that d1 is defined as expected number of visits to B̃1
under cE8 (p̃, r1). This is equivalent to the expected reward for following cE8 (p̃, r1)
under dynamics p̃ and rewards r1:

d1 = + (p̃, r1, cE8 (p̃, r1)) = max
c
+ (p̃, r1, c). (B.4)

The value of any policy c is continuous in the transition dynamics parameters, so
+ (p̃, r1, c) is continuous in p̃. The maximum in Eq. (B.4) is taken over the finite set

167

of deterministic policies; because a maximum over a finite number of continuous
functions is also continuous, d1 is continuous in p̃.

Next, recall that a continuous function on a compact set achieves its maximum and
minimum values on that set. The set of all possible dynamics parameters p̃ is such
that for each state-action pair 9 ,

∑(
:=1 ? 9 : = 1 and ? 9 : ≥ 0∀ :; the set of all possible

vectors p̃ is clearly closed and bounded, and hence compact. Therefore, E achieves
its maximum andminimum values on this set, and for any p̃, E ∈ [Emin, Emax], where
Emin > 0 (E is nonnegative by definition, and E = 0 is impossible, as it would imply
that B̃1 is unreachable).

Then, %(c = cE8 (p̃, r1)) can be expressed in terms of E and the parameters of the
reward posterior. Firstly,

%(c = cE8 (p̃, r1)) ≥ %(Ã1 > max{EÃ2, EÃ3, . . . , EÃ3}) ≥
3∏
9=2

%(Ã1 > EÃ 9).

In the =Cℎ DPS iteration, the sampled rewards are drawn from a jointly Gaussian
posterior: r̃ ∼ N(-(=) ,Σ(=)) for some -(=) and Σ(=) , where [-(=)] 9 = `

(=)
9

and
[Σ(=)] 9 : = Σ(=)9 : . Then, (Ã1 − EÃ 9) ∼ N (`(=)1 − E`

(=)
9
, Σ
(=)
11 + E

2Σ
(=)
9 9
− 2EΣ(=)1 9), so that:

%(c=1 = cE8 (p̃, r1)) ≥
3∏
9=2

1 −Φ
©­­«

−`(=)1 + E`
(=)
9√

Σ
(=)
11 + E2Σ

(=)
9 9
− 2EΣ(=)1 9

ª®®¬


=

3∏
9=2
Φ

©­­«
`
(=)
1 − E`

(=)
9√

Σ
(=)
11 + E2Σ

(=)
9 9
− 2EΣ(=)1 9

ª®®¬ , (B.5)

where Φ is the standard Gaussian cumulative distribution function. For the right-
hand expression in Eq. (B.5) to have a lower bound greater than zero, the argument of
Φ(·) must be lower-bounded. It suffices to upper-bound the numerator’s magnitude
and to lower-bound the denominator above zero for each product factor 9 and over
all iterations =.

The numerator can be upper-bounded using Lemma 4. Since -(=) equals r̂= at
iteration =, | |-(=) | |2 ≤ 1; therefore, |`(=)1 |, |`

(=)
9
| ≤ 1. Because 0 < E ≤ Emax,

|`1 − E` 9 | ≤ |`(=)1 | + E |`
(=)
9
| ≤ (1 + Emax)1.

To lower-bound the denominator, first note that it is equal to
√
w)
9
Σ(=)w 9 , in which

w 9 ∈ R3 is defined as a vector with 1 in the first position, −E in the 9 th position for

168

some 9 ∈ {2, . . . , 3}, and zero elsewhere:

w 9 := [1, 0, . . . , 0,−E, 0, . . . , 0]) . (B.6)

Equivalently, it must be shown that w)
9
Σ(=)w 9 is lower-bounded above zero. By

Lemma5, it holds thatΣ(=) � V= (X)2
<max

"−1
= , implying thatw)

9
Σ(=)w 9 ≥ V= (X)2

<max
w)
9
"−1
= w 9 .

Because <max is a constant and V= (X), defined in Eq. (4.4), is non-decreasing in =,
it suffices to prove that w)

9
"−1
= w 9 is lower-bounded above zero. (Thus, the result

holds regardless of the presence of V= (X) in the utility sampling distribution.)

Recall from Definition 7 that the eigenvectors of "−1
= are u(=)1 , . . . , u(=)

3
, with corre-

sponding eigenvalues
(
a
(=)
1

)−1
, . . . ,

(
a
(=)
3

)−1
. The vector w 9 can be written in terms

of the orthonormal basis formed by the eigenvectors {u(=)
:
}:

w 9 =

3∑
:=1

U
(=)
:

u(=)
:
, (B.7)

for some coefficients U(=)
:
∈ R. Using Eq. (B.7), the quantity to be lower-bounded

can now be written as:

w)9"
−1
= w 9 =

(
3∑
:=1

U
(=)
:

u(=))
:

) (
3∑
;=1

1
a
(=)
;

u(=)
;

u(=))
;

) (
3∑
<=1

U
(=)
< u(=)<

)
(0)
=

3∑
:=1

(
U
(=)
:

)2 1
a
(=)
:

(1)
≥

(
U
(=)
:0

)2 1
a
(=)
:0

, (B.8)

where equality (a) follows by orthonormality of the eigenvector basis, and (b) holds
for any :0 ∈ {1, . . . , 3} due to positivity of the eigenvalues (a:)−1. Therefore, to
show that the denominator is bounded away from zero, it suffices to show that for

every =, there exists some :0 such that
(
U
(=)
:0

)2 (
a
(=)
:0

)−1
is bounded away from zero.

To prove the previous statement, note that by definition of "=, the eigenvalues
(a(=)
:
)−1 are non-increasing in =. Below, the proof will show that for any eigenvalue

(a(=)
:
)−1 such that lim=−→∞(a(=):)

−1 = 0, the first element of its corresponding
eigenvector,

[
u(=)
:

]
1
, also converges to zero. Since the first element of w 9 equals 1,

Eq. (B.6) implies that there must exist some :0 such that
[
u(=)
:0

]
1
6−→ 0 and U(=)

:0
is

bounded away from 0. If these implications did not hold, then w 9 would not have a
value of 1 in its first element, contradicting its definition. These observations imply
that for every =, there must be some :0 such that as = −→ ∞, (a(=)

:0
)−1 6−→ 0 and

U
(=)
:0

is bounded away from zero.

169

Let -= denote the observationmatrix after =−1 observations: -= :=
[
x1 . . . x=−1

])
.

Then, "−1
= = (-)= -= + _�)−1. The matrices "−1

= and -)= -= have the same eigen-
vectors. Meanwhile, for each eigenvalue (a(=)

8
)−1 of "−1

= , -)= -= has an eigenvalue
b
(=)
8

:= a(=)
8
− _ ≥ 0 corresponding to the same eigenvector. We aim to characterize

the eigenvectors of "−1
= whose eigenvalues approach zero. Since these eigenvectors

are identical to those of -)= -= whose eigenvalues approach infinity, the latter can be
considered instead.

Without loss of generality, assume that all finitely-visited state-action pairs (in-
cluding B̃1) occur in the first < < = − 1 iterations, and index these finitely-visited
state-action pairs from 1 to A ≥ 1, so that the finitely-visited state-actions are:
{B̃1, B̃2, · · · , B̃A}. Let -1:< ∈ R<×3 denote the matrix containing the first < rows of
-=, while -<+1:= ∈ R=−<×3 denotes the remaining rows of -=. With this notation,

-)= -= =

=−1∑
8=1

x8x
)
8 = -

)
1:<-1:< + -)<+1:=-<+1:=.

Because the first A state-action pairs, {B̃1, B̃2, · · · , B̃A}, are unvisited after iteration
<, the first A elements of x8 are zero for all 8 > <. Therefore, -)

<+1:=-<+1:= can be
written in the following block matrix form:

-)<+1:=-<+1:= =

[
$A×A $A×(3−A)

$ (3−A)×A �=

]
,

where $0×1 denotes the all-zero matrix with dimensions 0 × 1. The matrix �=

includes elements that are unbounded as = −→ ∞. In particular, the diagonal
elements of �= approach infinity as = −→ ∞. The matrix -)= -= can be written in
the following block matrix form:

-)= -= = -
)
1:<-1:< + -)<+1:=-<+1:=

=

[
[-)1:<-1:<] (1:A,1:A) [-)1:<-1:<] (1:A,A+1:3)

[-)1:<-1:<] (A+1:3,1:A) [-)1:<-1:<] (A+1:3,A+1:3) + �=

]
:=

[
� �

�) �=

]
,

where "(0:1,2:3) denotes the submatrix of " obtained by extracting rows 0 through
1 and columns 2 through 3. Because matrices � and � only depend upon -1:<, they
are fixed as = increases, while matrix �= contains values that grow towards infinity
with increasing =. In particular, all elements along �=’s diagonal are unbounded.
Intuitively, in the limit, � and � are close to zero compared to �=, and -)= -= (when
normalized) increasingly resembles a matrix in which only the bottom-right block
is nonzero. This intuitive notion is formalized next.

170

Consider an eigenpair (u(=)
8
, b
(=)
8
) of -)= -= such that lim=−→∞ b

(=)
8

= ∞. The fol-
lowing argument shows that the first element of u(=)

8
must approach 0. Letting

u(=)
8
=

[
z(=))
8

q (=))
8

])
, where z(=)

8
∈ R< and q (=)

8
∈ R=−1−<:

(-)= -=)u
(=)
8
= -)= -=

[
z(=)
8

q (=)
8

]
=

[
� �

�) �=

] [
z(=)
8

q (=)
8

]
=

[
�z(=)

8
+ �q (=)

8

�) z(=)
8
+ �=q

(=)
8

]
= b
(=)
8

[
z(=)
8

q (=)
8

]
.

Dividing both sides by b (=)
8

,

1
b
(=)
8

-)= -=

[
z(=)
8

q (=)
8

]
=


1
b
(=)
8

(
�z(=)

8
+ �q (=)

8

)
1
b
(=)
8

(
�) z(=)

8
+ �=q

(=)
8

) =
[
z(=)
8

q (=)
8

]
.

In the upper matrix block: lim=−→∞ b
(=)
8

= ∞, � and � are fixed as = increases,
and z(=)

8
and q (=)

8
have upper-bounded elements because u(=)

8
is a unit vector. Thus,

lim=−→∞ z(=)
8
= lim=−→∞

1
b
(=)
8

(
�z(=)

8
+ �q (=)

8

)
= 0. In particular, the first element of

z(=)
8

converges to zero, implying that the same is true of u(=)
8

.

As justified above, this result implies that for each iteration =, there exists an index
:0 ∈ {1, . . . , 3} such that the right-hand side of Eq. (B.8) has a lower bound above
zero. This completes the proof that the denominator in Eq. (B.5) does not decay to
zero. As a result, there exists some d > 0 such that %(c = cE8 (p̃, r1)) ≥ d > 0.

In consequence, DPS is guaranteed to infinitely often sample pairs (p̃, c) such that
c = cE8 (p̃, r1). As a result, DPS infinitely often samples policies that prioritize
reaching B̃1 as quickly as possible. Such a policy always takes action 0 in state
B. Furthermore, because B is visited infinitely often, either a) ?0(B) > 0 or b)
the infinitely-visited state-action pairs include a path with a nonzero probability
of reaching B. In case a), since the initial state distribution is fixed, the MDP will
infinitely often begin in state B under the policy c = cE8 (p̃, r1), so B̃1 will be visited
infinitely often. In case b), due to Lemma 3, the transition dynamics parameters
for state-actions along the path to B converge to their true values (intuitively, the
algorithm knows how to reach B). In episodes with the policy c = cE8 (p̃, r1), DPS is
thus guaranteed to reach B̃1 infinitely often. Since DPS selects cE8 (p̃, r1) infinitely
often, it must reach B̃1 infinitely often. This presents a contradiction, proving that
every state-action pair must be visited infinitely often.

The direct combination of Lemmas 3 and 6 prove asymptotic consistency of the
transition dynamics model:

171

Proposition 3. Assume that DPS is executed in the preference-based RL setting, with
transition dynamics modeled via a Dirichlet model, utilities modeled via either the
linear or logistic link function, and utility posterior sampling distributions given in
Eq. (4.13). Then, the sampled transition dynamics p̃81, p̃82 converge in distribution to
the true dynamics, p̃81, p̃82

�−→ p. This consistency result also holds when removing
the V= (X) factors from the distributions in Eq. (4.13).

B.3 Asymptotic Consistency of the Utilities in DPS
This section shows that in both the bandit and RL cases, reward samples drawn from
the utility model posterior converge to the true utility values, r. The analysis first
considers the bandit setting, and then utilizes asymptotic consistency of the MDP
transition dynamics to extend the results to the preference-based RL problem.

Asymptotic Consistency of the Utilities for Generalized Linear Dueling Bandits
The first step, encapsulated in the lemma below, leverages results from Abbasi-
Yadkori, Pál, and Szepesvári (2011) and Filippi et al. (2010) to derive a sufficient
condition for asymptotic consistency of the utilities.

Lemma 7. If V8 (X)
2

_
(8)
3

�−→ 0 as 8 −→ ∞, where _(8)
3

is the minimum eigenvalue of "̃8,

then r̃81, r̃82
�−→ r with probability 1 − X.

Proof. From Propositions 1 and 2, with probability at least 1−X, the utility estimator
r̂8 belongs to a confidence ellipsoid centered at r: | | r̂8 − r | |"8 ≤ V8 (X). The proof
will show that under this high-probability event, r̃81, r̃82

�−→ r.

Firstly, by Lemma 5, "8 � 1
<max

"̃8; thus, | | r̂8 − r | | 1
<max "̃8

= 1
<max
| | r̂8 − r | |"̃8 ≤

|| r̂8 − r | |"8 . Meanwhile, the posterior sampling distribution is given by,

r̃81, r̃82 ∼ N
(
r̂8, V8 (X)2"̃−1

8

)
. (B.9)

Letting z8 ∼ N(0, �) be independent for each 8, the sample r̃81 (and similarly, r̃82)
can equivalently be expressed as:

r̃81 = r̂8 + V8 (X)"̃
− 1

2
8

z8, (B.10)

since the random variable in Eq. (B.10) has the same distribution as that in Eq.
(B.9). The quantity | | r̃81 − r̂8 | |"̃8 can be rewritten as:

| | r̃81 − r̂8 | |"̃8 =
��������V8 (X)"̃− 1

2
8

z8

��������
"̃8

= V8 (X)
√
z)
8
"̃
− 1

2
8
"̃8"̃

− 1
2

8
z8 = V8 (X) | |z8 | |2.

172

Because the probability distribution of | |z8 | |2 is fixed, there exists some fixed 0 > 0
such that with probability at least 1 − X, | |z8 | |2 ≤ 0. So, for each 8, with probability
at least 1 − X,

| | r̃81 − r̂8 | |"̃8 = V8 (X) | |z8 | |2 ≤ V8 (X)0.

The previous statement can be combined with the high-probability inequality | | r̂8 −
r | |"̃8 ≤ <maxV8 (X) to obtain that for each 8, with probability at least 1 − X,

| | r̃81 − r | |"̃8 ≤ || r̃81 − r̂8 | |"̃8 + || r̂8 − r | |"̃8 ≤ (0 + <max)V8 (X).

Taking squares and dividing by V8 (X) yields that for each 8, with probability at least
1 − X,

1
V8 (X)2

(r̃81 − r)) "̃8 (r̃81 − r) ≤ (0 + <max)2.

By assumption, _
(8)
3

V8 (X)2
�−→ ∞ as 8 −→ ∞. Recall from Definition 7 that v (8)

9
, 9 ∈

{1, . . . , 3}, represent the eigenvectors of "̃8 corresponding to the eigenvalues _(8)
9
.

Then, with probability at least 1 − X for each 8:

1
V8 (X)2

(r̃81 − r)) "̃8 (r̃81 − r) = 1
V8 (X)2

(r̃81 − r)) ©­«
3∑
9=1
_
(8)
9
v (8)
9
v (8))
9

ª®¬ (r̃81 − r)

=
1

V8 (X)2
3∑
9=1
_
(8)
9

(
(r̃81 − r))v (8)

9

)2
≤ (0 + <max)2.

(B.11)

Since
_
(8)
9

V8 (X)2
−→ ∞ as 8 −→ ∞ for each 9 , and v (8)

9
is an orthonormal basis, the

constant bound of (0+<max)2 in Eq. (B.11) is violated if we do not have r̃81−r
�−→ 0.

Eq. (B.11) must hold with probability at least 1− X independently for each iteration
8, with the (1 − X)-probability due entirely to randomness in the posterior sampling
distribution, given by Eq. (B.9). Therefore, it follows that r̃81

�−→ r. The proof that
r̃82

�−→ r with high probability is identical.

The analysiswill show convergence in distribution of the reward samples, r̃81, r̃82
�−→

r, by applying Lemma 7 and demonstrating that 1
V8 (X)2

_
(8)
3
−→ ∞ as 8 −→ ∞. This

result is proven by contradiction: intuitively, if 1
V8 (X)2

_
(8)
3

is upper-bounded, then

173

DPS has a lower-bounded probability of selecting policies that increase _(8)
3
. First,

Lemma 8 demonstrates that under the contradiction hypothesis, there is a non-
decaying probability of sampling rewards r̃81, r̃82 that are highly-aligned with the
eigenvector v (8)

3
of "̃−1

8
corresponding to its largest eigenvalue, (_(8)

3
)−1.

Lemma 8. Assume that for a given iteration 8, V8 (X)2
(
_
(8)
3

)−1
≥ U. Then for any

0 > 0, the reward samples r̃81, r̃82 satisfy:

%

(
r̃)81v

(8)
3
≥ 0max

9<3
| r̃)81v

(8)
9
|
)
≥ 2(0) > 0, (B.12)

%

(
r̃)82v

(8)
3
≤ −0max

9<3
| r̃)82v

(8)
9
|
)
≥ 2(0) > 0, (B.13)

where 2 : R+ −→ R+ is a continuous, monotonically-decreasing function.

Proof. Recall that the reward samples r̃81, r̃82 are drawn according to the distribu-
tion in Eq. (B.9). The proof begins by demonstrating that the reward samples can
equivalently be expressed as:

r̃81 = r̂8 + V8 (X)
3∑
9=1

(
_
(8)
9

)− 1
2
I8 9v

(8)
9
, I8 9 ∼ N(0, 1) i.i.d., (B.14)

and similarly for r̃82. Similarly to Eq. (B.9), the expression in Eq. (B.14) has a
multivariate Gaussian distribution. One can take the expectation and covariance of
Eq. (B.14) with respect to the variables {I8 9 } to show that they match the expressions
in Eq. (B.9):

E

r̂8 + V8 (X)
3∑
9=1

(
_
(8)
9

)− 1
2
I8 9v

(8)
9

 = r̂8 + V8 (X)
3∑
9=1

(
_
(8)
9

)− 1
2
E[I8 9]v (8)9 = r̂8,

Cov
r̂8 + V8 (X)

3∑
9=1

(
_
(8)
9

)− 1
2
I8 9v

(8)
9

 (0)= E
©­«V8 (X)

3∑
9=1

(
_
(8)
9

)− 1
2
I8 9v

(8)
9

ª®¬
(
V8 (X)

3∑
:=1

(
_
(8)
:

)− 1
2
I8:v

(8)
:

)) 
= V8 (X)2

3∑
9=1

3∑
:=1

(
_
(8)
9

)− 1
2
(
_
(8)
:

)− 1
2
v (8)
9
v (8))
:
E[I8 9 I8:]

(1)
= V8 (X)2

3∑
9=1

(
_
(8)
9

)−1
v (8)
9
v (8))
9

= V8 (X)2"̃−1
8 ,

whichmatch the expectation and covariance in Eq. (B.9). In the above, (a) applies the
definition Cov[x] = E[(x − E[x]) (x − E[x]))], and (b) holds because E[I8 9 I8:] =
Cov[I8 9 I8:] = X 9 : , where X 9 : is the Kronecker delta function.

174

Next, it is shown that the probability that r̃81 is arbitrarily-aligned with v (8)3 is lower-
bounded above zero: that is, there exists 2 : R+ −→ R+ such that for any 0 > 0,
%(r̃)

81v
(8)
3
≥ 0max 9<3 | r̃)81v

(8)
9
|) ≥ 2(0) > 0. This can be shown by bounding the

terms | r̃)
81v
(8)
9
|, 9 < 3, and r̃)

81v
(8)
3
. Firstly, the term | r̃)

81v
(8)
9
|, 9 < 3, can be upper-

bounded:

| r̃)81v
(8)
9
| (0)=

�����r̂)8 v (8)9 + V8 (X) 3∑
:=1

(
_
(8)
:

)− 1
2
I8:v

(8))
:

v (8)
9

����� (1)= ����r̂)8 v (8)9 + V8 (X) (_(8)9)− 1
2
I8 9

����
≤ | r̂)8 v

(8)
9
| + V8 (X)

(
_
(8)
9

)− 1
2 |I8 9 |

(2)
≤ || r̂8 | |2 | |v (8)9 | |2 + V8 (X)

(
_
(8)
9

)− 1
2 |I8 9 |

(3)
≤ 1 + V8 (X)

(
_
(8)
9

)− 1
2 |I8 9 |,

where (a) applies Eq. (B.14), (b) follows from orthonormality of the eigenbasis, (c)
follows from the Cauchy-Schwarz inequality, and (d) uses Lemma 4, which states
that | | r̂8 | |2 ≤ 1. Similarly, r̃)

81v
(8)
3

can be lower-bounded:

r̃)81v
(8)
3

(0)
= r̂)8 v

(8)
3
+ V8 (X)

3∑
9=1

(
_
(8)
9

)− 1
2
I8 9v

(8))
9

v (8)
3

(1)
= r̂)8 v

(8)
3
+ V8 (X)

(
_
(8)
3

)− 1
2
I81

≥ −| r̂)8 v
(8)
3
| + V8 (X)

(
_
(8)
3

)− 1
2
I81
(2)
≥ −|| r̂8 | |2 | |v (8)3 | |2 + V8 (X)

(
_
(8)
3

)− 1
2
I81

(3)
≥ −1 + V8 (X)

(
_
(8)
3

)− 1
2
I81,

where as before, (a) applies Eq. (B.14), (b) follows from orthonormality of the eigen-
basis, (c) follows from the Cauchy-Schwarz inequality, and (d) holds via Lemma 4.
Given these upper and lower bounds, the probability %

(
r̃)
81v
(8)
3
≥ 0max 9<3 | r̃)81v

(8)
9
|
)

can be lower-bounded:

%

(
r̃)81v

(8)
3
≥ 0max

9<3
| r̃)81v

(8)
9
|
)
(0)
≥ %

(
−1 + V8 (X)

(
_
(8)
3

)− 1
2
I81 ≥ 0max

9<3

[
1 + V8 (X)

(
_
(8)
9

)− 1
2 |I8 9 |

])
= %

©­­«I81 ≥
1

√
_
(8)
3

V8 (X)
+ 0max

9<3


1

√
_
(8)
3

V8 (X)
+

√√√√
_
(8)
3

_
(8)
9

|I8 9 |

ª®®¬

(1)
≥ %

(
I81 ≥

1
√
U
+ 0max

9<3

[
1
√
U
+ |I8 9 |

])
= %

(
I81 ≥

1(1 + 0)
√
U
+ 0max

9<3
|I8 9 |

)
:= 2(0) > 0,

where (a) results from the upper and lower bounds derived above, and (b) follows

because _
(8)
3

_
(8)
9

≤ 1 and V8 (X)
(
_
(8)
3

)− 1
2 ≥
√
U by assumption. The function 2(0) > 0 is

continuous and decreasing in 0.

175

By identical arguments, %(r̃)
82v
(8)
3
≤ −0max 9<3 | r̃)82v

(8)
9
|) ≥ 2(0). Thus, for any

0 > 0 and set of eigenvectors v (8)
9
:

%(r̃)81v
(8)
3
≥ 0max

9<3
| r̃)81v

(8)
9
|) ≥ 2(0) > 0,

%(r̃)82v
(8)
3
≤ −0max

9<3
| r̃)82v

(8)
9
|) ≥ 2(0) > 0.

This alignment between sampled rewards r̃81, r̃82 and v (8)
3

can also be expressed as
follows by taking 0 high enough:

Lemma 9. Assume that for a given iteration 8, V8 (X)2
(
_
(8)
3

)−1
≥ U. Then, for any

Y > 0, the following events have nonzero, uniformly-lower-bounded probability:������ r̃81
| | r̃81 | |2 − v

(8)
3

������
2
< Y and

������ r̃82
| | r̃82 | |2 − (−v

(8)
3
)
������

2
< Y.

Proof. By Lemma 8, Eq.s (B.12) and (B.13) both hold. The events in Eq.s (B.12)
and (B.13), { r̃)

81v
(8)
3
≥ 0max 9<3 | r̃)81v

(8)
9
|} and { r̃)

82v
(8)
3
≤ −0max 9<3 | r̃)82v

(8)
9
|}, will

be referred to as events �(0) and �(0), respectively. From Lemma 8, �(0) and �(0)
have positive, lower-bounded probability for any 0. The proof argues that regardless
of the specific eigenbasis, the values of 0 required for the result to hold have some
fixed upper bound.

First, note that under events �(0) and �(0), as 0 −→ ∞, r̃81
| | r̃81 | |2 −→ v (8)

3
and

r̃82
| | r̃82 | |2 −→ −v

(8)
3
. Let Y > 0. Under event �(0) for sufficiently-large 0,

������ r̃81
| | r̃81 | |2 − v

(8)
3

������
2
<

Y. Define 0min,1(Y, v (8)1 , . . . , v
(8)
3
) as the minimum value of 0 such that �(0) implies������ r̃81

| | r̃81 | |2 − v
(8)
3

������
2
≤ Y

2 , given the eigenbasis {v (8)1 , . . . , v
(8)
3
}. Because the inequality

defining �(0) is continuous in 0, r̃81, and the eigenbasis {v (8)1 , . . . , v
(8)
3
}, the function

0min,1(Y, v (8)1 , . . . , v
(8)
3
) is also continuous in the eigenbasis {v (8)1 , . . . , v

(8)
3
}. Because

0min,1(Y, v (8)1 , . . . , v
(8)
3
) is positive for all {v (8)1 , . . . , v

(8)
3
}, and the set of all eigenbases

{v (8)1 , . . . , v
(8)
3
} is compact, there exists 0min,1(Y) such that for any eigenbasis, if �(0)

holds for 0 ≥ 0min,1(Y), then
������ r̃81
| | r̃81 | |2 − v

(8)
3

������
2
< Y.

By the same arguments, there exists 0min,2(Y) such that for any eigenbasis, if
�(0) holds for 0 ≥ 0min,2(Y), then

������ r̃82
| | r̃82 | |2 − (−v

(8)
3
)
������

2
< Y. Taking 0min(Y) :=

max{0min,1(Y), 0min,2(Y)}, then for any 0 ≥ 0min(Y), under events �(0) and �(0),
both

������ r̃81
| | r̃81 | |2 − v

(8)
3

������
2
< Y and

������ r̃82
| | r̃82 | |2 − (−v

(8)
3
)
������

2
< Y hold.

176

The next step shows that given sampled rewards r̃81, r̃82 that are highly-aligned with
the eigenvector v (8)

3
of "̃8 as in Lemma 9, there is a lower-bounded probability of

sampling actions that have non-zero projection onto this eigenvector.

Importantly, for each possible eigenvector v (8)
3
, the analysis will assume that there

exist two actions x1, x2 ∈ A such that:

| (x2 − x1))v (8)3 | ≥ 2 > 0, (B.15)

where the constant 2 is independent of the eigenvector v (8)
3
.

If this is not satisfied, then x)v (8)
3

is the same (or arbitrarily-similar) for all actions
x ∈ A. In this case, the eigenvector v (8)

3
lies along a dimension that is irrelevant

for learning the utilities r. The corresponding eigenvalue _(8)
3

is necessarily 0, since
all vectors x8 are orthogonal to v (8)

3
. Thus, the learning problem would remain

equivalent if A were reduced to a lower-dimensional subspace to which v (8)
3

is
orthogonal. Therefore, without loss of generality, this proof assumes that no such
eigenvectors exist, that is, Eq. (B.15) is satisfied for all eigenvectors v (8)

3
of "̃8.

Lemma 10 (Generalized linear dueling bandit). Assume that there exists 80 such

that for 8 > 80, V8 (X)2
(
_
(8)
3

)−1
≥ U. Then, there exists a constant 2′ > 0 such that

for 8 > 80:

E
[���x)8 v (8)3 ���] ≥ 2′ > 0, (B.16)

where 2′ > 0 depends only on the true utility parameters r, so that in particular, Eq.
(B.16) holds for any eigenvector v (8)

3
.

Proof. By Lemma 9, for any Y > 0, the following events have nonzero, uniformly-
lower-bounded probability:

������ r̃81
| | r̃81 | |2 − v

(8)
3

������
2
< Y and

������ r̃82
| | r̃82 | |2 − (−v

(8)
3
)
������

2
< Y.

Recall that in the bandit setting, actions are selected as follows in each iteration 8:

x81 = argsup
x∈A

x) r̃81, and x82 = argsup
x∈A

x) r̃82. (B.17)

Note that for any x ∈ A and unit vector r, 51(r) := x) r is uniformly-continuous in
r: if | |r1 − r2 | |2 ≤ X, then,

| 51(r1) − 51(r2) | ≤ |x) (r1 − r2) | ≤ | |x | |2 | |r1 − r2 | |2 ≤ !X,

177

where x ≤ ! for all x ∈ A. Therefore, for any v (8)
3

and Y′ > 0, there exists Y1 such
that when Y < Y1:����x)81v (8)3 − x)81 r̃81

| | r̃81 | |2

���� < Y′, and ����x)82(−v (8)3) − x)82 r̃82
| | r̃82 | |2

���� < Y′. (B.18)

Similarly, for any unit vector r, 52(r) := supx∈A x) r is uniformly-continuous in r,
since a continuous function over a compact set is uniformly-continuous, and the set
of all unit vectors is compact. Therefore, for any v (8)

3
and Y′ > 0, there exists Y2 such

that when Y < Y2: ����sup
x∈A

x)v (8)
3
− sup

x∈A
x)

r̃81
| | r̃81 | |2

���� < Y′, and (B.19)����sup
x∈A

x) (−v (8)
3
) − sup

x∈A
x)

r̃82
| | r̃82 | |2

���� < Y′.
Letting Y ≤ min{Y1, Y2}, |x)8 v

(8)
3
| can be lower-bounded as follows, where 2 is

defined as in Eq. (B.15):

0 < 2 ≤ sup
x1,x2∈A

| (x2 − x1))v (8)3 | =
����sup
x∈A

x)v (8)
3
− inf

x∈A
x)v (8)

3

����
=

����sup
x∈A

x)v (8)
3
+ sup

x∈A
x) (−v (8)

3
)
���� (0)≤ 2Y′ +

����sup
x∈A

x)
r̃81
| | r̃81 | |2

+ sup
x∈A

x)
r̃82
| | r̃82 | |2

����
(1)
= 2Y′ +

����x)81 r̃81
| | r̃81 | |2

+ x)82
r̃82
| | r̃82 | |2

���� (2)≤ 4Y′ +
���x)81v (8)3 + x)82(−v (8)3)��� = 4Y′ + |x)8 v

(8)
3
|,

where (a), (b), and (c) apply Eq.s (B.19), (B.17), and (B.18), respectively.

Let Y′ < 2
8 . Then, |x

)
8
v (8)
3
| ≥ 2

2 > 0 when the events of Lemma 9 hold. Because the
latter have a non-decaying probability of occurrence d > 0:

E
[���x)8 v (8)3 ���] ≥ d 28 = 2′ > 0.

With this result, one can finally prove the desired contradiction.

Lemma 11. As 8 −→ ∞, V8 (X)
2

_
(8)
3

�−→ 0, where _(8)
3

is the minimum eigenvalue of "̃8.

178

Proof. First, one can show via contradiction that lim inf
8−→∞

V8 (X)2
(
_
(8)
3

)−1
= 0. Assume

that:
lim inf
8−→∞

V8 (X)2
(
_
(8)
3

)−1
= 2U > 0. (B.20)

If Eq. (B.20) is true, then there exists 80 such that for all 8 ≥ 80, V8 (X)2
(
_
(8)
3

)−1
≥ U.

The following assumes that 8 ≥ 80. Since V8 (X) increases at most logarithmically
in 8, it suffices to show that _(8)

3
increases at least linearly on average to achieve a

contradiction with Eq. (B.20).

Under the contradiction hypothesis, Lemmas 8 and 10 both hold. Due to Lemma
10, DPS will infinitely often, and at a non-decaying rate, sample pairs x81, x82 such
that |x)

8
v (8)
3
| is lower-bounded away from zero. At iteration =, this proof analyzes

the effect of this guarantee upon _(=)
3
. Using that _(=)

3
corresponds to the eigenvector

v (=)
3

of "̃=:

_
(=)
3
= v (=))

3
"̃=v

(=)
3

(0)
≥ v (=))

3
(<min"=)) v (=)3

(1)
= <minv

(=))
3

(
_� +

=−1∑
8=1

x8x
)
8

)
v (=)
3

≥ <min

[
_ +

=−1∑
8=1

(
x)8 v

(=)
3

)2
]
, (B.21)

where (a) follows from Lemma 5 and (b) from the definition of "=. Note that while
the right-hand side expression in Eq. (B.21) depends upon x)

8
v (=)
3

for 8 < =, Eq.
(B.16) depends upon x)

8
v (8)
3
. Clearly, if v (8)

3
were constant in 8, then the combination

of Eq.s (B.16) and (B.21) would suffice to prove that _(=)
3
−→ ∞ with at least a

linear average rate; however, v (8)
3

can vary with 8 over the space of unit vectors in R3 .

This proof leverages that v (8)
3

is a unit vector, that the set of unit vectors in R3

is compact, and that any infinite cover of a compact set has a finite subcover. In
particular, for any Y > 0, there exist sets (1, . . . , (⊂ R3 , < ∞, such that:

1. For v ∈ R3 such that | |v | |2 = 1, v ∈ (: for some : ∈ {1, . . . , }, and

2. If v1, v2 ∈ (: , then | |v1 − v2 | | < Y.

It will be shown that there exists a sequence (=8) ∈ N such that v (=8)
3
∈ (: for

fixed : ∈ {1, . . . , }, with the events v (=8)
3
∈ (: corresponding to the indices (=8)

occurring at some non-decaying frequency. Then, by appropriately choosing Y, the

179

proof will use Eq. (B.21) and the mutual proximity of the vectors v (=8)
3

to show that
_
(=)
3

increases with an at-least linear rate.

Observe that for any number of total iterations # , there exists an integer : ∈
{1, . . . , } such that v (8)

3
∈ (: during at least #

iterations. Because is a constant

and #

is linear in # , the number of iterations in which v (8)

3
∈ (: is at least linear in

for some : . The right-hand sum in Eq. (B.21) can then be divided according to
the indices (=8) and the remaining indices:

_
(= 9)
3
≥ <min

_ +
= 9−1∑
8=1

(
x)8 v

(=8)
3

)2


= <min

_ +
9−1∑
8=1

(
x)=8v

(=8)
3

)2
+

= 9−1∑
9=1; 9∉{=1,=2,...,= 9−1}

(
x)9 v

(=8)
3

)2
 . (B.22)

The latter sum in Eq. (B.22) is non-decreasing in = 9 , as all of its terms are non-
negative. In the former sum, | |v (= 9)

3
− v (=8)

3
| | < Y for each 8 ∈ {1, . . . , 9 −1}. Defining

% := v
(= 9)
3
− v (=8)

3
, so that | |% | |2 ≤ Y:(

x)=8v
(=8)
3

)2
=

(
x)=8

(
v (=8)
3
+ %

))2
=

(
x)=8v

(=8)
3
+ x)=8%

)2
≥

(���x)=8v (=8)3

��� − ��x)=8%��)2
.

(B.23)

By the Cauchy-Schwarz inequality,
��x)=8%�� ≤ ||% | |2 ∗ ||x=8 | |2 ≤ 2Yℎ, where ℎ is the

trajectory horizon. Because Eq. (B.16) requires that E
[���x)=8v (=8)3

���] ≥ 2′ > 0, one can

choose Y small enough that E
[���x)=8v (=8)3

��� − ��x)=8%��] ≥ 2′ − 2Yℎ ≥ 2′′ > 0, and:

E

[(
x)=8v

(=8)
3

)2
]
(0)
≥ E

[(���x)=8v (=8)3

��� − ��x)=8%��)2
]
(1)
≥ E

[���x)=8v (=8)3

��� − ��x)=8%��]2
≥ (2′′)2 > 0,

where (a) takes expectations of both sides of Eq. (B.23), and (b) follows from
Jensen’s inequality. Merging this result with Eq. (B.22) implies that _(= 9)

3
is expected

to increase at least linearly on average, according to the positive constant 2′′, over
the indices (=8). Recall that there always exists an (: such that the number of times
when v (8)

3
∈ (: is at least linear in the total number of iterations # . Thus, the rate

at which indices (=8) occur is always (at least) linear in # on average, and _(= 9)
3

increases at least linearly in # in expectation.

One can now demonstrate that lim inf
8−→∞

V8 (X)2

_
(8)
3

= 0 holds: the numerator of V8 (X)
2

_
(8)
3

is the
square of a quantity that increases at most logarithmically in 8, while the denominator

180

increases at least linearly in 8 on average. This contradicts the assumption in Eq.

(B.20), and thereby proves that lim inf
8−→∞

V8 (X)2
(
_
(8)
3

)−1
= 0 must hold.

Finally, one can leverage that lim inf
8−→∞

V8 (X)2
(
_
(8)
3

)−1
= 0 to show that lim

8−→∞
V8 (X)2

(
_
(8)
3

)−1

= 0. Consider the following two possible cases: 1) V8 (X)2
(
_
(8)
3

)−1
converges to zero

in probability, and 2) V8 (X)2
(
_
(8)
3

)−1
does not converge to zero in probability. In

case 1), because convergence in probability implies convergence in distribution, the
desired result holds.

In case 2), there exists some Y > 0 such that %
(
V8 (X)2

(
_
(8)
3

)−1
≥ Y

)
6−→ 0. In this

case, one can apply the same arguments used to show that lim inf
8−→∞

V8 (X)2
(
_
(8)
3

)−1
=

0, but specifically over time indices where V8 (X)2
(
_
(8)
3

)−1
≥ Y. Due to the non-

convergence in probability, these time indices must occur at some non-decaying rate;
hence, the same analysis applies. Thus, _(8)

3
increases in 8 with at least a minimum

linear average rate, while V8 (X) increases at most logarithmically in 8. This violates
the non-convergence assumption of case 2), resulting in a contradiction. As a result,
only case 1) can hold.

Combining Lemmas 7 and 11 leads to the desired result:

Proposition 4.When running DPS in the generalized linear dueling bandit setting,
with utilities given via either the linear or logistic link functions and with posterior
sampling distributions given in Eq. (4.13), then with probability 1 − X, the sampled
utilities r̃81, r̃82 converge in distribution to their true values, r̃81, r̃82

�−→ r, as 8 −→
∞.

Asymptotic Consistency of the Utilities for Preference-Based RL
Proposition 4 can also be extended to the preference-based RL setting; in fact, several
of the previous lemmas will be re-used in this analysis. The main complication is
that policies are now selected rather than actions, and each policy corresponds to a
distribution over possible trajectories.

The next result enables the proof to leverage convergence in distribution of the dy-
namics samples, p̃81, p̃82

�−→ p (as guaranteed by Proposition 3), in characterizing
the impact of sampled policies upon convergence of the reward model.

181

Lemma 12. Let 5 : R(2�×R(� −→ R be a function of transition dynamics p ∈ R(2�

and reward vector r ∈ R(�, 5 (p, r), where 5 is continuous in p and uniformly-
continuous in r. Assume that Proposition 3 holds: p̃81, p̃82

�−→ p. Then, for any
X, Y > 0, there exists 8′ such that for 8 > 8′, | 5 (p, r) − 5 (p̃8 9 , r) | < Y for any unit
vector r and 9 ∈ {1, 2} with probability at least 1 − X.

Proof. Without loss of generality, the result is shown for 9 = 1 (the steps are identical
for 9 = 1 and 9 = 2). Applying Proposition 3, p̃81

�−→ p. By continuity of 5 , one
can apply Fact 8 from Appendix B.1 to obtain that 5 (p̃81, r)

�−→ 5 (p, r) for any
r. Further applying Fact 9 from Appendix B.1, 5 (p̃81, r)

%−→ 5 (p, r) for any r. By
definition of convergence in probability, given X, there exists 8r such that for 8 ≥ 8r:

| 5 (p̃81, r) − 5 (p, r) | <
1
3
Y with probability at least 1 − X. (B.24)

To obtain a high-probability bound that applies over all unit vectors r, one can use
compactness of the set of unit vectors. Any infinite cover of a compact set has a
finite subcover; in particular, for any X′ > 0, the set of unit vectors in R3 has a finite
cover of the form {B(r1, X

′), . . . ,B(r , X′)}, where {r1, . . . , r } are unit vectors,
and B(r, X′) := {r′ ∈ R3 | | |r′ − r | |2 < X′} is the 3-dimensional sphere of radius X′

centered at r. Thus, there exists a finite set of unit vectors U = {r1, . . . , r } such
that for any unit vector r′, | |r8 − r′| |2 < X′ for some 8 ∈ {1, . . . , }. Because 5 is
uniformly-continuous in r, for any transition dynamics p, there exists X p > 0 such
that for any two unit vectors r, r′ such that | |r − r′| |2 < X p:

| 5 (p, r) − 5 (p, r′) | < 1
3
Y. (B.25)

Without loss of generality, for each p, define X p := sup G such that | |r − r′| |2 < G
implies | 5 (p, r) − 5 (p, r′) | ≤ 1

6Y. Then, because 5 is continuous in p, X p is also
continuous in p. Because the set of all possible transition probability vectors p is
compact, and a continuous function over a compact set achieves its minimum value,
there exists Xmin > 0 such that X p ≥ Xmin > 0 over all p. LetU be defined such that
X′ ≤ Xmin; then, for any unit vector r′, there exists r ∈ U such that | |r − r′| |2 < Xmin,
and thus Eq. (B.25) holds for any p.

By Eq. (B.24), for each r 9 ∈ U, there exists 8r 9 such that for 8 ≥ 8r 9 : | | 5 (p̃81, r) −
5 (p, r) | |2 < 1

3Y with probability at least 1− X. BecauseU is a finite set, there exists
8′ > max{8r1 , . . . , 8r } such that for r ∈ U and 8 > 8′:

| 5 (p̃81, r) − 5 (p, r) | <
1
3
Y for each r ∈ U with probability at least 1 − X. (B.26)

182

Therefore, for any unit vector r′, there exists r ∈ U such that | |r − r′| |2 < X′ ≤ Xmin,
and with probability at least 1 − X for 8 > 8′:

| 5 (p, r′) − 5 (p̃81, r′) | = | 5 (p, r′) − 5 (p, r) + 5 (p, r) − 5 (p̃81, r) + 5 (p̃81, r) − 5 (p̃81, r′) |
(0)
≤ | 5 (p, r′) − 5 (p, r) | + | 5 (p, r) − 5 (p̃81, r) | + | 5 (p̃81, r) − 5 (p̃81, r′) |
(1)
≤ 1

3
Y + 1

3
Y + 1

3
Y = Y,

where (a) holds due to the triangle inequality, and (b) holds via Eq.s (B.25) and
(B.26), where the proof showed that there exists Xmin such that 0 < Xmin ≤ X p for all
possible transition dynamics parameters p.

Applying Lemma 12 to the two functions + (p, r, cE8 (p, r)) = maxc′ + (p, r, c′)
and + (p, r, c), for any fixed policy c, yields the following result.

Lemma 13. For any Y, X > 0, any policy c, and any unit reward vector r, both of the
following hold with probability at least 1 − X for sufficiently-large 8 and 9 ∈ {1, 2}:

|+ (p, r, c) −+ (p̃8 9 , r, c) | < Y
|+ (p, r, cE8 (p, r)) −+ (p̃8 9 , r, cE8 (p̃8 9 , r)) | < Y.

Proof. Both statements follow by applying Lemma 12. First, consider the function
51(p, r) := + (p, r, c) for a fixed policy c. The value function + (p, r, c) is contin-
uous in both p and r, and furthermore, it is linear in r. Using these observations,
the proof demonstrates that + (p, r, c) is uniformly-continuous in r. Indeed, for any
linear function of the form 6(z) = a) z, for any Y′ > 0, for X′ := Y′

| |a | | , and for any
z1, z2 such that | |z1 − z2 | | < X′:

|6(z1) − 6(z2) | = |a) (z1 − z2) | ≤ | |a | |2 | |z1 − z2 | |2 < | |a | |2X′ = Y′.

Thus, 51 satisfies the conditions of Lemma 12 for any fixed c, so that for 8 > 8c,
|+ (p, r, c) − + (p̃8 9 , r, c) | < Y with probability at least 1 − X. Because there are
finitely-many deterministic policies c, one can set 8 > maxc 8c, so that the statement
holds jointly over all c.

Next, let 52(p, r) = maxc + (p, r, c) = + (p, r, cE8 (p, r)). Amaximumover finitely-
many continuous functions is continuous, and amaximumover finitely-manyuniformly-
continuous functions is uniformly-continuous. Therefore, 52 also satisfies the con-
ditions of Lemma 12.

183

As in the bandit case, convergence in distribution of the reward samples, r̃81, r̃82
�−→

r, will be shown by applying Lemma 7 and demonstrating that 1
V8 (X)2

_
(8)
3
−→ ∞ as

8 −→ ∞. Similarly, this result is proven by contradiction: intuitively, if 1
V8 (X)2

_
(8)
3

is
upper-bounded, then DPS has a lower-bounded probability of selecting policies that
tend to increase _(8)

3
.

Importantly, abbreviating _(8)
3
’s eigenvector v (8)

3
as v, this proof is contingent upon

there existing a pair of policies c1, c2 such that:��E[x)8 v | c81 = c1, c82 = c2]
�� = ��E[(x82 − x81))v | c81 = c1, c82 = c2]

��
(0)
= |+ (p, v, c1) −+ (p, v, c2) | > 0,

where (a) holds because the value function+ (p, v, c) gives the expected total reward
of c under the reward vector v. In other words, the proof will require,

max
c1,c2

��E[x)8 v | c81 = c1, c82 = c2]
�� = max

c1,c2
|+ (p, v, c1) −+ (p, v, c2) | > 0. (B.27)

If this does not hold, then it is impossible to select a pair of policies under which
the observation x8 is not expected to be orthogonal to the eigenvector v.

This work argues that without loss of generality, Eq. (B.27) can be assumed to hold
for all eigenvectors of "̃8. Note that if Eq. (B.27) does not hold, then E[x)81v | c81 =
c] = + (p, v, c) is fixed for all c. Given p, by linearity of the value function+ in the
rewards, any v-directed component of r does not affect policy selection:+ (p, r, c) =
+ (p, rv + rv⊥, c) = + (p, rv, c) ++ (p, rv⊥, c), where rv is the projection of r onto
the v-direction and rv⊥ is its orthogonal complement in R3 . Because + (p, rv, c)
does not depend on c, cE8 (p, r) = argmaxc+ (p, r, c) = argmaxc+ (p, rv⊥, c).

This thesis calls any vector v which does not satisfy Eq. (B.27) an irrelevant di-
mension of the rewards: given p, removing the v-directed component of r does
not influence policy selection. The following lemma demonstrates that such vectors
remain irrelevant towards policy selection even when p is unknown, given posterior
samples of the transition dynamics, p̃81, p̃82, that have sufficiently converged to the
true values p in distribution.

Lemma 14. For any reward vector r ∈ R3 , let rrel be the projection of r onto the
relevant subspace (for which Eq. (B.27) holds), and r⊥ be its orthogonal complement
inR3 , such that r = rrel+r⊥, and r⊥ belongs to the subspace of irrelevant dimensions
(where Eq. (B.27) does not hold). The reward samples on iteration 8 are r̃8 9 , 9 ∈

184

{1, 2}. Then, for any Y, X > 0, there exists 80 such that for 8 > 80, with probability at
least 1 − X:

|+ (p, r̃8 9 , c8 9) −+ (p, r̃8 9 , cE8 (p̃8 9 , r̃rel
8 9)) | < Y.

In other words, with respect to the sampled rewards r̃8 9 , the expected reward of the
selected policy c8 9 = cE8 (p̃8 9 , r̃8 9) is close to the expected reward of the policy that
would have been selected were r̃8 9 replaced by r̃rel

8 9
.

Proof. The result is proven for 9 = 1 (the proof is identical for 9 = 2). Because
+ (p, r̃⊥

81, c) is constant for all c, the variable F := + (p, r̃⊥
81, c) is defined for

convenience. First, the proof shows that under the true transition dynamics p, the
irrelevant dimensions of r̃81 do not affect policy selection. For any c,

+ (p, r̃81, cE8 (p, r̃81)) = max
c
+ (p, r̃81, c)

(0)
= max

c

[
+ (p, r̃rel81 , c) ++ (p, r̃

⊥
81, c)

]
(1)
= + (p, r̃rel81 , cE8 (p, r̃

rel
81)) ++ (p, r̃

⊥
81, cE8 (p, r̃

rel
81))

(2)
= + (p, r̃81, cE8 (p, r̃rel81)),

(B.28)

where (a) and (c) hold because r̃81 = r̃rel
81 + r̃

⊥
81 and the value function is linear in the

rewards, and (b) holds because + (p, r̃⊥
81, c) = F is constant across all policies c.

To upper-bound |+ (p, r̃81, c81) −+ (p, r̃81, cE8 (p̃81, r̃rel
81)) |:

|+ (p, r̃81, c81) −+ (p, r̃81, cE8 (p̃81, r̃rel
81)) | (B.29)

(0)
= |+ (p, r̃81, cE8 (p̃81, r̃81)) − (+ (p, r̃rel

81 , cE8 (p̃81, r̃
rel
81)) + F) |

= |+ (p, r̃81, cE8 (p̃81, r̃81)) − (+ (p, r̃rel
81 , cE8 (p̃81, r̃

rel
81)) + F)

−+ (p̃81, r̃81, cE8 (p̃81, r̃81)) ++ (p̃81, r̃81, cE8 (p̃81, r̃81)) |
−+ (p, r̃81, cE8 (p, r̃81)) ++ (p, r̃81, cE8 (p, r̃81)) |
− (+ (p̃81, r̃rel81 , cE8 (p̃81, r̃

rel
81)) + F) + (+ (p̃81, r̃

rel
81 , cE8 (p̃81, r̃

rel
81)) + F) |

(1)
≤ |+ (p, r̃81, cE8 (p̃81, r̃81)) −+ (p̃81, r̃81, cE8 (p̃81, r̃81) |
+ |+ (p̃81, r̃81, cE8 (p̃81, r̃81)) −+ (p, r̃81, cE8 (p, r̃81) |
+ |+ (p, r̃81, cE8 (p, r̃81) − (+ (p̃81, r̃rel81 , cE8 (p̃81, r̃

rel
81)) + F) | (B.30)

+ |(+ (p̃81, r̃rel81 , cE8 (p̃81, r̃
rel
81)) + F) − (+ (p, r̃

rel
81 , cE8 (p̃81, r̃

rel
81)) + F) |

(2)
≤ |+ (p, r̃81, cE8 (p̃81, r̃81)) −+ (p̃81, r̃81, cE8 (p̃81, r̃81) |
+ |+ (p̃81, r̃81, cE8 (p̃81, r̃81)) −+ (p, r̃81, cE8 (p, r̃81) |
+ |+ (p, r̃rel81 , cE8 (p, r̃

rel
81)) −+ (p̃81, r̃

rel
81 , cE8 (p̃81, r̃

rel
81)) |

+ |+ (p̃81, r̃rel81 , cE8 (p̃81, r̃
rel
81)) −+ (p, r̃

rel
81 , cE8 (p̃81, r̃

rel
81)) |, (B.31)

185

where (a) applies r̃81 = r̃rel
81 + r̃

⊥
81, linearity of the value function in the rewards, and the

definition of F; (b) rearranges terms and uses the triangle inequality; and (c) applies
Eq. (B.28) to line (B.30), that is,+ (p, r̃81, cE8 (p, r̃81)) = + (p, r̃rel81 , cE8 (p, r̃

rel
81)) +F.

Each of the four terms in Eq. (B.31) can be upper-bounded with high probability
using Lemma 13. In particular, for large enough 8, each term is less than 1

4Y with
probability at least 1 − 1

4X. Therefore, the desired result holds.

Remark 7. The reward dimensions could be irrelevant due to a number of reasons.
For instance, in preference-basedRL, because the elements of x8 := x82−x81 must sum
to zero, the vector [1, 1, . . . , 1]) must always be orthogonal to every observation x8.
Alternatively, the MDP’s transition dynamics could constrain the expected number
of visits to a particular state to be constant regardless of the policy.

Such constraints result in a subspace of R3 that is irrelevant to learning the optimal
policy once the transition dynamics model has converged sufficiently. Therefore,
Lemma 7 must only be satisfied for eigenvalues of "8 along relevant dimensions in
order to asymptotically select the optimal policy. Thus, the analysis can assume that
sampled reward vectors r̃81, r̃82 have been projected onto the relevant subspace of
R3 . As a result, in proving that V8 (X)

2

_
(8)
3

�−→ 0 as 8 −→ ∞, the analysis assumes that

all eigenvectors of "̃8 belong to the relevant subspace without loss of generality.
More formally, without loss of generality, all eigenvectors {v (8)

9
} of "̃8 are assumed

to satisfy Eq. (B.27).

The analysis leverages Lemmas 8 and 9, which were proven in the bandit analysis,
but also apply to the preference-based RL setting. Analogously to Lemma 10 in the
bandit setting, the next step is to prove that E

[���x)8 v (8)3 ���] ≥ 2′ > 0; however, the proof
is more involved in the RL setting, as it must account for the stochastic translation of
policies to trajectories via the MDP transition dynamics. Intuitively, Lemmas 8 and
9 prove that under the contradiction hypothesis, there is a non-decaying probability
of sampling rewards r̃81, r̃82 that are highly-aligned with the eigenvector v (8)

3
of "̃8.

Lemma 15, proven below, demonstrates that given such reward samples, there is a
lower-bounded probability of sampling trajectories that have a non-zero projection
onto this eigenvector.

Lemma 15 (Preference-based RL). Assume that there exists 80 such that for 8 > 80,

V8 (X)2
(
_
(8)
3

)−1
≥ U. Then, there exists 8′ ≥ 80 and a constant 2′ > 0 such that for

186

8 > 8′:

E
[���x)8 v (8)3 ���] ≥ 2′ > 0, (B.32)

where 2′ > 0 depends only on the MDP parameters p and r, so that in particular,
Eq. (B.32) holds for any eigenvector v (8)

3
.

Proof. By Lemma 9, for any Y > 0, the following events have nonzero, uniformly-
lower-bounded probability for all unit vectors v (8)

3
:�������� r̃81

| | r̃81 | |2
− v (8)

3

��������
2
< Y and

�������� r̃82
| | r̃82 | |2

− (−v (8)
3
)
��������

2
< Y.

Next, this proof shows that for small-enough Y, the event
������ r̃81
| | r̃81 | |2 − v

(8)
3

������
2
< Y

implies that the expected reward accrued by c81 with respect to v (8)
3
—that is,

+ (p, v (8)
3
, c81)—is close to the maximum possible expected reward with respect

to v (8)
3
: maxc + (p, v (8)3 , c) = + (p, v

(8)
3
, cE8 (p, v (8)3)). (The same approach yields an

equivalent result for r̃82.)

Assume that
������ r̃81
| | r̃81 | |2 − v

(8)
3

������
2
< Y, and let Y′ > 0. For small-enough Y and when

p̃81 has sufficiently converged in distribution to p (as is guaranteed to occur by
Proposition 3), one can show that |+ (p, v (8)

3
, cE8 (p, v (8)3)) −+ (p, v

(8)
3
, c81) | < Y′:

���+ (p,v (8)
3
, cE8 (p, v (8)3)) −+ (p, v

(8)
3
, c81)

��� (B.33)

(0)
=

����+ (
p, v (8)

3
, cE8 (p, v (8)3)

)
−+

(
p, v (8)

3
, cE8

(
p̃81,

r̃81
| | r̃81 | |2

))����
=

�����+ (
p, v (8)

3
, cE8 (p, v (8)3)

)
−+

(
p,

r̃81
| | r̃81 | |2

, cE8

(
p,

r̃81
| | r̃81 | |2

))
++

(
p,

r̃81
| | r̃81 | |2

, cE8

(
p,

r̃81
| | r̃81 | |2

))
−+

(
p̃81,

r̃81
| | r̃81 | |2

, cE8

(
p̃81,

r̃81
| | r̃81 | |2

))
++

(
p̃81,

r̃81
| | r̃81 | |2

, cE8

(
p̃81,

r̃81
| | r̃81 | |2

))
−+

(
p,

r̃81
| | r̃81 | |2

, cE8

(
p̃81,

r̃81
| | r̃81 | |2

))
++

(
p,

r̃81
| | r̃81 | |2

, cE8

(
p̃81,

r̃81
| | r̃81 | |2

))
−+

(
p, v (8)

3
, cE8

(
p̃81,

r̃81
| | r̃81 | |2

)) �����
(1)
≤

����+ (
p,

r̃81
| | r̃81 | |2

, cE8

(
p̃81,

r̃81
| | r̃81 | |2

))
−+

(
p, v (8)

3
, cE8

(
p̃81,

r̃81
| | r̃81 | |2

))����
(B.34)

187

+
����+ (

p, v (8)
3
, cE8 (p, v (8)3)

)
−+

(
p,

r̃81
| | r̃81 | |2

, cE8

(
p,

r̃81
| | r̃81 | |2

))���� (B.35)

+
����+ (

p,
r̃81
| | r̃81 | |2

, cE8

(
p,

r̃81
| | r̃81 | |2

))
−+

(
p̃81,

r̃81
| | r̃81 | |2

, cE8

(
p̃81,

r̃81
| | r̃81 | |2

))����
(B.36)

+
����+ (

p̃81,
r̃81
| | r̃81 | |2

, cE8

(
p̃81,

r̃81
| | r̃81 | |2

))
−+

(
p,

r̃81
| | r̃81 | |2

, cE8

(
p̃81,

r̃81
| | r̃81 | |2

))���� ,
(B.37)

where (a) uses that c81 = cE8 (p̃81, r̃81) by definition, and also that positive scaling
of the reward argument of cE8 (p, r) does not affect its output; and (b) applies the
triangle inequality. Next, the proof will show that each of Eq.s (B.34)-(B.37) can
be upper-bounded by 1

4Y
′ (with high probability for Eq.s (B.36) and (B.37)) by an

appropriate choice of Y and by utilizing that p̃81
�−→ p (Proposition 3).

Beginning with line (B.34), because + (p, r, c) is linear in r, it is uniformly con-
tinuous in r for fixed transition dynamics p and policy c. So, for fixed dynamics p

and policy c and for any reward vector r, there exists Yc such that if | |r − r′| | < Yc,
then |+ (p, r, c) −+ (p, r′, c) | < 1

4Y
′. Because there are finitely-many deterministic

policies, there exists Y1 > 0 such that Y1 ≤ Yc for all c. Therefore, for any policy
c, if | |r − r′| |2 < Y1, then |+ (p, r, c) − + (p, r′, c) | < 1

4Y
′. The expression in line

(B.34) is thus upper-bounded by 1
4Y
′ if Y < Y1.

To upper-bound line (B.35), observe that + (p, r, cE8 (p, r)) = maxc + (p, r, c) is
also uniformly continuous in r for fixed transition dynamics p: the maximum over
finitely-many uniformly continuous functions is also uniformly continuous. Thus,
there exists Y2 > 0 such that if | |r − r′| |2 < Y2, then:

|+ (p, r, cE8 (p, r)) −+ (p, r′, cE8 (p, r′)) | <
1
4
Y′.

The expression in line (B.35) is thus upper-bounded by 1
4Y
′ if Y < Y2.

To obtain high-probability upper bounds for lines (B.36) and (B.37), one can apply
Lemma 13. For sufficiently-high 8, each of the following holds with probability at
least 1 − 1

2X
′:����+ (

p,
r̃81
| | r̃81 | |2

, cE8

(
p,

r̃81
| | r̃81 | |2

))
−+

(
p̃81,

r̃81
| | r̃81 | |2

, cE8

(
p̃81,

r̃81
| | r̃81 | |2

))���� < 1
4
Y′,����+ (

p̃81,
r̃81
| | r̃81 | |2

, c

)
−+

(
p,

r̃81
| | r̃81 | |2

, c

)���� < 1
4
Y′,

188

where the second statement holds for any policy c, and in particular for c =

cE8

(
p̃81,

r̃81
| | r̃81 | |2

)
.

Next, combine the bounds for lines (B.34)-(B.37) while setting Y < min{Y1, Y2} and
8 > 8′. Then, for any Y′, X′ > 0, the above analysis has shown that by setting Y small
enough and taking 8 > 8′:���+ (p, v (8)

3
, cE8 (p, v (8)3)) −+ (p, v

(8)
3
, c81)

��� < Y′ with probability at least 1 − X′.

Combining with the analogous result for c82 and −v (8)3 yields that for any Y′, X′ > 0,
there exists sufficiently-small Y and large-enough 8′ such that for 8 > 8′:���+ (p, v (8)

3
, cE8 (p, v (8)3)) −+ (p, v

(8)
3
, c81)

��� < Y′ with probability at least 1 − X′, and

(B.38)���+ (p,−v (8)
3
, cE8 (p,−v (8)3)) −+ (p,−v

(8)
3
, c82)

��� < Y′ with probability at least 1 − X′.

Next, the proof will set Y′ to a small enough number to achieve
���E[x)8 v (8)3]��� > Y′ > 0.

Firstly, note that |E[x)
8
v (8)
3
] | is maximized when setting c81 = cE8 (p, v (8)3) and

c82 = cE8 (p,−v (8)3):

max
c1,c2

���E[x)8 v (8)3] | c81 = c1, c82 = c2

��� = max
c1,c2

���E[x)81v (8)3 − x)82v (8)3] | c81 = c1, c82 = c2

���
=

���E[x)81v (8)3 − x)82v (8)3 | c81 = argmaxcE[x)81v
(8)
3
], c82 = argmincE[x)82v

(8)
3
]]

���
=

���E[x)81v (8)3 − x)82v (8)3 | c81 = argmaxcE[x)81v
(8)
3
], c82 = argmaxcE[x)82(−v

(8)
3
)]]

���
=

���E[x)81v (8)3 − x)82v (8)3 | c81 = argmaxc+ (p, v
(8)
3
, c), c82 = argmaxc+ (p,−v

(8)
3
, c)]

���
=

���E[x)81v (8)3 − x)82v (8)3 | c81 = cE8 (p, v (8)3), c82 = cE8 (p,−v (8)3)]��� .
From Lemma 14 (also, see Remark 7), one can assume without loss of generality
that for all v (8)

3
, maxc1,c2

���E[x)8 v (8)3 | c81 = c1, c82 = c2]
��� > 0.

Because
���E[x)8 v (8)3 | c81 = c1, c82 = c2]

��� is continuous in v (8)
3

for fixed c1, c2, and a
maximum over finitely-many continuous functions is continuous:

max
c1,c2

���E[x)8 v (8)3 | c81 = c1, c82 = c2]
��� is also continuous in v (8)

3
.

Because v (8)
3

belongs to the compact set of unit vectors, the expression achieves a
minimum positive value on the set of possible v (8)

3
, and thus, there exists [> 0 such

189

that maxc1,c2

���E[x)8 v (8)3 | c81 = c1, c82 = c2]
��� ≥ [> 0. Setting Y′ := [

3 :

0 < 3Y′ = [≤ max
c1,c2

���E[x)8 v (8)3 | c81 = c1, c82 = c2]
���

=

����max
c1
E[x)81v

(8)
3
| c81 = c1] −min

c2
E[x)82v

(8)
3
| c82 = c2]

����
=

����max
c1

+ (p, v (8)
3
, c1) −min

c2
+ (p, v (8)

3
, c2)

����
=

����max
c1

+ (p, v (8)
3
, c1) +max

c2
[−+ (p, v (8)

3
, c2)]

����
=

����max
c1

+ (p, v (8)
3
, c1) +max

c2
+ (p,−v (8)

3
, c2)

����
=

���+ (p, v (8)
3
, cE8 (p, v (8)3)) ++ (p,−v

(8)
3
, cE8 (p,−v (8)3))

���
(0)
≤

���+ (p, v (8)
3
, c81) ++ (p,−v (8)3 , c82)

��� + 2Y′,

where (a) holds with probability at least 1− 2X′ by Eq. (B.38). Subtracting 2Y′ from
the right-hand side of inequality (a) and from [= 3Y′ yields that with probability at
least 1 − 2X′,

Y′ <
���+ (p, v (8)

3
, c81) ++ (p,−v (8)3 , c82)

��� = ���+ (p, v (8)
3
, c81) −+ (p, v (8)3 , c82)

��� = ���E[x)8 v (8)3]��� .
This implies that:

E
[���x)8 v (8)3 ���] (0)≥ ���E [

x)8 v
(8)
3

] ��� ≥ 2′ > 0 for some positive 2′ and for all 8 > 8′ and v (8)
3
,

where (a) holds via Jensen’s inequality and 2′ := Y′.

To finish proving that in preference-based RL, the utility model is asymptotically
consistent, Lemma 11 can be applied exactly as in the bandit case. The proof of
Lemma 11 is the same in the RL setting as in the bandit case, except that Lemma
10 must be replaced by Lemma 15, and Eq. (B.16) must be replaced by Eq. (B.32).

Combining Lemmas 7 and 11 leads to the final result:

Proposition 5.When running DPS in the preference-based RL setting, with utilities
given via either the linear or logistic link functions and with posterior sampling
distributions given in Eq. (4.13), then with probability 1 − X, the sampled utilities
r̃81, r̃82 converge in distribution to their true values, r̃81, r̃82

�−→ r, as 8 −→ ∞.

190

B.4 Asymptotic Consistency of the Selected Policies in DPS
From the asymptotic consistency of the dynamics and reward samples, one can show
that the sampled policies converge in distribution to the optimal policy:

Theorem 1. Assume that DPS is executed in the preference-based RL setting, with
utilities given via either the linear or logistic link functions and with posterior
sampling distributions given in Eq. (4.13).

With probability 1 − X, the sampled policies c81, c82 converge in distribution to the
optimal policy, c∗, as 8 −→ ∞. That is, %(c81 = c∗) −→ 1 and %(c82 = c∗) −→ 1
as 8 −→ ∞.

Under the same conditions, with probability 1 − X, in the generalized linear duel-
ing bandit setting with a finite action space A, the sampled actions converge in
distribution to the optimal actions: %(x81 = x∗) −→ 1 and %(x82 = x∗) −→ 1 as
8 −→ ∞.

Proof. First, consider the preference-based RL case.

It suffices to show that %(c81 = c∗) −→ 1 as 8 −→ ∞, as the proof is identical
for c82. From Propositions 3 and 5, respectively, p̃81

�−→ p and r̃81
�−→ r with

probability 1 − X. The proof proceeds under the assumption that r̃81
�−→ r, i.e., that

the probability-(1 − X) event occurs.

By Fact 8 in Appendix B.1, for each fixed c, + (p̃81, r̃81, c)
�−→ + (p, r, c), as value

functions are continuous in the dynamics and reward parameters. Applying Fact 9
in Appendix B.1, for each fixed c and Y > 0:

%(|+ (p̃81, r̃81, c) −+ (p, r, c) | > Y) −→ 0 as 8 −→ ∞. (B.39)

Next, the value of Y is set to less than half of the smallest gap between the value of
the optimal policy and the value of any suboptimal policy:

Y <
1
2

[
max
c
+ (p, r, c) − max

c s.t. + (p,r,c)<maxc′ + (p,r,c′)
+ (p, r, c)

]
.

Then, the probability of selecting a non-optimal policy can be upper-bounded by a
quantity that decays with 8:

%(c81 ≠ c∗)
(0)
≤ %

(⋃
c

{|+ (p̃81, r̃81, c) −+ (p, r, c) | > Y}
)

(1)
≤

∑
c

% (|+ (p̃81, r̃81, c) −+ (p, r, c) | > Y)
(2)
−→ 0 as 8 −→ ∞,

191

where (a) follows from the definition of Y, (b) follows from the union bound, and
(c) holds due to Eq. (B.39).

In the generalized linear dueling bandit setting with a finite action space, the proof
follows along identical lines, with the following differences: policies c are replaced
by actions x ∈ A, there are no transition dynamics, and the bandit value function
is defined as +1 (r, x) := r)x for x ∈ A and reward vector r. Proposition 4 is also
used in place of Proposition 5. With these substitutions, the steps of the proof are
the same as those above.

192

A p p e n d i x C

ADDITIONAL DETAILS ABOUT THE DUELING POSTERIOR
SAMPLING EXPERIMENTS IN THE LINEAR AND LOGISTIC

DUELING BANDIT SETTINGS

This appendix provides additional information about the DPS simulations in the
linear and logistic dueling bandit settings, discussed in Chapter 4. In particular, it
describes the two baseline algorithms compared against DPS and gives hyperpa-
rameter optimization details for both DPS and the baselines algorithms.

C.1 Baselines: Sparring with Upper Confidence Bound (UCB) Algorithms
Sparring, introduced in Ailon, Karnin, and Joachims (2014), is a framework for
extending standard bandit algorithms—which expect to receive absolute, numerical
reward feedback—to the dueling bandit setting. Sparring instantiates two standard
bandit algorithms, called Player 1 and Player 2, which learn by directly competing
against each other. In each learning iteration 8, Player 1 selects an action x81 ∈ A,
while Player 2 selects an action x82 ∈ A. These two actions are dueled against one
another, and each of the players learns whether its actionwas preferred or dominated.

The two baseline algorithms couple Sparring with the linear upper confidence bound
(UCB) algorithm (Abbasi-Yadkori, Pál, and Szepesvári, 2011) and the logistic UCB
algorithm (Filippi et al., 2010), respectively. The linear and logistic UCB algorithms
can be viewed as subroutines that fit within the Sparring framework proposed
in Ailon, Karnin, and Joachims (2014). The linear and logistic UCB Sparring
approaches are each described in further detail below.

Sparring with Linear UCB
This section describes the procedure for Sparring with linear UCB (Abbasi-Yadkori,
Pál, and Szepesvári, 2011), outlined in Algorithm 15. Without loss of generality,
consider Player 2 in the Sparring framework. In the 8th learning iteration, Player 2
selects action x82 and receives H8 ∈

{
−1

2 ,
1
2
}
as feedback, where H8 = 1

2 if x82 � x81,
and H8 = −1

2 if x81 � x82. (Analogously, Player 1 selects action x81 and receives −H8
as reward feedback.)

On each iteration, Player 2 uses Linear UCB to select an action. First, Player 2

193

Algorithm 15 Sparring with Linear UCB
1: H (1)0 = ∅ ⊲ Initialize Player 1’s history
2: H (2)0 = ∅ ⊲ Initialize Player 2’s history
3: for 8 = 1, 2, . . . do
4: for 9 ∈ {1, 2} do
5: Player 9 calculates " (9)

8
via Eq. (C.2) andH (9)

8

6: Player 9 calculates r̂ (9)
8

via Eq. (C.1) andH (9)
8

7: Player 9 selects x8 9 via Eq. (C.4)
8: end for
9: Execute actions x81, x82 and observe feedback H8 ∈

{
−1

2 ,
1
2
}

10: H (1)
8

= H (1)
8−1 ∪ (x81,−H8) ⊲ Update Player 1’s history

11: H (2)
8

= H (2)
8−1 ∪ (x82, H8) ⊲ Update Player 2’s history

12: end for

calculates a MAP estimate of the utilities r, analogously to Eq. (4.2). When Player
2’s history contains = − 1 trials, this is given by:

r̂ (2)= :=
(
"
(2)
=

)−1 =−1∑
8=1

H8x82, where (C.1)

"
(2)
= := _� +

=−1∑
8=1

x82x
)
82 for _ ≥ 1. (C.2)

Player 1 calculates a MAP estimate r̂ (1)= analogously, except that each iteration
8 ∈ {1, . . . , = − 1}, x81 and −H8 are substituted for x82 and H8 in Eq.s (C.1) and (C.2).

In this work, the implementation of linear UCB adds an intercept parameter to the
utility vector. This is accomplished by appending the element 1 to each action inA
in the utility inference step, to obtain a (3 + 1)-dimensional action space; then, the
inferred utility vector r belongs to R3+1, and its (3 + 1)th element is the intercept.
Including the intercept significantly improves the resulting algorithm’s performance.

Player 2 then estimates a confidence region centered at r̂ (2)= , and intuitively, chooses
an actionwhich optimisticallymaximizes the expected rewardwithin that confidence
set.More formally, letR=2 be Player 2’s confidence set in iteration =. Then, the action
x=2 is selected by solving the following optimization problem:

x=2 = argmax
x∈A

max
r∈R=2

r)x. (C.3)

The approach in Abbasi-Yadkori, Pál, and Szepesvári (2011) utilizes ellipsoidal
confidence sets, of the form:

R=2 =
{
r
�� | | r̂ (2)= − r | |

"
(2)
=
≤ V= (X)

}
,

194

where V= (X) is a function that increases slowly in = according to
√

log =, and whose
definition is given in Eq. (4.4) (where in Eq. (4.4), "= is now given by Eq. (C.2)).

It can be shown (Filippi et al., 2010) that the optimization in Eq. (C.3) is equivalent
to:

x=2 = argmax
x∈A

[
x) r̂ (2)= + V= (X) | |x | | (" (2)=)−1

]
. (C.4)

This optimization problem is analogous for Player 1, except that Player 1 uses r̂ (1)=
and " (1)= instead of r̂ (2)= and " (2)= . In practice, it is straightforward to solve the
optimization in Eq. (C.4) over a finite action space, since the objective can simply
be computed over all possible actions.

Importantly, the values V= (X) inEq. (C.4) enableAbbasi-Yadkori, Pál, andSzepesvári
(2011) to prove worst-case regret guarantees, but yield relatively-conservative per-
formance in practice. In fact, the performance can be significantly improved by
replacing V= (X) by a constant V > 0, and then treating V as a tunable hyperpa-
rameter. This approach is taken in the current implementation, which optimizes the
performance of Sparring with Linear UCB over two hyperparameters: V and _.

In Algorithm 15, lines 5-7 summarize Linear UCB’s procedure for selecting actions.

Sparring with Logistic UCB
Algorithm 16 outlines the procedure for Sparring with logistic UCB (Filippi et al.,
2010), which extends linear UCB to model feedback generation via a sigmoidal link
function. As described for linear UCB above, an intercept parameter is added to the
utility vector. Within the Sparring framework, Player 2 calculates a utility estimate
r̂ (2)= on the =th learning iteration as follows:

r̂ (2)= = argmin
r∈Θ

�����
�����=−1∑
8=1

(
6log(x)82r)x82 −

(
H8 +

1
2

)
x82

)�����
�����(
"
(2)
=

)−1
, (C.5)

where 6log is the sigmoidal link function, i.e. 6log(G) = (1 + 4−G)−1, and " (2)= is
calculated using Eq. (C.2) as in the linear UCB case. The additive 1

2 translates the
preference outcomes to 0/1 labels. Lastly, Θ is a compact set of allowable utility
vector estimates r, where Θ ∈ R3+1 due to the intercept term added to the utility
model. Projecting the utility estimate onto the compact setΘ ensures that r̂ (2)= cannot
have an arbitrarily-large magnitude.

195

Algorithm 16 Sparring with Logistic UCB
1: H (1)0 = ∅ ⊲ Initialize Player 1’s history
2: H (2)0 = ∅ ⊲ Initialize Player 2’s history
3: for 8 = 1, 2, . . . do
4: for 9 ∈ {1, 2} do
5: Player 9 calculates " (9)

8
via Eq. (C.2) andH (9)

8

6: Player 9 calculates r̂ (9)MAP
= via Eq. (C.7) andH (9)

8

7: Player 9 calculates r̂ (9)= via Eq. (C.6) andH (9)
8

8: Player 9 selects x8 9 via Eq. (C.8)
9: end for
10: Execute actions x81, x82 and observe feedback H8 ∈

{
−1

2 ,
1
2
}

11: H (1)
8

= H (1)
8−1 ∪ (x81,−H8) ⊲ Update Player 1’s history

12: H (2)
8

= H (2)
8−1 ∪ (x82, H8) ⊲ Update Player 2’s history

13: end for

Because solving the optimization problem in Eq. (C.5) is challenging in practice,
the simulations use a computationally-simpler estimate of the utilities:

r̂ (2)= = argmin
r∈Θ

����r̂MAP
= − r

����
2 , (C.6)

where r̂ (2)MAP
= is theMAP estimate of the utilities. LettingD (2)= be Player 2’s dataset

after = − 1 preferences, such that D (2)= := {x12, H1, x22, H2, . . . , x(=−1)2, H=−1}, the
MAP estimate is given as follows (analogously to Eq. (4.7) for DPS):

r̂ (2)MAP
= = argmin

r

[
− log ?

(
r | D (2)=

)]
= argmin

r

[
− log ?(r) − log ?

(
D (2)= | r

)]
(0)
= argmin

r

{
_−1 | |r | |22 − log

[
=−1∏
8=1

1
1 + exp(−2H8x)82r)

]}
= argmin

r

{
_−1 | |r | |22 +

=−1∑
8=1

log(1 + exp(−2H8x)82r))
}
, (C.7)

where step (a) applies the Gaussian prior ?(r) ∼ N (0, _�) for some prior hyperpa-
rameter _ > 0. This optimization procedure is identical for Player 1, except that x81
and −H8 are substituted for x82 and H8, respectively. The optimization problem in Eq.
(C.7) is convex, and therefore can be solved via standard convex optimizers.

In the =th iteration, given r̂ (2)MAP
= and " (2)= , Player 2 selects an action by solving the

following optimization problem:

x=2 = argmax
x∈A

[
6log(x) r̂ (2)MAP

=) + V= (X) | |x | | (" (2)=)−1

]
, (C.8)

196

where V= (X) is defined in Filippi et al. (2010) and given in Eq. (4.11), and increases
in = according to

√
log =. As in the linear UCB case, the V= (X) values allow Filippi

et al. (2010) to prove worst-case regret guarantees, but yield conservative behavior in
practice. Thus, faster convergence can be achieved by replacing V= (X) by a constant,
tunable hyperparameter V > 0. In this work, the performance of Sparring with
logistic UCB is optimized over two hyperparameters in total: V and _.

In Algorithm 16, lines 5-8 summarize the action selection process for logistic UCB.

C.2 Hyperparameter Optimization
The linear and logistic dueling bandit simulations compare four algorithms: DPS
with linear utility inference, DPS with logistic utility inference, Sparring with linear
UCB, and Sparring with logistic UCB.

Table C.1 lists the hyperparameter ranges tested for these four algorithms, as well
as the optimized hyperparameter values (these are the values used to generate the
performance curve plots in Section 4.5). For linear and logistic UCB, the hyper-
parameters were optimized individually for each dimension 3 and preference noise
level. In contrast, for each of the two versions of DPS, a single set of hyperparame-
ters was identified that performed well across the different values of 3 and feedback
noise levels considered. Note that for Sparring with logistic UCB, the simulations
set Θ equal to a sphere of radius 103 centered at the origin. Hyperparameters were
optimized by considering 20 simulation runs of each candidate set of values.

Finally, Figure C.1 compares the performance of both linear and logistic DPS across
several of the different hyperparameter settings evaluated. Overall, DPS performs
well and is robust to the choice of hyperparameter values to a certain degree.

197

Table C.1: Hyperparameters in the linear and logistic dueling bandit experiments.
For the linear and logistic UCB algorithms, the hyperparameters were optimized
individually for each dimension 3 and preference noise level. For each 3, the best-
performing hyperparameters are listed in the following order: logistic noise with
2 = 0.01, logistic noise with 2 = 0.1, logistic noise with 2 = 1, and linear noise
with 2 = 4. For each of the two versions of DPS, a single set of hyperparameters
was found that performed well across the different values of 3 and noise levels
considered. Hyperparameters were optimized by performing 20 simulation runs of
each candidate set of values.

Algorithm Hyperparameter Range Tested Optimized Value

DPS (linear) f [0.01, 5] 0.5
_ [0.01, 30] 10

DPS (logistic) U [0.01, 10] 0.03
_ [0.005, 10] 0.005

Sparring (linear UCB) V [0.001, 20] 3 = 3: [0.5, 1, 1, 0.5]
3 = 5: [0.5, 1, 1, 5]
3 = 10: [1, 1, 1, 1]

_ [0.001, 20] 3 = 3: [10, 5, 5, 0.05]
3 = 5: [0.01, 0.5, 20, 0.01]
3 = 10: [1, 1, 0.01, 0.001]

Sparring (linear UCB) V [0.001, 20] 3 = 3: [0.5, 1, 0.01, 0.005]
3 = 5: [1, 1, 1, 0.005]
3 = 10: [0.5, 0.5, 0.5, 0.005]

_ [0.001, 20] 3 = 3: [1, 5, 0.1, 0.005]
3 = 5: [1, 1, 0.5, 0.05]
3 = 10: [1, 1, 0.5, 0.001]

198

(a) 3 = 3, linear DPS, 2 = 1 (b) 3 = 5, linear DPS, 2 = 0.1 (c) 3 = 10, linear DPS, 2 = 0.01

(d) 3 = 3, logistic DPS, 2 = 1 (e) 3 = 5, logistic DPS, 2 = 0.1 (f) 3 = 10, logistic DPS, 2 = 0.01

Figure C.1: Hyperparameter sensitivity of DPS in the linear and logistic dueling
bandit settings (mean ± std over 20 runs). The plots show DPS with utility inference
via both Bayesian linear (a-c) and logistic (d-f) regression. The learning curves
compare several sets of hyperparameters among those evaluated, for several different
action space dimensionalities 3 and levels of logistic user feedback noise 2. The plots
normalize the rewards for each simulation run such that the best action in A has a
reward of 1, while the worst action has a reward of 0. Overall, DPS performs well
and is robust to the hyperparameter values to a certain degree.

199

A p p e n d i x D

ADDITIONAL DETAILS ABOUT THE DUELING POSTERIOR
SAMPLING EXPERIMENTS IN THE PREFERENCE-BASED RL

SETTING

Python code for reproducing the DPS experiments in preference-based RL is lo-
cated at: https://github.com/ernovoseller/DuelingPosteriorSampling
(Novoseller et al., 2020a).

Experiments were conducted in three simulated environments, described in Section
4.5: RiverSwim and random MDPs (Osband, Russo, and Van Roy, 2013) and the
simplified version of the Mountain Car problem described in Wirth, 2017. The first
two cases used a fixed episode horizon of 50, while for the Mountain Car, episodes
have a maximum length of 500, but terminate sooner if the agent reaches the goal
state. Figures D.1, D.2, and D.3 display performance in the three environments
for the five degrees of user preference noise evaluated. Experiments were run on
an Ubuntu 16.04.3 machine with 32 GB of RAM and an Intel i7 processor. Some
experiments were also run on an AWS server.

This section details the ranges of hyperparameter values tested for the different DPS
credit assignment models, as well as the particular hyperparameters used in the
displayed performance curves. Hyperparameters were tuned by considering mean
performance over 30 experiment repetitions for each parameter setting considered.
Only the least-noisy simulated user preference feedback (logistic noise, 2 = 0.001)
was used to tune the hyperparameters; this value of 2 is sufficiently-small that the
preferences are nearly-deterministic except for in tie cases, in which preferences are
generated uniformly at random. For both Gaussian process-based credit assignment
models, the squared exponential kernel was used:

: (B̃8, B̃ 9) = f2
5 exp

(
−1

2

(| | 5 (B̃8) − 5 (B̃ 9) | |
;

)2
)
+ f2

= X8 9 ,

where f2
5
is the signal variance, ; is the kernel lengthscale, f2

= is the noise variance,
X8 9 is the Kronecker delta function, and 5 : {1, . . . , (} × {1, . . . , �} −→ R< maps
each state-action pair to an <-dimensional representation that encodes proximity
between the state-action pairs. In the RiverSwim and Random MDP environments,

200

(a) 2 = 0.0001, logistic (b) 2 = 1, logistic (c) 2 = 2, logistic

(d) 2 = 10, logistic (e) 2 = 100, linear

Figure D.1: Empirical performance of DPS in the RiverSwim environment. Plots
display mean +/- one standard deviation over 100 runs of each algorithm tested.
Normalization is with respect to the total reward achieved by the optimal policy.
Overall, DPS performs well and is robust to the choice of credit assignment model.

only lengthscales of ; = 0 were considered, such that : (B̃8, B̃ 9) = (f2
5
+ f2

=)X8 9 ;
in these cases, 5 maps each state-action pair onto some unique index, and by
convention, log 0

0 = 0. For the Mountain Car, 5 (B̃8) mapped each state-action pair
to a 3-dimensional vector of the form (position, velocity, action).

Please see Appendix A for definitions of the other hyperparameters in the credit
assignment models. Tables D.2, D.3, and D.4 display both the tested ranges and
optimized values (those appearing in the performance curves) for each case.

To model the transition dynamics, DPS uses a Dirichlet prior and posterior. To make
the same prior assumptions with respect to each state-action pair, all parameters
of the Dirichlet prior were set to the same value, U0 > 0: thus, the Dirichlet prior
parameters are a length-3 vector of the form, U0 ∗ [1, 1, . . . , 1]) . For the RiverSwim
and Random MDP environments, U0 is set to 1, creating a uniform prior over all
dynamics models. Because U0 = 1 is a reasonable choice when the numbers of states
and actions are small, this work does not optimize performance over different U0

values in the RiverSwim and Random MDP environments. For the Mountain Car
problem, smaller prior values perform better because they favor sparse dynamics

201

distributions. For this environment, values of U0 ranging from 0.0001 to 1 were
tested, and 0.0005 was found to be the best-performing value among the ones tested.

The EMPC algorithm (Wirth and Fürnkranz, 2013a) has two hyperparameter values,
U and [. Both of these were optimized jointly via a grid search over the values
(0.1, 0.2, . . . , 0.9), with 100 repetitions of each pair of values. The best-performing
hyperparameter values (i.e. those achieving the highest total reward) are displayed
in Table D.1; these are the hyperparameter values depicted in the performance curve
plots.

Finally, Figures D.4, D.5, and D.6 illustrate how DPS’s performance varies as the
hyperparameters are modified over a set of representative values from the tested
ranges. These plots demonstrate that DPS is largely robust across many choices of
model hyperparameters.

TableD.1:Hyperparameters for theEPMCbaseline algorithm (Wirth andFürnkranz,
2013a). Each table element shows the best-performing U/[values for the corre-
sponding simulation environment and type of simulated user feedback (logistic or
linear noise). For preference feedback with logistic noise, values of 2 are given in
parentheses; larger values correspond to noisier preference feedback.

Noise: Logistic (10) Logistic (2) Logistic (1) Logistic (0.0001) Linear

RiverSwim 0.1/0.8 0.3/0.7 0.1/0.2 0.8/0.8 0.3/0.1
Random MDPs 0.2/0.2 0.7/0.7 0.6/0.4 0.2/0.8 0.7/0.1

Noise: Logistic (100) Logistic (20) Logistic (10) Logistic (0.0001) Linear

MountainCar 0.1/0.8 0.1/0.7 0.1/0.6 0.1/0.4 0.2/0.5

202

Table D.2: Credit assignment hyperparameters tested for the RiverSwim Environ-
ment.

Model Hyperparameter Range Tested Optimized Value

Bayesian linear regression f [0.05, 5] 0.5
_ [0.01, 10] 0.1

GP regression f2
5

[0.001, 0.5] 0.1
; [0, 0] ([state, action]) 0
f2
= [0.0001, 0.1] 0.001

GP preference (special case: _ = f2
5
+ f2

= [0.1, 30] 1
Bayesian logistic regression) U [0.01, 1] 1

GP preference (varying 2) 2 [1, 13] N/A
f2
5

[1]
; [0, 0] ([state, action])
f2
= [0.001]
U [1]

Table D.3: Credit assignment hyperparameters tested for the Random MDP Envi-
ronment.

Model Hyperparameter Range Tested Optimized Value

Bayesian linear regression f [0.05, 5] 0.1
_ [0.01, 20] 10

GP regression f2
5

[0.001, 1] 0.05
; [0, 0] ([state, action]) 0
f2
= [0.0001, 0.1] 0.0005

GP preference (special case: _ = f2
5
+ f2

= [1, 15] 0.1
Bayesian logistic regression) U [0.01, 1] 0.01

GP preference (varying 2) 2 [0.0001, 1000] N/A
f2
5

[1]
; [0, 0] ([state, action])
f2
= [0.03]
U [1]

203

(a) 2 = 0.0001, logistic (b) 2 = 1, logistic (c) 2 = 2, logistic

(d) 2 = 10, logistic (e) 2 varies, linear

Figure D.2: Empirical performance of DPS in the RandomMDP environment. Plots
display mean +/- one standard deviation over 100 runs of each algorithm tested.
Normalization is with respect to the total reward achieved by the optimal policy.
Overall, DPS performs well and is robust to the choice of credit assignment model.

(a) 2 = 0.0001, logistic (b) 2 = 10, logistic (c) 2 = 20, logistic

(d) 2 = 100, logistic (e) 2 = 1, 000, linear (f) Legend

Figure D.3: Empirical performance of DPS in the Mountain Car environment. Plots
display mean +/- one standard deviation over 100 runs of each algorithm tested.
Overall, DPS performs well and is robust to the choice of credit assignment model.

204

Table D.4: Credit assignment hyperparameters tested for the Mountain Car Envi-
ronment.

Model Hyperparameter Range Tested Optimized Value

Bayesian linear regression f [0.001, 30] 10
_ [0.001, 10] 1

GP regression f2
5

[0.0001, 10] 0.01
; [G, G, 0], G ∈ [1, 3] G = 2

([position, velocity, action])
f2
= [1e-7, 0.01] 1e-5

GP preference (special case: _ = f2
5
+ f2

= [0.0001, 10] 0.0001
Bayesian logistic regression) U [0.0001, 1] 0.01

GP preference (varying 2) 2 [10, 10000] N/A
f2
5

[1]
; [2, 2, 0]

([position, velocity, action])
f2
= [0.001]
U [1]

205

(a) Bayesian linear regression (b) Gaussian process regression

(c) Gaussian process preference model
(special case: Bayesian logistic regres-
sion)

(d) Gaussian process preference model
(varying 2)

Figure D.4: Empirical performance of DPS in the RiverSwim environment for dif-
ferent hyperparameter combinations. Plots display mean +/- one standard deviation
over 30 runs of each algorithm tested with logistic user noise and 2 = 0.001. Over-
all, DPS is robust to the choice of hyperparameters. The hyperparameter values
depicted in each plot are (from left to right): for Bayesian linear regression, (f, _) =
{(0.5, 0.1), (0.5, 10), (0.1, 0.1), (0.1, 10), (1, 0.1)}; for GP regression, (f2

5
, f2

=) =
{(0.1, 0.001), (0.1, 0.1), (0.01, 0.001), (0.001, 0.0001), (0.5, 0.1)}; for Bayesian
logistic regression (special case of the GP preference model), (_, U) = {(1, 1),
(30, 1), (20, 0.5), (1, 0.5), (30, 0.1)}; and additionally for the GP preference model,
2 ∈ {0.5, 1, 2, 5, 13}. See Table D.2 for the values of any hyperparameters not
specifically mentioned here.

206

(a) Bayesian linear regression (b) Gaussian process regression

(c) Gaussian process preference model
(special case: Bayesian logistic regres-
sion)

(d) Gaussian process preference model
(varying 2)

Figure D.5: Empirical performance of DPS in the Random MDP environment for
different hyperparameter combinations. Plots display mean +/- one standard devia-
tion over 30 runs of each algorithm tested with logistic user noise and 2 = 0.001.
Overall, DPS is robust to the choice of hyperparameters. The hyperparameter val-
ues depicted in each plot are (from left to right): for Bayesian linear regression,
(f, _) = {(0.1, 10), (0.1, 0.1), (0.05, 0.01), (0.5, 20), (1, 10)}; for GP regression,
(f2

5
, f2

=) = {(0.05, 0.0005), (0.001, 0.0001), (0.05, 0.1), (0.001, 0.0005), (1, 0.1)};
for Bayesian logistic regression (special case of the GP preference model), (_, U)
= {(0.1, 0.01), (1, 0.01), (0.1, 1), (30, 0.1), (5, 0.5)}; and additionally for the GP
preference model, 2 ∈ {1, 10, 15, 19, 100}. See Table D.3 for the values of any
hyperparameters not specifically mentioned here.

207

(a) Bayesian linear regression (b) Gaussian process regression

(c) Gaussian process preference model
(special case: Bayesian logistic regres-
sion)

(d) Gaussian process preference model
(varying 2)

Figure D.6: Empirical performance of DPS in theMountain Car environment for dif-
ferent hyperparameter combinations. Plots display mean +/- one standard deviation
over 30 runs of each algorithm tested with logistic user noise and 2 = 0.001. Overall,
DPS is robust to the choice of hyperparameters. The hyperparameter values depicted
in each plot are (from left to right): for Bayesian linear regression, (f, _) = {(10, 1),
(10, 10), (30, 0.001), (0.001, 10), (0.1, 0.1)}; for GP regression, (f2

5
, ;, f2

=) =
{(0.01, 2, 10−5), (0.01, 1, 10−5), (0.1, 2, 0.01), (1, 2, 0.001), (0.001, 3, 10−6)}; for
Bayesian logistic regression (special case of the GP preference model), (_, U) =
{(0.0001, 0.01), (0.1, 0.01), (0.0001, 0.0001), (0.001, 0.0001), (0.001, 0.01)}; and
additionally for the GP preference model, 2 ∈ {10, 300, 400, 700, 1000}. See Table
D.4 for the values of any hyperparameters not specifically mentioned here.

