ANALYTICAL AND EXPERIMENTAL STUDIES

OF IMPACT DAMPERS

Thesis by

Sami Faiz Masri

In Partial Fulfillment of the Requirements
For the Degree of

Doctor of Philosophy

California Institute of Technology
Pasadena, California
1965

(Submitted May 11, 1965)



-ii-
ACKNOWLEDGMENTS

The author wishes to express his sincere appreciation for
the guidance, assistance, and encouragement of his late advisor,
Professor C. E. Crede, during the preparation of this work.

The author is deeply grateful to his advisor, Professor T. K.
Caughey, for his constant assistance and guidance in all phases of
this investigation.

The sustained interest of Professor D. E. Hudson in this study
and his reading of the manuscript and suggesting many valuablic improve-
ments are appreciated and cheerfully acknowledged. Thanks are due
Professors W. D. Iwan and E. E, Sechler for their interest in this
work, and Mrs. Madeline Fagergren for her expert typing.

The author is further indebted to the California Institute of
Technology for award of tuition scholarships and research assistant-
ships, and to the National Aeronautics and Space Administration for

support of this work under Contract No. NAS8-2451.



-iii-

ABSTRACT

A study is made of the general behavior of a single paxticle
impact damper, with the main emphasis on symmetric 2 impacts/cycle
motion. The exact solution for this case is derived analytically and
its asymptotically stable regions are determined. The stability
analysis defines the zones where the modulus of all the eigenvalues of
a certain matrix relating conditions after each of two consecutive
impacts is less than unity.

Results of the analysis are supplemented and verified by experi-
mental studies with a mechanical model and an analog computer,.
Additional numerical investigations are made with a digital computer.

It is found that, under practically realizable conditions, impact
damping is cffcctive in reducing the vibration amplitude levele re sulting

from sinusoidal, random, or impulse-like excitation.
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NOMENCLATURE

displacement amplitude of primary system in the absence of
the impact damper

damping constant

clearance in which the particle is free to oscillate
coefficient of restitution

maximum force of excitation

spring constant

mass of primary system

mass of particle

perturbation matrix

remainder term

ratio, forcing frequency/natural frequency

time

absolute velocity of particle

displacement of M

displacement immediately after impact
displacement immediately before impact
displacement of particle

relative displacement of particle with respect to M
phase angle (initially unknown)

ratio of critical damping

mass ratio, m/M



val

_Vi_

perturbation vector

ratio, d/A

phase angle (due to damping)
phase angle, T =a - {
natural frequency, m

forcing frequency



1. INTRODUCTION

1.1. Development of Impact Damping

The idea of reducing the vibration of a mechanical system by
attaching to it a container in which a solid particle is constrained to
osciilate was conceived and investigated in 1944 by Lieber and
Jensen(l)*.

In that investigation, the authors assumed that the motion‘of an
undamped single degree of freedom oscillator with an operating impact
damper (referred to as an ""acceleration damper') was still simple
harmonic; that the impact of the primary system with the particle was
completely plastic (i. e. no rebound); and that during a period of the
sinusoidal forcing function two impacts occur at equal time intervals
and at opposite sides of the container (i.e. symmetric 2 impacts/cycle
motion). As a result, they determined that for maximum energy
dissipation per cycle, the clearance of the particle should be 7 times
the amplitude of response.

Grubin(z), in his investigation of this device, as sumed the
existence of symmetric 2 impacts/cycle motion (henceforth, unless
otherwise specified, the motion will be assumed to be symmetric) and
he determined the behavior of the viscously damped primary system, by
adding the effects of many impacts. Arnold(a) inve stigated experi-
mentally and theoretically a similar system, without viscous damping,

by representing the forcce that acts during impact by a Fourier series.

s

=2

Numbers in parenthesis designate references at end of thesis.
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A considerably simpler method for deriving the solution for
2 irﬁpacts/cycle motion, which requires only the consideration of two
successive impacts, was suggested by Warburton(4), and he used it to
obtain the solution for the special case of an undamped primary system
forcgd at resonance.

On the experimental side, the feasibility of using impact damping
to reduce the vibrations of such diverse systems as ship hulls, canti-
lever beams, single degree of freedom systems, and turbine buckets,
was investigated by McGoldrick(5), Lieber and Tripp(é), Sankey(7), and
Duckwald(s), respectively. Estabrook and Plunkett(g) made an analytical
study of impact damping in turbine buckets. Also this type of damping
was employed in reducing the vibrations of telephone switching relays.

It is worth mentioning that, according to Ref. 9, Paget made a

study of mechanical damping by impact in 1930.

1.2. Remarks on the Analytical Treatment

The assumption common in all the theoretical treatments
mentioned above, that of having symmetric 2 impacts/cycle motion,
may appear to be an overly res_trictive assumption which places
unwarranted emphasis on this particular type of motion, and which is
made merely to expedite the analytical treatment.

The justification for this assumption, however, is that it is
this type of motion that predominates in experimental studies of impact

damping, as observed and reported by most investigators in this field.

L. 3. Motivation and Scope

Lately, interest in impact dampers appears to have subsided.
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This may be related in part to the lack of a complete understanding of
the general behavior of this device, and in particular the stability of
its periodic motion.

The objective of the present study is to extend and complement
the work of other invcatigators in this ficld, to asscss the practical
feasibility of the device, and in particular to determine the stability of
2 impacts/cycle solutions. To this end, the theoretical solution for
2 impacts/cycle motion is derived in Chapter 2, and its stability
boundaries are determined in Chapter 3. The experimental studies
that were conducted in the course of this investigation with a mechanical
model, an electric analog, supplemented by numerical studies with a
digital computer, are described and their results interpreted and
compared to the theoretical predictions in Chapter 4. Conclusions
drawn from this research, and recommendations for future work, are

stated in Chapter 5.
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2. STEADY STATE SOLUTION

2. 1. Existence of Periodic Solutions

Since the motion of any real system (where there is always
some damping) is bounded, it can be shown that the governing differ-
ential equation possesses periodic solutions (which may or may not be
stable). Rather than invoking an existence theorem, the existence of
a periodic 2 impacts/cycle solution will be proved by actually

constructing one.

[\8]
[

Two-Impacts-Per-Cycle Solution

A model of the system under discussion is shown in Fig. 2. l.
The equation of motion of the primary mass M, between impacts, is

Mx + cx + kx = F_ sin Ot . (2.1)

Following the method suggested by Warburton(4), assume the disturbing
force to be Fo sin (Ot + a), where a is an unknown phase angle.

Eq. (2.1) now becomes

Mx + cx + kx = F_sin ((t +a) . (2.2)

The complete solution of Eq. (2.2) is

X = e_éwt(B1 sin Mwt + B2 cos Nwt) + A sin ((t + T) (2.3)
where
8 = c/c
cr
C = 2/kM
cr
w = Vvk/M

3
1
< __
—
]
on
(8]
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(8]
A #\/ 2.° 2
{1-r7) + (281)
T :[1-1*,’
] :ta,n_l 26r o<V <q.
l-r2

For steady state motion with two impacts per cycle, if one impact is
assumed to occur at time t = 0, the next impact will occur at t = % .
Then, as shown in Fig. 2.2, if immediately preceding the impact at

t = 0_ (the time immediately preceding or following an impact at time t
is denoted by t_ and t+, respectively), x = X X = }'cb, \4 :-(21- and the
absolute velocity of the particle Vrn = v. The duration of the impact is
very small compared to the natural frequency of the primary system,
hence it is reasonable to assume that at t = 0+, the positions of M and
m remain the same while their respective absolute velocities are dis-
continuously changed to ia and -v. In order to have two impacts per
cycle, att = (%)_ the displacements and velocities should be the
negative of those att - 0_. Therefore, att - (%)_ Y X - - ;;b’

y:—%, andez—v.,

To summarize, the system should satisfy the following conditions:

d ..
at t=0_ X=x, y=5 X=X m=-V (a)
d a .
t:OJ_r X=x  y=3 X =X, Vm:-v (b) (2. 4)
T d , .
t:(ﬁ)_XZ—Xb y:-—z- x:-xb m:—-v (C)

Equation (2. 3) describes the motion of M from t = 0+ tot = (%)_ .
Since the motion of the system during impact must satisfy the
momentum equation, then

Mx +mV =M%, +mV s (2.5)
- m._ + m+
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(10)

and from the definition of the coefficient of restitution e,

-V o= -k -V ). (2. 6)

X
+ . i

From Eqgs. (2.5) and (2. 6) the following relations that will be useful

later on can be obtained.

. 1 -Me . Ml + e)
X T 1+u>x-+—l'+—i—vm_ (2.7)
AR e) (p - e

V TNT + 1+u>vm_ (2. 8)

. (e -1) Vi + (1+) V_,

. C T+ e (2.9)

. e(l+) v+ (l-He)V

k= = (2.10)
where W = ﬁ—

In steady statc motion, the absolute speed of the particle is con-

- d ZX . 2. 11

If at t = 0_ the absolute velocity of the particle is Vm = v, then

V. —=-v.
111+

Now, if the impact relations (2. 9) and (2. 10) are evaluated at

t = 0, since

and by using (2. 11), then

T 1 +e . d
x, 201 = e+'2u>xb = -3 (2.12)

and
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™/ lte ) __d
x, V sa\TTe2me/%a " "2 (2.13)

An expression describing the velocity of M can be obtained by differen-

tiating Eq. (2.3) with respect to t. Thus

Awt

X = - bwe {B, sinnwt+ B, cos Nuwt)

1 2

+e 6{',')t(Bl Tw cos Mwt - B2 TNw sin Twt) (2. 14)

- AQ cos (Qt+a-1)

Equations (2. 3) and (2. 14) describe the displacement and velocity of M

during the time interval 0 =t < (%)_ From Egs (2.3), (2.4-b), and

(2. 4-c)
x(0,) =%, = B, + Asin T (2. 15)
, _bm
XC(%)D =-x, =e (B sinnl+B,cosn) (2. 16)
- AsinT

Similarly, from Egs. (2. 14), (2. 4-b), and (2. 4-c)

%(0,) =%_=- bwB, + B Tw+ AQ cos T (2. 17)
_ Om
N ) - .
XK(%)_/\' =Xy T Bwe r(B1 smn%-k B2 cos n%)
_bm
+ nwe ' (B,cosnT - B,sinnI) (2. 18)
- AQcos T

By using the following new variables,

S ® sin T
C = Qcos T
Jom
h, = e T sin 1]1

1 r
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_ bm
h2E e rcos'ﬂ%
. = T 1+e
1 20 1-e+2u
5. = T 1l +e
2 20 1l-e-2ue
_ o7
91 = we r[_ 8 sin ”ﬂ%+ n cosﬂ%]
_ b
92E we r[—ﬁcos T\%—nsinnlrr-] s

Eqgs. (2.15), (2.18), (2.16), (2.17), (2.12), and (2. 13) can be expressed

respectively as:

_ _ - )
Xy B2 SA = 0
xb+ GlBl + GZB2 -CA=0
X + hlBl + th2 - SA =0
(2.19)

X, - 'ﬂwBl + éwBZ -CA =0

o d
Xb + leb = -3

. d
Xb + UZXa = - 7 . /

Eq. (2.19) furnishes 6 relations among the 6 unknowns a, Bl’ BZ’ Xb’

%, , and x
b’ a

In matrix notation, Eq. (2.19) can be put in the form
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1 0 0 0 -1 -5 Xy 0
0 0 1 -Mw  dw -C Xb 0
1 0 0 h h -S X 0
1 2 a5 = - (2. 20)

0 1 0 91 92 -C Bl 0

d
1 0y 0 0 0 0 2 >

d
L]. 0 O'Z 0 0 0_ \A '7

From the solution of (2. 20), expressions for A, Bl’ and B2 in

terms of the known parameters can be obtained. Thus

_ N(A)
A= =K (2. 21)
N(B,)
By = —%x (2.22)
N(B,)
B, = —%x (2.23)
where
- dal
N(A) = > th(clez - 0,wd) - (0191+n02w)(l+h2)]
N(B) = %(l+h2)(cz o)) C
N(B,) = Fhy(0) - 7) C

A= hl[C(c2 —0'1) - (S+ Ccz)olel + {S+ CCYl) 6wcz]

+ {1+ hz){(s+ Co,)0,8, +(S+Coy) nmoz_‘ .

If the damping in the primary system is zero, Eq. (2.21) reduces to
Eq. (9) in Ref. 4.
Eg. (2.21) can be put in the form
2sinT+HcosT= -0 (2. 24)

4
A

where - p =
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((02—01) + crlcz(&w— 92)] hl+ [olorz(elwL nw)](l +h2)

H = 20 _ -
[602w ; olezjhl + ["191 +ﬂ62w:](1 +h,)

Solution of Eq. (2.24) for T results in:

- 2p £ HV H2+4— p2

sin T
H° + 4
- F -
o r - - PH H\/H+4 02
H® + 4
[ 2 P
T=tan t|Z2PTHVH +4-p | (2. 25)

—————————
o F2N ml 44 - 2

In order to have real values for sin T and cos 7, the clearance d
cannot be arbitrarily large; it should satisfy the relation p2 < I-IZ' + 4.
The physical interpretation of thie restriction ie that for d exceeding
this limit, the actual system will not have a two-impacts-per-cycle
steady state motion.

The two sets of signs appearing in Eq. (2. 25) correspond to two
distinct steady state solutions. Grubin(z), who encountered a similar
situation, chose the set of signs that resulted in a steady state solution
that agreed with the numerical solution of the equation of motion of the
system.

Sincc the conditions that were used to obtain Eq. (2.25) are the

exact conditions that must be met by the system if it is in steady state

motion with two impacts per cycle, then, as seen from Eq. (2.25), there
are two possible steady state solutions. The analytical criteria of
deciding which solution will be valid, if any, will be furnished by the

stability analysis of the solutions. Such an analysis is carried out in
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Chapter 3.

With the value of T determined from (2. 25), B1 and B2 can be
found from (2. 22) and (2. 23). Since

X = e"&*’t(B1 sin Mwt + B, cos Mut) + A sin (Ot + 7), (2. 26)

then the motion of the primary system is determined.

For the special case of resonance and no damping, the steady
state solution is considerably simpler, and it will be obtained for use
later on.

First, let § = 0, then

X = B1 sin wt + B2 cos wt + A sin(Qt + T) (2.27)
and
%X = B, wcosut - B, wsinwt + AQ cos{Qt + T) . (2. 28)
Since x(0+) = x and x(04) = }'{a )
B2 =% - Asin T (2.29)
}Ea
By=— - ArcosT. (2.30)
(&3]

Letr=1+4+¢, e<<l, Then
-
sin(Qt+ 1) = sin‘:e‘.wt + (ot + T)_}

ewt cos (u)t+T)+O(é:2) . (2.31)

Substituting (2. 29) and (2. 30) in (2. 27), and making use of (2.31),
x

X = x, cos wt + —E sin wt + Aa{mt cos (wt+T)

b
- cos T sin m’c:l . (2.32)
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Since
FO
x °© F
Lim A¢ = Lim —_— = - -2{— ,
g0 e—0 ~¢F
then
X F

a _. o} .
X = x cos oot+—w— sinwt - -Z—E[wtcos(wt+ T} - cos T mnm’c]- (2.33)

Using the condition that x((%)_) = - x. in conjunction with (2.33), T is

b
found to be either :t% . Consequently, Eq. (2.33) simplifies to
;(a o
X:xbcoswt+—5— sinwt——z—Ewtcos(wt+ T) . (2.34)

From the condition that )'<(£—)_> = - x,_, one obtains by differentiating

b
Eq. (2.34) and substituting in it ot = 7, that

F

X =X = TEﬂw sin {(r+T) . (2.35)

But, by subtracting (2. 12) from (2. 13) and rearranging terms

L] o _ “(&)
x -Xb—Z—E—(d'}'ZX (2.36)

a b)

and since all the terms on the right hand eide of (2. 36) are positive,

then by comparing (2.35) to (2.36) it is seen that T should be - Z, and

2
that
TI'Z Fo

(d + be) W E (2.37)

Making use of (2. 13) and {2.37) one obtains
2 F
_om o) d
Xb———l:I—E—"—Z—, (2.38)

and

Ta _ 1—e—2Lle>
w 1+ e 4LJ. k (2.39)
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Substituting (2.38), (2.39) and T = - % in (2.34),

-2 F r
A o _d _((l-e-2ue > ™ o . .
*=\8% &« _2'> cos wt T+e 4 T S wt
Fo
- 3% wt gin wt (2. 40)

Ofwt=sw

2. 3. Energy Balance

The concept of energy balance can be used in this case to furnish
a measure of the amount of work "dissipated' per impact and through the
mechanism of viscous damping. In steady state 2 impacts/cycle motion,
the energy input should equal the energy output, during the time interval

M =0to it =m, i.e.

W Twat Wimp (2.41)
where W, = work done by FO sin (Ot + a)
W3 = work dissipated by damping
Wimp = kinetic energy lost per impact .

(11),

Equation (2. 41) can be expressed as

T ™
T _ T
L J F_sin((t+a)% de = (cw)J (é)2 4o + w, (2. 42)
w o w imp
0 0
where 8= wt.

By making use of Eq. (2.26), and carrying out the integration,

it is found that
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9==
_ _ T
%Q)IFO{{DS[_ 8 c:os((Zﬁ3 + )+ (n+r) sin(¢3+ llr)]
- 1?56‘:-6 coS(¢4- 1)+ (n-1) sin(¢4- 11!)1} e_69
—I——;—(szo{(ﬁS!:-& sin(ﬂ3+ ) - (n+ 1) cns((/}3+ ‘J,I):\
- 8, -6 sin(@,- ¥) - (n-7) cos(d - 1y} e "°
L+éAr FO{O sinVy - 'Z"li' cos‘:_Z(r9+ T) + 111]} |
6=0

0 250 2
-Ie ‘-ZSian(f)sin'ﬂ0+’ncos'ﬂQ)+—%—:l

2

¢ 2 -
__74% e_26g{2 cosM8(dcosnd -1 sinnb) + 38- J

2 2 8 1 .

8,9,

t— e-26g[6 sin2n@ + ncos Zﬂe—l

-8, Ar{(bS[—b' sin (03-(714;r)cos (03]+ (06]:— b sin Q)4—(n—r)cos¢4]}e—6g

+ ¢2Ar{¢5‘i— 8 cos¢3+('r]+r)cos@3]+ (2)6[-6 cos(b4+(n-r)sin(b4]}e- o8

L
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where (bl = 6B1 + nBZ
(62 = mB; - 8B,
(63 = (N+r)0 + T
b,= (M-1)6 - 71
_ 1
¢5 ) 524 (n+ 1»)Z
_ 1
By, = P PRY (n- r)z

From (2.5) and (2. 6),

2
Winp = 2H(Le) lﬁﬂe)[% (d+ sz)} M

It was found that (2. 42) holds true even when the solution is unstable.
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3. STABILITY

3.1, Theoretical Consideratiohs

Now that we have a particular steady state solution for the
system under consideration, we can proceed to investigate the stability
of this solution. The type of stability that we are concerned with in
this case is asymptotic stability.

Let the differential equation of motion of our system be

expressed in the form

L]
—

Z= FZp,....z,.t) (3. 1)

and let a particular solution of (3. 1) be
7Z = S(t) . (3.2)
If this solution is perturbed slightly, so that

-

Z, = S(t) + B(t) , (3. 3)

the solution is said to be asymptotically stable if

Limiﬁi(t)|= 0 fori=1,...,4
t- o

In the usual cases, the time behavior of _%!(t) can be furnished by the so-

called variational equations, (12)
€ = ME ' (3. 4)
where
8Fi(§, t)
MlJ:——g—s—;——— 3 (l,le,...,4)

Assuming that the §'s are of the form Xt, then if the modulus of
all the roots of the characteristic equation of (3. 4) is less or greater

than unity, thc solution is corrcspondingly asymptotically stablc or
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unstable.
For the present case, since the 2 impacts/cycle solution is
valid only for the range 0, < t < w_, the above-mentioned matrix M
cannot be determined by this classical method.
By borrowing ideas from error propagation in difference

(13)

equétions , we perturb our solution immediately after one impact,
and then determine the deviation of the resulting solution from steady
state conditions immediately after the following impact. By repeating
this process over and over again, we can determine the propagation
(similar to change with time) of the initial perturbations in the solution.
The stability or instability of the solution is determined by whether or
not the deviations from the steady state solution decay or grow, as the

number of impacts is increased indefinitely (i.e., as t = o).

The differential equation of motion of our system, between

impacts,
F
Siz—c.ox—Zf)wf{—!-—MosinOt
.3.’1 =0
can be put in the form(14)
dx oo _
T f(x,t) (3.5)
where .
x) 165 1)
. x o £ (=, t)
x= | 2, FEue=| %) |
X4 f3(X,t)
X, £,(x,t) /

and



'xl = x f1 = XZ
2 Fo
X, = ® f2 = - xl-Zwa2+ﬁsinﬂt
X3 7 Y] f3= x4
X4 = V) fg=0

Since the first partial derivatives of the 4 functions fi(}_z, t),
i=1,...,4 with respect to their 5 variables, Kyseno s Xy, and t, exist
and are continuous, then cach of the functions fi(;,t) satisfies a
Lipschitz condition. (13)

Furthermore, if the initial conditions are specified, the Cauchy-
Lipschitz theorem states that the solution of (3. 5) exists and is unique
in E4 x t space.

This type of motion can be represented in the phase plane by a
periodic process (limit cycle) as shown in Fig. 3. 1. On the analytic
trajectories AB and CD, the motion of the system is governed by
Eq. (3.5). On the stretches BC and DA, where the small impact time
is idealized to be infinitesimally small, Eq. (3.5) does not apply, but
the motion of the system is determined by the invariants of the
problem--the impact conditions, Eqs. (2.5) and (2. 6). These invar-
iants relate the conditions at C and A to those at B and D,
respectively.

Now let the solution curve be perturbed slightly right after an
impact, e.g. at A. By means of the Cauchy-Lipschitz theorem and

the impact conditione, the perturbations at point A are continuously

related to the perturbations at point C.
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Fig. 3.1. Phase plane representation of periodic-
~ 2 impacts/cycle motion,
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If at Ot = (Ato)+ the steady state solution is perturbed by a

small amount & then the time of the next impact, (Ot = 7+ Atg, is

(0)°

determined by a relation of the form

D 2 F :
AtO g(S, > s AtO)

(0)

or

—

G(S. S0y’

At:)) = 0 . (3. 6)

From the theory of implicit functions, it is known that(lé) it G
is a continuous function of its arguments, and if at the point (_§>:‘, g>(:<0)’
Att)

i) G=0
ii) G is differentiable
i) g £ 0
0
then there exists at least one function At’o = At;(g,—i’(o)) reducing to
Atg' at the point (§*, E”(“O)), and which, in the neighborhood of this
point, satisfies the equation G(§,§(0), At(')) = 0 identically.

Furthermore, if in this neighborhood % exists and is not
zero, the solution of the equation G = 0 is unique.

By making use of this theorem, at (Ot = (7 + At;))_l_ the deviation

of the solution from steady state can be put in the form

)

-

21y = PEq *RC

(0)
where P is a constant matrix, and R contains all terms of §i higher
than the first power.

Since the 2 impacts/cycle solution repeats itself after intervals

of (it = w, the perturbation at (Ot = (2w + At’(‘))_l_ will be
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52y = Py + R Gy

By following the perturbed solution from one impact to the next

one, we obtain the continuous transformation

Satn) = Py + R Gy (-7)
_ pntl §(0)+‘R"('é(0)) (3. 8)

It is worth noting that if the sign of P did change (it does not in
this case) after each impact, the net effect would be to multiply P in
(3.7) by (-l)n+1. This has no effect on the stability criteria, which, as
will be proved below, depends on the modulus of the eigenvalues of P.

Consider the linear part of Eq. (3. 8), i.e.

2 ntl 2

Equation (3. 9) will be asymptotically stable if and only if Lim P"= 0.
n-oo
Now if the eigenvalues of P are distinct, it can be diagonalized

by a similarity transformation“”, so that

pt =g At gl
The requirement that
Lim P” = 0

n- oo
is satisfied if and only if all the eigenvalues of P have modulus less

than unity, i.e. if

<1, (i=1,...,4)

Actually, the requirement that the eigenvalues be distinct is

superfluous, since if they are not, P can be transformed into the

Jordan canonical form(ls). Then the same results as above can be
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obtained, since all we need is that

Lim A= 0 fori=1,...,4.
n-—-aoo
Theorem: If
i) “—5(0)“’ is sufficiently small,
3 . R(E
ii) ﬁ%ﬁ?—»o —"—"—é—“—)l =0 ,
and if
By = PR, (3. 10)

is asymptotically stable, then also so is

nt1 —g'

%"(nﬂ) = P o * ﬁ('ﬁ(o)) (3.11)
Proof:
An alternative form of (3.11) is
n-1
o TR L T T RG g o ee
i=0
By virtue of (3. 10) being asymptotically stable, then
2" = ce™®
with C>1 and a > 0.
n-1
I 8yl = ce® @ E g 1+ ) cem I HIRE N
i=0
Making use of the initial assumptions, therefore there exists a

constant 8% such that if I\E’H < 8%, then

IRE < 55 1BNe™
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hence

Sl ZZ Sl LY (3. 12)

Let . =e% “—g(i) | and 6* = c Ii—f‘;’(o) . Then from (3. 12)

n-1
a
5,28 ~z~Z 5
f 4 2
S = 8 + 55,
< &%(1 + =)
a
< 8% e
and SZS 8% + —(S +Sl)
a a,2
< o*[1+2(3) + ($)7]
2.2
< g*e 2
a
. Dy
Similarly SnS 5" e
a
n 2 w« 7
Hence e "€ H < 8" e
LTS -
2 2
< 8" e
12,
Lim |I§ )H 0. Q.E. D.
n-— oo

Thus, our problem is to determine P and to examine its
eigenvalues.
Since our system has two degrees of freedom, Tﬁ should be a

4-component vector. A proper choice of components can be the two
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displacements, and the two velocities. However, it is more natural
for this system if the phase angle between the motion of the particle
and M is used as one of the components, instead of the displacement of
the particle. In other words, the initial perturbation will consist of
small variation of the steady state values of x, %, v, and T.

The conditions that we have are:

Steady State Perturbed
At Ot = 0, At Ot = (0+ At ),
X = X X = X + Ax
o) o} o]
d d
y = 3 y = 3
X = % X = X + Ax
0
vV o= -V v = -(v_+ Av)
o) o o
T =T T = T + AT
o o) o]
— — i
At Ot = LT At Qt = (7 + Ato)+ ,
X = =X x = -{x_+ Ax')
o o) o
d B d
y = -7 y = -3
x = -x x = - (x_+ Ax')
o o] o
v = Vv v = v_+ AV!
o) 0 o
T = T T = T _ + AT!
o o o
3. 2. Determination of P
F

Without any loss of generality, w and ?O can cach be taken as

unity. Then for the general case (Q # 1, & £ 0).
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x:e_ét(Bl sinmnt + Bzcosnt)+ Asin (Qt+ 1) , (3.
. “ét . -6t .
x=e (-5 sinmt + ncos ﬂt)B1+e (-0 cos 'r]t-nsm'qt)Bz (3.
+ AQ cos (Ot + T)
Now
x(04) = X, = B20 + A sin To (3.
and
x(0,) = ;°<0 = ano- 6RZO+ AQ cos T (3.

where the o subscript refers to the unperturbed conditions (i.e.,

x =x , x =x_, etc.).
o a’ To a

From (3. 15) and (3. 16)

BZ = X - A sin To (3.
o]
and
_ 1f. )
B10 = ﬁLXO + 6B20— AQ cos Tof . (3.

In finding the perturbed values of B1 and }32 the quantities
o o
with o subscript in the above equations should be replaced by their

perturbed values. Thus

B,(0+ At ) = (x_+ Ax ) - Asin (T _+ AT ), (3

and

— 1 {I L]
Bl(O + Ato) =5 X + Axo + 6B2(0 + Ato)

- AQ cos (’ro + A’ro)} . (3.

13)

14)

15)

16)

17)

18)

. 19)

20)

Since ATO is a small quantity of order €, then to first order approxi-

mation,
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BZ(O + Ato) = BZO-I- Axo - AATO cos T_ (3.21)
and
} b 1.
B (0 + At ) = BIO+ T AR T AR taAT (3. 22)
.. A .
where a= =(QsinT -8 cos T )
n o 0

Equation (3. 13) describes the motion of the primary sysiem
0+ At T+ At!
. . o . . . o
immediately after t = —— to immediately prior tot = - -
Thus the time during which Eq. (3. 13) is applicable is (0t = 7 + AT
o At!
where AT = (At(’J - Ato). Hence from the condition that x\—-—Q-—>

- (xO + Axé), we obtain from Eq. {3.13),

- S
- (x_+Axl) = e B,(0+At_) sin n(THRT)

B2(0+ At ) cos n(w_-FOA_T)}

+ Asin (r+AT+ 7T _+ AT )
o o

= CO + ClAXO + CZAXO 4+ C3AT+ C4ATO (3. 23)
where ] Sm
- = TTr ..nNm nmwi _ .
(’o = e !‘__Bl sin "Q—+ J:’>2 Cos—g- A sin To
o o
S
) T[é . ﬂ'rr:l
C1 = o sinp- + cos Nl

O

C2 = e —Q-[% sinlg
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_Om
C3 = b3 + e Q(b1 +b2) - A cos To
- 6‘“‘ _
C4 £ e _ﬁ-\:a mnv (AcosT )cos-—Q—J—AcosTo

bl = (S—cos%l)B .
b, = - (-g sin%i)Bzo
S
&8 T T .
by = ( e )[(sm%)310+ (cos =) Bzo]

. _ Ty - _
Since Co = X(ﬁ) =X Eq. (3.23) reduces to

| _ 7 - -
AXO— CleO CZAXO C3AT C4ATO. (3. 24)

The time required by the particle to travel from one side of the con-
tainer to the other side equals the absolute distance traveled, divided
by the absolule velocily. Hence

('rr+At;) - [y(ﬁ+At )+ x(m+ At! )] [y(At + x(At )]
0 - (v + Av )

(3. 25)

Substituting the values of the quantities on the left hand side of (3.25),

then

AT =2 axt + Loax - Ay (3. 26)
A% o Vv_ o v o}
(o] (e} O

Replacing AT in (3. 24) by its value from (3. 26), we obtain

V v

o
Ax -d5 Ax +TTd AX -C3d3AvO+T§-d4ATO (3.27)



where

[oD
I

(o}
]
'

0,
[G8]
"
]
<
c
ME
a
(6]

4 v, +6C,

If (3. 27) is now suhstituted in (3. 26), then

AT = dlAXO + dZAXO + d3Avo + d4ATO (3. 28)
Q(l—Cl)

where d]. = V—OTGC—3
Since AT! = AT 4+ AT

o o
then by using (3. 28)

ATL - A Ax F AR+ A AV H (LA )AT . (3.29)

'rr+At:)
Using Eq. (3. 14) to find the velocity at t = o then
T+ AT

T ALS ) : + AT + AT\
X\_Q_)_ - e - 6 sin (™) + Necos (o) | B {0+ At )

w+ AT, 'IT+AT—]|

+ [ b cos N(LH2T) - nsinn(tH2T) 1B, (0+ At )

+ AQcos(m+ AT +T_+AT )

po + 0 Axo + pZAxo + Ps AT + p4ATO (3. 30)
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where
&
= —T -
o= 8, ¢© - AQ cos 7
_bm
0, = e Q
1 - 81
_611'
e e O
P2 = &;

okl
- 8 Y .
p3 = (83~ g,) © + AQ sin s

o
_ el .
Pu= By © -I-AQSlnTO
g = - (£;B, +,B,)
O
= - (f, 2+ 1)
81 17 2
gz_ "'ﬁ"
= J(£,B, - £,B
g3 = lfyB, - £,B, )
(o} (o]

84 = f,AcosT - afl

2
= in AT _ o
fl 5 sin a ncos a8
¢ = Tw .nw
fz— 6cosn—+ns1nv .

From Egs. (2.7) and (2. 8),
X+:k1 x_+k2v_

and
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+ T R3 EoT Ry VL
where
I -ue
k= 1+p)
. ullte)
1‘2.‘ 1+
_ ,1+te
k3 (1+u
- (M-e
k4_ (1+p)
Hence

. /‘Tl"f‘ At:)\ . —I
xk—ﬂ———)+ = kl !:pleo+ pZAxOJr p3AT + p4ATo_J - kZAvo

+ klpo - kzvo ,

and

™+ At!
{ 0 [ ]

N T k3 L01A><O+ pZAxO+ p3AT+ 04A’ro

- K A+ (ke - kv

Noting that
klpo B kZvo - kli(%)— + kZ(_vo) T }'(o
and
<, T T _
k3po - k4vo = k?)x(ﬁ)_ + k4v(77) = v

LY (o]

and replacing AT by its value from (3. 28), then
l' — - - b
Axo = kl(p1+p3d1)AXo kl(p2+ o3d2)Ax0
+ (kZ - k1p3d3)Avo - kl(p4+ p3d4)A”'o 3

and

(3.31)
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. .
Avo = 1<3(pl + p3dl)Axo + k3(p2+ p3o'lZ)AxO
+ (k3p3d3 - k4) Avo + k3(p4+ p3d4)ATo . (3.32)

Equations (3. 27), (3.31), (3.32), and (3. 29) can be expressed in matrix

form as:
il T ' NI
1 -
Axo d5 o d2 c3c13 aoN d4 Axo
l' - - _ - <
Axol |7k(Prrpgd))  ky(pptosdy)  kyokipady  -ky(p teydy) AXOL
< = (3.33)
' -
Avol 1 Rylpyteady)  Ka(pptezdy)  kgpydamky  kglogtesdy) AV,
\AT(‘) dl dZ d3 1+ d4 AT
L RN /
Special case (0 =1, 8 = 0)
Using Eq. (2. 34) and noting that T =~ % , then
— o » . t .
X = (XO+ Axo) cost+ (xo-i— AXO) sint - = sin (t+ATO) s (3.34)
X = - (x +Ax ) sint+ ()'co+ Af{o) cost - % sin (t+ AT )
; ,
- 5 Ccos (t+ATO) R (3.35)
1
(0+At ), St <(m+At)
Hence

1 - » . .
x(mr+ Ato)_ = (xO + Axo) cos (w+ AT) + (xo + Axo) sin {w+ AT)

- —%(Tr+AT) sin (1T+AT+ATO) )

which results in
. o T .
Axo = AXO + (xo —Z)AT > ATO

Since



AT = — Ax' + — Ax - — Av
v [0} hva &)
o) o) o
2A% - TAV - L AT
_ o o 2
B 2(1+y)
Tte ‘o
then.
L ul _r
Ax = k4AxO + 2'(k1+k2+k4)Avo i k3ATO ,
and
AT = AT +AT:fl-k Ax -2k, Av_+ kAT
o o} T 2 0 27 o 17 o
Now since
( ATO
x(Tr+Ato)+ = kl _(Xo+ AT - Axo + ——z——] - szvo

-k (;';O-ITZ)—k

1 2o

and

l- . ATO

t
v{w+ A.to)+

by noting that

]
=
Q
I
!
H
~
<
It
1
Ko

and

and using the value of AT in Eq. (3.36), Egs. (3.39) and (3.

to

(3.

(3.

36)

.37)

. 38)

39)

. 40)

40) reduce
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. 4 .
' = - —
AXO = - klkquxo + kleo
T 1
+ kzl:1+2quJAvo - ky(5 - k,q)AT (3. 41)
and
Av! = 41{ k Ax -k Ax
o o239 o 3 fo}
-[k F2k k. q | Av Tl (L -k q)Ar (3. 42)
4 230 AV 22T :
where
2
— m d,
q= (1+'g§ - 5) = (x 1)

Equations (3.37), (3. 41, (3.42) and (3. 38) can be expressed in

matrix form as:

( ' B ki ™ B
: 1 _ 4 1 .
Axok Skk,q kg ky(l42kq) k(3 -kyaq] | A%
- 4 ) S (3. 43)
— - - - A
Av 2k,k,q kg (kt2k,kaa) k(g -kya) | Av,
' 4 .
AT = kZ 0 -Zkz kl LATOJ

3. 3. Stability Boundaries

The stability boundaries are the curves on which the modulus of

the largest eigenvalue(s) equals unity.

The characteristic polynomial of the matrix P is

Pyp-> P12 Pis Py
P Py P P
21 22 23 24 | _ 3. 44)
P3y Psp  Pi37d Pgy
Py Pio Pys  Pyyt
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which can be put in the form

o) =2% - a2+ azxz- ahta, =0, ' (3. 45)

From the theory of matrices, it is known that(lg) if the eigenvalues of

P are )‘l’ XZ, X3, }_4, then:
4
-K +X +K+ z —TraceofP W
a, =K1(X2+X3+k4)+XZ(X3+X4)+X3)\4 B
(3. 46)
a3:X (X23+)\ K + A X4)+X>\X

a, = A k2K3>\,4 = determinant of P

Guided by some knowledge about the behavior of the eigenvalues

of P, we will assume that on the boundary, one of two cases occurs:

a) [a ] =1
b) hll = |>\2| =1 ; Xl :XZ (complex conjugates)
Case a):

If one of the eigenvalues (e. g., A,)is real and equal to = 1, then

from (3. 45) and (3. 46)

l+(12+a

Case b):

\.=a +1ib , A.=a -ib ; a+b> =1
1 o) o) 2 fe) o o o

By using (3. 45) and (3. 46), it is found that

(a2 -1 - 0.4)(:3.4 - l)2 = (a3 - al)(alc.4 - 0,3) . (3. 48)
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Due to the nature of the expressions for the a's, Eqgs. (3. 47)
and (3. 48) are transcendental equations. Their solutions (obtained
e. g. by iteration) will furnish the stability boundaries.

For the special case of 1 =1, & = 0, the expressions for the a's

simplify considerably, and with the help of (3. 43) they are found to be:

-~

a; = 2(k1—k4) - 2k2k3q s
. —k)2+2e+kk]-4kk
2 7 LW TRy 253 2534
_ (3. 49)
ay = [2e(kl-k4)+k2k3J - 2k,K,q
- &2
(14— * J

Considering first the case of A = £1, then from (3.47) and (3. 44)

it is found that

2 2 J B
[(l+e) (kg k) +koky | - 4k,k,q =
x{[2(1+e)(kl -k4)+k2k3] - 4k2k3q} (3. 50)
which will involve the stability boundaries only if » = -1. Thus, for
A = -1, (3.50) reduces to
_ = &t UM
979, 7 3¢ ’
consequently,
d=d = éE:tEEL;?AJ1 5(14+ (3.51)
T Ta 4 - VI )
For the case A =X,, [i;| =1, (3.48) and (3. 44) result in
- N
q=q,= _D% (e < 1) (3.52)

where
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N(a) = (1-e)?{ B2 o [(1+9) +de | - (1-e)%)

2
1+el 1 2
T (TS) 1 (1+:} (1+u) (1:1)2 * (1-e) ] ’
2 2
_ 2y _2.[ lre (1-e2)7
D(q) = Y (1-e )[\Hu) L v

With q determined from (3.52), d can be found from

d:db

il
oo
—
ot
_'_

31~ W)
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4. EXPERIMENTAL STUDIES

4.1, Introduction

The experiments that were performed during the course of this
investigation were primarily motivated by:

a) lack of sufficient information concerning the general behavior
of the system for a wide range of its parameters,

b) possible design problems that may be encountered in the actual
construction of such a system,

c) need for a stability criterion for 2 impacts/cycle motion,

d) need to evaluate the efficiency of the system as a vibration
damper,

e) desire to explore its effectiveness for random excitation.

In order to obtain some information relevant to these matters,
the following experiments and studies were conducted as described
below:

l - experiments with a mechanical model,
2 - experiments with an electric analog,

3 - numerical studies involving a digital computer.

4. 2. Experiments with a Mechanical Model

The main purposc for conducting this type of experiments was
to gain some knowledge concerning:
a) qualitative behavior of the system,
b) possible design problems,
c) variation of the coefficient of restitution with time (i. e. number

of impacts),



-40-

d) motion of system with other than steady two impacts per cycle.

A schematic diagram of the mechanical model that was used
and a photograph of the actual structure are shown in Fig. 4.1 and
4.2, respectively.

Since the qualitative response of a single degree of freedom
oscillator is not altered if the excitation is applied to the base instead
of directly to the mass, the former type of excitation was used in this
case, as a matter of convenience.

The mass M was primarily a rectangular box with rigid stops
at its ends, that constrained the movement of the frictionless solid
particle m to oscillate horizontally within a certain clearance. The
particle was a hardened steel ball, of a type used in ball bearings, and
the stops which it impinged upon were also made of hardened steel so
as to obtain a high coefficient of restitution. The coefficient of
restitution as used in the experiment was approximately 0. 8.

The relative motion between the base (which was excitéd by an
electromagnetic shaker) and M was monitored by means of a linear
variable differential transformer(zo) whose output was recorded by a
direct inking oscillograph.

Typical records of the rélative motion obtained in this manner
are shown in Fig. 4. 3.

Under steady state conditions with 2 impacts/cycle, the value of
the coefficient of restitution e can be found with the help of Eqs. (2. 12)

and (2. 13) to be
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Xa
1 - (1+2u) 22
¢ = xb , (4. 1)
a
(1+2p) ‘;{—];

The velocity ratio in Eq. (4. 1) was obtained by integrating with respect
to time the output of a piezoelectric accelerometer attached to M. The
integration was accomplishcd by using an integrating network in con-
Jjunction with an operational amplifier.

As a result of this phase of the investigation, which was
conducted in the Dynamics T.abaratory of the California Instifute of

Technology, the following observations were made:

a) The excessive (as measured by the human ear) noise level in
the vicinity of an operating system resulting from the impacts,
especially when the colliding surfaces are hardened, is of such an
intensity as to require muffling, if the damper is to function over an
extended period.

b) Since plastic deformation can result if the relative velocity of

the colliding surfaces is more than 1 ft/sec. (21, 22)

, this phenomena
is pertinent to the problem at hand, where the impact velocity is rela-
tively high., In situations where there is appreciable plastic deforma-
tion, continuous operation of the damper may cause e to become a
function of time--an undesirable state if the stability of periodic motion
is of concern and if the stability boundaries are dependent on e.

It was found that by using hardened steel for the colliding

surfaces, there will be no significant change in the value of e.
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c) Although horizontal operation of the damper is simpler from
the design viewpoint, othcr positions can also be accommeodated (e. g.
the particle may be attached to the tip of a soft cantilever beam rigidly

connected to M).

d) ~ In some cases, even though the 2 impacts/cycle motion is not
stable in the strict mathematical sense, the amplitude of the response
is nearly constant and appreciably less than the resulting amplitude
when the damper is removed, as shown in Fig. 4.3(2).

Figure 4. 3(b) shows the effects of setting U = 0 (by removing the
particle from its container) while M is vibrating. Obviously, the
increased amplitude equals that attained by an equivalent single degree
of freedom system subjected to the same excitation. As soon as |l is
returned to its former value, the motion of M resumes its former
state.

Except for the expected transients that occur when U is changed,
even such a large 'perturbation' does not alter the characteristics of
the motion, provided that (as it is in this case) the system is not

operating in the proximity of the stability boundaries.

e) The actual wave form of the response is approximately sinu-
soidal, and the assumption that the velocity changes discontinuously is
justifiable, as shown in Fig. 4.4 (x was measured by an optical dis-

placement follower).

f) In general, when 2 impacts/cycle motion is not stable, the
resulting motion is irregular (i. e.,neither the amplitude nor the

frequericy of impacts is constant), and sometimes it exhibits the
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Fig. 4.4. x and x as photographed from the screen
of a cathode ray oscilloscope (x continuous,
x discontinuous).
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phenomenon of amplitude modulation (beat)(ZB).

4.3 Experiments with an Electric Analog

The main attractions of using an electric analog to study the
behavior of this system were:

a) ‘ease of varying the parameters of the model over a wide range,
b) simplicity of monitoring, measuring. and recording the variables
of the system.

The objectives of this phase of the investigation were:

a) to find quantitative behavior of the system,

b) to study the general response of the system, and in particular
stable periodic motions,

c) to evaluate the effects of small deviations from the mathematical
model on the response.

Due to the limitations on the nature of the model, imposed by
using real components in an electronic analog computer(24), some
modifications had to be made in the electrical model. These modifi-
cations, while enhancing the faithfulness of the analog to the physical
system, kept the behavior of the electrical model basically the same
as the mathematical one.

The above mentioned modifications consisted of the following:

a) The infinitely rigid "mathematical' stops were replaced by
very stiff springs, as compared to the main spring of M. This step is
fully justified(25) since the response of a system to a symmetrical

pulse is independent of the pulse shape as long as
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T
p . 1
T < 3
where: Tp = duration of pulse,
T = period of system.

b) The simplified concept of coefficient of restitution, i.e.,
relating the discontinuous values of the velocities immediately preced-
ing and succeeding an impact, was replaced by a continuous process
with the same end results.

A schematic diagram of the model whose behavior was simu-
lated by means of an electronic.analog computer, in the Applied
Mechanics Department of the California Institute of Technology, is
shown in Fig. 4.5, and its equation of motion is

M¥X = - kx - cx + F sin (0t + k3g(y)+ c3h(y, V)

(4. 2)
m:)} = - mX = kgg(Y) - C3h(y1 3.7)

where g(y) and h(y, V) are nonlinear functions shown in Fig. 4. 6.

By a proper choice of k3, the nonlinear springs can simulate a
rigid barrier to any desired degree of accuracy. sy in conjunction with
h(y, y) provides means for simulating inelastic impacts, ranging from
the completely plastic up to the elastic ones.

The circuits that were used to generate the nonlinear functions
g(Y)(Zé) and h(y,y) are shown in Fig. 4.7 and 4. 8, and their actual
input-output characteristics are shown in Fig. 4. 9.

Equation (4. 2) can be put in the form
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I

. 2 . . r 2 .
X=-wx-26wx+ ——h% sin Ot + W | @q g(y)+ 253003}1(%}7)] (4. 3)
(X LR 2 .
§ =& - e+ 26,0809 ]
k
3
where: Wy =, —
3 m
c
5, = -3
Z‘/k3m

The computer diagram for Eq. (4. 3) that was used in this
investigation is shown in Fig. 4. 10 (the notations used follow the usual
ones(27)) and typical oscillograph records for the output of some of
the amplifiers ot Fig. 4. 10 are shown in Fig. 4. 11.

Fach of the three pairs of records in Fig. 4. 11 shows the simul-

taneous values of the labeled variables for the case (a typical one) where

w =10 rad/sec r -1 u=0.10
d

& =0.10 e = 0. 80 =2
Fo7k

In Fig. 4.11(a), although the rapid velocity change is not as
severe as that experienced by the actual structure (see Fig. 4. 4), it
still lies within the realm of impulsive motion for the reasons cited

above.

o

Since e is defined as e = - ;i » 1ts value in this particular case
can be verified from the wave form—of Fig. 4. 11(b). Also from this
figure, one can see that the wave forms of the relative velocity and
displacement are not piece-wisc lincar--unlike ';rl and ¥y whose wave

forms in 2 impacts/cycle motion would be rectangular and triangular,

respectively,
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|<_1 sec.—>|

(2)

(b)

g(y)

h(y,y)

(c)

Fig. 4.11. Samples of recordings.
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The outputs of the two nonlinear function generators are dis-
played in Fig. 4. 11{c). It is obvious from the output of g(y) that the
impulse resulting from the collision of the particle with the spring k3 is

T
symmetric and that P < —L The simultaneous output of g(y) and h{y,vy)

T 20 °
shows that the actual performance of the dashpot Cq is as intended,
since it is in operation only while m is in contact with k3.

The analog computer simulation of the removal of the particle
{setting U = U) while M is in motion is shown in Fig. 4. 12 which,
basically, duplicates the response of the actual structure.

The limit cycle for 2 impacts/cycle motion of an operating
system is cxhibited in Fig. 4. 13(a) and compared to the phase diagram
of a single degree of freedom oscillator (i.e. same system but with
M = 0) in Fig. 4. 13(b).

In Section 4.5 the close agreement between experimental results
and the ones predicted by the theory developed in Chapter 2 is demon-
strated for a particular set of the parameters.

The analog computer was also used to study the effects of small
amount of friction and a weak linear spring between m and M

(Fig. 4.14). As expected, it was found that small values of ¢, and k

2 2

have no appreciable influence on the behavior of the system.

That the impact damper is also effective in reducing the vibra-
tions resulting from random forcing functions was found by simulating
the behavior of the system on the analog computer. Fig. 4. 15 shows
the comparative motion of a randomly forced oscillator without and

with the damping device.
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4.4 Digital Computer Studies

An alternative approach to the above analytical studies is the
direct step-by-step solution of the basic equation of motion on a digital
computer. The disadvantages of this digital computer approach are the
difficulty of exhibiting the results in a general form and certain
computational problems in the investigation of marginal stability
regions. The advantage is the fact that at least for specific cases a
complete picture of system response can be obtained to any desired
degree of accuracy.

The equation of motion of the mathematical model (Fig. 2.1},
between impacts, is

MX + cx + kx = F sin Ot
. . (4. 4)
y = - X

If immediately after the ith impact at t = ti

g0 Xy ) =% vl ) =y

x(t, )=x.; v, ) =v.
1 i, 7 + +

then the motion of M and m is described during the time interval from

t, to the time immediately preceding the next impact, t(i+l) by
+ -

"‘6(.0(1:"1:.) =
X =e * [Di sin ’r]m(t—ti_)+ Ei cos ".’}w(t-ti)—ﬁ A sin (Ot - V)

y=-x+ (Xi+Yi) + (fc.l+}°r.l)(t—ti) (4. 5)

where:
E. =x., - A sin (Ot, - 1)
i i i
_ 17 = . .
].-)1 -—--ﬁl—é E1+3 - Ar cos (Qtl-U)J
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From the impact conditions at t(i+l)

- -
X\\t(i+1)+> = X‘\t(iﬂ))

. N .
Y(t(i+1) ) = V<t(i+1) ) byl=3
B . (4. 6)
( (1+1), > = 5{<t(i+1)_>+ k2§7<t(i+l)_>
y\'“(1+1) ) =- e§’<t(i+1)_/

Conditions (4. 6) can now be used as new initial conditions in
Lg. (4.5) for the time interval t(i+l)+ to t(i—l—Z)_ . This process can be
repeated over and over again so as to obtain the time behavior of the
model.

A digital computer program to find the "exact! sequence of
initial conditions and the resulting motion according to (4. 5), for any
given set of parameters and '"initial''initial conditions, was written in
FORTRAN IV language, and executed by means of an IBM 7090 compu-
ter, in the Computing Center of the California Institute of Technology.

Besides furnishing further checks on the validity of the data
obtained from the analog computer and the theoretical 2 impacts/cycle
solution, it provided also (by the propagation of round off errors) con-
venient means of simulating the actual propagation of small perturba-
tions in the steady state solution.

Among the basic features of this program were the following
ones:

a) The RHS of Eq. (4.5) was evaluated at t = t, + j x At repeatedly

(with j increasing by unity each time) until the quantity (—% - ly ])
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became négative. Then, depending on the rate of convergence of the
iterations, the Newton-Raphson(ZS) or the bisection method was used
to find tiv1 for which

e (4. 7)

where € was usually chosen to be O(10-6).

b) Notable among the troublesome cases encountered (in regard to
satisfying Eq. (4.7)), were those involving consecutive impacts on the
samc sidc of the containcr, and when ¢ was zero (i.e., no rebound
after impact). Consequently, several tests were incorporated in the
program in order to test, whenever Eq. (4.7) was satisfied, if that
condition corresponded to a genuine impact, or if it was merely due to

an undetected shortcoming of the program.

c) When a periodic solution would pass the test designed to deter-
mine if it had reached steady state conditions, the program would then

discontinue that solution and start constructing a new one corresponding

F
o d
to a new set of the parameters w, r, - M, 5, e, and—F—;—/—R .

Solutions that did not pass the steady state test were terminated after

reaching a specified number of impacts.

d) Single precision arithmetic was employed throughout the pro-
At

gram which required, for o 1, an execution time of approximately

5 sec/100 impacts.

Table 4.1 shows a typical digital computer output, and how it

compares to theoretical results predicted by the 2 impacts/cycle
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Table 4.1 {a)

DIGITAL COMPUTER OUTPUT
Fo

kT

.10, W =.40,

-1.5000
- .3079
L7072
. 4476
- .3433
. 2044
- .0778
. 0674
- .1226
. 1655
- . 1617
. 1355
- . 1237
1297
- .1394
. 1422
- .1386
. 1351
- . 1349
. 1366
- 1377
. 1375
- . 1368
. 1365
- . 1367
. 1370
- . 1370
. 1369
- . 1368
. 1368
- . 1369

1369
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e = .

K.TIU'IU'IU'IU'!U‘IUIU'IWU'ILT!U1UlU1lJ1U10'lU’lU1U1U1UTUlU’IU'lU1LJ1LﬂU'lU'lU1

%,
1+

-. 8169
. 0210
. 3582
. 5965
. 5449
. 5949
. 6011
. 5839
. 5691
.5703
. 5791
. 5828
. 5809
.5778
.5768
. 5780
. 5791
. 5792
.5786
. 5783
. 5783
.5786
. 5787
.5786
. 5785
. 5785
. 5785
.5786
.5786
.5785
.5785

5785

b

W

1 ) F_()7_R — 3
. max
. A
Vit . <t<t,
i-1 i
. 2h78 - .9246
. 6468 -1.0500
.6165 7856
. 4782 - .bh437
. 4929 . 4444
. 4969 - .5026
.bh152 5511
. 5175 - .5437
.5084 5125
.b0l15 - . 4970
.5024 5045
. 5065 - .5166
. 5083 5197
. 5073 - B153
.5058 5111
. 5054 - .5108
5060 5129
. 5065 - ,h143
. 5065 5140
. 5063 - ,5131
.5061 5127
.5061 - .5130
. 5062 5133
.5063 - .5134
. 5062 5133
. 5062 - .5h131
. 5062 5131
. 5062 - .5132
. 5062 5132
. 5062 - .5132
.5062 5132
- .5132

5062
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Table 4.1 (b)

THEORETICAL SOLUTION

r=1.25 5§=0.10, u=.40, e =.20, ff.: 1, w=1, Fi%?::3
1) T =17, =2. 4817 radians x, = -0.1369 (E)naax: 0.5132
-0. 257 -0.220 1.329 -0.530
P - 0. 135 0. 491 0.617 0.247
-0.176 -0. 641 -0.501 -0.323
0.721 -0.214 -1.148 0. 486
Eigenvalues:
# Real Part Complex Part Modulus
1 0.306 0. 662 0.730
2 0.306 -0. 662 0.730
3 -0.197 0. 142 0. 243
4 -0.197 -0. 142 0. 243
2) T =1, =-1.5318 radians x_ =-1.5674 (%)nnaxz 0.9654
-0. 257 -0.220 1.329 0. 459
p . |-18.724 6. 082 30. 680 -11.352
24. 423 -7.933 -39.713 14. 806
-14. 585 4,324 23.250 -8. 022
Eigenvalues:
# Real Part Complex Part Modulus
1 -42.919 0 42.919 > 1
2 0.505 0. 609 0.791
3 0. 505 -0. 609 0.791
4 -0.0012 0 0.0012
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solution and its stability analysis.

4.5 Discussion of Results

The theoretical 2 impacts/cycle solution derived in Chapter 2 is
compared in Fig. 4. 16 with results obtained through the analog and
digital computers.

In regard to Fig. 4.16, the following remarks can be made:

a) The two distinct curves shown (labeled Tl and TZ) correspond to

the two theoretical solutions obtained by using for the value of T in one

tan "t —2p+H‘VH2+4- pZ ,
CpH -2V 4 - o?

casc

]
1

3
11

and in the other

con L 2p-HNH+4- o
2 an — 2
- pH+ 2 H +4- o2

x
max (5 was found by evaluating Eq. (2. 26),
A A &

max
expressed in the form

3
|

a
i

b) The ratio

-5t
—e T [N(Bl)sinn%t+ N(Bz)cosn%] + sin (Ot+ T),

at t = jx At, (j =0,1,2,...), with At ~0.01, up to &t = m.

c) The two solutions coalesce at the extremes d = 0 for which

1

=T, =tan © (-2
Tl—TZ—tan 2),

2

d 2 _ .
and at TJ—R = 23.197 (where H +4 -0~ = 0), since then

-1, 2
T]. :TZ:tan (ﬁ)
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d - . _ .
For F_OTR > 23.197, T is complex; consequently our 2 impacts/cycle

solution does not exist.

d) At d = 0, the same value ior (Axu)max will be found if the system

is treated as a single degree-of-freedom oscillator with a natural

frequency ' = —= .
q y JTro
e) The stability analysis indicates that the T, curve is entirely

unstable, while the T, curve is only partly so.
The stability boundaries were determined by the method de-

scribed in Section 3. 3.

) Stable solutions obtained through the digital computer agreed
with the theoretical solution and the stability analysis. Also, no sym-
metric (i.e., repeated at intervals of Ot = 7) 2 impacts/cycle solutions

were found outside the stable region.

g) Keeping in mind that the precision and accuracy of analog
computer results are limited (a2 5% in present case), the data obtained
from such a computer is in satisfactory agreement with comparable

theoretical and digital computer results.

h) Outside the stable region, both analog and digital computer
d .
results show that (see Fig. 4.17) for close to 11. 56, the resulting
Fo7k
motion is stable with 2 impacts/cycle but not symmetric. However, for

d D
—F?T{ > 22. 25 the motion is irregular.

The complicated functional dependence of the stability boundaries
on the parameters of the system is illustrated, for typical cases, in

Figs. 4. 18 and 4.19, from which the following can be observed:
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FIG. 4.18 STABILITY BOUNDARIES (8=0.01, u = 0.05)
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a) The LHS of the three regions shown in Fig. 4. 17 are gquali-
tatively alike, and they correspond to the cases where one of the
eigenvalues of P is real and its modulus is unity. The functional
relation between the )'s and the parameters of the system is more

complicated on the RHS boundary on which ),1 = 7:2 ) 1}\1\ = 1.

b) The variation of ¢ (usually the reduction of its value) with time

can indeed cause stable 2 impacts/cycle motions to drift out of the stable

regions.

c) The predicted behavior of the sclution in various regions was
found to be actually so. For example, with r = 0.5, 5 =0.01, u=0.05,
e =1.0, ___c_iﬁ( = 2600, the theory predicted the existence of a stable
solution with (%) .1ax = 16-13, and this was verified through the digital

computer.

d) Most of the stable solutions correspondedto T = T;. Stable
periodic motions with multiple impacts per cycle exist when symmetric

2 impacts/cycle motion is not stable. For example, with r =1, § = 0. 10,
M =0.10, e = 0. 80, F(?d'E = 10, stable unsymmetric 2 impacts/cycle
motion occurs and its impact periods are Ot = 2. 131, 4. 152 (instead of
each being w). However, with r = 1, 5§=0.10, £ =0.10, e =0, 25,

TR 5, the motion is periodic in (Ot = 37 with 4 impacts occurring at

o
intervals Ot = 2. 821, 3.356, 2.233, 1.015. Combinations of the

parameters that did not give rise to stable periodic motions resulted

in seemingly erratic behavior of the impact damper.
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As a further test of the validity of the present analysis, let us

consider the following cases.

0 d __
Case 1. 6—1 o) —-0.10 U-—O.‘}:Ol [+ —0.20 —F—O7T(—5. 065
Case 2: 2=1.25 520,10 u=0.401 e=020 —o =1 646
— o« T | ' F 7k~
x
For case (1), Grubin used his analysis to find that m:X ~ 0. 28

and it agreed with his numerical solution after about 10 collisions. The

present analysis predicts the existence of two solutions resulting in

p:4
max
A

= 0.2749 and 0. 8063 corresponding to 7 = T, and T,, respectively,
and that only the solution corresponding to T = T, is stable. This was
verified by digital computer solution.

In regard to case {2), Grubin concluded that after 13 collisions
'the motion settled to steady values''. (2) His conclusion does not agree
with the present analysis which predicts thal both 2 impacts/cycle
solutions for this case are unstable. Step-by-step construction of the
solution on the digital computer, beyond 13 impacts, resulted in an
unstablc 2 impacta/cycle solution. It thus appears that the stable
result predicted by Grubin was a consequence of not carrying the

solution far enough. This illustrates a basic difficulty of using such

numerical solutions for stability investigations.
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5. SUMMARY AND CONCLUSIONS

Periodic symmetric 2 impacts/cycle solutions were sought and
their asymptotic stability boundaries were determined analytically. The
stability analysis involved a perturbation of the phase space trajectory
of the motion, and it indicated that the solution was stable if the
modulus of all the eigenvalues of a certain matrix is less than unity.
This matrix continuously related the perturbations immediately after
each of two consecutive impacts. Results of the analysis were verified
by:

a) Numerical step-by-step construction of solutions for all types
of motion; however, due to round off errors in digital computa-
tions only stable solutions were found.

b} Experiments with an electronic analog computer.

c¢) Experiments with a mechanical model.

The following observations can be made on the basis of the
present investigation:

1. For some parameters for which symmetric 2 impacts/cycle

motion was not stable, stable periodic solutions with multiple impacts
per cycle could be shown to exist.

Even for cases in which no stable periodic motions were
established, the impact damper was often effective in reducing vibra-
tion amplitudes. On the other hand, for some stable periodic solutions,
the impact damper resulted in an increase of vibration amplitude
instead of a decrease. Stability alone is not the critical parameter for

deciding the effectiveness of the impact damper.
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2. As in the case of all nonlinear systems, the performance of the
impact damper is dependent on the amplitude of the exciting force--
unlike the linear Frahm dynamic vibration absorber. (29) In situations
where the utilization of a dynamic vibration absorber is practical, and
if fhe amplitude fluctuations of the excitation are not excessive, an
impact damper can offer a tempting choice. While the requirements of
a tuned linear system are exacting, the effectiveness of an impact
damper is relatively insensitive to system parameters,
3. The theoretical solutions and stability analysis for periodic
motions with a different number of impacts per cycle, or with a different
period than the one treated in this thesis, may be obtained, with some
effort, by extending the methods used here.

If the impact damper is looked upon as a highly nonlinear dynamic

vibration absorbe r(30_33)

and a proper damping mechanism is
incorporated in the mathematical model to represent the effects of a
finite coefficient of restitution, the method of slowly varying parameters
may offer an alternative approach for treating the forced oscillations of
the resulting two degrees of freedom system. (34)

4. Striclly speaking, if the mathematical model of Fig. 2.1 is
started from a state of rest with the particle in the middle of its con-
tainer, the impact damper will not operate if the ratio of the container
clearance to the original amplitude of the primary system is > 2. In
actual situations this condition will be remedied by the inevitable
presence of friction between the particle and the primary mass, the

initial displacement of the particle from the center of its container, or,

when used, the effect of a weak coupling spring.
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5. The impact damper appears to be most effective when used in
conjunction with lightly or negligibly damped systems in resonant
states. Under these conditions it can operate effectively with practical
values for its parameters and usually it is not sensitive to slight
chénges in the parameters.

Since in practical applications the resulting amplitude rather
than the existence of stable periodic motions is of prime concern, the
impact damper fullilled its role even when its motion was not stcady.
This was particularly true with undamped systems forced by a
sinusoidal force at resonance, or subjected to random excitation.
Essentially, the action of the damper disorganized the orderly process
of amplitude buildup, thus reducing the response drastically.

6. The functional dependence of the stability boundaries, for any
given set of the parameters, on the frequency ratio is complicated,
especially for 0 < frequency ratio < 1. In the immediate vicinity of
resonance (where the impact damper would normally be used) fhe
stability boundaries enclose within them a sufficient range of system
parameters to make stable symmetric 2 impacts/cycle motion

practically realizable.

Needless to say, the present study does not exhaust the supply
of interesting problems related to the behavior of the impact damper
that await solution. For instance, one such problem is to prove that
the response of the system to a bounded input is bounded. Also, in
view of the effectiveness of the impact damper with random and impulse-

like excitation, the feasibility of using impact damping to reduce, for
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example, earthquake induced or rocket vibrations meritsinvestigation.
Another practical area which should be further examined is that of the

multiple-particle impact damper.
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