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ABSTRACT

In civil engineering, almost all structures are somehow in contact with soil–i.e., have
foundations or support elements that either rest on or are embedded in soil. Thus,
their seismic response is governed by the interaction between the structure, the non-
structural components, the foundation, and the surrounding soil. Predicting such
interaction becomes increasingly complex when uncertainties of soil and structural
material, ground motion variability, and dissipation mechanisms are considered.
The accuracy of numerical models to predict the linear or nonlinear responses of
structures depends not only on how well the uncertainties in the material properties
and input motion are estimated, but also on how well the various sources of energy
dissipation and their interaction are modeled. Therefore, high-fidelity simulation of
soil-structure interaction (SSI) problems require advanced models that can capture
the nonlinear behavior of soils and structures, and parallel computing capabilities
to optimize the cost associated with large scale problems. In spite of this fact, SSI
in practice is widely accounted for using fixed-base building and reduced-order-
models (ROM) which usually trade accurate solution for fast ones. Unfortunately,
if SSI effects are neglected or poorly estimated, then critical response measures of a
structure can be over- or under-estimated, which in turn can lead to unsafe or overly
conservative designs.

Motivated by the previous challenge, in this thesis work we present a robust and
efficient framework for finite element model (FEM) updating based on ensemble-
Kalman inversion (EnKI). The EnKI-FEM updating framework is used to obtain
suitable parameters to inform a ROM from data generated using high-fidelity FEM
simulations. Since high-fidelity SSI simulations call for accurate and computa-
tionally efficient capabilities, as a part of this work, we developed Seismo-VLAB,
a simple, fast, and extendable C++ finite element software to optimize large-scale
simulations of dynamic and nonlinear SSI problems. The EnKI-FEM updating
framework is thus integrated in Seismo-VLAB allowing to identify any parameter
of the ROM without compromising accuracy. The so-generated ROM are finally
employed to propose a new dimensionless frequency mapping to estimate the soil
impedance for time domain analysis and to investigate soil-structure-interaction ef-
fects at a regional-scale. The presented methodology is general enough and it can
be extended to more complex structural and/or geotechnical systems, allowing to
construct highly-accurate ROM in a simple manner.
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C h a p t e r 1

INTRODUCTION

In civil engineering, almost all structures (buildings, dams, bridges, tunnels, and re-
taining walls to name a few) are somehow in contact with soil–i.e., have foundations
or support elements that either rest on or are embedded in soil. Therefore, their seis-
mic response is governed by the interaction between the structure, the non-structural
components, the foundation, and the surrounding soil [157–159]. However, predict-
ing such interaction becomes increasingly complex when uncertainties of soil and
structural material, ground motion variability, and dissipation mechanisms are taken
into consideration. Thus, the accuracy of numerical models to predict the linear or
nonlinear responses of structures depends not only on how well the uncertainties
in the material properties and input motion are estimated, but also on how well the
various sources of energy dissipation and their interaction are modeled.

The inherent challenges and difficulties in modeling soil-structure interaction (SSI)
have lead researchers to focus on the design of a series of simplified models: for
instance, energy dissipation in buildings has been represented for decades using
mathematical models based on viscous damping. The basic idea is to combine
all the sources of energy dissipation (especially those which may be impractical,
too complex, or not fully understood) into a simple set of viscous parameters.
Although it has been well established that some of the dissipation mechanisms do
not behave in a viscous manner [20, 63] (for example, material damping of soil
and structural elements), this inconsistency is frequently ignored in engineering
practice because it simplifies the analysis [74] and produces reasonable results [19].
In a similar fashion, SSI is in practice simplified using fixed-base building models,
where properties such as damping ratios are modified to appropriately account for
mechanisms such as radiation damping. This approach is once again used because
SSI problems are complex and computationally expensive.

Nevertheless, accurate quantification of SSI effects (or other source or interactions)
is critical in the design of earthquake resistant structures. If SSI effects are neglected
or poorly estimated, then critical response measures of a structure can be over- or
under-estimated, which in turn can lead not only to unsafe or overly conservative
designs [116, 125], but also to large economic losses.
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1.1 How to model soil-structure interaction effects?
Soil-Structure Interaction effects can be considered in numerical analyses using one
of two methods: the direct method and the substructure method.

In the direct method, the super-structure, the foundation, and the surrounding soil
are explicitly taken into account, using in general the finite element method [16, 70].
However, in this method is impossible to model the semi-infinite extent of the soil
with a finite number of the elements; therefore, appropriate boundary conditions
[15, 51, 95, 106] have to be applied to the finite element model, such that the
radiated energy away from the truncated boundary is perfectly emulated. Although
domain truncation together with the insertion of an appropriate boundary condition
reduces the order of the original problem, the direct method is still computationally
expensive and is rarely used in engineering practice.

As a consequence of the latter constraint, the state-of-the-practice has adopted
the substructure method [157–159]. In this method, the problem is divided into
two systems: the superstructure and the soil-foundation sub-systems. The soil-
foundation system is first represented as force-deformation relationships, known as
impedance functions, which are then applied to the nodes along the soil-foundation
interface to model the dynamic interaction between soil-foundation and superstruc-
ture. These impedance functions have been developed in the last 50 years (e.g.,
[104, 105, 119, 154]) assuming linear elastic soil behavior. In particular, for linear
SSI analyses, it is convenient to solve the problem in the frequency domain, using
the soil impedance functions and the modified input motion, together with dynamic
characteristic of the structure. While the use of impedance functions in linear SSI
analyses are quite straightforward, they cannot be used—at least, directly—in non-
linear SSI analyses. This is because it is not nominally possible to solve nonlinear
problems in the frequency domain.

In order tomake the use of the substructuremethod practical in time domain analysis,
researchers and practitioners have proposed different models to approximate the soil
impedance functions [138–140]. Among them, and for building structures with
shallow foundation, the National Institute of Standards and Technology (NIST)
under the project entitled Improved Procedures for Characterizing and Modeling
Soil-Structure Interaction for Performance-Based Seismic Engineering recommends
using single-valued functions at a representative frequency, which can be modeled
as constant-valued springs and dashpots along the soil-structure interface. The
frequency at which the soil impedance is read is computed using an iterative method
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proposed by Bielak and Veletsos [21, 125]. In this method, one starts assuming that
the period of the interaction is the fixed-base building period (i.e.,T). This value and
geometry of the foundation allow to compute the dimensionless frequency a0 =

ω B
Vs

as shown in Figure 1.1a. Such frequency enables computing the values of the
lumped translational and rotational spring and dashpot coefficients as represented
in Figure 1.1b.

Figure 1.1: NIST iterative procedure to compute frequency independent foundation
soil spring and dashpot coefficients. (a) Simplified SSI model using lumped transla-
tional and rotational spring and dashpots and the fixed first modal information. (b)
Frequency dependent impedance function.

Provided with the lumped soil impedance coefficients, one can compute the period
elongation of the system using

T̃
T
=

√
1 +

k
kxx
+

kh2

kθθ
, (1.1)

where the variable T̃ is the flexible-base period, T is the fixed-base period, h is
the first-modal height, k is the fixed building stiffness, kxx and kθθ are the lumped
translational and rotational springs coefficients that account for the flexibility of the
surrounding soil. The process is repeated until there is no variation of the period
elongation. Finally, provided with the flexible-base period, one can read from
the impedance function the lumped soil spring kxx, kθθ as well as the lumped soil
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dashpots cxx, cθθ and – if necessary – distribute them along the foundation perimeter.

Furthermore, for modifying the free field motion (FFM) due to the foundation
embedment, NIST recommends using zero-phase transfer functions Hu and Hθ ,
which reduce the translational and introduce the rotational motion, respectively.

Figure 1.2: NIST procedure to compute foundation input motion. (a) Free field
motion time series, here a Ricker pulse is considered. (b) Transfer function in black-
solid line and FFM Fourier transform function of the Ricker pulse in dashed-blue
line. (c) Translational and rotational foundation input motion.

Hu =


cos

(
Dω

Vs

)
, if

Dω

Vs
< 1.1

0.45 , otherwise
, (1.2)

Hθ =


0.26

[
1 − cos

(
Dω

Vs

)]
, if

Dω

Vs
<
π

2

0.26 , otherwise
. (1.3)

In Equations (1.2) and (1.3) the variable D represents the foundation embedment,
Vs the shear wave velocity, and ω the frequency. This mapping to determine the
Foundation Input Motions (FIMs) is shown schematically in Figure 1.2 where the
FFM signal in Figure 1.2a is first transformed in Fourier space (dashed blue line),
then the Fourier coefficients are scaled by the translational and rotational transfer
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functions as shown in Figure 1.2b (in solid black line), and the results are transformed
back to the real space (using the inverse Fourier transform) to obtain the FIM as
shown in Figure 1.2c in red solid lines.

Unfortunately, the NIST recommendations make two important simplifications for
using the substructure method in time domain analysis: (a) the frequency at which
the impedance value should be read is the flexible-base frequency, and (b) it assumes
that the FIM preserves the phase of the FFM and it does not change as a function of
foundation embedment ratio D/B.

1.2 Next generation reduced order models for soil-structure interaction
Nowadays, computer capabilities allow to perform high-fidelity simulations for anal-
ysis of complex SSI problems, e.g. [153]. In addition, data from small to large scale
experiments, intended to inform high-fidelity numerical models, e.g. [101], can be
used to achieve a better understanding of the system behavior. Nonetheless, the
computational cost of high fidelity SSI simulations continues to loom large, particu-
larly for nonlinear fully coupled models, an obstacle which, combined with the large
number of analyses needed to make fully probabilistic risk predictions, can render
the problem intractable. Therefore, lower (or equivalent) fidelity predictive models,
namely models that can capture the main features of high-fidelity simulations at
reduced computational cost, are essential in probabilistic engineering and resilient
design of interconnected civil infrastructure systems [26, 34].

Developing lower fidelity predictive models for SSI problems usually relies on
replacing the surrounding soil by reduced order models (ROM) while keeping the
structure intact. The soil ROM is a nonlinear spatio-temporal map that translates
the transient ground deformations to the traction resultants along the soil-structure
interface. Although a large number of ROMs have been previously proposed to
quantify SSI effects, most have been formulated in the frequency-domain, and are
restricted either by oversimplifying assumptions, e.g. [21, 154] or by relying on
superposition, e.g. [57, 138, 139] to a limited class of linear elastic problems. ROMs
for quantifying SSI effects in building structures are usually developed based solely
on (semi-)analytical impedance functions (or dynamic springs) available for rigid
foundations with simplified configurations, e.g. [56, 119]. Among other drawbacks
associated with the existing models, their distribution along the building foundation
is cumbersome, and by extension, so is their use for buildings with large, complex
footprints that do not conform to the original simplified configurations. Moreover, as
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pointed out previously, integrating the impedance values in time-domain analyses
of soil-foundation-structure interaction by selecting a representative, frequency-
independent value, is not clear.

Therefore, a new generation of ROMs that enables users

(a) to estimate the dimensionless frequency of the the combined system (i.e.
the foundation, structure and the surrounding soil) to read the impedance
functions, and

(b) to extend computer simulations to the nonlinear regime and time-domain
structural analysis solutions,

becomes indispensable at the present time. All the above phenomena can be ad-
dressed using for instance a series of uniformly distributed springs and dashpots
elements1, in which the element coefficients are learn using data (real or synthetic)
that incorporate all the above mechanisms of interaction. The focus is then directed
towards developing an efficient and reliable system identification framework that
can be used to estimate ROM parameters for SSI problems in a rigorous manner.
In particular, ROMs based on rigorous mechanics, intended to expand the range of
their applicability and understanding of SSI effects, in both a local and a regional
scale can be of a great use. Thus, ROMs developed using a system identification
framework will allow not only to produce high fidelity SSI simulations, but also to
reduce the enormously computational cost associated with the analysis, and then
allow their usage for instance in probabilistic engineering and resilient design.

1.3 Objectives of the thesis
The main objective of this thesis is to propose a general framework for improv-
ing reduced-order modeling of SSI problems. In particular, two-dimensional wave
propagation in homogeneous-media is considered, and system identification tech-
niques based on ensemble Kalman inversion are employed. The framework pre-
sented in this thesis is general enough that can be extended to three-dimensional
wave-propagation problems, fully-coupled nonlinear interaction between soil and
foundation, and nonlinear building behavior.

In addition, Seismo-VLAB, a parallel object-oriented platform for reliable nonlinear
seismic wave propagation and soil-structure interaction simulation, is developed as

1These elements reflect the aggregate stiffness and energy dissipation characteristics of the soil
system as seen from the building foundation
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an important part of this thesis. Seismo-VLAB is thus employed to carry out all
numerical analyses to generate the synthetic data for the ROM’s development.

The main steps toward achieving the previous goals, along with the tools developed
in that process, are listed below:

I. Implement a fully-parallel MPI-based finite element code in C++ that handles
direct modeling of SSI problems. In other words, features such as perfectly
matched layers (PMLs) to absorb the radiation energy thoroughly, and the
domain reduction method (DRM) to consistently prescribe the input motions
within the PML-truncated domain are required.

II. Compute the impedance functions for arbitrary foundation geometry resting
on soil. In this regard, Seismo-VLAB is used to numerically compute the
impedance functions for rigid interfaces using time domain solvers.

III. Compute the foundation input motion transfer functions for different types
of soil-structure interfaces. The method is here employed under vertically
propagating shear waves, but it can be used for inclined waves as well.

IV. Propose a new dimensionless frequency (a0) mapping to estimate the soil
impedance for time domain analysis. The analysis is carried out in three steps:
First, generate time history responses using the direct modeling method for
different configuration of building, soil, and foundation. Second, estimate the
best dimensionless frequency that minimizes the misfit between the generated
data and the reduced order model using ensemble Kalman inversion (EnKI).
Third, find a mapping between the different configuration of building, soil,
and foundation and the dimensionless frequency.

V. Investigate soil-structure interaction effects of simplified two-dimensional
symmetric buildings at a regional-scale. The analysis is focused on the
evaluation of SSI effects in southern California combining different building
topology, a simulated real earthquake, geothecnical data, and local site ef-
fects. The analysis is carried out constructing a reduced order model where
soil spring and solid dashpots are estimated using ensemble Kalman inversion
(EnKI) as a function of a dimensionless parameters.

1.4 Organization of the thesis
The remainder of this dissertation is organized as follows:



8

In Chapter 2, we present Seismo-VLAB, a C++ multi-platform finite element soft-
ware designed to optimize meso-scale simulations of dynamic soil-structure in-
teraction (SSI) problems. In particular, the object-oriented approach adopted in
Seismo-VLAB for finite element analysis is illustrated. This chapter constitutes the
base of the object-oriented design framework, and provides details on the imple-
mentation as well as the interaction between classes such that a highly modular,
easily understandable and extendable code is generated. Finally, features presented
in Seismo-VLAB are tested using a range of simple to sophisticated examples. A
comparison of software performance in terms of speedup, memory management
(leaks), and code structure will be provided against widely used alternatives such as
OpenSEES.

In Chapter 3, the finite element formulation used for the simulation of wave propa-
gation in homogeneous half-space is presented. In this regard, the domain reduction
method (DRM) is introduced, and then a perfectly matched layer formulation for
absorbing boundaries is presented. These two sections are next employed in order
to derive a coupled formulation for domain reduction and perfectly matched layer to
be integrated in Seismo-VLAB. Some illustrative examples are presented to show
Seismo-VLAB’s correct and robust implementation of DRM and PML.

InChapter 4, the continuum formulation for a general linear soil-structure interaction
problem is presented. The discretized version or weak-form of the continuum
problem is formulated using the finite element method to approximate the semi-
infinite domain. Some examples are presented to show the robustness of Seismo-
VLAB for handling soil-structure interaction problems.

In Chapter 5, a better suited simplified reduced order model (ROM) in time domain
is presented. The ROM constructed in this manner reduces soil-structure interaction
complexity using three steps. First, the effects of foundation embedment on elastic
media of the foundation alone is studied. Second, the building (superstructure) sys-
tem is simplified using substructure (condensation) method. Third, the latter results
are integrated to generate the reduced order model for the soil-structure-interaction.
Likewise, the effectiveness of the reduced order model is shown by comparing time
history results against the finite element model presented in Chapter 4.

In Chapter 6, the system identification method based on Ensemble Kalman inversion
(EnKI) is formulated. In particular, a framework that uses Seismo-VLAB as a
forward model for parameter estimation for the soil-structure interaction problem is
addressed. The integration of Seismo-VLABas an engine for parameter estimation is
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discussed, and the robustness of the proposed identification framework are presented
using some illustrative examples.

Finally, in Chapter 7 and 8, two applications of the presented EnKI-FEM framework
for estimating parameters of reduced order models in SSI problems are presented. In
particular, amuch better dimensionless frequency to read the frequency-independent
soil impedance in a homogeneous media is proposed, and maps where a certain
building configuration is more prone to experience detrimental SSI effects in south-
ern California are developed. The applications studied in these chapters have the
purpose of demonstrating that reliable reduced order models based on rigorous me-
chanics, intended to expand the range of their applicability to conditions outside the
range of numerical and physical experiments, can be generated if data is available.
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C h a p t e r 2

SEISMO-VLAB: A PARALLEL OBJECT-ORIENTED
PLATFORM FOR RELIABLE NONLINEAR SEISMIC WAVE
PROPAGATION AND SOIL-STRUCTURE INTERACTION

SIMULATION

In structural and geotechnical engineering, the finite element method (FEM) [16,
70, 123, 141] is the preferred methodology to approximate the linear or nonlin-
ear responses of structures [112]. The literature has constantly shown that soft-
ware that uses the FEM can capture the responses shown in physical experiments
[127, 136, 147] and real-world monitored structures [33, 115, 151] with enough
accuracy. Not surprisingly, the most powerful commercial softwares such as MSC
Nastran [111], ANSYS [46], ABAQUS [66], LS-DYNA [103] are frequently used
in industry since they offer several sophisticated material and elements for model-
ing structure and multi-phase soil systems. However, in civil engineering practice,
simpler commercial softwares such as SAP2000 [39], ETABS [37], Perform3D [38]
are usually preferred to deal with this task. These softwares typically allow for
modeling only the structure itself, with limited (usually elastic) soils modeling, if
they offer any at all. Unfortunately, these softwares lack the capabilities to properly
account for soil-structure interaction [21–23, 116, 157–159]. For example, none of
them implements the well-celebrated domain reduction method (DRM) proposed
by Bielak et all [24]. This method is required in SSI analyses since it allows to
transmit ground motion in heterogeneous media and to reduce the size of the near-
field region. Another example is the absorbing boundaries conditions required to
limit the occurrence of spurious waves that are reflected from the far-field bound-
aries. In general, the absorption of scattered waves is achieved efficiently through
a perfectly-matched-layer (PML), which is barely found in commercial packages,
even though the formulation proposed by Kucukcoban and Kallivokas [51, 95] is
suitable for being incorporated in already existing FEM codes [160]. In light of this,
an efficient, reliable, and robust numerical platform for high-fidelity simulation of
wave propagation in homogeneous and heterogeneous half-spaces must consider at
least the latter two features.

As a consequence of the strong need to perform SSI in meso-scale (∼km) simula-
tions, Seismo-VLAB is created to provide a simple platform for reliable SSI analysis
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and nonlinear wave propagation in shallow crust. Seismo-VLAB is a simple, fast,
and extendable C++ [143] multi-platform finite element software designed to opti-
mize meso-scale simulations of dynamic, nonlinear soil-structure interaction (SSI)
problems. High-fidelity simulation of SSI problems calls for both advanced meth-
ods for modeling the structure and the soil and parallel computing. These features
are not generally available in a single open-source software package, making the SSI
modeling a complicated and sometimes tedious process. In Seismo-VLAB, we have
implemented state-of-the-art tools to achieve optimal robustness and efficiency for
solving SSI problems. The most important features of the software include dynamic
nonlinear solvers for time-domain analyses of inelastic problems, cutting-edge direct
and iterative parallel linear system solvers, interfaceswithMessage Passing Interface
(MPI) [35] and Open Multi-Processing (OpenMP) [44] parallelization, domain de-
composition for optimal parallel computing [86], perfectly matched layers as robust
absorbing boundaries [51, 95], domain reduction for modeling wave-field incoher-
ence in truncated domains [24], and a number of plasticity models. The highlighted
features make Seismo-VLAB an ideal software to solve efficiently nonlinear wave
propagation problems in presence of infrastructure systems such as building clusters
and lifelines.

Since Seismo-VLAB is not intended to be a commercial software, it lacks some of the
sophisticated element and material routines found in the most powerful commercial
applications. The purpose of Seismo-VLAB is to provide a common open source
framework in which researchers as well as engineers can quickly test, experiment
with, and share/implement not only new material and element routines, but also
new solvers, integration schemes, and nonlinear solution algorithms. Such features,
not provided by most commercial applications, are necessary for researchers to im-
prove the modeling capabilities of the software and to use state-of-the-art nonlinear
structural analyses. Currently, Seismo-VLAB is developed to meet two important
functionalities that we believe will become important in the near future: (a) can
perform spatial variability of soil properties for uncertainty quantification in linear
and nonlinear models of civil structures, and (b) can be coupled to high-level lan-
guages such as MatLab [109] and Python [152] to perform system identification for
parameter estimation in nonlinear structural finite element models of civil structures.

In this chapter, the primary goal is to illustrate the practical application of the object-
oriented approach adopted in Seismo-VLAB for finite element analysis. This broad
objective is organized into three parts. In § 2.1, we present a brief introduction to the
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finite element method. This section allows to identify the main classes required to
develop Seismo-VLAB, and provides insight about how themainmethods are imple-
mented. Thus, in § 2.2, we present a brief introduction to object-oriented concepts
and terminology. This section constitutes the base of the object-oriented design
framework, and provides details on the implementation as well as the interaction
between classes such that a highly modular, easily understandable, and extendable
code can be developed. Finally, in § 2.3, features presented in Seismo-VLAB are
tested using a range of simple to sophisticated examples. A comparison of software
performance in terms of speedup, memory management (leaks), and code structure
will be provided against widely used alternatives such as OpenSEES [112–114].

2.1 The finite element analysis
In this section, we briefly describe the theoretical foundations of the finite element
method. This process is needed in order to identify the main classes required to
represent the main components of the object-oriented finite element analysis (OO-
FEM). Although the latter has been addressed in the past [47, 53, 107, 113], we
believe a closer review may help not only to understand the main member functions
that each class must possess, but also their interaction.

Figure 2.1: The general three-dimensional boundary value problem to be solved
using finite element analysis (adopted from Bathe [16]).

Consider the equilibrium of a general three-dimensional body such as that shown
in Figure 2.1. The body is located in a stationary coordinate system X1,X2,X3, and
it is subjected to body forces fb ∈ R3, surface traction fs ∈ R3, and concentrated
forces Fj ∈ R

3 applied at the j-th node. In general, the externally applied forces can
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be represented as vector objects

fb =


f b
1

f b
2

f b
3

 , fs =


f s
1

f s
2

f s
3

 , Fj =


F(j)1
F(j)2
F(j)3

 . (2.1)

The displacements of the body–i.e., U ∈ U ⊂ R3 with U : U → R3, is represented
as a vector field:

U(X1,X2,X3) =


U1

U2

U3

 . (2.2)

The strain vector ε ∈ R6 written in Voigt notation is

ε = [ε11, ε22, ε33, ε12, ε23, ε31]
> , (2.3)

where each strain component in linear-elasticity is related to the displacement field
in the following manner,

εij =
1
2

(
∂Ui
∂Xj
+
∂Uj

∂Ui

)
. (2.4)

Similarly, the stress vector τ ∈ R6 written in Voigt notation is

τ = [τ11, τ22, τ33, τ12, τ23, τ31]
> . (2.5)

Assuming linear-elastic behavior of the material, the stresses and strains are related
through the material constitutive law: τ = C ε, where C : R6 → R6 maps strains
into stresses.

The latter equations all contain references to entities which could be considered as
objects. In particular, a natural class with which to begin the description of finite
elements is Node (point in space), since forces, displacements, boundary conditions,
and even the domain geometry rely on nodes.

The Node class is defined by a unique number identifier from n = 1, . . . ,Nn,
and the private member variables Coordinates, Displacements, Velocity,
Acceleration, and IncrementalDisplacements, are employed to keep track
on the node’s motion. Public member functions, such as GetCoordinates and
GetDisplacements, return the nodal vector with such quantities. As it is dis-
cussed later on, these vectors are employed in the Element class to update proper-
ties such as stiffness matrix, local coordinates, Jacobian matrix and so on. Also, a
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public member function SetFreeDegreeOfFreedom is required to map the equa-
tion numbers to the degree of freedom in the Solver class, and a member function
SetIncrementalDisplacement is responsible to update the incremental displace-
ments that come from solving the linear system at each node.

The Load class can be defined in a similar manner. We identify each Load object
by a unique number identifier l = 1, . . . ,Nl, and a list of Node or Element objects
is provided to identify where the Load object is applied. Thus, public member
functions such as AddNode, and AddElement allow the class to incorporate forces
to these objects, and methods such as GetNode, GetElement, and GetLoadVector
allow the class to construct the load vector at the applied Node or Element class.

Principle of virtual work
The displacement-based finite element solution is based on the principle of virtual
displacements, see Bathe [16]. The principle of virtual displacements is a func-
tional1 F [U,U] : U×V → R that represents the first variation of the total potential
energy, and in our case for linear elasticity reads,∫

V
ε>C ε dV =

∫
V
U
>
fb dV +

∫
S
U
>
fs dS +

N∑
i = 1

U
>
Fi , (2.6)

where U ∈ V ⊂ R3 are the virtual displacements and ε the corresponding virtual
strains. See for instance Bathe [16] for further details on how the functional in (2.6)
is obtained.

However, in the finite element analysis we approximate the continuum body in
Figure 2.1 as an assemblage of discrete finite elements interconnected at nodal points.
The displacements within each element are assumed to be related to the global
displacement vector by a displacement interpolation matrix in local coordinates. In
this regard, the approximate displacement field at e-th element is

ue(x1, x2, x3) = Ne(x1, x2, x3) Û , (2.7)

whereNe : RNe
dof → R3 is the displacement interpolation matrix of the e-th element,

Û ∈ RNe
dof is a vector of the three global displacement components of the nodal

points of the element, and Ne
dof is the number of degree-of-freedom for the e-th

element.
1A functional is a special type of mapping which maps from a function space U to R, in other

words I : u ∈ U → I[u] ∈ R.
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Provided with Equation (2.7), the strains within each element can be evaluated as

εe(x1, x2, x3) = Be(x1, x2, x3) Û , (2.8)

where Be : RNe
dof → R6 is the strain-displacement matrix obtained using differenti-

ation as in Equation (2.4).

Lastly, the principle of virtual displacement in Equation (2.6) can be approximated
as a summation over all elements

Ne∑
e = 1

∫
Ve
εe
>
CeεedVe =

Ne∑
e = 1

∫
Ve

Ue>feb dVe +

Ne∑
e = 1

∫
Se
Ue>fes dSe +

N∑
i = 1

Ue>Fe
i . (2.9)

In defining the principle of virtual displacement, we note that a new object is
introduced. The Material class is then required to estimate the strain energy
associated within an element. Moreover, internal properties such as strains and
tangent stiffness matrix must be obtained from this class.

The Material class is defined by a unique number identifier m = 1, . . . ,Nm, and
elastic properties such as elasticity modulus, Poisson’s ratio, density are specified
at each derived class. The member functions CopyMaterial are employed to
establish a link between the Element class and the QuadratureRule class for the
numerical integration. Other public member functions such as GetStress and
GetTangentStiffness are required to compute the Element internal energy, and
for nonlinear analyses, member functions, such as UpdateState to store the strain
at the material level for the current analysis step, and CommitState to save the last
strain as the final value (usually when converge is reached), are required as well.

Equilibrium equations
The inertial terms can be easily incorporated in Equation (2.6), and after substitution
of the approximated displacement field (2.7) and strain-displacement relationships
(2.8), the dynamic linear equilibrium equations become,

M ÜU +KU = F , (2.10)

where the stiffness and mass matrices K,M ∈ RNfree×Nfree are defined as

K =
Ne∑
e = 1

∫
Ve

Be(x1, x2, x3)
>Ce Be(x1, x2, x3) dVe , (2.11)
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M =
Ne∑
e = 1

∫
Ve

Ne(x1, x2, x3)
>ρeNe(x1, x2, x3) dVe , (2.12)

and the force vector F ∈ RNfree is defined as

F =
Ne∑
e = 1

∫
Ve

Ne(x1, x2, x3)
>feb dVe + (body force in V ⊂ R3)

=

Ne∑
e = 1

∫
Se
Ne(x1, x2, x3)

>fes dSe + (surface traction on S ⊂ R2)

=

N∑
i = 1

Ne(x(i)1 , x(i)2 , x(i)3 )
>Fe

i (point force at x(i) ∈ R3) , (2.13)

and U, ÜU ∈ RNfree represents the nodal displacement and acceleration vectors re-
spectively, and Nfree the number of free degree of freedom–i.e., after applying
restraints/constraints.

We now see that each element contributes to the generation of the dynamic equi-
librium equation in (2.10); then, the definition of the Element class is here
required. The Element class is defined by a unique number identifier from
e = 1, . . . ,Ne, and it must provide functions such as ComputeStiffnessMatrix,
ComputeInternalForces, and ComputeDomainReductionForces to evaluate at
the element level the desired quantities. Additionally, the natural binding between
Material, Node, and Element classes is achieved through the public member func-
tion SetDomain that establishes the link between the Nodes objects that forms the
Element, and the dependence of the Element and Material is achieved through
the public member function UpdateState to provide the material with the strains
computed in one iteration, and CommitState to set the converged material strains
at the final iteration step.

Isoparametric elements
The geometrical transformation of an element into its reference coordinate system
is shown in Figure 2.2. This transformation is based on the description of the
coordinates of any point x1, x2, x3 inside the element in terms of shape functions
Ni(ξ, η, ζ) written in reference coordinates. The values of the j-th element nodal
coordinates x(i)j is written in natural coordinates as:

xej (ξ, η, ζ) =
Nn∑
i = 1

x(i)j Ne
i (ξ, η, ζ) . (2.14)
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Figure 2.2: The isoparametric coordinate transformation.

If the same transformation is used to evaluate the displacements within the element,
the same shape function routines may be applied to obtain uej (ξ, η, ζ). Then, the
design of an element class could take advantage of this simplification, and then
approximate the displacement field as

uej (ξ, η, ζ) =
Nn∑
i = 1

u(i)j Ne
i (ξ, η, ζ) . (2.15)

Since both the displacement field and the point element coordinates are approximated
using the same shape function, this formulation is commonly known as isoparametric
transformation.

Computation of the strain-displacement matrix Be(x1, x2, x3) now requires to be
mapped into the reference coordinate systems. Application of the chain rule for
differentiation to the shape functions yields

∂Ni
∂ξ

∂Ni
∂η

∂Ni
∂ζ


=



∂x
∂ξ

∂y

∂ξ

∂z
∂ξ

∂x
∂η

∂y

∂η

∂z
∂η

∂x
∂ζ

∂y

∂ζ

∂z
∂ζ





∂Ni
∂x
∂Ni
∂y

∂Ni
∂z


= J



∂Ni
∂x
∂Ni
∂y

∂Ni
∂z


, (2.16)

where J : R3 → R3 is called the Jacobian matrix. Hence, derivatives in Equa-
tion (2.4) can be used to evaluate Be(ξ, η, ζ) in the reference coordinates.

The isoparametric transformation has the advantage that every element is treated in
the same manner. In this regard, mass and stiffness matrices as well as force vector
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are evaluated using the same reference coordinates as follows

Me =

∫ 1

−1

∫ 1

−1

∫ 1

−1
Ne(ξ, η, ζ)> ρeNe(ξ, η, ζ) det Je dξ dη dζ , (2.17)

Ke =

∫ 1

−1

∫ 1

−1

∫ 1

−1
Be(ξ, η, ζ)> Ce Be(ξ, η, ζ) det Je dξ dη dζ , (2.18)

Fe =

∫ 1

−1

∫ 1

−1

∫ 1

−1
Ne(ξ, η, ζ)> Fe

b det Je dξ dη dζ , (2.19)

where Me,Ke ∈ RN
e
dof×N

e
dof , and Fe ∈ RN

e
dof .

Note that an isoparametric element requires the Element class to be provided with
additional private member functions. In this regard, ComputeJacobianMatrix,
ComputeShapeFunctionMatrix, andComputeStrainDisplacementMatrix are
implemented such that the requested quantities at a given integration point in the
reference coordinate system are evaluated. These private functions are used inter-
nally, and their implementation may change depending on the derived isoparametric
Element class that is defined.

Numerical integration
In § 2.1, mass and stiffness matrices as well as force vectors are evaluated using
numerical integration. These integrals for each element can be approximated as∫ 1

−1

∫ 1

−1

∫ 1

−1
Φ(ξ, η, ζ) dξ dη dζ =

Np∑
k=1

Np∑
j=1

Np∑
i=1

ωi ωj ωkΦ(ξi, ηj, ζk) , (2.20)

whereΦ(ξ, η, ζ) : R3 → R represents the function in isoparametric coordinates to be
integrated, ωi, ωj, ωk ∈ R are the integration weights, ξi, ηj, ζk ∈ R3 the integration
point coordinates, and Np the number of integration points.

The QuadratureRule class contains references to the total number of integration
points (used to decide how much storage to allocate), as well as to the actual
points and weights. These quantities are obtained using the public member function
GetQuadraturePoints. This information is used inside the Element class to
compute the stiffness/mass/dampingmatrices as well as force vector using numerical
integration as described above.

Matrices assembly
Once mass and stiffness matrices and the force vector has been computed for each
element, Equation (2.10) can be constructed using an assembler operator in a two-
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steps procedure:

M = T>
[ Ne∑
e = 1

Ae>Me Ae

]
T = T>MT ,

K = T>
[ Ne∑
e = 1

Ae>Ke Ae

]
T = T>K T ,

F = T>
[ Ne∑
e = 1

Ae> Fe

]
= T>F . (2.21)

First, the assembly operator Ae : RNe
dof → RNtotal assembles the element matrix/vec-

tor to the total matrix/vector. Then, the transformation operator T : RNtotal → RNfree

enforces the displacement boundary condition as well as kinematic constraints ap-
plied to some number of degree of freedom.

The contribution of each Element object in Equation (2.9) is performed in the
Assembler class. The Assembler class provides the public member functions:
ComputeMassMatrix, ComputeStiffnessMatrix, ComputeInternalForceVec
tor, and ComputeExternalForceVector which are in charge of assembling the
global matrices/vectors, respectively. This process requires information regard-
ing the degree of freedom of each Node and the list of Elements. Both lists are
provided by the Mesh class, which also provides the transformation operator from
total-degree-of-freedom numbering to free-degree-of-freedom numbering. This op-
erator enforces Node displacement restraints and kinematic constraints specified by
the user.

Solution of equilibrium equations
In general, Equation (2.10) is solved using some discrete integration schemes. Pop-
ular time integration schemes, such as central difference [16], Newmark constant
acceleration [117], Bathe two-step implicit method [17], can be used in their incre-
mental form to yield,

Keff ∆U = Feff (2.22)

where Keff ∈ R
Nfree×Nfree is the effective stiffness matrix, and Feff ∈ R

Nfree is the
effective force vercor. The structure of Keff and Feff depends on the incremental
integration scheme.

Note that solving Equation (2.10) is reduced to solving a linear system for each
time step. However, depending on the nonlinearities encountered (material, large
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deformation), the solution of Equation (2.22)may require iterations. Then, a suitable
nonlinear fixed-point algorithm such as Newton-Raphson may be required.

The solution of the equilibrium equations requires three different classes to handle
very specific tasks:

(a) The Algorithm class handles the solution of the linear/nonlinear system in-
crementally. The private member variable ConvergenceTest provides the
criterion to be performed to accept a solution. This variable requests the pri-
vate member function ReduceParallelResidual to gather all the informa-
tion across and reconstruct the residual vector, so that ComputeConvergence
evaluates the norm of the residual vector. The solution algorithm uses the
ComputeNewIncrement member function to solve the linearized problem
at that step, while UpdateStateIncrement accumulates the incremental
displacements obtained at each iteration.

(b) The Integrator class is defined to evolve the solution in time. If the solu-
tion is nonlinear, moving from one time step to another may require several
iterations at the Algorithm level. Therefore, the function ComputeNewStep
evolves the solution just one time step, and ComputeEffectiveStiffness
and ComputeEffectiveForce construct the effective stiffness matrix and
effective force vector to be transferred to the Algorithm class at each itera-
tion. Member function such as GetDisplacements, GetVelocities, and
GetAcceleration are required to compute and return the desired solution
vector using the specific time integration of each method.

(c) The LinearSystem class is defined to solve the linear system provided with
the effective stiffness matrix and effective force vector evaluated using the
Integrator object. The private member variables are the solution and the
effective force vector, while the member function GetSolution returns the
solution of the linear system.

The definition of the previous classes allows enough modularity to further define
the Analysis class, whose derived class will be in charge of performing the static
or dynamic analysis. Note that both analyses only differ on the Integrator that is
employed, since inertial forces are not considered in static analysis.
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2.2 The object-oriented analysis
Several object-oriented programming (OOP) designs have been proposed for the
finite element method [47, 53, 107, 114]. Most of them use the same class names
(Node, Material, Element, Solver to name a few) and the interactions between
them are similar. However, the structures in which the Analysis is performed
varies from case to case. It is not our intention in this work to describe each
one of them. However, we consider the widely used open system for earthquake
engineering simulation (OpenSEES) software [114] as a reference, and we try
to improve features that we consider are bottle-neck in the maintainability and
extendability of OpenSEES. The reader may consider for instance:

(a) The OOP framework of OpenSEES employs roughly 1100 different classes
that makes difficult to add new features, since several files must be updated.

(b) Provides built-in classes to handle collection of nodes and elements instead of
using the fully optimized Standard Template Library (STL) [137], in particular
std::vector<> and std::map<> that achieve the same objective.

(c) Provides built-in Vector and Matrix classes which are not optimized, instead
of taking advantage of well-developed and optimized free-libraries such as
the Eigen C++ Template Library [60].

(d) The provided Makefile is not very intuitive and in general the installation on
Linux and MacOSX machines is cumbersome, in particular the SP and MP
versions.

Therefore, in order to provide a software design that actually promotes the main-
tainability and extendability of Seismo-VLAB, we have employed a fewer number
of classes avoiding the overuse of sub-classes definitions and inheritance that are
actually not needed. Until now, Seismo-VLAB has 78 classes divided as follows:

(a) 12 Materials

(b) 18 Sections

(c) 24 Elements

(d) 2 Analysis

(e) 2 Algorithms
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(f) 4 Integrators

(g) 4 Solvers

We use the fully optimized STL [137] to handle containers of data and operations
over it. We employ the fully-optimized Eigen C++ Template Library [60] to carry
out linear algebra manipulations. This library offers a great interface that allows the
user to create, operate, and transform Eigen::VectorXd and Eigen::MatrixXd
objects as it were using Matlab [109] or Python [152] languages, incentivizing the
modification and creation of other classes in a very simple manner. In addition, we
are aware that manipulation of data in a Pre-Analysis level can become complicated
in a low-level language, thus we provide a Python interface so that model’s input
file, spatial variability analysis, as well as parameter identification can be generated
externally in a much cleaner and straightforward manner.

In order to optimize all the previous requirements, we have divided the structure of
Seismo-VLAB into two main processes: the Pre-Analysis and the Run-Analysis that
are shown schematically in Figure 2.3.

Figure 2.3: Seismo-VLAB global software structure. The Pre-Analysis is an inter-
face that provides the files to be executed, and the Run-Analysis is the main core
that performs the finite element analysis.

Because flexibility is needed to generate input files, domain (mesh) partition, degree
of freedom numbering, spatial variability of soil/structure properties, and parameter
identification, we have used a high-level language such as Python [152] to handle the
Pre-Analysis main tasks. Python offers the possibility to manipulate externally the
Run-Analysis in a very straightforward manner, and thus abstracting the user from
complicated manipulation in a low-level language. The popular and user-friendly
features that Python provides makes it the perfect choice.

On the other hand, the Run-Analysis is the core of Seismo-VLAB and needs to be
fast and efficient; therefore, we have used a low-level language such as C++ [143] to
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handle these requirements. The Run-Analysis performs the finite element analysis–
i.e., generates the element matrices, assembles them together, solves the linear
system, and stores the solution according to the user’s specifications. Figure 2.4
shows the main abstract classes employed to develop the Run-Analysis.

Figure 2.4: Seismo-VLAB software packages for finite element analysis. Classes
represented in boxes are abstract classes. Developers can provide their own sub-
classes to personalize applications.

In this diagram, the diamond arrow that arrives at an abstract class represents an
internal relation between them, for example the Element class is formed by Node and
Material. The point arrow that arrives at an abstract class represents a dependency
between them, for example a Load is given to an Element to compute external forces.
The diagram also represents in blue boxes the main classes (core) of Seismo-VLAB.
These components are divided into the Mesh, Analysis, and Recorder classes.
The Mesh class contains the finite element model, and as one can see, the FE
components are represented by the group of green boxes. These components are:
Node, Material, Section, Element, Load, and Constraint. In general, a set of
Node and a Material forms an Element. The stiffness/mass/damping matrices of
the element are computed using numerical integration, i.e.QuadratureRule. The
Analysis class contains the instructions or modifications to be performed in the
finite elementmodel, thus the group of yellowboxes represents the components of the
Analysis class of Seismo-VLAB, i.e. the Solver, Algorithm, and Integrator
are employed to carry out an analysis.

However, the structure represented in Figure 2.4 is only well-suited for single core
machines, but its extension to parallel machines is straight forward using OpenMPI
[30, 35, 54, 71]. This process is achieved at the Pre-Analysis usingMetis [86]. Metis
allows to partition the finite element mesh in an almost equal number of elements–
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Figure 2.5: The classes required to be partitioned for a parallel execution of Seismo-
VLAB. The classes represented correspond to the objects required to be sent to the
k-th processor.

i.e., minimizing the load imbalance2. Then, each partition is sent to a different
processor using openMPI. Since in OpenMPI each process will act independently,
all the information required to generate the mesh partition in the k-th processor
must be provided. Figure 2.5 provides a conceptual representation of the main
classes required to be partitioned. We have decided to generate the Mesh partitions
and the degree of freedom numbering off-line, using once again the Pre-Analysis
implemented in Python. This allows Seismo-VLAB to be run almost fully parallel,
avoiding the user to make mistakes by partitioning the domain manually. The Mesh
partition can be easily checked using Paraview [10] after executing the Pre-Analysis.

Software external packages
In order to obtain good performance at the Element level, specifically in tasks
involving numerical integration, the well-developed and optimized open-source
library Eigen C++ Template Library [60] is employed throughout the Run-Analysis
in Seismo-VLAB. The advantage of using Eigen C++ is two-fold: (a) It minimizes
the debugging process since the structure of matrices and vector operations are
similar to those in Matlab and Python, see § 2.3 for details. (b) It is already
optimized – comparison against the Intel Math Kernel Library (MKL) are simply
outstanding – especially in ranges where matrices Rn×n and vectors Rn are not too
large, i.e., n ≤ 500. This is indeed the main usage of Eigen C++ in Seismo-VLAB.

In addition, scalability of parallel implementation for large simulations is usually
2A load imbalance is the uneven distribution of work across processors. The load imbalance can

impact scalability if it is not taken into consideration.
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subjected to the solver–i.e., solving the linear system, which in general is performed
using a direct solver that exploits LDL decomposition. A very optimized library
that solves linear systems using LDL-decomposition is the MUltifrontal Massively
Parallel sparse direct Solver (MUMPS) [4, 5]. The structure in which MUMPS
solves a linear system is well-suited with the domain decomposition structure pre-
sented in Figure 2.5. Thus, if parallel simulations are run in Seismo-VLAB, the
MUMPS solver is chosen to deal with this task. Unfortunately, MUMPS is optimal
only for medium to large problems, since very large problems will not only require
a large number of processors, but also a long time of execution.

Nevertheless, very large problems can be approached using iterative solvers. The
Krylov space methods [133, 134] for solving linear systems turn out to be very
efficient at the expense of accuracy. In particular, a conjugate gradient method
[45] is the best option when using symmetric and positive definite matrices. In
this regard, a very optimized library that solves linear systems using Krylov space
methods is the Portable and Extensible Toolkit for Scientific computation (PETSc)
[11–13]. Once again, the structure in which PETSc solves a linear system is well-
suited with the domain decomposition structure presented in Figure 2.5. Thus, the
PETSc solver for parallel simulation in Seismo-VLAB is ideal to deal with this
task. Therefore, the preconditioned conjugate gradient (PCG), stabilized version
of Bi-Conjugate gradient (BiCGStab), conjugate Gradient Squared (CGS), and Bi-
Conjugate gradient iterative method (BiCG) are available in Seismo-VLAB. These
versions are very optimized, and it provides good-agreement and speedups for a
given tolerance.

2.3 Seismo-VLAB: Style, performance and extensions
In this section, features presented in Seismo-VLAB are tested using a range of
simple to sophisticated examples. A comparison of the software performance in
terms of speedup, memorymanagement (leaks), and code style are also provided and
compared against widely used OpenSEES. Furthermore, strong scaling performance
is measured for a 2D wave propagation problem, and performance of MUMPS and
PETSc are measured for a 3D soil-structure interaction problem.

Code structure and style
For an open source code to be extendable, the programming style must be simple to
read and simple to write. Thus, good-coding practice–i.e., appropriate commenting,
well-formatted code, self-explanatory variable names, and simple class definition,
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are essential to promote modifications in any open source code. In Seismo-VLAB,
the Eigen C++ Template library provides structures of matrices and vector oper-
ations that are similar to those in Matlab [110] and Python [152]. This Eigen’s
feature encourages users to perform modifications. Also, classes are implemented
in Seismo-VLAB so that they avoid methods that are too complex (too long), with
too many parameters (or local variables), and abuse of multiple inheritances.

Code 2.1: Isoparametric element stiffness matrix computation in Seismo-VLAB.
1 //Compute the stiffness matrix of the element using Gauss-integration.

2 Eigen::MatrixXd lin3DHexa8::ComputeStiffnessMatrix(void){

3 //Element stiffness matrix definition:

4 Eigen::MatrixXd StiffnessMatrix(24,24);

5 StiffnessMatrix.fill(0.0);

6
7 //Gets the quadrature information.

8 Eigen::VectorXd wi;

9 Eigen::MatrixXd xi;

10 QuadraturePoints->GetQuadraturePoints("Hexa", wi, xi);

11
12 //Compute element stiffness matrix as in Equation (2.18).

13 for(unsigned int i = 0; i < nPoints; i++){

14 //Jacobian matrix.

15 Eigen::MatrixXd Jij = ComputeJacobianMatrix(xi(i,0), xi(i,1), xi(i,2));

16
17 //Compute Strain-Displacement Matrix at Gauss Point.

18 Eigen::MatrixXd Bij = ComputeStrainDisplacementMatrix(xi(i,0), xi(i,1), xi(i,2), Jij);

19
20 //Gets material tangent matrix at Gauss point.

21 Eigen::MatrixXd Cij = theMaterial[i]->GetTangentStiffness();

22
23 //Numerical integration in Equation (2.20).

24 StiffnessMatrix += wi(i)*fabs(Jij.determinant())*Bij.transpose()*Cij*Bij;

25 }

26
27 return StiffnessMatrix;

28 }

The latter statement is clearer when the Brick.cpp implementation in OpenSEES,
for computing the element stiffness matrix, is for instance analyzed. This task
is performed in the public member function Brick::getTangentStiff, which
internally calls a private function Brick::formResidAndTangent to compute
the element stiffness matrix. A close inspection of the latter function reveals a
poorly indented code, written in 216 lines, that only works for 8 Gauss integration
points, in which multiple nested for-loops are required to perform the task. In
addition, private member variable and public member function names are not very
meaningful, and sometimes confusing, making even harder to understand the class.
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Auser tempted tomodify this codemay spend a fewhours understanding themember
function, variables, and their relation. In Seismo-VLAB, the same task is performed
in the public member function lin3DHexa8::ComputeStiffnessMatrix. This
function is provided in Code 1, and essentially translates Equation (2.18) and (2.20)
into C++ Code. Note how the stiffness matrix process in Code 1 shows a short,
well-indented, and self-explanatory member function, where local variable names
are chosen such that it helps the understanding of the task being developed.

Code 2.2: Stiffness matrix assembly process used in Seismo-VLAB.
1 //Assemble stiffness matrix.

2 Eigen::SparseMatrix<double> Assembler::ComputeStiffnessMatrix(Mesh *mesh){

3 //Global stiffness matrix.

4 Eigen::SparseMatrix<double> StiffnessMatrix(numberOfTotalDofs,numberOfTotalDofs);

5
6 //Gets element information from the mesh.

7 std::map<unsigned int, Element*> Elements = mesh->GetElements();

8
9 //Assemblage stiffness matrix process:

10 unsigned int sum = 0;

11 for(std::map<int, Element*>::iterator it = Elements.begin(); it != Elements.end(); ++it){

12 unsigned int Tag = it->first;

13
14 //Gets the element degree-of-freedom connectivity.

15 std::vector<unsigned int> dofs = Elements[Tag]->GetTotalDegreeOfFreedom();

16
17 //Assemble contribution of each element in mesh (apply ’A’ operator in Equation (2.21)).

18 Eigen::MatrixXd Ke = Elements[Tag]->ComputeStiffnessMatrix();

19 for(unsigned int j = 0; j < dofs.size(); j++){

20 for(unsigned int i = 0; i < dofs.size(); i++){

21 if(fabs(Ke(i,j)) > StiffnessTolerance){

22 tripletList[sum] = T(dofs[i], dofs[j], Ke(i,j));

23 sum++;

24 }

25 }

26 }

27 }

28
29 //Builds the total sparse stiffness sparse matrix in Equation (2.10).

30 StiffnessMatrix.setFromTriplets(tripletList.begin(), tripletList.begin() + sum);

31
32 //Impose boundary conditions on stiffness matrix (apply ’T’ operator in Equation (2.21)).

33 StiffnessMatrix = Total2FreeMatrix.transpose()*StiffnessMatrix*Total2FreeMatrix;

34
35 return StiffnessMatrix;

36 }

Additionally, and in order to stress the importance of code readability, in Code 2 we
examine the Assembler class, and in particular the ComputeStiffnessMatrix
member function. This member function essentially translates Equations (2.10)
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and (2.21) into C++ code. Here, we easily observe that the stiffness matrix K ∈
RNtotal×Ntotal is allocated, element information is obtained from the mesh, and a loop
over the elements is performed. Each element is required to return its stiffness
matrix Ke ∈ RN

e
dof×N

e
dof , and the element matrix coefficients that are larger than

some tolerance are stored in a triplet, to be used to form the stiffness matrix.
Finally, restraints and constraints are applied to generate K ∈ RNfree×Nfree as in
Equation (2.10).

Hardware description for numerical analyses
In this sub-section, we provide the CPU specifications in which all numerical anal-
yses are performed. The Intel Xeon CPU E5-2687 is a normal workstation that
has GPU enable capabilities that are not specified. Further details can be found at
www.intel.com/content/www/us/en/products/processors/xeon.html.

Architecture : x86_64
CPU op-mode(s) : 64-bit
CPU(s) : 40
On-line CPU(s) list : 0-39
Thread(s) per core : 2
Core(s) per socket : 10
Socket(s) : 2
NUMA node(s) : 2
Vendor ID : GenuineIntel
Model name : Intel(R) Xeon(R) CPU E5-2687W v3 @ 3.10GHz
CPU MHz : 1269.062
BogoMIPS : 6191.42

Table 2.1: Hardware description used in all analyses throughout this thesis.

Performance, memory management, and leaks
We first study the performance of Seismo-VLAB in solving wave equations for
analysis of an earth dam problem shown schematically in Figure 2.6 (a). To this
end, we solve the same problem inOpenSEES, and tomake the comparisons rational,
we use a conventional approach for defining transmitting boundaries – i.e., using
Lysmer-Kuhlemeyer dashpots [106] with prescribed nodal forces in terms of the
incident wave velocity along the far-field boundary [8].

The finite element mesh in Figure 2.6 (b) has 57770 degrees of freedom in total,
28885 nodes are used to generate the mesh discretization, thus 28847 elements, 203

www.intel.com/content/www/us/en/products/processors/xeon.html
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boundary nodal forces are applied, and 1501 time steps are required for the simu-
lation. The maximum absolute displacement, velocity, and acceleration throughout
the simulation are (0.0095, 0.0046) m, (0.2323, 0.1206) m/s, and (5.0887, 3.3455)
m/s2. The maximum absolute3 displacement, velocity, and acceleration errors are:
5.0E-11, 5.0E-9, 7.0E-8, respectively.

Figure 2.6: The earth dam problem geometry considered to validate Seismo-VLAB
against OpenSEES. The red dashed-line represents where Lysmer-Kuhlemeyer dash-
pots are added.

In addition, Table 2.2 shows the statistics of each code in solving this problem.

Software Time [min] RAM [MB] Leaks [MB]
Seismo-VLAB 23.0 220.1 0.0
OpenSEES 283.5 825.1 0.9
Performance ∼ 12× ∼ 4× –

Table 2.2: Performance comparison between Seismo-VLABandOpenSEES. Speed-
up, maximum memory usage, and memory leaks for a single core execution.

We see in Table 2.2 that Seismo-VLAB is not only 10 times faster, but also uses
almost 4 times less RAM memory during the program execution when is compared
to OpenSEES. In addition, to test parallel capabilities of Seismo-VLAB, we solve
the same problem using different number of processors. Figure 2.7 shows the strong
scaling analysis where the horizontal axis shows the number of processors while
the vertical axis is the speedup obtained compared to the best single core case.
Figure 2.7 shows that Seismo-VLAB also scales linearly for a number of processors
less than 8. This behavior is indeed expected since the earth dam problem is not large

3The maximum absolute error between two vectors x, x̂ ∈ Rn is defined in the following manner:
e = max

j
‖xj − x̂j ‖`∞ = max

i, j
‖x j

i − x̂ j
i ‖, where j = 1, . . . , nt is the time step, and i = 1, . . . , n the

vector component.
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enough to be solved using a larger number of domain partitions. The increase in
the number of partitions causes overhead in the communication between processors
at the linear system solution, generating a decrease in the speedup. However, a
speedup of 13× is still reached for 16 processors, which correspond to 80% of the
optimal parallel efficiency.

Figure 2.7: Seismo-VLAB strong scaling performance (up to 16 processors) ob-
tained for the earth dam problem.

As a second example, we study the performance of Seismo-VLAB for solving a full-
fidelity linear soil-structure interaction problem. The finite elementmesh considered
in this analysis is shown schematically in Figure 2.8 (a), and in Figure 2.8 (b) we
represent the domain partitioning performed for 8 processors.

The mesh has 121944 nodes in total, 105825 elements divided as follows: 2164
lin3DFrame2, 7388 lin3DShell4, and 96273 lin3DHexa8 and PML3DHexa8
elements. In addition, 7 different materials and 19 different sections are employed
to define both soil and building domain. The connections between shell/frame and
solid as well as PML and soil elements are performed through kinematics constraints
[42, 80]. Then, 26247 Constraints are used in order to tie the model together. The
SSI problem has around 380000 degrees of freedom in total, thus can be considered
as a large model4 according to McKenna [112] that requires HPC5. However, we

4Our strong desire is to achieve solving finite element models greater than 1000000 degree of
freedom, so that structure-soil-structure interaction problems can be solved in a reasonable amount
of time on a workstation.

5High Performance Computing refers to combine computing power in a way that delivers much
higher performance than typical desktop computer or workstation in order to solve large problems in
science and engineering.
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perform the analysis in a workstation, and we solve the same problem using different
numbers of processors.

Figure 2.8: A real three-dimensional SSI problem using DRM and PML to study
strong scaling performance. (Left) the finite element mesh used in this analysis, and
(Right) example of the domain partition in eight processors.

We compare the performance between MUMPS (direct LDL-decomposition) and
PETSc (iterative conjugate gradient with Jacobi preconditioner) solvers. We assess
the time used for the Assembler, Solver, and Recorder in one time step. The
results for MUMPS and PETSc are shown in Table 2.3 and 2.4, respectively.

MUMPS Total
Assembler Solver Recorder Time

np [s] [s] [s] [s]
1 9.78 348.75 0.95 360.05
2 5.08 184.59 0.50 196.17
4 2.62 112.22 0.25 120.02
8 1.45 78.98 0.13 81.57
16 0.78 56.98 0.07 58.78

Table 2.3: MUMPS’ elapsed time during the Assembler, Solver, and Recorder
for one step for the solution of Keff ∆U = Feff using different number of processors.

Both Table 2.3 and 2.4 show that the Assembler and Recorder scales linearly.
This should not be surprising since METIS partition minimizes the load-imbalance.
Thus, the generation of element matrices, and then their assemblage is almost
uniform across processors. The same can be inferred from the Recorder since
almost the same amount of data is being written in each processor. Unfortunately, as
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PETSc Total
Assembler Solver Recorder Time

np [s] [s] [s] [s]
1 9.72 43.23 0.95 60.02
2 5.03 22.19 0.56 30.81
4 2.41 14.40 0.25 18.40
8 1.43 9.31 0.13 11.55
16 0.76 7.45 0.08 8.35

Table 2.4: PETSc’s elapsed time during the Assembler, Solver, and Recorder
for one step for the solution of Keff ∆U = Feff using different number of processors.

it can be seen in Table 2.3 and 2.4, the Solver becomes the bottle-neck in Seismo-
VLAB. Notice for the MUMPS solver, performance deteriorates as the number of
processors increases. It is known that direct solvers do not perform well in 3D
problems, since the complexity is O(n2). For 16 processors, Seismo-VLAB only
reaches 38% of the parallel efficiency. Nevertheless, the PETSc solver performance
improves as the number of processors increases. Again, it is known that iterative
solvers perform better in 3D problems, since the complexity is O(κn), where κ
is the condition number. Thus, for 16 processors, Seismo-VLAB reaches 45% of
the parallel efficiency. The important idea to get from Table 2.3 and 2.4 is that
one-full iteration takes around 8.0 seconds with 16 processors, which for a full
dynamic analysis using 1500 time steps requires 3 hours and 30 minutes, which is
a reasonable time for a large model as the one presented here.

The results in term of speed-up are shown in Table 2.5. Note in this table how
iterative solvers show a better performance compared against direct solvers.

MUMPS PETSc
Time Speed-Up Efficiency Time Speed-Up Efficiency

np [s] × % [s] × %
1 360.05 1.00 100 60.02 1.00 100
2 196.17 1.84 92 30.81 1.95 97
4 120.02 3.00 75 18.04 3.33 83
8 81.57 4.41 55 11.55 5.20 65
16 58.78 6.13 38 8.35 7.19 45

Table 2.5: Performance comparison between MUMPS and PETSc for multiple core
execution. Speed-up and parallel efficiency are measured for one time step.

The strong scaling analysis is shown in Figure 2.9 for both MUMPS and PETSc.
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The horizontal axis shows the number of processors, while the vertical axis is the
speedup obtained compared to the best single core case.

Figure 2.9: Seismo-VLAB strong scaling performance for MUMPS and PETSc (up
to 16 processors) obtained for the full fidelity SSI problem.

Lastly, both solvers require different amounts of RAM. The model solved using
MUMPS experiences a maximum RAM usage of 4.9GB6 during the LDL fac-
torization, while the CG experiences a maximum RAM usage of 2.8GB during
the vector parallel reduction. The latter result is not surprising since the CG only
requires matrix-vector multiplications, and LDL requires to store half of the full ma-
trix while performing the Cholesky decomposition. Finally, scalability is strongly
subjected to the solver phase rather than assembly, finite element generation, or writ-
ing output files. In Seismo-VLAB, 95%7 of the computation time is spent during
MUMPS solution, while 86% of the computation time is spent during PETSc CG
solution. The latter behavior is often found in implicit integration schemes using
direct solvers. However, explicit schemes provide an alternative to avoid solving
a linear system at the expense of small time steps. This feature can be exploit for
wave-propagation problems, but it may not be well suited when complex buildings
are considered due to absence of mass for some degrees of freedom, ill-conditioning
from stiff-spring constraints, etc. This is a feature that has not been implemented in
Seismo-VLAB, but it will be considered in the near future.

6Memory obtained using valgrind –tool=massif as explained in [130].
7Percentages obtained using valgrind –tool=callgrind as explained in [130].
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Conclusions
In this chapter, Seismo-VLAB, a simple, fast, and extendable C++ FEM for solv-
ing mesoscale soil-structure interaction problems was introduced. Seismo-VLAB
allows new elements, materials, integrators, and algorithms to be incorporated in
a simple manner. The object-oriented framework allows to add new features as a
derived class inside the folder where the parent class is located.

Since the Eigen C++ library resembles languages such as Matlab and Python, any
user can add, modify, and create functions or routines in Seismo-VLAB in a simple
manner. In this regard, the Eigen C++ library allows simple manipulations at
the element, material, quadrature integration level, and therefore, contributes to
Seismo-VLAB’s extendability.

Comparison against the OpenSEES reveals that Seismo-VLAB is not only faster,
but also manages memory better, and has no leaks. Also, the model’s manipulation
through the Python Pre-Analysis is simple, and allows any user to create, import,
modify, and manipulate any finite element model, incentivizing large FE model
generations. In our experience, the Python Pre-Analysis can easily manipulate
about 1000000 elements in a couple of minutes.

Lastly, Seismo-VLAB scales well as long as the solver does. It is important to keep
in mind that direct solvers are well-suited for 2D problems and 3D problems only
if the Cholesky decomposition needs to be performed once. On the other hand,
iterative solvers (based on Krylov-subspace) are better-suited for 3D problems, and
therefore are faster than direct solvers.
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C h a p t e r 3

SIMULATION OF WAVE PROPAGATION IN
HETEROGENEOUS HALF-SPACE

In geotechnical engineering, the finite element method (FEM) [16, 70, 123, 141] is
one of the preferred methodology to approximate the linear and nonlinear response
in wave propagation problems. The literature has constantly shown that software
that uses the FEM can capture, with enough accuracy, the responses shown in phys-
ical experiments [127, 132, 136]. In particular, high-accurate wave propagation
simulations are obtained when both spatially variable ground motion and complex
velocity field patterns are properly replicated [2, 80]. The latter can be achieved
for instance by adding appropriate absorbing boundary conditions around the near-
field and appropriate forcing stress fields able to transmit the ground motion of an
incident propagating wave inside the near-field domain. In particular, the domain
reduction method (DRM) proposed by Bielak et all [24] is a modular two-step finite
element methodology used for transmitting ground motion in heterogeneous media.
This method allows to reduce the size of the near-field region drastically and thus
focus the analysis only on the motion near the features. However, suitable absorbing
boundaries conditions must be provided to limit the occurrence of spurious waves
that are reflected from the far-field boundaries. The absorption of scattered waves
is achieved through perfectly matched layer (PML) elements. In this formulation,
a finite-sized layer that surrounds the near-field and stretched internal spatial co-
ordinates are employed in order to mimic the effects of the semi-infinite domain
it replaces. Specifically, the absorbing boundaries proposed by Kucukcoban and
Kallivokas [51, 95] for plane-strain in two and three dimensions are formulated in
such a way that can be included in a finite element framework in a straightforward
manner. Therefore, an efficient, reliable and robust numerical platform for high-
fidelity simulation of wave propagation in heterogeneous half-spaces must consider
these two features.

In this chapter, a brief review on the domain reduction method and a perfectly
matched layer formulation for absorbing boundaries are first presented. These
two sections are next used in order to derive a coupled formulation for domain
reduction and perfectly matched layer to be integrated in a finite element framework.
Lastly, some examples using the coupled finite element framework for high-fidelity



36

simulation of wave propagation in heterogeneous half-spaces are discussed.

3.1 The domain reduction method
The domain reduction method (DRM) proposed by Bielak et all [24] is a modular
two-step finite element methodology for transmitting ground motion in heteroge-
neous media. In this method, the model is first divided into an auxiliary problem that
simulates the source and propagation without the localized features. The outputs
of such problem are then used in order to derive effective forces and then applied
to a second model which now contains the localized features. In other words, the
domain reduction method allows to define a new problem in which the excitation
(far-field) is brought closer to the region of interest (near-field).

Suppose an effective excitation, as shown in Figure 3.1b, is to be applied on the
fictitious interface ΓNF in a finite element domain. This interface divides the domain
into two parts: ΩN which contains the features (near-field), and ΩF the semi-infinite
exterior sub-domain, which includes the fault (far-field). Let the vector field of nodal
displacements us(x, t) = [uRi , u

R
b , u

R
e ]
> in the complete domain–i.e., ΩS = ΩN ∪ ΩF

be ordered as uRi (interior), uRe (exterior), and uRb (boundary), where the superscript
“R” stands for real domain. Note that, as shown in Figure 3.1, the displacements uRb
are continuous across ΓNF, and PR

b are the nodal forces transmitted by ΩF onto ΩN.

Figure 3.1: Truncated seismic region partitioned explicitly into two sub-domains
across interface ΓNF where PR

b are nodal forces transmitted from ΩF onto ΩN.
(a) The domain ΩN contains the features (near-field), and (b) the domain ΩF the
semi-infinite exterior sub-domain which includes the fault (far-field).

In § 4.1 and § 4.2, we present the Navier’s equation for wave propagating in soil,
and a proper treatment for discretizing the partial differential equation (PDE) is
provided through finite element analysis (FEA). For now, assume that in ΩN the
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Navier’s equation of wave propagation can be discretized as:[
MΩN

ii MΩN
ib

MΩN
bi MΩN

bb

] [
ÜuRi
ÜuRb

]
+

[
CΩN

ii CΩN
ib

CΩN
bi MΩN

bb

] [
ÛuRi
ÛuRb

]
+

[
KΩN

ii KΩN
ib

KΩN
bi KΩN

bb

] [
uRi
uRb

]
=

[
0

PR
b

]
, (3.1)

and in ΩF the Navier’s equation is also discretized as:[
MΩF

bb MΩF
be

MΩF
eb MΩF

ee

] [
ÜuRb
ÜuRe

]
+

[
CΩF

ii CΩF
ib

CΩF
bi MΩF

bb

] [
ÛuRb
ÛuRe

]
+

[
KΩF

bb KΩF
be

KΩF
eb KΩF

ee

] [
uRb
uRe

]
=

[
−PR

b
PR
e

]
. (3.2)

The matrices M, C, and K denote mass, damping, and stiffness matrices, and the
subscripts “i, ” “e, ” and “b” refer to nodes in either the interior, exterior, or on their
common boundary. Note that the traditional form of the equation of motion in ΩS

is obtained by adding Equation (3.1) and (3.2):
MΩN

ii MΩN
ib O

MΩN
bi MΩN

bb +MΩF
bb MΩF

be

O MΩF
eb MΩF

ee



ÜuRi
ÜuRb
ÜuRe

 +

CΩN

ii CΩN
ib O

CΩN
bi CΩN

bb + CΩF
bb CΩF

be

O CΩF
eb CΩF

ee



ÛuRi
ÛuRb
ÛuRe

 +
KΩN

ii KΩN
ib O

KΩN
bi KΩN

bb +KΩF
bb KΩF

be

O KΩF
eb KΩF

ee



uRi
uRb
uRe

 =


0
0

PR
e

 , (3.3)

where O ∈ Rni×ne represents a matrix of zeroes, and ni and ne the total number of
interior and exterior degree-of-freedom, respectively.

Now, to transfer the seismic excitation from the fault to the boundary ΓNF, we
consider an auxiliary problem in which the exterior region and the material, as well
as the causative fault, are identical with those of the original problem. The interior
domain, now denoted asΩB, is, however, a simpler background model, that does not
include the localized geological features as illustrated in Figure 3.2a. Notice that
ΩB is chosen such that the new problem defined over the total domain ΩB ∪ ΩF is
easier to solve than the original problem. We thus use the superscript B to denote the
background model, and uBi (interior), uBe (exterior), and uBb (boundary), and PB

b the
corresponding nodal displacements and the interface forces as shown in Figure 3.2b.

Then, for the background problem in the far-field ΩF, we have,[
MΩF

bb MΩF
be

MΩF
eb MΩF

ee

] [
ÜuBb
ÜuBe

]
+

[
CΩF

bb CΩF
be

CΩF
eb CΩF

ee

] [
ÛuBb
ÛuBe

]
+

[
KΩF

bb KΩF
be

KΩF
eb KΩF

ee

] [
uBb
uBe

]
=

[
−PB

b
PB
e

]
. (3.4)
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Figure 3.2: Auxiliary truncated seismic region partitioned explicitly into two sub-
structures across interface ΓBF where PB

b are nodal forces transmitted from ΩF onto
ΩB. (a) Localized features of the actual problem inΩN have been replaced by a sim-
pler background model over domain ΩB, and (b) the domain ΩF is the semi-infinite
exterior sub-domain which includes the fault defined identical to ΩF.

Note that the partitionedmass, damping, and stiffnessmatrices, as well as PB
e , are the

same as in Equation (3.2) because the material properties in ΩF and the earthquake
source are identical in both cases. Therefore, from the second Equation (3.4), we
can now express the nodal forces PB

e in terms of the free field, as follows:

PB
e =MΩF

eb Üu
B
b +MΩF

ee Üu
B
e + CΩF

eb Ûu
B
b + CΩF

ee Ûu
B
e +KΩF

be uBb +KΩF
ee uBe . (3.5)

We introduce a change of variables wR
e , by which we express the total displacement

uRe as the sum of the free field due to the background structure and the residual field
due to the localized feature:

uRe = uBe + wR
e , (3.6)

where wN
e is the relative displacement (residual) field with respect to the reference

free field uBe . Then, substituting Equation (3.6) into Equation (3.3), and writing the
terms that contain the free field on the right side, results in:

MΩN
ii MΩN

ib O

MΩN
bi MΩN

bb +MΩF
bb MΩF

be

O MΩF
eb MΩF

ee



ÜuRi
ÜuRb
ÜwR
e

 +

CΩN

ii CΩN
ib O

CΩN
bi CΩN

bb + CΩF
bb CΩF

be

O CΩF
eb CΩF

ee



ÛuRi
ÛuRb
ÛwR
e

 +
KΩN

ii KΩN
ib O

KΩN
bi KΩN

bb +KΩF
bb KΩF

be

O KΩF
eb KΩF

ee



uRi
uRb
wR
e

 =


0
−MΩF

be Üu
B
e − CΩF

be Ûu
B
e −KΩF

be uBe
PB
e −MΩF

ee ÜuBe − CΩF
ee ÛuBe −KΩF

ee uBe

 . (3.7)
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Finally, after substituting the force vector PR
e fromEquation (3.5) into Equation (3.7),

we obtain the desired equation:
MΩN

ii MΩN
ib O

MΩN
bi MΩN

bb +MΩF
bb MΩF

be

O MΩF
eb MΩF

ee



ÜuRi
ÜuRb
ÜwR
e

 +

CΩN

ii CΩN
ib O

CΩN
bi CΩN

bb + CΩF
bb CΩF

be

O CΩF
eb CΩF

ee



ÛuRi
ÛuRb
ÛwR
e

 +
KΩN

ii KΩN
ib O

KΩN
bi KΩN

bb +KΩF
bb KΩF

be

O KΩF
eb KΩF

ee



uRi
uRb
wR
e

 =


0
−MΩF

be Üu
B
e − CΩF

be Ûu
B
e −KΩF

be uBe
MΩF

eb Üu
B
b + CΩF

eb Ûu
B
b +KΩF

eb uBb

 . (3.8)

The mass matrix, damping, and stiffness matrices in the left hand side of Equa-
tion (3.8) are identical with those of Equation (3.3). However, the seismic forces
PR
e on the fault have been replaced by the effective nodal forces Peff, given by:

Peff =


PR
i

PR
b

PR
e

 =


0
−MΩF

be Üu
B
e − CΩF

be Ûu
B
e −KΩF

be uBe
MΩF

eb Üu
B
b + CΩF

eb Ûu
B
b +KΩF

eb uBb

 . (3.9)

The effective force vector in Equation (3.9) only involves the sub-matrices MΩF
be ,

CΩF
be , KΩF

be , MΩF
eb , CΩF

eb , and KΩF
eb , and its components vanish everywhere except in

a single layer of finite elements in ΩF adjacent to ΓNF. Therefore, the effective
force vector Peff acts exclusively within that layer of elements. In addition, the only
wave field needed to determine Peff is that obtained from the auxiliary (background)
problem at the nodes that lie on ΓNF, Γe, and between these surfaces as shown in
Figure 3.3. This localization of the equivalent seismic forces around the geologic
feature is the key advantage of the change of variables in Equation (3.6).

Figure 3.3: Seismic region with two neighboring surfaces ΓNL and Γe on which
effective nodal forces Peff defined by Equation (3.9) are to be applied. These forces
are equivalent to and replace the original seismic forces PR

e , which act in the vicinity
of the causative fault.
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Finally, another important consequence of Equation (3.9) is that all the waves in the
exterior region ΩF will be outgoing. This suggests that for solving Equation (3.8),
the size of the region ΩN can be drastically reduced if one is interested only in the
motion near the features, provided with suitable absorbing boundaries conditions
used to limit the occurrence of spurious waves.

3.2 Hybrid formulation of perfectly matched layer for truncated domain
Kucukcoban and Kallivokas [51, 95] proposed a fully-mixed symmetric PML for-
mulation for both plane-strain and three-dimensional problems. In this formulation,
displacement and stress fields are considered as primary fields in both the regular
domain and PMLs. In this section, we are concerned only with two-dimensional
plane-strain problems.

The governing equations
Without loss of generality, consider a linear elastic an homogeneous soil medium in
ΩS, surrounded by a perfectly matched layer in ΩA as shown in Figure 3.4.

Figure 3.4: The problem geometry and boundary conditions of a perfectly matched
layer for truncated domain in a plane-strain setting.

The elastic wave equation in the regular domain Ωs in absence of body force is:

divσs(us(x, t)) = ρs Üus(x, t) in ΩS , (3.10)

where x = (x1, x2) is a point coordinate inside Ωs and t ∈ (0,T] is the defined time
interval; σs(us) = µ

(
∇us + (∇us)>

)
+λ div(us)I is the stress tensor, I is the second-

rank identity tensor, ρs is the soil density, and λ and µ are the Lamé constants for an
elastic solid. Their relationships with the Young’s modulus (E) and the Poisson’s
ratio (ν) are given as

λ =
E ν

(1 + ν)(1 − 2ν)
, (3.11)
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and,

µ =
E

2(1 + ν)
. (3.12)

In the PML domain ΩA, where the wave is attenuated, the wave motion is governed
by the following partial differential equations:

div
(
ÛS>ΛE + S>ΛP

)
− ρa (a Üua + b Ûua + c Üua) = 0 , (3.13)

Λ
>
E

(
D : ÜS

)
ΛE + Λ

>
E

(
D : ÛS

)
ΛP + Λ

>
P

(
D : ÛS

)
ΛE + Λ

>
E (D : S)ΛP−

1
2

(
Λ
>
P∇u

a + (∇ua)>Λ>P
)
−

1
2

(
Λ
>
E∇Ûu

a + (∇Ûus)>Λ>E
)
= 0 , (3.14)

where the superscript “a” denotes the attenuated domain, the constants a = α1α2,
b = α1β2 + α2β1, c = β1β2, and S denotes the stress-history tensor defined as

S =
∫ t

0
σa(ua(x, τ))dτ , (3.15)

D denotes the fourth-order compliance tensor such that

ε(x, t) = D : ÛS(x, t) , (3.16)

and the coordinate stretching tensors ΛE, and ΛP in Equation (3.13) are:

ΛE =

[
α2 0
0 α1

]
, ΛP =

[
β2 0
0 β1

]
. (3.17)

Equation (3.10) valid in ΩS and Equation (3.13) valid in ΩA are coupled through
the following kinematic conditions,

us(x, t) = ua(x, t) on ΓSA , (3.18)

σs(us(x, t)) n̂s = −
(
ÛSΛE + SΛP

)
n̂a on ΓSA , (3.19)

where n̂s and n̂a denote the normal vectors on boundary ΓSA and pointing outwards.

The governing wave equations are also subject to fixed boundary conditions:

us(x, t) = 0 on ΓA , (3.20)

ua(x, t) = 0 on ΓA , (3.21)

and traction free boundary conditions:

σs(us(x, t)) n̂s = 0 on Γ0 , (3.22)(
ÛS>ΛE + S>ΛP

)
n̂a = 0 on Γ0 . (3.23)
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The semi-discrete form
The semi-discrete form consists of discretizing the partial differential equation
(PDE) presented in Equations (3.10), (3.13), and (3.14) using finite element analysis
(FEA). A proper treatment for achieving this can be found in Kucukcoban and
Kallivokas (2013). For now, assume that the field variables of the two governing
equations–i.e., Equations (3.10) and (3.13)–are written as follows:

u(x, t) =

[
us(x, t)
ua(x, t)

]
, with x ∈ ΩF , (3.24)

S(x, t) =

[
S11(x, t) S12(x, t)
S21(x, t) S22(x, t)

]
, with x ∈ ΩA , (3.25)

where ΩF = ΩS ∪ ΩA, and us(x, t), ua(x, t), S11(x, t), S22(x, t), and S12(x, t) are the
displacement field and stress-history tensor components, respectively.

Let us =
[
us

i , u
s
b

]> and ua =
[
ua

b, u
a
e, S

a
e
]> to represent the vectors of degree of

freedom at the interior, boundary, and exterior of ΓSA. Then it can be shown that
the semi-discrete form of Equations (3.10), (3.13), and (3.14) is:
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i
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ua
e

Sa
e


=


Ps
i

0
0
0


. (3.26)

Note that continuity of displacements along the interface ΓSA requires us
b = ua

b for
all t ∈ (0,T]. Additionally, the wave response of the soil model in Figure 3.4 can be
obtained by solving the following semi-discrete system of equations:

M Üd(t) + C Ûd(t) +K d(t) = f(t) , (3.27)

where M, C, and K denote the mass, damping, and stiffness matrices, d denotes
the mixed solution vector, i.e., d(t) = [us(t), ua(t),S11(t),S22(t),S12(t)]>, and f
denotes the force vector that corresponds to the known forces in the soil. We note
that soil heterogeneity is incorporated into the M, C, and K matrices when the
element matrices are built through numerical integration.
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3.3 Domain reduction method formulated in a perfectly matched layer for
truncated domain

Let us consider, as shown in Figure 3.5a, a semi-infinite domain with localized
near-field features under remote seismic excitation. The total-field wave equations
in absence of body forces is:

divσt(ut(x, t)) = ρs Üut(x, t) , in ΩN , and t ∈ (0,T] . (3.28)

Similarly as shown in Figure 3.5b, the free-field wave equations in the absence of
body forces for a semi-infinite background domain is:

divσf(uf(x, t)) = ρs Üuf(x, t) , in ΩF , and t ∈ (0,T] . (3.29)

Figure 3.5: Domain reduction method formulated in a perfectly matched layer. (a)
The total-field displacement ut = uf + us around structures due to the soil-structure
interaction induced by the remote seismic excitation in a semi-infinite domain; (b)
the free-field displacement ufree due to remote seismic excitation in a semi-infinite
domain; (c) the DRMmodeling approach for a domain truncated by ABCs (adopted
from Bielak et al. [24]).
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The remote excitation input that is embarked from the outside of the truncated
domain with a localized feature in ΩN is taken inside the attenuated domain ΩA

using the DRM proposed by Bielak et al. (2003) as shown in Figure 3.5c. In this
regard, the governing wave equation is:

divσ(u(x, t)) = ρs Üu(x, t) , in ΩN ∪ΩS , and t ∈ (0,T] , (3.30)

with the response field u defined as follows:

u(x, t) := ut(x, t) , for x ∈ ΩN , and t ∈ (0,T] , (3.31)

u(x, t) := ut(x, t) − uf(x, t) , for x ∈ ΩS , and t ∈ (0,T] , (3.32)

where u(x, t) is defined in Equation (3.31) and (3.32) is discontinuous on ΓNS ,
the interface between ΩN and ΩS, which denote, respectively, the domain near
the localized feature and the domain surrounding the ΩN. Moreover, the scattered
motion us(x, t) = ut(x, t) − uf(x, t) satisfies the radiation condition. Therefore, the
equation in terms of u(x, t) defined in (3.30) can be solved in a domain of the semi-
infinite extent, truncated by PMLs. This aforementioned discontinuity (a.k.a. the
jump condition ( Bielak and Christiano [22] ) serves as a driving or effective force
vector defined in Equation (3.9).

The governing equations
The scattered wave field that includes the jump condition and uses PML is shown
in Figure 3.5c. The near-field displacement is obtained solving simultaneously the
total-field wave equations in the absence of body forces

divσt(ut(x, t)) = ρs Üut(x, t) , with x ∈ ΩN , (3.33)

the scatter-field wave equations in the absence of body forces

divσs(us(x, t)) = ρs Üus(x, t) , with x ∈ ΩS , (3.34)

the time domain PML equations in the absence of body forces

div
(
ÛS>ΛE + S>ΛP

)
− ρs (a Üua + b Ûua + c Üua) = 0 , with x ∈ ΩA , (3.35)

and,
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a + (∇ua)>Λ>P
)
−

1
2

(
Λ
>
E∇Ûu

a + (∇Ûua)>Λ>E
)
= 0 , with x ∈ ΩA , (3.36)

where the superscripts “t, ” “s, ” and “a” in Equation (3.33) to (3.36) denote the total,
scattered, and attenuated variables, and S is the stress-history tensor corresponding
to the scattered fields ua and σa.
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The general semi-discrete form
The semi-discrete form consists of discretizing the partial differential equation
(PDE) presented in Equation (3.33) using finite element analysis (FEA). The semi-
discrete form of Equation (3.33) is:[
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]
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b

]
. (3.37)

The semi-discrete form of Equations (3.34) to (3.36) is:
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Considering ut
b = uf

b+ufree
b , the terms associated with known free-field motions–i.e.

ufree
b –can be moved from the left hand side of Equation (3.38) to the right hand side,

which results in:
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Since the solution vectors in Equations (3.38) and (3.39) share ui
b, both can be

coupled to the following form:
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where the external force vector is,

Peff =
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and

Pt
b =

∫
ΓNS

σfree(x, t) n̂ndΓ , Pf
b =

∫
ΓNS

σfree(x, t) n̂sdΓ . (3.42)

As shown in Equation (3.40), only the free-field displacement and stress–i.e. ufree

and σfree–are needed to compute the effective force vector that translates the effects
of remote excitation along the introduced fictitious interface ΓNL. Moreover, it is
useful to note here that, as shown in Bielak et al. [24], the effective force vector can
also be formulated such that only a free-field displacement information over a one-
layer element thickness surrounding the interface ΓNL is needed. This is because
(i) the mass, damping, and stiffness matrices in the region ΩS are the same for both
scattered- and free-field problems and (ii) nonzero terms in matrices MΩF

ba , CΩF

ba ,
and KΩF

ba are only confined to elements sharing the nodes along the interface ΓNL.
In general, one needs to solve an auxiliary problem to obtain the free-field wave
response. Bielak et al. [24] used the method provided by Hisada [67] to compute the
Green’s functions of the layered half-space. Jeong [79] also explored the accuracy
of different methods [e.g. 64, 155, 161] to compute the input needed for the DRM.
In this work, we assume that the incoming waves are vertically propagating shear
waves. Considering this assumption, the effective force vector can be efficiently
computed using a solution of a soil column as an auxiliary problem.

3.4 Examples of wave propagation using DRM and PML
In this section, two examples of wave propagation problem are solved using the
software Seismo-VLAB. The first example reproduces the free-field motion of a
half-space soil using DRM elements. The second example adds a feature on the soil
surface, so that PML elements absorb the scattered field generated. The description
of the problem as well as results obtained in these analyses are presented in the
examples below.

Example 1. Let us consider a truncated soil domain with a horizontal length
Lx = 70 [m] and vertical length Lz = 75 [m]. Four-node quadrilateral elements are
employed to discretize the domain, and linear elastic soil-elements are employed
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such that ρs = 2000 [kg/m3], νs = 0.35, th = 1.0 [m], and plane-strain conditions
are enforced. The mesh is divided such that space discretization is ∆x = 0.5 [m],
and ∆z = 0.5 [m], respectively. In addition, a zone with PML of 10 [m] thickness
is provided along the truncated domain. The domain reduction method (DRM) is
employed in order to transmit the ground motion of an in-plane sv-wave propagating
upwards inside the near-field domain. The incident ground motion Ûug(t) used in the
finite elementmodels is prescribed as an effective forceRicker function, proportional
to Equation (3.43):

Ûug(t) =
(
1 − 2γ (t − t0)2

)
exp

[
−γ (t − t0)2

]
. (3.43)

In this numerical example, we have employed a central frequency f0 = 2.0 [Hz],
and the sv-wave velocity is set to be Vs = 100 [m/s], leading to a wave-length of
λn = Vs/ f0 = 50.0 [m], a shear modulus Gs = ρV2

s , and an elasticity modulus
Es = 2 (1 + ν)Gs. The finite element model has 31392 nodes, 521 restrains, 882
constraints, and 30600 elements, and the simulation time is set to be tsim = 3.0 [s],
with a temporal discretization of ∆t = 0.0015 [s], leading to a number of nt = 2000
time steps required for the entire simulation. The finite element model is not large
enough, so a single-core execution is performed in Seismo-VLAB. The total time to
complete this task is 34 [min] in total.

In Figure 3.6, the velocity field amplitude at (a) t = 1.11 [s], (b) t = 1.65 [s], (c)
t = 2.05 [s], and (d) t = 2.25 [s] for the truncated soil-structure domain are shown.
Note that, only inside the near-field domain, theDRMelements successfully generate
the sv-wave propagating upwards.

Figure 3.6: Velocity field amplitude at time (a) t = 1.10 [s], (b) t = 1.65 [s], (c)
t = 1.95 [s], and (d) t = 2.25 [s] for testing the DRM elements. The blue color
represents a velocity amplitude of 0.0 [m/s], while the red color represents a velocity
amplitude of 0.2 [m/s].
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In addition, Figure 3.7 shows the synthetic seismogram1 of the velocity for the
horizontal and vertical components. The velocity field is measured at the surface,
i.e., z = 0.0 [m]. The horizontal red solid lines represent the interface between
the DRM domain and the scattered field domain. The vertical dashed blue lines
represent the particular time when the snapshots in Figure 3.6 are illustrated.

Figure 3.7: Synthetic seismogram (a) horizontal component vx(t), and (b) vertical
component vz(t) of the velocity, recorded on the soil surface for the soil-structure
interaction problem.

Since the truncated soil domain has no features that can generate scattering waves,
the near-field response in this case has to match the free-field conditions imposed
at the DRM elements. The results displayed in Figure 3.7 for both the horizontal
and vertical components of the velocity field make it evident that the implemented
DRM conditions work perfectly for this case. Here, one can observe that there is
no-reflection outside the DRM domain (near-field) delimited by the red-solid lines,
and as expected, no velocities in the vertical direction are developed throughout the
simulation.

Example 2. Let us consider a similar truncated soil domain with a horizontal length
Lx = 70 [m] and vertical length Lz = 75 [m], but this time a dam is placed on top
of the soil surface. Four-node quadrilateral elements are employed to discretize the
domain, and linear elastic soil-elements are employed such that ρs = 2000 [kg/m3],
νs = 0.35, th = 1.0 [m], and plane-strain conditions are enforced. The mesh is
divided such that space discretization is∆x = 0.5 [m] and∆z = 0.5 [m], respectively.
In addition, a zone with PML of 10 [m] thickness is provided along the truncated

1A synthetic seismogram is a plot that allows to easily track wave-reflection or wave-generation
at the boundary of a truncated domain using the presented framework.
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domain. The domain reduction method (DRM) is employed in order to transmit
the ground motion of an in-plane sv-wave propagating upwards inside the near-field
domain. The incident ground motion Ûug(t) used in the finite element models is
prescribed as an effective force Ricker function, proportional to Equation (3.43).

In this numerical example, we have employed a central frequency f0 = 2.0 [Hz],
and the sv-wave velocity is set to be Vs = 100 [m/s], leading to a wave-length of
λn = Vs/ f0 = 50.0 [m], a shear modulus Gs = ρV2

s , and an elasticity modulus
Es = 2 (1 + ν)Gs. The finite element model has 31798 nodes, 521 restrains, 882
constraints, and 31001 elements, and the simulation time is set to be tsim = 3.0 [s],
with a temporal discretization of ∆t = 0.0015 [s], leading to a number of nt = 2000
time steps required for the entire simulation. The finite element model is not large
enough, so a single-core execution is performed in Seismo-VLAB. The total time to
complete this task is 36 [min] in total.

In Figure 3.8 the velocity field amplitude at (a) t = 1.10 [s], (b) t = 1.65 [s], (c)
t = 1.95 [s], and (d) t = 2.25 [s] for the truncated soil-structure domain are shown.
Note that, only inside the near-field domain, theDRMelements successfully generate
the sv-wave propagating upwards, however, this time because of the presence of the
dam, a scattered field is generated outside the DRM (near-field) domain.

Figure 3.8: Velocity field amplitude and deformed configuration at time (a) t =
1.05 [s], (b) t = 1.65 [s], (c) t = 1.95 [s], and (d) t = 2.25 [s] for the dam problem.
The blue color represents a velocity amplitude of 0.0 [m/s], while the red color
represents a velocity amplitude of 0.2 [m/s].

In addition, Figure 3.9 shows the synthetic seismogram of the velocity for the
horizontal and vertical components. The velocity field is measured at the surface,
i.e., z = 0.0 [m]. The horizontal red solid lines represent the interface between
the DRM domain and the scattered field domain. The vertical dashed blue lines
represent the particular time when the snapshots in Figure 3.8 are illustrated.
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Figure 3.9: Synthetic seismogram (a) horizontal component vx(t), and (b) vertical
component vz(t) of the velocity, recorded on the soil surface for the dam problem.

Since the truncated soil domain has a feature that can generate scattering waves,
the near-field response in this case does not match the free-field conditions imposed
at the DRM elements. The results displayed in Figure 3.9 for both the horizontal
and vertical components of the velocity field make it evident that the implemented
PML absorbing boundary interface works perfectly for this case. Here, one can
observe that there is no-reflection coming in from the boundaries, and as expected,
velocities in the vertical direction are developed due to the presence of the dam, but
the generated field is again absorbed entirely.

These simple examples show that a DRM formulation along with PML for absorbing
scattered waves provides the necessary features for high-fidelity simulation of wave
propagation.

3.5 Conclusions
This chapter presented a brief review on the domain reduction method (DRM) and
a perfectly matched layer (PML) formulation for absorbing boundaries. The hybrid
PML formulation in plane-strain setting is then extended such that the effective
forces associated with the seismic excitation can be incorporated through DRM.

The DRM formulated in a PML for truncated domain only requires displacement,
velocity, and acceleration fields to be prescribed in the one-layer of soil elements.
The required DRM fields can be computed analytically using the method proposed
in Graff [58], Poursartip [122], Zhang et al. [160] for semi-infinite half-space.
However, more complicated soil patterns–i.e., layered soil, nonlinear soil, requires
to solve an auxiliary problem to obtain the free-field wave response.
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The performance of the proposed framework in terms of robustness and accuracy
was illustrated through two verification examples. For each example, the response
of the velocity field amplitude on the soil surface as well as synthetic seismogram
are generated to measure the accuracy of the implemented DRM-PML framework
for wave propagation problems. In the first example, the DRM implementation is
verified. The velocity field in Figure 3.6 made it evident that the implemented DRM
conditions work perfectly, since no-reflection outside the DRM domain (near-field)
is generated. In the second example, the PML implementation is verified by adding a
source of scattering. The synthetic seismogram in Figure 3.9 made it evident that the
implemented PML absorbing boundary interface works perfectly since no-reflection
coming in from the boundaries are generated.

Finally, both examples involved generating and assembling about 32000 quadrilat-
eral elements and evolving the solution 2000 time steps. The execution time was
less than 35 mins, which is 1.0 seconds per time step. This is in fact an small
fraction considering that first, an implicit Newmark method for numerical integra-
tion to solve differential equations is employed, and then an LDL-decomposition for
solving the linear system is performed at each time step.
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C h a p t e r 4

THE DIRECT MODELING METHOD FOR SOIL-STRUCTURE
INTERACTION PROBLEMS

The process in which the response of the soil influences the motion of the structure
and the motion of the structure influences the response of the soil is termed as
soil-structure interaction (SSI) [150]. In civil engineering, almost all structures
(buildings, dams, bridges, tunnels, and retaining walls to name a few) are somehow
in contact with soil–i.e., have foundations or support elements that either rest on or
are embedded in soil [157–159]. Thus, the SSI phenomenon involves naturally an
unbounded (semi-infinite or infinite) domain. Usually, the semi-infinite domain or
far-field is represented by Earth, and the finite domain or near-field is represented
by the structure and the surrounding soil. One approach to solve the SSI problem
is the so-called direct modeling method [138, 157–159]. In this method, standard
numerical techniques such as the finite element method (see Bathe [16], Hughes
[70]), boundary elements method (see Brebbia and Dominguez [28], Katsikadelis
[90]) or finite differencemethod (see Strikwerda [142], Thomas [148]) are commonly
used to approximate the solution in space and time. Over the years, the finite
element method has become one of the preferred techniques, since it can handle
complex geometry, and allows to obtain a certain level of accuracy through p− and
h−refinements. However, the method does not allow semi-infinite domain directly.
Thus, special elements on the boundary must be added to emulate its infinite nature.

In this chapter, the continuum formulation for the soil-structure interaction problems
is presented, then the discretized version or weak-form of the continuum problem
is outlined using the finite element method. Lastly, one example using the finite
element method to solve the soil-structure interaction problem is discussed.

4.1 The continuum formulation of the soil-structure interaction problems
In Figure 4.1, the complete soil-structure domain is denoted byΩ and is decomposed
into two sub-domains: the unbounded soil denoted byΩs and the bounded structure
denoted by Ωb. In addition, the interface between the structure and the soil is
denoted by Γbs, and the free structure boundary surface is denoted by Γb and the
free soil boundary surface is denoted by Γs. Finally, the boundary of Ω = Ωs ∪ Ωb

is denoted by Γ = Γs ∪ Γb.
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Figure 4.1: The continuum soil-structure interaction layout.

The displacement fields onΩs andΩb due to dynamic loading are denoted by us(x, t)
and ub(x, t), respectively, where x ∈ Ω represents a point coordinate, and t ∈ R+ the
continuous time variable. Both displacement fields are assumed to be small enough
to allow a linear approximation of the constitutive and equilibrium equations1. Thus,
for linear elastic and isotropic problems, the stress tensor in the soil is written as
σs(us) and is related to the strain tensor inside the soil εs(us) through the generalized
Hooke’s law,

σs(us) = Cs εs(us) = λs div(us) I + 2 µs ε
s(us) , (4.1)

where Cs represents the fourth-rank elastic moduli tensor, I is the identity tensor,
λs and µs the Lamé constants for the soil. Similarly, the stress tensor for the
structure σb(ub) is related to the strain tensor inside the structure εb(ub) through the
generalized Hooke’s law,

σb(ub) = Cb εb(ub) = λb div(ub) I + 2 µb ε
b(ub) , (4.2)

where Cb represents the fourth-rank elastic moduli tensor, and λb and µb are the
Lamé constants for the structure.

The Cauchy stress theorem2 is used to compute the traction vectors applied on the
interface oriented by the unit outer normal vector n̂ in the soil,

ts(us) = σs n̂ , (4.3)

1This assumption can be removed to allow finite kinematics; however, the equilibrium equations
are expressed in the deformed configuration as functions of the deformation gradient F and the
second Piola-Kirchhoff stress tensor S.

2Cauchy’s stress theorem is also known as the Cauchy’s tetrahedron theorem.
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where ts(us) represents the traction exerted on the soil surface. Likewise, the traction
vectors applied on the interface oriented by the unit outer normal vector n̂ in the
structure is,

tb(ub) = σb n̂ , (4.4)

where tb(ub) represents the traction exerted on the structure surface.

Inmost cases, external loads in soil-structure interaction problems are either incident
fields or applied forces and traction inside or on the boundaries of the domain. Here,
we consider the seismic loading defined inside the soil domain Ωs, and denoted by
ui(x, t). We assume that if the incident field ui is such that satisfies the Navier
equation and free surface boundary conditions inΩs, then the seismic force fi in the
soil and the seismic traction ti are properly defined. The diffracted or scattered field
ud(x, t) is defined in the soil as a function of the total field us as,

ud(x, t) = us(x, t) − ui(x, t) in Ωs . (4.5)

The diffracted field has to satisfy the Navier equations in Ωs for any t > 0, with
fs = fi as source term and ts = ti as boundary conditions on Γs,

divσs(ud) + ρs Üus(x, t) = fs in Ωs , (4.6)

ts(ud) = ti on Γs . (4.7)

Similarly, the displacement in the structure ub(x, t) must satisfy,

divσb(ub) + ρb Üub(x, t) = fb in Ωb , (4.8)

tb(ub) = 0 on Γb , (4.9)

meaning that the structure is traction free. In addition, both fields have to satisfy
homogeneous initial conditions:

ud(x, 0) = ud(x, 0) = 0 for all x ∈ Ωs , (4.10)

ub(x, 0) = ub(x, 0) = 0 for all x ∈ Ωb , (4.11)

and the field ub and ud must satisfy local equilibrium along the interface Γbs,

tb(ub) + ts(ud) = ti on Γbs , (4.12)

as well as the kinematic condition on Γsb

ub(x, t) − ud(x, t) = ui(x, t) on Γbs . (4.13)

Equations (4.6) – (4.13) form a well posed boundary value problem with homoge-
neous initial conditions. These sets of equations establish the continuum formulation
of the soil-structure interaction phenomenon.
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4.2 The finite element method applied to soil-structure interaction
We consider the soil-structure interaction boundary value problem:

divσs(ud) + ρs ud(x, t) = fs in Ωs , (4.14)

ts(ud) = ti on Γs , (4.15)

divσb(ub) + ρb ub(x, t) = fb in Ωb , (4.16)

tb(ub) = 0 on Γb , (4.17)

tb(ub) + ts(ud) = ti on Γbs , (4.18)

ub(x, t) − ud(x, t) = ui(x, t) on Γbs , (4.19)

and assume that the source terms fs, fb ∈ L2(Ω). We then let C∞c (Ω) be the space of
test function defined as:

C∞c (Ω) =
{
v(x) ∈ C∞(Ω) such that v(x) = 0 for all x ∈ Γ

}
, (4.20)

and define the space H1
0 (Ω) as the closure of C∞c (Ω) under the norm

‖v(x)‖2
H1

0 (Ω)
:=

∫
Ω

|∇v(x)|2dΩ . (4.21)

Let V := H1
0 (Ω), and then multiply Equations (4.16) and (4.17) for a test function

v(x) ∈ V to obtain,∫
Ωb

(
divσb(ub) + ρb ub(x, t)

)
v(x) dΩb −

∫
Γb

tb(ub)v(x) dΓb =

∫
Ωb

fbv(x) dΩb .

The latter can be written in a more compact form using index notation as,∫
Ωb

(
σb

i j, j(u
b) + ρb Üub

i (x, t)
)
vi(x)dΩb −

∫
Γb

σb
i j(u

b) n̂ jvi(x) dΓb =

∫
Ωb

f b
i vi(x) dΩb .

If we drop the space and time x, t variables, and apply the divergence theorem using
the generalized Hooke’s law σb

i j = C
b
i jkl ub

k,l and Cb
i jkl ub

k,l v
h
i =

(
Cb

i jklu
b
k,lv

h
i

)
, j
−

Cb
i jklu

b
k,lv

h
i, j in the first integral, we obtain

−

∫
Ωb

Cb
i jklu

b
k,lv

h
i, j dΩb −

∫
Ωb

ρb Üub
i v

h
i dΩb +

∫
Γbs

tb
i v

h
i dΓbs =

∫
Ωb

f b
i v

h
i dΩb .

Similarly, we multiply Equation (4.18) by the same test function and using the
kinematic relation provided in Equation (4.19), we integrate over Γbs to obtain

−

∫
Γbs

(
Cs

i jkl

(
ui

k,l + ud
k,l

)
n̂ jv

h
i − ti

bv
h
i − C

s
i jklu

d
k,l n̂ jv

h
i

)
dΓbs = 0 .
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This result can be added to our previous expression to finally obtain the weak-form
of the soil-structure interaction problem,

−

∫
Ωb

Cb
i jklu

b
k,lv

h
i, j dΩb −

∫
Ωb

ρb Üub
i v

h
i dΩb −

∫
Γbs

Cs
i jklu

d
k,l n̂ jv

h
i dΓbs =∫

Γbs

Cs
i jkl

(
ui

k,l + ud
k,l

)
n̂ jv

h
i dΓbs +

∫
Ωb

f b
i v

h
i dΩb , (4.22)

or,

B(u, v) = g(v) . (4.23)

Then any function v(x) ∈ V that satisfies Equation (4.23) is called a weak solution
of the soil-structure interaction problem.

Let V h ⊆ V be a finite dimensional subspace of V , with nodal basis {Nh
α }

N
α=1. In

this case, V h is a Hilbert space equipped with the inner product 〈·, ·〉V . Moreover, let
B : V h × V h → R be a bi-linear form, and g : V h → R to denote a linear operator.
It can be shown that there exists a unique solution3 uh ∈ V h to the problem:

B(uh, vh) = g(vh) . (4.24)

Now, let uh(x, t) ∈ V h to denote such solution. Since Nh
1 (x), . . . , N

h
Nh
(x) form a basis

for V h, there exist scalars Uh
1 , . . . ,U

h
Nh
∈ R such that

uh(x, t) =
Nh∑
α=1

Uh
α(t) N

h
α (x) . (4.25)

Similarly if vh(x, t) can be approximated using the same base, then there exist scalars
V h

1 , . . . ,V
h
Nh
∈ R such that

vh(x, t) =
Nh∑
β=1

V h
β (t) N

h
β (x) . (4.26)

Therefore choosing vh(x, t) to be elements of the basis {Nh
β }

N
β=1 is equivalent to

choosing {V h
β }

Nh

β=1 from {(1, 0, 0 . . . , 0), (0, 1, 0 . . . , 0), . . . , (0, 0, 0 . . . , 1)}. Then,
substitution of Equation (4.25) and Equation (4.26) into Equation (4.22) generates
the following system of differential equations:

Mh
b
ÜUh +

(
Kh

b +K
h
s

)
Uh = Fh

b + Fh
s . (4.27)

3The Lax-Milgram theorem essentially guarantees that for linear elasticity, there is a unique
solution if the operator B(uh, vh) is bounded, coercive, symmetric, and positive definite.
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In Equation (4.27), the matricesMh
b, K

h
b, and Kh

s are defined as:

Mh
b = Mb

αβ :=
∫
Ωb

ρb Nh
β (x)N

h
α (x) dΩb , (4.28)

Kh
b = Kb

αβ :=
∫
Ωb

dNh
β (x)

dx j
Cb

i jkl
dNh

α (x)
dxl

dΩb , (4.29)

Kh
s = K s

αβ :=
∫
Γbs

n̂ j Nh
β (x)C

s
i jkl

dNh
α (x)

dxl
dΓbs , (4.30)

likewise the force vectors Fh
b , and Fh

s are defined as follows,

Fh
b = Fb

β :=
∫
Ωb

f b
i Nh

β (x) dΩb , (4.31)

Fh
s = Fs

β :=
∫
Γbs

Cs
i jkl

(
ui

k,l + ud
k,l

)
n̂ j Nh

β (x) dΓbs . (4.32)

The equations derived here are consistent to the one presented in “Nonlinear Dy-
namic Soil-Structure Interaction in Earthquake Engineering,” by Alex Nieto Ferro,
if the Laplace transform is used in Equations 4.14 to 4.19 and then the variational
formulation is applied. The basic ideas of this derivation is (a) to define new un-
known fields on the interfaces, either displacements or tractions, so that one of the
two coupling equations on each interface holds apriori, (b) to solve a boundary
value problems in each subdomain using these new unknown fields as boundary
conditions, and (c) to enforce the other coupling equation in a weak sense, e.g. for
any trial admissible fields on the interfaces.

Remark. The matrix Kh
s is the stiffness of the soil along the interface Γbs, while the

vector Fh
s is the induced foundation input forces developed at the interface Γbs due

to the scattered field.

4.3 Some numerical modeling considerations
The finite element method [16, 70] is employed to approximate the soil-structure
interaction phenomenon. In this regard, the soil and foundation domain can be
for instance modeled with four-node two-dimensional plain-strain quadrilateral ele-
ments. These elements have at each node two translational degrees of freedom as
it is shown in Figure 4.2a. On the other hand, the structure domain is for instance
modeled considering two-node linear elastic frame elements. The nodes connecting
this type of element have three degrees of freedom of which two are for translation
and one is for rotation as is shown in Figure 4.2b. The materials employed to model
structural and soil elements are isotropic linear and elastic.
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Figure 4.2: Degrees of freedom for the soil element and structural elements.

Because solid elements (i.e., soil and foundation) and structural elements (i.e., beams
and columns) have different number of degrees of freedom per node, it is necessary
to couple them in an indirect manner. Figure 4.3 shows schematically how this
coupling is performed between the foundation (solid) and the columns (frame) nodes.
A clean and numerically stable method is applied through kinematic constraints to
the translational degree of freedom at the contact interface [42, 80]. In this method,
the connections are basically performed by extending each frame (column) element
inside the surrounding solids (foundation) elements. Then, the connection of frame
element nodes to solids elements nodes is done only for translational degrees of
freedom (two of them for each node), while rotational degrees of freedom (one of
them) from beam-column element are left unconnected. This sort of connection
relays on the fact that the foundation is much more stiffer than the column so that
the foundation will impose the same displacement and rotation to the column nodes.
It is important to highlight that some localized deformation is developed in the
surrounding soil due to this sort of connection, but equilibrium and compatibility
are always met using this approach. Now, if the foundation behaves as a rigid
diaphragm, the latter issue can be avoided by adding an auxiliary node with three-
degree of freedom (i.e., diaphragm node) and then impose kinematic constraints to
all nodes at the foundation and columns.

A dynamical analysis needs to be performed in order to study the interaction de-
veloped between the soil, foundation, and structure over time. In this regard, the
accuracy of the numerical simulation for a seismic wave propagating in the soil
depends on two main parameters,

(a) The space discretization, ∆h.

(b) The time discretization, ∆t.
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Figure 4.3: Frame and soil element connection through kinematic constraints.

Assuming that the numerical method is consistent4, the desired accuracy of the
solution can be obtained as long as sufficient computational resources are avail-
able [142]. However, in order to represent accurately a traveling wave of a given
frequency, between 12 to 20 nodes per wavelength are usually required [81, 108].
Fewer nodes can lead to numerical dissipation5 as the discretization misses cer-
tain peaks of seismic wave. Therefore, the appropriate maximum grid spacing is
computed using the highest relevant frequency fmax which is present in the model.
Typically, this frequency can be obtained using Fourier analysis of the signal, but
in earthquake engineering one can assume fmax = 10 [Hz]. This frequency allows
to compute the minimum wavelength λmin = Vs/ fmax provided with the shear wave
velocity Vs of the soil. Thus, if the minimum wavelength is to be represented by 20
nodes, the maximum grid spacing should not be larger than:

∆h ≤
λmin

20
=

Vmin
s

20 fmax
. (4.33)

In Equation (4.33), the variableVmin
s is smallest shear wave velocity that is of interest

in the simulation, usually taken as the wave velocity of the softest soil layer. For
instance, if the smallest velocity is Vmin

s = 100 [m/s], then a spatial discretization
of ∆h = 0.5 [m] needs to be used to discretize the soil to guarantee 20 points per
wavelength.

On the same line, the time step size used for solving numerically linear and nonlinear
wave propagation problems has to be limited as well. The stability requirement

4We say that a discretization P∆t,∆h is consistent with the partial differential equation Pu = f
for any smooth function φ(x, t) if we have that lim

∆t,∆h→0

(
P∆t,∆hφ − Pφ

)
= 0, as ∆t,∆h→ 0.

5We say that a numerical scheme is free of dissipation, when the energy of the initial wave is not
reduced in a way analogous to a diffusional process.
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depends on the employed time integration scheme, and similarly to the spatial
discretization, the smallest period Tn of the system needs to be represented with
about 10 time steps. However, as a wave front progresses in space, it reaches one
node after the other, and if the time step in a finite element analysis is too large,
then the wave front can reach two consecutive several nodes at the same time. This
would violate a fundamental property of wave propagation and can lead to instability.
Therefore, time step is usually limited using the so-called Courant-Friedrichs-Lewy6
(CFL) condition:

∆t ≤ CFL
∆h

Vmax
s

. (4.34)

In Equation (4.34), the variable Vmax
s is the highest shear wave velocity for the

simulation, and CFL is a constant value less than or equal to one. For example,
if the maximum shear-wave velocity is Vmax

s = 500 [m/s], and an element size of
∆h = 0.5 [m] is used for the spatial discretization for a CFL = 1.00, then a time step
of ∆t ≤ 0.001 [s] is required. It is important to note that increasing or decreasing
time step ∆t decreases or increases the range of frequencies that the temporal mesh
is able to capture for a given element size ∆h. On the other hand, decreasing or
increasing the size element ∆h increases or decreases the range of frequencies that
the spatial mesh can capture. In other words, some frequencies will be aliased7
depending on which one, the time step size or the element size is increased based
on the fact that the same frequency in both meshes are to be captured.

Lastly, there is no unique unified approach in the literature for 2D analyses of SSI.
For example, in Arboleda-Monsalve et al. [7], the 2D simulations are done with quad
elements in plane strain with 1 [m] thickness, and considering one axis of elongated
building wheremost sections (except close to the borders) deform the same. In Conti
et al. [41], the 2D simulation is done for the soil with quad elements in plane-strain
with 1 [m] thickness and the modeling part (simplifications) comes when dealing
with the building. Also, in Kraus and Džakić [93], the 2D simplification is done by
using shell elements but with thickness 1 [m] as well. Finally, in Tomeo et al. [149],
they have considered a plane-strain soil with thickness 3B, but they state that they
want to match a 3D analysis. In this thesis, we follow [7] and [41].

6The Courant-Friedrichs-Lewy condition (CFL) condition is a stability criterion for explicit time
integration schemes, which are conditionally stable. However, it can be used as a criterion to specify
the time step for unconditionally stable methods as well.

7Numerical aliasing occurs when the mesh is too coarse to capture high frequency; therefore,
such frequencies are lost and the energy of the signal decreases.
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4.4 Demonstration of the finite element applied to soil-structure-interaction
In this section, a numerical example is provided to verify the implemented finite
element model for soil-structure interaction problems. The finite element model
and response simulation are performed using Seismo-VLAB [96–98] assuming a
set of realistic parameter values for both soil and building structures. Features such
as PML and DRM are included to emulate the semi-infinite half-space soil domain.
A Ricker pulse [124] ground motion is used as input to obtain the response history
simulations. The simulated displacement response time histories are computed at
different floors. The robustness and performance of the proposed FEM is then
evaluated and discussed.

Example 3. The reinforced concrete building has columns of rectangular cross
section 1.00 × 0.80 [m], each of 3.5 [m] height. Beams have rectangular cross
sections 0.80 × 0.60 [m] and 6.0 [m] length. The reinforced concrete density is
2500 [kg/m3], the reinforced concrete elasticity modulus is taken as 25 [GPa], and
beams are subjected to a overload of 3600 [kg/m]. This configuration gives a
total height of 42 [m] and a total width of 18 [m] for the building. The solid core
foundation has a half-width of 10 [m], an equivalent length (thickness) of 1.0 [m],
and embedment depth of 2.5 [m]. The reinforced concrete material properties for
the foundation are taken such that the density is 600 [kg/m3], elasticity modulus is
30 [GPa], and Poisson’s ratio is 0.20.

On the other hand, the soil domain is represented as an elastic, homogeneous, and
semi-infinite medium with density ρs = 2000 [kg/m3], Poisson’s ratio ν = 0.35,
and shear wave velocity Vs = 100 [m/s]. The soil and foundation domains are
modeled as four-node two dimensional plain strain quadrilateral elements, and the
building structure domain is modeled as two-node linear elastic frame elements.
All material models assigned to structural and soil elements are isotropic linear
and elastic, and no viscous damping is added. The connection between solid and
structural elements as well as the rigid diaphragm behavior of the foundation are
enforced using kinematic constraints.

The dimension of the truncated domain is taken such that the horizontal direction
is Lx = 70 [m] and the vertical direction is Lz = 75 [m]. We employ the perfectly-
matched layer for plane-strain in two dimensions, and a PML of 10 [m] thickness is
provided around the near-field to truncate the semi-infinite half space. The domain
reduction method (DRM) is employed in order to transmit the ground motion of an
in-plane sv-wave propagating upwards inside the near-field domain. The incident
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ground motion Ûug(t) used in the finite element models is prescribed as an effective
force Ricker function, proportional to Equation (4.35):

Ûug(t) =
(
1 − 2γ (t − t0)2

)
exp

[
−γ (t − t0)2

]
, (4.35)

where γ = (π f0)2, f0 = 2.0 [Hz] is the characteristic frequency, and t0 = 1.0 [s]
is the time of peak velocity. These values yield a Ricker wavelet of peak ground
velocity 0.1 [m/s] and frequency content between 0 − 7.5 [Hz].

The time step ∆t is limited using the Courant-Friedrichs-Lewy condition. In this
regard, for an element size of ∆h = 0.5 [m] and a fixed value CFL = 0.30, the
time step ∆t = 0.0015 [s] is used for the simulation. The resulting finite element
mesh has approximately 32000 elements, and a simulation time of tsim = 12.0 [s] is
considered. The total number of time steps for the entire simulation is nt = 8000,
and Seismo-VLAB [96–98] is employed to carry out the analysis. Themodel domain
is not large enough, therefore we use a single core execution. The time to complete
this task is 135 [min] in total.

The nodal time history response at three different locations in the building are
represented in Figure 4.4 in solid-blue line. In particular, the total horizontal uh

X and
vertical uh

Y displacement of the first-modal height, the total-horizontal ur
X and vertical

ur
Y displacement of the roof, and the total horizontal displacement and rotation of
the foundation are displayed. A normalized representation of the building structure
indicating the control points is displayed as well.

Note how in Figure 4.4 after t = 2.5 [s] the building not only starts a free vibration
motion, but also because of the radiation damping, the displacement response starts
to decay. In addition, the foundation presents an important amount of rocking due
to the flexibility of the soil and the inertial forces generated in the building.

The velocity field amplitude at (a) t = 1.05 [s], (b) t = 1.65 [s], (c) t = 1.95 [s],
and (d) t = 2.25 [s] for the soil-structure interaction problem is shown in Figure 4.5.
Note that Figure 4.5c at time t = 1.95 [s] is particularly interesting because it shows
the waves front generated by the building due to the so-called inertia interaction8.

8Inertial interaction refers to displacements and rotations at the foundation level of a structure that
result from inertia-driven forces such as base shear and moment. Inertial displacements and rotations
can be a significant source of flexibility and energy dissipation in the soil-structure system. In fact,
inertial interaction generates period lengthening in the structure due to the increased overturning
moment and foundation rotation, and also a modification in the damping of the structure due to two
effects: contributions from soil hysteresis or hysteretic damping, and radiation of energy away in the
form of stress waves, from the foundation to the soil known as radiation damping.



63

Figure 4.4: Displacement time history signals at (a) first-modal height at coordinates
(x, z) = (−9, 28) [m], (b) the roof at coordinates (x, z) = (−9, 42) [m], and (c) the
foundation at coordinates (x, z) = (0,−2.5) [m] of the building.

Similarly Figure 4.5b at time t = 1.65 [s] shows the averaging process enforced by
the foundation due to the so-called kinematic interaction9.

Figure 4.5: Velocity field amplitude and deformed configuration at time (a) t =
1.05 [s], (b) t = 1.65 [s], (c) t = 1.95 [s], and (d) t = 2.25 [s] for the soil-structure
interaction problem. The blue color represents a velocity amplitude of 0.0 [m/s],
while the red color represents a velocity amplitude of 0.2 [m/s].

9Kinematic interaction results from the presence of stiff foundation elements on/in the soil, which
causes motions at the foundation to deviate from free-field motions. One cause of these deviations
is base-slab averaging, in which the spatial variable of the ground motions is averaged within the
foundation footprint due to the stiffness and strength of the foundation system. Another cause of this
deviation is embedment effects, in which foundation-level motions are reduced as a result of ground
motion reduction with depth below the free surface.
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In Figure 4.6, the synthetic seismogram of the velocity for the horizontal and
vertical components are shown. The horizontal red-solid lines represent the interface
between the DRM domain and the scattered field domain. On the other hand,
the vertical dashed blue lines represent the particular time when the snapshots in
Figure 4.5 are taken.

Figure 4.6: Synthetic seismogram (a) horizontal component vx(t), and (b) vertical
component vz(t) of the velocity, recorded on the soil surface for the soil-structure
interaction problem.

In Figure 4.6, three important results are shown. The first one has to do with the
averaging effect that the foundation enforces on the soil. This can be seen on the
synthetic seismogram after a time t = 2.0 [s] along a position x = ±10 [m]. The
second outcome is that the PML elements absorb all the outgoing waves, since there
is no reflection coming from the boundaries, i.e., x = ±35 [m]. The last outcome
shows that two different waves are developed around the interface soil-foundation.
First, there is a compressive wave which is generated by the system building-
foundation because of the sway motion that the building imposes on the soil. The
second wave is generated by the rocking-inertial motion and this corresponds to a
surface wave which is generated after.

4.5 Conclusions
This chapter presented the finite element formulation (linear case) for soil-structure
interaction (SSI) problems. Additionally, some numerical modeling considerations
for SSI problems are provided regarding spatial and temporal discretization and
connection between solid and structural elements.
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The direct modeling method for SSI is demonstrated in a very simple example. The
standard components such as: wave propagation, kinematic interaction, and inertial
interaction found in SSI problems, are illustrated clearly in Figure 4.5. In particular,
Figure 4.6 shows that the vertical motion generated at the soil’s surface is a conse-
quence of the rocking motion of the building generated by inertial interaction. The
example makes also evident that a DRM formulation along with PML for absorbing
scattered waves provides the necessary features for high-fidelity simulation of soil-
structure interaction problems. Finally, we can conclude that both the DRM and
PML implementation along with the structural elements and kinematic constraints
in Seismo-VLAB are properly implemented.

On the performance side, the Seismo-VLAB execution for a single core process
turned out to be fast. The finite element generation, assembly, and solution of
the linear system took less than 1 second per time step. In addition, the RAM
memory required for the entire simulation was less than 680 Mega-Bytes, showing
that Seismo-VLAB utilizes little computer resources.
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C h a p t e r 5

THE REDUCED ORDER MODEL FOR SOIL-STRUCTURE
INTERACTION PROBLEMS

The lack of numerical algorithms and computer capabilities along with the increase
of model complexity makes the solution of engineering problems difficult. Thus, re-
duced order models (ROMs) arise as a technique to simplify the model’s complexity
while keeping the physics of the problem. In particular, twomajor contributions have
made ROMs an appealing technique to analyze complex systems: (a) static conden-
sation introduced by Guyan [61] and Irons [73], and (b) component mode synthesis
introduced by Craig and Bampton [14, 43]. Both methods have been extensively
used in the past 50 years, and have become essential in probabilistic engineering
and resilient design of interconnected civil infrastructure systems [26, 34, 76–78]
because of their reduced computational cost.

Developing ROMs for SSI problems usually relies on replacing the surrounding soil
by impedance functions while keeping the structure intact. Although a large number
of ROMs have been previously proposed to quantify SSI effects, most have been
formulated in the frequency-domain. Therefore, these models are restricted either
by oversimplifying assumptions, e.g. [21, 154] or by relying on superposition, e.g.
[57, 138, 139] to a limited class of linear elastic problems. ROMs for quantifying
SSI effects in building structures are usually developed based solely on (semi-)
analytical impedance functions (or dynamic springs) available for rigid foundations
with simplified configurations, e.g. [56, 119]. Even if the impedance functions
are known, their distribution along the building foundation is cumbersome, and
by extension, so is their use for buildings with large, complex footprints that do
not conform to the original simplified configurations. Moreover, integrating the
impedance values in time-domain analyses for SSI by selecting a representative,
frequency-independent value is not clear.

The latter problems can be addressed using for instance a series of uniformly dis-
tributed frequency-independent spring and dashpot elements distributed over the
soil-foundation interface. The role of these elements is to reflect the aggregate
stiffness and energy dissipation characteristics of the soil system as seen from the
building foundation. However, the spring and dashpot coefficients become param-
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eters of the ROM and require to be calibrated such that the interaction mechanisms
are properly incorporated. Regardless of calibrating such spring and dashpot coef-
ficients, a ROM formulated in this manner provides the following advantages: (1)
describing the soil behavior as a set of spring and dashpot elements allows the ROM
to be easily incorporated in any FEM software; (2) modeling the soil as horizontal
and vertical spring and dashpot elements offers the possibility to be condensed into a
translational and rotational degrees-of-freedom in a straightforward manner; and (3)
more sophisticated non-linear material behavior as well as contact behavior between
soil and foundation can be incorporated at the spring and dashpot elements level.

In this chapter, the reduced order model for soil-structure interaction problems is
formulated using condensation techniques. In particular, the reduction is performed
in three steps: first, the effects of foundation embedment is studied by performing
equilibrium of the foundation alone; then, the building system complexity is sim-
plified using the static condensation method; lastly, the later results are integrated
to generate the reduced order model for the soil-structure interaction. The ROM
developed in this manner is compared against high-fidelity finite element models,
and some examples are provided to demonstrate the accuracy of the proposed ROM
in time domain analysis.

5.1 Effects of shallow foundation embedment
The behavior of the foundation is formulated considering analytical expressions
for the stiffness and damping matrices of the soil as a function of the springs
(kx, kz) and dashpots (cx, cz) distributed along the soil-foundation interface. In this
analysis, we assume that the distributed spring and dashpot coefficients are known.
The expressions derived hereafter can be considered as an extension of the ones
proposed in [57, 139] for which the coupling restoring moment term is generated
by the horizontal and vertical spring elements as it is shown in Figure 5.1.

In Figure 5.1a, the foundation has a half-width B and a depth D. The external forces
applied to the system are an axial force N , a shear force V , and a moment M . These
external forces are such that N,V, M : u(x, z) → R, where u(x, z) = [û(x, z), ŵ(x, z)]
represents the displacement field. The restoring forces exerted by the soil are
represented as springs acting over the foundation perimeter as shown in Figure 5.1b.
Moreover, the foundation is assumed to be rigid so that the displacement field
can be described by three degrees-of-freedom as shown in Figure 5.1c. Thus, the
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Figure 5.1: The soil-foundation system. (a) Geometry of the foundation system, (b)
modeling of the soil continuum as distributed springs, and (c) free-body diagram of
the foundation.

displacement field components û(x, z) and ŵ(x, z) are:

û(x, z) = u − θ z , (5.1)

ŵ(x, z) = w + θ x , (5.2)

where the variable u, w, and θ represents the horizontal, vertical and rotational
rigid deformation (i.e., degree of freedom) of the foundation, respectively. Next,
and without loss of generality, we assume that the distributed horizontal springs
kx and vertical springs kz are constant over the soil-foundation interface; this is
kx(x, z) = kx and kz(x, z) = kz. This assumption is acceptable since we assume
shallow embedment. Under this assumption, the soil-stiffness matrix is derived
enforcing equilibrium of forces as represented in Figure 5.1c. Therefore, performing
equilibrium of forces in the z-direction of the foundation yields

N =
∫ D

0
ŵ(x = −B, z) kz(z) dz +

∫ D

0
ŵ(x = B, z) kz(z) dz+

=

∫ B

−B
ŵ(x, z = 0) kz(z = 0) dx ,

= 2kz (D + B)w . (5.3)

Taking equilibrium of forces in the x-direction of the foundation yields

V =
∫ D

0
û(x = −B, z) kx(z) dz +

∫ D

0
û(x = B, z) kx(z) dz+

=

∫ B

−B
û(x, z = 0) kx(z = 0) dx ,

= 2 kx (D + B) u + kx D2 θ . (5.4)
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Performing equilibrium of moments in the z-direction about point 0 yields

M =
∫ D

0
û(x = −B, z) kx(z) z dz +

∫ D

0
û(x = B, z) kx(z) z dz+

=

∫ D

0
ŵ(x = −B, z) kz(z) B dz −

∫ D

0
ŵ(x = B, z) kz(z) B dz−

=

∫ B

−B
ŵ(x, z = 0) kz(z = 0) x dx ,

= kx D2 u +
(
2
3

kx D3 +
2
3

kz B3 + 2B2Dkz

)
θ . (5.5)

Equations (5.3), (5.4), and (5.5) can be written in matrix form. A similar analysis
can be carried out to obtain the damping matrix. Thus, the lumped stiffness and
damping matrices are written in the following compact form:

Λ =


2 λz (D + B) 0 0

0 2 λx (D + B) λx D2

0 λx D2 2
3λx D3 + 2

3λz B3 + 2 λz B2D

 , (5.6)

where the matrix Λ ∈ R3×3 represents either the stiffness or damping matrix of the
foundation system, and λ the distributed spring or dashpot coefficients. The lumped
stiffness coefficients are defined as:

kxx = 2 kx (D + B) , (5.7)

kxθ = kx D2 , (5.8)

kθθ =
2
3

kx D3 +
2
3

kz B3 + 2 kz B2D . (5.9)

The lumped damping coefficients are defined as:

cxx = 2 cx (D + B) , (5.10)

cxθ = cx D2 , (5.11)

cθθ =
2
3

cx D3 +
2
3

cz B3 + 2 cz B2D . (5.12)

Remark. The matrix in (5.6) allows us to compute the reduced reactive soil
forces that must be added to the foundation so that the dynamic equilibrium us-
ing D’alambert’s principle can be carried out without the soil.
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5.2 Static condensation of building structures
We consider the planar fixed-base building structure of n-story as shown in Fig-
ure 5.2. The finite element method described in [16, 70] is here employed to
approximate the dynamic building behavior. The structure domain is discretized
considering two-node linear elastic frame elements. The nodes connecting this type
of element have three degrees of freedom of which two are for translation and one
is for rotation. The materials employed to model structural and soil elements are
isotropic linear and elastic. We assume that each floor acts as a rigid diaphragm,
thus the horizontal degree of freedom at each floor level are the same.

Figure 5.2: The fixed-base building structure in which x1, . . . , xn represents the
relative displacement of each floor on the horizontal axis and Üug(t) the free-field
acceleration. The i, j, k are nodes in the finite element model and the blue arrows
the degree of freedom in each node.

The equation of motion of the system under such conditions is written as:

M Üx + C Ûx +K x = −ML Üug(t) , (5.13)

whereM,C,K ∈ RN×N are themass, damping, and stiffnessmatrices of the building.
The vectors Üx, Ûx, x ∈ RN are the acceleration, velocity, and displacements of each
degree-of-freedom. The signal Üug(t) represents the free-field acceleration applied
at the fixed-base, the operator L ∈ RN represents the seismic influence vector, and
N is the total number of degrees of freedom of the model.

Unfortunately, the actual number N of degrees of freedom in Equation (5.13) can be
very large. We want to describe its dynamics employing only n degrees of freedom.
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A practical method of accomplishing the reduction of the number of degrees of
freedom of a finite element model is static condensation (see, [16, 61]). Basically,
in this method we reduce secondary (inactive) degrees of freedom by expressing
them in terms of the primary (active) degrees of freedom.

In order to describe the Static Condensation Method, assume that those primary
degrees of freedom are located in the first n vector components, and secondary
degrees of freedom to be reduced are located in the last m vector components. In
this regard, Equation (5.13) can be recasted in the following manner:[
Mn×n Mn×m

Mm×n Mm×m

] [
Üxn

Üxm

]
+

[
Cn×n Cn×m

Cm×n Cm×m

] [
Ûxn

Ûxm

]
+

[
Kn×n Kn×m

Km×n Km×m

] [
xn

xm

]
= −

[
ML
Om

]
Üug(t) .

Now, if the lumped-mass matrix assumption is employed, then the sub-matrices
M>m×n = Mn×m = On×m. Moreover, if we also assume that the rotational mass
terms are negligible, then Mm×m ≈ Om×m. In addition, if we also assume that the
building has no damping, i.e. C = ON×N ; this means that C>m×n = Cn×m = On×m,
and Cm×m = Om×m. Then, the latter expression can be written as,

Mn×n Üxn + Cn×n Ûxn +Kn×n xn +Kn×m xm = −ML Üug(t) , (5.14)

Km×n xn +Km×m xm = 0 . (5.15)

From Equation (5.15), we obtain: xm = −K−1
m×mKm×n xn, which, once it is replaced

into Equation (5.14), yields:

Mn×n Üxn + Cn×n Ûxn +
(
Kn×n −Kn×mK−1

m×mKm×n

)
xn = −ML Üug(t) . (5.16)

We then write the condensed equation of motion for the fixed-base case in the
following manner,

Ms Üxn + Cs Ûxn +Ks xn = −MsL Üug(t) . (5.17)

where Üxn, Ûxn, xn ∈ R
n are the acceleration, velocity, and displacement vectors for

the condensed horizontal degree of freedom. Similarly, Ms = Mn×n,Cs = Cn×n,
and Ks = Kn×n − Kn×mK−1

m×mKm×n ∈ R
n×n are the condensed mass, damping, and

stiffness matrices of the building.

Remark. The equation of motion described in (5.17) not only preserves the axial
effects of the columns as well as the rotational effects of the beams, but it also allows
to include structural damping through the Cs matrix in a straightforward manner,
without computing the full C damping matrix.
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5.3 Equation of motion for soil-structure interaction
Consider the reduced order model of a planar n-story building and foundation as
shown in Figure 5.3. We assume that each floor acts as a rigid diaphragm, thus the
building’smass can be lumped at the floor levels. In this regard, the building structure
is represented by Ms,Cs,Ks ∈ R

n×n matrices computed using static condensation
provided in Equation (5.17). Thus, the vector x ∈ Rn represents the horizontal
degree of freedom of the building, since there is only one translational degree of
freedom on each floor. In addition, we assume a rigid rectangular foundation of half-
width B and depth D sitting on an elastic half-space, for which 2 additional degrees
of freedom u, θ ∈ R appear because of the flexibility of the soil. The foundation
has a total mass m f , and a moment of inertia I0. The equivalent elastic and viscous
forces that the soil exerts on the foundation are computed using Equation (5.6). We
finally consider that the building is subjected to a ground motion ug(t).

Figure 5.3: The flexible-base soil-structure interaction system in which x =
(x1, . . . , xn) represents the relative displacement of each floor, u represents the
relative deformation of the soil, and θ the rigid rotation of the foundation, and Üug(t)
the free-field acceleration.

In order to simplify computation, we define 1 ∈ Rn the vector of ones, which is 1 =
(1, 1, . . . , 1)>, and h ∈ Rn the vector of height, which is h = (h1 + D, . . . , hn + D)>.
We also defineOn×m ∈ R

n×m as the matrix of zeros.

The equilibrium of forces at the base in x-direction considering the complete struc-
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ture becomes:
n∑

j=1
m j Üx j

 +
m f +

n∑
j=1

m j

 Üu +
m f

D
2
+

n∑
j=1

m j(D + h j)

 Üθ + 2cx(D + B) Ûu + cx D2 Ûθ+

2kx(D + B)u + kx D2 θ = −

m f +

n∑
j=1

m j

 Üug(t) ,
or written in compact form using Equations (5.7) to (5.12):

1
>Ms Üx +

(
m f + 1

>Ms 1
)
Üu +

(
m f

D
2
+ h>Ms 1

)
Üθ + cxx Ûu + cxθ Ûθ + kxx u + kxθ θ =

−
(
m f + 1

>Ms 1
)
Üug(t) . (5.18)

The equilibrium of rotation at the base about point 0 of the complete structure is:
n∑

j=1
m j(D + h j) Üx j

 +
m f

D
2
+

n∑
j=1

m j(D + h j)

 Üu +
I0 + m f

D2

4
+

n∑
j=1

m j(D + h j)
2
 Üθ+

cx D2 Ûu +
(
2
3

cx D3 +
2
3

czB3 + 2czB2D
)
Ûθ + kx D2 u +

(
2
3

kx D3 +
2
3

kzB3 + 2kzB2D
)
θ =

−

m f
D
2
+

n∑
j=1

m j(D + h j)

 Üug(t) ,
or written in compact form using Equations (5.7) to (5.12):

h
>Ms Üx +

(
m f

D
2
+ h>Ms 1

)
Üu +

(
I0 + m f

D2

4
+ h>Ms h

)
Üθ + cxθ Ûu + cθθ Ûθ + kxθ u+

kθθ θ = −
(
m f

D
2
+ h>Ms 1

)
Üug(t) . (5.19)

The equilibrium of forces in x-direction of only the j-th building floor is:

m j Üx j + m j Üu + m j(D + h j) Üθ +

n∑
k=1

Cj k Ûxk +

n∑
k=1

K j k xk = −m j Üug(t)

or written in more suitable manner,

Ms Üx +Ms 1 Üu +Ms h Üθ + Cs Ûx +Ks x = −Ms 1 Üug(t) . (5.20)

Finally, Equations (5.18) to (5.20) can be employed to define the reduced order
model for the soil-structure interaction problem. These expressions can further be
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written in matrix form as,
Ms Ms 1 Ms h

1
>Ms m f + 1

>Ms 1 m f
D
2 + h

>Ms 1

h
>Ms m f

D
2 + h

>Ms 1 I0 + m f
D2

4 + h
>Ms h



Üx

Üu
Üθ

 +


Cs On×1 On×1

O1×n cxx cxθ
O1×n cxθ cθθ



Ûx

Ûu
Ûθ

 +
Ks On×1 On×1

O1×n kxx kxθ
O1×n kxθ kθθ



x

u

θ

 = −


Ms 1

m f + 1
>Ms 1

m f
D
2 + h

>Ms 1

 Üug(t) . (5.21)

Remark. For Equation (5.21) to provide accurate results – i.e., similar responses
to a full-finite element model, the spring coefficients kx, kz and dashpots coefficients
cx, cz needs to be computed accurately.

5.4 The effects of soil-structure interaction
It has been well documented that soil-structure interaction modifies the response
of buildings. In particular, when a building is sitting on flexible soil, the system
considering the superstructure and the soil-foundation interface will have a larger
fundamental period than its rigid counterpart [19, 23, 120, 154]. This increase of
the period is commonly referred as period elongation. Additionally, even when the
inherent (hysteretic) damping of the structure is neglected, having a flexible base will
add an additional source of energy dissipation in the form of stress waves traveling
away from the system. This type of energy dissipation is commonly referred as
radiation damping. In this section, we want to evaluate both the period elongation
and radiation damping generated for the reduced order model derived in (5.21).

Let us start by considering two different systems. The first, depicted in Figure 5.4a,
represents the reduced order model presented in Equation (5.21) for one floor,
with effective height h̄ = h + D, stiffness k ∈ R+, structural damping βi ∈ R

+,
supported by a distributed horizontal spring kx ∈ R

+ and distributed vertical springs
kz ∈ R

+. The second system, depicted in Figure 5.4b, represents a fixed-base
single degree of freedom system with mass m ∈ R+, modified stiffness k̃ ∈ R+,
modified-fundamental period T̃ ∈ R+, and modified damping β0 ∈ R

+ as it is
presented in [57, 139]. In the case of the equivalent fixed-base system, the total
static displacement ∆̃ generated by an applied external load F is computed as:

∆̃ =
F
k̃
, with ∆̃ ∈ R . (5.22)
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Figure 5.4: Model reduction from (a) the simplified flexible-base system into (b)
the equivalent fixed-base system.

In this regard, the fixed-base period of the system becomes

T̃ = 2π
√

m
k̃
, with T̃ ∈ R+ . (5.23)

In addition, the total displacement of the reduced order model, when an external
load F is applied, becomes

∆ = u + v + θ h̄

=
F
k
+

F
(
kθθ − h̄kxθ

)
kθθkxx − k2

xθ

+
F

(
kxθ − h̄kxx

)
k2

xθ − kxx kθθ
h̄2

= F

(
1
k
+

h̄2kxx − 2h̄ kxθ + kθθ
kxx kθθ − k2

xθ

)
. (5.24)

Note that, in order to equate the stiffness k̃ of the fixed-base system to that of the
flexible-base system, the displacements must be equal, i.e., ∆̃ = ∆. By comparison
of Equations (5.22) and (5.24), we conclude that the following relation between the
stiffness of the two systems must hold

1
k̃
=

1
k
+

h̄2 kxx − 2 h̄ kxθ + kθθ
kxx kθθ − k2

xθ

. (5.25)

Therefore, the corresponding fixed-base period will be given as

T̃ = 2π

√√√
m
k

(
1 +

k
kxx kθθ − k2

xθ

(
h̄2kxx − 2h̄ kxθ + kθθ

))
. (5.26)
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In turn, the period elongation of the reduced order model T relative to the period of
the fixed-based system, T̃ , is defined as follows:

T̃
T
=

√
1 +

k
kxx kθθ − k2

xθ

(
h̄2 kxx − 2 h̄ kxθ + kθθ

)
. (5.27)

Remark. Note that in Equation (5.27), when the stiffness kxθ = 0, the expression
reduces to the same as the one presented in [23, 57, 139, 154] .

Next, we want to derive the foundation damping ratio β0 for the fixed-base-system.
In order to do so, we represent the impedance K ∈ C of the system in complex
format,

K j = k j + c j ω i = k j
(
1 + 2β j i

)
, (5.28)

where β j =
ω cj
2 k j

is the damping ratio, and the index j represents the horizontal,
vertical, or coupled degree of freedom to be considered. Employing Equation (5.25)
and the impedance represented in complex format, one can write

1
k̃ (1 + 2β0i)

=
1

k (1 + 2βii)
+

h̄2kxx (1 + 2βxi) − 2h̄ kxθ (1 + 2βxθi) + kθθ (1 + 2βθi)
kxx kθθ (1 + 2βx i) (1 + 2βθi) − k2

xθ (1 + 2βxθi)
2 .

If each term in the previous expression is multiplied by its complex conjugate
and assuming that the damping ratio for all degrees of freedom are small so that(
β j

)2
≈ 0, then the latter expression becomes

k
k̃
(1 − 2β0 i) = (1 − 2βi i) + k

(
k̂ − 2β̂ i

)
, (5.29)

where the variables k̂ ∈ R+ and β̂ ∈ R+ in Equation (5.29) are defined as follows

k̂ =
h̄2kxx − 2h̄ kxθ + kθθ

kxx kθθ − k2
xθ

,

β̂ =
kxx

(
kθθ − h̄kxθ

)2
βx − 2kxθ

(
h̄kxx − kxθ

) (
h̄kxθ − kθθ

)
βxθ + kθθ

(
kxθ − h̄kxx

)2
βθ(

kxx kθθ − k2
xθ

)2 .

Solving for the imaginary component of Equation (5.29) yields

β0 =
k̃
k
βi +

k̃
k


k
kx
βx

©«
1 − h̄ kxθ

kθθ

1 − k2
xθ

kxx kθθ

ª®¬
2

−
2h̄kkxθ

kxx kθθ
βxθ

(
1 − kxθ

h̄kxx

) (
h̄ kxθ

kθθ
− 1

)
(
1 − k2

xθ

kxx kθθ

)2 +
k h̄2

kθθ
βθ

©«
1 − kxθ

h̄kxx

1 − k2
xθ

kxx kθθ

ª®¬
2 .
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Using the translational period and the rocking period definitions, the following
identities can be written:

k̃
k
=

k̃
m

m
k
=
ω̃2

n

ω2
n
=

1(
T̃
T

)2 ,

k
kxx
=

k
m

m
kxx
=
ω2

n

ω2
x
=

1(
T
Tx

)2 ,

k h̄2

kθθ
=

k
m

mh̄2

kθθ
=
ω2

n

ω2
θ

=
1(

T
Tθ

)2 ,

k h̄
√

kxx kθθ
=

√
k

kxx

√
k h̄2

kθ
=

1(
T
Tx

) 1(
T
Tθ

) .
Replacing the later expressions yields

β0 =
βi(
T̃
T

)2 +
βx(
T̃
Tx

)2

©«
1 − h̄

kxθ

kθθ

1 −
k2

xθ

kxx kθθ

ª®®®®¬
2

−
2(
T̃
Tx

) βxθ(
T̃
Tθ

) kxθ
√

kxx kθθ

(
1 −

kxθ

h̄kxx

) (
h̄

kxθ

kθθ
− 1

)
(
1 −

k2
xθ

kxx kθθ

)2 +

=
βθ(
T̃
Tθ

)2

©«
1 −

kxθ

h̄kxx

1 −
k2

xθ

kxx kθθ

ª®®®®¬
2

. (5.30)

Remark. Note once again that, when the stiffness kxθ = 0 in Equation (5.30), the
expression reduces to the one presented in [23, 57, 139, 154] for the foundation
damping ratio.

5.5 Comparison of reduced order model and finite element analysis
In this section, a numerical example is provided to verify the proposed reduced
order model for time domain analysis. A high-fidelity finite element model and
response simulation are computed using Seismo-VLAB [96–98] assuming a set
of realistic soil parameter values. The ROM is implemented in MATLAB [110],
and is employed to compute response simulation. The soil spring and dashpot
coefficients of the ROM are first computed using NIST [138] recommendation, and
then calibrated to match the FEM. Both models are subjected to a Ricker pulse [124]
ground motion to generate the displacement history responses. The error between
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both cases is measured using the `2-error as:

‖yFEM − ŷROM ‖
2
`2
=

1
Nt Nm

Nm∑
k=1

Nt∑
j=1

(
y
(k)
j − ŷ

(k)
j

)2
, (5.31)

where y
(k)
j represents the k-th observation (from the FEM) at j-th time step, ŷ(k)j

represents the k-th response (from the ROM) at j-th time step, Nt corresponds to the
number of time steps, and Nm represents the number of observations considered. The
performance and accuracy of the proposed ROM is then evaluated and discussed.

Example 4. In this example, the ROM is created considering a reinforced concrete
building with columns of rectangular cross section 1.00 × 0.80 [m], each of 3.5 [m]
height. Beams have rectangular cross sections 0.80 × 0.60 [m] and 6.0 [m] length.
This configuration gives a building with a total height of 42 [m] and an 18 [m]
width. The reinforced concrete density is 2500 [kg/m3], the reinforced concrete
elasticity modulus is taken as 25 [GPa], and beams are subjected to an overload
of 3600 [kg/m]. The solid core foundation has a half-width of 10 [m] and an
embedment depth of 2.5 [m]. The reinforced concrete material properties for the
foundation are taken such that the density is 600 [kg/m3] and the elasticity modulus
of 30 [GPa]. The building model is assembled using standard two-node frame
finite elements, and static condensation, as described in § 5.2, is performed to
the horizontal degree of freedom. The resulting mass, damping, and stiffness FE
matrices are thus coupled to the soil-foundation system, as described in § 5.3, to
produce theROMthat accounts for SSI. TheROMis exited using the true foundation-
input motion obtained using the transfer function in Figure 7.6 and 7.7 so that the
input signal are the same in both the ROM and FEM.

On the other hand, for the high-fidelity finite element method, the soil domain is
represented as an elastic, homogeneous, and semi-infinite mediumwith density ρs =

2000 [kg/m3], Poisson’s ratio ν = 0.35, and shear wave velocity Vs = 100 [m/s].
The soil and foundation domains are modeled as four-node two dimensional plane
strain quadrilateral elements, and the building structure domain is modeled as two-
node linear elastic frame elements, with the same characteristics as described above.
All material models assigned to structural and soil elements are isotropic linear and
elastic, and no viscous damping is added. The connection between solid and
structural elements as well as the rigid diaphragm behavior of the foundation are
enforced using kinematic constraints. The dimension of the truncated domain is
taken such that the horizontal direction is Lx = 70 [m] and the vertical direction
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is Lz = 75 [m]. Perfectly-matched layers for plane-strain in two dimensions are
employed, and a PML of 10 [m] thickness is provided around the near-field to
truncate the semi-infinite half space. The domain reduction method (DRM) is
chosen in order to transmit the ground motion of an in-plane sv-wave propagating
upwards inside the near-field domain. The FEM is subjected to an incident ground
motion Ûug(t) prescribed as an effective Ricker function with f0 = 2.0 [Hz] the
characteristic frequency, t0 = 1.0 [s] is the time of peak velocity, and a peak ground
velocity of 0.1 [m/s].

First, NIST recommendations, described in [138], are employed to estimate soil
spring and dashpot coefficients in the ROM. NIST impedances and foundation input
motion transfer functions for analyzing SSI in shallow foundations is meant to be
used in 3D settings. However NIST methodology is general enough to be applied
in 2D settings. Therefore, the true 2D impedance functions for plane-strain settings
are used instead of the 3D impedance functions available in NIST; and the true
2D foundation input motion (FIM) transfer function (TF) in plane-strain conditions
are used instead of those available in NIST1. In this regard, spring coefficients
kx = 1.2505 · 106 [N/m], kz = 5.3198 · 106 [N/m], and dashpot coefficients cx =

4.065 · 105 [N s/m], cz = 0.866 · 105 [N s/m] are obtained using 2D impedance
functions provided in Figure 7.2 to 7.4. The nodal time history response at three
different locations in the building are represented in Figure 5.5. The finite element
model responses are shown in solid-blue line, while the ROM are displayed in
dashed-red lines. The total horizontal uh

X and vertical uh
Y displacement of the first-

modal height, the total-horizontal ur
X and vertical ur

Y displacement of the roof, and
the total horizontal displacement ugX and rotation ugθ of the foundation are displayed
from left to right.

The responses illustrated in Figure 5.5 show that the elongated period as well as the
radiation damping are not well captured when the NIST recommendations are used.
Although the time history signals seems to agree, the model error obtained using
NIST is 0.0651 for the entire simulation.

Second, the nodal time history response at three different locations are computed
once again, but the spring and dashpot coefficients are judiciously taken as kx =

1.674 · 106 [N/m], kz = 4.875 · 106 [N/m], cx = 2.072 · 105 [N s/m], and cz =

2.965 ·105 [N s/m]. The responses are illustrated in Figure 5.6, and in this case they
match the elongated period as well as the radiation damping. In addition, note how

1The latter approach allows to have a fair comparisson between NIST and the ROM in 2D.
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Figure 5.5: Displacement time history responses evaluated at the roof at coordinates
(x, z) = (−9, 42) [m], first-modal height at coordinates (x, z) = (−9, 28) [m], and the
foundation base at coordinates (x, z) = (0,−2.5) [m] of the building. The finite
element model responses are shown in solid-blue line, and the ROM using NIST
recommendations are displayed in dashed-red lines.

Figure 5.6: Displacement time history responses evaluated at the roof at coordinates
(x, z) = (−9, 42) [m], first-modal height at coordinates (x, z) = (−9, 28) [m], and
the foundation base at coordinates (x, z) = (0,−2.5) [m] of the building. The
finite element model responses are shown in solid-blue line, and the ROM using a
judiciously chosen set of spring/dashpot values is displayed in dashed-red lines.
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different in this case the value cz is compared to NIST, and how well the elongated
period as well as the radiation damping are well captured. The model error obtained
using this set of spring and dashpot coefficients is 0.0130, which is five times smaller
compared to NIST.

The previous example makes it evident that if the soil spring and dashpot coefficients
are properly estimated, then the results of the ROM are identical to the FEM for the
SSI problem. The framework that allows to estimate these coefficients accurately is
presented in Chapter 6. This framework is termed as ensemble-Kalman inversion
finite element (EnKI-FEM) model updating.

5.6 Conclusions
This chapter presented a suitable reduced order model (ROM) for time domain
analysis of SSI problems. TheROM, illustrated in Figure 5.3 is essentially performed
in three steps: (1) the dynamics effects of a rigid foundation is studied alone; (2) the
building system complexity is simplified using a static condensation method; and
(3) the latter simplifications are integrated to generate the reduced order model for
the soil-structure interaction.

The ROM, developed in this manner, provides the following advantages: (1) describ-
ing the soil behavior/influence as a set of spring and dashpot coefficients/elements
allows this formulation to be simple enough to be incorporated in any FEM soft-
ware; (2) modeling the soil as horizontal and vertical spring and dashpot elements
in the ROM offers the advantage that it can be condensed into a translational and
rotational degrees of freedom in a simple manner; and (3) a more sophisticated non-
linear material behavior as well as contact behavior between soil and foundation can
be incorporated at the spring and dashpot coefficients/elements.

It is important to mention that the proposed ROM provides accurate results–i.e.,
similar responses to a full-finite element model, as long as the spring coefficients
kx, kz and dashpots coefficients cx, cz are computed accurately. NIST [138] provides
simple recommendations, however, the results presented in Example 4 shows that
period elongation and radiation damping are not well capture. Therefore, a better
framework/recommendation to compute the frequency-independent soil spring and
dashpot coefficients is required.
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C h a p t e r 6

FINITE ELEMENT UPDATING FOR PARAMETER
ESTIMATION VIA ENSEMBLE KALMAN INVERSION

The concept of parameter estimation refers to a methodology of developing a mathe-
matical framework in which states as well as parameters can be identified from data.
This framework is in general known as system identification, and basically requires
to accomplish the following steps: (1) measurements of the input and output signals
from the system, (2) selection of a mathematical model that represents the desired
phenomenon, (3) application of an estimation method to assess the parameter values
in the candidate model, and (4) evaluation of the estimated model to check if the pa-
rameters are adequate or need to be updated. In real civil engineering applications,
usually the mathematical models and data come from the finite elements model and
the monitored structure. However, the estimation framework to assess the parameter
values and correction feedback to evaluate the updated model can be addressed in
different ways. Bayesian updating approach [18, 19, 87, 88], Kalman filter [83, 84]
for linear systems, and its extension to non-linear systems1 [68, 69, 75, 82, 92]
have been commonly used as frameworks to identify states and parameters in the
last 50 years. In particular, as from its development by Evensen [49] in 1994, the
Ensemble Kalman filter2 (EnKF) has had enormous impact on applications of data
assimilation to state and parameter estimation [25, 50, 118]. The method essentially
uses an ensemble of states and parameters that are sequentially updated by means
of the Kalman formula which blends the model and data available at a given time.
This simple idea has motivated researchers to develop several variants of EnKF for
state and parameter estimation in dynamic systems [1, 25, 50].

As a result, and motivated by ensemble Kalman-based approaches, Iglesias et al.
[72] proposed a novel application of an iterative ensemble Kalman method for the
solution of inverse problems. The inverse problem is solved by introducing artificial
dynamics based on state augmentation, which is typically used for joint state and

1The extended Kalman filter (ExKF) and the unscented Kalman filter (UnKF) are the most used
in civil engineering for non-linear problems.

2In EnKF, the solution is solved in the affine space spanned by the ensemble. The ensemble,
which evolves in time according to the nonlinear dynamical model, provides a representation of the
subspace where the update is computed at each analysis time. The ensembles also lead to an efficient
algorithm where the state error covariance matrix is not computed and is only implicitly used.
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parameter estimation in the context of EnKF [6]. This approach for parameter
estimation turns out to be very robust, accurate, and simple to implement, and is
used as building block for the development of the ensemble-Kalman inversion finite
element model (EnKI-FEM) updating framework for parameter estimation.

In this chapter, the inverse problem based on Ensemble Kalman inversion (EnKI)
for the parameter estimation of the soil-structure interaction problem is formulated.
In this regard, the forward model for SSI is first introduced, and then the inverse
problem for parameter estimation is formulated. Some properties of EnKI-FEM
updating formulation are also discussed, and some examples to demonstrate the
robustness and accuracy of the proposed framework for parameter estimation are
presented under the context of soil-structure interaction problems.

6.1 The forward model
The forwardmodel in this case represents the solution of the soil-structure interaction
problem, using for instance, methods presented in § 4.2 or 5.3. Mathematically
speaking, the forward model can be understood as,

Given u ∈ H1, evaluate y = G(u) ∈ H2 , (6.1)

whereH1 := Rm andH2 := Rn are separable Hilbert spaces3, the vector y is known
as the observation vector–i.e., the data, the vector u ∈ Rm contains the dynamical
system parameters–i.e., to be identified, and G(u) : Rm → Rn is the linear or
nonlinear observation operator–i.e., the mathematical model.

The nonlinear observation operator is obtained using the reduced order model for
the soil-structure interaction problem, as presented extensively in § 5.3. For this
purpose, we consider a planar N − 2 story building and foundation as shown in
Figure 6.1. We assume that each floor acts as a rigid diaphragm, thus the building’s
mass can be lumped at the floor levels. We also assume that rotational inertia of each
story with respect to a horizontal axis is negligible, as well as the axial deformations
of the columns. Therefore, there is only one translational degree of freedom on each
floor. In addition, we assume a rigid rectangular foundation of half-length B and
depth D sitting on an elastic half-space, for which 2 additional degrees of freedom
are added because of the flexibility of the soil.

3A topological space is said to be separable if it has a countable dense subset. In other words,
this means that a Hilbert space is separable if and only if it admits a countable orthonormal basis.
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Figure 6.1: The flexible-base soil-structure interaction system in which x1, . . . , xN−2
represents the relative displacement of each floor, xN−1 represents the relative de-
formation of the soil, and xN the rigid rotation of the foundation.

Under the previous assumptions, the equation of motion (see Equation (5.21) for
derivation details) of the system under such conditions is written as:

M Üx(t) + C(u) Ûx(t) +K(u) x(t) = −ML Üug(t) , with t ∈ [0,Tsim] , (6.2)

where Üx(t), Ûx(t), x(t) ∈ RN are the acceleration, velocity, and displacement vector
responses. The matrices M,C(u) ,K(u) ∈ RN×N are mass, damping, and stiffness
matrices of the flexible-base soil-structure interaction system. The vector L ∈ RN

is the seismic influence vector. The function Üug(t) is the free-field (or foundation
input motion) acceleration. The vector u = (kx, kz, cx, cz)

> collects the soil spring
and dashpot coefficients needed to emulate the flexibility and irradiated energy of
the soil, and Tsim ∈ R+ represents the simulation time.

We further introduce the state space representation of Equation (6.2) to obtain a first
order differential equation,[

Üx

Ûx

]
=

[
−M−1C(u) −M−1K(u)
In×n On×n

] [
Ûx

x

]
−

[
L

On×1

]
Üug(t) . (6.3)

The latter allows to compute the system’s response by using Runge-Kutta methods
for the integration of Equation (6.3). Note that one can use the Newmark method
for integrating Equation (6.2) directly to obtain the system response as well.
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In our framework, the observation vector y(t) describes the absolute position x(t)

of each degree of freedom; hence, the absolute displacements of the flexible-base
soil-structure interaction system can be written as:

y(t) = h(x, t) = H x(t) =



1 0 0 · · · 0 1 h̃1

0 1 0 · · · 0 1 h̃2
...

. . .
...

0 0 0 · · · 1 1 h̃n−2

0 0 0 · · · 0 1 0
0 0 0 · · · 0 0 1


x(t) . (6.4)

Note that the observation vector y(t) is a linear operator in this case, and h̃ j = h j +D

is the j-th total floor height.

6.2 The inverse problem
We are interested in the inverse problem of finding u ∈ H1 from y ∈ H2 such that,

y = G (u) + η , with η ∼ N(0, Γ) . (6.5)

Once again, H1 := Rm and H2 := Rn are separable Hilbert spaces, the vector
u comprises all the unknown parameters that we want to estimate, the variable y

is known as the observation vector and consists of the ground truth quantities of
interest, and η is a zero-mean Gaussian noise with covariance Γ. The nonlinear
observation operator (a.k.a. forward model) G(u) : Rm → Rn maps the parameter
space to the data space. In this thesis, we work with one type of data-set: the
displacement time series recorded at the floors and foundation levels and computed
using the model described in § 4.2.

We would like to apply the EnKF to Equation (6.5); however, the observation
operator G(·) is in general nonlinear, and this does not render our system in a form
where we can readily apply it. Thus, we introduce a new variable w = G(u) and
rewrite the equation (6.5) as:

w = G (u) ,

y = w + η . (6.6)

The key point of this change of variable is that the data y is now linearly related to
the variable z = (u,w)>. We then introduce the following dynamical system, taking
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y j+1 = y as the given data:

u j+1 = u j ,

w j+1 = G
(
u j

)
,

y j+1 = w j+1 + η j+1 . (6.7)

Therefore, if we introduce not only the new variables z = (u,w)>, but also the
nonlinear map Ψ(z) = (u,G(u))> and linear operatorsH = [O, I], and its adjoint
H⊥ = [I,O], then we can write the dynamical system in the form:

z j+1 = Ψ
(
z j

)
,

y j+1 =H z j+1 + η j+1 , (6.8)

where I is the identity matrix, O represents a zero matrix, and H z = w and
H⊥ z = u.

Remark. Given a single instance of data y, typically one of the following criterion
is used to construct artificial data y j for the filtering algorithm:

y j+1 = y + sω j+1 ,

where ω ∼ (0, Γ), and s = 0 if is an unperturbed observation, or s = 1 if is a
perturbed observation.

6.3 The ensemble Kalman inversion for parameter estimation
We now apply the EnKF to the dynamics/data model (6.8). We obtain for each
ensemble n = 1, . . . , N ,

ẑ(n)j+1 = Ψ
(
z(n)j

)
,

z j+1 =
1
N

N∑
n=1

ẑ(n)j+1 ,

Ĉ j+1 =
1
N

N∑
n=1

(
ẑ(n)j+1 − z j+1

)
⊗

(
ẑ(n)j+1 − z j+1

)
,

z(n)j+1 =
(
I −K j+1H

)
ẑ(n)j+1 +K j+1y

(n)
j+1 , (6.9)

with the Kalman gain

K j+1 = Ĉ j+1H>S j+1 ,

S j+1 =
(
H Ĉ j+1 H> + Γ

)−1
. (6.10)
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We now use the specific structure on Ψ, z, and H arising in the inverse problem and
given in equation (6.8); this results in block form vectors and matrices. First, we
note that

Ĉ j+1 =


Cuu

j+1 Cuw
j+1(

Cuw
j+1

)>
Cww

j+1

 ,
z̄ j+1 =

[
ū j+1

w̄ j+1

]
, (6.11)

where,

ū j+1 =
1
N

N∑
n=1

u(n)j , w̄ j+1 =
1
N

N∑
n=1

G
(
u(n)j

)
:= G j , (6.12)

and,

Cuw
j+1 =

1
N

N∑
n=1

(
u(n)j − ū j

)
⊗

(
G

(
u(n)j

)
−G j

)
,

Cww
j+1 =

1
N

N∑
n=1

(
G

(
u(n)j

)
−G j

)
⊗

(
G

(
u(n)j

)
−G j

)
. (6.13)

In Equation (6.11), the covariance matrix Cww
j+1 denotes the empirical covariance of

the ensemble in data space, Cuu
j+1 denotes the empirical covariance of the ensemble

in space of the unknown u, and Cuw
j+1 denotes the empirical cross-covariance from

data space to the space of the unknown.

Noting that Sj+1 =
(
Cww

j+1 + Γ
)−1

, we obtain

K j+1 =


Cuw

j+1

(
Cww

j+1 + Γ
)−1

Cww
j+1

(
Cww

j+1 + Γ
)−1

 . (6.14)

Combining equation (6.14) with the updating equation in (6.9), it follows that

u(n)j+1 = H⊥z(n)j+1 = u(n)j + Cuw
j+1

(
Cww

j+1 + Γ
)−1 (

y
(n)
j+1 −G

(
u(n)j

) )
. (6.15)

The previous artificial dynamics, based on state augmentation in 6.8, allows the use
of sequential EnKF for the solution of the inverse problem presented in 6.5. In
this regard, the proposed EnKI algorithm (described in [72]) can be employed for
estimating soil parameters in the following manner,
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Algorithm 1 Iterative ensemble method for inverse problems applied to soil-
structure interaction.

1: The initialization step: Let {z(n)0 }
N
n=1 be the initial ensemble.

2: for j = 0, . . . , J do
3: The Prediction step: Propagate, under the artificial dynamics z j+1 = Ψ(z j),

the ensemble of particles

ẑ(n)j+1 = Ψ
(
z(n)j

)
.

From this ensemble, we define a sample mean and covariance as follows:

z j+1 =
1
N

N∑
n=1

ẑ(n)j+1 ,

C j+1 =
1
N

N∑
n=1

(
ẑ(n)j+1 − z j+1

)
⊗

(
ẑ(n)j+1 − z j+1

)
.

4: Analysis step. Define the Kalman gain Kn by

K j+1 = C j+1H>
(
H C j+1 H> + Γ

)−1
,

where H> is the adjoint operator of H = [O, I]. Update each ensemble
member as follows

z(n)j+1 =
(
I −K j+1H

)
ẑ(n)j+1 +K j+1y

(n)
j+1 ,

where

ŷ
(n)
j+1 = y + η

(n)
j+1 ,

and the η(n)j+1 are an independent identically distributed collections of vectors
indexed by (n, j) with η(1)1 ∼ N(0, Γ).

5: Compute the mean of the parameter update

u j+1 =
1
N

N∑
n=1

u(n)j+1

and check for convergence (see discussion below).
6: end for

The implementation of Algorithm 1 can be represented schematically as shown in
Figure 6.2. Note how each iteration of the ensemble Kalman inversion algorithm
breaks into two parts: a prediction step and an update step. The prediction step



89

maps the current ensemble of particles into the data space, and thus introduces
information about the forwardmodel. The update (analysis) stepmakes comparisons
of the mapped ensemble in the data space, with the data; it is at this stage that the
ensemble is modified in an attempt to better match the data.

Figure 6.2: Ensemble-Kalman inversion finite element model updating framework
applied to SSI. (a) Full finite element model from which the "true" responses are
computed (observations), and (b) reduced order method from which the spring and
dashpot coefficients are estimated. Note how each iteration of the ensemble Kalman
inversion algorithm breaks into two parts: a prediction step and an update step.

It is also worth mentioning a few computational and numerical aspects regarding
the EnKI-FEM implementation for SSI problems:

(1) The criterion to stop the EnKI is taken such that a relative change of 0.001 in all
the parameters is reached in two consecutive EnKI iterations, or a maximum
number of 500 iterations is reached.

(2) The initial parameter values {u(n)0 }
N
n=1 are taken to coincide with the lumped

stiffness and dashpot coefficients obtained using NIST [138].

(3) The positiveness of the stiffness and dashpot coefficients in the parameter
vector u = (kx, kz, cx, cz)

> are enforced through the change of variables ui ∈ R,
exp(ui) : R→ [0,∞) to which the EnKI is applied.
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6.4 Properties of the iterative ensemble Kalman inversion method
The EnKI algorithm has the following invariant subspace property:

Theorem 6.4.1. Define A = span{u(n)0 }n∈N, then for all j ∈ {0, . . . , J} and for all
n ∈ {1, . . . , N}, u(n)j+1 ∈ A.

Proof. We proceed by induction. Let u j denote the collection of {u(n)j }n∈N. First,
let j ∈ {0, . . . , J} and n ∈ {1, . . . , N} and define

d(n)j :=
(
Cww

j+1 + Γ
)−1 (

y
(n)
j+1 −G

(
u(n)j

) )
,

Dmn(u j) := 〈d(n)j , G
(
u(m)j

)
−G j〉 .

Furthermore we can write,

u(n)j+1 = u(n)j −
1
N

N∑
m=1

Dmn(u j)

(
u(m)j − u j

)
,

and from definition of G j and bilinearity of the inner product, it follows that

N∑
m=1

Dmn(u j) = 0 .

Therefore the update expression may be rewritten, for all j ∈ {0, . . . , J} and for all
n ∈ {1, . . . , N}, as

u(n)j+1 = u(n)j −
1
N

N∑
m=1

Dmn(u j) u
(m)
j .

Hence if the property holds for all the particles of the time step j, it will clearly be
the case for all the particles at time step j + 1. �

Moreover, two remarks can be stated from Theorem 6.4.1 and Algorithm 1:

Remark. The choice of the initial ensemble, i.e., {u(n)0 }n∈N is key to the success of the
algorithm, since the algorithm remains in the initial ensemble space. In this regard,
the number of particles (or ensemble) must be at least the number of parameters to
be identified.

Remark. Enough data needs to be provided so that the parameters can be identified.
In other words, the identifiability conditions must be guaranteed.

Remark. Algorithm 1 may be viewed as a derivative-free optimization method.
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6.5 Ensemble-Kalman inversion finite element model updating framework
In this section, two numerical examples are provided to verify the proposed finite
element model updating framework. For each example, the finite element model
and response simulation are performed using Seismo-VLAB [96–98] assuming a
set of realistic soil parameter values. The material parameters are later treated as
unknown and then identified. In particular, four physical parameters characterizing
the soil behavior are defined in the finite element model to be identified. The EnKI
is implemented in MATLAB [110] and interfaced with Seismo-VLAB for finite
element response computations. A Ricker pulse [124] ground motion is used for the
response history simulations. The simulated displacement response time histories
are artificially perturbed and used as the measured response data in the estimation
phase. The performance of the proposed framework is then evaluated and discussed.

Example 5. In this example, the ROM is created considering a reinforced concrete
building with columns of rectangular cross section 1.00 × 0.80 [m], each of 3.5 [m]
height. Beams have rectangular cross sections 0.80 × 0.60 [m] and 6.0 [m] length.
This configuration gives a building with a total height of 42 [m] and an 18 [m]
width. The reinforced concrete density is 2500 [kg/m3], the reinforced concrete
elasticity modulus is taken as 25 [GPa], and beams are subjected to a overload of
3600 [kg/m]. The solid core foundation has a half-width of 10 [m] and embedment
depth of 2.5 [m]. The reinforced concrete material properties for the foundation are
taken such that the density is 600 [kg/m3] and the elasticity modulus is 30 [GPa].

The buildingmodel is assembled using standard two-node frame finite elements, and
static condensation, as described in § 5.2, is performed to the horizontal degree of
freedom. The resultingmass, damping, and stiffness FEmatrices are thus coupled to
the soil-foundation system, as described in § 5.3. The observations required for the
EnKI framework are computed using the ROM developed in this manner. Thus, no
model error is generated in this analysis, since the same ROM is employed to obtain
the observations as well as response simulation of the updated model. The ROM is
subjected to a Ricker pulse ground motion, and the response history simulations are
artificially perturbed to construct artificial data.

The performance of the ensemble-Kalman inversion finite element model updating
framework is evaluated considering: a number of ensembles of n = 5, 10, 25, 50, 100,
an initial ensemble estimation of 10%, 25%, 50%, 100% larger than the true param-
eter values, and an artificially perturbed noise increase of 10%, 1%, 0.1% of the
maximum observation responses. The analysis is performed on a base of a maxi-
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mum number of J = 25 iterations.

Figure 6.3 illustrates the normalized `2-error at each EnKI-FEM updating iterations.
On the vertical plots the artificially perturbed noise is changed, while on the hor-
izontal plots the initial ensemble estimation is changed. Each plots presents the
normalized error for different numbers of ensembles.

Figure 6.3: `2-norm misfit error between the finite element model (FEM) and the
reduced order model (ROM) for different percentage of artificially perturbed data,
initial ensemble estimation, and number of ensemble.

Figure 6.3 illustrates that at each iteration the `2-norm misfit error always decreases.
As expected, the smallest error is obtained when the amplitude of the perturbed
artificial data is small, the initial ensemble estimation is closer to the true values,
and the number of ensembles is large. The increase on the perturbed artificial data,
for a given initial ensemble estimation, requires the EnKI-FEM update to employ
more iterations to reach convergence tolerance. However, a small amplitude on the
artificially perturbed data generates the algorithm to perform better. Starting too far
from the true values obliges the EnKI-FEM update to iterate more; also the model
error tends to be larger even when a small number of ensembles are used. In general,
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using 100, 50, or even 25 ensembles achieves the same model accuracy for an initial
ensemble estimation and perturbed artificial data value.

In addition, the convergence of the soil parameters using the EnKI-FEM updating
algorithm is next studied. Figure 6.4 illustrates how the estimation of the soil spring
and dashpot coefficients evolves in each iteration. In this figure, the coefficients have
been normalized by their true values, and an amplitude of the perturbed artificial
data of 1% is kept constant.

Figure 6.4: Normalized soil spring and dashpot coefficients using a 1% of artifi-
cially perturbed data, different initial ensemble estimation, and different number of
ensemble.

Figure 6.3 shows that the EnKI-FEM updating algorithm converges always to the
true parameters. Additionally, for a few particles–i.e., N = 5, the EnKI-FEM
updating becomes sensitive to the random ensemble generation. It can be seen in
Figure 6.3 that only in 2 cases for N = 5 did not reach the true values; however, if
the same analysis is repeated with another seed, then the method will converge. A
large number of ensembles (desirable) allows the EnKI-FEM updating framework
to converge faster, however the computational time at the analysis phase increases,
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since more finite element analyses are required. Therefore, a good compromise
between ensemble number and computational time should be further investigated.

In general, the method always converges to the true parameters after a large number
of iterations. However, a minimum number of ensembles are required, or at least,
greater than the number of identified parameters to guarantee convergence. This is
in fact consistent with Theorem 6.4.1, since a number of ensembles n < 4 is not
able to span properly the parameter space.

Example 6. In this example, the observations required for the EnKI-FEM updating
framework are computed using a high-fidelity finite element method. This means
that the soil domain is represented as an elastic, homogeneous, and semi-infinite
medium with density ρs = 2000 [kg/m3], Poisson’s ratio ν = 0.35, and shear
wave velocity Vs = 100 [m/s]. The soil and foundation domains are modeled
as four-node two dimensional plane strain quadrilateral elements and the building
structure domain is modeled as two-node linear elastic frame elements, with the
same characteristics as in the previous examples. All material models assigned to
structural and soil elements are isotropic linear and elastic, and no viscous damping
is added. The connection between solid and structural elements as well as the rigid
diaphragm behavior of the foundation are enforced using kinematic constraints.
The dimension of the truncated domain is taken such that the horizontal direction
is Lx = 70 [m] and the vertical direction is Lz = 75 [m]. Perfectly-matched layers
for plane-strain in two dimensions are employed, and a PML of 10 [m] thickness is
provided around the near-field to truncate the semi-infinite half space. The domain
reduction method (DRM) is chosen in order to transmit the ground motion of an
in-plane sv-wave propagating upwards inside the near-field domain. The incident
ground motion Ûug(t) used in the finite element models is prescribed as an effective
Ricker function with f0 = 2.0 [Hz] the characteristic frequency, t0 = 1.0 [s] the time
of peak velocity, and a peak ground velocity of 0.1 [m/s].

On the other hand, the reduced order model–presented in Equation (5.21)–is em-
ployed as the forward model. The parameter vector u = (kx, kz, cx, cz)

> is identified
using the EnKI-FEM framework illustrated in Figure 6.2. In the EnKI-FEM updat-
ing framework, an artificially perturbed data of 1% is assumed, a number of N = 50
ensembles are used, a mean model of 20% standard deviation is generated, and the
initial ensemble is estimated using NIST [138] recommendations. It is important
to mention that model error is introduced in this case, since the ROM employed to
compute the response simulation of the updated model is different from the high-
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fidelity finite element from which the observations are obtained. Finally, the soil
parameters vector components, obtained using the EnKI-FEM updating framework,
are kx = 1.674 · 106 [N/m], kz = 4.875 · 106 [N/m], cx = 2.072 · 105 [N s/m], and
cz = 2.965 · 105 [N s/m], respectively.

The nodal time history response at three different locations are illustrated in Fig-
ure 6.5. In this figure, the blue-solid line represents the time history displacement
of the high-fidelity finite element model, while the red-solid line represents the
displacement responses obtained using the ROM and the identified soil parameters.
Note how the responses match the elongated period as well as the radiation damping
very well.

Figure 6.5: Displacement time history signals at first-modal height uh
X(t) at coor-

dinates (x, z) = (−9, 28) [m], the roof uh
r (t) at coordinates (x, z) = (−9, 42) [m], and

the foundation ugX,θ(t) at coordinates (x, z) = (0,−2.5) [m] of the building. The
high-fidelity finite element model responses are shown in solid-blue lines, and the
ROM responses are displayed in dashed-red lines.

In addition, Figure 6.6 shows the convergence of the soil parameters using the
EnKI-FEM updating framework. It can be seen in Figure 6.6(a) and (b) that the
particles in the ensemble converge tightly and quickly. In particular, Figure 6.6(a)
shows the evolution of the soil parameter values at each iteration. The variances
of the ensembles are indicated by the gray area. It can be seen that each soil
parameter converges to the mean after 5 iterations. Additional, Figure 6.6(b) shows
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the normalized `2-error obtained at each iteration. The final obtained error is 0.0130
after 6 EnKI iterations.

Figure 6.6: EnsembleKalman inversion finite element updating algorithm evolution.
On the left, the evolution of the soil parameters, and on the right the normalized
misfit `2-error obtained for each j-iteration between the FEM and ROM.

6.6 Conclusions
This chapter presented a robust framework for finite element model (FEM) updating.
The EnKI-FEM updating framework, illustrated in Figure 6.2, essentially integrates
two components: (1) a robust and efficient ensemble-Kalman inversion (EnKI)
method for parameter estimation, and (2) a sophisticated and reliable software,
Seismo-VLAB, for nonlinear seismicwave propagation and soil-structure interaction
simulation, to estimate time-invariant material soil parameters.

The performance of the proposed framework in terms of robustness, accuracy, and
convergence was illustrated through two verification examples. For each example,
the response of the ROM was simulated from the “true” finite element model,
and artificially perturbed data is constructed for the filtering algorithm. The so-
generated artificially perturbed data was then introduced into the proposed EnKI-
FEM updating framework and the unknown time-invariant soil parameters were
estimated. In particular, the estimation performance of the proposed framework
was found to be very good even when an initial ensemble estimation of 100%
difference was employed for the identification. The EnKI-FEM updating framework
showed always convergence, and the number of iterations required for convergence
depended on the number of ensembles, initial ensemble estimation, and weakly on
the magnitude of the artificially perturbed data.
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Example 6 showed that the EnKI-FEM model updating framework is efficient and
robust, even when there is modeling error. This fact can be attributed to the ROM
which captures very well the behavior of the high-fidelity finite element model.
However, further studies are needed to investigate modeling uncertainty (error) on
the performance of the proposed EnKI-FEM parameter estimation framework.

Lastly, it is important to mention that the proposed framework can be easily extended
to nonlinear finite elements (e.g., large-deformation, material non-linearity, and
contact) to model structural and/or geotechnical systems. Moreover, the EnKI-FEM
updating framework cannot only be limited to material parameters. It can also be
used to estimate input motion and initial configurations or states.
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C h a p t e r 7

APPLICATION: IMPROVING THE STATE-OF-PRACTICE
DIMENSIONLESS FREQUENCY ESTIMATION

7.1 Motivation
Accurate quantification of dynamic soil-structure interaction (SSI) effects is critical
in the design of earthquake resistant structures. Poorly estimated or neglected SSI
effects have been shown to yield unsafe or overly conservative designs, depending
on the resulting over- or under-estimation of the critical response of the structure.
Therefore, the effects of soil-structure interaction (SSI) have been extensively studied
the last few decades, and proper analysis for the linear elastic case in frequency
domain has been established successfully. However, SSI is rarely considered in the
design of building structures, and instead, buildings are frequently analyzed using
a rigid base assumption and quasi-static loading conditions that ignore SSI and
its dynamic nature. Acknowledging these shortcomings, the National Institute of
Standards and Technology (NIST) published in 2012 a set of recommendations on
time domain analyses of SSI for building structures compatible with standard finite
element packages for consideration in engineering design. The NIST GCR 12-917-
21 report introduced two fundamental simplifications to enable frequency domain
tools to be implemented in time domain analyses: (a) the use of frequency-dependent
foundation impedance values at the flexible-base frequency; and (b) the use of the
same phase for the foundation input motion (FIM) and the free field motion (FFM).
Pertaining to the above recommendations, there are no rigorous studies that seek to
quantify their accuracy relative to fully coupled finite element models (FEM), and
to examine the conditions under which changes in the input motion phase incurred
by the foundation embedment can be safely neglected.

In particular, the so-called flexible-base frequency suggested in NIST depends solely
on the structure-to-soil-wavelength ratio, which is assumed to be dominant during
the interaction. However, if such frequency exists for the combined system, it
must depend on the frequency of the input signal, foundation’s embedment ratio,
building’s aspect ratio, and soil’s Poisson ratio among others. In this chapter, we
propose a methodology to obtain the optimal dimensionless frequency at which
the frequency independent soil’s impedance should be obtained. The analysis
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is carried out using five dimensionless parameters, and the importance of each
dimensionless parameter to the estimation of the optimal dimensionless frequency
is investigated. We extract the “true” frequency of the interaction from fully coupled
2D SSI simulations using the EnKI-FEM framework. The data obtained in this
manner is used in a machine learning framework to map these five dimensionless
parameters to such a frequency. The generated mapping is finally validated, and a
significant improvement with respect to the state-of-practice is shown.

7.2 The problem statement and method of analysis
We want to evaluate the dimensionless frequency (a∗0) at which a SSI configuration
responds when it is subjected to a given input motion. This goal is achieved using a
2D reduced order model (ROM) that preserves the characteristics of the surrounding
soil as well as the ability of emulating the inertial and kinematic interaction effects.
The ROM, as proposed in [138–140], employs frequency independent soil spring
and dashpot placed on the foundation interface that emulates the surrounding soil.
The dimensionless frequency, at which soil spring and dashpot coefficients of the
combined system respond, are estimated using ensemble Kalman Inversion (EnKI)
[50, 72, 102]. The EnKI requires data that is generated from a set of 2Dfinite element
model with appropriate absorbing boundary conditions [51, 94, 95] (also known as
the direct modeling approach [157–159]). The data is generated varying the shear
wave velocity, Poisson’s ratios, building’s height, and foundation’s geometry, so
that we span the range of real case scenarios. These cases are constructed using
Dimensional analysis [31] to avoid similar solutions [40, 55, 100].

In the following subsections, we proceed to describe in details how dimensional anal-
ysis is employed to span the parameter space. We then present how the impedance
functions and foundation input transfer functions are estimated using the direct mod-
eling method. We then use the previous results and describe how EnKI is employed
to estimate the dimensionless frequency that minimizes the discrepancies between
the finite element model and the ROM. Finally, we use Random Forest to obtain a
dimensionless frequencies mapping given a set of dimensionless parameters. The
mapping is validated using a different set of SSI configurations and real-earthquake
input motions.

Dimensional analysis for spanning the parameter space
In mathematical terms, a physically-meaningful relation between the response of a
system (termed u for the purpose of this discussion) and its parameters and variables
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can be expressed as a dimensional homogeneous equation,

u = f(x̂ ; q̂) , (7.1)

with q̂ = (q1, q2, . . . qn)
> and x̂ = (x1, x2, . . . xd)

>. The vector x̂ ∈ Rd represents
the independent variables of the system (traditionally, in physical systems, these
would be three spatial coordinates and time), q̂ ∈ Rn represents the n-physical
parameters, and f : Rd ×Rn → R represents a function whose structure will depend
on the nature of the physical phenomenon and the number k of physical dimensions.
Since the aim ofDimensional Analysis [31, 100] is discerning the role of the physical
parameters, we will not show x̂ explicitly henceforth.

Without loss of generality, it is assumed that the k elements of the basis correspond
to the first entries of the vector, for which qi is the i-th parameter that does not
belong to the basis, and q1, · · · , qk are the basis parameters. Returning to Equa-
tion (7.1), we assume that the left-hand side is divided by a characteristic value,
uch = uch(q1, . . . , qk), yielding a non-dimensional value, U. As this member is
dimensionless, so must be the right-hand side. In mathematical terms this implies:

U =
u

uch
= F(π̂) , (7.2)

with π̂ = (Π1,Π2, . . . ,Πm)
>, and π̂ ∈ Rm the vector of the m-dimensionless

parameters constructed from the q̂ ∈ Rn vector of n-physical variables by solving
m = n − k dimensionless equations from a set of k base units. In this regard, the
so-called Π groups can be expressed as

Πi =
(qi)

ai

(q1)
a2 · · · (qk)

ak , (7.3)

where the exponents ai: a1, . . . , ak are set to ensure that the final result is dimen-
sionless, thus, the exponents are either integer or rational numbers.

We consider for the soil-structure interaction problem a building (characterized
by its first modal mass, height, and fundamental period), a rectangular shallow
foundation (characterized by its homogeneous density and by two linear-elastic
isotropic constants), the underlying soil half-space (characterized by its density and
by two linear-elastic isotropic constants), and the seismic loading characteristics
(represented in our case by a Ricker pulse [124] of a given dominant frequency and
dominant acceleration amplitude). A brief description of the physical parameters qi

that govern this phenomenon, as well as their physical dimensions, are provided in
Table 7.1.
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Parameters
Variable Dimension Description of the physical variable

Tb T Building’s fundamental period
hb L Building’s first-modal height
B L Building foundation’s half-width
D L Building foundation’s embedment
mb M Building’s first-modal mass
ρ f ML−3 Foundation’s density
ν f − Foundation’s Poisson’s ratio
ρs ML−3 Soil’s density
νs − Soil’s Poisson’s ratio
Vs LT−1 Soil’s shear-wave velocity
Vf LT−1 Foundation’s shear-wave velocity
ap LT−2 Ground’s acceleration amplitude
fp T−1 Ground’s dominant energy’s frequency

Table 7.1: The n-physical parameters of the SSI problem to be considered in the
dimensional analysis.

The response of the SSI system (represented by u, not necessarily a displacement)
in the idealized SSI context can be written in terms of the physical parameters q̂
listed in Table 7.1 as,

u = f
(
Tb , hb , B,D,mb , ρ f , ν f , ρs , νs,Vs,Vf , ap , fp

)
. (7.4)

Note that in Equation (7.4), the number of variables for the SSI problem are thirteen
(n = 13), whereas the number of independent units for this case are three (k = 3),
i.e., time T , length L, and mass M . Thus, the number of dimensionless groups
that can be found is ten (m = 10). We next consider a dimensional basis from the
parameters in Table 7.1. The selected parameters are B (which provides relative
length to characterize the geometry), Vs (which defines a characteristic time in
conjunction with B), and ρs (to represent inertia). This choice is arbitrary inasmuch
as there are other possible bases that could provide an equally valid dimensional
basis. In this work, we assume that u represents a frequency of the SSI system. A
characteristic frequency is given by the Ricker highest energy’s frequency (∼ fp),
thus U = u/ fp in our case. Equation (7.4) can thus be rewritten in dimensionless
fashion:

U = F
(
TbVs

B
,

hb

B
, 1,

D
B
,

mb

ρs B3 ,
ρ f

ρs
, ν f , 1, νs, 1,

Vf

Vs
,

apB

V2
s
,

Vs

fp B

)
= F

(
B

TbVs
,

hb

B
,

D
B
,

mb

ρs B3 ,
ρ f

ρs
, ν f , νs,

Vf

Vs
,

apB

V2
s
,
fp B
Vs

)
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= F(Π1,Π2,Π3,Π4,Π5,Π6,Π7,Π8,Π9,Π10) . (7.5)

Let us briefly analyze these dimensionless groups, and argue their relative impor-
tance. Π1 represents the ratio between the wave-length traveling in the soil over
the wave-length traveling in the building, Π2 provides a measure of the objective
slenderness of the building (inertial interaction), and Π3 quantifies the influence of
the coupling between soil and foundation (kinematic interaction). These parameter
play an important role in the SSI system, and they must be kept. However, assuming
a rigid foundation behavior allows to neglect Π6, and Π8, and since the density of
soil and reinforced concrete are similar–i.e., Π5 ∼ 1, this parameter can be removed
from the list. For linear elasticity to be valid, Π9 � 1; thus we can ignore this
parameter as well. In this regard, we could further reduce the parameter space as,

U = F(Π1,Π2,Π3,Π7,Π10) . (7.6)

Based on these five dimensional parameters, we consider a set of three different
buildings with fixed-base-fundamental period Tb ∼ 0.5, 1.0, 1.5 [s], fixed first modal
height hb ∼ 15.0, 30.0, 40.0 [m], foundation depth D = 1.0, 2.5, 5.0, 10.0, 20.0 [m],
and supported on ten different soils with Poisson’s ratios νs = 0.25, 0.35, 0.45,
and shearwave velocitiesVs = 100, 125, 150, 175, 200, 225, 250, 300, 400, 500 [m/s],
subjected to Ricker pulse with central frequency fp = 1, 2, 4 [Hz]. In the dimen-
sionless parameter space, the structure-to-soil wavelength ratioΠ1 ∈ [0.01, 0.2], the
building-aspect ratioΠ2 ∈ [1.5, 4.0], and the foundation aspect ratioΠ3 ∈ [0.1, 2.0],
the soil’s Poisson ration Π7 ∈ [0.25, 0.45], and signal-to-soil wavelength ratio
Π10 ∈ [0.02, 0.4]. We highlight that the range of parameters Π1, Π2, and Π3 are
chosen to be consistent with the range of applicability presented in Stewart et al.
[140].

Soil impedances in frequency domain
Seylabi et al. [131, 132] developed a method to extract the impedance functions of a
semi-infinite half-space fromafinite elementmodel. The approach is general enough
that can be applied equally well to flexible interfaces and to three-dimensional
problems. However, we use this method considering a rigid interface and a two-
dimensional plane-strain problem.

The motion of a rigid foundation interface in a plane-strain setting is shown in
Figure 7.1. The motion is described by three degrees of freedom: the horizontal,
the vertical, and the rotational motions denoted here by ∆x(t), ∆z(t), and θ(t),
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Figure 7.1: Rigid foundation kinematics for the numerical estimation of soil
impedance-functions. (a) Infinite half-space finite element model, and (b) trun-
cated half-space finite element model using PML elements.

respectively. The force-displacement relations for R̂(ω) ∈ C3, K̂(ω) ∈ C3×3, and
∆̂(ω) ∈ C3, over the rigid interface, in the frequency domain can be written as

R̂(ω) = K̂(ω) ∆̂(ω) , (7.7)

where ω ∈ R is the angular frequency, R̂(ω) is the reaction vector, K̂(ω) is the soil
impedance matrix, and ∆̂(ω) the displacement vector at the interface. Equation (7.7)
can be written in matrix form

R̂z

R̂x

M̂/B

 =

K̂z 0 0
0 K̂xx K̂xθ

0 K̂θx K̂θθ



∆̂z

∆̂x

B θ̂

 . (7.8)

Equation (7.8) is termed as the dimensionless impedance matrix, where R̂x, and R̂z

are resultant reaction forces in x and z directions, respectively. The characteristic
length B–i.e., half-width, is used for normalizing M̂ and θ̂ which denote the moment
and the rotation angle with respect to the centroid of the foundation boundary. Each
component of the impedance matrix can be computed using a time domain finite
element analysis. In order to do so, wefirst prescribe the displacement time-histories,
which are ∆x(t), ∆z(t), and θ(t), and then, we compute reaction forces Rx(t), Rz(t)

and the moment M(t). Once these quantities are computed, the following procedure
should be performed:

(a) Use Fourier transform to compute the vertical reaction R̂z for a given vertical
motion, which enforces ∆x(t) = 0, ∆z(t) , 0, and θ(t) = 0, and then compute
K̂z = R̂z/πGs ∆̂z.
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(b) Use Fourier transform to compute the horizontal and moment reaction R̂x and
M̂ for a given horizontal motion, which enforces ∆x(t) , 0, ∆z(t) = 0, and
θ(t) = 0, and then compute K̂xx = R̂x/πGs ∆̂x and K̂θx = M̂/πGs B ∆̂x.

(c) Use Fourier transform to compute the horizontal and moment reaction R̂1 and
M̂ for a given rotational motion, which enforces ∆x(t) = 0, ∆z(t) = 0, and
θ(t) , 0, and then compute K̂xθ = R̂x/πGsB θ̂ and K̂θθ = M̂/πGs B2 ∆̂x.

These steps will thus yield the impedance matrix components in frequency domain
excited through the prescribed loading time-history. Now, the stiffness and damping
components, as seen from the foundation, can be easily extracted employing Equa-
tions (7.9), (7.10), and (7.11) by taking the real and imaginary part of each of the
impedance matrix component.

K̂xx = kxx + cxx ω i , (7.9)

K̂xθ = kxθ + cxθ ω i , (7.10)

K̂θθ = kθθ + cθθ ω i . (7.11)

In order to span the range for the soil impedance functions, as described in § 7.2, we
consider the foundation aspect ratio to be Π3 = 0.1, 0.25, 0.5, 1.0, 2.0 and the soil’s
Poisson ration to be Π7 = 0.25, 0.35, 0.45. Therefore, in the numerical experiment,
we consider a Ricker pulse to generate the time-history excitation for ∆x(t) and
θ(t). The Ricker’s characteristic frequency is fp = 5.5 [Hz], and a simulation time
of tsim = 3.5 [s] with a time step of ∆t = 0.001 [s] is considered for all analyses.
The Ricker-wavelet amplitude is scaled so that it has a maximum displacement
of 0.001 [m] and a maximum rotation of 0.001 [rad], respectively. The generated
frequency contents is thus concentrated between 0 – 15 [Hz].

Regarding the FE analyses, a surface foundation of total length 20 [m], which is
B = 10 [m], and different embedments of D = 1.0, 2.5, 5.0, 10.0, 20.0 [m] are
considered. The rigid foundation interface is enforced using kinematic constraints
as explained in [16, 42, 80]. The soil is modeled using quad elements with shear
velocity Vs = 25, 50, 75, 100, 100 [m/s] (depending on the embedment) and a soil
density of 2000 [kg/m3], with different Poisson’s ratios νs = 0.25, 0.35, 0.45. A
number of 16 points per wave-length are enforced to resolve a maximum frequency
of 15 [Hz]; thus, a mesh size of ∆h = 0.1, 0.2, 0.3, 0.4, 0.4 [m] are used. The mesh
size along with the time step provides a CFL = 0.25 in all the analyses. In addition,
PML elements are added along the domain boundary so that outgoing waves are
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absorbed. The PML thickness layer is taken so that LPML = 25, 30, 30, 50, 50 [m].
The computed impedance functions are shown in Figures 7.2, 7.3, and 7.4.

Figure 7.2: Real and imaginary components for the normalized soil impedance
function. The soil impedances are computed considering a Poisson’s ratio of 0.25
and embedments ratios D/B = 0.1, 0.25, 0.5, 1.0, 2.0 from left to right. The blue
solid line represents the translational impedance with B̃ = 1, the yellow solid line
represents the rotational impedance with B̃ = B2, and the red solid line represents
the coupled impedance with B̃ = B.

Figure 7.3: Real and imaginary components for the normalized soil impedance
function. The soil impedances are computed considering a Poisson’s ratio of 0.35
and embedments ratios D/B = 0.1, 0.25, 0.5, 1.0, 2.0 from left to right. The blue
solid line represents the translational impedance with B̃ = 1, the yellow solid line
represents the rotational impedance with B̃ = B2, and the red solid line represents
the coupled impedance with B̃ = B.
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Figure 7.4: Real and imaginary components for the normalized soil impedance
function. The soil impedances are computed considering a Poisson’s ratio of 0.45
and embedments ratios D/B = 0.1, 0.25, 0.5, 1.0, 2.0 from left to right. The blue
solid line represents the translational impedance with B̃ = 1, the yellow solid line
represents the rotational impedance with B̃ = B2, and the red solid line represents
the coupled impedance with B̃ = B.

Foundation input motion transfer functions
The method developed by Seylabi et al. [131, 132] can also be applied to extract
the foundation input motion (FIM) transfer functions. In simple words, the method
essentially uses a finite element model to compute the scattered responses, and
providedwith the free-fieldmotion (FFM), computes the associated transfer function
at the soil-structure interface. Themotion of a rigid foundation interface is described
by three degrees of freedom: the horizontal, the vertical, and the rotational motions
denoted here by ∆x(t), ∆z(t), and θ(t), respectively.

Figure 7.5: Rigid foundation kinematics for the numerical estimation of soil
impedance-functions.
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The free-field displacements at the fictitious interface (ΓNS), as shown in Figure 7.5,
are employed to compute the free-field traction. The free-field motion ug(t) is
computed using standard 1Dwave propagation in a soil columnon an elastic bedrock.
Then, the DRM [24] allows to propagate the incident wave inside the domain, and
thus, evaluate the time history response of the rigid interface, which is ∆x(t), ∆z(t),
and θ(t), respectively. Once these quantities are computed, the following procedure
should be performed:

(a) Use the Fourier transform to compute the horizontal motion ∆̂x(ω) from
∆x(t), then the Fourier transform of the free-field motion ûg(ω), and compute
Hu(ω) = ∆̂x(ω)/ûg(ω).

(b) Use the Fourier transform to compute the rotational motion θ̂(ω) from B ·

θ(t), then the Fourier transform of the free-field motion ûg(ω), and compute
Hθ(ω) = θ̂(ω)/ûg(ω).

In order to span the range for the foundation transfer functions, as described in
§ 7.2, we consider the foundation aspect ratio to be Π3 = 0.1, 0.25, 0.5, 1.0, 2.0, and
the soil’s Poisson ration to be Π7 = 0.25, 0.35, 0.45. Therefore, in the numerical
experiment, we consider a Ricker pulse to generate the time-history excitation for
∆x(t) and θ(t). The Ricker’s characteristic frequency is fp = 5.0 [Hz], and a
simulation time of tsim = 3.0 [s] with a time step of ∆t = 0.001 [s] is consider
for all analyses. The Ricker-wavelet amplitude is scaled so that it has a maximum
displacement of 0.001 [m]. The generated frequency contents are thus concentrated
between 0 – 15 [Hz].

Regarding the FE analyses, a surface foundation of total length 20 [m], which
is B = 10 [m], and different embedments of D = 1.0, 2.5, 5.0, 10.0, 20.0 [m]
are considered. The rigid foundation interface is enforced using kinematic con-
straints [16, 42, 80]. The soil is modeled using quad elements with shear velocity
Vs = 25, 50, 75, 100, 100 [m/s] (depending on the embedment) and a soil density of
2000 [kg/m3]. A number of 32 points per wave-length are enforced to resolve amax-
imum frequency of 15 [Hz]; thus, a mesh size of ∆h = 0.05, 0.1, 0.15, 0.2, 0.2 [m]
is used. The mesh size along with the time step provides a CFL = 0.50 in all
the analyses. In addition, PML elements are added along the domain boundary
so that scattered waves are absorbed. The PML thickness layer is taken so that
LPML = 10, 20, 30, 40, 40 [m]. The computed foundation motion transfer func-
tions are shown in Figures 7.6 and 7.7.
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Figure 7.6: Normalized magnitude for the foundation input motion transfer func-
tion. The transfer function is computed considering different embedments ratios
D/B = 0.1, 0.25, 0.5, 1.0, 2.0. The blue solid line represents the translational trans-
fer function for a Poisson’s ratio of ν = 0.25, the yellow solid line represents the
translational transfer function for a Poisson’s ratio of ν = 0.35, and the red solid line
represents the translational transfer function for a Poisson’s ratio of ν = 0.45.

Figure 7.7: Normalizedmagnitude for the foundation input motion transfer function.
The transfer function is computed considering different embedments ratios D/B =
0.1, 0.25, 0.5, 1.0, 2.0. The blue solid line represents the rotational transfer function
for a Poisson’s ratio of ν = 0.25, the yellow solid line represents the rotational
transfer function for a Poisson’s ratio of ν = 0.35, and the red solid line represents
the rotational transfer function for a Poisson’s ratio of ν = 0.45.

Direct modeling of the problem
For direct modeling of the building structure response on elastic half-space, we use
the procedure shown in Figure 7.8.



109

Figure 7.8: Reduced infinite half-space model using DRM and absorbing PML
elements.

We truncate the semi-infinite half-space along the red line–i.e., ΓSA as shown in
Figure 7.8a, and introduce an absorbent interface using perfectly matched layers
(PML) [51, 94, 95]. The PML are placed for absorbing outgoing or scattered waves
produced by the presence of the building. In order to propagate the input signal
inside the PML domain, we employ the DRM presented in [24]. In this regard, the
free-field displacements at the fictitious interface–i.e., ΓNS is employed to compute
the free-field tractions. These tractions are thus transformed into an effective force
vector over a one-layer element thickness surrounding the interface ΓNS. The free-
field motion ug(t) is computed using for instance standard 1D wave propagation in
a soil column on an elastic bedrock, see [8, 99].

The incident ground motion Ûug(t) used in the finite element models is prescribed as
a Ricker function, proportional to Equation (7.12):

Ûug(t) =
(
1 − 2β (t − t0)2

)
exp

[
−β (t − t0)2

]
, (7.12)

where β =
(
πfp

)2, fp is the characteristic frequency, and t0 is the time position
where the velocity will become maximum. We select a Ricker pulse as input since
it provides a clear dominant frequency and covers a range up to fmax ≈ 3fp.

In order to span the range for which the dimensionless frequency may vary, as de-
scribed in § 7.2, we consider the building-to-soil wave-length ratio Π1 ∈ [0.01, 0.2],
the building-aspect ratio Π2 = 1.5, 3.0, 4.0, the foundation aspect ratio to be
Π3 = 0.1, 0.25, 0.5, 1.0, 2.0, the soil’s Poisson ration to be Π7 = 0.25, 0.35, 0.45,
and the signal-to-soil wavelength ratio Π10 ∈ [0.02, 0.4]. Therefore, three different
topologies of buildings are considered, which are illustrated from the shortest (in
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Figure 7.9a) to the tallest (in Figure 7.9c). The first reinforced concrete building has

Figure 7.9: Building configurations employed in the dimensional analysis for the
SSI problem.

columns of rectangular cross section 0.90×0.60 [m], each of 3.5 [m] height. Beams
have rectangular cross sections 0.80 × 0.60 [m] and 6.0 [m] length. The reinforced
concrete density is 2500 [kg/m3], the reinforced concrete elasticity modulus is taken
as 25 [GPa], and beams are subjected to a dead load of 3600 [kg/m]. This config-
uration gives a total height of 21 [m], a total mass of 6.45 · 105 [kg], a fixed-base
fundamental period of 0.507 [s], a first-modal height of 14.91 [m], and a first modal
mass 0.545 · 106 [kg]. The solid core foundation has a half-width of 10 [m], and an
equivalent length (thickness) of 1.0 [m]. The reinforced concrete material properties
for the foundation are an elasticity modulus of 30 [GPa] and a Poisson’s ratio of
0.25. The second and third reinforced concrete buildings only differ in terms of the
column cross-sections, which for the taller buildings are 1.00 × 0.80 [m]. Beams
and material properties of building and foundation are the same as above. The
foundation is assumed to be a rigid diaphragm and to have perfect bonding with the
surrounding soil. Table 7.2 summarizes some of the buildings’ characteristics.

Building Parameters Eigen-Analysis
Period Mass Height Modal Mass Modal Height
[s] [kg] [m] [kg] [m]

0.50 6.45 · 105 21.00 5.45 · 105 ∼ 15.0
1.00 1.40 · 106 42.00 1.15 · 106 ∼ 30.0
1.50 1.98 · 106 59.50 1.48 · 106 ∼ 40.0

Table 7.2: Building’s first fixed-modal parameters using eigen-analysis.
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The soil is modeled as an elastic, homogeneous, and semi-infinite mediumwith den-
sity ρs = 2000 [kg/m3] and shearwave velocityVs = 80, 100, 125, 150, 175, 200, 225,
250, 300, 400, 500 [m/s]. The soil and foundation domains are modeled as four-node
two-dimensional plane-strain quadrilateral elements, and the building structure do-
main is modeled as two-node linear elastic frame elements. All material models
assigned to structural and soil elements are isotropic linear and elastic, and no vis-
cous damping is added. The connection between solid and structural elements as
well as the rigid diaphragm behavior of the foundation are enforced using kine-
matic constraints. The dimension of the truncated domain is taken such that the
horizontal direction is Lx = 70 [m] and the vertical direction is Lz = 75 [m]. The
perfectly-matched layer of 10 [m] thickness is provided around the near-field to trun-
cate the semi-infinite half space. The incident ground motion is considered such
that fp = 1.0, 2.0, 4.0 [Hz], covering a range between 0 − 15 [Hz].

The time step ∆t is limited using the Courant-Friedrichs-Lewy condition. In this
regard, for an element size of ∆h = 0.5 [m] and a fixed value CFL = 0.30, the
time step can be evaluated for each simulation. The resulting finite element mesh
has approximately 32000 elements, and a simulation time of tsim = 12.0 [s] is
considered. The total number of time steps for the entire simulation is nt and it
is variable, and Seismo-VLAB [96–98] is employed to carry out the analysis. The
model domain is not large enough, therefore we use a single core execution. The
time to complete this task is in average 132 [min]. In total, 1031 simulations are
required to span the dimensionless parameters space, therefore we employ parallel
computing for the simulations using the OpenMPI1 [30, 54, 71] to run several cases
at once. All simulations are run on a standard desktop (server) with an Intel(R)
Xeon(R) CPU E5-2687W v3 3.10GHz with 20 CPU(s), using a batch file of 15
model per execution, in less than seven days.

Reduced order modeling of the problem
For developing a simplified version of the finite element model presented in § 7.2,
we consider the reduced order model (ROM) shown in Figure 7.10c.

The ROM is constructed in such a way that it preserves the modal information of
the fixed base building. To this end, we employ frame elements with three degrees
of freedom per node to represent the structure’s geometry as shown in Figure 7.10a.
We assume that each floor acts as a rigid diaphragm, so that the buildings mass

1The message passing interface (MPI) allows to exchange messages between multiple computers
running a parallel program (single execution) across distributed memory.



112

Figure 7.10: The reduced order model. (a) The column and beam element used
to construct the fixed base FEM. (b) The fixed base FEM building model where
Ms,Cs,Ks are obtained using static condensation. (c) The flexible-base soil-
structure interaction system in which x = (x1, . . . , xn) represents the relative dis-
placement of each floor, u represents the relative deformation of the soil, and θ the
rigid rotation of the foundation.

can be lumped at the floor levels as shown in Figure 7.10b. We then use static
condensation [61, 73] on the fixed-base building to compute the Ms,Cs,Ks ∈ R

n×n

matrices, where n is the number of floors; additionally, the vector x ∈ Rn represents
the horizontal degree of freedom of the building, since there is only one translational
degree of freedom on each floor. We assume a rigid rectangular foundation of half-
width B and depth D sitting on an elastic half-space, forwhich two additional degrees
of freedom u, θ ∈ R appear because of the flexibility of the soil. The foundation has
a total mass m f , and a moment of inertia I0. The motion that one can use to excite
the model is considered to be the foundation-input-motion (FIM). It can be shown
that under the above assumptions, the semi-discrete equations of motion are:

Ms Ms 1 Ms h

1
>Ms m f + 1

>Ms 1 m f
D
2 + h

>Ms 1

h
>Ms m f

D
2 + h

>Ms 1 I0 + m f
D2

4 + h
>Ms h



Üx

Üv

Üθ

 +


Cs On×1 On×1

O1×n cxx cxθ

O1×n cxθ cθθ



Ûx

Ûv

Ûθ

 +
Ks On×1 On×1

O1×n kxx kxθ

O1×n kxθ kθθ



x

v

θ

 = FFIM(t) , (7.13)
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where the foundation-input-motion force are computes as,

FFIM(t) = −


Ms 1

m f + 1
>Ms 1

m f
D
2 + h

>Ms 1

 ÜuFIM(t) −


Ms h

m f + 1
>Ms h

m f
D2

4 + h
>Ms h + I0

 ÜθFIM(t) ,
and Üx, Ûx, x ∈ Rn are the acceleration, velocity, and displacement vectors for the
condensed horizontal degrees of freedom of the building; also Üv, Ûv, v ∈ R and
Üθ, Ûθ, θ ∈ R are the foundation horizontal and rotational acceleration, velocity, and
displacement, respectively. Note that we define 1 ∈ Rn, the vector of ones, which is
1 = (1, 1, . . . , 1)>. And, h ∈ Rn the vector of height, which is h = (h1+D, . . . , hn +

D)>. We finally defineOn×m ∈ R
n×m, the matrix of zeros.

In addition, it is important to highlight that in the ROM, the spring and dashpot
components in Equation (7.13) are obtained for a given dimensionless frequency a∗0,
foundation aspect ratio D

B , and soil Poisson’s ratio νs from the impedance function
in § 7.2.3. Similarly, the FIM requires to compute ÜuFIM(t) and ÜθFIM(t), which are
obtained using the transfer functions described in § 7.2.4 for a given FFM.

Dimensionless frequency estimation using ensemble Kalman inversion
In order to find the optimal dimensionless frequency for computing the spring and
dashpot coefficients for the ROM described in § 7.2, we use the Bayesian approach
based on the ensemble Kalman inversion (EnKI) [50, 72, 102]. In the inversion
setting, we consider the problem of finding u ∈ Rn from y ∈ Rm where

y = G(u) + η . (7.14)

The variable u ∈ Rn consists of all the unknown parameters that we want to estimate.
In our case u = a0, the variable y ∈ Rm consists of the ground truth quantities of
interest, here obtained using the direct modeling method, and η is a zero-mean
Gaussian noise with covariance Γ. The nonlinear function (a.k.a. forward model or
ROM)G : Rn → Rm maps the parameter space to the data space. In this application,
we work with one type of data-sets: the displacement time series recorded at the
floors and foundation levels computed using the model described in §7.2.5. Given
N particles u(n)j , n = 1, . . . , N within the ensemble and at each iteration j, we use
the predictions G(u(n)j ) by the forward model and the observation data y to update
the particles for iteration j + 1. The formal derivation of the update is presented in
[3, 102] and is,

u(n)j+1 = u(n)j + Cuw
j+1(C

ww
j+1 + Γ)

−1(y
(n)
j+1 −G(u(n)j )) for n = 1, . . . , N . (7.15)
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In Equation (7.15), y
(n)
j+1 can be either identical to y (the observation data) or

randomly perturbed using zero-mean Gaussian noise η; Cuw
j+1 and Cww

j+1 are empirical
covariance matrices that can be computed at each iteration based on predictions and
the ensemble mean ū j+1 using the following equations:

Cuw
j+1 =

1
N

N∑
n=1
(u(n)j − ū j+1) ⊗ (G(u(n)j ) −G j) (7.16)

Cww
j+1 =

1
N

N∑
n=1
(G(u(n)j ) −G j) ⊗ (G(u(n)j ) −G j) (7.17)

and

ū j+1 =
1
N

N∑
n=1

u(n)j , G j =
1
N

N∑
n=1

G(un
j ) . (7.18)

It is worth mentioning that the stopping criterion is defined as either reaching a
relative change of 0.001 in the parameter in two consecutive EnKI iterations or a
maximum number of 500 iterations. Furthermore, the initial ensemble mean is
defined to be equal to the lumped stiffness and dashpot coefficients obtained using
the NIST [138] procedure. In addition, if the prior distribution of the dimensionless
frequency is unknown, then we use a uniform distribution as a prior to represent
this uncertainty. We have used N = 100 ensembles2 in each model to estimate the
parameters. Finally, the positiveness of the dimensionless frequency is enforced
through a change of variables u ∈ R, exp(u) : R → [0,∞] on which the EKI is
applied.

Provided with Equation (7.15), we proceed to identify the best dimensionless fre-
quency for the configurations described in § 7.2 using the ROM described in § 7.2.5
and the data generated using the direct modeling approach in § 7.2.4. The results
of this analysis require 1031 identifications, and they are next used in order to learn
the dimensionless frequency mapping.

7.3 Computing dimensionless frequencies using Random Forest
In this section, we use Random Forest (RF) regression [29] to find a mapping
f : R5 → R to estimate the dimensionless flexible-base frequency (a0) using five
parameters as input:

a0 = f
(
Π1 =

B
Vs Tb

,Π2 =
hb

B
,Π3 =

D
B
,Π7 = νs,Π10 =

B fp
Vs

)
. (7.19)

2Since the number of parameters to be identified is one, we theoretically only need one ensemble
to span the parameter space [72].
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Random Forest is an ensemble method that uses Bootstrap Aggregating (Bagging)
to draw random samples from a training set. A tree with a subset of features
is trained on each random sample, and a voting scheme determines the value of
output for each instance of input. More formally, if we assume a training set
X ∈ Rn×m (n is the number of instances, and m is the number of features) and
y ∈ {y1, y2, ..., yn}, we want to find f such that y = f(X). RF draws random samples
of size n with replacement from the training data, and train a tree with m′ (m′ ≤ m)
features for each sample [121]. RF is popular because (1) it reduces overfitting by
training multiple trees with different set of features, (2) it is interpretable and feature
importance analysis can be easily accomplished, and (3) it is generally faster than
other bagging methods [52].

Learning the dimensionless frequency
The training set is collected from EnKI results for a wide range of input parameters
(1031 cases). We trained a RF model using a grid-search approach to determine
optimum tree depth, number of estimators, and number of samples by applying
4-fold cross-validation, and mean-square-error as the cost function. For the training
purpose, we split the data into two groups of 80% for training and the rest for test.

The histogram of Figure 7.11 shows the distribution of a∗0 in training and test data
sets. Both sets have a similar distribution which results in a “fair” evaluation of the
trained model. As shown, the majority of data is focused in the a∗0 ≤ 0.5 range with
the minority being above this threshold. Moreover, a few cases of a∗0 > 1 are also
available in both data sets.

Figure 7.11: Distribution of a∗0 values in training (left) and test (right) data sets.

The training is performed on 878 data points, and the test set includes 158 data
points. Figure 7.12 shows the comparison between the values obtained using EnKI
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(Ytrue), and the prediction from the trained model (Yprediction). As can be seen, a
high accuracy (R2 = 0.98) of the trained model shows its capabilities in estimating
an accurate a∗0. Moreover, having a similar accuracy for the test set (R2 = 0.97)
manifests the absence of overfitting and the generalization capability of this model.
In next section, we will discuss how one can use this model to retrieve impedance
components for an arbitrary set of input parameters.

Figure 7.12: A comparison between true values (FE analysis) and RF predictions
for training set (left) and test set (right).

Figure 7.13: Feature importance (left) and correlation of features (right).

An important capability of RF is the ease of feature importance analysis, which
illustrates how impactful each parameter is on the final result of the trainedRFmodel.
Figure 7.13 shows feature importance analysis, where Π1 =

B
Vs Tb

has the highest
impact, as expected, since it takes into account both structure and soil properties. The
second rank goes to Π10 =

B fp
Vs

, which demonstrates the interaction of input motion,
soil, and structure. Other parameters have a lower impact on a∗0 estimation, and,
therefore, have lower values of gain. In this regard, the dimensionless parameters (in
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order of importance) are as follows: the structure-to-soil wavelength ratio (Π1), the
signal-to-soil wavelength ratio (Π10), the foundation aspect ratio (Π3), the building-
aspect ratio (Π2), and the soil’s Poisson ratio (Π7).

The correlation between each of the parameters are also presented. Here, we apply
Pearson’s correlation criterion, which is an interpretable measure of correlation
between two parameters based on the covariance matrix of the two. This parameter
ranges between−1 ≤ r ≤ 1, where having r = 1means a perfect positive correlation,
r = −1 means a perfect negative correlation, and r = 0 means no correlation. In real
data, this correlation takes some values within the defined range. Figure 7.13 shows
the correlation matrix using a color scheme where warmer colors show positive and
cooler colors illustrate negative correlations. In our problem, Π1 and Π2 have a
negative correlation. This is physically interpretable since by increasing the height
of dominant mode (hb), the fixed-based period (Tb) of a building increases as the
building becomes more flexible. In addition, there are minimally-correlated (almost
uncorrelated) parameters in our designated input vector, for example Π1 and Π7.
ThismeansΠ1 and Poisson’s ratio (Π7) would not significantly interact on estimating
final output of the model.

Returning the lumped soil impedances components
In § 7.3, a mapping to obtain the dimensionless flexible-base frequency a0 as a
function of the dimensionless group Π1,Π2,Π3,Π7,Π10 was provided. In other
words, a relation of the form:

a0 = f
(

B
Vs Tb

,
hb

B
,

D
B
, νs,

B fp
Vs

)
, (7.20)

can now be used to estimate the frequency-independent lumped impedance values–
i.e., kxx, kxθ, kθθ, cxx, cxθ , and cθθ , which can further be employed in Equation (7.13)
to perform a dynamic analysis. However, in order to increase the accuracy of the
impedance value estimation, we perform a quadratic interpolation on the impedance
functions provided in Figures 7.2 to 7.4 using a0 for the three Poisson’s ratio ν(k)s ,
k = 1, . . . , 3. We thus obtain a quadratic function as follows:

ki j = g (a0, νs) . (7.21)

The value of ki j can finally be read for a given Poisson’s ratio. The complete process
for estimating the lumped frequency-independent impedance value is summarized
in Algorithm 2.
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Algorithm 2 Lumped soil impedance estimation.
1: The initialization step: Compute the dimensionless parameters:

Π1 =
B

Tb Vs
,Π2 =

hb

B
,Π3 =

D
B
,Π7 = νs , and Π10 =

fp B
Vs

,

where B is the foundation half-width, D is the foundation embedment, Vs is
the soil shear wave velocity, νs is the soil’s Poisson ratio, Tb is the fundamental
fixed-base period, hb is the first fixed-base modal height, and fp is the dominant
frequency of the input signal.

2: The prediction step: Compute the dimensionless frequency a(k)0 using Equa-
tion (7.20) for the three Poisson’s ratio–i.e., ν(k)s = 0.25, 0.35, 0.45.

3: The analysis step: Read from the normalized impedance functions in Fig-
ures 7.2 to 7.4, the real or imaginary component of K̂ (k)i j for i, j = {x, θ} for the
three dimensionless frequencies a(k)0 obtained in the prediction step.

4: The interpolation step: Perform a quadratic interpolation using the three
previous impedance values to obtain Equation (7.21). Then multiply ki j by
the normalizing factor, π B̄ Gs, where B̄ = 1.0, B, B2 for K̂xx, K̂xθ , and K̂θθ ,
respectively.

5: Return the interpolated soil impedance value ki j = g (a0, νs).

The process to obtain the dimensionless flexible-base frequency a∗0 as well as
the frequency-independent lumped impedance values are provided in a python
jupyter-notebook [152] script that can be downloaded from https://github.
com/dankusanovic/SSI-Optimal-Impedance.

7.4 Validation of proposed dimensionless frequency mapping
Validation using different SSI configurations
The methodology presented in Algorithm 2, for computing the dimensionless fre-
quency and soil impedances, is tested for different buildings and soil combinations.
The global soil, foundation, building, and signal parameters for each case are sum-
marized in Table 7.3. For each case, a finite element analysis, as described in § 7.2.4,
is performed to obtain the true responses. The responses obtained in this manner
are thus employed to evaluate the error. In particular, we measure the `2-error for
each case as:

error = ‖y − ŷ‖2`2
=

Nm∑
k=1

Nt∑
j=1

(
y
(k)
j − ŷ

(k)
j

)2
, (7.22)

https://github.com/dankusanovic/SSI-Optimal-Impedance
https://github.com/dankusanovic/SSI-Optimal-Impedance
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where y
(k)
j represents the k-th observation (from the FEM) at j-th time step, ŷ(k)j

represents the k-th response (from the ROM or NIST) at j-th time step, Nt corre-
sponds to the number of time steps, and Nm represents the number of observations3
considered.

In Table 7.3, we also compute the improvement factor I : R → [0, 1] obtained
against NIST [138]. The improvement is quantified as follows:

I =

����1 − error(ML)
error(NIST)

���� . (7.23)

The improvement factor quantifies how much better is the overall RF solution in
terms of NIST solution. Ideally if there is no error I = 1, then a 100% of
improvement is obtained. On the other hand if I = 0, then there is no improvement
at all.

Model Building’s Parameters
B D hb Tb Vs fp νs RF NIST I

[m] [m] [m] [s] [m/s] [Hz] a∗0 error a∗0 error %
10 1 40 1.50 400 2.00 0.35 0.289 0.135 0.081 0.205 34.1
10 1 15 0.50 100 4.00 0.35 1.164 0.012 0.466 0.018 33.7
10 1 15 0.50 125 1.00 0.33 0.692 0.049 0.449 0.355 86.3
10 20 30 1.00 100 2.00 0.33 0.336 0.007 0.314 0.046 83.9
10 20 40 1.50 150 2.00 0.40 0.243 0.015 0.192 0.068 77.6
10 20 40 1.50 125 3.00 0.25 0.300 0.010 0.202 0.016 39.1
10 10 30 1.00 200 2.75 0.35 0.330 0.016 0.212 0.036 56.2
15 10 19.2 0.55 150 3.00 0.33 1.021 0.006 0.591 0.017 63.5
15 10 28.4 0.85 200 3.00 0.33 0.583 0.007 0.357 0.029 77.0
15 10 64.0 2.25 250 3.50 0.33 0.634 0.016 0.122 0.051 69.4

Table 7.3: Improvement of the proposed dimensionless frequency compared to the
state-of-the-art for different soil, foundation, and building configurations.

Table 7.3 highlights two important results: (a) The dimensionless flexible-base
frequency obtained using this methodology is always larger than the one proposed
in NIST, and (b) the improvement factor is always larger than 30% and thus the error
of the proposed methodology is always smaller than NIST. Note that larger values of
dimensionless flexible-base frequency guarantee a proper estimation of the lumped
impedance values, in particular for cxx , cxθ , and cθθ as discussed in [99].

3In computing the error, we use all the observations.
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Additionally, in Figure 7.14 and 7.15, the time-history displacements at the first-
modal height for the total-horizontal displacement uh

X , the total-horizontal displace-
ment of the roof ur

X , and the total-horizontal displacement of the ground level ugX are
displayed in a similar manner. The blue-solid line represents the response using the
full-fidelity FEM, while the red-dashed line represents the solution using the ROM,
and the yellow-dashed line represents the solution using NIST.

Figure 7.14: The parameters considered in the validation are for the building a
fixed-fundamental period Tb = 1.0 [s] and a fixed-first modal height hb = 30.0 [m].
The foundation dimensions are a half-width B = 10 [m] and a foundation depth
D = 20.0 [m]. The soil shear velocity is Vs = 100 [m/s].

Figure 7.15: The parameters considered in the analysis are for the building a fixed-
fundamental period Tb = 2.25 [s] and a fixed-first modal height hb = 64.0 [m].
The foundation dimensions are a half-width B = 15 [m] and a foundation depth
D = 10.0 [m]. The soil shear velocity is Vs = 250 [m/s].

Both figures showhow the proposedmethodology captures the period elongation and
the radiation damping of the combined system very well. Also, a good agreement
is obtained for the free-vibration response. In particular, note how in Figure 7.15
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NIST fails to capture the radiation damping and thus high oscillations are generated
inside the building. Remember that a fair comparison against NIST required the 2D
foundation transfer functions and 2D impedance functions to be computed for the
plane-strain case. Thus we have not used the 3D version described in NIST.

Verification using real-earthquake input motions
We test the dimensionless flexible-base frequency mapping with real-earthquake
signals. We employ the CESMD - Information for Strong-Motion Station [62] to
select real-earthquake signals with different intensities. In particular, we use:

(a) Berkeley, January 4th, 2018, station 58496. Site class D (low).

(b) Chino Hills West Covina-Cortez, July 29th, 2008, station 23056. Site class D
(moderate).

(c) Northridge Newhall-County Fire, January 17th, 1994, station 24279. Site
class D (high).

The earthquake signal listed above is employed as FFM motion for both the full-
fidelity FEM and the ROM using the dimensionless flexible-base frequency map-
ping. The FFM are then transformed into FIM using the foundation transfer function
in Figures 7.6 and 7.7. The FFM velocity time history as well as their frequency
content are displayed in Figure 8.4.

Figure 7.16: Earthquake signals and frequency content used for the dimensionless
flexible-base frequency mapping validation.
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For simplicity, in this section we use the building described in Table 7.2 with
embedments D = 1, 2.5, 5 [m], a shear wave velocityVs = 200 [m/s], and a Poisson’s
ratio νs = 0.25. The ground’s highest energy’s frequency fp is estimated as:

fp =

∫ fm

0
f · û df∫ fm

0
û df

, (7.24)

where f is the frequency, û = F (u) is the Fourier transform of u(t), and fm = 10 [Hz].
The ground’s highest energy frequencies computed in this manner are: Northridge
1.84 [Hz], Berkeley 2.90 [Hz], and Chino-Hills 2.57 [Hz].

In Figures 7.17–7.19, the time history response at the first-modal height for the total-
horizontal displacement uh

X and the total-vertical displacement uh
Y are represented

in solid-blue lines and dashed-red lines for both the full-fidelity FEM and the ROM,
respectively. In addition, the total-horizontal displacement of the roof ur

X and
the total-horizontal displacement of the ground level ugX are displayed in a similar
manner. Moreover, the frequency contents of such signals for the total displacement
are represented below. A normalized representation of the evaluated frame is also
displayed, so that the three different topologies considered in these cases are much
clearer. At a first glance, it can be seen in these figures that a good agreement is
reached in both the total displacements at different building levels and the frequency
content of such signals.

Additionally, in Table 7.4 the discrepancies between the full-fidelity FEM and the
ROM are quantified. In particular, we quantify the error associated to maximum
displacement in the complete model and the error associated to period elongation.
We also compute the slope as well as the correlation of the time-series between the
FEM and the ROM at each node, and the maximum discrepancy between them is
reported. The slope of such correlation measures how well the simulated signal
scales from the true response, while the Pearson’s coefficient measures how similar
the signals are.

In overall, Table 7.4 shows a good agreement in both time history responses and their
frequency content. The discrepancies, which in these cases are minor, are attributed
to the dimensionless flexible-base frequency mapping, since the number of building
frames considered in the analysis to span the whole dimensional-parameter space
may not be enough. Nevertheless, we can conclude that prescribing the FIM at the
foundation interface using the ROM described in § 7.2.5 provides reasonable results
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Figure 7.17: The parameters considered in the analysis are for the building a
fixed-fundamental period Tb = 0.5 [s] and a fixed-first modal height hb = 15 [m].
The foundation dimensions are a half-length B = 10 [m] and a foundation depth
D = 1.0 [m]. The soil shear velocity is Vs = 200 [m/s] and subjected to Berkeley
earthquake.

Figure 7.18: The parameters considered in the analysis are for the building a
fixed-fundamental period Tb = 1.0 [s] and a fixed-first modal height hb = 30 [m].
The foundation dimensions are a half-length B = 10 [m] and a foundation depth
D = 2.5 [m]. The soil shear velocity is Vs = 200 [m/s] and subjected to Chino Hills
earthquake.

in terms of errors when time history responses, maximum displacements, period
lengthening, and radiation damping are compared to the full-fidelity FEM. Note that
the maximum error obtained for the displacement for the entire model is always less
than 5%, and also the error in estimating the period elongation using the proposed
dimensionless flexible-base frequency mapping is small.
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Figure 7.19: The parameters considered in the analysis are for the building a fixed-
fundamental period Tb = 1.5 [s] and a fixed-first modal height hb = 40.0 [m].
The foundation dimensions are a half-length B = 10 [m] and a foundation depth
D = 5.0 [m]. The soil shear velocity is Vs = 200 [m/s] and subjected to Northridge
earthquake.

Maximum Period Correlation
Frame Earthquake Displacement Elongation Slope Pearson’s
Name Name Error Error m R2

Berkeley 0.046 0.001 1.009 0.997
(a) Chino Hills 0.035 0.000 1.004 0.996

Northridge 0.015 0.002 1.005 0.999
Berkeley 0.025 0.000 1.028 0.999

(b) Chino Hills 0.005 0.000 1.027 0.999
Northridge 0.026 0.013 0.986 0.987
Berkeley 0.003 0.012 0.989 0.986

(c) Chino Hills 0.033 0.150 1.007 0.990
Northridge 0.004 0.002 1.022 0.994

Table 7.4: Errors associated to building’s responses for the validation of real-
earthquake motion.

7.5 Summary and conclusions
In this work, we presented a dimensionless flexible-base frequency mapping that
improves the one used by the state-of-practice for time domain simulations of build-
ing structures on embedded foundations. The so-generated flexible-base frequency
mapping is validated using full-fidelity finite element analyses, and an improvement
greater than 30% is obtained for all tested cases when they are compared against
NIST.We have not only shown that the dimensionless flexible-base frequency indeed
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depends on five dimensionless quantities, but also we found that the structure-to-
soil wavelength ratio, the foundation aspect ratio, and signal-to-soil wavelength ratio
are the most important dimensionless parameters that control the frequency of the
interaction.

The dimensionless flexible-base frequency a∗0 estimated using EnKI are the ones
that best represent the frequency of vibration of the combined soil-foundation-
building system. The 1031 cases used in this study to span the parameter space
revealed that there always exists an optimal dimensionless flexible-base frequency
a∗0 that matches the full-fidelity finite element model, and this frequency may not
necessarily coincide with the one suggested in NIST. We used these cases to train a
Random Forest model, which showed to work very well for several validation cases,
including real-earthquake signals with different intensities. The proposed mapping
is very robust as long as the dimensionless parameters are inside the domain defined
in § 7.2. Extrapolation outside this domain may cause deviation, and they should
be used with caution. However, the present methodology allows to include more
analysis to improve the estimate of a∗0. We have provided the data (training set)
identified in this work as well as python routines and they can be downloaded from
https://github.com/dankusanovic/SSI-Optimal-Impedance.

Finally, more complicated soil features such as non-linear material behavior of the
soil or loose contact between soil and foundation can be easily considered using
this methodology. However, more dimensionless parameters may be required,
generating an increase in the number of simulation cases required to span the
parameter space. Future extensions of this work may include assessment of the
dimensionless fixed-base frequency to non-uniform half space and non-linear soil
behavior.

https://github.com/dankusanovic/SSI-Optimal-Impedance
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C h a p t e r 8

APPLICATION: SIMPLIFIED REGIONAL SOIL-STRUCTURE
INTERACTION ASSESSMENT APPLIED TO SOUTHERN

CALIFORNIA

8.1 Motivation
The increase of population in major cities have produced a large densification of
buildings. As a result, the lack of space in already dense urban areas has generated
unsafe sites to be considered as potential areas of construction. However, the seismic
design of such structures are carried out using conventional methods [32, 128]
that usually disregard soil-structure interaction (SSI) and structure-soil-structure
interaction (SSSI) effects that can significantly change the estimated demand on
urban sites and their surroundings. In general, earthquake damage scenarios for
urban areas are commonly addressed by simplifying the analysis assuming fixed-
base structures, i.e. without taking into account the compliance of the soil, and
therefore neglecting inertial and kinematic interaction effects [116, 157].

During the last 20 years, the challenge in understanding and predicting city global
scale responses has grown increasing interest to describe in depth SSI and SSSI
[59, 91, 126, 129, 145]. Several works have addressed this topic in many differ-
ent ways. For instance, sophisticated 3D finite element analysis to explore soil-
underground structure-soil interaction (SUSSI) and site-city interaction (SCI) of
Kowloon station in Hong Kong was developed by Kato and Wang [89]. 3D com-
putations to characterize SSSI in Nice, France, and Mexico City has been done by
Clouteau and Aubry [36]. 2D numerical models to describe the diffraction pattern
of surface waves due to the influence of buildings and their impact on buildings
has been assessed by Wirgin and Bard [156]. 2D reduced order model of SSI of
buried structures with layered soil under vertical excitation have been presented by
Esmaeilzadeh et al. [131, 132]. Simplified analysis to describe the global city
effect using single oscillators that account for single and multiple interactions have
been proposed by Guéguen et al. [59], Boutin and Roussillon [27]. However, most
of these analyses are either (i) very sophisticated where sometimes is difficult to
isolate the SSI effects, and thus to generalize the findings to some other cases, (ii)
they employ several physical parameters to describe topographic effects, irregular-
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ity of buildings, and soil properties that prevent to discriminate the main variables
that control the interaction phenomenon, or (iii) they are too simplified that 2D/3D
effects are ignored.

In this chapter, we attempt to capture the most relevant phenomenon of SSI at
a regional scale by using only one dimensionless parameter, i.e, structure-to-soil
stiffness ratio for a given building [125, 154]. This work aims at understand the SSI
effects generated in simplified two-dimensional symmetric buildings at a regional-
scale, which can be easily extended to three-dimensional analysis. In particular, we
focus our analysis on the evaluation of SSI effects in Southern California combining
different building topologies, a simulated real earthquake [145], and local site effects,
in which the building’s performance is evaluated based on period-lengthening,
radiation damping, maximum displacement, maximum acceleration, and maximum
inter-story drift. The building’s responses are normalized based on an equivalent
fixed-base building, so that the SSI effects are isolated, and they can be divided
into (i) beneficial, (ii) indifferent, and (iii) detrimental depending on the magnitude.
This approach will enable us to identify the areas in Southern California that are
more susceptible to experience damages for a given building configuration.

8.2 The problem statement and method of analysis
We are interested in evaluating the SSI effects that a certain building in Southern
California experiences when it is subjected to a given earthquake. Since a fully
coupled 3D numerical simulation of such area requires a large amount of computer
resources [129, 144, 145], we develop a simplified 2D reduced order model that
preserves the characteristics of the surrounding soil aswell as the ability of emulating
the inertial and kinematic interaction effects. The latter is achieved using frequency
independent soil spring and dashpot placed on the foundation interface that emulates
the surrounding soil [138–140]. These soil spring and dashpot coefficients are
estimated using ensemble Kalman Inversion (EnKI) [50, 72, 102]. The identification
based on EnKI requires data that will be generated from a set of 2D finite element
model with appropriate absorbing boundary conditions [51, 94, 95]. The data will
be generated using different soil–i.e., varying the shear wave velocity, so that we can
span all possible ranges of soil stiffness and radiation conditions. The data generated
in this manner will be used in order to estimate the soil spring and dashpot that mimic
the effect of the surrounding soil. The identified soil spring and dashpot coefficients
will be then used in order to approximate the soil impedances as a function of
the shear wave velocity. This will enable us to represent the spring and dashpot
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coefficients to emulate the soil characteristics at any point in Southern California
provided with only the shear wave velocity and dynamic properties of the building.

In the following subsections, we proceed to describe in details how the direct model
problem is carried out for data generation, how the building and the surrounding
soil are formulated as a reduced order model, and how using EnKI is employed to
estimate the soil parameters so that the discrepancies between the direct modeling
method and the proposed ROM are minimized.

Direct modeling of the problem
In Figure 8.1, the three 2D buildings considered in this work are illustrated. The
first reinforced concrete building in Figure 8.1 (a) has columns of a rectangular
cross section 0.90× 0.60 [m], each of 3.5 [m] height. Beams have rectangular cross
sections 0.80 × 0.60 [m] and 6.0 [m] length. The reinforced concrete density is
2500 [kg/m3], the reinforced concrete elasticity modulus is taken as 25 [GPa], and
beams are subjected to a dead load of 3600 [kg/m]. This configuration gives a total
height of 21 [m], a total mass of 6.45 · 105 [kg], a fixed-base fundamental period of
0.50 [s], a first-modal height of 15.0 [m], and a first modal mass 0.545·106 [kg]. The
solid core foundation has a half-width of 10 [m], an equivalent length (thickness)
of 1.0 [m], and a foundation embedment depths of 1.0 [m]. The reinforced concrete
material properties for the foundation are taken such that the foundation mass is
50.0 · 103 [kg], the elasticity modulus is 30 [GPa], and the Poisson’s ratio is 0.25.

Figure 8.1: A truncated view of the building configurations employed for the 2D
Southern California SSI problem.

The second and third reinforced concrete buildings in Figure 8.1 (b) and (c) only
differ in terms of the column cross-sections, which for both cases are 1.00×0.80 [m].
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The foundation embedment depths for both buildings are 2.5 and 5.0 [m], respec-
tively. Beams and material properties of the building and foundation are the same
as above. The foundation is assumed to have perfect bonding with the surrounding
soil, and the foundation is assumed to be rigid. Table 8.1 summarizes some of the
building’s global dynamic features.

Building Foundation Eigen-Analysis
Period Mass Height Half-width Depth Modal Mass Modal Height
[s] [kg] [m] [m] [m] [kg] [m]

0.50 6.45 · 105 21.00 10.0 1.00 5.45 · 105 15.0
1.00 1.40 · 106 42.00 10.0 2.50 1.15 · 106 30.0
1.50 1.98 · 106 59.50 10.0 5.00 1.48 · 106 40.0

Table 8.1: Summary of geometry andfirst fixed-modal parameters for three buildings
considered in Southern California.

In the finite element models, the soil is represented as an elastic, homogeneous, and
semi-infinite mediumwith density ρs = 2000 [kg/m3], Poisson’s ratio ν = 0.25, and
shear wave velocity Vs = 100, 125, 150, 175, 200, 225, 250, 300, 400, 500 [m/s]. The
soil and foundation domains are modeled as four-node two-dimensional plane strain
quadrilateral elements, and the building structure domain is modeled as two-node
linear elastic frame elements. The quadrilateral elements have two translational
degrees of freedom per node, whereas the elastic frame elements have three degrees
of freedom per node (two translational and one rotational). All material models
assigned to structural and soil elements are isotropic linear and elastic, and no
viscous damping is added so at this stage of the study, the energy loss as seen from
the building is solely because of radiation damping. The connection between solid
and structural elements as well as the rigid diaphragm behavior of the foundation
are enforced using kinematic constraints [16, 42].

The plane strain soil domain is truncated using absorbing boundaries conditions
provided to limit the occurrence of spurious waves that are reflected from the far-
field boundaries. In these analyses, we employ the absorbing boundaries proposed
by Kucukcoban and Kallivokas [51, 95] for plane strain in two dimensions. The
dimension of the truncated domain is taken such that the horizontal direction is
Lx = 75 [m] and the vertical direction is Lz = 75 [m]. A perfectly-matched layer
(PML) of 10 [m] thickness is provided around the near-field. The absorbent bound-
ary conditions were verified for plane wave propagation in the soil in absence of
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foundation and building, and were found to yield perfectly coherent motions (1D
conditions) on the ground surface.

In addition, the domain reduction method (DRM) proposed by Bielak et al. [24] is
employed in order to transmit the ground motion of an in-plane sv-wave propagating
upwards inside the near-field domain. The incident ground motion Ûug(t) used in the
finite elementmodels is prescribed as an effective forceRicker function, proportional
to Equation (8.1):

Ûug(t) =
(
1 − 2γ (t − t0)2

)
exp

[
−γ (t − t0)2

]
, (8.1)

where γ = (πf0)2, f0 = 2.0 [Hz] is the characteristic frequency and t0 = 1.0 [s] is the
time of peak velocity. These values yield a Ricker wavelet of peak ground velocity
0.1 [m/s] and frequency content between 0 − 7.5 [Hz]. The displacement, velocity,
and acceleration fields needed to be prescribed in the one-layer of soil elements for
the DRM can be computed analytically using the method proposed in [58, 122, 160].

Lastly, the time step ∆t is usually limited using the so-called Courant-Friedrichs-
Lewy1 (CFL) condition:

∆t ≤ CFL
∆h
Vs

. (8.2)

In Equation (8.2), the variable Vs is the shear wave velocity for the simulation.
Therefore, for an element size of ∆h = 0.5 [m] and a fixed value CFL = 0.30,
the maximum time step can be computed for each simulation. The resulting finite
element mesh has approximately 32000 elements; and we employed Seismo-VLAB
[96–98] for the simulations, and since the mesh is not large enough, we use a single
core execution. It is important to note that increasing or decreasing time step ∆t
decreases or increases the range of frequencies that the temporal mesh is able to
capture for a given element size ∆h. On the other hand, decreasing or increasing
the size element ∆h increases or decreases the range of frequencies that the spatial
mesh can capture. In other words, some frequencies will be aliased2 depending on
which one, the time step size or the element size is increased based on the fact that
the same frequency in both meshes are to be captured.

1The Courant-Friedrichs-Lewy (CFL) condition is a necessary condition for convergence of
hyperbolic PDEs, which arises studying the numerical domain of dependence.

2Numerical aliasing occurs when the mesh is too coarse to capture high frequency; therefore,
such frequencies are lost and the energy of the signal decreases.
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Reduced order modeling of the problem
For developing a simplified version of the finite element model presented in § 8.2.1,
we consider the reduced order model (ROM) shown in Figure 8.2c.

Figure 8.2: The reduced ordermodel. (a) The column and beam element used to con-
struct the fixed base FEM. (b) The fixed base FEM building model where Ms,Cs,Ks
are obtained using static condensation. (c) The flexible-base soil-structure interac-
tion system in which x = (x1, . . . , xn) represents the relative displacement of each
floor, u represents the relative deformation of the soil, and θ the rigid rotation of the
foundation.

The ROM is constructed in such a way that it preserves the modal information of the
fixed base building. To this end, we employ frame elements with three degrees of
freedom per node to represent the structure’s geometry as shown in Figure 8.2a. We
assume that each floor acts as a rigid diaphragm, so that the building’s mass can be
lumped at the floor levels as shown in Figure 8.2b. We then use static condensation
[61, 73] on the fixed-base building to compute the Ms,Cs,Ks ∈ R

n×n matrices,
where n is the number of floors; additionally, the vector x ∈ Rn represents the
horizontal degree of freedom of the building, since there is only one translational
degree of freedom on each floor. We assume a rigid rectangular foundation of
half-width B and depth D sitting on an elastic half-space, for which two additional
degrees of freedom u, θ ∈ R appear because of the flexibility of the soil. The
foundation has a total mass m f , and a moment of inertia I0. The motion that one
can use to excite the model is consider to be the free-field-motion (FFM).

It can be shown that under the assumptions above, the semi-discrete equation of
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motion is:
Ms Ms 1 Ms h

1
>Ms m f + 1

>Ms 1 m f
D
2 + h

>Ms 1

h
>Ms m f

D
2 + h

>Ms 1 I0 + m f
D2
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Ms 1
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>Ms 1

m f
D
2 + h

>Ms 1

 ÜuFFM(t) , (8.3)

where Üx, Ûx, x ∈ Rn are the acceleration, velocity, and displacement vector for the
condensed horizontal degrees of freedom of the building, also Üv, Ûv, v ∈ R and
Üθ, Ûθ, θ ∈ R are the foundation horizontal and the rotational acceleration, velocity,
and displacement. Note that we define 1 ∈ Rn the vector of ones, which is 1 =
(1, 1, . . . , 1)>, and h ∈ Rn the vector of height, which is h = (h1 + D, . . . , hn + D)>.
We finally defineOn×m ∈ R

n×m the matrix of zeros.

In addition, it is important to highlight that in the ROM, the horizontal and vertical
spring and dashpot elements are distributed uniformly over the foundation perimeter.
However, the contribution can be lumped as follows for both stiffness and damping
components:

kxx = 2 kx (D + B) , kxθ = kx D2 , kθθ =
2
3

kx D3 +
2
3

kz B3 + 2 kz B2D , (8.4)

cxx = 2 cx (D + B) , cxθ = cx D2 , cθθ =
2
3

cx D3 +
2
3

cz B3 + 2 cz B2D . (8.5)

Distributing the spring and dashpot elements as represented in Figure 8.2(c) allows
us to take the coupling effects in the stiffness and damping matrices into account
explicitly. Finally, note that prescribing the FFM on the base of the ROM is not
correct, since kinematic interaction due to the presence of the foundation is ignored.
However, a novel feature of estimating the soil spring and soil dashpot coefficients
using the EnKI is to implicitly compensate for kinematic interaction effects due to
foundation embedment (if any), since it uses the data from the finite element models.

Ensemble Kalman inversion for parameter estimation
In order to find the optimal spring and dashpot coefficients for the ROM described
in § 8.2.2, we use the Bayesian approach based on the ensemble Kalman inversion
(EnKI) [50, 72, 102]. In the inversion setting, we consider the problem of finding
u ∈ Rn from y ∈ Rm where

y = G(u) + η . (8.6)
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The variable u ∈ Rn consists of all the unknown parameters that we want to estimate.
In our case u = (kx, kz, cx, cz), the variable y ∈ Rm consists of the ground truth
quantities of interest, here obtained using the direct modeling method, and η is
a zero-mean Gaussian noise with covariance Γ. The nonlinear function (a.k.a.
forward model or ROM) G : Rn → Rm maps the parameter space to the data space.
In this application, we work with one type of data-set; the displacement time series
recorded at the floors and foundation levels computed using the model described in
§8.2. Given N particles u(n)j , n = 1, . . . , N within the ensemble and at each iteration
j, we use the predictions G(u(n)j ) by the forward model and the observation data y

to update the particles for iteration j + 1. The formal derivation of the update is
presented in [3, 102] and is,

u(n)j+1 = u(n)j + Cuw
j+1(C

ww
j+1 + Γ)

−1(y
(n)
j+1 −G(u(n)j )) for n = 1, . . . , N . (8.7)

It is worth mentioning that the stopping criterion is defined as either reaching a
relative change of 0.001 in all the parameters in two consecutive EnKI iterations
or a maximum number of 500 iterations. Furthermore, the initial ensemble mean
is defined to be equal to the lumped stiffness and dashpot coefficients obtained
using the NIST [138] procedure. In addition, if the prior distribution of the soil
parameter is unknown, then we use a uniform distribution as a prior to represent
this uncertainty. We have used N = 100 ensembles3 in each model to estimate the
parameters. Finally, the positiveness of the stiffness and dashpot coefficients are
enforced through a change of variables u ∈ R, exp(u) : R → [0,∞] on which the
EKI is applied.

Provided with Equation (8.7), we proceed to identify the soil spring and dashpot
coefficients for the three building structures resting on ten different soils using the
ROM described in § 8.2.2 and the data generated using the direct modeling approach
in § 8.2.1. The results of this analysis is summarized in Figure 8.3 for which the
normalized factors are k0 = 3 · 107[N/m] and c0 = 2 · 106[Ns/m]. The blue circle
represents the identified values for the building with fixed base period 0.5[s], while
the red and yellow circles represent the identified values for the building with fixed
base period 1.0[s] and 1.5[s], respectively. The blue, red, and black dashed lines
represent the non-linear curve fitting applied to these values. A good agreement is
obtained for the three buildings considered.

3Since the number of parameters to be identified are four, we theoretically only need four
ensembles to span the parameter space [72].
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Figure 8.3: Non-linear curve fitting for the soil-structure interaction function to the
generated data provided with the identified parameters of the 30 analyses.

8.3 Verification of the reduced order model for SSI assessment
We employ the CESMD - Information for Strong-Motion Station [62] to select
real-earthquake signals with different intensities. In particular, we use:

(a) Berkeley, January 4th, 2018, station 58496. Site class D (low).

(b) Chino Hills West Covina Cortez, July 29th, 2008, station 23056. Site class D
(moderate).

(c) Northridge Newhall County Fire, January 17th, 1994, station 24279. Site
class D (high).

The earthquake signal listed above is employed as free-field motion (FFM) motion
for both the direct method and the ROM method. These velocity time histories as
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well as their frequency content are displayed in Figure 8.4.

Figure 8.4: Earthquake signals and frequency content used for the ROM validation.

We perform the validation to the three buildings presented in Table 8.1 using the
direct modeling method described in § 8.2.1. We assume that this analysis will
generate the true response since it accounts for all sorts of interactions. We then
perform the same analysis using the ROM described in § 8.2.2. In this analysis,
we replace the surrounding soil by a set of spring and dashpot elements placed all
over the foundation interface whose values are estimated using the non-linear curve
fitting showed in Figure 8.3.

In Figures 8.5–8.7, the time history response at the first-modal height for the total-
horizontal displacement ∆h

X and the total-vertical displacement ∆h
Y are represented

in solid-blue line and dashed-red line for both the direct modeling method and the
ROM respectively. In addition, the total-horizontal displacement of the roof ∆r

X and
the total-horizontal displacement of the ground level ∆gX are displayed in a similar
fashion. Moreover, the frequency contents of such signals for the total displacement
are represented below in the same figures. A normalized representation of the
evaluated frame is also displayed, so that the three-different topologies considered
in these cases are much clearer.

At a first glance, it can be seen in these figures that a good agreement is reached in
both the total displacements at different building levels and the frequency content
of such signals. More rigorously, in Table 8.2 the discrepancies between the direct-
modeling method and the reduced-order method are quantified. In particular, we
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Figure 8.5: The parameters considered in the analysis for the building are a fixed-
fundamental period T = 0.5 [s] and a fixed-first modal height h = 15 [m]. The
foundation dimensions are a half-length B = 10 [m] and a foundation depth D =
1.0 [m]. The soil shear velocity is Vs = 200 [m/s] and subjected to Northridge
earthquake.

Figure 8.6: The parameters considered in the analysis for the building are a fixed-
fundamental period T = 1.0 [s] and a fixed-first modal height h = 30 [m]. The
foundation dimensions are a half-length B = 10 [m] and a foundation depth D =
2.5 [m]. The soil shear velocity is Vs = 200 [m/s] and subjected to Chino Hills
earthquake.

quantify: (a) the error associated to maximum displacement in the complete model,
and (b) the error associated to period elongation. Finally the slope as well as
the correlation of the time-series between the direct modeling and the ROM are
computed at each node, and the maximum discrepancy between them is reported.
The slope measures how well the simulated signal scales from the true response,
while the Pearson’s coefficient measures how similar the signals are.
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Figure 8.7: The parameters considered in the analysis for the building are a fixed-
fundamental period T = 1.5 [s] and a fixed-first modal height h = 40.0 [m]. The
foundation dimensions are a half-length B = 10 [m] and a foundation depth D =
5.0 [m]. The soil shear velocity is Vs = 200 [m/s] and subjected to Berkeley
earthquake.

Maximum Period Correlation
Frame Earthquake Displacement Elongation Slope Pearson’s
Name Name Error Error m R2

Berkeley 0.045 0.000 1.050 0.993
(a) Chino Hills 0.038 0.002 1.047 0.985

Northridge 0.065 0.001 1.030 0.996
Berkeley 0.028 0.013 0.985 0.980

(b) Chino Hills 0.067 0.100 1.053 0.991
Northridge 0.007 0.003 1.025 0.998
Berkeley 0.016 0.052 0.991 0.981

(c) Chino Hills 0.036 0.120 1.018 0.986
Northridge 0.018 0.007 0.996 0.987

Table 8.2: Errors associated with displacement responses and period elongation for
the buildings described in § 8.2 to a transient analysis.

Overall, Table 8.2 shows a good agreement in both time history responses and
their frequency content. The discrepancies are attributed to the extrapolation of the
soil spring and dashpot elements, since the number of building frames considered
in the analysis to span the whole dimensional parameter space may not enough.
Nevertheless, we can conclude that prescribing the free-field motion at the interface
foundation nodes and adding soil spring and soil dashpot coefficients computed
using the non-linear fitting provided in Figure 8.3 provide reasonable results when
time history responses, maximum displacements, period lengthening and radiation
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damping are computed. Such soil spring and soil dashpot elements are used next to
quantify the simplified regional soil-structure interaction in Southern California.

8.4 Evaluation of SSI effects on regional scale
The simplified regional SSI applied to Southern California is performed to each
one of the buildings described in Table 8.1. In this analysis, we first assume that
buildings of a given fixed-base period are placed all over the Southern California
area. Since in our analysis each building is separated by approximately 500 [m], we
assume that the free-field motion is not affected by the motion of the surrounding
buildings. The three-dimensional earthquake signal simulated in [145] covers an
approximate area of 180 [km]×135 [km], and corresponds to the Mw 5.4, 2008Chino
Hills earthquake for a maximum frequency of 4 [Hz] and a minimum shear-wave
velocity of 200 [m/s]. This simulation is validated by comparing data obtained
from seismic networks with simulation synthetics on more than 300 recording
stations, and further details on how this analysis was carried out are provided
extensively in [145, 146]. The simulation uses a kinematic source model and the
Southern California Earthquake Center (SCEC) Community VelocityModel (CVM-
S v4.1) developed by the Southern California Earthquake Center. This information
is used along with the building geometry to estimate the soil spring and soil dashpot
coefficients as presented in § 8.2.3 and employed along with the ROM developed in
§ 8.2.2 and verified in § 8.3.

Because of the symmetry of the building frames, we have decoupled the buildings’
3D response into a 2D analyses in the N- andW-directions. The responses evaluated
at each building corresponds to the maximum value between these two directions.
Now, and in order to identify the effects of SSI, we have simulated the fixed-base
condition as well. In the fixed-base analyses, small Rayleigh damping [20, 63]
proportional to the stiffness matrix only is included, and the free-field motion is
applied directly to the foundation. The results of the fixed-base case are used as
normalizing factor so we can separate the effects of SSI into beneficial, indifferent,
and detrimental depending on this ratio.

Spatial distribution of fundamental period and radiation damping
The period lenghtening (T̃) and radiation damping (β0) of buildings is evaluated
using the expression derived in Chapter 5.4 through an equivalent single-degree-of-
freedom system, with dynamic properties concentrated at its first-modal height and
geometry of the foundation provided in Table 8.2.
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Figures 8.8 represents the spatial distribution of the period lenghtening and radiation
damping in the Southern California area. In this figure, the yellower the color, the
more prone the building is to experience SSI effects.

Figure 8.8: The period lenghtening and radiation damping distribution in the South-
ern California area.

Figure 8.8 shows that for the three buildings of fixed-base periodT = 0.5, 1.0, 1.5 [s],
the SSI in terms of period lenghtening is concentrated in the area of Los Angeles
basin, as well as Long Beach area. This effect is accentuated even more when
flexible structures are considered. Overall, it can be observed that more than 50%
of the Southern California area experiences a period elongation period greater than
1.25. On the other hand, radiation damping becomes important only for the stiffer
structure, i.e, fixed period 0.5 [s], in which only an area approximately of 30%,
mostly concentrated in Long Beach, is grater than 0.075. For the buildings of fixed
period 1.0 [s], and 1.5 [s], the radiation damping is less than 0.05; therefore, it seems
to be conservative to assume a radiation damping of 0.05 for flexible buildings as
designing codes usually suggest.
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Urban-scale effects of SSI on seismic demands
The period lengthening in structures generated by SSI is usually considered to be
detrimental in terms of displacement responses, and considered to be beneficial in
terms of the accelerationwhen seismic loads are imposed on aflexible-base structure.
Because of this, the fixed-base assumption has been adopted in seismic codes as
a conservative design approach. However, SSI may also be detrimental under
certain seismic and soil conditions, depending primarily on the soil topography and
stratigraphy as well as the dynamic characteristics of the structure. In this analysis,
we evaluate the seismic-demand in terms of maximum displacements, maximum
acceleration, and maximum inter-story drift. We have also normalized the SSI
responses against the fixed-base case so that we can separate the SSI effects in
categories–i.e., beneficial, indifferent, and detrimental depending on the response
ratio. The categories are taken such that: it is considered beneficial if the ratio is
less than 0.85, it is considered detrimental if this ratio is greater than 1.15, and it is
considered indifferent if the ratio ranges between 0.85 − 1.15.

The maximum response demands evaluated for the three-buildings are presented in
Table 8.1. The results of this analysis are displayed in Figure 8.9, for which the SSI
effects on the seismic demands is represented over the area of Southern California.
In this figure, the color limits are set such that blue represents a ratio of 0.0 and the
yellow a ratio of 2.00 with respect to the fixed-base case.

We first present in Figure 8.9 the normalized maximum displacement demand at the
upper-most row. In this figure, we notice that the normalizedmaximumdisplacement
is concentrated in areas such as Los Angeles basin, Glendale, Alhambra, La Habra,
Yorba Linda, and Long Beach. These results are consistent since these areas present
mostly soft soils which increases the flexibility of the coupled system and thus the
total displacement. Now, a more detailed analysis reveals that for the building of
period 0.5 [s], only 20% of the Southern California area experiences a detrimental
SSI effect (ratios greater than 1.15), while 15% is beneficial (ratios less than 0.85).
For the building of period 1.0 [s], only a total area of 25% experiences a detrimental
SSI effect, while 25% of Southern California area is beneficial. Finally, for the
building of period 1.5 [s], only 20% of the area experiences a detrimental SSI
effect, while 45% is beneficial. These results suggest that detrimental SSI effects for
the maximum displacement ratio occur in average in 20% of the area of Southern
California; in particular the building with fixed-base period of 1 [s] experiences the
larger increase in areas close to Buena Park, Santa Fe Springs, Glendale, Burbank,
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Figure 8.9: The urban-scale effects of SSI on seismic demands (rows) in the Southern
California area for the three buildings (columns).
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and Los Angeles Downtown.

We next present in Figure 8.9 the case of the normalized maximum acceleration
on the second row. This set of maps shows that for flexible buildings, i.e., T =

1.0 [s], and T = 1.5 [s], indifferent and beneficial SSI effects are obtained almost
everywhere, covering and area of 85% approximately. Amplification of acceleration
is only obtained for the stiff structure, i.e., T = 0.5 [s] in areas around Pasadena,
Santa Ana, Anaheim, Hawthorne, Inglewood, and Westwood. In particular, for
the building of period 0.5 [s], only 10% of the area experiences a detrimental SSI
effect, while 70% is beneficial. For the building of period 1.0 [s], only a 2.5% of the
area experiences a detrimental SSI effect, while 85% is beneficial. Finally, for the
building of period 1.5 [s], only 0.7% of the area experiences a detrimental SSI effect,
while 90% is beneficial. These percentages are consistent with the assumption that
has been adopted in seismic codes inwhich a conservative design approach considers
the fixed-base condition to estimate the seismic loads, but it could underestimate the
seismic loads in stiffer structures, especially in areas previously mentioned.

The case of normalized maximum inter-story drift on the last row shows that detri-
mental effects are concentrated in areas such as Sunset Beach, Carson, and Los
Alamitos for the three buildings presented. A more detailed quantification of this
demand shows that for the building of period 0.5 [s], only 15% of the area ex-
periences a detrimental SSI effect, while 55% is beneficial. For the building of
period 1.0 [s], only 10% of the area experiences a detrimental SSI effect, while
67% is beneficial. Finally, for the building of period 1.5 [s], only 3% of the area
experiences a detrimental SSI effect, while 88% is beneficial. These results reveal
that SSI effects seem to be overall beneficial or indifferent when the inter-story drift
demand is evaluated.

Finally, there are some configurations for which, under certain shear wave velocities
distribution and the dynamic characteristics of the structure, these effects can be
detrimental, especially for stiffer structure in which the maximum displacement and
inter-story drift can be drastically underestimated. However, the detrimental distri-
bution pattern in the Southern California area depends upon the building dynamic
properties as well as the foundation geometry. In this regard, the claim that SSI
effects are beneficial is not always true.
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8.5 Summary and conclusions
In this chapter, we presented a simplified regional SSI assessment of Southern Cali-
fornia for three different building configurations. The analysis is carried out placing
a particular building structure all over the Southern California area. This analysis
helps to identify the places where SSI effects are more likely to be detrimental.
In addition, this simplified analysis considers buildings with double symmetry in
plan-view such that the response in two-orthogonal directions can be decoupled.
This simplification allows us to use the ROM along with impedance expressions
estimated in § 8.2 using EnKI. Moreover, since the considered area of Southern
California is large, we discretized it every 500 [m]. This spatial spacing allow us to
assume that the free-field motion is not affected by the surrounding buildings, and
therefore the signals simulated in [145] are directly prescribed on the foundation.
Finally, we assume that each building feels a semi-infinite half-space whose shear
velocity value for the Vs30 are obtained from the Community Velocity Model.

Regarding the ROM used in this study, impedance expressions provided in § 8.2
are validated for transient analyses using real earthquake signals. In particular, the
Berkeley, Chino Hills, and Northridge earthquake signals are used in this work. The
validation process is carried out by comparing the reduced-order model against the
direct-modeling method not only for the time-history response (in terms of correla-
tion and Pearson’s coefficient), but also for the frequency content of such signals.
This validation allow us to make sure that the error made in the approximation using
the ROM is small, and then it can be employed to evaluate the regional SSI effect
on Southern California.

The regional SSI assessment of Southern California reveals two interesting out-
comes. First, the analysis once again confirms that SSI effects on period length-
ening of buildings are negligible for stiff soils, becoming more important for soft
soils. In particular, larger amplifications are obtained for flexible structures in soft
soils, in which about 80% of the Southern California area experiences an increase
greater than 20% in period lengthening. On the other hand, SSI effects on radiation
damping of buildings becomes modestly important for stiff structures on soft soils.
In particular, only a 20% of the covered area, i.e., in localized areas such as Long
Beach and Los Angeles basin, experiences radiation damping larger than 5% for the
stiff building. It is important to point out that the spatial distribution of shear-wave
velocity and the first modal building information are only used in the computation
of period-lengthening and radiation damping. Second, the analysis reveals that SSI
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effects in terms of maximum acceleration and maximum inter-story drift are mostly
beneficial; however, in certain areas specially where there is a high contrast be-
tween high and low shear-velocity, the maximum inter-story drift becomes large for
the buildings with period 0.5, 1.0 [s], more specifically in areas around Pasadena,
Glendale, El Monte, Yorba Linda, Corvina, Pomona, and Corona. This outcome
suggests that areas with large gradients in the shear-wave velocity should be an-
alyzed using SSI modeling. Finally, the maximum displacements are detrimental
almost everywhere for stiffer buildings; this suggests that a large underestimation
in seismic demand can be produced employing for instance displacement-based de-
sign methods [32] as pointed out in [85] when the performance point in the design
spectrum is estimated.

Although the simplified SSI assessment is demonstrated for a specific region and
assumes that the building response is decoupled, the analysis is general enough that
it can be applied in any area of interest or even in specific location if the earthquake
signals (or free-field motion) are known. The framework based on EnKI also allows
to account for several features such as soil nonlinearity, bounding interface between
the foundation and soil, and general three-dimensional buildings if the impedances
for such cases are known. The impedance function in this regard can be estimated
using for instance any system identification techniques. In this study, the Ensemble-
Kalman inversion (EnKI) turns out to be extremely robust and accurate when the
impedance values are estimated. The EnKI showed to be convergent even when a
small number of ensemble (N ≥ 4) are employed. The impedances estimated in this
manner can be used to develop analytical expressions to interpolate their value as a
function of the building geometry and soil property. A good agreement is obtained
when the full finite-element simulations are compared against the reduced-order
model simulations for transient analysis. Future extensions along this line are to
consider the building information database available inCalifornia, and to evaluate the
possible seismic demand, and thus identify susceptible areas in Southern California.
This analysis can potentially help to generate mitigation actions to buildings in
vulnerable areas. Finally, a natural extension of this analysis is to consider the soil
as nonlinear and study how the seismic demand changes for this new scenario and
make comparison with the linear case presented here.
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C h a p t e r 9

SUMMARY AND CONCLUSIONS

The research work presented in this dissertation was focused on the development
of an advanced ensemble Kalman inversion finite element model (EnKI-FEM)
updating framework. Similar frameworks have been developed during the last
40 years using ExKF and UnKF for parameter estimation of simplified models
[65, 68, 75, 82, 92, 135]. Additionally, natural extensions for more complex civil
structures have been addressed using external packages as forward model [9, 48].
However, the novelty of our framework lies in the use of an inversion approach that
allows (i) to identify parameters more efficiently (ii) to include constraints on the
parameters if desired [3], and (iii) to be fully integrated in Seismo-VLAB. The EnKI-
FEM framework is thus applied to improve reduced order models (ROMs) in the
context of SSI using high-fidelity wave-propagation finite element (FE)models. The
proposed framework, described in § 6, provides a methodology that could eventually
be applied to real-world applications on large and complex civil infrastructures if
enough instrumented data and a reliable FE model are available.

In this thesis, the development of the EnKI-FEM framework is presented in two
parts. The first part is the object of Chapters 2, 3, and 4 for which Seismo-VLAB:
a C++ multi-platform FE software designed to optimize large-scale simulations
of dynamic soil-structure interaction (SSI) problems is presented. In particular,
Chapters 3 and 4 provide the FE formulation for the simulation of wave propagation
in homogeneous half-space in the context of linear SSI. These features required for
high-fidelity SSI problems are described in depth and then implemented in Seismo-
VLAB. The second part of this research is covered in Chapters 5 and 6. In particular,
Chapter 5 introduces the ROM that is considered in both the EnKI-FEM framework
and the forthcoming SSI applications. In Chapter 6, a novel framework for linear and
nonlinear FE model updating is provided. In this framework, the ensemble Kalman
inversion (EnKI) is utilized and later implemented in Seismo-VLAB to estimate the
time-invariant parameters of the soil material properties for the ROM.

Finally, Chapters 7 and 8 presented two applications of the EnKI-FEM framework
for estimating parameters of ROMs in SSI problems. In particular, a much bet-
ter flexible-base dimensionless frequency to obtain the frequency-independent soil
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impedance in a homogeneous media is proposed. The dimensionless flexible-base
frequency mapping improves the one used by the state-of-practice for time domain
simulations of building structures on embedded foundations. The so-generated
flexible-base frequency mapping is validated using full-fidelity finite element anal-
yses, and an improvement greater than 30% is obtained for all tested cases when
they are compared against NIST. In this investigation, we have not only showed
that the dimensionless flexible-base frequency indeed depends on five dimension-
less quantities, but also we found that the structure-to-soil wavelength ratio, the
foundation aspect ratio, and signal-to-soil wavelength ratio are the most important
dimensionless parameters that control the frequency of the interaction. Lastly, in
the second application, the EnKI-FEM framework is applied to investigate areas in
Southern California where certain building configurations are more prone to expe-
rience detrimental SSI effects. In this study, the regional SSI assessment allowed to
identify larger amplifications in period lengthening greater that 20% in the Southern
California area, also localized areas, such as Long Beach and Los Angeles basin,
experience radiation damping larger than 5% for the stiff-building–i.e, T = 0.5 [s].
The latter applications are nothing but a proof of the unlimited range of applicabil-
ity that the EnKI-FEM framework possess as long as data and a reliable ROM are
available.

9.1 Limitations and major findings of the research work
During the modeling of the ROM, we assumed mostly linear elastic responses. It is
important to acknowledge that responses of reinforce concrete (RC) components are
governed by a complex phenomena. In particular, for a FE response simulation to
be successful in predicting the actual response behavior of RC, the numerical model
should be capable of capturing the following mechanism:

• Shear failure in beam-column frame members

• Bond-slip mechanism along the longitudinal and lateral reinforcements

• Buckling effects of the longitudinal reinforcement under excessive axial load

• Pinching behavior of RC frame components under cyclic loading

• Large deformation or RC beams, columns, and walls at high ductility demands

Additionally, if the aim of the FE model is to predict and simulate the response of
high-fidelity SSI effects to dynamic excitations, other sources of uncertainty can take
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place. Addressing properly these sources of uncertainty can decrease significantly
the bias in the FE predictions versus actual building responses. For instance, the
following aspects are relevant for a fully-coupled nonlinear SSI simulation:

• Energy dissipation mechanisms of the soil and structure

• Uncertainty related to the FE model parameters

• Nonlinear bonding between foundation and the surrounding soil

Note that throughout this thesis, we had generated and simulated the data from the
same FE model, thus no bias in the FE model is generated. Also, because of the
latter reason, uncertainty present in the FE is nonexistent. This is indeed a key point
to keep in mind when parameters of real SSI problems are being identified.

The strong need of a forward model capable of simulating the response of high-
fidelity SSI models to dynamic excitations led to the generation of the computer
software Seismo-VLAB. The development of Seismo-VLAB allowed to create a FE
model updating based on ensemble Kalman inversion. This framework resulted in
the following major outcomes and findings:

(i) The EnKI-FEM framework showed to be robust and efficient when the fol-
lowing simplifying and idealizing assumptions are considered:

(a) The dynamic input excitations (Ricker) are assumed to be known and
noiseless (deterministic)

(b) The effects of FE modeling uncertainties are neglected. This means that
the actual SSI model is assumed to belong to the FE model class used to
estimate the parameters.

(ii) The estimation of themodel parameters for the ROM requires a proper number
of ensembles as well as enough dynamic excitation intensity to trigger the
inertial effects during the structural response.

(iii) ROMs offer the possibility of analyzing large scale simulations without loss
of accuracy if they are developed using inverse problem techniques. In other
words, highly accurate ROMs can be developed using data and the EnKI-FEM
framework presented in this thesis.
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(iv) Validation of the developed EnKI-FEM framework was performed using real-
istic and progressively complicated SSI configurations. The simulation time
was small and single core execution was required even for models with more
than 30, 000 elements. Therefore, large SSI models can be identified if enough
computer resources are available.

9.2 Recommendations for future research work
The recommendations for future research work are divided into two branches. The
first is related to the EnKI-FEM framework itself, and they are summarized below:

(i) Successful performance of the proposed EnKI-FEM frameworks for real-
world applications requires extensions of Seismo-VLAB to account for the
nonlinear behavior of soil, soil liquefaction, large deformation, bonding be-
tween foundation, and the surrounding soil.

(ii) The EnKI-FEM framework should be further extended to incorporate the
effects of modeling uncertainty. Such uncertainties arise essentially from:

(a) Incorrect modeling assumptions that do not resemble the true physical
conditions; this is incorrect modeling of material constitutive models,
energy dissipation mechanisms, model geometry, boundary conditions,
and so on.

(b) Unmodeled physics, which are not included in the FE model; this
includes non-structural components, soil liquefaction, structural non-
linear effects, and so on.

(iii) The EnKI-FEM framework should include other damaging events besides
earthquakes. Depending on the importance of civil infrastructure, damaging
events may include explosions, impacts, hurricanes, tsunamis, etc.

The second branch is related to extend the applications presented in this work. In
particular, we highlight the following:

(i) The dimensionless flexible-base frequency mapping can be extended even
further to include more complicated soil features such as non-linear material
behavior of the soil or loose contact between soil and foundation. However,
more dimensionless parameters may be required, generating an increase in
the number of simulation cases required to span the parameter space. Future
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extensions of this applicationmay include the assessment of the dimensionless
fixed-base frequency to non-uniform half space and non-linear soil behavior.

(ii) The simplified soil-structure-interaction assessment can be extended to ac-
count for several features such as soil-nonlinearity, bounding interface be-
tween the foundation and soil, and general three-dimensional buildings if the
impedances for such cases are known.
Another extension along this line is to consider the building information
database available in California, and to evaluate the possible seismic demand,
and thus identify susceptible areas in Southern California. This analysis can
potentially help to generate mitigation actions to buildings in vulnerable areas.

(iii) Finally, analytical expressions can be derived for the FIM transfer functions
using different embedment ratios and angles of incidence. This analysis can
be generalized even further using 3D models and including the foundation
ratio as well.

9.3 Concluding remarks
Nowadays, the study of SSI is performed mostly using numerical simulations. The
complex nature of simulating high-fidelity SSI problems requires a large amount
of computer memory. Additionally, most of the computer software such as:
OpenSEES, ABAQUS, ANSYS, and SAP do no have the minimum capabilities
to handle SSI. For example, features such as PML and DRM are not present. To
address this challenge, in this thesis we have developed Seismo-VLAB, a simple,
fast, and extendable C++ finite element software designed to optimize meso-scale
simulations of dynamic and nonlinear SSI problems. However, the computational
cost of such simulations is still large. Thus, a suitable ROMwas developed such that
its accuracy is maximized by using data generated from the high-fidelity numerical
models. The ROM created in this way will bridge the gap between simplified nu-
merical models and data, becoming what we believe is the next generation of ROM
for SSI.
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