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ABSTRACT

Electron-phonon (𝑒-ph) interactions quantify the strength of interplay between
charge carriers and lattice vibrations and critically determine the transport prop-
erties in materials near room temperature. Depending on the coupling strength,
charge carriers can exhibit behaviors ranging from propagating waves extending
across crystals to trapped particles localized in space. Therefore, accurately de-
scribing 𝑒-ph interactions plays a central role in quantitative transport studies on
real materials. Over the last few years, first-principles methods combining den-
sity functional theory (DFT) and related techniques with the Boltzmann transport
equation (BTE) have rapidly risen and reached maturity for investigating transport
in various metals, semiconductors, and insulators with weak 𝑒-ph coupling. The
lowest-order 𝑒-ph scattering process can be investigated starting from 𝑒-ph interac-
tions from DFT calculations; this first-principles approach provides unambiguous
quantitative prediction of transport properties such as the conductivity and mobil-
ity in common semiconductors and metals over a wide temperature range without
using any empirical parameter. Encouraged by the agreement of the computed
transport properties with experiment for many simple materials, this thesis aims to
extend the applicability of this first-principles methodology and to further our under-
standing of microscopic transport mechanisms, especially in the wide temperature
window near room temperature where transport is governed by 𝑒-ph scattering. We
present research that expands the state of the art in three distinct ways, focusing
on three research directions we pursue in this work. First, we employ the BTE
to calculate the hole carrier mobility of naphthalene, an organic molecular crys-
tal containing 36 atoms in a unit cell, the record largest system for first-principles
charge transport calculations to date. The results are in excellent agreement with
experiments, demonstrating that transport in some high-mobility organic semicon-
ductors can still be explained within the band theory framework, and show that
low-frequency rigid molecular motions control the electrical transport in organic
molecular semiconductors in the bandlike regime. The second topic is an attempt
to go beyond the lowest-order theory of 𝑒-ph interactions and quantify the impor-
tance of higher-order 𝑒-ph processes. We derive the electron-two-phonon scattering
rates using many-body perturbation theory, compute them in GaAs, and quantify
their impact on the electron mobility. We show that these next-to-leading order
𝑒-ph scattering rates, although smaller than the lowest-order contribution, are not
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negligible, and can compensate the overestimation of mobility generally made by
the lowest-order BTE calculation in weakly-polar semiconductors. In the third part
of the thesis, we explore the opposite extreme case in which 𝑒-ph interactions are
strong and lead to the formation of localized (so-called "polaron") electronic states
that become self-trapped by the interactions with the atomic vibrations. We derive
a rigorous approach based on canonical transformations to compute the energetics
of self-localized (small) polarons in materials with strong 𝑒-ph interactions. With
the aid of ab initio 𝑒-ph interactions, we carry out the corresponding numerical
calculations to investigate the formation energy of small polaron and determine
whether the charge carriers favor localized states over the Bloch waves. Due to the
low computational cost of our approach, we are able to apply these calculations to
various compounds, focusing on oxides, predicting the presence of small polaron
in agreement with experiments in various materials. Our work paves the way to
understanding small polaron formation and extending these calculations to predict
transport in the polaron hopping mechanism in materials with strong 𝑒-ph coupling.
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C h a p t e r 1

INTRODUCTION

1.1 Overview
Electron-phonon (𝑒-ph) interactions play an important role in solid state and ma-
terial physics. They are key to understanding various physical phenomena and
novel technological applications. For example, in a conventional superconductor
[1], two electrons experience an attraction mediated by phonons and form a Cooper
pair, resulting in a vanishing resistance below a critical temperature. In addition,
phonons can assist the optical absorption in semiconductors with indirect band gap
by providing the momentum required for the charge carrier to make an interband
transition [2], which is shown to be crucial to photovoltaic devices based on Si
and Ge. The interactions between electrons and phonons are also instrumental in
understanding electrical and heat transport. In particular, 𝑒-ph interactions typically
control charge transport near room temperature, setting an intrinsic limit to the elec-
trical conductivity and mobility and determining their temperature dependence [3,
4]. In addition, they contribute to the zero-point renormalization and temperature
dependence of the electronic band structure [5], and are crucial to understanding
ultrafast dynamics [6], thermal conductivities [7], and thermoelectric transport [8].

Among these phenomena, the dominant role of 𝑒-ph interactions on room-temperature
charge carrier transport is of fundamental importance to advancing novel technolo-
gies. Charge carrier transport in materials is typically characterized by the carrier
mobility, which measures how fast a charge carrier can move on average in response
to an applied electric field, determining the performance of modern electronic and
optoelectronic devices. A low value of the room-temperature mobility reduces the
operation speed of transistors [9], limits the efficiency in solar cells [10], and results
in degradation in batteries [11]. As the 𝑒-ph interaction prevails over other sources
of scattering such as impurities and defects [12] in this temperature range, a thorough
understanding of microscopic 𝑒-ph processes can provide design rules and insights
into systematic optimization of modern devices. Therefore, considerable efforts
have been devoted to pursuing both qualitative and quantitative explanations on
macroscopic transport properties using various microscopic transport mechanisms
in a wide range of materials.
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Figure 1.1: Classification of transport regimes. Illustration of the classification
of transport regimes according to the absolute values of mobilities.

Materials can be roughly classified into three transport regimes according to the
magnitude of their room-temperature mobilities, as illustrated in Fig. 1.1. Each
regime corresponds to a specific transport behavior, due to a different strength
of 𝑒-ph interactions, and is typically treated using different physical picture and
theoretical approach. Charge transport in common semiconductors such as Si [13]
and GaAs [14] occurs in the band transport regime, which is typical of high-mobility
materials that have relatively weak 𝑒-ph interactions. In this regime, charge carriers
can be described by quasiparticles associated with extended Bloch waves, whose
motions are hindered only by occasional phonon scattering. This resistance from
phonons increases at higher temperatures due to the increasing phonon number,
resulting in a power-law decrease of the mobility in this regime [see Fig. 1.1(c)].
The opposite extreme is represented by materials with strong 𝑒-ph coupling and
transport in the hopping regime, such as MnO [15] and CeO2 [16]. This regime
is characterized by low mobility values (typically, lower than 1 cm2/Vs). The
charge carriers in these materials couple strongly with phonons, forming localized
distortions in the atomic lattice and becoming localized in space. These electrons can
only diffuse in the material by incoherent hopping from site to site, and thus exhibit
a macroscopic mobility typically increasing with temperature [see Fig. 1.1(a)].
The intermediate regime consists of materials with moderate mobility, and their
temperature trends and transport mechanisms are highly material dependent.

𝐸-ph interactions play a central role in transport study in all three regimes as they
determine how often a charge carrier is scattered by phonons in the band regime
or whether and how a charge carrier can distort its surrounding lattice and become
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self-trapped in the hopping regime. Therefore, a proper description of 𝑒-ph in-
teractions is critical to investigating the microscopic transport mechanism, and is
a first step toward precise quantitative prediction. The conventional treatment of
𝑒-ph interactions consists of breaking them up into distinct physical mechanisms
and analyzing them in the long-wavelength limit [17]. The value of each inter-
action, including the acoustic deformation potential, piezoelectric interaction, and
the long-range optical Fröhlich coupling, is obtained by fitting experimental data
or even set to an empirical constant. These empirical 𝑒-ph interactions are then
combined with appropriate transport theory to investigate the charge carrier trans-
port. For example, for weakly-coupled materials in band regime, charge carriers can
be described by the semiclassical Boltzmann transport equation (BTE), and using
empirical 𝑒-ph interactions, one can obtain a power-law decrease in the mobility
with temperature [18]. However, this empirical approach is not predictive because
it relies on experimental data for fitting, and it cannot unambiguously determine
the contributions of the individual scattering mechanisms, which are combined as
parameters in the theory. As such, the conventional treatment of charge transport is
inadequate for quantitative predictions on real materials.

In the last decade, first-principles methods have emerged and quickly reached matu-
rity to accurately compute 𝑒-ph interactions without using empirical parameters [19].
These calculations are based on density functional theory (DFT) [20, 21] and its
linear response extension, density functional perturbation theory (DFPT) [22], to
compute the 𝑒-ph matrix elements. This ab initio method provides unambiguous,
accurate description on the 𝑒-ph interactions throughout the entire Brillouin zone,
and is rapidly superseding the conventional approach described above. Combined
with the BTE and the lowest-order 𝑒-ph scattering process, these first-principles
methods can be routinely employed to make quantitative predictions of the trans-
port properties of various metals and semiconductors in the band regime over a
wide temperature range [3, 23–27], and have shifted the research focus from qual-
itative description of the model Hamiltonian to quantitative prediction on physical
properties of real materials.

The success of BTE calculations in the band regime has triggered efforts on ex-
tending this first-principles methodology to the intermediate and hopping regimes,
which are still relatively pristine territories for quantitative first-principles predic-
tions. Researchers have started to incorporate ab initio 𝑒-ph interactions into more
advanced transport theories in the past two years, trying to explain transport phe-
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nomena in various scenarios. With the goal of advancing understanding of the
microscopic transport mechanisms in real materials, this thesis work pursues three
aspects of ab initio calculations of 𝑒-ph interactions and transport properties. First,
it conducts a lowest-order 𝑒-ph scattering plus band transport BTE calculation in
the organic molecular crystal naphthalene, pushing the frontiers of the current band
transport calculations due to the structural complexity of naphthalene, a material
with 36 atoms in the unit cell (and thus 108 phonon modes); ours is the record-
largest calculation shown in the field to date. Our work on naphthalene additionally
shows that some molecular crystals, where transport is commonly thought to occur
in the intermediate or polaron hopping regimes, can in fact be well explained by
band transport theory. We then derive an approach to compute next-to-leading order
𝑒-ph interactions, and show numerical calculations of the corresponding electron-
two-phonon scattering rates in GaAs. Our results show that this next-to-leading
order 𝑒-ph contribution, though smaller than the lowest-order interaction, is sizable
and plays a role in mobility calculations in polar materials. Finally, we present a
new framework for investigating materials with strong 𝑒-ph coupling, and derive an
efficient computational approach to determine the energetics and formation of self-
localized small-polaron electronic states in low-mobility materials, paving the way
to understanding transport in the hopping regime. These advances and quantitative
predictions of charge transport are enabled by the methodology for calculating 𝑒-ph
interactions from first principles, which will be briefly reviewed in the next section.

1.2 First-Principles Electron-Phonon Interactions
First-principles calculations based on DFT have become an established computa-
tional tool to study the total energies and structural properties of real materials [19].
They find increasingly broad applications in condensed matter physics, quantum
chemistry, and material science for predicting the behavior of materials within an
atomistic framework [28, 29]. For example, they have achieved great success in ob-
taining band structures and optical properties in solids, as well as binding energies
and the structure of molecules. These methods take only the crystal structures and
atomic positions as inputs and do not make use of empirical parameters. A common
approach, employed in this thesis, is DFT within the plane-wave pseudopotential
framework [20, 21, 30]. The essence of DFT is formulating a theory of electrons
in materials in which the ground state properties can be uniquely determined by
the electron density, reformulating the many-electron problem into a convenient
density-based framework amenable to efficient computations. The key result of the
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theory is a Schrödinger-like equation, the Kohn-Sham (KS) equation, describing the
mean-field behavior of a single electron in a material, where all the intractable many-
body interactions among the electrons are represented by an exchange-correlation
functional.

As calculations of ground state material properties have become well-established,
the research focus has gradually shifted toward studying excited states within the
first-principles framework [31]. To investigate electron dynamics, a conceptually
straightforward approach is to evolve in time the electronic wavefunction and charge
density obtained from the KS equation, an approach known as time-dependent
DFT [32, 33]. Another route, adopted in this thesis, is leveraging well-developed
transport theories within the many-body perturbation theory, typically BTE or linear
response theory, while computing the relevant interactions using first-principles
calculations. This approach is becoming widely successful for investigating electron
dynamics and transport in a variety of systems. Let us briefly review this framework.

In the context of studying charge transport near room temperature in the phonon-
limited regime, the starting point is usually taken to be the 𝑒-ph Hamiltonian

𝐻 =
∑︁
𝑛k

𝜀𝑛k𝑎
†
𝑛k𝑎𝑛k +

∑︁
𝜈q

𝜔𝜈q

(
𝑏
†
𝜈q𝑏𝜈q +

1
2

)
(1.1)

+ 1
√
𝑁Ω

∑︁
𝑚𝑛k

∑︁
𝜈q

𝑔𝑚𝑛𝜈 (k, q)
(
𝑏
†
𝜈−q + 𝑏𝜈q

)
𝑎
†
𝑚k+q𝑎𝑛k,

where 𝑎𝑛k and 𝑏𝜈q are the annihilation operators for electrons and phonons with
energies 𝜀𝑛k and 𝜔𝜈q, respectively, and 𝑁Ω is the number of unit cells in the crystal.
The 𝑒-ph coupling constant 𝑔𝑚𝑛𝜈 (k, q) is the probability amplitude for an electron
in the Bloch state |𝑛k〉, with band index 𝑛 and crystal momentum k, to scattering to
a final state |𝑚k + q〉 due to an interaction with a phonon with mode index 𝜈 and
momentum q; we set ℏ to unity here and in the following. We first briefly sketch
how these quantities are obtained from first-principles calculations, and then outline
the electron transport calculations in the following section. Further information can
be found in Refs. [31, 34].

The electron energy 𝜀𝑛k in Eq. (1.1) and its corresponding wavefunction 𝜓𝑛k are set
to be the KS eigenvalue and eigenfunction, which satisfy the KS equation [21]

𝐻KS𝜓𝑛k =

(
− 1

2𝑚e
∇2 +𝑉KS [𝑛e]

)
𝜓𝑛k = 𝜀𝑛k𝜓𝑛k, (1.2)

where 𝑛e is the charge density and 𝑚e is the electron mass. The KS potential
is denoted as 𝑉KS, and is a functional of the charge density 𝑉KS = 𝑉KS [𝑛e]. It
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consists of three contributions, 𝑉KS = 𝑉ext +𝑉H +𝑉XC, which respectively account
for the potentials from ions and core electrons, Hartree, and exchange-correlation
interactions. The KS equation in Eq. (1.2) can be solved in a self-consistent manner:
upon obtaining the KS wavefunctions 𝜓𝑛k, the charge density can be calculated by
summing the contributions from 𝑁e electrons:

𝑛e =
∑︁
𝑁e

|𝜓𝑛k |2 .

This new charge density updates the KS potential in Eq. (1.2) and consequently
gives a new set of wavefunctions 𝜓𝑛k. This calculation is then repeated until the
electron density, total energy, and electronic wavefunctions converge.

The properties of phonons, the quanta of lattice vibration, can also be calcu-
lated using linear response DFT (so-called density functional perturbation theory,
DFPT) [22] by solving the Sternheimer equation associated with the first-order re-
sponse to lattice perturbations. Denoting the ion displacement as 𝑢𝜅, where 𝜅 = 𝑐𝑠𝛼

is a composite index labelling the ion 𝑠 in unit cell 𝑐 moving in the Cartesian direc-
tion 𝛼, then the total energy of the crystal 𝐸 (𝑢𝜅) from DFT calculations with ions
slightly deviated from their equilibrium positions can be expanded as

𝐸 (𝑢𝜅) = 𝐸0 +
1
2

∑︁
𝜅𝜅′

𝜕𝐸

𝜕𝑢𝜅𝜕𝑢𝜅′
𝑢𝜅𝑢𝜅′ + · · · , (1.3)

where 𝐸0 is the energy at equilibrium without ion displacements. The phonon
frequency 𝜔𝜈q in Eq. (1.1) and its associated phonon eigenvector 𝑒𝑠𝛼𝜈q are then
assigned to be the normal frequency and normal mode of the interatomic force
constants 𝜕𝐸/𝜕𝑢𝜅𝜕𝑢𝜅′. One straightforward real-space implementation is the frozen
phonon approach [35, 36], which explicitly shifts the ion positions in a supercell, 𝑢𝜅
and 𝑢𝜅′ in Eq. (1.3), to compute the force constants. In this thesis, we employ the
more common and efficient DFPT method [22] formulated in momentum space in
a plane-wave basis, as implemented in the Quantum ESPRESSO code [37]. The
DFPT calculations directly compute the dynamical matrices, which are the Fourier
transform of the interatomic force constants, at arbitrary phonon momentum q, and
can routinely compute the lattice dynamical properties using just a single unit cell.

The ion displacement 𝑢𝜅 also creates a perturbation in the KS potential that can
scatters the propagating electrons. With similar notation as in the above treatment,
we expand the KS potential with respect to the ion displacements as

𝑉KS(𝑢𝜅) = 𝑉KS
0 +

∑︁
𝜅

𝜕𝑉KS

𝜕𝑢𝜅
𝑢𝜅 + · · · (1.4)
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= 𝑉KS
0 +

∑︁
𝜈q

1√︁
2𝜔𝜈q

Δ𝜈q𝑉
KS

(
𝑏𝜈q + 𝑏

†
𝜈−q

)
.

In the second equality of Eq. (1.4), we use the fact that phonons are the normal
modes of lattice vibration and express them in second quantized form [31], using

𝑢𝜅 =
∑︁
𝜈q

1√︁
2𝑀𝑠𝜔𝜈q𝑁Ω

𝑒𝑠𝛼𝜈q𝑒
𝑖q·R𝑐

(
𝑏𝜈q + 𝑏

†
𝜈−q

)
,

where 𝑀𝑠 is the mass of atom 𝑠. The phonon perturbation potential felt by an
electron due to a phonon in mode 𝜈q is defined as

1√︁
2𝜔𝜈q

Δ𝜈q𝑉
KS =

1√︁
2𝜔𝜈q

∑︁
𝜅

𝑒𝑠𝛼𝜈q√
𝑀𝑠

𝑒𝑖q·R𝑖

√
𝑁Ω

𝜕𝑉KS

𝜕𝑢𝜅
,

and can be computed as a byproduct of the DFPT calculations. The 𝑒-ph coupling
constant 𝑔𝑚𝑛𝜈 (k, q) is then readily computed as

𝑔𝑚𝑛𝜈 (k, q) =
1√︁

2𝜔𝜈q
〈𝜓𝑚k+q |Δ𝜈q𝑉

KS |𝜓𝑛k〉,

which is fully ab initio since all quantities involved in the integral are obtained from
DFT and DFPT calculations.

In principle, the 𝑒-ph Hamiltonian in Eq. (1.1) can now be built up for arbitrary
electron and phonon momenta k and q. However, a transport calculation usually
involves integrals over both k and q requiring very dense Brillouin zone grids to
achieve numerical convergence, and it is prohibitive to compute all the relevant
quantities by direct DFT and DFPT calculations at all grid points. Therefore, in
practice, we first compute the 𝑒-ph coupling constants and other relevant quantities
on coarser grids, typically of order 10 × 10 × 10, and then we employ various inter-
polation techniques − in our calculations, Fourier interpolation based on Wannier
function, to obtain the 𝑒-ph matrix elements on fine grids, and tetrahedron inte-
gration to compute the conductivity and mobility [34]. Details of the interpolation
schemes can be found in the paper of the Perturbo code [34], developed in the
Bernardi group at Caltech and employed in this thesis to compute the 𝑒-ph coupling
matrix elements and the transport properties.

1.3 Band Transport and Electron-Phonon Scattering
The ab initio 𝑒-ph Hamiltonian obtained in the previous section can be combined
with any transport theory for quantitative predictions. For materials with transport
in the band regime, the semiclassical BTE is of particular importance because it
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usually gives a satisfactory result at an affordable computational cost. Since the 𝑒-ph
interactions are relatively weak in the band regime, the electrons can be described
by weakly interacting quasiparticles in Bloch states |𝑛k〉, and the probability that
these electronic states are occupied is quantified by the distribution function 𝑓𝑛k.
The BTE depicts how this distribution function 𝑓𝑛k evolves in time in a system out
of equilibrium. As such, it can also provide the steady state distribution of the
electron when an external electric field E is applied, from which various transport
coefficients can be extracted [38].

In the case of a weak electric field, we assume that the distribution function de-
viates only slightly from its equilibrium value, and define this linear deviation by
introducing the quantity F𝑛k:

𝑓𝑛k = 𝑓 0
𝑛k + 𝑒E · F𝑛k 𝑓

0
𝑛k

(
1 − 𝑓 0

𝑛k

)
𝛽 + O(𝐸2).

In this expansion, 𝑓 0
𝑛k is the Fermi-Dirac distribution, 𝛽 = 1/𝑘B𝑇 is the inverse

temperature, with 𝑘B the Boltzmann constant, and 𝑒 as the electron charge. The
BTE can then be linearized as (see Appendix B for detailed derivations)

F𝑛k = 𝜏𝑛kv𝑛k +
𝜏𝑛k
𝑁Ω

∑︁
𝑚𝜈q

F𝑚k+qΓ̃
𝜈q
𝑛k, 𝑚k+q, (1.5)

where 𝜏𝑛k and v𝑛k are the relaxation time and band velocity, respectively, and
Γ̃
𝜈q
𝑛k, 𝑚k+q is the scattering rate between states |𝑛k〉 and |𝑚k + q〉. As mentioned

above, solving the BTE amounts to finding the unknown electron distribution 𝑓𝑛k,
in practice by solving for its linear-in-field variation, F𝑛k in Eq. (1.5). A common
approach is the relaxation time approximation (RTA), which neglects the second
term on the right hand side of Eq. (1.5) and approximates F𝑛k to 𝜏𝑛kv𝑛k, therefore
neglecting the backscattering events. A more accurate solution can be obtained by
iteratively solving Eq. (1.5) [24]. After solving the equation, the electrical mobility
can be obtained through

𝜇𝛼 =
2𝑒𝛽
𝑛𝑐𝑉uc

∑︁
𝑛k

𝑓𝑛k(1 − 𝑓𝑛k)𝑣𝛼𝑛k𝐹
𝛼
𝑛k, (1.6)

where 𝑉uc is the unit cell volume and 𝑛𝑐 the charge carrier concentration. Loosely
speaking, if the electric field points in one direction− say, to the "right", the electrons
experience an electric force and move to the left. This motion is compensated by
the scattering events Γ̃𝜈q

𝑛k, 𝑚k+q and the system eventually reaches a steady state. The
electron distribution in this steady state, which can be obtained by solving Eq. (1.5),
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has more left-moving than the right-moving electrons, therefore building up an
electrical current.

The scattering term Γ̃
𝜈q
𝑛k, 𝑚k+q on the right hand side of Eq. (1.5) should in prin-

ciple encompass collisions from every possible source (not just 𝑒-ph interactions)
that scatter a charge carrier from state |𝑛k〉 to state |𝑚k + q〉. Nevertheless, near
room temperature the 𝑒-ph interactions have a dominant contribution, and in prac-
tical transport calculations for materials with relatively weak coupling strength, it
typically suffices to include only the lowest order 𝑒-ph scattering processes [31],
using:

Γ̃
𝜈q
𝑛k, 𝑚k+q = 2𝜋 |𝑔𝑚𝑛𝜈 (k, q) |2

[(
1 + 𝑁0

𝜈q − 𝑓 0
𝑚k+q

)
𝛿
(
𝜀𝑛k − 𝜀𝑚k+q − 𝜔𝜈q

)
(1.7)

+
(
𝑁0
𝜈q + 𝑓 0

𝑚k+q

)
𝛿
(
𝜀𝑛k − 𝜀𝑚k+q + 𝜔𝜈q

) ]
,

where 𝑁0
𝜈q is the Bose-Einstein distribution for phonon in mode 𝜈q. The first and

second terms correspond to scattering events where an electron emits or absorbs one
phonon, respectively, and the delta functions enforce energy conservation between
initial and final states. The relaxation time in Eq. (1.5) is defined as the inverse of
the first-order 𝑒-ph scattering rate,

1
𝜏𝑛k

= Γ𝑛k =
1
𝑁Ω

∑︁
𝑚𝜈q

Γ̃
𝜈q
𝑛k, 𝑚k+q. (1.8)

A typical workflow for computing the mobility within the RTA involves converging
the integral in Eq. (1.6) over the k-point grid, with F𝑛k set equal to 𝜏𝑛kv𝑛k. The relax-
ation time 𝜏𝑛k at each k point is computed using Eqs. (1.7) and (1.8), paying special
attention to converging the integral over the q point grid. In these integrations,
the 𝑒-ph coupling constants 𝑔𝑚𝑛𝜈 (k, q) are obtained on fine k- and q-point grids
by the Fourier-Wannier interpolation of the coarse-grid DFPT 𝑒-ph coupling con-
stants [34]. The delta functions in Eq. (1.7) are approximated by Gaussian functions
with a small broadening, typically of order 5 meV. This workflow has been applied
extensively by our group and can accurately compute the room-temperature mobility
for a wide range of metals and semiconductors with weak 𝑒-ph coupling, showing
that the BTE can successfully explain electrical transport in the band regime.

However, applying this first-principles methodology to the intermediate and hopping
regimes is an open challenge for various reasons. As the strength of the 𝑒-ph
interactions increases, the lowest-order perturbative treatment is expected to be
inadequate both because higher-order 𝑒-ph processes become important and because
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of the need to resort to more advance transport theories to include effects not
captured by the BTE. In materials with moderate 𝑒-ph interaction strength, the
charge carriers are still mobile, but, contrary to the weakly interacting quasiparticle
picture in the band regime, they are dressed by a phonon cloud, forming a composite
particle known as large polaron. The weights of their spectral function no longer
concentrates around the quasiparticle peak, an effect that needs to be carefully
taken into account for quantitative transport predictions. For example, recent work
from our group [4] combined ab initio electron spectral functions from a cumulant
approach with the Green-Kubo conductivity formula from linear response theory.
Their treatment can successfully explain electron transport in SrTiO3, a material
with transport in the intermediate regime, where a lowest-order 𝑒-ph plus BTE
calculation significantly overestimates the mobility [39]. For materials with strong
𝑒-ph interactions, perturbation theory breaks down, and charge carriers typically
couple to the lattice so strongly that they form self-localized small polaron states [40].
Pioneering work on small polarons and their hopping transport mechanism were
started decades ago [41, 42], but the resulting theoretical frameworks have not yet
been combined with first-principles calculations to achieve quantitative predictions.

Another reason for the slow progress is that materials with transport in the inter-
mediate and hopping regimes tend to have complex atomic or electronic structures,
posing additional challenges for accurate first-principles descriptions from DFT
and related methods. For example, although organic semiconductors [43, 44] play a
critical role in environmental-friendly and flexible electronic devices, understanding
their transport mechanisms remains a formidable challenge due to their large num-
bers of atoms in the unit cell, typically ranging from a few tens to a few hundreds,
which is orders of magnitude more than common inorganic semiconductors. Cal-
culations of phonon dispersions and 𝑒-ph coupling using DFPT, which scales as the
third power of system size with a large prefactor, become prohibitive for more than
a few tens of atoms in the unit cell. Another relevant example are perovskites [39],
many of which exhibit structural phase transitions at finite temperature that DFT cal-
culations, which capture zero-temperature ground state properties, cannot properly
handle, so that direct application of the DFPT method using the room-temperature
structure usually results in phonons with negative frequencies due to strong anhar-
monic effects. In addition, many materials in the intermediate and hopping regimes
contain transition metals with open 𝑑 or 𝑓 shell. Standard DFT calculations usually
fail in modelling these localized electrons due to self-interaction errors inherent in
the conventional exchange-correlation functionals, predicting inaccurate band gaps
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and physical properties. As a result, combining ab initio 𝑒-ph calculations with
transport theories to study the intermediate and hopping regimes is an ongoing
research effort, and one receiving increasing attention in the past few years.

1.4 Thesis Outline
Using as a starting point the first-principles 𝑒-ph calculations and the transport
theories introduced above, this thesis presents research at the forefront of ab initio 𝑒-
ph interactions and transport calculations, articulated into three research directions,
each addressing an open challenge in the field.

In chapter 2, we demonstrate calculations combining the BTE and ab initio 𝑒-
ph coupling constants on an organic molecular crystal, naphthalene, whose hole
mobility is of the order of 1−10 cm2/Vs, and therefore at the crossroad between
the band and intermediate transport regimes. Our results for the hole mobility in
naphthalene are in excellent agreement with experiments and can accurately predict
the mobility and its temperature dependence over a wide temperature range. We
take all 108 phonon modes into account, and show that intermolecular phonons,
consisting of low-frequency rigid molecular motions such as acoustic or molecular
rotational modes, control the mobility due to their large scattering phase space near
the band edge. This work also demonstrates that the applicability of band theory
and the BTE can be extended to some materials in the intermediate regime and
to hole transport in various organic semiconductors. It also forms the basis for
extending studies of organic materials to the intermediate and hopping regimes,
and to understand the shortcomings of widely-used simplified transport models in
organic materials.

Chapter 3 is devoted to investigating next-to-leading order 𝑒-ph scattering processes
and how they affect the mobility. The BTE can accurately predict transport in
the band regime, but it substantially overestimates the mobility in weakly polar
semiconductors. An example is GaAs, where the (carefully converged) lowest-
order 𝑒-ph plus BTE result is about twice greater than the measured mobility.
As the charge carriers in polar materials experience the Fröhlich interaction with
longitudinal optical phonons, which can range from weak to strong depending
on how strongly polar are the chemical bonds, one expects that the discrepancy
between the BTE result and experiments is due to omission of higher-order 𝑒-ph
effects. In this work, we derive the analytic expressions for the electron-two-phonon
(2ph) scattering rates by calculating two-loop Feynman diagrams, and evaluate their
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numerical values from first principles for GaAs. The results, to our surprise, show
that the 2ph scattering rates are not negligibly small, and are nearly half the value
of the lowest-order scattering rates. We rationalize their peculiar dependence on
electron energy, and demonstrate that the overestimation of the calculated mobility
in GaAs can be compensated by taking this next-to-leading order 2ph scattering
processes into account.

In Chapter 4, we extend the first-principles methodology to the hopping regime
and investigate small polaron formation in materials with strong 𝑒-ph coupling. The
small polaron is a self-localized electronic state trapped by the local lattice distortion
it induces. In early theoretical treatments, the presence of this self-localized state was
typically assumed rather than predicted. We develop a formalism based on canonical
transformations to compute the polaron formation energy and wavefunction using
ab initio 𝑒-ph interactions. By direct comparison of the calculated polaron energy
with the conduction or valence band edge, we can infer whether charge carriers
in a material favor a localized small polaron over a delocalized Bloch state. The
formalism presented in this chapter enables preditions of small polaron formation in
materials, as demonstrated through the examples of alkali halides and metal oxides.
It also serves as the starting point for developing quantitative transport predictions
in the hopping regime.
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C h a p t e r 2

BANDLIKE HOLE MOBILITY IN NAPHTHALENE CRYSTAL

This chapter is a slightly modified version of the published article:

N.-E. Lee, J.-J. Zhou, L. A. Agapito, and M. Bernardi, "Charge transport in organic
molecular semiconductors from first principles: The bandlike hole mobility in a
naphthalene crystal", Phys. Rev. B 97, 115203 (2018).

2.1 Introduction
Organic molecular crystals are broadly relevant to solid state physics. Their
electronic properties range from conducting to insulating, and they can exhibit
anisotropic electrical and optical properties, ferroelectricity, magnetism, and super-
conductivity. Organic semiconductors are lead candidates for novel optoelectronics
and spintronics applications [1, 2]. Crystals like pentacene and rubrene are already
widely used in organic field-effect transistors and light-emitting devices [3–5].

Yet, in most organic crystals the nature and transport mechanisms of charge carriers
remain unclear. Possible charge transport regimes include polaron charge hopping,
band transport, and intermediate regimes, each leading to a peculiar temperature
dependence of the mobility. Even in the same organic crystal, electrons and holes can
behave differently. An example is naphthalene, where hole carriers display bandlike
transport with a power-law temperature dependence of the mobility [6], though

a

b

c

a
c*

Figure 2.1: Crystal structure of naphthalene. The monoclinic crystal structure of
naphthalene, with two molecules in the unit cell. The molecules are arranged in a
herringbone pattern in the ab planes (left), which are stacked in the c crystallographic
direction (right). The c* direction normal to the ab plane is also shown.

https://link.aps.org/doi/10.1103/PhysRevB.97.115203
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electron transport in the out-of-plane direction is polaronic and nearly temperature
independent [7].

Several approaches have been proposed to compute charge transport in organic
crystals [8]. Recent calculations favor either quantum chemistry methods based on
hopping of localized charge carriers [8–15], or somewhat less extensively polaron
theories [16–21]. Charge hopping calculations have provided remarkable insight
into charge transport in molecular crystals [8–15]. However, they are laborious, and
are not based on rigorous condensed matter theory. They require large molecular
dynamics or Monte Carlo simulations, rely on semiempirical charge transfer models
based on Marcus theory, and include the temperature dependence of charge transport
only approximately, typically using the Einstein diffusion formula. A common
assumption is also that only rigid molecular motions affect the rate of carrier hopping,
and therefore charge transport. The accuracy of the charge hopping approaches is
limited − the best calculations yield mobility values 3−4 times greater than the
experiment [9, 10], though order-of-magnitude discrepancies between computed
and measured mobilities are more common [8].

To date, only few works have employed band theory to compute charge transport
in organic crystals [22–25], despite experimental [26–29] and theoretical [30] ev-
idence of bandlike transport in tetracene, rubrene, naphthalene, and other organic
semiconductors. Methods combining band theory and many-body perturbation the-
ory have been recently employed to accurately compute 𝑒-ph scattering and charge
transport, for now in simple inorganic materials with a handful of atoms in the
unit cell [31–34]. Due to computational cost, these calculations have not yet been
applied to organic crystals with tens of atoms in the unit cell. Ab initio studies of
𝑒-ph coupling in organic crystals exist [35–37], but charge transport, which requires
more elaborate workflows [32], has not yet been investigated within this framework.

Here we compute from first principles the bandlike hole mobility of naphthalene
crystal, a material with 36 atoms in the unit cell (see Fig. 2.1). The computed
mobility is within a factor of 3−4 of experiment, and we can accurately predict its
temperature dependence between 100−300 K. For organic semiconductors, these
results are a rare case of very good quantitative agreement with experiment − the
accuracy on the mobility is on par with the best charge hopping calculations, and we
make an order of magnitude improvement over previous ab initio mobility calcula-
tions in organic crystals using band theory [22, 23]. We show that intermolecular
phonons (i.e., rigid molecular motions) regulate the mobility due to a large phase
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space for scattering holes with energy close to the band edge. Yet, contrary to com-
mon notions, intramolecular phonons exhibit the strongest coupling with holes. Our
work reconciles the tenet of charge hopping methods that intermolecular phonons
control the mobility with the many-body theory perspective, which treats carrier
scattering in terms of phonon absorption and emission events.

2.2 Methods
We carry out density functional theory (DFT) calculations using the Quantum
ESPRESSO code [38] with a plane-wave basis set. We employ the Perdew-Burke-
Ernzerhof generalized gradient approximation [39] and norm-conserving pseudopo-
tentials [40] from Pseudo Dojo [41]. A kinetic energy cutoff of 90 Ry and 4× 4× 4
k-point grids are used in all DFT calculations. Thermal expansion is taken into
account by employing, in separate calculations, lattice constants [42] and atomic
positions [43, 44] taken from experiment at four different temperatures of 100, 160,
220, and 300 K. All calculations listed below are repeated separately at these four
temperatures. The Grimme van der Waals (vdW) correction [45, 46] is included
during structural relaxation. To obtain accurate electronic band structures [47],
we carry out GW calculations using the YAMBO code [48], and obtain the G0W0

self-energy using 500 bands in the polarization function and a cutoff of 10 Ry in the
dielectric screening. Wannier90 [49] is employed to interpolate the band structure,
using ab initio molecular orbitals [50] as initial guesses.

Phonon dispersions are computed with density functional perturbation theory (DFPT)
[51] on a 2× 4× 2 q-point grid [52]. The 𝑒-ph coupling matrix elements 𝑔𝑛𝑚𝜈 (k, q)
on coarse k- and q-point grids [34] are computed using a routine from the EPW code
[53] and interpolated using Wannier functions [54] generated with the Wannier90
code [49]. Here and in the following, 𝑛 and 𝑚 are band indices, 𝜈 labels phonon
modes, and k and q are crystal momenta for electrons and phonons, respectively.
Our in-house developed code Perturbo [55] is employed to interpolate the 𝑒-ph
matrix elements on fine grids with up to 60 × 60 × 60 k-points and 105 random
q-points, and to compute 𝑒-ph scattering rates and the hole mobility. The band- and
momentum-resolved 𝑒-ph scattering rates Γ𝑒-ph

𝑛k are obtained in the lowest order of
perturbation theory [34],

Γ
𝑒-ph
𝑛k =

2𝜋
ℏ

∑︁
𝑚𝜈q

|𝑔𝑛𝑚𝜈 (k, q) |2
[
(𝑁𝜈q + 1 − 𝑓𝑚k+q)𝛿(𝜀𝑛k − 𝜀𝑚k+q − ℏ𝜔𝜈q) (2.1)

+(𝑁𝜈q + 𝑓𝑚k+q)𝛿(𝜀𝑛k − 𝜀𝑚k+q + ℏ𝜔𝜈q)
]
,
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where 𝜀𝑛k and ℏ𝜔𝜈q are the hole and phonon energies, respectively, and 𝑓𝑛k and 𝑁𝜈q

the corresponding occupations. The scheme developed in our recent work [32] is
applied to converge Γ𝑒-ph

𝑛k . The relaxation times 𝜏𝑛k used in the mobility calculations
are the inverse of the scattering rates, 𝜏𝑛k = 1/Γ𝑒-ph

𝑛k . Our calculations focus on
holes, and include only the HOMO and HOMO−1 bands because the energy gaps
to the HOMO−2 and LUMO bands are larger than the highest phonon frequency.

We employ the Boltzmann transport equation [32, 56] within the relaxation time
approximation to calculate the electrical conductivity

𝜎𝛼𝛽 (𝑇) = 𝑒2
∫ ∞

−∞
𝑑𝐸

(
−𝜕 𝑓 (𝐸,𝑇)

𝜕𝐸

)
Σ𝛼𝛽 (𝐸,𝑇) (2.2)

where the transport distribution function Σ𝛼𝛽 (𝐸,𝑇) at energy 𝐸 and temperature 𝑇
is defined as

Σ𝛼𝛽 (𝐸,𝑇) =
2
𝑉uc

∑︁
𝑛k

𝜏𝑛k(𝑇)𝑣𝑛k,𝛼𝑣𝑛k,𝛽 𝛿(𝐸 − 𝜀𝑛k) (2.3)

and is calculated via tetrahedron integration [57]. The band velocities v𝑛k are
obtained from Wannier interpolation; 𝛼 and 𝛽 are cartesian directions, and 𝑉uc

is the unit cell volume. The hole mobility along the direction 𝛼 is computed
using 𝜇𝛼 = 𝜎𝛼𝛼/𝑛𝑝 |𝑒 |, where 𝑛𝑝 is the hole concentration. These 𝑒-ph and mobility
calculations on unit cells with tens of atoms are made possible by efficient algorithms
combining MPI plus OpenMP parallelizations we recently developed.

The computed band structures and phonon dispersions are given in the Supple-
mentary Materials (See Fig. 2.5). The GW correction is important as it stretches
the valence band, thus lowering the hole effective mass and changing the relative
alignment of the valence band valleys. The quality of our phonon dispersions is
comparable with that of recent accurate phonon calculations in naphthalene [52].
For reference, we also employ the methods above to compute the phonon dispersion
of the perdeuterated naphthalene. The comparison with experimental data is given
in the Supplementary Materials (See Fig. 2.7).

2.3 Results
Figure 2.2 shows our calculated hole mobilities in the in-plane a and b and the plane-
normal c* directions (see Fig. 2.1). The experimental data given for comparison
is taken from Ref. [6]. The computed mobilities are lower by a factor of 3−5
than the experimental values; the smallest discrepancy (a factor of 3) is found for
the a direction, and the highest (a factor of 5) in the c* direction. Note that the
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1Figure 2.2: Calculated hole mobility in naphthalene. The hole mobility in naph-
thalene, given, from left to right in separate panels, in the two in-plane directions a,
b, and in the plane-normal direction c*. Circle markers are the computed mobilities
and black markers the experimental data from Ref. [6]. Straight lines are best fits to
the power law function 𝑇−𝑛 of the data points in the 100−300 K temperature range,
and the exponent 𝑛 for each data set is also given. The error bars are obtained by
assuming a 10% error on both the phonon frequencies and the GW band stretching
factor. These error sources are assumed to be independent and combined together.

c* axis corresponds to a direction along which the molecules are stacked, so that
the slightly lower accuracy in this direction is expected due to our neglect of van
der Waals interactions in the 𝑒-ph coupling. Fitting the data with a power law
function 𝑇−𝑛 over the 100−300 K temperature range yields calculated exponents
𝑛 in the 2.34−2.88 range for the three directions, in agreement within 3% (in the
ab plane) and 10% in the c* direction with the exponents 𝑛 obtained by fitting
the experimental data (see Fig. 2.2). The charge transport anisotropy is estimated
by evaluating mobility ratios between different directions at 300 K. The computed
ratios, 𝜇𝑏/𝜇𝑎 = 1.16 and 𝜇𝑐*/𝜇𝑎 = 0.18 are consistent with the experimental values
of 1.57 and 0.34, respectively.

Since the accuracy of the phonon dispersions and GW band structures depends on
the chosen crystal structure, exchange-correlation functional, and pseudopotential,
it is important to quantify how these sources of uncertainty affect the computed
mobility. To this end, we estimate how the combination of a small error in the GW
correction (arbitrarily chosen to be∼10% in the stretching factor of the valence band)
and an assumed ∼10% error on the phonon frequencies (a conservative value for
organic crystals) affect our calculations. The resulting error bars on the mobilities
are given in Fig. 2.2.

Within these uncertainties, which are typical of ab initio methods − especially
for organic crystals with complex structures − the range of computed mobilities
(inclusive of the error bars) reaches values roughly 2−3 times smaller than the
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experimental results in the in-plane a and b directions. Overall, the temperature
trends and absolute values of the mobility are remarkably accurate, particularly
when compared to the very scarce literature on charge transport in organic crystals
using ab initio band theory. Our accuracy is comparable to the best calculations [9,
10] using quantum chemistry methods based on hopping that dominate the literature.

We have verified that employing the Tkatchenko-Scheffler (TS) vdW correction [58,
59], which is more accurate than the Grimme-vdW correction used here, does not
change appreciably the structure and mobility. In particular, the root-mean-square
(RMS) deviation between the atomic positions obtained with the Grimme-vdW and
the TS-vdW corrections is only 0.05 Å, and the RMS deviation of the bond lengths is
∼0.05%. The mobility at 300 K obtained by computing the band structure, phonons,
and 𝑒-ph matrix elements with the structure obtained using the TS-vdW correction is
very close (within 5−10%, and thus within the error bars in Fig. 2.2) to the mobility
computed here using the Grimme-vdW method (see Fig. 2.6 in the Supplementary
Materials). Future work will investigate further the role of the vdW correction on
the 𝑒-ph coupling and mobility in organic crystals.

Next, we investigate the role of different phonon modes in scattering the hole
carriers. In the charge hopping picture, the conventional wisdom is that low-
frequency intermolecular phonon modes, which correspond to rigid motions of
entire molecules [12, 13], determine the mobility since they strongly affect the
rate of charge hopping between molecules. Intramolecular vibrations, on the other
hand, are typically neglected due to their hypothesized weaker coupling to the
carriers. There are 108 phonon modes in naphthalene; the 12 lowest-frequency
modes are intermolecular, and the others are intramolecular. We express the total 𝑒-
ph scattering rate in Eq. (2.1) as the sum of the scattering rates due to each individual
mode 𝜈, i.e., Γ𝑒-ph

𝑛k =
∑

𝜈 Γ
(𝜈)
𝑛k , and investigate the mode-resolved scattering rates Γ(𝜈)

𝑛k .
Here and in the following, the phonon modes are numbered in order of increasing
energy at the Brillouin zone center, and the hole energy increases moving away from
the valence band maximum (VBM) into the valence band.

Figure 2.3(a) shows the mode-resolved 𝑒-ph scattering rates as a function of hole
energy for the 12 intermolecular phonon modes, and Fig. 2.3(b) for selected in-
tramolecular phonons. Note that the intermolecular phonons have either zero or
very small minimum frequency since they correspond to transverse acoustic (TA)
and longitudinal acoustic (LA) vibrations (modes 1−3) or other rigid vibrations or
librations of the molecules (modes 4−12). By contrast, the intramolecular modes
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Figure 2.3: Mode resolved hole-phonon scattering rates. Mode resolved 𝑒-ph
scattering rates, Γ(𝜈)

𝑛k , for (a) the 12 intermolecular phonon modes and (b) selected
intramolecular phonon modes (note the y-axis log scale). Also sketched in (b) are the
dominant 𝑒-ph scattering processes below and above the phonon emission threshold
energy ℏ𝜔0, which is shown as a vertical dashed line for mode 90. The black dashed
curve represents the integrand in Eq. (2.2), and shows that only hole states within
a 50−100 meV energy window of the valence band maximum (VBM) contribute to
the mobility. (c) Mode-resolved scattering rates averaged over the energy window
contributing to the mobility. In all plots, the zero of the energy axis is the VBM,
and the hole energy increases moving away from the VBM into the valence band.

20−90 in Fig. 2.3(b) possess much higher frequencies. The integrand of the mobility
in Eq. (2.2) is also plotted in Figs. 2.3(a)−2.3(b) to highlight the energy window
contributing to the mobility, which spans hole states within 50−100 meV of the
VBM. In this energy window, the 12 intermolecular phonon modes exhibit much
greater scattering rates than the intramolecular modes, due to reasons related to the
𝑒-ph scattering phase space that are examined next.

In the hole scattering rates of Eq. (2.1), the first term in square brackets corresponds
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to phonon emission, and is proportional to the phonon population 𝑁𝜈q+1 since
𝑓𝑚k+q ≈ 0 for holes in our chosen temperature range. The term in the second
square brackets is the phonon absorption rate, which is proportional to 𝑁𝜈q. Since
the intermolecular phonon modes 1−12 have a zero or small minimum energy,
intermolecular phonon absorption and emission processes are both active at all
hole energies. Their scattering rate decreases monotonically with phonon energy
(and thus with mode number, since the modes are numbered in order of increasing
energy). Similarly to simple metals and nonpolar inorganic semiconductors, the
main sources of scattering are acoustic modes, with smaller contributions from
other molecular rigid vibrations and librations (modes 4−12). This result is further
illustrated in Fig. 2.3(c), where the average Γ

(𝜈)
𝑛k over the 100 meV energy window

of relevance for the mobility is given for each phonon mode. The dominant role
of intermolecular modes is consistent with the charge hopping intuition that rigid
molecular vibrations mainly affect charge transport in organic materials. However,
in our band picture based on phonon emission and absorption events, the origin of
this behavior can be attributed to the phase space rather than the strength of the 𝑒-ph
coupling per se, as further discussed below.

The effect of intramolecular phonons on the mobility is more subtle. Figure 2.3(b)
shows that the 𝑒-ph scattering rates for these modes exhibit a trend with two plateaus
as a function of hole energy. As explained next, the plateau at low hole energy
corresponds to phonon absorption, and the one at higher hole energy to phonon
emission. Consider an intramolecular phonon with minimum energy ℏ𝜔0. Due to
energy conservation, a hole in the valence band can emit such a phonon only at
hole energy higher than ℏ𝜔0. At hole energies below this threshold, only phonon
absorption is possible, with a rate proportional to the phonon occupation 𝑁𝜈q ∝
𝑒−ℏ𝜔0/𝑘𝐵𝑇 , which is much smaller than 1 at room temperature in naphthalene since
most intramolecular modes have minimum energies ℏ𝜔0≈50−200 meV. Therefore,
the plateau at hole energies below ℏ𝜔0 is associated with a small intramolecular
phonon absorption rate, and it spans the entire energy window contributing to the
mobility.

At hole energies above ℏ𝜔0, the phase space for 𝑒-ph scattering increases dramati-
cally since holes can emit intramolecular phonons, with a rate proportional to 𝑁𝜈q+1,
and thus much greater than the absorption rate. Opening this phonon emission chan-
nel leads to an increase of the 𝑒-ph scattering rates by several orders of magnitude,
but this increase occurs outside the energy window of relevance for charge transport
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due to the high energy of intramolecular phonons in naphthalene. These trends are
expected to be general in organic crystals, since the dominant presence of hydrogen,
carbon, and other light elements makes their intramolecular phonon energies much
greater than 𝑘𝐵𝑇 . Interestingly, in organic molecules containing heavy atoms, which
introduce low-frequency intramolecular vibrations, a contribution to transport from
intramolecular phonons is expected.

In short, the two-plateau structure for intramolecular mode 𝑒-ph scattering is such
that only the small rate for thermally activated phonon absorption falls in the energy
range of interest for transport. Therefore the mobility is controlled by low-frequency
intermolecular vibrations. However, note that intramolecular phonons are expected
to dominate carrier dynamics at a higher hole energy above the phonon emission
threshold, where their combined scattering rate overwhelms that from the (much
fewer) intermolecular modes. This analysis shows that intramolecular phonons
play an essential role in the dynamics of excited carriers [32–34, 60] in organic
semiconductors.

2.4 Discussion
While the phase space limits their scattering near the band edge, intramolecular
phonons can couple strongly with holes at all energies, and in fact more strongly
than intermolecular modes. To study this point, we compute the local 𝑒-ph coupling
constants 𝑔(loc)

𝜈q between each phonon mode at the Brillouin zone center (q = 0) and
the HOMO Wannier function (WF) 𝑤R(r):

𝑔
(loc)
𝜈q =

√︄
ℏ

2𝜔𝜈q
〈𝑤R |Δ𝜈q𝑉

KS |𝑤R〉, (2.4)

where R is the WF center, and the change in Kohn-Sham potential Δ𝜈q𝑉
KS arises

from the atomic displacements 𝑒𝜅𝛼,𝜈 of each atom 𝜅 (with mass 𝑀𝜅) along all
cartesian directions 𝛼 due to the phonon mode 𝜈,

Δ𝜈q𝑉
KS = 𝑒𝑖q·r

∑︁
𝜅𝛼

1
√
𝑀𝜅

𝑒𝜅𝛼,𝜈𝜕𝜅𝛼,q𝑉
KS. (2.5)

The absolute values of these local 𝑒-ph coupling constants are shown in Fig. 2.4(a)
for all 108 phonon modes. Contrary to intuition, the strongest 𝑒-ph coupling to the
HOMO hole state is not with the intermolecular modes that control transport. Rather,
specific high-frequency intramolecular phonons (in particular, modes 79−88) exhibit
the strongest coupling to holes. To understand this result, we plot quantities entering
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Figure 2.4: Visualization of Wannier function and phonon potential perturba-
tion. (a) The absolute value of the local coupling constant [see Eq. (2.4)] between
each of the phonon modes and the HOMO Wannier function. (b) The square of the
HOMO Wannier function. The potential perturbation Δ𝜈q𝑉

KS at q = 0 is shown for
(c) mode 𝜈 = 88 and (d) mode 𝜈 = 89. These modes correspond to the peak (mode
88) and sudden drop (mode 89) in 𝑒-ph coupling in (a). In panels (b)−(d), yellow is
used for positive and blue for negative isosurfaces.

the local 𝑒-ph coupling in Eq. (2.4), namely the square of the HOMO WF, |𝑤R(r) |2,
and the perturbation potential Δ𝜈q𝑉

KS due to the atomic motions associated with
the given mode.

Figure 2.4(b) shows the square of the HOMO WF orbital, |𝑤R(r) |2; the perturbation
potential Δ𝜈q𝑉

KS(r) at q = 0 is shown in Fig. 2.4(c) for mode 88 and Fig. 2.4(d)
for mode 89, which are, respectively, cases of maximally strong and weak 𝑒-ph
coupling. We find that 𝑒-ph coupling is maximal for mode 88 due to the strong
overlap between the square of the HOMO WF and the perturbation potential, and
the fact that both quantities possess the same sign over most of the molecule, so
that no cancellations occur in the real-space integral in Eq. (2.4). By contrast, the
symmetry of mode 89 is such that its perturbation potential Δ𝜈q𝑉

KS(r) alternates
positive and negative lobes at bonds where the square of the HOMO WF is large. As
a result, the integrand |𝑤R(r) |2 ·Δ𝜈q𝑉

KS(r) in Eq. 2.4 is positive for two bonds and
negative (and roughly equal in absolute value) for the other two bonds, thus leading
to a small integral over the entire molecule in Eq. 2.4. This cancellation results in
a small 𝑒-ph coupling for mode 89. Other phonon modes are either associated with
perturbation potentials with small overlap with the square of the HOMO WF, as is
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the case for modes in which only the hydrogen atoms vibrate, or with perturbations
that are out of phase with the square of the HOMO WF, similar to the case of mode
89. This analysis shows that the atomic displacements and mode symmetry critically
determine the 𝑒-ph coupling of intramolecular modes, which can be much stronger
than that of intermolecular modes due to the large spatial overlap between the hole
charge density and the intramolecular mode perturbation.

Lastly, we comment on the fact that our computed phonon-limited mobility is smaller
than the experimental result. Due to the presence of impurities and defects in real
samples, our calculation is expected to provide an upper bound to the mobility, and
thus to slightly overestimate its experimental value, consistent with our recent results
for inorganic crystals [32]. The reason why our result is lower than the experiment
is unclear, but a possible cause is the neglect of nonadiabatic effects.

Our method employs only the lowest Born–Oppenheimer potential energy surface
(PES), since the 𝑒-ph perturbation potential is computed using DFPT. However,
an insight from nonadiabatic surface hopping calculations [8, 61] is that several
PESs can lie close in energy in organic crystals, and including their contributions
to charge transport may increase the mobility. The impact of such nonadiabatic
effects on the mobility within the band theory framework used here deserves further
investigation. Nonetheless, the fact that our results underestimate the measured
mobility is important as it further supports the conclusion in Ref. [37] that hole
charge carriers in naphthalene crystals are weakly coupled to phonons, so that
transport occurs in the bandlike regime studied here. In fact, polaronic effects
resulting from strong 𝑒-ph coupling (beyond the lowest order employed here) would
further suppress carrier transport by increasing the scattering rates and effective
masses [62], thus reducing the mobility.

2.5 Conclusion
In summary, we compute with quantitative accuracy the hole mobility and its tem-
perature dependence in naphthalene, dramatically improving the agreement with
experiment compared to previous efforts using band theory to study charge trans-
port in organic crystals. Our results show that ab initio approaches based on band
theory and many-body perturbation theory are well equipped to compute charge
transport in organic semiconductors. They can provide an accuracy at least as satis-
factory as widespread quantum chemistry methods based on charge hopping, as well
as insight into the role of different phonon modes. Our work sets the stage for at-
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tempting higher-order corrections or diagram resummations in the 𝑒-ph perturbation
to access the strong 𝑒-ph coupling regime typical of polaron transport.

2.6 Supplementary Materials
Band structure and phonon dispersion
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Figure 2.5: Naphthalene band structures and phonon dispersions. Band struc-
tures and phonon dispersions of naphthalene crystal, for the structure used at 300
K. (a) The HOMO and HOMO−1 electronic bands, where black is used for the
DFT bands and red for the bands with the GW correction. (b) Dispersion of the 12
intermolecular phonon modes. (c) Sketch of the first Brillouin zone.
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1Figure 2.6: Calculated hole mobility using the TS-vdW correction. The mobility
at 300 K obtained using a structure relaxed with the TS-vdW correction is shown
with black crosses. The values fall within the error bars.
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Comparison of calculated phonon dispersions with experiment

B Γ Y A Γ Z
0

20

40

60

80

100

120

140

Fr
e
q
u
e
n
cy
 ω
(q
) 
(c
m
−1
)

Experiment

DFPT

1
Figure 2.7: Comparison of calculated phonon dispersions with experiment.
Calculated dispersion of the 12 intermolecular phonon modes for perdeuterated
naphthalene, with lattice constants taken from Refs. [52, 63]. The markers are the
experimental data at 6 K from Ref. [64].

Refined interpolation and its impact on the calculated hole mobility

Figure 2.8: Coupling constants from refined interpolation. Comparison of the
coupling constants used in Chapter 2 and those from a refined interpolation scheme
developed in our recent work. The original interpolation overestimates the coupling
strength for low-frequency phonons, and hence exaggerates the scattering rates from
intermolecular phonons.
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Figure 2.9: Hole mobility calculated with refined coupling constants. Calcu-
lated hole mobility using the refined coupling constants. The result is in excellent
agreement with experiment, indicating that the discrepancy is mainly due to the
improperly-interpolated 𝑔 for low-frequency phonons.

In our recent work, the open problem that the calculated phonon-limited hole mobil-
ity is lower than experiment by a factor of 3−4 is resolved. Upon refining our results,
we found that the commonly-adopted interpolation scheme cannot properly handle
a q-point grid that is as coarse as 2 × 4 × 2, leading to a large overestimation on the
coupling strength with low-frequency phonons (see Fig. 2.8). Improvements in the
acoustic sum rules and Wigner-Seitz cell sampling used for 𝑒-ph interpolation [55]
have allowed us to refine the results and obtain accurate interpolated 𝑒-ph coupling
constants that match the DFPT benchmark at all grid points. The overestimation
of 𝑒-ph coupling with low-frequency modes that affected our results in Ref. [65]
artificially increases the scattering rate due to intermolecular phonons, resulting in
a lower mobility. Using a refined interpolation scheme [55], we can bring the calcu-
lated hole mobility to a value just slightly higher than experiment (see Fig. 2.9). This
result is consistent with our expectation, and shows that transport of hole carriers in
naphthalene can be fully explained by band theory.
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C h a p t e r 3

ELECTRON-TWO-PHONON SCATTERING FROM
NEXT-TO-LEADING ORDER PERTURBATION THEORY

This chapter is a slightly modified version of the published article:

N.-E. Lee, J.-J. Zhou, H.-Y. Chen, and M. Bernardi, "Ab initio electron-two-phonon
scattering in GaAs from next-to-leading order perturbation theory", Nat. Commun.
11, 1607 (2020).

3.1 Introduction
Electron-phonon (𝑒-ph) interactions are essential to understanding electrical trans-
port, nonequilibrium dynamics, and superconductivity. Using density functional
theory (DFT) and related methods, it has become possible to compute 𝑒-ph inter-
actions from first principles, and use them to predict the carrier scattering rates
and mobilities, both in simple and in complex materials with up to tens of atoms
in the unit cell [1–11]. In the typical workflow, one takes into account only the
leading-order 𝑒-ph scattering processes, which involve scattering of the carriers
with one phonon. Nearly all ab initio work to date has relied on such leading-order
perturbation theory, tacitly neglecting higher-order 𝑒-ph processes.

Yet many compounds, including polar semiconductors, oxides and organic crystals,
exhibit 𝑒-ph interactions that cannot be treated with lowest-order perturbation theory.
Polar materials are a paradigmatic case in which 𝑒-ph interactions due to polar optical
modes − in particular, the longitudinal optical (LO) mode − are long-range [12, 13],
which can lead to higher-order 𝑒-ph scattering and polaron formation. In weakly
polar materials, such as III-V and II-VI semiconductors and high-mobility oxides,
one expects that perturbation theory is still valid, but that higher-order 𝑒-ph processes
are significant and need to be included.

Studies of second and even third-order 𝑒-ph processes in semiconductors exist [14–
19], but they are limited to simplified models, restricted to the conduction band
minimum, or only valid at zero temperature, and are therefore inadequate for quanti-
tative predictions. In first-principles 𝑒-ph and charge transport calculations, next-to-
leading order effects have been typically assumed to be negligible, even though their

https://doi.org/10.1038/s41467-020-15339-0
https://doi.org/10.1038/s41467-020-15339-0
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contributions have been estimated to be important using simplified models [15–17,
20, 21]. In materials with intermediate or strong 𝑒-ph coupling, which typically
include oxides with low room-temperature mobility and highly polar compounds
(e.g., alkali halides), the 𝑒-ph interactions can lead to regimes beyond the reach of
perturbation theory, including the formation of polarons [22]. This coupling regime
has been investigated with diagram-resummation techniques such as the cumulant
method, both analytically [23] and more recently ab initio [24–26].

Higher-order processes are generally important in quantum field theories of con-
densed matter. An example are light-matter interactions, where phonon-assisted [27]
and two-photon [28, 29] absorption have been studied extensively. Even calcula-
tions in quantum electrodynamics beyond the leading order can provide important
lessons − for example, higher-order corrections are essential to accurately predict
large-angle Bhabha scattering in electron-positron collisions [30], and calculations
up to the tenth order have been carried out to compute the magnetic moment of the
electron [31].

However, it is a daunting task to systematically go beyond the leading order due to
the rapid increase in the number of Feynman diagrams and their computational com-
plexity. For 𝑒-ph interactions, the next-to-leading order involves electron scattering
events with two phonons, which requires computationally challenging Brillouin zone
integrals over two crystal momenta. This computational complexity has hampered
next-to-leading order 𝑒-ph calculations for decades [14], and the relevant next-to-
leading order diagrams (see Fig. 3.1) have not yet been computed numerically from
first principles.

Here we formulate and compute from first principles next-to-leading order 𝑒-ph
interactions, focusing on electron scattering processes involving two phonons (here-
after denoted as 2ph processes). We compute and analyze their contributions to the

Figure 3.1: Next-to-leading order self-energy diagrams. Diagrams for the 𝑒-
ph self-energy up to O(𝑔4), where 𝑔 is the 𝑒-ph coupling constant. The first two
diagrams in the second row contribute to the two-phonon scattering processes.
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𝑒-ph scattering rates, using as an ideal case study a weakly polar semiconductor,
GaAs. We find that the 2ph scattering rates are surprisingly large and comparable in
magnitude to the lowest order rates due to one-phonon (1ph) processes. Our analysis
shows that the relative importance of the 2ph contributions is nearly temperature
independent at 200−400 K, and rationalizes the peculiar energy dependence of the
2ph processes. The results are sensitive to the lifetimes of the intermediate states,
which need to be included to avoid divergences due to resonance effects; we develop
a self-consistent scheme to overcome this challenge. The 2ph processes are also
shown to play an important role in accurately predicting the electron mobility in
GaAs. We formulate and iteratively solve a linearized Boltzmann transport equation
(BTE) that includes the 2ph processes, showing that this level of theory can correct
the discrepancy with experiment of the mobility predicted with the BTE including
only 1ph processes. Our work proposes an approach for systematically improving
the accuracy of ab initio 𝑒-ph calculations beyond the leading order. While this
method is broadly applicable, it is particularly well-suited for weakly polar (III-V
and II-VI) semiconductors and high-mobility oxides, in which the weak polaron
effects can be treated perturbatively.

3.2 Results
Two-phonon processes and their scattering rates
We use the Matsubara frequency sum technique [32] to derive the electron self-
energy due to 𝑒-ph interactions up to O(𝑔4) (see Fig. 3.1), where 𝑔 is the 𝑒-ph
coupling constant; our treatment focuses on computing the imaginary part of the
self-energy and the related 2ph scattering rates. The derivations are lengthy and
tedious, and are given in detail in Appendix A.

All 2ph processes considered in this work consist of two consecutive 1ph scattering
events [14], as we show in Fig. 3.2. They include processes in which the electron
absorbs one phonon and emits another phonon, or vice versa (both processes are
denoted as 1e1a), and processes in which the electron emits or absorbs two phonons
(denoted as 2e and 2a, respectively). The intermediate electronic state accessed
following the first scattering event is associated a virtual electron that cannot be
observed and whose energy can take any value. Processes are defined as on shell
when the intermediate electron energy equals its band electron energy, and off shell
when it does not (see Fig. 3.2). As we discuss below, on-shell processes lead to
divergent integrals, which are regularized by including the intermediate electron
lifetime.
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1Figure 3.2: Electron-two-phonon scattering processes. Two-phonon scattering
processes considered in this work, including one-phonon absorption plus one-
phonon emission (left panel, labelled 1e1a), two-phonon emission (middle panel,
labelled 2e), and two-phonon absorption (right panel, labelled 2a). Each of these
three processes comprises two interfering scattering channels, only one of which is
shown in the band structure schematics. The lower panels show the corresponding
Feynman diagrams with two external phonon lines. Note that the intermediate state
does not need to be on-shell; of the three processes shown here, only the 2a is
on-shell.

The key result of our analysis is the scattering rate due to the 2ph processes, Γ(2ph)
𝑛k ,

for an electronic state with band index 𝑛 and crystal momentum k, which can be
expressed as (see Appendix A for detail derivation)

Γ
(2ph)
𝑛k =

2𝜋
ℏ

1
𝑁2
Ω

∑︁
𝑛2

∑︁
𝜈q

∑︁
𝜇p

[
Γ̃(1e1a) + Γ̃(2e) + Γ̃(2a)

]
, (3.1)

where the process-resolved 2ph scattering rates Γ̃(i) (i = 1e1a, 2e or 2a) depend
on the two phonon momenta q and p and their respective mode indexes 𝜈 and 𝜇,
and 𝑛2 is the band index of the final electronic state, whose momentum is fixed to
k′ ≡ k+q+p by momentum conservation; to correctly normalize the sum, we divide
it by 𝑁2

Ω
, the number of points sampled in the (q, p) space. The process-resolved

2ph scattering rates are defined as

Γ̃(i) = 𝛾(i) 𝛿(𝜀𝑛k − 𝜀𝑛2k′ − 𝛼
(i)
p 𝜔𝜇p − 𝛼

(i)
q 𝜔𝜈q), (3.2)

where 𝜀 are electron energies relative to the chemical potential, and 𝜔 are phonon
energies; the delta function imposes energy conservation, and the constants 𝛼 for
each process are defined as

𝛼
(1e1a)
p = 1, 𝛼

(2e)
p = 1, 𝛼

(2a)
p = −1,

𝛼
(1e1a)
q = −1, 𝛼

(2e)
q = 1, 𝛼

(2a)
q = −1.

The square amplitudes of the three processes are

𝛾(i) = 𝐴(i)

�����∑︁
𝑛1

(
𝑔𝑛1𝑛𝜈 (k, q)𝑔𝑛2𝑛1𝜇 (k + q, p)

𝜀𝑛2k′ − 𝜀𝑛1k+q + 𝛼
(i)
p 𝜔𝜇p + i 𝜂 − Σ𝑛1k+q

(3.3)
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+
𝑔𝑛1𝑛𝜇 (k, p)𝑔𝑛2𝑛1𝜈 (k + p, q)

𝜀𝑛2k′ − 𝜀𝑛1k+p + 𝛼
(i)
q 𝜔𝜈q + i 𝜂 − Σ𝑛1k+p

)�����2 ,
where 𝑛1 is the band index and Σ the self-energy of the intermediate electronic state,
and 𝜂 is a positive infinitesimal. The prefactors 𝐴(i) contain the thermal occupation
numbers of electrons and phonons (denoted by 𝑓 and 𝑁 , respectively) and are
defined as:

𝐴(1e1a) = 𝑁𝜈q + 𝑁𝜈q𝑁𝜇p + 𝑁𝜇p 𝑓𝑛2k′ − 𝑁𝜈q 𝑓𝑛2k′,

𝐴(2e) =
1
2

[
(1 + 𝑁𝜈q) (1 + 𝑁𝜇p − 𝑓𝑛2k′) − 𝑁𝜇p 𝑓𝑛2k′

]
, (3.4)

𝐴(2a) =
1
2

[
𝑁𝜈q(𝑁𝜇p + 𝑓𝑛2k′) + (1 + 𝑁𝜇p) 𝑓𝑛2k′

]
.

Let us examine the process amplitudes in Eq. (3.3). Since all three processes have
similar expressions, we focus on a 1e1a process in which the electron absorbs one
phonon and then emits another as an example, though our considerations are general.
In this process, which is shown schematically in Fig. 3.3, an electron first absorbs
a phonon with energy 𝜔𝜈q, transitioning to an intermediate state |𝑛1k + q 〉 with
energy 𝐸 = 𝜀𝑛k +𝜔𝜈q, and then emits a phonon with energy 𝜔𝜇p, reaching the final
state with energy 𝜀𝑛2k′. Note that the energy 𝐸 of the intermediate (virtual) electron
does not need to match its band energy 𝜀𝑛1k+q. The amplitude for this process, from
Eq. (3.3), reads

𝑔𝑛1𝑛𝜈 (k, q)𝑔𝑛2𝑛1𝜇 (k + q, p)
𝜀𝑛2k′ + 𝜔𝜇p − 𝜀𝑛1k+q − Σ𝑛1k+q

, (3.5)

where we omitted the i 𝜂 infinitesimal for clarity. This expression can be understood
as follows: the two 𝑒-ph coupling constants are associated with each of the two
consecutive 1ph scattering events, and the denominator is due to the propagator of

nk n2k
′

n1k+q

νq µ−p

εnk

εn2k′

εn1k+q

ωνq
ωµp

E

∆E

1
Figure 3.3: Energetics of two-phonon processes. The example 1e1a process
discussed in the text, with its energetics shown on the right.
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the intermediate electron, which is proportional to 1/(𝐸 − 𝜀𝑛1k+q − Σ𝑛1k+q). The
amplitude of the 2ph process is thus inversely proportional to its off-shell extent,
Δ𝐸 = 𝐸 − 𝜀𝑛1k+q, implying that processes with large intermediate off-shell extents
Δ𝐸 are unlikely to occur. In an on-shell 2ph process, 𝐸 is equal (or very close) to
the intermediate-state band energy 𝜀𝑛1k+q, resulting in a small denominator Δ𝐸 ' 0
and thus in a large amplitude. The inverse lifetime of the intermediate state, which
is proportional to ImΣn1k+q, prevents the on-shell process amplitude from diverging.

Numerical calculations and intermediate lifetime
We implement the expressions derived above in our in-house developed code, Per-
turbo [33], and carry out first-principles calculations on GaAs (see Methods in
Section 3.4). In our approach, we sum the 2ph scattering rates in Eq. (3.1) over all
possible pairs of phonons, and thus include both on-shell and off-shell processes on
the same footing. The treatment of the intermediate lifetimes in our implementation
deserves a detailed discussion. When the intermediate state is on shell, the scattering
process results in resonance effects, and as discussed above, the intermediate state
lifetimes are crucial to prevent the 2ph scattering rates from diverging. Here and
below, the intermediate state lifetime is defined as the inverse scattering rate of the
intermediate state, which is obtained from the imaginary part of its self-energy as
2 ImΣ/ℏ.

The 2ph scattering rates depend on the intermediate state self-energy, Σ in the
denominator of Eq. (3.3), whose value needs to be chosen carefully. We neglect
its real part, which only corrects the band structure and barely affects the 2ph
calculation. The imaginary part of Σ includes in principle scattering effects from
all possible sources. In practice, we approximate ImΣ with the total 𝑒-ph scattering
rate, including both the lowest-order (1ph) rates and the 2ph rates, using |ImΣ| =
ℏ/2[Γ(1ph) +Γ(2ph)], where Γ(1ph) is the usual 1ph scattering rate [4]. This approach
makes Eq. (3.1) a self-consistent problem. We iterate Eq. (3.1) until the 2ph
scattering rate equals the 2ph contribution to the intermediate state lifetime. In each
iteration 𝑚, the lifetime is due to the sum of the lowest order plus the 2ph scattering
rates at the previous iteration, namely, |ImΣ(𝑚) | = ℏ/2 [Γ(1ph) +Γ(2ph) (𝑚−1)]. The
initial Γ(2ph) is set to zero, and the convergence process is performed separately at
each temperature.
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Figure 3.4: Calculated two-phonon scattering rates. Calculated 2ph scattering
rates, Γ(2ph)

𝑛k in Eq. (3.1), for electrons in GaAs at 300 K. The zero of the energy
axis is the conduction band minimum. The left panel shows the first iteration, and
the right the final result after converging the intermediate lifetime update procedure.
The lowest-order (1ph) 𝑒-ph scattering rates are also given for comparison.

Analysis of the two-phonon scattering rates
Figure 3.4 shows the first iteration and the converged result for the 2ph scattering
rates in GaAs at 300 K, for states near the bottom of the conduction band (see
Methods in Section 3.4). In this energy range, the 𝑒-ph interactions in GaAs are
dominated by the long-range field due to the LO mode [4], with nearly negligible
contributions from all other phonon modes. The converged 2ph scattering rates are
surprisingly large − they are smaller than the leading-order 1ph rate, thus justifying
the perturbative approach, but they are nearly half the value of the 1ph rates at all
energies. We find that the rainbow diagram (the first diagram in the second row of
Fig. 3.1) provides the dominant contribution to the 2ph scattering rate, while the
contribution from the vertex-correction diagram (the second diagram in the second
row of Fig. 3.1) is negligible, in agreement with Migdal’s theorem. Therefore, the
lowest-order perturbation theory can capture only part of the dynamical processes
due to the long-range 𝑒-ph interactions with the LO mode in GaAs. The results
shown in Fig. 3.4 include only the dominant 𝑒-ph interaction with the LO mode,
but we have verified that including all phonon modes gives nearly unchanged 2ph
scattering rates in GaAs (see Fig. 3.9 in Supplementary Materials).

The 2ph scattering rate exhibits a trend as a function of energy with three plateaus
near the bottom of the conduction band. This trend is a consequence of the dominant
𝑒-ph interactions in GaAs, which consist of absorption or emission events of LO
phonons with energy𝜔LO≈35 meV. To rationalize the energy dependence of the 2ph
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Figure 3.5: Process-resolved two-phonon scattering rate. Contributions to the
2ph scattering rate in GaAs at 300 K. The scattering rates of the 1e1a, 2e and 2a
processes are shown, together with their sum, the total 2ph scattering rate. The solid
curves fit the data and aid the visualization.

scattering rate, we define three energy regions, denoted as I, II, and III in Figs. 3.5
and 3.6, which correspond, respectively, to electron energies below 𝜔LO, between
𝜔LO and 2𝜔LO, and greater than 2𝜔LO referenced to the conduction band minimum,
which is taken hereafter to be the electron energy zero. The band structure in all
three energy regions is nearly parabolic. We plot the rates of each of the 1e1a, 2e,
and 2a process contributions in Fig. 3.5, and analyze the LO phonon emission and
absorption processes in each energy region in Fig. 3.6.

In region I, the electrons possess an energy smaller than 𝜔LO, and thus cannot emit
two LO phonons since this would require a final state in the band gap; the rate of the
2e process is accordingly negligible in region I. The 2a process in which the electron
absorbs two LO phonons is active in region I, but it is thermally activated and weak
at 300 K since 𝜔LO≈35 meV. The 2a process is nearly energy independent and weak
throughout the three regions. The 1e1a process in which an electron absorbs and
them emits an LO phonon is the dominant contribution in region I. Recall that the
2ph rate is inversely proportional to the square of the off-shell extent, Δ𝐸2. The 1e1a
channel in which an LO phonon is first emitted and then absorbed is thus suppressed
in region I since its intermediate state, resulting from one LO phonon emission, is
always off-shell, as shown in Fig. 3.6(a).

In region II, the 1e1a scattering rate increases abruptly at energy 𝜔LO because the
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1
Figure 3.6: Schematics of two-phonon processes. Schematics of selected 2ph
processes in energy region I (a), region II (b), and region III (c) and (d).

intermediate state following one LO phonon emission can be on-shell, as shown
in Fig. 3.6(b). The rate of the 2e processes remains negligible in region II up to
an energy of 2𝜔LO. In region III, the contribution from the 2e process increases
dramatically since the electrons can emit two LO phonons and can transition to the
bottom of the conduction band, as shown in Fig. 3.6(c). The 1e1a scattering rate
drops from region II to region III due to subtle reasons related to the lifetime of the
intermediate state. Recall that for the on-shell process, Δ𝐸 ' 0 and the amplitude is
proportional to the intermediate state lifetime [see Eq. (3.5)]. An electron in region
II can emit a phonon, transition to an on-shell intermediate state in region I, and then
absorb another phonon to transition to a final state, as shown in Fig. 3.6(b). Since the
scattering rates for states in region I are considerably smaller than in the other two
regions, the on-shell intermediate states have correspondingly long lifetimes, which
gives a large amplitude to on-shell 1e1a processes in region II. On the other hand,
the 1e1a processes for electrons in region III lead to intermediate states in region
II or above [see Fig. 3.6(d)], which have much shorter lifetimes than in region I,
resulting in a smaller 1e1a rate in region III compared to region II. These arguments
allow us to rationalize the 2ph process rates in Fig. 3.5.

Let us discuss the temperature dependence of the 2ph scattering processes, focusing
on the ratio Γ(2ph)/Γ(1ph) of the 2ph scattering rates to the leading-order 1ph rates.
We provide a brief analysis here and a more extensive discussion in the Supple-
mentary Materials (see Fig. 3.12). The temperature dependence of the 2ph rates
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originates from the intermediate state lifetimes in the denominators of Eq. (3.3)
and the thermal factors 𝐴(i) in Eq. (3.4). The intermediate state 𝑒-ph scattering rate
increases with temperature due to an increase in phonon number, so the intermediate
state lifetimes become shorter, lowering the 2ph rate Γ(2ph) for increasing tempera-
tures. On the contrary, the thermal factors 𝐴(i) , which contain factors proportional
to the phonon number 𝑁 , increase rapidly with temperature, making Γ(2ph) greater
at higher temperatures. In the 200−400 K temperature range investigated here,
these two effects compensate in GaAs, resulting in nearly temperature independent
Γ(2ph)/Γ(1ph) ratios. We conclude that the 2ph processes are equally as important
relative to the leading-order 1ph processes over a wide temperature range near room
temperature.

Contribution to the electron mobility
Since the 2ph contributions are significant, one expects that they contribute to charge
transport. Figure 3.7 shows the electron mobility in GaAs obtained by solving the
BTE, either within the relaxation time approximation (RTA) or with a more accurate
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Figure 3.7: Calculated electron mobility in GaAs. Electron mobility in GaAs,
computed by solving the linearized BTE, either within the RTA or with an iterative
approach (ITA). For each solution method, two sets of calculations are shown, one
that includes only the 1ph leading-order processes, and one that includes both 1ph
and 2ph scattering. Experimental values are taken from Refs. [34–40].
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iterative approach (ITA) [6, 9], which we have extended here to include 2ph processes
(see Appendix B). Results are given for calculations that either neglect or include
the 2ph contributions. The iterative solution with only 1ph scattering overestimates
the electron mobility in GaAs by 40−80% at 200−400 K, consistent with results in
Ref. [10] (and in Ref. [6], provided the polar correction is not included for the acoustic
modes, which artificially increases the acoustic mode contribution to scattering in
Ref. [6] and lowers the computed mobility). This result is puzzling, since the BTE
can accurately predict the mobility in nonpolar semiconductors; the discrepancy
with experiment is too large to be due to small errors in the electron effective mass
(in our calculation, the effective mass is 0.055𝑚0 versus an experimental value of
0.067𝑚0, where 𝑚0 is the electron mass). Redoing the mobility calculation with
a band structure with the experimental effective mass of 0.067𝑚0 (see Fig. 3.11
in Supplementary Materials) reduces the mobility overestimate to roughly 20%
compared to experiment for the iterative BTE solution with 1ph scattering, and
including 2ph processes still improves the agreement with the experiment of the
mobility and its temperature dependence.

This open problem is solved here by including the 2ph processes in the ITA, which
lowers the mobility due to the additional 2ph scattering and gives mobility values
in excellent agreement with experiments [34–40]. Both the absolute value of the
mobility and its temperature dependence improve when the 2ph processes are in-
cluded. This result implies that the agreement with the experiment of the RTA with
1ph processes is due to error compensation. We conclude that the 2ph contributions
are crucial to improving the computed electron mobility in GaAs.

Since the long-range LO mode coupling is dominant in many polar semiconductors
and oxides, we expect the 2ph processes to be important in a wide range of polar
materials. We apply our approach to BaSnO3, a weakly polar oxide with dom-
inant LO-mode 𝑒-ph interactions and a high room-temperature electron mobility.
We compute the 2ph scattering rates and the mobility including 2ph processes in
BaSnO3 (see Fig. 3.10 in Supplementary Materials). Similarly to GaAs, the mobil-
ity computed with the iterative BTE including only 1ph processes is substantially
higher than the experimental value, while adding 2ph scattering significantly im-
proves the agreement with experiment. This result confirms that our approach is
broadly applicable to weakly polar semiconductors, in which perturbation theory is
valid and the mobility near room temperature is usually limited by scattering with
the LO mode.
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3.3 Discussion
Our calculations show quantitatively that the 2ph contributions are substantial even
in a weakly polar material such as GaAs in which higher-order 𝑒-ph interactions
and polaron effects are typically neglected. The approach introduced in this work is
general, and it is expected to give accurate 𝑒-ph scattering rates and carrier mobilities
in weakly polar III-V and II-VI semiconductors and in polar oxides with high room-
temperature mobility (and thus, weak polaron effects [22]); the perturbative approach
is valid in these materials, and the long-range 𝑒-ph interactions make next-to-leading
order effects substantial.

An open question left out for future work is whether the 2ph processes due to acoustic
modes can be important in metals and nonpolar materials. A practical observation
is that the mobility computed using only 1ph processes matches the experiment
closely in elemental metals [3] and nonpolar semiconductors [10], so 2ph acoustic
processes are expected to be negligible, although a rigorous proof (or numerical
evidence) of this point is more challenging. As discussed by Kocevar [14], there are
two 𝑒-ph perturbations contributing to 2ph processes. The one considered in this
work is due to the first derivative of the potential with respect to lattice vibrations,
taken to second order in perturbation theory, which leads to 2ph scattering consisting
of two consecutive 1ph scattering events. The second contribution, which is not
included in this work, is due to the second derivatives of the potential with respect
to lattice vibrations; it leads to a direct 2ph interaction associated with the so-called
Debye-Waller (DW) vertex, which represents an electron interacting simultaneously
with two phonons [14]. The DW vertex leads to additional self-energy diagrams
and 2ph processes, some of which are illustrated in Fig. 3.8.

Due to translational invariance, for acoustic phonons in the long-wavelength limit,
there is a strong cancellation between the scattering processes considered here and
those due to the DW interaction [14, 41]. This cancellation has also been hypothe-
sized to be valid for acoustic phonons beyond the long-wavelength limit, although
this point has never been proven. This result, together with the numerical evidence
that 1ph processes are sufficient to explain the mobility in nonpolar semiconductors
and elemental metals, is suggestive of a negligible role of 2ph acoustic processes.
Since the DW vertex cannot currently be computed ab initio for two general phonon
momenta, numerical studies of 2ph processes due to the DW interaction are left out
for future work. In the calculations on the two weakly polar materials considered
here, GaAs and BaSnO3, the LO mode interaction is dominant, and our results are
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1
Figure 3.8: Diagrams beyond this work. The top panel shows some of the
additional self-energy diagrams resulting from the four-point Debye-Waller vertex,
which introduces a new 1e1a process interfering with the two considered in this
work in the bottom panel.

nearly unchanged if acoustic phonons are included.

In summary, our calculations of the 2ph scattering rates and their contribution to the
mobility pave the way to studying higher-order 𝑒-ph interactions and charge transport
in polar materials from first principles. Together with recently proposed methods to
treat charge transport in materials with polarons and stronger 𝑒-ph interactions [26],
it is clear that ab initio calculations are becoming able to investigate 𝑒-ph interactions
and charge transport in a wide range of polar materials.

3.4 Methods
Numerical calculations
The DFT and lowest-order 𝑒-ph calculations in GaAs follow our previous work [4].
Briefly, we carry out DFT calculations in GaAs using the Quantum ESPRESSO
code [42] with a plane-wave basis set. We employ the local density approximation
[43] and norm-conserving pseudopotentials [44]. A relaxed lattice constant of
5.55 Å, a kinetic energy cutoff of 72 Ry, and 8 × 8 × 8 k-point grids are used in
all DFT calculations. Phonon dispersions are computed with density functional
perturbation theory (DFPT) [45] on an 8 × 8 × 8 q-point grid. The 𝑒-ph coupling
constants, 𝑔𝑛𝑚𝜈 (k, q), are computed using these coarse k- and q-point grids [4] using
DFPT together with our in-house developed Perturbo code [33], and interpolated
using Wannier functions [46] generated with Wannier90 [47].

To compute and converge the 2ph scattering rates, we use Monte Carlo integration
by sampling up to 3 billion random (q, p) pairs of Brillouin zone points drawn
from a Cauchy distribution [4]. The delta function in Eq. (3.2) is approximated
by a Gaussian with a small broadening of 5 meV. Since in GaAs the LO phonon
dominates 𝑒-ph scattering for electrons within ∼100 meV of the conduction band
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edge [4], in the 2ph scattering rate calculations we use only the long-range coupling
to the LO modes [13, 48, 49], which greatly reduces the 2ph computational cost while
giving 2ph scattering rates nearly identical to calculations with all phonon modes
included (see Fig. 3.9 in Supplementary Materials). We use a carrier concentration
of 1016 cm−3 in all scattering rate and mobility calculations, and set the chemical
potential accordingly at each temperature. The mobility calculations are carried out
by integrating over energies of up to 250 meV above the conduction band minimum;
we have verified that this energy window is sufficient to converge the mobility.

We highlight that the 2ph scattering rate calculations are extremely computationally
expensive due to the large number of points sampled in the BZ integral over two
phonon momenta. The average cost for computing the 2ph scattering rate in GaAs
is ∼500 CPU core hours per electronic state for each iteration over the intermediate
state lifetime; a typical calculation requires 10 iterations to converge, for a total cost
of 5,000 CPU core hours per electronic state. By contrast, it takes only 0.08 CPU
core hours (5 minutes on a single CPU core) per electronic state to converge the 1ph
scattering rate using our code. The computational cost of the 2ph scattering rates is
thus approximately 104 −105 higher than the 1ph scattering rates.

3.5 Supplementary Materials
Two-phonon scattering rates with all phonon modes included

Figure 3.9: Two-phonon scattering rates with all phonon modes included. The
2ph scattering rates Γ

(2ph)
𝑛k in GaAs at 300 K, computed using only the LO mode

(curve labelled “2ph polar”) and with all phonon modes included (curve labelled
“2ph all modes”).



46

Mobility calculation in barium stannate

Figure 3.10: Mobility calculation in BaSnO3. Electron mobility in BaSnO3
computed using the same methods as in Fig. 3.7. It is seen that the iterative BTE
with only 1ph scattering overestimates the mobility, while including 2ph scattering
improves the agreement with the experiment, similarly to GaAs. Experimental data
are shown with markers at room temperature and dashed lines at lower temperatures.
The experimental data are from Figs. 4 and 5 in Ref. [50]. We used the single
crystal mobility data for a 0.5 − 1.5 × 1020 cm−3 carrier concentration range. Our
calculation used a 0.8 × 1020 cm−3 carrier concentration.

Mobility results with experimental effective mass
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Figure 3.11: Mobility results with experimental effective mass. Comparison of
mobility results calculated from our DFT band structure with an effective mass of
0.055𝑚0 (left panel) and a band structure with the experimental effective mass of
0.067𝑚0 (right panel) obtained by manually rescaling the DFT eigenvalues by a
factor of 0.067/0.055. Here, 𝑚0 is the bare electron mass.



47

Temperature dependence of the two-phonon scattering rates
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Figure 3.12: Temperature dependence of the 2ph scattering rates. Temperature
dependence of the ratios of the 2ph scattering processes to the leading order 𝑒-ph
scattering rate. From left to right, the panels are for electronic states with energies
of 20, 45, and 90 meV above the conduction band minimum, and thus, respectively,
in region I, II, and III defined in Section 3.2.

Figure 3.12 above shows the temperature dependence of the ratios of the 2ph scat-
tering rate and the leading order scattering rate, Γ(2ph)/Γ(1ph) . Results are given for
three electronic states, one in each of the regions I, II, and III defined in Section 3.2.
The ratios are given for both the total 2ph scattering rate and (for completeness) for
the individual 2ph processes, 1e1a, 2e, and 2a. In the 200−500 K temperature range
considered in this work, the ratio of the total 2ph scattering rate to the 1ph scattering
rate is nearly temperature independent in all three energy regions.
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C h a p t e r 4

FACILE AB INITIO APPROACH FOR SELF-LOCALIZED
POLARONS FROM A CANONICAL TRANSFORMATION

4.1 Introduction
Self-localized (small) polarons are charge carriers that interact strongly with the lat-
tice vibrations, becoming trapped as a result of the local lattice distortion [1]. Small
polarons are essential to understanding electrical transport and optical properties
in a wide range of materials, including transition metal oxides, alkali halides, and
organic molecular crystals [2–4]. The presence of small polarons in these materials
is typically associated with a diffusive, thermally activated charge transport regime
characterized by low mobility values, typically less than 1 cm2/V s [5]. Recent
progress has enabled direct observation of small polaron states [6, 7] and clarified
their important role in various technologies [8–12].

The theoretical treatment of small polarons was pioneered by Holstein [13] based
on ideas from Landau and Pekar [14]. It was later extended by Lang and Firsov
[15], and generalized by Munn and Silbey [16, 17] and Hannewald et al. [18] to
improve the treatment of electron-phonon (𝑒-ph) interactions. The resulting small
polaron theory can qualitatively demonstrate the transition from bandlike to hopping
transport observed in experiments [4, 19, 20], but the presence of a self-localized
polaron state is typically assumed in these theories rather than directly predicted.
These approaches are not geared toward quantitative predictions on real materials
as they rely on empirical parameters and take into account only one (or a few)
vibrational modes.

Early work formulated the problem of polaron formation as a competition of ener-
gies for localizing an electronic state, which relaxes the lattice while increases the
electron kinetic energy [21]. Yet, whether charge carriers form small polarons or
not remains controversial in many materials. For example, angle-resolved photoe-
mission experiments found no evidence of small polarons in SrTiO3 [22] although
mobility and optical measurements suggest their presence [23, 24].

First-principles calculations can accurately compute the electronic structure, lattice
dynamics, and 𝑒-ph coupling [25], and are ideally suited to provide quantitative
approaches for treating both large and small polarons. However, existing studies
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have focused on semiconductors and insulators without small polaron effects [26–
32]. First-principles calculations of small polarons involve supercells with excess
charge or defects explicitly added [33–36]. While useful, these approaches require
computationally costly calculations with many atoms, and their reliability is limited
by the accuracy of density functional theory (DFT) exchange-correlation functionals
and the treatment of charged systems in DFT. A rigorous first-principle approach
connecting standard small polaron theory [37] and modern ab initio 𝑒-ph calculations
is still missing.

Here we show an efficient real-space approach to compute the small polaron energy
starting from a trial polaron wavefunction. Employing a canonical transformation
formalism [13], we construct a self-localized polaron state that is free from hopping
and decoupled from all vibrational modes1. We establish whether an electron or
hole charge carrier favors a delocalized state or tends to self-trap by comparing
the energy of the polaron state with the conduction or valence band edge, at once
predicting whether a small polaron forms and determining its formation energy. The
computational cost of this scheme is equivalent to a DFT calculation on a unit cell
plus an inexpensive 𝑒-ph computational step. Its efficiency allows us to investigate
small polarons in various alkali halides, oxides, and perovskites. Our work bridges
the gap between small polaron theory and ab initio 𝑒-ph calculations, formulating
an efficient computational approach to treat small polarons from first principles.

4.2 Small Polaron Hamiltonian
Analogy to the charged harmonic oscillator
We derive the effective small polaron Hamiltonian in a distorted lattice through a
canonical transformation [13] inspired by the treatment of the charged harmonic
oscillator (CHO) in an external electric field 𝐸 [38]. The Hamiltonian of a one-
dimensional CHO is

𝐻(CHO) = 𝜔(𝑏†𝑏 + 1
2
) − 𝜔𝑔(𝑏 + 𝑏†), (4.1)

where 𝑏† and 𝑏 are creation and annihilation operators for the oscillator quanta
and the coupling parameter is 𝑔 = 𝑒𝐸/

√
2𝑚𝜔3, with 𝑒, 𝑚, 𝜔 the charge, mass,

and frequency of the oscillator, respectively. Here and below, we set ℏ = 1. To
solve the CHO Hamiltonian, the common approach is to stretch the oscillator spring
to its new equilibrium position using the canonical transformation of operators,

1Note that here we define a small polaron as a self-trapped electronic state, regardless of its
spatial extent.
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O → Õ = 𝑒𝑆O𝑒−𝑆. Defining the CHO generator as 𝑆(CHO) = −𝑔(𝑏† − 𝑏), this
transformation gives

�̃� = 𝑏 + 𝑔, (4.2)

𝐻(CHO) = 𝜔(𝑏†𝑏 + 1
2
) − 𝜔𝑔2. (4.3)

The shift of the operator 𝑏 in Eq. (4.2) amounts to shifting the coordinate system:

�̃� =
1

√
2𝑚𝜔

(�̃�† + �̃�) = 1
√

2𝑚𝜔
(𝑏† + 𝑏) + 𝑥0, (4.4)

where 𝑥 is the position operator and 𝑥0 = 2𝑔/
√

2𝑚𝜔 is the new equilibrium position.
The second term in Eq. (4.3) is always negative and can be interpreted as the energy
decrease resulting from relaxing the system to a new equilibrium position due to the
electrical force, because −𝜔𝑔2 = 1

2𝑚𝜔2𝑥0
2 − 𝑒𝐸𝑥0.

Canonical transformation
We follow Holstein’s treatment [13] and perform an analogous transformation on
the 𝑒-ph Hamiltonian in the electronic Wannier [39] and phonon momentum basis,

𝐻 =
∑︁
𝑚𝑛

𝜀𝑚𝑛𝑎
†
𝑚𝑎𝑛 +

∑︁
Q

𝜔Q

(
𝑏
†
Q𝑏Q + 1

2

)
(4.5)

+ 1
√
𝑁Ω

∑︁
𝑚𝑛

∑︁
Q

𝜔Q𝑔Q𝑚𝑛

(
𝑏
†
Q + 𝑏−Q

)
𝑎†𝑚𝑎𝑛.

Here, 𝑛 = 𝑗𝑛R𝑛 is a collective index labelling the 𝑗𝑛-th Wannier function (WF)
in the unit cell with origin at the Bravais lattice vector R𝑛, while 𝑎𝑛 = 𝑎 𝑗𝑛R𝑛

is
the corresponding electron annihilation operator and 𝑏Q = 𝑏𝜈q is the annihilation
operator for the phonon with mode index 𝜈 and momentum q. The hopping strength
and phonon energy are denoted as 𝜀𝑚𝑛 and 𝜔Q, respectively, and 𝑁Ω is the number
of unit cells in the crystal. Here the 𝑒-ph coupling matrix element in the Wannier
basis, denoted as 𝑔Q𝑚𝑛, does not include the phonon frequency factor, different from
the standard convention [40]. Also recall that the 𝑒-ph coupling needs to satisfy the
relation 𝑔∗Q𝑚𝑛

= 𝑔−Q𝑛𝑚 for the Hamiltonian to be Hermitian.

We define the generator 𝑆 as

𝑆 =
∑︁
𝑚𝑛

𝐶𝑚𝑛𝑎
†
𝑚𝑎𝑛, (4.6)

𝐶𝑚𝑛 =
1

√
𝑁Ω

∑︁
Q

𝐵Q𝑚𝑛 (𝑏†Q − 𝑏−Q), (4.7)
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and using the transformation O → Õ = 𝑒𝑆O𝑒−𝑆, we obtain the transformed electron
and phonon annihilation operators, respectively, as

�̃�𝑚 =
∑︁
𝑛

𝑒−𝐶𝑚𝑛𝑎𝑛, (4.8)

�̃�Q = 𝑏Q − 1
√
𝑁Ω

∑︁
𝑚𝑛

𝐵Q𝑚𝑛𝑎
†
𝑚𝑎𝑛, (4.9)

where 𝑒−𝐶𝑚𝑛 is the shorthand notation for the phonon operator

𝑒−𝐶𝑚𝑛 = 𝛿𝑚𝑛 − 𝐶𝑚𝑛 +
1
2!

∑︁
𝑖

𝐶𝑚𝑖𝐶𝑖𝑛 − · · · , (4.10)

where 𝐶𝑚𝑛 is defined in Eq. (4.7). Above, we introduced the undetermined dis-
tortion coefficients 𝐵Q𝑚𝑛 which, analogous to the coupling 𝑔 in the CHO example,
quantify how the transformation stretches the spring of each phonon mode to a new
equilibrium position due to the electrical forces applied on the lattice by the charge
carrier. This physical interpretation is consistent with Eq. (4.9), where one changes
the basis to a distorted lattice configuration, in analogy with Eq. (4.2); the operators
𝑎
†
𝑛 and 𝑏

†
Q now create polaron and phonon in this distorted lattice, respectively. To

make the transformation unitary, the same conjugate relations used for 𝑔Q𝑚𝑛 are
imposed on the distortion coefficient, 𝐵∗

Q𝑚𝑛
= 𝐵−Q𝑛𝑚, so that the operators 𝐶𝑚𝑛 and

𝑆 are both anti-Hermitian.

Effective polaron Hamiltonian
The transformed Hamiltonian is obtained by substituting the transformed electron
and phonon operators:

𝐻 =
∑︁
𝑚𝑛

𝐸𝑚𝑛𝑎
†
𝑚𝑎𝑛 +

∑︁
Q

𝜔Q(𝑏†Q𝑏Q + 1
2
) (4.11)

+ 1
√
𝑁Ω

∑︁
𝑚𝑛Q

𝜔Q𝐺Q𝑚𝑛 (𝑏†Q + 𝑏−Q)𝑎†𝑚𝑎𝑛,

where the polaron hopping strength 𝐸𝑚𝑛 and the residual polaron-phonon (pl-ph)
coupling constant 𝐺Q𝑚𝑛 are defined, respectively, as

𝐸𝑚𝑛 = 〈�̃�〉𝑚𝑛 +
1
𝑁Ω

∑︁
𝑖Q

𝜔Q𝐵−Q𝑚𝑖

(
𝐵Q𝑖𝑛 − 2〈�̃�Q〉𝑖𝑛

)
,

𝐺Q𝑚𝑛 = 〈�̃�Q〉𝑚𝑛 − 𝐵Q𝑚𝑛, (4.12)

where the angle brackets 〈· · · 〉 indicate a thermal average over phonon states. In this
effective polaron Hamiltonian, the transformed hopping and 𝑒-ph coupling matrices
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�̃�𝑚𝑛 and �̃�Q𝑚𝑛, denoted here 𝑀𝑚𝑛, are defined as

𝑀𝑚𝑛 =
∑︁
𝑖 𝑗

𝑒𝐶𝑚𝑖𝑀𝑖 𝑗𝑒
−𝐶
𝑗𝑛 . (4.13)

These transformed matrices still contain phonon operators (through the operator
𝐶𝑚𝑛). Following Holstein [13], we take their thermal average in Eq. (4.12) to obtain
the effective polaron Hamiltonian in Eq. (4.11).

Self-localized small polaron states
We then set the distortion coefficients to

𝐵Q𝑚𝑛 = 𝑔Q𝑚𝑛𝛿𝑚𝑛, (4.14)

and show that this choice leads to a self-localized polaron state. Using this
ansatz, the thermal average of the transformed matrix can be written as 〈𝑀〉𝑚𝑛 =

exp [−𝜆𝑚𝑛] 𝑀𝑚𝑛 [38], where the exponent 𝜆𝑚𝑛 depends on the difference between
the local 𝑒-ph coupling at the 𝑚 and 𝑛 WF sites,

𝜆𝑚𝑛 =
1
𝑁Ω

∑︁
Q

(
𝑁Q + 1

2

) ��𝑔Q𝑚𝑚 − 𝑔Q𝑛𝑛

��2, (4.15)

and on the phonon occupation factor 𝑁Q. In this work, the quantity 𝜆𝑚𝑛 is computed
using ab initio 𝑒-ph coupling constants 𝑔Q𝑚𝑚, paying attention to converge the
Brillouin zone integral in Eq. (4.15). The diagonal part of 𝜆𝑚𝑛 is identically zero,
which makes exp[−𝜆𝑚𝑚] = 1 for all sites 𝑚. The off-diagonal part of exp[−𝜆𝑚𝑛]
is orders of magnitude smaller than unity (typically of order 10−2 to 10−10 at 300
K), as we verify explicitly in our numerical calculations, and thus we approximately
have

exp[−𝜆𝑚𝑛] ≈ 𝛿𝑚𝑛. (4.16)

Substituting Eqs. (4.14) to (4.16) into Eq. (4.12), we derive the central equations in
this work,

𝐸𝑚𝑛 =

(
𝜀𝑚𝑚 − 1

𝑁Ω

∑︁
Q

𝜔Q
��𝑔Q𝑚𝑚

��2)𝛿𝑚𝑛, (4.17)

𝐺Q𝑚𝑛 = 0.

The first equation implies that the operator 𝑎†𝑚 in Eq. (4.11) creates a self-localized
polaron state, because hopping to nearby states is negligible due to the vanishing
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off-diagonal 𝐸𝑚𝑛 elements. The second line implies that this small polaron state is
also decoupled from all phonon modes as 𝐺Q𝑚𝑛 = 0. The on-site polaron energy
𝐸𝑚𝑚 is the sum of the electronic energy 𝜀𝑚𝑚 of the corresponding WF and the
potential energy decrease due to the lattice distortion, analogous to the CHO case
[compare the second terms in Eqs. (4.3) and (4.17)].

Whether or not a small polaron forms depends on the competition of two terms, the
potential energy decrease due to the lattice distortion and the kinetic energy increase
resulting from localizing a Bloch electronic state. If the on-site polaron energy 𝐸𝑚𝑚

is lower than the energy of the conduction band minimum (CBM) for an electron
carrier, or higher than the valence band maximum (VBM) for a hole carrier, then
the self-localized polaron is energetically more favorable than a delocalized Bloch
wavefunction. In this scenario, the electron or hole quasiparticle forms a small
polaron and becomes self-trapped by the lattice distortion; the polaron formation
energy is thus the difference between the polaron energy 𝐸𝑚𝑚 and the respective
band edge. An additional insight provided by Eq. (4.17) is that a material with less
dispersive electronic bands and stronger on-site 𝑒-ph coupling is more likely to host
a small polaron.

While Eq. (4.17) gives the polaron energy for an electron with wavefunction equal
to a given WF, the choice of a WF created by the operator 𝑎†𝑚 is not unique. In
fact, the small polaron wavefunction has rarely been discussed in the canonical
transformation treatment. We point out that different WFs will induce different
lattice distortions, resulting in different polaron energies; the most stable polaron
state corresponds to the WF minimizing the polaron energy (see Section 4.6 for
additional discussion). In the following, we take a maximally localized WFs as a
trial wavefunction and compute its polaron energy. If the resulting small polaron
is stable, as determined by comparing the electron or hole polaron energy with
the respective band edge, then our approach provides a sufficient condition for
concluding that a small polaron forms in a given material, as well as an approximate
polaron wavefunction. Systematic minimization of the polaron energy, which is left
out for future work, would more accurately determine the polaron wavefunction,
refining the WF guess.

4.3 Methods
We carry out DFT calculations using the Quantum ESPRESSO code [41] with
a plane-wave basis set, employing norm-conserving pseudopotentials [42] from
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Pseudo Dojo [43] and the Perdew-Burke-Ernzerhof generalized gradient approxi-
mation [44]. A kinetic energy cutoff of 100 Ry, an 8×8×8 k-point grid, and relaxed
lattice parameters are used in all DFT calculations. We use density functional per-
turbation theory [45] to compute phonon frequencies and eigenvectors on a coarse
8 × 8 × 8 q-point grid for all materials except Na2O2, for which we use a 4 × 4 × 4
q-point grid. The 𝑒-ph coupling constants 𝑔𝑚𝑛𝜈(k, q) are obtained on coarse grids
and transformed to Wannier basis 𝑔Q𝑚𝑛 using the Perturbo code [40], with WFs
generated from Wannier90 [46].

Before computing the polaron energy, we first numerically verify that the identity of
Eq. (4.16) is satisfied by carrying out the integration in Eq. (4.15) in all cases. We
then compute the on-site polaron energy, 𝐸𝑚𝑚 in Eq. (4.17), computing the Brillouin
zone integral via Monte Carlo integration with 1 million random q points drawn
from a Cauchy distribution. All materials investigated in this work have strong polar
bonds and dominant contributions to 𝑒-ph coupling from the longitudinal optical
modes through the Fröhlich interaction [27, 47]. The temperature is set to 300 K in

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

W L Γ X W K

(a)

NaCl hole
-4

-3

-2

-1

 0

 1

 2

W L Γ X W K

(b)

LiF hole
-1.5

-1

-0.5

 0

 0.5

 1

W L Γ X W K

(c)

KCl hole

-2

-1

 0

 1

 2

 3

 4

 5

W L Γ X W K

(d)

NaCl electron

C
a
rr
ie
r
e
n
e
rg

y
(e
V
)

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

W L Γ X W K

(e)

LiF electron
-1

 0

 1

 2

 3

 4

 5

W L Γ X W K

(f)

KCl electron

1Figure 4.1: Calculated polaron energy I. Calculated polaron energy for holes in
(a) NaCl, (b) LiF, and (c) KCl, and electrons in (d) NaCl, (e) LiF, and (f) KCl. Blue
lines are the polaron on-site energies 𝐸𝑚𝑚, and dashed black lines are electronic
WF energies 𝜀𝑚𝑚, in Eq. (4.17). The solid black curves are the DFT band structure
and the red curves are the Wannier interpolated bands, whose number equals the
number of WFs employed in the calculation. The energy zero is set to be either at
CBM or VBM, respectively, when electron or hole carriers are considered.
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all calculations.

4.4 Results
Figure 4.1 shows the computed polaron energy in three alkali halides, NaCl, LiF,
and KCl, for both electron and hole polaron states. Our formalism predicts that holes
in these three materials form a self-localized small polaron, in agreement with the
experiments [3], because the computed polaron energies 𝐸𝑚𝑚 are above the VBM,
as shown in Fig. 4.1(a)−(c). Electrons in these materials, on the other hand, are not
expected to self-trap− as the conduction band in alkali halides is 𝑠-like and therefore
more dispersive than the 𝑝-like valence band, the potential energy decrease due to
the lattice distortion cannot outweigh the increase in kinetic energy for localizing
the electronic state. Consistent with this intuition, our results for electrons in NaCl,
LiF, and KCl, shown in Fig. 4.1(d)−(f), conclude that electrons in these materials
do not form a self-trapped polaron, as is seen by the fact that the polaron energy
is above the CBM. Experiments in alkali halides similarly found no evidence of
electron polarons down to 5 K temperature [48].

Figure 4.2 shows the calculated electron and hole polaron energies in three alkali
metal oxides and peroxides, Na2O2, Li2O2, and Na2O. The nature of the charge
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1Figure 4.2: Calculated polaron energy II. Calculated polaron energy for holes in
(a) Li2O2, (b) Na2O2, and (c) Na2O, and electrons in (d) Li2O2, (e) Na2O2, and (f)
SrTiO3. The lines and their color code have the same meaning as in Fig. 4.1.
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Figure 4.3: Visualization of polaron wavefunctions. The square of the trial polaron
wavefunction for the (a) hole polaron in NaCl and (b) electron polaron in Li2O2.

carriers in these materials is important for application to novel battery technolo-
gies, where the low electrical conductivity is a barrier to improved performance
and is commonly attributed to the presence of small polarons [8]. Our results in
Fig. 4.2 unambiguously demonstrate that both electrons and holes in these mate-
rials form a self-localized small polaron, warranting further investigation on their
electrical transport properties. The hole polaron wavefunction in NaCl and the elec-
tron polaron wavefunction in Li2O2 are shown in Fig. 4.3(a) and (b), respectively,
highlighting their localized nature.

The last case study we examine is cubic SrTiO3 perovskite, whose electron mobility
near room temperature exhibits a power law that can be attributed to a transport
regime governed by large (non-self localized) polarons, as we have recently shown
[30]. We investigate small polaron formations in cubic SrTiO3, using accurate elec-
tronic bandstructure, phonon dispersions, and 𝑒-ph interactions from our previous
work [29, 30] as a starting point for the polaron calculation. As shown in Fig. 4.2(f),
we find a polaron energy significantly higher than the CBM, clearly showing that
for electrons in SrTiO3 it is energetically unfavorable to self-localize and form a
small polaron state. Note that this finding does not conflict with the existence of
localized electronic states due to oxygen vacancies [24, 33], as our formalism treats
self-localized electronic states in the pristine crystal.

4.5 Discussion
The formalism presented in this work leaves room for various extensions. One is
the possibility of minimizing the polaron energy over the space of possible trial
wavefunctions (here, in the form of maximally localized WFs), leading to a more
precise computation of the polaron formation energy. In addition, treating 𝑒-ph
interactions in materials with localized 𝑑 or 𝑓 orbitals, for example using the DFT+U
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approach, is an important future extension for studies of correlated materials with
small polaron effects [49, 50]. Finally, this work paves the way for small polaron
transport calculations, for example through the Kubo formula [15, 16], to describe
transport in the polaron hopping regime and compute the transition temperature
between the bandlike and polaron hopping transport regimes [4, 19, 20]. Both
topics are pristine territory for first-principles calculations.

In summary, we developed a facile scheme to predict the formation of self-localized
small polarons. Our formalism combines ab initio 𝑒-ph interactions with an exten-
sion of small polaron theory. Its computational cost is a minimal overhead to a DFT
calculation on a unit cell, allowing us to rapidly scan several materials. Besides
providing a convenient atomistic approach for small polaron studies, our method is
a starting point for developing transport calculations in the small polaron hopping
regime.

4.6 Supplementary Materials
Polaron wavefunction
The way to determine the polaron wavefunction is less transparent in this formalism.
Equation (4.17) gives the polaron energy for the WF created by the operator 𝑎†𝑚.
Yet, this WF is not unique. Different WFs have different electronic energies 𝜀𝑚𝑚,
and they also induce different lattice distortions because they have different on-site
𝑒-ph coupling constants 𝑔Q𝑚𝑚 [see Eq. (4.14)], resulting in different polaron energy
drops in Eq. (4.17). We illustrate the fact that different trial wavefunctions lead to
different polaron energies for NaCl by generating WFs for three bands [Fig. 4.4(a)]
or only one band [Fig. 4.4(b)]. We can see that in Fig. 4.4(b), the polaron energy does
not exceed the valence band edge, and thus if the electron is initially in this state, it
will evolve into states with lower energy, like one of the states in Fig. 4.4(a). These
differences can be understood by comparing their on-site 𝑒-ph coupling 𝑔Q𝑚𝑚. In the
case of Fig. 4.4(a), the three WFs, one of which is shown in Fig. 4.3(a), resemble the
𝑝 orbitals of Cl, and are more spatially localized than the wavefunction in Fig. 4.4(b).
Therefore the more localized wavefunction obtained by wannierizing three bands
will possess a larger overlap with the phonon perturbation, resulting in a stronger
on-site coupling and larger energy decrease [see the second term in Eq. (4.17)].

The true polaron wavefunction of the system is considered to be the most stable
polaron wavefunction, which is the WF with the lowest polaron energy. Yet, Eq.
(4.17) only gives the polaron energy of a given localized state, while no information
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1Figure 4.4: Polaron energies with different trial wavefunctions. Calculated
polaron energy for holes in NaCl using wavefunction obtained by Wannierizing (a)
three states and (b) one state. The lines and their color code have the same meaning
as in Fig. 4.1 and 4.2.

on which state gives the lowest energy is provided. In Section 4.4, we use the
maximally localized WF as a trial wavefunction and compute its polaron energy
as a quick test to the polaron formation in materials. If it is the accurate polaron
formation energy and polaron wavefunction that are of interests, a variation on all the
candidate polaron wavefunctions need to be performed. There are two constraints
for a candidate polaron wavefunction created by the operator 𝑎†𝑚. First, when the
polaron wavefunction serves as the basis of a tight-binding model, it generates the
ab initio electronic band structure. Second, since we assume the valence bands are
totally filled, it should be orthogonal to all the valence Bloch states (or conduction
Bloch states, if the charge carrier of interest is hole). Therefore, all the WFs
generated using only the Bloch states in conduction band satisfy both conditions,
and comprises the space of candidate polaron wavefunctions.

One strategy to enumerate the candidate polaron wavefunctions and perform the
variation is by unitary transformations on existing WFs

𝑎′𝑚 =
∑︁
𝑛

𝑈𝑚𝑛𝑎𝑛. (4.18)

Yet, performing a thorough variation on the polaron wavefunction is beyond the
scope of this work, and will be left as future direction. In the following, we illustrate
how this variation can be performed on a toy model and how it affects the polaron
on-site energy. The treatment does not aim to be thorough; instead, it outlines the
way to generalize the framework to search for the accurate polaron formation energy
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and polaron wavefunction. Since the effect of mixing between states is easier to
imagine [for example, see Figs. 4.4(a) and (b)], here, we focus on a toy model with
one state per site, and investigate the effect of mixing wavefunctions on different
sites.

Toy model: variation of polaron wavefunction
Consider a one-dimensional tight-binding (TB) model with one state per site that
couples to one dispersionless phonon with a constant frequency 𝜔0. The Hamilto-
nian is given by

𝐻(TB) =
∑︁
𝑚𝑛

𝜀𝑚𝑛𝑎
†
𝑚𝑎𝑛 +

∑︁
𝑞

𝜔0

(
𝑏†𝑞𝑏𝑞 +

1
2

)
+ 1
√
𝑁Ω

∑︁
𝑚𝑛

∑︁
𝑞

𝜔0𝑔
𝑞
𝑚𝑛

(
𝑏†𝑞 + 𝑏−𝑞

)
𝑎†𝑚𝑎𝑛.

Here the indices 𝑚 and 𝑛 simply run over all the lattice sites. We only consider
the hopping between nearest neighbor sites and set the hopping strength to be
𝜀𝑚𝑛 = −𝑡 𝛿𝑚,𝑛±1.

The 𝑒-ph coupling constant is set to be of the form of

𝑔
𝑞
𝑚𝑛 = 𝑔𝑚𝑛

(
𝑒𝑖𝑞𝑚𝑑 + 𝑒𝑖𝑞𝑛𝑑

)
,

where 𝑔𝑚𝑛 is Hermitian and translational invariant, and 𝑑 is the lattice constant.
This form of the coupling constant can be shown to satisfy both the conjugate
and translation relations: 𝑔

𝑞 ∗
𝑚𝑛 = 𝑔

−𝑞
𝑛𝑚 and 𝑔

𝑞
𝑚𝑛 = 𝑒𝑖𝑞 𝑗𝑑𝑔

𝑞

𝑚− 𝑗 ,𝑛− 𝑗
, respectively. For

simplicity, we consider 𝑒-ph coupling constants only up to the nearest-neighbor by
setting 𝑔𝑚𝑛 = 𝑔0𝛿𝑚𝑛 + 𝑔1𝛿𝑚,𝑛+1 + 𝑔∗1𝛿𝑚,𝑛−1, with 𝑔0 real.

Polaron energy in untransformed basis
Assuming the off-diagonal components of exp[−𝜆𝑚𝑛] are all damped out, by Eq.
(4.17), the onsite polaron energy in this untransformed basis is given by

Δ𝐸𝑢 = − 1
𝑁Ω

∑︁
𝑞

𝜔0
��𝑔𝑞𝑚𝑚

��2 = −𝜔0
��2𝑔0

��2,
where 𝑞 is summed over 𝑗/𝑁Ω · 2𝜋/𝑑, with integer 𝑗 = 0, · · · , 𝑁Ω − 1. A self-
localized state is formed when the polaron energy is lower than the conduction band
minimum, that is, when

Δ𝐸𝑢 < −2𝑡.

This is in analogy to what we checked in Section 4.4.
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Polaron energy in transformed basis
Now we study the polaron energy in a transformed fermion basis using Eq. (4.18). To
generate a unitary and translational invariant matrix 𝑈𝑚𝑛, we set 𝑈𝑚𝑛 = exp[𝑖ℎ]𝑚𝑛,
where ℎ𝑚𝑛 is a Hermitian matrix with the general form of

ℎ𝑚𝑛 =



𝛼0 𝛼1 𝛼2 𝛼3 · · · 𝛼∗
1

𝛼∗
1 𝛼0 𝛼1 𝛼2 · · · 𝛼∗

2
𝛼∗

2 𝛼∗
1 𝛼0 𝛼1 · · · 𝛼∗

3
𝛼∗

3 𝛼∗
2 𝛼∗

1 𝛼0 · · · 𝛼∗
4

...
...

...
...

. . .
...

𝛼1 𝛼2 𝛼3 𝛼4 · · · 𝛼0


.

For simplicity, in the following discussion, we set all the elements 𝛼𝑛 to zero except
for 𝛼1, and we variate 𝛼1 from 0 to 𝑖 to see how the polaron energy depends on this
basis change. Figure 4.5 shows the spread of the wavefunction amplitude |𝑈0𝑛 |2 for
three different values of 𝛼1.

The polaron energy in this transformed basis is given by

Δ𝐸𝑡 = − 1
𝑁Ω

∑︁
𝑞

𝜔0

���∑︁
𝑚𝑛

𝑈0𝑚𝑔
𝑞
𝑚𝑛𝑈

†
𝑛0

���2.
We plot the ratio of the polaron energy in the transformed basis to that in the
untransformed basis, Δ𝐸𝑡/|Δ𝐸𝑢 | in Fig. 4.6 for four different values of 𝑔1/𝑔0.

α1 = 0.2 i

α1 = 0.5 i

α1 = 0.8 i
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∣ ∣ U
0
n

∣ ∣2

1
Figure 4.5: Transformed polaron wavefunctions in the toy model. The trans-
formed wavefunction amplitude |𝑈0𝑛 |2 on nearby sites 𝑛 for three different values of
𝛼1.
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Figure 4.6: Variation of polaron energy over different wavefunctions. The ratio
of the polaron energy in the transformed basis to that in the untransformed basis,
Δ𝐸𝑡/|Δ𝐸𝑢 |, for four different values of 𝑔1/𝑔0. Values smaller than −1 indicate that
the system favors the transformed wavefunction over the original one.

We can see that, before reaching a critical ratio for 𝑔1/𝑔0, this set of transformed
wavefunctions always render a higher energy than the untransformed one. On
the other hand, as the nonlocal 𝑒-ph coupling constant 𝑔1 becomes more or more
important, some transformed wavefunctions are energetically more stable, and by
performing the variation on the fermion basis, we can find the wavefunction with
the lowest possible energy of the system.
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C h a p t e r 5

CONCLUSION AND FUTURE DIRECTIONS

In summary, this thesis presents research that investigates electron-phonon (𝑒-ph)
interactions and charge transport from first principles, paying attention to the organic
molecular crystals, higher-order 𝑒-ph scattering processes, and formation of small
polaron in materials with strong coupling strength.

Microscopic transport mechanism in organic molecular crystals
In Chapter 2, we compute the 𝑒-ph scattering rates and the phonon-limited hole
mobility of naphthalene crystal in the framework of ab initio band theory. The
computed mobilities dramatically improve the agreement with experiment com-
pared to previous theoretical works, and they can accurately predict the temperature
dependence between 100−300 K. We revisit the common belief that only rigid
molecular motions affect carrier dynamics in organic molecular crystals, showing
that scattering between intermolecular phonons and holes regulates the mobility
while intramolecular phonons possess the strongest coupling with holes. The result
in Chapter 2 is a first step toward reconciling band theory and charge hopping meth-
ods in quantum chemistry, and it shows that ab initio approaches based on band
theory and many-body perturbation theory are well equipped to compute charge
transport in organic semiconductors.

Beside naphthalene, many organic molecular crystals, for example, anthracene [1],
durene [2], and rubrene [3], exhibit a bandlike power-law trend in their mobility. Yet,
band theory has long been excluded from being a potential candidate for explaining
their transport trend because the values of the mean free path in organic crystals are
typically comparable to their unit cell size, which is thought to be the point where
the BTE breaks down. The success of predicting the hole mobility in naphthalene is
the revival of band theory in the organic community, but more evidence is required
to consolidate its role played in those complex materials. As a result, a natural
step to proceed is applying this novel workflow for transport calculation on different
organic semiconductors. This will not only enable us to gain more control on
designing novel organic technological applications, but will also provide insight
into the underlying transport mechanism in organic molecular crystals.
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Higher-order electron-phonon interactions
In Chapter 3, we derive next-to-leading order 𝑒-ph interactions, and compute from
first principles the associated electron-two-phonon (2ph) scattering rates. The
derivations involve Matsubara sums of two-loop Feynman diagrams, and the nu-
merical challenges are overcome by using Monte Carlo integration together with a
self-consistent update of the intermediate state lifetimes. We apply our method to
GaAs, a weakly polar semiconductor with a dominant long-range 𝑒-ph interaction,
and find that the 2ph scattering rates are as large as nearly half the value of the
one-phonon (1ph) rates. Our analysis shows that the relative importance of the 2ph
contributions is nearly temperature independent at 200−400 K, and rationalizes the
peculiar energy dependence of the 2ph processes. In this chapter, we also formulate
and iteratively solve the linearized BTE that incorporates the 2ph processes, which
is shown to be indispensable to accurately predict the electron mobility in GaAs.
This formalism proposes an approach broadly relevant to weakly polar semiconduc-
tors and high-mobility oxides, and sets the stage for systematically improving the
accuracy of ab initio 𝑒-ph calculations beyond the leading order.

Nevertheless, the scattering processes considered in Chapter 3 are not complete
even in the next-to-leading order perturbation expansion. As we pointed out in Sec-
tion 3.3, the diagrams in Fig. 3.2 only involve the 𝑒-ph vertex shown in Fig. 5.1(a)
that results from the first derivative of the KS potential with respect to lattice vibra-
tions [see the expansion in Eq. (1.4)]. The next order of this KS potential expansion
leads to the so-called Debye-Waller vertex [see Fig. 5.1(b)], which contributes a
direct 2ph scattering process [see Fig. 5.1(d)] representing an electron interacting
simultaneously with two phonons [4]. The impact of this direct 2ph scattering on the
total scattering rates is still unknown, and whether it will give a strong cancellation
for the acoustic phonons as people hypothesize deserves further examination.

= +

=

=

(a) (b) (c) (d)

(e) (f)

1
Figure 5.1: More next-to-leading order vertices and scattering processes. The
figure shows in panels (a)−(c) some lowest order 𝑒-ph vertices and in panels (d)−(f)
some additional amputated scattering processes.
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Besides the expansion series of the KS potential, we also impose the harmonic
approximation on the calculation on lattice dynamics in Eq. (1.3). Going one or-
der beyond this harmonic approximation introduces the phonon-phonon interaction
vertex shown in Fig. 5.1(c) [5]. Together with the lowest order 𝑒-ph interaction,
they contribute two more 1ph scattering processes, shown in Fig. 5.1(e). These 1ph
processes emerge also from the next-to-leading order self-energy diagrams, and ef-
fectively screen the bare 𝑒-ph coupling constant. Lastly, the last self-energy diagram
in Fig. 3.1 gives rise to the electron-electron interaction shown in Fig. 5.1(f) similar
to the Auger scattering; but instead of Coulomb potential, the two electrons interact
with each other through exchanging a phonon. A thorough consideration on all
these next-to-leading order scattering processes will provide more insights into the
charge carrier dynamics, and puts the applicability of the perturbation expansion on
a more solid ground.

Small polarons and their transport property
In Chapter 4, we show a formalism based on canonical transformations for computing
the polaron formation energy using ab initio 𝑒-ph interactions. With a heuristic
choice of the lattice distortion, we construct a self-trapped electronic state which
is free from hopping and decoupled from all vibrational modes. Whether charge
carriers in a material favor a localized small polaron state over a delocalized Bloch
state can be inferred by a direct comparison of the calculated polaron energy with
the conduction or valence band edge. The computational cost of this scheme is
equivalent to a standard DFT calculation on a unit cell plus an inexpensive 𝑒-ph
step. This efficiency allows us to easily investigate small polarons in several oxides
and perovskites. The result in Chapter 4 bridges the gap between the small polaron
theory and ab initio 𝑒-ph calculations and formulates an efficient computational
approach to treat small polarons from first principles.

The formalism developed in Chapter 4 permits several straightforward extensions
for better understanding the physical properties of small polarons. As elaborated
in Chapter 4, this facile scheme utilizes a maximally-localized Wannier function as
a trial state to estimate the polaron properties. A near-term extension would focus
on obtaining the precise polaron formation energy and polaron wavefunction by
performing a variation method outlined in Section 4.6. Another direction is applying
the formalism on materials with transition metal that host small polarons, such as
rutile [6] and lithium niobate [7]. Since transition metals have localized open 𝑑 or 𝑓

orbitals, hybrid functional or Hubbard correction DFT+U is usually indispensable
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to correctly obtain their electronic properties. With a recent implementation that
reconciles the DFPT and the DFT+U calculations, we can correctly compute the on-
site 𝑒-ph coupling constant and thus extend the applicability of the polaron energy
calculations to a broader range of materials.

A natural step beyond the energetic calculations is investigating the transport prop-
erties of small polarons. Small polaron transport theory developed using the Kubo
formula [8–11] describes how these localized charge carriers hop between sites in
response to an applied electric field. This is one of the most promising candidates
to explaining the transport mechanism in materials with very low mobility. It can
not only describe the thermally activated mobility trend, but also can predict the
band-hopping transition observed in experiments [12–14]. Combing the ab initio
𝑒-ph calculation with this small polaron transport theory will provide more insights
into the transport mechanism of materials in the hopping regime, and complement
the usual band transport picture on the other side of the mobility spectrum.
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A p p e n d i x A

ANALYTIC DERIVATION OF THE SCATTERING RATES OF
TWO-PHONON PROCESSES

In this section, we calculate the contributions to the 𝑒-ph scattering rates from the
next-to-leading-order self-energy diagrams. We use the Matsubara technique to
calculate the two-loop self-energy, whose imaginary part is related to the total scat-
tering rates via the optical theorem (see the figure below). Here and in the following,
solid and dashed lines represent electron and phonon propagators, respectively. We
focus on the scattering processes with two external phonons, corresponding to the
three processes in the second row of the figure.

The Feynmann rules, which have been derived in Ref. [1], will be adapted here to
our context. The starting point is the 𝑒-ph Hamiltonian

𝐻 =
∑︁
𝑛k

𝜀𝑛k𝑎
†
𝑛k𝑎𝑛k +

∑︁
𝜈q

𝜔𝜈q

(
𝑏
†
𝜈q𝑏𝜈q +

1
2

)
+ 1
√
𝑁Ω

∑︁
𝑚𝑛k

∑︁
𝜈q

𝑔𝑚𝑛𝜈 (k, q)
(
𝑏
†
𝜈−q + 𝑏𝜈q

)
𝑎
†
𝑚k+q𝑎𝑛k,

where 𝑎𝑛k and 𝑏𝜈q are the annihilation operators for electrons and phonons with
energies 𝜀𝑛k and 𝜔𝜈q, respectively, 𝑔𝑚𝑛𝜈 (k, q) is the 𝑒-ph coupling constant, and 𝑁Ω

is the number of unit cells in the crystal. Comparing with Eqs. (2.67) and (3.200)
in Ref. [1], we have introduced the dependence on electron crystal momentum k
for the 𝑒-ph couplings and the electron band indices 𝑚 and 𝑛. Also note that for
the Hamiltonian to be Hermitian, the 𝑒-ph couplings must satisfy 𝑔∗𝑚𝑛𝜈 (k, q) =

𝑔𝑛𝑚𝜈 (k + q,−q).

A.1 Feynmann Rules
The rules for constructing diagrams are listed in Section 3.4 of Ref. [1]. We slightly
modify them here:
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1. With each internal electron line, associate the propagator G (0) (k, 𝑖𝑘𝜆) =

1/(𝑖𝑘𝜆 − 𝜉𝑛k), where 𝜉𝑛k = 𝜀𝑛k − 𝜇 and 𝜇 is the chemical potential.

2. With each internal phonon line, associate the propagator D (0) (q, 𝑖𝜔𝜅) =

−2𝜔𝜈q/(𝜔2
𝜅 + 𝜔2

𝜈q).

3. With each vertex, associate the 𝑒-ph coupling constant 𝑔𝑚𝑛𝜈 (k, q). Beware of
the direction of q.

4. Conserve momentum and complex frequency at each vertex and sum over the
internal degrees of freedom.

5. Multiply the expression by

(−1)𝐿+𝐹 (2𝑆 + 1)𝐹
(𝛽𝑁Ω)𝐿

=

(
− 1
𝛽𝑁Ω

)𝐿
(−2)𝐹 ,

where 𝐹 is the number of closed Fermion loops. The (2𝑆 + 1) factor is a
summation over spin degrees of freedom, and 2𝑆 + 1 = 2 for electrons. The
integer 𝐿 is the number of loops, and 𝛽 = 1/𝑘𝐵𝑇 , where T is temperature.

A.2 Electron Self-Energy
We consider below the 1-loop diagram that gives the lowest-order (one-phonon)
self-energy and the three relevant two-loop diagrams for the electron self-energy.
Diagram IIc will not contribute to the two-phonon processes and thus will not be
considered in the following.
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A.3 One-Loop Diagram I

As a warm up exercise, we first derive the one-loop self-energy diagram, labelled
as I in figure above. Since 𝐿 = 1 and 𝐹 = 0, the Feynman rules give

Σ(I) = − 1
𝛽𝑁Ω

∑︁
𝑚𝜈q

∑︁
𝑖𝜔𝜅

𝑔𝑚𝑛𝜈 (k, q)D (0) (q, 𝑖𝜔𝜅)G (0) (k + q, 𝑖𝑘𝜆 + 𝑖𝜔𝜅)𝑔𝑛𝑚𝜈 (k + q,−q)

= − 1
𝛽𝑁Ω

∑︁
𝑚𝜈q

∑︁
𝑖𝜔𝜅

|𝑔𝑚𝑛𝜈 (k, q) |2
−2𝜔𝜈q

𝜔2
𝜅 + 𝜔2

𝜈q

1
𝑖𝑘𝜆 + 𝑖𝜔𝜅 − 𝜉𝑚k+q

≡ 1
𝑁Ω

∑︁
𝑚𝜈q

|𝑔𝑚𝑛𝜈 (k, q) |2
(
−1
𝛽

) ∑︁
𝑖𝜔𝜅

𝑓 (𝑖𝜔𝜅),

where 𝑓 (𝑧) is defined as

𝑓 (𝑧) ≡
2𝜔𝜈q

𝑧2 − 𝜔2
𝜈q

1
𝑧 + 𝑖𝑘𝜆 − 𝜉𝑚k+q

.

To apply the Matsubara frequency summation method, we define the bosonic weight-
ing function as in Ref. [1]:

𝑛𝐵 (𝑧) =
1

𝑒𝛽𝑧 − 1
,

whose poles are at 𝑖𝜔𝜅 = 𝑖2𝜅𝜋/𝛽, with residues 1/𝛽 and integer 𝜅 values. The
weighting function for fermions is

𝑛𝐹 (𝑧) =
1

𝑒𝛽𝑧 + 1
,

whose poles are at 𝑖𝑘𝜆 = 𝑖(2𝜆 + 1)𝜋/𝛽, with residues −1/𝛽 and integer 𝜆 values.

For this diagram, we will do the contour integral for 𝑓 (𝑧)𝑛𝐵 (𝑧) at the complex
infinity. Since 𝑓 (𝑧)𝑛𝐵 (𝑧) decays faster than 1/𝑧, we can apply the Cachy residue
theorem, which gives (here and below, 𝑧′ are the relevant poles):

0 = lim
|𝑧 |→∞

∮
𝑑𝑧

2𝜋𝑖
𝑓 (𝑧)𝑛𝐵 (𝑧) =

∑︁
𝑧′ of 𝑓 ·𝑛𝐵

Res{ 𝑓 (𝑧′)𝑛𝐵 (𝑧′)}

=
∑︁
𝑖𝜔𝜅

𝑓 (𝑖𝜔𝜅)
1
𝛽
+

∑︁
𝑧′ of 𝑓

Res{ 𝑓 (𝑧′)𝑛𝐵 (𝑧′)}.
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Using this result, we get:

Σ(I) =
1
𝑁Ω

∑︁
𝑚𝜈q

|𝑔𝑚𝑛𝜈 (k, q) |2
∑︁
𝑧′ of 𝑓

Res{ 𝑓 (𝑧′)}𝑛𝐵 (𝑧′).

The poles of 𝑓 (𝑧) are at 𝑧1 = 𝜔𝜈q, 𝑧2 = −𝜔𝜈q, and 𝑧3 = −𝑖𝑘𝜆 + 𝜉𝑚k+q. Their residues
are

Res{ 𝑓 (𝑧), 𝑧1} =
1

𝜔𝜈q + 𝑖𝑘𝜆 − 𝜉𝑚k+q

Res{ 𝑓 (𝑧), 𝑧2} = − 1
−𝜔𝜈q + 𝑖𝑘𝜆 − 𝜉𝑚k+q

Res{ 𝑓 (𝑧), 𝑧3} =
2𝜔𝜈q

(−𝑖𝑘𝜆 + 𝜉𝑚k+q)2 − 𝜔2
𝜈q

=
1

−𝜔𝜈q + 𝑖𝑘𝜆 − 𝜉𝑚k+q
− 1
𝜔𝜈q + 𝑖𝑘𝜆 − 𝜉𝑚k+q

.

We also know that 𝑛𝐵 (𝑧1) = 𝑛𝐵 (𝜔𝜈q) ≡ 𝑁𝜈q, 𝑛𝐵 (𝑧2) = 𝑛𝐵 (−𝜔𝜈q) = −𝑁𝜈q − 1 and
𝑛𝐵 (𝑧3) = −𝑛𝐹 (𝜉𝑚k+q) ≡ − 𝑓𝑚k+q, where𝑁 and 𝑓 are the thermal occupation numbers
for phonons and electrons, respectively. We also used the fact that 𝑖𝑘𝜆 = 𝑖(2𝜆+1)𝜋/𝛽.
Substituting this result in the self-energy expression, we get

Σ(I) =
1
𝑁Ω

∑︁
𝑚𝜈q

|𝑔𝑚𝑛𝜈 (k, q) |2
[

𝑁𝜈q + 𝑓𝑚k+q

𝑖𝑘𝜆 + 𝜔𝜈q − 𝜉𝑚k+q
+

1 + 𝑁𝜈q − 𝑓𝑚k+q

𝑖𝑘𝜆 − 𝜔𝜈q − 𝜉𝑚k+q

]
.

Employing the analytic continuation 𝑖𝑘𝜆 → 𝐸 + 𝑖𝜂, we obtain the off-shell lowest-
order 𝑒-ph self-energy:

Σ(I)(𝐸) = 1
𝑁Ω

∑︁
𝑚𝜈q

|𝑔𝑚𝑛𝜈 (k, q) |2
[

𝑁𝜈q + 𝑓𝑚k+q

𝐸 + 𝜔𝜈q − 𝜉𝑚k+q + 𝑖𝜂
+

1 + 𝑁𝜈q − 𝑓𝑚k+q

𝐸 − 𝜔𝜈q − 𝜉𝑚k+q + 𝑖𝜂

]
.

We will be mainly interested in the scattering rate at the electron energy 𝜉𝑛k and
therefore we will set 𝐸 = 𝜉𝑛k to obtain the on-shell self-energy for the state with
band 𝑛 and crystal momentum k. Using the identity

1
𝑥 + 𝑖𝜂

= 𝑃
1
𝑥
− 𝑖𝜋𝛿(𝑥)

and Eq. (7.304) in Ref. [1], which states that the scattering rate Γ is obtained as
Γ = −2ImΣ, we get

Γ
(I)
𝑛k =

2𝜋
𝑁Ω

∑︁
𝑚𝜈q

|𝑔𝑚𝑛𝜈 (k, q) |2
[
(𝑁𝜈q + 𝑓𝑚k+q)𝛿(𝜉𝑛k + 𝜔𝜈q − 𝜉𝑚k+q)

+(1 + 𝑁𝜈q − 𝑓𝑚k+q)𝛿(𝜉𝑛k − 𝜔𝜈q − 𝜉𝑚k+q)
]
.

This is the well-known lowest-order scattering rate commonly used in first-principles
calculations.
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A.4 Two-Loop Diagram IIa

Now we compute the first two-loop diagram, which is shown in the figure above.
Since 𝐿 = 2 and 𝐹 = 0, the Feynman rules give

Σ(IIa) =
1

𝛽2𝑁2
Ω

∑︁
𝑛1𝑛2𝑛3

∑︁
𝜈q

∑︁
𝜇p

𝑔𝑛1𝑛𝜈 (k, q)𝑔∗𝑛3𝑛𝜈 (k, q)𝑔𝑛2𝑛1𝜇 (k + q, p)𝑔∗𝑛2𝑛3𝜇 (k + q, p)

×
∑︁
𝑖𝜔𝜅

∑︁
𝑖𝜔𝜎

𝑓 (𝑖𝜔𝜅, 𝑖𝜔𝜎),

where 𝑓 (𝑖𝜔𝜅, 𝑖𝜔𝜎) is defined as

𝑓 (𝑖𝜔𝜅, 𝑖𝜔𝜎) ≡
1

𝑖𝑘𝜆 + 𝑖𝜔𝜅 − 𝜉𝑛1k+q

1
𝑖𝑘𝜆 + 𝑖𝜔𝜅 + 𝑖𝜔𝜎 − 𝜉𝑛2k+q+p

× 1
𝑖𝑘𝜆 + 𝑖𝜔𝜅 − 𝜉𝑛3k+q

2𝜔𝜈q

𝜔2
𝜅 + 𝜔2

𝜈q

2𝜔𝜇p

𝜔2
𝜎 + 𝜔2

𝜇p

≡ 𝐴𝜅

1
𝑖𝑘𝜆 + 𝑖𝜔𝜅 + 𝑖𝜔𝜎 − 𝜉𝑛2k+q+p

2𝜔𝜇p

−(𝑖𝜔𝜎)2 + 𝜔2
𝜇p
,

where in 𝐴𝜅 we collect all terms independent of 𝑖𝜔𝜎. Let us sum over 𝑖𝜔𝜎 first.
Performing the contour integral for 𝑓 (𝑖𝜔𝜅, 𝑧)𝑛𝐵 (𝑧) gives∑︁

𝑖𝜔𝜎

𝑓 (𝑖𝜔𝜅, 𝑖𝜔𝜎) = −𝛽
∑︁
𝑧′ of 𝑓

Res{ 𝑓 (𝑖𝜔𝜅, 𝑧
′)𝑛𝐵 (𝑧′)}.

Note that 𝑓 (𝑖𝜔𝜅, 𝑧) has three poles, whose residues and bosonic weight factors are
computed as:

𝑧1 → −𝑖𝑘𝜆 − 𝑖𝜔𝜅 + 𝜉𝑛2k+q+p

Res{ 𝑓 (𝑖𝜔𝜅, 𝑧1)} = 𝐴𝜅

(
1

𝑧1 + 𝜔𝜇p
− 1
𝑧1 − 𝜔𝜇p

)
𝑛𝐵 (𝑧1) = − 𝑓𝑛2k+q+p

𝑧2 → 𝜔𝜇p

Res{ 𝑓 (𝑖𝜔𝜅, 𝑧2)} = −𝐴𝜅

1
𝑧2 + 𝑖𝑘𝜆 + 𝑖𝜔𝜅 − 𝜉𝑛2k+q+p
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𝑛𝐵 (𝑧2) = 𝑁𝜇p

𝑧3 → −𝜔𝜇p

Res{ 𝑓 (𝑖𝜔𝜅, 𝑧3)} = 𝐴𝜅

1
𝑧3 + 𝑖𝑘𝜆 + 𝑖𝜔𝜅 − 𝜉𝑛2k+q+p

𝑛𝐵 (𝑧3) = −𝑁𝜇p − 1.

Using these results, we get∑︁
𝑖𝜔𝜎

𝑓 (𝑖𝜔𝜅, 𝑖𝜔𝜎)

= 𝛽𝐴𝜅

1 + 𝑁𝜇p − 𝑓𝑛2k+q+p

𝑖𝑘𝜆 + 𝑖𝜔𝜅 − 𝜉𝑛2k+q+p − 𝜔𝜇p
+ 𝛽𝐴𝜅

𝑁𝜇p + 𝑓𝑛2k+q+p

𝑖𝑘𝜆 + 𝑖𝜔𝜅 − 𝜉𝑛2k+q+p + 𝜔𝜇p

≡ 𝛽ℎ(−) (𝑖𝜔𝜅) + 𝛽ℎ(+) (𝑖𝜔𝜅),

where we defined two functions, ℎ(−) (𝑖𝜔𝜅) and ℎ(+) (𝑖𝜔𝜅), as the first and second
terms in the expression above.

We then sum over 𝑖𝜔𝜅, using again∑︁
𝑖𝜔𝜅

ℎ(±) (𝑖𝜔𝜅) = −𝛽
∑︁

𝑧′ of ℎ (±)
Res{ℎ(±) (𝑧′)𝑛𝐵 (𝑧′)}.

A subtle point is that the cases with 𝑛3 ≠ 𝑛1 and 𝑛3 = 𝑛1 have different pole structures,
and need to be discussed separately (see the figure above for diagram IIa; 𝑛3 and 𝑛1

label two intermediate electronic states in the self-energy diagram). Luckily, the two
cases give the same expression for the two-phonon scattering processes, as we show
explicitly below. Before carrying out the calculation, let us introduce some useful
abbreviations. We will use in the following 𝜉𝑛1k+q ≡ 𝜉1, 𝜉𝑛1k+p ≡ 𝜉1p, 𝑓𝑛2k+q+p ≡ 𝑓2,
𝜔𝜈q ≡ 𝜔q, etc.

Case with n3 ≠ n1

Let us focus on ℎ(−) for the case 𝑛3 ≠ 𝑛1 first. In this case, ℎ(−) is defined as

ℎ(−) (𝑧) = 1
𝑧 + 𝑖𝑘𝜆 − 𝜉1

1
𝑧 + 𝑖𝑘𝜆 − 𝜉3

−2𝜔q

𝑧2 − 𝜔2
q

1 + 𝑁p − 𝑓2

𝑧 + 𝑖𝑘𝜆 − 𝜉2 − 𝜔p
.

It has five poles, which are given here together with their residues and bosonic
weight factors:

𝑧1 → − 𝑖𝑘𝜆 + 𝜉1



78

Res{ℎ(−) (𝑧1)} =
1

𝜉1 − 𝜉3

1 + 𝑁p − 𝑓2

𝜉1 − 𝜉2 − 𝜔p

(
1

−𝑖𝑘𝜆 + 𝜉1 + 𝜔q
− 1
−𝑖𝑘𝜆 + 𝜉1 − 𝜔q

)
𝑛𝐵 (𝑧1) = − 𝑓1

𝑧2 → − 𝑖𝑘𝜆 + 𝜉3

Res{ℎ(−) (𝑧2)} =
1

𝜉3 − 𝜉1

1 + 𝑁p − 𝑓2

𝜉3 − 𝜉2 − 𝜔p

(
1

−𝑖𝑘𝜆 + 𝜉3 + 𝜔q
− 1
−𝑖𝑘𝜆 + 𝜉3 − 𝜔q

)
𝑛𝐵 (𝑧2) = − 𝑓3

𝑧3 → 𝜔q

Res{ℎ(−) (𝑧3)} =
1

𝑖𝑘𝜆 + 𝜔q − 𝜉1

1
𝑖𝑘𝜆 + 𝜔q − 𝜉3

(−1)
1 + 𝑁p − 𝑓2

𝑖𝑘𝜆 + 𝜔q − 𝜉2 − 𝜔p

𝑛𝐵 (𝑧3) = 𝑁q

𝑧4 → − 𝜔q

Res{ℎ(−) (𝑧4)} =
1

𝑖𝑘𝜆 − 𝜔q − 𝜉1

1
𝑖𝑘𝜆 − 𝜔q − 𝜉3

1 + 𝑁p − 𝑓2

𝑖𝑘𝜆 − 𝜔q − 𝜉2 − 𝜔p

𝑛𝐵 (𝑧4) = − 𝑁q − 1

𝑧5 → − 𝑖𝑘𝜆 + 𝜉2 + 𝜔p

Res{ℎ(−) (𝑧5)} =
1

𝜉2 + 𝜔p − 𝜉1

1
𝜉2 + 𝜔p − 𝜉3

(
1 + 𝑁p − 𝑓2

)
×

(
1

−𝑖𝑘𝜆 + 𝜉2 + 𝜔p + 𝜔q
− 1
−𝑖𝑘𝜆 + 𝜉2 + 𝜔p − 𝜔q

)
𝑛𝐵 (𝑧5) = −

𝑁p 𝑓2

1 + 𝑁p − 𝑓2
.

After performing the same analysis on ℎ(+) and adding them together, the terms
related to the two-phonon processes, that is, the terms containing 1/(𝑖𝑘 − 𝜉2 ±𝜔p ±
𝜔q), are collected here as

1
𝛽2

∑︁
𝑖𝜔𝜅

∑︁
𝑖𝜔𝜎

𝑓 (𝑖𝜔𝜅, 𝑖𝜔𝜎) =

1
𝑖𝑘𝜆 − 𝜉2 − 𝜔p + 𝜔q

[ 1 + 𝑁p − 𝑓2

𝑖𝑘𝜆 − 𝜉1 + 𝜔q

𝑁q

𝑖𝑘𝜆 − 𝜉3 + 𝜔q
+

𝑁p 𝑓2

𝜉2 − 𝜉1 + 𝜔p

1
𝜉2 − 𝜉3 + 𝜔p

]
+ 1
𝑖𝑘𝜆 − 𝜉2 − 𝜔p − 𝜔q

[ 1 + 𝑁p − 𝑓2

𝑖𝑘𝜆 − 𝜉1 − 𝜔q

1 + 𝑁q

𝑖𝑘𝜆 − 𝜉3 − 𝜔q
−

𝑁p 𝑓2

𝜉2 − 𝜉1 + 𝜔p

1
𝜉2 − 𝜉3 + 𝜔p

]
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+ 1
𝑖𝑘𝜆 − 𝜉2 + 𝜔p + 𝜔q

[
𝑁p + 𝑓2

𝑖𝑘𝜆 − 𝜉1 + 𝜔q

𝑁q

𝑖𝑘𝜆 − 𝜉3 + 𝜔q
+

𝑓2(1 + 𝑁p)
𝜉2 − 𝜉1 − 𝜔p

1
𝜉2 − 𝜉3 − 𝜔p

]
+ 1
𝑖𝑘𝜆 − 𝜉2 + 𝜔p − 𝜔q

[
𝑁p + 𝑓2

𝑖𝑘𝜆 − 𝜉1 − 𝜔q

1 + 𝑁q

𝑖𝑘𝜆 − 𝜉3 − 𝜔q
−

𝑓2(1 + 𝑁p)
𝜉2 − 𝜉1 − 𝜔p

1
𝜉2 − 𝜉3 − 𝜔p

]
+ · · ·

The rates of the two-phonon processes emerge after analytically continuing 𝑖𝑘𝜆 to
𝐸 + 𝑖𝜂 and taking the imaginary part of 1/(𝐸 − 𝜉2 ±𝜔p ±𝜔q + 𝑖𝜂). We also use the
delta functions to set 𝐸 = 𝜉2 ∓𝜔p ∓𝜔q in some of the denominators. After carrying
out these calculations, we obtain

Im

{
1
𝛽2

∑︁
𝑖𝜔𝜅

∑︁
𝑖𝜔𝜎

𝑓 (𝑖𝜔𝜅, 𝑖𝜔𝜎)
}
=

−𝑖𝜋𝛿(𝐸 − 𝜉2 − 𝜔p + 𝜔q)
(1 + 𝑁p − 𝑓2)𝑁q + 𝑁p 𝑓2

(𝜉2 − 𝜉1 + 𝜔p) (𝜉2 − 𝜉3 + 𝜔p)

−𝑖𝜋𝛿(𝐸 − 𝜉2 − 𝜔p − 𝜔q)
(1 + 𝑁p − 𝑓2) (1 + 𝑁q) − 𝑁p 𝑓2

(𝜉2 − 𝜉1 + 𝜔p) (𝜉2 − 𝜉3 + 𝜔p)

−𝑖𝜋𝛿(𝐸 − 𝜉2 + 𝜔p + 𝜔q)
(𝑁p + 𝑓2)𝑁q + 𝑓2(1 + 𝑁p)

(𝜉2 − 𝜉1 − 𝜔p) (𝜉2 − 𝜉3 − 𝜔p)

−𝑖𝜋𝛿(𝐸 − 𝜉2 + 𝜔p − 𝜔q)
(𝑁p + 𝑓2) (1 + 𝑁q) − 𝑓2(1 + 𝑁p)
(𝜉2 − 𝜉1 − 𝜔p) (𝜉2 − 𝜉3 − 𝜔p)

.

Case with n3 = n1

In this case, ℎ(−) is defined as

ℎ(−) (𝑧) =
(

1
𝑧 + 𝑖𝑘𝜆 − 𝜉1

)2 −2𝜔q

𝑧2 − 𝜔2
q

1 + 𝑁p − 𝑓2

𝑧 + 𝑖𝑘𝜆 − 𝜉2 − 𝜔p
.

The function ℎ(𝑧)𝑛𝐵 (𝑧) has a pole of order 2 at 𝑧1 = −𝑖𝑘𝜆 + 𝜉1. By employing

Res{ 𝑓 , 𝑧1} =
1

(𝑛 − 1)! lim
𝑧→𝑧1

𝑑𝑛−1

𝑑𝑧𝑛−1 {(𝑧 − 𝑧1)𝑛 𝑓 (𝑧)},

where 𝑛 is the order of the pole, we get

Res{ℎ(−)𝑛𝐵, 𝑧1} =
4𝑧1𝜔q

(𝑧2
1 − 𝜔2

q)2

1 + 𝑁p − 𝑓2

𝑧1 + 𝑖𝑘𝜆 − 𝜉2 − 𝜔p
𝑛𝐵 (𝑧1)

+
2𝜔q

𝑧2
1 − 𝜔2

q

1 + 𝑁p − 𝑓2

(𝑧1 + 𝑖𝑘𝜆 − 𝜉2 − 𝜔p)2 𝑛𝐵 (𝑧1)
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+
−2𝜔q

𝑧2
1 − 𝜔2

q

1 + 𝑁p − 𝑓2

𝑧1 + 𝑖𝑘𝜆 − 𝜉2 − 𝜔p
𝑛′𝐵 (𝑧1).

After substituting 𝑧1 = −𝑖𝑘𝜆 + 𝜉1, 𝑛𝐵 (𝑧1) = − 𝑓1, and 𝑛′
𝐵
(𝑧1) = 𝛽 𝑓1(1 − 𝑓1), we get

Res{ℎ(−)𝑛𝐵, 𝑧1} =
𝑓1(1 + 𝑁p − 𝑓2)
(𝜉1 − 𝜉2 − 𝜔p)2

−2𝜔q

(𝑖𝑘𝜆 − 𝜉1)2 − 𝜔2
q

+
𝛽 𝑓1(1 − 𝑓1) (1 + 𝑁p − 𝑓2)

𝜉1 − 𝜉2 − 𝜔p

−2𝜔q

(𝑖𝑘𝜆 − 𝜉1)2 − 𝜔2
q

−
𝑓1(1 + 𝑁p − 𝑓2)
𝜉1 − 𝜉2 − 𝜔p

[
1

(𝑖𝑘𝜆 − 𝜉1 + 𝜔q)2 − 1
(𝑖𝑘𝜆 − 𝜉1 − 𝜔q)2

]
.

The other three poles are simple poles and can be treated in the usual way. Repeating
this procedure for ℎ(+) and adding all the contributions, we get

1
𝛽2

∑︁
𝑖𝜔𝜅

∑︁
𝑖𝜔𝜎

𝑓 (𝑖𝜔𝜅, 𝑖𝜔𝜎) =

1
𝑖𝑘𝜆 − 𝜉2 − 𝜔p + 𝜔q

[
𝑁q(1 + 𝑁p − 𝑓2)
(𝑖𝑘𝜆 − 𝜉1 + 𝜔q)2 +

𝑁p 𝑓2

(𝜉2 − 𝜉1 + 𝜔p)2

]
+ 1
𝑖𝑘𝜆 − 𝜉2 − 𝜔p − 𝜔q

[ (1 + 𝑁q) (1 + 𝑁p − 𝑓2)
(𝑖𝑘𝜆 − 𝜉1 − 𝜔q)2 −

𝑁p 𝑓2

(𝜉2 − 𝜉1 + 𝜔p)2

]
+ 1
𝑖𝑘𝜆 − 𝜉2 + 𝜔p + 𝜔q

[
𝑁q(𝑁p + 𝑓2)

(𝑖𝑘𝜆 − 𝜉1 + 𝜔q)2 +
𝑓2 (1 + 𝑁p)

(𝜉2 − 𝜉1 − 𝜔p)2

]
+ 1
𝑖𝑘𝜆 − 𝜉2 + 𝜔p − 𝜔q

[ (1 + 𝑁q) (𝑁p + 𝑓2)
(𝑖𝑘𝜆 − 𝜉1 − 𝜔q)2 −

𝑓2 (1 + 𝑁p)
(𝜉2 − 𝜉1 − 𝜔p)2

]
+ · · ·

We perform the analytic continuation 𝑖𝑘𝜆 → 𝐸 + 𝑖𝜂, take the imaginary part of
1/(𝐸 − 𝜉2 ± 𝜔p ± 𝜔q + 𝑖𝜂), and get

Im

{
1
𝛽2

∑︁
𝑖𝜔𝜅

∑︁
𝑖𝜔𝜎

𝑓 (𝑖𝜔𝜅, 𝑖𝜔𝜎)
}
=

− 𝑖𝜋𝛿(𝐸 − 𝜉2 − 𝜔p + 𝜔q)
1

(𝜉2 − 𝜉1 + 𝜔p)2

[
(1 + 𝑁p − 𝑓2)𝑁q + 𝑁p 𝑓2

]
− 𝑖𝜋𝛿(𝐸 − 𝜉2 − 𝜔p − 𝜔q)

1
(𝜉2 − 𝜉1 + 𝜔p)2

[
(1 + 𝑁p − 𝑓2) (1 + 𝑁q) − 𝑁p 𝑓2

]
− 𝑖𝜋𝛿(𝐸 − 𝜉2 + 𝜔p + 𝜔q)

1
(𝜉2 − 𝜉1 − 𝜔p)2

[
(𝑁p + 𝑓2)𝑁q + 𝑓2(1 + 𝑁p)

]
− 𝑖𝜋𝛿(𝐸 − 𝜉2 + 𝜔p − 𝜔q)

1
(𝜉2 − 𝜉1 − 𝜔p)2

[
(𝑁p + 𝑓2) (1 + 𝑁q) − 𝑓2(1 + 𝑁p)

]
.
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A.5 Two-Loop Diagram IIb

The second two-loop diagram, called here IIb, is shown in the figure above. Since
this diagram also has 𝐿 = 2 and 𝐹 = 0, the Feynman rules give

Σ(IIb) =
1

𝛽2𝑁2
Ω

∑︁
𝑛1𝑛2𝑛3

∑︁
𝜈q

∑︁
𝜇p

𝑔𝑛1𝑛𝜈 (k, q)𝑔∗𝑛2𝑛3𝜈 (k + p, q)𝑔𝑛2𝑛1𝜇 (k + q, p)𝑔∗𝑛3𝑛𝜇 (k, p)

×
∑︁
𝑖𝜔𝜅

∑︁
𝑖𝜔𝜎

𝑓 (𝑖𝜔𝜅, 𝑖𝜔𝜎),

where 𝑓 (𝑖𝜔𝜅, 𝑖𝜔𝜎) is defined as

𝑓 (𝑖𝜔𝜅, 𝑖𝜔𝜎) ≡
1

𝑖𝑘𝜆 + 𝑖𝜔𝜅 − 𝜉1

1
𝑖𝑘𝜆 + 𝑖𝜔𝜅 + 𝑖𝜔𝜎 − 𝜉2

× 1
𝑖𝑘𝜆 + 𝑖𝜔𝜎 − 𝜉3p

2𝜔q

−𝜔2
𝜅 − 𝜔2

q

2𝜔p

−𝜔2
𝜎 − 𝜔2

p

≡ 𝐴𝜅

1
𝑖𝑘𝜆 + 𝑖𝜔𝜅 + 𝑖𝜔𝜎 − 𝜉2

1
𝑖𝑘𝜆 + 𝑖𝜔𝜎 − 𝜉3p

2𝜔p

−𝜔2
𝜎 − 𝜔2

p
.

Using a notation we introduced above, 𝐴𝜅 collects all terms independent of 𝜔𝜎, and
we use again abbreviations introduced in the previous section, such as 𝜉3p ≡ 𝜉𝑛3k+p,
etc. Summing over 𝑖𝜔𝜎 first, we get

−1
𝛽

∑︁
𝑖𝜔𝜎

𝑓 (𝑖𝜔𝜅, 𝑖𝜔𝜎) =

𝑓2𝐴𝜅

1
𝑖𝜔𝜅 − 𝜉2 + 𝜉3p

(
1

𝑖𝑘𝜆 + 𝑖𝜔𝜅 − 𝜉2 − 𝜔p
− 1
𝑖𝑘𝜆 + 𝑖𝜔𝜅 − 𝜉2 + 𝜔p

)
+ 𝑓3p𝐴𝜅

1
𝑖𝜔𝜅 − 𝜉2 + 𝜉3p

(
1

𝑖𝑘𝜆 − 𝜉3p + 𝜔p
− 1
𝑖𝑘𝜆 − 𝜉3p − 𝜔p

)
+𝑁p𝐴𝜅

1
𝑖𝑘𝜆 + 𝑖𝜔𝜅 − 𝜉2 + 𝜔p

1
𝑖𝑘𝜆 − 𝜉3p + 𝜔p

+(𝑁p + 1)𝐴𝜅

1
𝑖𝑘𝜆 + 𝑖𝜔𝜅 − 𝜉2 − 𝜔p

1
𝑖𝑘𝜆 − 𝜉3p − 𝜔p

.
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We then sum over 𝑖𝜔𝜅, and collect the relevant terms for two-phonon scattering
processes. After performing the analytic continuation and taking the imaginary
part, we get

Im

{
1
𝛽2

∑︁
𝑖𝜔𝜅

∑︁
𝑖𝜔𝜎

𝑓 (𝑖𝜔𝜅, 𝑖𝜔𝜎)
}
=

−𝑖𝜋𝛿(𝐸 − 𝜉2−𝜔p + 𝜔q)
𝑁q + 𝑁q𝑁p + 𝑁p 𝑓2 − 𝑁q 𝑓2

(𝜉2 − 𝜉1 + 𝜔p) (𝜉2 − 𝜉3p − 𝜔q)

−𝑖𝜋𝛿(𝐸 − 𝜉2−𝜔p − 𝜔q)
(1 + 𝑁p) (1 + 𝑁q) − 𝑓2(1 + 𝑁p + 𝑁q)

(𝜉2 − 𝜉1 + 𝜔p) (𝜉2 − 𝜉3p + 𝜔q)

−𝑖𝜋𝛿(𝐸 − 𝜉2+𝜔p + 𝜔q)
𝑁p𝑁q + 𝑁q 𝑓2 + 𝑁p 𝑓2 + 𝑓2

(𝜉2 − 𝜉1 − 𝜔p) (𝜉2 − 𝜉3p − 𝜔q)

−𝑖𝜋𝛿(𝐸 − 𝜉2+𝜔p − 𝜔q)
𝑁p + 𝑁q𝑁p + 𝑁q 𝑓2 − 𝑁p 𝑓2

(𝜉2 − 𝜉1 − 𝜔p) (𝜉2 − 𝜉3p + 𝜔q)
.

A.6 Two-Phonon Scattering Rates
Collecting the contributions from diagrams IIa and IIb, using Γ = −2ImΣ, and
setting 𝐸 to the band energy 𝜉𝑛k, the scattering rate of the two-phonon processes
becomes

Γ
(2ph)
𝑛k =

2𝜋
𝑁2
Ω

∑︁
𝑛1𝑛2𝑛3

∑︁
qp

∑︁
𝜈𝜇

×

[
𝛾(i)𝛿(𝜉𝑛k − 𝜉2 − 𝜔p + 𝜔q) + 𝛾(ii)𝛿(𝜉𝑛k − 𝜉2 − 𝜔p − 𝜔q)

+𝛾(iii)𝛿(𝜉𝑛k − 𝜉2 + 𝜔p + 𝜔q) + 𝛾(iv)𝛿(𝜉𝑛k − 𝜉2 + 𝜔p − 𝜔q)
]
,

where we introduce the process amplitudes

𝛾(i) =
(
𝑁q + 𝑁q𝑁p + 𝑁p 𝑓2 − 𝑁q 𝑓2

) 𝑔𝑛1𝑛𝜈 (k, q)𝑔𝑛2𝑛1𝜇 (k + q, p)
𝜉2 − 𝜉1 + 𝜔p

×
(
𝑔∗𝑛3𝑛𝜈 (k, q)𝑔

∗
𝑛2𝑛3𝜇 (k + q, p)

𝜉2 − 𝜉3 + 𝜔p
+
𝑔∗𝑛2𝑛3𝜈 (k + p, q)𝑔∗𝑛3𝑛𝜇 (k, p)

𝜉2 − 𝜉3p − 𝜔q

)

𝛾(ii) =
[
(1 + 𝑁q) (1 + 𝑁p − 𝑓2) − 𝑁p 𝑓2

] 𝑔𝑛1𝑛𝜈 (k, q)𝑔𝑛2𝑛1𝜇 (k + q, p)
𝜉2 − 𝜉1 + 𝜔p

×
(
𝑔∗𝑛3𝑛𝜈 (k, q)𝑔

∗
𝑛2𝑛3𝜇 (k + q, p)

𝜉2 − 𝜉3 + 𝜔p
+
𝑔∗𝑛2𝑛3𝜈 (k + p, q)𝑔∗𝑛3𝑛𝜇 (k, p)

𝜉2 − 𝜉3p + 𝜔q

)
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𝛾(iii) =
[
𝑁q(𝑁p + 𝑓2) + (1 + 𝑁p) 𝑓2

] 𝑔𝑛1𝑛𝜈 (k, q)𝑔𝑛2𝑛1𝜇 (k + q, p)
𝜉2 − 𝜉1 − 𝜔p

×
(
𝑔∗𝑛3𝑛𝜈 (k, q)𝑔

∗
𝑛2𝑛3𝜇 (k + q, p)

𝜉2 − 𝜉3 − 𝜔p
+
𝑔∗𝑛2𝑛3𝜈 (k + p, q)𝑔∗𝑛3𝑛𝜇 (k, p)

𝜉2 − 𝜉3p − 𝜔q

)

𝛾(iv) =
(
𝑁p + 𝑁q𝑁p + 𝑁q 𝑓2 − 𝑁p 𝑓2

) 𝑔𝑛1𝑛𝜈 (k, q)𝑔𝑛2𝑛1𝜇 (k + q, p)
𝜉2 − 𝜉1 − 𝜔p

×
(
𝑔∗𝑛3𝑛𝜈 (k, q)𝑔

∗
𝑛2𝑛3𝜇 (k + q, p)

𝜉2 − 𝜉3 − 𝜔p
+
𝑔∗𝑛2𝑛3𝜈 (k + p, q)𝑔∗𝑛3𝑛𝜇 (k, p)

𝜉2 − 𝜉3p + 𝜔q

)
.

Now we restore the infinitesimal 𝑖𝜂 for the intermediate propagators. A useful sanity
check is that our finite temperature results should reduce to the zero temperature
results in the 𝑇 → 0 limit, from which we check that the pole structure of the finite
and zero temperature expressions are consistent with each other. At zero tempera-
ture, we can directly compute the scattering amplitude M. The zero temperature
Feynman rules {see Eqs. (2.124) to (2.127) in Ref. [1]} give

M ∼ 𝑔𝑔

𝐸 − 𝜉 + 𝑖𝜂
.

The scattering rate is proportional to the absolute square of the scattering amplitude:

Γ ∼ |M|2 ∼
���� 𝑔𝑔

𝐸 − 𝜉 + 𝑖𝜂

����2 .
Therefore, we will insert the infinitesimals in a way that allows us to express the
scattering rates in an absolute square form. To achieve this, first note that quantities
such as q, p, 𝜈, and 𝜇 are dummy variables that are summed over or integrated, so
we can rename them at will. Let us denote (𝜈q ↔ 𝜇p) the term with its dummy
variables swapped in the way indicated by the arrows, 𝜈 ↔ 𝜇, q ↔ p, etc. Let us
consider the processes with one phonon absorption and one phonon emission first,
that is, the sum of terms (i) and (iv):∑︁

𝑛1𝑛3

[
𝛾(i)𝛿(𝜉𝑛k − 𝜉2 − 𝜔𝜇p + 𝜔𝜈q) + 𝛾(iv)𝛿(𝜉𝑛k − 𝜉2 + 𝜔𝜇p − 𝜔𝜈q)

]
=

∑︁
𝑛1𝑛3

[
𝛾(i)𝛿(𝜉𝑛k − 𝜉2 − 𝜔𝜇p + 𝜔𝜈q)

+ 𝛾(iv)(𝜈q ↔ 𝜇p)𝛿(𝜉𝑛k − 𝜉2 + 𝜔𝜇p − 𝜔𝜈q) (𝜈q ↔ 𝜇p)
]

≡ 𝛾(1e1a) 𝛿(𝜉𝑛k − 𝜉2 − 𝜔𝜇p + 𝜔𝜈q),
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where

𝛾(1e1a) =
∑︁
𝑛1𝑛3

[
𝛾(i) + 𝛾(iv)(𝜈q ↔ 𝜇p)

]
=

(
𝑁q + 𝑁q𝑁p + 𝑁p 𝑓2 − 𝑁q 𝑓2

)
×

∑︁
𝑛1

(
𝑔𝑛1𝑛𝜈 (k, q)𝑔𝑛2𝑛1𝜇 (k + q, p)

𝜉2 − 𝜉1 + 𝜔p
+
𝑔𝑛1𝑛𝜇 (k, p)𝑔𝑛2𝑛1𝜈 (k + p, q)

𝜉2 − 𝜉1p − 𝜔q

)
×

∑︁
𝑛3

(
𝑔∗𝑛3𝑛𝜈 (k, q)𝑔

∗
𝑛2𝑛3𝜇 (k + q, p)

𝜉2 − 𝜉3 + 𝜔p
+
𝑔∗𝑛2𝑛3𝜈 (k + p, q)𝑔∗𝑛3𝑛𝜇 (k, p)

𝜉2 − 𝜉3p − 𝜔q

)
=

(
𝑁q + 𝑁q𝑁p + 𝑁p 𝑓2 − 𝑁q 𝑓2

)
×

�����∑︁
𝑛1

(
𝑔𝑛1𝑛𝜈 (k, q)𝑔𝑛2𝑛1𝜇 (k + q, p)

𝜉2 − 𝜉1 + 𝜔p + 𝑖𝜂
+
𝑔𝑛1𝑛𝜇 (k, p)𝑔𝑛2𝑛1𝜈 (k + p, q)

𝜉2 − 𝜉1p − 𝜔q + 𝑖𝜂

)�����2 .
Since the expression is already in square form, we have inserted the 𝑖𝜂 terms in a
way that makes the expression become an absolute square. Using a similar approach
for the process in which the electron emits two phonons,

𝛾(2e) =
∑︁
𝑛1𝑛3

𝛾(ii) =
∑︁
𝑛1𝑛3

1
2

[
𝛾(ii) + 𝛾(ii)] = ∑︁

𝑛1𝑛3

1
2

[
𝛾(ii) + 𝛾(ii)(𝜈q ↔ 𝜇p)

]
=

1
2

[
(1 + 𝑁q) (1 + 𝑁p − 𝑓2) − 𝑁p 𝑓2

]
×

�����∑︁
𝑛1

(
𝑔𝑛1𝑛𝜈 (k, q)𝑔𝑛2𝑛1𝜇 (k + q, p)

𝜉2 − 𝜉1 + 𝜔p + 𝑖𝜂
+
𝑔𝑛1𝑛𝜇 (k, p)𝑔𝑛2𝑛1𝜈 (k + p, q)

𝜉2 − 𝜉1p + 𝜔q + 𝑖𝜂

)�����2 ,
and for the process in which the electron absorbs two phonons,

𝛾(2a) =
∑︁
𝑛1𝑛3

𝛾(iii) =
∑︁
𝑛1𝑛3

1
2

[
𝛾(iii) + 𝛾(iii)] = ∑︁

𝑛1𝑛3

1
2

[
𝛾(iii) + 𝛾(iii)(𝜈q ↔ 𝜇p)

]
=

1
2

[
𝑁q(𝑁p + 𝑓2) + (1 + 𝑁p) 𝑓2

]
×

�����∑︁
𝑛1

(
𝑔𝑛1𝑛𝜈 (k, q)𝑔𝑛2𝑛1𝜇 (k + q, p)

𝜉2 − 𝜉1 − 𝜔p + 𝑖𝜂
+
𝑔𝑛1𝑛𝜇 (k, p)𝑔𝑛2𝑛1𝜈 (k + p, q)

𝜉2 − 𝜉1p − 𝜔q + 𝑖𝜂

)�����2 .
We thus get:

Γ
(2ph)
𝑛k =

2𝜋
𝑁2
Ω

∑︁
𝑛2

∑︁
q p

∑︁
𝜈𝜇

[
𝛾(1e1a)𝛿(𝜉𝑛k − 𝜉2 − 𝜔p + 𝜔q)

+𝛾(2e)𝛿(𝜉𝑛k − 𝜉2 − 𝜔p − 𝜔q) + 𝛾(2a)𝛿(𝜉𝑛k − 𝜉2 + 𝜔p + 𝜔q)
]
.
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A.7 Resonance
The last expression is very close to the final result given in Eqs. (3.1)−(3.4). The
last problem we need to solve is that the sum giving Γ

(2ph)
𝑛k in the expression above

diverges when the intermediate electron state is on shell, in which case the denom-
inator in the 𝛾 terms given above vanishes, resulting in a divergent scattering rate.
This phenomenon is called resonance. The problem is that the intermediate state will
eventually transition into a different state, but using free propagators 1/(𝐸 − 𝜉 + 𝑖𝜂)
for the on shell intermediate states implies an infinite intermediate state lifetime.
The common practice in this situation, which also arises in other quantum field
theories, is to consider the full electron propagator 1/(𝐸 − 𝜉 + 𝑖𝜂 − Σ) as shown in
the figure below, which introduces a finite lifetime for the intermediate electronic
state. Diagramatically, this approach is equivalent to performing a resummation of
diagrams to all orders, as is done in the well-known GW self-energy {see Eq. (5.54)
in Ref. [1]}. For our 2ph scattering rate expression, we simply add the intermediate
state self-energy in the denominators of all the 𝛾 terms above, which removes the
divergences.

A.8 Summary
We rewrite the expression in more compact form. Defining the momentum of the
final electronic state as k′ ≡ k + q + p, and using the following constants

𝛼
(1e1a)
p = 1, 𝛼

(2e)
p = 1, 𝛼

(2a)
p = −1, 𝛼

(1e1a)
q = −1, 𝛼

(2e)
q = 1, 𝛼

(2a)
q = −1,

we can write

Γ
(2ph)
𝑛k =

2𝜋
𝑁2
Ω

∑︁
𝑛2

∑︁
𝜈q

∑︁
𝜇p

[
Γ̃(1e1a) + Γ̃(2e) + Γ̃(2a)

]
,

where

Γ̃(i) = 𝛾(i) 𝛿(𝜉𝑛k − 𝜉𝑛2k′ − 𝛼
(i)
p 𝜔𝜇p − 𝛼

(i)
q 𝜔𝜈q).

The square amplitudes 𝛾(i) for the different processes, i = 1e1a, 2e and 2a, are
defined as

𝛾(i) = 𝐴(i)

�����∑︁
𝑛1

(
𝑔𝑛1𝑛𝜈 (k, q)𝑔𝑛2𝑛1𝜇 (k + q, p)

𝜉𝑛2k′ − 𝜉𝑛1k+q + 𝛼
(i)
p 𝜔𝜇p + 𝑖𝜂 − Σ𝑛1k+q
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+
𝑔𝑛1𝑛𝜇 (k, p)𝑔𝑛2𝑛1𝜈 (k + p, q)

𝜉𝑛2k′ − 𝜉𝑛1k+p + 𝛼
(i)
q 𝜔𝜈q + 𝑖𝜂 − Σ𝑛1k+p

)�����2 ,
where we have taken into account the resonance by adding the intermediate state
self-energy in the denominators. The factors of 𝐴(i) contain the thermal occupation
numbers of electrons and phonons, and are defined as

𝐴(1e1a) = 𝑁𝜈q + 𝑁𝜈q𝑁𝜇p + 𝑁𝜇p 𝑓𝑛2k′ − 𝑁𝜈q 𝑓𝑛2k′,

𝐴(2e) =
1
2

[
(1 + 𝑁𝜈q) (1 + 𝑁𝜇p − 𝑓𝑛2k′) − 𝑁𝜇p 𝑓𝑛2k′

]
,

𝐴(2a) =
1
2

[
𝑁𝜈q(𝑁𝜇p + 𝑓𝑛2k′) + (1 + 𝑁𝜇p) 𝑓𝑛2k′

]
.

These are our final expressions for the two-phonon scattering rates given in Eqs.
(3.1)−(3.4) once the electron energy 𝜉 is renamed to 𝜀.
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A p p e n d i x B

BOLTZMANN TRANSPORT EQUATION WITH TWO-PHONON
CONTRIBUTIONS

B.1 Summary
We briefly summarize the formulation of the linearized Boltzmann transport equa-
tion (BTE) incorporating the two-phonon (2ph) scattering processes here, whose
derivation will be presented in the next section. Defining the total 𝑒-ph scattering
rate as

Γ𝑛k = Γ
(1ph)
𝑛k + Γ

(2ph)
𝑛k ≡ 1

𝑁Ω

∑︁
𝑚

∑︁
𝜈q

Γ̃
(1ph)
𝑛k, 𝜈q +

1
𝑁2
Ω

∑︁
𝑛2

∑︁
𝜈q

∑︁
𝜇p

Γ̃
(2ph)
𝑛k, 𝜈q, 𝜇p ,

the linearized BTE can be expressed as

F𝑛k = F0
𝑛k + 𝜏𝑛k

[
1
𝑁Ω

∑︁
𝑚

∑︁
𝜈q

F𝑚k+qΓ̃
(1ph)
𝑛k, 𝜈q +

1
𝑁2
Ω

∑︁
𝑛2

∑︁
𝜈q

∑︁
𝜇p

F𝑛2k′Γ̃
(2ph)
𝑛k, 𝜈q, 𝜇p

]
,

(B.1)

where the relaxation time 𝜏𝑛k is the inverse of the total scattering rate, namely
𝜏𝑛k = 1/Γ𝑛k, and the first and second terms in brackets are due to the one-phonon
(1ph) and 2ph scattering processes, respectively. The function F𝑛k is the unknown
in the equation, and F0

𝑛k = 𝜏𝑛kv𝑛k, with v𝑛k the band velocity. After solving the
equation, the electrical mobility in direction 𝑖 can be obtained using Eq. (1.6), which
is repeated here as

𝜇𝑖 =
2𝑒𝛽
𝑛𝑐𝑉uc

∑︁
𝑛k

𝑓𝑛k(1 − 𝑓𝑛k)𝑣𝑖𝑛k𝐹
𝑖
𝑛k,

where 𝑉uc is the unit cell volume and 𝑛𝑐 the charge carrier concentration.

Since the BTE is a nonlinear integro-differential equation, exact solution is usu-
ally not obtainable. A common approach to computing F𝑛k is the relaxation time
approximation (RTA), which neglects the second term on the right hand side of
Eq. (B.1) and approximates F𝑛k to F0

𝑛k. A more accurate solution can be systemat-
ically obtained through an iterative approach (ITA). This method has been applied
to study various transport properties like the thermal conductivity [1–3] and elec-
trical conductivity [4–9]. Starting from the RTA solution F𝑛k = F0

𝑛k, one iteratively
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substitutes F𝑛k on the right hand side of Eq. (B.1) to obtain an updated F𝑛k, until a
converged F𝑛k is reached.

Our work in Chapter 3 presents calculations, both within the RTA and ITA, in
which the 2ph processes are either included or neglected; when only 1ph processes
are included, 𝜏𝑛k is set to the inverse of Γ(1ph)

𝑛k , and the second term in brackets in
Eq. (B.1) is neglected. The ITA with 2ph contributions included is the most accurate
level of theory, and the one that agrees best with experiment, while the ITA with only
1ph processes overestimates the experimental result. Note that interference between
2ph processes is neglected in the mobility calculation. This is a good approximation
if for most of the (q, p) pairs, there is only one process in Eq. (3.3) that dominates,
as in the case of GaAs that we have verified.

B.2 Derivation of the Boltzmann Transport Equation with Two-Phonon Scat-
tering Precesses

In this section, we display the analytic derivation of the linearized BTE incorporating
both the 1ph and 2ph processes shown in Eq. (B.1). The BTE represents the
conservation of total particle number in the phase space [10] and governs the
evolution of an out-of-equilibrium system:

𝑑𝑓𝜆

𝑑𝑡
=
𝜕 𝑓𝜆

𝜕𝑡
+ v · ∇r 𝑓𝜆 +

𝜕k
𝜕𝑡

· ∇k 𝑓𝜆 =
𝑑𝑓𝜆

𝑑𝑡

����
scat

,

where the distribution function 𝑓𝜆 describes the probability of particles occupying
a state 𝜆 and the last term accounts for changes of particle distribution due to
collisions. Assuming that the system reaches a steady state and with no diffusion,
the equation becomes

−𝑒E · ∇k 𝑓𝜆 = − 𝑑𝑓𝜆

𝑑𝑡

����
scat

(B.2)

under an external electric field E, where 𝑒 is the electron charge 𝑒 = −|𝑒 |.

Next, we linearize this equation with respect to the electric field. Suppose the electric
field is small and the system just slightly deviates from its thermal equilibrium. Then
the distribution function can be expanded around its equilibrium value:

𝑓𝜆 = 𝑓 0
𝜆 + 𝑓 1

𝜆 + O(𝐸2)

≡ 𝑓 0
𝜆 − 𝑒E · F𝜆

𝜕 𝑓 0
𝜆

𝜕𝜀𝜆
+ O(𝐸2)

= 𝑓 0
𝜆 + 𝑒E · F𝜆 𝑓

0
𝜆

(
1 − 𝑓 0

𝜆

)
𝛽 + O(𝐸2), (B.3)



89

where 𝑓 0
𝜆

is the Fermi-Dirac distribution for the electronic state 𝜆, 𝜀𝜆 is the electron
energy relative to the chemical potential, and 𝛽 = 1/𝑘B𝑇 is the temperature inverse
with 𝑘B the Boltzmann constant. The function F𝜆 will be interpreted as the mean
free displacement later, while for now it is just a parametrization for the first order
deviation. Substituting the expansion in Eq. (B.3) into Eq. (B.2) and keep terms
only up to the first order of E, the left hand side becomes

−𝑒E · ∇k 𝑓𝜆 ' −𝑒E · ∇k 𝑓
0
𝜆 = 𝛽𝑒E · v𝜆 𝑓 0

𝜆

(
1 − 𝑓 0

𝜆

)
, (B.4)

where v𝜆 is the band velocity and ℏ is set to unity.

The right hand side of Eq. (B.2) is the total rate of change of the distribution function
due to all kinds of scattering processes [3]:

− 𝑑𝑓𝜆

𝑑𝑡

����
scat

=
∑︁
𝜆′𝛼

(𝑃𝜆↔𝜆′𝛼 + 𝑃𝜆𝛼↔𝜆′) (B.5)

+
∑︁
𝜆′𝛼𝛼′

(𝑃𝜆↔𝜆′𝛼𝛼′ + 𝑃𝜆𝛼𝛼′↔𝜆′ + 𝑃𝜆𝛼↔𝜆′𝛼′) + · · · ,

where 𝑃 is the net rate of change of 𝑓𝜆 due to transition between states on the two
sides of the arrow. For example, 𝑃𝜆↔𝜆′𝛼 is the difference between the rate of the
state 𝜆 making a transition to states 𝜆′𝛼 and the rate of its reverse process. In our
particular 𝑒-ph case, we use 𝜆 and 𝜆′ to label electron states, and 𝛼 and 𝛼′ to label
phonon states. The terms listed above are the two lowest order 𝑒-ph scattering
processes, and will be discussed in detail below.

First order scattering
The first two terms in Eq. (B.5) cover processes involving one phonon emission or
absorption. The first term can be expressed as

𝑃𝜆↔𝜆′𝛼 = 𝑓𝜆 (1 − 𝑓𝜆′) (1 + 𝑁𝛼) 𝐿𝜆′𝛼
𝜆 − (1 − 𝑓𝜆) 𝑓𝜆′𝑁𝛼𝐿

𝜆
𝜆′𝛼 . (B.6)

Here, 𝑁𝛼 is the distribution function for phonon in state 𝛼. Since the electric field
does not affect phonons, we assume that all the phonons are in thermal equilibrium
and replace 𝑁𝛼 with the Bose-Einstein distribution 𝑁0

𝛼. The intrinsic transition rate
is denoted as 𝐿 with the initial and final states indicated by its lower and upper
indices, respectively. To satisfy the microscopic reversibility, the value of 𝐿 should
be unchanged if we swap its initial and the final states. For example, 𝐿𝜆′𝛼

𝜆
= 𝐿𝜆

𝜆′𝛼.

Note that if there is no electric field and the system reaches thermal equilibrium,
𝑃𝜆↔𝜆′𝛼 should vanish. This is called the detailed balance, and can be explicitly
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checked for Eq. (B.6):

𝑓 0
𝜆

(
1 − 𝑓 0

𝜆−𝛼

) (
1 + 𝑁0

𝛼

)
=

(
1 − 𝑓 0

𝜆

)
𝑓 0
𝜆−𝛼𝑁

0
𝛼 .

Here, 𝑓 0
𝜆−𝛼 is a shorthand for the Fermi-Dirac distribution of state with energy

𝜀𝜆 −𝜔𝛼, where 𝜔𝛼 is the energy of phonon in state 𝛼. Analogous abbreviations will
be applied in the following.

Next, we linearize Eq. (B.6) by substituting the expansion in Eq. (B.3). Using the
detailed balance and keeping terms up to the first order of E, we get

𝑃𝜆↔𝜆′𝛼 '
[
𝑓 1
𝜆

(
1 + 𝑁0

𝛼 − 𝑓 0
𝜆′

)
− 𝑓 1

𝜆′

(
𝑁0
𝛼 + 𝑓 0

𝜆

)]
𝐿𝜆′𝛼
𝜆 (B.7)

= 𝛽𝑒E · (F𝜆 − F𝜆′) 𝑓 0
𝜆

(
1 − 𝑓 0

𝜆

) (
1 + 𝑁0

𝛼 − 𝑓 0
𝜆′

)
𝐿𝜆′𝛼
𝜆 ,

where we have used the following identity

𝑓 0
𝜆−𝛼 (1 − 𝑓 0

𝜆−𝛼) ( 𝑓
0
𝜆 + 𝑁0

𝛼) = 𝑓 0
𝜆 (1 − 𝑓 0

𝜆 ) (1 + 𝑁0
𝛼 − 𝑓 0

𝜆−𝛼)

in the last equality.

Similarly, the second term of Eq. (B.5) can be expressed as

𝑃𝜆𝛼↔𝜆′ = 𝑓𝜆 (1 − 𝑓𝜆′) 𝑁𝛼𝐿
𝜆′

𝜆𝛼 − (1 − 𝑓𝜆) 𝑓𝜆′ (1 + 𝑁𝛼) 𝐿𝜆𝛼
𝜆′ .

Again, linearizing it and keeping terms up to the first order of E, we get

𝑃𝜆𝛼↔𝜆′ '
[
𝑓 1
𝜆

(
𝑁0
𝛼 + 𝑓 0

𝜆′

)
− 𝑓 1

𝜆′

(
1 + 𝑁0

𝛼 − 𝑓 0
𝜆

)]
𝐿𝜆′

𝜆𝛼 (B.8)

= 𝛽𝑒E · (F𝜆 − F𝜆′) 𝑓 0
𝜆

(
1 − 𝑓 0

𝜆

) (
𝑁0
𝛼 + 𝑓 0

𝜆′

)
𝐿𝜆′

𝜆𝛼,

where we have used the detailed balance

𝑓 0
𝜆

(
1 − 𝑓 0

𝜆+𝛼

)
𝑁0
𝛼 =

(
1 − 𝑓 0

𝜆

)
𝑓 0
𝜆+𝛼

(
1 + 𝑁0

𝛼

)
and the identity

𝑓 0
𝜆+𝛼 (1 − 𝑓 0

𝜆+𝛼) (1 + 𝑁0
𝛼 − 𝑓 0

𝜆 ) = 𝑓 0
𝜆 (1 − 𝑓 0

𝜆 ) (𝑁
0
𝛼 + 𝑓 0

𝜆+𝛼).

Combining Eq. (B.7) and Eq. (B.8), the rate of change of 𝑓𝜆 due to first order 𝑒-ph
scattering can be expressed as

𝑃𝜆↔𝜆′𝛼 + 𝑃𝜆𝛼↔𝜆′ = 𝛽𝑒E · (F𝜆 − F𝜆′) 𝑓 0
𝜆

(
1 − 𝑓 0

𝜆

)
Γ̃

(1ph)
𝜆𝜆′𝛼 , (B.9)

where Γ̃(1ph)
𝜆𝜆′𝛼 is defined as

Γ̃
(1ph)
𝜆𝜆′𝛼 ≡

(
1 + 𝑁0

𝛼 − 𝑓 0
𝜆′

)
𝐿𝜆′𝛼
𝜆 +

(
𝑁0
𝛼 + 𝑓 0

𝜆′

)
𝐿𝜆′

𝜆𝛼.
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Second order scattering
We move on to the next-to-leading order scattering listed in the second line of
Eq. (B.5). The calculation is a straightforward extension of the first order case. The
rate of change of 𝑓𝜆 due to second order scattering can be expressed as

𝑃𝜆↔𝜆′𝛼𝛼′ =
1
2
𝑓𝜆 (1 − 𝑓𝜆′) (1 + 𝑁𝛼) (1 + 𝑁𝛼′) 𝐿𝜆′𝛼𝛼′

𝜆 − 1
2
(1 − 𝑓𝜆) 𝑓𝜆′𝑁𝛼𝑁𝛼′𝐿𝜆

𝜆′𝛼𝛼′,

𝑃𝜆𝛼𝛼′↔𝜆′ =
1
2
𝑓𝜆 (1 − 𝑓𝜆′) 𝑁𝛼𝑁𝛼′𝐿𝜆′

𝜆𝛼𝛼′ −
1
2
(1 − 𝑓𝜆) 𝑓𝜆′ (1 + 𝑁𝛼) (1 + 𝑁𝛼′) 𝐿𝜆𝛼𝛼′

𝜆′ ,

𝑃𝜆𝛼↔𝜆′𝛼′ = 𝑓𝜆 (1 − 𝑓𝜆′) 𝑁𝛼 (1 + 𝑁𝛼′) 𝐿𝜆′𝛼′

𝜆𝛼 − (1 − 𝑓𝜆) 𝑓𝜆′ (1 + 𝑁𝛼) 𝑁𝛼′𝐿𝜆𝛼
𝜆′𝛼′,

where the factors of one half account for the fact that the two phonons in states 𝛼

and 𝛼′ are indistinguishable. Each of the three processes 𝑃𝜆↔𝜆′𝛼𝛼′, 𝑃𝜆𝛼𝛼′↔𝜆′, and
𝑃𝜆𝛼↔𝜆′𝛼′ satisfy the detailed balance, which respectively gives

𝑓 0
𝜆

(
1 − 𝑓 0

𝜆−𝛼−𝛼′

) (
1 + 𝑁0

𝛼

) (
1 + 𝑁0

𝛼′

)
=

(
1 − 𝑓 0

𝜆

)
𝑓 0
𝜆−𝛼−𝛼′𝑁

0
𝛼𝑁

0
𝛼′,

𝑓 0
𝜆

(
1 − 𝑓 0

𝜆+𝛼+𝛼′

)
𝑁0
𝛼𝑁

0
𝛼′ =

(
1 − 𝑓 0

𝜆

)
𝑓 0
𝜆+𝛼+𝛼′

(
1 + 𝑁0

𝛼

) (
1 + 𝑁0

𝛼′

)
,

𝑓 0
𝜆

(
1 − 𝑓 0

𝜆+𝛼−𝛼′

)
𝑁0
𝛼

(
1 + 𝑁0

𝛼′

)
=

(
1 − 𝑓 0

𝜆

)
𝑓 0
𝜆+𝛼−𝛼′

(
1 + 𝑁0

𝛼

)
𝑁0
𝛼′ .

Linearizing these second order terms and keeping terms up to the first order of E,
we get

𝑃𝜆↔𝜆′𝛼𝛼′ ' 1
2
𝐿𝜆′𝛼𝛼′

𝜆

{
𝑓 1
𝜆

[
(1 + 𝑁0

𝛼) (1 + 𝑁0
𝛼′) − 𝑓 0

𝜆′ (1 + 𝑁0
𝛼 + 𝑁0

𝛼′)
]

− 𝑓 1
𝜆′

[
𝑁0
𝛼𝑁

0
𝛼′ + 𝑓 0

𝜆 (1 + 𝑁0
𝛼 + 𝑁0

𝛼′)
]}

,

𝑃𝜆𝛼𝛼′↔𝜆′ '
1
2
𝐿𝜆′

𝜆𝛼𝛼′
{
𝑓 1
𝜆

[
𝑁0
𝛼𝑁

0
𝛼′ + 𝑓 0

𝜆′ (1 + 𝑁0
𝛼 + 𝑁0

𝛼′)
]

− 𝑓 1
𝜆′

[
(1 + 𝑁0

𝛼) (1 + 𝑁0
𝛼′) − 𝑓 0

𝜆 (1 + 𝑁0
𝛼 + 𝑁0

𝛼′)
]}

,

𝑃𝜆𝛼↔𝜆′𝛼′ ' 𝐿𝜆′𝛼′

𝜆𝛼

{
𝑓 1
𝜆

[
𝑁0
𝛼 (1 + 𝑁0

𝛼′) − 𝑓 0
𝜆′ (𝑁

0
𝛼 − 𝑁0

𝛼′)
]

− 𝑓 1
𝜆′

[
(1 + 𝑁0

𝛼)𝑁0
𝛼′ + 𝑓 0

𝜆 (𝑁
0
𝛼 − 𝑁0

𝛼′)
]}

.

Employing the following identities,

𝑓 0
𝜆 (1 − 𝑓 0

𝜆 )
[
(1 + 𝑁0

𝛼) (1 + 𝑁0
𝛼′) − 𝑓 0

𝜆−𝛼−𝛼′ (1 + 𝑁0
𝛼 + 𝑁0

𝛼′)
]

= 𝑓 0
𝜆−𝛼−𝛼′ (1 − 𝑓 0

𝜆−𝛼−𝛼′)
[
𝑁0
𝛼𝑁

0
𝛼′ + 𝑓 0

𝜆 (1 + 𝑁0
𝛼 + 𝑁0

𝛼′)
]
,

𝑓 0
𝜆 (1 − 𝑓 0

𝜆 )
[
𝑁0
𝛼𝑁

0
𝛼′ + 𝑓 0

𝜆+𝛼+𝛼′ (1 + 𝑁0
𝛼 + 𝑁0

𝛼′)
]

= 𝑓 0
𝜆+𝛼+𝛼′ (1 − 𝑓 0

𝜆+𝛼+𝛼′)
[
(1 + 𝑁0

𝛼) (1 + 𝑁0
𝛼′) − 𝑓 0

𝜆 (1 + 𝑁0
𝛼 + 𝑁0

𝛼′)
]
,
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𝑓 0
𝜆 (1 − 𝑓 0

𝜆 )
[
𝑁0
𝛼 (1 + 𝑁0

𝛼′) − 𝑓 0
𝜆+𝛼−𝛼′ (𝑁0

𝛼 − 𝑁0
𝛼′)

]
= 𝑓 0

𝜆+𝛼−𝛼′ (1 − 𝑓 0
𝜆+𝛼−𝛼′)

[
(1 + 𝑁0

𝛼)𝑁0
𝛼′ + 𝑓 0

𝜆 (𝑁
0
𝛼 − 𝑁0

𝛼′)
]
,

we arrive at

𝑃𝜆↔𝜆′𝛼𝛼′ + 𝑃𝜆𝛼𝛼′↔𝜆′ + 𝑃𝜆𝛼↔𝜆′𝛼′ = 𝛽𝑒E · (F𝜆 − F𝜆′) 𝑓 0
𝜆

(
1 − 𝑓 0

𝜆

)
Γ̃

(2ph)
𝜆𝜆′𝛼𝛼′ . (B.10)

Here, Γ̃(2ph)
𝜆𝜆′𝛼𝛼′ is defined as

Γ̃
(2ph)
𝜆𝜆′𝛼𝛼′ ≡ 𝐴𝜆′𝛼𝛼′

𝜆 𝐿𝜆′𝛼𝛼′

𝜆 + 𝐴𝜆′

𝜆𝛼𝛼′𝐿
𝜆′

𝜆𝛼𝛼′ + 𝐴𝜆′𝛼′

𝜆𝛼 𝐿𝜆′𝛼′

𝜆𝛼 ,

where the thermal factors are rearranged and defined as

𝐴𝜆′𝛼𝛼′

𝜆 =
1
2

[
(1 + 𝑁0

𝛼) (1 + 𝑁0
𝛼′ − 𝑓 0

𝜆′) − 𝑁0
𝛼′ 𝑓

0
𝜆′
]
,

𝐴𝜆′

𝜆𝛼𝛼′ =
1
2

[
𝑁0
𝛼 (𝑁0

𝛼′ + 𝑓 0
𝜆′) + (1 + 𝑁0

𝛼′) 𝑓 0
𝜆′
]
,

𝐴𝜆′𝛼′

𝜆𝛼 = 𝑁0
𝛼 + 𝑁0

𝛼𝑁
0
𝛼′ + 𝑁0

𝛼′ 𝑓
0
𝜆′ − 𝑁0

𝛼 𝑓
0
𝜆′ .

Note that these thermal factors are the same as those derived from the many-body
perturbation theory [see Eq. (3.4)].

Linearized Boltzmann transport equation
Combining Eqs. (B.4), (B.9) and (B.10), we finally obtain the linearized BTE:

v𝜆 =
∑︁
𝜆′𝛼

(F𝜆 − F𝜆′) Γ̃(1ph)
𝜆𝜆′𝛼 +

∑︁
𝜆′𝛼𝛼′

(F𝜆 − F𝜆′) Γ̃(2ph)
𝜆𝜆′𝛼𝛼′ .

Defining the total 𝑒-ph scattering rate as

Γ𝜆 = Γ
(1ph)
𝜆

+ Γ
(2ph)
𝜆

=
∑︁
𝜆′𝛼

Γ̃
(1ph)
𝜆𝜆′𝛼 +

∑︁
𝜆′𝛼𝛼′

Γ̃
(2ph)
𝜆𝜆′𝛼𝛼′, (B.11)

the equation can be rearranged as

F𝜆 = F0
𝜆 + 𝜏𝜆

[∑︁
𝜆′𝛼

F𝜆′Γ̃
(1ph)
𝜆𝜆′𝛼 +

∑︁
𝜆′𝛼𝛼′

F𝜆′Γ̃
(2ph)
𝜆𝜆′𝛼𝛼′

]
,

where F0
𝜆 = 𝜏𝜆v𝜆. Here, the relaxation time 𝜏𝜆 is the inverse of the total scattering

rate in Eq. (B.11), namely 𝜏𝜆 = 1/Γ𝜆, and v𝜆 is the band velocity.
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Electron phonon dynamics
The last quantity needs to be determined is the intrinsic transition rate 𝐿. These
intrinsic rates depend on the dynamics of the system, and hence are not regulated
by the kinetic theory of Boltzmann. The method to obtaining an expression for the
intrinsic rate 𝐿 is well established once the Hamiltonian is given and the interactions
between different states are known.

Take the one phonon absorption term 𝐿𝜆′

𝜆𝛼
= 𝐿𝑚k′

𝑛k, 𝜈q = 𝐿
𝑚k+q
𝑛k, 𝜈q as an example. Note

that we now use the full labels for the electron and phonon states and we have
implicitly performed the summation over the final state momentum, Σk′, which fixes
k′ = k + q by momentum conservation. Employing the Fermi golden rule, we get

𝐿
𝑚k+q
𝑛k, 𝜈q =

2𝜋
ℏ

|𝑔𝑚𝑛𝜈 (k, q) |2 𝛿
(
𝜀𝑛k − 𝜀𝑚k+q + 𝜔𝜈q

)
,

where 𝑔𝑚𝑛𝜈 (k, q) is the 𝑒-ph coupling constant. Similarly, we can get the one
phonon emission term as

𝐿
𝑚k+q, 𝜈−q
𝑛k =

2𝜋
ℏ

|𝑔𝑚𝑛𝜈 (k, q) |2 𝛿
(
𝜀𝑛k − 𝜀𝑚k+q − 𝜔𝜈q

)
.

The intrinsic transition rates involving two phonons can be determined either by
using the second order time-dependent perturbation theory, or by employing the
many-body perturbation theory as we did in Chapter 3. Both methods give the same
results.
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