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ABSTRACT

The expansion of large-scale technological systems such as electrical grids, trans-
portation networks, health care systems, telecommunication networks, the Internet
(of things), and other societal networks has created numerous challenges and op-
portunities at the same time. These systems are often not yet as robust, efficient,
sustainable, or smart as we would want them to be. Fueled by the massive amounts
of data generated by all these systems, and with the recent advances in making
sense out of data, there is a strong desire to make them more intelligent. However,
developing large-scale intelligent systems is a multifaceted problem, involving several
major challenges. First, large-scale systems typically exhibit complex dynamics
due to the large number of entities interacting over a network. Second, because
the system is composed of many interacting entities, that make decentralized (and
often self-interested) decisions, one has to properly design incentives and markets
for such systems. Third, the massive computational needs caused by the scale of
the system necessitate performing computations in a distributed fashion, which in
turn requires devising new algorithms. Finally, one has to create algorithms that
can learn from the copious amounts of data and generalize well. This thesis makes

several contributions related to each of these four challenges.

Analyzing and understanding the network dynamics exhibited in societal systems
is crucial for developing systems that are robust and efficient. In Part I of this
thesis, we study one of the most important families of network dynamics, namely,
that of epidemics, or spreading processes. Studying such processes is relevant for
understanding and controlling the spread of, e.g., contagious diseases among people,
ideas or fake news in online social networks, computer viruses in computer networks,
or cascading failures in societal networks. We establish several results on the exact
Markov chain model and the nonlinear “mean-field” approximations for various
kinds of epidemics (i.e., SIS, SIRS, SEIRS, SIV, SEIV, and their variants).

Designing incentives and markets for large-scale systems is critical for their efficient
operation and ensuring an alignment between the agents’ decentralized decisions and
the global goals of the system. To that end, in Part II of this thesis, we study these
issues in markets with non-convex costs as well as networked markets, which are of
vital importance for, e.g., the smart grid. We propose novel pricing schemes for such
markets, which satisfy all the desired market properties. We also reveal issues in the

current incentives for distributed energy resources, such as renewables, and design
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optimization algorithms for efficient management of aggregators of such resources.

With the growing amounts of data generated by large-scale systems, and the fact that
the data may already be dispersed across many units, it is becoming increasingly
necessary to run computational tasks in a distributed fashion. Part III concerns
developing algorithms for distributed computation. We propose a novel consensus-
based algorithm for the task of solving large-scale systems of linear equations, which
is one of the most fundamental problems in linear algebra, and a key step at the
heart of many algorithms in scientific computing, machine learning, and beyond.
In addition, in order to deal with the issue of heterogeneous delays in distributed
computation, caused by slow machines, we develop a new coded computation
technique. In both cases, the proposed methods offer significant speed-ups relative

to the existing approaches.

Over the past decade, deep learning methods have become the most successful
learning algorithms in a wide variety of tasks. However, the reasons behind their
success (as well as their failures in some respects) are largely unexplained. Itis widely
believed that the success of deep learning is not just due to the deep architecture
of the models, but also due to the behavior of the optimization algorithms, such
as stochastic gradient descent (SGD), used for training them. In Part IV of this
thesis, we characterize several properties, such as minimax optimality and implicit
regularization, of SGD, and more generally, of the family of stochastic mirror descent
(SMD). While SGD performs an implicit regularization, this regularization can be
effectively controlled using SMD with a proper choice of mirror, which in turn can

improve the generalization error.
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Chapter 1

INTRODUCTION

Our technological systems are arguably at the dawn of a major transformation.
We have built complex systems such as electrical grids, transportation networks,
health care systems, telecommunication networks, the Internet (of things), and
other societal networks, which have enabled connecting large numbers of entities
or people. While immensely helpful, these systems are, in many senses, not yet
as robust, efficient, sustainable, or smart as we would want them to be. However,
that is beginning to change. The formation of these large-scale systems, while
posing enormous challenges (such as how to manage them efficiently), has created
tremendous opportunities for developing “more intelligent” systems. With the
massive amounts of data generated by all these systems, and with the major advances
during the recent years in areas such as machine learning and data science, network
science, and market design, we are at a unique time in history to revolutionize
these systems and pave the way for the development of what can be referred to as
large-scale intelligent systems. This thesis is broadly aimed at addressing some of
the key challenges towards realizing this goal, and laying a foundation for analyzing

and designing such systems.

1.1 Major Challenges

Developing large-scale intelligent systems is a multifaceted problem and requires
a confluence of disciplines. In particular, over the past few decade, we have seen
remarkable progress in this interdisciplinary endeavor from various fields such as
networks science, machine learning, statistics, optimization, control theory, and
game theory, among others. Despite this progress, we are still far from realizing that
vision. Some of the key challenges in designing large-scale intelligent systems can

be summarized as follows.

1. Complex Dynamics: Large-scale systems typically exhibit complex dynamics,
caused by the large number of entities interacting with one another, often over
a network. Analyzing and understanding these dynamics is crucial for creating

systems that are efficient and robust.

2. Incentives and Markets: Because the system is composed of a large number
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of interacting entities, that make decisions in a decentralized (and often self-
interested) manner, it is critical to design incentives and markets for the system
in such a way that ensures an alignment of the agents’ decisions and the overall

goals of the system.

3. Distributed Computation: The massive computational needs due to the scale
of the system (and the fact that the data may be dispersed across many
entities) make it virtually impossible to carry out computations at a central
unit. Therefore, devising algorithms that can run in a distributed or parallel

fashion is of vital importance for such systems.

4. Learning from Data: Lastly, an important aspect of an intelligent system is the
ability to learn from data, and the enormous amount of data generated by these
large-scale systems makes them uniquely appealing for this purpose. Creating
learning algorithms that can generalize well is an ongoing enterprise, with

notable successes and many unsolved problems.

Some of the common lower-level obstacles that often arise in addressing the above
challenges are those of networks and/or non-convexities. These issues, as will be
discussed later, complicate both understanding the behavior of these systems as well

as designing suitable algorithms for them.

This thesis is organized into four main parts, based on the four major challenges
discussed above. While related, the four parts need not be read in order (or in their
entirety) when reading this thesis. To further allow for a modular reading, each
chapter is aimed to be self-contained.! In what follows, we summarize the main

contributions of the thesis in each part.

1.2 Synopsis of Part I: Network Dynamics

As mentioned earlier, understanding and analyzing the dynamics of networks is
crucial for developing societal systems that are efficient and robust. In Part I, we
study one of the most prominent families of network dynamics, namely, that of
spreading processes, or epidemics. Studying such processes is of great importance for
understanding and controlling how, e.g., contagious diseases spread among humans,
ideas or fake news spread in online social networks, cascading failures happen in

power networks, or computer viruses spread in computer networks, and thus has

'In doing so, some minor redundancy across chapters has been introduced.
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applications in many areas such as epidemiology [29], information propagation [109,
56], viral marketing [168, 175], and network security [8, 2].

We consider the spread of discrete-time epidemics over arbitrary networks for well-
known propagation models, namely SIS (susceptible-infected-susceptible), SIRS
(susceptible-infected-recovered-susceptible), SEIRS (susceptible-exposed-infected-
recovered-susceptible), SIV (susceptible-infected-vaccinated), SEIV (susceptible-
exposed-infected-vaccinated), and their variants. Such spreading processes can
be normally described by Markov chains with an exponential number of states in
the number of nodes. Since analyzing these Markov chain models is complicated,
various linear and nonlinear lower-dimensional approximations of them have been
proposed and studied in the literature. The most common of these is the nonlinear
“mean-field” approximation and its linearization around the disease-free fixed point,

whose number of states are linear in the number of nodes.

In Chapter 2, we provide a complete global analysis of the epidemic dynamics of
the nonlinear mean-field approximation, as well as a sufficient condition for fast
extinction of the epidemic in the exact Markov chain model, for the aforementioned
propagation models (SIS, SIRS, SEIRS, SIV, and SEIV). In particular, we show that
for most propagation models, the global dynamics of the nonlinear model coincides
with the stability of the linear model, and takes on one of two forms: either the
epidemic dies out, or it converges to another unique fixed point (the so-called endemic
state where a constant fraction of the nodes remain infected). We tie in these results
with the exact Markov chain model by showing that the linear model provides an
upper-bound on the true marginal probabilities of infection, and that this is the
tightest upper-bound that involves only marginals, in the “low-infection” regime.
This bound implies that under the specific threshold where the disease-free state is
a globally-stable fixed point of the mean-field model, the exact underlying Markov

chain has a sublinear mixing time, which means the epidemic dies out quickly.

The threshold condition for fast mixing of the Markov chain has been shown not to
be tight in several cases, such as in a star network. In Chapter 3, we provide tighter
upper bounds on the exact marginal probabilities of infection, by also taking pairwise
infection probabilities into account. Based on this improved bound, we derive tighter
eigenvalue conditions that guarantee fast mixing (i.e., logarithmic mixing time) of
the chain. Comparisons between the new condition and the known one on various
networks with various epidemic parameters demonstrates significant improvement
of the threshold condition.



1.3 Synopsis of Part II: Incentives and Markets

As discussed earlier, a critical aspect of developing large-scale intelligent systems
is designing incentives and markets, in such a way that ensures efficient operation
of the system and effective management of the available resources. One of the key
challenges that arises in such markets (and is of critical importance for, e.g., energy
markets) is that of non-convexities. Non-convexities in cost functions arise due to
start-up or shut-down costs, indivisibilities, avoidable costs, or simply economies of
scale, and there may be no linear prices that support a competitive market equilibrium
in their presence[46, 83]. Another important challenge in these markets is that there

are network constraints that have to be taken into account.

Despite the large body of work on the pricing problem (especially during the past
decade, motivated by the deregulation of the electricity markets in the US and around
the world), the existing schemes have several shortcomings. Most of the existing
schemes are proposed for specific classes of non-convex cost functions, and cannot
handle more general non-convexities. Furthermore, even the ones that are applicable
for general cost functions fail to satisfy some of the key desired properties of the
market, such as economic efficiency or supporting a competitive equilibrium. In
addition, none of the existing schemes is accompanied by a computationally tractable

algorithm for general non-convex costs.

In Chapter 4, we propose a pricing scheme called Equilibrium-Constrained (EC)
pricing for markets with general non-convex costs that designs arbitrary parametric
price functions and addresses all the aforementioned issues. Optimizing simultane-
ously for the quantities (allocations) and the price parameters allows our scheme to
find prices that are typically economically more efficient. Further, the ability to use
arbitrarily specified parametric price functions (e.g., piece-wise linear, quadratic, etc.)
enables our approach to design price functions that are less discriminatory, while still
supporting a competitive equilibrium. Further, our pricing scheme is accompanied by
a computationally efficient (polynomial-time) approximation algorithm which allows
one to find the approximately-optimal schedule and prices for general non-convex
cost functions. The proposed framework applies to the case of networked markets as

well, which, to the best of our knowledge, had not been considered in previous work.

Increasing the penetration of distributed, renewable energy resources into the
electricity grid is a crucial part of building a sustainable energy landscape, and
the entities that have been most successful at this are aggregators, e.g., SolarCity,

Tesla, Enphase, Sunnova, SunPower, and ChargePoint. Aggregators play a variety of
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important roles in the construction of a sustainable grid: (1) they are on the front
lines of the battle to promote widespread adoption of distributed energy resources by
households and businesses, and (2) they provide a single interface point where utilities
and Independent System Operators (ISOs) can interact with a fleet of distributed
energy resources across the network in order to obtain a variety of services, from
renewable generation capacity to demand response. However, in addition to the
benefits they provide, aggregators also create new challenges. On the side of the
aggregator, the management of a geographically diverse fleet of distributed energy
resources is a difficult algorithmic challenge. On the side of the operator, the
participation of aggregators in electricity markets presents unique challenges in terms
of monitoring and mitigating the potential of exercising market power. In particular,
unlike traditional generation resources, the ISO cannot verify the availability of the
generation resources of aggregators, and this creates significant opportunities for the

aggregators to manipulate prices through strategic curtailment of the resources.

In Chapter 5, we address both the algorithmic challenge of managing an aggregator
and the economic challenge of measuring the potential for an aggregator to manipulate
prices. Specifically, we provide a new algorithmic framework for managing the
participation of an aggregator in electricity markets, and use this framework to
evaluate the potential for aggregators to exercise market power. To those ends, we
make three main contributions. First, we introduce a new model for studying the
market behavior of aggregators of distributed generation in the real-time market.
Second, we quantify opportunities for price manipulation by the aggregators. Our
results reveal that, in practical scenarios, strategic curtailment can have a significant
impact on prices, and yield much higher profits for the aggregators. In particular,
the prices can be impacted up to a few tens of $/MWh in some cases, and there is
often more than 25% higher profit, even with curtailments limited to 1%. Third, we
provide a novel approach for managing the participation of an aggregator in the
market. The problem is NP-hard in general and is a bilevel quadratic program, which
is notoriously difficult in practice. However, we develop an efficient algorithm for
aggregators in radial networks which can be used by the aggregator to approximate
the optimal allocation strategy and also by the operator to assess the potential for

strategic curtailment.

1.4 Synopsis of Part III: Distributed Computation
Distributed computation is an integral part of large-scale intelligent systems. With

the growing size of datasets, due to high computational and/or memory requirements,
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it is increasingly necessary to run the tasks in a distributed fashion. For this reason,
parallel and distributed computation has attracted a lot of attention in recent years
for large-scale computing applications, such as for machine learning [44, 173, 228,
77]. In order to devise efficient distributed algorithms, one has to address a number
of key questions such as: What computation should each processor carry out?, What
messages should be communicated between the processors and the taskmaster?, How
does the distributed implementation fare in terms of computational complexity?,
What is the rate of convergence in the case of iterative algorithms?, and How to

handle delays and straggling workers?

One of the most fundamental problems in linear algebra, which also a key step at the
heart of many algorithms in optimization, machine learning, scientific computing,
and beyond, is that of solving a large-scale system of linear equations. In Chapter 6,
we consider a common scenario in which a taskmaster intends to solve a large-
scale system of linear equations by distributing subsets of the equations among
a number of computing machines/cores. We propose a novel algorithm called
Accelerated Projection-based Consensus (APC) for solving this problem. While each
machine can easily find “a” solution to its own underdetermined problem, the overall
solution should be a solution to every machine’s problem. The idea is based on a
carefully-constructed consensus, which ensures that each machine’s variable remains
a solution to its problem, while moving towards the solutions of the other machines.
The convergence behavior of the proposed algorithm is analyzed in detail and is
analytically shown to compare favorably with the convergence rate of alternative
distributed methods, namely distributed gradient descent, distributed versions of
Nesterov’s accelerated gradient descent and heavy-ball method, the block Cimmino
method, and ADMM. On randomly chosen linear systems, as well as on real-world
data sets, the proposed method offers order-of-magnitude speed-up relative to the

aforementioned methods.

When a task is divided among a number of machines, while the computation time of
each machine is significantly reduced, the taskmaster has to wait for all the machines
in order to be able to recover the desired computation. One issue faced in practice is
the delay incurred due to the presence of slow machines, known as stragglers. In
the face of substantial or heterogeneous delays, distributed computing may suffer
from being slow, which defeats the purpose. Several approaches have been proposed
to tackle this problem. One naive yet common way is to not wait for all machines,

and ignore the straggling machines. One may hope that in this way, on average, the
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taskmaster receives enough information from everyone; however, in many cases,
the overall performance may be negatively impacted because of the lost updates.
An alternative and more appropriate way to resolve this issue is to introduce some
redundancy in the computation of the machines, in order to efficiently trade off
computation time for less wait time, and to be able to recover the correct update
using only a few machines. Over the past few decades, coding theory was developed
to address similar challenges in other domains such as mobile communication,
storage, data transmission, and broadcast systems. Recently, [198] considered a
distributed gradient descent setting for large-scale machine learning, and proposed
the idea of gradient coding, which uses coding theory to cleverly distribute each
gradient iteration across a number of machines in an efficient way. However, the
computational complexity of their decoding algorithm was quite high (cubic in the

number of returning machines).

In Chapter 7, we develop a deterministic scheme that, for a prescribed per-machine
computational effort, recovers the gradient from the least number of machines
theoretically permissible, via a decoding algorithm that is an order of magnitude
faster than the state of the art. The idea is based on a suitably designed Reed—Solomon
code that has a sparsest and balanced generator matrix [88]. Empirical results have

demonstrated the clear advantage of our method over competing schemes.

1.5 Synopsis of Part IV: Learning from Data

During the past decade, machine learning, and largely deep learning, has made
a remarkable impact in many domains, and has enjoyed a great deal of success
in a wide variety of tasks, such as computer vision, speech recognition, natural
language processing, recommender systems, bioinformatics, and video- and board-
game playing. While incredibly successful in many respects, the reasons behind the
great success of these methods (as well as their failures in some other respects) are
largely unexplained. A theoretical foundation that backs these methods is crucial for
understanding their capabilities and limitations, and for making them applicable to
domains in which they have not been yet successful, and ultimately boosting progress

towards intelligent systems.

Due to the nonlinear nature of deep neural networks, their loss function is in general
highly non-convex. However, empirically, practitioners often obtain zero training
error, i.e., a global minimum of the training loss, across various datasets, architectures,

and settings [224]. This phenomenon is due to the heavy overparameterization
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present in typical deep models (“tens of millions” of parameters for “tens of thousands
of data points). In other words, these highly overparameterized models have a lot of
capacity, which allows them to perfectly fit/interpolate the training data, so much so
that this regime has been called the interpolating regime [138]. What is surprising,
however, is that, contrary to the conventional wisdom which says achieving zero
training error (aka overfitting) is harmful for generalization (out-of-sample error),
these deep models, trained with simple stochastic gradient descent (SGD) or its
variants, generalize quite well to unseen data. The loss function of these deep models
has in fact (infinitely) many global minima, which can have drastically different
generalization properties (in fact, there are many global minima that perform very
poorly on the test set), and stochastic descent algorithms seem to converge to “special”
ones that generalize well, even in the absence of any explicit regularization or early

stopping [224].

In an attempt to shed some light on why this is the case, in Chapter 8, we shall revisit
some minimax properties of stochastic gradient descent (SGD) for the square loss
of linear models—originally developed in the 1990s—and extend them to general
stochastic mirror descent (SMD) algorithms for general loss functions and nonlinear
models. In particular, we show that there is a fundamental identity which holds for
SMD (and SGD) under very general conditions, and which implies the minimax
optimality of SMD (and SGD) for sufficiently small step size, and for a general class
of loss functions and general nonlinear models. We further show that this identity
can be used to naturally establish other properties of SMD (and SGD), namely
convergence and implicit regularization for over-parameterized linear models (in
what is now being called the “interpolating regime”), some of which have been

shown in certain cases in prior literature.

In Chapter 9, we show that, for highly overparameterized nonlinear models, the
SMD algorithm for any particular potential function converges to a global minimum
that is approximately the closest one to the initialization, in terms of the Bregman
divergence corresponding to the potential used. For the special case of SGD, this
means that it converges to a global minimum which is approximately the closest one
to the initialization in the usual Euclidean sense. This result further implies that,
when initialized around zero, SGD acts as an {>-norm regularizer, a phenomenon
referred to as implicit regularization (in linear models [85, 194]). Similarly, by
choosing other mirrors, one obtains different forms of implicit regularization,

which may have different performances on the test data. Our experimental results
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indeed showed a clear difference in the generalization performance of the solutions
obtained via different SMD regularizers. Experimenting on the CIFAR-10 dataset
with different regularizers, £; norm (to encourage sparsity), ¢ norm (SGD, to
encourage small Euclidean norm), and £;o norm (to discourage large components),
consistently showed that the minimum-¢;¢-norm interpolating solution has a better
generalization performance than the minimum-£,-norm one, which in turn has a better
generalization performance than the minimum-£;-norm solution. This surprising
result strongly suggests the importance of developing a generalization theory for the

overparameterized/interpolating regime and the choice of regularizers.

In Chapter 10, we exhibit a new interpretation of SMD, namely that it is a risk-
sensitive optimal estimator when the unknown weight vector and additive noise are
non-Gaussian and belong to the exponential family of distributions. The analysis
also suggests a modified version of SMD, which we refer to as symmetric SMD
(SSMD). The proofs rely on some simple properties of Bregman divergence, which
allow us to extend results from quadratics and Gaussians to certain convex functions
and exponential families in a rather seamless way. Furthermore, for vanishing step
size SMD, and in the standard stochastic optimization setting, we give a direct and
elementary proof of convergence for SMD to the “true” parameter vector, which

avoids ergodic averaging or appealing to stochastic differential equations.
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Chapter 2

EPIDEMICS OVER COMPLEX NETWORKS: ANALYSIS OF
EXACT AND APPROXIMATE MODELS

[1] Navid Azizan and Babak Hassibi. “SIRS epidemics on complex networks:
Concurrence of exact Markov chain and approximated models™. In: 2015
54th IEEE Conference on Decision and Control (CDC). 2015, pp. 2919-2926.
por: 10.1109/CDC.2015.7402660.

[2] Navid Azizan et al. “Analysis of exact and approximated epidemic models
over complex networks”. In: arXiv preprint arXiv:1609.09565 (2016). URL:
http://arxiv.org/abs/1609.09565.

Understanding and analyzing the dynamics of networks is crucial for developing
societal systems that are robust and efficient. Here, we study one of the most important
families of network dynamics, namely, that of spreading processes, or epidemics. We
consider the spread of discrete-time epidemics over arbitrary networks for well-known
propagation models, namely SIS, SIRS, SEIRS, SIV, SEIV, and their variants. Such
spreading processes can be normally described by Markov chains with an exponential
number of states in the number of nodes. Since analyzing these Markov chain models
is complicated, various linear and nonlinear lower-dimensional approximations of
them have been proposed and studied in the literature. The most common of these is
the nonlinear “mean-field” approximation and its linearization around the disease-free
fixed point, whose numbers of states are linear in the number of nodes. The results we
review are for both the exact models and the approximated ones, with a focus on the
connections between them. Since the linear model is the first-order approximation of
the nonlinear mean-field one at the disease-free equilibrium, its stability determines
the local stability of the nonlinear model. Furthermore, for most propagation models,
the global dynamics of the nonlinear model also coincides with the stability of the
linear model, and takes on one of two forms: either the epidemic dies out, or it
converges to another unique fixed point (the so-called endemic state where a constant
fraction of the nodes remain infected). We tie in these approximations to the exact
Markov chain model. We show that the linear model provides an upper-bound on the
true marginal probabilities of infection, and that (in a certain regime) it is the tightest
upper-bound that involves only marginals. Furthermore, even though the nonlinear

model is not an upper-bound on the true probabilities in general, it does provide an
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upper-bound on the probability of the chain not being in the all-healthy state. These
bounds also imply the well-known result of sublinear mixing time of the Markov
chain (epidemic extinction) when the disease-free fixed point is globally stable in
the mean-field model. We compare these results for different propagation models in

detail and provide a concise summary of them.

2.1 Introduction

Epidemic models have been extensively studied since a first mathematical formulation
was introduced in 1927 by Kermack and McKendrick [113]. Although the classical
models mostly neglected the underlying network structure, and assumed a uniformly
mixed population, a huge body of work on more realistic networked models has
emerged in the recent years. Modeling and analysis of epidemics plays a key role
in many areas such as epidemiology [29], information propagation [109, 56], viral
marketing [168, 175], and network security [8, 2]. In particular, the models developed
in the literature can be used to understand various spreading processes over networks
such as the adoption of an idea or fake news in an online social network (Facebook,
Twitter, etc.), the consumption of a new product in a market, or the spread of computer
viruses over the Internet. Questions of interest include the existence of fixed points,
stability (whether the epidemic dies out or spreads), transient behavior, the cost of an

epidemic [40, 43], how best to control an epidemic [66, 156], etc.

As in the majority of the literature, we adopt the terminologies of infectious diseases
throughout this chapter. The results that we survey are for well-known propagation
models, namely SIS (susceptible-infected-susceptible), SIRS (susceptible-infected-
recovered-susceptible), SEIRS (susceptible-exposed-infected-recovered-susceptible),
SIV (susceptible-infected-vaccinated), and SEIV (susceptible-exposed-infected-
vaccinated). In the basic SIS model, each node in the network is in one of two
different states: susceptible (healthy) or infected. A healthy node has a chance
of getting infected if it has infected neighbors in the network. The probability of
getting infected increases as the number of infected neighbors increases. An infected
node also has a chance of recovering, after which it still has a chance of getting
infected by its neighbors (the flu is an example of this model). SIR and SIRS models
have an extra recovered state, which corresponds to the nodes that have recovered
from the disease and are not susceptible to it (mumps and pertussis respectively are
examples of SIR and SIRS epidemics [102]). In some models, such as SEIRS, there
are two different types of unhealthy states: exposed (E) and infected/infectious (I).

The nodes in an exposed state have been exposed to the disease but are not infectious
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yet. Additionally, in SIV and SEIV models, there is a random vaccination (either
permanent or temporary) which permits direct transition from the susceptible state

to the recovered (vaccinated) state.

Even the SIS case, which is the simplest of the above models, for a network with n
nodes, yields a Markov chain with 2" states, sometimes called the exact or “stochastic”
model. This is a discrete-space model, as there are two possible states of “0” and
“1” for healthy and infected. Ostensibly, because analyzing this Markov chain is
too complicated, various n-dimensional linear and non-linear approximations have
been proposed in the literature. The most common of these is the n-dimensional
non-linear mean-field approximation and its corresponding linearization about the
disease-free fixed point, which are often referred to as “deterministic” models. These
are continuous-space models, that take real numbers between 0 and 1, which can be
understood as the marginal probability for being infected (or the infected fraction of

the i-th subpopulation).

It is worth noting that all the above models have also been studied in two different
settings: continuous-time and discrete-time. In fact, there are two parallel bodies of
work in the literature, on continuous-time (e.g., [76, 205, 72, 187, 127, 157, 65]) and
discrete-time (e.g., [79, 208, 57, 5, 170, 6]) epidemics. Even though the models are
similar in many aspects, depending on the application in hand, it may make more
sense to use one or the other. Here, we choose to focus on discrete-time models, but

most of the results have counterparts in continuous-time as well.

The results we review are for both the exact and approximated models, with a focus
on the connections between them. It is well known that, in many cases, the linear
model is an upper-bound on the nonlinear mean-field approximation. It is also known
that, depending on the largest eigenvalue of the underlying graph adjacency matrix
and the epidemic parameters, the global dynamics of the mean-field approximation
takes on one of two forms: either the epidemic dies out (disease-free fixed point) or it
converges to another unique fixed point where a constant fraction of the nodes remain
infected (endemic state). As for the exact Markov chain model, the linear model
provides an upper-bound on the true marginal probabilities of infection, and we show
that this is the tightest upper-bound using the marginals only, when the infection
probabilities are not too high. Furthermore, even though the nonlinear model is not
an upper-bound on the true probabilities in general, it does provide an upper-bound
on the probability of the chain not being absorbed (some nodes being infected). A

consequence of these upper-bounds is that when the approximated model is stable to
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the disease-free fixed point, the Markov chain has a mixing time of O (log ), which

means the epidemic dies out fast in the true model as well.

In Section 2.2, we review the main epidemic models introduced in the literature.
For each one of these spreading processes, we state the exact Markov chain model,
the nonlinear mean-field approximation, and the latter’s linearization. Section 2.3
concerns the results on the nonlinear model (and its connection to the linear model)
for different spreading processes mentioned earlier. We first describe the case where
the epidemic dies out, and then the case where the all-healthy fixed point is not stable
and there exists a unique nontrivial fixed point which is typically stable. Returning
back to the exact Markov chain model, in Section 2.4, we establish the connection
between that and the approximated models. In particular, we first state the connection
to the linear model (the tightest upper-bound using marginals, and the sufficient
condition for fast mixing), and then proceed to the connection to the nonlinear model
(upper-bound on the probability of the chain not being absorbed). We also review the
extensions to heterogeneous models in Section 2.5, and mention higher-order (such
as pairwise) approximations in Section 2.6. We finally summarize and conclude in
Section 2.7.

2.2 Models

In this section, we discuss some of the main epidemic models. Additional models

can be found in Appendix 2.A.

2.2.1 Susceptible-Infected-Susceptible (SIS)
2.2.1.1 Exact Markov Chain Model

Let G = (V, E) be an arbitrary connected undirected network with n nodes, and
with adjacency matrix A. Each node can be in a state of health (S), represented by
0, or a state of infection (I), represented by 1 (see Fig. 2.1). The state of the entire
network can be represented by a binary n-tuple £(¢) = (&1(¢),- - ,&n(2)) € {0, 1},
where each of the entries represents the state of a node at time ¢, i.e., i is infected if
& (t) = 1, and it is healthy if &;(¢) = 0.

Given the current state £(7), the infection probability of each node in the next step is
determined independently, and therefore the transition matrix S of this Markov chain
has elements Sxy = P(£(¢ + 1) = Y|£(7) = X) of the following form:

P +1)=Y[E@) = X) = HP(fi(I +1) =Yi|£() = X), (2.1)
i=1



15

SIS

SIRS

SEIRS

SIV

SEV  (S)ww(E)-E *«R)
N

Figure 2.1: State diagram of a single node in different models. Wavy arrows
represent exogenous (network-based) transition. S stands for susceptible (healthy), E
for exposed, I for infected/infectious, and R for recovered.

for any two state vectors X, Y € {0, 1}".

A healthy node remains healthy if all its neighbors are healthy. During each time
epoch, nodes in the healthy (susceptible) state can be infected by their infected
neighbors according to independent events with probability S (the infection rate)
each. Moreover, nodes that are infected can recover during each such time epoch
with probability ¢ (the recovery rate), if they do not get infected again at the same

time. That is

(1-pB)m if (X;,;) = (0,0)
1= (1=p)™ if (X;,Y;) = (0,1)
5(1—pym if (X.,Y;) = (1,0)
1=6(1=B)™ if (X.,Y;) = (1,1)

P(&i(t+1) =YilE(1) = X) = (2.2)

where m; = |N; N S(X)|, where N; denotes the set of neighbors of node i, and
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S(X) = {i : X; = 1} is the support of X € {0, 1}", i.e., the set of infected nodes.

This Markov chain has a unique absorbing state, which is the state where all the
nodes in the network are healthy with probability 1. This is an absorbing state since
there is a non-zero probability of reaching it from any other state in a single step,
and because once all the nodes are healthy, no node will be exposed to the disease,
and they will always stay healthy. This means that the disease will die out if we wait
long enough. However, this result is not very revealing, since it may take a long time
for the disease to die out, and therefore, the more important question is whether the

Markov chain is fast-mixing or whether its mixing time is exponentially large.

Comparing the discrete-time Markov chain model to the continuous-time Markov
chain model described in [76], the continuous-time Markov chain model allows only
one flip of each node’s epidemic state at each moment. However, the discrete-time
model allows change of epidemic states for more than one node at each time step.
The reason being that the change of epidemic state for two or more nodes can occur
at same time interval, even though they do not happen at the same moment. The
transition matrix of the embedded Markov chain of the continuous-time model has
nonzero entries only where the Hamming distance of the row coordinate and the
column coordinate is 1 (they differ in only one element). However, the transition
matrix of the discrete-time Markov chain model can have nonzero entries everywhere

(except the row of the absorbing state).

Let us denote the probability that node i is infected at time ¢ by p; (1) = P(&;(¢) = 1).

The probability of node i being infected at time 7 + 1 can then be written as

pi(t+1) =P(&(( +1) = 11&() = DP(&() = 1)
+P(&(t+ 1) = 11&(r) = 0)P(&(2) = 0). (2.3)

By marginalizing out the state of the other nodes, we can write this as
pi(t+1) =Ee_ (1)) (1)=1 [1 -0 1—[ (1 —ﬁﬂgj(z)zl)]Pi(f)
JEN;

+E§_,-(z)|§i(t)=0[1 - H (1 —ﬁﬂgj(t):l)](l - pi(1)), (2.4)

JEN;

where the conditional expectations are on the joint probability of all nodes other than
i (denoted by &_;).
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2.2.1.2 Nonlinear Model
In order to propagate the previous recursion, one needs all the joint probabilities. An

approximate model that requires only knowledge of the marginals is the so-called

mean-field approximation (MFA):

Pi(t+1)=|1-¢ ]_[ (1-pP;(1))

JEN;

Pi(1) + (1 -TTa —ﬁij)) (1-Pi(1))

JEN;
= (1 =0)Pi(t) + (1 - (1 - 6)Pi(2)) (1 - l_[ (1 —,BPj(t))) : (2.5)

JEN;
This approximate model assumes that the events that the neighbors are infected are

independent. We use capital P for the approximated probabilities, to distinguish

them from the exact probabilities of the Markov chain, p.

It is sometimes convenient to define and work with a map @ : [0, 1]* — [0, 1]" with

elements defined as
®;(x) = (1 = 6)x; + (1 = (1 —6)x;) (1 - H (1 —ﬁxj)) . (2.6)
JEN;

It is trivial to check that the MFA becomes P;(t + 1) = ®;([P1(¢?), ..., P,(t)]7).
The MFA is an n-dimensional model and is therefore computationally much less
demanding than the true 2"-dimensional model. The MFA has been studied in [57,
208, 5] among others. The origin (P;(¢) =...,= P,(t) = 0) is a trivial fixed point
of the above model, which is consistent with the absorbing state of the Markov chain

model.

2.2.1.3 Linear Model

One step further is to approximate the preceding equations by linearizing (2.5) around

the origin, which results in the following mapping:

Bi(t+1)=(1 —6)15i(t)+,8(z P,(r)) 2.7)
JEN;
Putting together the equations of this form for all i, one can see this as
P(t+1) = ((1-0)1,+BA)P(1), (2.8)
where P(1) = [P(¢t), ..., P,(1)]".

Note that (1 — 6)1,, + BA is in fact the Jacobian of the nonlinear model at the origin.
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2.2.2 Susceptible-Infected-Recovered-Susceptible (SIRS)

In the SIRS model, there is an additional “recovered” (R) state (see Fig. 2.1). As
before, nodes in the susceptible state can be infected by their infected neighbors
according to independent events with probability 8 each. Nodes that are infected can
recover with probability d, and nodes in the recovered state can randomly transition

to the susceptible state with probability y (immunization loss).

2.2.2.1 Exact Markov Chain Model

We start again with the exact Markov chain model. The state of node i at time
t, denoted by &;(7), can take one of the following values: O for Susceptible, 1 for
Infected (or Infectious), and 2 for Recovered, i.e., &;(t) € {0, 1,2}.

The state of the entire network can be represented as:

é‘:(t) = (fi(t)w"’fn(t)) € {09 1’2}’1 (29)

The 3" x 3" state transition matrix S of the Markov chain has elements of the form

Sxy=PE+1)=Y |&£@) =X) = HP(&-(H =Y [£()=X), (2.10)
i=1

where
(1-p)m, if (X;,Y:) = (0,0)
L=(1=p)m, if(X,Y)=(0,1)
0, if (X;,Y:) = (0,2)
0, if (X;,Y;) = (1,0)
PE@+1) =Y [£@)=X)=41-9, if (X,Y)=(1,1), (211)
9, if (X;,Y:) = (1,2)
Y, if (X;,Y) =(2,0)
0, if (X;,Y) =(2,1)
1-, if (X;,Y:) =(2,2)

where m; = |{] EN; | X; = 1}| = |N; N I(t)|. The set of susceptible, infected, and
recovered nodes at time ¢ are denoted by S(¢), I(¢), and R(t), respectively.

The marginal probabilities can be expressed as pg;(¢) and p;;(¢), for the probability

that node i is in state R at time t and the probability that node i is in state I at
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time t, respectively. Then, pg;(7) is determined by the other two probabilities as
1 — pr.i(t) — pri(t). Based on the above-mentioned transition rates, we can calculate

the two marginal probabilities as
Pri(t+1) =(1=y)pri(t) +ppi(1), (2.12)
pri(t+1) =(1=06)pri(t)

+E|§f(z)=0[1 - 1—[ (1 —ﬁﬂgj(z)zl)] (1= pri(0) = pri(r)). (2.13)

JEN;

The recursion for pg;(z + 1) can be found from pg;(¢) + pri(t) + pri(t) = 1.

2.2.2.2 Nonlinear Model

The mean-field approximation of the above marginal probabilities has been commonly

considered, which can be expressed as

Pri(t+1) = (1 —y)Pri(t) + 6P1;(1), (2.14)
Pri(t+1)=(1-6)Pri(1) + (1 - ]_[ (1- ﬁPz,j(t))) (1= Pri(t) = Pri(1)).
JEN;
(2.15)

This MFA is in fact a nonlinear mapping with 2n states (rather than 3" states).

2.2.2.3 Linear Model

Linearizations of Eqgs. (2.14) and (2.15) around the origin can be considered as well,

which results in the mapping

Pri(t+1) = (1 —y)Pri(r) + 6P1,(1), (2.16)
Pri(t+1)=(1=0)Pi(t)+B Y Prj(1). (2.17)
JEN;

These equations for all i can be expressed in a matrix form as

Pr(t+ 1)] _ o |PrO] 018
P[(l + 1) P](I)
where
(1 - 7)1n ol

. (2.19)

Opnxn (1-9)I,+pBA
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2.2.3 Susceptible-Infected-Vaccinated (SIV)
2.2.3.1 Exact Markov Chain Model

The SIV model accounts for the effect of vaccination by incorporating direct
immunization into the SIRS model. In other words, the transition from S to R is
also permitted in this model (see Fig. 2.1). Depending on the value of vy, this model
can represent temporary (y # 0) or permanent (y = 0) immunization. Based on the
efficacy of the vaccine, there are two variants of this model: infection-dominant and

vaccination-dominant.

In the infection-dominant case, if a susceptible node receives both infection and
vaccine at the same time, it gets infected. In this case, the elements of the state

transition matrix are

Sxy=PE+1) =Y £ =X)= [ [P@&u+D =Y |£0)=X). (220

i=1

where
(1=-p)"(1-0), if(X.Y;)=(0,0)
1-(1-p)", if (X;,Y:) =(0,1)
(1-p)"0, if (X;,Y:) =(0,2)
0, if (X;,Y:) = (1,0)
P&(t+1) =Y | £(0)=X)=41-9, if (X;,Y) =(1,1), (221)
s, if (X;,Y) =(1,2)
Y, if (Xi,Y:) =(2,0)
0, if (X;,Y) =(2,1)
1-v, if (Xi, Y1) =(2,2)

and as before m; = |{] EN; | X; = 1}| = |N;nI(t)|]. Eq. (2.21) differs from
Eq. (2.11) in the first and third cases, and it reduces to the SIRS model for 8 = 0.

The steady-state behavior in the presence of immunization is rather different from
the previous models, in which all the nodes became susceptible. In this model, once
there is no node in the infected state, the Markov chain reduces to a simpler Markov
chain, where the nodes are all decoupled. In fact, from that time on, each node has
an independent transition probability between S and R. The stationary distribution
of each single node is then P = # and Py = 0 5 (Fig. 2.2). This MC converges if

_)T
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v6 # 1, and the stationary distribution of each state X is

n
T Y yixi=0)  gixi=hy O i)
mx E[(yw) (g

P’

ps O
L (s, (R
1y
7

Figure 2.2: Reduced Markov chain of a single node in the steady state.

2.2.3.2 Nonlinear Model

The nonlinear map (mean-field approximation of the Markov chain model) can be

obtained as:

Pri(t+1) =(1 —y)Pri(t) + 6P (1)

+ [ [ (=8P )01 = Pri(t) = Pri(1)), (2.22)
JEN;
Pri(t+1) =(1-06)Pr;()+
(1= [T =BPL) A = Pryn) = Prse)). 223)
JEN;

It can be easily verified that one fixed point of this nonlinear map occurs at

PRi(t) = Py and Pr;(1) =0, i.e.,
0
_ |aln
0, |’

which is consistent with the steady state of the Markov chain.

Pg(1)
Pi(1)
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2.2.3.3 Linear Model

After some algebra, the linearization of the above model around the fixed point can

be expressed as:

Pr(t+1 Pil Pr(t) — P%1
~R( + ) — R'n M R~() R'n ’ (2.24)
Pi(t+1) 0, Pi(t) = 0,
where
1-v-0)] 0—-0)I,— 0P BA
M= ( Y M ( e Sﬁ . (2.25)
0,:xn (1=-6)I,+ P;,BA

2.3 Results on the Nonlinear MFA Model
The nonlinear mean-field approximation has been extensively studied in the literature
for different propagation models. We review the most important results here, starting

from the SIS epidemics.

2.3.1 SIS
It is straightforward to see that the linear model upper bounds the nonlinear one, as

follows.

Pi(t+1) =(1=6)Pi(t) + (1 = (1 = 6)Pi(1)) (1 - l—[(l —ﬁPj(t)))

JEN;

<(1-8)P;(1) + (1 -[[a —,BPj(t)))

JEN;
<(1-0)Pi(t) + (Z P,-(r))
JEN;
For two real-valued column vectors u, v € R”, we use the notation # < v to indicate

u; < v;foralli € {1,...,n}, and u < v, if the inequalities are strict. Defining

P(t) = [Pi(?), ..., Py()]", we have
P(t+1) < ((1-96)I,+BA)P(1), (2.26)
which leads to the following well-known result.

Proposition 1. If %X(A) < 1, the origin is a globally asymptotically stable fixed
point for both the linear SIS model (2.8) and the nonlinear SIS model (2.5).

The origin, the trivial fixed point of the nonlinear model, is unstable when A4, ((1 —

0)I, + BA) > 1. Moreover, if so, it is not clear in general whether there exists any
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MC: Fast mixing
MFA: Global stability [ MFA: 2" unique fixed point _ I,-‘_’j’)\“mx(/l)

1 ~ =
h 0

SIS/SIRS/SEIRS

MC: Fast mixing MFA: Local stability

S_W/SEW_ MFA: Global stability [ || MFA: 2" unique fixed point BAmax(A)
Infection-Dominant 1 1 > ;
1 y+d
MC: Fast mixing MFA: Local stability ) . .
SIV/SEIV MFA: Global stability [ | ¥ pMFA:2™ unique fixed POlmﬂ)\“mx(/})
Vaccination-Dominant UL 1 > 5
1 1 v+6 y 1
1—4# ¥ 1—#0

Figure 2.3: Summary of known results for different models. The results have been
illustrated as a function of M. MC stands for the Markov chain model. MFA
stands for the mean-field approximation (the nonlinear model).

other fixed point, or how many fixed points there are. It has been shown in the

literature (e.g., in [5]) that there exists a unique nontrivial fixed point, and it is stable.

Theorem 2. If M%X(A) > 1, the nonlinear SIS model (2.5) has a second unique fixed
point. Furthermore, the fixed point is globally asymptotically stable from all initial

points (except the origin).

2.3.2 SIRS/SEIRS/Immune-Admitting-SIS

Similar to the previous (immune-free) SIS model, for the immune-admitting-SIS,
SIRS, and SEIRS epidemics, the linear model is an upper-bound on the nonlinear
one, and therefore the origin is stable for the nonlinear model when the linear model

is stable.

Proposition 3. If %}((A) < 1, the origin is a globally asymptotically stable fixed
point for both the linear model and the nonlinear model for immune-admitting-SIS,
SIRS, and SEIRS epidemics.

In this case, when the origin is not stable, even though there still exists a unique

nontrivial fixed point, it is not stable in general [5, 16].

Theorem 4. If IM'““TX(A) > 1, the nonlinear model for immune-admitting-SIS, SIRS,
and SEIRS epidemics has a second unique fixed point.
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The following is an example of an unstable nontrivial fixed point for the immune-
admitting-SIS model [4, p. 64].

>

Il
— = O
oS O =

1
0 =09 §=09 (2.27)
0

The nontrivial fixed point of the system above is P* = (0.286,0.222, 0.222)T. The

linearized model around P* is

-0.260 0.514 0.514
0.700 -0.157 0 )
0.700 0 —-0.157

which has an eigenvalue of —1.059, which means that P* is not locally stable. It can
be shown that for any initial condition other the origin and P*, P(¢) converges to a

cycle.

Even though the nontrivial fixed point is not stable in general, it is known to be stable

with high probability for a general family of random graphs [4, p. 66].

Theorem 5 (Ahn and Hassibi [5]). Suppose that G is a random graph with n
vertices, and let dr(:l?1 and dr(,fgx denote the minimum and maximum degree of G™. If,
for any fixed a > 0, P((dr(gi)n)2 >a- dga)x) goes to 1 as n goes to infinity, then, with
high probability, the origin is unstable, and the second fixed point is locally stable,
for any fixed B and é.

One can think of several random graph models that satisfy the condition of Theorem

5. For example, if the random graph has a uniform degree that grows with n, then
2
the minimum degree and maximum degree are identical and the ratio —— = d will

max
grow with any n and exceed a with high probability. Similarly, for random graphs
where the degree distribution of the nodes are identical and concentrate, so that we
can expect the maximum degree and the minimum degree to be proportional to the
2

min

expected degree, grows if the expected degree increases unbounded with . In

max

particular, the Erdds-Rényi random graph G = G (n, p(n)) has identical degree
distribution, and we have the following result [4, p. 69].

Corollary 6 (Ahn and Hassibi [5]). Consider an Erdés-Rényi random graph G =

1
G(n,p(n)) with p(n) =c e where ¢ > 1 is a constant. The nonlinear model is
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locally unstable at the origin and has a locally stable nontrivial fixed point with high
probability for any fixed B and §.

ogn

Since p = ¢ for ¢ = 1 is also the threshold for connectivity, we can say
n
that connected Erdos-Rényi graphs have a nontrivial stable fixed point with high

probability.

The random geometric graph G = G (n, r(n)) also has identical degree distribution
if each node is distributed uniformly. Such random graphs have maximum and
minimum degrees which are proportional to the expected degree with high probability
if r(n) is smaller than the threshold of connectivity [167], and, similar to Erdos-Rényi
graphs, it has high probability of having a nontrivial stable fixed point if the degree

grows with n.

2.3.3 SIV/SEIV (Infection-Dominant)
Since the linear model is always the Jacobian of the nonlinear one, its stability
determines the local stability of the nonlinear model. However, global stability is

harder to show. The following result summarizes the stability of the nonlinear model.

Proposition 7. The disease-free fixed point of the nonlinear model for the infection-
dominant SIV and the infection-dominant SEIV epidemics is
a) locally stable, if#g/lmax(A) <1, and

b) globally stable, if 5 Aac (A) < 1.

When #"ﬂ%’m > 1, the main fixed point of the nonlinear map is not stable, and
again, there exists a unique non-trivial fixed point. This result has been proven in

[16] for the SIV case, and it extends to the SEIV model in a similar fashion.

Theorem 8. If #ﬁ/l%x(f‘) > 1, the nonlinear model for the infection-dominant SIV

and the infection-dominant SEIV epidemics has a second unique fixed point.

The middle panel in Figure 2.3 shows a summary of the above results.

2.3.4 SIV/SEIV (Vaccination-Dominant)
It is natural to expect the vaccination-dominant models to be more stable than the

infection-dominant ones. It turns out that these models are indeed more stable by a
factor of 1/(1 - 09).
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Proposition 9. The disease-free fixed point of the nonlinear model for the vaccination-

dominant SIV and the vaccination-dominant SEIV epidemics is

a) locally stable, if (1 — 6)7—19%1,"”(14) <1, and
b) globally stable, if (1 — 0)§/lmax(A) <1.

Theorem 10. If (1 — 9)#%&,%”(14) > 1, the nonlinear model for the vaccination-
dominant SIV and the vaccination-dominant SEIV epidemics has a second unique

fixed point.

Both of the above results have been proven in [16] for the SIV case, and the proof
extends to the SEIV case with some modification. The lower panel in Figure 2.3

shows a summary of these results.

2.4 Results on the Exact Markov Chain Model

Returning back to the Markov chain model, in this section, we study the true marginal
probabilities of infection and how they relate to the nonlinear and linear models.
For the sake of simplicity, we state the results for the SIS model, but they have

counterparts for other propagation models as well.

2.4.1 Connection to the Linear Model
It is well-known that the linear model provides an upper-bound on the true marginal

probabilities of infection [6].

Proposition 11. For SIS epidemics, the linear model is an upper-bound on the true

marginal probabilities of infection, i.e.,

pit+1) < (1=8)pi(t) + B Y py (1),

JEN;

fori=1,...,n, and any time t.

This can be equivalently expressed in vector form as
pt+1) < ((1-9)1,+BA)p(t). (2.28)

(1 —9)I, + BA is the system matrix of the linear model.

A natural question to ask about the above bound is how tight is it. It is clear that the

bound cannot be tight in general, as we are ignoring the higher-order dependencies
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(e.g., pairwise infection probabilities, etc.). However, we can ask how tight is it among
all the bounds that involve only the marginal probabilities. It turns out that when the
infection probabilities are not too high, this bound is indeed the tightest bound using
marginals only. In other words, if in the SIS model, we maximize p;(¢ + 1) over all
distributions with fixed marginals p(¢), ..., p,(¢), in the low-infection regime, we

obtain the same bound.

Theorem 12. For SIS epidemics, if 3.\, pi(t) < 1, then the tightest upper-bound on

pi(t + 1) that involves only the marginal probabilities at time t is

pi(t+1) < (1=8)pi(t)+B > p;(0),

JEN;

foranyi=1,...,n.

It has been shown that when the linear and nonlinear models are stable (i.e.,
mm“T"(A) < 1), then the epidemic dies out quickly. More specifically under this
condition, the Markov chain has fast “mixing” to the all-healthy state. The mixing
time of a Markov chain is defined [126, Def. 4.5] as

tmix(€) = min{z : sup [|uS" — xllry < €}, (2.29)
u

where p is any initial probability distribution defined on the state space, and = is the
stationary distribution. || - |7y is total variation distance which measures distance of
two probability distributions. Total variation distance of two probability measures u
and y’ is defined by

1
= llrv = 5 Z () = 1 @) (2.30)

where x is any possible state in the probability space. In fact, ¢,,;;(€) is the smallest
time where distance between the stationary distribution and probability distribution at
time ¢ from any initial distribution is smaller than or equal to €. Roughly speaking, the

mixing time measures how fast initial distribution converges to the limit distribution.

The fast (logarithmic) mixing-time result was first shown by Ganesh et al [76].
Theorem 13. If 'BA%X(A) < 1, the mixing time of the Markov chain whose transition

matrix S is described by Egs. (2.1) and (2.2) is O (log n).

The above condition for fast extinction of the epidemic seems to be quite tight in

many cases, such as in Erdds-Rényi random graphs. In particular, Figure 2.4 shows
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Figure 2.4: A typical example of the evolution of an SIS epidemic over an Erdds-
Rényi graph with n = 2000 nodes and A (A) = 16.159. When the condition
Blmx(A) ﬂ"““(A) < 1is satisfied (e.g., 8 = 0.055, 6 = 0.9) the epidemic decays exponentially,

and dies out quickly (blue curve). In contrast, when ﬂ’l%"m) > 1 (e.g., B =0.056,
6 = 0.9), the epidemic does not exhibit convergence to the disease-free state in
any observable time (red curve). In fact, the epidemic keeps spreading around the
nontrivial fixed point.

a typical simulation of the epidemic in two different cases: (1) When ML"(A‘) =0.99
and (2) when £ '“a"(A) = 1.01. As one can see, there is a sharp phase transition
happening around thlS critical value. In other words, the epidemic does not seem to

BAmax(A)
0

die out in any reasonable amount of time once is somewhat above 1.

2.4.2 Connection to the Nonlinear Model

The nonlinear model is not an upper-bound on the true probabilities p; () in general.
However, it turns out that it does provide an upper-bound on the probability that the
chain is not in the all-healthy state (i.e., existence of infection) [4], if one initializes

the nonlinear model from the all-infected state.

Theorem 14. For any time t and any initial state X, we have

P 010 =x) <1- [ | (1-®(1,),

ieS(X)
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where ®(.) is the nonlinear approximate model.

Using this bound, the same mixing time result as in (13) can also be established.

We should finally remark that the reason why it is possible for the nonlinear map

1 10r1 3 ﬁ/lmax(A)
to converge to a unique non-origin fixed point when ==3-—

> 1, even though the
original Markov chain model always converges to the all-healthy state, is that this
is only an upper bound on P(£(t) # 0|£(0) = X). In other words, if the origin is
globally stable in the epidemic map ®, we can infer that the Markov chain model
mixes fast. However, if the origin in the epidemic map is unstable, we cannot infer

anything about the mixing time.

2.5 Heterogeneous Network Models
In the models discussed throughout the chapter, the epidemic parameters g, 9, v, €, 6
were homogeneous across the network, i.e., they were the same for all nodes. However,

many of the results have been extended to more general heterogeneous models.

For the SIS model, much of the behavior of the models was determined by the largest
eigenvalue of M = (1 — 0)I,, + BA. M is defined by g, the infection rate, §, the
recovery rate, and A, the adjacency matrix. In other words, M is the contact model.
To model an epidemic spread where each node has its own infection and recovery
rate, we can define a generalized infection matrix. Let M = (m; ;) be the generalized
infection matrix where m; ; € [0, 1] represents the infection probability that i is
infected at time 7 + 1 when j is the only infected node at time ¢. In this setting,
each diagonal entry m, ; represents self-infection rate. In other words, 1 —m;; is the
recovery rate of node i, and m; ; is the probability that i stays infected when there are
no other infected nodes in the network. We also assume that probability of infection
of each node given the current state £(t) is independent. More precisely, for any two
state vectors X, Y € {0, 1}",

P +1)=Y[£@) = X) = HP(&'(I +1) =Yi[£@) = X) (2.31)
i=1

Probability transition from given state is defined by M.

[1a-mp ifv=o

) —v. — _ ) JjeS(X)
P(&i(r+1) =Yi[£(1) = X) 1 l—l (U =mj) ifY=1, (2.32)
jeS(X)

We define the transition matrix, SM e RIOI"{01" py S%) = P&(t+1) =
Y;|£(¢) = X) in the equation above.
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The nonlinear map associated with M, oM . [0, 1]" — [0, 1]" is defined by

oM (x)=1- l_[(l — mj jx;) (2.33)
j=1

and @M = (CDEM), CDEM), s CDE,M)). M is the Jacobian matrix of ®™)(.) at the
origin which gives an upper bound, i.e., ®™) (x) < Mx. The origin is the unique
fixed point which is globally stable if the largest eigenvalue of M is smaller than
1. It also has a unique nontrivial fixed point which is globally stable if the largest

eigenvalue of M is greater than 1.

Similar to the previous cases, Amax (M) < 1 guarantees that the mixing time of the

Markov chain defined by the transition matrix S is O (log n).

2.6 Pairwise and Higher-Order Approximate Models

Even though the threshold condition of Theorem 13 for fast extinction of the epidemic
(sublinear mixing time of the Markov chain) appears to be tight for the ErdGs-Rényi
random graph and some other networks, it is known to not be tight for several other

cases, such as the star graph [23].

In order to obtain tighter threshold conditions, one can keep track of terms that are of
a higher order than the marginals, such as pairwise probabilities of infection, triples,
etc. Of course, this comes at the cost of an increased number of states (quadratic,
cubic, etc. in the number of nodes), and there is a trade-off between the tightness
of the bound and the complexity of the model. In theory, if one takes into account
all marginals, pairs, triples, and higher-order terms, we get back to the original

exponential-state Markov chain model.

Tighter bounds using pairwise probabilities will be the subject of the next chapter.
These bounds were first introduced in [23], and have been extended to heterogeneous
models in [160]. Other pairwise approximations have also been studied in [54] but

they do not provide any bound on the exact probabilities.

2.7 Summary and Conclusion

We studied the networked SIS, SIRS, SEIRS, SIV, and SEIV epidemics and their
variants, using their exact Markov chain models, and their well-known linear and
nonlinear mean-field approximations. Below a threshold, the disease-free fixed point
is globally stable for the nonlinear model, and also the mixing time of the exact

Markov chain is O(logn), which means the epidemic dies out fast. Furthermore,
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Figure 2.5: The evolution of (a) SIS/SIRS/SEIRS, (b) SIV/SEIV (infection-dominant),
(c) SIV/SIEV (vaccination-dominant) epidemics over an Erdds-Rényi graph with
n = 2000 nodes. The blue curves show fast extinction of the epidemic. The red
curves show epidemic spread around the nontrivial fixed point.
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above a threshold, the disease-free fixed point is not stable for the linear and nonlinear
models, and there exists a second unique fixed point, which corresponds to the
endemic state. This nontrivial fixed point is also stable in most cases. Figure 2.3

summarizes all the results.

Typical examples of the spread of the epidemic for all different propagation models
studied throughout the chapter have been demonstrated in Figure 2.5. For the SIRS
and SEIRS models, the threshold condition is % < 1, which is the same as that of
the SIS one, and it means having an additional recovered state does not necessarily
make the system more stable. For the infection-dominant SIV and SEIV models, we
observe the same exponential decay of the infection when #% < 1 (e.g., when
||A]| = 16.232 and B8 = 0.11, y = 0.5 and 6 = 0.5), which means the vaccination
indeed makes the system more stable. Furthermore, for the vaccination-dominant
models, under (1 — 9)#% <1 (e.g., B =0.22), we observe the fast convergence
again, which confirms that the system is even more stable when vaccination is
dominant. As plots show, for above-the-threshold cases (e.g., § = 0.07 for SIRS,
0.13 for SIV-infection-dominant, and 0.29 for SIV-vaccination-dominant), we do not
observe epidemic extinction in any reasonable time, and effectively, the epidemic

remains endemic.

Finally, we should remark that characterizing the exact epidemic threshold of the
Markov chain model is still an open problem. Extensive numerical simulations
suggest the existence of such a threshold and a phase transition behavior. Even though
in certain networks, such as the ErdGs-Rényi random graphs, the epidemic threshold
seems to coincide with the condition for local stability of the nonlinear mean-field
model (global stability of the linear model), it is different from that condition in
general. For this reason, pairwise (and even higher-order) approximations may be

sought, which provide tighter bounds on the epidemic threshold.
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2.A Additional Models

We review additional epidemic models, namely the immune-admitting variant of the

SIS model, the SIERS model, the vaccination-dominant variant of the SIV model,
and the SEIV model.

2.A.1 Immune-Admitting SIS
2.A.1.1 Exact Markov Chain Model

A variant of the SIS model is the “immune-admitting” SIS, which is similar to the
previous model except that a node does not get infected from its neighbors if it has
just recovered from the disease (see Fig. 2.1). In other words, the probability of

recovering from the disease is 6. That is

P(&i(r+1) =Yi|£(1) = X)
(1-p)™ if (X;,Y;) = (0,0), [N; N S(X)| = m;,
1-(1=-p)"™ if (X;,1;) = (0, 1), [N; N S(X)| = m;,

= (2.34)
o if (X;,Y;)=1(1,0),
1-0 if (X, Y)=(1,1).
and, as before, the elements of the transition matrix are defined as
n
PE@E+1)=Y[|E(r) =X) = HP(fi(t +1) =Y|§(r) = X). (2.35)
i=1

In this model, the probability that a node becomes healthy from infected (¢) is larger
than that of the “immune-free”” model (6(1 — B)™). Therefore, roughly speaking,
the immune-admitting model is more likely than the immune-free model to hit the

absorbing state.

2.A.1.2 Nonlinear Model

A mean-field approximation for the immune-admitting model can be studied as well,

which is defined as

Pi(t+1) = (1=8)Pi(t) + (1 - Pi(¢)) (1 -[a —,BPj(t))) : (2.36)

JEN;
2.A.1.3 Linear Model

The nonlinear model has the same Jacobian matrix as that of the previous section,
which is
P(t+1)=((1-06)I,+BA)P(1). (2.37)
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2.A.2 Susceptible-Exposed-Infected-Recovered-Susceptible (SEIRS)
2.A.2.1 Exact Markov Chain Model

This model has an extra "exposed" state. The state of the nodes can take one of the
following values: 0 for Susceptible, 1 for Exposed, 2 for Infected (or Infectious), and
3 for Recovered (see Fig. 2.1). The 4" x 4" state transition matrix S of the Markov

chain has elements of the form
Sxy =P+ 1) =Y [0 =X) =] |P@&+D) =Y [£0) =X), (238)
i=1

as before. Here we have

(1-p)", if (X;,Y:) = (0,0)
I-(1=-p)", if (X;,Y;)=(0,1)
1-¢€, if (X;,Y;)=(1,1)
€, if (X;,Y;) =(1,2)
P&i(+1) =Y [£()=X)=91-06, if (X.,Y) =(2,2), (239
0, if (X;,Y:)=(2,3)
Y if (X.,Y:) = (3,0)
1=, if (X;,Y;) =(3,3)
0, otherwise

where m; = |[N; N I(1)].

2.A.2.2 Nonlinear Model

The nonlinear mean-field approximation is

Pei(t+1) =(1 - €)Pgi(1)+
(1= 10 = BPLi)) (1 = Pry() = PLi(r) = Pry(0))

JEN;
Pri(t+1) =€Pg;(t) + (1 = 6)Pr,(1)
Pri(t+1) =(1 = y)Pri(t) + 6P (1).



2.A.2.3 Linear Model

The linearization of the above equations around the origin is

ISE(I‘+ 1) F’E(l‘)
ﬁ[(t+1) =M ﬁ](l‘) ,
Pr(r+1) Pr(1)
where
(1-e)I, pBA Opscn
M = el (1 - 5)In 0n><n
—01I, 61y (1 - 7)1n

2.A.3 Vaccination-Dominant SIV
2.A.3.1 Exact Markov Chain Model

35

In the vaccination-dominant variant of the model, the assumption is that if a

susceptible node receives both infection and vaccine at the same time, it becomes

vaccinated. Although in the context of contagious diseases, this variation might

make less sense, in other applications, there are scenarios for which this model is

more relevant. The transition probabilities of the Markov chain are again

Sxy =P+ =Y 60 =X) = [ [P&u+1) =Y,
i=1

with the change that

(1-p)"(1-9),
(1-(1=-p")(1-6),
0,

0,

P(&i(t+1) =Y [£() =X) =91-6,

S,

Vs

0,

1 -y,

where m; = |{] EN; | X; = 1}| = |N; N I(t)|, as before.

|£() = X), (2.40)

if (X;,Y;) = (0,0)
if (X;,Y;) = (0,1)
if (X;,Y;) = (0,2)
if (X;,Y;) = (1,0)
if (X;,Y;) = (1,1)
if (X, ;) = (1,2)
if (X;,Y;) = (2,0)
if (Xi,Y;) = (2,1)

if (X, Y;) = (2,2)
(2.41)
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2.A.3.2 Nonlinear Model

The nonlinear map, or the mean-field approximation, can be stated as:
Pri(t+1) =(1 —y)Pgi(t) + 6Pr;(1)

+6(1 = Pri(t) — Pr(1)), (2.42)
Pri(t+1)=(1-0)Pr;(t) +(1-0)

(1= T =P (1 = Prit) - P, 243)

JEN;
2.A.3.3 Linear Model

As a result, the first order (linear) model is:

PR(Z‘+1) _ P;ln PR(Z‘)—P;ln
Pit+1)| | 0, Py(t) - 0,
where

(1-y-01,  (6-0)1,-0P,BA

M = .
st (1-6)1,+ (1 -6)PBA

We should note that for the vaccination-dominant model, the steady state of the
Markov chain and the main fixed point of the mapping are exactly the same as those
of the infection-dominant model. However, as one may expect, it turns out that the

vaccination-dominant model is more stable.

2.A.4 SEIV (Infection-Dominant)

The Markov chain model in this case has the following transition probabilities (see
Fig. 2.1).
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2.A.4.1 Exact Markov Chain Model

(1= ™ (1-6), if (X,Y) = (0,0)
1-(1-p)"m, if (X, ;) = (0, 1)
(1-pB)™e, if (X;,Y;) =(0,3)
1 —e¢, if (X;,Y:) =(1,1)
€, if (Xi,Y;) = (1,2)
Pi(t+1) =Y [£(r) = X) = , (244)
1-3, if (Xi,Y;) = (2,2)
s, if (X;,Y) =(2,3)
Y if (X, Y;) = (3,0)
1-v, if (X;,Y:) = (3,3)
0, otherwise

where m; = |N; N I(1)].

2.A.4.2 Nonlinear Model
The nonlinear approximation in this case is
Pei(t+1) =(1 - €)Pg,;(1)+
(1= [T = BPLA) (1 = Pri(t) = PLilt) = Prile))

JEN;
Pri(t+1) =€Pg(t) + (1 =06)P1;(1)
Pri(t+1) =(1 —y)Pr;(t) + 6P (1)

+ ([T =BPLI D)0 = Pry() = Price) = Pri(0).

JEN;
2.A.4.3 Linear Model

The linearization around the main fixed point is as follows

ﬁE(l‘+1) 0, ﬁE(l)
Pit+1)|=|0, |[+M Pi(1) ,
Pr(t+1) Pil, Pr(1) = Pyl,
where
(1-e)l, P¢BA 0,151
M=\ e, (1-96)I, Opxcn

~0L,  (5-0),—0PBA (1—y—-0)I,
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2.A.5 SEIV (Vaccination-Dominant)
2.A.5.1 Exact Markov Chain Model

The vaccination-dominant variant of the model has the following transition probabil-

ities.
(1 _ﬁ)ml(l _9)’ if (Xl’Yl) = (0’0)
(1-(1=B)™)(1-6), if (X.¥)=(0,1)
0, if (X;,Y:) = (0,3)
1 -k, if (X;,Y;) =(1,1)
PG+ 1) =Y | €0 =X) =1 =2
1-6, if (X, Y:) = (2,2)
s, if (X;,Y;) =(2,3)
Y if (Xi’ Yl) = (3’0)
1-v, if (X;,Y:) =(3,3)
0, otherwise
(2.45)

where m; = |[N; N I(1)].

2.A.5.2 Nonlinear Model

The nonlinear mean-field approximation can be expressed as

Ppi(t+1)=(1-€)Pg;(t)+ (1 -0)x
(1= [0 =BPLi)) (1 = Pry() = Pri(r) = Pry(0))

JEN;
Pri(t+1) = €Pgi(t) + (1 = 6)Pr;(1)
Pri(t+1)=(1=y)Pr;(t) +6P(1)
+0(1 — Pg (1) — Pri(t) — Pri(1)).
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2.A.5.3 Linear Model

The linearized model is

Pg(r+1) (0 Pg(1)
ﬁ](l+1) =10, |[+M ﬁ[(t) ,
Pr(t+1) Pil, Pr(1) = Pyl,
where
(1 - E)In (1 - Q)P;*:BA Onxn
M = el, (1-90)I, 0pxn

-01, (5 - Q)In (1 -Y - Q)In
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Chapter 3

IMPROVED BOUNDS ON THE EPIDEMIC THRESHOLD OF THE
EXACT MODELS

[1] Navid Azizan et al. “Improved bounds on the epidemic threshold of exact
SIS models on complex networks”. In: 2016 55th IEEE Conference on
Decision and Control (CDC). 2016, pp. 3560-3565. por: 10.1109/CDC.
2016.7798804.

The SIS (susceptible-infected-susceptible) epidemic model on an arbitrary network,
without making approximations, is a 2"-state Markov chain with a unique absorbing
state (the all-healthy state). This makes analysis of the SIS model and, in particular,
determining the threshold of epidemic spread, quite challenging. We saw in the
previous chapter that the exact marginal probabilities of infection can be upper
bounded by an n-dimensional linear time-invariant system, a consequence of which
is that the Markov chain is “fast-mixing” when the LTI system is stable, i.e., when
B

1
5 S Tom(A)

Amax (A) is the largest eigenvalue of the network’s adjacency matrix). This well-

(where g is the infection rate per link, ¢ is the recovery rate, and

known threshold has been recently shown not to be tight in several cases, such as
in a star network. In this chapter, we provide tighter upper bounds on the exact
marginal probabilities of infection, by also taking pairwise infection probabilities into
account. Based on this improved bound, we derive tighter eigenvalue conditions that
guarantee fast mixing (i.e., logarithmic mixing time) of the chain. We demonstrate
the improvement of the threshold condition by comparing the new bound with the

known one on various networks with various epidemic parameters.

3.1 Introduction

The mathematical modeling and analysis of epidemic spread is of great importance
in understating dynamical processes over complex networks (e.g., social networks)
and has attracted significant interest from different communities in recent years. The
study of epidemics plays a key role in many areas beyond epidemiology [29], such
as viral marketing [168, 175], network security [8, 2], and information propagation
[109, 56]. Although there is a huge body of work on epidemic models, classical

ones mostly neglect the underlying network structure and assume a uniformly mixed
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population, which is obviously far from reality. However, in recent years, more
realistic networked models have been introduced, and many interesting results are
now known [155, 165].

In the simplest case (the binary-state or SIS model), each node is in one of two different
states: susceptible (S) or infected (I). During any time interval, each susceptible
(healthy) node has a chance of being independently infected by any of its infected
neighbors (with probability ). Further, during any time interval, each infected node
has a chance of recovering (with probability ¢) and becoming susceptible again. For
a network with n nodes, this yields a Markov chain with 2" states, which is referred
to as the exact or “stochastic” model. Since analyzing this model is quite challenging,
most researchers have resorted to n-dimensional linear and nonlinear approximations
(the most common being the “mean-field” approximation), which are sometimes
called “deterministic” models. This chapter focuses on improving known bounds on

the exact model.

The spreading process can be considered either as a discrete-time Markov chain or
a continuous-time one. Although the discrete-time model is sometimes argued to
be more realistic [79, 4], there is no fundamental difference between the two, and
similar results have been shown for both. We focus on the discrete-time Markov

chain here.

It is known that these epidemic models exhibit a phase transition behavior at a certain
threshold [53, 30] , i.e., once the effective infection rate 7 = & approaches a critical
value 7. [155] the epidemic appears not to die out. We should remark that the Markov
chain has a unique absorbing state, which is the all-healthy state, because once the
system reaches this state, it remains there forever since there are no infected nodes
to propagate infections. This means that if we wait long enough, the epidemic will
eventually die out, which may seem to be odd at first. However, what this means
is that the question of the epidemic dying out is not interesting; what is interesting
is the question of how long it takes for the epidemic to die out. In particular, if the
mixing time of the Markov chain is exponentially large, one will not see it dying out
in any reasonable time. Therefore, the right question to ask is what is the mixing
time of the Markov chain (or, equivalently, its mean-time-to-absorption); it turns
out that the threshold 7. corresponds to the phase transition between “slow mixing"
(exponential time) and “fast mixing" (logarithmic time) of the MC [64, 204, 205].

The epidemic threshold (critical value) of general networks is still an open problem.

However, lower- and upper-bounds have been found using different techniques [64,
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Figure 3.1: State diagram of a single node in the SIS model, and the transition rates.
Wavy arrow represents exogenous (neighbor-based) transition. S : probability of
infection per infected link, ¢ : probability of recovery.

205]. The best known lower-bound is 1/Amax(A), i.e., the inverse of the leading
eigenvalue of the adjacency matrix, which is derived by upper-bounding the marginal
probabilities of infection and using a linear dynamical system. In fact, this method
relies on keeping track of n variables which are upper bounds on the marginal
probability of infection for any of the nodes. In this chapter, we focus on improving
this upper-bound on the infection probabilities and ultimately the lower-bound on
the epidemic threshold. The key idea is to maintain the “pairwise” probabilities of
nodes’ infections, in addition to the marginals. This comes at the cost of increased,
yet still perfectly feasible, computation. There is a trade-off between the tightness of
the bound and the complexity, and in theory if one takes into account all marginals,
pairs, triples, and higher-order terms, we get back to the original 2"-state Markov

chain.

We first briefly review the known bound with marginals, and show a simple alternative
approach for deriving it. We then move on to pairs and use the machinery developed
in Section 3.2 to derive tighter bounds on the probabilities and connect them with the
mixing time of the Markov chain (Sections 3.3 and 3.4). Finally, we demonstrate the
improvement of the bounds through extensive simulations (Section 3.5) and conclude

with future directions.

3.2 The Markov Chain and Marginal Probabilities of Infection

Let G = (V, E) be an arbitrary connected undirected network with n nodes, and
with adjacency matrix A. Each node can be in a state of health, represented by “0,”
or a state of infection, represented by “1.” The state of the entire network can be
represented by a binary n-tuple £(¢) = (&£1(¢),-- -, &n(t)) € {0, 1}", where each of
the entries represents the state of a node at time ¢, i.e., i is infected if &;(¢) = 1 and it
is healthy if & (¢) = 0.

Given the current state £(7), the infection probability of each node in the next step
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is determined independently, and therefore, the transition matrix S of this Markov
Chain has elements Sy y = P(£(t + 1) = Y|£(¢) = X) of the following form:

P +1) =Y[E@) = X) = HP(&U +1) =Yi|£() = X), 3.1
i=1

for any two state vectors X, Y € {0, 1}".

As mentioned before, a healthy node can receive infection from any of its infected
neighbors independently with probability S per infected link, and an infected node

can recover from the disease with probability 6. That is

P(&i(r+1) =YilE(t) = X) =
(1-p)m if (X, Y;) = (0,0), [N; 0 S(X)| = m;,
1-(=-p" if (X, Y;) = (0,1),[N; N S(X)| = m;,
6 if (X;,Y;) = (1,0),IN; 0 S(X)| = m,
1-6 if (X;,Y) = (1, 1),[N; 0 S(X)| = m,,

(3.2)

where S(X) is the support of X € {0, 1}",i.e., S(X) = {i : X; = 1}, and N; is the set

of neighbors of node i.

Egs. (3.1, 3.2) completely define the 2" x 2" transition matrix of the Markov chain,
which determines the evolution of the 2" states over time. Of course with this, we
have the joint probability of all the nodes, and we can compute the probability of any
desired combination by marginalizing out the rest. In particular, one can compute the
probability of each node i being infected at time ¢ + 1 (denoted by p;(z + 1)), which
is a function of all joint probabilities of the states at time 7. Since there are only n
such variables, the dimension would be significantly reduced if one could “bound” or
“approximate” that function by something that includes marginals p;(#) only. This
way, we obtain a recursion which relates the marginals at time 7 + 1 to those of time ¢,
and indeed we have a system with only 7 states rather that 2" states. Approximations
per se are not very interesting because they do not provide any guarantee on the
behavior of the exact Markov chain model. What is more important is whether one
can obtain a bound on these true probabilities, which can guarantee, for example, fast
extinction of the disease. The most common upper-bound, which has been shown to
be the tightest linear upper-bound with marginals only (using a linear programming
technique) [6, 16] is:

pilt+1) < (1=8)pi(t)+ B > py(1) (3.3)

JEN;
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forall i = 1,...,n. Defining p(t) = (p1(t),..., pa(t))T, this can be written in a
matrix form as
p(t+1) < Mp(1), (3.4)

where
M=(1-96)I,+pBA. 3.5

3.2.1 An Alternative Bounding Technique

The derivation of (3.3) in [6, 16] involves a linear programming technique. In this
chapter, we provide an alternative technique to bound the infection probabilities
using indicator variables and conditional expectation, which is more intuitive and
direct. Importantly, as will be shown later, this technique can be used to obtain
tighter bounds on the exact probabilities of infections using pairwise inflectional
probabilities. Before that, it is instructive to derive (3.3) using this alternative

approach.

Let i € V. We start by conditioning on the state of the same node i at time ¢, as

follows:

pi(t+1) =P(X;(t+ 1) = 1|X;(1) = DP(X;(r) = 1)
P+ 1) = 11X:(1) = 0)P(X (1) = 0).

The probability that an infected node remains infected is 1 — ¢, and the probability
that a susceptible node does not receive infection from an infected neighbor is 1 — S.

We denote j neighbor of i by j ~ i. The expression above can be written as

P(X;(1) = 0). (3.6)

pi(t+1) = (1=06)pi(1) +EX_i(t)|X,-(t):0[1 - l—[(l - Blx;i)
Jj~i

The conditional expectation is on the joint probability of all nodes other than i

(denoted by X_;), given node i being healthy (X; = 0). Of note, this expression is

still exact, and we have not done any approximation yet. It can be easily checked that

n(l = Blx;im) 2 1 —EZ Lx;(0)-
J~i J~i

Combining this with (3.6) yields the desired upper bound

pit+1) < (1=8)pi(H) +B ) P(Xi(1) = 0,X;(1) = 1) (3.7)
J~i

< (1-6)pi(t) +,3ij(0-

J
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3.2.2 Connection to Mixing Time of the Markov Chain

Up to this point, we just talked about bounding the marginal probabilities of infection,
and it is not clear how a bound on the marginal probabilities relates to the mixing
time of the Markov chain. To establish this connection, let us start from the definition
of mixing time [126]:

tmix(€) = min{z : sup ||uS" - nllry < €}, (3.8)

M

where u is any initial probability distribution defined on the state space, and « is
the stationary distribution; ||z — u’||7v is the total variation distance of any two

probability measures u and yu’, and is defined by
4 1 ’
= llrv = 5 Z @) =4 @)L,

where x is any possible state in the probability space. In fact 7,,;,(€) is the minimum
time instant for which the distance between the stationary distribution and the
probability distribution at time ¢ from any initial distribution is smaller than or equal
to €. Roughly speaking, the mixing time measures how fast the initial distribution
converges to the limit distribution, which, in our case, means how quickly the

epidemic dies out.

Since, in the stationary distribution, the all-healthy state has probability 1, it can be
shown [6] that

some nodes are infected at time ¢| (3 9)
all nodes were infected at time O '

sup [|uS" = xllry =P (
i

which highlights the fact that the worst initial distribution (i.e., the u that maximizes

above quantity) is the all-infected state. Now, for any ¢ < 7,,;,(€) we have

€ < PP [some nodes are infected at time ¢|
all nodes were infected at time O

n
< Z P node i is infected at time ¢|
- all nodes were infected at time 0
i=1
=1"p(t)  given that p(0) = 1,, (3.10)

where we have used the union bound, and 1,, denotes the all-ones vector of size n.

Back to the upper-bound on the marginals (3.4), we get 1Ip(t) < 1TMp(t - 1).
Furthermore, since M has non-negative entries (we write this as M > 0), we can

“propagate” the bound to find that

Upt) < 1IMp(t-1) < 1IIM*p(r -2) <--- < 1TM"p(0).
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As a result, for any ¢ < t,,;x(€)
e < 1TM'1, < n(p(M))', (3.11)

since M is non-negative and symmetric, and Ay,x (M) = p(M), where p(M) is the
spectral radius of M.

log 2

When p(M) < 1 (or equivalently 1 — 6 + B4 (A) < 1), it follows that 7 < “Togp 0D
for all t < t,,;(€). This implies the well-known result that when 8/6 < 1/Apax(A)

log 2
then 7, (€) < % = O(logn).

We should note here that if M was not symmetric (as we will encounter such instances
in the next section), it can be shown by an appeal to the Lyapunov equation that if
p(M) < 1,thenforallz < t,,;,(€), there exists 0 < n < 1 suchthate < n'O(poly(n)),
from which it follows directly that the mixing time is logarithmic in n. To see that,
note that p(M) < 1 implies that there exists a positive definite matrix P > O such
that M PM — P < 0. Letting P'/? denote the unique positive square root of P and
N = P'2MP~1/2 it follows easily that N'N < I, or equivalently 7 := || N||, < 1.
(Here, ||N||> denotes the spectral norm of N.) Defining y := P'/21, and x := P~1/21,
we get 17M'1, = x"N'y < |lxllr' Iyl < nn' [|P2{|2]| P~/

3.3 Pairwise Probabilities (p;;)

In Section 3.2, we showed how a bound on marginal probabilities of infection can be
obtained, and how this bound translates to the threshold condition for fast mixing of
the Markov chain. As mentioned before, the bound (3.4) has been proved to be the
tightest linear bound one can get with marginals. A natural idea to improve this bound
is to go to higher-order terms (i.e., pairs, triples, etc.). In principle, maintaining
higher-order terms is advantageous because it means keeping more information from
the original chain, but of course at the cost of increased complexity. We define
the pairwise probability of infection of two nodes, in addition to the marginals, as

follows. For (i, j) € E,

pij(t) =P(X;(1) = 1,X;(r) = 1).

Note that out of the (g) possible pairs of nodes, we only consider the ones that
correspond to edges in the graph. Based on this definition, P(X;(#) = 0, X;(¢) =

1) = p;(t) — pij(t), and it follows easily from (3.7) that

pilt+1) < (1=0)pi(t) + B D pi(1) =B ) pis(0). (3.12)
j~i J~i
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Of course, this bound is at least as tight as the one in (3.3). Now, in order to strictly
improve upon the latter, we need a lower bound on the pairwise infection probabilities
at time 7 + 1 in terms of marginals and pairwise probabilities at time ¢, which is

derived next.

3.3.1 A Lower Bound on the p;;’s

To construct a lower bound on the pairwise marginal probabilities p;;(t + 1), we
use the same approach as was introduced in Section 3.2.1, but this time applied to
pairwise infection probabilities.

Let (i,j) € E and t > 0. We first expand p;;(t + 1) as follows

Z P(Xi(t+1) = 1,X;(t+1) = 1, X,(1) =x, X; (1) = y).
x€{0,1}
ye{0.1}
For convenience, denote each one of the summands above by s,,. Also, let ¢y,
represent the corresponding conditional probability P(X;(z +1) = 1, X;(t + 1) =
1|X;(¢) = x,X;(t) = y). In what follows, we lower bound each one of s,,’s. We

write Ey, for the conditional expectation Ex_, _ (1) (x;(r)=x.X; (1)=y}-
o (x=0,y=0): Trivially, sgp > O.

e (x=0,y=1): As before, the probability of not getting infected from each infected
neighbor is (1 — ), and the probability that an infected node remains infected is
(1 = 6). Therefore

cor =B [(1 =] | (1= By, (1-9)].

k~i
Since j ~iand 0 < B < 1, it follows that [];;(1 - Blx,(;)) < (1 —B1lx,()). Hence
co1 = B(1 = 0)Eo; Lx; (), which eventually gives

so1 = B(1 = 0)P(X;(r) =0,X;(1) = 1)
> (1 =0)p;(t) =B -0)pi;(1).

¢ (x=1,y=0): By symmetry, the exact same argument as above implies

s10 = B(1 = 0)pi(t) — B(1 = 6) p;; ().

e (x=1,y=1): Clearly c¢; = (1 — §)2, which gives

s11 2> (1=6)%pi(1).
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Summing all the above terms yields the following lower bound for all (i, j) € E and
t>0:

pij(t+1) 2 (1 =6)B(pi(t) + p;(1)) + (1 = 6)(1 =6 = 2B)pi; (1). (3.13)

3.3.2 Back to the Mixing Time

In order to express Eqgs. (3.12) and (3.13) for all i and j’s together in a matrix form,
recall the definition p (1) = (p1(¢), . .., pn(t))". Further, let us define pg(r) € RI!
as the vector of pairwise infection probabilities, i.e., pg(t) = vec(p;;(t) : (i, j) € E).
Note that p;; (1) = p,i(t), so for each edge we only keep track of one of the two terms.
Now we can write Egs. (3.12), (3.13) as

p(1)
-pEe(t)

p(t+1)
-pe(t+1)

<M

, (3.14)

The matrix M’, after a little bit of thought, can be expressed in the following way:

(3.15)

(=81, +pA BB
M = 9
—(1-8)BBT  (1-6)(1-06-2B)I

where B € RIVXIEl happens to be the incidence matrix of G, which is formally

defined as

1 if i is an endpoint of e,
Bi,e =
0 otherwise,

forallie Vande € E.
By accounting for pairwise infection probabilities, the bound derived in (3.14) is

tighter when compared to the one in (3.4). In order to connect this to the the mixing

time of the underlying Markov chain, observe that

T |17 AT p(1)
1np(t)—[1n 0|E|] ol
Applying (3.14) to this gives,
t—1)
o < 17 or Jar| P . 3.16
ORI LTS (3.16)

This step is possible because the entries of the vector [IZ O|TE|] are all non-negative,

which guarantees that the signs of all the n + | E| inequalities in (3.14) are preserved.
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With this note, it becomes clear that in order to be able to propagate the bounds for
the remaining time instances ¢t — 2,1 — 3, ..., 0, a sufficient condition would be

[1; olfg'] (M) >0, foralls> 1. 3.17)

Provided that (3.17) holds, we can continue with the sequence of bounds after (3.16),

which results in

p(0)
. 3.18
-pe(0) G189

thp( < 17 ol | ()

Subsequently, the same argument as in Section 3.2.2 concludes the following result.

Theorem 15. Assume that (3.17) holds. If p(M’) < 1, then the mixing time of the
Markov chain whose transition matrix S is described by Eqgs. (3.1) and (3.2) is
O (logn).

From the standard bound with only marginals, it was known that when p(M) < 1, the
Markov chain is fast-mixing. Now, in addition to that, the above theorem states that
when p(M’) < 1, the Markov chain mixes fast again. Of course, this is informative
only when there is a case where p(M) > 1 but p(M’) < 1. As it will be shown in
Section 3.5, this is indeed the case.

Note that, in the proof of Theorem 15, we used the assumption that (3.17) holds.
As will be shown in the simulations section, in many cases this is a reasonable
assumption. However, when the assumption does not hold we cannot appeal to this
theorem. For this reason, we propose another bound using an alternative pairwise

probability, which does not require such a condition.

3.4 An Alternative Pairwise Probability (g;;)
As it was discussed above, when the assumption (3.17) does not hold, we seek an

alternative bound. Let us define
qij(t) =P(X;(r) =0,X;(r) = 1).

We can use the same approach as before to obtain bounds for p;, g;;’s. Intuitively,
lower bounding p;; (¢ + 1) is equivalent with upper bounding g;; (¢ + 1), and it turns
out that it is what we need. The next lemma summarizes the bounds on these

probabilities.
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Lemma 16. Foralli,j €V, (i,j) € E andt > 0, it holds that

pit+1) < (1=8)pi()) +B ) qie (1) (3.19)
{~i
gij(t+1) < 6(1=8)p; (1) + (1= 6)(1 =6 = B)quj (1)
+Bogi(0) + B(1+6) D q;e(t) (3.20)
{~j
(#i

Proof. Observe that (3.19) is nothing but (3.12) expressed in terms of g;;’s. Now let
(i, j) € E. We first expand ¢;; (¢ + 1) as follows
Z P(X;(t+1)=0,X;(r+1)=1,X;(¢t) =x,X;(t) = y).

x€{0,1}
y€{0,1}

For convenience, denote each one of the summands above by s,,. Also, let ¢y,
denote the corresponding conditional probabilities P(X;(r +1) = 0,X;(r+ 1) =
1|1X;(t) = x, X;(t) = y). In what follows, we upper bound each one of the sy,’s; this
will immediately yield (3.20). All expectations below are conditional on the event

{Xi(t) =x, X;(¢) = y}, which is omitted for the sake of convenience.
¢ (x=0,y=0): Using the fact that

coo = Boo[ ([ [(1 = Bly)) (1= [ [(1 - BLy) ],
k~i

b~y

<1 <BXejlx,

we find that spo < 83, P(X;(#) =0, X;(1) =0, X(¢) = 1) < ,32?]' qje(t).
#i

e (x=0,y=1): From

cor =Eor[(| [(1 =By (1 -9)] < (1-p)(1-0),
it follows that sg; < (1 —kﬁN)l(l —-0)qij(1).
e (x=1,y=0): Using the fact that

cio=Eio[6(1 = [ [(1 = Blx,))] < Eo[B6 ) 1x,],

{~j {~j
we find that 519 < 86 Yo P(Xi(1) = 1, X;(1) = 0, Xe(r) = 1) < B6 X qe(1).

e (x=1,y=1): Using the fact that c;; = 6(1 — ), we find that s, = §(1 — 0)P(X;(¢) =
LX;(1)=1)=06(1-0)(p;—qij)-
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Similar as before, by defining a vector g (¢) € R2E! as g (1) = vec(q;j(t) : (i, ) €

E), we can express (3.19) and (3.20) as

p(1)
ge(t)

p(t+1)
qe(t+1)

4

, (3.21)

for some appropriately defined square matrix M” of size n + 2|E|. It is easy to see
thatif 1 -6 — 8 > 0, then M” > 0, i.e., all entries of M are nonnegative. In particular,
this implies that M” satisfies (3.17), and it only takes repeating the same argument

as in (3.18) to conclude with the following theorem.

Theorem 17. If p(M”) < 1 and 1 — 6 — B > 0, then the mixing time of the Markov
chain whose transition matrix S is described by Egs. (3.1) and (3.2) is O(log n).

3.5 Experimental Results

In this section, we demonstrate the performance of the proposed bounds by evaluating
them on a variety of networks such as clique, Erdds-Rényi, Watts-Strogatz, star graph,
line graph, cycle, and star-line graph, with various parameters 5 and 6. As mentioned
before, in order for any of the two threshold conditions proposed in Sections 3.3 and
3.4 to be an improvement, we need to check if there are cases where the spectral

radius of M” or M" is less than 1, while the spectral radius of M is greater than 1 (or

Blmax (A)
5

suggest that not only are there such cases, but interestingly always p(M’) < p(M).

equivalently > 1). Indeed, extensive simulations on our first bound (M")

In order to compare M’ with M, we set p(M) = 1 + € > 1 for some small value of e,
and observe the value of p(M’). Table 3.1 lists the values of spectral radii for the
three matrices. The positive sign next to p(M’) indicates that the non-negativity
condition (3.17) holds. For the cases that the condition holds (+), we can conclude
that M’ has clearly improved. For the cases where the condition does not hold (-) we
evaluate the second proposed bound M”, which again shows clear improvement over
the p(M) < 1 condition.

In order to demonstrate how tight the new condition is, Fig. 3.2 plots the evolution
of the epidemic over a star graph, for which the p(M) < 1 condition is known
not to be tight. The parameters in the two cases are 6 = 0.3, = 0.0130, and
0 = 0.3, =0.0157. It can be seen that while the value of ﬁ/l%x(A) is not informative
(itis 1.93 > 1 for the first case, and 2.33 > 1 for the second one), the p(M") condition
is quite tight.
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Table 3.1: Performance of the proposed bounds M’ and M” in comparison with the
previous bound M. Boldface values show an improvement over M. The signs next to
p(M’) indicate whether the non-negativity condition (required for the proof) holds.

piﬁf): p(M) | p(M")
Star 0=0.750, p=0.078 1.030 0.903
0=0.500, 5=0.053 1.030 0.828
0=0.250, 8=0.028 1.030 0.840 0.968
Cycle 0=0.750, =0.390 1.030 0.817
0=0.500, 8=0.265 1.030 0.720 0.945
0=0.250, p=0.140 1.030 0.882 0.942
Star-line  6=0.750, 8=0.174 1.030 0.872
0=0.500, g=0.118 1.030 0.693 0.958
0=0.250, 5=0.063 1.030 0.856 0.955
Clique 06=0.750, 5=0.008 1.003 0.999
0=0.500, 8=0.005 1.003 0.998
0=0.250, 5=0.003 1.003 0.999
Erd6s-  6=0.750, 5=0.070 1.030 0.993
Rényi 0=0.500, 5=0.048 1.030 0.977
0=0.250, 8=0.026 1.030 0.984
Watts-  6=0.750, g=0.077 1.030 0.991
Strogatz  6=0.500, 8=0.053 1.030 0.974
0=0.250, p=0.028 1.030 0.982
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Figure 3.2: Evolution of the SIS epidemic over a star graph with n = 2000 nodes,
with two values of p(M’) below and above 1. When p(M’) = 0.99 < 1, we observe
fast extinction of the epidemic (blue curve). The condition also seems very tight, as
for p(M’") = 1.05 > 1, the epidemic does not die out (red curve). This is while the
previously known bound is not informative at all (N%*(A) =1.93 > 1 for the first
case, and 2.33 > 1 for the second one).

3.6 Conclusion and Future Work

In this chapter, we first proposed a simple technique using conditional expectations
to systematically construct bounds on the exact probabilities of infection, up to any
desired order. Using this approach, we showed that keeping higher-order terms (such
as pairs) indeed helps in obtaining tighter bounds; specifically, we derived a bound
composed of both marginals and pairwise probabilities, which has improved over
the well-known bounds. Based on this new bound, we provided a new condition for
fast mixing of the Markov chain to the all-healthy state, which, through extensive

ﬁ/lmax(A)
d 0

simulations, was shown to be tighter than the so-calle < 1 condition.

Clearly, one possible extension of this work would be to construct a bound consisting
of marginals, pairs, and triples, which in theory should result in an improvement. In
fact, keeping all higher-order terms eventually takes us back to the 2"-state Markov
chain. Therefore, there is a trade-off between the complexity and the accuracy of the
model. We should however note that going to triples may still be tractable, and one

advantage of that would be not only to gain by improving the bound on the probability
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(same as here) but also to get an improvement in the fast-mixing condition of the chain
in the sense that the bound (3.10) can be replaced by € < 2; pi = 2 ; pij+ 2i j k Pijk
which naturally includes all terms rather than just the marginals. As a last comment,
based on the simulations, we conjecture that condition (3.17) may be relaxed, and

other future work may concern its proof.
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Chapter 4

OPTIMAL PRICING IN MARKETS WITH NON-CONVEX COSTS

[1] Navid Azizan et al. “Optimal Pricing in Markets with Non-Convex Costs”. In:
Proceedings of the 2019 ACM Conference on Economics and Computation
(EC). Phoenix, AZ, USA, 2019, p. 595. 1sBn: 978-1-4503-6792-9. por:
10.1145/3328526.3329575.

[2] Navid Azizan et al. “Optimal Pricing in Markets with Nonconvex Costs”. In:
Operations Research 68.2 (2020), pp. 480—-496. por: 10.1287 /opre.2019.
1900.

Designing markets and incentives in large-scale systems is crucial for efficient
operation of the system. In this chapter, we consider a market run by an operator, who
seeks to satisfy a given consumer demand for a commodity by purchasing the needed
amount from a group of competing suppliers with non-convex cost functions. The
operator knows the suppliers’ cost functions and announces a price/payment function
for each supplier, which determines the payment to that supplier for producing
different quantities. Each supplier then makes an individual decision about how
much to produce, in order to maximize its own profit. The key question is how to
design the price functions. To that end, we propose a new pricing scheme, which is
applicable to general non-convex costs, and allows using general parametric pricing
functions. Optimizing for the quantities and the price parameters simultaneously,
and the ability to use general parametric pricing functions, allows our scheme to
find prices that are typically economically more efficient and less discriminatory
than those of the existing schemes. In addition, we supplement the proposed method
with a polynomial-time approximation algorithm, which can be used to approximate
the optimal quantities and prices. Our framework extends to the case of networked
markets, which, to the best of our knowledge, has not been considered in previous

work.

4.1 Introduction
While there has been a long history of studying markets under convexity assumptions
(such as convexity of cost functions, preferences, etc.) in economic theory, non-

convexities are ubiquitous in most real-world markets. Non-convexities in cost
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functions arise due to start-up or shut-down costs, indivisibilities, avoidable costs, or

simply economies of scale.

It has been widely noted in the literature that in the presence of non-convexities,
there may be no linear prices (constant per quantity) that support a competitive
market equilibrium [e.g., 46, 83], and it was suggested as early as the 1980s that
in these markets, one needs to consider using price functions, as opposed to the
conventional prices [212]. Following the work of [178, 179], there have been many
pricing schemes proposed in the literature. In particular, during the past decade,
motivated by the deregulation of the electricity markets in the US and around the
world, the problem of pricing in non-convex markets has attracted renewed interest
from researchers, and there has been considerable work on this problem [131]. These
pricing schemes are deployed in practice, and the operation and efficiency of our

electricity markets relies on them.

Formally, the non-convex pricing problem is that, given an inelastic demand for
a commodity from a number of consumers, a market operator seeks to satisfy the
demand by purchasing the required amount from a group of competing suppliers
with non-convex cost functions. The operator knows the suppliers’ cost functions,
and it announces a price/payment function for each supplier, which determines the
payment to that supplier for producing different quantities. Each supplier then makes
an individual decision about how much to produce in order to maximize its own
profit. The key design question is how to devise the price functions in order to ensure
certain economic properties for the market. We should remark that this problem
is quite different from mechanism design, since the cost functions of the suppliers
are known to the market operator, and the players can influence the market only by
choosing their production level. However, as we shall see, the design of the price

functions in these markets is challenging.

An important early approach to the pricing problem was the work of [159], sometimes
referred to as integer programming (IP) pricing, which considered the class of non-
convexities that arise from the start-up costs of the suppliers (with linear marginal
costs). The paper proposes a clever pricing rule, based on solving a mixed-integer
linear program and forcing the integral variables to their optimal values as a constraint.
The scheme is economically efficient and has a nice dual interpretation. Modified
versions of IP pricing have been proposed by [39, 38] and others. Another approach,
proposed for the more general class of non-convex cost functions that are in the form

of a start-up plus a convex (rather than linear) cost, is the minimum-uplift (MU)
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pricing of [103], and its closely related refinement of [81], known as convex hull
(CH) pricing. These schemes provide discriminatory uplifts to different suppliers
to incentivize production, and the uplifts are minimal in a specific sense [181].
The possibility of having both positive and negative uplifts was also considered by
[145, 75]. Other pricing schemes include the semi-Lagrangian relaxation (SLR)
approach of [10] and the primal-dual (PD) approach of [177]. These schemes seek
to find uniform linear prices that are revenue-adequate (but not supporting of the
equilibrium). A survey on all the above pricing schemes was recently written by
[131]. However, the overall desired properties, as well as the properties that each of
the schemes satisfy, were not examined there. We formalize the desired properties
considered in the literature in Section 4.2 and discuss the properties of the existing
schemes in Section 4.5. Table 4.1 summarizes the common schemes and their

properties.

Despite the large body of work on the pricing problem, the existing schemes have
several shortcomings. For example, most of the existing schemes mentioned above
are proposed for specific classes of non-convex cost functions and cannot handle more
general non-convexities. Furthermore, even the ones that are applicable for general
cost functions fail to satisfy some of the key desired properties of the market, such as
economic efficiency or supporting a competitive equilibrium. In addition, none of
the existing schemes is accompanied by a computationally tractable algorithm for
general non-convexities, and they typically rely on off-the-shelf heuristic solvers for

mixed-integer programs that are known to be NP-hard.

In this chapter, we propose a pricing scheme for markets with general non-convex
costs that designs arbitrary parametric price functions and addresses all the issues
mentioned above. Our approach seeks to find the optimal schedule (allocation) and the
optimal pricing rule simultaneously, which generally allows for finding economically
more efficient solutions. The ability to use arbitrarily specified parametric price
functions (e.g., piece-wise linear, quadratic, etc.) enables our approach to design
price functions that are less discriminatory, while still supporting a competitive
equilibrium. Furthermore, our pricing scheme is accompanied by a computationally
efficient (polynomial-time) approximation algorithm which allows one to find the
approximately-optimal schedule and prices for general non-convex cost functions.
Lastly, we extend the proposed pricing rule to networked markets, which, to the best

of our knowledge, are not considered in any of the existing work.

Specifically, this chapter makes the following contributions.
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1. We propose a framework for pricing in markets with general non-convex costs,
using general price functions (Section 4.3.1). Our scheme seeks to find the
optimal price functions and allocations simultaneously, while imposing the
equilibrium conditions as constraints. For this reason, our approach is generally
economically more efficient than the existing methods, while satisfying the
equilibrium conditions. Moreover, the ability to use general price forms allows

one to obtain more uniform prices (smaller “uplifts”).

2. We supplement our pricing scheme with a computationally efficient (polynomial-
time) approximation algorithm for finding the allocations and prices (Sec-
tion 4.3.2).

3. We extend our framework to networked markets, and also propose an approxi-
mation algorithm that can compute the solution efficiently for acyclic networks,

a common scenario in electric distribution networks (Section 4.4).

4. We survey the common pricing schemes proposed in the literature for markets
with non-convex costs and provide a compact summary of their properties
(Section 4.5).

5. We evaluate the proposed method through extensive numerical examples and

show how it compares with the existing methods (Section 4.6).

4.2 Market Description and Pricing Objectives

While our goal in this chapter is to design an economically and computationally
efficient pricing scheme for non-convex networked markets, we begin with the
problem of designing one for a single market, which is difficult in its own right. We
return to the case of networked markets in Section 4.4. When the cost functions are
non-convex, even this seemingly simple problem has proven to be challenging, and a
wide variety of pricing schemes have been proposed for it in the literature. In the

following, we describe the market model and survey the desired market properties.

4.2.1 Market Model

We consider a single market consisting of n competing suppliers (often referred
to as firms or generators). The market is run by a market operator that seeks to
satisfy a deterministic and inelastic demand d for a commodity in a single period.
Each supplier i has a cost function ¢;(g;) for producing quantity ¢;, which may be

non-convex.
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The suppliers’ cost functions are known by the operator, and the operator uses them to
determine the prices. In particular, the operator announces price/payment functions
pi(qi), which determine the payment to supplier i when producing g;. Note that, in
general, the price functions can be different for different suppliers, but it is often

desired to have close-to-uniform prices.

Upon the announcement of the price functions, each supplier i makes an individual
decision, based on the price function p;(-) and the cost function c;(-), about how
much to produce (and whether to participate in the market), in order to maximize
its own profit, i.e., p;(¢g;) — ci(g;). The suppliers are then paid for their production
according to the payment function, and the demand (consumers) is charged for the

total payment.

This model is classical, and has been studied in a wide variety of contexts, initially
under the assumption of convex cost functions for production and linear pricing
functions, but more recently under non-convex cost functions. Non-convex cost
functions are particularly important in the context of electricity markets. As a
result, there is a large literature focusing on non-convex pricing in electricity markets
(see [131] for a recent survey). Often this literature assumes specific forms of
non-convexities (e.g., startup/fixed costs) and specific forms of payment functions
(e.g., linear plus uplift). The results from this literature have guided the design and

operation of electricity markets across the world today.

4.2.2 Pricing Objectives

The key design question in the market described above is how to devise the payment
functions. The goal of the operator is to (1) find the optimal quantities g, and (2)
design the payment functions p;(-) that ensure that the suppliers produce the optimal

quantities g .

There is a huge design space for such payment functions, and there is a large literature
evaluating proposals in the context of non-convex cost functions, e.g., [159, 103, 39,
81,10, 177, 131, 181, 107].

From this literature has emerged a variety of desirable properties which pricing rules
attempt to satisfy. The following is a summary of the most sought-after properties in
this literature. Note that no existing rules satisfy all of these properties for general

non-convex markets.
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1. Market Clearing (a.k.a. Load Balancing): The total supply is equal to the
demand, ie., >\, g7 = d.

2. Economic Efficiency

a) Minimal Production Cost (Suppliers’ Total Cost): The total production

cost of the suppliers, i.e., .7, ¢;(g}), is minimal.

b) Minimal Payment (Total Paid Cost): The total cost that is paid to the
suppliers for the commodity, i.e., 3.7, pi(g), is minimal.

3. Incentivizing

a) Revenue Adequacy: For every supplier, the net profit at the optimum is

nonnegative, i.e., p;(q;) — ¢;(g7) 2 0,fori=1,...,n.

b) Support a Competitive Equilibrium: The optimum production quan-
tity for each supplier is a maximizer of its individual profit, i.e.,
g; € argmax,, pi(q;) — ¢i(q;). or equivalently pi(q?) — ci(q}) =
maxg,zg: Pi(qi) —ci(qi), fori=1,...,n.

4. Simplicity and Uniformity: The price functions are simple and interpretable

(ideally linear: p;(gq;) = A;q;) and non-discriminatory (ideally uniform across

suppliers: p;(q;) = p(qi)).

5. Computational Tractability: The optimal quantities and price functions can

be computed/approximated in time that is polynomial in .

A few remarks about these properties are warranted. Property 1 ensures that the
demand is met. Property 2 is somewhat more elaborate and concerns the economic
efficiency of the scheme, in terms of total expenditure. Even though in certain cases
(e.g., in IP pricing of [159] for startup-plus-linear costs), the suppliers’ total cost
2.y ¢i(q;) and the total paid cost 3\, p;(¢;) match and are both minimal, there
is an inevitable gap between the two in general. Ultimately, the quantity which
determines the cost of satisfying the demand is the total payment to the suppliers
2.1 pi(qi), and therefore Property 2b is arguably more crucial than Property 2a.
However, ostensibly, because the price functions are not directly available while
computing the optimal quantities, many pricing schemes have resorted to minimizing
the total suppliers’ cost }."; ¢;(g;) as a surrogate for the paid cost. In this work, we

advocate a direct approach for minimizing the total payment.
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Property 3 incentivizes the suppliers to follow the dispatch and produce the socially-
optimal quantities. More specifically, Property 3a ensures that the suppliers do not
lose by producing g7, and further, Property 3b assures that it is in each supplier’s
best interest to follow the dispatch. Property 3b is generally a stronger condition than
Property 3a, and if p;(0) = ¢;(0) = 0 Vi, then (3b) implies (3a).

Property 4 concerns having price forms that are “close to linear” (simple) and “close to
uniform” (non-discriminatory), in some sense. One common approach to this is to use
uniform linear prices plus a generator-dependent “uplift,” i.e., pi(q:) = Aqi+u;14,=4:,
and try to minimize the uplifts u;. As Property 4 is subjective by its nature, we allow
arbitrary parametrized price functions in our scheme. However, we also examine our
scheme when applied to the popular minimal-uplift approach. Note that Property 4
also rules out the use of “dictatorial” prices, in which the operator pays the cost (plus

an €) only at the desired amount, and pays nothing for any other amount produced.

The final property, Computational Tractability, is particularly challenging to address
in the context of non-convex markets. Nearly all standard approaches work by
computing the optimal production quantities and then deriving the prices from these
quantities in some way. Under general non-convex cost functions, this first step is
already computationally intractable. Thus, it is important to consider relaxations
(approximations) of other properties if the goal is to enforce computational tractability.
To that end, we consider approximate versions of the Incentivizing and Economic
Efficiency conditions, which we discuss in Section 4.3.2. We propose an algorithm

that satisfies these approximate versions, while being computationally tractable.

4.3 Proposed Scheme: Equilibrium-Constrained Pricing

Most existing schemes in the literature (see Section 4.5 for a detailed summary) are
proposed for specific classes of non-convexities, and are not applicable for more
general non-convex costs. Furthermore, even the ones that are applicable for more
general cost functions either already lack some of the key properties (such as economic
efficiency) or they lose those properties for more general costs. Additionally, the
existing schemes are not accompanied by a computationally tractable algorithm for
general non-convexities, and they typically rely on off-the-shelf heuristic solvers for
mixed-integer programs that are NP-hard. This serves to emphasize that no existing

pricing scheme satisfies the desired properties described in Section 4.2.2.

The main contribution of this chapter is the introduction of a new pricing scheme,

Equilibrium-Constrained (EC) pricing, which is applicable to general non-convex
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costs, allows using general parametric price functions, and satisfies all the desired
properties outlined before, as long as the price class is general enough. The name
of this scheme stems from the fact that we directly impose all the equilibrium
conditions as constraints in the optimization problem for finding the best allocations,
as opposed to adjusting the prices later to make the allocations an equilibrium.
The optimization problem is, of course, non-convex, and non-convex problems are
intractable in general. However, we also present a tractable approximation algorithm

for approximately solving the proposed optimization.

We present the formulation of the optimization at the core of Equilibrium-Constrained
pricing in Section 4.3.1, and then develop an efficient algorithm for solving the

optimization problem approximately in Section 4.3.2.

4.3.1 Pricing Formulation

In this section, we propose a systematic approach for determining a pricing rule
under generic non-convex costs that minimizes payments and satisfies the properties
outlined in Section 4.2.2, while allowing flexibility in the choice of the form of price

functions.

Specifically, consider a class of desired price functions, denoted by #, which can be
an arbitrary class such as linear, linear plus uplift, piece-wise linear, etc. This choice
can be due to interpretability/uniformity reasons or other practical considerations.
The core of Equilibrium-Constrained pricing is an optimization problem for finding
the best price functions in # and the best allocations at the same time. The operator is
buying the commodity from the suppliers, on behalf of the consumers, and therefore
its objective is to minimize the total cost incurred (total payment), subject to the

equilibrium constraints. The optimization problem can be expressed as follows.

Equilibrium-Constrained (EC) Pricing:

n
Y= min i\qi 4.1a
p ,min ;p(q) (4.1a)
P1>e-Pn€P =
s.t. Z gi=d (4.1b)

pi(gi) —ci(qi) 20, i=1,....n (4.1c)
pi(qi) —ci(qi) > ;I,lqu pi(q) —ci(q), i=1,....,n (4.1d)

Constraints (4.1b), (4.1c), and (4.1d) are the Market Clearing, Revenue Adequacy,
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and Competitive Equilibrium conditions, respectively. Constraint (4.1d) can also be

equivalently expressed as
pi(qi) —ci(qi) = pi(q;) —ci(q) Yq;#qi, i=1,...,n. (4.2)

The key difference between EC pricing and the existing methods for pricing in
non-convex markets is that it directly minimizes the total paid cost and seeks to find
both the optimal allocations ¢; and the optimal price functions p;(.) simultaneously.
The scheme enforces the desired economic properties as constraints, while allowing

the use of any class of price functions, rather than imposing a fixed form for the price.

Since this scheme minimizes the total payments, and does not impose any explicit
constraint on the total production cost, it would be natural to ask what happens to

latter quantity as we minimize the former. The minimum total production cost is

defined as ¢* = 3| ¢;(¢"), where
(qf,....qp) =argmin > ci(q,) (4.3)
q1s---59n i=1
n
s.t. Z gi=d (4.3b)
i=1

is the “minimal production cost” solution.

Remark. It is easy to see, by relaxing the last constraint (4.1d), and using con-
straint (4.1c), that the optimal value of the optimization problem (4.1) is bounded

below by the minimum total production cost. Mathematically, we have

n

n
*>  min (qi > min ci(qi =c*
p a0 ;pl((]t) g Z i(qi)

..... :
i=1

s.t. Zqi:d s.t. Zn:qi:d
i=1

pi(qi) = ci(q), i=1,....n

In other words, the total production cost is always upper-bounded by the total
payment. Therefore, minimizing the total payment puts a cap on the total production
cost as well, while the opposite is not true in general (minimizing the total production
cost can result in very high payments, which can be seen in, e.g., the case studies in
Figs. 4.4a and 4.5a).
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Remark. We have imposed nearly all the desired properties as constraints in the
optimization problem (4.1), and it might not be clear whether this optimization
problem has a solution at all. Indeed, there always exists a class of price functions for
which problem (4.1) has a solution, and further, the bound mentioned in Remark 4.3.1

is achieved.

A naive choice of price function, often referred to as dictatorial pricing, is enough to

prove this claim. In fact, one can check that for any price function of the form

=ci(q;)) forqi=q’

ri(qi) )
<ci(qi) forq: #q;

problem (4.1) has an optimal solution q* = ¢°, and it achieves the bound p* = c*.

While Remark 4.3.1 asserts the existence of an optimal price function in general, the
problem may not have a solution for certain specific classes of price functions. The
key point is that problem (4.1) always allows using more sophisticated price forms
(e.g., piece-wise linear) for which it will have a solution; and for any given choice of

price form, it finds the best one, along with the optimal quantities.

Remark. While in most scenarios, the operator is buying the commodity from the
suppliers on behalf of the consumers, and it makes sense to minimize the total payments
21 pi(qi), in general one may seek to balance between the consumers’ and the
suppliers’ costs. In other words, one can take the objective to be a linear combination
of the consumers’ cost 3,;_, pi(q;) and the suppliers’ net cost (negative profit)
21 (ci(qi) —pi(q:)). Without loss of generality, the weighted sum can be normalized
to an affine (i.e., convex) combination (1 —6) 3.7, pi(q:) +0 2, (ci(q:) — pi(q:))
with parameter 6. The optimization can be expressed as follows.

Py = min (1-26) Z pi(qi) +6 Z ci(q:) (4.4a)
i=1 i=1

s.t. Yai=d (4.4b)

pi(gi) —ci(qi) =20, i=1,....,n (4.4¢)
pi(qi) —ci(qi) = ?qu- pi(q) —ci(q), i=1,....,n (4.4d)
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For the cases when the total payment p* = 3.\, pi(q}) from the optimization
problem (4.1) matches the lower bound c* = 37" ¢;(q}) (such as in the linear+uplift
example of Section 4.3.1.1), the solution from (4.4) is the same as that of (4.1), and

the prices will be insensitive to parameter 6.

It is worth mentioning that our algorithm proposed in Section 4.3.2 for solving (4.1)
is also capable of handling the weighted problem (4.4). However, for the sake of

simplicity, we focus on the case of 0 = Q.

To be more explicit about the class of price functions, we consider a general parametric
form for P, specified by p;(q:) = p(qi; @, B;) with two types of parameters & € R",
and B; e R2 fori =1, ..., n, where parameter « is shared among all the suppliers,
and it constitutes the uniform component of the price, while parameter g; is specific
to supplier i. The parameters are in general constrained to be in some bounded
sets A C R and B C R, je., a € A, and Bi € Bforalli =1,...,n. This
parametric form is general enough that it encompasses all the assumed price forms
in the literature. In particular, the linear-plus-uplift form (p;(g;) = Agq; + u;14,-4,) is
a special case of this form, where the shared parameter is the uniform price A, and
the individual parameters are the amount and location of the uplifts u;, §;. Using
the general parametric form, the optimization problem (4.1) can be re-expressed as

follows.

Parameterized Equilibrium-Constrained (EC) Pricing:

n
p'= min > p(gia.fi) (4.52)
qls-s qn =1
aeA
ﬁl -wﬁnEB
n
s.t. > ai=d (4.5b)

P
p(gia,Bi)—ci(q) =20, i=1,...,n (4.5¢)
p(gisa,Bi) —ci(qi) 2 21}2; plgia,B) —ci(q), i=1,....n

(4.5d)

To show a concrete application of this general pricing scheme, we apply our framework
to the popular class of linear-plus-uplift price functions, which has been a standard
form considered in the electricity markets literature [e.g., in 103, 81], and minimize

the uplifts. We derive closed-form solutions for the optimal quantities and prices
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(for general cost functions). In this case, the total payment matches the total cost,
which is the lowest theoretically possible. In contrast, the convex hull (CH) and
minimum-uplift (MU) pricing schemes, which are the most closely related schemes
and use the same type of price functions fail to achieve this bound and typically
exhibit a large gap. The integer programming (IP) pricing, on the other hand, is
capable of achieving the bound, but only for startup+linear cost functions, and not
for more general cost functions such as startup+convex. (See Section 4.5 for more

details on the existing schemes and their comparison with EC.)

4.3.1.1 Linear+Uplift Pricing

As mentioned earlier, using a linear uniform price plus an uplift term is a common
choice of class of price functions, in practice. For this class, we have p(q;; 4, u;, §;) =
Agq; +u;ly-4,, where A, uy,...,u, > 0. Without loss of generality, we can assume
d: = q;, i.e., the optimal location of uplift coincides with the desired production
level, which is intuitive (see the appendix for proof). The optimization problem (4.5)

can then be reduced to

n
Puplift = qlf’n“i.’f}]n Z(ﬂqi + ;) (4.6a)
120 i=1
UL,y >0
n
s.t. Z gi=d (4.6b)
i=1
Agi+u;—ci(q;)) 20, i=1,...,n (4.6¢)

Agi +u; — ¢i(qi) = H;I;:IX Aq;—ci(q), i=1,...,n (4.6d)
q;74i

Remark. From Remark 4.3.1, we know that p,’;pl i > c*. On the other hand, plugging
the feasible point (q; = q? Vi, 1=0, u; = cl-(q?) Vi) into (4.6) results in Pszm <c
Therefore prlift =c".

Problem (4.6) has potentially many solutions, and the solution g; = q? Vi, A =
0, u; = c,-(q?) Vi corresponds to the naive pay-as-bid scheme, which is equivalent to
having no uniform price and paying each supplier for its own cost. To obtain price
functions that are close to uniform, it is desirable to pick a solution for which the
uplifts are minimum (in €] sense, for example). That is equivalent to adding a layer

on top of the optimization problem (4.6) to pick the minimal-uplift solution among
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Cost

Quantity

Figure 4.1: An illustration of the set A for an example with 3 non-convex cost
functions. The three blue curves are the cost functions. The (dashed and solid) red
lines lie below all the cost functions and their slopes are in A. The (slope of the)
solid red line corresponds to the largest element of A.

all the solutions, i.e.,

n

min 2 u; (4.7a)
s.t.  (g,A,u) € argmin (4.6a) (4.7b)
qAu
s.t. (4.6b), (4.6¢), (4.6d) (4.7¢)
where q and w denote (g1, ..., q,) and (uy, ..., u,), respectively.

Let us define A as the set of all A’s for which the linear price 1q lies below all the
cost functions, i.e.,
A={1>20|Aq < ci(q), Vq,Vi}. (4.8)

Figure 4.1 illustrates this set for an example with three non-convex costs.

The solutions to problems (4.6) and (4.7) can be found in closed-form, and the

following summarizes the results.

Proposition 18. The set of optimal solutions of problem (4.6) is given by
q; =4}, Vi

147 €A

ui =ci(q;) —Aq;, Vi

Proposition 19. Problem (4.7) has a unique optimal solution as

q; =4}, Vi

14" =max A

ui =ci(q;) —Aq;, Vi
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See the appendix for proofs.

Note that there were two potential alternatives to the two-stage optimization in (4.7)
for picking a minimum-uplift solution. One may have attempted to enforce uniformity
as a constraint. However, the problem with this is that imposing, for example, box
constraints on u requires knowledge of reasonable upper-bounds on the uplifts, which
may not be available; and on the other hand, insisting on exact uniformity makes the
problem infeasible in most non-convex cases. The other alternative is to minimize
a combination of the two objectives in (4.6) and (4.7). In this case, the weighted
objective becomes )", (Ag; + yu;) for some appropriate constant y, and it is not
hard to show that the solution will be the same as that of the proposed two-stage

optimization.

4.3.2 An Efficient Approximation Algorithm

The optimization problem (4.5) defines a pricing rule that satisfies the desired
properties in any non-convex market. For specific classes of cost functions, similar to
the existing approaches, one may be able to solve this optimization problem using off-
the-shelf solvers. For generic non-convex cost functions, however, there is no existing
algorithm that can solve the optimization problem (4.5) to optimality. Furthermore,
even finding an approximate solution, e.g., by discretizating the variables, requires a
brute-force search, which quickly becomes intractable. In this section, we design
a computationally efficient algorithm for solving the problem (4.5) approximately,
based on decomposing it into smaller pieces, which works for general non-convex
cost functions. This approximation algorithm can also be used to provide tractable

calculations of some of the other non-convex pricing rules such as IP pricing.

Before going through the details of the algorithm, let us define the notion of an
approximate solution to (4.5), which we consider. One could define an approximate
solution as a value that is close enough, in a certain sense, to the optimal solution
(q’l‘, ces g, @, ﬁ’l‘, ..., 3,). However, no matter how close that approximation is to
the optimal solution, that per se does not guarantee anything about the properties
that the scheme will satisfy. Instead, we define an approximate solution to (4.5)
as a set of quantities ¢, ..., g, and price parameters a, 51, ..., 3, for which the
Market Clearing condition holds exactly, the Revenue Adequacy and Competitive
Equilibrium conditions are relaxed by an €, and the total payment is at most ne away

from the optimal. More formally, it is defined as follows.

Definition 1. (gy,...,qn, @, B1,...,B) is called an e-approximate solution to
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(4.5) if it satisfies

n
Z gi =d, (Market Clearing)

i=1
plgisa,Bi) —ci(qi))+e>0, i=1,...,n, (e-Revenue Adequacy)
p(qiia, Bi) — ci(qi) + € > p(gi . Bi) = ci(q)), Vgl #qi, i=1,...,n,
(e-Competitive Equilibrium)

and

n
Z p(gisa,Bi) < p* +ne. (e-Economic Efficiency)

i=1

Given this notion of an approximate solution, we can move towards designing the
algorithm. The optimization problem (4.5) looks highly coupled, at first, since the
constraints share a lot of common variables. However, one can see that, for a fixed
value of a, the objective becomes additively separable in (g;, ;). Furthermore (again
for fixed «), constraints (4.5¢),(4.5d) involve only the i-th variables (g;, 8;) for each
i. Although the Market Clearing condition still couples the variables together, this

observation allows us to reformulate (4.5) as

* = i i i s 49
p" = min Z;g (gi; @) (4.9a)
€A =
n
st. Y qi=d, (4.9b)
i=1
where
gi(qg;a) =min p(q;a,p;) (4.10a)
BieB
st.  p(g;a,Bi) —ci(q) =0, (4.10b)
p(q:a,Bi) —ci(q) > p(¢'sa,.Bi) —ci(q’), Vq' #q, (4.10c)
foralli=1,...,n.

Therefore, for any fixed value of @ and ¢;, the optimization over §; can be done
individually, as in (4.10). What remains to address, however, is the coupling of
the variables as a result of the Market Clearing constraint. One naive approach
would be to simply try all possible choices of (¢, ..., qg,) and pick the one that has
the minimum objective value. This is very inefficient. Instead, we take a dynamic

programming approach, and group pairs of variables together, defining a new variable
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Figure 4.2: An example of the binary tree defined by Algorithm 1 for n = 8. The
faded circles correspond to the added dummy nodes.

as their parent. We then group the parents together, and continue this process until
we reach the root, i.e., where there is only one node. During this procedure, at each

new node i, we need to solve the following (small) problem

gi(g;@) =min  g;(g;; )+ gr(qr; @)
qj-9k (411)

S.t. q; +qx = ¢,

for every g, where j and k are the children of i. At the root of the tree, we will be
able to compute groot(d; @). Figure 4.2 shows an example of the created binary tree
for this procedure for n = 8. This procedure can be repeated for different values of a,

and the optimal value p* can be computed as ming, groot(d; @).

The problem with recursion (4.11) is that it requires an infinite-dimensional compu-
tation at every step, since the values of g;(¢; @) need to be computed for every g.
To get around this issue, we note that the variables g; live in the bounded set [0, d],
and hence can be discretized to lie in a finite set Q, such that every possible g; is at
most d(€) away from some point in Q. Similarly, if the @ and §;’s are continuous
variables, we can discretize the bounded sets A and B into some finite sets A’ and
#’, such that every point in A (or B) is at most d(€) away, in infinity-norm sense,

from some point in A’ (or B’). See the appendix for details.

For finding an e-approximate solution, (4.10) is relaxed to

gi(q:a) = Jmin p(q; ., Bi) (4.12a)
st.  p(g;a,B;) —ci(q) +€ >0, (4.12b)

p(g;a.B) —ci(q) +e 2 p(q'sa.Bi) —ci(q'), Vq' #4q,
(4.12¢)

foralli =1,...,n, and (4.11) remains the same, except the variables (qj, qr) take
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Algorithm 1 Find an e-approximate solution to the optimal pricing problem (4.5)

10:
11:
12:

13:
14:
15:
16:
17:
18:
19:
20:

21:
22:
23:
24:
25:
26:
27:
28:

1
2
3
4.
5:
6
7
8
9

: Imput: n, c1(.),...,cn(L),p(.5.), €
: for  in A’ do

S=1:n

foriin S do

end for
while |S| > 2 do

for i in Syew do

children
end if
end for
S = Snew
end while
[/, k] =S

end for

a* = argmin  groot(d; @)
a€eA’

qI'OOt = d

fori=root: -1:n+1do

end for
fori=n:-1:1do
Bi =bi(gq;;a")
end for
return (q3,....q;.a"B],....5;)

compute g;(q;a) for all g in Q, using (4.12)
Snew = S(end) +1 : S(end) + [%w
[/, k] = indices of children of i

if k=0theng,(;a)=g;(;a)
else, compute g;(q;a) for all g in Q, using (4.13)

compute g, (d; @), using (4.13)

(47, 4;] = xi(g]; @), where [ ], k] = indices of children of i

> for the leaves

> while not reached the root

> for the intermediate nodes

> it has two

> at the root
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values in Q, i.e.,

gi(q;a) = min_ g;(q;;a)+gi(qi; @)
9axeQ (4.13)

S.t. qi + 4k = q,

for all i > n. We denote the optimizer of (4.12) by b;(gq; @), and the optimizer
of (4.13), which is a pair of quantities (g;, g«), by x;(g; @). The full procedure is

summarized in pseudocode in Algorithm 1.

While not immediately clear, the proposed approximation algorithm can be shown
to run in time that is polynomial in both n and 1/€ (in fact, linear in n). Further,
the solution it provides is e-accurate under a mild smoothness assumption on the
cost and price functions, which holds true for almost any function considered in
the literature. These two results are summarized in the following theorem, which is

proven in the appendix.

Theorem 20. Consider c;(.) and p(.;.) that have at most a finite number of discon-
tinuities and are Lipschitz on each continuous piece of their domain. Algorithm 1
finds an e-approximate solution to the optimal pricing problem (4.5) with running
time O (n(1/6)11+12+2), where n is the number of suppliers, and 1| and [l are the

number of shared and individual parameters in the price, respectively.

It is worth emphasizing that while there are /1 + nl, variables in the price functions
in total, parameters /; and /> do not scale with n, and are typically very small
constants. For example, for the so-called linear-plus-uplift price functions [} = [, = 1.

Therefore, the algorithm is very efficient.

We should also remark that if one requires the total payment in Definition 1 to be at
most € (rather than ne) away from the optimal p*, the running time of our algorithm
will still be polynomial in both n and 1/e, i.e., O (n3(%)“”2+2). See the appendix

for details.

4.4 Equilibrium-Constrained Pricing for Networked Markets

We now consider the more general problem of finding an efficient pricing scheme
in a networked market. The networked market we consider has n suppliers, located
at the nodes (vertices) V = {1,...,n} of a network, and connected through lines
(edges) E, where, without loss of generality, the edges are defined to be from the
smaller node to the larger node (i.e., V(i, j) € E, i < j). The i-th supplier has a cost

function c¢;(g;) for producing quantity g;, which may be non-convex, as before, and
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there is an inelastic demand d; at each node i. The lines connecting the nodes can
possibly have certain capacities for the flows they can carry. We denote the flow of
any line e = (i, j), from i to j, by f,, and its limits (capacity) by f, and £, (the flow

from j toiis —f,).

Note that if there are multiple suppliers co-located in a market, we can simply assign
them each their own vertex, and connect them through paths with infinite capacities.
In other words, a node with multiple suppliers can be simply replaced with a “line

graph” composed of those suppliers and infinite-capacity edges.

4.4.1 Pricing Formulation

A key benefit of EC pricing is the ease of generalization to the networked setting.
There are no current pricing rules that can be readily applied to the networked
case. In this setting, our Equilibrium-Constrained pricing can be formulated as the

following optimization problem.

Networked Equilibrium-Constrained (EC) Pricing:

n
"= min i(qi 4.14a
p =  min ;p (gi) (4.14a)
{fe}eeE -
Plse-sPn€P
s.t. gi—di= > fap- D, fuar i=l....n (4.14b)
(i,jJ)EE (J'»l%EE
fe<fe<fe €€E (4.14c)
pi(qi) —ci(qi)) 20, i=1,...,n (4.14d)

pi(qi) —ci(qi) = ?}f; pi(q) —ci(q), i=1,....,n (4.14e)

The objective is the total payment, as discussed before, and the optimization is over
quantities ¢;, line flows f,, and price functions p; € #. Constraint (4.14b) is the
Market Clearing condition (or Flow Conservation) for each individual node, i.e., the
net production at each node should be equal to its outgoing flow. Constraint (4.14c)
enforces the line limits (Capacity Constraints). Constraints (4.14d) and (4.14e) are
Revenue Adequacy and Competitive Equilibrium, respectively, as before. The key
difference between the networked setting and the single-market one is that here, the
Market Clearing condition is spread across the network, and we have to solve the

problem for the flows as well.
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Remark. When the capacity constraints (4.14c) are relaxed (f, = —o, f, = oo, Ve €
E), the networked problem reduces to the single-market one. I; this case, the solution
to the optimization problem (4.14) reduces to that of (4.1). That is because the only
constraint involving the flows would be (4.14b), and we can always finds flows that
satisfy it, as long as 3" q; — 2.i_, d;i = 0, which is the conventional Market Clearing

condition.

Assuming a parametric form p;(g;) = p(q;; @, B;) for P, with shared parameters
a and individual parameters S; as before, the proposed pricing can be expressed as

follows.

Parameterized Networked Equilibrium-Constrained (EC) Pricing:

n
p*= min p(giia, B) (4.152)
qi1se--» qn =1
{fe}eeE
aeA
BisePn€B
s.t. gi—di= Y fip— D, fuir i=l...n (4.15b)
7 7
(i.j)€E (jd)eE
feSfesSfo e€E (4.15¢)
p(gisa,Bi) —ci(q) 20, i=1,...,n (4.15d)

plgisa, Bi) —ci(qi) > glqu p(qgia,Bi)—ci(q), i=1,...,n
(4.15e)

4.4.2 An Efficient Approximation Algorithm

For certain classes of non-convexities, the optimization problem (4.15) can still
be solved using off-the-shelf solvers, similar to those used in the other methods
for the no-network case. However, those algorithms cannot handle more general
classes of non-convexities. In this section, we develop a computationally efficient

approximation algorithm for general non-convex costs, for a special class of networks.

A special yet important class of networks are acyclic networks, which are a typical
topology in many markets, including electricity distribution networks. Acyclic
networks have a tree topology (they do not have cycles), which allows us to devise an
efficient algorithm for them. In the remainder of this section, we limit our attention

to these networks. The main ideas extend directly to more general networks, as
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long as there are not “too many cycles” in the network in some sense (i.e., bounded

tree-width networks). We have focused on the acyclic case due to space constraints.

Without loss of generality, let us denote the first node as the root of the tree, and
nodes with only one neighbor as the leaves. Every node (except the root) has a
unique parent, defined as the first node on the unique path connecting it to the root
node. The set of nodes that have a given node i as their parent is said to be node i’s
children. It can be shown that any tree with arbitrary degree can be transformed into
a binary tree, i.e., a tree where each node has a unique parent and at most 2 children,

with O (n) nodes (see the appendix). Thus, we can focus on binary trees.

For a node i, let ch; (i), chy (i) denote its children (ch; (i) = 0 and/or ch, (i) = () when

i has less than two children). The problem can then be written as

n
pi= min ) p(gia.f) (4.162)
qis---» qn =1
fl’“"fn
acA
BisePn€B
s.L. qi—di = fany * foroy — fi» i=1,....n (4.16b)
fisfisfi i=1....n (4.16¢)
p(giza,Bi) —ci(gi) 20, i=1,....n (4.16d)

p(qgisa,Bi) —ci(qi) 2 21,13; p(gia,Bi)—ci(g), i=1,...,n
(4.16e)

where f; represents the incoming flow to each node i from its parent, and froor =
froot =0.

Similarly as in the single-market case, we define an e-approximate solution to this

problem.

Definition 2. (¢1,...,49n, f1,-- -5 fu» @ B1,--.,Bn) is called an e-approximate so-
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lution to (4.16) if it satisfies

lgi = di = fen i) = Jem@y + fil <€, i=1,...,n, (e-Load Balancing)
fisfisfi i=1....n, (Flow Limit)
p(gi;a,Bi) —ci(qi))+e€>0, i=1,...,n, (e-Revenue Adequacy)

p(qisa, Bi) —ci(gi) + € = p(gp @, Bi) — ci(q)), Vgi #qi, i=1,...,n,
(e-Competitive Equilibrium)

n
Z p(qis@, Bi) < p* +ne. (e-Economic Efficiency)
i=1

The main difference from the definition in the single-market case is that the Market
Clearing condition has been replaced with e-Load Balancing and exact Flow Limit

conditions here.

Note that the minimization over the variables §; in problem (4.16) can be done

“internally,” and the problem can be re-expressed as

n
* = min i(gisa 4.17a
p* = min ;g (g @) (4.17a)
fl"“vfn =
a€A
S.t. qi — di = fchl(i) + f;}hz(i) — ﬁ, i=1,...,n (4.17b)
fisfisfi i=1l....n (4.17¢)
where
gi(g;a) =min  p(q;a,B) (4.18a)
Bi€eB
st. p(g;a,Bi) —ci(q) 20, (4.18b)

p(q;a,Bi) —ci(q) > p(¢'sa,Bi) —ci(q'), Vq' #q, (4.18c)
foralli=1,...,n.

The key insight is that the tree structure of the constraints (4.17b) allows us to write

the optimization problem in a recursive form as follows:

p* = min A0 (0; @) 4.19)
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Algorithm 2 Find an e-approximate solution to the optimal networked pricing
problem (4.16)

1: Input: G=(V,.E), ¢1(.),...,cu(L), p(.;.), €

2: for @ in A’ do

3: for all nodes i do
4: compute g;(q;;a) for all g; in Q;, using (4.22)
5: end for
6: for all nodes i #root (in bottom-up order) do
7: compute /;(f; ) for all f in F;, using (4.21)
8: end for
9: compute /00(0; @), using (4.21)
10: end for
11: @ = argmin 0 (0; @)
aeA’
12: froot =0

13: for all nodes i (in top-down order) do

e gy oy S ] = Yilf5 @)

1 B =bilgha’)

16: end for

17: return (q7,....q,, f{s - fr. @ By, By)

where
hi(fi;) =  min 8i(qi; @) + heny iy (fen, (5)> @) + heny (i) (fenp (i) @) (4.202)
Qi feny (i)»Jeny (i)
s.t. qi — di = fen, (i) + fen(i) — fi (4.20b)
Jeni() < Jeny) < femy () (4.20c)
Jano() < fem() < femp(i) (4.20d)

foralli=1,...,n.

Now, this recursive form is amenable to dynamic programming. However, since the
variables are continuous, each step still requires an infinite-dimensional search. In
order to tackle this issue, we can discretize the variables and solve the following
approximate versions.

hi(fi;a) = miél 8i(qis @) + heny iy (fen, (i) @) + henyi) (fenp (i) @) (4.21a)

qi€li
Jeny (i) €Feny (1)
Jehy (1) €Feny (1)

s.t. |gi = di = fen, (i) = fena(p) + fil S € (4.21b)

foralli=1,...,n, where Qy,...,0Q, and Fy, ..., F, are properly-defined discrete
sets (see the appendix for details). We denote the optimizer (triple) of (4.21) by
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yi(fi: ).
gi(q;a) = ﬁ’rgigg, p(q; @, Bi) (4.22a)
st.  p(g;a,B;) —ci(qg)+e >0, (4.22b)
p(q;a,Bi) —ci(q) +€ =2 p(q'sa,B) —ci(q), Yq #gq,
(4.22¢)

foralli =1,...,n. The optimizer of (4.22) is denoted by b;(q; @).

The steps of the procedure are summarized in pseudocode in Algorithm 2, and the

following result summarizes the theoretical guarantee of the algorithm.

Theorem 21. Consider c;(.) and p(.;.) that have at most a finite number of disconti-
nuities and are Lipschitz on each continuous piece of their domain. Algorithm 2 finds
an e-approximate solution to the optimal networked pricing problem (4.16), with
running time O (n(l/e)ll+ma"{lz’l}+2), where n is the number of suppliers, and 1| and

l> are the number of shared and individual parameters in the price, respectively.

It is worth mentioning that the network algorithm developed in this section suggests
another way of solving the no-network case as well, by replacing the single market
with a line graph with infinite capacities. This algorithm will in turn have time
complexity O (n(é)l”lz”), which is the same as that of the one developed in
Section 4.3.2.

4.5 Existing Pricing Schemes

In this section, we review the existing pricing schemes in the literature and summarize
their properties. No prior pricing rule for general non-convex markets satisfies all
the properties discussed in Section 4.2.2. However, it is possible to achieve all the
properties in the case when the cost functions are convex via a classical approach:
shadow pricing. We first briefly illustrate how shadow pricing works for the convex
case, and then survey some prominent approaches in the literature that seek to extend
the properties of shadow pricing to the non-convex case, contrasting them with the
EC scheme.

4.5.1 Pricing in Convex Markets
When the cost functions c;(.) are convex, a simple and uniform pricing rule, often
referred to as shadow pricing or marginal-cost pricing [201, 32], can achieve all the

above-mentioned properties. The pricing scheme works as follows. The operator
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first solves the convex program

n

i i(qi 4.23
i, Qe 425
n
s.t. Zq,-:d Q) (4.23b)
i=1

where A is the dual variable corresponding to the load-balance constraint. Let
qi>---»q, and " denote an optimal primal-dual pair of this problem (if there are

multiple dual solutions, take A* to be the smallest). A payment function of the form
pi(qg)=A"q; i=1,....n (4.24)

satisfies all the properties outlined in Section 4.2.2, and it is relatively straightforward

to see that.

For simplicity, assume that c;(.) are differentiable. The optimal solution of (4.23)

satisfies the following (KKT) conditions (which does not require convexity):

Yinig;=d

Z—Z(q;‘) =A% i=1,...,n
Next, note that supplier i’s profit-maximization problem is

max  A°q; — ci(q;).

qi

Since ¢;(.) is convex, the objective is concave, and any point at which the derivative
is zero is a global maximizer. In particular, the derivative at g; is zero, because of the
KKT conditions, and therefore that is a solution to the supplier i’s profit-maximization
problem. As a result, the scheme supports a competitive equilibrium that clears the
market and minimizes the production cost, while using a price form that is simple
and uniform. Figure 4.3 illustrates the optimal quantities and the price function for

an example with three suppliers.

Note that the total payment of this scheme is 3./, pi(¢}) = A*d, which can be
generally higher than }}"_, ¢;(g}). One can always opt for a non-uniform affine price
function as p;(g;) = A*q; + b;, with b; = ¢;(¢}) — A*q;, which has lower payments,
and makes )\ pi(g}) exactly equal to 3", c;(¢q;). However, if one requires a
uniform and linear price function, it can be shown that p;(g;) = 1*q; has the lowest

total payment among all such functions.
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Figure 4.3: An illustration of shadow pricing for the case of 3 convex cost functions.
The points indicated by * show the optimal quantities. The 3 functions have the same
derivative at their optimal quantities, and the tangent line lies below the function
(because of convexity). The red (solid) line that passes through the origin is the
uniform price function, which is parallel to the three lines.

4.5.2 Pricing in Non-Convex Markets

If the cost functions are non-convex, the approach of shadow pricing, described
above, fails. This is because the net profit of each supplier is no longer a concave
function, and its stationary points do not necessarily correspond to the maximum. In

other words, there may not be a subderivative at g} supporting the cost function c;(.).

There have been several schemes proposed in the literature that attempt to address
this issue and design pricing rules that satisfy the properties discussed above in the
context of non-convex cost functions. We review the most promising ones here.
Some of the schemes maintain a uniform pricing rule with additional discriminatory
side-payments called “uplifts” for incentivizing the suppliers to follow the dispatch,
while others raise the uniform price so that it is revenue-adequate. A summary of the

pricing schemes, along with their properties, is provided in Table 4.1.

Integer Programming (IP)

[159] proposed a pricing scheme for non-convex cost functions that are in the form of
a fixed (start-up) cost plus a linear marginal cost, sometimes referred to as “IP pricing.”

This scheme uses uniform marginal pricing for the commodity and discriminatory



Table 4.1: Summary of common pricing schemes and their properties.
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Propert Price form Proposed for Market | Revenue Supp o.rt.s Economically
Seheme |7 (g = ci(gi) = Clearing | Adequate Competitive Efficient
pitdi) = g = & q Equilibrium

il;?igg Aq; Convex v v v v
1P Agi +uilyso Startup+linear v v v v
MU/CH Agi + uily=g: Startup+convex Vv Vv v x
SLR Aqi Startup-+linear v v x x
PD Aq; Startup+linear v v x x

EC .
(proposed) User-specified General v v v v

Notes. 1P: Integer Programming. MU: Minimum Uplift. CH: Convex Hull. SLR: Semi-Lagrangean
Relaxation. PD: Primal-Dual. EC: Equilibrium-Constrained. The results in this table assume solving the
formulation for each scheme exactly. However, in practice, these schemes rely on numerical solvers for their
problems, and if the problem is non-convex, there is no guarantee of maintaining these properties in general.
In particular, the IP scheme requires a non-convex solver. The MU/CH, SLR, and PD schemes, for the cost
functions that they are proposed for (i.e., startup+convex or startup+linear), require only convex solvers and
therefore satisfy the checked properties exactly. The EC scheme is accompanied by an efficient algorithm
for solving the non-convex problem for general cost functions, which satisfies the exact Market Clearing
property and the e-approximate versions of the other three properties (see Section 4.3.2).

pricing for the integral activity of the suppliers. It is based on (i) formulating an
optimization similar to (4.23), as a mixed integer linear program (MILP) and solving
it for optimal allocations, (ii) reformulating the original MILP as an LP by replacing
the integral constraints with forcing commitment choices equal to their optimal
values, and (iii) solving the LP problem and using the dual variable A of Market
Clearing constraint as the uniform price and the dual variables {u}} of the forced

equality constraints as discriminatory uplifts: p;(g;) = A*q; + u1 {g; > 0}.

IP pricing uses a uniform price plus a discriminatory uplift to clear the market
efficiently such that every supplier’s net profit is zero. As a result, both total payments
and total production costs are minimized at the same time. [159] show that the
optimal solutions generated by IP pricing are optimal to the decentralized profit
maximization problems for every supplier, and thus they support a competitive
equilibrium. However, IP pricing assumes knowledge of the optimal solutions to the
unit commitment problem and thus is not intended as a practical approach to find the
optimal allocation. [103] point out that uniform price generated under IP pricing can
be volatile (i.e., a small change in demand could lead to a big change in the uniform

price) and uplifts could be generally very large.
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Minimum Uplift (MU) / Convex Hull (CH)

To avoid the unwanted properties of IP pricing (i.e., volatility and instability), a
pricing scheme, proposed in [103] for the (non-convex) class of startup-plus-convex
cost functions, offers minimum uplifts that incentivize each supplier to follow the
dispatch rather than maximize their own profits in the absence of uplifts. The scheme
is based on solving the mixed-integer program minimizing the total production cost
and minimizing total uplifts. Given a fixed uniform price A, each supplier chooses
between following the dispatch to receive the uplifts or not. The uplifts can be
viewed as the extra potential profit that the suppliers can make by self-scheduling and
maximizing their own profit. [81] refined the MU pricing and proposed the concept
of Convex Hull pricing, which is based on (i) replacing the non-convex cost of the
original program with its convex hull to formulate a new LP and (ii) solving the new
LP and using the dual variable of the Market Clearing constraint as the marginal
price and deriving the lost opportunity cost as the minimum uplifts to incentivize
suppliers’ compliance. The final payment p;(g;, z;) as a function of quantity ¢; and
commitment choice z; is in the form of a uniform price 4™ and a discriminatory uplift
u? as pi(qi) = Vg +u;1{q; = q}}.

Even though MU/CH pricing minimizes total uplifts, the generated marginal price
might end up being high, and the payments can be much higher than those of the
other schemes. In general, the total payments under this scheme might end up being
much higher than the total production costs, which defeats the purpose of minimizing
the costs. Even for the class of startup-plus-linear cost functions, where IP pricing
is optimal (the total payment is equal to the total production cost, and they are
both minimal), MU pricing is not economically efficient, as it fails to minimize the

payments.

On the computational side, although [107] propose a polynomially-solvable primal
formulation for the Lagrangian dual problem by explicitly describing the convex
hull for piecewise linear or quadratic cost functions, describing the convex hull of
cost functions could be very challenging in general and thus makes the problem

computationally intractable.

As an aside, MU and CH would not be equivalent if the Market Clearing constraint
was an inequality. In that case, the side-payments in CH would be typically larger
than those in MU, due to Product Revenue Shortfall [181].
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Semi-Lagrangean Relaxation (SLR)

[10] introduced a semi-Lagrangean relaxation approach to find a uniform price that
is revenue-adequate at the same solution for quantity and commitment choices as
the original optimization problem, for cost functions of startup-plus-linear form.
The scheme is based on formulating and solving the SLR of the mixed-integer
program by semi-relaxing the Market Clearing constraint with standard Lagrange
multiplier 4. The solution under SLR satisfies the constraints in the original MIP
and makes the duality gap between MILP and SLR zero. Though the payment
function p;(g;) = 1*g; under SLR pricing is high enough to avoid negative profits
for suppliers, it incentivizes the suppliers to deviate and operate at full capacity, and

total payments usually end up being much higher than total costs of production.

Primal-Dual (PD)

Another revenue-adequate pricing scheme, proposed by [177], exploits a primal-dual
approach to derive a uniform price to guarantee that dispatched suppliers are willing
to remain in the market (revenue adequacy). The scheme works for cost functions
with the form of start-up cost plus linear cost, and the prices have shown not to
deviate much from that of [159]. The approach is based on (i) relaxing the integral
constraint of the original MILP to formulate a primal LP problem, (ii) deriving the
dual LP problem of the primal LP problem, (iii) formulating a new LP problem that
seeks to minimize the duality gap between the primal and dual problems subject to
both primal and dual constraints, and (iv) adding back the integral constraints as well
as nonlinear constraints to ensure that no supplier incurs loss and solving the new

problem for optimal solutions g7, z} and A".

Though this scheme may be implemented using standard branch-and-cut solvers,
it is computationally intractable in general. The prices p;(q;) = A*¢; and profits
produced under PD do not significantly deviate from dual prices if integral constraints
are relaxed and thus are always bounded. However, as a revenue-adequate pricing
scheme, PD fails to form a competitive equilibrium as suppliers are incentivized
to operate at full capacity. In general, total payments are much higher than total

production costs.

4.6 Experimental Results
In this section, we compare and contrast EC pricing with the existing approaches

using numerical experiments on common case studies. Specifically, we compare
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the payments and uplifts generated from different pricing schemes, including IP,
CH, SLR, PD, and EC. Among all these schemes, only EC allows flexibility of the
payment form. As a result, we further divide EC into one with a payment function in
the form of linear marginal price plus uplifts and another pricing with a payment
form of piecewise linear marginal prices plus uplifts. In practice, specific limits on
the number of sections and the maximum slope among all sections can be used to
further restrict EC. For convenience, we name these variations of EC in terms of
number of piecewise sections of its payment form, e.g., EC2 refers to EC with a

payment function in the form of 2 piecewise sections plus uplifts.

First, we apply all these pricing schemes to a single market example from [103],
which is a modification of Scarf’s example developed in [179]. Second, we adapt
cost functions in the modified Scarf’s example to be quadratic plus startup cost in
order to further explore how these schemes generalize to different cost functions.

Finally, we consider a further generalization to a simple 2-node networked market.

4.6.1 Case 1: Linear plus startup cost

Table 4.2: Summary of the production characteristics in the modified Scarf’s example.

Type Smokestack | High Tech | Med Tech
Capacity 16 7 6
Minimum output 0 0 2
Startup cost 53 30 0
Marginal cost 3 2 7
Quantity 6 5 5

We consider a modified Scarf’s example, as proposed in [103]. The parameters are
listed in Table 4.2. We assume that demand is inelastic with a maximum capacity
of 161 units. We restrict the payment function of EC1, EC2, EC3, and EC4 to
respectively have one, two, three, and four sections and impose that the marginal
price of any section cannot exceed the maximum marginal price for any supplier
operating at full capacity. Figure 4.4a shows total payments for different demand
levels, while Figure 4.4c shows the corresponding uplifts of the pricing schemes
that apply, i.e., CH, EC1, EC2, EC3, and EC4. Payments of two revenue-adequate
pricing schemes, including SLR and PD, are higher than total costs in general. IP,
EC1, EC2, EC3, and EC4 achieve the minimum payments equal to total costs. CH
achieves the minimum payments at low demand levels, and its total payments surpass

total costs as demand gets high. As for uplifts, EC4 achieves the smallest among
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the five pricing schemes. Total uplifts of CH and EC1 are close to each other at a
low demand level and that of EC1 increases significantly when demand approaches
capacity. This is not surprising, as total payments of CH go above total costs at a
high demand, making it possible for relatively smaller total uplifts. It is worth noting
that startup prices and marginal prices for IP are volatile and unstable. Figure 4.4d
and 4.4e demonstrate that the more complex we allow payment functions of the EC
family, the smaller total uplifts we can achieve, which means more uniform prices
are across suppliers. In practice, there is apparently a trade-off between complexity
and uniformity of payment functions among the EC family, and this will be a design
choice for the independent system operator (ISO). Overall, EC4 outperforms other

pricing schemes in terms of total payments and total uplifts.
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Figure 4.4: An example with cost functions of the form of linear plus startup cost.

4.6.2 Case 2: Quadratic plus startup cost

Table 4.3: Summary of the new cost functions in the modified Scarf’s example.

Type Smokestack High Tech Med Tech
Cost function H 13—6q2 +53«1{q >0} ‘ %QZ +30%1{g >0} ‘ %qz
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Figure 4.5: An example with cost functions of the form of quadratic plus startup cost.

To further explore how these pricing schemes generalize to different cost functions,
we modify the cost functions of the example above. Table 4.3 describes the new
cost functions for each supplier. Since it is not clear how to generalize SLR and
PD, we focus on a comparison among IP, CH, EC1, EC2, EC3, and EC4. We
restrict the payment function of EC1, EC2, EC3, and EC4 to respectively have one,
two, three, and four sections with the marginal price of any section bounded by the
maximum of marginal price for any supplier operating at full capacity. As can be
seen in Figure 4.5a, EC1 EC2, EC3, and EC4 achieve the possible minimum total
payments equal to total costs. Total payments of IP and CH are both above total
costs, and the gap between total payments and costs grows as demand increases.
Observe that the demand here ranges from 1 to 160 because marginal price of CH
increases dramatically at the capacity level, and the plot over the interval (1, 160)
would be a flat line if the whole range were covered. Figure 4.5¢ shows that total
uplifts of EC1 are much larger than that of CH and EC2. At a low demand level,
uplifts of EC1 and EC2 are close to each other. As demand increases, uplifts of EC2
are a little larger than those of CH, in order to maintain a smaller overall payment.
There is a trade-off between minimizing total payments and minimizing total costs.
Allowing the flexibility of payment function form enables EC2 to perform better
than either CH or EC1 in terms of total payments and uplifts. Figure 4.5d and 4.5¢
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# Smokestack: 6
# High tech: 5
Demand: 40

# Med tech: 5
Demand: 20

Figure 4.6: A schematic drawing for two connected markets with a
constraint on flow capacity.

show a relationship between complexity of payment function form and magnitude of
total uplifts among the EC family pricing schemes. As in the case of cost function
being start-up plus linear cost, it is not surprising to see that more complex payment

functions tend to allow smaller total uplifts, i.e., more uniform prices across suppliers.

4.6.3 A Networked Market with Capacity Constraints

One advantage EC has over all the other pricing schemes is its generality. Specifically,
EC can be applied to networked markets. In this section, we divide a single market
with a fixed total demand 60 as described earlier into one market with only med tech
suppliers and the other one with the smokestack and high-tech suppliers. The cost
functions of the suppliers are the same as defined earlier, i.e., linear plus startup
cost. As pictured in Figure 4.6, these two markets are connected via a flow capacity
constraint. We consider two different cases of non-uniform marginal pricing and
uniform marginal pricing for these two markets. Figure 4.7 shows how total payments,
total uplifts and flow between these two connected markets vary as flow capacity
increases for nonuniform and uniform marginal pricing settings. The results show
that the total payments and total uplifts decrease as more flow is allowed between
these two markets until it reaches the demand of one market, which means one market
alone meets the total demand. Allowing non-uniform pricing does not further reduce
total payments, as total payments are minimal and equal the total costs. However, it

helps reduce total uplifts, as we can see in Figure 4.7b.
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Figure 4.7: An example of two connected markets with a constraint on the flow
capacity.

4.7 Concluding Remarks

We study the problem of pricing in single and networked markets with non-convex
costs. Our key contribution is the proposal of a novel scheme, Equilibrium-
Constrained (EC) pricing, which optimizes for the allocations and price parameters
at the same time, while imposing the equilibrium conditions as constraints. Our
pricing framework is general in the sense that: (i) it can be used for pricing general
non-convex cost functions, (ii) it allows for using general price classes, (iii) can be
computed in polynomial-time regardless of the source of the non-convexities, and

(iv) it extends easily to networked markets.

This work opens up a variety of important directions for future work. First, as
this framework enables one to use general price classes, it would be interesting
to apply it to specific classes of price functions (e.g., quadratic plus uplift, piece-
wise, etc.) and characterize the solution theoretically and/or numerically. One can
then investigate the potential trade-offs between the complexity of the class and
the economic efficiency or the uniformity of the price. Second, since electricity
markets are an important application of the pricing problem studied here, it would
be interesting to evaluate the proposed scheme in practical settings for electricity
markets. Our preliminary exploration shows that we can achieve more efficient (lower
total payments) and less discriminatory (lower uplifts) prices with, for instance,
piece-wise linear functions. More evaluations in large-scale, practical settings
should be carried out in order to evaluate the potential of deployment. Another
important direction to pursue is the extension of our results to networked markets with
more general network structures. Our algorithm currently applies to networks with
bounded tree-width; however beyond such networks, new ideas are needed. Finally,
our proposed pricing scheme has broader implications for non-convex optimization

problems as well. In the convex setting, dual prices are crucial for the development



90

of distributed optimization algorithms, but such approaches have not been possible
in non-convex settings due to the lack of pricing rules with the desirable properties
laid out in Section 4.2.2. It is now possible to explore whether EC prices can be used

as the basis for distributed optimization algorithms in the non-convex setting.
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4.A Supplement to Section 4.3.1
In this section, we formally prove the reduction of the optimization problem for the

class of linear-plus-uplift functions to (4.6), and then show Propositions 18 and 19.

4.A.1 Reduction

Here, we show that for the class of linear-plus-uplift price functions p(q;; 4, u;, §;) =
Aq; + u;ly,-4,, one can assume §; = g; without loss of generality, and therefore
the optimization problem (4.5) reduces to (4.6) for this class. The optimization
problem (4.5) for price function p(q;; A, u;, §i) = Aqi + u;ly—g,, A, ui, ..., u, >0,

is as follows

n
Pupiifc = ,min Z(/lcﬁ +uilly;=4,) (4.252)
120 i=1
UL,y >0
41 ----- ‘271
n
s.t. Z qi = (4.25b)
i=1
Agi+uily— —ci(q)) 20, i=1,...,n (4.25¢)

Agi +uily,—4, —ci(qi) > max Ag; +uily=g —ci(q), i=1,...

q;74i
(4.25d)
The following lemma shows that this optimization problem can be reduced to (4.6),

and the optimal uplifts of (4.6) are no larger than those of (4.25).

Lemma 22. Given any solution (g*, 1*, u*, §*) to the optimization problem (4.25),

(g*, A", u, q@*) is also a solution, where

% croA% %
u;, lfqi—qi

0, o.W.

Proof of Lemma 22. Let us first show the feasibility of (g*, 1*,u,q*). For any i
such that 47 # g, we have that

Aqi —ci(g)) =0

A'q; —ci(g;) > max 'q; +u;ly—g: — ci(q;) > max A°q; — ci(q;),

which implies
/l*q;k +Z;~k]].q;‘=q;‘ - Ci(q;-k) >0

ko k * 3k * /7 k 7
g +ulg=g — ci(q;) 2 max A"q; +u; Ly—g — ci(q;),
a;#q;
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because u; = 0. Therefore (q*, A", u, g*) is feasible.

The objective value of (g*, 1%, u, g*) is
n

D ai+u)= > (Vgi+u)+ Y Vg

i=1 i:47=q; i:4;#q;

n
Z(/l*qi* +u; Lg=g2),
i=1

which is the same as that of (g*, ¥, u*, ¢*), and is therefore optimal. O

Based on this lemma, the optimization problem (4.25) can be reduced to (4.6).

4.A.2 Closed-Form Solutions

Proof of Proposition 18. In the optimization problem (4.6), the order of variables in
the minimizations does not matter, and further, for every fixed ¢1, . .., g, and A, the
minimization over each u; can be done separately. Therefore, this program can be

massaged into the following form

n

Pupiife = min (r;lzig Z‘gi(qi;ﬂ)) (4.26a)

n
st. Y ai=d, (4.26b)

i=1

where
gi(gi; ) =min  Aq; +u; (4.27a)
u; >0

st Agi+u; —ci(g;) >0, (4.27b)
Aq; +u; — ¢i(q:) > max Aq; — ¢i(q;). (4.27¢)

i L

foralli =1,...,n. Constraints (4.27b) and (4.27¢c) can be expressed as

Agi +u; > ci(q;),

Agi +u; > ¢;i(q;) + max Aq; — ¢;(q;).
qii%‘
It follows that

8i(qi; ) = Aq; + u; = ci(g;) + max {0, max Aq; - Ct‘(q;)} :
q;74i
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which is, of course, a function of A and ¢g;. Therefore, we have

n

n
min Z‘gi(%’;ﬂ) = Zci(%’)’
=

i=1
and the minimizers 1" are all values A for which max Ag; — ¢;(g;) < 0, which are

q;#4qi
exactly the elements of A = {1 > 0| Aq < c;(q), Vq,Vi} (Figure 4.1 provides a

pictorial description of these values.) Finally, we have the last minimization, which

is
min Z ci(qi) (4.282)
s.t. Z gi=d (4.28b)
and therefore has g; = q? Vi as its optimizer. We also have u} = ¢;(¢7)-A"q;, Vi. O
Proof of Proposition 19. The steps of the proof are exactly the same as in the previous

one, except that the additional minimizer picks the A with the smallest total uplift

2, ui(A), which corresponds to the largest element of A. o
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4.B Supplement to Section 4.3.2

In this section, we prove Theorem 20, in two parts. First, we show that there exist
finite sets Q, A’, B’ for which Algorithm 1 finds an e-approximate solution, and we
quantify the sizes of these sets as a function of €. In the second part, we analyze the

running time of Algorithm 1.

4.B.1 e-Accuracy

Let us first state a simple but useful lemma.

Lemma 23 (-discretization). Given a set C C [Ly, L] x---x% [ Lk, Ly], for any

0 > 0, there exists a finite set C’ such that
VzeC, 37 €C st ||lz— 7|l <6,

and further, C’' contains at most V |6 points, where V = Hl]le (L; - L;) is a constant
(the volume of the box). C’ is said to be a §-discretization of C.

Let O, A’, and B’ denote some d-discretizations of sets [0, d], A and B, respectively.
In other words, for every g € [0,d], @ € A, and B € B, there exist ¢’ € Q, a’ € A’,
and B’ € B’, such that |g — ¢’| <6, || — @'||l < 6, and ||B — B'||o < 6. We can

combine all these inequalities as

”(q’ a/’;B) - (Cl’,a’,ﬁ/)”oo <9.

On the other hand, given that the cost function ¢;(.) for each i is Lipschitz on
each continuous piece of its domain, there exists a positive constant K; such that

lci(q) — ci(q")| < K;|g — ¢’|, which implies
lci(q) — ci(q)| < Kié. (4.29)

Similarly, Lipschitz continuity of p(.;.) implies existence of a positive constant K
such that |p(q, @, B) = p(q’. o', B')| < Kl|(¢, @, B) = (¢, &', B') ||loo, Which yields

lp(q.a.B) - p(q’.a" . B)| < K. (4.30)

Using Eqgs. (4.29),(4.30), we can see that for any solution q’{, RN M N ,8*{, .., By to
optimization (4.5), there exists a point g1, ..., qn, @, B1, ..., B, withqy,...,q, € O,
a € A" and B € B’, for which constraints (4.5¢) and (4.5d) are violated at most by
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(K + K;)6 and (2K + 2K;)6, respectively, and the objective is larger than p* at most

by nK¢. As a result, this point will be an e-approximate solution if

(K+K;)0 <€ Vi, (4.31)
2(K+K;)6 <€ Vi, (4.32)
nKo < ne. (4.33)

These constraints altogether enforce an upper bound on the value of ¢ as
0 < Ce,

for some constant C. Therefore if we pick

0= d , (4.34)

[*] Ce

our algorithm is guaranteed to encounter an e-approximate solution while enumerating
the points, and Q = {0, 9,20, ..., d} is a valid §-discretization for [0, d], which has

d 1
Ny = [*] Ce +1=0 (Z) points. The nice thing about this particular choice of ¢

is that now d can be written as a sum of n elements in Q (because all the elements,

including d, are multiples of ¢), which allows us to satisfy the Market Clearing

1 1
condition exactly. Based on Lemma (23), ‘A’ and 8’ contain N, = O (E) =0 (_11)
€

1 1
and Ng = O (E) =0 (Z) points.

Finally, if there are any discontinuities in the cost or price functions, we can simply

add them to our discrete sets Q, A’, and B’, and since there are at most a finite

1
number of them, the sizes of the sets remain in the same order, i.e., N, = O (—),
€

b
€
Algorithm 1 running on these discrete sets.

1 1
N, = 0O - | and Ng = O (—) Next, we calculate the time complexity of
€

4.B.2 Run-Time Analysis
In this section, we show that Algorithm 1 has a time complexity of O (n(é)ll”ﬁz).

For every fixed a, we have the following computations:

1. The leaves: We need to compute g;(g; @) for every i and every g € Q.
Computing each g;(q; @) (i.e., for fixed 7, ¢, a) takes O(NgN,). The reason

for that is we have to search over all 8; € B’, and for each one there are
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Ny + 1 constraints to check. More explicitly, we need to (a) check O (NgNy)
constraints, (b) compute Ny objectives, and (c) find the minimum among those
Npg values. All these steps together take O (NgN,,), and repeating for every i
and g makes it O(nNﬁNg).

2. The intermediate nodes: In each new level, there are at most half as many
(+1) nodes as in the previous level. For each node i in this level, we need
to compute g;(g; @) for every g € Q. For every fixed ¢, there are O(N,)
possible pairs of (g, gx) that add up to g, and therefore we need to (a) sum
O(N,) pairs of objective values, and (b) find the minimum among them, which
take O(N,). Hence, the computation for each node takes O(Ng). There are
O(5 + 7 + -+ +2) = O(n) intermediate nodes in total, and therefore the total

complexity of this part is O(nNZI).

3. The root: Finally at the root, we need to compute goot(d; @). There are N,
possible pairs of (g;, gx) that add up to d. Therefore, we need to compute
N, sums, and find the minimum among the resulting N, values, which takes
O(Ny).

Putting the pieces together, the computation for all values of a takes N, X
(O(nNﬂNg) +0(nN?) + O(Nq)), which in turn is O(nN,NzN2). Finally, find-

ing the minimum among the N, values simply takes O (N,).

The backward procedure, which finds the quantities ¢; and the parameters g;, takes
just O(n), since it is just a substitution for every node. As a result, the total running
time is O(nN(,NﬁNg), which based on the first part (Section 4.B.1) is O (n(%)l‘”f’z).

4.B.3 Remark on the e-Approximation

As mentioned at the end of Section 4.3.2, if one requires the total payment in
Definition 1 to be at most € (rather than ne) away from the optimal p*, the running
time of our algorithm will still be polynomial in both n and 1/, i.e., O (n3(%)l 1”2+2).
To see that, notice in this case (4.31) and (4.32) remain the same, and (4.33) changes
to nKo < €. Therefore, the upper bound enforced by the constraints will be 6 < %,

for some constant C. In this case, our choice of 6 would be § = and

d
[<]de”
n
hence N, = O (—) N, and Ng remain the same as before. The running time is
€

O(nNyN BN;), as computed previously, which in this case would be O (n3(é)ll+12+2).
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Figure 4.8: The transformation of an arbitrary-degree tree to a binary tree.

4.C Supplement to Section 4.4
In this section, we first show the transformation of the problem on a tree to one on a

binary tree, and then prove Theorem 21.

4.C.1 Transformation into Binary Tree

Lemma 24. Given any tree with n nodes (suppliers), there exists a binary tree with
additional nodes which has the same solution (g}, . ..,q,,a", B1, ..., By) for those

nodes as the original network. The binary tree has O(n) nodes.

Proof. Take any node i that has k; > 2 children. For any two children, introduce
a dummy parent node. For any two dummy parent nodes, introduce a new level of
dummy parent nodes. Continue this process until there are 2 or less nodes in the
uppermost layer, and then connect them to node i (see Fig. 4.8). The capacities of
the lines immediately connected to the children are the same as those in the original

graph. The capacities of the new lines are infinite.

The total number of introduced dummy nodes by this procedure is

ki ki 3
O(E+Z++2)—O(k,)

Since there are 1 + k; + ko + - -+ + k, = n nodes in total in the original tree, the

number of introduced additional nodes is O (k| + - - - + k) = O(n). Therefore the

total number of nodes in the new (binary) tree is O (n). ]

4.C.2 Proof of Theorem 21

Most of the proof is similar to the one presented in Section 4.B. For this reason, we
only highlight the main points. The proof consists of e-accuracy and run-time, as
before.
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4.C.2.1 e-Accuracy

Let Q1,...,0u Fi,...,F,, A’, B’ denote some §-discretizations of sets [0, d; +
T+ fenay = fils 5 [0 do+ fony (o) + ferom) = fuls Lt il s [ ful AL B,
respectively. Note that if any line capacities are infinite, the intervals can be replaced
by [0, X7, d;] instead. Similar as in Section 4.B, the constraints enforce an upper

bound on the value of 6 as 6 < Ce, for some constant C. Based on Lemma (23),
1

1 1
the sizes of the sets will be Ny, = O (—) Vi, N, = O (—) Vi, N, = O (_11) and
€ ‘ € €
Ng=0 !
p=01%
4.C.2.2 Run-Time Analysis

For every fixed @, the run-time of the required computations is as follows.

1. The time complexity of computing g;(g;; @) for each node i and each fixed
value of g; is O(NgN,,). Therefore, computing it for all nodes and all values
takes O(nNﬂNg).

2. Computing h;( f;; @) for each node i and each fixed value of f; takes O(N%),
because there are O(Ny) x O(Ny) pairs of values for (fen, (1) feno(i)) (¢i is
automatically determined as the closest point in Q; to d; + fen, (i) + feny (i) — J0)-

Therefore, its overall computation for all nodes and all values takes O(nN;).

As a result, the overall computation takes N, X (O (nNﬂNg) +0 (nN;)), which is

0] (n(é)ll”ﬁz) +0 (n(é)h”), or equivalently O (n(%)l”ma"{lz’l}”).
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Chapter 5

MANAGING AGGREGATORS IN THE SMART GRID

[1] Navid Azizan et al. “Opportunities for Price Manipulation by Aggregators in
Electricity Markets”. In: SIGMETRICS Performance Evaluation Review 44.2
(2016), pp. 49-51. 1ssn: 0163-5999. por: 10.1145/3003977.3003995.

[2] Navid Azizan et al. “Opportunities for Price Manipulation by Aggregators
in Electricity Markets”. In: IEEE Transactions on Smart Grid 9.6 (2018),
pp- 5687-5698. por: 10.1109/TSG.2017.2694043.

Aggregators of distributed generation are playing an increasingly crucial role in the
integration of renewable energy in power systems. However, the intermittent nature
of renewable generation makes market interactions of aggregators difficult to monitor
and regulate, raising concerns about potential market manipulation by aggregators.
In this chapter, we study this issue by quantifying the profit an aggregator can obtain
through strategic curtailment of generation in an electricity market. We show that,
while the problem of maximizing the benefit from curtailment is hard in general,
efficient algorithms exist when the topology of the network is radial (acyclic). Further,
we highlight that significant increases in profit are possible via strategic curtailment

in practical settings.

5.1 Introduction

Increasing the penetration of distributed, renewable energy resources into the
electricity grid is a crucial part of building a sustainable energy landscape. To date,
the entities that have been most successful at promoting and facilitating the adoption
of renewable resources have been aggregators, e.g., SolarCity, Tesla, Enphase,
Sunnova, SunPower, and ChargePoint [47, 110, 209]. These aggregators install
and manage rooftop solar installations as well as household energy storage devices
and electric vehicle charging systems. Some have fleets with upwards of 800 MW
distributed energy resources [192, 1], and the market is expected to triple in size by
2020 [133, 104].

Aggregators play a variety of important roles in the construction of a sustainable grid.
First, and foremost, they are on the front lines of the battle to promote installation

of rooftop solar and household energy storage, pushing for widespread adoption
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of distributed energy resources by households and businesses. Second, and just as
importantly, they provide a single interface point where utilities and Independent
System Operators (ISOs) can interact with a fleet of distributed energy resources
across the network in order to obtain a variety of services, from renewable generation
capacity to demand response. This service is crucial for enabling system operators
to manage the challenges that result from unpredictable, intermittent renewable

generation, e.g., wind and solar.

However, in addition to the benefits they provide, aggregators also create new
challenges — both from the perspective of the aggregator and the perspective of the
system operator. On the side of the aggregator, the management of a geographically
diverse fleet of distributed energy resources is a difficult algorithmic challenge.
On the side of the operator, the participation of aggregators in electricity markets
presents unique challenges in terms of monitoring and mitigating the potential of
exercising market power. In particular, unlike traditional generation resources, the
ISO cannot verify the availability of the generation resources of aggregators. While
the repair schedule of a conventional generator can be made public, the downtime of
a solar generation plant and the times when solar generation is not available cannot be
scheduled or verified after the fact. Thus, aggregators have the ability to strategically
curtail generation resources without the knowledge of the ISO, and this potentially

creates significant opportunities for them to manipulate prices.

These issues are particularly salient given current proposals for distribution systems.
Distribution systems (which are typically radial networks) are heavily impacted by
the introduction of distributed energy resources. As a result, there are a variety of
current proposals to start distribution-level power markets (see, for example [105]
[106]), operated by Distribution System Operators (DSOs). A future grid may even
involve a hierarchy of system operators dealing with progressively larger areas, net
load and net generation. In such a scenario, aggregators could end up having a
significant proportion of the market share, and such markets may be particularly
vulnerable to strategic bidding practices of the aggregators. Thus, understanding the
potential for these aggregators to exercise market power is of great importance, so

that regulatory authorities can take appropriate steps to mitigate it as needed.

5.1.1 Summary of Contributions
This chapter addresses both the algorithmic challenge of managing an aggregator and

the economic challenge of measuring the potential for an aggregator to manipulate
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prices. Specifically, this work provides a new algorithmic framework for managing
the participation of an aggregator in electricity markets, and uses this framework to
evaluate the potential for aggregators to exercise market power. To those ends, the

chapter makes three main contributions.

First, we introduce a new model for studying the market behavior of aggregators of

distributed generation (renewables) in the real-time market.

Second, we quantify opportunities for price manipulation (via strategic curtailment)
by the aggregators. Our results highlight that, in practical scenarios, strategic
curtailment can have a significant impact on prices, and yield much higher profits for
the aggregators. In particular, the prices can be impacted up to a few tens of $/MWh
in some cases, and there is often more than 25% higher profit, even with curtailments
limited to 1%.

Third, we provide a novel algorithm for managing the participation of an aggregator
in the market. The problem is NP-hard in general and is a bilevel quadratic program,
which is notoriously difficult in practice. However, we develop an efficient algorithm
that can be used by the aggregators in radial networks to approximate the optimal
curtailment strategy and maximize their profit (Section 5.5). Note that the algorithm
is not just relevant for aggregators; it can also be used by the operator to assess
the potential for strategic curtailment. The key insight in the algorithm is that
the optimization problem can be decomposed into “local” pieces and be solved
approximately using a dynamic programming over the graph. We also provide an

exact algorithm for the case of single-bus aggregators in general networks.

Further, our results expose a connection between the profit achievable via curtailment
and a new market power measure introduced in [221], which is discussed in
Appendix 5.A.

5.1.2 Related Work
This chapter connects to, and builds on, work in four related areas: 1) quantifying
and mitigating market power, 2) cyber-attacks in the grid, 3) algorithms for managing

distributed energy resources, and 4) algorithms for bilevel programs.

5.1.2.1 Quantifying Market Power in Electricity Markets

There is a large volume of literature that focuses on identifying and measuring market

power for generators in an electricity market, see [203] for a recent survey.
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Early works on market power analysis, emerged from microeconomic theory, suggest
measures that ignore transmission constraints. For example, [48] introduced the
pivotal supplier index (PSI), which is a binary value indicating whether the capacity of
a generator is larger than the supply surplus, and [184] later refined PSI by proposing
residential supply index (RSI). RSI is used by the California ISO to assure price
competitiveness [49]. The electricity reliability council of Texas uses the element
competitiveness index (ECI) [71], which is based on the Herfindahl-Hirschmann
index (HHI) [182].

Market power measures considering transmission constraints have emerged more
recently. Some examples include, e.g., [180, 41, 161, 52, 218], and [219]. Interested
readers can refer to [42], which proposes a functional measure that unifies the
structural indices measuring market power on a transmission constrained network in

the previous work.

In contrast to the large literature discussed above, the literature focused on market
power of renewable generation producers is limited. Existing works such as [221] and
[202] study market power of wind power producers ignoring transmission constraints.
The key differentiator of the work in this chapter is that the use of the Locational
Marginal Price (LMP) framework, which is standard practice in the electricity market
[162, 226], allows this work to offer insight about market power of aggregators when

transmission capacity is limited.

5.1.2.2 Cyber-Attacks in the Grid

The model and analysis in this chapter is also strongly connected to the cyber
security research community, which has studied how and when a malicious party
can manipulate the spot price in electricity markets by compromising the state

measurement of the power grid via false data injection [35, 36, 216, 217, 136].

In particular, [216, 217] shows that if a malicious party can corrupt sensor data,
then it can create an arbitrage opportunity. Further, [35] shows that such attacks can

impact both the real time spot price and future prices by causing line congestions.

In this work, we do not allow aggregators to corrupt the state measurements of the
power system, rather we consider a perfectly legal approach for price manipulation:
strategic curtailment. However, strategic curtailment in the ex-post market can gain
extra profit to the detriment of the power system, which is a similar mechanism to those

highlighted in cyber attack literature. Technically, the work in this chapter makes
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significant algorithmic contributions to the cyber-attack literature. In particular, the
papers mentioned above focus on algorithmic heuristics and do not provide formal
guarantees. In contrast, our work presents a polynomial-time algorithm that provably

maximizes the profit of the aggregator.

5.1.2.3 Algorithms for Managing Distributed Energy Resources

There has been much work studying optimal strategies for managing demand
response and distributed generation resources to offer regulation services to the
power grid. This work covers a variety of contexts. For example, researchers
have studied frequency regulation [132][92] and voltage regulation (or volt-VAR
control) [223][12]. A separate line of work has been work on designing incentives
to encourage distributed resources to provide services to the power grid [148][59].
However, the current chapter is distinct from all the work above in that we study
strategic behavior by an aggregator of distributed resources. Prior work does not

model the strategic manipulation of prices by the aggregator.

5.1.2.4 Algorithms for Bilevel Programs

The optimization problem that the strategic aggregator solves is a bilevel program,
since the objective (aggregator’s profit) depends on the locational prices (LMPs).
The LMPs are constrained to be equal to optimal dual variables arising from
economic dispatch-based market clearing procedure. These types of problems have
been extensively studied in the literature, and fall under the class of Mathematical
Programs with Equilibrium Constraints (MPECs) [73]. Even if the optimization
problems at the two levels are linear, the problem is known to be NP-hard [34].
Global optimization algorithms [84] can be used to solve these problems to arbitrary
accuracy (compute a lower bound on the objective within a specified tolerance of the
global optimum). However, these algorithms use a spatial branch and bound strategy,
and can take exponential time in general. In contrast, solvers like PATH [63], while
practically efficient for many problems, are only guaranteed to find a local optimum.
In this chapter, we show that for tree-structured networks (distribution networks), an
e-approximation of the global optimum can be computed in time linear in the size of

the network and polynomial in %

5.2 System Model
In this section, we define the power system model that serves as the basis for the

chapter and describe how we model the way the Independent System Operator (ISO)
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computes the Locational Marginal Prices (LMPs). Locational marginal pricing
is adopted by the majority of power markets in the Unites States [226], and our
model is meant to mimic the operation of two-stage markets like ISO New England,
PJM Interconnection, and Midcontinent ISO, that use ex-post pricing strategy for

correcting the ex-ante prices [162, 226].

5.2.1 Preliminaries
We consider a power system with n nodes (buses) and ¢ transmission lines. The

generation and load at node i are denoted by p; and d; respectively, with p =
T

T
[pl,...,pn] and d = [dl,...,dn] . We use [n] to denote the set of buses
{1,...,n}.

The focus of this chapter is on the behavior of an aggregator in the real-time market,
which owns generation capacity, possibly at multiple nodes. We assume that the
aggregator has the ability to curtail generation, e.g., by curtailing the amount of
wind/solar generation or by not calling on demand response opportunities, without
penalty. This is because in many of today’s markets, the renewable generation (e.g.,
solar) can be sold at the real-time price without having to commit to the ex-ante
market (see for example CAISO Participating Intermittent Resource Program (PIRP)
[140]). Let N, € [n] be the nodes where the aggregator has generation and denote its
share of generation at node i € N, by p¢ (out of p;). The curtailment of generation
at this node is denoted by a;, where 0 < a; < p{. We define our model for the

decision-making process of the aggregator with respect to curtailment in Section 5.3.

Together, the net generation delivered to the grid is represented by p — @, where
T

a;j = 0Vj ¢ N, The flow of lines is denoted by f = [fl,...,f,] , where fj
represents the flow of line I: f = G(p — @ — d), where G € R™" is the matrix of
generation shift factors [186]. We also define B € R as the link-to-node incidence

matrix that transforms line flows back to the net injections as p — @ — d = Bf.

5.2.2 Real-Time Market Price

For every dispatch interval, the ISO obtains the current values of generation, demands,
and flows from the state estimator, in real time. Based on this information, it solves
a constrained optimization problem for market clearing. The objective of the
optimization is to minimize the total cost of the network, based on the current state of
the system. The ex-post LMPs are announced as a function of the optimal Lagrange

multipliers of this optimization. Mathematically, the following program has to be
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solved.
minifmize c'Bf (5.1a)
subject to
A7, Ap<Bf—-p+a+d<Ap (5.1b)
TR f<f<f (5.1c)
V. f € range(G) (5.1d)

In the above, c; is the offer price for the generator i. f; is the desired flow of line
[, and Bf = p+ Ap — @ —d, where Ap; is the desired amount of change in the
generation of node i. Constraint (5.1b) enforces the upper and lower limits on the
change of generations, and constraint (5.1c) keeps the flows within the line limits. In
practice, A p, and Ei are usually set to be a constant value for all i (e.g., A p = -2
and Ap, = 0.1, Vi [166, p. 100]). The last constraint ensures that f; are valid
flows, i.e., f = Gp for some generation p. Variables A7, 1" € R?, u~, u* € R, and
v € RI7k(G) denote the Lagrange multipliers (dual variables) corresponding to
constraints (5.1b), (5.1¢), and (5.1d).

Note that the ISO does not physically redispatch the generations, and the optimal
values of the above program are just the desired values. In fact, by announcing
the (ex-post) LMPs, the ISO provides incentives for the generators to adjust their

generation according to its goals [226].

Definition 3. The ex-post locational marginal price (LMP) of node i at curtailment
level of @, denoted by A;(@), is

Ai(@) =c;+ A (@) - 27 (). (5.2)

We assume that the LMPs are unique. Non-uniqueness of LMPs happens only under
very special degenerate conditions, and can be fixed in practice by adding a quadratic

penalty term to the objective to make it convex [50].

5.3 The Market Behavior of the Aggregator

The key feature of our model is the behavior of the aggregator. As mentioned before,
aggregators have generation resources at multiple locations in the network and can
often curtail generation resources without the knowledge of the ISO. Of course, such
curtailment may not be in the best interest of the aggregator, since it means offering

less generation to the market. But, if through curtailment, prices can be impacted,
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then the aggregator may be able to receive higher prices for the generation offered or

make money through arbitrage of the price differential.

To quantify the profit that the aggregator makes due to the curtailment, let us take a

look at the total revenue in different production levels.

Definition 4. We define the curtailment profit (CP) as the change in profit of the

aggregator as a result of curtailment:

y(@) = (A@)- (pf - ) = 1i(0) - pf) . (5.3)

ieN,

Note that the curtailment profit can be positive or negative in general. We say a

curtailment level @ > 0 is profitable if y () is strictly positive.

The curtailment profit is important for understanding when it is beneficial for the
aggregators to curtail. Note that we are not concerned about the cost of generation
here, as renewables have zero marginal cost. However, if there is a cost for generation,
then that results in an additional profit during curtailment, which makes strategic

curtailment more likely.

While our setup may seem divorced from the notion of market power, it turns out
that there is a fundamental relationship between the curtailment profit introduced

above and market power. See Appendix 5.A for details.

5.3.1 A Profit-Maximizing Aggregator

A natural model for a strategic aggregator is one that maximizes curtailment profit
subject to LMPs and curtailment constraints. Since LMPs are the solution to an
optimization problem themselves, the aggregator’s problem is a bilevel optimization
problem. In order to be able to express this optimization in an explicit form, let us

first write the KKT conditions of the program (5.1).

Primal feasibility:
Ap <Bf-p+a+d<Ap (5.4a)
f<f<f (5.4b)
Hf =0 (5.4¢)
Dual feasibility:

A", Ay, ut >0 (5.4d)
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Complementary slackness:

X ((Bf)i—pi+ai+di—Ap;) =0, i=1,...,n (5.4e)
A7 (Ap.~ (Bf)i+pi—ai—d) =0, i=1,....n (5.4f)
pr(fi—f)=0, 1=1,... 1t (5.49)
pi(f,=f)=0, I=1,...1 (5.4h)

Stationarity:
Bi(c+A"-A)+pu"—p +Hv=0. (5.4i)

Here H € RU~K(G)X" "and the range of G is the nullspace of H.

Using the KKT conditions derived above, the aggregator’s problem can be formulated

as follows.
' =a’fr,51§l§i+rﬁ§§+’v y(@) (5.5a)
subject to
0<a;<pf, i€eN, (5.5b)
a; =0, jé¢N, (5.5¢)
(5.4) (5.5d)

The objective (5.5a) is the curtailment profit defined in (5.3). Constraints (5.5b) and
(5.5¢) indicate that the aggregator can only curtail generation at its own nodes, and
the amount of curtailment cannot exceed the amount of generation available to it.
Constraints (5.5d), which are the KKT conditions, enforce the locational marginal
pricing adopted by the ISO. Note that if there is a curtailment limit above which, for
example, curtailment can be detected by the ISO, one can simply replace p? in (5.5b)

by min{p{, 7;} to account for it.

An important note about this problem is that we have assumed the aggregator has
complete knowledge of the network topology (G) and state estimates (p and d). This
is, perhaps, optimistic; however one would hope that the market design is such that
aggregators do not have profitable manipulations even with such knowledge. The

results in this chapter indicate that this is not the case.
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Figure 5.1: The 6-bus example network from [35], used to illustrate the effect of
curtailment.

5.4 The Impact of Strategic Curtailment

In this section, we demonstrate the potential impact of strategic curtailment in
practical settings. We first provide an illustrative example of how curtailment leads
to a larger profit for a simple single-bus aggregator in a small, 6-bus, network. Then
we show the effect of strategic curtailment in more realistic settings, using IEEE 14-,
30-, and 57-bus test cases and their enhanced versions from NICTA Energy System
Test case Archive [60].

5.4.1 An Illustrative Example

Fig. 5.1 shows a 6-bus example network from [35], in which the amounts of
generation are 375.20, 73.00, 299.60, 84.80, 250.00, and 397.40 MW. The loads
and the original offer prices for the generators are shown in the figure. At the
normal conditions, the lines /15, /14 and I5¢ are carrying their maximum flow, and
the real-time LMPs are 20.0, 25.0, 25.0, 35.0, 28.7, and 24.0 $/ MW h, respectively.

Assume that the aggregator owns node 1 and aims to increase its profit by curtailing
the generation at this node. It can be seen that by curtailing just 0.15 MW generation
atnode 1 (i.e., from 375.20 MW to 375.05 M'W), the binding/non-binding constraints
in problem (5.1) change, and as a result, the ISO will determine the new LMPs as 25.8,
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25.0, 25.0, 35.0, 30.6, and 24.0 $/ MW h. Fig. 5.2 shows the LMPs, before and after
the curtailment. In this case, the curtailment profitis y = 25.8 x375.05 -20x375.20
= 2172 %/, ,which means that the aggregator has been able to increase its profit by
2172 $/h during that dispatch interval.

5.4.2 Case Studies

We simulate the behavior of aggregators with different sizes, i.e., different number
of buses, in a number of different networks. We use the IEEE 14-, 30-, and 57-bus
test cases. Since studying market manipulation makes sense only when there is
congestion in the network, we scale the demand (or equivalently the line flow limits)
until there is some congestion in the network. In order to examine the profit and
market power of aggregator as a function of its size, we assume that the way the
aggregator grows is by sequentially adding random buses to its set (more or less like
the way, for example, a solar firm grows). Then, at any fixed set of buses, it can
choose different curtailment strategies to maximize its profit. In other words, for each
of its nodes, it should decide whether to curtail or not (assuming that the amount of
curtailment has been fixed to a small portion). We assume that the total generation
of the aggregator in each bus is 10 MW, and it is able to curtail 1% of it (0.1 MW).

For each of the three networks, Fig. 5.3 shows the profit for a random sequence of
nodes. Comparing the no-curtailment profit with the strategic-curtailment profit
reveals an interesting phenomenon. As the size of the aggregator (number of its

buses) grows, not only does the profit increase (which is expected), but also the
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Figure 5.2: The locational marginal prices for the 6-bus example before and after the
curtailment.
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Figure 5.3: The profit under the normal (no-curtailment) condition and under
(optimal) strategic curtailment, as a function of size of the aggregator in IEEE test
case networks: a) IEEE 14-Bus Case, b) IEEE 30-Bus Case, and c¢) IEEE 57-Bus
Case. The difference between the two curves is the curtailment profit.
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Figure 5.4: A heat map of the impact of coordinated curtailment on the prices in the
IEEE 14-bus network. Aggregator nodes are 2, 7, 10, and 14.

difference between the two curves increases, which is the “curtailment profit.” More
specifically, the latter does not need to happen in theory. However in practice, it
is observed most of the time, and it highlights that larger aggregators have higher

incentive to behave strategically, and they can indeed gain more from curtailment.

The other important question is what the impact of strategic curtailment on the price
of each bus of the network (not necessarily just the aggregator’s buses) is. This is
important in many scenarios, like the effect of such coordinated manipulations on
consumers or the effect of competing firms on each other. Fig. 5.4 shows a heat map
of an aggregator’s impact on the prices in the IEEE 14-bus network. As one can see,

the price of other buses can often be highly impacted as well.

5.5 Optimizing Curtailment Profit

The aggregator’s profit maximization problem is challenging to analyze, as one
would expect given its bilevel form. In fact, bilevel linear programming is NP-hard
to approximate up to any constant multiplicative factor in general [61]. Furthermore,
the objective of the program (5.5) is quadratic (bilinear) in the variables, rather than
linear. This combination of difficulties means that we cannot hope to provide a

complete analytic characterization of the behavior of a profit-maximizing aggregator.

In this section, we begin with the case of a single-bus aggregator and build to

the case of general multi-bus aggregators in acyclic networks. For the single-bus
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aggregator, the optimal curtailment can be found exactly, in polynomial time. For
the general case, we cannot provide an exact algorithm, but we do provide a practical
approximation algorithm for general multi-bus aggregators in acyclic networks (e.g.,

distribution networks).

5.5.1 AnExact Algorithm for Single-Node Aggregatorsin Arbitrary Networks
Even in the simplest case, when the aggregator has only a single node, i.e., its entire
generation is located in a single bus, it is not trivial how to solve the aggregator’s

profit maximization problem.

The first step toward solving the problem is already difficult. In particular, in order
to understand the effect of curtailment on the profit, we first need to understand
how curtailment impacts the prices—an impact which is not monotonic in general.
Although LMPs are not monotonic in general, it turns out that in single-bus
curtailment, the LMP is indeed monotonic with respect to the curtailment. The proof

of the following lemma is in Appendix 5.B.

Lemma 25. The LMP of any bus i is monotonically increasing with respect to the

curtailment at that bus. That is,
(@) = Ai(@)

ifa; > a;, and a/;. = a; for all j = [n]\{i}.

A consequence of the above lemma is that the price A; is a monotonically increasing
staircase function of «;, for any bus i, as depicted in Fig. 5.5. As ¢; increases, if
the binding constraints of (5.1) do not change, the dual variables remain the same,
and thus the LMPs remain the same (constant intervals). Once a constraint becomes
binding/non-binding, the LMP jumps to the next level.

In Fig. 5.5, the two shaded areas show profit at the normal condition and at the
curtailment. The difference between the two areas is the curtailment profit. In
particular, if the red area is larger than the blue one, the aggregator is able to earn
a positive curtailment profit on bus i. The optimal curtailment @; also happens
where the red area is maximized. It should be clear that the optimal curtailment
always happens at the verge of a price change, not in the middle of a constant interval

(otherwise, it can be increased by curtailing less).

Given the knowledge of the network and state estimates, it is possible to find the jump

points (i.e., where the binding constraints change) and evaluate them for profitability.
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Figure 5.5: The LMP at bus i as a function of curtailed generation at that bus. Shaded
areas indicate the aggregator’s revenue at the normal condition and at the curtailment.

Therefore, if there are not too many jumps, an exhaustive search over the jump points
can yield the optimal curtailment. Based on this observation, we have the following

theorem, which is proven in Appendix 5.C.

Theorem 26. The exact optimal curtailment for an aggregator with a single bus, in

an arbitrary network with t lines, can be found by an algorithm with running time

0(13.373).

Clearly, this approach does not extend to large multi-bus aggregators. The following

section uses a different and more sophisticated algorithmic approach for that setting.

5.5.2 An Approximation Algorithm for Multi-Bus Aggregators in Radial Net-
works

In this section, we show that the aggregator profit maximization problem, while hard in

general, can be solved in an approximate sense to determine an approximately-feasible

approximately-optimal curtailment strategy in polynomial time using an approach

based on dynamic programming. In particular, we show that an e-approximation of

the optimal curtailment profit can be obtained using an algorithm with running time

that is linear in the size of the network and polynomial in é

Before we state the main result of this section, we introduce the notion of an

approximate solution to (5.5) in the following definition.

Definition 5. A solution (a, f,A7, A%, u~, u*,v) to (5.5) is an e-accurate solution

if the constraints are violated by at most € and y (@) > y* — €.
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Note that, if one is simply interested in approximating y* (as a market regulator
would be), the e-constraint violation is of no consequence, and an e-accurate solution

of (5.5) suffices to compute an e-approximation to y*.

Given the above notion of approximation, our main theorem is as follows (proof in
Appendix 5.D):

Theorem 27. An e-accurate solution to the optimal aggregator curtailment problem
(5.5) for an n-bus radial network can be found by an algorithm with running time

€

9 _
cn( l) , Where c is a constant that depends on the parameters p?, B,d, p, f, f. On

6
a linear (feeder line) network, the running time reduces to cn(%) .

We now give an informal description of the approximation algorithm. Consider a
radial distribution network with nodes labeled i € [n] (where 1 denotes the substation
bus, where the radial network connects to the transmission grid). Radial distribution
networks have a tree topology (they do not have cycles). We denote bus 1 as the root
of the tree, and buses with only one neighbor as leaves. Every node (except the root)
has a unique parent, defined as the first node on the unique path connecting it to the
root node. The set of nodes k that have a given node i as its parent are said to be
its children. It can be shown that the strategic curtailment problem on any radial
distribution network can be expressed as an equivalent problem on a network where
each node has maximum degree 3 (known as a binary tree, see Appendix 5.D). Thus,
we can limit our attention to networks of this type, where every node has a unique

parent and at most 2 children.

For a node i, let ¢ (i), c3 (i) denote its children (where ¢| = 0, ¢, = 0 is allowed

since a node can have fewer than two children). We use the shorthand

P () = foiy + feoi) — fi— (pi—ai = di) .

Constraint (5.4a) reduces to A p, < p"¢" (i) < Ap,, where f; = 0 and fy = 0. The
matrix H in (5.4¢) is an empty matrix (the nullspace of the matrix B is of dimension

0), so this constraint can be dropped. Using this additional structure, the problem
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(5.5) can be rewritten (after some algebra) as:

n
majc}lgize ; A (pf — ) (5.6a)
subject to
0<a <p!, iel]n] (5.6b)
Ap < p"' (i) < Ap,, i€ [n] (5.6¢)
fo<fi<fi e\ {1} (5.6d)
<c;, ifp™(i) = Ap,
A {=ci. ifAp <p" () <Ap;.i€ [n] (5.6¢)
> ¢;, if p" (i) = Ap;
>0, iffi=f
Ae;) = Ai {=0, ifL<f,~<?l-,ie [n],j=1,2 (5.6f)
<0, iffi=f;

where A; is the LMP at bus i. Note that we assumed that there is some aggregator
generation and potential curtailment at every bus (however this is not restrictive,

since we can simply set p7 = 0 at buses where the aggregator owns no assets).

Define x; = (4;, f;, @;), it is easy to see that (5.6) is of the form

n
max Zgi(xi)
i=1
st.  h; (xi,xcl(i),x02(l~)) <0, i€]n]

for some functions g;(.) and 4;(.). This form is amenable to dynamic programming,
since, if we fix the value of x;, the optimization problem for the subtree under i is
decoupled from the rest of the network. Set «,, (x) = 0, define «; fori < n recursively

as

2
Ki (x) = max ch,(i) (xc,-(i)) * Ke;() (Xc,(i)) .

Xep (i) Xey (i) —

hi (x,xcl (i),xcz(i))ﬁo J=

Then, the optimal value can be computed as y* = max, «1 (x) +g; (x) . However, the
above recursion requires an infinite-dimensional computation at every step, since the
value of k; needs to be calculated for every value of x. To get around this, we note

that the variables 4;, f;, @; are bounded, and hence x; can be discretized to lie in a
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c1 (i) | e (3)

Figure 5.6: The representation of a binary tree. For any node 7, and its children
denoted ¢ (i), c2 (7).

certain set X; such that every feasible x; is at most §(¢;) away (in infinity-norm sense)
from some point in X; (Lemma 29). The discretization error can be quantified, and
this error bound can be used to relax the constraint to 4; (x;, x;+1) < €, guaranteeing
that any solution to (5.5) is feasible for the relaxed constraint. This allows us to

define a dynamic program (Algorithm 3).

Algorithm 3 Dynamic programming on binary tree

S(—{iZC1 (i):(D,Cz(i):@}
Ki(x) —0Vx e X;,ieS
while |S| < n do
S —{igS:ci(i),cr(i) €S}
Yie S, VxelX;:

’ ’
k() e omax g (4] + ke ()
XIEXCI([),X2€XC2(i> j=1 )
hi(x,xi,xé)SE ’

S—Suy¥
end while
Y ¢ maXyex, K1 (x) + g1 (x)

The algorithm essentially starts at the leaves of the tree and proceeds towards the
root, at each stage updating « for nodes whose children have already been updated
(stopping at root). Along with the discretization error analysis in Appendix 5.D, this

essentially concludes Theorem 27.

It is worth noting that previous work on distribution level markets have used AC
power flow models (at least in some approximate form) due to the importance of

voltage constraints and reactive power in a distribution system [158]. Our approach
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extends in a straightforward way to this setting as well, as the dynamic programming
structure remains preserved (the KKT conditions will simply be replaced by the

corresponding conditions for the AC-based market clearing mechanism).

5.5.3 Evaluation of the Approximation Algorithm

To evaluate the performance of our approximation algorithm on acyclic networks, we
run it on a number of small test networks and compare the results with the brute-force
optimal values. The algorithm indeed finds solutions within the prespecified error

range (and often exact) in reasonable time.

As an example, for an acyclic version of the IEEE 9-bus network (taken from [116]),
we demonstrate the suboptimality gap of the solution versus the running time in
Fig. 5.8. At each point of the graph, the error percentage (y-axis) is bounded by a
constant factor of €. Clearly, the smaller € we choose, the longer the running time is,

but the smaller the error becomes. As one can see, the error drops pretty quickly.

Line 7-8 Line 8-9
- n¢n -
—T>loadC
Line 5-7 Line 6-9
S/E 2/Bus 2 S/E 7/Bus 7 SIE 8/Bus 9 SIE 9/Bus 9 SIE 3/Bus 3
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S/E 5/Bus 5 ———— S/E 6/Bus 6 —;—i—;—
-
Line 4-6 %
Y é
Load A Load B
S/E/Bus 4 —;—i—
S/E 1/Bus 1 —$—

®

G1

Figure 5.7: The 9-bus acyclic network from [116], used for the evaluation of the
proposed approximation algorithm.

We should remark that the network chosen here was small in order to allow for
comparison with the optimal value. However, the main advantage of our algorithm

is that it is scalable, while the brute-force becomes intractable quickly.

5.6 Concluding Remarks
Understanding the potential for market manipulation by aggregators is crucial for

electricity market efficiency in the new era of renewable energy. In this chapter, we
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Figure 5.8: The difference from the optimal solution as a function of the running
time of the algorithm, in the 9-bus network with 1% curtailment allowance.

characterized the profit an aggregator can make by strategically curtailing generation
in the ex-post market as the outcome of a bi-level optimization problem. This
model captures the realistic price clearing mechanism in the electricity market.
We showed through simulations on realistic test cases that there is potentially
large profit for aggregators by manipulating the LMPs in the electricity market.
When the aggregator is located in a single bus, we have shown that the locational
marginal price is monotonically increasing with the curtailment, and we have an exact

polynomial-time algorithm to solve the aggregators profit maximization problem.

The aggregator’s strategic curtailment problem in a general setting is a difficult
bi-level optimization problem, which is intractable. However, we showed that for
radial distribution networks (where aggregators are likely located), there is an efficient
algorithm to approximate the solution up to arbitrary precision. We also demonstrated
via simulation on a distribution test case that our algorithm can efficiently find the

approximately optimal curtailment strategy.

We view this work as a first step in understanding market power of aggregators,
and more generally, towards market design for integrating renewable energy and
demand response from geographically distributed sources. With the result of this
work, it is interesting to ask what the operator can do to address this problem, and in
particular, how to design market rules for aggregators to maximize the contribution
of renewable energy yet mitigate the exercise of market power. Also, extending
the analysis to the case of multiple aggregators in the market is another interesting

direction for future research.
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5.A Connections between Curtailment Profit and Market Power

As mentioned earlier, there has been significant work on market power in electricity
markets, but work is only beginning to emerge on the market power of renewable
generation producers. One important work from this literature is [221], and the

following is the proposed notion of market power from that work.

Definition 6. For a; > 0, the market power (ability) of the aggregator is defined as

In this definition, the value of 1; captures the ability of the generator/aggregator to
exercise market power. Intuitively, in a market with high value of 7;, the aggregator

can significantly increase the price by curtailing a small amount of generation.

Interestingly, the optimal curtailment profit is closely related to this notion of market

power. We summarize the relationship in the following proposition.

Proposition 28. If the curtailment profit y is positive, then the market power n; > 1.

Furthermore, the larger the curtailment profit is, the higher the market power.

Proof. From the definition of y(a*) = 4;(a*)(p{ — a;) — 4;(0)p?, it follows that

ya) _A@) b
4 0)(pf —af)  A,(0) pi-af
LA - e
_1+—/li(0) (1 p?)
@) - () o
_1+—/1i(0) —(1+p—la)
_Ai(e") = 4:(0) @
- 2;(0) i 8
Therefore we have
p} o (i) = 2,(0)\ (@}
Ot —anya; ) ( 24(0) ) / (p_) -

:T]l'—l.

Since the left-hand side parameters are all positive, if y(a*) > 0, we can conclude
that 5; > 1. Moreover, it is clear that the larger the value of y(a*) is, the higher

the value of 7; is. Note that we used the approximation (1 — %)‘1 ~ 1+ [%, since
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the curtailment is small with respect to the generation; however, the right-hand side
expression (5.8) is an upper bound on the left-hand side anyway, and the result holds

exactly. O

This proposition highlights that the notion of market power in [221] is consistent
with an aggregator seeking to maximize its curtailment profit, and higher curtailment

profit corresponds to more market power.



121
5.B Proof of Lemma 25 (Monotonicity of LMP)

Let us take a look at the ISO’s optimization problem (5.1), which is a linear program.

It is not hard to see that the dual of this problem is as follows.

maximize (Ap+p-a - A1+

Aty

(cp+ra+d—Ap) A +8Tu~ —F u* (5.9a)
subject to
Bl(c+A* =) —pu +put+Hv=0 (5.9b)
A, A, 0,y >0 (5.9¢)

If one focuses on the terms involving «; for a certain i, the objective of the above
optimization problem is in the form: (A_pi +pi—a;—d)A; +(=pi+a;+d; - Ei)/ll‘.”
plus a linear function of the rest of the variables (i.e., the rest of A7, 2", as well as
p-, 1t,v). There is no @ in the constraints, and the first two terms of this objective

are the only parts where a; appears (and with opposite signs).

We need to show that if ; is changed to @;+6 for some 6 > 0, then c,-+/l;r”e Y P

¢+ AT — A7, where 7", 17" are the optimal solutions of the new problem.

We prove this in a general setting. Consider the following two optimization problems.

fF= sup aix) +arxs + a§X3 (5.10a)
X1,X2€R
x3€R™
S.t. (x1,x2,x3) €S (5.10b)
£ = sup (a1 = 6)x1 + (a2 +6)x2 + a3 xs (5.112)
X1,X2€R
x3ER™
S.t. (x1,x2,x3) €8 (5.11b)

Assume that the optimal values of the problems are attained at (xj,x3,x3) and

*new *new *new .
(", x5, x3"), respectively.

*new

ST —x{"" = x3 — xi. (This precisely implies the LMP condition in

our case, i.e., /l;'”ew - A7 > AF = A7),

We claim that x

1 3 *new *new * *
Suppose by way of contradiction that x3"" — x]"“" < xj — x7.
We know that a;x} + axx; + a§x§ > a1x) +axxy + a§x3, V(x1,x2,x3) € S.
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Therefore we have

(a1 = 6)x"" + (az + 6)x5"" + a§x§”ew

2
< aixj +axx; + a£x§ + 0 (X" ="

* * T = * *
< a\x] +axx; +azx; +6(x; — xj)

= (a1 = 0)x] + (ar + x5 + agx;

2

the above implies that (x}"“", x3"*", x3"“") is not the optimal solution of (5.11), and

The first inequality above follows from the fact that (x}"", x3"", x3"") € S. Now

it is a contradiction.

As a result, xz”ew - x’i‘”"w > x; - x]“. O
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5.C Proof of Theorem 26 (Exact Single-Bus)

Since we are in the single-bus curtailment regime, @ has only one nonzero component.
For the sake of convenience, we denote that element itself by a scalar « throughout
this proof (no « is vector in this proof). The proof consists of the following two
pieces: 1) From each jump point, the point where the next jump happens can be
computed in polynomial time and 2) There are at most polynomially (in this case

even linearly) many jumps.

Assuming that the solution to the program (5.1) is unique, for any fixed value of «,
exactly ¢ of the constraints (5.1b), (5.1c), and (5.1d) are binding (active). We can
express these binding constraints as

Af =b(a),

where A € R™ is an invertible matrix, and b(a) € R’ is a vector that depends on
a. As long as the binding constraints do not change, the matrix A is fixed, and the
optimal solution is linear in « (i.e., f = A~'b(a)). Then, for simplicity, we can

express the solution as f(a) = fy + aa, for some z-vectors fj and a.

Now, if we look at the non-binding (inactive) constraints of (5.1), they can also be
expressed as

Af < b,
for some matrix A and vector b of appropriate dimensions. Inserting f into this set

of inequalities yields A fy + aAa < b, or equivalently
a(Aa) < b = (Afy),

foralli =1,2,...,(2n+2t — rank(G)).

Now we need to figure out that, with increasing @, which of the non-binding
constraints becomes binding first and with exactly how much of an increase in a.
If for some i we have (Aa); < 0, then it is clear that increasing @ cannot make

constraint i binding. If (Aa); > 0 then the constraint can be written as

b — (Afo)
(Aa)i .

a <

Computing the right-hand side for all i, and taking their minimum, tells us exactly
which constraint will become binding next and how much change in the current value

of « results in that.
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The complexity of this procedure is O (¢>37%) for computing f; and a, plus O (¢(2n +
2t)) = O(nt + t*) for computing the lowest bound among all the constraints. Hence
the complexity is O (1>373).

The above procedure describes how the next jump point can be computed efficiently
from the current point. The exact same procedure can be repeated for reaching the
subsequent jump points. All that remains is to show the second piece of the proof,
which is that the number of jump points are bounded polynomially. To show the
last part, note that by increasing «, if a binding constraint becomes non-binding,
it will not become binding again. As a result, each constraint can change at most
twice, and therefore, the number of jumps is at most twice the number of constraints.

Thus, the number of jumps is O (n + ), and the overall complexity of the algorithm
is O((n+1)t>37) = 0(£3373). O
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5.D Proof of Theorem 27 (Approximate Multi-Bus)

Lemma 29 (6-discretization). Givena setC C [Ly, Li]x---% [ Lk, Ly ], there exists
a finite set X such that

VzeC 3J7 eX, max|z;—z| <6
1<i<k

and X contains at most V |6* points, where V = ]_[f.‘:1 (L; - L;) is a constant (the
volume of the box). X is said to be an §-discretization of C and written as X (9).

Lemma 30 (Reduction to Binary Tree). Any tree with arbitrary degrees can be

reduced to a binary tree by introducing additional dummy nodes to the network.

Proof. Take any node b in the tree with some parent @ and k > 2 children cy, . . ., ck.
There exists m > 0 such that 2" < k < 2*! for some m. We will show that this
subgraph can be made a binary tree by introducing O (k) dummy nodes (in m levels)

between b and its children. The additional nodes and edges are defined as follows:
b — by, b — by,

by — boo, bo — bo1, b1 — b, b1 — by,
boo — booo, boo — boot, ..., b1 — b1,

up to m levels:

bo..00 = c1, bo..oo = ¢2, bo.o1 = c3 ...

This is transparently a binary tree with O (k) nodes. Each of the new nodes has
zero injection, and effectively the incoming flow from its parent is just split in some
way between its children. This in fact enforces the flow conservation constraint at
b. Similar construction can be applied to any node of the tree with more than two
children, until no such node exists. It can be seen that the number of nodes in the

new graph is still linear in 7. O

So any tree can be transformed to a binary one by the above procedure. For the rest
of the analysis, we focus on the e-approximation of the dynamic program on the
resulting binary tree. The optimization problem (5.5) on a binary tree, can be written

after some algebra as the following.
. a — .
max Z Ai(pf - ) (5.122)
1=

subject to



(i = ) (fey) + fery = fi = Pi+ @i+ di = Ap) 2 0
(A = ) (fer(y * fortty — fi—Pi+ai+di = Ap;) > 0

(A - /lcj(i))([cj(i) = Jfe,i)) 20
(i = Ae; i) (f ;9 = Jeji0) =0

b

i=1,...
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(5.12b)

i=1,....,n (5.12¢)

(5.12d)

i=1,....,n (5.12¢)

o, j=1,2 (5.120)

The constraints 0 < @; < p{ and fi < fi £ ?l-, along with a prior bound on lambda

A< AL A can be used to define the box where x; = (A, fi, @;) lives. Then, an

e-accurate solution is a solution to the following problem.
n

max Z Ai(pi — a;

/Lf,(y - 4 (pl l)

subject to

Ap =€ < feyiy + fer) = Ji — pi + @i + di <Ap;+e,

(i = c)(fertiy + Jertny = fi = Pi+ @i + d; —A_pl,) = —€
(A = ) (fer i) + festiy = Ji = Pi + @i+ di = Ap;) = —€

A=A, f ) = Fesp) 2 —€
(4 — ﬂc,-(i))(fcj(f) - fcj(i)) > —€

(5.13a)

i=1,...,n (5.13b)

i=1,....,n (5.13¢c)

.oon, j=1,2 (5.13d)
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Assuming a -discretization of the constraint set, each of the constraints (as well
as e-accuracy of the objective) imposes a bound on the value of 6. For example,
constraint (5.13c) requires 40 < €. (Note that we could have defined different deltas
61,87, 6% for different variables, and in that case, we would have had 367 + 6% < ¢,
but for simplicity, we took all the deltas to be the same.) Similar bounds on ¢ can be
obtained from the other constraints, and taking the lowest upper bound implies the

existence of a constant ¢’ (that depends on the parameters) such that 6 < €/c’.

As a result, we have a §-discretization with |X| = V/§* = ¢”*V /€ number of points,
for any node. Therefore, the computational complexity over any node will be |X |,
because we have |X| many values for the node itself and |X| many values for any of
its two children. Since there are n nodes, the overall complexity of the algorithm

will simply be n|X|* = nc®V3/e® = cn/€°. O
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Chapter 6

DISTRIBUTED SOLUTION OF LARGE-SCALE SYSTEMS OF
EQUATIONS

[1] Navid Azizan et al. “Distributed Solution of Large-Scale Linear Systems
via Accelerated Projection-Based Consensus”. In: 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). 2018,
pp. 6358-6362. por: 10.1109/ICASSP.2018.8462630.

[2] Navid Azizan et al. “Distributed Solution of Large-Scale Linear Systems
via Accelerated Projection-Based Consensus”. In: IEEE Transactions on
Signal Processing 67.14 (2019), pp. 3806-3817. por: 10.11089/TSP.2019.
2917855.

Solving a large-scale system of linear equations is a key step at the heart of many
algorithms in scientific computing, machine learning, and beyond. When the problem
dimension is large, computational and/or memory constraints make it desirable, or
even necessary, to perform the task in a distributed fashion. In this chapter, we
consider a common scenario in which a taskmaster intends to solve a large-scale
system of linear equations by distributing subsets of the equations among a number
of computing machines/cores. We propose a new algorithm called Accelerated
Projection-based Consensus (APC), in which, at each iteration, every machine
updates its solution by adding a scaled version of the projection of an error signal
onto the nullspace of its system of equations, and the taskmaster conducts an
averaging over the solutions with momentum. The convergence behavior of the
proposed algorithm is analyzed in detail and analytically shown to compare favorably
with the convergence rate of alternative distributed methods, namely distributed
gradient descent, distributed versions of Nesterov’s accelerated gradient descent
and heavy-ball method, the block Cimmino method, and ADMM. On randomly
chosen linear systems, as well as on real-world data sets, the proposed method offers
significant speed-up relative to all the aforementioned methods. Finally, our analysis
suggests a novel variation of the distributed heavy-ball method, which employs
a particular distributed preconditioning, and which achieves the same theoretical

convergence rate as the proposed consensus-based method.
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6.1 Introduction

With the advent of big data, many analytical tasks of interest rely on distributed
computations over multiple processing cores or machines. This is either due to the
inherent complexity of the problem, in terms of computation and/or memory, or
due to the nature of the data sets themselves that may already be dispersed across
machines. Most algorithms in the literature have been designed to run in a sequential
fashion, as a result of which, in many cases, their distributed counterparts have yet to
be devised. In order to devise efficient distributed algorithms, one has to address
a number of key questions, such as: (a) What computation should each worker
carry out, (b) What is the communication architecture, and what messages should be
communicated between the processors, (¢) How does the distributed implementation
fare in terms of computational complexity, and (d) What is the rate of convergence

in the case of iterative algorithms.

In this chapter, we focus on solving a large-scale system of linear equations, which
is one of the most fundamental problems in numerical computation, and lies at the
heart of many algorithms in engineering and the sciences. In particular, we consider
the setting in which a taskmaster intends to solve a large-scale system of equations in
a distributed way with the help of a set of computing machines/cores (Figure 6.1).
This is a common setting in many computing applications, and the task is mainly
distributed because of high computational and/or memory requirements (rather than

physical location as in sensor networks).

This problem can in general be cast as an optimization problem, with a cost function
that is separable in the data! (but not in the variables). Hence, there are general
approaches to construct distributed algorithms for this problem, such as distributed
versions of gradient descent [228, 173, 222] and its variants (e.g., Nesterov’s
accelerated gradient [151] and heavy-ball method [169]), as well as the so-called
Alternating Direction Method of Multipliers (ADMM) [44] and its variants. ADMM
has been widely used [100, 62, 225] for solving various convex optimization problems
in a distributed way, and in particular for consensus optimization [144, 185, 139],
which is the relevant one for the type of separation that we have here. In addition
to the optimization-based methods, there are a few distributed algorithms designed
specifically for solving systems of linear equations. The most famous one of these
is what is known as the block Cimmino method [69, 191, 11], which is a block

'Solving a system of linear equations, Ax = b, can be set up as the optimization problem
miny [|[Ax = b|I* = miny 3; || (Ax); - bill>.
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row-projection method [45], and is in a way a distributed implementation of the
Kaczmarz method [111]. Another algorithm has been recently proposed in [134,
146], where a consensus-based scheme is used to solve a system of linear equations
over a network of autonomous agents. Our algorithm bears some resemblance to all
of these methods, but as it will be explained in detail, it has much faster convergence

than any of them.

Our main contribution is the design and analysis of a new algorithm for distributed
solution of large-scale systems of linear equations, which is significantly faster
than all the existing methods. In our methodology, the taskmaster assigns a subset
of equations to each of the machines and invokes a distributed consensus-based
algorithm to obtain the solution to the original problem in an iterative manner. At
each iteration, each machine updates its solution by adding a scaled version of
the projection of an error signal onto the nullspace of its system of equations, and
the taskmaster conducts an averaging over the solutions with momentum. The
incorporation of a momentum term in both projection and averaging steps results
in accelerated convergence of our method, compared to the other projection-based
methods. For this reason, we refer to this method as Accelerated Projection-based
Consensus (APC). We provide a complete analysis of the convergence rate of APC
(Section 6.3), as well as a detailed comparison with all the other distributed methods
mentioned above (Section 6.4). Also, by empirical evaluations over both randomly
chosen linear systems and real-world data sets, we demonstrate the significant
speed-ups from the proposed algorithm, relative to the other distributed methods
(Section 6.6). Finally, as a further implication of our results, we propose a novel
distributed preconditioning method (Section 6.7), which can be used to improve the

convergence rate of distributed gradient-based methods.

6.2 The Setup

We consider the problem of solving a large-scale system of linear equations
Ax =D, (6.1)

where A € RV x € R”, and b € RV. While we will generally take N > n, we will
assume that the system has a unique solution. For this reason, we will most often
consider the square case (N = n). The case where N < n, and there are multiple

(infinitely many) solutions, is discussed in Section 6.5.

As mentioned before, for large-scale problems (when N, n > 1), it is highly desirable,

or even necessary, to solve the problem in a distributed fashion. Assuming we have
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Figure 6.1: Schematic representation of the taskmaster and the m machines/cores.
Each machine i has only a subset of the equations, i.e., [A;, b;].

m machines (as in Figure 6.1), the equations can be partitioned so that each machine

gets a disjoint subset of them. In other words, we can write (6.1) as

A by
A by

. X = 4
Anm bn

where each machine i receives [A;, b;]. In some applications, the data may already
be stored on different machines in such a fashion. For the sake of simplicity, we
assume that m divides N, and that the equations are distributed evenly among the
machines, so that each machine gets p = % equations. Therefore A; € RP*" and
b; € R? forevery i = 1,...m. Itis helpful to think of p as being relatively small
compared to n. In fact, each machine has a system of equations which is highly

under-determined.

6.3 Accelerated Projection-Based Consensus

6.3.1 The Algorithm

Each machine i can certainly find a solution (among infinitely many) to its own highly
under-determined system of equations A;x = b;, with simply O (p?) computations.
We denote this initial solution by x;(0). Clearly adding any vector in the right
nullspace of A; to x;(0) will yield another viable solution. The challenge is to find

vectors in the nullspaces of each of the A;’s in such a way that all the solutions for
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different machines coincide.

At each iteration ¢, the master provides the machines with an estimate of the solution,
denoted by x(#). Each machine then updates its value x;(¢) by projecting its difference
from the estimate onto the nullspace, and taking a weighted step in that direction

(which behaves as a “momentum”). Mathematically
xi(1+1) = x;(2) + yPi(X(2) — x:(2)),
where
P =1-Al(AAD) A (6.2)

is the projection matrix onto the nullspace of A; (it is easy to check that A;P; = 0
and Pl.2 = P)).

Although this might bear some resemblance to the block Cimmino method because
of the projection matrices, APC has a much faster convergence rate than the block
Cimmino method (i.e., convergence time smaller by a square root), as will be shown
in Section 6.4. Moreover, it turns out that the block Cimmino method is in fact a
special case of APC for y = 1 (Section 6.4.5).

The update rule of x; (7 + 1) described above can be also thought of as the solution to
an optimization problem with two terms: the distance from the global estimate x(¢),

and the distance from the previous solution x;(#). In other words, one can show that

, . 1-
xi(t+ 1) = argmin - |lx; —x(0)])*+ 5 L i = xi ()

st. Aix; =b;
The second term in the objective is what distinguishes this method from the block
Cimmino method. If one sets y equal to 1 (which is the reduction to the block
Cimmino method), the second term disappears altogether, and the update no longer
depends on x;(¢). As we will show, this can have a dramatic impact on the convergence

rate.

After each iteration, the master collects the updated values x; (7 + 1) to form a new
estimate X(7 + 1). A plausible choice for this is to simply take the average of the
values as the new estimate, i.e., X(r + 1) = % i, xi(t + 1). This update works, and
is what appears both in ADMM and in the consensus method of [134, 146]. But
it turns out that it is extremely slow. Instead, we take an affine combination of the

average and the previous estimate as

R4 = LY x4 1) + (1= (D),
i=1
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Algorithm 4 APC: Accelerated Projection-Based Consensus (For solving Ax = b
distributedly)

Input: data [A;, b;] on each machine i = 1,...m, parameters 7, y
Initialization: on each machine i, find a solution x;(0) (among infinitely many)
to Ajx = b,.
at the master, compute x(0) «
fort=1to 7T do

for each machine i parallel do

xi(1) — xi(t = 1) +yPi(x(t = 1) —x;(t = 1))

end for

at the master: ¥(r) « = 3" x;(1) + (1 —p)x(t — 1)
end for

1 vm

o i1 %i(0)

which introduces a one-step memory, and again behaves as a momentum.

The resulting update rule is therefore

xi(t+ 1) =x;(t) +yP;(x(t) — x;(2)), i€ [m], (6.3a)
R(t+1) = %ixi(t+ D+ (1= n)E(), (6.3b)
i=1

which leads to Algorithm 4.

6.3.2 Convergence Analysis
We analyze the convergence of the proposed algorithm and prove that it has linear
convergence (i.e., the error decays exponentially), with no additional assumption

imposed. We also derive the rate of convergence explicitly.

Let us define the matrix X € R™" as
1 m
X2 > AT(AAD T A, (6.4)
i=1

As it will become clear soon, the condition number of this matrix predicts the
behavior of the algorithm. Note that since the eigenvalues of the projection matrix
P; are all 0 and 1, for every i, the eigenvalues of X are all between 0 and 1. Denoting
the eigenvalues of X by y;, 0 < pmin = tn < -++ < 41 = fmax < 1. Let us define

complex quadratic polynomials p;(A) characterized by y and 7 as

pi(y,m) = A%+
(—ny(A-—p)+y-1+np-Da+(y-DHn-1) (6.5)
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fori =1,...,n. Further, define set S as the collection of pairs y € [0,2] andnp € R
for which the largest magnitude solution of p;(1) = 0 among every i is less than 1,

ie.,

S={(y.n) €[0,2] xR |
roots of p; have magnitude less than 1 for all i}. (6.6)

The following result summarizes the convergence behavior of the proposed algorithm.

Theorem 31. Algorithm 4 converges to the true solution as fast as p' converges to 0,
ast — oo, for some p € (0, 1), if and only if (y,n) € S. Furthermore, the optimal
rate of convergence is

_\/K(X)—l~1 2

P k0 +1  ex)

where k(X) = % is the condition number of X, and the optimal parameters (y*,n*)

(6.7)

are the solution to the following equations:

pmax7y = (1++/(y = 1) (7 - 1))?,
pmin7y = (1 = /(¥ = 1)(n - 1))

Proof. Let x™ be the solution of Ax = b. To make the analysis easier, we define error
vectors with respect to x* as e;(¢) = x;(¢) —x* foralli = 1...m, and (1) = x(t) —x%,

and work with these vectors. Using this notation, Eq. (6.3a) can be rewritten as
ei(t+1)=r¢;(t) +yPi(e(t) —ei(t), i=1,...,m.

Note that both x* and x;(#) are solutions to A;x = b;. Therefore, their difference,
which is e;(¢), is in the nullspace of A;, and it remains unchanged under projection

onto the nullspace. As a result, P;e;(t) = e;(t), and we have

ei(t+1)=(1-vy)ei(t)+yPie(t), i=1,...,m. (6.8)
Similarly, the recursion (6.3b) can be expressed as

et +1) =L Y ei(t+ 1)+ (1-m)éw).
i=1
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which using (6.8) becomes
2t +1) = L3 (1= y)ei(t) +yPie(n) + (1 - (o)
Mmoo

n(1-y) < ny - .
= ;ei(t)+(;;P,-+(l—n)ln)e(t). (6.9)

It is relatively easy to check that in the steady state, the recursions (6.8), (6.9) become

Pie(0) =e¢;j(c0), i=1,...,m

&(c0) = 5 By Pie(00),
which, because of % it Pi=1- % M AiT(A,-Al.T)‘lAi =1 — X, implies é(o0) =
el(oo) —- . = em(oo) = O, if,umin + 0.
Now let us stack up all the m vectors ¢; along with the average e together, as a

vector ()T = [e1(1)T, e2(0)T, ..., em(D)T,é(1)T] € R D" The update rule can

be expressed as:

ea+1)] | Pu]] [er(r)
: (1 =) nn Y
= , (6.10)
en(t+1) Pl len(2)
ee+) ]| M2, ] M| e

where M = L3 P+ (1 - ),

The convergence rate of the algorithm is determined by the spectral radius (largest
magnitude eigenvalue) of the (m + 1)n X (m + 1)n block matrix in (6.10). The

eigenvalues A; of this matrix are indeed the solutions to the following characteristic

equation.
Py
(I =y =Dl Y|
det =0.
Py,
1—
2= [I,,...In] S P+ (L= = D),

Using the Schur complement and properties of determinant, the characteristic
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equation can be simplified as follows.

0=(1-y-A)"x

ny < n(1-y)y <
det(z;Pl-i_(l_n_/l)ln_(l—’y——ﬂ)rnZPl)

I i=1

=(1-y-2)""x
det ﬂ(l—l_—y)iP-+(l—n—/l)l
m l-y-24 P l "
=(1-y-A)"x
d ol 1
et mZP,‘I‘( —n—/l)ln
i=1

= (1=y ="
"o P;
det (—17)//1% +(1-y-)(1 -7 —/1)1,,) .

Therefore, there are (m — 1)n eigenvalues equal to 1 — v, and the remaining 2n
eigenvalues are the solutions to
O=det(—pyA(I-X)+ (1 -y - (1 -n-A)I)
=det(pyAX +((1 -y =)0 =n=-1) -ny)I).
Whenever we have dropped the subscript of the identity matrix, it is of size n.

Recall that the eigenvalues of X are denoted by u;, i = 1,...,n. Therefore, the
eigenvalues of nyAX+((1 —y —A)(1 —=n—-A) —npyd) lare npydu;+ (1 —y—-2)(1 -
n—A)—nyd, i =1,...,n. The above determinant can then be written as the product

of the eigenvalues of the matrix inside it, as

n
0:1—[777/1111""(1_7’_/1)(1_77_/1)_777/1~
i=1

Therefore, there are two eigenvalues A; 1, A; 2 as the solution to the quadratic equation
P+ (-ny(l—p)+y-1+n-DA+(y-D(n-1)=0

for every i = 1,...,n, which will constitute the 2n eigenvalues. When all these
eigenvalues, along with 1 — 7y, are less than 1, the error converges to zero as p’, with

p being the largest magnitude eigenvalue (spectral radius). Therefore, Algorithm 4
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converges to the true solution x* as fast as p’ converges to 0, as t — oo, if and only if

(y.m) €S.

The optimal rate of convergence is achieved when the spectral radius is minimum.

For that to happen, all the above eigenvalues should be complex and have magnitude

|Ai1] =142l =+/(y = 1)(n — 1) = p. It implies that we should have
(y+n-ny(1-w)-2)> <4(y-1(n-1), Vi

or equivalently

2Vy-D(n-1) <y+n-ny(1 — ) <2y(y-D(n-1)

for all i. The expression in the middle is an increasing function of y;, and therefore
for the above bounds to hold, it is enough for the lower bound to hold for the tmin

and the upper bound to hold for ppyy, i.e.,

Y+ =1yl = pmax) =2 =24/(y = 1)(n - 1)
2+ny(1 = pmin) —y —n=24/(y - D(n-1)

which can be massaged and expressed as

pmax7y = (1+4/(y = D(n - 1))* = (1 + p)?
tminty = (1 =/(y = D(n = 1))* = (1 - p)?

(1+p)*

Dividing the above two equations implies x(X) = (Tp)”

Ve(X) -1

VeX) +1°

and that concludes the proof. O

which results in the optimal

rate of convergence being

We should remark that, while in theory, the optimal values of y and n depend on the
values of the smallest and largest eigenvalues of X, in practice, one will almost never
compute these eigenvalues. Rather, one will use surrogate heuristics (such as using
the eigenvalues of an appropriate-size random matrix) to choose the step size. (In
fact, the other methods, such as distributed gradient descent and its variants, have

the same issue as well.)
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Table 6.1: A summary of the convergence rates of different methods. DGD:
Distributed Gradient Descent, D-NAG: Distributed Nesterov’s Accelerated Gradient
Descent, D-HBM: Distributed Heavy-Ball Method, Mou et al: Consensus algorithm
of [146], B-Cimmino: Block Cimmino Method, APC: Accelerated Projection-based
Consensus. The smaller the convergence rate is, the faster is the method. Note that

PGD = PNAG = PHBM and PMou = PCim = PAPC-

DGD D-NAG D-HBM Mouetal. B-Cimmino APC (proposed)
k(AT A)-1 |- 2 Vk(AT A)-1 | = tmin(X) K(X)-1 Ve(X)-1
(AT A)+1 V3k(AT A)+1 V(AT A)+1 Hmin (X)+1 Vi(X)+1

1 _2 1 2 ~1_ 2 ~l__2
L Ve e U Y®

6.3.3 Computation and Communication Complexity

In addition to the convergence rate, or equivalently the number of iterations until
convergence, one needs to consider the computational complexity per iteration. At
each iteration, since P; = I, — AT (A;AT)™1A;, and A; is p X n, each machine has to
do the following two matrix-vector multiplications: (1) A;(x;(z) — X(¢)), which takes
pn scalar multiplications, and (2) (Al.T(AiAt.T)_l) times the vector from the previous
step, which takes another np operations (the pseudoinverse AI.T(AiAl.T)_1 is computed

only once). Thus the overall computational complexity of each iteration is 2pn.

We should remark that the computation done at each machine during each iteration
is essentially a projection, which has condition number one and is as numerically

stable as a matrix vector multiplication can be.

Finally, the communication cost of the algorithm, per iteration, is as follows. After
computing the update, each of the m machines sends an n-dimensional vector to the

master, and receives back another n-dimensional vector, which is the new average.

As we will see, the per-iteration computation and communication complexity of
the other algorithms are similar to APC; however, APC requires fewer iterations,

because of its faster rate of convergence.

6.4 Comparison with Related Methods

6.4.1 Distributed Gradient Descent (DGD)

As mentioned earlier, (6.1) can also be viewed as an optimization problem of the
form

minimize ||Ax — b||?,
X

and since the objective is separable in the data, i.e., [|[Ax — b||> = 22, [|Aix — b ||,

generic distributed optimization methods such as distributed gradient descent apply
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well to the problem.

The regular or full gradient descent has the update rule x(t+1) = x(¢) —a AT (Ax(¢) -
b), where a > 0 is the step size or learning rate. The distributed version of gradient
descent is one in which each machine i has only a subset of the equations [A;, b;],
and computes its own part of the gradient, which is AT (A;x(r) — b;). The updates
are then collectively done as:

x(t+1) =x(7) —aiAiT(A,-x(t) - b)). (6.11)
i=1

One can show that this also has linear convergence, and the rate of convergence is
_k(ATA) -1 2
T k(ATAY+1 ~ k(ATA)

PGD (6.12)

We should mention that since each machine needs to compute AZ.T(A,-x(t) —b;) at
each iteration #, the computational complexity per iteration is 2pn, which is identical
to that of APC.

6.4.2 Distributed Nesterov’s Accelerated Gradient Descent (D-NAG)
A popular variant of gradient descent is Nesterov’s accelerated gradient descent

[151], which has a memory term, and works as follows:

m
y(t+1) = x(2) —aZAiT(A,-x(t) — by), (6.132)
i=1
x(t+ 1) ={1+pB)y(+1)—By(r). (6.13b)
One can show [125] that the optimal convergence rate of this method is
2
PNAG = 1 — (6.14)

Bk(ATA) + 1
which is improved over the regular distributed gradient descent (one can check that

k(AT A)-1 2

KAT AT = 1 m)'

6.4.3 Distributed Heavy-Ball Method (D-HBM)

The heavy-ball method [169], otherwise known as the gradient descent with momen-

tum, is another accelerated variant of gradient descent as follows:
2(t+1) =Bz(t) + Z AT (Aix(1) - by), (6.152)
i=1

x(t+1)=x(t) —az(t+1). (6.15b)
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It can be shown [125] that the optimal rate of convergence of this method is

Vk(ATA) -1 2

PHBM = ——— ~ | - ——, (6.16)
Vk(ATA) +1 Vk(ATA)
which is further improved over DGD and D-NAG (A7 A1~y 2 5
(AT A)+1 \Br(AT A)+1
—‘K(ATA)_l). This is similar to, but not the same as, the rate of convergence of APC.
V(AT A)+1

The difference is that the condition number of ATA = 2y Al.TAl- is replaced with
the condition number of X = 77" AI.T (A,-AL.T)_l A; in APC. Given its structure as the
sum of projection matrices, one may speculate that X has a much better condition
number than AT A. Indeed, our experiments with random, as well as real, data sets
suggest that this is the case and that the condition number of X is often significantly
better (see Table 6.2).

6.4.4 Alternating Direction Method of Multipliers (ADMM)

Alternating Direction Method of Multipliers (more specifically, consensus ADMM
[185, 44]), is another generic method for solving optimization problems with
separable cost function f(x) = 2.7, fi(x) distributedly, by defining additional local
variables. Each machine i holds local variables x;(¢) € R” and y;(¢) € R”, and the
master’s value is x¥(¢) € R”, for any time ¢. For f;(x) = %||A,~x — b;||?, the update rule
of ADMM simplifies to

xi(t+1) = (ATA; + €1,) Y (AT b; — yi (1) + €X()), i€ [m] (6.17a)

X(t+1)= n% ixi(t +1) (6.17b)
i=1

yilt+1)=yi(t) +&Ex;(t+ 1) —=x(t+ 1)), i€ [m] (6.17¢)

It turns out that this method is very slow (and often unstable) in its native form for
the application in hand. One can check that when system (6.1) has a solution, all the
y; variables converge to zero in steady state. Therefore, setting y;’s to zero can speed
up the convergence significantly. We use this modified version in Section 6.6 for

comparison.

We should also note that the computational complexity of ADMM is O(pn) per
iteration (the inverse is computed using matrix inversion lemma), which is again the

same as that of gradient-type methods and APC.
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6.4.5 Block Cimmino Method

The Block Cimmino method [69, 191, 11], which is a parallel method specifically
for solving linear systems of equations, is perhaps the closest algorithm in spirit to
APC. It is, in a way, a distributed implementation of the so-called Kaczmarz method
[111]. The convergence of the Cimmino method is slower by an order in comparison
with APC (its convergence time is the square of that of APC), and it turns out that
APC includes this method as a special case when y = 1.

The block Cimmino method is the following:

ri(t) = A¥(b; — AR(), i€ [m] (6.182)
F(t+1)=x(t) +erl~(t), (6.18b)

i=1
where AT = AI.T(AI-AZ.T)_1 is the pseudoinverse of A;.
Proposition 32. The APC method (Algorithm 4) includes the block Cimmino method

as a special case for y = 1.

Proof. When y =1, Eq. (6.3a) becomes
xi(t+1) = x;(2) — Pi (x;(2) — X(2))
= xi(1) = (1= AT (4AD) A (i) - 2(0)
= x(t) + AT (A AD T A (x; — 2(2))

= 2(t) + AT(AAT) (b, — AiR(1))

In the last equation, we used the fact that x; is always a solution to A;x = b;. Notice
that the above equation is no longer an “update” in the usual sense, i.e., x;(¢ + 1) does
not depend on x;(¢) directly. This can be further simplified using the pseudoinverse
of A;, A} = AT (AA]) ! as

xi(t+1) =x(r) + Af (b; — Aix(1)).
It is then easy to see from the Cimmino’s equation (6.18a) that

ri(t) =x;(t+1) = x(1).
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Therefore, the update (6.18b) can be expressed as

m

F(t+1)=3(1) + VZ ri(t)
i=1

=50 +v ) (it +1) = %(1))

i=1

= (1 - mv)(t) + va,-(t +1),

i=1

which is nothing but the same update rule as in (6.3b) with n = mv. O

It is not hard to show that optimal rate of convergence of the Cimmino method is

. k(X)) -1 2
TP TS )

(6.19)

which is slower (by an order) than that of APC (—K(X)_1 ~ 2

e+ \/K(X)).

6.4.6 Consensus Algorithm of Mou et al.

As mentioned earlier, a projection-based consensus algorithm for solving linear
systems over a network was recently proposed by Mou et al. [146, 134]. For the
master-worker setting studied here, the corresponding network would be a clique,

and the algorithm reduces to

m

xi(t+1) =x(t) + Pi % ij(t) —xi(0)|, ielm], (6.20)
j=1

which is transparently equivalent to APC withy =5 = 1:

xi(t+1) = x;(1) + Pi(x(2) - xi (1)), i€ [m],
xX(t+1) = L \ xi(t+1),
Mmoo

It is straightforward to show that the rate of convergence in this case is

PMou = I - ,Umin(X) (6.21)

which is much slower than the block Cimmino method and APC. One can easily

check that
k(X)-1 S V(X)) -1
KX)+1 7 X)) +1

1- :umin(X) 2
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Even though this algorithm is slow, it is useful for applications where a fully-
distributed (networked) solution is desired. Another networked algorithm for solving

a least-squares problem has been recently proposed in [207].

A summary of the convergence rates of all the related methods discussed in this

section is provided in Table 6.1.

6.5 Underdetermined System

In this section, we consider the case when N < n and rank(A) = N, i.e., the system is
underdetermined and there are infinitely many solutions. We prove that in this case,
each machine still converges to “a” (global) solution, and further, all the machines
converge to the same solution. The convergence is again linear (i.e., the error decays

exponentially fast), and the rate of convergence is similar to the previous case.

Recall that the matrix X € R™" defined earlier can be written as

1 _
X=— Z AT (A;AT) ! 4
i=1

| (A1A])™!
=—AT A
m
(AnAL)™!

which is singular in this case.
We define a new matrix Y € RNV

1 (A1)

y & —aAT (6.22)
m
(AnAl)™!

which has the same nonzero eigenvalues as X.

Theorem 33. Suppose N < n and rank(A) = N. Each one of x1(t), ..., x,(t),Xx(t)
in Algorithm 4 converges to a solution as fast as p' converges to 0, ast — oo, for
some p € (0,1), if and only if (y,n) € S. Furthermore, the solutions converged to
are the same. The optimal rate of convergence is

k() -1 N 2

- —— (6.23)

Pk +1 e
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Table 6.2: A comparison between the condition numbers of A”A and X for some
examples. m is the number of machines/partitions. The condition number of X is
typically much smaller (better). Remarkably, the difference is even more pronounced
when A has non-zero mean.

k(AT A) k(X)
il _
100 x 100 2x 107 (m =2)
4| 4x10* (m=5)
N(0,1) 7% 10 4
(Gaussian) Sx10° (m = 10)
6 x 10*  (m =20)
6 —
100 x 100 Ti 187 En”z - i;
N(10,1) 2% 108 -

2x 107 (m=10)
4% 107 (m =20)
2x10° (m=2)
5x10° (m=5)
6x10° (m =10)
7x10° (m =20)
1x10° (m=2)

(Non-zero mean)

100 x 100
N(0,10%) 8 x 10°
(High variance)

/2\(/)?0?(11)00 3x10t | 1% 101 (m =3)
(Tall 2 x 101 (m = 10)
2x 10" (m =20)
100 x 100 1X1Oj (m=2)
exp(10) 9x 105 | AX 100 (m=3)
(Exponential) 1> 10° (m =10)
2x10° (m =20)
7 _
100 x 100 ; i 187 En”z B} g
stable(0.5,0.5,1,0) | 3 x 101 7
(Heavy tail) 3107 (m = 10)
3% 107 (m =20)
Ix10° (m=2)
Real example: 3x10° (m=4)
QC324 2x107 | 6x10° (m=9)
(324 x 324) 6x10° (m=18)
8§x10° (m =81)
4x107 (m=2)
Real example: 5x 107 (m=5)
ORSIRR 1 6x10° | 5x107 (m =10)
(1030 x 1030) 6x 107 (m = 103)

6x 107  (m =206)
8x 100 (m=38)

10x 10°  (m = 16)
10x10°  (m =32)
11x10° (m=176)

Real example:
ASH608 11 x 10°
(608 x 188)
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Table 6.3: A comparison between the optimal convergence time T (= — égp) of
different methods on real and synthetic examples. Boldface values show the smallest
convergence time. QC324: Model of H} in an Electromagnetic Field. ORSIRR 1:

Oil Reservoir Simulation. ASH608: Original Harwell sparse matrix test collection.

DGD D-NAG D-HBM  M-ADMM B-Cimmino APC

QC324
(324 x 324)

ORSIRR 1
(1030 x 1030)

ASH608
(608 x 188)

Standard
Gaussian 1.76 x 107 5.14%x10° 297x10° 1.20x10° 1.46x107 2.70 x 103
(500 x 500)

1.22%x 107 428x10° 247x10° 1.07x107 3.10x10° 3.93 x 102

2.98x10° 6.68x10* 3.86x10* 2.08x10% 2.69x 107 3.67x10°

567x10° 243x10° 1.64x10° 1.28x10" 4.98x10° 1.53x10°

Nonzero-Mean
Gaussian 222%x 1010 1.82x%x10° 1.05x10° 8.62x 108 929x10% 2.16 x 10*
(500 x 500)

Standard Tall
Gaussian 1.58x 100 437x10° 2.78x10° 4.49x10' 1.13x10' 2.34x10°
(1000 x 500)

Standard Fat
Gaussian 1.37x 10> 1.38x10' 8.26x10° 3.17x10> 1.14x10*> 17.54x10°
(400 x 500)

where k(Y) = % is the condition number of Y, and the optimal parameters (y*,n*)

are the solution to the following equations

Hmax7y = (L ++/(y = D (n - 1))2’
pmint7y = (1 =+/(y = 1) (n = 1))*,
Proof. Let x* be a solution to Ax = b. We define error vectors e;(t) = x;(t) — x* for

alli=1...m,and é(t) = x(t) — x*, as before, but this time show that Ae;(1) — 0
and Aé(t) — 0. Recursion (6.3a) can be rewritten as

ei(t+1)=¢;(t)+yPi(e(t) —ei(t), i=1,...,m,

as before. Since both x* and x;(#) are solutions to A;x = b;, their difference ¢;(¢) is
in the nullspace of A;, and it remains unchanged under projection onto the nullspace.

As aresult, P;e;(t) = e;(t), and we have

ei(t+1)=(1—-vy)ei(t)+yPie(t), i=1,...,m. (6.24)
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Similarly, the recursion (6.3b) can be expressed as
_ N < _
t+1) ==Y ei(t+1)+ (1 -n)ét
e(r+1) m;e<r+ )+ (1 =)
= L3 (1 =p)ei(r) +yPie(n)) + (1 - (o)
=
n(1-v) < my _
= — i(t — P+ (1-n)l, 1),
_ ;e()+(m; +(1-1) )e()

as before.

Multiplying the recursions by A, we have

Aei(t+1)=(1—-vy)Ae;(t)+yAP;e(t), i=1,...,m,

and
1 _ m m
Acr+1y =14 =Y > Aei(n) + (QZAP,- +(1=pAle@)
mo4 m i3
Note that P; = I,—AT (A;AT)"1A;, and we can express A; as A; = [Opxp con Iy oo Opxp| A=

E;A, where E; is a p X N matrix with an identity at its i-th block and zero everywhere
else. Therefore, we have AP; = A — AAT (A;AT)'E;A = (Iy — AAT(A,AT)IE) A,

and the recursions become
Aei(t+1) = (1 -y)Ae;(t) +y(Iy - AAT (A, A]) ' Ep) Aé(n),

fori=1,...,m,and
1_ m
Ae(t+1) = ueri(I)
m
i=1

|3 1y = AAT(AAD) T E) + (1= )y | A2(0).
m

i=1

Stacking up all the m vectors Ae; along with A¢, as an (m + 1) N-dimensional vector,

results in
Aei(t+1) Pll Ae (1)
: | U=y :
Aey(t+1) Pl |Aen ()|’
Ae(r+1) | |10 [IN N .IN] M || ae(n
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where M’ =L 3" P!+ (1 —n)Iy and P} = Iy — AAT (A,AT)7'E;.
The convergence rate of the algorithm is determined by the spectral radius (largest

magnitude eigenvalue) of this (m + 1)N X (m + 1) N matrix. The eigenvalues A; of

this matrix are the solutions to the following characteristic equation.

P
(I =y —=Dlun Y|
det =0.
P/
77(1”:7) [ININ] my m P/+(1_77 /l)IN

Similar as in the proof of Theorem 31, using the Schur complement and properties

of determinant, the characteristic equation can be simplified as follows:

ny < -y)y
0=(1—-y-)™det|~= » P+ (1-n-A)I
(1-y-0)""de mgl i+ (1—n-Dly - (1_y ﬂ)mE )
ny -y .}
=(1-y =" det|Z2(1 - ——=) > Pl+(1-n -1
(1 =y =)™ det{—~( l_y_ﬂ)i:l i+(-n )N)
-yd <
=(1-y =" det| ——"—— " P+ (1-n- I
(1-y-)""de =y —m 2" (1-n )N)

nm /

=(1—7—z)<'"‘“Ndet( 777/12 L (1-y-D(l-n- A)IN)

Notethat L 37", Pl = Iy—L 3" AAT(AAD)LE; = In—[AAT (A AT)7L, . AAL (A, AD)7Y] =
Iy —-7Y. There are (m — 1)N eigenvalues equal to 1 — v, and the remaining 2N

eigenvalues are the solutions to

0=det(-nyAd(I-Y)+ (1 —y =) (1 -5 -]
=det(yAY + (1 =y =) (1 =n-) =gy I).

Notice that this is exactly the same as the one in the proof of Theorem 31, with X

replaced with Y.

It follows that the Ae (1), ..., Ae, (1), Aé(t) converge to zero as fast as p’ if and

only if (y,n) € S, and the optimal rate of convergence is

_Vk(Y) -1
ey +1
Convergence of Ae((t),...,Ae,(t), Aé(t) to zero means that each machine and

the master converge to a solution, but the solutions reached may not be the same.
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What remains to show is that the only steady state is the “consensus steady state.”
From (6.3), it is easy to see that the steady state xj(00), ..., x, (o), x(c0) satisfies

the following equation.

Pi(x(c0) = xi(0)) =0, i € [m]

| (6.25)
x(00) = o 2y xi(o0)
which can be written in a matrix form as
Py —Py | | x1(0)
) ) =0. (6.26)
Py =Py | |xm(e0)
I}‘L Il’l v
o T In X(OO)
T
Notice that forany v € R”, the vector [vI ... T vT] is a solution to this equation,
which corresponds to a consensus steady state xj(c0) = - -+ = x;,(00) = X(00) = v.

Therefore, the nullspace of the above matrix is at least n dimensional, or in other
words, it has n zero eigenvalues. We will argue that this matrix has only n zero
eigenvalues, and therefore any steady-state solution must be a consensus. To find the

eigenvalues A; we have to solve the following characteristic equation.
Py —-Al —-P

det - : - 0.
P,—Al P,

-L . -L a-wrI

m

Once again, using the Schur complement, we have

m m

| | 1

0= ( det(P,-—/U)) det((l—/l)l__ (Pi_/ll)_lpi)

m Z
i=1 i=1

Note that (P; — AI)"'P; = -1 P;. Therefore, we can write

i=1
L . 1 1
:(g((—ﬂ)p(l—/l) p))det((l—ﬂ)l—agmpl)

mn— 1 1
= (-)N(1 -2 Ndet((l—/l)l—azmpi)

i=1
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because P; has p zero eigenvalues and n — p one eigenvalues. Using the properties

of determinant, we further have

0=(=D)NA =)D Nget[(1 -2)%1- = i P,-)

i=1

:(—/l)N(l—A)(m_l)"_Ndet((l 2= (I - X))
(

= (=N (1 = )=V geg (22 - 2/1)1+X)

= ()N (1 = p)m=Dn=N H (12 oy ,1,-)
i=1
Therefore, the (m + 1)n eigenvalues are as follows: N zero eigenvalues, (m —
1)n — N eigenvalues at 1, and the remaining 2n are 1 + \/1——u, Note that in the
underdetermined case, X has n— N zero eigenvalues. Therefore, n— N of 1+ \/1——/11
are zero. As a result, the overall number of zero eigenvalues is N + (n — N) = n.
This implies that the nullity of the matrix in (6.26) is n and any steady-state solution

must be a consensus solution, which completes the proof.

6.6 Experimental Results

In this section, we evaluate the proposed method (APC) by comparing it with the other
distributed methods discussed throughout the chapter, namely DGD, D-NAG, D-
HBM, modified ADMM, and block Cimmino methods. We use randomly-generated
problems as well as real-world ones from the National Institute of Standards and
Technology (NIST) repository, Matrix Market [141].

We first compare the rate of convergence of the algorithms, p, which is the spectral
radius of the iteration matrix. To distinguish the differences, it is easier to compare

the convergence time, which is defined as 7' = (= —) We tune the parameters

lo

in all of the methods to their optimal values, to }ir/iake the comparison between the
methods fair. Also as mentioned before, all the algorithms have the same per-iteration
computation and communication complexity. Table 6.3 shows the values of the
convergence times for a number of synthetic and real-world problems with different
sizes. It can be seen that APC has a much faster convergence, often by orders of
magnitude. As expected from the analysis, the APC’s closest competitor is the
distributed heavy-ball method. Notably, in randomly-generated problems, when the

mean is not zero, the gap is much larger.
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e decay of the error for different distributed algorithms, on two real
problems from Matrix Market [141] (QC324: Model of H; in an Electromagnetic
Field, and ORSIRR 1: Oil reservoir simulation). n = # of variables, N = # of
equations, m =

# of workers, p = # of equations per worker.
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To further verify the performance of the proposed algorithm, we also run all the
algorithms on multiple problems, and observe the actual decay of the error. Fig. 6.2
shows the relative error (the distance from the true solution, divided by the true
solution, in ¢, norm) for all the methods, on two examples from the repository.
Again, to make the comparison fair, all the methods have been tuned to their optimal
parameters. As one can see, APC outperforms the other methods by a wide margin,
which is consistent with the order-of-magnitude differences in the convergence
times of Table 6.3. We should also remark that initialization does not seem to
affect the convergence behavior of our algorithm. Lastly, we should mention that
our experiments on cases where there are missing updates (‘“‘straggler” machines)
indicate that APC is at least as robust as the other algorithms to these effects, and the

convergence curves look qualitatively the same as in Fig. 6.2.

6.7 A Distributed Preconditioning to Improve Gradient-Based Methods
k(X)-1

Ve (X)+1

A / T —
and that of D-HBM (M) suggests that there might be a connection between
Vk(AT A)+1

the two. It turns out that there is, and we propose a distributed preconditioning for

The noticeable similarity between the optimal convergence rate of APC (

)

D-HBM, which makes it achieve the same convergence rate as APC. The algorithm

works as follows.

Prior to starting the iterative process, each machine i can premultiply its own set
of equations A;x = b; by (AiAl.T)_l/ 2 which can be done in parallel (locally) with
O(p*n) operations. This transforms the global system of equations Ax = b to a new

one Cx = d, where

(A1AT)7124,
C = : :
(AnAT)~124,,
and i}
(A AT)12p,
d= :
(AnATY12p,,

The new system can then be solved using distributed heavy-ball method, which will

achieve the same rate of convergence as APC, i.e., % where k = k(CTC) = k(X).
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6.8 Conclusion

We considered the problem of solving a large-scale system of linear equations by a
taskmaster with the help of a number of computing machines/cores, in a distributed
way. We proposed an accelerated projection-based consensus algorithm for this
problem, and fully analyzed its convergence rate. Analytical and experimental
comparisons with the other known distributed methods confirm significantly faster
convergence of the proposed scheme. Finally, our analysis suggests a novel distributed
preconditioning for improving the convergence of the distributed heavy-ball method

to achieve the same theoretical performance as the proposed consensus-based method.

We should finally remark that while the setting studied here was a master-workers
one, the same algorithm can be implemented in a networked setting where there is

no central collector/master, using a “distributed averaging” approach ([200, 215]).
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Chapter 7

CODED COMPUTATION FOR DISTRIBUTED GRADIENT
DESCENT

[1] Wael Halbawi et al. “Improving Distributed Gradient Descent Using Reed-
Solomon Codes”. In: 2018 IEEE International Symposium on Information
Theory (ISIT). 2018, pp. 2027-2031. por: 10.1109/ISIT.2018.8437467.

Today’s massively-sized datasets have made it necessary to often perform computa-
tions on them in a distributed manner. In principle, a computational task is divided
into subtasks which are distributed over a cluster operated by a taskmaster. One
issue faced in practice is the delay incurred due to the presence of slow machines,
known as stragglers. Several schemes, including those based on replication, have
been proposed in the literature to mitigate the effects of stragglers and more recently,
those inspired by coding theory have begun to gain traction. In this chapter, we
consider a distributed gradient descent setting suitable for a wide class of machine
learning problems. We adopt the framework of Tandon et al. [197] and present
a deterministic scheme that, for a prescribed per-machine computational effort,
recovers the gradient from the least number of machines f theoretically permissible,
via an O(f?) decoding algorithm. We also provide a theoretical delay model which
can be used to minimize the expected waiting time per computation by optimally
choosing the parameters of the scheme. Finally, we supplement our theoretical
findings with numerical results that demonstrate the efficacy of the method and its

advantages over competing schemes.

7.1 Introduction

With the size of today’s datasets, due to high computation and/or memory require-
ments, it is virtually impossible to run large-scale learning tasks on a single machine;
and even if that is possible, the learning process can be extremely slow due to its
sequential nature. Therefore, it is highly desirable or, even necessary, to run the
tasks in a distributed fashion on multiple machines/cores. For this reason, parallel
and distributed computing has attracted a lot of attention in recent years from the

machine learning, and other, communities [44, 173, 22, 228, 77].

When a task is divided among a number of machines, the “computation time” is
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clearly reduced significantly, since the task is being processed in parallel rather than
sequentially. However, the taskmaster has to wait for all the machines in order to be
able to recover the exact desired computation. Therefore, in the face of substantial
or heterogeneous delays, distributed computing may suffer from being slow, which
defeats the purpose of the exercise. Several approaches have been proposed to tackle
this problem. One naive yet common way, especially when the task consists of many
iterations, is to not wait for all machines, and ignore the straggling machines. One
may hope that in this way on average the taskmaster receives enough information
from everyone; however, it is clear that the performance of the learning algorithm
may be significantly impacted in many cases because of lost updates. An alternative
and more appropriate way to resolve this issue, is to introduce some redundancy
in the computation of the machines, in order to efficiently trade off computation
time for less wait time, and to be able to recover the correct update using only a few
machines. But the great challenge here is to design a clever scheme for distributing
the task among the machines, such that the computation can be recovered using a

few machines, independent of which machines they are.

Over the past few decades, coding theory has been developed to address similar
challenges in other domains, and has had enormous success in many applications
such as mobile communication, storage, data transmission, and broadcast systems.
Despite the existence of a great set of tools developed in coding theory which can be
used in many machine learning problems, researchers had not looked at this area
until very recently [123, 197, 70, 128]. This work is aimed at bridging the gap
between distributed machine learning and coding theory, by introducing a carefully
designed coding scheme for efficiently distributing a learning task among a number

of machines.

More specifically, we consider gradient-based methods for additively separable cost
functions, which are the most common way of training any model in machine learning,
and use coding to cleverly distribute each gradient iteration across n machines in
an efficient way. To that end, we propose a deterministic construction based on
Reed-Solomon codes [174] accompanied with an efficient decoder, which is used
to recover the full gradient update from a fixed number of returning machines.
Furthermore, we provide a new delay model based on heavy-tail distributions that
also incorporates the time required for decoding. We analyze this model theoretically
and use it to optimally pick our scheme’s parameters. We compare the performance

of our method on the MNIST dataset [121] with other approaches, namely: 1)
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Ignoring the straggling machines [164], 2) Waiting for all the machines, and 3)
GRADIENTCODING as proposed by Tandon et al. [197]. Our numerical results show

that, for the same training time, our scheme achieves better test errors.

7.1.1 Related Work

As mentioned earlier, coding theory in machine learning is a relatively new area. We
summarize the recent related work here. Lee et al. [123] recently employed a coding-
theoretic method in two specific distributed tasks, namely matrix multiplication and
data shuffling. They showed significant speed-ups are possible in those two tasks
by using coding. Dutta et al. [70] proposed a method that speeds up distributed
matrix multiplication by sparsifying the inner products computed at each machine.
Polynomial codes has been proposed by Yu et al. [220], which uses a carefully-
designed Reed-Solomon code for matrix multiplication. They have shown that
their framework achieves the minimum recovery threshold while allowing efficient
decoding using polynomial interpolation. A coded MapReduce framework was
introduced by Li et al in [128] which is used to facilitate data shuffling in distributed
computing. The closest work to our framework is the work of Tandon et al. [197],
which aims at mitigating the effect of stragglers in distributed gradient descent using
Maximum-Distance Separable (MDS) codes. However, no analysis of computation
time was provided. Furthermore, in their framework, along with the above-mentioned
works, the decoding was assumed to be performed offline which might be impractical
in certain settings. The recent work [172] includes a coding scheme that is similar to
the one presented here. In particular, the authors use cyclic MDS codes to recover
the exact full gradient in the presence of stragglers. In addition, the authors present
a clever scheme, based on adjacency matrices of expander graphs, to compute an
approximation of the gradient in the presence of stragglers. We mention that our
scheme differs in the the way the workload is distributed across the different machines:
we advocate a load-balanced approach in which every machine performs the same
amount of work. We show that this is possible for any number of machines n and

prespecified workload w.

7.1.2 Statement of Contributions

In this work, we make the following three main contributions.

1. We construct a deterministic coding scheme for efficiently distributing gradient
descent over a given number of machines. Our scheme is optimal in the sense

that it can recover the gradient from the smallest possible number of returning
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machines, f, given a prespecified computational effort per machine.

2. We provide an efficient online decoder, with time complexity O(f?) for
recovering the gradient from any f machines, which is faster than the best
known method [197], O (f3).

3. We analyze the total computation time, and provide a method for finding the
optimal coding parameters. We consider heavy-tailed delays, which have been

widely observed in CPU job runtimes in practice [124, 93, 94].

The rest of the chapter is organized as follows. In Section 7.2, we describe the
problem setup and explain the design objectives in detail. Section 7.3, provides the
construction of our coding scheme, using the idea of balanced Reed-Solomon codes.
Our efficient online decoder is presented in Section 7.4. We then characterize the
total computation time, and describe the optimal choice of coding parameters, in
Section 7.5. Finally, we provide our numerical results in Section 7.6, and conclude

in Section 7.7.

7.2 Preliminaries
7.2.1 Problem Setup

Master
4. Decode the full
_Send the gradient upon hearing
curren ~ back from any f workers

parameters

3. Return the

(coded) partial
(— o (— o) completion (— o

Worker 1 Worker 2 Worker n

2. Perform the assigned
computation

Figure 7.1: Schematic representation of the taskmaster and the n workers.

Consider a setting where there is a taskmaster M and there are n workers (computing

machines) Wy, W,, ..., W, interacting with the taskmaster, as in Fig. 7.1. The
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master intends to train a model using gradient descent by distributing the gradient
updates amongst the workers. More precisely, consider a typical scenario, where
we want to learn parameters 8 € R” by minimizing a generic loss function L(D; )
over a given dataset D = {(x;, yl-)}l.l\il, where x; € R” and y; € R. The loss
function can be expressed as the sum of the losses for individual data points, i.e.
L(D;p) = f\; | £(xi, yi; B). Therefore, the full gradient, with respect to 3, is given
by

N
VL(D:B) = ) Vl(xi.yi: B)- (7.
i=1

The data can be divided into k (disjoint) chunks {Dy, ..., Dy} of size %, and
clearly the gradient can also be written as VL(D; ) = Zl].‘zl 2yen, VX, y;B).
Define g; := Xy y)en, VO(x,y; B) as the partial gradient of chunk i for every i,
and g := [gl,g),...,4]], where g is a row vector of length p. Therefore
VL(D;B) = 1;xxg. Now suppose each worker W; is assigned w data partitions
{Di,,...,D,}, on which it computes the partial gradients {g;,, gi,, - - ., &, }- Note
that the “redundancy” in computation is introduced here, since each chunk is allowed
to be assigned to multiple workers. Each worker then has to compute its partial

gradients, and return a prespecified linear combination of them to the master.

As it will be explained in detail, k and w are to be chosen in such a way that the total
computation time is minimized. For a fixed k and w, we want to be able to recover
the gradient using the linear combinations received from the fastest f machines at the
master (or equivalently tolerate s := n — f stragglers). Note that we do not assume
any prior knowledge about the stragglers, i.e., we shall design a scheme that enables
master to recover the gradient from any set of f machines. It is known [197] that for
any fixed k£ and w, an upper-bound on the number of stragglers that any scheme can
tolerate is:

s< |2 -1 (7.2)

The scheme proposed in this work achieves this bound. A coding scheme designed to
tolerate s stragglers consists of an encoding matrix B, and a collection of decoding
vectors {a¢ : ¥ C [n],|F| =n — s}. The matrix B should satisfy:

1. Each row of B contains exactly w nonzero entries.

2. The linear space generated by any f rows of B contains the all-one vector of
length &, 1;xk.
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The values of these nonzero entries prescribe the linear combination sent by W;. In

other words, the coded partial gradient sent from W; to M is given by
k
ci= ) Bijgi=Big, (7.3)
j=1

where B; denotes the i™ row of B. The ¢;’s define the encoded computation matrix

T
CeC™PasC = [c{ e c,{] = Bg, where ¢; € C'*P. The decoding vectors
are chosen as follows: let ¥ = {iy,...,is} be the indices of the returning machines

and let B# be the sub-matrix of B with rows indexed by 7. If 1,4 is in the linear
space generated by the rows of B, as the second property suggests, aF is chosen
such that aFB# = 1;4,. As a result, we have

arCy = arByg = i g = VL(D; ). (7.4)

When this holds for any set of indices F C [n] of size f, it means that the gradient

can be recovered from the set of f machines that return fastest.

The pseudocode listing of Algorithm 5 outlines the overall procedure for implementing
our scheme, as just described.

Algorithm S Pseudocode of the proposed scheme

Require:
{Dy, ..., Dy}: Dataset partition
Bi,...,B,: Encoding vectors

T: Number of iterations
{nt}thl: Learning rates
Ensure: Br: Parameters

Partition D into {Dy, ..., Dy}

Assign to W; the partitions {D;,, ... D;, }

Assign to W; the encoding vector B;

ﬁO — 0p><1

while r < T do
M sends out B, to Wy, ..., W,
W; computes partial gradients g;,,..., g,
W; encodes g;,, ..., g, toc; using B;
M computes aF corresponding to first f returning machines
M recovers V(D, B;) using {c;};cy and ag
M updates model: B+ = B — 1, V(D, B;)

end while

return Sr
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7.2.2 Computational Trade-offs

In a distributed scheme that does not employ redundancy, the taskmaster has to wait
for all the workers to finish in order to compute the full gradient. However, in the
scheme outlined above, the taskmaster needs to wait for the fastest f machines to
recover the full gradient. Clearly, this requires more computation by each machine.
Note that in the uncoded setting, the amount of computation that each worker does
is % of the total work, whereas in the coded setting each machine performs a
fraction of the total work. From (7.2), we know that if a scheme can tolerate s
stragglers, the fraction of computation that each worker does is ¥ > % Therefore,
the computation load of each worker increases by a factor of (s + 1). As will be
explained further in Section 7.5, there is a sweet spot for 7 (and consequently s) that
minimizes the expected total time that the master waits in order to recover the full

gradient update.

It is worth noting that it is often assumed [197, 123, 70] that the decoding vectors are
precomputed for all possible combinations of returning machines, and the decoding
cost is not taken into account in the total computation time. In a practical system,
however, it is not very reasonable to compute and store all the decoding vectors,
especially as there are (;ﬁ) such vectors, which grows quickly with n. In this work,
we introduce an online algorithm for computing the decoding vectors on the fly,
for the indices of the f workers that respond first. The approach is based on the
idea of inverting Vandermonde matrices, which can be done very efficiently. In the
sequel, we show how to construct an encoding matrix B for any w, k and n, such that
the system is resilient to L%J — 1 stragglers, along with an efficient algorithm for

computing the decoding vectors {a¢ : ¥ C [n], |F| = f}.

7.3 Code Construction

1k where

The basic building block of our encoding scheme is a matrix M € {0, 1
each row is of weight w, which serves as a mask for the matrix B, where w is the
number of data partitions that is assigned to every machine. Each column of B will
be chosen as a codeword from a suitable Reed—Solomon Code over the complex
field, with support dictated by the corresponding column in M. Whereas the authors
of [197] choose the rows of B as codewords from a suitable MDS code, this approach

does not immediately work when k is not equal to n.
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7.3.1 Balanced Mask Matrices
We will utilize techniques from [90, 91] to construct the matrix M (and then B). For
that, we present the following definition.

Definition 7 (Balanced Matrix). A matrix M € {0, 1}">* is column (row)-balanced
if for fixed row (column) weight, the weights of any two columns (rows) differ by at

most 1.

Ultimately, we are interested in a matrix M with row weight w that prescribes a mask
for the encoding matrix B. As an example, letn = 8, k =4 and w = 3. Then, M is

given by

) (7.5)

—_ =, k=, O O =
J

1
1
1
1
0
0
1
1

1
O O = m k= = e

where each column is of weight %+ = 6. The following algorithm produces a balanced

mask matrix. For a fixed column weight d, each row has weight either L%J or [%]

Algorithm 6 RowBaLANCEDMASKMATRIX(7,k,d,t)

Input:
n: Number of rows
k: Number of columns
d: Weight of each column
t: Offset parameter
Output: Row-balanced M € {0, 1}k
M 0n><k
for j=0tok—-1do
fori=0tod—-1do

r=>{+jd+1t), > The quantity (x), denotes x modulo n.
M, ;=1
end for
end for
return M

nw

As aresult, when d is chosen as =+ € Z, all rows will be of weight w. As an example,
the matrix M in (7.5) is generated by calling RowBaLaNcEDMaskMATr1X(8,4,6,0).
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Algorithm 6 can be used to generate a mask matrix M for the encoding matrix B:
The j™ column of B will be chosen as a Reed—Solomon codeword whose support is
that of the j column of M.

7.3.2 Correctness of Algorithm 6
To lighten notation, we prove correctness for + = 0. The general case follows

immediately.

Proposition 34. Let k, d and n be integers where d < n. The row weights of matrix
M € {0, 1}>** produced by Algorithm 6 for t = 0 are
kd
{_L i€{0,...,(kd-1),},
n
wW; =

{@|, i € {(kd).....n—1}.
n

Proof. The nonzero entries in column j of M are given by
S;={jd,....(j+1)d -1},

where the subscript n denotes reducing the elements of the set modulo n. Collectively,

the nonzero indices in all columns are given by

S={0,...d-1,....(k=1)d,...kd - 1},.

In case n | kd, each element in S, after reducing modulo n, appears the same number
of times. As a result, those indices correspond to columns of equal weight, namely
%. Hence, the two cases of w; are identical along with their corresponding index

sets.

In the case where n 1 kd, each of the first [kn—dJ n elements, after reducing modulo #,
appears the same number of times. As a result, the nonzero entries corresponding to
those indices are distributed evenly amongst the n rows, each of which is of weight
L%J The remaining indices {L%J n,...,kd-1}, contribute an additional nonzero
entry to their respective rows, those indexed by {0, ..., (kd — 1), }. Finally, we have
that the first (kd), rows are of weight L%J +1= [kn—d], while the remaining ones are
of weight |_kn—dJ O

Now consider the case when 7 is not necessarily equal to zero. This amounts to
shifting (cyclically) the entries in each column by ¢ positions downwards. As a result,
the rows themselves are shifted by the same amount, allowing us to conclude the
following.
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Corollary 35. Let k, d, and n be integers where d < n. The row weights of matrix
M € {0, 1}™* produced by Algorithm 6 are

Vn_ﬂ ie{t,... (t+kd—1)),

w; =
h—d| i€ (0.1 =1} U{(t +kd)y....n 1),

7.3.3 Reed-Solomon Codes

This subsection provides a quick overview of Reed—Solomon Codes. A Reed—
Solomon code of length n and dimension f is a linear subspace RS[n, f] of C"
corresponding to the evaluation of polynomials of degree less than f with coefficients
in C on a set of n distinct points {«1, ..., a,}, also chosen from C. When «; = al,

where a € C is an n' root of unity, the evaluations of the polynomial 7(x) = Zlf: Bl tix!

on{l,a,...,a" !} corresponds to
t(1) P 1 .- 1 to
t(a@) 1 a - al! 1
= Gt. (7.6)

It is well-known that any f rows of G form an invertible matrix, which implies that
specifying any f evaluations {t(a"),...,t(a'/)} of a polynomial ¢(x) of degree at
most f — 1 characterizes it. In particular, fixing f — 1 evaluations of the polynomial
to zero characterizes 7(x) uniquely up to scaling. This property will give us the
ability to construct B from M.

7.3.4 General construction
Incase d = WTI‘ ¢ Z, the chosen row weight w prevents the existence of M where
each column weight is minimal. We have to resort to Algorithm 7 that yields M

comprised of two matrices M, and M; according to
M = [M,, M,] .

The matrices M, and M; are constructed using Algorithm 6. Each column of M,
has weight dj, := [%] and each column of M; has weight d; := L%J Note that
according to (7.2), we require d; > 2 in order to tolerate a positive number of

stragglers.
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Algorithm 7 Column-balanced Mask Matrix M

Input:
n: Number of rows
k: Number of columns
w: Weight of each row
Output: Row-balanced M € {0, 1}*.
procedure MaskMATRIX(71,k,W)
kp «— (nw)y
dp — [ ]
kl — k-k h
d — %]
A (khdh)n
M;, «— RowBAaLANCEDMASKMATRIX (1, kj,, dj,, 0)
M; « RowBALANCEDMASKMATRIX (7, k7, d}, t)
M < [M, M|
return M
end procedure

The output of Algorithm 7 can now be used in Algorithm 8 instead of RowBAL-
ANCEDMASKMATRIX to generate the appropriate mask mastrix M.

7.3.5 Correctness of Algorithm 7
According to the algorithm, the condition k | nw implies that k;, = O leading to
M = M;, which is constructed using Algorithm 6.

Moving on to the general case, the matrix M given by
M

where each matrix is row-balanced. The particular choice of ¢ in M; aligns the
“heavy” rows of My, with the “light" rows of M;, and vice-versa. The algorithm
works because the choice of parameters equates the number of heavy rows n;, of M;

to the number of light rows n; of Mj,. The following lemma is useful in two ways.
Lemma 36. V"nﬂJ + [%-‘ = [%] + {%J = w.
Proof. Note that the following holds:

knpdy  kid Vhdﬂ {kldl| kpdn  kid;
+—-1< + < + +
n n n n

n n

1.
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Furthermore, we have that

kndn | kid kn(di+1) (k= kn)d,

= (7.7)
n n n n
k kd
_ It A (7.8)
n n
wn— |22k kd
_ =k b 79
n n
—-dik  kd
_ wnzdik + jada) (7.10)
n n
= . (7.11)
We combine the two observations in one:
knd k;d
w—1<[ hZh +{L| <w+1,
n n

n

and conclude that [%w + {MJ =w. 0O

We have shown the concatenation of a “heavy” row of M}, along with a “light” row
of Mj results in one that is of weight w. It remains to show that the concatenation of
M, and M; results of rows of this type only.

We will assume that n t k,dj, holds. From Proposition 34, we have n; = n — (kpdp),
and ny, = (k;d;),. We will show that the two quantities are in fact equal. Indeed, we

can express n; as

knd
n—(khdh)n = I’l—khdh+ h h|l’l
knd
= _khdh"‘{ﬂwn
n
knd),
= —(k=k)(d;+1)+| 2 ]}n
n
kd
= —(dik + kp) + k;d; — {# 1+ nw
n
k
= kydy - | KAL),
= (kldl)n

Hence n; = nj, and by the choice of ¢, the “light" rows of My, align with the “heavy"

rows of My, and vice-versa. Furthermore, Lemma 36 guarantees that each row of M

kndp + kid;
n n

is of weight [ J = w. The same holds for the remaining rows, using the

fact that [x] + |y] = [x] + [y] when both x and y are non-integers.
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7.3.6 Building the Encoding Matrix from the Mask Matrix

Once a mask matrix M has been determined using Algorithm 6, the encoding matrix
B can be built by picking appropriate codewords from RS[n, f]. Consider M in
(7.5) and the following polynomials

nx) = xix-a®)x-a’), (7.12)
hx) = kx-ah)(x-ad), (7.13)
nx) = xx-a®)(x-ad), (7.14)
thy(x) = ka(x-1)(x — ). (7.15)
The constant «; is chosen such that the constant term of 7;(x), i.e. ¢;(0), is
equal to 1. The evaluations of #;(x) on {1, a,..., a’} are collected in the vector
(tj(1),t;(a),...,t;(a@’))T which sits as the j® column of B. The validity of this

process can be confirmed using (7.6), and is generalized in Algorithm 8.

Algorithm 8 ExcopiNGMATRIX(72,k ,W)

Input:
n: Number of rows
k: Number of columns
w: Row weight
a: n™ root of unity
Output: Row-balanced encoding matrix B.
M < RowBaLANCEDMASKMATRIX (7, k, w, 0)
B« Onxk
for j=0tok—1do
1j(x) — I1,m, ;=0(x —a")/(=a")
fori=0ton—1do
Bi,j = tj(ai)
end for
end for
return B

Once the matrix B is specified, the corresponding decoding vectors required for

computing the gradient at the taskmaster have to be characterized.

7.4 Efficient Online Decoding

We exploit the fact that B is constructed using Reed—Solomon codewords and show
that each decoding vector aF can be computed in O(f?) time. Recall that the
taskmaster should be able to compute the gradient from any f surviving machines,
indexed by & C [n], according to (7.4). The j™ column of B is determined by
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a polynomial ¢;(x) = Zlf:;)l tjix" where tjo = 1. We can write B as B = GT,
where T = [tl e tk] and t; is the vector of coefficients of #;(x), and G is the

matrix given in (7.6). Now consider C#, the coded partial gradients received from

{W; 1 i € ¥}. The rows of B corresponding to ¥ are given by

By = G4T
1 ot ... git(f=D 1 1
1 a2 .. 220D ta o o te
1 a/if .. a/lf (f_]) tl,f—l .. tk,f—l'

We require a vector a# such that a;.Bq- = 11xx. This is equivalent to finding a vector
a¢ such that
a;Gg = (1,0,...,0). (7.16)

Indeed, the matrix G# in the above product is a Vandermonde matrix defined by
f distinct elements and so it is invertible in O( f?) time [37], which facilitates the
online computation of the decoding vectors. This is an improvement compared to
previous works [197] where the decoding time is usually O(f>). Note that solving
linear systems with Vandermonde matrices, in general, can be numerically unstable.
However, the Vandermonde systems that we deal with here are very specific ones,
i.e. their elements are all roots of unity, meaning that the Vandermonde matrix is
a subset of the rows of a Fourier matrix, which has well-conditioned submatrices.

oot of

A careful inspection of inverses of Vandermonde matrices built from an n'
unity allows us to compute the required decoding vector in a space efficient manner.

This is demonstrated in the next subsection.

7.4.1 Space-Efficient Algorithm
Note that aTT is nothing but the first row of the inverse of G#, which can be

built from a set of polynomials {v{(x),...,vs(x)}. Let the I"™ column of G(j;‘ be

vi = (vi0,---,vip-1)" and associate it with v;(x) = Z'l.f:_l

lth

o Viix'. The condition

G#v; = e;, where e; is the ["" elementary basis vector of length f, implies that v;(x)
should vanish on {1, ...,a'/ } \ {a'}. Specifically,

! X —ali
@ =] | 5— (7.17)
a'l —al
J=1
j#l
The first row of G;r‘ is given by (vi1p,...,vf0), Where v; o is the constant term of

vi(x). Indeed, we have v; o = v;(0), which can be computed in closed form according
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to the following formula,

f i S
_ a’l =iyl
v,,o_]—[—al.j_al_l _ﬂ(l a1, (7.18)
j=1 j=1
Jj#l Jj#l

By choosing a as a primitive n™ root of unity, one is guaranteed that there are only
n — 1 distinct values of (1 — @"%)~!. This observation proposes that the master
should precompute and store the set {(1 — o)~} };’;1 , and then compute each v; o by
utilizing lookup operations. The following algorithm outlines this procedure.

Algorithm 9 DecopINGVECTOR(F)

Input:
¥ Ordered set of surviving machines - {iy,...is}
a: n'™ root of unity
Output: Decoding vector a associated with 7.
a—>0 f
for/=1to fdo
a — Hj:(:’j#(l — a17i)7]
end for
return a

7.5 Analysis of Total Computation Time
In this section, we provide a theoretical model which can be used to optimize the
choice of parameters that define the encoding scheme. For this purpose, we model

the response time of a single computing machine as
T= Tdelay + Tcomp- (7.19)

Here, the quantity Teomp is the time required for a machine to compute its portion of
the gradient. This quantity is equal to cg%, where ¢, = ¢, (£, p) is a constant that
indicates the time of computing the gradient for a single data point which depends
on the dimension of data points, p, as well as the loss function, €. The second term
Telay reflects the random delay incurred before the machine returns with the result
of its computation. We model this delay as a Pareto distributed random variable with

distribution function

to\é
F(t) = Pr(Toelay < 1) = 1 - (70) for ¢ > to, (7.20)

where the quantity 7y can be thought of the fundamental delay of the machine, i.e.

the minimum time required for a machine to return in perfect conditions. Previous
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works [123, 130] model the return time of a machine as a shifted exponential random
variable. We propose using this approach since the heavy-tailed nature of CPU job

runtime has been observed in practice [124, 93, 94].

Let T denote the expected time of computing the gradient using the first f machines.
As a result we have

Ty = BTy 1 + Teomp + Tuee(f), (7.21)

where Td(;zy is the f™ ordered statistic of Tdelay, and Tyec (f) is the time required at
the taskmaster for decoding. Here we assume 7 is large and define « := ¥ as the
fraction of the dataset assigned to each machine. For this value of «, the number of

machines required for successful recovery of the gradient is given by
fla) =[(1-a)n]+1, (7.22)

where [x] returns the smallest integer greater than or equal to x. We can show the

following result which approximates E[Téé;;y] for large values of n.

Proposition 37. The expected value of the f order statistic of the Pareto distribution

with parameter & will converge as n grows, i.e.,

. . 1- _1
lim BI73,,] = lim E[Ty,,7"] = roa”¢. (123)
Proof. From [206], the expected value of the f ordered statistic of the Pareto

distribution is:
I'n—f+1-1/T'(n+1)

IFn-f+DI'(n+1-1/&)°

where I'(x) is the gamma function given by I'(x) = fooo t*~le~!dt. We now assume

E[Yéggj = 1

that n is large and make the standard approximation

- E (-

Furthermore, (7.2) implies that the number of machines we wait for is f = (1 — a)n,

for some @ < 1 which leads to
an+l
(f) 1 ?
E[T =ty|1 -
[ delay] 0 ( E(an+ 1))

I L\
8 ( _'f(n-rl))

B (1- a)n)l/g

_1
n+1 z

X |1
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By letting n — oo, the first two terms in the product converge to ™% and e¢,

respectively, which yields

lim ]E[T(f) ] = toa_%.

noo L' delay
]
Using this result, we can approximate T, for n > 1,
Ty ~ tocx_é +cgNa +cp(1 - a)n?, (7.24)

where we assume that the taskmaster uses Algorithm 9 for decoding. If we
assume c,, is the time required for one FLOP, the total decoding time is given by
em(f =1 f =~ cp(1 —a)?n?. Since a is bounded from above by the memory of each
machine, one can find the optimal computation time, subject to memory constraints,

by minimizing Ty with respect to a.

7.5.1 Offline Decoding
In the schemes where the decoding vectors are computed offline, the quantity Tge.
does not appear in the total computation time 7. Therefore, for large values of n, we

can write:

Ty = toa” ¥ +coNa. (7.25)

This function can be minimized with respect to @ by standard calculus to give

£
. tO 1+¢&
a = (cng) . (7.26)

Note that this quantity is valid (less than one) if and only if one has - l?vg <1. It
846
has been observed in practice that the parameter £ is close to one. Therefore, this

assumption holds because N is assumed to be large.

For illustrative purposes, we plot the function 7y from (7.25) for a given set of

parameters and indicate the optimal point. This plot is given in Figure 7.2.
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Figure 7.2: This plot corresponds to a setup where the number of training examples
is N =12000 and ¢, = 3 X 1076 to give N cg = 0.035. The parameters of the Pareto
distribution corresponding to the delay is characterized by 7o = 0.001 and £ = 1.1.
The optimizer of this function as predicted by (7.26) is a* = 0.1477. This point is
denote by the star symbol.

7.6 Numerical Results

To demonstrate the effectiveness of the scheme, we performed numerical simulations
on a simple learning task, with realistic delays. We train a softmax regression model
on a distributed cluster composed of n = 80 processors to classify 10000 handwritten
digits from the MNIST dataset [121], while synthetically introducing computation
delays according to a model adopted from the literature. The delay model (and
its parameters), adopted from [124, 93, 94], has a Pareto distribution (7.20) with
parameters & = 1.1 and 79 = 0.001.

We compare the proposed Reed—Solomon scheme (Coded - RS) with the following
schemes, by running each of them on the same dataset for a fixed amount of time (in

seconds), and then measuring the test error.

* Uncopep - WAIT For aLL: Data is distributed equally amongst n» machines -

Wait for all » machines to return.
¢ Copeb - MDS: Scheme described in [197].

* UNcODED - WAIT FOR frs: Data is distributed equally amongst n» machines -

Wait for frs machines.
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Figure 7.3: The comparison between the test error of different schemes as a function
of time, for a softmax regression model trained using distributed gradient descent
on n = 80 machines. The model was trained on 12000 examples from the MNIST
database [121] and validated on a test set of size 10000. The Reed—Solomon based
scheme (Coded - RS) waits for frs = 68 machines, while the one corresponding
to [197] (Coded - MDS) waits for fyps = 33. frs and fyps were obtained by
numerically optimizing (7.21). The two coded schemes outperform the uncoded
ones. Coded-RS denotes the proposed scheme.

* UncobpeDp - WaAIT FOR fyps: Data is distributed equally amongst n machines -

Wait for fyips machines.

Similar to [197], the knowledge of the entire gradient allows us to employ accelerated
gradient methods such as the one proposed by Nesterov [152]. Details of the

experiment are given in the accompanying description of Figure 7.3.

The Reed—-Solomon based scheme (Coded - RS) waits for frs = 68 machines,
while the one corresponding to [197] (Coded - MDS) waits for fyps = 33. These
quantities were obtained by numerically optimizing the expected total computation

time, mentioned in (7.21).

It is worth mentioning that our experiments show that, even on this relatively small
dataset, a distributed coded solution outperforms the scenario where the computation
is performed on a single machine. However, the single-machine scenario is not very
interesting, as we mostly care about cases where performing the computation on one

machine is infeasible.
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7.7 Conclusion

We presented a straggler mitigation scheme that facilitates the implementation
of distributed gradient descent in a computing cluster. For a fixed per-machine
computational effort, the taskmaster recovers the full gradient from the least number
of machines theoretically required, which is done via an algorithm that is efficient in
both space and time. Furthermore, we propose a theoretical delay model based on
heavy-tailed distributions and incorporates the decoding time, which allows us to

minimize the expected running time of the algorithm.
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Chapter 8

MINIMAX OPTIMALITY AND IMPLICIT REGULARIZATION
OF STOCHASTIC GRADIENT/MIRROR DESCENT

[1] Navid Azizan and Babak Hassibi. “Stochastic gradient/mirror descent: Mini-
max optimality and implicit regularization”. In: 2018 Neural Information
Processing Systems (NeurlPS) Deep Learning Theory Workshop. 2018.

[2] Navid Azizan and Babak Hassibi. “Stochastic gradient/mirror descent: Mini-
max optimality and implicit regularization”. In: 2019 International Confer-
ence on Learning Representations (ICLR). 2019.

Stochastic descent methods (of the gradient and mirror varieties) have become
increasingly popular in optimization. In fact, it is now widely recognized that the
success of deep learning is not only due to the special deep architecture of the models,
but also due to the behavior of the stochastic descent methods used, which play a key
role in reaching “good” solutions that generalize well to unseen data. In an attempt
to shed some light on why this is the case, we revisit some minimax properties of
stochastic gradient descent (SGD) for the square loss of linear models—originally
developed in the 1990s—and extend them to general stochastic mirror descent (SMD)
algorithms for general loss functions and nonlinear models. In particular, we show
that there is a fundamental identity which holds for SMD (and SGD) under very
general conditions, and which implies the minimax optimality of SMD (and SGD)
for sufficiently small step size, and for a general class of loss functions and general
nonlinear models. We further show that this identity can be used to naturally establish
other properties of SMD (and SGD), namely convergence and implicit regularization
for over-parameterized linear models (in what is now being called the “interpolating

regime”), some of which have been shown in certain cases in prior literature.

8.1 Introduction

Deep learning has proven to be extremely successful in a wide variety of tasks [118,
119, 143, 189, 213]. Despite its tremendous success, the reasons behind the good
generalization properties of these methods to unseen data is not fully understood
(and, arguably, remains somewhat of a mystery to this day). Initially, this success
was mostly attributed to the special deep architecture of these models. However,

in the past few years, it has been widely noted that the architecture is only part
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of the story, and, in fact, the optimization algorithms used to train these models,
typically stochastic gradient descent (SGD) and its variants, play a key role in learning

parameters that generalize well.

In particular, it has been observed that since these deep models are highly over-
parameterized, they have a lot of capacity, and can fit to virtually any (even random)
set of data points [224]. In other words, highly over-parameterized models can
“interpolate” the data, so much so that this regime has been called the “interpolating
regime” [138]. In fact, on a given dataset, the loss function often has (uncountably
infinitely) many global minima, which can have drastically different generalization
properties, and it is not hard to construct “trivial” global minima that do not generalize.
Which minimum among all the possible minima we pick in practice is determined by
the optimization algorithm that we use for training the model. Even though it may
seem at first that, because of the non-convexity of the loss function, the stochastic
descent algorithms may get stuck in local minima or saddle points, in practice they
almost always achieve a global minimum [112, 224, 122], which perhaps can also be
justified by the fact that these models are highly over-parameterized. What is even
more interesting is that not only do these stochastic descent algorithms converge
to global minima, but they converge to “special” ones that generalize well, even in
the absence of any explicit regularization or early stopping [224]. Furthermore, it
has been observed that even among the common optimization algorithms, namely
SGD or its variants (AdaGrad [68], RMSProp [199], Adam [114], etc.), there is a
discrepancy in the solutions achieved by different algorithms and their generalization
capabilities [211], which again highlights the important role of the optimization

algorithm in generalization.

There have been many attempts in recent years to explain the behavior and properties
of these stochastic optimization algorithms, and many interesting insights have been
obtained [3, 58, 188, 193]. In particular, it has been argued that the optimization
algorithms perform an implicit regularization [154, 137, 87, 85, 194, 86] while
optimizing the loss function, which is perhaps why the solution generalizes well.
Despite this recent progress, most results explaining the behavior of the optimization
algorithm, even for SGD, are limited to linear or very simplistic models. Therefore,
a general characterization of the behavior of stochastic descent algorithms for more

general models would be of great interest.
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8.1.1 Our Contribution

In this chapter, we present an alternative explanation of the behavior of SGD, and
more generally, the stochastic mirror descent (SMD) family of algorithms, which
includes SGD as a special case. We do so by obtaining a fundamental identity for
such algorithms (see Lemmas 39 and 42). Using these identities, we show that for
general nonlinear models and general loss functions, when the step size is sufficiently
small, SMD (and therefore also SGD) is the optimal solution of a certain minimax
filtering (or online learning) problem. The minimax formulation is inspired by, and
rooted in, H* filtering theory, which was originally developed in the 1990s in the
context of robust control theory [98, 190, 97], and we generalize several results from
this literature, e.g., [96, 115]. Furthermore, we show that many properties recently
proven in the learning/optimization literature, such as the implicit regularization
of SMD in the over-parameterized linear case—when convergence happens—[85],
naturally follow from this theory. The theory also allows us to establish new results,
such as the convergence (in a deterministic sense) of SMD in the over-parameterized
linear case. We also use the theory developed in this chapter to provide some
speculative arguments into why SMD (and SGD) may have similar convergence
and implicit regularization properties in the so-called “highly over-parameterized”
nonlinear setting (where the number of parameters far exceeds the number of data

points) common to deep learning.

In an attempt to make the chapter easier to follow, we first describe the main ideas
and results in a simpler setting, namely, SGD on the square loss of linear models, in
Section 8.3, and mention the connections to H> theory. The full results, for SMD on
a general class of loss functions and for general nonlinear models, are presented in
Section 8.4. We demonstrate some implications of this theory, such as deterministic
convergence and implicit regularization, in Section 8.5, and we finally conclude with

some remarks in Section 8.6. Most of the formal proofs are relegated to the appendix.

8.2 Preliminaries

Denote the training dataset by {(x;,y;) :i = 1,...,n}, where x; € R? are the inputs,
and y; € R are the labels. We assume that the data is generated through a (possibly
nonlinear) model f;(w) = f(x;, w) with some parameter vector w € R™, plus some
noise v;, i.e., y; = f(x;,w) +v; fori = 1,...,n. The noise can be due to actual
measurement error, or it can be due to modeling error (if the model f(x;, ) is not
rich enough to fully represent the data), or it can be a combination of both. As a

result, we do not make any assumptions on the noise (such as stationarity, whiteness,



178

Gaussianity, etc.).

Since typical deep models have a lot of capacity and are highly over-parameterized,
we are particularly interested in the over-parameterized (so-caled interpolating)
regime, i.e., when m > n. In this case, there are many parameter vectors w (in fact,
uncountably infinitely many) that are consistent with the observations. We denote

the set of these parameter vectors by
W={weR" |y, =f(x;,w), i=1,...,n}. 8.1)

(Note the absence of the noise term, since in this regime we can fully interpolate the
data.) The set ‘W is typically an (m — n)-dimensional manifold and depends only on

the training data {(x;, y;) : i = 1,...,n} and nonlinear model f(-,-).

The total loss on the training set (empirical risk) can be denoted by L(w) =
", Li(w), where L;(-) is the loss on the individual data point i. We assume that
the loss L;(-) depends only on the residual, i.e., the difference between the prediction

and the true label. In other words,

Li(w) =1(y; — f(xi;,w)), (8.2)

where [(-) can be any nonnegative differentiable function with /(0) = 0. Typical
examples of /(-) include square (/;) loss, Huber loss, etc. We remark that, in the
interpolating regime, every parameter vector in the set ‘W renders each individual

loss zero, i.e., L;(w) =0, for all w € W.

8.3 Warm-up: Revisiting SGD on Square Loss of Linear Models

In this section, we describe the main ideas and results in a simple setting, i.e.,
stochastic gradient descent (SGD) for the square loss of a linear model, and we
revisit some of the results from H® theory [98, 190]. In this case, the data model
isy;, = xl.Tw +v;, i = 1,...,n (where there is no assumption on v;), and the loss

function is L;(w) = 1(y; —xTw)2.

Assuming the data is indexed randomly, the SGD updates are defined as w; =
wi—1 —nVL;(w;_1), where n > 0 is the step size or learning rate.! The update in this

case can be expressed as
= W Ty . 83
Wi =wi_1+n|\yi —X; wi—1 | Xi, (8.3)

fori > 1 (for i > n, we can either cycle through the data, or select them at random).

"For the sake of simplicity of presentation, we present the results for constant step size. We show
in the appendix that all the results extend to the case of time-varying step-size.
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Remark. We should point out that, when the step size n is fixed, the SGD recursions
have no hope of converging, unless there exists a weight vector w which perfectly
interpolates the data {(x;,y;) :i =1,...,n}. The reason being that, if this is not the
case, for any estimated weight vector in SGD, there will exist at least one data point
that has a nonzero instantaneous gradient and that will therefore move the estimate
by a non-vanishing amount.? It is for this reason that the results on the convergence
of SGD and SMD (Sections 8.3.3 and 8.5) pertain to the interpolating regime.

8.3.1 Conservation of Uncertainty

Prior to the i-th step of any optimization algorithm, we have two sources of uncertainty:
our uncertainty about the unknown parameter vector w, which we can represent
by w — w;_1, and our uncertainty about the i-th data point (x;, y;), which we can
represent by the noise v;. After the i-th step, the uncertainty about w is transformed
to w — w;. But what about the uncertainty in v;? What is it transformed to? In fact,
we will view any optimization algorithm as one which redistributes the uncertainties
at time [/ — 1 to new uncertainties at time ;. The two uncertainties, or error terms, we

will consider are e; and e, ;, defined as follows.

. T T T
e ==y —x;wi—1, ande,; :==x; w—x; w;_. (8.4)

e; is often referred to as the innvovations and is the error in predicting y;, given
the input x;. e,; is sometimes called the prediction error, since it is the error in
predicting the noiseless output xiTw, i.e., in predicting what the best output of the

model is. In the absence of noise, ¢; and e, ; coincide.

One can show that SGD transforms the uncertainties in the fashion specified by the

following lemma, which was first noted in [97].

Lemma 38. For any parameter w and noise values {v;} that satisfy y; = xiTw +v;
fori=1,...,n, and for any step size n > 0, the following relation holds for the SGD
iterates {w;} given in Eq. (8.3)

Iw = wiet 202 = lhw = will® + (1= nllil®) €2 47l Viz 1 85
As illustrated in Figure 8.1, this means that each step of SGD can be thought of as a
lossless transformation of the input uncertainties to the output uncertainties, with the

specified coefficients.

20f course, one may get convergence by having a vanishing step size ; — 0. However, in this
case, convergence is not surprising—since, effectively, after a while, the weights are no longer being
updated—and the more interesting question is “what” the recursion converges to.
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SGD ——> /(1 — 7nf|z:]?)e;
Vv ——

—> /11,

Lossless

Figure 8.1: Illustration of Lemma 38. Each step of SGD can be viewed as a
transformation of the uncertainties with the right coefficients.

Once one knows this result, proving it is straightforward. To see that, note that we

T

can write v; = y; —x; w as v; = (y; —x; wi_1) — (x/ w — x] w;_1). Multiplying both

sides by 4/i7, we have
Vv = N (i = x] wic) = (] w = x] wi ). (8.6)

On the other hand, subtracting both sides of the update rule (8.3) from w yields

w=w;=W=-wi1)—7 ()’i - X,-TWi—l) X (8.7)
Squaring both sides of (8.6) and (8.7), and subtracting the results leads to Equa-
tion (8.5).

A nice property of Equation (8.5) is that, if we sum overalli =1,...,T, the terms

lw — w;]|? and ||w — w;_1||> on different sides cancel out telescopically, leading to

the following important lemma.

Lemma 39. For any parameter w and noise values {v;} that satisfy y; = xl.Tw +v;
fori=1,...,n, any initialization wq, any step size n > 0, and any number of steps
T > 1, the following relation holds for the SGD iterates {w;} given in Eq. (8.3)

T T T
Iw = woll>+n Y v? = Iw=wrlP+5 )" (1=nllxl?) F 45 ) e2,.| 88)
i=1 i=1 i=1

As we will show next, this identity captures most properties of SGD, and implies
several important results in a very transparent fashion. For this reason, this relation

can be viewed as a “fundamental identity” for SGD.

8.3.2 Minimax Optimality of SGD

For a given horizon T, consider the following minimax problem:

2 T 2
[lw—=wr|“+n Z,‘:l €

min max

) (8.9)
wit w.vid |lw —woll2+n ZiTzl Vi2
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This minimax problem is motivated by the theory of H® control and estimation
[74, 98, 31]. The denominator of the cost function can be interpreted as the
energy of the uncertainties and consists of two terms, ||w — wol|?, the energy of
our uncertainty of the unknown weight vector at the beginning of learning when
we have not yet observed the data, and Z,'T=1 vl.z, the energy of the uncertainty in the
measurements. The numerator denotes the energy of the estimation errors in an
online setting. The first term, ||w — wr||?, is the energy of our uncertainty of the
unknown weight vector after we have observed T data points, and the second term,

L ef),l. = Y1 (xI'w —xTw;_1)?%, is the energy of the prediction error, i.e., how well
we can predict the true uncorrupted output xl.Tw using measurements up to time i — 1.
The parameter 7 weighs the two energy terms relative to each other. In this minimax
problem, nature has access to the unknown weight vector w and the noise sequence
v; and would like to maximize the energy gain from the uncertainties to prediction
errors (so that the estimator behaves poorly), whereas the estimator attempts to
minimize the energy gain. Such an estimator is referred to as H*-optimal and is
robust because it safeguards against the worst-case noise. It is also conservative, for

the exact same reason.3

Theorem 40. For any initialization wy, any step size 0 < n < min; W, and any
number of steps T > 1, the stochastic gradient descent iterates {w;} given in Eq. (8.3)
are the optimal solution to the minimax problem (8.9). Furthermore, the optimal

minimax value (achieved by SGD) is 1.

This theorem explains the observed robustness and conservatism of SGD. Despite
the conservativeness of safeguarding against the worst-case disturbance, this choice
may actually be the rational thing to do in situations where we do not have much

knowledge about the disturbances, which is the case in many machine learning tasks.

Theorem 40 holds for any horizon 7 > 1. A variation of this result, i.e., when

T — oo and without the ||w — wz||> term in the numerator, was first shown in [96,

oo 2
n 2':1 e . .. ..
T ||l2+77 g; — in the minimax problem is in fact the H*
—wo i=1"i

norm of the transfer operator that maps the unknown disturbances (w — wo, {/7v;})

97]. In that case, the ratio

to the prediction errors {\/7¢,;}.

3The setting described is somewhat similar to the setting of online learning, where one considers
the relative performance of an online learner who needs to predict, compared to a clairvoyant one who
has access to the entire data set [183, 99]. In online learning, the relative performance is described as
a difference, rather than as a ratio in H® theory, and is referred to as regret.
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We end this section with a stochastic interpretation of SGD [97]. Assume that the
true weight vector has a normal distribution with mean w( and covariance matrix n/,

and that the noise v; are iid standard normal. Then SGD solves

T
1
min E exp (— : (||w —wrl®+7n Z(xiTW - X,-TWH)Z)) , (8.10)
{wi} 2 ,
i=1

and no exponent larger than % is possible, in the sense that no estimator can keep the
expected cost finite. This means that, in the Gaussian setting, SGD minimizes the
expected value of an exponential quadratic cost. The algorithm is thus very adverse
to large estimation errors, as they are penalized exponentially larger than moderate

ones.

8.3.3 Convergence and Implicit Regularization

The over-parameterized (interpolating) linear regression regime is a simple but
instructive setting, recently considered in some papers [85, 224]. In this setting,
we can show that, for sufficiently small step, i.e., 0 < n < min; m, SGD always
converges to a special solution among all the solutions ‘W, in particular to the one
with the smallest /; distance from wy. In other words, if, for example, initialized at
zero, SGD implicitly regularizes the solution according to an /; norm. This result

follows directly from Lemma 39.

To see that, note that in the interpolating case the v; are zero, and we have ¢; =

yi—x'wi_1 =xIw —x"w;_i = e,;. Hence, identity (8.8) reduces to

T
Iw = woll? = lhw = wrll?+n )" (2= nllul?) €2, (8.11)
i=1

for all w € W. By dropping the ||w — wr||> term and taking T — oo, we have
n X2, (2 = nllx:l?) e < [lw — woll*, which implies that, for 0 < 7 < min; ﬁ we
must have ¢; — 0 asi — co. When ¢; = y; — xl.Twi_l goes to zero, the updates
in (8.3) vanish and we get convergence, i.e., w — ws. Further, again because
e; — 0, all the data points are being fit, which means w,, € W. Moreover, it is
again very straightforward to see from (8.11) that the solution converged to is the
one with minimum Euclidean norm from the initial point. To see that, notice that the
summation term in Eq. (8.11) is independent of w (it depends only on x;, y;, and wy).
Therefore, by taking T — oo and minimizing both sides with respect to w € W, we
get

We = argmin ||w — wo]|. (8.12)
weWw
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Once again, this also implies that if SGD is initialized at the origin, i.e., wo = 0, then

it converges to the minimum-/>-norm solution, among all the solutions.

8.4 Main Result: General Characterization of Stochastic Mirror Descent

Stochastic Mirror Descent (SMD) [149, 33, 55, 227] is one of the most widely used
families of algorithms for stochastic optimization, which includes SGD as a special
case. In this section, we provide a characterization of the behavior of general SMD,
on general loss functions and general nonlinear models, in terms of a fundamental

identity and minimax optimality.

For any strictly convex and differentiable potential ¢ (-), the corresponding SMD
updates are defined as

w; = arg min anVL,-(w,-_l) +Dy(w,wi_1), (8.13)
w

where
Dy (w,wiz1) = (W) = (wi1) = Vg (wim)T (w = wiy) (8.14)

is the Bregman divergence with respect to the potential function ¢ (-). Note that
Dy (-, ) is non-negative, convex in its first argument, and that, due to strict convexity,

Dy (w,w") = 0iff w = w’. Moreover, the updates can be equivalently written as
Vg (wi) = Vg (wim1) = nVLi(wi-1), (8.15)

which are uniquely defined because of the invertibility of Vi (again, implied by the
strict convexity of /(+)). In other words, stochastic mirror descent can be thought of
as transforming the variable w, with a mirror map Vi (-), and performing the SGD
update on the new variable. For this reason, Vi (w) is often referred to as the dual

variable, while w is the primal variable.

Different choices of the potential function ¢ (-) yield different optimization algorithms,
which, as we will see, result in different implicit regularizations. To name a few
examples: For the potential function ¥ (w) = %llwllz, the Bregman divergence
is Dy (w,w’) = %llw — w’||%, and the update rule reduces to that of SGD. For
Y(w) =2 ; wjlogw;, the Bregman divergence becomes the unnormalized relative
entropy (Kullback-Leibler divergence) Dy (w, w’) = 3} ; w; log ::—j — 2wt w;.,
which corresponds to the exponentiated gradient descent (or the exponential weights)
algorithm. Other examples include ¥ (w) = %||w||é = %WTQW for a positive definite
matrix Q, which yields D, (w, w’) = %(w —w)TQ(w —w"), and the g-norm squared
U(w) = %”W”Z, which with % + é = 1 yields the p-norm algorithms [82, 78].
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In order to derive an equivalent “conservation law” for SMD, similar to the identity
(8.5), we first need to define a new measure for the difference between the parameter

vectors w and w’ according to the loss function L;(-). To that end, let us define
Dy, (w,w') := Li(w) = Li(w") = VL:(w") (w = w"), (8.16)

which is defined in a similar way to a Bregman divergence for the loss function.# The
difference though is that, unlike the potential function of the Bregman divergence, the
loss function L;(-) = £(y; — f(x;, -)) need not be convex, even when £(-) is, due to the
nonlinearity of f(-,-). As aresult, Dy, (w,w’) is not necessarily non-negative. The
following result, which is the general counterpart of Lemma 38, states the identity

that characterizes SMD updates in the general setting.

Lemma 41. For any (nonlinear) model f(-,-), any differentiable loss [(-), any
parameter w and noise values {v;} that satisfy y; = f(x;,w) +v; fori =1,...,n,
and any step size n > 0, the following relation holds for the SMD iterates {w;} given
in Eq. (8.15)

Dy(w,wi—1) +nl(vi) = Dy(w,w;) + E;(wi,wi—1) +nDr,(w,wi—1),  (8.17)
foralli > 1, where

Ei(wi,wi-1) := Dy (Wi, wi—1) =nDr,(wi, wi—1) + nL;(w;). (8.18)

The proof is provided in Appendix 8.A. Note that E;(w;, w;_1) is not a function of
w. Furthermore, even though it does not have to be nonnegative in general, for n
sufficiently small, it becomes nonnegative, because the Bregman divergence Dy (., .)

is nonnegative.

Summing Equation (8.17) over alli = 1, ..., T leads to the following identity, which
is the general counterpart of Lemma 39.

Lemma 42. For any (nonlinear) model f(-,-), any differentiable loss [(-), any
parameter w and noise values {v;} that satisfy y; = f(x;,w)+v;fori =1,...,n, any

initialization wq, any step size n > 0, and any number of steps T > 1, the following

“It is easy to verify that for linear models and quadratic loss we obtain D L,(w,w’) = (xl.Tw -
T..,1\2
x; wh.
L
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relation holds for the SMD iterates {w;} given in Eq. (8.15)

T T
Dy (w,wo) +1 Z [(vi) = Dy(w,wr) + Z (Ei(wi,wis1) + 0D, (W, wi_1)) .
i=1 =1

(8.19)

We should reiterate that Lemma 42 is a fundamental property of SMD, which allows

one to prove many important results, in a direct way.

In particular, in this setting, we can show that SMD is minimax optimal in a manner
that generalizes Theorem 40 of Section 8.3, in the following 3 ways: 1) General
potential ¥ (-), 2) General model f(-,-), and 3) General loss function /(-). The result
is as follows.

Theorem 43. Consider any (nonlinear) model f (-, -), any non-negative differentiable
loss 1(-) with the property [(0) = I'(0) = 0, and any initialization wy. For sufficiently
small step size, i.e., for any n > 0 for which y(w) — nL;(w) is convex for all i, and
for any number of steps T > 1, the SMD iterates {w;} given by Eq. (8.15), w.r.t. any
strictly convex potential y (), is the optimal solution to the following minimization

problem

Dy(w,wr) + T Dp.(w, Wi-
min max 4 1)1 2y TL’( 1). (8.20)
{wit wivi} Dy(w,wo) +7 Zizl [(vi)

Furthermore, the optimal value (achieved by SMD) is 1.

The proof is provided in Appendix 8.B. For the case of square loss and a linear

model, the result reduces to the following form.

Corollary 44. For L;(w) = %(yl- - xl.Tw)z, for any initialization wy, any sufficiently
small step size, i.e., 0 <n < ﬁ, and any number of steps T > 1, the SMD iterates
{w;} given by Eq. (8.15), w.r.t. any a-strongly convex potential (), is the optimal

solution to

Dw(w WT)+UZZ 1 pl
min max . (8.21)
iy wlviy Dy (w,wo) + 2 31

The optimal value (achieved by SMD) is 1.

zll

We should remark that Theorem 43 and Corollary 44 generalize several known results
in the literature. In particular, as mentioned in Section 8.3, the result of [96] is a
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special case of Corollary 44 for ¢ (w) = %||W||2- Furthermore, our result generalizes
the result of [115], which is the special case for the p-norm algorithms, again, with
square loss and a linear model. Another interesting connection to the literature is
that it was shown in [95] that SGD is locally minimax optimal, with respect to the
H® norm. Strictly speaking, our result is not a generalization of that result; however,
Theorem 43 can be interpreted as SGD/SMD being globally minimax optimal, but
with respect to different metrics in the numerator and denominator. Namely, the
uncertainty about the weight vector w is measured by the Bregman divergence of the
potential, the uncertainty about the noise by the loss, and the prediction error by the

“Bregman-divergence-like” expression of the loss.

8.5 Convergence and Implicit Regularization in Over-Parameterized Models
In this section, we show some of the implications of the theory developed in the
previous section. In particular, we show convergence and implicit regularization, in
the over-parameterized (so-called interpolating) regime3, for general SMD algorithms.
We first consider the linear interpolating case, which has been studied in the literature,
and show that the known results follow naturally from our Lemma 42. Further, we

shall obtain some new convergence results.

8.5.1 Over-Parameterized Linear Models
In this setting, the v; are zero, W = {w | vi :xl.Tw, i=1,... ,n}, and L;(w) =

[(y; — xl.Tw), with any differentiable loss /(-). Therefore, Eq. (8.19) reduces to

T

Dy (w,wo) = Dy (w,wr) + Z (Ei(wi,wiz1) + 7D, (w, wi_1)), (8.22)
i=1
for all w € ‘W, where
Dy, (w,wi-1) = Li(w) = Li(wi-1) = VLi(w;—1)" (w = w;_1) (8.23)
=0—1(y; —x]wie) +I'(yi = x] wi)x] (w —wi))  (8.24)
= —1(y; —x; wis1) + ' (i = x] wim1) (i — X] wiz1) (8.25)

which is notably independent of w. As a result, we can easily minimize both sides of

Eq. (8.22) with respect to w € ‘W, which for T — oo leads to the following result.

>In the classical under-parameterized (online streaming) case with white noise, the same theory
can be used to establish convergence to the true parameter under the so-called Robbins—Monro
conditions (};2, 17; = 0, Z;’i] 7]? < 00) in a very direct and simple way (see [14]).
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Proposition 45. For any differentiable loss [(+), any initialization w, and any step
size n, consider the SMD iterates given in Eq. (8.15) with respect to any strictly
convex potential Y (). If the iterates converge to a solution wo, € ‘W, then

Weo = argmin Dy, (w, wo). (8.26)
weW

Remark. In particular, for the initialization wo = arg min,,cpm ¥ (W), if the iterates
converge to a solution wo, € W, then

Weo = arg miny (w). (8.27)

weW

An equivalent form of Proposition 45 has been shown recently in, e.g., [85].6
Other implicit regularization results have been shown in [86, 194] for classification
problems, which are not discussed here. Note that the result of [85] does not say
anything about whether the algorithm converges or not. However, our fundamental

identity of SMD (Lemma 42) allows us to also establish convergence to the regularized

point, for some common cases, which will be shown next.

What Proposition 45 says is that depending on the choice of the potential function
¥ (+), the optimization algorithm can perform an implicit regularization without
any explicit regularization term. In other words, for any desired regularizer, if
one chooses a potential function that approximates the regularizer, we can run the
optimization without explicit regularization, and if it converges to a solution, the

solution must be the one with the minimum potential.

In principle, one can choose the potential function in SMD for any desired convex
regularization. For example, we can find the maximum entropy solution by taking

the potential to be the negative entropy. Another illustrative example follows.

Example [Compressed Sensing]: In compressed sensing, one seeks the sparsest
solution to an under-determined (over-parameterized) system of linear equations.

The surrogate convex problem one solves is:

min  |lw]l;

T

(8.28)
subjectto y;=x;w, i=1,...n

One cannot choose ¥ (w) = ||w||;, since it is neither differentiable nor strictly convex.

However, ¢/ (w) = ||w||1+e, for any € > 0, can be used. Figure 4 shows a compressed

To be precise, the authors in [85] assume convergence to a global minimizer of the loss function
L(w) =21 1y - xl.T w), which, with their assumption of the loss function /(-) having a unique
finite root, is equivalent to assuming convergence to a point w, € W.
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sensing example, with n = 50, m = 100, and sparsity k = 10. SMD was used with a
step size of n = 0.001 and the potential function was ¢/ (-) = || - ||1.1. SMD converged
to the true sparse solution after around 10,000 iterations. On this example, it was an

order of magnitude faster than standard /; optimization.
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Figure 8.2: The training loss and actual error of stochastic mirror descent for
compressed sensing. SMD recovers the actual sparse signal.

Next we establish convergence to the regularized point for the convex case.

Proposition 46. Consider the following two cases.

(i) 1(-) is differentiable and convex and has a unique root at 0, Y (-) is strictly

convex, and nn > 0 is such that  — nL; is convex for all i.

(ii) 1(-) is differentiable and quasi-convex, l'(-) is zero only at zero, Wy (-) is
alyi-xTwii|
lloi 112127 (yi=x] wio1)|®

a-strongly convex, and 0 < n < min;

If either (i) or (ii) holds, then for any wo, the SMD iterates given in Eq. (8.15)
converge to
Weo = argmin Dy (w, wo). (8.29)
weW

The proof is provided in Appendix 8.C.
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8.6 Concluding Remarks
We should remark that all the results stated throughout the chapter extend to the case
of time-varying step size 7;, with minimal modification. In particular, it is easy to

show that in this case, the identity (the counterpart of Eq. (8.19)) becomes

T T
Dy (w,wo) + Z nil(vi) = Dy (w,wr) + Z (Ei(wi, wi1) + 0D, (w, wiz1)),
=1 i=1
(8.30)

where E;(w;, wi—1) = Dy (Wi, wi—1) =n;Dr,(wi, wi—1) +1;L;(w;). As aconsequence,
our main result will be the same as in Theorem 43, with the only difference being
that the small-step-size condition in this case is the convexity of ¢ (w) — n;L;(w) for
all i, and the SMD with time-varying step size will be the optimal solution to the

following minimax problem

. Dy (w,wr) + Z,-Tzl niDr,(w,wi_1)
min max - .
{wit woivi} Dy (w,wo) + 2. mil(v;)

(8.31)

Similarly, the convergence and implicit regularization results can be proven under

the same conditions (See Appendix 8.D for more details on the time-varying case).

This work opens up a variety of important directions for future work. Most of the
analysis developed here is general, in terms of the model, the loss function, and the
potential function. Therefore, it would be interesting to study the implications of
this theory for specific classes of models (such as different neural networks), specific

losses, and specific mirror maps (which induce different regularization biases).
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8.A Proof of Lemma 41 (Fundamental Identity)

Proof. Let us start by expanding the Bregman divergence Dy (w, w;) based on its

definition

Dy (w,wi) = (w) = (wi) = Ve (w)" (w —wy).
By plugging the SMD update rule V¢ (w;) = Viy(w;_1) — nVL;(w;-1) into this, we
can write it as

Dy (w,wi) =y (w) =g (wy) = Vg (wi))T (w = wi) + 7V Li(wiz) T (w —wy). (8.32)

Using the definition of Bregman divergence for (w,w;_;) and (w;, w;_1), i.e.,
Dy (w,wiz1) = (W)= (wis1) =V (wi—)T (w—w;_1) and Dy (w;, wi—1) = ¢ (w;) -
w(wiz) = Vr(wi—1)T (w; — wi_1), we can express this as
Dy (w,wi) = Dy(w,wi—1) + ¥ (wiz1) + Vg (wis1) T (w = wit) — ¢ (w;)
=V (wi))" (w = wi) + nVLi(wim)T (w — w;)
(8.33)
= Dy (W, wi1) + ¥ (wis1) = (W) + Vg (wimy)" (wi = wizy)
+nVL;(wie)T (w = wy)
(8.34)
=Dy (w,wi_1) — Dy (wi,wiz1) + VL (wi—))T (w — wy). (8.35)
Expanding the last term using w — w; = (w — w;_1) — (w; — w;_1), and following the

definition of Dy, (., .) from (8.16) for (w, w;_;) and (w;, w;_1), we have
Dy (w,w;) = Dy (w,wi_1) = Dy (Wi, wi1) + nVLi(wi—))T (W — wiy)

—nVLi(wi—1)" (Wi = wiy)
(8.36)

=Dy (w,wi-1) = Dy (wi,wi1) + 1 (Li(w) = Li(wi—1) = D, (w, wi_1))

—n (Li(w;) = Li(wi—1) = D, (wi, wi—1))
(8.37)

=Dy (w,wi1) = Dy(wi,wi—1) + 1 (Li(w) = Dp,(w,wi-1))

—n (Li(w;) = D, (wi, wiz1)) .
(8.38)

Defining E;(w;, wi—1) := Dy (wi,wi—1) = nDr,(wi,wi—1) + nL;(w;), we can write

the above equality as

Dy (w,w;) = Dy(w,wiz1) = Ef(wi, wi—1) + 1 (Li(w) = D, (w,wi—1)) . (8.39)
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Notice that for any model class with additive noise, and any loss function L;
that depends only on the residual (i.e., the difference between the prediction and
the true label), the term L;(w) depends only on the noise term, for any “true”
parameter w. In other words, for all w that satisfy y; = f(x;, w) + v;, we have
L;(w) =1(y; — f(x;,w)) =1(y; = (y; = vi)) = [(v;) . Finally, reordering the terms
leads to

Dy(w,w;) +nDp,(w,wi_1) + Ei(wi,wi—1) = Dy (w,wi—1) +nl(v;),  (8.40)

which concludes the proof. O
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8.B Proof of Theorem 43 (Minimax Optimality)

Proof. We prove the theorem in two parts. First, we show that the value of the
minimax is at least 1. Then we prove that the value is at most 1, and is achieved by

stochastic mirror descent for small enough step size.

1. Consider the maximization problem

max Dy(w,wr) +n X, Dr,(w,wi_1)
wo{vi} Dy(w,wo) +n XL, 1(vi)

Clearly, the optimal solution(s) and the optimal value of this problem can,
and will, be a function of {w;}. Similarly, we can also choose feasible points
that depend on {w;}. Any choice of a feasible point (W, {V;}) gives a lower
bound on the value of the problem. Before choosing a feasible point, let us first

expand the Dy, (w, w;_1) term in the numerator, according to its definition.

Dy, (w,wis1) = L) =1 (yi= fiwim))+ i= filwi))Vf (wi )T (w=wi1),
(8.41)
where we have used the fact that [(y; — f;(w)) = [(v;) for all consistent w, in

the first term.

Now, we choose a feasible point as follows

Vi = filwis1) = fi(W), (8.42)

where W is the choice of w, as will be described soon. The reason for choosing
this value for the noise is that it “fools” the estimator by making its loss on the

corresponding data point zero. In other words, for this choice, we have

Dy, (w,wiz1) =1(9;) = 1(0) + ' (0)V f (wi—1)" (W = wi—1)
=1(¥;)

because /(0) = I’(0) = 0. It should be clear at this point that this choice makes
the second terms in the numerator and the denominator equal, independent
of the choice of w. What remains to do, in order to show the 1 lower-
bound, is to take care of the other two terms, i.e., Dy (w,wr) and Dy (w, wo).
As we would like to make the ratio equal to one, we would like to have

Dy (w,wr) = Dy (w,wo), which is equivalent to having

U (w) = (wr) = Vi (wr)T (w = wr) = g(w) — o (wo) = Vi (wo)T (w = wo)
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which is, in turn, equivalent to

(Vi (wr) = Vi (wo))" w = =g (wr) + 4 (wo) + Vi (wr) wr = Vi (wo) wo.

(8.43)
Since Vi is an invertible function, Vi (wr) — Vir(wg) # 0, if wr # wy.
Therefore, the above equation has a solution for w, if wr # wo. As a result,
choosing W to be a solution to (8.43) makes Dy, (W, wr) = Dy (W, wo), if wr #
wo. For the case when wr = wy, it is trivial that D, (W, wr) = Dy, (W, wo) for
any choice of w. In this case, we only need to choose w to be different from

wo, to avoid making the ratio 8. Hence, we have the following choice

a solution of (8.43) for wr # wo
W= (8.44)
wo + ow for some ow # 0  for wr = wy

Choosing the feasible point W, {v;} according to (8.44) and (8.42) leads to

Dy(w,wr) +n X, D, (w,wi_1)
max
wlib Dy (w,wo) +n ZL 1(v;)
_ Dy(h,wr) +1 S fi(wint) = fi(B))

2 - T —. (8.45)
Dy (W, wo) +1 X L(filwi—1) = fi(W))
Taking the minimum of both sides with respect to {w;}, we have
. Dy (w,wr) +n X, D, (w, wi-1)
min max =
{wit w.{vi} Dy (w,wo) +n 2, L(v)
D, (W, wr) + T I(fi(wi_y) — F(W
> min w0 wr) + 1 2y LA i) = i09) - (8.46)

ik Dy (W, wo) + 1 22, L(fi(wict) = fi(B))
The equality to 1 comes from the fact the that the optimal solution of the

minimization either has w}

T = wo Or wi. # wo, and in both cases the ratio is

equal to 1.

. Now we prove that, under the small step size condition (convexity of ¢ (w) —
nL;(w) for all i), SMD makes the minimax value at most 1, which means that

it is indeed an optimal solution. Recall from Lemma 42 that

T T T
Dy (w,wo)+n Z [(vi) = Dy (w,wr) +Z Ei(wi,wi_1)+n Z Dy, (w,w;1),
P i=1 i=1

where

Ei(wi,wi—1) = Dy (Wi, wi—1) =nDp,(wi, wi—1) + nL;(w;).
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It is easy to check that when y(w) — nL;(w) is convex, Dy (w;, wi_1) —
nDp,(w;, wi_1) is in fact a Bregman divergence (i.e., the Bregman divergence
with respect to the potential ¥ (w) — nL;(w)), and therefore it is nonnegative
for any w; and w;_;. Furthermore, we know that the loss L;(w;) is also
nonnegative for all w;. It follows that E;(w;, w;_1) is nonnegative for all values

of w;,w;_1 and i. As a result, we have the following bound.

T T
Dy (w,wo) +11 ) 1(v)) = Dy(w,wr) +7 ) Dr,(w,wir). (847

i=1 i=1

Since the Bregman divergence Dy, (w, wo) and the loss /(v;) are nonnegative,

the left-hand side expression is nonnegative, and it follows that

Dy(w,wr) +n 3", D, (w,wi_1) <1

(8.48)
Dy(w,wo) +n XL, 1(v)

In fact, this means that, independent of the choice of the maximizer (i.e., for
all {v;} and w), as long as the step size condition is met, SMD makes the ratio

less than or equal to 1.

Combining the results of 1 and 2 above concludes the proof. O

8.B.1 Proof of Theorem 40

Proof. This result is a special case of Theorem 43, which was proven above. In

this case, ¥ (w) = 3wl f(x;,w) =x7w, and [(z) = 3z*. Therefore, Dy (w, wr) =

slw = wrll%, Dy (w,wo) = 3llw — woll?, D, (w, wi—1) = 5(xTw — xI'w;_1)?, and
[(v;) = %vlz which leads to the result. O
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8.C Proof of Proposition 46 (Convergence)

Proof. To prove convergence, we appeal again to Equation (8.22), i.e.,

T
Dy (w,wo) = Dy(w,wr) + Z (Ei(wi,wi1) + 0D, (w,wis1)) (8.49)
i=1

for all w € W. We prove the two cases separately.

1. The proof of case (i) is straightforward. When [(-) is differentiable and convex,
L; is also convex, and therefore Dy, (w,w;_;) is nonnegative. Moreover,
when ¢ — nL; is convex, E;(w;, w;_1) is also nonnegative. Therefore, the
entire summand in Eq. (8.49) is nonnegative and thus has to go to zero
for i — oo. That is because as T — oo, the sum should remain bounded,
e, Yo (Ei(wiswizt) +nDp,(w,wiz1)) < Dy(w,wp). As a result of the
non-negativity of both terms in the sum, we have both E;(w;,w;—;) — 0
and Dy, (w,w;_;) — 0 as i — oo, the latter of which implies L;(w;_;) — 0.
This implies that the updates in (8.15) vanish and we get convergence, i.e.,
W; — We. Further, again because L;(w;—1) — 0, and 0 is the unique root of
[(-), all the data point are being fit, which means wo, € W.

2. To prove case (ii), note that we have

D, (w,wi—1) = Li(w) = Li(wi_1) = VLi(wi-1)" (W = wi_1) (8.50)
=0—1(y; —x] wii1) +I'(yi = x; wic)x] (w —wiz1)  (8.51)
= ~1(y; —xIwii) + U(yi = xIwi) (yi = xt wis1),  (8.52)

and

Ei(wi,wi—1) = Dy (wi,wi—1) =nDp,(wi,wi—1) + nL;(w;) (8.53)
= Dy (wi wi-1) 477 (Lilwi1) + VLiwi ) (s = wi-1))
(8.54)
=Dy (Wi, wi_1) +7 (l()’i —xIwis1) = U'(yi = x] wi)x] (w; — Wi—l)) :
(8.55)

It follows from (8.52) and (8.55) that the summand in Equation (8.49) is

Ei(wi,wi—1) +nDr,(w,wi_1) = Dy (wi, wi1) +nl’ (vi — x] wi1) (i — x] wy).
(8.56)
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The first term is a Bregman divergence and is therefore nonnegative. In order to
establish convergence, one needs to argue that the second term is nonnegative
as well, so that the summand goes to zero as i — oo. Since /(-) is increasing
for positive values and decreasing for negative values, it is enough to show that
Vi —xl.Tw,-_l and y; —xl.Tw,- have the same sign, in order to establish nonnegativity.
It is not hard to see that if the distance between the two points is less than or
equal to the distance of y; —xl.Twl- from the origin, then the signs are the same. In
other words, if | (y; —x! w;) — (yi —x] wi—1)| = |x] (wi—wi—1)| < |yi —x] wisil,

then the sign are the same.

Note that by the definition of @-strong convexity of ¥ (-), we have
(Vyr(wi) = Vi (wie)T (wi = wisy) 2 ellw; — wi |1, (8.57)
which implies
“nVLi(wi))" (Wi = wiz1) = allwi = winall, (8.58)

by substituting from the SMD update rule. Upper-bounding the left-hand side
by nl|VLi(wi—) [l (wi — wi—1)|| implies

NIVL;(wi—) |l = a|lw; —w;_q]]. (8.59)

This implies that we have the following bound

nllxil[IVLi (wi-)|
- :

(8.60)

T
g (wi —=wi)| < lxillllwi = wizal] <

T
It follows that if n < %, for all i, then the signs are the same, and
the summand in Eq.(8.49) is indeed nonnegative. This condition can be equiva-

alyi-xTwii| alyi—x! wi_i

il 10 i=x] wi)]?

lently expressed asn <
Yy exp TS TP e wi )]

which is the condition in the statement of the proposition.

foralli, ornp < min; 0

Now that we have argued that the summand is nonnegative, the convergence
to W € W is immediate. The reason is that both Dy (w;, w;_1) — 0 and
U'(yi—x] wi-1)(yi—x!w;) — 0,asi — oo. The first one implies convergence to
apoint we. The second one implies that either y; —xl.Twi_l =0ory; —xl.Twi =0,

which, in turn, implies we, € W.
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8.D Time-Varying Step-Size

The update rule for the stochastic mirror descent with time-varying step size is as
follows.

w; = arg min ninVLi(w,-_l) +Dy(w,w;_1), (8.61)

which can be equivalently expressed as Vi (w;) = Vi (w;—1) —n;VL;(w;_1), for all i.

The main results in this case are as follows.

Lemma 47. For any (nonlinear) model f(-,-), any differentiable loss [(-), any
parameter w and noise values {v;} that satisfy y; = f(x;,w) +v; fori =1,...,n,
any initialization wy, any step size sequence {n;}, and any number of steps T > 1,
the following relation holds for the SMD iterates {w;} given in Eq. (8.61)

T T
Dy (w,wo) + Z nil(vi) = Dy (w,wr) + Z (Ei(wi, wi1) + 0D, (w, wi1))

i=1 i=1
(8.62)

Proof. The proof is straightforward by summing the following equation for all
i=1,...,T

Dy(w,wi1) +1m:l(vi) = Dy (w,w;) + E;(wi, wi—1) + ;D (w,wi—1),  (8.63)

which can be easily shown in the same way as in the proof of Lemma 41 in

Appendix 8.A. o

Theorem 48. Consider any general model f (-, -), and any differentiable loss function
[(-) with property 1(0) = I'(0) = 0. For sufficiently small step size, i.e., for any
sequence {n;} for which yy(w) — n;L;(w) is convex for all i, the SMD iterates {w;}

given by Eq. (8.61) are the optimal solution to the following minimization problem

, Dy(w.wr) + S miDp,(w, wi_1)
min max .

- (8.64)
{wi} w.{vi} Dy (w,wo) + 2.y nil (vi)

Furthermore, the optimal value (achieved by SMD) is 1.

Proof. The proof is similar to that of Theorem 43, as presented in Appendix 8.B.
The argument for the upper-bound of 1 is exactly the same. For the second part of the
proof, we use the previous Lemma. It follows from the convexity of ¥ (w) — n;L;(w)

that E;(w;, w;_1) > 0, and as a result we have

Dy(w,wr) + X miDr,(w, wi1) <1
Dy (w,wo) + X, il (v)) -
for SMD updates, which concludes the proof. O

(8.65)
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The convergence and implicit regularization results hold similarly, and can be formally

stated as follows.

Proposition 49. Consider the following two cases.

(i) 1(-) is differentiable and convex and has a unique root at 0, Y (-) is strictly

convex, and the positive sequence {n;} is such that  — n;L; is convex for all i.

(it) 1(-) is differentiable and quasi-convex and has zero derivative only at 0, ()

alyi—x! wi_i| .
or all i.
i 12107 (vi=xT wi1)] J

is a-strongly convex, and 0 < n; <

If either (i) or (ii) holds, then for any initialization wg, the SMD iterates given in
Eq. (8.61) converge to
Weo = argmin Dy (w, wo). (8.66)
weW

Proof. The proof is similar to that of Proposition 46, as provided in Appendix 8.C. O
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Chapter 9

SMD ON OVERPARAMETERIZED NONLINEAR MODELS

[1] Navid Azizan et al. “A Study of Generalization of Stochastic Mirror Descent
Algorithms on Overparameterized Nonlinear Models”. In: 2020 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP).
2020, pp. 3132-3136. por: 10.1109/ICASSP40776.2020.9053864.

[2] Navid Azizan et al. “Stochastic Mirror Descent on Overparameterized Non-
linear Models: Convergence, Implicit Regularization, and Generalization”. In:
2019 International Conference on Machine Learning (ICML) Generalization
Workshop. 2019.

Most modern learning problems are highly overparameterized, i.e., the model has
many more parameters than the number of training data points, and the training
loss has infinitely many global minima. Therefore, it is important to understand
which interpolating solutions we converge to, how they depend on the initialization
and learning algorithm, and whether they yield different generalization errors. In
this chapter, we study these questions for the family of stochastic mirror descent
(SMD) algorithms, of which stochastic gradient descent (SGD) is a special case.
As we saw in the previous chapter, for overparameterized linear models, SMD
converges to the closest global minimum to the initialization point, where closeness
is in terms of the Bregman divergence corresponding to the potential function of the
mirror descent. For initialization points around “zero” (i.e., the minimizer of the
potential), this means convergence to the minimum-potential interpolating solution,
a phenomenon referred to as implicit regularization. Our contributions in this
chapter are both theoretical and experimental. On the theory side, we show that for
overparameterized nonlinear models, if the model is sufficiently overparameterized
so that a random initialization is w.h.p. close to the manifold of global minima,
SMD with a (sufficiently small) fixed step size converges to a global minimum that is
approximately the closest one in Bregman divergence, thus attaining approximate
implicit regularization. On the experimental side, our extensive experiments on the
MNIST and CIFAR-10 datasets consistently confirm that this phenomenon occurs
in practical scenarios. They further indicate a clear difference in the generalization
performances of different SMD algorithms: experiments on the CIFAR-10 dataset

with different regularizers, {; to encourage sparsity, {>» (SGD) to encourage small
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Euclidean norm, and ¢;¢ to discourage large components, consistently show that
£10-SMD has better generalization performance than SGD, which in turn generalizes
better than £;-SMD.

9.1 Introduction

Deep learning has demonstrably enjoyed a great deal of success in a wide variety
of tasks [9, 80, 118, 143, 189, 213, 119]. Despite its tremendous success, the
reasons behind the good performance of these methods on unseen data is not fully
understood (and, arguably, remains somewhat of a mystery). While the special deep
architecture of these models seems to be important to the success of deep learning,
the architecture is only part of the story, and it has been now widely recognized that
the optimization algorithms used to train these models, typically stochastic gradient
descent (SGD) and its variants, play a key role in learning parameters that generalize

well.

Since these deep models are highly overparameterized, they have a lot of capacity,
and can fit to virtually any (even random) set of data points [224]. In other words,
these highly overparameterized models can “interpolate” the training data, so much
so that this regime has been called the “interpolating regime” [138]. In fact, on a
given dataset, the loss function typically has (infinitely) many global minima, which,
however, can have drastically different generalization properties (many of them
perform poorly on the test set). Which minimum among all the possible minima
we converge to in practice is determined by the initialization and the optimization

algorithm that we use for training the model.

Since the loss functions of deep neural networks are non-convex—sometimes even
non-smooth—in theory, one may expect the optimization algorithms to get stuck in
local minima or saddle points. In practice, however, such simple stochastic descent
algorithms almost always reach zero training error, i.e., a global minimum of the
training loss [224, 122]. More remarkably, even in the absence of any explicit
regularization, dropout, or early stopping [224], the global minima obtained by
these algorithms seem to generalize quite well (contrary to some other “bad” global
minima). It has been also observed that even among different optimization algorithms,
i.e., SGD and its variants, there is a discrepancy in the solutions achieved by different
algorithms and how they generalize [211].

In this chapter, we propose training deep neural networks with the family of stochastic

mirror descent (SMD) algorithms, which is a generalization of the popular SGD. For
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any choice of potential function, there is a corresponding mirror descent algorithm.
We train a standard ResNet-18 architecture on CIFAR-10 using mirror descents with
the following four different potential functions: ¢; norm, ¢, norm (SGD), {3 norm,
and {;o norm. In all the cases, we train the network for a sufficiently large number
of steps, with a sufficiently small step size, until we converge to an interpolating
solution (global minima). Comparisons between the histograms of these different
global minima show that they are vastly different. In particular, the solution obtained
by ¢;-SMD is very sparse, and on the contrary, the solution obtained by the ¢
does not have any zero components. More importantly, there is a clear gap in the
generalization performance of these algorithms. In fact, surprisingly and somewhat
counterintuitively, the solution obtained by the £1)-SMD, which uses the entire
overparameterization in the network, consistently outperforms SGD, which in turn
performs better than the SMD with £; norm, i.e., the sparser one. Therefore, it is
important to ask: Which global minima do these algorithms converge to, and what

properties do they have?

On the theory side, we show that, for overparameterized nonlinear models, if the
model is sufficiently overparameterized so that the random initialization point is
w.h.p. close to the manifold of interpolating solutions (something that is occasionally
referred to as “the blessing of dimensionality”), then the SMD algorithm for any
particular potential function converges to a global minimum that is approximately
the closest one to the initialization, in Bregman divergence corresponding to the
potential. For the special case of SGD, this means that it converges to a global
minimum which is approximately the closest one to the initialization in the usual

Euclidean sense.

We perform extensive systematic experiments with various initial points and various
mirror descent algorithms for the MNIST and CIFAR-10 datasets using standard off-
the-shelf deep neural network architectures for these datasets with standard random
initialization, and we measure all the resulting pairwise Bregman divergences. We
found that every single result is exactly consistent with the above theory. Indeed, in
all our experiments, the global minimum achieved by any particular mirror descent
algorithm is the closest, among all other global minima obtained by other mirrors and
other initializations, to its initialization in the corresponding Bregman divergence.
In particular, the global minimum obtained by SGD from any particular initialization
is closest to the initialization in Euclidean sense, both among the global minima

obtained by different mirrors and among the global minima obtained by different
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initializations.

This result, proven theoretically and backed up by extensive experiments, further
implies that, even in the absence of any explicit regularization, these algorithms
perform an implicit regularization. In particular, it implies that, when initialized
around zero, SGD acts as an approximate {;-norm regularizer on the weights.
Similarly, by choosing other mirrors, one can obtain any desired form of implicit
regularization (such as €1 or £ ), which is consistent with the observations about the

histograms.

9.2 Background

Let us denote the training dataset by {(x;,y;) : i = 1,...,n}, where x; € RY are
the inputs, and y; € R are the labels. The model (which can be, e.g., linear, a deep
neural network, etc.) is defined by the general function f(x;, w) = f;(w) with some
parameter vector w € R”. Since typical deep models have a lot of capacity and are
highly overparameterized, we are particularly interested in the overparameterized
(or so-called interpolating) regime, where m > n (often m > n). In this case, there
are many parameter vectors w that are consistent with the training data points. We

denote the set of these parameter vectors by
W={weR"| f(x;,w)=y;,i=1,...,n}. 9.1)

This is a high-dimensional set (e.g., a (m — n)-dimensional manifold) in R and

depends only on the training data {(x;,y;) : i = 1,...,n} and the model f(-,).

The total loss on the training set (empirical risk) can be expressed as L(w) =

"y Li(w), where L;(-) = €(y;, f(x;, w)) is the loss on the individual data point i, and
£(-,-) is adifferentiable non-negative function, with the property that €(y;, f(x;, w)) =
0iff y; = f(x;,w). Often €(y;, f(x;,w)) = €(y; — f(x;,w)), with £(-) convex and
having a global minimum at zero (such as square loss, Huber loss, etc.). In this case,
L(w) =", t(yi = f(x;,w)). For example, the conventional gradient descent (GD)

algorithm can be used as an attempt to minimize L(-) over w.

An important generalization of GD is the mirror descent (MD) algorithm, first
introduced by Nemirovski and Yudin [149] and widely used since then [33, 55, 227],
can be described as follows. Consider a strictly convex differentiable function i (-),

called the potential function. Then MD is given by the following recursion

Vi (wi) = Vg (wi—1) =nVL(wi-1), wo 9.2)
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where 17 > 0 is known as the step size or learning rate. Note that, due to the strict
convexity of ¥ (+), the gradient Vi () defines an invertible map so that the recursion in
(9.2) yields a unique w; at each iteration, i.e., w; = Vo~ ! (Vyr(wi—1) — nVL(w;_1)).
Compared to classical GD, rather than update the weight vector along the direction
of the negative gradient, the update is done in the “mirrored” domain determined
by the invertible transformation Vi (-). Mirror descent was originally conceived to
exploit the geometrical structure of the problem by choosing an appropriate potential.
Note that MD reduces to GD when ¢ (w) = %||w||2, since the gradient is simply
the identity map. Other examples include the exponentiated gradient descent (also

known as the exponential weights) and the p-norms algorithm [82, 78].

When n is large, computation of the entire gradient may be cumbersome. Alternatively,
in online scenarios, the entire loss function L(-) may not be available, and only the
local loss functions may be provided at each iteration. In such settings, a stochastic
version of MD has been introduced, aptly called stochastic mirror descent (SMD),
which can be considered the straightforward generalization of stochastic gradient

descent (SGD):
Vi (wi) = Vg (wi1) =nVLi(wi-1), wo 9.3)

In the offline setting, the various instantaneous loss functions L;(-) can either be

drawn at random or cycled through periodically.

Alternatively, the update rule (9.3) can be expressed as
w; = arg min anVLi(wi_l) +Dy(w,wi_1), 9.4)

where
Dy(w,wi1) =w(w) = (wiz1) = Ve (wis)T (w = wisy) 9.5

is the Bregman divergence with respect to the potential function ¥ (-). Note that
Dy (-, ) is non-negative, convex in its first argument, and that, due to strict convexity,
Dy(w,w) =0iff w =w".

9.3 Training Deep Neural Networks with SMD

As mentioned earlier, the heavy overparameterization in typical deep neural networks
means that the loss function for such architectures typically has infinitely many
global minima, and these different minima can have very different properties and
generalization performances. Motivated by this fact, we propose training deep neural
networks with other members of the family of stochastic mirror descent, to see if

they lead to different global minima.
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We take the popular CIFAR-10 dataset and the standard ResNet-18 architecture

for this dataset. We initialize the network with small random weights and train it
with mirror descents with the following 4 different potential functions: ¢; norm, ¢»
norm (SGD), ¢3 norm, and ¢;¢p norm. In all the cases, we choose the step size to be
sufficiently small, and we train for a sufficiently large number of steps, so that we

converge to an interpolating solution (global minimum).

We compare the generalization performance of these different solutions on the test
set. Fig. 9.1 shows the test accuracies of different algorithms with eight random
initializations around zero. There is a clear gap in the generalization performance
of these algorithms, and SMD with £jg-norm consistently performs better than
SGD, which in turn performs better than the SMD with ¢-norm. In fact, perhaps
surprisingly, by virtue of changing the optimizer from SGD to ¢1o-SMD, without
any additional tricks, we outperform the state of the art for ResNet-18 on CIFAR-10.
This is particularly remarkable given that this very architecture had been designed

with training with SGD in mind.
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Figure 9.1: Generalization performance of different SMD algorithms on the CIFAR-
10 dataset using ResNet-18. ¢y performs consistently better, while ¢; performs
consistently worse. The red line shows the state of the art on ResNet-18 for CIFAR-10
(93.02%)[135].

One may be curious to see how the weights obtained by these different mirrors
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Figure 9.2: Histogram of the absolute value of the final weights in the network
for different SMD algorithm with different potentials. Note that each of the four
histograms corresponds to an 11 x 10%-dimensional weight vector that perfectly
interpolates the data. Even though the weights remain quite small, the histograms
are drastically different. £;-SMD induces sparsity on the weights. SGD appears to
lead to a Gaussian distribution on the weights. £3-SMD starts to reduce the sparsity,
and ¢ shifts the distribution of the weights significantly, so much so that almost all
the weights are non-zero.

look. Fig. 9.2 shows the histogram of the absolute value of the weights for these
four different SMDs, initialized by the exact same set of weights. The histograms
of the final weights look substantially different and, since they all started from the
same initial weights and they all interpolate the same data set, this difference is fully
attributable to the different mirrors used. The histogram of the £;-SMD has more
weights at and around zero, i.e., it is very sparse. The histogram of the £,-SMD
(SGD) looks almost perfectly Gaussian. The one corresponding to £3 has somewhat
shifted to the right, and the ¢ has has completely moved away from zero, i.e., all
the weights in the £} solution are non-zero. The fact that the ¢y solution, which
uses the entire overparameterization available in the network, generalizes better than

the sparser ones is very surprising.
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9.4 Theoretical Results

In this section, we provide our main theoretical results. In particular, we show that
for highly overparameterized models: (1) SMD converges to a global minimum and
(2) the global minimum obtained by SMD is approximately the closest one to the

initialization in Bregman divergence corresponding to the potential.

9.4.1 Warm-up: Overparameterized Linear Models

Overparameterized (or underdetermined) linear models have been recently studied in
many papers due to their simplicity and the fact that there are interesting insights that
one can obtain from them. In this case, the model is f(x;, w) = xl.Tw, the set of global
minima is ‘W = {w | yi = xl.Tw, i=1,... ,n}, and the loss is L;(w) = €(y; —xl.Tw).

The following result characterizes the solution that SMD converges to [18, 85].

Proposition 50. Consider a linear overparameterized model. For sufficiently small
step size, i.e., for anyn > 0 for which s (-) —nL;(-) is convex, and for any initialization
wo, the SMD iterates converge to
Weo = argmin Dy (w, wo).
weW

Note that the step size condition, i.e., the convexity of ¥/(-) — nL;(-), depends on
both the loss and the potential function. For the case of SGD, ¢ (w) = %llwllz, and
{(y; — xl.Tw) = %(y,- - xl.Tw)2, so the condition reduces to the well-known 7 < W
In this case, Dy (w, wo) is simply % lw — wol|>.
Corollary 51. In particular, for the initialization wo = arg min,, .z, ¥ (W), under
the conditions of Proposition 50, the SMD iterates converge to

We = argminy(w). (9.6)

weW

This means that running SMD for a linear model with the aforementioned wy,
without any explicit regularization, results in a solution that has the smallest potential
¥ (-) among all solutions, i.e., SMD implicitly regularizes the solution with ¢ (-).
In particular, this means that SGD initialized around zero acts as an {;-norm
regularizer. In this chapter, we show that these results continue to hold for highly

overparameterized nonlinear models in an approximate sense.

9.4.2 Main Results
Let us define

Dy, (w,w') == Li(w) = Lij(w") = VL;(w)T (w = w’), (9.7)
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Figure 9.3: An illustration of the parameter space. ‘W represents the set of global
minima, wy is the initialization, $ is the local neighborhood, w* is the closest
global minimum to wg (in Bregman divergence), and w, is the minimum that SMD
converges to.

which is defined in a similar way to a Bregman divergence for the loss function. The
difference though is that, unlike the potential function of the Bregman divergence,
the loss function L;(-) = €(y; — f(x;, -)) need not be convex (even when £(-) is) due

to the nonlinearity of f(-,-).

It has been argued in several recent papers that in highly overparameterized neural
networks, because ‘W is very high-dimensional, any random initialization wy is close
to it, with high probability [129, 67, 7, 51]. In other words, one can show that, under
certain conditions, the distance of a random initialization point wq to the manifold
scales as

Dy(W.wo)? = 0(+) 9.8)

(see the discussion in Section 9.A.4 of the supplementary material). Therefore, in

such settings, it is reasonable to make the following assumption about the manifold.

Assumption 1. Denote the initial point by wg. There exists w € ‘W and a region
B ={w € R’ | Dy(w,w') < €} containing wo, such that Dy, (w,w’) > 0,i =
1,...,n, forallw' € B.

It is important to understand what this assumption means. Since L;(-) is not
necessarily convex, it is certainly not the case that Dy (w,w’) > 0 for all w’.
However, since w is a minimizer of L;(+), there will be a neighborhood around it such
that for all w’ in this neighborhood D, (w,w’) > 0 (see Fig. 9.4 for an illustration).
What we are requiring is that the initialization w be inside the intersection of all
such neighborhoods fori = 1, ..., n. In other words, we require a w close enough
to W.
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Figure 9.4: An illustration of Dy, (w,w’) > 0 in a local region in Assumption 1.

Our second assumption states that in this local region, the first and second derivatives

of the model are bounded.

Assumption 2. Consider the region B in Assumption 1. f;(-) have bounded gradient
and Hessian on the convex hull of B, i.e., ||V fi(w")|| <y, and & < Apin(Hp (W')) <
Amax(Hi,(W')) < B,i=1,...,n, forall w' € conv B.

This is a mild assumption, which is assumed in other related work such as [163]
as well. Note that we do not require a to be positive (just its boundedness). The
following theorem states that under Assumption 1, SMD converges to a global

minimum.

Theorem 52. Consider the set of interpolating parameters W = {w € R"™| f(x;,w) =
vi,i = 1,...,n}, and the SMD iterates given in (9.3), where every data point is
revisited after some steps. Under Assumption 1, for sufficiently small step size, i.e.,
for any n > 0 for which (-) — nL;(+) is strictly convex on B for all i, the following
holds.

1. All the iterates {w;} remain in 8.

2. The iterates converge (to W)

3. We € W.

Note that, while convergence (to some point) with decaying step size is almost
trivial, this result establishes convergence to the solution set with a fixed step size.
Furthermore, the convergence is deterministic, and is not in expectation or with high
probability. For example, this result also applies to the case where we cycle through

the data deterministically.
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We should also remark that the choice of distance in the definition of the “ball”
$ was important to be the Bregman divergence with respect to /() and in that
particular order. In fact, one cannot guarantee that the SMD iterates get closer to
an interpolating w at every step in the usual Euclidean sense. However, one can
establish that it gets closer in Dy (w, -). Finally, it is important to note that we need
the step size to be small enough to guarantee the strict convexity of ¥ (-) — nL;(-) in

B, not globally.

Denote the global minimum that is closest to the initialization in Bregman divergence
by w*, i.e.,

w* = argmin Dy (w, wy). 9.9)
weW

Recall that in the linear case, this was what SMD converges to. We show that in the
nonlinear case, under Assumptions 1 and 2, SMD converges to a point w, which is

“very close” to w*.
Theorem 53. Define w* = argmin,, .y, Dy (w, wo). Under the conditions of Theo-
rem 52, and Assumption 2, the following holds:
1. Dy(Weo, wo) = Dy (W*, wg) +0(e),
2. Dy(W*,we) = 0(€).
In other words, if we start with an initialization that is O(e) away from ‘W (in

Bregman divergence), we converge to a point ws, € ‘W that is o(€) away from w*.

The Bregman divergence of this point is o(€) from the minimum value it can take.
Corollary 54. For the initialization wy = arg min,,cp, ¥ (w), under the conditions
of Theorem 53, w* = argmin,,.qy, ¥ (w) and the following holds:

1. Yy (weo) = (W") +0(e),

2. Dy(W*,we) = 0(e).
9.4.3 Fundamental Identity of SMD

An important tool used in our proofs is a “fundamental identity” that governs the

behavior of the iterates of SMD, which holds under very general conditions.

Lemma 55. For any model f(-,-), any differentiable loss ¢(-), any parameter
w € W, and any step size n > 0, the following relation holds for the SMD iterates
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{wi}:

Dy(w,wi—1) = Dy (W, w;) + Dy_pr, (Wi, wi—1) +nLi(w;) + D, (w,w;i—1), (9.10)

foralli > 1.

This identity allows one to prove the results in a remarkably simple and direct way.

The proofs are relegated to the appendix.

The ideas behind this identity are related to H, estimation theory [98, 190], which
was originally developed in the 1990s in the context of robust control theory. In fact,
it has connections to the minimax optimality of SGD, which was shown by [96] for

linear models, and recently extended to nonlinear models and general mirrors by
[18].

9.5 Related Work

There have been many efforts in the past few years to study deep learning from an
optimization perspective, e.g., [3, 58, 188, 7, 163, 138, 67, 129, 51]. While it is not
possible to review all the contributions here, we comment on the ones that are most

closely related to ours and highlight the distinctions between our results and those.

Many recent papers have studied the convergence of the (S)GD algorithm in the
so-called “overparameterized” setting (or “interpolating” regime), which is common
in deep learning [163, 7, 193, 138]. All these works, similar to ours, assume that the
initialization is close to the solution space (of global minima), which is a reasonable
assumption in highly overparameterized models. However, our results are more

general because they extend to SMD.

SMD-—!
W, 10

Figure 9.5: An illustration of the experiments in Table 9.1.
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SMD 2-norm

SMD 1-norm (SGD) SMD 3-norm SMD 10-norm
1-norm BD 141 9.19 x 10° 4.1 10% 2.34 x 10°
2-norm BD  3.15 x 10° 562 1.24 x 103 6.89 x 103
3-norm BD  4.31 x 10* 107 53.5 1.85 x 102
10-norm BD  6.83 x 1013 972 791 %107  2.72x 1078

Table 9.1: Fixed Initialization. Distances from final points (global minima) obtained
by different algorithms (columns) from the same initialization (Fig. 9.5), measured
in different Bregman divergences (rows). First Row: The closest point to wg in ¢;
Bregman divergence, among the four final points, is exactly the one obtained by
SMD with 1-norm potential. Second Row: The closest point to wq in £, Bregman
divergence (Euclidean distance), among the four final points, is exactly the one
obtained by SGD. Third Row: The closest point to wq in £3 Bregman divergence,
among the four final points, is exactly the one obtained by SMD with 3-norm potential.
Fourth Row: The closest point to wy in £;9 Bregman divergence, among the four
final points, is exactly the one obtained by SMD with 10-norm potential.

Furthermore, even for the case of SGD, our results are stronger than those in
this literature, in the sense that not only do we show convergence to a global
minimum, but we also show that the weight vector we converge to, w, say, is close
to the interpolating weight vector closest to the initialization, w*, say. Denoting
the initialization by wgy, Oymak and Soltanolkotabi [163] showed that for SGD,
|l[weo —wol| is bounded by a constant factor of ||w* —wq||. Our Theorem 53 shows the
much stronger statement that ||wo, — wol| = ||[w* — wol| + o(||[w* — wol|). We further
show that w, and w* are very close to one another, viz. ||[We —w*||? = o(||lw* =wol|)).

something that could not be inferred from the previous work.

There exist a number of results that characterize the implicit regularization properties
of different algorithms in different contexts [154, 137, 87, 85, 194, 86, 18, 142]. The
closest ones to our results, since they concern mirror descent, are the works of [85,
18]. The authors in [85] consider /inear overparameterized models, and show that if
SMD happens to converge to a global minimum, then that global minimum will be
the one that is closest in Bregman divergence to the initialization, a result they obtain
by examining the KKT conditions. However, they do not provide any conditions for
convergence and whether SMD converges with a fixed step size or not. [18] also
study linear models, but derive conditions on the step size for which SMD converges
to the aforementioned global minimum. Our results extend the aforementioned to
nonlinear overparametrized models, and show that, for small enough fixed step size,

and for initializations close enough to the space of interpolating solutions, SMD
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converges to a global minimum, something which had not been shown in any of the
previous work. Assuming every data point is revisited often enough, the convergence
we establish is deterministic. Finally, we show that the solution we converge to
exhibits approximate implicit regularization, something that was not known for

nonlinear models.

9.6 Experimental Results
In this section, we evaluate the theoretical claims by running systematic experiments
for different initializations and different mirrors and computing the distances between

the global minima achieved and the initializations, in different Bregman divergences.

While accessing all the points on ‘W and finding the closest one is impossible, we
design systematic experiments to test this claim. We run experiments on some
standard deep learning problems, namely, a standard CNN on MNIST [120] and
the ResNet-18 [101] on CIFAR-10 [117]. We train the models from different
initializations, and with different mirror descents from each particular initialization,
until we reach 100% training accuracy, i.e., a point on ‘W. We randomly initialize
the parameters of the networks around zero. We choose 6 independent initializations
for the CNN, and 8 for ResNet-18, and for each initialization, we run different
SMD algorithms with the following four potential functions: (a) ¢; norm, (b) ¢,
norm (which is SGD), (c) €3 norm, and (d) {;p norm (as a surrogate for {,). See

Appendix 9.B for more details on the experiments.

Final 1 Final 2 Final 3 Final 4 Final 5 Final 6 Final 7 Final 8
Initial 1 | 6x 10> 29x10° 2.8x10° 2.8x10° 28x10° 28x10° 2.8x10° 28x10°
Initial 2 2.8x10°  6.1x102 2.8x10° 28x10° 28x10° 2.8x10° 28x10° 2.8x10°
Initial 3 2.8x10° 29x10° | 5.6x102 2.8x10° 28x10° 28x10° 2.8x10° 2.8x10°
Initial4 2.8x10° 29x10° 2.8x10° | 59x102 28x10° 2.8x10° 28x10° 2.8x10°
Initial 5 2.8x10° 2.9x10° 2.8x10° 28x10° [ 57x10> 2.8x10° 28x10° 2.8x10°
Initial 6 2.8x10° 29x10° 2.8x10° 2.8x10° 28x10°  56x10®2 2.8x10° 2.8x10°
Initial 7 2.8x10° 2.9x10° 2.8x10° 28x10° 28x10° 2.8x10° | 6x10*2 2.8x10°
Initial 8 2.8x10° 29x10° 2.8x10° 28x10° 28x10° 28x10° 2.8x10°  5.8x10?

Table 9.2: Fixed Mirror: SGD. Pairwise distances between different initial points
and the final points obtained from them by SGD (Fig. 9.6). Row i: The closest final
point to the initial point 7, among all the eight final points, is exactly the one obtained
by the algorithm from initialization i.

We measure the distances between the initializations and the global minima obtained
from different mirrors and different initializations, in different Bregman divergences.
Table 9.1, and Table 9.2 show some examples among different mirrors and different

initializations, respectively. Fig. 9.7 shows the distances between a particular initial
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(6) (7)
(5) w ow
Initializations: X0 0e 0
¢ @e 20
[ ] ’LUU wo

1 (]
wl’ GO ey

Final Points:

wOo on wOO

Figure 9.6: An illustration of the experiments in Table 9.2.

point and all the final points obtained from different initializations and different
mirrors (the distances are often orders of magnitude different, so we show them
in logarithmic scale). The global minimum achieved by any mirror from any
initialization is the closest in the correct Bregman divergence, among all mirrors,
among all initializations, and among both. This trend is very consistent among all

our experiments, which can be found in Appendix 9.B.
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Figure 9.7: Distances between a particular initial point and all the final points
obtained by both different initializations and different mirrors. The smallest distance,
among all initializations and all mirrors, corresponds exactly to the final point
obtained from that initial point by SGD. This trend is observed consistently for all
other mirror descents and all initializations (see the results in Tables 9.8 and 9.9 in
the appendix).
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9.7 Conclusion

In this chapter, we studied the convergence and implicit regularization properties
of the family of stochastic mirror descent (SMD) for highly overparameterized
nonlinear models. From a theoretical perspective, we showed that, under reasonable
assumptions, SMD with sufficiently small step size (1) converges to a global
minimum and (2) the global minimum converged to is approximately the closest
to the initialization in Bregman divergence sense. Furthermore, our extensive
experimental results, on various initializations, various mirror descents, and various
Bregman divergences, revealed that this phenomenon indeed happens in deep learning,
and the solution SMD converges to is the closest to the initialization in Bregman
divergence corresponding to that mirror. This further implies that different mirror
descent algorithms act as different regularizers, a property that is referred to as
implicit regularization. The fact that the {.-regularized solution showed a better
generalization performance than the other ones, while £; was the opposite, suggests
the importance of a comprehensive study of the role of regularization, and the choice
of the best regularizer, to improve the generalization performance of deep neural

networks.
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9.A Proofs of the Theoretical Results

In this section, we prove the main theoretical results. The proofs are based on a
fundamental identity about the iterates of SMD, which holds for all mirrors and
all overparametereized (even nonlinear) models (Lemma 55). We first prove this

identity, and then use it to prove the convergence and implicit regularization results.

9.A.1 Fundamental Identity of SMD

Let us prove the fundamental identity.

Lemma 55. For any model f(-,-), any differentiable loss ¢(-), any parameter
w € W, and any step size n > 0, the following relation holds for the SMD iterates

{wi}
Dy(w,wi—1) = Dy (W, w;) + Dy_pr, (Wi, wi—1) +nL;i(w;) + 0D, (w,w;—1), (9.10)

foralli > 1.

Proof of Lemma 55. Let us start by expanding the Bregman divergence Dy, (w, w;)
based on its definition

Dy (w,wi) = g (w) =g (wi) = Vg (wi) (w = w).

By plugging the SMD update rule Vi (w;) = Viy(w;—1) — nVL;(w;_1) into this, we

can write it as

Dy (w,wi) =y (w) =g (wy) = Vg (wi))T (w = w;) + 7V Li(wi—) T (w—wy). (9.11)

Using the definition of Bregman divergence for (w,w;_1) and (w;,w;_1), i.e.,

Dy (w,wi—1) =¥ (W)= (wiz1) =V (wi—))" (w—w;_1) and Dy (w;, wi—1) = ¢ (w;)—
w(wiz1) = Vr(wi—1)T (w; — wi_1), we can express this as

Dy (w,w;) = Dy (w, wiz1) + ¥ (wim1) + Vi (wis) T (w = wisy) — g (w)
= Vg (wis)) (W = wi) + 7V Li(wi )T (w = wy)
9.12)
= Dy (w, wis1) +(wi1) = (wi) + Ve (wi)" (wi = wi)
+nVLi(wi-)" (w = wy)
(9.13)
= Dy (w,wi—1) = Dy (wi,wiz1) + nVLi(wi))" (w — wy). (9.14)
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Expanding the last term using w — w; = (w — w;_1) — (w; — w;_1), and following the

definition of Dy, (., .) from (9.7) for (w, w;_1) and (w;, w;_1), we have

Dy (w,w;) = Dy(w,wi—1) = Dy(wi, wi1) + nVLi(wiz1)" (W = wi_)
— VL (wi—1)" (Wi = wiz1)
(9.15)
=Dy (w,wi_1) = Dy (wi,wi1) +1 (Li(w) = Li(wi—1) = D, (w, wi_1))
—n (Li(w;) — Li(wi—1) — D, (wi, wi—1))
(9.16)
=Dy (w,wi—1) = Dy(wi,wiz1) + 1 (Li(w) — D, (w,wi-1))
—n (Li(w;) = D, (wi, wi-1))
9.17)

Note that for all w € ‘W, we have L;(w) = 0. Therefore, for all w € ‘W

Dy(w,w;) = Dy(w,wi_1)=Dy(wi,wi_1)-nDp,(w,w;_1)=nL;(w;)+nDr, (Wi, w;i1).
(9.18)

Combining the second and the last terms in the right-hand side leads to
Dy(w,w;) =Dy(w,wi_1) = Dy_yr,(Wi,wi_1) =D, (w,w;_1) —nL;(w;), (9.19)
for all w € W, which concludes the proof. O

9.A.2 Convergence of SMD to the Interpolating Set
Now that we have proved Lemma 55, we can use it to prove our main results, in a
remarkably simple fashion. Let us first prove the convergence of SMD to the set of

solutions.

Assumption 1. Denote the initial point by wo. There exists w € ‘W and a region
B ={w € R" | Dy(w,w') < €} containing wo, such that Dy,(w,w’) > 0,i =
1,...,n, forallw" € B.

Theorem 52. Consider the set of interpolating parameters W = {w € R™ | f(x;,w) =
vi,i = 1,...,n}, and the SMD iterates given in (9.3), where every data point is
revisited after some steps. Under Assumption 1, for sufficiently small step size, i.e.,

for any n > 0 for which () — nL;(+) is strictly convex for all i, the following holds:

1. All the iterates {w;} remain in B;
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2. The iterates converge (t0 W),

3. We € W.

Proof of Theorem 52. First we show that all the iterates wil remain in 8. Recall the
identity of SMD from Lemma 55:

Dy(w,wi1) = Dy(w,w;) + Dy_pr, (Wi, wi—1) +nLi(w;) + nDr,(w,w;—1) (9.10)

which holds for all w € ‘W. If w;_; is in the region B, we know that the last term
Dy, (w,w;_1) is non-negative. Furthermore, if the step size is small enough that
() —nL;(-) is strictly convex, the second term Dy _,z,(w;, w;—1) is a Bregman
divergence and is non-negative. Since the loss is non-negative, nL;(w;) is always

non-negative. As a result, we have
Dy(w,wi—1) = Dy(w,w;), (9.20)

This implies that D, (w, w;) < €, which means w; is in 8 too. Since wy is in B, wi
will be in B, and therefore, w, will be in B, and similarly all the iterates will remain
in B.

Next, we prove that the iterates converge and wo, € W. If we sum up identity (9.10)
foralli =1,...,T, the first terms on the right- and left-hand side cancel each other

telescopically, and we have

T
Dy (w,wo) = Dy(w,wr) + Z [Dy—nr,(wiswiz1) +nLi(w) + nDr, (w,wis1)] -
=1
(9.21)

Since Dy (w, wr) > 0, we have ZI.TZI [Dw—nLi (wi,wi—1) +nLi(w;) +nDr,(w, Wi—l)]
Dy (w,wo). If we take T — oo, the sum still has to remain bounded, i.e.,

Z [Dy—nr; (Wi, wizt) +nLi(w;) + 0D, (w,wi—1)] < Dy (w, wo). 9.22)

i=1

Since the step size is small enough that (-) —nL;(+) is strictly convex for all 7, the first
term Dy _,z,(w;, w;_1) is non-negative. The second term nL;(w;) is non-negative
because of the non-negativity of the loss. Finally, the last term Dy, (w,w;_;) is

non-negative because w;_; € B for all i. Hence, all the three terms in the summand

are non-negative, and because the sum is bounded, they should go to zero as i — oo.

In particular,
Dy_yr,(wi,wi—1) = 0 (9.23)

IA



218

implies w; — w;_1, i.e., convergence (w; — W) (Note that the functions ¢ — nL;

do not go to zero, as there is a fixed number, i.e., n, of them). Further,
nLi(Wi) — 0. (924)

This implies that all the individual losses are going to zero, and since every data
point is being revisited after some steps, all the data points are being fit. Therefore,
Weo € W. O

9.A.3 Closeness of the Final Point to the Regularized Solution

In this section, we show that with the additional Assumption 2 (which is equivalent
to f;(-) having bounded Hessian in $), not only do the iterates remain in 8 and
converge to the set ‘W, but also they converge to a point which is very close to w*
(the closest solution to the initial point, in Bregman divergence). The proof is again

based on our fundamental identity for SMD.

Assumption 2. Consider the region B in Assumption 1. f;(-) have bounded gradient
and Hessian on the convex hull of B, i.e., ||V f;(w")|| < v, and @ < Apin(Hf,(W')) <
Amax(Hp,(W')) < B,i=1,...,n, forallw € conv 8.

Theorem 53. Define w* = argmin,,.qy, Dy (w,wo). Under the assumptions of
Theorem 52, and Assumption 2, the following holds:

1. Dy(Weo, wo) = Dy (W*, W) + 0(e),

2. Dy(w*,we) = 0(€).
Proof of Theorem 53. Recall the identity of SMD from Lemma 55:
Dy(w,wi-1) = Dy (w,wi) + Dy—pr, (Wi, wi1) + nLi(wi) + nDr,(w, wi—1) (9.10)

which holds for all w € W. Summing the identity for all i > 1, we have

(o)

Dy (w,wg) = Dy (W, weo) + Z [Dy—nr, (Wi, wiz1) + nLi(w;) + nDr,(w,wis1)] .

i=1
(9.25)
for all w € W. Note that the only terms in the right-hand side which depend on w
are the first one Dy (w, wo) and the last one n 32, Dy, (w, w;—1). In what follows,
We will argue that, within 8B, the dependence on w in the last term is weak and

therefore w, is close to w*.
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To further spell out the dependence on w in the last term, let us expand Dy, (w, w;_1)
Dy, (w,wi—1) =0 = Li(wi—1) = VLi(wi-)" (w = wi_) (9.26)

= —Li(win1) + €' (yi = fiwie))Vfilwir) T (w = wis))  (9.27)

for all w € W, where the first equality comes from the definition of Dy, (-, -) and the
fact that L;(w) = 0 for w € W. The second equality is from taking the derivative of
L;(-) = €(y; — fi(-)) and evaluating it at w;_j.

By Taylor expansion of f;j(w) around w;_; and using Taylor’s theorem (Lagrange’s

mean-value form), we have

i) = w1+ 9 i) Ov=wics)+ 3 Ow=wi ) By () Ow=wi 1), (9.28)

for some w; in the convex hull of w and w;_;. Since f;(w) = y; for all w € W, it
follows that

1 .
Viwie) (W —wist) = yi — filwiz1) — E(W —wis)TH (W) (w = wis1), (9.29)
for all w € W. Plugging this into (9.27), we have

/ 1 <
D, (W, wi-1) = =LiOwie )+ 3= fiwiet)) (vim fiwie) =5 =) H i (03) Ow=wi-1) )
(9.30)
for all w € W . Finally, by plugging this back into the identity (9.25), we have

Dy (w,wo) = Dy (W, ws) + Z [Dw—nL,-(Wia wi1) +nLi(w;) —nL;(w;_1)
i=1

+nl' (yi — filwiz)) (vi = filwiz1) — %(W —wim))TH (W) (w — Wi—l))]- (9.31)

for all w € W. Note that this can be expressed as

nl (yi—fi(wiz1)) (w=wi1) T H7, (0;) (w=wi_1),

(9.32)

Dy (w,wo) = Dy (w, woo)+C—Z
i=1

| =

for all w € W, where C does not depend on w:

C= Z | Dy—nr, (Wi, wic1) +nLi(wi) = nLi(wiz1) + € (vi = fi(wi=)) (i = filwiz1))] -
i=1

From Theorem 52, we know that w,, € ‘W. Therefore, by plugging it into
equation (9.32), and using the fact that Dy (We, We) = 0, we have

1
Dy (Weo, wo) = C — Z Eﬂf'(yi — fiwic1)) Weo = wic)TH (WD) (Weo = wis1),
- (9.33)
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where w' is a point in the convex hull of we, and w;_; (and therefore also in conv B),

for all i. Similarly, by plugging w*, which is also in W, into (9.32), we have

k 3k - 1 / 3k ” *
Dy (W™, wo) = Dy (w ,Woo)+C—Z S Gi=fiwi)) (w —wie) Hp (W) (w*=wio),
i=1
(9.34)
where w’ is a point in the convex hull of w* and w;_ (and therefore also in conv 8),

for all i. Subtracting the last two equations from each other yields

* * X l /
Dy (Weor w0) = Dy (W', wo) = =Dy (W, wee) + 3 51t (i = fi(wie)):
i=1

[W* = wis ) THy (W) (W = wiz1) = (Weo = wist) T H (W) (Weo — win1)] -
(9.35)

Note that since all w’ and w}" are in conv 8B, by Assumption 2, we have
allweo = Wit < (Weo = wict) T Hy, (W) (Weo = wiz1) < Bllweo = wii |17, (9.36)
and
alw’ = wietl® < W = wie) " Hy,w]) (W™ = wizt) < Bllw" = wia > (9.37)
Further, again since all the iterates {w;} are in B, it follows that [|we —wi_1||* = O (€)
and ||[w* — wi_1]|> = O(€). As a result the difference of the two terms, i.e.,

[(w* = wii)THy, (W) (W* = wiz1) = (Weo = wim))TH (W) (Weo — wi—1)], is also
O(e€), and we have

Dy (Weas wo) = Dy (', w0) = =Dy (w*, weo) + ) 0l (yi = fiwi=1)O(e). (9.38)

i=1
Now note that ¢'(y; = fi(wi-1)) = €'(fi(w) = fi(wi1)) = € (Vfi(w)T (w = wi1))
for some Ww; € conv B. Since ||w — w;_1||> = O(e) for all i, and since £(-) is differ-
entiable and f;(-) have bounded derivatives, it follows that ¢’ (y; — fi(w;—1)) = o(€).
Furthermore, the sum is bounded. This implies that Dy (We, wo) — Dy (W*, wo) =

-Dy(w*,ws) + 0(€), or equivalently
(Dy (Weo, wo) = Dy (W*, wp)) + Dy (W*, weo) = 0(€). (9.39)
The term in parentheses D (We, wo) — Dy (W*, wo) is non-negative by definition of
w*. The second term D, (w*, we) is non-negative by convexity of . Since both
terms are non-negative and their sum is o(€), each one of them is at most o(¢), i.e.,
Dy (Weo, wo) — Dy (W™, wo) = o(€)
Dy (Ww*, W) = 0(€)

(9.40)

which concludes the proof. O
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Corollary 54. For the initialization wy = arg min,,cp, ¥ (w), under the conditions

of Theorem 53, w* = argmin,,.qy ¥ (w) and the following holds.

Ly (weo) =¥ (w") +0(e)

2. Dy(w*,we) = 0(€)

Proof of Corollary 54. The proof is a straightforward application of Theorem 53.

Note that we have

Dy (w,wo) = ¥ (w) — ¥ (wo) — Vi (wo)" (w — w) (9.41)

for all w. When wq = arg min,, g, ¥ (W), it follows that Vi (wg) = 0, and

Dy (w,wo) = ¢ (w) — ¥ (wo). (9.42)

In particular, by plugging in we, and w*, we have Dy (W, Wo) = ¥ (Weo) — ¥ (w0)
and Dy (w*, wo) = ¥ (w™) —(wp). Subtracting the two equations from each other
yields

Dy (Weo wo) = Dy (W, wo) = (weo) = ("), (9.43)

which, along with the application of Theorem 53, concludes the proof. O

9.A.4 Closeness to the Interpolating Set in Highly Overparameterized Models
As we mentioned earlier, it has been argued in a number of recent papers that for
highly overparameterized models, any random initial point is, w.h.p., close to the
solution set ‘W [18, 129, 67, 7, 51]. In the highly overparameterized regime, m > n,
and so the dimension of the manifold ‘W, which is m —n, is very large. For simplicity,
we outline an argument for the case of Euclidean distance, bearing in mind that a
similar argument can be used for general Bregman divergence. Note that the distance

of an arbitrarily chosen w to W is given by
. 2
min ||lw — wol|
w
st. y=f(x,w)

where y = vec(y;,i = 1,...,n) and f(x,w) = vec(f(x;,w),i = 1,...,n). This can

be approximated by
. 2
min  [jw — wol|
w

s.t. y= f(x,wy) +Vf(x, W())T(W - wo)
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where V f(x,wo)T = vec(Vf(x;,w)',i = 1,...,n) is the n x m Jacobian matrix.

The latter optimization can be solved to yield

I = woll? = (5 = £ ewo))” (T Geowo) V£ Gew)) (5 = f(xowa)) (9.44)

Note that V f(x, wg)? V f(x, wo) is an n X n matrix consisting of the sum of m outer
products. When the x; are sufficiently random, and m > n, it is not unreasonable to

assume that w.h.p.
Anmin (V1 (e, w) V£ (3, w0) ) = Q(m),
from which we conclude
* 2 2 1 n
[w* = woll” = [ly = f(x, wo)[I” - O(=) = O(—), (9.45)
m m

since y — f(x, wo) is n-dimensional. The above implies that wy is close to w* and
hence W.
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9.B More Details on the Experimental Results
In order to evaluate the claim, we run systematic experiments on some standard deep

learning problems.
Datasets. We use the standard MNIST [120] and CIFAR-10 [117] datasets.

Architectures. For MNIST, we use a 4-layer convolutional neural network (CNN)
with 2 convolution layers and 2 fully connected layers. The convolutional layers
and the fully connected layers are picked wide enough to obtain 2 x 10° trainable
parameters. Since MNIST dataset has 60,000 training samples, the number of
parameters is significantly larger than the number of training data points, and the
problem is highly overparameterized. For the CIFAR-10 dataset, we use the standard
ResNet-18 [101] architecture without any modifications. CIFAR-10 has 50,000
training samples and with the total number of 11 x 10° parameters in ResNet-18, the

problem is again highly overparameterized.

Loss Function. We use the cross-entropy loss as the loss function in our training.
We train the models from different initializations, and with different mirror descents
from each particular initialization, until we reach 100% training accuracy, i.e., until
we hit W.

Initialization. We randomly initialize the parameters of the networks around
zero (N(0,0.0001)). We choose 6 independent initializations for the CNN, and 8
for ResNet-18, and for each initialization, we run the following 4 different SMD

algorithms.

Algorithms. We use the mirror descent algorithms defined by the norm potential
Y(w) = éllwllg for the following four different norms: (a) £; norm, i.e., g = 1 +¢,
(b) £, norm, i.e., g = 2 (which is SGD), (c¢) {3 norm, i.e., g = 3, (d) {190 norm, i.e.,
q = 10 (as a surrogate for £, norm). The update rule can be expressed as follows.

1
-1 . q-1
wij = [lwiz1 ;177 sign(wio1 ;) = nVLi(wi—1);|*

sign (|Wi—1,j|q_1 sign(wi-1,;) — ﬂVLi(Wi—l)j), (9.46)
where w;_1 ; denotes the j-th element of the w;_; vector.

We use a fixed step size n7. The step size is chosen to obtain convergence to global

minima.



224
9.B.1 MNIST Experiments

9.B.1.1 Closest Minimum for Different Mirror Descents with Fixed

Initialization

We provide the distances from final points (global minima) obtained by different
algorithms from the same initialization, measured in different Bregman divergences
for MNIST classification task using a standard CNN. Note that, in all the tables, the
smallest element in each row is on the diagonal, which means the point achieved by
each mirror has the smallest Bregman divergence to the initialization corresponding
to that mirror, among all mirrors. Tables 9.3, 9.4, 9.5, 9.6, 9.7, and 9.8 depict these
results for 6 different initializations. The rows are the distance metrics used as the
Bregman Divergences with specified potentials. The columns are the global minima

obtained using specified SMD algorithms.

Table 9.3: MNIST Initial Point 1.

SMD 1-norm SM(]g égl)o rm SMD 3-norm SMD 10-norm
1-norm BD 2.767 937.8 1.05 x 10* 1.882 x 10°
2-norm BD 301.6 58.61 261.3 2.118 x 10*
3-norm BD 1720 37.45 7.143 2518
10-norm BD  7.453 x 108 773.4 0.2939 0.003545

Table 9.4: MNIST Initial Point 2.

SMD 1-norm SM(% ég‘;)rm SMD 3-norm SMD 10-norm
1-norm BD 2.78 945 1.37 x 10* 2.01 x 10°
2-norm BD 292 59.3 374 2.29 x 10*
3-normBD  1.51 x 10° 38.6 11.6 2.71 x 103
10-norm BD  1.06 x 10® 831 0.86 0.00321

Table 9.5: MNIST Initial Point 3.

SMD 1-norm SM@ ég‘;)rm SMD 3-norm SMD 10-norm
1-norm BD 3.02 968 1.06 x 107 1.9 % 10°
2-norm BD 291 60.9 272 2.12 % 10%
3-norm BD  1.49 x 103 39.1 7.82 2.49 x 103

10-norm BD 1.1x108 900 0.411 0.00318
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Table 9.6: MNIST Initial Point 4.

SMD 2-norm

SMD 1-norm (SGD) SMD 3-norm  SMD 10-norm
1-norm BD 2.78 1.21 x 10° 1.08 x 10* 1.92 x 10°
2-norm BD 291 77.3 271 2.15 x 10*
3-norm BD  1.48 x 103 49.7 7.56 2.52%x 103
10-norm BD 9.9 x 107 1.72 x 103 0.352 0.00296

Table 9.7: MNIST Initial Point 5.

SMD 1-norm SM(I; (2}3)0 rm SMD 3-norm SMD 10-norm
1-norm BD 2.79 958 1.08 x 10* 2% 10°
2-norm BD 292 60.4 271 2.28 x 10*
3-norm BD  1.49 x 10° 39 7.52 2.69 x 103
10-norm BD  9.09 x 107 846 0.342 0.00309

Table 9.8: MNIST Initial Point 6.

SMD 1-norm SM(I; é;;)o rm SMD 3-norm SMD 10-norm
1-norm BD 2.96 930 1.08 x 10* 1.9%x10°
2-norm BD 308 59 271 2.12 x 10*
3-norm BD  1.63 x 10° 38.6 7.46 2.47 x 103
10-norm BD  1.65 x 108 864 0.334 0.00295

9.B.1.2 Closest Minimum for Different Initializations with Fixed Mirror

We provide the pairwise distances between different initial points and the final points
(global minima) obtained by using fixed SMD algorithms in MNIST dataset using a
standard CNN. Note that the smallest element in each row is on the diagonal, which
means the closest final point to each initialization, among all the final points, is the
one corresponding to that point. Tables 9.9, 9.10, 9.11, and 9.12 depict these results
for 4 different SMD algorithms. The rows are the initial points, and the columns are

the final points corresponding to each initialization.

9.B.1.3 Closest Minimum for Different Initializations and Different Mirrors

Now we assess the pairwise distances between different initial points and final points
(global minima) obtained by all different initializations and all different mirrors
(Table 9.8). The smallest element in each row is exactly the final point obtained by

that mirror from that initialization, among all the mirrors and all the initial points.
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Table 9.9: MNIST 1-norm Bregman Divergence Between the Initial Points and the
Final Points obtained by SMD 1-norm.

Final 1 Final2 Final 3 Final4 Final5 Final 6
Initial Point 1 = 2.7671 20311 20266 20331 20340 20282
Initial Point 2 20332  2.7774 20281 20299 20312 20323
Initial Point 3 20319 20312 3.018 20344 20309 20322
Initial Point 4 20339 20279 20310 @ 2.781 20321 20297
Initial Point 5 20347 20317 20273 20316 2.7902 20311
Initial Point 6 20344 20323 20340 20318 20321 @ 2.964

Table 9.10: MNIST 2-norm Bregman Divergence Between the Initial Points and the
Final Points obtained by SMD 2-norm (SGD).

Final 1 Final2 Final 3 Final4 Final5 Final 6
Initial Point 1 = 58.608 670.75 667.03 684.18 671.36 667.84
Initial Point 2 669.84  59.315 669.16 682.04 669.45 669.98
Initial Point 3 666.35 670.22 60.858 683.44 667.57 669.99
Initial Point4 669.71 668.86 671.19 | 77.275 670.33 669.7
Initial Point 5 671.1 669.12 668.45 683.61 60.39 666.04
Initial Point 6 669.46 67092 671.59 684.32 667.37 59.043

Table 9.11: MNIST 3-norm Bregman Divergence Between the Initial Points and the
Final Points obtained by SMD 3-norm.

Final 1 Final2 Final3 Final4 Final5 Final 6
Initial Point 1 = 7.143  35.302 32.077 32.659 32.648 32.309
Initial Point 2 32.507  11.578 32.256 32.325 32225 3246
Initial Point 3 31.594 34.643 7.8239 32.521 31.58 32.519
Initial Point 4 32.303 34.811 32.937 7.5589 32.617 32.284
Initial Point 5 32.673 34.678 32.071 32.738 7.5188 31.558
Initial Point 6 32.116 34.731 32.376 32.431 31.699 7.4593

Table 9.12: MNIST 10-norm Bregman Divergence Between the Initial Points and
the Final Points obtained by SMD 10-norm.

Final1 Final2 Final3 Final4 Final5 Final6
Initial Point 1 = 0.00354 0.37 0.403 0.286 0.421 0.408
Initial Point 2 0.33 0.00321 0.369 0.383 0.415 0.422
Initial Point 3 0.347 0.318 0.00318 0.401 0.312 0.406
Initial Point 4  0.282 0.38 0.458 0.00296 0.491 0.376
Initial Point 5  0.405 0.418 0.354 0.484  0.00309 0.48
Initial Point 6  0.403 0.353 0.422 0.331 0.503  0.00295
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9.B.2 CIFAR-10 Experiments
9.B.2.1 Closest Minimum for Different Mirror Descents with Fixed

Initialization

We provide the distances from final points (global minima) obtained by different
algorithms from the same initialization, measured in different Bregman divergences
for CIFAR-10 classification task using ResNet-18. Note that in all the tables, the
smallest element in each row is on the diagonal, which means the point achieved by
each mirror has the smallest Bregman divergence to the initialization corresponding
to that mirror, among all mirrors. Tables 9.13, 9.14, 9.15, 9.16, 9.17, 9.18, 9.19,
and 9.20 depict these results for 8 different initializations. The rows are the distance
metrics used as the Bregman Divergences with specified potentials. The columns

are the global minima obtained using specified SMD algorithms.

Table 9.13: CIFAR-10 Initial Point 1.

SMD 1-norm SM(]g égl)o rm SMD 3-norm SMD 10-norm
1-norm BD 189 9.58 x 10° 4.19 x 10* 2.34 % 10°
2-norm BD  3.12 x 10° 597 1.28 x 10° 6.92 x 103
3-norm BD  4.31 x 10* 119 55.8 1.87 x 102
10-norm BD  1.35 x 1014 869 6.34x107>  2.64%x10°8

Table 9.14: CIFAR-10 Initial Point 2.

SMD 1-norm SM(]g ég‘;)rm SMD 3-norm  SMD 10-norm
1-norm BD 275 9.86 x 10° 4.09 x 10* 2.38 x 10°
2-norm BD  4.89 x 10° 607 1.23 x 10° 7.03 x 103
3-norm BD  9.21 x 10* 104 53.5 1.88 x 102
10-norm BD  1.17 x 105 225 0.000102 2.65%x 1078

Table 9.15: CIFAR-10 Initial Point 3.

SMD 1-norm SM(]g éi;)o rm SMD 3-norm SMD 10-norm
1-norm BD 141 9.19x 103 4.1x10* 2.34 x 10°
2-norm BD  3.15x 10° 562 1.24 x 103 6.89 x 103
3-norm BD  4.31 x 10* 107 53.5 1.85 x 102

10-norm BD  6.83 x 103 972 7.91 x 107 2.72x 1078




Table 9.16: CIFAR-10 Initial Point 4.
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SMD I-norm SM@ ég‘;)rm SMD 3-norm SMD 10-norm
1-norm BD 255 9.77 x 10° 4.18 x 10* 2.36 x 10°
2-norm BD  3.64 x 10° 594 1.26 x 103 6.96 x 10°
3-norm BD 5.5%x 10% 116 54 1.87 x 10?
10-norm BD  3.74 x 104 640 533 %107 2.67x 1078

Table 9.17: CIFAR-10 Initial Point 5.

SMD 1-norm SM(I; ég‘;)rm SMD 3-norm  SMD 10-norm
1-norm BD 113 9.48 x 10° 4.15 x 10* 2.32x 10°
2-norm BD  2.95 x 10° 572 1.27 x 103 6.85 x 10°
3-norm BD  3.68 x 10* 109 56.2 1.84 x 10?
10-norm BD  2.97 x 1013 151 5.74 x 107 2.61 %1078

Table 9.18: CIFAR-10 Initial Point 6.

SMD 1-norm SM?S égfrm SMD 3-norm SMD 10-norm
1-norm BD 128 9.25 x 10° 4.25 x 10* 2.34 x 10°
2-norm BD  2.71 x 10° 558 1.29 x 103 6.89 x 10°
3-norm BD  3.34 x 10* 104 55.3 1.85 x 102
10-norm BD  2.61 x 1013 612 474 x 107 2.62%x 1078

Table 9.19: CIFAR-10 Initial Point 7.

SMD 1-norm SMg éi;;)rm SMD 3-norm SMD 10-norm
1-norm BD 223 9.76 x 103 4.38 x 10* 227 x 10°
2-norm BD  2.41x 10° 599 1.37 x 103 6.65 x 10°
3-norm BD 2.3x%x10% 116 61 1.78 x 102
10-norm BD  4.22 x 10!2 679 6.42 x 10 2.55% 1078

Table 9.20: CIFAR-10 Initial Point 8.

SMD 1-norm SM(% (2};)1)0 rm SMD 3-norm  SMD 10-norm
1-norm BD 145 9.37 x 103 4.17 x 10* 2.36 x 10°
2-norm BD  2.48 x 10° 576 1.26 x 103 6.99 x 10°
3-norm BD  2.85 x 10* 108 54.5 1.89 x 102
10-norm BD  1.81 x 103 1.22 x 103 52x107° 2.64 x 1078
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9.B.2.2 Closest Minimum for Different Initializations with Fixed Mirror

We provide the pairwise distances between different initial points and the final points
(global minima) obtained by using fixed SMD algorithms in CIFAR-10 dataset using
ResNet-18. Note that the smallest element in each row is on the diagonal, which
means the closest final point to each initialization, among all the final points, is the
one corresponding to that point. Tables 9.21, 9.22, 9.23, and 9.24 depict these results
for 4 different SMD algorithms. The rows are the initial points and the columns are

the final points corresponding to each initialization.

Table 9.21: CIFAR-10 1-norm Bregman Divergence Between the Initial Points and
the Final Points obtained by SMD 1-norm.

Final 1 Final 2 Final 3 Final 4 Final 5 Final 6 Final 7 Final 8
Initial 1  1.9x 10> 8.1x10* 8.1x10* 84x10* 8x10* 82x10* 7.8x10* 7.8x10?
Initial 2 8.1x10* [ 27x 102 8.1x10* 83x10* 8x10* 82x10* 7.8x10* 7.9x10*
Initial 3 8.1x10* 8.1x10* 1.4x10>2 84x10* 8x10* 81x10* 7.8x10* 7.8x10%
Initial 4 8.1x10* 8.1x10* 8.1x10* | 25x102 8x10* 82x10* 7.8x10* 7.9x10*
Initial 5 8.1x10* 8.1x10* 8.1x10* 83x10* 1.1x10> 81x10* 7.8x10* 7.8x10*
Initial 6 8.1x10* 8.1x10* 8.1x10* 84x10* 8x10* [ 13x10*> 7.8x10* 7.8x10*
Initial 7 8.1x10* 8.1x10* 8.1x10* 84x10* 8x10* 81x10*  22x10> 7.8x10*
Initial 8 8.1x10* 8.1x10* 8.1x10* 84x10* 7.9x10* 81x10* 7.8x10* | 1.5x%10%

Table 9.22: CIFAR-10 2-norm Bregman Divergence Between the Initial Points and
the Final Points obtained by SMD 2-norm (SGD).

Final 1 Final 2 Final 3 Final 4 Final 5 Final 6 Final 7 Final 8
Initial 1 | 6x 102 29x10° 2.8x10° 2.8x10° 28x10° 28x10° 2.8x10° 28x10°
Initial 2 2.8x10°  6.1x102 2.8x10° 28x10° 28x10° 2.8x10° 28x10° 2.8x10°
Initial 3 2.8x10° 29x10° | 5.6x10>2 2.8x10° 28x10° 28x10° 2.8x10° 2.8x10°
Initial4 2.8x10° 2.9x10° 2.8x10° | 59x102 28x10° 2.8x10° 28x10° 2.8x10°
Initial 5 2.8x10° 29x10° 2.8x10° 2.8x10° [ 57x102 28x10° 2.8x10° 28x10°
Initial 6 2.8x10° 2.9x10° 2.8x10° 28x10° 28x10°  5.6x102 28x10° 2.8x10°
Initial 7 2.8x10° 29x10° 2.8x10° 2.8x10° 28x10° 28x10°  6x10> 28x10°
Initial 8 2.8x10° 2.9x10° 2.8x10° 28x10° 28x10° 2.8x10° 2.8x10°  5.8x10%

Table 9.23: CIFAR-10 3-norm Bregman Divergence Between the Initial Points and
the Final Points obtained by SMD 3-norm.

Final 1 Final2 Final3 Final4 Final5 Final6 Final7 Final 8
Initial 1 =~ 55.844 103.47 103.61 104.05 106.2 105.32 110.88 104.56
Initial 2 105.87 = 53.455 103.68 104.04 106.31 105.34 110.93 104.58
Initial 3 105.89 103.59 = 53.527 104.09 106.29 105.35 110.99 104.55
Initial 4 105.83 103.54 103.64 53.978 106.23 1053 110.87 104.54
Initial 5 105.82 103.55 103.64 104 56.161 105.34 110.88 104.55
Initial 6 105.91 103.6 103.66 104.1 106.28 = 55316 110.94 104.55
Initial 7 105.87 103.51 103.67 10398 106.26 105.25 @ 61.045 104.5
Initial 8 105.77 103.54 103.59 104.04 106.25 10528 110.88 @ 54.509
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Table 9.24: CIFAR-10 10-norm Bregman Divergence Between the Initial Points and
the Final Points obtained by SMD 10-norm.

Final 1

Final 2

Final 3

Final 4

Final 5

Final 6

Final 7

Final 8

Initial 1
Initial 2
Initial 3
Initial 4
Initial 5
Initial 6
Initial 7
Initial 8

2.64%x1078
279 x 1078
2.89x 1078
2.79 x 1078
2.76 x 1078
2.80x 1078
2.73x 1078
2.73x 1078

2.89x 1078
2.65%x1078
2.87x 1078
2.86x 1078
2.88x 1078
2.76 x 1078
2.76 x 1078
2.79 x 1078

2.99x 1078
2.83x 1078
2.72%x1078
2.92x 1078
2.95x 1078
2.93x 1078
2.82x 1078
2.85x 1078

2.81x 1078
2.83x 1078
2.94 %1078
2.67x 1078
2.93x 1078
279 x 1078
2.79 x 1078
2.78 x 1078

2.85x 1078
2.71x 1078
2.84x 1078
2.84x 1078
2.61 x1078
2.76 x 1078
2.71x 1078
2.75% 1078

2.82x 1078
2.74 % 1078
2.89 % 1078
2.81x 1078
2.73x 1078
2.62 %1078
2.77x 1078
2.74x 1078

2.66 x 1078
2.69 x 1078
278 x 1078
2.69 x 1078
2.66 x 1078
2.71x 1078
2.55% 1078
2.73x 1078

2.82x 1078
2.88x 1078
2.94 %1078
2.85x 1078
2.83x 1078
2.85x 1078
2.83x 1078
2.64x 1078

9.B.2.3 Closest Minimum for Different Initializations and Different Mirrors

Now we assess the pairwise distances between different initial points and final points

(global minima) obtained by all different initializations and all different mirrors

(Table 9.8). The smallest element in each row is exactly the final point obtained by

that mirror from that initialization, among all the mirrors and all the initial points.
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Figure 9.10: An illustration of the experimental results. For each initialization
wg, we ran different SMD algorithms until convergence to a point on the set ‘W
(zero training error). We then measured all the pairwise distances from different
W to different wy, in different Bregman divergences. The closest point (among
all initializations and all mirrors) to any particular initialization wg in Bregman
divergence with potential () = || - || 3 is exactly the point obtained by running SMD
with potential || - [|7 from wy.

9.B.3 Distribution of the Final Weights of the Network

One may be curious to see how the final weights obtained by these different mirrors
look, and whether, for example, mirror descent corresponding to the £;-norm potential
induces sparsity. We examine the distribution of the weights in the network for these
algorithms starting from the same initialization. Fig. 9.11 shows the histogram of
the initial weights, which follows a half-normal distribution. Figs. 9.12 (a), (b), (¢),
and (d) show the histogram of the weights for £;-SMD, ¢,-SMD (SGD), £3-SMD,
and £;0-SMD, respectively. Note that each of the four histograms corresponds to an
11 x 10°-dimensional weight vector that perfectly interpolates the data. Even though,
perhaps as expected, the weights remain quite small, the histograms are drastically
different. The histogram of the £;-SMD has more weights at and close to zero, which
again confirms that it induces sparsity. However, as will be shown in the next section,
this is not necessarily good for generalization (in fact, it turns out that £;p-SMD has
a much better generalization). The histogram of the £,-SMD (SGD) looks almost
identical to the histogram of the initialization, whereas the €3 and ¢;( histograms
are shifted to the right, so much so that almost all weights in the £;( solution are
non-zero and in the range of 0.005 to 0.04. For comparison, all the distributions are
shown together in Fig. 9.12(e).
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Figure 9.11: Histogram of the absolute value of the initial weights in the network
(half-normal distribution).
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Figure 9.12: Histogram of the absolute value of the final weights in the network for
different SMD algorithms: (a) £;-SMD, (b) {,-SMD (SGD), (c) {3-SMD, and (d) ¢;o-
SMD. Note that each of the four histograms corresponds to an 11 x 10°-dimensional
weight vector that perfectly interpolates the data. Even though the weights remain
quite small, the histograms are drastically different. £;-SMD induces sparsity on the
weights, as expected. SGD does not seem to change the distribution of the weights
significantly. £3-SMD starts to reduce the sparsity, and ¢;¢ shifts the distribution of
the weights significantly, so much so that almost all the weights are non-zero.
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9.B.4 Generalization Errors of Different Mirrors/Regularizers

In this section, we compare the performance of the SMD algorithms discussed before
on the test set. This is important for understanding the effect of different regularizers
on the generalization of deep networks.

For MNIST, perhaps not surprisingly, all the four SMD algorithms achieve around
99% or higher accuracy. For CIFAR-10, however, there is a significant difference
between the test errors of different mirrors/regularizers on the same architecture.
Fig. 9.13 shows the test accuracies of different algorithms with eight random
initializations around zero, as discussed before. Counter-intuitively, {1¢ performs
consistently best, while ¢; performs consistently worse. We should reiterate that the
loss function is exactly the same in all these experiments, and all of them have been
trained to fit the training set perfectly (zero training error). Therefore, the difference
in generalization errors is purely the effect of implicit regularization by different
algorithms. This result suggests the importance of a comprehensive study of the role
of regularization, and the choice of the best regularizer, to improve the generalization

performance of deep neural networks.
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Figure 9.13: Generalization performance of different SMD algorithms on the CIFAR-
10 dataset using ResNet-18. £;¢ performs consistently better, while £; performs
consistently worse.
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Chapter 10

STOCHASTIC RESULTS: RISK-SENSITIVE OPTIMALITY AND
MEAN-SQUARE CONVERGENCE OF SMD

[1] Navid Azizan and Babak Hassibi. “A Characterization of Stochastic Mirror
Descent Algorithms and their Convergence Properties”. In: 2019 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP).
2019, pp. 5167-5171. por: 10.1109/ICASSP.2019.8682271.

[2] Navid Azizan and Babak Hassibi. “A Stochastic Interpretation of Stochastic
Mirror Descent: Risk-Sensitive Optimality”. In: 2019 58th IEEE Conference
on Decision and Control (CDC). 2019, pp. 3960-3965. por: 10.1109/
CDC40024.2019.9030229.

Stochastic mirror descent (SMD) is a fairly new family of algorithms that has recently
found a wide range of applications in optimization, machine learning, and control.
It can be considered a generalization of the classical stochastic gradient algorithm
(SGD), where instead of updating the weight vector along the negative direction of
the stochastic gradient, the update is performed in a “mirror domain” defined by the
gradient of a (strictly convex) potential function. This potential function, and the
mirror domain it yields, provides considerable flexibility in the algorithm compared
to SGD. In this chapter, we exhibit a new interpretation of SMD, namely that it is a
risk-sensitive optimal estimator when the unknown weight vector and additive noise
are non-Gaussian and belong to the exponential family of distributions. The analysis
also suggests a modified version of SMD, which we refer to as symmetric SMD
(SSMD). The proofs rely on some simple properties of Bregman divergence, which
allow us to extend results from quadratics and Gaussians to certain convex functions
and exponential families in a rather seamless way. Furthermore, for vanishing
step size, and in the standard stochastic optimization setting, we give a direct and
elementary proof for convergence of SMD to the “true” parameter vector which

avoids ergodic averaging or appealing to stochastic differential equations.

10.1 Introduction

Stochastic mirror descent (SMD) has become one of the most widely used families
of algorithms for optimization, machine learning, and beyond [149, 33, 55, 227, 147,
14, 171], which includes the popular stochastic gradient descent (SGD) as a special
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case. The convergence behavior of such algorithms has been extensively studied in
the literature [150, 153], under various assumptions. Several other properties and
interpretations of SMD have recently been proven in the literature[214, 85]. In earlier
work, we have demonstrated a fundamental conservation law for SMD and have used
it to establish properties such as minimax optimality, deterministic convergence, and
implicit regularization [18, 14]. The main contribution of this chapter is to provide
a new stochastic interpretation of SMD, i.e., that it is risk-sensitive optimal. This
generalizes a similar result about SGD in the literature [98, 97]. We also propose a
new “more symmetric" version of SMD, called symmetric SMD (SSMD), which is

suggested by our analysis.

The chapter is organized as follows. We review the main properties of SMD and the
notion of Bregman divergence in Section 10.2. The risk-sensitive optimality result
and its proof are provided is Section 10.3. The new SSMD algorithm is presented
in Section 10.4. We finally mention another stochastic result about SMD, i.e., its

mean-square convergence in the stochastic setting, in Section 10.5, and conclude in
Section 10.6.

10.2 Background
Consider a separable loss function of some unknown parameter (or weight) vector
w e R™:

L(w) = ) Li(w),
i=1

where the L;(-) are called the instantaneous (or local) loss functions, and where
our goal is to minimize L(-) over w. For example, the conventional gradient
descent (GD) algorithm can be used as an attempt to perform such minimization. A
generalization of GD, called the mirror descent (MD) algorithm, was first introduced
by Nemirovski and Yudin [149] and can be described as follows. Consider a strictly
convex differentiable function i (-), called the potential function. Then MD is given

by the following recursion
Vi (wi) = Vg (wiz1) =nVL(wi-1), wo (10.1)

where n > 0 is known as the step size or learning rate. Note that, due to the strict
convexity of (), the gradient Vi () defines an invertible map so that the recursion
in (10.1) yields a unique w; at each iteration. Compared to classical GD, rather than
update the weight vector along the direction of the negative gradient, the update is

done in the “mirrored” domain determined by the invertible transformation Vi (-).
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Mirror descent was originally conceived to exploit the geometrical structure of the
problem by choosing an appropriate potential. Note that MD reduces to GD when
y(w) = %llwllz, since the gradient is simply the identity map. Other examples
include the exponentiated gradient descent (also known as the exponential weights)
and the p-norms algorithm [82, 78]. As with GD, it is straightforward to show that

MD converges to a local minimum of L(-), provided the step size 7 is small enough.

When n is large, computation of the entire gradient may be cumbersome. Alternatively,
in online scenarios, the entire loss function L(-) may not be available and only the
local loss functions may be provided at each iteration. In such settings, a stochastic
version of MD has been introduced, aptly called stochastic mirror descent (SMD),
and which can be considered the straightforward generalization of stochastic gradient
descent (SGD):

Vi (wi) = Vg (wiz1) =nVLi(wi-1), wo (10.2)
In the offline setting, the various instantaneous loss functions L;(-) can either be
drawn at random, or cycled through periodically. In the online setting, they are
provided at each iteration. Unlike MD (and GD), for a fixed step size n, SMD does
not generally converge, unless there exists a w that simultaneously minimizes every
local loss function L;(-).! For this reason, SMD with vanishing learning rate has

also been considered

Vi (wi) = Vr(wio1) = n;VLi(wi-1), wo (10.3)

where the learning rate is chosen such that r7; — 0. With a vanishing learning rate, it
is not surprising that one can attain convergence (since after a while, the algorithm is
barely updating the weight vector). What is more interesting is the fact that under
suitably decaying rates, one can obtain convergence to a local minimum of L(-)

(more on this below).

10.2.1 Bregman Divergence
For any given strictly convex differentiable potential function ¢ (-), the Bregman

divergence is defined as

Dy (w,w') =y(w) —yg(w) = Vg (w) (w—w). (10.4)

In other words, the Bregman divergence is the difference between the value of the

function ¢ (-) at a point w and the value of its linear (or first order) approximation

ISince if this is not the case, even if the current estimate were at a local minimum of global loss
function L(+), w., say, any of the local gradients VL;(w.) could be nonzero, which would move us
away from w,.
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around another point w’ (see Fig. 10.1). Since a defining property of a convex function
is that its linear approximations always lie below it, we have that D, (w,w’) > 0.
Furthermore, since ¢ (-) is strictly convex, we have that Dy (w,w’) = 0 iff w = w’.
Finally, it can be observed that Dy (-,-) is convex in its first argument (but not

necessarily in the second).

Since the Bregman divergence retains the quadratic (and higher order) terms in
the error of the linear approximation of ¢ (w) around w’, it inherits many of the

properties of quadratics. For example, the classical “law of cosines,”
lw = wl[* = llw = w”|I> + lw” = w'[[> = 2(w" = w") (w = w"),
generalizes to
Dy(w,w') =Dy (w,w"”) + Dy (W', w) = (Vg (w') - vy (W) (w=w"). (10.5)

More important for our developments is the following generalization of “completion-

of-squares,” which we formalize as a lemma.

Lemma 56. Let y(-) and Y1 () be strictly convex differentiable functions. Then it
holds that
Dy, (w,w1) +Dy,(w,w2) = Dy, (Wi, w1) + Dy, (W, w2) + Dy 1y, (W, wy), (10.6)

where w., is the unique solution to the equation

V(1 +2)(ws) = Vi (wy) + Viga(wa). (10.7)

Proof. The identities can be verified by straightforward calculation. The uniqueness
of w. follows from the fact that | () + > () is strictly convex, since it is the sum of

two such functions. O

For example, if (w) = ||w||? then D(w,w’) = ||lw — w’||?, and if ¥ (p) = —H(p),
where p is a probability vector, then we get that D_g(p, p’) = X, pilog % is the KL
divergence (or relative entropy).

The last fact about the Bregman divergence that we would like to mention is that a
random variable w that has a distribution w ~ e~Pv(%0) (ie., p(w) = cePv(w:wo)
for a suitable normalization constant ¢) is a member of the exponential family of

distributions, and satisfies the property
EVy (w) = Vig(wy). (10.8)

In other words, wy is the point whose mirror is the mean of the mirror map.
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Dy (w,w")

w’ w

Figure 10.1: Bregman divergence.

10.2.2 Parametric Models
It will now be useful to introduce some parametric models and make our loss

functions more explicit. To this end, assume we have a collection of data points

{(xi,yi),i=1,...n}

where x; € R is the input and y; € R is the output. We will assume that the pairs

(x;, y;) are related through some parametric model
yi=fxi,w)+v, i=1,...n (10.9)

where f(-, ) is a given function and represents the modeling class we are considering,
w € R™ is the unknown weight vector (or parameter), and v; represents both
measurement noise and modeling errors. In this setting, the global loss function can

be written as

L(w) = > £y, f (xis ), (10.10)
=
Li(w)

where £(-, -) is a (differentiable) local loss function, with the property that £(y;, f (x;, w)) =
0iff y; = f(x;, w). Often €(y;, f(x;,w)) = €(y; — f(x;,w)), with £(-) convex and

having a global minimum at zero. In this case,
n
L(w) = t(yi = f(xi,w)). (10.11)
i=1

For example, for quadratic loss we obtain L(w) = X}, %(y,- — f(x;,w))%. For
(10.11), SMD takes the explicit form

af(xi’wi—l)fr

3 (i = f(xi,wi-1)),  wo. (10.12)
w

Vi (wi) = Vg (wi—1) +1
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An important special case is that of linear models
yi=xlw+v, i=1,...,n (10.13)
where SMD takes the form

VY (wi) = Vg (wist) + il (3 = x] wit),  wo. (10.14)

We will often consider two uncertainties, or error terms, e¢; and e, ;, defined as
follows.

- T T T
ei:=yi—x;wi—1, andep; :==x; w—x; wi_.

e; is often referred to as the innvovations and is the error in predicting y;, given
the input x;. e,; is sometimes called the prediction error, since it is the error in
predicting the noiseless output xl.Tw, i.e., in predicting what the best output of the

model is. In the absence of noise, ¢; and e, ; coincide.

10.2.3 Local and Global Interpretations of SMD
It is straightforward to show that at each iteration, SMD solves the following

optimization problem:
w; = argmin Dy (w, w;_1) + nw! VL;(w;_1), (10.15)
w

which can be verified by setting the gradient of the right hand side of (10.15) to
zero. What the above relation shows is that the SMD iterates try to align themselves
with the direction of the instantaneous gradient, while also trying to stay close to the
previous iterate in Bregman divergence. (The learning rate relatively weights these
two objectives.) We refer to (10.15) as the local interpretation of SMD.

We have recently shown that SMD satisfies the following local conservation law.
[18, 14].

Lemma 57 (Local Conservation Law [18]). Even though the loss function L;(w) =
t(yi — f(xi,w)) may not be convex, define the Bregman divergence D, (w,w’) in

the usual way. Further define the quantity
Ei(wi,wi—1) = Dy_pr,(Wi,wi—1) +nL;(w;). (10.16)
Then for each iteration of the SMD updates (10.12), it holds that

Dy(w,wi1) +nt(v;) = Dy (w,w;) +nDp,(w,wi_1) + E;(w;,wi—1).  (10.17)
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Summing the local identities in (10.17) from time 1 to time 7 leads to the following

global conservation law

T T T
Dy (w,wo) +71 Z t(vi) = Dy(w,wr) +1 Z Dp,(w,wi_1) + Z Ei(wi,wi_1)
1:1 l:l l=1

(10.18)
Note that (10.18) holds for any horizon 7. We refer to it as the global interpretation
of SMD. It can be used to show several remarkable deterministic properties of the

SMD algorithm. We now mention a couple.

e 2
Dw(w,wi,l) — Dw(wﬂwl)
SMD ——>F; (w;, wi—1)

nl(v;) —>

L )—>77DLi (w, w;—1)

Figure 10.2: Local Conservation Law of SMD.

10.2.4 Minimax Optimality of SMD
Using the aforementioned global identity, in [18, 14], the following has been shown.

Theorem 58 (Minimax Optimality [18]). For any T, provided n is small enough so
that y(w) —nL;(w) is convex for all i, then

. Dy(w,wr) +n X Dr,(w,wi_1)
min max = =1
{wit w.vi} Dy (w,wo) +1 X, t(v;)

(10.19)
and SMD with learning rate n is a minimax optimal algorithm achieving the above.

Theorem 58 is a generalization of the H*-optimality of the SGD algorithm for
linear models and quadratic loss, where it is referred to as LMS [98, 97, 96],

to SMD and general models and general losses. When the potential and loss
2

are quadratic, we have Dy (w,wq) = |lw — woll? and £(v;) = Vi

The quantity
Dp,(w,wim1) = (yi —=xIw)? = (yi = xT wizi)? + 2x7 (w = wiz1) (yi — x! wiy), after

some simplification, takes on the form
_ T 2
Dp,(w,wi—1) = (xj (W —wi_1))",

which is the square of the so-called prediction error. In this case, we recover the
H®-optimality of LMS, namely that it solves

T
min max wrll? +1 3, (] (w = wi-1))?

fwih v Iw = woll2 + 7 XL, v?

(10.20)
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and the optimal value is 1. As mentioned above, Theorem 58 generalizes H-
optimality in three ways: it holds for general potential, general loss function, and

general nonlinear model.

10.2.5 Convergence and Implicit Regularization

Another interesting property of SMD, which again can be proven using the global
conservation law (10.18), is what is referred to as implicit regularization. In over-
parameterized (underdetermined) models, which are common in compressed sensing
and modern deep learning problems, there are (typically a lot) more parameters
(unknowns) than data points (measurements). That means there are many parameter

vectors (in fact infinitely many) that are consistent with the observations:
W = {WERm|yi:xiTw, i = 1,...,n}.

The questions of interest in this regime are: (1) does SMD converge to a solution?
and (2) if it does so, which solution does it converge to? The following result answers

these questions.

Theorem 59 (Convergence to the “Closest” Point [18]). Suppose [(-) is differentiable
and convex and has a unique root at 0, Y (+) is strictly convex, and n > 0 is such that

W —nL; is convex for all i. Then for any wy, the SMD iterates converge to

Weo = argmin Dy (w, wo). (10.21)
weW

Corollary 60 (Implicit Regularization [18]). In particular, for the initialization
wo = argmin,,c.gm Y (W), under the conditions of Theorem 59, the SMD iterates
converge to

Weo = arg miny (w). (10.22)

weW

This means that running SMD, without any (explicit) regularization, results in a
solution that has the smallest potential ¢ (-) among all solutions, i.e., SMD implicitly
regularizes the solution with ¢/ (-). In principle, one can choose the potential function
for any desired convex regularization. For example, we can find the maximum
entropy solution by taking the potential to be the negative entropy, or do compressed
sensing with ¥ (w) = ||w]|1+e [18, 14].

We should remark that the result extends to quasi-convex losses €(-), and it holds

locally (in an approximate sense) even for nonlinear models (non-convex cost).
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Winf

Wo

Figure 10.3: w is the closest solution (among all solutions ‘W) to wy. Note that
this picture is only for the Euclidean distance; in general the “closest” is measured in
Bregman divergence.

10.3 Risk-Sensitive Optimality of SMD
The results about SMD discussed in the previous section were deterministic in
nature. In this section, we give a stochastic interpretation of SMD, and show that it

is risk-sensitive optimal.

Consider a stochastic model y; = xl.Tw +vi,1 > 1 where w and {v;} are independent

random variables with distributions w ~ e g
members of the exponential family (note that when the potential function i (-) and the
loss €(-) are square, both of these are Gaussian). A conventional quadratic estimator

is one that minimizes the expected sum of squared prediction errors, i.e.,

m1n El{yl Z(x w—1z)?|, (10.23)

where the expectation is taken over w and {v;} conditioned on the observations, and

each z; in the minimization can only be a function of observations until time i — 1.

For various problems, one may be interested in cost functions more general than

quadratic, i.e.,

minEy(y,) | ), De(vi =3/ w. v =) | (10.24)
i=1

The estimators that solve problems (10.23) and (10.24) are referred to as “risk-neutral”

estimators.

An alternative criterion is the “risk-sensitive” (or exponential cost) criterion, which

was first introduced in [108] and studied in [196, 210, 195]. In particular, an estimator
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that solves the problem

r{mnEHy } EXp ( Z(x w=2z) ) , (10.25)

is called a “risk-averse” estimator. The reason is that in such a criterion, very large
weights are placed on large errors, and hence, the estimator is more concerned about

large values of error (their rare occurrence) than the moderate values of error.
Similar as in (10.24), one can consider exponential cost of errors measured with a

more general distance than quadratic, i.e.,

min [} exp
{zi}

T
Z De(yi —x{ w,yi — zl-)) , (10.26)
i=1

It has been shown in [97, 98] that SGD for square loss (aka LMS) solves the problem
(10.25). In other words, LMS is risk-sensitive optimal. Formally, the result is as

follows.

Theorem 61 (Hassibi et al. [98]). Consider the model y; = xl.Tw +vi,i > 1, where
w and {v;} are independent Gaussian random variables with means wq and 0 and
variances nl and I, respectively. Further, suppose that {x;} are persistently exciting

and(0 <n < W, Vi. Then the solution to the following optimization problem

IglanHy}exp( Z(x w=2z;) )

where the expectation is taken over w conditioned on the observations, and z; is only
allowed to depend on observations up to time i — 1, is given by z; = xl.Tw,-_l, where

{w;} are the SGD iterates.

We should further remark that no larger exponent than 1/2 is possible (no algorithm

can attain a finite cost if the exponent is larger than 1/2).

The following result generalizes the risk-sensitive optimality of SGD for quadratic

errors, to that of SMD for general Bregman-divergence errors.

Theorem 62. Consider the model y; = xl.Tw + v, i > 1, where w and {v;} are
_1p.(

independent random variables with distributions w ~ e 7o w0 apa vi ~ e 10,

Further, suppose that {x;} are persistently exciting, and  — nL; is strictly convex for

all i. Then the solution to the following optimization problem
T

T
r{nglEHyl} exp ;Df()’i —X W, Yi— zi) |
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where the expectation is taken over w conditioned on the observations, and z; is only
allowed to depend on observations up to time i — 1, is given by z; = xl.Tw,-_l, where

{w;} are the SMD iterates.

10.3.1 Proof of Theorem 62

The expected exponential cost that needs to be minimized in Theorem 62 is given by

C/exp

where C is a normalization constant that guarantees we are integrating the cost

T T
1
_EDW(W’ wo) — Z (y; — xl.Tw) + Z D¢(y; — xiTw, vi —zi) | dw,
i=1 i=1

against a conditional distribution. The challenge in evaluating the above integral
over w is that w appears in all three terms of the exponent. In order to facilitate
the computation of this integral, it will be useful to use the completion-of-squares
formula of Lemma 56 to gather w into a single term. The following lemma provides

precisely what we need.

Lemma 63. Ir holds that

T T
1
= Duwawo) = (i = W)+ D Delvi = x{ wiyi =) =
i=1 i=1
1 LTt
- EDw(W, wr) — Z EDw(Wi, wist) + €(yi = x! wi) = De(yi = X1 Wi, yi — 2i)

i=1

where the w;, i = 1, ..., T are given by the recursion
VY (wi) = Vi (wizy) +nxil' (yi — zi). (10.27)

Proof. The proof is based on telescopically summing the local identity

1
- Esz(W, wis1) = E(yi —xF W)+ De(yi —x] w,yi — 2i) =
- EDw(W,Wi) - EDw(Wi, wi—1) = C(yi —x; wi) + De(yi — X; Wi, yi — 2i),
fromi = 1toi =T, where the w; are given through the recursion (10.27). This local
identity can be either verified directly or obtained through two successive uses of

Lemma 56. d
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As promised, Lemma 63 gathers w into a single term so that the integral over w can
be performed. Once this integral is performed, we are left with the following cost

function
T

, 1
Cexp |- E EDw(Wi, wiz1) +€(yi = xIwi) = De(yi — xwi, yi — 20) |
i=1

where C’ is a constant obtained after integrating out w. The above cost function must
be recursively minimized over the z;, which are only allowed to be functions of {y;, j <
i}, respectively. It is not clear how to do so from the above expression. The next

lemma provides an identity that makes this recursive minimization straightforward.

Lemma 64. It holds that
C(yi —xfwi) = De(yi —x! wi,yi —z) =

1
C(yi —x wisy) + " (Vg (wi) = Vi (wim)T (Wi = wizt) = De(yi —xF wist, yi — 2i).

Proof. This can be verified by perhaps tedious, but straightforward, calculations. O

In view of Lemma 64, the cost function to recursively minimize is

T

1 1
C’exp ( - ED!//(WL" wist) +€(yi = x] wiz1) + 0 (Vg (wi) = Vg (wiei))T (Wi =wis1)
i1

—De(yi —xFwist,yi — 20 |.

Note that, at any time i, the only term that z; has control over (in the sense that it is a

term that depends only on past y;) is the term
De(y;i — X,-TWi—l,yi - 7).

(The other terms that are influenced by z;, such as w;, are influenced also by
yi—see (10.27)—so that z; cannot knowledgeably minimize them.) The term

D¢(y; — xiTwi_ 1, ¥i — Z;) can be minimized, and in fact set to zero, by taking
zi=xwiy, (10.28)

which when plugging into (10.27) yields SMD. This completes the proof. (The
attentive reader will have noticed that we needed Lemma 64 since it was not clear

how to minimize D/(y; — xiTwi, y; — z;) over z;, because we could not have taken

T

zi = x; w; as w; depends on y; and z; is not allowed to.)
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10.4 Symmetric SMD (SSMD)

Our proof of the risk-sensitive optimality of SMD has led us to an alternative, and
more symmetric version, of the algorithm that we refer to as symmetric SMD (or
SSMD) and which may be of independent interest. The SSMD iterations are given
by

Vi (wi) = Vg Owin) 4 (€)= € win)) s wo. (10.29)

SSMD satisfies the following risk-sensitive optimality.

Theorem 65. Consider the model y; = xiTw +v;,i > 1, where w and {v;} are

} ~ e—%Dw(',Wo)—Dﬁ(X,-T Vi

independent random variables with w|{y; ). F urther, suppose

that {x;} are persistently exciting, and  — nL; is strictly convex for all i. Then the

solution to the following optimization problem

ZDg()C w, Zl )

where the expectation is taken over w conditioned on the observations, and z; is only

m1n El{y } €Xp

allowed to depend on observations up to time i — 1, is given by z; = xl.Tw,-_l, where
{w;} are the SSMD iterates.

Proof. The proof is similar to that of Theorem 62 and is omitted for brevity. O

We note that the difference between SMD and SSMD is that the noise is now
distributed according to v; ~ PR ), rather than v; ~ e~ €0 -xi ") and that the
exponent of the cost function is Dg(xl.Tw, i), rather than Dg(y — xl.Tw, vi — zi). The
distributions and costs for SSMD appear to be more natural.

10.5 Mean-Square Convergence of SMD

In the previous sections, we showed several fundamental deterministic and stochastic
properties of SMD. One may ask how do these results relate to the conventional mean-
square convergence results, such as [150]. It turns out that the fundamental identity
(conservation law (10.18)) of SMD allows proving such stochastic convergence
results in a direct way (which avoids appealing to stochastic differential equations
and ergodic averaging). The time-varying version of the fundamental identity of
SMD is as follows.

T T
Dy (w,wo) + Z nil(vi) = Dy (w,wr) + Z (Ei(wi, wi1) +niDp,(w, wiz1)) .
i=1 i=1
(10.30)
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As mentioned before, for vanishing step size, convergence of any algorithm is not
surprising, and is in fact trivial (because you are not updating anymore). However, the
more interesting question is whether the algorithm converges to anything interesting.
It turns out that when the data points are generated according to a stochastic model
with white noise, SMD converges to the “true” parameter. More specifically, consider
amodel y; = xTw +v;,i > 1, where v; are iid with E[v;] = 0 and E[v?] = o2, and
the inputs x; are persistently exciting. Note that this is different from the setting of
Theorem 62, in that the noises v; need not be Gaussian or from the the exponential
family (the only assumption is whiteness), and the parameter w is deterministic. One
can show that SMD with decaying step size indeed converges to w, under suitable

conditions on the step size sequence.

Proposition 66. Consider y; = xiTW +vi,i > 1, where E[v;] =0, E[v,v;] = 0'26ij,
and the x; are persistently exciting. The stochastic mirror descent iterates for any
strongly convex potential Y (-), for a square loss, converge to w in the mean-square

sense, if the step size sequence {1;} satisfies 3,2 1; = 00, 3,72, 771-2 < o0,

The step size conditions .2, n; = o0, 2.7, 77,-2 < oo are known as Robbins—Monro
[176] conditions.

Proof. For the square loss and a linear model, after some simple algebra, the
identity (10.30) reduces to the following form.

T
Dy (w,wo) = Dy(w,wr) + Z (Dw(Wi, wi—1)+
=1

Miepivi = milepi + VX! (wi = wiey) 4¢3, ), (10.31)
where we have used the fact that e; = ¢, ; + v;.

On the other hand, the update rule Vi/(w;) = Viy(w;_1) + n:(ep,; + v;)x; can be
expressed, using a Taylor expansion, as

w; = Vt//_l (V',l/(wi—l) +ni(ep + Vi)xi)

=w;_1+ nl-M,-(ep,,- + vl-)xi + O(T]iz),

where M; := Vzw(wi_l)_l. This implies that Dy (w;, w;_1) = %(wi—wi_l)TVQl//(w,-_l)(w,-—
wi_1) + 0(771.3) = %nl.z(ep’,- + v,-)le.TMl-x,- + 0(771.3). Plugging this into (10.31) leads to

e 1

Dy (w,wo) = Dy (w, wr) + Z‘ (n,-ep,,-v,- = 5117 (epa+vi) o] Mixi + 1155+ O} ))-

1

(10.32)
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Taking expected values from both sides, noting that e, ; and w;_; are independent of

Vi, we get

T 2
E[Dy (w, wo)] = E[Dy (w, wr)] +Z( T PE [xT Mix;|

_ _,7 2 [T M, x,] +niE |2, [ +omh). (1033)

From strong convexity of ¢ (-), we have V2 (w;_1) = al, and therefore E [xl.TM,-xi] <

1 ||)c,||2 and E [ep lxlTMx,] < é||x,~||2E [ei’i]. As a result, we have that ZZ.TZI ni(1 -

IIxLII Uz)E[ pl] < oo because Y, 7> < oo and Y|, O(17?) < oo, which implies

that E [e ] goes to zero. If the inputs are persistently exciting, this implies that
[llw wi—t|| ] — 0, which means SMD converges to the true parameter, in

mean-square sense. O

10.6 Conclusion

In this chapter, we reviewed several fundamental properties of the stochastic mirror
descent (SMD) family of algorithms, and provided a new stochastic interpretation of
them, namely, that they are risk-sensitive optimal. We also provided a direct and
elementary proof of the stochastic convergence of SMD to the true parameter for
vanishing step size in the standard stochastic optimization setting. The risk-sensitive
optimality result generalizes a known result in the literature about the special case of
SGD (aka LMS). Our analysis inspired a new algorithm, which is a “more symmetric”
variant of SMD. Future work may concern studying this new algorithm and its

convergence properties in more detail.
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