
Large-Scale Intelligent Systems:
From Network Dynamics to Optimization Algorithms

Thesis by
Navid Azizan

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2021
Defended August 25, 2020

ii

© 2021

Navid Azizan
ORCID: 0000-0002-4299-2963

All rights reserved except where otherwise noted

iii

ACKNOWLEDGEMENTS

I think anyone who has been to Caltech would agree that it is truly an exceptional
environment, and I consider myself lucky to have had the opportunity to spend five
years of my life here and interact with such an extraordinary group of scholars. So, I
wish to thank numerous individuals, without whom this thesis would not have been
possible.

First, and foremost, I would like to express my deepest gratitude to my two advisors,
Adam Wierman and Babak Hassibi, for their generous and continuous support,
guidance, and encouragement throughout my PhD, and for giving me complete
freedom in pursuing my diverse interests. They have always been available for any
help despite their busy schedules, and their advice extended beyond research to career
planning and even personal matters. They invested a great deal of time and effort in
molding me into a successful researcher and academic, and I am forever indebted to
them for that. The depth and the breadth of their knowledge, their clarity of thought,
their careful comments and questions, their passion for research and education, their
infective energy, and their kindness have always inspired and continue to inspire me,
both professionally and personally.

I am also deeply indebted to the chair of my thesis committee, Steven Low, who in
many ways acted as another advisor for me, and was in no small part responsible
for my transformative experience at Caltech. I am grateful for his always thoughtful
and insightful comments and for his unwavering willingness to help. I am also very
grateful to Yisong Yue for his support and guidance, his valuable feedback on my
job talk, for giving me the opportunity to supervise student projects in his class, and
for serving on my thesis committee.

Beyondmy committee, I am very grateful to other Caltech facultymembers, especially
Venkat Chandrasekaran, K. Mani Chandy, Richard M. Murray, John Doyle, Joel A.
Tropp, Thomas Vidick, Anima Anandkumar, Leonard Schulman, Houman Owhadi,
Pietro Perona, Azita Emami, and Ali Hajimiri, for guidance and for providing a
stimulating environment for my intellectual growth.

The work in this thesis is the result of many collaborations. I would like to thank
my wonderful collaborators and friends, Yu Su, Sahin Lale, Christos Thrampoulidis,
Niangjun Chen, Wael Halbawi, Krishnamurthy Dvijotham, Linqi Guo, and Farshad
Lahouti. Special thanks are also due to the CMS administrative staff, especially

iv

Maria Lopez, Sheila Shull, Sydney Garstang, and Christine Ortega, for taking care
of all the administrative issues seamlessly so that I could focus on the work presented
in this thesis.

Finally, this thesis is dedicated to my parents and my brother, for all the years of love
and support.

v

ABSTRACT

The expansion of large-scale technological systems such as electrical grids, trans-
portation networks, health care systems, telecommunication networks, the Internet
(of things), and other societal networks has created numerous challenges and op-
portunities at the same time. These systems are often not yet as robust, efficient,
sustainable, or smart as we would want them to be. Fueled by the massive amounts
of data generated by all these systems, and with the recent advances in making
sense out of data, there is a strong desire to make them more intelligent. However,
developing large-scale intelligent systems is a multifaceted problem, involving several
major challenges. First, large-scale systems typically exhibit complex dynamics
due to the large number of entities interacting over a network. Second, because
the system is composed of many interacting entities, that make decentralized (and
often self-interested) decisions, one has to properly design incentives and markets
for such systems. Third, the massive computational needs caused by the scale of
the system necessitate performing computations in a distributed fashion, which in
turn requires devising new algorithms. Finally, one has to create algorithms that
can learn from the copious amounts of data and generalize well. This thesis makes
several contributions related to each of these four challenges.

Analyzing and understanding the network dynamics exhibited in societal systems
is crucial for developing systems that are robust and efficient. In Part I of this
thesis, we study one of the most important families of network dynamics, namely,
that of epidemics, or spreading processes. Studying such processes is relevant for
understanding and controlling the spread of, e.g., contagious diseases among people,
ideas or fake news in online social networks, computer viruses in computer networks,
or cascading failures in societal networks. We establish several results on the exact
Markov chain model and the nonlinear “mean-field” approximations for various
kinds of epidemics (i.e., SIS, SIRS, SEIRS, SIV, SEIV, and their variants).

Designing incentives and markets for large-scale systems is critical for their efficient
operation and ensuring an alignment between the agents’ decentralized decisions and
the global goals of the system. To that end, in Part II of this thesis, we study these
issues in markets with non-convex costs as well as networked markets, which are of
vital importance for, e.g., the smart grid. We propose novel pricing schemes for such
markets, which satisfy all the desired market properties. We also reveal issues in the
current incentives for distributed energy resources, such as renewables, and design

vi

optimization algorithms for efficient management of aggregators of such resources.

With the growing amounts of data generated by large-scale systems, and the fact that
the data may already be dispersed across many units, it is becoming increasingly
necessary to run computational tasks in a distributed fashion. Part III concerns
developing algorithms for distributed computation. We propose a novel consensus-
based algorithm for the task of solving large-scale systems of linear equations, which
is one of the most fundamental problems in linear algebra, and a key step at the
heart of many algorithms in scientific computing, machine learning, and beyond.
In addition, in order to deal with the issue of heterogeneous delays in distributed
computation, caused by slow machines, we develop a new coded computation
technique. In both cases, the proposed methods offer significant speed-ups relative
to the existing approaches.

Over the past decade, deep learning methods have become the most successful
learning algorithms in a wide variety of tasks. However, the reasons behind their
success (as well as their failures in some respects) are largely unexplained. It is widely
believed that the success of deep learning is not just due to the deep architecture
of the models, but also due to the behavior of the optimization algorithms, such
as stochastic gradient descent (SGD), used for training them. In Part IV of this
thesis, we characterize several properties, such as minimax optimality and implicit
regularization, of SGD, and more generally, of the family of stochastic mirror descent
(SMD). While SGD performs an implicit regularization, this regularization can be
effectively controlled using SMD with a proper choice of mirror, which in turn can
improve the generalization error.

vii

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] Navid Azizan. “Optimization Algorithms for Large-Scale Systems: From
Deep Learning to Energy Markets”. In: SIGMETRICS Performance Evalua-
tion Review 47.3 (2020), pp. 2–5. issn: 0163-5999. doi: 10.1145/3380908.
3380910.

[2] Navid Azizan et al. “A Study of Generalization of Stochastic Mirror Descent
Algorithms on Overparameterized Nonlinear Models”. In: 2020 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP).
2020, pp. 3132–3136. doi: 10.1109/ICASSP40776.2020.9053864.
N.A. contributed to the conception of the project, designing the methods,
performing the analysis, and writing the manuscript.

[3] Navid Azizan et al. “Optimal Pricing in Markets with Nonconvex Costs”. In:
Operations Research 68.2 (2020), pp. 480–496. doi: 10.1287/opre.2019.
1900.
N.A. contributed to the conception of the project, designing the methods,
performing the analysis, and writing the manuscript.

[4] Navid Azizan and Babak Hassibi. “A Characterization of Stochastic Mirror
Descent Algorithms and their Convergence Properties”. In: 2019 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP).
2019, pp. 5167–5171. doi: 10.1109/ICASSP.2019.8682271.
N.A. contributed to the conception of the project, designing the methods,
performing the analysis, and writing the manuscript.

[5] Navid Azizan and Babak Hassibi. “A Stochastic Interpretation of Stochastic
Mirror Descent: Risk-Sensitive Optimality”. In: 2019 58th IEEE Conference
on Decision and Control (CDC). 2019, pp. 3960–3965. doi: 10.1109/
CDC40024.2019.9030229.
N.A. contributed to the conception of the project, designing the methods,
performing the analysis, and writing the manuscript.

[6] Navid Azizan and Babak Hassibi. “Stochastic gradient/mirror descent: Mini-
max optimality and implicit regularization”. In: 2019 International Confer-
ence on Learning Representations (ICLR). 2019.
N.A. contributed to the conception of the project, designing the methods,
performing the analysis, and writing the manuscript.

[7] Navid Azizan et al. “Distributed Solution of Large-Scale Linear Systems
via Accelerated Projection-Based Consensus”. In: IEEE Transactions on
Signal Processing 67.14 (2019), pp. 3806–3817. doi: 10.1109/TSP.2019.
2917855.
N.A. contributed to the conception of the project, designing the methods,
performing the analysis, and writing the manuscript.

viii

[8] Navid Azizan et al. “Optimal Pricing in Markets with Non-Convex Costs”. In:
Proceedings of the 2019 ACM Conference on Economics and Computation
(EC). Phoenix, AZ, USA, 2019, p. 595. isbn: 978-1-4503-6792-9. doi:
10.1145/3328526.3329575.
N.A. contributed to the conception of the project, designing the methods,
performing the analysis, and writing the manuscript.

[9] Navid Azizan et al. “Stochastic Mirror Descent on Overparameterized Non-
linear Models: Convergence, Implicit Regularization, and Generalization”. In:
2019 International Conference on Machine Learning (ICML) Generalization
Workshop. 2019.
N.A. contributed to the conception of the project, designing the methods,
performing the analysis, and writing the manuscript.

[10] Navid Azizan and Babak Hassibi. “Stochastic gradient/mirror descent: Mini-
max optimality and implicit regularization”. In: 2018 Neural Information
Processing Systems (NeurIPS) Deep Learning Theory Workshop. 2018.
N.A. contributed to the conception of the project, designing the methods,
performing the analysis, and writing the manuscript.

[11] Navid Azizan et al. “Distributed Solution of Large-Scale Linear Systems
via Accelerated Projection-Based Consensus”. In: 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). 2018,
pp. 6358–6362. doi: 10.1109/ICASSP.2018.8462630.
N.A. contributed to the conception of the project, designing the methods,
performing the analysis, and writing the manuscript.

[12] Navid Azizan et al. “Opportunities for Price Manipulation by Aggregators
in Electricity Markets”. In: IEEE Transactions on Smart Grid 9.6 (2018),
pp. 5687–5698. doi: 10.1109/TSG.2017.2694043.
N.A. contributed to the conception of the project, designing the methods,
performing the analysis, and writing the manuscript.

[13] Wael Halbawi et al. “Improving Distributed Gradient Descent Using Reed-
Solomon Codes”. In: 2018 IEEE International Symposium on Information
Theory (ISIT). 2018, pp. 2027–2031. doi: 10.1109/ISIT.2018.8437467.
N.A. contributed to the conception of the project, designing the methods,
performing the analysis, and writing the manuscript.

[14] Navid Azizan et al. “Analysis of exact and approximated epidemic models
over complex networks”. In: arXiv preprint arXiv:1609.09565 (2016). url:
http://arxiv.org/abs/1609.09565.
N.A. contributed to the conception of the project, designing the methods,
performing the analysis, and writing the manuscript.

[15] Navid Azizan et al. “Improved bounds on the epidemic threshold of exact
SIS models on complex networks”. In: 2016 55th IEEE Conference on
Decision and Control (CDC). 2016, pp. 3560–3565. doi: 10.1109/CDC.
2016.7798804.

ix

N.A. contributed to the conception of the project, designing the methods,
performing the analysis, and writing the manuscript.

[16] Navid Azizan et al. “Opportunities for Price Manipulation by Aggregators in
Electricity Markets”. In: SIGMETRICS Performance Evaluation Review 44.2
(2016), pp. 49–51. issn: 0163-5999. doi: 10.1145/3003977.3003995.
N.A. contributed to the conception of the project, designing the methods,
performing the analysis, and writing the manuscript.

[17] Navid Azizan and Babak Hassibi. “SIRS epidemics on complex networks:
Concurrence of exact Markov chain and approximated models”. In: 2015
54th IEEE Conference on Decision and Control (CDC). 2015, pp. 2919–2926.
doi: 10.1109/CDC.2015.7402660.
N.A. contributed to the conception of the project, designing the methods,
performing the analysis, and writing the manuscript.

x

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . v
Published Content and Contributions . vii
Table of Contents . ix
List of Illustrations . xiii
List of Tables . xviii
Chapter I: Introduction . 1

1.1 Major Challenges . 1
1.2 Synopsis of Part I: Network Dynamics 2
1.3 Synopsis of Part II: Incentives and Markets 4
1.4 Synopsis of Part III: Distributed Computation 5
1.5 Synopsis of Part IV: Learning from Data 7

I Network Dynamics 10
Chapter II: Epidemics over Complex Networks: Analysis of Exact and

Approximate Models . 11
2.1 Introduction . 12
2.2 Models . 14
2.3 Results on the Nonlinear MFA Model 22
2.4 Results on the Exact Markov Chain Model 26
2.5 Heterogeneous Network Models . 29
2.6 Pairwise and Higher-Order Approximate Models 30
2.7 Summary and Conclusion . 30
2.A Additional Models . 33

Chapter III: Improved Bounds on the Epidemic Threshold of the Exact Models 40
3.1 Introduction . 40
3.2 The Markov Chain and Marginal Probabilities of Infection 42
3.3 Pairwise Probabilities (?8 9) . 46
3.4 An Alternative Pairwise Probability (@8 9) 49
3.5 Experimental Results . 51
3.6 Conclusion and Future Work . 53

II Incentives and Markets 55
Chapter IV: Optimal Pricing in Markets with Non-Convex Costs 56

4.1 Introduction . 56
4.2 Market Description and Pricing Objectives 59
4.3 Proposed Scheme: Equilibrium-Constrained Pricing 62

xi

4.4 Equilibrium-Constrained Pricing for Networked Markets 73
4.5 Existing Pricing Schemes . 79
4.6 Experimental Results . 84
4.7 Concluding Remarks . 89
4.A Supplement to Section 4.3.1 . 91
4.B Supplement to Section 4.3.2 . 94
4.C Supplement to Section 4.4 . 97

Chapter V: Managing Aggregators in the Smart Grid 99
5.1 Introduction . 99
5.2 System Model . 103
5.3 The Market Behavior of the Aggregator 105
5.4 The Impact of Strategic Curtailment 108
5.5 Optimizing Curtailment Profit . 111
5.6 Concluding Remarks . 117
5.A Connections between Curtailment Profit and Market Power 119
5.B Proof of Lemma 25 (Monotonicity of LMP) 121
5.C Proof of Theorem 26 (Exact Single-Bus) 123
5.D Proof of Theorem 27 (Approximate Multi-Bus) 125

III Distributed Computation 128
Chapter VI: Distributed Solution of Large-Scale Systems of Equations 129

6.1 Introduction . 130
6.2 The Setup . 131
6.3 Accelerated Projection-Based Consensus 132
6.4 Comparison with Related Methods 139
6.5 Underdetermined System . 144
6.6 Experimental Results . 150
6.7 A Distributed Preconditioning to Improve Gradient-Based Methods . 152
6.8 Conclusion . 153

Chapter VII: Coded Computation for Distributed Gradient Descent 154
7.1 Introduction . 154
7.2 Preliminaries . 157
7.3 Code Construction . 160
7.4 Efficient Online Decoding . 166
7.5 Analysis of Total Computation Time 168
7.6 Numerical Results . 171
7.7 Conclusion . 173

IV Learning from Data 174
Chapter VIII: Minimax Optimality and Implicit Regularization of Stochastic

Gradient/Mirror Descent . 175
8.1 Introduction . 175
8.2 Preliminaries . 177

xii

8.3 Warm-up: Revisiting SGD on Square Loss of Linear Models 178
8.4 Main Result: General Characterization of Stochastic Mirror Descent 183
8.5 Convergence and Implicit Regularization in Over-Parameterized Models186
8.6 Concluding Remarks . 189
8.A Proof of Lemma 41 (Fundamental Identity) 190
8.B Proof of Theorem 43 (Minimax Optimality) 192
8.C Proof of Proposition 46 (Convergence) 195
8.D Time-Varying Step-Size . 197

Chapter IX: SMD on Overparameterized Nonlinear Models 199
9.1 Introduction . 200
9.2 Background . 202
9.3 Training Deep Neural Networks with SMD 203
9.4 Theoretical Results . 206
9.5 Related Work . 210
9.6 Experimental Results . 212
9.7 Conclusion . 214
9.A Proofs of the Theoretical Results 215
9.B More Details on the Experimental Results 223

Chapter X: Stochastic Results: Risk-Sensitive Optimality and Mean-Square
Convergence of SMD . 237
10.1 Introduction . 237
10.2 Background . 238
10.3 Risk-Sensitive Optimality of SMD 245
10.4 Symmetric SMD (SSMD) . 249
10.5 Mean-Square Convergence of SMD 249
10.6 Conclusion . 251

Bibliography . 252

xiii

LIST OF ILLUSTRATIONS

Number Page
2.1 State diagram of a single node in different models. Wavy arrows rep-

resent exogenous (network-based) transition. (stands for susceptible
(healthy), � for exposed, � for infected/infectious, and ' for recovered. 15

2.2 Reduced Markov chain of a single node in the steady state. 21
2.3 Summary of known results for different models. The results have been

illustrated as a function of V_<0G (�)
X

. MC stands for the Markov chain
model. MFA stands for the mean-field approximation (the nonlinear
model). 23

2.4 A typical example of the evolution of an SIS epidemic over an Erdős-
Rényi graph with = = 2000 nodes and _max(�) = 16.159. When
the condition V_max (�)

X
< 1 is satisfied (e.g., V = 0.055, X = 0.9) the

epidemic decays exponentially, and dies out quickly (blue curve). In
contrast, when V_max (�)

X
> 1 (e.g., V = 0.056, X = 0.9), the epidemic

does not exhibit convergence to the disease-free state in any observable
time (red curve). In fact, the epidemic keeps spreading around the
nontrivial fixed point. 28

2.5 The evolution of (a) SIS/SIRS/SEIRS, (b) SIV/SEIV (infection-
dominant), (c) SIV/SIEV (vaccination-dominant) epidemics over
an Erdős-Rényi graph with = = 2000 nodes. The blue curves show
fast extinction of the epidemic. The red curves show epidemic spread
around the nontrivial fixed point. 31

3.1 State diagram of a single node in the SIS model, and the transition
rates. Wavy arrow represents exogenous (neighbor-based) transition.
V : probability of infection per infected link, X : probability of recovery. 42

3.2 Evolution of the SIS epidemic over a star graph with = = 2000 nodes,
with two values of d("′) below and above 1. When d("′) = 0.99 < 1,
we observe fast extinction of the epidemic (blue curve). The condition
also seems very tight, as for d("′) = 1.05 > 1, the epidemic does not
die out (red curve). This is while the previously known bound is not
informative at all (V_max (�)

X
= 1.93 > 1 for the first case, and 2.33 > 1

for the second one). 53

xiv

4.1 An illustration of the set Λ for an example with 3 non-convex cost
functions. The three blue curves are the cost functions. The (dashed
and solid) red lines lie below all the cost functions and their slopes
are in Λ. The (slope of the) solid red line corresponds to the largest
element of Λ. 68

4.2 An example of the binary tree defined by Algorithm 1 for = = 8. The
faded circles correspond to the added dummy nodes. 71

4.3 An illustration of shadow pricing for the case of 3 convex cost functions.
The points indicated by ∗ show the optimal quantities. The 3 functions
have the same derivative at their optimal quantities, and the tangent
line lies below the function (because of convexity). The red (solid)
line that passes through the origin is the uniform price function, which
is parallel to the three lines. 81

4.4 An example with cost functions of the form of linear plus startup cost. 86
4.5 An example with cost functions of the form of quadratic plus startup

cost. 87
4.6 A schematic drawing for two connected markets with a constraint on

flow capacity. 88
4.7 An example of two connected markets with a constraint on the flow

capacity. 89
4.8 The transformation of an arbitrary-degree tree to a binary tree. 97
5.1 The 6-bus example network from [35], used to illustrate the effect of

curtailment. 108
5.2 The locational marginal prices for the 6-bus example before and after

the curtailment. 109
5.3 The profit under the normal (no-curtailment) condition and under

(optimal) strategic curtailment, as a function of size of the aggregator
in IEEE test case networks: a) IEEE 14-Bus Case, b) IEEE 30-Bus
Case, and c) IEEE 57-Bus Case. The difference between the two
curves is the curtailment profit. 110

5.4 A heat map of the impact of coordinated curtailment on the prices in
the IEEE 14-bus network. Aggregator nodes are 2, 7, 10, and 14. . . 111

5.5 The LMP at bus 8 as a function of curtailed generation at that bus.
Shaded areas indicate the aggregator’s revenue at the normal condition
and at the curtailment. 113

xv

5.6 The representation of a binary tree. For any node 8, and its children
denoted 21(8), 22(8). 116

5.7 The 9-bus acyclic network from [116], used for the evaluation of the
proposed approximation algorithm. 117

5.8 The difference from the optimal solution as a function of the running
time of the algorithm, in the 9-bus network with 1% curtailment
allowance. 118

6.1 Schematic representation of the taskmaster and the < machines/cores.
Each machine 8 has only a subset of the equations, i.e., [�8, 18]. . . . 132

6.2 The decay of the error for different distributed algorithms, on two
real problems from Matrix Market [141] (QC324: Model of �+2 in
an Electromagnetic Field, and ORSIRR 1: Oil reservoir simulation).
= = # of variables, # = # of equations, < = # of workers, ? = # of
equations per worker. 151

7.1 Schematic representation of the taskmaster and the = workers. 157
7.2 This plot corresponds to a setupwhere the number of training examples

is # = 12000 and 26 = 3× 10−6 to give #26 = 0.035. The parameters
of the Pareto distribution corresponding to the delay is characterized
by C0 = 0.001 and b = 1.1. The optimizer of this function as predicted
by (7.26) is U∗ = 0.1477. This point is denote by the star symbol. . . 171

7.3 The comparison between the test error of different schemes as a func-
tion of time, for a softmax regression model trained using distributed
gradient descent on = = 80 machines. The model was trained on
12000 examples from the MNIST database [121] and validated on a
test set of size 10000. The Reed–Solomon based scheme (Coded - RS)
waits for 5RS = 68 machines, while the one corresponding to [197]
(Coded - MDS) waits for 5MDS = 33. 5RS and 5MDS were obtained by
numerically optimizing (7.21). The two coded schemes outperform
the uncoded ones. Coded-RS denotes the proposed scheme. 172

8.1 Illustration of Lemma 38. Each step of SGD can be viewed as a
transformation of the uncertainties with the right coefficients. 180

8.2 The training loss and actual error of stochastic mirror descent for
compressed sensing. SMD recovers the actual sparse signal. 188

xvi

9.1 Generalization performance of different SMD algorithms on the
CIFAR-10 dataset using ResNet-18. ℓ10 performs consistently better,
while ℓ1 performs consistently worse. The red line shows the state of
the art on ResNet-18 for CIFAR-10 (93.02%)[135]. 204

9.2 Histogram of the absolute value of the final weights in the network for
different SMD algorithm with different potentials. Note that each of
the four histograms corresponds to an 11 × 106-dimensional weight
vector that perfectly interpolates the data. Even though the weights
remain quite small, the histograms are drastically different. ℓ1-SMD
induces sparsity on the weights. SGD appears to lead to a Gaussian
distribution on the weights. ℓ3-SMD starts to reduce the sparsity, and
ℓ10 shifts the distribution of the weights significantly, so much so that
almost all the weights are non-zero. 205

9.3 An illustration of the parameter space.W represents the set of global
minima, F0 is the initialization, B is the local neighborhood, F∗ is
the closest global minimum to F0 (in Bregman divergence), and F∞
is the minimum that SMD converges to. 207

9.4 An illustration of �!8 (F, F′) ≥ 0 in a local region in Assumption 1. . 208
9.5 An illustration of the experiments in Table 9.1. 210
9.6 An illustration of the experiments in Table 9.2. 213
9.7 Distances between a particular initial point and all the final points

obtained by both different initializations and different mirrors. The
smallest distance, among all initializations and allmirrors, corresponds
exactly to the final point obtained from that initial point by SGD. This
trend is observed consistently for all other mirror descents and all
initializations (see the results in Tables 9.8 and 9.9 in the appendix). . 213

9.8 Different Bregman divergences between all the final points and all the
initial points for different mirrors in MNIST dataset using a standard
CNN. Note that the smallest element in every single row is on the
diagonal, which confirms the theoretical results. 227

9.9 Different Bregman divergences between all the final points and all
the initial points for different mirrors in CIFAR-10 dataset using
ResNet-18. Note that the smallest element in every single row is on
the diagonal, which confirms the theoretical results. 232

xvii

9.10 An illustration of the experimental results. For each initialization
F0, we ran different SMD algorithms until convergence to a point on
the setW (zero training error). We then measured all the pairwise
distances from different F∞ to different F0, in different Bregman
divergences. The closest point (among all initializations and all
mirrors) to any particular initialization F0 in Bregman divergence
with potential k(·) = ‖ · ‖@@ is exactly the point obtained by running
SMD with potential ‖ · ‖@@ from F0. 233

9.11 Histogram of the absolute value of the initial weights in the network
(half-normal distribution). 234

9.12 Histogram of the absolute value of the final weights in the network
for different SMD algorithms: (a) ℓ1-SMD, (b) ℓ2-SMD (SGD), (c)
ℓ3-SMD, and (d) ℓ10-SMD. Note that each of the four histograms
corresponds to an 11 × 106-dimensional weight vector that perfectly
interpolates the data. Even though the weights remain quite small, the
histograms are drastically different. ℓ1-SMD induces sparsity on the
weights, as expected. SGD does not seem to change the distribution
of the weights significantly. ℓ3-SMD starts to reduce the sparsity, and
ℓ10 shifts the distribution of the weights significantly, so much so that
almost all the weights are non-zero. 235

9.13 Generalization performance of different SMD algorithms on the
CIFAR-10 dataset using ResNet-18. ℓ10 performs consistently better,
while ℓ1 performs consistently worse. 236

10.1 Bregman divergence. 241
10.2 Local Conservation Law of SMD. 243
10.3 F∞ is the closest solution (among all solutionsW) to F0. Note that

this picture is only for the Euclidean distance; in general the “closest”
is measured in Bregman divergence. 245

xviii

LIST OF TABLES

Number Page
3.1 Performance of the proposed bounds "′ and "′′ in comparison with

the previous bound " . Boldface values show an improvement over " .
The signs next to d("′) indicate whether the non-negativity condition
(required for the proof) holds. 52

4.1 Summary of common pricing schemes and their properties. 82
4.2 Summary of the production characteristics in the modified Scarf’s

example. 85
4.3 Summary of the new cost functions in the modified Scarf’s example. . 86
6.1 A summary of the convergence rates of different methods. DGD:

Distributed Gradient Descent, D-NAG: Distributed Nesterov’s Accel-
erated Gradient Descent, D-HBM: Distributed Heavy-Ball Method,
Mou et al: Consensus algorithm of [146], B-Cimmino: Block Cim-
mino Method, APC: Accelerated Projection-based Consensus. The
smaller the convergence rate is, the faster is the method. Note that
dGD ≥ dNAG ≥ dHBM and dMou ≥ dCim ≥ dAPC. 139

6.2 A comparison between the condition numbers of �) � and - for some
examples. < is the number of machines/partitions. The condition
number of - is typically much smaller (better). Remarkably, the
difference is even more pronounced when � has non-zero mean. . . . 145

6.3 A comparison between the optimal convergence time) (= 1
− log d) of

different methods on real and synthetic examples. Boldface values
show the smallest convergence time. QC324: Model of �+2 in
an Electromagnetic Field. ORSIRR 1: Oil Reservoir Simulation.
ASH608: Original Harwell sparse matrix test collection. 146

xix

9.1 Fixed Initialization. Distances from final points (global minima)
obtained by different algorithms (columns) from the same initialization
(Fig. 9.5), measured in different Bregman divergences (rows). First
Row: The closest point to F0 in ℓ1 Bregman divergence, among
the four final points, is exactly the one obtained by SMD with 1-
norm potential. Second Row: The closest point to F0 in ℓ2 Bregman
divergence (Euclidean distance), among the four final points, is exactly
the one obtained by SGD. Third Row: The closest point to F0 in ℓ3

Bregman divergence, among the four final points, is exactly the one
obtained by SMD with 3-norm potential. Fourth Row: The closest
point to F0 in ℓ10 Bregman divergence, among the four final points, is
exactly the one obtained by SMD with 10-norm potential. 211

9.2 Fixed Mirror: SGD. Pairwise distances between different initial points
and the final points obtained from them by SGD (Fig. 9.6). Row i:
The closest final point to the initial point 8, among all the eight final
points, is exactly the one obtained by the algorithm from initialization 8.212

9.3 MNIST Initial Point 1. 224
9.4 MNIST Initial Point 2. 224
9.5 MNIST Initial Point 3. 224
9.6 MNIST Initial Point 4. 225
9.7 MNIST Initial Point 5. 225
9.8 MNIST Initial Point 6. 225
9.9 MNIST 1-norm Bregman Divergence Between the Initial Points and

the Final Points obtained by SMD 1-norm. 226
9.10 MNIST 2-norm Bregman Divergence Between the Initial Points and

the Final Points obtained by SMD 2-norm (SGD). 226
9.11 MNIST 3-norm Bregman Divergence Between the Initial Points and

the Final Points obtained by SMD 3-norm. 226
9.12 MNIST 10-norm Bregman Divergence Between the Initial Points and

the Final Points obtained by SMD 10-norm. 226
9.13 CIFAR-10 Initial Point 1. 228
9.14 CIFAR-10 Initial Point 2. 228
9.15 CIFAR-10 Initial Point 3. 228
9.16 CIFAR-10 Initial Point 4. 229
9.17 CIFAR-10 Initial Point 5. 229
9.18 CIFAR-10 Initial Point 6. 229

xx

9.19 CIFAR-10 Initial Point 7. 229
9.20 CIFAR-10 Initial Point 8. 229
9.21 CIFAR-10 1-norm Bregman Divergence Between the Initial Points

and the Final Points obtained by SMD 1-norm. 230
9.22 CIFAR-10 2-norm Bregman Divergence Between the Initial Points

and the Final Points obtained by SMD 2-norm (SGD). 230
9.23 CIFAR-10 3-norm Bregman Divergence Between the Initial Points

and the Final Points obtained by SMD 3-norm. 230
9.24 CIFAR-10 10-norm Bregman Divergence Between the Initial Points

and the Final Points obtained by SMD 10-norm. 231

1

C h a p t e r 1

INTRODUCTION

Our technological systems are arguably at the dawn of a major transformation.
We have built complex systems such as electrical grids, transportation networks,
health care systems, telecommunication networks, the Internet (of things), and
other societal networks, which have enabled connecting large numbers of entities
or people. While immensely helpful, these systems are, in many senses, not yet
as robust, efficient, sustainable, or smart as we would want them to be. However,
that is beginning to change. The formation of these large-scale systems, while
posing enormous challenges (such as how to manage them efficiently), has created
tremendous opportunities for developing “more intelligent” systems. With the
massive amounts of data generated by all these systems, and with the major advances
during the recent years in areas such as machine learning and data science, network
science, and market design, we are at a unique time in history to revolutionize
these systems and pave the way for the development of what can be referred to as
large-scale intelligent systems. This thesis is broadly aimed at addressing some of
the key challenges towards realizing this goal, and laying a foundation for analyzing
and designing such systems.

1.1 Major Challenges
Developing large-scale intelligent systems is a multifaceted problem and requires
a confluence of disciplines. In particular, over the past few decade, we have seen
remarkable progress in this interdisciplinary endeavor from various fields such as
networks science, machine learning, statistics, optimization, control theory, and
game theory, among others. Despite this progress, we are still far from realizing that
vision. Some of the key challenges in designing large-scale intelligent systems can
be summarized as follows.

1. Complex Dynamics: Large-scale systems typically exhibit complex dynamics,
caused by the large number of entities interacting with one another, often over
a network. Analyzing and understanding these dynamics is crucial for creating
systems that are efficient and robust.

2. Incentives and Markets: Because the system is composed of a large number

2

of interacting entities, that make decisions in a decentralized (and often self-
interested) manner, it is critical to design incentives and markets for the system
in such a way that ensures an alignment of the agents’ decisions and the overall
goals of the system.

3. Distributed Computation: The massive computational needs due to the scale
of the system (and the fact that the data may be dispersed across many
entities) make it virtually impossible to carry out computations at a central
unit. Therefore, devising algorithms that can run in a distributed or parallel
fashion is of vital importance for such systems.

4. Learning from Data: Lastly, an important aspect of an intelligent system is the
ability to learn from data, and the enormous amount of data generated by these
large-scale systems makes them uniquely appealing for this purpose. Creating
learning algorithms that can generalize well is an ongoing enterprise, with
notable successes and many unsolved problems.

Some of the common lower-level obstacles that often arise in addressing the above
challenges are those of networks and/or non-convexities. These issues, as will be
discussed later, complicate both understanding the behavior of these systems as well
as designing suitable algorithms for them.

This thesis is organized into four main parts, based on the four major challenges
discussed above. While related, the four parts need not be read in order (or in their
entirety) when reading this thesis. To further allow for a modular reading, each
chapter is aimed to be self-contained.1 In what follows, we summarize the main
contributions of the thesis in each part.

1.2 Synopsis of Part I: Network Dynamics
As mentioned earlier, understanding and analyzing the dynamics of networks is
crucial for developing societal systems that are efficient and robust. In Part I, we
study one of the most prominent families of network dynamics, namely, that of
spreading processes, or epidemics. Studying such processes is of great importance for
understanding and controlling how, e.g., contagious diseases spread among humans,
ideas or fake news spread in online social networks, cascading failures happen in
power networks, or computer viruses spread in computer networks, and thus has

1In doing so, some minor redundancy across chapters has been introduced.

3

applications in many areas such as epidemiology [29], information propagation [109,
56], viral marketing [168, 175], and network security [8, 2].

We consider the spread of discrete-time epidemics over arbitrary networks for well-
known propagation models, namely SIS (susceptible-infected-susceptible), SIRS
(susceptible-infected-recovered-susceptible), SEIRS (susceptible-exposed-infected-
recovered-susceptible), SIV (susceptible-infected-vaccinated), SEIV (susceptible-
exposed-infected-vaccinated), and their variants. Such spreading processes can
be normally described by Markov chains with an exponential number of states in
the number of nodes. Since analyzing these Markov chain models is complicated,
various linear and nonlinear lower-dimensional approximations of them have been
proposed and studied in the literature. The most common of these is the nonlinear
“mean-field” approximation and its linearization around the disease-free fixed point,
whose number of states are linear in the number of nodes.

In Chapter 2, we provide a complete global analysis of the epidemic dynamics of
the nonlinear mean-field approximation, as well as a sufficient condition for fast
extinction of the epidemic in the exact Markov chain model, for the aforementioned
propagation models (SIS, SIRS, SEIRS, SIV, and SEIV). In particular, we show that
for most propagation models, the global dynamics of the nonlinear model coincides
with the stability of the linear model, and takes on one of two forms: either the
epidemic dies out, or it converges to another unique fixed point (the so-called endemic
state where a constant fraction of the nodes remain infected). We tie in these results
with the exact Markov chain model by showing that the linear model provides an
upper-bound on the true marginal probabilities of infection, and that this is the
tightest upper-bound that involves only marginals, in the “low-infection” regime.
This bound implies that under the specific threshold where the disease-free state is
a globally-stable fixed point of the mean-field model, the exact underlying Markov
chain has a sublinear mixing time, which means the epidemic dies out quickly.

The threshold condition for fast mixing of the Markov chain has been shown not to
be tight in several cases, such as in a star network. In Chapter 3, we provide tighter
upper bounds on the exact marginal probabilities of infection, by also taking pairwise
infection probabilities into account. Based on this improved bound, we derive tighter
eigenvalue conditions that guarantee fast mixing (i.e., logarithmic mixing time) of
the chain. Comparisons between the new condition and the known one on various
networks with various epidemic parameters demonstrates significant improvement
of the threshold condition.

4

1.3 Synopsis of Part II: Incentives and Markets
As discussed earlier, a critical aspect of developing large-scale intelligent systems
is designing incentives and markets, in such a way that ensures efficient operation
of the system and effective management of the available resources. One of the key
challenges that arises in such markets (and is of critical importance for, e.g., energy
markets) is that of non-convexities. Non-convexities in cost functions arise due to
start-up or shut-down costs, indivisibilities, avoidable costs, or simply economies of
scale, and there may be no linear prices that support a competitive market equilibrium
in their presence[46, 83]. Another important challenge in these markets is that there
are network constraints that have to be taken into account.

Despite the large body of work on the pricing problem (especially during the past
decade, motivated by the deregulation of the electricity markets in the US and around
the world), the existing schemes have several shortcomings. Most of the existing
schemes are proposed for specific classes of non-convex cost functions, and cannot
handle more general non-convexities. Furthermore, even the ones that are applicable
for general cost functions fail to satisfy some of the key desired properties of the
market, such as economic efficiency or supporting a competitive equilibrium. In
addition, none of the existing schemes is accompanied by a computationally tractable
algorithm for general non-convex costs.

In Chapter 4, we propose a pricing scheme called Equilibrium-Constrained (EC)
pricing for markets with general non-convex costs that designs arbitrary parametric
price functions and addresses all the aforementioned issues. Optimizing simultane-
ously for the quantities (allocations) and the price parameters allows our scheme to
find prices that are typically economically more efficient. Further, the ability to use
arbitrarily specified parametric price functions (e.g., piece-wise linear, quadratic, etc.)
enables our approach to design price functions that are less discriminatory, while still
supporting a competitive equilibrium. Further, our pricing scheme is accompanied by
a computationally efficient (polynomial-time) approximation algorithm which allows
one to find the approximately-optimal schedule and prices for general non-convex
cost functions. The proposed framework applies to the case of networked markets as
well, which, to the best of our knowledge, had not been considered in previous work.

Increasing the penetration of distributed, renewable energy resources into the
electricity grid is a crucial part of building a sustainable energy landscape, and
the entities that have been most successful at this are aggregators, e.g., SolarCity,
Tesla, Enphase, Sunnova, SunPower, and ChargePoint. Aggregators play a variety of

5

important roles in the construction of a sustainable grid: (1) they are on the front
lines of the battle to promote widespread adoption of distributed energy resources by
households and businesses, and (2) they provide a single interface point where utilities
and Independent System Operators (ISOs) can interact with a fleet of distributed
energy resources across the network in order to obtain a variety of services, from
renewable generation capacity to demand response. However, in addition to the
benefits they provide, aggregators also create new challenges. On the side of the
aggregator, the management of a geographically diverse fleet of distributed energy
resources is a difficult algorithmic challenge. On the side of the operator, the
participation of aggregators in electricity markets presents unique challenges in terms
of monitoring and mitigating the potential of exercising market power. In particular,
unlike traditional generation resources, the ISO cannot verify the availability of the
generation resources of aggregators, and this creates significant opportunities for the
aggregators to manipulate prices through strategic curtailment of the resources.

In Chapter 5, we address both the algorithmic challenge of managing an aggregator
and the economic challenge of measuring the potential for an aggregator to manipulate
prices. Specifically, we provide a new algorithmic framework for managing the
participation of an aggregator in electricity markets, and use this framework to
evaluate the potential for aggregators to exercise market power. To those ends, we
make three main contributions. First, we introduce a new model for studying the
market behavior of aggregators of distributed generation in the real-time market.
Second, we quantify opportunities for price manipulation by the aggregators. Our
results reveal that, in practical scenarios, strategic curtailment can have a significant
impact on prices, and yield much higher profits for the aggregators. In particular,
the prices can be impacted up to a few tens of $/MWh in some cases, and there is
often more than 25% higher profit, even with curtailments limited to 1%. Third, we
provide a novel approach for managing the participation of an aggregator in the
market. The problem is NP-hard in general and is a bilevel quadratic program, which
is notoriously difficult in practice. However, we develop an efficient algorithm for
aggregators in radial networks which can be used by the aggregator to approximate
the optimal allocation strategy and also by the operator to assess the potential for
strategic curtailment.

1.4 Synopsis of Part III: Distributed Computation
Distributed computation is an integral part of large-scale intelligent systems. With
the growing size of datasets, due to high computational and/or memory requirements,

6

it is increasingly necessary to run the tasks in a distributed fashion. For this reason,
parallel and distributed computation has attracted a lot of attention in recent years
for large-scale computing applications, such as for machine learning [44, 173, 228,
77]. In order to devise efficient distributed algorithms, one has to address a number
of key questions such as: What computation should each processor carry out?,What
messages should be communicated between the processors and the taskmaster?, How
does the distributed implementation fare in terms of computational complexity?,
What is the rate of convergence in the case of iterative algorithms?, and How to
handle delays and straggling workers?

One of the most fundamental problems in linear algebra, which also a key step at the
heart of many algorithms in optimization, machine learning, scientific computing,
and beyond, is that of solving a large-scale system of linear equations. In Chapter 6,
we consider a common scenario in which a taskmaster intends to solve a large-
scale system of linear equations by distributing subsets of the equations among
a number of computing machines/cores. We propose a novel algorithm called
Accelerated Projection-based Consensus (APC) for solving this problem. While each
machine can easily find “a” solution to its own underdetermined problem, the overall
solution should be a solution to every machine’s problem. The idea is based on a
carefully-constructed consensus, which ensures that each machine’s variable remains
a solution to its problem, while moving towards the solutions of the other machines.
The convergence behavior of the proposed algorithm is analyzed in detail and is
analytically shown to compare favorably with the convergence rate of alternative
distributed methods, namely distributed gradient descent, distributed versions of
Nesterov’s accelerated gradient descent and heavy-ball method, the block Cimmino
method, and ADMM. On randomly chosen linear systems, as well as on real-world
data sets, the proposed method offers order-of-magnitude speed-up relative to the
aforementioned methods.

When a task is divided among a number of machines, while the computation time of
each machine is significantly reduced, the taskmaster has to wait for all the machines
in order to be able to recover the desired computation. One issue faced in practice is
the delay incurred due to the presence of slow machines, known as stragglers. In
the face of substantial or heterogeneous delays, distributed computing may suffer
from being slow, which defeats the purpose. Several approaches have been proposed
to tackle this problem. One naive yet common way is to not wait for all machines,
and ignore the straggling machines. One may hope that in this way, on average, the

7

taskmaster receives enough information from everyone; however, in many cases,
the overall performance may be negatively impacted because of the lost updates.
An alternative and more appropriate way to resolve this issue is to introduce some
redundancy in the computation of the machines, in order to efficiently trade off
computation time for less wait time, and to be able to recover the correct update
using only a few machines. Over the past few decades, coding theory was developed
to address similar challenges in other domains such as mobile communication,
storage, data transmission, and broadcast systems. Recently, [198] considered a
distributed gradient descent setting for large-scale machine learning, and proposed
the idea of gradient coding, which uses coding theory to cleverly distribute each
gradient iteration across a number of machines in an efficient way. However, the
computational complexity of their decoding algorithm was quite high (cubic in the
number of returning machines).

In Chapter 7, we develop a deterministic scheme that, for a prescribed per-machine
computational effort, recovers the gradient from the least number of machines
theoretically permissible, via a decoding algorithm that is an order of magnitude
faster than the state of the art. The idea is based on a suitably designed Reed–Solomon
code that has a sparsest and balanced generator matrix [88]. Empirical results have
demonstrated the clear advantage of our method over competing schemes.

1.5 Synopsis of Part IV: Learning from Data
During the past decade, machine learning, and largely deep learning, has made
a remarkable impact in many domains, and has enjoyed a great deal of success
in a wide variety of tasks, such as computer vision, speech recognition, natural
language processing, recommender systems, bioinformatics, and video- and board-
game playing. While incredibly successful in many respects, the reasons behind the
great success of these methods (as well as their failures in some other respects) are
largely unexplained. A theoretical foundation that backs these methods is crucial for
understanding their capabilities and limitations, and for making them applicable to
domains in which they have not been yet successful, and ultimately boosting progress
towards intelligent systems.

Due to the nonlinear nature of deep neural networks, their loss function is in general
highly non-convex. However, empirically, practitioners often obtain zero training
error, i.e., a global minimum of the training loss, across various datasets, architectures,
and settings [224]. This phenomenon is due to the heavy overparameterization

8

present in typical deepmodels (“tens ofmillions” of parameters for “tens of thousands”
of data points). In other words, these highly overparameterized models have a lot of
capacity, which allows them to perfectly fit/interpolate the training data, so much so
that this regime has been called the interpolating regime [138]. What is surprising,
however, is that, contrary to the conventional wisdom which says achieving zero
training error (aka overfitting) is harmful for generalization (out-of-sample error),
these deep models, trained with simple stochastic gradient descent (SGD) or its
variants, generalize quite well to unseen data. The loss function of these deep models
has in fact (infinitely) many global minima, which can have drastically different
generalization properties (in fact, there are many global minima that perform very
poorly on the test set), and stochastic descent algorithms seem to converge to “special”
ones that generalize well, even in the absence of any explicit regularization or early
stopping [224].

In an attempt to shed some light on why this is the case, inChapter 8, we shall revisit
some minimax properties of stochastic gradient descent (SGD) for the square loss
of linear models—originally developed in the 1990s—and extend them to general
stochastic mirror descent (SMD) algorithms for general loss functions and nonlinear
models. In particular, we show that there is a fundamental identity which holds for
SMD (and SGD) under very general conditions, and which implies the minimax
optimality of SMD (and SGD) for sufficiently small step size, and for a general class
of loss functions and general nonlinear models. We further show that this identity
can be used to naturally establish other properties of SMD (and SGD), namely
convergence and implicit regularization for over-parameterized linear models (in
what is now being called the “interpolating regime”), some of which have been
shown in certain cases in prior literature.

In Chapter 9, we show that, for highly overparameterized nonlinear models, the
SMD algorithm for any particular potential function converges to a global minimum
that is approximately the closest one to the initialization, in terms of the Bregman
divergence corresponding to the potential used. For the special case of SGD, this
means that it converges to a global minimum which is approximately the closest one
to the initialization in the usual Euclidean sense. This result further implies that,
when initialized around zero, SGD acts as an ℓ2-norm regularizer, a phenomenon
referred to as implicit regularization (in linear models [85, 194]). Similarly, by
choosing other mirrors, one obtains different forms of implicit regularization,
which may have different performances on the test data. Our experimental results

9

indeed showed a clear difference in the generalization performance of the solutions
obtained via different SMD regularizers. Experimenting on the CIFAR-10 dataset
with different regularizers, ℓ1 norm (to encourage sparsity), ℓ2 norm (SGD, to
encourage small Euclidean norm), and ℓ10 norm (to discourage large components),
consistently showed that the minimum-ℓ10-norm interpolating solution has a better
generalization performance than the minimum-ℓ2-norm one, which in turn has a better
generalization performance than the minimum-ℓ1-norm solution. This surprising
result strongly suggests the importance of developing a generalization theory for the
overparameterized/interpolating regime and the choice of regularizers.

In Chapter 10, we exhibit a new interpretation of SMD, namely that it is a risk-
sensitive optimal estimator when the unknown weight vector and additive noise are
non-Gaussian and belong to the exponential family of distributions. The analysis
also suggests a modified version of SMD, which we refer to as symmetric SMD
(SSMD). The proofs rely on some simple properties of Bregman divergence, which
allow us to extend results from quadratics and Gaussians to certain convex functions
and exponential families in a rather seamless way. Furthermore, for vanishing step
size SMD, and in the standard stochastic optimization setting, we give a direct and
elementary proof of convergence for SMD to the “true” parameter vector, which
avoids ergodic averaging or appealing to stochastic differential equations.

Part I

Network Dynamics

10

11

C h a p t e r 2

EPIDEMICS OVER COMPLEX NETWORKS: ANALYSIS OF
EXACT AND APPROXIMATE MODELS

[1] Navid Azizan and Babak Hassibi. “SIRS epidemics on complex networks:
Concurrence of exact Markov chain and approximated models”. In: 2015
54th IEEE Conference on Decision and Control (CDC). 2015, pp. 2919–2926.
doi: 10.1109/CDC.2015.7402660.

[2] Navid Azizan et al. “Analysis of exact and approximated epidemic models
over complex networks”. In: arXiv preprint arXiv:1609.09565 (2016). url:
http://arxiv.org/abs/1609.09565.

Understanding and analyzing the dynamics of networks is crucial for developing
societal systems that are robust and efficient. Here, we study one of themost important
families of network dynamics, namely, that of spreading processes, or epidemics. We
consider the spread of discrete-time epidemics over arbitrary networks for well-known
propagation models, namely SIS, SIRS, SEIRS, SIV, SEIV, and their variants. Such
spreading processes can be normally described by Markov chains with an exponential
number of states in the number of nodes. Since analyzing these Markov chain models
is complicated, various linear and nonlinear lower-dimensional approximations of
them have been proposed and studied in the literature. The most common of these is
the nonlinear “mean-field” approximation and its linearization around the disease-free
fixed point, whose numbers of states are linear in the number of nodes. The results we
review are for both the exact models and the approximated ones, with a focus on the
connections between them. Since the linear model is the first-order approximation of
the nonlinear mean-field one at the disease-free equilibrium, its stability determines
the local stability of the nonlinear model. Furthermore, for most propagation models,
the global dynamics of the nonlinear model also coincides with the stability of the
linear model, and takes on one of two forms: either the epidemic dies out, or it
converges to another unique fixed point (the so-called endemic state where a constant
fraction of the nodes remain infected). We tie in these approximations to the exact
Markov chain model. We show that the linear model provides an upper-bound on the
true marginal probabilities of infection, and that (in a certain regime) it is the tightest
upper-bound that involves only marginals. Furthermore, even though the nonlinear
model is not an upper-bound on the true probabilities in general, it does provide an

12

upper-bound on the probability of the chain not being in the all-healthy state. These
bounds also imply the well-known result of sublinear mixing time of the Markov
chain (epidemic extinction) when the disease-free fixed point is globally stable in
the mean-field model. We compare these results for different propagation models in
detail and provide a concise summary of them.

2.1 Introduction
Epidemic models have been extensively studied since a first mathematical formulation
was introduced in 1927 by Kermack and McKendrick [113]. Although the classical
models mostly neglected the underlying network structure, and assumed a uniformly
mixed population, a huge body of work on more realistic networked models has
emerged in the recent years. Modeling and analysis of epidemics plays a key role
in many areas such as epidemiology [29], information propagation [109, 56], viral
marketing [168, 175], and network security [8, 2]. In particular, the models developed
in the literature can be used to understand various spreading processes over networks
such as the adoption of an idea or fake news in an online social network (Facebook,
Twitter, etc.), the consumption of a new product in a market, or the spread of computer
viruses over the Internet. Questions of interest include the existence of fixed points,
stability (whether the epidemic dies out or spreads), transient behavior, the cost of an
epidemic [40, 43], how best to control an epidemic [66, 156], etc.

As in the majority of the literature, we adopt the terminologies of infectious diseases
throughout this chapter. The results that we survey are for well-known propagation
models, namely SIS (susceptible-infected-susceptible), SIRS (susceptible-infected-
recovered-susceptible), SEIRS (susceptible-exposed-infected-recovered-susceptible),
SIV (susceptible-infected-vaccinated), and SEIV (susceptible-exposed-infected-
vaccinated). In the basic SIS model, each node in the network is in one of two
different states: susceptible (healthy) or infected. A healthy node has a chance
of getting infected if it has infected neighbors in the network. The probability of
getting infected increases as the number of infected neighbors increases. An infected
node also has a chance of recovering, after which it still has a chance of getting
infected by its neighbors (the flu is an example of this model). SIR and SIRS models
have an extra recovered state, which corresponds to the nodes that have recovered
from the disease and are not susceptible to it (mumps and pertussis respectively are
examples of SIR and SIRS epidemics [102]). In some models, such as SEIRS, there
are two different types of unhealthy states: exposed (E) and infected/infectious (I).
The nodes in an exposed state have been exposed to the disease but are not infectious

13

yet. Additionally, in SIV and SEIV models, there is a random vaccination (either
permanent or temporary) which permits direct transition from the susceptible state
to the recovered (vaccinated) state.

Even the SIS case, which is the simplest of the above models, for a network with =
nodes, yields aMarkov chain with 2= states, sometimes called the exact or “stochastic”
model. This is a discrete-space model, as there are two possible states of “0” and
“1” for healthy and infected. Ostensibly, because analyzing this Markov chain is
too complicated, various =-dimensional linear and non-linear approximations have
been proposed in the literature. The most common of these is the =-dimensional
non-linear mean-field approximation and its corresponding linearization about the
disease-free fixed point, which are often referred to as “deterministic” models. These
are continuous-space models, that take real numbers between 0 and 1, which can be
understood as the marginal probability for being infected (or the infected fraction of
the 8-th subpopulation).

It is worth noting that all the above models have also been studied in two different
settings: continuous-time and discrete-time. In fact, there are two parallel bodies of
work in the literature, on continuous-time (e.g., [76, 205, 72, 187, 127, 157, 65]) and
discrete-time (e.g., [79, 208, 57, 5, 170, 6]) epidemics. Even though the models are
similar in many aspects, depending on the application in hand, it may make more
sense to use one or the other. Here, we choose to focus on discrete-time models, but
most of the results have counterparts in continuous-time as well.

The results we review are for both the exact and approximated models, with a focus
on the connections between them. It is well known that, in many cases, the linear
model is an upper-bound on the nonlinear mean-field approximation. It is also known
that, depending on the largest eigenvalue of the underlying graph adjacency matrix
and the epidemic parameters, the global dynamics of the mean-field approximation
takes on one of two forms: either the epidemic dies out (disease-free fixed point) or it
converges to another unique fixed point where a constant fraction of the nodes remain
infected (endemic state). As for the exact Markov chain model, the linear model
provides an upper-bound on the true marginal probabilities of infection, and we show
that this is the tightest upper-bound using the marginals only, when the infection
probabilities are not too high. Furthermore, even though the nonlinear model is not
an upper-bound on the true probabilities in general, it does provide an upper-bound
on the probability of the chain not being absorbed (some nodes being infected). A
consequence of these upper-bounds is that when the approximated model is stable to

14

the disease-free fixed point, the Markov chain has a mixing time of $ (log =), which
means the epidemic dies out fast in the true model as well.

In Section 2.2, we review the main epidemic models introduced in the literature.
For each one of these spreading processes, we state the exact Markov chain model,
the nonlinear mean-field approximation, and the latter’s linearization. Section 2.3
concerns the results on the nonlinear model (and its connection to the linear model)
for different spreading processes mentioned earlier. We first describe the case where
the epidemic dies out, and then the case where the all-healthy fixed point is not stable
and there exists a unique nontrivial fixed point which is typically stable. Returning
back to the exact Markov chain model, in Section 2.4, we establish the connection
between that and the approximated models. In particular, we first state the connection
to the linear model (the tightest upper-bound using marginals, and the sufficient
condition for fast mixing), and then proceed to the connection to the nonlinear model
(upper-bound on the probability of the chain not being absorbed). We also review the
extensions to heterogeneous models in Section 2.5, and mention higher-order (such
as pairwise) approximations in Section 2.6. We finally summarize and conclude in
Section 2.7.

2.2 Models
In this section, we discuss some of the main epidemic models. Additional models
can be found in Appendix 2.A.

2.2.1 Susceptible-Infected-Susceptible (SIS)
2.2.1.1 Exact Markov Chain Model

Let � = (+, �) be an arbitrary connected undirected network with = nodes, and
with adjacency matrix �. Each node can be in a state of health (S), represented by
0, or a state of infection (I), represented by 1 (see Fig. 2.1). The state of the entire
network can be represented by a binary n-tuple b (C) = (b1(C), · · · , b= (C)) ∈ {0, 1}=,
where each of the entries represents the state of a node at time C, i.e., 8 is infected if
b8 (C) = 1, and it is healthy if b8 (C) = 0.

Given the current state b (C), the infection probability of each node in the next step is
determined independently, and therefore the transition matrix (of this Markov chain
has elements (-,. = P(b (C + 1) = . |b (C) = -) of the following form:

P(b (C + 1) = . |b (C) = -) =
=∏
8=1
P(b8 (C + 1) = .8 |b (C) = -), (2.1)

15

Figure 2.1: State diagram of a single node in different models. Wavy arrows
represent exogenous (network-based) transition. (stands for susceptible (healthy), �
for exposed, � for infected/infectious, and ' for recovered.

for any two state vectors -,. ∈ {0, 1}=.

A healthy node remains healthy if all its neighbors are healthy. During each time
epoch, nodes in the healthy (susceptible) state can be infected by their infected
neighbors according to independent events with probability V (the infection rate)
each. Moreover, nodes that are infected can recover during each such time epoch
with probability X (the recovery rate), if they do not get infected again at the same
time. That is

P(b8 (C + 1) = .8 |b (C) = -) =


(1 − V)<8 if (-8, .8) = (0, 0)
1 − (1 − V)<8 if (-8, .8) = (0, 1)
X(1 − V)<8 if (-8, .8) = (1, 0)
1 − X(1 − V)<8 if (-8, .8) = (1, 1)

, (2.2)

where <8 = |#8 ∩ S(-) |, where #8 denotes the set of neighbors of node 8, and

16

S(-) = {8 : -8 = 1} is the support of - ∈ {0, 1}=, i.e., the set of infected nodes.

This Markov chain has a unique absorbing state, which is the state where all the
nodes in the network are healthy with probability 1. This is an absorbing state since
there is a non-zero probability of reaching it from any other state in a single step,
and because once all the nodes are healthy, no node will be exposed to the disease,
and they will always stay healthy. This means that the disease will die out if we wait
long enough. However, this result is not very revealing, since it may take a long time
for the disease to die out, and therefore, the more important question is whether the
Markov chain is fast-mixing or whether its mixing time is exponentially large.

Comparing the discrete-time Markov chain model to the continuous-time Markov
chain model described in [76], the continuous-time Markov chain model allows only
one flip of each node’s epidemic state at each moment. However, the discrete-time
model allows change of epidemic states for more than one node at each time step.
The reason being that the change of epidemic state for two or more nodes can occur
at same time interval, even though they do not happen at the same moment. The
transition matrix of the embedded Markov chain of the continuous-time model has
nonzero entries only where the Hamming distance of the row coordinate and the
column coordinate is 1 (they differ in only one element). However, the transition
matrix of the discrete-time Markov chain model can have nonzero entries everywhere
(except the row of the absorbing state).

Let us denote the probability that node 8 is infected at time C by ?8 (C) = P(b8 (C) = 1).
The probability of node 8 being infected at time C + 1 can then be written as

?8 (C + 1) = P(b8 (C + 1) = 1|b8 (C) = 1)P(b8 (C) = 1)
+ P(b8 (C + 1) = 1|b8 (C) = 0)P(b8 (C) = 0). (2.3)

By marginalizing out the state of the other nodes, we can write this as

?8 (C + 1) =Eb−8 (C) |b8 (C)=1

[
1 − X

∏
9∈#8
(1 − V1b 9 (C)=1)

]
?8 (C)

+ Eb−8 (C) |b8 (C)=0

[
1 −

∏
9∈#8
(1 − V1b 9 (C)=1)

]
(1 − ?8 (C)), (2.4)

where the conditional expectations are on the joint probability of all nodes other than
8 (denoted by b−8).

17

2.2.1.2 Nonlinear Model

In order to propagate the previous recursion, one needs all the joint probabilities. An
approximate model that requires only knowledge of the marginals is the so-called
mean-field approximation (MFA):

%8 (C + 1) =
(
1 − X

∏
9∈#8

(
1 − V% 9 (C)

))
%8 (C) +

(
1 −

∏
9∈#8

(
1 − V% 9 (C)

))
(1 − %8 (C))

= (1 − X)%8 (C) + (1 − (1 − X)%8 (C))
(
1 −

∏
9∈#8
(1 − V% 9 (C))

)
. (2.5)

This approximate model assumes that the events that the neighbors are infected are
independent. We use capital % for the approximated probabilities, to distinguish
them from the exact probabilities of the Markov chain, ?.

It is sometimes convenient to define and work with a map Φ : [0, 1]= → [0, 1]= with
elements defined as

Φ8 (G) = (1 − X)G8 + (1 − (1 − X)G8)
(
1 −

∏
9∈#8
(1 − VG 9)

)
. (2.6)

It is trivial to check that the MFA becomes %8 (C + 1) = Φ8 ([%1(C), . . . , %= (C)])).
The MFA is an =-dimensional model and is therefore computationally much less
demanding than the true 2=-dimensional model. The MFA has been studied in [57,
208, 5] among others. The origin (%1(C) = . . . , = %= (C) = 0) is a trivial fixed point
of the above model, which is consistent with the absorbing state of the Markov chain
model.

2.2.1.3 Linear Model

One step further is to approximate the preceding equations by linearizing (2.5) around
the origin, which results in the following mapping:

%̃8 (C + 1) = (1 − X)%̃8 (C) + V
(∑
9∈#8

%̃ 9 (C)
)

(2.7)

Putting together the equations of this form for all 8, one can see this as

%̃(C + 1) = ((1 − X)�= + V�)%̃(C), (2.8)

where %̃(C) = [%̃1(C), . . . , %̃= (C)]) .

Note that (1 − X)�= + V� is in fact the Jacobian of the nonlinear model at the origin.

18

2.2.2 Susceptible-Infected-Recovered-Susceptible (SIRS)
In the SIRS model, there is an additional “recovered” (R) state (see Fig. 2.1). As
before, nodes in the susceptible state can be infected by their infected neighbors
according to independent events with probability V each. Nodes that are infected can
recover with probability X, and nodes in the recovered state can randomly transition
to the susceptible state with probability W (immunization loss).

2.2.2.1 Exact Markov Chain Model

We start again with the exact Markov chain model. The state of node 8 at time
C, denoted by b8 (C), can take one of the following values: 0 for Susceptible, 1 for
Infected (or Infectious), and 2 for Recovered, i.e., b8 (C) ∈ {0, 1, 2}.

The state of the entire network can be represented as:

b (C) = (b8 (C), . . . , b= (C)) ∈ {0, 1, 2}= . (2.9)

The 3= × 3= state transition matrix (of the Markov chain has elements of the form

(-,. = P (b (C + 1) = . | b (C) = -) =
=∏
8=1
P (b8 (C + 1) = .8 | b (C) = -) , (2.10)

where

P (b8 (C + 1) = .8 | b (C) = -) =



(1 − V)<8 , if (-8, .8) = (0, 0)

1 − (1 − V)<8 , if (-8, .8) = (0, 1)

0, if (-8, .8) = (0, 2)

0, if (-8, .8) = (1, 0)

1 − X, if (-8, .8) = (1, 1)

X, if (-8, .8) = (1, 2)

W, if (-8, .8) = (2, 0)

0, if (-8, .8) = (2, 1)

1 − W, if (-8, .8) = (2, 2)

, (2.11)

where <8 =
��{ 9 ∈ #8 | - 9 = 1

}�� = |#8 ∩ � (C) |. The set of susceptible, infected, and
recovered nodes at time C are denoted by ((C), � (C), and '(C), respectively.

The marginal probabilities can be expressed as ?',8 (C) and ?�,8 (C), for the probability
that node 8 is in state ' at time C and the probability that node 8 is in state � at

19

time C, respectively. Then, ?(,8 (C) is determined by the other two probabilities as
1− ?',8 (C) − ?�,8 (C). Based on the above-mentioned transition rates, we can calculate
the two marginal probabilities as

?',8 (C + 1) =(1 − W)?',8 (C) + X?�,8 (C), (2.12)

?�,8 (C + 1) =(1 − X)?�,8 (C)

+ E|b8 (C)=0

[
1 −

∏
9∈#8
(1 − V1b 9 (C)=1)

]
(1 − ?',8 (C) − ?�,8 (C)). (2.13)

The recursion for ?(,8 (C + 1) can be found from ?(,8 (C) + ?�,8 (C) + ?',8 (C) = 1.

2.2.2.2 Nonlinear Model

Themean-field approximation of the abovemarginal probabilities has been commonly
considered, which can be expressed as

%',8 (C + 1) = (1 − W)%',8 (C) + X%�,8 (C), (2.14)

%�,8 (C + 1) = (1 − X)%�,8 (C) +
(
1 −

∏
9∈#8
(1 − V%�, 9 (C))

)
(1 − %',8 (C) − %�,8 (C)).

(2.15)

This MFA is in fact a nonlinear mapping with 2= states (rather than 3= states).

2.2.2.3 Linear Model

Linearizations of Eqs. (2.14) and (2.15) around the origin can be considered as well,
which results in the mapping

%̃',8 (C + 1) = (1 − W)%̃',8 (C) + X%̃�,8 (C), (2.16)

%̃�,8 (C + 1) = (1 − X)%̃�,8 (C) + V
∑
9∈#8

%̃�, 9 (C). (2.17)

These equations for all 8 can be expressed in a matrix form as[
%̃' (C + 1)
%̃� (C + 1)

]
= "

[
%̃' (C)
%̃� (C)

]
, (2.18)

where

" =

[
(1 − W)�= X�=

0=×= (1 − X)�= + V�

]
. (2.19)

20

2.2.3 Susceptible-Infected-Vaccinated (SIV)
2.2.3.1 Exact Markov Chain Model

The SIV model accounts for the effect of vaccination by incorporating direct
immunization into the SIRS model. In other words, the transition from (to ' is
also permitted in this model (see Fig. 2.1). Depending on the value of W, this model
can represent temporary (W ≠ 0) or permanent (W = 0) immunization. Based on the
efficacy of the vaccine, there are two variants of this model: infection-dominant and
vaccination-dominant.

In the infection-dominant case, if a susceptible node receives both infection and
vaccine at the same time, it gets infected. In this case, the elements of the state
transition matrix are

(-,. = P (b (C + 1) = . | b (C) = -) =
=∏
8=1
P (b8 (C + 1) = .8 | b (C) = -) , (2.20)

where

P (b8 (C + 1) = .8 | b (C) = -) =



(1 − V)<8 (1 − \), if (-8, .8) = (0, 0)

1 − (1 − V)<8 , if (-8, .8) = (0, 1)

(1 − V)<8\, if (-8, .8) = (0, 2)

0, if (-8, .8) = (1, 0)

1 − X, if (-8, .8) = (1, 1)

X, if (-8, .8) = (1, 2)

W, if (-8, .8) = (2, 0)

0, if (-8, .8) = (2, 1)

1 − W, if (-8, .8) = (2, 2)

, (2.21)

and as before <8 =
��{ 9 ∈ #8 | - 9 = 1

}�� = |#8 ∩ � (C) |. Eq. (2.21) differs from
Eq. (2.11) in the first and third cases, and it reduces to the SIRS model for \ = 0.

The steady-state behavior in the presence of immunization is rather different from
the previous models, in which all the nodes became susceptible. In this model, once
there is no node in the infected state, the Markov chain reduces to a simpler Markov
chain, where the nodes are all decoupled. In fact, from that time on, each node has
an independent transition probability between (and '. The stationary distribution
of each single node is then %∗

(
=

W

W+\ and %
∗
'
= \

W+\ (Fig. 2.2). This MC converges if

21

W\ ≠ 1, and the stationary distribution of each state - is

c- =

=∏
8=1
(W

W + \)
I(-8=0) · 0I(-8=1) · (\

W + \)
I(-8=2) .

Figure 2.2: Reduced Markov chain of a single node in the steady state.

2.2.3.2 Nonlinear Model

The nonlinear map (mean-field approximation of the Markov chain model) can be
obtained as:

%',8 (C + 1) =(1 − W)%',8 (C) + X%�,8 (C)
+

∏
9∈#8
(1 − V%�, 9 (C))\ (1 − %',8 (C) − %�,8 (C)), (2.22)

%�,8 (C + 1) =(1 − X)%�,8 (C)+(
1 −

∏
9∈#8
(1 − V%�, 9 (C))

)
(1 − %',8 (C) − %�,8 (C)). (2.23)

It can be easily verified that one fixed point of this nonlinear map occurs at
%',8 (C) = %∗' and %�,8 (C) = 0, i.e.,[

%' (C)
%� (C)

]
=

[
\
W+\1=

0=

]
,

which is consistent with the steady state of the Markov chain.

22

2.2.3.3 Linear Model

After some algebra, the linearization of the above model around the fixed point can
be expressed as: [

%̃' (C + 1)
%̃� (C + 1)

]
=

[
%∗
'

1=
0=

]
+ "

[
%̃' (C) − %∗'1=
%̃� (C) − 0=

]
, (2.24)

where

" =

[
(1 − W − \)�= (X − \)�= − \%∗(V�

0=×= (1 − X)�= + %∗(V�

]
. (2.25)

2.3 Results on the Nonlinear MFA Model
The nonlinear mean-field approximation has been extensively studied in the literature
for different propagation models. We review the most important results here, starting
from the SIS epidemics.

2.3.1 SIS
It is straightforward to see that the linear model upper bounds the nonlinear one, as
follows.

%8 (C + 1) =(1 − X)%8 (C) + (1 − (1 − X)%8 (C))
(
1 −

∏
9∈#8
(1 − V% 9 (C))

)
≤(1 − X)%8 (C) +

(
1 −

∏
9∈#8
(1 − V% 9 (C))

)
≤(1 − X)%8 (C) + V

(∑
9∈#8

% 9 (C)
)

For two real-valued column vectors D, E ∈ R=, we use the notation D � E to indicate
D8 ≤ E8 for all 8 ∈ {1, . . . , =}, and D ≺ E, if the inequalities are strict. Defining
%(C) = [%1(C), . . . , %= (C)]) , we have

%(C + 1) � ((1 − X)�= + V�)%(C), (2.26)

which leads to the following well-known result.

Proposition 1. If V_max (�)
X

< 1, the origin is a globally asymptotically stable fixed
point for both the linear SIS model (2.8) and the nonlinear SIS model (2.5).

The origin, the trivial fixed point of the nonlinear model, is unstable when _<0G ((1−
X)�= + V�) > 1. Moreover, if so, it is not clear in general whether there exists any

23

Figure 2.3: Summary of known results for different models. The results have been
illustrated as a function of V_<0G (�)

X
. MC stands for the Markov chain model. MFA

stands for the mean-field approximation (the nonlinear model).

other fixed point, or how many fixed points there are. It has been shown in the
literature (e.g., in [5]) that there exists a unique nontrivial fixed point, and it is stable.

Theorem 2. If V_max (�)
X

> 1, the nonlinear SIS model (2.5) has a second unique fixed
point. Furthermore, the fixed point is globally asymptotically stable from all initial
points (except the origin).

2.3.2 SIRS/SEIRS/Immune-Admitting-SIS
Similar to the previous (immune-free) SIS model, for the immune-admitting-SIS,
SIRS, and SEIRS epidemics, the linear model is an upper-bound on the nonlinear
one, and therefore the origin is stable for the nonlinear model when the linear model
is stable.

Proposition 3. If V_max (�)
X

< 1, the origin is a globally asymptotically stable fixed
point for both the linear model and the nonlinear model for immune-admitting-SIS,
SIRS, and SEIRS epidemics.

In this case, when the origin is not stable, even though there still exists a unique
nontrivial fixed point, it is not stable in general [5, 16].

Theorem 4. If V_max (�)
X

> 1, the nonlinear model for immune-admitting-SIS, SIRS,
and SEIRS epidemics has a second unique fixed point.

24

The following is an example of an unstable nontrivial fixed point for the immune-
admitting-SIS model [4, p. 64].

A =
©­­«

0 1 1
1 0 0
1 0 0

ª®®®¬ V = 0.9 X = 0.9 (2.27)

The nontrivial fixed point of the system above is %∗ = (0.286, 0.222, 0.222)) . The
linearized model around %∗ is

©­­«
−0.260 0.514 0.514
0.700 −0.157 0
0.700 0 −0.157

ª®®®¬ ,
which has an eigenvalue of −1.059, which means that %∗ is not locally stable. It can
be shown that for any initial condition other the origin and %∗, %(C) converges to a
cycle.

Even though the nontrivial fixed point is not stable in general, it is known to be stable
with high probability for a general family of random graphs [4, p. 66].

Theorem 5 (Ahn and Hassibi [5]). Suppose that � (=) is a random graph with =
vertices, and let 3 (=)min and 3

(=)
max denote the minimum and maximum degree of � (=) . If,

for any fixed 0 > 0, P((3 (=)min)2 > 0 · 3
(=)
max) goes to 1 as = goes to infinity, then, with

high probability, the origin is unstable, and the second fixed point is locally stable,
for any fixed V and X.

One can think of several random graph models that satisfy the condition of Theorem
5. For example, if the random graph has a uniform degree that grows with =, then

the minimum degree and maximum degree are identical and the ratio
32

min
3max

= 3 will
grow with any = and exceed 0 with high probability. Similarly, for random graphs
where the degree distribution of the nodes are identical and concentrate, so that we
can expect the maximum degree and the minimum degree to be proportional to the

expected degree,
32

min
3max

grows if the expected degree increases unbounded with =. In

particular, the Erdös-Rényi random graph � (=) = � (=, ?(=)) has identical degree
distribution, and we have the following result [4, p. 69].

Corollary 6 (Ahn and Hassibi [5]). Consider an Erdös-Rényi random graph � (=) =
� (=, ?(=)) with ?(=) = 2 log =

=
where 2 > 1 is a constant. The nonlinear model is

25

locally unstable at the origin and has a locally stable nontrivial fixed point with high
probability for any fixed V and X.

Since ? = 2
log =
=

for 2 = 1 is also the threshold for connectivity, we can say
that connected Erdös-Rényi graphs have a nontrivial stable fixed point with high
probability.

The random geometric graph� (=) = � (=, A (=)) also has identical degree distribution
if each node is distributed uniformly. Such random graphs have maximum and
minimum degrees which are proportional to the expected degree with high probability
if A (=) is smaller than the threshold of connectivity [167], and, similar to Erdös-Rényi
graphs, it has high probability of having a nontrivial stable fixed point if the degree
grows with =.

2.3.3 SIV/SEIV (Infection-Dominant)
Since the linear model is always the Jacobian of the nonlinear one, its stability
determines the local stability of the nonlinear model. However, global stability is
harder to show. The following result summarizes the stability of the nonlinear model.

Proposition 7. The disease-free fixed point of the nonlinear model for the infection-
dominant SIV and the infection-dominant SEIV epidemics is

a) locally stable, if W

W+\
V

X
_<0G (�) < 1, and

b) globally stable, if V
X
_<0G (�) < 1 .

When W

W+\
V_max (�)

X
> 1, the main fixed point of the nonlinear map is not stable, and

again, there exists a unique non-trivial fixed point. This result has been proven in
[16] for the SIV case, and it extends to the SEIV model in a similar fashion.

Theorem 8. If W

W+\
V_max (�)

X
> 1, the nonlinear model for the infection-dominant SIV

and the infection-dominant SEIV epidemics has a second unique fixed point.

The middle panel in Figure 2.3 shows a summary of the above results.

2.3.4 SIV/SEIV (Vaccination-Dominant)
It is natural to expect the vaccination-dominant models to be more stable than the
infection-dominant ones. It turns out that these models are indeed more stable by a
factor of 1/(1 − \).

26

Proposition 9. The disease-free fixed point of the nonlinear model for the vaccination-
dominant SIV and the vaccination-dominant SEIV epidemics is

a) locally stable, if (1 − \) W

W+\
V

X
_<0G (�) < 1, and

b) globally stable, if (1 − \) V
X
_<0G (�) < 1 .

Theorem 10. If (1 − \) W

W+\
V

X
_<0G (�) > 1, the nonlinear model for the vaccination-

dominant SIV and the vaccination-dominant SEIV epidemics has a second unique
fixed point.

Both of the above results have been proven in [16] for the SIV case, and the proof
extends to the SEIV case with some modification. The lower panel in Figure 2.3
shows a summary of these results.

2.4 Results on the Exact Markov Chain Model
Returning back to the Markov chain model, in this section, we study the true marginal
probabilities of infection and how they relate to the nonlinear and linear models.
For the sake of simplicity, we state the results for the SIS model, but they have
counterparts for other propagation models as well.

2.4.1 Connection to the Linear Model
It is well-known that the linear model provides an upper-bound on the true marginal
probabilities of infection [6].

Proposition 11. For SIS epidemics, the linear model is an upper-bound on the true
marginal probabilities of infection, i.e.,

?8 (C + 1) ≤ (1 − X)?8 (C) + V
∑
9∈#8

? 9 (C),

for 8 = 1, . . . , =, and any time C.

This can be equivalently expressed in vector form as

?(C + 1) � ((1 − X)�= + V�)?(C). (2.28)

(1 − X)�= + V� is the system matrix of the linear model.

A natural question to ask about the above bound is how tight is it. It is clear that the
bound cannot be tight in general, as we are ignoring the higher-order dependencies

27

(e.g., pairwise infection probabilities, etc.). However, we can ask how tight is it among
all the bounds that involve only the marginal probabilities. It turns out that when the
infection probabilities are not too high, this bound is indeed the tightest bound using
marginals only. In other words, if in the SIS model, we maximize ?8 (C + 1) over all
distributions with fixed marginals ?1(C), . . . , ?= (C), in the low-infection regime, we
obtain the same bound.

Theorem 12. For SIS epidemics, if
∑=
8=1 ?8 (C) < 1, then the tightest upper-bound on

?8 (C + 1) that involves only the marginal probabilities at time C is

?8 (C + 1) ≤ (1 − X)?8 (C) + V
∑
9∈#8

? 9 (C),

for any 8 = 1, . . . , =.

It has been shown that when the linear and nonlinear models are stable (i.e.,
V_max (�)

X
< 1), then the epidemic dies out quickly. More specifically under this

condition, the Markov chain has fast “mixing” to the all-healthy state. The mixing
time of a Markov chain is defined [126, Def. 4.5] as

C<8G (n) = min{C : sup
`

‖`(C − c‖)+ ≤ n}, (2.29)

where ` is any initial probability distribution defined on the state space, and c is the
stationary distribution. ‖ · ‖)+ is total variation distance which measures distance of
two probability distributions. Total variation distance of two probability measures `
and `′ is defined by

‖` − `′‖)+ =
1
2

∑
G

|`(G) − `′(G) | (2.30)

where G is any possible state in the probability space. In fact, C<8G (n) is the smallest
time where distance between the stationary distribution and probability distribution at
time C from any initial distribution is smaller than or equal to n . Roughly speaking, the
mixing time measures how fast initial distribution converges to the limit distribution.

The fast (logarithmic) mixing-time result was first shown by Ganesh et al [76].

Theorem 13. If V_max (�)
X

< 1, the mixing time of the Markov chain whose transition
matrix (is described by Eqs. (2.1) and (2.2) is $ (log =).

The above condition for fast extinction of the epidemic seems to be quite tight in
many cases, such as in Erdős-Rényi random graphs. In particular, Figure 2.4 shows

28

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

Time Step

N
u

m
b

e
r

o
f

In
fe

c
te

d
 N

o
d

e
s

β‖A‖
δ

= 1.01

β‖A‖
δ

= 0.99

Figure 2.4: A typical example of the evolution of an SIS epidemic over an Erdős-
Rényi graph with = = 2000 nodes and _max(�) = 16.159. When the condition
V_max (�)

X
< 1 is satisfied (e.g., V = 0.055, X = 0.9) the epidemic decays exponentially,

and dies out quickly (blue curve). In contrast, when V_max (�)
X

> 1 (e.g., V = 0.056,
X = 0.9), the epidemic does not exhibit convergence to the disease-free state in
any observable time (red curve). In fact, the epidemic keeps spreading around the
nontrivial fixed point.

a typical simulation of the epidemic in two different cases: (1) When V_max (�)
X

= 0.99
and (2) when V_max (�)

X
= 1.01. As one can see, there is a sharp phase transition

happening around this critical value. In other words, the epidemic does not seem to
die out in any reasonable amount of time once V_max (�)

X
is somewhat above 1.

2.4.2 Connection to the Nonlinear Model
The nonlinear model is not an upper-bound on the true probabilities ?8 (C) in general.
However, it turns out that it does provide an upper-bound on the probability that the
chain is not in the all-healthy state (i.e., existence of infection) [4], if one initializes
the nonlinear model from the all-infected state.

Theorem 14. For any time C and any initial state - , we have

P(b (C) ≠ 0̄|b (0) = -) ≤ 1 −
∏
8∈S(-)

(
1 −ΦC8 (1=)

)
,

29

where Φ(.) is the nonlinear approximate model.

Using this bound, the same mixing time result as in (13) can also be established.

We should finally remark that the reason why it is possible for the nonlinear map
to converge to a unique non-origin fixed point when V_max (�)

X
> 1, even though the

original Markov chain model always converges to the all-healthy state, is that this
is only an upper bound on P(b (C) ≠ 0̄|b (0) = -). In other words, if the origin is
globally stable in the epidemic map Φ, we can infer that the Markov chain model
mixes fast. However, if the origin in the epidemic map is unstable, we cannot infer
anything about the mixing time.

2.5 Heterogeneous Network Models
In the models discussed throughout the chapter, the epidemic parameters V, X, W, n, \
were homogeneous across the network, i.e., theywere the same for all nodes. However,
many of the results have been extended to more general heterogeneous models.

For the SIS model, much of the behavior of the models was determined by the largest
eigenvalue of " = (1 − X)�= + V�. " is defined by V, the infection rate, X, the
recovery rate, and �, the adjacency matrix. In other words, " is the contact model.
To model an epidemic spread where each node has its own infection and recovery
rate, we can define a generalized infection matrix. Let " = (<8, 9) be the generalized
infection matrix where <8, 9 ∈ [0, 1] represents the infection probability that 8 is
infected at time C + 1 when 9 is the only infected node at time C. In this setting,
each diagonal entry <8,8 represents self-infection rate. In other words, 1 − <8,8 is the
recovery rate of node 8, and <8,8 is the probability that 8 stays infected when there are
no other infected nodes in the network. We also assume that probability of infection
of each node given the current state b (C) is independent. More precisely, for any two
state vectors -,. ∈ {0, 1}=,

P(b (C + 1) = . |b (C) = -) =
=∏
8=1
P(b8 (C + 1) = .8 |b (C) = -) (2.31)

Probability transition from given state is defined by " .

P(b8 (C + 1) = .8 |b (C) = -) =


∏
9∈S(-)

(1 − <8, 9) if .8 = 0,

1 −
∏
9∈S(-)

(1 − <8, 9) if .8 = 1,
(2.32)

We define the transition matrix, ((") ∈ R{0,1}=×{0,1}= by ((")
-,.

= P(b8 (C + 1) =
.8 |b (C) = -) in the equation above.

30

The nonlinear map associated with " , Φ(") : [0, 1]= → [0, 1]= is defined by

Φ
(")
8
(G) = 1 −

=∏
9=1
(1 − <8, 9G 9) (2.33)

and Φ(") = (Φ(")1 ,Φ
(")
2 , · · · ,Φ(")=). " is the Jacobian matrix of Φ(") (·) at the

origin which gives an upper bound, i.e., Φ(") (G) � "G. The origin is the unique
fixed point which is globally stable if the largest eigenvalue of " is smaller than
1. It also has a unique nontrivial fixed point which is globally stable if the largest
eigenvalue of " is greater than 1.

Similar to the previous cases, _max(") < 1 guarantees that the mixing time of the
Markov chain defined by the transition matrix ((") is $ (log =).

2.6 Pairwise and Higher-Order Approximate Models
Even though the threshold condition of Theorem 13 for fast extinction of the epidemic
(sublinear mixing time of the Markov chain) appears to be tight for the Erdős-Rényi
random graph and some other networks, it is known to not be tight for several other
cases, such as the star graph [23].

In order to obtain tighter threshold conditions, one can keep track of terms that are of
a higher order than the marginals, such as pairwise probabilities of infection, triples,
etc. Of course, this comes at the cost of an increased number of states (quadratic,
cubic, etc. in the number of nodes), and there is a trade-off between the tightness
of the bound and the complexity of the model. In theory, if one takes into account
all marginals, pairs, triples, and higher-order terms, we get back to the original
exponential-state Markov chain model.

Tighter bounds using pairwise probabilities will be the subject of the next chapter.
These bounds were first introduced in [23], and have been extended to heterogeneous
models in [160]. Other pairwise approximations have also been studied in [54] but
they do not provide any bound on the exact probabilities.

2.7 Summary and Conclusion
We studied the networked SIS, SIRS, SEIRS, SIV, and SEIV epidemics and their
variants, using their exact Markov chain models, and their well-known linear and
nonlinear mean-field approximations. Below a threshold, the disease-free fixed point
is globally stable for the nonlinear model, and also the mixing time of the exact
Markov chain is $ (log =), which means the epidemic dies out fast. Furthermore,

31

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

Time Step

N
u
m

b
e
r

o
f
In

fe
c
te

d
 N

o
d
e
s

β‖A‖
δ

= 1.2 > 1

β‖A‖
δ

= 0.99 < 1

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

Time Step

N
u
m

b
e
r

o
f
In

fe
c
te

d
 N

o
d
e
s

γ

γ+θ

β‖A‖
δ

= 1.2 > 1

γ
γ+θ

β‖A‖
δ

= 0.99 < 1

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

Time Step

N
u
m

b
e
r

o
f
In

fe
c
te

d
 N

o
d
e
s

(1− θ) γ
γ+θ

β‖A‖
δ

= 1.2 > 1

(1− θ) γ
γ+θ

β‖A‖
δ

= 0.99 < 1

Figure 2.5: The evolution of (a) SIS/SIRS/SEIRS, (b) SIV/SEIV (infection-dominant),
(c) SIV/SIEV (vaccination-dominant) epidemics over an Erdős-Rényi graph with
= = 2000 nodes. The blue curves show fast extinction of the epidemic. The red
curves show epidemic spread around the nontrivial fixed point.

32

above a threshold, the disease-free fixed point is not stable for the linear and nonlinear
models, and there exists a second unique fixed point, which corresponds to the
endemic state. This nontrivial fixed point is also stable in most cases. Figure 2.3
summarizes all the results.

Typical examples of the spread of the epidemic for all different propagation models
studied throughout the chapter have been demonstrated in Figure 2.5. For the SIRS
and SEIRS models, the threshold condition is V‖�‖

X
< 1, which is the same as that of

the SIS one, and it means having an additional recovered state does not necessarily
make the system more stable. For the infection-dominant SIV and SEIV models, we
observe the same exponential decay of the infection when W

W+\
V‖�‖
X

< 1 (e.g., when
‖�‖ = 16.232 and V = 0.11, W = 0.5 and \ = 0.5), which means the vaccination
indeed makes the system more stable. Furthermore, for the vaccination-dominant
models, under (1 − \) W

W+\
V‖�‖
X

< 1 (e.g., V = 0.22), we observe the fast convergence
again, which confirms that the system is even more stable when vaccination is
dominant. As plots show, for above-the-threshold cases (e.g., V = 0.07 for SIRS,
0.13 for SIV-infection-dominant, and 0.29 for SIV-vaccination-dominant), we do not
observe epidemic extinction in any reasonable time, and effectively, the epidemic
remains endemic.

Finally, we should remark that characterizing the exact epidemic threshold of the
Markov chain model is still an open problem. Extensive numerical simulations
suggest the existence of such a threshold and a phase transition behavior. Even though
in certain networks, such as the Erdős-Rényi random graphs, the epidemic threshold
seems to coincide with the condition for local stability of the nonlinear mean-field
model (global stability of the linear model), it is different from that condition in
general. For this reason, pairwise (and even higher-order) approximations may be
sought, which provide tighter bounds on the epidemic threshold.

33

2.A Additional Models
We review additional epidemic models, namely the immune-admitting variant of the
SIS model, the SIERS model, the vaccination-dominant variant of the SIV model,
and the SEIV model.

2.A.1 Immune-Admitting SIS
2.A.1.1 Exact Markov Chain Model

A variant of the SIS model is the “immune-admitting” SIS, which is similar to the
previous model except that a node does not get infected from its neighbors if it has
just recovered from the disease (see Fig. 2.1). In other words, the probability of
recovering from the disease is X. That is

P(b8 (C + 1) = .8 |b (C) = -)

=


(1 − V)<8 if (-8, .8) = (0, 0), |#8 ∩ S(-) | = <8,

1 − (1 − V)<8 if (-8, .8) = (0, 1), |#8 ∩ S(-) | = <8,
X if (-8, .8) = (1, 0),

1 − X if (-8, .8) = (1, 1).

(2.34)

and, as before, the elements of the transition matrix are defined as

P(b (C + 1) = . |b (C) = -) =
=∏
8=1
P(b8 (C + 1) = .8 |b (C) = -). (2.35)

In this model, the probability that a node becomes healthy from infected (X) is larger
than that of the “immune-free” model (X(1 − V)<8). Therefore, roughly speaking,
the immune-admitting model is more likely than the immune-free model to hit the
absorbing state.

2.A.1.2 Nonlinear Model

A mean-field approximation for the immune-admitting model can be studied as well,
which is defined as

%8 (C + 1) = (1 − X)%8 (C) + (1 − %8 (C))
(
1 −

∏
9∈#8
(1 − V% 9 (C))

)
. (2.36)

2.A.1.3 Linear Model

The nonlinear model has the same Jacobian matrix as that of the previous section,
which is

%̃(C + 1) = ((1 − X)�= + V�)%̃(C). (2.37)

34

2.A.2 Susceptible-Exposed-Infected-Recovered-Susceptible (SEIRS)
2.A.2.1 Exact Markov Chain Model

This model has an extra "exposed" state. The state of the nodes can take one of the
following values: 0 for Susceptible, 1 for Exposed, 2 for Infected (or Infectious), and
3 for Recovered (see Fig. 2.1). The 4= × 4= state transition matrix (of the Markov
chain has elements of the form

(-,. = P (b (C + 1) = . | b (C) = -) =
=∏
8=1
P (b8 (C + 1) = .8 | b (C) = -) , (2.38)

as before. Here we have

P (b8 (C + 1) = .8 | b (C) = -) =



(1 − V)<8 , if (-8, .8) = (0, 0)

1 − (1 − V)<8 , if (-8, .8) = (0, 1)

1 − n, if (-8, .8) = (1, 1)

n, if (-8, .8) = (1, 2)

1 − X, if (-8, .8) = (2, 2)

X, if (-8, .8) = (2, 3)

W, if (-8, .8) = (3, 0)

1 − W, if (-8, .8) = (3, 3)

0, otherwise

, (2.39)

where <8 = |#8 ∩ � (C) |.

2.A.2.2 Nonlinear Model

The nonlinear mean-field approximation is

%�,8 (C + 1) =(1 − n)%�,8 (C)+(
1 −

∏
9∈#8
(1 − V%�, 9 (C))

)
(1 − %�,8 (C) − %�,8 (C) − %',8 (C))

%�,8 (C + 1) =n%�,8 (C) + (1 − X)%�,8 (C)
%',8 (C + 1) =(1 − W)%',8 (C) + X%�,8 (C).

35

2.A.2.3 Linear Model

The linearization of the above equations around the origin is
%̃� (C + 1)
%̃� (C + 1)
%̃' (C + 1)

 = "

%̃� (C)
%̃� (C)
%̃' (C)

 ,
where

" =


(1 − n)�= V� 0=×=
n �= (1 − X)�= 0=×=
−\�= X�= (1 − W)�=

 .
2.A.3 Vaccination-Dominant SIV
2.A.3.1 Exact Markov Chain Model

In the vaccination-dominant variant of the model, the assumption is that if a
susceptible node receives both infection and vaccine at the same time, it becomes
vaccinated. Although in the context of contagious diseases, this variation might
make less sense, in other applications, there are scenarios for which this model is
more relevant. The transition probabilities of the Markov chain are again

(-,. = P (b (C + 1) = . | b (C) = -) =
=∏
8=1
P (b8 (C + 1) = .8 | b (C) = -) , (2.40)

with the change that

P (b8 (C + 1) = .8 | b (C) = -) =



(1 − V)<8 (1 − \), if (-8, .8) = (0, 0)

(1 − (1 − V)<8) (1 − \), if (-8, .8) = (0, 1)

\, if (-8, .8) = (0, 2)

0, if (-8, .8) = (1, 0)

1 − X, if (-8, .8) = (1, 1)

X, if (-8, .8) = (1, 2)

W, if (-8, .8) = (2, 0)

0, if (-8, .8) = (2, 1)

1 − W, if (-8, .8) = (2, 2)

,

(2.41)
where <8 =

��{ 9 ∈ #8 | - 9 = 1
}�� = |#8 ∩ � (C) |, as before.

36

2.A.3.2 Nonlinear Model

The nonlinear map, or the mean-field approximation, can be stated as:

%',8 (C + 1) =(1 − W)%',8 (C) + X%�,8 (C)
+ \ (1 − %',8 (C) − %�,8 (C)), (2.42)

%�,8 (C + 1) =(1 − X)%�,8 (C) + (1 − \)

·
(
1 −

∏
9∈#8
(1 − V%�, 9 (C))

)
(1 − %',8 (C) − %�,8 (C)). (2.43)

2.A.3.3 Linear Model

As a result, the first order (linear) model is:[
%̃' (C + 1)
%̃� (C + 1)

]
=

[
%∗
'

1=
0=

]
+ "

[
%̃' (C) − %∗'1=
%̃� (C) − 0=

]
,

where

" =

[
(1 − W − \)�= (X − \)�= − \%∗(V�

0=×= (1 − X)�= + (1 − \)%∗(V�

]
.

We should note that for the vaccination-dominant model, the steady state of the
Markov chain and the main fixed point of the mapping are exactly the same as those
of the infection-dominant model. However, as one may expect, it turns out that the
vaccination-dominant model is more stable.

2.A.4 SEIV (Infection-Dominant)
The Markov chain model in this case has the following transition probabilities (see
Fig. 2.1).

37

2.A.4.1 Exact Markov Chain Model

P (b8 (C + 1) = .8 | b (C) = -) =



(1 − V)<8 (1 − \), if (-8, .8) = (0, 0)

1 − (1 − V)<8 , if (-8, .8) = (0, 1)

(1 − V)<8\, if (-8, .8) = (0, 3)

1 − n, if (-8, .8) = (1, 1)

n, if (-8, .8) = (1, 2)

1 − X, if (-8, .8) = (2, 2)

X, if (-8, .8) = (2, 3)

W, if (-8, .8) = (3, 0)

1 − W, if (-8, .8) = (3, 3)

0, otherwise

, (2.44)

where <8 = |#8 ∩ � (C) |.

2.A.4.2 Nonlinear Model

The nonlinear approximation in this case is

%�,8 (C + 1) =(1 − n)%�,8 (C)+(
1 −

∏
9∈#8
(1 − V%�, 9 (C))

)
(1 − %�,8 (C) − %�,8 (C) − %',8 (C))

%�,8 (C + 1) =n%�,8 (C) + (1 − X)%�,8 (C)
%',8 (C + 1) =(1 − W)%',8 (C) + X%�,8 (C)

+
(∏
9∈#8
(1 − V%�, 9 (C))

)
\ (1 − %�,8 (C) − %�,8 (C) − %',8 (C)).

2.A.4.3 Linear Model

The linearization around the main fixed point is as follows
%̃� (C + 1)
%̃� (C + 1)
%̃' (C + 1)

 =


0=
0=
%∗
'

1=

 + "


%̃� (C)
%̃� (C)

%̃' (C) − %∗'1=

 ,
where

" =


(1 − n)�= %∗

(
V� 0=×=

n �= (1 − X)�= 0=×=
−\�= (X − \)�= − \%∗(V� (1 − W − \)�=

 .

38

2.A.5 SEIV (Vaccination-Dominant)
2.A.5.1 Exact Markov Chain Model

The vaccination-dominant variant of the model has the following transition probabil-
ities.

P (b8 (C + 1) = .8 | b (C) = -) =



(1 − V)<8 (1 − \), if (-8, .8) = (0, 0)

(1 − (1 − V)<8) (1 − \), if (-8, .8) = (0, 1)

\, if (-8, .8) = (0, 3)

1 − n, if (-8, .8) = (1, 1)

n, if (-8, .8) = (1, 2)

1 − X, if (-8, .8) = (2, 2)

X, if (-8, .8) = (2, 3)

W, if (-8, .8) = (3, 0)

1 − W, if (-8, .8) = (3, 3)

0, otherwise

,

(2.45)
where <8 = |#8 ∩ � (C) |.

2.A.5.2 Nonlinear Model

The nonlinear mean-field approximation can be expressed as

%�,8 (C + 1) = (1 − n)%�,8 (C) + (1 − \)×(
1 −

∏
9∈#8
(1 − V%�, 9 (C))

)
(1 − %�,8 (C) − %�,8 (C) − %',8 (C))

%�,8 (C + 1) = n%�,8 (C) + (1 − X)%�,8 (C)
%',8 (C + 1) = (1 − W)%',8 (C) + X%�,8 (C)
+ \ (1 − %�,8 (C) − %�,8 (C) − %',8 (C)).

39

2.A.5.3 Linear Model

The linearized model is
%̃� (C + 1)
%̃� (C + 1)
%̃' (C + 1)

 =


0=
0=
%∗
'

1=

 + "


%̃� (C)
%̃� (C)

%̃' (C) − %∗'1=

 ,
where

" =


(1 − n)�= (1 − \)%∗(V� 0=×=
n �= (1 − X)�= 0=×=
−\�= (X − \)�= (1 − W − \)�=

 .

40

C h a p t e r 3

IMPROVED BOUNDS ON THE EPIDEMIC THRESHOLD OF THE
EXACT MODELS

[1] Navid Azizan et al. “Improved bounds on the epidemic threshold of exact
SIS models on complex networks”. In: 2016 55th IEEE Conference on
Decision and Control (CDC). 2016, pp. 3560–3565. doi: 10.1109/CDC.
2016.7798804.

The SIS (susceptible-infected-susceptible) epidemic model on an arbitrary network,
without making approximations, is a 2=-state Markov chain with a unique absorbing
state (the all-healthy state). This makes analysis of the SIS model and, in particular,
determining the threshold of epidemic spread, quite challenging. We saw in the
previous chapter that the exact marginal probabilities of infection can be upper
bounded by an =-dimensional linear time-invariant system, a consequence of which
is that the Markov chain is “fast-mixing” when the LTI system is stable, i.e., when
V

X
< 1

_max (�) (where V is the infection rate per link, X is the recovery rate, and
_max(�) is the largest eigenvalue of the network’s adjacency matrix). This well-
known threshold has been recently shown not to be tight in several cases, such as
in a star network. In this chapter, we provide tighter upper bounds on the exact
marginal probabilities of infection, by also taking pairwise infection probabilities into
account. Based on this improved bound, we derive tighter eigenvalue conditions that
guarantee fast mixing (i.e., logarithmic mixing time) of the chain. We demonstrate
the improvement of the threshold condition by comparing the new bound with the
known one on various networks with various epidemic parameters.

3.1 Introduction
The mathematical modeling and analysis of epidemic spread is of great importance
in understating dynamical processes over complex networks (e.g., social networks)
and has attracted significant interest from different communities in recent years. The
study of epidemics plays a key role in many areas beyond epidemiology [29], such
as viral marketing [168, 175], network security [8, 2], and information propagation
[109, 56]. Although there is a huge body of work on epidemic models, classical
ones mostly neglect the underlying network structure and assume a uniformly mixed

41

population, which is obviously far from reality. However, in recent years, more
realistic networked models have been introduced, and many interesting results are
now known [155, 165].

In the simplest case (the binary-state or SISmodel), each node is in one of two different
states: susceptible (S) or infected (I). During any time interval, each susceptible
(healthy) node has a chance of being independently infected by any of its infected
neighbors (with probability V). Further, during any time interval, each infected node
has a chance of recovering (with probability X) and becoming susceptible again. For
a network with = nodes, this yields a Markov chain with 2= states, which is referred
to as the exact or “stochastic” model. Since analyzing this model is quite challenging,
most researchers have resorted to =-dimensional linear and nonlinear approximations
(the most common being the “mean-field” approximation), which are sometimes
called “deterministic” models. This chapter focuses on improving known bounds on
the exact model.

The spreading process can be considered either as a discrete-time Markov chain or
a continuous-time one. Although the discrete-time model is sometimes argued to
be more realistic [79, 4], there is no fundamental difference between the two, and
similar results have been shown for both. We focus on the discrete-time Markov
chain here.

It is known that these epidemic models exhibit a phase transition behavior at a certain
threshold [53, 30] , i.e., once the effective infection rate g = V

X
approaches a critical

value g2 [155] the epidemic appears not to die out. We should remark that the Markov
chain has a unique absorbing state, which is the all-healthy state, because once the
system reaches this state, it remains there forever since there are no infected nodes
to propagate infections. This means that if we wait long enough, the epidemic will
eventually die out, which may seem to be odd at first. However, what this means
is that the question of the epidemic dying out is not interesting; what is interesting
is the question of how long it takes for the epidemic to die out. In particular, if the
mixing time of the Markov chain is exponentially large, one will not see it dying out
in any reasonable time. Therefore, the right question to ask is what is the mixing
time of the Markov chain (or, equivalently, its mean-time-to-absorption); it turns
out that the threshold g2 corresponds to the phase transition between “slow mixing"
(exponential time) and “fast mixing" (logarithmic time) of the MC [64, 204, 205].

The epidemic threshold (critical value) of general networks is still an open problem.
However, lower- and upper-bounds have been found using different techniques [64,

42

Figure 3.1: State diagram of a single node in the SIS model, and the transition rates.
Wavy arrow represents exogenous (neighbor-based) transition. V : probability of
infection per infected link, X : probability of recovery.

205]. The best known lower-bound is 1/_max(�), i.e., the inverse of the leading
eigenvalue of the adjacency matrix, which is derived by upper-bounding the marginal
probabilities of infection and using a linear dynamical system. In fact, this method
relies on keeping track of = variables which are upper bounds on the marginal
probability of infection for any of the nodes. In this chapter, we focus on improving
this upper-bound on the infection probabilities and ultimately the lower-bound on
the epidemic threshold. The key idea is to maintain the “pairwise” probabilities of
nodes’ infections, in addition to the marginals. This comes at the cost of increased,
yet still perfectly feasible, computation. There is a trade-off between the tightness of
the bound and the complexity, and in theory if one takes into account all marginals,
pairs, triples, and higher-order terms, we get back to the original 2=-state Markov
chain.

We first briefly review the known bound with marginals, and show a simple alternative
approach for deriving it. We then move on to pairs and use the machinery developed
in Section 3.2 to derive tighter bounds on the probabilities and connect them with the
mixing time of the Markov chain (Sections 3.3 and 3.4). Finally, we demonstrate the
improvement of the bounds through extensive simulations (Section 3.5) and conclude
with future directions.

3.2 The Markov Chain and Marginal Probabilities of Infection
Let � = (+, �) be an arbitrary connected undirected network with = nodes, and
with adjacency matrix �. Each node can be in a state of health, represented by “0,”
or a state of infection, represented by “1.” The state of the entire network can be
represented by a binary n-tuple b (C) = (b1(C), · · · , b= (C)) ∈ {0, 1}=, where each of
the entries represents the state of a node at time C, i.e., 8 is infected if b8 (C) = 1 and it
is healthy if b8 (C) = 0.

Given the current state b (C), the infection probability of each node in the next step

43

is determined independently, and therefore, the transition matrix (of this Markov
Chain has elements (-,. = P(b (C + 1) = . |b (C) = -) of the following form:

P(b (C + 1) = . |b (C) = -) =
=∏
8=1
P(b8 (C + 1) = .8 |b (C) = -), (3.1)

for any two state vectors -,. ∈ {0, 1}=.

As mentioned before, a healthy node can receive infection from any of its infected
neighbors independently with probability V per infected link, and an infected node
can recover from the disease with probability X. That is

P(b8 (C + 1) = .8 |b (C) = -) =
(1 − V)<8 if (-8, .8) = (0, 0), |#8 ∩ S(-) | = <8,

1 − (1 − V)<8 if (-8, .8) = (0, 1), |#8 ∩ S(-) | = <8,
X if (-8, .8) = (1, 0), |#8 ∩ S(-) | = <8,

1 − X if (-8, .8) = (1, 1), |#8 ∩ S(-) | = <8,

(3.2)

where S(-) is the support of - ∈ {0, 1}=, i.e., S(-) = {8 : -8 = 1}, and #8 is the set
of neighbors of node 8.

Eqs. (3.1, 3.2) completely define the 2= × 2= transition matrix of the Markov chain,
which determines the evolution of the 2= states over time. Of course with this, we
have the joint probability of all the nodes, and we can compute the probability of any
desired combination by marginalizing out the rest. In particular, one can compute the
probability of each node 8 being infected at time C + 1 (denoted by ?8 (C + 1)), which
is a function of all joint probabilities of the states at time C. Since there are only =
such variables, the dimension would be significantly reduced if one could “bound” or
“approximate” that function by something that includes marginals ?8 (C) only. This
way, we obtain a recursion which relates the marginals at time C + 1 to those of time C,
and indeed we have a system with only = states rather that 2= states. Approximations
per se are not very interesting because they do not provide any guarantee on the
behavior of the exact Markov chain model. What is more important is whether one
can obtain a bound on these true probabilities, which can guarantee, for example, fast
extinction of the disease. The most common upper-bound, which has been shown to
be the tightest linear upper-bound with marginals only (using a linear programming
technique) [6, 16] is:

?8 (C + 1) ≤ (1 − X)?8 (C) + V
∑
9∈#8

? 9 (C) (3.3)

44

for all 8 = 1, . . . , =. Defining ?(C) = (?1(C), . . . , ?= (C))) , this can be written in a
matrix form as

?(C + 1) � "?(C), (3.4)

where
" = (1 − X)�= + V�. (3.5)

3.2.1 An Alternative Bounding Technique
The derivation of (3.3) in [6, 16] involves a linear programming technique. In this
chapter, we provide an alternative technique to bound the infection probabilities
using indicator variables and conditional expectation, which is more intuitive and
direct. Importantly, as will be shown later, this technique can be used to obtain
tighter bounds on the exact probabilities of infections using pairwise inflectional
probabilities. Before that, it is instructive to derive (3.3) using this alternative
approach.

Let 8 ∈ + . We start by conditioning on the state of the same node 8 at time C, as
follows:

?8 (C + 1) =P(-8 (C + 1) = 1|-8 (C) = 1)P(-8 (C) = 1)
+ P(-8 (C + 1) = 1|-8 (C) = 0)P(-8 (C) = 0).

The probability that an infected node remains infected is 1 − X, and the probability
that a susceptible node does not receive infection from an infected neighbor is 1 − V.
We denote 9 neighbor of 8 by 9 ∼ 8. The expression above can be written as

?8 (C + 1) = (1 − X)?8 (C) + E-−8 (C) |-8 (C)=0

[
1 −

∏
9∼8
(1 − V1- 9 (C))

]
P(-8 (C) = 0). (3.6)

The conditional expectation is on the joint probability of all nodes other than 8
(denoted by -−8), given node 8 being healthy (-8 = 0). Of note, this expression is
still exact, and we have not done any approximation yet. It can be easily checked that∏

9∼8
(1 − V1- 9 (C)) ≥ 1 − V

∑
9∼8

1- 9 (C) .

Combining this with (3.6) yields the desired upper bound

?8 (C + 1) ≤ (1 − X)?8 (C) + V
∑
9∼8
P(-8 (C) = 0, - 9 (C) = 1) (3.7)

≤ (1 − X)?8 (C) + V
∑
9∼8
? 9 (C).

45

3.2.2 Connection to Mixing Time of the Markov Chain
Up to this point, we just talked about bounding the marginal probabilities of infection,
and it is not clear how a bound on the marginal probabilities relates to the mixing
time of the Markov chain. To establish this connection, let us start from the definition
of mixing time [126]:

C<8G (n) = min{C : sup
`

‖`(C − c‖)+ ≤ n}, (3.8)

where ` is any initial probability distribution defined on the state space, and c is
the stationary distribution; ‖` − `′‖)+ is the total variation distance of any two
probability measures ` and `′, and is defined by

‖` − `′‖)+ =
1
2

∑
G

|`(G) − `′(G) |,

where G is any possible state in the probability space. In fact C<8G (n) is the minimum
time instant for which the distance between the stationary distribution and the
probability distribution at time C from any initial distribution is smaller than or equal
to n . Roughly speaking, the mixing time measures how fast the initial distribution
converges to the limit distribution, which, in our case, means how quickly the
epidemic dies out.

Since, in the stationary distribution, the all-healthy state has probability 1, it can be
shown [6] that

sup
`

‖`(C − c‖)+ = P
(
some nodes are infected at time C |
all nodes were infected at time 0

)
(3.9)

which highlights the fact that the worst initial distribution (i.e., the ` that maximizes
above quantity) is the all-infected state. Now, for any C < C<8G (n) we have

n < P
(
some nodes are infected at time C |
all nodes were infected at time 0

)
≤

=∑
8=1
P

(
node 8 is infected at time C |
all nodes were infected at time 0

)
= 1)= ?(C) given that ?(0) = 1=, (3.10)

where we have used the union bound, and 1= denotes the all-ones vector of size =.

Back to the upper-bound on the marginals (3.4), we get 1)= ?(C) ≤ 1)="?(C − 1).
Furthermore, since " has non-negative entries (we write this as " ≥ 0), we can
“propagate” the bound to find that

1)= ?(C) ≤ 1)="?(C − 1) ≤ 1)="2?(C − 2) ≤ · · · ≤ 1)=" C ?(0).

46

As a result, for any C < C<8G (n)

n < 1)=" C1= ≤ =(d("))C , (3.11)

since " is non-negative and symmetric, and _max(") = d("), where d(") is the
spectral radius of " .

When d(") < 1 (or equivalently 1− X + V_<0G (�) < 1), it follows that C < log =
n

− log d(")
for all C < C<8G (n). This implies the well-known result that when V/X < 1/_max(�)
then C<8G (n) ≤

log =
n

− log d(") = $ (log =).

We should note here that if" was not symmetric (as we will encounter such instances
in the next section), it can be shown by an appeal to the Lyapunov equation that if
d(") < 1, then for all C < C<8G (n), there exists 0 < [< 1 such that n ≤ [C$ (poly(=)),
from which it follows directly that the mixing time is logarithmic in =. To see that,
note that d(") < 1 implies that there exists a positive definite matrix % � 0 such
that ")%" − % ≺ 0. Letting %1/2 denote the unique positive square root of % and
:= %1/2"%−1/2, it follows easily that #)# ≺ �3 , or equivalently [:= ‖# ‖2 < 1.
(Here, ‖# ‖2 denotes the spectral norm of # .) Defining H := %1/21= and G := %−1/21=
we get 1)=" C1= = G)# CH ≤ ‖G‖2[C ‖H‖2 ≤ =[C ‖%1/2‖2‖%−1/2‖2.

3.3 Pairwise Probabilities (?8 9)
In Section 3.2, we showed how a bound on marginal probabilities of infection can be
obtained, and how this bound translates to the threshold condition for fast mixing of
the Markov chain. As mentioned before, the bound (3.4) has been proved to be the
tightest linear bound one can get with marginals. A natural idea to improve this bound
is to go to higher-order terms (i.e., pairs, triples, etc.). In principle, maintaining
higher-order terms is advantageous because it means keeping more information from
the original chain, but of course at the cost of increased complexity. We define
the pairwise probability of infection of two nodes, in addition to the marginals, as
follows. For (8, 9) ∈ � ,

?8 9 (C) := P(-8 (C) = 1, - 9 (C) = 1).

Note that out of the
(=
2
)
possible pairs of nodes, we only consider the ones that

correspond to edges in the graph. Based on this definition, P(-8 (C) = 0, - 9 (C) =
1) = ? 9 (C) − ?8 9 (C), and it follows easily from (3.7) that

?8 (C + 1) ≤ (1 − X)?8 (C) + V
∑
9∼8
? 9 (C) − V

∑
9∼8
?8 9 (C). (3.12)

47

Of course, this bound is at least as tight as the one in (3.3). Now, in order to strictly
improve upon the latter, we need a lower bound on the pairwise infection probabilities
at time C + 1 in terms of marginals and pairwise probabilities at time C, which is
derived next.

3.3.1 A Lower Bound on the ?8 9 ’s
To construct a lower bound on the pairwise marginal probabilities ?8 9 (C + 1), we
use the same approach as was introduced in Section 3.2.1, but this time applied to
pairwise infection probabilities.

Let (8, 9) ∈ � and C ≥ 0. We first expand ?8 9 (C + 1) as follows∑
G∈{0,1}
H∈{0,1}

P(-8 (C + 1) = 1, - 9 (C + 1) = 1, -8 (C) = G, - 9 (C) = H).

For convenience, denote each one of the summands above by BGH. Also, let 2GH
represent the corresponding conditional probability P(-8 (C + 1) = 1, - 9 (C + 1) =
1|-8 (C) = G, - 9 (C) = H). In what follows, we lower bound each one of BGH’s. We
write EGH for the conditional expectation E-−8,− 9 (C) |{-8 (C)=G,- 9 (C)=H}.

• (x=0,y=0): Trivially, B00 ≥ 0.

• (x=0,y=1): As before, the probability of not getting infected from each infected
neighbor is (1 − V), and the probability that an infected node remains infected is
(1 − X). Therefore

201 = E01
[
(1 −

∏
:∼8
(1 − V1-: (C))) (1 − X)

]
.

Since 9 ∼ 8 and 0 ≤ V ≤ 1, it follows that
∏
:∼8 (1− V1-: (C)) ≤ (1− V1- 9 (C)). Hence

201 ≥ V(1 − X)E011- 9 (C) , which eventually gives

B01 ≥ V(1 − X)P(-8 (C) = 0, - 9 (C) = 1)
≥ V(1 − X)? 9 (C) − V(1 − X)?8 9 (C).

• (x=1,y=0): By symmetry, the exact same argument as above implies

B10 ≥ V(1 − X)?8 (C) − V(1 − X)?8 9 (C).

• (x=1,y=1): Clearly 211 = (1 − X)2, which gives

B11 ≥ (1 − X)2?8 9 (C).

48

Summing all the above terms yields the following lower bound for all (8, 9) ∈ � and
C ≥ 0:

?8 9 (C + 1) ≥ (1 − X)V(?8 (C) + ? 9 (C)) + (1 − X) (1 − X − 2V)?8 9 (C). (3.13)

3.3.2 Back to the Mixing Time
In order to express Eqs. (3.12) and (3.13) for all 8 and 9’s together in a matrix form,
recall the definition ?(C) = (?1(C), . . . , ?= (C))) . Further, let us define ?� (C) ∈ R|� |

as the vector of pairwise infection probabilities, i.e., ?� (C) = vec(?8 9 (C) : (8, 9) ∈ �).
Note that ?8 9 (C) = ? 98 (C), so for each edge we only keep track of one of the two terms.
Now we can write Eqs. (3.12), (3.13) as[

?(C + 1)
−?� (C + 1)

]
� "′

[
?(C)
−?� (C)

]
, (3.14)

The matrix "′, after a little bit of thought, can be expressed in the following way:

"′ =

[
(1 − X)�= + V� V�

−(1 − X)V�) (1 − X) (1 − X − 2V)� |� |

]
, (3.15)

where � ∈ R|+ |×|� | happens to be the incidence matrix of �, which is formally
defined as

�8,4 =


1 if 8 is an endpoint of 4,

0 otherwise,

for all 8 ∈ + and 4 ∈ � .

By accounting for pairwise infection probabilities, the bound derived in (3.14) is
tighter when compared to the one in (3.4). In order to connect this to the the mixing
time of the underlying Markov chain, observe that

1)= ?(C) =
[
1)= 0)|� |

] [
?(C)
−?� (C)

]
.

Applying (3.14) to this gives,

1)= ?(C) ≤
[
1)= 0)|� |

]
"′

[
?(C − 1)
−?� (C − 1)

]
. (3.16)

This step is possible because the entries of the vector
[
1)= 0)|� |

]
are all non-negative,

which guarantees that the signs of all the = + |� | inequalities in (3.14) are preserved.

49

With this note, it becomes clear that in order to be able to propagate the bounds for
the remaining time instances C − 2, C − 3, . . . , 0, a sufficient condition would be[

1)= 0)|� |
]
("′)C ≥ 0, for all C ≥ 1. (3.17)

Provided that (3.17) holds, we can continue with the sequence of bounds after (3.16),
which results in

1)= ?(C) ≤
[
1)= 0)|� |

]
("′)C

[
?(0)
−?� (0)

]
. (3.18)

Subsequently, the same argument as in Section 3.2.2 concludes the following result.

Theorem 15. Assume that (3.17) holds. If d("′) < 1, then the mixing time of the
Markov chain whose transition matrix (is described by Eqs. (3.1) and (3.2) is
$ (log =).

From the standard bound with only marginals, it was known that when d(") < 1, the
Markov chain is fast-mixing. Now, in addition to that, the above theorem states that
when d("′) < 1, the Markov chain mixes fast again. Of course, this is informative
only when there is a case where d(") > 1 but d("′) < 1. As it will be shown in
Section 3.5, this is indeed the case.

Note that, in the proof of Theorem 15, we used the assumption that (3.17) holds.
As will be shown in the simulations section, in many cases this is a reasonable
assumption. However, when the assumption does not hold we cannot appeal to this
theorem. For this reason, we propose another bound using an alternative pairwise
probability, which does not require such a condition.

3.4 An Alternative Pairwise Probability (@8 9)
As it was discussed above, when the assumption (3.17) does not hold, we seek an
alternative bound. Let us define

@8 9 (C) := P(-8 (C) = 0, - 9 (C) = 1).

We can use the same approach as before to obtain bounds for ?8, @8 9 ’s. Intuitively,
lower bounding ?8 9 (C + 1) is equivalent with upper bounding @8 9 (C + 1), and it turns
out that it is what we need. The next lemma summarizes the bounds on these
probabilities.

50

Lemma 16. For all 8, 9 ∈ + , (8, 9) ∈ � and C ≥ 0, it holds that

?8 (C + 1) ≤ (1 − X)?8 (C) + V
∑
ℓ∼8

@8ℓ (C) (3.19)

@8 9 (C + 1) ≤ X(1 − X)? 9 (C) + (1 − X) (1 − X − V)@8 9 (C)
+ VX@ 98 (C) + V(1 + X)

∑
ℓ∼ 9
ℓ≠8

@ 9ℓ (C) (3.20)

Proof. Observe that (3.19) is nothing but (3.12) expressed in terms of @8 9 ’s. Now let
(8, 9) ∈ � . We first expand @8 9 (C + 1) as follows∑

G∈{0,1}
H∈{0,1}

P(-8 (C + 1) = 0, - 9 (C + 1) = 1, -8 (C) = G, - 9 (C) = H).

For convenience, denote each one of the summands above by BGH. Also, let 2GH
denote the corresponding conditional probabilities P(-8 (C + 1) = 0, - 9 (C + 1) =
1|-8 (C) = G, - 9 (C) = H). In what follows, we upper bound each one of the BGH’s; this
will immediately yield (3.20). All expectations below are conditional on the event
{-8 (C) = G, - 9 (C) = H}, which is omitted for the sake of convenience.

• (x=0,y=0): Using the fact that

200 = E00
[
(
∏
:∼8
(1 − V1-: (C)))︸ ︷︷ ︸
≤1

(1 −
∏
ℓ∼ 9
(1 − V1-ℓ (C)))︸ ︷︷ ︸

≤V∑
ℓ∼ 9 1-ℓ

]
,

we find that B00 ≤ V
∑
ℓ∼ 9 P(-8 (C) = 0, - 9 (C) = 0, -ℓ (C) = 1) ≤ V∑

ℓ∼ 9
ℓ≠8

@ 9ℓ (C).

• (x=0,y=1): From

201 = E01
[
(
∏
:∼8
(1 − V1-: (C))) (1 − X)

]
≤ (1 − V) (1 − X),

it follows that B01 ≤ (1 − V) (1 − X)@8 9 (C).

• (x=1,y=0): Using the fact that

210 = E10
[
X(1 −

∏
ℓ∼ 9
(1 − V1-ℓ (C)))

]
≤ E10

[
VX

∑
ℓ∼ 9

1-ℓ

]
,

we find that B10 ≤ VX
∑
ℓ∼ 9 P(-8 (C) = 1, - 9 (C) = 0, -ℓ (C) = 1) ≤ VX∑

ℓ∼ 9 @ 9ℓ (C).

• (x=1,y=1): Using the fact that 211 = X(1− X), we find that B11 = X(1− X)P(-8 (C) =
1, - 9 (C) = 1) = X(1 − X) (? 9 − @8 9).

�

51

Similar as before, by defining a vector @� (C) ∈ R2|� | as @� (C) = vec(@8 9 (C) : (8, 9) ∈
�), we can express (3.19) and (3.20) as[

?(C + 1)
@� (C + 1)

]
� "′′

[
?(C)
@� (C)

]
, (3.21)

for some appropriately defined square matrix "′′ of size = + 2|� |. It is easy to see
that if 1− X− V ≥ 0, then "′′ ≥ 0, i.e., all entries of M are nonnegative. In particular,
this implies that "′′ satisfies (3.17), and it only takes repeating the same argument
as in (3.18) to conclude with the following theorem.

Theorem 17. If d("′′) < 1 and 1 − X − V ≥ 0, then the mixing time of the Markov
chain whose transition matrix (is described by Eqs. (3.1) and (3.2) is $ (log =).

3.5 Experimental Results
In this section, we demonstrate the performance of the proposed bounds by evaluating
them on a variety of networks such as clique, Erdős-Rényi, Watts-Strogatz, star graph,
line graph, cycle, and star-line graph, with various parameters V and X. As mentioned
before, in order for any of the two threshold conditions proposed in Sections 3.3 and
3.4 to be an improvement, we need to check if there are cases where the spectral
radius of "′ or "′′ is less than 1, while the spectral radius of " is greater than 1 (or
equivalently V_max (�)

X
> 1). Indeed, extensive simulations on our first bound ("′)

suggest that not only are there such cases, but interestingly always d("′) ≤ d(").

In order to compare "′ with " , we set d(") = 1 + n > 1 for some small value of n ,
and observe the value of d("′). Table 3.1 lists the values of spectral radii for the
three matrices. The positive sign next to d("′) indicates that the non-negativity
condition (3.17) holds. For the cases that the condition holds (+), we can conclude
that "′ has clearly improved. For the cases where the condition does not hold (-) we
evaluate the second proposed bound "′′, which again shows clear improvement over
the d(") < 1 condition.

In order to demonstrate how tight the new condition is, Fig. 3.2 plots the evolution
of the epidemic over a star graph, for which the d(") < 1 condition is known
not to be tight. The parameters in the two cases are X = 0.3, V = 0.0130, and
X = 0.3, V = 0.0157. It can be seen that while the value of V_max (�)

X
is not informative

(it is 1.93 > 1 for the first case, and 2.33 > 1 for the second one), the d("′) condition
is quite tight.

52

Table 3.1: Performance of the proposed bounds "′ and "′′ in comparison with the
previous bound " . Boldface values show an improvement over " . The signs next to
d("′) indicate whether the non-negativity condition (required for the proof) holds.

d(") =

1 + n
d("′) d("′′)

Star X=0.750, V=0.078 1.030 0.903 +

X=0.500, V=0.053 1.030 0.828 +

X=0.250, V=0.028 1.030 0.840 - 0.968

Cycle X=0.750, V=0.390 1.030 0.817 +

X=0.500, V=0.265 1.030 0.720 - 0.945

X=0.250, V=0.140 1.030 0.882 - 0.942

Star-line X=0.750, V=0.174 1.030 0.872 +

X=0.500, V=0.118 1.030 0.693 - 0.958

X=0.250, V=0.063 1.030 0.856 - 0.955

Clique X=0.750, V=0.008 1.003 0.999 +

X=0.500, V=0.005 1.003 0.998 +

X=0.250, V=0.003 1.003 0.999 +

Erdős- X=0.750, V=0.070 1.030 0.993 +

Rényi X=0.500, V=0.048 1.030 0.977 +

X=0.250, V=0.026 1.030 0.984 +

Watts- X=0.750, V=0.077 1.030 0.991 +

Strogatz X=0.500, V=0.053 1.030 0.974 +

X=0.250, V=0.028 1.030 0.982 +

53

0 100 200 300 400 500 600 700 800 900 1000

Time Step

0

100

200

300

400

500

600

700

800

900

1000

N
um

be
r

of
 In

fe
ct

ed
 N

od
es

ρ(M ′) = 1.05 > 1
ρ(M ′) = 0.99 < 1

Figure 3.2: Evolution of the SIS epidemic over a star graph with = = 2000 nodes,
with two values of d("′) below and above 1. When d("′) = 0.99 < 1, we observe
fast extinction of the epidemic (blue curve). The condition also seems very tight, as
for d("′) = 1.05 > 1, the epidemic does not die out (red curve). This is while the
previously known bound is not informative at all (V_max (�)

X
= 1.93 > 1 for the first

case, and 2.33 > 1 for the second one).

3.6 Conclusion and Future Work
In this chapter, we first proposed a simple technique using conditional expectations
to systematically construct bounds on the exact probabilities of infection, up to any
desired order. Using this approach, we showed that keeping higher-order terms (such
as pairs) indeed helps in obtaining tighter bounds; specifically, we derived a bound
composed of both marginals and pairwise probabilities, which has improved over
the well-known bounds. Based on this new bound, we provided a new condition for
fast mixing of the Markov chain to the all-healthy state, which, through extensive
simulations, was shown to be tighter than the so-called V_max (�)

X
< 1 condition.

Clearly, one possible extension of this work would be to construct a bound consisting
of marginals, pairs, and triples, which in theory should result in an improvement. In
fact, keeping all higher-order terms eventually takes us back to the 2=-state Markov
chain. Therefore, there is a trade-off between the complexity and the accuracy of the
model. We should however note that going to triples may still be tractable, and one
advantage of that would be not only to gain by improving the bound on the probability

54

(same as here) but also to get an improvement in the fast-mixing condition of the chain
in the sense that the bound (3.10) can be replaced by n <

∑
8 ?8 −

∑
8, 9 ?8 9 +

∑
8, 9 ,: ?8 9 : ,

which naturally includes all terms rather than just the marginals. As a last comment,
based on the simulations, we conjecture that condition (3.17) may be relaxed, and
other future work may concern its proof.

Part II

Incentives and Markets

55

56

C h a p t e r 4

OPTIMAL PRICING IN MARKETS WITH NON-CONVEX COSTS

[1] Navid Azizan et al. “Optimal Pricing in Markets with Non-Convex Costs”. In:
Proceedings of the 2019 ACM Conference on Economics and Computation
(EC). Phoenix, AZ, USA, 2019, p. 595. isbn: 978-1-4503-6792-9. doi:
10.1145/3328526.3329575.

[2] Navid Azizan et al. “Optimal Pricing in Markets with Nonconvex Costs”. In:
Operations Research 68.2 (2020), pp. 480–496. doi: 10.1287/opre.2019.
1900.

Designing markets and incentives in large-scale systems is crucial for efficient
operation of the system. In this chapter, we consider a market run by an operator, who
seeks to satisfy a given consumer demand for a commodity by purchasing the needed
amount from a group of competing suppliers with non-convex cost functions. The
operator knows the suppliers’ cost functions and announces a price/payment function
for each supplier, which determines the payment to that supplier for producing
different quantities. Each supplier then makes an individual decision about how
much to produce, in order to maximize its own profit. The key question is how to
design the price functions. To that end, we propose a new pricing scheme, which is
applicable to general non-convex costs, and allows using general parametric pricing
functions. Optimizing for the quantities and the price parameters simultaneously,
and the ability to use general parametric pricing functions, allows our scheme to
find prices that are typically economically more efficient and less discriminatory
than those of the existing schemes. In addition, we supplement the proposed method
with a polynomial-time approximation algorithm, which can be used to approximate
the optimal quantities and prices. Our framework extends to the case of networked
markets, which, to the best of our knowledge, has not been considered in previous
work.

4.1 Introduction
While there has been a long history of studying markets under convexity assumptions
(such as convexity of cost functions, preferences, etc.) in economic theory, non-
convexities are ubiquitous in most real-world markets. Non-convexities in cost

57

functions arise due to start-up or shut-down costs, indivisibilities, avoidable costs, or
simply economies of scale.

It has been widely noted in the literature that in the presence of non-convexities,
there may be no linear prices (constant per quantity) that support a competitive
market equilibrium [e.g., 46, 83], and it was suggested as early as the 1980s that
in these markets, one needs to consider using price functions, as opposed to the
conventional prices [212]. Following the work of [178, 179], there have been many
pricing schemes proposed in the literature. In particular, during the past decade,
motivated by the deregulation of the electricity markets in the US and around the
world, the problem of pricing in non-convex markets has attracted renewed interest
from researchers, and there has been considerable work on this problem [131]. These
pricing schemes are deployed in practice, and the operation and efficiency of our
electricity markets relies on them.

Formally, the non-convex pricing problem is that, given an inelastic demand for
a commodity from a number of consumers, a market operator seeks to satisfy the
demand by purchasing the required amount from a group of competing suppliers
with non-convex cost functions. The operator knows the suppliers’ cost functions,
and it announces a price/payment function for each supplier, which determines the
payment to that supplier for producing different quantities. Each supplier then makes
an individual decision about how much to produce in order to maximize its own
profit. The key design question is how to devise the price functions in order to ensure
certain economic properties for the market. We should remark that this problem
is quite different from mechanism design, since the cost functions of the suppliers
are known to the market operator, and the players can influence the market only by
choosing their production level. However, as we shall see, the design of the price
functions in these markets is challenging.

An important early approach to the pricing problem was the work of [159], sometimes
referred to as integer programming (IP) pricing, which considered the class of non-
convexities that arise from the start-up costs of the suppliers (with linear marginal
costs). The paper proposes a clever pricing rule, based on solving a mixed-integer
linear program and forcing the integral variables to their optimal values as a constraint.
The scheme is economically efficient and has a nice dual interpretation. Modified
versions of IP pricing have been proposed by [39, 38] and others. Another approach,
proposed for the more general class of non-convex cost functions that are in the form
of a start-up plus a convex (rather than linear) cost, is the minimum-uplift (MU)

58

pricing of [103], and its closely related refinement of [81], known as convex hull
(CH) pricing. These schemes provide discriminatory uplifts to different suppliers
to incentivize production, and the uplifts are minimal in a specific sense [181].
The possibility of having both positive and negative uplifts was also considered by
[145, 75]. Other pricing schemes include the semi-Lagrangian relaxation (SLR)
approach of [10] and the primal-dual (PD) approach of [177]. These schemes seek
to find uniform linear prices that are revenue-adequate (but not supporting of the
equilibrium). A survey on all the above pricing schemes was recently written by
[131]. However, the overall desired properties, as well as the properties that each of
the schemes satisfy, were not examined there. We formalize the desired properties
considered in the literature in Section 4.2 and discuss the properties of the existing
schemes in Section 4.5. Table 4.1 summarizes the common schemes and their
properties.

Despite the large body of work on the pricing problem, the existing schemes have
several shortcomings. For example, most of the existing schemes mentioned above
are proposed for specific classes of non-convex cost functions and cannot handle more
general non-convexities. Furthermore, even the ones that are applicable for general
cost functions fail to satisfy some of the key desired properties of the market, such as
economic efficiency or supporting a competitive equilibrium. In addition, none of
the existing schemes is accompanied by a computationally tractable algorithm for
general non-convexities, and they typically rely on off-the-shelf heuristic solvers for
mixed-integer programs that are known to be NP-hard.

In this chapter, we propose a pricing scheme for markets with general non-convex
costs that designs arbitrary parametric price functions and addresses all the issues
mentioned above. Our approach seeks to find the optimal schedule (allocation) and the
optimal pricing rule simultaneously, which generally allows for finding economically
more efficient solutions. The ability to use arbitrarily specified parametric price
functions (e.g., piece-wise linear, quadratic, etc.) enables our approach to design
price functions that are less discriminatory, while still supporting a competitive
equilibrium. Furthermore, our pricing scheme is accompanied by a computationally
efficient (polynomial-time) approximation algorithm which allows one to find the
approximately-optimal schedule and prices for general non-convex cost functions.
Lastly, we extend the proposed pricing rule to networked markets, which, to the best
of our knowledge, are not considered in any of the existing work.

Specifically, this chapter makes the following contributions.

59

1. We propose a framework for pricing in markets with general non-convex costs,
using general price functions (Section 4.3.1). Our scheme seeks to find the
optimal price functions and allocations simultaneously, while imposing the
equilibrium conditions as constraints. For this reason, our approach is generally
economically more efficient than the existing methods, while satisfying the
equilibrium conditions. Moreover, the ability to use general price forms allows
one to obtain more uniform prices (smaller “uplifts”).

2. We supplement our pricing schemewith a computationally efficient (polynomial-
time) approximation algorithm for finding the allocations and prices (Sec-
tion 4.3.2).

3. We extend our framework to networked markets, and also propose an approxi-
mation algorithm that can compute the solution efficiently for acyclic networks,
a common scenario in electric distribution networks (Section 4.4).

4. We survey the common pricing schemes proposed in the literature for markets
with non-convex costs and provide a compact summary of their properties
(Section 4.5).

5. We evaluate the proposed method through extensive numerical examples and
show how it compares with the existing methods (Section 4.6).

4.2 Market Description and Pricing Objectives
While our goal in this chapter is to design an economically and computationally
efficient pricing scheme for non-convex networked markets, we begin with the
problem of designing one for a single market, which is difficult in its own right. We
return to the case of networked markets in Section 4.4. When the cost functions are
non-convex, even this seemingly simple problem has proven to be challenging, and a
wide variety of pricing schemes have been proposed for it in the literature. In the
following, we describe the market model and survey the desired market properties.

4.2.1 Market Model
We consider a single market consisting of = competing suppliers (often referred
to as firms or generators). The market is run by a market operator that seeks to
satisfy a deterministic and inelastic demand 3 for a commodity in a single period.
Each supplier 8 has a cost function 28 (@8) for producing quantity @8, which may be
non-convex.

60

The suppliers’ cost functions are known by the operator, and the operator uses them to
determine the prices. In particular, the operator announces price/payment functions
?8 (@8), which determine the payment to supplier 8 when producing @8. Note that, in
general, the price functions can be different for different suppliers, but it is often
desired to have close-to-uniform prices.

Upon the announcement of the price functions, each supplier 8 makes an individual
decision, based on the price function ?8 (·) and the cost function 28 (·), about how
much to produce (and whether to participate in the market), in order to maximize
its own profit, i.e., ?8 (@8) − 28 (@8). The suppliers are then paid for their production
according to the payment function, and the demand (consumers) is charged for the
total payment.

This model is classical, and has been studied in a wide variety of contexts, initially
under the assumption of convex cost functions for production and linear pricing
functions, but more recently under non-convex cost functions. Non-convex cost
functions are particularly important in the context of electricity markets. As a
result, there is a large literature focusing on non-convex pricing in electricity markets
(see [131] for a recent survey). Often this literature assumes specific forms of
non-convexities (e.g., startup/fixed costs) and specific forms of payment functions
(e.g., linear plus uplift). The results from this literature have guided the design and
operation of electricity markets across the world today.

4.2.2 Pricing Objectives
The key design question in the market described above is how to devise the payment
functions. The goal of the operator is to (1) find the optimal quantities @∗

8
, and (2)

design the payment functions ?8 (·) that ensure that the suppliers produce the optimal
quantities @∗

8
.

There is a huge design space for such payment functions, and there is a large literature
evaluating proposals in the context of non-convex cost functions, e.g., [159, 103, 39,
81, 10, 177, 131, 181, 107].

From this literature has emerged a variety of desirable properties which pricing rules
attempt to satisfy. The following is a summary of the most sought-after properties in
this literature. Note that no existing rules satisfy all of these properties for general
non-convex markets.

61

1. Market Clearing (a.k.a. Load Balancing): The total supply is equal to the
demand, i.e.,

∑=
8=1 @

∗
8
= 3.

2. Economic Efficiency

a) Minimal Production Cost (Suppliers’ Total Cost): The total production
cost of the suppliers, i.e.,

∑=
8=1 28 (@∗8), is minimal.

b) Minimal Payment (Total Paid Cost): The total cost that is paid to the
suppliers for the commodity, i.e.,

∑=
8=1 ?8 (@∗8), is minimal.

3. Incentivizing

a) Revenue Adequacy: For every supplier, the net profit at the optimum is
nonnegative, i.e., ?8 (@∗8) − 28 (@∗8) ≥ 0, for 8 = 1, . . . , =.

b) Support a Competitive Equilibrium: The optimum production quan-
tity for each supplier is a maximizer of its individual profit, i.e.,
@∗
8
∈ arg max@8 ?8 (@8) − 28 (@8), or equivalently ?8 (@∗8) − 28 (@∗8) ≥

max@8≠@∗8 ?8 (@8) − 28 (@8), for 8 = 1, . . . , =.

4. Simplicity and Uniformity: The price functions are simple and interpretable
(ideally linear: ?8 (@8) = _8@8) and non-discriminatory (ideally uniform across
suppliers: ?8 (@8) = ?(@8)).

5. Computational Tractability: The optimal quantities and price functions can
be computed/approximated in time that is polynomial in =.

A few remarks about these properties are warranted. Property 1 ensures that the
demand is met. Property 2 is somewhat more elaborate and concerns the economic
efficiency of the scheme, in terms of total expenditure. Even though in certain cases
(e.g., in IP pricing of [159] for startup-plus-linear costs), the suppliers’ total cost∑=
8=1 28 (@8) and the total paid cost

∑=
8=1 ?8 (@8) match and are both minimal, there

is an inevitable gap between the two in general. Ultimately, the quantity which
determines the cost of satisfying the demand is the total payment to the suppliers∑=
8=1 ?8 (@8), and therefore Property 2b is arguably more crucial than Property 2a.

However, ostensibly, because the price functions are not directly available while
computing the optimal quantities, many pricing schemes have resorted to minimizing
the total suppliers’ cost

∑=
8=1 28 (@8) as a surrogate for the paid cost. In this work, we

advocate a direct approach for minimizing the total payment.

62

Property 3 incentivizes the suppliers to follow the dispatch and produce the socially-
optimal quantities. More specifically, Property 3a ensures that the suppliers do not
lose by producing @∗

8
, and further, Property 3b assures that it is in each supplier’s

best interest to follow the dispatch. Property 3b is generally a stronger condition than
Property 3a, and if ?8 (0) = 28 (0) = 0 ∀8, then (3b) implies (3a).

Property 4 concerns having price forms that are “close to linear” (simple) and “close to
uniform” (non-discriminatory), in some sense. One common approach to this is to use
uniform linear prices plus a generator-dependent “uplift,” i.e., ?8 (@8) = _@8 +D81@8=@∗8 ,
and try to minimize the uplifts D8. As Property 4 is subjective by its nature, we allow
arbitrary parametrized price functions in our scheme. However, we also examine our
scheme when applied to the popular minimal-uplift approach. Note that Property 4
also rules out the use of “dictatorial” prices, in which the operator pays the cost (plus
an n) only at the desired amount, and pays nothing for any other amount produced.

The final property, Computational Tractability, is particularly challenging to address
in the context of non-convex markets. Nearly all standard approaches work by
computing the optimal production quantities and then deriving the prices from these
quantities in some way. Under general non-convex cost functions, this first step is
already computationally intractable. Thus, it is important to consider relaxations
(approximations) of other properties if the goal is to enforce computational tractability.
To that end, we consider approximate versions of the Incentivizing and Economic
Efficiency conditions, which we discuss in Section 4.3.2. We propose an algorithm
that satisfies these approximate versions, while being computationally tractable.

4.3 Proposed Scheme: Equilibrium-Constrained Pricing
Most existing schemes in the literature (see Section 4.5 for a detailed summary) are
proposed for specific classes of non-convexities, and are not applicable for more
general non-convex costs. Furthermore, even the ones that are applicable for more
general cost functions either already lack some of the key properties (such as economic
efficiency) or they lose those properties for more general costs. Additionally, the
existing schemes are not accompanied by a computationally tractable algorithm for
general non-convexities, and they typically rely on off-the-shelf heuristic solvers for
mixed-integer programs that are NP-hard. This serves to emphasize that no existing
pricing scheme satisfies the desired properties described in Section 4.2.2.

The main contribution of this chapter is the introduction of a new pricing scheme,
Equilibrium-Constrained (EC) pricing, which is applicable to general non-convex

63

costs, allows using general parametric price functions, and satisfies all the desired
properties outlined before, as long as the price class is general enough. The name
of this scheme stems from the fact that we directly impose all the equilibrium
conditions as constraints in the optimization problem for finding the best allocations,
as opposed to adjusting the prices later to make the allocations an equilibrium.
The optimization problem is, of course, non-convex, and non-convex problems are
intractable in general. However, we also present a tractable approximation algorithm
for approximately solving the proposed optimization.

We present the formulation of the optimization at the core of Equilibrium-Constrained
pricing in Section 4.3.1, and then develop an efficient algorithm for solving the
optimization problem approximately in Section 4.3.2.

4.3.1 Pricing Formulation
In this section, we propose a systematic approach for determining a pricing rule
under generic non-convex costs that minimizes payments and satisfies the properties
outlined in Section 4.2.2, while allowing flexibility in the choice of the form of price
functions.

Specifically, consider a class of desired price functions, denoted by P, which can be
an arbitrary class such as linear, linear plus uplift, piece-wise linear, etc. This choice
can be due to interpretability/uniformity reasons or other practical considerations.
The core of Equilibrium-Constrained pricing is an optimization problem for finding
the best price functions in P and the best allocations at the same time. The operator is
buying the commodity from the suppliers, on behalf of the consumers, and therefore
its objective is to minimize the total cost incurred (total payment), subject to the
equilibrium constraints. The optimization problem can be expressed as follows.

Equilibrium-Constrained (EC) Pricing:

?∗ = min
@1,...,@=

?1,...,?=∈P

=∑
8=1

?8 (@8) (4.1a)

s.t.
=∑
8=1

@8 = 3 (4.1b)

?8 (@8) − 28 (@8) ≥ 0, 8 = 1, . . . , = (4.1c)

?8 (@8) − 28 (@8) ≥ max
@′
8
≠@8

?8 (@′8) − 28 (@′8), 8 = 1, . . . , = (4.1d)

Constraints (4.1b), (4.1c), and (4.1d) are the Market Clearing, Revenue Adequacy,

64

and Competitive Equilibrium conditions, respectively. Constraint (4.1d) can also be
equivalently expressed as

?8 (@8) − 28 (@8) ≥ ?8 (@′8) − 28 (@′8) ∀@′8 ≠ @8, 8 = 1, . . . , =. (4.2)

The key difference between EC pricing and the existing methods for pricing in
non-convex markets is that it directly minimizes the total paid cost and seeks to find
both the optimal allocations @∗

8
and the optimal price functions ?∗

8
(.) simultaneously.

The scheme enforces the desired economic properties as constraints, while allowing
the use of any class of price functions, rather than imposing a fixed form for the price.

Since this scheme minimizes the total payments, and does not impose any explicit
constraint on the total production cost, it would be natural to ask what happens to
latter quantity as we minimize the former. The minimum total production cost is
defined as 2∗ =

∑=
8=1 28 (@0

8
), where

(@0
1, . . . , @

0
=) = arg min

@1,...,@=

=∑
8=1

28 (@8) (4.3a)

s.t.
=∑
8=1

@8 = 3 (4.3b)

is the “minimal production cost” solution.

Remark. It is easy to see, by relaxing the last constraint (4.1d), and using con-
straint (4.1c), that the optimal value of the optimization problem (4.1) is bounded
below by the minimum total production cost. Mathematically, we have

?∗ ≥ min
@1,...,@=
?1,...,?=

=∑
8=1

?8 (@8) ≥ min
@1,...,@=

=∑
8=1

28 (@8) = 2∗

s.t.
=∑
8=1

@8 = 3 s.t.
=∑
8=1

@8 = 3

?8 (@8) ≥ 28 (@8), 8 = 1, . . . , =

In other words, the total production cost is always upper-bounded by the total
payment. Therefore, minimizing the total payment puts a cap on the total production
cost as well, while the opposite is not true in general (minimizing the total production
cost can result in very high payments, which can be seen in, e.g., the case studies in
Figs. 4.4a and 4.5a).

65

Remark. We have imposed nearly all the desired properties as constraints in the
optimization problem (4.1), and it might not be clear whether this optimization
problem has a solution at all. Indeed, there always exists a class of price functions for
which problem (4.1) has a solution, and further, the bound mentioned in Remark 4.3.1
is achieved.

A naive choice of price function, often referred to as dictatorial pricing, is enough to
prove this claim. In fact, one can check that for any price function of the form

?8 (@8)

= 28 (@8) for @8 = @0

8

≤ 28 (@8) for @8 ≠ @0
8

,

problem (4.1) has an optimal solution @∗ = @0, and it achieves the bound ?∗ = 2∗.

While Remark 4.3.1 asserts the existence of an optimal price function in general, the
problem may not have a solution for certain specific classes of price functions. The
key point is that problem (4.1) always allows using more sophisticated price forms
(e.g., piece-wise linear) for which it will have a solution; and for any given choice of
price form, it finds the best one, along with the optimal quantities.

Remark. While in most scenarios, the operator is buying the commodity from the
suppliers on behalf of the consumers, and it makes sense tominimize the total payments∑=
8=1 ?8 (@8), in general one may seek to balance between the consumers’ and the

suppliers’ costs. In other words, one can take the objective to be a linear combination
of the consumers’ cost

∑=
8=1 ?8 (@8) and the suppliers’ net cost (negative profit)∑=

8=1(28 (@8)− ?8 (@8)). Without loss of generality, the weighted sum can be normalized
to an affine (i.e., convex) combination (1 − \)∑=

8=1 ?8 (@8) + \
∑=
8=1(28 (@8) − ?8 (@8))

with parameter \. The optimization can be expressed as follows.

?∗\ = min
@1,...,@=

?1,...,?=∈P

(1 − 2\)
=∑
8=1

?8 (@8) + \
=∑
8=1

28 (@8) (4.4a)

s.t.
=∑
8=1

@8 = 3 (4.4b)

?8 (@8) − 28 (@8) ≥ 0, 8 = 1, . . . , = (4.4c)

?8 (@8) − 28 (@8) ≥ max
@′
8
≠@8

?8 (@′8) − 28 (@′8), 8 = 1, . . . , = (4.4d)

66

For the cases when the total payment ?∗ =
∑=
8=1 ?8 (@∗8) from the optimization

problem (4.1) matches the lower bound 2∗ =
∑=
8=1 28 (@∗8) (such as in the linear+uplift

example of Section 4.3.1.1), the solution from (4.4) is the same as that of (4.1), and
the prices will be insensitive to parameter \.

It is worth mentioning that our algorithm proposed in Section 4.3.2 for solving (4.1)
is also capable of handling the weighted problem (4.4). However, for the sake of
simplicity, we focus on the case of \ = 0.

To bemore explicit about the class of price functions, we consider a general parametric
form for P, specified by ?8 (@8) := ?(@8;U, V8) with two types of parameters U ∈ R;1 ,
and V8 ∈ R;2 for 8 = 1, . . . , =, where parameter U is shared among all the suppliers,
and it constitutes the uniform component of the price, while parameter V8 is specific
to supplier 8. The parameters are in general constrained to be in some bounded
sets A ⊆ R;1 and B ⊆ R;2 , i.e., U ∈ A, and V8 ∈ B for all 8 = 1, . . . , =. This
parametric form is general enough that it encompasses all the assumed price forms
in the literature. In particular, the linear-plus-uplift form (?8 (@8) = _@8 + D81@8=@̂8) is
a special case of this form, where the shared parameter is the uniform price _, and
the individual parameters are the amount and location of the uplifts D8, @̂8. Using
the general parametric form, the optimization problem (4.1) can be re-expressed as
follows.

Parameterized Equilibrium-Constrained (EC) Pricing:

?∗ = min
@1,...,@=
U∈A

V1,...,V=∈B

=∑
8=1

?(@8;U, V8) (4.5a)

s.t.
=∑
8=1

@8 = 3 (4.5b)

?(@8;U, V8) − 28 (@8) ≥ 0, 8 = 1, . . . , = (4.5c)

?(@8;U, V8) − 28 (@8) ≥ max
@′
8
≠@8

?(@′8;U, V8) − 28 (@′8), 8 = 1, . . . , =

(4.5d)

To show a concrete application of this general pricing scheme, we apply our framework
to the popular class of linear-plus-uplift price functions, which has been a standard
form considered in the electricity markets literature [e.g., in 103, 81], and minimize
the uplifts. We derive closed-form solutions for the optimal quantities and prices

67

(for general cost functions). In this case, the total payment matches the total cost,
which is the lowest theoretically possible. In contrast, the convex hull (CH) and
minimum-uplift (MU) pricing schemes, which are the most closely related schemes
and use the same type of price functions fail to achieve this bound and typically
exhibit a large gap. The integer programming (IP) pricing, on the other hand, is
capable of achieving the bound, but only for startup+linear cost functions, and not
for more general cost functions such as startup+convex. (See Section 4.5 for more
details on the existing schemes and their comparison with EC.)

4.3.1.1 Linear+Uplift Pricing

As mentioned earlier, using a linear uniform price plus an uplift term is a common
choice of class of price functions, in practice. For this class, we have ?(@8;_, D8, @̂8) =
_@8 + D81@8=@̂8 , where _, D1, . . . , D= ≥ 0. Without loss of generality, we can assume
@̂∗
8
= @∗

8
, i.e., the optimal location of uplift coincides with the desired production

level, which is intuitive (see the appendix for proof). The optimization problem (4.5)
can then be reduced to

?∗uplift = min
@1,...,@=
_≥0

D1,...,D=≥0

=∑
8=1
(_@8 + D8) (4.6a)

s.t.
=∑
8=1

@8 = 3 (4.6b)

_@8 + D8 − 28 (@8) ≥ 0, 8 = 1, . . . , = (4.6c)

_@8 + D8 − 28 (@8) ≥ max
@′
8
≠@8

_@′8 − 28 (@′8), 8 = 1, . . . , = (4.6d)

Remark. From Remark 4.3.1, we know that ?∗uplift ≥ 2
∗. On the other hand, plugging

the feasible point
(
@8 = @

0
8
∀8, _ = 0, D8 = 28 (@0

8
) ∀8

)
into (4.6) results in ?∗uplift ≤ 2

∗.
Therefore ?∗uplift = 2

∗.

Problem (4.6) has potentially many solutions, and the solution @8 = @0
8
∀8, _ =

0, D8 = 28 (@0
8
) ∀8 corresponds to the naive pay-as-bid scheme, which is equivalent to

having no uniform price and paying each supplier for its own cost. To obtain price
functions that are close to uniform, it is desirable to pick a solution for which the
uplifts are minimum (in ℓ1 sense, for example). That is equivalent to adding a layer
on top of the optimization problem (4.6) to pick the minimal-uplift solution among

68

Figure 4.1: An illustration of the set Λ for an example with 3 non-convex cost
functions. The three blue curves are the cost functions. The (dashed and solid) red
lines lie below all the cost functions and their slopes are in Λ. The (slope of the)
solid red line corresponds to the largest element of Λ.

all the solutions, i.e.,

min
q,_,u

=∑
8=1

D8 (4.7a)

s.t. (q, _,u) ∈ arg min
q,_,u

(4.6a) (4.7b)

s.t. (4.6b), (4.6c), (4.6d) (4.7c)

where q and u denote (@1, . . . , @=) and (D1, . . . , D=), respectively.

Let us define Λ as the set of all _’s for which the linear price _@ lies below all the
cost functions, i.e.,

Λ = {_ ≥ 0 | _@ ≤ 28 (@), ∀@,∀8} . (4.8)

Figure 4.1 illustrates this set for an example with three non-convex costs.

The solutions to problems (4.6) and (4.7) can be found in closed-form, and the
following summarizes the results.

Proposition 18. The set of optimal solutions of problem (4.6) is given by
@∗
8
= @0

8
, ∀8

_∗ ∈ Λ

D∗
8
= 28 (@∗8) − _∗@∗8 , ∀8

.

Proposition 19. Problem (4.7) has a unique optimal solution as
@∗
8
= @0

8
, ∀8

_∗ = max Λ

D∗
8
= 28 (@∗8) − _∗@∗8 , ∀8

.

69

See the appendix for proofs.

Note that there were two potential alternatives to the two-stage optimization in (4.7)
for picking a minimum-uplift solution. One may have attempted to enforce uniformity
as a constraint. However, the problem with this is that imposing, for example, box
constraints on D requires knowledge of reasonable upper-bounds on the uplifts, which
may not be available; and on the other hand, insisting on exact uniformity makes the
problem infeasible in most non-convex cases. The other alternative is to minimize
a combination of the two objectives in (4.6) and (4.7). In this case, the weighted
objective becomes

∑=
8=1(_@8 + WD8) for some appropriate constant W, and it is not

hard to show that the solution will be the same as that of the proposed two-stage
optimization.

4.3.2 An Efficient Approximation Algorithm
The optimization problem (4.5) defines a pricing rule that satisfies the desired
properties in any non-convex market. For specific classes of cost functions, similar to
the existing approaches, one may be able to solve this optimization problem using off-
the-shelf solvers. For generic non-convex cost functions, however, there is no existing
algorithm that can solve the optimization problem (4.5) to optimality. Furthermore,
even finding an approximate solution, e.g., by discretizating the variables, requires a
brute-force search, which quickly becomes intractable. In this section, we design
a computationally efficient algorithm for solving the problem (4.5) approximately,
based on decomposing it into smaller pieces, which works for general non-convex
cost functions. This approximation algorithm can also be used to provide tractable
calculations of some of the other non-convex pricing rules such as IP pricing.

Before going through the details of the algorithm, let us define the notion of an
approximate solution to (4.5), which we consider. One could define an approximate
solution as a value that is close enough, in a certain sense, to the optimal solution
(@∗1, . . . , @

∗
=, U
∗, V∗1, . . . , V

∗
=). However, no matter how close that approximation is to

the optimal solution, that per se does not guarantee anything about the properties
that the scheme will satisfy. Instead, we define an approximate solution to (4.5)
as a set of quantities @1, . . . , @= and price parameters U, V1, . . . , V= for which the
Market Clearing condition holds exactly, the Revenue Adequacy and Competitive
Equilibrium conditions are relaxed by an n , and the total payment is at most =n away
from the optimal. More formally, it is defined as follows.

Definition 1. (@1, . . . , @=, U, V1, . . . , V=) is called an n-approximate solution to

70

(4.5) if it satisfies
=∑
8=1

@8 = 3, (Market Clearing)

?(@8;U, V8) − 28 (@8) + n ≥ 0, 8 = 1, . . . , =, (n-Revenue Adequacy)

?(@8;U, V8) − 28 (@8) + n ≥ ?(@′8;U, V8) − 28 (@′8), ∀@′8 ≠ @8, 8 = 1, . . . , =,

(n-Competitive Equilibrium)

and
=∑
8=1

?(@8;U, V8) ≤ ?∗ + =n . (n-Economic Efficiency)

Given this notion of an approximate solution, we can move towards designing the
algorithm. The optimization problem (4.5) looks highly coupled, at first, since the
constraints share a lot of common variables. However, one can see that, for a fixed
value of U, the objective becomes additively separable in (@8, V8). Furthermore (again
for fixed U), constraints (4.5c),(4.5d) involve only the 8-th variables (@8, V8) for each
8. Although the Market Clearing condition still couples the variables together, this
observation allows us to reformulate (4.5) as

?∗ = min
@1,...,@=
U∈A

=∑
8=1

68 (@8;U) (4.9a)

s.t.
=∑
8=1

@8 = 3, (4.9b)

where

68 (@;U) = min
V8∈B

?(@;U, V8) (4.10a)

s.t. ?(@;U, V8) − 28 (@) ≥ 0, (4.10b)

?(@;U, V8) − 28 (@) ≥ ?(@′;U, V8) − 28 (@′), ∀@′ ≠ @, (4.10c)

for all 8 = 1, . . . , =.

Therefore, for any fixed value of U and @8, the optimization over V8 can be done
individually, as in (4.10). What remains to address, however, is the coupling of
the variables as a result of the Market Clearing constraint. One naive approach
would be to simply try all possible choices of (@1, . . . , @=) and pick the one that has
the minimum objective value. This is very inefficient. Instead, we take a dynamic
programming approach, and group pairs of variables together, defining a new variable

71

Figure 4.2: An example of the binary tree defined by Algorithm 1 for = = 8. The
faded circles correspond to the added dummy nodes.

as their parent. We then group the parents together, and continue this process until
we reach the root, i.e., where there is only one node. During this procedure, at each
new node 8, we need to solve the following (small) problem

68 (@;U) = min
@ 9 ,@:

6 9 (@ 9 ;U) + 6: (@: ;U)

s.t. @ 9 + @: = @,
(4.11)

for every @, where 9 and : are the children of 8. At the root of the tree, we will be
able to compute 6root(3;U). Figure 4.2 shows an example of the created binary tree
for this procedure for = = 8. This procedure can be repeated for different values of U,
and the optimal value ?∗ can be computed as minU 6root(3;U).

The problem with recursion (4.11) is that it requires an infinite-dimensional compu-
tation at every step, since the values of 68 (@;U) need to be computed for every @.
To get around this issue, we note that the variables @8 live in the bounded set [0, 3],
and hence can be discretized to lie in a finite set &, such that every possible @8 is at
most X(n) away from some point in &. Similarly, if the U and V8’s are continuous
variables, we can discretize the bounded sets A and B into some finite sets A′ and
B′, such that every point in A (or B) is at most X(n) away, in infinity-norm sense,
from some point in A′ (or B′). See the appendix for details.

For finding an n-approximate solution, (4.10) is relaxed to

68 (@;U) = min
V8∈B ′

?(@;U, V8) (4.12a)

s.t. ?(@;U, V8) − 28 (@) + n ≥ 0, (4.12b)

?(@;U, V8) − 28 (@) + n ≥ ?(@′;U, V8) − 28 (@′), ∀@′ ≠ @,
(4.12c)

for all 8 = 1, . . . , =, and (4.11) remains the same, except the variables (@ 9 , @:) take

72

Algorithm 1 Find an n-approximate solution to the optimal pricing problem (4.5)
1: Input: =, 21(.), . . . , 2= (.), ?(.; .), n
2: for U in A′ do
3: (= 1 : =
4: for 8 in (do ⊲ for the leaves
5: compute 68 (@;U) for all @ in &, using (4.12)
6: end for
7: while |(| > 2 do ⊲ while not reached the root
8: (new = ((end) + 1 : ((end) +

⌈
|(|
2

⌉
9: for 8 in (new do ⊲ for the intermediate nodes
10: [9 , :] = indices of children of 8
11: if : = ∅ then 68 (.;U) = 6 9 (.;U)
12: else, compute 68 (@;U) for all @ in &, using (4.13) ⊲ it has two

children
13: end if
14: end for
15: (= (new
16: end while
17: [9 , :] = (
18: compute 6root(3;U), using (4.13) ⊲ at the root
19: end for
20: U∗ = arg min

U∈A ′
6root(3;U)

21: @∗root = 3
22: for 8 = root : −1 : = + 1 do
23: [@∗

9
, @∗

:
] = G8 (@∗8 ;U∗), where [9 , :] = indices of children of 8

24: end for
25: for 8 = = : −1 : 1 do
26: V∗

8
= 18 (@∗8 ;U∗)

27: end for
28: return (@∗1, . . . , @

∗
=, U
∗, V∗1, . . . , V

∗
=)

73

values in &, i.e.,

68 (@;U) = min
@ 9 ,@:∈&

6 9 (@ 9 ;U) + 6: (@: ;U)

s.t. @ 9 + @: = @,
(4.13)

for all 8 > =. We denote the optimizer of (4.12) by 18 (@;U), and the optimizer
of (4.13), which is a pair of quantities (@ 9 , @:), by G8 (@;U). The full procedure is
summarized in pseudocode in Algorithm 1.

While not immediately clear, the proposed approximation algorithm can be shown
to run in time that is polynomial in both = and 1/n (in fact, linear in =). Further,
the solution it provides is n-accurate under a mild smoothness assumption on the
cost and price functions, which holds true for almost any function considered in
the literature. These two results are summarized in the following theorem, which is
proven in the appendix.

Theorem 20. Consider 28 (.) and ?(.; .) that have at most a finite number of discon-
tinuities and are Lipschitz on each continuous piece of their domain. Algorithm 1
finds an n-approximate solution to the optimal pricing problem (4.5) with running
time $

(
=(1/n);1+;2+2

)
, where = is the number of suppliers, and ;1 and ;2 are the

number of shared and individual parameters in the price, respectively.

It is worth emphasizing that while there are ;1 + =;2 variables in the price functions
in total, parameters ;1 and ;2 do not scale with =, and are typically very small
constants. For example, for the so-called linear-plus-uplift price functions ;1 = ;2 = 1.
Therefore, the algorithm is very efficient.

We should also remark that if one requires the total payment in Definition 1 to be at
most n (rather than =n) away from the optimal ?∗, the running time of our algorithm
will still be polynomial in both = and 1/n , i.e., $

(
=3(1

n
);1+;2+2

)
. See the appendix

for details.

4.4 Equilibrium-Constrained Pricing for Networked Markets
We now consider the more general problem of finding an efficient pricing scheme
in a networked market. The networked market we consider has = suppliers, located
at the nodes (vertices) + = {1, . . . , =} of a network, and connected through lines
(edges) � , where, without loss of generality, the edges are defined to be from the
smaller node to the larger node (i.e., ∀(8, 9) ∈ �, 8 < 9). The 8-th supplier has a cost
function 28 (@8) for producing quantity @8, which may be non-convex, as before, and

74

there is an inelastic demand 38 at each node 8. The lines connecting the nodes can
possibly have certain capacities for the flows they can carry. We denote the flow of
any line 4 = (8, 9), from 8 to 9 , by 54, and its limits (capacity) by 54 and 54 (the flow
from 9 to 8 is − 54).

Note that if there are multiple suppliers co-located in a market, we can simply assign
them each their own vertex, and connect them through paths with infinite capacities.
In other words, a node with multiple suppliers can be simply replaced with a “line
graph” composed of those suppliers and infinite-capacity edges.

4.4.1 Pricing Formulation
A key benefit of EC pricing is the ease of generalization to the networked setting.
There are no current pricing rules that can be readily applied to the networked
case. In this setting, our Equilibrium-Constrained pricing can be formulated as the
following optimization problem.

Networked Equilibrium-Constrained (EC) Pricing:

?∗ = min
@1,...,@=
{ 54}4∈�

?1,...,?=∈P

=∑
8=1

?8 (@8) (4.14a)

s.t. @8 − 38 =
∑
9

(8, 9)∈�

5(8, 9) −
∑
9

(9 ,8)∈�

5(9 ,8) , 8 = 1, . . . , = (4.14b)

54 ≤ 54 ≤ 54, 4 ∈ � (4.14c)

?8 (@8) − 28 (@8) ≥ 0, 8 = 1, . . . , = (4.14d)

?8 (@8) − 28 (@8) ≥ max
@′
8
≠@8

?8 (@′8) − 28 (@′8), 8 = 1, . . . , = (4.14e)

The objective is the total payment, as discussed before, and the optimization is over
quantities @8, line flows 54, and price functions ?8 ∈ P. Constraint (4.14b) is the
Market Clearing condition (or Flow Conservation) for each individual node, i.e., the
net production at each node should be equal to its outgoing flow. Constraint (4.14c)
enforces the line limits (Capacity Constraints). Constraints (4.14d) and (4.14e) are
Revenue Adequacy and Competitive Equilibrium, respectively, as before. The key
difference between the networked setting and the single-market one is that here, the
Market Clearing condition is spread across the network, and we have to solve the
problem for the flows as well.

75

Remark. When the capacity constraints (4.14c) are relaxed (54 = −∞, 54 = ∞, ∀4 ∈
�), the networked problem reduces to the single-market one. In this case, the solution
to the optimization problem (4.14) reduces to that of (4.1). That is because the only
constraint involving the flows would be (4.14b), and we can always finds flows that
satisfy it, as long as

∑=
8=1 @8 −

∑=
8=1 38 = 0, which is the conventional Market Clearing

condition.

Assuming a parametric form ?8 (@8) B ?(@8;U, V8) for P, with shared parameters
U and individual parameters V8 as before, the proposed pricing can be expressed as
follows.

Parameterized Networked Equilibrium-Constrained (EC) Pricing:

?∗ = min
@1,...,@=
{ 54}4∈�
U∈A

V1,...,V=∈B

=∑
8=1

?(@8;U, V8) (4.15a)

s.t. @8 − 38 =
∑
9

(8, 9)∈�

5(8, 9) −
∑
9

(9 ,8)∈�

5(9 ,8) , 8 = 1, . . . , = (4.15b)

54 ≤ 54 ≤ 54, 4 ∈ � (4.15c)

?(@8;U, V8) − 28 (@8) ≥ 0, 8 = 1, . . . , = (4.15d)

?(@8;U, V8) − 28 (@8) ≥ max
@′
8
≠@8

?(@′8;U, V8) − 28 (@′8), 8 = 1, . . . , =

(4.15e)

4.4.2 An Efficient Approximation Algorithm
For certain classes of non-convexities, the optimization problem (4.15) can still
be solved using off-the-shelf solvers, similar to those used in the other methods
for the no-network case. However, those algorithms cannot handle more general
classes of non-convexities. In this section, we develop a computationally efficient
approximation algorithm for general non-convex costs, for a special class of networks.

A special yet important class of networks are acyclic networks, which are a typical
topology in many markets, including electricity distribution networks. Acyclic
networks have a tree topology (they do not have cycles), which allows us to devise an
efficient algorithm for them. In the remainder of this section, we limit our attention
to these networks. The main ideas extend directly to more general networks, as

76

long as there are not “too many cycles” in the network in some sense (i.e., bounded
tree-width networks). We have focused on the acyclic case due to space constraints.

Without loss of generality, let us denote the first node as the root of the tree, and
nodes with only one neighbor as the leaves. Every node (except the root) has a
unique parent, defined as the first node on the unique path connecting it to the root
node. The set of nodes that have a given node 8 as their parent is said to be node 8’s
children. It can be shown that any tree with arbitrary degree can be transformed into
a binary tree, i.e., a tree where each node has a unique parent and at most 2 children,
with $ (=) nodes (see the appendix). Thus, we can focus on binary trees.

For a node 8, let ch1(8), ch2(8) denote its children (ch1(8) = ∅ and/or ch2(8) = ∅ when
8 has less than two children). The problem can then be written as

?∗ = min
@1,...,@=
51,..., 5=
U∈A

V1,...,V=∈B

=∑
8=1

?(@8;U, V8) (4.16a)

s.t. @8 − 38 = 5ch1 (8) + 5ch2 (8) − 58, 8 = 1, . . . , = (4.16b)

58 ≤ 58 ≤ 58, 8 = 1, . . . , = (4.16c)

?(@8;U, V8) − 28 (@8) ≥ 0, 8 = 1, . . . , = (4.16d)

?(@8;U, V8) − 28 (@8) ≥ max
@′
8
≠@8

?(@′8;U, V8) − 28 (@′8), 8 = 1, . . . , =

(4.16e)

where 58 represents the incoming flow to each node 8 from its parent, and 5root =

5root = 0.

Similarly as in the single-market case, we define an n-approximate solution to this
problem.

Definition 2. (@1, . . . , @=, 51, . . . , 5=, U, V1, . . . , V=) is called an n-approximate so-

77

lution to (4.16) if it satisfies

|@8 − 38 − 5ch1 (8) − 5ch2 (8) + 58 | ≤ n, 8 = 1, . . . , =, (n-Load Balancing)

58 ≤ 58 ≤ 58, 8 = 1, . . . , =, (Flow Limit)

?(@8;U, V8) − 28 (@8) + n ≥ 0, 8 = 1, . . . , =, (n-Revenue Adequacy)

?(@8;U, V8) − 28 (@8) + n ≥ ?(@′8;U, V8) − 28 (@′8), ∀@′8 ≠ @8, 8 = 1, . . . , =,

(n-Competitive Equilibrium)
=∑
8=1

?(@8;U, V8) ≤ ?∗ + =n . (n-Economic Efficiency)

The main difference from the definition in the single-market case is that the Market
Clearing condition has been replaced with n-Load Balancing and exact Flow Limit
conditions here.

Note that the minimization over the variables V8 in problem (4.16) can be done
“internally,” and the problem can be re-expressed as

?∗ = min
@1,...,@=
51,..., 5=
U∈�

=∑
8=1

68 (@8;U) (4.17a)

s.t. @8 − 38 = 5ch1 (8) + 5ch2 (8) − 58, 8 = 1, . . . , = (4.17b)

58 ≤ 58 ≤ 58, 8 = 1, . . . , = (4.17c)

where

68 (@;U) = min
V8∈B

?(@;U, V8) (4.18a)

s.t. ?(@;U, V8) − 28 (@) ≥ 0, (4.18b)

?(@;U, V8) − 28 (@) ≥ ?(@′;U, V8) − 28 (@′), ∀@′ ≠ @, (4.18c)

for all 8 = 1, . . . , =.

The key insight is that the tree structure of the constraints (4.17b) allows us to write
the optimization problem in a recursive form as follows:

?∗ = min
U

ℎroot(0;U) (4.19)

78

Algorithm 2 Find an n-approximate solution to the optimal networked pricing
problem (4.16)
1: Input: G=(V,E), 21(.), . . . , 2= (.), ?(.; .), n
2: for U in A′ do
3: for all nodes 8 do
4: compute 68 (@8;U) for all @8 in &8, using (4.22)
5: end for
6: for all nodes 8 ≠root (in bottom-up order) do
7: compute ℎ8 (5 ;U) for all 5 in �8, using (4.21)
8: end for
9: compute ℎroot(0;U), using (4.21)
10: end for
11: U∗ = arg min

U∈A ′
ℎroot(0;U)

12: 5 ∗root = 0
13: for all nodes 8 (in top-down order) do
14: [@∗

8
, 5 ∗ch1 (8) , 5

∗
ch2 (8)] = H8 (5

∗
8

;U∗)
15: V∗

8
= 18 (@∗8 ;U∗)

16: end for
17: return (@∗1, . . . , @

∗
=, 5
∗
1 , . . . , 5

∗
= , U

∗, V∗1, . . . , V
∗
=)

where

ℎ8 (58;U) = min
@8 , 5ch1 (8) , 5ch2 (8)

68 (@8;U) + ℎch1 (8) (5ch1 (8);U) + ℎch2 (8) (5ch2 (8);U) (4.20a)

s.t. @8 − 38 = 5ch1 (8) + 5ch2 (8) − 58 (4.20b)

5ch1 (8) ≤ 5ch1 (8) ≤ 5ch1 (8) (4.20c)

5ch2 (8) ≤ 5ch2 (8) ≤ 5ch2 (8) (4.20d)

for all 8 = 1, . . . , =.

Now, this recursive form is amenable to dynamic programming. However, since the
variables are continuous, each step still requires an infinite-dimensional search. In
order to tackle this issue, we can discretize the variables and solve the following
approximate versions.

ℎ8 (58;U) = min
@8∈&8

5ch1 (8)∈�ch1 (8)
5ch2 (8)∈�ch2 (8)

68 (@8;U) + ℎch1 (8) (5ch1 (8);U) + ℎch2 (8) (5ch2 (8);U) (4.21a)

s.t. |@8 − 38 − 5ch1 (8) − 5ch2 (8) + 58 | ≤ n (4.21b)

for all 8 = 1, . . . , =, where &1, . . . , &= and �1, . . . , �= are properly-defined discrete
sets (see the appendix for details). We denote the optimizer (triple) of (4.21) by

79

H8 (58;U).

68 (@;U) = min
V8∈B ′

?(@;U, V8) (4.22a)

s.t. ?(@;U, V8) − 28 (@) + n ≥ 0, (4.22b)

?(@;U, V8) − 28 (@) + n ≥ ?(@′;U, V8) − 28 (@′), ∀@′ ≠ @,
(4.22c)

for all 8 = 1, . . . , =. The optimizer of (4.22) is denoted by 18 (@;U).

The steps of the procedure are summarized in pseudocode in Algorithm 2, and the
following result summarizes the theoretical guarantee of the algorithm.

Theorem 21. Consider 28 (.) and ?(.; .) that have at most a finite number of disconti-
nuities and are Lipschitz on each continuous piece of their domain. Algorithm 2 finds
an n-approximate solution to the optimal networked pricing problem (4.16), with
running time$

(
=(1/n);1+max{;2,1}+2

)
, where = is the number of suppliers, and ;1 and

;2 are the number of shared and individual parameters in the price, respectively.

It is worth mentioning that the network algorithm developed in this section suggests
another way of solving the no-network case as well, by replacing the single market
with a line graph with infinite capacities. This algorithm will in turn have time
complexity $

(
=(1

n
);1+;2+2

)
, which is the same as that of the one developed in

Section 4.3.2.

4.5 Existing Pricing Schemes
In this section, we review the existing pricing schemes in the literature and summarize
their properties. No prior pricing rule for general non-convex markets satisfies all
the properties discussed in Section 4.2.2. However, it is possible to achieve all the
properties in the case when the cost functions are convex via a classical approach:
shadow pricing. We first briefly illustrate how shadow pricing works for the convex
case, and then survey some prominent approaches in the literature that seek to extend
the properties of shadow pricing to the non-convex case, contrasting them with the
EC scheme.

4.5.1 Pricing in Convex Markets
When the cost functions 28 (.) are convex, a simple and uniform pricing rule, often
referred to as shadow pricing or marginal-cost pricing [201, 32], can achieve all the
above-mentioned properties. The pricing scheme works as follows. The operator

80

first solves the convex program

min
@1,...,@=

=∑
8=1

28 (@8) (4.23a)

s.t.
=∑
8=1

@8 = 3 (_) (4.23b)

where _ is the dual variable corresponding to the load-balance constraint. Let
@∗1, . . . , @

∗
= and _∗ denote an optimal primal-dual pair of this problem (if there are

multiple dual solutions, take _∗ to be the smallest). A payment function of the form

?8 (@8) = _∗@8 8 = 1, . . . , = (4.24)

satisfies all the properties outlined in Section 4.2.2, and it is relatively straightforward
to see that.

For simplicity, assume that 28 (.) are differentiable. The optimal solution of (4.23)
satisfies the following (KKT) conditions (which does not require convexity):

∑=
8=1 @

∗
8
= 3

328
3@8
(@∗
8
) = _∗, 8 = 1, . . . , =

Next, note that supplier 8’s profit-maximization problem is

max
@8

_∗@8 − 28 (@8).

Since 28 (.) is convex, the objective is concave, and any point at which the derivative
is zero is a global maximizer. In particular, the derivative at @∗

8
is zero, because of the

KKT conditions, and therefore that is a solution to the supplier 8’s profit-maximization
problem. As a result, the scheme supports a competitive equilibrium that clears the
market and minimizes the production cost, while using a price form that is simple
and uniform. Figure 4.3 illustrates the optimal quantities and the price function for
an example with three suppliers.

Note that the total payment of this scheme is
∑=
8=1 ?8 (@∗8) = _∗3, which can be

generally higher than
∑=
8=1 28 (@∗8). One can always opt for a non-uniform affine price

function as ?8 (@8) = _∗@8 + 18, with 18 = 28 (@∗8) − _∗@∗8 , which has lower payments,
and makes

∑=
8=1 ?8 (@∗8) exactly equal to

∑=
8=1 28 (@∗8). However, if one requires a

uniform and linear price function, it can be shown that ?8 (@8) = _∗@8 has the lowest
total payment among all such functions.

81

Figure 4.3: An illustration of shadow pricing for the case of 3 convex cost functions.
The points indicated by ∗ show the optimal quantities. The 3 functions have the same
derivative at their optimal quantities, and the tangent line lies below the function
(because of convexity). The red (solid) line that passes through the origin is the
uniform price function, which is parallel to the three lines.

4.5.2 Pricing in Non-Convex Markets
If the cost functions are non-convex, the approach of shadow pricing, described
above, fails. This is because the net profit of each supplier is no longer a concave
function, and its stationary points do not necessarily correspond to the maximum. In
other words, there may not be a subderivative at @∗

8
supporting the cost function 28 (.).

There have been several schemes proposed in the literature that attempt to address
this issue and design pricing rules that satisfy the properties discussed above in the
context of non-convex cost functions. We review the most promising ones here.
Some of the schemes maintain a uniform pricing rule with additional discriminatory
side-payments called “uplifts” for incentivizing the suppliers to follow the dispatch,
while others raise the uniform price so that it is revenue-adequate. A summary of the
pricing schemes, along with their properties, is provided in Table 4.1.

Integer Programming (IP)

[159] proposed a pricing scheme for non-convex cost functions that are in the form of
a fixed (start-up) cost plus a linear marginal cost, sometimes referred to as “IP pricing.”
This scheme uses uniform marginal pricing for the commodity and discriminatory

82
Table 4.1: Summary of common pricing schemes and their properties.

Scheme\Property
Price form
?8 (@8) =

Proposed for
28 (@8) =

Market
Clearing

Revenue
Adequate

Supports
Competitive
Equilibrium

Economically
Efficient

Shadow
Pricing _@8 Convex X X X X

IP _@8 + D81@8>0 Startup+linear X X X X

MU/CH _@8 + D81@8=@∗8 Startup+convex X X X ×

SLR _@8 Startup+linear X X × ×

PD _@8 Startup+linear X X × ×

EC
(proposed) User-specified General X X X X

Notes. IP: Integer Programming. MU: Minimum Uplift. CH: Convex Hull. SLR: Semi-Lagrangean
Relaxation. PD: Primal-Dual. EC: Equilibrium-Constrained. The results in this table assume solving the
formulation for each scheme exactly. However, in practice, these schemes rely on numerical solvers for their
problems, and if the problem is non-convex, there is no guarantee of maintaining these properties in general.
In particular, the IP scheme requires a non-convex solver. The MU/CH, SLR, and PD schemes, for the cost
functions that they are proposed for (i.e., startup+convex or startup+linear), require only convex solvers and
therefore satisfy the checked properties exactly. The EC scheme is accompanied by an efficient algorithm
for solving the non-convex problem for general cost functions, which satisfies the exact Market Clearing
property and the n-approximate versions of the other three properties (see Section 4.3.2).

pricing for the integral activity of the suppliers. It is based on (i) formulating an
optimization similar to (4.23), as a mixed integer linear program (MILP) and solving
it for optimal allocations, (ii) reformulating the original MILP as an LP by replacing
the integral constraints with forcing commitment choices equal to their optimal
values, and (iii) solving the LP problem and using the dual variable _ of Market
Clearing constraint as the uniform price and the dual variables {D∗

8
} of the forced

equality constraints as discriminatory uplifts: ?8 (@8) = _∗@8 + D∗8 1 {@8 > 0}.

IP pricing uses a uniform price plus a discriminatory uplift to clear the market
efficiently such that every supplier’s net profit is zero. As a result, both total payments
and total production costs are minimized at the same time. [159] show that the
optimal solutions generated by IP pricing are optimal to the decentralized profit
maximization problems for every supplier, and thus they support a competitive
equilibrium. However, IP pricing assumes knowledge of the optimal solutions to the
unit commitment problem and thus is not intended as a practical approach to find the
optimal allocation. [103] point out that uniform price generated under IP pricing can
be volatile (i.e., a small change in demand could lead to a big change in the uniform
price) and uplifts could be generally very large.

83

Minimum Uplift (MU) / Convex Hull (CH)

To avoid the unwanted properties of IP pricing (i.e., volatility and instability), a
pricing scheme, proposed in [103] for the (non-convex) class of startup-plus-convex
cost functions, offers minimum uplifts that incentivize each supplier to follow the
dispatch rather than maximize their own profits in the absence of uplifts. The scheme
is based on solving the mixed-integer program minimizing the total production cost
and minimizing total uplifts. Given a fixed uniform price _, each supplier chooses
between following the dispatch to receive the uplifts or not. The uplifts can be
viewed as the extra potential profit that the suppliers can make by self-scheduling and
maximizing their own profit. [81] refined the MU pricing and proposed the concept
of Convex Hull pricing, which is based on (i) replacing the non-convex cost of the
original program with its convex hull to formulate a new LP and (ii) solving the new
LP and using the dual variable of the Market Clearing constraint as the marginal
price and deriving the lost opportunity cost as the minimum uplifts to incentivize
suppliers’ compliance. The final payment ?8 (@8, I8) as a function of quantity @8 and
commitment choice I8 is in the form of a uniform price _∗ and a discriminatory uplift
D∗
8
as ?8 (@8) = _∗@8 + D∗8 1

{
@8 = @

∗
8

}
.

Even though MU/CH pricing minimizes total uplifts, the generated marginal price
might end up being high, and the payments can be much higher than those of the
other schemes. In general, the total payments under this scheme might end up being
much higher than the total production costs, which defeats the purpose of minimizing
the costs. Even for the class of startup-plus-linear cost functions, where IP pricing
is optimal (the total payment is equal to the total production cost, and they are
both minimal), MU pricing is not economically efficient, as it fails to minimize the
payments.

On the computational side, although [107] propose a polynomially-solvable primal
formulation for the Lagrangian dual problem by explicitly describing the convex
hull for piecewise linear or quadratic cost functions, describing the convex hull of
cost functions could be very challenging in general and thus makes the problem
computationally intractable.

As an aside, MU and CH would not be equivalent if the Market Clearing constraint
was an inequality. In that case, the side-payments in CH would be typically larger
than those in MU, due to Product Revenue Shortfall [181].

84

Semi-Lagrangean Relaxation (SLR)

[10] introduced a semi-Lagrangean relaxation approach to find a uniform price that
is revenue-adequate at the same solution for quantity and commitment choices as
the original optimization problem, for cost functions of startup-plus-linear form.
The scheme is based on formulating and solving the SLR of the mixed-integer
program by semi-relaxing the Market Clearing constraint with standard Lagrange
multiplier _. The solution under SLR satisfies the constraints in the original MIP
and makes the duality gap between MILP and SLR zero. Though the payment
function ?8 (@8) = _∗@8 under SLR pricing is high enough to avoid negative profits
for suppliers, it incentivizes the suppliers to deviate and operate at full capacity, and
total payments usually end up being much higher than total costs of production.

Primal-Dual (PD)

Another revenue-adequate pricing scheme, proposed by [177], exploits a primal-dual
approach to derive a uniform price to guarantee that dispatched suppliers are willing
to remain in the market (revenue adequacy). The scheme works for cost functions
with the form of start-up cost plus linear cost, and the prices have shown not to
deviate much from that of [159]. The approach is based on (i) relaxing the integral
constraint of the original MILP to formulate a primal LP problem, (ii) deriving the
dual LP problem of the primal LP problem, (iii) formulating a new LP problem that
seeks to minimize the duality gap between the primal and dual problems subject to
both primal and dual constraints, and (iv) adding back the integral constraints as well
as nonlinear constraints to ensure that no supplier incurs loss and solving the new
problem for optimal solutions @∗

8
, I∗
8
and _∗.

Though this scheme may be implemented using standard branch-and-cut solvers,
it is computationally intractable in general. The prices ?8 (@8) = _∗@8 and profits
produced under PD do not significantly deviate from dual prices if integral constraints
are relaxed and thus are always bounded. However, as a revenue-adequate pricing
scheme, PD fails to form a competitive equilibrium as suppliers are incentivized
to operate at full capacity. In general, total payments are much higher than total
production costs.

4.6 Experimental Results
In this section, we compare and contrast EC pricing with the existing approaches
using numerical experiments on common case studies. Specifically, we compare

85

the payments and uplifts generated from different pricing schemes, including IP,
CH, SLR, PD, and EC. Among all these schemes, only EC allows flexibility of the
payment form. As a result, we further divide EC into one with a payment function in
the form of linear marginal price plus uplifts and another pricing with a payment
form of piecewise linear marginal prices plus uplifts. In practice, specific limits on
the number of sections and the maximum slope among all sections can be used to
further restrict EC. For convenience, we name these variations of EC in terms of
number of piecewise sections of its payment form, e.g., EC2 refers to EC with a
payment function in the form of 2 piecewise sections plus uplifts.

First, we apply all these pricing schemes to a single market example from [103],
which is a modification of Scarf’s example developed in [179]. Second, we adapt
cost functions in the modified Scarf’s example to be quadratic plus startup cost in
order to further explore how these schemes generalize to different cost functions.
Finally, we consider a further generalization to a simple 2-node networked market.

4.6.1 Case 1: Linear plus startup cost

Table 4.2: Summary of the production characteristics in themodified Scarf’s example.

Type Smokestack High Tech Med Tech

Capacity 16 7 6
Minimum output 0 0 2

Startup cost 53 30 0
Marginal cost 3 2 7
Quantity 6 5 5

We consider a modified Scarf’s example, as proposed in [103]. The parameters are
listed in Table 4.2. We assume that demand is inelastic with a maximum capacity
of 161 units. We restrict the payment function of EC1, EC2, EC3, and EC4 to
respectively have one, two, three, and four sections and impose that the marginal
price of any section cannot exceed the maximum marginal price for any supplier
operating at full capacity. Figure 4.4a shows total payments for different demand
levels, while Figure 4.4c shows the corresponding uplifts of the pricing schemes
that apply, i.e., CH, EC1, EC2, EC3, and EC4. Payments of two revenue-adequate
pricing schemes, including SLR and PD, are higher than total costs in general. IP,
EC1, EC2, EC3, and EC4 achieve the minimum payments equal to total costs. CH
achieves the minimum payments at low demand levels, and its total payments surpass
total costs as demand gets high. As for uplifts, EC4 achieves the smallest among

86

the five pricing schemes. Total uplifts of CH and EC1 are close to each other at a
low demand level and that of EC1 increases significantly when demand approaches
capacity. This is not surprising, as total payments of CH go above total costs at a
high demand, making it possible for relatively smaller total uplifts. It is worth noting
that startup prices and marginal prices for IP are volatile and unstable. Figure 4.4d
and 4.4e demonstrate that the more complex we allow payment functions of the EC
family, the smaller total uplifts we can achieve, which means more uniform prices
are across suppliers. In practice, there is apparently a trade-off between complexity
and uniformity of payment functions among the EC family, and this will be a design
choice for the independent system operator (ISO). Overall, EC4 outperforms other
pricing schemes in terms of total payments and total uplifts.

(a) Total payments as a function of
demand.

(b) Payment difference in percent-
age w.r.t cost as a function of de-
mand.

(c) Total uplifts as a function of de-
mand.

(d) Total uplifts as a function of de-
mand.

(e) Total uplifts for pricing schemes
at different demand levels.

Figure 4.4: An example with cost functions of the form of linear plus startup cost.

4.6.2 Case 2: Quadratic plus startup cost

Table 4.3: Summary of the new cost functions in the modified Scarf’s example.

Type Smokestack High Tech Med Tech

Cost function 3
16@

2 + 53 ∗ 1 {@ > 0} 2
7@

2 + 30 ∗ 1 {@ > 0} 7
6@

2

87

(a) Total payments as a function of
demand.

(b) Payment difference in percent-
age w.r.t cost as a function of de-
mand.

(c) Total uplifts as a function of de-
mand.

(d) Total uplifts as a function of de-
mand.

(e) Total uplifts for pricing schemes
at different demand levels.

Figure 4.5: An example with cost functions of the form of quadratic plus startup cost.

To further explore how these pricing schemes generalize to different cost functions,
we modify the cost functions of the example above. Table 4.3 describes the new
cost functions for each supplier. Since it is not clear how to generalize SLR and
PD, we focus on a comparison among IP, CH, EC1, EC2, EC3, and EC4. We
restrict the payment function of EC1, EC2, EC3, and EC4 to respectively have one,
two, three, and four sections with the marginal price of any section bounded by the
maximum of marginal price for any supplier operating at full capacity. As can be
seen in Figure 4.5a, EC1 EC2, EC3, and EC4 achieve the possible minimum total
payments equal to total costs. Total payments of IP and CH are both above total
costs, and the gap between total payments and costs grows as demand increases.
Observe that the demand here ranges from 1 to 160 because marginal price of CH
increases dramatically at the capacity level, and the plot over the interval (1, 160)
would be a flat line if the whole range were covered. Figure 4.5c shows that total
uplifts of EC1 are much larger than that of CH and EC2. At a low demand level,
uplifts of EC1 and EC2 are close to each other. As demand increases, uplifts of EC2
are a little larger than those of CH, in order to maintain a smaller overall payment.
There is a trade-off between minimizing total payments and minimizing total costs.
Allowing the flexibility of payment function form enables EC2 to perform better
than either CH or EC1 in terms of total payments and uplifts. Figure 4.5d and 4.5e

88

Figure 4.6: A schematic drawing for two connected markets with a
constraint on flow capacity.

show a relationship between complexity of payment function form and magnitude of
total uplifts among the EC family pricing schemes. As in the case of cost function
being start-up plus linear cost, it is not surprising to see that more complex payment
functions tend to allow smaller total uplifts, i.e., more uniform prices across suppliers.

4.6.3 A Networked Market with Capacity Constraints
One advantage EC has over all the other pricing schemes is its generality. Specifically,
EC can be applied to networked markets. In this section, we divide a single market
with a fixed total demand 60 as described earlier into one market with only med tech
suppliers and the other one with the smokestack and high-tech suppliers. The cost
functions of the suppliers are the same as defined earlier, i.e., linear plus startup
cost. As pictured in Figure 4.6, these two markets are connected via a flow capacity
constraint. We consider two different cases of non-uniform marginal pricing and
uniformmarginal pricing for these two markets. Figure 4.7 shows how total payments,
total uplifts and flow between these two connected markets vary as flow capacity
increases for nonuniform and uniform marginal pricing settings. The results show
that the total payments and total uplifts decrease as more flow is allowed between
these two markets until it reaches the demand of one market, which means one market
alone meets the total demand. Allowing non-uniform pricing does not further reduce
total payments, as total payments are minimal and equal the total costs. However, it
helps reduce total uplifts, as we can see in Figure 4.7b.

89

(a) Total payments as a function of
flow capacity.

(b) Total uplifts as a function of
flow capacity.

(c) Flow between two markets as a
function of flow capacity.

Figure 4.7: An example of two connected markets with a constraint on the flow
capacity.

4.7 Concluding Remarks
We study the problem of pricing in single and networked markets with non-convex
costs. Our key contribution is the proposal of a novel scheme, Equilibrium-
Constrained (EC) pricing, which optimizes for the allocations and price parameters
at the same time, while imposing the equilibrium conditions as constraints. Our
pricing framework is general in the sense that: (i) it can be used for pricing general
non-convex cost functions, (ii) it allows for using general price classes, (iii) can be
computed in polynomial-time regardless of the source of the non-convexities, and
(iv) it extends easily to networked markets.

This work opens up a variety of important directions for future work. First, as
this framework enables one to use general price classes, it would be interesting
to apply it to specific classes of price functions (e.g., quadratic plus uplift, piece-
wise, etc.) and characterize the solution theoretically and/or numerically. One can
then investigate the potential trade-offs between the complexity of the class and
the economic efficiency or the uniformity of the price. Second, since electricity
markets are an important application of the pricing problem studied here, it would
be interesting to evaluate the proposed scheme in practical settings for electricity
markets. Our preliminary exploration shows that we can achieve more efficient (lower
total payments) and less discriminatory (lower uplifts) prices with, for instance,
piece-wise linear functions. More evaluations in large-scale, practical settings
should be carried out in order to evaluate the potential of deployment. Another
important direction to pursue is the extension of our results to networked markets with
more general network structures. Our algorithm currently applies to networks with
bounded tree-width; however beyond such networks, new ideas are needed. Finally,
our proposed pricing scheme has broader implications for non-convex optimization
problems as well. In the convex setting, dual prices are crucial for the development

90

of distributed optimization algorithms, but such approaches have not been possible
in non-convex settings due to the lack of pricing rules with the desirable properties
laid out in Section 4.2.2. It is now possible to explore whether EC prices can be used
as the basis for distributed optimization algorithms in the non-convex setting.

91

4.A Supplement to Section 4.3.1
In this section, we formally prove the reduction of the optimization problem for the
class of linear-plus-uplift functions to (4.6), and then show Propositions 18 and 19.

4.A.1 Reduction
Here, we show that for the class of linear-plus-uplift price functions ?(@8;_, D8, @̂8) =
_@8 + D81@8=@̂8 , one can assume @̂∗

8
= @∗

8
without loss of generality, and therefore

the optimization problem (4.5) reduces to (4.6) for this class. The optimization
problem (4.5) for price function ?(@8;_, D8, @̂8) = _@8 + D81@8=@̂8 , _, D1, . . . , D= ≥ 0,
is as follows

?∗uplift = min
@1,...,@=
_≥0

D1,...,D=≥0
@̂1,...,@̂=

=∑
8=1
(_@8 + D81@8=@̂8) (4.25a)

s.t.
=∑
8=1

@8 = 3 (4.25b)

_@8 + D81@8=@̂8 − 28 (@8) ≥ 0, 8 = 1, . . . , = (4.25c)

_@8 + D81@8=@̂8 − 28 (@8) ≥ max
@′
8
≠@8

_@′8 + D81@′8=@̂8 − 28 (@
′
8), 8 = 1, . . . , =

(4.25d)

The following lemma shows that this optimization problem can be reduced to (4.6),
and the optimal uplifts of (4.6) are no larger than those of (4.25).

Lemma 22. Given any solution (q∗, _∗,u∗, q̂∗) to the optimization problem (4.25),
(q∗, _∗, u, q∗) is also a solution, where

D
8
=


D∗
8
, if @̂∗

8
= @∗

8

0, o.w.
.

Proof of Lemma 22. Let us first show the feasibility of (q∗, _∗, u, q∗). For any 8
such that @̂∗

8
≠ @∗

8
, we have that

_∗@∗8 − 28 (@∗8) ≥ 0

_∗@∗8 − 28 (@∗8) ≥ max
@′
8
≠@∗

8

_∗@′8 + D∗8 1@′8=@̂∗8 − 28 (@
′
8) ≥ max

@′
8
≠@∗

8

_∗@′8 − 28 (@′8),

which implies

_∗@∗8 + D∗8 1@∗8=@∗8 − 28 (@
∗
8) ≥ 0

_∗@∗8 + D∗8 1@∗8=@∗8 − 28 (@
∗
8) ≥ max

@′
8
≠@∗

8

_∗@′8 + D∗8 1@′8=@̂∗8 − 28 (@
′
8),

92

because D∗
8
= 0. Therefore (q∗, _∗, u, q∗) is feasible.

The objective value of (q∗, _∗, u, q∗) is

=∑
8=1
(_∗@∗8 + D8) =

∑
8:@̂∗

8
=@∗

8

(_∗@∗8 + D∗8) +
∑

8:@̂∗
8
≠@∗

8

_∗@∗8

=

=∑
8=1
(_∗@∗8 + D∗8 1@∗8=@̂∗8),

which is the same as that of (q∗, _∗,u∗, q̂∗), and is therefore optimal. �

Based on this lemma, the optimization problem (4.25) can be reduced to (4.6).

4.A.2 Closed-Form Solutions

Proof of Proposition 18. In the optimization problem (4.6), the order of variables in
the minimizations does not matter, and further, for every fixed @1, . . . , @= and _, the
minimization over each D8 can be done separately. Therefore, this program can be
massaged into the following form

?∗uplift = min
@1,...,@=

(
min
_≥0

=∑
8=1

68 (@8;_)
)

(4.26a)

s.t.
=∑
8=1

@8 = 3, (4.26b)

where

68 (@8;_) = min
D8≥0

_@8 + D8 (4.27a)

s.t. _@8 + D8 − 28 (@8) ≥ 0, (4.27b)

_@8 + D8 − 28 (@8) ≥ max
@′
8
≠@8

_@′8 − 28 (@′8). (4.27c)

for all 8 = 1, . . . , =. Constraints (4.27b) and (4.27c) can be expressed as

_@8 + D8 ≥ 28 (@8),
_@8 + D8 ≥ 28 (@8) + max

@′
8
≠@8

_@′8 − 28 (@′8).

It follows that

68 (@8;_) = _@8 + D∗8 = 28 (@8) +max
{
0, max

@′
8
≠@8

_@′8 − 28 (@′8)
}
.

93

which is, of course, a function of _ and @8. Therefore, we have

min
_≥0

=∑
8=1

68 (@8;_) =
=∑
8=1

28 (@8),

and the minimizers _∗ are all values _ for which max
@′
8
≠@8

_@′
8
− 28 (@′8) ≤ 0, which are

exactly the elements of Λ = {_ ≥ 0 | _@ ≤ 28 (@), ∀@,∀8} (Figure 4.1 provides a
pictorial description of these values.) Finally, we have the last minimization, which
is

min
@1,...,@=

=∑
8=1

28 (@8) (4.28a)

s.t.
=∑
8=1

@8 = 3 (4.28b)

and therefore has @∗
8
= @0

8
∀8 as its optimizer. We also have D∗

8
= 28 (@∗8)−_∗@∗8 , ∀8. �

Proof of Proposition 19. The steps of the proof are exactly the same as in the previous
one, except that the additional minimizer picks the _ with the smallest total uplift∑=
8=1 D8 (_), which corresponds to the largest element of Λ. �

94

4.B Supplement to Section 4.3.2
In this section, we prove Theorem 20, in two parts. First, we show that there exist
finite sets &,A′,B′ for which Algorithm 1 finds an n-approximate solution, and we
quantify the sizes of these sets as a function of n . In the second part, we analyze the
running time of Algorithm 1.

4.B.1 n-Accuracy
Let us first state a simple but useful lemma.

Lemma 23 (X-discretization). Given a set C ⊆ [!1, !1] × · · · × [!: , !:], for any
X > 0, there exists a finite set C′ such that

∀I ∈ C, ∃I′ ∈ C′ s.t. ‖I − I′‖∞ ≤ X,

and further, C′ contains at most +/X: points, where + = ∏:
8=1(!8 − !8) is a constant

(the volume of the box). C′ is said to be a X-discretization of C.

Let&,A′, andB′ denote some X-discretizations of sets [0, 3],A andB, respectively.
In other words, for every @ ∈ [0, 3], U ∈ A, and V ∈ B, there exist @′ ∈ &, U′ ∈ A′,
and V′ ∈ B′, such that |@ − @′| ≤ X, ‖U − U′‖∞ ≤ X, and ‖V − V′‖∞ ≤ X. We can
combine all these inequalities as

‖(@, U, V) − (@′, U′, V′)‖∞ ≤ X.

On the other hand, given that the cost function 28 (.) for each 8 is Lipschitz on
each continuous piece of its domain, there exists a positive constant 8 such that
|28 (@) − 28 (@′) | ≤ 8 |@ − @′|, which implies

|28 (@) − 28 (@′) | ≤ 8X. (4.29)

Similarly, Lipschitz continuity of ?(.; .) implies existence of a positive constant
such that |?(@, U, V) − ?(@′, U′, V′) | ≤ ‖(@, U, V) − (@′, U′, V′)‖∞, which yields

|?(@, U, V) − ?(@′, U′, V′) | ≤ X. (4.30)

Using Eqs. (4.29),(4.30), we can see that for any solution @∗1, . . . , @
∗
=, U
∗, V∗1, . . . , V

∗
= to

optimization (4.5), there exists a point @1, . . . , @=, U, V1, . . . , V= with @1, . . . , @= ∈ &,
U ∈ A′ and V ∈ B′, for which constraints (4.5c) and (4.5d) are violated at most by

95

(+ 8)X and (2 + 2 8)X, respectively, and the objective is larger than ?∗ at most
by = X. As a result, this point will be an n-approximate solution if

(+ 8)X ≤ n ∀8, (4.31)

2(+ 8)X ≤ n ∀8, (4.32)

= X ≤ =n . (4.33)

These constraints altogether enforce an upper bound on the value of X as

X ≤ �n,

for some constant �. Therefore if we pick

X =
3

d∗e 3
�n

, (4.34)

our algorithm is guaranteed to encounter an n-approximate solutionwhile enumerating
the points, and & = {0, X, 2X, . . . , 3} is a valid X-discretization for [0, 3], which has

#@ = d∗e
3

�n
+ 1 = $

(
1
n

)
points. The nice thing about this particular choice of X

is that now 3 can be written as a sum of = elements in & (because all the elements,
including 3, are multiples of X), which allows us to satisfy the Market Clearing

condition exactly. Based on Lemma (23),A′ andB′ contain #U = $
(

1
X;1

)
= $

(
1
n ;1

)
and #V = $

(
1
X;2

)
= $

(
1
n ;2

)
points.

Finally, if there are any discontinuities in the cost or price functions, we can simply
add them to our discrete sets &, A′, and B′, and since there are at most a finite

number of them, the sizes of the sets remain in the same order, i.e., #@ = $
(
1
n

)
,

#U = $

(
1
n ;1

)
, and #V = $

(
1
n ;2

)
. Next, we calculate the time complexity of

Algorithm 1 running on these discrete sets.

4.B.2 Run-Time Analysis
In this section, we show that Algorithm 1 has a time complexity of $

(
=(1

n
);1+;2+2

)
.

For every fixed U, we have the following computations:

1. The leaves: We need to compute 68 (@;U) for every 8 and every @ ∈ &.
Computing each 68 (@;U) (i.e., for fixed 8, @, U) takes $ (#V#@). The reason
for that is we have to search over all V8 ∈ �′, and for each one there are

96

#@ + 1 constraints to check. More explicitly, we need to (a) check $ (#V#@)
constraints, (b) compute #V objectives, and (c) find the minimum among those
#V values. All these steps together take $ (#V#@), and repeating for every 8
and @ makes it $ (=#V#2

@).

2. The intermediate nodes: In each new level, there are at most half as many
(+1) nodes as in the previous level. For each node 8 in this level, we need
to compute 68 (@;U) for every @ ∈ &. For every fixed @, there are $ (#@)
possible pairs of (@ 9 , @:) that add up to @, and therefore we need to (a) sum
$ (#@) pairs of objective values, and (b) find the minimum among them, which
take $ (#@). Hence, the computation for each node takes $ (#2

@). There are
$ (=2 +

=
4 + · · · + 2) = $ (=) intermediate nodes in total, and therefore the total

complexity of this part is $ (=#2
@).

3. The root: Finally at the root, we need to compute 6root(3;U). There are #@
possible pairs of (@ 9 , @:) that add up to 3. Therefore, we need to compute
#@ sums, and find the minimum among the resulting #@ values, which takes
$ (#@).

Putting the pieces together, the computation for all values of U takes #U ×(
$ (=#V#2

@) + $ (=#2
@) + $ (#@)

)
, which in turn is $ (=#U#V#2

@). Finally, find-
ing the minimum among the #U values simply takes $ (#U).

The backward procedure, which finds the quantities @8 and the parameters V8, takes
just $ (=), since it is just a substitution for every node. As a result, the total running
time is$ (=#U#V#2

@), which based on the first part (Section 4.B.1) is$
(
=(1

n
);1+;2+2

)
.

4.B.3 Remark on the n-Approximation
As mentioned at the end of Section 4.3.2, if one requires the total payment in
Definition 1 to be at most n (rather than =n) away from the optimal ?∗, the running
time of our algorithm will still be polynomial in both = and 1/n , i.e.,$

(
=3(1

n
);1+;2+2

)
.

To see that, notice in this case (4.31) and (4.32) remain the same, and (4.33) changes
to = X ≤ n . Therefore, the upper bound enforced by the constraints will be X ≤ �n

=
,

for some constant �. In this case, our choice of X would be X = 3

d∗e 3=
�n

, and

hence #@ = $
(=
n

)
. #U and #V remain the same as before. The running time is

$ (=#U#V#2
@), as computed previously, which in this case would be$

(
=3(1

n
);1+;2+2

)
.

97

Figure 4.8: The transformation of an arbitrary-degree tree to a binary tree.

4.C Supplement to Section 4.4
In this section, we first show the transformation of the problem on a tree to one on a
binary tree, and then prove Theorem 21.

4.C.1 Transformation into Binary Tree

Lemma 24. Given any tree with = nodes (suppliers), there exists a binary tree with
additional nodes which has the same solution (@∗

8
, . . . , @∗=, U

∗, V1, . . . , V=) for those
nodes as the original network. The binary tree has $ (=) nodes.

Proof. Take any node 8 that has :8 > 2 children. For any two children, introduce
a dummy parent node. For any two dummy parent nodes, introduce a new level of
dummy parent nodes. Continue this process until there are 2 or less nodes in the
uppermost layer, and then connect them to node 8 (see Fig. 4.8). The capacities of
the lines immediately connected to the children are the same as those in the original
graph. The capacities of the new lines are infinite.

The total number of introduced dummy nodes by this procedure is

$ (:8
2
+ :8

4
+ · · · + 2) = $ (:8).

Since there are 1 + :1 + :2 + · · · + := = = nodes in total in the original tree, the
number of introduced additional nodes is $ (:1 + · · · + :=) = $ (=). Therefore the
total number of nodes in the new (binary) tree is $ (=). �

4.C.2 Proof of Theorem 21
Most of the proof is similar to the one presented in Section 4.B. For this reason, we
only highlight the main points. The proof consists of n-accuracy and run-time, as
before.

98

4.C.2.1 n-Accuracy
Let &1, . . . , &=, �1, . . . , �=,A′,B′ denote some X-discretizations of sets [0, 31 +
5ch1 (1) + 5ch2 (1) − 51], . . . , [0, 3= + 5ch1 (n) + 5ch2 (n) − 5=], [51, 51], . . . , [5=, 5=],A, B,
respectively. Note that if any line capacities are infinite, the intervals can be replaced
by [0,∑=

8=1 38] instead. Similar as in Section 4.B, the constraints enforce an upper
bound on the value of X as X ≤ �n, for some constant �. Based on Lemma (23),

the sizes of the sets will be #@8 = $
(
1
n

)
∀8, # 58 = $

(
1
n

)
∀8, #U = $

(
1
n ;1

)
, and

#V = $

(
1
n ;2

)
4.C.2.2 Run-Time Analysis
For every fixed U, the run-time of the required computations is as follows.

1. The time complexity of computing 68 (@8;U) for each node 8 and each fixed
value of @8 is $ (#V#@8). Therefore, computing it for all nodes and all values
takes $ (=#V#2

@).

2. Computing ℎ8 (58;U) for each node 8 and each fixed value of 58 takes $ (#2
5
),

because there are $ (# 5) × $ (# 5) pairs of values for (5ch1 (8) , 5ch2 (8)) (@8 is
automatically determined as the closest point in &8 to 38 + 5ch1 (8) + 5ch2 (8) − 58).
Therefore, its overall computation for all nodes and all values takes $ (=#3

5
).

As a result, the overall computation takes #U ×
(
$

(
=#V#

2
@

)
+$

(
=#3

5

))
, which is

$

(
=(1

n
);1+;2+2

)
+$

(
=(1

n
);1+3

)
, or equivalently $

(
=(1

n
);1+max{;2,1}+2

)
.

99

C h a p t e r 5

MANAGING AGGREGATORS IN THE SMART GRID

[1] Navid Azizan et al. “Opportunities for Price Manipulation by Aggregators in
Electricity Markets”. In: SIGMETRICS Performance Evaluation Review 44.2
(2016), pp. 49–51. issn: 0163-5999. doi: 10.1145/3003977.3003995.

[2] Navid Azizan et al. “Opportunities for Price Manipulation by Aggregators
in Electricity Markets”. In: IEEE Transactions on Smart Grid 9.6 (2018),
pp. 5687–5698. doi: 10.1109/TSG.2017.2694043.

Aggregators of distributed generation are playing an increasingly crucial role in the
integration of renewable energy in power systems. However, the intermittent nature
of renewable generation makes market interactions of aggregators difficult to monitor
and regulate, raising concerns about potential market manipulation by aggregators.
In this chapter, we study this issue by quantifying the profit an aggregator can obtain
through strategic curtailment of generation in an electricity market. We show that,
while the problem of maximizing the benefit from curtailment is hard in general,
efficient algorithms exist when the topology of the network is radial (acyclic). Further,
we highlight that significant increases in profit are possible via strategic curtailment
in practical settings.

5.1 Introduction
Increasing the penetration of distributed, renewable energy resources into the
electricity grid is a crucial part of building a sustainable energy landscape. To date,
the entities that have been most successful at promoting and facilitating the adoption
of renewable resources have been aggregators, e.g., SolarCity, Tesla, Enphase,
Sunnova, SunPower, and ChargePoint [47, 110, 209]. These aggregators install
and manage rooftop solar installations as well as household energy storage devices
and electric vehicle charging systems. Some have fleets with upwards of 800 MW
distributed energy resources [192, 1], and the market is expected to triple in size by
2020 [133, 104].

Aggregators play a variety of important roles in the construction of a sustainable grid.
First, and foremost, they are on the front lines of the battle to promote installation
of rooftop solar and household energy storage, pushing for widespread adoption

100

of distributed energy resources by households and businesses. Second, and just as
importantly, they provide a single interface point where utilities and Independent
System Operators (ISOs) can interact with a fleet of distributed energy resources
across the network in order to obtain a variety of services, from renewable generation
capacity to demand response. This service is crucial for enabling system operators
to manage the challenges that result from unpredictable, intermittent renewable
generation, e.g., wind and solar.

However, in addition to the benefits they provide, aggregators also create new
challenges – both from the perspective of the aggregator and the perspective of the
system operator. On the side of the aggregator, the management of a geographically
diverse fleet of distributed energy resources is a difficult algorithmic challenge.
On the side of the operator, the participation of aggregators in electricity markets
presents unique challenges in terms of monitoring and mitigating the potential of
exercising market power. In particular, unlike traditional generation resources, the
ISO cannot verify the availability of the generation resources of aggregators. While
the repair schedule of a conventional generator can be made public, the downtime of
a solar generation plant and the times when solar generation is not available cannot be
scheduled or verified after the fact. Thus, aggregators have the ability to strategically
curtail generation resources without the knowledge of the ISO, and this potentially
creates significant opportunities for them to manipulate prices.

These issues are particularly salient given current proposals for distribution systems.
Distribution systems (which are typically radial networks) are heavily impacted by
the introduction of distributed energy resources. As a result, there are a variety of
current proposals to start distribution-level power markets (see, for example [105]
[106]), operated by Distribution System Operators (DSOs). A future grid may even
involve a hierarchy of system operators dealing with progressively larger areas, net
load and net generation. In such a scenario, aggregators could end up having a
significant proportion of the market share, and such markets may be particularly
vulnerable to strategic bidding practices of the aggregators. Thus, understanding the
potential for these aggregators to exercise market power is of great importance, so
that regulatory authorities can take appropriate steps to mitigate it as needed.

5.1.1 Summary of Contributions
This chapter addresses both the algorithmic challenge of managing an aggregator and
the economic challenge of measuring the potential for an aggregator to manipulate

101

prices. Specifically, this work provides a new algorithmic framework for managing
the participation of an aggregator in electricity markets, and uses this framework to
evaluate the potential for aggregators to exercise market power. To those ends, the
chapter makes three main contributions.

First, we introduce a new model for studying the market behavior of aggregators of
distributed generation (renewables) in the real-time market.

Second, we quantify opportunities for price manipulation (via strategic curtailment)
by the aggregators. Our results highlight that, in practical scenarios, strategic
curtailment can have a significant impact on prices, and yield much higher profits for
the aggregators. In particular, the prices can be impacted up to a few tens of $/MWh
in some cases, and there is often more than 25% higher profit, even with curtailments
limited to 1%.

Third, we provide a novel algorithm for managing the participation of an aggregator
in the market. The problem is NP-hard in general and is a bilevel quadratic program,
which is notoriously difficult in practice. However, we develop an efficient algorithm
that can be used by the aggregators in radial networks to approximate the optimal
curtailment strategy and maximize their profit (Section 5.5). Note that the algorithm
is not just relevant for aggregators; it can also be used by the operator to assess
the potential for strategic curtailment. The key insight in the algorithm is that
the optimization problem can be decomposed into “local” pieces and be solved
approximately using a dynamic programming over the graph. We also provide an
exact algorithm for the case of single-bus aggregators in general networks.

Further, our results expose a connection between the profit achievable via curtailment
and a new market power measure introduced in [221], which is discussed in
Appendix 5.A.

5.1.2 Related Work
This chapter connects to, and builds on, work in four related areas: 1) quantifying
and mitigating market power, 2) cyber-attacks in the grid, 3) algorithms for managing
distributed energy resources, and 4) algorithms for bilevel programs.

5.1.2.1 Quantifying Market Power in Electricity Markets

There is a large volume of literature that focuses on identifying and measuring market
power for generators in an electricity market, see [203] for a recent survey.

102

Early works on market power analysis, emerged from microeconomic theory, suggest
measures that ignore transmission constraints. For example, [48] introduced the
pivotal supplier index (PSI), which is a binary value indicating whether the capacity of
a generator is larger than the supply surplus, and [184] later refined PSI by proposing
residential supply index (RSI). RSI is used by the California ISO to assure price
competitiveness [49]. The electricity reliability council of Texas uses the element
competitiveness index (ECI) [71], which is based on the Herfindahl-Hirschmann
index (HHI) [182].

Market power measures considering transmission constraints have emerged more
recently. Some examples include, e.g., [180, 41, 161, 52, 218], and [219]. Interested
readers can refer to [42], which proposes a functional measure that unifies the
structural indices measuring market power on a transmission constrained network in
the previous work.

In contrast to the large literature discussed above, the literature focused on market
power of renewable generation producers is limited. Existing works such as [221] and
[202] study market power of wind power producers ignoring transmission constraints.
The key differentiator of the work in this chapter is that the use of the Locational
Marginal Price (LMP) framework, which is standard practice in the electricity market
[162, 226], allows this work to offer insight about market power of aggregators when
transmission capacity is limited.

5.1.2.2 Cyber-Attacks in the Grid

The model and analysis in this chapter is also strongly connected to the cyber
security research community, which has studied how and when a malicious party
can manipulate the spot price in electricity markets by compromising the state
measurement of the power grid via false data injection [35, 36, 216, 217, 136].

In particular, [216, 217] shows that if a malicious party can corrupt sensor data,
then it can create an arbitrage opportunity. Further, [35] shows that such attacks can
impact both the real time spot price and future prices by causing line congestions.

In this work, we do not allow aggregators to corrupt the state measurements of the
power system, rather we consider a perfectly legal approach for price manipulation:
strategic curtailment. However, strategic curtailment in the ex-post market can gain
extra profit to the detriment of the power system, which is a similar mechanism to those
highlighted in cyber attack literature. Technically, the work in this chapter makes

103

significant algorithmic contributions to the cyber-attack literature. In particular, the
papers mentioned above focus on algorithmic heuristics and do not provide formal
guarantees. In contrast, our work presents a polynomial-time algorithm that provably
maximizes the profit of the aggregator.

5.1.2.3 Algorithms for Managing Distributed Energy Resources

There has been much work studying optimal strategies for managing demand
response and distributed generation resources to offer regulation services to the
power grid. This work covers a variety of contexts. For example, researchers
have studied frequency regulation [132][92] and voltage regulation (or volt-VAR
control) [223][12]. A separate line of work has been work on designing incentives
to encourage distributed resources to provide services to the power grid [148][59].
However, the current chapter is distinct from all the work above in that we study
strategic behavior by an aggregator of distributed resources. Prior work does not
model the strategic manipulation of prices by the aggregator.

5.1.2.4 Algorithms for Bilevel Programs

The optimization problem that the strategic aggregator solves is a bilevel program,
since the objective (aggregator’s profit) depends on the locational prices (LMPs).
The LMPs are constrained to be equal to optimal dual variables arising from
economic dispatch-based market clearing procedure. These types of problems have
been extensively studied in the literature, and fall under the class of Mathematical
Programs with Equilibrium Constraints (MPECs) [73]. Even if the optimization
problems at the two levels are linear, the problem is known to be NP-hard [34].
Global optimization algorithms [84] can be used to solve these problems to arbitrary
accuracy (compute a lower bound on the objective within a specified tolerance of the
global optimum). However, these algorithms use a spatial branch and bound strategy,
and can take exponential time in general. In contrast, solvers like PATH [63], while
practically efficient for many problems, are only guaranteed to find a local optimum.
In this chapter, we show that for tree-structured networks (distribution networks), an
n-approximation of the global optimum can be computed in time linear in the size of
the network and polynomial in 1

n
.

5.2 System Model
In this section, we define the power system model that serves as the basis for the
chapter and describe how we model the way the Independent System Operator (ISO)

104

computes the Locational Marginal Prices (LMPs). Locational marginal pricing
is adopted by the majority of power markets in the Unites States [226], and our
model is meant to mimic the operation of two-stage markets like ISO New England,
PJM Interconnection, and Midcontinent ISO, that use ex-post pricing strategy for
correcting the ex-ante prices [162, 226].

5.2.1 Preliminaries
We consider a power system with = nodes (buses) and C transmission lines. The
generation and load at node 8 are denoted by ?8 and 38 respectively, with p =[
?1, . . . , ?=

])
and d =

[
31, . . . , 3=

])
. We use [=] to denote the set of buses

{1, . . . , =}.

The focus of this chapter is on the behavior of an aggregator in the real-time market,
which owns generation capacity, possibly at multiple nodes. We assume that the
aggregator has the ability to curtail generation, e.g., by curtailing the amount of
wind/solar generation or by not calling on demand response opportunities, without
penalty. This is because in many of today’s markets, the renewable generation (e.g.,
solar) can be sold at the real-time price without having to commit to the ex-ante
market (see for example CAISO Participating Intermittent Resource Program (PIRP)
[140]). Let #0 ⊆ [=] be the nodes where the aggregator has generation and denote its
share of generation at node 8 ∈ #0 by ?08 (out of ?8). The curtailment of generation
at this node is denoted by U8, where 0 ≤ U8 ≤ ?0

8
. We define our model for the

decision-making process of the aggregator with respect to curtailment in Section 5.3.

Together, the net generation delivered to the grid is represented by p − ", where
U 9 = 0 ∀ 9 ∉ #0. The flow of lines is denoted by f =

[
51, . . . , 5C

])
, where 5;

represents the flow of line ;: f = G(p − " − d), where G ∈ RC×= is the matrix of
generation shift factors [186]. We also define B ∈ R=×C as the link-to-node incidence
matrix that transforms line flows back to the net injections as p − " − d = Bf.

5.2.2 Real-Time Market Price
For every dispatch interval, the ISO obtains the current values of generation, demands,
and flows from the state estimator, in real time. Based on this information, it solves
a constrained optimization problem for market clearing. The objective of the
optimization is to minimize the total cost of the network, based on the current state of
the system. The ex-post LMPs are announced as a function of the optimal Lagrange
multipliers of this optimization. Mathematically, the following program has to be

105

solved.

minimize
f

cTBf (5.1a)

subject to

,−, ,+ : �p ≤ Bf − p + " + d ≤ �p (5.1b)

-−, -+ : f ≤ f ≤ f (5.1c)

. : f ∈ range(G) (5.1d)

In the above, 28 is the offer price for the generator 8. 5; is the desired flow of line
;, and Bf = p + �p − " − d, where Δ ?8 is the desired amount of change in the
generation of node 8. Constraint (5.1b) enforces the upper and lower limits on the
change of generations, and constraint (5.1c) keeps the flows within the line limits. In
practice, Δ ?

8
and Δ ?8 are usually set to be a constant value for all 8 (e.g., Δ ?

8
= −2

and Δ ?8 = 0.1, ∀8 [166, p. 100]). The last constraint ensures that 5; are valid
flows, i.e., f = Gp̃ for some generation p̃. Variables ,−, ,+ ∈ R=+, -−, -+ ∈ RC+, and
. ∈ RC−rank(�) denote the Lagrange multipliers (dual variables) corresponding to
constraints (5.1b), (5.1c), and (5.1d).

Note that the ISO does not physically redispatch the generations, and the optimal
values of the above program are just the desired values. In fact, by announcing
the (ex-post) LMPs, the ISO provides incentives for the generators to adjust their
generation according to its goals [226].

Definition 3. The ex-post locational marginal price (LMP) of node 8 at curtailment
level of ", denoted by _8 ("), is

_8 (") = 28 + _+8 (U) − _−8 (U). (5.2)

We assume that the LMPs are unique. Non-uniqueness of LMPs happens only under
very special degenerate conditions, and can be fixed in practice by adding a quadratic
penalty term to the objective to make it convex [50].

5.3 The Market Behavior of the Aggregator
The key feature of our model is the behavior of the aggregator. As mentioned before,
aggregators have generation resources at multiple locations in the network and can
often curtail generation resources without the knowledge of the ISO. Of course, such
curtailment may not be in the best interest of the aggregator, since it means offering
less generation to the market. But, if through curtailment, prices can be impacted,

106

then the aggregator may be able to receive higher prices for the generation offered or
make money through arbitrage of the price differential.

To quantify the profit that the aggregator makes due to the curtailment, let us take a
look at the total revenue in different production levels.

Definition 4. We define the curtailment profit (CP) as the change in profit of the
aggregator as a result of curtailment:

W(") =
∑
8∈#0

(
_8 (") · (?08 − U8) − _8 (0) · ?08

)
. (5.3)

Note that the curtailment profit can be positive or negative in general. We say a
curtailment level " > 0 is profitable if W(") is strictly positive.

The curtailment profit is important for understanding when it is beneficial for the
aggregators to curtail. Note that we are not concerned about the cost of generation
here, as renewables have zero marginal cost. However, if there is a cost for generation,
then that results in an additional profit during curtailment, which makes strategic
curtailment more likely.

While our setup may seem divorced from the notion of market power, it turns out
that there is a fundamental relationship between the curtailment profit introduced
above and market power. See Appendix 5.A for details.

5.3.1 A Profit-Maximizing Aggregator
A natural model for a strategic aggregator is one that maximizes curtailment profit
subject to LMPs and curtailment constraints. Since LMPs are the solution to an
optimization problem themselves, the aggregator’s problem is a bilevel optimization
problem. In order to be able to express this optimization in an explicit form, let us
first write the KKT conditions of the program (5.1).

Primal feasibility:
�p ≤ Bf − p + " + d ≤ �p (5.4a)

f ≤ f ≤ f (5.4b)

Hf = 0 (5.4c)

Dual feasibility:
,−, ,+, -−, -+ ≥ 0 (5.4d)

107

Complementary slackness:

_+8 ((� 5)8 − ?8 + U8 + 38 − Δ ?8) = 0, 8 = 1, . . . , = (5.4e)

_−8 (Δ ?8 − (� 5)8 + ?8 − U8 − 38) = 0, 8 = 1, . . . , = (5.4f)

`+; (5; − 5 ;) = 0, ; = 1, . . . , C (5.4g)

`−; (5 ; − 5;) = 0, ; = 1, . . . , C (5.4h)

Stationarity:
B) (c + ,+ − ,−) + -+ − -− +H). = 0. (5.4i)

Here H ∈ R(C−rank(�))×C , and the range of G is the nullspace of H.

Using the KKT conditions derived above, the aggregator’s problem can be formulated
as follows.

W∗ = maximize
",f,,−,,+,-−,-+,.

W(") (5.5a)

subject to

0 ≤ U8 ≤ ?08 , 8 ∈ #0 (5.5b)

U 9 = 0, 9 ∉ #0 (5.5c)

(5.4) (5.5d)

The objective (5.5a) is the curtailment profit defined in (5.3). Constraints (5.5b) and
(5.5c) indicate that the aggregator can only curtail generation at its own nodes, and
the amount of curtailment cannot exceed the amount of generation available to it.
Constraints (5.5d), which are the KKT conditions, enforce the locational marginal
pricing adopted by the ISO. Note that if there is a curtailment limit above which, for
example, curtailment can be detected by the ISO, one can simply replace ?0

8
in (5.5b)

by min{?0
8
, g8} to account for it.

An important note about this problem is that we have assumed the aggregator has
complete knowledge of the network topology (G) and state estimates (p and d). This
is, perhaps, optimistic; however one would hope that the market design is such that
aggregators do not have profitable manipulations even with such knowledge. The
results in this chapter indicate that this is not the case.

108

Bus 1 150 MW375 MW
Bus 2

-7
6.4

/9
0 M

W

100/100 MW

-96/100 MW

73 MW

300 MW

280 MW

300 MW

Bus 3

-31/90
M

W
Bus 6

397 MW

85 MWBus 4

250 MW
10

0/
10

0
M

W

25.2/100
M

W

Bus 5

300 MW

-65.2/90 MW

250 MW

-90/90 MW

LoadGeneGeneratorrator Load

Figure 5.1: The 6-bus example network from [35], used to illustrate the effect of
curtailment.

5.4 The Impact of Strategic Curtailment
In this section, we demonstrate the potential impact of strategic curtailment in
practical settings. We first provide an illustrative example of how curtailment leads
to a larger profit for a simple single-bus aggregator in a small, 6-bus, network. Then
we show the effect of strategic curtailment in more realistic settings, using IEEE 14-,
30-, and 57-bus test cases and their enhanced versions from NICTA Energy System
Test case Archive [60].

5.4.1 An Illustrative Example
Fig. 5.1 shows a 6-bus example network from [35], in which the amounts of
generation are 375.20, 73.00, 299.60, 84.80, 250.00, and 397.40 ", . The loads
and the original offer prices for the generators are shown in the figure. At the
normal conditions, the lines ;12, ;14 and ;56 are carrying their maximum flow, and
the real-time LMPs are 20.0, 25.0, 25.0, 35.0, 28.7, and 24.0 $/",ℎ, respectively.

Assume that the aggregator owns node 1 and aims to increase its profit by curtailing
the generation at this node. It can be seen that by curtailing just 0.15 ", generation
at node 1 (i.e., from 375.20 ", to 375.05 ",), the binding/non-binding constraints
in problem (5.1) change, and as a result, the ISOwill determine the new LMPs as 25.8,

109

25.0, 25.0, 35.0, 30.6, and 24.0 $/",ℎ. Fig. 5.2 shows the LMPs, before and after
the curtailment. In this case, the curtailment profit is W = 25.8×375.05−20×375.20
= 2172 $/ℎ ,which means that the aggregator has been able to increase its profit by
2172 $/ℎ during that dispatch interval.

5.4.2 Case Studies
We simulate the behavior of aggregators with different sizes, i.e., different number
of buses, in a number of different networks. We use the IEEE 14-, 30-, and 57-bus
test cases. Since studying market manipulation makes sense only when there is
congestion in the network, we scale the demand (or equivalently the line flow limits)
until there is some congestion in the network. In order to examine the profit and
market power of aggregator as a function of its size, we assume that the way the
aggregator grows is by sequentially adding random buses to its set (more or less like
the way, for example, a solar firm grows). Then, at any fixed set of buses, it can
choose different curtailment strategies to maximize its profit. In other words, for each
of its nodes, it should decide whether to curtail or not (assuming that the amount of
curtailment has been fixed to a small portion). We assume that the total generation
of the aggregator in each bus is 10 ", , and it is able to curtail 1% of it (0.1 ",).

For each of the three networks, Fig. 5.3 shows the profit for a random sequence of
nodes. Comparing the no-curtailment profit with the strategic-curtailment profit
reveals an interesting phenomenon. As the size of the aggregator (number of its
buses) grows, not only does the profit increase (which is expected), but also the

1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

Bus No.

LM
P

 (
$/

M
W

h)

Normal
Curtailment

Figure 5.2: The locational marginal prices for the 6-bus example before and after the
curtailment.

110

0 10 20 30 40 50 60 70 80 90 100 110 120
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Aggregator Size (MW)

P
ro

fi
t

($
/h

)

Strategic Curtailment

Normal

0 10 20 30 40 50 60 70 80 90 100 110 120
0

500

1000

1500

2000

2500

Aggregator Size (MW)

P
ro

fi
t

($
/h

)

Strategic Curtailment

Normal

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

0.5

1

1.5

2

2.5

3
x 10

4

Aggregator Size (MW)

P
ro

fi
t

($
/h

)

Strategic Curtailment

Normal

Figure 5.3: The profit under the normal (no-curtailment) condition and under
(optimal) strategic curtailment, as a function of size of the aggregator in IEEE test
case networks: a) IEEE 14-Bus Case, b) IEEE 30-Bus Case, and c) IEEE 57-Bus
Case. The difference between the two curves is the curtailment profit.

111

IEEE 14-bus network

The aggregator

Figure 5.4: A heat map of the impact of coordinated curtailment on the prices in the
IEEE 14-bus network. Aggregator nodes are 2, 7, 10, and 14.

difference between the two curves increases, which is the “curtailment profit.” More
specifically, the latter does not need to happen in theory. However in practice, it
is observed most of the time, and it highlights that larger aggregators have higher
incentive to behave strategically, and they can indeed gain more from curtailment.

The other important question is what the impact of strategic curtailment on the price
of each bus of the network (not necessarily just the aggregator’s buses) is. This is
important in many scenarios, like the effect of such coordinated manipulations on
consumers or the effect of competing firms on each other. Fig. 5.4 shows a heat map
of an aggregator’s impact on the prices in the IEEE 14-bus network. As one can see,
the price of other buses can often be highly impacted as well.

5.5 Optimizing Curtailment Profit
The aggregator’s profit maximization problem is challenging to analyze, as one
would expect given its bilevel form. In fact, bilevel linear programming is NP-hard
to approximate up to any constant multiplicative factor in general [61]. Furthermore,
the objective of the program (5.5) is quadratic (bilinear) in the variables, rather than
linear. This combination of difficulties means that we cannot hope to provide a
complete analytic characterization of the behavior of a profit-maximizing aggregator.

In this section, we begin with the case of a single-bus aggregator and build to
the case of general multi-bus aggregators in acyclic networks. For the single-bus

112

aggregator, the optimal curtailment can be found exactly, in polynomial time. For
the general case, we cannot provide an exact algorithm, but we do provide a practical
approximation algorithm for general multi-bus aggregators in acyclic networks (e.g.,
distribution networks).

5.5.1 AnExactAlgorithm forSingle-NodeAggregators inArbitraryNetworks
Even in the simplest case, when the aggregator has only a single node, i.e., its entire
generation is located in a single bus, it is not trivial how to solve the aggregator’s
profit maximization problem.

The first step toward solving the problem is already difficult. In particular, in order
to understand the effect of curtailment on the profit, we first need to understand
how curtailment impacts the prices—an impact which is not monotonic in general.
Although LMPs are not monotonic in general, it turns out that in single-bus
curtailment, the LMP is indeed monotonic with respect to the curtailment. The proof
of the following lemma is in Appendix 5.B.

Lemma 25. The LMP of any bus 8 is monotonically increasing with respect to the
curtailment at that bus. That is,

_8 ("′) ≥ _8 (")

if U′
8
> U8, and U′9 = U 9 for all 9 = [=]\{8}.

A consequence of the above lemma is that the price _8 is a monotonically increasing
staircase function of U8, for any bus 8, as depicted in Fig. 5.5. As U8 increases, if
the binding constraints of (5.1) do not change, the dual variables remain the same,
and thus the LMPs remain the same (constant intervals). Once a constraint becomes
binding/non-binding, the LMP jumps to the next level.

In Fig. 5.5, the two shaded areas show profit at the normal condition and at the
curtailment. The difference between the two areas is the curtailment profit. In
particular, if the red area is larger than the blue one, the aggregator is able to earn
a positive curtailment profit on bus 8. The optimal curtailment U∗

8
also happens

where the red area is maximized. It should be clear that the optimal curtailment
always happens at the verge of a price change, not in the middle of a constant interval
(otherwise, it can be increased by curtailing less).

Given the knowledge of the network and state estimates, it is possible to find the jump
points (i.e., where the binding constraints change) and evaluate them for profitability.

113

Figure 5.5: The LMP at bus 8 as a function of curtailed generation at that bus. Shaded
areas indicate the aggregator’s revenue at the normal condition and at the curtailment.

Therefore, if there are not too many jumps, an exhaustive search over the jump points
can yield the optimal curtailment. Based on this observation, we have the following
theorem, which is proven in Appendix 5.C.

Theorem 26. The exact optimal curtailment for an aggregator with a single bus, in
an arbitrary network with C lines, can be found by an algorithm with running time
$ (C3.373).

Clearly, this approach does not extend to large multi-bus aggregators. The following
section uses a different and more sophisticated algorithmic approach for that setting.

5.5.2 An Approximation Algorithm for Multi-Bus Aggregators in Radial Net-
works

In this section, we show that the aggregator profitmaximization problem, while hard in
general, can be solved in an approximate sense to determine an approximately-feasible
approximately-optimal curtailment strategy in polynomial time using an approach
based on dynamic programming. In particular, we show that an n-approximation of
the optimal curtailment profit can be obtained using an algorithm with running time
that is linear in the size of the network and polynomial in 1

n
.

Before we state the main result of this section, we introduce the notion of an
approximate solution to (5.5) in the following definition.

Definition 5. A solution (U, 5 , _−, _+, `−, `+, a) to (5.5) is an n-accurate solution
if the constraints are violated by at most n and W (U) ≥ W∗ − n .

114

Note that, if one is simply interested in approximating W∗ (as a market regulator
would be), the n-constraint violation is of no consequence, and an n-accurate solution
of (5.5) suffices to compute an n-approximation to W∗.

Given the above notion of approximation, our main theorem is as follows (proof in
Appendix 5.D):

Theorem 27. An n-accurate solution to the optimal aggregator curtailment problem
(5.5) for an =-bus radial network can be found by an algorithm with running time
2=

(
1
n

)9
, where 2 is a constant that depends on the parameters ?0

8
, �, 3, ?, 5 , 5 . On

a linear (feeder line) network, the running time reduces to 2=
(

1
n

)6
.

We now give an informal description of the approximation algorithm. Consider a
radial distribution network with nodes labeled 8 ∈ [=] (where 1 denotes the substation
bus, where the radial network connects to the transmission grid). Radial distribution
networks have a tree topology (they do not have cycles). We denote bus 1 as the root
of the tree, and buses with only one neighbor as leaves. Every node (except the root)
has a unique parent, defined as the first node on the unique path connecting it to the
root node. The set of nodes : that have a given node 8 as its parent are said to be
its children. It can be shown that the strategic curtailment problem on any radial
distribution network can be expressed as an equivalent problem on a network where
each node has maximum degree 3 (known as a binary tree, see Appendix 5.D). Thus,
we can limit our attention to networks of this type, where every node has a unique
parent and at most 2 children.

For a node 8, let 21 (8) , 22 (8) denote its children (where 21 = ∅, 22 = ∅ is allowed
since a node can have fewer than two children). We use the shorthand

?=4C (8) = 521 (8) + 522 (8) − 58 − (?8 − U8 − 38) .

Constraint (5.4a) reduces to Δ ?
8
≤ ?=4C (8) ≤ Δ ?8, where 51 = 0 and 5∅ = 0. The

matrix � in (5.4c) is an empty matrix (the nullspace of the matrix � is of dimension
0), so this constraint can be dropped. Using this additional structure, the problem

115

(5.5) can be rewritten (after some algebra) as:

maximize
_, 5 ,U

=∑
8=1

_8
(
?08 − U8

)
(5.6a)

subject to

0 ≤ U8 ≤ ?08 , 8 ∈ [=] (5.6b)

Δ ?
8
≤ ?=4C (8) ≤ Δ ?8, 8 ∈ [=] (5.6c)

5
8
≤ 58 ≤ 5 8, 8 ∈ [=] \ {1} (5.6d)

_8


≤ 28, if ?=4C (8) = Δ ?

8

= 28, if Δ ?
8
< ?=4C (8) < Δ ?8

≥ 28, if ?=4C (8) = Δ ?8

, 8 ∈ [=] (5.6e)

_2 9 (8) − _8


≥ 0, if 58 = 5

8

= 0, if 5
8
< 58 < 5 8

≤ 0, if 58 = 5 8

, 8 ∈ [=], 9 = 1, 2 (5.6f)

where _8 is the LMP at bus 8. Note that we assumed that there is some aggregator
generation and potential curtailment at every bus (however this is not restrictive,
since we can simply set ?0

8
= 0 at buses where the aggregator owns no assets).

Define G8 = (_8, 58, U8), it is easy to see that (5.6) is of the form

max
G

=∑
8=1

68 (G8)

s.t. ℎ8
(
G8, G21 (8) , G22 (8)

)
≤ 0, 8 ∈ [=]

for some functions 68 (.) and ℎ8 (.). This form is amenable to dynamic programming,
since, if we fix the value of G8, the optimization problem for the subtree under 8 is
decoupled from the rest of the network. Set ^= (G) = 0, define ^8 for 8 < = recursively
as

^8 (G) = max
G21 (8) ,G22 (8)

ℎ8 (G,G21 (8) ,G22 (8))≤0

2∑
9=1
62 9 (8)

(
G2 9 (8)

)
+ ^2 9 (8)

(
G2 9 (8)

)
.

Then, the optimal value can be computed as W∗ = maxG ^1 (G) + 61 (G) . However, the
above recursion requires an infinite-dimensional computation at every step, since the
value of ^8 needs to be calculated for every value of G. To get around this, we note
that the variables _8, 58, U8 are bounded, and hence G8 can be discretized to lie in a

116

Figure 5.6: The representation of a binary tree. For any node 8, and its children
denoted 21(8), 22(8).

certain set X8 such that every feasible G8 is at most X(n8) away (in infinity-norm sense)
from some point in X8 (Lemma 29). The discretization error can be quantified, and
this error bound can be used to relax the constraint to ℎ8 (G8, G8+1) ≤ n , guaranteeing
that any solution to (5.5) is feasible for the relaxed constraint. This allows us to
define a dynamic program (Algorithm 3).

Algorithm 3 Dynamic programming on binary tree

(← {8 : 21 (8) = ∅, 22 (8) = ∅}
^8 (G) ← 0 ∀G ∈ X8, 8 ∈ (
while |(| ≤ = do

(′← {8 ∉ (: 21 (8) , 22 (8) ∈ (}
∀8 ∈ (′,∀G ∈ X8:

^8 (G) ← max
G ′1∈X21 (8) ,G

′
2∈X22 (8)

ℎ8 (G,G′1,G ′2)≤n

∑
9=1,2

62 9 (8)
(
G′9

)
+ ^2 9 (8) (G′)

(← (∪ (′
end while
W ← maxG∈X1 ^1 (G) + 61 (G)

The algorithm essentially starts at the leaves of the tree and proceeds towards the
root, at each stage updating ^ for nodes whose children have already been updated
(stopping at root). Along with the discretization error analysis in Appendix 5.D, this
essentially concludes Theorem 27.

It is worth noting that previous work on distribution level markets have used AC
power flow models (at least in some approximate form) due to the importance of
voltage constraints and reactive power in a distribution system [158]. Our approach

117

extends in a straightforward way to this setting as well, as the dynamic programming
structure remains preserved (the KKT conditions will simply be replaced by the
corresponding conditions for the AC-based market clearing mechanism).

5.5.3 Evaluation of the Approximation Algorithm
To evaluate the performance of our approximation algorithm on acyclic networks, we
run it on a number of small test networks and compare the results with the brute-force
optimal values. The algorithm indeed finds solutions within the prespecified error
range (and often exact) in reasonable time.

As an example, for an acyclic version of the IEEE 9-bus network (taken from [116]),
we demonstrate the suboptimality gap of the solution versus the running time in
Fig. 5.8. At each point of the graph, the error percentage (y-axis) is bounded by a
constant factor of n . Clearly, the smaller n we choose, the longer the running time is,
but the smaller the error becomes. As one can see, the error drops pretty quickly.

Figure 5.7: The 9-bus acyclic network from [116], used for the evaluation of the
proposed approximation algorithm.

We should remark that the network chosen here was small in order to allow for
comparison with the optimal value. However, the main advantage of our algorithm
is that it is scalable, while the brute-force becomes intractable quickly.

5.6 Concluding Remarks
Understanding the potential for market manipulation by aggregators is crucial for
electricity market efficiency in the new era of renewable energy. In this chapter, we

118

0 2 4 6 8 10 12 14 16

Time (s)

0

10

20

30

40

50

60

70

80

90

100

%
a

g
e

 e
rr

o
r

in
 o

p
ti

m
a

l
v

a
lu

e

Figure 5.8: The difference from the optimal solution as a function of the running
time of the algorithm, in the 9-bus network with 1% curtailment allowance.

characterized the profit an aggregator can make by strategically curtailing generation
in the ex-post market as the outcome of a bi-level optimization problem. This
model captures the realistic price clearing mechanism in the electricity market.
We showed through simulations on realistic test cases that there is potentially
large profit for aggregators by manipulating the LMPs in the electricity market.
When the aggregator is located in a single bus, we have shown that the locational
marginal price is monotonically increasing with the curtailment, and we have an exact
polynomial-time algorithm to solve the aggregators profit maximization problem.

The aggregator’s strategic curtailment problem in a general setting is a difficult
bi-level optimization problem, which is intractable. However, we showed that for
radial distribution networks (where aggregators are likely located), there is an efficient
algorithm to approximate the solution up to arbitrary precision. We also demonstrated
via simulation on a distribution test case that our algorithm can efficiently find the
approximately optimal curtailment strategy.

We view this work as a first step in understanding market power of aggregators,
and more generally, towards market design for integrating renewable energy and
demand response from geographically distributed sources. With the result of this
work, it is interesting to ask what the operator can do to address this problem, and in
particular, how to design market rules for aggregators to maximize the contribution
of renewable energy yet mitigate the exercise of market power. Also, extending
the analysis to the case of multiple aggregators in the market is another interesting
direction for future research.

119

5.A Connections between Curtailment Profit and Market Power
As mentioned earlier, there has been significant work on market power in electricity
markets, but work is only beginning to emerge on the market power of renewable
generation producers. One important work from this literature is [221], and the
following is the proposed notion of market power from that work.

Definition 6. For U∗
8
≥ 0, the market power (ability) of the aggregator is defined as

[8 =

(
_8 (U∗) − _8 (0)

_8 (0)

)
/
(
U∗
8

?0
8

)
(5.7)

In this definition, the value of [8 captures the ability of the generator/aggregator to
exercise market power. Intuitively, in a market with high value of [8, the aggregator
can significantly increase the price by curtailing a small amount of generation.

Interestingly, the optimal curtailment profit is closely related to this notion of market
power. We summarize the relationship in the following proposition.

Proposition 28. If the curtailment profit W is positive, then the market power [8 > 1.
Furthermore, the larger the curtailment profit is, the higher the market power.

Proof. From the definition of W(U∗) = _8 (U∗) (?08 − U∗8) − _8 (0)?08 , it follows that

W(U∗)
_8 (0) (?08 − U∗8)

=
_8 (U∗)
_8 (0)

−
?0
8

?0
8
− U∗

8

= 1 + _8 (U
∗) − _8 (0)
_8 (0)

− (1 −
U∗
8

?0
8

)−1

' 1 + _8 (U
∗) − _8 (0)
_8 (0)

− (1 +
U∗
8

?0
8

)

=
_8 (U∗) − _8 (0)

_8 (0)
−
U∗
8

?0
8

. (5.8)

Therefore we have

?0
8

_8 (0) (?08 − U∗8)U∗8
W(U∗) =

(
_8 (U∗) − _8 (0)

_8 (0)

)
/
(
U∗
8

?0
8

)
− 1

= [8 − 1.

Since the left-hand side parameters are all positive, if W(U∗) > 0, we can conclude
that [8 > 1. Moreover, it is clear that the larger the value of W(U∗) is, the higher
the value of [8 is. Note that we used the approximation (1 − U∗

8

?0
8
)−1 ' 1 + U∗

8

?0
8
, since

120

the curtailment is small with respect to the generation; however, the right-hand side
expression (5.8) is an upper bound on the left-hand side anyway, and the result holds
exactly. �

This proposition highlights that the notion of market power in [221] is consistent
with an aggregator seeking to maximize its curtailment profit, and higher curtailment
profit corresponds to more market power.

121

5.B Proof of Lemma 25 (Monotonicity of LMP)
Let us take a look at the ISO’s optimization problem (5.1), which is a linear program.
It is not hard to see that the dual of this problem is as follows.

maximize
,−,,+,-−,-+,.

(�p + p − " − d)),−+

(−p + " + d − �p)),+ + f) -− − f
)
-+ (5.9a)

subject to

B) (c + ,+ − ,−) − -− + -+ +H). = 0 (5.9b)

,−, ,+, -−, -+ ≥ 0 (5.9c)

If one focuses on the terms involving U8 for a certain 8, the objective of the above
optimization problem is in the form: (Δ ?

8
+ ?8 −U8 − 38)_−8 + (−?8 +U8 + 38 −Δ ?8)_+8

plus a linear function of the rest of the variables (i.e., the rest of ,−, ,+, as well as
-−, -+, .). There is no " in the constraints, and the first two terms of this objective
are the only parts where U8 appears (and with opposite signs).

We need to show that if U8 is changed to U8+X for some X > 0, then 28+_+=4F8
−_−=4F

8
≥

28 + _+8 − _−8 , where _+=4F8
, _−=4F
8

are the optimal solutions of the new problem.

We prove this in a general setting. Consider the following two optimization problems.

5 ∗ = sup
G1,G2∈R
G3∈R<

01G1 + 02G2 + 0)3G3 (5.10a)

s.t. (G1, G2, G3) ∈ ((5.10b)

5 ∗=4F = sup
G1,G2∈R
G3∈R<

(01 − X)G1 + (02 + X)G2 + 0)3G3 (5.11a)

s.t. (G1, G2, G3) ∈ ((5.11b)

Assume that the optimal values of the problems are attained at (G∗1, G
∗
2, G
∗
3) and

(G∗=4F1 , G∗=4F2 , G∗=4F3), respectively.

We claim that G∗=4F2 − G∗=4F1 ≥ G∗2 − G
∗
1. (This precisely implies the LMP condition in

our case, i.e., _+=4F
8
− _−=4F

8
≥ _+

8
− _−

8
).

Suppose by way of contradiction that G∗=4F2 − G∗=4F1 < G∗2 − G
∗
1.

We know that 01G
∗
1 + 02G

∗
2 + 0

)
3G
∗
3 ≥ 01G1 + 02G2 + 0)3G3, ∀(G1, G2, G3) ∈ (.

122

Therefore we have

(01 − X)G∗=4F1 + (02 + X)G∗=4F2 + 0)3G
∗=4F
3

= 01G
∗=4F
1 + 02G

∗=4F
2 + 0)3G

∗=4F
3 − XG∗=4F1 + XG∗=4F2

≤ 01G
∗
1 + 02G

∗
2 + 0

)
3G
∗
3 + X(G

∗=4F
2 − G∗=4F1)

< 01G
∗
1 + 02G

∗
2 + 0

)
3G
∗
3 + X(G

∗
2 − G

∗
1)

= (01 − X)G∗1 + (02 + X)G∗2 + 0
)
3G
∗
3.

The first inequality above follows from the fact that (G∗=4F1 , G∗=4F2 , G∗=4F3) ∈ (. Now
the above implies that (G∗=4F1 , G∗=4F2 , G∗=4F3) is not the optimal solution of (5.11), and
it is a contradiction.

As a result, G∗=4F2 − G∗=4F1 ≥ G∗2 − G
∗
1. �

123

5.C Proof of Theorem 26 (Exact Single-Bus)
Since we are in the single-bus curtailment regime, U has only one nonzero component.
For the sake of convenience, we denote that element itself by a scalar U throughout
this proof (no U is vector in this proof). The proof consists of the following two
pieces: 1) From each jump point, the point where the next jump happens can be
computed in polynomial time and 2) There are at most polynomially (in this case
even linearly) many jumps.

Assuming that the solution to the program (5.1) is unique, for any fixed value of U,
exactly C of the constraints (5.1b), (5.1c), and (5.1d) are binding (active). We can
express these binding constraints as

� 5 = 1(U),

where � ∈ RC×C is an invertible matrix, and 1(U) ∈ RC is a vector that depends on
U. As long as the binding constraints do not change, the matrix � is fixed, and the
optimal solution is linear in U (i.e., 5 = �−11(U)). Then, for simplicity, we can
express the solution as 5 (U) = 50 + U0, for some C-vectors 50 and 0.

Now, if we look at the non-binding (inactive) constraints of (5.1), they can also be
expressed as

�̃ 5 < 1̃,

for some matrix �̃ and vector 1̃ of appropriate dimensions. Inserting 5 into this set
of inequalities yields �̃ 50 + U�̃0 < 1̃, or equivalently

U(�̃0)8 < 1̃8 − (�̃ 50)8,

for all 8 = 1, 2, . . . , (2= + 2C − A0=: (�)).

Now we need to figure out that, with increasing U, which of the non-binding
constraints becomes binding first and with exactly how much of an increase in U.
If for some 8 we have (�̃0)8 ≤ 0, then it is clear that increasing U cannot make
constraint 8 binding. If (�̃0)8 > 0 then the constraint can be written as

U <
1̃8 − (�̃ 50)8
(�̃0)8

.

Computing the right-hand side for all 8, and taking their minimum, tells us exactly
which constraint will become binding next and how much change in the current value
of U results in that.

124

The complexity of this procedure is $ (C2.373) for computing 50 and 0, plus $ (C (2= +
2C)) = $ (=C + C2) for computing the lowest bound among all the constraints. Hence
the complexity is $ (C2.373).

The above procedure describes how the next jump point can be computed efficiently
from the current point. The exact same procedure can be repeated for reaching the
subsequent jump points. All that remains is to show the second piece of the proof,
which is that the number of jump points are bounded polynomially. To show the
last part, note that by increasing U, if a binding constraint becomes non-binding,
it will not become binding again. As a result, each constraint can change at most
twice, and therefore, the number of jumps is at most twice the number of constraints.
Thus, the number of jumps is $ (= + C), and the overall complexity of the algorithm
is $ ((= + C)C2.373) = $ (C3.373). �

125

5.D Proof of Theorem 27 (Approximate Multi-Bus)
Lemma 29 (X-discretization). Given a set� ⊂ [!1, !1] × · · · × [!: , !:], there exists
a finite set X such that

∀I ∈ � ∃I′ ∈ X, max
1≤8≤:

|I8 − I′8 | ≤ X

and X contains at most +/X: points, where + =
∏:
8=1(!8 − !8) is a constant (the

volume of the box). X is said to be an X-discretization of � and written as X (X).

Lemma 30 (Reduction to Binary Tree). Any tree with arbitrary degrees can be
reduced to a binary tree by introducing additional dummy nodes to the network.

Proof. Take any node 1 in the tree with some parent 0 and : > 2 children 21, . . . , 2: .
There exists < > 0 such that 2< < : ≤ 2<+1 for some <. We will show that this
subgraph can be made a binary tree by introducing $ (:) dummy nodes (in < levels)
between 1 and its children. The additional nodes and edges are defined as follows:

1 → 10, 1 → 11,

10 → 100, 10 → 101, 11 → 110, 11 → 111,

100 → 1000, 100 → 1001, . . . , 111 → 1111,

up to < levels:

10...00 → 21, 10...00 → 22, 10...01 → 23 . . .

This is transparently a binary tree with $ (:) nodes. Each of the new nodes has
zero injection, and effectively the incoming flow from its parent is just split in some
way between its children. This in fact enforces the flow conservation constraint at
1. Similar construction can be applied to any node of the tree with more than two
children, until no such node exists. It can be seen that the number of nodes in the
new graph is still linear in =. �

So any tree can be transformed to a binary one by the above procedure. For the rest
of the analysis, we focus on the n-approximation of the dynamic program on the
resulting binary tree. The optimization problem (5.5) on a binary tree, can be written
after some algebra as the following.

max
,,f,U

=∑
8=1

_8 (?08 − U8) (5.12a)

subject to

126

0 ≤ U8 ≤ ?08 , 8 = 1, . . . , = (5.12b)

Δ ?
8
≤ 521 (8) + 522 (8) − 58 − ?8 + U8 + 38 ≤ Δ ?8,

8 = 1, . . . , = (5.12c)

5
8
≤ 58 ≤ 5 8, 8 = 2, . . . , = (5.12d)


(_8 − 28) (521 (8) + 522 (8) − 58 − ?8 + U8 + 38 − Δ ?8) ≥ 0

(_8 − 28) (521 (8) + 522 (8) − 58 − ?8 + U8 + 38 − Δ ?8) ≥ 0
,

8 = 1, . . . , = (5.12e)


(_8 − _2 9 (8)) (5 2 9 (8) − 52 9 (8)) ≥ 0

(_8 − _2 9 (8)) (5 2 9 (8) − 52 9 (8)) ≥ 0
,

8 = 1, . . . , =, 9 = 1, 2 (5.12f)

The constraints 0 ≤ U8 ≤ ?08 and 5 8 ≤ 58 ≤ 5 8, along with a prior bound on lambda
_ ≤ _ ≤ _ can be used to define the box where G8 = (_8, 58, U8) lives. Then, an
n-accurate solution is a solution to the following problem.

max
,,f,U

=∑
8=1

_8 (?8 − U8) (5.13a)

subject to

Δ ?
8
− n ≤ 521 (8) + 522 (8) − 58 − ?8 + U8 + 38 ≤ Δ ?8 + n,

8 = 1, . . . , = (5.13b)


(_8 − 28) (521 (8) + 522 (8) − 58 − ?8 + U8 + 38 − Δ ?8) ≥ −n

(_8 − 28) (521 (8) + 522 (8) − 58 − ?8 + U8 + 38 − Δ ?8) ≥ −n
,

8 = 1, . . . , = (5.13c)


(_8 − _2 9 (8)) (5 2 9 (8) − 52 9 (8)) ≥ −n

(_8 − _2 9 (8)) (5 2 9 (8) − 52 9 (8)) ≥ −n
,

8 = 1, . . . , =, 9 = 1, 2 (5.13d)

127

Assuming a X-discretization of the constraint set, each of the constraints (as well
as n-accuracy of the objective) imposes a bound on the value of X. For example,
constraint (5.13c) requires 4X ≤ n . (Note that we could have defined different deltas
X_, X 5 , XU for different variables, and in that case, we would have had 3X 5 + XU ≤ n ,
but for simplicity, we took all the deltas to be the same.) Similar bounds on X can be
obtained from the other constraints, and taking the lowest upper bound implies the
existence of a constant 2′ (that depends on the parameters) such that X ≤ n/2′.

As a result, we have a X-discretization with |X| = +/X3 = 2′3+/n3 number of points,
for any node. Therefore, the computational complexity over any node will be |X|3,
because we have |X| many values for the node itself and |X| many values for any of
its two children. Since there are = nodes, the overall complexity of the algorithm
will simply be =|X|3 = =2′9+3/n9 = 2=/n9. �

Part III

Distributed Computation

128

129

C h a p t e r 6

DISTRIBUTED SOLUTION OF LARGE-SCALE SYSTEMS OF
EQUATIONS

[1] Navid Azizan et al. “Distributed Solution of Large-Scale Linear Systems
via Accelerated Projection-Based Consensus”. In: 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). 2018,
pp. 6358–6362. doi: 10.1109/ICASSP.2018.8462630.

[2] Navid Azizan et al. “Distributed Solution of Large-Scale Linear Systems
via Accelerated Projection-Based Consensus”. In: IEEE Transactions on
Signal Processing 67.14 (2019), pp. 3806–3817. doi: 10.1109/TSP.2019.
2917855.

Solving a large-scale system of linear equations is a key step at the heart of many
algorithms in scientific computing, machine learning, and beyond. When the problem
dimension is large, computational and/or memory constraints make it desirable, or
even necessary, to perform the task in a distributed fashion. In this chapter, we
consider a common scenario in which a taskmaster intends to solve a large-scale
system of linear equations by distributing subsets of the equations among a number
of computing machines/cores. We propose a new algorithm called Accelerated
Projection-based Consensus (APC), in which, at each iteration, every machine
updates its solution by adding a scaled version of the projection of an error signal
onto the nullspace of its system of equations, and the taskmaster conducts an
averaging over the solutions with momentum. The convergence behavior of the
proposed algorithm is analyzed in detail and analytically shown to compare favorably
with the convergence rate of alternative distributed methods, namely distributed
gradient descent, distributed versions of Nesterov’s accelerated gradient descent
and heavy-ball method, the block Cimmino method, and ADMM. On randomly
chosen linear systems, as well as on real-world data sets, the proposed method offers
significant speed-up relative to all the aforementioned methods. Finally, our analysis
suggests a novel variation of the distributed heavy-ball method, which employs
a particular distributed preconditioning, and which achieves the same theoretical
convergence rate as the proposed consensus-based method.

130

6.1 Introduction
With the advent of big data, many analytical tasks of interest rely on distributed
computations over multiple processing cores or machines. This is either due to the
inherent complexity of the problem, in terms of computation and/or memory, or
due to the nature of the data sets themselves that may already be dispersed across
machines. Most algorithms in the literature have been designed to run in a sequential
fashion, as a result of which, in many cases, their distributed counterparts have yet to
be devised. In order to devise efficient distributed algorithms, one has to address
a number of key questions, such as: (a) What computation should each worker
carry out, (b) What is the communication architecture, and what messages should be
communicated between the processors, (c) How does the distributed implementation
fare in terms of computational complexity, and (d) What is the rate of convergence
in the case of iterative algorithms.

In this chapter, we focus on solving a large-scale system of linear equations, which
is one of the most fundamental problems in numerical computation, and lies at the
heart of many algorithms in engineering and the sciences. In particular, we consider
the setting in which a taskmaster intends to solve a large-scale system of equations in
a distributed way with the help of a set of computing machines/cores (Figure 6.1).
This is a common setting in many computing applications, and the task is mainly
distributed because of high computational and/or memory requirements (rather than
physical location as in sensor networks).

This problem can in general be cast as an optimization problem, with a cost function
that is separable in the data1 (but not in the variables). Hence, there are general
approaches to construct distributed algorithms for this problem, such as distributed
versions of gradient descent [228, 173, 222] and its variants (e.g., Nesterov’s
accelerated gradient [151] and heavy-ball method [169]), as well as the so-called
Alternating Direction Method of Multipliers (ADMM) [44] and its variants. ADMM
has been widely used [100, 62, 225] for solving various convex optimization problems
in a distributed way, and in particular for consensus optimization [144, 185, 139],
which is the relevant one for the type of separation that we have here. In addition
to the optimization-based methods, there are a few distributed algorithms designed
specifically for solving systems of linear equations. The most famous one of these
is what is known as the block Cimmino method [69, 191, 11], which is a block

1Solving a system of linear equations, �G = 1, can be set up as the optimization problem
minG ‖�G − 1‖2 = minG

∑
8 ‖(�G)8 − 18 ‖2.

131

row-projection method [45], and is in a way a distributed implementation of the
Kaczmarz method [111]. Another algorithm has been recently proposed in [134,
146], where a consensus-based scheme is used to solve a system of linear equations
over a network of autonomous agents. Our algorithm bears some resemblance to all
of these methods, but as it will be explained in detail, it has much faster convergence
than any of them.

Our main contribution is the design and analysis of a new algorithm for distributed
solution of large-scale systems of linear equations, which is significantly faster
than all the existing methods. In our methodology, the taskmaster assigns a subset
of equations to each of the machines and invokes a distributed consensus-based
algorithm to obtain the solution to the original problem in an iterative manner. At
each iteration, each machine updates its solution by adding a scaled version of
the projection of an error signal onto the nullspace of its system of equations, and
the taskmaster conducts an averaging over the solutions with momentum. The
incorporation of a momentum term in both projection and averaging steps results
in accelerated convergence of our method, compared to the other projection-based
methods. For this reason, we refer to this method as Accelerated Projection-based
Consensus (APC). We provide a complete analysis of the convergence rate of APC
(Section 6.3), as well as a detailed comparison with all the other distributed methods
mentioned above (Section 6.4). Also, by empirical evaluations over both randomly
chosen linear systems and real-world data sets, we demonstrate the significant
speed-ups from the proposed algorithm, relative to the other distributed methods
(Section 6.6). Finally, as a further implication of our results, we propose a novel
distributed preconditioning method (Section 6.7), which can be used to improve the
convergence rate of distributed gradient-based methods.

6.2 The Setup
We consider the problem of solving a large-scale system of linear equations

�G = 1, (6.1)

where � ∈ R#×=, G ∈ R=, and 1 ∈ R# . While we will generally take # ≥ =, we will
assume that the system has a unique solution. For this reason, we will most often
consider the square case (# = =). The case where # < =, and there are multiple
(infinitely many) solutions, is discussed in Section 6.5.

As mentioned before, for large-scale problems (when #, = � 1), it is highly desirable,
or even necessary, to solve the problem in a distributed fashion. Assuming we have

132

Figure 6.1: Schematic representation of the taskmaster and the < machines/cores.
Each machine 8 has only a subset of the equations, i.e., [�8, 18].

< machines (as in Figure 6.1), the equations can be partitioned so that each machine
gets a disjoint subset of them. In other words, we can write (6.1) as

�1

�2
...

�<


G =


11

12
...

1<


,

where each machine 8 receives [�8, 18]. In some applications, the data may already
be stored on different machines in such a fashion. For the sake of simplicity, we
assume that < divides # , and that the equations are distributed evenly among the
machines, so that each machine gets ? = #

<
equations. Therefore �8 ∈ R?×= and

18 ∈ R? for every 8 = 1, . . . <. It is helpful to think of ? as being relatively small
compared to =. In fact, each machine has a system of equations which is highly
under-determined.

6.3 Accelerated Projection-Based Consensus
6.3.1 The Algorithm
Each machine 8 can certainly find a solution (among infinitely many) to its own highly
under-determined system of equations �8G = 18, with simply $ (?3) computations.
We denote this initial solution by G8 (0). Clearly adding any vector in the right
nullspace of �8 to G8 (0) will yield another viable solution. The challenge is to find
vectors in the nullspaces of each of the �8’s in such a way that all the solutions for

133

different machines coincide.

At each iteration C, the master provides the machines with an estimate of the solution,
denoted by Ḡ(C). Each machine then updates its value G8 (C) by projecting its difference
from the estimate onto the nullspace, and taking a weighted step in that direction
(which behaves as a “momentum”). Mathematically

G8 (C + 1) = G8 (C) + W%8 (Ḡ(C) − G8 (C)),

where
%8 = � − �)8 (�8�)8)−1�8 (6.2)

is the projection matrix onto the nullspace of �8 (it is easy to check that �8%8 = 0
and %2

8
= %8).

Although this might bear some resemblance to the block Cimmino method because
of the projection matrices, APC has a much faster convergence rate than the block
Cimmino method (i.e., convergence time smaller by a square root), as will be shown
in Section 6.4. Moreover, it turns out that the block Cimmino method is in fact a
special case of APC for W = 1 (Section 6.4.5).

The update rule of G8 (C + 1) described above can be also thought of as the solution to
an optimization problem with two terms: the distance from the global estimate Ḡ(C),
and the distance from the previous solution G8 (C). In other words, one can show that

G8 (C + 1) = argmin
G8
‖G8 − Ḡ(C)‖2 +

1 − W
W
‖G8 − G8 (C)‖2

s.t. �8G8 = 18

The second term in the objective is what distinguishes this method from the block
Cimmino method. If one sets W equal to 1 (which is the reduction to the block
Cimmino method), the second term disappears altogether, and the update no longer
depends on G8 (C). As wewill show, this can have a dramatic impact on the convergence
rate.

After each iteration, the master collects the updated values G8 (C + 1) to form a new
estimate Ḡ(C + 1). A plausible choice for this is to simply take the average of the
values as the new estimate, i.e., Ḡ(C + 1) = 1

<

∑<
8=1 G8 (C + 1). This update works, and

is what appears both in ADMM and in the consensus method of [134, 146]. But
it turns out that it is extremely slow. Instead, we take an affine combination of the
average and the previous estimate as

Ḡ(C + 1) = [

<

<∑
8=1

G8 (C + 1) + (1 − [)Ḡ(C),

134

Algorithm 4 APC: Accelerated Projection-Based Consensus (For solving �G = 1
distributedly)

Input: data [�8, 18] on each machine 8 = 1, . . . <, parameters [, W
Initialization: on each machine 8, find a solution G8 (0) (among infinitely many)
to �8G = 18.
at the master, compute Ḡ(0) ← 1

<

∑<
8=1 G8 (0)

for C = 1 to) do
for each machine 8 parallel do

G8 (C) ← G8 (C − 1) + W%8 (Ḡ(C − 1) − G8 (C − 1))
end for
at the master: Ḡ(C) ← [

<

∑<
8=1 G8 (C) + (1 − [)Ḡ(C − 1)

end for

which introduces a one-step memory, and again behaves as a momentum.

The resulting update rule is therefore

G8 (C + 1) = G8 (C) + W%8 (Ḡ(C) − G8 (C)), 8 ∈ [<], (6.3a)

Ḡ(C + 1) = [

<

<∑
8=1

G8 (C + 1) + (1 − [)Ḡ(C), (6.3b)

which leads to Algorithm 4.

6.3.2 Convergence Analysis
We analyze the convergence of the proposed algorithm and prove that it has linear
convergence (i.e., the error decays exponentially), with no additional assumption
imposed. We also derive the rate of convergence explicitly.

Let us define the matrix - ∈ R=×= as

- ,
1
<

<∑
8=1

�)8 (�8�)8)−1�8 . (6.4)

As it will become clear soon, the condition number of this matrix predicts the
behavior of the algorithm. Note that since the eigenvalues of the projection matrix
%8 are all 0 and 1, for every 8, the eigenvalues of - are all between 0 and 1. Denoting
the eigenvalues of - by `8, 0 ≤ `min , `= ≤ · · · ≤ `1 , `max ≤ 1. Let us define
complex quadratic polynomials ?8 (_) characterized by W and [as

?8 (_; W, [) , _2+
(−[W(1 − `8) + W − 1 + [− 1) _ + (W − 1) ([− 1) (6.5)

135

for 8 = 1, . . . , =. Further, define set (as the collection of pairs W ∈ [0, 2] and [∈ R
for which the largest magnitude solution of ?8 (_) = 0 among every 8 is less than 1,
i.e.,

(= {(W, [) ∈ [0, 2] × R |
roots of ?8 have magnitude less than 1 for all 8}. (6.6)

The following result summarizes the convergence behavior of the proposed algorithm.

Theorem 31. Algorithm 4 converges to the true solution as fast as dC converges to 0,
as C → ∞, for some d ∈ (0, 1), if and only if (W, [) ∈ (. Furthermore, the optimal
rate of convergence is

d =

√
^(-) − 1√
^(-) + 1

≈ 1 − 2√
^(-)

, (6.7)

where ^(-) = `max
`min

is the condition number of - , and the optimal parameters (W∗, [∗)
are the solution to the following equations:

`max[W = (1 +
√
(W − 1) ([− 1))2,

`min[W = (1 −
√
(W − 1) ([− 1))2.

Proof. Let G∗ be the solution of �G = 1. To make the analysis easier, we define error
vectors with respect to G∗ as 48 (C) = G8 (C) − G∗ for all 8 = 1 . . . <, and 4̄(C) = Ḡ(C) − G∗,
and work with these vectors. Using this notation, Eq. (6.3a) can be rewritten as

48 (C + 1) = 48 (C) + W%8 (4̄(C) − 48 (C)), 8 = 1, . . . , <.

Note that both G∗ and G8 (C) are solutions to �8G = 18. Therefore, their difference,
which is 48 (C), is in the nullspace of �8, and it remains unchanged under projection
onto the nullspace. As a result, %848 (C) = 48 (C), and we have

48 (C + 1) = (1 − W)48 (C) + W%8 4̄(C), 8 = 1, . . . , <. (6.8)

Similarly, the recursion (6.3b) can be expressed as

4̄(C + 1) = [

<

<∑
8=1

48 (C + 1) + (1 − [)4̄(C),

136

which using (6.8) becomes

4̄(C + 1) = [

<

<∑
8=1
((1 − W)48 (C) + W%8 4̄(C)) + (1 − [)4̄(C)

=
[(1 − W)

<

<∑
8=1

48 (C) +
(
[W

<

<∑
8=1

%8 + (1 − [)�=

)
4̄(C). (6.9)

It is relatively easy to check that in the steady state, the recursions (6.8), (6.9) become
%8 4̄(∞) = 48 (∞), 8 = 1, . . . , <

4̄(∞) = 1
<

∑<
8=1 %8 4̄(∞),

which, because of 1
<

∑<
8=1 %8 = � − 1

<

∑<
8=1 �

)
8
(�8�)8)−1�8 = � − - , implies 4̄(∞) =

41(∞) = · · · = 4< (∞) = 0, if `min ≠ 0.

Now let us stack up all the < vectors 48 along with the average 4̄ together, as a
vector 4(C)) = [41(C)) , 42(C)) , . . . , 4< (C)) , 4̄(C))] ∈ R(<+1)=. The update rule can
be expressed as:


41(C + 1)

...

4< (C + 1)
4̄(C + 1)


=


(1 − W)�<= W


%1
...

%<


[(1−W)
<

[
�= . . . �=

]
"




41(C)
...

4< (C)
4̄(C)


, (6.10)

where " =
[W

<

∑<
8=1 %8 + (1 − [)�=.

The convergence rate of the algorithm is determined by the spectral radius (largest
magnitude eigenvalue) of the (< + 1)= × (< + 1)= block matrix in (6.10). The
eigenvalues _8 of this matrix are indeed the solutions to the following characteristic
equation.

det


(1 − W − _)�<= W


%1
...

%<


[(1−W)
<

[
�= . . . �=

]
[W

<

∑<
8=1 %8 + (1 − [− _)�=


= 0.

Using the Schur complement and properties of determinant, the characteristic

137

equation can be simplified as follows.

0 = (1 − W − _)<=×

det

(
[W

<

<∑
8=1

%8 + (1 − [− _)�= −
[(1 − W)W
(1 − W − _)<

<∑
8=1

%8

)
= (1 − W − _)<=×

det

(
[W

<
(1 − 1 − W

1 − W − _)
<∑
8=1

%8 + (1 − [− _)�=

)
= (1 − W − _)<=×

det

(
−[W_

(1 − W − _)<

<∑
8=1

%8 + (1 − [− _)�=

)
= (1 − W − _) (<−1)=×

det
(
−[W_

∑<
8=1 %8

<
+ (1 − W − _) (1 − [− _)�=

)
.

Therefore, there are (< − 1)= eigenvalues equal to 1 − W, and the remaining 2=
eigenvalues are the solutions to

0 = det (−[W_(� − -) + (1 − W − _) (1 − [− _)�)
= det ([W_- + ((1 − W − _) (1 − [− _) − [W_) �) .

Whenever we have dropped the subscript of the identity matrix, it is of size =.

Recall that the eigenvalues of - are denoted by `8, 8 = 1, . . . , =. Therefore, the
eigenvalues of [W_- + ((1 − W − _) (1 − [− _) − [W_) � are [W_`8 + (1−W−_) (1−
[−_) − [W_, 8 = 1, . . . , =. The above determinant can then be written as the product
of the eigenvalues of the matrix inside it, as

0 =
=∏
8=1

[W_`8 + (1 − W − _) (1 − [− _) − [W_.

Therefore, there are two eigenvalues _8,1, _8,2 as the solution to the quadratic equation

2 + (−[W(1 − `8) + W − 1 + [− 1) + (W − 1) ([− 1) = 0

for every 8 = 1, . . . , =, which will constitute the 2= eigenvalues. When all these
eigenvalues, along with 1 − W, are less than 1, the error converges to zero as dC , with
d being the largest magnitude eigenvalue (spectral radius). Therefore, Algorithm 4

138

converges to the true solution G∗ as fast as dC converges to 0, as C →∞, if and only if
(W, [) ∈ (.

The optimal rate of convergence is achieved when the spectral radius is minimum.
For that to happen, all the above eigenvalues should be complex and have magnitude
|_8,1 | = |_8,2 | =

√
(W − 1) ([− 1) = d. It implies that we should have

(W + [− [W(1 − `8) − 2)2 ≤ 4(W − 1) ([− 1), ∀8,

or equivalently

−2
√
(W − 1) ([− 1) ≤ W + [− [W(1 − `8) ≤ 2

√
(W − 1) ([− 1)

for all 8. The expression in the middle is an increasing function of `8, and therefore
for the above bounds to hold, it is enough for the lower bound to hold for the `min

and the upper bound to hold for `max, i.e.,
W + [− [W(1 − `max) − 2 = 2

√
(W − 1) ([− 1)

2 + [W(1 − `min) − W − [= 2
√
(W − 1) ([− 1)

,

which can be massaged and expressed as
`max[W = (1 +

√
(W − 1) ([− 1))2 = (1 + d)2

`min[W = (1 −
√
(W − 1) ([− 1))2 = (1 − d)2

.

Dividing the above two equations implies ^(-) = (1+d)
2

(1−d)2 , which results in the optimal
rate of convergence being

d =

√
^(-) − 1√
^(-) + 1

,

and that concludes the proof. �

We should remark that, while in theory, the optimal values of W and [depend on the
values of the smallest and largest eigenvalues of - , in practice, one will almost never
compute these eigenvalues. Rather, one will use surrogate heuristics (such as using
the eigenvalues of an appropriate-size random matrix) to choose the step size. (In
fact, the other methods, such as distributed gradient descent and its variants, have
the same issue as well.)

139

Table 6.1: A summary of the convergence rates of different methods. DGD:
Distributed Gradient Descent, D-NAG: Distributed Nesterov’s Accelerated Gradient
Descent, D-HBM: Distributed Heavy-Ball Method, Mou et al: Consensus algorithm
of [146], B-Cimmino: Block Cimmino Method, APC: Accelerated Projection-based
Consensus. The smaller the convergence rate is, the faster is the method. Note that
dGD ≥ dNAG ≥ dHBM and dMou ≥ dCim ≥ dAPC.

DGD D-NAG D-HBM Mou et al. B-Cimmino APC (proposed)

^(�) �)−1
^(�) �)+1 1 − 2√

3^(�) �)+1

√
^(�) �)−1√
^(�) �)+1

1 − `min(-) ^(-)−1
^(-)+1

√
^(-)−1√
^(-)+1

≈ 1 − 2
^(�) �) ≈ 1 − 2√

^(�) �)
≈ 1 − 2

^(-) ≈ 1 − 2√
^(-)

6.3.3 Computation and Communication Complexity
In addition to the convergence rate, or equivalently the number of iterations until
convergence, one needs to consider the computational complexity per iteration. At
each iteration, since %8 = �= − �)8 (�8�)8)−1�8, and �8 is ? × =, each machine has to
do the following two matrix-vector multiplications: (1) �8 (G8 (C) − Ḡ(C)), which takes
?= scalar multiplications, and (2)

(
�)
8
(�8�)8)−1) times the vector from the previous

step, which takes another =? operations (the pseudoinverse �)
8
(�8�)8)−1 is computed

only once). Thus the overall computational complexity of each iteration is 2?=.

We should remark that the computation done at each machine during each iteration
is essentially a projection, which has condition number one and is as numerically
stable as a matrix vector multiplication can be.

Finally, the communication cost of the algorithm, per iteration, is as follows. After
computing the update, each of the < machines sends an =-dimensional vector to the
master, and receives back another =-dimensional vector, which is the new average.

As we will see, the per-iteration computation and communication complexity of
the other algorithms are similar to APC; however, APC requires fewer iterations,
because of its faster rate of convergence.

6.4 Comparison with Related Methods
6.4.1 Distributed Gradient Descent (DGD)
As mentioned earlier, (6.1) can also be viewed as an optimization problem of the
form

minimize
G

‖�G − 1‖2,

and since the objective is separable in the data, i.e., ‖�G − 1‖2 = ∑<
8=1 ‖�8G − 18‖2,

generic distributed optimization methods such as distributed gradient descent apply

140

well to the problem.

The regular or full gradient descent has the update rule G(C+1) = G(C) −U�) (�G(C) −
1), where U > 0 is the step size or learning rate. The distributed version of gradient
descent is one in which each machine 8 has only a subset of the equations [�8, 18],
and computes its own part of the gradient, which is �)

8
(�8G(C) − 18). The updates

are then collectively done as:

G(C + 1) = G(C) − U
<∑
8=1

�)8 (�8G(C) − 18). (6.11)

One can show that this also has linear convergence, and the rate of convergence is

dGD =
^(�) �) − 1
^(�) �) + 1

≈ 1 − 2
^(�) �)

. (6.12)

We should mention that since each machine needs to compute �)
8
(�8G(C) − 18) at

each iteration C, the computational complexity per iteration is 2?=, which is identical
to that of APC.

6.4.2 Distributed Nesterov’s Accelerated Gradient Descent (D-NAG)
A popular variant of gradient descent is Nesterov’s accelerated gradient descent
[151], which has a memory term, and works as follows:

H(C + 1) = G(C) − U
<∑
8=1

�)8 (�8G(C) − 18), (6.13a)

G(C + 1) = (1 + V)H(C + 1) − VH(C). (6.13b)

One can show [125] that the optimal convergence rate of this method is

dNAG = 1 − 2√
3^(�) �) + 1

, (6.14)

which is improved over the regular distributed gradient descent (one can check that
^(�) �)−1
^(�) �)+1 ≥ 1 − 2√

3^(�) �)+1
).

6.4.3 Distributed Heavy-Ball Method (D-HBM)
The heavy-ball method [169], otherwise known as the gradient descent with momen-
tum, is another accelerated variant of gradient descent as follows:

I(C + 1) =VI(C) +
<∑
8=1

�)8 (�8G(C) − 18), (6.15a)

G(C + 1) =G(C) − UI(C + 1). (6.15b)

141

It can be shown [125] that the optimal rate of convergence of this method is

dHBM =

√
^(�) �) − 1√
^(�) �) + 1

≈ 1 − 2√
^(�) �)

, (6.16)

which is further improved over DGD and D-NAG (^(�
) �)−1

^(�) �)+1 ≥ 1 − 2√
3^(�) �)+1

≥
√
^(�) �)−1√
^(�) �)+1

). This is similar to, but not the same as, the rate of convergence of APC.

The difference is that the condition number of �) � =
∑<
8=1 �

)
8
�8 is replaced with

the condition number of - =
∑<
8=1 �

)
8

(
�8�

)
8

)−1
�8 in APC. Given its structure as the

sum of projection matrices, one may speculate that - has a much better condition
number than �) �. Indeed, our experiments with random, as well as real, data sets
suggest that this is the case and that the condition number of - is often significantly
better (see Table 6.2).

6.4.4 Alternating Direction Method of Multipliers (ADMM)
Alternating Direction Method of Multipliers (more specifically, consensus ADMM
[185, 44]), is another generic method for solving optimization problems with
separable cost function 5 (G) = ∑<

8=1 58 (G) distributedly, by defining additional local
variables. Each machine 8 holds local variables G8 (C) ∈ R= and H8 (C) ∈ R=, and the
master’s value is Ḡ(C) ∈ R=, for any time C. For 58 (G) = 1

2 ‖�8G − 18‖
2, the update rule

of ADMM simplifies to

G8 (C + 1) = (�)8 �8 + b�=)−1(�)8 18 − H8 (C) + bḠ(C)), 8 ∈ [<] (6.17a)

Ḡ(C + 1) = 1
<

<∑
8=1

G8 (C + 1) (6.17b)

H8 (C + 1) = H8 (C) + b (G8 (C + 1) − Ḡ(C + 1)), 8 ∈ [<] (6.17c)

It turns out that this method is very slow (and often unstable) in its native form for
the application in hand. One can check that when system (6.1) has a solution, all the
H8 variables converge to zero in steady state. Therefore, setting H8’s to zero can speed
up the convergence significantly. We use this modified version in Section 6.6 for
comparison.

We should also note that the computational complexity of ADMM is $ (?=) per
iteration (the inverse is computed using matrix inversion lemma), which is again the
same as that of gradient-type methods and APC.

142

6.4.5 Block Cimmino Method
The Block Cimmino method [69, 191, 11], which is a parallel method specifically
for solving linear systems of equations, is perhaps the closest algorithm in spirit to
APC. It is, in a way, a distributed implementation of the so-called Kaczmarz method
[111]. The convergence of the Cimmino method is slower by an order in comparison
with APC (its convergence time is the square of that of APC), and it turns out that
APC includes this method as a special case when W = 1.

The block Cimmino method is the following:

A8 (C) = �+8 (18 − �8 Ḡ(C)), 8 ∈ [<] (6.18a)

Ḡ(C + 1) = Ḡ(C) + a
<∑
8=1

A8 (C), (6.18b)

where �+
8
= �)

8
(�8�)8)−1 is the pseudoinverse of �8.

Proposition 32. The APC method (Algorithm 4) includes the block Cimmino method
as a special case for W = 1.

Proof. When W = 1, Eq. (6.3a) becomes

G8 (C + 1) = G8 (C) − %8 (G8 (C) − Ḡ(C))

= G8 (C) −
(
� − �)8 (�8�)8)−1�8

)
(G8 (C) − Ḡ(C))

= Ḡ(C) + �)8 (�8�)8)−1�8 (G8 − Ḡ(C))
= Ḡ(C) + �)8 (�8�)8)−1(18 − �8 Ḡ(C))

In the last equation, we used the fact that G8 is always a solution to �8G = 18. Notice
that the above equation is no longer an “update” in the usual sense, i.e., G8 (C + 1) does
not depend on G8 (C) directly. This can be further simplified using the pseudoinverse
of �8, �+8 = �

)
8
(�8�)8)−1 as

G8 (C + 1) = Ḡ(C) + �+8 (18 − �8 Ḡ(C)).

It is then easy to see from the Cimmino’s equation (6.18a) that

A8 (C) = G8 (C + 1) − Ḡ(C).

143

Therefore, the update (6.18b) can be expressed as

Ḡ(C + 1) = Ḡ(C) + a
<∑
8=1

A8 (C)

= Ḡ(C) + a
<∑
8=1
(G8 (C + 1) − Ḡ(C))

= (1 − <a)Ḡ(C) + a
<∑
8=1

G8 (C + 1),

which is nothing but the same update rule as in (6.3b) with [= <a. �

It is not hard to show that optimal rate of convergence of the Cimmino method is

dCim =
^(-) − 1
^(-) + 1

≈ 1 − 2
^(-) , (6.19)

which is slower (by an order) than that of APC (
√
^(-)−1√
^(-)+1

≈ 1 − 2√
^(-)

).

6.4.6 Consensus Algorithm of Mou et al.
As mentioned earlier, a projection-based consensus algorithm for solving linear
systems over a network was recently proposed by Mou et al. [146, 134]. For the
master-worker setting studied here, the corresponding network would be a clique,
and the algorithm reduces to

G8 (C + 1) = G8 (C) + %8
©­« 1
<

©­«
<∑
9=1
G 9 (C)

ª®¬ − G8 (C)ª®¬ , 8 ∈ [<], (6.20)

which is transparently equivalent to APC with W = [= 1:

G8 (C + 1) = G8 (C) + %8 (Ḡ(C) − G8 (C)), 8 ∈ [<],

Ḡ(C + 1) = 1
<

<∑
8=1

G8 (C + 1),

It is straightforward to show that the rate of convergence in this case is

dMou = 1 − `min(-) (6.21)

which is much slower than the block Cimmino method and APC. One can easily
check that

1 − `min(-) ≥
^(-) − 1
^(-) + 1

≥
√
^(-) − 1√
^(-) + 1

.

144

Even though this algorithm is slow, it is useful for applications where a fully-
distributed (networked) solution is desired. Another networked algorithm for solving
a least-squares problem has been recently proposed in [207].

A summary of the convergence rates of all the related methods discussed in this
section is provided in Table 6.1.

6.5 Underdetermined System
In this section, we consider the case when # < = and rank(�) = # , i.e., the system is
underdetermined and there are infinitely many solutions. We prove that in this case,
each machine still converges to “a” (global) solution, and further, all the machines
converge to the same solution. The convergence is again linear (i.e., the error decays
exponentially fast), and the rate of convergence is similar to the previous case.

Recall that the matrix - ∈ R=×= defined earlier can be written as

- =
1
<

<∑
8=1

�)8 (�8�)8)−1�8

=
1
<
�)


(�1�

)
1)
−1

. . .

(�<�)<)−1

 �
which is singular in this case.

We define a new matrix . ∈ R#×#

. ,
1
<
��)


(�1�

)
1)
−1

. . .

(�<�)<)−1

 (6.22)

which has the same nonzero eigenvalues as - .

Theorem 33. Suppose # < = and rank(�) = # . Each one of G1(C), . . . , G< (C), Ḡ(C)
in Algorithm 4 converges to a solution as fast as dC converges to 0, as C → ∞, for
some d ∈ (0, 1), if and only if (W, [) ∈ (. Furthermore, the solutions converged to
are the same. The optimal rate of convergence is

d =

√
^(.) − 1√
^(.) + 1

≈ 1 − 2√
^(.)

, (6.23)

145

Table 6.2: A comparison between the condition numbers of �) � and - for some
examples. < is the number of machines/partitions. The condition number of - is
typically much smaller (better). Remarkably, the difference is even more pronounced
when � has non-zero mean.

^(�) �) ^(-)

100 × 100
N(0, 1)
(Gaussian)

7 × 104

2 × 104 (< = 2)
4 × 104 (< = 5)
5 × 104 (< = 10)
6 × 104 (< = 20)

100 × 100
N(10, 1)
(Non-zero mean)

2 × 108

4 × 106 (< = 2)
1 × 107 (< = 5)
2 × 107 (< = 10)
4 × 107 (< = 20)

100 × 100
N(0, 102)
(High variance)

8 × 105

2 × 105 (< = 2)
5 × 105 (< = 5)
6 × 105 (< = 10)
7 × 105 (< = 20)

200 × 100
N(0, 1)
(Tall)

3 × 101

1 × 100 (< = 2)
1 × 101 (< = 5)
2 × 101 (< = 10)
2 × 101 (< = 20)

100 × 100
exp(10)
(Exponential)

9 × 105

1 × 104 (< = 2)
4 × 104 (< = 5)
1 × 105 (< = 10)
2 × 105 (< = 20)

100 × 100
stable(0.5, 0.5, 1, 0)
(Heavy tail)

3 × 1015

1 × 107 (< = 2)
3 × 107 (< = 5)
3 × 107 (< = 10)
3 × 107 (< = 20)

Real example:
QC324
(324 × 324)

2 × 107

1 × 105 (< = 2)
3 × 105 (< = 4)
6 × 105 (< = 9)
6 × 105 (< = 18)
8 × 105 (< = 81)

Real example:
ORSIRR 1
(1030 × 1030)

6 × 109

4 × 107 (< = 2)
5 × 107 (< = 5)
5 × 107 (< = 10)
6 × 107 (< = 103)
6 × 107 (< = 206)

Real example:
ASH608
(608 × 188)

11 × 100

8 × 100 (< = 8)
10 × 100 (< = 16)
10 × 100 (< = 32)
11 × 100 (< = 76)

146

Table 6.3: A comparison between the optimal convergence time) (= 1
− log d) of

different methods on real and synthetic examples. Boldface values show the smallest
convergence time. QC324: Model of �+2 in an Electromagnetic Field. ORSIRR 1:
Oil Reservoir Simulation. ASH608: Original Harwell sparse matrix test collection.

DGD D-NAG D-HBM M-ADMM B-Cimmino APC

QC324
(324 × 324) 1.22 × 107 4.28 × 103 2.47 × 103 1.07 × 107 3.10 × 105 3.93 × 102

ORSIRR 1
(1030 × 1030) 2.98 × 109 6.68 × 104 3.86 × 104 2.08 × 108 2.69 × 107 3.67 × 103

ASH608
(608 × 188) 5.67 × 100 2.43 × 100 1.64 × 100 1.28 × 101 4.98 × 100 1.53 × 100

Standard
Gaussian
(500 × 500)

1.76 × 107 5.14 × 103 2.97 × 103 1.20 × 106 1.46 × 107 2.70 × 103

Nonzero-Mean
Gaussian
(500 × 500)

2.22 × 1010 1.82 × 105 1.05 × 105 8.62 × 108 9.29 × 108 2.16 × 104

Standard Tall
Gaussian
(1000 × 500)

1.58 × 101 4.37 × 100 2.78 × 100 4.49 × 101 1.13 × 101 2.34 × 100

Standard Fat
Gaussian
(400 × 500)

1.37 × 102 1.38 × 101 8.26 × 100 3.17 × 102 1.14 × 102 7.54 × 100

where ^(.) = `max
`min

is the condition number of . , and the optimal parameters (W∗, [∗)
are the solution to the following equations

`max[W = (1 +
√
(W − 1) ([− 1))2,

`min[W = (1 −
√
(W − 1) ([− 1))2.

Proof. Let G∗ be a solution to �G = 1. We define error vectors 48 (C) = G8 (C) − G∗ for
all 8 = 1 . . . <, and 4̄(C) = Ḡ(C) − G∗, as before, but this time show that �48 (C) → 0
and �4̄(C) → 0. Recursion (6.3a) can be rewritten as

48 (C + 1) = 48 (C) + W%8 (4̄(C) − 48 (C)), 8 = 1, . . . , <,

as before. Since both G∗ and G8 (C) are solutions to �8G = 18, their difference 48 (C) is
in the nullspace of �8, and it remains unchanged under projection onto the nullspace.
As a result, %848 (C) = 48 (C), and we have

48 (C + 1) = (1 − W)48 (C) + W%8 4̄(C), 8 = 1, . . . , <. (6.24)

147

Similarly, the recursion (6.3b) can be expressed as

4̄(C + 1) = [

<

<∑
8=1

48 (C + 1) + (1 − [)4̄(C)

=
[

<

<∑
8=1
((1 − W)48 (C) + W%8 4̄(C)) + (1 − [)4̄(C)

=
[(1 − W)

<

<∑
8=1

48 (C) +
(
[W

<

<∑
8=1

%8 + (1 − [)�=

)
4̄(C),

as before.

Multiplying the recursions by �, we have

�48 (C + 1) = (1 − W)�48 (C) + W�%8 4̄(C), 8 = 1, . . . , <,

and

�4̄(C + 1) = [(1 − W)
<

<∑
8=1

�48 (C) +
(
[W

<

<∑
8=1

�%8 + (1 − [)�
)
4̄(C)

Note that%8 = �=−�)8 (�8�)8)−1�8, andwe can express �8 as �8 =
[
0?×? . . . �? . . . 0?×?

]
� =

�8�, where �8 is a ?×# matrix with an identity at its 8-th block and zero everywhere
else. Therefore, we have �%8 = � − ��)8 (�8�)8)−1�8� = (�# − ��)8 (�8�)8)−1�8)�,
and the recursions become

�48 (C + 1) = (1 − W)�48 (C) + W(�# − ��)8 (�8�)8)−1�8)�4̄(C),

for 8 = 1, . . . , <, and

�4̄(C + 1) = [(1 − W)
<

<∑
8=1

�48 (C)

+
(
[W

<

<∑
8=1
(�# − ��)8 (�8�)8)−1�8) + (1 − [)�#

)
�4̄(C).

Stacking up all the < vectors �48 along with �4̄, as an (< + 1)#-dimensional vector,
results in 

�41(C + 1)
...

�4< (C + 1)
�4̄(C + 1)


=


(1 − W)�<# W


%′1
...

%′<


[(1−W)
<

[
�# . . . �#

]
"′




�41(C)
...

�4< (C)
�4̄(C)


,

148

where "′ = [W

<

∑<
8=1 %

′
8
+ (1 − [)�# and %′

8
= �# − ��)8 (�8�)8)−1�8.

The convergence rate of the algorithm is determined by the spectral radius (largest
magnitude eigenvalue) of this (< + 1)# × (< + 1)# matrix. The eigenvalues _8 of
this matrix are the solutions to the following characteristic equation.

det


(1 − W − _)�<# W


%′1
...

%′<


[(1−W)
<

[
�# . . . �#

]
[W

<

∑<
8=1 %

′
8
+ (1 − [− _)�#


= 0.

Similar as in the proof of Theorem 31, using the Schur complement and properties
of determinant, the characteristic equation can be simplified as follows:

0 = (1 − W − _)<# det

(
[W

<

<∑
8=1

%′8 + (1 − [− _)�# −
[(1 − W)W
(1 − W − _)<

<∑
8=1

%′8

)
= (1 − W − _)<# det

(
[W

<
(1 − 1 − W

1 − W − _)
<∑
8=1

%′8 + (1 − [− _)�#

)
= (1 − W − _)<# det

(
−[W_

(1 − W − _)<

<∑
8=1

%′8 + (1 − [− _)�#

)
= (1 − W − _) (<−1)# det

(
−[W_

∑<
8=1 %

′
8

<
+ (1 − W − _) (1 − [− _)�#

)
.

Note that 1
<

∑<
8=1 %

′
8
= �#− 1

<

∑<
8=1 ��

)
8
(�8�)8)−1�8 = �#−[��)1 (�1�

)
1)
−1, . . . , ��)< (�<�)<)−1] =

�# − . . There are (< − 1)# eigenvalues equal to 1 − W, and the remaining 2#
eigenvalues are the solutions to

0 = det (−[W_(� − .) + (1 − W − _) (1 − [− _)�)
= det ([W_. + ((1 − W − _) (1 − [− _) − [W_) �) .

Notice that this is exactly the same as the one in the proof of Theorem 31, with -
replaced with . .

It follows that the �41(C), . . . , �4< (C), �4̄(C) converge to zero as fast as dC if and
only if (W, [) ∈ (, and the optimal rate of convergence is

d =

√
^(.) − 1√
^(.) + 1

.

Convergence of �41(C), . . . , �4< (C), �4̄(C) to zero means that each machine and
the master converge to a solution, but the solutions reached may not be the same.

149

What remains to show is that the only steady state is the “consensus steady state.”
From (6.3), it is easy to see that the steady state G1(∞), . . . , G< (∞), Ḡ(∞) satisfies
the following equation. 

%8 (Ḡ(∞) − G8 (∞)) = 0, 8 ∈ [<]

Ḡ(∞) = 1
<

∑<
8=1 G8 (∞)

(6.25)

which can be written in a matrix form as
%1 −%1

. . .
...

%< −%<
− �=
<

. . . − �=
<

�=



G1(∞)
...

G< (∞)
Ḡ(∞)


= 0. (6.26)

Notice that for any E ∈ R=, the vector
[
E) . . . E) E)

])
is a solution to this equation,

which corresponds to a consensus steady state G1(∞) = · · · = G< (∞) = Ḡ(∞) = E.
Therefore, the nullspace of the above matrix is at least = dimensional, or in other
words, it has = zero eigenvalues. We will argue that this matrix has only = zero
eigenvalues, and therefore any steady-state solution must be a consensus. To find the
eigenvalues _8 we have to solve the following characteristic equation.

det


%1 − _� −%1

. . .
...

%< − _� −%<
− �
<

. . . − �
<

(1 − _)�


= 0.

Once again, using the Schur complement, we have

0 =

(
<∏
8=1

det(%8 − _�)
)

det

(
(1 − _)� − 1

<

<∑
8=1
(%8 − _�)−1%8

)
Note that (%8 − _�)−1%8 =

1
1−_%8. Therefore, we can write

0 =

(
<∏
8=1

det(%8 − _�)
)

det

(
(1 − _)� − 1

<

<∑
8=1

1
1 − _%8

)
=

(
<∏
8=1
((−_)? (1 − _)=−?)

)
det

(
(1 − _)� − 1

<

<∑
8=1

1
1 − _%8

)
= (−_)# (1 − _)<=−# det

(
(1 − _)� − 1

<

<∑
8=1

1
1 − _%8

)

150

because %8 has ? zero eigenvalues and = − ? one eigenvalues. Using the properties
of determinant, we further have

0 = (−_)# (1 − _) (<−1)=−# det

(
(1 − _)2� − 1

<

<∑
8=1

%8

)
= (−_)# (1 − _) (<−1)=−# det

(
(1 − _)2� − (� − -)

)
= (−_)# (1 − _) (<−1)=−# det

(
(_2 − 2_)� + -

)
= (−_)# (1 − _) (<−1)=−#

<∏
8=1

(
2 − 2 + `8

)
Therefore, the (< + 1)= eigenvalues are as follows: # zero eigenvalues, (< −
1)= − # eigenvalues at 1, and the remaining 2= are 1 ±

√
1 − `8. Note that in the

underdetermined case, - has =−# zero eigenvalues. Therefore, =−# of 1±
√

1 − `8
are zero. As a result, the overall number of zero eigenvalues is # + (= − #) = =.
This implies that the nullity of the matrix in (6.26) is = and any steady-state solution
must be a consensus solution, which completes the proof.

�

6.6 Experimental Results
In this section, we evaluate the proposed method (APC) by comparing it with the other
distributed methods discussed throughout the chapter, namely DGD, D-NAG, D-
HBM, modified ADMM, and block Cimmino methods. We use randomly-generated
problems as well as real-world ones from the National Institute of Standards and
Technology (NIST) repository, Matrix Market [141].

We first compare the rate of convergence of the algorithms, d, which is the spectral
radius of the iteration matrix. To distinguish the differences, it is easier to compare
the convergence time, which is defined as) = 1

− log d (≈
1

1−d). We tune the parameters
in all of the methods to their optimal values, to make the comparison between the
methods fair. Also as mentioned before, all the algorithms have the same per-iteration
computation and communication complexity. Table 6.3 shows the values of the
convergence times for a number of synthetic and real-world problems with different
sizes. It can be seen that APC has a much faster convergence, often by orders of
magnitude. As expected from the analysis, the APC’s closest competitor is the
distributed heavy-ball method. Notably, in randomly-generated problems, when the
mean is not zero, the gap is much larger.

151

Figure 6.2: The decay of the error for different distributed algorithms, on two real
problems from Matrix Market [141] (QC324: Model of �+2 in an Electromagnetic
Field, and ORSIRR 1: Oil reservoir simulation). = = # of variables, # = # of
equations, < = # of workers, ? = # of equations per worker.

152

To further verify the performance of the proposed algorithm, we also run all the
algorithms on multiple problems, and observe the actual decay of the error. Fig. 6.2
shows the relative error (the distance from the true solution, divided by the true
solution, in ℓ2 norm) for all the methods, on two examples from the repository.
Again, to make the comparison fair, all the methods have been tuned to their optimal
parameters. As one can see, APC outperforms the other methods by a wide margin,
which is consistent with the order-of-magnitude differences in the convergence
times of Table 6.3. We should also remark that initialization does not seem to
affect the convergence behavior of our algorithm. Lastly, we should mention that
our experiments on cases where there are missing updates (“straggler” machines)
indicate that APC is at least as robust as the other algorithms to these effects, and the
convergence curves look qualitatively the same as in Fig. 6.2.

6.7 A Distributed Preconditioning to Improve Gradient-Based Methods

The noticeable similarity between the optimal convergence rate of APC (
√
^(-)−1√
^(-)+1

)

and that of D-HBM (
√
^(�) �)−1√
^(�) �)+1

) suggests that there might be a connection between
the two. It turns out that there is, and we propose a distributed preconditioning for
D-HBM, which makes it achieve the same convergence rate as APC. The algorithm
works as follows.

Prior to starting the iterative process, each machine 8 can premultiply its own set
of equations �8G = 18 by (�8�)8)−1/2, which can be done in parallel (locally) with
$ (?2=) operations. This transforms the global system of equations �G = 1 to a new
one �G = 3, where

� =


(�1�

)
1)
−1/2�1
...

(�<�)<)−1/2�<

 ,
and

3 =


(�1�

)
1)
−1/211
...

(�<�)<)−1/21<

 .
The new system can then be solved using distributed heavy-ball method, which will
achieve the same rate of convergence as APC, i.e.,

√
^−1√
^+1 where ^ = ^(�)�) = ^(-).

153

6.8 Conclusion
We considered the problem of solving a large-scale system of linear equations by a
taskmaster with the help of a number of computing machines/cores, in a distributed
way. We proposed an accelerated projection-based consensus algorithm for this
problem, and fully analyzed its convergence rate. Analytical and experimental
comparisons with the other known distributed methods confirm significantly faster
convergence of the proposed scheme. Finally, our analysis suggests a novel distributed
preconditioning for improving the convergence of the distributed heavy-ball method
to achieve the same theoretical performance as the proposed consensus-based method.

We should finally remark that while the setting studied here was a master-workers
one, the same algorithm can be implemented in a networked setting where there is
no central collector/master, using a “distributed averaging” approach ([200, 215]).

154

C h a p t e r 7

CODED COMPUTATION FOR DISTRIBUTED GRADIENT
DESCENT

[1] Wael Halbawi et al. “Improving Distributed Gradient Descent Using Reed-
Solomon Codes”. In: 2018 IEEE International Symposium on Information
Theory (ISIT). 2018, pp. 2027–2031. doi: 10.1109/ISIT.2018.8437467.

Today’s massively-sized datasets have made it necessary to often perform computa-
tions on them in a distributed manner. In principle, a computational task is divided
into subtasks which are distributed over a cluster operated by a taskmaster. One
issue faced in practice is the delay incurred due to the presence of slow machines,
known as stragglers. Several schemes, including those based on replication, have
been proposed in the literature to mitigate the effects of stragglers and more recently,
those inspired by coding theory have begun to gain traction. In this chapter, we
consider a distributed gradient descent setting suitable for a wide class of machine
learning problems. We adopt the framework of Tandon et al. [197] and present
a deterministic scheme that, for a prescribed per-machine computational effort,
recovers the gradient from the least number of machines 5 theoretically permissible,
via an $ (5 2) decoding algorithm. We also provide a theoretical delay model which
can be used to minimize the expected waiting time per computation by optimally
choosing the parameters of the scheme. Finally, we supplement our theoretical
findings with numerical results that demonstrate the efficacy of the method and its
advantages over competing schemes.

7.1 Introduction
With the size of today’s datasets, due to high computation and/or memory require-
ments, it is virtually impossible to run large-scale learning tasks on a single machine;
and even if that is possible, the learning process can be extremely slow due to its
sequential nature. Therefore, it is highly desirable or, even necessary, to run the
tasks in a distributed fashion on multiple machines/cores. For this reason, parallel
and distributed computing has attracted a lot of attention in recent years from the
machine learning, and other, communities [44, 173, 22, 228, 77].

When a task is divided among a number of machines, the “computation time” is

155

clearly reduced significantly, since the task is being processed in parallel rather than
sequentially. However, the taskmaster has to wait for all the machines in order to be
able to recover the exact desired computation. Therefore, in the face of substantial
or heterogeneous delays, distributed computing may suffer from being slow, which
defeats the purpose of the exercise. Several approaches have been proposed to tackle
this problem. One naive yet common way, especially when the task consists of many
iterations, is to not wait for all machines, and ignore the straggling machines. One
may hope that in this way on average the taskmaster receives enough information
from everyone; however, it is clear that the performance of the learning algorithm
may be significantly impacted in many cases because of lost updates. An alternative
and more appropriate way to resolve this issue, is to introduce some redundancy
in the computation of the machines, in order to efficiently trade off computation
time for less wait time, and to be able to recover the correct update using only a few
machines. But the great challenge here is to design a clever scheme for distributing
the task among the machines, such that the computation can be recovered using a
few machines, independent of which machines they are.

Over the past few decades, coding theory has been developed to address similar
challenges in other domains, and has had enormous success in many applications
such as mobile communication, storage, data transmission, and broadcast systems.
Despite the existence of a great set of tools developed in coding theory which can be
used in many machine learning problems, researchers had not looked at this area
until very recently [123, 197, 70, 128]. This work is aimed at bridging the gap
between distributed machine learning and coding theory, by introducing a carefully
designed coding scheme for efficiently distributing a learning task among a number
of machines.

More specifically, we consider gradient-based methods for additively separable cost
functions, which are the most common way of training any model in machine learning,
and use coding to cleverly distribute each gradient iteration across = machines in
an efficient way. To that end, we propose a deterministic construction based on
Reed-Solomon codes [174] accompanied with an efficient decoder, which is used
to recover the full gradient update from a fixed number of returning machines.
Furthermore, we provide a new delay model based on heavy-tail distributions that
also incorporates the time required for decoding. We analyze this model theoretically
and use it to optimally pick our scheme’s parameters. We compare the performance
of our method on the MNIST dataset [121] with other approaches, namely: 1)

156

Ignoring the straggling machines [164], 2) Waiting for all the machines, and 3)
GradientCoding as proposed by Tandon et al. [197]. Our numerical results show
that, for the same training time, our scheme achieves better test errors.

7.1.1 Related Work
As mentioned earlier, coding theory in machine learning is a relatively new area. We
summarize the recent related work here. Lee et al. [123] recently employed a coding-
theoretic method in two specific distributed tasks, namely matrix multiplication and
data shuffling. They showed significant speed-ups are possible in those two tasks
by using coding. Dutta et al. [70] proposed a method that speeds up distributed
matrix multiplication by sparsifying the inner products computed at each machine.
Polynomial codes has been proposed by Yu et al. [220], which uses a carefully-
designed Reed-Solomon code for matrix multiplication. They have shown that
their framework achieves the minimum recovery threshold while allowing efficient
decoding using polynomial interpolation. A coded MapReduce framework was
introduced by Li et al in [128] which is used to facilitate data shuffling in distributed
computing. The closest work to our framework is the work of Tandon et al. [197],
which aims at mitigating the effect of stragglers in distributed gradient descent using
Maximum-Distance Separable (MDS) codes. However, no analysis of computation
time was provided. Furthermore, in their framework, along with the above-mentioned
works, the decoding was assumed to be performed offline which might be impractical
in certain settings. The recent work [172] includes a coding scheme that is similar to
the one presented here. In particular, the authors use cyclic MDS codes to recover
the exact full gradient in the presence of stragglers. In addition, the authors present
a clever scheme, based on adjacency matrices of expander graphs, to compute an
approximation of the gradient in the presence of stragglers. We mention that our
scheme differs in the the way the workload is distributed across the different machines:
we advocate a load-balanced approach in which every machine performs the same
amount of work. We show that this is possible for any number of machines = and
prespecified workload F.

7.1.2 Statement of Contributions
In this work, we make the following three main contributions.

1. We construct a deterministic coding scheme for efficiently distributing gradient
descent over a given number of machines. Our scheme is optimal in the sense
that it can recover the gradient from the smallest possible number of returning

157

machines, 5 , given a prespecified computational effort per machine.

2. We provide an efficient online decoder, with time complexity $ (5 2) for
recovering the gradient from any 5 machines, which is faster than the best
known method [197], $ (5 3).

3. We analyze the total computation time, and provide a method for finding the
optimal coding parameters. We consider heavy-tailed delays, which have been
widely observed in CPU job runtimes in practice [124, 93, 94].

The rest of the chapter is organized as follows. In Section 7.2, we describe the
problem setup and explain the design objectives in detail. Section 7.3, provides the
construction of our coding scheme, using the idea of balanced Reed-Solomon codes.
Our efficient online decoder is presented in Section 7.4. We then characterize the
total computation time, and describe the optimal choice of coding parameters, in
Section 7.5. Finally, we provide our numerical results in Section 7.6, and conclude
in Section 7.7.

7.2 Preliminaries
7.2.1 Problem Setup

Figure 7.1: Schematic representation of the taskmaster and the = workers.

Consider a setting where there is a taskmaster " and there are = workers (computing
machines) ,1,,2, . . . ,,= interacting with the taskmaster, as in Fig. 7.1. The

158

master intends to train a model using gradient descent by distributing the gradient
updates amongst the workers. More precisely, consider a typical scenario, where
we want to learn parameters V ∈ R? by minimizing a generic loss function ! (D; V)
over a given dataset D = {(G8, H8)}#8=1, where G8 ∈ R

? and H8 ∈ R. The loss
function can be expressed as the sum of the losses for individual data points, i.e.
! (D; V) = ∑#

8=1 ℓ(G8, H8; V). Therefore, the full gradient, with respect to V, is given
by

∇! (D; V) =
#∑
8=1
∇ℓ(G8, H8; V). (7.1)

The data can be divided into : (disjoint) chunks {D1, . . . ,D: } of size #
:
, and

clearly the gradient can also be written as ∇! (D; V) = ∑:
8=1

∑
(G,H)∈D8 ∇ℓ(G, H; V).

Define 68 :=
∑
(G,H)∈D8 ∇ℓ(G, H; V) as the partial gradient of chunk 8 for every 8,

and 6) := [6)1 , 6
)
2 , . . . , 6

)
:
], where 68 is a row vector of length ?. Therefore

∇! (D; V) = 11×:6. Now suppose each worker ,8 is assigned F data partitions
{D81 , . . . ,D8F }, on which it computes the partial gradients {681 , 682 , . . . , 68F }. Note
that the “redundancy” in computation is introduced here, since each chunk is allowed
to be assigned to multiple workers. Each worker then has to compute its partial
gradients, and return a prespecified linear combination of them to the master.

As it will be explained in detail, : and F are to be chosen in such a way that the total
computation time is minimized. For a fixed : and F, we want to be able to recover
the gradient using the linear combinations received from the fastest 5 machines at the
master (or equivalently tolerate B := = − 5 stragglers). Note that we do not assume
any prior knowledge about the stragglers, i.e., we shall design a scheme that enables
master to recover the gradient from any set of 5 machines. It is known [197] that for
any fixed : and F, an upper-bound on the number of stragglers that any scheme can
tolerate is:

B ≤
⌊F=
:

⌋
− 1. (7.2)

The scheme proposed in this work achieves this bound. A coding scheme designed to
tolerate B stragglers consists of an encoding matrix B, and a collection of decoding
vectors {aF : F ⊂ [=], |F | = = − B}. The matrix B should satisfy:

1. Each row of B contains exactly F nonzero entries.

2. The linear space generated by any 5 rows of B contains the all-one vector of
length : , 11×: .

159

The values of these nonzero entries prescribe the linear combination sent by,8. In
other words, the coded partial gradient sent from,8 to " is given by

28 =

:∑
9=1

B8, 96 9 = B86, (7.3)

where B8 denotes the 8th row of B. The 28’s define the encoded computation matrix
C ∈ C=×? as C =

[
2)1 2)2 · · · 2)=

])
= B6, where 28 ∈ C1×?. The decoding vectors

are chosen as follows: let F = {81, . . . , 8 5 } be the indices of the returning machines
and let BF be the sub-matrix of B with rows indexed by F . If 11×: is in the linear
space generated by the rows of BF , as the second property suggests, aF is chosen
such that aFBF = 11×: . As a result, we have

aFCF = aFBF 6 = 11×: 6 = ∇! (D; V). (7.4)

When this holds for any set of indices F ⊂ [=] of size 5 , it means that the gradient
can be recovered from the set of 5 machines that return fastest.

The pseudocode listing ofAlgorithm5 outlines the overall procedure for implementing
our scheme, as just described.

Algorithm 5 Pseudocode of the proposed scheme
Require:
{D1, . . . ,D: }: Dataset partition
B1, . . . ,B=: Encoding vectors
) : Number of iterations
{[C})C=1: Learning rates

Ensure: V) : Parameters
Partition D into {D1, . . . ,D: }
Assign to,8 the partitions {D81 , . . .D8F }
Assign to,8 the encoding vector B8
V0 ← 0?×1
while C <) do

" sends out VC to,1, . . . ,,=

,8 computes partial gradients 681 , . . . , 68F
,8 encodes 681 , . . . , 68F to 28 using B8
" computes aF corresponding to first 5 returning machines
" recovers ∇(D, VC) using {28}8∈F and aF
" updates model: VC+1 = VC − [C∇(D, VC)

end while
return V)

160

7.2.2 Computational Trade-offs
In a distributed scheme that does not employ redundancy, the taskmaster has to wait
for all the workers to finish in order to compute the full gradient. However, in the
scheme outlined above, the taskmaster needs to wait for the fastest 5 machines to
recover the full gradient. Clearly, this requires more computation by each machine.
Note that in the uncoded setting, the amount of computation that each worker does
is 1

=
of the total work, whereas in the coded setting each machine performs a F

:

fraction of the total work. From (7.2), we know that if a scheme can tolerate B
stragglers, the fraction of computation that each worker does is F

:
≥ B+1

=
. Therefore,

the computation load of each worker increases by a factor of (B + 1). As will be
explained further in Section 7.5, there is a sweet spot for F

:
(and consequently B) that

minimizes the expected total time that the master waits in order to recover the full
gradient update.

It is worth noting that it is often assumed [197, 123, 70] that the decoding vectors are
precomputed for all possible combinations of returning machines, and the decoding
cost is not taken into account in the total computation time. In a practical system,
however, it is not very reasonable to compute and store all the decoding vectors,
especially as there are

(=
5

)
such vectors, which grows quickly with =. In this work,

we introduce an online algorithm for computing the decoding vectors on the fly,
for the indices of the 5 workers that respond first. The approach is based on the
idea of inverting Vandermonde matrices, which can be done very efficiently. In the
sequel, we show how to construct an encoding matrix B for any F, : and =, such that
the system is resilient to

⌊
F=
:

⌋
− 1 stragglers, along with an efficient algorithm for

computing the decoding vectors {aF : F ⊂ [=], |F | = 5 }.

7.3 Code Construction
The basic building block of our encoding scheme is a matrix M ∈ {0, 1}=×: , where
each row is of weight F, which serves as a mask for the matrix B, where F is the
number of data partitions that is assigned to every machine. Each column of B will
be chosen as a codeword from a suitable Reed–Solomon Code over the complex
field, with support dictated by the corresponding column in M. Whereas the authors
of [197] choose the rows of B as codewords from a suitable MDS code, this approach
does not immediately work when : is not equal to =.

161

7.3.1 Balanced Mask Matrices
We will utilize techniques from [90, 91] to construct the matrix M (and then B). For
that, we present the following definition.

Definition 7 (Balanced Matrix). A matrix M ∈ {0, 1}=×: is column (row)-balanced
if for fixed row (column) weight, the weights of any two columns (rows) differ by at
most 1.

Ultimately, we are interested in a matrix M with row weight F that prescribes a mask
for the encoding matrix B. As an example, let = = 8, : = 4 and F = 3. Then, M is
given by

M =



1 1 1 0
1 1 1 0
1 1 0 1
1 1 0 1
1 0 1 1
1 0 1 1
0 1 1 1
0 1 1 1



, (7.5)

where each column is of weight =F
:
= 6. The following algorithm produces a balanced

mask matrix. For a fixed column weight 3, each row has weight either
⌊
:3
=

⌋
or

⌈
:3
=

⌉
.

Algorithm 6 RowBalancedMaskMatrix(=,: ,3,C)
Input:
=: Number of rows
:: Number of columns
3: Weight of each column
C: Offset parameter

Output: Row-balanced M ∈ {0, 1}=×:
M← 0=×:
for 9 = 0 to : − 1 do

for 8 = 0 to 3 − 1 do
A = (8 + 9 3 + C)= ⊲ The quantity (G)= denotes G modulo =.
MA, 9 = 1

end for
end for
return M

As a result, when 3 is chosen as =F
:
∈ Z, all rows will be of weight F. As an example,

the matrix M in (7.5) is generated by calling RowBalancedMaskMatrix(8,4,6,0).

162

Algorithm 6 can be used to generate a mask matrix M for the encoding matrix B:
The 9 th column of B will be chosen as a Reed–Solomon codeword whose support is
that of the 9 th column of M.

7.3.2 Correctness of Algorithm 6
To lighten notation, we prove correctness for C = 0. The general case follows
immediately.

Proposition 34. Let :, 3 and = be integers where 3 < =. The row weights of matrix
M ∈ {0, 1}=×: produced by Algorithm 6 for C = 0 are

F8 =


⌈
:3

=

⌉
, 8 ∈ {0, . . . , (:3 − 1)=},⌊

:3

=

⌋
, 8 ∈ {(:3)=, . . . , = − 1}.

Proof. The nonzero entries in column 9 of M are given by

S 9 = { 9 3, . . . , (9 + 1)3 − 1}=,

where the subscript = denotes reducing the elements of the set modulo =. Collectively,
the nonzero indices in all columns are given by

S = {0, . . . 3 − 1, . . . , (: − 1)3, . . . :3 − 1}=.

In case = | :3, each element in S, after reducing modulo =, appears the same number
of times. As a result, those indices correspond to columns of equal weight, namely
:3
=
. Hence, the two cases of F8 are identical along with their corresponding index

sets.

In the case where = - :3, each of the first
⌊
:3
=

⌋
= elements, after reducing modulo =,

appears the same number of times. As a result, the nonzero entries corresponding to
those indices are distributed evenly amongst the = rows, each of which is of weight⌊
:3
=

⌋
. The remaining indices {

⌊
:3
=

⌋
=, . . . , :3 −1}= contribute an additional nonzero

entry to their respective rows, those indexed by {0, . . . , (:3 − 1)=}. Finally, we have
that the first (:3)= rows are of weight

⌊
:3
=

⌋
+ 1 =

⌈
:3
=

⌉
, while the remaining ones are

of weight
⌊
:3
=

⌋
. �

Now consider the case when C is not necessarily equal to zero. This amounts to
shifting (cyclically) the entries in each column by C positions downwards. As a result,
the rows themselves are shifted by the same amount, allowing us to conclude the
following.

163

Corollary 35. Let :, 3, and = be integers where 3 < =. The row weights of matrix
" ∈ {0, 1}=×: produced by Algorithm 6 are

F8 =


⌈
:3

=

⌉
8 ∈ {C, . . . , (C + :3 − 1)=},⌊

:3

=

⌋
8 ∈ {0, C − 1} ∪ {(C + :3)=, . . . , = − 1}.

7.3.3 Reed–Solomon Codes
This subsection provides a quick overview of Reed–Solomon Codes. A Reed–
Solomon code of length = and dimension 5 is a linear subspace RS[=, 5] of C=

corresponding to the evaluation of polynomials of degree less than 5 with coefficients
in C on a set of = distinct points {U1, . . . , U=}, also chosen from C. When U8 = U8,
where U ∈ C is an =th root of unity, the evaluations of the polynomial C (G) = ∑ 5−1

8=0 C8G
8

on {1, U, . . . , U=−1} corresponds to
C (1)
C (U)
...

C (U=−1)


=


1 1 · · · 1
1 U · · · U 5−1

...
...

. . .
...

1 U=−1 · · · U(=−1) (5−1)



C0

C1
...

C 5−1


= Gt. (7.6)

It is well-known that any 5 rows of G form an invertible matrix, which implies that
specifying any 5 evaluations {C (U81), . . . , C (U8 5)} of a polynomial C (G) of degree at
most 5 − 1 characterizes it. In particular, fixing 5 − 1 evaluations of the polynomial
to zero characterizes C (G) uniquely up to scaling. This property will give us the
ability to construct B from M.

7.3.4 General construction
In case 3 = F:

=
∉ Z, the chosen row weight F prevents the existence of M where

each column weight is minimal. We have to resort to Algorithm 7 that yields M
comprised of two matrices Mℎ and M; according to

M =

[
Mℎ M;

]
.

The matrices Mℎ and M; are constructed using Algorithm 6. Each column of Mℎ

has weight 3ℎ :=
⌈
=F
:

⌉
and each column of M; has weight 3; :=

⌊
=F
:

⌋
. Note that

according to (7.2), we require 3; ≥ 2 in order to tolerate a positive number of
stragglers.

164

Algorithm 7 Column-balanced Mask Matrix M
Input:
=: Number of rows
:: Number of columns
F: Weight of each row

Output: Row-balanced M ∈ {0, 1}=,: .
procedure MaskMatrix(=,: ,F)

:ℎ ← (=F):
3ℎ ←

⌈
=F
:

⌉
: ; ← : − :ℎ
3; ←

⌊
=F
:

⌋
C ← (:ℎ3ℎ)=
Mℎ ← RowBalancedMaskMatrix(=, :ℎ, 3ℎ, 0)
M; ← RowBalancedMaskMatrix(=, : ; , 3; , C)
M←

[
Mℎ M;

]
return M

end procedure

The output of Algorithm 7 can now be used in Algorithm 8 instead of RowBal-
ancedMaskMatrix to generate the appropriate mask mastrix M.

7.3.5 Correctness of Algorithm 7
According to the algorithm, the condition : | =F implies that :ℎ = 0 leading to
" = "; , which is constructed using Algorithm 6.

Moving on to the general case, the matrix M given by[
Mℎ M;

]
where each matrix is row-balanced. The particular choice of C in M; aligns the
“heavy” rows of Mℎ with the “light" rows of M; , and vice-versa. The algorithm
works because the choice of parameters equates the number of heavy rows =ℎ of M;

to the number of light rows =; of Mℎ. The following lemma is useful in two ways.

Lemma 36.
⌊
:ℎ3ℎ
=

⌋
+

⌈
:;3;
=

⌉
=

⌈
:ℎ3ℎ
=

⌉
+

⌊
:;3;
=

⌋
= F.

Proof. Note that the following holds:

:ℎ3ℎ

=
+ : ;3;

=
− 1 <

⌈
:ℎ3ℎ

=

⌉
+

⌊
: ;3;

=

⌋
<
:ℎ3ℎ

=
+ : ;3;

=
+ 1.

165

Furthermore, we have that

:ℎ3ℎ

=
+ : ;3;

=
=

:ℎ (3; + 1)
=

+ (: − :ℎ)3;
=

(7.7)

=
:ℎ

=
+ :3;

=
(7.8)

=
F= −

⌊
F=
:

⌋
:

=
+ :3;

=
(7.9)

=
F= − 3;:

=
+ :3;

=
(7.10)

= F. (7.11)

We combine the two observations in one:

F − 1 <
⌈
:ℎ3ℎ

=

⌉
+

⌊
: ;3;

=

⌋
< F + 1,

and conclude that
⌈
:ℎ3ℎ
=

⌉
+

⌊
:;3;
=

⌋
= F. �

We have shown the concatenation of a “heavy” row of Mℎ along with a “light” row
of M; results in one that is of weight F. It remains to show that the concatenation of
Mℎ and M; results of rows of this type only.

We will assume that = - :ℎ3ℎ holds. From Proposition 34, we have =; = = − (:ℎ3ℎ)=
and =ℎ = (: ;3;)=. We will show that the two quantities are in fact equal. Indeed, we
can express =; as

= − (:ℎ3ℎ)= = = − :ℎ3ℎ +
⌊
:ℎ3ℎ

=

⌋
=

= −:ℎ3ℎ +
⌈
:ℎ3ℎ

=

⌉
=

= −(: − : ;) (3; + 1) +
⌈
:ℎ3ℎ

=

⌉
=

= −(3;: + :ℎ) + : ;3; −
⌊
: ;3;

=

⌋
= + =F

= : ;3; −
⌊
: ;3;

=

⌋
=

= (: ;3;)=.

Hence =; = =ℎ and by the choice of C, the “light" rows of Mℎ align with the “heavy"
rows of M; , and vice-versa. Furthermore, Lemma 36 guarantees that each row of M
is of weight

⌈
:ℎ3ℎ
=

⌉
+

⌊
:;3;
=

⌋
= F. The same holds for the remaining rows, using the

fact that dGe + bHc = bGc + dHe when both G and H are non-integers.

166

7.3.6 Building the Encoding Matrix from the Mask Matrix
Once a mask matrix M has been determined using Algorithm 6, the encoding matrix
B can be built by picking appropriate codewords from RS[=, 5]. Consider M in
(7.5) and the following polynomials

C1(G) = ^1(G − U6) (G − U7), (7.12)

C2(G) = ^2(G − U4) (G − U5), (7.13)

C3(G) = ^3(G − U2) (G − U3), (7.14)

C4(G) = ^4(G − 1) (G − U). (7.15)

The constant ^ 9 is chosen such that the constant term of C 9 (G), i.e. C 9 (0), is
equal to 1. The evaluations of C 9 (G) on {1, U, . . . , U7} are collected in the vector
(C 9 (1), C 9 (U), . . . , C 9 (U7))) which sits as the 9 th column of B. The validity of this
process can be confirmed using (7.6), and is generalized in Algorithm 8.

Algorithm 8 EncodingMatrix(=,: ,F)
Input:
=: Number of rows
:: Number of columns
F: Row weight
U: =th root of unity

Output: Row-balanced encoding matrix B.
M← RowBalancedMaskMatrix(=, :, F, 0)
B← 0=×:
for 9 = 0 to : − 1 do

C 9 (G) ←
∏
A:MA , 9=0(G − UA)/(−UA)

for 8 = 0 to = − 1 do
B8, 9 = C 9 (U8)

end for
end for
return B

Once the matrix B is specified, the corresponding decoding vectors required for
computing the gradient at the taskmaster have to be characterized.

7.4 Efficient Online Decoding
We exploit the fact that B is constructed using Reed–Solomon codewords and show
that each decoding vector aF can be computed in $ (5 2) time. Recall that the
taskmaster should be able to compute the gradient from any 5 surviving machines,
indexed by F ⊆ [=], according to (7.4). The 9 th column of B is determined by

167

a polynomial C 9 (G) =
∑ 5−1
8=0 C 9 ,8G

8 where C 9 ,0 = 1. We can write B as B = GT,
where T =

[
t1 · · · t:

]
and t 9 is the vector of coefficients of C 9 (G), and G is the

matrix given in (7.6). Now consider CF , the coded partial gradients received from
{,8 : 8 ∈ F }. The rows of B corresponding to F are given by

BF = GFT

=


1 U81 · · · U81 (5−1)

1 U82 · · · U82 (5−1)

...
...

. . .
...

1 U8 5 · · · U8 5 (5−1)




1 · · · 1
C1,1 · · · C:,1
...

. . .
...

C1, 5−1 · · · C:, 5−1.


.

We require a vector aF such that a)FBF = 11×: . This is equivalent to finding a vector
aF such that

a)FGF = (1, 0, . . . , 0). (7.16)

Indeed, the matrix GF in the above product is a Vandermonde matrix defined by
5 distinct elements and so it is invertible in $ (5 2) time [37], which facilitates the
online computation of the decoding vectors. This is an improvement compared to
previous works [197] where the decoding time is usually $ (5 3). Note that solving
linear systems with Vandermonde matrices, in general, can be numerically unstable.
However, the Vandermonde systems that we deal with here are very specific ones,
i.e. their elements are all roots of unity, meaning that the Vandermonde matrix is
a subset of the rows of a Fourier matrix, which has well-conditioned submatrices.
A careful inspection of inverses of Vandermonde matrices built from an =th root of
unity allows us to compute the required decoding vector in a space efficient manner.
This is demonstrated in the next subsection.

7.4.1 Space-Efficient Algorithm
Note that a)F is nothing but the first row of the inverse of GF , which can be
built from a set of polynomials {E1(G), . . . , E 5 (G)}. Let the ;th column of G−1

F be
v; = (E;,0, . . . , E;, 5−1)) and associate it with E; (G) =

∑ 5−1
8=0 E;,8G

8. The condition
GF v; = e; , where e; is the ;th elementary basis vector of length 5 , implies that E; (G)
should vanish on {U81 , . . . , U8 5 } \ {U8; }. Specifically,

E; (G) =
5∏
9=1
9≠;

G − U8 9
U8; − U8 9

(7.17)

The first row of G−1
F is given by (E1,0, . . . , E 5 ,0), where E;,0 is the constant term of

E; (G). Indeed, we have E;,0 = E; (0), which can be computed in closed form according

168

to the following formula,

E;,0 =

5∏
9=1
9≠;

U8 9

U8 9 − U8;
=

5∏
9=1
9≠;

(1 − U8;−8 9)−1. (7.18)

By choosing U as a primitive =th root of unity, one is guaranteed that there are only
= − 1 distinct values of (1 − U8;−8 9)−1. This observation proposes that the master
should precompute and store the set {(1 − U8)−1}=−1

8=1 , and then compute each E;,0 by
utilizing lookup operations. The following algorithm outlines this procedure.

Algorithm 9 DecodingVector(F)
Input:
F : Ordered set of surviving machines - {81, . . . 8 5 }
U: =th root of unity

Output: Decoding vector a associated with F .
a← 0 5
for ; = 1 to 5 do

a; ←
∏ 5−1

9=0, 9≠; (1 − U
8;−8 9)−1

end for
return a

7.5 Analysis of Total Computation Time
In this section, we provide a theoretical model which can be used to optimize the
choice of parameters that define the encoding scheme. For this purpose, we model
the response time of a single computing machine as

) =)delay +)comp. (7.19)

Here, the quantity)comp is the time required for a machine to compute its portion of
the gradient. This quantity is equal to 26 #F: , where 26 = 26 (ℓ, ?) is a constant that
indicates the time of computing the gradient for a single data point which depends
on the dimension of data points, ?, as well as the loss function, ℓ. The second term
)delay reflects the random delay incurred before the machine returns with the result
of its computation. We model this delay as a Pareto distributed random variable with
distribution function

� (C) = %A ()delay ≤ C) = 1 −
(C0
C

)b
for C ≥ C0, (7.20)

where the quantity C0 can be thought of the fundamental delay of the machine, i.e.
the minimum time required for a machine to return in perfect conditions. Previous

169

works [123, 130] model the return time of a machine as a shifted exponential random
variable. We propose using this approach since the heavy-tailed nature of CPU job
runtime has been observed in practice [124, 93, 94].

Let) 5 denote the expected time of computing the gradient using the first 5 machines.
As a result we have

) 5 = E[) (5)delay] +)comp +)dec(5), (7.21)

where) (5)delay is the 5
th ordered statistic of)delay, and)dec(5) is the time required at

the taskmaster for decoding. Here we assume = is large and define U := F
:
as the

fraction of the dataset assigned to each machine. For this value of U, the number of
machines required for successful recovery of the gradient is given by

5 (U) = d(1 − U)=e + 1, (7.22)

where dGe returns the smallest integer greater than or equal to G. We can show the
following result which approximates E[) (5)delay] for large values of =.

Proposition 37. The expected value of the 5 th order statistic of the Pareto distribution
with parameter b will converge as = grows, i.e.,

lim
=→∞
E[) (5)delay] = lim

=→∞
E[) (1−U)=delay] = C0U

− 1
b . (7.23)

Proof. From [206], the expected value of the 5 th ordered statistic of the Pareto
distribution is:

E[) (5)delay] = C0
Γ(= − 5 + 1 − 1/b)Γ(= + 1)
Γ(= − 5 + 1)Γ(= + 1 − 1/b) ,

where Γ(G) is the gamma function given by Γ(G) =
∫ ∞

0 CG−14−C3C. We now assume
that = is large and make the standard approximation

Γ(G) ∼
√

2c
G

(G
4

)G
.

Furthermore, (7.2) implies that the number of machines we wait for is 5 = (1 − U)=,
for some U < 1 which leads to

E[) (5)delay] =C0
(
1 − 1

b (U= + 1)

)U=+ 1
2

×
(
1 − 1

b (= + 1)

)−=− 1
2

×
(
1 − (1 − U)=

= + 1 − 1
b

)−1/b

.

170

By letting = → ∞, the first two terms in the product converge to 4−b and 4b ,
respectively, which yields

lim
=→∞
E[) (5)delay] = C0U

− 1
b .

�

Using this result, we can approximate) 5 , for = � 1,

) 5 ≈ C0U−
1
b + 26#U + 2< (1 − U)2=2, (7.24)

where we assume that the taskmaster uses Algorithm 9 for decoding. If we
assume 2< is the time required for one FLOP, the total decoding time is given by
2< (5 − 1) 5 ≈ 2< (1− U)2=2. Since U is bounded from above by the memory of each
machine, one can find the optimal computation time, subject to memory constraints,
by minimizing) 5 with respect to U.

7.5.1 Offline Decoding
In the schemes where the decoding vectors are computed offline, the quantity)dec
does not appear in the total computation time) 5 . Therefore, for large values of =, we
can write:

) 5 = C0U
− 1
b + 26#U. (7.25)

This function can be minimized with respect to U by standard calculus to give

U∗ =

(
C0

26#b

) b

1+b
. (7.26)

Note that this quantity is valid (less than one) if and only if one has C0
26#b

< 1. It
has been observed in practice that the parameter b is close to one. Therefore, this
assumption holds because # is assumed to be large.

For illustrative purposes, we plot the function) 5 from (7.25) for a given set of
parameters and indicate the optimal point. This plot is given in Figure 7.2.

171

α

0 0.2 0.4 0.6 0.8 1

T
f

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 7.2: This plot corresponds to a setup where the number of training examples
is # = 12000 and 26 = 3 × 10−6 to give #26 = 0.035. The parameters of the Pareto
distribution corresponding to the delay is characterized by C0 = 0.001 and b = 1.1.
The optimizer of this function as predicted by (7.26) is U∗ = 0.1477. This point is
denote by the star symbol.

7.6 Numerical Results
To demonstrate the effectiveness of the scheme, we performed numerical simulations
on a simple learning task, with realistic delays. We train a softmax regression model
on a distributed cluster composed of = = 80 processors to classify 10000 handwritten
digits from the MNIST dataset [121], while synthetically introducing computation
delays according to a model adopted from the literature. The delay model (and
its parameters), adopted from [124, 93, 94], has a Pareto distribution (7.20) with
parameters b = 1.1 and C0 = 0.001.

We compare the proposed Reed–Solomon scheme (Coded - RS) with the following
schemes, by running each of them on the same dataset for a fixed amount of time (in
seconds), and then measuring the test error.

• Uncoded - Wait for all: Data is distributed equally amongst = machines -
Wait for all = machines to return.

• Coded - MDS: Scheme described in [197].

• Uncoded - Wait for 5RS: Data is distributed equally amongst = machines -
Wait for 5RS machines.

172

Time (s)
0 0.5 1 1.5 2 2.5 3

T
es
t
E
rr
o
r

10
-1

10
0

Uncoded - Wait for fRS
Uncoded - Wait for fMDS
Uncoded - Wait for all
Coded - RS
Coded - MDS

Figure 7.3: The comparison between the test error of different schemes as a function
of time, for a softmax regression model trained using distributed gradient descent
on = = 80 machines. The model was trained on 12000 examples from the MNIST
database [121] and validated on a test set of size 10000. The Reed–Solomon based
scheme (Coded - RS) waits for 5RS = 68 machines, while the one corresponding
to [197] (Coded - MDS) waits for 5MDS = 33. 5RS and 5MDS were obtained by
numerically optimizing (7.21). The two coded schemes outperform the uncoded
ones. Coded-RS denotes the proposed scheme.

• Uncoded - Wait for 5MDS: Data is distributed equally amongst = machines -
Wait for 5MDS machines.

Similar to [197], the knowledge of the entire gradient allows us to employ accelerated
gradient methods such as the one proposed by Nesterov [152]. Details of the
experiment are given in the accompanying description of Figure 7.3.

The Reed–Solomon based scheme (Coded - RS) waits for 5RS = 68 machines,
while the one corresponding to [197] (Coded - MDS) waits for 5MDS = 33. These
quantities were obtained by numerically optimizing the expected total computation
time, mentioned in (7.21).

It is worth mentioning that our experiments show that, even on this relatively small
dataset, a distributed coded solution outperforms the scenario where the computation
is performed on a single machine. However, the single-machine scenario is not very
interesting, as we mostly care about cases where performing the computation on one
machine is infeasible.

173

7.7 Conclusion
We presented a straggler mitigation scheme that facilitates the implementation
of distributed gradient descent in a computing cluster. For a fixed per-machine
computational effort, the taskmaster recovers the full gradient from the least number
of machines theoretically required, which is done via an algorithm that is efficient in
both space and time. Furthermore, we propose a theoretical delay model based on
heavy-tailed distributions and incorporates the decoding time, which allows us to
minimize the expected running time of the algorithm.

Part IV

Learning from Data

174

175

C h a p t e r 8

MINIMAX OPTIMALITY AND IMPLICIT REGULARIZATION
OF STOCHASTIC GRADIENT/MIRROR DESCENT

[1] Navid Azizan and Babak Hassibi. “Stochastic gradient/mirror descent: Mini-
max optimality and implicit regularization”. In: 2018 Neural Information
Processing Systems (NeurIPS) Deep Learning Theory Workshop. 2018.

[2] Navid Azizan and Babak Hassibi. “Stochastic gradient/mirror descent: Mini-
max optimality and implicit regularization”. In: 2019 International Confer-
ence on Learning Representations (ICLR). 2019.

Stochastic descent methods (of the gradient and mirror varieties) have become
increasingly popular in optimization. In fact, it is now widely recognized that the
success of deep learning is not only due to the special deep architecture of the models,
but also due to the behavior of the stochastic descent methods used, which play a key
role in reaching “good” solutions that generalize well to unseen data. In an attempt
to shed some light on why this is the case, we revisit some minimax properties of
stochastic gradient descent (SGD) for the square loss of linear models—originally
developed in the 1990s—and extend them to general stochastic mirror descent (SMD)
algorithms for general loss functions and nonlinear models. In particular, we show
that there is a fundamental identity which holds for SMD (and SGD) under very
general conditions, and which implies the minimax optimality of SMD (and SGD)
for sufficiently small step size, and for a general class of loss functions and general
nonlinear models. We further show that this identity can be used to naturally establish
other properties of SMD (and SGD), namely convergence and implicit regularization
for over-parameterized linear models (in what is now being called the “interpolating
regime”), some of which have been shown in certain cases in prior literature.

8.1 Introduction
Deep learning has proven to be extremely successful in a wide variety of tasks [118,
119, 143, 189, 213]. Despite its tremendous success, the reasons behind the good
generalization properties of these methods to unseen data is not fully understood
(and, arguably, remains somewhat of a mystery to this day). Initially, this success
was mostly attributed to the special deep architecture of these models. However,
in the past few years, it has been widely noted that the architecture is only part

176

of the story, and, in fact, the optimization algorithms used to train these models,
typically stochastic gradient descent (SGD) and its variants, play a key role in learning
parameters that generalize well.

In particular, it has been observed that since these deep models are highly over-
parameterized, they have a lot of capacity, and can fit to virtually any (even random)
set of data points [224]. In other words, highly over-parameterized models can
“interpolate” the data, so much so that this regime has been called the “interpolating
regime” [138]. In fact, on a given dataset, the loss function often has (uncountably
infinitely) many global minima, which can have drastically different generalization
properties, and it is not hard to construct “trivial” global minima that do not generalize.
Which minimum among all the possible minima we pick in practice is determined by
the optimization algorithm that we use for training the model. Even though it may
seem at first that, because of the non-convexity of the loss function, the stochastic
descent algorithms may get stuck in local minima or saddle points, in practice they
almost always achieve a global minimum [112, 224, 122], which perhaps can also be
justified by the fact that these models are highly over-parameterized. What is even
more interesting is that not only do these stochastic descent algorithms converge
to global minima, but they converge to “special” ones that generalize well, even in
the absence of any explicit regularization or early stopping [224]. Furthermore, it
has been observed that even among the common optimization algorithms, namely
SGD or its variants (AdaGrad [68], RMSProp [199], Adam [114], etc.), there is a
discrepancy in the solutions achieved by different algorithms and their generalization
capabilities [211], which again highlights the important role of the optimization
algorithm in generalization.

There have been many attempts in recent years to explain the behavior and properties
of these stochastic optimization algorithms, and many interesting insights have been
obtained [3, 58, 188, 193]. In particular, it has been argued that the optimization
algorithms perform an implicit regularization [154, 137, 87, 85, 194, 86] while
optimizing the loss function, which is perhaps why the solution generalizes well.
Despite this recent progress, most results explaining the behavior of the optimization
algorithm, even for SGD, are limited to linear or very simplistic models. Therefore,
a general characterization of the behavior of stochastic descent algorithms for more
general models would be of great interest.

177

8.1.1 Our Contribution
In this chapter, we present an alternative explanation of the behavior of SGD, and
more generally, the stochastic mirror descent (SMD) family of algorithms, which
includes SGD as a special case. We do so by obtaining a fundamental identity for
such algorithms (see Lemmas 39 and 42). Using these identities, we show that for
general nonlinear models and general loss functions, when the step size is sufficiently
small, SMD (and therefore also SGD) is the optimal solution of a certain minimax
filtering (or online learning) problem. The minimax formulation is inspired by, and
rooted in, �∞ filtering theory, which was originally developed in the 1990s in the
context of robust control theory [98, 190, 97], and we generalize several results from
this literature, e.g., [96, 115]. Furthermore, we show that many properties recently
proven in the learning/optimization literature, such as the implicit regularization
of SMD in the over-parameterized linear case—when convergence happens—[85],
naturally follow from this theory. The theory also allows us to establish new results,
such as the convergence (in a deterministic sense) of SMD in the over-parameterized
linear case. We also use the theory developed in this chapter to provide some
speculative arguments into why SMD (and SGD) may have similar convergence
and implicit regularization properties in the so-called “highly over-parameterized”
nonlinear setting (where the number of parameters far exceeds the number of data
points) common to deep learning.

In an attempt to make the chapter easier to follow, we first describe the main ideas
and results in a simpler setting, namely, SGD on the square loss of linear models, in
Section 8.3, and mention the connections to �∞ theory. The full results, for SMD on
a general class of loss functions and for general nonlinear models, are presented in
Section 8.4. We demonstrate some implications of this theory, such as deterministic
convergence and implicit regularization, in Section 8.5, and we finally conclude with
some remarks in Section 8.6. Most of the formal proofs are relegated to the appendix.

8.2 Preliminaries
Denote the training dataset by {(G8, H8) : 8 = 1, . . . , =}, where G8 ∈ R3 are the inputs,
and H8 ∈ R are the labels. We assume that the data is generated through a (possibly
nonlinear) model 58 (F) = 5 (G8, F) with some parameter vector F ∈ R<, plus some
noise E8, i.e., H8 = 5 (G8, F) + E8 for 8 = 1, . . . , =. The noise can be due to actual
measurement error, or it can be due to modeling error (if the model 5 (G8, ·) is not
rich enough to fully represent the data), or it can be a combination of both. As a
result, we do not make any assumptions on the noise (such as stationarity, whiteness,

178

Gaussianity, etc.).

Since typical deep models have a lot of capacity and are highly over-parameterized,
we are particularly interested in the over-parameterized (so-caled interpolating)
regime, i.e., when < > =. In this case, there are many parameter vectors F (in fact,
uncountably infinitely many) that are consistent with the observations. We denote
the set of these parameter vectors by

W = {F ∈ R< | H8 = 5 (G8, F), 8 = 1, . . . , =} . (8.1)

(Note the absence of the noise term, since in this regime we can fully interpolate the
data.) The setW is typically an (< − =)-dimensional manifold and depends only on
the training data {(G8, H8) : 8 = 1, . . . , =} and nonlinear model 5 (·, ·).

The total loss on the training set (empirical risk) can be denoted by ! (F) =∑=
8=1 !8 (F), where !8 (·) is the loss on the individual data point 8. We assume that

the loss !8 (·) depends only on the residual, i.e., the difference between the prediction
and the true label. In other words,

!8 (F) = ; (H8 − 5 (G8, F)), (8.2)

where ; (·) can be any nonnegative differentiable function with ; (0) = 0. Typical
examples of ; (·) include square (;2) loss, Huber loss, etc. We remark that, in the
interpolating regime, every parameter vector in the setW renders each individual
loss zero, i.e., !8 (F) = 0, for all F ∈ W.

8.3 Warm-up: Revisiting SGD on Square Loss of Linear Models
In this section, we describe the main ideas and results in a simple setting, i.e.,
stochastic gradient descent (SGD) for the square loss of a linear model, and we
revisit some of the results from �∞ theory [98, 190]. In this case, the data model
is H8 = G)8 F + E8, 8 = 1, . . . , = (where there is no assumption on E8), and the loss
function is !8 (F) = 1

2 (H8 − G
)
8
F)2.

Assuming the data is indexed randomly, the SGD updates are defined as F8 =
F8−1 − [∇!8 (F8−1), where [> 0 is the step size or learning rate.1 The update in this
case can be expressed as

F8 = F8−1 + [
(
H8 − G)8 F8−1

)
G8, (8.3)

for 8 ≥ 1 (for 8 > =, we can either cycle through the data, or select them at random).
1For the sake of simplicity of presentation, we present the results for constant step size. We show

in the appendix that all the results extend to the case of time-varying step-size.

179

Remark. We should point out that, when the step size [is fixed, the SGD recursions
have no hope of converging, unless there exists a weight vector F which perfectly
interpolates the data {(G8, H8) : 8 = 1, . . . , =}. The reason being that, if this is not the
case, for any estimated weight vector in SGD, there will exist at least one data point
that has a nonzero instantaneous gradient and that will therefore move the estimate
by a non-vanishing amount.2 It is for this reason that the results on the convergence
of SGD and SMD (Sections 8.3.3 and 8.5) pertain to the interpolating regime.

8.3.1 Conservation of Uncertainty
Prior to the 8-th step of any optimization algorithm, we have two sources of uncertainty:
our uncertainty about the unknown parameter vector F, which we can represent
by F − F8−1, and our uncertainty about the 8-th data point (G8, H8), which we can
represent by the noise E8. After the 8-th step, the uncertainty about F is transformed
to F − F8. But what about the uncertainty in E8? What is it transformed to? In fact,
we will view any optimization algorithm as one which redistributes the uncertainties
at time 8 − 1 to new uncertainties at time 8. The two uncertainties, or error terms, we
will consider are 48 and 4?,8, defined as follows.

48 := H8 − G)8 F8−1, and 4?,8 := G)8 F − G)8 F8−1. (8.4)

48 is often referred to as the innvovations and is the error in predicting H8, given
the input G8. 4?,8 is sometimes called the prediction error, since it is the error in
predicting the noiseless output G)

8
F, i.e., in predicting what the best output of the

model is. In the absence of noise, 48 and 4?,8 coincide.

One can show that SGD transforms the uncertainties in the fashion specified by the
following lemma, which was first noted in [97].

Lemma 38. For any parameter F and noise values {E8} that satisfy H8 = G)8 F + E8
for 8 = 1, . . . , =, and for any step size [> 0, the following relation holds for the SGD
iterates {F8} given in Eq. (8.3)

‖F − F8−1‖2 + [E2
8 = ‖F − F8‖2 + [

(
1 − [‖G8‖2

)
42
8 + [42

?,8, ∀8 ≥ 1. (8.5)

As illustrated in Figure 8.1, this means that each step of SGD can be thought of as a
lossless transformation of the input uncertainties to the output uncertainties, with the
specified coefficients.

2Of course, one may get convergence by having a vanishing step size [8 → 0. However, in this
case, convergence is not surprising—since, effectively, after a while, the weights are no longer being
updated—and the more interesting question is “what” the recursion converges to.

180

Figure 8.1: Illustration of Lemma 38. Each step of SGD can be viewed as a
transformation of the uncertainties with the right coefficients.

Once one knows this result, proving it is straightforward. To see that, note that we
can write E8 = H8 − G)8 F as E8 = (H8 − G)8 F8−1) − (G)8 F − G)8 F8−1). Multiplying both
sides by √[, we have

√
[E8 =

√
[(H8 − G)8 F8−1) −

√
[(G)8 F − G)8 F8−1). (8.6)

On the other hand, subtracting both sides of the update rule (8.3) from F yields

F − F8 = (F − F8−1) − [
(
H8 − G)8 F8−1

)
G8 . (8.7)

Squaring both sides of (8.6) and (8.7), and subtracting the results leads to Equa-
tion (8.5).

A nice property of Equation (8.5) is that, if we sum over all 8 = 1, . . . ,) , the terms
‖F − F8‖2 and ‖F − F8−1‖2 on different sides cancel out telescopically, leading to
the following important lemma.

Lemma 39. For any parameter F and noise values {E8} that satisfy H8 = G)8 F + E8
for 8 = 1, . . . , =, any initialization F0, any step size [> 0, and any number of steps
) ≥ 1, the following relation holds for the SGD iterates {F8} given in Eq. (8.3)

‖F − F0‖2 + [
)∑
8=1

E2
8 = ‖F − F) ‖2 + [

)∑
8=1

(
1 − [‖G8‖2

)
42
8 + [

)∑
8=1

42
?,8 . (8.8)

As we will show next, this identity captures most properties of SGD, and implies
several important results in a very transparent fashion. For this reason, this relation
can be viewed as a “fundamental identity” for SGD.

8.3.2 Minimax Optimality of SGD
For a given horizon) , consider the following minimax problem:

min
{F8}

max
F,{E8}

‖F − F) ‖2 + [
∑)
8=1 4

2
?,8

‖F − F0‖2 + [
∑)
8=1 E

2
8

. (8.9)

181

This minimax problem is motivated by the theory of �∞ control and estimation
[74, 98, 31]. The denominator of the cost function can be interpreted as the
energy of the uncertainties and consists of two terms, ‖F − F0‖2, the energy of
our uncertainty of the unknown weight vector at the beginning of learning when
we have not yet observed the data, and

∑)
8=1 E

2
8
, the energy of the uncertainty in the

measurements. The numerator denotes the energy of the estimation errors in an
online setting. The first term, ‖F − F) ‖2, is the energy of our uncertainty of the
unknown weight vector after we have observed) data points, and the second term,∑)
8=1 4

2
?,8
=

∑)
8=1(G)8 F − G)8 F8−1)2, is the energy of the prediction error, i.e., how well

we can predict the true uncorrupted output G)
8
F using measurements up to time 8 − 1.

The parameter [weighs the two energy terms relative to each other. In this minimax
problem, nature has access to the unknown weight vector F and the noise sequence
E8 and would like to maximize the energy gain from the uncertainties to prediction
errors (so that the estimator behaves poorly), whereas the estimator attempts to
minimize the energy gain. Such an estimator is referred to as �∞-optimal and is
robust because it safeguards against the worst-case noise. It is also conservative, for
the exact same reason.3

Theorem 40. For any initialization F0, any step size 0 < [≤ min8 1
‖G8 ‖2

, and any
number of steps) ≥ 1, the stochastic gradient descent iterates {F8} given in Eq. (8.3)
are the optimal solution to the minimax problem (8.9). Furthermore, the optimal
minimax value (achieved by SGD) is 1.

This theorem explains the observed robustness and conservatism of SGD. Despite
the conservativeness of safeguarding against the worst-case disturbance, this choice
may actually be the rational thing to do in situations where we do not have much
knowledge about the disturbances, which is the case in many machine learning tasks.

Theorem 40 holds for any horizon) ≥ 1. A variation of this result, i.e., when
) → ∞ and without the ‖F − F) ‖2 term in the numerator, was first shown in [96,
97]. In that case, the ratio

[
∑∞
8=1 4

2
?,8

‖F−F0‖2+[
∑∞
8=1 E

2
8

in the minimax problem is in fact the �∞

norm of the transfer operator that maps the unknown disturbances (F − F0, {
√
[E8})

to the prediction errors {√[4?,8}.
3The setting described is somewhat similar to the setting of online learning, where one considers

the relative performance of an online learner who needs to predict, compared to a clairvoyant one who
has access to the entire data set [183, 99]. In online learning, the relative performance is described as
a difference, rather than as a ratio in �∞ theory, and is referred to as regret.

182

We end this section with a stochastic interpretation of SGD [97]. Assume that the
true weight vector has a normal distribution with mean F0 and covariance matrix [�,
and that the noise E8 are iid standard normal. Then SGD solves

min
{F8}
E exp

(
1
2
·
(
‖F − F) ‖2 + [

)∑
8=1
(G)8 F − G)8 F8−1)2

))
, (8.10)

and no exponent larger than 1
2 is possible, in the sense that no estimator can keep the

expected cost finite. This means that, in the Gaussian setting, SGD minimizes the
expected value of an exponential quadratic cost. The algorithm is thus very adverse
to large estimation errors, as they are penalized exponentially larger than moderate
ones.

8.3.3 Convergence and Implicit Regularization
The over-parameterized (interpolating) linear regression regime is a simple but
instructive setting, recently considered in some papers [85, 224]. In this setting,
we can show that, for sufficiently small step, i.e., 0 < [≤ min8 1

‖G8 ‖2
, SGD always

converges to a special solution among all the solutionsW, in particular to the one
with the smallest ;2 distance from F0. In other words, if, for example, initialized at
zero, SGD implicitly regularizes the solution according to an ;2 norm. This result
follows directly from Lemma 39.

To see that, note that in the interpolating case the E8 are zero, and we have 48 =
H8 − G)8 F8−1 = G

)
8
F − G)

8
F8−1 = 4?,8. Hence, identity (8.8) reduces to

‖F − F0‖2 = ‖F − F) ‖2 + [
)∑
8=1

(
2 − [‖G8‖2

)
42
8 , (8.11)

for all F ∈ W. By dropping the ‖F − F) ‖2 term and taking) → ∞, we have
[
∑∞
8=1

(
2 − [‖G8‖2

)
42
8
≤ ‖F − F0‖2, which implies that, for 0 < [< min8 2

‖G8 ‖2
, we

must have 48 → 0 as 8 → ∞. When 48 = H8 − G)8 F8−1 goes to zero, the updates
in (8.3) vanish and we get convergence, i.e., F → F∞. Further, again because
48 → 0, all the data points are being fit, which means F∞ ∈ W. Moreover, it is
again very straightforward to see from (8.11) that the solution converged to is the
one with minimum Euclidean norm from the initial point. To see that, notice that the
summation term in Eq. (8.11) is independent of F (it depends only on G8, H8, and F0).
Therefore, by taking) →∞ and minimizing both sides with respect to F ∈ W, we
get

F∞ = arg min
F∈W

‖F − F0‖. (8.12)

183

Once again, this also implies that if SGD is initialized at the origin, i.e., F0 = 0, then
it converges to the minimum-;2-norm solution, among all the solutions.

8.4 Main Result: General Characterization of Stochastic Mirror Descent
Stochastic Mirror Descent (SMD) [149, 33, 55, 227] is one of the most widely used
families of algorithms for stochastic optimization, which includes SGD as a special
case. In this section, we provide a characterization of the behavior of general SMD,
on general loss functions and general nonlinear models, in terms of a fundamental
identity and minimax optimality.

For any strictly convex and differentiable potential k(·), the corresponding SMD
updates are defined as

F8 = arg min
F

[F)∇!8 (F8−1) + �k (F, F8−1), (8.13)

where
�k (F, F8−1) = k(F) − k(F8−1) − ∇k(F8−1)) (F − F8−1) (8.14)

is the Bregman divergence with respect to the potential function k(·). Note that
�k (·, ·) is non-negative, convex in its first argument, and that, due to strict convexity,
�k (F, F′) = 0 iff F = F′. Moreover, the updates can be equivalently written as

∇k(F8) = ∇k(F8−1) − [∇!8 (F8−1), (8.15)

which are uniquely defined because of the invertibility of ∇k (again, implied by the
strict convexity of k(·)). In other words, stochastic mirror descent can be thought of
as transforming the variable F, with a mirror map ∇k(·), and performing the SGD
update on the new variable. For this reason, ∇k(F) is often referred to as the dual
variable, while F is the primal variable.

Different choices of the potential functionk(·) yield different optimization algorithms,
which, as we will see, result in different implicit regularizations. To name a few
examples: For the potential function k(F) = 1

2 ‖F‖
2, the Bregman divergence

is �k (F, F′) = 1
2 ‖F − F

′‖2, and the update rule reduces to that of SGD. For
k(F) = ∑

9 F 9 logF 9 , the Bregman divergence becomes the unnormalized relative
entropy (Kullback-Leibler divergence) �k (F, F′) =

∑
9 F 9 log F 9

F′
9
−∑

9 F 9 +
∑
9 F
′
9
,

which corresponds to the exponentiated gradient descent (or the exponential weights)
algorithm. Other examples include k(F) = 1

2 ‖F‖
2
&
= 1

2F
)&F for a positive definite

matrix&, which yields �k (F, F′) = 1
2 (F −F

′))&(F −F′), and the @-norm squared
k(F) = 1

2 ‖F‖
2
@ , which with 1

?
+ 1
@
= 1 yields the ?-norm algorithms [82, 78].

184

In order to derive an equivalent “conservation law” for SMD, similar to the identity
(8.5), we first need to define a new measure for the difference between the parameter
vectors F and F′ according to the loss function !8 (·). To that end, let us define

�!8 (F, F′) := !8 (F) − !8 (F′) − ∇!8 (F′)) (F − F′), (8.16)

which is defined in a similar way to a Bregman divergence for the loss function.4 The
difference though is that, unlike the potential function of the Bregman divergence, the
loss function !8 (·) = ℓ(H8 − 5 (G8, ·)) need not be convex, even when ℓ(·) is, due to the
nonlinearity of 5 (·, ·). As a result, �!8 (F, F′) is not necessarily non-negative. The
following result, which is the general counterpart of Lemma 38, states the identity
that characterizes SMD updates in the general setting.

Lemma 41. For any (nonlinear) model 5 (·, ·), any differentiable loss ; (·), any
parameter F and noise values {E8} that satisfy H8 = 5 (G8, F) + E8 for 8 = 1, . . . , =,
and any step size [> 0, the following relation holds for the SMD iterates {F8} given
in Eq. (8.15)

�k (F, F8−1) + [; (E8) = �k (F, F8) + �8 (F8, F8−1) + [�!8 (F, F8−1), (8.17)

for all 8 ≥ 1, where

�8 (F8, F8−1) := �k (F8, F8−1) − [�!8 (F8, F8−1) + [!8 (F8). (8.18)

The proof is provided in Appendix 8.A. Note that �8 (F8, F8−1) is not a function of
F. Furthermore, even though it does not have to be nonnegative in general, for [
sufficiently small, it becomes nonnegative, because the Bregman divergence �k (., .)
is nonnegative.

Summing Equation (8.17) over all 8 = 1, . . . ,) leads to the following identity, which
is the general counterpart of Lemma 39.

Lemma 42. For any (nonlinear) model 5 (·, ·), any differentiable loss ; (·), any
parameter F and noise values {E8} that satisfy H8 = 5 (G8, F) + E8 for 8 = 1, . . . , =, any
initialization F0, any step size [> 0, and any number of steps) ≥ 1, the following

4It is easy to verify that for linear models and quadratic loss we obtain �!8 (F, F′) = (G)8 F −
G)
8
F′)2.

185

relation holds for the SMD iterates {F8} given in Eq. (8.15)

�k (F, F0) + [
)∑
8=1

; (E8) = �k (F, F)) +
)∑
8=1

(
�8 (F8, F8−1) + [�!8 (F, F8−1)

)
.

(8.19)

We should reiterate that Lemma 42 is a fundamental property of SMD, which allows
one to prove many important results, in a direct way.

In particular, in this setting, we can show that SMD is minimax optimal in a manner
that generalizes Theorem 40 of Section 8.3, in the following 3 ways: 1) General
potential k(·), 2) General model 5 (·, ·), and 3) General loss function ; (·). The result
is as follows.

Theorem 43. Consider any (nonlinear) model 5 (·, ·), any non-negative differentiable
loss ; (·) with the property ; (0) = ;′(0) = 0, and any initialization F0. For sufficiently
small step size, i.e., for any [> 0 for which k(F) − [!8 (F) is convex for all 8, and
for any number of steps) ≥ 1, the SMD iterates {F8} given by Eq. (8.15), w.r.t. any
strictly convex potential k(·), is the optimal solution to the following minimization
problem

min
{F8}

max
F,{E8}

�k (F, F)) + [
∑)
8=1 �!8 (F, F8−1)

�k (F, F0) + [
∑)
8=1 ; (E8)

. (8.20)

Furthermore, the optimal value (achieved by SMD) is 1.

The proof is provided in Appendix 8.B. For the case of square loss and a linear
model, the result reduces to the following form.

Corollary 44. For !8 (F) = 1
2 (H8 − G

)
8
F)2, for any initialization F0, any sufficiently

small step size, i.e., 0 < [≤ U

‖G8 ‖2
, and any number of steps) ≥ 1, the SMD iterates

{F8} given by Eq. (8.15), w.r.t. any U-strongly convex potential k(·), is the optimal
solution to

min
{F8}

max
F,{E8}

�k (F, F)) + [

2
∑)
8=1 4

2
?,8

�k (F, F0) + [

2
∑)
8=1 E

2
8

. (8.21)

The optimal value (achieved by SMD) is 1.

We should remark that Theorem 43 and Corollary 44 generalize several known results
in the literature. In particular, as mentioned in Section 8.3, the result of [96] is a

186

special case of Corollary 44 for k(F) = 1
2 ‖F‖

2. Furthermore, our result generalizes
the result of [115], which is the special case for the ?-norm algorithms, again, with
square loss and a linear model. Another interesting connection to the literature is
that it was shown in [95] that SGD is locally minimax optimal, with respect to the
�∞ norm. Strictly speaking, our result is not a generalization of that result; however,
Theorem 43 can be interpreted as SGD/SMD being globally minimax optimal, but
with respect to different metrics in the numerator and denominator. Namely, the
uncertainty about the weight vector F is measured by the Bregman divergence of the
potential, the uncertainty about the noise by the loss, and the prediction error by the
“Bregman-divergence-like” expression of the loss.

8.5 Convergence and Implicit Regularization in Over-Parameterized Models
In this section, we show some of the implications of the theory developed in the
previous section. In particular, we show convergence and implicit regularization, in
the over-parameterized (so-called interpolating) regime5, for general SMD algorithms.
We first consider the linear interpolating case, which has been studied in the literature,
and show that the known results follow naturally from our Lemma 42. Further, we
shall obtain some new convergence results.

8.5.1 Over-Parameterized Linear Models
In this setting, the E8 are zero, W =

{
F | H8 = G)8 F, 8 = 1, . . . , =

}
, and !8 (F) =

; (H8 − G)8 F), with any differentiable loss ; (·). Therefore, Eq. (8.19) reduces to

�k (F, F0) = �k (F, F)) +
)∑
8=1

(
�8 (F8, F8−1) + [�!8 (F, F8−1)

)
, (8.22)

for all F ∈ W, where

�!8 (F, F8−1) = !8 (F) − !8 (F8−1) − ∇!8 (F8−1)) (F − F8−1) (8.23)

= 0 − ; (H8 − G)8 F8−1) + ;′(H8 − G)8 F8−1)G)8 (F − F8−1) (8.24)

= −; (H8 − G)8 F8−1) + ;′(H8 − G)8 F8−1) (H8 − G)8 F8−1) (8.25)

which is notably independent of F. As a result, we can easily minimize both sides of
Eq. (8.22) with respect to F ∈ W, which for) →∞ leads to the following result.

5In the classical under-parameterized (online streaming) case with white noise, the same theory
can be used to establish convergence to the true parameter under the so-called Robbins–Monro
conditions (

∑∞
8=1 [8 = ∞,

∑∞
8=1 [

2
8
< ∞) in a very direct and simple way (see [14]).

187

Proposition 45. For any differentiable loss ; (·), any initialization F0, and any step
size [, consider the SMD iterates given in Eq. (8.15) with respect to any strictly
convex potential k(·). If the iterates converge to a solution F∞ ∈ W, then

F∞ = arg min
F∈W

�k (F, F0). (8.26)

Remark. In particular, for the initialization F0 = arg minF∈R< k(F), if the iterates
converge to a solution F∞ ∈ W, then

F∞ = arg min
F∈W

k(F). (8.27)

An equivalent form of Proposition 45 has been shown recently in, e.g., [85].6
Other implicit regularization results have been shown in [86, 194] for classification
problems, which are not discussed here. Note that the result of [85] does not say
anything about whether the algorithm converges or not. However, our fundamental
identity of SMD (Lemma 42) allows us to also establish convergence to the regularized
point, for some common cases, which will be shown next.

What Proposition 45 says is that depending on the choice of the potential function
k(·), the optimization algorithm can perform an implicit regularization without
any explicit regularization term. In other words, for any desired regularizer, if
one chooses a potential function that approximates the regularizer, we can run the
optimization without explicit regularization, and if it converges to a solution, the
solution must be the one with the minimum potential.

In principle, one can choose the potential function in SMD for any desired convex
regularization. For example, we can find the maximum entropy solution by taking
the potential to be the negative entropy. Another illustrative example follows.

Example [Compressed Sensing]: In compressed sensing, one seeks the sparsest
solution to an under-determined (over-parameterized) system of linear equations.
The surrogate convex problem one solves is:

min ‖F‖1
subject to H8 = G

)
8
F, 8 = 1, . . . =

(8.28)

One cannot choose k(F) = ‖F‖1, since it is neither differentiable nor strictly convex.
However, k(F) = ‖F‖1+n , for any n > 0, can be used. Figure 4 shows a compressed

6To be precise, the authors in [85] assume convergence to a global minimizer of the loss function
! (F) = ∑=

8=1 ; (H8 − G)8 F), which, with their assumption of the loss function ; (·) having a unique
finite root, is equivalent to assuming convergence to a point F∞ ∈ W.

188

sensing example, with = = 50, < = 100, and sparsity : = 10. SMD was used with a
step size of [= 0.001 and the potential function was k(·) = ‖ · ‖1.1. SMD converged
to the true sparse solution after around 10,000 iterations. On this example, it was an
order of magnitude faster than standard ;1 optimization.

Figure 8.2: The training loss and actual error of stochastic mirror descent for
compressed sensing. SMD recovers the actual sparse signal.

Next we establish convergence to the regularized point for the convex case.

Proposition 46. Consider the following two cases.

(i) ; (·) is differentiable and convex and has a unique root at 0, k(·) is strictly
convex, and [> 0 is such that k − [!8 is convex for all 8.

(ii) ; (·) is differentiable and quasi-convex, ;′(·) is zero only at zero, k(·) is
U-strongly convex, and 0 < [≤ min8

U |H8−G)8 F8−1 |
‖G8 ‖2 |; ′(H8−G)8 F8−1) |

.

If either (i) or (ii) holds, then for any F0, the SMD iterates given in Eq. (8.15)
converge to

F∞ = arg min
F∈W

�k (F, F0). (8.29)

The proof is provided in Appendix 8.C.

189

8.6 Concluding Remarks
We should remark that all the results stated throughout the chapter extend to the case
of time-varying step size [8, with minimal modification. In particular, it is easy to
show that in this case, the identity (the counterpart of Eq. (8.19)) becomes

�k (F, F0) +
)∑
8=1

[8; (E8) = �k (F, F)) +
)∑
8=1

(
�8 (F8, F8−1) + [8�!8 (F, F8−1)

)
,

(8.30)
where �8 (F8, F8−1) = �k (F8, F8−1) −[8�!8 (F8, F8−1) +[8!8 (F8). As a consequence,
our main result will be the same as in Theorem 43, with the only difference being
that the small-step-size condition in this case is the convexity of k(F) − [8!8 (F) for
all 8, and the SMD with time-varying step size will be the optimal solution to the
following minimax problem

min
{F8}

max
F,{E8}

�k (F, F)) +
∑)
8=1 [8�!8 (F, F8−1)

�k (F, F0) +
∑)
8=1 [8; (E8)

. (8.31)

Similarly, the convergence and implicit regularization results can be proven under
the same conditions (See Appendix 8.D for more details on the time-varying case).

This work opens up a variety of important directions for future work. Most of the
analysis developed here is general, in terms of the model, the loss function, and the
potential function. Therefore, it would be interesting to study the implications of
this theory for specific classes of models (such as different neural networks), specific
losses, and specific mirror maps (which induce different regularization biases).

190

8.A Proof of Lemma 41 (Fundamental Identity)
Proof. Let us start by expanding the Bregman divergence �k (F, F8) based on its
definition

�k (F, F8) = k(F) − k(F8) − ∇k(F8)) (F − F8).

By plugging the SMD update rule ∇k(F8) = ∇k(F8−1) − [∇!8 (F8−1) into this, we
can write it as

�k (F, F8) = k(F) −k(F8) −∇k(F8−1)) (F −F8) + [∇!8 (F8−1)) (F −F8). (8.32)

Using the definition of Bregman divergence for (F, F8−1) and (F8, F8−1), i.e.,
�k (F, F8−1) = k(F)−k(F8−1)−∇k(F8−1)) (F−F8−1) and�k (F8, F8−1) = k(F8)−
k(F8−1) − ∇k(F8−1)) (F8 − F8−1), we can express this as

�k (F, F8) = �k (F, F8−1) + k(F8−1) + ∇k(F8−1)) (F − F8−1) − k(F8)
− ∇k(F8−1)) (F − F8) + [∇!8 (F8−1)) (F − F8)

(8.33)

= �k (F, F8−1) + k(F8−1) − k(F8) + ∇k(F8−1)) (F8 − F8−1)
+ [∇!8 (F8−1)) (F − F8)

(8.34)

= �k (F, F8−1) − �k (F8, F8−1) + [∇!8 (F8−1)) (F − F8). (8.35)

Expanding the last term using F − F8 = (F − F8−1) − (F8 − F8−1), and following the
definition of �!8 (., .) from (8.16) for (F, F8−1) and (F8, F8−1), we have

�k (F, F8) = �k (F, F8−1) − �k (F8, F8−1) + [∇!8 (F8−1)) (F − F8−1)
− [∇!8 (F8−1)) (F8 − F8−1)

(8.36)

= �k (F, F8−1) − �k (F8, F8−1) + [
(
!8 (F) − !8 (F8−1) − �!8 (F, F8−1)

)
− [

(
!8 (F8) − !8 (F8−1) − �!8 (F8, F8−1)

)
(8.37)

= �k (F, F8−1) − �k (F8, F8−1) + [
(
!8 (F) − �!8 (F, F8−1)

)
− [

(
!8 (F8) − �!8 (F8, F8−1)

)
.

(8.38)

Defining �8 (F8, F8−1) := �k (F8, F8−1) − [�!8 (F8, F8−1) + [!8 (F8), we can write
the above equality as

�k (F, F8) = �k (F, F8−1) − �8 (F8, F8−1) + [
(
!8 (F) − �!8 (F, F8−1)

)
. (8.39)

191

Notice that for any model class with additive noise, and any loss function !8

that depends only on the residual (i.e., the difference between the prediction and
the true label), the term !8 (F) depends only on the noise term, for any “true”
parameter F. In other words, for all F that satisfy H8 = 5 (G8, F) + E8, we have
!8 (F) = ; (H8 − 5 (G8, F)) = ; (H8 − (H8 − E8)) = ; (E8) . Finally, reordering the terms
leads to

�k (F, F8) + [�!8 (F, F8−1) + �8 (F8, F8−1) = �k (F, F8−1) + [; (E8), (8.40)

which concludes the proof. �

192

8.B Proof of Theorem 43 (Minimax Optimality)
Proof. We prove the theorem in two parts. First, we show that the value of the
minimax is at least 1. Then we prove that the value is at most 1, and is achieved by
stochastic mirror descent for small enough step size.

1. Consider the maximization problem

max
F,{E8}

�k (F, F)) + [
∑)
8=1 �!8 (F, F8−1)

�k (F, F0) + [
∑)
8=1 ; (E8)

.

Clearly, the optimal solution(s) and the optimal value of this problem can,
and will, be a function of {F8}. Similarly, we can also choose feasible points
that depend on {F8}. Any choice of a feasible point (F̂, {Ê8}) gives a lower
bound on the value of the problem. Before choosing a feasible point, let us first
expand the �!8 (F, F8−1) term in the numerator, according to its definition.

�!8 (F, F8−1) = ; (E8)−; (H8− 58 (F8−1))+;′(H8− 58 (F8−1))∇ 5 (F8−1)) (F−F8−1),
(8.41)

where we have used the fact that ; (H8 − 58 (F)) = ; (E8) for all consistent F, in
the first term.

Now, we choose a feasible point as follows

Ê8 = 58 (F8−1) − 58 (F̂), (8.42)

where F̂ is the choice of F, as will be described soon. The reason for choosing
this value for the noise is that it “fools” the estimator by making its loss on the
corresponding data point zero. In other words, for this choice, we have

�!8 (F, F8−1) = ; (Ê8) − ; (0) + ;′(0)∇ 5 (F8−1)) (F̂ − F8−1)
= ; (Ê8)

because ; (0) = ;′(0) = 0. It should be clear at this point that this choice makes
the second terms in the numerator and the denominator equal, independent
of the choice of F̂. What remains to do, in order to show the 1 lower-
bound, is to take care of the other two terms, i.e., �k (F, F)) and �k (F, F0).
As we would like to make the ratio equal to one, we would like to have
�k (F, F)) = �k (F, F0), which is equivalent to having

k(F) − k(F)) − ∇k(F))) (F − F)) = k(F) − k(F0) − ∇k(F0)) (F − F0)

193

which is, in turn, equivalent to

(∇k(F)) − ∇k(F0))) F = −k(F)) + k(F0) + ∇k(F)))F) − ∇k(F0))F0.

(8.43)
Since ∇k is an invertible function, ∇k(F)) − ∇k(F0) ≠ 0, if F) ≠ F0.
Therefore, the above equation has a solution for F, if F) ≠ F0. As a result,
choosing F̂ to be a solution to (8.43) makes �k (F̂, F)) = �k (F̂, F0), if F) ≠
F0. For the case when F) = F0, it is trivial that �k (F̂, F)) = �k (F̂, F0) for
any choice of F̂. In this case, we only need to choose F̂ to be different from
F0, to avoid making the ratio 0

0 . Hence, we have the following choice

F̂ =


a solution of (8.43) for F) ≠ F0

F0 + XF for some XF ≠ 0 for F) = F0
(8.44)

Choosing the feasible point F̂, {E8} according to (8.44) and (8.42) leads to

max
F,{E8}

�k (F, F)) + [
∑)
8=1 �!8 (F, F8−1)

�k (F, F0) + [
∑)
8=1 ; (E8)

≥
�k (F̂, F)) + [

∑)
8=1 ; (58 (F8−1) − 58 (F̂))

�k (F̂, F0) + [
∑)
8=1 ; (58 (F8−1) − 58 (F̂))

. (8.45)

Taking the minimum of both sides with respect to {F8}, we have

min
{F8}

max
F,{E8}

�k (F, F)) + [
∑)
8=1 �!8 (F, F8−1)

�k (F, F0) + [
∑)
8=1 ; (E8)

≥ min
{F8}

�k (F̂, F)) + [
∑)
8=1 ; (58 (F8−1) − 58 (F̂))

�k (F̂, F0) + [
∑)
8=1 ; (58 (F8−1) − 58 (F̂))

= 1. (8.46)

The equality to 1 comes from the fact the that the optimal solution of the
minimization either has F∗

)
= F0 or F∗) ≠ F0, and in both cases the ratio is

equal to 1.

2. Now we prove that, under the small step size condition (convexity of k(F) −
[!8 (F) for all 8), SMD makes the minimax value at most 1, which means that
it is indeed an optimal solution. Recall from Lemma 42 that

�k (F, F0) +[
)∑
8=1

; (E8) = �k (F, F)) +
)∑
8=1

�8 (F8, F8−1) +[
)∑
8=1

�!8 (F, F8−1),

where

�8 (F8, F8−1) = �k (F8, F8−1) − [�!8 (F8, F8−1) + [!8 (F8).

194

It is easy to check that when k(F) − [!8 (F) is convex, �k (F8, F8−1) −
[�!8 (F8, F8−1) is in fact a Bregman divergence (i.e., the Bregman divergence
with respect to the potential k(F) − [!8 (F)), and therefore it is nonnegative
for any F8 and F8−1. Furthermore, we know that the loss !8 (F8) is also
nonnegative for all F8. It follows that �8 (F8, F8−1) is nonnegative for all values
of F8, F8−1 and 8. As a result, we have the following bound.

�k (F, F0) + [
)∑
8=1

; (E8) ≥ �k (F, F)) + [
)∑
8=1

�!8 (F, F8−1). (8.47)

Since the Bregman divergence �k (F, F0) and the loss ; (E8) are nonnegative,
the left-hand side expression is nonnegative, and it follows that

�k (F, F)) + [
∑)
8=1 �!8 (F, F8−1)

�k (F, F0) + [
∑)
8=1 ; (E8)

≤ 1. (8.48)

In fact, this means that, independent of the choice of the maximizer (i.e., for
all {E8} and F), as long as the step size condition is met, SMD makes the ratio
less than or equal to 1.

Combining the results of 1 and 2 above concludes the proof. �

8.B.1 Proof of Theorem 40

Proof. This result is a special case of Theorem 43, which was proven above. In
this case, k(F) = 1

2 ‖F‖
2, 5 (G8, F) = G)8 F, and ; (I) =

1
2 I

2. Therefore, �k (F, F)) =
1
2 ‖F − F) ‖

2, �k (F, F0) = 1
2 ‖F − F0‖2, �!8 (F, F8−1) = 1

2 (G
)
8
F − G)

8
F8−1)2, and

; (E8) = 1
2E

2
8
, which leads to the result. �

195

8.C Proof of Proposition 46 (Convergence)
Proof. To prove convergence, we appeal again to Equation (8.22), i.e.,

�k (F, F0) = �k (F, F)) +
)∑
8=1

(
�8 (F8, F8−1) + [�!8 (F, F8−1)

)
, (8.49)

for all F ∈ W. We prove the two cases separately.

1. The proof of case (i) is straightforward. When ; (·) is differentiable and convex,
!8 is also convex, and therefore �!8 (F, F8−1) is nonnegative. Moreover,
when k − [!8 is convex, �8 (F8, F8−1) is also nonnegative. Therefore, the
entire summand in Eq. (8.49) is nonnegative and thus has to go to zero
for 8 → ∞. That is because as) → ∞, the sum should remain bounded,
i.e.,

∑∞
8=1

(
�8 (F8, F8−1) + [�!8 (F, F8−1)

)
≤ �k (F, F0). As a result of the

non-negativity of both terms in the sum, we have both �8 (F8, F8−1) → 0
and �!8 (F, F8−1) → 0 as 8 → ∞, the latter of which implies !8 (F8−1) → 0.
This implies that the updates in (8.15) vanish and we get convergence, i.e.,
F8 → F∞. Further, again because !8 (F8−1) → 0, and 0 is the unique root of
; (·), all the data point are being fit, which means F∞ ∈ W.

2. To prove case (ii), note that we have

�!8 (F, F8−1) = !8 (F) − !8 (F8−1) − ∇!8 (F8−1)) (F − F8−1) (8.50)

= 0 − ; (H8 − G)8 F8−1) + ;′(H8 − G)8 F8−1)G)8 (F − F8−1) (8.51)

= −; (H8 − G)8 F8−1) + ;′(H8 − G)8 F8−1) (H8 − G)8 F8−1), (8.52)

and

�8 (F8, F8−1) = �k (F8, F8−1) − [�!8 (F8, F8−1) + [!8 (F8) (8.53)

= �k (F8, F8−1) + [
(
!8 (F8−1) + ∇!8 (F8−1)) (F8 − F8−1)

)
(8.54)

= �k (F8, F8−1) + [
(
; (H8 − G)8 F8−1) − ;′(H8 − G)8 F8−1)G)8 (F8 − F8−1)

)
.

(8.55)

It follows from (8.52) and (8.55) that the summand in Equation (8.49) is

�8 (F8, F8−1) + [�!8 (F, F8−1) = �k (F8, F8−1) + [;′(H8 − G)8 F8−1) (H8 − G)8 F8).
(8.56)

196

The first term is a Bregman divergence and is therefore nonnegative. In order to
establish convergence, one needs to argue that the second term is nonnegative
as well, so that the summand goes to zero as 8 →∞. Since ; (·) is increasing
for positive values and decreasing for negative values, it is enough to show that
H8−G)8 F8−1 and H8−G)8 F8 have the same sign, in order to establish nonnegativity.
It is not hard to see that if the distance between the two points is less than or
equal to the distance of H8−G)8 F8 from the origin, then the signs are the same. In
other words, if | (H8 −G)8 F8) − (H8 −G)8 F8−1) | = |G)8 (F8 −F8−1) | ≤ |H8 −G)8 F8−1 |,
then the sign are the same.

Note that by the definition of U-strong convexity of k(·), we have

(∇k(F8) − ∇k(F8−1))) (F8 − F8−1) ≥ U‖F8 − F8−1‖2, (8.57)

which implies

−[∇!8 (F8−1)) (F8 − F8−1) ≥ U‖F8 − F8−1‖2, (8.58)

by substituting from the SMD update rule. Upper-bounding the left-hand side
by [‖∇!8 (F8−1)‖‖(F8 − F8−1)‖ implies

[‖∇!8 (F8−1)‖ ≥ U‖F8 − F8−1‖. (8.59)

This implies that we have the following bound

|G)8 (F8 − F8−1) | ≤ ‖G8‖‖F8 − F8−1‖ ≤
[‖G8‖‖∇!8 (F8−1)‖

U
. (8.60)

It follows that if [≤ U |H8−G)8 F8−1 |
‖G8 ‖‖∇!8 (F8−1)‖ , for all 8, then the signs are the same, and

the summand in Eq.(8.49) is indeed nonnegative. This condition can be equiva-
lently expressed as [≤ U |H8−G)8 F8−1 |

‖G8 ‖2 |; ′(H8−G)8 F8−1) |
for all 8, or [≤ min8

U |H8−G)8 F8−1 |
‖G8 ‖2 |; ′(H8−G)8 F8−1) |

,
which is the condition in the statement of the proposition.

Now that we have argued that the summand is nonnegative, the convergence
to F∞ ∈ W is immediate. The reason is that both �k (F8, F8−1) → 0 and
;′(H8−G)8 F8−1) (H8−G)8 F8) → 0, as 8 →∞. The first one implies convergence to
a pointF∞. The second one implies that either H8−G)8 F8−1 = 0 or H8−G)8 F8 = 0,
which, in turn, implies F∞ ∈ W.

�

197

8.D Time-Varying Step-Size
The update rule for the stochastic mirror descent with time-varying step size is as
follows.

F8 = arg min
F

[8F
)∇!8 (F8−1) + �k (F, F8−1), (8.61)

which can be equivalently expressed as ∇k(F8) = ∇k(F8−1) − [8∇!8 (F8−1), for all 8.
The main results in this case are as follows.

Lemma 47. For any (nonlinear) model 5 (·, ·), any differentiable loss ; (·), any
parameter F and noise values {E8} that satisfy H8 = 5 (G8, F) + E8 for 8 = 1, . . . , =,
any initialization F0, any step size sequence {[8}, and any number of steps) ≥ 1,
the following relation holds for the SMD iterates {F8} given in Eq. (8.61)

�k (F, F0) +
)∑
8=1

[8; (E8) = �k (F, F)) +
)∑
8=1

(
�8 (F8, F8−1) + [8�!8 (F, F8−1)

)
,

(8.62)

Proof. The proof is straightforward by summing the following equation for all
8 = 1, . . . ,)

�k (F, F8−1) + [8; (E8) = �k (F, F8) + �8 (F8, F8−1) + [8�!8 (F, F8−1), (8.63)

which can be easily shown in the same way as in the proof of Lemma 41 in
Appendix 8.A. �

Theorem 48. Consider any general model 5 (·, ·), and any differentiable loss function
; (·) with property ; (0) = ;′(0) = 0. For sufficiently small step size, i.e., for any
sequence {[8} for which k(F) − [8!8 (F) is convex for all 8, the SMD iterates {F8}
given by Eq. (8.61) are the optimal solution to the following minimization problem

min
{F8}

max
F,{E8}

�k (F, F)) +
∑)
8=1 [8�!8 (F, F8−1)

�k (F, F0) +
∑)
8=1 [8; (E8)

. (8.64)

Furthermore, the optimal value (achieved by SMD) is 1.

Proof. The proof is similar to that of Theorem 43, as presented in Appendix 8.B.
The argument for the upper-bound of 1 is exactly the same. For the second part of the
proof, we use the previous Lemma. It follows from the convexity of k(F) − [8!8 (F)
that �8 (F8, F8−1) ≥ 0, and as a result we have

�k (F, F)) +
∑)
8=1 [8�!8 (F, F8−1)

�k (F, F0) +
∑)
8=1 [8; (E8)

≤ 1 (8.65)

for SMD updates, which concludes the proof. �

198

The convergence and implicit regularization results hold similarly, and can be formally
stated as follows.

Proposition 49. Consider the following two cases.

(i) ; (·) is differentiable and convex and has a unique root at 0, k(·) is strictly
convex, and the positive sequence {[8} is such that k − [8!8 is convex for all 8.

(ii) ; (·) is differentiable and quasi-convex and has zero derivative only at 0, k(·)
is U-strongly convex, and 0 < [8 ≤

U |H8−G)8 F8−1 |
‖G8 ‖2 |; ′(H8−G)8 F8−1) |

for all 8.

If either (i) or (ii) holds, then for any initialization F0, the SMD iterates given in
Eq. (8.61) converge to

F∞ = arg min
F∈W

�k (F, F0). (8.66)

Proof. The proof is similar to that of Proposition 46, as provided inAppendix 8.C. �

199

C h a p t e r 9

SMD ON OVERPARAMETERIZED NONLINEAR MODELS

[1] Navid Azizan et al. “A Study of Generalization of Stochastic Mirror Descent
Algorithms on Overparameterized Nonlinear Models”. In: 2020 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP).
2020, pp. 3132–3136. doi: 10.1109/ICASSP40776.2020.9053864.

[2] Navid Azizan et al. “Stochastic Mirror Descent on Overparameterized Non-
linear Models: Convergence, Implicit Regularization, and Generalization”. In:
2019 International Conference on Machine Learning (ICML) Generalization
Workshop. 2019.

Most modern learning problems are highly overparameterized, i.e., the model has
many more parameters than the number of training data points, and the training
loss has infinitely many global minima. Therefore, it is important to understand
which interpolating solutions we converge to, how they depend on the initialization
and learning algorithm, and whether they yield different generalization errors. In
this chapter, we study these questions for the family of stochastic mirror descent
(SMD) algorithms, of which stochastic gradient descent (SGD) is a special case.
As we saw in the previous chapter, for overparameterized linear models, SMD
converges to the closest global minimum to the initialization point, where closeness
is in terms of the Bregman divergence corresponding to the potential function of the
mirror descent. For initialization points around “zero” (i.e., the minimizer of the
potential), this means convergence to the minimum-potential interpolating solution,
a phenomenon referred to as implicit regularization. Our contributions in this
chapter are both theoretical and experimental. On the theory side, we show that for
overparameterized nonlinear models, if the model is sufficiently overparameterized
so that a random initialization is w.h.p. close to the manifold of global minima,
SMD with a (sufficiently small) fixed step size converges to a global minimum that is
approximately the closest one in Bregman divergence, thus attaining approximate
implicit regularization. On the experimental side, our extensive experiments on the
MNIST and CIFAR-10 datasets consistently confirm that this phenomenon occurs
in practical scenarios. They further indicate a clear difference in the generalization
performances of different SMD algorithms: experiments on the CIFAR-10 dataset
with different regularizers, ℓ1 to encourage sparsity, ℓ2 (SGD) to encourage small

200

Euclidean norm, and ℓ10 to discourage large components, consistently show that
ℓ10-SMD has better generalization performance than SGD, which in turn generalizes
better than ℓ1-SMD.

9.1 Introduction
Deep learning has demonstrably enjoyed a great deal of success in a wide variety
of tasks [9, 80, 118, 143, 189, 213, 119]. Despite its tremendous success, the
reasons behind the good performance of these methods on unseen data is not fully
understood (and, arguably, remains somewhat of a mystery). While the special deep
architecture of these models seems to be important to the success of deep learning,
the architecture is only part of the story, and it has been now widely recognized that
the optimization algorithms used to train these models, typically stochastic gradient
descent (SGD) and its variants, play a key role in learning parameters that generalize
well.

Since these deep models are highly overparameterized, they have a lot of capacity,
and can fit to virtually any (even random) set of data points [224]. In other words,
these highly overparameterized models can “interpolate” the training data, so much
so that this regime has been called the “interpolating regime” [138]. In fact, on a
given dataset, the loss function typically has (infinitely) many global minima, which,
however, can have drastically different generalization properties (many of them
perform poorly on the test set). Which minimum among all the possible minima
we converge to in practice is determined by the initialization and the optimization
algorithm that we use for training the model.

Since the loss functions of deep neural networks are non-convex—sometimes even
non-smooth—in theory, one may expect the optimization algorithms to get stuck in
local minima or saddle points. In practice, however, such simple stochastic descent
algorithms almost always reach zero training error, i.e., a global minimum of the
training loss [224, 122]. More remarkably, even in the absence of any explicit
regularization, dropout, or early stopping [224], the global minima obtained by
these algorithms seem to generalize quite well (contrary to some other “bad” global
minima). It has been also observed that even among different optimization algorithms,
i.e., SGD and its variants, there is a discrepancy in the solutions achieved by different
algorithms and how they generalize [211].

In this chapter, we propose training deep neural networks with the family of stochastic
mirror descent (SMD) algorithms, which is a generalization of the popular SGD. For

201

any choice of potential function, there is a corresponding mirror descent algorithm.
We train a standard ResNet-18 architecture on CIFAR-10 using mirror descents with
the following four different potential functions: ℓ1 norm, ℓ2 norm (SGD), ℓ3 norm,
and ℓ10 norm. In all the cases, we train the network for a sufficiently large number
of steps, with a sufficiently small step size, until we converge to an interpolating
solution (global minima). Comparisons between the histograms of these different
global minima show that they are vastly different. In particular, the solution obtained
by ℓ1-SMD is very sparse, and on the contrary, the solution obtained by the ℓ10

does not have any zero components. More importantly, there is a clear gap in the
generalization performance of these algorithms. In fact, surprisingly and somewhat
counterintuitively, the solution obtained by the ℓ10-SMD, which uses the entire
overparameterization in the network, consistently outperforms SGD, which in turn
performs better than the SMD with ℓ1 norm, i.e., the sparser one. Therefore, it is
important to ask: Which global minima do these algorithms converge to, and what
properties do they have?

On the theory side, we show that, for overparameterized nonlinear models, if the
model is sufficiently overparameterized so that the random initialization point is
w.h.p. close to the manifold of interpolating solutions (something that is occasionally
referred to as “the blessing of dimensionality”), then the SMD algorithm for any
particular potential function converges to a global minimum that is approximately
the closest one to the initialization, in Bregman divergence corresponding to the
potential. For the special case of SGD, this means that it converges to a global
minimum which is approximately the closest one to the initialization in the usual
Euclidean sense.

We perform extensive systematic experiments with various initial points and various
mirror descent algorithms for the MNIST and CIFAR-10 datasets using standard off-
the-shelf deep neural network architectures for these datasets with standard random
initialization, and we measure all the resulting pairwise Bregman divergences. We
found that every single result is exactly consistent with the above theory. Indeed, in
all our experiments, the global minimum achieved by any particular mirror descent
algorithm is the closest, among all other global minima obtained by other mirrors and
other initializations, to its initialization in the corresponding Bregman divergence.
In particular, the global minimum obtained by SGD from any particular initialization
is closest to the initialization in Euclidean sense, both among the global minima
obtained by different mirrors and among the global minima obtained by different

202

initializations.

This result, proven theoretically and backed up by extensive experiments, further
implies that, even in the absence of any explicit regularization, these algorithms
perform an implicit regularization. In particular, it implies that, when initialized
around zero, SGD acts as an approximate ℓ2-norm regularizer on the weights.
Similarly, by choosing other mirrors, one can obtain any desired form of implicit
regularization (such as ℓ1 or ℓ∞), which is consistent with the observations about the
histograms.

9.2 Background
Let us denote the training dataset by {(G8, H8) : 8 = 1, . . . , =}, where G8 ∈ R3 are
the inputs, and H8 ∈ R are the labels. The model (which can be, e.g., linear, a deep
neural network, etc.) is defined by the general function 5 (G8, F) = 58 (F) with some
parameter vector F ∈ R<. Since typical deep models have a lot of capacity and are
highly overparameterized, we are particularly interested in the overparameterized
(or so-called interpolating) regime, where < > = (often < � =). In this case, there
are many parameter vectors F that are consistent with the training data points. We
denote the set of these parameter vectors by

W = {F ∈ R< | 5 (G8, F) = H8, 8 = 1, . . . , =}. (9.1)

This is a high-dimensional set (e.g., a (< − =)-dimensional manifold) in R< and
depends only on the training data {(G8, H8) : 8 = 1, . . . , =} and the model 5 (·, ·).

The total loss on the training set (empirical risk) can be expressed as ! (F) =∑=
8=1 !8 (F),where !8 (·) = ℓ(H8, 5 (G8, F)) is the loss on the individual data point 8, and

ℓ(·, ·) is a differentiable non-negative function, with the property that ℓ(H8, 5 (G8, F)) =
0 iff H8 = 5 (G8, F). Often ℓ(H8, 5 (G8, F)) = ℓ(H8 − 5 (G8, F)), with ℓ(·) convex and
having a global minimum at zero (such as square loss, Huber loss, etc.). In this case,
! (F) = ∑=

8=1 ℓ(H8 − 5 (G8, F)). For example, the conventional gradient descent (GD)
algorithm can be used as an attempt to minimize ! (·) over F.

An important generalization of GD is the mirror descent (MD) algorithm, first
introduced by Nemirovski and Yudin [149] and widely used since then [33, 55, 227],
can be described as follows. Consider a strictly convex differentiable function k(·),
called the potential function. Then MD is given by the following recursion

∇k(F8) = ∇k(F8−1) − [∇! (F8−1), F0 (9.2)

203

where [> 0 is known as the step size or learning rate. Note that, due to the strict
convexity of k(·), the gradient∇k(·) defines an invertible map so that the recursion in
(9.2) yields a unique F8 at each iteration, i.e., F8 = ∇k−1 (∇k(F8−1) − [∇! (F8−1)).
Compared to classical GD, rather than update the weight vector along the direction
of the negative gradient, the update is done in the “mirrored” domain determined
by the invertible transformation ∇k(·). Mirror descent was originally conceived to
exploit the geometrical structure of the problem by choosing an appropriate potential.
Note that MD reduces to GD when k(F) = 1

2 ‖F‖
2, since the gradient is simply

the identity map. Other examples include the exponentiated gradient descent (also
known as the exponential weights) and the ?-norms algorithm [82, 78].

When = is large, computation of the entire gradientmay be cumbersome. Alternatively,
in online scenarios, the entire loss function ! (·) may not be available, and only the
local loss functions may be provided at each iteration. In such settings, a stochastic
version of MD has been introduced, aptly called stochastic mirror descent (SMD),
which can be considered the straightforward generalization of stochastic gradient
descent (SGD):

∇k(F8) = ∇k(F8−1) − [∇!8 (F8−1), F0 (9.3)

In the offline setting, the various instantaneous loss functions !8 (·) can either be
drawn at random or cycled through periodically.

Alternatively, the update rule (9.3) can be expressed as

F8 = arg min
F

[F)∇!8 (F8−1) + �k (F, F8−1), (9.4)

where
�k (F, F8−1) := k(F) − k(F8−1) − ∇k(F8−1)) (F − F8−1) (9.5)

is the Bregman divergence with respect to the potential function k(·). Note that
�k (·, ·) is non-negative, convex in its first argument, and that, due to strict convexity,
�k (F, F′) = 0 iff F = F′.

9.3 Training Deep Neural Networks with SMD
As mentioned earlier, the heavy overparameterization in typical deep neural networks
means that the loss function for such architectures typically has infinitely many
global minima, and these different minima can have very different properties and
generalization performances. Motivated by this fact, we propose training deep neural
networks with other members of the family of stochastic mirror descent, to see if
they lead to different global minima.

204

We take the popular CIFAR-10 dataset and the standard ResNet-18 architecture
for this dataset. We initialize the network with small random weights and train it
with mirror descents with the following 4 different potential functions: ℓ1 norm, ℓ2

norm (SGD), ℓ3 norm, and ℓ10 norm. In all the cases, we choose the step size to be
sufficiently small, and we train for a sufficiently large number of steps, so that we
converge to an interpolating solution (global minimum).

We compare the generalization performance of these different solutions on the test
set. Fig. 9.1 shows the test accuracies of different algorithms with eight random
initializations around zero. There is a clear gap in the generalization performance
of these algorithms, and SMD with ℓ10-norm consistently performs better than
SGD, which in turn performs better than the SMD with ℓ1-norm. In fact, perhaps
surprisingly, by virtue of changing the optimizer from SGD to ℓ10-SMD, without
any additional tricks, we outperform the state of the art for ResNet-18 on CIFAR-10.
This is particularly remarkable given that this very architecture had been designed
with training with SGD in mind.

Figure 9.1: Generalization performance of different SMD algorithms on the CIFAR-
10 dataset using ResNet-18. ℓ10 performs consistently better, while ℓ1 performs
consistently worse. The red line shows the state of the art on ResNet-18 for CIFAR-10
(93.02%)[135].

One may be curious to see how the weights obtained by these different mirrors

205

Figure 9.2: Histogram of the absolute value of the final weights in the network
for different SMD algorithm with different potentials. Note that each of the four
histograms corresponds to an 11 × 106-dimensional weight vector that perfectly
interpolates the data. Even though the weights remain quite small, the histograms
are drastically different. ℓ1-SMD induces sparsity on the weights. SGD appears to
lead to a Gaussian distribution on the weights. ℓ3-SMD starts to reduce the sparsity,
and ℓ10 shifts the distribution of the weights significantly, so much so that almost all
the weights are non-zero.

look. Fig. 9.2 shows the histogram of the absolute value of the weights for these
four different SMDs, initialized by the exact same set of weights. The histograms
of the final weights look substantially different and, since they all started from the
same initial weights and they all interpolate the same data set, this difference is fully
attributable to the different mirrors used. The histogram of the ℓ1-SMD has more
weights at and around zero, i.e., it is very sparse. The histogram of the ℓ2-SMD
(SGD) looks almost perfectly Gaussian. The one corresponding to ℓ3 has somewhat
shifted to the right, and the ℓ10 has has completely moved away from zero, i.e., all
the weights in the ℓ10 solution are non-zero. The fact that the ℓ10 solution, which
uses the entire overparameterization available in the network, generalizes better than
the sparser ones is very surprising.

206

9.4 Theoretical Results
In this section, we provide our main theoretical results. In particular, we show that
for highly overparameterized models: (1) SMD converges to a global minimum and
(2) the global minimum obtained by SMD is approximately the closest one to the
initialization in Bregman divergence corresponding to the potential.

9.4.1 Warm-up: Overparameterized Linear Models
Overparameterized (or underdetermined) linear models have been recently studied in
many papers due to their simplicity and the fact that there are interesting insights that
one can obtain from them. In this case, the model is 5 (G8, F) = G)8 F, the set of global
minima isW =

{
F | H8 = G)8 F, 8 = 1, . . . , =

}
, and the loss is !8 (F) = ℓ(H8 − G)8 F).

The following result characterizes the solution that SMD converges to [18, 85].

Proposition 50. Consider a linear overparameterized model. For sufficiently small
step size, i.e., for any [> 0 for whichk(·)−[!8 (·) is convex, and for any initialization
F0, the SMD iterates converge to

F∞ = arg min
F∈W

�k (F, F0).

Note that the step size condition, i.e., the convexity of k(·) − [!8 (·), depends on
both the loss and the potential function. For the case of SGD, k(F) = 1

2 ‖F‖
2, and

ℓ(H8 − G)8 F) =
1
2 (H8 − G

)
8
F)2, so the condition reduces to the well-known [≤ 1

‖G8 ‖2
.

In this case, �k (F, F0) is simply 1
2 ‖F − F0‖2.

Corollary 51. In particular, for the initialization F0 = arg minF∈R? k(F), under
the conditions of Proposition 50, the SMD iterates converge to

F∞ = arg min
F∈W

k(F). (9.6)

This means that running SMD for a linear model with the aforementioned F0,
without any explicit regularization, results in a solution that has the smallest potential
k(·) among all solutions, i.e., SMD implicitly regularizes the solution with k(·).
In particular, this means that SGD initialized around zero acts as an ℓ2-norm
regularizer. In this chapter, we show that these results continue to hold for highly
overparameterized nonlinear models in an approximate sense.

9.4.2 Main Results
Let us define

�!8 (F, F′) := !8 (F) − !8 (F′) − ∇!8 (F′)) (F − F′), (9.7)

207

Figure 9.3: An illustration of the parameter space. W represents the set of global
minima, F0 is the initialization, B is the local neighborhood, F∗ is the closest
global minimum to F0 (in Bregman divergence), and F∞ is the minimum that SMD
converges to.

which is defined in a similar way to a Bregman divergence for the loss function. The
difference though is that, unlike the potential function of the Bregman divergence,
the loss function !8 (·) = ℓ(H8 − 5 (G8, ·)) need not be convex (even when ℓ(·) is) due
to the nonlinearity of 5 (·, ·).

It has been argued in several recent papers that in highly overparameterized neural
networks, becauseW is very high-dimensional, any random initialization F0 is close
to it, with high probability [129, 67, 7, 51]. In other words, one can show that, under
certain conditions, the distance of a random initialization point F0 to the manifold
scales as

�k (W, F0)2 = $ (
=

<
) (9.8)

(see the discussion in Section 9.A.4 of the supplementary material). Therefore, in
such settings, it is reasonable to make the following assumption about the manifold.

Assumption 1. Denote the initial point by F0. There exists F ∈ W and a region
B = {F′ ∈ R? | �k (F, F′) ≤ n} containing F0, such that �!8 (F, F′) ≥ 0, 8 =
1, . . . , =, for all F′ ∈ B.

It is important to understand what this assumption means. Since !8 (·) is not
necessarily convex, it is certainly not the case that �!8 (F, F′) ≥ 0 for all F′.
However, since F is a minimizer of !8 (·), there will be a neighborhood around it such
that for all F′ in this neighborhood �!8 (F, F′) ≥ 0 (see Fig. 9.4 for an illustration).
What we are requiring is that the initialization F0 be inside the intersection of all
such neighborhoods for 8 = 1, . . . , =. In other words, we require a F0 close enough
toW.

208

Figure 9.4: An illustration of �!8 (F, F′) ≥ 0 in a local region in Assumption 1.

Our second assumption states that in this local region, the first and second derivatives
of the model are bounded.

Assumption 2. Consider the region B in Assumption 1. 58 (·) have bounded gradient
and Hessian on the convex hull of B, i.e., ‖∇ 58 (F′)‖ ≤ W, and U ≤ _min(� 58 (F′)) ≤
_max(� 58 (F′)) ≤ V, 8 = 1, . . . , =, for all F′ ∈ conv B.

This is a mild assumption, which is assumed in other related work such as [163]
as well. Note that we do not require U to be positive (just its boundedness). The
following theorem states that under Assumption 1, SMD converges to a global
minimum.

Theorem52. Consider the set of interpolating parametersW = {F ∈ R< | 5 (G8, F) =
H8, 8 = 1, . . . , =}, and the SMD iterates given in (9.3), where every data point is
revisited after some steps. Under Assumption 1, for sufficiently small step size, i.e.,
for any [> 0 for which k(·) − [!8 (·) is strictly convex on B for all i, the following
holds.

1. All the iterates {F8} remain in B.

2. The iterates converge (to F∞).

3. F∞ ∈ W.

Note that, while convergence (to some point) with decaying step size is almost
trivial, this result establishes convergence to the solution set with a fixed step size.
Furthermore, the convergence is deterministic, and is not in expectation or with high
probability. For example, this result also applies to the case where we cycle through
the data deterministically.

209

We should also remark that the choice of distance in the definition of the “ball”
B was important to be the Bregman divergence with respect to k(·) and in that
particular order. In fact, one cannot guarantee that the SMD iterates get closer to
an interpolating F at every step in the usual Euclidean sense. However, one can
establish that it gets closer in �k (F, ·). Finally, it is important to note that we need
the step size to be small enough to guarantee the strict convexity of k(·) − [!8 (·) in
B, not globally.

Denote the global minimum that is closest to the initialization in Bregman divergence
by F∗, i.e.,

F∗ = arg min
F∈W

�k (F, F0). (9.9)

Recall that in the linear case, this was what SMD converges to. We show that in the
nonlinear case, under Assumptions 1 and 2, SMD converges to a point F∞ which is
“very close” to F∗.

Theorem 53. Define F∗ = arg minF∈W �k (F, F0). Under the conditions of Theo-
rem 52, and Assumption 2, the following holds:

1. �k (F∞, F0) = �k (F∗, F0) + >(n),

2. �k (F∗, F∞) = >(n).

In other words, if we start with an initialization that is $ (n) away fromW (in
Bregman divergence), we converge to a point F∞ ∈ W that is >(n) away from F∗.
The Bregman divergence of this point is >(n) from the minimum value it can take.

Corollary 54. For the initialization F0 = arg minF∈R? k(F), under the conditions
of Theorem 53, F∗ = arg minF∈W k(F) and the following holds:

1. k(F∞) = k(F∗) + >(n),

2. �k (F∗, F∞) = >(n).

9.4.3 Fundamental Identity of SMD
An important tool used in our proofs is a “fundamental identity” that governs the
behavior of the iterates of SMD, which holds under very general conditions.

Lemma 55. For any model 5 (·, ·), any differentiable loss ℓ(·), any parameter
F ∈ W, and any step size [> 0, the following relation holds for the SMD iterates

210

{F8}:

�k (F, F8−1) = �k (F, F8) + �k−[!8 (F8, F8−1) + [!8 (F8) + [�!8 (F, F8−1), (9.10)

for all 8 ≥ 1.

This identity allows one to prove the results in a remarkably simple and direct way.
The proofs are relegated to the appendix.

The ideas behind this identity are related to �∞ estimation theory [98, 190], which
was originally developed in the 1990s in the context of robust control theory. In fact,
it has connections to the minimax optimality of SGD, which was shown by [96] for
linear models, and recently extended to nonlinear models and general mirrors by
[18].

9.5 Related Work
There have been many efforts in the past few years to study deep learning from an
optimization perspective, e.g., [3, 58, 188, 7, 163, 138, 67, 129, 51]. While it is not
possible to review all the contributions here, we comment on the ones that are most
closely related to ours and highlight the distinctions between our results and those.

Many recent papers have studied the convergence of the (S)GD algorithm in the
so-called “overparameterized” setting (or “interpolating” regime), which is common
in deep learning [163, 7, 193, 138]. All these works, similar to ours, assume that the
initialization is close to the solution space (of global minima), which is a reasonable
assumption in highly overparameterized models. However, our results are more
general because they extend to SMD.

Figure 9.5: An illustration of the experiments in Table 9.1.

211

SMD 1-norm SMD 2-norm
(SGD) SMD 3-norm SMD 10-norm

1-norm BD 141 9.19 × 103 4.1 × 104 2.34 × 105

2-norm BD 3.15 × 103 562 1.24 × 103 6.89 × 103

3-norm BD 4.31 × 104 107 53.5 1.85 × 102

10-norm BD 6.83 × 1013 972 7.91 × 10−5 2.72 × 10−8

Table 9.1: Fixed Initialization. Distances from final points (global minima) obtained
by different algorithms (columns) from the same initialization (Fig. 9.5), measured
in different Bregman divergences (rows). First Row: The closest point to F0 in ℓ1
Bregman divergence, among the four final points, is exactly the one obtained by
SMD with 1-norm potential. Second Row: The closest point to F0 in ℓ2 Bregman
divergence (Euclidean distance), among the four final points, is exactly the one
obtained by SGD. Third Row: The closest point to F0 in ℓ3 Bregman divergence,
among the four final points, is exactly the one obtained by SMDwith 3-norm potential.
Fourth Row: The closest point to F0 in ℓ10 Bregman divergence, among the four
final points, is exactly the one obtained by SMD with 10-norm potential.

Furthermore, even for the case of SGD, our results are stronger than those in
this literature, in the sense that not only do we show convergence to a global
minimum, but we also show that the weight vector we converge to, F∞, say, is close
to the interpolating weight vector closest to the initialization, F∗, say. Denoting
the initialization by F0, Oymak and Soltanolkotabi [163] showed that for SGD,
‖F∞−F0‖ is bounded by a constant factor of ‖F∗−F0‖. Our Theorem 53 shows the
much stronger statement that ‖F∞ − F0‖ = ‖F∗ − F0‖ + >(‖F∗ − F0‖). We further
show that F∞ and F∗ are very close to one another, viz. ‖F∞−F∗‖2 = >(‖F∗−F0‖)),
something that could not be inferred from the previous work.

There exist a number of results that characterize the implicit regularization properties
of different algorithms in different contexts [154, 137, 87, 85, 194, 86, 18, 142]. The
closest ones to our results, since they concern mirror descent, are the works of [85,
18]. The authors in [85] consider linear overparameterized models, and show that if
SMD happens to converge to a global minimum, then that global minimum will be
the one that is closest in Bregman divergence to the initialization, a result they obtain
by examining the KKT conditions. However, they do not provide any conditions for
convergence and whether SMD converges with a fixed step size or not. [18] also
study linear models, but derive conditions on the step size for which SMD converges
to the aforementioned global minimum. Our results extend the aforementioned to
nonlinear overparametrized models, and show that, for small enough fixed step size,
and for initializations close enough to the space of interpolating solutions, SMD

212

converges to a global minimum, something which had not been shown in any of the
previous work. Assuming every data point is revisited often enough, the convergence
we establish is deterministic. Finally, we show that the solution we converge to
exhibits approximate implicit regularization, something that was not known for
nonlinear models.

9.6 Experimental Results
In this section, we evaluate the theoretical claims by running systematic experiments
for different initializations and different mirrors and computing the distances between
the global minima achieved and the initializations, in different Bregman divergences.

While accessing all the points onW and finding the closest one is impossible, we
design systematic experiments to test this claim. We run experiments on some
standard deep learning problems, namely, a standard CNN on MNIST [120] and
the ResNet-18 [101] on CIFAR-10 [117]. We train the models from different
initializations, and with different mirror descents from each particular initialization,
until we reach 100% training accuracy, i.e., a point onW. We randomly initialize
the parameters of the networks around zero. We choose 6 independent initializations
for the CNN, and 8 for ResNet-18, and for each initialization, we run different
SMD algorithms with the following four potential functions: (a) ℓ1 norm, (b) ℓ2

norm (which is SGD), (c) ℓ3 norm, and (d) ℓ10 norm (as a surrogate for ℓ∞). See
Appendix 9.B for more details on the experiments.

Final 1 Final 2 Final 3 Final 4 Final 5 Final 6 Final 7 Final 8
Initial 1 6 × 102 2.9 × 103 2.8 × 103 2.8 × 103 2.8 × 103 2.8 × 103 2.8 × 103 2.8 × 103

Initial 2 2.8 × 103 6.1 × 102 2.8 × 103 2.8 × 103 2.8 × 103 2.8 × 103 2.8 × 103 2.8 × 103

Initial 3 2.8 × 103 2.9 × 103 5.6 × 102 2.8 × 103 2.8 × 103 2.8 × 103 2.8 × 103 2.8 × 103

Initial 4 2.8 × 103 2.9 × 103 2.8 × 103 5.9 × 102 2.8 × 103 2.8 × 103 2.8 × 103 2.8 × 103

Initial 5 2.8 × 103 2.9 × 103 2.8 × 103 2.8 × 103 5.7 × 102 2.8 × 103 2.8 × 103 2.8 × 103

Initial 6 2.8 × 103 2.9 × 103 2.8 × 103 2.8 × 103 2.8 × 103 5.6 × 102 2.8 × 103 2.8 × 103

Initial 7 2.8 × 103 2.9 × 103 2.8 × 103 2.8 × 103 2.8 × 103 2.8 × 103 6 × 102 2.8 × 103

Initial 8 2.8 × 103 2.9 × 103 2.8 × 103 2.8 × 103 2.8 × 103 2.8 × 103 2.8 × 103 5.8 × 102

Table 9.2: Fixed Mirror: SGD. Pairwise distances between different initial points
and the final points obtained from them by SGD (Fig. 9.6). Row i: The closest final
point to the initial point 8, among all the eight final points, is exactly the one obtained
by the algorithm from initialization 8.

We measure the distances between the initializations and the global minima obtained
from different mirrors and different initializations, in different Bregman divergences.
Table 9.1, and Table 9.2 show some examples among different mirrors and different
initializations, respectively. Fig. 9.7 shows the distances between a particular initial

213

Figure 9.6: An illustration of the experiments in Table 9.2.

point and all the final points obtained from different initializations and different
mirrors (the distances are often orders of magnitude different, so we show them
in logarithmic scale). The global minimum achieved by any mirror from any
initialization is the closest in the correct Bregman divergence, among all mirrors,
among all initializations, and among both. This trend is very consistent among all
our experiments, which can be found in Appendix 9.B.

MNIST. SGD Starting from Initial 4 CIFAR-10. SGD Starting from Initial 2

Figure 9.7: Distances between a particular initial point and all the final points
obtained by both different initializations and different mirrors. The smallest distance,
among all initializations and all mirrors, corresponds exactly to the final point
obtained from that initial point by SGD. This trend is observed consistently for all
other mirror descents and all initializations (see the results in Tables 9.8 and 9.9 in
the appendix).

214

9.7 Conclusion
In this chapter, we studied the convergence and implicit regularization properties
of the family of stochastic mirror descent (SMD) for highly overparameterized
nonlinear models. From a theoretical perspective, we showed that, under reasonable
assumptions, SMD with sufficiently small step size (1) converges to a global
minimum and (2) the global minimum converged to is approximately the closest
to the initialization in Bregman divergence sense. Furthermore, our extensive
experimental results, on various initializations, various mirror descents, and various
Bregman divergences, revealed that this phenomenon indeed happens in deep learning,
and the solution SMD converges to is the closest to the initialization in Bregman
divergence corresponding to that mirror. This further implies that different mirror
descent algorithms act as different regularizers, a property that is referred to as
implicit regularization. The fact that the ℓ∞-regularized solution showed a better
generalization performance than the other ones, while ℓ1 was the opposite, suggests
the importance of a comprehensive study of the role of regularization, and the choice
of the best regularizer, to improve the generalization performance of deep neural
networks.

215

9.A Proofs of the Theoretical Results
In this section, we prove the main theoretical results. The proofs are based on a
fundamental identity about the iterates of SMD, which holds for all mirrors and
all overparametereized (even nonlinear) models (Lemma 55). We first prove this
identity, and then use it to prove the convergence and implicit regularization results.

9.A.1 Fundamental Identity of SMD
Let us prove the fundamental identity.

Lemma 55. For any model 5 (·, ·), any differentiable loss ℓ(·), any parameter
F ∈ W, and any step size [> 0, the following relation holds for the SMD iterates
{F8}

�k (F, F8−1) = �k (F, F8) + �k−[!8 (F8, F8−1) + [!8 (F8) + [�!8 (F, F8−1), (9.10)

for all 8 ≥ 1.

Proof of Lemma 55. Let us start by expanding the Bregman divergence �k (F, F8)
based on its definition

�k (F, F8) = k(F) − k(F8) − ∇k(F8)) (F − F8).

By plugging the SMD update rule ∇k(F8) = ∇k(F8−1) − [∇!8 (F8−1) into this, we
can write it as

�k (F, F8) = k(F) −k(F8) −∇k(F8−1)) (F −F8) + [∇!8 (F8−1)) (F −F8). (9.11)

Using the definition of Bregman divergence for (F, F8−1) and (F8, F8−1), i.e.,
�k (F, F8−1) = k(F)−k(F8−1)−∇k(F8−1)) (F−F8−1) and�k (F8, F8−1) = k(F8)−
k(F8−1) − ∇k(F8−1)) (F8 − F8−1), we can express this as

�k (F, F8) = �k (F, F8−1) + k(F8−1) + ∇k(F8−1)) (F − F8−1) − k(F8)
− ∇k(F8−1)) (F − F8) + [∇!8 (F8−1)) (F − F8)

(9.12)

= �k (F, F8−1) + k(F8−1) − k(F8) + ∇k(F8−1)) (F8 − F8−1)
+ [∇!8 (F8−1)) (F − F8)

(9.13)

= �k (F, F8−1) − �k (F8, F8−1) + [∇!8 (F8−1)) (F − F8). (9.14)

216

Expanding the last term using F − F8 = (F − F8−1) − (F8 − F8−1), and following the
definition of �!8 (., .) from (9.7) for (F, F8−1) and (F8, F8−1), we have

�k (F, F8) = �k (F, F8−1) − �k (F8, F8−1) + [∇!8 (F8−1)) (F − F8−1)
− [∇!8 (F8−1)) (F8 − F8−1)

(9.15)

= �k (F, F8−1) − �k (F8, F8−1) + [
(
!8 (F) − !8 (F8−1) − �!8 (F, F8−1)

)
− [

(
!8 (F8) − !8 (F8−1) − �!8 (F8, F8−1)

)
(9.16)

= �k (F, F8−1) − �k (F8, F8−1) + [
(
!8 (F) − �!8 (F, F8−1)

)
− [

(
!8 (F8) − �!8 (F8, F8−1)

)
(9.17)

Note that for all F ∈ W, we have !8 (F) = 0. Therefore, for all F ∈ W

�k (F, F8) = �k (F, F8−1)−�k (F8, F8−1)−[�!8 (F, F8−1)−[!8 (F8)+[�!8 (F8, F8−1).
(9.18)

Combining the second and the last terms in the right-hand side leads to

�k (F, F8) = �k (F, F8−1) −�k−[!8 (F8, F8−1) − [�!8 (F, F8−1) − [!8 (F8), (9.19)

for all F ∈ W, which concludes the proof. �

9.A.2 Convergence of SMD to the Interpolating Set
Now that we have proved Lemma 55, we can use it to prove our main results, in a
remarkably simple fashion. Let us first prove the convergence of SMD to the set of
solutions.

Assumption 1. Denote the initial point by F0. There exists F ∈ W and a region
B = {F′ ∈ R< | �k (F, F′) ≤ n} containing F0, such that �!8 (F, F′) ≥ 0, 8 =
1, . . . , =, for all F′ ∈ B.

Theorem52. Consider the set of interpolating parametersW = {F ∈ R< | 5 (G8, F) =
H8, 8 = 1, . . . , =}, and the SMD iterates given in (9.3), where every data point is
revisited after some steps. Under Assumption 1, for sufficiently small step size, i.e.,
for any [> 0 for which k(·) − [!8 (·) is strictly convex for all i, the following holds:

1. All the iterates {F8} remain in B;

217

2. The iterates converge (to F∞);

3. F∞ ∈ W.

Proof of Theorem 52. First we show that all the iterates wil remain in B. Recall the
identity of SMD from Lemma 55:

�k (F, F8−1) = �k (F, F8) + �k−[!8 (F8, F8−1) + [!8 (F8) + [�!8 (F, F8−1) (9.10)

which holds for all F ∈ W. If F8−1 is in the region B, we know that the last term
�!8 (F, F8−1) is non-negative. Furthermore, if the step size is small enough that
k(·) − [!8 (·) is strictly convex, the second term �k−[!8 (F8, F8−1) is a Bregman
divergence and is non-negative. Since the loss is non-negative, [!8 (F8) is always
non-negative. As a result, we have

�k (F, F8−1) ≥ �k (F, F8), (9.20)

This implies that �k (F, F8) ≤ n , which means F8 is in B too. Since F0 is in B, F1

will be in B, and therefore, F2 will be in B, and similarly all the iterates will remain
in B.

Next, we prove that the iterates converge and F∞ ∈ W. If we sum up identity (9.10)
for all 8 = 1, . . . ,) , the first terms on the right- and left-hand side cancel each other
telescopically, and we have

�k (F, F0) = �k (F, F)) +
)∑
8=1

[
�k−[!8 (F8, F8−1) + [!8 (F8) + [�!8 (F, F8−1)

]
.

(9.21)
Since�k (F, F)) ≥ 0, we have

∑)
8=1

[
�k−[!8 (F8, F8−1) + [!8 (F8) + [�!8 (F, F8−1)

]
≤

�k (F, F0). If we take) →∞, the sum still has to remain bounded, i.e.,

∞∑
8=1

[
�k−[!8 (F8, F8−1) + [!8 (F8) + [�!8 (F, F8−1)

]
≤ �k (F, F0). (9.22)

Since the step size is small enough that k(·)−[!8 (·) is strictly convex for all 8, the first
term �k−[!8 (F8, F8−1) is non-negative. The second term [!8 (F8) is non-negative
because of the non-negativity of the loss. Finally, the last term �!8 (F, F8−1) is
non-negative because F8−1 ∈ B for all 8. Hence, all the three terms in the summand
are non-negative, and because the sum is bounded, they should go to zero as 8 →∞.
In particular,

�k−[!8 (F8, F8−1) → 0 (9.23)

218

implies F8 → F8−1, i.e., convergence (F8 → F∞) (Note that the functions k − [!8
do not go to zero, as there is a fixed number, i.e., =, of them). Further,

[!8 (F8) → 0. (9.24)

This implies that all the individual losses are going to zero, and since every data
point is being revisited after some steps, all the data points are being fit. Therefore,
F∞ ∈ W. �

9.A.3 Closeness of the Final Point to the Regularized Solution
In this section, we show that with the additional Assumption 2 (which is equivalent
to 58 (·) having bounded Hessian in B), not only do the iterates remain in B and
converge to the setW, but also they converge to a point which is very close to F∗

(the closest solution to the initial point, in Bregman divergence). The proof is again
based on our fundamental identity for SMD.

Assumption 2. Consider the region B in Assumption 1. 58 (·) have bounded gradient
and Hessian on the convex hull of B, i.e., ‖∇ 58 (F′)‖ ≤ W, and U ≤ _min(� 58 (F′)) ≤
_max(� 58 (F′)) ≤ V, 8 = 1, . . . , =, for all F′ ∈ conv B.

Theorem 53. Define F∗ = arg minF∈W �k (F, F0). Under the assumptions of
Theorem 52, and Assumption 2, the following holds:

1. �k (F∞, F0) = �k (F∗, F0) + >(n),

2. �k (F∗, F∞) = >(n).

Proof of Theorem 53. Recall the identity of SMD from Lemma 55:

�k (F, F8−1) = �k (F, F8) + �k−[!8 (F8, F8−1) + [!8 (F8) + [�!8 (F, F8−1) (9.10)

which holds for all F ∈ W. Summing the identity for all 8 ≥ 1, we have

�k (F, F0) = �k (F, F∞) +
∞∑
8=1

[
�k−[!8 (F8, F8−1) + [!8 (F8) + [�!8 (F, F8−1)

]
.

(9.25)
for all F ∈ W. Note that the only terms in the right-hand side which depend on F
are the first one �k (F, F∞) and the last one [

∑∞
8=1 �!8 (F, F8−1). In what follows,

We will argue that, within B, the dependence on F in the last term is weak and
therefore F∞ is close to F∗.

219

To further spell out the dependence on F in the last term, let us expand �!8 (F, F8−1)

�!8 (F, F8−1) = 0 − !8 (F8−1) − ∇!8 (F8−1)) (F − F8−1) (9.26)

= −!8 (F8−1) + ℓ′(H8 − 58 (F8−1))∇ 58 (F8−1)) (F − F8−1) (9.27)

for all F ∈ W, where the first equality comes from the definition of �!8 (·, ·) and the
fact that !8 (F) = 0 for F ∈ W. The second equality is from taking the derivative of
!8 (·) = ℓ(H8 − 58 (·)) and evaluating it at F8−1.

By Taylor expansion of 58 (F) around F8−1 and using Taylor’s theorem (Lagrange’s
mean-value form), we have

58 (F) = 58 (F8−1)+∇ 58 (F8−1)) (F−F8−1)+
1
2
(F−F8−1))� 58 (F̂8) (F−F8−1), (9.28)

for some F̂8 in the convex hull of F and F8−1. Since 58 (F) = H8 for all F ∈ W, it
follows that

∇ 58 (F8−1)) (F − F8−1) = H8 − 58 (F8−1) −
1
2
(F − F8−1))� 58 (F̂8) (F − F8−1), (9.29)

for all F ∈ W. Plugging this into (9.27), we have

�!8 (F, F8−1) = −!8 (F8−1)+ℓ′(H8− 58 (F8−1))
(
H8− 58 (F8−1)−

1
2
(F−F8−1))� 58 (F̂8) (F−F8−1)

)
(9.30)

for all F ∈ W. Finally, by plugging this back into the identity (9.25), we have

�k (F, F0) = �k (F, F∞) +
∞∑
8=1

[
�k−[!8 (F8, F8−1) + [!8 (F8) − [!8 (F8−1)

+ [ℓ′(H8 − 58 (F8−1))
(
H8 − 58 (F8−1) −

1
2
(F − F8−1))� 58 (F̂8) (F − F8−1)

)]
. (9.31)

for all F ∈ W. Note that this can be expressed as

�k (F, F0) = �k (F, F∞)+�−
∞∑
8=1

1
2
[ℓ′(H8− 58 (F8−1)) (F−F8−1))� 58 (F̂8) (F−F8−1),

(9.32)
for all F ∈ W, where � does not depend on F:

� =

∞∑
8=1

[
�k−[!8 (F8, F8−1) + [!8 (F8) − [!8 (F8−1) + [ℓ′(H8 − 58 (F8−1)) (H8 − 58 (F8−1))

]
.

From Theorem 52, we know that F∞ ∈ W. Therefore, by plugging it into
equation (9.32), and using the fact that �k (F∞, F∞) = 0, we have

�k (F∞, F0) = � −
∞∑
8=1

1
2
[ℓ′(H8 − 58 (F8−1)) (F∞ − F8−1))� 58 (F′8) (F∞ − F8−1),

(9.33)

220

where F′
8
is a point in the convex hull of F∞ and F8−1 (and therefore also in conv B),

for all 8. Similarly, by plugging F∗, which is also inW, into (9.32), we have

�k (F∗, F0) = �k (F∗, F∞)+�−
∞∑
8=1

1
2
[ℓ′(H8− 58 (F8−1)) (F∗−F8−1))� 58 (F′′8) (F∗−F8−1),

(9.34)
where F′′

8
is a point in the convex hull of F∗ and F8−1 (and therefore also in conv B),

for all 8. Subtracting the last two equations from each other yields

�k (F∞, F0) − �k (F∗, F0) = −�k (F∗, F∞) +
∞∑
8=1

1
2
[ℓ′(H8 − 58 (F8−1))·[

(F∗ − F8−1))� 58 (F′′8) (F∗ − F8−1) − (F∞ − F8−1))� 58 (F′8) (F∞ − F8−1)
]
.

(9.35)

Note that since all F′
8
and F′′

8
are in conv B, by Assumption 2, we have

U‖F∞ − F8−1‖2 ≤ (F∞ − F8−1))� 58 (F′8) (F∞ − F8−1) ≤ V‖F∞ − F8−1‖2, (9.36)

and

U‖F∗ − F8−1‖2 ≤ (F∗ − F8−1))� 58 (F′′8) (F∗ − F8−1) ≤ V‖F∗ − F8−1‖2. (9.37)

Further, again since all the iterates {F8} are inB, it follows that ‖F∞−F8−1‖2 = $ (n)
and ‖F∗ − F8−1‖2 = $ (n). As a result the difference of the two terms, i.e.,[
(F∗ − F8−1))� 58 (F′′8) (F∗ − F8−1) − (F∞ − F8−1))� 58 (F′8) (F∞ − F8−1)

]
, is also

$ (n), and we have

�k (F∞, F0) −�k (F∗, F0) = −�k (F∗, F∞) +
∞∑
8=1

[ℓ′(H8 − 58 (F8−1))$ (n). (9.38)

Now note that ℓ′(H8 − 58 (F8−1)) = ℓ′(58 (F) − 58 (F8−1)) = ℓ′(∇ 58 (F̃8)) (F − F8−1))
for some F̃8 ∈ conv B. Since ‖F − F8−1‖2 = $ (n) for all 8, and since ℓ(·) is differ-
entiable and 58 (·) have bounded derivatives, it follows that ℓ′(H8 − 58 (F8−1)) = >(n).
Furthermore, the sum is bounded. This implies that �k (F∞, F0) − �k (F∗, F0) =
−�k (F∗, F∞) + >(n), or equivalently(

�k (F∞, F0) − �k (F∗, F0)
)
+ �k (F∗, F∞) = >(n). (9.39)

The term in parentheses �k (F∞, F0) − �k (F∗, F0) is non-negative by definition of
F∗. The second term �k (F∗, F∞) is non-negative by convexity of k. Since both
terms are non-negative and their sum is >(n), each one of them is at most >(n), i.e.,

�k (F∞, F0) − �k (F∗, F0) = >(n)

�k (F∗, F∞) = >(n)
(9.40)

which concludes the proof. �

221

Corollary 54. For the initialization F0 = arg minF∈R? k(F), under the conditions
of Theorem 53, F∗ = arg minF∈W k(F) and the following holds.

1. k(F∞) = k(F∗) + >(n)

2. �k (F∗, F∞) = >(n)

Proof of Corollary 54. The proof is a straightforward application of Theorem 53.
Note that we have

�k (F, F0) = k(F) − k(F0) − ∇k(F0)) (F − F0) (9.41)

for all F. When F0 = arg minF∈R? k(F), it follows that ∇k(F0) = 0, and

�k (F, F0) = k(F) − k(F0). (9.42)

In particular, by plugging in F∞ and F∗, we have �k (F∞, F0) = k(F∞) − k(F0)
and �k (F∗, F0) = k(F∗) − k(F0). Subtracting the two equations from each other
yields

�k (F∞, F0) − �k (F∗, F0) = k(F∞) − k(F∗), (9.43)

which, along with the application of Theorem 53, concludes the proof. �

9.A.4 Closeness to the Interpolating Set in Highly OverparameterizedModels
As we mentioned earlier, it has been argued in a number of recent papers that for
highly overparameterized models, any random initial point is, w.h.p., close to the
solution setW [18, 129, 67, 7, 51]. In the highly overparameterized regime, < � =,
and so the dimension of the manifoldW, which is<−=, is very large. For simplicity,
we outline an argument for the case of Euclidean distance, bearing in mind that a
similar argument can be used for general Bregman divergence. Note that the distance
of an arbitrarily chosen F0 toW is given by

min
F

‖F − F0‖2

s.t. H = 5 (G, F)

where H = vec(H8, 8 = 1, . . . , =) and 5 (G, F) = vec(5 (G8, F), 8 = 1, . . . , =). This can
be approximated by

min
F

‖F − F0‖2

s.t. H ≈ 5 (G, F0) + ∇ 5 (G, F0)) (F − F0)

222

where ∇ 5 (G, F0)) = vec(∇ 5 (G8, F)) , 8 = 1, . . . , =) is the = × < Jacobian matrix.
The latter optimization can be solved to yield

‖F∗ − F0‖2 ≈ (H − 5 (G, F0)))
(
∇ 5 (G, F0))∇ 5 (G, F0)

)−1
(H − 5 (G, F0)) (9.44)

Note that ∇ 5 (G, F0))∇ 5 (G, F0) is an = × = matrix consisting of the sum of < outer
products. When the G8 are sufficiently random, and < � =, it is not unreasonable to
assume that w.h.p.

_min

(
∇ 5 (G, F0))∇ 5 (G, F0)

)
= Ω(<),

from which we conclude

‖F∗ − F0‖2 ≈ ‖H − 5 (G, F0)‖2 · $ (
1
<
) = $ (=

<
), (9.45)

since H − 5 (G, F0) is =-dimensional. The above implies that F0 is close to F∗ and
henceW.

223

9.B More Details on the Experimental Results
In order to evaluate the claim, we run systematic experiments on some standard deep
learning problems.

Datasets. We use the standard MNIST [120] and CIFAR-10 [117] datasets.

Architectures. For MNIST, we use a 4-layer convolutional neural network (CNN)
with 2 convolution layers and 2 fully connected layers. The convolutional layers
and the fully connected layers are picked wide enough to obtain 2 × 106 trainable
parameters. Since MNIST dataset has 60,000 training samples, the number of
parameters is significantly larger than the number of training data points, and the
problem is highly overparameterized. For the CIFAR-10 dataset, we use the standard
ResNet-18 [101] architecture without any modifications. CIFAR-10 has 50,000
training samples and with the total number of 11 × 106 parameters in ResNet-18, the
problem is again highly overparameterized.

Loss Function. We use the cross-entropy loss as the loss function in our training.
We train the models from different initializations, and with different mirror descents
from each particular initialization, until we reach 100% training accuracy, i.e., until
we hitW.

Initialization. We randomly initialize the parameters of the networks around
zero (N(0, 0.0001)). We choose 6 independent initializations for the CNN, and 8
for ResNet-18, and for each initialization, we run the following 4 different SMD
algorithms.

Algorithms. We use the mirror descent algorithms defined by the norm potential
k(F) = 1

@
‖F‖@@ for the following four different norms: (a) ℓ1 norm, i.e., @ = 1 + n ,

(b) ℓ2 norm, i.e., @ = 2 (which is SGD), (c) ℓ3 norm, i.e., @ = 3, (d) ℓ10 norm, i.e.,
@ = 10 (as a surrogate for ℓ∞ norm). The update rule can be expressed as follows.

F8, 9 =

���|F8−1, 9 |@−1 sign(F8−1, 9) − [∇!8 (F8−1) 9
��� 1
@−1 ·

sign
(
|F8−1, 9 |@−1 sign(F8−1, 9) − [∇!8 (F8−1) 9

)
, (9.46)

where F8−1, 9 denotes the 9-th element of the F8−1 vector.

We use a fixed step size [. The step size is chosen to obtain convergence to global
minima.

224

9.B.1 MNIST Experiments
9.B.1.1 Closest Minimum for Different Mirror Descents with Fixed

Initialization

We provide the distances from final points (global minima) obtained by different
algorithms from the same initialization, measured in different Bregman divergences
for MNIST classification task using a standard CNN. Note that, in all the tables, the
smallest element in each row is on the diagonal, which means the point achieved by
each mirror has the smallest Bregman divergence to the initialization corresponding
to that mirror, among all mirrors. Tables 9.3, 9.4, 9.5, 9.6, 9.7, and 9.8 depict these
results for 6 different initializations. The rows are the distance metrics used as the
Bregman Divergences with specified potentials. The columns are the global minima
obtained using specified SMD algorithms.

Table 9.3: MNIST Initial Point 1.

SMD 1-norm SMD 2-norm
(SGD) SMD 3-norm SMD 10-norm

1-norm BD 2.767 937.8 1.05 × 104 1.882 × 105

2-norm BD 301.6 58.61 261.3 2.118 × 104

3-norm BD 1720 37.45 7.143 2518
10-norm BD 7.453 × 108 773.4 0.2939 0.003545

Table 9.4: MNIST Initial Point 2.

SMD 1-norm SMD 2-norm
(SGD) SMD 3-norm SMD 10-norm

1-norm BD 2.78 945 1.37 × 104 2.01 × 105

2-norm BD 292 59.3 374 2.29 × 104

3-norm BD 1.51 × 103 38.6 11.6 2.71 × 103

10-norm BD 1.06 × 108 831 0.86 0.00321

Table 9.5: MNIST Initial Point 3.

SMD 1-norm SMD 2-norm
(SGD) SMD 3-norm SMD 10-norm

1-norm BD 3.02 968 1.06 × 104 1.9 × 105

2-norm BD 291 60.9 272 2.12 × 104

3-norm BD 1.49 × 103 39.1 7.82 2.49 × 103

10-norm BD 1.1 × 108 900 0.411 0.00318

225

Table 9.6: MNIST Initial Point 4.

SMD 1-norm SMD 2-norm
(SGD) SMD 3-norm SMD 10-norm

1-norm BD 2.78 1.21 × 103 1.08 × 104 1.92 × 105

2-norm BD 291 77.3 271 2.15 × 104

3-norm BD 1.48 × 103 49.7 7.56 2.52 × 103

10-norm BD 9.9 × 107 1.72 × 103 0.352 0.00296

Table 9.7: MNIST Initial Point 5.

SMD 1-norm SMD 2-norm
(SGD) SMD 3-norm SMD 10-norm

1-norm BD 2.79 958 1.08 × 104 2 × 105

2-norm BD 292 60.4 271 2.28 × 104

3-norm BD 1.49 × 103 39 7.52 2.69 × 103

10-norm BD 9.09 × 107 846 0.342 0.00309

Table 9.8: MNIST Initial Point 6.

SMD 1-norm SMD 2-norm
(SGD) SMD 3-norm SMD 10-norm

1-norm BD 2.96 930 1.08 × 104 1.9 × 105

2-norm BD 308 59 271 2.12 × 104

3-norm BD 1.63 × 103 38.6 7.46 2.47 × 103

10-norm BD 1.65 × 108 864 0.334 0.00295

9.B.1.2 Closest Minimum for Different Initializations with Fixed Mirror

We provide the pairwise distances between different initial points and the final points
(global minima) obtained by using fixed SMD algorithms in MNIST dataset using a
standard CNN. Note that the smallest element in each row is on the diagonal, which
means the closest final point to each initialization, among all the final points, is the
one corresponding to that point. Tables 9.9, 9.10, 9.11, and 9.12 depict these results
for 4 different SMD algorithms. The rows are the initial points, and the columns are
the final points corresponding to each initialization.

9.B.1.3 Closest Minimum for Different Initializations and Different Mirrors

Now we assess the pairwise distances between different initial points and final points
(global minima) obtained by all different initializations and all different mirrors
(Table 9.8). The smallest element in each row is exactly the final point obtained by
that mirror from that initialization, among all the mirrors and all the initial points.

226

Table 9.9: MNIST 1-norm Bregman Divergence Between the Initial Points and the
Final Points obtained by SMD 1-norm.

Final 1 Final 2 Final 3 Final 4 Final 5 Final 6
Initial Point 1 2.7671 20311 20266 20331 20340 20282
Initial Point 2 20332 2.7774 20281 20299 20312 20323
Initial Point 3 20319 20312 3.018 20344 20309 20322
Initial Point 4 20339 20279 20310 2.781 20321 20297
Initial Point 5 20347 20317 20273 20316 2.7902 20311
Initial Point 6 20344 20323 20340 20318 20321 2.964

Table 9.10: MNIST 2-norm Bregman Divergence Between the Initial Points and the
Final Points obtained by SMD 2-norm (SGD).

Final 1 Final 2 Final 3 Final 4 Final 5 Final 6
Initial Point 1 58.608 670.75 667.03 684.18 671.36 667.84
Initial Point 2 669.84 59.315 669.16 682.04 669.45 669.98
Initial Point 3 666.35 670.22 60.858 683.44 667.57 669.99
Initial Point 4 669.71 668.86 671.19 77.275 670.33 669.7
Initial Point 5 671.1 669.12 668.45 683.61 60.39 666.04
Initial Point 6 669.46 670.92 671.59 684.32 667.37 59.043

Table 9.11: MNIST 3-norm Bregman Divergence Between the Initial Points and the
Final Points obtained by SMD 3-norm.

Final 1 Final 2 Final 3 Final 4 Final 5 Final 6
Initial Point 1 7.143 35.302 32.077 32.659 32.648 32.309
Initial Point 2 32.507 11.578 32.256 32.325 32.225 32.46
Initial Point 3 31.594 34.643 7.8239 32.521 31.58 32.519
Initial Point 4 32.303 34.811 32.937 7.5589 32.617 32.284
Initial Point 5 32.673 34.678 32.071 32.738 7.5188 31.558
Initial Point 6 32.116 34.731 32.376 32.431 31.699 7.4593

Table 9.12: MNIST 10-norm Bregman Divergence Between the Initial Points and
the Final Points obtained by SMD 10-norm.

Final 1 Final 2 Final 3 Final 4 Final 5 Final 6
Initial Point 1 0.00354 0.37 0.403 0.286 0.421 0.408
Initial Point 2 0.33 0.00321 0.369 0.383 0.415 0.422
Initial Point 3 0.347 0.318 0.00318 0.401 0.312 0.406
Initial Point 4 0.282 0.38 0.458 0.00296 0.491 0.376
Initial Point 5 0.405 0.418 0.354 0.484 0.00309 0.48
Initial Point 6 0.403 0.353 0.422 0.331 0.503 0.00295

227

Fi
gu
re

9.
8:

D
iff
er
en
tB

re
gm

an
di
ve
rg
en
ce
sb

et
w
ee
n
al
lt
he

fin
al
po
in
ts
an
d
al
lt
he

in
iti
al
po
in
ts
fo
rd

iff
er
en
tm

irr
or
si
n
M
N
IS
T
da
ta
se
t

us
in
g
a
sta

nd
ar
d
C
N
N
.N

ot
e
th
at
th
e
sm

al
le
st
el
em

en
ti
n
ev
er
y
si
ng

le
ro
w
is
on

th
e
di
ag
on

al
,w

hi
ch

co
nfi

rm
st
he

th
eo
re
tic

al
re
su
lts
.

228

9.B.2 CIFAR-10 Experiments
9.B.2.1 Closest Minimum for Different Mirror Descents with Fixed

Initialization

We provide the distances from final points (global minima) obtained by different
algorithms from the same initialization, measured in different Bregman divergences
for CIFAR-10 classification task using ResNet-18. Note that in all the tables, the
smallest element in each row is on the diagonal, which means the point achieved by
each mirror has the smallest Bregman divergence to the initialization corresponding
to that mirror, among all mirrors. Tables 9.13, 9.14, 9.15, 9.16, 9.17, 9.18, 9.19,
and 9.20 depict these results for 8 different initializations. The rows are the distance
metrics used as the Bregman Divergences with specified potentials. The columns
are the global minima obtained using specified SMD algorithms.

Table 9.13: CIFAR-10 Initial Point 1.

SMD 1-norm SMD 2-norm
(SGD) SMD 3-norm SMD 10-norm

1-norm BD 189 9.58 × 103 4.19 × 104 2.34 × 105

2-norm BD 3.12 × 103 597 1.28 × 103 6.92 × 103

3-norm BD 4.31 × 104 119 55.8 1.87 × 102

10-norm BD 1.35 × 1014 869 6.34 × 10−5 2.64 × 10−8

Table 9.14: CIFAR-10 Initial Point 2.

SMD 1-norm SMD 2-norm
(SGD) SMD 3-norm SMD 10-norm

1-norm BD 275 9.86 × 103 4.09 × 104 2.38 × 105

2-norm BD 4.89 × 103 607 1.23 × 103 7.03 × 103

3-norm BD 9.21 × 104 104 53.5 1.88 × 102

10-norm BD 1.17 × 1015 225 0.000102 2.65 × 10−8

Table 9.15: CIFAR-10 Initial Point 3.

SMD 1-norm SMD 2-norm
(SGD) SMD 3-norm SMD 10-norm

1-norm BD 141 9.19 × 103 4.1 × 104 2.34 × 105

2-norm BD 3.15 × 103 562 1.24 × 103 6.89 × 103

3-norm BD 4.31 × 104 107 53.5 1.85 × 102

10-norm BD 6.83 × 1013 972 7.91 × 10−5 2.72 × 10−8

229

Table 9.16: CIFAR-10 Initial Point 4.

SMD 1-norm SMD 2-norm
(SGD) SMD 3-norm SMD 10-norm

1-norm BD 255 9.77 × 103 4.18 × 104 2.36 × 105

2-norm BD 3.64 × 103 594 1.26 × 103 6.96 × 103

3-norm BD 5.5 × 104 116 54 1.87 × 102

10-norm BD 3.74 × 1014 640 5.33 × 10−5 2.67 × 10−8

Table 9.17: CIFAR-10 Initial Point 5.

SMD 1-norm SMD 2-norm
(SGD) SMD 3-norm SMD 10-norm

1-norm BD 113 9.48 × 103 4.15 × 104 2.32 × 105

2-norm BD 2.95 × 103 572 1.27 × 103 6.85 × 103

3-norm BD 3.68 × 104 109 56.2 1.84 × 102

10-norm BD 2.97 × 1013 151 5.74 × 10−5 2.61 × 10−8

Table 9.18: CIFAR-10 Initial Point 6.

SMD 1-norm SMD 2-norm
(SGD) SMD 3-norm SMD 10-norm

1-norm BD 128 9.25 × 103 4.25 × 104 2.34 × 105

2-norm BD 2.71 × 103 558 1.29 × 103 6.89 × 103

3-norm BD 3.34 × 104 104 55.3 1.85 × 102

10-norm BD 2.61 × 1013 612 4.74 × 10−5 2.62 × 10−8

Table 9.19: CIFAR-10 Initial Point 7.

SMD 1-norm SMD 2-norm
(SGD) SMD 3-norm SMD 10-norm

1-norm BD 223 9.76 × 103 4.38 × 104 2.27 × 105

2-norm BD 2.41 × 103 599 1.37 × 103 6.65 × 103

3-norm BD 2.3 × 104 116 61 1.78 × 102

10-norm BD 4.22 × 1012 679 6.42 × 10−5 2.55 × 10−8

Table 9.20: CIFAR-10 Initial Point 8.

SMD 1-norm SMD 2-norm
(SGD) SMD 3-norm SMD 10-norm

1-norm BD 145 9.37 × 103 4.17 × 104 2.36 × 105

2-norm BD 2.48 × 103 576 1.26 × 103 6.99 × 103

3-norm BD 2.85 × 104 108 54.5 1.89 × 102

10-norm BD 1.81 × 1013 1.22 × 103 5.2 × 10−5 2.64 × 10−8

230

9.B.2.2 Closest Minimum for Different Initializations with Fixed Mirror

We provide the pairwise distances between different initial points and the final points
(global minima) obtained by using fixed SMD algorithms in CIFAR-10 dataset using
ResNet-18. Note that the smallest element in each row is on the diagonal, which
means the closest final point to each initialization, among all the final points, is the
one corresponding to that point. Tables 9.21, 9.22, 9.23, and 9.24 depict these results
for 4 different SMD algorithms. The rows are the initial points and the columns are
the final points corresponding to each initialization.

Table 9.21: CIFAR-10 1-norm Bregman Divergence Between the Initial Points and
the Final Points obtained by SMD 1-norm.

Final 1 Final 2 Final 3 Final 4 Final 5 Final 6 Final 7 Final 8
Initial 1 1.9 × 102 8.1 × 104 8.1 × 104 8.4 × 104 8 × 104 8.2 × 104 7.8 × 104 7.8 × 104

Initial 2 8.1 × 104 2.7 × 102 8.1 × 104 8.3 × 104 8 × 104 8.2 × 104 7.8 × 104 7.9 × 104

Initial 3 8.1 × 104 8.1 × 104 1.4 × 102 8.4 × 104 8 × 104 8.1 × 104 7.8 × 104 7.8 × 104

Initial 4 8.1 × 104 8.1 × 104 8.1 × 104 2.5 × 102 8 × 104 8.2 × 104 7.8 × 104 7.9 × 104

Initial 5 8.1 × 104 8.1 × 104 8.1 × 104 8.3 × 104 1.1 × 102 8.1 × 104 7.8 × 104 7.8 × 104

Initial 6 8.1 × 104 8.1 × 104 8.1 × 104 8.4 × 104 8 × 104 1.3 × 102 7.8 × 104 7.8 × 104

Initial 7 8.1 × 104 8.1 × 104 8.1 × 104 8.4 × 104 8 × 104 8.1 × 104 2.2 × 102 7.8 × 104

Initial 8 8.1 × 104 8.1 × 104 8.1 × 104 8.4 × 104 7.9 × 104 8.1 × 104 7.8 × 104 1.5 × 102

Table 9.22: CIFAR-10 2-norm Bregman Divergence Between the Initial Points and
the Final Points obtained by SMD 2-norm (SGD).

Final 1 Final 2 Final 3 Final 4 Final 5 Final 6 Final 7 Final 8
Initial 1 6 × 102 2.9 × 103 2.8 × 103 2.8 × 103 2.8 × 103 2.8 × 103 2.8 × 103 2.8 × 103

Initial 2 2.8 × 103 6.1 × 102 2.8 × 103 2.8 × 103 2.8 × 103 2.8 × 103 2.8 × 103 2.8 × 103

Initial 3 2.8 × 103 2.9 × 103 5.6 × 102 2.8 × 103 2.8 × 103 2.8 × 103 2.8 × 103 2.8 × 103

Initial 4 2.8 × 103 2.9 × 103 2.8 × 103 5.9 × 102 2.8 × 103 2.8 × 103 2.8 × 103 2.8 × 103

Initial 5 2.8 × 103 2.9 × 103 2.8 × 103 2.8 × 103 5.7 × 102 2.8 × 103 2.8 × 103 2.8 × 103

Initial 6 2.8 × 103 2.9 × 103 2.8 × 103 2.8 × 103 2.8 × 103 5.6 × 102 2.8 × 103 2.8 × 103

Initial 7 2.8 × 103 2.9 × 103 2.8 × 103 2.8 × 103 2.8 × 103 2.8 × 103 6 × 102 2.8 × 103

Initial 8 2.8 × 103 2.9 × 103 2.8 × 103 2.8 × 103 2.8 × 103 2.8 × 103 2.8 × 103 5.8 × 102

Table 9.23: CIFAR-10 3-norm Bregman Divergence Between the Initial Points and
the Final Points obtained by SMD 3-norm.

Final 1 Final 2 Final 3 Final 4 Final 5 Final 6 Final 7 Final 8
Initial 1 55.844 103.47 103.61 104.05 106.2 105.32 110.88 104.56
Initial 2 105.87 53.455 103.68 104.04 106.31 105.34 110.93 104.58
Initial 3 105.89 103.59 53.527 104.09 106.29 105.35 110.99 104.55
Initial 4 105.83 103.54 103.64 53.978 106.23 105.3 110.87 104.54
Initial 5 105.82 103.55 103.64 104 56.161 105.34 110.88 104.55
Initial 6 105.91 103.6 103.66 104.1 106.28 55.316 110.94 104.55
Initial 7 105.87 103.51 103.67 103.98 106.26 105.25 61.045 104.5
Initial 8 105.77 103.54 103.59 104.04 106.25 105.28 110.88 54.509

231

Table 9.24: CIFAR-10 10-norm Bregman Divergence Between the Initial Points and
the Final Points obtained by SMD 10-norm.

Final 1 Final 2 Final 3 Final 4 Final 5 Final 6 Final 7 Final 8
Initial 1 2.64 × 10−8 2.89 × 10−8 2.99 × 10−8 2.81 × 10−8 2.85 × 10−8 2.82 × 10−8 2.66 × 10−8 2.82 × 10−8

Initial 2 2.79 × 10−8 2.65 × 10−8 2.83 × 10−8 2.83 × 10−8 2.71 × 10−8 2.74 × 10−8 2.69 × 10−8 2.88 × 10−8

Initial 3 2.89 × 10−8 2.87 × 10−8 2.72 × 10−8 2.94 × 10−8 2.84 × 10−8 2.89 × 10−8 2.78 × 10−8 2.94 × 10−8

Initial 4 2.79 × 10−8 2.86 × 10−8 2.92 × 10−8 2.67 × 10−8 2.84 × 10−8 2.81 × 10−8 2.69 × 10−8 2.85 × 10−8

Initial 5 2.76 × 10−8 2.88 × 10−8 2.95 × 10−8 2.93 × 10−8 2.61 × 10−8 2.73 × 10−8 2.66 × 10−8 2.83 × 10−8

Initial 6 2.80 × 10−8 2.76 × 10−8 2.93 × 10−8 2.79 × 10−8 2.76 × 10−8 2.62 × 10−8 2.71 × 10−8 2.85 × 10−8

Initial 7 2.73 × 10−8 2.76 × 10−8 2.82 × 10−8 2.79 × 10−8 2.71 × 10−8 2.77 × 10−8 2.55 × 10−8 2.83 × 10−8

Initial 8 2.73 × 10−8 2.79 × 10−8 2.85 × 10−8 2.78 × 10−8 2.75 × 10−8 2.74 × 10−8 2.73 × 10−8 2.64 × 10−8

9.B.2.3 Closest Minimum for Different Initializations and Different Mirrors

Now we assess the pairwise distances between different initial points and final points
(global minima) obtained by all different initializations and all different mirrors
(Table 9.8). The smallest element in each row is exactly the final point obtained by
that mirror from that initialization, among all the mirrors and all the initial points.

232

Fi
gu
re

9.
9:

D
iff
er
en
tB

re
gm

an
di
ve
rg
en
ce
sb

et
w
ee
n
al
lt
he

fin
al
po
in
ts
an
d
al
lt
he

in
iti
al
po
in
ts
fo
rd

iff
er
en
tm

irr
or
si
n
CI
FA

R-
10

da
ta
se
t

us
in
g
Re

sN
et
-1
8.

N
ot
e
th
at
th
e
sm

al
le
st
el
em

en
ti
n
ev
er
y
si
ng

le
ro
w
is
on

th
e
di
ag
on

al
,w

hi
ch

co
nfi

rm
st
he

th
eo
re
tic

al
re
su
lts
.

233

Figure 9.10: An illustration of the experimental results. For each initialization
F0, we ran different SMD algorithms until convergence to a point on the setW
(zero training error). We then measured all the pairwise distances from different
F∞ to different F0, in different Bregman divergences. The closest point (among
all initializations and all mirrors) to any particular initialization F0 in Bregman
divergence with potential k(·) = ‖ · ‖@@ is exactly the point obtained by running SMD
with potential ‖ · ‖@@ from F0.

9.B.3 Distribution of the Final Weights of the Network
One may be curious to see how the final weights obtained by these different mirrors
look, and whether, for example, mirror descent corresponding to the ℓ1-norm potential
induces sparsity. We examine the distribution of the weights in the network for these
algorithms starting from the same initialization. Fig. 9.11 shows the histogram of
the initial weights, which follows a half-normal distribution. Figs. 9.12 (a), (b), (c),
and (d) show the histogram of the weights for ℓ1-SMD, ℓ2-SMD (SGD), ℓ3-SMD,
and ℓ10-SMD, respectively. Note that each of the four histograms corresponds to an
11× 106-dimensional weight vector that perfectly interpolates the data. Even though,
perhaps as expected, the weights remain quite small, the histograms are drastically
different. The histogram of the ℓ1-SMD has more weights at and close to zero, which
again confirms that it induces sparsity. However, as will be shown in the next section,
this is not necessarily good for generalization (in fact, it turns out that ℓ10-SMD has
a much better generalization). The histogram of the ℓ2-SMD (SGD) looks almost
identical to the histogram of the initialization, whereas the ℓ3 and ℓ10 histograms
are shifted to the right, so much so that almost all weights in the ℓ10 solution are
non-zero and in the range of 0.005 to 0.04. For comparison, all the distributions are
shown together in Fig. 9.12(e).

234

Figure 9.11: Histogram of the absolute value of the initial weights in the network
(half-normal distribution).

235

(a) (b)

(c) (d)

(e)

Figure 9.12: Histogram of the absolute value of the final weights in the network for
different SMD algorithms: (a) ℓ1-SMD, (b) ℓ2-SMD (SGD), (c) ℓ3-SMD, and (d) ℓ10-
SMD. Note that each of the four histograms corresponds to an 11 × 106-dimensional
weight vector that perfectly interpolates the data. Even though the weights remain
quite small, the histograms are drastically different. ℓ1-SMD induces sparsity on the
weights, as expected. SGD does not seem to change the distribution of the weights
significantly. ℓ3-SMD starts to reduce the sparsity, and ℓ10 shifts the distribution of
the weights significantly, so much so that almost all the weights are non-zero.

236

9.B.4 Generalization Errors of Different Mirrors/Regularizers
In this section, we compare the performance of the SMD algorithms discussed before
on the test set. This is important for understanding the effect of different regularizers
on the generalization of deep networks.

For MNIST, perhaps not surprisingly, all the four SMD algorithms achieve around
99% or higher accuracy. For CIFAR-10, however, there is a significant difference
between the test errors of different mirrors/regularizers on the same architecture.
Fig. 9.13 shows the test accuracies of different algorithms with eight random
initializations around zero, as discussed before. Counter-intuitively, ℓ10 performs
consistently best, while ℓ1 performs consistently worse. We should reiterate that the
loss function is exactly the same in all these experiments, and all of them have been
trained to fit the training set perfectly (zero training error). Therefore, the difference
in generalization errors is purely the effect of implicit regularization by different
algorithms. This result suggests the importance of a comprehensive study of the role
of regularization, and the choice of the best regularizer, to improve the generalization
performance of deep neural networks.

Figure 9.13: Generalization performance of different SMD algorithms on the CIFAR-
10 dataset using ResNet-18. ℓ10 performs consistently better, while ℓ1 performs
consistently worse.

237

C h a p t e r 10

STOCHASTIC RESULTS: RISK-SENSITIVE OPTIMALITY AND
MEAN-SQUARE CONVERGENCE OF SMD

[1] Navid Azizan and Babak Hassibi. “A Characterization of Stochastic Mirror
Descent Algorithms and their Convergence Properties”. In: 2019 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP).
2019, pp. 5167–5171. doi: 10.1109/ICASSP.2019.8682271.

[2] Navid Azizan and Babak Hassibi. “A Stochastic Interpretation of Stochastic
Mirror Descent: Risk-Sensitive Optimality”. In: 2019 58th IEEE Conference
on Decision and Control (CDC). 2019, pp. 3960–3965. doi: 10.1109/
CDC40024.2019.9030229.

Stochastic mirror descent (SMD) is a fairly new family of algorithms that has recently
found a wide range of applications in optimization, machine learning, and control.
It can be considered a generalization of the classical stochastic gradient algorithm
(SGD), where instead of updating the weight vector along the negative direction of
the stochastic gradient, the update is performed in a “mirror domain” defined by the
gradient of a (strictly convex) potential function. This potential function, and the
mirror domain it yields, provides considerable flexibility in the algorithm compared
to SGD. In this chapter, we exhibit a new interpretation of SMD, namely that it is a
risk-sensitive optimal estimator when the unknown weight vector and additive noise
are non-Gaussian and belong to the exponential family of distributions. The analysis
also suggests a modified version of SMD, which we refer to as symmetric SMD
(SSMD). The proofs rely on some simple properties of Bregman divergence, which
allow us to extend results from quadratics and Gaussians to certain convex functions
and exponential families in a rather seamless way. Furthermore, for vanishing
step size, and in the standard stochastic optimization setting, we give a direct and
elementary proof for convergence of SMD to the “true” parameter vector which
avoids ergodic averaging or appealing to stochastic differential equations.

10.1 Introduction
Stochastic mirror descent (SMD) has become one of the most widely used families
of algorithms for optimization, machine learning, and beyond [149, 33, 55, 227, 147,
14, 171], which includes the popular stochastic gradient descent (SGD) as a special

238

case. The convergence behavior of such algorithms has been extensively studied in
the literature [150, 153], under various assumptions. Several other properties and
interpretations of SMD have recently been proven in the literature[214, 85]. In earlier
work, we have demonstrated a fundamental conservation law for SMD and have used
it to establish properties such as minimax optimality, deterministic convergence, and
implicit regularization [18, 14]. The main contribution of this chapter is to provide
a new stochastic interpretation of SMD, i.e., that it is risk-sensitive optimal. This
generalizes a similar result about SGD in the literature [98, 97]. We also propose a
new “more symmetric" version of SMD, called symmetric SMD (SSMD), which is
suggested by our analysis.

The chapter is organized as follows. We review the main properties of SMD and the
notion of Bregman divergence in Section 10.2. The risk-sensitive optimality result
and its proof are provided is Section 10.3. The new SSMD algorithm is presented
in Section 10.4. We finally mention another stochastic result about SMD, i.e., its
mean-square convergence in the stochastic setting, in Section 10.5, and conclude in
Section 10.6.

10.2 Background
Consider a separable loss function of some unknown parameter (or weight) vector
F ∈ R<:

! (F) =
=∑
8=1

!8 (F),

where the !8 (·) are called the instantaneous (or local) loss functions, and where
our goal is to minimize ! (·) over F. For example, the conventional gradient
descent (GD) algorithm can be used as an attempt to perform such minimization. A
generalization of GD, called the mirror descent (MD) algorithm, was first introduced
by Nemirovski and Yudin [149] and can be described as follows. Consider a strictly
convex differentiable function k(·), called the potential function. Then MD is given
by the following recursion

∇k(F8) = ∇k(F8−1) − [∇! (F8−1), F0 (10.1)

where [> 0 is known as the step size or learning rate. Note that, due to the strict
convexity of k(·), the gradient ∇k(·) defines an invertible map so that the recursion
in (10.1) yields a unique F8 at each iteration. Compared to classical GD, rather than
update the weight vector along the direction of the negative gradient, the update is
done in the “mirrored” domain determined by the invertible transformation ∇k(·).

239

Mirror descent was originally conceived to exploit the geometrical structure of the
problem by choosing an appropriate potential. Note that MD reduces to GD when
k(F) = 1

2 ‖F‖
2, since the gradient is simply the identity map. Other examples

include the exponentiated gradient descent (also known as the exponential weights)
and the ?-norms algorithm [82, 78]. As with GD, it is straightforward to show that
MD converges to a local minimum of ! (·), provided the step size [is small enough.

When = is large, computation of the entire gradientmay be cumbersome. Alternatively,
in online scenarios, the entire loss function ! (·) may not be available and only the
local loss functions may be provided at each iteration. In such settings, a stochastic
version of MD has been introduced, aptly called stochastic mirror descent (SMD),
and which can be considered the straightforward generalization of stochastic gradient
descent (SGD):

∇k(F8) = ∇k(F8−1) − [∇!8 (F8−1), F0 (10.2)

In the offline setting, the various instantaneous loss functions !8 (·) can either be
drawn at random, or cycled through periodically. In the online setting, they are
provided at each iteration. Unlike MD (and GD), for a fixed step size [, SMD does
not generally converge, unless there exists a F that simultaneously minimizes every
local loss function !8 (·).1 For this reason, SMD with vanishing learning rate has
also been considered

∇k(F8) = ∇k(F8−1) − [8∇!8 (F8−1), F0 (10.3)

where the learning rate is chosen such that [8 → 0. With a vanishing learning rate, it
is not surprising that one can attain convergence (since after a while, the algorithm is
barely updating the weight vector). What is more interesting is the fact that under
suitably decaying rates, one can obtain convergence to a local minimum of ! (·)
(more on this below).

10.2.1 Bregman Divergence
For any given strictly convex differentiable potential function k(·), the Bregman
divergence is defined as

�k (F, F′) = k(F) − k(F′) − ∇k(F′)) (F − F′). (10.4)

In other words, the Bregman divergence is the difference between the value of the
function k(·) at a point F and the value of its linear (or first order) approximation

1Since if this is not the case, even if the current estimate were at a local minimum of global loss
function ! (·), F∗, say, any of the local gradients ∇!8 (F∗) could be nonzero, which would move us
away from F∗.

240

around another pointF′ (see Fig. 10.1). Since a defining property of a convex function
is that its linear approximations always lie below it, we have that �k (F, F′) ≥ 0.
Furthermore, since k(·) is strictly convex, we have that �k (F, F′) = 0 iff F = F′.
Finally, it can be observed that �k (·, ·) is convex in its first argument (but not
necessarily in the second).

Since the Bregman divergence retains the quadratic (and higher order) terms in
the error of the linear approximation of k(F) around F′, it inherits many of the
properties of quadratics. For example, the classical “law of cosines,”

‖F − F′‖2 = ‖F − F′′‖2 + ‖F′′ − F′‖2 − 2(F′ − F′′)) (F − F′′),

generalizes to

�k (F, F′) = �k (F, F′′) + �k (F′′, F′) − (∇k(F′) − ∇k(F′′))) (F −F′′). (10.5)

More important for our developments is the following generalization of “completion-
of-squares,” which we formalize as a lemma.

Lemma 56. Let k1(·) and k2(·) be strictly convex differentiable functions. Then it
holds that

�k1 (F, F1) +�k2 (F, F2) = �k1 (F∗, F1) +�k2 (F∗, F2) +�k1+k2 (F, F∗), (10.6)

where F∗ is the unique solution to the equation

∇(k1 + k2) (F∗) = ∇k1(F1) + ∇k2(F2). (10.7)

Proof. The identities can be verified by straightforward calculation. The uniqueness
of F∗ follows from the fact that k1(·) + k2(·) is strictly convex, since it is the sum of
two such functions. �

For example, if k(F) = ‖F‖2 then � (F, F′) = ‖F − F′‖2, and if k(?) = −� (?),
where ? is a probability vector, then we get that �−� (?, ?′) =

∑
8 ?8 log ?8

?′
8
is the KL

divergence (or relative entropy).

The last fact about the Bregman divergence that we would like to mention is that a
random variable F that has a distribution F ∼ 4−�k (·,F0) (i.e., ?(F) = 24−�k (F,F0)

for a suitable normalization constant 2) is a member of the exponential family of
distributions, and satisfies the property

E∇k(F) = ∇k(F0). (10.8)

In other words, F0 is the point whose mirror is the mean of the mirror map.

241

Figure 10.1: Bregman divergence.

10.2.2 Parametric Models
It will now be useful to introduce some parametric models and make our loss
functions more explicit. To this end, assume we have a collection of data points

{(G8, H8), 8 = 1, . . . =}

where G8 ∈ R3 is the input and H8 ∈ R is the output. We will assume that the pairs
(G8, H8) are related through some parametric model

H8 = 5 (G8, F) + E8, 8 = 1, . . . = (10.9)

where 5 (·, ·) is a given function and represents the modeling class we are considering,
F ∈ R< is the unknown weight vector (or parameter), and E8 represents both
measurement noise and modeling errors. In this setting, the global loss function can
be written as

! (F) =
=∑
8=1

ℓ(H8, 5 (G8, F))︸ ︷︷ ︸
!8 (F)

, (10.10)

where ℓ(·, ·) is a (differentiable) local loss function, with the property that ℓ(H8, 5 (G8, F)) =
0 iff H8 = 5 (G8, F). Often ℓ(H8, 5 (G8, F)) = ℓ(H8 − 5 (G8, F)), with ℓ(·) convex and
having a global minimum at zero. In this case,

! (F) =
=∑
8=1

ℓ(H8 − 5 (G8, F)). (10.11)

For example, for quadratic loss we obtain ! (F) = ∑=
8=1

1
2 (H8 − 5 (G8, F))2. For

(10.11), SMD takes the explicit form

∇k(F8) = ∇k(F8−1) + [
m 5 (G8 , F8−1)

mF
ℓ′(H8 − 5 (G8 , F8−1)), F0. (10.12)

242

An important special case is that of linear models

H8 = G
)
8 F + E8, 8 = 1, . . . , = (10.13)

where SMD takes the form

∇k(F8) = ∇k(F8−1) + [G8ℓ′(H8 − G)8 F8−1), F0. (10.14)

We will often consider two uncertainties, or error terms, 48 and 4?,8, defined as
follows.

48 := H8 − G)8 F8−1, and 4?,8 := G)8 F − G)8 F8−1.

48 is often referred to as the innvovations and is the error in predicting H8, given
the input G8. 4?,8 is sometimes called the prediction error, since it is the error in
predicting the noiseless output G)

8
F, i.e., in predicting what the best output of the

model is. In the absence of noise, 48 and 4?,8 coincide.

10.2.3 Local and Global Interpretations of SMD
It is straightforward to show that at each iteration, SMD solves the following
optimization problem:

F8 = argmin
F

�k (F, F8−1) + [F)∇!8 (F8−1), (10.15)

which can be verified by setting the gradient of the right hand side of (10.15) to
zero. What the above relation shows is that the SMD iterates try to align themselves
with the direction of the instantaneous gradient, while also trying to stay close to the
previous iterate in Bregman divergence. (The learning rate relatively weights these
two objectives.) We refer to (10.15) as the local interpretation of SMD.

We have recently shown that SMD satisfies the following local conservation law.
[18, 14].

Lemma 57 (Local Conservation Law [18]). Even though the loss function !8 (F) =
ℓ(H8 − 5 (G8, F)) may not be convex, define the Bregman divergence �!8 (F, F′) in
the usual way. Further define the quantity

�8 (F8, F8−1) := �k−[!8 (F8, F8−1) + [!8 (F8). (10.16)

Then for each iteration of the SMD updates (10.12), it holds that

�k (F, F8−1) + [ℓ(E8) = �k (F, F8) + [�!8 (F, F8−1) + �8 (F8, F8−1). (10.17)

243

Summing the local identities in (10.17) from time 1 to time) leads to the following
global conservation law

�k (F, F0) + [
)∑
8=1

ℓ(E8) = �k (F, F)) + [
)∑
8=1

�!8 (F, F8−1) +
)∑
8=1

�8 (F8, F8−1)

(10.18)
Note that (10.18) holds for any horizon) . We refer to it as the global interpretation
of SMD. It can be used to show several remarkable deterministic properties of the
SMD algorithm. We now mention a couple.

Figure 10.2: Local Conservation Law of SMD.

10.2.4 Minimax Optimality of SMD
Using the aforementioned global identity, in [18, 14], the following has been shown.

Theorem 58 (Minimax Optimality [18]). For any) , provided [is small enough so
that k(F) − [!8 (F) is convex for all 8, then

min
{F8}

max
F,{E8}

�k (F, F)) + [
∑)
8=1 �!8 (F, F8−1)

�k (F, F0) + [
∑)
8=1 ℓ(E8)

= 1 (10.19)

and SMD with learning rate [is a minimax optimal algorithm achieving the above.

Theorem 58 is a generalization of the �∞-optimality of the SGD algorithm for
linear models and quadratic loss, where it is referred to as LMS [98, 97, 96],
to SMD and general models and general losses. When the potential and loss
are quadratic, we have �k (F, F0) = ‖F − F0‖2 and ℓ(E8) = E2

8
. The quantity

�!8 (F, F8−1) = (H8 − G)8 F)2 − (H8 − G)8 F8−1)2 + 2G)
8
(F − F8−1) (H8 − G)8 F8−1), after

some simplification, takes on the form

�!8 (F, F8−1) = (G)8 (F − F8−1))2,

which is the square of the so-called prediction error. In this case, we recover the
�∞-optimality of LMS, namely that it solves

min
{F8}

max
F,{E8}

‖F − F) ‖2 + [
∑)
8=1(G)8 (F − F8−1))2

‖F − F0‖2 + [
∑)
8=1 E

2
8

(10.20)

244

and the optimal value is 1. As mentioned above, Theorem 58 generalizes �∞-
optimality in three ways: it holds for general potential, general loss function, and
general nonlinear model.

10.2.5 Convergence and Implicit Regularization
Another interesting property of SMD, which again can be proven using the global
conservation law (10.18), is what is referred to as implicit regularization. In over-
parameterized (underdetermined) models, which are common in compressed sensing
and modern deep learning problems, there are (typically a lot) more parameters
(unknowns) than data points (measurements). That means there are many parameter
vectors (in fact infinitely many) that are consistent with the observations:

W =
{
F ∈ R< | H8 = G)8 F, 8 = 1, . . . , =

}
.

The questions of interest in this regime are: (1) does SMD converge to a solution?
and (2) if it does so, which solution does it converge to? The following result answers
these questions.

Theorem 59 (Convergence to the “Closest” Point [18]). Suppose ; (·) is differentiable
and convex and has a unique root at 0, k(·) is strictly convex, and [> 0 is such that
k − [!8 is convex for all 8. Then for any F0, the SMD iterates converge to

F∞ = arg min
F∈W

�k (F, F0). (10.21)

Corollary 60 (Implicit Regularization [18]). In particular, for the initialization
F0 = arg minF∈R< k(F), under the conditions of Theorem 59, the SMD iterates
converge to

F∞ = arg min
F∈W

k(F). (10.22)

This means that running SMD, without any (explicit) regularization, results in a
solution that has the smallest potential k(·) among all solutions, i.e., SMD implicitly
regularizes the solution with k(·). In principle, one can choose the potential function
for any desired convex regularization. For example, we can find the maximum
entropy solution by taking the potential to be the negative entropy, or do compressed
sensing with k(F) = ‖F‖1+n [18, 14].

We should remark that the result extends to quasi-convex losses ℓ(·), and it holds
locally (in an approximate sense) even for nonlinear models (non-convex cost).

245

Figure 10.3: F∞ is the closest solution (among all solutionsW) to F0. Note that
this picture is only for the Euclidean distance; in general the “closest” is measured in
Bregman divergence.

10.3 Risk-Sensitive Optimality of SMD
The results about SMD discussed in the previous section were deterministic in
nature. In this section, we give a stochastic interpretation of SMD, and show that it
is risk-sensitive optimal.

Consider a stochastic model H8 = G)8 F + E8, 8 ≥ 1, where F and {E8} are independent
random variables with distributions F ∼ 4−

1
[
�k (·,F0) and E8 ∼ 4−ℓ(·) , which are

members of the exponential family (note that when the potential function k(·) and the
loss ℓ(·) are square, both of these are Gaussian). A conventional quadratic estimator
is one that minimizes the expected sum of squared prediction errors, i.e.,

min
{I8}
E|{H8}

[
1
2

)∑
8=1
(G)8 F − I8)2

]
, (10.23)

where the expectation is taken over F and {E8} conditioned on the observations, and
each I8 in the minimization can only be a function of observations until time 8 − 1.
For various problems, one may be interested in cost functions more general than
quadratic, i.e.,

min
{I8}
E|{H8}

[
)∑
8=1

�ℓ (H8 − G)8 F, H8 − I8)
]
. (10.24)

The estimators that solve problems (10.23) and (10.24) are referred to as “risk-neutral”
estimators.

An alternative criterion is the “risk-sensitive” (or exponential cost) criterion, which
was first introduced in [108] and studied in [196, 210, 195]. In particular, an estimator

246

that solves the problem

min
{I8}
E|{H8} exp

(
1
2

)∑
8=1
(G)8 F − I8)2

)
, (10.25)

is called a “risk-averse” estimator. The reason is that in such a criterion, very large
weights are placed on large errors, and hence, the estimator is more concerned about
large values of error (their rare occurrence) than the moderate values of error.

Similar as in (10.24), one can consider exponential cost of errors measured with a
more general distance than quadratic, i.e.,

min
{I8}
E|{H8} exp

(
)∑
8=1

�ℓ (H8 − G)8 F, H8 − I8)
)
, (10.26)

It has been shown in [97, 98] that SGD for square loss (aka LMS) solves the problem
(10.25). In other words, LMS is risk-sensitive optimal. Formally, the result is as
follows.

Theorem 61 (Hassibi et al. [98]). Consider the model H8 = G)8 F + E8, 8 ≥ 1, where
F and {E8} are independent Gaussian random variables with means F0 and 0 and
variances [� and �, respectively. Further, suppose that {G8} are persistently exciting
and 0 < [< 1

‖G8 ‖2
,∀8. Then the solution to the following optimization problem

min
{I8}
E|{H8} exp

(
1
2

)∑
8=1
(G)8 F − I8)2

)
where the expectation is taken over F conditioned on the observations, and I8 is only
allowed to depend on observations up to time 8 − 1, is given by I8 = G)8 F8−1, where
{F8} are the SGD iterates.

We should further remark that no larger exponent than 1/2 is possible (no algorithm
can attain a finite cost if the exponent is larger than 1/2).

The following result generalizes the risk-sensitive optimality of SGD for quadratic
errors, to that of SMD for general Bregman-divergence errors.

Theorem 62. Consider the model H8 = G)
8
F + E8, 8 ≥ 1, where F and {E8} are

independent random variables with distributions F ∼ 4−
1
[
�k (·,F0) and E8 ∼ 4−; (·) .

Further, suppose that {G8} are persistently exciting, and k − [!8 is strictly convex for
all 8. Then the solution to the following optimization problem

min
{I8}
E|{H8} exp

(
)∑
8=1

�ℓ (H8 − G)8 F, H8 − I8)
)
,

247

where the expectation is taken over F conditioned on the observations, and I8 is only
allowed to depend on observations up to time 8 − 1, is given by I8 = G)8 F8−1, where
{F8} are the SMD iterates.

10.3.1 Proof of Theorem 62
The expected exponential cost that needs to be minimized in Theorem 62 is given by

�

∫
exp

(
−1
[
�k (F, F0) −

)∑
8=1

ℓ(H8 − G)8 F) +
)∑
8=1

�ℓ (H8 − G)8 F, H8 − I8)
)
3F,

where � is a normalization constant that guarantees we are integrating the cost
against a conditional distribution. The challenge in evaluating the above integral
over F is that F appears in all three terms of the exponent. In order to facilitate
the computation of this integral, it will be useful to use the completion-of-squares
formula of Lemma 56 to gather F into a single term. The following lemma provides
precisely what we need.

Lemma 63. It holds that

− 1
[
�k (F, F0) −

)∑
8=1

ℓ(H8 − G)8 F) +
)∑
8=1

�ℓ (H8 − G)8 F, H8 − I8) =

− 1
[
�k (F, F)) −

)∑
8=1

[
1
[
�k (F8 , F8−1) + ℓ(H8 − G)8 F8) − �ℓ (H8 − G)8 F8 , H8 − I8)

]
where the F8, 8 = 1, . . . ,) are given by the recursion

∇k(F8) = ∇k(F8−1) + [G8ℓ′(H8 − I8). (10.27)

Proof. The proof is based on telescopically summing the local identity

− 1
[
�k (F, F8−1) − ℓ(H8 − G)8 F) + �ℓ (H8 − G)8 F, H8 − I8) =

− 1
[
�k (F, F8) −

1
[
�k (F8 , F8−1) − ℓ(H8 − G)8 F8) + �ℓ (H8 − G)8 F8 , H8 − I8),

from 8 = 1 to 8 =) , where the F8 are given through the recursion (10.27). This local
identity can be either verified directly or obtained through two successive uses of
Lemma 56. �

248

As promised, Lemma 63 gathers F into a single term so that the integral over F can
be performed. Once this integral is performed, we are left with the following cost
function

�′ exp

(
−

)∑
8=1

1
[
�k (F8, F8−1) + ℓ(H8 − G)8 F8) − �ℓ (H8 − G)8 F8, H8 − I8)

)
,

where �′ is a constant obtained after integrating out F. The above cost function must
be recursivelyminimized over the I8, which are only allowed to be functions of {H 9 , 9 <
8}, respectively. It is not clear how to do so from the above expression. The next
lemma provides an identity that makes this recursive minimization straightforward.

Lemma 64. It holds that

ℓ(H8 − G)8 F8) − �ℓ (H8 − G)8 F8 , H8 − I8) =

ℓ(H8 − G)8 F8−1) +
1
[
(∇k(F8) − ∇k(F8−1))) (F8 − F8−1) − �ℓ (H8 − G)8 F8−1, H8 − I8).

Proof. This can be verified by perhaps tedious, but straightforward, calculations. �

In view of Lemma 64, the cost function to recursively minimize is

� ′ exp
(
−

)∑
8=1

1
[
�k (F8 , F8−1) + ℓ(H8 − G)8 F8−1) +

1
[
(∇k(F8) − ∇k(F8−1))) (F8 −F8−1)

− �ℓ (H8 − G)8 F8−1, H8 − I8)
)
.

Note that, at any time 8, the only term that I8 has control over (in the sense that it is a
term that depends only on past H 9) is the term

�ℓ (H8 − G)8 F8−1, H8 − I8).

(The other terms that are influenced by I8, such as F8, are influenced also by
H8—see (10.27)—so that I8 cannot knowledgeably minimize them.) The term
�ℓ (H8 − G)8 F8−1, H8 − I8) can be minimized, and in fact set to zero, by taking

I8 = G
)
8 F8−1, (10.28)

which when plugging into (10.27) yields SMD. This completes the proof. (The
attentive reader will have noticed that we needed Lemma 64 since it was not clear
how to minimize �ℓ (H8 − G)8 F8, H8 − I8) over I8, because we could not have taken
I8 = G

)
8
F8 as F8 depends on H8 and I8 is not allowed to.)

249

10.4 Symmetric SMD (SSMD)
Our proof of the risk-sensitive optimality of SMD has led us to an alternative, and
more symmetric version, of the algorithm that we refer to as symmetric SMD (or
SSMD) and which may be of independent interest. The SSMD iterations are given
by

∇k(F8) = ∇k(F8−1) + [G8
(
ℓ′(H8) − ℓ′(G)8 F8−1)

)
, F0. (10.29)

SSMD satisfies the following risk-sensitive optimality.

Theorem 65. Consider the model H8 = G)
8
F + E8, 8 ≥ 1, where F and {E8} are

independent random variables withF |{H8} ∼ 4−
1
[
�k (·,F0)−�ℓ (G)8 ·,H8) . Further, suppose

that {G8} are persistently exciting, and k − [!8 is strictly convex for all 8. Then the
solution to the following optimization problem

min
{I8}
E|{H8} exp

(
)∑
8=1

�ℓ (G)8 F, I8)
)
,

where the expectation is taken over F conditioned on the observations, and I8 is only
allowed to depend on observations up to time 8 − 1, is given by I8 = G)8 F8−1, where
{F8} are the SSMD iterates.

Proof. The proof is similar to that of Theorem 62 and is omitted for brevity. �

We note that the difference between SMD and SSMD is that the noise is now
distributed according to E8 ∼ 4−�ℓ (G

)
8
F,H8) , rather than E8 ∼ 4−ℓ(H8−G

)
8
F) , and that the

exponent of the cost function is �ℓ (G)8 F, I8), rather than �ℓ (H − G)8 F, H8 − I8). The
distributions and costs for SSMD appear to be more natural.

10.5 Mean-Square Convergence of SMD
In the previous sections, we showed several fundamental deterministic and stochastic
properties of SMD. One may ask how do these results relate to the conventional mean-
square convergence results, such as [150]. It turns out that the fundamental identity
(conservation law (10.18)) of SMD allows proving such stochastic convergence
results in a direct way (which avoids appealing to stochastic differential equations
and ergodic averaging). The time-varying version of the fundamental identity of
SMD is as follows.

�k (F, F0) +
)∑
8=1

[8; (E8) = �k (F, F)) +
)∑
8=1

(
�8 (F8, F8−1) + [8�!8 (F, F8−1)

)
.

(10.30)

250

As mentioned before, for vanishing step size, convergence of any algorithm is not
surprising, and is in fact trivial (because you are not updating anymore). However, the
more interesting question is whether the algorithm converges to anything interesting.
It turns out that when the data points are generated according to a stochastic model
with white noise, SMD converges to the “true” parameter. More specifically, consider
a model H8 = G)8 F + E8, 8 ≥ 1, where E8 are iid with E[E8] = 0 and E[E2

8
] = f2, and

the inputs G8 are persistently exciting. Note that this is different from the setting of
Theorem 62, in that the noises E8 need not be Gaussian or from the the exponential
family (the only assumption is whiteness), and the parameter F is deterministic. One
can show that SMD with decaying step size indeed converges to F, under suitable
conditions on the step size sequence.

Proposition 66. Consider H8 = G)8 F + E8, 8 ≥ 1, where E[E8] = 0, E[E8E 9] = f2X8 9 ,
and the G8 are persistently exciting. The stochastic mirror descent iterates for any
strongly convex potential k(·), for a square loss, converge to F in the mean-square
sense, if the step size sequence {[8} satisfies

∑∞
8=1 [8 = ∞,

∑∞
8=1 [

2
8
< ∞.

The step size conditions
∑∞
8=1 [8 = ∞,

∑∞
8=1 [

2
8
< ∞ are known as Robbins–Monro

[176] conditions.

Proof. For the square loss and a linear model, after some simple algebra, the
identity (10.30) reduces to the following form.

�k (F, F0) = �k (F, F)) +
)∑
8=1

(
�k (F8, F8−1)+

[84?,8E8 − [8 (4?,8 + E8)G)8 (F8 − F8−1) + [842
?,8

)
, (10.31)

where we have used the fact that 48 = 4?,8 + E8.

On the other hand, the update rule ∇k(F8) = ∇k(F8−1) + [8 (4?,8 + E8)G8 can be
expressed, using a Taylor expansion, as

F8 = ∇k−1 (
∇k(F8−1) + [8 (4?,8 + E8)G8

)
= F8−1 + [8"8 (4?,8 + E8)G8 +$ ([2

8),

where"8 := ∇2k(F8−1)
−1. This implies that�k (F8, F8−1) = 1

2 (F8−F8−1))∇2k(F8−1) (F8−
F8−1) +$ ([3

8
) = 1

2[
2
8
(4?,8 + E8)2G)8 "8G8 +$ ([3

8
). Plugging this into (10.31) leads to

�k (F, F0) = �k (F, F)) +
)∑
8=1

(
[84?,8E8 −

1
2
[2
8 (4?,8 + E8)2G)8 "8G8 + [842

?,8 +$ ([3
8)

)
.

(10.32)

251

Taking expected values from both sides, noting that 4?,8 and F8−1 are independent of
E8, we get

E[�k (F, F0)] = E[�k (F, F))] +
)∑
8=1

(
− f

2

2
[2
8 E

[
G)8 "8G8

]
− 1

2
[2
8 E

[
42
?,8G

)
8 "8G8

]
+ [8E

[
42
?,8

]
+$ ([3

8)
)
. (10.33)

From strong convexity ofk(·), we have∇2k(F8−1) � U�, and thereforeE
[
G)
8
"8G8

]
≤

1
U
‖G8‖2 and E

[
42
?,8
G)
8
"8G8

]
≤ 1

U
‖G8‖2E

[
42
?,8

]
. As a result, we have that

∑)
8=1 [8 (1 −

‖G8 ‖2
2U [8)E

[
42
?,8

]
< ∞ because

∑)
8=1 [

2
8
< ∞ and

∑)
8=1$ ([3

8
) < ∞, which implies

that E
[
42
?,8

]
goes to zero. If the inputs are persistently exciting, this implies that

E
[
‖F − F8−1‖2

]
→ 0, which means SMD converges to the true parameter, in

mean-square sense. �

10.6 Conclusion
In this chapter, we reviewed several fundamental properties of the stochastic mirror
descent (SMD) family of algorithms, and provided a new stochastic interpretation of
them, namely, that they are risk-sensitive optimal. We also provided a direct and
elementary proof of the stochastic convergence of SMD to the true parameter for
vanishing step size in the standard stochastic optimization setting. The risk-sensitive
optimality result generalizes a known result in the literature about the special case of
SGD (aka LMS). Our analysis inspired a new algorithm, which is a “more symmetric”
variant of SMD. Future work may concern studying this new algorithm and its
convergence properties in more detail.

252

BIBLIOGRAPHY

[1] 2015Top 500NorthAmerican SolarContractors.http://www.solarpowerworldonline.
com.

[2] Daron Acemoglu et al. Network security and contagion. Tech. rep. National
Bureau of Economic Research, 2013.

[3] Alessandro Achille and Stefano Soatto. “On the emergence of invariance and
disentangling in deep representations”. In: arXiv preprint arXiv:1706.01350
(2017).

[4] Hyoung Jun Ahn. “Random propagation in complex systems: nonlinear
matrix recursions and epidemic spread”. PhD thesis. California Institute of
Technology, 2014.

[5] Hyoung Jun Ahn and Babak Hassibi. “Global dynamics of epidemic spread
over complex networks”. In: Decision and Control (CDC), 2013 IEEE 52nd
Annual Conference on. IEEE. 2013, pp. 4579–4585.

[6] Hyoung Jun Ahn and Babak Hassibi. “On theMixing Time of the SISMarkov
Chain Model for Epidemic Spread”. In: Decision and Control (CDC), 2014
IEEE 53rd Annual Conference on. IEEE. 2014.

[7] Zeyuan Allen-Zhu et al. “A convergence theory for deep learning via over-
parameterization”. In: Proceedings of the 36th International Conference on
Machine Learning. PMLR, 2019.

[8] Tansu Alpcan and Tamer Basar. Network security: A decision and game-
theoretic approach. Cambridge University Press, 2010.

[9] Dario Amodei et al. “Deep speech 2: End-to-end speech recognition in
english and mandarin”. In: International Conference on Machine Learning.
2016, pp. 173–182.

[10] Veronica Araoz and Kurt Jörnsten. “Semi-Lagrangean approach for price
discovery in markets with non-convexities”. In: European Journal of Opera-
tional Research 214.2 (2011), pp. 411–417.

[11] Mario Arioli et al. “A block projection method for sparse matrices”. In: SIAM
Journal on Scientific and Statistical Computing 13.1 (1992), pp. 47–70.

[12] D. B. Arnold et al. “Model-Free Optimal Control of VAR Resources in
Distribution Systems: An Extremum Seeking Approach”. In: IEEE Trans-
actions on Power Systems PP.99 (2015), pp. 1–11. issn: 0885-8950. doi:
10.1109/TPWRS.2015.2502554.

253

[13] Navid Azizan. “Optimization Algorithms for Large-Scale Systems: From
Deep Learning to Energy Markets”. In: SIGMETRICS Performance Evalua-
tion Review 47.3 (2020), pp. 2–5. issn: 0163-5999. doi: 10.1145/3380908.
3380910.

[14] Navid Azizan and Babak Hassibi. “A Characterization of Stochastic Mirror
Descent Algorithms and their Convergence Properties”. In: 2019 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP).
2019, pp. 5167–5171. doi: 10.1109/ICASSP.2019.8682271.

[15] Navid Azizan and Babak Hassibi. “A Stochastic Interpretation of Stochastic
Mirror Descent: Risk-Sensitive Optimality”. In: 2019 58th IEEE Conference
on Decision and Control (CDC). 2019, pp. 3960–3965. doi: 10.1109/
CDC40024.2019.9030229.

[16] Navid Azizan and Babak Hassibi. “SIRS epidemics on complex networks:
Concurrence of exact Markov chain and approximated models”. In: 2015
54th IEEE Conference on Decision and Control (CDC). 2015, pp. 2919–2926.
doi: 10.1109/CDC.2015.7402660.

[17] Navid Azizan and Babak Hassibi. “Stochastic gradient/mirror descent: Mini-
max optimality and implicit regularization”. In: 2018 Neural Information
Processing Systems (NeurIPS) Deep Learning Theory Workshop. 2018.

[18] Navid Azizan and Babak Hassibi. “Stochastic gradient/mirror descent: Mini-
max optimality and implicit regularization”. In: 2019 International Confer-
ence on Learning Representations (ICLR). 2019.

[19] Navid Azizan et al. “A Study of Generalization of Stochastic Mirror Descent
Algorithms on Overparameterized Nonlinear Models”. In: 2020 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP).
2020, pp. 3132–3136. doi: 10.1109/ICASSP40776.2020.9053864.

[20] Navid Azizan et al. “Analysis of exact and approximated epidemic models
over complex networks”. In: arXiv preprint arXiv:1609.09565 (2016). url:
http://arxiv.org/abs/1609.09565.

[21] Navid Azizan et al. “Distributed Solution of Large-Scale Linear Systems
via Accelerated Projection-Based Consensus”. In: 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). 2018,
pp. 6358–6362. doi: 10.1109/ICASSP.2018.8462630.

[22] Navid Azizan et al. “Distributed Solution of Large-Scale Linear Systems
via Accelerated Projection-Based Consensus”. In: IEEE Transactions on
Signal Processing 67.14 (2019), pp. 3806–3817. doi: 10.1109/TSP.2019.
2917855.

[23] Navid Azizan et al. “Improved bounds on the epidemic threshold of exact
SIS models on complex networks”. In: 2016 55th IEEE Conference on
Decision and Control (CDC). 2016, pp. 3560–3565. doi: 10.1109/CDC.
2016.7798804.

254

[24] Navid Azizan et al. “Opportunities for Price Manipulation by Aggregators in
Electricity Markets”. In: SIGMETRICS Performance Evaluation Review 44.2
(2016), pp. 49–51. issn: 0163-5999. doi: 10.1145/3003977.3003995.

[25] Navid Azizan et al. “Opportunities for Price Manipulation by Aggregators
in Electricity Markets”. In: IEEE Transactions on Smart Grid 9.6 (2018),
pp. 5687–5698. doi: 10.1109/TSG.2017.2694043.

[26] Navid Azizan et al. “Optimal Pricing in Markets with Non-Convex Costs”. In:
Proceedings of the 2019 ACM Conference on Economics and Computation
(EC). Phoenix, AZ, USA, 2019, p. 595. isbn: 978-1-4503-6792-9. doi:
10.1145/3328526.3329575.

[27] Navid Azizan et al. “Optimal Pricing in Markets with Nonconvex Costs”. In:
Operations Research 68.2 (2020), pp. 480–496. doi: 10.1287/opre.2019.
1900.

[28] Navid Azizan et al. “Stochastic Mirror Descent on Overparameterized Non-
linear Models: Convergence, Implicit Regularization, and Generalization”. In:
2019 International Conference on Machine Learning (ICML) Generalization
Workshop. 2019.

[29] Norman TJ Bailey et al. The mathematical theory of infectious diseases and
its applications. Charles Griffin & Company Ltd, 5a Crendon Street, High
Wycombe, Bucks HP13 6LE., 1975.

[30] Alain Barrat et al. Dynamical processes on complex networks. Cambridge
University Press, 2008.

[31] Tamer Başar and Pierre Bernhard. H-infinity optimal control and related
minimax design problems: a dynamic game approach. Springer Science &
Business Media, 2008.

[32] Paulina Beato and Andreu Mas-Colell. “On marginal cost pricing with given
tax-subsidy rules”. In: Journal of Economic Theory 37.2 (1985), pp. 356–
365.

[33] Amir Beck and Marc Teboulle. “Mirror descent and nonlinear projected
subgradient methods for convex optimization”. In: Operations Research
Letters 31.3 (2003), pp. 167–175.

[34] Omar Ben-Ayed and Charles E Blair. “Computational difficulties of bilevel
linear programming”. In: Operations Research 38.3 (1990), pp. 556–560.

[35] Suzhi Bi and Ying Jun Zhang. “False-data injection attack to control real-
time price in electricity market”. In: Global Communications Conference
(GLOBECOM), 2013 IEEE. IEEE. 2013, pp. 772–777.

[36] Suzhi Bi and Ying Jun Zhang. “Using Covert Topological Information for
Defense Against Malicious Attacks on DC State Estimation”. In: Selected
Areas in Communications, IEEE Journal on 32.7 (2014), pp. 1471–1485.
issn: 0733-8716. doi: 10.1109/JSAC.2014.2332051.

255

[37] Ake Björck and Victor Pereyra. “Solution of Vandermonde systems of
equations”. In: Mathematics of Computation 24.112 (1970), pp. 893–903.

[38] Mette Bjørndal and Kurt Jörnsten. “A Partitioning Method that Generates
Interpretable Prices for Integer Programming Problems”. In: Handbook of
Power Systems II (2010), pp. 337–350.

[39] Mette Bjørndal and Kurt Jörnsten. “Equilibrium prices supported by dual
price functions in markets with non-convexities”. In: European Journal of
Operational Research 190.3 (2008), pp. 768–789.

[40] Elizabeth Bodine-Baron et al. “Minimizing the social cost of an epidemic”.
In: Game Theory for Networks. Springer, 2012, pp. 594–607.

[41] Severin Borenstein et al. “Market power in California electricity markets”.
In: Utilities Policy 5.3 (1995), pp. 219–236.

[42] S. Bose et al. “A unifyingmarket power measure for deregulated transmission-
constrained electricity markets”. In: Power Systems, IEEE Transactions on
(2015).

[43] Subhonmesh Bose et al. “The cost of an epidemic over a complex network:
A random matrix approach”. In: arXiv preprint arXiv:1309.2236 (2013).

[44] Stephen Boyd et al. “Distributed optimization and statistical learning via the
alternating direction method of multipliers”. In: Foundations and Trends®
in Machine Learning 3.1 (2011), pp. 1–122.

[45] Randall Bramley and Ahmed Sameh. “Row projection methods for large
nonsymmetric linear systems”. In: SIAM Journal on Scientific and Statistical
Computing 13.1 (1992), pp. 168–193.

[46] Donald J Brown. “Equilibrium analysis with non-convex technologies”. In:
Handbook of mathematical economics 4 (1991), pp. 1963–1995.

[47] Kevin Bullis. Why SolarCity Is Succeeding in a Difficult Solar Industry.
2012.

[48] James Bushnell et al. “An international comparison of models for measuring
market power in electricity”. In: Energy Modeling Forum Stanford University.
1999.

[49] California Independent System Operator.Market power and competitiveness.
http://www.caiso.com/1c5f/1c5fbe6a1a720.html. 1998.

[50] California Independent System Operator. Pricing Enhancements: Revised
StrawProposal.https://www.caiso.com/Documents/RevisedStrawProposal\
_PricingEnhancements.pdf. 2014.

[51] Yuan Cao and Quanquan Gu. “A Generalization Theory of Gradient Descent
for Learning Over-parameterized Deep ReLU Networks”. In: arXiv preprint
arXiv:1902.01384 (2019).

256

[52] Judith B Cardell et al. “Market power and strategic interaction in electricity
networks”. In: Resource and energy economics 19.1 (1997), pp. 109–137.

[53] Claudio Castellano and Romualdo Pastor-Satorras. “Thresholds for epidemic
spreading in networks”. In: Physical review letters 105.21 (2010), p. 218701.

[54] Eric Cator and Piet Van Mieghem. “Second-order mean-field susceptible-
infected-susceptible epidemic threshold”. In: Physical review E 85.5 (2012),
p. 056111.

[55] Nicolo Cesa-Bianchi et al. “Mirror descent meets fixed share (and feels
no regret)”. In: Advances in Neural Information Processing Systems. 2012,
pp. 980–988.

[56] Meeyoung Cha et al. “A measurement-driven analysis of information propa-
gation in the flickr social network”. In: Proceedings of the 18th international
conference on World wide web. ACM. 2009, pp. 721–730.

[57] Deepayan Chakrabarti et al. “Epidemic thresholds in real networks”. In: ACM
Transactions on Information and System Security (TISSEC) 10.4 (2008), p. 1.

[58] Pratik Chaudhari and Stefano Soatto. “Stochastic gradient descent performs
variational inference, converges to limit cycles for deep networks”. In:
International Conference on Learning Representations. 2018.

[59] Yue Chen et al. “Individual risk in mean field control with application to
automated demand response”. In: Decision and Control (CDC), 2014 IEEE
53rd Annual Conference on. IEEE. 2014, pp. 6425–6432.

[60] Carleton Coffrin et al. “NESTA, the NICTA energy system test case archive”.
In: arXiv:1411.0359 (2014).

[61] Stephan Dempe et al. Bilevel Programming Problems: Theory, Algorithms
and Applications to Energy Networks. Springer, 2015.

[62] Wei Deng and Wotao Yin. “On the global and linear convergence of the
generalized alternating direction method of multipliers”. In: Journal of
Scientific Computing (2012).

[63] Steven P Dirkse and Michael C Ferris. “The path solver: a nommonotone
stabilization scheme for mixed complementarity problems”. In: Optimization
Methods and Software 5.2 (1995), pp. 123–156.

[64] Moez Draief and Laurent Massouli. Epidemics and rumours in complex
networks. Cambridge University Press, 2010.

[65] Moez Draief et al. “Thresholds for virus spread on networks”. In:Proceedings
of the 1st international conference on Performance evaluation methodolgies
and tools. ACM. 2006, p. 51.

[66] Kimon Drakopoulos et al. “An efficient curing policy for epidemics on
graphs”. In: Network Science and Engineering, IEEE Transactions on 1.2
(2014), pp. 67–75.

257

[67] Simon S Du et al. “Gradient descent finds global minima of deep neural
networks”. In: arXiv preprint arXiv:1811.03804 (2018).

[68] John Duchi et al. “Adaptive subgradient methods for online learning and
stochastic optimization”. In: Journal of Machine Learning Research 12.Jul
(2011), pp. 2121–2159.

[69] Iain S Duff et al. “The augmented block Cimmino distributed method”. In:
SIAM Journal on Scientific Computing 37.3 (2015), A1248–A1269.

[70] Sanghamitra Dutta et al. “Short-Dot: Computing Large Linear Transforms
Distributedly Using Coded Short Dot Products”. In: Advances In Neural
Information Processing Systems. 2016, pp. 2092–2100.

[71] Electric Reliability Council of Texas. ERCOT protocols. http://www.
ercot.com. 2001.

[72] A Fall et al. “Epidemiological models and Lyapunov functions”. In:Math.
Model. Nat. Phenom 2.1 (2007), pp. 62–68.

[73] Michael C Ferris et al. “Mathematical programs with equilibrium constraints:
Automatic reformulation and solution via constrained optimization”. In:
(2002).

[74] Bruce A Francis. A course in H-infinity control theory. Berlin; New York:
Springer-Verlag, 1987.

[75] Francisco D Galiana et al. “Reconciling social welfare, agent profits, and
consumer payments in electricity pools”. In: IEEE Transactions on Power
Systems 18.2 (2003), pp. 452–459.

[76] Ayalvadi Ganesh et al. “The effect of network topology on the spread of
epidemics”. In: INFOCOM 2005. 24th Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings IEEE. Vol. 2. IEEE.
2005, pp. 1455–1466.

[77] Rainer Gemulla et al. “Large-scale matrix factorization with distributed
stochastic gradient descent”. In: Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM.
2011, pp. 69–77.

[78] Claudio Gentile. “The robustness of the p-norm algorithms”. In:Machine
Learning 53.3 (2003), pp. 265–299.

[79] S Gómez et al. “Discrete-time Markov chain approach to contact-based
disease spreading in complex networks”. In: EPL (Europhysics Letters) 89.3
(2010), p. 38009.

[80] Alex Graves et al. “Speech recognition with deep recurrent neural networks”.
In: 2013 IEEE international conference on acoustics, speech and signal
processing. IEEE. 2013, pp. 6645–6649.

258

[81] Paul R Gribik et al. “Market-clearing electricity prices and energy uplift”.
In: (2007).

[82] Adam J Grove et al. “General convergence results for linear discriminant
updates”. In: Machine Learning 43.3 (2001), pp. 173–210.

[83] Roger Guesnerie. “Pareto optimality in non-convex economies”. In: Econo-
metrica: Journal of the Econometric Society (1975), pp. 1–29.

[84] Zeynep H Gümüş and Christodoulos A Floudas. “Global optimization of
nonlinear bilevel programming problems”. In: Journal ofGlobalOptimization
20.1 (2001), pp. 1–31.

[85] Suriya Gunasekar et al. “Characterizing Implicit Bias in Terms of Optimiza-
tion Geometry”. In: International Conference on Machine Learning. 2018,
pp. 1827–1836.

[86] Suriya Gunasekar et al. “Implicit Bias of Gradient Descent on Linear
Convolutional Networks”. In: arXiv preprint arXiv:1806.00468 (2018).

[87] Suriya Gunasekar et al. “Implicit Regularization in Matrix Factorization”. In:
Advances in Neural Information Processing Systems. 2017, pp. 6152–6160.

[88] W. Halbawi et al. “Sparse and Balanced Reed–Solomon and Tamo–Barg
Codes”. In: IEEE Transactions on Information Theory 65.1 (2019), pp. 118–
130. doi: 10.1109/TIT.2018.2873128.

[89] Wael Halbawi et al. “Improving Distributed Gradient Descent Using Reed-
Solomon Codes”. In: 2018 IEEE International Symposium on Information
Theory (ISIT). 2018, pp. 2027–2031. doi: 10.1109/ISIT.2018.8437467.

[90] W Halbawi et al. “Balanced Reed-Solomon codes”. In: 2016 IEEE Interna-
tional Symposium on Information Theory (ISIT). 2016, pp. 935–939. doi:
10.1109/ISIT.2016.7541436.

[91] W Halbawi et al. “Balanced Reed-Solomon codes for all parameters”. In:
2016 IEEE Information Theory Workshop (ITW). 2016, pp. 409–413. doi:
10.1109/ITW.2016.7606866.

[92] He Hao et al. “Ancillary service for the grid via control of commercial
building hvac systems”. In: American Control Conference (ACC), 2013.
IEEE. 2013, pp. 467–472.

[93] Mor Harchol-Balter. “The Effect of Heavy-Tailed Job Size Distributions on
Computer System Design.” In: Proc. of ASA-IMS Conf. on Applications of
Heavy Tailed Distributions in Economics, Engineering and Statistics. 1999.

[94] Mor Harchol-Balter and Allen B Downey. “Exploiting process lifetime
distributions for dynamic load balancing”. In:ACMTransactions onComputer
Systems (TOCS) 15.3 (1997), pp. 253–285.

259

[95] Babak Hassibi and Thomas Kailath. “Hoo Optimal Training Algorithms
and their Relation to Backpropagation”. In: Advances in Neural Information
Processing Systems 7. 1995, pp. 191–198.

[96] BabakHassibi et al. “HooOptimality Criteria for LMS and Backpropagation”.
In: Advances in Neural Information Processing Systems 6. 1994, pp. 351–358.

[97] Babak Hassibi et al. “Hoo optimality of the LMS algorithm”. In: IEEE
Transactions on Signal Processing 44.2 (1996), pp. 267–280.

[98] Babak Hassibi et al. Indefinite-Quadratic Estimation and Control: A Unified
Approach to H2 and H-infinity Theories. Vol. 16. SIAM, 1999.

[99] Elad Hazan. “Introduction to Online Convex Optimization”. In: Foundations
and Trends in Optimization 2.3-4 (2016), pp. 157–325. issn: 2167-3888.

[100] Bingsheng He and Xiaoming Yuan. “On the $ (1/=) convergence rate of
the Douglas-Rachford alternating direction method”. In: SIAM Journal on
Numerical Analysis (2012).

[101] Kaiming He et al. “Deep residual learning for image recognition”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 770–778.

[102] Herbert W Hethcote. “The mathematics of infectious diseases”. In: SIAM
review 42.4 (2000), pp. 599–653.

[103] William W Hogan and Brendan J Ring. “On minimum-uplift pricing for
electricity markets”. In: Electricity Policy Group (2003).

[104] CoryHoneyman.U.S. Residential Solar Economic Outlook 2016-2020. http:
//www.greentechmedia.com/research/report/us-residential-
solar-economic-outlook-2016-2020. Report.

[105] http://nyssmartgrid.com/innovation-highlights/rev-proceeding.

[106] http://www.utilitydive.com/news/ferc-grants-nyiso-request-to-give-behind-the-
meter-resources-market-access/419791/.

[107] Bowen Hua and Ross Baldick. “A convex primal formulation for convex hull
pricing”. In: IEEE Transactions on Power Systems 32.5 (2017), pp. 3814–
3823.

[108] David Jacobson. “Optimal stochastic linear systems with exponential per-
formance criteria and their relation to deterministic differential games”. In:
IEEE Transactions on Automatic control 18.2 (1973), pp. 124–131.

[109] Philippe Jacquet et al. “Information propagation speed in mobile and delay
tolerant networks”. In: Information Theory, IEEE Transactions on 56.10
(2010), pp. 5001–5015.

[110] J John. SolarCity and Tesla: a utility’s worst nightmare? http://www.
greentechmedia . com / articles / read / SolarCitys - Networked -
Grid-Ready-Energy-Storage-Fleet. 2014.

260

[111] Stefan Kaczmarz. “Angenäherte auflösung von systemen linearer gleichun-
gen”. In: Bulletin International de l’Academie Polonaise des Sciences et des
Lettres 35 (1937), pp. 355–357.

[112] Kenji Kawaguchi. “Deep learning without poor local minima”. In: Advances
in Neural Information Processing Systems. 2016, pp. 586–594.

[113] William O Kermack and Anderson G McKendrick. “A contribution to the
mathematical theory of epidemics”. In: Proceedings of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences. Vol. 115. 772.
The Royal Society. 1927, pp. 700–721.

[114] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic opti-
mization”. In: arXiv preprint arXiv:1412.6980 (2014).

[115] Jyrki Kivinen et al. “The p-norm generalization of the LMS algorithm for
adaptive filtering”. In: IEEE Transactions on Signal Processing 54.5 (2006),
pp. 1782–1793.

[116] B. Kocuk et al. “Inexactness of SDP Relaxation and Valid Inequalities for
Optimal Power Flow”. In: IEEE Transactions on Power Systems 31.1 (2016),
pp. 642–651. issn: 0885-8950. doi: 10.1109/TPWRS.2015.2402640.

[117] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features
from tiny images. Tech. rep. Citeseer, 2009.

[118] Alex Krizhevsky et al. “Imagenet classification with deep convolutional
neural networks”. In: Advances in Neural Information Processing Systems.
2012, pp. 1097–1105.

[119] Yann LeCun et al. “Deep learning”. In: Nature 521.7553 (2015), p. 436.

[120] Yann LeCun et al. “Gradient-based learning applied to document recognition”.
In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[121] Yann LeCun et al. The MNIST database of handwritten digits. 1998.

[122] Jason D Lee et al. “Gradient descent only converges to minimizers”. In:
Conference on Learning Theory. 2016, pp. 1246–1257.

[123] Kangwook Lee et al. “Speeding up distributed machine learning using codes”.
In: Information Theory (ISIT), 2016 IEEE International Symposium on. IEEE.
2016, pp. 1143–1147.

[124] Will Leland andTeunis JOtt.Load-balancing heuristics and process behavior.
Vol. 14. 1. ACM, 1986.

[125] Laurent Lessard et al. “Analysis and design of optimization algorithms
via integral quadratic constraints”. In: SIAM Journal on Optimization 26.1
(2016), pp. 57–95.

[126] David Asher Levin et al. Markov chains and mixing times. American
Mathematical Soc., 2009.

261

[127] Chun-Hsien Li et al. “Analysis of epidemic spreading of an SIRS model
in complex heterogeneous networks”. In: Communications in Nonlinear
Science and Numerical Simulation 19.4 (2014), pp. 1042–1054.

[128] Songze Li et al. “Fundamental tradeoff between computation and communi-
cation in distributed computing”. In: Information Theory (ISIT), 2016 IEEE
International Symposium on. IEEE. 2016, pp. 1814–1818.

[129] Yuanzhi Li and Yingyu Liang. “Learning overparameterized neural networks
via stochastic gradient descent on structured data”. In: Advances in Neural
Information Processing Systems. 2018, pp. 8157–8166.

[130] Guanfeng Liang and Ulas C Kozat. “TOFEC: Achieving optimal throughput-
delay trade-off of cloud storage using erasure codes”. In: INFOCOM, 2014
Proceedings IEEE. IEEE. 2014, pp. 826–834.

[131] George Liberopoulos and Panagiotis Andrianesis. “Critical review of pricing
schemes in markets with non-convex costs”. In: Operations Research 64.1
(2016), pp. 17–31.

[132] Yashen Lin et al. “Experimental evaluation of frequency regulation from
commercial building HVAC systems”. In: Smart Grid, IEEE Transactions
on 6.2 (2015), pp. 776–783.

[133] Nicole Litvak. U.S. Commercial Solar Landscape 2016-2020. http://www.
greentechmedia.com/research/report/us-commercial-solar-
landscape-2016-2020. Report.

[134] Ji Liu et al. “An asynchronous distributed algorithm for solving a linear
algebraic equation”. In: Decision and Control (CDC), 2013 IEEE 52nd
Annual Conference on. IEEE. 2013, pp. 5409–5414.

[135] K Liu. CIFAR10 with PyTorch. https : / / github . com / kuangliu /
pytorch-cifar.

[136] Yao Liu et al. “False data injection attacks against state estimation in electric
power grids”. In: ACM Transactions on Information and System Security
(TISSEC) 14.1 (2011), p. 13.

[137] Cong Ma et al. “Implicit Regularization in Nonconvex Statistical Estima-
tion: Gradient Descent Converges Linearly for Phase Retrieval and Matrix
Completion”. In: International Conference on Machine Learning. 2018,
pp. 3351–3360.

[138] SiyuanMa et al. “The Power of Interpolation: Understanding the Effectiveness
of SGD in Modern Over-parametrized Learning”. In: Proceedings of the
35th International Conference on Machine Learning. Vol. 80. PMLR, 2018,
pp. 3325–3334.

262

[139] Layla Majzoubi and Farshad Lahouti. “Analysis of distributed ADMM
algorithm for consensus optimization in presence of error”. In: Proceedings
of the 2016 IEEE Confs. Audio, Speech and Signal Processing (ICASSP).
2016.

[140] Yuri Makarov et al. “INCORPORATION OFWIND POWER RESOURCES
INTO THE CALIFORNIA ENERGY MARKET”. In: ().

[141] Matrix Market. http://math.nist.gov/MatrixMarket/. Accessed:
May 2017.

[142] Poorya Mianjy et al. “On the Implicit Bias of Dropout”. In: International
Conference on Machine Learning. 2018, pp. 3537–3545.

[143] Volodymyr Mnih et al. “Human-level control through deep reinforcement
learning”. In: Nature 518.7540 (2015), p. 529.

[144] João FC Mota et al. “D-ADMM: A communication-efficient distributed
algorithm for separable optimization”. In: IEEE Transactions on Signal
Processing 61.10 (2013), pp. 2718–2723.

[145] Alexis L Motto and Francisco D Galiana. “Equilibrium of auction mar-
kets with unit commitment: The need for augmented pricing”. In: IEEE
Transactions on Power Systems 17.3 (2002), pp. 798–805.

[146] Shaoshuai Mou et al. “A distributed algorithm for solving a linear alge-
braic equation”. In: IEEE Transactions on Automatic Control 60.11 (2015),
pp. 2863–2878.

[147] Angelia Nedic and Soomin Lee. “On stochastic subgradient mirror-descent
algorithm with weighted averaging”. In: SIAM Journal on Optimization 24.1
(2014), pp. 84–107.

[148] Matias Negrete-Pincetic and Sean Meyn. “Markets for differentiated electric
power products in a Smart Grid environment”. In: Power and Energy Society
General Meeting, 2012 IEEE. IEEE. 2012, pp. 1–7.

[149] Arkadii Nemirovski and David Borisovich Yudin. “Problem complexity and
method efficiency in optimization.” In: (1983).

[150] Arkadi Nemirovski et al. “Robust stochastic approximation approach to
stochastic programming”. In: SIAM Journal on optimization 19.4 (2009),
pp. 1574–1609.

[151] Yurii Nesterov. “A method of solving a convex programming problem with
convergence rate $ (1/:2)”. In: Soviet Mathematics Doklady. Vol. 27. 2.
1983, pp. 372–376.

[152] Yurii Nesterov. Introductory lectures on convex optimization: A basic course.
Vol. 87. Springer Science & Business Media, 2013.

[153] Yurii Nesterov. “Primal-dual subgradient methods for convex problems”. In:
Mathematical programming 120.1 (2009), pp. 221–259.

263

[154] Behnam Neyshabur et al. “Geometry of optimization and implicit regulariza-
tion in deep learning”. In: arXiv preprint arXiv:1705.03071 (2017).

[155] Cameron Nowzari et al. “Analysis and Control of Epidemics: A Survey of
Spreading Processes on Complex Networks”. In: Control Systems, IEEE 36.1
(2016), pp. 26–46.

[156] Cameron Nowzari et al. “Analysis and Control of Epidemics: A sur-
vey of spreading processes on complex networks”. In: arXiv preprint
arXiv:1505.00768 (2015).

[157] Cameron Nowzari et al. “Stability analysis of generalized epidemic models
over directed networks”. In: Decision and Control (CDC), 2014 IEEE 53rd
Annual Conference on. IEEE. 2014, pp. 6197–6202.

[158] Elli Ntakou and Michael Caramanis. “Distribution network electricity market
clearing: Parallelized PMP algorithms with minimal coordination”. In:
Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on. IEEE.
2014, pp. 1687–1694.

[159] Richard P O’Neill et al. “Efficient market-clearing prices in markets with
nonconvexities”. In: European journal of operational research 164.1 (2005),
pp. 269–285.

[160] Masaki Ogura and Victor M Preciado. “Second-Order Moment-Closure for
Tighter Epidemic Thresholds”. In: arXiv preprint arXiv:1706.08602 (2017).

[161] Shmuel S Oren. “Economic inefficiency of passive transmission rights in
congested electricity systems with competitive generation”. In: The Energy
Journal (1997), pp. 63–83.

[162] Andrew L Ott. “Experience with PJM market operation, system design, and
implementation”. In: Power Systems, IEEE Transactions on 18.2 (2003),
pp. 528–534.

[163] Samet Oymak and Mahdi Soltanolkotabi. “Overparameterized Nonlinear
Learning: Gradient Descent Takes the Shortest Path?” In: Proceedings of the
36th International Conference on Machine Learning. PMLR, 2019.

[164] Xinghao Pan et al. “Revisiting Distributed Synchronous SGD”. In: arXiv
preprint arXiv:1702.05800 (2017).

[165] Romualdo Pastor-Satorras et al. “Epidemic processes in complex networks”.
In: Reviews of modern physics 87.3 (2015), p. 925.

[166] David B Patton et al. “2013 assessment of the electricity markets in new
england”. In: Potomac Economics (2014).

[167] Mathew Penrose. Random geometric graphs. Vol. 5. Oxford University Press
Oxford, 2003.

264

[168] Joseph E Phelps et al. “Viral marketing or electronic word-of-mouth adver-
tising: Examining consumer responses and motivations to pass along email”.
In: Journal of advertising research 44.04 (2004), pp. 333–348.

[169] Boris T Polyak. “Some methods of speeding up the convergence of iteration
methods”. In: USSR Computational Mathematics and Mathematical Physics
4.5 (1964), pp. 1–17.

[170] B Aditya Prakash et al. “Threshold conditions for arbitrary cascade models
on arbitrary networks”. In: Knowledge and information systems 33.3 (2012),
pp. 549–575.

[171] Maxim Raginsky and Jake Bouvrie. “Continuous-time stochastic mirror
descent on a network: Variance reduction, consensus, convergence”. In: 2012
IEEE 51st IEEE Conference on Decision and Control (CDC). IEEE. 2012,
pp. 6793–6800.

[172] Netanel Raviv et al. “Gradient Coding from Cyclic MDSCodes and Expander
Graphs”. In: arXiv preprint arXiv:1707.03858 (2017).

[173] Benjamin Recht et al. “Hogwild: A lock-free approach to parallelizing
stochastic gradient descent”. In: Advances in Neural Information Processing
Systems. 2011, pp. 693–701.

[174] Irving Reed and Gus Solomon. “Polynomial codes over certain finite fields”.
In: Journal of the Society for Industrial & Applied Mathematics (1960).

[175] Matthew Richardson and Pedro Domingos. “Mining knowledge-sharing
sites for viral marketing”. In: Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM.
2002, pp. 61–70.

[176] Herbert Robbins and Sutton Monro. “A stochastic approximation method”.
In: The annals of mathematical statistics (1951), pp. 400–407.

[177] Carlos Ruiz et al. “Pricing non-convexities in an electricity pool”. In: IEEE
Transactions on Power Systems 27.3 (2012), pp. 1334–1342.

[178] Herbert E Scarf. “Mathematical programming and economic theory”. In:
Operations Research 38.3 (1990), pp. 377–385.

[179] Herbert E Scarf. “The allocation of resources in the presence of indivis-
ibilities”. In: The Journal of Economic Perspectives 8.4 (1994), pp. 111–
128.

[180] David T Scheffman and Pablo T Spiller. “Geographic market definition under
the US Department of Justice Merger Guidelines”. In: Journal of Law and
Economics (1987), pp. 123–147.

[181] DaneASchiro et al. “ConvexHull Pricing in ElectricityMarkets: Formulation,
Analysis, and Implementation Challenges”. In: IEEE Transactions on Power
Systems 31.5 (2016), pp. 4068–4075.

265

[182] Richard Schmalensee and Bennett W Golub. “Estimating effective concen-
tration in deregulated wholesale electricity markets”. In: The RAND Journal
of Economics (1984), pp. 12–26.

[183] Shai Shalev-Shwartz. “Online Learning and Online Convex Optimization”.
In: Foundations and Trends in Machine Learning 4.2 (2012), pp. 107–194.
issn: 1935-8237.

[184] A Sheffrin and Jing Chen. “Predicting market power in wholesale electricity
markets”. In: Proc. of the Western Conference of the Advances in Regulation
and Competition, South Lake Tahoe. 2002.

[185] Wei Shi et al. “On the Linear Convergence of the ADMM in Decentralized
Consensus Optimization.” In: IEEE Trans. Signal Processing 62.7 (2014),
pp. 1750–1761.

[186] Shift factor: methodology and example. http://www.caiso.com/docs/
2004/02/13/200402131609438684.pdf. 2004.

[187] Zhisheng Shuai and Pauline van den Driessche. “Global stability of infectious
disease models using Lyapunov functions”. In: SIAM Journal on Applied
Mathematics 73.4 (2013), pp. 1513–1532.

[188] Ravid Shwartz-Ziv and Naftali Tishby. “Opening the black box of deep neural
networks via information”. In: arXiv preprint arXiv:1703.00810 (2017).

[189] David Silver et al. “Mastering the game of Go with deep neural networks
and tree search”. In: Nature 529.7587 (2016), pp. 484–489.

[190] Dan Simon. Optimal state estimation: Kalman, H infinity, and nonlinear
approaches. John Wiley & Sons, 2006.

[191] Fridrich Sloboda. “A projection method of the Cimmino type for linear
algebraic systems”. In: Parallel computing 17.4-5 (1991), pp. 435–442.

[192] Solar Energy Industries Association (SEIA). http://www.seia.org/
state-solar-policy. Accessed: 2016-05-26.

[193] Mahdi Soltanolkotabi et al. “Theoretical insights into the optimization
landscape of over-parameterized shallow neural networks”. In: arXiv preprint
arXiv:1707.04926 (2017).

[194] Daniel Soudry et al. “The implicit bias of gradient descent on separable
data”. In: arXiv preprint arXiv:1710.10345 (2017).

[195] Jason L Speyer et al. “Optimal stochastic estimation with exponential cost
criteria”. In: [1992] Proceedings of the 31st IEEE Conference on Decision
and Control. IEEE. 1992, pp. 2293–2299.

[196] Jason Speyer et al. “Optimization of stochastic linear systems with additive
measurement and process noise using exponential performance criteria”. In:
IEEE Transactions on Automatic Control 19.4 (1974), pp. 358–366.

266

[197] Rashish Tandon et al. “Gradient Coding”. In: NIPS. 2016, pp. 1–12. arXiv:
1612.03301. url: http://arxiv.org/abs/1612.03301.

[198] Rashish Tandon et al. “Gradient Coding: Avoiding Stragglers in Distributed
Learning”. In: Proceedings of the 34th International Conference on Machine
Learning. 2017, pp. 3368–3376. url: http://proceedings.mlr.press/
v70/tandon17a.html.

[199] Tijmen Tieleman and Geoffrey Hinton. “Lecture 6.5-rmsprop: Divide the
gradient by a running average of its recent magnitude”. In: COURSERA:
Neural networks for machine learning 4.2 (2012), pp. 26–31.

[200] John Nikolas Tsitsiklis. Problems in decentralized decision making and
computation. Tech. rep. Massachusetts Inst of Tech Cambridge Lab for
Information and Decision Systems, 1984.

[201] Ralph Turvey. “Marginal cost”. In: The Economic Journal 79.314 (1969),
pp. 282–299.

[202] Paul Twomey and Karsten Neuhoff. “Wind power and market power in
competitive markets”. In: Energy Policy 38.7 (2010), pp. 3198–3210.

[203] Paul Twomey et al. A Review of the Monitoring of Market Power: The
Possible Roles of TSOs in Monitoring for Market Power Issues in Congested
Transmission Systems. Tech. Report. 2015.

[204] Piet VanMieghem. “Decay towards the overall-healthy state in SIS epidemics
on networks”. In: arXiv preprint arXiv:1310.3980 (2013).

[205] Piet VanMieghemy et al. “An upper bound for the epidemic threshold in exact
Markovian SIR and SIS epidemics on networks”. In: Decision and Control
(CDC), 2014 IEEE 53rd Annual Conference on. IEEE. 2014, pp. 6228–6233.

[206] Kerstin Vännman. “Estimators based on order statistics from a Pareto
distribution”. In: Journal of the American Statistical Association 71.355
(1976), pp. 704–708.

[207] Xuan Wang et al. “A Distributed Algorithm for Least Square Solutions of
Linear Equations”. In: arXiv preprint arXiv:1709.10157 (2017).

[208] Yang Wang et al. “Epidemic spreading in real networks: An eigenvalue
viewpoint”. In: Reliable Distributed Systems, 2003. Proceedings. 22nd
International Symposium on. IEEE. 2003, pp. 25–34.

[209] EricWesoff.Earnings From SunPower, Tesla, Enphase, Plus NewFunding for
Sunnova, SolarCity, 1366, Siva, Nexeon. http://www.greentechmedia.
com/articles/read/Earnings-from-SunPower-Tesla-Enphase-
and-New-Funding-for-Sunnova-SolarCi. 2016.

[210] Peter Whittle. Risk-sensitive optimal control. John Wiley & Son Ltd, 1990.

267

[211] Ashia C Wilson et al. “The marginal value of adaptive gradient methods in
machine learning”. In: Advances in Neural Information Processing Systems.
2017, pp. 4151–4161.

[212] Laurence A Wolsey. “Integer programming duality: Price functions and
sensitivity analysis”. In: Mathematical Programming 20.1 (1981), pp. 173–
195.

[213] Yonghui Wu et al. “Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation”. In: arXiv preprint
arXiv:1609.08144 (2016).

[214] Lin Xiao. “Dual averaging methods for regularized stochastic learning and
online optimization”. In: Journal of Machine Learning Research 11.Oct
(2010), pp. 2543–2596.

[215] Lin Xiao and Stephen Boyd. “Fast linear iterations for distributed averaging”.
In: Systems & Control Letters 53.1 (2004), pp. 65–78.

[216] Le Xie et al. “False data injection attacks in electricity markets”. In: Smart
Grid Communications (SmartGridComm), 2010 First IEEE International
Conference on. IEEE. 2010, pp. 226–231.

[217] Le Xie et al. “Integrity data attacks in power market operations”. In: Smart
Grid, IEEE Transactions on 2.4 (2011), pp. 659–666.

[218] Lin Xu and Ross Baldick. “Transmission-constrained residual demand
derivative in electricity markets”. In: Power Systems, IEEE Transactions on
22.4 (2007), pp. 1563–1573.

[219] Lin Xu and Yixin Yu. “Transmission constrained linear supply function
equilibrium in power markets: method and example”. In: Power System
Technology, 2002. Proceedings. PowerCon 2002. International Conference
on. Vol. 3. IEEE. 2002, pp. 1349–1354.

[220] Qian Yu et al. “Polynomial Codes: an Optimal Design for High-Dimensional
Coded Matrix Multiplication”. In: arXiv preprint arXiv:1705.10464 (2017).

[221] Yang Yu et al. “Do wind power producers have market power and exercise
it?” In: PES General Meeting| Conference & Exposition, 2014 IEEE. IEEE.
2014, pp. 1–5.

[222] Kun Yuan et al. “On the convergence of decentralized gradient descent”. In:
SIAM Journal on Optimization 26.3 (2016), pp. 1835–1854.

[223] Baosen Zhang et al. “An optimal and distributedmethod for voltage regulation
in power distribution systems”. In: Power Systems, IEEE Transactions on
30.4 (2015), pp. 1714–1726.

[224] Chiyuan Zhang et al. “Understanding deep learning requires rethinking
generalization”. In: arXiv preprint arXiv:1611.03530 (2016).

268

[225] Ruiliang Zhang and James T Kwok. “Asynchronous Distributed ADMM for
Consensus Optimization.” In: ICML. 2014, pp. 1701–1709.

[226] Tongxin Zheng and Eugene Litvinov. “Ex post pricing in the co-optimized
energy and reserve market”. In: IEEE Trans. on Power Sys. 21.4 (2006),
pp. 1528–1538.

[227] Zhengyuan Zhou et al. “Stochastic Mirror Descent in Variationally Coherent
Optimization Problems”. In: Advances in Neural Information Processing
Systems. 2017, pp. 7043–7052.

[228] Martin Zinkevich et al. “Parallelized stochastic gradient descent”. In: Ad-
vances in neural information processing systems. 2010, pp. 2595–2603.

