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ABSTRACT

This paper is an analysis of the deflection curve formed by a
centrifugally loaded tape which traverses an annular gap. The derived
differential equation which describes the system is non-linear but
possesses an exact closed form solution in terms of elliptic integrals.
A simplified solution of the approximate linearized differential
equation is also obtained.

The theoretically obtained results were checked by obtaining
an actual trace of a curve on a model which represented the problem
as stated, The theoretical and experimental results agreed within
the limits of accuracy imposed by the apparatus used. Several dif-
ferent cases are discussed which indicate the effect of the signifi-

cant parameters.,



iii
TABLE OF CONTENTS
PART PAGE
l INTRODUCTION. « o o ¢ o o s s o o o o o o o o s o o o o 1
L THEORETICAL SOLUTION OF THE CURVE « o o o o o ¢ « s o o 3

1l THEORETICAL SOLUTION FOR THE LENGTH OF THE
TAPE l N THE GAP. ® . ® ® ® . L] L [ L4 L] L [ 2 L ® ® @ 15

v SOLUTION OF THE LINEARIZED DIFFERENTIAL EQUATION. « « o 17

) AN APPROX|MATE NON-LINEAR SOLUTION. ¢ ¢ ¢ ¢ ¢ o o o o « 19

vi NUMERICAL INTEGRATION PROCEDURE ¢ o o « o o o o « o o o 20
Vi EXPERIMENTAL PROCEDURE. & o« o o « o e o o o o o o o o o 26
Vil RESULTS ¢ ¢ ¢ o ¢ 0 o o o o s s s s o s s o o o o s s 30
IX DISCUSSION OF RESULTS AND CONCLUSIONS & v ¢ o« o o « » o 36

REFERENCES. L ] ® . - L * L ] ® * L] ® ® - L] L *® L] ® ® ® - *® 38
APPEND'X had SA[\WLE CALCULAT'ONSO ¢ ® ® & € © ¢ o s & o @ 39



FIGURE

ot

LHWMN

10
11

iv

TABLE OF FIGURES

Axial View of the Curve in the Gap.

A Typical Element of the Curve. .

emaxVSoﬂoooooooooo-

Theoretical and Experimental Curves

f'orq=0.2........

Theoretical and Experimental Curves

f'or"r]=0-4..._.....

Theoretical and Experimental Curves

for =080 ¢« o 6 ¢ v o o
Experimental Apparatuse « « « « &
Experimental Curve for n = 0.2, .
Experimental Curve for n = 0.4, .

Experimental Curve for n = 0,8. .

®

® ® ® [ ] . *
L] L L] L - L]

of © Vs. 7

L [ 4 . * *® ®

of © Vse 1

* *® L4 * L] L4

of © Vs. g

e & & 8 © ©
* ® * L L L
L) L] L ® L] L
° L ] L] ® @ L4

4 & ¢ o o @

Experimental Curve for Symmetric Case Where n =

PAGE

14

23

24

25
27
31
32
33
34



-l=
. INTRODUCTION

The problem considered arose in conjunction with work done at
the International Business Machines research laboratory at San Jose,
California during the summer of 1957. As formulated here however,
the problem is of rather limited practical significance, as far as
is known, but it is interesting when treated as a purely academic
problems This is especially true since it is a system described by
a non=linear differential equation which possesses an exact closed
form solution. Any one familiar with non-linear problems knows that
a problem of this type seldom occurs.

The problem consists of finding an expression for a curve
formed in the following manner. |f there is uniform density length
medium which traverses an annular gap between an outer rim and an
irner hub, the medium will assume a particular curve when the entire
system is rotated. A thin tape gives a good approximation of a uni-
form density length medium, therefore this medium will hereafter be
referred to as a tape. Since the system is rotating, the tape will
be acted upon by centrifugal force and if the annular gap is in a
horizontal plane the effect of gravity is eliminateds The problem
is strictly two~dimensionale The tape must, of course, be fastened
to the hub and rim since it is under tension and for this problem
it must be fastened at some distance from the points of contact, i.e.
there must be no discontinuity in the slope of the tape at the point
of contact. This may be stated another way as follows: the curve
of the tape is to be tangent to the concentric circles formed by the

hub and rim at the point of contact with each other. [f there are
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several layers of tape on the hub and rim the tape will then be essen-
tially fastened to each by fricticnal force in a way that will satisfy
the problem as stated. That, then, is the problem to be analyzed in

this paper.
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1. THEORETICAL SOLUTION OF THE CURVE

The method used to derive the differential equations which des~
cribe the system was to take an element of the tape and sum the forces
in the radial direction and the forces in the direction perpendicular
to the radius which act on the element. The only external force
acting on the tape is that due to the centripetal acceleration and is
directed along the radius.

Referring to figure 1, R; is the radius of the hub, and R, is
the radius of the rim, i.es R and R, are the inner and outer radii
of the gap respectively. The angle 6 is the angle measured from
the point of coﬁtact with the hub to any point on the tape of radius
R in the gap. emax is the angle measured to the point of contact with

/
the rime Therefore
6=0 when R=R

8= emax when R= R2

The angle a is the angle between the tangent to the curve of the
tape at any point and a line perpendicular to the radius at that point.
Referring to figure 2, taking an element of the tape and summing

the forces acting on it in a direction perpendicular to the radius

givess
2
T cosae (T+AT) cos (@ + AT - 4A8) = oRw (RAB) | sin A9 (1)
cos a 2
where
T = tensicn force

p = mass per unit length

® = angular velocity
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Expanding this gives:
Tcosa=T cos a cos Aa cos A + T sin a sin Ao cos A
- T sin a cos Aa sin 48 = T cos a sin Aa sin AO
- AT cos a cos Ao cos A8 + AT sin a sin Aa sin A8
~ AT sin a cos Aa sin AD = AT cos a sin Aa sin 40

22
=B sin %?
cos a

Dividing by A@ and taking the limit as A8 =+ O:

T sina %% - T sina = %% cos a =0
or

%cosa-Tsina(%é‘-l):O (2)
Referring again to figure 2, summing the forces in the radial direc~

tion gives:

2
T sina = (T + AT) sin (@ + Aa = A8) = Qﬁgtﬁﬁﬁgl . cos %9’ (3)

Expanding this gives:
Tsina =T sin a cos Aq cos A0 = T cos a sin Aa cos AD
+ T cos a cos Ax sin &0 = T sin a sin Aa sin A
~ AT sin a cos Ax cos A0 = AT cos a sin Aa cos AD
+ AT cos a cos o sin A0 - AT sin a sin Aa sin A0

22

) A0 il
cos @ 9% 72

Dividing by A0 and taking the limit as A —+ O:

2.2
~T cos a'g% + T cosa=- %% sin a ='§§:%; (4)

Equations 2 and 4 are the differential equations which describe

the system. Referring to figure 1,
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tan a = 9%5 (5)

from which we see that the curve may be found by solving the integral:

_ dR
0= J2 R tan a ©)
1

In order to do this we must be able to express the angle a as
a function of the radius R. This can be found from equations 3 and 4
together with the boundary conditions. Dividing equation 2 by cos a

and substituting equation 5 gives:

%—Ttana%+%%=0 4D
multiplying by %Q gives:
%I—tanada+%8'=0 (8)

Equation 8 is integrable in Ty ay and R with the result that:

In T+ 1n cos a + In R = const, (9)
Taking the anti-log of both sides gives:

TR cos a = C, | (10)

Multiplying equation 2 by cos a and equation 4 by sin a and subtracting

gives:
22 .
dar _ _ pRasing (11)
do cos a

Again using equation 5 and multiplying by d0 gives:
dT = =pRedR (12)

Integrating equation 12 gives:
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_ R ,
T»--P;m—2 +C, (13)

To evaluate the constants of integration in equations 10 and 13, the
boundary conditions must be established.

Since the curve of the tape must be tangent to the concentric
circles of radii R1 and R,y this provides the boundary conditions

for the problem which are:
a=0 at R =R
a=0 at R=R,

Substituting into equation 10 givess

but from equation 13:
22
pRl [éy
T(Rl) - 2 + 02 (15)
and 2 9
TRy =~ 72 * G (16)

Substituting equations 15 and 16 into equation 14 gives:

acn2.3 2@2_,3
=5 RyT +GRp = =Ry + CoRy

and solving for Cy3
2 (R, R,
c, =% —=—<5 (17)

Substituting equation 17 into equation 15 gives:
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2 [R3-R
T= 2L g (18)

It is convenient to normalize the problem by letting r = R/Rye Also

let the ratio R;/Ry = 1. Equation 18 then becomes:

2 2 _ 2
T=‘QS29"(1+1]+q-r) (19)

wheres

n<r <1

Evaluating equation 10 at either end point gives:
2
¢, = E%L q{n + 1) (20)
and equation 10 gives:

nn + 1)
(21)
r(l +q + q? - r2)

cos a =

Equation 20 gives the desired relationship, i.es it expresses
the angle a as a function of r. It is interesting to note here that
since a is independent of p and w, the curve given by the integration
of equation 6 will be independent of the density of the tape and also
independent of the speed of rotation.

For the normalized case, equations 5 and 6 become:

tan q = -f—g@ (22)
and
-
— dr
= Jq r tan a (23)

Tan a as a function of r may be found using equation 21 and the trigo~



nometric relationships

1/2
- 1
tan a = -
2
cos8s a
9 1/

2
21 +q + -
() -]

which gives:

i

tan a

2 1 1 o 2 1/2
:[I’ ‘q(ﬂ""_'_"i“) + 1= ﬂ(ﬂ + 1) r > ol l}

= [rz(l +B - Brz)2 - l] 172
where?
'é'=q(n + 1)

Substituting equation 24 into equation 23 gives:

5 = jr dr 5
0 el + B - prd)2- )V

(24)

(25)

Since the quantity within the radical contains terms of r2, ¢ and

r6, to reduce this to a cubic polynomial, let x = r2. Then equation

25 becomes:

2
v
0= =
jﬁz 20x(1 + B = Px)? - 1 112

Expanding the quantity in the radical gives:

2
0 = me fr e Z 1/2
2B Tl2 x[x3- 2g1+@)x2 + (1+g2 - l? ]
P B B

(26)

(27)
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The polynomial in the brackets will have three zeros given by
the roots of the equation
2
220282, @’ L (283
P B
Referring to the boundary conditions we note that

8 = -
F = at R=R andR =R,

or with the change of variable

'g'?:=°° at r=qandr =1

and
%% = at x= q2 and x = 1.

Therefore the denominator of the integral in equation 27 must be zero
for x = q2 and x = 1. These values must be two of the roots of equa-
tion 28 which checks by substitution; The third root must therefore
be real and is easily checked by using the fact that the constant

term is equal to the product of the roots, i.e.

1

_ 2 2 _ _ 2
52 =07 (g + 1) = ejee3 = 1)

where e,y eyy and ey are the roots of equation 28, This gives:

- 2
e, = (q+1)
Therefore equation 27 can now be written in the form:

2

r
9= 1 dx

(29)



where
p(x) = [4(x = ) (x = &) (x ~ &3)]
and
e = (q + 1)2
32':1
. 2
e3 =1

The integral is now in the form of integral 8a9, I 243 of reference l.

The solution of equation 29 is:

0= q(zf(,n:l;i/?- I (d,h,k) (30)

where

and

n(dxk)-'-r‘ &
” 0 (1 +»x sinZE)(l - l<2sin2§)1/2

In equation 30 the symbol H(d,x,k) means the incomplete elliptic
integral of the third kind where g is the argument, k is the modulus,
and N is the parameter. The general solution of an elliptic integral
of the third kind has been found and is given in the literature in
terms of a series. For the range of parameters encountered in this

problem, the solution of equation 30 is given by integral 2d, I 241



of reference 1. Unfortunately, tabulated values for elliptic inte=

grals of the third kind are not available. Therefore, if a plot of

&

the curve given by the exact solution of equation 30 is desired, the
series solution must be evaluated to the desired degree of accuracy.

However, the maximum angle 8 _ , may be found more easily.
Referring to equation 29

1
dx
PN © . SS—— (31)

P

max

0 e

This integral is evaluated in reference 2, integral number 4a, II222

and after evaluating the constants the result is:

0 - ntl
max n(2n + 1)

73 1( %,x,k) (32)

where \ and k are as defined previously for equation 30, The integral
i %‘,x,k) is a complete eiliptic integral of the third kind. This
may be evaluated in terms of elliptic integrals of the first and
second kind as given by equation 13a, II221 of reference 2. The re=-

sult is:

6 = i = K(k) + [E(k) - K(K)IFQ,k')
max (rl+1)(2q+1)1/2 [ P

+ K(k)E(Y,k) (33)

2+ 12

n+1
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H

K(k) = complete elliptic integral of the first kind
E(k) = complete elliptic integral of the second kind
F(,k) = incomplete elliptic integral of the first kind
E(,k) = incomplete elliptic integral of the second kind.
It is advantageous to evaluate equation 32 in terms of elliptic inte-
grals of the first and second kind since they have been tabulated.
A particularly good table is found in reference 3. Reference 4 may
also be used but is not as complete.
Equation 32 states that O is a function of 1 only. Equation
33 was used to compute the curve of 8 vs. n in figure 3. A sample
calculation is given in the appendix. |t is interesting to note that
emax increases as the gap width becomes smaller although one might
intuitively expect the opposite to be true.

Since the evaluation of equation 33 for =0 involves indeter=

minate forms, the following form can be used:

= ntl L In é’, +3£— arc tan /A

6 = )
max (20 + NN RS 1+ A\

+ o(k')2 (34)

since for = 0, k' = 0. Equation 34 is evaluated for 1 = 0 in the

appendixe
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{11, THEORETICAL SOLUTION FOR THE LENGTH OF TAPE IN THE GAP
It is also possible to solve for the length of tape in the gap.

Referring to figure 2:

_ _dR — dr »
ds = sin a R2 sin a (35)

Therefore the arc length is given by:

dr rr dr
S=R . = R (36)
2 Jﬂ sin a 2 Jﬂ, (1 - cosza)l/z

Substituting equation 21 into the above gives:

2

(Q+n+n=r )dr

$=R . - (37)
zjq (20404 02 - D2 12

Substituting B = q(n + 1) and making the change of variable x = r2,

equation 36 becomes:

(1 +8 = Bx)dx
[4x(1 + B = px )2 - 1]1/2

.
S =R, qu (38)

The denominator of the integral can be factored as before with the

result that:

R2(1 + B) j
2

. R, | =X (39)

where p(x) is as defined in equation 29, The above integrals are
evaluated in reference 2 in terms of incomplete elliptic integrals

of the first and second kinde The result is:

R
—2-11—-33—/3 F (4,0 (40)

S =R,2n + DY EK) -
241 ’ (@Pn +1
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where

2 2 r2
sin? = L=t
n -1

Equation 40 can be checked against the result by equation 33
for n = 1 since for Ry = 1, S should equal 6 _ . Evaluating equation

40 gives:

= X L = X
S= ~/§-2 - 5:73; .—«/5-
This agrees with the value of emax shown in figure 3 for n = l.
Also the equation 39 can be checked for the limiting value of =0
since then the tape would lie along the radius and the length should

be equal to the radius Rye Evaluating equation 40 for n = 0 gives

This agrees with the previous statement.,

The results which have been obtained can also be applied to the
symmetric case of the same problem, ise. where there is no outer rim
and the tape is returned to the hub so that a loop is formed as shown
in figure 11, It is seen then that the same differential equations
which were developed for the original problem will also apply to this
cases The boundary conditions are also the same where R, is again
the radius of the hub and R, is now the maximum radius of the loop.
Thérefore the original problem is exactly the same as one half of this

symmetric cases
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IV. SOLUTION OF THE LINEARIZED DIFFERENTIAL EQUATION
It is interesting to note that a linearized differential equation
for the system can be ob{ained by making certain approximations. Con-
sider the case where the gap is smally, i.eo 1) is nearly unity. Multi-

plying equation 2 by sin a and equation 4 by cos a and adding gives:

22

da _ R _
ol B 0 (41)
but

a= tan™?

Rdo
di f'f‘erentiating 2 2
1 4R _1_<g5.>
= 2 \dd
do _ R _d0° R ,
) (42)

From equation 24 for n nearly unity tan a is small. Therefore ﬁé
is small and gé can be neglected. With this assumption equation 42
becomes:

2
%= 1<l 43)
® " R 42

Substituting into equation 41 gives:

2 32
8 Lre o (44)
e

Let
R =Ryl + q) (45)

where R, is the mean radius of the gap. Then R, = Ro(l - €) and

1
Ry = Ry(1 + €). Since the gap is small, terms involving q2, q3, 62,
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and e3 can be neglected.
Equation 18 gives:

3 3
2 | R7(1 + 3€) = R.7(1 = 3¢)
_ P 0 0 2
T 2 { Ro(l + E) - Ro(l - €) - Ro 1+ q{]

= pa?Roz(l - q) (46)

Substituting equations 45 and 46 into equation 44 and neglecting all

higher order terms in q gives:

d2

-—%- +3g=0 €YD
dd

The solution of this is:

q=Acos /38 +8B sin /380 (48)

Since %%'= 0at R =‘Rl, then gg'= 0 at © = 0 and therefore B = Q.

Also q = =€ at © = O which when substituted into equation 48 gives:

q:nECOSﬁe (49)
Therefore

R = Ro(l - € cos /3 6) (50)

The value of emax is given by:

x
o = = X

max eqzs - eqz...e “«/3_

This agrees with the exact solution when n = 1.
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V. AN APPROXIMATE NON-LINEAR SOLUTION
Another method for obtaining an approximate solution is as

follows. Equation 29 may be written:

2
0 =L 1, o 1 . ] dx  (51)
2 \[ 2 b4 [(1 + ) ]1/2 (1 - X)1/2 (x = 1']2)]./2 X

For values of n near unity, the variation in the term 1//21 + q)2~ X
is small in the interval q2 < x < le. Therefore by evaluating this
term for n = 1 and considering it a constanty it can be taken out from

the integral. Substituting into equation 51 gives:

2
;
e - dx
73 fnz L (1 = %) (x = 0212

Rewriting gives:

ngn + 1) dx 52
an 2t 1+ Pt A2 (52)

This integral may be found evaluated in reference 5. The result

ise

2,2 2
9 -, 2'-7'3 [sln <r . ) _ 1) 4 ) b %:l (53)

(n
The value of emax given by equation 53 is found by evaluating

for r = 1, and ist

=-ﬂ—uﬁ

e
max ZJB_
IF this is evaluated for n = 1, the result is:
6 = =
max /3

This agrees with the exact solution of equation 30.
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Vi, NUMERICAL INTEGRATION PROCEDURE

It is desirable to compare the experimental results with theo-
retical results which were derived from the differential equations 2
and 4. Therefore it is necessary to obtain the curve of © as a function
of the radius. Two approximate methods have been derived which would
probably give reasonably good accuracy for values of n close to unity
but would not be good for small values of 1, i.e. a wide gap. There-
fore the complete curve was found by numerical integration using

equation 25, i.e.

r
dr

= (25)

Jq r[rz(l +p - Brz)2 - 1]1/2

However this equation cannot be used at the end points since for r = q
and r = 1, the integrand of equation 25 is infinite.

To evaluate the function at the end points it was expanded in
a Taylor's series using the first three terms. In the neighborhood

of r = 1 the expansion is:

2
r=nq +(-§.§) 09 + -é—(-d-—;-) 0%+ .., (54)
n do
n
But since @ = 0 at r =R, (%&) = 0 and rewriting equation (54) gives:
1
2
l(dr 2
Ar=r-q=—<—>ﬂe (55)
2 d92
1
solving for 40 gives:
1/2

(56)



The same result is also applicable in the neighborhood of r =Ry, i.e.

1/2
8 = {:———-—2’2“ } (57)
()
2
& 1
To evaluate equations 56 and 57 it is necessary to evaluate
2 .
dr

at the end points. Equation 22 may be written:
46° °

gé'= r tan a (58)

Differentiating givess

2
dr _ dr 2 da
d92 = tan @ o +r sec a )
) 2 da, dr
= tan a dS + r sec dr pre)
= tan a 36 + r2 secza tan a :? (59
but
cos a = f(r) = nin + 1) 5
rl+q+1n° =-r¢)
Differentiating:
_ ¢l
dr sin o

Substituting into equation 59 gives:

2
igg = tan a gé'— r2 sec3 £r(r) (60)
but
£1(r) = -n(n;? 1D +n + n2 - 3r2) (61)

r (1 +q + q - r2)
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Therefores
2 3 2 2
u=’tana§'g‘+sec +121+ ; - 3t (62)
0 Ql+n+q =r)

Then evaluating equation 62 at r = nand r = 1 gives

2 2
dr\ _nQQ+n=2q")
<d62> IO €
N

(12__> _r3+_2,m-2

r
Yy Tqln + 1) (64)

1

The numerical integration was performed using Simpson's rule
with equation 25 over the central portion of the gap and using equa-
tion 56 at the end points. This was done for three different values

of 1, namely

ﬂ = 002
| = 0.4
n = 0.8

A sample calculation is shown in the appendix. The results are plotted

in figures 4, 5, and 6.
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Vit. EXPERIMENTAL PROCEDURE

A relatively simple apparatus was used to verify the theoretical
results. The equipment used is shown in the photograph of figure 7.
The curve was formed on a ten inch diameter wooden disc. Around the
circumference of the disc was a thin steel band which protruded about
1/8 inch above the surface of the disce This formed the rim. The
hub was formed by a circular plywood plug which could be fastened to
the center of the 10" disc. Several plugs of different diameters
were made. This provided the means for varying the gap width and
hence the value of n, i.e. Ry was fixed but R, was varisble.

To provide values of n = 0.2, 0.4, and 0.8, hubs of 1", 2", and
4% radjus were used. Actually the hub diameters were less than the
nominal dimension by an amount equal to the diameter of the chain so
that the radius to center line of the chain would be exactly equal
to the nominal radius. Unfortunately, the rim radius was made slightly
less than what it was intended to be so that the radius to the center
line of the cahin at the rim, Ry, is slightly less than the nominal
dimension of 5 inches. However, the actual dimension was used in calcu-
lating the curves.

The disc was mounted in a horizontal plane directly on the shaft
of variable speedy thyratron controlled, b. C. motor. With the disc
in a horizontal plane the effect of gravity is nullifieds The chainm
was then fastened to the hub and the rim in such a way that the natural
curve was formed by the chain when the disc was rotated. This was
checked as follows. Upon rotating the disc the chain assumed an

equilibrium curve. The points at which the chain was fastened to the
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hub and rim had to be at some distance from the points of tangency in
order to assure that there was no discontinuity in the slope of the
chain at these points.

, The curve was formed by an ordinary ball and socket chain such
as is used on light fixtures. This obvicusly meets the requirement
of having zero stiffness. The only difficulty experienced with this
chain was due to the fact that it is not truly a continuous medium
since the links are rigid.members of finite length. Since the links
of the chain used were small, this effect was noticeable only on the
portion of the curve where the curvature was large.

To record the trace of the curve a technique was used which
gave the image of the chain curve directly on an ultra violet sensi-
tive paper. This was done in the following manner.

‘Directly on the disc was placed a piece of ultra violet sensitive
paper. The type used was Driazo No. 1200SS which is an extra rigid
speed paper. Over this was placed a transparent circulér-radial graph
paper. The hub held both of these flat against the surface of the
disce The chain was then placed on the disc on top of the graph paper
and fastened to the hub and rim in the appropriate manner. After the
chain had assumed its natural curve when the disc was rotated, the
disc was exposed to an ultra violet light source for a period of ap-
proximately one minute while the disc was rotating which was sufficient
to expose the ozalid paper. This left the image of the chain with a
reference grid provided by the graph paper on the sensitized paper.
This paper was then developed in an "0Ozalid" machine. This technique

had a number of features which made it advantageous to use. They were:
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20
Since there was no relative motiocn between the chain, the
the graph paper, and the sensitized paper with the disc
rotating, the exposure did not have to be instantaneous.
Therefore no high speed flash equipment was required and
an ordinary lamp socket type ultra violet light bulb was
adequate as the ultra violet source.
The work could be done in ordinary ambient light since the
sensitized paper is insensitive to tungsten light.
Since the grid lines were on the paper before the paper was
developed, there is no relative distortion between the
trace of the curve and the grid lines due to shrinkage which
may occur during the developing process.
The resulting trace was on a large scale and there were no

parallax problems.
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Vill. RESULTS

The actual curve traces obtained by the described experimental
method are shown in figures 8, 9, 10, and ll.

To compare the theoretical and experimental curves they were
plotted together in figures 4, 5, and 6 for the different cases con-
sidered. The theory states that the angle as a function of the nor-
malized radius should depend only on the parameter 1. Therefore, the
normalized curves should be identical for the cases where:

R, = 1" and Ry = 2.5" - symmetric case

1

and

R, = 2" and Ry = 5.0" ~ non-symmetric case

1
since = 0.4 for both cases. A comparison of the curves shows this
to be true. Also plotted in figures 4, 5, and 6 are the cosine curves
approximations from equation 50 which are given by the solution of the
linearized differential equation,

The plotting of the curve from the experimentally obtained picture
to the rectangular coordinate plots: of figures 4, 5, and 6 presented
the problem of orienting the entire curve. |t is very difficult to
establish the points of tangency on the experimental curves. Also,
the greatest error in the curves obtained by numerical integration
occurred at the end points since the serieélexpansion was used to give
the first and last intervals., Therefore, a point on the curve at ap-
proximately the mean radius of the gap was used as a reference point
between the theoretical and experimental curves. This gave a good
"best fit" match between the curves. A smooth curve was drawn through

the points given by the numerical integration procedure and the points



£
(WS
et
i

FIGURE 8, Experimental curve for V( =0.2
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Experimental curve for Y{

FIGURE 9,
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FIGURE 1L Experimental curve for symmetric
case where Y( =0. 4
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from the experimental curve and the linearized solution were super-
imposed on this.
To check whether the curve was independent of the speed of ro-
tation, the disc was rotated at several different speeds while ob-

serving the curve with the aid of a strobe light.
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IX. DISCUSSION OF RESULTS AND CONCLUSICNS

The first result predicted by the theory was that the curve
should be independent of the speed of rotation. This was observed
to be true by checking with a strobe light. There was noc variation
in the curvé over a wide range of rotational speed. Since the density
termy p, in the equation cancelled out exactly as did the rotational
speed termy w, it was assumed that the curve would also be indepen~
dent of the density.

A result shown by the analytical solution which would not likely
be predicted intuitively is that ema* increases when the gap width
decreases as shown in figure 3. This curve was difficult to check by
the experimental curves because of the difficulty of establishing the
points of tangency with the hub and rime However, it is clear from
a comparison of the experimental curves for n = 0.2 and f = 0.8 that
Onax 18 greater for the latter.

The most conclusive verification of the theory is the comparison
of the experimental curves and the curves obtained by numerical inte=
gration of equation 25, shown in figures 4, 5, and 6, The curves agree
within the limits of the accuracy imposed by the experimental technique
and the numerical integration procedure. The discrepancy indicated
near the outer portion of the curve for n = 0.2 is probably due to the
efféct of the finite lengths of the chain links since the curvature
is largest there. However, the results indicate that equation 25 does
accurately describe the system. Since equation 30 is the exact solu-

tion of equation 25, it then must be the solution for the curve in

the gap.
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Figures 4, 5, and 6 show that the solution of the approximate
linearized differential equation is quite good for large values of
n but inaccurate for small values of n. However, this was to be ex~
pected from the assumptions made in the linearization procedure. The
effects of the non=linearities in the system are most important for
small values of 7.

Although the problem discussed in this paper has been treated
in an academic manner, it has practical significance also since it
arose from a problem encountered at the IBM research laboratory and
may have further applications elsewhere. However its main signifi-
cance lies in the fact that it is a non-linear problem which possesses
an exact analytical solution. There are indeed many commonly occurring
phenomena which can only be described accurately by a non=linear equa=

tion but relatively few of these have an exact solution,
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APPENDIX
Sample Calculations

A. Evaluation of emax given by equation 32,

8 = 5 Klk) #+ {[EC) = KU TFQL,Kk?) + KKEQ,kT)
max (q + 1)(21] + 1)1/2 {[ ] ‘ll’ 4’) }
where ) /2
1
K2 = %ﬁ::nf k2 =118 ¥ =sint —Sgﬁff—%l—-

The following table was evaluated for different values of 1 where

0 < n< 1. The calculations for 1 = 0.3 are shown here

1 1 0.3
2 K2 0.5688
3 log Kk 9,75496~10
4 log k 9.87748-10
5 sin”! K 489571
6 sin~lk!
= 9msin~lk 41937
7 log sin ¥ 9.98812~10
8 ¥ 76°401
9 F (k) 1.92
10 E(k) 1.31
11 FQ,k') 1.49
12 EQ,k*) 1.21
B MREE o
14 E(k) = K(k)  =0.61
15 14 ¢ Fljyk')  =0.91
16 K(k)E G, k") 2,32
17 0(rad.)

=13 + 15 + 16 1,76
18 0 (degrees) 100,8



O

- B. Evaluation of emax given by equation 33 for n = 0.

1 1 4 A -1 1 2
0 m—itd In7y + tan /N + 0(k*)
max q(2n+1)1/2[1+). k! T 1+ |
where
2
)\=_1._-.2-_.a_
Ui
2 _1=g2
k =--—"-'-;ﬂ—
2q+l
k=] - kP
For 1= 0,
A =o0
kt =0

Taking the first term,

+ 2
_(q+l)nln4<-né-g:_;-1—L "
)1/2

lim S0 1)1T§g/k'14 = lim
n1=+0 n2q+ D1 +3) n-+0 (2n + 1

This leaves only the second term which gives:

0 = lim —OtlW/ tan o/
max 10 q,AZq + ({1 +)

= lim L+ - q?)l/Q q2 tan~! /%
10 g+ Y4

= tan—l(oa) 225-
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C. To integrate numerically the curve for n = 0.8, equation 62

was first evaluated.

1

Q.

<_q_2__ _q( =27 _0.801.8 =~ 1.28) _ 0.400.52) - 5031
B - 1.8 T 0.9 *

2 2
dr —ﬁ._i.ﬁ_:-—z-— =064+08...2 O.§6__
<d9 ) - "l(ﬂ +1) 0.64 + 0,8 4,44 0.3889

L = == =
2
1

Then from equation 55 with ar = 0,02

dr

62

1/2 1/2
=| 2ar - [ Q.04 - 1/2 _
8, { : ] =204 17 = {07317 = 0.4160

TN
Q.

r=n
Equation 24 was integrated over the curve from r = 0.82 to r = 0,98
using Simpson's rule.

Simpson's rule states that:

+2nAr A
ja flr)dr = jf-[f(a) + 4f(a + Ar) + 2f(a + 25r)

a
+ 4f(a + 3ar) + ... 4f[a + (@n-100]+ flat2nar)]

For this problem

f(r) = :
rfQ+p - Br2)2 - 1]1/2

The following table was computed using Ar = 0,02,
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D. Evaluation of the curve given by the approximate solution of

equation 50 for n = 0.4.

R = Ro(l -€cos 36) (50)
For n = 0.2

Rl = 1,0 inches

Ry = 4,965 inches

RO = 2,982 inches

€ = 1,982 inches
§) cos 36 € cos 30 R

degrees inches

10 0.955 1.892 1,090
20 0.823 1.631 1.351
30 0.617 1.223 1,759
40 0.354 0.702 2.280
50 0.0593 0.118 2.864
60 =0,240 =0.476 3,458
70 -0.519 -1,030 4,012
80 -0.749 ~1.485 4,467
90 ~0.911 -1.806 4,788



