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ABSTRACT 

Current earthquake early warning (EEW) algorithms are continuously optimized to strive for 

fast, accurate source parameter estimates for the rupturing earthquake (i.e. magnitude, 

location), which are then used to predict ground motions expected at a site. However, they 

may still struggle with challenging cases, such as offshore events and complex sequences. An 

envelope-based two-part search algorithm is developed to handle such cases. This algorithm 

matches different templates to the incoming observed ground motion envelopes to find the 

optimal earthquake source parameter estimates.  

The algorithm consists of two methods. Method I is the standard grid search, and it uses Cua-

Heaton ground motion envelopes as its templates; Method II is the extended catalog search, 

and its templates are waveform envelopes from past real and synthetic earthquakes. The grid 

search is intended for robustness and provides approximate average solutions, whereas the 

extended catalog search matches envelopes considering the station’s specific site and path 

effects. In parallel execution, Methods I and II work together – either by confirming each 

other’s solutions or accepting the solution with stronger fits – to provide the best parameter 

estimates based on waveform-based data.  

The main advantage of the two-part search algorithm is its ability to find parameter estimates 

of reduced uncertainties using the P-wave data from a single station. Many algorithms wait 

until multiple stations are triggered to reduce tradeoffs between the magnitude and location. 

This waiting time, however, is detrimental in EEW, for it jeopardizes the warning time that can 

be issued to nearby regions expected to experience strong shaking. The use of a single station 

would virtually eliminate this waiting time, maximizing the warning time without the cost in 

accuracy of the estimates.  

Because EEW is a race against time, further actions are taken for more rapid estimation of the 

earthquake source parameters. A Bayesian approach using prior information has the potential 

to reduce uncertainties that arise in the initial time points due to tradeoffs between the 

magnitude and location. This essentially increases the confidence of the initial parameter 

estimates, allowing alerts to be issued faster. A KD tree nearest neighbor search is also 
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introduced to reduce latency in the time it takes to find the best-fitting solutions. In 

comparison to an exhaustive, brute-force search, it cuts the searching time by only examining 

through a fraction of the total database.  

An envelope-based algorithm examines the shape and relative frequency content and makes 

appropriate judgments, just as a human seismologist would; it also addresses the issue of data 

transmission latencies. Overall, this algorithm is able to interpret the complexity of earthquakes 

and assess the features they hold to ultimately communicate information of significant ground 

shaking to different regions. 
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1 Introduction 
1.1 General Concept of Earthquake Early Warning (EEW) 

Earthquakes endanger lives and properties for urban areas near major active faults on land 

and subduction zones offshore. Seismic history strongly indicates that California is well 

acquainted with earthquakes. It would be a great advantage to give communities an advance, 

confident warning before the damaging shaking arrives. An advance warning about a 

potentially damaging earthquake could reduce injuries, destruction of properties, and 

increase effectiveness of emergency response. Such alerts could help control elevators, issue 

go-around commands to aircrafts, save data, secure equipment in surgeries, stop trains, and 

give instructions to factories, construction sites, schools, hospitals, and shopping centers. It 

is not possible to predict future earthquakes, however, seismic waves can be detected after 

the earthquake ruptures. Of course, if earthquakes ruptured much more slowly, then the 

judgments made by human seismologists would suffice in broadcasting the information to the 

public. However, earthquakes occur much more quickly in reality, and the judgments by 

human seismologists would essentially provide no warning time. Fortunately, current 

technologies are automated, providing rapid detection of the seismic waves and 

identification of the earthquake source parameter estimates. Doing so, alerts can be sent to 

regions expected to experience strong ground shaking with maximized warning times. These 

warning times can range between a few seconds to minutes, depending on the user’s distance 

to the epicenter.  

1.2 EEW in the World 

EEW is not a recent concept. The very first published plan for an EEW system is the most 

basic version in which it does not provide any warning time. J.D. Cooper suggested in the 

San Francisco Daily Chronicle in 1868 that a bell be rung when ground shaking exceeded a 

certain threshold. This idea was never implemented. Today, new technologies provide data 

in great speeds that allow warning time to be maximized as much as possible. Specifically, 

damaging S-waves from earthquakes travel at about 3.5 km/s, whereas the less damaging P-

waves travel 5-8 km/s and data can travel from stations to processing centers at speeds up to 
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300,000 km/s without interference. Therefore, before strong shaking arrives, P-wave data 

can be processed and alerts can be issued, providing users warning times ranging from a few 

seconds to even minutes. 

This valuable concept of EEW was realized and implemented by countries 

devastated by large earthquakes, such as Japan and Mexico. Other countries also recognized 

the value of EEW, like Italy, China, Switzerland, Turkey, Taiwan, and the West Coast of the 

United States. Each country uses methods that cater to its needs. Some use time picks with 

event associators, while some use amplitude-based methods. Some use a single-station 

approach, while some use a network-based approach of multiple stations. Some require a 

central processing network, while some already combines onsite processing and wireless 

communications with the sensor. The available data from triggered stations is used to 

estimate the earthquake source parameters, but some countries also use information that 

stations have not yet triggered to locate the earthquake. Hybrids of these different methods 

are also used. 

The current EEW system for the West Coast of the United States is called 

ShakeAlert. This system produces both point source and line source solutions. The 

Earthquake Point-Source Integrated Code, or EPIC, is the algorithm that determines the 

parameter estimates for a point source. EPIC is a modified version of the Earthquake Alarm 

Systems, or ElarmS (Allen 2007). ElarmS is a network-based approach that uses picks; it 

requires at least four triggered stations before issuing an alert. It is currently the fastest and 

most accurate of the ShakeAlert algorithms, making it the basis for declaring alerts. The 

Finite-Fault Rupture Detector, or FinDer, provides the line source solutions (Bose 2012). 

The line source assumption of the rupture is especially valuable for identifying larger 

earthquakes (M>6.5), events of longer duration and longer fault lengths. Rather than 

depending on picks, FinDer matches spatial pattern of ground motion amplitudes. Because 

of the limited template sets, FinDer alone cannot generate alerts in the overall ShakeAlert 

system.  

Originally, the ShakeAlert system comprised of three point-source algorithms: 

ElarmS, Onsite, and Virtual Seismologist. The previously mentioned EPIC is the resulting 

algorithm from modifying ElarmS and merging it with Onsite. Onsite is a single-station 

approach to EEW (Kanamori 2005). This algorithm may be faster than methods of a 

network-based approach because it reduces the waiting time for stations to trigger. However, 
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it may be less reliable. To address this issue of reliability, Onsite requires 3 seconds of data. 

The Virtual Seismologist is a Bayesian probabilistic approach that uses both waveform 

envelopes and prior information (Cua 2005). The multiple algorithms yield earthquake 

source parameters, which are then combined in the Solution Aggregator (SA) algorithm. The 

eqInfo2GM algorithm takes the information from the SA algorithm to predict ground 

motions. The final step is for the Decision Module (DM) algorithm to check if thresholds 

are exceeded, determining whether to issue alerts to users.  

1.3 Statement of Problem 

The concept of source-based EEW method can be presented in two questions:  

1. Given available data, what are the most probable magnitude and location estimates?  

2. Given the most probable magnitude and location estimates, what are the expected 

ground motions in specified regions?  

Algorithms do exist in which ground motions are predicted directly from the available 

data, skipping the source parameter estimation (i.e. Japanese method by propagation of local 

undamped motion, or PLUM). This thesis assumes a source-based method and focuses on 

addressing the very first question, just as the previously mentioned ElarmS and FinDer do. 

Predicting expected ground shaking from the source parameter estimates is beyond the 

scope of this thesis, but generally speaking, ground motion prediction equations, or GMPEs, 

are commonly used to accomplish this conversion. 

In developing the problem, a variety of EEW systems from different parts of the world 

have been assessed. One of the challenges the current EEW system faces is the detection 

and identification of offshore events and complicated earthquakes. Between 2014 and 2016, 

E2 missed 213 M>3 earthquakes, in which the majority of them were offshore or in areas 

without dense station coverage (Chung et al. 2019). Locating offshore events is infamously 

known to be difficult due to poor azimuthal seismic ray-path coverage and sparse station 

spacing about the epicenter (Chung et al. 2019). The misidentification of complicated 

earthquakes is most likely due to invalid point-source characterization of the earthquake 

rupture by one of the two independent algorithms of the current system, ElarmS.  

In this thesis, an envelope-based search algorithm is designed to address these 

challenging types of earthquakes. It consists of two methods that run in parallel (see Fig. 
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1.1). Originally, the algorithm was envisioned as a real-time implementation based on the 

previously mentioned Virtual Seismologist. Therefore, Method I of the algorithm is a 

standard grid search that matches Cua-Heaton ground motion envelopes to the incoming 

ground motion envelopes, using probabilistic measures. Additions were made to the original 

idea to enhance accuracy and rapidity of the solutions. Thus, Method II is an extended 

catalog search that matches envelopes of both real and synthetic past earthquakes. The 

solution is a magnitude and location, corresponding to the matched envelope, that best 

describe the incoming envelopes.  

1.4 Objectives of Thesis 

The main objective of this thesis is to develop an EEW algorithm intended for real-time 

implementation that has the ability to accurately describe the incoming earthquake with only 

the P-wave data from fewer than three stations. By accurately characterizing the earthquake 

with limited data, this search algorithm has the potential to detect and identify challenging 

events, especially those in regions of sparse station coverage, those offshore, and those 

spaced close together in time in complicated sequences.  

This thesis is organized in nine chapters. Chapter 1 introduces the research problem 

and provides the general roadmap of the search algorithm developed in this thesis. Chapter 2 

discusses the basic processing methodology applied to the waveform data. Chapter 3 

describes Method I of the full search algorithm, which is the standard grid search using the 

Cua-Heaton ground motion envelopes (Cua 2005). It includes a test sweep of M>4.5 events 

in in Southern California to emphasize its intension, which is the robustness in identifying 

critical earthquakes. Chapter 4 describes Method II of the full search algorithm, which is the 

extended catalog search using envelopes from past real and synthetic earthquakes. It defines 

and validates the use of a spectral scaling model to extend the earthquake catalog, extending 

it to ensure sufficient coverage of earthquakes. Alongside a step-by-step description of the 

methods, Chapters 3 and 4 also include real application to past M>5 recent earthquakes, 

such as the 2020 Northern coast offshore event, 2020 Lone Pine sequence, and 2019 

Ridgecrest sequence. Chapter 5 describes a way to optimize Method II, with respect to 

search time, with KD trees. Chapter 6 presents special cases where Method II can be 

modified for accurate parameter estimates. These special cases include the 2016 Kumamoto 
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sequence, 2010 El Mayor-Cucapah mainshock, and the recent 2019 Ridgecrest sequence. 

Chapter 7 proposes how the two independent methods can be combined into a single 

working algorithm. Chapters 3-7 describe how the methods find waveform-based solutions, 

whereas Chapter 8 introduces prior information that can be used to reduce uncertainties in 

the initial parameter estimates. Finally, Chapter 9 provides concluding remarks and future 

work.  
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2 Data collecting and processing 
The search algorithm is intentionally designed to detect and identify critically moderate to 

large earthquakes, particularly those that the current earthquake early warning (EEW) system 

finds challenging. Therefore, the records that are downloaded from different data centers 

reflect this goal.  

2.1 Raw Data Collection 

Strong motion datasets of earthquakes listed in Table 2.1 are downloaded from different 

data centers: the Northern California Earthquake Data Center (NCEDC), Southern 

California Seismic Network (SCSN), Kyoshin Network (K-NET), and California Strong 

Motion Instrumentation Program (CSMIP). The raw acceleration waveforms are 

downloaded 100 to 200 samples per second for three components: EW, NS, and UD. In this 

thesis, only the first three to seven seismic stations closest to the observed epicenter are 

considered in the computations. In reality, as time goes on after the earthquake ruptures, 

more stations are triggered. However, the computations in this thesis focus on the initial 

estimates for EEW-relevant purposes. The triggers are assumed to be real-time from P-wave 

arrivals. In other words, it is assumed that there is no latency in data retrieval.  

For smaller earthquakes, broadband channels are commonly used to ensure small 

signals are visible. As seen in Table 2.1, the earthquakes chosen for this study are of 

moderate to large sizes. Records from broadband channels when ground motion amplitudes 

grow large may result in clipping issues. Clipping would result in unrealistic ground motions, 

which may impact the search algorithm’s solutions. This is why only strong motion datasets 

are downloaded, and broadband records are not considered. Furthermore, the high dynamic 

range of current technologies, which are 24-bit digitizers, allows small amplitudes from even 

smaller earthquakes to be visible on the strong motion records. Once the raw acceleration 

records are collected, they are demeaned before further processing.   
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Table 2.1. Earthquake dataset used for analyses in this thesis.  

Earthquake Mag 
# of records Data 

center Used for observed Used to build catalog* 

2020 Northern coast offshore  M5.80 9 259 NCEDC 

2020 Lone Pine M5.80 12 12 SCSN 

2019 Ridgecrest M7.10 21 2583 SCSN 

2016 Kumamoto M7.00 30 60 K-NET 

2012 Brawley M5.41 24 360 SCSN 

2010 El Mayor-Cucapah M7.20 6 42 CSMIP 

2010 – 2020 Southern California** M>4.50 675 -- SCSN 

* Before extension; before applying spectral scaling law to create synthetic earthquakes. 
** 75 earthquake events used in mini test sweep for the grid search in Chapter 3. 

2.2 Processing Methodology 

Though only raw accelerations are initially downloaded, it is still important to fully represent 

the available frequency information of the incoming signals. Therefore, the raw acceleration 

records are processed and integrated to obtain the velocity and filtered displacement records 

as well. Doing so, it has the potential to reduce high uncertainties in distinguishing ground 

motions of a small earthquake from a larger one. The full use of the frequency information 

of the incoming signals is intended to reduce high uncertainties, especially for the more rapid 

single-station approach (Meier et al. 2015). The search algorithm’s use of acceleration, 

velocity, and filtered displacement characterize high (3-10 Hz), medium (0.5-3 Hz), and low 

(<0.5 Hz) frequencies, respectively.  

Raw acceleration waveforms are easily downloaded. To acquire velocity and filtered 

displacement waveforms, the raw acceleration waveforms are properly processed. They are 

filtered with a causal fourth-order Butterworth high-pass filter at a corner frequency of 0.075 

Hz (Yamada et al. 2007). Then, a single integration provides the velocity, and a double 

integration provides the displacement. Another filter at a corner period of 3 seconds is 

applied to the displacement to reduce the influence of noisy microseisms on the small 

amplitude displacements and to remove long-period noise introduced by the initial 

processing of the strong motion data (Cua 2005). Ideally, the lower frequency energy would 

not be filtered out of the displacement record, especially because this frequency range helps 

discriminate between small and large earthquakes. However, Cua-Heaton envelopes are 
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created using this high-pass filtering. Therefore, for consistency in matching, this high-pass 

filtering is also used in this thesis. Throughout the thesis, the term “filtered” is attached to 

the term “displacement” to accurately represent this processing methodology. See Fig. 2.1 

for a visualization of this processing methodology.  

 

Figure 2.1. Processing waveforms from Station TOW2 in the UD direction. The raw 
acceleration is downloaded from HNZ channel. If this is integrated without any filters, linear 
and quadratic trends occur in the velocity and displacement (top row). However, a causal 
fourth-order Butterworth high-pass filter removes these trends in the velocity and filtered 
displacement (bottom row). For real-time implementation, the filters would be applied 
recursively in the time domain. Therefore, the processing time would be deemed negligible. 

For simplicity, this processing methodology is uniformly applied to all the 

waveforms listed in Table 2.1. However, this processing methodology should be taken with 

caution, particularly for near-source records of large earthquakes. The removal of long 

period components may not be noticeable in the high-frequency acceleration, but it is 

obvious in the displacement. Specifically, for near-source records of large earthquakes, the 

displacement exhibits large static offsets. Because the search algorithm is consistent in 

matching filtered displacements, this matter can be regarded negligible. In cases like 
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nonlinear building response analysis, the removal of long period components may have a 

stronger negative impact.  

2.3 Phase Determination for Offline Analyses 

A triggered station indicates the start of the computations, and the trigger is based on the P-

wave arrival. Therefore, another course of action using the data is to distinguish the arrival 

of the different phases. For this, a polarization analysis is used (Ross et al. 2014). A phase 

filter (Eqs. C), determined from the covariance matrix (Eq. 2.1), is multiplied to the three-

component data to separate the P and S phases. The three-component data from Station 

SRT is shown in Fig. 2.2 to illustrate the application of the polarization analysis.  

𝜎 =
𝐶𝑜𝑣(𝑁,𝑁) 𝐶𝑜𝑣(𝑁,𝐸) 𝐶𝑜𝑣(𝑁,𝑍)
𝐶𝑜𝑣(𝐸,𝑁) 𝐶𝑜𝑣(𝐸,𝐸) 𝐶𝑜𝑣(𝐸,𝑍)
𝐶𝑜𝑣(𝑍,𝑁) 𝐶𝑜𝑣(𝑍,𝐸) 𝐶𝑜𝑣(𝑍,𝑍)

 (2.1) 

where 𝜎 is the covariance matrix, and 𝑁, 𝐸, and 𝑍 refer to the data from the NS, EW, and 
UD components, respectively.  

𝑟 = 1− !!!!!
!!!

, 0 ≤ 𝑟 ≤ 1 (2.2) 

where 𝑟 is the rectilinearity, or degree of linear polarization, and 𝜆! , 𝜆! , and 𝜆!  are the 
eigenvalues corresponding to the covariance matrix, 𝜎, of the data.  

𝑝 = 𝑟 cos𝜑 = 𝑟 𝑢!! (2.3.1) 

𝑠 = 𝑟 1− cos𝜑 = 𝑟 1− 𝑢!!  (2.3.2) 

where 𝑝 and 𝑠 are the polarization filters, and 𝑢!! is the first components of the eigenvector, 
𝒖 = (𝒖𝟏,𝒖𝟐,𝒖𝟑), corresponding to the eigenvalues, 𝜆 = (𝜆!, 𝜆!, 𝜆!).  
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Figure 2.2. Application of polarization analysis to find P- and S-wave arrivals. The P-wave 
arrival indicates the start of the search algorithm. 
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2.4 Initiation of Algorithm by Prior for Real-Time Analyses 

The analyses done using the earthquake records in Table 2.1 are offline. However, to initiate 

the search algorithm in real-time, an event detection prior is applied (see Chapter 8). This 

prior allows a fast detection of the incoming earthquake. It is a probabilistic approach in 

distinguishing the signal as either noise or an event.  

2.5 Converting Full Waveforms to Envelopes 

Finally, the input data of the algorithm is in the form of ground motion envelopes, instead of 

the full raw waveforms downloaded at 100 to 200 samples per second. An envelope of a 

signal is essentially a trace of the signal’s absolute peaks, where the peaks are found using a 

sliding window (see Fig. 2.3). In this thesis, the size of the window is 1 second but, for other 

applications, can be modified by the user. Therefore, combining the acceleration, velocity, 

and filtered displacement envelopes in the three components, there are 9 samples per second 

retrieved from each triggered station. For comparison, the current system uses the full raw 

waveforms, with sample rates that vary from 100 to 200 Hz. Taking the acceleration and 

velocity in the three components, this means the number of data points acquired per second 

can grow as large as 1200.  

The search algorithm depends on the rapid acquirement of real-time waveform data. 

Therefore, any large data latencies would wreak havoc in the system. One real example 

where data latencies increased is the 2019 Ridgecrest sequence. Near-source stations, CCC, 

LRL, WVP2, and CLC, experienced packet delays, most likely due to inefficient data 

compression and limited bandwidth (Chung et al. 2020). The efficiency of data compression 

fell sharply due to the large amplitudes of long duration. In fact, data at CLC was delayed by 

more than one minute. As seen in Chapters 3 and 4, these four stations are amongst the ones 

considered in the search algorithm. This means the search algorithm would have to wait for 

the delayed data, which would adversely increase the time it takes to find the parameter 

estimates. To clearly understand how envelopes may help reduce these detrimental data 

latencies, it is helpful to visualize how bandwidth and amount of data affect data 

transmission. Bandwidth refers to the volume of data that a network can transfer within a 

given time. The higher the bandwidth, the faster the data transfer. However, if the 
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bandwidth is fixed, the speed of the data transfer is dependent on the amount of data. For 

instance, large amounts of data, like 1200 samples, would take longer than smaller amounts, 

like 9 samples.  

Decreasing the sample rate from 100 Hz to 1 Hz per channel would lessen the stress 

in the data collection process without removing valuable information. The waveform 

envelopes are sufficient for the algorithm to be able to make judgments on the incoming 

ground motions. It would observe the shape and relative frequency content and classify it 

with a certain magnitude and location, just as a human seismologist would. This is the main 

idea behind the Virtual Seismologist. Because the hope is that the use of envelopes will lower 

latencies, throughout this thesis, a zero latency of the data packets is assumed.  

 

Figure 2.3. Envelope created using waveform data at Station TOW2 in UD direction. 
Envelope (in red) is converted from taking the maximum absolute amplitudes of raw full 
waveform data (in black) in 1-second windows. In other words, for every 100 samples of the 
raw data, the absolute peak is taken.  
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2.6 Summary 

This chapter covers the initial components of the roadmap shown in Fig. 1.1 (shown in 

Chapter 1). More specifically, the chapter describes how the input data is processed and how 

ground motion envelopes are created. These ground motion envelopes drive the two-part 

envelope-based search algorithm. Therefore, it is critical for the initial components to not be 

prone to delays in data retrieval or prone to any processing errors.  
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3 Method I: Grid search 
As mentioned in the previous chapter, this thesis presents a two-part search algorithm that 

provides earthquake source parameter estimates. The intent of earthquake early warning 

(EEW) is to provide solutions as quickly as possible without compromising accuracy. 

Therefore, the two parts of the algorithm run in parallel to enhance speed and accuracy, as 

they either provide confirmation to one another or provide replacements to the other. 

Method I of the two-part search algorithm is a standard grid search using the Cua-Heaton 

ground motion envelopes. The ultimate goal of the grid search is to achieve robustness in 

the earthquake source parameter estimates that describe the incoming observed ground 

motions. Therefore, a mini test sweep is done on recent 4.5<M<7 earthquakes in Southern 

California to show how well the grid search performs with various station densities and 

different waveform data. Additionally, specific critical earthquakes that are frequently missed 

or misidentified by the current EEW system are also included in this study. In this chapter, 

the grid search considers uniform prior information, meaning every magnitude and location 

is assumed to occur equally likely. With a uniform prior, the posterior probability is 

essentially the waveform-based likelihood. To see how prior information affects the grid 

search solutions, in terms of speed and uncertainty, refer to Chapter 8. Overall, the grid 

search is able to estimate the magnitude with less than 3 seconds of P-wave data from one 

station and the location with three stations. While this chapter only shows the performance 

of the grid search, Chapter 7 compares it to the performance of Method II of the two-part 

algorithm. The comparisons of the error bands resulting from the two different methods 

infers that the extended catalog search generally finds a better fit to the incoming ground 

motions, especially because it considers the specific conditions of the station and channel. 

However, the grid search does provide a form of confirmation, which would reduce the 

uncertainty of the overall results.  

3.1 Introduction to the Grid Search Method 

A standard grid search is a simple, straightforward approach to exhaustively scan through a 

set of potential parameters to find the best match that portrays the true observed data. It is 

the most basic method used in data inversion procedures, which is essentially the type of 
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problem EEW aims to solve for earthquake source parameters and expected ground 

shaking. A grid search thoroughly tests out all the various combinations of possible 

parameters, within the specified constraints, to find the best one that describes the input 

data. This calculation of the total combinations of the parameters clearly reveals, if existent, 

multiple optimal solutions. This way, the uniqueness of the optimal solution can be 

compared with the rest of the parameter space (i.e. when there are multiple best fitting 

parameters). Furthermore, this ability to search without requiring derivative information 

allows the grid search to solve nonlinear problems more easily, as it is used to achieve 

convergence by searching the parameter space by brute-force. 

The history of the usage of the grid search method shows that though time-

consuming, it almost always brings parameter values sufficiently close to the optimum values 

(Pederson 1997). Nevertheless, it is important to know the disadvantages of the grid search 

before applying it to the data. The main disadvantage is that the operation is computationally 

expensive. To address this disadvantage, the grid space can be modified to be smaller with 

coarser increments. However, this is dangerous, as grids need to cover sufficient space to 

ensure the optimal solution is not missed. Fortunately, the computational efficiency can still 

be saved by another advantageous feature of the grid search: its ability to run independently, 

or in parallel. Essentially, this feature allows a computationally large problem to be broken 

into smaller, more manageable ones without impacting timeliness.   

Overall, the advantages of the grid search, which includes simplicity, directness, and 

robustness in obtaining optimal solutions, outweigh the disadvantages, which is mainly its 

computational inefficiency when grids grow large. In this chapter, a grid search attempts to 

describe the incoming ground motion envelopes with a magnitude and epicenter (i.e. 

latitude, longitude) by finding templates that matches the observed. The set of pre-

determined templates are ground motion envelopes based on attenuation relationships 

developed by Cua. Throughout this thesis, they are referred to as Cua-Heaton envelopes. 

Ultimately, the outputs of the grid search method are the best-fitting earthquake source 

parameters to describe the incoming ground motions, which then can be transformed to 

EEW-relevant solutions, such as expected ground shaking levels.   
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3.2 Creating the Grid Space 

3.2.1 Grids 

There is no preceding insight in determining the total grid space properly before the 

earthquake ruptures. Therefore, the total grid space is created based on the information from 

the first-triggered station. Once it is created, however, it remains the same throughout the 

remainder of the calculations, which makes parallel execution of the grid search at various 

stations and channels possible. The total grid space is defined as the total possible 

combinations of the individual parameters in consideration, which are magnitude, latitude, 

and longitude. Shifts in time are also embedded within the grid search to account for early 

and late arrivals of the signal, which may occur due to differences in depth from different 

wave propagation paths.  

The magnitude constraints are M3 to M7 at increments of 0.1. Modifying the 

increments to larger than 0.1 will make the grid search more computationally efficient but 

may do so at the cost of accuracy in the parameter estimates. On the other end, making the 

increments finer to less than 0.1 will only make the grid search more computationally 

expensive, without improving the optimal solution. Therefore, 0.1 is chosen as the 

increment, which is sufficient to capture the best-fitting magnitude estimates with an initial 

error of 0.53, using a single-station approach, which decreases to 0.28 as additional two 

stations are triggered. The minimum considered magnitude is M3, where the incoming signal 

can be clearly identified, and the maximum considered magnitude is M7, where point source 

characterization of the earthquake may not be valid. Because the Cua-Heaton ground motion 

envelopes are intended for earthquakes that are characterized as point source, the confidence 

in the results of the grid search for larger earthquakes may be lower. For such cases, the 

second method of this search algorithm, an extended catalog search, or the existing 

algorithm that characterizes the rupture as line source, FinDer, are better choices.  

As previously mentioned, the first-triggered station provides insight into the 

determination of the total grid space. In particular, its location initializes the constraints of 

the latitude and longitude. Assuming the incoming ground motions are nearby this first-

triggered station, that is less than 100 km away, the spatial constraint is a 2°x2° square at 

increments of 0.1°, which approximately maps to a 200x200 km2 square at increments of 10 
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km, centered at the first-triggered station’s location. This particular increment of 10 km is 

sufficient to capture the best-fitting location estimates with an overall error of approximately 

5 km. 

Together, if there are 𝑋 possible magnitudes, 𝑌 latitudes, and 𝑍 longitudes, then the 

total grid space consists of 𝑋 ∙ 𝑌 ∙ 𝑍 grid points, where each grid point represents a single 

combination of a magnitude, latitude, and longitude (see Fig. 3.1).  

 

 

Figure 3.1. Visualization of the total grid space using the following constraints: M3 to M7 for 
magnitude and (35.48°N, 115.55°W) for the first-triggered station’s location. The grid point 
(in red) refers to a combination of the 𝑖!! magnitude, 𝑗!! latitude, and 𝑘!! longitude. 
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3.2.2 Templates 

Once the total grid space is determined, the templates can be created at each grid point. As 

seen in Fig. 3.1, each grid point specifies a magnitude, latitude, and longitude. However, the 

creation of the templates requires a re-parameterization of the latitude and longitude to 

epicentral distance, for Cua-Heaton envelopes are dependent on magnitude, epicentral 

distance, and site classification (Cua 2005). The Haversine formula achieves this appropriate 

re-parameterization; it finds the distance between two points on a sphere.  

 

Figure 3.2 Templates created at each grid point of the total grid space. They are the Cua-
Heaton ground motion envelopes (Cua 2005). 

Before moving on with the specifics of the grid search method, it is important to 

understand how the templates are made (i.e. assumptions, special features). The Cua-Heaton 

ground motion envelopes are characterized by a total of only 11 parameters: the rise time, 

duration, constant amplitude, 2 coda decay (each for P-wave and S-wave component), and 

ambient noise. The amplitudes are dependent on the magnitude, epicentral distance, and site 
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classification (i.e. rock, soil). For the evolution of the envelopes with respect to time, a 

lookup table of travel times is used (Cua 2005). Initially, the envelopes for the P-wave, S-

wave, and ambient noise are created individually, and under the assumption of random 

phase, the finalized envelopes used in the grid search are found by taking the square root of 

the sum of squared individual envelopes.  

The Cua-Heaton ground motion envelopes have key features that make them more 

preferable than ground motion envelopes based on other attenuation relationships. First and 

foremost, they consider magnitude saturation dependent on distance. The saturation is most 

pronounced in the acceleration at close distances to large events. Also, soil and rock sites are 

treated differently. Soil sites exhibit stronger degree of saturation than rock sites. For the 

most accurate results, the grid search would generate and use envelopes for soil sites in 

regions of VS30 < 464 m/s and would use envelopes for rock sites in regions of VS30 > 464 

m/s. However, for simplicity, this analysis only uses envelopes assuming rock sites.  

The two-part search algorithm is envelope-based; both the input data and templates 

are in the form of envelopes. An envelope of a signal is essentially a trace of the signal’s 

peaks, where the peaks are found using a sliding window (see Fig. 3.3). The user defines the 

size of the sliding window, but in this thesis, the size is set to 1 second. The algorithm 

emphasizes the use of envelopes to mimic the analysis human seismologists conduct as 

closely as possible. Particularly, the use of envelopes allows the algorithm to make judgments 

on the incoming earthquake by observing the shape and relative frequency content of the 

waveform data. The 1-second windows of the envelopes also have the potential in reducing 

latencies in real-time data collection, as high sampling frequencies of 100 to 200 Hz may add 

additional computational stress.  



 21 

 

Figure 3.3. Envelope created by taking trace of signal’s peaks in 1-second windows. 
Envelope (in red) converted from taking the maximum absolute amplitudes of raw full 
waveform data (in black) in 1-second windows. 

3.3. Defining the “Goodness-of-Fit”  

As previously mentioned, the grid search ultimately aims to find the best-fitting parameters, 

which are the magnitude, latitude, and longitude. To find these best-fitting parameters, a 

goodness-of-fit test is used. Generally, a goodness-of-fit test measures how well the 

observed data corresponds to the fitted (predicted) model by evaluating a particular function. 

Though the grid search and extended catalog search uses different templates as their 

respective predicted models, both methods of the two-part algorithm determines the 

goodness-of-fit score by maximizing the same function (see Eq. 3.1.3), which is the posterior 

probability assuming a normal distribution of the logarithmic residuals of the data. This is 

essentially the same as assuming a lognormal distribution of the absolute residuals of the 

data. Because normality is a strong assumption, it is important to check that it is not violated. 

That is, normality is only valid when the residuals, the difference of the logarithmic 

amplitudes of the observed and predicted Cua-Heaton envelopes, are normally distributed 

about 0.  
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𝑃𝑟!"#$ 𝑀, 𝑙𝑎𝑡, 𝑙𝑜𝑛 𝑌 ∝ 𝑃𝑟!"#$ 𝑌 𝑀, 𝑙𝑎𝑡, 𝑙𝑜𝑛 = 𝑃𝑟!"#$ 𝑌!"# 𝑀,𝑅!
!!!

!
!!!

!
!!!  (3.1.1) 

𝑃𝑟!"#$ 𝑌!"# 𝑀, 𝑙𝑎𝑡, 𝑙𝑜𝑛 ∝ exp − !!"#!!!"#
!

!!!"#!
 (3.1.2)  

𝑃𝑟!"#$ 𝑀, 𝑙𝑎𝑡, 𝑙𝑜𝑛 𝑌 ∝ exp − !!"#!!!"#
!

!!!"#!
!
!!!

!
!!!

!
!!!  (3.1.3) 

where 𝑌!"# is the logarithmic (base 10) amplitude of the ground motion envelope observed at 
the 𝑗!! channel, 𝑘!! station, and 𝑖!! time point. 𝑋!"# is the logarithmic (base 10) amplitude 
of the Cua-Heaton ground motion envelope, and 𝜎!"# is the uncertainty of the fit. The total 
posterior probability is taking the product of the individual probabilities (Eq. 3.1.2) for 𝑁 
channels, 𝑀 stations, and 𝑃 time points.  

In this chapter, uniform prior is assumed. Therefore, the posterior probability is 

essentially just the waveform-based likelihood, as shown in Eq. 3.1.1 and Eq. 3.1.3. 

Independence is assumed to find the total posterior probability, as shown in the 

multiplication of the individual probabilities in Eq. 3.1.1. Independence is assumed in the 

following: 

• Acceleration, velocity, and displacement amplitudes. For instance, velocity cannot 

be found based on information on position alone (Cua 2005).  

• Time. For instance, amplitude at one time will not determine amplitude at a 

different time.  

• Stations. Amplitudes at stations are causatively independent because the same 

earthquake causes them, but they can be considered stochastically independent 

because knowledge at one station does not imply knowledge in another (Cua 2005).  

Therefore, for simplicity, independence is assumed. However, it is worthwhile to keep 

in mind that if large accelerations occur in one station, nearby stations may experience large 

amplitudes as well.  

Working in the natural logarithmic form helps avoid computations with very small 

values. Therefore, maximizing the posterior probability over a set of Cua-Heaton ground 

motion envelopes can be transformed to a minimization problem. It is computationally 

simpler to minimize the sum of squared residuals (SSR), seen in Eq. 3.2, over a set of Cua-

Heaton ground motion envelopes, which is simply the negative function within the 
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exponential in Eq. 3.1.3. This is valid, as logarithmic amplitude residuals follow a normal and 

independent distribution about a zero mean and constant variance (Cua 2005).  

𝑆𝑆𝑅 𝑌 𝑀, 𝑙𝑎𝑡, 𝑙𝑜𝑛 = !!"#!!!"#
!

!!!"#!
!
!!!

!
!!!

!
!!!  (3.2) 

where 𝑌!"# is the logarithmic (base 10) amplitude of the ground motion envelope observed at 
the 𝑗!! channel, 𝑘!! station, and 𝑖!! time point. 𝑋!"# is the logarithmic (base 10) amplitude 
of the Cua-Heaton ground motion envelope, and 𝜎!"# is the uncertainty of the fit. 

3.4 Interpreting the Best Fits with Error Bands 

Maximizing the posterior probability, or minimizing the SSR, finds the best-fitting Cua-

Heaton ground motion envelope. Once this envelope is found, it is important to also include 

another value that quantifies how precisely this chosen envelope fits the incoming observed 

one. In the world of statistics, many terms exist to quantify how precise the predicted model 

fits the observed data, such as uncertainty and standard deviation. However, in this thesis, 

the term used to quantify the misfit of the Cua-Heaton envelope with respect to the true 

incoming envelope is error band. Error bands, defined in Eq. 3.3 and illustrated in Fig. 3.4, 

enclose the area about the best-fitting envelope in which the true observed data can be 

found; they portray the volatility around the best-fitting envelope. They vary based on the 

user-defined confidence band. For example, to satisfy a 95% confidence band, the error 

bands are adjusted to allow 95% of the true observed data.  

log𝑋!"# − 𝜂 ≤ log𝑌!"# ≤ log𝑋!"# + 𝜂 (3.3) 

where 𝑌!"# is the logarithmic (base 10) amplitude of the ground motion envelope observed at 
the 𝑗!! channel, 𝑘!! station, and 𝑖!! time point. 𝑋!"# is the logarithmic (base 10) amplitude 
of the Cua-Heaton ground motion envelope, and 𝜂  is the error band that is adjusted 
accordingly to satisfy the confidence band.   
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Figure 3.4. Error bands (transparent red shade) that give visual sense of level of confidence. 
It illustrates how much the chosen envelope (in red) must be scaled to best fit the observed 
envelope (in black). 
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3.5 Assessing Convergence: a Test Sweep on 5<M<7 Events 

For simplicity, the first test sweep is done on only 5<M<7 events in Southern California. 

From year 2010 to 2020, 12 5<M<7 earthquakes are recorded in the ANSS catalog. M>7 

events are excluded because they may require a finite fault characterization of the 

earthquake, instead of point source. Therefore, results using M>7 events would negatively 

implicate the grid search solutions. For practicality of mimicking real-time EEW analysis as 

closely as possible, only the first three to six triggered stations are considered. In EEW, it is 

preferable to avoid waiting for more stations because this would severely minimize, or even 

lose altogether, warning time for regions of expected strong shaking. Therefore, the initial 

hypothesis of the grid search is that accurate estimates can be achieved with at most three 

stations.  

From the Southern California Seismic Network, the raw acceleration waveform time 

series from the nearest seismic stations at each event listed in Table 3.1 are downloaded. The 

raw acceleration includes three components of the ground motion: EW, NS, and UD 

directions. To avoid clipping issues, especially with 5<M<7 earthquakes, only the strong 

motion channels are downloaded. The raw acceleration is filtered with a 4th order 

Butterworth high-pass at a corner frequency of 0.075 Hz (~ 13 s) and integrated, once for 

velocity and twice for displacement. However, for displacement, it is important to filter with 

a 3-second Butterworth high-pass to distinguish from microseisms that dictate the lower 

bound on the magnitude range (M<3.5). Therefore, it is denoted as “filtered displacement”.  

The acceleration, velocity, and filtered displacement time series are then converted to 

ground motion envelopes, as described in Fig. 3.3, ready to be used as input data for the grid 

search. The corresponding parameters to the maximum posterior probability (Eq. 3.1.3), or 

the minimized SSR (Eq. 3.2), are compared to the “true” parameters recorded in the ANSS 

catalog (see Table 3.1). To avoid bias in the solutions, this comparison refers to the absolute 

value of the difference between the grid search estimates and the “true” parameters in the 

ANSS catalog. Throughout this thesis, this comparison is denoted as “absolute error”. The 

parameters in Table 3.1 are assumed to be true with negligible error.  
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Table 3.1. List of 5<M<7 events in Southern California in the years 2010 to 2020.   
Event ID Origin time Magnitude Latitude Longitude 

14607924 2020/04/04,23:25:07.190 M5.38 32.2662 115.2925 

39462536 2020/06/04,01:32:11.140 M5.53 35.6148 117.4282 

38457687 2019/07/06,03:47:53.420 M5.50 35.9012 117.7495 

38443183 2019/07/04,17:33:49.000 M6.40 35.7053 117.5038 

37374687 2016/06/10,08:04:38.700 M5.19 33.4315 116.4427 

15481673 2014/03/29,04:09:42.170 M5.09 33.9325 117.9158 

15200401 2012/08/26,20:57:58.220 M5.41 33.0185 115.5403 

15199681 2012/08/26,19:31:23.040 M5.32 33.0172 115.5537 

14937372 2011/02/18,17:47:35.770 M5.09 32.047 115.0622 

10736069 2010/07/07,23:53:33.480 M5.42 33.4173 116.4747 

14745580 2010/06/15,04:26:58.240 M5.71 32.705 115.9113 

10589037 2010/04/08,16:44:25.010 M5.29 32.1647 115.2683 

Running the grid search on the events listed in Table 3.1 reveals a few interesting 

observations. Overall, the performance of the grid search depends on the station coverage 

about the observed epicenter. To assess the performance of the grid search, the convergence 

of the parameter estimates is observed. Convergence in the parameter estimates refers to a 

single local maximum in the posterior probability. As seen in Fig. 3.7, the location estimate 

found using data from the first 2 seconds remains similar, even as additional data is acquired 

with time. This implies that convergence in the location estimate is not dependent on the 

amount of data retrieved from a station. Rather, it depends on the number of triggered 

stations and how they are distributed about the epicenter. As seen in Fig. 3.5, a uniform 

distribution of at least three stations is required for convergence in the location estimate. A 

uniform distribution of stations has station coverage at different directions about the 

epicenter, not on only one side of the epicenter. Uniformity is emphasized because it 

increases the chance of the epicenter being surrounded by stations (i.e. in network). When 

station coverage is sparse and distribution is non-uniform about the epicenter, the grid 

search believes multiple locations have similar likelihoods. Such region includes Baja 

California, where the first triggered stations are above the United States and Mexico border 

and far away from the observed epicenter (R > 50 km). Seen in Fig. 3.6, the stations look 
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like they are distributed in a line and to one side of the epicenter, which confuses the grid 

search in finding a single optimal location estimate. In California, interstation distances 

between seismic stations vary from region to region. They are less than 5 km in densely 

populated regions, like San Francisco and Los Angeles, but they are larger than 70 km in 

northeastern California. This study suggests that uniformity in interstation spacings is 

suggested for a robust grid search. As previously mentioned, the increment of the latitude 

and longitude grid space is 10 km. The grid search is able to robustly capture the epicentral 

locations with this increment. If each grid point represents a potential epicenter, uniform 

station coverage would mean there are at least three stations about each point, which is an 

interstation spacing of 10 to 20 km.  

At least three stations are required for accurate location estimates. However, for the 

magnitude estimate, three stations are not required. Instead, a single station is able to find 

median absolute error of 0.53 units for the magnitude. Waiting for three stations would 

decrease this error to 0.28 units. Using a single station results in a median alert time of 

approximately 3 seconds, assuming no latencies. Alert time refers to the time between the 

origin and when alerts would be sent to users. Waiting for three stations increases the 

median alert time to 6 seconds. The median location error is approximately 5.25 km, 

whether the grid search uses P-wave data from a single station or three stations. The 

estimates are satisfactory as it is within a factor of 2, considering the grid increments are 10 

km.  
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Figure 3.5. Convergence to single optimal location. The pattern seen here is a uniform 
station distribution (white triangles) about the observed epicenter (blue star).  
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Figure 3.6. Multiple optimal location estimates (multiple local maxima in posterior 
probabilities). The pattern seen here is the linear station distribution (white triangles) on one 
side of the observed epicenter (blue star). 
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Figure 3.7. Parameter estimates from test sweep of 12 5<M<7 events. Cases consists of 
events located in regions of uniform station distribution (in gray) and events located out-of-
network or in non-uniform station distribution (in red). The median of all 12 events is 
shown in black. The estimates found in the 3 seconds are from a single station (left of green 
vertical line). Afterwards, two to three stations are considered in the grid search. 
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From observing the trends of the median absolute magnitude and location errors 

with increasing time and triggered stations, a single criterion is not adequate to base a 

decision on. Instead, two criteria are suggested in making a decision to send an alert to users. 

The first criterion is to send an alert to regions near the estimated epicenter with the initial P-

wave data from a single station. Seen in Fig. 3.6, even with multiple optimal locations with 

similar posterior probabilities, the epicenter is still found within reasonable range of 50 km 

of error. The alert would tell users within a radius of 50 km about the location estimate to 

expect strong shaking. A specific quantitative measurement of the parameter estimates is not 

necessary, especially due to saturation effects in near-source regions for a large (M>6.5) 

earthquake. In other words, the saturation encloses at approximately 0.5g for both a M6.5 

and a M7.5 earthquake at close distances. The second criterion is to wait for three triggered 

stations to send alerts to regions that are farther away from the estimated epicenters, as in 

those regions, accuracy of the parameter estimates cost more.  

3.6 Assessing Robustness: a Test Sweep on 4.5<M<7 Events 

It is difficult to assess robustness in the parameter estimates with only 12 events. Therefore, 

the test sweep is expanded to include 75 4.5<M<7 single events in Southern California from 

2010 to 2020. Again, raw acceleration waveforms from the three nearest triggered stations 

are downloaded. They are processed to find the velocity and filtered displacement data. 

Then, the data is converted to ground motion envelopes as inputs to the grid search. 

Considering the EW, NS, and UD components for acceleration, velocity, and filtered 

displacement envelopes, there are 9 envelopes each for 75 events, total of 675 envelopes. 

The grid search solutions are the best-fitting magnitude and location estimates, and they are 

updated every 1 second with additional data from more stations and time. Fig. 3.8 shows the 

different distributions of the absolute errors in the magnitude estimates for a single station, 

two stations, and three stations. An absolute error of 0 means the estimate equals the true 

recorded in the historic ANSS catalog. With additional triggered stations, the median and 

standard deviation of the absolute magnitude error decreases. The distribution becomes 

more left skewed with additional stations; this implies that more triggered stations result in 

magnitude estimates that are closer to the true ones recorded in the ANSS catalog.  
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To observe for robustness in the set of 75 earthquakes, the median and the standard 

deviation of the absolute errors are calculated (see Table 3.2). Using the P-wave data from a 

single station, the median and standard deviation of the absolute magnitude error are 0.53 

and 0.40 units, respectively. The location error ranges from 0 to 16.76 km. The median is 

5.25 km, and the standard deviation is 11.50 km. However, as stated before in the previous 

test sweep of 5<M<7 events, a single station does not guarantee convergence of the location 

estimate. With three stations, the median absolute error reduces to 0.28 units for the 

magnitude. The standard deviation decreases to 0.33 units. The location error remains 

similar, approximately 5.13 km, but convergence is guaranteed with three triggered stations. 

With the grid increment being 10 km, the location error is satisfactory as it is within a factor 

of 2.  

For comparison to current EEW algorithms, the solutions for ElarmS are shown in 

Table 3.2. The most updated ElarmS algorithm has a median magnitude error of 0.3 units 

and location error of 2.3 km using four stations (Chung et al. 2019). By minimizing the 

required amount of triggered station from four to one, the grid search gains alert time. 

However, it costs accuracy of 0.23 units in the magnitude estimate error. Waiting for three 

stations, still fewer than the amount ElarmS waits for, gains accuracy of 0.02 units in the 

magnitude error. As previously mentioned, the grid search results in this chapter are based 

on waveform-based likelihood only. There is, however, potential for faster magnitude 

estimates with the application of prior information (see Chapter 8).   
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Table 3.2 (a). Comparison of solutions (median): Grid Search vs. ElarmS.  
Using P-wave data from… Magnitude absolute error Location error Alert time* 

Grid Search 

One station 0.53 5.25 km 3.0 sec 

Three stations 0.28 5.13 km 6.0 sec 

ElarmS 

Four stations 0.30 2.3 km 6.7 sec 

 

 

Table 3.2 (b). Comparison of solutions (standard deviation): Grid Search vs. ElarmS.    
Using P-wave data from… Magnitude absolute error Location error Alert time* 

Grid Search 

One station 0.40 11.50 km -- 

Three stations 0.33 7.40 km -- 

ElarmS 

Four stations 0.20 16.7 km -- 

 

  



 34 

0 

5 

10 

15 

20 

25 

30 

0-0
.1 

0.1
-0.

2 

0.2
-0.

3 

0.3
-0.

4 

0.4
-0.

5 

0.5
-0.

6 

0.6
-0.

7 

0.7
-0.

8 

0.8
-0.

9 
0.9

-1 
1-1

.1 

1.1
-1.

2 

1.2
-1.

3 

1.3
-1.

4 

1.4
-1.

5 

1.5
-1.

6 

1.6
-1.

7 

C
ou

nt
 

Absolute magnitude error 

Maximizing waveform-based likelihood 
(using P-wave data from one station) 

Median 0.53 
St. Dev. 0.40 

 

0 

5 

10 

15 

20 

25 

30 

0-0
.1 

0.1
-0.

2 

0.2
-0.

3 

0.3
-0.

4 

0.4
-0.

5 

0.5
-0.

6 

0.6
-0.

7 

0.7
-0.

8 

0.8
-0.

9 
0.9

-1 
1-1

.1 

1.1
-1.

2 

1.2
-1.

3 

1.3
-1.

4 

1.4
-1.

5 

1.5
-1.

6 

1.6
-1.

7 

C
ou

nt
 

Absolute magnitude error 

Maximizing waveform-based likelihood 
(using P-wave data from two stations) 

Median 0.43 
St. Dev. 0.33 

 

0 

5 

10 

15 

20 

25 

30 

0-0
.1 

0.1
-0.

2 

0.2
-0.

3 

0.3
-0.

4 

0.4
-0.

5 

0.5
-0.

6 

0.6
-0.

7 

0.7
-0.

8 

0.8
-0.

9 
0.9

-1 
1-1

.1 

1.1
-1.

2 

1.2
-1.

3 

1.3
-1.

4 

1.4
-1.

5 

1.5
-1.

6 

1.6
-1.

7 

C
ou

nt
 

Absolute magnitude error 

Maximizing waveform-based likelihood 
(using P-wave data from three stations) 

Median 0.28 
St. Dev. 0.33 

 
Figure 3.8. Absolute magnitude error using P-wave data from one station (in gray), two 
stations (in red), and three stations (in blue).  
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From observing the trends of the median absolute magnitude and location errors with 

increasing time and triggered stations, a single criterion is not adequate to base a decision on. 

2 criteria are suggested for 4.5<M<7. 

1) With P-wave data at a single station, send alerts to expect strong shaking to regions 

near estimated epicenter without specific quantitative magnitude estimates.  

2) Wait for three stations to trigger before sending alerts to regions farther away, as 

accuracy costs more than speed of alerts.  

3.7 Application to Past Real Earthquakes 

The test sweeps portray robustness in the grid search parameter estimates. The following 

section shows the specific details of the calculations and analysis done in the grid search 

using recent real earthquakes. The particular types of earthquakes of interest are offshore 

events and foreshock-mainshock pairs in a sequence. The grid search is applied to the 

available envelopes from the 2020 Northern coast offshore event, the 2020 Lone Pine event, 

and the 2019 Ridgecrest mainshock.  

3.7.1 2020 Northern coast offshore event  

One of the challenges of EEW is detecting and identifying large offshore events. In fact, 

most recently between 2014 and 2016, E2 missed 213 M>3 earthquakes, in which the 

majority of them were offshore or in areas without dense station coverage (Chung et al. 

2019). Locating offshore earthquakes is infamously known to be difficult due to poor 

azimuthal seismic ray-path coverage and sparse station spacing around the epicenter (Chung 

et al. 2019). Offshore events are frequently missed, but if the system manages to detect 

them, it still takes a long time to issue the first alert due to the lack of stations between the 

epicenter and mainland and the requirement of ElarmS to have at least four triggered 

stations. This is where the previously mentioned advantage of the grid search comes into 

play, in which it is able to find magnitude estimates of absolute errors 0.28 to 0.53 using one 

to three stations, respectively. This advantage has the potential to shorten the time it takes to 

find parameter estimates, which would increase the warning time for nearby regions.  
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On March 09, 2020 at 02:59:08 UTC, a M5.8 offshore event occurred near Petrolia, 

CA. This event should not have been a surprise, as earthquake history shows at least ten 

M>5 earthquakes in the region in the past 20 years. In this type of event, time is of the 

essence, especially with the first P-wave arriving 14 seconds after the origin time (see Table 

3.3). Waiting for more stations to trigger would jeopardize warning time for mainland 

regions closest to the epicenter, regions that would feel the strong shaking first. Therefore, 

the stations considered in this analysis are the first three to be triggered: Petrolia Fires 

Station (89101), Cooskie Peak (KCO), and Cape Town (KCT). As seen in Fig. 3.10, the grid 

search finds matches to the incoming observed acceleration, velocity, and filtered 

displacement envelopes. As previously mentioned, error bands are the allowance about the 

best-fitting envelope for it to represent the incoming ones to a user-defined confidence. To 

show range, confidence of 68%, 90%, and 95% are chosen, as shown in Fig. 3.9.  

To mimic a real-time analysis as the current EEW system, the extended catalog 

search updates the fits and the corresponding magnitude estimates as data becomes more 

available with time (see Fig. 3.9). The grid search is able to estimate the magnitude as M>5 

within the first 5 seconds after the initial P-wave arrival, which FinDer fails to do. Based on 

the trend of the error bands in Fig. 3.9, the confidence in the magnitude and location 

estimates increases with additional data with more time. It ultimately converges to M5.7 with 

time. The computations involve the first three stations. Therefore, a consistent comparison 

to real-time Finder is valid up until 20 seconds after the origin time, where the grid search 

magnitude estimate is M5.1, which is 1.2 units more accurate than FinDer’s solution. After 

20 seconds, the estimates in Fig. 3.9 are worst-case scenario, as more stations in the grid 

search computations would reduce the uncertainties. Even so, the grid search estimates the 

magnitude to be 0.3 units closer to the true magnitude and 5 seconds faster than FinDer’s 

solutions. For the location, the initial grid search estimate is 11 km from the true epicenter. 

With time, specifically 30 seconds after the origin time, the location estimate converges to 

2.87 km from the true epicenter. This estimate is 67 km closer than FinDer’s location 

estimate.  

In reality, the current EEW system misidentifies this M5.8 event, which leads to a 

large location error and failure to send an alert. FinDer simulation takes 35 seconds to lock 

in at a magnitude estimate, ultimately underestimating it to M5.4. The grid search manages to 
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avoid misidentifying this event and essentially eliminate the blind zone for onshore regions, 

as illustrated in Fig. 3.11.    

 

Table 3.3. Triggered stations from the 2020 Northern coast offshore event with P-wave 
arrivals. Maximization of posterior probability considers data from only these stations. 

Station Latitude(°N) Longitude (°W) P-wave arrival (sec after origin time) 

CE.89101 40.3250 124.2877 14 

NC.KCO 40.2567 124.2660 14 

NC.KCT 40.4756 124.3375 14 
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Figure 3.9. Grid search magnitude estimates for the 2020 Northern coast offshore event. 
Along with magnitude estimates, error bands needed for 95%, 90%, and 68% confidence 
bands are plotted. 
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(figure continues next page) 
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(figure continues next page) 
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Figure 3.10. Comparing the best-fitting cataloged (in red) and incoming observed envelopes 
(in black) for the 2020 Northern coast offshore event. Each row represents a station (labeled 
in the y-axis), and each column represents a component (labeled at the top). Acceleration, 
velocity, and filtered displacement are also labeled accordingly. The data lying on the left side 
of the green vertical line is used to find the best-fitting Cua-Heaton envelopes. Using data 
before strong shaking arrives is still able to accurately predict amplitudes to come later in 
time. 
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Figure 3.11. Estimated warning time in specified Northern coast region. 19 seconds after the 
origin time, the magnitude estimate approaches M5.7, and the location estimate converges to 
15 km from the true epicenter. At this time point, alerts can be issued to users before strong 
shaking arrives onshore. Essentially, the blind zone is eliminated for the onshore region. 
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3.7.2 2019 Lone Pine foreshock-mainshock pair 

Another type of earthquakes considered in this study is a foreshock-mainshock pair part of a 

sequence. The next earthquake to study is the 2020 Lone Pine mainshock. 

Approximately 41 hours before the M5.8 mainshock, earthquake history shows a 

M4.62 foreshock that occurred 0.7875 km away. The computations involve waveform 

envelopes from the first four triggered stations listed in Table 3.4. The first station, 

Cottonwood Creek (CWC), is triggered just 2 seconds after the origin time, and the rest, 

Cerro Gordo (CGO), McCloud Flat (MWF), and Darwin (DAW) follow 4, 7, and 7 seconds 

after, respectively. Overall, the Cua-Heaton envelopes provide strong fits for acceleration 

and velocity, as shown in Fig. 3.13, but have difficulty fitting the long period components in 

the filtered displacement. The accuracy of these envelope fits is quantitatively shown 

through the trends in the error bands. Initially, the error bands remain similar until 18 

seconds after the origin time where they decrease by 63%, 71%, and 68% for the 68%, 90%, 

and 95% confidence bands, respectively (see Fig. 3.12). 

Initially, there is tradeoff between the magnitude and location estimates; the initial 

magnitude estimate is underestimated to M4.1 with the location error being about 8 km (see 

Fig. 3.12). Just 7 seconds after, which is faster than the current system’s solutions, the 

magnitude estimate grows to M5.9 with the location error being approximately 0.89 km. 

Here, the grid search finds a location estimate 29 km closer to the true epicenter than the 

current system. Eventually, the magnitude estimates approach M6.1, which is 0.3 units from 

the true value. The confidence here is amplified, as the error bands get smaller. In real-time 

application, more stations would be considered in the computations. More stations would 

reduce uncertainties, farther decreasing the error bands. A consistent comparison to the 

current system solutions is valid up until 10 seconds after the origin time. Afterwards, worst-

case scenario is shown in Fig. 3.12. Even so, obtaining an accurate estimate 18 seconds after 

the origin time is similar to the current EEW system performance.  

In reality, the current EEW system detects the mainshock, but with tradeoffs 

between the location and magnitude estimates. It overestimates the magnitude to M6.0 and 

locates the epicenter with an error of 30 km. It also takes at least 20 seconds for estimates to 

converge and lock in. The grid search is able to recognize the incoming ground motions with 

similar time, 18 seconds after the origin time, with a magnitude estimate error of 0.3 and 
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location error of 0.89 km. Grid search performs better in accuracy but similar in speed in 

obtaining the parameter estimates. Because both grid search and the current system obtain 

the parameter estimates in similar speeds, the warning times and blind zones remain 

relatively the same.  

The 2020 Lone Pine mainshock, along with the 2019 Ridgecrest mainshock, is 

intentionally studied for this thesis because the preceding foreshock provides valuable 

information. This chapter addresses calculations using only waveform-based data, but a 

foreshock-mainshock pair is a case where prior information from the foreshock has the 

potential to reduce tradeoffs in location and magnitude estimates for the mainshock. One 

such prior is the Epidemic Type Aftershock Sequence (ETAS) model, which is described in 

Chapter 8 (Felzer 2009). 

Table 3.4. Triggered stations from the 2020 Lone Pine mainshock with P-wave arrivals. 
Maximization of posterior probability considers data from only these stations. 
Station Latitude(°N) Longitude (°W) P-wave arrival (sec after origin time) 

CI.CWC 36.4399 118.0802 2 

CI.CGO 36.5504 117.8029 4 

CI.WMF 36.1176 117.8549 7 

CI.DAW 36.2715 117.5921 7 
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Figure 3.12. Grid search magnitude estimates for the 2020 Lone Pine mainshock. Along with 
magnitude estimates, error bands needed for 95%, 90%, and 68% confidence bands are 
plotted. 
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(figure continues next page) 
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(figure continues next page) 
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Figure 3.13. Comparing the best-fitting Cua-Heaton (in red) and incoming observed 
envelopes (in black) for the 2020 Lone Pine mainshock. Each row represents a station 
(labeled in the y-axis), and each column represents a component (labeled at the top). 
Acceleration, velocity, and filtered displacement are also labeled accordingly. 
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3.7.3 2019 Ridgecrest sequence 

The 2020 Northern coast offshore event and 2020 Lone Pine mainshock are examples 

where point source characterization of the earthquake is valid. However, this may not be the 

case for larger earthquakes (M>6.5). The next example to study is the 2019 Ridgecrest 

sequence, where the M6.4 foreshock was followed a M7.1 mainshock. This particular 

foreshock-mainshock pair is spaced apart in time by nearly 34 hours and in space by 11 km. 

The mainshock ruptured bilaterally in the NW-SE direction for a cumulative length of ~65 

km (Ross et al. 2019). Some discrepancy in the envelope fits is expected due to this long 

duration and rupture length. If the station-to-epicenter distance is less than the rupture 

length, a point source characterization may not be valid and a finite fault characterization is 

needed. However, for this particular chapter, point source is assumed as the Cua-Heaton 

envelopes were designed with this in mind (Cua 2005). An earthquake of this large 

magnitude is the upper limit of the grid search.  

The computations involve waveform envelopes from the first seven triggered 

stations listed in Table 3.5. Overall, the Cua-Heaton envelopes provide strong fits for the 

acceleration, but have difficulty fitting the longer periods in the velocity and filtered 

displacement. The grid search struggles to find Cua-Heaton envelopes that capture the larger 

ground motions at the two stations closest to the fault, which are China Lake (CLC) and 

Christmas Canyon China Lake (CCC). The fits are most accurate for the remaining stations, 

which are Tower 2 (TOW2), Snort (SRT), Renegade Canyon (WRC2), Slate Mountain (SLA), 

and Laurel Mtn (LRL). For these five stations, point source assumption is valid as they are 

located at least 15 km from the epicenter. For reference, models suggest the rupture length is 

approximately 20 km.  
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Table 3.5. Triggered stations from the 2019 Ridgecrest mainshock with P-wave arrivals. 
Maximization of posterior probability considers data from only these stations.  

Station Latitude(°N) Longitude (°W) P-wave arrival (sec after origin time) 

CI.CLC 35.8157 117.5975 1 

CI.TOW2 35.8086 117.7649 3 

CI.SRT 35.6923 117.7505 3 

CI.WRC2 35.9479 117.6504 4 

CI.SLA 35.8909 117.2833 5 

CI.LRL 35.4795 117.6821 5 

CI.CCC 35.5249 117.3645 6 

Initially, the grid search underestimates the magnitude to M3 with location error 11 

km (see Fig. 3.14). A consistent comparison to the current system solutions is valid up until 

7 seconds after the origin time. Afterwards, worst-case scenario is shown in Fig. 3.14 as only 

the first seven stations are considered in the analysis. Even with a limited amount of stations, 

10 seconds after the origin time, the magnitude estimates grow to ~M6 with location error 2 

km, which is essentially the same as the current system’s results. The grid search finds the 

final magnitude to be M6.9, which is 0.6 units more accurate than the current system. In 

comparison, the current EEW system underestimated the final magnitude to M6.3. As 

reference, the current system solutions approach M6.4 as the final magnitude. It is only 

known in retrospect that the M7.1 Ridgecrest mainshock is one of the complicated 

sequences with multiple sources rupturing close in time and in space. The use of error bands 

creates an opportunity to recognize complicated sequences in real-time. As the rupture 

continues, the error bands help distinguish when envelopes of point source assumption do 

not suffice and when envelopes of finite fault characterization are required. 
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Figure 3.14. Grid search magnitude estimates for the 2019 Ridgecrest mainshock. Along with 
magnitude estimates, error bands needed for 95%, 90%, and 68% confidence bands are 
plotted. 
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Figure 3.15. Comparing the best-fitting Cua-Heaton (in red) and incoming observed 
envelopes (in black) for the 2019 Ridgecrest mainshock. Each row represents a station 
(labeled in the y-axis), and each column represents a component (labeled at the top). 
Acceleration is shown only as fits for velocity and displacement have large uncertainties.  
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As previously mentioned, a large earthquake like the M7.1 Ridgecrest is the upper 

limit of the grid search. Grid search is intended for M<6.5 events (Cua 2005). Therefore, the 

grid search is expected to perform well using the waveform envelopes from the M6.4 

Ridgecrest foreshock. By eye inspection, as the rupture continues in time, the grid search 

finds significantly more accurate envelope fits for the M6.4 foreshock than for the M7.1 

mainshock. To quantitatively measure the fits, the error bands are plotted in Fig. 3.16. The 

smaller the error bands are, the stronger the fits are, as the envelopes do not have to be 

shifted as much to allow for 95% representation of the incoming envelopes. To acquire 

better fits for the observed envelopes of the M7.1 mainshock, additional templates are 

considered (see Chapter 6). These additional templates are based on multi-source models 

(Yamada 2007).  
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3.8 Further Magnitude Constraints Using Amplitude Ratios 

One of the challenges in obtaining accurate parameter estimates quickly is the tradeoff 

between magnitude and location. Due to the tradeoffs, with only 1 to 2 seconds of data, the 

grid search may find multiple optimal parameter estimates. Therefore, constraining the 

magnitude may reduce the tradeoffs that occur in the initial part of the rupture. Cua uses the 

ratios between acceleration and displacement to estimate the magnitude using as little as 1 

second of data (Cua 2005). The use of ratios stems from the idea that different frequency 

content shows different energies that are radiated, which can distinguish whether the 

incoming ground motion is one from a small earthquake or from a large one. Chapter 8 

describes how Cua came up with the relationship that constrains magnitude estimates with 

available observed data, independent of epicentral distance. The relationship is applied to the 

same 4.5<M<7 earthquakes from the mini test sweep to observe how much waiting time can 

be saved. As seen in Fig. 3.17, the use of the ratios of ground motion amplitudes improves 

the waveform-based magnitude estimates from a median of 0.53 (standard deviation 0.40) to 
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0.14 (standard deviation of 0.21). This decrease increases the confidence in the magnitude 

estimates being more closely distributed about the true magnitudes.  
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Figure 3.17. Maximizing waveform-based posterior probability (left) vs. maximizing 
waveform-based probability that is constrained by the ratios between ground motion 
amplitudes (right). Using the ratios as a constraint on the magnitude, the tradeoffs between 
the parameters are reduced, increasing the overall accuracy in the magnitude estimates. 
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3.9 Summary 

The grid search is a simple, direct method in finding optimal parameters that describe the 

incoming observed ground motions from a rupturing earthquake. The calculations at each 

station and channel are independent and are done using the same grid space, allowing 

parallel execution. The parameters of interest are magnitude, latitude, and longitude. Taking 

all possible combinations of these parameters, the total grid space is defined as well as the 

corresponding Cua-Heaton ground motion envelopes. The posterior probability, which is 

based on the assumption of a normal distribution of the logarithmic residuals of the 

observed and predicted Cua-Heaton envelopes, is maximized for the best parameter 

estimates.  

A test sweep on 4.5<M<7 events reveals certain criteria that need to be satisfied for 

robust performance of the grid search. A uniform distribution of the seismic stations is 

required, and the suggested interstation spacing is 10 to 20 km. Therefore, the grid search is 

intended for regions of dense station coverage, like Los Angeles and San Francisco, but not 

for regions of sparse station density, like Baja California and northeastern California near 

Nevada. P-wave data from one station is adequate to find magnitude estimates that differ 

from the true values by 0.53 units. However, three stations are required to ensure the 

location estimates are of, in fact, global maximum probability. There may be multiple 

optimal location estimates when fewer than three stations are used. With three stations, 

location estimates differ from the true epicenters by 5 km and the magnitude estimates differ 

from the true values by 0.28 units. To reduce tradeoffs in the magnitude and location in the 

initial estimates, a constraint is applied using the ratios between the ground motion 

amplitudes (Cua 2005). Doing so, the standard deviation of the magnitude estimates found 

using P-wave data from one station decreases from 0.53 to 0.14, suggesting a higher 

confidence that the estimates are closely distributed about the true magnitudes.  

The grid search uses Cua-Heaton ground motion envelopes, therefore, it is 

important to understand the assumptions that were made when Cua designed them. The 

strongest of the assumptions is the point source characterization of the earthquake. 

Therefore, for large earthquakes (M>6.5), the grid search may underestimate the ground 

motions as the Cua-Heaton envelopes may not have the ability to capture the large ground 

motions that are amplified along the direction of the longer fault rupture. For such cases, the 
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extended catalog search using templates of complex sequences, or a combination of multiple 

subevents, is more appropriate.  
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4 Method II: Extended Catalog 
Search 
The second method of the two-part search algorithm is the extended catalog search. It is 

intended to run in parallel to the first method, which is the standard grid search (see Chapter 

3). If both methods agree on a solution, it further increases confidence in the alerts. The 

extended catalog search is based on the general idea of image comparison and template 

matching. Given a waveform envelope from an incoming earthquake, the extended catalog 

search looks for the best match from a catalog consisting of real and synthetic earthquakes. 

In this chapter, the extended catalog search is applied using waveform data only. In Bayesian 

probability terms, this means the extended catalog search maximizes the normalized 

likelihood of the envelope amplitudes assuming uniform prior information, just as in 

Chapter 3. Uniform prior information implies this search algorithm assumes earthquakes of 

every magnitude and location occur equally likely. To see how prior information is applied to 

the extended catalog search, refer to Chapter 8. In this chapter, the extended catalog search 

is performed on the same three real earthquakes studied in Chapter 3. Once again, an 

earthquake is assumed to be point source. Chapter 6 addresses how the extended catalog 

search handles complicated sequences by considering additional templates for multi-source 

models. Complicated sequences refer to those that defy the conventional assumptions that 

earthquake ruptures are from individual faults (i.e. M7.8 Kaikoura multi-fault rupture).  

4.1 The Usefulness of Catalog-Based Search Algorithms 

A technological advancement that many people take special interest in today is the facial 

recognition system. There are many different techniques to create this system, but essentially, 

the main idea behind it is an image comparison, or template matching. The general strategy 

is to consider all possible positions (brute-force) of the templates from a database or catalog 

and find the one that best matches, or that shares the most similarities with, the target image. 

The challenge in template matching is guaranteeing an accurate match to the target image. 

Inaccuracies can have serious consequences in some cases. For instance, law enforcement 

agencies use facial recognition software to identify criminals. The credibility would be lost 

with false positive results and large error bands.  
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The extended catalog search is based on this general idea of template matching, 

where an incoming observed ground motion is compared to previously observed ground 

motions from an earthquake catalog. The goal is to find one that best describes the observed 

ground motion, or more specifically, to find the best parameter estimates (i.e. magnitude and 

location). To ensure accuracy, the catalog must cover a large enough range of earthquakes. A 

sufficient catalog consists of a huge variety of both epicentral locations and magnitudes. A 

past observation is that almost 50% of all earthquakes have foreshocks recorded in 

earthquake history, and this is the rationale behind the extended catalog search 

(Abercrombie and Mori 1996). This past observation strongly implies that an event already 

exists in the catalog that closely matches the incoming earthquake. Assuming the original 

catalog already consists of many epicentral locations, it is further extended with respect to 

earthquake magnitude only. This is to ensure representation of the larger earthquakes that 

are less frequent, as stated by the Gutenberg-Richter law.  

The feature of the extended catalog search that sets it apart from other algorithms is 

its uniqueness of the solutions to the station and channel at hand. Therefore, the main 

advantage of this search algorithm is its inclusion of not only earthquake source effects, but 

also site and path effects. In other words, the search does not only consider distance for 

predicted ground motion amplitudes; direction is also considered. The focal mechanisms 

derived from the first ground motions show how the polarity of the first P-wave arrival 

varies between seismic stations at different directions from an earthquake (i.e. compressional 

has material displacing towards the station while dilatational has material displacing away 

from the station). This is different from the standard grid search from Chapter 3 where the 

solutions are more of an average result using pre-determined GMPEs. The unique matches 

from the extended catalog search especially help with reliability in estimates for single-station 

approach. It has the potential to reduce false alerts without waiting for multiple stations.  

The term “extended” refers to the catalog being extended with respect to magnitude 

only. It is not extended with respect to epicentral distance or focal mechanism. The catalog 

of interest is Southern California, and based on Fig. 4.1(a), a variety of epicenters can be seen 

by eye inspection. In fact, based on 154,671 earthquakes in California, an event exists almost 

every 25 km in space for the region between the U.S.-Mexico border and San Francisco, as 

shown in Fig. 4.1(b). Therefore, the original earthquake catalog is assumed to have a 
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sufficient range of epicenters. To vary the focal mechanisms, another model is needed to 

further extend the catalog (Heaton 1979).  

 

Figure 4.1. All recorded epicenters in California from 2015 to 2020. (a) Recorded clustered 
earthquakes in California. (b) Because at least one earthquake is found every 25 km in the 
onshore region between San Francisco and the U.S.-Mexico border, sufficient range of 
epicenters is assumed, and the catalog is not extended with respect to location.  

4.2 Defining the “Goodness-of-Fit” 

As previously mentioned, the goal of the extended catalog search is to find a close match to 

the ground motions of the incoming earthquake. A close match is defined as the one with 

the best score, denoted as the “goodness-of-fit”. The measurement used to define the 

goodness-of-fit is the posterior probability of the parameters of interest (i.e. magnitude, 

epicentral location) given the incoming observed ground motions. The best estimates of the 

parameters are obtained by maximizing the posterior probability over a set of cataloged 

earthquakes. Bayes’ theorem states the posterior probability is the normalized product of a 

prior and a likelihood function. In this chapter, the simplest case is assumed, that the prior is 

uniform. A uniform prior in the earthquake magnitude and location implies that earthquakes 

of all magnitudes and locations are equally likely. However, certain relationships prove this is 

not true. For instance, the Gutenberg-Richter law states smaller earthquakes occur more 

frequently than large ones (Gutenberg and Richter 1944). It is also commonly known 

earthquakes often cluster in time and space (Ogata 1998). Therefore, in a later chapter, 
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different prior information is applied to the likelihood to calculate a posterior probability 

that aims to provide accurate parameter estimates without jeopardizing warning time for 

regions expected to experience strong shaking. Using a uniform prior, the posterior 

probability is merely the normalized likelihood, which is calculated using only waveform 

information.  

When an earthquake ruptures, the seismic stations receive waveform information at 

high sample frequencies, such as 100 and 200 samples per second. To decrease chances of 

latency in the early warning system that arises from heavy data collection, the input data used 

in the extended catalog search is waveform envelopes, instead of the full waveform time 

series, with amplitudes taken in 1-second windows. Using ground motion envelopes, the 

posterior probability to maximize for the best parameter estimates is defined in Eqs. 4.1. 

Eqs. 4.1 may look familiar, as it is the same function as the one mentioned in Chapter 3. The 

only difference is the type of templates used as the variable 𝑋!"# . As previously mentioned in 

Chapter 3, the likelihood function models the logarithmic amplitude residuals as a normal 

random variable.  

𝑃𝑟!"#$ 𝑀, 𝑙𝑎𝑡, 𝑙𝑜𝑛 𝑌 ∝ 𝑃𝑟!"#$ 𝑌 𝑀, 𝑙𝑎𝑡, 𝑙𝑜𝑛 = 𝑃𝑟!"#$ 𝑌!"# 𝑀,𝑅!
!!!

!
!!!

!
!!!  (4.1.1) 

𝑃𝑟!"#$ 𝑌!"# 𝑀, 𝑙𝑎𝑡, 𝑙𝑜𝑛 ∝ exp − !!"#!!!"#
!

!!!"#!
 (4.1.2) 

𝑃𝑟!"#$ 𝑀, 𝑙𝑎𝑡, 𝑙𝑜𝑛 𝑌 ∝ exp − !!"#!!!"#
!

!!!"#!
!
!!!

!
!!!

!
!!!  (4.1.3) 

where 𝑌!"# is the logarithmic (base 10) amplitude of the ground motion envelope observed at 
the 𝑗!! channel, 𝑘!! station, and 𝑖!! time point. 𝑋!"# is the logarithmic (base 10) amplitude 
of the cataloged earthquake, and 𝜎!"#  is the uncertainty of the fit. The total posterior 
probability of the cataloged earthquake is taking the product of the individual probabilities 
(Eq. 4.1.2) for 𝑁 channels, 𝑀 stations, and 𝑃 time points.  

Working in the natural logarithmic form helps avoid computations with very small 

values. Therefore, maximizing the posterior probability over a set of cataloged earthquakes 

(defined in Eq. 4.1.1 and Eq. 4.1.3) can be transformed to a minimization problem. It is 

computationally simpler to minimize the sum of squared residuals (SSR), defined in Eq. 4.2, 

over the set of cataloged earthquakes. The SSR is simply the negative function within the 

exponential in Eq. 4.1.3. The minimization of the function defined in Eq. 4.2 over the set of 

cataloged earthquakes is justified as constant variance is assumed. This assumption has been 
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proven true; the logarithmic amplitude residuals follow a normal and independent 

distribution about zero mean and constant variance (Cua 2005).  

𝑆𝑆𝑅 𝑌 𝑀, 𝑙𝑎𝑡, 𝑙𝑜𝑛 = !!"#!!!"#
!

!!!"#!
!
!!!

!
!!!

!
!!!  (4.2) 

where 𝑌!"# is the logarithmic (base 10) amplitude of the ground motion envelope observed at 
the 𝑗!! channel, 𝑘!! station, and 𝑖!! time point. 𝑋!"# is the logarithmic (base 10) amplitude 
of the cataloged earthquake, and 𝜎!"# is the uncertainty of the fit. 

Different methods in data fitting exist to meet different needs. As previously 

mentioned, the extended catalog search uses the minimization of the sum of squared 

residuals to find the best parameter estimates. Generally, a drawback of using the sum of 

squared residuals is its sensitivity to outliers. For example, a cataloged ground motion 

envelope may fit the arrival of the incoming observed envelope, but may not necessarily fit 

the coda. A standard sum of squared residuals using absolute amplitudes will heavily penalize 

the goodness-of-fit based on the large misfit in the coda, despite the small misfit in the 

arrival. The use of logarithmic amplitudes addresses this issue as it emphasizes both small 

and large amplitudes in evaluating the goodness-of-fit. Therefore, the use of logarithmic 

amplitudes makes the evaluation of the goodness-of-fit more robust. Also, logarithmic 

amplitudes follow the Gaussian distribution, which is the assumption made in defining the 

posterior probability in Eq. 4.1.3. The minimization of the sum of squared residuals 

resembles an L2 norm. For more robustness, a hybrid of the L1 and L2 norms may be applied 

instead. Future work may include a test sweep using this hybrid, called the Huber norm.   

4.3 Interpreting the Best Fits with Error Bands 

It is not adequate to merely minimize the SSR to find the synthetic envelopes from the 

catalog that best describe the incoming ground motions. Another important solution to 

include is the quantification of how precisely the best-fitting envelopes fit. In the world of 

statistics, many terms exist to quantify how precise the model fits the observed data. Such 

terms are uncertainty, standard deviation, and margin of error. To avoid confusion, 

throughout this thesis, the terms to quantify the model’s performance against the observed 

data are error bands that satisfy a specified confidence band. Error bands enclose the area 

about the best fit in which the true observed data can be found. They give a visual sense of 
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how well the observed envelope fits the best-fitting envelope. For example, a 95% 

confidence band ensures the error bands about the best fit contain 95% of the true observed 

data. The error band, or the area about the best fit, is defined in Eq. 4.3. A visual of the error 

band is given in Fig. 3.4 in Chapter 3.  

log𝑋!"# − 𝜂 ≤ log𝑌!"# ≤ log𝑋!"# + 𝜂 (4.3) 

where 𝑌!"# is the logarithmic (base 10) amplitude of the ground motion envelope observed at 
the 𝑗!! channel, 𝑘!! station, and 𝑖!! time point. 𝑋!"# is the logarithmic (base 10) amplitude 
of the cataloged earthquake, and 𝜂 is the error band that is adjusted accordingly to satisfy the 
confidence band.   

While the minimized SSR, or highest relative probability, chooses the envelopes that 

best match the incoming ground motions from the extended catalog, the error bands 

provide information on the rest of the envelopes that the whole catalog holds. For instance, 

the best-fitting envelope has the smallest SSR but may still have large error bands if the 

catalog itself does not contain envelopes that accurately represent the incoming observed 

ground motions.  

Therefore, along with the SSR, the error bands are calculated. The initial confidence 

band for the error bands to satisfy is chosen as 68%, based on the Empirical Rule (68-95-

99.7) rule. This rule states that for a normal distribution, about 68% of the observed data is 

within 1 standard deviation of the mean, 95% of the data is within 2 standard deviations, and 

99.7% of the data is within 3 standard deviations. Because normal distribution is assumed 

for the logarithmic difference of the envelope fits (lognormal distribution for absolute 

difference), the mean for the best fit would approach a mean of 0. Therefore, one standard 

deviation would be the error band about the best-fitting envelope, which would contain at 

least 68% of the incoming ground motion amplitudes.  

Once the error band about the envelope fit is found, it can be transformed into the 

uncertainty in ground shaking, which is the focus of EEW. The modified Mercalli intensity 

scale, or MMI, is the value used to characterize the ground shaking. Based on current 

GMPEs used, a generally acceptable threshold for the uncertainty in logarithmic PGA and 

PGV amplitudes is a factor of 2, which is approximately 0.3. As seen in Eq. 4.4 and Eq. 4.5, 

this value is converted to an uncertainty in MMI of 1.1, based on the relationships by Wald 

1999 (Wu et al. 2007). However, for a more accurate acceptable threshold, a test sweep on a 

variety of events is required. Ultimately, the algorithm will use this acceptable threshold to 
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declare if the confidence is high enough to send parameter estimates to users. The scope of 

this thesis, however, finds solutions in terms of confidence bands of 68%, 90%, and 95%.  

Algorithm A: 

while 
!!"#!

!!!
!
!!!

!
!!!

!!
!!!

!
!!!

!
!!!

< 68% 

 𝑍!"# =
1, 𝑖𝑓 log𝑋!"# − 𝜂 ≤ log𝑌!"# ≤ log𝑋!"# + 𝜂

0, 𝑒𝑙𝑠𝑒
  

 update 𝜂 

end 

 

𝑀𝑀𝐼 = 3.66 log𝑃𝐺𝐴 − 1.66,𝑉 ≤ 𝑀𝑀𝐼 ≤ 𝑉𝐼𝐼𝐼 (4.4) 

𝑀𝑀𝐼 = 3.47 log𝑃𝐺𝑉 − 2.35,𝑉 ≤ 𝑀𝑀𝐼 ≤ 𝑉𝐼𝐼𝐼 (4.5) 

where 𝑀𝑀𝐼 is the modified Mercalli intensity scale, 𝑃𝐺𝐴 is the peak ground acceleration, 
and 𝑃𝐺𝑉 is the peak ground velocity.  

4.4 Defining the Original Catalog 

This study focuses on finding the best envelope fits to earthquakes that are particularly 

difficult to detect and identify. They include offshore events, like the 2020 Northern coast 

(Petrolia, CA), and sequences, like the 2019 Ridgecrest, 2020 Lone Pine, and 2012 Brawley 

swarm. Full waveforms (raw acceleration from strong-motion sensors) for these mainshocks 

are downloaded from the Southern California Seismic Network (SCSN), Northern California 

Earthquake Data Center (NCEDC), and Kyoshin Network (K-NET). Again, for earthquake 

early warning purposes, waveforms from the first few three to seven triggered seismic 

stations are considered. From the same stations, waveforms of previous M>3 earthquakes 

are also downloaded to initiate the creation of the catalog. Comparing the epicentral 

distributions in Fig. 4.1(a) and Fig. 4.2(a), there is already great variety in epicenters for M<3 

earthquakes. Therefore, only M>3 earthquakes are downloaded for the purpose of scaling 

and creating synthetic waveforms for unavailable epicenters. For computational storage 

purposes, downloaded waveforms are within 100 km about the mainshock epicenter and 

date back less than 5 years before the mainshock. In the future, with ample storage space, 
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the original catalog can include additional waveforms from earthquakes from farther back in 

earthquake history (i.e. 10-20 years before the mainshock) as well as smaller magnitudes (i.e. 

M<3).  

 

Figure 4.2. Distribution of epicenters and magnitudes in the current database for Southern 
and Northern California, looking back 5 years (years 2015 – 2020). Accuracy of extended 
catalog search relies on (a) variety of epicenters and (b) magnitudes. However, Gutenberg-
Richter law says number of smaller earthquakes is greater than larger ones. The aim of the 
spectral scaling model is to create more (synthetic) earthquakes for M>5, in which records 
are scarce. 

The collected raw acceleration time series are processed to find the corresponding 

velocity and displacement time series. The velocity and displacement are also included in the 

extended catalog search to ensure the waveform envelope fits cover a wide range of 

frequency bands, as acceleration covers only the high frequencies. Obtaining the velocity 

requires a single integration of the acceleration. However, integrating the raw acceleration 

sometimes leads to a linear trend due to tilting, response of the transducer to strong shaking, 

or issues with the analog-to-digital convert (Yamada et al. 2007). Therefore, before 

integration, raw accelerations are filtered using a causal fourth-order Butterworth high-pass 

filter with a corner frequency of 0.075 Hz. Raw velocity data from broadband sensors are 

not used to avoid issues of clipping, especially for earthquakes of large magnitudes (M>5). If 

the catalog includes M<3 earthquakes, raw velocity data from broadband sensors are 

downloaded instead of integrating the raw acceleration data. Displacement time series are 

acquired after another integration.  
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As mentioned earlier, the feature of the extended catalog search that sets it apart 

from other search algorithms its uniqueness to the seismic station at hand. Given an 

incoming ground motion from a single station and channel, the extended catalog search only 

compares it to waveforms recorded at the same station and channel. The search for a 

station-specific fit allows it to include the effects of not only the earthquake source (i.e. 

location, size), but also the site conditions. The specific station has unique local soil deposit, 

and the sediments near the ground surface at the site may have a large impact on the ground 

motion amplitudes, frequency, and duration. However, because most of the earthquakes in 

the catalog are of moderate sizes (M<7) where point source characterization is valid, one 

disadvantage is its inability to consider rupture propagation path effects. Chapter 6 addresses 

how this catalog can be further extended to include envelopes for complex sequences that 

consider rupture propagation. This chapter, however, only uses earthquakes of point source 

characterization.   

4.5 Extending the Catalog 

As previously mentioned, for this search algorithm to work adequately, diversity in the 

database is necessary. In other words, the searched database needs to sufficiently cover a 

wide range of potential earthquakes with respect to space and size. If similar data is not 

present in the searched database, then accuracy of the parameter estimates cannot be 

guaranteed, despite the high probability, or goodness-of-fit. It is assumed the original catalog 

consists of earthquakes with sufficient spatial coverage, that is, there are a variety of 

epicenters. However, due to the Gutenberg-Richter law, large earthquakes occur less 

frequently and are scarce in the database. To ensure the catalog also covers a wide range of 

magnitudes, a spectral scaling model is applied to raw ground motion records to generate 

synthetic ground motions. The impact of the spectral scaling model on the original catalog is 

shown in Fig. 4.3. While the original catalog of real earthquakes is scarce in magnitudes 

M>5, as shown in Fig. 4.3(a), the extended version of the catalog ensures those larger 

magnitudes are included, as shown in Fig. 4.3(b). Despite the extension, the shape of the 

histogram is maintained to ensure the Gutenberg-Richter law is still satisfied. With this, the 



 67 

synthetics in the catalog still follow a realistic representation of earthquakes, with smaller 

earthquakes occurring more frequently than larger ones.  

 

Figure 4.3. Extension of the catalog with respect to magnitude only. (a) Original catalog of 
real earthquakes. (b) Extended catalog includes larger magnitudes as well. The shape of the 
histogram is maintained to satisfy the Gutenberg-Richter law.  

To extend the catalog, a transfer function is applied to the existing ground motions. 

The resulting synthetic ground motions would represent those from a different magnitude. 

This transfer function is a simplified version of the standard spectral scaling model (Brune 

1970). The commonly used standard spectral scaling model is the 𝜔!-model. To simplify, a 

few assumptions are made.  

First, this model assumes earthquakes are characterized as a point source. Also, the 

spectrum of an earthquake is assumed to take the form of Eq. 4.6, which is dependent on 

the frequency, corner frequency, and potency (Aki 1967).  

𝑢!(𝑓) ~
!!

!! !
!!!

! (4.6) 

where 𝑢!(𝑓)  is the spectrum of 𝑖!! earthquake with spectral decay 𝑓!!, 𝑓!! is the corner 
frequency that describes the rupture dimension, and 𝑃! is the potency.  

To show that earthquake spectra follow Eq. 4.6, the spectra of three real earthquakes 

are compared in Fig. 4.4. These earthquakes are from the Ridgecrest sequence: the M5.36, 

M6.4, and M7.1. The epicenters for these three earthquakes are similar (within 12 km of each 

other). Despite the different magnitudes, the shapes of the spectra are similar: constant for 
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lower frequencies and 𝜔! drop-off trend for the higher frequencies. Other assumptions are 

constant stress drop independent of source size and constant rupture velocity. Together, 

these assumptions help create the simplified spectral scaling model needed to extend the 

catalog.  

 

Figure 4.4. True spectra of available raw acceleration waveforms recorded at Station SRT 
(HNE, HNN, and HNZ). As the magnitude increases from M5.36 to M6.4 to M7.1, the 
spectrum scales up in amplitude but the shape remains similar, which is approximately 
constant for lower frequencies and 𝜔! decay for higher frequencies. 

Again, the key feature of the extended catalog search is its simplicity in producing a 

synthetic spectrum of an earthquake for which records are not available, such as scarce 

earthquakes of large magnitudes. Scaling a spectrum for which records are available produces 

this synthetic spectrum. Specifically, this scaling procedure refers to an application of a 

transfer function and is simple in that it reduces the depiction of the source spectrum to only 

one parameter, the magnitude (Heaton & Hartzell 1989). Because the transfer function is 

essentially a scaling factor of one earthquake to another, it can be written as a ratio of one 

spectrum to another, in which the spectra are in the forms defined in Eq. 4.6. The definition 

of moment magnitude given by Kanamori, as seen in Eq. 4.7, modifies this ratio into a 

function of only the corner frequency, magnitude, and frequency. Applying Eq. 4.7 to Eq. 

4.6 and taking the ratio of one spectrum to another gives the transfer function, Eq. 4.8.  

𝑀 = !"#!!!.!
!.!

= !"# !" !!.!
!.!

= !"# !!"#∙! !!.!
!.!

≈ !"#!!!.!
!.!

→ 𝑃(𝑀) = 10(
!
!)(!!!) (4.7) 

where 𝑀 is the moment magnitude, 𝑊 is the total work, 𝜎 is the effective stress, and 𝑃 is 
the potency. The effective stress is assumed to be 2 MPa given the average crustal rigidity of 
40 GPa.  
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𝑆 𝑓 =
!!(!)

!!(!)
~

!!

!! !
!!!

!

!! !
!!!

!

!!
= 10

!
! !!!!!

!!!
!!!!

!!!
!!!!

!!!
!

!!!
! (4.8) 

where 𝑆 𝑓  is the transfer function and 𝑓  is the frequency. The following variables 
correspond to earthquakes of same epicentral location but different magnitudes, 𝑀! and 𝑀! : 
𝑢!(𝑓) and 𝑢!(𝑓) are spectra, 𝑃! and 𝑃! are potencies, and 𝑓!! and 𝑓!! are corner frequencies.  

 

Eq. 4.8 is further simplified by applying Eq. 4.9, which is assuming constant stress 

drop of 2.7 MPa and constant rupture velocity of 2.8 km/s, and Eq. 4.7.  

𝑓! ≈
!
!!
= !

!!
!!

= !!
!!
= !!

! !"#
∆!

!
!
= !!!

!!"
∆!
!

!
! = !!!

!"!
∆!
!

!
! = !.!!"/! !

!"(!"!"#)
(!.!!"#)

!"!.!!!!.!!!

!
! ≈ 10!.!!!.!!𝑠!! (4.9) 

where 𝑓! is the corner frequency, 𝑇! is the duration, 𝑉! is the rupture velocity (assumed to be 
2.8 km/s), 𝐿 is the rupture length, ∆𝜎 is the stress drop (assumed to be 2.7 MPa), 𝜇 is the 
rigidity (assumed to be 35 GPa for upper crust), 𝐶 is a constant describing the aspect ratio of 
the rupture dimensions (assumed to be 2.55 from Tom’s notes on earthquake scaling), and 𝑃 
is the potency. Also assuming the width is the same as the length, the corner frequency can 
be written in terms of magnitude only.  

This further simplification puts the transfer function, 𝑆 𝑓 , in terms of magnitude 

and frequency (see Eq. 4.10). Because the transfer function in Eq. 4.8 is dependent on only 

the magnitude, scaling waveforms using the 𝜔!-model implies the epicentral location does 

not vary. In other words, applying the model to the original catalog only extends it with 

respect to earthquake magnitude.  

𝑆 𝑓 = 10
!
! !!!!!

!!!
!!!!

!!!
!!!!

!!!
!

!!!
! ≈ 10

!
! !!!!! !"!.!!!!!!!

!"!.!!!!!!!
 (4.10) 

where 𝑆 𝑓  is the transfer function and 𝑓  is the frequency. The following variables 
correspond to earthquakes of same epicentral location but different magnitudes, 𝑀! and 𝑀! . 
𝑓!! and 𝑓!! are the corresponding corner frequencies.  

The spectra from the previously mentioned earthquakes of the Ridgecrest sequence 

provide an excellent comparison of the true observed with the synthetic. To create the 

synthetic of a M7.1 earthquake, the transfer function in Eq. 4.10 is applied to scale the true 
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spectra of the real M6.4 earthquake. Inverse Fourier transform of the scaled synthetic 

spectrum gives the ground motion in the time domain, shown in Fig. 4.5. Long period 

components observed in the true M7.1 earthquake seem to be well represented in the M6.4 

true spectra. Similarly, to create the synthetic of a M6.4 earthquake, the transfer function is 

applied to scale the true spectra of the real M5.36 earthquake. However, long period 

components are not well represented in the true M5.36 earthquake, meaning they are also 

missing in the synthetic M6.4 ground motions. This is unclear in the synthetic acceleration 

(high frequency), but is clearer in the synthetic velocity. The envelope fits seem to match 

better at the initial part of the waveform than the coda. This discrepancy is not too 

significant for the purpose of EEW. However, to avoid missing long period components in 

synthetics, the original catalog is only extended up to +2 from the true recorded magnitudes. 

For instance, a waveform from a M3 earthquake scaled to one for a potential M7 earthquake 

will not resemble a true M7 due to missing long period components.   

As shown in Figs. 4.5 and 4.6, the error bands are also calculated. They are denoted 

as 𝜎, and they refer to the allowed tolerance about the synthetic envelope that contains at 

least 68% of the true amplitudes. The smaller the error bands, the better the fit is between 

the true and synthetic envelopes. Shown in Fig. 4.5, the spectra for the true M6.4 contains 

the long components present in the true M7.1. Therefore, scaling up the true M6.4 to 

produce a M7.1 synthetic leads to relatively accurate fits (majority have error bands less than 

factor of 2). However, the spectra for the true M5.36 are missing long period components 

present in the true M6.4. Specifically, this is seen in the discrepancy between the true and 

synthetic spectra in Fig. 4.6. A M6.4 synthetic produced by scaling up spectra that are 

missing long period components fails to capture the behavior of the true M6.4.  
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4.6 Application to Past Real Earthquakes 

Applying the transfer function, defined in Eq. 4.8, scales the spectra of the earthquakes 

available in the original catalog to spectra of earthquakes of different magnitudes that are 

unavailable. Once more waveforms are generated to create a sufficient database to search 

through, they are transformed to ground motion envelopes of 1-second windows. Then, just 

as before, the posterior probability, defined in Eq. 4.1.1, is maximized to find the best 

earthquake source parameter estimates. For simpler computations, instead of maximizing the 

posterior probability, the SSR, defined in Eq. 4.2, is minimized. The following section looks 

at the application of the extended catalog search to real earthquakes, particularly those that 

are frequently missed or misidentified by the current EEW system. They are the same ones 

used in Chapter 3 to assess the performance of the grid search. The extended catalog search 

finds magnitude and location estimates as well as their corresponding error bands about the 

best-fitting envelopes. Again, the error bands provide a visual sense of the best-fitting 

envelopes at a given level of confidence; they show how much confidence can be given to 

the corresponding magnitude estimates. Because the extended catalog search is intended for 

real-time EEW application, expected warning times are also calculated by applying Eq. 4.11. 

In this equation, it is assumed the amount of time for data to travel between stations, 

processing centers, and users is relatively much smaller, essentially negligible, than the time it 

takes for parameter estimation. The warning time is the time it takes for strong shaking from 

the S-wave to arrive at a specified region.  

𝑇!"#$ = 𝑇! − 𝑇!"#"$ − 𝑇!"#$%&! ≈ 𝑇! − 𝑇!"#"$ (4.11) 

where 𝑇!"#$ is the expected warning time, 𝑇! is the S-wave arrival time at a given region 
(from a lookup table by Cua),  𝑇!"#"$ is the time it takes for algorithm to collect data and 
find parameter estimates of the earthquake source, and 𝑇!"#$%&! is the time it takes for data 
to travel between stations, processing centers, and users.  
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4.6.1 2020 Northern coast offshore event 

One of the challenges of EEW is detecting and identifying large offshore events, as 

mentioned in Chapter 1. In fact, most recently between 2014 and 2016, E2 missed 213 M>3 

earthquakes, in which the majority of them were offshore or in areas without dense station 

coverage (Chung et al. 2019). Locating offshore earthquakes is infamously known to be 

difficult due to poor azimuthal seismic ray-path coverage and sparse station spacing around 

the epicenter (Chung et al. 2019). Offshore events are frequently missed, but if the system 

manages to detect them, it still takes a long time to issue the first alert due to the lack of 

stations between the epicenter and mainland and the requirement of ElarmS to have at least 

four triggered stations. Therefore, one of the goals of the extended catalog search is to find 

parameter estimates corresponding to small error bands with fewer than four stations. The 

intension is to shorten the time it takes to find parameter estimates, which would increase 

the warning time for nearby regions.  

On March 09, 2020 at 02:59:08 UTC, a M5.8 offshore event occurred near Petrolia, 

CA. This event should not have been a surprise, as earthquake history shows at least ten 

M>5 earthquakes in the region in the past 20 years. In this type of event, time is of the 

essence, especially with the first P-wave arriving 14 seconds after the origin time (see Table 

4.1). Waiting for more stations to trigger would jeopardize warning time for mainland 

regions closest to the epicenter, regions that would feel the strong shaking first. Therefore, 

the stations considered in this analysis are the same first three to be triggered: 89101, KCO, 

and KCT. As seen in Fig. 4.8, the extended catalog search finds matches to the incoming 

observed acceleration, velocity, and displacement envelopes. From the minimization of the 

SSR, the chosen cataloged event is the M4.5 event from July 25, 2018 05:06:06 UTC. The 

waveforms from this cataloged event are eventually scaled to M5.8 to best fit the incoming 

observed envelopes. In comparison to the best-fitting Cua-Heaton envelopes found by the 

grid search, the shape of the envelopes is much more specific due to specific site and path 

effects. The fits found by the extended catalog search are stronger especially for the 

displacement.  

To mimic a real-time analysis as the current EEW system, the extended catalog 

search updates the fits and the corresponding magnitude estimates as data becomes more 

available with time (see Fig. 4.7). The error bands are relatively large for the first 3 seconds; 
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therefore, the magnitude estimates found at the first 3 seconds after the origin time should 

be taken with a grain of salt. The initial magnitude is M5.3 and is of low confidence. 

However, 4 seconds after the origin time, the error bands decrease substantially, meaning the 

magnitude estimate of M5.7 has higher confidence. With time, the magnitude estimate 

eventually approaches the true M5.8. The location estimate is set constant throughout as the 

epicenter of the cataloged event, which is approximately 15 km from the true location of the 

observed M5.8 event.  

In reality, the current EEW system misidentifies this M5.8 event, leading to a missed 

alert, and FinDer simulation takes 35 seconds to lock in at a magnitude estimate, ultimately 

underestimating it to M5.4. The extended catalog search manages to avoid these pitfalls: 

missed events, delay of accurate parameter estimates, and misidentification of the earthquake 

magnitude. Shown in Fig. 4.7, the extended catalog search estimates M5.8 at 22 seconds after 

the origin time, which is more accurate than the current system by 0.4 units and faster by 

approximately 13 seconds.  

Fig. 4.9 shows the expected warning times different regions would receive using data 

available at different times after the origin time. For the levels of shaking, the resulting 

parameter estimates would have to be converted to MMI, using existing relationships such as 

those by Wald.  

The solutions found by the extended catalog search 20 seconds after the origin have 

higher confidence than those found by the grid search. If the alerts are sent at this point in 

time, then the blind zone is virtually eliminated for the users in the onshore region.  

 

Table 4.1. Triggered stations from the 2020 Northern coast offshore event with 
corresponding P-wave arrivals. Maximization of posterior probability considers data from 
only these stations. 

Station Latitude(°N) Longitude (°W) P-wave arrival (sec after origin time) 

CE.89101 40.3250 124.2877 14 

NC.KCO 40.2567 124.2660 14 

NC.KCT 40.4756 124.3375 14 
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Figure 4.7. Extended catalog search magnitude estimates for the 2020 Northern coast 
offshore event. Along with magnitude estimates, error bands needed for 95%, 90%, and 
68% confidence bands are plotted. 
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(figure continues next page) 
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(figure continued on next page) 



 79 

 

Figure 4.8. Comparing the best-fitting cataloged (in red) and incoming observed envelopes 
(in black) for the 2020 Northern coast offshore event. Each row represents a station (labeled 
in the y-axis), and each column represents a component (labeled at the top). Acceleration, 
velocity, and displacement are also labeled accordingly. 
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Figure 4.9. Warning times for regions near the epicenter using ground motions from the 
2020 Northern coast offshore event. In each subfigure, the black circle represents the arrival 
of S-wave. The magnitude estimate corresponding to the time it takes to find it is written in 
black at the top right corner. The corresponding error bands (for MMI, logarithmic 
acceleration, and logarithmic velocity) are written at the bottom right corner. Stations are 
represented in white triangles, labeled accordingly. The warning times are represented in the 
colorbar on the right, with blue being the shortest and yellow being the longest warning 
time. 
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4.6.2 2020 Lone Pine foreshock-mainshock pair 

For the extended catalog search to work properly in finding accurate parameter estimates 

with small error bands, the catalog itself must include waveforms resembling the incoming 

ground motions. A foreshock occurring close by in space and in time most likely satisfies 

this criterion. Foreshock-mainshock pairs hold a special advantage over other types of 

earthquakes because the extended catalog search does not necessarily have to look back over 

a large amount of years in earthquake history, saving computation space and efficiency. A 

specific foreshock-mainshock pair to look at is the 2020 Lone Pine sequence. 

Approximately 41 hours before the M5.8 mainshock, earthquake history shows a 

M4.62 foreshock that occurred 0.7875 km away. In this study, the waveforms from the 

closest triggered stations, listed in Table 4.2, are observed. Initially, there is scatter in the 

error bands (see Fig. 4.10). Approximately 11 seconds after the origin time, the error bands 

start to decrease and remain relatively small. The corresponding magnitude estimates are 

M5.7. Obtaining this accurate estimate 11 seconds after the origin time is 7 seconds faster 

than the current EEW system. The extended catalog search constrains the location estimate 

at the epicenter of the foreshock, which has a location error of approximately 0.7875 km, 

while the current EEW system estimates the location with an error of ~30 km.  

Seen in Fig. 4.11, the envelope fits are weakest in the first station, CWC, which is 

located approximately 9 km from the epicenter. As the station-to-epicenter distance 

increases, the error band generally tends to decrease. This behavior is connected to the 

assumption made at the very beginning of this chapter: the point source characterization of 

the earthquake. Point source characterization is only valid for stations located at greater 

distances than the fault length. If the fault length is greater than 9 km, the invalid 

characterization of the earthquake may explain the discrepancy in the envelope fits at the 

first station. Another possible explanation is the difference in focal mechanism, which is not 

considered in this study of the extended catalog search.  

The extended catalog search is able to recognize the incoming ground motions rather 

quickly. The initial magnitude estimate is M5.6 with just 2 seconds of P-wave data. The 

location estimate is constrained at the foreshock’s epicenter, which is about 0.8 km from the 

true mainshock epicenter. The magnitude estimate eventually grows to M5.7 at 11 seconds 

after the origin time. This is faster than the current system by 8 seconds. In reality, the 
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current EEW system detects the mainshock, but with tradeoffs between the location and 

magnitude estimates. It overestimates the magnitude to M6.0 and locates the epicenter with 

an error of 30 km. It also takes at least 20 seconds for estimates to converge and lock in. The 

performance of the extended catalog search is successful in both speed and accuracy in 

obtaining the parameter estimates.  

Table 4.2. Triggered stations from the 2020 Lone Pine mainshock with corresponding P-
wave arrivals. Maximization of posterior probability considers data from only these stations. 
Station Latitude(°N) Longitude (°W) P-wave arrival (sec after origin time) 

CI.CWC 36.4399 118.0802 2 

CI.CGO 36.5504 117.8029 4 

CI.WMF 36.1176 117.8549 7 

CI.DAW 36.2715 117.5921 7 
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Figure 4.10. Extended catalog search magnitude estimates for the 2020 Lone Pine 
mainshock. Along with magnitude estimates, error bands needed for 95%, 90%, and 68% 
confidence bands are plotted. 
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(figure continues on next page) 
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Figure 4.11. Comparing the best-fitting past cataloged (in red) and incoming observed 
envelopes (in black) for the 2020 Lone Pine mainshock. Each row represents a station 
(labeled in the y-axis), and each column represents a component (labeled at the top). 
Acceleration, velocity, and displacement are also labeled accordingly. 
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4.6.3 2019 Ridgecrest sequence 

So far, the two examples of real earthquakes generally show point source characterization is 

valid. However, this may not be the case for larger earthquakes (M>6.5). The following 

example is the 2019 Ridgecrest sequence, where the M6.4 foreshock was followed a M7.1 

mainshock. This particular foreshock-mainshock pair is spaced apart in time by nearly 34 

hours and in space by 11 km. The mainshock ruptured bilaterally in the NW-SE direction 

for a cumulative length of ~65 km (Ross et al. 2019). Some discrepancy in the envelope fits 

is expected due to this long rupture length. If the station-to-epicenter distance is less than 

this rupture length, a point source characterization may not be valid and a finite fault 

characterization is needed. However, for this particular study in this chapter, point source is 

assumed. In Chapter 6, the use of additional templates considering complex sequences (i.e. 

combinations of subevents at different time delays) may reduce the error bands. The use of 

templates considering complex sequences especially helps explain discrepancies in the fits for 

stations close to the rupturing fault, such as stations China Lake (CLC) and Christmas 

Canyon China Lake (CCC), where the ground motions are amplified due to the propagation 

of multiple ruptures. 

Using the waveforms from the stations listed in Table 4.3, the magnitude estimates 

are initially underestimated to M5.4. Then, they jump up to M6.4 approximately 8 seconds 

after the origin time. The magnitude estimates ultimately approach M6.9 with the location 

estimate constrained to 11 km from the true epicenter. In reality, the current EEW system 

underestimates the final magnitude to M6.3 at 21 seconds after the origin time. In 

comparison, as shown in Fig. 4.12, the extended catalog search estimates M6.4 faster than 

the current EEW system by 13 seconds. It is also able to identify the eventual growth of the 

magnitude to M7.0, which is 0.7 units more accurate than the current EEW system. 
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Table 4.3. Triggered stations from the 2019 Ridgecrest mainshock with corresponding P-

wave arrivals. Maximization of posterior probability considers data from only these stations.  

Station Latitude(°N) Longitude (°W) 
P-wave arrival (sec after origin 

time) 

CI.CLC 35.8157 117.5975 1 

CI.TOW2 35.8086 117.7649 3 

CI.SRT 35.6923 117.7505 3 

CI.WRC2 35.9479 117.6504 4 

CI.SLA 35.8909 117.2833 5 

CI.LRL 35.4795 117.6821 5 

CI.CCC 35.5249 117.3645 6 
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Figure 4.12. Extended catalog search magnitude estimates for the 2019 Ridgecrest 
mainshock. Along with magnitude estimates, error bands needed for 95%, 90%, and 68% 
confidence bands are plotted. 
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Figure 4.13 Comparing the best-fitting cataloged (in red) and incoming observed envelopes 
(in black) for the 2019 Ridgecrest mainshock. Each row represents a station (labeled in the y-
axis), and each column represents a component (labeled at the top). Acceleration, velocity, 
and displacement are also labeled accordingly. 



 93 

4.7 Summary 

The simplest form of the extended catalog search is assuming uniform prior and considering 

only the waveform-based likelihood. In other words, maximizing the posterior probability is 

essentially the same as maximizing the likelihood. To ensure the extended catalog search 

finds envelopes from the past that resemble the incoming observed ones, a simplified 

spectral scaling model is applied. A commonly used standard model by Brune is used, and it 

characterizes the earthquake as a point source and assumes earthquake spectra obey certain 

simple similarity laws. This model allows synthetics to be produced from available 

waveforms of real earthquakes. It is important, however, for the extension of the catalog to 

still have a realistic, natural distribution of magnitudes that follows the Gutenberg-Richter 

law.   

As time goes, catalogs are updated with additional earthquake data, meaning the 

distribution of earthquake parameters (i.e. magnitude, epicenters) continues to diversify. This 

chapter only considers past events from years 2015 to 2020. This constraint can be modified 

to allow waveforms from further back in time. Therefore, the distribution of epicenters in 

Fig. 4.2 would include more variations if the catalog considers more years, such as 2000 to 

2020. This reduces the chance of cases where the catalog does not hold waveforms that 

resemble incoming observed ground motions.  

Based on the applications to real earthquakes, the extended catalog search performs 

best for sequences where plenty events that are nearby in space and in time are available. 

When earthquakes occur in regions of low seismicity, the extended catalog must look further 

back in earthquake history to ensure a variety of waveforms is used. For instance, the 

extended catalog looks back a few hours for the 2020 Lone Pine and 2019 Ridgecrest 

sequences, but it looks back a few years for the 2020 Northern coast offshore event. For 

regions of very low to no seismicity, the final solution will take the grid search estimates. 

This is the value of having two methods in the search algorithm; they serve as checks to one 

another or as replacements if solutions to one method are unavailable.  

Seen in the results, generally, the error bands of the parameter estimates are smaller 

for the extended catalog search compared to those for the grid search. This means the 

solutions found by the extended catalog search correspond to stronger envelope fits, so 

alerts based on their estimates would have higher confidence. Because the error bands are 
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relatively smaller, even for initial time points, the extended catalog search may not be 

significantly impacted by prior information. The grid search, however, may benefit more by 

the use of prior information, as shown in Chapter 8. 

A real-time application of the extended catalog search requires an acceptable 

threshold for the error bands to satisfy before sending an alert to users. To avoid false alerts, 

the current EEW system waits until four stations are triggered, but to save time, the 

extended catalog search aims to find accurate parameter estimates with reduced uncertainties 

with only one to two stations. This benefits regions with sparse station coverage. To send 

accurate alerts with only one to two stations, the error bands would have to satisfy an 

acceptable threshold. However, a test sweep is required to calculate the acceptable threshold, 

which is beyond the scope of this thesis.  

For real-time application, the extended catalogs will be pre-determined based on the 

following criteria. The basis is to look back 1 month in earthquake history, which works 

sufficiently for regions of high seismicity. For regions of moderate seismicity, the extended 

catalog is built looking farther back in time (i.e. 3 months, 1 years, 10 years, and so on). It is 

important to continuously update the catalog with time as new events occur.  

So far, both extended catalog search and grid search find the best-fitting envelopes 

by brute-force. They exhaustively search through every single available envelope. However, 

exhaustive searches can be time-consuming and are practical when the size of the catalog is 

relatively small (< 1,000 records). Chapter 5 focuses on optimizing the search time for 

Method II, the extended catalog search. In the same three specific earthquakes that are 

studied throughout this thesis, between 90 and 3,000 envelopes per station are used. It may 

be necessary for the catalog to have >10,000 or even 100,000 records to ensure a variety of 

envelopes are represented in the search. Otherwise, an accurate match may not be 

guaranteed.  

Once the database grows to > 1,000 records, a faster search method may be needed. 

A KD tree nearest neighbor search is one method that has the potential to search a fraction 

of the whole database without risking accuracy. It is based on the idea of Internet searching. 

Because this chapter uses relatively small catalogs, using a brute-force search is permitted as 

it takes the same amount of searching time as a KD tree nearest neighbor search.  
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5 Optimizing Method II with KD 
trees 
Methods I and II described in Chapters 3 and 4, respectively, use brute-force search, where 

the posterior probability is calculated using every available waveform in the catalog. Brute-

force refers to a search that scans through every ground motion envelope in the extended 

catalog to find the one that best describes the incoming observed envelope. However, this 

choice of search procedure is only practical when the size of the total catalog is relatively 

small. Brute-force search time increases exponentially as the database of earthquake 

increases, which is devastating in EEW applications. For instance, brute-force search may be 

sufficiently fast when looking back only 2 days in earthquake history, such as in the 2019 

Ridgecrest sequence, but it may not be quick enough when looking back multiple years, such 

as in the 2020 Northern coast offshore event. Though search time may increase, looking 

back farther into earthquake history and having a larger database to work with ensures the 

extended catalog search works robustly. Therefore, another method of searching is 

introduced in this chapter: a KD tree nearest neighbor search (Bentley 1975). Brute-force 

search remains for Method I to ensure an optimal solution is not missed. However, Method 

II can be optimized using the suggested KD tree nearest neighbor search.   
5.1 Introduction 

The goal is to collect and store information in a way where the retrieval of relevant 

information can be done in a prompt manner, especially when databases grow large. To do 

so, the main focus is on the initial step of building a specific data structure that efficiently 

represents the data. The suggested data structure is tree-based. Once the structure is built, a 

search can be conducted to find the relevant information that satisfies the user’s requests. 

Many Internet searching services, like Google Maps and Facebook’s facial recognition, use 

tree-based structures to do fast searches. Tree-based structures allow searches to avoid 

exhaustive, brute-force observation of every component in a database. Instead, a fraction of 

the database is searched, and the time spent on searching large databases is reduced.  

5.2 Re-structuring the Format of the Dataset 
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A KD tree is a re-organized storage of data points for the purpose of fast retrieval. The 𝐾 

refers to the total amount of dimensions the dataset is characterized by. We refer to the 𝐾 

dimensions to construct the tree. While a standard binary tree looks to only one component 

for all levels of the tree, a KD tree is constructed using 𝐾 components that are cycled for 

each level of the tree. For instance, for a database of K-dimensional points comprising of 

(𝑥!, 𝑥!,… , 𝑥!) coordinates, a tree is constructed by cycling 𝑥!, 𝑥!,… , 𝑥! , 𝑥!, 𝑥!,… , 𝑥! ,… 

for consecutive levels.  

In application to Method II, the extended catalog search, there are multiple KD 

trees, each with a different value for “K” and each made to compare with observed data of 

different lengths. Each KD tree comprises of data points characterized by coordinates 

(𝑥!, 𝑥!,… , 𝑥!). As seen in Table 5.1, For each of the different KD trees, eight coordinates 

remain constant, which are the event information and the station information. The 

remaining coordinates are the recorded amplitudes of the ground motion envelopes (for 

time points 𝑡 = 0,1,2,…).  
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Table 5.1. Format of the dataset in preparation for KD tree construction. 
Dimension Description of featured dimension Note 

1 Origin time of cataloged earthquake 

Remain constant for every 

KD tree constructed 

2 Magnitude of cataloged earthquake 

3 Latitude of cataloged earthquake 

4 Longitude of cataloged earthquake 

5 Latitude of station 

6 Longitude of station 

7 
Channel (HN* refers to strong motion, HH* 

refers to broadband) 

8 Location term (--,10,00,01) 

9 Amplitudes of ground motion envelope 

recorded at station specified by dimensions 5-8 

for K-8 seconds 

Depends on the length of 

the ground motion 

envelope 

… 

K 

5.3 Constructing the KD Tree 

It requires initial effort to construct a KD tree before searching it. The general procedure in 

constructing a KD tree is to recursively subdivide the total dataset into subsets with respect 

to the median until the final subset consists of only one data point. As previously mentioned, 

the median is calculated while cycling through the coordinates 𝑥!, 𝑥!,… , 𝑥! , 𝑥!, 𝑥!,… , 𝑥! ,… 

for each successive level. The median of the data is used for each recursive subdivision to 

ensure the construction of a well-balanced KD tree (Brown 2020). To clearly understand the 

construction of a KD tree, it is best to construct the simplest case, which is using a 2D 

dataset (𝐾 = 2). A sample dataset of size 10 is defined in Table 5.2. The two dimensions of 

this sample dataset are the amplitudes of the envelope at the first and second time points, 

denoted as 𝐸! and 𝐸!. The 10 data points, each represented by a node in the tree, are labeled 

form 𝐴 to 𝐽.  
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Table 5.2. Sample 2D dataset 𝐾 = 2 . 
 K = 2 Parameters corresponding to specified data point 

Data 
point/Node 

E1 

(cm/s2) 
E2 

(cm/s2) 
Origin time 

(UTC) Magnitude Latitude 
(°N) 

Longitude 
(°W) 

A 0.1776 1.6090 2019/06/23 
03:53:02.800 M5.60 40.2730 124.3000 

B 0.1038 0.1201 2019/01/13 
09:35:48.000 M4.10 40.3750 124.9930 

C 0.0982 0.1836 2018/07/25 
05:06:06.740 M4.50 40.3850 125.0520 

D 0.1013 1.9580 2018/03/23 
03:09:36.710 M4.70 40.4480 124.4910 

E 0.0920 1.7530 2017/06/24 
21:22:03.000 M4.00 40.2880 124.2990 

F 0.1615 2.3140 2016/12/05 
18:33:15.480 M4.35 40.2785 124.3860 

G 0.1259 0.3599 2016/01/07 
05:49:52.430 M4.31 40.2732 124.3395 

H 0.0915 0.3261 2016/01/02 
05:11:46.620 M4.44 40.3083 124.6872 

I 0.0593 0.3307 2015/05/25 
10:17:35.820 M4.34 40.6508 124.7120 

J 0.0349 0.2682 2015/01/29 
19:13:55.180 M4.25 40.3113 124.5892 

A KD tree is represented in two ways. Both representations are necessary to clearly 

understand how the nearest neighbor search will be conducted, which is explained in detail 

later in this chapter. The first representation is a structure of nodes and branches. The 

second representation is a visualization of the points in partitioned spaces, or hyperplanes.  

To construct a KD tree structure using the first representation with nodes and 

branches, the root node is defined. The data point assigned to the root node is found by taking 

the median of the total dataset with respect to one dimension, either 𝐸! and 𝐸!. Choosing 

𝐸!, the data point 𝐶 is assigned to the root node, as shown in red in Fig. 5.1, which is placed 

at the top of the tree. The rest of the data points are subdivided into subsets: to the left, if 

the 𝐸! coordinates are less than that of the root node’s, and to the right, if the 𝐸! 

coordinates are greater than that of the root node’s. The nodes for the second level of the 

tree, as shown in blue in Fig. 5.1, are found by taking the median of each subset, now with 

respect to the 𝐸!. The nodes for the third level of the tree, as shown in green in Fig. 5.1, are 

found by taking the median of each subset with respect to 𝐸!. At this point, the remaining 

subsets consist of only one data point, indicating the end of the process of subdivisions. 
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So far, the construction of a KD tree has been described only using nodes and 

branches. To construct a KD tree using partitioned spaces, the first step is to visualize how 

the data points are plotted in space (see boxes in Fig. 5.1). Just as before, the median is taken 

with respect to the 𝐸! coordinate. At this median, data point 𝐶, a line is drawn perpendicular 

to the axis corresponding to the 𝐸! coordinate, as shown in red in Fig. 5.1. This line splitting 

the space is defined, and referred to throughout this chapter, as the hyperplane. Next, the 

median is taken once more, but with respect to the 𝐸! coordinate, using the data points in 

the left side of the red hyperplane. This time, the hyperplane is drawn perpendicular to the 

axis corresponding to the 𝐸! coordinate, shown in blue in Fig. 5.1. The same is done with 

the subset right of the red hyperplane and with the rest of the remaining subsets, alternating 

the coordinate with each subdivision. Just as before, the construction is complete once the 

remaining subsets consist of only one data point.  

 

Figure 5.1. Construction of a well-balanced KD tree where 𝐾 = 2. Each node in this tree 
contains the coordinates (𝐸!,𝐸!). 
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5.4 Searching the KD Tree 

Once the KD trees are constructed, a nearest neighbor search can finally be conducted. A 

nearest neighbor search, or similarity search, is a common technique in data mining and 

machine learning. An exact nearest neighbor search is applied, which is finding the single data 

point from the dataset that best fits the newly observed point, which is referred to 

throughout this chapter as the query. The data point that best fits the query point, denoted 

𝑝∗, is the one that satisfies Eqs. 5.0. 

𝑝∗ = argmin!∈! 𝑑(𝑞,𝑝)	 (5.0.1) 

𝑑 𝑞,𝑝 = 𝑞 − 𝑝 !	 (5.0.2) 

𝑑 𝑞,𝑝 = 𝑑 𝑝, 𝑞 = (𝑞! − 𝑝!)! + (𝑞! − 𝑝!)! +⋯+ (𝑞! − 𝑝!)! = (𝑞! − 𝑝!)!!
!!! 	 (5.0.3)	

where 𝑑 𝑞,𝑝  is the distance function, L2 norm, of 𝑞, the query point, and 𝑝, the data point 
from the catalog database, 𝑆. 

  



 101 

5.4.1 Steps 

For the sake of clarity in explaining the steps of the nearest neighbor search, an arbitrary 

query point, (0.0108,0.2957), is chosen. This query point is not part of the initial dataset 

the KD tree is originally constructed from and is a newly observed data point from a new 

earthquake with envelope amplitudes 0.0108 and 0.2957 cm/s2. 

The first step of the nearest neighbor search is to create a path from the root node to 

the leaf node nearest to the query. Leaf nodes are the nodes located at the very bottom of 

the tree. The partitioned space helps visualize where to locate this nearest leaf node, which is 

done by finding the partitioned space containing the query point. Once this particular 

partitioned space is found, the distance function 𝑑 𝑞,𝑝  is calculated and initialized as the 

“best-fitting distance.” Applying this concept to the previously defined 2D sample dataset, 

the nearest leaf node is node 𝐽, and the root node is node 𝐶. The distance found between 

data point 𝐽 and query point is initialized as the “best-fitting distance.” 

All the visited nodes along the first path down the tree are to be examined. 

Therefore, the next step is to find the next nearest node amongst the visited nodes and 

calculate the distance 𝑑 𝑞,𝑝 . The next nearest node to examine is node 𝐻. The distance 

between data point 𝐻 and query point is greater than the “best-fitting distance,” which 

means no update is made.  

The advantage of the KD tree nearest neighbor search is the pruning process of 

certain nodes. Pruning reduces the search space by eliminating nodes to examine. If the node 

is unvisited along the first path down the tree, the feature that decides if it is pruned or 

examined is its associated hypersphere. With the query point at the center, the hypersphere is 

drawn with its radius as the distance, 𝑑 𝑞,𝑝 . The most recently examined node was node 

𝐻. Here, the hypersphere is drawn with a radius of 0.0862 cm/s2, as shown in Fig. 5.2. The 

hyperplane corresponding to node 𝐼 lies within this hypersphere, indicating node 𝐼 is to be 

examined. The next node is node 𝐸, which lies outside of the hypersphere, meaning it is to 

be pruned from the tree.  

The next node to examine is the root node because it was previously visited along 

the first path down the tree. The steps are repeated. The distance between data point 𝐶 and 

query point is greater than the “best-fitting distance,” which means no update is made. A 
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hypersphere associated with the data point 𝐶 is drawn, as shown in Fig. 5.2. The hyperplanes 

corresponding to nodes 𝐴 and 𝐵 are found lying within this hypersphere. Therefore, the 

next nodes to examine are nodes 𝐴 and 𝐵. The distances calculated at these nodes are 

greater than the “best-fitting distances,” indicating no updates. The remaining nodes, 𝐷, 𝐺, 

and 𝐹, are pruned because the associated hyperplanes lie outside the hypersphere. The final 

best-fitting data point is data point 𝐽. 

 

Figure 5.2. KD tree nearest neighbor search. The query point (triangle) is the newly observed 
data point. The data points organized in partitioned spaces (left) show which nodes are 
examined and pruned. Those lying within the dotted hypersphere are examined (yellow and 
orange nodes), while those lying outside it are pruned (i.e. nodes that are crossed out). The 
order in which the nodes are examined are numbered in the tree structure (right). 
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5.5 Advantages Compared to Brute-Force Search 

The most important advantage of a KD tree nearest neighbor search is its speed. To 

demonstrate this advantage, the time complexity in constructing and searching a KD tree is 

shown below. The time complexity refers to the computational complexity that describes the 

amount of time to run an algorithm. It looks at the size of the dataset and the amount of 

operations. The first observation is the time complexity in constructing a KD tree.  Also as 

previously mentioned, the main idea of constructing a KD tree is recursively calculating the 

median and splitting the dataset until the final subsets only consists of only one data point. 

Therefore, the time complexity looks to the number of times the dataset is divided. Given a 

dataset of size 𝑛 with 𝑘 dimensions, the total is 𝑘𝑛 values. Recursively, the dataset splits by 

2, until only one data point, which is characterized by 𝑘 values, remains (see Eqs. 5.1).     

!"
!!
= 𝑘 (5.1.1) 

𝑛 = 2! (5.1.2) 

log𝑛 = log 2! (5.1.3) 

log𝑛 = 𝑥 log 2 (5.1.4) 

!"#!
!"# !

= 𝑥 (5.1.5) 

log! 𝑛 = 𝑥 (5.1.6) 

where 𝑘 is the amount of dimensions the dataset of size 𝑛 is characterized by and 𝑥 is the 
amount of times the dataset is split by to construct the finalized KD tree.  

Seen in Eq. 5.1, the dataset splits log! 𝑛 times, meaning the depth, or amount of 

levels, of the finalized KD tree is log! 𝑛. At each level of the KD tree, there is a 

computational cost. At the top of the KD tree, every data point is observed, which is a total 

of 𝑘𝑛 values (see Fig. 5.3). Traversing the tree, each time the data is split, half the amount of 

the data is observed (i.e. !"
!
, !"
!
, !"
!
,…). The total cost of constructing the tree is 𝐶 (see Eq. 

5.2).  

 

𝐶 = 𝑘𝑛 + !"
!
+ !"

!
+ !"

!
+ !"

!
+ !"

!
+ !"

!
+⋯ = Θ 𝑘𝑛 log! 𝑛  (5.2) 
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Figure 5.3. Understanding the time complexity of constructing a KD tree. It takes log! 𝑛 
operations to split the dataset into individual nodes. Therefore, the total depth of the tree is 
log! 𝑛. At each level of the tree, there are 𝑘𝑛 operations. 𝑘𝑛 refers to the amount of values 
observed to compute the median. Together, the time complexity is Θ 𝑘𝑛 log! 𝑛 . 

 The second observation is the time complexity in searching the finalized KD tree. As 

seen in Fig. 5.4, the worst-case scenario in searching it is if every single node has to be 

visited, meaning the time complexity is Θ 𝑛 . However, if the finalized KD tree is built 

properly and well-balanced, then the time complexity for the best-case scenario is Θ log! 𝑛 . 

This scenario is if only one node in each level of the tree is visited. The bulk of the run time 

comes from the construction of the KD tree, which is Θ 𝑘𝑛 log! 𝑛 . Therefore, pre-

construction and storage of the KD tree is suggested. The spatial complexity to store a KD 

tree is linear, which is Θ 𝑛 .  
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Figure 5.4. Comparing brute-force search and KD tree nearest neighbor search, using the 
same sample 2D dataset and query point from Fig. 5.2. The KD tree nearest neighbor search 
(left) is faster because it searches 60% of the total dataset, while the brute-force search (right) 
goes through 100%. 
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 With the previous sample database of size 10 points, it is not obvious to observe 

how much faster the KD tree nearest neighbor search is in comparison to a brute-force 

search. The KD tree nearest neighbor search is notably more valuable with increasing 

database sizes. In application to the study in this thesis, the database size refers to the 

amount of events taken from earthquake history. Fig. 5.5(a) compares results for varying 

databases sizes, from 100 to 100,000 points. With a database size of 10,000, the amount of 

visited nodes decreases to 50% of the total database. Converting the amount of visited nodes 

to searching time in MATLAB, the brute-force search time increases exponentially. As the 

database size approaches 100,000, the search time differs by approximately 78%. The search 

time using KD trees does not differ significantly from brute-force search time when the 

database size is less than 1,000. This is the primary reason behind the use of brute-force 

search for the previous case studies shown in Chapters 3 and 4.  

The results in Fig. 5.5(b) are found assuming the dimension, or 𝐾, is 38. This refers 

to KD trees consisted of 30 second long envelopes. For EEW, there is no need for such 

long envelopes, so this refers to a worst-case scenario. When 𝐾 is smaller, the impact of the 

KD tree search is much more obvious, meaning the search time would differ by more than 

78%. The curse of dimensionality from an increasing 𝐾 does not apply here because a 

threshold is set on 𝐾 to ensure that the tree-based search performs faster than brute-force.  
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Figure 5.5. (a) Comparing the amount of visited nodes that KD tree nearest neighbor and 
brute-force search observes. As database size increases, the KD tree nearest neighbor search 
scans through a fraction of the total dataset to find the best-fitting data point. Comparisons 
are based on the mean (red) of 500 iterations using random datasets (gray). (b) Comparing 
the search times (MATLAB) of the KD tree nearest neighbor and brute-force search. In this 
case, the value of 𝐾 = 38 is constant, which means the dataset is characterized by 30 
seconds of ground motion envelopes.  
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5.6 Conditions 

Many papers describe and analyze the performance of the KD tree search using a constant 

value for 𝐾. However, in application to Method II, 𝐾 is not constant. 𝐾 depends on the 

length of the observed waveform of the incoming earthquake, which increases with 

additional data with increasing time. For instance, if the extended catalog search calls for 

ground motion envelopes for 30 seconds of data, then 𝐾 = 38, where the additional 8 

dimensions characterize the station and event information. If the envelope of the incoming 

earthquake consists of 60 seconds of data, then the extended catalog search uses a database 

of 𝐾 = 68.  

The curse of dimensionality refers to the invalidation of the results plotted in Fig. 5.5 

due to a varying 𝐾. This is seen in Fig. 5.6; the computational searching time increases as the 

value of 𝐾 increases. The computational searching time essentially increases as the amount 

of visited nodes increases. One observation is when 𝐾 > 308, which is a tree consisting of 

approximately 3 minute long ground motion envelopes, the KD tree search takes as long as 

the exhaustive brute-force search. Fortunately, in EEW, 5 minutes of ground motion 

amplitudes is unnecessary.  

Therefore, the value for 𝐾 is constrained to save computational efforts in 

constructing the tree structures. As seen in Fig. 5.6, for the KD tree nearest neighbor search 

to have faster speed than the exhaustive brute-force search by at least 50%, the value for 𝐾 

must be less than 83. The trees to construct consist of ground motion envelopes of less than 

75 seconds, which is hardly an issue for EEW-relevant application. 
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Figure 5.6. KD tree nearest neighbor search in comparison to brute-force search when 
database size is approximately 560,000.   
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5.7 Application to Current SCSN Catalog 

To show the impact of the KD tree nearest neighbor search on the searching time, the 

number of visited nodes is observed. This number is compared to the number of nodes the 

brute-force search visits, which is every single one.  

  Tables C-E list the number of waveform envelopes from the current SCSN catalog 

from years 2000 to 2020. Table 5.3 considers stations within 100 km about the epicenter for 

M>5 events, Table 5.4 considers stations within 50 km about the epicenter for M>4 events, 

and Table 5.5 considers stations within 10 km about the epicenter for M>3 events.  

Seen in Table 5.3, as the number of waveform envelopes increases, the impact of the 

KD tree nearest neighbor search remains similar. However, as the number of dimensions 

(𝐾) increases, the amount of visited nodes increases from about 5% to 42% but remains less 

than the amount the brute-force search visits (100%).  

As seen in Fig. 5.5, the value of the KD tree nearest neighbor search is amplified 

when the database size increases and the number of dimensions (𝐾) remains constant. 

However, a real-time EEW application involves a varying 𝐾. Particularly, the curse of 

dimensionality is prevalent as the number of waveform envelopes increases to > 5,000,000 

and the number of dimensions increases to > 39. An increasing 𝐾 for large database sizes 

requires every single node to be visited, in which case is the same as the behavior of a brute-

force search.  
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Table 5.3. KD tree performance with stations within 100 km about epicenter for M>5 
events. 
Looking 
back x 
amount 
of years 

# of 
earthquakes 

# of waveform envelopes in 
total database after applying 
spectral scaling model* (N) 

KD tree nearest neighbor 
search time as percentage of 

brute-force’s, given the 
dimensionality (K) 

   12 24 39 54 69 
5 years 9 289,980 6% 20% 33% 34% 42% 
10 years 22 539,820 5% 16% 31% 36% 41% 
15 years 32 779,940 5% 17% 30% 37% 42% 
20 years 36 843,480 6% 17% 30% 38% 42% 

 

Table 5.4. KD tree performance with stations within 50 km about epicenter for M>4 events. 
Looking 
back x 
amount 
of years 

# of 
earthquakes 

# of waveform envelopes in 
total database after applying 
spectral scaling model (N) 

KD tree nearest neighbor search 
time as percentage of brute-

force’s, given the dimensionality 
(K) 

   12 24 39 54 69 
5 years 142 1,744,560 5% 17% 30% 36% 42% 
10 years 329 3,475,080 5% 13% 31% 45% 51% 
15 years 433 5,064,300 5% 12% 31% 77% 81% 
20 years 522 6,653,880 6% 12% 100% 100% 100% 
 

Table 5.5. KD tree performance with stations within 10 km about epicenter for M>3 events. 
Looking 
back x 
amount 
of years 

# of 
earthquakes 

# of waveform envelopes in 
total database after applying 
spectral scaling model (N) 

KD tree nearest neighbor search 
time as percentage of brute-

force’s, given the dimensionality 
(K) 

   12 24 39 54 69 
5 years 1,702 4,687,200 5% 12% 31% 70% 75% 
10 years 3,714 8,249,760 6% 14% 100% 100% 100% 
15 years 4,626 10,807,920 7% 31% 100% 100% 100% 
20 years 5,462 13,580,460 6% 78% 100% 100% 100% 
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5.8 Summary 

In previous chapters, brute-force search is used to conduct studies on the 2020 Northern 

coast offshore, 2020 Lone Pine, and 2019 Ridgecrest events. These cases involve relatively 

small catalogs of sizes approximately 90 to 3,000 envelopes per station. It may be necessary 

for the extended catalogs to have greater than 10,000 records to ensure sufficient 

representation of a variety of earthquake magnitudes and locations to guarantee an accurate 

match. In such cases, a KD tree nearest neighbor search is recommended to potentially 

reduce search time.  

It is computationally most effective to pre-determine the KD trees for storage. A 

separate KD tree exists with respect to the length of ground motion envelopes. For instance, 

matching 15 second envelopes would search a 23-D tree and matching 30 second envelopes 

would search a 38-D tree. For catalogs that consist of less than 560,000 waveform envelopes 

of lengths less than 3 minutes, the KD tree search scans through a fraction (< 50%) of the 

total catalog to find the best fit. If the catalog size increases to 3,000,000 waveform 

envelopes, for the KD tree search to scan through < 50% of the total catalog, the length of 

the ground motion envelopes must be less than 1 minute. The KD tree search performs 

similarly to the brute-force search when the database size grows to 5,000,000 and the length 

of ground motion envelopes grows to 30 seconds (𝐾 = 38). The dependence of the 

number of dimensions (𝐾) and database size on the computational searching time illustrates 

the curse of dimensionality. With time, more earthquakes will occur, meaning the catalog will 

continue to grow. To run the KD tree nearest neighbor search in real-time, it is important to 

continuously update it.  

 

 



 113 

6 Complex Earthquakes 
As mentioned in previous Chapter 4, a simplified spectral scaling model extends the original 

catalog of waveform envelopes to include a variety of earthquake magnitudes. A strong 

assumption made by the model is that the earthquake is characterized as a point source, not 

a finite fault. However, for larger earthquakes (M>6.5), the rupture length is longer, and 

characterizing the earthquake as a point source would make it difficult to predict large 

shaking, particularly in regions close to the fault but not necessarily close to the epicenter. 

This chapter addresses how the extended catalog search is modified for complex 

earthquakes, where point source characterization may not provide the best envelope fits to 

the incoming ground motions. Complex earthquakes refer to a cascade of multiple ruptures, 

also denoted as subevents, that generates large ground motions. Regions like Japan and New 

Zealand have such earthquakes of high complexity, where waves from one end of the fault 

pile up with waves from another end, causing amplification in the direction of the rupture 

propagation. Real complex earthquakes to study are the 2016 Kumamoto, 2016 Kaikoura, 

2010 El Mayor-Cucapah, and 2019 Ridgecrest. Though these earthquakes are commonly 

branded as single events, multiple peaks and arrivals are detected in the ground motions, 

indicating the potential for multiple sources. Therefore, to find appropriate waveform 

envelope fits and accurate parameter estimates, the extended catalog search includes 

additional templates of complex earthquakes. This chapter addresses the addition of these 

new templates for complex earthquakes using waveforms of past real earthquakes.  
6.1 Point Source vs. Finite Fault Characterization 

In case studies of real earthquakes presented in Chapter 4, the extended catalog search finds 

envelope fits that accurately describe the incoming ground motions. As previously 

mentioned, EEW aims to find parameter estimates as soon as possible, which means the 

waveforms considered in these case studies are from triggered stations near the epicenter. 

Though the stations are located close, their epicentral distances are still greater than the fault 

rupture length, making the point source approximation of the earthquake valid. However, 

for earthquakes of larger magnitudes, a finite fault approximation may be necessary to 

provide more accurate parameter estimates. Fortunately, a real-time Finite Fault Rupture 
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Detector (FinDer) algorithm already exists for such cases (Bose 2012). This algorithm uses 

image recognition techniques to detect fault ruptures, assuming a line source. Therefore, it is 

sensible to have FinDer running in parallel to the extended catalog search and grid search as 

a form of confirmation.  

The effectiveness of using the early frequency content of the waveforms to estimate 

the final magnitude estimate is questioned for larger earthquakes. Larger earthquakes are 

more complex, where multiple sources rupture closely in time and in space. They have 

longer rupture duration and length. Method II in Chapter 4 uses envelopes that represent 

single medium-sized events. Therefore, additional templates are introduced to represent 

complex earthquakes.  

6.2 Additional Templates 

Additional templates for complex earthquakes are added to the extended catalog. The 

inclusion of these templates that represent multiple sources may help avoid missed or false 

alerts for expected large ground motions in regions that are close to the fault. When 

earthquake history is sufficient with respect to epicentral locations, the combination of 

individual waveform envelopes (see Eq. 6.1) from past real earthquakes at different time 

delays is used as templates for complex earthquakes. When waveforms of past real 

earthquakes are scarce or do not exist, the combination of individual envelopes based on 

Cua-Heaton GMPEs at different time delays is used instead.  

𝐸!"#$%&' 𝑡 = 𝐸!(𝑡 − 𝛿) !!
!!!  (6.1) 

where 𝐸!"#$%&' 𝑡  is the estimated envelope of the total complex earthquake, 𝐸!(𝑡 − 𝛿) is 
the envelope at the 𝑖!! source with time delay of 𝛿 seconds. 𝐸!(𝑡 − 𝛿) can be a waveform 
envelope from a past real earthquake or based on the Cua-Heaton GMPEs.  
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6.3 Application to Real Complex Earthquakes 

6.3.1 2016 Kumamoto sequence 

According to the ANSS catalog, the 2016 Kumamoto sequence started with a M6.2 

foreshock on April 14, 2016 at 12:26:35 UTC. Approximately 6 km away, the M7.0 

mainshock soon followed on April 15, 2016 at 16:25:06 UTC. Assuming 36 hours is ample 

time for stations to collect true parameter information on the foreshock, the extended 

catalog search uses templates generated from the waveforms of this M6.2 foreshock. In 

previous case studies where the point source approximation is valid, a simple application of 

the simplified spectral scaling model to original, raw waveforms creates sufficient amount of 

envelopes that have the potential to accurately describe the incoming ground motions. It is 

mentioned in Chapter 4 that this search is specific to the station and channel, making the 

search include not only source (i.e. magnitude, location) effects but also path (i.e. depth) and 

site (i.e. rock, soil) effects. However, the directivity effects are not taken into consideration. 

Therefore, for a large, complicated earthquake like the Kumamoto mainshock, it is sensible 

for the templates to consider directivity effects that happen due to the rupture propagation, 

especially because 5 seconds after the origin time, the main rupture starts to propagate 

towards the northeast, along the Futagawa fault (Yagi et al. 2016).  

In this analysis, the stations are chosen based on their distances to the mainshock 

epicenter and to the Futagawa fault. Because EEW aims to find parameter estimates before 

strong shaking arrives, waveforms from stations close to the epicenter (R<50 km) are 

selected for the extended catalog search. These particular stations are triggered, meaning the 

P-wave arrives, within 6 seconds of the origin time of the mainshock. As shown in Table 6.1, 

only the first ten triggered stations are considered in this analysis, meaning the magnitude 

estimates are found using 90 observed envelopes (i.e. acceleration, velocity, and displacement 

for EW, NS, and UD components). For real-time application, the amount of considered 

stations will continue to increase with time and may provide more accurate magnitude 

estimates with reduced error bands. However, this analysis emphasizes the accuracy of the 

magnitude estimates using only the initial parts of the incoming waveform envelopes (<10 

seconds after the origin time).  
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Table 6.1. Triggered stations from the 2016 Kumamoto event with P-wave arrivals. 
Maximization of posterior probability considers data from only these stations. 

Station Latitude(°N) Longitude (°E) P-wave arrival (sec after origin time) 

KMM006 32.79 130.78 4 

KMM008 32.69 130.66 5 

KMM005 32.88 130.88 5 

KMM011 32.62 130.87 6 

KMM009 32.69 130.99 6 

KMM010 32.61 130.49 7 

KMM002 33.02 130.68 7 

KMM012 32.51 130.60 7 

KMM007 32.83 131.12 8 

KMM004 32.93 131.12 8 

The key feature of the extended catalog search is the accuracy of its initial magnitude 

estimates. As shown in Fig. 6.1, FinDer produces initial estimates 4 seconds after the origin 

time, but heavily underestimates the magnitude to M3.2. It finally approaches the true M7.0, 

taking 15 seconds after the origin time. The jump from M5.8 to M6.5 at 7 seconds after the 

origin time is consistent with the theorized directivity effect: the rupture propagation 

northeast along the Futagawa fault occurring 5 seconds after the origin time. With the initial 

rupture of the mainshock arriving at the first station 2 seconds after the origin time, the 

delayed subevent from the rupture propagation would arrive at the first station 

approximately 7 seconds after the origin time. Similar to the solutions of FinDer, the 

extended catalog search finds the magnitude estimate to approach M6.9, an underestimation 

to the true recorded M7.0. This is assuming the magnitude of the foreshock, M6.2, is 

accurate. On the other hand, the extended catalog search immediately recognizes the 

incoming ground motions to resemble those of a M6.6 event. This is approximately 4 

seconds faster than FinDer’s solutions. 

Fig. 6.2 shows the best-fitting cataloged envelopes and how they compare to the 

incoming observed ones. The stations with the worst envelope fits, relative to the stations 

considered in this analysis, are KMM004, KMM007, KMM005, and KMM006. The 

differences in the waveform envelopes are amplified in the velocity and displacement, where 

longer period components are represented. Seen in Fig. 6.3, the stations’ locations with 
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respect to the ruptured fault explains the differences in the cataloged envelopes and the 

incoming observed ones. These stations are located near the fault and/or in the direction of 

the rupture, where higher complexity may exist due to amplified ground motions. The 

generation of templates using two subevents to represent the M7.0 mainshock may not be 

adequate to capture the complexity, meaning there may be more than two. However, the use 

of two subevents to represent the M7.0 mainshock works for the rest of the stations. These 

stations are either located farther away from the fault or in the opposite direction of the 

rupture, where ground motions are less likely to amplify and rupture propagation is not as 

complex.   

In this particular mainshock, the point source and finite fault characterizations do 

not have a huge impact on magnitude estimates. Generally, the difference in magnitude 

estimates is only 0.1. However, the differences are seen more clearly in the error bands. With 

the complex earthquake templates (ones that are generated using two subevents), the error 

bands are reduced, meaning the waveform envelopes fit better than the ones used in point 

source approximation (using single event). The definition of the error bands is provided in 

Chapter 3. 
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Figure 6.1. Complex earthquake catalog search magnitude estimates for the 2016 
Kumamoto.  Along with magnitude estimates, error bands for 68% confidence band 
compare envelope fits between point source and complex sequence cases.  
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(figure continues on next page) 
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(figure continues on next page) 
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Figure 6.2. Comparing the best-fitting complex earthquake cataloged (in red) and incoming 
observed envelopes (in black) for the 2016 Kumamoto mainshock. Each row represents a 
station (labeled in the y-axis), and each column represents a component (labeled at the top). 
Acceleration, velocity, and displacement are also labeled accordingly. 
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Figure 6.3. Station locations with respect to the epicenter of the mainshock, epicenter of past 
event, and ruptured fault for the 2016 Kumamoto mainshock. This particular rupture 
propagation is the northeast direction.  
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6.3.2 2010 El Mayor-Cucapah 

Another complex earthquake is the 2010 El Mayor-Cucapah mainshock that occurred in the 

Baja California, Mexico region on April 04, 2010 at 22:40:52 UTC. The uniqueness of the 

complexity in this mainshock is the closeness in time between the rupturing events and a 

long rupture length (~120 km). It is believed that the mainshock started with a ~M6 normal 

faulting, rupturing bilaterally from the epicenter in the northwest and southeast directions, 

and followed by the main M7.2 event only 15 seconds later (Hauksson et al. 2010). 

Therefore, the templates used in this analysis will take waveform envelopes from two past 

events at different time delays.  

The data for this analysis is downloaded from the California Strong Motion 

Instrumentation Program (CSMIP). To ensure the extended catalog search consists of a 

variety of waveform envelopes, earthquake history includes years back to 2002. This 

particular earthquake is located out of network, or in a region of sparse station coverage. 

Therefore, the accessibility of stations is limited. As shown in Table 6.2, the two closest 

stations to the epicenter of the mainshock for which ample waveforms are available are 

Calexico Fire Station, denoted NP 5053, and Holtville, Post Office, denoted NP 5055. These 

two stations are the closest to the US-Mexico border. The aim is to use only these two 

stations to find accurate parameter estimates. The finite fault approximation should reduce 

the error bands, for judgment of envelope fits, and error in parameter estimates, for 

comparing to the true values, that the point source characterization produces.   

Table 6.2. Triggered stations from the 2010 El Mayor-Cucapah event with P-wave arrivals. 
Maximization of posterior probability considers data from only these stations. 

Station Latitude(°N) Longitude (°W) P-wave arrival (sec after origin time) 

NP 5055 32.811 115.379 6 

NP 5053 32.670 115.493 9 

The best-fitting cataloged envelopes are the ones that are scaled and combined at 

different time delays using the waveforms from the past M5.70 event from February 22, 

2002 19:32:41 UTC. Initially, the magnitude estimates are underestimated. As seen in Fig. 

6.4, by 10 seconds after the origin time, the magnitude estimate approaches M6, which is 

consistent with the theorized first ~M6 subevent (Haukkson et al. 2010). 21 seconds after 
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the origin time, the jump in magnitude estimate from M6 to M6.7 implies the arrival of a 

second subevent, which is consistent with the theorized second M7.2 subevent (Haukkson et 

al. 2010). Also seen in Fig. 6.4, the error bands remain the same for point source (envelopes 

using single event) and finite fault assumption (envelopes using two subevents at different 

time delays) until 21 seconds after the origin time. At that point in time, the error band is 

significantly reduced, further satisfying the implication of the arrival of the second rupture at 

the stations. Eventually, the magnitude estimate approaches the true recorded M7.2.  

The comparison of the error bands in Fig. 6.4 indicates when to choose point source 

or finite fault approximation. The one that produces smaller error bands has more accurate 

envelope fits, therefore, more confidence in the resulting parameter estimates. As shown in 

Fig. 6.4, the arrival of the second subevent is when the error bands begin to diverge, which is 

indicated by the vertical red line. The increase in the error bands at 21 seconds after the 

origin time implies the envelopes that previously used to fit the incoming ground motions 

ceases to fit and envelopes for a complex sequence are needed. This shows both goodness-

of-fit score (i.e. maximization of posterior probability, minimization of sum of squared 

residuals) and error bands are important in accurately describing the incoming ground 

motions. A point source assumption for the whole, complex rupture may fail to alert regions 

for stronger shaking to come.  

The best-fitting envelopes corresponding to relatively smaller error bands are 

illustrated in Fig. 6.5. Fig. 6.4 and Fig. 6.5 suggest the 2010 El Mayor-Cucapah mainshock is 

a double event, with a M6.0 followed by a M7.2. The time delay of the second subevent is 

approximately 16 seconds. The additional templates considered in this study use waveforms 

from the M5.70 event from February 22, 2002 19:32:41 UTC. Of course, the search can 

include more complexity, such as a triple event, using other nearby events plotted in Fig. 6.6. 

However, this study constrains the model to a double event for consistent comparison to the 

solutions from Haukkson et al. 2010.  
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Figure 6.4. Complex earthquake catalog search magnitude estimates for the 2010 El Mayor-
Cucapah mainshock. Error bands illustrate the arrival of the second subevent, indicating the 
need for complex earthquake templates. 
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(figure continues on next page) 
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Figure 6.5. Comparing the best-fitting complex earthquake cataloged envelopes (in red) and 
the incoming observed envelopes (in black) for the 2010 El Mayor-Cucapah mainshock. 
Each row represents a station (labeled in the y-axis), and each column represents a 
component (labeled at the top). Acceleration, velocity, and displacement are also labeled 
accordingly. 
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Figure 6.6. Station locations with respect to the epicenter of the mainshock, epicenter of past 
events, and ruptured fault for the 2010 El Mayor-Cucapah mainshock. This particular 
rupture propagation is bilateral in the northwest and southeast direction. 
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6.3.3 2016 Kaikoura 

The M7.8 Kaikoura earthquake is also known for its high complexity, as the rupture 

propagates northwards across multiple faults. Therefore, modeling the earthquake as a point 

source may not be appropriate in this case as well. In this analysis, the stations to consider 

are WTMC (R~8 km), CULC, (R~30 km), and HSES (R~30 km). Additional stations that 

are near the northern end of the fault are KIKS (R~60 km), KEKS (R>100 km), and WDFS 

(R>100 km). These additional stations experience strong shaking, even though they are 

located far from the epicenter. The earthquake history at these stations, however, is not 

sufficient to ensure accuracy in waveform envelope fits and parameter estimates. In other 

words, the GeoNet catalog does not have available waveforms for the regions near the 

ruptured faults. Therefore, the templates cannot be generated in the same way as before, 

where existing waveforms from the past would be scaled to cover enough earthquake 

magnitudes. This particular earthquake is a case where the extended catalog search has 

insufficient database to produce accurate parameter estimates. An algorithm that is suited 

well for this case is FinDer, which is recommended to have running in parallel with the 

extended catalog search as a form of confirmation.  

Another method that may have the potential to solve this problem is a multi-source 

model using Cua-Heaton ground motion envelopes (Yamada 2007). Here, the templates are 

created using the attenuation relationships developed by Cua, the ones used in the Virtual 

Seismologist (VS) method. However, instead of characterizing the earthquake as a point 

source model as the VS method does, the multi-source model creates the templates by 

combining the Cua-Heaton ground motion envelopes at different time delays, like in Eq. 6.1. 

In her thesis, Yamada divides the fault surface into “sub-sources”, with each sub-source 

representing a single point source. Templates for complex earthquakes are simply 

combinations of Cua-Heaton waveform envelopes at each sub-source. The use of Cua-

Heaton envelopes is at a disadvantage in comparison to the extended catalog search because 

they do not consider the path effects at the specific station and channel.   
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6.3.4 2019 Ridgecrest sequence 

As mentioned in Chapter 4, the 2019 Ridgecrest mainshock also exhibits complex behavior. 

However, majority of the stations that are considered in the extended catalog search have 

epicentral distances greater than the ruptured portion of the fault. Therefore, assuming point 

source produces error bands similar to those considering higher complexity (see Fig. 6.7). 

Here, the templates for complexity are the combinations of two single events at different 

time delays.  

Examining each individual station and channel shows that the two stations that have 

the poorest envelope fits relative to the other stations are CLC and CCC. CCC, in particular, 

is located in the direction of the rupture, where amplification of the ground motions is likely 

to occur. It is theorized that the Ridgecrest mainshock consists of four subevents (Ross et al. 

2019). Therefore, the templates that would provide more accurate envelope fits are 

combinations of four single events, not two, spaced at different time delays. As shown in 

Fig. 6.8 in purple, these additional envelopes that represent higher complexity, larger 

motions that occur later in time are captured. Envelopes assuming point source, shown in 

orange in Fig. 6.8, fail to do so. Table 6.3 quantitatively exemplifies this trend. The ability to 

capture the larger motions means it has enhanced ability to alert regions of stronger shaking 

to come.  

As shown in Fig. 6.9, the stations located closest to the fault are CLC and CCC. This 

explains the large amplifications that occur later in time in which finite fault approximation is 

needed. For the remaining stations farther away from the fault, point source approximation 

produces relatively small, satisfactory error bands. The results suggest the 2019 Ridgecrest 

mainshock is a complex event, with a M7.1 followed by a M6.9 at a delay of 5 seconds, 

followed by a M6.4 at a delay of an additional 10 seconds, and followed by a M6.0 at a delay 

of an additional 6 seconds. These envelope fits improve by a factor 2.24 and 1.51 for stations 

CLC and CCC, respectively. As shown in Table 6.3, for majority of the envelope fits, the 

error band and sum of squared residuals (SSR) are reduced when the templates for complex 

sequences are used (purple). Point source characterization (orange) produces poorer 

envelope fits (larger error band and SSR). 

The additional templates considered in this study use waveforms from the M6.4 

foreshock. Of course, the search can include even more complexity. However, this study 
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constrains the model to a double event for consistent comparison to the solutions from 

Ross et al. 2019.  
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Figure 6.7. Comparing error bands for point source characterization vs. assumption of 
double events occurring in the 2019 Ridgecrest mainshock. Initially, the differences are 
essentially nonexistent.  
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Figure 6.8. Comparing envelope fits for point source characterization vs. complex sequence 
assumption for the 2019 Ridgecrest mainshock at stations near the fault, CLC and CCC. 
Templates using multiple sources capture the large ground motions that occur later in time 
(between 20 and 40 seconds after the origin time). The improvements in envelope fits are 
quantifiably described in Table 6.3.  
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Table 6.3. Comparing the error bands and sum of squared residuals at stations CLC and 
CCC.  

ACC (cm/s/s) 
CLC CCC 

EW NS UD EW NS UD 

Error band 
Point 0.50 0.50 0.50 0.60 0.70 0.70 

Complex 0.30 0.30 0.30 0.60 0.60 0.50 

Sum of squared residuals (SSR) 
Point 6.44 8.33 6.59 19.73 23.38 27.54 

Complex 3.66 5.45 4.18 14.27 10.58 13.57 

 

VEL (cm/s) 
CLC CCC 

EW NS UD EW NS UD 

Error band 
Point 0.50 0.40 0.40 0.90 1.00 0.90 

Complex 0.30 0.30 0.30 0.50 0.50 0.40 

Sum of squared residuals (SSR) 
Point 7.25 3.19 6.23 28.41 28.84 23.25 

Complex 2.35 2.65 2.92 24.01 18.48 26.77 

 

DIS (cm) 
CLC CCC 

EW NS UD EW NS UD 

Error band 
Point 0.50 0.40 0.40 0.80 1.00 0.90 

Complex 0.40 0.40 0.20 0.60 0.50 0.40 

Sum of squared residuals (SSR) 
Point 7.13 3.92 8.52 24.89 28.40 22.60 

Complex 3.49 2.93 1.55 12.79 20.46 22.34 
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Figure 6.9. Station locations with respect to the epicenter of the mainshock, epicenter of past 
event, and ruptured fault for the 2019 Ridgecrest mainshock and foreshock. This particular 
rupture propagation is bilateral in the northwest and southeast direction. 
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6.4 Summary 

This chapter addresses real cases where point source characterization may not be 

appropriate. For larger earthquakes (M>6.5), finite fault characterization would capture 

larger ground motions that occur near the rupturing fault.  

For real-time application of Method II, the extended catalog search, the catalogs 

would be pre-determined. All the computations that use catalogs assume the earthquake 

database is accessible. The basis in creating the extended catalogs is looking back 1 month in 

history, which would work sufficiently for sequences and regions of high seismicity. For 

regions of lower seismicity, however, 1 month of earthquake history may be insufficient, and 

the extended catalog will be constructed looking farther back in time. The catalogs must be 

updated with time as new events are added. 

Case studies of the 2016 Kumamoto, 2010 El Mayor-Cucapah, and 2019 Ridgecrest 

show that sufficient earthquake history is needed for accurate parameter estimates with small 

error bands. Therefore, if seismicity is not high in the region, looking back only 1 month in 

earthquake history may not be adequate. One such case is the 2016 Kaikoura earthquake. 

This is a special case in which both Method I and Method II of the search algorithm do not 

provide accurate envelope fits. Here, the extended catalog search may look back more than 

10 years in earthquake history and still fail to find envelopes that fit the incoming ground 

motions well. The grid search is also unable to capture the high complexity of the rupture. 

The best algorithm to use for the 2016 Kaikoura earthquake is FinDer. Therefore, it is 

suggested to have FinDer running in parallel as a form of confirmation. A case of moderate 

seismicity is the 2010 El Mayor-Cucapah. Here, the extended catalog search needs to look 

back 10 years in earthquake history for envelope fits that produce acceptable error bands. 

The extended catalog search performs best in cases of high seismicity, such as foreshock-

mainshock sequences. For the 2016 Kumamoto and 2019 Ridgecrest earthquakes, available 

waveforms of the foreshock resemble those from the mainshock.  

To address cases where seismicity is low, the pre-determined catalog is to be built based 

on the following criteria: 

• Because smaller earthquakes (M<5) are more frequent by the Gutenberg-Richter law, 

waveform envelopes from 3 months in earthquake history are used to build the 
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original catalog. For larger earthquakes (M>5), waveform envelopes from year 2000 

are used to build the catalog. The catalog is continuously updated with time.  

• Spatial coverage is also taken into consideration when building the original catalog. 

For regions of high seismicity (spaces filled with red circles in Fig. 6.10), the catalog 

considers waveform envelopes from earthquakes where the stations are located 

within 100 km from the epicenter. But in regions where seismicity is low (empty 

space in Fig. 6.10), this threshold is extended to 200 km.  

 

Figure 6.10. Distribution of M>3 earthquakes in the California region for years 2000 – 2020. 
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7 Parallel execution of Methods I 
and II 
As previously mentioned, Methods I and II are independent. Separately, they find parameter 

estimates and error bands that capture the preciseness in the solutions. The total algorithm 

combines the two parts that work together to provide accurate parameter estimates as 

quickly as possible.  To do so, error bands were defined in Chapter 3 and emphasized 

throughout this thesis. The final solution takes one of two cases. One case is when both 

Methods I and II have similar fits and provide similar parameter estimates. The user can 

have even higher confidence in these results as one method confirms the solutions of the 

other. If the error bands are similar, then the user takes both solutions, either by average or 

individually. The alternative case is when the methods provide different solutions, but one 

method has significantly smaller error bands, indicating stronger envelope fits.  
7.1 Application to past real earthquakes 

For a consistent comparison, this chapter refers to the same real earthquakes from Chapters 

3 and 4.  

7.1.1 2020 Northern coast offshore event 

Seen in Fig. 7.1, the extended catalog search estimates M5.7, an error of 0.1 units, 9 seconds 

faster than the grid search. In fact, the cataloged envelopes from the extended catalog search 

fit more accurately by 28% than the Cua-Heaton envelopes from the grid search. However, 

30 seconds after the origin time, envelopes from both methods have similar confidence in 

fitting the incoming observed ones (see Fig. 7.2). 
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Figure 7.2. Comparing Methods I and II error bands for the 2020 Northern coast offshore 
event.  
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7.1.2 2020 Lone Pine foreshock-mainshock pair 

Seen in Fig. 7.3, the extended catalog search instantly recognizes the incoming earthquake as 

M5.6 using the first 2 seconds of data. This estimate grows to M5.7 11 seconds after the 

origin time. On the other hand, the grid search takes 6 seconds of data to estimate M5.9. As 

previously mentioned, the two-part algorithm performs well with earthquakes that are part 

of a sequence because of the similar envelopes the foreshock provides. Comparing Figs. B 

and D, the gaps between the error bands are larger in this earthquake than those in the 

previous 2020 Northern coast offshore event, emphasizing the lowered confidence in the 

grid search estimates for the 2020 Lone Pine mainshock. Instead, the cataloged envelopes 

from the foreshock provide more accurate fits than the Cua-Heaton envelopes from the grid 

search not just for the initial time points but for the whole rupture.  
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Figure 7.3. Comparing Methods I and II magnitude estimates for the 2020 Lone Pine event. 
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Figure 7.4. Comparing Methods I and II error bands for the 2020 Lone Pine event. 
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7.1.3 2019 Ridgecrest sequence 

Seen in Fig. 7.5, the extended catalog search estimates the incoming earthquake as M5.4 

using the first 4 seconds of data. This estimate grows to M6.5 10 seconds after the origin 

time and to M6.9 27 seconds after the origin time. On the other hand, the grid search 

estimates resemble those of the extended catalog search 13 seconds after the origin time. 

However, seen in Fig. F, the comparison of error bands shows the cataloged envelopes are 

stronger matches to the incoming envelopes than the Cua-Heaton envelopes by 63%.  
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Figure 7.5. Comparing Methods I and II magnitude estimates for the 2019 Ridgecrest 
mainshock. 
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Figure 7.6. Comparing Methods I and II error bands for the 2019 Ridgecrest mainshock. 
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7.2 Summary 

While the grid search is generally a robust method for different types of earthquakes, the 

extended catalog search provides more accurate envelope fits, most likely due to the specific 

consideration of the site and path effects at the specified stations. In other words, if the 

earthquake history at the specified stations contains ground motion envelopes that resemble 

those of the incoming observed earthquake, the extended catalog search is strongly 

recommended over the grid search. The error bands quantify how well the cataloged 

envelopes resemble those of the incoming observed earthquake. A test sweep on a variety of 

earthquakes is required to calculate the error bands that would be considered acceptable. 

This numerical analysis is beyond the scope of this thesis, therefore, a common acceptable 

threshold is used, which is a factor of 2.  

Method I and Method II run in parallel to provide accurate parameter estimates. 

When both methods agree in error bands and magnitude estimates, such as in the 2020 

Northern coast offshore event, the user may have high confidence in the solutions. If one 

method has stronger envelope fits than the other, such as in the Lone Pine and Ridgecrest 

mainshocks, the algorithm would choose the method of enhanced performance.  
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8 Prior Information 
Current automated decision making modules in earthquake early warning (EEW) do not 

incorporate previous experience and judgment. However, previous experience and judgment 

may have the potential in providing faster, yet still reliable, earthquake source parameter 

estimates. The Virtual Seismologist (VS) method developed by Cua and Heaton incorporates 

prior information by taking a Bayesian approach. The idea of Bayesian approach is to imitate 

the analysis human seismologists would make, which is to combine previous and current 

data to make a well-informed judgment. This chapter describes the different types of prior 

information that target different parameter estimates, particularly the magnitude and 

location. As previously mentioned, the grid search and extended catalog search require 

waveform information to find parameter estimates. Unfortunately, waiting for sufficient 

waveform information decreases the warning time, compromising the regions close to the 

earthquake source that would experience strong shaking. Finding estimates using both prior 

and waveform information would make the algorithm much faster without jeopardizing the 

confidence of the initial estimates.  
8.1 Introduction 
In previous chapters, the posterior probability to maximize is essentially the waveform-based 

likelihood. A uniform prior is assumed, meaning every magnitude and location is equally 

likely. However, looking at past earthquake seismicity, this is not true as earthquakes cluster 

in time and in space. Different types of prior information are applied to the waveform-based 

likelihood. The purpose is to reduce uncertainties in the initial estimates, especially for a 

single-station approach. With time, as more data becomes available, the waveform-based 

likelihood has dominating influence over the solutions.     
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8.2 Seismicity Prior for Faster Event Detection  

To maximize available warning time, the algorithm must decide whether available data is 

from an earthquake or noise as early as possible. The seismicity prior gives information 

specifically for two cases: 

1. If a generally noisy station is in a region of low to no seismicity, then it is more likely 

for incoming data to be from noise.  

2. If a generally quiet station is in a region of an earthquake sequence, then it is more 

likely for incoming data to be from an earthquake.  

Before seismic data is used to identify the earthquake parameter estimates, it is initially 

processed to detect whether the incoming signal is from an earthquake or from noise. 

Finding estimates for non-earthquake data would result in false alerts. False alerts can bring 

negative impacts economically, such as financial losses resulting from emergency shutdowns 

in nuclear power plants, and even psychologically, such as extreme fear and flight reactions. 

Therefore, many EEW systems require triggers from multiple seismic stations to avoid false 

alerts. For instance, ElarmS, the current network-based algorithm in the ShakeAlert system, 

uses a minimum of four stations to alert (Chung et al. 2019). OnSite, a single-station 

approach in ShakeAlert, uses two stations but waits for the arrival of 3 seconds of data (Bose 

et al. 2012). Unfortunately, waiting for multiple stations may jeopardize the warning time for 

regions near the earthquake source, which is why it is valuable to have a method that detects 

an earthquake using 1 to 2 seconds of data from the closest one to two stations. Earthquake 

history provides important information unique to the station that has the potential to detect 

the incoming ground motion as an earthquake. A faster detection leads to a faster 

identification of the earthquake source parameters using the previously mentioned grid 

search and/or extended catalog search. A probabilistic approach is taken to detect if the 

incoming ground motion is an earthquake or ambient noise.  

The prior information in distinguishing the incoming signal as an earthquake or ambient 

noise depends on the past seismicity at the specified station. Therefore, it is assumed the 

EEW system has access to this station-specific catalog of past earthquakes. It is also assumed 

the catalog is continuously updated with new earthquakes as time passes. Table 8.1 illustrates 

the format of this catalog. Eqs. 8.1-8.4 demonstrate the required calculations to transform 

the catalog of past earthquakes is to a probability, a probability that can distinguish whether 
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to initiate performing the waveform-based algorithms, such as the grid search and extended 

catalog search.   

Table 8.1 Format of catalog to extract prior information from. 
Past earthquake 

from catalog 
Corresponding information 

Origin time (UTC) Magnitude Longitude Latitude 

Station-to-

epicenter 

distance 

Waveform 

envelopes 

* For a single station and channel, the catalog lists the recorded earthquakes in a given time 
span. For each cataloged earthquake, there is a recorded magnitude, epicenter location (in 
terms longitude and latitude), epicentral distance from the station, and waveform envelopes.  

 

𝑃𝑟! 𝑝𝑔𝑎 = !! !!"#!"#$$%"
!! !!"#!"#$$%" !!! !!"#!"#$$%"

 (8.1) 

where 𝑃𝑟! 𝑝𝑔𝑎  is the probability that the incoming ground motion is an earthquake, 
𝑅! > 𝑝𝑔𝑎!"#$$%"  is the expected rate of earthquakes with 𝑝𝑔𝑎 > 𝑝𝑔𝑎!"#$$%"  (modeled 
using ETAS), 𝑅! > 𝑝𝑔𝑎!"#$$%"  is the rate at which noise exceeds 𝑝𝑔𝑎 > 𝑝𝑔𝑎!"#$$%" 
(modeled using a lognormal distribution to account for envelopes that consider absolute 
value of amplitudes). 

 

𝑅! > 𝑝𝑔𝑎!"#$$%" = !
!"#!"#$$%"! !!

exp − !
!

!"!"#!"#$$%"!!
!

!
 (8.2) 

where 𝑅! > 𝑝𝑔𝑎!"#$$%"  is the rate at which noise exceeds 𝑝𝑔𝑎 > 𝑝𝑔𝑎!"#$$%" , 𝑋 and 𝜎 
are the average and standard deviation, respectively, of the amplitudes of past noise recorded 
at the specified station and channel. If the station is known to have a history of noise 
exceeding 𝑝𝑔𝑎!"#$$%" , then this rate of noise would notify the system to be particularly 
cautious in saying the incoming signal is from an earthquake. 𝑝𝑔𝑎!"#$$%" > 0. 

 

𝑅! > 𝑝𝑔𝑎!"#$$%" = 𝜇 > 𝑝𝑔𝑎!"#$$%" + 𝑅!(> 𝑝𝑔𝑎!"#$$%")!
!!!  (8.3) 

where 𝑅! > 𝑝𝑔𝑎!"#$$%"  is the expected rate of earthquakes with 𝑝𝑔𝑎 > 𝑝𝑔𝑎!"#$$%" 
(modeled using ETAS), 𝜇 > 𝑝𝑔𝑎!"#$$%"  is the long-term background activity, and 

𝑅!(> 𝑝𝑔𝑎!"#$$%")!
!!!  is the short-term observed seismicity. 
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𝑅! > 𝑝𝑔𝑎!"#$$%" = !∙!"!(!!!!!"#)

(!!!!!!)!!!
= !.!!"∙!"!(!!!!!"#)

(!!!!!!.!"#)!.!"!!.!"
 (8.4) 

where 𝑅! > 𝑝𝑔𝑎!"#$$%"  is the individual seismicity rate computed using the 𝑖!! earthquake 
with corresponding 𝑀!  recorded in the catalog, 𝑀!"#  is the minimum threshold of the 
magnitude of the forecast earthquakes, 𝑡 − 𝑡!  is the time (in days) between the forecast 
earthquakes and the 𝑖!! recorded earthquake, and 𝐾, 𝛼, 𝑐, 𝑝, and 𝑛, are constants in the 
ETAS model that are dependent on the region. The following values used for the constants 
in the equation above are based on the Southern California region (Felzer 2009).  

A detailed description on the application of Eqs. 8.1-8.4 to real earthquakes may 

provide a clearer understanding. The following sections describe the steps and result of the 

seismicity prior for the real M5.8 Northern coast offshore event and the 2019 Ridgecrest 

sequence.  

8.2.1 2020 Northern coast offshore event 

The current EEW system has difficulty in detecting and identifying offshore events, 

particularly those near the Northern coast. A specific case is a M5.8 offshore event that 

occurred on March 09, 2020, at 02:59:08 UTC. This analysis looks at the data from 

earthquake history of Station KCO, one of the closest stations to the observed epicenter, to 

calculate the probability of the incoming signal is one from an earthquake. If so, the 

algorithm will relay this information to decide whether to start performing the grid search 

and extended catalog search.  

Table 8.2 lists the past earthquakes recorded at Station KCO in the region specified 

in Fig. 8.1.  From each recorded earthquake, the amplitude associated with the P-wave arrival 

is extracted as well as the amplitudes of the pre-signal noise. A histogram is created using the 

amplitudes of the pre-signal noise, and a lognormal distribution is fitted. Varying the 

parameters of a lognormal distribution, the best-fitting model is found. This distribution is 

used to model the expected rate, 𝑅! > 𝑝𝑔𝑎!"#$$%" . As seen in Fig. 8.2, as the amplitude 

increases with the arrival of a signal, the chance of it being noise tends to zero. A wider 

distribution represents a noisier station.  

Once the proper noise model is found, the ETAS model is used to calculate the rate 

of earthquakes, denoted 𝑅! > 𝑝𝑔𝑎!"#$$%" . This is thoroughly explained in the next 

section, Section 8.3 Location prior using ETAS model. Together, the seismicity prior, 
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denoted 𝑃𝑟! 𝑝𝑔𝑎 , provides the probability of the incoming signal being one from an 

earthquake (see Fig. 8.3). A relatively high probability means the search algorithm can 

immediately start finding the best parameter estimates, without waiting for multiple stations 

to trigger to issue an alert. This can potentially save seconds of warning time.  

Table 8.2. Earthquake history at Station KCO Channels HNE, HNN, and HNZ.  

Origin time (UTC) Magnitude 
Epicenter 

Longitude 

Epicenter 

Latitude 

Station-to-

epicenter 

distance 

22-Feb-2020 19:14:27 

19-Dec-2019 15:30:12 

23-Jun-2019 03:53:02 

12-Apr-2019 14:06:27 

29-Mar-2019 04:55:25 

24-Mar-2019 11:32:02 

24-Feb-2019 21:05:12 

03-Feb-2019 23:43:21 

03-Feb-2019 22:18:12 

02-Feb-2019 10:52:21 

15-Jan-2019 20:20:20 

13-Jan-2019 09:35:48 

25-Jul-2018 05:06:06 

07-May-2018 23:51:04 

23-Mar-2018 03:09:36 

22-Mar-2018 16:24:49 

09-Mar-2018 06:01:28 

03-Feb-2018 03:12:46 

25-Jan-2018 17:24:33 

25-Jan-2018 16:39:43 

07-Jan-2018 19:01:00 

29-Jul-2017 00:02:38 

24-Jun-2017 21:22:03 

08-Dec-2016 16:32:46 

08-Dec-2016 14:49:45 

05-Dec-2016 18:33:15 

27-Oct-2016 06:37:23 

4.3300 

4.0600 

5.6000 

4.6000 

4.1900 

4.3500 

4.0800 

4.1900 

4.4800 

4.3000 

4.0800 

4.1000 

4.5000 

4.4700 

4.7000 

4.4200 

4.4800 

4.3300 

5.0000 

5.8000 

4.5000 

5.1000 

4.0000 

4.7000 

6.6000 

4.3500 

4.1100 

124.6736 

124.3633 

124.3000 

126.8690 

124.4655 

125.1371 

125.0716 

124.4965 

124.4741 

124.4946 

124.4723 

124.9930 

125.0520 

125.3246 

124.4910 

124.3891 

124.5423 

125.4455 

126.3863 

126.3034 

125.2450 

125.1920 

124.2990 

126.3622 

126.1937 

124.3860 

124.5465 

40.2895 

40.2758 

40.2730 

40.4110 

40.4288 

40.4190 

40.3881 

40.3070 

40.2893 

40.3006 

40.3216 

40.3750 

40.3850 

40.6770 

40.4480 

40.7513 

40.2918 

40.8010 

40.4296 

40.4541 

40.3990 

40.7640 

40.2880 

40.4270 

40.4535 

40.2785 

40.3462 

34.7837 

8.5271 

3.4064 

221.3647 

25.5409 

76.0292 

69.8634 

20.3432 

18.0291 

20.0037 

18.9329 

63.0464 

68.1674 

101.0432 

28.5717 

55.9857 

23.7711 

116.6554 

180.7753 

174.0806 

84.5110 

96.5178 

4.4648 

178.7166 

164.8531 

10.4694 

25.7924 
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Figure 8.1. Earthquake history of M>4 earthquakes from years 2015-2020 in region 
constrained (40°N, 127°W) to (41°N, 124°W). These events are extracted from the NCEDC 
catalog.   
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Figure 8.2. Noise model based on the pre-signal noise data from the catalog in Table 8.2. 
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Figure 8.3. Application of event detection prior to the 2020 Northern coast offshore event. 
With each amplitude of the ground motion envelopes, there is a corresponding 
probability, 𝑃𝑟 > 𝑝𝑔𝑎!"#$$%" , which is the probability that the incoming ground motion is 
an earthquake. 
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8.2.2 2019 Ridgecrest sequence 

Similar to the format of Table 8.2, the catalog for the Ridgecrest sequence consists of 

recorded earthquakes unique to a station. This complex sequence consists of 124 M>3 

earthquakes recorded at a station that are within the specified region in Fig. 8.4. The time 

span of this catalog is 1.4 days before the observed mainshock. 

As before, taking the pre-signal noise data from the recorded earthquakes listed in 

Table 8.2, the expected rate of noise, 𝑅! > 𝑝𝑔𝑎!"#$$%" , is modeled after a lognormal 

distribution. Seen in Fig. 8.5, as the amplitude increases, the chance of it being noise tends to 

zero. Again, a wider distribution represents a noisier station. The proper depiction of noise 

by the lognormal model allows the calculations to be more cautious when labeling a signal an 

earthquake. Together, the rate of noise and rate of earthquakes are used to calculate the 

seismicity prior. A probability is assigned to each amplitude.  

For a consistent comparison to the performance of ElarmS, the first four triggered 

stations are considered: CLC, TOW2, SRT, and WRC2. ElarmS waits until four stations are 

triggered before declaring an event. This is detrimental in terms of EEW as the P-wave 

arrives at the fourth station 5 seconds after the origin time. The corresponding blind zone 

has a radius of approximately 14 km. As shown in Fig. 8.6, the seismicity prior finds that 

there is between 94.55% and 99.03% probability that an event has occurred after only 1 

second after the origin time. A high probability almost immediately after the rupture results 

in a blind zone that has a radius of less than 3 km. In a region of high seismicity, especially 

during a sequence, the seismicity prior can reduce uncertainties in a single-station approach.    
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Figure 8.4. Earthquake history at Station CLC Channels HNE, HNN, and HNZ. The size of 
the circles refers to the earthquake magnitude. The larger it is, the larger the recorded 
magnitude.  
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Figure 8.5. Noise model based on the pre-signal noise data from the catalog in Fig. 8.4. 

 

 



 156 

 

Figure 8.6. Application of seismicity prior to the 2019 Ridgecrest mainshock. With each 
amplitude of the ground motion envelopes, there is a corresponding probability, 𝑃𝑟 >
𝑝𝑔𝑎!"#$$%" , which is the probability that the incoming ground motion is an earthquake. 
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8.3 Location prior using ETAS model  

Once the probability exceeds the threshold to announce the incoming signal is from an 

earthquake and not noise, the waveform-based algorithm can start analyzing the data to find 

parameter estimates. Another prior is the epidemic-type aftershock sequence (ETAS) model. 

This prior is in the form of an earthquake occurrence probability and is calculated using an 

ETAS model, a model that generates aftershocks stochastically using established empirical 

relationships for the distribution of aftershocks as a function of magnitudes, times, and 

locations (Ogata 1998). Defined in Eqs. 8.5-8.6, this earthquake occurrence probability, for 

magnitudes 𝑀 > 𝑀!"#, at location (𝑙𝑎𝑡, 𝑙𝑜𝑛) at 𝑇 days after a specified time point is 

modeled as a nonhomogeneous Poisson process with respect to time.  

𝑃𝑟!"#$ 𝑙𝑎𝑡, 𝑙𝑜𝑛 = 1− exp 𝜆 𝑡, 𝑙𝑎𝑡, 𝑙𝑜𝑛 𝑑𝑡!
!  (8.5) 

where 𝜆 𝑡, 𝑙𝑎𝑡, 𝑙𝑜𝑛  is the rate of earthquakes at current time and at location (𝑙𝑎𝑡, 𝑙𝑜𝑛).  

 

𝜆 𝑡, 𝑙𝑎𝑡, 𝑙𝑜𝑛 = 𝜆!!
!!! (𝑡, 𝑙𝑎𝑡, 𝑙𝑜𝑛) (8.6) 

where 𝑁 is the amount of earthquakes of magnitudes 𝑀 > 𝑀!"# observed in past 
seismicity. While the full ETAS model uses the long-term background seismicity as well, this 
analysis focuses only on the short-term past observed seismicity.  

As previously mentioned, to calculate the rate of the short-term past observed seismicity, 

it is assumed the EEW system has access to the catalog of past seismicity that is 

continuously updated with time. Seen in Eq. 8.7, the individual rate of the short-term past 

seismicity for the 𝑗!! earthquake recorded in the catalog is modeled after the following: 

1. Omori’s law (Utsu 1961): the frequency of aftershock decays hyperbolically with time 

after a strong earthquake.  

2. Gutenberg-Richter’s law (Gutenberg & Richter 1944): the magnitude-frequency 

distribution of earthquakes (there are 10 times more earthquakes of 𝑀! than 

earthquakes of magnitude 𝑀! + 1). 

3. Felzer and Brodskey relation (Felzer & Brodskey 2006): for short times after the 

mainshock, the decay of aftershocks in space is modeled after a single inverse power 

law.  
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𝜆! 𝑡, 𝑙𝑜𝑛, 𝑙𝑎𝑡 = 𝜆! 𝑡,𝑅 = !
(!!!!)!!!

10!(!!!!!"#) (8.7) 

where Δ! is the difference from the current time to the origin time of the 𝑗!! earthquake 
recorded in the catalog, 𝑅 is the distance from (𝑙𝑜𝑛, 𝑙𝑎𝑡) to the epicenter of the 𝑗!! 
earthquake, 𝑀! is the magnitude of the 𝑗!! earthquake, and 𝑀!"# is the minimum magnitude 
of the forecast earthquakes. The chosen values for the constants, 𝐾, 𝑐, 𝑝, 𝑛, and 𝛼, are based 
on the ETAS model for Southern California (Felzer 2009).  

Earthquake history, especially recent seismicity, provides important information, 

even before any waveform information is collected. Since seismic activity clusters in time 

and space, the EEW system can use this prior information to deduce recent seismicity may 

in fact turn into a foreshock of a larger earthquake (Reasenberg & Jones 1989). Fig. 8.7 

illustrates the ETAS model using real earthquakes from years 2016 to 2020 in the Northern 

coast offshore region, and Fig. 8.8 illustrates it for the Ridgecrest region. The prior 

information is calculated assuming the EEW system has access to the catalog of seismicity. 
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8.3.1 2020 Northern coast offshore event 

 

 

Figure 8.7. Occurrence probability by ETAS model of estimated location for the 2020 
Northern coast offshore event, using prior information (no waveforms involved).   
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8.3.2 2019 Ridgecrest sequence 

 

 

Figure. 8.8. Occurrence probability by ETAS model of estimated location for the 2019 
Ridgecrest mainshock, using prior information (no waveforms involved). The catalog here is 
based on 1.4 days of earthquake history before the observed M7.1 mainshock. 
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8.4 Magnitude Estimate Using Amplitude Ratios  

One valuable aspect written in Cua’s thesis is an approach that finds the magnitude estimate 

without any attenuation relationships that are used in calculating the likelihood. For instance, 

attenuation relationships do not help avoid trade-offs between magnitude and location when 

data is only available from one station. However, incoming ground motion at this single 

station is still valuable because the ratios between acceleration and displacement reveal 

information about the frequency content. The different frequency content indicates different 

energies that are radiated, which then distinguish the incoming ground motion as one from a 

small earthquake or from a large one.  

Cua takes this idea and applies a linear discriminant analysis on real earthquake 

records to best separate them into groups of different earthquake magnitude ranges. For 

instance, the first group consists of magnitudes less than 3, while another consists of 

magnitudes between 3 and 4 and so on. The process of a linear discriminant analysis also 

aims to maximally cluster within the group. The result from this analysis is a relationship that 

constrains magnitude estimates from available observed data (seen in Eq. 8.8-8.9). However, 

Eqs. 8.8-8.9 only show how the best magnitude estimate is found. Eq. 8.10 allows Eqs. 8.8-

8.9 to be expressed in a probabilistic sense.   

𝑍 = !"!.!"

!"!.!"
= 0.36 log𝑃𝐴 − 0.93 log𝑃𝐷 (8.8) 

where 𝑃𝐴 and 𝑃𝐷 are the peak acceleration and displacements in a specified time window.  

 

𝑀!"# =
−1.627𝑍 + 8.94 𝑓𝑜𝑟 𝑃 − 𝑤𝑎𝑣𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑠
−1.459𝑍 + 8.05 𝑓𝑜𝑟 𝑆 − 𝑤𝑎𝑣𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑠 (8.9) 

where 𝑀!"# is the magnitude estimate found using relationships based on linear 
discriminant analysis on amplitude observations. The uncertainties are 0.45 and 0.41 for P-
wave and S-wave amplitudes, respectively.  
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𝑃𝑟!"#(𝑀!"#) =
!
!!!

exp − (!!"#!!!"#))!

!!!
 (8.10) 

where 𝑃!(𝑀!"#) is the likelihood of observing an arbitrary magnitude, 𝑀!"#, and 𝑀!"# is 
the magnitude estimate found using the amplitude ratios in Eqs. 8.8-8.9.  The uncertainty, 𝜎, 
depends on the phase, which can be found using a standard STA/LTA analysis or the 
polarization analysis (Ross et al. YEAR). As previously stated, it is 0.45 for P-wave and 0.41 
for S-wave. Because Eq. 8.8 and Eq. 8.9 consider waveform information, Eq. 8.10 should 
not be mistakenly considered prior information. It is merely an additional constraint on the 
parameter estimates to reduce tradeoffs.   

8.4.1 2020 Northern coast offshore event 

Table 8.3. Magnitude estimates using P-wave amplitudes for the 2020 Northern coast 
offshore event. 

Network Site Name Component Magnitude estimates 

NC KCO 
EW 5.6 
NS 5.5 
UD 5.9 

CE 89101 
EW 6.4 
NS 5.9 
UD 6.3 

NC KCT 
EW 6.0 
NS 6.1 
UD 6.3 

BK PETL 
EW 5.9 
NS 5.9 
UD 6.2 
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8.3.2 2019 Ridgecrest sequence 

Table 8.4. Magnitude estimates using P-wave amplitudes for the 2019 Ridgecrest mainshock. 
Network Site Name Component Magnitude estimates 

CI CLC 
EW 6.7 
NS 7.2 
UD 6.8 

CI TOW2 
EW 6.7 
NS 6.6 
UD 6.8 

CI SRT 
EW 7.0 
NS 7.1 
UD 6.8 

CI WRC2 
EW 6.3 
NS 7.0 
UD 6.9 

CI SLA 
EW 7.2 
NS 7.1 
UD 7.1 

CI LRL 
EW 6.7 
NS 6.8 
UD 7.0 

CI CCC 
EW 6.9 
NS 7.2 
UD 6.8 

8.5 Bayes’ Theorem: Applying Prior to Likelihood 

So far, the priors have been defined in terms of probability: (i) Eq. 8.1 distinguishes a trigger 

as one from an earthquake versus noise, (ii) Eq. 8.5 estimates the epicenter location based on 

previous observed seismicity, and (iii) Eq. 8.10 estimates the earthquake magnitude based on 

incoming ground motion amplitudes. To apply these priors to waveform-based likelihoods, 

Bayes’ theorem is used. These priors have the potential to reduce uncertainty in the initial 

waveform-based likelihoods (i.e. estimates found in the first few seconds). For instance, 

waveform-based likelihoods may give a large range of possible parameter combinations to 

describe the incoming ground motion, but prior information may constrain them. Once 

more data is available with more time, the emphasis of the priors decays while the 

waveform-based likelihoods take over.  
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Bayes’ theorem is defined as a normalized product of a prior probability density function 

(PDF) and a likelihood function, as seen in Eq. 8.11. Eqs. 8.12-8.14 show how to apply the 

general case of Bayes’ theorem, seen in Eq. 8.11, to a single station and channel.  

 

𝑃𝑟!"#$(𝐴|𝐵) =
!"!"#$(!|!)×!"!"#$"(!)

!"!"#$(!)
∝ 𝑃𝑟!"#$(𝐵|𝐴)×𝑃𝑟!"#$"(𝐴) (8.11) 

where 𝑃𝑟!"#$(𝐴|𝐵) is the posterior, 𝑃𝑟!"#$(𝐵|𝐴) is the likelihood, 𝑃𝑟!"#$"(𝐴) is the prior, 
and 𝑃𝑟!"#$(𝐵) is the normalizing constant. 𝑃𝑟!"#$(𝐵|𝐴) is the likelihood calculated using 
waveform-information. The priors defined earlier in this chapter (Eqs. 8.1, 8.5, and 8.10) 
would be used as 𝑃𝑟!"#$"(𝐴) in Eq. 8.11.  

 

𝑃𝑟!"#$ 𝑀, 𝑙𝑎𝑡, 𝑙𝑜𝑛 𝑌 ∝ 𝑃𝑟!"#$ 𝑌 𝑀, 𝑙𝑎𝑡, 𝑙𝑜𝑛 ×𝑃𝑟!"#$"(𝑀, 𝑙𝑎𝑡, 𝑙𝑜𝑛) (8.12) 

 

𝑃𝑟!"#$ 𝑌 𝑀, 𝑙𝑎𝑡, 𝑙𝑜𝑛 = 𝑃𝑟!"#$(𝑌!!
!!! 𝑀, 𝑙𝑎𝑡, 𝑙𝑜𝑛 = !

!!!

!
exp − !!!!(!,!"#,!"#)! !

!!!
!
!!!  (8.13) 

 

𝑃𝑟!"#$" 𝑀, 𝑙𝑎𝑡, 𝑙𝑜𝑛 = 𝑃𝑟!"#(𝑀)×𝑃𝑟!"#$ 𝑙𝑎𝑡, 𝑙𝑜𝑛 = !
!!!

exp − (!!"#!!!"#))!

!!!
×

1− exp !
(!!!!)!!(!"#,!"#)!

10!(!!!!!"#)!
!!!  (8.14) 

 

Maximizing the posterior probability finds the magnitude and location estimates that 

best describe the incoming ground motions. However, to avoid computations with very 

small numbers, Eqs. 8.12-8.14 are rewritten in logarithmic form. This transforms the process 

of maximizing the posterior probability to minimizing the negative functions within the 

exponential. Doing so, the following estimates are found with respect to time after the 

mainshock ruptures for the 2020 Northern coast offshore event, 2019 Ridgecrest 

mainshock, and the 2012 Brawley mainshock.  As seen in the figures below, the use of priors 

has the potential to provide relatively more accurate magnitude estimates well before the 

waveform-based likelihood can. For the Northern coast offshore event, using prior 

information would give 8 more seconds of warning time. For the Ridgecrest mainshock, 

using prior information would give 4 more seconds of warning time. For the Brawley 

mainshock, the waveform-based likelihood is sufficient but the prior information gives the 



 165 

results more confidence.  For all of these events, as time passes, the waveform-based 

likelihood has more weight in the posterior probability, and the results with prior and 

without prior converge.  

8.5.1 2020 Northern coast offshore event 

Prior information is not always useful. As seen in Fig. 8.10, prior information makes virtually 

no impact on the location and magnitude estimates for the extended catalog search. For this 

particular method, the waveform-based likelihood is sufficient. However, for the grid search, 

the prior information reduces the tradeoffs between the location and magnitude, leading to 

more accurate magnitude estimates in the initial time points (see Fig. 8.9). With the prior 

information reducing tradeoffs in the first few seconds estimates are available, it is assumed 

the first 2 seconds of P-wave data can be used to issue expected appropriate warning times 

(see Fig. 8.11). The first station is triggered 14 seconds after the origin time due to the 

location of the offshore event being approximately 60 km from the coast. Shown in this 

case, prior information is most valuable for regions of sparse station coverage. This way, 

uncertainties can be reduced without waiting for more stations to be triggered.  
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Figure. 8.9. Comparing magnitude estimates using waveform-based likelihood vs. using prior 
information for the 2020 Northern coast offshore event. 
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Figure 8.10. Applying prior information made little impact on location estimate in the 
extended catalog search for the 2020 Northern coast offshore event. 
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Figure 8.11. Warning times based on first parameter estimates at Station KCO, which occurs 
16 seconds after origin time.  
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8.5.2 2019 Ridgecrest sequence 

Prior information does not significantly change the initial parameter estimates for the 

extended catalog search. However, prior information makes a larger, more obvious impact 

on the grid search solutions. As seen in Fig. 8.13, prior information gives valuable insight on 

the location estimates. The magnitude estimates based on waveform-based likelihood are 

initially underestimated. The prior information provides some constraint on the location, 

providing magnitude estimates similar to the current EEW system, just 4 seconds earlier. It 

reduces the tradeoffs between the location and magnitude, leading to more accurate 

magnitude estimates in the initial time points (see Fig. 8.12). With the prior information 

reducing tradeoffs in the first few seconds estimates are available, it is assumed the first 2 

seconds of P-wave data can be used to issue expected appropriate warning times (see Fig. 

8.14).  
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Figure 8.12. Comparing magnitude estimates using waveform-based likelihood vs. using 
prior information for the 2019 Ridgecrest mainshock. 
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Figure 8.13. Valuable insight to the location estimate from prior information for the 2019 
Ridgecrest mainshock. 
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Figure 8.14. Warning times based on first parameter estimates at Station CLC, which occurs 
2 seconds after origin time. (left) No prior information is used, and (right) prior information 
is applied.  

8.6 Summary 

Previous chapters find parameter estimates based on observed waveforms and a uniform 

prior. Applying additional prior information and constraints in a Bayesian probabilistic 

approach may reduce the tradeoffs between magnitude and location in the initial time points 

of the earthquake rupture, tradeoffs that occur due to insufficient amount of waveform data. 

However, as additional data is acquired with time, the impact of the prior information 

diminishes and waveforms have dominating influence over the final solutions. As seen with 

the offshore event, prior information is most valuable for regions of sparse station coverage 

and regions undergoing an earthquake sequence. This way, uncertainties can be reduced 

without waiting for more stations to be triggered and with data immediately available from 

an occurring sequence. Furthermore, the seismicity prior rapidly provides the arrival of a 

signal, indicating when to initiate the search algorithm.  
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9 Concluding Remarks and Future 
Work 
9.1 Concluding Remarks 

As stated in the introduction, the two-part search algorithm is developed to address the 

challenges the current EEW system faces. One of the challenges is identifying offshore 

events. The application of the algorithm to past real earthquakes shows the extended catalog 

search has the ability to find parameter estimates that approach the true observed parameters 

with the P-wave data at a single station. This is an advantage compared to the algorithms 

that wait for multiple triggered stations before issuing an alert. It is also advantageous for 

events with sparse station coverage, as only a single station is necessary. Another challenge is 

identifying complex earthquakes. The extended catalog search also is able to address this 

challenge by further extending the catalog to additional templates that consider multiple 

ruptures spaced closely together in time. Doing so, the P-wave data at a single station is 

generally sufficient to provide accurate parameter estimates. The unique feature of the 

extended catalog search is its consideration of the specific site and path effects observed at 

the single station and channel. Because these effects are factored into the goodness-of-fit, 

the extended catalog search overall finds stronger envelope fits than the grid search. The 

concluding remark in regards to the full two-part search algorithm is the extended catalog 

search solutions are accepted initially, and the grid search is used to confirm. However, if 

earthquake history is insufficient, such as an inadequate amount of epicenters, then the grid 

search solutions would be accepted over the extended catalog search. 

The test sweep of the grid search method on a variety of waveform envelopes shows it 

is generally robust for 4.5<M<7 events that are in network and surrounded by at least three 

stations in different directions. For the best chance of epicenters meeting this special 

criterion, a uniform distribution of stations is recommended with an interstation spacing 

between 10 to 20 km. Though the grid search struggles with tradeoffs in the initial time 

points, with time, it converges to the parameter estimates found by the extended catalog 

search. The use of prior information reduces the uncertainties in the initial estimates. 

Together, the two methods run in parallel, providing the best parameter estimates as quickly 
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as possible that are updated with additional data and with time. The test sweep results 

suggest to send an alert based on 2 different criteria: 

1. P-wave data from a single station is used to alert regions near the epicenter, within 

50 km, to expect strong shaking. 

2. Wait for three triggered stations for enhanced accuracy in parameter estimates to 

alert regions farther away. 

9.2 Future work 

This thesis lays the groundwork for the two-part search algorithm. Future work would 

include a test sweep on a variety of datasets, including events and non-events, to find an 

acceptable threshold in uncertainties that would be allowed for issuing alerts. This thesis only 

refers to error bands of the best-fitting envelopes in reference to the incoming observed 

envelopes and assumes that those within a factor of 2 are acceptable fits. This thesis also 

attempts to mimic real-time analyses as closely as possible, calculating the probability using 

data that would be available at the specified time points (i.e. consider stations after their P-

wave arrivals). However, it assumes the algorithm will have the stations’ earthquake histories 

in the appropriate re-parameterized format at hand. Therefore, future work would include a 

real-time streaming of the earthquake database for building the extended catalog and the KD 

trees. It is suggested in Chapter 5 that KD trees be pre-determined and stored to save 

construction time. For KD tree nearest neighbor to be implemented practically for EEW 

purposes, it cannot be constructed in real-time. For EEW, it is practical to only search. 

Therefore, future work would include construction and storage of the KD trees for easy 

access, each one based on the length of the ground motion envelopes. Finally, this thesis 

covers event detection using priors and rapid estimation of the earthquake source. Future 

work would include the next step in finding the expected ground motion shaking from the 

earthquake source parameter estimates. It would be of great value to compare how different 

the expected ground motion shaking would be with respect to the uncertainties of the 

extended catalog search and grid search solutions.  With the future work, the envelope-based 

two-part search algorithm presented in this thesis has high potential to improve the current 

EEW system.  
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