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ABSTRACT

The current dissertation chapters try to discover the role of visual attention in
decision making from three different perspectives: 1) how attention bias affects
strategic decision makings, 2) how to model eye movement data to better understand
strategic decisions, 3) how to manipulate simple choices through visual saliency.

The second chapter introduces a series of novel image games, where players need
to match, hide, or seek against other players. We apply a pure computational
way: the state-of-art visual saliency algorithm, Saliency Attentive Map (SAM) to
measure visual saliency. We find that visual saliency can predict strategic behaviors
well. The concentration of salience is correlated with the rate of matching when
players are both trying to match location choices (r=.64). In hider-seeker games, all
players choose salient locations more often than predicted in equilibrium, creating
a “seeker’s advantage” (seekers win 9% of games rather than the 7% predicted
in equilibrium). The 9% win rate is robust for paying higher stakes and using a
between-subjects design. Salience-choice relations are consistent with cognitive
hierarchy and level-k models in which strategically naive level 0’s are biased toward
salience, and higher-level types are not directly biased toward salience, but choose
salient locations because they believe lower-level types do. Other links between
salience as understood in psychology and hypothesized in economics are suggested.

The third chapter is a continuation of the second chapter, but with a different empha-
sis. The third chapter proposes a way to dynamically model gaze transitional data in
games utilizing a class of machine learning model: hidden markov models(HMM).
The HMMmodel reveals how the attentional bias affects strategies on different time
point. Besides, this model well connects to the k level behavioral method and can
make novel predictions on strategic levels. With further containing the fixation
duration data, we developed a continuous-time hidden Markov model (cgtHMM),
which can be used to predict how exactly time pressure changes choices and the
seeker’s advantage.

Distinct from the other two, chapter four aims at manipulating binary choice out-
comes through the change of visual saliency distribution under SAM. We design a
value-based choice paradigmwhere both the reward property and the attention prop-
erty are well separated and controlled. The experimental results indicate that visual
saliency can enhance the choice correction rates when the more rewarding outcome
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is also labeled salient. It can also shorten the decision time needed. Such a result
can be explained by a saliency-enhanced rational inattention model by incorporating
attention factors in the traditional RI model.
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C h a p t e r 1

INTRODUCTION

1.1 General introduction
Challenges of the classic economics theory originated as early as the theory of
bounded rationality (Simon, 1956; Simon, 1997), in which a decision maker, instead
of fully optimizing, is just seeking a satisfactory solution under limited cognition.
What followed afterward is the emergence of behavioral economics. Researchers
try to raise particular questions on each concept in economics. Camerer (1999)
concludes four classes of economic principles that need to be reconsidered: expected
utility theory, exponential discounting, social utilities, and equilibrium. The last two
decades were a golden age for behavioral economics 1.0, during which immense
progress has been made towards these four directions, both from a theoretical
perspective and an empirical perspective. For example, a large body of literature on
prospect theory (Tversky andKahneman, 1992) provides an alternativemethod to the
expected utility theory. More diverse discounting functions, including the famous
hyperbolic one (Laibson, 1997; Frederick, Loewenstein, and O’donoghue, 2002),
have gained more popularity now than the traditional exponential discounting way.
The concept of empathy or fairness is becoming increasingly essential to reshape
our understanding of what the actual utility is (Fehr and Schmidt, 1999; Fehr and
Gachter, 2000). The equilibrium is not the only status in the economic system that
we care about anymore. And in fact, much evidence has shown that we are further
away from the equilibrium most of the time in reality, and arriving there is never
easy (Camerer and Hua Ho, 1999; Camerer, Ho, and Chong, 2002; Camerer, 2011).

Most of these studies begin with questioning one kind of hypothesis based on
intuition or heuristics. Specific experiments are conducted to provide supporting
evidence to the doubts and, most of the time, results are indirectly inferred through
choice data. Most researches will assume a psychological perturbed model and
estimate the corresponding psychological effects using the choice data. Such a
post-hoc methodology works to make things progress, but probably it is not the
most efficient way nor a well-founded way. The reason of only using choice data
comes from the lack of measurements in different mental activities. In this aspect,
psychologists and cognitive scientists move way ahead of us. They possess many



2

treasured techniques to measure mental activities related to economic decisions like
eye-tracking or other psychophysics tools.

Indeed, the progress of behavioral economics is also the reunion process of psy-
chology and economics (Camerer, 1999). But most of the time, economists are
borrowing only the concepts and results from psychology, for example, emotion,
attention, or memory, and leave behind the methodology. We see very few stud-
ies in economics which use eye-tracking techniques to study attention or use the
psychophysics monitoring package to study emotion.1 One possible reason for not
doing this might be that economists are afraid that a concrete definition will make
the concept lose its generalization power. Of course, leaving a concept always as
general as possible to be only one word or one sentence in theory will make it
omnipotent. For instance, one can make a perfect definition of attention as the
distribution of cognitive resources. While on the other hand, if we never concretize
such a “perfect definition”, this concept will be useless because no one knows how
to observe and measure cognitive resources. No one knows what the distribution of
it is.

What this thesis did was to concretize the concept of attention and present several
application cases of economics on the measured attention. We limit the discussion
of attention in this dissertation only within the field of visual attention. Doing so
certainly makes this work’s scope narrow, as many of the attention topics outside
of the visual world, for example, in the auditory system or on the abstract level.
Though studying the visual attention role itself is important enough as we humans
are “visual animals” and more than 50 percent of the cortex, the surface of the brain,
is devoted to processing visual information (Kandel et al., 2000).

Extensive work on psychology and neuroscience contributes to the knowledge of
the system of visual attention. They are trying to answer a question: what makes an
item attentive. We will introduce them in the following sections.

1.2 The concept of salience
One important ability for animals is to prioritize some of the information stimuli
in the environment selectively. This process starts very early in the stage, and
forms a so-called “saliency map”. Saliency map topographically encodes stimulus
conspicuity is formed on several brain areas, including superior colliculus and
primary visual cortex (White et al., 2017; Veale, Hafed, and Yoshida, 2017). This

1Including skin conductance, heart rate, and face muscle changes.
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“saliency map” encodes an order of importance of the content on the entire visual
scene coming from our retina. The entire computation process of the saliency map
is complicated. Many pathways and brain areas are involved (Veale, Hafed, and
Yoshida, 2017). There are two types of major mechanisms involved to determine
the order of priority. One type is feature-driven, sometimes is also called the
“bottom-up” process. This type purely computes a one-dimensional map on each
point on the visual scene using purely low level features including brightness, color,
oriented edge and motion (White et al., 2017). Different low level features compete
within themselves and then the most salient location comes out. This process
happens first, followed by the second type of process: the goal-directed process
(“top-down”), which integrates the outcome of the feature-driven mechanism and
the information of tasks and goals.

Both types of mechanisms decide the saccades and micro-saccades behaviors, and
therefore the eye fixation maps.

1.3 Bottom-up and top-down salience
In psychology, attention-getting features that are salient are usefully divided into
two categories: Bottom-up and top-down (Frintrop, Rome, and Christensen, 2010).
Bottom-up features are based on sensory physical features such as color, contrast,
and orientation. Bottom-up feature salience is devoid of personal meaning and in-
dependent of task goals. To the extent that human visual systems work the same way
all around the world, the attention-grabbing salience of bottom-up features should be
universal. As a result, attentional data frommany diverse subject pools can establish
what is bottom-up. For example, the stick figure “I” is perceived, bottom-up, as a
black vertical line of a certain length, with slightly extended top and bottom horizon-
tal lines on top of the vertical line, surrounded by contrast with a white background.
Primates, babies, and adult humans all have the same immediate perception. From
the bottom-up view the stimulus “I” is not made more or less salient because it is
a capital letter, a pronoun for “myself” in English, the Roman numeral one, or re-
minds you of an iconic column your interior decorator suggested for the front porch
of your house. All the latter forms of salience are “top-down”: they use semantic
knowledge about the (local, acculturated) world, include what is personally relevant,
valued, familiar, and novel. Bottom-up attention seems to emerge from rapid visual
neural processing which is essentially common to humans (excepting disorders) and
many other species. Inspired by a deep understanding of visual cortex, a series of
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progressively improving algorithms have been developed to use visual images as
inputs, and output predictions about where people will look in the first 1000msec of
processing (Harel, Koch, and Perona 2007; Itti, Koch, and Niebur 1998; Judd et al.
2009). However, as the “I” example suggests, many types of top-down meaning and
value have been shown to be salient because they also grab attention. Variables that
increase top-down salience in perception and choice include prior beliefs, recent
choice history (Awh, Belopolsky, and Theeuwes, 2012), familiarity and novelty (Itti
and Baldi, 2009), value for consumer goods (Towal, Mormann, and Koch, 2013),
and self-reported “meaning” (Henderson and Hayes, 2017). Evidence also suggests
that top-down attention allocation occurs more slowly than bottom-up attention.
The SAM algorithm we will use is tuned using human free gaze data. Since the
humans have no special goal to achieve during free viewing, the salience that is
being captured algorithmically is probably a combination of bottom-up features,
and top-down features (such as familiarity, novelty, special attention to faces, etc.)
which grab the attention of the particular subject population.

1.4 A computer vision approach for visual saliency modeling
Itti-Koch Saliency Map
Inspired by the attention control function from the primate visual systems, vision
scientists take the reverse engineering approach and try to build models that can
output a similar result as the attentional map generated by the biological visual
system.

The first well-known model is the so-called “Itti-Koch bottom-up saliency map”
(Itti, Koch, and Niebur, 1998), which takes thoughts from Koch and Ullman (1987),
and uses a purely bottom-up approach to compute for a single topographical saliency
map. Figure 1.1 presents the general model structure of the “Itti-Koch” model.

As we walk through the model, we can see that every single procedure of this model
reflects a biological foundation. This model takes an RGB image as its input. The
first thing it does is to linear filter the image into three basic dimensions: color
(C), intensity (I), and orientation (O), just like the way our visual system also has
certain types of specialized neurons from the retina to the primary visual cortex to
encode intensity, color, and orientations, individually (Kandel et al., 2000). The
critical procedure for saliency computation is to get a contrast measurement under
each feature. Such contrast is computed by a set of “center-surround” operations
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Figure 1.1: Itti-Koch model for bottom-up visual saliency.

The general model structure for the model in Itti, Koch, and Niebur (1998).

just akin to the “center-surround” responses in visual receptive fields.2 Then,
after normalizing such contrast under each of the three dimensions: C, I, O, the
algorithm just takes the average of the contrast measure under each dimension as
the final saliency map of a given image.

Though this model is so simple to construct and implement compared to many
current visual saliency models, it can already partition the stand-out items very well
on simple images (e.g., Figures 4 and 5 in (Itti, Koch, and Niebur, 1998)).

Interpretable models before deep neural networks
This computational approach has been later proved to be successful and meaningful.
Later studies further tried to improve the model performance to be even closer to
how humans look.

But before that, a well-defined measurement of how close a model is to the human
gaze pattern becomes important. From Harel, Koch, and Perona (2007) onward,
people started to take the experimental approach and get real human gaze data
under free viewing tasks for a short duration (3-5s). Fixation maps were then
calculated and used as the model target. The performance of a saliency model will

2For example, some of the retinal ganglion cells have such center-surround receptive field that
some cells will be activated by a bright spot in the middle and dark circle around it.
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then be evaluated based on ROC curves drawn between the model prediction and the
fixationmaps. With these human fixationmaps, a pure bottom-up approach is clearly
not enough. Many models were then developed to improve at some perspectives,
including center biases, top-down semantics, Bayesian priors, and more (Hou and L.
Zhang, 2009; Judd, Ehinger, et al., 2009; Harel, Koch, and Perona, 2007; J. Zhang
and Sclaroff, 2013).

Up until now, all the models were fully interpretable and crafted 100% by humans.
We already learned a lot about what makes a pixel salient, though there is still room
for performance to grow.

Standardized metrics and the deep learning approach
Just like other computer vision sub-fields, visual saliency models now also have
standardized criteria and data sets for performance checks. Public available data
sets like MIT300 (Judd, Durand, and Torralba, 2012) and CAT2000 (Borji and
Itti, 2015) contain a large number of fixation maps on more than 4000 images across
200 categories. Besides the uniformed data sets, standardized evaluation metrics
including the area under roc curve (AUC), the normalized scanpath saliency (NSS),
the correlation coefficient (CC), and others are often applied together now to evaluate
the contribution of a new model. The entire industry has a clear goal now: predict
how people look. And this goal has been quantified as to reach the golden standard,
the human benchmark values under each evaluation metric. 3

Under the gigantic move of deep neural network models, the state-of-art saliency
models (Kummerer, Wallis, Gatys, et al., 2017; Jia and Bruce, 2020) have elevated
the AUC performance score to 0.87 where the human benchmark is 0.93, and an
ideal perfect model is 1. The ceiling of hand-crafted feature models (non-deep
neural network) produces an AUC metric of 0.81 (E. Erdem and A. Erdem, 2013;
Harel, Koch, and Perona, 2007; Judd, Ehinger, et al., 2009), which is also reasonably
well, while all these models are fully explainable.

1.5 The attentional Drift-Diffusion-Model (aDDM)
Over the past decades, accumulation models have been proved to be successful for
modeling attention in decision making. Such accumulation models usually require
eye fixation data or mouse trajectory data besides the choice data. The fundamental

3This is caused by the individual differences in the fixation patterns. The golden standard can
be calculated by calculating each evaluation score using the average fixation density as a model to
predict another group of people’s gaze.
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basis for it comes from the active information collecting process initiated by the
decision maker. Such a collecting process is reflected by eye movements or other
process form data, and can be used to predict choice by the accumulation models.

The attention drift diffusion model(aDDM) is the most well-known computational
model and has been tested in various kinds of tasks including purchasing behav-
ior, perceptual decision making, and so on (Krajbich, Armel, and Rangel, 2010;
Krajbich and Rangel, 2011; Krajbich, Lu, et al., 2012; Hutcherson, Bushong,
and Rangel, 2015; Tavares, Perona, and Rangel, 2017; Kummerer, Wallis, and
Bethge, 2018). It is a special application of the general drift diffusion model (Rat-
cliff and McKoon, 2008; Ratcliff, Smith, et al., 2016) on the realm of perceptual
decision making. A standard drift diffusion model describes the dynamic process of
evidence accumulation for a binary choice task, and can predict two things: choice
outcomes and response time distribution. A key innovation from aDDM is that
it assumes a discount factor at each time point for the unfixed item. In that case,
the relative decision value (RDV) between two choice alternatives at each time t
becomes:

+C = +C−1 + 3 (A0CC4=343 + \A=>C0CC4=343 + nC)

where A0CC4=343 and A=>C0CC4=343 denote for the values of the two alternatives and
\ ∈ [0, 1] captures the attentional bias towards the item that is currently being fixed
at. nC is the Gaussian white noise term.

The aDDM model is definitely a milestone model for exploring the computational
confound of visual attention. Besides that aDDM can make reasonable explanations
of RT distribution and choice psychometrics, it further sheds light on the exoge-
nous manipulation directly on the saliency property of choice alternatives (Armel,
Beaumel, and Rangel, 2008; Shimojo et al., 2003; Milosavljevic et al., 2012).

Though there have been efforts made to extend the application scenario to contain
more than two items, for example, in a trinary problem (Krajbich and Rangel, 2011),
the mathematical structure of the DDM model by itself will make it very hard to
generalize to more items further. In another word, there is no general solution
concept applying to every number of choice alternatives.

1.6 The direction of this dissertation
The computation model of visual saliency is the approach we advocate in this
dissertation about “concretizing” attention in economics applications and other
decision-making scenarios.
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Figure 1.2: The attentional drift diffusion model.

The dynamic change of the relative stimulus value on discrete time for a yes-no question. A choice
will be made if one of the barriers is reached.

In chapters two and three, we show that the visual saliency model can powerfully
predict the effect of saliency on different game structures quantitatively. Such a
hypothesis has been long realized by game theorists and was referred to as the “focal
point” effect. With this saliency measurement, we construct a model that is not
restricted to any specific game structure and can predict choices better than other
competing models. We also did eye-tracking analysis on this experiment ,the result
of which consolidates the use of the computational saliency model that the attention
measured by the eye tracker is the same as the SAM prediction.

HMM model can further provide us another way of understanding the strategy
forming process. In chapter three, we formalize the hidden Markov model in
strategic games that eye fixation transitions map to the mental states transitions.
Considering the fixation duration time as an input of the model can make it capable
of predicting the behaviors under time pressure.

Chapter four provides another application of the computational saliency model in
a binary choice decision problem. People generate bias on saliency and make
mistakes. We show that the saliency and the valuations contribute together to a
decision. We can easily find examples corresponding to this phenomenon in real
life. For example, one may take special consideration of the most attentive item
placed on the merchant’s focal spot by the merchant. She decides to buy it, but finds
out later that this is not a valuable item for her.

Overall, this dissertation borrows both the scientific concept of visual saliency and a
portable measure from cognitive neuroscience. We concentrated on three economic
perspectives where saliency plays an important role: 1) strategic choices, 2) eye
fixation data, and 3) simple choice problems. Experiments are later designed and
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conducted for each of those three perspectives. Different computational models
bridging the novel attention related data set to decisions are finally constructed and
estimated to better understand and predict strategic or non-strategic decisions. All
models included have the potentials to be generalized and apply to other domains
of problems. Limitations of this work and possible future directions are pointed out
at the end of this dissertation.
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C h a p t e r 2

SALIENCY IN EXPERIMENTAL GAMES

2.1 Introduction
Salience is whatever makes a feature of a stimulus grabs attention quickly. As
behavioral economists explore the implications of scarce attentional resources on
choices and market outcomes, a deeper understanding of salience could prove useful
in economics. This paper is about one particular aspect of salience: visual salience
as a source of focality in games. Pure coordination (matching) and hider-seeker
games will be compared.

Schelling (1980) famously noted that how strategies in games are “labeled” mentally
– whether by visual salience, language, cultural importance, precedent, or in other
“psychologically prominent” ways – seemed to be necessary to predict what people
would actually do in certain types of games.

Three decades later Rubinstein (1991) echoed this sentiment, writing (p. 909)

It is argued that a good model in game theory has to be realistic
in the sense that it proves a model for the perception of real life social
phenomena (emphasis ours)

In games, focality depends on a shared concept of salience. Focal strategies must
stand out and whether people think strategies will stand out to others makes a
difference. Visual neuroscience has crafted clear predictions about what most
humans notice. Aspects of human perception that are universal – e.g., noticing the
color red – are a promising basis for shared salience.

Let us begin with Schelling’s (1960) famous map example (see Figure 2.1a). The
map shows small square houses, a pond in the lower left, two places marked x and
y, and a river running horizontally through the lower third of the map, with a bridge
located across the river. Schelling wrote:

Two people parachute unexpectedly into the area shown, each with a
map and knowing the other has one, but neither knowingwhere the other



14

Figure 2.1: Schelling’s map revisited.

(a) Original map. (b) Choice frequencies heatmap, the redness indicates choice frequency. (c) SAM
algorithm predicted saliency heatmap.

has dropped nor able to communicate directly. They must get together
quickly to be rescued. Can they study their maps and “coordinate” their
behavior? (p. 56)

Schelling reported that seven of the eight people that he asked chose to rendezvous
at the bridge.

In a proper experiment, N=61 UCLA students, who were incentivized to match,
chose the bridge 59% of the time (see Figure 2.1b).1 Did they choose the bridge
because it grabbed their attention? To find out, we fed the map image taken right
from Schelling’s book into a computational neural network algorithm carefully
designed to predict which areas of any image are highly salient to average people.
(This SAM algorithm is discussed further below).

The resulting SAM map says that the bridge is highly salient (Figure 2.1c). The
algorithmpredicts that the bridge is salient because it has themost dark/light contrast,
and is close to the center of themap. However, note that SAM says that the “x spot” is
not salient, even though it was chosen by 25% of the subjects. The SAM algorithm,
based on what people tend to look at in general, misses some of what makes a map
feature salient to people who have the shared goal of trying to coordinate. After
presenting our results on games, in the Discussion section at the end of this paper
we address how psychological visual salience is related to other concepts of salience
used in economics.

1These data were collected in conjunction with Milica Moormann and Alec Smith.
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What we do that is new
Our study goes further than previous research in three ways

1. Salience is predicted by an underlying neuro-computational theory of which
features of an information display people look at first (the SAM algorithm).
SAM salience is a good predictor of choices in matching games; it is highly
correlatedwith what image locations players choose, and across games, higher
matching rates correlate with more concentrated salience.

2. We estimate salience-enhanced level-k and cognitive hierarchy models and
use them to portably explain data in matching games based on estimates of
salience strength from hider-seeker games.

3. A dynamic hidden Markov model (HMM) of salient attention over time is
constructed from both eyetracking and choice data. Because the model de-
scribes the time course of attention to salient locations, it can predict exactly
how choices differ under time pressure. It accounts for an increase in the
seeker’s advantage in a new experimental condition if players are under time
pressure. The seeker’s advantage increases because the hider does not have
time to find an unsalient location to hide at.

Section 2 discusses some classic experimental studies of focality in games. Then
in section 3, we introduce the visual image paradigm and algorithms that predict
what features are salient. Section 4 describes our experimental design and basic
results, and organizes results using a salience-enhanced cognitive hierarchy (SCH)
model. We measure how well it can explain data, and whether it can portably make
cross-game predictions.

The last section concludes by discussing salience more generally in recent game
theory and economic applications, and pointing to future research.

2.2 Background on focality in games
There was a long lag between Schelling’s early discussion and later bursts of careful
experimentation on focality.

Bacharach (1993); Bacharach and Bernasconi (1997) proposed several principles
underlying focality in matching choices from sets of objects. Their idea was that
people naturally categorized objects into subsets and chose from distinctive objects
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Figure 2.2: Actual photograph of a deworming bracelet and associated SAMsaliency
map.

Original image of deworming bracelet (left) and saliency map predicted from algorithm (right) .

or smaller subsets. However, subjects’ actual choices were not always consistent
with the most non-obvious of their principles.

Mehta, Starmer, and Sugden (1994b) proposed a contrast between “secondary
salience” and “Schelling salience”. Following Lewis (1969, pp. 24-36), they
suggested that when players are not sure what to choose, they choose according to
“primary salience”, which is “some (possibly stochastic) process that brings one of
the labels to the player’s mind” (p. 660). Secondary salience is the belief about
what creates primary salience for others.

The primary-secondary distinction arises naturally in the SCH model estimated
below, although that model was developed to explain behavior in a much wider
range of games. In SCH the ’process that brings one of the labels to the player’s
mind’– its primary salience – is predicted ex ante from the SAM model. In the
Mehta, Starmer, and Sugden (1994b) paradigms primary salience is measured by
having people simple choose objects. Using SAM a primary salience prediction is
delivered for all images; no new data or free parameters are needed.

In contrast to primary and secondary salience, an object has Schelling salience if it is
unique or is chosen by a rule that leads to unambiguous results. A key distinction is
that Schelling salience need not arise from primary or secondary salience. Indeed,
Mehta, Starmer, and Sugden (1994b); Mehta, Starmer, and Sugden (1994a) find
evidence for both secondary and Schelling salience in their data, where primary
salience is calibrated by what people choose in a nonstrategic “pick one” condition.

Focality is likely to work differently in hider-seeker games (HS). In equilibrium,
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all agents should choose all locations equally often, regardless of whether they are
hiding or seeking. An early study Rubinstein, Tversky, and Heller (1997) (RTH)
used a four-choice hider-seeker game. Their canonical example is a choice between
four letters ordered from left-to-right, where one letter is a singleton subset, like so:

A B A A

RTHhypothesizes that the left and right A letters are avoided (because of “extremity-
aversion”; cf. Bar-Hillel (2015)). They hypothesize that the single B is clearly focal
because it is both visually and semantically unique; and it will therefore be avoided
by hiders. That leaves the second “interior” A from the right, which is least focal
when compared to other choices (and therefore uniquely non-focal, giving it an
ironic strategic focality).

In these early studies, extremity-aversion and B-focality are simply intuitions guided
by no data. On this basis, RTH predicted that the third A would be chosen most
often. Indeed, in their experiments the third A is chosen most frequently both by
hiders (40%) and seekers (45%). As a result, there is a “seeker advantage” because
the seekers winmore often than the prediction byNash equilibrium. Our replications
in Caltech and UCLA subjects found much lower rates of the choice of the third
“inner” A, around 29%, closer to the Nash 25% prediction.

Ruma Falk, Raphael Falk, and Ayton (2009) used visual games similar to the four-
letter choice. One game required choosing 3 cells out of the 25 locations in a 5x5
matrix. They observe an edge aversion and a seeker advantage.2

Our modelling builds upon Vincent P. Crawford and Iriberri (2007a) (hereafter CI),
who advanced a novel analysis of games like ABAA, based on level-k modeling.
They hypothesized that behavior could be consistent with a level-k approach, 3 in
which level-0 behavior is influenced by salience. Specifically, CI assumed that
level k type only best responded to level k-1 types, and that the population did not
contain any actual level zero types. Under this framework, they estimated both level
zero players’ preferences towards different options (saliency biases) and population
frequencies of level types. The general approach fits behavior well. Our paper

2Based on data reported in their paper, the seeking win rate in this experiment is 10.37% while
the chance level is only 6.25%, implying a seeker advantage of +4.12%. These numbers are rather
close to our own, about 7% and 9%, although the paradigms differ a lot.

3See Stahl II and Wilson (1994); Nagel (1995) and see Vincent P. Crawford, Costa-Gomes, and
Iriberri (2013) for a thorough review.
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expands on this approach by predicting saliency independently of choice, using no
new data, in location games.

Hargreaves Heap, Rojo-Arjona, and Sugden (2014) questioned the strength of the
CI conclusions on the grounds that the salience of the extreme A’s and the unique
B were estimated parametrically and not constrained across game structures. They
created choice sets with a single “oddity” that is visually or semantically unique
(e.g. a list of words which are all diseases except the word “fitness”.) They test
whether the oddity is equally salient for level 0 players in three types of games–
coordination (matching), discoordination (players win if they both choose something
different), and hider-seeker. They reject the hypothesis that level 0 salience is the
same across games. Vincent P Crawford (2014) comments on their paper. We find
better “portability” of salience across matching and hider-seeker games (see section
6).

2.3 The Saliency Attentive Model (SAM) algorithm
Algorithms which take images as inputs, and output predictions about where people
look, have been an active area of research since the 1990s. The goal of these
algorithms is to predict where neurotypical adult humans will look when they are
freely gazing at images.

These algorithms have made great strides. We used a recent algorithm, the Saliency
Attentive Model (SAM) to obtain a normalized saliency map for each image (Cornia
et al., 2016). The SAM algorithm is based on a machine learning method called a
convolutional long short-term memory network (LSTM). The network is trained on
the fourmost popular often-access saliency datasets (SALICON,MIT1003,MIT300,
CAT2000) and is trained to best predict actual human gaze patterns recorded from
eyetracking. The reported performance of SAM on the website MIT-Saliency is
0.88 using the AUC-Judd measure (Riche et al., 2013), where 1.0 is perfectly
accurate. This accuracy significantly surpasses earlier algorithms, and approaches
the accuracy of the best human-to-human benchmark4 (0.92).

The SAM algorithm takes one image as an input and outputs its predicted saliency
map. The saliency map is a saliency value from zero to one (least salient to most
salient) assigned to each pixel on an image. We adopted the default parameters from

4The best human benchmark indicates howmuch two large different sets of human fixation maps
correlate. Each set contains many different individuals. Thus, this limitation is due to individual
differences of their fixation patterns (Judd, Durand, and Torralba, 2012).
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the original approach and applied it to our image dataset. As a result, the saliency
predictions we are using to make predictions of location choices in games have no
free parameters. Figure 2.4 is a specific example of the SAM saliency map from
one of the pictures we used in our experiments.

A little history of saliency mapping may be useful here to convey how well-founded
these algorithms are (and to support further discussion below).

Inspired by a deep understanding of how the human visual system prioritizes atten-
tion, a series of progressively improving algorithms were developed to use visual
images as inputs, and output predictions about where people will look in the first
1-2 sec of processing (Itti, Koch, and Niebur, 1998; Harel, Koch, and Perona, 2007;
Judd, Ehinger, et al., 2009).

These early algorithms used a combination of handcrafted features to extract infor-
mation about contrast, color, and orientation. Dark-light contrast is special because
it marks boundaries between objects. Color and orientation are also thought to have
adaptive value in parsing images in ways that are ecologically useful.

These classes of features are called “bottom-up” because they are perceived rapidly,
and do not use any abstract information about the meaning or value of what is
perceived. “Top-down” perception, in contrast, depends on meaning, personal
knowledge and task goals (Frintrop, Rome, and Christensen, 2010).5

Consider the stick figure “I”. The bottom-up perception is a black vertical line of
a certain length, with slightly extended top and bottom horizontal lines on top of
the vertical line, surrounded by contrast with a white background. Primates, babies,
and adult humans all have the same rapid (< 500msec) perception of this stimulus.

Top-down perception adds meaning, making the perception more behaviorally use-
ful. An English speaker will perceive “I” as a marker of first-person communication;
a student just learning Roman numerals will perceive “I” as the number one; and
an architecture aficionado may perceive it as an Iconic column, a part of a building.
All the latter forms of salience use semantic knowledge – which is local, and accul-
turated – about the world to inform perception of what “I” means and what to do
with that information. Top-down perception of one object rather than another tends

5Likemany scientific dichotomies, it is hard to drawa sharp line between bottom-up and top-down
processes that guide attention (e.g., Awh, Belopolsky, and Theeuwes (2012)). The two processes
together can be thought of as a “family of filters” that have been adaptively shaped by forces ranging
almost continuously from evolutionarily-conserved universal principles to others locally tuned by
personal experience and valuation.
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to be influenced what which features are personally relevant, valued, familiar, and
novel.6

In psychology, attention-getting features that are salient are usefully divided into
two categories: Bottom-up and top-down. Bottom-up features are based on sensory
physical features such as color, contrast, and orientation. Bottom-up feature salience
is devoid of personal meaning and independent of task goals. To the extent that
humanvisual systemswork the sameway all around theworld, the attention-grabbing
salience of bottom-up features should be universal. As a result, attentional data from
many diverse subject pools can establish what is bottom-up.

The SAM algorithm we use was tuned using human free gaze data on a large
number of images, without any special goals or incentives. The subjects are just
told to look. These algorithms were not designed to predict active choices in
games with specific goals, such as matching and hider-seeker. The matching goal,
for instance, is to choose a location another person is also likely to choose. This
is a top-down influence on perception which is likely to produce visual fixations
that are different from free viewing. Thus, the extent to which SAM can predict
the influence of predicted salience is probably a lower bound on how well better
models, incorporating top-down goals, will do.

2.4 Experimental procedure
Subjects
N=151 subjects participated in total excluding the pilot dataset for power analysis.
Among these 151 subjects, N=29 subjects (13 males, 16 females) participated in a
lab, one at a time, in a small testing room. The other N=122 subjects participated
online through Amazon Mechanical Turk (“mTurk”). This study was pre-registered
on the Open Science Framework (https://osf.io/yuqjg/) during data collection and
before analysis process. The sample size was pre-determined before the data col-
lection process, based on a pilot study (N= 29) carried out in March 2017.

All N = 29 lab subjects had their gaze data recorded. N=15 subjects were from
the Caltech community and N=14 from the neighboring community (there were no
differences in results).

6See studies on the effects on perception of recent choice history (Awh, Belopolsky, and
Theeuwes, 2012), familiarity and novelty (Itti and Baldi, 2009), value for consumer goods (Towal,
Mormann, and Koch, 2013), and self-reported “meaning” (Henderson and Hayes, 2017).
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Figure 2.3: Examples of trial outcome.

Experiment designs
The experiment consisted of three blocks of games: matching, the hider-seeker
game as a seeker, and the hider-seeker game as a hider. The matching block always
came first, followed by the hide and seek blocks in an order randomized between
subjects. During each block (game), subjects experienced two sub-blocks. In the
“feedback” sub-block the choice the other player made was revealed right after
choice. In a “no feedback” sub-block the results were revealed. The matching
game consisted of 20 images for each sub-block and the hider-seeker game shared
the same set of 19 images for each sub-block. There was unlimited time to read
instructions and break but only 6s to make a choice for one trial. The results shown
in the feedback condition were drawn from previously tested actual subjects (using
different subjects for each image shown). Both feedback and no-feedback blocks
were included because each one answers a different interesting question. In ensuring
subject comprehension, and especially in testing equilibrium concepts and learning
theories, the standard practice is to provide feedback after each trial. However,
whether focality is influential even with no feedback about other players’ choices is
an interesting question too, as in Schelling’s thought experiment about the map.

There are some differences between the feedback and no-feedback conditions. The
largest is that the matching rate is much higher with feedback (64% vs. 35%).
However, the seeker win rate in hider-seeker games is the same in both conditions
(9%) and most other differences are not substantial. We therefore report only data
from the feedback condition in this main text. The corresponding no-feedback
results are in an Appendix.
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Figure 2.4: A saliency algorithm example.

(a): An original image. (b): The SAM saliency map, in which the brightness indicates salient level.
(the lightest point is the most salient spot). (c): The area of original image which is 75%most salient.
This area is generated from ranking all saliency values of each pixel. (d): the original image with
the saliency heatmap overlaid onto it (“warmer” red colors indicate higher saliency).

Two choices were considered a match if two circles centered at their choice spots
(with a radius of 108 pixels ,the circle is about 1/5 of the screen width) overlapped.
Figure 2.3 shows examples of result screens that subjects saw during the experiment.
The local group and online groups had the same experimental design.

Stimuli
Ninety-two (92) colored visual images were displayed on an eye tracking monitor
(1920x1080 resolution). Images were randomly selected from a large image pool
(273) with five categories (abstract art, city, faces, society, nature). The image
set contained both images with only one obvious saliency spot and more complex
images, which have multiple saliency centers (Judd, Ehinger, et al., 2009).

Either is hard for humans to identify any centers. In vision language, the former are
called “low entropy” images and the latter are “high entropy” images (examples are
shown in a later section). 7

7 Entropy is defined by −∑
? × ;>62?, where ? is the (0-1) normalized salience of each pixel,

and the summation is taken over all pixels on an image. Higher numbers indicate more concentration
of salience (entropy is minimized when all values of ? are equal). It can be used to characterize the
complexity of the image. E.g., a picture with some content on it has less entropy than a white blank
paper.
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2.5 Analysis and Results
Equilibrium analysis
Equilibrium analysis generates a statistical benchmark for what people might do8.
The structure of our games deviates from previous matching games, because loca-
tions in an x-y space are being chosen. Players click on a pixel, but their choice
circle is a 180-pixel circle around their chosen location (an area about the size of an
American nickel coin). Matching is defined by circle overlap.9

For a matching coordination game, choices by the players of any two different
pixels which create overlapping circles constitutes a pure strategy Nash equilibrium.
One image contains about two million (=1920×1080) pixels. Any match is a pure
equilibrium, so there are an enormous number of equilibria. In addition, there are
many mixed equilibria.

For the hider-seeker game, there is a unique Nash equilibrium in which all locations
are chosen equally often. A special design that, if a circle touches any boundary, it
wraps around from the opposite boundary, guarantees the equilibrium.10

The proof that equal randomization over all strategies is the unique hider-seeker
equilibrium essentially puts logic ahead of bio-logic. The last thing the brain
is equipped to do is to ignore differences among many objects and choose them
equally often. The human perceptual system evolved to efficiently filter a huge
amount of information hitting the retina, estimated to be 108 bits of information,
into only about 100 bits, by focusing attention on only most valuable information
—- the most salient locations. For the same reason that we are so good at quickly
noticing salient information, we are likely to be naturally bad at rapidly choosing

8An important mathematical touchstone is “correlated equilibria” (Aumann, 1974), when both
players received public signals and a strategy recommended conditional on different signals. A
correlated equilibrium occurs when nobody wants to deviate from recommended strategies. Stop
signs and green-yellow-red traffic lights, for example, act as correlating devices to create a commonly-
observed visual signal which coordinates traffic and reduces accidents. In these terms, our study is
about whether visual salience of image locations works as a correlating device.

9The size of the circle around the chosen pixel will influence random matching rates, increasing
and decreasing them for larger and smaller circles. This feature could be usefully varied in future
research.

10For those unfamiliar with game theory, intuition can be gained by a simplified example. Suppose
there are just two locations and the hider chooses them with probabilities p and 1-p. If the seeker
matches those probabilities, she has a ?2 + (1 − ?)2 chance of winning. This sum is always lower
if the seeker chooses the most likely spot (i.e., the location with ? > 0.5) because if ? > 0.5, then
? > ?2 + (1 − ?)2. To defend against this, the hider should mix equally, so ? = 0.5. Every new
location that is added should also have a 1

=
chance of being chosen (if there are n locations) by an

iterated logic.
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Figure 2.5: Matching game image, saliency heatmap, and choices (red).

(Left column) Two original images. (Middle column) The original images overlaid by the saliency
maps.(Right column) The grayscale original image overlaid with the actual empirical choice distri-
butions (more red indicates more frequent choice of an area).

what is unsalient.11.

Matching game
To analyze the behavioral data, we first test whether subjects are playing an equal
randommixture across all pixels (and associated saliency levels). To compare results
from different images, all saliency values in this section refer to the normalized
levels, which are the rank percentiles of raw measures from the algorithm, ranked
within each image. We calculated the normalized saliency value for each click point
(the choice saliency level) and then compared these values against the baseline of
equal randomization independent of salience. Kolmogorov-Smirnov tests reject the
hypothesis of randomness for all treatment conditions (? < 10−4).

To get a direct view of how salience affects choices, we plot the choices from all the
subjects on two different specific images, shown in figure 2.5.

The saliency heat map (middle column) uses color heatmap to show more salient
locations from the SAM algorithm. The right column shows, in redscales, frequen-
cies of subjects’ location choices. The predicted saliency in the middle column and

11A similar conflict between logic and biology occurs in the games “rock, paper, scissors” and
matching pennies (e.g., Vincent P. Crawford, Costa-Gomes, and Iriberri (2013)). When players
display the three choices with their hands, there is a slight tendency to match an opponent’s choice
(e.g., playing rock against rock) more often than predicted in equilibrium. The explanation is that
imitation of another person’s body movements is such a highly-adapted automatic behavior, that the
brain cannot inhibit the response, even though it reduces performance (e.g., you should play paper
rather than imitating rock).
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the observed choice maps in the right column are highly overlapping.

Statistically, the mean of the saliency levels of actual points chosen in the coordina-
tion game is 0.87, which is far beyond chance level 0.5 (? < 10−4).

How predictable is the matching rate across images?
An intuitive hypothesis is that the matching rate in an image should be affected by
how spread out saliency is in the image. (This prediction also comes structurally
from the SCH model described below). When saliency is highly concentrated, then
the rate of choosing the same pixels, and thus the matching rate, should increase if
people are trying to match. And if there are many salient locations, matching should
be lower.

For example, most people should prefer to play the matching game on a white paper
with only one star in the center (a single peak of the 2D saliency distribution) instead
of a white paper with four identical stars (four peaks of saliency) in four corners.

Figure 2.6 shows that indeed, the matching rate is negatively correlated with the
number of saliency centers (Pearson A = −0.45, ? = 10−4).

The actual and predicted matching rates span almost the entire range from perfect
matching (100%) to random (7%). These results suggest that for any image at all,
the matching rate can be predicted with substantial accuracy. Put the other way
around, it should not be difficult to find images with saliency distributions that will
predictably yield either near-perfect matching or random matching.

Hider-seeker games
For the hider-seeker game, we also present a result of an example image (Figure
2.7) using the same display format as in Figure 2.5. Figures 2.7 show that subjects’
choices (c and d) are much more spread out in both hiding and seeking than in the
matching game where saliency and choice strongly overlapped.

In Figure 2.7d, the peak of the hider choice distribution no longer falls in the most
salient area. However, in this example Figure 2.7d hiding game, the most salient
locations are still chosen frequently by hiders (suggesting that, in this example,
hiders are not being very strategic).

The general statistics are consistent with the direction of effects in these two ex-
amples. In the hiding game, the mean saliency level of user click points is 0.53,
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Figure 2.6: Correlation across images betweenmatching rate and number of saliency
centers.

(a), (c) are saliency maps of two images. (a) is an example of image with many saliency centers
(c) has only one saliency center. (b,d) are corresponding maps (red dots) of actual choice data in
a matching game. The choice map in (b) is more dispersed because the saliency centers in (a) are
more numerous. (e) is the correlation between the number of saliency centers and the matching rate.

close to chance level.12 The mean saliency level in the seeking game is 0.61.13A
replication sample (# = 29) with payoffs ten times higher had very similar results,
0.51 and 0.64 for hiders and seekers, respectively.14 A paired t-test showed that
this difference in choice saliency between hiders and seekers is highly significant
(? < 10−4), reflecting what is seen in figure 2.7. The no-feedback results have a
similar difference (see Appendix 2.A).

12 p-value = 0.02, t-test CI: [0.51, 0.56]
13mean = 0.61, p-value< 10−4

14Hiding: p-value for test against null of .50 saliency = 0.59, CI: [0.48,0.54], seeking: p-value
< 10−4
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Figure 2.7: Hider-seeker game image, saliency, and choice.

(a): The original image. (b): The original image overlaid by the saliency map. (c,d): The grayscale
original image overlaid with the actual empirical choice distributions (more red indicates more
frequent choice of an area). c is for seekers’ choices and d is for hiders’ choices.

Seeker’s advantage
In this section, we report the realized matching rate and compare it to the chance
outcome. The theoretical value for two circles to match from two random players is
four times the area (distance within a larger circle of two times the diameter of the
original circle) of the circle used in the experiment over the entire area (1920×1080).
That frequency is 0.071.

Table 2.1 presents the realized matching probability in a specific game condition15.

To check robustness of these results, we also did the hider-seeker game online in a
high-payoff condition with payments 10x as large (N=29) and in a between-subjects
condition where subjects played only one role (N=53). In both conditions, we got
the same seeker win rate of 0.09, exactly as in the main experiment.

The 9% win-rate for seekers does not seem much larger than the equilibrium pre-
15 Tests to compare the matching rates with random baseline were carried out by bootstrapping

a hiding data and a different person’s seeking data (or two data points from matching game) for
1000 batches (batch size is total number of different pairs). We get the empirical distribution for the
matching rate and statistical significance against baseline 0.071 from that bootstrap. Specifically,
each sample is drawn by matching two random users (different ones). The batch seeking win rate is
calculated accordingly. All values were calculated from the average of 500 iterations of randomly
matching two data points from the data set if two subjects were in the same sub-block, same image.
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Matching rate N of observations
Nash mixed prediction 0.071

Matching game 0.64(4*10−4) 1147
Hider-seeker game 0.09(3*10−4) 1090

Hider-seeker high payoff 0.09(6*10−4) 462

Table 2.1: Realized matching rate

Statistical tests against the null hypothesis that the seeker win rate is the baseline level and choices are
independently and identically distributed across subjects (which is the Nash benchmark prediction).

diction of 7%. However, in the null hypothesis of Nash equilibrium, this win rate
should be identically distributed for all images and for all people. This null hypoth-
esis supplies a lot of statistical power because it justifies pooling all observations
together. So when independence is assumed, the test has enough power to establish
that 9% is significantly higher than 7%. A more conservative approach averages
all data within an image and tests whether the image-wise matching rates are above
7% (N=19, p= 0.0005). A different conservative approach averages win rates for
individuals and tests whether the average individual seeker win rate is different than
Nash (# = 29, p= 0.002).

2.6 A Saliency-perturbed Cognitive Hierarchy Model (SCH)
This section describes a parametric behavioral model meant to explain choices and
their salience-sensitivity, following Crawford and Iriberri (2007a). It uses the level-
k model of Stahl and Wilson (1994) and Nagel (1995), later extended by C. F.
Camerer, T. Ho, and Chong (2004).

The model combines cognitive hierarchy levels, a quantal response function (soft-
max), and a saliency-perturbed level 0 assumption.

General Model description
The population consists of different levels of players starting from level zero and
with level k players with frequency f(:) (assuming to be Poisson distributed with
parameter g).

For all levels of players, we allow some degree of randomness which will be de-
scribed using a conventional logit softmax function 4_G=∑

< 4
_G<

with parameter _. When
_ equals zero, agents choose pure randomly without any response to differences in
valuation. When _ approaches infinity, agents choose the best option.
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In this SCH specification, the nonstrategic level zero players weakly prefer salient
choices. Preference is incorporated by higher subjective value assigned to saliency
of choices. Formally, the probability of choosing point n depends on the direct
saliency value16 (= according to

%0= =
4_(1+`(=)∑
< 4

_(1+`(<)

Note that if ` = 0, level 0 types choose randomly among all points. We assume that
_ and saliency weight ` are common across subjects, although many heterogeneous
versions are conceivable (e.g., Rogers, Palfrey, and C. F. Camerer (2009)).

Other than level zero players, all other levels of players behave in the same way as
in CHC. Level k players assume that all other players are only of lower levels (0
to : − 1), using normalized Poisson frequencies 5 (:). A level k player calculates
the expected payoffs of choosing =, denoted as �*:=. The probability for player 8
choosing option = is

%:= =
4_�*:=∑
< 4

_�*:<

Note that saliency only enters directly into the value calculations of level 0 players.
The challenge is to see whether saliency which only directly influences the lowest-
level 0 players then has an amplified effect on higher-level thinkers, through their
beliefs and choices (a laMehta, Starmer, and Sugden (1994a)), “secondary salience”
derived from primary salience).

Model fitting results
Besides the SCH above, there are many other ways to specify models of limited
strategic thinking, which have been mixed and matched in previous research. We
therefore fit six different model specifications to the hider-seeker data (see Appendix
A3).

A simple mixture of Nash play and level 0 fits the least well, but is not bad; it seems
that a lot of what is happening in the hider-seeker data is level 0 salience.17

16We will use the direct saliency measure from the algorithm (raw value) for the modeling input
instead of normalized ones (saliency ranks). The difference is that saliency ranks are distributed
linearly among points while the raw value is distributed closer to an exponential distribution. In
the Q-Q plot, normalized values makes the results comparable with chance diagonal line since rank
value is linearly distributed.

17Note that level 0 plus Nash is a non-starter for matching games since Nash predicts all pixel
choices are equilibria.
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- - - Hider Seeker
Best fit parameters _ = 100 ` = 0.06 gℎ = 0.4 gB = 0.1
Number of observations 1096 1090
95% CI [72.3,100] [0.05,0.08] [0.32,0.47] [0.08,0.13]

Table 2.2: Estimation details, role-specific SCH

The parameters ` and _ are constrained to be the same for both hiders and seekers. The confidence
interval in the table is calculated using bootstrap method with batch size 1096 for hider, 1090 for
seeker and number of iterations 100.

Some specifications restrict the frequency of actual level 0 types to be zero, 5 (0) = 0,
as if level 0 players are a figment of the imagination of higher-level types (though
see Wright and Leyton-Brown (2019)). Restricting 5 (0) = 0 clearly degrades fit
(Table A2). We therefore focus only on 5 (0) > 0.

A close relative of SCH is the “Level k” model, which conventionally refers to
level k types believing all others are level k-1 (rather than distributed from 0 to k-1)
(Vincent P. Crawford and Iriberri, 2007a; Vincent P. Crawford and Iriberri, 2007b).
This is usually estimated non-parametrically, allowing all frequencies 5 (:) (up to
some maximum k) to be estimated separately.

Both SCH and Level k specifications with role-specific level frequencies fit equally
well by the AIC criterion (although SCH is a little better by BIC).

We first focus on the best specification of SCH. It has four free parameters– `, _, and
two role-specific parameters gB, and gℎ. (Allowing role-specific _ and ` parameters
is fits worse due to the large BIC penalty for extra parameters.)

We used a standard training-testing separation to avoid over-fitting. Recall that each
subject does two sessions.18 We use the first session as a training set to estimate
parameters. The parameter values are then fixed and used to predict the choices in
the second session test set (see Appendix). The best fitted parameters and measures
of fit are shown in Table 2.2.

Figure 2.8 shows the comparison between actual choice density maps versus model
predicted density maps for the hider-seeker game. Training data are shown in the
top Figures 2.8ab and test data on the bottom Figures 2.8cd. In the choice data
plot, there is a sharp density increase starting around 0.9 saliency for both games
(although note that the y-axes are different, so the increase is not the samemagnitude

18Two sessions contain different image sets. A first session of normal payment trials and a second
session of high payment trials.
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Figure 2.8: Frequency of choice by saliency level with model fitted distributions.

The x-axis is the saliency values of all click points. Each point on a graph indicated what percentage
of choices were made for locations within images based on the saliency of those locations. a: choice
data and model prediction in the training dataset seeking condition. b: choice data and model
prediction in the training dataset hiding condition. c: choice data and model prediction in the testing
dataset seeking condition. d: choice data andmodel prediction in the testing dataset hiding condition.

for both hiders and seekers). There is also a smaller trend of decreasing choice from
the lowest saliency to 0.9 saliency level for hiders (but not for seekers), reflecting
the fact that some hiders choose low-salience locations. SCH can roughly fit these
two major features of the data.

The best-fit values of g, 0.4 and 0.1 for hiders and seekers, are much lower than
typical estimates (e.g. Camerer, Ho and Chong, 2004): around g =1.5. (See also
Riche et al. (2013), although Fudenberg and Liang (2018) find minimal prediction
error in a large interval (0, 1.25).)

We think the low values of g estimated in our data for SCH results from the fact that
the ability to identify g is limited in these visual choice games. A much better way
to identify g is with games where different level types choose distinct strategies in
a way that is carefully designed to separate them (such as matrix games pioneered
by Stahl II and Wilson (1994), also see Nagel (1995); T.-H. Ho, C. Camerer, and
Weigelt (1998); Costa-Gomes and Vincent P. Crawford (2006); Kneeland (2015);
Fragiadiakis, Kovaliukaite, and Arjona (2017)).

As Figure 2.8 shows, in hider-seeker games the data are close to a random mixture
across low saliency levels and a spike at saliency above .90. This can be approxi-
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mated rather well by level 0’s who exhibit a slight bias toward saliency, and a small
percentage of level 1 seekerswho approximately best-respond to the highest-saliency
location.

The Level-k model can lend some insight here about level frequencies. Compared to
SCH, the best Level-k specification estimates lower frequencies of level 0 ( ˆ5B (0) =
.17 and ˆ5ℎ (0) = .29 for seekers and hiders) and a higher salience weight <̂D = .18
for those level 0 types. Level-k also estimates larger frequencies of level 2 and 3
types ( ˆ5B44:4A (3) = .66, ˆ5ℎ834A (2) = .61). While the overall Level-k fit is just a
little less accurate than SCH, this type distribution is more reasonable than the SCH
estimates (see Appendix, Level-k Model 6 training–testing comparison for Level-k
visual comparison to 2.8 above; the graphs look almost identical). Furthermore,
it is clear that a single-peaked SCH with Poisson 5 (:) cannot approximate the
best-fit Level-k distribution frequencies, which are substantial for both level 0 and
higher levels. So while it is clear that both specifications fit the saliency-choice
profiles adequately (as seen in the Figures), they suggest different evidence of level
frequencies. Future research could surely develop better methods, and games in
which to more precisely estimate the 5 (:) frequencies.

Based on the best-fit saliency weight value ` (0.06), the perturbation towards
saliency is not that large. It only changes the probability of choosing in the top
5% salient area to 0.14 from the even chance level 0.05 (as blue curves show in
Figure 2.9). Though the hiders and the seekers share the same level zero strategy
(by assumption), the strategies of higher levels (: ≥ 1) are affected in different
ways: hiders prefer unsalient places while seekers choose the most salient locations
more often. Such mixed choice distributions of both level zero and higher-level
players are able to explain the trend differences in Figure 2.8 —the seekers’ aggre-
gated choice distribution is monotonically increasing in saliency while the hiders’
aggregated choice distribution first has a small decrease, then has a sharp increase
at the maximal saliency.

Cross-game predictive validation
To further test generalizability of SCH, parameters estimated from fitting the SCH
model to hider-seeker data are next used to predict choice behavior in the matching
game. There is no guarantee that this cross-game portability will work well. Identi-
fication of the saliency weight ` in hider-seeker comes from the level 0’s and from
a small portion who sometimes try to match the level 0 opponents and sometimes
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Figure 2.9: Level-specific model predicted choice distribution.

The blue curves on both figures correspond to level zero strategies. In the seeker’s case (a), players
at level 1 and above highly prefer salient locations. In the larger graph, all levels 1-4 are plotted as
green. The inset graph shows there is some variation in sensitivity of level 1 types and above, which
can only be seen with a finer-grained y-axis of density. In the hider case (b), level 0 players choose
strategies with increase with salience, and all higher-level types choose less salient locations more
often.

mismatch. In the matching games, all higher-level types are similarly guided by
salience since they are all trying to match the lower-level types. The strength of
salience-sensitivity that is estimated in the two cases could easily be different (which
is precisely the point of Hargreaves Heap, Rojo-Arjona, and Sugden (2014)).

Figure 2.10 shows the comparison between the experimental data distribution from
matching games and model-prediction distributions. The left panel fits hider-seeker
data and predict matching data out-of-game. It underpredicts frequency at the
highest saliency level. The left panel fits matching data within-game (and will
always predict better than between-game). The best-fit ĝ = .87. Deriving data from
a different hider-seekr game is not dramatically less accurate than using the same
matching game.19

2.7 Quantal response equilibrium on saliency
One possible explanation for the saliency bias is that people make mistakes around
equilibrium strategies. Such hypothesis can be modeled using a quantal response
equilibrium (Palfrey, 2016) with saliency perturbation. Vincent P. Crawford and
Iriberri (2007a) has a similar session (section 2) about it and they refer to this model
as “equilibrium with payoff perturbations". We will solve for the QRE condition
with saliency perturbation in this section and show how QRE can lead to a hider’s

19We did not do the opposite analysis, predicting hider-seeker from matching, because matching
is poorly suited to estimating different levels.
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Figure 2.10: The SCH model calibrated on hider-seeker game data can predict
matching game choices.

The comparison between the matching data distribution and the fitted matching game distribution.
(a) Parameter estimates from the hider-seeker game are used to predict matching game results. log-
likelihood: -2176 (b) Parameter estimates from the matching game are used to predict matching
game results.. log-likelihood: -1943

advantage.

We make the same assumption as in the SCHmodel part that each agent has a payoff
function for choosing point n in the game:

D= = " + `(=

M is the general payoff coming from the game result and `(= is the saliency
perturbation part. Recall that (= is the saliency level for point(choice) n.

We denote %B= for the probability of choosing n-th point as a seeker and correspond-
ingly, %ℎ= for hider. With the saliency perturbed payoff structure we just mentioned,
we can solve for the quantal response equilibrium condition for strategy %∗B= and %∗ℎ=
(detailed procedures see Appendix 2.D):

?∗B= =
4
_(f?∗

ℎ=
+`(=)∑

4
_(f?∗

ℎ<
+`(<)

?∗
ℎ=
= 4_(1−?

∗
B=+`(=)∑

4_(1−?
∗
B<+`(<)

(2.1)

f measures the payoff premium: f = "B
"ℎ

.20

It will be hard, almost impossible to solve out analytical solutions for %∗B= and %∗ℎ=.
And most importantly, it is not that necessary and I will explain why in a minute.

20For a hider-seeker game with large search space, usually the seeker needs to have a larger payoff
in reality because the chance of successful seeking is small.
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Instead of analytically solve the QRE, we can first see how the strategies will change
when saliency changes. The result after solving the first order derivative indicates
that:

• Seekers always prefer more salient options. Seekers’ strategy will be mono-
tonically increasing as saliency level increases for any parameters.

• Hiders’ strategies depend on _. When _ is smaller than a cut-off threshold,
hiders also prefer saliency that the probability distribution over all actions
monotonically increases as saliency increases. When _ is larger than the
cut-off, the probability distribution of the hider’s strategy over all actions
monotonically decreases as saliency increases.

Figure 2.11 showed the simulation result of QRE strategies for a given set of
parameters. The simulation result coincides with what we just analyzed from taking
the derivatives that when _ is small, both roles will prefer saliency, and when _ is
large, only hider role becomes anti-saliency.

QRE further predicts that seekers’ advantage happens only when _ is small, which
also means subjects are more randomly choosing than trying to win the game. If
they want to win the game and play equilibrium strategies, we should have observed
a hider’s advantage but we never did.

So is the seeker’s advantage that we observed due to small _? The answer will be
no. Recall the realized strategy we plot on figure 2.8 where hider’s strategy has a
u-shaped property that it first decreases and then sharply increases.

Though the equilibrium solution does not fit our data, it points out a possibility
and condition for hider’s advantage to happen. This result might be useful in other
domains.

2.8 Another two applications of SAM in economics
This section gives out two common applications using SAM in economics. The
purpose is to show that SAM bottom-up visual salience is not limited only to the
task we specifically designed. Two quite different studies are described: One is the
traditionalmatrix game task; The second is an application to investment experiments,
using a combination of actual stock returns and artificial return sequences (Bose
et al., 2020).
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Figure 2.11: QRE prediction of choice saliency map.

The simulation results show how the QRE strategy distributions on saliency domain. The upper
figure showed the case when _ < 4.9 and the lower figure showed the case when _ > 4.9.

Our application of visual saliency to game theorywasmotivated by the long-standing
interest in focality as a selection principle predicting what happens in coordination
games, and using saliency to anchor level-0 behavior to potentially explain the
common seeker’s advantage in hider-seeker games.

Visual saliency in normal form games
Normal-form games written in matrix format are widely used to study experimental
game theory. Several studies have used eye tracking techniques intended to see what
we could learn from gaze data in order to further understand the behavior. Little
is known about what drives the attention allocation in such typical experimental
environments and how different structures of matrix games will affect saliency.

Our visual location game experiments are unusual. Most game theory experiments,
following visual conventions in textbook game theory, use normal-form games in
a matrix format. To establish boundaries of where visual salience is more useful
and it is not, it is useful to ask whether SAM saliency helps explain choices in this
widespread visual game format.

Note that the SAM training set does not have any images which even remotely
resemble matrices of payoffs. The subjects in matrix game experiments have a clear
top-down attentional goal, which is to look at numbers displayed in the visual image
in order to make a high-payoff choice. So it would not be surprising if bottom-up
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SAM saliency had no predictive power.

To test for possible influence of visual salience, we were lucky to receive data and
help fromPolonio, DiGuida, andCoricelli (2015). In their experiment, N=56 people
played 32 normal-form games with different strategic structures.21 Eye-tracking was
used to record visual attention. We can compare those actual gaze maps with the
SAM predictions.22 Figure 2.12 shows an example and summary statistics. Figure

Figure 2.12: Saliency and choices in matrix games.

(a) One (Prison Dilemma) of among all the games used in the experiment. (b) average SAM
prediction of all games. (c) Ground truth gaze density map generated by gaze data. (d) Percentage
of choices choosing the salient strategy grouped by levels.

2.12a shows one example of the kind of matrix subjects see on their computer (it is
a prisoners’ dilemma in structure). Row player payoffs are in the lower left of each
matrix cell, and column player payoffs are in the upper right of each matrix cell.

Figure 2.12b is the average prediction of where people look from the SAM algorithm
over all 32 games. There is an obvious top>bottom bias, a bias toward looking at
the top row, and a row-player payoff bias. Figure 2.12c is the average measured
attention map calculated from gaze data over different types of games (filtering out
gazes which are away from payoffs). The comparison between Figures 2.12b-c
suggest that the algorithm predicts the actual attention allocation during game plays
rather well; this visual impression is supported by conventional statistics used to

21Dominant Solvable Self (DSS), Dominant Solvable Other (DSO), Prisoner’s Dilemma (PD),
and Stag Hunt (SH)

22See appendix X for more details.
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associate prediction and actual attention in visual science.23 Much to our surprise,
the actual gaze data are quite similar for row players, who choose rows, and column
players, who see the same matrix but choose columns. (We quadruple-checked this
result.)

The next question is whether bottom-up visual attention, measured by SAM but also
highly correlated with recorded eyetracking, influences choices. To test for such
an effect on choice, we look at the 24 games which contain a unique equilibrium
(an equilibrium row or column). Figure 2.12d presents the different percentage
of choices playing equilibrium strategies conditioning on whether the equilibrium
strategy is in a more salient location or not. There are three groups of subjects,
as grouped by different strategic levels of thinking (based on a sophisticated se-
quential classification procedure) in the original paper by Polonio, Di Guida, and
Coricelli (2015). When the equilibrium choices are in a more salient location, low
level players (level 0 and 1) play it more often (p-value = 0.065 for a two-sided test
and 0.032 for a one-sided test), while higher level players are not as affected, and
play the salience choice a little less often (p-value = 0.57).

2.9 Visual saliency in investment experiments
The last application of visual SAM salience we will describe is in investment
experiments (Bose et al., 2020). In their main experiments, participants see many
different one-year time series of daily stock prices. For each time series, they decide
what proportion of an endowment to invest to earn a return in the next year, after the
historical year they have seen. Interested readers can refer to their working paper.
Only basic findings are described and illustrated here, for the simpler purpose of
understanding whether SAM visual saliency is potentially useful in this different
domain of decisions than the location and matrix games described above.

The leftmost figures 2.13 show heatmaps of the density of actual gazes, from N=57
human participants, which were recorded using eyetracking. The corresponding
rightmost figures are the time series of actual prices.24 Blue-to-red heatmap colors
show the SAM predictions of where visual attention will be. (Keep in mind that, as

23Twovalidation scores, AUCandCC are commonly usedmetrics to evaluate how closely saliency
algorithm predictions are correlated with actual human gaze in the computer vision field. AUC: area
under the receiver operating characteristics curve and CC: Pearson Correlation (see Kummerer,
Wallis, and Bethge (2018). The Appendix Table 2.3 shows these statistics.

24The eyetracking experiments used a temporally-coarsened series of 60 returns rather than around
250 daily returns, because of the limited spatial resolution of eyetracking. This experiment is just to
see how well SAM and eyetracking are correlated, if at all.
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AUC CC
SAM domain neutral 0.87 0.78

SAM vs fixations(games) 0.96 0.47
SAM vs fixations(price path) 0.81 0.52

Chance level 0.5 0
Range (0,1) (0,1)

Table 2.3: AUC measure for SAM on matrix game

The table reports two common evaluation metrics on SAM algorithm, area under the receiver
operating characteristics(AUC) and Pearson Correlation Coefficient (CC)(Kummerer, Wallis, and
Bethge, 2018). We compare SAM’s performance on the domain-neutral images it was trained on
against SAM’s performance against human eye-fixations for matrix games. The results on both
metrics show that SAM predict human fixations far better than chance. Furthermore, AUC reaches
a better performance than that tested on neutral images. We think it is due to two reasons: simple
image sets and de-noise procedures of the data set.

with all our analyses so far, the SAM predictions are taken directly from implemen-
tation of the Cornia et al. (2016) algorithm; there are no extra free parameters.)

In the two examples, salience predicted by SAM appears to be substantially corre-
lated with actual eyetracking gaze density. The pixel-by-pixel Pearson correlation
averaged across all time series has an average of .52 (compared to the original SAM-
groundtruth correlation which is .78), see summaries in Table 2.3. Participants are
often looking where the SAM algorithm predicts they will look.

But looking is not choosing. One can intuitively think of visual perception as
necessary, but not sufficient, as a basis for choice. To see whether salience seems to
influence choice, the authors compute weights for price-to-price percentage returns
based on salience of adjacent prices. These saliency weights are then used to
compute a saliency-weighted expected return. For example, in Figure 2.13(b), the
SAM salience is highest in the center of the price time series, where there is a big
positive return. If salience is guiding value perception, this stock will have a high
saliency-weighted expected return and– if influenced by salience– participants will
invest heavily in it.

Indeed, there is a substantial correlation between saliency-weighted returns and
investment in three experiments. These correlations are above and beyond control
variables which include the typical moments of historical returns (mean, standard
deviation, and skewness) that also strongly influence investment decisions.
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(a) Eye-Tracking Heatmap. (b) SAM prediction

(c) Eye-Tracking Heatmap (d) SAM prediction
The figure shows two examples of the groundtruth density maps from our experiment on the left,
and the SAM-predicted heatmaps where we also show the underlying price paths participants

looked at on the right.

Figure 2.13: Heatmaps of price path.
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It is sensible to ask whether visual salience corresponds to particular micro-features
of the stock price time series, such as large “jumps”, short periods of rapid up-and-
down negative autocorrelation (generating high visual contrast), primacy or recency
of early or later returns, etc. The authors find that about 20% of the variance in
saliency values can be explained by such statistics. Saliency – trained on free gaze
of a large corpus of images (none of which are stock price charts – is responding to
some of these statistics, but most of saliency is explained by something else.

2.10 Conclusion and discussion
In our two-player games, players choose locations in images to coordinate (match)
or compete (hider-seeker). An algorithm from visual neuroscience (SAM) was used
to predict saliency independent of choices. SAM specifies salience precisely with
no free parameters for any image. Its generality, and accuracy, means we can skip
the common design step of starting simple by using displays like object sets in which
saliency is carefully controlled. The method can be immediately applied to more
complex images such as Schelling’s map and Kenyan bracelets signaling virtuous
deworming. It is a use case of how neuroscience of vision might help answer
questions of long-standing interest in an important area of economics, namely game
theory.

Applying the SAM algorithm solves three problems. First, it predicts with sub-
stantial accuracy how often people actually match on different images. Second,
when predicted salience is embedded in a cognitive hierarchy or level-k model, the
model generates a seeker’s advantage. Salience strength estimated from hider-seeker
games can also “portably” predict choices in matching games which have a different
structure. Third, using eyetracking data and salience, an HMM predicts numerically
what is likely to happen under time pressure. The predicted seeker win rate under
2s pressure is 14%, which is not too far from the observed win rate with feedback
(15%), and is higher than the 6s win rate of 9%.

Salience in psychology and economics
Our analysis used visual salience in location-choice games. This type of rapid
bottom-up visual salience is well-understood. But salience, particularly as it is
likely to be important in economics, is more general than that. This brief discussion
introduces important properties of salience, as understood in cognitive neuroscience,
that could be useful for thinking about how salience is used in economics.
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We first note that salience in economics sometimes refers to immediate, bottom-up
perception which is likely to be predicted accurately by an algorithm like SAM. For
example, there are increased grocery sales of items that are placed at eye level in a
store (Dreze, Hoch, and Purk, 1994). Positions on lists and ballot order (in voting)
favor items at the top (e.g. Abaluck and Adams (2017); D. E. Ho and Imai (2006)).

Digging deeper, neuroscientists seek to understand a biological activity, such as
salience, at three levels: What is the activity for, functionally (Why?); How does it
work algorithmically (What?); and How is it implemented biologically in flesh and
blood (How?).

What salience is for is clear: Its functional adaptive purpose is to sift through an
enormous amount of incoming environmental information to pick out what is most
useful. In rapid visual attention, the human retina takes in 108 bits of information,
ignores almost all of it, and retains just the barest gist such as outlines of objects
(100 bits).

The fact that the function of salience is prioritization of valuable information should
be appealing to economists. It is also how many modern attention scientists think.

For example, Gottlieb (2012) distinguishes salience for the three different purposes
of action, learning, and liking. To illustrate, suppose stimulus features are numeri-
cally encoded by their low and high potential reward value. Then salience for action,
for example, will direct attention quickly to the highest and lowest value features,
because those are the features that are most valuable for a person’s action– knowing
where to seek reward and where to avoid low reward.

Salience for action roughly matches the hypothesis of “extremity salience” of Bor-
dalo, Gennaioli, and Shleifer (2012). They hypothesized that salience is extra
attention given to the most extreme values in a feature comparison, such as the
highest and lowest prices relative to a reference price (with further restrictions on
salience functions, which are psychophysically well-established, to produce sharper
predictions).

Many of the features BGS propose to be extremity-salient are features that nat-
urally map onto the high-low reward variable that Gottlieb’s framework rests
on. Extremity-salient features include asset payoffs, attributes of goods such as
price and quality, and high and low risky outcomes (cf. Bordalo, Gennaioli, and
Shleifer (2012); Bordalo, Gennaioli, and Shleifer (2013b); Bordalo, Gennaioli, and
Shleifer (2013a)). The BGS formulation therefore fits with Gottlieb’s proposal about
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how salience guides action (though salience has other purposes).25

The BGS specification encodes salience for decision. The two other function of
salience are for learning, which prioritizes uncertainly-rewarding novel features, and
for liking, which prioritizes known valued features. These could be also included in
portable models like BGS is when there is a phenomenon that might be explained
by doing so (such as demand for new consumer products).

A different, and prominent, use of salience in economics is that price and value
components that are presented to sensory systems, such as explicit price tags the eye
can see, receive more decision weight than components that need to be imagined and
computed. Beginning in marketing 40 years ago (Russo 1977), many studies have
found that unit costs, taxes, shipping costs, and car tolls are given more weight in
decision making when they are explicitly presented (Ott and Andrus, 2000; Hossain
and Morgan, 2006; Min Kim and Kachersky, 2006; Finkelstein, 2009; Taubinsky
and Rees-Jones, 2017). No fancy psychology is needed here. Recognition is easier
than recall. Sensory attention is ‘better’ than memory: it is mentally cheaper, faster,
and more accurate.

What’s next?
Attention researchers in cognitive neuroscience know a lot about how attention and
salience work (particularly at short time scales). Economists do not know as much
aboutmechanistic details, but have become interested in salience and attention. Their
usage of the term salience is almost always referring to hidden (and unmeasured)
variation in likely salience inferred from observable choices (e.g. Gabaix (2017)).

This reduced-form approach is a big step and has already proved fruitful. However,
a better understanding of attentional mechanisms is likely to be useful to understand
differences in inferred attention. For example, a clever experimental tax variation
study (Taubinsky and Rees-Jones, 2017) estimated that inferred attention to undis-
played taxes was only 25% of the actual tax rate. Chetty, Looney, and Kroft (2009)
estimated the same parameter as 35% for groceries in an experiment and 6% for
alcohol in field data. These estimates and others in Gabaix (2018, Table 1) vary a
lot.

Some variation in these revealed-attention estimates is due to differences in esti-
25Kőszegi and Szeidl (2012) hypothesize a similar effect, that choice attributes with higher utility

variation will get larger “focus” weight. We do not know whether there is a counterpart to this
hypothesis in attention science.
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mation methods, data, statistical power, and so on. But some of that variation also
could be due to differences in how attention is actually deployed. More knowledge
of how attention actually works could then help us understand variation in estimates
and make better cross-domain predictions. Better attentional knowledge and models
will also predict new causal effects, such as how much exogeneous capture of atten-
tion influences choices and what effect time pressure has (as shown by our HMM
results).
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APPENDIX

2.A Results from no-feedback trials
The realized matching rate when there is no feedback result shown throughout the
experiment is as follows:

Figure 2.A.2 below is a quantile to quantile plot, plotting the percentage rank of
saliency for each location against the percentage rank of choice frequencies for those
locations. To get the Q-Q plot, we first mapped all users’ choice data (not only click
points, but all points which fell into the circle) onto a one-dimensional saliency
value, normalized from zero to one. (The highest saliency point in each entire
image is one, and the lowest is zero). Then we ranked all these realized saliency
values for all choices in the targeted sub-block. We also transformed the rank of
the choice frequencies across all subjects into rank percentages. We plotted the
normalized saliency value, which was also the percentage of saliency, against the
percentage of points chosen with the same saliency ranking. The Q-Q plot below
shows that all quantiles of choice data are above the same quantiles of saliency level,
and hence above the diagonal dashed line that would result if people were choosing
independently of saliency.

Figure2.A.1 presents both Q-Q plots and density maps in the hiders-seeker game.
Figures 2.A.1 a-b indicate that seekers’ choices are more biased towards salient
locations than hiders’ choices are, and both are much less saliency-biased than in
the matching games (recall Figure 2.A.2). Keep in mind, however, that the hiders
should be choosing locations as low in salience as they can perceive (i.e., a best-
response Q-Q curve would be underneath the 45-degree identity line).

The density maps in Figures 2.A.1 c-d take every location in every game, and assign

No feedback Number of observations
Nash mixed prediction 0.071
Matching game 0.35(4*10−4) 1147
Hider-seeker game 0.09(3*10−4) 1090
Hider-seeker high payoff – 462

Table 2.A.1: Realized matching rate for no feedback group.

Statistical tests against the null hypothesis that the seeker win rate is the baseline level and choices are
independently and identically distributed across subjects (which is the Nash benchmark prediction).
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Figure 2.A.1: Hider-seeker game Q-Q plot of choice frequency (x-axis) and saliency
ranks (y-axis)

(a, b): Q-Q plots for hiding role (a) and seeking role (b). (c, d): kernel pdf density map of the choice
frequency as a function of location saliency ranks. The x- axis is the rank of the saliency values
and the y-axis is the probability density. Note: The kernel is Gaussian. The bandwidth is calculated
using the formula: f × 4

3#
0.2, in which is the standard deviation of the samples and # is the number

of observations.

each one a saliency level (0-1 normalized within each image), and compute the
frequencies with “strategies” (=locations) chosen across all games and subjects.
For hider-seeker games, these should be flat horizontal lines in equilibrium (except
for sampling error). However, there are a disproportionate number of choices of
high-saliency locations (that is, the densities turn up sharply at the right end of the
scale). Seekers choose the highest-saliency locations about three times as often, and
hiders choose them about two times as often. There is a slightly disproportionate
tendency to choose the lowest saliency locations (near zero at the left end of the
scale), especially for hiders.

2.B Model comparison
In this subsection, we are going to compare four different sub-models. We choose
the Bayesian information criterion (BIC) to be the criterion for model selecting,
since it balances between the goodness of fit and the possibilities of overfitting.

In all cases we restricted the softmax sensitivity parameter _ from 0 to 100. Larger
values carry little information since _ = 100 is close to best response. Constraining
;0<130 also makes it easier to create a bootstrapped confidence interval, which is
useful due to the non-smoothness of the target function.
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Figure 2.A.2: Matching game Q-Q plot of choice frequency (x-axis) and saliency
ranks (y-axis)

The red-diamond point (0.05,0.4) indicates that only 15 percent of choice points were made at the
locations at or below 40% salience. Equivalently, 85% of the points fall within the top 60% most
salient points. Choices generated by chance would thus correspond to a diagonal line of this plot
from (0, 0) to (1, 1). The maximal accuracy is the blue line: H = 1 for all G > 0, which means that
all choices fall on exactly the most salient point.

Here are descriptions of models we are going to test:

• Model 1: There are only two types of players: 1) naive players who play as
level zero players described in the main text. 2) equilibrium players who do
pure randomization. Both the proportion of naive players, ?B and ?ℎ serve as
free parameters.

• Model 2: There is no level zero player in real population, but in higher level
people’s belief, there is. The hiders group and the seekers group have different
gs but the same ` and _.

• Model 3: Same setting as model 2, except that level zero players exist both in
the belief structure and in the population.

• Model 4: Fit hiding data and seeking data separately using two sets of pa-
rameters. Each game has three parameters: `, _, and g. The best fit model
of it dominates the best fit model 3 since model 3 is a special case of model
4. However, model 4 allows more free parameters, which BIC value will
penalize for.

• Model 5: Fit hiding data and seeking data using a common `,_ but use level-
k framework 26 rather than CH, assuming population is consists of players

26see Nagel (1995); Crawford and Iriberri (2007a); Crawford and Iriberri (2007b)
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Model Description Free parameters AIC BIC
(Estimated)

1 Level 0+equilibrium ?B,?ℎa 12716 12728
[1, .3]

2 Role-specific gG , f(0)=0 `,_,gB,gℎ 12780 12803
[.004, 99, .46, .002]

3 Role-specific gG , f(0)≠0 `,_,gB,gℎ 12650 12673
[.06, 100, .40, .10]

4 Role-specific gG , `G , _G `B,_B,gB,`ℎ,_ℎ,gℎ 12646 12680
[.01, 90, .40, .07, 90, .50]

5 Level-k role-specific f(k), f(0)=0 `,_, 5B (1), 5B (2), 5B (3) 12681 12738
, 5ℎ (1), 5ℎ (2), 5ℎ (3)

[1, 99, .22, 0, .78, .83, .05, .12]
6 Level-k role-specific f(k), f(0)≠0 `,_, 5B (0), 5B (1), 5B (2), 5B (3), 12652 12709

5ℎ (0), 5ℎ (1), 5ℎ (2), 5ℎ (3)
[.18, 99, .29 .05, 0,
.66, .17, .22, .61, 0]

Table 2.B.1: Model comparisons for hider-seeker game

Each model in the table is specified in the list before. BIC is defined as -2*logL +
numParam*log(numObs) and AIC is -2*logL + 2*numParam

aStands for proportion of level 0 players

whose level ranging from one to four.

• Model 6: Same setting as model 5, except that model 6 allow level zero type
exists.

Table 2.B.1 lists the best fit results of each model. Both BIC and AIC indicate
that model 3 is the best performing model. Model 2 performs least for the reason
that without level zero specified, such model structure will predict pure anti-salient
hiders, which is the opposite of what we observed in data.

It is also not the case that level zero behavior is the only source that drives the fit.
The fact that model 1 cannot explain the anti-saliency choices by the hiders serves as
one explanation to that. Model 4 performs only slightly worse than model 3 and the
best-fit parameters are close to those in model 3, while it contains more parameters.
Model 5 also provides a good-fit (same log-likelihood as model 3), but it requires
more parameters, which is penalized by the BIC criterion.

The Level-k Model 6 is almost as accurate by AIC and BIC, and we commented on
what can be learned from it in the text. Figure 2.B.1 plots predictions of that model
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Figure 2.B.1: Level-k Model 6 training-testing comparison

The x-axis is the saliency values of all click points. Each point on a graph indicated what percentage
of choices were made for locations within images based on the saliency of those locations. (a):
choice data and model prediction in the training dataset seeking condition. (b): choice data and
model prediction in the training dataset hiding condition. (c): choice data and model prediction in
the testing dataset seeking condition. (d): choice data and model prediction in the testing dataset
hiding condition.

and the data, for comparison to text 2.8.

2.C Details of SCHmodel fitting and SCH converging properties
Method for the model estimation
We used log-likelihood as our target loss function to minimize. Unlike in traditional
maximum likelihood estimation, the loss function for our model does not have
a closed-form solution for the global minimum. We therefore used a numerical
gradient descend algorithm to search for a set of best-fit parameters. In order to
avoid finding local optima, the model was initialized frommultiple locations and we
chose the best one from those multiple initializations. In addition, we constrained
the softmax parameter _ to be bounded above by 100. Parameter values above
this bound carry less information because they are so close to best response, and
bounding _ facilitates bootstrapping confidence intervals.

We use both hiding data and seeking data from the normal pay sessions, maximizing
the summation of two log-likelihoods. To avoid overfitting, we tested the model on
the second session in which people get higher payment than the first session. It is
not the ideal training/testing separation since the payment is different. But due to
the fact that cognitive hierarchy model could be sensitive to interdependence at the
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Figure 2.C.1: SCH prediction for a high level population.

The left figure simulates the seeking win rates with best-fit ` and _ with respect to different gs. The
right figure shows examples for high-level strategies on the saliency domain.

group strategic level, we chose to keep one entire session that contains all subjects’
data in order to not mix session data and perhaps undermine the estimation of g.

The converging properties
A remaining question is whether seeker’s advantage will disappear if people are
highly strategic. Figure 2.C.1 shows the simulation results from the SCH model
using the best fit ` and _ across g = 0 to 500. As can be seen, the saliency bias
will only affects the seeking win rate when the level is low. The seeking win rate
will converge around the equilibrium level 0.05 when the strategic level is high.
In this experiment, we only observed very low level behaviours. The right figure
2.C.1 shows examples of high level strategies on the domain of saliency. Though
the seeking win rate converges, the higher order behaviors actually do not converge,
which means that the convergence in seeking win rate is actually due to the mixing
of more types.

2.D Quantal response equilibrium prediction on saliency
Set-up
We define a game G with a finite strategy set 1,2....n...N. Assuming that each agent
has general utility function:

D= = " + `(=

,in which = is the choice number, " stands for any monetary reward one could get,
and (= is the corresponding saliency value of choice =.
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Following the notations from McKelvey and Palfrey (1995), in a game setting, the
utility for player 8 conditional on other players using strategy ?−8 becomes:

�*= (?8, ?−8) = �"8 (?8, ?−8) + `(=

"8 is the utility function from the game.

Quantal response equilibrium (QRE) solution
In general, every element ?= in a logit QRE strategy p satisfies:

?= =
4_�*= (?8 ,?−8)∑
4_�*< (?8 ,?−8)

Specifically, in a two persons hide-and-seek game, ?B and ?ℎ, strategies for seeker
and hider, respectively, constitute a QRE if:

?B= =
4_�*B= (?B ,?ℎ )∑
4_�*< (?B ,?ℎ )

?ℎ= =
4_�*ℎ= (?B ,?ℎ )∑
4_�*< (?B ,?ℎ )∑

?B= = 1∑
?ℎ= = 1

Without loss of generality, hider will get one unit monetary reward if hided success-
fully and seeker will get f unit monetary reward if successfully found the hider.
Reward can be asymmetric between roles but uniform between choices. In this way,
the QRE condition can be further written in (condition 1):{

?B= =
4_(f?ℎ=+`(=)∑
4_(f?ℎ<+`(<)

?ℎ= =
4_(1−?B=+`(=)∑
4_(1−?B<+`(<)

Seeker’s advantage condition
Seeker’s advantage simply means

∑
?B=?ℎ= >

1
#
, where N is the total number

of options. The easiest way to do it is through sequential inequality. Sequential
inequality: for any two group of real sequences G= and H=:

G1 < G2 < ...G=

and
H1 < H2 < ...H=

Suppose Gf(=) is an arbitrary ordering of sequence G=

⇒ G1H1 + G2H2...G=H= ≥ Gf(1)H1 + Gf(2)H2 ≥ G1H= + G2H=−1...G=H1
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according to which, the condition,
∑
?B=?ℎ= >

1
#
, is equivalent to, for any n and m:

?B= > ?B< ⇒ ?ℎ= > ?ℎ<

This simply means that the sequence ?B and ?ℎ is inverse correlated. As one of
them increases, the corresponding other one must decrease.

To get this, let us start from condition 1. In the first two equations, the denominator
will not change with n, thus they can be viewed as constant for studying seeker’s
advantage. Condition 1 further becomes:

?B= = �B4
_(f?ℎ=+`(=)

?ℎ= = �ℎ4
_(1−?B=+`(=)∑

?B= = 1∑
?ℎ= = 1

(2.2)

In which �B = 1∑
4_(f?ℎ<+`(<)

and �ℎ = 1∑
4_(1−?B<+`(<)

.

Take the first two lines,
?B=

?ℎ=
=

�B4
_f?ℎ=

�ℎ4
_(1−?B=)

⇒ ?B=4
_(1−?B=) =

�B

�ℎ
?ℎ=4

_f?ℎ= (2.3)

Equation 2.3 holds for every choices between hider’s strategy and seeker’s strategy.
It is trivial that RHS is a monotonically increasing function in ?ℎ=. In order to make
LHS to be an increasing function with respect to ?B=, we need to take derivative
with respect to ?B=,

!�( = (1 − _?B=)4_(1−?B=)

The monotonicity depends on parameter _. The condition for LHS to be an increas-
ing function becomes:

?B= <
1
_

Notice that ?B= is less than one. In that case, if _ < 1, this increasing condition
always holds, which means as ?B= increases, ?ℎ= also increases. According to the
sequential inequality,

∑
?B=?ℎ= >

1
#
, thus, there will be a seeker’s advantage. For

an extreme case, when _ is approaching zero, people are choosing salient locations,
which will generate a seeker’s advantage because of the correlation between two
roles.
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When _ is very big, the increasing condition never holds since the summation needs
to be 1. In that case, as ?B= increases, ?ℎ= decreases. This would cause a hider’s
advantage also according to sequential inequality.

When _ is in between, there will be a cutoff point %2. If ?B= < %2, as ?B= increases,
?ℎ= also increases. If ?B= > %2, as ?B= increases, ?ℎ= decreases. In this case,
seeker’s advantage varies and will has a break even point for some _.
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C h a p t e r 3

MODELING CHOICE-PROCESS DATA ON STRATEGIC
GAMES – AN APPLICATION OF HIDDEN MARKOV MODEL

(HMM)

3.1 Introduction
There are two ways discussed in the literature hypothesizing how people play games:
one is that everyone has a global vision about the game and knows which choices are
optimal beforehand, which is often referred to as equilibriumplay. In the secondway,
players are not that optimal. They only have bounded rationalities and make choices
based on their limited cognition (Alaoui and Penta, 2015; Friedenberg, Kets, and
Kneeland, 2016; Alaoui, Janezic, and Penta, 2020; Kübler and Weizsäcker, 2004;
Brandenburger, Danieli, and Friedenberg, 2017). To understand the second way, the
behavioral strategies of how human actually play games, most studies approach this
question in a “revealed way”: using choice data only, which provides very limited
information. For instance, a player who does not read the rules of the game and play
randomly versus another player who fully understands the game and comes up with
a random strategy, we cannot distinguish between them only based on their choices.
Exploring the “cognitive” process of how strategies form helps us understand human
strategic plays. One way to study the cognitive part is to look directly at human
brains (Coricelli and Nagel, 2009; Hampton, Bossaerts, and O’Doherty, 2008; Ong,
Madlon-Kay, and Platt, 2018). Amuch simpler way is to look at choice–process data
such as response time, gaze movements, or mouse traces, which are more feasible
to get than brain data. These choice process data serve, as a hint of what people are
thinking about. Though how to systematically model these data and what kind of
new predictions they are able to make remain questions.

This paper presents a novel machine learning model framework, a hidden Markov
model (HMM), to help better understand the underlying mental processes for game
plays using choice process data, and to make new predictions. HMM is a method
widely used in machine learning and cognitive science, although rarely in eco-
nomics. A typical HMM consists of four parts: a hidden state setΩ, probabilities of
transitions between the hidden states %, and associations between the hidden states
and observable behavior � (called “data emissions”). In this paper, we will present
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an application assuming that the association probability is Gaussian distributed.

In a game setting, hidden states can be regarded as mental states that cannot be
observed directly. Different hidden states will have different choice generating
schemas. Agents jump among different hidden states as if they were experiencing
a “back and forth” process until some stopping criteria is reached.1 What can be
observed are different traces generated from these underlying hidden states, for
example, mouse traces or gaze traces. These traces will be treated as probabilistic
estimations of the unobserved mental states. We will use these two types of choice
process data as our observable data sets (also referred to as emissions).

A natural extension of the current HMM is to include visiting durations of hidden
states to the current HMM and the extended model turns into a continuous-time
HMM (ctHMM). A ctHMM simply takes the time length of eye fixations into
consideration so that the input of the model consists of two parts: eye-fixated
strategies and fixation time spans. Staring at different strategies with shorter or
longer period of time might carry information but it has not been studied yet. In
the cgtHMM, besides the previous model structure, the model will further learn a
stochastic process on how long a decision maker thinks about a hidden strategy. For
simplicity, we will call the model without visiting durations discrete hidden markov
model and the model with visiting durations continuous hidden markov model. 2

The naive example
Let me bring up a common but intuitive scenario in games and try to explain
how hidden markov models are connected with strategic processes. Consider the
2 × 2 matching-penny game shown in table 3.1.1. On behalf of Ann (the column
player), if she thinks Bob (the row player) is playing any strategy other than pure
random (equilibrium strategy), her best response will be a pure strategy, say “L”.
The hypothetical Bob in her mind would best respond to choose “T”. She should
next choose “R”, and so on so forth. Such “back and forth” processes appear in
many types of games and it is inevitable for most people to leave choice process
signals of what they are thinking about, for example, more gaze transitions or longer
response time.

Figure 3.1.1 demonstrates a hypothetical application of HMM on the matching
penny game from the perspective of player Ann (table 3.1.1). Ann starts from a

1Either a natural stop or the time is limited.
2Notice that discrete in time is a different notion from discrete in hidden states. We will see

applications with continuous hidden states later.
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Figure 3.1.1: A hypothetical example.

L R
T (0,1) (1,0)
B (1,0) (0,1)

Table 3.1.1: The most simple example

prior distribution of two hidden states here: Silly Bob and Smart Bob. Ann can
either choose to stay at the current state or switch to anther state, or makes a decision
and exist the game. At each hidden state, she prefers different strategies and will
look her current preferred strategy more. For example, at Silly Bob state, she thinks
L is probably the best option so she will look at it 90% of time while at Smart Bob
state, she will only look at action R. If we further consider a continuous-time case,
when Ann thinks about different strategies, she will have different time distribution
of when to switch to the next state. Once she decides, she will choose according to
the emission probability of the last state she visited. For example, if she decides as
Smart Bob, we will observe her choosing R.

What can be learned from an estimated model?
As mentioned earlier, unlike most of the decision models which require a choice
data set as an input, the HMM we constructed does not need choice data at all.
What the model needs are one of the two specific types of choice process data: gaze
movements or mouse tracking data. In this paper, I will only focus on an application
with gaze movement data. Given a data set which is collected during a game task
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and an assumption of the number of hidden units, an HMM model is able to learn
the best-fit transition probabilities (P) among the hidden states, an association (B)
between hidden states and observed data, and a prior distribution (A) among hidden
states initially. The HMM serves as a new methodology that can model choice
process data in games and infer the dynamic belief formation process. Furthermore,
the estimated model can be then treated as a virtual game player and generate data.
In machine learning, such a model is often referred to as generative model.3

Continuous-time model, in addition, is capable of analyzing and predicting response
time. It estimates probability transitions (%(C)) at each time point. Thus, this model
can predict an estimated response time given a trained ctHMM model, while none
of the traditional methods can do it. Other than that, ctHMM can further predict
choices at any given time limit as if an agent is facing a time limit pressure. This
progression is important as it enables us to manipulate the time limit and study the
comparison between naive strategies and sophisticated strategies. To solve a similar
problem, Agranov, Caplin, and Tergiman (2015) used a different approach. They
applied a “choice process” protocol and tried to identify naive plays in a traditional
guessing game.

New predictions on levels of reasoning
What currently lie between “Nash” and the reality are modern behavioral game
models (Nagel, 1995; Stahl II and Wilson, 1994; Crawford and Iriberri, 2007b;
Camerer, Ho, and Chong, 2004; Alaoui and Penta, 2015; Kneeland, 2015). Many of
these models point to a common core idea: iterated levels of reasoning, whichmeans
players start from a naive strategy and update their belief towards the direction of the
best response function. A decision will be made after several steps of such process.
The number of steps is defined as “levels”.

Identifying such levels is actually hard for two main reasons: 1) the system highly
depends on the assumption of the starting point, level zero strategies, 2) for many
cyclic games4, the same choice can be explained using different level strategies.
Previous studies avoid these two problems by using specially designed games such
as 11-20 money request game, p-beauty contest game, or ring game 5 (Nagel, 1995;
Arad and Rubinstein, 2012; Lindner and Sutter, 2013; Kneeland, 2015). For most

3Generative model is often compared with discriminative model. The latter is used to distinguish
different classes while the former can be used to generate new data. HMM is a typical generative
model.

4Exist strategy B8 , s.t B8 ∈ B(B(B8))
5Ring game identification does not assume a level zero behavior and uses a different system.
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other types of games, type identification process remains problematic. In this paper,
we provide a new identification method of strategic levels based on gaze transition
data and HMM method. It can be generalized to any games and does not depend
on a level zero assumption. Furthermore, the identification is done on a single
trial basis. We used a data set collected in saliency games as a demonstration, and
will present what the result looks like. The estimated mean level is consistent with
previous findings.

3.2 Discrete Model (HMM)
A discrete HMM constructed for games follows a standard framework in Mur-
phy (2005).

Definition
A Hidden Markov Model H =< %, �,Π > consists of:

• A finite set of states Ω = {ℎ1, ℎ2..ℎ8 ..ℎ=}. n is pre-specified.

• A transition matrix P, each entry ?8 9 is the probability of transitioning to state
9 from state 8.

• A set of observation states $.

• A projection matrix �, mapping the hidden state space Ω to $. 1<= is the
probability of observing choice = condition on current hidden state is ℎ<.

• A = × 1 prior vector Π, indicating the initial probability distribution on ℎ8s.

In game context, the observed gaze fixation data set consists of the observation states
$. Specifically in one trial, we will observe a vector of sequenced fixations on the
action space of the game, denoted by f. As $ is a probabilistic projection from Ω,
hidden states can be therefore understood as hidden mixed strategies. Two states
are different and are not projected to Ω. One is start state, which means a game has
not been started. Another is end state, which means a decision is generated. For
simplicity, we will always denote ℎ1 as start state and ℎ= as end state. A process
from ℎ1 to ℎ= is the strategic reasoning process that we are interested in.

Given a data set $ and game G, a Hidden Markov Model H can be estimated
using the Baum–Welch algorithm (a special case of the expectation maximization
algorithm). For details about the estimation process, see Appendix. An estimated
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Figure 3.3.1: An example of fixation data sequence in one trial.

a) shows five fixation locations overlaid on the original image and the time order of them (labeled in
green). The radius of the red circle indicates the lasting time of each fixation. b) plots the saliency
levels of the fixations in figure a) against the corresponding timestamp in that trial. This specific trial
starts at time zero.

HMMcan be used to compare different reasoning processes under different strategic
goals.

In the next section, we will demonstrate an application of HMM on saliency games,
and show how an HMM behaves when facing hiding, seeking, or matching tasks.

3.3 Anapplication of theGaussianhiddenMarkovmodel (gHMM)
Figure 3.3.1a illustrates the sequence of five fixations for a single trial in this
particular game. The order of fixations is shown by discrete numbers (the first
fixation denoted by “1”, the second by “2”, etc.). The size of the dots at each
fixation location is scaled by the length of the fixation duration.

As is well-known in human visual perception, it is evident in this example that the
eye is performing a series of rapid, discrete fixations (about 100-300msec long),
transitioning rapidly between fixations. Figure 3.3.1b shows the same data in a time
series, which also plots (on the y-axis) the SAM-model salience of the location at
which the eye fixates over time.

We start with the observation that the eyetracking indicates that fixation lengths are
quite similar. Then it is reasonable to approximate the dynamic attentional process
as a series of discrete transitions between states corresponding to different levels
of salience (with time in each state fixed in length and therefore suppressed).6 A

6Some readers will be familiar with dynamic process models which hypothesize a hidden
accumulator or “drift diffusion” models (DDM) leading to choice (Ratcliff and McKoon, 2008;
Ratcliff, Smith, et al., 2016). These models are designed to explain choices, error rates, response
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continuous version is described in the next section, once the simpler discrete version
builds intuition.

The HMM we used in saliency games hypothesizes four states. Other assumptions
about hidden state numbers have also been tried and four gives the optimal BIC value
(Figure 3.B.1). We will use a letter notation instead of sub-numbers to help readers
better understand this example. One is a single starting state S. The two internal
states, L and H, represent whether the salience level of the location being perceived
is low or high (more precisely, whether salience levels are drawn from either of two
Gaussian distributions of saliency levels, one with a low mean and one with a high
mean). Another is an ending decision state D. A trial ends when one of the two
internal states, L or H, end the trial by transitioning to D. The decision is assumed
to be the fixation accompanying the last L or H salience state that transitioned to D.

The crucial unobservable parameters are the probabilities of transitions between
states. The starting state effectively has two transition probabilities, ?(! |() and
?(� |(), as well as a rare transition ?(� |().

The parameters that need to be estimated from the eye tracking data are the transition
probability matrix %, and the means and variances of the Gaussian L and H salience
distributions. The estimation is done using the standard Baum-Welch algorithm
through the HMM estimation toolbox in Matlab (Murphy, 2005) (see Appendix for
details).

Figure 3.3.2 shows a graphic display of transition probabilities between states, and
the estimated Gaussian distributions of salience in the L and H states. There are
three figures, corresponding to matching, hiding and seeking.

In all three games, subjects transition from Start S to state H most often (over 90%
of time). Remember that the HMM is trained on the actual eyetracking data. This
high transition rate %(� |() is evidence that the SAM, which was trained on free
gaze by other people, is also doing a good job predicting where our game-playing
subjects look initially.

However, the fixation transitions afterwards vary by games. Subjects transition from
H to the less-salient L node in the hider-seeker game more often than in matching
game, at rates of 32% for hiders and 20% for seekers. Transitions to the decision

times (RTs), and differential RTs for correct and erroneous choices (Ratcliff, Smith, et al. (2016)
or so). DDM models are not ideal because, as Figures 3.3.1ab indicate, the core mental process is
transitions between salience levels rather than accumulation towards a boundary.
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Figure 3.3.2: Estimated HMM model.

Each column in the figure shows in one game, the estimated transition matrix P among hidden states
and the parameters of Gaussian transition processes.

node D are also different across games. Conditional transitions from H states are
more common than from L states in matching games (34% vs 21%). Hiders are
especially unlikely to conditionally transition out of salient H states to Decision
(14%) compared to seekers (30%), reflecting strategic thinking.

3.4 A novel way for level identification
We argue a new strategic level identification method based on fixation transition
data. We follow a simple assumption: when people are reasoning among different
options, their eyes follow what they are thinking about. Under this assumption,
we will be able to observe that higher level players jump back and forth between
different options multiple times while low level players have much fewer fixations
and make their choice faster. We can use the HMM method and fixation data to
back up an estimated k level on a single trial basis given any game structure.

Given an estimated HMMmodel M, suppose a vector of fixation emissions denoted
by f = [ 51, 52, .. 5<] like figure 3.1.1 is observed in a single trial under game G.
f can be projected to h, an ordered vector in the estimated hidden state space
by maximizing the posterior probability, %(ℎ8 |f,M). Formally, a project function
6>→l: $ → Ω is defined as:

6>→l (f) = 0A6<0G
h

%(f |h,M)

Now, the fixation vectors are all transformed to hidden states vectors. In the saliency
game example, a hidden state transition vector looks like [�, (, �, �, �, �].
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With the transformed data set, we will be able to estimate the reasoning levels. First,
we assume that the first fixation is the level zero response as level zero behavior by
definition comes from initial reactions. Other studies also show evidence supporting
that level zero behaviors should be the salient options (Crawford and Iriberri, 2007a).
It is well known in other fields like psychology and neuroscience that first fixation is
highly correlated with saliency level (more than 90%). Each directional transition
which fits the best response function of game G adds one more level. An estimated
level using HMMwill be the sum of all such added levels. For example, a transition
vector [(, (, �, (, (, �] in hider-seeker games will be identified as level 2.

Formally, given a transition vector h in a single trial and the best-response function
B of the game, the strategic level is defined by:

k =
∑
8

1(ℎ8+1 = B(ℎ8))

We apply the proposed level identification method to the fixation data set from
saliency games. Figure 3.4.1 shows the estimated level distributions of three different
games. These level identification results fit nicely using a Poisson distribution,
which is consistent with the assumption made in the cognitive hierarchy model. The
best-fitted gs are 0.5, 0.97, and 0.90 for matching, seeking, and hiding, respectively.

Similarly to previous models, our model also indicates that most people are lower
than level three. What makes it different is that this new method does not have
identification issue as models using choice data only are hard to identify for most
types of games.

Figure 3.4.2 compares the mean of population levels by using our method and two
previous methods: cognitive hierarchy model and level-k model (for details about
these two benchmark models, see Chapter 1). As can be seen, the estimated mean
level of the new method lies between the mean level from the CH model and the
level-k model. Furthermore, using our new method, the strategic level in hiding
game is not different from that in seeking games (? = 0.24), while in matching
games, people behave as lower types than in the hider-seeker game (? < 10−4).

3.5 Extended continuous-time model (ctHMM)
The fitted discreteHMMmodel in section 3.2 can be further extended to a continuous
Markov model (ctHMM) and predict choices under time pressure. The ctHMM
preserves all the properties of the discrete HMM, and it further contains the fixation
lengths and transition time.
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Figure 3.4.1: Level identification from gaze transitions and HMM.

The blue bar is the distribution of levels identified using gaze transition method. The red line is the
best-fit Poisson distribution of the gaze identified levels. A Poisson distribution doesn’t fit matching
game data as well as hiding data or seeking data.

Figure 3.4.2: Comparison of levels between the gaze estimated method and other
methods.

The blue bars are the average levels estimated using gaze data. Red bars are those levels using
cognitive hierarchy method (also reported in the first chapter). Yellow bars are the levels using
level-k method.

Formally, a ctHMM is composed of a transition probability matrix %, an initial
probability vector Π, a mapping � from hidden state space Ω to data emissions in
observational space: $, and the probability of transiting to state 9 from 8 at time C
denoted by %8 9 (C). In Section 3.2, we already estimated the transition probability
matrix %̂ and ˆ̀. In this section, our main goal is to estimate %8 9 (C), the dynamic
profile of transition probability over time.

The ctHMM will then be able to predict how long the decision maker will stay in
each hidden state and the probability of observing a particular data emission at each
time point beginning from time zero. A sample prediction looks like: at time 2s,
with probability 0.7 the decision maker is considering hidden strategy B8 and with
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Figure 3.5.1: CtgHMM model predictions of saliency over time.

(a)The figure shows the probability of people being in the high-salience state as time goes by in
the unit of seconds (b) The simulation results of ctgHMM predicting the matching rate averaged
against reaction time over all the task images. Point X is the estimated average matching rate of
the time-pressure group and point Y is the estimated average matching rate of the baseline (no time
pressure) group.

probability 0.2 we will observe her looking at action >.

The ctHMM model makes predictions about what actions will be looked at, and
chosen, if the exogenous limit on response time is put. A ctHMM can answer
the following question: If the dynamic strategic process of the player is artificially
truncated earlier, what does the player do? Does she not have time to find a
reasonable strategy, and hence suffers from losing more in the game under time
pressure?

We will demonstrate the results of such prediction in the next secion.

3.6 Prediction of time-pressure condition in games
We will also use the data set from the saliency game to validate the prediction.
Similarly to the previous secion, the association function is assumed to be Gaussian,
thus themodel is called continuous-timeGaussian hiddenmarkovmodel (ctgHMM).

The data set we have consists of what are called “emission vectors”. An emission,
in ctgHMM is the saliency value of the fixation location in the discrete model. In
ctgHMM, the saliency values of these fixations are combined with the time span of
eye fixation at the location of interest. With the estimated model in the discrete case,
we follow the standard MLE method described in Ross (2002) and a well-known
cthmm package tutorial7 and further estimate %8 9 (C) for each game (for details about
the estimation, see Appendix). The result is shown in Figure 3.5.1A. Note that
a maintained assumption in this exercise is that players do not adjust their HMM

7https://research.fhcrc.org/content/dam/stripe/etzioni/files/cthmm%20manual.pdf
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structure due to time pressure. If this assumption is wrong, the predicted effects of
time structure may not be accurate.

The model predicts that in all three games, people start at salient locations in the
first few hundred milliseconds. In the matching game, the decision path stays at this
high saliency state and only goes down a little over time. In hider-seeker games, the
probability of being at the high-saliency state drops much faster than in the matching
case, and drops more quickly for hiders.

If time pressure reduces thinking levels in our location-choice games, that should
increase the seeker’s advantage.

We measured the seeker’s advantage between control (time limit = 6s) and time-
pressure treatment groups (time limit = 2s) by collecting new data. In the control
condition, the online group still shows a significant seeker’s advantage at precisely
the same rate, 0.09, as in the local lab population. This seeker’s advantage increased
significantly to 0.15 (? < 10−4, t-test) in the time pressure feedback condition.8 This
result is shown in Figure 3.5.1b, labeled by point X (time-pressure matching rate)
and point Y (baselinematching rate), indicating that the cgtHMMmodel predicts the
seeking rate at two different time points reasonably well. Thus, our understanding
of how saliency interacts with the depth of strategic thinking enabled us to predict
a change in seeker advantage due to time pressure.

While the effect of time pressure might seem entirely obvious, keep in mind that no
model in game theory actually predicts it, because there are no theories integrating
salience and dynamic attention. The prediction that the seeker’s win rate will go up
under time pressure is certainly intuitive, but it rests entirely on the hypothesis that
under time pressure, hiders cannot inhibit the automatic tendency to look at – and
then choose – salient locations. Furthermore, the ctgHMM goes even further than
that time pressure intuition by delivering a continuous predicted profile of seeker win
rates as game durations vary. It should be easy to imagine interesting experiments
testing such numerical predictions on these data and many other where dynamic
attention is measured and understood (e.g., HMM transitions between lower and
higher level-k thinking).

To investigate whether this increase in seeker’s advantage was due to subjects choos-
ing more salient locations under time pressure, we compared the mean saliency level

8The same bootstrapping method that was used in the previous seeker’s advantage estimation is
also used here. Note also that the seeker win rate is higher, 23%, in the no feedback condition.
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NoB Matching rate
Nash mixed prediction 0.071
Matching game Local control 1147 0.64(4*10−4)

online control 458 0.63(0.001)
online time-pressure 388 0.63(0.02)

Hider-seeker game Local control 1090 0.09(3*10−4)
online control 441 0.09(6*10−4)
online time-pressure 372 0.15(0.001)

Table 3.6.1: Realized matching rate for time pressure group

of location choices in the control and time pressure treatments. Hider mean choice
saliency increased under time pressure, from 0.52 to 0.59. The corresponding seeker
number is from 0.61 to 0.81.

3.7 Discussion
In this paper, we establish a new machine learning method, a hidden markov model,
which takes advantage of choice process data (particularly fixations) and can explain
the strategic dynamics in games. This model is able to learn the best way to partition
an action set into several hidden states. We present an application using the saliency
game in chapter one, where the action set contains more than one million options.
The model performed well with only two hidden states and successfully learned that
people started with a similar first thought to consider salient choices while turned
into different paths afterwards under in three different games, coordination, hiding
and seeking.

Our model also contributes to the current level-k literature. We specified a new
method to type classify a strategic level for each single choice using fixation data
and a trained HMM. The fitting results consolidate previous findings that levels
are distributed in Poisson and the average level is often less than three. The new
type specification method also solved two problems which previous methods could
not achieve: 1) The level identification does not rely on a special game structure
and can be generalized. 2) The level is directly defined on the process itself rather
than choices. It revolutionized an old concept that strategic levels originate from
individual individual differences. Instead, strategic levels come from a combination
of performance in a particular game and the average performance of a person.

Last but not least, we build a continuous-time HMM on the top of the discrete one.
The continuous model is able to process fixation time lengths and use them for
decision prediction at continuous time domains. In particular, this model success-
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fully predicts the game outcome of saliency game, when people are facing a time
pressure.

One limitation of our study is that we do not know yet what percentage of people
reason without looking. However, such limitation on HMM has less effect on the
general interpretation of HMM as they are probabilistic estimations anyway, but it
will underestimate the levels because we are not able to identify those higher levels
who reason mentally using the gaze method.

An important open question for future research is whether this method can ad-
dress the portability issue illustrated in Hargreaves Heap, Rojo-Arjona, and Sug-
den (2014). The new definition solves the problem to some extent, but not directly.
Since HMM levels are defined on single trials instead of people, which incorporate
the game structure, it naturally relaxes the condition that the same individual should
be consistent with their levels. It is still meaningful though to ask this question:
do people have different abilities in strategic games? If so, how should we define
it? A possible future research could be to collect large data sets across subjects on
different games with their gaze data recorded and to look at individual differences
from an HMM perspective.
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APPENDIX

3.A Eye tracking procedure
Subjects sat comfortably about 50cm in front of the screenwhile their eyemovements
were monitored with a Tobii TX300 eye-tracker with a sampling rate of 300Hz.
Presentation of the game used the Matlab Psychophysics tool box. A nine-point
calibration was performed in the beginning of the experiment. Before each sub-
block, there was a drift correction phase in which subjects needed to focus on
a dot in the center of the screen. The experiment only proceeded, after drift
correction, if the gaze detection was still accurate. Otherwise, the eye-tracker
would automatically enter a second calibration session, then continue. Between
presentations of sequential images, a fixation cross was presented on a gray screen
for one second to wash out any remaining gaze trace from the last image.

3.B HMMmodel estimation
HMMmodel estimation

The HMM package that we used follows the steps in the Baum-Welch algorithm in
Murphy (2005) and Baum et al. (1970).

Each fixation vector, like the specific example in figure 3.3.1, constitutes one data
observation. Our goal is to estimate the hidden transition matrix % and the Gaussian
transition structure (�). � consists of a set of `8 and f8 for each hidden state.
Hidden states are denoted by C ∈ {1... }. The whole parameter structure is denoted
by \ = (c, %, $). The probability of the starting location c is known in our case,
c(8) = ?(ℎ1 = 8). %(8, 9) is defined by ?(ℎC = 9 |ℎC−1 = 8). . The set of observations
$ are denoted by GC .

• Initialize a random \ to begin.

• E-step: E-step is to calculate the data log likelihood given by

&(\, \>;3) =
 ∑
:=1

� [#1
: ] log c:+

 ∑
9=1

 ∑
:=1

� [# 9 : ] log % 9 : +
#∑
8=1

)8∑
C=1

 ∑
:=1

?(ℎC = : |G8, \>;3) log ?(G8,C |$)
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where:

� [#1
: ] =

#∑
8=1

?(IC = : |G8, \>;3)

� [# 9 : ] =
#∑
8=1

)8∑
C=2

?(ℎ8,C−1 = 9 , ℎ8,C = : |G8, \>;3)

� [# 9 ] =
#∑
8=1

)8∑
C=1

?(ℎ8,C = 9 |G8, \>;3)

• M-step: for %, we normalize the expected counts:

�̂ 9 : =
� [# 9 : ]∑
: ′ � [# 9 : ′]

For G:
ˆ̀: =

� [Ḡ: ]
� [#: ]

Σ̂: =
� [ḠḠ)

:
] − � [#: ] ˆ̀: ˆ̀)

:

� [#: ]

• repeat step E and step M until the resulting parameter values converge (at a
convergence threshold of 10−4). That is, iteration proceeds until \ is close to
\>;3 .

Simulating HMM

With the estimated continuous time model, we can predict the strategic choice for
our task when people face time pressure, as shown in figure 3.5.1.

We simulate the model beginning with the starting state. At each time C, there are
particles (decision makers) at the high state, low states or who already exited the
game (i.e., are in the decision state). For those who arrive at the decision state, we
take the high or low states they experienced before decision state as an estimation
of the decision. For others, who are either on the L states or H states, we take the
current state they are at as their choice saliency level.

When we add exogeneous time pressure at time C, the simulation result will be a
mixture of people who naturally finished their thinking by C (those who arrived at
the decision state before time C) and people who did not arrive at the decision state
D in time. Our calculation assumes that those people whose HMM transitions are
artificially interrupted at time C choose the saliency level of the last state, L or H,
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they are in. This is quite a bold assumption, as the entire HMM – which estimated
using only data from the original 6-second baseline condition – could easily change
when subjects consciously know they have only 2 seconds.

After knowing the probability of choosing the low- or high-saliency point, simulating
the matching rate is easy. For each simulated trial, we already know the probability
of choosing at each salient state, denoted by ˆ?(�). Then, we can simulate one
sample, an exact saliency value with probability ˆ?(�) from the estimated Gaussian
H and with probability 1 − ˆ?(�) from Gaussian L.

This method gives a simulated choice saliency value B̂8 for each trial. Then we go
back to the task images in the experiment and let the HMMmake an artificial choice
based on the interrupted saliency value. For each image, there are a set of points
& that have saliency level approximately equal to the B̂8 selected by the algorithm.
We randomly choose one point in this set on each simulated trials. This is done
for two players independently, and the matching rate of the two points selected with
saliency B̂8 is computed.
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Matching Hiding Seeking
`� (0.54,0.60) (0.42,0.48) (0.42,0.48)
`! (0.90,0.91) (0.83,0.86) (0.85,0.87)
%(� |�468=) (0.97,0.99) (0.84,0.89) (0.90,0.93)
%(! |�468=) (0.01,0.02) (0.06,0.11) (0.02,0.04)
%(�=3 |�468=) (0.004,0.01) (0.04,0.06) (0.04,0.07)
%(! |!) (0.56,0.61) (0.50,0.57) (0.58,0.63)
%(�=3 |�) (0.32,0.35) (0.12,0.16) (0.17,0.19)
%(! |�) (0.07,0.10) (0.28,0.36) (0.19,0.24)
%(� |!) (0.24,0.39) (0.05,0.10) (0.09,0.14)
%(! |!) (0.42,0.55) (0.56,0.61) (0.54,0.60)
%(�=3 |!) (0.17,0.25) (0.32,0.36) (0.29,0.34)

Table 3.B.1: Bootstrapped confidence interval for estimated HMM parameters

Figure 3.B.1: BIC values of different hidden units.

The figure shows how BIC values change with respect to different numbers of hidden units. The
dashed line is the BIC values of a combining model with all three games.
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C h a p t e r 4

MANIPULATING VISUAL SALIENCY IN SIMPLE CHOICE
PROBLEM

4.1 Introduction
People encounter decision makings when multiple choices are presented together,
and there exist “the right answers” among those options. But finding these right
answers may be challenging and costly. For example, merchants like to bundle
various products on holidays as gift packages, and you want to buy a bundle with
the greatest monetary values. Even if each item’s market price in each package is
known, but one may still end up with a package that does not save her any money
because finding the optimal decision is costly.

Various reasons may contribute to the failure of finding the right answers. Per-
ceptual bias is one of the most important factors among them, leading to uneven
attention distributions during the decision process. As human beings rely heavily
on visual information as the input information to make decisions, a property of the
decision environment, visual saliency, which causes perceptual biases in the human
visual system, becomes particularly important. In this chapter, we will measure and
manipulate the visual saliency property of a natural and complex decision environ-
ment and show how visual saliency affects multi-items simple choice problems with
objectively correct answers.

We designed a novel experiment where choices are sets of fruits which are assigned
an explicit economic value. Sets of fruits are presented visually, and SAM-predicted
salience and induced value are either opposed (incongruent) or similar (congruent).
This paradigm enables a measurement of the differential influence of salience,
independent of value, on choice. Keep in mind that the scientific risk here is that
salience is entirely predicted by the parameter-free SAM model, and by how we
arrange objects visually. Top-down valuation could easily wipe out transitory (1-5
sec) effects of visual salience that the later attention pattern will be drawn mostly by
the unit value of the fruits (We have a long training session for subjects to learn and
get familiarized with the fruit value).
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We need new models
This possible attention effect that we talked about above can hardly fit in either
framework of two major models in decision theory: rationality and bounded ratio-
nality. Both models assume a passive attention process that the attention distribution
is only driven by all the information needed to make a decision. The context of
choices that cause perceptual biases like what an alternative looks like or whether
there will be a background noise is not considered necessary tomake such a decision.

For example, two real-life decision problems should be treated as different decision
problems, but they are mathematically equivalent in most decision theory frame-
work: 1) choosing between left and right; 2) choosing between letters: A and B.
Choosing left or A in either problemwill give a prize worth value one, choosing right
or B will otherwise lead to no prize and value zero. Traditional decision models will
not take into account the context of the action set, and therefore, these two problems
with the same payoff structure are equivalent. But if we start to think about the
context, things become different. For example, there might be many reasons like
heuristics to make one believe that letter A has a larger probability to lead to a prize.
Considering the belief bias caused by the context of a choice will make the theory
perceptual bias compatible.

In this paper, we set up a saliency-refined rational inattention model where decision
makers (DMs) get some information for free from nature through saliency, which
will affect their final policies. Recall that the solution concept in the original
rational inattention model can be characterized in two equivalent ways (Sims, 2003;
Sims, 2006; Caplin and Dean, 2013; Caplin and Dean, 2015; Caplin, Dean, and
Leahy, 2019): one is to compute the optimal strategy directly: %(0 |l) under each
state l ∈ Ω; another is to use the posterior-based approach where the DM first
chooses an attention strategy (a signal mechanism) and then makes the decisions
based on their posterior belief based on the revived signals under each state. Any
solution written in the first format induces its corresponding attention strategy and
posterior belief(Caplin and Dean, 2013; Kamenica and Gentzkow, 2011). The
implied posterior belief is in the format of:

W0 (l) =
%(0 |l)`(l)

%(0)

where W0 (l) is the probability of being at state l given choice a. The posterior way
provides a better interpretation of the information aspect where the information cost
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comes from forming the attention strategy.1

In our model, we assume that saliency does a similar job to the attention strategy.
It serves as a signal device, and the DMs first form posterior beliefs based on
the saliency information. But it is also fundamentally different from an attention
strategy: 1) Forming such a signal process is not part of the optimization process.
We can understand it as our brain or nature pre-specified it for us so that it is
not guaranteed to be optimal for solving a particular problem; 2) Though it is not
optimal, it is free! The decision-maker needs to pay zero cost for this part of the
information.

Since such a signal process is not optimal, after forming the saliency induced
posterior, the rest of the saliency refined rational inattention model should be solved
just like before, replacing the prior probability of being at each state by posterior
probability other than priors.

Therefore under the new saliency-refined rational inattention model, one decision
problem in the traditional definition can have different solutions given different
saliency distribution. (For more details see Section 4.2)

Background
Over the past decades, the phrase “mental effort” has been mentioned more fre-
quently in various fields, including behavioral economics, decision neuroscience,
and psychology. Themost commonway to study “mental effort” is through nudging.
By either changing decision makers’ total mental energies or increasing the process-
ing cost needed for experimental stimulus, we expect to observe behavioral shifts.
It is easier to quantify behavior shifts by designing specific tasks while justifying
and quantifying that certain manipulation on the decision environments towards the
hypothesized direction is hard. What most people do is to propose one manipulation
using heuristics.

The most trivial metric for measuring attention attendance is through self-report.
Scarpa et al. (2013) found that self-reported non-attentivenessmeasure ismeaningful
and coherent with the inference measurements of awareness based on the choice
data. Clearly, this type of research focuses on the overall attentiveness level.

There is also extensive literature on decision neuroscience and psychology studying
how attention biases value-based decision making, mostly through experiments, and

1It is the Shannon mutual information between the signal and the prior.



80

requires eye-tracking techniques (Milosavljevic et al., 2012; Towal, Mormann, and
Koch, 2013; Shimojo et al., 2003; Orquin and Loose, 2013). Many evidences show
that choices not only depend on independent valuations of the products, as stated in
traditional economic theory. Saliency also plays an important role in determining
the final choices. Both Towal, Mormann, and Koch (2013) and Krajbich, Armel, and
Rangel (2010) demonstrate the benefits of accumulator model classes in studying
attention problems. Towal, Mormann, and Koch (2013) finds that a model takes into
account both perceptual properties and values can predict choices better than only
using values. Milosavljevic et al. (2012), instead, focus more on how to manipulate
attention patterns and shows that simple choices can be manipulated by changing
one single visual feature of an item, like brightness. All of these three studies rely
heavily on eye-tracking techniques.

Our study is definitely closely related to the line of works like Milosavljevic et
al. (2012). however, the experiment used in this paper differs from previous studies
in two major aspects: 1) Previous work, including Milosavljevic et al. (2012)
and Krajbich, Armel, and Rangel (2010) use subjective ratings for each individual
product as measurements for underlying values. Such measurements may be noisy
and inaccurate. Instead, we use a set of predeterminedmonetary values to have better
controls over the valuations. 2) Milosavljevic et al. (2012) manipulated saliency
in only one simple feature: brightness. We are trying something more ambitious:
to compute the saliency directly from different stimuli. It looks just like making
choices in a natural scenario where saliency distribution among choices changes
as many visual features change simultaneously. This paper starts by introducing a
saliency-refined rational inattention model (section 4.2) where we will show how
saliency information can fit in a rational inattention model. This newmodel predicts
that saliency helps people choose the right decision when a more salient alternative
is also the more rewarding alternative, while saliency misleads people to choose
the less rewarding option when a more salient alternative is less rewarding. Such
saliency biases can only be observed when the marginal value of making the right
decision is larger, and the learning cost is small.

In section 4.3, we will introduce our fruit decision experiment where the value of
each alternative is predetermined, and saliency is measured by a well-performed
algorithm: saliency attentive map. We show that the result of the experiment is
well aligned with the prediction from the srRI model, where people do make more
mistakes when the salient item is the less rewarding item. This effect remains robust



81

and even stronger when we make the test environment much harder.

Other than the choice biases, we also see a response-time effect on saliency. People
spend on average more time thinking when the saliency distribution contradicts
with the reward distribution. Such a result from response time suggests that saliency
effects could be due to a subconscious process that cannot be compensated by simply
putting more time into thinking.

4.2 Saliency in Rational Inattention Model
Following the framework of rational inattention models in Sims (2003); Caplin and
Dean (2013); Caplin andDean (2015), wewill show how a rational inattentionmodel
with Shannon’s entropy explains and predicts the saliency effect for our experiment.
The result can be easily generalized to any two-alternative simple choice problem.

• We define a product-based state space Ω × S, where Ω is the traditional state
space, under which the payoff structure of actions will be different. S is the
saliency space which is observable.

• Prior beliefs on different states are denoted as `, where ` ∈ Γ and Γ =

Δ (Ω × S).2 ` 9
8
denotes the prior probability for being at state (l8, B 9 ).

• A: the action set.

• Utility function D : Ω × A→ R.

• A decision problem consists of (` × �), where � ⊆ A.

For simplicity, we assume that an individual will gain utility E if she chooses a more
valuable item and 0 otherwise.

In our case, we will only consider a two-states case for Ω, where, without loss of
generality, under l1, item one is more rewarding, and under state l2, item two is
more rewarding. S is a space that contains perceptual information about the context
of each choice representative. S simply defines saliency. Since our experiment
includes only decision environments where there are big saliency differences, we
further reduce S to only contain two elements, one is that choice A is more salient
than choice B, and the other is that choice B is more salient than choice A. Therefore,
this two-by-two state space will be as Table 4.2.1 shows.

2Γ contains all the probability distribution over all possible states.
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(l1,B1) Option 1 is more rewarding and more salient
(l1,B2) Option 1 is more rewarding but less salient
(l2,B2) Option 2 is more rewarding and more salient
(l2,B1) Option 2 is more rewarding but less salient

Table 4.2.1: State Dependent Payoff Matrix.

This figure illustrates that by observing different saliency distribution. A DM will either be
at information set 1 or information set 2. Within each information set, it favors different
payoff states.

Figure 4.2.1: Different information sets induced by saliency.

Knowing the current saliency state B cannot directly lead to the right decision as it
is unrelated to the payoff function, but it serves as a signal device for implying Ω,
as saliency can be easily observed by the decision maker. Therefore, DM forms a
posterior belief about the current state in Ω:

XB=B= (l = l8) =
`=
8∑
9 `

=
9

(4.1)

This saliency signal process is different from the posterior approach and attention
strategy denoted in Caplin and Dean (2013). One difference is that this process
cannot be chosen by the decision maker but given by nature instead. Another is that
the DM does not need to pay any information cost at this step for updating his belief.
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With posterior XB= (l8), this problem becomes no different from the standard model.
We will aim at solving the best strategy directly instead of using the posterior
approach. Note that the decision maker still needs to pay the learning cost at this
step because she does not have a chance to choose the optimal attention strategy
through saliency. One can think of it as saliency gives part of the information for
free but not all of it.

Consistent with previous models, the value of a strategy % : Ω×S→ Δ (�) is given
by the expected value of the actions, minus information costs. The decision maker
now needs to choose % : Ω × S→ Δ (�) in order to maximize:∑

l∈Ω
XB (l)

(∑
0∈�

%(0 |l, B)D(0, l)
)

(4.2)

−_
[∑
l∈Ω

XB (l) (
∑
0∈�

%(0 |l, B);=%(0 |l, B)) −
∑
0∈�

%(0 |B);=%(0 |B)
]

where:
%(0 |B) =

∑
l∈Ω

XB (l)%(0 |l, B)

In our simple case, the optimization problem shown in 4.2 becomes choosing
%(�1 |l1, B) and %(�1 |l2, B) to optimize :

5 : XB (l1) [%(�1 |l1, B)D(1, 1) + %(�2 |l1, B)D(2, 1)] (4.3)

+ XB (l2) [%(�1 |l2, B)D(1, 2) + %(�2 |l2, B)D(2, 2)]
− _[XB (l1){(%(�1 |l1, B);=%(�1 |l1, B) + %(�2 |l1, B);=%(�2 |l1, B)}+
XB (l2){(%(�1 |l2, B);=%(�1 |l2, B) + %(�2 |l2, B);=%(�2 |l2, B)}]
+ _[;=[XB (l1)%(�1 |l1, B) + XB (l2)%(�1 |l2, B)] [XB (l1)%(�1 |l1, B)
+ XB (l2)%(�1 |l2, B)]]
+ _[;=[XB (l1)%(�2 |l1, B) + XB (l2)%(�2 |l2, B)] [XB (l1)%(�2 |l1, B)
+ XB (l2)%(�2 |l2, B)]]

(4.4)

When learning does not cost at all (_ = 0), f is linear, so that the decision maker
fully distinguishes the states and chooses %(�1 |l1, B) = 1 and %(�2 |l2, B) = 1,
implying no mistakes at all. When _ is strictly positive, we need to solve for the first
order condition in order to optimize the equation. After replacing all the utilities as
v and 0 according to Table 4.2.1 and using the condition all the probabilities sum
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up to one, the partial derivatives of Equation 4.3 with respect to %(�1 |l1, B) and
%(�2 |l2, B) become:

m 5

m%(�1 |l1, B)
= XB (l1)E − _XB (l1);=(

%(�1 |l1, B)
1 − %(�1 |l1, B)

) (4.5)

− _XB (l1);=
XB (l1)%(�1 |l1, B)XB (l2)%(�2 |l2, B)

1 − XB (l1)%(�1 |l1, B) − XB (l2)%(�2 |l2, B)
m 5

m%(�2 |l2, B)
= XB (l2)E + _XB (l2);=(

%(�2 |l2, B)
1 − %(�2 |l2, B)

)

+ _XB (l2);=
XB (l1)%(�1 |l1, B) + XB (l2)%(�2 |l2, B)

1 − XB (l1)%(�1 |l1, B) − XB (l2)%(�2 |l2, B)

The special case of Equation 4.5 is when v/_ is zero. When v/_ becomes zero, any
state independent strategy will be optimal. The good news is that this condition
should rarely happen in reality because it requires either a zero value for a correct
decision or an infinitely large learning cost. Besides the special case, solving 4.5
gives out the optimal %(�1 |l1, B) and %(�2 |l2, B), which are also the probabilities
of people choosing correctly under each state3:

%∗(�1 |l1, B) =



0 XB (l1) < 1
1+4

E
_

XB (l1)+
XB (l1)−1

4
E
_

XB (l1)−
XB (l1)

4
2E
_

1
1+4

E
_
≤ XB (l1) ≤ 1 − 1

1+4
E
_

1 XB (l1) > 1 − 1
1+4

E
_

(4.6)

What we can learn from the result of Equation 4.6 is that saliency affects decision
through distorting people’s posterior belief on different payoff states. Figure 4.2.1
showed the simulation results of Equation 4.6 under different parameters (E/_).

Under l1, option one will be the right choice to choose from. We can see that the
correction rate changes when people have a biased belief that the rewarding option
is option 1. The bending curves in figure 4.2.1 showed how the correction rate
changes as the posterior belief of being at state one changes. The correction rate
will not be affected much by the posterior belief if the value is large enough to make
the correct choice or the learning cost is small. While on the other side, moving the
posterior belief away from a fair one, 0.5, will change the correction rate a lot. This

3Without loss of generality, we will just show that %∗ (�1 |l1, B) and %∗ (�2 |l2, B) will be in the
same format.
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Figure 4.2.3: Correct rate simulation on saliency distorted posterior belief

is exactly what happens when the saliency bias gets involved. Such saliency biases
will enhance the correct rates when the salient item is also the rewarding item and
hurt the correction rate when they are opposite.

4.3 Experiment Design and Data
Task
Subjects are asked to choose one of the two fruit piles presented on the left and right
part of an image, as shown in figure 4.3.1. Each fruit type unit has a unique, pre-
determined monetary value. The subjects become familiarized with the assigned
value before the main task session. The total value of a fruit pile is the sum of the
values of all fruits in that pile. The everyday analogy to this task is a retail vendor
who is buying fruits at a wholesale market and has in mind a retail price for each
fruit. While the vendor should be computing the resale value, the visually salient
properties of the fruit (color, contrast, whether they ’pop out’ from a fruit basket) are
active and independently controllable by us. We can therefore construct choice sets
in which visual salience (controlled by our displays) and fruit value (also controlled)
are positively or negatively correlated. Subjects might ignore visual salience or
might be unable to inhibit their unconscious bottom-up influence.

Themain experiment is done under time limitations (10s). Subjects will be rewarded
with money following an incentive-compatible design. There is a 10% chance that
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the subject will get an equivalent amount of money from a randomly selected choice
among all twenty rounds.

Subjects first experienced an introduction session explaining the basic tasks followed by a
testing session asking questions about the rules. They then experienced an unlimited time
session with N=5 images which will count into payment but only for training purposes.
Afterwards, they will do a session with time limit. The experiment ends with demographic
questions and payment realizations.

Figure 4.3.1: Experiment flow.

Data
N = 75 people participated this study on Prolific, a European online data collection
platform following a pre-registration process on the open science foundation website
(OSF). All the participants were pre-screened to have a prior approval rate of at
least 70% based on their previous participation. Each subject was only allowed to
participate once for all types of batches (including pilot studies). Participation from
mobiles and tablets was not allowed in order to control for attention effects.
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4.4 Set-up
Visual Saliency Properties of Stimuli
We used the same deep-learning based saliency model, “saliency attentive model
(SAM)” (Cornia et al., 2016) 4 SAM takes the visual scene of one round (one image)
and predicts wheremost people will allocate their attention. Examples of the outputs
from SAM are shown in Figure 4.4.1bd where darker red means the location is more
salient. The most salient location has the saliency value of one, and each image may
have multiple local maxima at value one.

a) a sample image in the image pool with saliency centers on both sides. b) saliency
prediction of image a). c) with saliency center only on one side . d) saliency prediction
of c). Saliency algorithm outputs a normalized result and the most salient pixel will have
saliency value one. The saliency value in the dark red area is approaching the maximum
value one centered at the most salient spot.

Figure 4.4.1: Two types of saliency distribution.

Stimuli Property and Selection Mechanism
We took 72 photos of different combinations of real fruits displayed on a dining
table. For better performance of SAM, we did not choose to display the stimuli on
a cleaner virtual background, like a whiteboard, because the image distributions of

4See chapter one, section 2 for a full discussion about SAM.
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real photos are closer to the image distributions of the training sample. Each image
contains two piles of fruits, and each pile contains three to five fruits. We flipped
all the images in the horizontal direction so that we got another 72 images with the
same content, but with the pile locations flipped.5 These 174 images consist of our
image pool.

We selected 20 images from the image pool, and all of the selected images satisfy
four conditions:

1. One-side saliency centered: All of the selected images are strictly one-side
saliency centered, which means that the most salient locations only appear
in one fruit pile. Figure 4.4.1c represents an example of a one-side salient
image, while Figure 4.4.1a shows an image that is not one-side saliency
centered. Formally, consider two sets of pixels constituting the left pile and
the right pile, %; and %A . Function B, the saliency model, maps the union of
%; and %A to [0, 1]. The most salient location of an image consists of a set of
pixels (ℎ : {G |B(G) > 0.90}.6 An image is one-side saliency centered, if and
only if exactly one of the two conditions hold true: (ℎ∩%; = ∅ or (ℎ∩%A = ∅.

2. Balanced saliency center locations: All of the selected images have saliency
centers equally located on the left side or right side. Half of the images have
saliency centers on the left, and the other half have them on the right.

3. Balanced valuation distribution: There are only two types of fruits: orange
and apple. Each apple is worth 1.3 dollars and each orange is worth 2.2
dollars.7 The total value differences between the two piles range from 0.4
dollars to 4 dollars. There are exactly 50% of rounds with the more rewarding
option located on the left and 50% of rounds with the more rewarding option
on the right.

4. Balanced congruences: An image will be called “congruent” if the more
rewarding option on this image is also the more salient option. Among all
images, we have 50% congruent images and 50% incongruent ones. No image
contains two piles with the same amount of values to avoid confusion.

5This procedure is to avoid any left-right biases when taking images. It is done using a Matlab
function flipimg().

60.90 is a reasonable threshold we set for this particular experiment. It can be anything higher
or lower depending on the stimuli.

7We did a pilot experiment with integer unit values. It turns out that integer values are too easy
for the subjects where we do not see any variation in choices.
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We split all stimuli into high valuation group and low valuation group with 10 images in
each group. Correction rates are plotted accordingly between two conditions: congruent
and incongruent within each group.

Figure 4.5.1: Effect on Correction Rate

5. Balanced number of fruits: Among the total 20 images, 18 images have the
two fruit piles with only one unit in number differences. The last two images
have two unit number differences. Eleven images have more fruits on the left,
and nine images have more fruits on the right.

4.5 Results
More mistakes in incongruent conditions
When the most salient option is also the more rewarding option (the congruent
condition), choice accuracy is 85%. When the salient option is not the highest-value
option (incongruent condition), this level drops to 79%. This drop in accuracy
is not large in magnitude, but is highly significant (p-value = 0.002). It is clear
evidence that pure SAM-predicted salience has a causal effect on individual choice.
The influence of salience is much larger, not surprisingly, when the value difference
between the two choice sets is smaller rather than larger.8

Table 4.5.1 presents the regression results of choices and accuracy using all choice
8Furthermore, we split the total 20 images into high valuation difference set and low valuation

difference set (cut-off = $0.55, each set contains 10 images) and compared the correction rate within
each set (Figure 4.5.1). We found that the correction rate drops from 0.78 to 0.69 (p-value =
0.01) when the value differences between the two options are low. On the other hand, when value
differences are high, people can make the right choice most of the time regardless of the saliency
manipulation (correction rate = 0.94 for both conditions and p-value = 0.91).
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data. Models (1) and (2) regress choices (y=1 indicates left pile) on value differences
between two piles, whether a choice is salient (Saliency), and controls. The result
indicates that valuation and saliency both contribute to the final choices. Subjects of
course choosemore rewarding options to winmoremoney; they also have tendencies
to choose more salient options and make mistakes. Models (3) and (4) regress the
correctness of a choice on the absolute value difference between two alternatives,
congruency property, and controls. The significant coefficient of congruency in
regression (3) confirms the conditional treatment effect that people make more
mistakes when the saliency feature conflicts with the reward feature conditioning
on the same value difference. Furthermore, there is a weak negative interaction
effect over value difference and congruency implying that saliency effect becomes
weak when value difference is large. This result remains robust after clustering the
standard deviation by individuals (see Appendix, Table 4..1).

One boundary condition is endogenous time allocation: When there is no time
limit (N=25), participants in both conditions are near the ceiling of perfect accuracy
(congruent =0.94 and incongruent=0.96).

Response time: Decisions are slower when saliency conflicts with reward
Other than choices, saliency and valuation might affect decisions on other domains
like processing time. In this section, I will show the results of how saliency and
valuation together affect decision times.

We did not find an unconditional treatment effect on response time between congru-
ent trials and incongruent trials (p-value = 0.62). Subjects on average only spend
3.97s to finish the task (f = 2.7B). Table 4.5.3 presents two regression models and
the result implies a conditional treatment effect of congruency on response time.
Model (1) regresses response time, (2) regresses normalized response time9, both on
absolute value difference between two piles (abs(ValueDiff)), absolute fruit number
difference (abs(ItemsMore)), whether congruent (Congruency), interaction between
value difference and congruency, and controls. Both models found a significant neg-
ative effect on response time by varying the congruency condition. In other words,
when the more salient item is also the more rewarding item, subjects can make a
faster decision. Such an effect becomes weaker when the value difference becomes
larger (positive interaction coefficient and negative congruency coefficient).

9Normalized on each person’s average response time
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Dependent variable:
Choice Correctness

(1) (2) (3) (4)

Value Difference 1.575∗∗∗
(0.112)

saliency 0.263∗∗ 0.485∗∗∗
(0.111) (0.143)

congruency 0.472∗∗∗ 0.790∗∗∗
(0.147) (0.212)

abs(valueDiff) 0.947∗∗∗
(0.155)

congruency:abs(valueDiff) −0.365∗
(0.214)

gender:Male 0.066 0.120 −0.114 −0.124
(0.116) (0.148) (0.152) (0.158)

education:Bachelor −0.451∗ −0.714∗∗ −0.131 −0.093
(0.266) (0.350) (0.372) (0.384)

education:High School −0.425 −0.685∗∗ −0.347 −0.329
(0.262) (0.345) (0.365) (0.376)

education:Master −0.282 −0.457 −0.048 0.0002
(0.297) (0.388) (0.415) (0.428)

income:10k to 50k −0.026 0.027 −0.046 −0.064
(0.163) (0.206) (0.207) (0.214)

income:50k to 100k 0.067 0.086 0.040 −0.006
(0.212) (0.271) (0.277) (0.287)

income:200k to 200k 0.262 0.517∗ 0.839∗∗ 0.869∗∗
(0.244) (0.312) (0.384) (0.393)

income:200k and above 0.165 0.469 −0.354 −0.321
(0.294) (0.369) (0.353) (0.367)

Constant 0.314 0.180 1.557∗∗∗ 0.662
(0.307) (0.398) (0.418) (0.443)

Observations 1,309 1,309 1,307 1,307
Log Likelihood -898.679 -585.019 -607.871 -556.045
Akaike Inf. Crit. 1,817.359 1,192.038 1,235.741 1,136.090

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Saliency: whether an option is more salient. Value Difference: left value total - right value
total. abs(ValueDiff) is the absolute term of value differences.

Table 4.5.1: Regression for Saliency on Choice.
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Dependent variable:
Response Time Normalized Response Time

(1) (2)

abs(ValueDiff) −0.725∗∗∗ −0.176∗∗∗
(0.066) (0.014)

Congruency −0.575∗∗∗ −0.123∗∗∗
(0.194) (0.040)

abs(valueDiff):congruency 0.342∗∗∗ 0.079∗∗∗
(0.096) (0.020)

gender:Male −0.019 0.001
(0.137) (0.028)

income:10k to 50k −0.285 0.005
(0.193) (0.039)

income:50k to 100k −0.215 0.014
(0.251) (0.051)

income:200k to 200k 0.063 0.003
(0.286) (0.059)

income:200k and above −0.939∗∗∗ −0.011
(0.349) (0.071)

education:Bachelor 0.313 −0.016
(0.307) (0.063)

education:High School −0.300 −0.013
(0.303) (0.062)

education:Master −0.110 −0.017
(0.344) (0.070)

Constant 6.045∗∗∗ 1.365∗∗∗
(0.443) (0.090)

Observations 1,309 1,309
R2 0.119 0.144
Adjusted R2 0.111 0.136
Residual Std. Error (df = 1296) 2.384 0.487
F Statistic (df = 12; 1296) 14.641∗∗∗ 18.145∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

All variables are the same as table 4.5.1 except that y becomes response time and normalized
response time normalized on a person level.

Table 4.5.3: Regression for Saliency on Response Time.



93

4.6 Results in a more complicated environment
We further test this paradigm in a more complex design (Figure 4.6.1), under which
it will be almost impossible to actually calculate the valuation even if you put enough
attention effort.

New Design
N=25 subjects on prolific participated in the new paradigm session and none of them
has participated in any of the previous sessions. Comparing to the previous design
where each alternative contained only 3 to 5 fruits, now each alternative contains 8
to 15 fruits. And the total number of types rise to six types. We follow the same
stimulus selection mechanism and payment schema as the one described in section
4.4. The flow of the experiment also resembles the previous one described in figure
4.3.1 except that now the subjects have longer time to decide for each trial (20s), and
the unit value of the fruits will always be written on the screen in case they forget.

Figure 4.6.1: A more complex design.

The value of each fruits: apple,4 ;orange,3;banana,7;lime,5 ;pear,3; mango,6

Results
We also find an strong unconditional treatment effect on this new session between
congruency and correctness (p-value = 4 ∗ 10−5). The conditional treatment effect
through a model similar to Table 2.2 is summarized in Table 4.6.1. It shows that
more congruent choice environment, where the more rewarding item is also labeled
salient, can significantly enhance the probability of choosing the more rewarding
option even when the ground truth condition for rewards is more unclear under the
current design.

Different from before, we found no effect on response time both for an unconditional
treatment effect and a conditional treatment effect (regression analysis). Subjects
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now spend on average 7.9s (f = 5.0B) on each trial with a 20s time limit. We can
see that for both experiments, no matter whether it is hard or easy, subjects are far
from using up their time limit even though they still make mistakes.

Dependent variable: correctness
(1) (2) (3) (4)

Congruency 0.979∗∗∗ 0.867∗∗∗ 0.985∗∗∗
(0.343) (0.213) (0.219)

ValueDiff 0.103∗∗∗ 0.082∗∗∗ 0.103∗∗∗
(0.036) (0.029) (0.030)

Interaction 0.001
(0.066)

Constant −0.071 0.457∗∗∗ 0.383∗∗ −0.073
(0.214) (0.120) (0.162) (0.192)

Observations 489 489 489 489
Log Likelihood -290.304 -296.601 -301.186 -290.304
Akaike Inf. Crit. 588.607 597.203 606.371 586.608

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4.6.1: Regression models on correction rate

All the results remain robust after clustering the standard deviations on an individual basis.

4.7 Conclusion and discussion
This chapter demonstrates that bottom-up visual saliency remains important for
reward-based decision making, even if the reward criterion was predetermined and
well-acknowledged. People keep making mistakes even when a more rewarding
opportunity is not hard at all to distinguish. We find that saliency is a key feature
leading to such mistakes that people make more mistakes when saliency is in the
opposite direction of the more rewarding option. An algorithmic approach, saliency
attentive map (SAM), remains to be powerful that it can enhance the correction rate
by increasing the saliency level measured by SAM. Such an effect remains robust
when the choice environment becomes more complicated. But it will go away when
people have unlimited time to consider.

All the experiment findings fit well with a novel rational inattention model, the
optimal solution of which predicts that saliency enhances corrected choice when the
saliency property of choice is consistent with its reward property. Such bias only
appears when the marginal benefit of learning is small.
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Discussions
This model sheds light on how to understand saliency, reward, and mistakes in
an incentivized mechanism. The result is well aligned with the selection theory,
which is trending now in cognitive science (Failing and Theeuwes, 2018; Awh,
Belopolsky, and Theeuwes, 2012) doubting the traditional dichotomy approach
by separating “bottom-up” and “top-down”(Itti and Koch, 2001; Frintrop, Rome,
and Christensen, 2010; Veale, Hafed, and Yoshida, 2017). The selection theory
argues that the visual attention mechanism originates from a reward-based history
effect under a biological view. The selection theory also reflects in the short-term.
Associations between stimuli and rewards imply that memory processes are capable
of shaping the attentional selection. Priming is an example that the current visual
attentionwill be biased by stimuli thatwere selected in a recent past (Della Libera and
Chelazzi, 2009). A complete model should include the entire bilateral relationship
between the reward/goal and the saliency.

This study would be more complete if we applied eye-tracking techniques. Due
to the pandemic of COVID-1910, we were not able to do any in-lab experiment.
This task by itself will be a suitable paradigm to test the task relevancy top-down
control and compare the result to the bottom-up driven saliency. Task relevance
has been identified as the primary driver of attention in many of the natural tasks
before (Hayhoe, 2000; Land, Mennie, and Rusted, 1999; Sprague, Ballard, and
Robinson, 2007). It is also likely to be the case in our fruit experiment. What we did
in this chapter is just to evaluate the effect coming from the feature-driven saliency.
For instance, the true attention patterns might migrate from the bottom-up mode to
the search mode that, in each trial, subjects are “top-down” searching for the most
valuable item. In our case, the more valuable item is an orange, which is not more
visually salient comparing to an apple. Therefore, measuring the fixation change on
an object basis will be a critical move for future studies. Such a change of attention
patterns may lead to the dynamic change of decision strategies accordingly.
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APPENDIX

Dependent variable: Correctness

(1) (2)

Congruency 0.472∗∗∗ 0.539∗∗∗
(0.156) (0.156)

abs(ValueDiff) 0.793∗∗∗
(0.057)

gender:Male −0.114 −0.122
(0.321) (0.321)

income:10k to 50k −0.046 −0.063
(0.439) (0.439)

income:50k to 100k 0.040 −0.005
(0.564) (0.564)

income:200k to 200k 0.839 0.868
(0.592) (0.592)

income:200k and above −0.354 −0.326
(1.115) (1.115)

education:Bachelor −0.131 −0.094
(0.873) (0.873)

education:High School −0.347 −0.328
(0.855) (0.855)

education:Master −0.048 0.001
(0.960) (0.960)

Constant 1.557 0.763
(1.086) (1.086)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This model is the robust version of table 4.5.1

Table 4..1: The robust regression on correction rate.
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C h a p t e r 5

DISCUSSION AND FUTURE DIRECTIONS

5.1 Conclusion
In summary, all dissertation chapters are trying to draw connections among the
computational model of visual saliency, the eye fixation transitions, and the final
choice outcome and make a congruent and complete attention-choice mechanism
based on it.

Chapter four focuses on the role of attention bias in a binary choice problem. It
firstly developed a saliency-enhanced rational inattention model by incorporating
attention factors in the traditional RI model. This theory provides a new perspective
to understand our visual system and the biological meaning of the saliency map.
In this new model, part of the information on reward outcome is given for free (no
information cost). The solution of this new model leads to a common phenomenon
that people tend to think a more salient option is also a more rewarding option.
To test this idea using experiments, we successfully separated the reward property
and the attention property of choice alternatives. We let subjects select between
two choices and found that the visual saliency property can enhance the choice
correction rates when the more rewarding alternative is also labeled salient.

The other two chapters answered another vital question that is how visual saliency
affects strategic decision makings. People have realized the existence of the “focal
point” in games for long but lack a scientific model frame to build up a testable
model. We build up a testable model by borrowing the computational model of
visual saliency (SAM). Applying the SAM algorithm solves three problems. First,
it predicts with substantial accuracy how often people match on different images.
Second, when predicted salience is embedded in a cognitive hierarchy or level-k
model, the model generates a seeker’s advantage. Salience strength estimated from
hider-seeker games can also “portably” predict choices in matching games that have
a different structure. Third, using eye-tracking data and salience, an HMM predicts
numerically what is likely to happen under time pressure. The predicted seeker win
rate under 2s pressure is 14%, which is not too far from the observed win rate with
feedback (15%) and is higher than the 6s win rate of 9%.
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5.2 Limitation
One major limitation of this dissertation, like said before, is that we narrow the big
concept of attention to be only the visual perception biases. The entire attention
concept in decision making definitely goes beyond the visual world. Using the eye
fixation map as a metric for attention is, of course, a more direct measurement than
to infer it from the choice data. More direct measurement will be a direct set of
weights on all choice alternatives when people are doing the value computations.
Such a measurement will be close enough to the “attention” concept in any decision
theory. Unfortunately, our current technology is very far from being able to execute
this perfect measurement.

Even within the visual saliency range, what we know now in the visual system and
the brain is very limited. We already have good computational models for predicting
early gaze patterns using visual scenes. This is usually considered as the “bottom-
up” approach in vision neuroscience though the current deep neural network method
has already included many top-down features like meaningful semantic segments.
Other “top-down” methods are more separated from the line of the image-driven
methods. For example, Henderson and Hayes (2017) developed a meaning map
method which uses small image patches manually labeled by human labelers. Other
studies on the “top-down” perspective go under the topic of visual search, which
is another powerful mechanism of gaze redirection (Itti and Baldi, 2009; Itti and
Koch, 2000; Navalpakkam and Itti, 2007). It is controlled by higher-order brain
areas, including the frontal lobes. These brain areas connect back into the visual
cortex and early visual areas to form an entire saliency network (Itti andKoch, 2001).
There is no congruent model yet that can combine these two pathways. Therefore,
a significant part of the “top-down” guided attention is not under control using our
method.

Another important question that goes beyond the scope of this dissertation is
whether there exists a feedback loop where the attention mechanism is also af-
fected by the reward value distribution. From an evolutionary point of view, the
saliency mechanisms evolve towards the historically rewarding features (Failing and
Theeuwes, 2018). This part of the impact has already been included in the feature
coded algorithm. In short-term, associations between stimuli and rewards imply that
memory processes are capable of shaping the attentional selection. Priming is an
example that current visual attention will be biased by stimuli that were selected in
a recent past (Della Libera and Chelazzi, 2009). A complete model should include
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the entire bilateral relationship between the reward/goal and the saliency.

5.3 Future directions
One possible future direction for simple choice decision making problems is to
study time-variant models of the external attention attributes and choices. For
example, can people resist the bias of attention by actively slowing down the decision
process? Though the aDDM model provides quantitative predictions on response
time distribution. It is on a passive point of view that decision time is determined
intrinsically by the decision mechanism. An extended question on this would be
whether people can consciously notice the potential loss of this bias and actively
control it. Chapter 4 provides a possible way to do it. One can continue the paradigm
of Chapter 4 and calculate the utility equivalence for the attentional biases.

Another continuation of this work could be along the direction of rational inattention
models and see whether there is any biological confound in the brain corresponding
to this model. The rational inattention model is the model for mistakes. Attention
biases can also cause errors. A self-monitoring feedback loop has been recognized
during the single-unit recording technique in the dorsal anterior cingulate cortex
(dACC) area (Fu et al., 2019). A possible biological basis for the attention network
might also exist in this area. If the people self-monitor such attention biases, a
bilateral model between attention and valuation would be closer to the truth.

The hidden Markov model (HMM) we proposed for modeling the choice process
data also has much potential to develop. It can be as general as a drift diffusion
model. Markov models are well connected to the drift diffusion model class if
we view each position during DDM as a hidden state. The HMM model has many
advantages. The hidden structure in HMM from the hidden states to the observations
will make the model flexible to be applied on any given number of choice problems.
One crucial question remaining will be how to choose the best number of hidden
states.

For the strategic part, we only provide an experimental work of the attention model.
A related use case will be worthwhile to explore in the future. For example,
strategic competition often happens in information disclosure activity. Sometimes,
information disclosure can be viewed as a matching game. For example, both the
shopping mall and the shoppers want to know that there is a discount happening.
But sometimes it becomes a hider-seeker game that the shopping mall does not
want the user to notice that the promotions only apply to a small group of products.
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Therefore, we often see that the information about the former case is written in
the focal place while the information of the latter case is often hidden in obscured
places. A testable data set will be useful for the application of our model.
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