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ABSTRACT

Direct numerical simulations (DNS) of reacting flows are routinely performed either
by solving the fully compressible Navier-Stokes equations or using the low Mach
number approximation. The latter is obtained by performing a Mach number expan-
sion of the Navier-Stokes equations for small Mach numbers. These two frameworks
differ by their ability to capture compressibility effects, which can be broadly defined
as phenomena that are not captured by the low Mach number approximation. These
phenomena include acoustics, compressible turbulence, and shocks. In this thesis,
we systematically isolate compressibility effects in subsonic flows by performing
two sets of DNS: one using the fully compressible framework, and one using the
low Mach number approximation. We are specifically interested in the interactions
between turbulence, acoustics, and flames.

The addition of detailed chemistry in the compressible flow solver required the
development of a novel time integration scheme. This scheme combines an iterative
semi-implicit method for the integration of the species transport equations, and
the classical Runge-Kutta method for the integration of the other flow quantities.
It is found to perform well, yielding time steps limited by the acoustic CFL only.
Furthermore, the computational cost per iteration of this hybrid scheme is low, being
comparable to the one for the classical Runge-Kutta method.

After extensive validation, the first application is the investigation of flame-acoustics
interactions in laminar premixed flames. The thermodynamic fluctuations that ac-
company the acoustic wave are shown to significantly impact the flame response.
Using the Rayleigh criterion, the flame-acoustics system is found to be thermo-
acoustically unstable for various fuels, flow conditions, and acoustic frequencies.
As expected, the lowMach number approximation and the fully compressible frame-
work are in good agreement at low frequencies, since the flame is very thin compared
to the acoustic wavelength. The two frameworks differ for very large acoustic fre-
quencies only. In the high frequency limit, the gain reaches a plateau using the
low Mach number approximation, while it goes to zero using the fully compress-
ible framework. This is related to the spatial variations in the acoustic pressure
field, which are not present in the low Mach number approximation. However, for
practically-relevant acoustic frequencies, the low Mach number framework is found
to yield accurate results.
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Next, a numerical methodology to simulate compressible flows in geometries that
lack a natural turbulence generation mechanism is presented. It is found that, unlike
in incompressible flows, special caremust be taken regarding the energy equation and
the presence of standing acoustic modes. When using periodic boundary conditions,
forcing the dilatational velocity field promotes the growth of unstable modes. This
is explained by extracting the eigenvalues of the linearized forced Navier-Stokes
equations. Based on these observations, it is found necessary to force the solenoidal
velocity field only. This methodology is applied first to simulations of subsonic
homogeneous non-reacting turbulence. We present simulations results for turbulent
Mach numbers varying from 0.02 to 0.65. TheMach number dependence of various
quantities, such as the dilatational to solenoidal kinetic energy ratio, is extracted.
TheMach number scaling of all quantities of interest is found to be readily explained
by the low Mach number expansion, specifically the zeroth and first order sets of
equations, for turbulent Mach numbers up to 0.1.

Finally, the interaction between subsonic compressible turbulence and premixed
flames is investigated. Compressibility effects are isolated by comparing results
obtained with the low Mach number approximation and the fully compressible
framework, at the same flow conditions. Compressibility effects on chemistry are
found to be limited for turbulent Mach numbers at least up to 0.4, especially when
contrasted with the large impact of the Karlovitz number. Compressibility effects
give rise to significant thermodynamic fluctuations away from the flame front,
but these remain small compared to the large fluctuations due to the presence of
the turbulent flame brush. The low Mach number approximation thus remains a
valid framework for the Mach numbers considered, when the primary goal is to
characterize the impact of turbulence on the chemical processes at play.
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C h a p t e r 1

INTRODUCTION

Combustion is the main source of energy for power generation and transportation,
and will remain so for decades to come. Currently, in the United States, combustion
accounts for more than 80% of the total energy production, and is expected to still
account for more than 75% of the total energy production in 2050 [4]. Liquid
fuels, such as mixtures of large hydrocarbon molecules, are usually preferred due
to their high energy density. Unfortunately, combustion of hydrocarbon fuels yields
carbon dioxide, which contributes to global warming, and carbon monoxide, nitrous
oxides, soot, and unburnt hydrocarbons, which have a detrimental impact on human
health. Due to its central role in energy production, understanding combustion
at a fundamental level is thus essential to increase efficiency and reduce pollutant
emission.

A turbulent flow is often desired in combustion engines, as it increases mixing of
the reactants, which enhances the combustion process, and yields increased power
output. Hence, most combustion engines operate under turbulent conditions, e.g., in
car engines where air and fuel are injected at great speed while being compressed by
the quickly moving piston. On the other hand, acoustics are usually detrimental to
engines, more specifically continuous-combustion engines such as gas turbines and
rocket engines. The interaction of the acoustic field with the flame can cause large
flow oscillations, resulting in vibrations leading to acoustic noise and mechanical
fatigue. The interaction of turbulence, flames, and acoustics is therefore of great
practical importance.

With the large increase in computational power over the past decades, numerical
simulations have become an essential tool to further our understanding of these
phenomena, by providing researchers with the full state of the flow at every point
and time. In particular, Direct Numerical Simulations (DNS), in which all turbulent
and chemical scales of the flow are resolved, yield high-fidelity results that can be
used to 1) gain physical insight into the combustion dynamics, and 2) guide the
development of reduced-order models.
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1.1 Laminar premixed flames
In premixed flames, fuel and oxidizer (usually air) are mixed before combustion, at
a temperature lower than the auto-ignition temperature of the mixture. We consider
a hydrocarbon fuel CGHH mixed with O2. In its most simple description, the system
is described by a single-step, global reaction, i.e.,

CGHH + aO2O2 → aCO2CO2 + aH2H2O . (1.1)

By doing a simple balance of the carbon and hydrogen atoms on Eq. (1.2), we find
that the coefficient aO2,BC = (G + (H/4)) leads to complete depletion of CGHH and O2.
In other words, we have a sthoichiometric mixture. The equivalence ratio is defined
as

q ≡
-F/-O
(-F/-O)BC

= aO2,BC (-F/-O) , (1.2)

where -� and -$ are the mole fractions of fuel and oxidizer, and (-�/-$)BC is
the ratio of the fuel and oxidizer mole fractions at sthoichiometry. The equivalence
ratio can also be expressed in terms of the mass fractions, i.e.,

q ≡
.F/.O
(.F/.O)BC

=
,OaO2,BC

,F

.F

.O
, (1.3)

where the relation

.B = -B
,B

,
, (1.4)

is used, where,B is themolecular weight of species B, and, is themixture-averaged
molecular weight.

Premixed flames are characterized by their unburnt conditions, i.e., their unburnt
temperature )D, pressure ?0, and q. Mixtures with q < 1 are called lean, and
mixtures with q > 1 are called rich. The laminar flame thickness is defined as

;� =
()1 − )D)
|Δ) |<0G

, (1.5)

where ) is the temperature. The subscript ( )D refers to quantities evaluated in
the unburnt region, i.e., ahead of the flame front, and the subscript ( )1 refers to
quantities evaluated in the burnt region, i.e., behind the flame front. Equation (1.5)
is illustrated in Fig. 1.1 for a =-heptane/air flame at q = 0.9, )D = 800 K, and ?0 = 1
atm. Note that Figure 1.1 only shows a small portion of the full flame, and )1 is
achieved for G � 3 · 10−3 m, due to the slow conversion of carbon monoxide into
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carbon dioxide. The laminar flame solution was obtained with the FlameMaster
code [5], using a 35 species reduced chemical mechanism [6]. The propagation
speed, or laminar flame speed, is computed as

(! =

∫
+
d ¤l�3+

�2dD.�,D
, (1.6)

where dD and .�,D are the density and fuel mass fraction in the unburnt region,
respectively, and �2 is the cross-sectional area. The flame timescale is defined as
g� = ;�/(! .

Figure 1.1: Extraction of the laminar flame thickness.

Figure 1.2 shows the normalized temperature, density, and kinematic viscosity pro-
files for the same flame. It can be seen that temperature increases while density
decreases. Also, kinematic viscosity increases significantly due to its strong depen-
dence on temperature. Figure 1.3 shows some species mass fraction profiles for that

Figure 1.2: Normalized temperature, density, and kinematic viscosity profiles for a
=-heptane/air flame at q = 0.9, )D = 800 K, and ?0 = 1 atm .

same flame. It can be seen in Fig. 1.3a that as the fuel is consumed, intermediate
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species are created, e.g., C2H4. The intermediate species eventually combine into
final combustion products, i.e., CO2 and H2O. It can be seen in Fig. 1.3 that the
conversion from carbon monoxide to carbon dioxide happens on a length scale much
larger than the flame thickness. Hence, when performing simulations involving hy-
drocarbon fuels, we need to have a sufficiently long domain behind the flame front
to capture this process.

(a)

(b)

Figure 1.3: Normalized mass fraction profiles for some species in a =-heptane/air
flame at q = 0.9, )D = 800 K, and ?0 = 1 atm: zoom (a), and full flame (b). Figure
(b) uses the same legend as Fig. (a).

Figure 1.4 shows the normalized fuel consumption rate ¤l�/ ¤l�,<0G and heat release
¤ℎ/ ¤ℎ<0G for the same flame. It can be seen that heat release lags behind the fuel con-
sumption, since the fuel needs to be broken down into small hydrocarbon molecules
before being converted into combustion products. The long tail for the heat release
is due to the slow conversion of CO into CO2, which is an exothermic reaction.

Differential diffusion occurs when species and heat diffuse at different rates. It is
characterized by the Lewis number

!4B =
U

�B

, (1.7)
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Figure 1.4: Normalized fuel consumption rate and heat release at q = 0.9, )D = 800
K, and ?0 = 1 atm .

where U is the thermal diffusivity, and �B is the mass diffusivity of species B. A
common assumption in combustion modelling is to assume unity Lewis numbers,
i.e., !4B = 1. The simulation results presented in this section so far are obtained
with non-unity Lewis numbers using a mixture-averaged formulation [7]. We now
include results obtained with !4B = 1. In Fig. 1.5, we show the species profiles
of carbon dioxide and =-heptane in temperature space when differential diffusion is
present (!4B ≠ 1), and absent (!4B = 1). It can be seen that assuming unity Lewis
numbers changes the flame structure significantly. This result is not surprising as
premixed flames involve a balance between convection, diffusion, and chemistry.
Figure 1.6 shows the magnitude of these different terms for the transport equation
of the fuel. For ) < 1000 K, convection is mostly balanced by diffusion. For
) > 1000 K, convection, diffusion, and chemistry all play an active role, until the
fuel is depleted at) ≈ 1700K. Finally, differential diffusion also impacts the laminar
flame speed. For the simulation with unity Lewis numbers, (! = 1.73 m/s, while
(! = 2.25 m/s when differential diffusion is present.

1.2 Flame-Acoustics Interactions
1.2.1 Overview
Thermo-acoustic instabilities have been studied extensively since Lord Rayleigh
published his pioneering work on the topic in 1878 [8]. These instabilities arise
in continuous-combustion systems, such as the “singing flame”, and more prob-
lematically in the design of practical devices such as gas turbines, rocket engines,
and ramjets [9]. They are characterized by large fluctuations of the flow field in
the combustor. Low-frequency oscillations can cause significant mechanical vibra-
tions in the system, which in turn increase fatigue and noise. In some cases, it can
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(a) Carbon dioxide (b) =-heptane

Figure 1.5: Normalized species mass fraction profiles in temperature space when
differential diffusion is present (blue) or absent (red).

Figure 1.6: Magnitude of the convection, diffusion, and chemistry terms in the fuel
transport equation at q = 0.9, )D = 800 K, and ?0 = 1 atm.

even lead to catastrophic failure [10]. In other instances, the oscillations can cause
flame blow-off. These instabilities result from the constructive interaction of heat
release and acoustic pressure fluctuations. In the absence of acoustic damping, the
combustion system is unstable when the Rayleigh criterion is satisfied, i.e.,∭

+

?0 ¤ℎ′3+ > 0 , (1.8)

where ?0 and ¤ℎ′ are the acoustic pressure and fluctuating heat release rate, respec-
tively, and + is the volume of the combustor.

The development of the Rocketdyne F-1 engine, used in the first stage of the Saturn
V rocket which served as the main launch vehicle during the Apollo missions, is
perhaps the most famous embodiment of the problematic nature of thermo-acoustic
instabilities. Early in the development of the engine, pressure oscillations on the
order of 400% of the mean chamber pressure (7757 kPa) were observed [11]. This
led to the creation of “Project First” in 1962, which aimed to solve the combustion
stability problems that plagued the engine. From 1962 to 1965, of approximately
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3,200 full scale tests that were performed during the development of the F1 engine,
about 2,000 were conducted as part of Project First [11]. A lot of progress has
been made since then on understanding and addressing combustion instabilities.
However, despite over half a century of research on combustion instabilities, they
remain problematic during the design phase of new combustion systems [9].

1.2.2 Feedback mechanisms
A review of the different flame-acoustic interaction mechanisms in premixed com-
bustion is given by Lieuwen et al. [9]. Figure 1.7 summarizes the main pathways
that can lead to flame-acoustics interactions. Fluctuations in heat release can con-
ceptually be divided into two broad categories: changes in the global geometry
of the flame and changes in the local internal structure of the flame (local flame
speed fluctuations). The former is usually associated with the velocity fluctuations
induced by the acoustic wave. They can cause displacement of the mean flame
front (flame location fluctuations) and changes in the total flame area, e.g., through
Rayleigh-Taylor instabilities. Changes in the local internal structure of the flame
can be due to the acoustic velocity field (e.g., through strain and curvature effects),
and the thermodynamic fluctuations that accompany an incident acoustic wave (i.e.,
changes in density and temperature). The impact of the acoustic thermodynamic
fluctuations on the flame response are sometimes referred to as direct pressure ef-
fects [12]. In a combustor, many or all of these pathways may play a role in the
overall thermo-acoustic stability of the system.

Figure 1.7: Diagram of the different pathways that can lead to interactions between
flames and acoustic waves.

In the low frequency limit, simple scaling arguments indicate that the magnitude of
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the unsteady heat release due to direct pressure effects is O(") smaller than the
one due to the fluctuations induced by the velocity field, where " ≡ (!/2 is the
Mach number. Since " � 1 for most flames, this suggests that the impact of the
thermodynamic fluctuations may be negligible for low frequencies [13]. However,
although the steady-state response is fairly weak, the unsteady response can cause
the local heat release to exceed its quasi-steady value by an order of magnitude [9].
Furthermore, the acoustic pressure and the unsteady heat release are expected to be
in phase for a wide range of frequencies [2, 3, 12, 14]. The Rayleigh criterion [8] is
thus satisfied and the flame-acoustics system is unstable when acoustic damping is
neglected. It is thus unclear whether the thermodynamic-induced impact in practical
combustion systems can be neglected, especially at high frequencies [9]. The aim
of this thrust is to better characterize direct pressure effects, i.e., the flame response
subjected to acoustic thermodynamic fluctuations.

1.2.3 Direct pressure effects
A significant amount of theoretical work has been performed on direct pressure
effects using asymptotic analysis, either with a one-stepmodel, e.g, [15–19] or a two-
step model [20]. All of these studies have emphasized the role played by the relative
time and length scales of the flame and pressure perturbation, i.e., lg� and ;�/_.
Here, l = 2c 5 is the angular frequency of the acoustic perturbation, g� = ;�/(! is
the flame time scale, ;� = ()1 − )D)/max |m)/mG | is the flame thickness, (! is the
laminar flame speed, and _ is the acoustic wavelength. While one-step chemical
models are limited, the two-step model by Clavin and Searby [20] has been shown
to agree well with numerical simulations of hydrogen/air flames using detailed
chemistry [14]. Unfortunately, the analytical expressions obtained with a two-
step model are significantly more complex than the ones obtained using a one-step
model. Furthermore, for hydrocarbon fuels, a two-stepmodel might not be sufficient
to represent the flame dynamics. Hence, while these theoretical studies provide
invaluable insight, numerical simulations are necessary to investigate the behavior
of hydrocarbon fuels, especially larger molecules. The existing experimental [21]
and numerical [12, 14] literature is scarce, and focuses on hydrogen and small
hydrocarbons (methane and propane). The flame-acoustics interactions involving
large hydrocarbon species, which are commonly used in many practical combustion
devices, have not been explored before, and are the main focus of this research
thrust.
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1.3 Turbulence
1.3.1 Overview
Turbulent flows are omnipresent in both nature and human-made devices, and as a
result have received a lot of attention throughout the last decades [22]. Turbulence
is a vast subject, and we do not attempt to provide an extensive review of turbulence
research in this section. Here, our aim is only to review some basic concepts,
which will be useful later on in this thesis. Specifically, we discuss the different
turbulent scales, and the different techniques used to obtain and sustain turbulence
in simplified computational geometries such as periodic boxes.

Turbulence can be thought of as a random collection of coherent swirling structures
of different sizes, often called eddies. The largest eddies can be created by different
mechanisms, e.g., by the mean shear gradient in a jet. In a turbulent flow, the
largest eddies are unstable, and break up into smaller eddies. The smaller eddies
then break up into even smaller eddies, until the eddies are small enough that they
are stable and dissipated by the action of molecular viscosity. This conceptual
process, called the energy cascade, was proposed by Richardson in 1922 [23]. In
1941, Kolmogorov sought to answer fundamental questions such as: What are the
characteristic velocity and time scale of the eddies, and what is the size of the
smallest eddies? These questions, and more, are answered by Kolmogorov’s three
hypotheses [24] (in Russian, see [25] for the English translation).

The first Kolmogorov hypothesis is that the small-scale turbulent motions are sta-
tistically isotropic at sufficiently high turbulent Reynolds number

'4C =
D′;

a
, (1.9)

where D′ is the characteristic velocity, a is the kinematic viscosity,

; =
D′3

n
(1.10)

is the integral length scale, and

n =
τ : ∇u
d

(1.11)

is the dissipation rate [26]. Large scale motions are usually anisotropic, and their
directionality depend heavily on the mechanism by which they are created, e.g., a
turbulent jet. This hypothesis implies that as eddies break up into smaller ones,
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they lose information about the directionality of the larger scales due to the chaotic
nature of turbulence. In other words, the small scale turbulent motions are always
isotropic at sufficiently high Reynolds numbers, and are thus universal.

The secondKolmogorov hypothesis, calledKolmogorov’s first similarity hypothesis,
states that at sufficiently high Reynolds numbers, the statistics of the small-scale
turbulent motions are uniquely determined by n , and a. Applying dimensional
analysis using these two quantities, the Kolmogorov microscales are constructed,
i.e., the Kolmogorov length scale

[ =
©­«
a3

n

ª®¬
1/4

, (1.12)

the Kolmogorov time scale

g[ =
©­«
a

n

ª®¬
1/2

, (1.13)

and the Kolmogorov velocity scale

D[ = (an)1/4 . (1.14)

The Reynolds number associated with these scales is

'4[ =
D[[

a
= 1 . (1.15)

The Reynolds number being a measure of the ratio of the inertial forces to the
viscous forces, Eq. (1.15) implies that viscous forces play an important role when
eddies reach the size of the Kolmogorov length scale, and are thus dissipated at this
scale.

The third Kolmogorov hypothesis, called Kolmogorov’s second similarity hypoth-
esis, states that at sufficiently high Reynolds number, the statistics of the turbulent
motions in the inertial subrange have a universal form uniquely determined by their
size ;8, and n . The inertial subrange is defined as the intermediate range of scales
[ � ;8 � ; in which turbulent motions are statistically isotropic but are still rela-
tively unaffected by viscosity, i.e., they break up into smaller eddies, following the
concept of energy cascade. The energy spectrum is defined as

: =

∫ ∞

^=0
� (^)3^ , (1.16)
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where : is the mean kinetic energy of the flow, ^ = 2c/;8 is the wavenumber, and
� (^) represents the contribution to the kinetic energy of all the velocity Fourier
modes in the range ^ < |κ| < ^ + 3^. The expected form of the energy spectrum in
the inertial subrange

� (^) = �^n2/3^−5/3 (1.17)

is obtained by applying dimensional analysis to Eq. (1.16) using Kolmogorov’s
second similarity hypothesis.

1.3.2 Compressible turbulence
A large portion of the literature on turbulent flows focuses on incompressible flows,
i.e, in the limit when the turbulent Mach number

"C =
√

2:/2 , (1.18)

goes to zero, where 2 is the sound speed. Note that some authors define the
turbulent Mach number as "C =

√
:/2 [26]. In this work, we use Eq. (1.18), as used

by many authors [27–30]. Compressible turbulent flow, i.e., flows with "C > 0,
have received far less attention than their incompressible counterpart, and are not as
well understood [29, 31, 32].

When studying compressible turbulent flows, it is useful to perform a Helmholtz
decomposition of the velocity field into its solenoidal component

uB = ∇ ×A , (1.19)

whereA is a vector potential, and dilatational component

u3 = ∇q , (1.20)

where q is a scalar potential, and

u = uB + u3 . (1.21)

This decomposition is unique up to a constant. By definition, we have that

∇ · uB = 0 , (1.22)

and
∇ × u3 = 0 . (1.23)

In practice, to obtain uB and u3 from the full velocity field, one can take its
divergence

∇ · u = ∇ · (uB + u3) = ∇2q , (1.24)
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where the vector identity ∇ · (∇ × A) = 0 has been used. Equation (1.24) is a
Poisson equation that can be solved for q, which can then be used to retrieve u3
using Eq. (1.20). Finally, uB is obtained from Eq. (1.21).

In compressible turbulence without external heat addition, there are three main
regimes 1 [26], depending on the impact of compressibility on the turbulence dy-
namics:

• The low-Mach number quasi-isentropic regime, in which "C is small and
interactions between the dilatational and solenoidal components of the velocity
field are weak. The base flow is solenoidal, and the dilatational component
obeys a quasi-linear acoustic dynamics. In the limit "C → 0, the flow field is
purely solenoidal, i.e., incompressible;

• The nonlinear subsonic regime, in which "C < 1, but non-linear phenomena
arise due to the compressibility effects. In other words, the dilatational mode
is not restricted to the linear acoustics only. In some cases, dilatational effects
cause turbulence-induced very small shocks (referred to as eddy shocklets),
which can impact the overall flow dynamics. A commonly accepted threshold
for the onset of shocklets is "C > 0.4 [26, 33];

• The supersonic regime, in which "C > 1. In this regime, dilatational effects
have a large impact on the flow field, and there are strong interactions between
the dilatational and solenoidal modes.

In this work, we focus on moderate "C < 1. In Chapter 5, we investigate compress-
ible homogeneous non-reacting turbulence in the low-Mach number quasi-isentropic
regime, and the nonlinear subsonic regime, through Direct Numerical Simulations
(DNS). It is important to stress that even for "C < 1, eddy shocklets (weak shocks)
occur [26, 33]. However, the shocklet strength is proportional to "C , hence they
become weaker as "C is decreased. Eddy shocklets are resolved when the Kol-
mogorov length scale is employed to determine to computational grid size, up to
"C ≈ 0.6 [29]. Hence, a shock-capturing method is not required in this work, since
all simulations are performed at "C ≤ 0.6.

1In his book, Sagaut [26] identifies four main regimes of compressible turbulence. In our
description, we omit the low-Mach number thermal regime, in which external heat addition, e.g.,
through chemical reactions, causes the dilatational component of the velocity field not to be governed
by acoustic phenomena only. For "C → 0, this regime is governed by the low Mach number
approximation, detailed in Sec. 2.1.2. In the present section, we focus on compressible turbulent
flows without external heat addition only. Hence, we omit this regime.
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1.3.3 Direct numerical simulations of turbulent flows
DNS are a powerful tool to study turbulent flows. In this framework, the flow is
resolved down to the Kolmogorov length scale. When constructing a computational
grid, a commonly accepted criterion is that the cell spacing should be no more than
twice the Kolmogorov length scale, i.e., ΔG < 2[ [22]. Using n = D′3/;, one gets
from Eq. (1.12) that

ΔG

;
∼ '4−3/4

C . (1.25)

Furthermore, as ΔG decreases, if an explicit time integration scheme is used, ΔC has
to be lowered to accommodate the convective Courant–Friedrichs–Lewy condition
(CFL) condition, i.e,

.ΔC ≤
�<0GΔG

D′<0G
, (1.26)

where�<0G depends on the integration method. To simulate one eddy turnover time

g =
:

n
, (1.27)

the number of time steps =ΔC scales like

=ΔC =
g

ΔC
∼ '43/4

C . (1.28)

Hence, for a 3D flow with ΔG = ΔH = ΔI, the cost of a turbulent DNS scales like

=ΔC

(ΔG/;)3
∼ '43

C . (1.29)

It is apparent from Eq. (1.29) that simulating high Reynolds number turbulent flows
using DNS is computationally challenging. The increase in computational power
over the last decades has enabled researchers to conduct numerical simulations at
ever increasing Reynolds numbers, e.g., in channel flows [34]. The goal of this
research thrust is not to simulate yet another record-breaking '4C . Instead, we aim
to provide insight into compressible homogeneous non-reacting turbulence (Chapter
5), and compressible turbulent flames (Chapter 7) at moderate '4C and "C .

1.3.4 Turbulence forcing
Since DNS require all the scales to be resolved, simulations of complete geometries
(e.g., turbulent jet) can be prohibitively costly. Hence, when performing a DNS, one
often chooses to simulate a well-selected portion of the flow (e.g., the centerline of
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the jet) [35]. However, by doing so, scales larger than the computational domain are
removed. Shear from the large scales is responsible for kinetic energy injection at
the small scales; their omission eliminates the mechanism by which turbulence can
be sustained. In configurations lacking natural turbulent kinetic energy injection
mechanisms such as triply periodic computational boxes, a statistically stationary
turbulent state is usually achieved through the use of an additional forcing term in
the momentum equations.

Most of the methods to sustain turbulence found in the literature have initially
been developed in the context of DNS of homogeneous isotropic turbulence in
triply-periodic domains. The most common method involves adding an external
force in Fourier space, restricted to the lowest wavenumbers [31]. Other methods
use stochastic forcing terms or ensure that the integrated kinetic energy remains
constant. Another approach was proposed by Lundgren [36]. By considering the
momentum equation for the fluctuating part of the velocity field, he suggested to
add a term of the form 58 = �D8 to the momentum equation in physical space, the
so-called linear forcing method. A review of the different techniques used to sustain
turbulence is given by Rosales et al. [37]. However, while all these techniques aim
to mimic turbulence generation due to the large scales, none of them was derived
directly from the Navier-Stokes equations.

Recently, Dhandapani et al.[38] derived a physics-based forcing term to simulate
the fluctuating velocity field in a shear layer using a triply periodic box. Similarly,
Rah et al.[35] derived the proper forcing term for the centerline of a jet from the
Navier-Stokes equations. In both cases, they performed a Reynolds decomposition
of the velocity field into a mean (large scale) component and fluctuating (small
scale) component. Then, they considered the governing equations for the fluctuating
velocity field. They found that the main contributions to the forcing term are due to
the mean velocity gradients, and the normalization of the velocity field to enforce
periodicity. The resulting forcing term was found to be linear in the velocity field,
i.e., of the form

f = A · u , (1.30)

whereA is the so-called forcing matrix. This form of the forcing term is reminiscent
of the approach proposed by Lundgren [36]. Lundgren’s approach is a special case
of Eq. (1.30), withA being a diagonal matrix.

In Chapter 5, we seek to extend the approach of Dhandapani et al.[38] and Rah et
al.[35] to compressible flows, focusing on the centerline of a jet.
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1.4 Turbulence-Flame Interactions
Most practical combustion devices operate under turbulent conditions, and hence,
a lot of research has been devoted to understand turbulence-flame interactions [39].
The turbulent flame speed () is defined like the laminar flame speed (! (Eq. 1.6),
i.e.,

() =

∫
+
d ¤l�3+

�2dD.�,D
, (1.31)

where �2 is the cross-sectional area. However, while (! is usually constant, ()
fluctuates in time due to the stochastic nature of turbulence. The Karlovitz number
is defined as the ratio of the flame time scale to the turbulent time scale, i.e.,

 0 =
g�

g[
=
;�

(!

√
D′3

;a
. (1.32)

Equation (1.32) can also be expressed in terms of the ratio of the relevant length
scales

 0 =
;2
�

[2 , (1.33)

where the relation

;� ≈
a

(!
(1.34)

has been used. The Karlovitz number is typically evaluated using the viscosity in
the unburnt region aD. When comparing results obtained with different unburnt
conditions, it is more appropriate to evaluate viscosity at the reaction zone, since
this is where turbulence has the biggest impact on the chemical processes at play
[40, 41]. The reaction zone Karlovitz number is defined as

 0X =
X2
�

[2
X

, (1.35)

where [X is the Kolmogorov length scale at the reaction zone, i.e., at the temperature
corresponding to the peak fuel consumption rate in the turbulent flame. The laminar
reaction zone thickness X� is defined as the region in which the fuel consumption
rate ¤l�/ ¤l�,<0G > 0.05 in the corresponding laminar flame, as shown in Fig. 1.8.
For a =-heptane/air flame at q = 0.9, )D = 800 K, and ?0 = 1 atm, X� ≈ 0.3;� .

The two ratios ;/;� and D′/(! are related as

D′

(!
= '4C

©­«
;

;�

ª®¬
−1

=  02/3 ©­«
;

;�

ª®¬
1/3

=  0
2/3
X

©­«
;

;�

ª®¬
1/3 ©­«

X�

;�

ª®¬
4/3 ©­«

[

[X

ª®¬
4/3

, (1.36)
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Figure 1.8: Extraction of the laminar reaction zone thickness X� , defined as the
region in which ¤l�/ ¤l�,<0G > 0.05.

where Eqs. (1.9), (1.32), (1.34), and (1.35) have been used. Turbulent combustion
regimes are traditionally defined with the ratio of the turbulent velocity fluctuations
to the laminar flame speed D′/(! , and the ratio of the integral length scale to the
laminar flame thickness ;/;� [39, 42]. The scalings given by Eq. (1.36) can be used
to determine the different regimes of premixed turbulent combustion. Figure 1.9
shows the regime diagram proposed by Peters [39], also referred to as the Borghi
diagram. The '4C = 1 line separates laminar from turbulent flames. For  0 < 1,
flames are either in the corrugated (D′ > (!) or wrinkled (D′ < (!) flamelet regimes.
In the flamelet regime, turbulence is too weak to disrupt the flame front, and the
turbulent flame can be viewed as a collection of locally one-dimensional laminar
flames. For  0 > 1 and  0X < 1, the turbulent flame is in the thin reaction zone. In
this regime, the Kolmogorov length scale is smaller than the flame thickness, and the
preheat zone, i.e., the region ahead of the flame which is balanced by convection and
diffusion, is expected to thicken. However, turbulence is still too weak to penetrate
the reaction layer, which is much smaller than the flame thickness (see ¤l�/ ¤l�,<0G in
Fig. 1.3a). For  0X > 1, the Kolmogorov length scale at the reaction zone is smaller
than the laminar reaction zone thickness, and turbulence is expected to disrupt the
chemical processes at play. It should be noted that the regime diagram only provides
a qualitative picture of turbulent combustion. Turbulent flows involve a myriad of
time and length scales that depend on the specific configuration considered. Hence,
it is a simplification to consider single length and time sales to characterize turbulent
combustion. Also, the regime diagram is inherently rooted in the lowMach number
approximation, since the two non-dimensional numbers, i.e., D′/(! , and ;/;� , do
not involve the sound speed. The Mach number is another non-dimensional number
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that might change the combustion characteristics, and can be thought of as a third
axis not represented on the Borghi diagram.

In Fig. 1.9b, it should be noted that there exist few numerical studies of turbulent pre-
mixed combustion using detailed chemistry. Some of these simulation results were
obtained using the fully compressible formulation of the Navier-Stokes equations
(Sankaran et al.[47], Hawkes et al.[48], Wang et al.[49]), and some were obtained
under the low Mach number approximation (Aspden et al.[45], Lapointe et al.[40,
46], Savard et al.[50, 51]), which will be presented in Sec. 2.1.2. Theoretically,
this approximation is only exact for "C = 0. For small "C , it is expected to per-
form well under certain conditions, e.g., when the combustion system is not prone
to thermo-acoustic instabilities. At larger "C , compressibility effects may become
important: turbulence is characterized by large density and temperature fluctua-
tions, and transition from deflagration to detonation was observed [52]. Also, from
Figs. 1.9a and 1.9b, it can be seen that there is almost no overlap between the
conditions investigated through simulations and experiments. This is partly due to
the prohibitively expensive computational resources needed to perform simulations
with ;/;� � 1. The turbulent Mach number of many experiments is considerable,
e.g., 0.3 < "C < 1.0 for the piloted premixed jet burner investigated by Dunn et
al. [53].

In discussing possible compressibility effects, it is important to realize that the
turbulent Mach number is related to the Karlovitz and Reynolds numbers as

"C =
√

3 02/3 ©­«
;

;�

ª®¬
1/3

(!

2
=
√

3'4C
©­«
;

;�

ª®¬
−1
(!

2
. (1.37)

Hence, for a fixed ;/;� and (!/2, increasing the Karlovitz number leads to a larger
turbulent Mach number. As computers become more powerful, researchers probe
the high Karlovitz number limits to understand combustion in the broken reaction
zone. In Fig. 1.9b, it can be seen that all simulations falling into this regime were
performed under the low Mach number approximation. For the simulations by
Lapointe et al.[40, 46], the largest turbulent Mach number is "C = 0.31, which is
when one might expect compressibility effects to become important. Hence, there
is a need to verify that the low Mach number approximation remains valid at such
high Karlovitz numbers, which are often accompanied by high "C .
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(a) Experiments

Broken reaction zone

Thin reaction zone

Corrugated

flamelets

Wrinkled

flameletsLaminar

(b) Simulations

Figure 1.9: Regime diagrams showing fuels and flow conditions: (a) Survey of
turbulent premixed flame experiments, adapted from Smolke et al.[43]; (b) Survey
of turbulent premixed flame simulations using detailed chemistry, adapted from
Savard [44]: Aspden et al.[45], Lapointe et al.[40, 46], Sankaran et al.[47], Hawkes
et al.[48], Wang et al.[49], Savard et al.[50, 51].



19

1.5 Objectives and outline
In summary, the goal of this thesis is to perform numerical simulations to explore
compressibility effects in subsonic flows by investigating interactions between 1)
flames, 2) turbulence, and 3) acoustics. This is achieved by using both the low
Mach number approximation and the fully compressible framework. The specific
objectives are as follows:

• Develop a time integration scheme for compressible flowswith stiff chemistry;

• Investigate flame-acoustics interactions in laminar premixed flames (1 and 3);

• Design a forcing scheme for turbulent compressible flows in simplified ge-
ometries;

• Gain insight into compressible non-reacting subsonic homogeneous turbu-
lence (2 and 3);

• Investigate compressibility effects in turbulent premixed flames (1, 2, and 3).

The two sets of governing equations, i.e., the fully compressible framework and
the low Mach number approximation, are presented in Chapter 2. The numerical
methodology for the fully compressible framework, including the novel time inte-
gration scheme for reacting flows using stiff chemistry, is presented in Chapter 3. In
Chapter 4, we investigate flame-acoustics interactions in laminar premixed flames
for various fuels and flow conditions. In Chapter 5, we design a forcing scheme for
compressible flows in simplified geometries, i.e. in configurations that lack natural
turbulent kinetic energy injection from the large scale shear. Using the forcing tech-
nique presented in Chapter 5, we investigate subsonic, non-reacting, compressible
homogeneous turbulence in Chapter 6. Chapter 7 deals with compressibility effects
in turbulent premixed flames. Finally, Chapter 8 summarizes the findings.
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C h a p t e r 2

GOVERNING EQUATIONS

2.1 Governing equations
In the present thesis, simulations are performed using both the low Mach number
approximation and the fully compressible Navier-Stokes equations. In this section,
we provide a brief overview of the two frameworks.

2.1.1 Fully compressible framework
Weconsider the fully compressibleNavier-Stokes equations for unsteady, chemically-
reacting flows. The continuity, momentum, energy, and species transport equations
are given by

md

mC
+ ∇ · (du) = 0 , (2.1)

mdu

mC
+ ∇ · (du ⊗ u) = −∇? + ∇ · τ , (2.2)

md4C

mC
+ ∇ · (u (d4C + ?)) = −∇ · q + ∇ · (τ · u) , (2.3)

md.B

mC
+ ∇ · (du.B) = −∇ · jB + d ¤lB , B = 1, ..., =B , (2.4)

where d is the density, u is the velocity vector, ? is the pressure, =B is the number of
species transported, and.B, jB, ¤lB are the mass fraction, diffusion flux, and chemical
source term of species s, respectively. The total energy

4C = 4 +
|u|2

2
, (2.5)

is the sum of the internal energy 4 and the kinetic energy. The viscous stress tensor
is given by

τ = `(∇u + (∇u)) − 2/3(∇ · u)I) , (2.6)

where ` is the molecular viscosity of the mixture, and Stoke’s hypothesis is assumed
to be valid, i.e., we neglect the contribution of bulk viscosity. While the effects of
bulk viscosity may not be negligible in the presence of shocks [54], they are often
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neglected in subsonic flows [55]. 1 The species diffusion flux is given by

jB = −
d�B

,
∇ (,.B) + d.Bu2 , (2.7)

where �B are the species diffusivities, and

u2 =

=B∑
B=1

�B

,
∇ (,.B) , (2.8)

is the correction velocity to ensure conservation of mass. The molecular weight of
the mixture, is given by

, =
©­«
=B∑
B=1

.B

,B

ª®¬
−1

, (2.9)

where,B is the molecular weight of species B. The heat diffusion flux is given by

q = −_∇) +
=B∑
B=1

ℎBjB , (2.10)

where _ is the thermal conductivity of the mixture, ) is the temperature, and ℎB is
the enthalpy of species B. The system of governing equations Eqs. (2.1) to (2.4) is
closed with the ideal gas law

? =
d')

,
, (2.11)

where ' is the universal gas constant. The internal energy 4 can be computed from
the enthalpy ℎ = 4 + ?/d, which is given by

ℎ =

=B∑
B=1
.BℎB , (2.12)

where
ℎB = ℎB,A4 5 +

∫ )

)A4 5

2?,B ())3) , (2.13)

where 2?,B is the species heat capacity at constant pressure, and ℎB,A4 5 is the species
reference enthalpy, i.e., the species enthalpy at )A4 5 .

2.1.2 Low Mach number approximation
The low Mach number approximation is widely used for the simulation of reacting
flows [12, 14, 39, 40, 45, 46, 50, 56–64]. Since this thesis involves comparisons of
results obtained using the fully compressible framework and the low Mach number
approximation, we briefly summarize how the low Mach number approximation is
obtained, to emphasize how the two frameworks are related.

1The effects of bulk viscosity are negligible because, at low Mach numbers, the dilatational
component of the velocity field is orders of magnitude smaller than the solenoidal component.
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2.1.2.1 Derivation

We follow the derivation by Majda & Sethian [65]. First, we perform the nondi-
mensionalization of the flow variables, i.e., we set

d∗ =
d

dA
u∗ =

u

DA
C∗ =

C

!A/DA
G∗ =

G

!A
4∗ =

4

?A/dA
,

?∗ =
?

?A
`∗ =

`

`A
_∗ =

_

_A

(2.14)

where the starred quantities are nondimensional, and ?A , )A , dA , DA , `A , _A , !A are
the reference pressure, temperature, density, velocity, dynamic viscosity, thermal
conductivity, and length scales, respectively, chosen such that the nondimensional
quantities are O(1) for any low reference Mach number

"A =
DA√
W?A/dA

, (2.15)

where W = 2?,A/2E,A is the heat capacity ratio, 2?,A and 2E,A being the reference
specific heats at constant pressure and volume, respectively. We shall not consider
the species transport equation since its lowMach number counterpart is the same as
Eq. (2.4). Inserting the quantities defined in Eq. (2.14) into Eqs. (2.1) to (2.3), we
obtain

md∗

mC∗
+ ∇∗ · (d∗u∗) = 0 , (2.16)

md∗u∗

mC∗
+ ∇∗ · (d∗u∗ ⊗ u∗) = −

1

W"2
A

∇∗?∗ +
1
'4A
∇∗ · τ ∗ , (2.17)

md∗4∗

mC∗
+ W"2

A

md∗ |u∗ |2/2
mC∗

+ ∇∗ · (u∗ (d∗4∗ + ?∗))

+ W"2
A ∇∗ · (u∗d∗ |u∗ |2/2) = −

W

W − 1
1

'4A%AA
∇∗ · q∗ +

W"2
A

'4A
∇∗ · (τ ∗ · u∗) ,

(2.18)

where '4A = dADA!A/`A and %A = aA/UA are the reference Reynolds and Prandtl
numbers, respectively, aA = `A/dA is the reference kinematic viscosity, and UA =
_A/(dA2?,A) is the reference thermal diffusivity. Note that Eq. (2.15) inherently
assumes that the reference pressure and density are representative of the thermo-
dynamic state of the flow, i.e., ?∗, d∗ = O(1). One can choose different reference
quantities, e.g., for pressure [66], leading to a different set of non-dimensional equa-
tions. The different choices and implications for ?A are briefly reviewed in Appendix
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A. In Eqs.(2.17) – (2.18), we note a dependence in W"2
A . We now proceed to expand

all flow variables in power series of n ≡ W"2
A , e.g.,

(du)∗ = (du)∗0 + n (du)
∗
1 + n

2(du)∗2 + O("
3
A ) , (2.19)

d∗ = d∗0 + n d
∗
1 + n

2d∗2 + O(n
3) , (2.20)

?∗ = ?∗0 + n ?
∗
1 + n

2?∗2 + O(n
3) , (2.21)

4∗ = 4∗0 + n4
∗
1 + n

24∗2 + O(n
3) , (2.22)

u∗ = u∗0 + nu
∗
1 + n

2u∗2 + O(n
3) , (2.23)

etc. The product of Eq. (2.20) and (2.23) gives

d∗u∗ = d∗0u
∗
0 + n

[
u∗0d

∗
1 + u

∗
1d
∗
0
]
+ n2 [

u∗0d
∗
2 + u

∗
2d
∗
0 + u

∗
1d
∗
1
]
+ O(n3) . (2.24)

Since d∗u∗ = (du)∗, we have from Eqs. (2.19) and (2.24) that

(du)∗0 = d
∗
0u
∗
0 , (2.25)

(du)∗1 = u
∗
0d
∗
1 + u

∗
1d
∗
0 , (2.26)

(du)∗2 = u
∗
0d
∗
2 + u

∗
2d
∗
0 + u

∗
1d
∗
1 . (2.27)

Continuity (Eq. (2.16)) becomes
md∗0
mC∗
+ ∇∗ · (du)∗0

 + n

md∗1
mC∗
+ ∇∗ · (du)∗1

 + n2

md∗2
mC∗
+ ∇∗ · (du)∗2

 + O(n3) = 0 .

(2.28)
Since Eq. (2.28) is supposed to hold for arbitrary n , the coefficients in the square
brackets must vanish, i.e.,

md∗
;

mC∗
+ ∇∗ · (du)∗; = 0 , (2.29)

for ; = 0, 1, 2. Specifically, the zeroth order continuity equation is given by

md∗0
mC∗
+ ∇∗ · (d∗0u

∗
0) = 0 , (2.30)

It should be noted that this expansion is singular owing to the pressure term being
divided by n → 0 in Eq. (2.17). Inserting Eqs. (2.19)–(2.23) in Eq. (2.17), we obtain
the singular order

∇∗?∗0 = 0 , (2.31)
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and zeroth order

md∗0u
∗
0

mC∗
+ ∇∗ · (d∗0u

∗
0 ⊗ u

∗
0) + ∇

∗?∗1 =
1
'4A
∇∗ · τ ∗0 , (2.32)

momentum equations. Following a similar procedure, the zeroth order energy
equation is given by

md∗04
∗
0

mC∗
+ ∇∗ · (u∗0

(
d∗04
∗
0 + ?

∗
0
)
) = −

W

W − 1
1

'4A%AA
∇∗ · q∗0 . (2.33)

In dimensional form, the zeroth order continuity equation (Eq. (2.30)), zeroth order
momentum equation (Eq. (2.32)), and zeroth order energy equation (Eq. (2.33)) are
given by

md

mC
+ ∇ · (du) = 0 , (2.34)

mdu

mC
+ ∇ · (du ⊗ u) = −∇?ℎ + ∇ · τ , (2.35)

md4

mC
+ ∇ · (u (d4 + ?C)) = −∇ · q , (2.36)

where we have dropped the subscripts, except for pressure where we need to dis-
tinguish between the thermodynamic pressure (?C = ?0), and the hydrodynamic
pressure (?ℎ = ?1). This set of equation is closed with the zeroth order equation of
state

?C =
d')

,
. (2.37)

In this work, we refer to Eqs. (2.34)–(2.37), i.e., the zeroth-order set of governing
equations in the low Mach number expansion, as the low Mach number approxima-
tion, as it is commonly referred to in the literature, e.g., [40, 45, 46, 50, 56, 58–60,
62–64, 67–71]. It is also interchangeably referred to as the zero Mach number
approximation [12, 14, 61, 65, 72, 73].

In the low Mach number simulations presented in this work, the energy equation is
solved in its temperature form. To obtain it, we first rewrite Eq. (2.36) as

d
mℎ

mC
+ du · ∇ℎ =

3?C

3C
− ∇ · q , (2.38)

where Eq. (2.34) has been used to write Eq. (2.38) in advection form. Differentiating
Eq. (2.12), one obtains

3ℎ = 2?3) +
=B∑
B=1

ℎB3.B , (2.39)
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where Eq. (2.13) has been used, along with the relation for the heat capacity at
constant pressure of the mixture

2? =

=B∑
B=1
.82?,B . (2.40)

Inserting Eq. (2.39) in Eq. (2.38), one obtains

d2?
m)

mC
+ d2?u · ∇) =

3?C

3C
+ ∇ · (_∇)) −

=B∑
B=1

2?,BjB · ∇)

−
=B∑
B=1

ℎB

d
m.8

mC
+ du · ∇.B + ∇ · jB

 .
(2.41)

The term in the square brackets in Eq.(2.42) can be simplified using the species
transport equation (Eq. (2.4)). One then obtains

d2?
m)

mC
+ d2?u · ∇) =

3?C

3C
+ ∇ · (_∇)) −

=B∑
B=1

2?,BjB · ∇) −
=B∑
B=1

ℎBd ¤lB . (2.42)

It is more convenient in the low Mach number approximation to solve the energy
equation in temperature form (Eq. (2.42)) than solving Eq. (2.36). Hence, the full
set of governing equations is given by Eqs. (2.34), (2.35), (2.42), (2.4), along with
Eq. (2.37).

2.1.2.2 Incompressible limit

In this section, we seek to recover the incompressible limit, i.e., the necessary
conditions under which the velocity field is divergence-free. Expanding Eq. (2.34),
one obtains

�d

�C
= −∇ · u = 0 , (2.43)

where � ( )/�C = m ( )/mC + u · ∇( ) is the material derivative. Hence, if density
is constant along a particle path, the flow is incompressible. Under the following
conditions:

• Constant thermodynamic pressure ?C , such that the first term on the RHS of
Eq. (2.42) vanishes;

• No conduction, such that the second term on the RHS of Eq. (2.42) is zero;
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• No diffusion, such that the third term on the RHS of Eq. (2.42) and the first
term on the RHS of Eq. (2.4) vanish;

• No chemical reaction, such that the fourth term on the RHS of Eq. (2.42) and
the second term on the RHS of Eq. (2.4) are zero;

Eqs. (2.42) and (2.4) reduce to
�)

�C
= 0 , (2.44)

and
�.B

�C
= 0 , B = 1, ..., =B , (2.45)

which together with Eq. (2.37) yields

�d

�C
=
d

?C

�?C

�C
−

=B∑
B=1

©­«
d,

,B

�.B

�C

ª®¬ −
d

)

�)

�C
= 0 . (2.46)

Hence, the incompressible limit is recovered from the low Mach number approxi-
mation if there is no conduction, no diffusion, no chemical reaction, and the thermo-
dynamic pressure is constant. In this limit, Eqs. (2.34) and (2.35) are self-contained,
i.e., the energy equation and equation of state are unneeded.

2.1.2.3 Remarks

There are significant differences between the low Mach number approximation and
the fully compressible framework. In the fully compressible formulation, there exists
only a single pressure ?. In the low Mach number approximation, there are two
pressures: the (small) hydrodynamic pressure ?ℎ, which appears in the momentum
equation and ensures that continuity is observed, and the (large) thermodynamic
pressure ?C , which appears in the energy equation and the equation of state and
is spatially constant. This changes the character of the equations. Consider the
compressible Euler equations for a single fluid, i.e., Eqs. (2.1)–(2.3) with τ = 0
and q = 0. By taking the divergence of the momentum equation, one can get the
following wave-like equation for pressure

m

mC

©­«
1
W?

�?

�C

ª®¬ = ∇ · (u · ∇u) + ∇ · ©­«
1
d
∇?ª®¬ , (2.47)
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where � ( )/�C ≡ m ( )/mC + u · ∇( ) is the material derivative. In the case of small
perturbations with no mean flow, Eq. (2.47) simplifies to the wave equation

m2?′

mC2
= 22∇2?′ , (2.48)

where ?′ � ? is the fluctuating pressure, and 2 =
√
W?/d is the sound speed.

Eq. (2.48) governs the transport of acoustic waves in a still medium. Now, consider
the lowMach number number equations for a single fluid. For simplicity, we assume
that the initial density field is uniform, i.e., d(x, C = 0) = d0, and that the conditions
listed in Sec. 2.1.2.2 are satisfied, i.e., ∇ · u = 0. Taking the divergence of the
momentum equation (Eq. (2.35)), one obtains

∇2?ℎ = −d0∇ · (u · ∇u) . (2.49)

Equation (2.49) is the Poisson equation for pressure in the incompressible limit,
which is elliptic. For the compressible case, Eq. (2.48) (and by extension Eq. (2.47))
has a hyperbolic character. If a disturbance is made in a compressible field, then
not every point in space will feel the disturbance at once. Disturbances will travel
at the sound speed in the case of Eq. (2.48). On the other hand, because of its
elliptic character, disturbances made in a low Mach number field are felt at once
essentially everywhere. One of the consequences is that acoustics are non-existent
in this framework. The same goes for shocks, i.e., they require the governing
equations to support the existence of acoustic waves, which is not the case in the
low Mach number approximation. Another difference between the two frameworks
is the existence of a viscous term in the compressible energy equation, which is not
retained in the lowMach number approximation since it is O("2). This mechanism
accounts for the conversion of kinetic energy into internal energy due to viscous
heating.

2.1.3 Chemical model
The species production rate in Eq. (2.4) is given by

¤lB =
,B

d

='∑
9=1

a 9 ,B ¤' 9 , (2.50)

where =' is the number of reactions in the mechanism, and a 9 ,8 is the stoichiometric
coefficient of the 8Cℎ species in the 9 Cℎ reaction (negative for reactants and positive
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for products). The reaction rate is given by a modified Arrhenius expression [74]

¤' 9 = � 9)= 9 exp ©­«−
�0, 9

')

ª®¬
=(∏
B=1

©­«
d.B

,B

ª®¬
aA
9,B

, (2.51)

where � 9 is the Arrhenius rate constant, �0, 9 is the activation energy, = 9 is a constant,
and aA

9 ,8
≡ −min(a 9 ,8, 0).
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C h a p t e r 3

NUMERICAL METHODOLOGY

[1] Beardsell, G. and Blanquart, G., “A cost-effective semi-implicit method for
the time integration of fully compressible reacting flows with stiff chem-
istry,” Journal of Computational Physics, 2020. doi: https://doi.org/
10.1016/j.jcp.2020.109479,

In this chapter, the focus is on describing the compressible flow solver used in this
work. This solver is based on the code developed by Boeck et al. [75], which is itself
based on the low Mach number flow solver NGA [76]. Details about the original
(low Mach) formulation can be found in Desjardins et al. [76], Savard et al. [77],
and previous theses [44, 78, 79]. We propose a novel time integration scheme that 1)
alleviates the stiffness introduced by detailed chemical mechanisms, and 2) is high-
order for the non-reacting portions of the flow, e.g., for the transport of acoustic
waves away from the flame [1]. This scheme, which blends the semi-implicit
midpoint method for the species transport and the classical fourth-order Runge-
Kutta scheme (RK4) for the transport of the other flow variables, is presented in
Sec. 3.1. In Sec. 3.2, we describe the spatial discretization. Section 3.3 describes the
conductivity, viscosity, diffusivity, and chemical kinetics models used in this work.
In Sec. 3.4, we detail how the boundaries of the computational domain are treated
when periodicity is precluded, e.g., in the direction perpendicular to a deflagration
front. Specifically, we provide a description of the Navier-Stokes Characteristic
Boundary Conditions (NSCBC). In Sec. 3.5, we apply the numerical framework to
various test cases. Finally, in Sec. 3.6, the main findings are summarized.

3.1 Time integration
3.1.1 Motivation
When using explicit time integration schemes, the various physical processes at play
impose a limit on the maximum stable time step that can be used. These processes
include viscous diffusion, conduction, species diffusion, chemistry, convection, and
acoustics. When detailed chemical models are employed, oftentimes the smallest
timescales of the chemical system are smaller than the acoustic time scale. Also,
especially when differential diffusion is present, the diffusive CFL for some of the
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smaller species can be smaller than the acoustic CFL. In this thesis, we seek to
develop a time integration scheme that is limited by the acoustic CFL only. We
also considered going beyond, and perform an implicit correction for the acoustics.
Appendix G presents the concept and preliminary work.

In Appendix C, we perform a stability analysis on the RK4 scheme and the iterative
explicit midpoint method, which are the building blocks of the hybrid scheme
presented in this section. From this analysis, we obtain estimates of the maximum
time step for the convective/acoustic and viscous/diffusive terms. Note that we only
consider uniform meshes, i.e., ΔG = ΔH = ΔI, which are used throughout this
thesis. For both the RK4 scheme and iterative explicit midpoint method with four
sub-iterations, a necessary CFL condition for the acoustics is

ΔC <
ΔG

|u| + 2 . (3.1)

Note that the acoustic CFL condition is always more stringent than the convective
one, since acoustic waves travel at a speed |u| + 2, while convective waves travel at
speed |u|. For a three dimensional flow, the viscous CFL condition is

ΔC <
ΔG2

12a
, (3.2)

and the diffusion CFL condition is

ΔC <
ΔG2

12�B

. (3.3)

The maximum time step for the chemical source terms can be estimated from the
chemical Jacobian. In Chapter 7, we perform DNS of two n-heptane/air turbulent
flames using a 35 species detailed chemical model [6], which we refer to as Flame
C* and Flame D*. The flow conditions for these flames are given in Table 3.1, and
the associated maximum explicit time steps associated are listed in Table 3.2. It can
be seen that for both flames, the viscous CFL condition is less restrictive than the
one for the acoustics. However, the maximum stable explicit time steps associated
with diffusion and chemistry are smaller than the one for the acoustics. Since we
want to use time steps that are restricted by the acoustic CFL only, we therefore seek
to treat these terms implicitly.

In Sec. 3.1.2, we first briefly describe the iterative explicit midpoint method. Then,
in Sec. 3.1.3, we review the semi-implicit correction for the chemical source terms
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Table 3.1: Flow conditions for the turbulent flame configurations.

)D [K] ?0 [atm] q  0D
Flame C* 800 1 0.9 300
Flame D* 800 1 0.9 1010

Table 3.2: Maximum explicit time steps associated with the different terms for the
turbulent flame configurations.

Acoustics Viscous Diffusion Chemistry
Flame C* 8 · 10−9 2 · 10−8 3 · 10−9 5 · 10−10

Flame D* 3 · 10−9 5 · 10−9 9 · 10−10 5 · 10−10

proposed by Savard et al. [77]. In Sec. 3.1.4, we describe how to perform a semi-
implicit correction for the diffusion terms. Finally, in Sec. 3.1.5. we describe the
novel time integration method, in which the semi-implicit midpoint method is used
to advance the species mass fractions in time, while the RK4 scheme is used for the
integration of the other flow variables, i.e., mass, momentum, and energy.

3.1.2 Iterative explicit midpoint method
The iterative explicit midpoint scheme applied to Eq. (2.4) yields

(dY )=+1:+1 = (dY )
= + ΔC

[
C∗: +D

∗
: +


∗
:

]
, B = 1, ..., =B (3.4)

where C,D, and 
 are the discretized convection, diffusion, and chemical source
terms, respectively. The superscripts refer to the timestep at which the quantities
are evaluated, = being the current timestep, while starred quantities are evaluated at
the half timestep, e.g., 
∗: = 


(
Y ∗
:

)
, with Y ∗

:
=

(
Y =+1
:
+ Y =

)
/2. The subscripts

refer to the sub-iteration number, : being the current sub-iteration.

3.1.3 Semi-implicit correction for the chemical source term
Chemistry being the most limiting phenomenon regarding the maximum stable
timestep, we seek to perform an implicit correction on 
, i.e., we want to compute

∗:+1 instead of 


∗
: in Eq. (3.4). In practice, this can be done by evaluating

(dY )=+1:+1 = (dY )
=+

ΔC

C∗: +D∗: +
∗: +
1
2
©­«

m


m (dY )
ª®¬
=+1

:

(
(dY )=+1:+1 − (dY )

=+1
:

) ,
(3.5)



32

where (m
/m (dY ))=+1: is the chemical Jacobian. We can rewrite Eq. (3.5) as

(dY )=+1:+1 = (dY )
=+1
: −

©­­«I −
ΔC

2
©­«
m


mdY

ª®¬
=+1

:

ª®®¬
−1

·θ: = (dY )=+1: − (J: )
−1 ·θ: , (3.6)

where J: acts as a preconditioner on the residual of Eq. (3.4) at the current sub-
iteration

θ: ≡ (dY )=+1: − (dY )= − ΔC
[
C∗: +D

∗
: +


∗
:

]
. (3.7)

As discussed in more detail by Savard et al. [77], the choice of J: is somewhat
arbitrary and affects the convergence properties only, e.g., setting J: = I yields the
iterative explicit method. One can compute J: according to Eq.(3.6) [80], which
yields a fully implicit formulation for the chemical source term. However, this can
be computationally expensive, since the chemical Jacobian is a full matrix, and J:
needs to be computed and inverted at each sub-iteration. It is simpler and faster to
use the idea proposed by Savard et al.[77], which is to approximate the chemical
Jacobian by its diagonal, i.e., set

J: = I +
ΔC

2
©­«
¤l−B
.B

ª®¬
=+1

:

≡ I −
ΔC

2
�=+1: , (3.8)

where ¤l−B is the consumption rate of species s. The matrix �=+1: is a very good
approximation of the diagonal of [m
/m (dY )]=+1: since the production rate of a
species ¤l+B is usually not a function of its own mass fraction, and ¤l−B is usually linear
in the species mass fraction, i.e.,

md ¤lB
m (d. )B

=
md ¤l+B
m (d. )B

−
md ¤l−B
m (d. )B

≈ 0 −
¤l−B
.B
. (3.9)

Note that since one has to compute ¤l−B to get ΩB, this approach only amounts to
one extra division applied to the residuals of the species transport equations. This
approximation is expected to perform extremely well since the maximum timestep
due to the acoustics is small, see Secs. 5.1 to 5.3 in [77].

3.1.4 Semi-implicit correction for the diffusion terms
We first review how to perform a semi-implicit correction on the diffusion term
only, i.e., without a correction for the chemical source term. In Eq. (2.4), we want
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to computeD∗
:+1 instead ofD

∗
:
. This is done by rewriting Eq. (2.4) as

(dY )=+1:+1 = (dY )
=+

ΔC

C∗: +D∗: +
∗: +
1
2
©­«
mD

m (dY )
ª®¬
=+1

:

(
(dY )=+1:+1 − (dY )

=+1
:

) ,
(3.10)

where mD/m (dY ) is the Jacobian matrix associated with the diffusion term. Sim-
ilarly to what was done with the chemical source term in Sec. 3.1.3, we rewrite
Eq. (3.10) as

(dY )=+1:+1 = (dY )
=+1
: − (J: )−1 · θ: , (3.11)

where

J: = I −
ΔC

2
©­«
mD

mdY

ª®¬
=+1

:

(3.12)

acts as a preconditioner on the residual of Eq. (3.4) at the current sub-iteration

θ: ≡ (dY )=+1: − (dY )= − ΔC
[
C∗: +D

∗
: +


∗
:

]
. (3.13)

In multiple dimensions, inverting Eq. (3.12), which is required by Eq. (3.11), can be
computationally expensive, despite the sparse nature of the linear system. We use
the method of Approximate Factorization to convert the single, multi-dimensional
problem into smaller, one-dimensional problems that can be solved efficiently using
a tridiagonal solver. The Jacobian matrix associated with the diffusion term can be
split exactly into directional transport operators FG , FH, FI, leading to

J: = I −
ΔC

2
(
FG + FH + FI

)
, (3.14)

which we rewrite as

J: =
©­«I −

ΔC

2
FG

ª®¬ ©­«I −
ΔC

2
FH

ª®¬ ©­«I −
ΔC

2
FI

ª®¬ + O(ΔC2) . (3.15)

This procedure introduces a second-order temporal error term, which is the same
order of accuracy as the midpoint method; hence, it does not negatively impact the
order of accuracy of the scheme.

When both the semi-implicit correction for the chemical source term and the dif-
fusion term are desired, we again use the method of Approximate Factorization to
convert the preconditioner

J: = I −
ΔC

2

(
�=+1: + FG + FH + FI

)
, (3.16)
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into the product of three tridiagonal matrices and one diagonal matrix, i.e.,

J: =
©­«I −

ΔC

2
�=+1:

ª®¬ ©­«I −
ΔC

2
FG

ª®¬ ©­«I −
ΔC

2
FH

ª®¬ ©­«I −
ΔC

2
FI

ª®¬ + O(ΔC2) . (3.17)

3.1.5 Embedding of the semi-implicit midpoint method with the RK4 scheme
The RK4 scheme requires the evaluation of the time derivative at the half timestep
(2nd and 3rd stages) and at the full timestep (4th stage). The iterativemidpoint method
yields both, hence we can embed the midpoint method within the RK4 scheme in a
straightforward manner.

Equations (2.1) to (2.4) are rewritten as

m

mC

[
Q

(dY )

]
=

[
f&

f.

]
, (3.18)

where Q = [d, (du), (d4C)]) . The proposed method is detailed in Table 3.3,
and is completed with Q=+1 = Q= + k1/6 + k2/3 + k3/3 + k4/6, and (dY )=+1 =
(dY )=+14 . In the absence of semi-implicit correction, the first three iterations of the
iterative explicit midpoint method and the first three stages of the RK4 scheme are
mathematically identical, which is what makes the embedding simple. Note that we
still solve for the flow variablesQ with the RK4 scheme.

As part of the evaluation of f , Y is obtained as Y = (dY )/∑=B
B=1(d. )B. This

specification is important since discretely d ≠
∑=B
B=1(d. )B, as a result of using

different time integrators for continuity and the species transport equations. The
discrepancy between d and

∑=B
B=1(d. )B is quantified in Sec. 3.5.1. Finally, in the

absence of mixing and/or chemistry, this approach reverts to the RK4 scheme and
is hence 4th order. This property is verified in Sec. 3.5.1.2.

3.2 Spatial discretization
3.2.1 Description
The compressible and low Mach number solvers used in this work share a lot in
common, especially regarding the spatial discretization. We briefly review the
discretization and point out the similarities between the low Mach and fully com-
pressible discretizations. The reader is referred to Ref. [76] for more details.

To improve the accuracy of the divergence term in the continuity and species trans-
port equations, the computational grid is staggered in space, i.e., the scalars are
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Figure 3.1: Staggered grid arrangement in 2D. The scalars are stored at the cell
centers (black circles), the x-momentum on the vertical edges (red crosses), and the
y-momentum on the horizontal edges (blue squares).

stored at the cell centers, while momentum is stored at the cell faces. This ar-
rangement is depicted in Figure 3.1 for a two-dimensional uniform Cartesian mesh.
We use second-order accurate interpolation and differentiation stencils. In the G1

direction, they are given by

k
G1
=
k(G1 + ΔG1/2, G2, G3) + k(G1 − ΔG1/2, G2, G3)

2
,

Xk

XG1
=
k(G1 + ΔG1/2, G2, G3) − k(G1 − ΔG1/2, G2, G3)

ΔG1
,

(3.19)

and are similarly defined in the G2 and G3 directions. Defining 68 = (dD)8, the semi-
discrete continuity equation is identical to its low Mach counterpart and is given
by

md

mC
+

3∑
8=1

X68

XG8
= 0 . (3.20)

The treatment of the momentum equation is identical to the one given in Desjardins
et al.[76], i.e.,

m68

mC
+

3∑
9=1

X
(
6 9
G8D8

G 9
)

XG 9
+
X?

XG8
=

3∑
9=1

Xg8 9

XG 9
, (3.21)

where

g8 9 = `
G8
G 9 ©­«

XD8

XG 9
+
XD 9

XG8
− X8 9

2
3

3∑
:=1

XD:

XG:

ª®¬ . (3.22)

In Eq. (3.22), X8 9 is the Kronecker delta, not to be confused with the differentiation
operator X( )/XG8. Unnecessary interpolations are avoided, e.g., `G8

G 9 is simply `
for 8 = 9 in Eq. (3.22).
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The third-order Bounded QUICK scheme [81] (BQUICK) is used for the convective
term in the species transport equations. A bounded scheme such as BQUICK is
ideally suited for the species transport since the physical bounds for the species mass
fractions are obvious, i.e., 0 ≤ .B ≤ 1. For the energy equation, the convective term
is discretized using central differences. The full details of the discretization of the
species transport and energy equations are given in Appendix B. Here, we focus on
the discretization of the viscous transport term in Eq. (2.3).

Analytically, the viscous term in the total energy equation can be written as

∇ · (τ · u) = u · (∇ · τ ) + ∇u : τ , (3.23)

where u · (∇ · τ ) is the viscous term in the kinetic energy equation, and n = ∇u : τ
is the viscous term in the internal energy equation (viscous dissipation). We want
Eq. (3.23) to be verified discretely. First, we consider the discrete form ofu · (∇ ·τ ).
Dotting Eq. (3.21) with u, it is defined unambiguously as

�u · (∇ · τ ) = 3∑
8=1

D8

3∑
9=1

Xg8 9

XG 9

G8

, (3.24)

where g8 9 is computed using Eq. (3.22) and the tilde (̃ ) denotes a discretized quantity.
The interpolation ( )G8 in Eq. (3.24) brings the quantities from the cell faces to the cell
center, where the summation over 8 is performed. To illustrate this in 2D, Fig. 3.2
shows where the quantities in Eq. (3.24) are located on the grid, for DXgGG/XG

G

(Fig. 3.2a), and DXgGH/XH
G
(Fig. 3.2b). Second, we look at the discrete form of the

viscous term in the internal energy equation, i.e, the dissipation rate n = ∇u : τ .
Performing products of quantities before interpolating them, the discrete form of n
can be written as

�∇u : τ =
3∑
8=1

3∑
9=1

©­­­«X8 9g8 9
XD8

XG 9
+ (1 − X8 9 )g8 9

XD8

XG 9

G8
G 9ª®®®¬ . (3.25)

Figure 3.3 shows where the quantities are located in 2D for gGGXD/XG (Fig. 3.3a),
and gGHXD/XH

G H

(Fig. 3.3b).

Now, we seek to derive what should be the discrete form of the viscous term in the
total energy equation �∇ · (τ · u), such that

�∇ · (τ · u) = 3∑
8=1

D8

3∑
9=1

Xg8 9

XG 9

G8

+
3∑
8=1

3∑
9=1

©­­­«X8 9g8 9
XD8

XG 9
+ (1 − X8 9 )g8 9

XD8

XG 9

G8
G 9ª®®®¬ . (3.26)
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(a) DXgGG/XG
G

(b) DXgGH/XH
G

Figure 3.2: Discretization of the viscous term in the kinetic energy equation.

(a) gGGXD/XG (b) gGHXD/XH
G H

Figure 3.3: Discretization of the viscous term in the internal energy equation
(dissipation rate).

We start by expanding Eq. (3.26) for 8 = 1, 9 = 2:

�
m (gGHD)
mH

= D
XgGH

XH

G

+ gGH
XD

XH

G H

=
1

2ΔG
(
D<,= (gGH,<,=+1 − gGH,<,=) + D<+1,= (gGH,<+1,=+1 − gGH,<+1,=)

)
+

1
4ΔG

(
gGH,<,= (D<,= − D<,=−1) + gGH,<+1,= (D<+1,= − D<+1,=−1)

)
+

1
4ΔG

(
gGH,<,=+1(D<,=+1 − D<,=) + gGH,<+1,=+1(D<+1,=+1 − D<+1,=)

)
=
X

XH

(
gGHD

HG
)
.

(3.27)
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Hence, generally, for the off-diagonal terms, we have

D8
Xg8 9

XG 9

G8

+ g8 9
XD8

XG 9

G8
G 9

=
X

XG 9

(
g8 9D8

G 9
G8
)
. (3.28)

We now consider the diagonal terms. We expand Eq. (3.26) for 8 = 1, 9 = 1:�
m (gGGD)
mG

= D
XgGG

XG

G

+ gGG
XD

XG

=
1

2ΔG
(
D<,= (gGG,<,= − gGG,<−1,=) + D<+1,= (gGG,<+1,= − gGG,<,=)

)
+

1
ΔG

(
gGG,<,= (D<+1,= − D<,=)

)
=
X

XG
(DgGGG) .

(3.29)

Hence, generally, for the diagonal terms, we have

D8
Xg88

XG8

G8

+ g88
XD8

XG8
=

X

XG8
(D8g88G8 ) . (3.30)

It follows that the discrete form of the viscous term in the total energy should be

�∇ · (τ · u) = 3∑
8=1

3∑
9=1

©­«X8 9
X

XG 9

(
D8g8 9

G8
)
+ (1 − X8 9 )

X

XG 9

(
g8 9D8

G 9
G8
)ª®¬ , (3.31)

which is the form that we implement in the solver.

3.2.2 Evaluation of primitive variables
The governing equations are in conservative form, i.e., we advance d, (du), (dY ),
and (d4C) in time. However, many terms in Eqs. (2.1)–Eqs. (2.4) require the
knowledge of the primitive variables u, ) , ?, and .B. At each sub-iteration, these
quantities must therefore be computed. The velocities are computed as

D8 =
68

dG8
. (3.32)

The species mass fractions are computed as

.B =
(d. )B∑=B
:=1 (d. ):

. (3.33)



40

This ensures that
∑=B
:
.: = 1. Temperature ) is not known explicitly, and an implicit

equation is solved using Newton’s method

)<+1 = )< +
©­«
d')<

,
− ©­«d

=B∑
B=1

ℎB ()<).B − d4C +
1
2
d |u|2ª®¬ª®¬

/ (
d

=B∑
B=1

2E,B ()<).B

)
,

(3.34)
where ℎB and 2E,B are the species enthalpies and heat capacities at constant volume,
respectively, and < is the iteration number. Equation (3.34) is solved until the
desired convergence is achieved (close to machine precision), and )1 is taken to
be the converged temperature at the previous sub-iteration/timestep. Pressure ? is
then obtained via the ideal gas law. The term d |u|2 in Eq. (3.34) is computed as∑3
8=1 68D8

G8 to be consistent with the lowMach formulation (see Eq. 22 in Ref. [76]).

3.3 Chemistry
3.3.1 Conductivity and viscosity models
The mixture thermal conductivity is computed as [82]

_ =
1
2
©­­«
=B∑
B=1

-B_B +

=B∑
B=1

-B

_B


−1ª®®¬ , (3.35)

where -B are the species mole fractions, and the species thermal conductivities _B
are calculated using a modified version of Eucken’s formula [83]. The mixture
viscosity is obtained using the same form [40], i.e.,

` =
1
2
©­­«
=B∑
B=1

-B`B +

=B∑
B=1

-B

`B


−1ª®®¬ , (3.36)

where the species viscosities `B are obtained using traditional kinetic theory [84].

3.3.2 Species diffusivity models
For the one-dimensional simulations presented in Chapter 4, a mixture-averaged
formulation is used for the species diffusivities [7]. We also considered using multi-
component diffusion, which is more precise than the mixture-averaged formulation,
but it was found that the improvements were marginal [85]. To reduce the computa-
tional cost for the turbulent flame simulations presented inChapter 7, we use constant
non-unity Lewis numbers. The Lewis numbers are extracted from one-dimensional
simulations using a mixture-averaged formulation. For each species, we extract the
Lewis number at the location where the species mass fraction is maximum. It was



41

Table 3.4: Detailed chemical mechanisms used in the present work.

Mechanism Fuel(s) # species # reactions
#1 CH4 52 634
#2 H2 9 54
#3 = − C7H16 / = − C12H26 107 1205
#4 C7H16 35 217
#5 C7H16 180 2168

shown by Burali et al. [86] and Savard [44] that, in turbulent n-heptane/air flames,
differences in chemical source terms and species profiles are negligible whether the
mixture-averaged model or the constant non-unity Lewis number approximation is
used.

3.3.3 Chemical kinetics
In this work, different detailed chemical mechanisms are employed. These mech-
anisms contain a set of chemical reactions, along with the parameters required to
evaluate the Arrhenius expressions described in Sec. 2.1.3. They also contain the
thermodynamic data required to compute the species enthalpies ℎB and heat capac-
ities 2?,B. In Table 3.4, we provide the number of species and reactions for each
chemical mechanism, along with the fuel(s) we use them for. Mechanism #1 is the
well-established GRI-Mech 3.0 mechanism [87], which includes 52 species and 634
reactions. Mechanism #1 is used for the combustion of methane and air. Mechanism
#2 is the 9 species, 54 reactions mechanism by Hong et al. [88], for which some of
the rate constants have recently been updated [89, 90]. We use Mechanism #2 for
the combustion of hydrogen and air. Mechanism #3 is CaltechMech 2.4 [91] , from
which the aromatic species have been removed, which is justified by the slightly lean
condition considered. We useMechanism #3 for the combustion of n-heptane/air, as
well as n-dodecane/air. It contains 107 species and 1205 reactions. Mechanism #4
is the reduced mechanism employed by Bisetti et al. [6], which we use for the com-
bustion of n-heptane and air. In Mechanism #4, the aromatic species have also been
removed, which yields a total of 35 species and 217 reactions. Finally, Mechanism
#5 is JetSurF version 2.0 [92], from which the aromatic species and the molecules
containing more than 7 carbon atoms have also been removed, again justified by the
slightly lean conditions considered. Mechanism #5 contains 180 species and 2168
reactions, and we use it for the combustion of n-heptane and air.
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A note on JetSurF version 2.0

The inverses of the eigenvalues of the chemical Jacobian gJac, full correspond to the
different chemical timescales of the system [77]. They are plotted in Fig. 3.4 for
Mechanisms #4 and #5. The chemical Jacobians are evaluated in a one-dimensional
premixed n-heptane/air flame at an equivalence ratio q = 0.9 and at standard con-
ditions, at the location of maximum heat release. The species associated with
each eigenvalue can be determined using the approximation of the diagonal of the
chemical Jacobian detailed in Sec. 3.1. As shown in Fig. 3.4a, the two smallest
timescales for Mechanism #4 are O(10−9B) and are associated with the pentyl and
heptyl radicals. For Mechanism #5, the smallest timescale is O(10−14B) and is also
associated with a pentyl radical. However, it is smaller than for Mechanism #4 by
six orders of magnitude. After careful inspection of the thermodynamic properties
of 2−C5H11 (2-pentyl), we found out that its enthalpy of formation was erroneous.
More precisely, it is about 115:�/<>; higher than for 1-pentyl radicals, whereas
the values for 2-alkyl radicals are commonly lower than for 1-alkyl radicals by about
10:�/<>; [93].

A new chemical Jacobian was computed, using the thermodynamic properties of
3−C5H11 instead of the original ones for 2−C5H11. For this new chemical Jacobian,
the timescale associated with 2−C5H11 is significantly larger, and closer to the other
pentyl radicals. It is is shown by the red dot in Fig. 3.4b. It is possible that JetSurF
version 2.0 suffers from other issues that artificially increase its stiffness. However,
one of the goals of this thesis is to show that the time integration scheme proposed in
Sec. 3.1 can handle very stiff mechanisms well. That is why the unmodified JetSurF
mechanism will be used for all simulations.

(a) Mechanism #4 (b) Mechanism #5

Figure 3.4: Comparison of the timescales for the full chemical Jacobian gJac, full and
its diagonal approximation gJac, diag.
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3.4 Boundary conditions
In this section, we discuss how the boundaries are treated for flow configurations
that are non-periodic in one direction.

3.4.1 Grid arrangement
The spatial arrangement at the inlet and outlet is the same for the low Mach number
approximation and the fully compressible framework. The inlet spatial arrangement
is shown in Fig. 3.5. In the 8 = 8<8=+1 cells, the second cells in G from the inflow, we
have the regular grid arrangement detailed in Sec. 3.2. At 8<8=, the first cell of the
computational grid, we have, in addition to the regular grid arrangement, the scalars
at 8 = 8<8=−1 at the cell faces in G, and the H and I momentum at 8 = 8<8=−1 at the cell
edges. The inlet quantities are the G momentum at 8 = 8<8=, the H and I momentum
at 8 = 8<8=−1, and the scalars at 8 = 8<8=−1. The inlet quantities are thus all on
the same plane, and are either imposed (Dirichlet boundary conditions), or treated
with the Navier-Stokes Characteristics Boundary Conditions (NSCBC), detailed in
Sec.3.4.2. The outlet grid arrangement is depicted in Fig. 3.6. At 8 = 8<0G , we have

Figure 3.5: 2D grid arrangement at the inlet for configurations that are non-periodic
in the G direction. The scalar locations are denoted by black circles, the G-momentum
by red crosses, and the H-momentum by blue squares.

the regular staggered grid arrangement described in Sec. 3.2. The outlet quantities
are the flow quantities at 8 = 8<0G+1, which all lie on the same plane. At the outlet,
we either use Neumann boundary conditions or the NSCBC.

3.4.2 Navier-Stokes Characteristics Boundary Conditions
When simulating compressible flows, setting Dirichlet or Neumann boundary con-
ditions yields reflecting boundaries for acoustic waves. This is often undesired, as
one may want the acoustic waves generated inside the domain to be allowed to leave
at the boundaries. To achieve this behavior, a widely-used set of boundary condi-
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Figure 3.6: 2D grid arrangement at the outlet for configurations that are non-
periodic in the G direction. The scalar locations are denoted by black circles, the
G-momentum by red crosses, and the H-momentum by blue squares.

tions is the so-called Navier-Stokes Characteristics Boundary Conditions (NSCBC).
Here, we shall consider that the non-homogeneous boundaries are planar and in the
G-direction. Following Poinsot & Lele [94], one can use the characteristic analysis
[95] to rewrite the hyperbolic terms corresponding to waves propagating in the G
direction in Eqs. (2.1) – (2.3), i.e.,

md

mC
+ 31 +

m (dE)
mH
+
m (dF)
mI

= 0 , (3.37)

m (dD)
mC
+ D31 + d33 +

m (dDE)
mH

+
m (dDF)
mI

= (∇ · τ ) · eG , (3.38)

m (dE)
mC
+ E31 + d34 +

m (dE2)
mH

+
m (dEF)
mI

+
m?

mH
= (∇ · τ ) · eH , (3.39)

m (dF)
mC
+ F31 + d35 +

m (dEF)
mH

+
m (dF2)
mI

+
m?

mI
= (∇ · τ ) · eI , (3.40)

m (d4C)
mC
+ (4C − 2E)) 31 +

32

W − 1
+ (dD)33 + (dE)34 + (dF)35

+
mE(d4C + ?)

mH
+
mF(d4C + ?)

mI
= −∇ · q + ∇ · (τ · u) ,

(3.41)
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where

31 =
m (dD)
mG

= L2 +
L1 + L5

22 , (3.42)

32 = D
m?

mG
+ d22

mD

mG
= L1 + L5 , (3.43)

33 = D
mD

mG
+

1
d

m?

mG
=
L5 − L1

d2
, (3.44)

34 = D
mE

mG
= L3 , (3.45)

35 = D
mF

mG
= L4 . (3.46)

Finally, the amplitude variations for the characteristic waves are given by

L1 =
©­«
D − 2

2
ª®¬ ©­«
m?

mG
− d2

mD

mG

ª®¬ , (3.47)

L2 =
D

22
©­«22

md

mG
−
m?

mG

ª®¬ , (3.48)

L3 = D
mE

mG
, (3.49)

L4 = D
mF

mG
, (3.50)

L5 =
©­«
D + 2

2
ª®¬ ©­«
m?

mG
+ d2

mD

mG

ª®¬ . (3.51)

In Poinsot & Lele [94], the 31 term in Eq. (3.41) is multiplied by |u|2/2. For flows
with non-constant heat capacity, the 31 term needs to be multiplied by (4C − 2E))
[96]. A schematic of the directions of the characteristic waves at the outlet is shown
in Fig. 3.7. The directions of the waves are the same at the inlet.

Assuming that D < 2 at the inlet, the amplitude variation for the characteristic
wave L1 can be computed from the interior points. To do so, we use second-order
frontward differentiation stencils. Taking into account the grid staggering, L1 can
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Figure 3.7: Schematic of the direction of thewaves associatedwith the characteristic
waves at the outlet.

be evaluated by computing

mD

mG

������
8=8<8=

=
1

2ΔG
(−D<8=+2 + 4D8<8=+1 − +3D8<8=) ,

m?

mG

������
8=8<8=−1

=
1

3ΔG
(−?8<8=+1 + 9?8<8= − 8?8<8=−1) .

(3.52)

We shall consider that D > 0 at the inlet, in which case L1,L2,L3, and L4 are
incoming waves whose amplitude is unknown a priori. Their amplitude can be
modulated to impose soft boundary conditions. Following Yoo & Im [97], we set

L2 = [2
d'

2,2!G
() − )8=) , (3.53)

L3 = [3
2

!G
(E − E8=) , (3.54)

L4 = [4
2

!G
(F − F8=) , (3.55)

L5 = [5d2
2

(
1 − "2)

2!G
(D − D8=) , (3.56)

where !G is the domain length, the ( )8= quantities are the desired boundary values
at the inlet, and [8 are relaxation coefficients. Rudy & Strikwerda [98] found
[5 = 0.278 to be the optimal value in theory, however their tests suggested that a
larger value gives better results in practice. There is obviously a trade-off while
choosing [. If [ is too small, the flow quantities at the boundaries might drift
significantly from the desired values. If [ is too large, the boundary behaves as
a ”hard” wall and is no longer non-reflecting [97]. In the present work, [5 = 1
was found to yield satisfactory results. The other relaxation coefficients are set as
[2 = −[5, and [3 = [4 = [5 [97].
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At the outlet, we also assume that 0 < D < 2, in which case all wave amplitudes can
be computed from interior data except L1, which is used to impose a soft boundary
condition on pressure

L1 = [12
(1 − "2)

2!G
(? − ?>DC) , (3.57)

with [1 = [5, and where ?>DC is the desired pressure at the outlet. The other wave
amplitudes, i.e., L2,L3,L4, and L5 are computed using second-order backward
differentiation stencils.

To summarize, at the inlet/outlet, we solve Eqs. (3.37) – (3.41) by computing the L8
from interior data for the outgoing characteristic waves, and imposing soft boundary
conditions according to Eqs. (3.53) – (3.57) for the incoming characteristic waves.

3.5 Results
In this section, we apply the numerical framework presented in the previous sections
to various test cases. In Sec. 3.5.1, we assess the performance of the hybrid time
integration scheme proposed in Sec. 3.1 for the simulation of reacting flows. In Sec.
3.5.2, we verify the spatial accuracy for the transport of acoustic and entropy waves.
Finally, in Sec. 3.5.3, we test the NSCBC described in Sec. 3.4.

3.5.1 Time integration
The focus of this thesis is on flows in which both transport and chemistry are present.
Hence, to evaluate the performance of the hybrid time integration scheme described
in Sec. 3.1, we do not consider homogeneous reactors. Instead, we look at premixed
flames as they are a perfect example of the tight coupling between chemistry and
transport (see Sec. 1.1). We consider the combustion of a premixed n-heptane/air
mixture under standard conditions and q = 0.9. The two flow configurations studied
are a one-dimensional flat flame, and a statistically-stationary three-dimensional
turbulent case. The focus of this section being placed on the performance of the
hybrid RK4-midpoint time integration scheme described in Sec. 3.1 when stiff
chemistry is present, the Lewis number of all species is set to unity.

3.5.1.1 Freely propagating one-dimensional flame

We now consider a one-dimensional flat =-heptane/air premixed flame at q = 0.9.
The flame is freely propagating in a still unburnt mixture. We first show results
obtained using Mechanism #4. Figure 3.8a shows the mass fraction of 1-pentyl
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radical as a function of temperature, using the novel time integration scheme with
ΔC = 2 ·10−8 s (corresponding to an acoustic CFL of 0.9), and using the RK4 scheme
for all flow variables with ΔC = 5 · 10−10 s and ΔC = 2 · 10−8 s. The 1-pentyl radical
is chosen since it is associated with the largest eigenvalue (smallest timescale) of the
chemical Jacobian. Clearly, the simulation using the RK4 scheme for the species
with ΔC = 2 · 10−8 s is unstable, and predicts negative pentyl mass fractions. In
contrast, the results obtained with the proposed method and ΔC = 2 · 10−8 s are in
excellent agreement with the results obtained using the RK4 scheme for the species
with ΔC = 5 ·10−10 s. The accuracy plot shown in Fig. 3.8b confirms that the overall
approach yields 2nd order accurate results in time, as expected. The normalized
errors for the different species are evaluated in temperature space as√∫

)

(
.B − .B,A4 5

)2
3)

/ ∫
)

.2
B,A4 5 3) ,

with a reference solution .B,A4 5 obtained with ΔC = 10−10 s.

The results obtained with Mechanism #5 are shown in Figure 3.9. Figure 3.9a
shows the mass fraction of 2−C5H11 in temperature space, using the proposed
framework with ΔC = 2 · 10−8 s, and using the RK4 scheme with ΔC = 10−12 s and
ΔC = 10−15 s. First, one observes that max(.2−C5H11) is very small, as a result of
the erroneously short consumption timescale predicted by the chemical Jacobian
(Fig. 3.4b). Second, using the RK4 scheme for the species with ΔC = 10−12 s
yields unphysical results, as the chemical timescale associated with 2−C5H11 is
much smaller (g2−C5H11 ∼ 10−14 s). Third, the results obtained using the proposed
approach with ΔC = 2 · 10−8 s are in excellent agreement with the ones obtained
employing the RK4 scheme for the species with ΔC = 10−15 s. Figure 3.9b shows
the temporal accuracy for different species, which is found to be 2nd order accurate.
For very small timesteps, the error for 2−C5H11 plateaus, which is likely due to its
tiny mass fraction compared to the other species.

As briefly discussed in Sec. 3.1.5, blending two different time integrators introduces
inconsistencies between the density field obtained from continuity and the one
obtained from the species transport equations, i.e, d ≠

∑=B
B=1 (d. )B. To quantify

this error, we compute the normalized density error n = | d − ∑
B (d. )B |/d for

the two cases considered in this section. This quantity is found to be small, i.e.,
max (n) = 4 · 10−6 when using Mechanism #4 and max (n) = 5 · 10−5 when using
Mechanism #5. In summary, the proposed time integration scheme stabilizes the
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solution and yields 2nd order accurate results for the species mass fractions, while
introducing minimal discrepancies between the two density fields.

(a) Pentyl mass fraction

(b) Temporal accuracy

Figure 3.8: Performance of the proposed method for the laminar one-dimensional
case using Mechanism #4.

3.5.1.2 Interaction of an acoustic wave with a one-dimensional flame

In this section, we consider an acoustic wave impinging on the one-dimensional
flame considered in Sec. 3.5.1.1. The goal is to determine the accuracy of the
proposed time integration scheme for the transport of acoustic waves. We employ
Mechanism #4. A right-traveling acoustic wave is initially introduced ahead of the
flame. Its pressure profile is shown by a solid black line labeled A in Fig. 3.10a.
First, the wave travels from A→ B in the unburnt mixture. Then, from B→C,
the wave is partially transmitted/reflected by the flame. To evaluate the temporal
accuracy of the hybrid scheme, we extract (dD) at the locations where |? − ?0 | is
maximum, shown by the red stars in Fig. 3.10a. In Fig. 3.10b, we show the accuracy
of the proposed method for each of the two segments (k = (dD)). The scheme is
seen to be 4th order accurate for � → �, where there is no chemistry or mixing.
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(a) Pentyl mass fraction

(b) Temporal accuracy

Figure 3.9: Performance of the proposed method for the laminar one-dimensional
case using Mechanism #5.

From �→ �, as the acoustic wave goes through the flame, the scheme is 2nd order
accurate, as expected.

3.5.1.3 Turbulent flame

We now examine the turbulent case, which corresponds to Flame C1 in Lapointe
et al. [40]. The unburnt temperature is )D = 800 K, pressure is ? = 1 atm, and
Mechanism #4 is used. Two-dimensional slices showing temperature and pentyl
mass fraction isocontours are shown in Fig. 3.11. These results are obtained with
ΔC = 10−8 s, which corresponds to an acoustic CFL of 0.9. This configuration
remains entirely subsonic, with local Mach numbers reaching 0.5. Figure 3.12
shows the joint probability density function of pentyl mass fraction and temperature
for simulations performed using the original RK4 scheme for the species, and the
proposed method. Again, negative mass fractions are predicted when using the RK4
scheme for the species transport with ΔC = 10−8 s, a problem which is solved by
using the hybrid scheme presented in Sec. 3.1.5.
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(a) Temperature and pressure profiles.

(b) Temporal accuracy.

Figure 3.10: Results for an acoustic wave impinging on a one-dimensional flame.

(a) Temperature ) (b) Pentyl mass fraction .1−C5H11

Figure 3.11: Two-dimensional slices showing isocontours for the turbulent case
(ΔC = 10−8 s). Two temperature isolines are superimposed in white () = 1000 K
and ) = 1900 K).

Figure 3.13 shows the spatial distribution of the normalized density error n . This
error is concentrated in the turbulent flame brush and disappears on the burnt side.
In Fig. 3.14, we quantify this error as a function of time for three different timestep
sizes. All simulations are such that d =

∑
B (d. )B initially. Time is normalized

with the eddy turnover time g0. In all cases, the errors remains bounded and almost
constant over time at a value determined by the timestep size. Three phenomena
contribute to n : the different time integrators for continuity (RK4) and for the species
transport (midpoint), the semi-implicit treatment of chemistry, and the use of a non-
linear spatial transport scheme for the species mass fractions. The combined error
due to the semi-implicit treatment of chemistry and the different time integrators
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(a) RK4 for species, ΔC = 10−8 s (b) RK4 for species, ΔC = 10−10 s

(c) Proposed method, ΔC = 10−8 s

Figure 3.12: Joint probability density function of pentyl mass fraction and tem-
perature for the turbulent case. The black dashed line represents the conditional
mean.

is expected to decrease with the timestep size as ΔC2. To explore this further, we
present in Figs. 3.14a and 3.14b results obtained with the linear transport scheme
QUICK [99]. In this particular case, max (n) ∼ ΔC2, since the proposed method
blends a 2nd midpoint method and the 4th order RK4 scheme. This is highlighted in
Fig. 3.14b, where max (n) is rescaled by assuming a 2nd order convergence rate.

Figure 3.13: Two-dimensional slice showing isocontours of n for the turbulent case
(ΔC = 10−8 s). Two temperature isolines are superimposed in white () = 1000 K
and ) = 1900 K).

The error due to the scalar transport scheme deserves more attention. The BQUICK
scheme, along with other popular transport schemes such as WENO [100] and
BCH [101], is non-linear. Non-linear schemes are desirable because they combine
high accuracy, low dissipation, and boundedness. However, their non-linearity
induces a discrepancy between the convective terms from the continuity equation
(Eq. (2.1)) and the sum of the convective terms from the species transport equations
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(Eq. (2.4)), i.e.,
∑
B ∇ · (du.B)) ≠ ∇ · (du). Hence, as shown in Fig. 3.14c,

max (n) decreases with the timestep size, but eventually reaches a plateau around
max (n) ∼ 10−4. It should be noted that this error is not due to the proposed time
integration scheme, and will be present anytime a non-linear scheme is used for the
species transport equations. In all cases, the discrepancy between the two density
fields remains very small.

(a) QUICK scheme (b) QUICK scheme (rescaled)

(c) BQUICK scheme

Figure 3.14: Maximum density error max(n) as a function of time for the turbulent
case, using different schemes for the species transport.

3.5.2 Spatial discretization
To assess the spatial accuracy, we perform a series of inviscid one-dimensional
simulations, including a traveling acoustic wave and an entropy wave in periodic
domains. The first flow configuration is specific to the compressible formulation,
whereas the second one assesses the ability of the solver to capture large density
gradients typical of reacting flows.

3.5.2.1 Traveling Acoustic Wave

A one-dimensional traveling acoustic wave is the solution to the linearized Navier-
Stokes equations with the following initial conditions:

? = ?∞ + �? 5 (G) , d = d∞ +
�?

22
∞
5 (G) , D =

�?

d∞2∞
5 (G) , (3.58)
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where the subscript ( )∞ denotes reference quantities, 2∞ is the reference sound
speed, and �? is the pressure amplitude of the acoustic wave. The computational
domain is periodic with length !. We choose a sinusoidal initial pressure field
5 (G) = sin (:G), where : = 2c/! is the wavenumber. Since the solution given by
Eq. (3.58) is valid for �? � ?∞ only, we choose �? = 10−5?∞.

As discussed in Sec. 3.2.1, we use second-order central differentiation operators.
These schemes are not diffusive, however they introduce dispersion errors. When
solving a simple advection equation, i.e.,

mq

mC
+ 0

mq

mG
= 0 , (3.59)

this causes waves q: (G) = sin(:G) to move at a modified speed 0′ that depends
on the wavenumber : . This behavior is traditionally characterized with a modified
wavenumber diagram such as the one presented in Fig. 3.15. For the simple advection
equation, the modified wavenumber :′ is related to 0′ by

:′ =
:0′

0
. (3.60)

In the context of acoustics, dispersion errors causewaves tomove at amodified sound
speed 2′∞(:). In Fig. 3.15, the blue circles show the modified wavenumber relations
extracted from the numerical simulations. We evaluate :′ by using Eq. (3.60) with
0′ = 2′∞. The latter is computed as 2′∞ = !/CCA0E4; , where CCA0E4; is the time it takes for
the acoustic wave to travel the length of the domain, evaluated by fitting a sine wave
to ?(G = 0, C). The thick dashed line shows the analytical modified wavenumber
relation for a staggered grid arrangement using a second order differentiation stencil.
The analytical and numerical results are in excellent agreement. To emphasize the
improved accuracy obtained by using a staggered grid, the thin dashed line and thin
solid line show the relation for a regular (i.e., collocated) grid using second order
and fourth order stencils, respectively. It can be seen that using a second-order
staggered stencil yields more accurate results than a collocated fourth-order stencil.

3.5.2.2 Entropy Wave

To further assess the spatial accuracy, we perform a series of inviscid simulations of
entropy waves being convected at a uniform velocity D∞ in a 1D periodic domain.
The initial fields are

D = D∞ , ? = ?∞ , d = d∞ (1 − U6(A)) , (3.61)
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Figure 3.15: Modified wavenumber diagram. The numerical results are shown by
blue circles. The thick dashed line show the analytical wavenumber relation for a
staggered grid using a second order differentiation stencil. The thin dashed line and
thin solid line show the relations for a collocated grid using second order and fourth
order stencils, respectively. The thick solid line is the theoretical relation in absence
of dispersion errors.

We choose D∞ = 2∞/2 and the following distribution

6(A) =
{

1 − exp (−'/A exp ('/(A − '))) if A < '
0 if A ≥ '

, (3.62)

which is �∞ and has compact support, and where A = |G − G0 |. We set G0 = !/2,
U = 0.5, ^ = 1, and ' = !/4. We run the simulation for one flow-through time,
i.e., C 5 = !/D∞. The initial and final density field are shown in Fig. 3.16 for a
simulation with !/ΔG = 256. Small oscillations in the wake of the density profile
can be observed and are characteristics of centered schemes.

The normalized error, computed as√∫
G

(
d(G, C 5 ) − d(G, 0)

)2
3G

/ ∫
G

d(G, 0)23G

is shown in Fig. 3.17 for different spatial resolutions. The expected order of conver-
gence (namely second) is observed.

3.5.3 Boundary conditions
We provide a few test cases to verify the implementation of the NSCBC described
in Sec. 3.4: a one-dimensional traveling acoustic wave, a one-dimensional entropy
wave, and a two-dimensional vortex.
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Figure 3.16: Comparison of the initial density field (dashed black line) with the
numerical solution at C 5 = !/D∞ for !/ΔG = 256 (solid blue line).

Figure 3.17: Normalized error of the numerical solution of Eq. (3.65) at C 5 = !/D∞
for different spatial resolutions.

3.5.3.1 One-dimensional inviscid traveling acoustic wave

A one-dimensional traveling acoustic wave is the solution to the linearized Navier-
Stokes equations with the following initial conditions

? = ?∞ + �?6(A) , (3.63)

D = D∞ ±
�?

d∞2∞
6(A) , (3.64)

completedwith the isentropic relations d = d∞(?/?∞)1/W, and) = )∞(?/?∞) (W−1)/W.
The subscript ( )∞ denotes reference flow quantities, and 2∞ is the reference sound
speed. The ± sign in Eq. (3.64) determines if the wave is left or right-traveling.
We use 6(A) given by Eq. (3.62), in which we set A = |G − G0 |, G0 = !/2, ^ = 1,
and ' = !/10. Since Eqs. (3.63) and (3.64) represent the solution for a trav-
eling acoustic wave for �? � ?0, we set �?/?0 = 10−5. Figures 3.18 and 3.19
show the pressure field for a right and left-traveling wave, respectively. At time
C∗ = C/(!/2∞) = 0.7, the wave has interacted with the boundary. It can be seen
in Figs. 3.18a and 3.19a that using Neumann boundary conditions at the outlet and
Dirichlet boundary conditions at the inlet leads to a perfect reflection of the acoustic
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wave. When using NSCBC (Figs. 3.18b and 3.19b), the amplitude of the reflected
wave is strongly attenuated. The small amount of reflection is due to the relaxation
terms given by Eqs. (3.53)–(3.56) (inlet) and Eq. (3.57) (outlet).

(a) Neumann boundary conditions (b) NSCBC

Figure 3.18: Pressure field for a right-traveling one-dimensional inviscid acoustic
wave using different sets of boundary conditions.

(a) Neumann boundary conditions (b) NSCBC

Figure 3.19: Pressure field for a left-traveling one-dimensional inviscid acoustic
wave using different sets of boundary conditions.

3.5.3.2 One-dimensional inviscid entropy wave

To verify that entropy waves are correctly convected out of the domain at the outlet,
we initialize a one-dimensional field with

D = D∞ , ? = ?∞ , d = d∞ (1 − U6(A)) , (3.65)

where 6(A) is given by Eq. (3.62), with A = |G−G0 |. We set U = 0.5, ^ = 1, G0 = !/2,
' = !/4, and D∞ = 2∞/2. Fig. 3.20 shows the density field at different times. At
C∗ = C/(!/D∞) = 0.8, the wave has exited the domain, as desired, and the density
field is constant.
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Figure 3.20: Density field for a 1D inviscid entropy wave using the NSCBC, with
C∗ = C/(!/D∞).

3.5.3.3 Two-dimensional vortical flow

To further verify the implementation of the outlet boundary conditions, we examine
the evolution of a two-dimensional vortex convected by a mean flow [94, 102]. To
determine the initial conditions, we consider the following stream function

k(A) = � exp ©­«−
A2

2'2
ª®¬ , (3.66)

where A is the distance from the vortex center, ' is the vortex radius, and �
determines the vortex strength. Next, neglecting viscous effects, we obtain the
initial pressure profile by integrating the radial momentum equation, i.e.,

?(A) = ?∞ + d∞
∫ A

A ′→∞

(k′(A′))2

A′
3A′ = ?∞ −

d∞�2

2'2 exp ©­«−
A2

'2
ª®¬ . (3.67)

In Cartesian coordinates, the initial velocity field is given by(
D

E

)
=

(
D∞

0

)
+

(
mk/mH
−mk/mG

)
, (3.68)

using A =
√
((G − G0)2 + (H − H0)2, with (G0, H0) = (!/2, !/2) being the vortex

center. We set

'4� ≡
�

a
= 1000 , ' =

!

10
,

D∞ =
2∞

20
, � = 6.25 · 10−32∞! ,

(3.69)

where '4� is the Reynolds number based on the vortex strength. The initial density
field is taken to be constant, i.e., d = d∞. The initial normalized H-velocity field is
shown in Fig. 3.21a, with E∗ = E/(�/') being the normalized velocity. The solid



59

(a) C∗ = 0 (b) C∗ = 0.34

(c) C∗ = 0.51 (d) C∗ = 0.77

Figure 3.21: Normalized H-velocity fields at different times C∗ = C/(�/') for an
advected vortex using the NSCBC.

black lines denote E∗ = [−0.5,−0.3,−0.1, 0.1, 0.3, 0.5]. The domain is periodic
in the H direction, and the NSCBC are used in the G direction. We set D8= = D∞,
E8= = 0, )8= = )∞, and ?>DC = ?∞. The normalized H-velocity field is shown at later
times in Figs. 3.21b – 3.21d. In Figs. 3.21b – 3.21c, the vortex is seen to be slightly
distorted, which has previously been investigated [102]. At C∗ = 0.77 (Fig. 3.21d),
the vortex has exited the domain, and the maximum vertical velocity component is
less than 5% that of the initial vortex.

3.6 Summary
We presented a novel time integration scheme that blends the semi-implicit midpoint
method for the species transport and the RK4 scheme for the transport of the other
flow variables. This scheme was tested by considering a freely-propagating one-
dimensional flame, an acoustic wave impinging on a one-dimensional flame, and a
turbulent flame. The novel time integration schemewas found to performwell. With
this approach, the time step is limited by the acoustic CFL only, regardless of the
chemical mechanism employed, while being accurate for the transport of acoustic
waves. We also presented the spatial discretization, and performed verification
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cases. The use of a staggered grid was found to be ideally suited for the transport
of acoustic waves. Finally, we reviewed the NSCBC framework, and carried out
various test cases to verify its implementation.



61

C h a p t e r 4

FLAME-ACOUSTICS INTERACTIONS

[2] Beardsell, G. and Blanquart, G., “Fully compressible simulations of the
impact of acoustic waves on the dynamics of laminar premixed flames for
engine-relevant conditions,” Proceedings of the Combustion Institute, 2020.
doi: https://doi.org/10.1016/j.proci.2020.06.003,

[3] Beardsell, G. and Blanquart, G., “Impact of pressure fluctuations on the
dynamics of laminar premixed flames,” Proceedings of the Combustion
Institute, vol. 37, no. 2, pp. 1895–1902, 2019. doi: https://doi.org/
10.1016/j.proci.2018.07.125,

In this chapter, we focus on direct pressure effects as outlined in Sec. 1.2, i.e.,
we investigate the impact of acoustic thermodynamic fluctuations on the dynamics
of one-dimensional premixed flames. The objective is to investigate the flame
response for a wide range of fuels and acoustic frequencies, through DNS using
detailed chemical models. The focus is placed on the combustion dynamics of
hydrogen, methane, n-heptane and n-dodecane for they are of practical interest and
behave very differently when subjected to acoustic waves. Hydrogen is considered
as it is commonly used for propulsion, e.g. in the RS-25 engine. Similarly, many
practical engine fuels contain large hydrocarbon molecules such as =-heptane, e.g.,
kerosene. Furthermore, the literature dealing with direct pressure effects involving
large hydrocarbon fuels is lacking. We are specifically interested in extracting the
phase and gain of the unsteady heat release response, which are directly related to
the Rayleigh criterion (Eq. (1.8)), and thus the stability of the system.

This chapter is organized as follows. In Sec. 4.1, we describe the numerical method-
ology for the simulations using the low Mach number approximation and the fully
compressible framework. We present the flow configuration, details of the spatial
and temporal convergence, as well as the methodology used to compute the gain
and phase responses. We provide a verification of the numerical framework by
comparing our results with existing numerical data. Then, in Sec. 4.2, we analyze
the results obtained under the low Mach number approximation. For the four fu-
els considered, we analyze the global flame response (heat release), as well as the
response of key intermediate species, at standard temperature and atmospheric pres-
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sure. This section is based on Beardsell & Blanquart [3]. In Sec. 4.3, the objective
is to investigate the flame response under engine-relevant conditions using the fully
compressible framework. The differences between results obtained using the fully
compressible Navier-Stokes equations and the low Mach number approximation
are investigated. This section is based on Beardsell & Blanquart [2]. Finally, the
findings are summarized in Sec. 4.4.

4.1 Methodology
4.1.1 Flow configuration
We perform one-dimensional simulations to isolate the direct impact of the acoustic
thermodynamic fluctuations on the flame response. This prevents potential mul-
tidimensional effects induced by the acoustic velocity field, e.g., Rayleigh-Taylor
instabilities, from developing. Figure 4.1 shows the temperature and velocity pro-
files for Case 6 without acoustic perturbations. Fully premixed reactants enter the
domain on the left with velocity D8=, and burnt products exit on the right. We impose
D8= = (! , such that the mean flame position G� remains constant. For the steady-
state solution, the mass flux dD is constant everywhere (see Eq. (2.1)). However,
as the temperature increases through the flame, the density drops, and the velocity
increases. The different flow configurations considered in this chapter are listed in
Table 4.1. The chemical models (mechanisms) associated with each configuration
are described in Sec. 3.3.3.

Figure 4.1: Velocity (solid black) and temperature (dashed red) profiles for Case 6
without perturbation.

4.1.1.1 Low Mach number simulations

For the simulations under the low Mach number framework, considered in Sec. 4.2,
we consider Cases 1, 2, 3a, 3b, 3c, and 4, i.e., all the cases at standard thermodynamic
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Table 4.1: Parameters of the simulations: q is the equivalence ratio, ;�,0 is the
laminar flame thickness, (!,0 is the laminar flame speed, and g� = ;�,0/(!,0 is the
flame time scale. The subscript ( )0 refers to quantities evaluated at the reference
state (without perturbations).

Case Fuel Chemical
mechanism q

?0
[atm]

)D
[K]

;�,0
[mm]

(!,0
[m/s]

g�
[ms]

1 H2 #2 0.4 1 298 0.63 0.23 2.8
2 CH4 #1 0.625 1 298 0.87 0.13 6.7
3a n-C7H16 #4 0.9 1 298 0.39 0.35 1.1
3b n-C7H16 #4 0.7 1 298 0.52 0.22 2.4
3c n-C7H16 #4 1.3 1 298 0.37 0.34 1.1
4 n-C12H16 #3 0.9 1 298 0.36 0.37 0.97
5 H2 #2 0.4 20 800 0.021 1.31 0.016
6 n-C7H16 #4 0.9 20 800 0.022 1.05 0.021

conditions. We set the acoustic pressure amplitude at 5%of the background pressure,
i.e., �? = 5000 Pa. The acoustic frequency 5 is varied from 50 Hz to 100 MHz.

4.1.1.2 Compressible framework

For the compressible simulations, investigated in Sec. 4.3, we consider Cases 1, 3a,
5, and 6. Cases 5 and 6 are designed to explore engine-relevant conditions, i.e.,
)D,0 = 800 K and ?0 = 20 atm. We also carry out low Mach number simulations for
Cases 5 and 6 for comparison purposes. The acoustic frequencies range from 1 kHz
to 50 MHz, and the normalized acoustic pressure amplitude is �?/?0 = 2 · 10−3

for all cases. Note that the chosen normalized pressure amplitude is smaller for
the compressible simulations, to ensure that the velocity remains positive at the
boundaries, as required by the NSCBC (see Sec. 3.4.2).

4.1.2 Numerical framework
4.1.2.1 Low Mach number approximation

It might seem counter-intuitive to explore flame-acoustics interactions using the low
Mach number approximation, in which the acoustics are inherently removed from
the system, as detailed in Sec. 2.1.2. However, for most of the acoustic frequencies
considered in this work, the ratio of the laminar flame thickness to the acoustic
wavelength is small, i.e., ;�/_1 � 1, where _1 is the acoustic wavelength evaluated
using the sound speed in the burnt region. This allows us to use the same approach as
the one presented and validated by Jiménez et al. [14], which is briefly summarized
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here.

In this limit, the acoustic pressure gradients vanish in the vicinity of the flame
and the flame only experiences a time-varying acoustic pressure ?0 (C). Because
the Mach number of the flow is small (" ∼ 10−3), we can employ a low Mach
number approach [103]. Recall that in the low Mach number approximation, the
zeroth-order pressure (referred to as the background pressure) is a spatially uniform
field (see Eq. (2.31)). This potentially time-varying quantity must be provided as an
input to the simulation. We set the background pressure to

?C (C) = ?0 + ?0 (C) = ?0 + �? sin(lC) , (4.1)

where �? is the acoustic pressure amplitude. Figure 4.2 shows a conceptual
schematic of the flow configuration for the low Mach number simulations. A
laminar planar flame is subjected to a standing acoustic wave. The flame is located
at a velocity node, which also corresponds to a pressure anti-node. The ratio ;�/_1
is small, and thus the flame does not feel the spatial variations in pressure.

Some of the simulation results that we present are obtained at frequencies for which
;�/_1 3 1. We want to carry out simulations at such frequencies in order to get
insight on the overall behavior of these dynamical systems. However, care must be
taken when analyzing these results, as some compressibility effects may be missing.
To aid the reader, the frequency at which _1 = 10 ;� will be indicated by a vertical
dashed line in all the plots. For the low Mach number simulations, the governing

Figure 4.2: a) Conceptual schematic of the flow configuration for the low Mach
number simulations. b) Examples of pressure (red) and velocity (black) profiles at
different times (solid and dashed lines). The flame position G� is at a velocity node.

equations are continuity (Eq. (2.34)), momentum (Eq. (2.35)), species transport
(Eq. (2.4)), the equation of state (Eq. (2.37)), and the energy equation (Eq. (2.42)).
To account for the varying thermodynamic pressure, the inlet temperature )8= is
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continuously adjusted according to the isentropic relation

)8= = )D,0
©­«
?C

?0

ª®¬
WD−1
WD

. (4.2)

4.1.2.2 Fully compressible framework

For the fully compressible simulations, we solve Eqs. (2.1)–(2.4), along with
Eq. (2.11). We seek to generate acoustic waves at the outlet following

?(G = !, C) = ?0 + �? sin (lC) , (4.3)

where l = 2c 5 is the angular frequency. The NSCBC framework detailed in
Sec. 3.4.2 is employed. At the outlet, acoustic waves are introduced in the domain
by modulating the amplitude of the incoming characteristic wave. To do so, we
slightly modify Eq. (3.57) by appending the imposed wave amplitude L1,8<?, i.e.,

L1 = L1,8<? + [124
(1 − "2

4 )
2!G

(?4 − ?>DC) . (4.4)

The imposed characteristic wave amplitudeL1,8<? is obtained by substituting the so-
lution to the linearized one-dimensional Euler equations for a left-travelling acoustic
wave

? = �? sin(lC + :G) D = −
�?

d2
sin(lC + :G) , (4.5)

into Eq. (3.47), i.e.,

L1,8<? =
©­«
D − 24

2
ª®¬ ©­«
m?

mG
− d2

mD

mG

ª®¬ = �? (D − 24)
l

24
cos (lC) . (4.6)

In Eqs. (4.4)–(4.6), the subscript ( )4 refers to quantities evaluated at the outlet (exit).
This generates incoming acoustic waves that follow Eq. (7.22), while allowing out-
going waves to leave the domain. This approach is similar to inlet wave modulation
[104]. Also, since we want the outlet pressure to vary sinusoidally, we cannot set
?4 = ?(G = !G) in the second term on the RHS of Eq. (4.4). Doing so would result
in the relaxation term in Eq. (4.4) dampening the desired outlet wave modulation.
Instead, we replace ?4 in Eq. (4.4) with a moving average

?̃4 =
1
ΔC 5

∫ C

C ′=C−ΔC 5
?43C

′ . (4.7)

The desired temperature and velocity at the inflow are imposed using a set of
relaxation terms (see Sec. 3.4.2).
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4.1.3 Spatial and temporal convergence
For all simulations, we use 1200 uniformly spaced grid points with the domain
length set to ! ≈ 60 ;� . This corresponds to about 20 points per flame thickness. To
verify that the grid resolution was sufficient, additional simulations were performed
for all cases at the highest frequency considered, with twice as many points per
flame thickness. Small differences up to 1 % and 0.01 rad were observed for the
heat release fluctuation gain and phase, respectively. The coarser grid was thus
used for all subsequent simulations. The impact of the time step size (ΔC) was
assessed by repeating each simulation for all cases with a time step two times
smaller. Differences in gain and phase remained within the tolerances used for the
spatial convergence. Finally, it should be noted that the required time step becomes
smaller as the frequency increases.

4.1.4 Evaluation of the gain and phase responses
As outlined in Sec. 1.2, the gain and phase of the heat release is important to
determine if the flame is thermo-acoustically unstable through theRayleigh criterion.
From Eq. (2.42), we can obtain the temperature production term

¤l) = −
1
2?

=B∑
B=1

ℎB ¤lB . (4.8)

The total heat release is computed as

¤& =

∫ !

G=0
d2? ¤l) 3G =

∫ !

G=0
d ¤ℎ 3G , (4.9)

where ¤ℎ is the local heat release. In addition to the heat release, we also compute
the gain and phase of the species mass fractions.

For a given quantity k, e.g., ¤&, we assume that the oscillations reach a periodic
steady-state with frequency 5 , which is what is observed in all cases. The amplitude
of k is determined by using

�k =
1
2
[
k<0G,: − k<8=,:

]
, (4.10)

where k<8=,: and k<0G,: are the extrema of k on the time interval C ∈ [:), (:+1) )],
with ) = 5 −1 being the acoustic period. Here, : is the total number of cycles before
a periodic steady state is reached. This state is deemed reached when the differences
in amplitude between two subsequent cycles differs by less than 1%. For all cases,
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a few cycles (: ≈ 3) were found to be sufficient. The gain is then computed as

�k ≡
�k

k

?0

�?
, (4.11)

where k denotes the time average of k. It was observed for all cases that k = k0,
wherek0 is obtained from the unperturbed flame, thus confirming the linear response
of the flame. In the following section, the gains are normalized by the gain when the
frequency goes to zero, i.e.,�k |l→0. The procedure by which the latter is computed
is detailed in Sec. 4.2.2. To compute the phase angle (in radians), we use

\k = l
[
Ck<0G ,: − C?<0G ,:

]
, (4.12)

where Ck<0G ,: and C?<0G ,: are the times at which k<0G and ?<0G occur once the
periodic steady state is achieved.

For the compressible simulations, the pressure field is not uniform in space. Then,
we have to select where to evaluate ?<0G , which is required to compute the gain
and phase. Fig. 4.3 shows the local heat release for Case 6 at an acoustic frequency
5 = 107 Hz. It can be seen that ¤ℎ is confined to a thin region. The most appropriate
pressure to evaluate the impact on the heat release is then the pressure at the location
of maximum local heat release, i.e., the location where ¤ℎ is maximum.

Figure 4.3: Normalized local heat release (dashed red) and oscillating pressure
(solid black) profiles for Case 6 with 5 = 107 Hz, corresponding tolg�,0 = 1.2 ·103.

4.1.5 Verification
We first verify our numerical implementation by comparing our low Mach number
results for Case 1 (hydrogen) and Case 2 (methane) with the ones obtained by
Jiménez et al. [14], for the same flow conditions (i.e., )D,0, ?0, and q). For methane,
we use the same chemical model,i.e., GRI-Mech 3.0. In Figs. 4.4 and 4.5, the gain
and phase of ¤& are shown. The acoustic angular velocity is normalized by the flame
timescale g� = ;�,0/(!,0, which was found to be the adequate time scale in previous
theoretical analyses [15–19]. The agreement is excellent.
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Figure 4.4: Gain (left) and phase (right) of the heat release fluctuations as a function
of the reduced frequency, for Case 2 (methane). The lines are from the present study,
and the blue circles and crosses are numerical results reported by Jiménez et al. [14].

Figure 4.5: Gain (left) and phase (right) of the heat release fluctuations as a function
of the reduced frequency, for Case 1 (hydrogen). The lines are from the present
study, and the blue circles and crosses are numerical results reported by Jiménez et
al. [14].

4.2 Low Mach number results
4.2.1 Overview
Figure 4.6 shows the heat release gain and phase response for Cases 1,2, 3a and 4.
The gains are normalized by their respective values when l → 0. The horizontal
dashed lines show the theoretical gain estimated for the limitl→∞. The procedure
by which the low-frequency limit is computed is discussed in Sec. 4.2.2, while the
methodology used to compute the high-frequency limit is detailed in Sec. 4.2.5.
For comparison purposes, Fig. 4.6 also shows the one-step and two-step results
given by Clavin et al. [19] and Clavin & Searby [20], respectively. In Fig. 4.6a, the
one-step model increases monotonically, unlike any of the cases considered. The
two-step model reaches a local maximum before decreasing below its quasi-steady
state value. However, neither models are sufficient to describe the evolution of
heavy hydrocarbon fuels. Figure 4.7 shows the responses of ¤& and key intermediate
species for Cases 1, 2, 3a, and 4. To compute the species gain (Eq. (4.10)) and
phase (Eq. (4.12)), the quantity .B,<0G is defined as the maximum value of .B in the
domain at a given time. In Fig. 4.7, the gain of the radical species is seen to drop
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(a) Gain (b) Phase

Figure 4.6: Gain and phase of the fluctuating heat release for Cases 1, 2, 3a and 4.
The vertical dashed line frequency at which _1 = 10;� for the most restrictive case.
The horizontal lines denote the high-frequency solutions obtained using Eq. (4.18).

at high frequencies. More precisely, it decreases with l−1, which will be explored
in Sec. 4.2.4. Note that the phases and gains of some intermediate species are not
shown at very high frequencies, as their evaluation becomes difficult due to the
small amplitude of the fluctuating response. Figure 4.8 shows the flame structure
at different moments during the acoustic cycle, for Case 3a at 5 = 1 kHz (i.e.
lg� = 6.9). This frequency was chosen as it corresponds to a local maximum in
� ¤& . One can see that, even when the gain is maximum, the species profiles change
very little during an acoustic cycle. That is why, at very high frequencies, when
fluctuations are even smaller, the extraction of the gain and phase becomes difficult.
Fig. 4.9 shows the mean of various quantities for Case 3a (n-heptane), normalized
by their value at steady state, i.e., when the flame is unperturbed. All quantities
change by less than 2%, indicating that the flame response is linear for the pressure
amplitude considered (i.e., �? = 5 kPa). All present results are thus also valid for
�? < 5 kPa. This is confirmed in Fig. 4.10, in which the flame response for Case
1 at �? = 500 Pa and 5 kPa is compared. The agreement is excellent, therefore
confirming that we are in the linear regime. We also ran an additional simulation
with all the diffusion coefficients (i.e., �8, U, a) multiplied by 10. Although ;� ,
(! and ¤& all increase by a factor of

√
10, the gains and phases are identical once

properly normalized.

Additionally, we investigated variations due to the equivalence ratio for =-heptane.
Cases 3a, 3b, and 3c are at the same flow conditions, and only differ by their
equivalence ratio (q = 0.9, 0.7 and 1.3, respectively). The response plots for Cases
3b and 3c are shown in Fig.4.11. Qualitatively, the heat release and species responses
are identical. Quantitatively, they change slightly, as expected since the steady-state
flame structures are different.
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(a) Normalized gain for Case 1 (b) Phase angle for Case 1

(c) Normalized gain for Case 2 (d) Phase angle for Case 2

(e) Normalized gain for Case 3a (f) Phase angle for Case 3a

(g) Normalized gain for Case 4 (h) Phase angle for Case 4

Figure 4.7: Gain (left) and phase (right) of heat release (black circles) and different
intermediate species: hydrogen radical [blue squares], oxygen radical [red crosses],
and carbon monoxide [pink triangles] for the hydrocarbon fuels (Case 2, 3a, and
4), and hydrogen radical [blue squares], oxygen radical [red crosses], and hydroxyl
radical [pink triangles] for hydrogen (Case 1). The phases and gains of some inter-
mediate species are not shown for certain frequencies, as their evaluation becomes
difficult due to the small amplitude of the fluctuating response at high frequency.
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Figure 4.8: Flame structure for Case 3a at 5 = 1 kHz. The solid, dotted, and dashed
lines correspond to the flame response at ?C = ?0, ?C = ?0 + �?, and ?C = ?0 − �?,
respectively.

Figure 4.9: Normalized mean of the integrated heat release and the maximum of
different intermediate species, for Case 3a (n-heptane). The means are normalized
by their steady state value. The legend is the same as for Fig. 4.7f.

(a) Normalized gain (b) Phase angle

Figure 4.10: Comparison of the gain and phase of the heat release for Case 1
(hydrogen) for �? = 500 Pa (black dots) and �? = 5 kPa (open red circles).

Regarding ¤&, one can see from Fig. 4.6 that the cases differ mainly by the magnitude
of the gains (most notably � ¤& at high frequency), the frequency for which the local
peaks occur in the middle range, and the phase at high frequency. These variations
in the flame responses are due to different chemical kinetics, which underscores the
need for detailed chemistry when investigating direct pressure effects.
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(a) Normalized gain for Case 3b (b) Phase angle for Case 3b

(c) Normalized gain for Case 3c (d) Phase angle for Case 3c

Figure 4.11: Gain and phase of heat release (black circles) and different intermediate
species: hydrogen radical [blue squares], oxygen radical [red crosses], and carbon
monoxide [pink triangles]. The phases and gains of some intermediate species are
not shown for certain frequencies, as their evaluation becomes difficult due to the
small amplitude of the fluctuating response at high frequency.

4.2.2 Low frequency limit
The acoustic wave impacts the flame response through the pressure time-derivative
term in Eq. (2.42). This term scales like �?l and thus becomes negligible compared
with the others when l → 0. In this limit, the flame is in quasi-steady state.
Therefore, the phase of all the flow variables has to be either 0 or c, and the gain
of the fluctuating response �k |l→0 can be computed by carrying two steady-state
simulations, one at the maximum pressure ?C = ?0 + ?0 and one at the minimum
?C = ?0 − ?0. In these two simulations, the inlet temperature is adjusted according
to Eq. (4.2). The heat release gains in the low-frequency limit � ¤& |l→0 are given
in Table 4.2 for the different cases. In Figs. 4.7 and 4.11, at low frequencies, the
normalized gains approach their predicted value and the phases go to 0 or c, as
expected. The only exception is Case 2, for which the heat release and species
gains are still far from �k/�k |l→0 → 1 for lg� = 1. It is likely that the GRI-
Mech 3.0 mechanism contains large chemical timescales that would require one to
perform simulations at even lower acoustic frequencies to recover the quasi-steady
state behavior.
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Table 4.2: Gain of the heat release fluctuations when l→ 0.

Case 1 2 3a 3b 3c 4
� ¤& |l→0 1.01 0.78 0.94 0.72 0.91 0.91

4.2.3 Middle range frequencies
In Fig. 4.6, we first observe that the phase of the fluctuating heat release response
\ ¤& becomes zero for lg� ∼ 1− 100. The frequency for which ¤& is in phase with ?C
roughly corresponds to a local maximum gain � ¤& . Taking the example of Case 3a
(Figs. 4.7e and 4.7f), the frequency for which \ ¤& = 0 also roughly corresponds to
\.�,<0G = 0, \.$,<0G = 0, and \.�$,<0G = 0. Heat release increases the temperature
locally, which in turn increases most reaction rates. Radical species being involved
in many key reactions, a higher concentration will tend to speed up the combustion
process. If .�,<0G , .$,<0G , and ¤& are all in phase with the acoustic signal, more
heat release is thus expected. This might explain why the gain (� ¤&) reaches a local
peak when the phase is almost zero. The response plots of three other radicals,
i.e., hydroxyl radical (OH), methyl radical (CH3) and formyl radical (HCO), are
presented in Appendix D (Figs. D.1 and D.2) for all cases considered. Like for O
and H, the species gains are seen to increase initially for lg� > 1, and then go down
as l−1 at high frequencies. The frequency at which their phase is zero is also very
close to the frequency at which � ¤& is maximum.

4.2.4 High frequency limit - species
Wenow consider the flame response at high frequencies. It is important to remember
that the present results were obtained using a low Mach number approximation,
which breaks down when l → ∞ (see Sec. 4.1.2.1). That being said, these results
provide valuable insight into the dynamics of the chemical system, decoupled from
compressibility effects.

By splitting .8 into its mean . 8 and fluctuating . ′
8
components, considering small

fluctuations (relative to the mean), and leveraging the fact that the flame sits at a
velocity node (i.e., D = D), Eqs. (2.4) and (2.50) can be rearranged to obtain a
transport equation for . ′

8

�. ′
8

�C
= −

1
d
∇ · j′8 +

,8

d

='∑
9=1

a 9 ,8 ¤'
′
9 , (4.13)

where � ( )/�C is the material derivative. From Eq. (2.50), we obtain the linearized
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fluctuating production term

¤'′
9

¤' 9
=

©­«= 9 +
�0

')

ª®¬
) ′

)
+

(
=(∑
8=1

aA9 ,8

)
d′

d
+

=(∑
8=1

aA9 ,8

. ′
8

. 8
. (4.14)

In the linearized approximation, �d and �) are a linear combination of �? (i.e.,
acoustic forcing) and �.8 (i.e., unsteady chemistry). As a result, the Right-Hand
Side (RHS) of Eq. (4.14) also scales linearly with �? and �.8 . In Eq. (4.13), the
diffusion term scales like �.8 (see Eq. (2.7)), and the material derivative scales like
l�.8 . Hence, �.8 has to decrease for l sufficiently large, since �? is imposed and
�.8 is bounded by �?. Once �.8 becomes small enough, the relevant scaling for
the RHS of Eq. (4.14) becomes �? only, such that �.8 ∼ l−1�?. This is what was
observed in Fig. 4.7, and this observation holds for all the species considered, as
can be seen in Figs. D.1 and D.2.

4.2.5 High frequency limit - heat release
In this section, we detail how the high frequency behavior of the heat release gain
� ¤& |l→∞ can be obtained relatively simply from the steady-state solution at ?0.

Let 2 be some monotonically increasing progress variable that is not directly im-
pacted by the pressure fluctuations. Temperature and density cannot be used as
progress variables since they are related to ?C through the equation of state. A
combination of the mass fractions of combustion products would be suitable. In
the limit l → ∞, the gains of all species mass fractions go to zero. Chemistry is
thus “frozen” and the instantaneous species mass fractions are only functions of the
progress variable. Under small pressure fluctuations and as shown in Sec. 4.2.1,
the mean species profiles (as l→ ∞) are the same as the steady state profiles, i.e.,
. 8 (2) = .8,0(2).

The heat release rate may be rewritten as

¤& = −
='∑
9=1
Δℎ', 9

∫ !

G=0
¤' 93G , (4.15)

where Δℎ', 9 is the enthalpy of reaction for reaction 9 . While �.8 → 0, the flame
still experiences the isentropic thermodynamic changes associated with the acoustic
wave, i.e.,

)∗ = )0(2)
©­«
?C (C)
?0

ª®¬
W−1
W

, d∗ = d0(2)
©­«
?C (C)
?0

ª®¬
1
W

. (4.16)
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We can now evaluate ¤' 9 |l→∞ by using d = d∗, ) = )∗ and .8 = .8,0 in Eq. (2.51),
which becomes

¤' 9 |l→∞ = � 9)
= 9

0 exp
©­­«−
�0, 9

')0

©­«
?0

?C

ª®¬
W−1
W ª®®¬

=(∏
8=1

©­«
d0.8,0

,8

ª®¬
aA
9,8©­«

?C

?0

ª®¬
= 9 (W−1)+aA

9,8

W

. (4.17)

An additional consideration must be taken since the flame is periodically com-
pressed/expanded by the acoustic wave. Since the flame structure remains intact,
3G = (d0/d)3G0 = (?C/?0)−1/W3G0, with G0 being the spatial coordinate in the
steady-state solution at ?C = ?0. Putting everything together, Eq. (4.15) becomes

¤& |l→∞ = −
='∑
9=1
Δℎ', 9

∫ !

G0=0
¤' 9 |l→∞

©­«
?C

?0

ª®¬
− 1
W

3G0 . (4.18)

To compute � ¤& |l→∞, we use Eq. (4.11) with � ¤& obtained by evaluating Eq. (4.18)
at ?C = ?0 ± ?0. In Fig. 4.6a, the horizontal dashed lines show the high frequency
gains obtained using this procedure. The agreement with the unsteady simulations
is excellent.

4.3 Compressible results and engine-relevant conditions
In this section, we perform fully compressible simulations using the outlet wave
modulation framework detailed in Sec. 4.1.2.2 for hydrogen/air and =-heptane/air,
at standard thermodynamic conditions (Cases 1 and 3a), and engine-relevant con-
ditions (Cases 5 and 6). The focus is placed on comparing the compressible results
with the ones obtained using the low Mach number approximation.

4.3.1 Heat release
Figure 4.12 shows the normalized gain and phase of the heat release for the four
different cases considered. The blue open circles are obtained using the fully
compressible framework, while the red dots are obtained using the lowMach number
approximation. To aid the reader, the frequencies at which _1 = ;�,0 and _1 = 10;�,0
are indicated by vertical dotted and dashed lines, respectively, where _1 is the
acoustic wavelength in the burnt region.

The results obtained using the low Mach number and the fully compressible frame-
works are in excellent agreement at low frequencies, as expected. For all cases,
as explored in Sec. 4.2.3, the gain peaks locally for lg�,0 ∼ 101 − 102, and the
corresponding phase is close to zero.
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(a) Normalized gain for Case 3a (b) Phase angle for Case 3a

(c) Normalized gain for Case 6 (d) Phase angle for Case 6

(e) Normalized gain for Case 1 (f) Phase angle for Case 1

(g) Normalized gain for Case 5 (h) Phase angle for Case 5

Figure 4.12: Normalized gain and phase angle of the fluctuating heat release ¤&. The
red dots were obtained by solving the low Mach number approximation equations,
and the blue open circles were obtained using the fully compressible formulation.
The vertical dotted and dashed lines are the frequency at which _1 = ;�,0 and
_1 = 10;�,0, respectively.
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The two frameworks start yielding different results for _1/;�,0 . 102, which cor-
responds to 5 & 104 Hz for the cases at standard thermodynamic conditions, and
5 & 106 Hz for the ones at elevated pressure and temperature. For comparison pur-
poses, typical frequencies at which thermo-acoustic instabilities occur in practical
combustors are 5 ∼ 103 − 104 Hz [105]. For _1/;�,0 . 102, the gain reaches a
constant value at high frequencies for the simulations using the low Mach number
approximation, which was investigated in Sec. 4.2.5. On the other hand, for the fully
compressible simulations, the gain decreases sharply at high frequency for Cases 1
and 3a. One of the main assumptions in the low Mach number simulations is that
the acoustic pressure is constant in space. Obviously, this assumption performs well
at frequencies for which ;�,0 � _1. However, for sufficiently high frequencies, the
spatial variations in pressure impact the flame dynamics, and the results obtained
with the low Mach number approximation are inaccurate. It is interesting to note
that deviations between the two sets of simulation results occur for wavelengths
significantly larger than the flame thickness.

4.3.2 Species response
Figure 4.13 shows the gain and phase of the response of key intermediate species
(hydrogen radical and oxygen radial) for Case 5, corresponding to hydrogen/air at
elevated temperature and pressure.

(a) Normalized gain (b) Phase angle

Figure 4.13: Response of different intermediate species (H radical [blue circles]
and O radical [red squares]) for case 5 using the low Mach number approximation
(closed symbols) and the fully compressible formulation (open symbols).

Two key observations should be made. First, the species responses are in very
good agreement for the lowMach number approximation and the fully compressible
formulation. In other words, the spatial fluctuations of the pressure field do not
appear to impact the species profiles. Second, in the high frequency limit, i.e.,
l → ∞, chemistry becomes “frozen”. The acoustic timescale is much faster than
any chemical timescale in the system, and the species don’t have time to react to the
thermodynamic changes.
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This behaviorwas observed in Sec. 4.2.4 under the lowMach number approximation,
and it was found that the species gain should decrease as l−1. This result was
obtained by considering the scaling of the different terms in the transport equation
for the fluctuating species mass fractions . ′B . In the low Mach number case, the
diffusion term scales like �.B , while it scales like ^2�.B in the fully compressible
case, where ^ is the acoustic wavenumber. In the fully compressible simulations, the
species gain should hence decrease as l−2 instead of l−1, when the Péclet number
%4 = l/(�B^

2) < 1. This corresponds to lg�,0 > 106, which is much greater than
the frequencies considered in this work (lg�,0 < 104). Hence, the species responses
are expected to be similar for the low Mach number and fully compressible cases,
as can be observed in Fig. 4.13.

4.3.3 High frequency limit
The intent is to leverage the frozen nature of the chemistry to estimate the gain and
phase response of the heat release at high frequencies.

Here, we follow a similar approach to the one employed in Sec. 4.2.5. At high
frequency, the species profiles are the same as the ones of the unperturbed flame,
i.e.,.B (2) |l→∞ = .B,0(2), where 2 is any monotonically increasing progress variable
that is not directly impacted by the acoustic pressure fluctuations. Leveraging the
fact that acoustic perturbations are isentropic, one can then predict the sensitivity
of the local heat release ¤ℎ to pressure oscillations as l → ∞, directly from the
unperturbed solution. In this limit, chemistry is frozen, and the fluctuation in heat
release rate ¤&′|l→∞ is only a function of the isentropic thermodynamic fluctuations.
Linearizing Eq. (4.9), one obtains

¤&′|l→∞ = −
∫ !

G0=0
d0

m ¤ℎ
m?

����
0
[?(G, C) − ?0] 3G0 , (4.19)

where G0 is the spatial coordinate in the steady-state solution without acoustic
perturbations. To obtain Eq. (4.19), the relation d3G = d03G0 was used, which
accounts for the expansion/contraction of the flame due to the acoustic wave. Figure
4.14 shows (m ¤ℎ/m?) |0 for Case 6. Several regions can be identified. In the close
proximity of the maximum heat release rate (G/! ≈ 0.18), pressure fluctuations
lead to an increased heat release rate, and (m ¤ℎ/m?) |0 > 0. In the post-flame
region (G/! & 0.19), the opposite is observed, i.e., (m ¤ℎ/m?) |0 < 0. In the low
Mach number approximation, the flame only sees a spatially constant, time varying
acoustic pressure. Hence, one can compute

∫
G
(m ¤ℎ/m?) |0 3G to predict the gain and

phase of the heat release as l → ∞. These theoretical values are represented by
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green crosses in Fig. 4.12 and are in excellent agreement with the simulation results.
As (m ¤ℎ/m?) |0 takes negative values for a large fraction of the domain, its spatial
integral is overall negative. This explains why \ ¤& → −c as l → ∞ for the low
Mach number simulations in Fig. 4.12d. For the fully compressible simulations, the
acoustic pressure varies sinusoidally in space as (? − ?0) ∝ sin (lC − :G). Under
these conditions, Eq. 4.19 is nothing more than the Fourier transform of (m ¤ℎ/m?) |0.
Hence, the shape of this function ultimately controls the high frequency behavior
of the flame. Since (m ¤ℎ/m?) |0 is continuous and compactly supported, its Fourier
modes decay to zero as the frequency goes to infinity. This implies that the heat
release gain � ¤& → 0 as l → ∞. The flame essentially sees the average pressure
field and behaves as if there was no acoustic perturbation. This is indeed the trend
that can be observed in Fig. 4.12 for all the fully compressible simulations.

From Fig. 4.14, it can also be seen that the length for which the heat release
is sensitive to pressure fluctuations is much larger than the flame thickness, i.e.,
0 . (G − G�)/;� . 10. Hence, the acoustic wavelength for which a significant
difference is expected between integrating (m ¤ℎ/m?) |0 against a spatially-constant
pressure (low Mach number approach) and against a sinusoidal pressure field (fully
compressible approach) is expected to be much larger than the flame thickness.
This might explain why the departure between the low Mach number and fully
compressible frameworks happens for _1 � ;�,0, as seen in Fig. 4.12.

Figure 4.14: Sensitivity of the local heat release ¤ℎ to isentropic pressure changes
for Case 6.

Finally, to highlight the need for detailed chemistry, Fig. 4.15 shows the reactions
contributing the most to the gain when l → ∞ for the simulations using the low
Mach number approximation. For Case 6, the phase \ ¤& → −c (see Fig. 4.12d)
because endothermic reactions contribute the most to the fluctuating heat release
response, causing it to be out of phase with pressure. On the other hand, exothermic
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reactions dominate for Case 5, which explains why \ ¤& |l→∞ → 0 in Fig. 4.12h.
In both case, the high-frequency behavior is controlled by the combination of
multiple elementary reactions, hence stressing the need for detailed chemistry when
investigating the response of these complex chemical systems.

(a) Case 5 - Hydrogen

(b) Case 6 - n-Heptane

Figure 4.15: Main reactions contributing to the fluctuating heat release response
when l → ∞ for the low Mach number approximation. The sum of all reactions
adds up to -100% for =-heptane (out of phase), and 100% for hydrogen (in phase).

4.4 Summary
In this chapter, we investigated the direct pressure effects on the dynamics of lam-
inar premixed flames, i.e., the response of flames subjected to the thermodynamic
fluctuations that accompany an acoustic wave. First, we described the numerical
methodology for both the low Mach number and compressible simulations. Under
the low Mach number approximation, we extracted the gain and phase of the heat
release. For all fuels, we observed a local peak for lg� ∼ 100 − 102, corresponding
to a phase angle \ ¤& ≈ 0, therefore being unstable according to the Rayleigh criterion.
We also showed that the flame behavior in the high frequency limit can be predicted
from the steady state solution. Then, we used a fully compressible formulation to
investigate the direct pressure effects under engine-relevant conditions. The differ-
ences between results obtained with the fully compressible framework and the low
Mach number approximation were thoroughly investigated. The low Mach number
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approximation and the fully compressible framework are in good agreement at low
frequencies, as expected. At higher frequencies, i.e., for _1/;� , 0 . 102, the two
frameworks differ. In the high frequency limit, the gain reaches a plateau using the
low Mach number approximation, while it goes to zero using the fully compressible
framework. This is related to the spatial variations in the acoustic pressure field,
which are not captured by the low Mach number approximation. However, the low
Mach number framework is found to yield accurate results for practically-relevant
acoustic frequencies.
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C h a p t e r 5

PHYSICS-BASED FORCING FOR COMPRESSIBLE FLOWS

When performing simulations of turbulence using simplified geometries such as a
triply-periodic box, one has to append a forcing term to the momentum equation to
sustain turbulence, since there is no large-scale turbulence generation mechanism.
As reviewed in Sec. 1.3.4, various forcing schemes have been proposed and employed
in the literature. The aim of most of these schemes is simply to maintain turbulence
at a desired level, and are not necessarily representative of the turbulence injection
from the missing large scales. For incompressible flows, Dhandapani et al.[38]
and Rah et al.[35] derived a physics-based forcing scheme for a shear layer and the
centerline of a jet, respectively. They considered the governing equations for the
small scales of the flow, following the decomposition of the velocity field into large
and small scales. The proper forcing terms then arise naturally. In this chapter,
we seek to extend this approach to compressible flows, where special care must be
taken regarding the energy equation. In Sec. 5.1, we explain the general framework,
which we apply to the centerline of a jet in Sec. 5.2. We then explore an issue that
has plagued previous simulations of forced compressible turbulence using periodic
boundary conditions: large coherent oscillations of the dilatational component of
the velocity field [27, 28]. In Sec. 5.3, we investigate the mechanisms that cause
this behavior. In Sec. 5.4, we apply a modification to the forcing scheme to reduce
its highly oscillatory nature. Finally, we summarize the findings in Sec. 5.5.

5.1 Methodology
5.1.1 Velocity decomposition
We consider the fully compressible Navier-Stokes equations i.e., Eqs. (2.1)–(2.3),
closed with the ideal gas law (Eq. (2.11)). We derive the forcing scheme for a single
fluid, but results can easily be extended to mixtures of different fluids.

The idea is to simulate a small portion of a flow, e.g., the vicinity of the centerline
of a turbulent jet, as illustrated by the schematics shown in Fig. 5.1. Following the
same notation as Dhandapani [106], we split the velocity field into two components:

D8 = D
A
8 + D88 , (5.1)

where DA
8
is the resolved (small-scale) part of the velocity field, and D8

8
is the imposed
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Figure 5.1: Schematics of a typical target domain for our simulations (box, in
black), which is a small portion of a full flow (jet, in blue).

(large-scale) component. The latter is assumed to be known beforehand, e.g., from
experiments, theory, or results obtained from lower-fidelity simulation frameworks
such as Large Eddy Simulations (LES) or Reynolds-Averaged Navier-Stokes simu-
lations (RANS). Following the decomposition given by Eq. (5.1), Eqs. (2.1)–(2.3)
become

md

mC
+ (dDA8 ),8 = −D88d,8 − dD88,8 , (5.2)

mdDA
8

mC
+ (dDA9DA8 ), 9 + ?,8 − gA8 9 , 9 = −D89 (dDA8 ), 9

− dDA8 D89 , 9 − dDA9D88, 9 + g88 9 , 9 − d
mD8

8

mC
− dD89D88, 9 ,

(5.3)

md4AC

mC
+

(
dDA8 ℎ

A
C

)
,8
+ @8,8 −

(
DA9g

A
8 9

)
,8
= −D88

(
d4AC

)
,8
− dℎAC D88,8

− dDA8 DA9D88, 9 + gA8 9D88, 9 + g88 9D88, 9 +
(
DA9g

8
8 9

)
,8
− dDA8

mD8
8

mC
− dDA8 D89D88, 9 ,

(5.4)

where

4AC = 4 + DA8 DA8 /2 , (5.5)

ℎAC = ℎ + DA8 DA8 /2 , (5.6)

and

gA8 9 = `(DA8, 9 + DA9 ,8 − (2/3)DA:,:X8 9 ) . (5.7)
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Note that the summation convention only applies to the lower indices. Details about
the derivation of Eqs. (5.3) and (5.4) can be found in Appendix E. The Left-Hand
Side (LHS) of Eqs. (5.2) to (5.4) is identical to Eqs. (2.1) to (2.3), but we now
have several additional source terms showing up on the Right-Hand Side (RHS).
Each equation includes advection by the imposed flow, i.e., terms of the form D8

8
q,8,

where q is the transported quantity, and dilatation by the imposed flow, i.e., terms
of the form qD8

8,8
. Additional, we have production terms: dDA

9
D8
8, 9

in the momentum
equation, and dDA

8
D8
9
D8
8, 9

in the energy equation. They are referred to as production
terms because they are responsible for the injection of turbulent kinetic energy due to
shear by the imposed flow. We also have dD8

9
D8
8, 9

(momentum), dDA
8
D8
9
D8
8, 9

(energy),
and terms involving the time derivative of the imposed flow. They are referred to
as acceleration terms since they act like a body force. Finally, we have additional
viscous terms. For the rest of the analysis, we will consider a statistically-stationary
flow in which D8

8
is constant in time. Hence, the additional terms involving the time

derivative of the imposed flow in Eqs. (5.3) and (5.4) drop.

5.1.2 Favre averaging and Helmholtz decomposition
For variable-density flows, it is common to perform a Favre velocity decomposition,
i.e., D8 = D′′

8
+ D̃8, where D̃8 = 〈dD8〉/〈d〉 is the Favre average, and 〈 〉 denotes

the ensemble average. We can further perform a Helmholtz decomposition of the
Favre-averaged velocity field, i.e., D̃8 = D̃B8 + D̃38 , where D̃B8 and D̃38 are the solenoidal
and dilatational components, respectively. It is convenient to choose

D88 = D̃
B
8 , DA8 = D

′′
8 + D̃38 . (5.8)

A schematic of this decomposition is shown in Fig. 5.1.2. Following Eq. (5.8),
the imposed part of the velocity field being divergence-free, the additional terms
involving dilatation by the imposed flow in Eq. (5.2) to (5.4) are identically zero.

Figure 5.2: Schematic diagramof the velocity decomposition presented in Sec. 5.1.2.
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5.1.3 Additional viscous terms involving g8

We seek to compare the magnitude of the viscous terms involving the imposed g8
8 9

and resolved gA
8 9
components of the flow. Since we are dealing with matrices, we

estimate the ratio of the ensemble average of the double-dot products of the viscous
stress tensors, i.e.,

〈g8
8 9
g8
8 9
〉

〈gA
8 9
gA
8 9
〉 =

g8
8 9
g8
8 9

〈gA
8 9
gA
8 9
〉 ≈

(8
8 9
(8
8 9

〈(A
8 9
(A
8 9
〉 ≈

n 8

nA
, (5.9)

where (8 9 is the rate-of-strain tensor, n 8 is the dissipation rate of the imposed flow,
and nA is the dissipation rate of the resolved flow. Themolecular viscosity ` has been
taken to be constant in Eq. (5.9) for scaling purposes. For incompressible flows,
the scaling n 8/nA ∼ '4−1

C is generally accepted [22], and we assume that it remains
valid for compressible flows. At sufficiently high turbulent Reynolds numbers ReC ,
all the terms involving g8

8 9
on the RHS of Eqs. (5.3) and (5.4) are small compared to

the terms involving gA
8 9
, and they can be safely neglected. We will then simply refer

to gA
8 9
as g8 9 .

By a similar reasoning process, the remaining term on the RHS of Eq. (5.4), i.e.,
g8 9D

8
8, 9
, is small when compared to g8 9DA8, 9 since D

8
8, 9
D8
8, 9
/〈DA

8, 9
DA
8, 9
〉 ∼ '4−1

C . It can thus
be removed. Equations (5.2) to (5.4) reduce to

md

mC
+ (dDA8 ),8 = −D88d,8 , (5.10)

mdDA
8

mC
+ (dDA9DA8 ), 9 + ?,8 − g8 9 , 9 = −D89 (dDA8 ), 9 − dDA9D88, 9 − dD89D88, 9 , (5.11)

md4AC

mC
+

(
dDA8 ℎ

A
C

)
,8
+ @8,8 −

(
DA9g8 9

)
,8
= −D88

(
d4AC

)
,8
− dDA8 DA9D88, 9 − dDA8 D89D88, 9 . (5.12)

5.1.4 Flow homogeneity
We are interested in simulating a stationary (in space) small portion of the full
flow. Since the flow described by Eqs. (5.10)–(5.12) is general, it is not necessarily
homogeneous, e.g., for a turbulent jet. Technically, we could perform simulations
in an inflow/outflow configuration aligned with the mean flow D8

8
. That way, the

flow inhomogeneities would be naturally accounted for. However, we would need
to provide a turbulent field at the inlet, and generating the proper turbulent inflow is
not straightforward. The natural alternative to inflow/outflow boundary conditions
are periodic boundary conditions, but these require spatial homogeneity. The goal
of the present work is to provide a way to account for the flow inhomogeneities



86

in a periodic box. To this end, we will perform the appropriate transformations to
make the flow homogeneous. Once the transformed flow is homogeneous, the terms
involving advection by the mean flow in Eqs. (5.10)–(5.12) become unnecessary, as
we are effectively simulating a spatially stationary portion of the flow. Hence, we can
safely remove them. In summary, we want to perform a triply-periodic realization
of the vicinity of a fixed location in a flow of interest, which will be made possible
by performing the appropriate transformations to make the flow homogeneous in
the transformed setting. To illustrate the effectiveness of this method, in the next
section, we apply this framework to the centerline of a turbulent jet.

5.2 Governing equations for the centerline of a jet
Wewant to reproduce the turbulence characteristics on the centerline of a compress-
ible round jet in a triply-periodic box. We closely follow the approach by Rah et
al.[35], who performed it for the incompressible case.

5.2.1 Imposed mean flow
As described in Sec. 5.1.2, we seek a decomposition of the instantaneous velocity
field into a resolved and an imposed mean flow. In the self-similar region of an
incompressible turbulent jet, the mean flow and the gradient of the mean flow are

u8 = *2


1
0
0

 ∇u8 =
*2

G0


−1 0 0
0 1/2 0
0 0 1/2

 , (5.13)

where G0 is the axial distance, and *2 is the centerline velocity at this location.
It can easily be verified that D8

8,8
= 0, so this imposed field is consistent with

the decomposition performed in Eq. (5.8). We expect Eq. (5.13) to be a good
approximation for subsonic compressible flows. More specifically, we will assume
that the solenoidal part of the Favre averaged mean of the compressible velocity
field is the same as the mean incompressible velocity field.

5.2.2 Statistical homogeneity for velocity
As hinted in Sec. 5.1.4, the flow is not statistically homogeneous in the axial
direction. In other words, the moments of the resolved velocity field (such as
the variance) vary in the axial direction. That is why the first step is to perform
the adequate rescalings for the velocity fluctuations to be statistically homogeneous.
Specifically, in an incompressible turbulent jet, it is well-known that the velocity
fluctuations scale as 1/G. Guided by the normalization performed by Rah et al.[35]
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for the self-similar region of incompressible turbulent jets, we perform the coordinate
transformation

DAG =
G0

G
exp ©­«

G

G0
− 1ª®¬ D∗G , DAH =

G0

G
D∗H , DAI =

G0

G
D∗I . (5.14)

Equations (5.10) to (5.12) become

md

mC
+ (dD∗8 ),8 = −*2d,G , (5.15)

mdD∗
8

mC
+ (dD∗9D∗8 ), 9 + ?,8 − g8 9 , 9 = −*2 (dD∗8 ),G + dD∗9�8 9

− d
*2

0

G0
X18 +

1
G0
dD∗GD

∗
HX28 +

1
G0
dD∗GD

∗
IX38 ,

(5.16)

md4∗C

mC
+

(
dD∗8 ℎ

∗
C

)
,8
+ @8,8 −

(
D∗9g8 9

)
,8
= −*2

(
d4∗C

)
,G

+ dD∗8 D∗9�8 9 − dD∗G
*2

0

G0
+

1
G0
dD∗G (D∗HD∗H + D∗ID∗I) ,

(5.17)

where we have simplified the equations assuming that we are in the vicinity of G0,
and where

B =
*2

G0


1 0 0
0 1/2 0
0 0 1/2

 (5.18)

is the so-called forcing matrix, composed of contributions from the production
terms due to D8

8, 9
and new terms introduced by the normalization. The additional

viscous terms originating from the normalization are neglected [35]. It is important
to emphasize that Eq. (5.13) and the rescaling given by Eq. (5.14) were derived for
incompressible flows. We assume that they remain appropriate for compressible
flows.

On the centerline of a turbulent jet,
√
(D∗G)2/*2 ≈ 0.25 [107]. Combinedwith the fact

that D∗
8
oscillates with zero mean by definition, we must have 〈dD∗GD∗8 〉 � *2〈dD∗8 〉,

and 〈dD∗GD∗8 D∗8 〉 � *2〈dD∗8 D∗8 〉. Hence, the contribution of the terms (1/G0)dD∗GD∗H
and (1/G0)dD∗GD∗I are small compared to (*2/(2G0)dD∗H and (*2/(2G0)dD∗I in the
y-momentum and z-momentum equations, respectively, and are thus neglected.
Similarly, the term (1/G0)dD∗G (D∗HD∗H + D∗ID∗I) in Eq. (5.17) is small in comparison to
dD∗

8
D∗
9
�8 9 , and is also neglected. Equations (5.16) and (5.17) simplify to

mdD∗
8

mC
+ (dD∗9D∗8 ), 9 + ?,8 − g8 9 , 9 = −d

*2
0

G0
X18 −*2 (dD∗8 ),G + dD∗9�8 9 , (5.19)
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md4∗C

mC
+

(
dD∗8 ℎ

∗
C

)
,8
+ @8,8 −

(
D∗9g8 9

)
,8
= −*2

(
d4∗C

)
,G
+ dD∗8 D∗9�8 9 − dD∗G

*2
0

G0
. (5.20)

5.2.3 Statistical homogeneity for the thermodynamic variables
In addition to velocity, it is important to ensure that all thermodynamic variables are
homogeneous. In this work, we focus on the inhomogeneities that prevent the flow
from reaching a statistically-stationary state when periodic boundary conditions are
applied. It is beyond the scope of this work to develop a framework to make both
the mean and the fluctuations of all thermodynamic quantities to be statistically
homogeneous. The term (d*2

0/G0)X18 in Eq. (5.19) is constant, and will thus only
lead to a mean pressure gradient in the G direction. To make the flow homogeneous,
it is thus removed, along with its counterpart in Eq. (5.20). Now, consider the
ensemble average of Eq. (5.20). Leveraging the statistical stationarity of the flow, it
becomes

〈
dD∗8 ℎ

∗
C

〉
,8
+ 〈@8〉,8 −

〈
D∗9g8 9

〉
,8
= −*2

〈
d4∗C

〉
,G
+ 〈dD∗8 D∗9 〉�8 9 . (5.21)

If both the velocity and thermodynamic variables were homogeneous, any deriva-
tives of ensemble-averaged quantities would be zero. For Eq. (5.21), this means
that the three terms on the LHS and the advection by the mean would be zero, thus
leaving only the production term 〈dD∗

8
D∗
9
〉�8 9 . This is obviously not correct, since the

production term is responsible for the injection of turbulent kinetic energy [35, 38,
108], and is strictly positive. Practically, this production term leads to an increase
in 〈d4∗C 〉 along the direction of the imposed flow, and is balanced by the advection
by the imposed flow. For flows with large turbulent Mach numbers (not necessar-
ily supersonic) "C =

√
〈D∗
8

2〉/20, where 20 is the speed of sound, the production
term deposits a large amount of energy. In other words, in a statistically-stationary
configuration, this term is balanced by a constant influx of “fresh” gases through
advection by the imposed flow. Hence, to be homogeneous, we define

(d4C)† = d4∗C −
1
*2

∫
G

〈dD∗8 D∗9 〉�8 93G , (5.22)

such that Eq. (5.20) becomes

m (d4C)†

mC
+

(
D∗8 (d4C)†

)
,8
+ ©­«

D∗
:

*2

∫
G

〈dD∗8 D∗9 〉�8 93G
ª®¬,: +

(
dD∗8 ?

∗)
,8

+ @8,8 −
(
D∗9g8 9

)
,8
= −*2 (d4C)†,G +

(
dD∗8 D

∗
9 − 〈dD∗8 D∗9 〉

)
�8 9 .

(5.23)
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In Eq. (5.23), the term
(
(D∗
8
/*2)

∫
G
〈dD∗

8
D∗
9
〉�8 93G

)
,8
is the divergence of the product

of a constant at a given G, i.e., (1/*2)
∫
G
〈dD∗

8
D∗
9
〉�8 93G, and a quantity that oscillates

around zero, i.e., D∗
8
. Hence, we choose to neglect it. Equation (5.23) simplifies to

m (d4C)†

mC
+

(
D∗8 (d4C)†

)
,8
+

(
dD∗8 ?

∗)
,8
+ @8,8 −

(
D∗9g8 9

)
,8

= −*2 (d4C)†,G +
(
dD∗8 D

∗
9 − 〈dD∗8 D∗9 〉

)
�8 9 .

(5.24)

Note that if we were to impose periodicity in the direction of the imposed flow with-
out performing the transformation prescribed by Eq. (5.22), 〈〈d4C〉〉 would increase
over time due to viscous dissipation, and violate the assumption that the flow is
statistically stationary. Such an increase in 〈〈d4C〉〉 was observed by Kida & Orszag
[28], who had not performed such transformation. The operator 〈〈 〉〉 denotes the vol-
ume and time averages, which approximates the ensemble average for homogeneous
and statistically stationary flows.

Theoretically, any rescaling of one thermodynamic variable requires the rescaling
of all thermodynamic variables, since ?, d, and ) are related via the equation of
state. Such additional rescalings would introduce new terms in Eq. (5.23). Here,
we only perform the minimal necessary rescaling to make the mean thermodynamic
fields homogeneous. We. do not propagate the normalization given by Eq. (5.22) to
the other thermodynamic variables, which would give rise to second order effects
that we choose to neglect.

The term 〈dD∗
8
D∗
9
〉�8 9 in Eq. (5.24) acts as an energy sink. It balances the forcing

term dD∗
8
D∗
9
�8 9 , and enables a statistically-stationary state to be reached. Indeed,

taking the volume average of Eq. (5.24) assuming periodicity, we have

3〈(d4C)†〉
3C

= 0 . (5.25)

Hence, the transformation given by Eq. (5.22) is sufficient to achieve a statistically-
stationary thermodynamic state.

5.2.4 Summary
In Sec. 5.2.2, the velocity fieldwasmade homogeneous by performing the coordinate
transformation given by Eq. (5.14). In Sec. 5.2.3, we removed the mean production
term in the energy equation to account for the heat deposition due to viscous
dissipation. Our main assumption is that the modifications performed in Secs. 5.2.2
and 5.2.3 are sufficient to yield a set of governing equations whose solution is a
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homogeneous field describing the turbulent flow on the centerline of a compressible
jet at a fixed location. Now that the flow has been made homogeneous, the terms
involving advection by the imposed flow*2 are superfluous and can be removed, as
explained in Sec. 5.1.4. Dropping the superscripts ( )∗ and ( )†, Eqs. (5.15), (5.19)
and (5.24) then become

md

mC
+ (dD8),8 = 0 , (5.26)

mdD8

mC
+ (dD 9D8), 9 + ?,8 − g8 9 , 9 = dD 9�8 9 , (5.27)

md4C

mC
+ (dD8ℎC),8 + @8,8 −

(
D 9g8 9

)
,8
=

(
dD8D 9 − 〈dD8D 9 〉

)
�8 9 ,

(5.28)

withB given by Eq. (5.18). From Eqs. (5.27) and (5.28), one can derive the kinetic
energy

mdD8D8/2
mC

+ (dD 9D8D8/2), 9 + D8?,8 − D8g8 9 , 9 = dD8D 9�8 9 , (5.29)

and internal energy

md4

mC
+ (dD8ℎ),8 + @8,8 − D8?,8 = D 9 ,8g8 9 − 〈dD8D 9 〉�8 9 , (5.30)

transport equations. For a statistically-stationary homogeneous flow, we obtain from
Eq. (5.29) that

〈D 9 ,8g8 9 〉 = 〈dD8D 9 〉�8 9 , (5.31)

where the contribution of the pressure-dilatation term is neglected, since it fluctuates
around zero [28]. Using Eq. (5.30), we also obtain Eq. (5.31). Hence, in both the
kinetic energy and internal energy transport equations, the production term dD8D 9�8 9

is on average balanced by the viscous dissipation term D 9 ,8g8 9 .

5.2.5 Link to previous studies that used linear forcing
Petersen & Livescu [27] studied forced turbulence using the so-called linear forcing
method. The set of governing equations they solved for is

md

mC
+ (dD8),8 = 0 , (5.32)

mdD8

mC
+ (dD 9D8), 9 + ?,8 − g8 9 , 9 = d�D8 , (5.33)
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md4C

mC
+ (dD8ℎC),8 + @8,8 −

(
D 9g8 9

)
,8
= 0 , (5.34)

where � is a constant, corresponding to the forcing matrix being the identity matrix.
The set of equations Eqs. (5.32) to (5.34) is strikingly similar to the ones previously
developed for the centerline of a turbulent jet. Both sets of equations have a
production term linear in velocity, with a forcing matrix composed of diagonal
entries only. There are only two differences: the magnitude of the entries of the
forcing matrices, and the additional term in the energy equation. In Eq. (5.28),
the ensemble mean of dD8D 9�8 9 is removed to enable a statistically stationary state,
while in Eq. (5.34), the additional source term in the energy equation has simply
been set to zero [27]. For simplicity, and for consistency with previous studies using
linear forcing [27, 40, 46, 51], we will present in this thesis results for isotropic
turbulence, i.e., we will use a forcing matrix corresponding to the identity matrix.
In other words, we will use d�D8 instead of d�8 9D 9 as the forcing term for all
simulations.

5.3 Acoustic modes and periodic boundary conditions
For the analysis presented in this section, we set 2?, ` and _ to be constants,
with unity Prandtl number. For a single fluid with constant 2?, the equation for
temperature (Eq. (3.34)) simplifies to

) = (W − 1)
,

'

©­«4C −
1
2
|u|2ª®¬ . (5.35)

5.3.1 Problem statement
One can always perform a Helmholtz decomposition of the velocity field and obtain
the dilatational D3

8
and solenoidal components DB

8
, with ∇ · uB = 0 and ∇ × u3 = 0.

Equation (5.27) prescribes to use the full velocity field in the production term dD8�8 9 ,
i.e., D8 = D38 + DB8 . However, Petersen & Livescu [27] reported observing the un-
bounded growth of the ratio of the dilatational kinetic energy :̃3 = �D3

8
D3
8
/2 to the

solenoidal kinetic energy :̃ B = D̃B
8
DB
8
/2, when the full velocity field is used in the

production term. To remedy the situation, they proposed to force the solenoidal and
dilatational components of the velocity field separately in Eq. (5.27), replacing the
original production term by

©­«
n Btarget

2:̃ B
ª®¬ dDB8 + ©­«

n3target + 〈D8?,8〉
2:̃3

ª®¬ dD38 , (5.36)
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where n Btarget and n3target are the user-specified target solenoidal and dilatational dissi-
pation rates, respectively. This enabled them to control the ratio n Btarget/n3target. This
approach can be seen as an extension to compressible flows of the method proposed
by Carroll [108] to reduce the oscillatory nature of the forcing term, which is sum-
marized in Sec. 5.4. However, prescribing the partition of D8 into its dilatational
and solenoidal components does not come from the governing equations, and thus
requires more attention. In the following subsections, we will show that
1) periodic boundary conditions promote the growth of standing acoustic waves,
which allow :̃3 to reach unphysical values,
2) the ratio :̃3/:̃ B does not grow unboundedly as previously claimed [27].

5.3.2 Toy problem: forced one-dimensional “turbulence”
Here, we study a toy problem: forced one-dimensional “turbulence”. Equations
(5.26) to (5.28) become

md

mC
+ (dDG),G = 0 (5.37)

mdDG

mC
+ (dDGDG),G + ?,G −

4
3
`DG,GG = �dDG , (5.38)

md4C

mC
+ (dDGℎC),G − _),GG −

4
3
`
(
DGDG,G

)
,G
= � (dDGDG − 〈dDGDG〉) , (5.39)

Although this configuration might not correspond to a practical flow, it will be
shown that it captures the instabilities previously observed [27] and thus provides a
simple numerical platform to characterize them.

5.3.2.1 Linear stability analysis

To get theoretical insight into the behavior of Eqs. (5.37) to (5.39), we perform
a linear stability analysis. For all thermodynamic variables, we consider q =

q0 (1 + q′/q0), with q′ � q0. We further assume that there is no mean flow, i.e.,
D̃ = 0, and that D′′ � 20, where 20 is the sound speed. Equations (5.37) to (5.39)
become

md′

mC
+ d0D

′
,G = 0 (5.40)

mD′

mC
+
?0

d2
0
d′,G +

'

,
) ′,G −

4
3
aD′,GG = �D

′ , (5.41)

m) ′

mC′
+ (W − 1))0D

′
,G − WU) ′,GG = 0 , (5.42)
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where the equation of state for the fluctuating quantities

?′

?0
=
d′

d0
+
) ′

)0
(5.43)

has been used to replace ?′ in Eq. (5.38). Note that the production term in the energy
equation, i.e., the term on the RHS of Eq. (5.39), is not present in Eq. (5.42), as a
result of the linearization. Imposing periodic boundary conditions on G = (0, !),
all quantities have a solution of the type

q(G, C) =
∞∑

^→−∞
q̂^ (C) exp (8^G) , (5.44)

where ^ is the wavenumber. We now proceed to normalize all variables, i.e., we set
d∗ = d′/d0, )∗ = ) ′/)0, D∗ = D′/20, G∗ = ^G, and C∗ = 20^ C. Performing the Fourier
transform of Eqs. (5.40) to (5.42), they can be rewritten as

3

3C∗


d̂∗

D̂∗

)̂∗

 =


0 −8 0
−8/W (� − (4/3)a^2)/(^20) −8/W

0 −8(W − 1) −UW^/20

︸                                                   ︷︷                                                   ︸
:=



d̂∗

D̂∗

)̂∗

 . (5.45)

To the leading order when 20 → ∞ (zeroth order for the imaginary part and first
order for the real part), the eigenvalues of 
 are


_1

_2

_3

 =


−U^2

^208 +
� − ^2 (a(4/3) + U(W − 1))

2

−^208 +
� − ^2 (a(4/3) + U(W − 1))

2


. (5.46)

The first eigenvalue _1 is associated with the decay of entropic waves. The second
and third eigenvalues _2 and _3 are associated with acoustic waves. The normalized
growth rate f of the acoustic dilatational modes is given by the real part of the latter
eigenvalues, i.e.,

f =
Re(_2)
�

=
Re(_3)
�

=
� − ^2 (a(4/3) + U(W − 1))

2�
. (5.47)

We define

^2 =

√√
�

a(4/3) + U(W − 1) . (5.48)

For ^ < ^2, Re(_2) = Re(_3) > 0 such the amplitude of the wave will grow expo-
nentially in time. The results of this linear stability analysis are verified numerically
in the next section.



94

5.3.2.2 Numerical simulations of one-dimensional “turbulence”

We want to verify the results obtained in Sec. 5.3.2.1 using numerical simulations.
To this end, we initialize a flow field with small-amplitude standing acoustic modes

D(G) =
 ∑̂
∗=1

�D sin ©­«
2c^∗G
!

ª®¬
?(G) = ?0

d(G) = d0

(5.49)

with  = 8, �D/20 = 10−6, and ^∗2 ≡ ^2!/(2c) = 3.4. We run the simulation for
a short time and extract f by fitting an exponential to the envelope of each of the
Fourier modes, as shown in Fig. 5.3 for the first mode, i.e., ^∗ = 1. In Fig. 5.4, we
compare the theoretical growth rate given by Eq. (5.47) with f extracted from the
simulations. The agreement is excellent.

Figure 5.3: Time evolution of the norm of the first velocity Fourier mode |D̂1 | (blue),
along with the exponential curve fitted to extract the growth rate f (red).

Figure 5.4: Growth rate of the first 8 modes, from theory (Eq. (5.47), red line) and
from simulations (blue dots).

Figure 5.5 shows the time evolution of the kinetic energy, normalized with the mean
kinetic energy at statistical stationarity 〈:̃〉. Note that the linearly unstable modes
do not grow unboundedly. Eventually, non-linear effects cause a one-dimensional
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“turbulent” energy cascade. The flow reaches a statistically-stationary state where
the energy input from the large scales is balanced by viscous dissipation at the
small scales. On Fig. 5.5b, one can clearly see that the kinetic energy undergoes
large oscillations on a timescale determined by the domain size and the sound
speed, typical of large-scale standing acoustic waves. Next, we consider the energy
spectrum, which for a one-dimensional homogeneous flow can be simply computed
as

�: (^) = |D̂(^) |2 , (5.50)

where D̂ is the Fourier transform of D. Figure 5.6 shows �: once the flow has reached
a statistically-stationary state, normalized by the kinetic energy :̃ . The inertial sub-
range has a slope of ^∗−2, as observed for various Mach numbers in previous
simulations of one-dimensional “turbulence” using large-scale forcing [109]. For
this flow, the Mach number at statistical stationary is "C = 5 · 10−2.

(a) (b)

Figure 5.5: Time evolution of the kinetic energy for one-dimensional “turbulence”
problem: full time evolution (left), and zoom (right).

Figure 5.6: Normalized energy spectrum of the one-dimensional “turbulence” sim-
ulations.
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5.3.2.3 Discussion about periodic boundary conditions for forced
compressible flows

In a unconfined flow configuration, e.g., a turbulent jet in an anechoic chamber,
acoustic dilatational modes “radiate to infinity”, i.e., they escape the turbulent part
of the flow [110, 111]. In Sec. 5.1, we developed a framework to make a general
flow homogeneous, and we applied it to the centerline of a turbulent jet in Sec. 5.2.
For homogeneous flows, periodic boundary conditions are convenient. However,
regarding the acoustic modes, periodic boundary conditions “trap” acoustic waves
that would otherwise radiate to infinity. As it was found in Sec. 5.3.2.1, some
of these waves are linearly unstable. Hence, it is problematic to impose periodic
boundary conditions when the dilatational component of the velocity field is forced.
One way to prevent the growth of these acoustic modes is to force the solenoidal
velocity fielduB only, which is equivalent to keeping only the first of the two terms in
the expression proposed by Petersen & Livescu [27] (Eq. (5.36)). Equations (5.27)
and (5.28) then become

mdD8

mC
+ (dD 9D8), 9 + ?,8 − g8 9 , 9 = �dDB8 , (5.51)

md4C

mC
+ (dD8ℎC),8 + @8,8 −

(
D 9g8 9

)
,8
=

(
dD8D

B
8 − 〈dD8DB8 〉

)
� , (5.52)

where the isotropic forcing matrix A has been used instead of the anisotropic
forcing matrix B derived in Sec. 5.2. Note that a possible avenue would be to also
use the stable dilatational modes in the forcing term, i.e., force the full solenoidal
velocity as well as the dilatational wavenumbers that satisfy ^ > ^2. However,
this would require performing a Fourier transform of the full velocity field at each
timestep, which is computationally expensive. Another avenue would be to modify
the periodic boundary conditions to filter out the acoustic waves, using a similar
philosophy as the NSCBC. However, this is beyond the scope of the present work.

In summary, from first principles, we found that the forcing term should be linear
in velocity, using the full velocity field. However, when using periodic boundary
conditions, this promotes the growth of unstable dilatational modes. Hence, inspired
by the work of Petersen & Livescu [27], it was decided to only use the solenoidal
velocity field in the forcing term.
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5.4 Modification to the forcing term to reduce its oscillatory nature
First, let’s examine what are some of the expected steady-state quantities obtained
using this forcing scheme for a homogeneous flow. Consider the volume-averaged
kinetic energy equation, obtained from Eq. (5.51), i.e.,

3d̄:̃

3C
= 〈D8g8 9 , 9 〉 + 2�〈dD8DB8 〉 − 〈D8?,8〉 , (5.53)

where :̃ = 〈d:〉/〈d〉 is the Favre-averaged kinetic energy, The pressure-dilatation
term 〈D8?,8〉 leads to oscillations on a fast time scale, but has been found to have
a negligle impact on the evolution of the turbulent kinetic energy [112]. It is
thus discarded from the present analysis. For moderate turbulent Mach numbers
"C . 0.6, the kinetic energy of the flow is mostly contained in the solenoidal mode
[26, 29]. Hence, we rewrite 〈dD8DB8 〉 ≈ 2〈d〉 :̃ . For lowMach numbers, we also have
〈:̃〉 ≈ 〈〈:〉〉. Leveraging the homogeneity of the flow, assuming ` to be constant, and
assuming that a statistically-stationary state if obtained, Eq. (5.53) can be rewritten
as

〈〈n〉〉 = 2�〈〈:〉〉 , (5.54)

where the definition for the viscous dissipation rate n (Eq. (1.11)) has been used.
Using the definition for the integral length scale (Eq. (1.10)), we obtain

D′ = 3�; , (5.55)

'4C =
D′;

a
=

3�;2

a
, (5.56)

〈〈:〉〉 ≡ :0 =
3
2
D′2 =

27
2
�2;2 , (5.57)

and

〈〈n〉〉 ≡ n0 = 27�3;2 . (5.58)

Equations Eq. (5.55)–(5.58) were obtained for incompressible flows by Carroll &
Blanquart [108]. For compressible flows at low turbulentMach numbers, the present
analysis shows that they remain valid.

The forcing term in Eq. (5.51) produces flows that exhibit large fluctuations in
turbulent statistics, a feature that becomes more prominent as '4C is increased
[36, 37, 108]. To reduce the oscillatory nature of this forcing scheme, Carroll &
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Blanquart [108] proposed to slightly modify the forcing term by multiplying it by
:0/〈:〉. Here, we follow a similar procedure, by multiplying the forcing term by
:0/:̃ . The final set of equations used in the following chapter are

md

mC
+ (dD8),8 = 0 , (5.59)

mdD8

mC
+ (dD 9D8), 9 + ?,8 − g8 9 , 9 = 58 ,

(5.60)

md4C

mC
+ (dD8ℎC),8 + @8,8 −

(
D 9g8 9

)
,8
= 58D8 − 〈 58D8〉 , (5.61)

where

58 = �
:0

:̃
dDB8 (5.62)

is the forcing term. Dotting Eq. (5.60), and using the relation DB
8
D8 ≈ D8D8 for flows

at low Mach numbers, one obtains that the mean forcing term in the kinetic energy
transport equation is

〈 58D8〉 = 2�〈d〉:0 . (5.63)

Hence, the effect of the modification to the forcing term applied in this section is to
inject a constant amount of kinetic energy, i.e., it yields a constant production term.

5.5 Summary
In this chapter, we derived how compressible turbulent flows should be forced when
simplified geometries such as a periodic box are used, i.e., when the flow lacks a
natural turbulence generation mechanism due to the large scale shear. In Sec. 5.1,
we introduced the general framework, which relies on a simple decomposition of
the velocity field into large-scale (imposed) and small-scale (resolved) components.
Then, in Sec. 5.2, we applied this framework to the centerline of a jet. Themethodol-
ogy to make the velocity and thermodynamic fields homogeneous was presented. In
Sec. 5.3, we investigated the unphysical growth of dilatational kinetic energy when
forced turbulence is simulated with periodic boundary conditions. It was found that
standing acoustic modes were responsible for this unphysical behavior, and it was
decided to force the solenoidal component of the velocity field only to remedy the
situation, similarly to what was proposed by Petersen & Livescu [27]. Finally, in
Sec. 5.4, we applied a modification to the forcing scheme to reduce its oscillatory
nature, following the work of Carroll & Blanquart [108].
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C h a p t e r 6

NUMERICAL SIMULATIONS OF COMPRESSIBLE
HOMOGENEOUS TURBULENCE

In this chapter, we investigate compressible homogeneous isotropic turbulence using
DNS. In the past, such flows have mostly been investigated using ad-hoc turbulence
forcing schemes, such as stochastic forcing at the largest scales [28, 29, 113, 114].
To the author’s knowledge, the only studies of compressible turbulence using linear
forcing are the ones by Rosales & Meneveau [37], and Petersen & Livescu [27].
These two studies focused primarily on comparing the linear forcing technique with
the large-scale forcing in Fourier space. The goal of this chapter is to provide
insight into homogeneous isotropic subsonic compressible turbulence, using the
linear forcing technique presented in Chapter 5. In Sec. 6.1, we review some of the
theory regarding the decomposition of the flow field into solenoidal and dilatational
components, as well as how these fields are related to the different terms in the
low Mach number expansion. In Sec. 6.2, we present simulation results. We first
fix the Reynolds number and vary the turbulent Mach number. We are specifically
interested in how key quantities, such as solenoidal and dilatational kinetic energies,
scale with the Mach number. Second, we evaluate how these quantities change
with the Reynolds number, fixing the turbulent Mach number. The findings are
summarized in Sec. 6.3.

6.1 Theoretical considerations
As mentioned previously, the flow field can be decomposed in two separate ways,
either into solenoidal and dilatational components (Helmholtz decomposition), or
via the low Mach number expansion. In this section, we review the theoretical links
between the two.

6.1.1 Solenoidal and dilatational fields
As introduced in Sec. 1.3.2, the velocity field can be split into its solenoidal uB
and dilatational u3 components by performing a Helmholtz decomposition. For
homogeneous non-reacting turbulence, the low Mach number approximation is
nothingmore than the incompressible limit (see Sec.2.1.2.2), and the velocity field is
purely solenoidal. Hence, for compressible homogeneous non-reacting turbulence,



100

we expect 〈:̃3〉/〈:̃ B〉 → 0 when "C → 0, where

〈:̃ B〉 =
1
2
〈〈duB · uB〉〉
〈〈d〉〉 , (6.1)

and

〈:̃3〉 =
1
2
〈〈du3 · u3〉〉
〈〈d〉〉 , (6.2)

are the Favre-averaged solenoidal and dilatational kinetic energies, respectively. The
turbulent Mach number is defined as "C ≡

√
2〈〈:〉〉/〈〈2〉〉 (Eq. (1.18)).

Sarkar et al.[115] proposed a decomposition of the mean viscous dissipation rate
〈〈n〉〉 into a solenoidal component

〈〈n B〉〉 =
〈〈`ω · ω〉〉
〈〈d〉〉 , (6.3)

where ω ≡ ∇ × u is the vorticity vector, and dilatational component

〈〈n3〉〉 =
4
3
〈〈`(∇ · u)2〉〉
〈〈d〉〉 . (6.4)

This decomposition is exact, i.e., 〈〈n B〉〉 + 〈〈n3〉〉 = 〈〈n〉〉, for homogeneous flows, since

〈〈d〉〉〈〈n〉〉 = 〈〈`g8 9D8, 9 〉〉 = 〈〈`
(
D8, 9 + D 9 ,8 − (2/3)D:,:X8 9

)
D8, 9 〉〉

= 〈〈`
(
2F8 9F8 9 + 2D8, 9D 9 ,8 − (2/3)D2

8,8

)
〉〉

= 〈〈`
(
2F8 9F8 9 + 2((D8D 9 ,8 − D8,8D 9 ), 9 + (4/3)D2

8,8

)
〉〉

= 〈〈`
(
2F8 9F8 9 + (4/3)D2

8,8

)
〉〉

= 〈〈`
(
ω · ω + (4/3) (∇ · u)2

)
〉〉 = 〈〈d〉〉(〈〈n B〉〉 + 〈〈n3〉〉) ,

(6.5)

where F8 9 = (1/2) (D8, 9 − D 9 ,8) is the vorticity tensor. Equation (6.3) is the so-called
solenoidal dissipation rate, since only the divergence-free component of velocity uB

is used (∇ × u3 = 0). Equation (6.4) is the so-called dilatational dissipation rate,
since only the curl-free component of velocityu3 is employed (∇·uB = 0). Similarly
to the ratio of dilatational to solenoidal kinetic energies, we expect 〈〈n3〉〉/〈〈n B〉〉 → 0
as "C → 0, since D′→ DB.

The fluctuating pressure field ?′ = ? − 〈〈?〉〉 can be split into dilatational ?3 and
solenoidal ?B components, with ?′ = ?3 + ?B. The solenoidal pressure field is
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defined by the Poisson equation found for pressure in the incompressible case [26],
i.e.,

∇2?B = −〈〈d〉〉
mDB

8

mG 9

mDB
9

mG8
, (6.6)

which is obtained by taking the divergence of the momentum equation (Eq. (2.2)),
considering a purely solenoidal velocity field and constant density, and using the
incompressibility constraint ∇ · uB = 0 to eliminate the time-derivative and viscous
terms. The solenoidal pressure ?B, extracted during post-processing, is thus the
pressure that satisfies the “incompressible” part of the Navier-Stokes equations.
Hence, we expect ?′→ ?B as "C → 0.

6.1.2 Low Mach number expansion - Review and interpretation
In this chapter, we solve the equations for forced turbulence developed in Chapter 5,
i.e., Eqs. (5.59)–(5.61). In Sec. 2.1.2, we reviewed the low Mach number approxi-
mation, focusing on the zeroth order continuity, momentum, and energy equations.
Since the incompressible limit (see Sec.2.1.2.2) is recovered for the zeroth order
governing equations in homogeneous non-reacting turbulence, this set of equations
reduces to the well-known incompressible Navier-Stokes equations, i.e.,

∇ · u0 = 0 , (6.7)

mu0

mC
+ u0 · ∇u0 +

∇?1

d0
=
∇ · τ0

d0
+
f0

d0
, (6.8)

with the addition of a forcing term in the momentum equation, and where the
notation introduced in Sec. 2.1.2 is employed, i.e., the subscript ( )0 refers to the n0

term in the expansion, the subscript ( )1 refers to the n1 term in the expansion, and
so on, where n = W"2. In addition, ?0, d0, and )0 are constant in time and in space
in the incompressible limit, i.e., ?0 = 〈〈?〉〉, )0 = 〈〈)〉〉, and d0 = 〈〈d〉. Here, we
consider the first order equations to gain insight into flows at small, but non-zero,
Mach numbers. The first order equations for homogeneous non-reacting turbulence
are

�d1

�C
+ d0∇ · u1 = 0 , (6.9)

d0
�u1

�C
+ ∇?2 = ∇ · τ1 − d1

�u0

�C
− d0u1 · ∇u0 + f1 , (6.10)

d02?
�)1

�C
=
�?1

�C
− ∇ · q1 + τ0 : ∇u0 − 〈f0 · u0〉 , (6.11)
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where � ( )/�C = m ( )/mC +u0 · ∇( ). The system of equations (6.9)–(6.11) is closed
with the first-order equation of state

?1 =
d0')1

,
+
d1')0

,
. (6.12)

Note that d0, u0, ?1, and τ0 are inputs to the first order set of governing equations,
since the zeroth order set of equations is closed. Several key theoretical results can
be drawn from this low Mach number expansion.

First, in the absence of viscosity and conductivity, Eq. (6.11) reduces to

1
)0

�)1

�C
=
W − 1
W

1
?0

�?1

�C
. (6.13)

Equation (6.13) yields the linearized isentropic relation

)1

)0
=
W − 1
W

?1

?0
, (6.14)

which would be satisfied everywhere in the limit of large Reynolds and low Mach
numbers. In a actual flow, the conduction and viscous dissipation terms in Eq. (6.11)
will alter this behavior. Hence, the flow is not expected to be perfectly isentropic,
even at very low Mach numbers.

Second, it is evident from Eq. (6.9) that u1 is not divergence-free. In other words,
the leading order contribution to the dilatational velocity field comes from u1. This
goes in pair with the prior observation that the leading order contribution to the
solenoidal velocity field was u0. Hence, we expect 〈:̃3〉/〈:̃ B〉 ∼ n2 ∼ "4

C , at low
Mach numbers.

Third, since ?B is defined as the pressure that satisfies the Poisson equation obtained
from Eqs. (6.7)–(6.8), ?B is identically n ?1. As a result, the dilatational pressure
must come from the higher order pressure terms, i.e., ?3 = n2?2 + O(n3). We thus
expect ?B/?0 ∼ "2

C , and ?3/?0 ∼ "4
C , at low Mach numbers. Figure 6.1 shows a

schematic summarizing how the solenoidal and dilatational fields are related to the
different terms in the low Mach number expansion. The solid black arrows denote
a theoretically-known relation, e.g., u1 has a dilatational component. The gray
dashed arrows denote possible relations, e.g., in addition to having a dilatational
component, u1 could also have a solenoidal component.
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Figure 6.1: Schematic of the relation between the solenoidal and dilatational fields
with the different terms in the low Mach number expansion.

6.1.3 Link to other theoretical analyses
Theoretical predictions available in the literature regarding the behavior of the
compressible components of the flow at low Mach numbers appear not to be in
agreement with each other. On one hand, the weak acoustic equilibrium hypothesis
[115]

W2"2
C j〈〈?〉〉2

(?3A<B)2
= �F , (6.15)

where �F a non-dimensional parameter and j = 〈:̃3〉/〈:̃ B〉, stipulates that �F should
be close to unity in homogeneous, compressible turbulence at low Mach numbers.
Sarkar et al. found that �F was reaching values close to unity for decaying turbulence.
This is inconsistent with the results obtained from the lowMach number expansion,
which predict that �F ∼ "−2

C at lowMach numbers. It should be noted that decaying
turbulence can be very sensitive to the initial conditions. By performing simulations
of statistically-stationary turbulence, we aim to remove any transient effect due to
the initial conditions.

On the other hand, the improved Fauchet-Bertoglio model [26, 116], based on
an asymptotic analysis using Eddy-Damped Quasi-Normal Markovian (EDQNM)
theory, predicts that 〈:̃ B〉/〈:̃3〉 ∼ "4

C , 〈〈n3〉〉/〈〈n B〉〉 ∼ "4
C , and ?3A<B/?BA<B ∼ "4

C , in
agreement with the scalings obtained from the low Mach number expansion.

6.2 Numerical results
6.2.1 Simulation framework
We use the solver presented in Chapter 3. The mesh is uniform, and the domain
is triply-periodic, with ^<0G[ > 1.5, where ^<0G is the maximum wavenumber
resolved. All simulations are initialized with a field with very low turbulence
intensity, i.e., :̃/:0 ≈ 10−6. We then apply the linear forcing technique detailed
in Chapter 5, but without the modification introduced in Sec. 5.4, i.e., without
appending :0/:̃ to the forcing term. Using this modification with such a small
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initial Reynolds number would lead to a very large deposition of kinetic energy in a
very short time, since :0/:̃ � 1 at C = 0. The modification is only applied once the
ratio :0/:̃ becomes close to unity.

Figure 6.2 shows the time evolution of normalized kinetic energy (Fig. 6.2a), the
ratio of solenoidal to dilatational kinetic energies (Fig. 6.2b), the ratio of dilatational
to solenoidal dissipation rates (Fig. 6.2c), and the ratio of dilatational to solenoidal
pressures (Fig. 6.2d), for '4_ = 31 and "C = 0.32. All ratios are very small during
the initial transient, up to C/g ≈ 20, when the statistically-stationary state is reached.
Two key observations are made. First, it can be seen that the compressible quantities
(Figs. 6.2b–6.2d) oscillate on a timescale much faster than the solenoidal quantities
(Fig. 6.2a). In Fig. 6.3, we show 〈:̃ B〉/〈:̃3〉, using the acoustic time scale associated
with the large scales to normalize time, i.e., C∗ = C/(!/〈〈2〉〉), where ! is the length
of the computational domain. The oscillations in :̃3/:̃ B appear to have a timescale
close to !/〈〈2〉〉. Second, the compressible quantities display large oscillations on
a time scale much larger than the eddy turnover time. Hence, this implies that we
need to run simulations for very long times to obtain converged statistics for the
compressible quantities. The simulation results shown in Fig. 6.2 were performed
for 500 eddy turnover times.

6.2.2 Effect of Mach number
In this section, we perform a series of simulations at '4C = 63, with varying turbulent
Mach numbers 0.02 ≤ "C ≤ 0.65. This lowReynolds number is chosen as it enables
for an extensive Mach number sweep at an affordable computational cost. Here, we
are specifically interested in the partition between dilatational and kinetic energies,
dissipation rates, and pressure fluctuations. We compare our results against the ones
of Jagannathan & Donzis [29], who used a turbulent Reynolds number based on the
Taylor microscale _, i.e.,

'4_ ≡
〈〈`〉〉〈〈(2/3):〉〉1/2_

〈〈d〉〉 , (6.16)

where

_ ≡
〈〈D2〉〉

〈〈mD/mG〉〉1/2
. (6.17)

For incompressible flows, '4C and '4_ are related through [108]

'4_ ≡
√

15'4C . (6.18)
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(a) Normalized solenoidal kinetic energy.

(b) Ratio of dilatational to solenoidal kinetic energies.

(c) Ratio of dilatational to solenoidal dissipation rates.

(d) Ratio of dilatational to solenoidal pressures.

Figure 6.2: Time evolution of different key quantities for "C = 0.32 and '4_ = 31.
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Figure 6.3: Ratio of the dilatational to solenoidal kinetic energies for "C = 0.32
and '4_ = 31, normalized with the large scale acoustic timescale.

Given that the flows considered here are at lowMach numbers, wewill use Eq. (6.18)
to relate '4_ and '4C . From Eq. (6.18), we obtain that '4_ = 31 for the simulations
considered in this section. In the following sections, all quantities are averaged
over more than 400 eddy turnover times, once any transient behavior has passed, to
obtain converged statistics.

6.2.2.1 Solenoidal and dilatational kinetic energy

Figure 6.4 shows the ratio 〈:̃3〉/〈:̃ B〉 for different Mach numbers. Our results are in
good agreement with the results of Jagannathan & Donzis [29] at '4_ = 38. At low
Mach numbers, it can be seen that 〈:̃3〉/〈:̃ B〉 ∼ "4

C , in agreement with the scaling
obtained from the low Mach number expansion.

Figure 6.4 also shows the dilatational to solenoidal kinetic energy ratio for simulation
results obtained forcing the full velocity field, i.e, with a forcing term �(:0/〈:〉)du
instead of �(:0/〈:〉)duB in the momentum equation. These results are shown by
blue squares. It can be seen that 〈:̃3〉/〈:̃ B〉 increases as the Mach number is de-
creased, which is undoubtedly unphysical. However, it does not grow unboundedly
as previously claimed [27], and is consistent with our analysis of one-dimensional
dilatational “turbulence” presented in Sec. 5.3. Forcing the dilatational mode when
using periodic boundary conditions is linearly unstable, but non-linear effects limit
the growth of the dilatational mode, and a finite 〈:̃3〉/〈:̃ B〉 ratio is obtained.

6.2.2.2 Solenoidal and dilatational dissipation rate

Figure 6.5 shows the ratio 〈〈n3〉〉/〈〈n B〉〉 for various Mach numbers, compared to the
results of Jagannathan & Donzis at '4_ = 38. The agreement is satisfactory, except
at"C = 0.1, where the two sets of results differ bymore than one order of magnitude.
The results of Jagannathan & Donzis [29] show an increase in 〈〈n3〉〉/〈〈n B〉〉 as the
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Figure 6.4: Ratio of the dilatational to solenoidal kinetic energies, obtained by
forcing the solenoidal velocity field only (red circles), and by forcing the full velocity
field (blue squares), compared with the results of Jagannathan & Donzis [29] at
'4_ = 38 (black crosses).

Mach number is decreased. On the other hand, our results follow 〈〈n3〉〉/〈〈n B〉〉 ∼ "4
C

at low Mach numbers, in agreement with the results obtained by considering the
low Mach number expansion.

In Fig. 6.6, we use Eq. (1.10) to compute the ratio of the integral length scale to the
domain length, i.e., ;/!. The black dashed line represents the integral length scale
extracted from an incompressible simulation at the same Reynolds number. It can
be seen that ;/! ≈ 0.18 for all Mach numbers, which is also the integral length scale
for the incompressible case. This suggests that the solenoidal velocity field in the
compressible simulations is similar to the full velocity field in the incompressible
case.

6.2.2.3 Thermodynamic fluctuations

For compressible turbulence at low Mach numbers, it is often assumed that the
thermodynamic fluctuations are isentropic [117, 118], i.e., that density, temperature,
and pressure are related through

)

〈〈)〉〉 =
©­«
?

〈〈?〉〉
ª®¬
(W−1)/W

, (6.19)

d

〈〈d〉〉 =
©­«
?

〈〈?〉〉
ª®¬

1/W

. (6.20)
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Figure 6.5: Ratio of the dilatational to solenoidal viscous dissipation rates (red
circles), compared with the results of Jagannathan & Donzis [29] for '4_ = 38
(black crosses).

Figure 6.6: Evaluation of the integral length scale associated with the solenoidal
velocity field.

For small fluctuations, it follows from Eqs. (6.19)–(6.20) that

)A<B

〈〈)〉〉 ≈
©­«
W − 1
W

ª®¬
?A<B

〈〈?〉〉 , (6.21)

dA<B

〈〈d〉〉 ≈
1
W

?A<B

〈〈?〉〉 . (6.22)

However, as presented in Sec. 6.1.2, a perfectly isentropic behavior is not expected
even at very low Mach numbers. This non-isentropic behavior was verified numeri-
cally by Donzis & Jagannathan [119]. To quantify the deviation from the isentropic
behavior, they suggested to use Eq. (6.22) to compute a polytropic exponent WC for
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the thermodynamic fluctuations, i.e.,

WC ≡
?A<B

〈〈?〉〉
〈〈d〉〉
dA<B

. (6.23)

A value of WC = W corresponds to an isentropic process, while WC = 1 corresponds
to an isothermal process. In Fig. 6.7, we present WC extracted from the simulation
results. Our values are in reasonable agreement with the results of Donzis &
Jagannathan [119]. Interestingly, WC appears to reach an asymptote WC ≈ 1.23 at low
Mach numbers. In Fig. 6.8, the normalized density fluctuations 〈d′2〉1/2/d0 as a
function of time for "C = 2 · 10−2 are shown in black. The dashed red line shows
the density fluctuations predicted using

〈d′2〉1/2
?A4382C43

〈〈d〉〉 =
1
WC

〈?′2〉1/2

〈〈?〉〉 , (6.24)

with WC computed using Eq. (6.23). Equation (6.24) accurately captures the density
fluctuations at any given time.

To further characterize the thermodynamic fluctuations, we show in Fig. 6.9 the
joint probability density functions of temperature/density with pressure at a low
Mach number ("C = 0.1). The dashed green line corresponds to a locally isentropic
behavior, and the red dashed line in Fig. 6.9b corresponds to the polytropic behavior
using WC . On the temperature joint pdf, it can be seen that the fluctuations are
aligned with the isentropic behavior, but that there is a considerable spread. This is
consistent with the results presented in Sec. 6.1.2, since the conduction and viscous
dissipation terms in Eq. (6.11) act as diffusion terms, and induce the spread in the
joint pdfs shown in Fig. 6.9.

6.2.2.4 Solenoidal and dilatational pressure

Figure 6.10 shows the solenoidal pressure fluctuations normalized by the mean
pressure. Our results are in very good agreement with those of Jagannathan &
Donzis [29]. For the full range of Mach numbers investigated, ?BA<B/〈〈?〉〉 ∼ "2

C .
Note that this Mach number dependence is not a compressibility effect. Figure 6.11
shows the root mean square of the solenoidal pressure fluctuations, normalized with
the solenoidal velocity field. The black dashed line shows ?A<B/(dD2

A<B) obtained
from an incompressible simulation at the same Reynolds number. It can be seen that
?BA<B/(〈〈d〉〉(DBA<B)2) is mostly constant and in agreement with the incompressible
value up to "C . 0.3, after which it drops significantly. By relating pressure to
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Figure 6.7: Effective exponent WC (red circles), compared with the results of Donzis
& Jagannathan [119] at '4_ = 38 (black crosses).

Figure 6.8: Root mean square of the density fluctuations (solid black line), along
with the predictions from the pressure fluctuations using the polytropic exponent
WC = 1.23 (dashed red line) for "C = 2 · 10−2.

(a) (b)

Figure 6.9: Joint pdf of temperature and pressure (a) and density and pressure (b),
for '4_ = 31 and "C = 0.1. The green dashed lines correspond to the isentropic
relations, while the red dashed line is obtained using WC .
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the fourth moment of the velocity fluctuations, and assuming a very large Reynolds
number, Batchelor [120] showed that the pressure rms scales with the square of the
velocity rms, and predicted that the proportionality constant should be 0.58, i.e.,
?A<B/(dD2

A<B) = 0.58. While the scaling is recovered here, the predicted factor is
significantly lower than the present results. By performing simulations of forced
incompressible turbulence, Donzis et al.[121] computed ?A<B/(dD2

A<B) = 1.0 at
'4_ = 38, which is in reasonable agreement with our results. In light of these
results, i.e., ?BA<B ≈ 〈〈d〉〉(DBA<B)2, the "2

C scaling observed in Fig. 6.10 is not
surprising, since we can write

?BA<B

〈〈?〉〉 ∼
?BA<B

〈〈d〉〉〈〈2〉〉2
∼

(
DBA<B

)2

〈〈2〉〉2
∼ "2

C . (6.25)

Note that this result is also simply predicted by the low Mach number expansion.

Figure 6.12 shows the ratio of the dilatational pressure fluctuations to the mean
pressure. Our results are in reasonable agreement with the ones of Jagannathan &
Donzis, except at "C = 0.1, where they differ by more than one order of magnitude.
At low Mach numbers, our results follow ?3A<B/〈〈?〉〉 ∼ "4

C , which is again in
agreement with the low Mach number expansion. Figure 6.13 shows the ratio of
the dilatational to solenoidal pressures. At Mach numbers "C & 0.3, the ratio is
close to one. At low Mach numbers, it follows ?3A<B/?BA<B ∼ "2

C , as expected from
Figs. 6.10 and 6.12.

Figure 6.10: Ratio of the solenoidal pressure fluctuations and the mean pressure
(red circles), compared with the results of Jagannathan & Donzis [29] at '4_ = 38
(black crosses).
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Figure 6.11: Scaling of the solenoidal pressure fluctuations as a function of the
turbulent Mach number.

Figure 6.12: Ratio of the dilatational pressure fluctuations and the mean pressure
(red circles), compared with the results of Jagannathan & Donzis [29] at '4_ = 38
(black crosses).
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Figure 6.13: Ratio of the dilatational and solenoidal pressure fluctuations (red
circles), compared with the results of Jagannathan & Donzis [29] at '4_ = 38
(black crosses).

Table 6.1: Summary of the scalings computed from the compressible homogeneous
turbulence simulation results.

Quantity Scaling Valid up to
〈:̃3〉/〈:̃ B〉 0.02"4

C "C = 0.1
〈〈n3〉〉/〈〈n B〉〉 0.04"4

C "C = 0.2
?BA<B/〈〈?〉〉 0.5"2

C at least up to "C = 0.6
?3A<B/〈〈?〉〉 0.3"4

C "C = 0.08
?3A<B/?BA<B 0.6"2

C "C = 0.08

6.2.2.5 Summary of the Mach number scaling results

Table 6.1 summarizes the scalings obtained at low Mach numbers. All the scaling
results are in agreement with the lowMach number expansion reviewed in Sec. 6.1.2.
The scalings involving the compressible components of the field are valid up to
"C ≈ 0.1. The scaling ?BA<B/〈〈?〉〉 ≈ 0.5"2

C is valid for the full range of Mach
numbers considered. Once again, this particular scaling is not due to compressibility
effects. Obtaining these scalings required performing simulations at Mach numbers
much smaller than the ones considered by Jagannathan&Donzis [29], and averaging
quantities over more than 400 eddy turnover times to obtain converged statistics.

6.2.3 Effect of Reynolds number
So far, we considered a single Reynolds number, i.e., '4_ = 31. We observed
a strong Mach number dependence on all quantities of interest. We now want to
determine if the results obtained in Sec. 6.2.2 are sensitive to the Reynolds number.
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Table 6.2: Parameters of the homogeneous compressible turbulence performed to
assess the impact of the Reynolds number.

'4_ '4C "C #3 ^<0G[ Statistics averaged over
31 63

0.40

643 1.6 400g
50 165 1283 1.6 100g
80 420 2643 1.6 90g
125 1050 5123 1.6 40g
200 2640 10243 1.6 6g

In this section, we perform additional simulations at a fixed "C = 0.40, but at
different '4_. The simulation parameters are shown in Table 6.2. Figure 6.14d
shows instantaneous isocontours of the local Mach number " = |u|/2 for for
"C = 0.4, at various Reynolds numbers. The local Mach number reaches values up
to " = 1.2 locally.

(a) '4_ = 50 (b) '4_ = 80

(c) '4_ = 125 (d) '4_ = 200

Figure 6.14: Instantaneous isocontours of the local Mach number at "C = 0.4.
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Figure 6.15 shows the ratio of the dilatational to solenoidal viscous dissipation rates,
kinetic energies, and pressure fluctuations for the five Reynolds numbers considered.
The non-monotonicity of the results prevents us from reaching definitive conclusions
regarding the Reynolds number dependence of these ratios. The largest difference is
obtained for the ratio of dilatational to solenoidal pressure fluctuations. We obtain
?3A<B/?BA<B = 0.5 at '4_ = 50, and ?3A<B/?BA<B = 1.1 at '4_ = 200. Although the
Reynolds number is increased by a factor of four, ?3A<B/?BA<B only changes by a factor
of two. Hence, if there is any dependence of these ratios on the Reynolds numbers,
it must be small. Note that we only considered one turbulent Mach number. The
Reynolds number dependence of these ratios could also change with"C . However, it
is beyond the scope of this thesis to consider all combinations of Reynolds numbers
and Mach numbers.

6.3 Summary
In this chapter, we explored compressibility effects in subsonic homogeneous tur-
bulence, using the forcing technique presented in Chapter 5. We first described
how velocity, dissipation rate, and pressure fluctuations can be decomposed into
solenoidal and dilatational components. We also reviewed the low Mach number
expansion to get insight into how these quantities are expected to scale with "C at
low Mach numbers. We then presented simulation results, first fixing the Reynolds
number and varying the turbulent Mach number. The Mach number scaling of the
ratios of dilatational to solenoidal kinetic energies, dissipation rates, and pressure
fluctuations were found to be consistent with the scalings obtained by considering
the low Mach number expansion, and in agreement with the improved Fauchet-
Bertoglio model [26, 116]. The thermodynamic fluctuations were found to be
almost isentropic, in agreement with previous studies [119, 122]. Finally, there does
not appear to be a strong Reynolds number influence on the ratios of solenoidal to
dilatational kinetic energies, dissipation rates, and pressure fluctuations.
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(a) Ratio of the dilatational to solenoidal viscous dissipation rates.

(b) Ratio of the dilatational to solenoidal kinetic energies.

(c) Ratio of the dilatational to solenoidal root mean square of the pressure fluctuations.

Figure 6.15: Effect of the turbulent Reynolds number. All simulations are performed
at "C = 0.40.
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C h a p t e r 7

COMPRESSIBILITY EFFECTS IN TURBULENT FLAMES

In Chapter 6, we considered the effect of compressibility in non-reacting flows.
The goal of the present chapter is to investigate compressibility effects in premixed
turbulent deflagration fronts using an inflow/outflow configuration, as depicted in
Fig. 7.1. There has been previous work simulating fully compressible turbulent
flames with an inflow/outflow configuration [52, 123, 124]. The following approach
was used:

1. A statistically-stationary incompressible turbulent state is achieved by means
of large-scale forcing with periodic boundary conditions on all sides;

2. A laminar flame solution is superimposed on the turbulent field, and the non-
homogeneous boundary conditions are switched to zero-order extrapolation,
i.e., Neumann boundary conditions;

3. Flame statistics are gathered.

This procedure presents several issues. First, as seen in Sec. 3.4.2, Neumann
boundary conditions are perfectly reflecting, such that any pressure waves generated
by the interaction of the flamewith the turbulence would be reflected at the boundary
instead of leaving the domain. Second, a turbulent flame field differs from the
superimposition of a non-reacting turbulent field and a laminar flame solution, which
might yield to an unphysical and long transient behavior. Third, the turbulence
forcing technique used in [52, 123, 124] is decorrelated from the velocity field,
whereas we showed in Chapter 5 that forcing should be linear with the velocity field.
Fourth, their forcing technique causes gradual heating of the fuel due to viscous
dissipation. Hence, they cannot reach a statistically-stationary state. Lastly, a one-
step chemical mechanism was used, which fails to capture the complex turbulence-
flame [46, 51] and acoustics-flame [2, 3] interactions.

We seek to improve this procedure by

1. Using the NSCBC at the inlet/outlet to allow acoustic waves generated by the
flame and turbulence to exit the domain freely;
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Figure 7.1: Schematic of the turbulent flame configuration.

2. Using a detailed chemicalmechanism to capture the complex flame-turbulence
and flame-acoustics interactions;

3. Leveraging the fact that the low Mach number solution should be close to the
compressible solution to initialize the fully compressible simulations.

The flame configurations investigated are detailed in Sec. 7.1. We then propose
a numerical framework to obtain a desired compressible turbulent field in an out-
flow/outflow configuration, that allows us to use the NSCBC at the inlet/outlet. This
is detailed in Sec. 7.2. In Sec. 7.3, we present simulation results obtained with both
the low Mach number approximation and the compressible framework. We sepa-
rately investigate the impact of turbulence intensity on the flame (Karlovitz number
effects), and the impact of compressibility on the flame (Mach number effects).

7.1 Flame configurations
We examine three =-heptane/air premixed flame configurations similar to the ones
that Lapointe et al.[40] investigated under the low Mach number approximation.
The temperature in the unburnt region is )0,D = 800 K, the pressure is ?0,D = 1
atm, and the equivalence ratio is q = 0.9. This elevated unburnt temperature
is chosen for two reasons. First, practical combustion devices usually operate at
elevated unburnt temperatures. Second, for a same turbulent Mach number in the
unburnt region "C,D =

√
2:/2D, where 2D is the sound speed in the unburnt region,

compressibility effects on the flame are expected to be more pronounced for a higher
unburnt temperature, which is precisely what we want to explore in this chapter.
This is because the ratio of the sound speed in the unburnt region to the one at the
reaction zone 2D/2X < 1 will be larger for a higher unburnt temperature. Kinetic
energy being constant throughout the flame with the forcing technique employed,
the turbulent Mach number at the reaction zone "C,X =

√
2:/2X = "C,D2D/2X will be

larger for a higher unburnt temperature.

The flow parameters for the three flame configurations investigated are given in Table
7.1. The Karlovitz number in the unburnt region  0D is obtained from Eq. (1.32)
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with aD, the kinematic viscosity evaluated in the unburnt region. We consider Cases
C* and D*, performing both simulations under the lowMach number approximation
and the fully compressible framework. These flames are at slightly higher Karlovitz
numbers than Cases C and D in Lapointe et al.[40], hence why we refer to them as
Cases C* and D*. We also consider Case E, which is at a even higher Karlovitz
number than Flame D*. This flame is only simulated using the low Mach number
approximation, for reasons that will be made clear after we explain the procedure
to initialize the compressible fields in Sec. 7.2.4. For all cases, the domain is
periodic in the H and I directions, and is eleven times larger in the G direction, i.e.,
!G = 11!H, with !H = !I. The laminar flame thickness ;� = 2.5 · 10−4 m, and the
laminar flame speed (! = 2.3 m/s, are extracted from a 1D simulation at the same
flow conditions. For both cases, we have ΔG < 2[D, and ΔG < (;�/20), which are
necessary to properly resolve both the turbulence and the flame structure [22, 40].
We use constant non-unity Lewis numbers, using the approach detailed in Sec. 3.3.2.
The Lewis numbers used for the present simulations are included in Appendix F.

For Cases C* and D*, we keep ;/;� and (!/2D constant. The impact of ;/;� has
been previously investigated; no impact on the local chemistry [78] and the flow
field [59] were observed. Since ;/;� and (!/2D are the same for the two cases, we
obtain "C ∼  02/3 from Eq. (1.37). Hence, by changing the Mach number, we also
change the Karlovitz number. That is why, in Sec. 7.3, we first investigate the impact
of turbulence on the flame (Karlovitz number effects) using the low Mach number
approximation, considering the three cases listed in Table 7.1. Then, we investigate
the impact of compressibility (Mach number effects) by comparing results obtained
using the low Mach number approximation and the compressible framework for
Cases C* and D*. This procedure allows us to investigate the effects of these two
parameters separately.

Table 7.1: Parameters of the turbulent flame configurations. The subscript ( )D
refers to quantities evaluated in the (forced) unburnt region. Cases C* and D* are
simulated using both the lowMach number approximation and the fully compressible
framework, while Case E is simulated with the low Mach number approximation
only.

Case '4C,D "C,D D′/(!  0D  0X ΔG [m] [D [m] Grid
C* 172 0.17 24 303 117 1.1 · 10−5 5.4 · 10−6 11 · 1443

D* 385 0.39 53 1010 366 5.8 · 10−6 2.9 · 10−6 11 · 2643

E 708 - 98 2530 860 3.7 · 10−6 1.9 · 10−6 11 · 4163
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Table 7.2: Notation for the different quantities discussed in Sec. 7.2.

Desired flow conditions
in the unburnt forced region )0,D, ?0,D, d0,D, D0,D, :0,<0G , .B,0,D

Boundary conditions for the
low Mach number simulations D8=,!" , )8=,!" , d8=,!"

Boundary conditions for the
compressible simulations D8=,� , )8=,� , d8=,� , ?>DC,�

Modified planar-averages for
the compressible simulations 〈D〉� , 〈)〉� , 〈?〉� , 〈d〉�

7.2 Numerical setup
Table 7.2 summarizes the notation used for the different quantities discussed in this
section.

7.2.1 Governing equations
As shown in Fig. 7.1, a turbulent flamewith cold reactants on the left and hot products
on the right is located in a flow field with a mean velocity D0,D = () , where () is the
instantaneous turbulent flame speed, such that the flame is statistically-stationary.
The goal is to obtain a compressible turbulent flow at a desired turbulence intensity
:0,<0G and mean thermodynamic variables in the unburnt region d0,D, ?0,D, and )0,D,
using the linear forcing technique detailed in Chapter 5.

We want to use the Navier-Stokes Characteristics Boundary Conditions (NSCBCs)
at the inlet/outlet to allow acoustic waves generated by the turbulent reacting flow
to exit the domain freely. The NSCBC require D > 0 locally at the inlet/outlet for
the amplitudes of the characteristic waves to be computed correctly, as detailed in
Sec. 3.4.2. For the Karlovitz numbers considered, the local fluctuations in velocity
are much greater than the mean flow speed, i.e., |D′| � D0,D = () . Hence, such
a turbulent flow at the inlet/outlet is incompatible with the use of the NSCBC.
Thus, our strategy is to force turbulence away from the boundaries only. The target
kinetic energy profile is shown in Fig. 7.2. It is designed such that D ≈ D > 0 at
the boundaries. In Fig. 7.2, the different sections correspond to: 1) the unburnt
unforced region, 2) the unburnt forced region, 3) the turbulent flame brush, 4) the
burnt forced region, and 5) the burnt unforced region.

Extending the derivation presented in Chapter 5 from a periodic box to an in-
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1 2 3 4 5

Figure 7.2: Theoretical (desired) kinetic energy profile for the inflow/outflow
configuration (black). The planar-averaged temperature profile for Case D* is
shown in red to illustrate where the flame is located. The different sections denote
(1 to 5) the flow regions (see text).

flow/outflow configuration, we solve the following momentum equation

mdu

mC
+ ∇ · (du ⊗ u) = −∇? + ∇ · τ + d�

:0

:̃
(uB − 〈uB〉) , (7.1)

where the operators 〈 〉 and :̃ now denote planar averages (in the H-I directions).
Note that we only force the solenoidal velocity field uB, to avoid the instabilities
investigated in Sec. 5.3. Also, the modification proposed by Carroll & Blanquart
[108], detailed in Sec 5.4, is employed. We solve the following energy equation

md4C

mC
+ ∇ · (u (d4C + ?)) = −∇ · q + ∇ · (τ · u)

+ d�
:0

:̃
(uB − 〈uB〉) · u − 〈d�

:0

:̃
(uB − 〈uB〉) · u〉 ,

(7.2)

which is obtained by adding the kinetic energy equation obtained from Eq. 7.1 and
the internal energy equation, and removing the planar average of the forcing term to
achieve statistical stationarity, as detailed in Sec. 5.2.3.

We want to leverage the fact that the low Mach number solution should be a good
approximation to the fully compressible one, i.e., we want to use low Mach number
fields at the desired turbulent conditions to initialize the compressible simulations.
For the simulations using the low Mach number approximation, the boundary con-
ditions are trivial. We simply set )8=,!" = )0,D = 800 K, D8=,!" = D0,D = () , and
set the constant background pressure to be ?0 = ?0,D = 1 atm. However, as it
will be seen shortly, the boundary values need to be modified for the compressible
simulations to account for the fact that, unlike in the low Mach number case, the
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thermodynamic state of the flow in the fully compressible framework depends on
its turbulent state.

7.2.2 Planar-averaged equations
Weconsider the planar averages (in H and I) of Eqs. (2.1), (7.1), and (7.2). Neglecting
the viscous/diffusive terms, the planar-averaged continuity, G-momentum, and total
energy equations are given by

m〈d〉
mC
+
m〈dD〉
mG

= 0 , (7.3)

m〈dD〉
mC
+
m〈dD2〉
mG

+
m〈?〉
mG

= 0 , (7.4)

m〈d4C〉
mC
+
m〈DdℎC〉
mG

= 0 . (7.5)

Assuming that we reach a statistically-stationary state, we obtain the following
relations:

〈dD〉 = �1 , (7.6)

〈? + dD2〉 = �2 , (7.7)

〈DdℎC〉 = �3 , (7.8)

where �1, �2, and �3 are constant throughout the domain that depend on the ther-
modynamic and turbulent state of the flow.

We perform a Reynolds decomposition in terms of the planar-averaged mean and
fluctuations, i.e., ? = 〈?〉 + ?′, d = 〈d〉 + d′, and D = 〈D〉 + D′, ) = 〈)〉 + ) ′, and
insert it into Eqs. (7.6)-(7.8). For continuity (Eq. (7.6)), we get

〈dD〉 = 〈d′D′〉 + 〈d〉〈D〉 = �1 . (7.9)

The G-momentum equation yields

〈? + dD2〉 = 〈?〉 + 〈d〉〈D〉2 + 〈d′D′D′〉 + 〈d〉〈D′D′〉 + 2〈D〉〈d′D′〉 = �2 . (7.10)

Using homogeneous turbulence results, it was found that the terms 〈d′D′〉 and
〈d′D′D′〉 can be neglected, and a good approximation of Eqs. (7.9)-(7.10) is given
by

〈d〉〈D〉 = �1 , (7.11)

〈?〉 + 〈d〉〈D〉2 + 〈d〉〈D′2〉 = �2 . (7.12)
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For the energy equation, we have

〈DdℎC〉 =
〈
D

(
d

=B∑
B=1

(
.B

(
ℎB,A4 5 +

∫ )

) ′=)A4 5

2?,B () ′)3) ′
))
+ d |u|2/2

)〉
= �3 .

(7.13)
Similarly to what was done for continuity and the G-momentum equations, Eq. (7.13)
is approximated as

〈D〉
[
〈d〉

=B∑
B=1

(
〈.B〉

(
ℎB,A4 5 +

∫ 〈)〉

) ′=)A4 5

2?,B () ′)3) ′
))

+〈d〉
〈D〉2

2
+ 〈d〉〈D′2〉 + 〈d〉〈:〉

 = �3 .

(7.14)

Note that, in Eqs. (7.12) and (7.14), 〈D′2〉 is the variance of the velocity in the G
direction only, and 〈:〉 = 〈D′2 + E′2 + F′2〉/2.

Equations (7.11), (7.12), and (7.14) should be valid on average anywhere in the
computational domain. This includes the unforced unburnt region, from G/!H = 0
to G/!H = 2, and the forced unburnt region, from G/! = 2 to about G/! = 4. As
a direct consequence of the target kinetic energy amplitude changing with G, as
shown in Fig. 7.2, the mean pressure 〈?〉 also changes (see Eq. (7.12)). The goal
is to obtain the desired flow conditions 〈D〉 = D0,D = () , 〈?〉 = ?0,D = 1 atm,
〈)〉 = )0,D = 800 K, and 〈:〉 = :0,<0G in the unburnt forced region. To do so, we
must specify the correct boundary conditions at the inlet. The procedure is then to
evaluate �1, �2, �3 in the unburnt forced region, where the desired flow conditions
are known, and use them to evaluate the correct inlet temperature )8=,� , and velocity
D8=,� . In other words, �1, �2, �3 are determined from Eqs. (7.11), (7.12), and (7.14)
by using the known flow conditions in the unburnt forced region, i.e.,

�1 ≡ d0,DD0,D , (7.15)

�2 ≡ ?0,D + d0,DD
2
0,D +

2
3
d0,D:0,<0G , (7.16)

�3 ≡ D0,D
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+
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 ,
(7.17)

where we have used the isotropic relation 〈D′2〉 = (2/3)〈:〉 in Eqs. (7.16) and (7.17).
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7.2.3 Boundary conditions
At the inlet, there is no turbulence, and Eqs. (7.11), (7.12), and (7.14) become

d8=,�D8=,� = �1 , (7.18)

?8=,� + d8=,�D2
8=,� = �2 , (7.19)

D8=,�

d8=,�
=B∑
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(
.B,8=,�

(
ℎB,A4 5 +

∫ )8=,�

) ′=)A4 5

2?,B () ′)3) ′
))
+ d8=,�

D2
8=,�

2

 = �3 .

(7.20)
We now want to solve Eqs. (7.18)–(7.20) to get the inlet boundary conditions that
should be applied, i.e., we want to extract D8=,� , and )8=,� . Equations (7.18)–
(7.20) contains =B + 4 unknowns, where =B is the number of species transported:
?8=,� , d8=,� , )8=,� , D8=,� , and =B .B,8=,� . We set .B,8=,� = .B,0,D, and add the planar-
averaged equation of state

?8=,� =
d8=,�')8=,�

,8=

, (7.21)

with ,8= computed using Eq. (2.9). We now have a system of 4 equations and 4
unknowns, that we can solve to obtain the inlet quantities.

The NSCBC framework also requires the desired pressure at the outlet ?>DC , which
we compute as

?>DC,� = �2 − d1D2
1 , (7.22)

where d1 and D1 are the density and G velocity in the burnt region, extracted from
the low Mach number simulations. In Table 7.3, we provide the boundary values
for the two flame configurations considered, obtained by solving Eqs. (7.18)–(7.20)
to obtain D8=,� , ?8=,� , d8=,� , and )8=,� , and Eq. (7.22) to get ?>DC,� . It can be
seen that ?8=,� and ?>DC,� are very similar, and larger than ?0,D = 101 kPa. Note
that ?8=,� and d8=,� are not imposed, and are provided for reference only. The
required inlet temperature )8=,� is also larger than )0,D = 800 K. For the low Mach
number simulations, ?8= and ?>DC are not provided, since in this framework the
thermodynamic pressure is constant and imposed.

It is important to note that the computed boundary conditions differ significantly
from the target quantities. This stresses the importance of this procedure. If onewere
to naively set )8=,� = )0,D = 800 K , ?>DC,� = ?0,D = 101 kPa, and D8=,� = D0,D = () ,
then 〈)〉 would differ significantly from )0,D in the unburnt forced region (and
likewise for the other flow quantities) when statistical stationarity is reached. Table
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Table 7.3: Boundary conditions for the turbulent flame simulations.

compressible low Mach #
approximation

Case C* D* Case C* D*
)8=,� [K] 806 829 )8=,!" [K] 800 800
D8=,� [m/s] 8.75 10.7 D8=,!" [m/s] 8.80 11.0
d8=,� [kg/m3] 0.460 0.470 d8=,!" [kg/m3] 0.455 0.455
?8=,� [Pa] 102,630 107,850
?>DC,� [Pa] 102,560 107,770

7.4 shows the expected planar-averaged quantities in the unburnt forced region if the
“naive” boundary conditions were to be used.

Table 7.4: Expected mean flow quantities in the unburnt forced region if “naive”
boundary conditions were used.

Case C* D*
〈)〉 [K] 794 771
〈D〉 [m/s] 8.85 11.3
〈?〉 [Pa] 100,000 94,980
〈d〉 [kg/m3] 0.455 0.445

7.2.4 Initial conditions
Poludnenko et al.[52, 123, 124] initialized their compressible turbulent flame simu-
lations by superimposing a turbulent non-reacting flowwith a laminar flame solution.
However, it is well known that turbulence impacts the flame structure and area [39].
Hence, this initialization technique is likely to cause a long transient, since it initially
assumes that there are no turbulence-flame interactions. In the present work, we
seek to use statistically-stationary turbulent flame solutions obtained using the low
Mach number approximation to initialize the compressible simulations. Hence, the
initial compressible field will already capture the complex turbulence-flame inter-
actions, and only the compressibility effects will be missing. One could simply use
the low Mach number field to initialize the fully compressible simulation, use the
proper boundary conditions for the fully compressible configuration, and run the
simulation for long enough for the flow to be statistically stationary.

In Sec. 7.2.3, we showed that the correct boundary conditions for the fully com-
pressible simulations differ significantly from the ones for the low Mach number
approximation, when the inflow/outflow configuration with non-uniform forcing is
employed. As a result, a simulation with this initialization procedure would take
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on the order of one flow through time, which poses a challenge in that it is often
prohibitively computationally expensive to run simulations of turbulent flames with
detailed chemistry for so long. Hence, to reduce the transient time, we propose to
modify the initial compressible field. Specifically, we know that the statistically-
stationary compressible flow field in the unforced region close to the inlet differs
from the one obtained using the low Mach number approximation, since we have
different boundary conditions. Hence, we seek to modify this flow region, cor-
responding to Region 1 in Fig. 7.2, to match the boundary conditions. For each
plane in this section of the flow, we compute modified planar averages for all flow
quantities by solving

〈d〉� 〈D〉� = �1 , (7.23)

〈?〉� + 〈d〉� 〈D〉2� +
2
3
〈d〉�:0 = �2 , (7.24)
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(7.25)

where we set 〈.B〉� = 〈.B〉!" , completed with

〈?〉� =
〈d〉�'〈)〉�

,
, (7.26)

with �1, �2, �3 computed from Eqs. 7.15–(7.17), similarly to what was done
to derive the correct boundary conditions. The subscript 〈 〉!" refers to planar-
averaged quantities from the lowMach number simulations, while the subscript 〈 〉�
denotes the new planar-averaged quantities for the compressible simulations. The
flow quantities are then updated by computing

k� (G, H, I) = k!" (G, H, I) − 〈k〉!" (G) + 〈k〉� (G) , (7.27)

where k represents D, ?, and d, for 0 ≤ G/!H ≤ 2. This procedure should
help in achieving a statistically-stationary flow faster, since the flow quantities in the
unforced unburnt region are now compatiblewith the boundary conditions. Note that
our approach, i.e., using a low Mach number field to initialize a fully compressible
simulation, is likely to introduce some inconsistencies in the initial compressible
field. However, the initial compressible field obtained using the proposed method
should be closer to the solution for a compressible turbulent flame than if we were
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to use the procedure employed by Poludnenko et al., i.e., superimpose a turbulent
non-reacting field with a laminar flame solution [52, 123, 124].

There are some limitations with the proposed framework. In a low Mach number
field, pressure fluctuations are unbounded. In a compressible field, pressure fluc-
tuations are bounded, i.e., ?′ > −?. Hence, if the pressure fluctuations in the low
Mach number field are too large, i.e., ?′ < −?, then there is no straightforward
way to convert the low Mach number field in a fully compressible one. For the
cases considered here, ?′

<8=
≈ −20 kPa and ?′

<8=
≈ −90 kPa for Case C* and D*,

respectively. This approach is not suited for Case E, since ?′ < −101 kPa for this
configuration.

7.3 Results
Since it was chosen to vary the turbulent Mach number by changing the Karlovitz
number (Cases C* and D*), we first examine the impact of the Karlovitz number
on the flame characteristics, using simulation results obtained with the low Mach
number approximation.

7.3.1 Karlovitz number effects
Figure 7.3 shows instantaneous slices of the temperature field for the three cases
considered. The white temperature isolines, at ) = 1000 K and ) = 1900 K, delimit
the extent of the flame brush. It can be seen that the flame brush thickens as the
Karlovitz number is increased, and is much larger than the laminar flame thickness.
Smaller turbulent structures can also be seen at high Karlovitz numbers, pointing to
increased turbulent mixing.

Next, we look at the turbulent flame speed, given by Eq. (1.31). Figure 7.4 shows the
mean turbulent flame speed as a function of the reaction zone Karlovitz number. The
dashed black line is a power law fit of the form ()/(! = 1 + 0 01

X
[46]. Increasing

the Karlovitz number leads to an increase in the mean turbulent flame speed. To
understand this evolution, it is insightful to write the instantaneous turbulent flame
speed as

()

(!
=
�)

�2
�0 , (7.28)

where �) is the instantaneous turbulent flame area, �2 is the cross-sectional area,
and �0 is the burning efficiency factor [125, 126]. The approximate relation

�0 ≈
〈 ¤l�/|∇) | | )peak〉
¤l�,lam/|∇)lam |

, (7.29)
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(a) Case C*

(b) Case D*

(c) Case E

Figure 7.3: Instantaneous isocontours of the temperature field for flames at different
Karlovitz numbers. The white isolines denote ) = 1000 K and ) = 1900 K.

was derived by Lapointe & Blanquart [46], where )peak is the temperature at which
fuel consumption is maximum. Equation (7.29) shows that the burning efficiency
factor is related to the fuel consumption rate.

In Fig. 7.5, we show 〈 ¤l� | )〉 for the three cases considered, in addition to the profiles
for the non-unity and unity Lewis number laminar flames. It can be seen that, as
 0X increases, the peak fuel consumption rate increases, and the temperature at
which the fuel consumption rate is maximum also increases. To explore this further,
we compute

Δ)norm =
)peak,turb − )peak,lam,!4≠1

)peak,lam,!4=1 − )peak,lam,!4≠1
, (7.30)

where)peak,turb,)peak,lam,!4≠1, and)peak,lam,!4=1 are the temperatures at which the fuel
consumption rate is maximum for the turbulent flame, one-dimensional flame with
non-unity Lewis numbers, and one-dimensional flame with unity Lewis numbers,
respectively. Figure 7.6 shows Δ)norm for the three cases considered, along with
the results of Lapointe & Blanquart [46]. The change in the temperature of peak
fuel consumption rate is linked to a change in the effective Lewis number due to
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enhanced turbulent mixing. The semi-empirical model of Savard & Blanquart [127]

!4B,eff =
1 + 01 0X©­«
1
!4B
+ 01 0X

ª®¬
, (7.31)

where 01 is a proportionality coefficient, aims to explain the changes in Δ)=>A<
by changes in the effective Lewis numbers !4B,eff, due to increased turbulent mix-
ing. For  0X → 0, Eq. (7.31) yields !4B,eff → !4B, and Δ)=>A< → 0, i.e., the
flame behaves as a laminar flame. For  0X → ∞, Eq. (7.31) gives !4B,eff → 1,
and Δ)=>A< → 1, i.e., turbulent mixing suppresses all differential diffusion effects.
Multiple laminar one-dimensional flame simulations are performed using the effec-
tive Lewis numbers computed using Eq. (7.31), and the temperature of peak fuel
consumption rate is extracted. The coefficient 01 is adjusted to best fit the data in
Fig. 7.6 (01 = 0.01) [40]. It can be seen in Fig. 7.6 that the model is in very good
agreement with the turbulent flame results. Finally, Figure 7.7 shows the condi-
tional average of the normalized fuel consumption rate at the temperature of peak
fuel consumption rate, i.e, the peak values in Fig. 7.5, which are seen to increase
monotonically with  0X.

Figure 7.4: Normalized mean turbulent flame speed as a function of the reaction
zone Karlovitz number  0X. The red stars are simulations results from Lapointe &
Blanquart [46]. The dashed black line is a power law fit.

7.3.2 Compressibility effects
The purpose of this section is to assess whether compressibility effects impact the
flame behavior for Cases C* ("C,D = 0.17) and D* ("C,D = 0.39). The initial
compressible fields are obtained following the procedure presented in Sec. 7.2.
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Figure 7.5: Normalized fuel consumption rate on temperature. The one-
dimensional profile obtained with non-unity Lewis numbers is shown by a black
dashed line, and the one obtained with unity Lewis numbers is shown by a solid
black line.

Figure 7.6: Temperature at which the peak burning rate is observed in the turbulent
flames, normalized with the temperatures at which the peak burning rate is observed
in the unity and non-unity Lewis number one-dimensional flames. The solid black
line shows the fit obtained using the semi-empirical model of Savard & Blanquart
[127].
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Figure 7.7: Conditional average of the normalized fuel consumption rate at the
temperature of peak fuel consumption rate.

Figure 7.8 shows instantaneous isocontours of the local Mach number " = |u|/2.
It can be seen that the local Mach number reaches values up to " = 0.5 for Case
C*, and " = 1 for Case D*.

(a) Case C*

(b) Case D*

Figure 7.8: Instantaneous isocontours of the local Mach number. The white isolines
denote ) = 1000 K and ) = 1900 K.

7.3.2.1 Compressibility effects on turbulence

Figure 7.9 shows the planar Favre-averaged turbulent kinetic energy (TKE) for
the simulation results obtained with the low Mach number solver and the fully
compressible solver, against the target TKE profile (see Fig. 7.2). The obtained
TKE profiles follow the desired behavior. When the forcing is stopped (G/!H = 8),
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the TKE decays rapidly. The predicted “lag” between the theoretical TKE profile
and the computed ones can be estimated as

ΔG3420H = D1g , (7.32)

where D1 is the mean velocity in the burnt region, and g is the eddy turnover time.
For Flame C*, Eq. (7.32) yields ΔG3420H/!H = 0.13. For Flame D*, we obtain
ΔG3420H/!H = 0.07. This is what we observe in Fig. 7.9, i.e., ΔG3420H � !H.

(a) Case C*

(b) Case D*

Figure 7.9: Planar-averaged turbulent kinetic energy.

Figure 7.10 shows the planar-averaged density for Case D*. The planar-averaged
density is similar for the low Mach number and compressible simulations. The
exception is the unburnt unforced region close to the inlet, where for the compressible
simulation density is larger than for the low Mach number simulation, in line with
the values d8=,� = 0.470 kg/m3 and d8=,!" = 0.455 kg/m3 given in Table 7.3.

Figure 7.11 shows the planar-averaged pressure fields for Case D*. The target
pressure in the unburnt forced region ?0,D is shown by a dashed line. The low Mach
number hydrodynamic pressure field being defined up to a constant, we adjust the
constant such that the pressure in the unburnt forced region is ?0,D, for visualization
purposes. The low Mach number and compressible planar-averaged pressure fields
are in very good agreement. This is because they have similar density and kinetic
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Figure 7.10: Planar-averaged density for Case D*.

energy profiles, as shown in Figs. 7.9b and 7.10, and Eq. (7.7) applies in both cases,
i.e., 〈? + dD2〉 = �2, since the momentum equation is identical in the low Mach and
compressible formulations. In Fig. 7.12, we show 〈? + dD2〉 for both frameworks.
It can be seen that 〈? + dD2〉 is indeed constant throughout the domain.

Figure 7.11: Planar-averaged pressure for Case D*.

Figure 7.12: Planar average of ? + dD2 for Case D*.

In Fig. 7.13, the red line shows the time evolution of dA<B in the forced region ahead
of the flame for Case D*, i.e., for 2 ≤ G/!H ≤ 3. The black dashed line show
the density fluctuations predicted from the fluctuating pressure field, assuming an
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isentropic behavior, following Eq. (6.20). Initially, the density fluctuations are
much smaller in magnitude than the isentropic predictions. This is because the
initial compressible field is initialized with a low Mach number field, which doesn’t
have any density fluctuations directly caused by turbulence. The small initial density
fluctuations (dA<B/〈〈d〉〉 ≈ 0.01) are hence entirely due to turbulent mixing ahead of
the flame. As it can be seen in Fig. 7.13, the density fluctuations quickly reach a
statistically-stationary value (in less than one eddy turnover time g), which is close
to the isentropic behavior. However, we don’t expect a perfect collapse between the
two curves for two reasons: 1) the isentropic behavior was not exactly recovered
in homogeneous non-reacting turbulence (see Sec. 6.2.2.3), and 2) there is some
turbulent mixing between colder and warmer reactants, as evidenced by the fact that
dA<B > 0 at C = 0.

Figure 7.13: Time evolution of the root mean square of the density fluctuations in
the forced region ahead of the flame for Case D*.

Figure 7.14 shows the planar-averaged root mean square of the pressure fluctuations
once statistical stationarity for the thermodynamic variables is achieved, i.e., for
C/g > 1. It can be seen that for both Cases C* and D*, the amplitude of the pressure
fluctuations are similar for the simulations performed with the low Mach number
approximation and the compressible formulation. The black dashed line shows the
pressure fluctuations predicted from the density and velocity fields, following the
relation ?A<B ≈ 0.91〈d:〉/3, obtained from simulations of homogeneous incom-
pressible turbulence [121], similarly to what was found in Sec. 6.2.2.4. Hence,
the amplitude of the pressure fluctuations in both the compressible and the low
Mach turbulent flame simulations are controlled by the “incompressible” pressure
field induced by turbulence. In other words, with regards to the low Mach num-
ber expansion, the pressure fluctuations in the compressible simulations are mostly
hydrodynamic, i.e., ?′ ≈ n ?′1.

Figure 7.15 shows the planar-averaged root mean square of the density fluctuations.
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(a) Case C*

(b) Case D*

Figure 7.14: Planar-averaged pressure fluctuations. The black dashed line is the rms
of the pressure fluctuations predicted from the velocity and density fields.

For Case D*, the density fluctuations in the unburnt forced region aremuch larger for
the compressible simulations than for the lowMach number ones. The dashed black
line shows the amplitude of the density fluctuations predicted from the pressure
fluctuations, assuming an isentropic behavior, i.e., using Eq. (6.20) with the planar-
averaged specific heat ratio 〈W〉. The predicted density fluctuations match the rms
extracted from the compressible simulations very well, away from the flame. In the
turbulent flame brush, which appears as a peak in Figs. 7.15a and 7.15b, the density
fluctuations for both the lowMach number and compressible simulations agree very
well. For the compressible cases, this implies that, in the flame, density fluctuations
due to the turbulent mixing of cold reactants with hot products dominates over the
density fluctuations induced by turbulence. With regards to the low Mach number
expansion, in the forced regions away from the flame, the density fluctuations for
Case D* are dominated by the contribution of the first order density, i.e., d′ ≈ n d′1 �
d′0. In the turbulent flame brush, the main contribution to the density fluctuations
comes from the zeroth order term, i.e., d′ ≈ d′0 � n d′1. This is in contrast with the
results obtained for homogeneous non-reacting turbulence, where d0 is constant,
and the leading contribution to the fluctuating density comes from d1.
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(a) Case C*

(b) Case D*

Figure 7.15: Planar-averaged density fluctuations. The black dashed line is the am-
plitude of the density fluctuations predicted from the pressure fluctuations, assuming
an isentropic behavior.

7.3.2.2 Compressibility effects on chemistry

We first assess the impact of compressibility on the turbulent flame speed. Figure
7.16 shows the evolution of the turbulent flame speed for Case C*. The black circle
denotes where we performed the lowMach number to compressible conversion, and
started the compressible simulation. It can be seen that the two simulations yield the
same flame speed for ∼ 5g, after which they start to deviate. This is not surprising
since turbulence is stochastic, and the flame speed is partially controlled by the large
scale turbulent structures [46].

For Flame C*, we obtain ()/(! = 3.8 ± 0.1 for the low Mach number simulation,
and ()/(! = 3.6± 0.2 for the compressible one. For Flame D*, we obtain ()/(! =
6.0 ± 0.3 for the low Mach number simulation, and ()/(! = 5.7 ± 0.7 for the
compressible one. The error bounds are computed by averaging the first and second
halves of the data separately, which only gives a qualitative picture of the accuracy
of the average. The turbulent flame speed fluctuates greatly in time, and obtaining
precise estimates of ()/(! would require the simulations to be run for times much
longer than what was performed in the present work. In contrast to the large impact
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of the Karlovitz number, as shown in Fig. 7.4, the differences between the average
turbulent flame speeds for the lowMach number and compressible results are small.
Hence, there doesn’t appear to be a significant impact of compressibility on the
turbulent flame speed for the cases considered.

Figure 7.16: Normalized flame speed as a function of time for Flame C*. The black
circle denotes when the compressible simulation was initialized.

Next, we look at the impact of compressibility on the local chemistry. Figure
7.17 shows the conditional average of the fuel consumption rate in temperature
space for the two cases. Once again, there is a good agreement between the low
Mach number and compressible results for both cases, especially when contrasted
with the large impact of the Karlovitz number, as shown in Fig. 7.5. Hence,
compressibility effects appear to have a limited impact on the local chemistry.
In summary, for the Mach numbers considered, although compressibility effects
significantly impact the turbulence characteristics, the flame behavior appears to
remain relatively unchanged.

7.4 Summary
In this chapter, we performed simulations of =-heptane/air turbulent flames with
detailed chemistry in an inflow/outflow configuration, using both the low Mach
number approximation and the compressible framework. We proposed a procedure
to initialize the compressible simulations with a statistically-stationary turbulent
flame solution obtained using the low Mach number approximation. To use the
NSCBC framework, it was necessary to force turbulence away from the boundaries
only. It was found that special care must be taken with the boundary values for
the compressible simulations when a spatially-varying forcing scheme is employed.
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(a) Case C*

(b) Case D*

Figure 7.17: Normalized fuel consumption rate conditioned on temperature.
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Then, we presented simulation results, and investigated Karlovitz number and Mach
number effects separately. Karlovitz number were found to have a strong impact
on the flame characteristics, consistent with previous results. On the other hand,
compressibility effects were found to have a limited impact on the local chemistry,
up to at least "C = 0.4. The thermodynamic fluctuations in the compressible cases
were explained by considering isentropic fluctuations, which were investigated in
Chapter 6, in addition to the effect of the flame, the latter being captured by the
low Mach number approximation. In other words, similarly to what was found
in homogeneous non-reacting turbulence, the low Mach number expansion (zeroth
and first order governing equations) captures all effects observed in the compressible
simulations.
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C h a p t e r 8

CONCLUSIONS

In this thesis, compressibility effects in subsonic reacting and non-reacting flows
were systematically isolated by performing numerical simulations using both the
low Mach number approximation and the fully compressible framework. We were
specifically interested in the interactions between turbulence, flames, and acoustics.
To this end, we investigated flame-acoustics interactions, compressible homoge-
neous non-reacting turbulence, and turbulence-flame interactions.

8.1 Numerical methodology
In Chapter 3, we presented the fully compressible numerical methodology, which
is based on the low Mach number solver NGA [76]. In compressible reacting
flows using detailed chemistry, the maximum explicit stable time step is usually
limited by the chemical processes at play. The maximum explicit stable time step
for chemistry can be orders of magnitude more stringent than the one for acoustics,
which is impractical to simulate turbulent compressible reacting flows. To remedy
the situation, we presented a novel time integration scheme that blends the semi-
implicit midpoint method for the species transport and the RK4 scheme for the
transport of the other flow variables. This approach was tested by considering a
freely-propagating laminar flame, an acoustic wave impinging on a flame, and a
turbulent flame. The time integration scheme was found to perform well, since
the semi-implicit correction is especially good at capturing the small chemical time
scales, which are responsible for the stiffness of the system. With this approach,
the time step was found to be limited by the acoustic CFL only, regardless of the
chemical mechanism employed. It also yields fourth-order accurate transport of
acoustic waves away from mixing/chemistry. It was also shown that the use of
a staggered grid was ideally suited for the transport of acoustic waves. Using a
second-order spatial discretization stencil, the numerical dispersion was found to
be less severe than if a fourth-order stencil on a collocated grid was used. Finally,
we reviewed the NSCBC framework, and presented various test cases to verify its
implementation.
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8.2 Flame-acoustics interactions
In Chapter 4, we investigated the impact of the thermodynamic fluctuations that
accompany an acoustic wave on the response of laminar premixed flames, referred
to as the direct pressure effects. In Sec. 4.1, we presented the different flow con-
figurations considered, and described the numerical methodology employed for the
low Mach number and compressible simulations. For the low Mach number simu-
lations, a sinusoidal thermodynamic (background) pressure was imposed. For the
compressible simulations, an outlet wave modulation technique was employed to
generate the acoustic waves. Our numerical implementation was validated against
the results of Jimenez et al.[14].

In Sec. 4.2, we presented results obtained under the lowMach number approximation
for a wide range of fuels, including two large hydrocarbon fuels, n-heptane and n-
dodecane. For a broad spectrum of acoustic frequencies, we extracted the gain and
phase of the heat release fluctuations, which determine the stability of the system
through the Rayleigh criterion. For all fuels, we observed a local peak in � ¤& for
lg� ∼ 100−102. The frequency at which this local peak occurs was seen to roughly
coincide with the frequency for which \ ¤& = 0, indicating that the flame-acoustics
system is thermo-acoustically unstable. For higher frequencies, we observed and
then showed that the gains of the different species mass fractions decrease with the
inverse of the acoustic frequency (i.e., �.8 ∼ l−1). In the limit l → ∞, this leads
to chemistry being “frozen” (i.e., �.8 |l→∞ = 0). This result allowed us to predict
� ¤& |l→∞ and \ ¤& |l→∞ directly from the steady-state solution.

In Sec. 4.3, we investigated direct pressure effects under engine-relevant conditions,
i.e., at elevated temperature and pressure, using the fully compressible formulation.
We focused on the combustion of hydrogen and a large hydrocarbon fuel, =-heptane.
The differences between results obtained with the fully compressible Navier-Stokes
equations and the low Mach number approximation were thoroughly investigated.
The two simulation frameworks agree verywell for acousticwavelengthsmuch larger
than the flame thickness. At high frequencies, the low Mach number approximation
erroneously predicts a plateau in the heat release gain. Instead, using the fully
compressible framework, the gain decreases at high frequency and tends towards
zero. The differences between the two frameworks at high frequency are due to
the spatial variations in the acoustic pressure, which are not captured by the low
Mach number approximation. In the compressible framework, when the acoustic
wavelength becomes of the same order of magnitude as the flame thickness, the
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alternating regions of positive and negative acoustic pressure impact the local flame
response in opposite ways. When integrated over the whole domain, the heat release
gain thus averages out to zero.

The acoustic wavelength for which the low Mach number and fully compressible
frameworks yield different results was found to be much larger than the flame
thickness, i.e., for _1/;�,0 . 102. This was linked to the large region for which the
heat release is sensitive to pressure fluctuations, compared to the flame thickness.
This acoustic wavelength corresponds to 5 & 104 Hz for the cases at standard
thermodynamic conditions, and 5 & 106 Hz for the ones at elevated pressure and
temperature. In practical combustors, typical frequencies at which thermo-acoustic
instabilities occur in are 5 ∼ 103 − 104 Hz [105]. Hence, we conclude that the low
Mach number framework is adequate to investigate direct pressure effects for this
practically-relevant range of frequencies.

8.3 Physics-based forcing for compressible flows
In Chapter 5, we considered how compressible turbulent flows should be simulated
when simplified geometries are used, i.e., in the absence of a natural turbulence
generating mechanism due to the large scale shear. The general framework relies on
a simple decomposition of the velocity field into large-scale (imposed) and small-
scale (resolved) components. We applied this framework to the centerline of a jet,
and found that the forcing term should be linear with velocity, similarly to what
was found in previous work [35, 38]. It was found that special care must be taken
regarding the energy equation when a statistically-stationary state is desired, since
the conversion of kinetic energy into internal energy heats up the flow over time.
By defining a modified total energy, it was shown that statistical stationarity can be
achieved by removing the volume average of the forcing term in the total energy
equation.

Forcing the full velocity field while employing periodic boundary conditions was
found to promote the unphysical growth of standing acoustic waves, which plagued
previous simulations of compressible homogeneous turbulence [28]. These standing
modes initially grow exponentially, and eventually saturate due to non-linear effects.
To remedy the situation, it was decided to force the solenoidal velocity field only, in
line with the decomposition proposed by Petersen & Livescu [27].
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8.4 Compressible homogeneous turbulence
In Chapter 6, we explored compressibility effects in subsonic homogeneous non-
reacting turbulence. Since we performed simulations in triply-periodic domains, the
forcing methodology developed in Chapter 5 was employed to obtain a statistically-
stationary state. We first reviewed how velocity, dissipation rate, and pressure
fluctuations can be decomposed into solenoidal and dilatational components. We
also reviewed the lowMach number expansion to get insight into how these quantities
should scale with the turbulent Mach number "C , at low Mach numbers. We
then presented simulation results, first fixing the Reynolds number and varying the
turbulent Mach number. The ratio of dilatational to solenoidal kinetic energies
was found to scale like 〈:̃3〉/〈:̃ B〉 ∼ "4

C at low Mach numbers, consistent with the
scalings obtained by considering the lowMach number expansion, and in agreement
with the theoretical predictions of Fauchet&Bertoglio [116]. The ratio of solenoidal
to dilatational dissipation rate was also found to scale like 〈〈n3〉〉/〈〈n B〉〉 ∼ "4

C .
In compressible turbulence, pressure fluctuations induce density and temperature
fluctuations, unlike in incompressible turbulence. These fluctuations were found to
be almost isentropic, in agreement with previous studies [119, 122]. A polytropic
exponent was extracted for the density fluctuations to quantify the deviation from the
isentropic behavior, which was found to be comparable with the values computed
in previous studies [119, 122]. The non-isentropic behavior was explained by
considering the first order energy equation of the low Mach number expansion,
which simplifies to the isentropic relation only if there is no conduction or viscous
dissipation.

Next, the solenoidal and dilatational pressure fields were extracted by solving
the Poisson equation for incompressible flows. At low Mach numbers, the ra-
tio of the dilatational to solenoidal pressure fluctuations was found to scale like
?3A<B/?BA<B ∼ "2

C , in line with the predictions obtained by considering the low
Mach number expansion. Finally, we assessed the impact of the Reynolds number,
for a fixed "C = 0.40. Although simulations would need to be run for longer to
reach definitive conclusions, there does not appear to be a strong Reynolds number
influence on the ratio of solenoidal to dilatational kinetic energy, dissipation rate,
and pressure fluctuations. In summary, by performing simulations across a wide
range of Mach numbers, and averaging statistics over long times, we obtained Mach
number scalings that enabled us to verify theoretical predictions obtained from the
low Mach number expansion.
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8.5 Turbulence-flame interactions
In Chapter 7, we performed simulations of premixed =-heptane/air turbulent flames
with detailed chemistry in an inflow/outflow configuration, using both the lowMach
number approximation and the compressible framework. We aimed to improve upon
previous initialization procedures for the compressible simulations [52, 123, 124]
by leveraging the fact that a statistically-stationary turbulent flame solution obtained
with the low Mach number approximation should be close to the compressible one.
To employ the NSCBC framework, it was required to force turbulence away from the
boundaries only. However, it was found that special care must be taken regarding
the boundary values when a spatially-varying forcing scheme is employed. The
correct boundary values were derived by considering the planar-averaged governing
equations, and were found to be significantly different from the ones used for the
lowMach number simulations. To reduce the transient time, we proposed to modify
the unforced unburnt region close to the inlet to match the boundary values.

Since it was decided to vary the turbulent Mach number by changing the Karlovitz
number, we first investigated the impact of the Karlovitz number using simulation
results obtained with the low Mach number approximation. This was achieved
by considering a set of turbulent flames at different turbulence intensities. We
extracted the turbulent flame speed, and computed the conditional average of the fuel
consumption rate. The turbulent flame speed and the maximum fuel consumption
rate were found to increase with the Karlovitz number, in agreement with previous
studies. The temperature at which the peak fuel consumption rate occurs was found
to be well captured by the semi-empirical model of Savard & Blanquart [127].

We then investigated compressibility effects by performing additional simulations
using the compressible framework, at turbulent Mach numbers "C,D = 0.17 and
"C,D = 0.39. By comparing simulation results obtained using both the low Mach
number approximation and the compressible framework, we were able to isolate
the compressibility effects on the flame. Compressibility effects were identified
through increased density fluctuations in the turbulent regions away from the flame.
These density fluctuations were found to be related to the pressure fluctuations by
assuming an isentropic behavior. However, inside the turbulent flame brush, the
density fluctuations due to compressibility were found to remain small compared
to the large fluctuations induced by the turbulent mixing of cold reactants and hot
products. The pressure fluctuations were not found to be significantly impacted by
compressibility. Finally, to investigate the compressibility effects on chemistry, we
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extracted the turbulent flame speed, and computed the conditional average of the
fuel consumption rate. The impact of compressibility on these two quantities was
found to be limited for the range of Mach numbers investigated, especially when
contrasted with the large impact of the Karlovitz number. The low Mach number
approximation thus remains a valid framework at least up to "C = 0.4, when the
primary goal is to characterize the impact of turbulence on the chemical processes
at play.

8.6 Limitations and future directions
In parallel to developing the time integration scheme presented in Chapter 3, the
author also worked on a semi-implicit correction for the acoustics, presented in
Appendix G. This implicit correction is similar in essence to the so-called barely
implicit correction algorithm for low Mach number flows developed by Patnaik et
al.[128]. Themethodology showed promising results, but incorporating the NSCBC
boundary conditions proved to be challenging. It would be interesting to continue
in this direction, since lifting the acoustic CFL condition would yield substantial
savings in computational cost.

Concerning the flame-acoustics interactions explored in Chapter 4, the simulations
were on purpose one-dimensional to isolate the direct pressure effects. It would
be interesting to explore flame-acoustics interactions in two-dimensional and three-
dimensional configurations, to see if the phase and gain of the release are impacted
by potential multidimensional effects, such as Rayleigh-Taylor instabilities.

Regarding turbulence-flame interactions, the present study only considered flames
at moderate turbulent Mach numbers "C < 0.4. This is due to the current numerical
procedure in which we convert a low Mach number field at the desired turbulent
conditions into the initial compressible field. This procedure has the advantage of
providing a reasonable initial compressible field, but is limited in that at higher
Mach numbers, the pressure fluctuations in the low Mach number fields are greater
than the mean, i.e., ?′ < −?0. Then, the conversion from a low Mach number
field to a compressible one is not straightforward. One possible avenue to perform
simulations of compressible turbulent flames at higher Mach numbers would be to
initialize the compressible simulation with a low Mach number simulation at a low
turbulence intensity, and ramp up the turbulence during the compressible simulation.
To do so, the forcing term in the energy equation would need to be modified.
With the current formulation, i.e., removing the average of the forcing term in the
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total energy equation, changing the turbulence intensity will lead to an artificial
conversion of internal energy into kinetic energy. Instead, removing the average
viscous dissipation rate in the total energy equation should leave the internal energy
field (and thus temperature) intact as the turbulence level is increased. It would be
interesting to implement this alternative forcing scheme to simulate turbulent flames
at higher Mach numbers.
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A p p e n d i x A

DIFFERENT CHOICES FOR THE REFERENCE PRESSURE
USED TO NON-DIMENSIONALIZE THE NAVIER-STOKES

EQUATIONS

In Chapter 2, we inherently assumed that the reference ?A was representative of
the thermodynamic state of the flow, i.e., ?∗ = O(1). Zank & Matthaeus [66]
investigated the implications of choosing a different reference pressure. Specifically,
they considered

?∗1 =
?

?0
?∗2 =

?

dAD
2
A

?∗3 =
?

`ADA/!A
, (A.1)

where dA and DA are chosen such that d∗,u∗ = O(1). Note that ?∗1 is the non-
dimensional pressure used in Chapter 2.

Zank & Matthaeus [66] provided the momentum equations for each of the three
normalizations, but did not provide the complete set of governing equations. Here,
we briefly consider the implications of using ?∗2 to non-dimensionalize the equations,
and taking the limit when"A → 0. We also need to perform a similar normalization
for temperature, i.e., we define

)∗2 =
)

D2
A,/'

, (A.2)

where, is the molecular weight of the mixture, and ' is the universal gas constant.
Equations (2.1)–(2.3) become

md∗

mC∗
+ ∇∗ · (d∗u∗) = 0 , (A.3)

md∗u∗

mC∗
+ ∇∗ · (d∗u∗ ⊗ u∗) = −∇∗?∗2 +

1
'4A
∇∗ · τ ∗ , (A.4)

md∗4∗C

mC∗
+ ∇∗ · (u∗

(
d∗4∗C + ?∗2

)
)

= −
W

W − 1
1

'4A%AA
∇∗ · q∗ +

1
'4A
∇∗ · (τ ∗ · u∗) .

(A.5)
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The non-dimensional equation of state is

?∗2 = d
∗)∗2 . (A.6)

In Eqs. (A.3)–(A.5), there is no dependence in Mach number, which is to be con-
trasted with Eqs. (2.16)–(2.18), where ?∗1 was used. Hence, taking the limit when
"A → 0 yields the “regular” Navier-Stokes equations. However, the limit "A → 0
yields issues regarding the initial conditions. For an initial pressure ?8 = ?0, we
have

?∗2,8 =
?8

dAD
2
A

=
1

W"2
A

, (A.7)

which implies that ?∗2,8 →∞ as "A → 0. Similarly,

?∗3,8 =
?8

`ADA/!A
=
'4A

W"2
A

, (A.8)

which also implies that ?∗3,8 → ∞ as "A → 0, for a finite Reynolds number. The
same goes for)∗2 . Hence, while dAD

2
A and `ADA/!A can be used as reference pressures

to non-dimensionalize the Navier-Stokes equations, using them to probe the limit
"A → 0 is not insightful. Since we are interested in this limit, we choose to use ?∗1
in Chapter 2.



161

A p p e n d i x B

SPATIAL DISCRETIZATION OF THE SPECIES TRANSPORT
AND ENERGY EQUATIONS

The semi-discrete species transport equation is given by

m (d. )B
mC

+
3∑
8=1

X�.B ,8

XG8
=

3∑
8=1

X

XG8

©­­«d�B
G8
X.B

XG8
+ ©­«

d�B

,

ª®¬
G8

.B
G8
X,

XG8
+ .B

G8
92,8

ª®®¬ + d ¤lB , B = 1, ..., =B ,

(B.1)

where �.B ,8 is usually computed with the BQUICK scheme, i.e.,

3∑
8=1

X�.B ,8

XG8
=

3∑
8=1

X

XG8

(
68.B

G8 )
, (B.2)

where ( )
G8

is the BQUICK interpolation operator. It is possible to use a centered
scheme for the convective term, i.e., we set

3∑
8=1

X�.B ,8

XG8
=

3∑
8=1

X

XG8

(
68.B

G8
)
. (B.3)

However, due to the oscillatory character of a centered scheme, this can lead to
unphysical for .B. The correction flux 92,8 is given by

92,8 = −
=B∑
B=1

©­­«d�B
G8
X.B

XG8
+ ©­«

d�B

,

ª®¬
G8

.B
G8
X,

XG8

ª®®¬ . (B.4)

The semi-discrete energy equation is written as

m (d4C)
mC

+
3∑
8=1

X

(
D8 (d4C) + ?

G8
)

XG8
=

3∑
8=1

X

XG8

©­«_G8
X)

XG8

ª®¬ + �� ++) , (B.5)

where the enthalpy flux term �� is computed as

�� =

3∑
8=1

X

XG8

©­­«d�BℎB
G8
X.B

XG8
+ ©­«

d�B

,

ª®¬
G8

ℎB.B
G8
X,

XG8
+ ℎB.B

G8
92,8

ª®®¬ , (B.6)

where 92,8 is computed using Eq. (B.4). The viscous term+) is given by Eq. (3.31).
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A p p e n d i x C

LINEAR STABILITY ANALYSIS FOR THE RK4 AND
ITERATIVE EXPLICIT MIDPOINT SCHEMES

C.1 RK4 scheme
C.1.1 Stability region
Assuming f (Q=) = _Q=, where _ can be complex, we have

k1 = _Q
= ,

k2 = _ (1 + _ΔC/2)Q= ,

k3 = _
(
1 + _ΔC/2 + (_ΔC)2/4

)
Q= ,

k4 = _
(
1 + _ΔC + (_ΔC)2/2 + (_ΔC)3/4

)
Q= ,

Q=+1 = Q= + ΔC (k1/6 + k2/3 + k3/3 + k4/6)

=

(
_ΔC + (_ΔC)2/2 + (_ΔC)3/6 + (_ΔC)4/24

)
Q= .

(C.1)

Figure C.1 shows the stability contour for Eq. (C.1), i.e, the values of _ΔC for which
Q=+1 = Q=.

Figure C.1: Stability region for the classical 4th order Runge-Kutta scheme.
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C.1.2 Convective/Acoustic CFL
We look at the advection equation

mq

mC
= 5 (q) = −0

mq

mG
, (C.2)

with
q(G) = � exp(8:G) . (C.3)

Using a centered scheme in space, we have

mq

mG
≈
Xq

XG
= �:

exp(8: (G + ΔG)) − exp(8: (G − ΔG))
2ΔG

= 8q
sin(:ΔG))
ΔG

, (C.4)

which implies that

5 (q) = −80q
sin(:ΔG)
ΔG

= _q . (C.5)

Hence, _ is purely imaginary. Fig. C.2 shows the amplification factor f ≡ &=+1/&=

X: -2.831

Y: 1.007

Figure C.2: Amplification factor f when _ is imaginary for the RK4 scheme
(in blue), corresponding to the imaginary axis on Fig. C.1. The ideal behavior
f = exp(_ΔC) is shown by a dashed black line.

when _ is purely imaginary, i.e., corresponding to the imaginary axis in Fig. C.1. In
order to be stable, we must thus have

|_ |ΔC =

������80 sin(:ΔG)
ΔG

������ΔC < 0 ΔCΔG < 2.83 . (C.6)

We get the following criterion for the convective/acoustic CFL

ΔC <
2.83ΔG
0

, (C.7)

where 0 = |u| for convection, and 0 = |u| + 2 for the acoustics. The dashed line in
Fig. C.2 shows the ideal behavior f = 1. Significant deviations between the RK4
scheme and the ideal behavior are observed for |_ΔC | > 1. In order to be stable and
accurate, we restrict ΔC to

ΔC <
ΔG

0
. (C.8)
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C.1.3 Viscous/Diffusive CFL
We consider the diffusion equation

mq

mC
= 5 (q) = a

m2q

mG2 , (C.9)

with q given by Eq. (C.3). Using a centered scheme in space, we have

m2q

mG2 ≈
X2q

XG2 = �
exp(8: (G + ΔG)) − 2 exp(8:G) + exp(8: (G − ΔG))

ΔG2

= 2q
cos(:ΔG) − 1

ΔG2 .

(C.10)

Plugging Eq. (C.10) in Eq. (C.9), we have

5 (q) = 2a
cos(:ΔG) − 1

ΔG2 q = _q . (C.11)

Hence, _ is purely real. Fig. C.3 shows the amplification factor for _ purely real,

X: -2.786

Y: 1.002

Figure C.3: Amplification factor f when _ is real for the RK4 scheme (in blue),
corresponding to the real axis on Fig. C.1. The ideal behavior f = exp(_ΔC) is
shown by a dashed black line.

i.e., corresponding to the real axis on Fig. C.1. Hence, to be stable, we must have

|_ |ΔC =

������2a cos(:ΔG) − 1
ΔG2

������ΔC < 4aΔC
ΔG2 < 2.79 , (C.12)

which implies that

ΔC <
2.79ΔG2

4a
. (C.13)

In 2D, we have
mq

mC
= 5 (q) = a ©­«

m2q

mG2 +
m2q

mH2
ª®¬ . (C.14)
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Using
q(G) = � exp(8

(
:GG + :HH

)
) (C.15)

with a second-order centered stencil, we obtain

m2q

mG2 +
m2q

mH2 = 2q ©­«
cos(:GΔG) − 1

ΔG2 +
cos(:HΔH) − 1

ΔH2
ª®¬ , (C.16)

which yields

ΔC <
2.79ΔG2

8a
. (C.17)

Similarly, in 3D, we obtain

ΔC <
2.79ΔG2

12a
. (C.18)

In Fig. C.3, the ideal behavior f = exp(_ΔC) is shown by a black dashed line.
Significant deviations between the RK4 scheme and the ideal behavior can be
observed for (_ΔC) < 1. In order to be not only stable but also accurate, we thus set

ΔC <
ΔG2

12a
(C.19)

for 3D flows.

C.2 Iterative explicit midpoint scheme with four sub-iterations
C.2.1 Stability region
Assuming f (Y =) = _Y =, we have

Y ∗1 = Y = + (ΔC/2) f (Y =) = (1 + _ΔC/2) Y =

Y ∗2 = Y = + (ΔC/2) f (Y ∗1 ) =
(
1 + _ΔC/2 + (_ΔC)2/4

)
Y =

Y ∗3 = Y = + (ΔC/2) f (Y ∗2 ) =
(
1 + _ΔC/2 + (_ΔC)2/4 + (_ΔC)3/8

)
Y =

Y =+1
4 = Y = + ΔCf (Y ∗3 ) =

(
1 + _ΔC + (_ΔC)2/2 + (_ΔC)3/4 + (_ΔC)4/8

)
Y = .

(C.20)

Figure C.4 shows the stability contour for Eq. (C.20) i.e, the values of _ΔC for which
Y =+1 = Y =.

C.2.2 Convective/Acoustic CFL
Following a similar procedure as in Sec. C.1.2, we have from Eq. (C.5) that _ is
purely imaginary. Figure C.5 shows the amplification factor for _ purely imaginary.
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Figure C.4: Stability region for the iterative explicit midpoint method with four
sub-iterations.

To be stable, the condition on ΔC is thus

ΔC <
2ΔG
0
, (C.21)

where 0 = |u| for convection, and 0 = |u| + 2 for the acoustics. In Fig. C.5, the
ideal behavior f = 1 is shown by a dashed black line. Hence, to be not only stable
but accurate, one can set

ΔC <
ΔG

0
. (C.22)

X: -2

Y: 0.9995

Figure C.5: Amplification factor |. =+1/. = | for _ purely (in blue), corresponding to
the imaginary axis on Fig. C.4. The ideal behavior is shown by a dashed black line.

C.2.3 Viscous/Diffusive CFL
We follow the same procedure as in Sec. C.1.3. In Fig. C.6, the amplification factor
for the iterative explicit midpoint method is shown in blue. In 1D, a necessary
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condition to be stable is thus

ΔC <
2ΔG2

4a
. (C.23)

In 3D, it is

ΔC <
2ΔG2

12a
. (C.24)

In Fig. C.6, the ideal behavior f = exp(_ΔC) is shown by a dashed black line. To
be not only stable but also accurate, we set the following condition for a 3D flow

ΔC <
ΔG2

12a
. (C.25)

X: -1.999

Y: 0.9985

Figure C.6: Amplification factor f when _ is real for the iterative explicit midpoint
scheme with four sub-iterations (in blue), corresponding to the real axis on Fig. C.4.
The ideal behavior f = exp(_ΔC) is shown by a dashed black line.
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A p p e n d i x D

ADDITIONAL FIGURES FOR FLAME-ACOUSTICS
INTERACTIONS

(a) Gain for Case 3a (b) Phase for Case 3a

(c) Gain for Case 3b (d) Phase for Case 3b

(e) Gain for Case 3c (f) Phase for Case 3c

Figure D.1: Gain (left) and phase (right) of heat release (black circles) and different
intermediate species: hydroxyl radical [red crosses], formyl radical [black circles],
and methyl radical [blue squares]. The phases and gains of some intermediate
species are not shown for certain frequencies, as their evaluation becomes difficult
due to the small amplitude of the fluctuating response at high frequency.
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(a) Gain for Case 2 (b) Phase for Case 2

(c) Gain for Case 4 (d) Phase for Case 4

Figure D.2: Gain (left) and phase (right) of heat release (black circles) and different
intermediate species: hydroxyl radical [red crosses], formyl radical [black circles],
and methyl radical [blue squares]. The phases and gains of some intermediate
species are not shown for certain frequencies, as their evaluation becomes difficult
due to the small amplitude of the fluctuating response at high frequency.
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A p p e n d i x E

DERIVATION OF THE SPLIT IMPOSED/RESOLVED
VELOCITY FIELD GOVERNING EQUATIONS

The momentum equation (5.3) is obtained by plugging the velocity decomposition
given by Eq. (5.1) into Eq. (2.2)

mdDA
8

mC
+ (dDA9DA8 ), 9 + ?,8 − gA8 9 , 9 = −D88

©­«
md

mC
+ (dDA9 ), 9 + (dD89 ), 9

ª®¬︸                          ︷︷                          ︸
=0

− (dDA8 D89 ), 9 − dDA9D88, 9 − dD89D88, 9 − d
mD8

8

mC
+ g88 9 , 9 ,

(E.1)

and observing that the 1st term on the RHS drops because of Eq. (5.2). The energy
equation (5.4) is obtained by plugging the velocity decomposition into (2.3)

md4AC

mC
+

(
dDA8 ℎ

A
C

)
,8
+ @8,8 −

(
DA9g

A
8 9

)
,8
= −

D8
9
D8
9

2
©­«
md

mC
+ (dDA8 ),8 + (dD88),8

ª®¬︸                        ︷︷                        ︸
=0

− D89
©­«
mdDA

9

mC
+

(
dDA8 D

A
9

)
,8
+ ?, 9 − gA8 9 ,8 − g88 9 ,8 + d

mD8
9

mC
+ dD88D89 ,8 + dDA8 DA9 ,8 +

(
dD88D

A
9

)
,8

ª®¬︸                                                                                                  ︷︷                                                                                                  ︸
=0

− D88
(
d4AC

)
,8
− dℎAC D88,8 − dDA8 DA9D88, 9 + gA8 9D88, 9 + g88 9D8, 9

+
(
DA9g

8
8 9

)
,8
− dDA8

mD8
8

mC
− dDA8 D89D88, 9 ,

(E.2)

and noting that the 1st term on the RHS drops because of Eq. (5.2), and the 2nd term
drops because of Eq. (5.3).
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A p p e n d i x F

CONSTANT NON-UNITY LEWIS NUMBERS FOR THE
TURBULENT FLAME SIMULATIONS

Species Lewis number
N2 1.12977

1 − CH2 1.00485
3 − CH2 1.00539

O 0.739306
H2 0.304862
H 0.190084
OH 0.74653
H2O 0.797255
O2 1.07456
HO2 1.07066
CH 0.690885
CO 1.15128
HCO 1.28976
CH2O 1.24701
CH3 0.98631
CO2 1.37679
CH4 0.977049
C2H3 1.3421
C2H4 1.26399
C2H5 1.33718
C2H 1.34147
HCCO 0.910152
C2H2 1.32775
C3H3 1.75669

A − C4H5 1.84654
= − C3H7 1.74015
C2H6 1.35465

P − C3H4 1.7434
A − C3H4 1.74653
C3H6 1.77385

1 − C4H8 1.93526
1 − C5H10 2.22559
1 − C5H11 1.97632
2 − C7H15 2.6707
= − C7H16 2.64491



172

A p p e n d i x G

SEMI-IMPLICIT CORRECTION FOR THE ACOUSTICS

We want to use the Crank-Nicholson time integration scheme, similarly to what is
done in the lowMach version ofNGA [76]. Wefirst write the continuity, momentum,
and total energy equations in residual form. For continuity, we have

d=+1:+1 − d
=+1
: = −(d=: − d

= + ΔCD[(du)=+1: + (du)=]) , (G.1)

which we rewrite as

Xd = −\d , (G.2)

where

Xd = d==1
:+1 − d

=+1
: , (G.3)

and

\d = d
=
: − d

= + ΔCD[(du)=+1: + (du)=] . (G.4)

Similarly, we write momentum as X(du) = −\dD, energy as X(d4C) = −\d4C , and
species transport as X(d.B) = −\d.B .

G.1 Linearized Euler equations
The linearized Euler equations with no mean flow are

md′

mC
+ d0∇ · u′ = 0 , (G.5)

d0
mu′

mC
+ ∇? = 0 , (G.6)

d0
m (d4)′

mC
+ ℎ0∇ · u′ = 0 . (G.7)

Since the linearized Euler equations describe the transport of acoustic waves, the
idea is to perform an implicit correction in the full Navier-Stokes equations on the
terms that have an equivalent in the linearized Euler equations.
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G.2 Algorithm
G.2.1 Implicit correction for the viscous/diffusion terms
We first perform an implicit correction for the viscous/diffusive terms, i.e., we write

Xd† = 0 (G.8)

X(du)† = d=+1: Xu† = −θdD +
ΔC

2
D

[
`∗:G

[
Xu†

] ] (G.9)

©­«d=+1: I −
ΔC

2
D

[
`∗:G [ · ]

]ª®¬ Xu† = −θdD (G.10)

X(d.8)† = d=+1: X.
†
8
= −\d.8 +

ΔC

2
D

[
d∗:�8

∗
:G

[
X.
†
8

] ]
(G.11)

©­«d=+1: I −
ΔC

2
D

[
d∗:�8

∗
:G [ · ]

]ª®¬ X.†8 = −\d.8 (G.12)

X(d4C)† = d=+1: X4
†
C = −\d4C +

ΔC

2
D

[
_∗:G

[
X)†

] ]
= −\d4C +

ΔC

2
D

_∗:G

X4
†
C

(2E)=+1:




(G.13)

©­«d=+1: I −
ΔC

2
D

_∗:G

( · )
(2E)=+1:


ª®¬ X4†C = −\d4C (G.14)

We solve for X(du)†, X(d.8)†, and X(d4C)†, and proceed to the next step, which is
to perform the implicit correction for the acoustics.

G.2.2 Implicit correction for the acoustics
Inspired by the linearized Euler equations, as presented in Sec. G.1, we write

X(du) = X(du)† −
ΔC

2
G [X?] , (G.15)

Xd = −\d −
ΔC

2
D [X(du)] = −\d −

ΔC

2
D

[
X(du)†

]
+
ΔC2

4
L [X?] , (G.16)

X(d4C) = X(d4C)† −
ΔC

2
D


((d4C)∗: + ?

∗
:
)

d=+1
:

[
X(du) − u=+1: Xd

] . (G.17)
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We now combine Eq. (G.15)–(G.17). We neglect the gradient terms corresponding
to convective transport in the implicit correction for X(d4C), i.e., we write

X(d4C) = X(d4C)† −
ΔC

2
((d4C)∗: + ?

∗
:
)

d=+1
:

(
D

[
[X(du)] − XdD

[
u=+1:

] ] )
= X(d4C)† −

ΔC

2
((d4C)∗: + ?

∗
:
)

d=+1
:

(
D

[
u=+1:

]
\d

− ©­«I +
ΔC

2
D

[
u=+1:

]ª®¬ ©­«
ΔC

2
L [X?] −D

[
X(du)†

]ª®¬ª®¬ .
(G.18)

We now use the definition of total energy to relate X(d4C) and X?, i.e.,

X(d4C) = X(dℎ) + X(d |u|2/2) − X?
≈ d=+1: Xℎ + ℎ=+1: Xd − X?
= d=+1: 2=+1?,: X) + ℎ

=+1
: Xd − X? .

(G.19)

Using the linearized equation of state

X?

?=+1
:

=
Xd

d=+1
:

+
X)

)=+1
:

, (G.20)

Eq. (G.19) becomes

X(d4C) ≈
(
ℎ=+1: − 2

=+1
?,:)

=+1
:

)
Xd +

X?

W=+1
:
− 1

=
(
ℎ − 2?)

)=+1
:

©­«−\d −
ΔC

2
D

[
X(du)†

]
+
ΔC2

4
L [X?]ª®¬ +

X?

W=+1
:
− 1

.

(G.21)

Combining Eqs. (G.18) and (G.21), we obtain the following elliptic system for X?

− (W=+1: − 1)
(
2?) − ℎ

)=+1
:

ΔC2

4
L [X?] −

2̃2
:
ΔC2

4
©­«I +

ΔC

2
D

[
u=+1:

]ª®¬L [X?] + X?
= −(W=+1: − 1)\d4C −

ΔC

2
2̃2
:

©­«D
[
u=+1:

]
\d +

©­«I +
ΔC

2
D

[
u=+1:

]ª®¬D
[
X(du)†

]ª®¬
− (W=+1: − 1)

(
2?) − ℎ

)=+1
:

©­«\d +
ΔC

2
D

[
X(du)†

]ª®¬ ,
(G.22)



175

where

2̃2
: = (W

=+1
: − 1)

((d4C)∗: + ?
∗
:
)

d=+1
:

. (G.23)

We solve Eq. (G.22), and obtain X?. We then use it to obtain X(du), Xd, and X(d4C)
following Eqs. (G.15)–(G.17).

G.2.3 Implicit correction for chemistry
Finally, we consider the species transport equation. The intermediate change in
species mass fractions for the acoustics correction X(d.B)†† is computed as

X(d.B)†† = X(d.B)† −
ΔC

2
. ∗BD [X(du)] . (G.24)

We perform the third and last step, which is to perform an implicit correction on
chemistry, i.e., we solve

X(d.B) = X(d.B)†† −
ΔC

2
¤l−∗
B,:

(d.B)∗:
X(d.B) (G.25)

for X(d.B), which only amounts to inverting a diagonal matrix.

G.3 Test cases
All the test cases considered use periodic boundary conditions. The extension of
this method to more complex boundary conditions, such as the NSCBC, should be
pursued in future work.

G.3.1 Isochoric ignition
We simulate a “hot spot”, i.e., we initialize a periodic one-dimensional field with a
mirrored laminar flame solution, using =-heptane/air mixture at q = 0.9,)D = 298K,
and ?0 = 1 atm, using the 35 species reduced detailed mechanism of Bisetti et al.[6].
The timestep is ΔC = 5 · 10−7 s, which corresponds to an acoustic CFL of 25, and
a viscous CFL of 3. Figure G.1 shows the comparison between the compressible
results and the ones obtained using the low Mach number approximation. The
low Mach number results are obtained with the same timestep as the compressible
ones. The agreement is excellent. Figure G.2 shows the time evolution of the
mean pressure (compressible), and the thermodynamic pressure (low Mach number
approximation). Again, the agreement is very good.
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(a) C = 0 (b) C = 10−3 s

(c) C = 2 · 10−3 s
(d) C = 3 · 10−3 s

Figure G.1: Temperature profiles for the isochoric ignition case.

Figure G.2: Evolution of mean pressure (compressible) and thermodynamic pres-
sure (low Mach # solver) as a function of time for the isochoric ignition case.
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G.3.2 Vortex advection (inviscid)
Here, we test the implicit correction for the acoustics in multiple dimensions. We
perform simulations of an inviscid two-dimensional vortex advected by a mean
background velocity D0, using a timestep of ΔC = 10−2 s corresponds to an acoustic
CFL of 10, and a convective CFL of 0.9. Figure G.3 shows the vorticity isocontours
initially (C∗ = C/(!/D0) = 0) and after one flow-through time (C∗ = 1). There
agreement between the two profiles is excellent. To explore this further, we plot in
Fig. G.4 the vorticity profile at G/! = 0.5 after one flow-through time (C∗ = 1) for the
simulation using themidpointmethod using the implicit correction for acousticswith
ΔC = 10−2 s, and a reference simulation using the RK4 scheme with ΔC = 5 · 10−4 s
(corresponding to an acoustic CFL of 0.5). The agreement is excellent.

(a) C∗ = 0 (b) C∗ = 1

Figure G.3: Vorticity isocontours for the inviscid vortex advection case, using the
compressible formulation with ΔC = 10−2 s.

Figure G.4: Vorticity profile at G/! = 0.5, after one flow-through time (C∗ = 1).
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G.4 Travelling acoustic wave with density change
Here, we consider an acoustic wave in an non-homogeneous mixture of N2 and
H2. The base flow is H2 (blue in Fig. G.5a), and there is small circular region
of N2 (yellow in Fig. G.5a). The reference density d0 is the density of H2. The
initial pressure profile is shown in Fig. G.5b, which shows where the acoustic wave
is. Figure G.6 shows the normalized density and pressure profiles after the wave
has impinged on the large-density region. We are not so much interested in the
physics at play, but on how well the acoustic wave is captured as a function of the
time step. Figure G.7 shows the density and pressure profiles corresponding to
G/! = 0.5 in Fig. G.6, obtained by using three different time steps corresponding
to different acoustic CFLs. In Fig. G.7b, the solution with CFL0 = 8 is in good
agreement with the one with CFL0 = 0.8. However, the solution with CFL0 = 80 is
very different from the other two. As a matter Hence, while performing an implicit
correction for the acoustics yields a stable solution for the three CFLs considered,
significant dispersion errors are introduced when very large time steps are used.
This is important if the acoustic field is of interest.

(a) d/d0 (b) (? − ?0)/?0

Figure G.5: Normalized initial density and pressure isocontours for the acoustic
wave with density change.
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(a) d/d0
(b) (? − ?0)/?0

Figure G.6: Normalized density and pressure isocontours for the acoustic wave with
density change, after the acoustic wave has impinged on the large-density region.

(a) d/d0

(b) (? − ?0)/?0

Figure G.7: Normalized density and pressure profile at G/! = 0.5 for the acoustic
wave with density change, after the acoustic wave has impinged on the large-density
region.


