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ABSTRACT 

 

 

This study explores the problems of identifying structural damage in steel frame buildings, through 

the use of dense instrumentation over the height of the building, and of characterizing the ground 

motion response in urban Los Angeles following the 2019 Ridgecrest earthquakes, through the use 

of dense instrumentation from available seismic networks, including the very dense Community 

Seismic Network. 

 

First we explore the possibility of tracing possible nonlinear behavior of a structure by updating 

an equivalent linear system model in short time segments of the earthquake-induced excitation and 

response time histories, using a moving time window approach. The stiffness and damping related 

parameters of the equivalent linear model are estimated by minimizing a measure of fit between 

the measured and model predicted response time histories for each time window. We explore the 

effectiveness of the methodology for two example applications, a single-story and a six-story steel 

moment frame building. For the single-story building, the methodology is shown to be very 

effective in tracing the nonlinearities, while the six-story building is designed to also reveal the 

limitations of the methodology, mainly arising from the different types of model errors manifested 

in the formulation.  

 

Next, we investigate the problem of structural damage identification through the use of sparse 

Bayesian learning (SBL) techniques. This is based on the premise that damage in a structure 

appears only in a limited number of locations. SBL methods that had been previously applied for 

structural damage identification used measurements related to modal properties and were thus 

limited to linear models. Here we present a methodology that allows for the application of SBL in 

non-linear models, using time history measurements recorded from a dense network of sensors 

installed along the building height. We develop a two-step optimization algorithm in which the 

most probable values of the structural model parameters and the hyper-parameters are iteratively 

obtained. An equivalent single-objective minimization problem that results in the most probable 

model parameter values is also derived. We consider the example problem of identifying damage 
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in the form of weld fractures in a 15-story moment resisting steel frame building, using a nonlinear 

finite element model and simulated acceleration data. Fiber elements and a bilinear material model 

are used in order to account for the change of local stiffness when cracks at the welds are subjected 

to tension and the model parameters characterize the loss of stiffness as the crack opens under 

tension. The damage identification results demonstrate the effectiveness and robustness of the 

proposed methodology in identifying the existence, location, and severity of damage for a variety 

of different damage scenarios, and degrees of model and measurement errors. The results show 

the great promise of the SBL methodology for damage identification by integrating nonlinear finite 

element models and response time history measurements.  

 

The final part of the thesis involves studying the ground motion response in urban Los Angeles 

during the two largest events (M7.1 and M6.4) of the 2019 Ridgecrest earthquake sequence using 

recordings from multiple regional seismic networks as well as a subset of 350 stations from the 

much denser Community Seismic Network. The response spectral (pseudo) accelerations for a 

selection of periods of engineering significance are calculated. Significant spectral acceleration 

amplification is present and reproducible between the two events. For the longer periods, coherent 

spectral acceleration patterns are visible throughout the Los Angeles Basin, while for the shorter 

periods, the motions are less spatially coherent. The dense Community Seismic Network 

instrumentation allows us to observe smaller-scale coherence even for these shorter periods. 

Examining possible correlations of the computed response spectral accelerations with basement 

depth and Vs30, we find the correlations to be stronger for the longer periods. Furthermore, we 

study the performance of two state-of-the-art methods for estimating ground motions for the largest 

event of the Ridgecrest earthquake sequence, namely 3D finite difference simulations and ground 

motion prediction equations. For the simulations, we are interested in the performance of the two 

Southern California Earthquake Center 3D Community Velocity Models (CVM-S and CVM-H). 

For the ground motion prediction equations, we consider four of the 2014 Next Generation 

Attenuation-West2 Project equations. For some cases, the methods match the observations 

reasonably well; however, neither approach is able to reproduce the specific locations of the 

maximum response spectral accelerations, or match the details of the observed amplification 

patterns.   
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C h a p t e r  1  

CHAPTER 1: 

INTRODUCTION 

 

 

1.1. Dense Seismic Networks in Urban Los Angeles 

Measurements are valuable in all fields of science and engineering for validating models of a 

physical system, as well as for long-term monitoring of the performance and state of the system or 

important subsystems comprising the system. Such measurements are usually provided from 

sensor networks installed on the system. In this thesis measurements consist of ground and civil 

infrastructure (e.g., buildings, bridges, storage tanks) motion (e.g., acceleration) data, collected by 

sensor networks, during shaking caused by seismic activity. The collection of these strong motion 

measurements is essential to earthquake engineering as well as to seismology, since they are 

needed in order to validate models of the built infrastructure, to trace the health of infrastructure 

components, as well as to study ground motion response and validate models of geological regions. 

 

The collection of such measurements is achieved using seismic networks that consist of 

accelerometers spread though a structure or a region. A great example is the area of Los Angeles, 

California, that has been instrumented with numerous arrays of sensors that go as far back as the 

1920’s (Caltech, 1926; Hutton, et al., 2010). Urban Los Angeles is one of the most densely 

instrumented areas in the world with multiple seismic networks permanently installed in the area. 

In the last decade the Community Seismic Network (CSN) (Clayton, et al., 2011; 2015), a dense 

seismic network, was installed in order to monitor both the ground motion in the urban Los 

Angeles area as well as the civil infrastructure. Following the recent expansion of the network with 

the deployment of accelerometers on campuses of the Los Angeles Unified School District 

(LAUSD) (Clayton, et al., 2019), CSN has a total of over 700 deployed active stations set up in 

locations provided by its numerous community hosts. The network utilizes ground stations, as well 

as stations along the height of mid-rise and high-rise buildings. This dissertation presents work 
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associated with two aspects of the CSN: A) dense instrumentation over the height of a building 

and B) dense instrumentation over a geographic region. 

 

As a part of the CSN project a number of high-rise buildings have dense instrumentation along the 

height of the building, with one or more deployed triaxial stations per floor. Apart from the CSN 

deployments, instrumentation along the height of the building is generally increasing with more 

cities issuing structural monitoring regulations with a minimum number of sensors assigned for 

mid- and high-rise building, for example, for Los Angeles as described in the Information Bulletin 

P/BC 2017-117 (LADBS, 2017). Such instrumentation is vital for high resolution structural health 

monitoring. The ability to monitor the health of a structure, identify damage and prognose its safety 

has been receiving continuously increasing attention in the civil, mechanical, and aerospace 

communities. Damage is defined as changes to the material and/or geometric properties of a 

system, including changes to the boundary conditions and system connectivity, which adversely 

affect the system’s performance. The goals of damage identification are the detection, localization, 

and quantification of damage following a potentially damaging event. The first part of this 

dissertation is concerned with the development and implementation of damage identification 

methodologies in civil infrastructure. 

 

The recent CSN deployments (Clayton, et al., 2019) have led to unprecedented station numbers 

and density in urban Los Angeles. The CSN network spans an approximately 30 km by 30 km area 

with an average station spacing of about 0.5 km. For specific host locations such as the Jet 

Propulsion Laboratory (JPL) campus, the station density is even higher than that, with the average 

station spacing at JPL stations being about 50m. This spatial density is valuable for comprehending 

the ground motion response in urban Los Angeles and for examining the accuracy of model 

predicted ground motion intensity measures. The recent July 2019 Ridgecrest earthquake 

sequence, well-recorded by numerous Southern California seismic arrays and CSN, offered a 

unique opportunity for such a study. As a result the second part of the dissertation is focused on 

studying the recorded ground motion response that occurred in urban Los Angeles during the two 

largest events (M7.1 and M6.4) of the sequence, its correlation with site parameters, and the 

performance of model ground motion intensity measure predictions.  



 

 

3 

 

 

1.2 Structural Damage Identification Methodologies  

The field of structural damage identification has been a subject of continuous research over the 

past few decades. As a result, there exists a vast amount of alternative damage identification 

methodologies. Here we will focus on vibration-based damage identification techniques for which 

the fundamental idea is to get damage information about the structure from its dynamic response 

to either natural (seismic, wind, ambient) or artificial (driven by mechanical exciters attached on 

the structure) loads (Rytter, 1993). The methods can be classified into model-based, which make 

use of models to simulate the structure behavior, and non-model-based, which are based on 

changes in the measured data.  

 

Additionally, the model-based approaches can also be classified with respect to the type of model 

used into physics-based model approaches and non-physics-based model approaches. In particular, 

physics-based model techniques utilize the laws of physics to build the governing equations of 

motion that describe the behavior of the structure. For most practical situations physics-based 

models are linear or non-linear finite element models. This dissertation focuses on vibration-based 

damage identification techniques that make use of parametric finite element models. In these 

techniques, parameterized models are used in order to simulate the behavior of the real system and 

damage is identified as a change in the model parameters. In order to be able to reflect damage, 

the parameters of the finite element model are usually associated with local stiffness or geometrical 

properties of the structure. Thus, the damage identification problem is effectively the inverse 

problem of estimating the model parameters using the data, also referred to as model calibration 

or model updating (Beck, 1979; Mottershead & Friswell, 1993; Friswell & Mottershead, 1995). 

The nominal model is calibrated using vibration measurements from the initial (undamaged) state 

of the structure and the values of the parameters are monitored by processing vibration 

measurements from a permanently installed sensor network, before, during, or after a severe 

loading event such as an earthquake. Changes in the parameters of the finite element model from 

their nominal values are used in order to capture the existence of damage, its location, and severity. 
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Once these changes are identified, the updated finite element model can be used to reconstruct the 

response and update the safety of the structure based on its new condition.  

 

A large number of studies have assumed that the structure behaves linearly for the vibration levels 

examined and thus use the modal properties (usually modal frequencies and modeshapes at the 

measured degrees of freedom) to update a linear finite element model of the structure. This is 

actually the second stage of a two-stage model updating approach, in which the first stage applies 

modal identification techniques to estimate the modal properties (modal frequencies and damping 

ratios, modeshapes at measured degrees of freedom, and modal participation factors) of the 

structure. One focus of this thesis is to perform the parameter estimation of a finite element model 

and the damping ratios in a single stage using the response time histories (e.g., acceleration, 

velocity, or displacement) and avoiding the intermediate estimation of the modal properties.  

 

The literature of vibration-based damage identification is vast and there are a number of extensive 

literature reviews. Some exemplary reviews include those by Doebling, et al. (1996), categorizing 

the different methods based on the analysis technique and application, as well as its follow-up 

update by Sohn et al. (2003). Carden & Fanning (2004) provide state-of-the-art literature reviews. 

Fan & Qiao (2011) provide reviews and comparisons for the different methods and categories. An 

et al. (2019) summarizes progress made in the last decade being more targeted for bridge structure 

applications. 

 

Despite the long development of damage identification methodologies, damage identification of 

full-scale civil infrastructure is still at a development phase, with many of the techniques being 

challenging to implement effectively in practice. The major limiting factor is the presence of model 

errors, i.e. the chosen class of models is unable to reproduce the exact behavior of the structure. 

Causes of model errors can be the incomplete or insufficient knowledge of the structure, (e.g., 

material properties, building practices, material deterioration, undocumented changes); modeling 

simplifications, assumptions and approximations (e.g., use of rigid diaphragms, point masses, 

beam theories, simplified material laws); and incomplete knowledge or understanding of systems 

and environmental variabilities (e.g., changes in structural properties due to thermal variations or 



 

 

5 

moisture, environmental noise). The model uncertainties are further magnified by measurement 

errors, i.e. errors associated with the data measurements (e.g., sensor noise, data processing errors). 

An additional challenge is the effective selection of the parameters to be included for updating. 

The choice of parameters is often a difficult task since damage locations are not known a-priori. 

Including a smaller number of parameters can lead to model error since the model is not flexible 

enough to track the damaged system’s behavior, while on the other hand high-dimensional model 

parameter spaces may add difficulty in the inversion. 

 

The presence of the model and measurement errors, in combination with the high-dimensional 

model parameter spaces, limited number of sensors available, and sub-optimal sensor placement, 

lead to the measurement data often being insufficient and can cause the damage identification 

inverse problems to be ill-conditioned and/or non-unique (Beck & Katafygiotis, 1998; Katafygiotis 

& Beck, 1998). This has motivated many researchers to tackle the problem of damage 

identification from a probabilistic perspective (Beck, 1989; Beck & Katafygiotis, 1998). The 

different approaches can be divided into those based on modal properties and those based on time 

histories. The methods based on modal properties can be implemented for linear models only, and 

some example papers include the ones by Vanik, et al. (2000) and Kuok & Yuen (2012). On the 

other hand, the methods based on time histories can be implemented both for linear and nonlinear 

model, and some example papers include Beck (Beck, 2010), Green, et al. (2015), and Ebrahimian, 

et al. (2017). A book discussing the Bayesian inference methods in structural dynamics is offered 

by Yuen (2010). Huang at al., (2019b) offers a state-of-the-art review of different Bayesian 

methodologies. 

 

The task of model updating involves two levels of inference: model fitting and model comparison 

(MacKay, 1992). Under the Bayesian view (Jeffreys, 1939; Cox, 1946; Jaynes, 2003) probability 

represents a degree of plausibility of an uncertain proposition taking into account the given 

information. Thus, for the first level of inference, rather than looking for the optimal parameter 

vector, the predictive posterior distribution of the parameter vector can be used in order to quantify 

the degree of plausibility of each model within a proposed set of models. In the second level of 

inference different model classes can be compared and ranked in light of the data. This Bayesian 
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model comparison embodies Occam's razor, penalizing complex models (Gull, 1988; Jefferys & 

Berger, 1992; MacKay, 1996; Beck & Yuen, 2004).  

 

The issues of ill-posedness and ill-conditioning can be further addressed by accounting for some 

prior information available for the problem. In the deterministic approach this prior information 

can be applied in the form of a regularization (Hansen, 1998; Neumaier, 1998; Titurus & Friswell, 

2008), while in the Bayesian approach it is accounted in the selection of the prior distribution. For 

the problem of structural damage identification, damage in steel moment frame buildings, that is 

not severe enough to bring the building in a collapse condition, is expected to occur at a limited 

number of locations. For such cases, the damage possesses sparsity when compared with the 

numerous elements of the entire structure. This concept of sparsity is prior information that is 

commonly used in order to tackle the problem. 

 

Sparse Bayesian learning (SBL) is a Bayesian probabilistic sparse recovery technique that is 

gaining increasing attention over the past few years. SBL was introduced by Tipping (Tipping, 

2001) for obtaining sparse solutions to regression and classification problems (Faul & Tipping, 

2002; Bishop, 2006). SBL promotes sparsity in the solution through the use of the automatic 

relevance determination (ARD) prior (MacKay, 1996). The ARD prior embodies the concept of 

relevance, practically “switching-off” of parameters deemed to be irrelevant resulting in simpler 

models (sparse solutions). SBL has been found to provide robust solutions for structural damage 

identification problems, with some example studies being the series of papers introducing and 

improving the SBL theory for structural identification from Huang, Beck and Li (Huang & Beck, 

2015; Huang, et al., 2017a; Huang, et al., 2017b; Huang & Beck, 2018); the multitask SBL 

methodology from Huang, et al. (Huang, et al., 2019a); the SBL methodology developed making 

use of the Expectation–Maximization Technique by Hou et al. (Hou, et al., 2019); as well as the 

recent application of the method for identification under varying temperature conditions (Hou, et 

al., 2020). The aforementioned SBL methods are developed for linear models of systems using 

experimentally identified modal properties. Another focus of this thesis is to extend the SBL 

method to handle nonlinear models and more general parameterizations using directly the recorder 

input-output acceleration time histories. 
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1.3 Ground Motion Response Studies in Urban Los Angeles 

The existence of interesting geological features such as sedimentary basins and faults, the strong 

presence of the oil/gas structures and other critical infrastructure (e.g., ports and airports), and the 

high population in combination with the observed seismic activity have made the area of urban 

Los Angeles the focus of numerous ground motion response studies. These ground motion 

response studies can be divided into two categories: those studying recorded data and using it in 

order to calculate response spectral quantities and other intensity measures, and those estimating 

the intensity measures through model predictions involving full waveform simulation or ground 

motion prediction equations (GMPEs). 

 

Some example studies based on recorded ground motions are the following. Campbell (1976) 

using damage records from the 1933 Long Beach Earthquake exhibited how damage to Type III 

buildings (predominantly masonry buildings less than five stories) was greater in recent alluvium 

cites than older alluvium cites. Rogers et al. (1979) using ground motion records from nuclear 

events at the Nevada Test Site (NTS) as well as from the 1971 San Fernando earthquake found 

spectral amplification factors as high as 11 in Long Beach stations in the period band from 0.2 to 

6 s. Rogers et al. (1979; 1984; 1985) compared the mean spectral levels of response over different 

period bands with geologic factors. The depth to basement rock and sediment thickness were found 

to be controlling factors for periods longer than 0.5 s. Liu and Heaton (1984) studying records 

from the 1971 San Fernando earthquake demonstrated the striking differences in amplitudes and 

duration between stations located in hard-rock sites versus those located in the sedimentary basins. 

In addition to that, they showed how the structure interaction on the waveforms is minimal. Saikia 

et al. (1994) studying records from several NTS explosions among other conclusions also found 

that the long period ground motions and the duration of significant shaking were amplified in the 

Los Angeles basin relative to sites outside the basin. Gao, et al. (1996) studied ground motion 

amplifications in the Santa Monica area during the 1994 Northridge earthquake. Hartzell et al. 

(1996; 1998) using ground motion records from the 1971 San Fernando, 1987 Whittier Narrows, 

1991 Sierra Madre, and the 1994 Northridge mainshocks and Northridge aftershocks calculated 
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the site response over different period bands and presented site spectral amplification maps for the 

Los Angeles area. Harmsen (1997) presented analogous maps and discussed the correlation of the 

above records with top 30m average shear-wave velocity (VS30) and basin depth. Hatayama and 

Kalkan (2011), using recordings from the 2010 El Mayor-Cucapah earthquake also presented maps 

of the spectral amplification factors for the Los Angeles region, for different periods. The largest 

amplification factor was reported to be 10 at a period of 6 s, in the Western part of the Los Angeles 

basin. Furthermore, they discuss the importance of considering the detailed velocity profile of a 

site, rather than just the depth to the basin basement or the thickness of sediment.  

 

In addition to using measured data, other studies attempt to simulate the ground motions or provide 

intensity measure estimates through model predictions. Some examples include calculations of 

finite-difference seismograms for the 1971 San Fernando earthquake from Vidale & Helmberger 

(1988) and the use of 2D finite-difference ground-motion simulations for the 1994 Northridge 

earthquake from Graves, et al. (1998). In later years 3D numerical simulations saw increasing use. 

Some examples include studies of the 1994 Northridge earthquake (Olsen, et al., 2003), the 

Landers earthquake (Wald & Graves, 1998), the 2001 Hollywood and the 2002 Yorba Linda 

earthquakes (Komatitsch, et al., 2004), or scenario earthquakes (Olsen, et al., 1995). State-of-the-

art simulations model now wave propagation using realistic rupture, attenuation, and 3D material 

models. Some examples of recent studies include work on source complexity (Shi & Day, 2013; 

Graves & Pitarka, 2016; Rodgers, et al., 2018) and fault zone plasticity (Roten, et al., 2017; 

Wollherr, et al., 2018), as well as work on attenuation models (Withers, et al., 2015; 2019). The 

most commonly used regional seismic velocity models for this purpose are the two Southern 

California Earthquake Center (SCEC) Community Velocity Models (CVMs): CVM-S (Magistrale, 

et al., 2000; Kohler, et al., 2003; Lee, et al., 2014) and CVM-H (Süss & Shaw, 2003; Shaw, et al., 

2015). The differences in the two CVMs lead to different simulation results and performance (Lee, 

et al., 2014; Taborda & Bielak, 2013; 2014; Taborda, et al., 2016).  

 

GMPEs are empirical equations frequently used in seismic hazard applications to provide 

estimates of the response spectral acceleration, peak ground acceleration and peak ground velocity 

as a function of predictor variables such as earthquake magnitude, site-to-source distance, and site 
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parameters (Petersen, et al., 2008). The most frequently used GMPEs, in the Western U.S., are the 

five that were developed as part of the Next Generation Attenuation-West2 (NGA-West2) project 

(Bozorgnia, et al., 2014). Similar to the CVMs, the different model derivations result in broad 

differences in the GMPE predictions (Gregor, et al., 2014).  

 

The last focus of this thesis is to explore the seismic network recordings from two largest events 

of the 2019 Ridgecrest earthquake sequence in order to investigate the response characteristics in 

urban Los Angeles, the correlation of the response spectral acceleration with site parameters and 

the capabilities of 3D simulations and GMPEs in making reliable spectral acceleration predictions.  

 

 

1.4 Summary of this Thesis 

As discussed above, the thesis is organized in two main parts. The first (Chapters 2 and 3) is 

concerned with the development and implementation of damage identification methodologies, and 

the second (Chapter 4) is concerned with a study of the recorded and model predicted ground 

motions in urban Los Angeles for the July 2019 Ridgecrest earthquake sequence. The contents of 

the remaining chapters (Chapters 2-5) of this dissertation are as follows. 

 

In Chapter 2 we apply a deterministic structural identification approach, and we explore the 

possibility of tracing possible nonlinear behavior by updating the stiffness and damping ratios of 

an equivalent linear system model in short time segments of the earthquake-induced excitation and 

response time histories. In order to achieve this, we combine a linear finite element model updating 

framework with a moving time window approach. For each time window, the estimation of the 

model parameters is accomplished in a single stage by minimizing a measure of fit between the 

measured and model-predicted response time histories. Predictions of the response are obtained 

using modal analysis for solving the system equations of motion. Details of the implementation of 

the finite element model updating methodology are presented. We explore the effectiveness of the 

methodology for two example steel moment frame applications, a single-story and a six-story 

building. In both models the materials follow a nonlinear softening behavior. For the single story 

building the methodology is shown to be very effective in tracing the nonlinearities using an 
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equivalent linear finite element model. The six-story building is designed to reveal also the 

limitations of the methodology, mainly arising from the different types of model errors manifested 

in the formulation. These sources of model errors include the discrepancy between the model used 

to generate the simulated data and the model used for parameter estimation, the stiffness 

parameterization which constrains the flexibility of the model to fit the simulated data, and the 

number of contributing modes. In particular, the number of contributing modes is kept fixed and 

reasonably low over the different time segments in order to avoid ill-conditioning in time segments 

that do not contain sufficient information to identify higher-order modes. This modal truncation 

introduces model error in time segments where the non-considered modes are contributing. 

 

In Chapter 3 we adopt and further extend the SBL methodology for structural damage 

identification in order to handle model nonlinearities, by formulating the problem fully in the time 

domain using response time history measurements. The available SBL techniques for structural 

damage identification, discussed in Section 1.2, rely on processing measurements related to modal 

properties and are thus limited to linear models. The possibility of using nonlinear models allows 

for higher fidelity finite element models as well as for more accurate representation of the damage 

in the structure, ultimately reducing model error. We develop a two-step optimization algorithm 

in which the most probable values of the structural model parameters and the hyper-parameters 

(related to prediction error and automatic relevance determination prior) are obtained using a two-

step iterative approach. It is shown for the first time that the two-step iterative algorithm can be 

replaced by an equivalent single-objective minimization problem that results in the most probable 

structural model parameter values. The effectiveness of the methodology is explored for the 

example problem of identifying damage in the form of weld fractures in a 15-story moment 

resisting steel frame building, using a nonlinear finite element model and simulated acceleration 

data. Fiber elements and a bilinear material model are used in order to account for the change of 

local stiffness when cracks at the welds are subjected to tension and the model parameters 

characterize the loss of stiffness as the crack opens under tension. The damage identification results 

demonstrate the effectiveness and robustness of the proposed methodology in identifying the 

existence, location, and severity of damage for a variety of different damage scenarios and degrees 

of model and measurement errors. 
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In Chapter 4 we study the ground motion response in urban LA during two largest events (M7.1 

and M6.4) of the July 2019 Ridgecrest earthquake sequence, using recordings from multiple 

regional seismic networks as well as from the much denser CSN. We calculate and present maps 

of the response spectral (pseudo) acceleration for a selection of periods of engineering 

significance. Significant spectral acceleration amplification is present and reproducible between 

the two events. For the longer periods coherent patterns are visible throughout the whole Los 

Angeles Basin, while for the shorter periods the high network density was able to capture a smaller 

scale coherence. Furthermore, we examine possible correlations of the computed spectral 

accelerations with two site parameters: basement depth and Vs30. Following that, we test the 

performance of two state-of-the-art methods for estimating ground motions for the largest event 

(M7.1) of the Ridgecrest earthquake sequence, namely 3D finite difference simulations and ground 

motion prediction equations. For the simulations, we were interested in the performance of the two 

Southern California Earthquake Center 3D Community Velocity Models (CVM-S and CVM-H), 

while for the Ground Motion Prediction Equations, we consider four of the 2014 Next Generation 

Attenuation-West2 Project equations. We present and discuss maps of the predicted spectral 

accelerations, as well as comparisons with spectral accelerations calculated from the data in the 

form of tables and figures. 

 

Chapter 5 discusses conclusions and directions for future work. 
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C h a p t e r  2  

CHAPTER 2: 

UPDATING EQUIVALENT LINEAR MODELS USING RESPONSE 

TIME HISTORIES FOR TRACING NONLINEARITIES 

 

 

This chapter presents a methodology for estimating the condition of a steel moment resisting frame 

structure and tracing possible nonlinear behavior activated due to an earthquake excitation. Linear 

finite element model updating is used to track the possible nonlinear behavior of the structure, by 

using moving time windows and fitting an equivalent linear finite element model within each 

window. We update the model parameters of the equivalent linear finite element model so that the 

model predictions match the measured data obtained from the structure within each window. The 

model parameters correspond to the equivalent stiffness properties as well as to the damping ratios 

(percent of critical damping) of the contributing modes. The initial conditions for each time 

window are considered unknown and are added as extra parameters. It is expected that the 

softening behavior of the structure activated during the strong motion part of the earthquake 

excitation will result in a decrease of the equivalent linear stiffness. Moreover, the hysteretic loop, 

associated with energy dissipation, will introduce extra damping which will be manifested as an 

increase in the modal damping ratios of the equivalent linear finite element model.  

 

This study investigates the effectiveness of the equivalent linear finite element model to detect the 

nonlinearities activated in the structure during an earthquake excitation. The measurements consist 

of response time histories, usually accelerations obtained from sensor networks such as the 

Community Seismic Network (CSN) (Clayton, et al., 2011) on buildings. The matching between 

the recorded response time histories (here simulated response time histories are generated) and the 

response time histories predicted by an equivalent linear structural model are obtained by 

minimizing a misfit function that depends on the model parameters. Implementation details as well 

as possible ill-conditioning issues are discussed. 
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Section 2.1 presents the model updating framework, i.e.: the way the equations of motion of the 

finite element model are solved, the parameterization of the model, and the selected measure-of-

fit. Section 2.2 demonstrates four example applications used in order to test the effectiveness of 

the methodology. Two steel moment frame buildings are used: a single-story and a six-story 

structure. We discuss the way the data are simulated, the method implementation details, and the 

results for four example cases. Section 2.3 summarizes the conclusions. 

 

 

2.1 Model Updating Framework 

We consider response time history measurements recorded from a sensor network (such as CSN) 

that is employed in a structure. The structural type under consideration is a multi-story steel 

moment frame building. The measurements are collected during a seismic event and consist of 

earthquake excitations at the base of the building and response time histories at the levels of the 

different building floors. We assume that the seismic excitation at the base is such that the building 

model nonlinearities may be activated. Such nonlinearities are mainly associated to the stress-

strain hysteretic behavior manifested at the material level of the beam and column elements in the 

building. The objective is to fit an equivalent linear finite element model of the structure to the 

available measured data in order to trace possible nonlinear behavior and identify the level of the 

hysteretic nonlinearities activated during the earthquake excitation. A deterministic finite element 

model updating method based on input-output response time history measurements is used in this 

chapter. Since the level of nonlinearities activated during the duration of the excitation varies in 

time, we use a moving time window approach to associate the activated nonlinearities with the 

parameters of an equivalent finite element model of the structure for each time window. The 

variations of the model parameters with respect to time provide insight on the nonlinear behavior 

of the building during the duration of the earthquake excitation. This chapter investigates the 

performance of equivalent finite element models identified over each time window for tracing the 

softening nonlinearities (identify nonlinearities and strength of nonlinear activation) during an 

earthquake excitation.  
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To calculate the response time histories using the parameterized linear finite element model, one 

has to set up the equation of motions and the relation between the response and the stiffness, 

damping and mass properties. The following Sections 2.1.1 and 2.1.2 present the details of the 

equations of motion and the solution strategy which is carried out in the time domain using state 

space analysis. The state space system can be conveniently solved using Matlab in order to predict 

the responses of linear systems to the input (herein earthquake base) excitations. The equivalent 

linear finite element model is parameterized with parameters related to stiffness, damping and 

mass. Details are provided in Section 2.1.3. To estimate these parameters within a time window, 

one has to introduce a measure of fit between the measured response time histories and the 

response time histories predicted by the equivalent finite element model. The measure of fit 

depends on the stiffness properties, the modal damping ratios and the initial conditions of each 

mode contributing to the response. This is discussed in Section 2.1.4. The last Section 2.1.5 

provides implementation details for conveniently reformulating the measure of fit with respect to 

stiffness properties and modal damping ratios only.  

 

 

2.1.1 Linear Equations of Motion  

For a linear finite element model of a structure subject to earthquake ground motion, the equations 

of motion are given by the linear system of second order equations 

 𝑴�̈�(𝑡) + 𝑪�̇�(𝑡) + 𝑲𝒖(𝑡) = 𝒇𝑒𝑓𝑓(𝑡) (2.1) 

with initial conditions 𝒖(0) = 𝒖𝟎 and �̇�(0) = 𝒗𝟎, where 𝒖𝜖ℛ𝑛 is the displacement, �̇�𝜖ℛ𝑛 is the 

velocity, and �̈�𝜖ℛ𝑛 is the acceleration of the finite element model degrees of freedom (DOF), with 

𝑛 being the number of the system DOF (these are the DOF of the superstructure and do not include 

the support/base DOF). The matrices 𝑴𝜖ℛ𝑛×𝑛, 𝑪𝜖ℛ𝑛×𝑛, and 𝑲𝜖ℛ𝑛×𝑛 are the mass, damping, and 

stiffness matrices respectively. For earthquake excitations at the base of the structure and assuming 

identical motion for all support/base DOF in a horizontal direction, the vector of effective 

earthquake forces 𝒇𝑒𝑓𝑓(𝑡)𝜖ℛ𝑛 is equal to 

 𝒇𝑒𝑓𝑓(𝑡) = −𝑴𝑳�̈�(𝑡) (2.2) 
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where the influence or correspondence matrix 𝑳𝜖ℛ𝑛×𝑁𝑓 is a matrix usually of zeros and ones that 

associates the set of independent ground accelerations �̈�(𝑡)𝜖ℛ𝑁𝑓 to the DOF of the structure. This 

correspondence is usually restricted to the translational DOF since these are the only components 

recorded during earthquakes (Chopra, 2011). The independent ground accelerations in �̈�(𝑡) are 

usually the two horizontal acceleration components recoded by a base sensor. Note that in the case 

of identical motion for all support/base DOF in the horizontal directions, the translational 

components of the vector 𝒖 denote the displacements relative to the base motion (relative 

displacement). For cases of multiple support excitation, the vector of effective earthquake forces 

can have a more complicated form but for many practical applications it can be simplified in the 

form displayed in Eq. (2.2) (Chopra, 2011).  

 

Since the number of system DOF is usually very large, rather than directly solving the equations 

of motion, we use modal analysis. The modal frequencies 𝜔𝑟 and mass normalized modeshapes 

𝝋𝑟, with 𝑟 = 1, … , 𝑛, satisfying 𝝋𝑟
𝑇𝑴𝝋𝑟 = 1, are calculated by solving the eigenvalue problem 

 [𝑲 − 𝜔𝑟
2𝑴]𝝋𝑟 = 𝟎 . (2.3) 

We keep the lower 𝑚 contributing modes. Usually 𝑚 ≪ 𝑛 which helps reduce the dimension of 

the system considerably. Thus, the response is obtained from the modal expansion  

 𝒖(𝑡) = ∑ 𝜉𝑟(𝑡)𝝋𝑟

𝑚

𝑟=1

= 𝜱𝝃(𝑡) (2.4) 

where 𝜱 = [𝝋1 𝝋2 … 𝝋𝑚]𝜖ℛ𝑛×𝑚 is the matrix of modeshapes, 𝜉𝑟(𝑡) with 𝑟 = 1, … , 𝑚 are the 

modal coordinates and 𝝃(𝑡) = [𝜉1(𝑡) 𝜉2(𝑡) … 𝜉𝑚(𝑡)]𝑇 is the modal vector. Assuming a classically 

damped system (Caughey & O’Kelly, 1965) one ends up with the modal vector 𝝃(𝑡) satisfying the 

system of uncoupled modal equations 

 �̈�(𝑡) + 𝜡�̇�(𝑡) + 𝜦𝝃(𝑡) = −𝜱𝛵𝑴𝑳�̈�(𝑡) (2.5) 

with initial conditions 

 𝝃(0) = 𝜱𝛵𝜧𝒖𝟎     and     �̇�(0) = 𝜱𝛵𝜧𝒗𝟎 (2.6) 

and 
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 𝜦 = [
𝜔1

2 0 0
0 ⋱ 0
0 0 𝜔𝑚

2
]     and    𝒁 = [

2𝜁1𝜔1 0 0
0 ⋱ 0
0 0 2𝜁𝑚𝜔𝑚

] (2.7) 

where 𝜔𝑟
2 are the modal frequencies and 𝜁𝑟 are the modal damping ratios (percent of critical 

damping). The equations are uncoupled and each modal coordinate 𝜉𝑟(𝑡) satisfies the modal 

equations 

 �̈�𝑟(𝑡) + 2𝜁𝑟𝜔𝑟�̇�𝑟(𝑡) + 𝜔𝑟
2𝜉𝑟(𝑡) = −𝝋𝑟

𝑇𝑴𝑳�̈�(𝑡),   𝑟 = 1, … , 𝑚 (2.8) 

with initial conditions 

 𝜉𝑟(0) = 𝝋𝑟
𝑇𝜧𝒖𝟎    and     �̇�𝑟(0) = 𝝋𝑟

𝑇𝜧𝑣𝟎 . (2.9) 

It should be pointed out that in order to simulate the response time history using modal analysis 

(using Eqs. (2.4) and (2.8) with initial conditions from Eq. (2.9)), one needs to know the stiffness 

and mass matrices of the structure, the modal damping ratios for the contributing modes, and the 

initial conditions 𝜉𝑟(0) and �̇�𝑟(0). In particular, using the stiffness and mass matrices, the 

eigenvalue problem (2.3) can be solved to obtained the modal frequencies and modeshape 

components required in the modal equations.  

 

 

2.1.2 State Space Formulation 

In order to solve the second-order system of differential equations (Eq. 2.5), we convert it to its 

state space form (Antsaklis & Michel, 2007; Friedland, 2012). Introducing the state space vector 

 𝒙(𝑡) = (
𝝃(𝑡)

�̇�(𝑡)
) (2.10) 

the 𝑚 second-order modal differential equations can be written in the form of a system of 2𝑚 first 

order differential equations  

 �̇�(𝑡) = 𝑨𝒙(𝑡) + 𝑩𝒑(𝑡) (2.11) 

where the matrices 𝑨𝜖ℛ2𝑚×2𝑚 and 𝑩𝜖ℛ2𝑚×𝑁𝑓 are 

 𝑨 = [
𝟎 𝑰

−𝜦 −𝒁
]    and    𝑩 = [

𝟎
𝜱𝜯𝑴𝑳

] (2.12) 
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and 𝒑(𝑡) = �̈�(𝑡)𝜖ℛ𝑁𝑓, with 𝑰𝜖ℛ𝑚×𝑚 being the identity matrix. The output quantities of interest 

(QOI) 𝒚(𝑡)𝜖ℛ𝑛𝑦, which may consist of displacements, velocities, acceleration, strains, etc., 

depend on the state vector 𝒙 and the forcing vector 𝒑. They can be written in the general form 

 𝒚(𝑡) = 𝑫𝒙(𝑡) + 𝑬𝒑(𝑡) . (2.13) 

As one example to illustrate the selection of 𝑫 and 𝑬, consider the case where the output QOI 

consists of components of the acceleration �̈�(𝑡) at some “measured” DOF. For this case one has 

 𝒚(𝑡) = 𝑯�̈�(𝑡) (2.14) 

where 𝒚(𝑡)𝜖ℛ𝑛𝑜, with 𝑛𝑜 being the number of measured/observed degrees of freedom, and 

𝑯𝜖ℛ𝑛𝑜×𝑛 is a matrix of zeros and ones that associates the 𝑛 DOF of the model to the 𝑛𝑜 DOF that 

are measured. Then, using Eqs. (2.4) and (2.5) and solving with respect to �̈�(𝑡), one has 

 

𝒚(𝑡) = 𝑯�̈�(𝑡) = 𝑯𝜱�̈�(𝑡) = 𝑯𝜱 (−𝜡�̇�(𝑡) − 𝜦𝝃(𝑡) + 𝜱𝛵𝑴𝑳�̈�(𝑡)) 

= [−𝑯𝜱𝜦        − 𝑯𝜱𝜡 ] (
𝝃(𝑡)

�̇�(𝑡)
) + 𝑯𝜱 𝜱𝛵𝑴𝑳�̈�(𝑡) . 

(2.15) 

Thus Eq. (2.15) can be written in the form of Eq. (2.13) with 

 𝑫 = [−𝑯𝜱𝜦 −𝑯𝜱𝜡]    and    𝑬 = 𝑯𝜱𝜱𝛵𝑴𝑳 . (2.16) 

 

As a second example, consider the case where the output QOI consists of the velocity �̇�(𝑡) at some 

“measured” DOF. For this case one has 

 𝒚(𝑡) = 𝑯�̇�(𝑡) (2.17) 

where again 𝒚(𝑡)𝜖ℛ𝑛𝑜, with 𝑛𝑜 being the number of measured/observed degrees of freedom, and 

𝑯𝜖ℛ𝑛𝑜×𝑛 is a matrix of zeros and ones that associates the 𝑛 DOF of the model to the 𝑛𝑜 DOF that 

are measured. Then using Eq. (2.4) one has 

 𝒚(𝑡) = 𝑯�̇�(𝑡) = 𝑯𝜱�̇�(𝑡) . (2.18) 

Thus Eq. (2.15) can be written in the form of Eq. (2.13) with 

 𝑫 = [𝟎 𝑯𝜱]    and    𝑬 = 𝟎 . (2.19) 
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The numerical solution of the equations of motion in modal space is carried out using Matlab 

software tools based on the state space analysis. One can use one of the many available methods 

to solve the linear first-order system. Herein, the system is discretized assuming zero-order hold 

for the input (Antsaklis & Michel, 2007). 

 

Next we derive analytical formulas for the response using state space formulation. The analysis 

that follows is required in simplifying the measure of fit introduced in Section 2.5 in terms of a 

reduced number of parameters. The solution (Friedland, 2012) of Eq. (2.11) is  

 𝒙(𝑡) = 𝑒𝑨𝑡𝒙(0) + ∫ 𝑒𝑨(𝑡−𝜏)𝑩𝒑(𝜏)𝑑𝜏
𝑡

0

 (2.20) 

and the solution of Eq. (2.13) is given by 

 𝒚(𝑡) = 𝑫𝑒𝑨𝑡𝒙(0) + 𝑫 ∫ 𝑒𝑨(𝑡−𝜏)𝑩𝒑(𝜏)𝑑𝜏
𝑡

0

+ 𝑬𝒑(𝑡) . (2.21) 

 

Introducing 𝜳(𝑡) = 𝑫𝑒𝑨𝑡, we have 

 𝒚(𝑡) = 𝜳(𝑡)𝒙(0) + 𝒚0(𝑡) (2.22) 

where  

 𝒚0(𝑡) = 𝑫 ∫ 𝑒𝑨(𝑡−𝜏)𝑩𝒑(𝜏)𝑑𝜏
𝑡

0

+ 𝑬𝒑(𝑡) . (2.23) 

The total solution is the superposition of two terms. The second term corresponds to the solution 

𝒚0(𝑡), for zero initial conditions 𝒙(0) and non-zero force 𝒑(𝑡), while the first term corresponds to 

the solution 𝜳(𝑡)𝒙(0) for non-zero initial conditions 𝒙(0) and zero force 𝒑(𝑡). We can also write 

the solution as 

 𝒚(𝑡) = [𝝍1(𝑡), … , 𝝍2𝑚(𝑡)]𝒙(0) + 𝒚0(𝑡) (2.24) 

where 𝝍𝑖(𝑡) are the columns of the matrix 𝜳(𝑡) = [𝝍1(𝑡), … , 𝝍2𝑚(𝑡)]. It should be noted that 

the columns 𝝍𝑖(𝑡) can be obtained by solving the linear system with zero force 𝒑(𝑡) = 𝟎 and 

initial condition 𝒙(0) = 𝜹𝑖, where 𝜹𝑖 is a vector with one at the 𝑖-th element and zero at all other 
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elements. Using the modal equations (2.8) with initial conditions (2.9), one can develop analytical 

expressions for the column vectors 𝝍𝑟(𝑡) or 𝝍𝑟+𝑚(𝑡) with respect to the modal frequencies 𝜔𝑟, 

modal damping ratios 𝜁𝑟  and the initial conditions (𝜉𝑟(0), �̇�𝑟(0)) = (1,0) or (𝜉𝑟(0), �̇�𝑟(0)) =

(0,1).  

 

 

2.1.3 Parameterization 

In order to achieve our goal of tracing nonlinear behavior by updating a linear model with a moving 

time window, several types of parameters can be introduced in our modeling. In this study the 

model parameters include stiffness-related parameters and damping-related parameters. The 

stiffness and damping are expected to vary as the model goes through nonlinear behavior. The 

nonlinearities occurring within a time window, will be manifested as changes in the model 

parameter values, with the amount of change in the parameters reflecting the size of nonlinearity 

activated during the earthquake. Furthermore, due to the use of a moving time window, the initial 

conditions for each time window are treated as extra parameters to be estimated in the model 

updating formulation. 

 

More specifically, the model updating process involves a set of parameters 𝜽𝜖ℛ𝑁𝜃 of the finite 

element model, also referred to as model parameters. We consider two types of model parameters: 

stiffness related parameters (𝜽𝐾) and damping related parameters (𝜽𝜁). Thus it holds that 𝜽 =

[𝜽𝐾
𝑇 , 𝜽𝜁

𝑇]
𝑇
. The finite elements of the model are grouped into substructures. Let 𝑁𝑆 be the number 

of substructures. A convenient parameterization for the stiffness and mass matrices is (Simoen, et 

al., 2015) 

 𝑲(𝜽) = 𝜥𝟎 + ∑ 𝑲𝒋𝜃𝐾,𝑗

𝑁𝑆

𝑗=1

 (2.25) 

where each 𝑲𝒋 are the nominal contributions to the global stiffness matrix from substructure 𝑗. 

These nominal substructure contributions can be calculated from a finite element model of the 

undamaged structure. The nominal stiffness matrix is 𝑲(𝜽𝟎) where 𝜽𝟎 = [1,1, … ,1]𝑇. Here, the 
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number of stiffness related parameters equals the number of substructures, i.e. 𝜽𝐾𝜖ℛ𝑁𝑆. The 

substructures are selected in order to achieve the desired parameterization with every substructure 

𝑗 being assigned a stiffness related (𝜃𝐾,𝑗) parameter. 

 

The mass matrix (𝑴) could also be parameterized using mass related parameters and a 

substructuring approach similar to what is done for the stiffness matrix (𝑲) in Eq. (2.25) can be 

derived. However, for our problem of tracing nonlinear behavior we will assume that the mass 

matrix is known and remains constant. Parameterizing the mass matrix can be of interest for 

damage identification (in cases where the change of mass is non-negligible) and for fitting the 

nominal finite element model (e.g., when the mass calculated from structural drawings is not 

sufficient or precise). 

 

This parameterization is by no means exhaustive but is very convenient since the interfacing of 

the finite element software (e.g., SAP2000, or OpenSEES) with the optimization process (e.g., 

using Matlab optimizers) can be completely avoided. Before the optimization, the model can be 

efficiently parameterized in the finite element software and the information for the stiffness and 

mass properties of the different substructures are passed (offline) to the optimization process. 

 

The other type of model parameters are damping related parameters, and more specifically the 

percent critical damping for each contributing mode. Assuming classically damped modes, the 

number of such parameters is equal to the number of contributing modes. For Rayleigh damping, 

the number of parameters is 2. However, Rayleigh damping is not used in this study. Assigning an 

independent modal damping ratio for each mode gives more freedom to fit the data. This may 

result in ill-conditioning if one or more of the considered modes do not contribute to the response. 

Nonlinearities due to the plastic (hysteresis loop) energy dissipation within a time window are 

expected to be manifested as a decrease in the equivalent stiffness of the linear finite element 

model and as an increase in the equivalent percent critical damping of the viscous damping model.  
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Finally, the third type of parameters needed, since we are using a moving window approach, are 

the initial conditions. When using a moving time window approach at the start of each window, 

the initial conditions are non-zero and unknown, so they are left to be selected by the model 

updating methodology in order to provide the best fit to the measured data within the window. Let 

𝜸𝜖ℛ𝑁𝛾 denote the unknown initial conditions. The initial conditions augment the unknown 

parameter set 𝜽, to the new parameter set (𝜽, 𝜸). Since we perform modal analysis to estimate the 

response, the initial conditions are required at the modal level, and the number of unknown initial 

conditions will be equal to the dimension of the state vector, i.e. 𝑁𝛾 = 2𝑚. Thus the total number 

of unknown parameters to be estimated is 𝑁𝜃 + 2𝑚 (where 𝑚 is the number of considered modes). 

 

The procedure for calculating the response given the values of the model parameters is as follows. 

Given the values of the stiffness related parameters 𝜽𝐾, one can conveniently obtain the stiffness 

matrix of the model using the expansion presented in Eq. (2.25). The eigenvalue problem in Eq. 

(2.3) is then solved to estimate the modal frequencies 𝜔𝑟 and modeshapes 𝝋𝑟. Using also the 

modal damping ratio parameters 𝜁𝑟 in 𝜽𝜁 and the initial conditions in 𝜸, the predictions of the 

response time histories are obtained by solving the modal equations (2.8) and applying the modal 

expansion Eq. (2.4). 

 

 

Depending on the number of considered modes 𝑚, including the unknown initial conditions in the 

parameter space can increase drastically the number of unknown parameters as it can often be that 

2𝑚 ≫ 𝑁𝜃. However, as we will see in Section 2.1.4, the measure-of-fit that we minimize depends 

quadratically on the initial conditions 𝜸. This allows us to simplify considerably the formulation 

and express 𝜸 analytically with respect to 𝜽, thus reducing to 𝑁𝜃 the number of the unknown 

parameters involved in the measure-of-fit. 

 

 

2.1.4 Measure-of-fit 

The selected measure-of-fit function (also referred to as misfit function) is based on response time 

histories. Let �̂�(𝑘) ≡ �̂�(𝑡𝑘) denote the measured response time histories (e.g., accelerations or 
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velocities) available from sensors placed in the structure, where 𝑡𝑘 = 𝑘𝛥𝑡, 𝑘 = 1, … , 𝑁𝑑, 𝛥𝑡 is the 

sampling/discretization time and 𝑁𝑑 is the number of time data points. Let also 𝒚(𝑘; 𝜽, 𝜸) ≡

𝒚(𝑡𝑘; 𝜽, 𝜸) denote the corresponding predictions from the finite element model of the structure. 

These predictions depend on the model parameters 𝜽 and the initial conditions 𝜸 which are 

assumed unknown and have to be estimated simultaneously with the model parameters 𝜽. 

 

The measure-of-fit represents the misfit between these measured response time histories 

�̂�(𝑘)𝜖ℛ𝑛𝑜 and the finite element model predicted response time histories 𝒚(𝑘; 𝜽, 𝜸)𝜖ℛ𝑛𝑜, where 

𝑛𝑜 is the number of measured/observed degrees of freedom. The measure-of-fit (the objective 

function) to be minimized for estimating the model parameters and the initial conditions is defined 

as  

 𝐽(𝜽, 𝜸) =
𝐽(𝜽, 𝜸)

∑ ‖�̂�(𝑘)‖2𝑁𝑑
𝑘=1

 (2.26) 

with 𝐽(𝜽, 𝜸) being the least squares error between the model predicted and the data response time 

histories 

 𝐽(𝜽, 𝜸) = ∑‖𝒚(𝑘; 𝜽, 𝜸) − �̂�(𝑘)‖2

𝑁𝑑

𝑘=1

 (2.27) 

and the normalizing constant ∑ ‖�̂�(𝑘)‖2𝑁𝑑
𝑘=1 , the the sum of squares of the response time histories, 

is used to provide a normalized measure of the misfit. Thus the objective function represents a 

normalized least squares error between the model-predicted and the measured response time 

histories. The optimal values of the parameters (𝜽, 𝜸) are obtained by minimizing the measure of 

fit with respect to 𝜽 and 𝜸. 

 

The responses 𝒚(𝑡; 𝜽, 𝜸) denote the solution 𝒚(𝑡) presented in Section 2.3 that depends on the 

values of the parameters (𝜽, 𝜸). From Eq. (2.24) the total solution is obtained as 

 𝒚(𝑡; 𝜽, 𝜸) = [𝝍1(𝑡; 𝜽), … , 𝝍2𝑚(𝑡; 𝜽)]𝜸 + 𝒚0(𝑡; 𝜽) . (2.28) 

From the above equation one can see that the response 𝒚(𝑡) depends linearly on the parameters 𝜸 

and nonlinearly on the parameters 𝜽. Thus the objective function in (2.27) is quadratic in the 
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parameters 𝜸. In the next section (Section 2.1.5) this particular structure of the response and the 

objective function will be used to simplify the parameter estimation problem using a measure-of-

fit that is based on response time histories. This simplification amounts to computing 𝜸 with 

respect to 𝜽 and thus reducing the parameters to be estimated to those involved in 𝜽 in the 

formulation for the measure of fit. 

 

 

2.1.5 Reformulation of measure-of-fit with respect to 𝜽 

Making use of Eq. (2.28), the least squares error 𝐽(𝜽, 𝜸) in Eq. (2.27) can be written as 

 𝐽(𝜽, 𝜸) = ∑‖[𝝍1(𝑘; 𝜽), … , 𝝍2𝑚(𝑘; 𝜽)]𝜸 + 𝒚0(𝑘; 𝜽) − �̂�(𝑘)‖2

𝑁𝑑

𝑘=1

 (2.29) 

which gives 

𝐽(𝜽, 𝜸) = ∑[𝛾1𝝍1(𝑘; 𝜽) + ⋯ + 𝛾2𝑚𝝍2𝑚(𝑘; 𝜽) + 𝒚0(𝑘; 𝜽) − �̂�(k)]𝑇

𝑁𝑑

𝑘=1

[𝛾1𝝍1(𝑘; 𝜽) + ⋯

+ 𝛾2𝑚𝝍2𝑚(𝑘; 𝜽) + 𝒚0(𝑘; 𝜽) − �̂�(𝑘)] . 

 

One can explore the fact that the objective function 𝐽(𝜽, 𝜸) is quadratic in 𝜸 in order to write an 

explicit relation between the optimal value �̂�(𝜽) conditioned on the value of 𝜽 and then write the 

least squares error function 𝐽(𝜽, �̂�(𝜽)) = �̃�(𝜽) and the measure-of-fit function 𝐽(𝜽, �̂�(𝜽)) =

𝒥(𝜽) with respect to the parameter set 𝜽 only. This reduces the number of parameters to be 

estimated, often accelerating the computation and also avoiding ill-conditioning of the parameter 

estimation problem arising from the large number of parameters involved. The relation �̂�(𝜽) is 

obtained by considering the condition at the minimum which is  

 
𝜕𝐽(𝜽, 𝜸)

𝜕𝛾𝑗
= 0,          𝑗 = 1, … ,2𝑚 (2.30) 
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and exploiting the quadratic relation between the objective function 𝐽(𝜽, 𝜸) and the parameters 𝜸 

to analytically solve for the optimal value �̂�(𝜽) given the value of 𝜽. Specifically, the derivative 

in the left-hand side of Eq. (2.30) is  

𝜕𝐽(𝜽, 𝜸)

𝜕𝛾𝑗
= ∑ 2[𝛾1𝝍1(𝑘; 𝜽) + ⋯ + 𝛾2𝑚𝝍2𝑚(𝑘; 𝜽) + 𝒚0(𝑘; 𝜽) − �̂�(𝑘)]𝑇

𝜕

𝜕𝛾𝑗

[𝛾1𝝍1(𝑘; 𝜽) + ⋯ + 𝛾2𝑚𝝍2𝑚(𝑘; 𝜽)

𝑁𝑑

𝑘=1

+ 𝒚0(𝑘; 𝜽) − �̂�(𝑘)] 

= ∑ 2[𝛾1𝝍1(𝑘; 𝜽) + ⋯ + 𝛾2𝑚𝝍2𝑚(𝑘; 𝜽) + 𝒚0(𝑘; 𝜽) − �̂�(𝑘)]𝑇𝝍𝑗(𝑘; 𝜽)

𝑁𝑑

𝑘=1

                                         

= ∑ 2[𝛾1𝝍1
𝑇(𝑘; 𝜽)𝝍𝑗(𝑘; 𝜽) + ⋯ + 𝛾2𝑚𝝍2𝑚

𝑇 (𝑘; 𝜽)𝝍𝑗(𝑘; 𝜽) + {�̂�(𝑘) − 𝒚0(𝑘; 𝜽)}𝑇𝝍𝑗(𝑘; 𝜽)]

𝑁𝑑

𝑘=1

     

(2.31) 

which when introduced in the stationarity conditions (Eqs. (2.30)) one derives 

 𝛾1 ∑[𝝍1
𝑇(𝑘; 𝜽)𝝍𝑗(𝑘; 𝜽)]

𝑁𝑑

𝑘=1

+ ⋯ + 𝛾2𝑚 ∑[𝝍2𝑚
𝑇 (𝑘; 𝜽)𝝍𝑗(𝑘; 𝜽)]

𝑁𝑑

𝑘=1

= ∑[{�̂�(𝑘) − 𝒚0(𝑘; 𝜽)}𝑇𝝍𝑗(𝑘; 𝜽)]

𝑁𝑑

𝑘=1

 (2.32) 

for 𝑗 = 1, … ,2𝑚. Introducing the quantities  

 𝛥𝑖𝑗 = ∑[𝝍𝑖
𝑇(𝑘; 𝜽)𝝍𝑗(𝑘; 𝜽)]

𝑁𝑑

𝑘=1

 (2.33) 

and 

 𝑑𝑗 = ∑[{�̂�(𝑘) − 𝒚0(𝑘; 𝜽)}𝑇𝝍𝑗(𝑘; 𝜽)]

𝑁𝑑

𝑘=1

 (2.34) 

and noting that 𝜟(𝜽)𝜖ℛ2𝑚×2𝑚 with elements 𝛥𝑖𝑗 is a matrix of dimension 2𝑚 × 2𝑚 and 

𝒅(𝜽)𝜖ℛ2𝑚 with elements 𝑑𝑗 is a vector of dimension 2𝑚, a system of 2𝑚 equations arises from 

Eq. (2.30) which can be written in matrix form as 

 𝜟(𝜽)𝜸 = 𝒅(𝜽) (2.35) 

The solution of (2.35) is �̂� = �̂�(𝜽) given by  

 �̂�(𝜽) = [𝜟(𝜽)]−𝟏𝒅(𝜽) . (2.36) 
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Introducing the value of �̂�(𝜽) in the least squares error equation (2.27), one derives that  

 

�̃�(𝜽) = 𝐽(𝜽, �̂�(𝜽)) 

          = ∑‖𝜳(𝑘; 𝜽)�̂�(𝜽) + 𝒚0(𝑘; 𝜽) − �̂�(𝑘)‖2

𝑁𝑑

𝑘=1

 
(2.37) 

where �̂�(𝜽) is given by (2.36). Substituting (2.36) into (2.37) gives 

 �̃�(𝜽) = ∑‖𝜳(𝑘; 𝜽)[𝜟(𝜽)]−𝟏𝒅(𝜽) + 𝒚0(𝑘; 𝜽) − �̂�(𝑘)‖
2

𝑁𝑑

𝑘=1

 . (2.38) 

It should be noted that the first term in the right-hand side (RHS) of Eq. (2.38) takes into account 

that the initial conditions are unknown and non-zero. This first term in the RHS will disappear if 

the initial conditions are assumed to be zero.  

 

From (2.26) the measure-of-fit 𝒥(𝜽) = 𝐽(𝜽, �̂�(𝜽)) is a function of 𝜽 only  

 𝒥(𝜽) =
�̃�(𝜽)

∑ ‖�̂�(𝑘)‖2𝑁𝑑
𝑘=1

 (2.39) 

with �̃�(𝜽) given from Eq. (2.38). Thus the optimization problem is converted to minimizing 𝒥(𝜽) 

with respect to 𝜽. 

 

Finally, the Hessian matrix of the objective function 𝒥(𝜽) computed at the optimal value of the 

model parameters contains useful information about the accuracy of the estimates of the model 

parameters and the possible ill-conditioning of the estimation problem. Specifically, an eigenvalue 

of the Hessian matrix gives an estimate of the accuracy of the parameters along the direction in 

the parameter space defined by the corresponding eigenvector. Large eigenvalues of the Hessian 

correspond to strong curvatures of the objective function and relate to good localization or 

estimation of the parameter value, while small eigenvalues correspond to weak curvatures and 

relate to high uncertainty in the parameter value or low estimation accuracy. The condition number 

of the Hessian matrix, defined as the ratio of the maximum to the minimum eigenvalue, provides 

a quantitative measure of the ill-conditioning in the estimation of the model parameters. In this 
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study, in addition to the optimal values of the model parameters that minimize the measure of fit, 

the Hessian of the measure of fit at the optimal parameter values is computed numerically and an 

estimate of the condition number is reported.  

 

 

2.2 Example Applications 

We apply the presented methodology to four example cases in order to test the capabilities and 

effectiveness of the proposed structural identification framework in tracking the change in the 

model parameters as the system moves from linear to non-linear behavior. The four example cases 

involve two example steel moment frame buildings: a single-story and a six-story. In the absence 

of experimental data, we simulate data using a nonlinear model of the structures, while a linear 

model is used for the updating. For simulating the data, we consider two excitation types: an 

impulse and an earthquake excitation. For the measure-of-fit, we consider two different QOI (𝑦): 

acceleration or velocity time histories. 

 

The four example cases being presented in this section are as follows: 

❑ Case 1: One-story structure - Impulse excitation - Fitting acceleration time histories 

❑ Case 2: One-story structure - Earthquake excitation - Fitting acceleration time histories 

❑ Case 3: Six-story structure - Earthquake excitation - Fitting acceleration time histories 

❑ Case 4: Six-story structure - Earthquake excitation - Fitting velocity time histories 

 

 

2.2.1 Simulating the data  

In the absence of experimental data, simulated data are generated for the two building models by 

subjecting them to specified ground acceleration. In the examples presented we consider two types 

of ground excitation: A) an impulse excitation, and B) an earthquake excitation. 

 

The impulse excitation was selected for its simplicity. Using the excitation input and the simpler 

one-story structure it is clear to demonstrate the effectiveness of the methodology. The impulse 
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consists of a ramp up and then a decrease, as is shown in Figure 2.1A. For the rest of the presented 

cases, a more realistic input is used. The structure is subjected to scaled versions of the Nishi-

Akashi station ground acceleration, recorded during the 1995 M6.9 Kobe Japan earthquake, shown 

in Figure 2.1B. 

 

In order to study the transition to the nonlinear regime, we considered three different time-domain 

amplitude scales for both ground acceleration inputs. The scales for the ground acceleration inputs 

were selected so that for the lower scaling the structure behaves linearly, while for the higher scales 

nonlinear mechanisms due to softening behavior of the steel beams and columns are activated. 

 

For the impulse excitation, the analyses were repeated for the three different scales: x1.0 

(nonlinearities are not activated – response is linear), x15.0 (nonlinearities are activated), and x30.0 

(stronger nonlinearities are activated). For the earthquake, the analyses were similarly repeated for 

the three different scales: x0.2 (nonlinearities are not activated – response is linear), x1.0 

(nonlinearities are activated), and x2.0 (stronger nonlinearities are activated).  

 

 

Figure 2.1. The two ground acceleration inputs considered. (A) The impulse excitation, unscaled 

– x1.0. (B) The earthquake excitation (1995 Kobe Japan Nishi-Akashi station record), unscaled – 

x1.0. 
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2.2.2 Implementation Details 

While the data is simulated through the use of a nonlinear model, a linear model is fitted to the 

data in every time window. Linear model updating is performed in each time window by 

minimizing the measure-of-fit, shown in Eq. (2.38). The length of the time window and the time 

step the time window is being shifted in the moving window approach are defined by the user. 

Different QOI or even weighted combinations of QOI can be used in the measure-of-fit. For the 

results presented here we assume to have one sensor at every floor and the measured QOI 

considered in the analysis will be either acceleration or velocity time histories. 

 

The choice of the window length should be longer than the fundamental period of the equivalent 

model of the structure so that the time series (e.g., acceleration) signal within the window length 

contains sufficient information to identify the lowest modal frequencies of the equivalent linear 

model. Also, the window length should be short enough so that one can trace the variation in the 

nonlinearities (type and strength) activated during the earthquake. A very long window length will 

average the time varying nonlinear characteristics activated in the structure during the excitation. 

The value of the shift of the center of the window length in the moving window approach affects 

the smoothing of the time varying curves that demonstrate the mechanical characteristics (stiffness, 

damping ratio, modal frequencies, etc.) of the equivalent linear system. Note that the time windows 

may overlap.  

 

As part of this thesis work, the structural identification framework presented in Section 2.1 has 

been fully implemented in Matlab. In order to minimize the measure-of-fit, optimization 

algorithms native to Matlab are used. Specifically, the fminunc Broyden–Fletcher–Goldfarb–

Shanno (BFGS) algorithm (MATLAB, 2019; Broyden, 1970), an unconstrained gradient-based 

optimization is used. The stiffness and mass information (the stiffness submatrices appearing in 

the expansion (2.25) and the mass matrix) are calculated using models created in commercial finite 

element software (e.g. SAP2000 is used for the examples presented here) and is passed (offline) 

in Matlab. The gradients of the objective function with respect to the model parameters are 

estimated numerically in the Matlab optimization toolbox. 
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Even though the modulus of elasticity of the material does not change, a convenient way to 

introduce the desired stiffness parameterization, as seen in Eq. (2.25), is by specifying the modulus 

of elasticity of the elements belonging to the substructure to be proportional to the stiffness-related 

parameters 𝜽𝐾. Thus, the stiffness of the substructure is parameterized by selecting the modulus 

of elasticity of all finite elements (columns and beams) comprising the substructure to be 

proportional to a parameter, with proportionality constant defined by their nominal modulus of 

elasticity values. Specifically, if 𝐸 denotes the modulus of elasticity of an element belonging to 

the 𝑗 substructure, then 𝐸 = 𝜃𝐾,𝑗𝐸𝑛𝑜𝑚, where 𝐸𝑛𝑜𝑚 is the nominal value of the modulus of 

elasticity of the element (Simoen, et al., 2015). Selecting the value of the parameter to be equal to 

1 corresponds to the nominal values of the substructure of the finite element model.  

 

 

2.2.3 Building Models Considered  

Two example buildings, a single-story and a six-story building, are considered. The two buildings 

are shown in Figure 2.2. 
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Figure 2.2 The two steel moment frame structures (plotted using the SAP2000 interface) (A) 

One-story Steel Frame Model. (B) Six-story Steel Frame Model. The I-beam sections assigned to 

each element are also displayed. 
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Figure 2.3. Material nonlinearities in the two models. (A) Hinge moment-plastic rotation curve. 

(B) Axial stress-strain curve for beam and column fibers. Figure is modified from Challa (1992). 

 

 

2.2.3.1 Structure 1: One-story Steel Moment Frame Building 

The first example building considered is a simple, one-story, steel frame structure. The structure 

is composed of 2 columns and 1 horizontal beam. The structure and the selected I-beam frame 

sections can be seen in Figure 2.2A. The material used is A36 steel.  

 

A 2D model of the structure was constructed in SAP2000 (CSI, 1999). All connections are moment 

connections. Additionally, we assume fixed constraints for the nodes at the base, motion only in 

the x (horizontal) direction, and rigid diaphragm constraints for the first floor nodes. A hinge at 

the bottom of the columns is introduced to model a nonlinear softening moment-rotation 

relationship. The hinge represents concentrated post-yield behavior in one or more degrees of 

freedom (here for the rotational degree of freedom) (CSI, 1999). The shape of the moment-plastic 

rotation curve followed is shown in Figure 2.3A. The nonlinear analysis was run using SAP2000 

and was repeated for the different scaled excitations in order to generate the simulated response 

time histories. We assigned 1% modal damping ratio to the first mode. Additional damping is 

expected to appear due to the material hysteretic behavior. The analysis output comes in the form 

of a (relative) acceleration time history (in the horizontal direction), measured in one of the nodes 

of the first floor. 
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The model updating is performed using an equivalent linear finite element model developed in 

SAP2000 assuming linear moment-rotation relationship. The mass and stiffness matrices were 

exported from SAP2000 (offline) and passed onto Matlab where the updating framework is 

implemented. All elements of the structure were selected to belong to one substructure. Thus, there 

is one stiffness-related parameter corresponding to the stiffness of all beams and columns. 

Furthermore, the structure has only one mode due to its constraints and as a result there is one 

modal damping parameter. Thus, there is a total of two model parameters to be updated, the 

stiffness parameter and the modal damping ratio. The nominal values of the modal period (first 

mode) is: 𝑇1 = 0.73𝑠 (modal frequency: 𝑓1 = 1.37𝐻𝑧).  

 

 

2.2.3.2 Structure 2: Six-story Steel Moment Frame Building 

The second structure considered is a six-story steel moment frame building. The basis behind this 

structure is a building designed according to the 1994 Uniform building code, as described by J. 

Hall (Hall, 1998). The structure and the selected I-beam frame sections can be seen in Figure 2.2B. 

The material used is A36 steel. 

 

A simplified 2D model of the building was developed in Frame-2D (Buyco, 2018). Frame-2D, 

also known as STEEL, is a computer program developed at Caltech with the goal of providing 

detailed analysis of steel structures (Challa, 1992; Challa & Hall, 1994; Hall & Challa, 1995; Hall, 

1995; Bjornsson, 2014). A Frame-2D model consists of a planar arrangement of beam, column 

and brace elements that connect into panel zone elements. The beam, column, and brace elements 

are divided into segments along their length and each element is further discretized along its cross-

section into fibers. Each steel fiber has a hysteretic axial stress-strain relationship, equipped with 

a yield plateau and strain-hardening/softening region (Hall, 1998; Buyco, 2018). The shape of this 

axial stress-strain relationship is shown in Figure 2.3B. Geometric nonlinearities (e.g. P-Δ) are 

also accounted for. Rayleigh damping was considered with 1% of critical damping assigned in the 

first and third modes. The nonlinear analysis was also performed in Frame-2D (Buyco, 2018) for 

the three different scaled excitations to simulate the artificial response time histories. The analysis 

output comes in the form of displacement time histories (measured in one node per floor, in the 
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horizontal direction). The time histories were differentiated and filtered in order to produce the 

velocity and acceleration data used in the model updating. Here, measurement error is possibly 

introduced, due to the data processing that was performed in order to obtain the velocity and 

acceleration time histories from displacement time histories. 

 

The linear finite element model to be used for model updating was created in SAP2000. There is 

a large number of possible substructures one can consider for such a structure. For the cases 

presented here we are considering two substructures: the first one includes the beams and columns 

of the first and second floor, while the second one includes the beams and columns of the third and 

fourth floor. This is instigated by the fact that nonlinearity or damage is usually located at the 

lower floors. Selecting more parameters/substructures would accentuate the ill-conditioning of the 

problem. Only the first three modes are used to obtain results from the linear finite element model 

and thus there are three extra model parameters corresponding to the damping ratios of these three 

modes. As a result, the number of total model parameters is five. The nominal values of the modal 

periods of the first three modes are: 𝑇1 = 1.84𝑠, 𝑇2 = 0.64𝑠, and 𝑇3 = 0.36𝑠 (modal frequencies: 

𝑓1 = 0.54𝐻𝑧, 𝑓2 = 1.55𝐻𝑧, and 𝑓3 = 2.78𝐻𝑧). 

 

It should be noted that increasing the number of modes introduces the modal damping ratios of 

each mode as extra parameters to be updated. The increase in the number of modes is desirable to 

improve the fit, in the case that the added modes contribute to the response. If the contribution of 

extra modes is negligible then there is no information in the data to estimate the modal damping 

ratios of the added modes and the identification problem becomes ill-conditioned. Thus, there is 

trade-off between the number of modes to be included to improve the fit and the ill-conditioning 

arising from the fact that the introduced higher modes do not significantly contribute to the 

response. It is not easy to automate the procedure so that the optimal number of modes is used. 

This automation should be implemented for every time segment in the moving time window 

approach because different number of modes contribute in different time segments. For example, 

for windows toward the end of the excitation, only one mode significantly contributes, while the 

addition of extra modes does not significantly improve the fit. As a result, ill-conditioning arises 

during estimation of the model parameters.  
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Model error arises from the fact that the model used in the updating is not an exact representation 

of the behavior of the system. For the one-story structure since the finite element model used to 

generate the data is the same as the model used for predictions, model error is introduced from the 

fact that the model being updated is linear, while the measured (simulated data) are generated from 

a potentially nonlinear finite element model. If nonlinearities are not activated when generating 

the artificial data, then there is no model error and the model used to estimate the parameters should 

be capable of exactly fitting the simulated response time histories. For the six-story structure, 

additional model error is introduced due to the fact that the two models are different even in the 

linear regime. Specifically, for low intensity excitations for which the nonlinearities are not 

activated in the Frame-2D model, there is model error introduced due to the different software 

(Frame-2D and SAP2000) used to generate the artificial measurements and simulate the behavior 

of the structure in the model updating procedure. These differences are due to the modeling 

assumptions used in each software to build the model and simulate the response, despite the 

attempt to create a SAP2000 model as close to the Frame-2D model as possible.  

 

The parameterization also introduces additional model error due to the constraints imposed in the 

model updating when a number of structural elements are grouped together in order to limit the 

number of parameters to be identified. Introducing these model errors allows us to study the 

performance of the method under more realistic conditions encountered in practical applications.  

 

For the case of the six-story building further model error is introduced due to the fact that we 

neglect higher modes when the equations of motion of the linear model are solved using modal 

analysis. Model error is introduced also from the assumptions in the damping matrix. For the six-

story frame structure, Rayleigh damping is used in Frame-2D, while modal damping is assigned 

in the linear model developed in SAP2000 used for the finite element model updating.  
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2.2.4 Case 1: One-story Building, Impulse Excitation 

For case 1, the one-story steel moment frame structure is subjected to the impulse ground 

excitation. The data are simulated by running the nonlinear model of the structure. The data consist 

of the acceleration time history of one of the first-floor nodes. Figure 2.4 shows an example of the 

response and the nonlinear hinge behavior under the x15.0 input scaling. Linear model updating 

is performed in each time window by using the accelerations as our QOI and minimizing the 

measure-of-fit, shown in Eq. (2.38). The time window length is 1.0 s and the time window is 

shifted by 0.5 s at each step. 

 

The identification results are shown in Figure 2.5. The different line colors correspond to the three 

different scales of the earthquake ground acceleration input. The horizonal axes are time and they 

correspond to the center of the moving time window. Figure 2.5A displays the hinge plastic 

rotation versus time. Horizontal lines in the curves indicate that the structure behaves linearly (zero 

plastic rotation rate). It can be seen that for scaling of x1.0 the response always remains linear, 

while nonlinearities are activated in the beginning of the excitation (for less than approximately 2 

s) for scaling of x15.0 and x30.0. Figure 2.5B displays the measure-of-fit (�̃�) values following the 

model updating at each time window. Figure 2.5C shows the values of the stiffness related 

parameter and Figure 2.5D shows the values of the modal damping ratio (percent critical damping). 

Figure 2.5E depicts the equivalent linear modal frequency. Figure 2.5F shows the condition 

number, which is the ratio of the maximum to the minimum eigenvalue of the Hessian matrix of 

the measure-of-fit (�̃�).  

 

Case 1 is the simpler of the presented cases and it demonstrates clearly the effectiveness of the 

methodology in tracing nonlinearities activated during an excitation event. By studying the hinge 

moment or plastic rotation curves, one can pinpoint the time windows where nonlinear behavior 

occurs and the results demonstrate that these windows were identified successfully. More 

specifically, when nonlinearities occur the measure-of-fit (�̃�) is no longer zero, since it is 

impossible for the linear model to give a perfect fit to the acceleration time history when 

nonlinearities are activated. As can be seen in Figure 2.5 for less than 2 s, the stronger the 

nonlinearities, the worse the fit. Furthermore, as expected when nonlinearities take place, the 
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equivalent stiffness parameter and the equivalent linear modal frequencies decrease due to the 

softening nonlinearity, while the equivalent modal damping ratio increases due to energy 

dissipation. The length and overlaps of the time windows affect the shape of the curves, with larger 

time window lengths producing smoother results but also possibly resulting in missing some 

shorter time transitions to linear/nonlinear behavior. 
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Figure 2.4. Response and hinge moment-plastic rotation plot simulated from the nonlinear 1-

story building model using the impulse ground excitation – scaled x15.0.  
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Figure 2.5. Estimated parameters and properties of the equivalent linear model for the single-

story building, using impulse excitation (case 1). 
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2.2.5 Case 2: One-story Building, Earthquake Excitation 

For the second case the one-story steel moment frame structure is subjected to the earthquake 

(1995 Kobe Japan Nishi-Akashi station record) ground excitation. The measured data are 

acceleration response time histories of one of the first-floor nodes, simulated by running the 

nonlinear model of the structure. The simulated acceleration time history data are shown in Figure 

2.6, for the three different scales (x0.2, x1.0, and x2.0). Linear model updating is performed in 

each time window by using the accelerations as our QOI and minimizing the measure-of-fit, shown 

in Eq. (2.38). The time window length is 1.5 s, and the window is shifted by 0.5 s.  

 

The case 2 results are shown in Figure 2.7. The different line colors correspond to the three 

different scales of the earthquake ground acceleration input. The horizonal axes are time and they 

correspond to the center of the moving time window. Figure 2.7A displays the hinge plastic 

rotation versus time. This information is output from the finite element software (SAP2000) and 

clearly indicates the time instances when transitions to nonlinear behavior of the structure take 

place. Horizontal lines in the curves indicate that the structure behaves linearly (zero plastic 

rotation rate). It can be seen that for scaling of x0.2 the response is linear, while nonlinearities are 

activated for scaling of x1.0 and x2.0. Figure 2.7B displays the measure-of-fit (�̃�) values following 

the model updating at each time window. It can be seen that when the response is linear (x0.2 

scaling) there is a perfect fit (�̃� = 0). On the other hand, when nonlinearities are activated, the 

measure-of-fit �̃� is non-zero, as expected, since it is impossible for the linear model to give a 

perfect fit to the acceleration data in these cases. Furthermore, as the nonlinearities get stronger, 

the fit worsens, as indicated by the higher �̃� values. Figure 2.7C shows the values of the identified 

stiffness-related model parameter at each time window, while Figure 2.7D and E depict the 

equivalent linear modal frequency and modal damping ratio (percent critical damping) 

respectively. When softening nonlinearities take place, the equivalent stiffness parameter values 

and the equivalent modal frequency are expected to decrease, while the equivalent damping ratio 

is expected to increase due to energy dissipation arising from the hysteretic nonlinearity. Figure 

2.7F shows the condition number of the Hessian matrix of the measure-of-fit (�̃�). The condition 

number is monitored because it may indicate possible ill-conditioning of the structural 

identification framework. When this ratio is higher, the ill-conditioning is worse. We can see a 
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spike of the condition number for the x2.0 scaling and for a time window that corresponds to the 

strongest nonlinearities.  

  

For the case of the single-story building, the expected behaviors following a transition to the non-

linear regime are clearly visible. Specifically, the following conclusions can be made based on the 

results displayed in Figure 2.7:  

• For the x0.2 excitation case, the nonlinearities are not activated and the identification yields 

the initial nominal values of the model parameters, modal frequencies and percent critical 

damping. The misfit is extremely small, with the predicted response perfectly fitting the 

measured data. This is due to the fact that the linear model represents exactly the behavior of 

the structure. 

• For the x1.0 and x2.0 excitation cases the framework can detect the transition to the nonlinear 

regime through fitting an equivalent linear model to the data using a moving time window 

approach. In the cases where non-linearities take place along the moving window, a decrease 

in the equivalent stiffness is evident at the corresponding time windows, together with an 

increase in the modal damping ratios, and a drop in the modal frequencies, which is consistent 

with what is expected. The stronger the excitation, the higher the change from the nominal 

values of the stiffness, modal frequencies and percent critical damping values. Moreover, the 

stronger the excitation, the higher the misfit values due to the fact that a linear model is less 

appropriate to exactly represent the manifested nonlinear behavior.  

• It is also worth noting that in the nonlinear regime between 5 to 20 s there is sudden drop at 

some time instances of the identified properties of the equivalent linear model to their initial 

values. These times correspond to cases where the nonlinearities over the window length 

considered are not activated, as is evident from the flat (horizontal) lines in the rotation vs time 

curves. For example, this is evident in the windows centered at approximate time instances of 

12-13 s and 17-18 s. 
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Figure 2.6. The acceleration time history data used in case 2, simulated from the nonlinear 1-

story building model using the 1995 Kobe Japan earthquake (Nishi-Akashi station) ground 

excitation. 
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Figure 2.7. Estimated parameters and properties of the equivalent linear model for the single-

story building, using earthquake excitation (case 2). 
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2.2.6 Case 3: Six-story Building, Earthquake Excitation 

The third case considered involves the six-story steel moment frame structure subjected to the 

1995 Kobe Japan earthquake (Nishi-Akashi station) ground excitation. The QOI used for the 

model updating are acceleration time history data (one time series per floor). The acceleration time 

history data recorded at the six floors are shown in Figure 2.8, for the three different scales (x0.2, 

x1.0, and x2.0). Linear model updating is performed in each time window by minimizing the 

measure-of-fit, Eq. (2.38). The length of the time window is 5.0 s and the window is shifted by 1.0 

s at each step. The first window center is at 7.0 s and the last is at 50.0 s. Thus, there is a total of 

44 overlapping time windows. 

 

The identification results using the three different excitation scales are shown in Figure 2.9 and 

Figure 2.10. Here again the different line colors correspond to the different scales of the earthquake 

ground acceleration input, and the different properties are presented as a function of time (plotted 

against the moving time window center). Figure 2.9 presents the identified model parameters 

(stiffness related parameters and damping ratios), while Figure 2.10 displays the measure-of-fit, 

condition number, and modal frequency results. 

 

Observing the excitation and response time histories, we expect the non-linear behavior (for the 

x1.0 and x2.0 scales) to take place from 0 to approximately 20 s. It should be noted that the scale 

x0.2 corresponding to linear behavior give values of the model parameters that differ from the 

nominal values of the initial linear finite element model used to generate the simulated data. This 

is due to the model error resulting from the fact that the nonlinear Frame-2D model used to 

generate the simulated measurements and the linear modal model (we keep 3 modes) used for 

performing the model updating are not exactly the same. Additional model error is introduced from 

the assumed model (stiffness) parameterization that introduces constraints in fitting the data by 

varying the two stiffness parameters, as well as from the fact that only three modes are included 

in the model predictions. The type and strength of each source of model error vary in the different 

time segments along the time history. Due to these sources of model error, the stiffness parameter 

associated with the first two floors has values that are approximately 10% lower than the nominal 

values, while the stiffness parameter associated with the third and fourth floors has values of 
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approximately 40% higher than the nominal value. Similar discrepancies between the estimated 

and nominal values for the linear case (scale x0.2) are observed for the modal damping ratios and 

modal frequencies.  

 

We thus identify the transition into nonlinear behavior by comparing the higher scale curves (x1.0 

and x2.0) to the x0.2 scale curve, rather than comparing to the nominal values. Keeping this in 

mind, one can identify the expected behaviors following a transition to the non-linear regime. More 

specifically, in the time interval from 5 to 20 s, as the excitation level increases (scales x1.0 and 

2.0), the values of the two stiffness related parameters decrease (Figure 2.9A-B), the values of the 

modal damping ratios increase (Figure 2.9C-E), the measure-of-fit values increase (Figure 2.10A) 

and the values of the modal frequencies decrease (Figure 2.10C-E) in relation to the corresponding 

values identified for the linear case (scale x0.2). The higher the excitation, the higher the change 

of these properties. The changes observed as a function of time are similar to those observed for 

the one-story building, although due to model error the expected decrease or increase in these 

model properties is not as evident as in the one-story building. Similar behaviors of the properties 

of the equivalent linear system are also observed in the time interval from approximately 25 to 35 

seconds where, as can be seen in Figure 2.8, the acceleration response time histories show an 

intensity that increases as the scale of the earthquake increases from x0.2 to x1.0 and eventually 

to x2.0.  

 

For the time interval from approximately 20 s to 25 s, an unexpected behavior of the properties of 

the equivalent linear system is observed which can be attributed to the fact that the response time 

histories in Figure 2.8 are relatively small and the nonlinearities may not have been activated. 

Specifically, for the scale of x1.0 and x2.0 earthquake input the responses in Figure 2.8 barely 

reach the value of 1 to 2 m/s2 which is of the same order of magnitude as the strong motion part of 

the scale of x0.2 earthquake input for which the structure behaves linearly. In this time interval 

(from 20 to 25 s), the nonlinearities are probably not activated and thus the observed time variation 

of the properties of the equivalent linear system is reasonable. The observed variability of the 

modal properties for the three different scales (x0.2, x1.0 and x2.0) is expected and is likely due 

to model error.  
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The condition number indicates that the estimation is well-posed for most window segments with 

centers ranging from 5 to approximately 35 s. For window segments centered after 35 s, the 

condition number increases dramatically which may indicate an ill-posed estimation problem. This 

may be due to the fact that less than three modes participate in the response at later times (after 35 

seconds). Thus a number of model parameters, such as the percent of critical damping for the third 

and possibly also the second mode cannot be identified from the measured response time histories, 

giving rise to the ill-conditioning. This ill-conditioning is also confirmed by the unreasonably high 

damping ratio values estimated from approximately 40 to 50 s for the third mode in Figure 2.9E. 

The results in Figures 2.9 and 2.10 suggest that the estimates, especially for the modal damping 

ratio for the third mode, should be ignored due to ill-conditioning.  

 

For the latest time interval from 40 s to 50 s, the measure-of-fit value is very close to zero for all 

excitation levels, indicating that the equivalent linear system can adequately fit the response time 

histories and that nonlinearities are not activated due to low amplitude response levels. The two 

stiffness parameters of the linear model and the modal frequencies of the three modes approach 

the corresponding stiffness values and the modal frequencies of the nominal model used to 

generate the simulated data. Differences from the nominal values and for the values obtained for 

the three different excitation levels are due to the model error. This is expected since the response 

time histories are different, and the ill-conditioning arising from the fact that one or more modes 

might not contribute to the response. Model error due to modal truncation is not an issue here since 

less than three modes are contributing to the response. In addition, the fact that less than three 

modes contribute to the response provides higher flexibility for the finite element model 

predictions to fit the data by changing the values of the two stiffness parameters and the damping 

ratios of the contributing modes, reducing the size of model error. This reduced model error may 

also explain the fact that the values of the model properties (two stiffness parameters and modal 

frequencies) are closer to the properties corresponding to the nominal values used to generate the 

simulated data.  
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Figure 2.8. The acceleration time history data used in case 3, simulated from the nonlinear 6-

story building model using the 1995 Kobe Japan earthquake (Nishi-Akashi station) ground 

excitation. 
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Figure 2.9. Estimated parameters of the equivalent linear model for the six-story building, using 

acceleration measurements (case 3). 
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Figure 2.10. Estimated properties of the equivalent linear model for the six-story building, using 

acceleration measurements (case 3). 
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2.2.7 Case 4: Six-story Building, Earthquake Excitation, Velocity Measurements 

For the fourth case, the six-story steel moment frame structure is subjected to the 1995 Kobe Japan 

(Nishi-Akashi station) ground excitation, but this time velocity time history data (one time series 

per floor) is used for the model updating. The velocity time history data are shown in Figure 2.11, 

for the three different scales (x0.2, x1.0, and x2.0). Linear model updating is performed in each 

time window by minimizing the measure-of-fit, shown in Eq. (2.38). The time window length is 

5.0 s and at each step it is being shifted by is 1.0 s. We use velocity instead of acceleration time 

history data, in order to evaluate whether or not the different type of measured time histories has 

an effect on the results obtained in the third case.  

 

The identified model parameters (stiffness related parameters and damping ratios) are shown in 

Figure 2.12, and the measure-of-fit, condition number, and modal frequency results are shown in 

Figure 2.13. The results obtained for the variation of the properties (stiffness related parameters, 

modal frequencies and modal damping ratios) of the equivalent linear model as a function of time 

are qualitatively similar to those obtained for the third case using acceleration time history data. 

This shows that the identification framework works equally well when using velocity time history 

data. In particular, some of the results obtained using velocity time history data, especially in the 

time range from 0 s to 20 s, demonstrate more clearly the change in the properties of the equivalent 

linear system that is expected to occur due to activation of nonlinearities along the time history 

and due to the higher intensity earthquake events.  
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Figure 2.11. The velocity time history data used in case 4, simulated from the nonlinear 6-story 

building model using the using the 1995 Kobe Japan earthquake (Nishi-Akashi station) ground 

excitation. 
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Figure 2.12. Estimated parameters of the equivalent linear model for the six-story building, 

using acceleration measurements (case 4). 
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Figure 2.13. Estimated properties of the equivalent linear model for the six-story building, using 

acceleration measurements (case 4). 

 

 

2.3 Conclusions 

We developed a methodology and software framework for tracing the nonlinear behavior of a 

building using response time histories recorded during an earthquake. This was achieved by using 

a moving time window approach and updating an equivalent linear model using the response time 

history data within each window. The model predictions were obtained using modal analysis and 

the parameters that were updated include stiffness properties and modal damping ratios. The 

update was based on the least squares fit between the measured and model predicted response time 

histories. Results have been obtained for two different example cases, a one-story building and a 

six-story building. The effectiveness of the methodology to identify the transition in the plastic 
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regime as a function of time during a strong intensity earthquake event and under various sources 

of model error manifested in the analysis was demonstrated using simulated data.  

 

Overall, the methodology does a reasonable job of identifying the transition in the plastic regime 

and tracing the nonlinear behavior with time. The results for the single-story building display 

clearly the expected behavior as the ground acceleration intensity increases and the nonlinearities 

get stronger. The results for the six-story building demonstrate that the proposed methodology can 

identify reasonably well the nonlinearities and the extent of nonlinearities activated during an 

earthquake, although the expected behavior of the identified structural and modal properties is not 

as clear as in the single-story building due to the various sources of model error manifested in the 

analysis performed. More specifically:  

❑ As the equivalent linear model tries to fit strongly non-linear behavior, the result for the fit 

between the simulated response time histories and the model predicted response time 

histories worsen. Thus, higher misfit values are identified, as expected, for larger scale 

levels of the excitation that progressively activate nonlinearities.  

❑ Because of softening nonlinearities, the equivalent stiffness parameter values drop and the 

equivalent modal frequencies decrease as compared to the stiffness parameter values and 

the modal frequency values corresponding to excitations that do not activate nonlinear 

phenomena.  

❑ The plastic (hysteresis loop) energy dissipation raises, as expected, the values of the percent 

critical damping identified using the equivalent linear viscous model.  

 

Although results are shown for four representative cases, a number of additional cases have been 

considered and demonstrate that the framework is promising for identifying the nonlinearities with 

time during an earthquake by fitting an equivalent linear finite element model to different time 

windows using a moving time window approach. One can use the framework with different inputs, 

stiffness parameter selections, number of modes, time windows, as well as measures-of-fit 

functions to perform the structural identification.  
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The method presented in this chapter is a single-stage approach for directly estimating stiffness-

related model parameters and modal damping ratios of an equivalent linear finite element model 

of a structure using measured response time histories. Using the estimated model parameters, the 

equivalent linear finite element model can be used to compute the modal frequencies and the 

modeshapes of the structure. Using a moving time window approach, the proposed method traces 

the model properties along each window.  

 

The proposed method should be contrasted to the previously published two-stage linear finite 

element model updating methods. In the first stage the modal properties (modal frequencies, modal 

damping ratios and modeshape components at the measured DOF) are identified using input-

output response time histories (e.g. accelerations) (Beck, 1979; Beck & Jennings, 1980). Using a 

moving window approach, the first stage is useful to detect damage or even the nonlinearities 

activated in each time window by tracing the change in global properties of the structure, such as 

modal frequencies, modal damping ratios and modeshapes. However, the first stage is not 

sufficient to map the changes in the modal properties to changes in the stiffness characteristics of 

the structure. This is achieved in the second stage where the stiffness-related properties of the finite 

element model are estimated using the modal frequencies and modeshapes identified in the first 

stage. Finite element model updating techniques based on modal properties has been developed 

and widely used since the early work by Friswell and Mottershead (Mottershead & Friswell, 1993; 

Friswell & Mottershead, 1995). A review can also be found in Moaveni (2007) for deterministic 

methods and Huang et al. (2019b) for probabilistic methods. In particular, Moaveni et al. (2010; 

2011) have applied linear finite element model updating based on modal properties on a reduced-

scale 7-story concrete building to trace the identified stiffness changes of the equivalent linear 

model from the damage distribution in building floors during progressively stronger excitation 

levels.  

 

The two-stage method is applicable to linear systems, since it involves modal properties defined 

only for linear models. In the present approach a single-stage model updating method is used based 

on response time histories. The single-stage approach presented here is based directly on response 

time histories and not the modal features; it is thus more general since it can be extended to update 
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nonlinear finite element models as well. The two approaches (single stage and two-stage) are not 

expected to give exactly the same results but they are expected to give similar results for the 

identified stiffness properties as well as modal properties. The first step in the two-stage approach 

has certain advantages since the change in the modal properties can be sufficient for providing the 

necessary information about the system nonlinearities and the strength of nonlinearities or for 

tracing these nonlinearities over the different time windows. However, in order to associate the 

modal property changes to changes in the equivalent stiffness properties, one needs to use the 

second stage as well.  
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C h a p t e r  3  

CHAPTER 3: 

SPARSE BAYESIAN LEARNING FOR DAMAGE 

IDENTIFICATION USING NONLINEAR MODELS 

 

 

This chapter presents a sparse Bayesian learning (SBL) methodology for identifying the existence, 

location, and severity of structural damage. SBL is a well-established technique used for tackling 

supervised learning problems, while taking advantage of the prior knowledge that the expected 

solution is sparse. Based on the premise that initial damage in a structure appears only in a limited 

number of locations, SBL has been explored for identifying structural damage, showing promising 

results. A literature review of SBL methods for structural damage identification is available in the 

introduction chapter in Section 1.2. Existing SBL methods applied for structural damage 

identification use measurements related to modal properties and are thus limited to linear models. 

In this chapter we present a methodology that allows for application of SBL in non-linear models, 

using time history measurements obtained from dense sensor networks, such as the Community 

Seismic Network (CSN), installed in buildings. 

 

Using SBL, we develop a two-step optimization algorithm in which the most probable values of 

the structural model parameters, indicative of the location and size of structural damage, are 

iteratively obtained. An equivalent single-objective minimization problem that results in the most 

probable model parameter values is also derived. In order to demonstrate the effectiveness and 

robustness of the proposed methodology, we consider the example problem of identifying damage 

in the form of weld fractures in a three-dimensional, 15-story, moment resisting steel frame 

building, using a nonlinear finite element model and simulated acceleration data. Fiber elements 

and a bilinear material model are used in order to account for the change of local stiffness when 

cracks at the welds are subjected to tension and the model parameters characterize the loss of 

stiffness as the crack opens under tension. In the cases presented, various damage scenarios and 
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different parameterizations are considered, as well as different degrees of model and measurement 

error. 

 

In Section 3.1 we present the developed SBL framework that allows for damage identification 

based on time history measurements. Section 3.2 demonstrates an example application considered 

in order to test the effectiveness of the methodology. Four different studies are considered through 

which we examine different damage scenarios, degrees of model and measurement errors, 

parameterization and instrumentation density, and their effects on the damage identification 

results. Section 3.3 presents the conclusions of this investigation. 

 

 

3.1 Sparse Bayesian Learning Framework 

Let 𝐷 = {�̂�(𝑘) ∈ ℛ𝑁𝑜 , 𝑘 = 1, … , 𝑁𝐷} be the measured response time histories (e.g., acceleration, 

velocity, displacement, or strain time histories), at 𝑁𝑜 measured (observed) degrees of freedom 

(DOF), where 𝑁𝐷 is the number of the sampled data at time instances 𝑡𝑘 = 𝑘𝛥𝑡, corresponding to 

a sampling rate 𝛥𝑡. A parameterized finite element model is introduced to simulate the behavior 

of the structure. Let 𝜽𝜖ℛ𝑁𝜃 be the set of the free structural model parameters. These model 

parameters are associated with local properties (e.g., stiffness of an element or substructure) of the 

finite element model. Changes in the values of the model parameters will be indicative of damage 

in the structure. The structural model is parameterized so that the undamaged state corresponds to 

𝜽 = 𝟎, while damage corresponds to negative values of 𝜽. Thus, identifying the value of the model 

parameter set 𝜽 accomplishes the damage identification goals, i.e. determining the existence, 

location, and severity of damage. To cover all possible damage scenarios, the number of 

parameters may be relatively large compared to the information contained in the data. Taking 

advantage of the prior information about the expected sparsity of damage will help alleviate the 

ill-conditioning of the problem. Let {𝒙(𝑘; 𝜽) ∈ ℛ𝑁𝑜 , 𝑘 = 1, … , 𝑁𝐷} be the model-predicted 

response time histories at the measured DOF, obtained for a particular value of the parameter set 

𝜽. 
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To formulate the likelihood function in the Bayesian inference, the prediction error equation is 

introduced. The prediction errors measure the discrepancy between the measured and the model-

predicted response. Specifically, the prediction error 𝑒𝑗(𝑘) between the measured response time 

histories and the corresponding response time histories predicted from a model that corresponds 

to a particular value of the parameter set 𝜽, for the 𝑗th measured DOF and the 𝑘th sampled data 

point, satisfies the prediction error equation 

 �̂�𝑗(𝑘) = 𝑥𝑗(𝑘, 𝜽) + 𝑒𝑗(𝑘) (3.1) 

where 𝑗 = 1, … , 𝑁𝑜 and 𝑘 = 1, … , 𝑁𝐷. The prediction error accounts for the model and 

measurement errors. 

 

Following Beck and Katafygiotis (1998), the prediction errors at different time instants are 

modeled by i.i.d. (independent identically distributed) zero-mean Gaussian vector variables, i.e. 

𝜀𝑗(𝑘)~𝑁(0, �̂�𝑗
2𝜎𝑗

2), based on the principle of maximum information entropy (Jaynes, 1983; 2003), 

with �̂�𝑗
2 being the mean-square response of the 𝑗th measured time history, given by 

 �̂�𝑗
2 =

1

𝑁𝐷
∑ �̂�𝑗

2(𝑘)

𝑁𝐷

𝑘=1

 (3.2) 

and 𝜎𝑗
2 being the normalized variance. The prediction error parameters 𝜎𝑗𝜖ℛ, for 𝑗 = 1, … , 𝑁𝑜 

represent the fractional difference between the measured and the model-predicted response at a 

time instant and comprise the prediction error parameter set 𝝈𝜖ℛ𝑁𝑜. Assuming also that the 

prediction errors for different DOF are independent, we show in Appendix 3.A.1 that the likelihood 

function, given the values of the model parameters 𝜽 and 𝝈, takes the form 

 𝑝(𝐷|𝜽, 𝝈) =
1

(√2𝜋)
𝑁𝐷𝑁𝑜

∏ �̂�𝑗
𝑁𝐷𝜎𝑗

𝑁𝐷𝑁𝑜

𝑗=1

exp {−
𝑁𝐷𝑁𝑜

2
𝒥(𝜽; 𝝈)} (3.3) 

with 𝒥(𝜽; 𝝈) being a measure-of-fit between the measured and model-predicted response time 

histories, equal to 
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 𝒥(𝜽; 𝝈) =
1

𝑁𝑜
∑

1

𝜎𝑗
2 𝐽𝑗(𝜽)

𝑁𝑜

𝑗=1

 (3.4) 

where 

 𝐽𝑗(𝜽) =
∑ [�̂�𝑗(𝑘) − 𝑥𝑗(𝑘, 𝜽)]

2𝑁𝐷
𝑘=1

∑ [�̂�𝑗(𝑘)]
2𝑁𝐷

𝑘=1

 . (3.5) 

The likelihood function quantifies the probability of observing the data given the values of the 

model parameters 𝜽 and 𝝈. The functions 𝐽𝑗(𝜽) represent the measure of fit between the measured 

and the model-predicted response time history for the 𝑗th DOF. Similarly, the function 𝒥(𝜽) in 

Eq. (3.4) is the average measure of fit over all DOFs. 

 

Note that for the presented example applications, we are considering the special case of 𝜎𝑗 = 𝜎𝜖ℛ,

∀𝑗. For this case, we have 𝜀𝑗(𝑘)~𝑁(0, �̂�𝑗
2𝜎2) and the likelihood function given in equation (3.3) 

can be written in the form 

 𝑝(𝐷|𝜽, 𝜎) =
1

(√2𝜋)
𝑁𝐷𝑁𝑜

∏ �̂�𝑗
𝑁𝐷𝑁𝑜

𝑗=1 𝜎𝑁𝐷𝑁𝑜

exp {−
𝑁𝐷𝑁𝑜

2𝜎2
𝐽(𝜽)} (3.6) 

where 𝐽(𝜽) = 𝜎2𝒥(𝜽; 𝜎) is the measure-of-fit between the measured and model-predicted 

response time histories for the special case of 𝜎𝑗 = 𝜎, ∀𝑗, equal to 

 𝐽(𝜽) =
1

𝑁𝑜
∑ 𝐽𝑗(𝜽)

𝑁𝑜

𝑗=1

 (3.7) 

with 𝐽𝑗(𝜽) from Eq. (3.5). 

 

Similar to Tipping (2001), in order to promote sparsity in the model parameters, we consider the 

case of an automatic relevance determination (ARD) prior (MacKay, 1996) probability density 

function (PDF) 
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 𝑝(𝜽|𝜶) =
1

(2𝜋)𝑁𝜃/2
∏ 𝛼𝑖

1/2

𝑁𝜃

𝑖=1

𝑒𝑥𝑝 [−
1

2
∑ 𝛼𝑖𝜃𝑖

2

𝑁𝜃

𝑖=1

] (3.8) 

which is Gaussian for the model parameters 𝜽 with the variance of each parameter 𝜃𝑖 being 1/𝛼𝑖. 

The hyper-parameters 𝛼𝑖 are unknown parameters to be estimated using the available 

measurements. Let 𝜶 ∈ ℛ𝑁𝜃 be the prior hyper-parameter set. The hyperparameters effectively 

control the weights associated with each dimension of the model parameter vector. The ARD 

model embodies the concept of relevance and allows the “switching-off” of certain model 

parameters (the corresponding 𝛼𝑖 values going to infinity). Since the Bayesian model comparison 

embodies Occam’s razor, in practice most of the hyperparameters do indeed go to infinity deeming 

the corresponding model parameters irrelevant, resulting in a sparse solution and therefore a 

simpler model. 

 

Applying the Bayes theorem to infer the posterior PDF of the structural model parameters 𝜽 given 

𝝈 and 𝜶, one has 

 𝑝(𝜽|𝐷, 𝝈, 𝜶) =
𝑝(𝐷|𝜽, 𝝈, 𝜶)𝑝(𝜽|𝝈, 𝜶)

𝑝(𝐷|𝝈, 𝜶)
 . (3.9) 

Taking into account the independence of the likelihood function 𝑝(𝐷|𝜽, 𝝈, 𝜶) on 𝜶 and the 

independence of the prior PDF 𝑝(𝜽|𝝈, 𝜶) on 𝝈, one has 

 𝑝(𝜽|𝐷, 𝝈, 𝜶) =
𝑝(𝐷|𝜽, 𝝈)𝑝(𝜽|𝜶)

𝑝(𝐷|𝝈, 𝜶)
 . (3.10) 

Substituting Eq. (3.3) and Eq. (3.8) into Eq. (3.10), the posterior PDF takes the form 

 𝑝(𝜽|𝐷, 𝝈, 𝜶) =
𝑐 ∏ 𝜎𝑗

−𝑁𝐷𝑁𝑜
𝑗=1 ∏ 𝛼𝑖

1/2𝑁𝜃
𝑖=1

(√2𝜋)
𝑁𝐷𝑁𝑜+𝑁𝜃

∏ �̂�𝑗
𝑁𝐷𝑁𝑜

𝑗=1

exp {−
𝑁𝐷𝑁𝑜

2
𝒥(𝜽; 𝝈) −

1

2
∑ 𝛼𝑖𝜃𝑖

2

𝑁𝜃

𝑖=1

} (3.11) 

with the evidence 𝑐−1 = 𝑝(𝐷|𝝈, 𝜶) being independent of 𝜽. 

 

The optimal value �̂� = �̂�(𝝈, 𝜶), of the model parameters 𝜽 for given 𝝈 and 𝜶, corresponds to the 

most probable model maximizing the updated PDF 𝑝(𝜽|𝐷, 𝝈, 𝜶) or, equivalently, minimizing 



 

 

61 

−ln [𝑝(𝜽|𝐷, 𝝈, 𝜶)]. The optimal value �̂� is also referred to as the most probable value, or 

maximum a posteriori (MAP) estimate, and is given by 

 �̂�(𝝈, 𝜶) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜽 [𝑁𝐷𝑁𝑜𝒥(𝜽; 𝝈) + ∑ 𝛼𝑖𝜃𝑖
2

𝑁𝜃

𝑖=1

] . (3.12) 

The optimal value of the model parameters 𝜽 depends on the values of the prediction error 

parameter set 𝝈 and the prior hyperparameters 𝜶.  

 

Note that for the special case of 𝜎𝑗 = 𝜎, ∀𝑗, the posterior PDF can be written in the form 

 𝑝(𝜽|𝐷, 𝜎, 𝜶) =
𝑐𝜎−𝑁𝐷𝑁𝑜 ∏ 𝛼𝑖

1/2𝑁𝜃
𝑖=1

(√2𝜋)
𝑁𝐷𝑁𝑜+𝑁𝜃

∏ �̂�𝑗
𝑁𝐷𝑁𝑜

𝑗=1

exp {−
𝑁𝐷𝑁𝑜

2𝜎2
𝐽(𝜽) −

1

2
∑ 𝛼𝑖𝜃𝑖

2

𝑁𝜃

𝑖=1

} (3.13) 

and similarly to Eq. (3.12), the optimal value �̂� is given by 

 �̂�(𝜎, 𝜶) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜽 [
𝑁𝐷𝑁𝑜

𝜎2
𝐽(𝜽) + ∑ 𝛼𝑖𝜃𝑖

2

𝑁𝜃

𝑖=1

] . (3.14) 

Thus, the optimal values of the model parameters 𝜽 depend on the values of the prediction error 

parameter 𝜎 and the prior hyperparameters 𝜶.  

 

The selection of the optimal values of these parameters is formulated as a model selection problem. 

Specifically, using Bayesian inference, the posterior PDF of the hyperparameter set (𝝈, 𝜶), given 

the data 𝐷, takes the form  

 𝑝(𝝈, 𝜶|𝐷) =
𝑝(𝐷|𝝈, 𝜶)𝑝(𝝈, 𝜶)

𝑝(𝐷)
 (3.15) 

where 𝑝(𝐷|𝝈, 𝜶) is the evidence appearing in the denominator of Eq. (3.10) and 𝑝(𝝈, 𝜶) is the 

prior PDF of the hyperparameter set (𝝈, 𝜶). For simplicity, a uniform prior PDF is assumed for 

the hyperparameter set (𝝈, 𝜶). Thus, following the Bayesian model selection, among all values of 

𝝈 and 𝜶, the most preferred values are the ones that maximize the posterior PDF 𝑝(𝝈, 𝜶|𝐷) or, 

equivalently, maximize the evidence 𝑝(𝐷|𝝈, 𝜶), given from Eq. (3.10) by  
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 𝑝(𝐷|𝝈, 𝜶) = ∫ 𝑝(𝐷|𝜽, 𝝈)𝑝(𝜽|𝜶)𝑑𝜽

𝛩

 (3.16) 

with 𝛩 being the domain in the parameter space of the possible values of 𝜽. 

 

The optimal values, �̂� and �̂� that maximize the evidence of the model must satisfy the stationarity 

conditions 

 

𝜕𝑝(𝐷|𝝈, 𝜶)

𝜕𝜎𝑗
|

𝝈=�̂�
𝜶=�̂�

= ∫
𝜕𝑝(𝐷|𝜽, 𝝈)

𝜕𝜎𝑗
𝑝(𝜽|𝜶)𝑑𝜽

𝛩

|
𝝈=�̂�
𝜶=�̂�

= 0 (3.17) 

for 𝑗 = 1, … , 𝑁𝑜 and 

 

𝜕𝑝(𝐷|𝝈, 𝜶)

𝜕𝛼𝑖
|

𝜎=�̂�
𝜶=�̂�

= ∫ 𝑝(𝐷|𝜽, 𝜎)
𝜕𝑝(𝜽|𝜶)

𝜕𝛼𝑖
𝑑𝜽

𝛩

|
𝜎=�̂�
𝜶=�̂�

= 0 (3.18) 

for 𝑖 = 1, … , 𝑁𝜃. 

 

It is shown in Appendix 3.A.2 that from Eqs. (3.17) and (3.18) one can readily get 

 �̂�𝑗
2 = ∫ 𝐽𝑗(𝜽)𝑝(𝜽|𝐷, �̂�, �̂�)𝑑𝜽

𝛩

 (3.19) 

and 

 �̂�𝑖 =
1

∫ 𝜃𝑖
2𝑝(𝜽|𝐷, �̂�, �̂�)𝑑𝜽

𝛩

 . (3.20) 

The above integrals are high dimensional and the numerical integration is intractable. They can be 

computed using sampling methods which are computationally very costly (Ching & Chen, 2007). 

Here we use a Laplace asymptotic approximation for the integrals (Beck & Katafygiotis, 1998), 

based on the fact that one has a large number of data. In this case the uncertainty in the posterior 

distribution concentrates in the neighborhood of the most probable value. The size of the 

uncertainty region is inversely proportional to the square root of the number of data, and thus 

decreases as the number of data increases. The posterior distribution can be asymptotically 
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approximated by a delta function located at the most probable value �̂� = �̂�(�̂�, �̂�) in the parameter 

space. In this case the expressions in Eq. (3.19) and Eq. (3.20) for the most preferred values �̂� and 

�̂� become 

 �̂�𝑗
2 ∼ 𝐽 (�̂�(�̂�, �̂�)) (3.21) 

for 𝑗 = 1, … , 𝑁𝑜 and 

 �̂�𝑖 ∼
1

𝜃𝑖
2(�̂�, �̂�)

 (3.22) 

for 𝑖 = 1, … , 𝑁𝜃. 

 

Note that for the special case of 𝜎𝑗 = 𝜎, ∀𝑗, as shown in Appendix 3.A.2, in place of Eq. (3.19) 

one gets  

 �̂�2 = ∫ 𝐽(𝜽)𝑝(𝜽|𝐷, �̂�, �̂�)𝑑𝜽

𝛩

 . (3.23) 

By asymptotically approximating the posterior distribution by a delta function located at the most 

probable value �̂� = �̂�(�̂�, �̂�), in place of Eq. (3.21) one gets 

 �̂�2 ∼ 𝐽 (�̂�(�̂�, �̂�)) . (3.24) 

 

In order to get a solution, one requires the estimation of �̂�(�̂�, �̂�), obtained by minimizing Eq. 

(3.12) with values of 𝝈 and 𝜶 given by the most preferred values �̂� and �̂�. The structure of Eqs. 

(3.12), (3.21) and (3.22) can be used to solve this problem in an iterative manner as follows. Let 

𝑚 be the counter of the iterations. Select starting values �̂�(0) for the model parameters and estimate 

the prediction error parameter �̂�(0) and the hyperparameters �̂�(0) from Eqs. (3.21) and (3.22) 

respectively. Iterate over 𝑚 until convergence is achieved, by performing the following two steps 

to update the current values of �̂�(𝑚−1), �̂�(𝑚−1) and �̂�(𝑚−1): 

1) Use Eq. (3.12) to estimate �̂�(𝑚) = �̂�(�̂�(𝑚−1), �̂�(𝑚−1)). 
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2) Update the values �̂�(𝑚) and �̂�(𝑚) using Eqs. (3.21) and (3.22) with �̂� replaced by the 

current �̂�(𝑚). 

We terminate the iterations over 𝑚 when the norm of the difference between two consecutive 

values in the iteration is less than a tolerance value 𝜀. For example 

 ‖�̂�(𝑚) − �̂�(𝑚−1)‖
∞

≤ 𝜀 (3.25) 

where ‖𝜽‖∞ = max |𝜃𝑖| is the infinity norm. 

 

It can be shown that the above two-step minimization algorithm is equivalent to the following 

single-objective minimization problem 

 �̂� = 𝑎𝑟𝑔𝑚𝑖𝑛𝜽 [𝑁𝐷 ∑ 𝑙𝑛 (𝐽𝑗(𝜽))

𝑁𝑜

𝑗=1

+ ∑ 𝑙𝑛(𝜃𝑖
2)

𝑁𝜃

𝑖=1

] . (3.26) 

For the special case of 𝜎𝑗 = 𝜎, ∀𝑗, one instead ends up with 

 �̂� = 𝑎𝑟𝑔𝑚𝑖𝑛𝜽 [𝑁𝐷𝑁𝑜𝑙𝑛(𝐽(𝜽)) + ∑ 𝑙𝑛(𝜃𝑖
2)

𝑁𝜃

𝑖=1

] . (3.27) 

The proofs of Eqs. (3.26) and (3.27) are given in Appendix 3.A.3.  

 

 

3.2 Example Applications 

3.2.1 Problem description 

We demonstrate the methodology by considering an example of a three-dimensional, single-bay, 

15-story steel moment frame structure, shown in Figure 3.1A. Damage in steel moment frame 

buildings is most often manifested in the form of cracks in the beam-column connections (e.g., 

Miller, 1998; Roeder, 2000). The presence of a crack causes a reduction of the local stiffness when 

the crack is under tension. However, the ability to bear compressive loads is unaltered when the 

crack closes under compression. Guided by these observations, we consider the damage to the 

structure to be in the form of reduction of the stiffness in tension at the beams ends. 
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The finite element model of the structure is developed in OpenSEES (Mazzoni, et al., 2006). In 

order to be able to model the realistic behavior associated with the opening and closing of the 

cracks, we make use of fiber elements for the beams (Taucer, et al., 1991). In order to monitor the 

local stiffness reduction in the beam-column connections, the beams parallel to the horizontal x-

direction are divided into segments along their length. The ends of each beam structural element 

are separate elements, as displayed in Figure 3.1B, which we refer to as “beam end elements.” 

Each element is further discretized along its cross-section into a number of fibers, similar to what 

is displayed in Figure 3.1C, with the uniaxial material used for the fibers having a bilinear stress-

strain behavior, as shown in Figure 3.1D. The lowest five modal frequencies of the building using 

the nominal values of the material properties are: 𝑓1 = 0.34𝐻𝑧 (1st translational mode in the y-

direction), 𝑓2 = 0.40𝐻𝑧 (1st translational mode in the x-direction), 𝑓3 = 0.41𝐻𝑧 (1st torsional 

mode), 𝑓4 = 1.04𝐻𝑧 (2nd translational mode in the y-direction) and 𝑓5 = 1.24𝐻𝑧 (2nd translational 

mode in the x-direction). 

 

There are many possible ways of parameterizing the structure so that the parameters are associated 

with structural damage. Choosing the most appropriate parameterization can always be viewed as 

a model selection problem – second level of inference (MacKay, 1992). For our examples we will 

be considering damage to the beams oriented along the x horizontal direction. The beam end 

elements are grouped into substructures and each substructure is associated with a parameter. For 

the initial damage scenarios we parameterize the model using one parameter per story. This allows 

us to determine the location of the damage in a story-by-story level. As shown in Figure 3.1A all 

beam end elements of every floor belong to the same substructure and get associated to the same 

parameter. For our 15-story building, the number of model parameters is 15. 

 

More specifically, each model parameter accounts for the change of stiffness in tension of the 

beam end elements. This fractional change is assumed to be the same for all beam ends of a story. 

Thus, the components 𝜃𝑖 of the model parameters 𝜽 used for parameterizing the stiffness of the 

substructure are defined as follows:  
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𝜃𝑖 =
𝜓𝑖 − 𝜓𝑖

𝑛𝑜𝑚

𝜓𝑖
𝑛𝑜𝑚  (3.28) 

where 𝜓𝑖 is the stiffness in tension of the elements at the new state and 𝜓𝑖
𝑛𝑜𝑚 is the nominal 

(undamaged) stiffness in tension. We define our “Damage index” to be equal to the MAP value 

(�̂�) of the model parameters 𝜽. Thus, the damage index monitors the change of stiffness in tension 

of the beam end elements. The undamaged state corresponds to 𝜽 = 𝟎, while damage (loss of 

stiffness in tension) corresponds to negative values of 𝜽. 

 

For any undamaged elements, the uniaxial material stress-strain relationship is linear, having the 

same nominal modulus of elasticity (𝐸𝑛𝑜𝑚) in both compression and tension. The nominal material 

modulus of elasticity is assumed to be known, since it can be estimated from model calibration 

prior to the damaging event. Even though the modulus of elasticity of the material does not change, 

a way to introduce the desired stiffness reduction in tension is through a bilinear material stress-

strain constitutive relation. Using this modeling, the model parameters 𝜽 are associated with the 

fiber uniaxial material modulus of elasticity in tension, as depicted in Figure 3.1D. The modulus 

of elasticity in compression remains unaltered and equal to the nominal value (𝐸𝑛𝑜𝑚).  

 

The nonlinearities due to the crack opening are activated during low, moderate and severe 

earthquake events as well as ambient vibrations. For this example problem, we consider no 

material nonlinearities and will be using excitations small enough for the materials to remain in 

the elastic regime. However, since the methodology relies on time history measurements, the 

proposed damage identification framework can be used for any finite element model, and a model 

with material hysteretic behavior can be used in the same way.  
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Figure 3.1. (A) The 15-story steel moment frame structure considered. Different colors denote 

the elements corresponding to the different substructures (here parameterization case A is 

shown). Each substructure is allocated a different parameter (θi). (B) Detail: the beam end 

elements are colored in purple. (C) Cross-section of an example fiber element. (D) The uniaxial 

material stress-strain curve – the model parameter θi characterizes the loss of stiffness in 

tension. 

 

 

3.2.2 Damage scenarios and application details 

We introduce damage by applying a 50% reduction in the stiffness in tension at the beam end 

elements. We consider the following 8 damage scenarios. Damage is introduced in:  

A) all the beam ends of the 1st floor (corresponding to distributed weld damage in the 1st floor);  

B) all the beam ends of the 1st and 5th floors (corresponding to distributed weld damage in the 

1st and 5th floors);  
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C) all the beam ends of the 14th floor (corresponding to distributed weld damage in the 14th 

floor); 

D) all the beam ends every 3rd floor (corresponding to distributed weld damage in floors 1, 4, 7, 

10, and 13);  

E) the left half of the beam ends of the 1st floor (corresponding to weld damage on one side of 

the beam elements of the 1st floor);  

F) the front beam of the 1st floor;  (corresponding to weld damage on both sides of one of the 

beams of the 1st floor); 

G) the front beam ends of the floors 1 and 2 & the back beam ends of floors 4 and 5 

(corresponding to weld damage on both sides of a beam in floors 1, 2, 4, and 5);  

H) the left-side end elements of the front beams in floors 1, 2, and 3 (corresponding to weld 

damage on one side of a beam in floors 1, 2, and 3).  

The elements damaged for each case are shown in Figure 3.2 (marked in red).  
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Figure 3.2. The damage scenarios considered. 
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The data is simulated by running an excitation through the damaged structural model. The 

identification is done based on low amplitude vibrations (e.g. vibrations from aftershocks) so that 

material nonlinearities throughout the structure are not activated. In our example the simulated 

data are generated by subjecting the building to a scaled version (x0.2) of the north-south 

component of the 1995 Kobe Japan earthquake (M6.9) recorded at the Nishi-Akashi station, 

displayed in Figure 3.3. The excitation is applied in all ground (fixed) nodes in both horizontal 

directions.  

 

 

Figure 3.3. The applied ground acceleration –1995 Kobe Japan earthquake (Nishi-Akashi 

station) record, scaled (x0.2). 

 

Floor-by-floor measurement data is assumed to be available for the structure. This is consistent 

with the density of the CSN network which has dense sensors deployments present in multiple 

buildings. We consider the bottom left corner of each story to be instrumented with one tri-axial 
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accelerometer per floor. The acceleration recordings in the two horizontal directions are used in 

the analysis.  

 

Additional model error is considered by perturbing the stiffness properties of the model used to 

simulate the measurements. For model error level 𝑒𝛼, the stiffness values of all beam and column 

elements in the structure are independently perturbed using a Gaussian distribution with mean 

equal to the nominal stiffness value and standard deviation equal to 𝑒𝛼 multiplied by the nominal 

stiffness value. For some cases, measurement error is also considered. For measurement error level 

𝑒𝛽, the simulated time history responses are perturbed by adding zero-mean Gaussian white noise 

with standard deviation equal to 𝑒𝛽 multiplied by the response intensity.  

 

Regarding the additional model error, we consider four different model error cases corresponding 

to 𝑒𝛼 = 0 (no added model error), 𝑒𝛼 = 1% and 2% (small to moderate added model error) and 

𝑒𝛼 = 5% (large added model error). The 5% model error case corresponds to a large model error 

since the stiffness values of all beam and column elements in the structure are being independently 

perturbed using a Gaussian distribution with standard deviation equal to 5% of their nominal 

stiffness value. For a Gaussian distribution, 31.73% of the samples are expected to be further than 

one standard deviation away, while 4.55% of the samples can be further than two standard 

deviations away. For example, for our 15-story model that has 180 elements, this corresponds to 

about 57 elements with nominal stiffness 𝜓𝑖
𝑛𝑜𝑚 having stiffness less than 0.95 𝜓𝑖

𝑛𝑜𝑚 or greater 

than 1.05 𝜓𝑖
𝑛𝑜𝑚, and about 8 elements having stiffness less than 0.9 𝜓𝑖

𝑛𝑜𝑚 or greater than 

1.1 𝜓𝑖
𝑛𝑜𝑚. Depending on the distribution of these elements in the structure this can severely alter 

the structure’s properties. 

 

The finite element analysis in OpenSEES is fully integrated with MATLAB where the 

formulations discussed in the previous section (Section 3.1) are implemented. For the 

optimizations, the fmincon Interior Point Algorithm (MATLAB, 2019; Byrd, et al., 2000), a 

bounded gradient-based optimization is used. For convenience, to allow for a non-intrusive 

modeling when integrating the SBL algorithm with the OpenSEES finite element model, the 

derivatives of the objective function are numerically computed. The 𝜃𝑖 values are bounded within 
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[−0.9, 0.01], based on the fact that we expect neither a total loss, nor an increase of the stiffness 

in tension at the beam ends. The initial values of the model parameters are assigned 𝜃𝑖
(0)

=

−0.05, for 𝑖 = 1, … , 𝑁𝜃, i.e. close to the values corresponding to the initial (undamaged) state of 

the structure. Solving the single-objective minimization problem is generally much more efficient 

than the iterative one. However for our application where we use a gradient-based algorithm with 

the derivatives being numerically computed, the logarithms in Eq. (3.27) can cause convergence 

issues. Thus, for our example problem, the two-step optimization algorithm is used. The initial 

values for �̂�(0) and �̂�(0) are calculated from Eqs. (3.24) and (3.22) using the selected �̂�(0). 

 

 

3.2.3 Study I: Damage Identification under Varying Model and Measurement Error Levels 

In study I, we examine the first five damage scenarios (scenarios A-E in Figure 3.2). We have a 

floor-by-floor parameterization (as shown in Figure 3.1A), and assume one sensor per floor. 

Overall, the SBL identification successfully yields distinct non-zero values for the damage indices 

at the damaged floors, for all damage scenarios and degrees of model and measurement error 

assumed. For all scenarios when there is no model and measurement error, we get the exact 

solution, i.e. the model parameter values used for simulating the data. This also demonstrates that 

the optimization algorithm using numerically evaluated derivatives works well.  

 

For damage scenario A (damage in floor 1) we consider four different model error cases 

corresponding to 𝑒𝛼 = 0 (no model error), 𝑒𝛼 = 1% and 2% (small to moderate model error) and 

𝑒𝛼 = 5% (large model error). The damage indices obtained as a function of the floor level for 

different model errors are presented in Figure 3.4. The damage identification is pretty good, even 

for the higher model error cases. The two-step optimization algorithm converges within 2-3 

iterations over 𝑚. The existence of damage is recognized for all model error cases. For the low-

medium model error cases, the location and degree of damage is identified almost perfectly. The 

2%-5% false damage estimated in floors 2 to 6 is due to the model error. The damage at floor 1 is 

slightly overestimated at 52-55% instead of 50%, which is the actual inflicted damage. For the 

large model error case, the false alarms of around 15% in floors 2-6 are evident. However, the 

actual damage location and the magnitude of damage are adequately identified. 
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Figure 3.4. Damage indices for scenario A (damage in floor 1) for varying model error (eα) 

levels. 

 

For damage scenario B (damage in floors 1 and 5) we consider the effectiveness of the method for 

different model errors, as well as different measurement errors. Figure 3.5 displays the 

identification results for different sizes of model error, ranging from 0% to 5%. Like in the previous 

scenario, the existence of damage is successfully recognized for all model error cases. The location 

and extent of damage are also determined to a satisfying degree. For low to moderate model error, 

damage is slightly overestimated in floor 1 and slightly underestimated in floor 5, while floors 

neighboring the damaged ones demonstrate false damage of small magnitude not exceeding 9% 

for 𝑒𝛼 = 1% magnitude of model error and 15% for 𝑒𝛼 = 2% magnitude of model error. For the 

higher model error case, we again get a successful identification of the two damaged floors, but 

false alarms of up to 25% also emerge for floors 2, 3, 4, and 6. 
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Figure 3.5. Damage indices for scenario B (damage in floors 1 and 5) for varying model error 

(eα) levels. 

 

Figure 3.6 shows the identification results for damage scenario B, for different degrees of 

measurement error, ranging from 0% to as high as 80%. The identification is almost perfect 

independent of measurement error. Adding white noise measurement error to data simulated by 

the nominal damage model, a procedure that has been widely used in the literature when simulating 

data, does not really affect the effectiveness of the method for identifying the location and 

magnitude of damage. It seems that such a procedure of adding white measurement noise, ignoring 

model error, should be avoided or considered with care when testing a damage identification 

method for its effectiveness using simulated data. 
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Figure 3.6. Damage indices for scenario B (damage in floors 1 and 5) for varying measurement 

error (eβ) levels. 

 

In all cases considered, the two-step optimization algorithm converges rapidly, usually within 2-4 

iterations over 𝑚. In Figures 3.7 and 3.8 we show for two example cases the behavior of the MAP 

𝜃𝑖 values, the 𝜎, and select 𝛼𝑖 values, for each iteration over 𝑚. Figure 3.7 displays the variation 

during the iterative process for the case of damage scenario B with model error 𝑒𝛼 = 2%, and 

Figure 3.8 for the case of damage scenario B with measurement error 𝑒𝛽 = 40%. For brevity we 

plot only two of the hyperparameters. We chose to plot 𝛼5 and 𝛼10 in order to capture both 

behaviors of a hyperparameter. The hyperparameter 𝛼5 corresponds to the “relevant” parameter 

𝜃5 and its value decreases as a consequence. On the other hand, hyperparameter 𝛼10 corresponds 

to the “irrelevant” parameter 𝜃10 and its value goes to infinity, effectively “shutting-off” the 

corresponding parameter, implementing Occam’s razor. Starting from all damage indices being 

non-zero, most of them go to zero and the damage gets decently localized within 1-2 iterations. 

For both cases, a hyperparameter value 𝛼10 > 104 leads to the damage index for the corresponding 
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model parameter 𝜃10 being zero. The prediction error parameter 𝜎 changes during the first 

iteration, but remains relatively constant after that. 

 

 

Figure 3.7. Evolution with iterations. Scenario B (damage in floors 1 and 5) with eα = 2% model 

error. (A) Damage indices. (B) Prediction error parameter 𝜎. (C) Hyperparameter α5. (D) 

Hyperparameter α10. 
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Figure 3.8. Evolution with iterations. Scenario B (damage in floors 1 and 5) with eβ = 40% 

measurement error. (A) Damage indices. (B) Prediction error parameter 𝜎. (C) Hyperparameter 

α5. (D) Hyperparameter α10. 

 

Figure 3.9 displays the identification results for damage scenario C (damage in floor 14). Here we 

again consider four different model error cases corresponding to 𝑒𝛼 = 0 (no model error), 𝑒𝛼 =

1% and 2% (small to moderate model error) and 𝑒𝛼 = 5% (large model error). This is expected 

to be a rare damage scenario, since damage in a steel moment frame structure is usually observed 

in the lower floors. Compared to the previous scenarios where the damage was located at the lower 

floor, the identification of the damage at the higher floors (floor 14) is more challenging. The 

identification is perfect, as expected, for no model error. For low and moderate model errors, the 

damage at floor 14 is still identified, but as 40% instead of the inflicted 50% extent of damage. 

However, there are possible false alarms on floors 1, 3, 5, 6, 13, and 15 with extent of damage of 
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15%, 11%, 5%, 10%, 6%, and 20%, respectively. For the larger model error case it is harder to 

reliably identify the damage at floor 14 since false alarms with extent of damage of similar or 

higher level than the one identified in floor 14 is reported in floors 1, 3, 6, and 13. Identification 

of damage in the top few floors is challenging, due to the fact that the model predictions are 

insensitive to changes of stiffness in the higher floors, i.e. the changes in the response are very 

small when the higher floor parameters change. 

 

 

Figure 3.9. Damage indices for scenario C (damage in floor 14) for varying model error (eα) 

levels. 

 

For damage scenario D (damage in floors 1, 4, 7, 10, and 13), the identification results are shown 

in Figure 3.10. We again consider four different model error cases ranging from 0% to 5%. 

Damage identification for this scenario is expected to be challenging since the damage pattern has 

less sparsity, but also there is damage at the higher floors. This damage scenario is also expected 

to be rare since damage in a steel moment frame structure is usually found to be sparse and is 

observed in the lower floors. For low and moderate model errors, the identification of the location 
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and extent of damage is still pretty good with the appearance of the previously observed spread of 

the identified damage to floors neighboring the damaged ones. The extent of damage in the floors 

neighboring those that are damaged is not higher than 15%. For high model error, the damaged 

floors are still identified but there is a high number of false alarms. Specifically, the identification 

of the damage at the higher floors (e.g., at floor 13) is difficult. This is, as discussed previously, 

due to the fact that the model predictions are insensitive to changes of stiffness in the higher floors.  

 

 

Figure 3.10. Damage indices for scenario D (damage in floors 1, 4, 7, 10, and 13) for varying 

model error (eα) levels. 

 

For damage scenario E (damage only in the left side beam end elements of floor 1), there is 

significant model error added since there is no possible solution from the parameterized model that 

will exactly predict the simulated data even for 𝑒𝛼 = 0. The results are shown in Figure 3.11, for 

4 different levels of additional model error, with 𝑒𝛼 ranging from 0% to 5%. Considering the 

existence of model error even for 𝑒𝛼 = 0, the identification of the damage is successful. For low 

to moderate model error (𝑒𝛼 = 0%, 1% and 2%), the extent of damage is estimated to be 32% to 
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40%, lower than the inflicted damage of 50%. The estimated extent of damage is reasonable 

considering that damage was inflicted at one end of the beams while the model parameters change 

at both ends. The observations as the model error increases are similar to the previous damage 

scenarios. The damaged floors are always identified but there is also a number of false alarms 

occurring for high model error. 

 

 

Figure 3.11. Damage indices for scenario E (damage in half of the beam end elements of floor 1) 

for varying model error (eα) levels. 

 

 

3.2.4. Study II: Exploring Alternative Parameterizations 

In the second study we investigate the performance of the damage identification methodology that 

was developed in this thesis for different parameterizations. In addition to the initial 

parameterization where we parameterize the model using one parameter per story 

(parameterization case A – Figure 3.12A), we will consider three additional parameterizations, 

shown in Figure 3.12. For the parameterization case B, we parameterize the model using two 



 

 

81 

parameters per floor (Figure 3.12B) for the first five floors. Case C is similar but extended to the 

first seven floors (Figure 3.12C). Case D is the extreme case where each beam end belongs to a 

separate substructure and has its own parameter (Figure 3.12D). Thus, for case D we have four 

parameters per floor, for the first four floors. These denser parameterizations are limited to the first 

few floors in order to keep the model parameters at a reasonable number and to avoid excessive 

computational cost due to the large number of parameters. This parameterization of the lower 

floors is also guided by observations that damage in steel moment frame buildings is concentrated 

at the lower floors. 

 

 

Figure 3.12. The parameterization cases considered. 

 

In study 2 we consider the damage scenarios F, G, and H. For these three scenarios, the damage 

pattern is no longer symmetric and the torsional mode of the structure will also be excited. 

Furthermore, by studying the modes of the structure, one can see that the former translational 

modes (for the undamaged structure) now also contain a small torsional contribution after the 

damage is introduced to the structure. This can be viewed in Figure 3.13, where we plot the 

modeshapes based on the initial tensile stiffness of the damaged model, for damage scenario H. 
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When damage is introduced in the left beam ends of floors 1-3, the 3rd mode which is torsional 

now contributes to the motion, and the previously purely translational in the x-direction 2nd mode 

also contains some torsional contribution, as it can be seen in Figure 3.13B. The change in the 

modal frequencies of the building from the undamaged to the damaged state is extremely low. The 

largest decrease is near 1% for the 2nd mode (from 𝑓2 = 0.4𝐻𝑧 to 𝑓2 = 0.395𝐻𝑧). 
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Figure 3.13. The first 3 modeshapes of the structure. (A) For the undamaged structure. (B) For 

the damaged structure (damage scenario H). 
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Note that if the original floor-by-floor parameterization (case A) was used for identifying damage 

scenarios F-H, then model error would be introduced in the analysis due to the parameterization. 

This is because there will be no values of the model parameters that will predict the artificial data 

simulated by the damaged model in the zero model error case (𝑒𝛼 = 0), similar to what we had for 

case E. 

 

It should be noted that up to now the damage scenarios involved simultaneous damage in both 

opposing sides (here termed front and back sides) of a floor. In contrast, the damage scenarios F, 

G and H involve damage on one side of the floor. The case B and C parameterizations shown in 

Figure 3.12 are introduced to pinpoint damage at one or both sides (front and/or back sides) of a 

floor. These parameterizations are used to test the effectiveness of our SBL technique to identify 

the damaged side (front or back) of a floor, instead of the damaged floor as was done with the 

study I. Moreover, parameterization case D is more detailed, and is used to identify damage at one 

of the two ends of the floor beam located at the front or back side.  

 

For the damage scenario F (damage in the front beam of the 1st floor – Figure 3.2), with the two 

parameters per floor (parameterization case B - Figure 3.12B), we consider the same four model 

error cases: 𝑒𝛼 = 0 (no model error), 𝑒𝛼 = 1% and 2% (small to moderate model error) and 𝑒𝛼 =

5% (large model error). The damage indices obtained as a function of the parameter number (now 

10 total parameters) for different model errors are presented in Figure 3.14. For this higher 

resolution (using two parameters per floor), the damage identification is again successful, even for 

the higher model error cases. The two-step optimization algorithm converges within 3-5 iterations 

over 𝑚. The existence of damage is recognized for all model error cases. For zero model error we 

get the exact solution. For the low-medium model error cases, the location and extent of damage 

is identified successfully at the front side of the 1st floor, although some false alarms at the back 

side of the 1st floor and the front side of the 2nd, 3rd and 5th floors corresponding to a small extent 

of damage of 10% in lower floors to 20% in the 5th floor is also identified. For the large model 

error, the presence of damage in the front side of the first floor is clearly identified with 60%, 

instead of the inflicted 50%, extent of damage. A few false detections at the lower floors are also 
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possible with extent of damage as high as 30% for the lower floors and 40% for the 5th floor. In 

summary, for moderate model error the identification of damage is successful, while for large 

model error there is a number of false alarms at non-damaged sides of the other floors.  

 

 

Figure 3.14. Damage indices for scenario F (damage in the front beam end elements of floor 1) 

for varying model error levels (eα). Two parameters per floor (parameterization B).  

 

For scenario G, we introduce damage in floors 1 and 2 at the front beam and in floors 4 and 5 at 

the beam in the back (Figure 3.2). The two parameters per floor parameterization is extended to 

the first 7 floors (parameterization case C - Figure 3.12C), so there are 14 total model parameters. 

The identification results are shown in Figure 3.15, for no model error and moderate model error 

(2%). For no model error, the exact solution is found, as expected. For moderate model error the 

damage locations and magnitudes are again adequately identified. The magnitudes of the damage 

in floors 1, 2, and 4 (parameters 𝜃1, 𝜃3, and 𝜃8) are found pretty successfully, with the error 

between the predicted and the inflicted damage being less than 5%. The identification gets more 

challenging for the higher floor (floor 5 – parameter 𝜃8) where the damage is underestimated, with 
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the error between the predicted and the inflicted damage to be around 20%. Similar to the previous 

moderate model error examples, a few false alarms with extend of damage less than 20% appear 

in undamaged floors. Using the damage results in Figure 3.14 (damage scenario F) and Figure 3.15 

(damage scenario G), it can be concluded that the SBL technique, with the appropriate 

parameterization, can identify not only the damaged floor but also the side that is damaged in a 

floor. 

 

 

Figure 3.15. Damage indices for scenario G (damage in the front beam ends of the floors 1 and 

2 & the back beam ends of floors 4 and 5) for varying model error levels (eα). Two parameters 

per floor (parameterization B). 

 

In scenario H, damage is introduced at one side (the left side) of the beam end elements of the 

front beams in floors 1, 2, and 3 (Figure 3.2). Figure 3.16 presents the identification results using 

two parameters per floor (parameterization B), for no model error and moderate model error (2%). 

Note that when using parameterization B for identifying damage scenario H, there is inherent 

model error arising from the parameterization, since parameterization B simultaneously changes 
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the stiffness properties of both the left and the right beam end elements, while the damage is at the 

left beam end element only. Despite the model parameterization error, under no additional model 

error (𝑒𝛼 = 0), the identification of the damage locations is ideal with only the three damaged 

beams (𝜃1, 𝜃3, and 𝜃5) having a damage index that is significant different than zero. Furthermore, 

the fact that the magnitude is almost the same for the three locations is encouraging. Under 

moderate model error (𝑒𝛼 = 2%) the three damage locations are correctly identified, and false 

alarms appear in floors 2 and 9 predicting damage indices of around 10% and 20%. 

 

For scenario H we also experiment with an even denser parameterization in an effort to locate the 

end of the beam that is damaged in a specific floor. Figure 3.17 displays the identification results 

using four parameters per floor (parameterization D). Using this parameterization there is no 

longer inherent model error due to parameterization, since in this case there exist parameter values 

that will give predictions that match the simulated data. The case 𝑒𝛼 = 0% (no model error) should 

be able to identify the location and size of damage exactly. The exact damage index values are 

shown in blue in Figure 3.17. This is the expected solution under no model error. From the 

identified results shown in Figure 3.17 it can be seen that it is impossible to distinguish the damage 

between the two beam ends of the same element. Nonetheless, the algorithm does a great job of 

identifying which beam is damaged, as well as the magnitude of the damage. For example, under 

no model error the algorithm correctly finds the front beam of the 1st floor to be damaged, even 

though it identifies the right end beam to be the one damaged rather than the left one. Similarly for 

the 2nd and 3rd floors, the damage is successfully located at the front beam. The results are similar 

for the moderate (2%) model error case with the addition of the few expected low magnitude false 

alarms. Specifically, the extent of damage is missed in the third floor, while a false alarm is 

obtained indicating damage in the neighboring fourth floor. It seems that one set of measurements 

per floor in the two horizontal directions is not adequate to identify the end point of the beam 

where damage occurs. Also, this detailed parameterization per floor should be considered with 

care since the extra parameters seem to be redundant and have an effect of deteriorating the 

performance of the SΒL methodology. 
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Based on the results obtained and the fact that a damage scenario to be predicted by the zero model 

error case is not the one that is inflicted, one can conclude that the solution is non-unique. There 

is more than one global solution to the problem with each one of them identifying damage at the 

left or right end of the damaged beam. The search for these multiple solutions was not pursued 

further due to the computational cost. However, one way to identify them is to run the optimization 

algorithm several times and use different starting values for each run.  

 

These results reveal the good performance of the method for identifying damage with higher 

spatial resolution. For our example application, the SBL methodology presented here is able to 

identify damage in a beam-by-beam level.  

 

 

Figure 3.16. Damage indices for scenario H (left-side end elements of the front beams in floors 

1, 2, and 3) for varying model error levels (eα). Two parameters per floor (parameterization B). 
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Figure 3.17. Damage indices for scenario H (left-side end elements of the front beams in floors 

1, 2, and 3) for varying model error levels (eα). Four parameters per floor (parameterization D). 

The expected solution under no model error is marked in blue. 

 

 

3.2.4 Study III: Updating of a Linear Model  

We next present an additional illustrative example case where we examine the effect of using a 

linear model, instead of the nonlinear model, for the updating while the data is still simulated using 

the original nonlinear model. For the linear model updating, the stiffnesses in both tension and 

compression at the beam ends are considered to be the same. The model parameters are selected 

to be the stiffnesses in both tension and compression of the beam ends. We parameterize the model 

using one parameter per story and the same substructures are used (parameterization A). This is 

another case with inherent model error due to the parameterization since there are no parameter 

values of the linear model that will give predictions that match those simulated from the nonlinear 

model. We consider damage scenario B, i.e. 50% stiffness reduction in tension for all the beam 

ends of the 1st and 5th floors, with no additional model error.  
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The results are shown in Figure 3.18. As we saw previously, when using the nonlinear model with 

no additional model error we get the exact solution. When using the linear model for the updating, 

we still get decent identification of the damage but the performance is greatly reduced. The location 

of damage is correctly identified to be at the 1st and 5th floors but the size of damage is significantly 

underestimated to be 30% and 20%, respectively, instead of the inflicted damage of 50%. The 

results are quite similar with what we were getting when applying additional model error (Figure 

3.5), with regards to the errors related to the magnitude of the damage and possible false alarms in 

floors neighboring the damaged ones. This case clearly suggests that using the right model 

structure and the right parameterization (here a nonlinear model and parameters related to 

nonlinear behavior) is important, since the methodology can be much more effective in identifying 

damage than when using approximate model structures (e.g. linear models) and parameters that 

are non-consistent with the damage pattern. 

 

 

Figure 3.18. Resulting damage indices comparison when updating a nonlinear versus a linear 

model, for scenario B (damage in floors 1 and 5). The data were simulated using the nonlinear 

model. 
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3.2.5 Study IV: Exploring Denser Instrumentation 

For the fourth study we consider damage scenarios B, G, and H. We examine the effect of denser 

instrumentation, considering measurements in two locations per floor instead of the previous one 

location per floor. The two instrumentation types are shown in Figure 3.19. For instrumentation 

case A we assume the bottom left corner of each floor to be instrumented; this is the 

instrumentation used so far. For instrumentation case B we consider the two diagonally opposite 

corners of every floor to be instrumented and measured.  

 

 

Figure 3.19. The instrumentation cases considered. 

 

We consider damage scenario B (50% stiffness reduction in tension in all the beam ends of the 1st 

and 5th floors) with 𝑒𝛼 = 2% model error. The parameterization is case A with one parameter per 
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floor. Figure 3.20 displays the identification results when using two sensors per floor compared 

with the previous results using one sensor per floor. The performance of the method is the same 

for the damaged floors and slightly worse for some of the undamaged floors. The extra 

measurement data seem to include no additional information and thus do not improve the 

performance. On the contrary, the use of twice as many acceleration time histories to identify 

damage slightly deteriorates the results obtained in the undamaged floors, mainly due to the model 

error. 

 

 

Figure 3.20. Resulting damage indices comparison when having instrumentation in 1 versus 2 

locations per floor, for scenario B (damage in floors 1 and 5) with eα = 2% model error. 

 

Considering the denser parameterization cases, Figure 3.21 displays the identification results when 

using two sensors per floor compared with the previous one sensor per floor for damage scenario 

G considering two parameters per floor (parameterization case C) and 𝑒𝛼 = 2% model error. 

Figure 3.22 displays the identification results for damage scenario H considering four parameters 

per floor (parameterization case D) for both the 𝑒𝛼 = 0% and the 𝑒𝛼 = 2% model error cases. The 
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performance of the method for the 𝑒𝛼 = 2% model error case is the same. In both cases, there is 

no clear evidence that adding two sensors per floor improves the damage identification results. 

Some slight improvement at the damage floors is observed in Figure 3.21 but such improvement 

is not clear in Figure 3.22. Finally, note from the results in Figure 3.22 that for the zero model 

error case, one or two sensors per floor identifies the beam location and size of damage reliably.  

 

 

Figure 3.21. Resulting damage indices comparison when having instrumentation in 1 versus 2 

locations per floor, for scenario G (damage in the front beam ends of the floors 1 and 2 & the 

back beam ends of floors 4 and 5) with eα = 2% model error. Two parameters per floor 

(parameterization B). 
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Figure 3.22. Damage indices for scenario H (left-side end elements of the front beams in floors 

1, 2, and 3). Zero and eα = 2% model error levels are shown. Four parameters per floor 

(parameterization D). The expected solution under no model error is marked in blue. 

 

 

3.3. Conclusions 

An SBL methodology is developed and tested for its effectiveness in identifying structural damage. 

The method uses time history measurements and, as a result, can be applied with non-linear finite 

element models. The proposed SBL methodology is potentially applicable to any system (e.g., 

high-rise buildings, bridges) and also for any type of model nonlinearities (e.g., hysteretic material 

models). The damage identification is accomplished by evaluating the model parameter set 𝜽 with 

each component in the parameter set being associated with a damage location and severity. 

Through the Bayesian model selection embodying Occam’s razor and the ability of the ARD prior 

PDF to deem certain parameters irrelevant, sparsity in the resulting model parameters is promoted. 
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Considering a three-dimensional, single-bay, 15-story steel moment frame structure, the 

effectiveness of the method is illustrated under different inflicted damage scenarios associated with 

weld fractures in the beam ends. For all damage scenarios and sizes of model and measurement 

errors considered, distinct non-zero damage index values were acquired at the damaged floors. For 

small to moderate model error, the identification of the existence, location and degree of damage 

is successful. Under large model error the identification of the damage gets more difficult with 

false alarms appearing in floors neighboring the damaged ones. In most damage cases considered, 

the location and extent of damage is correctly identified. False alarms at non-damaged locations 

with lesser extent of damage may also be produced. However, the identification of the damaged 

locations is promising.  

 

The computational effort for damage identification using the SBL algorithm depends on the time 

that it takes to run one simulation for the system model and the number of iterations involved in 

the SBL algorithm. The time to run a system simulation depends on the complexity of the model, 

the nonlinearities activated and the solution strategies employed to solve the equation of motion. 

The number of iterations required for convergence depends on the number of model parameters 

and on the sparsity of the damage. For the 15-story, three-dimensional, steel frame building used 

in this study, the time-to-solution ranges from 4 hours to a couple of days on a personal computer 

(using a i7-6700HQ 4-core processor and parallel CPU computing with Matlab). The time-to-

solution also depends on the damage scenarios considered, the parameterization used to identify 

damage, and the number of sensors. The computational effort can substantially increase for high-

rise buildings and for the cases where hysteretic behavior is activated during strong ground motion.  
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3.A Appendices 

3.A.1 Likelihood Derivation 

In this appendix we derive Eq. (3.3) for the likelihood function given the values of the model 

parameters 𝜽 and 𝝈. The probability of observing the data given 𝜽 and 𝝈 is given by 

 

𝑝(𝐷|𝜽, 𝝈) = 𝑝({�̂�(𝑘) ∈ ℛ𝑁𝑜 , 𝑘 = 1, … , 𝑁𝐷}|𝜽, 𝝈) 

= 𝑝({�̂�1(𝑘), … , �̂�𝑁𝑜
(𝑘), 𝑘 = 1, … , 𝑁𝐷}|𝜽, 𝝈) . 

(3.29) 

Assuming independence for the prediction errors between different response time histories, 

equation (3.29) can, from probability theory, be equivalently written as 

 𝑝(𝐷|𝜽, 𝝈) = ∏ 𝑝({�̂�𝑗(𝑘), 𝑘 = 1, … , 𝑁𝐷}|𝜽, 𝝈)

𝑁𝑜

𝑗=1

 . (3.30) 

Further assuming that the prediction errors for a response time history are independent at different 

time instants, one obtains 

 𝑝(𝐷|𝜽, 𝝈) = ∏ ∏ 𝑝(�̂�𝑗(𝑘)|𝜽, 𝝈)

𝑁𝐷

𝑘=1

𝑁𝑜

𝑗=1

 . (3.31) 

Also, assuming that the predictions errors at different time instants are modeled by i.i.d. zero-mean 

Gaussian variables, i.e. 𝜀𝑗(𝑘)~𝑁(0, �̂�𝑗
2𝜎𝑗

2), the measured time histories �̂�𝑗(𝑘) are from the 

prediction error equation (3.1) also implied to be Gaussian variables, that is, 

�̂�𝑗(𝑘)~𝑁(𝑥𝑗(𝑘, 𝜽), �̂�𝑗
2𝜎𝑗

2), with mean 𝑥𝑗(𝑘, 𝜽) and variance �̂�𝑗
2𝜎𝑗

2. Therefore, the PDF of �̂�𝑗(𝑘), 

given the values of 𝜽 and 𝝈, is given by 

 𝑝(�̂�𝑗(𝑘)|𝜽, 𝝈) =
1

√2𝜋�̂�𝑗𝜎𝑗

𝑒𝑥𝑝 {−
1

2�̂�𝑗
2𝜎𝑗

2 [�̂�𝑗(𝑘) − 𝑥𝑗(𝑘, 𝜽)]
2

} . (3.32) 

Substituting Eq. (3.32) into Eq. (3.31), one obtains  

 𝑝(𝐷|𝜽, 𝝈) = ∏ ∏
1

√2𝜋�̂�𝑗𝜎𝑗

𝑒𝑥𝑝 {−
1

2�̂�𝑗
2𝜎𝑗

2 [�̂�𝑗(𝑘) − 𝑥𝑗(𝑘, 𝜽)]
2

}

𝑁𝐷

𝑘=1

𝑁𝑜

𝑗=1

 (3.33) 

which is equivalent with the target Eq. (3.3).  
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3.A.2 Derivation of Equations (3.19) and (3.20) 

In this appendix we use the stationarity conditions (3.17) and (3.18) in order to derive Eqs. (3.19) 

and (3.20), as well as Eq. (3.23) for the special case of 𝜎𝑗 = 𝜎, ∀𝑗. 

 

 

Using the likelihood defined in Eq. (3.3) one has 

 

𝜕𝑝(𝐷|𝜽, 𝝈)

𝜕𝜎𝑗
=

𝜕

𝜕𝜎𝑗
{

1

(√2𝜋)
𝑁𝐷𝑁𝑜

∏ �̂�𝑚
𝑁𝐷𝜎𝑚

𝑁𝐷𝑁𝑜
m=1

exp {−
𝑁𝐷𝑁𝑜

2
𝒥(𝜽; 𝝈)}} 

= 𝑁𝐷𝑝(𝐷|𝜽, 𝝈) [−
1

𝜎𝑗
+

1

𝜎𝑗
3  𝐽𝑗(𝜽)] . 

(3.34) 

Substituting Eq. (3.34) into the stationarity condition (3.17) we get 

  ∫ 𝑁𝐷𝑝(𝐷|𝜽, �̂�) [−
1

�̂�𝑗
+

1

�̂�𝑗
3  𝐽𝑗(𝜽)] 𝑝(𝜽|�̂�)𝑑𝜽

𝛩

= 0 . (3.35) 

Rearranging terms, one derives that 

 �̂�𝑗
2 =

∫ 𝐽𝑗(𝜽)𝑝(𝐷|𝜽, �̂�)𝑝(𝜽|�̂�)𝑑𝜽
𝛩

∫ 𝑝(𝐷|𝜽, �̂�)𝑝(𝜽|�̂�)𝑑𝜽
𝛩

 . (3.36) 

Using Bayes theorem (Eq. (3.10)), one has that 

 𝑝(𝐷|𝜽, �̂�)𝑝(𝜽|�̂�) = 𝑝(𝜽|𝐷, �̂�, �̂�)𝑝(𝐷|�̂�, �̂�) . (3.37) 

Substituting Eq. (3.37) into Eq. (3.36) one has 

 �̂�𝑗
2 =

∫ 𝐽𝑗(𝜽)𝑝(𝜽|𝐷, �̂�, �̂�)𝑝(𝐷|�̂�, �̂�)𝑑𝜽
𝛩

∫ 𝑝(𝜽|𝐷, �̂�, �̂�)𝑝(𝐷|�̂�, �̂�)𝑑𝜽
𝛩

 . (3.38) 

Noting that the factor 𝑝(𝐷|�̂�, �̂�) is independent of 𝜽 and cancels out from both numerator and 

denominator, and also that ∫ 𝑝(𝜽|𝐷, �̂�, �̂�)𝑑𝜽
𝛩

= 1, ones derives Eq. (3.19). 

 

  



 

 

98 

Using the prior PDF defined in Eq. (3.8) one has 

 

𝜕𝑝(𝜽|𝜶)

𝜕𝛼𝑖
=

𝜕

𝜕𝛼𝑖
{

1

(2𝜋)
𝑁𝜃
2

∏ 𝛼𝑛

1
2

𝑁𝜃

𝑛=1

𝑒𝑥𝑝 [−
1

2
∑ 𝛼𝑛𝜃𝑛

2

𝑁𝜃

𝑛=1

]} 

= 𝑝(𝜽|𝜶) [
1

2𝛼𝑖
−

1

2
𝜃𝑖

2] . 

(3.39) 

Substituting Eq. (3.39) into the stationarity condition (3.18) we get 

 ∫ 𝑝(𝐷|𝜽, �̂�)𝑝(𝜽|�̂�) [
1

2�̂�𝑖
−

1

2
𝜃𝑖

2] 𝑑𝜽

𝛩

= 0 . (3.40) 

Rearranging terms, one derives that 

 �̂�𝑖 =
∫ 𝑝(𝐷|𝜽, �̂�)𝑝(𝜽|�̂�)𝑑𝜽

𝛩

∫ 𝜃𝑖
2𝑝(𝐷|𝜽, �̂�)𝑝(𝜽|�̂�)𝑑𝜽

𝛩

 . (3.41) 

Substituting Eq. (3.37) into Eq. (3.41) one has 

 �̂�𝑖 =
∫ 𝑝(𝜽|𝐷, �̂�, �̂�)𝑝(𝐷|�̂�, �̂�)𝑑𝜽

𝛩

∫ 𝜃𝑖
2𝑝(𝜽|𝐷, �̂�, �̂�)𝑝(𝐷|�̂�, �̂�)𝑑𝜽

𝛩

 . (3.42) 

Noting that the factor 𝑝(𝐷|�̂�, �̂�) is independent of 𝜽 and cancels out from both numerator and 

denominator, and also that ∫ 𝑝(𝜽|𝐷, �̂�, �̂�)𝑑𝜽
𝛩

= 1, ones derives Eq. (3.20). 

 

 

For the special case of 𝜎𝑗 = 𝜎, ∀𝑗 we follow the same procedure. In this case using the likelihood 

function (Eq. (3.6)) one gets 

 

𝜕𝑝(𝐷|𝜽, 𝜎)

𝜕𝜎
=

𝜕

𝜕𝜎
{

1

(√2𝜋)
𝑁𝐷𝑁𝑜

∏ �̂�𝑗
𝑁𝐷𝑁𝑜

𝑗=1 𝜎𝑁𝐷𝑁𝑜

exp {−
𝑁𝐷𝑁𝑜

2𝜎2
𝐽(𝜽)}} 

= 𝑁𝐷𝑝(𝐷|𝜽, 𝜎) [−
1

𝜎
+

1

𝜎3
 𝐽(𝜽)] . 

(3.43) 

The stationarity condition (equivalent equation to Eq. (3.17)) for this special case is  
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𝜕𝑝(𝐷|𝜎, 𝜶)

𝜕𝜎
|

𝜎=�̂�
𝜶=�̂�

= ∫
𝜕𝑝(𝐷|𝜽, 𝜎)

𝜕𝜎
𝑝(𝜽|𝜶)𝑑𝜽

𝛩

|
𝜎=�̂�
𝜶=�̂�

= 0 (3.44) 

and by substituting Eq. (3.43) into Eq. (3.44) one gets 

 ∫ 𝑁𝐷𝑝(𝐷|𝜽, �̂�) [−
1

�̂�
+

1

�̂�3
𝐽(𝜽)] 𝑝(𝜽|�̂�)𝑑𝜽

𝛩

= 0 . (3.45) 

Rearranging terms, one derives that 

 σ̂2 =
∫ 𝐽(𝜽)𝑝(𝐷|𝜽, �̂�)𝑝(𝜽|�̂�)𝑑𝜽

𝛩

∫ 𝑝(𝐷|𝜽, �̂�)𝑝(𝜽|�̂�)𝑑𝜽
𝛩

 . (3.46) 

Substituting Eq. (3.37) on Eq. (3.46) and noting that the factor 𝑝(𝐷|�̂�, �̂�) cancels out from both 

numerator and denominator, one derives Eq. (3.23). 
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3.A.3 Equivalence of the Single-Objective and the Two-Step Optimization Problems 

In this appendix we show that the solutions to the single-objective optimization problem (Eqs. 

(3.26) and (3.27)) and the two-step optimization problem are equivalent. 

 

Starting from the iterative optimization problem, the solution to Eq. (3.12) satisfies: 

 
𝜕

𝜕𝜃𝑛
[𝑁𝐷𝑁𝑜 (

1

𝑁𝑜
∑

1

𝜎𝑗
2 𝐽𝑗(𝜽)

𝑁𝑜

𝑗=1

) + ∑ 𝛼𝑖𝜃𝑖
2

𝑁𝜃

𝑖=1

]|

𝜽=𝜽(𝑚)

= 0, 𝑛 = 1, … , 𝑁𝜃 (3.47) 

which gives 

 [∑
𝑁𝐷

𝜎𝑗
2

𝜕𝐽𝑗(𝜽)

𝜕𝜃𝑛

𝑁𝑜

𝑗=1

+ 2𝛼𝑛𝜃𝑛]|

𝜽=𝜽(𝑚)

= 0, 𝑛 = 1, … , 𝑁𝜃. (3.48) 

For the optimal solution 𝜽(𝑚) = �̂�, it holds that (𝜎𝑗
(𝑚))

2
= 𝐽𝑗(𝜽(𝑚)), 𝑗 = 1, … , 𝑁𝑜 and 𝛼𝑖

(𝑚)
=

1

(𝜃𝑖
(𝑚)

)
2 , 𝑖 = 1, … , 𝑁𝜃 and one gets 

 ∑
𝑁𝐷

𝐽𝑗(�̂�)

𝜕𝐽𝑗(𝜽)

𝜕𝜃𝑛
|

𝜽=�̂�

𝑁𝑜

𝑗=1

+ 2
1

𝜃𝑛

= 0, 𝑛 = 1, … , 𝑁𝜃. (3.49) 

 

For the non-iterative optimization problem, the solution to Eq. (3.26) satisfies: 

 
𝜕

𝜕𝜃𝑛
[𝑁𝐷 ∑ 𝑙𝑛 (𝐽𝑗(𝜽))

𝑁𝑜

𝑗=1

+ ∑ 𝑙𝑛(𝜃𝑖
2)

𝑁𝜃

𝑖=1

]|

𝜽=�̂�

= 0, 𝑛 = 1, … , 𝑁𝜃 (3.50) 

and after carrying out the derivatives with respect to 𝜃𝑛 one ends up with Eq. (3.49). 

Thus the two solutions satisfy the same equation so they are equivalent. 

 

 

For the special case of 𝜎𝑗 = 𝜎, ∀𝑗 we follow the same procedure. Starting from the iterative 

optimization problem, the solution to Eq. 3.12(3.14) satisfies: 

 
𝜕

𝜕𝜃𝑛
[
𝑁𝐷𝑁𝑜

𝜎2
𝐽(𝜽) + ∑ 𝛼𝑖𝜃𝑖

2

𝑁𝜃

𝑖=1

]|

𝜽=𝜽(𝑚)

= 0, 𝑛 = 1, … , 𝑁𝜃 (3.51) 
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which gives 

 [
𝑁𝐷𝑁𝑜

𝜎2

𝜕𝐽(𝜽)

𝜕𝜃𝑛
+ 2𝛼𝑛𝜃𝑛]|

𝜽=𝜽(𝑚)

= 0, 𝑛 = 1, … , 𝑁𝜃. (3.52) 

For the optimal solution 𝜽(𝑚) = �̂�, it holds that (𝜎(𝑚))
2

= 𝐽(𝜽(𝑚)) and 𝛼𝑖
(𝑚)

=
1

(𝜃𝑖
(𝑚)

)
2 , 𝑖 =

1, … , 𝑁𝜃 and one gets 

 𝑁𝐷𝑁𝑜

1

𝐽(�̂�)

𝜕𝐽(𝜽)

𝜕𝜃𝑛
|

𝜽=�̂�

+ 2
1

𝜃𝑛

= 0, 𝑛 = 1, … , 𝑁𝜃. (3.53) 

 

For the non-iterative optimization problem, the solution to Eq. (3.27) satisfies: 

 
𝜕

𝜕𝜃𝑛
[𝑁𝐷𝑁𝑜𝑙𝑛(𝐽(𝜽)) + ∑ 𝑙𝑛(𝜃𝑖

2)

𝑁𝜃

𝑖=1

]|

𝜽=�̂�

= 0, 𝑛 = 1, … , 𝑁𝜃 (3.54) 

and after carrying out the derivatives with respect to 𝜃𝑛 one ends up with Eq. (3.53). 

Thus the two special case (𝜎𝑗 = 𝜎, ∀𝑗) solutions satisfy the same equation so they are equivalent. 
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C h a p t e r  4  

CHAPTER 4: 

GROUND-MOTION RESPONSE IN URBAN LOS ANGELES FROM 

THE 2019 RIDGECREST EARTHQUAKE SEQUENCE 

 

 

This chapter presents a study of the ground-motion response that occurred in urban Los Angeles 

as a result of the two largest events of the July 2019 Ridgecrest, California earthquake sequence, 

the M7.1 main shock and M6.4 foreshock events. The city of Los Angeles is located about 200 km 

from the earthquake epicentral region and did not suffer structural damage; however, due to its 

underlying geology consisting of several deep sedimentary basins bounded by mountains, it 

experienced a wide range of ground motion amplitudes. Southern California is one of the most 

densely instrumented regions in the world, with numerous permanently installed strong motion 

networks present in the area. More specifically, the existence of the very dense Community 

Seismic Network (CSN) has led to unprecedented station numbers and density for the area of urban 

Los Angeles. The July 2019 Ridgecrest, California earthquake sequence provides a unique 

opportunity for a comprehensive study of the resulting ground motion response in urban Los 

Angeles. The collected data is extremely useful for investigating the correlation of earthquake data 

observations with site parameters, as well as for testing the effectiveness of methods for predicting 

ground motion intensity measures. 

 

We make use of response pseudo-spectral acceleration intensity measures, also referred here as 

spectral accelerations, in order to address two main objectives. The first objective involves 

computing the spectral acceleration from the measured data. We study the ground-motion patterns 

in the computed spectral accelerations from seismic network recordings of the M7.1 and M6.4 

earthquakes, and examine correlations with two site parameters: Vs30 (travel-time averaged shear-

wave velocity in the top 30 m) and depth-to-basement. The second objective involves assessing 

the capabilities of different ways of predicting the spectral acceleration observed for the largest 

(M7.1) event. We study two commonly used methods for predicting the ground motion intensity 
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measures: 3D finite-difference simulations and Ground Motion Prediction Equations (GMPEs). 

We examine the performance of the two methods by studying their spectral acceleration 

predictions, as well as their residuals/errors when compared to the spectral accelerations calculated 

from the measurements. 

 

Section 4.1 provides more details about the considered 2019 Ridgecrest earthquake sequence 

events, the recorded data, and the applied processing. Section 4.2 presents the details of calculating 

the spectral acceleration intensity measure, as well as the RotD50 and RotD100 intensity measures 

used in the study. Section 4.3 presents and discusses the resulting spectral accelerations calculated 

from the recorded data for a selection of periods of engineering significance, the correlation of the 

calculated spectral acceleration between the two considered events is examined together with the 

correlation of the calculated spectral accelerations with basement depth and Vs30. Section 4.4 

displays and discusses the spectral acceleration predicted using 3D finite difference simulations. 

The differences in the performance between the two Southern California Earthquake Center 

(SCEC) 3D Community Velocity Models (CVM-S and CVM-H) are examined. Section 4.5 

assesses the performance of the five 2014 Next Generation Attenuation (NGA) – West 2 Project 

GMPEs. In Section 4.6 we examine the performance of the simulation and GMPE predictions 

along a profile going through the Los Angeles Basin. Section 4.7 presents the main conclusions.  

 

 

4.1 Data and Processing 

The July 2019 Ridgecrest earthquake sequence occurred northeast of the town of Ridgecrest, CA 

(Figure 4.1A), along two major fault zones. The sequence consisted of seven moderate-to-strong 

events (magnitude greater than 5.0), and over a hundred events with magnitude greater than 4.0 

(SCSN, 2019; Hauksson, et al., 2020). In this study, we consider the two largest events of the 

sequence – the M7.1 main shock and the M6.4 foreshock. The M7.1 main shock took place on 

July 6th, 2019 at 03:19 UTC (July 5th 20:19 local time) with a hypocenter of 35.770°N, 

117.599°W and depth of about 8 km. The second strongest event of the sequence was the M6.4 

earthquake that occurred approximately 34 hours before the M7.1 event, on July 4th, 2019 at 17:33 

UTC (July 4th 10:33 local time). Its epicenter was located 11 km southeast of the main event’s 
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epicenter (epicenter location: 35.705°N and 117.504°W), with a hypocentral depth of about 10 

km. The shaking from the two events was widely felt throughout California and was well-recorded 

by the numerous seismic arrays operating in southern California. In particular, the city of Los 

Angeles, located about 200 km from the event epicenters (Figure 4.1A), experienced light-to-

moderate ground shaking; however, the long-period shaking was strong enough that residents in 

the downtown high-rises reported experiencing vertigo (Los Angeles Times, 2019). 

 

 

Figure 4.1. Maps of the region. (A) Earthquake epicenters and terrain. Red rectangle: the area 

of urban Los Angeles under consideration, magnified on the following figures. Black lines: the 

shortest source-to-receiver path corresponding to a distance of ~200 km. (B) Station and fault 

locations. Circles: CSN network. Diamonds: SCSN & CSMIP networks. Solid black lines: fault 

traces. Dashed black lines: blind fault surface projection. Profile A-A’ is marked by the red line. 

 

Acceleration time series from the two events form the basis of this study. We consider ground-

level stations from the following three sources: 1) the Community Seismic Network (CSN); 2) the 

Southern California Seismic Network (SCSN); and 3) the California Strong Motion 

Instrumentation Program (CSMIP). The CSN provided data from 350 stations, and SCSN and 

CSMIP provided about 200 additional stations in our region of interest (Figure 4.1B). The links 

and archives for all data used in the study are provided in Appendix 4.A.7. The high station density 

visible in the northern part of the Los Angeles Basin is due to the CSN deployment which spans 

an approximately 30 km by 30 km area, with an average station spacing of about 0.5 km. The 
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SCSN and CSMIP stations are an order of magnitude more distant from one another with 

approximate station spacing of about 4 km. 

 

The CSN and SCSN data were processed by applying a non-causal 4th-order bandpass Butterworth 

filter for frequencies between 0.07 Hz and 23 Hz. The cutoff frequencies and order of the filter 

were selected to be similar to the ones applied to the already processed CSMIP V2 accelerograms. 

The overall data quality for all three networks for both events is high with good site-to-site 

coherence for neighboring stations in similar geological settings. The performance of the CSN 

MEMS-based sensors during the earthquakes was on par with the SCSN and CSMIP sensors. 

Figures 4.2 and 4.3 display a comparison of the recordings and the resulting pseudo-acceleration 

response spectra between a CSN accelerometer and a regional network accelerometer, for two 

example sites where the two sensors are placed close to one another. The first location is the 116th 

St. School in Los Angeles (Figure 4.2), the site geology is alluvium and the distance between the 

two sensors is about 70m. For the second location both sensors are located inside the Pasadena Art 

Center College of Design vault, which is a hard rock – granitic site (Figure 4.3). The performance 

of the CSN during the Ridgecrest events is also discussed by Clayton et al. (2019).  

 

In Figure 4.4 we provide maps of the magnitudes of the peak ground acceleration (PGA) in the 

combined horizontal directions for the two events. The recordings have a maximum PGA of 

approximately 5.5 %g during the M7.1 event and of 4.5 %g during the M6.4. The higher PGAs 

were recorded in the San Fernando basin, as well as in the north-east and south-east Los Angeles 

basin. Among their other shortcomings (Shome, et al., 1998), PGA maps do not take into account 

the properties of a structure. In the following sections we will introduce the spectral amplification 

intensity measure which can take into account the structure’s natural frequency and provide 

information regarding the possible amplification of specific frequencies and the vulnerability of 

infrastructure. 
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Figure 4.2. Los Angeles - 116th Street School sensor comparison for the M7.1 event (geological 

setting: alluvium). CSN network station: CJ.T001250, CE network station: CE.14403. East-West 

components. (A) Acceleration time histories. (B) Acceleration response spectra (2%, 5%, and 

10% damping ratio) and residuals. The results are similar for all three components.  
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Figure 4.3. Pasadena Art Center College of Design Vault sensor comparison for the M7.1 event 

(geological setting: hard rock - granitic). CSN network station: CJ.T000337, CI network station: 

CI.PASC. East-West components. (A) Acceleration time histories. (B) Acceleration response 

spectra (2%, 5%, and 10% damping ratio) and residuals. The results are similar for all three 

components.  
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Figure 4.4. PGA maps. (A) M7.1 event. (B) M6.4 event. Circles: CSN stations, Diamonds: SCSN 

& CSMIP stations. Note varying colorbar amplitude scales. 

 

 

4.2 Methodology 

The calculation of the linear response spectral ordinates is well-established, with the concept being 

initiated with papers by Biot (1933) and Housner (1941). Here, we briefly discuss the calculation 

methodology to avoid any confusion.  

 

We compute the response pseudo-spectral acceleration at each station by applying the recorded 

ground acceleration as input to a linear single-degree-of-freedom (SDoF) oscillator with natural 

period 𝑇 and damping ratio 𝜁. The equation of motion for the linear SDoF oscillator is 

 �̈�(𝑡) + 2𝜁𝜔�̇�(𝑡) + 𝜔2𝑢(𝑡) = −�̈�𝑔(𝑡) (4.1) 

where 𝑢(𝑡) is the deformation response (relative displacement), �̇�(𝑡) is the relative velocity �̈�(𝑡) 

is the relative acceleration of the system, �̈�𝑔(𝑡) is the ground acceleration, and 𝜔 is the natural 

frequency of the SDoF oscillator (𝜔 = 2𝜋/𝑇). 

 

Solving for the two available horizontal inputs (i.e. the ground accelerations in the geographical 

E-W and N-S directions) yields the oscillator displacements in the two horizontal directions: 𝑢𝑥(𝑡) 

and 𝑢𝑦(𝑡). The total horizontal displacement is  
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 𝒖(𝑡) =  𝑢𝑥(𝑡)𝒆𝒙 + 𝑢𝑦(𝑡)𝒆𝒚. (4.2) 

 

The response pseudo-spectral acceleration intensity measure ‘SA’ is defined (Chopra, 2011) as 

 𝑆𝐴(𝑇, 𝜁) = 𝜔2 max
𝑡

(𝑢(𝑡)) (4.3) 

where the subscript 𝑡 indicates that we are looking for the maximum with respect to time, and 𝑢(𝑡) 

is the Euclidean norm of the horizontal displacement, i.e. 

 𝑢(𝑡) = (𝑢𝑥(𝑡)2 + 𝑢𝑦(𝑡)2)
1/2

. (4.4) 

SA has units of acceleration and is related to the peak value of the base shear force (𝐹𝑠), also 

referred to as the equivalent static force, by: 𝐹𝑠 = 𝑚𝐴. The response spectral “pseudo” acceleration 

measure tends to the “real” absolute acceleration response spectrum as the damping ratio of the 

SDoF system gets smaller. For damping value ζ = 0, SA is equal to the absolute acceleration. 

 

 

We also associate a geographical direction to this SA that is the direction of the vector 𝒖(𝑡𝑚), i.e. 

the direction of the vector 𝒖(𝑡) at time 𝑡𝑚 when 𝑢(𝑡) attains its maximum value. Following Eq. 

(4.2) this direction can be defined by the angle 

 𝜑 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑢𝑦(𝑡𝑚)

𝑢𝑥(𝑡𝑚)
). (4.5) 

 

Two additional spectral acceleration intensity measures used in this study are RotD100 and 

RotD50. RotD100 is the maximum spectral acceleration over all rotation angles (Boore, 2010), 

defined in Appendix 4.A.1. In Appendix 4.A.2 we show that the previously defined SA is 

equivalent to RotD100. Furthermore, the direction of the SA (Eq. (4.5)) is equal to the rotation 

angle for which the maximum spectral acceleration occurs. Since Eq. (4.3) does not require an 

iteration over all (non-redundant) rotation angles, the calculation of SA is computationally more 

efficient. Moreover, since the recommended procedure for calculating RotD100 suggests 1-degree 

angle increments, calculating SA is more accurate. 
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RotD50 is the median spectral acceleration over all rotation angles (Boore, 2010), also defined in 

Appendix 4.A1. The GMPE offer RotD50 predictions rather than RotD100. Thus, for the model 

prediction sections (Sections 4.4, 4.5, and 4.6) the RotD50 intensity measure is calculated for both 

the data and the models, in order to enable comparisons between the measured and the GMPE 

predicted spectral accelerations. 

 

 

4.3 Spectral Acceleration from Measured Data 

Using the methodology presented in Section 4.2 we compute the SA from the data collected from 

all three seismic networks (CSN, SCSN, and CSMIP) in the Los Angeles basin region, during the 

M7.1 and M6.4 Ridgecrest earthquakes. The SA is computed at four natural periods 𝑇 for the 

SDoF oscillator: 1, 3, 6, and 8 s. These four periods are representative of the fundamental periods 

of many of the structural systems present in the region, since the fundamental periods for low- and 

mid-rise buildings are close to 1 and 3 s, while for high-rises, large-diameter storage tanks, or long-

span bridges, 6 and 8 s are more appropriate. A 5% damping ratio is used which allows for 

comparison with the GMPE predictions which also use 5% damping. 

 

 

4.3.1 Spectral Acceleration Results and Discussion 

Maps of the computed SA for periods T=1, 2, 3, and 8 s and 5% damping ratio are shown in Figure 

4.5. Observing Figure 4.5 it is evident that the ground-motion response varies greatly across the 

Los Angeles region. Overall, the maximum computed SAs are the largest at T=1 s and the smallest 

at T=8 s. At T=1 s, the SA varies significantly over short distances with no pervasive patterns and 

with local maxima appearing in multiple locations. At T=3 s, more coherent behavior can be 

observed, with larger SA values appearing in the San Fernando Valley, the San Gabriel Valley, 

and in the central (e.g., South Gate) and southern (e.g., Long Beach) Los Angeles Basin. At the 

longer periods (T=6 s and 8 s), pervasive coherent behavior is now evident, with maxima in the 

San Fernando Valley, and in the west (e.g., Manhattan Beach), central (South Los Angeles), and 

south (e.g., near Seal Beach) Los Angeles Basin (the above locations are marked in Figure 4.1B). 
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Figure 4.5. SA maps. Left column: M7.1 event. Right column: M6.4 event. (A-B) T=1 s. (C-D) 

T=3 s. (E-F) T=6 s. (G-H) T=8 s. Damping ratio ζ=5%. Circles: CSN stations, Diamonds: 

SCSN & CSMIP stations. Black rectangle: Area magnified in Figure 4.6. Note varying colorbar 

amplitude scales. 
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Figure 4.6 presents a detail of Figure 4.5 focused on the area with the denser CSN instrumentation. 

While for the longer periods coherent patterns are present throughout the region with the SA 

amplitude gradually varying, for shorter periods the spatial complexity of the SA patterns increases 

significantly. The agreement between the different networks is very good. The SA calculated for 

neighboring stations belonging in different networks is similar and the long period trends observed 

in all three (SCN, SCSN, and CSMIP) networks are the same. The dense CSN instrumentation 

allows us to see pockets of SA amplification, varying over length scales of 1-2 km, which might 

go undetected using only data from the sparser SCSN and CSMIP networks.  

 

The SA results are for the most part reproducible between the two earthquakes. Even though, as 

expected, the SA values are generally smaller for the M6.4 event, the SA ratios between a site in 

the deeper Los Angeles Basin and a hard-rock site (e.g., in the San Rafael Hills or Mt. Wilson) are 

similar between the two events. At T=1, 3, and 8 s, the areas of the maximum SA are consistent 

between the two events (Figure 4.5A-H). The results for the two events are slightly different at 

T=6 s where for the Los Angeles Basin the maximum SAs appear towards the west coastline (e.g., 

Manhattan Beach and South Los Angeles) for the M7.1, but more to the east (e.g., South Gate), 

for the M6.4 event (Figure 4.5E,F). 
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Figure 4.6. SA maps showing detail in the region marked by the black rectangle in Figure 4.5. 

Same format as Figure 4.5. 
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As another approach to quantifying the correlation between the two events, Figure 4.7 shows the 

SA values for all stations that recorded both events. It is apparent that an overall good correlation 

exists and that the observed SAs are consistent between the two events. To quantify the degree of 

correlation, two statistical measures are computed: Pearson’s correlation coefficient (𝑟) and the p-

value (𝑝) with the null hypothesis being that the slope of the least-squares (LS) regression line is 

zero (Lee, et al., 2000). We find 𝑟 = 0.70, 0.80, 0.89, and 0.91 for T=1, 3, 6, and 8 s respectively. 

As the correlation coefficient approaches +1 the two variables have a stronger positive correlation. 

The SA correlation between the two events is stronger for longer periods, independent of the depth-

to-basement at the station (shown by the color map in Figure 4.7). The p-values are 𝑝 < 0.001 for 

all periods, an indication that the correlation is statistically significant.  

 

 

Figure 4.7. SA correlation between the two events. (A) T=1 s. (B) T=3 s. (C) T=6 s. (D) T=8 s. 

Damping ratio ζ=5%. Circles: CSN stations, Diamonds: SCSN & CSMIP stations. The colormap 

displays the depth-to-basement at each station. Line: LS regression fit. The slope and intercept of 

the LS regression line, and the standard deviation are provided in each subplot. 
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The directions associated with the maximum SA values are shown in Figure 4.8. The patterns in 

the directions further emphasize the observations of coherent behavior for the longer periods. At 

T=8 s, the SAs have coherent directions across the entire Los Angeles Basin. Considering waves 

with 8 s periods propagating at a shear-wave velocity of 2.5 km/s (and indeed the long period 

velocity for our events is close to that – Appendix 4.A.3), one gets a wavelength of about 20 km, 

while the wavelength goes down to only 2.5 km for a 1 s period. In reality, the wavelengths 

associated with the 1 s period energy are even shorter since they are more sensitive to the lower 

velocity, near-surface material. Taking into account this decrease in the wavelengths and the 

average station spacing it is not surprising that the coherence disappears at the shortest periods. 

For the longer periods the SAs are lot more coherent and the patterns that appear can be correlated 

to the larger scale basin structure and soil properties. For the shorter periods the motions are 

stronger and less spatial coherent, indicating a high-level of scattering at the kilometer length scale. 

High variability exists within just a few meters, stations belonging to the same surficial unit appear 

to have large variations in their ground response. Coherence in the directions can still be observed, 

for the shorter periods, but it appears over smaller length scales. This smaller length scale 

coherence is visible in specific areas (Figure 4.9) with the help of the denser CSN. 
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Figure 4.8. SA direction maps. Same format as Figure 4.5. 
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Figure 4.9. SA direction maps. Detail of Figure 4. Same format as Figure 4.5. 
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A good way to observe this smaller length scale coherence for the shorter periods is by studying 

the data from the CSN deployment in the campus of the Jet Propulsion Laboratory (JPL) in 

Pasadena. The campus is densely instrumented by the CSN, with average station spacing of about 

50m. Figure 4.10 shows the SAs computed from the M7.1 event for 8 periods (T=0.1, 0.3, 0.5, 0.8, 

1, 3, 6, and 8 s and damping ratio ζ=5%. Figure 4.11 is similar but for the M6.4 event. Here again 

the results are for the most part reproducible between the two earthquakes. Due to the high station 

density, coherent patterns in the SAs are visible even for the 0.5, 0.8, and 1 s, while the coherence 

disappears at the shorter periods (0.1 and 0.3 s). 
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Figure 4.10. SA maps and directions for the JPL campus CSN deployment. M7.1 event. Right 

column periods: T=0.1, 0.3, 0.5, and 0.8 s. Left column periods: T=1, 3, 6, and 8 s. Damping 

ratio ζ=5%. 
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Figure 4.11. SA maps and directions for the JPL campus CSN deployment. M6.4 event. Right 

column periods: T=0.1, 0.3, 0.5, and 0.8 s. Left column periods: T=1, 3, 6, and 8 s. Damping 

ratio ζ=5%. 
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4.3.2 Maps of Similar Spectral Acceleration Intensity Measures 

Another way to look at the above results is by dividing the SA amplitude of every station to the 

average SA amplitude of stations located on bedrock sites. These maps of “Relative SA” or “SA 

amplification” (since they express by how much the SA at a site is higher than the SA at the 

reference sites) allow for easy comparisons of the amplification of the response in the deeper basin 

relative to that of sites on bedrock. Three SCSN seismic stations in the mountains of the greater 

Los Angeles were selected. These three stations are: PASC located in the hills on the western 

boundary of the San Gabriel Valley, DJJ at Stone Canyon Reservoir in the eastern Santa Monica 

Mountains, and MWC at Mount Wilson Observatory in the San Gabriel Mountains. Maps of the 

SA amplification, equivalent to the above Figures 4.5 and 4.6 are presented in Figures 4.12 and 

4.13. Looking at the SA amplification figures one can again very easily see the good correlation 

between the two events, with not only the patterns but the magnitudes also being very similar 

between the two events. 

 

In the above presented results, a 5% damping ratio is used. However, a 2% damping ratio would 

be more appropriate for the longer (≥ 6 s) periods. Strains are known to decay rapidly with 

increasing distance from the fault (Hays, 1984). Since the events were distant and the peak ground 

velocities recorded in the Los Angeles area were small, the response is expected to be in the linear 

regime. For a mid- or high-rise structural system linearly responding at its dominant mode, a 2% 

damping ratio is found to be a more suitable value (Cruz & Miranda, 2017). Appendix 4.A.4 

contains maps using 2% damping ratio (Figures 4.29 and 4.30), similar to Figures 4.5 and 4.6. 

 

Furthermore, as it was stated in Section 4.2, the RotD50 intensity measure will be used in 

subsequent sections (Sections 4.4, 4.5, and 4.6) for comparisons between the measurements and 

the model prediction. We provide the RotD50 maps calculated for 5% damping ratio in Appendix 

4.A.5 (Figures 4.31 and 4.32). 
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Figure 4.12. SA amplification maps. Left column: M7.1 event. Right column: M6.4 Event. (A-B) 

T=1 s. (C-D) T=3 s. (E-F) T=6 s. (G-H) T=8 s. Damping ratio ζ=5%. Circles: CSN stations, 

Diamonds: SCSN & CSMIP stations. Black rectangle: Area magnified in Figure 4.13. Note 

varying colorbar amplitude scales. 
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Figure 4.13. SA amplification maps detail. Detail of Figure 4.12. Same format as Figure 4.12. 
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Figure 4.14 displays maps of interpolated SA amplifications, for periods 1, 3, 6, and 8 s. Inverse 

Distance Weighting (IDW) (Shepard, 1968) was used for the interpolation. We split our area of 

interest with a uniform grid (200x200 grid points). The value at a grid point (interpolated value) is 

a linearly weighed combination of the values at the stations (measured values). As sample points 

we are using the 7 closest stations within a radius of 7.0km. An exponent of 3.0 is used so that the 

closest sampling points have a much bigger weight. If a grid point is collocated with a measured 

location the measured value at that point is used. The weighted distance average cannot be higher 

than the maximum or lower than the minimum measured value. Therefore, it cannot create extreme 

maxima and minima if such extremes do not already exist in the data. Following the IDW 

interpolation we bin the values in order to better capture some of the features of the amplifications. 

Seven bins are used: 0-1, 1-2, 2-3, 3-4, 4-5, 5-6, and 6+. IDW is reasonable to use in absence of 

any clear secondary information. Should any correlation with site parameters be understood and 

established Kriging with a trend could be a much more promising interpolation method. 

 

The interpolation maps of Figure 4.14 contain and enhance the information presented in the 

previous figures. More specifically, the SA amplification in the San Fernando Valley basin is 

higher than the ones observed in the south for all periods considered. On the other hand, the SA 

amplifications in the San Gabriel Valley basin are low for all periods. In the Los Angeles basin, 

for the shorter periods (T=1 and 3 s) the maximum SA amplifications (worse site conditions) are 

in the east and south-east, while for the longer periods (T=6 and 8 s) the maximum SA 

amplifications are in the west. The interpolation of the data points over the area of interest provides 

an easy way to observe existing trends and the locations where the maxima occur. However, the 

quality of such interpolations depends on the station density and is expected to be better in the 

northern Los Angeles area due to the dense CSN instrumentation. For areas with few and distant 

station one should be aware that such interpolations may not be valid.  
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Figure 4.14. Contoured SA amplification maps, for the M7.1 event. (A) T=1 s. (B) T=3 s. (C) 

T=6 s. (D) T=8 s. The station locations are marked with black dots. 

 

 

4.3.3 Correlation with site parameters 

It is common practice in many engineering applications to estimate the ground motion response 

through empirical correlations with site parameters. Two of the most used site parameters are the 

depth-to-basement and Vs30. Ground motion amplification has been shown to increase at longer 

periods with increasing depth-to basement (e.g., Liu & Heaton, 1984), which is usually obtained 

by well penetration, seismic or gravity data (e.g., Shaw et al., 2015). Vs30 data, used as a proxy 

for different local soil properties, take into account site-specific measurements, as well as surface 

geology and topographic gradient (e.g., Thompson, et al., 2014; Thompson, 2018). In both cases, 

the resolution of these parameters is limited by the density and quality of the measurements.  
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We calculate the depth-to-basement and Vs30 for each site from grid values using a triangulation-

based linear interpolation. The depth-to-basement grid values are from Shaw et al. (2015). A depth-

to-basement value corresponds to the depth to crystalline rock / basement. Negative values 

correspond to surface outcrop (Figure 4.15A). The Vs30 grid values are from Thompson (2018) 

(Figure 4.15B) and account for constraints from multiple sources (site-specific measurements, 

surface geology, and topographic gradient). As discussed in Brown et al. (2002) there are a number 

of advantages to using slowness rather than velocity, hence in the following, we will be considering 

the shear-wave slowness in the top 30 meters, defined as Ss30 = 1/Vs30. This also allows us to 

better focus on the low Vs30 regions. We find the SA correlation with Ss30 to be stronger than the 

correlation with Vs30.  

 

Figure 4.15C shows depth-to-basement plotted against Ss30 (and Vs30) at each station. A 

statistically significant correlation exists between the depth-to-basement and Ss30 values, with 

correlation coefficient 𝑟 = 0.74 and the p-value 𝑝 < 0.001 (between the depth-to-basement and 

Vs30 values these statistics are: 𝑟 = -0.65 and 𝑝 < 0.001). Sediments are highly correlated with 

basins and the Vs30 is affected by the existence of such sediments. The figure displays this built-

in correlation between the Vs30 and the deeper structures. Another interesting feature of Figure 

4.15C is the banded behavior of the Vs30 values. This is likely due to the fact that in the absence 

of site specific measurements, the Vs30 values account for surface geology and topographic 

gradient (Thompson, et al., 2014). The smoothness of the Vs30 dataset in combination with the 

high spatial density of the seismic networks, result in many stations having exactly the same Vs30 

value even if their underlying soil conditions are not exactly the same. 
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Figure 4.15. Site parameter plots. (A) Sensor locations plotted on top of contoured depth-to-

basement. (B) Sensor locations plotted on top of contoured Vs30. (C) Scatter plot of the depth-to-

basement plotted against Ss30 and Vs30 at the station locations. Circles: CSN stations, 

Diamonds: SCSN & CSMIP stations. Depth-to-Basement contours are marked at 1-km intervals. 

Vs30 contours are marked at 100-m/s intervals. 
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Figure 4.16 shows the correlation between every station’s observed SA and its corresponding 

depth-to-basement. As before, to quantitatively assess the correlations, we calculate the correlation 

coefficients (𝑟) and the p-values (𝑝). We find 𝑟 = 0.079, 0.61, 0.75, and 0.74 for T=1, 3, 6, and 8 

s respectively. The p-values are 𝑝 = 6.45e-2 for T=1 s and 𝑝 < 0.001 for T=3, 6, and 8 s. For T=1 

s there is no correlation between SA and the depth-to-basement. However, for longer periods a 

correlation appears and sites with larger depth-to-basement have on average larger SAs. The p-

values confirm that the correlation is statistically significant for the longer periods. The correlation 

is the strongest at 6 s. As one can see in Figure 4.16 it is not always the case that the largest SAs 

correspond to the areas of the deepest basement depth. 

 

 

Figure 4.16. SA correlation with depth-to-basement, for the M7.1 event. (A) T=1 s. (B) T=3 s. 

(C) T=6 s. (D) T=8 s. Damping ratio ζ=5%. Circles: CSN stations, Diamonds: SCSN & CSMIP 

stations. The solid line shows the least-squares (LS) regression fit. The slope and intercept of the 

LS regression line, and the standard deviation are provided in each subplot. 
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Figure 4.17 displays the correlation between every station’s observed SA and its corresponding 

Ss30. We find 𝑟 = 0.12, 0.43, 0.52, and 0.49 for T=1, 3, 6, and 8 s respectively. The p-values are 

𝑝 = 3.22e-3 for T=1 s and 𝑝 < 0.001 for T=3, 6, and 8 s. A main feature of Figure 4.17 is the 

banded pattern of the Ss30, discussed previously, due to the smoothness of the Vs30 grid. This 

pattern makes it difficult to visually observe any correlation between SA and Ss30 but the 

statistical measures 𝑟 and 𝑝 suggest that for T=3, 6, and 8 s, there exists a weak but statistically 

significant correlation. Again, for T=1 s there is almost no correlation, while the correlation is the 

strongest for T=6 s.  

 

The correlation of the observations with Vs30 was perhaps expected to be stronger for the shorter 

periods. Vs30 and SA have been found to have a strong correlation at T=1 s in empirical ground-

motion data sets, such as the NGA-W2 dataset (Ancheta, et al., 2014). The repeated Vs30 values 

and banded Vs30 behavior for the spatially dense CSN stations, also discussed in Figure 4.15C, 

likely obscures the Vs30 scaling at the shorter length-scales (i.e., shorter periods). The observed 

stronger correlation between SA and Vs30 for the longer periods might also come as a surprise, 

due to the fact that from its definition the Vs30 measure only accounts for the local, near surface 

conditions. These correlation trends likely result from the inherent correlation of Vs30 with 

basement depth in the Los Angeles region, as demonstrated in Figure 4.15C. At the longer periods, 

the correlation between SA and depth-to-basement is found to be stronger than the correlation 

between SA and Ss30. Another possible reason, however, could be the hybrid approach used to 

derive the Vs30 values, where apart from site-specific Vs30 measurements, surface geological 

units and topographic gradient are also taken into account (Thompson, et al., 2014). It is possible 

that these larger-scale features result in the correlation observed for the longer periods. 
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Figure 4.17. SA correlation with Ss30, for the M7.1 event. (A) T=1 s. (B) T=3 s. (C) T=6 s. (D) 

T=8 s. Damping ratio ζ=5%. Circles: CSN stations, Diamonds: SCSN & CSMIP stations. The 

solid line shows the least-squares (LS) regression fit. The slope and intercept of the LS 

regression line, and the standard deviation are provided in each subplot. 

 

 

4.4 Spectral Acceleration Predicted by Ground Motion Simulations 

Ground motion simulations for the M7.1 Ridgecrest event were performed using the 3D finite-

difference method of Graves (1996). A suitable stochastic finite-fault rupture model was developed 

(Graves & Pitarka, 2020) using the Graves-Pitarka kinematic rupture generator method (Graves & 

Pitarka, 2016). The rupture model was constrained by the near-fault ground motion. The 

simulations use a minimum shear-wave velocity (𝑉𝑆) of 500 m/s and 100 m grid spacing, which 

yield reliable results up to 1 Hz. We recognize that the basin has velocities lower than 500 m/s in 

the shallow near surface, however, these layers are relatively thin and generally impact frequencies 
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of 1Hz and higher. Anelastic attenuation Q is modeled using the relations 𝑄𝑆 = 50𝑉𝑆 (for 𝑉𝑆 in 

km/s) and 𝑄𝑃 = 2𝑄𝑆.  

 

The simulations were run in both CVM-S and CVM-H. The specific versions of the velocity 

models used are CVM-S4.26.M01 (Lee, et al., 2014) (‘CVM-S’ hereafter) and CVM-H15.10.0 

(Shaw, et al., 2015) (‘CVM-H’ hereafter). Due to differences in the approaches used to 

parameterize the models, the details of the Los Angeles Basin structure differ between the two 

models. In CVM-S, the initial basin structure follows a rule-based seismic velocity model, derived 

mainly from well log data, where seismic velocity is a function of sediment age and depth. In 

CVM-H, basin velocities are determined from sonic logs and seismic reflection profiles collected 

by the petroleum industry. The models are further refined using waveform tomography with a 

variety of data sets including earthquakes, ambient noise, seismic reflection and receiver functions. 

Both models utilize a high resolution geotechnical layer (GTL) based primarily on Vs30 values to 

represent the upper few hundred meters of the model; however, the implementation of the GTL is 

somewhat different in each model. Both CVMs are considered acceptable representations of the 

Southern California crustal structure, especially for periods longer than 5 s (Taborda, et al., 2016).  

 

Figure 4.18 displays the shear-wave velocity cross sections for the two models along the profile 

A-A’ (marked in Figure 4.1B). Compared to CVM-S, CVM-H contains a sharper definition of the 

general basin structure. In addition to that, CVM-H contains several lateral discontinuities 

including several fault-bounded velocity jumps not present in CVM-S. CVM-H has lower 

velocities in the upper 1-2 km of the basin compared to CVM-S, but higher velocities at 2-5 km 

depth. Below about 6 km depth, the velocities of the two models are similar.  
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Figure 4.18. Shear-wave velocity cross sections for the two CVMs along profile A-A’ (marked in 

Figure 4.19B) - image provided by Dr. R. Graves. 

 

Since the NGA-West2 GMPEs (Bozorgnia, et al., 2014) offer RotD50 rather than SA predictions, 

we use the RotD50 intensity measure (Boore, 2010) for all comparisons between observations and 

model predictions. We calculate the model-predicted RotD50 from simulated waveforms low-pass 

filtered at 1 Hz using a 4th order, 2-pass Butterworth filter. Due to the bandwidth limitation, we 

only consider periods T=3, 6, and 8 s for the SDoF oscillator. As before, we use a damping ratio 

of 5%. Figure 4.20 displays maps of the model-predicted RotD50 for the two CVMs. The first 

column shows RotD50 maps calculated from the data (also available in Figure S4ACEG) for 

comparison. The different formulations of the two CVMs manifest themselves in the results. In 

the top few kms, the CVM-S model is overall smoother, while the CVM-H model contains sharp 

transitions and patches with large jumps in velocity (Figure 4.18). This is readily apparent in the 

results for T=3 s where the RotD50 pattern for CVM-H is much more spatially complex than the 

pattern seen for CVM-S. The impact of these differences decreases moving to longer periods as 

the longer wavelengths become more sensitive to the larger-scale structure of the basin. At 8 s 

period, the patterns are fairly similar for the two models, although the peak amplitudes for CVM-

H occur near the central basin (e.g., Downey), whereas they occur towards the southern margin of 

the basin (e.g., Long Beach) in CVM-S. We suspect that this difference results from the sharper 
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vertical velocity gradient in CVM-H, which turns the waves more quickly towards the surface after 

they enter the basin from the northern margin.  

 

 

Figure 4.20. Data and model-predicted (simulations) RotD50 maps, for the M7.1 event. Column 

1: Observations, Column 2: CVM-S model, Column 3: CVM-H model. Row 1: T=3 s, Row 2: 

T=6 s, Row 3: T=8 s. Damping ratio ζ=5%. Each row has a separate colorbar. 

 

In order to provide a more quantitative measure of the models’ performance, we compute the 

residuals for geographical site 𝑖, 𝑖 = 1, … , 𝑁 given by (Abrahamson, et al., 1990) 

 𝑟𝑖(𝑇, 𝜁) = 𝑙𝑛 (
𝑅𝑜𝑡𝐷50𝑚𝑒𝑎𝑠,𝑖(𝑇, 𝜁)

𝑅𝑜𝑡𝐷50𝑝𝑟𝑒𝑑,𝑖(𝑇, 𝜁)
) (4.6) 
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where 𝑅𝑜𝑡𝐷50𝑚𝑒𝑎𝑠,𝑖(𝑇, 𝜁) is the RotD50 computed from the data and 𝑅𝑜𝑡𝐷50𝑝𝑟𝑒𝑑,𝑖(𝑇, 𝜁) is the 

RotD50 predicted by the model, for site 𝑖. The model bias is given by 

 𝐵(𝑇, 𝜁) =
1

𝑁
∑ 𝑟𝑖(𝑇, 𝜁)

𝑁

𝑖=1

 (4.7) 

and the standard deviation is given by 

 𝜎(𝑇, 𝜁) = [
1

𝑁
∑[𝑟𝑖(𝑇, 𝜁) − 𝐵(𝑇, 𝜁)]2

𝑁

𝑖=1

]

1/2

. (4.8) 

We also compute the absolute misfit (𝐽) as a measure of the total mismatch between the simulation 

predictions and the data, found by 

 𝐽(𝑇, 𝜁) =
1

𝑁
∑|𝑟𝑖(𝑇, 𝜁)|

𝑁

𝑖=1

. (4.9) 

The resulting model biases, standard deviations and absolute misfits are given in Tables 1-3. Figure 

4.21 in the supplement displays maps of the residuals. Positive residuals indicate that the model 

under-predicts the data, while negative residuals indicate over-prediction. For both models, the 

total fit of the data is best (minimum 𝐽) at T=6 s and worst (maximum 𝐽) at T=3 s. For the shorter 

period (T=3 s) CVM-H has better performance (smaller 𝐽), while for the longer periods (T=6 and 

8 s) the CVM-S performance is superior. Both models miss some areas where local maxima of 

RotD50 are observed (e.g., the San Fernando Valley and near Manhattan Beach for the longer 

periods). 

 

The overall performance of the simulations is encouraging, with the average absolute misfit being 

about 0.35 for both models. For the longer periods (T=6 and 8 s) the range of the model-predicted 

SAs matches that of the observations. The drop in performance for 3 s is suspected to be due to 

the velocity structures not fitting well at these shorter periods. Developing the CVMs (e.g., 

waveform tomography information for the shorter periods, definition of the GTL, Vs30 values) 

and the various other components of the modeling (e.g., better inelastic attenuation factors, source 

modeling) are all potential paths for improvement. 
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Figure 4.21. Maps of the residuals, calculated according to Eq. (4.6), between model-predicted 

(simulations) and data RotD50, for the M7.1 event. The selected models and periods are shown 

in the top right corner of each subplot. The resulting absolute misfit (J), calculated according to 

Eq. (4.6), is also indicated in the top right corner of each subplot. The colorbar is the same for 

all subplots and its range was limited to [-1.2, 2.2] in order to better capture the near-zero 

overprediction/underprediction variations. 
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Table 4.1. Model bias B(T, ζ = 0.05), calculated using Eq. (4.7), for the M7.1 event. 

 T=1 s T=3 s T=6 s T=8 s 

CVM-S - -0.44 0.17 0.039 

CVM-H - -0.26 0.026 -0.10 

ASK14 -0.14 -0.016 0.62 0.40 

BSSA14 0.16 0.10 0.65 0.55 

CB14 0.14 0.25 0.95 0.81 

CY14 0.048 -0.082 1.12 1.25 

 

 

Table 4.2. Model standard deviation σ(T, ζ = 0.05), calculated using Eq. (4.8), for the M7.1 

event.  

 T=1 s T=3 s T=6 s T=8 s 

CVM-S - 0.36 0.30 0.38 

CVM-H - 0.47 0.37 0.47 

ASK14 0.41 0.31 0.38 0.40 

BSSA14 0.41 0.36 0.39 0.43 

CB14 0.40 0.35 0.43 0.42 

CY14 0.39 0.34 0.36 0.39 

 

 

Table 4.3. Model absolute misfit J(T, ζ = 0.05), calculated using Eq. (4.9), for the M7.1 event. 

 T=1 s T=3 s T=6 s T=8 s Average 

CVM-S - 0.50 0.25 0.29 0.35 

CVM-H - 0.41 0.26 0.35 0.34 

ASK14 0.36 0.25 0.63 0.47 0.43 

BSSA14 0.36 0.30 0.69 0.62 0.49 

CB14 0.35 0.34 0.95 0.82 0.61 

CY14 0.32 0.28 1.12 1.25 0.74 
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4.5 Spectral Acceleration Predicted by GMPEs  

GMPEs are frequently used in seismic hazard applications to provide spectral acceleration 

estimates as a function of predictor variables such as earthquake magnitude, site-to-source 

distance, and site parameters. In particular, the equations explicitly consider the Vs30 of the site, 

as well as sediment thickness, which is parameterized as depth to shear-wave velocity of 1.0 km/s 

(Z1.0) or 2.5 km/s (Z2.5). We consider four out of the five GMPEs developed as part of the NGA-

West2 project (Bozorgnia, et al., 2014): ASK14 (Abrahamson, et al., 2014), BSSA14 (Boore, et 

al., 2014), CB14 (Campbell & Bozorgnia, 2014), and CY14 (Chiou & Youngs, 2014). The fifth 

GMPE (Idriss, 2014) is not applicable for the source-to-site distance and Vs30 ranges of our sites 

(Gregor, et al., 2014) and thus it is not considered. In the following results, the Vs30 for each site 

was calculated using linear interpolation of the grid values from Thompson (2018) and the Z1.0 

and Z2.5 were found using the CVM-H model. Using Z1.0 and Z2.5 from the CVM-S model yields 

similar GMPE predictions. The effect of including the site Vs30 and Z1.0 or Z2.5 values in the 

GMPE inputs can be seen in Appendix 4.A.6. Figure 4.22 shows the GMPE-based RotD50 

estimate (median prediction) maps for periods T=1, 3, 6, and 8 s and damping ratio 5%. Figure 

4.23 shows the associated residual (Eq. (4.6)) maps and Tables 1-3 list the model biases, standard 

deviations and absolute misfits, calculated using Eqs. (4.7), (4.8), and (4.9). 

 

The four GMPEs produce a wide range of spectral acceleration predictions. It is often the case that 

a GMPE performing well for one period does a poor job at a different period. For example, CY14 

is the best performing GMPE (smallest 𝐽) at T=1 s but performs poorly at T=6 and 8 s. For the 

longer periods (T=6 and 8 s) all GMPEs suffer from under-predictions throughout the entire Los 

Angeles Basin. Weighting all four periods equally, ASK14 has the best average performance. Like 

the simulations, the GMPEs miss locations where the observed RotD50 maxima occur (e.g., the 

San Fernando Valley and west Los Angeles, for the longer periods). When compared with the 

performance of the simulations, the GMPEs perform better (smaller 𝐽) for the 3-s period, while for 

the longer periods (T=6 and 8 s) the simulations have better performance. 

 

It is worth mentioning that the presented GMPE predictions have large standard deviations. The 

GMPEs considered here are average models that not always work well for a specific site and 



 

 

138 

earthquake. When using these models, there is often the assumption that the site-specific 

differences and geologic variations will be captured by the large variability in the predictions. 

GMPE predictions at the basin sites might improve as additional observations become available. 

However, the observed poor correlation between the ground-motion response and site parameters 

(e.g., Figures 4.16 and 4.17), especially for the shorter periods, suggest that the added ground 

motion data may not always offer improvement. Reconsidering the input site parameters and 

including new site parameters in the GMPEs may allow for further improvement, but at the 

expense of added complexity in GMPE implementation. Another alternative for improved 

performance is the use of non-ergodic ground motion models (e.g., Landwehr et al, 2016; Kuehn 

et al., 2019) and non-ergodic site response models (e.g., Stewart et al., 2017) that are specific to 

the Los Angeles basin region. 
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Figure 4.22. Data and model-predicted (GMPEs) RotD50 maps, for the M7.1 event. Column 1: 

T=1 s, Column 2: T=3 s, Column 3: T=6 s. Column 4: T=8 s. Row 1: Observations, Row 2: 

ASK14, Row 3: BSSA14, Row 4: CB14, Row 5: CY14. Damping ratio ζ=5%. Each column has a 

separate colorbar.  
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Figure 4.23. Maps of the residuals, calculated according to Eq. (4.6), between model-predicted 

(GMPEs) and data RotD50, for the M7.1 event. The selected GMPE names and periods are 

shown in the top right corner of each subplot. The resulting absolute misfit (J), calculated 

according to Eq. (6), is also indicated in the top right corner of each subplot. The colorbar is the 

same for all subplots and its range was limited to [-1.2, 2.2] in order to better capture the near-

zero overprediction/underprediction variations. 
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4.6 Spectral Acceleration Prediction Performance Across Profile A-A’  

In the previous sections we considered maps of the model predicted RotD50 (Figures 4.20 and 

4.22) and the residuals throughout the Los Angeles Basin (Figures 4.21 and 4.23). These maps 

offer a good overview of the model performance and allow easy comparison for specific areas or 

stations. A different way of presenting the above results is by considering a profile A-A’ going 

across the Los Angeles Basin. Figure 4.24 displays the observed and predicted RotD50 calculated 

for the 40 closest stations to this profile. We use only one GMPE here – ASK14, since it had the 

smallest average absolute misfit (𝐽) in the four considered periods. Figure 4.24A and Figure 4.24B 

present the depth-to-basement and VS30 profiles along A-A’. The left column shows RotD50 

values for periods T=1, 3, 6 and 8 s, and damping ratio 5%, and the right column shows the 

residuals (calculated from Eq. (4.6)). For the GMPE predictions the points mark the median 

predicted RotD50, and the error bars mark ±1 standard deviation.  

 

Along our selected profile, the GMPE (ASK14) shows a reasonably good performance for the two 

shorter periods (T=1 and 3 s), however it mostly underpredicts the RotD50 in the deeper parts of 

the basin for the longer periods (T=6 and 8 s). For T=3 s the simulations overpredict the basin 

RotD50 at many stations and their performance is equivalent or worse than the GMPEs. However, 

for T=6 s the performance of both simulations is superior. For the longest period, T=8 s, the CVM-

H simulations suffer from overpredictions, while CVM-S fits the data exceptionally well. Looking 

at the ±1 standard deviation error bars, one sees the large standard deviations that come with the 

GMPE predictions. For our data set it is often the case that the GMPE prediction is poor but the 

observed values fall within the ±1 standard deviation. 
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Figure 4.24. Performance along the profile A-A’, for the M7.1 event. (A) Depth-to-basement 

along the profile. (B) Vs30 along the profile. (C-J) Left column: RotD50 values, Right column: 

Residuals (Eq. (4.6)). (C-D) T=1 s. (E-F) T=3 s. (G-H) T=6 s. (I-J) T=8 s. Damping ratio ζ=5%. 

Black circles: data, Red Triangles: CVM-S model simulations, Orange triangles (downward-

pointing): CVM-H model simulations, Blue squares: ASK14 GMPE predictions. For the GMPE 

predictions the squares mark the median values and the error bars mark the ±1 standard 

deviation. 
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4.7 Conclusions 

We constructed assessments of the geographical variability of long-period ground motions in the 

Los Angeles region during the two largest events of the 2019 Ridgecrest earthquake sequence 

(M7.1 and M6.4). These are presented in the form of spectral acceleration maps for periods of 

engineering significance (mainly T=1, 3, 6, and 8 s). Significant ground motion amplification is 

present in urban Los Angeles and appears to be reproducible between the two events. For the 

longer periods coherent SA patterns are present throughout the Los Angeles Basin, while for 

shorter periods the dense CSN instrumentation allows us to see the increased spatial complexity 

and the smaller length scale pockets of SA amplification. Considering the correlation of the 

observed ground motions with the site parameters of depth-to-basement and Ss30 (or Vs30), we 

find little to no correlation exists for the shortest examined period (T=1 s), while a correlation 

appears at 3 s and gets stronger for the longer periods. This lack of strong correlation suggests that 

other factors are influencing the response beyond what is captured considering the depth-to-

basement and Vs30 parameters alone. These factors are likely related to the complex geologic 

structure within the basin such as lateral contrasts due to folding and faulting or variability in 

shallow geologic deposits connected with current and ancient watershed systems.  

 

The SA maps produced from the Ridgecrest data (Figures 4.5 and 4.6) can be used as a simplified 

measure of the infrastructure response and are structure-type specific by accounting for different 

fundamental periods. For structures with long periods specifically, amplification of these long-

period motions can be hazardous. In urban Los Angeles, the vulnerable long-period structures 

include high-rise buildings, large-diameter liquid storage tanks, and long-span bridges. The high-

rises are mainly located in Downtown Los Angeles. In the Ridgecrest events the downtown area 

experienced SAs for T=6 and 8 s (Figure 4.5E-H) that were at least a factor of 2 higher than that 

of hard-rock sites to the north of the basin (e.g., in San Rafael Hills and Mt. Wilson). Large-

diameter liquid storage tanks are known to have long fundamental periods due to fluid sloshing 

and are thus sensitive to these longer periods. For instance, a circular tank with a radius of 25 m 

and height of 20 m has a period of approximately 8 s (Housner, 1954). Liquid storage tanks are 
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very common in the Los Angeles Basin, especially in the southern part (near the Port of Los 

Angeles and oil refineries). During the Ridgecrest earthquakes, this area experienced large SA 

amplifications at T=8 s relative to the hard-rock sites to the north of the basin. In the case of a 

larger future event, such amplifications could be critical, possibly even causing severe damage 

and/or fire in oil storage tanks, similar to what occurred in the city of Tomakomai during the 2003 

Tokachi-oki earthquake (Hatayama, 2008). 

 

Several previous studies have also used earthquake records to create amplification maps for the 

Los Angeles region. Hartzell, et al. (1998) analyzed records from the 1971 San Fernando, 1987 

Whittier Narrows, 1991 Sierra Madre, and 1994 Northridge earthquakes and reported Fourier 

spectra amplification factors relative to a hard-rock site in the Santa Monica Mountains for 

frequencies down to 1 Hz. Their lowest frequency band of 1-3 Hz (which is roughly comparable 

with our 1 s maps) shows amplification factors of 3-4 over the deepest portion of the central Los 

Angeles basin. These results are generally consistent with what we find for the Ridgecrest events. 

 

More recently, Hatayama and Kalkan (2011) utilized recordings for the 2010 El Mayor-Cucapah 

earthquake to produce long period (4 s and longer) Fourier spectra amplification maps throughout 

the Los Angeles region. For their longest periods (8 and 10 s), they found a broad zone of strong 

amplification over the central Los Angeles basin with a maximum amplification of 5 relative to 

their reference hard-rock stations. At periods of 4 and 6 s the amplification patterns become more 

complex with several local maxima within the basin. The largest amplification factor they found 

was 10 at 6 s period in a region located along the western margin of the Los Angeles basin near 

(e.g., Manhattan Beach). They also compared the amplification patterns with depth to various 

isovelocity surfaces within CVM-H and found good correlation of increased amplification with 

large isovelocity surface depth for periods of 8 and 10 s, but much lower correlation at the shorter 

periods. Due to inherent differences in Fourier spectra and response spectral acceleration, it is 

difficult to directly compare our results to these. Nonetheless the general trends and observations 

are consistent with our findings, including the strong 6 s amplification found along the western 

margin of the LA basin, which shows little correlation with depth-to-basement in the current 

CVMs. 
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As data from new events become available and with the station density and numbers ever 

increasing, the resulting intensity measure maps will continue to evolve in accuracy and spatial 

resolution. It is important that maps constructed from observations are considered for pre-

earthquake structure design and infrastructure planning, since there is not always a clear 

correlation between the measured intensities and the commonly-used site parameters.  

 

In recent years there is a growing effort for site-specific seismic hazard analysis, with documents 

such the Alternative Analysis & Design Procedure guidelines published by the Los Angeles Tall 

Building Seismic Design Council (LATBSDC, 2008), and projects such as SCEC’s Committee for 

Utilization of Ground Motions Simulations (UGMS) (e.g., Crouse, et al., 2018). We hope that this 

work will bring attention to the shortcomings of the currently used site parameters (Z1.0, Z2.5, 

and Vs30) and CVMs. The refinement of these parameters and models in light of new dense data 

is essential and will benefit greatly existing guidelines and projects.  

 

In the second part of the study, we examined the performance of 2D ground-motion simulations 

using two different velocity models (CVM-S and CVM-H), as well as the performance of four 

NGA-West2 GMPEs, using the data collected from the M7.1 main shock. The agreement between 

the observations and the model predictions is generally good but there is room for improvement. 

Comparing the two velocity models we find that CVM-S is superior for the longer periods (T=6 

and 8 s), while CVM-H performs better for T=3 s. The differences in the ground motion 

simulations can be associated with the different representations of the two velocity models for the 

Los Angeles Basin. The GMPEs suffer from underpredictions for the longer periods, while it is 

often the case that a GMPE performing well for one period does a poor job at a different period. 

Comparing the simulations with the GMPEs, one potential benefit of the simulations is that they 

produce full waveforms that can also be used for further studies and dynamic analyses (e.g., 

Krishnan, et al., 2006). For T=3 s, the GMPEs perform better, while for the longer periods (T=6 

and 8 s), the simulations perform better than the GMPEs. While both simulations and GMPE 

estimates often reproduce the general amplitudes and trends of the ground-motion response, they 

have trouble capturing the finer-scale spatial variations of the observed response, as well as 
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matching the specific locations of the maximum amplifications. This stresses the need for caution 

and further validation when employing these methods in order to predict ground motion response. 

 

 

4.A Appendices 

4.A.1 Calculation of the RotD50 and RotD100 Intensity Measures 

The RotD50 and RotD100 intensity measures as defined by Boore (2010) are computed as follows. 

Since the system is linear the oscillator displacements in the two horizontal directions (𝑢𝑥(𝑡) and 

𝑢𝑦(𝑡)) are combined into a single time series corresponding to a rotation angle 𝜃 using the equation 

 𝑢𝑐𝑚𝑏(𝑡, 𝜃) = 𝑢𝑥(𝑡)𝑐𝑜𝑠𝜃 + 𝑢𝑦(𝑡)𝑠𝑖𝑛𝜃. (4.10) 

The pseudo-spectral acceleration corresponding to the combined time series is 

 𝑃𝑆𝐴𝑐𝑚𝑏(𝑇, 𝜁, 𝜃) = 𝜔2 max
𝑡

(|𝑢𝑐𝑚𝑏(𝑡, 𝜃)|) . (4.11) 

RotD50 is the median pseudo-spectral acceleration over all rotation angles 

 𝑅𝑜𝑡𝐷50(𝑇, 𝜁) = median𝜃{𝑃𝑆𝐴𝑐𝑚𝑏(𝑇, 𝜁, 𝜃)} (4.12) 

and RotD100 is the maximum pseudo-spectral acceleration over all rotation angles 

 𝑅𝑜𝑡𝐷100(𝑇, 𝜁) = max𝜃{𝑃𝑆𝐴𝑐𝑚𝑏(𝑇, 𝜁, 𝜃)} . (4.13) 

 

 

4.A.2 Equivalence of the SA and RotD100 Intensity Measures 

In the following we show that SA (Eq. (4.3)) and RotD100 (Eq. (4.13)) are equivalent intensity 

measures and that their orientation is the same. From Eqs. (10) and (7) we get 

 𝑅𝑜𝑡𝐷100 =  𝜔2 𝑚𝑎𝑥𝜃 {𝑚𝑎𝑥𝑡{|𝑢𝑥(𝑡)𝑐𝑜𝑠𝜃 + 𝑢𝑦(𝑡)𝑠𝑖𝑛𝜃|}} (4.14) 

 =  𝜔2 𝑚𝑎𝑥𝑡 {𝑚𝑎𝑥𝜃{|𝑢𝑥(𝑡)𝑐𝑜𝑠𝜃 + 𝑢𝑦(𝑡)𝑠𝑖𝑛𝜃|}} . (4.15) 
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The non-redundant rotations involve 𝜃 ∈ [0, 180𝜊]. Let 𝑢𝑥(𝑡) = 𝑟(𝑡)𝑐𝑜𝑠𝜓(𝑡) and 𝑢𝑦(𝑡) =

𝑟(𝑡)𝑠𝑖𝑛𝜓(𝑡). Then 𝑟(𝑡) = (𝑢𝑥
2(𝑡) + 𝑢𝑦

2(𝑡))
1/2

 and 𝜓(𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑢𝑦(𝑡)

𝑢𝑥(𝑡)
). Thus, we get 

 |𝑢𝑥(𝑡)𝑐𝑜𝑠𝜃 + 𝑢𝑦(𝑡)𝑠𝑖𝑛𝜃| = |𝑟(𝑡)(𝑐𝑜𝑠𝜓(𝑡)𝑐𝑜𝑠𝜃 + 𝑠𝑖𝑛𝜓(𝑡)𝑠𝑖𝑛𝜃)| (4.16) 

 = 𝑟(𝑡)|𝑐𝑜𝑠(𝜃 − 𝜓(𝑡))| ≤ 𝑟(𝑡) . (4.17) 

 

Since 𝜃 ∈ [0, 180𝜊], for each time 𝑡 there exists a rotation angle 𝜃(𝑡) for which 

|𝑐𝑜𝑠(𝜃(𝑡) − 𝜓(𝑡))| = 1 which occurs for  

 𝜃(𝑡) = 𝜓(𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑢𝑦(𝑡)

𝑢𝑥(𝑡)
) (4.18) 

and gives  

 𝑚𝑎𝑥𝜃|𝑢𝑥(𝑡)𝑐𝑜𝑠𝜃(𝑡) + 𝑢𝑦(𝑡)𝑠𝑖𝑛𝜃(𝑡)| = 𝑟(𝑡) = (𝑢𝑥
2(𝑡) + 𝑢𝑦

2(𝑡))

1

2
. (4.19) 

 

Thus from Eq. (4.15) after maximizing with respect to 𝜃 we get 

 𝑅𝑜𝑡𝐷100 = 𝜔2 𝑚𝑎𝑥𝑡 {(𝑢𝑥(𝑡)2 + 𝑢𝑦(𝑡)2)
1/2

} (4.20) 

which is exactly the same as the 𝑆𝐴 measure defined in Eq. (1). Furthermore, the time 𝑡𝑚 at which 

this maximum occurs corresponds to rotation angle 𝜃(𝑡𝑚 ) given by Eq. (4.18) with 𝑡 replaced by 

𝑡𝑚 and thus corresponds to the angle 𝜑 defined by Eq. (4.5) for the 𝑆𝐴 measure.  

 

 

4.A.3 Long Period Ground Accelerations Along Two Profiles 

The following figures present ground acceleration (NS components) along two profiles. After the 

usual processing (described in Section 4.1), the ground accelerations were further filtered by a 

band-pass Butterworth filter with cutoff frequencies 1/8 Hz and 1/4 Hz effectively keeping only 

the longer period ground motions.  
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The x’x profile goes from sites in the San Gabriel Hills to the dense instrumentation deeper in the 

basin. Figure 4.25A displays the profile and the selected stations. The 10 nearest stations to the 

x’x line segment were selected. Figure 4.25B displays the depth to basement along the profile, 

which is calculated using nearest neighbor interpolation of the grid points provided by Shaw, et al. 

(2015). The long period ground accelerations for the selected stations are shown in Figure 4.26. 

 

The y’y profile goes across the JPL campus. The JPL campus densely instrumented by the CSN, 

with the average station spacing being about 50m. Figure 4.27A displays the profile and the 

selected stations. Figure 4.27B displays the depth to basement along the profile. The long period 

ground accelerations for the selected stations are shown in Figure 4.28. 
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Figure 4.25. The selected x’x profile. (A) The profile and the selected stations. (B) The depth to 

basement along the profile. The red vertical lines denote the selected station location projections 

into the profile. 
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Figure 4.26. Long period ground accelerations along profile x’x. N-S components. 
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Figure 4.27. The selected y’y profile. (A) The profile and the selected stations. (B) The depth to 

basement along the profile. The red vertical lines denote the selected station location projections 

into the profile. 
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Figure 4.28. Long period ground accelerations along profile y’y. N-S components. 
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4.A.4 SA Maps for 2% Damping Ratio 

A 2% damping ratio is more appropriate when the response of mid- or high-rise structural systems 

is of interest. For 2% damping the amplitudes are overall higher but the trends and behavior are 

similar to those observed and discussed for the 5% damping (Figures 4.5 and 4.6). 
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Figure 4.29. SA maps. Damping ratio ζ=2%. Left column: M7.1 Event. Right column: M6.4 

Event. (A-B) T=1 s. (C-D) T=3 s. (E-F) T=6 s. (G-H) T=8 s. Circles: CSN stations, Diamonds: 

SCSN & CSMIP stations. The region inside the black rectangle is magnified in Figure 4.30. Note 

varying colorbar amplitude scales. 



 

 

155 

 

Figure 4.30. SA maps showing detail in the region marked by the black rectangle in Figure 4.29. 

Damping ratio ζ=2%. Same format as Figure 4.29. 
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4.A.5 RotD50 Maps for 5% Damping Ratio 

Since RotD50 is the median pseudo-spectral acceleration over all rotation angles rather than the 

maximum the amplitudes are overall lower when compared with the 5% critical damping SA maps. 

However the trends and behavior are again similar to those observed and discussed for the 5% 

critical damping SA maps (Figures 4.5 and 4.6). 
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Figure 4.31. RotD50 maps. Damping ratio ζ=5%. Left column: M7.1 Event. Right column: M6.4 

Event. (A-B) T=1 s. (C-D) T=3 s. (E-F) T=6 s. (G-H) T=8 s. Circles: CSN stations, Diamonds: 

SCSN & CSMIP stations. The region inside the black rectangle is magnified in Figure 4.32. Note 

varying colorbar amplitude scales. 
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Figure 4.32. RotD50 maps showing detail in the region marked by the black rectangle in Figure 

4.31. Damping ratio ζ=5%. Same format as Figure 4.31. 



 

 

159 

 

4.A.6 GMPE Predicted RotD50 Against Distance  

In Figure 4.33 we present plots of the GMPE predicted RotD50 as a function of distance from the 

fault only (distance range: 1-350 km). A Vs30 equal to 300 m/s (representative of a soft soil site) 

and a right lateral strike slip was assumed. Here in contrast to what was done in Section 4.4 the 

Vs30 is constant for all points and the depths Z1.0 and Z2.5 are assumed unknown. The five lines 

correspond to the five NGA-West 2 GMPEs: ASK14 (Abrahamson, et al., 2014), BSSA14 (Boore, 

et al., 2014), CB14 (Campbell & Bozorgnia, 2014), and CY14 (Chiou & Youngs, 2014). The fifth 

GMPE (Idriss, 2014) is not plotted in the Section 4.5 maps, since it is not applicable for the source-

to-site distance and Vs30 ranges of our sites (Gregor, et al., 2014). 

 

 

Figure 4.33. GMPE predicted RotD50 as a function of distance only for a soft soil site. M7.1 

earthquake. Periods shown: (A) 1 s; (B) 3 s; (C) 6 s; and (D) 8 s. 
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In Figure 4.34 we present plots of the GMPE predicted RotD50 versus distance for the area of 

interest. Here, as it was done for Section 4.4, each point corresponds to a station and together with 

the distance from the station to the fault, the station’s Vs30 (from Thompson, 2018) and its Z1.0 

and Z2.5 (from the CVM-H velocity model) are also taken into account.  

 

 

 

Figure 4.34. GMPE predicted RotD50 for the sites considered in the study. The site distance to 

the fault, Vs30 and Z1.0 or Z2.5 are considered. M7.1 earthquake. Periods shown: (A) 1 s; (B) 3 

s; (C) 6 s; and (D) 8 s. 
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4.A.7 Data and Resources 

The data from the Community Seismic Network (CSN) stations for the two Ridgecrest events is 

publicly available through the CSN website at http://csn.caltech.edu/data/. The Southern 

California Seismic Network (SCSN) data was accessed through the Southern California 

Earthquake Data Center (SCEDC) and are available at https://scedc.caltech.edu/. The California 

Strong Motion Instrumentation Program (CSMIP) data was accessed through the Center for 

Engineering Strong Motion Data (CESMD) and are available at https://strongmotioncenter.org/. 

All data used in this study from the three above sources is also archived on the SCEDC data center 

and can be accessed at https://scedc.caltech.edu/research-tools/ridgecrest-info.html. The 

topographic background base maps were made available by the U.S. Geological Survey's (USGS) 

National Geospatial Program and were accessed from https://basemap.nationalmap.gov/. The 

regional basement surface and major faults data are provided by Southern California Earthquake 

Center’s (SCEC) Unified Structural Representation (USR) and are available at SCEC’s GitHub 

repository https://github.com/SCECcode/. The Vs30 data are released by USGS and were accessed 

through https://www.sciencebase.gov/catalog/. The 3D seismic velocity models were accessed 

using the SCEC Unified Community Velocity Model (UCVM) software, version 19.4.0 

(https://github.com/SCECcode/UCVMC/wiki/).  

  



 

 

162 

C h a p t e r  5  

CHAPTER 5: 

CONCLUSIONS AND OUTLOOK 

 

 

5.1 Conclusions 

The thesis is organized in two parts. The first part deals with the development of structural 

identification algorithms based on finite element model updating, using response time histories 

recorded from dense sensor networks installed in buildings. Techniques are developed (a) for 

tracing the nonlinear characteristics of buildings by estimating the stiffness and damping ratios of 

equivalent linear finite element models using a moving time window approach, and (b) for 

identifying the location and extent of damage due to deterioration from cracks developed in one 

or more connections between floor beams and columns.  

 

The second part of this thesis deals with a study of the recorded and model predicted ground 

motions in urban Los Angeles from the two largest events (M7.1 and M6.4) of the 2019 Ridgecrest 

earthquake sequence, using recordings from the very dense Community Sensor Network (CSN) as 

well as from multiple regional seismic networks. We produce maps of the response spectral 

accelerations for a selection of periods of engineering significance and study possible correlations 

of the computed response spectral accelerations with the geophysical parameters of basement 

depth and Vs30. Furthermore, we test the performance of methods for estimating the response 

spectral accelerations for the largest event (M7.1) of the Ridgecrest earthquake sequence, namely 

3D finite difference simulations and ground motion prediction equations. We produce maps of the 

estimated response spectral accelerations and compare them with the observations. 

 

The contributions of the first part of this work are summarized as follows.  

• We introduced a deterministic structural identification approach in order to explore the 

possibility of estimating the condition of a steel frame structure and tracing possible nonlinear 

softening behavior, through the updating of the stiffness properties and modal damping ratios 
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of an equivalent linear finite element model over short segments of the recorded earthquake 

response using a moving time window approach. Results using simulated response time history 

data generated from different intensity scales of a seismic event demonstrate the promise of 

the presented approach and its limitations due to model error. Model error is introduced not 

only from the difference between the model and the actual system but also from the stiffness-

related parameterization considered. To avoid ill-conditioning over the different segments in 

the moving time window approach, arising from the fact that the information in the data is 

inadequate to estimate all the model parameters, the number of stiffness-related parameters 

have to be kept small and the number of used modes has to be limited to the contributing ones. 

The proposed method can be seen as an alternative to the two-stage finite element model 

updating methods available in the literature.  

 

• We developed a Sparse Bayesian Learning (SBL) technique for damage identification in 

buildings, integrating nonlinear models of buildings with response time history data recorded 

from a dense sensor network installed on buildings, similar to the ones deployed by the CSN. 

The SBL method is based on the premise that damage is sparse, manifested in a small number 

of elements in a structure or small number of floors in a high-rise building. The proposed 

method extends existing SBL techniques which, since they rely on processing measurements 

related to modal properties, are limited to linear models for describing the damage through 

changes in stiffness properties. We have shown that the two-step iterative optimization 

algorithm, arising in the SBL technique for estimating iteratively the optimal values of the 

model parameters in the first step and the optimal values of the hyperparameters in the second 

step, is equivalent to a single-objective optimization with respect to the model parameters. The 

developed SBL technique is generally applicable to other civil and mechanical structures with 

damages that are described by parameterized linear and nonlinear models and undergo sparse 

damage. 

 

• The parameters in our proposed method are related to nonlinear properties of the finite element 

model of the structure. Specifically, the nonlinearities in this study are associated with the 
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stiffness in tension of fiber elements and are introduced in order to allow for more realistic 

modeling of the damage due to weld cracking. The effectiveness of the SBL technique was 

successfully tested in a virtual environment by applying it to simulated data generated from an 

OpenSEES nonlinear finite element model of a 15-story, three-dimensional, steel-frame 

building. The nonlinearities are introduced at the floor beam corner elements of the building. 

The SBL algorithm was shown to be very promising in identifying the location and extent of 

damage for various sparse damage scenarios associated with cracks and under the presence of 

significant model error. The systematic study carried out revealed the strengths of the proposed 

method to successfully identify the location of damage, as well as the extent of damage, for 

small to moderate model errors. For large model errors the identification of the location of 

damage was in most cases successful with a number of false alarms manifested in undamaged 

locations. The extent of damage identified in the locations where damage was introduced was 

close to the inflicted damage, while the discrepancy between the identified and inflicted 

magnitude of damage depends on the size of the model error considered. It is also found that 

one or two biaxial sensors per floor are sufficient to identify the damage in a floor and even 

the damaged side in a floor, but floor measurements alone do not seem to be adequate to 

pinpoint the beam end that may be damaged. The identified location and size of damages due 

to developed cracks can be incorporated into nonlinear finite element models to update 

predictions of important structural response quantities of interest, such as stresses and 

interstory drifts.  

 

 

The contributions of the second part are summarized below.  

 

• We constructed assessments of the geographical variability of long-period ground motions in 

the Los Angeles region during the two largest events of the 2019 Ridgecrest earthquake 

sequence in the form of response spectral acceleration maps. The produced maps can be used 

as a simplified measure of the infrastructure response and are structure-type specific by 

accounting for different fundamental periods. The maps reveal significant ground motion 

amplification present in urban Los Angeles. For structures with longer periods (e.g., high rise 



 

 

165 

building or large diameter liquid storage tanks) such amplifications could be hazardous, and 

the maps reveal areas where the existence of such structures would be dangerous. Our findings 

regarding the observed spectral amplification patterns agree with the site amplification patterns 

observed in previous studies of the ground response urban Los Angeles, as it was discussed in 

more detail in Section 4.7. Nonetheless, the extremely high spatial resolution of the maps, 

attributable to the CSN, is unprecedented for the area of urban Los Angeles. A correlation 

between the observed spectral accelerations from two events exists for all examined periods 

(T=1, 3, 6, and 8 s) and the correlation gets stronger for the longer periods. For the longer 

periods coherent patterns which appear to be correlated to the larger scale basin structure and 

soil properties are visible throughout the whole Los Angeles Basin. For the shorter periods the 

motions are stronger and less spatial coherent; however, the high spatial density, due to CSN, 

is able to capture a smaller scale coherence. Furthermore, we examined possible correlations 

of the computed SA with two common geophysical parameters: basement depth and Vs30, and 

found no significant correlation for the 1 s period, while a correlation appears and gets stronger 

for longer periods. 

 

• We tested the performance of two state-of-the-art methods for estimating ground motions for 

the largest event (M7.1) of the 2019 Ridgecrest earthquake sequence, namely 3D finite 

difference simulations and ground motion prediction equations. The agreement between the 

observations and the model predictions is generally good but there is room for improvement. 

For the simulations, we were interested in the performance of the two Southern California 

Earthquake Center 3D Community Velocity Models (CVM-S and CVM-H). Comparing the 

two velocity models we find that CVM-S performs better for the longer periods (T=6 and 8 s), 

while CVM-H performs better for T=3 s. The differences in the ground motion simulations 

can be associated with the different representations of the two velocity models for the Los 

Angeles Basin. For the Ground Motion Prediction Equations, we considered four of the 2014 

Next Generation Attenuation-West2 Project equations. The GMPEs produce a wide range of 

estimates. It is often the case that a GMPE performing well for one period does a poor job at a 

different period. For the longer periods (T=6 and 8 s) all GMPEs suffer from under-predictions 

throughout the entire Los Angeles Basin.  
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5.2 Outlook 

Related to structural damage identification studies carried out in this thesis, several extensions of 

this work are possible.  

 

• The findings in Chapter 3 may motivate field studies on actual buildings as well as systematic 

studies in controlled laboratory environment on small-scale buildings to verify the 

effectiveness of the proposed method with real data. The dense instrumentation in selected 

high-rise building in the Los Angeles area, provided from the CSN network, could offer this 

opportunity in the future, provided damage occurs during strong ground motion. The 

availability of such data will actually test the performance of the method under actual model 

and measurement errors and not the artificial model and measurement errors induced in this 

thesis. This will really be a challenging task since other type of model errors include also the 

variabilities arising from environmental effects (e.g. temperature), as well as mass distribution 

in the building which may not remain constant over time. Moreover, laboratory experiments 

on small-scale building or other structures with inflicted cracks can be performed on shaking 

tables to verify the effectiveness of the proposed SBL technique. The advantage of the small-

scale experiments is that one can control the inflicted damage in a laboratory setting, study 

different damage scenarios, and inflict different model errors by mass distributions. Such 

systematic studies using actual structures and data, and not under a virtual environment, will 

be invaluable to test the effectiveness of the proposed algorithms, their limitations and the 

conditions under which damage can be identified.  

 

• In light of the difficulties for damage identification due to large model error, it is expected that 

the simultaneous processing of the damage identification information from multiple low 

intensity seismic aftershocks may provide more robust estimates of the damage locations. For 

this, a possible future direction is to extend the SBL method to handle the processing of 

multiple low intensity earthquake datasets.  
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• Another possible direction is the extension of the SBL algorithm developed in Chapter 3 to 

identify damage during strong ground motion which activates the nonlinear hysteretic 

characteristics of the material used in buildings. This requires a model that includes the 

hysteretic nonlinearities activated during strong motion. Once such models are incorporated 

into the algorithm, the application of SBL is straightforward. Along the direction of 

investigating the capabilities and the limits of the SBL algorithm for structural damage 

identification one can apply the algorithm to handle different material degradation mechanisms 

that may be activated at localized locations and involve more than one parameters per damage 

location. However, due to activation of the extra hysteretic nonlinearities in a large number of 

beam and columns, the computational time required to perform one model simulation is 

expected to substantially increase and therefore the time-to-solution provided by the SBL will 

drastically increase. To tackle the excessive computational effort, one should further 

investigate parallelizing the processes involved in the SBL algorithm (using parallel computing 

servers instead of a personal computer). 

 

• The results in this study suggest that increasing the number of sensors per building floor does 

not necessarily improve damage identification capabilities for the specific type of damage 

considered. This may also suggest that it might not be necessary to instrument all floors of a 

building, depending always on the type of analysis that needs to be performed. A systematic 

study that will also be useful in a cost-effective design of dense sensor network to be installed 

in civil infrastructure components (e.g. building, bridges, offshore structures), like the future 

expansion of the CSN to cover additional civil infrastructure, is the optimization of the sensor 

network in terms of the number and location of sensors in the structure. Optimal design of the 

sensor network is useful for cost-effective reliable monitoring of the structure for identifying 

the location and extent of damage. It is believed that such a design will depend on the type of 

the infrastructure component, the type of damage expected during a seismic event, and the 

excitation characteristics.  
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Related to the ground motion response studies using the dense seismic networks installed in urban 

Los Angeles the following ideas can be further pursued.  

 

• While our study of the ground response in urban Los Angeles did involve investigating the 

amplification of the spectral acceleration of a site relative to the average spectral acceleration 

of several bedrock site, we did not explore site amplifications per se. The computed 

amplification of the spectral acceleration apart from site effects also includes the effects of the 

source, as well as the effects of the wave propagation across the basement/sediment interface 

and through the deep sediments of the basin. When the earthquake source is distant, like for 

our case, the different effects of source, path, and site are known to be more easy to separate 

(Rogers, et al., 1984). Separating the site effects is possible through the use of one or more site 

estimation techniques. Some example site estimation techniques include the reference-site 

spectral ratio method (Borcherdt, 1970; Borcherdt & Gibbs, 1976) and the source-site spectral 

inversion method (Andrews, 1986; Hartzell, 1992). A comparison of various site-response 

estimation techniques is also provided by Field and Jacob (1995). This could be considered as 

a follow up study (using the data collected from the two events but also from smaller events of 

the Ridgecrest sequence) and could possibly give a clear (and high spatial resolution) picture 

of the site amplification in urban Los Angeles, directly comparable with past site amplification 

studies (e.g., Rogers, et al., 1985; Harmsen, 1997; Hartzell, et al., 1998).  

 

• In Section 4.3.1 we presented maps of the observed spectral acceleration recorded by the CSN 

deployment in the campus of the Jet Propulsion Laboratory (JPL) for a selection of periods 

between 0.1 and 8 s. The dense CSN instrumentation allowed the observation of a smaller 

length scale coherence over the 0.5, 0.8, and 1 s periods. To the north the JPL campus extends 

to the top of Gould mesa. The largest spectral acceleration is occurring at the top of the mesa. 

The spectral accelerations decrease at the bottom/edge of the mesa, increase south of the mesa 

and decrease again. The above observations are found to be similar for both events (M7.1 and 

M6.4) of the 2019 Ridgecrest earthquake sequence that we studied. It would be very interesting 

to see if such behavior can be related to morphological features of the geology underlying the 
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JPL campus. One- and two-dimensional simulations could shed light to the observed spectral 

acceleration amplifications. Similar recent studies include those by Asimaki & Mohammadi 

(2018) and Asimaki, et al. (2020). The small JPL campus size in combination with the presence 

of interesting geologic features and the dense spatial density of the collected data from multiple 

events make this an interesting possible future study. 
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