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ABSTRACT

The efficient exploration and characterization of potential energy surfaces paves
the way for the theoretical elucidation of complex chemical processes. A potential
energy surface arises from the application of the Born–Oppenheimer approxima-
tion when solving the Schrödinger equation for a molecular system. The extraction
of energies and nuclear gradients from the Schrödinger equation is typically cost-
prohibitive, which has inspired a plethora of approximations. In this thesis, we
present the development of embedding and machine learning methodologies that
provide fast and accurate energies and nuclear gradients for different chemical
classes by combining high- and low-level electronic structure theories. If a chem-
ical change occurs in a spatially localized region, embedding strategies offer an
effective approach for balancing accuracy and computational cost. We first con-
sider embedded mean-field theory (EMFT), which seamlessly combines different
mean-field theories for different subsystems to describe the whole molecular system.
We analyze the errors in EMFT calculations that occur when subsystems employ
different atomic-orbital basis sets. These errors can be alleviated by a Fock-matrix
correction scheme or by following general basis set recommendations. Systems
exhibiting a more complicated electronic structure require a systematically improv-
able level of theory for the subsystems, which can be realized by projection-based
embedding. Projection-based embedding enables the description of a small part
of a molecular system at the level of a correlated wavefunction method while the
remainder of the system is described at the mean-field level. We go on to derive
and numerically demonstrate the analytical nuclear gradients for projection-based
embedding. If description of the entire system at the high level of theory is deemed
necessary, molecular-orbital-based machine learning (MOB-ML) calculations of-
fers a framework to predict accurate correlation energies at the cost of obtaining
molecular orbitals. We go on to present the derivation, implementation, and nu-
merical demonstration of MOB-ML analytical nuclear gradients. We demonstrate
the developed methodologies by exploring potential energy surfaces of organic and
transition-metal containing molecules.
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C h a p t e r 1

INTRODUCTION

Complex chemical systems present challenges to electronic structure theory, stem-
ming from large system sizes, subtle interactions, and coupled dynamical timescales.
New methods are needed to perform reliable, rigorous, and affordable electronic
structure calculations for simulating the potential energy surfaces of such systems.
These new methods need to have fast energy and gradient evaluations to efficiently
explore and characterize potential energy surfaces, which is the foundation of the
quantum chemical elucidation of complex reaction mechanisms via molecular dy-
namics simulations and minimum-energy and transition-state structure characteri-
zation.

For systems in which complicated chemical rearrangements (e.g. bond breaking
and forming) occur in a local spatial region, an effective strategy for balancing
accuracy and computational cost is to employ one of various multiscale embedding
strategies [1–28]. Generally, embedding methodologies hinge on the condition
that a system can be efficiently partitioned into a local subsystem that demands
a high-level treatment and an environment that can be treated with a lower (and
computationally less expensive) level of theory. By exploiting the intrinsic locality
of molecular interactions, these approaches provide high accuracy for regions that
demand it while avoiding the computational cost of a high-level calculation on the
whole system.

One such embedding method is embedded mean-field theory (EMFT) [17, 23, 29],
which flexibly embeds one high-level MF theory (e.g. hybrid-GGA) in another
low-level MF theory (e.g. LDA) without needing to specify or fix the number of
electrons in each subsystem. EMFT inherits the simple gradient theory of the parent
mean-field theories and has been shown to provide hybrid-GGA quality results at a
much reduced computational cost. In Chapter 2 we introduce the use of mixed-basis
atomic orbital (AO) basis sets to further speed up the evaluation of EMFT energy and
gradient calculations. Usingmixed-basis sets in electronic structure calculations is a
commonly employed strategy for reducing computational cost by describing different
portions of the system with AO basis sets of different size [30–43]. Even for mean-
field methods such as Hartree–Fock (HF), density functional theory (DFT) and
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EMFT, the computational cost of these methods formally scales as O(N4), where N

corresponds to the number of basis functions, so reducing the number of employed
basis functions is a simple and tempting strategy to decrease computational cost.
However, using mixed basis sets have shown in some cases to give rise to large errors
in comparison to calculations performed with a single, uniform AO basis set [17,
41, 42]. In this chapter, we systematically analyze the sources of error that occur
in mixed-based mean-field electronic structure calculations and highlight how the
underlying errors can be largely eliminated by using Fock-matrix corrections or by
avoiding the use of a minimal basis set in the low-level region.

Many chemical processes demand accurate, ab initio electronic structure theoretical
descriptions from wavefunction theories, where mean-field methods such as DFT
and EMFT prove to be inadequate. However, the routine calculation of accurate
wave function energies is prohibited by their steep cost, e.g., coupled-cluster singles,
doubles, and perturbative triples [CCSD(T)] scales as N7 [44] and full configuration
interaction scales as N! [45]. In Chapter 3 we review projection-based embedding
which provides a simple, robust, and accurate approach for describing a small part
of a chemical system at the level of a correlated wavefunction method while the
remainder of the system is described at the level of density functional theory. We
go on to review a series of technical developments and applications illustrating the
accuracy of projection-based embedding energy calculations. Next, in Chapter 4
we enable the full characterization of potential energy surfaces of chemical systems
with projection-based embedding by deriving and numerically demonstrating its
analytical nuclear gradients. We highlight the utility of the analytical gradients by
calculating the minimum energy pathway for a hydride transfer in a cobalt-based
molecular catalyst.

Even with the advances in embedding methodologies such as EMFT and projection-
based embedding the modeling of many chemical processes still remains out of
reach. EMFT lacks the accuracy required in many cases and projection-based
embedding is still too computationally expensive to simulate large systems. In
recent years, machine learning has opened up a new way of mitigating the cost
of quantum chemical calculations [46–69]. One promising approach is molecular
orbital based-machine learning (MOB-ML), which predicts the pair-wise sum of
a wavefunction correlation energy at the cost of a mean-field calculation [70–72],
giving us the best of both worlds in terms of accuracy and computational cost. In
Chapter 5 we provide a brief overview of MOB-ML, and derive and numerically
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demonstrate its analytical nuclear gradients enabling the full characterization of
potential energy surfaces. We highlight that MOB-ML gradients yield high-quality
optimized structures at a computational cost comparable to mean-field calculations
(e.g., HF and DFT).

Tackling the Schrodinger equation has been the work of life times and has lead to
many amazing developments allowing us to push the limits of quantum chemistry
to further and further heights. The theoretical developments in this thesis further
this pursuit by combining high- and low-level electronic structure theories for the
efficient exploration of potential energy surfaces.
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C h a p t e r 2

DENSITY-BASED ERRORS IN MIXED-BASIS MEAN-FIELD
ELECTRONIC STRUCTURE, WITH IMPLICATIONS FOR

EMBEDDING AND QM/MMMETHODS

Adapted from:

1S. J. R. Lee, K. Miyamoto, F. Ding, F. R. Manby, and T. F. Miller III, “Density-
based errors in mixed-basis mean-field electronic structure, with implications for
embedding and QM/MM methods”, en, Chem. Phys. Lett. 683, 375–382 (2017)
10.1016/j.cplett.2017.04.059.

In this chapter we consider mean-field electronic structure calculations with sub-
systems that employ different atomic-orbital basis sets. A major source of error
arises in charge-manifestation reactions (including ionization, electron attachment,
or deprotonation) due to electronic density artifacts at the subsystem interface. The
underlying errors in the electronic density can be largely eliminated with Fock-
matrix corrections or by avoiding the use of a minimal basis set in the low-level
region. These corrections succeed by balancing the electronegativity of atoms at
the subsystem interface, much as link-atoms in QM/MM calculations rely upon
balancing the electronegativity of atoms in the truncated QM region.
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2.1 Introduction
Mixed-basis electronic structure calculations have long been employed for obtain-
ing diverse chemical properties, including nuclear magnetic resonance chemical
shifts [30–38], reaction energies [39–42], solvation energies [42], and molecular
electrostatic potentials [43]. While there have been many successful applications of
mixed basis sets, they have been shown in some cases to give rise to large errors in
comparison to calculations performed with a single, uniformAO basis set. In partic-
ular, DiLabio et al. [42] noted that properties such as proton affinities and electron
affinities are particularly problematic when a minimal STO-3G basis set is used to
describe portions of the system, whereas other processes such as bond dissociation
energies are well behaved [41]. The underlying origin of these observations was
not demonstrated, nor were strategies provided for anticipating and avoiding these
sizable artifacts in mixed-basis electronic structure calculations.

It was also recently shown that embedded mean-field theory (EMFT), a DFT-based
quantum embedding method for which the subsystem densities are not frozen,
can also exhibit errors that are dominated by the use of different basis sets for
the embedded subsystems [17]. A particularly striking illustration of the errors
associated with mixed-basis-set calculations was found to be the deprotonation
reaction of decanoic acid, akin to the previously observed mixed-basis errors in
the calculation proton and electron affinities [42]. The development of rigorous
and robust quantum embedding methods that allow for the unfrozen calculation of
electronic densities thus demands an improved understanding of these errors and
improved strategies for mitigating them, which is the focus of the current chapter.

In this chapter, we systematically analyze the sources of error caused in mixed-based
mean-field electronic structure calculations. The quantum embedding framework
of EMFT is employed to address this problem in the context of simple, illustrative
chemical reactions. This chapter illustrates that artifacts in the calculated electronic
density — akin to those that have been emphasized recently in both KS-DFT [73,
74] and quantum embedding methods [22] employing uniform AO basis sets —
comprise a major source of error in the calculation of molecular properties with
mixed-basis electronic structure methods. Furthermore, we demonstrate that Fock-
matrix corrections [29] offer a promising strategy for mitigating these errors by
addressing the root causes of the problem in the electronic density.
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2.2 Methodology
Because mixed-basis KS-DFT calculations correspond to a special case of EMFT,
and motivated by the fact that mixed AO basis sets are the dominant source of
error in many EMFT calculations, we employ EMFT as a framework to analyze and
mitigate this source of error. A brief review of EMFT is provided below, as well as
the recently developed Fock-matrix correction method that will be employed as the
low-level theory in some of the presented results.

Embedded Mean-Field Theory (EMFT)
EMFT employs a partitioning of the electronic density matrix at the level of the
one-particle basis [17], such that

D =

[
DAA DAB

DBA DBB

]
, (2.1)

where DAA and DBB denotes the density matrix blocks for subsystems A and B,
respectively, and DAB and DBA are the off-diagonal blocks. The total energy expres-
sion for EMFT is then

EEMFT = E low[D] − E low[DAA] + Ehigh[DAA], (2.2)

where E low and Ehigh refer to the energy functionals for the low-level and high-level
theories, respectively. Unlike ONIOM [75, 76], the EMFT energy is obtained via
minimization of the above energy expression with respect to the total density matrix,
D, yielding the usual self-consistent field (SCF) equation,

FC = SCε , (2.3)

where F is the EMFT Fockmatrix defined as the derivative of the EMFT energy with
respect to the total density matrix; C, S, ε are the usual MO coefficients, overlap
and MO eigenvalue matrices. The generality of the EMFT framework allows for the
embedding of any mean-field theory into any other. This includes using relatively
high-cost DFT methods (such as those employing hybrid, double-hybrid, or range-
separated exchange-correlation functionals) for the high-level theory and low-cost
DFT methods (such as GGA, LDA, or FCDFT) or tight-binding methods for the
low-level theory. Since the high- and low-level theories in EMFT can employ
different AO basis sets [17], it is clear that mixed-basis mean-field calculations can
also be regarded as a special case of EMFT in which the same exchange correlation
functional but a different basis set is employed for the two subsystems.
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Fock-corrected DFT (FCDFT)

FCDFT is a parameterized version of KS-DFT in which calculations using an
inexpensive XC functional form (such as LDA) and minimal basis (such as STO-
3G) are corrected to reproduce KS-DFT results obtained with more accurate XC
functionals and larger basis sets [29]. The parameterized corrections in FCDFT
are included at the level of the Fock matrix, such that both the calculated energy
and the density are improved; this feature contrasts with other parameterized DFT
methods, such as the HF-3c approach developed by Grimme et al. [77], in which
corrections are included to the energy following conventional SCF convergence of
the minimal-basis density.

The energy functional for FCDFT is

EFCDFT[D̃] = EDFT[D̃] + trD̃L̃ +Ucor, (2.4)

where D̃ is the minimal-basis one-particle density matrix, EDFT is the DFT energy
evaluatedwith the inexpensiveXC functional, L̃ is theminimal-basis semi-empirical
correction matrix, and Ucor is a sum of short-ranged pairwise interactions that is an
explicit function of atom-atom distances, {RI J}, and is independent of the electronic
density matrix. The elements of L̃ are given by

L̃µν =

δµνεµ µ, ν ∈ I

FSK
µν (RI J) µ ∈ I, ν ∈ J

, (2.5)

where I and J index atoms, εµ are fitted, atom-specific diagonal energy shifts, and
FSK
µν (RI J) are fitted atom-atom interaction functions. Ref. 29 provides full details

of FCDFT and shows that it can be straightforwardly employed as the low-level
mean-field method in the EMFT framework.

In the current work, we employ the FCLDA implementation of FCDFT, for which
EDFT in Eq. 2.4 is evaluated using the LDA exchange-correlation functional. Only
diagonal components in the correction matrix L̃ are included, with the AO energy
shifts, εµ parameterized to fit the valence orbital energies for a small training set
of molecules, as described in the Computational Details Section. The term Ucor is
neglected since it does not affect the electronic density and since it has little effect on
the reaction energy due to the extremely small structural change in the environment
subsystem for the reactions studied here.
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2.3 Computational Details
All molecular geometries are identical to those reported by Fornace et al. [17],
which are optimized at the B3LYP/6-311G** level of theory. Calculations are
performed using atomic-orbital basis functions that are implemented in terms of
spherical Gaussians, and unless otherwise specified, the restricted form of the SCF
wavefunction is employed.

Standard KS-DFT calculations, including those withmixed basis sets, are performed
using Molpro 2015.1 [78] without density fitting, employing the PBE exchange-
correlation functional [79] with the cc-pVTZ [80], 6-31G [81], and STO-3G [82]
basis sets. Throughout this work, KS-DFT mixed-basis calculations are denoted
using the convention “PBE/large-basis:small-basis,” where the large basis is used
to describe subsystem A and the small basis is used to describe subsystem B. The
exchange-correlation functional is evaluated using an adaptively generated quadra-
ture grid that reproduces the energy of the Slater-Dirac functional to a specified
threshold accuracy of 10−10 hartree. For the atomic electronegative analysis (Table
2.2), open-shell KS-DFT calculations are performed using Gaussian 09 with an
unrestricted reference.

The current study employs the FCLDA/STO-3G implementation of FCDFT, for
which the LDA exchange-correlation functional with the minimal STO-3G basis
is used to evaluate EDFT in Eq. 2.4. The FCDFT parameters, εµ, are obtained
by minimizing the root-mean-square error of the FCLDA/STO-3G valence orbital
energies with respect to KS-DFT at the PBE/cc-pVTZ level of theory. The needed
parameters for atom-types H and C atoms are obtained by fitting over a training set
composed of H2, CH4, C2H2, C2H4, C2H6, and benzene. All FCDFT parameters
used in this study are provided in Table 2.1.

Table 2.1: Fock correction parameters for fitting FCLDA/STO-3G to PBE/cc-pVTZ

Parameters (hartree)
Atom ε1s ε2s ε2p
H −0.059741
C −1.578564 0.077887 −0.087737

EMFT and FCEMFT calculations are performed using the developer version ofMol-
pro [78, 83]. For the EMFT calculations, denoted as PBE-in-LDA/cc-pVTZ:STO-
3G/DF:DF(s), the high-level theory corresponds to DFT with the PBE exchange-
correlation functional, using the cc-pVTZ AO basis, and the Ahlrichs density-fitting
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basis [84, 85]; the low-level theory corresponds to DFT with the LDA exchange-
correlation functional, using the STO-3G AO basis, and the Ahlrichs density-fitting
basis with only s-type functions. For the FCEMFT calculations, denoted PBE-
in-FCLDA/cc-pVTZ:STO-3G/DF:DF(s), the same high-level theory is employed;
the low-level theory corresponds to the previously described FCLDA/STO-3G im-
plementation of FCDFT, using the Ahlrichs density fitting basis with only s-type
functions. All EMFT and FCEMFT calculations employ the default threshold ac-
curacy of 10−6 hartree for the quadrature grid.

Vacuum embedding calculations are performedwithGaussian 09 [86] using the PBE
functional with the basis set cc-pVTZ. Vacuum embedding refers to terminating
subsystem Awith a link atom such that interactions with subsystem B are neglected.
The terminal link atoms are positioned according to the default parameterization
scheme in the Gaussian 09 implementation of the ONIOM method.

Figures that are plotted as a function of the number of carbon atoms in subsystem
A assume that all non-carbon atoms attached to those carbon atoms are included
in subsystem A; the remaining atoms are placed in subsystem B. Zero carbons in
subsystem A corresponds to treating the full molecule with the smaller basis set.

2.4 Results and Discussion
Illustrating the mixed basis error
Fig. 2.1 compares two applications of mixed-basis KS-DFT. Panels (a)–(c) present
results for the 1-chlorodecane/1-decanol substitution reaction, with subsystem A
described using the cc-pVTZ basis set and with subsystem B described using either
STO-3G or 6-31G. Panel (b) shows that as a function of the size of subsystem A,
the error in the reaction energy relative to the full PBE/cc-pVTZ calculation rapidly
converges for both mixed-basis methods. However, the similarity between the
reaction-energy results does not extend to the calculated dipole moments: panel (c)
shows that the PBE/cc-pVTZ:STO-3G gives substantially larger errors in the dipole
moment for both the 1-chlorodecane (solid) and 1-decanol (dashed) than PBE/cc-
pVTZ:6-31G, relative to the full PBE/cc-pVTZ results. The dipole-moment errors
are quite small for the case of zero C-atoms in subsystem A, which corresponds
to performing the full KS-DFT calculation with the smaller basis, indicating that
the PBE/cc-pVTZ:STO-3G errors arise from the mismatch of basis sets rather than
from the intrinsic inadequacy of the smaller basis set.

Panels (d)–(f) of Fig. 2.1 present the corresponding results for the deprotonation of



10

decanoic acid. For this case, the energy for the PBE/cc-pVTZ:STO-3G mixed-basis
calculations converges very slowly as a function of the size of subsystem A. This
convergence is greatly improved upon increasing the basis set size for subsystem
B, as is seen from the PBE/cc-pVTZ:6-31G results. Interestingly, the reaction
energy error is also avoided with the use of vacuum embedding, in which subsystem
A is simply truncated with a hydrogen link atom. Panel (f) shows that PBE/cc-
pVTZ:STO-3G likewise exhibits substantially larger errors in the decanoic acid
(solid) and decanoate (dashed) dipole moments than PBE/cc-pVTZ:6-31G.

Fig. 2.1 yields two intriguing observations that will be explored in the following
analysis. The first is that mixed-basis SCF calculations give rise to substantial errors
in the electronic densities (as conveyed through the dipole moments) and in some
cases also the reaction energies. The second is that even though the mixed-basis
errors can largely be significantly reduced by going from a minimal basis set (such
as STO-3G) to a marginally larger basis set (such as 6-31G), the complete neglect of
basis functions and electronic density in subsystem B (as described using vacuum
embedding and the use of a hydrogen link atom) can give better results than using a
mixed-basis SCF description with a minimal basis set in subsystem B. Furthermore,
we note that observations in Fig. 2.1 are completely consistent with those of DiLabio
et al. [42], in that reaction energies involving charge-manifestation processes (in
this case the deprotonation of decanoic acid) exhibit sizable mixed-basis errors,
whereas reaction energies for processes that do not manifest charge (such as the 1-
chlorodecane/1-decanol substitution reaction) are adequately described with mixed
basis sets.
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X-axis

5 C in Sub A

X-axis
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Figure 2.1: Geometries for (a) 1-chlorodecane and 1-decanol and (d) decanoic acid and decanoate.
The molecular axis is specified by the x-axis. Error in the reaction energy as a function of the size
of subsystem A for PBE/mixed-basis calculations of (b) the 1-chlorodecane/1-decanol substitution
reaction and (e) the deprotonation of decanoic acid relative to the reaction energy calculated at the
PBE/cc-pVTZ level of theory. Error in the dipole moment of (c) 1-chlorodecane and 1-decanol, and
(f) decanoic acid and decanoate along the x-axis as a function of the size of subsystemA relative to the
dipole moment calculated at the PBE/cc-pVTZ level of theory. The vacuum embedding calculation
was performed with a hydrogen link atom. The reaction energy calculated at the PBE/cc-pVTZ level
of theory is −71.8 kcal/mol for panel (b) and 356.1 kcal/mol for panel (e). The dipole moment along
the x-axis calculated at the PBE/cc-pVTZ level of theory is −2.27 Debye for 1-chlorodecane, 1.21
Debye for 1-decanol, 0.343 Debye for decanoic acid and 22.8 Debye for decanoate. The solid lines
and dashed lines in panel (c) represent 1-chlorodecane and 1-decanol respectively. The solid lines
and dashed lines in panel (f) represent decanoic acid and decanoate respectively.

Mitigating the mixed-basis error using Fock-matrix corrections
Fig. 2.2 shows EMFT and FCEMFT results for the deprotonation of decanoic acid.
For reference, the mixed-basis PBE/cc-pVTZ:STO-3G is included in replotted in
panel (a) (green). The mixed-functional, mixed-basis EMFT results (blue) closely
track the poor convergence of mixed-basis KS-DFT, as previously noted [17], indi-
cating that the dominant source of error in these EMFT calculations is the use of dif-
ferent AO basis sets for the embedded subsystems. However, the mixed-functional,
mixed-basis FCEMFT results (red) substantially improve this convergence in the
calculated reaction energies for the deprotonation, indicating that Fock-matrix cor-
rections significantly mitigate the errors in the reaction energy associated with the
use of mixed-basis sets in the EMFT framework.

Similar trends are seen for the calculated dipole-moment errors in Fig. 2.2b. The
mixed-functional, mixed-basis EMFT results again show results that are nearly
identical to those obtained using mixed-basis KS-DFT (PBE/cc-pVTZ:STO-3G,
Fig. 2.1f), whereas the errors in the dipole moment from FCEMFT are reduced.
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Taken together, the results in Fig. 2.2 suggest that Fock-matrix corrections have
the potential to significantly reduce both the reaction-energy and electronic-density
errors arising in mixed-basis calculations SCF calculations in the EMFT framework,
even with the use of a minimal STO-3G basis set in subsystem B.
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Figure 2.2: (a) Error in the reaction energy as a function of the size of subsystem A relative to the
reaction energy calculated at the PBE/cc-pVTZ/DF level of theory. (b) Error in the dipole moment
of decanoic acid and decanoate along the x-axis as a function of the size of subsystem A relative to
the dipole moment calculated at the PBE/cc-pVTZ/DF level of theory. EMFT calculations corre-
spond to PBE-in-LDA/cc-pVTZ:STO-3G/DF:DF(s) and FCEMFT calculations correspond to PBE-
in-FCLDA/cc-pVTZ:STO-3G/DF:DF(s). The reaction energy calculated at the PBE/cc-pVTZ/DF
level of theory is 356.2 kcal/mol. The dipole moment along the x-axis calculated at the PBE/cc-
pVTZ/DF level of theory is 0.345 Debye for decanoic acid and 22.8 Debye for decanoate. The solid
lines and dashed lines in panel (b) represent decanoic acid and decanoate respectively.

The underlying source of error: Density differences at the subsystem interface
The results in Figs. 2.1 and 2.2 suggest that electronic density errors introduced via
mixed-basis KS-DFT and EMFT calculations, as manifested in the calculated dipole
moments, give rise to reaction-energy errors for processes that involve large changes
in Coulomb interactions, such as the deprotonation of decanoic acid. Fig. 2.2
further suggests that Fock-matrix corrections significantly reduce these errors in the
calculated electronic densities, which in turn leads to improvements in the reaction
energies. We now test this interpretation through a simple analysis of the electronic
density differences associated with the mixed-basis calculations.

For decanoic acid and decanoate, Figs. 2.3a–2.3c present plots of the electronic
density difference obtained from a mixed-basis KS-DFT calculation versus a full
basis KS-DFT calculation performed at the PBE/cc-pVTZ level. All mixed-basis
calculations in these plots correspond to the subsystem partitioning for which five
carbon atoms are included in subsystem A (as illustrated in Fig. 2.1d). The elec-
tronic density distributions are reduced with respect to the y- and z-axes and are
plotted as a function of the x-axis, along which the aliphatic chain is oriented; the
position of each carbon atom along the x-axis is indicated by heavy black dots,
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with vertical lines highlighting the fifth and sixth carbons that are separated by the
subsystem interface. In comparing the density difference plots for decanoic acid and
decanoate in Fig. 2.3c, the minor differences in geometry between the two structures
is accounted for by offsetting the decanoate curve along the x-axis (by less than 0.1
Å) such that the positions of the fifth carbon for both structures coincide.

Considering first the density-difference plots for decanoic acid (Fig. 2.3a), it is
clear that in the region of the acid proton (i.e., near carbon 1 at the left side of
the plot), there is very little error introduced into the density through the use of
mixed-basis calculations; the differences associated with both cc-pVTZ:STO-3G
and cc-pVTZ:6-31G calculations essentially vanish for x < −4 bohr. However, in
the interfacial region (carbons 4–6), the use of mixed basis-calculations with STO-
3G ismuchworse thanwith 6-31G; indeed, cc-pVTZ:STO-3G exhibits the formation
of a substantial dipole in the plotted density difference, with relative enhancement
of the cc-pVTZ:STO-3G density in the interfacial region accompanied by relative
depletion of this mixed-basis density further down the aliphatic chain.

Panel (b) illustrates that the same observations hold for decanoate, and panel (c)
replots the cc-pVTZ:STO-3G density differences for both decanoic acid and de-
canoate to allow for direct comparison. The striking similarity for the mixed-basis
density differences for the ion and neutral molecule indicate that the density error
in the mixed-basis calculations is not caused by failure of the low-level system to
account for polarization of the electronic density in the carbon-chain by the charge
in the anion; instead, the observed mixed-basis density errors in panel (c) are es-
sentially identical, irrespective of whether the system is charged or neutral. This
is consistent with the previous observation that the cc-pVTZ:STO-3G mixed-basis
calculations lead to substantial errors in the calculated dipole moments, regardless
of whether the reaction involves manifestation of a charged species (Figs. 2.1c and
2.1f) and regardless of whether a large mixed-basis error in the reaction energy is
correspondingly observed (Figs. 2.1b and 2.1e).

To more explicitly connect the mixed-basis density differences in Figs. 2.3a–2.3c
to the calculated reaction energy errors for the acid deprotonation in Fig. 2.1e, we
introduce a simple electrostatic model for the reaction energy error. This error is
modeled as the electrostatic interaction of a single negative point charge on the
carboxylate group of decanoate with the mixed-basis density difference,

E (i)rxn = −
∫

xcut

q∆ρ(i)(x)
|xq − x | dx, (2.6)
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where q = −1 a.u. corresponds to the charge manifested on decanoate during
the deprotonation reaction, xq = −10.2 bohr is the approximate position of the
manifested point charge (taken as the average x-coordinate of the two oxygen atoms
in decanoate),∆ρ(i)(x) is themixed-basis density difference for decanoate associated
with a given number of carbon atoms i in subsystem A (which is plotted in Fig. 2.3b
for the case of∆ρ(5)(x)), and the overall negative sign arises from the negative charge
of the electronic density. The integral in Eq. 2.6 is cutoff at xcut = −9.4 bohr, to
avoid the singularity in the integrand; the small magnitude of ∆ρ(i)(x) in the region
of the carboxylate group makes the results robust with respect to this cutoff position.

As a function of the number of carbon atoms included in subsystem A, Fig. 2.3d
presents the results of this simple model with the reaction energy errors calculated
from the mixed-basis KS-DFT calculations (replotted from Fig. 2.1e). The accuracy
of the simple model is striking, quantitatively predicting the convergence properties
of the full SCF calculations as a function of the subsystem size. This agreement
demonstrates that it is the electrostatic interaction between the error in the mixed-
basis density and the chargemanifested in the deprotonation reaction that leads to the
slow convergence of the mixed-basis reaction energy with respect to the subsystem
size.

Fig. 2.4 presents the corresponding analysis for the EMFT and FCEMFT errors
for the deprotonation reaction energy. The mixed-basis EMFT calculations yield
large differences in the electronic density with respect to the full KS-DFT (PBE/cc-
pVTZ) calculation, similar to the PBE/cc-pVTZ:STO-3G results in Figs. 2.3a and
2.3b. However, inclusion of the Fock-matrix corrections substantially reduces these
density differences (Figs. 2.4a and 2.4b), even though a minimal basis set is still
employed for describing subsystemB. Fig. 2.4c shows that, as seen previously for the
mixed-basis KS-DFT calculations, the density difference obtained from EMFT for
the reactant and product species is nearly identical. Finally, Fig. 2.4d demonstrates
that the simple electrostatic model again accurately predicts the convergence of the
reaction energy error as a function of subsystem size. As for the mixed-basis KS-
DFT calculations, the dominant source of error in the reaction energy for EMFT
is thus the formation of spurious density differences at the subsystem interface;
FCEMFT largely corrects these errors in the reaction energy by reducing the errors
in the underlying electronic density. These results emphasize the importance of
developingmethods, such as FCDFT, that provide corrections to both the energy and
the density of a low-level theory; the fact that FCEMFT improves the convergence of
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the reaction energy error with respect to system size is because it is also correcting
the underlying electronic density distribution.

Finally, we note that the simple electrostatic model also explains the rapid conver-
gence of the mixed-basis reaction energy errors for the 1-chlorodecane/1-decanol
substitution reaction (Fig. 2.1b). Fig. 2.5 presents the PBE/cc-pVTZ:STO-3G
mixed-basis density differences relative to the PBE/cc-pVTZ electronic density for
the reactant and product, emphasizing that large errors in density are again observed,
as is consistent with the large calculated errors in the dipole moments (Fig. 2.1c).
However, since this reaction does not involve the manifestation of charge (i.e. q = 0
in Eq. 2.6), the simple model predicts that there will be no associated reaction energy
error, as is consistent with the rapidly converging results with respect to subsystem
size in Fig. 2.1b.
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Figure 2.3: Density difference along the x-axis between the PBE/cc-pVTZ:STO-3G mixed-basis
density with five carbons in subsystem A and the PBE/cc-pVTZ density for (a) decanoic acid and
(b) decanoate. Heavy black dots correspond to the x coordinate of carbon atoms in the aliphatic
chain, following the geometries in Fig. 2.1d. The vertical black lines highlight the boundary between
subsystem A and subsystem B by identifying the fifth and sixth carbon in the chain. (c) Comparison
of the PBE/cc-pVTZ:STO-3G mixed-basis densities with five carbons in subsystem A between
decanoic acid and decanoate. The density differences are taken from panel (a) for decanoic acid and
panel (b) for decanoate. (d) Reaction energy error as a function of the size of subsystem A for the
electrostatic model in Eq. 2.6 and conventional PBE/mixed basis calculations for the deprotonation
of decanoic acid.
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Figure 2.4: Density difference along the x-axis between the EMFT/FCEMFT density with five
carbons in subsystemA and the PBE/cc-pVTZ density for (a) decanoic acid and (b) decanoate. EMFT
calculations correspond to PBE-in-LDA/cc-pVTZ:STO-3G/DF:DF(s) and FCEMFT calculations
correspond to PBE-in-FCLDA/cc-pVTZ:STO-3G/DF:DF(s). Heavy black dots correspond to the x
coordinate of carbon atoms in the aliphatic chain, following the geometries in Fig. 2.1d. The vertical
black lines highlight the boundary between subsystem A and subsystem B by identifying the fifth and
sixth carbon in the chain. (c) Comparison of the EMFT densities with five carbons in subsystem A
between decanoic acid and decanoate. The density differences are taken from panel (a) for decanoic
acid and panel (b) for decanoate. (d) Reaction energy error as a function of size of subsystem A for
the simple electrostatic model in Eq. 2.6, EMFT, and FCEMFT calculations for the deprotonation of
decanoic acid.

16 12 8 4 0 4 8 12 16 20
X coordinate (bohr)

0.10

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

∆
ρ
(x

) 
(e

le
ct

ro
n
/b

o
h
r)

(a)
1-chorodecane

PBE/cc-pVTZ:STO-3G - PBE/cc-pVTZ

16 12 8 4 0 4 8 12 16 20
X coordinate (bohr)

0.10

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

∆
ρ
(x

) 
(e

le
ct

ro
n
/b

o
h
r)

(b)
1-decanol

PBE/cc-pVTZ:STO-3G - PBE/cc-pVTZ

Figure 2.5: Density difference along the x-axis between the PBE/cc-pVTZ:STO-3G mixed-basis
density with five carbons in subsystem A and the PBE/cc-pVTZ density for (a) 1-chlorodecane and
(b) 1-decanol. Heavy black dots correspond to the x coordinate of carbon atoms in the aliphatic
chain, following the geometries in Fig. 2.1a. The vertical black lines highlight the boundary between
subsystem A and subsystem B by identifying the fifth and sixth carbon in the chain.

Implications for vacuum embedding and QM/MM link-atom selection
The analysis in the preceding section also provides insight into the surprisingly good
convergence of the vacuum embedding reaction energies in Fig. 2.1e. Since vacuum
embedding completely neglects electronic polarization effects in the environment,
it might be expected to poorly describe a charge-manifestation reaction such as acid
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deprotonation. However, the fact that mixed-basis errors arise from spurious density
differences across the subsystem interface suggests that the choice of link atom in
conventional QM/MM implementations implicitly corrects for this source of error.

Figure 2.6 illustrates this point using the decanoic acid deprotonation reaction en-
ergy error. For reference, the EMFT, mixed-basis KS-DFT, and vacuum embedding
results with a hydrogen link atom are reproduced fromFigs. 2.1e and 2.2a. Also plot-
ted are vacuum embedding results in which fluorine is used for the link atom instead
of hydrogen. Clearly, the use of fluorine as the link atom significantly degrades the
vacuum embedding results, which become similar in magnitude, although opposite
in sign, to the errors obtained in the mixed-basis KS-DFT and EMFT calculations
without Fock-matrix corrections.

To mitigate the spurious density differences, and thus help to avoid the correspond-
ing errors in charge-manifestation reactions, it is important to avoid introducing a
significant discrepancy in the electronegativity at the interface, and this applies in
both embedding and QM/MM calculations; indeed the strategy of tuning the prop-
erties of hydrogen link atoms to mitigate electronegativity mismatches has been
employed in previous work [87–89]. Table 2.2 illustrates this point by reporting
atomic electronegativities obtained at various levels of theory from the average of
the atomic ionization potential and electron affinity. Comparison of the carbon
and hydrogen electronegativities at the PBE/cc-pVTZ level shows that they are well
matched, as is consistent with the rapid convergence of the vacuum embedding
calculations with the choice of hydrogen for the link atom (Fig. 2.6). However, the
fluorine atom at that level of theory is of course much more electronegative, leading
to the poor convergence in the reaction energy seen in Fig. 2.6.

The electronegativity of the carbon atom at the PBE/STO-3G level also differs
substantially from that of carbon at the PBE/cc-pVTZ level, explaining the poor
convergence of the mixed-basis KS-DFT results in Fig. 2.6. Given that PBE/STO-
3G carbon is much less electronegative than PBE/cc-pVTZ carbon, this result is
also consistent with the fact that the mixed-basis KS-DFT errors converge from the
opposite sign than the vacuum embedding results with the fluorine link atom in
Fig. 2.6. Moreover, comparison of PBE/STO-3G carbon with LDA/STO-3G carbon
in Table 2.2 reveals very similar electronegativities, which explains the nearly iden-
tical convergence behavior of EMFT (PBE-in-LDA/cc-pVTZ:STO-3G/DF:DF(s))
and mixed-basis KS-DFT in Fig. 2.6. Finally, it is clear that the inclusion of
Fock-matrix corrections (FCLDA/STO-3G) brings the calculated electronegativity
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of carbon into better agreement with PBE/cc-pVTZ, indicating that the mechanism
by which the Fock-matrix corrections reduce the density difference and the reaction
energy errors is by providing a better balance between the electronegativities of the
atoms in the high- and low-level embedded subsystems.
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Figure 2.6: Error in the decanoic acid deprotonation reaction energy as a function of the
size of subsystem A for mixed-basis, EMFT, and vacuum embedding calculations relative to the
PBE/cc-pVTZ/DF level of theory. EMFT calculations correspond to PBE-in-LDA/cc-pVTZ:STO-
3G/DF:DF(s).

Table 2.2: Atomic ionization potentials (IP), electron affinities (EA), and electroneg-
ativities at various levels of theory. All quantities reported in units of eV.

Atom Method IP EA Electronegativity
C PBE/cc-pVTZ 11.53 0.95 6.24

PBE/STO-3G 9.55 −5.93 1.81
LDA/STO-3G 9.55 −5.84 1.85
FCLDA/STO-3G 11.98 −3.48 4.25

F PBE/cc-pVTZ 17.56 2.35 9.96

H PBE/cc-pVTZ 13.60 −0.05 6.77

Negligible contributions from intramolecular BSSE
To complete our analysis, we consider the possible role of intramolecular basis-set
superposition error (BSSE) in the slow convergence of the mixed-basis deprotona-
tion reaction energy with respect to subsystem size. Intermolecular BSSE is known
to be a serious effect for the evaluation of the binding energies, geometries, and
vibrational modes for weakly bonded systems, such as the water dimer [90]. In
addition, there are reports on the importance of intramolecular BSSE in terms of
the energies and geometries for organic molecules [91, 92]. Since BSSE becomes
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more severe when a small AO basis set is used, there is reason to expect that the
mixed-basis calculations reported here with STO-3G in subsystem B will exhibit
substantial artifacts due to BSSE. However, in determining whether BSSE gives
rise to the slow convergence in the reaction energy for mixed-basis calculations, we
focus not on the magnitude of the BSSE in any one molecular species, but instead on
the degree to which BSSE effects cancel out between the reactant and the product.

In considering the effect of BSSE on mixed-basis calculations for the deprotona-
tion of decanoic acid, we employ the counterpoise-correction method, [91, 92]
considering the effect of ghost orbitals associated with the mixed basis set for the
full molecule on an unrestricted KS-DFT calculation for the single carbon atom in
subsystem B that is bonded to subsystem A, as this atom is expected to have the
largest contribution to the intramolecular BSSE. For both the reactant and product
of the deprotonation reaction, the lone carbon atom is described in the triplet state
with STO-3G basis functions, the ghost orbitals associated with all other atoms in
subsystemB are described using the STO-3G basis, and the ghost orbitals associated
with all atoms in subsystem A are described using the cc-pVTZ basis. The PBE
exchange-correlation functional and density fitting with the Ahlrichs density-fitting
basis was used in all cases.

Fig. 2.7 reports the difference between the calculated BSSE for the reaction and
product, as a function of the number of carbon atoms in subsystem A,

∆BSSE = BSSEproduct − BSSEreactant, (2.7)

Although the individual BSSE to the reactant and produce species is quite large
(i.e., as much as −37 kcal/mol, depending on subsystem size), this error almost
exactly cancels between the reactant and product at each subsystem size, confirming
that BSSE is not the source of the slow convergence of the reaction energy for the
mixed-basis calculations of decanoic acid deprotonation.
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Figure 2.7: Differences in the BSSE corrections (Eq. 2.7) for the reactant and product of the
deprotonation of decanoic acid, as a function of the size of subsystem A.

2.5 Conclusions
The use of mixed-based AO basis sets is a widely-used strategy for reducing the cost
of electronic structure calculations, with relevance to KS-DFT, quantum embedding,
and QM/MM calculations. The current chapter demonstrates that the use of mixed-
basis approximations can give rise to substantial artifacts in the calculated electronic
density, which can in turn give rise to large and slowly decaying errors in the
calculation of reaction energies for processes that involve themanifestation of charge
(including ionization, deprotonation, and electron attachment). In particular, for
EMFT and other quantum embedding calculations for which the electronic density
is not frozen, it is shown that artifacts in the calculated electronic density arise
when the high- and low-level theories give an imbalanced description of atomic
electronegativities. In the context of EMFT, it is shown that Fock-matrix corrections
provide a straightforward means of addressing this imbalance, while preserving the
efficiency of using a minimal basis to describe the low-level region. Finally, it
is shown that similar issues arise in QM/MM embedding calculations, for which
substantial artifacts in the reaction energy can arise if poor link-atom selection leads
to an imbalance of its electronegativity with the atoms to which it is bonded.
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C h a p t e r 3

PROJECTION-BASED WAVEFUNCTION-IN-DFT EMBEDDING

Adapted from:

1S. J. R. Lee, M. Welborn, F. R. Manby, and T. F. Miller III, “Projection-Based
Wavefunction-in-DFT Embedding”, Acc. Chem. Res. 52, 1359–1368 (2019) 10.
1021/acs.accounts.8b00672.

This chapter reviews projection-based quantum embedding for electronic structure,
which provides a formally exact method for density functional theory (DFT) em-
bedding. The method also provides a rigorous and accurate approach for describing
a small part of a chemical system at the level of a correlated wavefunction (WF)
method while the remainder of the system is described at the level of DFT. A key
advantage of projection-based embedding is that it can be formulated in terms of
an extremely simple level-shift projection operator, which eliminates the need for
any optimized effective potential calculation or kinetic energy functional approx-
imation, while simultaneously ensuring that no extra programming is needed to
perform WF-in-DFT embedding with an arbitrary WF method. The current work
presents the theoretical underpinnings of projection-based embedding, describes
use of the method for combining wavefunction and density-functional theories, and
discusses technical refinements that have improved the applicability and robustness
of the method.

Applications of projection-based WF-in-DFT embedding are also reviewed, with
particular focus on recent work on transition-metal catalysis, enzyme reactivity,
and battery electrolyte decomposition. In particular, we review the application of
projection-based embedding for the prediction of electrochemical potentials and
reaction pathways in a Co-centered hydrogen evolution catalyst. Projection-based
WF-in-DFT calculations are shown to provide quantitative accuracy while greatly
reducing the computational cost as compared to a reference coupled cluster calcu-
lation on the full system. Additionally, projection-based WF-in-DFT embedding is
used to study the mechanism of citrate synthase; it is shown that projection-based
WF-in-DFT largely eliminates the sensitivity of the potential energy landscape to
the employed DFT exchange-correlation functional. Finally, we demonstrate the
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use of projection-based WF-in-DFT to study electron transfer reactions associated
with battery electrolyte decomposition. Projection-based WF-in-DFT embedding
is used to calculate the oxidation potentials of neat ethylene carbonate (EC), neat
dimethyl carbonate (DMC), and 1:1 mixtures of EC and DMC, to overcome quali-
tative inaccuracies in the electronic densities and ionization energies obtained from
conventional DFT methods. By further embedding the WF-in-DFT description
in a molecular mechanics point-charge environment, this work enables an explicit
description of the solvent and ensemble averaging of the solvent configurations.
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3.1 Introduction
The use of density functional theory (DFT) for the description of electronic structure
has gained remarkable prevalence in recent years, due to its reasonable compromise
between accuracy and computational cost [93]. However, the chemical sciences
are permeated with systems for which the approximations of DFT fundamentally
break down or for which the computational cost of DFT remains prohibitive for the
molecular dynamics (MD) simulation of necessary length- and timescales. Although
correlated wavefunction (WF) electronic structure methods, such as coupled-cluster
theory, provide better accuracy than DFT for single point calculations on systems
of modest size, they have been too expensive to allow for widespread use in terms
of exploring conformational landscapes and reaction pathways.

To mitigate the trade-off between accuracy and computational cost, quantum em-
bedding has emerged as a powerful strategy for modeling the electronic structure
of complex systems. In embedding methods, a high-level quantum-mechanical
description of a chemically active subsystem is embedded in a surrounding envi-
ronment described using a more approximate theory. By exploiting the intrinsic
locality of molecular interactions, this approach provides high accuracy for regions
that demand it while avoiding the computational cost of a high-level calculation
on the whole system. Notable examples of embedding include QM/MM [94, 95],
ONIOM [76], fragmentation methods [11, 15, 96], density functional embedding
[5–10, 13, 14, 97–105], and density matrix embedding [12, 17, 106, 107], although
there are many manifestations of the idea.

Projection-based embedding [9] describes subsystem interactions at the level of
DFT and allows for the partitioning of the subsystems across covalent and even
conjugated bonds, and it enables the use of relatively small subsystem sizes for
an embedded WF description. The current chapter aims to provide a practical
review of the projection-based embedding method, including a description of its
theory, implementation, applications, and limitations. Although we describe the
methodological context for projection-based embedding, we also direct the reader
to several reviews that provide amore complete description of alternative approaches
[11, 76, 108–112].

3.2 Projection-Based Embedding
Quantum embedding methods developed within the framework of DFT offer a for-
mally exact approach to electronic structure calculations in which complex chemical
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problems are decomposed into the solution of individual smaller subsystems [103,
112]. Throughout this review, we shall use the term “exact” to denote that a DFT-
in-DFT embedding calculation where both subsystems are treated using the same
exchange-correlation (XC) functional yields the same result as a single Kohn-Sham
(KS) DFT calculation performed over the full system. In principle, DFT embedding
thus avoids the uncontrolled approximations (such as link atoms) that appear in
widely used methods, such as QM/MM and ONIOM.

In practice, however, many DFT embedding studies employ substantial approxi-
mations in the description of subsystem interactions. The subsystem interaction
potentials that emerge in the DFT embedding framework include non-additive ki-
netic potential (NAKP) terms that enforce Pauli exclusion between the electrons
of the various subsystems [112]. Without knowledge of the exact functional for
the non-interacting kinetic energy, this has typically required approximate NAKP
treatments that break down in cases for which the subsystem densities significantly
overlap (which include hydrogen-bonded or covalently bonded subsystems) [100,
112, 113], limiting applications to those involving weakly interacting subsystems.
Although numerically exact DFT embedding methods have been developed that
determine NAKP contributions via an optimized effective potential (OEP) inversion
of the density [6, 8, 102, 104, 114–116], OEP inversion can be ill-conditioned and
requires careful regularization protocols [10, 102, 117–120].

Projection-based embedding avoids these issues by providing a numerically exact
DFT-in-DFT embedding framework that eliminates the NAKP contributions via the
mutual orthogonalization of the subsystem molecular orbitals. Panel (a) of Fig. 3.1
outlines the general procedure of a projection-based embedding calculation. A KS-
DFT calculation is first performed on the full system to self-consistently determine
the KS orbitals and the corresponding Fock matrix, F. The occupied KS orbitals
are then localized, shown on the left side of panel (a) of Fig. 3.1. These localized
molecular orbitals (LMOs) are partitioned into subsystems A (in red) and B (in
blue), with corresponding atomic-orbital-basis density matrices, γA and γB.

To determine the subsystem Fock matrix, FA, that describes the electrons of sub-
system A in the environment of the density matrix of subsystem B, we begin with
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Figure 3.1: (a) Demonstration of projection-based embedding, using the example of embedding
the 10 electrons of the –OH moiety of ethanol in the environment of the ethyl subsystem. F is the
full system KS-DFT Fock matrix that is initially used to self-consistently determine the occupied KS
MOs of the full system. The occupied MOs are then localized and grouped into subsystems A and B
(red and blue respectively). FA is the embedded Fock matrix (Eq. 3.4) for the subsystem A electrons,
which includes the projection operator, µPB (Eq. 3.5). Following projection, the subsystem A LMOs
(red) are explicitly orthogonalized with respect to the subsystem B LMOs (blue), thus eliminating
non-additive kinetic energy contributions. (b) Error in the uncorrected (Eq. 3.1) and corrected
(Eq. 3.1 + Eq. 3.8) PBE-in-PBE/6-31G* energy expressions relative to full KS-DFT on ethanol
using PBE/6-31G*, demonstrating that the perturbative correction (Eq. 3.8) yields essentially exact
embedding energies over a wide range of µ values. Adapted with permission from Ref. 9. Copyright
2012 American Chemical Society.
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the DFT-in-DFT energy expression for projection-based embedding,

EDFT-in-DFT
[
γ̃A;γA,γB] = EDFT

[
γ̃A]

+ EDFT
[
γA + γB] − EDFT

[
γA]

+ tr
[
(γ̃A − γA)vemb

[
γA,γB] ]

+ µtr
[
γ̃APB] ,

(3.1)

where EDFT denotes the KS-DFT energy evaluated using the bracketed density
matrix, γ̃A is the embedded subsystem A density matrix, and PB is a projection
operator that enforces the mutual orthogonalization of subsystem A and B LMOs.
The embedding potential, vemb, describes all interactions between subsystems A
and B,

vemb
[
γA,γB] = g

[
γA + γB] − g

[
γA]

. (3.2)

In general, vemb would also include the difficult-to-evaluate NAKP contributions,
but if the subsystem densities are constructed from disjoint subsets of orthogonal
orbitals, these NAKP terms are exactly zero [9]. The matrix g is the density-matrix
functional of two-electron terms, given by

(g [γ])κν =
∑
λσ

γλσ

[
(κν |λσ) − 1

2 x(κλ |νσ)
]

+ (vxc [γ])κν ,
(3.3)

where κ, ν, λ and σ label atomic orbital basis functions, (κν |λσ) are two-electron
repulsion integrals, x is the fraction of exact exchange, and vxc is the exchange-
correlation potential matrix.

The subsystem Fock matrix corresponding to variation of equation 3.1 with respect
to γ̃A is then

FA =
∂

∂γ̃A EDFT-in-DFT
[
γ̃A;γA,γB]

= h + g
[
γ̃A]
+ vemb

[
γA,γB] + µPB,

(3.4)

where h is the standard one-electron Hamiltonian. Self-consistent optimization of
FA with respect to γ̃A recovers the original subsystem A density matrix, γA (Fig.
1, right column) for the case of DFT-in-DFT embedding when both subsystems are
described using the same XC functional.

A practical way to enforce the orthogonality of the subsystem A orbitals to those in
subsystem B is to introduce a level-shift operator of the form [9]

µPB = µSγBS, (3.5)
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where S is the overlap matrix in the atomic orbital basis, and µ is a positive scalar
number. The action of this operator is to level-shift the subsystem B LMOs to high
energies so that they cannot hybridize with those of subsystem A (shown on the
right side of panel (a) of Fig. 3.1) [121, 122]. In the µ → ∞ limit, Eq. 3.1 reduces
to the KS-DFT energy for the full system, such that the projection-based approach
is exact for DFT-in-DFT embedding.

Embedding methods that maintain orthogonality between subsystem orbitals have
long been in use, including the Philips-Kleinman pseudopotential approach [121].
What had not been previously recognized is that these same strategies can be used
to formulate a formally exact method for DFT embedding [9].

DFT-in-DFT Embedding
Before proceeding, it is worth expanding on several aspects of DFT-in-DFT em-
bedding. First, it is clear from the preceding discussion that the projection-based
approach allows for a description of DFT-in-DFT embedding with subsystems A
and B evaluated using different XC functionals. Typically this involves using a more
expensive (i.e. hybrid, meta-GGA, etc.) functional to describe subsystem A and a
computationally cheaper (i.e. GGA or LDA) functional to describe subsystem B.

The procedure for this type of DFT-in-DFT embedding calculations begins with
performing a low-level KS-DFT calculation on the full system, yielding EDFT[γA +

γB]. The resulting occupied MOs are localized and partitioned into subsystems
A and B, which are used to form the matrices γA, γB, PB, and vemb[γA,γB] and
to evaluate EDFT[γA]; these quantities are unchanged during the self-consistent
field (SCF) iterations for the embedded subsystem. The SCF iterations for the
embedded subsystem are performed to optimize the subsystem density matrix, γ̃A.
At each SCF iteration, FA is calculated (Eq. 3.4) and diagonalized; g[γ̃A] is the
only term in Eq. 3.4 to be re-evaluated at each SCF iteration, and it is done so using
the high-level XC functional. Finally, to obtain the total DFT-in-DFT energy, the
converged subsystem density, γ̃A, is used to evaluate EDFT[γ̃A] using the high-level
XC functional, as well as the last two traces on the right hand side of Eq. 3.1.

In light of the quantities that must be iteratively re-evaluated during an embedding
calculation that involves two different levels of theory, we provide a few additional
comments regarding the derivation of the total DFT-in-DFT energy expression. The
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starting point for Eq. 3.1 is the more transparent energy expression

EDFT-in-DFT
[
γ̃A;γB] =

EDFT
[
γ̃A + γB] + µtr

[
γ̃APB]

.
(3.6)

Minimization of this total energy expression with respect to the density matrix for
subsystem A would lead to an expression for the subsystem Fock matrix FA that
involves the costly re-evaluation of the embedding potential in terms of the high-
level XC functional at each SCF iteration. To avoid this, a first-order expansion in
γ̃A − γA is performed, yielding

EDFT
[
γ̃A + γB] − EDFT

[
γ̃A]
≈

EDFT
[
γA + γB] − EDFT

[
γA]

+ tr
[
(γ̃A − γA)vemb

[
γA,γB] ] . (3.7)

Rearranging Eq. 3.7 and substituting it into Eq. 3.6 yields Eq. 3.1. Note that if both
subsystems are described using the same XC functional, this perturbative approx-
imation becomes exact in the limit of mutual orthogonalization of the subsystem
orbitals, since γ̃A approaches γA. If different exchange-correlation functionals are
employed for the two subsystems, then Eq. 3.7 can lead to density-driven errors
associated with the fact that the density matrix obtained using the low-level theory
is different from that obtained using the high-level theory [7, 10, 22, 74].

Finally, we discuss the convergence of the projection-based embedding description
with respect to the level-shift parameter, µ. Although the projection operator in
Eq. 3.4 only exactly enforces orthogonality between subsystem A and B orbitals
in the limit of µ → ∞, finite values of µ in the range of 104 a.u. to 107 a.u. are
consistently found to yield accurate results (panel (b) Fig. 3.1, black), regardless
of chemical system [9]; a default choice of µ = 106 a.u. has been found in almost
all cases to yield microhartree-scale embedding errors. Nonetheless, if greater
accuracy is needed, then a perturbative correction

µtr
[
γ̃APB] (3.8)

can be added to the DFT-in-DFT energy expression to account for the finiteness of µ
[9], and this typically leads to sub-microhartree accuracy over a very large range of
µ values (panel (b) Fig. 3.1, red). Errors associated with finite values of µ can also
be avoided by enforcing the projection via explicit orthogonalization [123–127] of
the subsystem orbitals, at some cost to the simplicity of the implementation.
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Wavefunction-in-DFT Embedding
Beyond DFT-in-DFT embedding, the projection-based approach readily allows for
wavefunction-in-DFT (WF-in-DFT) embedding, in which subsystem A is treated
using a WF-level description and subsystem B is described at the DFT level [9].
Starting from the DFT-in-DFT energy expression in Eq. 3.1, the WF-in-DFT en-
ergy is simply obtained by substituting the DFT energy of subsystem A with the
corresponding WF energy,

EWF-in-DFT
[
Ψ̃

A;γA,γB] = EWF
[
Ψ̃

A]
+ tr

[
(γ̃A − γA)vemb

[
γA,γB] ]

+ EDFT
[
γA + γB] − EDFT

[
γA]

+ µtr
[
γ̃APB] ,

(3.9)

where Ψ̃A is the WF for subsystem A, γ̃A is the one-particle reduced density matrix
corresponding to Ψ̃A, and EWF[Ψ̃A] is the WF energy of subsystem A [9, 14].

A projection-based WF-in-DFT embedding calculation proceeds as follows. A KS-
DFT calculation is first performed over the full system. The resulting occupiedMOs
are localized and partitioned into two sets, corresponding to subsystems A and B.
These sets are used to construct hA-in-B,

hA-in-B [
γA,γB] = h + vemb

[
γA,γB] + µPB, (3.10)

which is an effective one-electron Hamiltonian containing the standard one-electron
Hamiltonian, the embedding potential and the projection operator. Finally, a cor-
related WF calculation is performed on subsystem A wherein hA-in-B replaces the
standard one-electron Hamiltonian. The final WF-in-DFT energy is given by equa-
tion 3.9.

The WF calculation for subsystem A consists of two steps: first, a set of reference
orbitals is generated and second, a correlated WF calculation is performed using
those orbitals. The reference orbitals can be obtained either via Hartree-Fock (HF)
or a multiconfigurational method. For the former case, the subsystem A post-HF
calculation begins with HF-in-DFT embedding. The HF-in-DFT Fock matrix, FA,
is derived by inserting a Slater determinant for the subsystem A WF into Eq. 3.9
and differentiating with respect to γ̃A

HF, giving

FA =
∂

∂γ̃A
HF

EHF-in-DFT
[
γ̃A
HF;γA,γB]

= hA-in-B [
γA,γB] + g

[
γ̃A
HF

]
,

(3.11)
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where g includes all of the usual HF two-electron terms, and hA-in-B represents the
effective one-electron Hamiltonian given by Eq. 3.10. Once the subsystem A HF
MOs are optimized in the presence of the DFT embedding potential, vemb, they are
used for the correlated subsystem A post-HF calculation. An analogous procedure
holds for the case of multireference methods, wherein a multiconfigurational WF
is substituted in place of the single Slater determinant in Eq. 3.9 [25, 128]. In this
way, projection-based WF-in-DFT embedding can be readily performed with any
existing WF method (or quantum impurity solver) simply by modifying the one-
electron Hamiltonian in the WF method to include the projection-based embedding
terms.

While projection-based embedding is exact for (same functional) DFT-in-DFT
embedding, projection-based WF-in-DFT embedding is necessarily approximate.
Some sources of error in WF-in-DFT embedding have been analyzed, including
the approximate nature of the non-additive exchange-correlation energy [14] and
density-driven errors in the underlying DFT calculation [22].

Technical Comments
Choice of Localization Method

Projection-based DFT-in-DFT embedding is formally exact with any disjoint parti-
tion of orthogonal orbitals. A multiscale embedding method, in which a spatially
localized subsystem is treated at a different level of theory from its surroundings, can
be constructed by selecting these subsets from a set of spatially localized orbitals.

Methods based on the Pipek-Mezey criterion [129], which maintain a chemically
intuitive separation between orbitals (e.g. σ-type and π-type), have consistently
been found to perform well in projection-based embedding [14, 18]. In particular,
Knizia’s intrinsic bond orbitals (IBOs) [130] have been found to be effective at
producing compact LMOs that vary relatively smoothly with respect to nuclear
coordinates [18]. We note the quality of the embedding depends on the degree to
which themolecular orbitals can be localized; for this reason intrinsically delocalized
systems, such as metals, remain a challenge [128].

Atomic Orbital Basis Set Truncation

As described thus far, projection-based WF-in-DFT embedding reduces the number
of occupied LMOs that are correlated at the WF level, but leaves the virtual space
untouched. Since the cost of WF methods scales steeply with the number of virtual
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orbitals (e.g. O(v4) for CCSD), the spatial locality of subsystem A can be used to
reduce the effective size of the virtual space for the embedded WF calculation. One
strategy for doing so is to employ local correlation techniques for the WF method
[20, 123]; local correlation methods include parameters that allow for the control of
the length scale over which excitations are included [131]. A more general strategy
for limiting the size of the virtual space in the WF calculation is to truncate the
atomic orbital (AO) basis set employed in the WF-in-DFT calculation.

AO truncation for projection-based embedding have been devised to discard AOs
on the basis of either distance from subsystem A [13] or magnitude of contribution
to the Mulliken population of subsystem A [18]. The latter method has been found
to be particularly simple and robust to employ in practice, determining whether
to retain each AO via a single density threshold parameter: if the net Mulliken
population – computed using the subsystem A density – of an AO is less than the
specified threshold, it is removed from the basis set. In practice, we have found that
a density threshold of 1 × 10−4 a.u. provides a good balance between speed and
accuracy, but that system-specific sensitivity checks should always be performed.

The energy expression for a projection-based WF-in-DFT calculation with AO
truncation is

E trun
WF-in-DFT

[
Ψ̃

A,trun; γ̄A,trun;γA,γB] =
EWF

[
Ψ̃

A,trun]
+ tr

[
(γ̃A,trun − γ̄A,trun)vtrunemb

[
γA,γB] ]

− E trun
DFT

[
γ̄A,trun] + EDFT

[
γA + γB]

+ µtr
[
γ̃A,trunPB,trun] ,

(3.12)

where terms superscripted by “trun” are represented in the truncated AO basis and
those without are evaluated in the full basis. The matrices vtrunemb and PB,trun are first
formed in the full AO basis (Eqs. 3.2 and 3.5) and then projected onto the truncated
basis by removing the rows and columns that correspond to the truncated basis
functions. The matrix γ̄A,trun is the subsystem A one-particle density optimized at
the DFT level in the truncated basis. In Eq. 3.12, the leading order error due to AO
truncation is corrected at the DFT-in-DFT level (see Eq. 11 in Ref. 18).

Atomic orbital truncation has been shown to greatly speedup up projection-based
WF-in-DFT calculations at a small cost in accuracy in total and relative energies
[18, 21, 24, 25, 132]. AO truncation can also be applied to DFT-in-DFT embedding
to reduce the cost of the high-level DFT calculation.
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Even-Handed Subsystem Partitioning

We now address the practical issue of how best to partition the LMOs between
subsystems in applications to chemical reactions. It is convenient and chemically
intuitive to associate a set of atoms with subsystem A, and then to automatically
select LMOs corresponding to the subsystem A atoms. Typically, this is done by
selecting all LMOs with a significant population on those atoms chosen to comprise
subsystemA; populations are typically assigned using the atomic population scheme
that corresponds to the localization method used to generate the LMOs (i.e., Mul-
liken populations for Pipek-Mezey localization [129] and intrinsic atomic orbital
populations for IBO localization [130]).

This charge-selection strategy provides a good starting point for determining the
subsystemALMOs, but it becomes problematic when applied to processes for which
charge-selected LMOs move into or out of subsystem A as a function of molecular
geometry. When this occurs, substantial error is incurred and the projection-based
embedded potential energy profile can become discontinuous. Such problems often
arise in cases involving bond formation or breaking.

To address this problem, we have recently reported an “even-handed” LMO selection
strategy [128] which forms a consensus set of subsystem A LMOs to be used at all
geometries along a reaction coordinate. For every geometry, this set contains every
LMO that is charge-selected at any geometry. The even-handed LMO selection
procedure is automatic, uses information already available at the DFT level, and
requires no user input beyond the set of atoms to be embedded (the same input
as in the charge-selection method). Even-handed selection has been empirically
demonstrated to result in smooth and quantitative energy profiles at the cost of only
a few additional LMOs included in subsystem A [25, 128].

3.3 Selected Applications
Among the most important aspects of projection-based embedding is that it enables
robust and efficient WF-in-DFT calculations in complex chemical systems. To date,
projection-based embedding has been used in applications studies from the groups
of the authors [16, 19–21, 24, 25, 132] and others [133–139], including applications
to periodic systems [140, 141]. We now summarize applications of the method to
transition-metal catalysis, enzyme catalysis, and electrochemistry.
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Transition-Metal Catalysis

In a first example [20], WF-in-DFT embedding was employed to investigate a
new class of cobalt-based catalysts for hydrogen evolution. A central challenge in
the development of inorganic hydrogen-evolution catalysts is to avoid deleterious
coupling of the energetics of metal-site reduction from the kinetics of metal-hydride
formation.

Collaboration between theory and experiment identified a family of cobalt diimine-
dioxime catalysts that shows promise for achieving this aim by introducing an
intramolecular proton-shuttle via a pyridyl pendant group (Fig. 3.2B). For the in-
tramolecular proton-shuttle reaction in this system, WF-in-DFT was found to con-
verge with a high-level subsystem that included only the LMOs on the central
transition-metal atoms and its first coordination sphere (Fig. 3.2C).

For this reaction, Fig. 3.2A demonstrates the degree to which (local CCSD(T))-in-
DFT embedding (red) can remove the qualitative errors of DFT using the B3P86
functional (black), achieving quantitative agreement with local CCSD(T) performed
over the full system. Furthermore, the excellent accuracy of the embedding calcu-
lation was achieved while reducing the computational cost of the full wavefunction
calculation from 20 hours per energy evaluation down to just a single hour per en-
ergy evaluation [20]. As is illustrated in this application, transition metal complexes
provide very fruitful application domain for projection-based embedding, given that
they typically involve subtle electronic structure in the vicinity of the metal that de-
mands a wavefunction theory description, while the surrounding ligand environment
is typically both very expensive for wavefunction theories and adequately described
using DFT. For these reasons, several other applications of projection-based WF-
in-DFT embedding have also focused on transition-metal complexes [19, 25, 128,
135].

Enzyme Catalysis

Application of projection-based WF-in-DFT embedding to the reactivity of the
citrate synthase enzyme illustrates the potential of the method to help elucidate
biochemical mechanisms and predict pharmacological activity (Figure 3.3) [21,
24]. DFT is commonly used for the QM region of QM/MM calculations of enzyme
systems because of its low cost and the ready availability of implementations.
Prediction and understanding of activation barriers using DFT is hampered by the
sometimes very large sensitivity on the choice of approximate exchange-correlation
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Figure 3.2: (A) Benchmark energy profiles for the rate-limiting intramolecular proton-transfer
reaction in a new class of cobalt diimine-dioxime catalysts, obtained using CCSD(T) (blue), B3P86
(black), and CCSD(T)-in-B3P86 embedding (red). (B) Partitioning of the system in the CCSD(T)-in-
B3P86 calculations into atoms that are treated using CCSD(T) (solid ball-stick) and B3P86 (stick).
(C) The associated partitioning of the electronic density into subsystems that are treated using
CCSD(T) (red) and B3P86 region (blue). Adapted with permission from Ref. 20. Copyright 2016
American Chemical Society.

functional. A combination of expertise, experience, and careful benchmarking can
help identify a functional that should be reliable for a particular case, but we have
found thatWF-in-DFT embedding can almost completely eliminate this dependence
with modest computational cost.

Specifically, the figure illustrates that whereas DFT with various XC functionals
predict qualitatively different reaction energy profiles for the proton abstraction from
acetyl-coenzyme A in the citrate synthase (panel A), CCSD(T)-in-DFT embedding
provides nearly identical energy curves when the environment is described using
DFT with the corresponding XC functionals. It is clear that in this case, the error
in the DFT reaction profiles is associated with the local description of the chemical
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Figure 3.3: (A) Reaction profiles for proton abstraction from acetyl-coenzyme A in the citrate
synthase enzyme, computed using QM/MMwith standard DFT approaches (A) and projection-based
CCSD(T)-in-DFT embedding (B). The dependence of the predicted activation barrier on choice of
functional is almost completely eliminated through projection-based embedding. The QM region is
shown as an inset, with the red-shaded density indicating the CCSD(T) region and the remaining
environment described using DFT. Note that the CCSD(T)-in-B3LYP and CCSD(T)-in-BH&HLYP
curves, red and purple, are indistinguishable. Adapted with permission from Ref. 21. Copyright
2016 American Chemical Society.

rearrangement [14], which is robustly corrected using the projection-based WF-in-
DFT framework.

Battery Electrolytes

A central challenge in the refinement of lithium-ion batteries is to control cathode-
induced oxidative decomposition of electrolyte solvents, such as ethylene carbonate
(EC) and dimethyl carbonate (DMC). In recent work, projection-based embedding
was used to study the oxidation potentials of neat EC, neat DMC, and 1:1 mixtures
of EC and DMC, to overcome qualitative inaccuracies in the electronic densities and
ionization energies obtained from conventional KS-DFTmethods [16]. The embed-
ding method was implemented as shown in Fig. 3.4, with a CCSD(T) description
of the oxidized molecule, a DFT description of the surrounding molecules, and a
molecular-mechanics (MM) description of more distant molecules. Configurations
were sampled using classical MD trajectories on the MM force field, and approxi-
mately 2000 CCSD(T)-in-DFT-in-MM calculations were performed to obtained the
thermal ensemble averages for the oxidation potentials.
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(a) (b)

(c)

(d)

Figure 3.4: Summary of the embedding protocol in Ref. 16. (a) MD simulations are performed
to generate the equilibrium ensemble of solvent configurations. (b) Illustration of the CCSD(T)-in-
DFT-in-MM embedding protocol. (c) Equilibrium probability distributions, PM (∆E), of the vertical
ionization energies, ∆E , of ethylene carbonyl (EC) molecules, calculated using CCSD(T)-in-B3LYP-
in-MM embedding. “M" corresponds either to the reduced EC system (R, black) or the oxidized EC+
system (O, blue). The distributions have similar standard deviations, demonstrating that the linear
response approximation is accurate for this system. The best fit Gaussian distributions, gM (∆E),
are indicated in solid lines. (d) Diabatic free energy profiles constructed from the equilibrium
distributions shown in (c). The solid lines indicate the results from the Gaussian fits, while the points
correspond to simulation data. Adapted with permission from Ref. 16. Copyright 2015 American
Chemical Society.

It was shown that the ensemble-averaged distributions of vertical IEs are consistent
with a linear response interpretation of the statistics of the solvent configurations
(Fig. 3.4C,D), enabling determination of both the intrinsic oxidation potential of
the solvents and the corresponding solvent reorganization energies. Interestingly,
it was found that large contributions to the solvation properties of DMC originate
from quadrupolar interactions, resulting in a much larger solvent reorganization en-
ergy than that predicted using simple dielectric continuum models. Demonstration
that the solvation properties of EC and DMC are governed by fundamentally dif-
ferent intermolecular interactions provides useful insight into lithium-ion batteries
electrolyte design, with relevance to electrolyte decomposition processes, solid-
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electrolyte interphase formation, and the local solvation environment of lithium
cations [16].

3.4 Outlook and Conclusions
Quantum embeddingmethods have long been recognized as a promising approach to
achieving high-accuracy quantum chemical descriptionswhile preserving a tractable
computational cost. As this chapter describes, projection-basedWF-in-DFT embed-
ding offers a simple and accurate strategy for reaching this goal that is of practical
utility in many chemical applications areas. While many previous studies had rec-
ognized that subsystem embedding could be usefully employed via enforcement of
subsystem orthogonalization [121, 122], the key advances of the projection-based
embedding method [9] were to recognize that the strategy (i) could be used to for-
mulate a formally exact method for DFT embedding, (ii) could be used to formulate
a rigorous and accurate approach to WF-in-DFT embedding, and (iii) could be im-
plemented via an extremely simple level-shift projection operator, such that no extra
programming is needed to add a new WF method.

Continued technical advances, including atomic-orbital basis set truncation [18]
and even-handed subsystem partitioning [128], have improved the efficiency and
robustness of the method. The approach is implemented in the widely used Molpro
software package [142], allowing straightforward application of projection-based
WF-in-DFT embedding for quantum chemical studies [16, 19–21, 24, 25, 132–
141].

Looking forward, we anticipate continued refinement of the projection-based em-
bedding methodology, as well as increasingly widespread application in diverse
areas of chemistry, biology, and materials science.
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C h a p t e r 4

ANALYTICAL GRADIENTS FOR PROJECTION-BASED
WAVEFUNCTION-IN-DFT EMBEDDING

Adapted from:

1S. J. R. Lee, F. Ding, F. R. Manby, and T. F. Miller III, “Analytical gradients
for projection-based wavefunction-in-DFT embedding”, en, J. Chem. Phys. 151,
064112 (2019) 10.1063/1.5109882.

In this chapter we present the derivation, implementation, and numerical demon-
stration of analytical nuclear gradients for projection-based wavefunction-in-density
functional theory (WF-in-DFT) embedding. The gradients are formulated in the La-
grangian framework to enforce orthogonality, localization, and Brillouin constraints
on the molecular orbitals. An important aspect of the gradient theory is that WF
contributions to the totalWF-in-DFT gradient can be simply evaluated using existing
WF gradient implementations without modification. Another simplifying aspect is
that Kohn-Sham (KS) DFT contributions to the projection-based embedding gradi-
ent do not require knowledge of the WF calculation beyond the relaxed WF density.
Projection-based WF-in-DFT embedding gradients are thus easily generalized to
any combination of WF and KS-DFT methods. We provide numerical demonstra-
tion of the method for several applications, including calculation of a minimum
energy pathway for a hydride transfer in a cobalt-based molecular catalyst using
the nudged-elastic-band method at the CCSD-in-DFT level of theory, which reveals
large differences from the transition state geometry predicted using DFT.
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4.1 Introduction
This chapter focuses on the development of analytical nuclear gradients for the
projection-based embedding method [9, 27]. Projection-based embedding is a DFT-
based embedding theory in which subsystem partitioning is performed in terms of
localized Kohn-Sham (KS) molecular orbitals (LMOs). The method describes
subsystem interactions at the level of KS and allows for the partitioning of the
subsystems across covalent and even conjugated bonds, and it enables the use of
relatively small subsystem sizes for an embedded WF description. A review of
projection-based WF-in-DFT embedding is outlined in Chapter 3.

Projection-based embedding has proven to be a useful tool in a wide range of
chemical contexts including transition-metal complexes [19, 20, 25, 128], protein
active sites [21, 24], excited states [132, 135, 139] and condensed phase systems
[16], among others [133, 134, 136–138, 140, 141]. The development of analytical
nuclear gradients for projection-based embedding will expand its applicability to
include geometry optimization, transition state searches, and potentially ab initio
molecular dynamics. Analytical nuclear gradients already exist for a number of
other embeddingmethodologies, including the incrementalmolecular fragmentation
method [143], fragment molecular orbital method [144–146], QM/MM [94, 95,
108], ONIOM [75, 147–149], EMFT [17, 150], frozen density embedding [151–
154], and subsystem DFT [155–157]. However, the projection-based approach
provides a number of advantages for WF-in-DFT embedding calculations and leads
to a distinct analytical gradient theory, whichwe derive and numerically demonstrate
in several applications.

In section 4.2 we outline projection-basedWF-in-DFT embedding and in section 4.2
we provide the derivation of its analytical nuclear gradients. Section 4.4 numerically
validates the analytical nuclear gradient theory and its implementation in Molpro
[78] via comparison with finite difference calculations, as well as presenting results
for optimizing geometries in benchmark systems and the calculation of a minimum
energy profile for an organometallic reaction using the nudged-elastic-band (NEB)
method. We additionally provide the analytical nuclear gradient theory for WF-in-
DFT embedding with atomic orbital (AO) truncation [18] in Appendices 4.7 and
4.7.
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4.2 Projection-based Embedding Analytical Nuclear Gradients
Projection-based Embedding Energy Theory
Projection-based WF-in-DFT embedding relies on the partitioning the LMOs of a
system into two subsystems. Subsystem A contains the LMOs that are treated using
the WF method and subsystem B contains the remaining LMOs that are treated
using KS. This WF-in-DFT procedure is accomplished by first performing a KS
calculation on the full system to obtain a set of KS MOs. The occupied KS MOs
are then localized and partitioned into subsystems A and B. Finally, subsystem A is
treated using the WF method in the presence of the embedding potential created by
the frozen LMOs of subsystem B. Note that the cost of the KS calculation on the
full system is typically negligible in comparison to the subsystem WF calculation.
This results in our working equation for projection-based WF-in-DFT embedding
[9],

EWF-in-DFT
[
Ψ̃

A;γA,γB] = EWF
[
Ψ̃

A]
+ tr

[
(d̃A − γA)vemb

[
γA,γB] ]

+ EDFT
[
γA + γB] − EDFT

[
γA]
+ µtr

[
d̃APB] , (4.1)

where Ψ̃A and EWF[Ψ̃A] are theWF and energy of subsystem A, d̃A is the subsystem
Aone-particle reduced densitymatrix that corresponds to Ψ̃A, EDFT is theKS energy,
and γA and γB are respectively the KS subsystemA and B one-particle densities that
equal the full system KS density, γ, when summed together. Throughout, we shall
use a tilde to indicate quantities that have been calculated using the WF method.
The embedding potential, vemb, is defined as

vemb
[
γA,γB] = g

[
γA + γB] − g

[
γA]

, (4.2)

where g includes all KS two-electron terms,

(g[γ])κν =
∑
λσ

γλσ

(
(κν |λσ) − 1

2
x f (κλ |νσ)

)
+ (vxc[γ])κν, (4.3)

and where κ, ν, λ and σ label atomic orbital basis functions, (κν |λσ) are the
two-electron repulsion integrals, x f is the fraction of exact exchange and vxc is the
exchange-correlation (XC) potential matrix. The level-shift operator, µPB, is given
by

µPB = µSγBS, (4.4)

where S is the overlap matrix. In the limit of µ → ∞, the LMOs that make
up subsystems A and B are enforced to be exactly orthogonal, eliminating the
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non-additive kinetic energy present in other embedding frameworks [99, 113]. In
practice, finite values of µ in the range of 104 hartree to 107 hartree are found to
provide accurate results regardless of chemical system [9]. If greater accuracy is
needed, a perturbative correction outlined in Ref. 9 can be added to the WF-in-DFT
energy expression to account for the finiteness of µ, but in practice, this correction
is found to contribute negligibly to the total energy and is thus neglected here.

Projection-based embedding can also be used for DFT-in-DFT embedding via a
simplified version of Eq. 4.1. The working equation for projection-based DFT-in-
DFT embedding is [9]

EDFT-in-DFT
[
γ̃A;γA,γB] = EDFT

[
γ̃A]
+ tr

[(
γ̃A − γA

)
vemb

[
γA,γB] ]

+ EDFT
[
γA + γB] − EDFT

[
γA]
+ µtr

[
γ̃APB] . (4.5)

The only differences between WF-in-DFT and DFT-in-DFT embedding is that the
first term on the RHS of Eq. 4.1 is replaced with the KS energy on subsystem A,
EDFT

[
γ̃A]

, and in the second and last terms d̃A is reduced to the subsystem A KS
density matrix, γ̃A.

Projection-based WF-in-DFT Embedding Gradient Theory
Since projection-based embedding is a non-variational theory, its analytical gra-
dient is conveniently derived using a Lagrangian approach. We first construct a
Lagrangian based on the projection-based WF-in-DFT energy. We then minimize
the Lagrangian with respect to the variational parameters in the embedding energy,
which include the subsystem A WF and the LMO coefficients. Then we show how
to solve for each of the Lagrange multipliers and provide the working equation for
the gradient of the total energy.

For consistency in notation, the MO coefficient matrix C refers to the entire set of
KS MOs (occupied and virtual). The submatrix of C that refers to the (occupied)
LMOs is denoted as L with column indices i, j, k, l. The submatrix of C that refers
to the canonical virtual space is denoted as Cv with column indices a, b, c, d. The
indices m, n, p, q are used to index generic molecular orbitals.

Total Energy Lagrangian
We now derive the total energy Lagrangian for projection-based WF-in-DFT em-
bedding. Where appropriate we will provide WF method specific examples (e.g.
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MP2) of general terms outlined in the equations. The WF-in-DFT Lagrangian is

L
[
C, Ψ̃A,Λ, x, zloc, z

]
= EWF-in-DFT

[
Ψ̃

A;γA,γB] +∑
s

Λ
WF,A
s cs

+
∑
pq

xpq

(
C†SC − 1

)
pq
+

∑
i> j

zloci j ri j +
∑

ai

zai

(
F
[
γA + γB] )

ai
.

(4.6)

The first term on the right hand side (RHS) of Eq. 4.6 is the projection-based WF-
in-DFT embedding energy described by Eq. 4.1. The second term on the RHS of
Eq. 4.6 contains any constraints, cs, and the corresponding Lagrange multipliers,
Λ
WF,A
s , that arise from ensuring that the Lagrangian is variational with respect to

parameters in the WF method. The third term on the RHS constrains the KS MOs,
C, to be orthonormal, which accounts for the basis set being atom centered; this
term is commonly referred to as the Pulay force [158] and arises from the atomic
orbital basis set being atom centered. The localization conditions, ri j = 0, take into
account how the KS MOs are localized before being selected for subsystems A and
B. This is important because the LMOs will have a different dependence on nuclear
perturbation than canonical MOs. In this work, we use Pipek-Mezey localization
[129] to obtain LMOs. Generalization to other localizationmethods (e.g. Boys [159]
and intrinsic bond orbitals [130]) is straightforward. The localization conditions for
Pipek-Mezey are

ri j =
∑

C

(
SC

ii − SC
j j

)
SC

i j = 0 for all i > j, (4.7)

where C corresponds to an atom in the molecule. The matrices SC are defined as

SC
kl =

∑
α∈C

∑
β

(
Lα,k SαβLβ,l + Lα,lSαβLβ,k

)
, (4.8)

where the summation over α is restricted to basis functions at atomC. The Brillouin
conditions,

(
F
[
γA + γB] )

ai = 0, reflect how theKSMOs are optimized before being
used to construct subsystems A and B. The Brillouin conditions are only needed
because subsystem B is frozen at the KS level of theory. However, due to the
non-additivity of the XC potential, the Lagrange multipliers, z, span the full virtual-
occupied space.

The type and number of constraints applied to theWFmethod depend on the chosen
method. For example, if the WF method is MP2 then the constraints are∑

s

Λ
MP2,A
s cs =

∑
pq

x̃pq

(
C̃A†SC̃A − 1

)
pq
+

∑
ai

z̃ai

(
FA

)
ai

��
i∈A, (4.9)
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where the first term on the RHS of Eq. 4.9 constrains the Hartree-Fock MOs, C̃A, to
be orthonormal, the condition i ∈ A restricts the sum to occupied MOs in subsystem
A, and the second term on the RHS are the Brillouin conditions using the embedded
Fock matrix, FA. The embedded Fock matrix is defined as [9]

FA = h + g
[
γ̃A]
+ vemb

[
γA,γB] + µPB, (4.10)

where h is the standard one-electron Hamiltonian, g includes all of the usual HF
two-electron terms and γ̃A is the subsystem A HF one-particle density. These
constraints also arise in the derivation of the MP2 analytical nuclear gradient [160].

For the projection-basedWF-in-DFT energy to equal theLagrangian, the Lagrangian
must be minimized with respect to all of its parameters, including Ψ̃A, C, and all of
the Lagrange multipliers.

Minimizing the Lagrangian with respect to the variational parameters of the
WF method
Upon minimizing the WF-in-DFT Lagrangian with respect to Ψ̃A, only terms as-
sociated with the first two terms on the RHS of Eq. 4.6 survive, all of which are
familiar from the WF Lagrangian for the corresponding WF gradient theories.

∂L
∂Ψ̃A

=
∂EWF

[
Ψ̃A]

∂Ψ̃A
+ tr

[
∂d̃A

∂Ψ̃A
vemb

[
γA,γB] ]

+ µtr
[
∂d̃A

∂Ψ̃A
PB

]
+

∂

∂Ψ̃A

∑
s

Λ
WF,A
s cs = 0

(4.11)

Since the embedding potential is independent of Ψ̃A, the Z-vector coupled per-
turbed Hartree–Fock (Z-CPHF) equations of any post-HF method are only impacted
through the eigenvalues of the subsystem A HFWF. Therefore, the solutions for the
WF Lagrange multipliers (e.g. x̃ and z̃ for MP2 in Eq. 4.9) are obtained using the
standard implementation of the WF gradient no matter what KS method is selected
to describe subsystem B. However, if an alternative embedding potential is used that
depends on the subsystem A WF, such as the Huzinaga constraint (i.e. Ref. 123),
then the formulation of the WF gradient is changed; the Z-CPHF equations for a
general WF method would need to be modified to include the contributions from
the derivative of the embedding potential with respect to the subsystem A WF, Ψ̃A.

Minimizing the Lagrangian with respect to the MO coefficients
The remaining Lagrange multipliers, zloc, x, and z in Eq. 4.6, are determined by
minimizing the WF-in-DFT Lagrangian with respect to the variational parameters
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of the KSmethod, namely theMO coefficients, C. Differentiation of the Lagrangian
with respect to these parameters yields∑

µ

Cµ,p
∂L
∂Cµ,q

= Epq +
(
a
[
zloc

] )
pi
+ (D[z])pq + 2xpq = 0, (4.12)

where

Epq =
∑
µ

Cµ,p

(
∂EWF-in-DFT

[
Ψ̃A;γA,γB]

∂Cµ,q
+

∂

∂Cµ,q

∑
s

Λ
WF,A
s cs

)
, (4.13)

(
a
[
zloc

] )
pi
=

∑
µ

Cµ,p

(∑
k>l

zlockl
∂rkl

∂Cµ,q

)
=

∑
k>l

Bpi,kl zlockl ,
(4.14)

(D[z])pq =
∑
µ

Cµ,p

(∑
ak

zak
∂
(
F
[
γA + γB] )

ak

∂Cµ,q

)
=

∑
ak

Dpq,ak zak

=
(
F[γA + γB]z

)
pq

���
q∈occ

+
(
F
[
γA + γB]z†

)
pq

���
q∈vir
+ 2(V[z̄])pq

���
q∈occ

,

(4.15)

and

2xpq =
∑
µ

Cµ,p

(∑
mn

xmn
∂Smn

∂Cµ,q

)
. (4.16)

The 4-dimensional tensors, B and D, are expanded in Appendices 4.7 and 4.7,
respectively, z̄ corresponds to z + z†, and V[z̄] includes all two-electron terms of
the generalized Fock matrix and is shown explicitly in Appendix 4.7. Since the
embedded Fock matrix, FA, contains the embedding potential, vemb, its derivative
with respect to theMO coefficients, C, is nonzero resulting in theWF relaxed density
being needed to construct E in Eq. 4.13, which is explicitly shown in Appendix 4.7.
Therefore, the subsystem A WF gradient only affects the embedding contributions
to the gradient through the WF relaxed density.

We now show that solving for the Lagrange multipliers leads to familiar coupled
perturbed equations. Combining the stationary conditions described by Eq. 4.12
with the auxiliary conditions x = x† yields the linear Z-vector equations [160](

1 − Ppq
) (

E + D[z] + a
[
zloc

] )
pq
= 0, (4.17)
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where Ppq permutes the indices p and q, which is used to solve for z and zloc. The
matrix x is then obtained as

xpq = −
1
4
(
1 + Ppq

) (
E + D[z] + a

[
zloc

] )
pq
. (4.18)

The Lagrange multipliers zloc pertain to the occupied-occupied MO space; consid-
ering only the occupied-occupied part of Eq. 4.17 yields(

1 − Pi j
) (

E + D[z] + a
[
zloc

] )
i j
= 0. (4.19)

Using the Brillouin conditions and the knowledge that zab = zi j = zia = 0, Eq. 4.19
can be further simplified by showing that(

1 − Pi j
)
(D[z])i j = 0. (4.20)

The solutions, zloc, are thus independent of z, such that Eq. 4.19 reduces to

Ei j − E ji +
∑
k>l

(
Bi j,kl − B ji,kl

)
zlockl = 0. (4.21)

These are the Z-vector coupled perturbed localization (Z-CPL) equations, which are
used to solve for zloc. Subsequently, a

[
zloc

]
can be computed according to Eq. 4.14.

The Lagrange multipliers z pertain to the virtual-occupied MO space; considering
only the virtual-occupied part of Eq. 4.17 yields

(1 − Pai)
(
E + D[z] + a

[
zloc

] )
ai
= 0, (4.22)

which further simplifies to(
E + a

[
zloc

]
+ F

[
γA + γB]z − zF

[
γA + γB] + 2V[z̄]

)
ai = 0. (4.23)

These are the Z-vector coupled perturbed Kohn-Sham (Z-CPKS) equations. Having
solved the Z-CPL and Z-CPKS equations, the remaining Lagrangian multipliers
associated with the orthogonality constraints, x, can be obtained from Eq. 4.18.

Gradient of the Total Energy
Once the Lagrangian is minimized with respect to all variational parameters, the
gradient of the total energy takes the form

dEWF-in-DFT

dq
=

dL
dq
=
∂L
∂q
+

∂L
∂Ψ̃A

Ψ̃A

∂q
+
∂L
∂C

∂C
∂q

=
∂L
∂q

.

(4.24)
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Since the Lagrangian is minimized with respect to the subsystem AWF and the KS
LMO coefficients, calculation of the WF and KS LMO responses to nuclear per-
turbation, ∂Ψ̃A/∂q and ∂C/∂q respectively, are avoided. This yields the following
expression for the gradient,

E (q)WF-in-DFT = E (q)WF
[
Ψ̃

A]
+

∑
λν

d̃A
λν(v

(q)
emb)λν

+ µ
∑
λν

d̃A
λν(PB,(q))λν +

∑
s

Λ
WF,A
s c(q)s

− E (q)DFT[γ
A] + E (q)DFT[γ

A + γB] −
∑
λν

γA
λν(v

(q)
emb)λν

+
∑

i j

zloci j r (q)i j +
∑

ai

zai

(
F
[
γA + γB] ) (q)
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where the superscript (q) denotes the explicit derivative of the quantity with respect
to a nuclear coordinate. Eq. 4.25 can be further simplified by folding

∑
s Λ

WF,A
s c(q)s

into the first three terms on the RHS of Eq. 4.25, yielding
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∑
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∑
mn
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(4.26)

Here, Eq
WF[Ψ̃

A] denotes the total derivative of the subsystem A WF energy with
respect to nuclear coordinate, which can be directly calculated using existing WF
gradient implementations, and d̃A

rel is the WF-relaxed density for subsystem A. For
example, the MP2-relaxed density is

d̃A
rel = d̃A + C̃Az̃C̃A,† = γ̃A + d(2) + C̃Az̃C̃A,†, (4.27)

which contains the subsystem A Hartree-Fock density, γ̃A, the MP2 density matrix,
d(2), and the solutions of the subsystem A Brillouin conditions, C̃Az̃C̃A,†. Eq. 4.26
can be expressed in terms of the WF gradient on subsystem A and the derivative
AO integrals, yielding our final expression for the projection-based WF-in-DFT
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analytical gradient,

E (q)WF-in-DFT = Eq
WF

[
Ψ̃

A]
+ tr

[
dah(q)

]
+ tr

[
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]
+

1
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A
) (

v(q)xc
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.

(4.28)

The effective one-particle density da and effective two-particle density D are defined

da = γB + CzC†, (4.29)

and

Dµνλσ =
(
γA + γB

)
µν
(db)λσ − γAµν(dc)λσ

− 1
2

x f

((
γA + γB

)
µλ
(db)νσ − γAµλ(dc)νσ

)
.

(4.30)

The effective one-particle densities db and dc are defined

db = γA + γB + 2CzC† + 2d̃A
rel − 2γA, (4.31)

and

dc = −γA + 2d̃A
rel. (4.32)

The matrix X is defined

X = CxC† +
∑
i> j

∂ri j

∂Sµν
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= Xloc − 1
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(
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)
L† − 1

2

(
Cv(zF)L† +
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(4.33)

where (
Xloc

)
µν
= −1

2

(
La

[
zloc

]
L†

)
µν
+

∑
i> j

∂ri j

∂Sµν
zloci j . (4.34)

The second term on the RHS of Eq. 4.34 is expanded in Appendix 4.7.

The analytical nuclear gradient expression for projection-based DFT-in-DFT closely
follows that for WF-in-DFT, with regard to evaluation of both the Lagrange mul-
tipliers (Eq. 4.12) and the final gradient (Eq. 4.28). To obtain the corresponding
DFT-in-DFT expressions, d̃A

rel becomes the subsystem A KS density

d̃A
rel = γ̃A, (4.35)
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which affects the evaluation of E in Eq. 4.12 (expanded in Eq. 4.39) and the evalu-
ation of the final gradient expression, Eq. 4.28. Additionally, the first term on the
RHS of the final gradient expression, Eq. 4.28, is replaced with the subsystem A KS
gradient, Eq

DFT
[
γ̃A]

.

4.3 Computational Details
The implementation of projection-based WF-in-DFT embedding gradients is avail-
able in the 2019 general release of Molpro [78]. In all embedding calculations re-
ported here, unless otherwise specified, the Pipek-Mezey localization method [129]
is used with the core and occupied MOs localized together. The subsystem A region
is chosen by including any LMOs with a net Mulliken population larger than 0.4 on
the atoms associated with subsystem A, although more sophisticated partitioning
algorithms have been introduced [128]. A level-shift parameter of µ = 106 hartree
is used for all embedding calculations. The perturbative correction to using a finite
value of µ in Eq. 4.5 is less than 20 microhartrees for the applications presented
here and thus not included (accomplished by specifying the option HF_COR = 0).
Throughout this work, all embedding calculations are described using the nomen-
clature “(WF method)-in-DFT/basis,” where the WF method describes subsystem
A and the KS method describes subsystem B. For some embedding calculations a
mixed-basis set is used and is denoted by “(WF method)-in-DFT/large-basis:small-
basis,” where the large basis is used to describe subsystem A and the small basis is
used to describe subsystem B.

All SCF calculations employ a tighter threshold than default for MO convergence
by specifying the option ORBITAL = 1 × 10−7 a.u. in Molpro. All KS calculations
used in projection-based embedding are done without density fitting, employing
the LDA [161, 162], PBE [79], PBE0 [163], and LDAX functionals with the def2-
TZVPP, def2-SVP, def2-ASVP [164, 165], cc-pVDZ [80], and 6-31G [81] basis
sets. Note that the def2-ASVP basis set used in Molpro is constructed by adding
one set of even tempered diffuse functions to the def2-SVP basis set. The LDAX
functional is constructed by including 50% exact exchange and reducing the weight
of the DIRAC functional to 50% in the LDA functional. For the calculations in
sections 4.4 and 4.4, the XC functional is evaluated on a fixed-pruned grid with
index 7 (Ref. 166). For the optimized geometries shown in section 4.4, and the
malondialdehyde calculations in section 4.4 the XC functional is evaluated on an
adaptively generated quadrature grid that reproduces the energy of the Slater-Dirac
functional to a specified threshold accuracy of 10−10Eh. All WF calculations are
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performed with the frozen-core approximation, without density fitting, employing
the MP2 [167], CCSD [168, 169], and CCSD(T) [170] correlation treatments with
the def2-TZVPP, def2-SVP, cc-pVDZ and 6-31G basis sets. Even though the density
fitting approximation is not used for the WF methods in this study, density fitted
gradients are available for the aforementioned WF methods [171, 172]. The default
values for integral screening were used in Molpro. For all Z-CPKS calculations
an iterative subspace solver employing the Davidson algorithm [173, 174] is used
with a convergence threshold of 1 × 10−6 a.u. For all Z-CPHF calculations needed
for the subsystem A WF gradient an iterative solver with a convergence threshold
of 1 × 10−7 a.u. is used. Grid weight derivatives are included for all gradient
calculations involving the XC functional and potential.

For all geometry optimizations the number of LMOs in subsystem A is kept un-
changed throughout the optimization. A natural way of enforcing this in future
work is to employ even-handed partitioning [128], although this was not needed in
the examples studied here; the default procedure based on net Mulliken population
sufficed to keep subsystem A unchanged. All geometries are optimized using the
translation-rotation-internal coordinate system devised by Wang and Song [175],
which is available in the GeomeTRIC package [176]. Convergence parameters for
the geometry optimizations follow the default parameters used by Molpro, namely
that the maximum gradient value becomes less than 3 × 10−4 hartree/bohr and the
energy change between adjacent steps becomes less than 1 × 10−6 hartree or the
maximum component of the step displacement becomes less than 3 × 10−4 bohr.
The maximum gradient value is evaluated in the Cartesian basis. All geometries are
provided in the supporting information.

Nudged elastic band (NEB) [177] calculations are run using the implementation of
the method in the atomic simulation environment (ASE) package [178]. All NEB
calculations use Molpro forces which are provided through a Molpro calculator
interface within the ASE package.

The intramolecular proton transfer ofmalondialdehyde ismodeledwith anNEB con-
sisting of 15 images connected by springs with spring constants of 0.1 eV/Å2. The
CCSD/def2-ASVP,CCSD-in-LDA/def2-ASVPandLDA/def2-ASVPoptimizedNEBs
used the image dependent pair potential (IDPP) method [179] as the initial guess for
the band with reactant and product geometries previously optimized at the corre-
sponding level of theory. All NEB calculations for malondialdehyde are converged
with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update of the Hessian and by
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enforcing that the maximum gradient value is less than 0.01 eV/Å2.

The intramolecular proton transfer of the organometallic cobalt complex is modeled
with an NEB consisted of images connected by springs with spring constants of
9 eV/Å2. The PBE0/cc-pVDZ climbing image NEB [180], consisting of 26 images,
used the IDPP method as the initial guess for the band with the reactant geometry
previously optimized. The CCSD-in-PBE0/cc-pVDZNEB consisting of 23 images,
used its optimized reactant and the climbing image NEB converged at the PBE0/cc-
pVDZ level of theory as its initial guess. Since the product is spatially far away from
the reactant, an intermediate geometry between the transition state and the product
is used as the endpoint of the NEB. This intermediate geometry is determined by
initially converging aNEBwith an extra image such that themaximum force dropped
below 0.3 eV/Å2. Then the second to last image is used as the new endpoint and
a new NEB is converged. The PBE0/cc-pVDZ climbing image NEB is optimized
using the FIRE [181] algorithm using a convergence criteria of 0.05 eV/Å2 for
the maximum gradient value. The projection-basedWF-in-DFT embedding NEB is
optimized at the CCSD-in-PBE0/cc-pVDZ level of theory using the FIRE algorithm
with a convergence criteria of 0.25 eV/Å2 for the maximum gradient value.

The CCSD-in-PBE0/cc-pVDZ calculations used for the NEB optimization are per-
formed by specifying 51 occupiedMOs to be in subsystemA using the N_ORBITALS
option and by using AO truncation with a threshold of 1 × 10−3 a.u. An even-handed
selection of AOs were used along the NEB by creating a union of the AOs that were
selected for each image by the truncation procedure to ensure that the NEB traversed
a smooth potential energy surface. The final, reported energies of the WF-in-DFT
NEB are performed using the PNO-LCCSD/cc-pVDZ [182] and PNO-LCCSD-in-
PBE0/cc-pVDZ levels of theory. Both the PNO-LCCSDandPNO-LCCSD-in-PBE0
calculations are performed with density fitting using the cc-pVTZ/JKFIT [183] (the
def2-TZVPP/JKFIT [184] basis set was used for cobalt since the cc-pVTZ/JKFIT
basis set was not available) and the cc-pVTZ/MP2FIT [185] density fitting basis
sets. Tighter domain approximations were employed for all PNO-LCCSD calcula-
tions by specifying the DOMOPT=TIGHT option. Additionally, the Boughton-Pulay
completeness criterion was used for the selection of the primary projected atomic
orbitals domain by specifying the option THRBP=1 and the Pipek-Mezey localization
method was used. For the PNO-LCCSD-in-PBE0 calculations, AO truncation is not
used, the core and valence DFT molecular orbitals are localized separately using the
Pipek-Mezey localization method, and the subsystem A orbitals are selected using
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the default procedure based on the Mulliken population threshold.

All calculations usingAO truncation [18] ensure that at least oneAO is kept per atom
(specified by option AO_PER_ATOM) to make evaluation of the integral derivative
contributions from the one electron Hamiltonian simpler within Molpro. This
adds a negligible amount of AO functions than would have been selected using
only the density threshold parameter [18] for the systems studied in this chapter.
In all embedding geometry optimizations that employ AO truncation, the number
of truncated AOs is fixed using the STOREAO option to ensure smoothness of the
potential energy function. Upon convergence, the truncated AO list is reevaluated
using the same density threshold parameter; if the number of kept AOs remains a
subset of the original list of truncated AOs then the optimization is converged.

4.4 Results and Discussion
Comparison of Analytical and Numerical Gradients
The implementation of the projection-basedWF-in-DFT analytical gradient is tested
by comparison with the gradient evaluated by numerical finite difference for a
distorted geometry of ethanol. The finite difference gradients are evaluated using
a four-point central difference formula with a base step size of 0.01 bohr. The
mean absolute error (MAE) between the analytical and finite difference gradients
is reported for a range of embedding calculations in Table 4.1. These results show
that the analytical nuclear gradient for projection-based WF-in-DFT embedding
is essentially numerically exact with respect to the gradients calculated by finite
difference. Comparison of the results obtained using HF over the full system
versus using LDA over the full system illustrate that some of the finite difference
error comes from the DFT exchange-correlation grid. Comparison of the HF-in-
HF results with full HF and of the LDA-in-LDA results with full LDA illustrate
the modest effect of using a large-but-finite value for the level-shift operator in
projection based embedding. These results confirm the correct implementation of
projection-based WF-in-DFT analytical nuclear gradients.

Optimized Geometries
Ethanol

As a proof of concept, CCSD-in-LDA/6-31G analytical nuclear gradients are em-
ployed to determine the ground state geometry of ethanol, which is shown in Fig. 4.1.
For this simple case, the O-H moiety is treated by CCSD and the remainder of the
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Table 4.1: Mean absolute error between the analytically and numerically determined
embedding nuclear gradient for a distorted geometry of ethanol. The basis set 6-31G
is used for all calculations. The distorted geometry of ethanol is provided in the
supporting information.

Method MAE (hartree/bohr)
HF 5.00 × 10−9

HF-in-HF 4.61 × 10−8

LDA 1.48 × 10−8

LDA-in-LDA 7.23 × 10−8

HF-in-LDA 5.24 × 10−8

MP2-in-LDA 5.37 × 10−8

CCSD-in-LDA 5.36 × 10−8

CCSD(T)-in-LDA 5.26 × 10−8

CCSD-in-LDA (AO)a 3.48 × 10−8

CCSD(T)-in-LDA (AO)a 3.40 × 10−8

CCSD(T)-in-PBE0 5.26 × 10−8

CCSD(T)-in-PBE0 (AO)a 1.12 × 10−7
aCalculations were performed with AO truncation with a density threshold of

1 × 10−1a.u.

C1

OH

C2

Figure 4.1: Optimized geometry of ethanol using projection-based CCSD-in-LDA/6-31G. The
solid atoms (O and H) are in subsystem A and the transparent atoms are in subsystem B.

molecule is treated by LDA. Table 4.2 shows that the O-H bond length within sub-
system A reproduces the CCSD predicted bond length of 0.979 Å and the remaining
bondswithin subsystemB reproduce the LDApredicted bond lengths. This indicates
that the potential energy surface produced by projection-based embedding varies
smoothly from CCSD-like interactions for subsystem A and LDA-like interactions
for subsystem B. Interestingly, the C-O bond located at the boundary between sub-
systems A and B closely reproduces the LDA bond length and is not an interpolation
between the CCSD and LDA bond lengths.
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Table 4.2: Selected bond lengths and angles for ethanol (pictured in Fig.4.1) opti-
mized at different levels of theory. Bond lengths are reported in units of Angstroms
and angles are reported in units of degrees.

Method r(O-H) ∠C1OH r(C1-C2) r(C1-O)
LDA/6-31G 0.988 110.4 1.503 1.439
CCSD-in-LDA/6-31G 0.979 110.7 1.506 1.435
CCSD/6-31G 0.979 110.6 1.532 1.475

(a) (b)

O1

N1

O2

N2N3

N4

N5

C1

C2C3

Figure 4.2: (a) The optimized geometry of the cobalt-based organometallic complex performed
with projection-based CCSD-in-LDAX/def2-TZVPP:def2-SVPwith AO truncation. The solid atoms
(Co, N1, N2, N3, N4, N5, and C1) are included in subsystem A and the transparent atoms are included
in subsystem B. (b) The LDAX/def2-TZVPP:def2-SVP optimized geometry (transparent) and the
projection-based CCSD-in-LDAX/def2-TZVPP:def2-SVP with AO truncation optimized geometry
(solid).

Cobalt-based Organometallic Complex

As a demonstration of embedding gradients with AO truncation, the geometry of
the cobalt-based organometallic complex, shown in Fig. 4.2, is optimized. Fig. 4.2a
shows theCCSD-in-LDAX/def2-TZVPP:def2-SVPoptimized structure of the cobalt
complex where the solid atoms are included in subsystem A and the transparent
atoms are included in subsystem B. In Fig. 4.2b the optimized structures evalu-
ated at the CCSD-in-LDAX/def2-TZVPP:def2-SVP (solid) and the LDAX/def2-
TZVPP:def2-SVP (transparent) levels of theory are overlaid. While only modest
differences are seen in the overall structure, Table 4.3 shows that the optimized
bond lengths do change between the two levels of theory, both for the region within
subsystem A and at the subsystem boundary. This indicates that the WF method is
capable of relaxing the atoms in subsystem A even when they are strongly coordi-
nated with subsystem B. It is also seen that the bond lengths across the boundary
of subsystems A and B also differ from the LDAX geometry since the bonds in
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Table 4.3: Selected bond lengths for the organometallic complex pictured in Fig.4.2
optimized at different levels of theory and their absolute difference (|∆|). Bond
lengths are reported in units of angstroms.

LDAX CCSD-in-LDAX |∆|

Su
b
A

r(Co-N1) 1.836 1.846 0.010
r(Co-N2) 1.893 1.883 0.010
r(Co-N3) 1.932 1.951 0.019
r(Co-N4) 1.900 1.926 0.026
r(Co-N5) 1.978 2.026 0.048

B
ou

nd
ar
y

r(N5-O1) 1.317 1.355 0.038
r(N5-O2) 1.262 1.301 0.039
r(C1-N5) 1.131 1.150 0.019
r(N2-C2) 1.430 1.458 0.028
r(N3-C3) 1.428 1.458 0.030

Su
b
B

r(O1-H) 1.025 1.030 0.005

question experience the effects of both the WF and KS methods. Finally, if a bond
length associated with atoms in subsystem B is considered, such as the O1-H bond,
it is found to closely match the LDAX predicted bond length.

Malondialdehyde: Minimum Energy Reaction Pathway
The minimum energy reaction pathway for the proton transfer in malondialdehyde
is determined using the NEB method. Fig. 4.3 shows that with minimal embedding
(Fig. 4.3a) the CCSD-in-LDA/def2-ASVP reaction barrier, shown in Fig. 4.3b, is
4.85 kcal/mol which is within 1.5 kcal/mol of the CCSD/def2-ASVP reference reac-
tion barrier of 6.12 kcal/mol. This is a vast improvement over the LDA/def2-ASVP
result, which predicts an essentially barrierless reaction. In addition to correctly
predicting the reaction barrier, Fig. 4.3c shows that the CCSD-in-LDA/def2-ASVP
reaction pathway lies precisely on top of the CCSD/def2-ASVP pathway with only a
small deviation in the basins. In contrast, Fig. 4.3d shows that the LDA/def2-ASVP
reaction pathway and potential energy surface reveal errors in the location of the
reactant and product basins, with the hydrogen-bond length vastly underestimated.
This is consistent with the tendency of LDA to over stabilize hydrogen bonds.

Cobalt-based Organometallic Complex: Minimum Energy Reaction Pathway
The minimum energy reaction pathway for the intramolecular proton transfer in
a cobalt diimine-dioxime catalyst (Fig. 4.4a) is now investigated. Previously, the
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Figure 4.3: (a) The ground state geometry of malondialdehyde evaluated at the CCSD-in-
LDA/def2-ASVP level of theory. The solid atoms are included in subsystem A and the transparent
atoms are included in subsystem B. (b) The reaction barrier heights for the minimum energy re-
action pathways for LDA/def2-ASVP, CCSD-in-LDA/def2-ASVP and CCSD/def2-ASVP. (c), (d)
Also shown are the minimum energy reaction pathways of the proton transfer in malondialdehyde
as a function of the distance of the proton from the oxygen atoms, O1 on the x-axis, O2 on the
y-axis for the CCSD-in-LDA/def2-ASVP and CCSD/def2-ASVP levels of theory, (c), and for the
LDA/def2-ASVP level of theory, (d).

reaction pathway for the transfer of the [-NH] to form a cobalt hydride had been
investigated using geometries obtained using DFT [20]. Fig. 4.4b shows the energy
profile for this reaction determined by various levels of theory. We observe that the
reaction pathway determined by the NEB optimized at the PBE0/cc-pVDZ level of
theory (purple curve) predicts a barrier height of 5.45 kcal/mol. However, when
single-point PNO-LCCSD-in-PBE0/cc-pVDZ embedding energy calculations are
run on the PBE0 optimized geometries (blue curve), the barrier height is lowered to
3.35 kcal/mol and the position of the transition state is shifted towards the reactant.
The NEB optimized at the CCSD-in-PBE0/cc-pVDZ embedding level of theory
(red curve) shows an even lower barrier height of 2.61 kcal/mol and predicts a
substantially different transition state geometry (Fig. 4.4c) than the DFT result. The
difference between the transition states predicted by the PBE0/cc-pVDZ and PNO-
LCCSD-in-PBE0/cc-pVDZ levels of theory is clearly seen in Fig. 4.4d, which shows
the projection of the NEB onto the two dimensions of the Co-H and N-H bonds
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PBE0

PNO-LCCSD-in-PBE0

PBE0

PNO-LCCSD-in-PBE0

PNO-LCCSD

PNO-LCCSD-in-PBE0 (PBE0 geom)

PBE0 Transition State

PNO-LCCSD-in-PBE0 
Transition State

Reactants

Products

Figure 4.4: All calculations used the cc-pVDZ basis set. (a) The optimized geometry for a cobalt-
based organometallic complex calculated at the CCSD-in-PBE0 level of theory with AO truncation.
The solid atoms are included in subsystem A while the transparent atoms are in subsystem B. (b)
The minimum energy reaction pathway for PBE0, the reaction pathway for PNO-LCCSD-in-PBE0
using the PBE0 geometries, the reaction pathway for PNO-LCCSD-in-PBE0 using CCSD-in-PBE0
geometries, and the reaction pathway for PNO-LCCSD using the CCSD-in-PBE0 geometries. The
x-axis is a coordinate constructed by taking a normalized mass-weighted RMSD of all images along
the pathway with respect to the respective reactant and product. In comparing the purple and blue
curves versus the orange and red curves, note that the transition state position in these normalized
coordinates is affected by changes in the geometries of the reactant and product. (c) A zoomed-in
picture of the transition state geometries predicted by PBE0 (opaque atoms) and PNO-LCCSD-in-
PBE0 (transparent atoms) levels of theory. The proton placement between the nitrogen and cobalt
center at the PNO-LCCSD-in-PBE0 level of theory is highlighted in red. (d) The minimum energy
reaction pathways of the proton transfer for PNO-LCCSD-in-PBE0 and PBE0 as a function of the
distance of the proton from the cobalt atom on the x-axis, and the nitrogen atom on the y-axis. The
placement of the transition states are highlighted for each level of theory.

and with the position of the transition state geometry indicated with stars. This
result clearly shows the large degree to which commonly employed DFT transition
state geometries can differ from the CCSD-quality result that is obtained using
projection-based embedding.

4.5 Conclusions
We present the derivation and numerical demonstration of analytical nuclear gra-
dients for projection-based embedding both with and without AO truncation. A
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key aspect of the gradient theory is that the WF contributions can be evaluated
using existing WF gradient implementations without the need for modification or
additional programming, thereby allowing projection-basedWF-in-DFT embedding
gradients to be easily generalized to any combination of WF and KS-DFT methods.
It is demonstrated that projection-based embedding gradients produce accurate ge-
ometries for a variety of benchmark systems, including for bond-lengths that span
the interface between subsystems. Furthermore, in applications to both malondi-
aldehyde and a transition-metal catalyst, WF-in-DFT minimum energy pathways
obtained via the NEB method reveal large errors in DFT-computed transition-state
energies and geometries. Finally, we note that the Lagrangian framework pre-
sented here can be used to derive other analytical gradients of the projection-based
WF-in-DFT energy with respect to quantities such as electric and magnetic fields.

4.6 Supporting Information
All geometries used in all tables and figures are provided in the supporting informa-
tion of Ref. 28.

4.7 Appendix
Pipek-Mezey Localization
Equation 4.14 from the main text(

a
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] )
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(4.36)

corresponds to the derivative of the localization conditions, Eq. 4.7, with respect to
C, where

Bpi,kl =
∑

C

[(
2SC

pkδki − 2SC
plδli

)
SC

kl +
(
SC

kk − SC
ll

) (
SC

plδki + SC
pkδli

)]
. (4.37)

Next, the overlap derivative contribution from the localization conditions from
Eq. 4.34 is ∑

i> j

∂ri j

∂Sµν
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,
(4.38)

where Pi j permutes the indices i and j, and µ is restricted to atomic orbitals on atom
C.
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Orbital Derivatives of Projection-based WF-in-DFT Embedding Energy
This appendix provides additional details for the terms in Eqs. 4.13 and 4.15 of the
main text. The derivative of the projection-based WF-in-DFT embedding energy
and the WF constraints with respect to the MO coefficients shown in Eq. 4.13 is

Epq =
∑
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∂EWF-in-DFT

[
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rel − γ

A
) ∂vemb

∂Cµ,q

]
+ µtr

[
∂d̃A

rel
∂Cµ,q

PB

]
+ µtr

[
d̃A
rel
∂PB

∂Cµ,q

])
,

(4.39)

where the partial derivative of the WF constraints causes the appearance of the WF
relaxed density, d̃A

rel, in the last four terms on the RHS of Eq. 4.39. Equation 4.39
simplifies to

Epq = 4
(
F
[
γA + γB] )

pq

���
q∈occ

− 4
(
F
[
γA] )

pq

���
q∈A
− 4(vemb)pq

���
q∈A

+ 4
(
M

[
d̃A
rel − γ

A] )
pq
,

(4.40)

where q ∈ occ indicates that the index q is restricted to LMOs, q ∈ A indicates that
q is restricted to LMOs in subsystem A, and F is the KS Fock matrix evaluated with
the bracketed density. The last term on the RHS of Eq. 4.40

(M[γ])pq =
1
4

∑
µ

Cµ,p

(
tr

[
γ
∂vemb

[
γA,γB]

∂Cµ,q

]
+ µtr

[
γ
∂PB

∂Cµ,q

])
, (4.41)

simplifies to

(M[γ])pq =
∑
µν

Cµ,p

∑
λσ

γλσ

(
(µν |λσ) − 1

2 x f (µλ |νσ)
)
Lν,q

���
q∈B

+ µ
(
C†P[γ]L

)
pq

���
q∈B
+

(
ṽxc

[
γA + γB,γ

] )
pq

���
q∈occ

+
(
ṽxc

[
γA,γ

] )
pq

���
q∈A

,

(4.42)

where
P[γ] = SγS. (4.43)

In the current study, we employ both LDA and GGA exchange-correlation function-
als; for the special case of LDA, the term ṽxc

[
γA + γB,γ

]
assumes the form(

ṽxc
[
γA + γB,γ

] )
pq
=

∑
mn

(
pq | fxc

[
γA + γB] |mn

)
γmn, (4.44)
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where fxc is the XC kernel which is defined as the second derivative of the XC
functional with respect to density.

The derivative of the Brillouin conditions in Eq. 4.15 can be expanded as follows.

(D[z])pq =
∑
ak

Dpq,ak zak

=
∑
ak

zak

[(
F
[
γA + γB] )

pk
δaq +

(
F
[
γA + γB] )

ap
δkq

+ 2
∑

l

δql

(
2(ak |pl) − 1

2 x f (ap|kl) − 1
2 x f (al |kp)

)
+

∑
µλσ

Cµ,pCλ,a
∂
(
vxc

[
γA + γB] )

λσ

∂Cµ,q
Lσ,k

]
=

(
F
[
γA + γB]z

)
pq

���
q∈occ

+
(
F
[
γA + γB]z†

)
pq

���
q∈vir

+ 2(V[z̄])pq

���
q∈occ

,

(4.45)

where z̄ = z + z† and V[z̄] is defined as

(V[z̄])pq

���
q∈occ

=
∑
mn

z̄mn

(
(mn|pq) − 1

2 x f (mp|nq)
)���

q∈occ

+
(
ṽxc

[
γA + γB, z̄

] )
pq

���
q∈occ

.
(4.46)

Atomic Orbital Truncation
Projection-based WF-in-DFT embedding reduces the cost of the WF calculation
on subsystem A by reducing the number of LMOs that are correlated at the WF
level, but thus far leaves the virtual space untouched. However, the scaling of most
WF methods is dominated by the number of virtual MOs (e.g. O(v4) for CCSD).
One strategy has been to employ local correlation WF methods such as PNO-LMP2
[186] and PNO-LCCSD [187, 188] to describe subsystem A since these methods
are able to leverage the reduced number of LMOs to significantly lower the number
of occupied-virtual orbital pairs that need to be included, resulting in a cheap and
accurate WF calculation. However, a real advantage of projection-based embedding
hinges on being able to use any WF method to describe subsystem A. Therefore,
having a more general approach to reduce the cost of the WF calculation on the
subsystem A is desirable.

The AO truncation scheme devised by Bennie et al. [18] provides a simple way
to significantly reduce the cost of the WF calculation by reducing the size of the
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basis used to describe subsystem A. The AOs that are discarded are selected through
a single density threshold parameter: if the net Mulliken population, computed
using the subsystem A density, of an AO is less than the specified threshold, it
is removed from the basis set. This scheme has shown to greatly speedup up
WF-in-DFT calculations at a small cost in accuracy in total and relative energies
[18]. Additionally, it has the nice feature that given a fixed subsystem A, the
size of the truncated subsystem A basis scales asymptotically as the size of the
environment grows. This basis set modification does not cause any complications in
the evaluation of the subsystem A WF gradient so existing implementations can be
used without any modifications. The energy expression for a projection-based WF-
in-DFT calculation with AO truncation using the so-called type-in-type correction
[18] is

E trun
WF-in-DFT

[
Ψ̃

A,trun; γ̄A,trun;γA,γB] = EWF
[
Ψ̃

A,trun]
− E trun

DFT
[
γ̄A,trun] + EDFT

[
γA + γB]

+ tr
[(

d̃A,trun − γ̄A,trun
)
vtrunemb

[
γA,γB] ]

+ tr
[(

d̃A,trun − γ̄A,trun
)
PB,trun

]
,

(4.47)

where Ψ̃A,trun is the subsystem A WF in the truncated basis, γ̄A,trun is the KS
subsystem A one-particle density in the truncated basis, γA and γB are the KS
subsystem A and B one-particle densities in the full basis respectively, d̃A,trun is
the subsystem A one-particle reduced density matrix that corresponds to Ψ̃A,trun,
vtrunemb

[
γA,γB] is the embedding potential in the truncated basis which is evaluated

by
vtrunemb

[
γA,γB] = P†t vemb

[
γA,γB] Pt, (4.48)

and PB,trun is the projection operator in the truncated basis which is evaluated by

PB,trun = P†t PBPt. (4.49)

Here, Pt is the rectangular matrix that maps the full basis to the truncated basis which
is created by starting with identity matrix and deleting columns corresponding to
thrown away AO functions. We note that the even though the notation for Eq. 4.47
is different from the one used in Ref. 18 the approach is identical.
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Projection-based WF-in-DFT Gradient Theory with AO Truncation
Total Energy Lagrangian

We now derive the total energy Lagrangian for for projection-based WF-in-DFT
embedding with AO truncation. The WF-in-DFT AO truncation Lagrangian is

L =E trun
WF-in-DFT

[
Ψ̃

A,trun; γ̄A,trun;γA,γB] +∑
s

Λ
WF,A
s cs

−
∑
i j∈Ā

ε̄Ai j

[
C̄A†SC̄A − 1

]
i j +

∑
pq

xpq
[
C†SC − 1

]
pq +

∑
i> j

zloci j ri j

+
∑

ai

zai

(
F
[
γA + γB] )

ai
,

(4.50)

where the bar superscript refers to subsystem A quantities optimized by the KS
functional in the truncated basis. The constraints that appear in Eq. 4.50 are all the
same as those that appear in Eq. 4.6 from the main text, except for the third term on
the RHS of Eq. 4.50. This term constrains the MOs, C̄A, to be orthogonal.

Minimizing the Lagrangian with respect to the variational parameters of the
WF method – Ψ̃A,trun.

Minimizing the WF-in-DFT AO truncation Lagrangian with respect to Ψ̃A,trun sim-
plifies to the minimization of the subsystem A WF energy and the WF constraints
(as explained in section 4.2), which corresponds to the conventional WF Lagrangian
used to derive WF gradient theories, albeit in the truncated basis.

Minimizing the Lagrangian with respect to the MO coefficients, C̄A.

The minimization of the Lagrangian with respect to the optimized KS MO coeffi-
cients in the truncated basis, C̄A, results in the SCF equations using the embedded
Fock matrix. ∑

µ

C̄A
µ,i

(
∂E trun

DFT[γ̄
A,trun]

∂C̄A
µ, j

+
∂tr

[
γ̄A,trunvtrunemb

[
γA,γB] ]

∂C̄A
µ, j

+ µ
∂tr

[
γ̄A,trunPB,trun]
∂C̄A

µ, j

)
=

∑
µ

C̄A
µ,i

∑
kl∈Ā

ε̄Akl

∂S̄A
kl

∂C̄A
µ, j

(4.51)

∑
µν

C̄A
µ,i

((
F
[
γ̄A,trun] )

µν
+

(
vtrunemb

[
γA,γB] )

µν

+ µ
[
PB,trun]

µν

)
C̄A
ν, j =

1
2
ε̄Ai j

���
i j∈A

(4.52)
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FA [

γ̄A,trun] )
i j

���
i j∈A
=

1
2
ε̄Ai j

���
i j∈A

. (4.53)

Therefore, the Lagrange multipliers 1
2 ε̄

A are simply the MO eigen energies of the
KS optimized subsystem A MOs in the truncated basis.

Minimize the Lagrangian with respect to the MO coefficients, C.

The minimization of the Lagrangian with respect to the KS MO coefficients in the
full basis, C, is∑

µ

Cµ,p
∂L
∂Cµ,q

= Epq +
(
a
[
zloc

] )
pi
+ (D[z])pq + 2xpq = 0, (4.54)

where only the matrix E differs from the ones outlined in Eqns. 4.13-4.16.

Epq = 4
(
F
[
γA + γB] )

pq

���
q∈occ

+ 4
(
M

[
Pt

(
d̃A,trun
rel − γ̄A,trun

)
P†t

] )
pq
. (4.55)

With the updated E matrix, the Lagrangian multipliers are solved in the same way
as outlined for the WF-in-DFT Lagrangian multipliers.

Gradient of the Total Energy

Once the Lagrangian is minimized with respect to all variational parameters, the
gradient of the energy with respect to nuclear coordinate, q, takes the form

E trun,(q)
WF-in-DFT = E trun,q

WF
[
Ψ̃

A,trun] − E trun,q
DFT

[
γ̄A,trun]

+ tr
[
dah(q)

]
+ tr

[
XS(q)

]
+

1
2

∑
µνλσ

Dµνλσ(µν |λσ)(q)

+ E (q)xc
[
γA + γB] + tr[dc

(
v(q)xc

[
γA + γB] − v(q)xc

[
γA] )]

,

(4.56)

where the first two terms on the RHS of Eq. 4.56, E trun,q
WF and E trun,q

DFT , are the total
derivative of the truncated subsystem A WF and KS energy respectively, minus
the embedding contribution, vtrun,(q)emb . These two terms are calculated using existing
gradient implementations, whereas the embedding contribution has been folded into
the remaining terms. The effective one-particle densities da, db and dc are

da = γA + γB + CzC†, (4.57)

db = γA + γB + 2CzC† + 2dc, (4.58)

and

dc = Pt

(
d̃A,trun
rel − γ̄A,trun

)
P†t . (4.59)
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The effective two-particle density D is

Dµνλσ =
(
γA + γB

)
µν
(db)λσ − 2γAµν(dc)λσ

− 1
2

x f

((
γA + γB

)
µλ
(db)νσ − 2γAµλ(dc)νσ

)
.

(4.60)

The matrix X is

X = Xloc − 1
2

L
(
E + 2V[z̄]

)
L† − 1

2

(
Cv(zF)L† +

(
Cv(zF)L†

)†)
+ µ

(
dcSγB + γBSdc

)
,

(4.61)

where (
Xloc

)
µν
= −1

2

(
La

[
zloc

]
L†

)
µν
+

∑
i> j

∂ri j

∂Sµν
zloci j . (4.62)
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C h a p t e r 5

ANALYTICAL GRADIENTS FOR
MOLECULAR-ORBITAL-BASED MACHINE LEARNING

Adapted from:

1S. J. R. Lee, T. Husch, F. Ding, and T. F. Miller III, “Analytical gradients for
molecular-orbital-based machine learning”, in preparation (2020).

Molecular-orbital-based machine learning (MOB-ML) enables the prediction of
accurate correlation energies at the cost of obtaining molecular orbitals. Here,
we present the derivation, implementation, and numerical demonstration of MOB-
ML analytical nuclear gradients which are formulated in a general Lagrangian
framework to enforce orthogonality, localization, and Brillouin constraints on the
molecular orbitals. The MOB-ML gradient framework is general with respect to
the regression technique (e.g., Gaussian process regression or neural networks) and
the MOB feature design. We show that MOB-ML gradients are highly accurate
compared to other ML methods on the ISO17 data set while only being trained on
energies for hundreds of molecules compared to energies and gradients for hundreds
of thousands of molecules for the other ML methods. The MOB-ML gradients are
shown to yield high-quality optimized structures, at a computational cost for the
gradient evaluation that is comparable to Hartree-Fock theory or hybrid DFT.



65

5.1 Introduction
This chapter focuses on the development of analytical nuclear gradients for the
molecular-orbital-based machine learning (MOB-ML) method [70–72]. MOB-ML
relies on information of local molecular orbitals to predict the pair-wise sum of a
post-Hartree–Fock correlation energy at drastically reduced cost. However, taking
the derivative of the MOB-ML energy is similarly as challenging as taking the
derivative for non-canonical wave function-based correlation methods due to the
complexity arising from the invoked local approximations and the non-variational
nature inherent to MOB-ML. There exists only a handful of local wave function-
based correlation methods for which this effort has been performed [160, 189]. In
this work, we establish a general Lagrangian framework to obtain the analytical
nuclear gradients of a MOB-ML energy. The framework enforces orthogonality,
localization, and Brillouin constraints on the molecular orbitals (section 5.2). A
noteworthy aspect of this framework is that it allows taking the gradient of the
MOB-ML energy irrespective of which energy method MOB-ML was trained to
predict. Consequently, we are able to take the gradient of aMOB-MLmethod trained
to predict an accuratewave function theory forwhich gradients have not been derived
(yet) without any modification of the framework. Furthermore, the computational
cost of evaluating a MOB-ML gradient is comparable to the one of evaluating a
Hartree–Fock (HF) gradient, or equivalently, a hybrid density functional theory
(DFT) gradient, making it orders of magnitude faster than evaluating the gradients
of ab initio wave function theories. We will numerically validate the gradient
theory by comparison to energy finite difference in section 5.4. After assuring the
correctness of our gradient theory, we compare the MOB-ML gradients to the ones
obtained by the reference theories MOB-ML was trained on. Specifically, we will
show that we obtain accurate and systematically improvable gradients for potential
energy surfaces of single molecules and for diverse sets of molecules (section 5.4).
The comparison to other standard ML methods on the example of the ISO17 data
set highlights the data efficiency and high transferability of MOB-ML regarding
nuclear gradients.

5.2 MOB-ML Analytical Nuclear Gradients
MOB-ML Energy Theory
MOB-ML relies on molecular orbital information from a HF calculation to predict
a wave function correlation energy. The working equation for the MOB-ML energy
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is [70–72]
EMOB-ML[f] = Ecorr[f] + EHF, (5.1)

where EHF is the HF energy, and Ecorr[f] is the machine-learned correlation energy,

Ecorr[f] =
∑

i

εii[fi] + 2
∑
i> j

εi j
[
fi j

]
. (5.2)

Thematrix of feature vectors, f, is divided into two sub-classes. The first sub-class is
made up by the diagonal components of f, fi, which represent the valence-occupied
orbital i. The second sub-class is made up by the off-diagonal components of f, fi j ,
which represent the interaction between the valence-occupied orbitals i and j. Both
diagonal and off-diagonal feature vectors are composed of elements from the HF
Fock matrix in the MO basis, F, and the MO repulsion integrals, κ , where

[κ pq]mn = (pq |mn) =
∑
µνκσ

CµpCνqCκmCσn(µν |κσ). (5.3)

Here, (µν |κσ) are the four-center atomic orbital integrals with µ, ν, κ, and σ

representing atomic orbital indices. We restrict the MO indices of F and κ to the
valence-occupied and valence-virtual MOs and we only include 2-center Coulomb-
and exchange-type MO integrals, [κ pp]qq and [κ pq]pq respectively. The feature
vectors are further processed following the procedure outlined in Ref. 190.

MOB-ML Gradient Theory
Lagrangian framework

MOB-ML is a non-variational theory which allows us to derive its analytical nuclear
gradient within a Lagrangian framework,

dEMOB-ML

dq
=

dL
dq
=
∂L
∂q
+
∂L
∂C

∂C
∂q

=
∂L
∂q

,
(5.4)

where q refers to nuclear coordinate. The calculation of the nuclear response of the
HF MOs, ∂C/∂q, is avoided because the Lagrangian L is minimized with respect
to all of its variational parameters which are the MO coefficients, C. The MOB-ML
energy Lagrangian is

L
[
C, x, z, zcore, zval-occ, zval-vir, λ

]
= EMOB-ML[f] +

∑
pq

xpq

(
C†SC − I

)
pq

+
∑

ai

zaiFai

���
i∈occ,a∈vir

+
∑

ri

zcoreri Fri +
∑
i> j

zval-occi j ri j +
∑
ab

zval-virab rab

+
∑
wa

λwaPwa,

(5.5)
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where x, z, zcore, zval-occ, zval-vir, and λ are the Lagrange multipliers. We refer to the
core MOs with column indices r, s, to the valence-occupied localized MOs (LMOs)
with column indices i, j, k, l, to the valence-virtual LMOs with column indices a, b,
and to the non-valence-virtual MOs with column indices w, x. The indices m, n, p, q

are used to index generic molecular orbitals. The first term on the right hand side
(RHS) of Eq. 5.5 is the MOB-ML energy described by Eq. 5.1. The second term
on the RHS constrains the HF MOs, C, to be orthonormal, which is commonly
referred to as the Pulay force [158]. The third term on the RHS is known as the
Brillouin conditions, which account for the dependence of the correlation energy on
the HF optimized molecular orbitals. The frozen-core conditions, Fri = 0, account
for neglecting the correlation energy contributions from the core orbitals. The
localization conditions, ri j = 0 and rab = 0, account for how the valence-occupied
and valence-virtual MOs are localized respectively. In this work, we employ Foster-
Boys localization [159] and intrinsic bond orbitals (IBO) localization [130], but it
is straightforward to generalize to other localization methods. The valence virtual
conditions, Pwa = 0, reflect how the valence virtual MOs are obtained through a
unitary transformation of the virtual MOs. This unitary transformation corresponds
to the column space of a projection matrix formed by projecting the virtual MOs
onto the IAOs. The complementary null space of this projection matrix corresponds
to the non valence-virtual orbitals. This projection matrix is defined as

P = CIAO,†
vir CIAO

vir , (5.6)

where
CIAO
vir = XIAO,†

occ S1Cvir, (5.7)

and where Cvir is the virtual MO coefficient matrix. The matrix XIAO transforms
between the original AO and IAO basis sets and is expanded in Appendix 5.7. All
together, this yields the following analytical nuclear gradient,

dEMOB-ML

dq
= E (q)ML + E (q)HF +

∑
pq

xpq

(
C†S(q)C

)
pq
+

∑
ai

zaiF
(q)
ai

���
a∈vir,i∈occ

+
∑

ri

zcoreri F(q)ri +
∑
i> j

zval-occi j r (q)i j +
∑
ab

zval-virab r (q)ab

+
∑
wa

λwaP(q)wa ,

(5.8)

where the superscript (q) denotes the explicit derivative of the quantity with respect
to a nuclear coordinate. Eq. 5.8 is the general MOB-ML analytical nuclear gradient
and wewill now outline how to determine the Lagrangemultipliers for our particular
use case to arrive at a final working equation.
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Minimizing the Lagrangian with respect to MO coefficients

All of the Lagrange multipliers (x, z, zcore, zval-occ, zval-vir and λ) are determined
by minimizing the MOB-ML Lagrangian with respect to its variational parameters,
which are the MO coefficients, C. Differentiating the Lagrangian with respect to
these parameters yields∑

µ

Cµp
∂L
∂Cµq

= Epq + 2xpq + (D[z])pq + (D[zcore])pq +
(
a
[
zval-occ

] )
pq

+
(
a
[
zval-vir

] )
pq
+ (D[λ])pq = 0,

(5.9)

where

Epq =
∑
µ

Cµp
∂(Ecorr[f] + EHF)

∂Cµq

= 4Fpq

���
q∈occ

+
(
FD̄F

)
pq

���
q∈loc
+ 2

(
g
[
CD̄FC†

] )
pq

���
q∈occ

+ 2
∑

m

[κ pq]mm

(
DJ

qm + DJ
mq

)���
mq∈loc

+ 2
∑

m

[κ pm]qm

(
DK

qm + DK
mq

)���
mq∈loc

+
∑
nm

Rn
pm

(
DR,n

qm + DR,n
mq

)���
mq∈val-occ

,

(5.10)

(D[z])pq =
∑
µ

Cµp

(∑
ai

zai
∂Fai

∂Cµq

)���
i∈occ,a∈vir

= (Fz)pq

���
q∈occ

+
(
Fz†

)
pq

���
q∈vir
+ 2(g[z̄])pq

���
q∈occ

,

(5.11)

(D[zcore])pq =
∑
µ

Cµp

(∑
rk

zcorerk
∂Frk

∂Cµq

)
= (Fzcore)pq

���
q∈val-occ

+
(
Fzcore,†

)
pq

���
q∈core

+ 2(g[z̄core])pq

���
q∈occ

,

(5.12)

(
a
[
zval-occ

] )
pq
=

∑
µ

Cµp

(∑
i> j

zloci j
∂ri j

∂Cµq

)
, (5.13)

(
a
[
zval-vir

] )
pq
=

∑
µ

Cµp

(∑
a>b

zvirab
∂rab

∂Cµq

)
, (5.14)

and

(D[λ])pq =
∑
µ

Cµp

(∑
wa

λwa
∂Pwa

∂Cµq

)
= (Pλ)pq

���
q∈non-val-vir

. (5.15)
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Eqs. 5.13 and 5.14 are expanded in Appendices 5.7 and 5.7, respectively, F is the
HF Fock matrix, g includes all of the usual HF two-electron terms, Rn is expanded
in Appendix 5.7, the condition q ∈ loc restricts the sum to valence-occupied and
valence-virtual MOs, z̄ = z + z†, z̄core = zcore + zcore,†, and D̄F = DF + DF,†. The
matrices DF, DJ, and DK are calculated by

DM
pq =

∑
i

∂εii[fi]
∂fi

∂fi

∂Mpq

���
pq∈loc

+ 2
∑
i> j

∂εi j
[
fi j

]
∂fi j

∂fi j

∂Mpq

���
pq∈loc

, (5.16)

where Mpq refers to Fpq, [κ pp]qq and [κ pq]pq, respectively. The matrix DR,n is

DR,n
pq = 2

∑
i> j

∂εi j
[
fi j

]
∂fi j

∂fi j

∂Rn
pq

���
pq∈val-occ

. (5.17)

The partial derivatives ∂εii[fi]
∂fi and ∂εi j[fi j]

∂fi j on the RHS of Eqns. 5.16 and 5.17 are the
derivatives of the machine learning prediction with respect to the feature vectors.

We want to highlight that any machine learning method (e.g. Gaussian process,
regression clustering, neural net, etc.) that has this feature vector derivative of its
prediction can be readily used in this gradient framework without any modifications
to the framework itself. Furthermore, we want to emphasize that the following
analytical nuclear gradient derivation generalizes to any type of feature vector design
and construction as long as the feature elements are obtained from F and κ . The
partial derivatives ∂fi

∂Mpq
, ∂fi j
∂Mpq

and ∂fi j
∂Rn

pq
are expanded in Appendix 5.7.

We now proceed to solve for each of the Lagrange multipliers. First, combining
the stationary conditions described by Eq. 5.9 with the auxiliary conditions x = x†

yields the linear Z-vector equations(
1 − Ppq

)
(E + D[z] + D[zcore] + a

[
zval-occ

]
+ a

[
zval-vir

]
+ D[λ])pq = 0, (5.18)

where Ppq permutes the indices p and q, which is used to solve for z, zcore, zval-occ,
zval-vir and λ. The matrix x is then obtained as

xpq = −1
4
(
1 + Ppq

) (
E + D[z] + D[zcore] + a

[
zval-occ

]
+ a

[
zval-vir

]
+ D[λ]

)
pq.

(5.19)

We show that the Lagrangemultipliers zval-occ are solved by considering the (valence-
occupied)-(valence-occupied) part of Eq. 5.18, yielding(

1 − Pi j
)
(E + D[z] + D[zcore] + a

[
zval-occ

]
+ a

[
zval-vir

]
+ D[λ])i j = 0. (5.20)
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Eq. 5.20 can be further simplified by showing that(
1 − Pi j

)
(D[z])i j = 0,(

1 − Pi j
)
(D[zcore])i j = 0,(

1 − Pi j
) (

a
[
zval-vir

] )
i j
= 0,(

1 − Pi j
)
(D[λ])i j = 0.

(5.21)

As a result, zval-occ is independent of all other Lagrange multipliers, which simplifies
Eq. 5.20 to

Ei j − E ji +
∑
k>l

(
Bi j kl − B jikl

)
zval-occkl = 0, (5.22)

where the 4-dimensional tensor B is expanded in Appendix 5.7. The set of linear
system of equations defined by Eq. 5.22 are the Z-vector coupled perturbed localiza-
tion (Z-CPL) equations which are used to solve for zval-occ. Subsequently, Eq. 5.13
can be used to compute a

[
zval-occ

]
.

Next we show that the Lagrange multipliers zcore are solved by considering the
core-(valence-occupied) part of Eq. 5.18, yielding

(1 − Pri)(E + D[z] + D[zcore] + a
[
zval-occ

]
+ a

[
zval-vir

]
+ D[λ])ri = 0, (5.23)

which further simplifies to

Eri − Eir +
(
a
[
zval-occ

] )
ri
+ (Fzcore − zcoreF)ri = 0. (5.24)

These are the Z-vector equations used to solve for zcore. Subsequently, Eq. 5.12 can
be used to calculate D[zcore].

Next we show that the Lagrange multipliers zval-vir are solved by considering the
(valence-virtual)-(valence-virtual) part of Eq. 5.18 yielding

(1 − Pab)(E + D[z] + D[zcore] + a
[
zval-occ

]
+ a

[
zval-vir

]
+ D[λ])ab = 0, (5.25)

which further simplifies to

Eab − Eba +
∑
c>d

Cabcd zval-vircd = 0, (5.26)

where the 4-dimensional tensor C is expanded in Appendix 5.7. These are the
Z-CPL equations which are used to solve for zval-vir. Subsequently, Eq. 5.14 can be
used to compute a

[
zval-vir

]
.
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Next we show that the Lagrange multipliers λ are solved by considering the (non
valence-virtual)-(valence-virtual) part of Eq. 5.18, yielding

(1 − Pwa)(E + D[z] + D[zcore] + a
[
zval-occ

]
+ a

[
zval-vir

]
+ D[λ])wa = 0, (5.27)

which further simplifies to

Ewa − Eaw + a
[
zval-vir

]
wa − (Pλ)aw = 0. (5.28)

These are the Z-vector equations used to solve for λ. Subsequently, Eq. 5.15 can be
used to compute D[λ].

Next we show that the Lagrange multipliers z are solved by considering the virtual-
occupied part of Eq. 5.18, yielding

(1 − Pai)(E + D[z] + D[zcore] + a
[
zval-occ

]
+ a

[
zval-vir

]
+ D[λ])ai

���
a∈vir,i∈occ

= 0,

(5.29)

which further simplifies to

Eai − Eia + (2g[z̄core])ai +
(
a
[
zval-occ

] )
ai
−

(
a
[
zval-vir

] )
ia

− (Pλ)ia + (Fz − zF + 2g[z̄])ai = 0.
(5.30)

Here, the MO indices a and i refer to the full virtual and occupied spaces, respec-
tively. These are the Z-vector coupled perturbed Hartree–Fock (Z-CPHF) equations.
With the solutions to all Z-vector equations we can return to Eq. 5.19 to solve for x.

Incorporating localization strategy

Finally, to provide the working expression of Eq. 5.8 in terms of derivative AO inte-
grals we must choose specific localization methods. For this derivation we choose
the Foster-Boys and IBO localization methods to localize the valence-occupied and
valence-virtual orbitals respectively, yielding

∂L
∂q
= tr

[
dah(q)

]
+ tr

[
X1S(q)1

]
+ tr

[
X2S(q)2

]
+ tr

[
X12S(q)12

]
+

∑
n

tr
[
Wn(Rn)(q)

]
+ 1

2

∑
µνλσ

Dµνκσ(µν |κσ)(q),
(5.31)

where h is the standard one-electron Hamiltonian, µ, ν, κ and σ label AO basis
functions in the original basis, (µν |κσ) are the two-electron repulsion integrals, S2

is the overlap matrix of the minimal AO basis (MINAO) used in the IBO procedure,
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and S12 is the overlap matrix between the original AO and MINAO basis sets. The
effective one-particle density da is defined as

da = γ + 1
2CD̄FC† + 1

2Cz̄C† + 1
2Cz̄coreC†, (5.32)

where γ is the full systemHF density. The effective two-particle densityD is defined
as

Dµνκσ = (db)µνγκσ − 1
2 (db)µκγνσ + 2

∑
pq

DJ
pqCµpCνpCκqCσq

+ 2
∑
pq

DK
pqCµpCκpCνqCσq,

(5.33)

where the effective one-particle density db is defined as

db = γ + CD̄FC† + Cz̄C† + Cz̄coreC†. (5.34)

The matrices X1, X2, X12, and Wn are defined as

X1 = CxC† +
∑
a>b

∂rab

∂S1
zval-virab +

∑
wa

∂Pwa

∂S1
λwa,

X2 =
∑
a>b

∂rab

∂S2
zval-virab +

∑
wa

∂Pwa

∂S2
λwa,

X12 =
∑
a>b

∂rab

∂S12
zval-virab +

∑
wa

∂Pwa

∂S12
λwa

(5.35)

and

Wn =
∑
i> j

∂ri j

∂Rn zval-occi j + CDR,nC†, (5.36)

where Eq. 5.35 is expanded in Appendix 5.7 and Eq. 5.36 is expanded in Ap-
pendix 5.7.

5.3 Computational Details
In this work, we perform calculations on four different data sets: (i) the thermalized
water data set published in Ref. 71, (ii) a thermalized set of organic molecules
featuring up to seven heavy atoms (QM7b-T) [71], and (iii) the ISO17 set of short
trajectories for constitutional isomers with the chemical formula C7O2H10 [57].

AllMOB-ML energy and analytical gradient are implemented in and performedwith
entos qcore [150]. The DF-HF calculations for the QM7b-T set [71], the ISO17
set [57] are performed with a cc-pVTZ [80] basis set and a cc-pVTZ-JKFIT density
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fitting basis [183]. The DF-HF calculations for the water calculations are performed
with a aug-cc-pVTZ [191] and a aug-cc-pVTZ-JKFIT [183] basis set. We em-
ploy a molecular orbital convergence threshold of orbital_grad_threshold =
1 × 10−8 a.u. In all MOB-ML calculations, the Foster–Boys [159] localization
method is used to localize the valence-occupied MOs. The valence-virtual space
is either localized with Foster–Boys localization (QM7b-T, ISO17) or the IBO lo-
calization method [130] (water). The diagonal and off-diagonal feature vectors
are constructed following the procedure outlined in Ref. 190. For all Z-CPHF
calculations a convergence threshold of 1 × 10−8 a.u. is specified.

All WF calculations are performed in Molpro [192] with the frozen-core approxi-
mation, and with density fitting. All WF pair energy calculations employ the non-
canonical MP2 [131, 167, 193, 194] or non-canonical coupled-cluster singles, dou-
bles, and perturbative triples [CCSD(T)] [44, 195–200] correlation treatments with
the cc-pVTZ, cc-pVTZ-MP2FIT, [185] aug-cc-pVTZ and aug-cc-pVTZ-MP2FIT
[185] basis sets. An interface between Molpro and entos qcore is used such that
WF pair energies are calculated using the DF-HF LMOs produced by entos qcore.
All WF gradient calculations employ the canonical MP2 or CCSD(T) correlation
treatments with the aug-cc-pVTZ, aug-cc-pVTZ-JKFIT and aug-cc-pVTZ-MP2FIT
basis sets. For all Z-CPHF calculations needed for the WF gradient an iterative
solver with a convergence threshold of 1 × 10−9 a.u. is used.

The MOB-ML models for water are trained on non-canonical CCSD(T)/aug-cc-
pVTZ pair correlation energies. When constructing the feature vector all non-zero
elements from the Fock and κ matrices are used. All linear regression (LR) models
are trained using Scikit-Learn [201]. All Gaussian process regression (GPR) [202]
models use the Matern 5/2 kernel [202, 203] and are optimized using the scaled
conjugate gradient option in GPy [204]. All regression clustering models are trained
following the framework outlined in Ref. 72 using a GPR within each cluster.

The MOB-ML models for the QM7b-T data set, and the ISO17 data set are trained
on non-canonical MP2/cc-pVTZ pair correlation energies. Feature selection is
performed using random forest regression [205] with the mean decrease of accuracy
criterion, which is sometimes referred to as permutation importance [206]. All
GPRmodels use the Matern 5/2 kernel and are optimized using the scaled conjugate
gradient option in GPy.
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Table 5.1: Mean absolute error (MAE) of the MOB-ML analytical nuclear gradient
with respect to the MOB-ML numerical nuclear gradient for a non-equilibrium
geometry of water. The numerical nuclear gradients in were obtained with a two-
step central difference formula with a step size of 5×10−4 bohr. The non-equilibrium
geometry of water has bond lengths of 0.986Å and 0.958Å, and a bond angle of
94.5◦. All MOB-ML models are trained on data for 100 water geometries.

Regression technique MAE (hartree/bohr)
Linear regression 1.45 × 10−8

Gaussian process regression 3.75 × 10−8

Clustered Gaussian process regression 2.28 × 10−8

5.4 Results and Discussion
First, we compare the MOB-ML analytical gradient to the numerical gradient for
an exemplary molecule to ascertain the correctness of our derivation and imple-
mentation in Table 5.1. Table 5.1 shows that the mean absolute errors (MAE) of
the analytical MOB-ML gradients of a distorted water molecule with respect to
the numerical ones are on the order of 10−8 hartree/bohr for all MOB-ML mod-
els. A similar MAE is commonly found when comparing analytical and numerical
gradients of pure electronic structure methods [28, 160, 189, 197]. Additionally, Ta-
ble 5.1 shows that the difference of the numerical and analytical gradient is largely
independent of the regression technique (linear regression, Gaussian process re-
gression, or a clustered Gaussian process regression) applied within the MOB-ML
model. More generally, this illustrates (as also pointed out in Section 5.2) that any
desired regression technique can be applied within MOB-ML without changes to
the gradient framework provided that the regression prediction is differentiable with
respect to the features.

In a next step, we now consider a large part of the potential energy surface of a single
water molecule, following our previous work [71]. Fig. 5.1 shows the MAE for the
energy predictions and for the associated analytical gradients we obtained with
MOB-ML models trained on CCSD(T) energies for an increasing number of water
geometries. As already highlighted in Ref. 72, the MAE for the energy prediction
decreases steeply with the number of training geometries and we reach an MAE of
2× 10−4 kcal/mol when training on correlation energies of 100 training geometries.
Additionally, we can now see that theMAEof the analyticalMOB-MLgradientswith
respect to the analytical CCSD(T) gradients strictly decreases with an increasing
amount of training data although the training data in this context are correlation
energy labels and not gradients. The MAE of the MOB-ML analytical gradient is
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Figure 5.1: Mean absolute errors (MAE) of the total correlation energy prediction (top panel)
and of the associated analytical gradient (bottom panel) as a function of the number CCSD(T)
reference calculations for water geometries chosen for training MOB-ML models. The green circles
correspond to the mean MAE obtained from 50 random samples of the training data, the green
shaded area corresponds to the 90% confidence interval for the predictions and for the gradients
obtained from 50 random samples. The black horizontal line at 0.3 mH/bohr in the bottom panel
indicates the commonly used threshold to determine geometry optimization convergence.

9×10−3 kcal/mol/Å when training on correlation energies for 100 water geometries.
We can contextualize this result by considering that the threshold commonly used
to determine if a structure optimization is converged is 0.36 kcal/mol/Å. The MAE
for the gradient drops below this threshold when training on as few as three to nine
water geometries. This demonstrates that MOB-ML is able to describe potential
energy surfaces to a high accuracy and with a high data efficiency.

We now examine if this result generalizes to a diverse set of molecules. To this end,
we first study the QM7b-T data set which is comprised of a thermalized set of 7211
organic molecules with 7 or fewer heavy atoms [207]. Fig. 5.2 shows the MAE
for the MOB-ML energy prediction and for the associated analytical gradient with
respect to the corresponding MP2 quantities as a function of the number of MP2
reference energy calculations.
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Figure 5.2: Mean absolute errors (MAE) of the total correlation energy prediction (top panel)
and of the associated analytical gradient (bottom panel) as a function of the number MP2 reference
calculations for QM7b-T geometries randomly chosen for training MOB-ML models.

As already reported in Ref. 190, the learning curve for the energy decreases steeply
and we obtain an MAE of 1.0 kcal/mol when training on about 70 structures. The
decrease in the MAE for the energy prediction is accompanied by a decrease in
the MAE for the analytical MOB-ML gradient with respect to the analytical MP2
gradient. We reach a MAE of 2.08 kcal/mol/A when training on 220 structures. To
put this number into context and to compare with other machine learning methods,
we now also examine the ISO17 data set [57].

The ISO17 data set consists of short MD trajectories for constitutional isomers with
the composition C7O2H10. Table 5.2 shows the performance of twoMOB-MLmod-
els, one trained on 220 QM7b-T structures and one trained on 100 ISO17 structures,
and summarizes the MAEs obtained with other ML models in the literature, i.e.,
SchNet [57], FHCL [64], PhysNet [65], the shared-weight neural network (SWNN)
[66], GM-sNN [68] and GNNFF [69]. The MOB-ML models are the only ML
models which are on average chemically accurate although the MOB-ML models
were only trained on energies for 100 ISO17molecules and 220 QM7b-Tmolecules,
respectively. The fact that our model trained on a small set of the seven-heavy atom
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molecules which are smaller in size than ISO17 and which are chemically more
diverse (QM7b-T additionally contains the elements N, S, Cl) showcases again how
transferable and data efficient MOB-ML models are. The next best model in terms
of the energy MAE is GM-sNN which was trained on energies and gradients for
400k ISO17 structures and achieves an MAE of 1.97 kcal/mol. The force MAE of
theMOB-MLmodels (1.63 and 1.64 kcal/mol/Å, respectively) is comparable to that
of GM-sNN (1.66 kcal/mol/Å) while employing only 0.025% of the training data.
MOB-ML is significantly more accurate in the forces than other models trained on
energies alone, i.e., SchNet which obtained an MAE of 5.71 kcal/mol/Å and SWNN
which obtained anMAE of 6.61 kcal/mol/Å. The only model which is more accurate
in terms of the force MAE is PhysNet which is trained on energies and forces for
400k ISO17 structures. PhysNet obtains a forceMAE of 1.38 kcal/mol/A. Given the
demonstrated learnability of forces, it is very likely that MOB-ML could be trained
to be more accurate by including more training data. Furthermore, analytical gra-
dients have not been derived for all reference theories which considerably limits
the scope of these machine learning methodologies. For example, the popular local
coupled cluster methods [187, 208, 209] do not currently have derived analytical
gradient theories

Despite comparing favorably to other ML methods, it is still an open question if
a force MAE of 1.63 kcal/mol/Å is sufficient for an actual application. Therefore,
we now use our model for structure optimizations which is a very frequent task for
quantum chemical methods. To be able to gauge how a certain force MAE translates
into optimized structures, we optimize the constitutional isomers in ISO17 with
MP2 and with MOB-ML and compare the resulting structures via the root mean
square deviation (RMSD) of the atoms positions in Figure 5.3.

Figure 5.3 shows that theMOB-ML optimized structures are very similar to theMP2
optimized structures with a mean RMSD of 0.01 Å. Reassuringly, the structures
are significantly and systematically more similar to the MP2 structures than HF
structures which exhibit an average RMSD of 0.03 Å, where HF is the theory we
correct with MOB-ML. Additionally, we can ascertain that MOB-ML structures are
more similar to MP2 structures than a B3LYP-D3 (as a typical DFT functional)
structure is to an MP2 structure. In fact, B3LYP-D3 structures exhibit an average
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Table 5.2: Comparison of the mean absolute error for the prediction of energies and
atomic forces for the unknown test set of the ISO17 data set obtained with different
ML methods. The different ML methods applied different training sizes and drew
on different labels to train the models on. Energy and force errors are reported in
kcal/mol and kcal/mol/Å, respectively.

Method Training
Size

Trained on energies Trained on energies+gradients

Energy
MAE

Force
MAE

Energy
MAE

Force
MAE

SchNet [57] 400,000 3.11 5.71 2.40 2.18
FCHL [64] 1,000 — — 3.70 3.50
PhysNet
[65]

400,000 — — 2.94 1.38

SWNN [66] 400,000 3.72 6.61 8.57 6.74
GM-
sNN[68]

400,000 — — 1.97 1.66

GNNFF [69] 400,000 — — — 2.02
MOB-ML 100 0.84 1.64 — —
MOB-ML 220∗ 0.76 1.63 — —
∗This MOB-ML model was trained on 220 randomly selected structures from the
QM7b-T data set.

Figure 5.3: Histogrammed root mean square deviations (RMSD) of HF structures (blue), B3LYP-
D3 structures (orange), and MOB-ML structures (green) with respect to MP2 structures for the
unique isomers in the ISO17 data set. The MOB-ML was trained on 220 randomly selected QM7b-T
structures.
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RMSD of 0.03 Å with respect to MP2 structures confirming this hypothesis. We
can take this as an indication that we can systematically approach structures of any
desired reference theory.

5.5 Conclusions
In this work, we have presented the derivation and implementation of the formally
complete MOB-ML analytical nuclear gradient theory within a general Lagrangian
framework. We have validated our derivation and implementation by comparison
of numerical and analytical gradients. The MOB-ML gradient framework can be
applied in conjunction with any desired fitting technique (e.g., Gaussian process
regression or neural networks) and any desired recipe for assembling the MOB-ML
feature information. Furthermore, the framework for evaluating the gradient of a
predicted high-accuracy wave function energy is independent of the wave function
methodMOB-MLwas trained to predict. Hence, we can take the analytical gradient
of a MOB-MLmethod trained to predict an arbitrary accurate wave function theory.

MOB-ML was previously shown to predict high-accuracy wave function energies
at the cost of a molecular orbital evaluation. We now have shown that a MOB-ML
model trained on correlation energies alone also yields highly accurate gradients
for potential energy surfaces of a single molecule and for sets of diverse molecules.
Specifically, we presented a MOB-ML model which obtains a force MAE of 1.64
kcal/mol/Å for the ISO17 set when only trained on reference energies for 100
molecules beating out the next best model only trained on energies in the litera-
ture, SchNet (5.71 kcal/mol/Å) which was trained on 400k molecules [57]. The
transferability and data efficiency becomes even clearer when considering that we
obtain an MAE of 1.63 kcal/mol/Å for the ISO17 set when training on 220 QM7b-T
molecules which are smaller in size (seven versus nine heavy atoms) and which are
more diverse in terms of chemical composition. The accuracy of a MOB-MLmodel
trained on energies for 220 QM7b-T molecules for the forces is on par with some
of the best ML models trained on energies and forces for hundreds of thousands of
ISO17 molecules. Furthermore, we have demonstrated that a force MAE of this
magnitude translates into structures which are very close to reference structures.
Specifically, we obtain a mean RMSD of 0.01 Å with respect to MP2 optimized
structures for the ISO17 data set. This deviation is three times smaller than for HF
or B3LYP-D3 optimized structures.

The presented method can be applied out-of-the-box whenever hybrid DFTmethods
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are appliedwhile being systematically improvable and offering a controlled accuracy.
Natural objectives for futurework include (i) the inclusion of gradients in the training
process to boost the performance in the very low data regime, (ii) the extension to
an open-shell framework, (iii) the adaptation of the Lagrangian framework to derive
the analytical gradients of the MOB-ML energy with respect to quantities such as
electric and magnetic fields.

5.6 Supporting Information
The data set used in Fig. 5.1 is available from Ref. 207. Geometries used in all other
tables and figures are available in the supporting information of Ref. 210.

5.7 Appendix
Foster-Boys Localization
This appendix provides additional details for the Boys-related terms in Eqs. 5.13,
5.22 and 5.36 of the main text. The localization conditions for Foster-Boys are [189]

ri j =
∑

n

Rn
i j

(
Rn

ii − Rn
j j

)
= 0 for all i > j, (5.37)

where n corresponds to the x, y, z-coordinates of the position operator. The matrices
Rn are defined as

Rn
i j =

∑
µ

(i |n| j), (5.38)

where |i) and | j) are valence-occupied MOs. The orbital derivative contributions
from the Foster-Boys localization conditions shown in Eq. 5.13 are(

a
[
zval-occ

] )
pq
=

∑
i> j

Bpqi j zloci j

���
q∈val-occ

, (5.39)

where

Bpqkl =
∑

n

[(
2Rn

pkδkq − 2Rn
plδlq

)
Rn

kl +
(
Rn

kk − Rn
ll

) (
Rn

plδkq + Rn
pkδlq

)]
. (5.40)

Next, the dipole derivative contribution from the localization conditions from the
first term on the RHS of Eq. 5.36 is

(Wn)µν = 1
2

∑
i j

CµiCν j zval-occi j

(
Rn

ii − Rn
j j

)
+

∑
i

CµiCνi

∑
j

zval-occi j Rn
i j . (5.41)

For a full derivation of the orbital and dipole derivatives of Foster-Boys localization
conditions please refer to Ref. 189.
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IBO Localization
This appendix provides additional details for the terms IBO-related terms in Eqs. 5.7,
5.14, 5.26 and 5.35 of the main text. The localization conditions for IBO are [211]

rab = 4
∑

A

QA
ab

((
QA

aa

)3
−

(
QA

bb

)3
)
= 0 for all a > b, (5.42)

where A corresponds to an atom in the molecule. The matrices QA are defined as

QA
ab =

∑
µ∈A

CIAO
µa CIAO

µb , (5.43)

where the summation over µ is restricted to basis functions at atom A. The matrix
CIAO is the MO coefficient matrix represented in the intrinsic atomic orbital (IAO)
basis which is defined as

CIAO = XIAO,†S1C, (5.44)

where S1 is the overlap matrix in the original atomic orbital (AO) basis and C is the
MO coefficient matrix in the original AO basis. The matrix that transforms from
the AOs to the IAOs shown in Eqs. 5.44 and 5.7 is

XIAO = X̄IAO
(
X̄IAO,†S1X̄IAO

)−1/2
, (5.45)

where
X̄IAO =

(
S−1

1 + LL† − L̃L̃†
)
S12. (5.46)

The matrix L is the subset of the MO coefficient matrix being localized. The matrix
L̃ is

L̃ = L̄
(
L̄†S1L̄

)−1/2
, (5.47)

where
L̄ = S−1

1 S12S−1
2 S†12L. (5.48)

The orbital derivative contributions from the IBO localization conditions shown in
Eq. 5.14 corresponds to Eq. 60 in Ref. 211. The tensor C from Eq. 5.26 corresponds
to Eq. 37 in Ref. 211. The overlap derivative contributions from the IBO localization
conditions shown in Eq. 5.35 correspond to Eqs. 50 - 52 in Ref. 211.

Valence Virtual Conditions
This appendix provides additional details for the terms in Eqs. 5.7 and 5.35 of
the main text. In Eq. 5.7 the matrix XIAO

occ is calculated using Eqs. 5.45 - 5.48
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where the matrix L corresponds to all occupied MOs. Next, the overlap derivative
contributions from the valence virtual conditions in Eq. 5.35 is∑

wa

∂Pwa

∂S1
λwa = XIAO

occ XIAO,†
occ S1Cvvλ

†C†nvv

+
(
XIAO
occ XIAO,†

occ S1Cvvλ
†C†nvv

)†
+ 1

2

(
L̃L̃†X̄L̃L̃† − S−1

1 X̄S−1
1 − X̃

)
− X̄IAOHX̄IAO,†.

(5.49)

The matrices X̄, X̃, and H are the same as the Eqs. 56, 57 and 48, respectively,
shown in Ref. 211. The evaluation of these matrices differ here by redefining the
matrix G (Eq. 42 in Ref. 211), to be

G = S1CnvvλC†vvS1XIAO
occ , (5.50)

the matrix B to be
B = XIAO

occ , (5.51)

and the matrix L to span all occupied MOs. The overlap derivative contributions
from the valence virtual conditions in Eq. 5.35 are∑

wa

∂Pwa

∂S2
λwa = −1

2S−1
2 S†12X̌S12S−1

2 , (5.52)

and ∑
wa

∂Pwa

∂S12
λwa =

(
S−1

1 + LL† − L̃L̃†
)
V + X̌S12S−1

2 . (5.53)

The matrices X̌, and V are evaluated by Eqs. 58 and 54, respectively, in Ref. 211
with the same modifications to G, B and L.

Density Fitting Approximation
This appendix provides details on how the density fitting approximation can be used
to approximate the four-center AO integral derivatives in Eq. 5.31. The AO integral
derivatives are approximated by

(µν |κσ)(q) ≈ (µν |κσ)(q)DF =
∑

P

(µν |P)(q)cP
κσ +

∑
P

cP
µν(P |κσ)(q)

−
∑
PQ

cP
µνJ(q)PQcQ

κσ,
(5.54)

where P and Q label density fitting basis functions, (µν |P)(q) are three-center AO
integrals, and JPQ are two-center AO integrals. The matrix cP is

cP
κσ =

∑
Q

[
J−1]

PQ(Q |κσ). (5.55)
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Substituting Eq. 5.54 into Eq. 5.31 yields∑
µνκσ

(µν |κσ)(q)DF
∑
pq

Dµνκσ = 2
∑
Pµν

(µν |P)(q)ΛP
µν −

∑
PQ

J(q)PQΓPQ, (5.56)

where
cP

pq =
∑

Q

[
J−1]

PQ(Q |pq), (5.57)

Λ
P
µν = (db)µν

∑
κσ

γσκcP
σκ − 1

2

∑
κσ

γσµ(db)µκcP
σκ

+ 2
∑

q

CµqCνq

∑
p

cP
ppDJ

pq + 2
∑

q

Cνq

∑
p

cP
pqDK

pqCµp,
(5.58)

and

ΓPQ =
∑
µν

(db)µνcP
µν

∑
κσ

γσκc
Q
σκ − 1

2

∑
µνκσ

(db)µκγνσcP
µνc

Q
κσ

+ 2
∑
pq

cP
ppcQ

qqDJ
pq + 2

∑
pq

cP
pqcQ

pqDK
pq.

(5.59)

Feature derivatives
Tables 5.3–5.5 specify how the partial derivative of the diagonal feature vector with
respect to the Fock matrix and two center molecular orbital integrals are computed.
Tables 5.6–5.8 specify how the partial derivative of the off-diagonal feature vector
with respect to the Fock matrix and two center molecular orbital integrals are
computed.

Table 5.3: Partial derivative of the diagonal feature vector of FS 3 with respect to
Fock matrix elements ∂fi/∂Fpq.

Partial derivatives Expression
∂Fii/∂Fpq δpiδqi

∂Fik/∂Fpq δpiδqk
Fik

|Fik |
∂Faa/∂Fpq δpaδqa 〈ii |aa〉3

∂Fab/∂Fpq 〈aa|bb〉 〈ii |aa〉
2(Faa−Fii)

〈ii |bb〉
2(Fbb−Fii)

(
δpaδqb

Fab

|Fab | − |Fab |
(δpaδqa−δpiδqi)
(Faa−Fii)

−|Fab |
(δpbδqb−δpiδqi)
(Fbb−Fii)

)
∂[κaa]bb/∂Fpq − 〈aa|bb〉4 〈ii |aa〉

2(Faa−Fii)
〈ii |bb〉

2(Fbb−Fii)

(
(δpaδqa−δpiδqi)
(Faa−Fii) +

(δpbδqb−δpiδqi)
(Fbb−Fii)

)
∂[κab]ab/∂Fpq − 〈ab|ab〉2 〈ia|ia〉

2(Faa−Fii)
〈ib|ib〉

2(Fbb−Fii)

(
(δpaδqa−δpiδqi)
(Faa−Fii) +

(δpbδqb−δpiδqi)
(Fbb−Fii)

)
For the off-diagonal feature vector, the damping function is defined as

Gi j =
1

1 + 1
6 (Ri j/R0)6

(5.60)
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Table 5.4: Partial derivative of the diagonal feature vector of FS 3 with respect to
Coulomb-type two-center molecular orbital integrals ∂fi/∂[κpp]qq.

Partial derivatives Expression
∂Faa/∂[κpp]qq 3δpiδqaFaa 〈ii |aa〉2

∂Fab/∂[κpp]qq |Fab |
(

δpiδqa
2(Faa−Fii) 〈aa|bb〉 〈ii |bb〉

2(Fbb−Fii)

+
〈ii |aa〉

2(Faa−Fii)δpaδqb
〈ii |bb〉

2(Fbb−Fii) +
〈ii |aa〉

2(Faa−Fii) 〈aa|bb〉 δpiδqb
2(Fbb−Fii)

)
∂[κii]ii/∂[κpp]qq 3δpiδqi 〈ii |ii〉2
∂[κii]kk/∂[κpp]qq 3δpiδqk 〈ii |kk〉2
∂[κii]aa/∂[κpp]qq 3δpiδqa 〈ii |aa〉2
∂[κaa]aa/∂[κpp]qq 3δpaδqa 〈aa|aa〉2 〈ii |aa〉3 + 3δpiδqa 〈aa|aa〉3 〈ii |aa〉2

∂[κaa]bb/∂[κpp]qq 4δpaδqb 〈aa|bb〉3 〈ii |aa〉
2(Faa−Fii)

〈ii |bb〉
2(Fbb−Fii) + 〈aa|bb〉4 δpiδqa

2(Faa−Fii)
〈ii |bb〉

2(Fbb−Fii)
+ 〈aa|bb〉4 〈ii |aa〉

2(Faa−Fii)
δpiδqb

2(Fbb−Fii)

Table 5.5: Partial derivative of the diagonal feature vector of FS 3 with respect to
exchange-type two-center molecular orbital integrals ∂fi/∂[κpq]pq.

Partial derivatives Expression
∂[κik]ik/∂[κpq]pq δpiδqk
∂[κia]ia/∂[κpq]pq δpiδqa

∂[κab]ab/∂[κpq]pq 2δpaδqb 〈ab|ab〉 〈ia|ia〉
2(Faa−Fii)

〈ib|ib〉
2(Fbb−Fii)

+ 〈ab|ab〉2 δpiδqa
2(Faa−Fii)

〈ib|ib〉
2(Fbb−Fii) + 〈ab|ab〉2 〈ia|ia〉

2(Faa−Fii)
δpiδqb

2(Fbb−Fii)
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Table 5.6: Partial derivative of the off-diagonal feature vector of FS 3 with respect
to Fock matrix elements ∂fi/∂Fpq.

Partial derivatives Expression
∂Fĩĩ/∂Fpq Gi j

(
1
2δpiδqi +

1
2δpjδq j + δpiδq j

Fi j

|Fi j |

)
∂Fĩ j̃/∂Fpq Gi j

(
1
2δpiδqi − 1

2δpjδq j

)
Fii−Fj j

|Fii−Fj j |

∂Fj̃ j̃/∂Fpq Gi j

(
1
2δpiδqi +

1
2δpjδq j − δpiδq j

Fi j

|Fi j |

)
∂Fĩk/∂Fpq Gi j

(
1√
2
δpiδqk

Fik

|Fik | +
1√
2
δpjδqk

Fjk

|Fjk |

)
∂F j̃ k/∂Fpq Gi j

(
1√
2
δpiδqk

Fik

|Fik | −
1√
2
δpjδqk

Fjk

|Fjk |

)
Fik−Fjk

|Fik−Fjk |

∂Faa/∂Fpq Gi j

(
δpaδqa | 〈ii |aa〉3 − 〈 j j |aa〉3 |/2

)
∂Fab/∂Fpq Gi j 〈aa|bb〉

1
2 |〈ii |aa〉−〈 j j |aa〉|

2Faa−Fii−Fj j

1
2 |〈ii |bb〉−〈 j j |bb〉|

2Fbb−Fii−Fj j

(
δpaδqb

Fab

|Fab |

−|Fab |
2δpaδqa−δpiδqi−δpjδqj

2Faa−Fii−Fj j
− |Fab |

2δpbδqb−δpiδqi−δpjδqj
2Fbb−Fii−Fj j

)
∂[κaa]bb/∂Fpq −Gi j 〈aa|bb〉4

1
2 |〈ii |aa〉−〈 j j |aa〉|

2Faa−Fii−Fj j

1
2 |〈ii |bb〉−〈 j j |bb〉|

2Fbb−Fii−Fj j

(
2δpaδqa−δpiδqi−δpjδqj

2Faa−Fii−Fj j

+
2δpbδqb−δpiδqi−δpjδqj

2Fbb−Fii−Fj j

)
∂[κab]ab/∂Fpq −Gi j 〈ab|ab〉2

1
2 |〈ia|ia〉−〈 ja| ja〉|

2Faa−Fii−Fj j

1
2 |〈ib|ib〉−〈 jb| jb〉|

2Fbb−Fii−Fj j

(
2δpaδqa−δpiδqi−δpjδqj

2Faa−Fii−Fj j

+
2δpbδqb−δpiδqi−δpjδqj

2Fbb−Fii−Fj j

)



86

Table 5.7: Partial derivative of the off-diagonal feature vector of FS 3 with respect
to Coulomb-type two-center molecular orbital integrals ∂fi/∂[κpp]qq.

Partial derivatives Expression
∂Faa/∂[κpp]qq 3Gi j Faa

(
1
2δpiδqa 〈ii |aa〉2 − 1

2δpjδqa 〈 j j |aa〉2
)
〈ii |aa〉3−〈 j j |aa〉3

|〈ii |aa〉3−〈 j j |aa〉3 |

∂Fab/∂[κpp]qq Gi j

1
2 |〈ii |aa〉−〈 j j |aa〉|

2Faa−Fii−Fj j

1
2 |〈ii |bb〉−〈 j j |bb〉|

2Fbb−Fii−Fj j
|Fab |

(
δpaδqb

+
(δpiδqa−δpjδqa)(〈ii |aa〉−〈 j j |aa〉)

|〈ii |aa〉−〈 j j |aa〉|2 〈aa|bb〉
+ 〈aa|bb〉 (δpiδqb−δpjδqb)(〈ii |bb〉−〈 j j |bb〉)

|〈ii |bb〉−〈 j j |bb〉|2
)

∂[κ ĩĩ]ĩĩ/∂[κpp]qq 3Gi j

(
1
2δpiδqi 〈ii |ii〉2 + 1

2δpjδq j 〈 j j | j j〉2 + δpiδq j 〈ii | j j〉2
)

∂[κ ĩĩ] j̃ j̃/∂[κpp]qq 3Gi j

(
1
2δpiδqi 〈ii |ii〉2 − 1

2δpjδq j 〈 j j | j j〉2
)
〈ii |ii〉3−〈 j j | j j〉3

|〈ii |ii〉3−〈 j j | j j〉3 |

∂[κ j̃ j̃] j̃ j̃/∂[κpp]qq 3Gi j

(
1
2δpiδqi 〈ii |ii〉2 + 1

2δpjδq j 〈 j j | j j〉2 − δpiδq j 〈ii | j j〉2
)

∂[κ ĩĩ]kk/∂[κpp]qq 3Gi j

(
1√
2
δpiδqk 〈ii |kk〉2 + 1√

2
δpjδqk 〈 j j |kk〉2

)
∂[κ j̃ j̃]kk/∂[κpp]qq 3Gi j

(
1√
2
δpiδqk 〈ii |kk〉2 − 1√

2
δpjδqk 〈 j j |kk〉2

)
〈ii |kk〉3−〈 j j |kk〉3

|〈ii |kk〉3−〈 j j |kk〉3 |

∂[κ ĩĩ]aa/∂[κpp]qq 3Gi j

(
1√
2
δpiδqa 〈ii |aa〉2 + 1√

2
δpjδqa 〈 j j |aa〉2

)
∂[κ j̃ j̃]aa/∂[κpp]qq 3Gi j

(
1√
2
δpiδqa 〈ii |aa〉2 − 1√

2
δpjδqa 〈 j j |aa〉2

)
〈ii |aa〉3−〈 j j |aa〉3

|〈ii |aa〉3−〈 j j |aa〉3 |

∂[κaa]aa/∂[κpp]qq 3Gi j

(
δpaδqa 〈aa|aa〉2 1

2 | 〈ii |aa〉3 − 〈 j j |aa〉3 |

+ 〈aa|aa〉3 1
2 (δpiδqa 〈ii |aa〉2 − δpjδqa 〈 j j |aa〉2) 〈ii |aa〉3−〈 j j |aa〉3

|〈ii |aa〉3−〈 j j |aa〉3 |

)
∂[κaa]bb/∂[κpp]qq Gi j

1
2 |〈ii |aa〉−〈 j j |aa〉|

2Faa−Fii−Fj j

1
2 |〈ii |bb〉−〈 j j |bb〉|

2Fbb−Fii−Fj j

(
4 〈aa|bb〉3 δpaδqb

+ 〈aa|bb〉4 (δpiδqa−δpjδqa)(〈ii |aa〉−〈 j j |aa〉)
|〈ii |aa〉−〈 j j |aa〉|2

+ 〈aa|bb〉4 (δpiδqb−δpjδqb)(〈ii |bb〉−〈 j j |bb〉)
|〈ii |bb〉−〈 j j |bb〉|2

)
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Table 5.8: Partial derivative of the off-diagonal feature vector of FS 3 with respect
to exchange-type two-center molecular orbital integrals ∂fi/∂[κpq]pq.

Partial derivatives Expression
∂[κ ĩ j̃]ĩ j̃/∂[κpq]pq Gi j

(
1
2δpiδqi − 1

2δpjδq j

)
〈ii |ii〉−〈 j j | j j〉
|〈ii |ii〉−〈 j j | j j〉|

∂[κ ĩk]ĩk/∂[κpq]pq Gi j

(
1√
2
δpiδqk +

1√
2
δpjδqk

)
∂[κ j̃ k] j̃ k/∂[κpq]pq Gi j

(
1√
2
δpiδqk − 1√

2
δpjδqk

)
〈ik |ik〉−〈 j k | j k〉
|〈ik |ik〉−〈 j k | j k〉|

∂[κ ĩa]ĩa/∂[κpq]pq Gi j

(
1√
2
δpiδqa +

1√
2
δpjδqa

)
∂[κ j̃a] j̃a/∂[κpq]pq Gi j

(
1√
2
δpiδqa − 1√

2
δpjδqa

)
〈ia|ia〉−〈 ja| ja〉
|〈ia|ia〉−〈 ja| ja〉|

∂[κab]ab/∂[κpq]pq Gi j

1
2 |〈ia|ia〉−〈 ja| ja〉|

2Faa−Fii−Fj j

1
2 |〈ib|ib〉−〈 jb| jb〉|

2Fbb−Fii−Fj j

(
2 〈ab|ab〉 δpaδqb

+ 〈ab|ab〉2 (δpiδqa−δpjδqa)(〈ia|ia〉−〈 ja| ja〉)|〈ia|ia〉−〈 ja| ja〉|2

+ 〈ab|ab〉2 (δpiδqb−δpjδqb)(〈ib|ib〉−〈 jb| jb〉)|〈ib|ib〉−〈 jb| jb〉|2
)

Table 5.9: Partial derivative of the off-diagonal feature vector of FS 3 with respect
to the centroid distance between orbital p and orbital q ∂fi j/∂Rn

pq.

Partial derivatives Expression

∂fi j/∂Rn
pq −R4

i j

R6
0

Gi jfi j(Rn
ii − Rn

j j)(δpiδqi − δpjδq j)
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